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Edward Elliott

Abstract

Galaxy formation and evolution involves the interplay of a large number of

complex, non-linear processes, many of which act at scales beneath those ac-

cessible to even the most modern galaxy formation simulations. Galaxy forma-

tion models therefore include parameterised sub-grid processes, which must be

calibrated against selected observational constraints. In this thesis, I explore

the application of machine learning and optimisation methods to characterize

and calibrate a semi-analytic model of galaxy formation, GALFORM. I investigate

the application of deep learning to this problem, building an accurate emu-

lator of the full model over a ten dimensional parameter space from just 1000

GALFORM evaluations. I investigate the calibration of GALFORM to a large num-

ber of datasets, and investigate tensions between different choices of calibra-

tion datasets and the parameters themselves. Next, I present an investigation

into the controversial requirement for a top-heavy stellar initial mass function

in starbursts in the GALFORM model, which it was argued was necessary for

the model to match the constraints from the number counts of sub-millimeter

galaxies, their redshift distribution, and the local K-band luminosity function.

Here, I apply Bayesian Optimisation to search the model parameter space for

optimal fits to these datasets, and demonstrate that GALFORM is not capable of

reproducing these data simultaneously with a solar neighbourhood IMF, and

that the top-heavy IMF alleviates this problem.

Supervisors: Carlton Baugh and Cedric Lacey
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K-band LF, we calibrate to data from Kochanek et al. (2001), and for

the SMG number counts, we calibrate to data from Stach et al. (2018)

at the bright end, and Chen et al. (2013) at the faint end. The orange

solid curves show the model which assumes a universal Chabrier IMF in

all modes of star formation. The green lines show the predictions from a

model that also adopts a universal Chabrier IMF, but which is calibrated

to give an improved fit to the low-redshift K-band LF by increasing the

weight given to this dataset in the parameter optimisation. The blue

lines show a model in which the IMF slope in bursts is allowed to vary

according to dn/dlnm ∝ m−x, where x is an adjustable parameter. For

reference, the black dashed line shows the GALFORM model from Baugh

et al. (2019): this model was calibrated using an earlier measurement

of the SMG redshift distribution from Wardlow et al. (2011), which has

a lower median redshift than the Dudzevičiūtė et al. (2020) data. . . . . 98
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Chapter 1

Introduction

Galaxy formation models provide a framework through which we can understand

the structure and evolution of the Universe. Galaxies trace the underlying dark

matter distribution in an unknown way, which is the result of the interplay of a large

number of complex, often nonlinear processes. Due to the inherent difficulty of the

modelling, compounded by the range of length and time scales involved, reprodu-

cing the properties of the observed galaxy population using physically motivated

ab initio models of galaxy formation has proven to be challenging. Nevertheless,

the current state-of-the-art in galaxy formation models has enjoyed some success in

matching some of the general properties of the galaxy population, and has provided

key insights into the processes which must be driving the evolution of galaxies (see

for example the reviews by Baugh 2006; Benson 2010; Somerville & Davé 2015).

The earliest simulations used a handful of light-bulbs to simulate the gravit-

ational interactions during the collision of two galaxies (Holmberg, 1941). Since

then, galaxy formation simulations have advanced to be able to simulate the form-

ation and evolution of tens of thousands of galaxies in representative volumes of

the universe (e.g. Lacey et al., 2016; Schaye et al., 2015). These simulations are

able to track the evolution of the dark matter and gas, the formation of stars, and

the chemical evolution of the stars and gas. These calculations provide important

insights into the galaxy formation process through comparison to observation.
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1.1. ΛCDM and hierachical structure formation

1.1 ΛCDM and hierachical structure formation

The prevailing theoretical framework for understanding the formation of large-

scale structure and the formation of galaxies in the Universe is the ΛCDM model

(Peebles, 1980). The ΛCDM model incorporates two fundamental components;

the dark energy that is thought to be responsible for the recent acceleration of the

cosmic expansion, and a cold form of dark matter, non-baryonic matter crucial for

the gravitational assembly of structure.

The ΛCDM model is supported by decades of observational and theoretical cos-

mological evidence. Measurements of the Cosmic Microwave Background (CMB)

temperature and polarization fluctuations, reflecting the density fluctuations in the

early universe, align closely with theoretical predictions of the ΛCDM model (Bond

& Efstathiou, 1984; Spergel et al., 2003; Planck Collaboration et al., 2016). The

large-scale distribution of galaxies as measured by surveys such as the Sloan Di-

gital Sky Survey (SDSS; York et al. 2000a), is consistent with hierarchical structure

formation within a ΛCDM paradigm (Coles & Lucchin, 1995; Percival et al., 2001;

Eisenstein et al., 2005; Alam et al., 2017). Gravitational lensing measurements of

galaxy clusters and X-ray images of their hot gas have also indicated that there

is a large discrepancy between the inferred mass and the observed luminous mat-

ter, providing indirect evidence of a large missing matter component (Allen et al.,

2011).

Observations of Type 1A supernovae also offer support to the ΛCDM, finding

that they are dimmer than would be expected in a matter dominated universe.

Inferring cosmological parameters from these supernovae, the expansion of the

universe was found to be accelerating, providing evidence for a significant dark

energy contribution to the present energy density of the universe (Riess et al.,

1998; Perlmutter et al., 1999).

Importantly, within ΛCDM, the dark matter is taken to be cold. Though any

2



1.1. ΛCDM and hierachical structure formation

candidate dark matter has so far eluded direct detection, to match observations,

the dark matter component is required have a low thermal velocity dispersion,

leading to a short free streaming length and preservation of density perturbations

on small scales (Davis et al., 1985). Lighter dark matter particles with longer

free-streaming lengths and higher velocity dispersions (hot or warm dark matter)

would smooth-out small scale perturbations (indicated by a steeper fall in the

matter power spectrum at shorter wavelengths). A potential candidate for a cold

dark matter particle is the Weakly Interacting Massive Particle or WIMP (Peebles,

1982), though as stated, there have been no direct detections of dark matter can-

didate particles.

In the ΛCDM model, structure emerges through a bottom-up process, where

small density fluctuations in the early universe grow under the influence of gravita-

tional instability into progressively larger structures. Over cosmic time, small-scale

density perturbations collapse under their self-gravity to form dark matter halos,

which subsequently merge and accrete matter to build larger structures. Quantum

fluctuations in the early universe are expanded to large scales by inflation, and

form the basis for the formation of structure in the Universe. The initial growth of

these perturbations, in the linear regime, is well understood analytically, but their

later collapse and the process of structure formation is much more complex and

non-linear. Nevertheless, this non-linear growth of structure has been investigated

and largely understood via N-body simulation (e.g. Springel et al., 2006). These

early perturbations collapse to form dark matter halos once their self-gravity over-

comes the expansion of the universe. The halos act as the scaffolding for galaxies,

as baryonic matter condenses inside the halo.

Gas cools through radiative processes within the dark matter halos, and the

cooling gas retains the angular momentum of the halo (which is generated by tidal

torques due to the irregular density field around a halo) to form a disc. Once

the gas is cold enough, it is able to form stars. These stars follow evolutionary

tracks which have been modelled and studied in detail through observation of local

3



1.1. ΛCDM and hierachical structure formation

stellar populations and populations in nearby galaxies (Conroy, 2013). When larger

mass stars die, they inject large amounts of energy into the interstellar medium,

ejecting gas out of the galaxy, and playing a crucial role in shaping the observational

properties of galaxy populations (e.g White & Frenk, 1991). As dark matter halos

merge and form larger structures, the galaxies that reside within them are also

subject to mergers which is key in giving rise to the wide array of galaxy shapes

and sizes (e.g. Kauffmann, 1996).

Early attempts at building physical models of galaxy formation within this hier-

archical model (White & Rees, 1978) found that in low-mass halos too much gas

was cooling, and too many stars were being formed to match measurements of e.g.

the local K-band luminosity function. Fundamentally, this was due to a discrep-

ancy between the luminosity function of galaxies and the halo mass function. At

the low-mass end of the halo mass function, observationally, far fewer stars are

formed than would be implied by a naive model based on the abundance of low-

mass halos and assuming an equal mass-to-light ratio across halo masses. A model

of galaxy formation attempts to link the evolution of galaxies to their dark matter

by positing physical explanations for such discrepancies. A supernova feedback

term, dependent on circular velocity, was invoked to eject gas more efficiently from

lower mass galaxies, so suppressing star formation and more accurately matching

the faint-end of the observed galaxy luminosity function (LF) (Lacey & Silk, 1991;

Cole, 1991; White & Frenk, 1991). Later, problems appeared at the bright-end

of galaxy LF within simulations with updated cosmological parameters, where too

much gas was now cooling in high-mass halos (Benson et al., 2003). A number of

prescriptions were suggested to remedy this. For example, Baugh et al. (2005) used

a "superwind" term in their calculation of supernova feedback to permanently eject

gas from high-mass galaxies, preventing star formation in high-mass halos, and

(Bower et al., 2006) introduced the idea of feedback by active galactic nucleae to

suppress star formation in the most massive galaxies. This leads us to a discussion

of the kinds of models used to investigate galaxy formation within the hierarchical

4



1.2. Modelling Galaxy formation

structure formation framework.

1.2 Modelling Galaxy formation

Among the more sophisticated physical models of galaxy evolution, two threads

have emerged. The class of model that enjoyed the first successes, dubbed semi-

analytic models (SAM), tracks the evolution of baryons using a halo-merger tree,

which nowadays are extracted from large, high-resolution dark matter-only N-body

simulations (Lacey et al., 2016; Somerville & Davé, 2015; Lagos et al., 2018; Lu

et al., 2014). The models apply observationally and theoretically motivated pre-

scriptions to describe key processes in galaxy formation including—but not limited

to—gas cooling, star formation, the feedback from supernovae and active galactic

nuclei, and chemical evolution. These models, due to their modular nature where

one or many processes can simply be switched on and off, allow us to easily test the

importance of various theoretical processes which might allow a model to better

match the observed galaxy population, and have uncovered several key effects now

considered centrally important in all models of galaxy formation. For example,

White & Frenk (1991) and Cole et al. (1994) demonstrated the importance of su-

pernova feedback in governing the slope of the faint-end of the low-redshift galaxy

luminosity function. Baugh et al. (1996) and Kauffmann (1996) illustrated the role

of mergers in shaping the Hubble sequence. Bower et al. (2006) and Croton et al.

(2006) demonstrated the need for AGN feedback in allowing the models to match

the sharp break at the bright end of the low-redshift luminosity function.

More recently, hydrodynamic simulations which track the dark matter and gas

distributions more directly have increased in popularity and accuracy. This is due

to the availability of ever increasing computing power and improved algorithms,

which have resulted in the simulations being able to probe cosmologically repres-

entative volumes at the required spatial resolution, and in some cases have begun

to match basic statistical galaxy populations with a similar accuracy to that dis-
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played by SAMs (Vogelsberger et al., 2014; Schaye et al., 2015). These simulations

are attractive because they provide a more explicit description of galaxy form-

ation in terms of gas and dark matter particles, although the analysis of such

models is therefore more complex (such as the need to define what is meant by a

galaxy). Whilst the hydrodynamic simulations can relax some of the assumptions

and approximations made in SAMs, such as removing the need to assume spherical

symmetry when computing the rate at which gas cools, the simulations neverthe-

less are still restricted on two levels: i) they have a finite resolution and ii) the lack

of a detailed physical knowledge of all of the processes behind galaxy formation.

As a result, many phenomena are still dealt with using “sub-grid” physics in hy-

drodynamical simulations, though both the scale at which the “hand over” from

direct simulation takes place, and the level of information involved differ from those

available in SAMS. A prime example is the interaction of SNe with galactic gas.

In the semi-analytical model used in this thesis, the SNe feedback is handled by

specifying the mass loading of a wind in terms of parameters and the circular velo-

city of a model galaxy (see Chapter 2). On the other hand, the Illustris simulation

described by Vogelsberger et al. (2014) covers a volume of 106.5 Mpc on a side,

with a gravitational force softened on a scale of 710 pc. The hydrodynamic scheme

used is a deformable mesh code called AREPO (Springel 2010) and the smallest

mesh elements are 48 pc, comparable to the size of a giant molecular cloud. Hence,

the formation of stars cannot be directly resolved, even if we had a physical, first

principles model to give us the equation for the star formation rate. The heating of

the interstellar medium (ISM) by supernovae is made more efficient by temporarily

turning off the hydrodynamic coupling between the wind and the ISM by hand.

1.3 Model parameters

Both kinds of galaxy formation model outlined above, semi-analytic models and

hydrodynamic simulations, require a number of adjustable parameters to be set
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which govern various processes of the model, for example, the strength of su-

pernova winds and feedback from active galactic nuclei (AGN). These processes

have been demonstrated to be very important in governing the observed properties

of the galaxy population (Bower et al., 2006; Croton et al., 2006), but operate

on scales below the current scope of large-scale galaxy formation modelling. For

this reason, and often because we lack an accurate physical model of the process,

these effects are treated using parameterised prescriptions. The parameters are

then tuned to match a subset of observational datasets, often called calibration

data. In the original models, the setting of the model parameters was done in a

simplistic way, varying parameters one at a time to build intuition, and perform-

ing a “chi-by-eye” comparison to the calibration data. The modernisation of this

tuning process is the primary concern of this thesis, and has been the focus of a

number of previous works. This effort has generally taken two forms: direct ex-

ploration of the model parameter space, and emulation. Although SAMs are orders

of magnitude cheaper than hydrodynamic simulations, direct exploration of their

parameter space is computationally expensive due to the sheer number of model

runs required for a formal search; often this will take a prohibitive length of time

except for the case of tuning the parameters to a small number of datasets. This

approach has been investigated in a number of papers. Kampakoglou et al. (2008)

implemented Markov-Chain Monte Carlo (MCMC) techniques to calibrate a SAM

to multiple datasets. Henriques et al. (2009) again used MCMC to calibrate the

L-GALAXIES SAM to a number of a datasets, finding that the choice of datasets

altered the values of the best-fitting parameters, pointing to deficiencies in their

model. Martindale et al. (2017) expanded on this to include the HI mass function

as a constraint, leading to a change in the best-fitting parameters. Lu et al. (2011,

2012) constrained the parameter space which gave acceptable fits to the K-band

luminosity function (LF), and expanded this to include the HI mass function in

Lu et al. (2014). Ruiz et al. (2015) used particle swarm optimization to calibrate

a SAM to the K-band LF.
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More sophisticated approaches (e.g. Benson & Bower, 2010) have been emulator-

based. That is, they construct a statistical model of the galaxy formation model

itself in order to search the parameter space. The model emulator has a much

lower computational cost than running the full model, and produces similar out-

put, which allows a more extensive search of the parameter space to be carried out,

either in terms of the number of models run (and hence the information extracted

from the parameter search, such as the range of acceptable models) or the num-

ber of parameters permitted to vary. The methodology developed in Vernon et al.

(2010) has been applied widely to galaxy formation models (e.g. Rodrigues et al.,

2017; van der Velden et al., 2021). In this approach, an emulator is constructed

from a wide sampling of the parameter space, and iteratively refined on smaller

subsets of the space based on a measure of implausibility, as defined in Vernon

et al. (2010), until a sub-space of models which is deemed to give an acceptable

fit to the observational datasets is reached. In this thesis, we consider alternat-

ive emulator-based approaches and optimisation methods to speed up the process

of model calibration and parameter space exploration, which do not require user

intervention.

1.4 Machine Learning

Machine learning methods are computational methods for building predictive mod-

els directly from data (e.g. Baron, 2019; Emmert-Streib et al., 2020). That is, given

a set of inputs x to some unknown function f(x), and the corresponding outputs

y, machine learning methods aim to construct a statistical model of f , f̂ , which

approximates the mapping from x to y. Certainly, the emulator methods applied in

Vernon et al. (2010) already amount to a kind of machine learning, where a model

is constructed from the data itself, without a strongly defined physical model.

The field of machine learning comprises a set of techniques to optimally con-

struct these models so that our approximation of the function is as accurate as
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possible (Bishop, 2007). For example, a neural network—a network of neurons

which take in inputs, perform a dot product and apply an activation function, and

feed these operations forward to produce an output—is able to approximate any

smooth function. Choices of activation function include the Rectified Linear Unit

(ReLu), which is defined as σ(x) = max(0, x) and the sigmoid activation function

σ(x) = 1/(1 + e−x). These functions introduce non-linearity into the computa-

tion and govern the smoothness and extrapolation properties of the network. For

example, the sigmoid function will suppress very large input values of x, whereas

the piece-wise linear ReLu function will not, instead extrapolating linearly. The

field of machine learning equips us with techniques for ensuring that these methods

provide us with approximate functions that are able to be generalized beyond the

data on which they are trained, for example, techniques such as cross-validation

might be used to ensure that any model constructed also generalizes to unseen

samples.

1.5 Emulation and optimisation

This thesis is primarily concerned with how we can understand and calibrate semi-

analytic models quickly, effectively and transparently. In this context, semi-analytic

models can be thought of as black-boxes which take a set of input parameters

x, and return a population of galaxies corresponding to that formulation of the

model. We then compute some statistical properties of these galaxies, and adjust

the parameters until we match a subset of the observations of the same statistical

properties calculated with data from the actual Universe.

Within this framework we represent the galaxy formation model as a function

y = f(x) + ϵ, (1.1)

where x ∈ X is a set of parameters within a larger space of explorable paramet-

ers X, and ϵ is a noise term, usually the shot-noise which results from the finite
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simulation volume used (we typically sample a subset of the merger histories avail-

able from the full N-body simulation, which, for example, makes predictions of the

luminosity function subject to noise at the brightest magnitudes). Generally, we

then want to calculate some measure of the error, f e(·), between the predictions

from the simulation and the real Universe, which will be a function of (y − yobs),

the uncertainty on the observations σobs (and perhaps also the uncertainty on the

emulator σem).

We aim to find a set of parameters x∗ ∈ X such that f e(·) is minimised, or some

distribution over x which describes the possible values of these parameters given the

observational data yobs, p(x|yobs), i.e. the set of parameters which produce results

that are statistically compatible with the calibration data. Hence, the result of the

model calibration can be a range of best-fitting models, rather than a single model.

The galaxy formation model is, in general, expensive to evaluate. that is, in

the interest of minimizing our computing time, we would like to perform as few

evaluations of the full model as possible. Often therefore, we would like to build a

surrogate model or emulator of the full model which we can evaluate much more

cheaply (and many orders of magnitude more quickly) which will approximate

evaluating the full model as well as possible. That is, we want to estimate the

error f e(·), as a function of the input parameters x, using a statistical model.

To do this we have a number of choices. Ultimately, we want to infer the correct

choice of parameters given a set of observed data. That is, we want to approximate

the probability of a given set of parameters given some observational data p(x|yobs).

The most intuitive approach is to simply build a statistical model of the galaxy

formation model itself. For example, we may have a set of evaluations at parameter-

space points x, and the corresponding synthetic galaxy properties y. We then build

a simple surrogate model f̃(x), which is able to predict y. Once we are convinced

that our emulator accurately approximates the full model, we could then use a

simple MCMC routine to infer the probability density of the parameters p(x|yobs).

Often, fully approximating the galaxy formation model requires a reasonably large
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number of full model evaluations.

Another approach, which we also explore, is to directly model the error between

our galaxy formation model’s predictions and the observational datasets considered.

Given a parameter space X and a sample from this space, x, we calculate some

error which is a function of x, f e(x). Our goal is then to approximate f e(x) directly

using machine learning techniques, and find the parameter space sample x∗ which

minimizes the function f e(x). In this way, we are not constructing an emulator of

the full output for the galaxy formation model for the observational datasets we

are considering (e.g. the values of the K-band luminosity function), but instead

some measure of the error between our predicted values and the observations.

1.6 Thesis Outline

This thesis investigates the application of machine learning and optimisation tech-

niques to explore and calibrate a semi-analytic model of galaxy formation. The

aim is to replace the traditional method of setting the model parameters, which

involved developing a feel for an important subset of the full model parameter space

and devoting effort to building intuition about how the model predictions respon-

ded to changes in these parameters. This approach has a number of drawbacks:

it is hard to reproduce, the comparison to observations is approximate, and it is

impossible to carry out a methodical search of even the subset of the parameter

space chosen, let alone to investigate a more plausible parameter space. The meth-

odology we present in this thesis can be applied to any complex scientific model

which is computationally expensive to evaluate and which contains an appreciable

number of parameters (or order tens of parameters).

In Chapter 2, we introduce the GALFORM semi-analytic galaxy formation model

(Cole et al., 2000a; Lacey et al., 2016)), outlining the processes followed and ex-

plain how they are modelled. We also introduce the associated model parameters

and put them into context within the galaxy formation modelling framework. In
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Chapter 3, we apply a deep learning approach to optimising the GALFORM model

parameters over a wide range of datasets. We also apply sensitivity analysis tech-

niques (previously explored in Oleśkiewicz & Baugh (2020)), to quantify the rel-

ative importance, effect and interactions between the different model parameters.

We use our model calibration pipeline to identify tensions which arise from the

choice of calibration data. We present a new version of the model introduced by

Lacey et al. (2016) calibrated against a broad range of observational data, and

quote ranges on the parameter values which correspond to statistically acceptable

models. In Chapter 4, we apply optimisation methods to investigate the choice

of initial mass function within the GALFORM model, where we directly model

the error of the galaxy formation model and the observational data rather than

building a full model, and use Bayesian optimisation to select candidate parameter

samples. Previously, using the old fashioned and burdensome model calibration

process described above, Baugh et al. (2005) argued that a top-heavy stellar initial

mass function was needed in bursts of star formation to accommodate the observed

number and redshift distribution of dusty star forming galaxies in the model, at

the same time as reproducing local observations. Our new approach allows us to

convincingly demonstrate that there is no unexplored corner of a high dimensional

parameter space that would allow the model to match all of these constraints sim-

ultaneously without making this assmuption, and that, within the limitations of

the current GALFORM model, a top-heavy IMF is needed.

Finally, in Chapter 5, we present our conclusions.
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Chapter 2

Theoretical Background

2.1 GALFORM

GALFORM is a state-of-the-art ab initio physically motivated semi-analytical model of

galaxy formation. The model tracks the merger histories of dark matter haloes, the

cooling of gas to form galactic disks, quiescent star formation in the disk, bursts of

star formation associated with mergers or disk instabilities, the resultant feedback

and gas ejection driven by supernovae, the role of heating by AGN in inhibiting

gas cooling, and the chemical enrichment of stars and gas (for a full description of

GALFORM see Cole et al., 2000b; Lacey et al., 2016).

Briefly, the model tracks

• the collapse of dark matter into DM-halos, and their subsequent merging

• the heating and cooling of gas inside these halos, and the formation of galactic

disks

• star formation in both the disk and starbursts

• feedback effects such as the ejection of gas by supernovae (and its subsequent

return to the hot gas halo), and the heating of gas by AGN to prevent it from

cooling

13



2.1.1. Quiescent star formation in disks

• galaxy mergers and galactic disk instabilities

• calculation of the sizes of disks and spheroids based on hydrostatic equilib-

rium, conservation of angular momentum and halo contraction

• chemical enrichment of stars and gas

• the effect of galactic dust on the starlight emitted by galaxies

In the follow sections, we give a description of each of the processes which will

be explored in this work.

2.1.1 Quiescent star formation in disks

The model uses an empirical star formation law formulated by Blitz & Rosolowsky

(2006) (and implemented in GALFORM in Lagos et al., 2011) based on observations

of nearby star-forming disk galaxies. The star formation rate in the disc is

ψdisk = νSFMmol, disk, (2.1)

where Mmol, disk is the mass of molecular gas in the disk, and νSF is a constant

which we treat as an adjustable parameter within a reasonable range suggested by

observations (Bigiel et al., 2011). The fraction of cold gas in the molecular phase

depends on the gas pressure in the mid-plane of the disc.

2.1.2 Supernova feedback

Supernova feedback causes gas to be ejected from galaxies and out of the halo.

The model assumes that this mass ejection is proportional to the instantaneous

star formation rate, ψ, with a mass loading factor which depends on the circular

velocity of the galaxy, Vc :
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Ṁ eject =
(
V c
V SN

)−γSN
ψ, (2.2)

where both V SN and γSN are model parameters. We can further separate V SN

into V SN, disk and V SN, burst, allowing for different mass loadings in quiescent star

formation and bursts, although these parameters have generally been assumed to

be equal in most previous versions of the model (see Benson & Bower 2010 for

an exception). Gas ejected from the halo is assumed to gradually return from a

reservoir beyond the virial radius of the halo to the hot gas reservoir at a rate given

by

Ṁ return = αret
M res

τdyn,halo
, (2.3)

where τdyn,halo is the dynamical time of the halo, M res is the mass in the reservoir

beyond the virial radius, and αret is a free parameter.

2.1.3 Galaxy mergers

In the model, galaxy mergers can trigger bursts of star formation and destroy

galactic disks. We define two thresholds, f ellip and fburst which are used to classify

mergers and which govern their outcomes. When a satellite galaxy with baryonic

mass Mb, sat merges with a central galaxy with baryonic mass Mb, cen two types

of mergers may occur. First, if Mb, sat/Mb, cen ⩾ f ellip the merger is classified as

a major merger, and the disk component of the galaxy is destroyed and forms a

spheroid. The cold gas in the disk is assumed to be consumed in a burst of star

formation which adds new stars to the spheroid. Second, if Mb, sat/Mb, cen < f ellip,

the merger is classified as minor, and the disk survives the merger. In this case, the

cold gas is consumed in a starburst if a second condition is met, Mb, sat/Mb, cen ⩾

fburst. Both fburst and f ellip are treated as free parameters. In the improved galaxy

merger model of Simha & Cole (2017), once a subhalo can no longer be resolved,
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an analytic calculation of the merger time is made based on dynamical friction

arguments.

2.1.4 Disk instabilities

Galactic disks dominated by rotational motion can become unstable to bar form-

ation if their degree of self-gravity is too large. The model follows the work of

Efstathiou et al. (1982), and assumes that disks become unstable if the criterion

V c(rdisk)
(1.68GMdisk/rdisk)1/2 ≤ F stab (2.4)

is met, where Mdisk is the total disk mass and rdisk is the disk half-mass radius.

Numerical simulations of a suite of exponential stellar disks by Efstathiou et al.

(1982) suggested a value of F stab ≈ 1.1, while Christodoulou et al. (1995) found a

value of 0.9 for gaseous disks. A value of 0.61 or below corresponds to universally

stable disks, since this is the value of the left hand side of Eqn. 2.4 for a completely

self-gravitating disk. We allow this parameter to vary within a reasonable range

(see Table 4.1). We assume that unstable disks are disrupted by bar instabilities

on a sub-resolution timescale such that all the mass is instantaneously transferred

to the spheroid and any gas present takes part in a burst of star formation.

2.1.5 Starbursts

Bursts of star formation, triggered by mergers or bar instabilities in dynamically

unstable disks, are assumed to form stars at a rate

ψburst = νSF, burstM cold,burst = M cold,burst
τ*burst

, (2.5)

where the time scale is given by

τ*burst = max[fdynτdyn, bulge, τ*burst,min]. (2.6)
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Here the bulge dynamical time, τdyn, bulge is defined as τdyn, bulge = rbulge/V c(rbulge),

where the velocity is the effective circular velocity at the half-mass radius of the

bulge. The minimum timescale of the burst, τ*burst,min, is treated as an adjustable

parameter in the range 1-100 Myr. fdyn is held at the value of 20 used by Lacey

et al (2016).

2.1.6 SMBH growth and AGN feedback

Supermassive black holes can inject energy into the halo gas, inhibiting gas cooling.

Hot halo accretion, BH-BH mergers, as well as starbursts can increase the mass of

the black hole (Bower et al., 2006; Griffin et al., 2019). In the case of starbursts,

the mass accreted onto the SMBH is a fraction fSMBH of the mass of stars formed,

where fSMBH is an adjustable parameter. AGN accretion is assumed to occur if

both of the following conditions are met: (1) that the gas halo is in quasi-hydrostatic

equilibrium, that is the condition

τ cool/τff > 1/αcool, (2.7)

is met, where τ cool is the cooling time of the gas, τff the free-fall time, and αcool is an

adjustable parameter; (2) The AGN power required to balance the radiative cooling

luminosity is below a fraction fEdd (fixed at 0.05) of the Eddington luminosity of

the SMBH.

2.1.7 Stellar initial mass function

The stellar initial mass function (IMF) gives the mass distribution of newly formed

stars, and strongly affects the evolution of a the stars and their luminosity, as well

as the metal and gas content of the galaxy. The IMF, Φ(m) is defined such that

the number of stars with mass m is dN = Φ(m)dlnm, and Φ(m) is normalised such

that
∫ mH

mL
Φ(m)dlnm = 1 between some maximum (mH) and minimum (mL) stellar

mass.
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In some of the models considered later we will allow the slope of the IMF to

depend on the mode of star formation, assuming a solar neighbourhood IMF for

quiescent star formation that takes place in disks and a power law IMF for bursts

of star formation. The slope of the power law IMF is then a model parameter:

Φ(m) := dN/dlnm ∝ m−x. (2.8)

To accommodate this change, we must self-consistently calculate the recycled frac-

tion (i.e. the fraction of mass returned to the ISM from mass lost by stars over

their lifetime), given by

R =
∫ mH

1M⊙
(m−mrem(m))Φ(m)dlnm, (2.9)

where mrem is the mass of the remnant left by a dying star of birth mass m. We

also calculate the yield, i.e. the fraction of the initial mass synthesised into metals

and ejected, p, as

p =
∫ mH

1M⊙
pZ(m)mΦ(m)dlnm, (2.10)

where pZ(m) is the fraction of mass ejected as metals by a star of mass m. For

reference, the solar neighbourhood IMF assumed in quiescent star formation tends

to a power law slope of x = 1.35 above one solar mass and turns over with a

log-normal form below one solar mass (Chabrier, 2003). Most previous GALFORM

models used the Kennicutt (1983) form of the solar neighbourhood IMF.

2.1.8 Absorption and reradiation of starlight by dust

Within galaxy disks, a two component dust model is assumed with diffuse and

molecular cloud components. In a burst, the dust is assumed to be in the form

of molecular clouds. In both cases, the dust is mixed in with the stars, although

these components can have different scale heights (see Granato et al. 2000). The
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2.1.8. Absorption and reradiation of starlight by dust

mass of dust in a galaxy is assumed to be a constant fraction δdust of the mass

of metals in the cold gas, Mdust = δdustZcoldM cold, where δdust = 0.334 and Zdust

is the metallicity of the cold gas (Silva et al., 1998). The optical depth is then

calculated as

τdust,λ = 0.043
(
kλ

kV

) ( Σgas
M⊙pc−2

) (
Zcold
0.02

)
, (2.11)

where Σgas is the surface density of the gas and the k quantities are related to the

extinction curve.

The model assumes that an adjustable fraction f cloud of the dust is in clouds

of mass mcloud and radius rcloud. The mass and radius of the clouds are assumed

to be constant and are based on observations of local galaxies (Granato et al.,

2000). Stars are assumed to form inside molecular clouds and escape over an

adjustable timescale tesc. The optical depth in clouds therefore scales as τ cloud ∝

f cloudmcloud/r
2

cloud, and the optical depth of the diffuse component as τdiffuse ∝

(1 − f cloud)M coldZcold/r
2

diffuse. Here, rdiffuse is taken to be the disk radius, rdisk,

for stars in the disk, and rbulge, for stars in the bulge. Attenuation by diffuse

dust is calculated by interpolating the tabulated results of radiative transfer runs

by Benson (2018) using the HYPERION code of Robitaille (2011). These models

are higher resolution versions of the extinction tables previously used in GALFORM,

which were based on the radiative transfer calculations by Ferrara et al. (1999),

and extend over a wider range of optical depth values, making the interpolation of

model galaxy properties more accurate.

The dust re-radiates the photons it absorbs from the starlight at infra-red and

sub-millimeter wavelengths. In the model, the emission from the diffuse and cloud

components are treated separately. We calculate the total stellar luminosity ab-

sorbed by the dust in a galaxy, and assume the dust radiates this energy as a

modified black body
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Ldust
λ ∝ Mdustκd(λ)Bλ(T dust), (2.12)

where Mdust is the mass and T dust the temperature of the dust component, Bλ(T )

is the Planck function, and κd is the dust opacity per unit mass. Integrating Ldust
λ

over wavelength and setting the result equal to the absorbed luminosity allows us

to solve for the dust temperature, T dust, for each component. The dust opacity is

approximated as a broken power law

κd ∝


λ−2 λ < λb

λ−βb λ > λb,

(2.13)

where we allow the adjustable exponent βb for bursts to vary within the range 1.5

- 2.0 (see e.g. Silva et al. 1998) and λb = 100µm. For emission from dust in the

disk, there is no break in the power law for κd.

2.1.9 The Lacey2016 model

Since the model of Cole et al. (2000a), there have been a number of iterations

on the GALFORM code. The Lacey2016 GALFORM model (Lacey et al., 2016), which

includes a different IMF slope in bursts to that used in quiesent star formation

and the AGN feedback treatment developed in Bower et al. (2006) is a compre-

hensive calibration of the model applied to the Millennium WMAP-7 N-body sim-

ulation. This simulation has a side length 500h−1Mpc and halo mass resolution

1.87 × 1010h−1M⊙, and a dark matter particle resolution of 9.36 × 108h−1M⊙. The

simulation output consists of 64 snapshots at varying redshifts. These outputs are

used to construct the dark matter halo merger trees. Halos are first identified us-

ing a friends-of-friend (FoF) percolation algorithm, and then SUBFIND is run on the

resulting particle lists to identify subhalos within these structures Springel et al.

(2001). The subhalo merger trees are processed through the DHALOS algorithm to

ensure that the halo mass increases monotonically, and to apply a set of conditions
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to determine if subhalos have merged (Jiang et al., 2014). The DHALOS algorithm

groups subhalos into dark matter halos with strictly hierarchical formation histor-

ies, overcoming issues of artificial mergers and tenuous bridges often encountered

with traditional FoF halos.

Lacey et al. (2016) provides a comprehensive exploration of the model predic-

tions, illustrating how they change when varying key model parameters. This model

shows good agreement with a large range of observational datasets across both

redshift and wavelength. In particular, the model was designed to reproduce local

calibration data, such as the K-band galaxy luminosity function, and to match

the properties of high redshift galaxy populations, including the number counts

and redshift distribution of galaxies seen through their emission at submillimetre

wavelengths, and the luminosity function of galaxies in the ultra-violet. The model

is therefore set up to reproduce dusty star forming galaxies seen through their dust

emission and star forming galaxies seen through their attenuated emission at UV

wavelengths.

2.1.10 The Baugh19 model

The Baugh et al. (2019) model is a recalibration of the Lacey et al. (2016) model for

implementation in a higher-resolution dark matter only N-body simulation, the P-

Millennium simulation. This simulation also uses updated values of the Λ-cold dark

matter model parameters from the Planck mission. The P-Millennium simulation is

both larger and has an improved dark matter halo resolution, with side length 800

Mpc, halo mass resolution of 2.12 × 109h−1M⊙, and dark matter particle mass of

1.06×108h−1M⊙, representing about a factor of almost 10 increase in the halo mass

resolution compared to the WMAP-7 simulation. This has important implications

for the model, and so required a recalibration (albeit a simple one). Ultimately,

Baugh et al. (2019) adjusted only two parameters, γSN, which controls the strength

of supernova feedback, and αret, which controls the rate of gas return following

ejection by supernovae. These parameters were changed to match the agreement
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with the local galaxy luminosity function enjoyed by the Lacey2016 model. The

choice of parameters to be adjusted was made after building intuition about how

different parameters affect the galaxy luminosity function, and performing a series

of runs varying these parameters. This is an illustration of the original way in

which model parameters were set, and is discussed further in Chapters 3 and 4.

2.2 Updates to the GALFORM model

Here we describe updates to the GALFORM model which we used in this work

versus previous iterations of the model.

2.2.1 Dust modelling

In this iteration of the model, we use an improved scheme for the modelling of the

reprocessing of starlight by galactic dust. Previous iterations of the model were

based on the ray-tracing calculations of Ferrara et al. (1999). In the model, atten-

uation factors are calculated by interpolating in the tables in which the ray-tracing

calculations from Ferrara et al. are stored, which record the attenuation as a func-

tion of optical depth, the ratio of spheroid to disk scale-lengths, wavelength, and

inclination. The Ferrara et al. (1999) tables are sparsely populated, and updated

models of dust grains are now available (Draine, 2003), and far finer tabulations

covering a much wider range of the variables of interest have been made (Benson,

2018).

Previously, the model relied on interpolations and power-law extrapolations of

the variables to calculate attentuation factors for the model galaxy population.

With these updated tables we aim to make the interpolations more accurate, by

including more outputs of the radiative transfer calculation, and to avoid extrapola-

tion by producing outputs for a wider range of parameter values. We have therefore

implemented the high-resolution radiative transfer runs supplied in Benson (2018),
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2.2.1. Dust modelling

Figure 2.1: Comparison between the Benson (2018) disk extinction curves (grey)
and the values tabulated by Ferrara et al. (1999) (magenta) for fixed optical depth
and varying inclination. (Lower value attenuation curves correspond to the disk
being face-on.)

which allows the user to specify a number of different dust prescriptions. A com-

parison between the tables provided by Benson (2018) and Ferrara et al. (1999)

is shown in Fig 2.1.The magenta lines show the tabulation provided by Ferrara

et al. (1999) for a galactic disk at varying inclinations, and the grey lines show the

updated calculations of Benson (2018). The Benson curves cover a much wider

range of wavelength and attenuation values.

Benson (2018) also calculated extinction curves for a variety of model dust grains.

Fig 2.2 shows a few choices which can now be selected by the user. The blue line

shows the KMH model (Kim et al., 1993), the model of Draine (2003) is shown in

red, and the updated calculations with the same underlying dust grain model as
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2.2.1. Dust modelling

Figure 2.2: Extinction curves as calculated by Benson (2018) assuming 3 different
dust models. Blue: The model of Kim et al. (1993). Red: the model of Draine
(2003). Green: the model of Ferrara et al. (1999). We show extinction curves for
the disk component, assuming a fixed optical depth and varying inclination.

Ferrara et al. (1999) are shown in green. As before, here we show the extinction

curves for a galactic disk with varying inclination, though similar calculations exist

for the bulge component. We tested the effect of varying these models on the

low-redshift K-band and TH1500 (a top-hat filter centered at 1500Å) luminosity

functions using the Baugh et al. (2019) model, but found little impact on the model

predictions. It would be interesting to extend these tests in the future to examine

the effect on the predictions for the UV luminosity function at high redshifts;

however, the main differences seen in Fig. 2.2 are at shorter wavelengths than

probed by the UV luminosity functions, which sample the curves at wavelengths

around the 2175 Å bump or longer.
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2.2.2 Gas cooling

In this thesis, we use the updated cooling model introduced into GALFORM by (Hou

et al., 2018). This model aims to address some of the shortcomings of earlier it-

erations of the GALFORM cooling scheme. Briefly, previous schemes tracked an

outward-moving cooling front which was reset at artificial ‘halo formation events’,

deemed to be when the mass of the halo doubled. Between these formation events,

the contraction of the gas profile was not modelled. Hou et al. (2018) introduced an

improved model which tracks the gas cooling more smoothly. Rather than calcu-

lating a single advancing cooling radius, rcool, two radii are used rcool and rcool, pre.

At a given timestep, rcool is calculated and compared to the previous cooling radius

rcool, pre, and the gas between these two radii cools during the timestep, and is ad-

ded to a cold gas component with new radius rcool. The updated model calculates

both the dynamical contraction of the hot halo due to gravity, and the expansion

of the cooling radius due to gas cooling by radiation. The use of this new cooling

model does not produce a significant qualitative change in the model predictions,

but does mean that the corresponding parameters in a best-fitting model will be

somewhat different from those obtained using the previous cooling scheme.

2.2.3 Stellar population synthesis models

Compared to recent versions of the GALFORM code, which largely used the stellar

population synthesis (SPS) models of (Maraston, 2005), we use the flexible SPS

model (FSPS) of (Conroy, 2013), which makes use of the Padova isochrones (Alongi

et al., 1993; Bressan et al., 1993; Fagotto et al., 1994) and the BaSeL semi-empirical

spectral library (Lejeune et al., 1998; Westera, P. et al., 2002). The use of the

FSPS code rather than pre-computed tables allows us to generate SPS models for

a range of IMFs. There are a large number of uncertainties inherent in the SPS

modelling process. For example, core-convection overshooting is a significant source

of uncertainty in the colour evolution of simple stellar populations in the age range
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2.2.3. Stellar population synthesis models

0.1 - 1.0 Gyr, with the Maraston (2005) model not including overshooting in its

treatment of core-convection.

Importantly, the Conroy (2013) models include adjustable parameters ∆T and

∆L which correspond to offsets in the position of the TP-AGB track on the Herzsprung-

Russell diagram. These parameters were calibrated by Conroy (2013) to better

match color-age relations inferred from the Magellenic Cloud, achieving signific-

antly better agreement than the Maraston (2005) models.
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Chapter 3

Deep learning emulation of

GALFORM

Summary: We implement a sample-efficient method for rapid and accurate emu-

lation of semi-analytical galaxy formation models over a wide range of model out-

puts. We use ensembled deep learning algorithms to produce a fast emulator of

an updated version of the GALFORM model from a small number of training ex-

amples. We use the emulator to explore the model’s parameter space, and apply

sensitivity analysis techniques to better understand the relative importance of the

model parameters. We uncover key tensions between observational data sets by

applying a heuristic weighting scheme in a Markov chain Monte Carlo framework

and exploring the effects of requiring improved fits to certain data sets relative to

others. Furthermore, we demonstrate that this method can be used to successfully

calibrate the model parameters to a comprehensive list of observational constraints.

In doing so, we re-discover previous GALFORM fits in an automatic and transparent

way, and discover an improved fit by applying a heavier weighting to the fit to the

metallicities of early-type galaxies. The deep learning emulator requires a fraction

of the model evaluations needed in similar emulation approaches, achieving an out-

of-sample mean absolute error at the knee of the K-band luminosity function of

0.06 dex with fewer than 1000 model evaluations. We demonstrate that this is an

27



3.1. Introduction

extremely efficient, inexpensive, and transparent way to explore multidimensional

parameter spaces, and can be applied more widely beyond semi-analytical galaxy

formation models.

3.1 Introduction

Galaxy formation is a complex and non-linear process, involving the interplay of

gravitational, radiative, thermal, and fluid processes. Semi-analytical modelling is

an approach used to improve our understanding of this problem by reducing it to

its key ingredients using simplified mathematical relations motivated by physical

and geometric arguments (e.g. Baugh, 2006; Benson, 2010). These relations take

the form of coupled differential equations and simple algebraic relations describing

processes such as star formation, gas cooling, and bar instabilities in galactic disks.

Semi-analytical models provide a comprehensive theoretical framework with which

to understand and develop intuition about galaxy formation, and have produced

a number of insights (e.g. White & Frenk, 1991; Benson et al., 2003; Bower et al.,

2006; Croton et al., 2006; Lacey et al., 2016).

However, the semi-analytical approach has sometimes attracted scepticism for

a number of reasons. The mathematical relations which describe the physical

processes in the model often contain adjustable parameters, and a model is defined

by a particular choice for the parameters values (analogous to the parametrised

sub-grid models employed in hydrodynamic simulations, e.g. Crain et al., 2015;

Somerville & Davé, 2015) These parameters are sometimes set by theoretical or

observational considerations, but in many cases they are less well specified (for

example, in the case of the parameters governing the strength of feedback due to

supernovae - SNe).

There is a perception–which we believe to be misplaced–that these ‘free’ para-

meters allow semi-analytical models (SAMs) to fit any arbitrary combination of

datasets, therefore eliminating their predictive and explanatory power. We hope
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to dispel this view by demonstrating that the majority of the variance in the model

output is contributed by just a few parameters which have clear physical inter-

pretations (such as the strength of feedback due to SNe or AGN), and that these

dominant parameters preclude arbitrary fitting.

Another major source of the scepticism towards SAMs arises from the seemingly

opaque procedures that have commonly been used to calibrate the model paramet-

ers. This process often follows a ‘chi-by-eye’ methodology, in which the operator

adjusts the parameters by hand, interprets the effect on the model output, and

adjusts the parameters again to improve the match of the model output to an ob-

servable. This requires a high level of expertise and familiarity with the SAM, and

the operator often makes trade-offs between fits to different constraining datasets

in a way which is poorly defined; model predictions are often judged to be good

fits when formally they would be rejected. This makes the process of setting the

model parameters hard to reproduce. There is also no guarantee that the by-eye

approach will produce the best fit to the calibration datasets; the model paramet-

ers may interact in a non-linear way, which can be difficult to conceptualize. This,

coupled with the large parameter space, makes it unlikely that such a search will

find the best-fitting parameters. We aim to side-step these issues by developing

a method to rapidly and robustly perform an exhaustive search of the parameter

space, calibrate the SAM in an automatic way without the need for significant hu-

man intervention, and quantify the relative importance of the parameters. In this

way, we hope to make the model calibration process transparent and reproducible,

especially by researchers with less experience of running SAMs. Although the cos-

mological parameters are now well constrained, SAMS must still be re-tuned for

simulations with different resolutions and cosmologies, such as f(R) gravity simu-

lations, or when a new implementation of a process is included. The question of

how to set the model parameters therefore remains a relevant one.

Here, we aim to emulate an updated version of the GALFORM code implemented

in the Planck Millenium N-body simulation (Baugh et al., 2019), which uses an
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improved galaxy merger scheme (devised by Simha & Cole, 2017 and was first

implemented in GALFORM by Campbell et al., 2015), but which also includes an

improved model for gas cooling in halos (introduced by Hou et al., 2018).

We focus specifically on using deep learning to build our emulator (for an in-

troductory review, see e.g. Emmert-Streib et al., 2020). This sub-field of machine

learning uses stacked neural layers (hence deep) to build flexible function approx-

imators which are able to uncover non-linear relations in data without the need

for a strongly pre-defined model, and have proven to be highly successful in as-

tronomical applications (e.g. Ravanbakhsh et al., 2016; Schmit & Pritchard, 2018;

Perraudin et al., 2019; He et al., 2019; Cranmer et al., 2019; Yip et al., 2019; De

Oliveira et al., 2020; Ntampaka et al., 2019). We demonstrate that deep learning

algorithms can be applied to accurately emulate SAMs over the full range of model

outputs, and require a relatively small number of training examples to achieve good

accuracy when compared to other methods. Since the deep learning emulator can

be evaluated orders of magnitude faster than the time taken to run GALFORM, we

are able to run many simple MCMC chains to explore the parameter space, and

investigate how calibration to different datasets constrains the model parameters.

We achieve this by minimizing the absolute error between the emulator output and

the data, and employing a heuristic weighting scheme to the different observational

datasets to mimic the process employed by model practitioners. In this way, we

hope to elucidate and automate the calibration process, as well as exhaustively

search the parameter space of the model. A similar approach has been explored in

Forbes et al. (2019), applied to a semi-analytical model of galactic disks, though

our sampling scheme and MCMC implementation are different.

This approach has a number of advantages over previous work. Non-emulation

approaches such as MCMC and particle swarm optimization offer a powerful way

to quantify parameter uncertainty and fit the model to a particular observable, but

are limited in terms of exploring and understanding the full parameter space, and

come at significant computational expense. Previous emulation approaches, though
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informative, also do not fully address our aims; they have focused on reducing the

parameter space based on measures of implausibility (a measure which incorporates

information about the emulator prediction and target data, and their variances, to

rule out regions of parameter space). By iteratively refining more approximate

emulators over a number of waves of model runs, these methods hone in on a

region of parameter space which could plausibly contain good fits to a predefined

set of just a few observables. Here, we focus on producing an emulator of the

GALFORM model which is accurate across the entire parameter space. This allows

us to explore the full parameter space of the model and fit to a wide range of

observables, and to consider more diverse combinations of observables than has

been attempted in previous work. We also aim to reduce the requirement for a

large number of GALFORM evaluations. Rodrigues et al. (2017), for example, used

7 waves of 5000 runs each to hone in on the region of parameter space which gave

acceptable fits to the local galaxy stellar mass function; here, we limit ourselves

to < 1000 full GALFORM runs. In doing so we intend to develop a general method

for investigating, understanding, and calibrating SAMs in an inexpensive, flexible,

and reproducible way.

We also apply sensitivity analysis techniques to the model parameters, as recently

applied to GALFORM by Oleśkiewicz & Baugh (2020). This allows us to judge the

importance of different parameters by quantifying the proportion of the model

variance due to a given parameter through sensitivity indices. We are also able

gauge the degree of interaction between parameters, giving us important insight

into the model.

The layout of the chapter is as follows. In § 3.2 we review the theoretical back-

ground. The key processes of GALFORM that are relevant to this work are described

in § 2.1. In § 3.2.1 we give a brief review of the deep learning approach and our

emulator design, and in § 3.2.2 we give a description of the sensitivity analysis

method. In §3.2.3 we describe the observational constraints under consideration,

and in § 3.2.4 we discuss how we find best-fitting parameters using MCMC. In
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§ 3.3 we present our results. In §3.3.1 we review the predictive performance of

the emulator, in § 3.3.2 we show the results of our sensitivity analysis and model

exploration, and in § 3.3.3 we present our model calibration results. In §3.4 we

discuss the merits of our methods and outline potential future work, and conclude

in § 3.5.

3.2 Theoretical background

Here we describe the process of building a deep learning emulator and motivate

our specific choice of model (§ 3.2.1). We then briefly describe sensitivity analysis

(§ 3.2.2), the observational datasets considered (§ 3.2.3), and our calibration scheme

(§ 3.2.4).

3.2.1 Deep learning emulator

Before we consider observational data, we aim to construct a fast emulator of

the GALFORM model using the tensorflow deep learning framework (Abadi et al.,

2015). We formulate the problem from the perspective of supervised learning.

We treat the GALFORM model as an unknown function f̂(·) that takes some input

vector x, representing a set of values for the model parameters, and produces

an output vector y, representing one or many binned statistical properties of the

resulting synthetic galaxy population (e.g. the values of the K-band luminosity

function in given luminosity bins). Our goal is then to develop a fast and accurate

approximation to the function f̂(·) by training an emulator to predict y given x.

Since GALFORM is computationally expensive to run (at least in comparison to

a potential deep learning emulator), we are limited in how many evaluations of

the code we can perform, and so limited in the number of input-output pairs,

(xi,yi), we have to train our emulator. To sample the parameter space evenly

and efficiently, we use Latin hypercube sampling (as described in e.g. Bower et al.,
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3.2.1. Deep learning emulator

Figure 3.1: A schematic diagram showing a neural network with 2 hidden layers.
The neurons on the left hand side represent the input layer, the central two layers
of neurons are the hidden layers, and the right-hand neurons comprise the output
layer.

2010) to generate the model input parameters. This method aims to fill the target

parameter space evenly given a fixed number of samples. After evaluating GALFORM

at these points, we are therefore left with the pairs of vectors (xi,yi), corresponding

to the input and output of the model. We separate the samples randomly into three

sets: the training set, the validation set, and the holdout set. The training and

validation sets will be used to train the emulator, and the holdout set will be kept

separate so it can be used for evaluating the emulator’s performance on out-of-

sample data. The different roles of these sets are discussed further below.

The task of emulating GALFORM is therefore reduced to a regression problem. The

deep learning emulator is comprised of stacked neural layers as shown in Fig. 3.1.

Here we see a neural network with an input layer on the left, two hidden layers, and

an output layer on the right. Note that the output from each neuron is passed to

every neuron in the following layer. The network is defined by a set of weights and

biases, W ; the i-th neuron in the j-th layer contains an adjustable weight vector wij

and an adjustable bias term bij . When we propagate inputs through our network
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to produce a prediction, the input layer first passes the inputs to every neuron in

the first hidden layer. Each neuron i in each subsequent layer j, starting with the

first hidden layer, takes in the outputs from the previous layer and calculates its

own output zij by performing the computation

zij = σ̂(zj−1 · wij + bij), (3.1)

where we have taken the dot product between the vector of all the neuron outputs

in the previous layer zj−1 and the i-th neuron’s weights wij , and added the bias

term bij . An activation function σ̂(·) is then applied. This is generally a non-

linear function such as the sigmoid or hyperbolic tangent function. The neuron

outputs zij are then passed to the next layer and the process is repeated until we

reach the final layer. The output from the final layer is then the prediction of

the network for these inputs. Usually, the neurons in the final layer only apply a

linear activation function. Therefore, since the network outputs are linear sums

of non-linear functions of the input parameters, we can think of this method as

estimating non-linear basis functions from training data.

The weights and biases associated with each neuron are adjusted during training

by seeking to minimise an error function between the emulator predictions and the

true values. In our case, given a set of input parameters, we want to minimise

the error between our emulator’s prediction of the GALFORM output and the actual

GALFORM output. We choose to use the mean absolute error function (hereafter

MAE)

MAE = 1
n

n∑
k=1

|ŷk − yk|, (3.2)

where ŷk is the model emulator prediction for the k-th of n samples and yk is the

true value. Since both ŷk and yk are vector quantities, the modulus signs represent

the L1 norm (i.e. the sum of absolute errors of the vector components); we choose

this metric as it gives less weight to outliers than the more commonly used L2 norm
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(i.e. the sum of squared errors of the vector components). If we denote the function

represented by the neural network as f , parameterised by weights and biases W ,

we therefore attempt to find a function f∗ such that

f∗ = arg min
W

{MAE (f(x), y)}. (3.3)

The training is performed iteratively in steps known as epochs. During each epoch,

the model weights and biases, W , are adjusted by an optimizer to minimise the

MAE of the network’s predictions for the training set. The optimizer is an al-

gorithm which calculates how best to adjust the model weights by seeking minima

on the error surface, usually by some form of gradient descent. We use the AMS-

GRAD variation of the Adam optimizer (Kingma & Ba, 2015; Reddi et al., 2018).

Adam is a momentum-based optimizer and AMSGRAD aims to improve the per-

formance of Adam around minima on the error surface. At the end of each epoch,

the adjusted model is evaluated on the validation set, to ensure the model gener-

alises to unseen data. If the performance on the validation set has improved (as

measured by the MAE), we save the model weights and continue training. If the

performance does not improve, we do not save the weights and continue training.

This process is repeated until the performance on the validation set has not im-

proved for 30 epochs at which point we halt the training. We then perform a final

fine-tuning step using the RMSprop optimizer (Tieleman & Hinton, 2016); this op-

timizer uses stochastic gradient descent and treats the error surface as a quadratic

bowl. For this step, we use a very low learning rate of 10−5, allowing us to take

small gradient-steps toward the minima of the error surface. We find this works

well in boosting the performance of our emulator. We then evaluate the model on

the holdout set to ensure its performance generalises to entirely unseen data (since

we selected model weights which perform best on the validation set, the validation

set itself is not a good test of out-of-sample performance).
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Table 3.1: The GALFORM parameters under investigation. See § 2.1 for the equations
which define the symbols in the first column.

Parameter Range Process
f stab 0.61 − 1.1 Disk instability
αcool 0.2 − 1.2 AGN feedback
αret 0.2 − 1.2 SN feedback
γSN 1.0 − 4.0 SN feedback
V SN, disk [kms−1] 100 − 550 SN feedback
V SN, burst [kms−1] 100 − 550 SN feedback
fburst 0.01 − 0.3 Mergers
f ellip 0.2 − 0.5 Mergers
νSF [Gyr−1] 0.2 − 1.7 Quiescent star formation
fSMBH 0.001 − 0.05 SMBH accretion

3.2.1.1 Inputs and outputs

The aim of our emulator is to map an input vector x, the GALFORM parameters, onto

an output vector y, the statistical galaxy properties that we wish to predict. Our

choice of input parameters is informed by previous analyses (e.g. Lacey et al., 2016;

Oleśkiewicz & Baugh, 2020), and we aim to emulate the effects of the parameters

associated with the key processes outlined in §2.1. These parameters and their

ranges are shown in Table 4.1. We train our emulator to predict a wide range of

statistical galaxy properties calculated from the output of GALFORM. These are the

K- and r-band LFs at z = 0, the early- and late-type galaxy sizes, the HI mass

function, the early-type fraction with r-band magnitude, the I-band Tully-Fisher

relation, the bulge-black hole mass relation, and the metallicities of early-type

galaxies.

3.2.1.2 Model architecture

We find that a simple architecture is sufficient to accurately emulate GALFORM. We

use a densely-connected neural network, meaning that every neuron is connected to

every neuron in the previous layer. We use two hidden layers, each with 512 neurons

and sigmoid activation functions, and linear activations on the output layer. We

investigated a number of other architectures, such as stacking long short term

36



3.2.1.3. Ensembling

memory (LSTM; Hochreiter & Schmidhuber 1997) and 1D convolutional layers to

try to exploit features of the data, but found limited improvement at the cost of

slower evaluation speed.

3.2.1.3 Ensembling

Training a neural network is a stochastic process. The network weights are often

initialized according to some distribution (e.g. Glorot & Bengio, 2010), and the

optimizer traverses the weight space using gradient steps calculated on mini-batches

of the full dataset (i.e. a small subset of the whole training set at a time), and so

is inherently stochastic. This means that training a single network is sub-optimal.

Since the error surface is likely to contain many local minima we are unlikely to find

the best possible network weights with one network alone, and each network will

develop its own idiosyncrasies in how it fits the data. Neural networks also contain

a vast number of parameters, and are therefore prone to over-fitting. One way to

address these problems is ensembling. This involves training a handful of networks

with different weight initializations and combining the individual predictions. We

can also shuffle the validation and training sets for each model in the ensemble,

so that each model is exposed to a different distribution of input-output pairs. In

general, this allows for a more robust prediction. Individual models may over- or

under-fit to different features of the data, and combining predictions averages over

these individual behaviours.

We therefore train 10 models as described above, each with the same model

architecture. Our emulator is then the simple average of the predictions of this

ensemble of models. We must note however that this is a rich avenue for exploration

in future work (for a review of popular ensembling methods, see Maclin & Opitz,

2011). For example, it may be possible to ensemble different machine learning

algorithms and combine the individual model predictions with a weighting scheme,

or even another machine learning algorithm.
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3.2.2 Sensitivity analysis

Once we have trained a deep learning emulator of GALFORM, we can apply sensit-

ivity analysis techniques (e.g. Saltelli et al., 2010; Saltelli, 2017) to understand the

contribution of the different parameters to the bin-wise variance in the emulator

outputs. For a full description of calculating sensitivity indices see Oleśkiewicz &

Baugh (2020), who first applied this type of analysis to a model of the entire galaxy

population. Here we provide a brief overview of the sensitivity indices and what

they describe.

Since GALFORM is deterministic, all the variance in the output Y will be due to the

effects of the input parameters X. Assuming the input parameters are independent,

we can calculate the first-order variance due to parameter Xi by integrating the

variance over the i-th dimension. Furthermore, we can calculate the variance due

to interactions between parameters Xi and Xj by integrating the variance across

the i-th and j-th dimensions, and subtracting the corresponding first-order effects

of parameters Xi and Xj . This can be continued to account for the interactions

between many parameters.

As explained in Oleśkiewicz & Baugh (2020), assuming Y is a scalar output of

our model (for example, the value of a luminosity bin in our K-band luminosity

function) and assuming that the input parameters X to the model are independent,

the variance attributable to the model parameter Xi can be calculated as:

Ei = EX∼i(Y |Xi) =
∫

Xi
Y (Xi) pdf(Xi)

∏
i ̸=j dXj∫

pdf(X)dX , (3.4)

Vi = VarXi(Ei) =
∫

Xi
(Ei − E(Y ))2 pdf(Xi)dXi∫

pdf(X)dX , (3.5)

where Vi is the variance integrated over dimension i, and Ei is the mean Y value

calculated by integrating in all dimensions except i, as indicated by EX∼i. In our
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case, we can assume that pdf(Xi) is a uniform distribution. We can then define

the first-order sensitivity indices Si as

Si = Vi

Var(Y ) , (11)

calculating the first-order variance constribution of parameter Xi divided by the

total model variance Var(Y ). We can then measure the variance due to second

order interactions between parameters by calculating the variance integrated across

dimensions i and j, and subtracting the first order variances

Vij = VarXij (EX∼ij(Y |Xi, Xj)) − Vi − Vj , (3.6)

and Si,j can be calculated in the same way as Si. The total variance of the model

output Y can therefore be decomposed as

d∑
i=1

Vari +
d∑

i<j

Vari,j + ...+ Var1,2...d = Var(Y ) (3.7)

where Vari represents the variance due to the i-th of the d parameters, the sum

over Vari,j represents the variance due to interactions between the parameters Xi

and Xj , and Var(Y ) is the total variance in the model output Y . This can be

normalised to give the sensitivity indices of all orders

d∑
i=1

Si +
d∑

i<j

Si,j + ...+ S1,2...d = 1. (3.8)

This can be separated into S1, the first order sensitivity index, which describes

the proportion of the variance due to the i-th parameter, and ST , which encap-

sulates the proportion of variance due to the i-th parameter and all higher order

interactions between the i-th parameter and all other parameters.

Given the low computational cost of our emulator, we can evaluate it at a large

number of points in the parameter space following Saltelli sampling. This sampling
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method aims to both evenly sample the space and minimise the model discrepancy

(a concept whose full explanation is beyond the scope of this work, but is described

in Saltelli et al., 2010), allowing for sample-efficient calculation of the sensitivity

indices. For this analysis, we use the SALib python package (Herman & Usher,

2017).

3.2.3 Calibration and comparison datasets

We will use our emulator to calibrate GALFORM using a number of datasets. For

the most part, we adopt the datasets used for model calibration in Lacey et al.

(2016), but with a focus on low-redshift observations. The key change we make

is to the choice of LF data. We use the K- and r-band LFs from the GAMA

survey (Driver et al., 2012); we choose these datasets as they correspond to the

same survey volume and the same analysis methods are used for each band, with

consistent k-corrections to z = 0 bands. The measured LFs should therefore be

as consistent as possible, allowing our model to fit both. We apply a number of

selection criteria to the GALFORM output to replicate the observational samples of

the calibration datasets.

The full list of calibration and comparison datasets and their respective selection

criteria are:

1. For the K-band LF, we calibrate to data from Driver et al. (2012) and also

compare to data from Kochanek et al. (2001).

2. For the r-band LF, we calibrate to Driver et al. (2012).

3. For the early- and late-type sizes, we calibrate to data from Shen et al.

(2003). We define early types in the model as galaxies with bulge-to-total

r-band luminosities of (B/T )r > 0.5 and late types as (B/T )r < 0.5. Since

the half-light radii of late-type galaxies are measured in circular apertures
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projected on the sky, the late-type galaxy sizes are corrected to face-on values

by multiplying the median sizes by a factor of 1.34 (as in Lacey et al., 2016).

4. For the HI mass function, we calibrate to data from Zwaan et al. (2005) and

compare to the estimate from Martin et al. (2010).

5. For the early-type fraction, we calibrate to data (B/T )r derived from Moffett

et al. (2016) (A. Moffett, private communication). Here, the (B/T )r ratio was

calculated from GAMA using the disk/bulge decomposition method outlined

in Lange et al. (2016). We also compare to data from González et al. (2009),

which uses concentration indexes calculated from SDSS data (York et al.,

2000b). Again, early types are defined to have (B/T )r > 0.5.

6. For the I-band Tully-Fisher relation we compare to a subsample of Sb-Sd

galaxies from the Mathewson et al. (1992) catalogue, as selected by de Jong

& Lacey (2000). Model galaxies are selected with (B/T )B < 0.2 and gas

fractions M cold/M∗ > 0.1, where M cold is the cold gas mass and M∗ is the

stellar mass.

7. For the Bulge-BH mass relation, we compare to data from Häring & Rix

(2004). To match the bias toward early-types in the sample, we choose model

galaxies with (B/T )r > 0.3.

8. For the early-type metallicity, we compare to data from Smith et al. (2009).

We select model galaxies which reside in dark matter halos with Mhalo >

1014h−1M⊙ and define early-types as before. The observed metallicities are

corrected for metallicity gradients as described in Lacey et al. (2016).

9. Finally, we explore the model predictions for data in a very different redshift

range to our calibration datasets. We test the calibrated model predictions

against observational estimates of the star formation rate density (SFRD)

with redshift. We compare to data from Burgarella et al. (2013); Cucciati

et al. (2012); Oesch et al. (2013); Sobral et al. (2013) and Gunawardhana

41



3.2.4. Parameter fitting

et al. (2013). Since the observationally derived SFR values depend on an

assumed initial mass function, and our model assumes a mildly top-heavy

initial mass function in starbursts, we account for this in the observational

comparison by applying an approximate correction in which we weight the

starburst SFR by a factor of 1.9 (see Lacey et al. (2016) for further details).

3.2.4 Parameter fitting

Once we have trained our emulator, we use Markov-Chain Monte Carlo (MCMC) to

explore the effect of calibration to different datasets with a simple implementation

of the Metropolis-Hastings algorithm (e.g. Robert, 2016). The complication here is

that the observational errors on the datasets cannot be combined straightforwardly.

For example, if we aimed to minimise χ2, and the error bar on a particular data

point in the constraining observational dataset was very small, this point would

dominate the total error measure. Our MCMC chain would simply be trying to find

the best fit to this one data point, without fitting to the others. We therefore aim

to minimise the absolute error between the emulator output and the observational

constraints, without considering the observational errors. This allows us to combine

and fit to multiple datasets, without having to worry about the robustness of the

associated observational error bars, and hence to avoid the complications described

above.

We also wish to have the flexibility to give more consideration to a selected

observational constraint over the others. This will allow us to investigate the effect

of requiring better fits to some datasets, and to see how this affects the fit to other

datasets, as well as how the optimal parameter choices change as a result. We

therefore include a vector of heuristic weights, W, which can be varied to increase

the contribution of the residuals from one constraint to the total error,

MAEobs = 1
n

n∑
i=1

1
nobs

i

Wi|ŷi − yobs
i |, (3.9)
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where the sum is over the n observational constraints, Wi represents the weighting

of the contribution to the total error of the i-th constraint, ŷi represents the emu-

lator prediction for a set of model parameters, and yobs
i is the observational data

for the i-th constraint with nobs
i datapoints. Since ŷi and yobs

i are vector quantit-

ies, the modulus signs represent the L1 norm. As the constraining datasets have

a variety of values, we scale each one by a constant factor and apply a constant

offset so that the range of each yobs
i is [0,1]. We apply the same scaling to the

emulator predictions ŷi before calculating Eqns. 3.2 and 3.9. Note that since dif-

ferent datasets contain different numbers of datapoints, we divide the i-th dataset’s

error by the number of datapoints nobs
i so that each contributes equivalently to the

mean error. In later sections when considering observational data, we shall refer to

Eqn. 3.9 as just the mean absolute error (MAE). We have checked that using the

more common L2 norm instead of L1 moves attention to outliers and degrades the

overall performance of the emulator.

We implement the Metropolis-Hastings algorithm as follows: we initialize each

chain at a (different) random point in the parameter space, x. We then draw the

next sample in the chain, x′, from independent Laplacian distributions, L(x′
i|µi, bi) =

1
2bi

exp(−|x′
i − µi|/bi) with µi = xi and the scale parameter for the i-th model

parameter, bi, taken to be 1/20th of the parameter ranges given in Table 4.1.

We then calculate the acceptance ratio, α, by taking the likelihood ratio of the

emulator predictions to the observational data for the parameter sets x and x′

under a Laplacian likelihood with scale parameter bobs = 1/20 (i.e. the ratio

L(f∗(x′)|µ, bobs)/L(f∗(x)|µ, bobs), where µ represents the values of the observa-

tional data and f∗(·) the emulator, and recalling we are using the modified abso-

lute difference given in Eqn. 3.9). We next generate a uniform random number

u ∈ [0, 1]; samples are accepted if u ≤ α, in which case we draw the next sample

from Laplacians centered on x′, or rejected if u > α, in which case we draw the

next sample from Laplacians centered on the original point x. Therefore, if the

error between the emulator predictions for the parameter set x′ and the observa-

43



3.3. Results

tional data is less than or equal to the error for the predictions for x, we accept

the sample. If the error for x′ is not an improvement over the previous sample, we

accept it with probability α. The density of accepted samples should then trace

the regions in the parameter space which give the best fits to the observational

data. We discard the first 50% of accepted samples to allow for burn-in. We test

a number of values of the sampling Laplacian widths bi in the range 0.05 − 0.2,

in conjunction with the likelihood width bobs, and find that these parameters have

little effect on the convergence of the chains, and larger bobs simply increases the

proportion of accepted samples. We ran longer chains up to 100,000 samples and

found that they quickly converged to their minimum MAE (as given by Eqn. 3.9)

within the first 10,000 samples, and so choose this as our chain length.

3.3 Results

Here we present our main results, starting with a demonstration of the accuracy

of the emulator (§ 3.3.1), a sensitivity analysis of the model parameters (§ 3.3.2),

and closing with a discussion of the calibration of the model parameters and the

tensions that arise when using different combinations of datasets (§ 3.3.3).

3.3.1 Emulator performance

Having trained our emulator as described in § 3.2.1, we evaluate its ability to predict

the output of GALFORM at unseen points in the parameter space. We use a set of

930 GALFORM runs. The emulator was trained as described in § 3.2.1 with 80% of

the runs used as the training set (i.e. 744 combinations of parameter values), a 93

sample validation set, and a 93 sample holdout set. For each model in the emulator

ensemble (i.e. each version of the neural network), the training and validation sets

were shuffled. Fig. 3.2 shows the emulator prediction vs. the true GALFORM output

for the holdout set. Generally, the emulator follows a tight relation on the y = x

line, indicating that the emulator is accurately predicting the GALFORM output for
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3.3.1. Emulator performance

Figure 3.2: Emulator performance across nine statistics computed from the model
output for out-of-sample parameter sets. These statistics are either number densit-
ies or median values in luminosity or mass bins, and are the same ones used for the
observational comparisons. The first three rows show the emulator output (y-axis)
vs. the GALFORM output (x-axis). Black error bars indicate the 10-90th percentile
range of the residuals. The bottom row shows a random draw of emulator outputs
(dotted) and true GALFORM outputs (solid) for the K-band LF, early-type fraction,
and early-type sizes, reading from left to right. In these panels different colours
denote different parameter sets.
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the parameters sets in the holdout set. The HI mass function, Tully-Fisher relation,

and Bulge-BH mass relations are accurately predicted, as well as the faint end of

the luminosity functions and late-type galaxy sizes. The uncertainty is greater for

the predictions of the bright-end of the LFs, and for the early-type sizes, fraction

of early-type galaxies with luminosity, and the early-type metallicity. The lower

panel of Fig. 3.2 sheds some light on the source of inaccuracies in the early-type

predictions, notably the early-type sizes, which exhibit noisy behaviour for some

choices of parameters, and for a few cases (e.g. the purple line) the lower luminosity

sizes are not well predicted. For the early-type fraction, while the error bars look

large, inspection of the lower panels shows that such errors are generally in the

brighter bins. We are nevertheless able to discriminate between parameter sets at

the fainter magnitudes as the overall shape is well captured.

We see that the emulator is able to characterise a wide range of behaviour in

the LFs, with the majority tightly predicted. In the bottom row of Fig. 3.2, the

orange curves in the K-band panel show a substantial discrepancy between the

true and predicted outputs; this usually indicates that the training data did not

contain sufficient examples of this behaviour. The emulator constructs the function

f∗(·) by fitting to the training examples, and in doing so should build a function

which can interpolate between points in the parameter space. However, in sparsely

sampled regions of the space, such as at the edges of our parameter bounds, the

interpolation is less reliable. Indeed, if a point in the holdout set is an extrapolation

with respect to the training set, performance can be affected. This is why we aim to

fill the parameter space as evenly as possible using the Latin hypercube sampling

method. We expect that such disagreements will decrease on increasing the number

of training samples.

We can also judge from the distribution of predictions for the K- and r-band

LFs in Fig. 3.2 that the emulator slightly over-predicts the bright end of the LF.

This is a consequence of the emulator training; in the interest of computing speed,

we run GALFORM on only a sub-region accounting for 1% of the full volume of the
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P-MILL simulation. This leads to sampling effects at low galaxy number densities,

and for different choices of parameters the LF is cut off at different luminosities.

Since the output of our emulator must be fixed-length, during training we mask

any points beyond this luminosity cut-off when computing the loss. This means

that in the brighter luminosity bins the emulator is only fitting to a small number

of runs which are biased towards having higher values of ϕ in these brighter bins.

There is therefore a tendency to over-predict at these luminosities. This should

only be a minor problem in terms of our fitting routine, since the Driver et al.

(2012) data we are fitting to does not sample ϕ to very low number densities. We

also see a quantisation effect in the brighter LF bins, again due to the discrete

sampling of galaxies. These problems could be removed by evaluating GALFORM

on a larger fraction of the P-Mill simulation volume, though this would be more

computationally expensive.

3.3.1.1 Scaling with training set size

We train three emulators with 250, 500 and 750 samples of parameters respectively

(split into training and validation sets with 10% of the samples being used for val-

idation) to investigate the scaling of the emulator performance with the number

of full GALFORM calculations carried out. The emulators consist of an ensemble of

10 networks each trained on the same (shuffled) training and validation data and

the same holdout set of 93 samples. Fig. 3.3 shows the scaling of the emulator

performance on the holdout set (as measured by the MAE) with the number of

training samples N . The dashed line shows average performance of the individual

networks, and the solid line shows the performance of the ensemble. The model

scales well with increasing training samples, and ensembling affords an almost con-

stant improvement in performance (we find that at ∼ 10 models, the performance

increase from adding more models to the ensemble saturates).

We test the ability of the emulator to generalise to unseen data by evaluating

the version of the emulator trained with 500 samples in Fig. 3.3 on the remaining
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Figure 3.3: Emulator mean absolute error with the number of training examples
of full GALFORM runs for the ensemble (solid line) and single (dotted line) networks.
The emulators were trained on 250, 500 and 750 samples and performance evaluated
on the same holdout set of 93 samples. Recall that the emulator outputs are scaled
as described in § 3.2.4.

430 unseen samples. We find very little variation in the accuracy of the model

between the two holdout sets. The MAE on the 93 sample holdout set was 0.034,

and on the full 430 available holdout samples was 0.032. Further, we perform a

10-fold cross validation with the training, validation and holdout sets as described

in § 3.3.1. We find a mean MAE of 0.030, with a range between 0.027 and 0.034.

This gives us confidence that the model is able to learn a function which provides

a very good approximation to GALFORM across the full parameter space.

The impressive scaling of the emulator error with number of training samples

is encouraging. SAMs are used to build mock catalogues for upcoming surveys,

and some of these have stringent requirements on fits to certain datasets, such

as the redshift distribution of galaxies. We can envisage using this technique to

produce high accuracy parameter estimates for fits to such datasets by increasing

the number of training samples, or using ‘zoom-in’ training samples as in previous
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work (e.g. Bower et al., 2010) to focus in on a particular region of parameter space

which is deemed to give acceptable fits to the constraining datasets. Nevertheless,

we find that our current emulator is sufficiently accurate to facilitate calibration

and model exploration.

3.3.2 Sensitivity Analysis

We apply the techniques described in § 3.2.2 to calculate the contribution of each

parameter to the variance in each bin of the 9 constraints. The results are shown

in Fig. 3.4. The open circles indicate the first order sensitivity index, S1, which

quantifies the proportion of the variance due to just one parameter. The total order

sensitivity, ST , is shown as solid lines, and indicates the proportion of the variance

contributed by one parameter and its interactions with the other parameters. We

can interpret the difference between the first order and total order sensitivity as a

measure of the strength of the interaction between a given parameter and the other

parameters. For clarity, we exclude parameters which never contribute more than

10% of the variance to any bin. Both fburst and f ellip meet this condition, and so

do not appear in the plots.

We see that the dominant parameters for the majority of the model outputs

are, perhaps unsurprisingly, the supernova feedback parameters. V SN, disk and γSN

account for the majority of the variance at the faint end of the K- and r- band LFs.

At the bright end, αcool, the parameter governing the strength of AGN feedback,

contributes the largest proportion of the variance. The majority of the variance

in the late- and early-type sizes, the Tully-Fisher relation, as well as the HI mass

function is also contributed largely by the same two or three parameters.

The early-type fraction is dominated by the threshold for disk instability, f stab,

up until Mr − 5logh ≈ −21. At brighter magnitudes, disk instabilities become

unimportant as mergers takes over as the main channel for building spheroidal

components (see Huško et al., 2021, for an exploration of the relative importance
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Figure 3.4: The emulator sensitivity to different parameters for each of the observ-
ables considered in this work; each panel shows a different observable, as labelled.
Open circles indicate S1 as described in the text, and solid lines represent ST . For
clarity, error estimates are shown for the S1 calculation but not for ST , although
they are similar. Sensitivities for parameters which never exceed more than 10%
of the variance in any bin are not plotted.

of different channels for the growth of galaxy stellar mass).

The sensitivity analysis hence dispels one of the myths surrounding SAMs as

it shows that the model cannot be made to fit to any arbitrary combination of

datasets. To match the faint end of the K-band LF, we are strongly constrained in

our choice of supernova feedback parameters, which contribute the vast majority

of the variance to these bins. Our predictions of early- and late-type galaxy sizes,

the HI mass function, the Tully-Fisher relation, and the bright end early-type

fraction are also then largely constrained, since the supernova feedback parameters

dominate these outputs too. This is in line with the analysis performed by Bower

et al. (2010), which reached similar conclusions.
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The parameters also have clear physical interpretations, and are analogous to the

parameters used in the subgrid physics models in hydrodynamic simulations (e.g.

Crain et al., 2015; Weinberger et al., 2016; Pillepich et al., 2017). The parametric

model for supernova feedback can indeed be tuned to give a good match to the

late-type galaxy sizes, but in doing so we are strongly constraining our fits to other

datasets; the model does not include arbitrary parameters which allow for fine-

tuning to an individual dataset without physical motivation or consequences for

the fits to other datasets.

3.3.3 Calibration and dataset tensions

We now apply the methods described in § 3.2.4 to calibrate the model to the

datasets described in § 3.2.3, focusing on uncovering any tensions that exist between

datasets. First, we aim to replicate a known tension in the model discussed in Bower

et al. (2010) and Lacey et al. (2016). This is the tension between reproducing late-

type galaxy sizes and the galaxy LFs; these datasets have been found to prefer

different values for the supernova feedback parameters. We can investigate this by

adjusting the weightings applied to the residuals between our emulator prediction

and each dataset (as in Eqn. 3.9), and then performing an MCMC parameter search

to see how the best-fitting parameter choices respond.

In Fig. 3.5, we show the emulator predictions for three sets of best-fitting para-

meters. In the first case, shown by the blue line, we weight only the residuals for

the K-band LF. For the orange line, we weight only the size-luminosity relation

for late-type galaxies, and the green line shows the results when weighting both

datasets equally (i.e. both datasets have equal influence over the best-fitting para-

meter values). The shaded region is shown only around the fit to the K-band LF

for clarity, and represents the 10-90th percentile error of the emulator when pre-

dicting similar values in the holdout set (this gives a rough idea of the uncertainty

of the emulator, but is certainly not an exact measure). We can clearly see the

tension between these two datasets uncovered in an automatic and objective way;
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matching the sizes of faint late-type galaxies leads to an over-prediction of the LF

at all luminosities by up to an order of magnitude. When matching both the K-

band LF and the late-type galaxy sizes, we see an over-prediction in the faint-end

of the LFs, and the sizes of faint late-types are over-predicted by a factor of ∼ 2.

The early-type sizes and Tully-Fisher relation are also shown in Fig. 3.5. Although

no weighting was applied to these datasets in this exercise, we can see improved

matches emerge naturally when we fit to the late-type galaxy sizes. We can gain

some intuition for this behaviour from Fig. 3.4. As discussed, the Tully-Fisher

relation, early- and late-type galaxies sizes, and the faint-end of the galaxy LF are

highly sensitive to the choice of supernova feedback parameters, γSN and V SN, disk

(which together account for ∼ 90% of the variance in the faint-end LFs and the

sizes of faint late-type galaxies). Therefore we might expect that some tension

would arise in trying to fit to a number of the above datasets at the same time.

It is also informative to investigate how the acceptable regions of parameter space

change as we introduce weightings to other datasets. We demonstrate this for the

tension between the LF/late-type sizes in Fig. 3.6. The shaded regions represent

accepted samples from our 20 MCMC chains, each 10,000 steps in length, with the

first 50% of each chain discarded to allow for burn-in. The red region corresponds

to a fit to the K-band LF, and the blue region to fits to both the K-band LF

and late-type galaxy sizes. The shading gives a sense of the density of accepted

samples i.e. the darker colours correspond to the more favoured parts of parameter

space in this projection. The darkest regions correspond to the 25th percentile,

and the lighter regions to the 50th and 75th percentiles. Also shown in Fig. 3.6

are 1D histograms of the density of accepted samples. We find that, as in previous

analyses, a reasonably large range of parameter values result in acceptable fits to a

given constraint. This can be best understood (as explained in Bower et al., 2010) as

the effect of the high dimensionality of the parameter space; though when plotted in

projection down to 1 or 2 dimensions the space appears widely sampled, the higher

dimensional acceptable region is reduced significantly. Also, some of the parameters
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Figure 3.5: A comparison of the emulator predictions for fits to the K-band lu-
minosity functions, the late-sizes, and a combination of the two (represented by
different colour dashed lines). We fit to the data from Driver et al. (2012) (black)
for the K-band LF, and Shen et al. (2003) for the late-type sizes. The emulator
predictions correspond to the best fit found from 20 MCMC chains, each 10,000
steps in length. The blue shading represents the 10-90th percentile errors when pre-
dicting a similar value in the holdout set. The black and grey datapoints represent
the calibration data described in §3.2.3. For the K-band LF, we also compare to
data from Kochanek et al. (2001) (grey). For the r-band LF, we compare to data
from Driver et al. (2012). For the early-type sizes we compare to data from Shen
et al. (2003), and for the Tully-Fisher relation we compare to data from de Jong &
Lacey (2000).

produce degenerate effects (see for example Fig. A.1 in Appendix A, where we show

the degenerate effects of the f stab and V SN, burst parameters). Nevertheless, we see

that the K-band LF fit prefers somewhat higher values of γSN ≈ 3.6 and lower values

of V SN, disk ≈ 200kms-1, in contrast to the fit to both the K-band LF and late-type

sizes, where we find a preferred value of γSN ≈ 2.3 and V SN, disk at the top of the

explored range at ∼ 550kms-1. Interestingly, there seems also to be a preference

for lower values of νSF to match the late-type galaxy sizes. We can understand this

crudely by investigating the first-order effect associated with the νSF parameter.

53



3.3.3. Calibration and dataset tensions

Figure 3.6: Accepted samples from 20 MCMC chains for fits to the K-band LF (red),
and both the K-band LF and the late-type galaxy sizes (blue). The first 50% of
samples were discarded to allow for burn-in. The histograms show the marginalised
distribution of the parameters. The ranges on each axis are the same as those
quoted in Table 4.1. The shading gives a sense of the density, with darker colours
corresponding to more densely sampled regions. The darkest regions correspond
to the 25th percentile, and the lighter regions to the 50th and 75th percentiles.

Inspecting Fig. A.2 in Appendix A, we see that the νSF parameter has a some

effect on the bright-end of the K-band LF. This counteracts the enhancement from

the higher value of V SN, disk, and also marginally improves the fit to the late-type

galaxy sizes.

Another tension arises between the HI mass function and the bright end of the

K- and r-band LFs. This is shown in Fig. 3.7. As before, the blue line corresponds
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Figure 3.7: A comparison of the emulator predictions for fits to the K-band lumin-
osity functions, the HI mass function, and a combination of the two (represented
by the different colour dashed lines). The black and grey datapoints represent the
calibration data described in §3.2.3. For the HI mass function, we fit to data from
Zwaan et al. (2005) (black) and include data from Martin et al. (2010) (grey) for
comparison.

to the fit to the K-band LF alone, the orange line to the fit using the HI mass

function alone, and the green to a fit to both datasets. We can again propose

(from our plot of the sensitivity indices, Fig. 3.4) that the main cause of this

discrepancy is a tension in the choices for the AGN feedback parameter, αcool,

and the supernova feedback parameters. Indeed, when fitting the observational

constraints individually, the fit to the K-band LF prefers a higher value for the

AGN feedback parameter, with αcool ≈ 0.8, whereas the fit to the HI mass function

prefers αcool ≈ 0.5. We can also investigate how calibrating to both datasets shifts

the parameter values. We do this as before with an MCMC exploration of the

parameter space (see Fig. A.3 in Appendix A). Fitting to both the K-band LF and

the HI mass function (as compared with a fit just to the K-band LF) causes a shift

in the preferred V SN, disk to higher values. νSF, the parameter which controls the

rate of quiescent star formation, shifts to the lowest values in the explored range,

and the parameter αret, which is involved in gas return to halos following supernova

feedback, becomes more strongly peaked, with the peak shifted to slightly higher

values.

To understand this further, we investigate the first-order effects of the parameters
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(V SN, disk, νSF, and αret), perturbed around the fit to the K-band LF. We show the

results in Fig. 3.8. We vary the parameters individually (‘one-at-a-time’) across

their explored range, with lighter colors corresponding to lower parameter values.

We can begin to understand the changes in the preferred parameter choices in

terms of these transformations. When fitting both the HI mass function and the

K-band LF, we find that there is a slight over-prediction of the bright-end of the

LF. From these one-at-a-time plots we can see that the increase in V SN, disk causes

an over-prediction at the bright-end of the LF, and a reduction in amplitude at the

faint-end, but more accurately matches the high-mass end of the HI mass function.

The HI mass function can be better matched at intermediate masses by a decrease

in νSF. In GALFORM, reducing νSF has the effect of decreasing the rate of quiescent

star formation in disks. As a result, lower values of this parameter provide a

better fit to intermediate masses of the HI mass function, while simultaneously

reducing the number density of the most luminous galaxies in the K-band LF, and

so counteracting the enhancement due to the increase in the V SN,disk parameter.

We can further improve the match of the prediction for the LF to the observational

data by increasing αret, which has little impact on the HI mass function but reverses

some of the ’flattening’ of the LF caused by the increase in V SN,disk. In previous

galaxy formation models, using the WMAP-7 cosmological parameters, this tension

has not been so apparent, but can also be seen between the bJ-band LF and the

HI mass function in Baugh et al. (2019).

Our approach also allows us to uncover a significant tension between the bright

end of the LFs, the early-type fraction, the HI mass function, and the early-type

metallicity. We demonstrate this in Fig. 3.9, where we compare a fit found by cal-

ibrating to the K-band LF, HI mass function, and the early-type fraction with and

without including the early-type metallicity constraint (note that we do not fit to

datasets shown in grey). Including the early-type metallicity has a significant effect

on the best-fitting parameter values; it generally improves the fits to the galaxy

sizes, and degrades the fit to the early-type fraction (at least when considering the
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Moffett et al. (2016) data) and the HI mass function. We investigate the impact

on the acceptable region of parameter space in Fig. 3.10, where we show the key

changes induced by including the early-type metallicity constraint. The red region

shows the fit to the K-band LF, HI mass function, and early-type fraction, and the

blue region also includes the early-type metallicity. We find that there is a recon-

figuration of the supernova feedback parameters, γSN, and V SN, burst to match the

early-type metallicity. This reconfiguration provides better fits to the galaxy sizes,

while degrading the fit to the HI mass function, which is also very sensitive to the

choice of γSN. The fits found when we choose not to include the early-type metal-

licity constraint are very similar to those found in Lacey et al. (2016); Baugh et al.

(2019), with over-predictions for the sizes of faint early-type galaxies, good fits to

the HI mass function, and an under-prediction of the metallicity of faint early-type

galaxies. Including the early-type metallicity constraint, however, moves us to a

different region of parameter space for this updated version of the GALFORM code.

Another key shift is in the preferred value of f stab; the preference for lower values

of f stab leads to a suppression of the early-type fraction at intermediate luminos-

ities. At these luminosities, disk instabilities are the main channel for building up

spheroid components and decreasing f stab limits the number of disk instabilities

(see ?). Although f stab does not appear in the early-type metallicity sensitivity

analysis (as shown in Fig. 3.4), this is because the sensitivity indices are domin-

ated by the strong effects of the supernova feedback parameters. A lower f stab

does increase the early-type metallicity but to a far lesser extent than the super-

nova feedback parameters, and so gives a more exact match to the observational

data.

In our analysis so far, we are perhaps making the mistake of attempting to

understand a non-linear model in terms of just first order, one-at-a-time changes

to the parameters. Indeed, this is one of the key weaknesses of traditional ‘chi-by-

eye’ parameter fitting. However, as shown in Fig. 3.4, we can justify this mode of

investigation; the majority of the variance due to a given parameter is generally
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due to just its first-order effect. νSF, αret, αcool and fSMBH only have weak higher

order variance contributions. In the cases where this assumption is less valid, for

example in the case of the parameter γSN and V SN,disk, this can be understood

straightforwardly with reference to Eqn. 2.2; these parameters directly interact in

the implementation of supernova feedback. It is striking how much of the variance

is due to the parameters’ first order effects. The outlier is f stab, which has strong

higher-order interactions and is not directly coupled to the other parameters in any

equation.

3.3.3.1 Best-fitting model

We can now re-calibrate the GALFORM model across all constraints to produce an

estimate of the best-fitting parameters. As we have seen, there is no single choice

of parameters which can reproduce all of the constraints, and we have to decide

during the calibration which datasets we would like to give more or less weighting.

The ideal of automatically calibrating a semi-analytic model is therefore a difficult

one to realise; we will always have to make trade-offs in how we fit to the various

datasets. As described in § 3.2.3, we can do this in a semi-automatic way using

the heuristic weighting scheme.

We have seen that there are a number of trade-offs or tensions to consider when

aiming to find a best-fitting model. Fitting to the late-type galaxy sizes, the Tully-

Fisher relation, or the HI mass function generally degrades the fit to the K- and

r-band LFs. We have also seen that trying to reproduce the early-type metallicities

worsens the fit to the Moffett et al. (2016) data for the early-type fraction, and

worsens the fit to the high-mass end of the HI mass function. On the other hand,

other observational constraints are more easily fitted; since the bulge-BH mass

relation is largely dependent solely on the fSMBH parameter, and this has very

little influence on other observables, fitting this constraint is trivial.

With these considerations in mind, we choose heuristic weights such that the r-
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Figure 3.8: Emulator predictions for perturbing three key parameters around a fit
to the K-band LF. The top row shows the result of varying the parameter V SN, disk
between 100 and 550 kms-1, the middle row varies νSF between 0.2 and 1.7 Gyr-1,
and the bottom row varies αret between 0.2 and 1.2. Darker colours correspond to
higher values of the varied parameter.

59



3.3.3.1. Best-fitting model

Figure 3.9: A comparison of the emulator predictions for fits to the K-band LF,
the HI mass function, and the early-type fraction with and without including the
early-type metallicity constraint (represented by different colour dashed lines, as
labelled in the top left panel). The emulator predictions correspond to the best
fit found from 20 MCMC chains, each 10,000 steps in length. In both cases, all
included constraints were equally weighted. The data described in §3.2.3 is shown
in black and grey. For the Bulge-BH mass relation we compare to data from Häring
& Rix (2004), for the early-type fraction we fit to data from Moffett et al. (2016)
and compare to data from González et al. (2009), and for the early-type metallicity
we compare to data from Smith et al. (2009). Black data points indicate that the
data was used for fitting, grey data points are included for comparison.
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Figure 3.10: Accepted samples from 20 MCMC chains for fits to the K-band, the HI
mass function, and the early-type fraction with (blue) and without (red) including
the early-type metallicity constraint for a few key parameters. The shading gives
a sense of the density of the samples, and the histograms show the distribution
of each parameter in 1D projection. The darkest regions correspond to the 25th
percentile, and the lighter regions to the 50th and 75th percentiles.

and K-band LFs are strongly weighted. We know from our previous analysis that

there will be trade-offs between both the bright- and faint-ends of the luminosity

functions, but we require good fits to both. Therefore we doubly weight both of

these constraints when calculating the MAE given in Eqn. 3.9 (i.e. by setting

Wi = 2 for each observable). Since the late-types sizes, early-types sizes, and the

Tully-Fisher relation are important constraints, but lead to compromised LF fits,

we apply single weighting to all these constraints (i.e. Wi = 1). We also give a single

weighting to the early-type metallicity since this trades-off against the bright end of

the luminosity function and the high mass end of the HI mass function. Since the

HI mass function is an important constraint, but as we are aware that it generally

degrades the fit to the bright end of the luminosity function, we give this constraint

61



3.3.3.1. Best-fitting model

Table 3.2: The best-fitting parameters (as measured by MAE, Eqn. 3.9) found by
using MCMC combined with our emulator. For reference the last column gives the
parameter values used by Baugh et al. (2019). The first column indicates the set of
parameters with the lowest MAE, and the second column indicates the parameter
ranges of the 50 best runs of the 100 MCMC chains, again selected by MAE as
described in the text.

Parameter This work Range Baugh19
f stab 0.79 0.73 − 1.00 0.90
αcool 0.84 0.66 − 1.16 0.80
αret 0.59 0.32 − 0.86 1.00
γSN 2.24 2.05 − 2.72 3.40
V SN, disk [kms−1] 489 368 − 541 320
V SN, burst [kms−1] 284 230 − 292 320
fburst 0.25 0.12 − 0.30 0.05
f ellip 0.20 0.20 − 0.39 0.30
νSF [Gyr−1] 0.20 0.20 − 0.33 0.74
fSMBH 0.003 0.001 − 0.004 0.005

a triple weighting. This is to ensure that more total weight is applied to the K- and

r-band LFs in combination. We apply a single weighting to the early-type fraction;

we have seen that this fit is in strong tension with the early-type metallicities and

sizes.

We run 100 MCMC chains with our emulator, each 10,000 steps in length. We

find that the minimum MAEs (as computed using the emulator) obtained with each

chain lie in the range ∼ 0.15 − 0.20; since this range is similar to the out-of-sample

accuracy of the emulator, and so in principle we cannot discern which parameter

sets give the best fit to the observational data with the emulator alone, we evaluate

these 100 minimum MAE parameter sets with the GALFORM code.

The best-fits are shown in Fig. 3.11. Here we plot the best 50 sets of parameters

from the 100 MCMC chains, as evaluated with the GALFORM code. These runs

have very similar MAEs, covering the range 0.16 − 0.18, while the runs not shown

cover the range 0.18 − 0.22, which is slightly wider than the range predicted by the

emulator, but within the expected emulator error (0.04 in this weighting scheme).

The solid red line indicates the run with the lowest MAE, and the blue lines show

the remaining 49 runs. The shading on these lines indicates the size of the residuals
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between the model and the HI mass function, with darker lines indicating smaller

residuals, and demonstrates that the parameter choices which provide the best

fits to the HI mass function over-predict the bright-end of the LFs. The black

dashed line shows the statistical galaxy properties of the model presented in Baugh

et al. (2019) (hereafter Baugh19). In Table 3.2 we show the set of parameters

with the lowest MAE to the observational data (corresponding to the red line in

Fig 3.11), the parameter range of the best 50 parameter sets, and compare with the

parameters adopted in Baugh19 for an older version of the model. We reiterate,

however, that the best-fit parameters are just one realization out of many possible

choices due to the degeneracies between the parameters, and the effect of calibrating

to multiple datasets. Also, the ranges shown in Table 3.2 do not indicate that any

choice of parameters within these ranges will yield an equivalent fit; the value

of one parameter will constrain the choices for the other parameters, hence the

reason for giving an example of a best-fitting set of parameters. We find that some

parameters, such as νSF and γSN are constrained to a tight range of values, whereas

others, such as f stab can be drawn from a large fraction of the explored range.

Calculating the mean absolute error of the best-fitting model, and the Baugh19

model, using the same procedure as described in §3.2.4 (and recalling that we scale

each output so that the data lie in the range [0,1]), we find that at least under

this metric the new model is a better fit to the data. Over all the datasets, the

new best-fit found in this work gives an MAE of 0.16 vs. an MAE of 0.20 for

the Baugh19 model. We note that the MAE for the model used in Baugh19 is

within the range of the minimum MAE reached by the 100 MCMC chains. The

reduced MAE of the new best fitting model compared to the Baugh19 model is

mainly due to large improvements in the fits to the early-type galaxy sizes and

their metallicities, while the fits of the new model to the early-type fraction and

Tully-Fisher relation are slightly worse.

As shown in Fig 3.11, we find that our model provides a slightly better fit to the
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K- and r-band LFs than the Baugh19 model∗. For the updated model presented

in this work, we find an MAE of 0.05 vs. 0.08 for the Baugh19 model in the K-

band and 0.04 vs. 0.06 in the r-band. The galaxy sizes are an improvement over

previous iterations of the GALFORM model, particularly the early-types, which are

now more qualitatively similar to the observational data in that they are monoton-

ically increasing with luminosity (at least in the range of the data), whereas the

Baugh19 model features a marked dip at intermediate magnitudes and significant

over-prediction at fainter magnitudes, differing from the observed sizes by a factor

of ∼ 3. The MAEs in this case are also significantly lower for the new model: for

the late-type galaxies we find an MAE of 0.14 in this work vs. 0.21 for the Baugh19

model, and 0.09 vs. 0.39 for the early-type sizes. This difference is largely due to

the different choices for the γSN parameter. Here, we find a preference for much

lower values of γSN, in the range 2.05 − 2.72, vs. 3.40 for the Baugh19 model.

Reducing this parameter significantly weakens the effect of supernova feedback in

low-mass galaxies, leading to smaller sizes (see figure C10 of Lacey et al., 2016).

Interestingly, the preferred γSN we recover is much closer to the value expected

from energy conservation arguments, γSN = 2 (Larson, 1974; Lagos et al., 2013).

The fit to the HI mass function is slightly worse than the fit found in the Baugh19

version of the model (with MAEs of 0.09 vs 0.08); a better fit would come at the

expense of a more severe over-prediction of the bright-end of the luminosity function

as previously discussed, and as shown by the shading of the blue lines in Fig. 3.11.

As we have seen in Fig. 3.9, we are able to produce better matches to the HI

mass function and the luminosity functions if we exclude the early-type metallicity

and galaxy sizes constraints (the fits found in this case are much more similar to

the Baugh19 model, with similarly high γSN in the range ∼ 3.2 − 3.8, as shown

in Fig. 3.10). Our fit to the early-type metallicities is an improvement over the

prediction of the Baugh19 version of the model, where the MAE of our model is

0.15 vs. 0.55 for the Baugh19 model. However, our early-type metallicities fit
∗Baugh et al. concentrated on reproducing the bJ-band luminosity function, and the HI mass

function, and did not consider the r-band LF.
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Figure 3.11: The GALFORM evaluations of the best-fitting parameters found with
100 MCMC chains, each 10,000 samples in length, using the constraint weightings
described in the text. Here we plot a sample of the best 50 runs, as measured by
MAE. The red line indicates the parameter set with the lowest MAE. The remaining
49 runs are plotted in blue, with darker shades indicating small residuals to the HI
mass function. Note therefore that runs with the smallest residuals to the HI mass
function over-predict the bright-end of the K- and r-band LFs. The black dashed
line shows the Baugh19 model. The data described in §3.2.3 is shown in black and
grey. We calibrate to the data shown in black.

comes at the cost of slightly degrading the fit to the early-type fraction (0.13 vs.

0.10). Our fit to the Tully-Fisher relation is worse than in the Baugh19 model,

with an MAE of 0.28 vs. 0.17, though we have demonstrated that we can retrieve

a fit more similar to Baugh19 by giving less weight to the early-type metallicity

constraint (again as shown in Fig. 3.9).
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3.3.3.2 Predictions for cosmic star formation history

We have calibrated GALFORM to low-redshift constraints and now investigate the

predictions for the evolution of the star formation rate density (SFRD) with red-

shift. To do this, we evaluate the SFRD with redshift for the sets of parameters

corresponding to the GALFORM runs shown in Fig. 3.11. Fig. 3.12 shows the SFRD

predictions for these parameter choices. Since GALFORM assumes a mildly top-heavy

initial mass function (IMF) for stars formed in starbursts, we apply an approxim-

ate correction to give the SFR which would be inferred assuming a Kennicutt IMF

(Kennicutt, 1983) by weighting the starburst SFR by a factor of 1.9 (as in Lacey

et al., 2016). The curves therefore represent an apparent SFRD which can be

compared with observational estimates which assume a solar neighbourhood IMF.

Interestingly, we see that the spread of the model predictions only increases slightly

as we move out to larger redshifts. This suggests that the low-redshift calibration

datasets actually constrain the redshift evolution of the model reasonably well.

3.4 Discussion

We have presented a method for efficiently calibrating and exploring a SAM of

galaxy formation across a wide range of outputs. In doing so, we have uncovered

a number of tensions between datasets: for example, in Fig. 3.9, we found that on

relaxing the requirement for a good fit to the early-type metallicities, we recovered

a fit very similar to those found in Baugh et al. (2019) and Lacey et al. (2016). By

increasing the weight given to the early-type metallicity constraint, we moved to

a new region of parameter space, changing our fit to the early-type fraction and

early-type sizes. Tensions such as this point to either deficiencies in the model, or

a discrepancy between the observational datasets. For example, again in Fig. 3.9,

we see that the early-type fraction fit to the Moffett et al. (2016) data (shown in

black) degrades when we include the early-type metallicity constraint. However, in

this case the fit is then in better agreement with the González et al. (2009) data
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Figure 3.12: The apparent SFRD predictions for the GALFORM model evaluations
shown in Fig. 3.11. The red line indicates the predictions for the best-fit parameters
(as calculated by MAE), while the blue lines indicate the remaining 49 runs. These
lines are shaded according to the model’s residuals to the HI mass function, with
darker shades indicating smaller residuals. We compare to observational data from
Burgarella et al. (2013); Cucciati et al. (2012); Oesch et al. (2013); Sobral et al.
(2013); Gunawardhana et al. (2013). Note that these data were not used in the
fitting. A correction has been applied to the predicted SFRD in bursts to give an
apparent SFRD, as described in the text.

(shown in grey). Similarly, for the HI mass function, the Zwaan et al. (2005) and

Martin et al. (2010) datasets do not agree with one another, differing by up to a

factor of five in abundance at high masses.

In other cases, we can see a clearer deficiency in the GALFORM predictions. For

example, in Fig. 3.5 we show the effect of fitting to the K-band LF or the late-type

galaxy sizes, or both together. We see that even when we fit only to the late-type

sizes constraint, we are still not able to recover the observed monotonic increase in

radius with increasing luminosity. Clearly, this suggests that the treatment of the

galaxy disk-sizes in GALFORM needs to be improved.
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The emulation method presented here contrasts with previous work; most emu-

lators have focused on reducing the parameter space by using more approximate

emulators, but with robust uncertainty measures, to iteratively reduce the volume

of parameter space which could plausibly produce good fits to the data. van der

Velden et al. (2021), for example, used a total of 3000 runs over three waves to cal-

ibrate the MERAXES SAM to the stellar mass function. We have focused instead on

maximizing the accuracy of our emulator of GALFORM across the whole parameter

space. Our aim is to build an emulator which allows us to explore a wide range

of calibration datasets, and different combinations of these datasets. As shown

in Fig. 3.2, our emulator performs well: most of the key constraints are tightly

predicted.

In this vein, we have discounted the observational error bars to facilitate model

exploration. In § 3.3.3.1 we calibrated our model to the full set of observational

datasets under consideration. However, since we did not include observational

errors and used an absolute error metric, it is difficult to give meaningful error

bars around our estimates of the best-fitting parameters quoted in Table 3.2. As

previously mentioned, SAM calibration involves making trade-offs between certain

observational constraints; often the best-fitting model is calibrated in a way which

is poorly defined. We have attempted to reproduce and elucidate this process in

an automatic way through a heuristic weighting scheme. We aim to investigate a

more robust calibration analysis in the future with an improved treatment of the

observational errors.

Similarly, our approach could be extended to include a more robust measure

of the emulator’s uncertainty in reproducing GALFORM outputs. When emulat-

ing a set of model outputs, we should ideally account for epistemic and aleatoric

uncertainty. Epistemic uncertainty refers to the uncertainty associated with the

emulator’s parameters (in this case, the weights of the neural network), and aleat-

oric uncertainty refers to uncertainty inherent in the data generating process (for

example, the sampling noise on the GALFORM outputs). Our approach does not
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currently model the epistemic uncertainty on the emulator’s weights, but instead

acts to reduce it by averaging over a number of individual estimates provided by

the neural networks in our ensemble. It is possible therefore that we are discard-

ing regions of the parameter space which potentially contain reasonable fits to the

data. However, we are somewhat protected from this scenario in that the regions

which are most difficult for our emulator to model are regions which produce ‘un-

usual’ or ‘undesirable’ outputs (e.g. such as LFs without a clear exponential break),

which are unlikely to be good matches to the observations anyway. Nevertheless,

ideally we would like our emulator to return an estimate of its uncertainty (both

the uncertainty in the emulator’s weights and uncertainty inherent in the data-

generating process). GALFORM is a deterministic code, but we are still limited by

the noise associated with sampling from a relatively small population of galaxies

at high masses. Bayesian neural networks (Neal, 1994; Bishop, 1997) are a class

of models which seek to incorporate epistemic and aleatoric uncertainty into the

deep learning framework; these networks often apply independent Gaussian prior

distributions over model weights, and model the outputs themselves as distribu-

tions. We believe this may be a promising line of inquiry to combine the power of

the neural network’s adaptive basis functions with the uncertainty quantification

of a full Bayesian analysis.

Another appealing method is the deep kernel learning approach (Wilson et al.,

2016). Here, a deep neural network is employed to transform the inputs to the

kernel of a Gaussian process regression, and it has been shown to outperform both

the plain Gaussian process model and the plain deep neural network in a number

of cases (e.g. Wilson et al., 2016; Patacchiola et al., 2020) while also providing

robust uncertainty estimates. Here, the deep neural network can be thought of as

a feature extractor which reduces the number of features input into the Gaussian

process kernel and so allowing it to better generalize to higher dimensional inputs.

In Fig. 3.3, we demonstrated that we could improve the performance of our

emulator as much as 10% by averaging over 10 neural networks, rather than using
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just one. It may be interesting to investigate this avenue further. Our method

used a simple average, but if a selection of machine learning algorithms are able

to give errors which are not strongly correlated (i.e. some fit better to certain

examples than others), it may be possible to use a more sophisticated approach to

incorporate the respective advantages of a number of different algorithms (see e.g.

Maclin & Opitz, 2011).

We have proposed a number of ways to investigate the GALFORM model with

our emulator. We can use sensitivity analysis techniques to evaluate the effect of

different parameters, and since the emulator is extremely fast, we can manually ex-

plore the outputs in detail. It may also be possible to use symbolic regression such

as the proprietary software EUREKA (as described in Dubčáková, 2011) or sparse

regression-based methods (e.g. Rudy et al. (2019)) to generate closed-form expres-

sions of the neural network outputs if desired (i.e. an estimate of the functional

form of the outputs). Cranmer et al. (2019), for example, applied symbolic regres-

sion techniques in conjunction with graph neural networks to extract equations

from cosmological simulations.

3.5 Conclusions

We have implemented a deep learning approach to emulate the GALFORM SAM. We

trained an ensemble of deep learning algorithms to approximate the full model us-

ing just 930 evaluations of GALFORM. We used this to explore the parameter space

of GALFORM, and to calibrate the model parameters to a wide array of observations.

Typically the exploration of a model parameter space and the determination of a

best-fitting set of parameter requires many more than 930 explicit full calculations.

Our emulator is remarkably accurate, particularly in regions of the parameter space

for which the model gives outputs which are close to matching the observed Uni-

verse.

We used sensitivity analysis to quantify the influence of different parameters on
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the model outputs, to better understand which parameters are of greatest import-

ance in fitting to different observations (see Oleśkiewicz & Baugh 2020). Here,

as shown in Fig. 3.4, we found that the majority of the variance is due to just a

few key parameters, which leads to tension when trying to calibrate to multiple

observational datasets.

We explored the tensions between the use of different observational datasets fur-

ther, using MCMC to fit the emulator output to observational data with a heuristic

weighting scheme. This allowed us to reproduce the known tension between the

faint-end galaxy LFs in the K- and r-bands and the late-type galaxy sizes, and to

uncover a number of others. Furthermore, we used the same technique to find a

global fit to the observational datasets, finding a set of parameters which provide

an improved fit to the early-type galaxy sizes and metallicities as compared with

an earlier version of the GALFORM code presented in Baugh et al. (2019).

We intend to apply our emulation approach to calibrate GALFORM using the ob-

served galaxy redshift distribution to generate mock galaxy catalogues for the DESI

bright galaxy survey (Aghamousa et al., 2016). This requires model outputs over

a large number of redshifts, which makes running GALFORM more computationally

expensive. We are motivated therefore to reduce the required number of model

evaluations as much as possible; calibrating the model across this redshift range

would be prohibitively expensive for direct MCMC methods, and very difficult to

achieve by-eye. Our emulator is ideally suited to this task; we have demonstrated

that we require very few runs to achieve good accuracy, and that we are able to

emulate over a wide range of outputs.

We believe our approach to be an inexpensive, intuitive and accurate alternative

to other emulation techniques in the literature, and that this method will serve as

an invaluable tool in quickly exploring and calibrating SAMs, and for the rapid

assessment of the implications of changes to the underlying model.
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Chapter 4

Calibrating GALFORM to SMG

constraints

Summary: The nature of galaxies detected by their emission at sub-millimetre

wavelengths (SMGs) remains controversial, with conflicting claims made about how

these galaxies fit into hierarchical structure formation. We revisit this question

using Bayesian optimization to perform an exhaustive search of the parameter

space of the GALFORM semi-analytical galaxy formation model. This model has

been used to argue that a top-heavy stellar initial mass function (IMF) is needed

in bursts of star formation to reproduce the number counts and redshift distribution

of SMGs, whilst also matching the observed number of bright galaxies locally. Our

new approach to finding the best-fitting model parameters converges to a solution

with as few as 200 full model evaluations, even when varying 15 parameters. We

test the ability of the model to match, simultaneously, the observed z = 0 K-band

luminosity function, and the SMG number counts and redshift distribution, both

with and without a top-heavy IMF in bursts of star formation. Although the model

can match the sub-millimeter counts and redshift distribution at some level when

assuming a solar neighbourhood IMF in all star formation, it is not possible for

this variant to also match the local K-band luminosity function. This model also

requires much higher rates of quiescent star formation than is usually predicted as
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well as requiring disk instabilities to be switched off altogether. We find that a

variant with a top-heavy IMF in bursts of star formation is able to simultaneously

match the low-redshift K-band LF as well as the SMG constraints.

4.1 Introduction

Observations of galaxies in the high-redshift Universe can impose strong constraints

on galaxy formation models, particularly when used to test the models along-

side local observations. Sub-millimeter galaxies (SMGs), first discovered using the

SCUBA∗ instrument on the James Clerk Maxwell Telescope (Smail et al., 1997;

Hughes et al., 1998) are a population of galaxies undergoing dust-obscured star

formation (for a review, see Casey et al., 2014). As the sub-mm emission from

these galaxies undergoes a negative k-correction, for a fixed total infrared luminos-

ity, their flux is almost unchanged over a wide range of redshifts, providing a useful

window through which to study galaxy evolution. The bright SMGs are estimated

to contribute up to half the star formation rate density at z ∼ 2-3, while having

a space density of ∼ 10−5cMpc−3 (e.g Chapman et al., 2005; Smith et al., 2017),

have large stellar masses of ∼ 1011M⊙ (e.g Swinbank et al., 2004; Da Cunha et al.,

2015), and inhabit massive halos ∼ 1013M⊙ (e.g. Blain et al., 2004). If the SMG

emission is assumed to be powered by star formation with a solar neighbourhood

IMF, the resulting star formation rates are intense and the episode of star forma-

tion corresponding to the SMG phase could be responsible for a sizeable fraction

of the mass of a present day, bright elliptical galaxy.

Any viable galaxy formation model should aim to reproduce both the number

counts and the redshift distribution of SMGs, at the same time as reproducing

observations of local galaxies, but so far this has proven challenging. Early semi-

analytic models under-predicted the number counts of SMGs by over an order of

magnitude (Granato et al., 2000; Somerville et al., 2012). Baugh et al. (2005)
∗Submillimetre Common User Bolometer Array
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argued that adopting a stellar initial mass function (IMF) in bursts of star forma-

tion with a larger proportion of massive stars than in a solar neighbourhood IMF

(i.e. dn/dlogm ∝ m−x with x = 0 adopted) allowed the model to match both

the number counts and redshift distribution of SMGs, without compromising the

model predictions at low redshift. Later iterations of this model (Lacey et al.,

2016; Baugh et al., 2019; Cowley et al., 2019), which include feedback by AGN

heating to modulate the abundance of bright galaxies, are able to reproduce the

properties of SMGs and local galaxies with a somewhat less extreme but still top

heavy IMF in bursts, with x ∼ 1 (note that a Chabrier (2003) IMF, has the form

dn/dlogm ∝ m−1.35 above one solar mass).

Some semi-analytic models have claimed success in matching the observed SMG

redshift distribution and number counts. Safarzadeh et al. (2017), using the semi-

analytic model of Lu et al. (2014), find a reasonable match to the number-counts

and redshift distribution of SMGs (albeit predicting too low a median redshift

compared to more recent observations). However, this work is based on using a

fitting formula to relate the 850µm flux of a given galaxy to its dust mass and

SFR; the formula was found by Hayward et al. (2011) from a small number of non-

cosmological hydrodynamic simulations and does not self-consistently calculate the

dust temperature and emission as in Baugh et al. (2005) or Lacey et al. (2016).

The SHARK semi-analytic model (Lagos et al., 2018, 2019) produces a reasonable

match to the faint-end of the SMG number-counts but over-predicts of the bright

end by a factor of ∼ 5. Again, the median redshift of SMGs predicted by SHARK is

lower than the most up-to-date estimates (Dudzevičiūtė et al., 2020).

Other models have also made predictions for SMGs. Predictions from the

EAGLE hydrodynamic simulation (Schaye et al., 2015), in which a Chabrier (2003)

IMF is assumed for all star formation, were presented in McAlpine et al. (2019);

these authors found some agreement with the redshift distribution of these galax-

ies but greatly under-predicted the number counts, with the simulation producing

almost no sources above 5mJy. The SIMBA hydrodynamic simulation (Davé et al.,
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2019; Lovell et al., 2021), again assuming a Chabrier IMF, similarly finds agree-

ment with the redshift distribution of the submillimeter galaxies but under-predicts

the SMG counts by a factor of 3-10 at the bright end, depending on the assump-

tions about blending, and by greater than an order of magnitude at the faint end.

Hayward et al. (2021) compares the sub-millimeter predictions for the Illustris and

IllustrisTNG simulations (Nelson et al., 2015; Pillepich et al., 2018).Illustris repro-

duces the number counts reasonably well, but predicts a significantly lower median

redshift for bright sources than is observed. IllustrisTNG produces a redshift dis-

tribution that is in better agreement with observations, but under-predicts the

number counts by greater than an order of magnitude at bright fluxes. We note

that these predictions are also not based upon a self-consistent calculation of the

dust temperature, but instead again use the fitting-formula for sub-millimeter flux

from Hayward et al. (2011).

Here, we revisit the need for a top-heavy IMF in hierarchical galaxy formation

models. Allowing the form of the IMF to change depending on the mode of star

formation is seen as controversial (see, for example, Bastian et al. 2010). Nev-

ertheless other authors have considered such a possibility. Using the strength of

emission lines and the Balmer decrement measured from star-forming galaxies in

the Galaxy and Mass Assembly Survey, Gunawardhana et al. (2011) argued that

the slope of the IMF varies with the star formation rate (SFR), with the IMF

becoming more top-heavy as the SFR increases, reaching x ≈ 0.9 in the most in-

tensely star-forming galaxies, similar to the value adopted by Lacey et al. (2016).

(Note the solar neighbourhood Chabrier IMF has a slope of x = 1.35 above 1M⊙.)

Romano et al. (2017) inferred a top-heavy IMF slope, with x ≈ 0.95 in nearby

starburst galaxies. Schneider et al. (2018), studying massive stars in the Large

Magellanic Cloud, found an IMF of x = 0.9 ± 0.3, and subsequent analysis by Farr

& Mandel (2018) found an IMF of x = 1.05 ± 0.14, both top-heavy compared to

the solar neighbourhood IMF. Nevertheless, though many studies provide evidence

for variations in the IMF, the exact nature of the variation is much more uncer-
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tain. Some studies (for example, Conroy & van Dokkum 2012; Smith 2020) infer

evidence for a bottom-heavy IMF in high mass galaxies, and Weidner et al. (2013)

propose a time-dependent IMF that favours massive stars at early times and low

mass stars at late times, compared with a solar neighbourhood IMF.

All galaxy formation models, whether they are hydrodynamic gas simulations

or semi-analytic codes, involve a large number of parameters which govern the

strength of various sub-grid processes, such as feedback from supernovae and active

galactic nuclei (AGN) (Baugh, 2006; Benson, 2010; Crain et al., 2015; Somerville

& Davé, 2015). These parameters must be adjusted to match some sub-set of

observations before the model can be used to make predictions for other observables.

One criticism of the inclusion of a top-heavy IMF in the GALFORM model is that,

given the relatively large parameter space, another, unexplored choice of parameters

might be able to fit the observations without requiring this assumption. Our aim

is to find out if there is a set of parameters with which the model, assuming

a universal solar neighbourhood IMF, is capable of matching the observational

constraints from SMGs while maintaining reasonable fits to low-redshift datasets

such as the K-band luminosity function. As a secondary aim, we investigate the

slope of the IMF in bursts, when the IMF is allowed to change depending on the

mode of star formation. Will a more extensive search of the model parameter space

reveal the possibility of invoking a less ‘extreme’ IMF in bursts?

To achieve this, we draw on techniques from the field of Bayesian optimization

(see e.g. Frazier 2018). This class of methods is used to calibrate the values

of the parameters in a model, also called model optimisation, by searching for

the best-fitting set of parameters, as judged by how well the model reproduces

a set of target datasets. The metric to determine the best-fitting model could

be based on a measure of the distance between the model predictions and the

calibration data. In general, we do not know how the metric depends on the

model parameters, which makes this a so-called ‘black-box’ problem. Bayesian

optimisation is typically used for models that are computationally expensive to run,
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and we need an optmization method that does not require a large number of model

evaluations. In Bayesian optimisation, the metric is known at every point in the

parameter space, with varing degrees of certainty. Here we use Gaussian processes

(GP; see e.g. Rasmussen & Williams 2006) to describe the metric. As more model

evaluations are performed during the optimization, the GP are updated. Once

there is no further significant improvement in the metric judging how well the

model reproduces the calibration data, the best-fitting model is the one with the

lowest value of the distance metric. We find that this method is able to find

suitable fits to the data in a fraction of the number of model evaluations required

by other (often more elaborate) approaches (see e.g. Kampakoglou et al., 2008;

Henriques et al., 2009; Bower et al., 2010; Vernon et al., 2010; Benson & Bower,

2010; Lu et al., 2011, 2012; Ruiz et al., 2015; Martindale et al., 2017). However,

with this approach we only get a limited sense of the uncertainty on the parameters

in exchange for an order of magnitude fewer evaluations of the full model. Bayesian

optimisation has been used in other problems in astronomy that involve running

a computationally expensive model over a parameter space with a high number of

dimensions (e.g. interpreting supernovae light curves Leclercq 2018; the Lyman-

α forest power spectrum Rogers et al. 2019; Takhtaganov et al. 2021; looking for

signatures of inflation in cosmic microwave background data Hamann & Wons 2022)

The calibration of semi-analytical models and the exploration of their para-

meter spaces has been investigated in a number of recent papers. In general, two

approaches have been taken to tackle calibration: direct evaluation of the model

parameter space across a large number of parameter choices, and emulation, in

which a much smaller number of full model runs are used with the bulk of the

parameter sampling being done by a surrogate or proxy which uses greatly reduced

computational resources.

The direct exploration approach has been investigated in a number of papers.

Both Kampakoglou et al. (2008) and Henriques et al. (2009) implemented Markov-

Chain Monte Carlo (MCMC) techniques to calibrate their semi-analytical models
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to a range of datasets, and found that the choice of dataset effected the choice

of best-fitting parameters. Martindale et al. (2017) used the same semi-analytical

model as Henriques et al. but also included the HI mass function as a constraint,

again changing the best-fitting parameters. Similarly, Lu et al. (2011, 2012, 2014)

applied this approach to fit parameters to the K-band luminosity function and the

HI mass function. Ruiz et al. (2015) used particle swarm optimization to calibrate

a SAM to the K-band LF.

The emulation method instead involves building a statistical approximation to

the full galaxy formation model. Bower et al. (2010) and Vernon et al. (2010) em-

ployed a Bayesian emulation technique – Bayes linear – (as developed by Goldstein

& Wooff, 2007) fit the GALFORM model to the K- and bJ-band LFs, and included

further observational datasets to further constrain this reduced parameter space

in Benson & Bower (2010). Rodrigues et al. (2017) also applied this method to

calibrate GALFORM to the local galaxy stellar mass function. Van der Velden et al.

(2021) recently used the Bayes linear methodology to calibrate Meraxes galaxy

formation model at high redshift.

The Bayes linear approach used by Bower et al. (2010) makes more approxima-

tions and assumptions about the functions being minimized than we do here, and

so is not strictly a black-box method like the Bayesian optimisation used here. The

Bower et al. method involved searching the parameter space in waves, with the

space redefined at each wave to make the search adaptive. Bower et al. used 5500

runs of the GALFORM model in their search of a similar szied parameter space to the

one considered here; we will use fewer than 200 runs of the full model.

We presented a new framework for the automated calibration of the GALFORM

model using local observational data as used in Chapter 3. The first step was to run

a sensitivity analysis to determine which model parameters were mainly responsible

for shaping the model predictions for the calibration data (see Oleśkiewicz & Baugh

2020 for the first application of sensitivity analysis to the GALFORM model). This

process allowed us to identify a subset of ten model parameters that were the most
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important for determining the form of the calibration data. We next ran the full

GALFORM model for 1000 parameter combinations sampled from this ten dimensional

space using a Latin hypercube (Stein, 1987). These runs allowed us to build an

emulator of GALFORM using an artificial neural network. The emulator was then

used to make an extensive Monte-Carlo Markov Chain search of the parameter

space, returning a best-fitting parameter set for the chosen calibration data, along

with an indication of the range of acceptable model predictions. The speed of

this approach, which made possible the extensive exploration of a parameter space

with a large number of dimensions, allowed us to explore the best-fitting models

that resulted from different combinations of calibration datasets. Differences in

the resulting best-fit models point to possible deficiencies in the model or in the

compatibility of the observational measurements with each other.

Here we have a more challenging problem to address. First, the parameter space

we search is even larger than in Chapter 3, with 15 dimensions rather than 10. The

focus of the parameter space search is now: “Can we find any example of a model

that works, under the assumptions?”, rather than simply finding a best-fitting

parameter set along with the associated range of acceptable models. Second, the

computational overhead for the model runs associated with each parameter set are

much higher. We need predictions for the number counts and redshift distribution

of galaxies, which require, because of the way the GALFORM code is set up, the model

to be run for many redshifts rather than simply just for z = 0. This is because the

GALFORM model tracks galaxy SEDs through filters, rather than tracking the full

SED. Since the definition of observer frame filter changes with redshift, the model

must be run separately for each output redshift. Moreover, some of the predictions

are sensitive to rare events such as starbursts so we need to simulate many more

examples of dark matter halo merger histories to get robust predictions.

Hence, to overcome these challenges we investigate the application a of new ap-

proach to model calibration using Bayesian optimisation. Unlike previous work,

which has generally used the emulator approach (i.e. building a surrogate model
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which is a statistical approximation of the full galaxy formation model, with a much

smaller computational overhead), or expensive MCMC routines to infer posterior

parameter distributions, here we are primarily interested in whether there exists

parameter choices which are capable of matching the datasets under considera-

tion: the constraints being the number counts and redshift distribution of SMGs

and the low-redshift K-band LF. Bayesian optimisation is a global optimization

technique which efficiently searches the parameter space using a Gaussian process

prior, and is capable of searching high-dimensional parameter spaces efficiently for

global minima. Here, we aim to demonstrate that these methods are applicable to

galaxy formation models in general, and then use the method to test whether there

exists a set of parameters which is capable of matching the SMG observations and

low-redshift constraints simultaneously without including a top-heavy IMF. Past

explorations of the parameter space, though usually performed manually, have sug-

gested that it is not possible to simultaneously match these three constraints when

assuming a universal solar neighbourhood IMF. Our contribution is to validate

or invalidate this conclusion with a more sophisticated parameter search, over a

comprehensive list of relevant parameters and a wide search space. Such an ap-

proach represents an enormous improvement over the old-fashioned, one-at-time

parameter searching originally used to argue for a top-heavy IMF.

This Chapter is set out as follows: In § 4.2, we review the theory and practical

considerations behind Bayesian optimisation, listing the observational datasets se-

lected for calibration in § 4.2.5 and, importantly, validating our method on a sur-

rogate model in § 4.2.6. In § 4.3, we present the results of the model calibration, for

different assumptions about the form of the IMF and about the importance placed

on reproducing various datasets. We give a summary in § 4.4 and conclusions in

§ 4.5. The processes and parameters of the GALFORM model have been reviewed

in § 2.1. The list of model parameters varied, and the range considered for each

parameter is given in Table 4.1.

80



4.2. Bayesian optimization

Table 4.1: The parameters explored in this work and the range of values over which
they are varied.

Name Process Range
F stab Disk instability 0.5 - 1.2
γSN SN feedback 1.0 - 4.0
αcool AGN feedback 0.2 - 4.0
αreheat SN feedback 0.2 - 3.0
V SN, disk (km s−1) SN feedback 10 - 800
V SN, burst (km s−1) SN feedback 10 - 800
f ellip mergers 0.2 - 0.5
fburst mergers 0.01 - 0.3
νSF Quiescent star formation 0.1 - 4.0
fSMBH BH growth 0.001 - 0.05
τ*burst, min (Gyr) Burst star formation 0.01 - 0.05
f cloud Dust 0.2 - 0.8
tesc (Gyr) Dust 0.0001 - 0.01
βburst Dust 1.5 - 1.2
x Initial mass function 0 - 1.35

4.2 Bayesian optimization

We use Bayesian optimisation (see Frazier 2018 for a review) to set the model para-

meters so that GALFORM reproduces as closely as possible the observational datasets

used for model calibration. Here we explain why we take this approach and set out

its background. We start in § 4.2.1 with an overview of the problem, the exploration

of a high dimensional parameter space of a computationally expensive model, and

explain how Bayesian optimisation addresses this challenge. The nature and role of

Gaussian processes, the tool used to convey our knowledge of the parameter space

is described in § 4.2.2. The kernel function is an important part of the Gaussian

process description and is explained in § 4.2.3. The method used to choose where

to add new calculations with the full model to the parameter space is presented

in § 4.2.4. The datasets used to calibrate GALFORM are listed in § 4.2.5. A simple

validation of our approach is given in § 4.2.6. We close this section in § 4.2.7 by

describing the practical application of Bayesian optimization to GALFORM.
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4.2.1 An overview of Bayesian Optimization

In a traditional parameter space exploration, a model is evaluated at a series of

points in the parameter space and each parameter set is ranked by a metric, f ,

which measures the discrepancy or distance between the model predictions and the

calibration data. In low dimension parameter spaces, a full grid search may be

feasible. Often, however, there are too many parameters for such a search to be

possible and a more efficient method is used, such as a Monte Carlo Markov Chain

(Robert, 2015). New positions or samples of the parameter space are accepted by

the chain if certain conditions are met, such as the proposed point having a smaller

value of f than the current point.

In our application, the GALFORM code is expensive to run many times. As we

are searching a high dimension (15) parameter space, a prohibitively large number

of model evaluations would be required to calibrate the model using traditional

methods. One option would be to bypass evaluating the model for every new set

of parameters by producing an emulator to mimic the effect of running the model,

which we discuss in § 4.2.6. This was the approach we took in Chapter 3, where

we used several hundred runs of the full model to train an artificial neural network

to produce output that was, for most parameter sets, close to that obtained by

running the full model. This option is not feasible in the present application,

as each set of model parameters requires many redshifts to be run, rather than

just one, as we are comparing the model predictions to galaxy number counts and

redshift distributions; hence, the computational costs of each model evaluation is

higher than in Chapter 3. Also, the dimensionality of the parameter space is higher

in this Chapter than in Chapter 3, implying even more sets of parameters would

have to be run to train an emulator (note that the emulator we use to validate our

method in § 4.2.6 is too approximate to be used to calibrate the model accurately).

Bayesian optimization replaces the emulator with a surrogate description of the

metric function, f , using a Gaussian process (GP). With a small number of evalu-
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ations of the full model (compared to other methods), the GP describes the value of

f and uncertainty on this value at each position in the parameter space, x (where

x can be multi-dimensional in practice, but is one dimensional for the illustrative

plots, Figs. 4.1 and 4.2). For values of x close to a position in the parameter space

at which there is a full model evaluation, the uncertainty on the predicted value

of f is small. The uncertainty grows as we move away from the locations in x

where the full model has been run. So we have knowledge of f at any position in

the parameter space, just that in some places this knowledge is better than others.

The knowledge of f can be improved by carefully choosing the next position in the

parameter space to run a full calculation of the model. This process is dealt with

in § 4.2.4.

So after on the order of a few tens of full model calculations, at locations in the

parameter space sampled using a Latin hypercube, the search for a minimum value

of f begins, and, as we show later, can be completed following a few hundred full

model runs.

Since we do not have any information about the form of f , nor do we compute

its derivatives (which could be used in a gradient descent method to find an ex-

treme point), this is technically referred to as a black-box, derivative free, global

optimisation problem (Frazier, 2018).

4.2.2 Gaussian processes

Gaussian process (GP) regression is a non-parametric way to calculate a posterior

distribution, starting from the assumption that the underlying distribution is con-

tinuous (see e.g. Rasmussen & Williams 2006). The GP gives the value of the

metric function (sometimes called the objective function) at any point in the para-

meter space, f(x), along with an estimate of the uncertainty on this value.

To specify the GP, a mean value and a covariance matrix or kernel function

are required. The mean is generally taken to be a constant; here we set this
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value to zero since the target value for the metric function is as close to zero as

possible. The covariance matrix describes the correlation between the values of

f at nearby points in the parameter space, given a definition of a characteristic

length scale in the parameter space x. Note that x can be a multi-dimensional

parameter space. Points which are considered close together in the parameter

space, according to some measure of distance, will tend to have similar values of

the objective function, f . This behaviour follows from the assumption that f is a

smooth, continuous function.

The GP functions are modelled as being drawn from a multivariate normal dis-

tribution

f(x′) ∼ N(0,K(θ, x, x′)), (4.1)

where K(θ, x, x′) is a covariance matrix of all pairs of points in the parameter space

(x, x′) given by an assumed kernel function (see next subsection) parameterised by

θ, and we have already assumed a mean value of 0. The hyperparameters θ can

then be optimized by maximizing the log-likelihood

log p(f(x′)|θ, x) = −1
2f(x)TK−1

θ,x,x′f(x′) − 1
2log det(Kθ,x,x′) − n

2 log 2π. (4.2)

Note that the function f is known at both points, x and x′. If we wish to make

predictions for a new location in the parameter space, x∗, the posterior mean and

variance at this point are given by

µ∗ = Kθ,x∗,xK
−1
0,x,x′f(x) (4.3)

σ2∗ = Kθ,x∗,x∗ −Kθ,x∗,xK
−1
θ,x,x′K

T
θ,x∗,x (4.4)

which are the standard formulae for conditioning a multivariate normal distribu-

tion.
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Figure 4.1: A demonstration of the effect of the length scale adopted in the kernel
function on the appearance of a Gaussian process (GP) prior. Each panel shows
several realisations or draws from a GP. In each case the process has zero mean.
However, the hyperparameter that governs the scales over which values of f are
correlated varies between panels. The left panel shows the shortest correlation
length scale, with θ = 0.1, the middle panel shows 1.0, and the right panel 10.0.
A shorter length scale corresponds to a function which changes rapidly with small
changes to the input parameters.

Fig. 4.1 shows examples of GPs with different correlation lengths between the

values at closeby points in the parameter space. The correlation in this example is

described by a radial basis function kernel, K(θ, x, x′) = exp((x− x′)2/2θ2). Each

panel of Fig. 4.1 shows several examples or realisations of Gaussian processes; in

this example we are simply plotting values drawn from a Gaussian distribution

with mean zero and different choices for the length scale in the covariance mat-

rix. Each curve is an example of a ‘pseudo’-random walk in which there is some

correlation between the steps. In each panel, different values are assumed for the

hyperparameter θ which controls the typical length scale over which the values

of f are correlated, moving from a small value of θ in the left panel, through to

intermediate values in the middle panel and large values in the right panel. If the

function that we are trying to reproduce using GPs varies slowly with x, then a

large correlation length i.e. a large value for θ is needed.
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4.2.3 The choice of kernel function for the Gaussian process

The choice of kernel function is important in GP regression as this sets how rapidly

the objective function f can vary, and hence the ability of the GP to detect feature

relevance i.e. how rapidly the objective function f changes with a given parameter

value varying (Rasmussen & Williams, 2006).

Feature relevance means, in practice, that each parameter, xi, has an associated

length-scale parameter, θi, rather than a global value for θ for all parameters.

Hence, the length-scale of our objective function, f , (i.e. as shown in Fig. 4.1) is

allowed to vary across each dimension in parameter space.

The simple illustration of GPs shown in Fig. 4.1 used a radial kernel function

(see subsectiion above) to encode the correlation or covariance between points in

the parameter space. For the application to GALFORM we instead use the Matern

kernel function, for which the covariance between two points xi and xj is given by

Cν(xi, xj) = σ2 21−ν

Γ(ν)

(√
2ν d(xi, xj)

l

)ν

Bν

(√
2ν d(xi, xj)

l

)
, (4.5)

where Bν is a modified Bessel function of the second kind, d(x, x′) is the Euclidian

distance metric between points x and x′ in the parameter space, and l controls the

length-scale for a component of the vector describing the full parameter space and

of the function. The Matern kernel has a number of attractive features, such as

high level of differentiability and the ability to model functions with varying degrees

of smoothness. In fact, as ν → ∞, the Matern kernel converges to the radial basis

kernel. We use the Matern 5/2 kernel with automatic relevance detection, that is

with ν = 5/2, in which case the kernel can be written as the product of a polynomial

and an exponential:

K(xi, xj) = σ2
(
1 +

√
5r + 5r2

)
exp

(
−

√
5r

)
, (4.6)

where

r =

√√√√ d∑
m=1

(xim − xjm)2

l2m
. (4.7)
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Since we have a length scale lm for each dimension in the parameter space, the

length-scale corresponds to the relevance of each input parameter. Parameters

with a long length-scale will therefore contribute much less to the covariance.

4.2.4 Where to take the next step in the parameter space?

Our aim is to find a set of parameters, x∗, which minimises the distance between

the observational data and the predictions of the model in terms of some met-

ric. The output of a model evaluation is a set of predictions for various statistics

describing the galaxy population, such as, as we will see in the next section, the

values of the K-band luminosity function in a series of luminosity bins. We then

calculate a metric or distance measure between the model predictions, g(x), and

the corresponding observational data y, using the L1-norm ||g(x)−y||1. We use the

L1 norm rather than the more common L2 norm (in which the distance between

model prediction and data is squared and then summed over the bins the statistic

is measured in) to reduce the influence of outliers in setting the value of the metric.

The GP then predicts the value of f(x) = ||g(x) − y||1. We aim to find an optimal

value x∗ ∈ X such that f(x∗) is a minimum.

The process of selecting a new position in the parameter space at which to make

an evaluation of the full model requires us to calculate an acquisition function, aEI.

The acquisition function balances two aims: sampling where the model is going to

provide a better fit to the data and improving the knowledge of objective function

where the error is large.

Different forms can be specified for the acquisition function (Frazier, 2018).

The expected improvement is one of these choices. The expected improvement

algorithm compares the minimum value of the objective function found so far,

fn
min, with the value at any proposed new location, f(x), which is given by the GP

estimate of the objective function. Since we have to use the GP estimate of f(x)

rather than the actual value (which we do not know until after the evaluation),
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this is why the algorithm is called the expected improvement (hereafter EI).

The EI can be written in terms of a utility function:

u(x) = max (0, fn
min − f(x)) , (4.8)

which is the reduction in our metric at point x in the parameter space, as compared

with our minimum evaluation so-far at iteration n, fn
min. The utility function is

equal to zero unless there is a reduction in the value of f at the new position x,

compared to the previous minimum value fn
min. The acquisition function in this case

then is the expectation value of the utility u(x) at point x. Since the GP provides

a probability distribution of the evaluation of the function we are investigating at

x, we have to integrate over the possible values and their respective probabilities

to calculate an expected improvement at parameter space point x

aEI(x) = E[u(x)] =
∫ fn

min

−∞
(fn

min − f(x))GP (x)dx, (4.9)

where we are integrating over the probability distribution given by the GP.

A demonstration of how the expected improvement function works in Bayesian

optimization is shown for a 1-dimensional parameter space in Fig. 4.2. Here we

show one iteration of the EI Bayesian optimisation algorithm on a toy model. The

left panel shows a function in dark blue, which represents the unknown function

we are trying to optimize (later on, this function will be a metric based on the

error between the predictions of the GALFORM model and the chosen calibration

datasets, in a much higher dimensional space). The left panel of Fig. 4.2 shows

that this function has been evaluated at three locations in the paramter space,

shown by the filled circles. We are trying to find the minimum of this function.

The orange line shows the GP fit to these three points, and the shaded region shows

the 2σ uncertainty on the GP model predictions. The uncertainty shrinks to zero at

the points in the parameter space for which the function has been evaluated. The

acquisition function, Eqn. 4.9, is shown in green, in arbitrary units since we are only
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]
Figure 4.2: An illustration of one iteration of the expected improvement (EI) al-
gorithm. The left panel shows an example function (blue solid line) and a Gaussian
process (GP) posterior (orange solid line) fit to 3 evaluations of the function (black
solid points). The orange shaded region shows the 3σ confidence interval of the
GP. The green curve shows the EI at each point (right axis), which corresponds
to the expectation integral of the GP posterior below the minimum evaluation so
far (i.e. how much we expect to improve upon the current minimum evaluation at
each point x). The right panel shows the updated GP posterior and EI curve after
evaluating the function at the point of maximum expected improvement, as shown
by the black dashed line in the left panel. At this point, the next evaluation would
be chosen at the far left of the right panel.

concerned with its relative amplitude at two different values of x. The black dashed

line shows the peak of the acquisition function, and corresponds to the location in

the input dimension (i.e. the value of the parameter x) that the algorithm will

next sample, as a result of the expected improvement quantity being largest for

this value of x. This is the location in parameter space at which we can expect

to run the full model evaluation to make the best overall improvement to the GP

reproduction of the objective function f . In the right panel, we have sampled the

function at this point, and we update our Gaussian process model and acquisition

functions. The acquisition function now is largest on the far left of the plot, at

the most negative value of x plotted, which is where we would sample the function

next.
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4.2.5. Dataset selection for parameter calibration

4.2.5 Dataset selection for parameter calibration

Our aim is to test the ability of the GALFORM galaxy formation model to reproduce

observations of dusty star-forming galaxies, SMGs, which tend to be high redshift

objects, as well as matching the properties of the low-redshift galaxy population.

In Chapter 3 we used nine observational datasets measured for local galaxies to

calibrate GALFORM. To make the analysis simpler to follow, here we restrict ourselves

to the z = 0 K-band luminosity function, and supplement this with the number

counts and redshift distribution of SMGs. We investigate if the best fitting models

can reproduce the local 850µm luminosity function and selected other z = 0 galaxy

observations in § 4.2.3, but emphasize that these datasets are not used in the

calibration.

Below we list the observational datasets used to constrain the model parameters:

• For the local K-band LF, we compare to the estimate from Kochanek et al.

(2001).

• For the SMG redshift distribution, we compare to the measurements from

Dudzevičiūtė et al. (2020). These authors started from a sample of SCUBA

sources with 850 micron fluxes of S850 ≥ 3.6mJy, and made follow-up obser-

vations with ALMA. The redshift distribution is compiled from the stacked

redshift probability distributions inferred using the MAGPHYS model (Da

Cunha et al., 2015). The sample covers 1 square degree. The completeness

of the sample improves if we use a somewhat brighter flux cut of 4 mJy; this

results in a median redshift of z = 2.8.

• For the number counts, at the bright end we compare to Stach et al. (2018),

which uses the same data as Dudzevičiūtė et al. (2020), and at the faint end

we compare to Chen et al. (2013).

To correct the Dudzeviciute et al. (2019) sample for completeness, we re-weight

sources according to the results derived in Geach et al. (2017), who gives an estimate
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4.2.5. Dataset selection for parameter calibration

Figure 4.3: Comparison between the redshift distribution for SMGs brighter than
4 mJy inferred by Dudzevičiūtė et al. (2020) (black solid line) and Wardlow et al.
(2011) (hatched histogram). Here, we calibrate GALFORM to the redshift distribution
estimated by Dudzevičiūtė et al. (2020).

of incompleteness with 850 µm flux. That is, we scale the redshift probability

density functions provided in Dudzeviciute et al. (2019) using factors from Geach

et al. (2017) to correct for any incompleteness before summing to calculate a total

redshift distribution.

It is important to note that the redshift distribution of SMGs that we obtained

using the data from Dudzevičiūtė et al. (2020) has a somewhat higher median

redshift than previous estimates used to calibrate the models. Wardlow et al. (2011)

reported a median photometric redshift for their sample of z = 2.2±0.1, though this

figure increases when considering possible counterparts to unidentified SMGs and

applying a brighter flux limit (applying S870 > 4mJy increases the median redshift

to z = 2.5 ± 0.5). The two estimates of the SMG redshift distribution for sources

brighter than 4 mJy are shown in Fig. 4.3. The model calibrations performed in

Lacey et al. (2016) and Baugh et al. (2019) thus used an SMG redshift distribution

with a somewhat lower median redshift than the calibration data employed here.

It is therefore interesting to find out if the model with a top-heavy IMF can still

reproduce the higher median redshift found by Dudzevičiūtė et al. (2020), and if

this has any implications for the value of the recovered slope of the IMF adopted
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in starbursts.

We will see later that the GALFORM predictions for the redshift distribution of

SMGs show a series of spikes. At intermediate and high redshifts, these spikes

arise due to the limited number of halo merger trees used in the calculation. Using

many more halos would smooth out these spikes at the expense of greatly increasing

the computational cost for each full model evaluation. The spike at low redshift

is different, being robust to using more halos. The lack of a similar spike at low

redshift in the observational estimates could be connected to the choice of fields

which avoid local objects to focus on more distant sources. To remove any issue

over the low redshift spike, we exclude z < 0.8 from the comparison between the

model and observed SMG redshift distribution.

4.2.6 Validation of the optimisation approach

Before running the Bayesian optimisation strategy on the full GALFORM model, we

first assess whether this method is likely to be successful. We also need to gain some

insight into the convergence properties of the optimization process (or parameter

calibration) so that we have some guidance as to when to end the search. To do this,

we build a simple emulator of GALFORM so that we can get a better understanding

of the optimisation routine, without requiring many time-consuming evaluations of

the GALFORM model.

To carry out this test, we first build a neural network emulator from 500 runs

of the full GALFORM model, with samples drawn from the space defined by the

parameter ranges given in Table 4.1 using a Latin hypercube. The trained neural

network provides us with a fast alternative to running GALFORM, and allows us to

test our optimization strategy before applying it to the full model. This is similar

to the approach taken in Chapter 3. One might ask why we cannot simply use this

emulator to perform the model calibration instead of using Bayesian optimisation.

The observables considered here are more complicated for the neural network to
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4.2.6. Validation of the optimisation approach

learn than those used to calibrate the model in Chapter 3; in particular the redshift

distribution of SMGs is hard to reproduce accurately, without running many more

full GALFORM evaluations. Hence, if we used the trained neural network to give a

set of parameters deemed to be the best fitting ones, these may not lead to the full

GALFORM model reproducing the calibration data closely. Also, as commented above,

because we are predicting statistics that are computed from the model ouptut

at many redshifts, each model evaluation has a higher computational overhead

than in Chapter 3. Hence, whilst the emulator is too approximate to use in a

model calibration, it has similar properties to GALFORM and serves to let us test the

optimization process.

Here, we use a neural network model from the TensorFlow software library

(Abadi et al., 2015). From our full GALFORM runs, we have sets of parameters x, and

an associated output y, which corresponds to the GALFORM model predictions for

the datasets we are considering (for example, the values of the K-band luminosity

function in different magnitude bins). We then calculate the error or distance

between the GALFORM predictions and the calibration datasets as given by the mean

absolute error, MAE:

MAE = 1
n

∑
i

(yi − yobs,i), (4.10)

where yobs corresponds to the observational calibration dataset which has n bins.

Importantly, we scale each dataset to lie within the range [0,1], so that we can com-

bine the errors defined in this way for different datasets in a consistent way into a

single distance value or metric. In the case of the K-band LF and the SMG number

counts it is the logarithim of these quantities that is rescaled. Later, we will include

a weighting scheme so that we can multiply the error for an individual dataset by

a fixed value so that this dataset is given more weight during the optimization

process.

We train the neural network to predict the error between the GALFORM prediction
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4.2.6. Validation of the optimisation approach

and the observational data, given the parameter values x, so that we have a fast-

to-evaluate but approximate emulator of GALFORM on which to test our Bayesian

optimization strategies. By building an emulator which we can evaluate quickly, we

allow ourselves to approximately find the global minimum error in a short amount of

time, and then use this result to test our Bayesian optimization strategy. Of course,

the emulated model will not correspond exactly to running the full GALFORM model,

but it will be of similar complexity and so allows us to assess the optimization

methods, albeit approximately. We can then use these experiments to apply the

optimization strategy to the full GALFORM model.

Having trained our neural network emulator to produce an approximate error

between the GALFORM predictions for theK-band LF, the SMG redshift distribution,

and the SMG number counts and their corresponding observational datasets, given

a set of input parameters, we first find an approximate global optimum using an

exhaustive MCMC search. We use a simple implementation of the Metropolis-

Hastings algorithm (e.g. Robert 2015), using 20 chains, each 10 000 steps in length

and starting from a different, randomly chosen location in the parameter space,

to locate the set of parameters which returns the lowest approximate error for the

neural network emulator, as judged by the MAE metric.

Next, we can test our optimization strategies to see if we can find a set of best-

fitting parameters that gives a comparable error or MAE to the MCMC approach

above. To do this, we initially perform a pseudo-random sampling of the para-

meter space using Sobol sampling (e.g. see Oleśkiewicz & Baugh 2020), drawing

2 samples per dimension of the parameter space to be searched (in our case 30

initial evaluations for a 15 dimension parameter space). We evaluate the neural

network emulator at these points to return approximate errors, and fit the GP to

the parameter-error pairs, and begin the expected improvement search. In this ex-

ercise, we use a batch-size of four. That means at each step we use EI to locate four

points in the parameter space at which to evaluate the neural network emulator.

We then update the GP again, and the process continues.
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Fig. 4.4 shows the result of applying the EI Bayesian optimisation to the neural

network emulator of GALFORM. The y-axis gives the error returned by the neural

network, with the x-axis showing the total number of evaluations of the emulator

carried out up to that point. The vertical dashed line marks the beginning of

the EI routine, whereas the first 30 runs are pseudo-random Sobol sampling. The

horizontal dashed line corresponds to the minimum error found using the more

exhaustive MCMC search of the parameter space with the emulator, which is the

target MAE for this exercise. We ran many trials of the optimization, as indicated

by the shading, each time with a different random seed. We find that the EI

algorithm is able to locate an error close to the approximate global minimum within

just 100 to 150 full model evaluations, with some runs converging on the minimum

value in as few as 75 evaluations. We see very little improvement beyond 150

evaluations of the emulator.

Although the emulator is just an approximation of the full GALFORM model, it still

represents a complex 15-dimensional function with properties similar to GALFORM,

and the encouraging convergence of the EI algorithm allows us to confidently apply

the methodology to the full model.

4.2.7 Applying Bayesian optimisation to GALFORM

To apply the Bayesian optimization method to the full GALFORM model, we first

evaluate the model n times at points chosen in the parameter space using Sobol

sampling (see Oleśkiewicz & Baugh 2020), where n is equal to twice the number

of parameters we are investigating. In our case, since we are varying 15 model

parameters, we draw an initial sample of 30 runs across the parameter space. Once

these 30 GALFORM runs are in place we begin the optimization process applying

the EI algorithm as described above to decide the location in parameter space

at which to run new model calculations. Four new samples are drawn from the

parameter space at a time (or equivalently we say that there is a batch size of 4),

before updating the GP model with these runs and using the new EI to sample
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4.3. Results

Figure 4.4: Performance of the Expected Improvement (EI) Bayesian Optimisa-
tion algorithm on a simple neural network emulator of GALFORM. Solid lines shows
the median over 30 separate runs, and the shaded region shows the minimum to
maximum range. The dashed horizontal line shows the global minimum found by
MCMC.

again. We look to the experiment in the last subsection for guidance as to when to

stop the optimization, and allow the runs to progress until at least 150 full model

evaluations have been carried out. Once 150 runs have been completed, we decide

to stop the optimization if the MAE has not improved significantly comapred to

the MAE obtained from the best evaluation over the previous 25 steps.

4.3 Results

Here we present the main results of calibrating GALFORM in a 14 or 15 dimensional

parameter space using Bayesian optimisation, applied to different combinations of

calibration datasets (the local K-band LF, the number counts of SMGs and the

redshift distribution of SMGs brighter than 4mJy). Throughout we consider two

model variants, with the main difference being whether we fix the stellar IMF

in bursts of star formation to be a solar neighbourhood IMF (a 14 dimensional

parameter space, which we refer to as the universal IMF variant) or treat the power

law slope of the IMF in bursts as a model parameter (a 15 dimension parameter

space, called the dual IMF model). In § 4.3.1, we present the best fitting models for
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these two variants, treating all the calibration datasets equally (the corresponding

parameter values are listed in Table 4.2). In § 4.3.2 we show how the model fits

change if more weight is placed on reproducing the local calibration data. § 4.3.3

presents model predictions for observational datasets that were not used in the

parameter calibration.

4.3.1 Calibrations

The results of the model calibration are shown in Fig 4.5 for the case in which

each of the three datasets is given equal weight in the MAE metric. The associated

parameter values are listed in Table 2. (Note these plots also show a special case

in which the local K-band luminosity function is given extra weight; this case is

discussed in § 4.3.2.) The left panel of Fig. 4.5 shows the GALFORM predictions of

the SMG redshift distribution, the middle panel shows the low redshift K-band

LF, and the right panel the SMG number counts. We also include, for reference,

the predictions from the Baugh et al. (2019) model, which are shown by the black

dashed lines in each panel. This model has, in general, a lower median redshift than

the best fitting models we find here, as it was calibrated to the redshift distribution

from Wardlow et al. (2011), before the redshift distribution from Dudzevičiūtė

et al. (2020) became available. The Baugh et al. model is a recalibration of the

model from Lacey et al. (2016) following its implementation in the P-Millennium

N-body simulation. This simulation has updated cosmological parameters and

a superior mass resolution compared with the N-body simulation used by Lacey

et al. The recalibration carried out by Baugh et al. focussed on the local K-

band luminosity function, but not the number counts or redshift distribution of

SMGs. Furthermore, the recalibration carried out by Baugh et al. was essentially

a perturbation of the Lacey et al.fit, considering a much smaller parameter space

of only three parameters, without a framework for an extensive search of the space.

We find that the model with a universal Chabrier IMF and an equal weighting

of the calibration datasets is unable to match the local K-band LF, the SMG
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Figure 4.5: A comparison of the model predictions with the three calibration data-
sets under consideration (the parameters of these models are given in Table 2).
Left: The z = 0 K-band LF. Center: the normalized SMG redshift distribution.
The spikes in the model predictions for the redshift distribution are artifacts due
to the number of halos simulated. Right: the SMG number counts. In each case
the black points with error bars show the observational data. For the SMG redshift
distribution, we calibrate to data from Dudzevičiūtė et al. (2020). For the local
K-band LF, we calibrate to data from Kochanek et al. (2001), and for the SMG
number counts, we calibrate to data from Stach et al. (2018) at the bright end,
and Chen et al. (2013) at the faint end. The orange solid curves show the model
which assumes a universal Chabrier IMF in all modes of star formation. The green
lines show the predictions from a model that also adopts a universal Chabrier IMF,
but which is calibrated to give an improved fit to the low-redshift K-band LF by
increasing the weight given to this dataset in the parameter optimisation. The
blue lines show a model in which the IMF slope in bursts is allowed to vary accord-
ing to dn/dlnm ∝ m−x, where x is an adjustable parameter. For reference, the
black dashed line shows the GALFORM model from Baugh et al. (2019): this model
was calibrated using an earlier measurement of the SMG redshift distribution from
Wardlow et al. (2011), which has a lower median redshift than the Dudzevičiūtė
et al. (2020) data.
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redshift distribution, and the SMG number counts at the same time. When the

calbiration data does not include SMG observations, the universal IMF variant is

able to produce a good match to the observed K-band LF at z = 0 (see Chapter

3). However, when the calibration datasets include SMG observations, this variant

returns a poor match to the observed K-band LF, with large excesses at the faint-

and bright-ends compared to the observational data. At MK − 5 log h = −23,

this model predicts ten times more galaxies than are observed: this difference is

many times greater than the uncertainty in the observational estimate. At the

faint end, the model over predicts the number of galaxies by at least a factor of

three. Interestingly, this model prefers very low values for both the fburst and

F stab parameters, as can be seen in Table 4.2 The parameter fburst corresponds

to the mass ratio (accreted satellite galaxy over central galaxy) threshold for a

burst of star formation to occur following a merger (with the universal IMF model

preferring a value of fburst ≈ 0.05), whereas F stab sets the threshold for a burst

of star formation caused by the galactic disk becoming dynamically unstable. The

preferred parameter value of F stab = 0.53 corresponds to a model in which there

are no disk instabilities (in the formulation used from Efstathiou et al. (1982) the

ratio on the left hand side of the expression in Eqn. 2.4 is equal to 0.61 for a

self-gravitating disk; in the model only disks for which Eqn. 2.4 exceeds this value

and the adopted value of F stab are allowed to become unstable and experience

bursts). This combination of parameters allows the model galaxies to retain larger

reservoirs of gas, which are used up in star bursts following mergers rather than

disk instabilities. Though both models prefer a higher value of νSF, the parameter

which controls the rate of quiescent star formation in disks, than is suggested by

observations of galactic disks in the local Universe, the value of this parameter

for the universal IMF model is significantly higher at νSF = 3.48 than the value

preferred in the other two models listed in Table 4.2. This about a factor of 5 higher

than suggested by local measurements (Bigiel et al., 2011). This combination of

parameters, with disk instabilities in effect turned off, a high rate of minor-merger
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driven bursts, and much stronger quiescent star formation rates, allows the model

to generate the star formation necessary to match the SMG redshift distribution

and counts. However, this behaviour means that the low redshift K-band LF is

not matched adequately, since it leads to an excess of large, bright disk galaxies

which have not undergone a recent merger, and which now make up the bright-end

of the LF.

In the case of the dual IMF variant, the added flexibility of varying the slope of

the IMF in starbursts compared to quiescent star formation allows the model to

match both the local K-band LF, as well as producing realistic number counts and

redshift distribution for SMGs. In this model, we see more typical values for the

disk instability parameter (f stab = 0.75), and a smaller number of bursts triggered

by minor mergers due to a higher value of fburst = 0.17. The model prefers an IMF

slope parameter, x = 0.7, which is more top-heavy than that assumed in Lacey

et al. (2016); Baugh et al. (2019), who adopted x = 1 (though those papers were

considering a larger number of calibration datasets), but is less flat than assumed

in early models (Baugh et al., 2005).

The optimization of the two GALFORM variants in shown in Fig. 4.6, in which we

plot the MAE metric as a function of the number of full runs of the mode carried

out. A solution is found for the universal IMF variant after 90 runs of the full

GALFORM model, after which there is no change in the value of the MAE for this

case on carrying out further model runs. In the case of the variant with a dual IMF,

140 model runs are required to find a best-fitting model. The minimum MAE for

the dual IMF variant is almost a factor of two smaller than that for the universal

IMF model, confirming that the dual IMF best fit gives a better reproduction of

the calibration data.
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Figure 4.6: The minimum mean absolute error, MAE, of the GALFORM model pre-
dictions as a function of the number of full model evaluations carried out, with
respect to the three calibration datasets: the z = 0 K-band LF, the SMG number
counts, and the SMG redshift distribution. The blue line shows the universal IMF
tmodel and the orange line shows the variable IMF model, in which the slope of the
IMF in bursts is a parameter. The optimization is terminated once 150 model runs
are reached and there is no significant improvement in the MAE over the proceding
25 runs.

4.3.2 Enforcing low-redshift agreement

When optimizing the models in the previous subsection the three calibration data-

sets were weighted equally when combining their respective errors into a single

value for the MAE metric. The variant with a dual IMF matches all three calibra-

tion datasets reasonably well (as shown by the blue curves in Fig. 4.5). However,

the calibration of the simplest variant with a universal Chabrier IMF returned a

model which matched the counts and redshift distribution of SMGS, but gave a

poor reproduction of the low-redshift K-band LF (orange curves in Fig. 4.5).

It is interesting to know how the predictions for the SMG number counts and

redshift distribution are degraded if we enforce reasonable agreement with the low-

redshift K-band LF. We can achieve this by re-calibrating the universal Chabrier

IMF variant with a triple weighting applied to the contribution of the low-redshift

K-band LF to the MAE, and single weightings for each of the SMG calibration

datasets.
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Figure 4.7: Low redshift predictions for the three model calibrations. The GALFORM
predictions for the model with a variable IMF slope in bursts is shown in blue,
the equal-weighted calibration assuming a universal chabrier IMF in orange, and
the calibration in which we gave a higher weight to the low-redshift K-band LF,
again assuming a universal Chabrier IMF, is shown in green. The black dashed
lines shows the predictions for the model calibration performed in Baugh et al.
(2019). For the 850µm LF we compare to data from Vlahakis et al. (2005) (grey
circles) and Dunne et al. (2000) (black circles). For the r-band LF we compare to
data from Driver et al. (2012). For the early-and late-type sizes, we compare to
data from Shen et al. (2003). For the HI mass function, we compare to data from
Zwaan et al. (2005) (black circles) and Martin et al. (2010) (grey circles). For the
early-type fraction, we compare to data derived from Moffett et al. (2016) (black
sysmbols; A. Moffett, private communication), and to data from González et al.
(2009) (grey symbols). For the Tully-Fisher relation, we compare to a subsample of
Sb-Sd galaxies from the Mathewson et al. (1992) catalogue selected by de Jong &
Lacey (2000) (grey points show indivdual galaxies, black points with bars show the
binned median and 10-90 percentile range). For the bulge-BH mass relation, we
compare to data from Häring & Rix (2004), and for the early-type metallicity, we
compare to data from Smith et al. (2009). Note that the models were not calibrated
to the datasets plotted in this figure. (Further details on the observational datasets
plotted here can be found in Chapter 3.)
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Running the optimization routine again with a higher weighting to the low-

redshift K-band LF, we find that the model is no longer able to produce a realistic

SMG redshift distribution and counts while simultaneously matching the low red-

shift K-band constraints. We show the results in Fig. 4.5 with the green curves.

Despite a much improved match to the K-band LF as expected, the predictions for

the number counts are too low at all fluxes, with the offfset ranging from a factor

of three at the faint end to more than a factor of a hundred at 3 mJy and brigther;

the predicted median redshift is much lower than the observed one. In this weight-

ing case, the best-fitting model parameters are more similar to the model which

assumes a different IMF slope in bursts, with f stab ≈ 0.7.

4.3.3 Further predictions at low redshift

Having calibrated the model to the low-redshift K-band LF, the SMG numbers

counts, and the SMG redshift distribution, we now explore the predictions for

other low-redshift properties of the galaxy population. In particular, we explore

the predictions for the z = 0 850µm and r-band LFs, the early- and late-type

galaxy sizes, the HI mass function, the dependence of the early-type fraction on

r-band magnitude, the I-band Tully-Fisher relation, the bulge- black hole (BH)

mass relation, and the early-type metallicity.

The model predictions for the above datasets are shown in Fig. 4.7. The blue

solid lines show the predictions for the dual IMF GALFORM variant, which allowed

a variable IMF slope in bursts, whereas the orange and green lines show the pre-

dictions for variants which assumed a universal Chabrier IMF. The orange line

represents model predictions with equal weightings applied to the three calibra-

tion datasets, whereas the model shown by the green line used a higher weighting

to the low-redshift K-band LF during calibration. Interestingly, but perhaps not

surprisingly, we see that the dual IMF model and the low-redshift K-band LF

weighted models predictions are very similar. As discussed in Chapter 3, the low-

redshift K-band is most sensitive to the choice of supernova feedback parameters
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Table 4.2: The best-fitting parameters for the three optimisation runs considered.
The second column shows the parameter values for the dual IMF variant, which
treated the IMF slope in bursts, x, as a parameter, which was jointly optimised
along with the other parameters. The third column shows the best-fitting paramet-
ers for the variant with a universal Chabrier IMF with equal weighting attributed
to each dataset, and the model in the fourth column also assumes a universal Chab-
rier IMF, but with an increased weighting applied to the low-redshift K-band LF.
∗ indicates that this parameter was held fixed. x gives the slope of the IMF above
1M⊙.

Model Dual IMF Universal Universal
variant: (xIMF in bursts) IMF IMF

(extra weight
to K LF )

Parameter
name
F stab 0.746 0.535 0.77
γSN 3.55 1.48 3.06
αcool 2.99 3.8 2.90
αreheat 1.83 2.14 2.11
V SN, disk (km s−1) 293 774 383
V SN, burst (km s−1) 349 399 194
f ellip 0.383 0.385 0.212
fburst 0.166 0.056 0.261
νSF 1.94 3.48 2.186
fSMBH 0.014 0.037 0.025
τ*burst, min (Gyr) 0.145 0.157 0.176
f cloud 0.452 0.404 0.427
tesc (Gyr) 0.006 0.006 0.009
βburst 1.53 1.76 1.50
x 0.67 1.35∗ 1.35∗

(VSN,disk,VSN,burst), which are similar in the case of these two calibrations. These

parameters also dominate the majority of the other predictions, leading to very sim-

ilar predictions. For example, the Tully-Fisher relation, and late-type sizes (again

as shown in Chapter 3). are dominated by the effects of the supernova feedback

parameters, at least at fainter magnitudes. We see that the blue and green lines

are almost identical for these datasets, where the orange line better matches the

faint end of both relationships.

All of the models fail to match the bright end of the early-type fraction brighter

than M r − 5 log h = −20, with the low-redshift weighted Chabrier model, and

104



4.4. Discussion

the dual IMF model actually predicting a constant or gently decreasing ealry-type

fraction at the brightest magnitudes. The models are therefore not producing

enough early-type galaxies. This is due to a more complex interplay of parameters,

and our method does not give us the tools to investigate this thoroughly. The

Baugh et al. calibration, however, is able to match both the early-type fraction, as

well as the three calibration datasets adequately while assuming a top-heavy IMF

in bursts. No calibration assuming a Chabrier IMF was able to simultaneously

match the three calibration datasets.

Here, we have chosen to calibrate our model to the SMG redshift distribution at

z > 1, as McAlpine et al. (2019) did when investigating the SMG population in the

EAGLE simulation of Schaye et al. (2015). The local 850µm LF therefore offers a

constraint on this population at low redshift. We find, interestingly, that the equal-

weighted Chabrier IMF fit better matches the local 850µm LF, while producing

very poor fits to the K- and r-band LFs. On the other hand, the GALFORM variant

with a dual IMF over-predict the bright end of the local 850µm LF.

4.4 Discussion

We have assessed if the GALFORM galaxy formation model is able to match obser-

vations of SMGs, which are typically high redshift galaxies, and local galaxies,

particularly the abundance of bright galaxies, at the same time. In particular, we

have tested the the assertion made by Baugh et al. (2005) that properties of the

SMG and local galaxy populations can only be matched if the IMF in star bursts

is assumed to be top-heavy.

Our analysis contains several new features compared to previous work. We

have used Bayesian optimization to carry out an exhaustive search of a parameter

space with a large number of dimensions (15 dimensions if the slope of the IMF is

allowed to vary in star bursts). This method allows use to search the parameter

space without requiring a large number of runs of the full GALFORM model, which is
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computationally expensive when making predictions for number counts and redshift

distributions. We are also able to formally rate how well the models reproduce

observational data using a metric. This replaces the old fashioned variation of one

parameter at a time and "chi-by-eye" used to reach the conclusion about the need

for a top-heavy IMF in bursts in our previous work (Baugh et al., 2005; Lacey

et al., 2016). With Bayesian optimisation, we are able to settle once and for all the

question of can the model reproduce the SMG and local galaxy populations with

a solar nieghbourhood IMF.

We used three observational datasets to calibrate the model parameters, a pro-

cess also referred to as model optimisation: the z = 0 K-band LF, the SMG number

counts, and the SMG redshift distribution. We attempted to reproduce these data-

sets using two variants of the galaxy formation model: (i) a universal IMF model

in which a solar neighbourhood IMF was imposed on quesicent star formation in

disks and in bursts of star formation and (ii) a dual IMF model, with a solar neigh-

bourhood IMF for star formation in disks and a power law IMF in bursts, the slope

of which is treated as a model parameter.

Our calibrations confirmed that within the GALFORM framework, even when vary-

ing a large number of relevant parameters not explored in previous work, the model

was not able to accurately match the SMG constraints and the local K-band LF

when assuming a universal Chabrier IMF. This confirms the conclusion of Baugh

et al. (2005) and a series of studies since then (e.g. Lacey et al. 2008; Lacey et al.

2016), though this time we have demonstrated this through an exhaustive and

automatic search of the parameter space. We have also explored the calibration

to the most recent SMG redshift distribution data (Dudzevičiūtė et al., 2020),

which has a median redshift that is higher than previous datasets (e.g. Wardlow

et al. 2011). When assuming a universal Chabrier IMF and enforcing a good fit

to the low-redshift K-band LF, we find a similar result to those obtained with the

EAGLE simulation (McAlpine et al., 2019); namely that the best-fitting GALFORM

model in this case gives a very large underprediction of the SMG number counts,
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and produces almost no bright sources at high redshift (i.e. with z > 1).

The parameter search used here is based on Bayesian optimisation. The model

is first run for a small number of calculations, two per dimension of the space being

explored, before the optimization is started. The locations of these initial model

evaluations are chosen using a Latin hypercube (see for exampple Oleśkiewicz &

Baugh 2020). We use a metric to determine a best-fitting set of model parameters

which quantifies the distance between the model prediction and the calibration

datasets, after applying a suitable rescaling so that the datasets cover the same

dynamic range. Our knowledge of the metric is given by a Gaussian processes

(GP), which gives the value of the metric at any point in the parameter space and

the uncertainty on this value. The model is optimized by calculating the expected

improvement (EI) for proposed new model evaluations in the parameter space.

Following four new evaluations, the GP is updated. This process is repeated until

there is no significant improvement in the metric used to select the best-fitting set

of parameters.

To assess this Bayesian optimization approach, we first made use of a neural

network emulator to act as a surrogate for running the full GALFORM model. We

trained the neural network emulator to predict the GALFORM output given an initial

set of 500 runs of the full model. This allowed us to test the convergence properties

of the algorithm on an approximate GALFORM model, without being accurate enough

to replace the Bayesian optimization itself. We ran the optimization routine 30

times on this emulated model, varying the starting point in the parameter space and

found that the algorithm converged to a very similar minimum error and parameter

set in each case. Although this emulator only approximated the GALFORM output, it

gave us the confidence to apply the Bayesian optimization routine to the full model

with some understanding of the convergence properties of the algorithm within a

similarly complex and high-dimensional setting.

We found that the Bayesian optimization methods are able to find good fits to

the data within a very small number of evaluations. For example, in Chapter 3,
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a sample of around 1000 runs was used, though we were calibrating to a larger

number of datasets. Earlier works, such as Henriques et al. (2020) used an even

larger numbers of runs. We find therefore that this method is significantly faster

than other methods explored to calibrate semi-analytic galaxy formation models,

converging in fewer than 200 full evaluations of the full model.

On the other hand, in return for this speed-up, we get a diminished sense of the

effects of different parameters and their interactions. In previous emulator-based

works (Bower et al., 2010; Vernon et al., 2010; Henriques et al., 2009, e.g), an

emulator is built from a large number of runs and, as in Chapter 3, is assessed for

accuracy across the whole model parameter space. This then allows the models

parameters to be comprehensively explored, and easily extended to include extra

datasets. Using Bayesian optimization, we only get a limited sense of the effects of

the parameters across the whole space, in return for a very fast global optimization

routine. In Chapter 3, we were able to build an accurate emulator across a smaller

(10-dimensions, rather than the 15 considered here) parameter space. This allowed

us to explore the implications of calibrating to a diverse set of datasets, and the

tensions between them with only the overhead cost of the initial sample of 1000

runs. We were also able to run full MCMC explorations of the range of parameters

which were able to produce acceptable matches to the observational datasets. Here,

however, we do not get a full sense of the range of parameters which could match an

observational dataset as the routine is simply searching from the global optimum

rather than inferring the posterior distribution of the parameters.

We are able to conclude confidently that we were not able to find any set of

parameters, assuming a universal Chabrier IMF, which was able to match the

low-redshift K-band LF and the SMG redshift distribution and number counts

simultaneously, in line with what was understood from ‘by-hand’ searches (Baugh

et al., 2005; Lacey et al., 2016), and that within GALFORM, including the flexibility

of a top-heavy IMF in bursts allows us to fit these datasets simultaneously.
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4.5 Conclusions

We have explored the application of Bayesian optimization to the calibration of the

semi-analytic galaxy formation model GALFORM, with the aim of exploring whether

we are able to assess, in a statistically rigorous, automatic and exhaustive way,

whether the model is able to match the constraints from dusty star-forming galaxies

at high redshift(SMGs), as well as the abundance of galaxies in the low-redshift

universe.

First, we found that using Bayesian optimisation we are able to quickly fit semi-

analytic models to calibration datasets within fewer than 200 full model evaluations,

a significant speedup over previous methods, though we do not get a full sense of

the parameter space and the range of parameters which could provide acceptable

fits.

Second, we found that within the GALFORM framework, for a variant with a uni-

versal solar neighbourhood IMF, even when considering varying a large number

of parameters compared to previous works, we were unable to match the con-

straints from SMGs (namely, the redshift distribution and number counts) while

also matching simple low-redshift constraints (the K-band luminosity function), at

the same time. A variant where the slope of the IMF was allowed to vary as a

parameter in starbursts was, however, able to simultaneously match all three calib-

ration datasets. The optimisation routine found preferred values of x = 0.7 (where

the Chabrier IMF has a slope x = 1.35 above 1M⊙) for the IMF in starbursts.

In future work, we would explore how to extend the Bayesian Optimisation to

recover the parameter ranges for acceptable models, rather than a single best-fitting

model, and include more observational datasets in the calibration process, with a

view to improving the model constaints and uncovering tensions between datasets.
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Conclusions

In this thesis, we have explored the application of machine learning to tackle the

problem of automatically setting the parameters of the semi-analytic galaxy form-

ation model GALFORM. In the past, this task has generally been performed by hand,

as in the case of the most recent recalibrations, namely those by Baugh et al.

(2019) and Lacey et al. (2016). This “chi-by-eye” methodology, though it has been

generally successful and yielded important insights into the model (some of which

we confirmed here), can be criticised because it is poorly defined and difficult to

reproduce. It is also not clear to what extent such an approach is actually able to

search the full parameter space, given the interactions between parameters and the

high-dimensionality of the parameter space (see, for example the plots in Bower

et al. (2010)).

To remedy this, in Chapter 3 we investigated techniques which would allow

us to set the model parameters in an automatic, comprehensible, and reproducible

way. Furthermore, we applied a sensitivity analysis to the model predictions for the

calibration data to determine which parameters should be varied, as first performed

for GALFORM by Oleśkiewicz & Baugh (2020). Much of the literature so far focused

on either MCMC techniques (e.g. Lu et al., 2011) or iterative emulation methods

(based of the methodology developed by Vernon et al., 2014). Generally, these

methods, while successful, require a large number of model evaluations, and often
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require intervention to refine the parameter search using waves of calculations.

First, we turned to techniques from deep learning to investigate whether we could

build an emulator of the GALFORM across a comprehensive subset of the full model

parameter space, and use this to calibrate the model to a variety of datasets, and

hence to explore tensions between datasets. Using less than 1000 evaluations of

the full model, we were able to build a demonstrably accurate GALFORM emulator

across 9 key outputs and 10 model parameters. We were then able to use this

fast-to-evaluate emulator combined with MCMC to explore the parameter space,

and how well the model is able to match different combinations of datasets. Here,

we focused on low-redshift predictions, and in this regime we were able to uncover

new insights into the model parameters as well as re-discover previous parameter

choices, but using an automatic calibration framework.

Next, in Chapter 4, we turned our attention to the high-redshift regime, and in-

vestigated a technique for calibrating the model parameters based on Bayesian op-

timization (BO) (Frazier, 2018). This method departed from previous approaches

in that we did not build an explicit emulator of the GALFORM model. This method

relies instead on building and refining a statistical model of the error term itself,

that is some measure of the difference between the observational dataset and the

GALFORM predictions. This was done using Gaussian processes. By searching the

parameter space only in the most promising regions, we found that this algorithm

was able to converge on the minimum error within just 200 model evaluations. This

represents a significantly smaller computing time requirement than previous liter-

ature, which have generally used in the range of 3,000-20,000 runs (e.g. Henriques

et al., 2020; Benson & Bower, 2010).

In return for this reduced number of evaluations, we have to forfeit a wider

understanding of the parameter space. In Elliott et al. (2021), for example, we

were able to build a statistical emulator of GALFORM across a large range of outputs

and parameters. This gave us the flexibility of comprehensively exploring the model

and applying sensitivity analysis techniques to directly quantify the importance of
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the different parameters across the many outputs. With the BO methodology,

we are not able to do this, but we are able to fit the model to data with a very

small number of full model evaluations. In doing so, we are able to confirm what

is possible within the modelling framework, without committing to a full battery

of runs to construct a comprehensive emulator. This can be particularly helpful,

as in our case, when we are dealing with more expensive runs where we require

a large number of output snapshots (for example, to calculate the SMG redshift

distribution and number counts).

Having demonstrated the efficacy of the BO algorithm using a simple GALFORM

emulator, we re-tested the assumption of a top-heavy IMF in bursts within the

GALFORM model. Previous iterations of GALFORM (Baugh et al., 2005; Lacey et al.,

2016; Baugh et al., 2019) had found that the top-heavy IMF was necessary to

match simple low-redshift constraints such as the K-band luminosity function, as

well as the constraints from the SMG population, namely their number counts and

redshift distribution. We found that it was not possible to simultaneously match

these constraints using a universal Chabrier (ie solar neighbourhood like) IMF,

and in fact if we enforced agreement with the local K-band LF, the model vastly

under-predicted the number counts and was unable to match the SMG redshift

distribution. Including the flexibility of varying the IMF slope in bursts allowed

these three constraints to be matched, as was previously understood. However, we

were able to demonstrate this through a full parameter search, rather than the less

well defined and cumbersome methodology previously employed.

With the methodology we have introduced in this thesis, it is possible to produce

genuinely testable predictions. Rather than produce a single “best-fitting" model,

the approach set out in Chapter 3 gives a range of acceptable models, all of which

give equally good reproductions of the calibration data. The predictions of the

model for observations that are not part of the calibration data come with a range

of uncertainty, which has been missing from previous studies. This means that the

predictions of the model can be ruled out in a formal, statistical way.
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Future work would include extending the BO approach to also produce a range

of acceptable models. This would require us to carry out a more extensive char-

acterisation of the model parameter space, rather than simply finding the location

of a best-fitting set of parameters for the chosen calibration data. The challenge

is to do this without requiring a dramatic increase in the number of full model

evaluations required. We touched on a possible way of doing this when we tested

the BO method using an approximate emulator of GALFORM built using a neural

network.

Finally, this thesis has contributed more broadly to the development of semi-

analytical models. It has provided simple and straightforward methods to assess

the ability of galaxy formation models to fit to an array of datasets. Given a new or

updated dataset or simulation, it is often a time consuming process to update the

model parameters in a satisfactory way. This work has investigated a number of

tools that will allow model practitioners to much more quickly and robustly invest-

igate new observational datasets, updated simulations or updated galactic physics.

We have also demonstrated that SMG constraints are a real problem within the

hierarchical galaxy formation framework, with no set of parameters able to accur-

ately match both low-redshift constraints and the constraints from SMG number

counts and redshift distribution without making changes to the assumed IMF. No

self-consistent model as of yet is able to match these constraints simultaneously

assuming a local IMF, and so this work demonstrates that this is a problem within

galaxy formation modelling which requires serious attention.
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A Supplementary figures

Here, we provide some additional figures figures to provide further illustration of

points discussed in the main text.

Fig. A.1 illustrates the one-at-a-time effect of varying the parameters f stab and

V SN, burst, as a demonstration of their degenerate effects.

Fig. A.2 shows the one-at-a-time effect of varying νSF on the K-band LF and

late-type galaxy sizes. When fitting both the K-band LF and the late-type galaxy

sizes, we see a decrease in the preferred value of νSF; Fig. A.2 demonstrates that

this is because a lower νSF counteracts the enhancement in the bright-end of the

K-band LF caused by the higher value of V SN, disk when including both constraints.

We also see that reducing νSF marginally improves the fit to the late-type galaxy

sizes.

Fig. A.3 shows the accepted parameters of 20 MCMC chains when we fit the

K-band LF (red), and when we fit to the K-band LF and the HI mass function

(blue). Here, we see that including the HI mass function results in higher values

of V SN, disk being preferred. νSF is also moved to the bottom end of the explored

range, and αret becomes more sharply peaked and takes slightly higher values.
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Figure A.1: Emulator predictions for one-at-a-time perturbations of the parameters
f stab (left) and V SN, burst (right) around a fit to the K-band luminosity function.
We vary the parameters between the full range given in Table 4.1. Darker colours
correspond to higher values. The data shown correspond to those described in
§3.2.3.

Figure A.2: Emulator predictions for one-at-a-time perturbations of the parameter
νSF for the K-band luminosity function (left) and the late-type galaxy sizes (right)
around a fit to the K-band luminosity function. We vary the parameters between
the full range given in Table 4.1. Darker colours correspond to higher values. The
data shown correspond to those described in §3.2.3.
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Figure A.3: Accepted samples from 20 MCMC chains for fits to the K-band LF
(red), and both the K-band LF and the HI mass function (blue). The first 50% of
samples were discarded to allow for burn-in. The histograms show the distribution
of the parameters in 1D projection. The ranges on each axis are the same as those
quoted in Table 4.1. The shading gives a sense of the density, with darker colours
corresponding to more densely sampled regions. The darkest regions correspond
to the 25th percentile, and the lighter regions to the 50th and 75th percentiles.
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