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Abstract

A common objective provided by stakeholders, given a supervised dataset, is to
construct a predictive model of the response given the covariates. If a clustering
structure is suspected (such that different clusters interact with the response in
different ways) then an additional objective may be given to detect these clusters,
or cohorts, such that interventions based on the predictive model can be adapted
for each group.

The solution to this problem requires a balanced handling of both objectives
through a joint cohort detection and predictive modelling method. Previous solu-
tions to this issue often favour one objective over the other. Indeed, cohort detec-
tion takes prevalence for unsupervised clustering methods such as K-means (which
are followed by cluster-specific models for prediction), whereas accurate prediction
takes prevalence for supervised clustering methods such as mixture models (which
use clustering solely as a tool for more accurate modelling).

This thesis aims to provide a method that focuses on cohort detection by pro-
viding a non-probabilistic partitioning of the data whilst simultaneously focusing
on accurate predictive modelling by allowing the Bayesian evidence of the model
to dictate the partition. A graphical representation of the data is constructed to
ensure the partitioning both respects the structure in covariate space and reduces
the number of possible partitions (and hence models) one would have to consider.
The latter point is particularly important as the Bayesian evidence is determined
through Sequential Monte Carlo, a computationally expensive but necessary process
used to ensure the estimated measure that selects the partition is accurate. This
method has an associated R package (UNCOVER) for implementation.

Finally, a separate contribution is discussed in this thesis surrounding the topic
of safe modelling updating. Specifically, this refers to the use of hold-out sets when
updating a model to avoid interventions negatively impacting model quality. Con-
tributions to this field are: a method of locating the minimum hold-out set size
through Gaussian process emulation of a total cost function and a discussion on the
impacts of clustering in this setting.
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CHAPTER 1

Introduction

1.1 Motivation

Clustering observations into similar groups for inference has long been used in the

fields of medicine [1], finance [2], psychology [3] and beyond. As clustering techniques

develop in academia, one would assume that these new methods follow through to

adoption in practical settings outside of academia; however, this tends not to be the

case.

Applications that require the clustering of data have the propensity to rely on

unsupervised methods such asK-means [4], even if the initial task is one of prediction

with respect to a response. As a consequence, the inference made on the relationship

between the response and the covariate data can be adversely affected by a possible

random partitioning of the observations.

Inclusion of the response within the process of developing clusters is well estab-

lished, with methods ranging from finite mixture of regressions [5] to mixture of

experts [6]. As well as response incorporation, development of clustering techniques

typically have favoured incorporation of uncertainty through soft clustering — the

probabilistic assignment of observations to clusters. If the initial task is prediction,
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some methods bypass the need for cluster assignment entirely. These supervised

methods represent a loss in interpretability with respect to cluster assignment, which

explains the favouring of unsupervised methods in practice.

One may liken this scenario to the trade-off between interpretability and predic-

tive power often present in statistical learning algorithms. This concept is seldom

discussed in the clustering setting, with the consequence being a heavy imbalance

towards either: interpretability (for applications of clustering methods) or predictive

power (for the theoretical advancement of clustering techniques).

The development of methods which provide a more balanced trade-off are the

main focus of this thesis. Interpretability is considered through the assignment

of a sole cluster to each observation, known as hard clustering, with the clusters

themselves containing observations which have similarities in certain attributes. To

further aid interpretability, these attributes may be selected by the stakeholder (the

person for whom interpretability has the most importance). Aspects of predictive

power are implemented by: including the response when determining the clusters

and framing the problem in a Bayesian setting, which incorporates uncertainty in the

parameters used to infer the relationship between the covariates and the response.

Examples of where a more balanced method could be desirable are scenarios

where cluster assignment is given equal importance to the prediction of a response.

Such a situation can arise in medical settings, where cluster assignment directly

results in patients being grouped into cohorts. Here one could imagine a scenario

where a data scientist is given the task of developing a model that predicts the

risk of a contracting a disease, but is given the additional information that experts

suspect that different cohorts of patients depend on their health data differently for

determining disease presence. Here it is crucial not only that the model can predict

the risk accurately, but also that we can determine patient cohorts accurately in

order to devise separate prevention techniques. Similar scenarios emerge in finance,

where devising group specific loan schemes is coupled with prediction of whether an

individual is likely to default on a loan.

Utilising the prediction model in a more abstract way, one could use such a

balanced method as an initial piece of inference to uncover different cohorts, and
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then use that information to ensure a representative hold-out set is selected. Hold-

out sets can be particularly useful for generalisability or to prevent intervention

effects when sequentially updating a model.

Devising a method to provide a solution to these types of problem is the primary

focus of this research.

1.2 SPARRA: Scottish Population At Risk of Read-

mission and Admission

The motivating example behind this thesis is a particular project run by NHS Scot-

land — SPARRA [7]. The current version of SPARRA, SPARRA v4, utilises the

majority of the Scottish population’s electronic health records in order to construct

an ensemble of various machine learning models, which aim to predict (for the Scot-

tish public) the risk of emergency admission within the next year. The response

recorded was whether the patient had an emergency admission to hospital within

the following year of their health data being recorded, and therefore was binary.

Currently in the fourth version (v4) of the model, the third version (v3) was the

first to incorporate the majority of the Scottish population. The data used to train

the v3 and v4 models were people’s recorded health data, therefore a member of the

public is only represented in the training data if they have had a prior interaction

with the Scottish health system during the time period that the data was collected.

Specifically SPARRA v3 was designed to be a collection of three logistic re-

gression models for three different cohorts, derived by medical professionals, which

accounted for all of the training data. These were [8]:

1. Frail Elderly — patients aged 75 and over

2. Long Term Conditions — patients aged from 16 to 74

3. Younger Emergency Department — patients aged from 16 to 55 and have

attended an emergency department within the last year

It is important to note these cohorts did not completely partition the data; it is

possible to encounter overlap for the long-term conditions and younger emergency
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department cohorts. In terms of prediction, if a patient could be represented by two

cohorts then the maximum of the two ‘risk scores’ (predictions) given by the two

logistic regression models was taken as that patients risk score.

This overlap in cohorts raises an interesting query: if separate action plans to

reduce emergency admission (utilising the predictive models created) were developed

for each of the cohorts, how would one assign an action plan to a patient represented

in two cohorts? Assignment to the plan whose model gave the maximum score is

less suitable here as the aim now is not simply to identify high-risk patients. Indeed,

if a patient is assigned a higher risk score than needed through this maximisation

policy when just identifying high-risk patients, the damage to the patient being

misidentified is minimal as the result is just potentially more attention being focused

on the patient. However, if the goal is to derive action plans per cohort, then

the actual score being accurate does now play a large role, with incorrect cohort

assignment leading to a potentially ineffective plan being applied to a patient.

Therefore if cohort-tailored interventions are considered, redefining the cohorts

may be a legitimate requirement. When redefining these cohorts, one could allow

the data to act as the determiner, creating cohorts that are: interpretable to medical

professionals (in the manner of SPARRA v3) and able to produce accurate risk scores

by capturing cohorts differing covariate–response relationships. This is exactly the

scenario detailed in section 1.1. Therefore, the SPARRA project offers a setting

where development of a new model that balances interpretability and predictive

power has real practical use, along with a direct competitor (v3) in which to compare.

1.3 Contributions Overview

1. A new methodology (named UNCOVER) for the detection of cohorts whilst si-

multaneously creating an accurate predictive model (Section 4.5), with several

distinct features including:

(a) Separate processes for the modelling of the data and the derivation of the

possible partitions of the data, allowing different selections of covariates

for different stages of the algorithm. This gives stakeholders greater con-
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trol of the cohort structure, whilst still ensuring the detection of cohorts

is data driven (Section 4.1.1).

(b) An incorporation of Bayesian evidence generation into Chopin’s Iterated

Batch Importance Sampling scheme [9] (Section 4.2).

(c) A corrective algorithm which can combine cohorts as well as split them,

which attempts to combat the possible drawbacks greedy algorithms en-

counter (Section 4.3).

(d) An expansive list of ‘deforestation’ criteria which combine clusters to

increase the outputted cohort’s generalisability to new data, as well as

meeting potential stakeholder demands (Section 4.4).

2. An application of function memoisation [10] which provides Sequential Monte

Carlo algorithms with more convenient initial distributions (Section 5.1).

3. An adaptation of Iterated Batch Importance Sampling that removes observa-

tions from the posterior instead of adding them, which requires a bias correc-

tion technique (Section 5.2).

4. An R package UNCOVER [11], for ease of use when implementing the UNCOVER

method (Section 5.5).

5. Applying the technique of expected improvement using a Gaussian process

emulator to the field of optimal hold-out sets, which formed a component of

the paper [12] detailing the use of hold-out sets as a solution to the issue of

model updating [13] (Section 7.3).

6. An examination into the effects clustering may have on the problem of safe

model updating and the specific role clustering plays when selecting an optimal

hold-out set size (Section 7.4).

1.4 Outline

The structure of the thesis as well as a brief introduction to each chapter is given be-

low. Note that Chapters 2 and 3 form the literature review, with Chapters 4 through

5



7 detailing the numerous research contributions from this PhD. Finally, Chapter 8

provides a summary of the work together with avenues for future research.

Chapter 2 — Supervised & Unsupervised Clustering This chapter provides

a literature review to introduce the reader to the existing methods that can be used

to tackle joint cohort detection and predictive modelling, and the shortcomings of

these methods for this particular problem.

Chapter 3 — Bayesian Frameworks & Graphical Representations of Data

A secondary literature review chapter is given, detailing the methodologies behind

the novel UNCOVER model discussed in Chapter 4. A Bayesian framework is com-

pared to a frequentist approach in the context of clustering, and basic graph theory

together with its existing use for clustering problems is introduced.

Chapter 4 — UNCOVER: Utilising Normalisation Constant Optimisation

Via Edge Removal This chapter provides the main methodological contribution

of the thesis, detailing a novel modelling framework which tackles the issue of joint

cohort detection and predictive modelling directly. This is done through graphi-

cally representing covariate data, which provides a mechanism for creating clusters

by considering both the structure of the covariate data itself as well as the conse-

quences forming particular clusters has on model quality. Additional contributions

which provide methods of improving generalisability to new data are also detailed.

Chapter 5 — Implementation of UNCOVER The practical aspects of im-

plementing UNCOVER are discussed in this chapter. After identifying potential

bottlenecks, computational solutions are derived and integrated into UNCOVER.

This requires the introduction of novel methods for integration of existing practices

(such as memoisation), as well as the development of new contributions which ex-

tend existing SMC methodology. The chapter concludes by detailing a software

contribution in the form of the UNCOVER package, developed in R.

Chapter 6 — Application of UNCOVER In this chapter various aspects of

UNCOVER are tested on both synthetic and real-world datasets. These datasets

cover both settings; when the clustering structure is known a priori and when it

is not. Additionally, a careful examination of UNCOVER is made when clusters

overlap, a common issue when considering noisy datasets.
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Chapter 7 — Optimal Hold-out Sets: An Application in Updating Risk

Scores The final contribution to this thesis addresses a separate topic: safe model

updating. Deviating away from joint cohort detection and predictive modelling, safe

model updating provides a solution to the dangers of näıve model updating through

the use of hold-out sets. Selection of an optimal hold-out set with respect to size is

detailed, and the relation of this work to the UNCOVER method is discussed. The

chapter describes the authors own contributions to a wider project on this topic.
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CHAPTER 2

Supervised & Unsupervised Clustering

This chapter serves as an introduction into clustering techniques that are either

used in recent applications or recently developed. The distinction between applica-

tion and theory here, in general, can be divided into unsupervised and supervised

clustering. Unsupervised methods focus on providing interpretable clusters which is

appealing in practice, while supervised methods focus on generating a model that

offers generalisability through uncertainty quantification, which is more appealing

from a theoretical standpoint.

There is naturally some overlap between supervised and unsupervised methods

with respect to interpretability and generalisabilty. As a result it must be noted

that the popularity of a method, either for theoretical or applied purposes, does not

represent an automatic appeal for the goals of joint cohort generation and predictive

modelling. All methods showcased in this chapter contain useful and harmful aspects

for joint modelling, with extraction of positive design elements a challenge detailed

in subsequent chapters.
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2.1 Unsupervised Clustering

In the unsupervised setting we are able to access covariate data, which we can

represent as a matrix X = (x1, . . . ,xn)
T ∈ Rn×p formed of n observations on p

variables. However, in contrast to a supervised or semi-supervised setting, for each

of these observations we do not have access to (or there does not exist) an associated

response. It is also not uncommon to simply ignore a response even if it is accessible.

Trivially this lack of response indicates that cohort or cluster detection in such

settings is attempted through a partitioning of the covariate data, which can be

represented as a partition of an index set into K subsets

V = {1, . . . , n} =
K⋃
k=1

Vk (2.1)

where Vk ̸= ∅ ∀ k = 1, . . . , K and Vk ∩Vl = ∅ ∀ k ̸= l.

The lack of response, and the tendency to partition the data as opposed to the

covariate space where the data lies, leads to unsupervised methods having somewhat

of a self contained output. Observations provided are assigned a cluster, however,

separate additional methods are required to assign new observations to a cluster,

many of which utilise similar techniques to that of the algorithm that produced the

initial clustering.

Unsupervised methods can produce either a hard clustering or a soft clustering

output. Whilst soft clustering (probabilistic assignment of clusters to observations)

unsupervised methods often provide supervised counterparts1, the main focus of this

section will be on hard clustering (where each observation is assigned to one and only

one cluster), as the interpretability of these outputs is crucial to their popularity in

applied settings.

Finally, we note that although unsupervised methods are performed without

knowledge of a response, one could still produce a predictive model in a sequential

manner using unsupervised techniques. There are various ways in which this could

1For example finite mixture models for π(X) being altered to finite mixture models for π(Y |X)
to include the response.
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be done, with a general overview being that a predictive model is generated given

knowledge of the clusters (i.e. the clustering information is deduced beforehand

using either a hard or a soft clustering unsupervised method). The viability of this

approach is discussed in section 2.1.3.

2.1.1 K-means Clustering

A technique first introduced in the 1960s by James MacQueen [4], K-means cluster-

ing still features prominently in recent practical applications [14,15]. The algorithm

can be initialised by selecting K (where K is predetermined by the user) observa-

tions at random to represent the initial value for the centroids c1, . . . , cK , which

then form a centroid matrix C = (c1, . . . , cK)
T . Observations which have a common

nearest centroid, with ‘nearest’ defined by the Euclidean distance, are defined as

being in the same cluster2. Using this cluster assignment, the centroids are recal-

culated as the mean value of the observations that are closest to them, and then

the process repeats until convergence. The repetition here is crucial as the centroids

dictate the clustering, and so by updating the centroids we ensure that they are

more representative of the observations assigned to them. However, updating the

centroids then by design requires the updating of the cluster assignment, and so

repetition is key to ensure stability in the final output. This procedure is showcased

in algorithm 26, found in appendix A.1, along with a description of the regions of

covariate space that are formed through K-means clustering.

In the finite data setting the output of a K-means algorithm will have the prop-

erty that any two clusters are linearly separable in covariate space3.

Definition 2.1.1 (Linearly Separable Clusters). Let a ∈ Rp and b ∈ R be con-

stant. Two clusters, Vk and Vl, are linearly separable if there exist a, b defining a

hyperplane aTx = b such that aTxi < b ∀ i ∈ Vk and aTxj ≥ b ∀ j ∈ Vl. Such a

hyperplane is known as a separating hyperplane.

2If an observation has two or more nearest centroids, then typically one centroid is selected at
random to be that observation’s nearest centroid.

3Provided every observation in X is unique. If not then it is entirely possible for a point in
covariate space to be assigned to two different clusters, and therefore the clusters are not separable.
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This is clear by considering a hyperplane H that contains the centroids of both

the clusters in question. The hyperplane that is perpendicular to H and contains

the midpoint of both the centroids is a separating hyperplane4.

This linear separability property that exists for clusters formed using K-means

is an implicit assumption the user makes when selecting this algorithm — an as-

sumption that may not be valid for a wide range of datasets. Indeed, seldom seen

in practical applications of K-means is the justification for this linear separabil-

ity, which becomes less trivial as the dimensionality of the data becomes larger.

Furthermore, the random initialisation method leads to variability in the cluster as-

signments. This can be remedied through multiple runs of the algorithm at different

starting points and selection of the best output, measured by the within-cluster sum

of squares WCSS =
∑K

k=1

∑
i∈Vk

∥xi − ck∥22, but as the algorithm can only be run

finitely many times the drawback is uncertainty in whether our final output is a

local or global minimum of WCSS. In a healthcare scenario this could have severe

negative consequences for patients near a decision boundary. Finally, the require-

ment to have complete certainty in the number of clusters prior to the running of

the algorithm becomes problematic if there is indeed uncertainty in the number of

clusters for the desired output. There are methods that can assist in the selection

of K, such as the silhouette method [16], however, there is not a theoretical justi-

fication for using this metric. Another possible metric to base selection of K on,

which does have some theoretical justification, is the gap statistic method [17]. This

method is detailed in appendix A.3.

Despite these drawbacks one cannot dispute the popularity of K-means cluster-

ing, as under the criteria of interpretability and ease of use the algorithm performs

well. The hard clustering output is guaranteed with this method and the partitioning

of the covariate space (see appendix A.1) lends itself to the notion of observations

in the same cluster having similar attributes through the connectivity of the re-

gions. These advantages are coveted by stakeholders that require information on

4Some separating hyperplanes of this design can be obtained through extension of the decision
boundaries of the Voronoi diagram produced from the K-means algorithm (see appendix A.1 and
figure A.1).
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the cohorts, even if the primary function of the data is prediction of a response.

2.1.2 Hierarchical Clustering

If the linear separability property present for K-means clusters is not representative

of the data, then one may be inclined to resort to another unsupervised method —

hierarchical clustering. Hierarchical clustering groups observations through a greedy

process to create a hierarchy of clusterings, which can be expressed visually through

a dendrogram (see appendix A.2 for details). Initially one must choose a particular

form of hierarchical clustering:

1. Agglomerative: Initialises with a cluster per observation and then combines

two clusters into one at each iteration.

2. Divisive: Initialises with one cluster and then splits one cluster into two at

each iteration.

In addition to this, a linkage method must also be specified along with a distance

metric (the Euclidean distance is the typical choice).

Definition 2.1.2 (Linkage Method). Given a distance metric d : Rp×Rp → [0,∞),

covariate data X and observation index sets Vk, Vl, a linkage method is a function

f(d,X,Vk,Vl) which gives a measure of distance between the clusters defined by Vk

and Vl.

For agglomerative clustering the two clusters which minimise f are combined.

For divisive clustering, for each current cluster we consider all possible splits into two

clusters5, taking the split that maximises f as the optimal split for that particular

cluster. The actual split taken then comes from the maximal optimal split across

current clusters.

5Letting n be the number of observations currently assigned to the cluster in question, there
are 2n−1 − 1 unique possible ways to split the cluster into two non-empty separate clusters.
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Common linkage methods include

Single Linkage [18] :f(d,X,Vk,Vl) = min
i∈Vk,j∈Vl

{d(xi,xj)} (2.2)

Complete Linkage [19] :f(d,X,Vk,Vl) = max
i∈Vk,j∈Vl

{d(xi,xj)} (2.3)

Average Linkage [20] :f(d,X,Vk,Vl) =
1

|Vk| × |Vl|
∑
i∈Vk

∑
j∈Vl

d(xi,xj) (2.4)

with the choice of linkage method affecting the topology of the resulting clusters.

For example complete linkage has a tendency to produce compact clusters (i.e. for a

given cluster all observations in that cluster are close to each other with regards to

the distance metric chosen) whereas single linkage produces chained clusters which

tend not to be compact but can be highly non-linear (i.e. observations in single

linkage clusters tend to be ‘close’ to only a small number of other observations

in their cluster, creating a chain-like structure; this structure does not have any

properties such as linear separability enforced6). Algorithm 27 details the general

procedure and can be found in appendix A.2.

Similar to K-means, there are significant disadvantages to this method. The

predominant issue is paradoxically the main advantage hierarchical clustering has

over K-means: the flexibility in cluster topology through specification of the linkage

method. The problem with this choice is that it requires the user to have knowl-

edge on the shape of the true clusters a priori. For example, if the true clusters are

compact then selecting a single linkage algorithm will likely result in a misleading

output. One may try to infer the topology of the clusters through data exploration,

however, this becomes more challenging as the dimensionality of the data increases.

Furthermore, it is important to note that even when a suitable linkage method has

been established, the resulting clusters for a fixed K is effected by the choice of

agglomerative clustering or divisive clustering, with divisive detecting more global

6Note that single linkage is the only method mentioned that does not take into consideration
other between-cluster distances. Complete linkage takes into consideration other distances by
taking the maximum (consider observation indices a, i ∈ Vk and b, j ∈ Vl, if we combined the
clusters defined by Vk and Vl based on d(xi,xj), then because we are stating that the distance
between xi and xj is sufficiently small we also by definition state that the distance between xa

and xb is sufficiently small as well), as does average linkage by taking the mean.
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patterns of clustering within the data and agglomerative detecting local cluster-

ing patterns. Given that these choices are in addition to selecting K (which has

been shown in section 2.1.1 to be a non-trivial task), selection of an inappropriate

hierarchical clustering method is highly plausible.

An increase in dimensionality also presents issues with visualisation. As hi-

erarchical clustering only requires the distances between observations, there is no

dimension reduction mechanism attached to the algorithm, resulting in no clear way

of visualising the data in a lower dimension whilst still maintaining the sense of con-

nected clusters. Nevertheless, whilst the required specification of a linkage method

reduces the ease of use with this algorithm, the hard clustering output does still lend

some interest with stakeholders due to the interpretability of the resulting cohorts.

2.1.3 Sequential Predictive Modelling

The necessity for unsupervised clustering without any further modelling has limited

use with regards to the context studied in this thesis. Whilst interpretable cohort

information is indeed useful when paired with a predictive model, obtaining informa-

tion just about groups of observations with similar characteristics does not allow for

intervention aimed at preventing or achieving a desired outcome. Indeed, covariate

data is typically provided with an associated response in which the task is to pre-

dict the response given the covariates. Despite this, unsupervised methods are still

popular in real-world settings, due to the aforementioned interpretability properties,

and so prediction is accommodated through sequential predictive modelling [15].

Sequential Predictive Modelling can be viewed as a greedy two-stage model.

First clusters are obtained through an unsupervised method, and then that cluster

information is utilised in a second-stage predictive model (which is supervised but

does not attempt to cluster the observations further). The specifics of how the cluster

information is used depend on the type of clustering that the unsupervised method

produced. If the output is a hard clustering of the observations (i.e. each observation

is assigned to one and only one cluster), such as K-means or hierarchical clustering,

then typically we would build K predictive models for each of the K outputted

clusters (i.e. Mk for k = 1, . . . , K). Observations whose associated index is an
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element of Vk, k ∈ {1, . . . , K}, would be viewed as training data for model Mk. For

prediction of a response given a new observation, xn+1, the new observation would

first be assigned to a cluster Vk through a procedure incorporating the aspects of

the unsupervised method7, and then the response for xn+1 would be predicted soley

by Mk. If the output is a soft clustering of the observations (i.e. each observation is

assigned to every cluster with a certain probability) then there are numerous ways

in which cluster information could be incorporated. One example is to produce

one predictive model with cluster assignment probabilities included as covariates.

Another would be to produce K models (Mk for k = 1, . . . , K), with model Mk

utilising all observations. However, observations for this model are weighted, with

the weight for a particular observation being the probability that observation belongs

to cluster k, given by the soft clustering (i.e. a soft clustering output gives matrix

P with elements pik = π(i ∈ Vk | X) for i = 1, . . . , n, k = 1, . . . , K. Model Mk can

then be defined by the likelihood π(y | X, P·k)). For a new observation xn+1 the

methods of prediction again can vary, but typically will require the unsupervised

method to produce probabilities of xn+1 belonging to each cluster (i.e. π(n + 1 ∈

Vk | xn+1,X)). For a one-model system one could use this information along with

xn+1 to obtain a predicted response. Alternatively, with the probabilities of cluster

assignment for xn+1 one could use a weighted average from each of the models

predicted responses to obtain an overall predicted response, i.e. a prediction from

the model
∑K

k=1 π(n+ 1 ∈ Vk | xn+1,X)Eπ(Y |X,P·k)(Y | xn+1).

This framework for constructing predictive models sequentially, sometimes re-

ferred to as ‘cluster-then-predict’ [15], has gained popularity through the strong

preference for interpretable clusters; however, the greedy methodology only pro-

duces a suitable output when the clustering structure in X is synonymous with the

clustering structure in Y | X. Consider data generated from two Gaussian distri-

butions that are well separated in covariate space as showcased in figure 2.1. Here

in the first stage an unsupervised method such as K-means would be able to suc-

cessfully distinguish the two clusters in covariate space. It is also a possibility that

7For K-means this assignment would be to the nearest centroid and for hierarchical clustering
this would be argminVk∈V{f(d,X, {n+ 1},Vk)}.
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Figure 2.1: Covariate data generated from N2((−3,−3)T , I2) (red points) and
N2((3, 3)

T , I2) (green points).

when a response is introduced the true clustering for Y | X matches that of the

clustering structure apparent in X. In more detail, letting V1 represent the obser-

vations indices in the red cluster and V2 represent the observations indices in the

green cluster, the introduction of y could have the property that (assuming a binary

response)

P(yi = 1) =
1

1 + exp{−β0 − xi1β11{i ∈ V1} − xi2β21{i ∈ V2}}
(2.5)

such that the response does not depend on X2 in the red cluster and does not de-

pend on X1 in the green cluster. In this scenario, a cluster-then-predict methodology

would produce reasonable results. However, it also remains a possibility that intro-

duction of a response produces a clustering structure in Y | X at odds with the

clustering structure in X. For example, assume y now has the property

P(yi = 1) =
1

1 + exp{−β0 − xi2β11{xi1 > xi2} − xi2β21{xi1 ≤ xi2}}
(2.6)

such that now the response never explicitly depends on X1, and depends on X2

differently depending on whether X1 > X2. This example is visualised in figure 2.2,

assuming logistic regression models were built on these two pre-defined clusters (in

a similar procedure to SPARRA). Furthermore, assume that new observations are
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Figure 2.2: Covariate data from figure 2.1 with response values added as labels,
along with; K-means separating hyperplane (solid black line) and true separating
hyperplane for Y | X (dashed black line).

assigned to the cluster associated with their closestK-means centroid, and then have

their response predicted from their cluster’s associated logistic regression model. In

this scenario, the non-synonymous clustering structure results in models which will

perform poorly as they fail to capture the relationship between the response and

the covariates. Indeed, given the clustering structure provided by K-means, a linear

combination of covariates and regression coefficients does not appear to be a suitable

modelling assumption. In reality, the linearity assumption is perfectly valid for the

true clustering, and a model that detects the true separating line X1 = X2 will have

a high predictive performance with logistic regression models. Perrakis et al. [21]

highlight this sequential modelling problem, with their solution being to introduce

a latent cluster allocation variable to a joint model of X and Y .

2.1.4 Summary

Through examination of some of the most widely used unsupervised methods it is

clear that the ease of use combined with interpretable outputs are key factors in

the popularity of these methods with stakeholders. Indeed, for determining cohort

information basic unsupervised procedures have highly desirable qualities for a non-

statistician audience, even if the implicit cluster constraints are less desirable.
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This popularity, however, unfortunately transitions into sequential predictive

modelling when prediction of a response is required, which is a cause for concern

given that it is unknown whether the cluster structure for Y | X (the clustering

structure most useful for prediction and therefore the most useful to stakeholders)

is synonymous with the clustering structure in X.

2.2 Supervised Clustering

In the supervised setting, as well as covariate data we also have access to an asso-

ciated response, y. We assume from this point on that we have a binary response,

i.e. yi ∈ {0, 1} for i = 1, . . . , n8.

Typically the inclusion of a response indicates the requirement of a predictive

model from the stakeholder, which can affect the clustering procedure in two ways.

Either the clustering aspect of the model is used simply as a tool to provide a more

accurate model or the clustering of observations is required as an output alongside

the predictive model. Our main concern is with the latter, however, understanding

of the former is important in order to review the benefits of such models.

Supervised methods naturally focus primarily on predictive modelling, and as

such have incorporated methods for predicting the response of new data. How-

ever, the cluster assignment for new data is much more model-dependent and can

even be removed from the process. If included, the cluster assignment portion of

the methods typically fall under the category of soft clustering. This is due to

these methods offering much more uncertainty quantification than the unsupervised

methods mentioned previously which manifests itself in a probabilistic or score based

interpretation of cluster assignment. Soft clustering is not extremely problematic

in terms of interpretability, as a soft clustering assignment can be transformed into

a hard clustering assignment through sampling or maximum score attribution (i.e.

observation i is assignment to cluster k such that k = maxk∈{1,...,K}P(i ∈ Vk)).

In this section we will discuss some popular supervised clustering methods and

8In many cases this can be trivially extended to multi-class responses, as well as (with slight
alterations of the methods discussed below) continuous responses.
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their attempts to provide an interpretable clustering output. It is worth considering

at this point that these models were constructed to predict a response given covariate

data and not necessarily to partition the data (and by extension the covariate space)

and so a lack of attention on the cohort generation aspect of the model is to be

expected.

2.2.1 Finite Mixtures of Logistic Regressions

Finite Mixtures of Logistic Regression (FMLR) models are a by-product of mixture

modelling practices that date back over many years, with some of the earliest work

being a representation of covariate data as a mixture of Gaussian distributions by

Pearson [22].

Noting that a logistic regression model with parameters β has likelihood

π(y | X,β) =
n∏

i=1

π(yi | xi,β) =
n∏

i=1

(1 + e−xT
i β)−yi(1 + ex

T
i β)−(1−yi) (2.7)

we can represent a FMLR model as

π(y | X,B, τ ) =
n∏

i=1

K∑
l=1

τlπ(yi | xi,βl) (2.8)

where B = (β1, . . . ,βK)
T , τ = (τ1, . . . , τK)

T and τl represents the contribution of

sub-model l to the overall model and has the condition that
∑K

l=1 τl = 1. This

representation, however, does not allow for the estimation of the model parame-

ters as the maximum likelihood equations produced are intractable. Therefore we

introduce unknown latent vectors, V1, . . . , Vn, which indicate cluster assignment —

Vi = (Vi1, . . . , ViK) where Vik ∈ {0, 1}. If V was known, we could express this as

a binary n × K matrix, V = (v1, . . . ,vn)
T , where vik = 1 indicates observation

i belongs to cluster k. Assuming vi ∼ Mult(1, τ ), this would give the following
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likelihood:

π(y,v1, . . . ,vn | X,B, τ ) = π(y | v1, . . . ,vn,X,B, τ )π(v1, . . . ,vn | τ )

=
n∏

i=1

K∏
k=1

[π(yi | xi,βk)]
vik ×

n∏
i=1

K∏
k=1

[τk]
vik

=
n∏

i=1

K∏
k=1

[τkπ(yi | xi,βk)]
vik (2.9)

Reverting back to setting where V1, . . . , Vn are unknown, through a combination of

equations (2.8) and (2.9) we can obtain the conditional distribution for V1, . . . , Vn:

π(V1, . . . , Vn | y,X,B, τ ) = π(y,v1, . . . ,vn | X,B, τ )
π(y | X,B, τ )

=
n∏

i=1

K∏
k=1

[
τkπ(yi | xi,βk)∑K
l=1 τlπ(yi | xi,βl)

]Vik

(2.10)

noting that
K∑
l=1

τlπ(yi | xi,βl) =
K∏
k=1

[
K∑
l=1

τlπ(yi | xi,βl)

]vik
(2.11)

as vik ∈ {0, 1} and
∑K

k=1 vik = 1 ∀ i.

With this representation, we can then proceed to apply the Expectation–Maximisation

(EM) algorithm [23, 24] in order to obtain model parameter estimates. For the ex-

pectation step we have, for iteration t,

Q((τ ,B) | (τ (t),B(t))) = Eπ(V1,...,Vn|y,X,B(t),τ (t)){log(π(y,v1, . . . ,vn | X,B, τ ))}

=
n∑

i=1

K∑
k=1

Eπ(Vik|y,X,B(t),τ (t))(Vik) [log(τkπ(yi | xi,βk))]

=
n∑

i=1

K∑
k=1

τ
(t)
k π(yi | xi,β

(t)
k )∑K

l=1 τ
(t)
l π(yi | xi,β

(t)
l )

[log(τkπ(yi | xi,βk))]

(2.12)

Letting

v
(t)
ik =

τ
(t)
k π(yi | xi,β

(t)
k )∑K

l=1 τ
(t)
l π(yi | xi,β

(t)
l )

(2.13)
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for the maximisation step we must obtain

τ (t+1) = argmax
τ

Q((τ ,B) | (τ (t),B(t)))

= argmax
τ

K∑
k=1

log(τk)
n∑

i=1

v
(t)
ik

(
subject to

K∑
k=1

τk = 1

)
(2.14)

β
(t+1)
k = argmax

βk

Q((τ ,B) | (τ (t),B(t)))

= argmax
βk

n∑
i=1

v
(t)
ik log(π(yi | xi,βk)) (2.15)

Equation (2.14) is equivalent to the maximum likelihood estimator of a multinomial

distribution, leading to

τ
(t+1)
k =

∑n
i=1 v

(t)
ik

n
(2.16)

Equation (2.15) is equivalent to obtaining the coefficients of a weighted logistic

regression, and so methods such as Iteratively Reweighted Least Squares (IRLS) [25]

can be applied to obtain a solution.

Use of the EM method results in algorithm 1, which is initialised with a random

start for τ , B and V (noting that both τ and the rows of V must still sum to 1).

Our stopping criterion, or convergence indicator, is represented by η and is typically

a small value.

In terms of prediction, for a new observation xn+1, the expected response would

be a weighted sum of the probability of success for xn+1 under each of the K

individual logistic regression models (i.e. ŷn+1 =
∑K

k=1 τ̂k(1 + e−xT
n+1β̂k)−1 where

τ̂ = (τ̂1, . . . , τ̂K)
T and B̂ = (β̂1, . . . , β̂K)

T are outputs from algorithm 1). The

expected clustering assignment, vn+1, can also obtained through evaluation of the

marginal distribution

π(vn+1 | xn+1, B̂, τ̂ ) =
1∑

i=0

K∏
k=1

[
τ̂kπ(yn+1 = i | xn+1, β̂k)

]vn+1,k

(2.17)

leading to individual elements predicted as

P̂(Vn+1,k = 1 | xn+1, B̂, τ̂ ) = τ̂k

1∑
i=0

π(yn+1 = i | xn+1, β̂k) = τ̂k (2.18)
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Algorithm 1: EM algorithm for FMLR models

Input : Covariate Matrix — X = (x1, . . . ,xn)
T ,

Response Vector — y = (y1, . . . , yn)
T , Convergence Threshold — η > 0,

Proportion Vector — τ = (τ1, . . . , τK)
T ,

Regression Coefficent Matrix — B = (β1, . . . ,βK)
T ,

Latent Cluster Assignment Matrix — V = (v1, . . . ,vn)
T

Step 1 : Let Ṽ be a matrix with elements

ṽik =
τkπ(yi | xi,βk)∑K
l=1 τlπ(yi | xi,βl)

Step 2 : Let τ̃ such that

τ̃k =

∑n
i=1 ṽik
n

Step 3 : for k = 1, . . . , K do

Obtain β̃k through IRLS with log likelihood
∑n

i=1 ṽik log(π(yi | xi, β̃k))
end

Let B̃ = (β̃1, . . . , β̃K)
T .

Step 4 : if log(π(y | X, B̃, τ̃ ))− log(π(y | X,B, τ )) < η then

Let V = Ṽ, τ = τ̃ and B = B̃. Stop.
else

Let V = Ṽ, τ = τ̃ and B = B̃. Go to step 1.
end
Result : V, τ ,B

From the method showcased in algorithm 1 it is clear that the clustering of ob-

servations is merely used as a tool for a more flexible model. Whilst it is indeed

possible to obtain a soft clustering estimate of new observations through equation

(2.18), and this in turn can produce a hard clustering assignment, the use of that

cluster assignment is meaningless as the estimated probability vector of belonging

to clusters 1, . . . , K for any new observation is always τ̂ . In addition to this, the

response prediction does not utilise any hard or soft cluster assignment in its calcu-

lation of ŷ.

From an interpretability perspective, for the training data the response is known

and so using the conditional distribution π(vi | xi, yi, B̂, τ̂ ) gives a soft cluster as-

signment of the observations which is dependent on the covariate data, i.e.

P̂(Vik = 1 | xi, yi, B̂, τ̂ ) =
τkπ(yi | xi,βk)∑K
l=1 τlπ(yi | xi,βl)

for i = 1, . . . , n (2.19)
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However, in this case the treatment of the cluster assignment offers too much flexi-

bility to provide a clear visual interpretation of the cohorts formed. This is in stark

contrast to unsupervised methods such as K-means, which produced regions of the

covariate space too restrictive in their topological constraints (see section 2.1.1).

Indeed, here we have the opposite problem, there are no restrictions on the cohorts

formed from a hard clustering assignment of the data and as a result the cohorts

typically appear disconnected and lacking similarity in covariate space. An example

of this can be seen in figure 2.3, where even with synonymous clustering structure

in X and Y | X the hard clustering output of a FMLR model cannot provide a

clear separation of the two cohorts in covariate space9. We can attribute this to the

Figure 2.3: FMLR clustering assignment output for data generated from two
Gaussian’s, Gaussian 1: N ((−3,−3)T , I2) and Gaussian 2: N ((3, 3)T , I2), each
with a differing relationship to the associated response (i.e. β1 = (3, 0, 1)T and
β2 = (3,−1, 0)T ). Observation labels are their associated response and observation
colours relate to their assigned cluster.

fact that the cluster assignment variable was introduced to provide a method for

obtaining the model coefficients and therefore the output from this latent variable

was not intended to be of use.

In summary, the stakeholder’s requirement for a cohort producing mechanism

explains the apparent lack of popularity in applications. In addition to this there is

9Here observations were given a hard clustering assignment by selecting cluster k for observation
i if k = argmaxk=1,...,K{P(vik = 1 | xi, yi, B̂, τ̂ )}.
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the common issue of requiring the number of clusters (or mixture components) K

to be known a priori10. Nevertheless, there is still the clear advantage here that the

predictive power of this model in general will be greater than unsupervised methods,

due to the inclusion of the response.

2.2.2 Mixture of Experts

First introduced in 1991 [6], Mixture of Experts (MoE) models provide a supervised

clustering method that gives more consideration to the assignment of covariates to

a cluster (or expert) than FMLR models. MoE models are intrinsically linked to

FMLR models when the experts are logistic regression models, as we can represent

a MoE model as

π(y | X,B,Λ) =
n∏

i=1

K∑
k=1

gk(xi | Λ)π(yi | xi,βk) (2.20)

where Λ = (λ1, . . . ,λK)
T and

gk(x | Λ) =
ex

Tλk∑K
l=1 e

xTλl

(2.21)

Comparison of equation (2.8) to equation (2.20) highlights the similarity of the two

approaches, with both models having the same structure. The difference in the two

models is crucial, however, as instead of a general model proportion parameter τk

we have a covariate dependent softmax function with unknown parameters.

Definition 2.2.1 (Softmax function). Given a real-valued vector x, a vector func-

tion g : RK → (0, 1)K is said to be a softmax function if
∑K

k=1 gk(x) = 1.

Specification of g, also known as the gating network, then allows for a meaningful

soft clustering assignment of the observations, as given parametersΛ any observation

can be given a score gk(x | Λ) for belonging in cluster k.

Estimation of the model parameters mirrors the estimation procedure for FMLR

models, where we introduce latent variables V1, . . . , Vn. The caveat here is that now

10Selection of K is further discussed in section 3.2.

24



Vi ∼ Mult(1,g(xi | Λ)), which gives the following:

π(y,v1, . . . ,vn | X,B,Λ) =
n∏

i=1

K∏
k=1

[gk(xi | Λ)π(yi | xi,βk)]
vik (2.22)

π(V1, . . . , Vn | y,X,B,Λ) =
n∏

i=1

K∏
k=1

[
gk(xi | Λ)π(yi | xi,βk)∑K
l=1 gl(xi | Λ)π(yi | xi,βl)

]Vik

(2.23)

For iteration t this then gives our expectation step as

Q((Λ,B) | (Λ(t),B(t))) =
n∑

i=1

K∑
k=1

v
(t)
ik log(gk(xi | Λ)π(yi | xi,βk)) (2.24)

where

v
(t)
ik =

gk(xi | Λ(t))π(yi | xi,β
(t)
k )∑K

l=1 gl(xi | Λ(t))π(yi | xi,β
(t)
l )

(2.25)

The maximisation step as before can be done separately for the parameters β1, . . . ,βK ,

whereas Λ requires joint estimation:

Λ(t+1) = argmax
Λ

Q((Λ,B) | (Λ(t),B(t)))

= argmax
Λ

n∑
i=1

K∑
k=1

v
(t)
ik log(gk(xi | Λ))

= argmax
Λ

n∑
i=1

[(
K∑
k=1

v
(t)
ik x

T
i λk

)
− log

(
K∑
l=1

ex
T
i λl

)]
(2.26)

β
(t+1)
k = argmax

βk

Q((Λ,B) | (Λ(t),B(t)))

= argmax
βk

n∑
i=1

v
(t)
ik log(π(yi | xi,βk)) (2.27)

All parameters can be estimated through the IRLS algorithm [26]. The EM algo-

rithm therefore for MoE models is similar to that of algorithm 1, with the only

alterations being that τ is replaced with g(x | Λ) and step 2 is replaced with a

IRLS algorithm for obtaining Λ̃.

With the latent variables V1, . . . , Vn in this setting now dependent on the covari-

ates, it is unsurprising that when considering prediction of cluster assignment for
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xn+1 we have

P̂(Vn+1,k = 1) = gk(xn+1 | Λ̂) (2.28)

This method therefore offers a significant improvement over previous methods for

a stakeholder whose aims are cohort detection combined with predictive modelling.

Clearly the MoE model targets accurate prediction of the response through the

individual ‘experts’11, but the model also provides cohort detection through the

gating network g(x | Λ).

Whilst the gating network provides a soft clustering, we can obtain a hard cluster-

ing for observation n+1 by assigning it to cluster k = argmaxl=1,...,K{gk(xn+1 | Λ̂)}.

This method creates
(
K
2

)
linear decision boundaries for the experts, namely:

{x : gk(x | Λ̂) = gl(x | Λ̂)} for k, l ∈ {1, . . . , K}, k ̸= l (2.29)

Intersection of these boundaries then define connected regions of the covariate space

similar to that of a Voronoi diagram produced by K-means clustering (see appendix

A.1). This aspect of MoE models is highly desirable, as we have a mechanism for

generating cohorts which includes the response whilst additionally defining regions

of the covariate space such that observations with very dissimilar attributes are

not likely to be in the same cohort. Referring back to the example showcased in

figure 2.3, a two-cluster MoE model can produce a meaningful clustering that also

considers the response for this dataset, as shown in figure 2.4.

The beneficial dual output of MoE models has perhaps led to a higher level

of application [27, 28] when compared to FMLR models, however, there are still

interpretability issues with this method. The main issue being that the gating

network restricts the decision boundary between clusters to be linear, giving linearly

separable clusters which may not accurately reflect the true clustering structure12.

Of course there is more flexibility to this method as one could specify another non-

linear softmax function g, however, the specific structure of the data that would aid

11For observation i expert k would be the model expressed as π(yi | xi,βk).
12The example given in figure 2.4 performs so well precisely because a linear decision boundary

can separate the true clusters.
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in the specification of g is difficult to obtain in high dimensions.

Figure 2.4: MoE clustering assignment output for data generated from two
Gaussian’s, Gaussian 1: N ((−3,−3)T , I2) and Gaussian 2: N ((3, 3)T , I2), each
with a differing relationship to the associated response (i.e. β1 = (3, 0, 1)T and
β2 = (3,−1, 0)T ). Observation labels are their associated response and observation
colours relate to their assigned cluster.

2.2.2.1 Hierarchical Mixture of Experts

If we suspect a non-linear boundary but do not wish to alter the form of g, one alter-

native is to approximate said boundary through multiple piecewise linear boundaries.

This can be achieved through a hierarchical structure of experts being employed

within the MoE model [29]. For example, a two-level MoE model would have the

form:

π(y | X,B†,Λ,Λ1, . . . ,Λ|K|)

=
n∏

i=1

|K|∑
k=1

gk(xi | Λ)

Kk∑
l=1

gkl (xi | Λk)π(yi | xi,β
k
l ) (2.30)

where: K is now a vector of second-level cluster sizes, |K| is the number of elements

in K, B† = {B1, . . . ,B|K|} with Bk = (βk
1, . . . ,β

k
Kk

)T being the regression coefficient

matrix for the Kk second-level clusters associated with a first-level cluster, Λ rep-

resents the softmax coefficient matrix for the first level, {Λ1, . . . ,Λ|K|} represents

the |K| softmax coefficient matrices for the second-level clusters and g,g1, . . . ,g|K|
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are softmax functions as defined in equation (2.21). A two-level model will contain∑|K|
k=1Kk experts and therefore

∑|K|
k=1 Kk clusters.

Regarding the partitioning of the covariate space one can obtain with a MoE

model, introduction of a second level provides further flexibility. At the top level,

creation of linear boundaries with g is as before. However, now each of these |K|

regions (defined by the intersection of these boundaries) can be further partitioned

through the intersection of linear boundaries defined through gk. This partitioning

method bears resemblance to the partitioning of the covariate space achieved through

basic decision trees [26, 30], albeit with a more complicated modelling framework

and less restricted region topology (regions formed by a decision tree are hyper-

rectangles).

Introduction of latent cluster allocation vectors V1, . . . , Vn also requires reformat-

ting, as

Vi = (Vi11, . . . , Vi1K1 , . . . , Vi|K|1, . . . , Vi|K|K|K|) (2.31)

where Vikl ∈ {0, 1} and Vikl = 1 indicates observation i belongs to the lth cluster in

cluster k. Letting

Vi ∼ Mult(1, {g1(xi | Λ)g1(xi | Λ1), . . . ,g|K|(xi | Λ)g|K|(xi | Λ|K|)}) (2.32)

this then gives the following:

π(y,v1, . . . ,vn | X,B†,Λ,Λ1, . . . ,Λ|K|)

=
n∏

i=1

|K|∏
k=1

Kk∏
l=1

[gk(xi | Λ)gkl (xi | Λk)π(yi | xi,β
k
l )]

vikl

(2.33)

π(V1, . . . , Vn | y,X,B†,Λ,Λ1, . . . ,Λ|K|)

=
n∏

i=1

|K|∏
k=1

Kk∏
l=1

[
gk(xi | Λ)gkl (xi | Λk)π(yi | xi,β

k
l )∑|K|

a=1 ga(xi | Λ)
∑Ka

b=1 g
a
b (xi | Λa)π(yi | xi,β

a
b )

]Vikl (2.34)

The EM algorithm then follows these equations in the standard way, with the only

difference being that the introduction of a second level requires the maximisation of

the parameters Λ1, . . . ,Λ|K|, which can be done separately.

To highlight the benefits of a Hierarchical Mixture of Experts (HMoE) model
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over the standard MoE model in some situations, consider the following covariate

data X ∈ R2000×2:

xi1 =


i−1

5×999
if i ∈ {1, . . . , 1000}

i−1001
5×999

if i ∈ {1001, . . . , 2000}
(2.35)

xi2 ∼

U (sin(20xi1) + 0.15, sin(20xi1) + 1.85) if i ∈ {1, . . . , 1000}

U (sin(20xi1)− 1.85, sin(20xi1)− 0.15) if i ∈ {1001, . . . , 2000}
(2.36)

This data produces two curves contained within the hypercube [0, 0.2] × [sin(4) −

1.85, 2.85]. With this covariate data, we define two clusters, with specification of

the regression coefficients and response as follows:

β1 = (−1,−8, 1)T (2.37)

β2 = (1, 24, 4)T (2.38)

yi ∼

Bern((1 + e−(1,xT
i )β1)−1) if i ∈ {1, . . . , 1000}

Bern((1 + e−(1,xT
i )β2)−1) if i ∈ {1001, . . . , 2000}

(2.39)

The two clusters are well separated in covariate space but not linearly separable,

and so a standard MoE model will fail to output the true clustering. A HMoE

model where K = (2, 2)T however allows for the space to be separated into two

regions where the two true clusters are linearly separable. This can be seen in figure

2.5. Note that HMoE has produced four clusters, but each of the four clusters only

contains observations from a single true cluster, marking an improvement over the

standard MoE model.

In summary, MoE models allow for generation of linearly separable regions of

the covariate space constructed through a framework which includes the response.

Therefore MoE address a lot of key concerns for stakeholders aiming for joint cohort

generation and predictive modelling. The restriction of linearly separable regions

can result in problematic situations where the true clustering structure is non-linear,

however, through a hierarchical tree like structure of experts a non-linear boundary

29



0

1

1

0

0

0
1

0

1

1

0

1
0
1

0

1

0

1

1

0

1

1
0

0

1

1

1

01
1
00

1

0

1

01

1

0

1

0

1

1

101

1
0
0
0
0

01

1

0

100

1

0
1

1
01

1

0

10
1

0

0
1

1

1

1

1

1

1
0

1
0

1
1

1

0

1

0

1

1

1

100

10

1

1

1

0

1

1

010

0

1

1

0

0

0
10
1

1

1

1

1
1

0

1

1

1

0

0

1

0
0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

11

1

10

0

1

0

1

0

1

1

1

0

00

1111

00

1

0
1

11

00

1

11

1

10

0

0

1

110
0

0
0

1

1

1

0

10
0

1

1

1

0

01

0

1

1

0

1

1

01

1

1
11

0

0
1

1

1

1

0

1

01
1

0
1

1

0

1
1

00

0

01

0

0

0
1

1

1

10

0

1

0
0

1
0

0

1

1

1

0

1

1

11

1
110

1

1

1

0

1

1

1

0

0

0

01
10

1

1

1

1

1

1

1

1

0

1

1
0

0

1
1

0

111

0
0

0

1
11
1

0

0

01

01

1

0
1

0

1

0
1

1

1

1

1

00

1

1
1

0

0

01

1

01

1

0

1
1

1

0

0
1

1

1

1
01
1
0
1
1
0

1

1

1

1

1
0111
01

0

0

0

1

1

1

1

0
0

1

1

0

1

10

0

1

1

0
0

1

1

1

11
0

1

0
11

01

00

1
1

0

0
1

0

0

1

1

1
1

1

1

0

1

1
0

0

1

0

10

1

1
1

1

0

1

0

0

0

0

11

1

0

0
1

0

1
0

1

01

0

1

1

1

1

1

0
1

0

0

0
1

1

1

1

0

0

00
0

1

0

1

0

0

0

0
0
0

0

0

1

01

1

0

1

1
0

0

1

111

0

1

00

0

1

1

1

0

0

0

1

1
1

1
1

1

00
1

1

1

1

01

1

1

1

1

0

1

1
0

0

1

0

00

1
0

1

1

0

1

1

1

1

0
1
0

1

0

0

0

1

1
0

0

1

00

0

11

0

1

0

0
0

0
11
1
1

1
10

11

1

01

1

1
1

1

00

0

0

0

1

0

1

1

1

0

1

0

0

1

1

1

1

1
1
0

11

0

0
1

11

0

1

1

0

0

1

1

0
01

0

1

00

1

1

0
1
0
1

0

0
0

1
0
0
1

0
0

1

0
0

0

0

0

00

0

1

10

0

1
1

1
0

0

0

0

0

0

1

0

0

1

0

1

00
0

0
1

1

0

0

0

0

0

0

0

1
0
1

1

0

1

0

1

0

0
0

0

00
1

1

1

0
10

0

10
1

0

0

0

1

0

0

0

0

0

0

1

0

0

0
00

0
1
0

0

0

00

0

00

0

0

0

01

0

1

1

0

0
0

0

0

0

0

1

1
1

0

0

0

1
00
1

0

1
0

0
0

0
0

0

1

0

1

0

0
0

0

0

00

0

00
1

0

0

0
0

1

0

0

0

0

0

0
1
0

0

0

1
0

1

0

1
0

0

0

0

0

1

1

0
0

0

0

0

1

1

0
0
0

0

0

1
0
0

1

0

0
0
0

0

1

0
0

0

0

00
0
0

0

0

0

0
0

1

0

0

0

000
10

0

0

0

0

0
0

0

1

1

0

0
0

0

0

1

0

1
1

0

0

0

0

0
1

0

1

1

1

0

0

0

0

0

0

0

00

00

0

0

1

0

1

0

00

0

0

1
01

0
0

01

0

1

0

0

0

0
0

0

0

0

0

1
0

0
0

0

0

0

0

0

0

11

0

0

0

0

00

10
0

0

0

0
0

0

1

0
0
0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

000

0
1

00

0

0

1

1

0

0
0

000

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0

1

0

0

0

00

0

1

00
0

0

0
0

0

0

0

0
0

01

0

10

00

0

1

0

0

0

0
0

0

1

0

0

0

0

10

0
0

0

0

0

00

0

1

1
0

0

1

0

11

00

0

0

00

1

0

0

00

00

0

0
0

00

0

0
0

01

0
0

0

0

1

0

00

0

01

1
1

0

0
0

1

00

1

0
0

0
0
0

1

0

0

0

01

0

0

0

0

1

0
1

1

1

0

1

1

0

10
0

0

0

1

0

0

1

11
1

0

1

0

0

0
0

1

1

0
0

0

0

0

0
1

0

0

0

0

1
1

1

1

1
0

1

1
0

1

1

11
1

1
1

0

0
00

1

1

0

1

0

0

1

1

0

1
0

1

1
1

1
0

1

0

1

1
1

00

1
1

1

1

1
0

1
1

0000

11

0

0

00

1

1110

0

1

0

1

1

1

0

0

0

1

1
0
0

1

1

1

0
0
00

00

0

1

1

0

1
1

1

1
1

0

0
1

1

0

1

11

0

1

0

11

1

0

1

1
1

1
0
1

1
1

0
1
0
0

1

0

0
1

1

0

11

0

11

1

1
0

1

1

1

1

111
0
1

1

1

1
0
0

1

1

1

1

1

0

0

1

1

0

11

1
0

1

0

1

1

1
1

1

1

11
1
1
1

1

0

1

110

1

1

1

0

11

1

00

11

0

1

1

1

111
1
1

1

1

1

1

1
1

1
0
1

0

1

1

1

1

0
0

1

0

001

1

1
111

1

1

1

1

0

0

1

1

1

1

1

1

0

1

0

0
1

0
0

01

1

1

01

1
1

11
1

1

1

1

1

1

10

11

1
0

1
1
11

0

1
1

0
10

1
1
1

1

1

1

00

1

1
1

1

1

1

1

1
1

1

0

1
0

1

1
1
1

1

1

0

1

1
1

1

1
1

1
1
1

1

01

11
1
1

1
1

1

1
1

1

111

0

1
1

1

1
11

1

1

1

1

1
11

1

1

1
1

11
1
0

1

0

1

0

1

1

1

1

1
11

1

1
0

1

11

1

1

1

1

1

0
1

1
01
1

1

11

11

1

0

11

1
1
1

1
0

1

1
1

1
1

0

1

1
1

0

1

1

01

1
1
1

01

1

0
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0

1
10

0

01

0

1
11

1

0

1

1

1

1

1

1
0
1

01
1

1

0

1

11
1

1

0

1

1

1

0

11
111

1

1

1

1
1

1

1

1

11

1
1

0

1

1
1
11
1

1

1

1

1

1

1
1

11

1

1

1

1

1
1

1

0
1

1

111

1

0

1
1

1

1
1
1
1

0

1

0

1
1

11

00

1

1
11

1

1
1
1

1

1

1

01
0

1

1

1

0

0

1
1

0

0

1

11

1

11
11

1

0

1

0

1

1

1

11

0

11

01
11
1
1

11

1

0

1

1
11

1
1

1
1
0

0

1

1

10

0

1

1

0

1

0

00

1

0

0

10

1

1

1

0

1

1

11
0

1

1
1

1

11

0

1

1

0

1

1

1

1

1

1

0

1

00
1

0

1

1

10
1

00

1

010

1

1
1

1

0

1111

0

0

0

0

0

1
1

0

1

0

1

0

0

1
1
1

1
00

0
0

1

1

0

0

1

00
0

1

0
0

0

01

111

0
0

1

0

0

111

0

1

0
0

10

0

1

10

101

0

0

0

1
1

0

1
1

1

1

1

1

0
0
11

1

10
0

0

0

0
0

1

0

0

1
0

0
0

0

0

1
1

0

0

0
0

1

0

1

1

0
1

1

0

1

0
00
0

0

1

0

0

0

1

0
0

0

0

0
0

1

0

0

0

1

0

1

1

0

1

0

0

0

0

1

01

1

1

0

11

0

0

1

0

0

0

0

10

0
0

1
1

00

0

0
00

0

0
0

1

1
11

0

0

0

01
0
1

1

0

101
1
0
0

0

1

1
1
00

1

0
-2

-1

0

1

2

3

0.00 0.05 0.10 0.15 0.20
X1

X
2

Cluster 1 2

0

1

1

0

0

0
1

0

1

1

0

1
0
1

0

1

0

1

1

0

1

1
0

0

1

1

1

01
1
00

1

0

1

01

1

0

1

0

1

1

101

1
0
0
0
0

01

1

0

100

1

0
1

1
01

1

0

10
1

0

0
1

1

1

1

1

1

1
0

1
0

1
1

1

0

1

0

1

1

1

100

10

1

1

1

0

1

1

010

0

1

1

0

0

0
10
1

1

1

1

1
1

0

1

1

1

0

0

1

0
0

0

0

0

0

0

1

1

1

0

1

0

1

0

1

11

1

10

0

1

0

1

0

1

1

1

0

00

1111

00

1

0
1

11

00

1

11

1

10

0

0

1

110
0

0
0

1

1

1

0

10
0

1

1

1

0

01

0

1

1

0

1

1

01

1

1
11

0

0
1

1

1

1

0

1

01
1

0
1

1

0

1
1

00

0

01

0

0

0
1

1

1

10

0

1

0
0

1
0

0

1

1

1

0

1

1

11

1
110

1

1

1

0

1

1

1

0

0

0

01
10

1

1

1

1

1

1

1

1

0

1

1
0

0

1
1

0

111

0
0

0

1
11
1

0

0

01

01

1

0
1

0

1

0
1

1

1

1

1

00

1

1
1

0

0

01

1

01

1

0

1
1

1

0

0
1

1

1

1
01
1
0
1
1
0

1

1

1

1

1
0111
01

0

0

0

1

1

1

1

0
0

1

1

0

1

10

0

1

1

0
0

1

1

1

11
0

1

0
11

01

00

1
1

0

0
1

0

0

1

1

1
1

1

1

0

1

1
0

0

1

0

10

1

1
1

1

0

1

0

0

0

0

11

1

0

0
1

0

1
0

1

01

0

1

1

1

1

1

0
1

0

0

0
1

1

1

1

0

0

00
0

1

0

1

0

0

0

0
0
0

0

0

1

01

1

0

1

1
0

0

1

111

0

1

00

0

1

1

1

0

0

0

1

1
1

1
1

1

00
1

1

1

1

01

1

1

1

1

0

1

1
0

0

1

0

00

1
0

1

1

0

1

1

1

1

0
1
0

1

0

0

0

1

1
0

0

1

00

0

11

0

1

0

0
0

0
11
1
1

1
10

11

1

01

1

1
1

1

00

0

0

0

1

0

1

1

1

0

1

0

0

1

1

1

1

1
1
0

11

0

0
1

11

0

1

1

0

0

1

1

0
01

0

1

00

1

1

0
1
0
1

0

0
0

1
0
0
1

0
0

1

0
0

0

0

0

00

0

1

10

0

1
1

1
0

0

0

0

0

0

1

0

0

1

0

1

00
0

0
1

1

0

0

0

0

0

0

0

1
0
1

1

0

1

0

1

0

0
0

0

00
1

1

1

0
10

0

10
1

0

0

0

1

0

0

0

0

0

0

1

0

0

0
00

0
1
0

0

0

00

0

00

0

0

0

01

0

1

1

0

0
0

0

0

0

0

1

1
1

0

0

0

1
00
1

0

1
0

0
0

0
0

0

1

0

1

0

0
0

0

0

00

0

00
1

0

0

0
0

1

0

0

0

0

0

0
1
0

0

0

1
0

1

0

1
0

0

0

0

0

1

1

0
0

0

0

0

1

1

0
0
0

0

0

1
0
0

1

0

0
0
0

0

1

0
0

0

0

00
0
0

0

0

0

0
0

1

0

0

0

000
10

0

0

0

0

0
0

0

1

1

0

0
0

0

0

1

0

1
1

0

0

0

0

0
1

0

1

1

1

0

0

0

0

0

0

0

00

00

0

0

1

0

1

0

00

0

0

1
01

0
0

01

0

1

0

0

0

0
0

0

0

0

0

1
0

0
0

0

0

0

0

0

0

11

0

0

0

0

00

10
0

0

0

0
0

0

1

0
0
0
0

0

0

0

0

0

0

0

0

0

0

0
0

0

0

000

0
1

00

0

0

1

1

0

0
0

000

0

0

0

0

0

0

0

00

0

0

0

0

0
0

0

0

0

0

0

1

0

0

0

00

0

1

00
0

0

0
0

0

0

0

0
0

01

0

10

00

0

1

0

0

0

0
0

0

1

0

0

0

0

10

0
0

0

0

0

00

0

1

1
0

0

1

0

11

00

0

0

00

1

0

0

00

00

0

0
0

00

0

0
0

01

0
0

0

0

1

0

00

0

01

1
1

0

0
0

1

00

1

0
0

0
0
0

1

0

0

0

01

0

0

0

0

1

0
1

1

1

0

1

1

0

10
0

0

0

1

0

0

1

11
1

0

1

0

0

0
0

1

1

0
0

0

0

0

0
1

0

0

0

0

1
1

1

1

1
0

1

1
0

1

1

11
1

1
1

0

0
00

1

1

0

1

0

0

1

1

0

1
0

1

1
1

1
0

1

0

1

1
1

00

1
1

1

1

1
0

1
1

0000

11

0

0

00

1

1110

0

1

0

1

1

1

0

0

0

1

1
0
0

1

1

1

0
0
00

00

0

1

1

0

1
1

1

1
1

0

0
1

1

0

1

11

0

1

0

11

1

0

1

1
1

1
0
1

1
1

0
1
0
0

1

0

0
1

1

0

11

0

11

1

1
0

1

1

1

1

111
0
1

1

1

1
0
0

1

1

1

1

1

0

0

1

1

0

11

1
0

1

0

1

1

1
1

1

1

11
1
1
1

1

0

1

110

1

1

1

0

11

1

00

11

0

1

1

1

111
1
1

1

1

1

1

1
1

1
0
1

0

1

1

1

1

0
0

1

0

001

1

1
111

1

1

1

1

0

0

1

1

1

1

1

1

0

1

0

0
1

0
0

01

1

1

01

1
1

11
1

1

1

1

1

1

10

11

1
0

1
1
11

0

1
1

0
10

1
1
1

1

1

1

00

1

1
1

1

1

1

1

1
1

1

0

1
0

1

1
1
1

1

1

0

1

1
1

1

1
1

1
1
1

1

01

11
1
1

1
1

1

1
1

1

111

0

1
1

1

1
11

1

1

1

1

1
11

1

1

1
1

11
1
0

1

0

1

0

1

1

1

1

1
11

1

1
0

1

11

1

1

1

1

1

0
1

1
01
1

1

11

11

1

0

11

1
1
1

1
0

1

1
1

1
1

0

1

1
1

0

1

1

01

1
1
1

01

1

0
1

1

1

1

1

1

1
1

1

1

1

1

1

1

1

1

1

1

1

1

0

1
10

0

01

0

1
11

1

0

1

1

1

1

1

1
0
1

01
1

1

0

1

11
1

1

0

1

1

1

0

11
111

1

1

1

1
1

1

1

1

11

1
1

0

1

1
1
11
1

1

1

1

1

1

1
1

11

1

1

1

1

1
1

1

0
1

1

111

1

0

1
1

1

1
1
1
1

0

1

0

1
1

11

00

1

1
11

1

1
1
1

1

1

1

01
0

1

1

1

0

0

1
1

0

0

1

11

1

11
11

1

0

1

0

1

1

1

11

0

11

01
11
1
1

11

1

0

1

1
11

1
1

1
1
0

0

1

1

10

0

1

1

0

1

0

00

1

0

0

10

1

1

1

0

1

1

11
0

1

1
1

1

11

0

1

1

0

1

1

1

1

1

1

0

1

00
1

0

1

1

10
1

00

1

010

1

1
1

1

0

1111

0

0

0

0

0

1
1

0

1

0

1

0

0

1
1
1

1
00

0
0

1

1

0

0

1

00
0

1

0
0

0

01

111

0
0

1

0

0

111

0

1

0
0

10

0

1

10

101

0

0

0

1
1

0

1
1

1

1

1

1

0
0
11

1

10
0

0

0

0
0

1

0

0

1
0

0
0

0

0

1
1

0

0

0
0

1

0

1

1

0
1

1

0

1

0
00
0

0

1

0

0

0

1

0
0

0

0

0
0

1

0

0

0

1

0

1

1

0

1

0

0

0

0

1

01

1

1

0

11

0

0

1

0

0

0

0

10

0
0

1
1

00

0

0
00

0

0
0

1

1
11

0

0

0

01
0
1

1

0

101
1
0
0

0

1

1
1
00

1

0
-2

-1

0

1

2

3

0.00 0.05 0.10 0.15 0.20
X1

X
2

Cluster 1 2 3 4

Figure 2.5: MoE (left) and HMoE (right) clustering assignment output for the
data detailed in equations (2.35) and (2.36). Observation labels are their associated
response and observation colours relate to their assigned cluster.

can be approximated through a piecewise linear boundary. This though produces

another issue; the approximation will require the creation of several additional clus-

ters, many of which will be capturing the same relationship between the covariates

and the response (as seen in figure 2.5). From an interpretability perspective this

becomes problematic, specifically in the scenario of generating cohort-specific in-

tervention plans, as budgetary restrictions typically translate to restrictions on the

number of cohorts, which in turn limits the power of a HMoE model. Addition-

ally, increasing the depth of the model will increase computational time along with

the common issue of non-automatic selection of the number of clusters (additional

computational time will be required to attempt to find the best model).

2.2.3 Summary

From the viewpoint of a stakeholder, the inclusion of a response for covariates should

not detract from the goal of producing a model which defines cohorts based on said

covariates. Instead, this cohort generation should be given equal priority to the

prediction of the response, which leads to ideally a joint procedure. However, from

the viewpoint of the statistician, inclusion of a response muddies the waters as to

what aspect of clustering observations is most beneficial.

In the unsupervised setting this was clear as we are clustering to produce cohorts

which have similar members based on some user-defined measure. In a supervised

setting, it is now unclear as to whether the clustering should be used to provide
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a more accurate response prediction for new data or to produce cohorts that are

clear and can be targeted with unique interventions. This confusion explains the

variation in treatment of clustering observations for supervised methods.

A common feature of supervised clustering methods, as seen with FMLRs and

MoEs, is to treat the cluster assignment as a latent variable and therefore by defini-

tion as unknown, which leads to a direct tackling of the uncertainty that surrounds

the clustering procedure. This uncertainty quantification is less apparent in un-

supervised methods, where at each iteration of the algorithms for K-means and

hierarchical clustering we have certainty in each observation’s cluster at that point.

Naturally this uncertainty quantification manifests itself as a soft clustering output

for many supervised methods. However, expressing uncertainty in cluster-specific

model parameters instead of through cluster assignment itself allows for a hard

clustering assignment to be fundamental to the clustering algorithm. This form of

uncertainty quantification is explored further in chapters 3 and 4.
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CHAPTER 3

Bayesian Frameworks & Graphical Representations of Data

With previous methods detailed in chapter 2, this chapter serves as a more direct

introduction to chapter 4 by detailing the various tools that the UNCOVER method

utilises. Specifically, we introduce and justify the use of a Bayesian setting for cluster

modelling. Not only does a Bayesian framework allow for uncertainty quantification

of the models parameters, it can be used as a vehicle to introduce expert opinion

and to avoid the asymptotic assumptions of frequentist methods. This final point is

particularly relevant for the UNCOVER method as dealing with small amounts of

data is a necessity.

The second part of this chapter concerns graphical approaches to clustering ob-

servations. Mainly operating in unsupervised settings, there exists some well es-

tablished graphical methods [31] which will be highlighted along with their relevant

properties for UNCOVER. In supervised problems the use of graph theory is typ-

ically considered only for the parameters of the model, for example in the form of

a Directed Acyclic Graph (DAG) [32]. Whilst implicitly DAGs are formed through

Bayesian modelling, the graphical aspect in this chapter will be solely focused on

creating a graphical representation of the observations, and as such can be viewed

temporarily as separate to prediction modelling.
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3.1 The Bayesian Paradigm

In all the parametric models detailed thus far, we have used frequentist techniques

(such as the expectation–maximisation algorithm) to obtain the parameters for the

model. Implicitly the assumption we make when using such methods is that there

is a true value for the parameters which can be obtained with a sufficient amount of

data. Indeed, without a distributional form for the model parameters, we express a

level of certainty in our estimation of the parameters used in the final model.

However, we are always in the finite data setting, with this being exacerbated

for clustering methods which partition the training data into smaller observation

sets. Specifically we refer to the hard clustering approach here, and the issues sur-

rounding the choice of partition. For example, consider a situation in which the

response is binary and a possible partition of the data results in a cluster containing

only observations that have the same response. Whether assuming a parametric or

non-parametric model for this particular cluster, the result will be typically be de-

generate. For a parametric model this would occur when the asymptotic arguments

of frequentist modelling break down, giving infinite values to the parameters to en-

sure a singular response1. For non-parametric models, such as decision trees [30],

this occurs simply through the optimal model being the assignment of all observa-

tions to the single response present. Note that the cluster need not only contain

a singular response; if there exists a technique within the frequentist method that

completely separates the response then we can arrive at an ‘optimal’ (in the sense

that it has zero error in predicting the response of the clustered data) but unrealistic

cluster-level model.

In general there are three common approaches to this particular issue:

1. We allow clusters to share observation information, which allows for varying

response types to be present in all cluster-level models.

1For example consider a logistic regression model (see equation (2.7)) where the only response
for the training data is 1. The optimal estimate for each regression coefficient is +∞ as this ensures

that P̂(Y = 1 | x) = (1 + e−xT β̂)−1 = 1 ∀ x.
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2. We constrain the cluster-level models to exclude partition selections which

cause model degeneracy.

3. We employ a parametric model, but with prior beliefs expressed about the

form of the parameters, constraining them in the presence of finite data.

Approach 1 is by definition a soft clustering approach, as using all observations for a

cluster-level model would require a weighting of the observations by importance to

the cluster to get differing clusters models. This weighting of observations then gives

the soft clustering. Approach 2 falls under the umbrella of model mis-specification

[33], as we highlight situations in which the model is mis-specified in order to avoid

doing so. This then raises the question of detecting when a model will be mis-

specified, which is no trivial task. Even in settings where the cluster-level model does

not degenerate the particular selection of observations may result in model behaviour

that deviates significantly from the user’s initial perception of a suitable output. The

final approach is the one adopted for the UNCOVER algorithm given in chapter 4;

we introduce a Bayesian framework where our prior beliefs on the parameters that

govern the model heavily influence our posterior belief on the parameters when

confronted with a cluster that contains a small number of observations.

Initially we begin with the frequentist tools for a parametric model, namely the

model parameters Θ and likelihood π(y|X,Θ). In a Bayesian setting, we assume

a prior distribution π(Θ) for the parameters Θ which can be combined with the

likelihood through Bayes theorem to obtain a posterior distribution π(Θ|y,X).

π(Θ|y,X) =
π(y|X,Θ)π(Θ)

π(y|X)
=

π(y|X,Θ)π(Θ)∫
π(y|X,Θ)π(Θ)dΘ

(3.1)

This formulation of a parametric model is useful in two key areas; the first be-

ing from a general standpoint of expressing uncertainty in the model parameters.

Indeed, for small clusters with limited data, even when the responses are not lin-

early separable we may not be certain that the data provided gives a fully accurate

representation of the true cluster, and so we can express this uncertainty in a rig-

orous manner through a Bayesian set-up. Secondly, a Bayesian framework allows

for constraints to be placed upon the parameters, which in turn results in realistic
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model outputs. Referring back to the singular class response example above, a rea-

sonable prior which gives low probability to extremely large values of the regression

coefficients then protects the model from making unrealistic singular predictions.

The use of Bayesian posteriors also naturally allows for prediction of the re-

sponse of a new observation x⋆ through the definition of the posterior predictive

distribution:

π(y⋆ | x⋆,y,X) =

∫
π(y⋆ | x⋆,y,X,Θ)π(Θ | x⋆,y,X)dΘ

=

∫
π(y⋆ | x⋆,Θ)π(Θ | y,X)dΘ = Eπ(Θ|y,X) (π(y

⋆ | x⋆,Θ)) (3.2)

Equation (3.2) gives the marginal distribution for a general value of y⋆, however,

we can also gain specific posterior probabilities. For example, if Y ∈ {0, 1}, the

posterior probability of y⋆ = 1 would simply be

Eπ(Θ|y,X) (π(y
⋆ = 1 | x⋆,Θ)) (3.3)

An important aspect of a Bayesian posterior is the normalisation constant in

equation (3.1):

Z = π(y|X) =

∫
π(y|X,Θ)π(Θ)dΘ (3.4)

Z can be viewed as a measure of how well the model explains the data given,

and as such is referred to as the ‘evidence’ of a model, giving the alternate name

‘Bayesian evidence’. Due to the integral in equation (3.4) being often intractable2,

calculation of Z typically requires a numerical solution. This can be approached in

several ways, some of which are detailed in subsequent sections.

3.1.1 Importance Sampling

In order to provide a method to estimate Z, the fundamentals of importance sam-

pling [34, 35] must be covered, and can typically be viewed as a solution to the

2Selection of a conjugate prior would make the integral tractable but this naturally restricts
our choice of prior.
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following problem with standard Monte Carlo integration.

Equation (3.4) can be interpreted as an expectation with respect to the prior,

i.e.

Z = Eπ(Θ) (π(y|X,Θ)) (3.5)

This expectation can then be approximated with a standard Monte Carlo estimate

as shown in equation (3.6), given N samples ((Θ1, . . . ,ΘN)
T ) from the prior.

Z ≈ 1

N

N∑
r=1

π(y|X,Θr) = Ẑ (3.6)

One may question the variability of the estimator Ẑ, which can be expressed as

Varπ(Θ)(Ẑ) = Eπ(Θ)(Ẑ
2)−

(
Eπ(Θ)(Ẑ)

)2
(3.7)

Assuming an i.i.d. sample from the prior (letting h(Θ) = π(y|X,Θ)),

Eπ(Θ)(Ẑ) =
1

N

N∑
r=1

Eπ(Θ)(h(Θr))

=
1

N

N∑
r=1

Eπ(Θ)(h(Θ)) = Eπ(Θ)(h(Θ)) (3.8)

Eπ(Θ)(Ẑ
2) =

1

N2
Eπ(Θ)

( N∑
r=1

h(Θr)

)2


=
1

N2

(
N∑
r=1

Eπ(Θ)(h(Θr)
2) +

∑
r ̸=s

Eπ(Θ)(h(Θr))Eπ(Θ)(h(Θs))

)

=
1

N
Eπ(Θ)(h(Θ)2) +

N − 1

N

(
Eπ(Θ)(h(Θ))

)2
(3.9)

Therefore we can express the variance as

Varπ(Θ)(Ẑ) =
1

N
Eπ(Θ)(h(Θ)2)− 1

N

(
Eπ(Θ)(h(Θ))

)2
=

1

N
Varπ(Θ)(h(Θ)) (3.10)

From equation (3.10) we can deduce that the variability of our estimator depends
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on the variability of h(Θ) under the prior. An interpretation of this is that if values

with high density under the prior produce extremely varied results when passed

through the function h, then the variance of our estimator will be high. Therefore,

if we can adapt both the function h(Θ) and the distribution π(Θ) such that high

density values from the adapted distribution give similar outputs from the adapted

function, whilst also still estimating the correct quantity, we will have an estimator

with reduced variability. This is the motivation behind importance sampling, and

can be expressed through interpreting the Bayesian evidence in the following way3

Z =

∫
π(y|X,Θ)π(Θ)dΘ

=

∫
π(y|X,Θ)

π(Θ)

π̃(Θ)
π̃(Θ)dΘ

= Eπ̃(Θ)

(
π(y|X,Θ)π(Θ)

π̃(Θ)

)
= Eπ̃(Θ)

(
h̃(Θ)

)
(3.11)

Approximation of the expectation (3.11) now gives an estimator whose variance

depends on the variability of h̃(Θ) under π̃, and so selection of π̃ (as this also

defines h̃) can be utilised to reduce the variance significantly.

Finally, we note that importance sampling is not exclusively a Bayesian concept

for determining normalisation constants for posteriors. The scope of importance

sampling is much broader than this, as it is perfectly feasible to select any function

h along with any distribution. An example of this would be determining the prob-

ability of rare events given a distribution. A brute force method would be highly

variable due to the rarity of the event, but selection of a truncated distribution

which has a much higher density in the target region would produce less variable

results. Additionally, the motivation may not even be variance reduction, instead

being a method of estimating the expected value of a function using a distribution

that is easier to sample from than the true distribution.

3Note that this interpretation is only valid if the support of π̃(Θ) contains the support of π(Θ).
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3.1.2 Sequential Monte Carlo

Importance sampling provides a potential solution to the poor estimation one would

achieve with approximating Z using prior samples, however, the question still re-

mains of what distribution to select for π̃. Instinctively the desired distribution in

terms of variance reduction would be the full posterior, although this returns us to

the original issue of obtaining Z. Suitable candidates would then be distributions

which are similar to that of the full posterior, but again sampling from these dis-

tributions is challenging. Through the technique known as Sequential Monte Carlo

(SMC) we can remove the idea of using a single distribution and instead create a

sequence of bridging distributions, π0, . . . , πT = π(Θ|y,X), to gradually approach

the full posterior. With careful construction of these bridging distributions so that

each distribution is ‘close’ to its neighbour in the sequence, we can produce a se-

quence of samples which eventually arrive at the posterior (whilst also being able to

produce a sequence of normalisation constants along the way).

The history behind SMC samplers is extensive and varied, having roots com-

ing from particle filters, sequential importance sampling and Markov Chain Monte

Carlo (MCMC). Whilst this history is not covered here, an outstanding introduc-

tion into the background and subsequent use of SMC samplers is given by Dai

et.al [36]. Indeed, the focus up until this point has been on SMC sampler’s capa-

bility of producing normalisation constants, however, the ability of SMC samplers

to eventually provide samples from the posterior is incredibly useful for inferential

purposes, specifically for estimation of the expectation given in equation (3.2).

Amongst the predecessors of SMC samplers, MCMC methods are of particular

significance as they remain a popular choice for posterior sampling, and often per-

form a crucial role as a component of SMC. MCMC can be briefly described as a

stochastic process which, starting with an initial value, constructs a chain of samples

which will eventually produce samples from the stationary distribution. In Bayesian

settings this stationary distribution is the posterior. The general mechanics along

with the theoretical guarantees of the process are omitted here, as for the require-

ments of the methods used in this thesis (specifically the iterated batch importance
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sampling scheme) MCMC samplers are only utilised as a component of an SMC

sampler, where the theoretical stationary properties are less relevant4. Despite this,

an important concept that does require definition is that of a Markov Kernel, which

is used to transition one sample to the next.

Definition 3.1.1 (Markov Kernel). Let X and Y be the state space of the current

variable and the target variable respectively, and let M : X × Y → [0, 1] be a mea-

surable function. If
∫
Y
M(x, dy) = 1 and

∫
Y M(x, dy) = M(x,Y) for all measurable

subsets Y ⊂ Y then M is a Markov kernel.

For an in-depth description of concepts such as Markov kernels and MCMC

a detailed introduction is given by Brooks et.al [37], however a simple intuition

of a Markov kernel is the mechanism that allows for the definition of transition

probabilities from values in X to measurable subsets of Y . Below we cover the basic

form of a generic Bayesian SMC sampler to provide context to Chopin’s Iterated

Batch Importance Sampling (IBIS) scheme [9], which will be a major component of

the UNCOVER method detailed in chapter 4.

Starting initially with samples (Θ
{0}
1 , . . . ,Θ

{0}
N )T from the prior (labelled π0),

in order to gain samples (Θ
{1}
1 , . . . ,Θ

{1}
N )T from the next bridging distribution, π1,

one could apply a Markov kernel M1(Θ
{0}
r ,Θ{1}

r ) that targets π1 to the individual

samples. The samples (Θ
{1}
1 , . . . ,Θ

{1}
N )T obtained from this transition, however, will

not be direct samples from π1, and will have the following proposal distribution

π̃1(Θ
{1}) ∝

∫
M1(Θ

{0},Θ{1})π0(Θ
{0})dΘ{0} (3.12)

As a result the samples will need to be weighted with the ratio of the target distri-

bution over the proposal, i.e. π1(Θ
{1})/π̃1(Θ

{1})5.

Unfortunately, the majority of the time the integral
∫
M1(Θ

{0},Θ{1})π0(Θ
{0})dΘ{0}

is intractable (although as we shall see later there are notable exceptions) and so

4Samples are weighted by their neighbouring bridging distributions under SMC, therefore the
MCMC sampler is only required to move the samples to an area of higher density with regards to
the next bridging distribution.

5Note that the weights can be a ratio of un-normalised densities. All that is required is that
after calculation the sample weights are transformed such that the sum of all sample weights equals
one. This is known as self-normalised importance sampling.
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the weights cannot be computed. However, Del Moral et.al [38] offered a different

perspective, noting that M1(Θ
{0},Θ{1})π0(Θ

{0}) can be viewed as the proposal dis-

tribution on the joint space (Θ{0},Θ{1}). This proposal is then tractable and so by

targeting the joint space we can define computable weights. Of course this requires

a joint space target, and so we define the target distribution as the distribution

proportional to

L0(Θ
{1},Θ{0})π1(Θ

{1}) (3.13)

where L0(Θ
{1},Θ{0}) is a backward Markov kernel going from Θ{1} to Θ{0}. So,

with M1(Θ
{0},Θ{1})π0(Θ

{0}) as the proposal and L0(Θ
{1},Θ{0})π1(Θ

{1}) as the

target distribution, the un-normalised weights for samples from the proposal can be

expressed as (
L0(Θ

{1}
r ,Θ{0}

r )γ1(Θ
{1}
r )

M1(Θ
{0}
r ,Θ{1}

r )γ0(Θ
{0}
r )

)
:= w̃{1}(Θ{0}

r ,Θ{1}
r ) (3.14)

where γ represents an un-normalised density (i.e. γ0 and γ1 are the un-normalised

densities of π0 and π1 respectively). Crucially, we note that due to the definition of

a Markov kernel we have

∫
L0(Θ

{1},Θ{0})π1(Θ
{1})dΘ{0} = π1(Θ

{1}) (3.15)

and so π1 is a marginal distribution of the target distribution for the joint space.

Therefore, weights given to the joint samples for the joint target are applicable to

the samples Θ{1}
r for r = 1, . . . , N as weights for the marginal distribution π1, which

allows us to state (
w̃{1}(Θ{0}

r ,Θ{1}
r )∑N

s=1 w̃
{1}(Θ{0}

s ,Θ{1}
s )

)
Θ{1}

r ∼ π1 (3.16)

With equation (3.15) and the equivalent formulation for the marginal distribution

of M1(Θ
{0},Θ{1})γ0(Θ

{0}) with respect to Θ{0}, it is clear that the normalisation

constants for M1(Θ
{0},Θ{1})γ0(Θ

{0}) and L0(Θ
{1},Θ{0})γ1(Θ

{1}) are equivalent to

the normalisation constants for γ1 and γ0 respectively6. As a result we can also

6This terminology is introduced such that it can be generalised to other bridging distributions,
but here we can simplify matters by acknowledging γ0 = π0 as π0 is the prior.
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utilise the weights to gain an estimate for the normalisation constant of π1:

Ẑ1 =
1

N

N∑
r=1

w̃{1}(Θ{0}
r ,Θ{1}

r ) (3.17)

In reality what we have estimated is Z1/Z0, but given we started with the prior

Z0 = 1. In general going from bridging distribution t to t+ 1 we have

Zt+1 =

∫
Lt(Θ

{t+1},Θ{t})γt+1(Θ
{t+1})dΘ{t,t+1}

= Zt

∫
w̃{t+1}(Θ{t},Θ{t+1})Mt+1(Θ

{t},Θ{t+1})πt(Θ
{t})dΘ{t,t+1}

=⇒ Zt+1

Zt

≈ 1

N

N∑
r=1

w̃{t+1}(Θ{t}
r ,Θ{t+1}

r ) (3.18)

where Θ{t,t+1} = (Θ{t},Θ{t+1}). Therefore

Ẑt =
t−1∏
u=0

Ẑu+1

Zu

(3.19)

Through repetition of this weighting procedure, combined with a sequence of

forward and backward kernels, we can go from prior samples to full posterior samples

by simply applying the forward kernels to the samples at each bridging step and

calculating the weights by taking the product of the current weight with all previous

weights. Even with the transitioning of samples through the Markov kernels, the

weights of some samples can become degenerate. So in order to keep the number of

non-degenerate samples high we can resample, with replacement, at each iteration

according to the current weights of the sample. This then allows for samples with low

weight to be filtered out of the system, ensuring that by the time we reach the full

posterior we avoid the scenario where only a few samples can actively contribute

to the normalisation constant estimation. Note that there are several available

techniques that one can choose for the resampling scheme [39], but for simplicity we

continue with a standard multinomial resampling.

Combining all these aspects gives an algorithm for a generic SMC sampler, de-

tailed in algorithm 2.
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Algorithm 2: Υ–step Sequential Monte Carlo Sampler

Input : Un-normalised Bridging Densities — γ1, . . . , γΥ,
Forward Kernels — M1, . . . ,MΥ, Backwards Kernels — L0, . . . , LΥ−1,
Number of Samples — N
Initialisation : Let t = 0, (Θ

{t}
1 , . . . ,Θ

{t}
N )T where Θ{t}

r ∼ π(Θ),

w{t} = (w
{t}
1 , . . . , w

{t}
N )T = 1

N
, Z = 1

Step 1 : Let (Θ̃
{t}
1 , . . . , Θ̃

{t}
N )T = (Θ

{t}
1 , . . . ,Θ

{t}
N )T

Step 2 : for r = 1, . . . , N do

Sample Θ{t}
r from {Θ̃{t}

1 , . . . , Θ̃
{t}
N }, where P(Θ{t}

r = Θ̃
{t}
s ) = ws

end
Step 3 : for r = 1, . . . , N do

Sample Θ{t+1}
r ∼ Mt+1(Θ

{t}
r , ·)

end
Step 4 : for r = 1, . . . , N do

Let

w̃{t+1}
r = w̃{t+1}(Θ{t}

r ,Θ{t+1}
r ) =

(
Lt(Θ

{t+1}
r ,Θ{t}

r )γt+1(Θ
{t+1}
r )

Mt+1(Θ
{t}
r ,Θ{t+1}

r )γt(Θ
{t}
r )

)

end
Let

w{t+1} =
w̃{t+1}∑N
r=1 w̃

{t+1}
r

Step 5 : Update

Z = Z × 1

N

N∑
r=1

w̃{t+1}
r

Step 6 : if t+ 1 = Υ then
Stop.

else
Update t = t+ 1. Go to step 1.

end

Result : Posterior Samples — (Θ
{t+1}
1 , . . . ,Θ

{t+1}
N )T ,

Weight Vector — w{t+1}, Bayesian Evidence — Z

3.1.2.1 Iterated Batch Importance Sampling

A specific version of the SMC sampler introduced above that will be a key component

in later chapters is Chopin’s Iterated Batch Importance Sampling (IBIS) scheme [9],

so we provide a more detailed exposition of this variant. Here we separate the

observation indices {1, . . . , n} into Υ batches, B1, . . . ,BΥ, and define the bridging
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distributions (noting that observations here are i.i.d.) as

πt = π

(
Θ

∣∣∣∣∣ y,X,

t⋃
s=1

Bs

)
∝

[
n∏

i=1

[π(yi | Θ,xi)]
1(i∈

⋃t
s=1 Bs)

]
π(Θ) (3.20)

Interestingly, Chopin’s method deviates from the generic SMC sampler given in

algorithm 2 in a simple but important manner, by changing the order of the steps.

The generic SMC sampler follows the order of resample-move-weight, whereas IBIS

follows the order of weight-resample-move. The choice of step order does not change

the procedure fundamentally, but does allow for further use of the weights as a

degenerate sampler indicator, the details of which are clarified later in this section.

For the move step, we require a sampling procedure to transition the old set

of particles to a new set more representative of the current bridging distribution.

There are many MCMC moves that can achieve this (although for SMC the move

need not be associated with MCMC), however, the recommended procedure is the

Independent Metropolis–Hastings method [40]. The one-step application of this for

a single sample is given in algorithm 3, where q is the proposal distribution.

Algorithm 3: One-step Independent Metropolis–Hastings Sampler

Input : Current Distribution Samples — Θ{t}, Proposal Distribution — q
Step 1 : Sample Θ{t+1} ∼ q
Step 2 : Let

α(Θ{t},Θ{t+1}) = min

{
1,

πt+1(Θ
{t+1})q(Θ{t})

πt+1(Θ
{t})q(Θ{t+1})

}

Step 3 : Sample u ∼ U[0,1]

Step 4 : if u < α(Θ{t},Θ{t+1}) then
Stop.

else

Let Θ{t+1} = Θ{t}. Stop.
end

Result : Target Distribution Samples — Θ{t+1}

The proposal distribution was suggested by Chopin to be a multivariate normal
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distribution, with parameters

µ = wT (Θ
{t}
1 , . . . ,Θ

{t}
N )T (3.21)

Σ =
(
(Θ

{t}
1 , . . . ,Θ

{t}
N )T − µ

)T
diag{w}

(
(Θ

{t}
1 , . . . ,Θ

{t}
N )T − µ

)
(3.22)

where w = (w1, . . . , wN)
T refers to the vector of weights associated to the samples

Θ
{t}
1 , . . . ,Θ

{t}
N and diag{w}ij = wi1(i = j). The reasoning behind these parameter

choices is that the weighted mean and variance is the closest representation we have

to the target distribution parameters given the current set of samples. Addition-

ally, although this specification of the parameters gives a weak dependence on the

current samples, each proposed sample is not directly obtained from its correspond-

ing current sample and therefore the independent Metropolis–Hastings sampler is

still valid. The form of the proposal as a multivariate normal is justified through

Bernstein–von Mises theorem.

Theorem 3.1.1 (Bernstein–von Mises). Let (Y1, X1), . . . , (Yn, Xn) be i.i.d. variables

with likelihood
∏n

i=1 π(Y | X,Θ). Let; l = log(π(Y | X,Θ)), Θ0 be the true param-

eter and I(Θ) = −E(Y,X)

(
∂2l
∂Θ2

)
be the fisher information matrix. Under certain

regularity conditions, we have

√
n(Θ−Θ0)

D−−−−→ N (0, I−1(Θ0))

Theorem 3.1.1 only shows a singular result from the umbrella term of Bernstein

von Mises theorem, and the regularity conditions for convergence can vary signif-

icantly. Indeed, a wide variety of proofs exist for various conditions [41–43], but

for the purposes of this thesis we will assume that the conditions are met for the

remainder of the problems unless stated otherwise. Indeed, for Bayesian logistic

regression models these conditions can be easily met through selection of a suitable

prior, as the log likelihood is twice differentiable.

From theorem 3.1.1, given our prior specification is reasonable, we can assume

that the distribution of the partial posterior (i.e. a bridging distribution for an

IBIS sampler) after a certain number of steps is approximately normal, as for IBIS
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progression through the bridging distributions results in the addition of observations

which increases n.

The transition kernel Mt+1(Θ
{t},Θ{t+1}) for this procedure is given as

α(Θ{t},Θ{t+1})q(Θ{t+1}) +

(∫
(1− α(Θ{t},Θ{t+1}))dq(Θ{t+1})

)
δΘ{t}(Θ{t+1})

(3.23)

where α is as defined in algorithm 3 and δΘ{t}(Θ{t+1}) = δ(Θ{t+1} − Θ{t}) is the

Dirac delta function describing a point mass distribution atΘ{t}. Through a suitable

choice of backward kernels, i.e.

Lt(Θ
{t+1},Θ{t}) =

πt+1(Θ
{t})Mt+1(Θ

{t},Θ{t+1})

πt+1(Θ
{t+1})

(3.24)

the weight equation given in algorithm 2 simplifies to

w̃{t+1}
r =

γt+1(Θ
{t}
r )

γt(Θ
{t}
r )

=
n∏

i=1

[
π(yi | Θ{t}

r ,xi)
]
1(i∈Bt+1)

(3.25)

Equation (3.25) represents the weights used in the weight step of IBIS. Initially we

will have not completed a move step, however, at this stage we already have direct

samples from the previous distribution (the prior) and so the form of the weights is

unaltered.

One may wonder what the purpose of changing the step order is. Whilst Chopin’s

paper was published years before a generalised framework was introduced by Del

Moral et.al [38], the order Chopin selected alludes to the fact that resample-move

steps need not happen at every iteration. Indeed, for bridging distributions suffi-

ciently close, a large amount of samples are unlikely to be degenerate and therefore

resampling and moving at every iteration could become unnecessarily computa-

tionally expensive. Therefore, if we can detect when the sample set is in need of

rejuvenation then we only need resample-move when this occurs. Detection can be

achieved by first noting that a sample becomes degenerate when its corresponding

weight becomes degenerate, and then noting that degeneracy of the weights can be

assessed through their variability. Kong et.al [44] introduced a measure for weight

variability, known as the Effective Sample Size (ESS), which for weight vector w is
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given as: (∑N
r=1wr

)2
wTw

(3.26)

The ESS has a minimum value of 1 (which can be achieved when one sample has

weight 1 and the other samples have weight 0) and a maximum value of N (which

can be achieved when all samples have weight 1
N
). Higher values of the ESS are

obtained through greater uniformity of the weights, with the rationale being that

uniformity represents either all samples being in areas of high density under the next

distribution or all samples being in areas of low density under the next distribution.

Given the bridging distributions are selected to be similar to their neighbours it

should be highly likely that uniformity implies the former. On the other hand, highly

variable weights implies that some samples are in areas of much higher density than

other samples, and so a rejuvenation is required to remove these under-performing

samples.

So, through selection of a threshold ξ, we need only implement a resample-move

step if the ESS falls below ξ. If we do not resample and move, however, we must note

that the sample set obviously remains the same and so in essence this translates to

remaining at the current distribution (when only considering the samples and not

their associated weights). Therefore we have skipped over a bridging distribution

and moved to the next distribution in the sequence. This might call into question

our assumption of a uniform weighting being desirable; however, if all bridging

distributions are similar to their neighbours it still remains much more likely that

samples degenerate at different rates as opposed to all samples becoming degenerate

at the same time. Chopin noticed a separate issue with the ESS, namely the handling

of identical samples. If samples are identical (which can occur through resampling

and rejected moves), the ESS can be artificially increased, potentially leading to

degeneracy going undetected. A simple example to highlight is the following: one

sample will always have an ESS of 1, but a sample set of one sample repeated N

times will always have an ESS of N . So to combat this, for the calculation of the

ESS we pool identical samples weights together.

All of these techniques combined leads to the IBIS algorithm (algorithm 4).
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Algorithm 4: Υ-batch Iterated Batch Importance Sampler

Input : Covariate Matrix — X, Response Vector — y,
ESS Threshold — ξ, Batches —B1, . . .BΥ, Number of Samples — N
Initialisation : Let t = 0, t̃ = 0, (Θ

{t}
1 , . . . ,Θ

{t}
N )T where Θ{t}

r ∼ π(Θ),

w{t} = (w
{t}
1 , . . . , w

{t}
N )T = 1

N
, Z = 1

Step 1 : for r = 1, . . . , N do
Let

w̃t+1
r =

n∏
i=1

[
π(yi | Θ{t}

r ,xi)
]
1

(
i∈

⋃t+1
s=t̃+1

Bs

)

end

Let w{t+1} = w̃{t+1}∑N
r=1 w̃

{t+1}
r

Step 2 : Pool together identical samples: Let δ† be the index vector of the
unique elements of (Θ

{t}
1 , . . . ,Θ

{t}
N )T . Let δ†† ∈ N|δ†| be such that

δ††i = |{r ∈ {1, . . . , N} : Θr = Θδ†i
}|.

Step 3 : if ∑
r∈δ†

w{t+1}
r δ††r

2/∑
r∈δ†

(
w{t+1}

r δ††r
)2

< ξ

then

Let t̃ = t+ 1. Let (Θ̃
{t}
1 , . . . , Θ̃

{t}
N )T = (Θ

{t}
1 , . . . ,Θ

{t}
N )T . Let

q ∼ N (µ,Σ) with µ = (w{t+1})T (Θ
{t}
1 , . . . ,Θ

{t}
N )T ,

Σ =
(
(Θ

{t}
1 , . . . ,Θ

{t}
N )T − µ

)T
diag{w{t+1}}

(
(Θ

{t}
1 , . . . ,Θ

{t}
N )T − µ

)
For r = 1, . . . , N sample Θ{t}

r from {Θ̃{t}
1 , . . . , Θ̃

{t}
N }, where

P(Θ{t}
r = Θ̃

{t}
s ) = w

{t+1}
s , and then sample Θ{t+1}

r using algorithm 3.

Update Z = Z × 1
N

∑N
r=1 w̃

{t+1}
r

else

(Θ
{t+1}
1 , . . . ,Θ

{t+1}
N )T = (Θ

{t}
1 , . . . ,Θ

{t}
N )T

end
Step 4 : if t+ 1 = Υ then

if t̃ = Υ+ 1 then
Stop.

else

Update Z = Z × 1
N

∑N
r=1 w̃

{t+1}
r . Stop.

end

else
Update t = t+ 1. Go to step 1.

end

Result : Posterior Samples — (Θ
{t+1}
1 , . . . ,Θ

{t+1}
N )T ,

Weight Vector — w{t+1}, Bayesian Evidence — Z
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3.2 Selection of K

Clustering methods seen previously in chapter 2, both supervised and unsupervised,

have all had the common issue of a priori specification of the number of clusters, K.

The process for selecting K (which is not automatic for the majority of models) can

be viewed in two ways: either we aim to select the model which optimises a certain

criterion or we apply further Bayesian treatment by treating K as an unknown

parameter of the model. The latter will be explored in section 3.2.3 and the former

can be viewed from either a frequentist or Bayesian standpoint, both of which are

detailed below.

3.2.1 Frequentist Model Selection — Information Criteria

Frequentist methods for selecting K have been mentioned previously, with examples

being the silhouette method and the gap statistic for K-means clustering. These

methods are specific to unsupervised clustering, however. For supervised clustering

a method for selection of K must incorporate the modelling of the response given

the covariates. Specifically here we focus on model comparison between paramet-

ric models, as this allows for the utilisation of information criteria, which gives a

principled methodology for cluster selection (and indeed model selection in general).

A natural trade-off to consider when selecting the number of clusters for a para-

metric model is that of performance versus complexity. Indeed, this trade-off can

even be seen in non-parametric models such as decision trees through pruning of the

tree. In a frequentist parametric setting, however, we can view performance as the

likelihood value given the parameters and complexity as the number of parameters

(which is governed by the number of clusters). Akaike [45] quantifies this trade-off

through the Akaike Information Criterion (AIC)

AIC = 2ι− 2 log(L̂) (3.27)

where ι is the total number of estimated model parameters and L̂ is the maximum

value of the likelihood.
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Justification for the criterion in equation (3.27) is rooted in the concept of eval-

uating the Kullback–Leibler (KL) divergence between the suggested model and the

true distribution which generated the data. Indeed, it can be shown [46] that min-

imising the KL divergence is equivalent to minimising the Kullback discrepancy.

The expectation of this discrepancy (with respect to the true distribution) when

evaluated with the Maximum Likelihood Estimator (MLE) is asymptotically equiv-

alent to the expected value of the AIC with respect to the true distribution. The key

phrase here is asymptotically equivalent, meaning for finite data there are ignored

terms (resulting from the Taylor approximations made in the derivation of this re-

sult) which could potentially be highly influential when comparing models. Hurvich

and Tsai [47] tackle this issue for small datasets with a more accurate approximation.

An example for a specific model, say Finite Mixtures of Logistic Regression

(FMLR) models, would be

AICFMLR = 2(K(p+ 1) +K − 1)− 2
n∑

i=1

log

(
K∑
k=1

τ̂kπ(yi|xi, β̂k)

)
(3.28)

where p being the number of covariate variables and (τ̂ , B̂) being the maximum

likelihood estimates obtained through Iteratively Reweighted Least Squares (IRLS).

Models that produce a large likelihood value with a low number of parameters

are favourable, and so we aim to minimise the AIC. An alternative quantification of

the trade-off is the Bayesian Information Criterion (BIC) given by Schwarz [48]

BIC = log(n)ι− 2 log(L̂) (3.29)

Here we can see the two criteria are similar in structure, with the difference coming

in the model complexity penalty. The change from 2 to log(n) results in BIC more

heavily penalising complexity in settings where n ≫ ι.

For sufficiently large values of n it can be shown that a transformation of the

BIC value for a model is a suitable approximation to the Bayesian Evidence. The

approximation is given below:

Z ≈ e−
BIC
2 (3.30)
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A rough guide for the derivation of this approximation would be to produce a

second-order Taylor approximation of the log likelihood, and then use this approxi-

mation to produce a further Laplace approximation of the integral itself. A complete

derivation is given by Konishi and Kitagawa [49]. Naturally, these approximations

become exact asymptotically and therefore we arrive at the suitable approximation

for large n, provided of course the prior behaves in a suitable way (the MLE being

a possible sample from the prior, for example). For small n, however, these approx-

imations will not be suitable and the results of Z and e−
BIC
2 can differ wildly. This

failure of approximation can also occur if the MLE is not finite, which is a possibility

for completely separable data.

For both criteria IRLS [25] is required to determine the maximum likelihood.

In order to give the procedure for IRLS, we must first relate the method to typical

maximum likelihood estimation. Starting with the log likelihood (l = log(L)), we

aim to derive estimates of the model parameters Θ7 which give

∂l

∂ΘT
= 0 (3.31)

Typically these set of equations cannot be solved analytically and so starting from

an initial point Θ0 we can produce a Taylor expansion to get the following approx-

imation
∂l

∂ΘT
≈ ∂l

∂ΘT
(Θ0) + (Θ−Θ0)

∂2l

∂ΘTΘ
(Θ0) (3.32)

With this approximation we can then determine the next iteration’s value as

Θ1 = Θ0 +

[
− ∂2l

∂ΘTΘ
(Θ0)

]−1
∂l

∂ΘT
(Θ0) (3.33)

and can repeat this process until convergence, as shown in algorithm 5.

Algorithm 5 highlights the potential challenges with using information criteria, as

convergence of this algorithm in general is not guaranteed, which has been witnessed

when regression coefficients tend to infinite values.

7Θ here represents a combined vector of all model parameters, so for example this would take
the form of (τ ,β1, . . . ,βK)T for a FMLR model.
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Algorithm 5: Iteratively Reweighted Least Squares

Input : Covariate Matrix — X = (x1, . . . ,xn)
T , Coefficient Vector — Θ,

Response Vector — y = (y1, . . . , yn)
T , Convergence Threshold — η > 0

Step 1 : Let

Θ̃ = Θ+

[
− ∂2l

∂ΘTΘ
(Θ)

]−1
∂l

∂ΘT
(Θ)

Step 2 : if ∥Θ̃−Θ∥2 < η then

Let Θ = Θ̃. Stop.
else

Let Θ = Θ̃. Go to step 1.
end
Result : Θ

3.2.2 Bayesian Model Selection

Examples of model selection in Bayesian settings have been seen previously, namely

the Bayesian evidence Z. As stated in section 3.1, Z gives a measure of how well

the model is explaining the data. Logically it follows that if model A produces a

higher Bayesian evidence than model B, model A should be selected. Whilst the

use of Z for model selection has a much wider scope than purely the selection of the

number of clusters, models with differing values for K can be compared using this

method as they (by definition) present differing model structures. This naturally is

true regardless of whether the cluster-level models are identical due to the different

number of model parameters. For example consider MoE models where K = 2 and

K = 3 respectively. The form of the individual expert models may be identical but

the overall models will have different structure (if there are p covariates then the

K = 2 model will have 2× ((p+1)+ (p+1)) parameters and the K = 3 model will

have 3× ((p+ 1) + (p+ 1)) parameters8).

One of the criticisms leveraged at the use of the Bayesian evidence as a measure

of model fit is that assessment of the model is too heavily dependent on the prior [50].

Whilst it can be argued from a frequentist standpoint that the prior acting as an

abstract penalty term is undesirable, for a large number of observations this becomes

8In general, if a one cluster model has a ∈ R parameters, a K cluster model must have K × a
parameters.
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a less contentious topic as (under certain conditions) Bernstein von Mises theorem

shows that the posterior asymptotically is not impacted by the prior.

An alternative to basic Bayesian evidence comparison is to consider the ratio of

Bayesian evidences, also known as the Bayes factor [51,52]. This, however, refers to

a specific form of model comparison where we have pre-selected a model to be the

null hypothesis and the other model acts as an alternative (this selection decides

the numerator and denominator for the ratio). In reality it may not be possible to

make this distinction for two competing models. Nevertheless, the Bayes factor will

produce a value on which we can evaluate our preference for the null hypothesis in

response to the alternative. This evaluation is typically carried out in accordance to

the Jeffreys scale [53], which provides an interpretation to values which fall within

certain ranges.

Computation of Z, as we have seen, is not a trivial task due to the possible

intractability of the integral [54]. Methods such as Sequential Monte Carlo (SMC)

do provide a practical method of estimation, but the storage of large numbers of

samples as well as their propagation through various bridging distributions could

result in a computationally expensive method for model comparison.

3.2.3 Bayesian Treatment of K

Given the model parameters are considered unknown and therefore subject to Bayesian

analysis, it would appear natural to also consider the number of clusters K as un-

known. This treatment of K, however, is not as straightforward as the standard

model parameters, as the existence of model parameters intrinsically depends on

K itself. There are various different methods to combat this issue, with the two

most popular general methods being Reversible Jump Markov Chain Monte Carlo

(RJMCMC) [55] and Dirichlet Process Priors [56], both detailed in appendix A.4.

Despite the popularity of these methods, quantifying uncertainty in K (in the

setting of joint cohort detection and predictive modelling) results in more complex

models being utilised to further depart from the fundamental interpretability aspect

of the thesis. Indeed, specifying a prior belief in the number of clusters by definition

results in a probabilistic output for the number of clusters, and therefore the cluster
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assignment process. This soft clustering output is (as we have argued previously)

undesirable if clear separable cohort detection is required, and so does not justify

the increased complexity of the model.

3.2.4 Summary

Often in settings where data is partitioned into much smaller subsets, the asymptotic

guarantees of parameter estimation in a frequentist framework serve little relevance.

Therefore, adopting the Bayesian paradigm allows us to work with small finite data

and makes the creation of smaller clusters more viable.

A Bayesian model also avoids potential frequentist issues with model selection

when presented with finite data, as the prior can behave as a necessary model con-

straint (when using the Bayesian evidence as a model selection tool). The estimation

of Bayesian evidence can be difficult, but through techniques such as SMC it is pos-

sible to provide an accurate estimate.

Finally, we note that the shift from frequentist to Bayesian frameworks should not

alter the key requirements of the stakeholder. We can categorise this as internal and

external uncertainty quantification. Internal uncertainty quantification expresses

uncertainty in the parameters of the models which drive prediction, but does not

explicitly express uncertainty in the cohort generation methodology. This is seen

as internal as the stakeholder does not witness the uncertainty quantification, as

both frequentist and Bayesian models still produce a predictive score, regardless of

the handling of the model parameters. On the other hand, examples of external

uncertainty quantification are the treatment of the number of clusters as unknown

or a soft clustering assignment. This is external as the uncertainty quantification

is witnessed by the stakeholder as it appears in the final output (which is not

desirable from an interpretability perspective). Referring back to a previous example

of predicting risk scores for patients whilst simultaneously creating patient cohorts,

giving patients risk scores offers assistance for preventative measures to be put in

place, but cohort detection allows for separate treatment plans to be devised. If the

number of treatment plans is probabilistic this instantly creates an issue, as does

patients being assigned to treatment plans probabilistically (ideally patients should
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be assigned to one treatment plan and one treatment plan only). This highlights the

fine line one must consider when approaching uncertainty quantification for practical

applications.

3.3 Graphical Representation of Data

When considering the visualisation of data for stakeholders, it is important to allow

the clustering to be interpretable in low dimensions. However, constructing a clus-

tering method which operates in a high-dimensional state but that can be visualised

in an interpretable manner in low dimensions is not a trivial task. Construction of

such a method can be used in conjuncture with stakeholder’s prior opinions on the

relevance of certain covariates to cohort generation — a technique which forms a

crucial part of the research conducted for this thesis and as such will be covered in

detail in chapter 4. An existing alternative to this is to project the data in lower

dimensions and then perform the clustering method. An example of this would be

Principal Component Analysis [57], but crucially dimension reduction techniques by

default require a loss of information when projecting down into a lower space.

Another alternative, which will be the focus of this section, is to provide alter-

native visual aids to clarify the structure of the data in higher dimensions. This

approach has been seen previously in dendograms for hierarchical clustering (see

figure A.2). Instead of dendograms, we shall instead represent the data as a graph,

where observations form the vertices and edges between vertices will be weighted

by the Euclidean distance between observations. As a basic visualisation tool we

can plot a complete graph (see section 3.3.1) of the data, colour by cluster and then

use edge width to represent the distance between observations (edge width will be

given as the reciprocal of the Euclidean distance, meaning observations closer to

each other will have a larger edge width). This gives a visual understanding as to

how separated observations are within a cluster. An example of this can be seen in

figure 3.1 for the iris dataset [58].

It is well known property of the iris dataset that the setosa species is well sepa-

rated in covariate space, whereas the versicolor and virginica species are much closer
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Figure 3.1: Complete graph for a sample of ten observations from the iris dataset.
Colours correspond to the species of iris and labels represent observation indices in
the dataset.

together; this property can be expressed through the edge thickness in the graph.

In the remainder of this chapter we will highlight the key concepts and termi-

nology of graph theory that will be used in subsequent chapters. In addition to this

we shall also provide an in-depth description of the concept of a Minimum Span-

ning Tree (MST). MSTs provide a crucial function in understanding the underlying

structure of the covariate data and also provide much more informative plots than

the introductory plot given in figure 3.1. Finally, we will cover the current clustering

techniques that utilise MSTs.

3.3.1 Basic Graph Terminology

We begin with the formal definition of a graph:

Definition 3.3.1 (Graph). A Graph G = (V,E) is an ordered pair consisting of a

set of vertices V and a set of edges E.

In the context of data representation, we can assume the set of vertices V =

{1, . . . , n} represent the index set for our observations or alternatively the row index
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of the matrix X. Elements of the edge set E take the form {i, j} for the edge

connecting observation i to observation j. In this context i and j are known as

endpoints of the edge. The type of graph which is the focus for data representation

is a weighted graph, which insists that each edge {i, j} is assigned a weight eij.

Typically we assume that these weights are generated through the Euclidean distance

metric

eij = ∥xi − xj∥2 (3.34)

Due to this definition of edge weights we initially represent our data as a complete

graph.

Definition 3.3.2 (Complete Graph). A Graph G is said to be complete if for every

pair of vertices i and j there exists an edge {i, j}.

Other important concepts within graph theory are that of walks and paths:

Definition 3.3.3 (Walk). A walk W is a sequence of edges that results in a sequence

of vertices; letting Wi = {a, b} and Wi+1 = {c, d}, W cannot be a walk if b ̸= c.

Definition 3.3.4 (Path). A path P is a walk such that the resulting sequence of

vertices is unique.

The concept of a path can lead to certain properties of a graph being defined,

such as the diameter of a graph and a connected graph:

Definition 3.3.5 (Diameter). Let the weight of a path be the summation of the

weights of all the edges in the path. Let the shortest path between vertices i and j

be the path from i to j with the lowest weight. Considering the set of all possible

shortest paths in the graph G, the diameter path of G is the path in this set with the

largest weight. The diameter of G is the weight of the diameter path.

Definition 3.3.6 (Connected Graph). A graph G is said to be connected if there

exists a path between every pair of vertices.

By definition a complete graph is a connected graph, as the edge between a pair

of vertices is a path, and so creation of a complete graph from the data also ensures

the entire dataset is connected. The notion of a graph being connected has parallels
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to the concept of connected regions within covariate space. Connected regions have

been seen before, for example with K-means, and offer confidence to the user that

two sets of observations in the same cohort cannot have wildly differing attributes.

As such another important definition (whose relevance with respect to clustering

will be apparent in subsequent chapters) is that of subgraphs and components:

Definition 3.3.7 (Subgraph and Edge-induced Subgraph). A graph G⋆ = (V⋆,E⋆)

is known as a subgraph of G = (V,E) if; V⋆ ⊆ V, E⋆ ⊆ E and for every {i, j} ∈ E⋆,

i ∈ V⋆ and j ∈ V⋆. An edge-induced subgraph is a subgraph defined by the edge set

E⋆, with V⋆ consisting of only the edge endpoints in E⋆.

Definition 3.3.8 (Component). G⋆ is a component of graph G if G⋆ is a connected

subgraph of G and there does not exist any other subgraph of G that contains G⋆ and

is still connected.

As final definitions we introduce the idea of cycles and cuts, concepts crucial to

the construction of minimum spanning trees:

Definition 3.3.9 (Cycle). A cycle is a walk in which; the resulting vertex sequence

begins and ends at the same vertex and the removal of the start or end point of the

sequence results in a path.

Definition 3.3.10 (Cut and Cut-set). A cut is a partition of the vertices of a graph

G into two sets. The set of edges which have endpoints in different vertex sets is

known as the cut-set.

An example of a cut of the vertex set V = {1, . . . , 10} into sets V1 = {1, . . . , 5}

and V2 = {6, . . . , 10} from a complete graph is given in figure 3.2. Removal of all

of the edges in a cut set results in the splitting of one component of the graph into

two. This fact is important to remember for the UNCOVER algorithm in chapter 4.

This section covers a small set of definitions crucial to the research presented in this

thesis, however, for a more general introduction to graphical concepts and theory

West et.al [59] is highly recommended.
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Figure 3.2: Complete graph for ten vertices. The vertex set is partitioned into two
sets, represented by vertex colour. The edges highlighted in red are edges belonging
to the cut-set.

3.3.2 Minimum Spanning Trees

Minimum Spanning Trees (MSTs) offer an insight into the structure of covariate data

without enforcing any pre-determined properties (for example K-means clustering

enforcing linear separability). Once the data has been represented graphically an

MST simply offers a minimalist structure which captures the distance properties in

the data9. Below is the formal definition of spanning trees and minimum spanning

trees:

Definition 3.3.11 (Spanning Tree). If G = (V,E) is a connected graph, then T ⊆ E

is a Spanning Tree of G if the edge-induced subgraph GT = (VT,T) is such that;

V = VT, |T| = |V| − 1 and GT is connected.

Definition 3.3.12 (Minimum Spanning Tree). Let T⋆ be the set of all possible

9One may argue that the distance metric is pre-defined by the user and as such we are enforcing
some constraints on the data. Whilst this is valid, the distance metric can be defined in a manner
that best suits the individual problem, with the Euclidean distance being a common dissimilarity
measure for numerical data.

58



spanning trees of G = (V,E). Spanning tree T is a minimum spanning tree if

T = arg min
T̃∈T⋆

 ∑
{i,j}∈T̃

eij


Due to the properties of an MST (that for a connected graph of n observations

it contains n− 1 edges and connects n vertices) it follows that an MST contains no

cycles. Therefore the connectivity within the graph is minimal, a fact which can be

exploited for clustering purposes. This will be explored briefly below and in more

detail in chapter 4.

Figure 3.3 gives a visual example of an MST edge-induced subgraph. The struc-

ture of the data is highlighted here as we can clearly see how the numerical covariates

have an impact on species categorisation, as the MST shows how each of the different

species can be separated.

Figure 3.3: MST edge-induced subgraph of the graph given in figure 3.1. Colours
correspond to the species of iris and labels represent observation indices in the
dataset.

Construction of an MST is not a unique process, with multiple methods intro-

duced each utilising different properties of MSTs [60]. In this thesis we will focus
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on Prim’s algorithm [61]. Alongside Kruskal’s algorithm [62], Prim’s algorithm re-

mains a popular method for constructing MSTs due to the algorithm’s interpretable

methodology. It must be noted, however, that there are more complex computation-

ally efficient algorithms available, and indeed a vast amount of literature has been

dedicated to the production of these algorithms [63–65]. Even within the method-

ologies of Prim and Kruskal, different computational implementations have large

effects on the efficiency of the algorithms with regard to run-time. Specifically for

Prim’s, differences include whether the implementation is achieved through matrix

manipulation or priority queuing [66]. The rest of this section will not focus on the

computation of MSTs, however, this is discussed in section 8.1.3.

Prim’s algorithm utilises the following lemma:

Lemma 3.3.1 (Minimum Spanning Tree Cut Property). Let G be a connected graph

and let T be any MST of G. For any cut of G, if the cut set (C) of this cut contains

an edge {i, j} such that every other edge in C has weight strictly greater than eij,

then {i, j} ∈ T.

The proof of this lemma is straightforward by considering the contrary that

{i, j} /∈ T. Because of the connectivity property of an MST, every cut set in G

must contain an edge belonging to T, therefore if {i, j} /∈ T then there must be at

least one other edge in C belonging to T. Addition of {i, j} to T would then create

a cycle containing both {i, j} and another edge in C, say edge {a, b}. Removal of

{a, b} would then produce a spanning tree (due to the addition of {i, j}), however,

the weight of this tree would be less than the tree not containing {i, j}, therefore

exclusion of {i, j} cannot produce a spanning tree of minimal weight.

As a result, starting with a cut which separates a singular vertex from the other

vertices we can determine an MST edge. Moving endpoints to the other side of the

partition then creates a sequence of cuts which will accumulate in a full MST being

formed. This is the basis of Prim’s algorithm, and is given in full in algorithm 6.

It is important to note that algorithm 6 was initialised using a random vertex. In

the majority of scenarios, specifically where there exists a unique MST, the choice

of the initial vertex has no effect on the outputted MST. However, in the setting

where there does not exist a unique MST, the choice of initial vertex will influence
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Algorithm 6: Prim’s Algorithm

Input : Graph — G = (V,E)
Initialisation : Let T = ∅, Ṽ = ∅.
Step 1 : Select vertex i at random from V and add this vertex to Ṽ.
Step 2 : while Ṽ ̸= V do

Let C be the cut set between Ṽ and V\Ṽ. Select edge {a, b} ∈ C such
that

eab = min
c∈Ṽ,d∈V\Ṽ

{ecd}

Add {a, b} to T and add b to Ṽ.
end
Result : Minimum Spanning Tree — T

the output. In extreme situations different initialisations could produce MSTs that

capture different aspects of the data’s structure. As such, relating back to the graph-

ical representation of data, one should be cautious of the distance or dissimilarity

metric used in order to ensure these extreme situations do not occur.

Moving away briefly from the setting of connected graphs, consider a scenario

now in which the graph is unconnected and formed through a union of components

of the graph. Here we no longer have the necessary requirements to produce an

MST, however, we can produce a Minimum Spanning Forest (MSF).

Definition 3.3.13 (Minimum Spanning Forest). Assume graph G = (V,E) can

be partitioned into K > 1 components, i.e. G =
⋃K

k=1 Gk. Let Gk have its own

associated minimum spanning tree Tk, for k = 1, . . . , K. Then T is a minimum

spanning forest if T =
⋃K

k=1 Tk.

The use of MSTs and MSFs for unsupervised cluster analysis is well founded [67–

69], and in fact a particular use of MSTs for clustering has been presented previously

in the form of Agglomerative Single Linkage Hierarchical Clustering (ASLHC) [70].

Indeed, assume that for ASLHC the target is K = 1, then consider the process of

combining clusters as adding an edge between the two observations that produced

the minimum distance (which resulted in the clusters combination) to T. Due to the

definition of single linkage, all edges added satisfy the cut property and therefore

must all be MST edges, so if K = 1 the process will create an MST. As a result

ASLHC can be achieved through creation of an MST and then the subsequent
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removal of the K − 1 edges with the largest distance.

ASLHC is by no means the only way in which one could perform unsupervised

clustering using MSTs — there is a vast array of algorithms to produce clusters from

the MST structure, depending on the criteria for edge removal [71]. Interestingly,

the use of MSTs does not need to be restricted to unsupervised learning. This is a

core principle of the UNCOVER method given in chapter 4, but the idea of super-

vised spanning tree clustering has been documented before by Luo et.al [72]. The

methodology in this paper regards spatial modelling, specifically a spatial regression

model in which the spatial data is partitioned for each regression coefficient using

a Bayesian treatment of the spanning trees combined with a RJMCMC algorithm.

This differs somewhat to the problem outlined in this thesis (although the UN-

COVER method highlighted in chapter 4 is capable of clustering based on spatial

data), however, this method does highlight one of the multiple ways graph theory

can be utilised for supervised clustering.
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CHAPTER 4

UNCOVER: Utilising Normalisation Constant Optimisation Via

Edge Removal

The creation of a hard clustering output for cohort detection is an important aspect

for many practical applications of predictive modelling. Expressing the covariate

data graphically allows a hard clustering output to be achieved through the re-

moval of edges to create components of the graph. Interpreting these components

as cohorts then gives the hard clustering desired. Furthermore, utilising minimum

spanning trees, we are able to capture the structure of the data in covariate space

without the need for distributional assumptions.

Whilst a graphical representation of the covariate data provides a framework

for interpretable clustering via edge removal, the other key outline for this thesis,

predictive power of the resulting model, remains unaddressed. Incorporating the

response when creating the components of the graph would achieve this, and so this

chapter will be focused on detailing a novel procedure to accomplish just that. By

constructing a Bayesian product model which is induced by the current form of the

graph, we can obtain a principled model selection technique through comparison of

the Bayesian evidence of the various models suggested, resulting in a model with

components/clusters which best explains the data. In more detail, we aim to opti-
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mise the selection of an edge to remove given the current state of the graph. As such,

the method described in this chapter is greedy, but avoids the Bayesian treatment of

K whilst still allowing the number of clusters to vary. Giving the Bayesian Evidence

it’s alternate name of Normalisation Constant explains the title for this method —

Utilising Normalisation Constant Optimisation Via Edge Removal (UNCOVER).

This chapter will extensively detail the UNCOVER procedure, highlighting; the

initialisation of the graph and definition of the model structure, the process of esti-

mating the Bayesian evidence of the current model and potential models, the removal

edges and finally the reintroduction of edges to meet pre-specified criteria.

4.1 Initialisation

4.1.1 Sub-selection of Covariates

Starting initially with the covariate matrix X ∈ Rn×p, we wish to construct a graph

from this data which has a minimum spanning tree as an edge set. However, given

that the construction of said graph primarily is to aid interpretability, one must

take careful consideration into which covariates are selected. Indeed, the minimum

spanning tree generated from the data guides the possible cohorts one can obtain

from UNCOVER, and as a result expert opinion can be introduced here to select

the attributes which are believed to form the most informative cohorts.

Referring back to the SPARRA example in section 1.2, the cohorts generated

for SPARRA v3 were selected by medical professionals to mainly encompass age,

with type of interaction with the healthcare system coming in as a secondary factor.

Clearly here age is an interpretable attribute in which to cluster patients as it was

devised by the people utilising the model. On the other hand, an attribute such as

SIMD (Scottish Index of Multiple Deprivation — this categorises how deprived a

patient’s home location is) may not be favourable as spatially driven intervention

plans could have ethical issues as well as a lack of consistency for general practitioners

covering several areas. Therefore, selecting a subset of the covariates for construction

of the graph is beneficial when UNCOVER is utilised in practical settings.

In addition to this, from a statistical point of view, selection of a subset of the
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covariates could potentially provide a much clearer structure in which to cluster

observations. An example of this can be seen in figure 4.1, where we have three

clusters, and we state that each cluster has a unique relationship between the co-

variates and a binary response. In this setting, building a minimum spanning tree

Figure 4.1: Pairs plot for the 4 numerical attributes of 15 observations. Colours
correspond to true cluster.

based purely on covariates X3 and X4 would likely result in a better model of the

response due to the clustering structure being clearer for this subset of the covari-

ates. This is highlighted in figure 4.2. Of course here a model has not been specified,

however, any model utilising a Minimum Spanning Tree (MST) structure would not

be able to achieve a completely accurate partition of the data when using all of the

covariates.

In general, without expert guidance on the subset of the covariates that would

produce cohorts of most use to the stakeholder, one could employ variable selection

techniques to determine the most appropriate subset. Examples of such techniques

are forward selection and backward elimination [30] (see section 6.2 for an exam-

ple of forward selection being utilised for the derivation of a covariate subset, and

appendix B.1 for further discussion on covariate subset selection). Typically the op-
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(a) MST using all covariates (b) MST using just covariates X3 and X4

Figure 4.2: Minimum Spanning Trees (MSTs) for the dataset showcased in figure
4.1, constructed using different subsets of the covariates. Vertex labels represent
observation index and colour represents cluster.

timality criterion for this procedure would be the Bayesian evidence of the resulting

UNCOVER model.

Note that sub-selection of the covariates can be framed as an ad-hoc dimension

reduction technique, where the aim of the reduced dataset is to capture the true

clustering structure of the data. This is in contrast to other popular dimension

reduction techniques such as principal component analysis, which reduces the di-

mension of the data with the aim to capture variability. As mentioned in chapter

3, graphical plotting in general allows for visualisation of the properties of a high

dimensional dataset, but sub-selection of the covariates also would allow for direct

visualisation of the data and the cohorts. Indeed, because the cohorts formed by

UNCOVER are heavily influenced by the MST, the concept of cohorts having sim-

ilar attributes will be captured by the plotting of solely the MST attributes. An

example of this can be seen in figure 4.1, as if only X3 and X4 are selected for the

MST construction, then only plotting X3 against X4 is necessary to capture the

potential cohorts that could be formed.

Let P ⊆ {1, . . . , p} be a subset of the covariate indices of X. Letting X·P be the

submatrix of X induced by P, this then allows for the definition of the complete

66



graph G = (V,E) with respect to X and P:

V = {1, . . . , n} (4.1)

E = {{i, j}; i ∈ V, j ∈ V, i ̸= j} (4.2)

eij = ∥xi,P − xj,P∥2 (4.3)

Using Prim’s algorithm [61] (algorithm 6) we can obtain the MST T, which then

induces the subgraph GT = (V,T).

As stated before, obtaining an MST offers structure in the covariate space that

could aid with interpretability without the need to assume a distributional form for

the covariates. However, there is a secondary computational benefit to this method

as well. Consider the unconstrained case when initially the task is to partition the

data into two sets. This is equivalent to placing n objects into 2 non-empty sets1, of

which the number of unique ways to achieve this is a Stirling number of the second

kind [73], i.e.

S(n, 2) =
1

2

2∑
i=0

(−1)i
(
2

i

)
(2− i)n = 2n−1 − 1 (4.4)

Examining all possible partitions through brute force is an O(2n) operation. In

contrast the UNCOVER setting need only examine n− 1 edges of the graph GT (as

| T |= n−1) and as such the process of considering the next possible model through

removal of an edge is a greatly reduced O(n) operation.

As final points on MST construction, we note that the Euclidean distance metric

used in equation 4.3 is replaceable with other distance metrics if required. An ex-

ample may be a metric to incorporate mixed type variables. However, the selection

of metrics for mixed variables is a contentious topic within the framework of UN-

COVER, as attempts to place categorical and numerical attributes on the same scale

becomes challenging if one has to introduce further data for prediction. To expand

on this, we take a popular choice of metric for mixed data, Gower’s distance [74],

as an example. For a numerical variable ϱ and n × p covariate matrix X, Gower’s

1This has been seen previously with divisive hierarchical clustering.
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distance between observations i and j for variable ϱ is given as:

|xiϱ − xjϱ|
maxa∈{1,...,n}{xaϱ} −mina∈{1,...,n}{xaϱ}

(4.5)

The use of equation (4.5), specifically the denominator, allows numerical variable

distances to be on the scale [0, 1] which is crucial for their integration with categorical

variables (whose distances are also scaled to be within the region [0, 1]). However,

UNCOVER is a predictive model, and as such the assignment of new observations to

clusters is vital for prediction. If a new observation contains a numerical value which

lies outside of its respective range, then there will exist a distance which does not

belong to the region [0, 1], breaking the concept of placing numerical and categorical

variables on the same scale. One may be tempted then to update the range; however,

this act could change the form of the MST used to initialise UNCOVER which would

then clearly invalidate the outputted clusters.

There are specific circumstances where Gower’s distance would be appropriate,

however. If there are known boundaries for numerical attributes (for example an

observation’s age can reasonably be constrained to the interval [0, 200]), then replac-

ing the range of the attribute in equation (4.5) with the length of the interval would

resolve the issue. Furthermore, for new observations which are deemed extreme

outliers based on the training data, one may be cautious of producing a prediction

regardless, as uncertainty in the model’s output will be high whichever cluster is

assigned due to extrapolation. An application of UNCOVER with mixed data types

is given in section 6.4.

In addition to metric specification, scaling of the data before implementation

of UNCOVER is highly recommended. Scaling occurs through subtraction of the

variable mean and division over the variable standard deviation of each column in the

dataset, and is necessary when constructing an MST to ensure that certain variables

do not have a dominating effect when calculating distances. An example of this

would be an MST construction based on the variables sugar (measured in grams)

and flour (measured in milligrams). Simply based on the units of measurement,

observations are likely to have a much larger discrepancy in flour than in sugar,

68



resulting in an unwanted bias towards flour when constructing the MST.

4.1.2 Bayesian Product Logistic Regression Models

For UNCOVER the base model of the relationship between the covariates and the

response is the logistic regression model. This makes an assumption of linearity

between the covariates and the regression coefficients which may not be appropriate

for certain types of datasets, however, we note that UNCOVER as a modelling

framework is not intrinsically tied to its chosen base model. Indeed, any Bayesian

model which encapsulates the relationship between the response and the covariates

is suitable for use in UNCOVER. However, the logistic regression model is selected

here due to the interpretability the model has to stakeholders as well as the ease at

which one can apply a Bayesian treatment to this model.

Initially, given the graph GT, we have a one cluster model and so the Bayesian

set-up of the posterior for the model regression coefficients (β) can be expressed in

the standard way through equation (3.1) and the following likelihood equation:

π(y | X,β) =
n∏

i=1

(1 + e−xT
i β)−yi(1 + ex

T
i β)−(1−yi) (4.6)

In order to compare models of differing numbers of clusters we must generalise this

set-up to models which have K clusters. This is accomplished through a product

model, where we express the clustering through the partitioning on the index set V

into K sub-sets2:

V = {V1, . . . ,VK} (4.7)

2For consistency if K = 1 we let V = {V1}.
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This general model can be expressed as:

π(β1, . . . ,βK | y,X,V) =
π(y | X,β1, . . . ,βK ,V)π(β1, . . . ,βK)

π(y | X,V)
(4.8)

π(y | X,β1, . . . ,βK ,V) =
K∏
k=1

n∏
i=1

[
(1 + e−xT

i βk)−yi(1 + ex
T
i βk)−(1−yi)

]
1(i∈Vk)

(4.9)

π(β1, . . . ,βK) =
K∏
i=1

π(βk) (4.10)

π(y | X,V) =

∫
π(y | X,β1, . . . ,βK ,V)π(β1, . . . ,βK)dβ1 . . . dβK

= Z (4.11)

Dissecting equations (4.8 – 4.11), we have described a hard cluster product model.

The hard clustering is evident through the indicator function in equation (4.9), which

operates in a similar manner to the latent cluster assignment matrix used for finite

mixtures of logistic regression and mixture of experts models, but here the cluster

assignment is not latent (see section 4.3). As a result of this, we no longer need vari-

ables such as τ or softmax functions such as g as we have an explicit hard clustering,

therefore we are not assigning proportions of all models to single observations. We

have also made an assumption of independent and identically distributed priors for

each of the K clusters in equation (4.10). The notion that clusters in this model

are completely separate gives a justification toward this assumption, as we would

not expect interaction between the coefficients of separate models. The i.i.d. priors

means that Z, given in equation (4.11), reduces to:

Z =

∫ K∏
k=1

n∏
i=1

[
(1 + e−xT

i βk)−yi(1 + ex
T
i βk)−(1−yi)

]
1(i∈Vk)

π(βk)dβk

=
K∏
k=1

∫ n∏
i=1

[
(1 + e−xT

i βk)−yi(1 + ex
T
i βk)−(1−yi)

]
1(i∈Vk)

π(βk)dβk

=
K∏
k=1

Zk (4.12)

where the interchanging of product with integral is possible through a combination

of cluster independence and the Fubini–Tonelli theorem [75]. This separation of the
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Bayesian evidence has major computational benefits in regard to estimation, which

will be discussed in detail in chapter 5. This allows for a final representation of the

posterior given in equation (4.8) as a product of K sub-posteriors:

π(β1, . . . ,βK | y,X,V) =
K∏
k=1

π(βk | y,X,Vk) (4.13)

4.2 Assessing Cluster Quality

Reverting back to our initialisation of the system as a one cluster model, i.e. π(β1 |

y,X,V1 = {1, . . . , n}), the natural choice for assessing the quality of this model

(given the Bayesian framework under which UNCOVER is defined) is the Bayesian

evidence Z. As mentioned in section 3.1 the estimation of Z can be achieved through

Sequential Monte Carlo (SMC) [36] techniques, specifically Iterated Batch Impor-

tance Sampling (IBIS) [9].

Although we allow the user to specify the Effective Sample Size (ESS) thresh-

old ξ within UNCOVER3, the selection of batches, B1, . . . ,BΥ, will be restricted.

Namely the restriction is that Υ = n and as such |Bs| = 1 for s = 1, . . . ,Υ. The

justification for this is that batches were introduced by Chopin as an efficient way

to reduce computational time, with the caveat being that this would produce poor

samples if the batches were large enough to cause the bridging distributions to no

longer be close to their neighbours in the sequence. In algorithmic terms dissimilar

neighbouring distributions results in all weights becoming degenerate at the same

iteration, meaning degeneracy of the samples can no longer be detected by the ESS

and therefore will not be resampled and moved to create a more suitable set of sam-

ples. Even if detected, degeneracy of all samples simultaneously would provide no

guarantee of a successful move step as the proposal distribution relies on degeneracy

information from the weights to produce a distribution close to the target.

Chopin’s original algorithm did not reference the generation of Bayesian evi-

dences, however, it follows that poor samples produce poor estimates of Z. Given

3Recommendations for ξ along with the number of SMC samples N can be found in appendix
B.1.
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Z is crucial for the selection of models within the UNCOVER algorithm it is essen-

tial that we can produce reliable estimates of Z. Therefore, creating a sequence of

distributions differing to their neighbours only by inclusion (or exclusion) of a single

observation reduces the opportunity for said distributions to be vastly dissimilar.

Similarity of neighbouring distributions is paramount to an effective SMC sam-

pler, and as such we also insist the batches have the following form:

Bs = σ(s) for s = 1, . . . , n (4.14)

where σ is a permutation of the set {1, . . . , n}. This is necessary to guard against

the possibility of a hidden order existing with the observation indices. A hidden

order could result in ‘pivot’ observations — observations which differ significantly

to all previous observations added with regards to their relationship with the re-

sponse, and as a result the inclusion of such a pivot gives a distribution where the

majority of the current set of samples have low density. Permuting the order in

which observations are added then acts as an additional layer of protection against

distribution dissimilarity.

Note that although we restrict the batch size to one the inclusion of an ESS

condition statement allows in essence for an adaptive batch size selector within the

algorithm. Indeed, as when the ESS falls below a certain threshold we resample

and move, but the move is from samples generated from the last move step (when

not considering their associated weights). If we had selected a batch of observations

containing the observations added to the posterior between the last move step and

the current iteration, then the weights for the samples would have been identical

and therefore the same outcome would have been achieved. So, whilst the batch size

for UNCOVER is restrictive, computational efficiency can still be leveraged through

the specification of the ESS threshold ξ.

For latter iterations of UNCOVER, when the graph comprises of several com-

ponents, cluster quality can still be assessed by the Bayesian evidence through first

estimating the K sub-model’s Bayesian evidences and then taking the product of
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these values, i.e.

Ẑ =
K∏
k=1

Ẑk (4.15)

This follows on directly from equation (4.12).

As a final note, one must take into consideration the uncertainty in estimation of

the Bayesian evidence when using Sequential Monte Carlo. As we shall see in upcom-

ing sections, selecting an edge to remove to split a cohort requires the comparison

of several Bayesian evidences. Therefore, poor estimates of the Bayesian evidence

could lead to a sub-optimal edge being removed, which would have a knock-on effect

for the rest of the algorithm. Whilst this is clearly undesirable, for genuine clustering

structure the optimal edge to remove should still be apparent as other edges, even

with slight variability in estimation, are unlikely to produce an estimate for Z that

exceeds the estimate for Z from the optimal edge removal. Additional measures

can be taken as well, such as increasing the number of samples in the IBIS scheme.

This will increase the accuracy of estimation for Z, albeit at the cost of increased

computational time.

4.3 Component Generation

UNCOVER operates as a greedy algorithm due to computational efficiency, and as

such can only make decisions regarding singular edges given the current state of the

graph. As one would expect, these decisions are driven by the model that produces

the largest Bayesian evidence. Predominately this will be through the removal of

edges, as removal of an edge by definition splits a component of the graph into two

components, therefore increasing the number of clusters in our model by one for

each edge removed. This can be re-phrased as splitting a cluster, and given this

context the idea of merging clusters can also be introduced. The merging of clusters

(or components) must not impact on the structure of the covariates determined by

the Minimum Spanning Tree (MST), however. Therefore we only allow clusters to

be merged through the reintroduction of edges previously removed, respecting the

original MST structure.
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4.3.1 Edge Removal

Let GT = (
⋃K

k=1 Vk,T) denote the current state of the graph. Initially for the

one-cluster model, due to the properties of an MST, removal of any edge from T

creates a Minimum Spanning Forest (MSF), with the subgraph consisting of all

observation vertices and the MSF containing exactly two components. Labelling

these components then determines the partition of {1, . . . , n} into two sets, V1 and

V2. Creating separate Bayesian logistic regression models for each vertex set then

taking the product of the resulting Bayesian evidences gives a comparative tool to

compare the original one-cluster model with the two-component model. Letting

Z{i,j}− be the Bayesian evidence of the model created by removing edge {i, j} from

the current graph, we have

Z{i,j}− = Z
{i,j}−
1 × Z

{i,j}−
2 (4.16)

where Z
{i,j}−
l for l = 1, 2 represents the Bayesian evidence of the sub-model created

through removal of edge {i, j}. If Z{i,j}− > Z (where Z refers to the Bayesian

evidence of the one-cluster model) then there is evidence that removal of edge {i, j}

results in a better model than the initial one-cluster model. An example of this

process is given in figure 4.3.

Repeating this process for each edge in T then gives the following:

ϵ = arg max
{i,j}∈T

{Z{i,j}−} (4.17)

and therefore if Zϵ− > Z we remove ϵ from the graph to update T = T\{ϵ} which

then (in combination with all observation vertices) gives the updated subgraph GT.

For all subsequent edge removals, we will have a MSF with K components,

and given the separation property of an UNCOVER model’s Bayesian evidence we

can view this component in isolation when considering an edge removal. In more

detail, say for the model generated by current graph GT the Bayesian evidence is

Z =
∏K

k=1 Zk. Removal of edge {i, j} only affects the value of Zk (where i, j ∈ Vk)

due to the hard clustering meaning models are fitted to disjoint partitions of the
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Figure 4.3: Two-dimensional data consisting of ten observations and their associ-
ated responses — shown as vertices and their corresponding labels for graph plots.
The posterior samples (obtained using an iterated batch importance sampler with
a standard normal prior) for each model are plotted to the right of their associated
graph. Top: One-cluster model. Bottom: Two-cluster model.

data, and so we revert to the initial setting by considering component-k as a single

graph, i.e.

Z{i,j}− = Z
{i,j}−
k1 × Z

{i,j}−
k2 ×

∏
l ̸=k

Zl (4.18)

where here Zk is replaced by the Bayesian evidence of the two sub-models created

through the removal of edge {i, j} (Z
{i,j}−
k1 and Z

{i,j}−
k2 ). Removal of edge {i, j} from

the current edge set T then gives a new graph with K+1 components. This process

is described in algorithm 7, where R is the set of all previously removed edges. As a

final remark we draw attention to the fact that it remains a possibility that no edge

removal improves upon our current state. Therefore we have a natural stopping

criterion for the UNCOVER algorithm.
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Algorithm 7: Edge Removal

Input : Covariate Matrix — X, Response Vector — y,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z, ESS Threshold — ξ,

Number of Samples — N , Removed Edge Set — R
Step 1 : for k = 1, . . . , K do

Let Tk = {{i, j} ∈ T : i, j ∈ Vk} and GTk
= (Vk,Tk) be a subgraph of

GT. for {i, j} ∈ Tk do

Let G̃ = (Vk = Ṽk1 ∪ Ṽk2,Tk\{i, j}) be a subgraph of GTk
. for

l = 1, 2 do
Let B1, . . . ,B|Ṽkl| be such that

Bs = σ(s) for s ∈ Ṽkl

Estimate Z
{i,j}−
kl through algorithm 4.

end
Let

Z{i,j}− = Z
{i,j}−
k1 × Z

{i,j}−
k2 ×

∏
l ̸=k

Zl

end

end
Step 2 : Let

ϵ = arg max
{i,j}∈T

{Z{i,j}−}

if Zϵ− > Z then

Update T = T\ϵ and update Z = Zϵ− . Let GT = (
⋃K+1

k=1 Vk,T) be the
updated subgraph. Update R = R ∪ ϵ.

end
Result : GT, Z,R

4.3.2 Edge Reintroduction

The reintroduction of edges may initially seem a redundant task, as for certain edges

reintroduction is always detrimental to the overall model. Indeed, at any iteration

if we consider the edge just removed, reintroduction would trivially be detrimental

as removal of said edge improved the previous system. This is also true for the

second to last edge removed, if no edges have been reintroduced between these two

removals. This is shown in Lemma 4.3.1.

Lemma 4.3.1 (Reintroduction of Recent Edges). Let G = (
⋃K

k=1 Vk,T) be a min-

imum spanning forest which defines the posterior π(β1, . . . ,βK | y,X,V) with

Bayesian evidence Z. Let ϵ† = argmax{i,j}∈T{Z{i,j}−}, Z† = Zϵ†− > Z and G† =
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(
⋃K+1

k=1 V†
k,T

† = T\{ϵ†}). Let ϵ†† = argmax{i,j}∈T†{(Z†){i,j}
−}, Z†† = (Z†)ϵ

††−
> Z†

and G†† = (
⋃K+2

k=1 V††
k ,T

†† = T†\{ϵ††}). Reintroduction of the edges ϵ† or ϵ†† to G††

will not result in a Bayesian evidence greater than Z††.

Proof. Addition of ϵ†† trivially gives the graph G† and therefore Z† < Z††. Reintro-

duction of ϵ† would give the graph G‡ = (
⋃K+1

k=1 V‡
k,T

‡ = T††∪ϵ†) with corresponding

Bayesian evidence Z‡. Note that T†† ∪ ϵ† = T\{ϵ††} and so reintroduction of ϵ†† is

equivalent to removing ϵ†† from G. Now assume the contrary, that Z‡ > Z††. As

Z†† > Z† =⇒ Z‡ > Z†. However, as ϵ† = argmax{i,j}∈T{Z{i,j}−} we must have

Z‡ ≤ Z†, and so this is a contradiction.

This is not true in general, however, due to the greedy nature of the UNCOVER

algorithm, and so consideration of previously removed edges being reintroduced is

necessary. For UNCOVER, this consideration is made immediately after an edge

has been removed. Note that from Lemma 4.3.1 theoretically this is unnecessary for

the first two edge removals of the algorithm.

Again letting the set of removed edges be R and the current model’s Bayesian

evidence be Z, we define for the reintroduction of {i, j} ∈ R which combines com-

ponents k and l:

Z{i,j}+ = Z
{i,j}+
kl ×

∏
a∈{1,...,K}\{k,l}

Za (4.19)

where Z
{i,j}+
kl is the Bayesian evidence for the sub-posterior

π(βkl | y,X,Vk,Vl) =
n∏

i=1

[π(yi | xi,βkl)]
1(i∈Vk∪Vl) (4.20)

and βkl is a new set of regression coefficients for the merged component. Taking

ϵ = arg max
{i,j}∈R

{Z{i,j}+} (4.21)

we reintroduce edge ϵ if Zϵ+ > Z. The process of edge reintroduction is given

formally in algorithms 8 and 9.
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Algorithm 8: Edge Reintroduction Bayesian Evidence Generator

Input : Covariate Matrix — X, Response Vector — y,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z, ESS Threshold — ξ,

Number of Samples — N , Removed Edge Set — R
Step 1 : for {i, j} ∈ R do

Let k = {a : i ∈ Va}, l = {a : j ∈ Va}. Let
G̃ = (Ṽ∪

⋃
b̸=k,l Vb,T∪ {i, j}) where Ṽ = Vk ∪Vl. Let B1, . . . ,B|Ṽ| be

such that
Bs = σ(s) for s ∈ Ṽ

Estimate Z
{i,j}+
kl through algorithm 4. Let

Z{i,j}+ = Z
{i,j}+
kl ×

∏
a̸=k,l

Za

end

Result : Bayesian Evidence — Z{i,j}+ for {i, j} ∈ R

Algorithm 9: Edge Reintroduction

Input : Covariate Matrix — X, Response Vector — y,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z, ESS Threshold — ξ,

Number of Samples — N , Removed Edge Set — R
Step 1 : Obtain Z{i,j}+ for {i, j} ∈ R through algorithm 8.
Step 2 : Let

ϵ = arg max
{i,j}∈R

{Z{i,j}+}

if Zϵ+ > Z then

Update T = T ∪ ϵ and update Z = Zϵ+ . Let GT = (
⋃K−1

k=1 Vk,T) be the
updated subgraph. Update R = R\ϵ. Go to Step 1.

end
Result : GT, Z,R

4.3.3 Combination of Edge Actions

The reintroduction of edges is a corrective process which checks the system once

a change has been made, in order to combat the greedy nature of the algorithm.

Typically changes to the system (or graph) are made through edge removal, but edge

reintroductions are also changing the graph. It is by this reasoning that if an edge is

reintroduced and removed from R, we then must reconsider all edges still in R again

before considering further edge removals. Note this is again a greedy process, but

necessary to ease the computational burden that arises with an exhaustive search.
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Therefore, the process is as follows; the first edge actions one can make (if bene-

ficial to do so) are to remove three edges greedily, then edges in R are reintroduced

greedily until it is no longer beneficial to do so. After this we return to focus on edge

removals, with any edge removal triggering a greedy reintroduction of edges until it

is no longer beneficial to do so. Note that this is distinct from typical pruning stages

found in decision trees or mixture of expert models [30,76] (which shall be discussed

later in this chapter), as we make the corrections during the process of constructing

the model. We advocate for this on the basis that the computational burden, which

can be minimal for small R, does not outweigh the benefits one receives from rein-

troducing an edge which improves the system. Additionally, given the greedy nature

of UNCOVER, it is likely that edges removed in a previous iteration wouldn’t be

removed for the current state of the graph, resulting in the computational expense

of assessing removed edges for reintroduction rarely going without reward over the

course of the algorithm.

4.4 Deforestation

As previously stated in section 4.3.1, through the removal of edges a natural stop-

ping criterion occurs when there exists no singular edge removal that increases the

Bayesian evidence. This follows even when edge reintroductions are included, as if

no edge is removed then the graph remains unchanged, therefore all possible rein-

troductions have already been considered and deemed not beneficial to the model

(in terms of increasing the Bayesian evidence). As a result, there is no requirement

to provide additional stopping criteria for the algorithm4.

The resulting model will be a product of at most n sub-models (though achieving

this maximum is clearly an undesirable setting as it suggests severe overfitting and

is seldom seen within the UNCOVER framework). Whilst use of this model is

perfectly acceptable one may have additional criteria, from either the stakeholder or

statistician, which requires further alteration of the model. This section covers some

of the criteria that could be suggested and how to alter the outputted UNCOVER

4Although computationally it may be desirable to add further stopping rules.
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model to achieve this criteria. An assumption is made here that any criteria set is

met by the one-cluster model in order to guarantee that an output that satisfies the

criteria exists.

UNCOVER employs two methods to change the current model, edge removal and

edge reintroduction. In section 4.3.2 we highlighted the use of edge reintroduction

as a corrective process, and so edge reintroductions are the most natural actions to

take to attempt to meet the criteria set, especially due to the fact reintroduction

of all edges to the graph is guaranteed to give an acceptable model. It is possible

to include edge removals in this second corrective stage of UNCOVER but we omit

this action. The justification of this is two-fold; the first being from a computational

perspective the set of excluded edges R is typically much smaller than the set of

included edges and therefore faster to evaluate, and the second being that it is

possible for edge removals to be a direct contrast with meeting the criteria. An

example of this would be if the criterion was a maximum number of clusters allowed

— here removing an edge will only increase the number of clusters and therefore

not immediately help in meeting the criterion.

Only allowing edge reintroductions from a graphical viewpoint is equivalent to

reducing the number of component-specific Minimum Spanning Trees (MSTs) in our

minimum spanning forest, hence the second stage of UNCOVER being labelled the

deforestation stage. In a similar vein, from this point forward we shall now refer

to the main construction stage implemented before deforestation as the ‘planting’

stage.

As a final point, one may question why this criteria is not respected in the initial

phase of model building, i.e. what is the purpose in creating two separate stages

of UNCOVER? The reasoning for this is that the criteria can be too restrictive

to properly explore the clustering structure of the data, resulting in premature

termination of the algorithm. This phenomenon is similar to that of pruning decision

trees or mixture of experts models [30, 76], whereby addition of a pruning stage to

remove ‘leaf nodes’ ensures we do not underfit the data in the construction stage.

A simple example of this would be to consider a two-dimensional dataset generated

from three Gaussians, with each Gaussian having a different relationship between
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the response and the covariates. The first few iterations of UNCOVER are shown

in figure 4.4.

Figure 4.4: Two-dimensional simulated data consisting of three Gaussian centered
at (−1,−1)T , (0, 0)T and (1, 1)T with true regression coefficients of (−3,−3, 0)T ,
(0,−9,−9)T and (3,−3, 0)T respectively. The four panels represent different itera-
tions of an UNCOVER model with a deforestation criterion of at most three clusters
in the final output. Top left is the initialisation, top right is after one edge removal,
bottom left is after two edge removals and bottom right is the output after com-
pleting the planting stage followed by deforestation (specifically that a maximum of
three clusters are allowed in the final output).

Assume that the criterion specified here is that there can only be at most three

clusters in the outputted model, a reasonable criterion given the true clustering

structure of the data. Initially UNCOVER can only remove a single edge, however.

This is not guaranteed to correspond to separation of one cluster from the other

two (as this is a greedy process). With this seemingly incorrect edge removed we

would proceed to remove another edge in order to reveal additional structure. At

this iteration we cannot remove any further edges as this would break our criterion

and so we would output a sub-optimal model (bottom-left panel of figure 4.4). On

the other-hand, allowing the algorithm to continue and meet the criterion in the

deforestation stage would lead to the true model (bottom-right panel of figure 4.4)
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being generated. This gives an indication as to the dangers of under-fitting one can

encounter when not employing a two-stage algorithm.

4.4.1 Basic Criteria

The criteria which are believed to have the most practical use to stakeholders is the

specification of a maximum number of cohorts or a minimum number of observations

per cohort. Specification of a maximum number of cohorts could have an appeal

to a stakeholder with budgetary restrictions — if intervention or action plans were

to be executed for each cohort based upon their predicted response, then it may be

desirable to restrict the number of cohorts if cost of intervention was high. Similarly,

a stakeholder may require at least a certain number of patients (in a medical context

such as SPARRA for example) to benefit from a cohort-specific intervention plan

being constructed, as development of such a plan could be costly.

From a statistical point of view, employing these basic criteria offers an ad-hoc

method of attempting to ensure that the clusters formed have a sufficient amount of

data to realistically capture a signal between the covariates and the response. This

is in no way guaranteed by these criteria, however. For example, let the criterion be

a maximum of two clusters in the output — it is possible to output clusters of sizes

n− 1 and 1, where the one-observation cluster will clearly be unable to capture any

true signal. Specification of a minimum cluster size also offers no guarantees, as one

cluster could be of reasonable size but contain only one response type. Nevertheless,

the simplicity and ease of implementation for these methods make them viable

options.

Reintroduction of edges automatically reduces the number of clusters and there-

fore every edge reintroduced helps the model meet the maximum number of clusters

criterion. Therefore, we simply add edges which result in the highest increase (or

smallest decrease) of the Bayesian evidence back to the graph, until the criterion is

met.

Minimum cluster size is less straightforward, as reintroduction of the most bene-

ficial (or least detrimental) edge may not be the optimal process. Letting K ′ be the

number of clusters which do not meet the criterion, we define R′ as the subset of R
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whose edge reintroduction would decrease K ′. With this we can employ the method

of selecting the edge in R that increases the Bayesian evidence Z by the largest

amount, and if no edge reintroduction increases Z then we select the least detrimen-

tal edge from R′. One may wonder why we do not always select an edge from R′,

however, note that every edge reintroduction is a step closer to an acceptable one

cluster model. As a consequence, any edge reintroduction made which benefits the

system also indirectly assists in meeting the criteria. The formal processes for both

deforestation criteria are given in algorithms 10 and 11.

Algorithm 10: Number of Clusters Deforestation Criterion

Input : Covariate Matrix — X, Response Vector — y, ESS Threshold — ξ,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z,

Number of Samples — N , Removed Edge Set — R,
Maximum Number of Clusters Allowed — κ
Step 1 : Obtain Z{i,j}+ for {i, j} ∈ R through algorithm 8.
Step 2 : Let

ϵ = arg max
{i,j}∈R

{Z{i,j}+}

if K > κ then

Update T = T ∪ ϵ and update Z = Zϵ+ . Let GT = (
⋃K−1

k=1 Vk,T) be the
updated subgraph. Update R = R\ϵ. Go to Step 1.

end
Result : GT, Z,R

Note that due to the greedy nature of the algorithm, the deforestation stage

may result in a model that has a lower Bayesian evidence than a model encountered

during the planting stage of the algorithm that happened to meet the criterion.

This obviously is not desirable and therefore for practical implementation of this

type of criterion we must produce a saved state of the best model so far, each time

the criterion is met during the planting stage of UNCOVER. Then the output will

simply be either the deforestation output model or the saved ‘best’ model depending

on which model has the highest Bayesian evidence.

4.4.2 Maximal Regret

When constructing our model in the planting stage of UNCOVER, consideration of

how much each change of the graph improves the Bayesian evidence could be taken
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Algorithm 11: Size of Clusters Deforestation Criterion

Input : Covariate Matrix — X, Response Vector — y, ESS Threshold — ξ,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z,

Number of Samples — N , Removed Edge Set — R,
Minimum Size Allowed for each Cluster — k
Step 1 : Obtain Z{i,j}+ for {i, j} ∈ R through algorithm 8.
Step 2 : Let R′ = {{i, j} ∈ R : |Vk| < k ∪ |Vl| < k where i ∈ Vk, j ∈ Vl}.
Let

ϵ = arg max
{i,j}∈R

{Z{i,j}+} ϵ′ = arg max
{i,j}∈R′

{Z{i,j}+}

if Zϵ+ > Z then

Update T = T ∪ ϵ and update Z = Zϵ+ . Let GT = (
⋃K−1

k=1 Vk,T) be the
updated subgraph. Update R = R\ϵ. Go to Step 1.

else
if |Vk| ≥ k ∀ k = 1, . . . , K then

Stop.
else

Update T = T ∪ ϵ′ and update Z = Z(ϵ′)+ . Let GT = (
⋃K−1

k=1 Vk,T) be
the updated subgraph. Update R = R\ϵ′. Go to Step 1.

end

end
Result : GT, Z,R

as opposed to the binary choice of whether the change is beneficial or detrimental.

One might be cautious to split a cluster into two (which could have cost implications

to the stakeholder) if the benefit of the split is minimal. In addition to this, due

to the Bayesian evidence being reliant on the prior, if one has reservations on the

prior specification then a more conservative approach to splitting clusters may be

warranted. Letting ν̄ > 1 be a minimum improvement factor, if an action (either

edge removal or edge reintroduction) produced a model with Bayesian evidence Z̃,

then instead of accepting the action if Z̃ > Z we would only accept the action if

Z̃ > ν̄Z (where Z is the Bayesian evidence of the current model).

Given previous reservations of employing criteria during the planting stage of

UNCOVER, we instead introduce the reverse of this concept in the deforestation

stage. Indeed, instead of making changes which result in a minimum improvement

being made, we instead specify a maximum we are willing to regret by reintroducing

an edge. Letting ν > 1 be the maximum regret factor, for edges {i, j} ∈ R we deem
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Algorithm 12: Maximal Regret Deforestation Criterion

Input : Covariate Matrix — X, Response Vector — y, ESS Threshold — ξ,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z,

Number of Samples — N , Removed Edge Set — R,
Maximum Regret Factor — ν
Step 1 : Obtain Z{i,j}+ for {i, j} ∈ R through algorithm 8.
Step 2 : Let

ϵ = arg max
{i,j}∈R

{Z{i,j}+}

if νZϵ+ > Z then

Update T = T ∪ ϵ and update Z = Zϵ+ . Let GT = (
⋃K−1

k=1 Vk,T) be the
updated subgraph. Update R = R\ϵ. Go to Step 1.

end
Result : GT, Z,R

it acceptable to reintroduce edge {i, j} if

νZ{i,j}+ > Z (4.22)

Therefore, the process of edge reintroduction at the deforestation stage can be viewed

as a more lenient version of algorithm 9. The algorithm for maximal regret is given as

algorithm 12. In practice this criterion is more difficult to implement then the basic

criteria discussed previously, as it requires knowledge of how the scale of Bayesian

evidence increase transfers to increase in model quality, although interpretations

such as Jeffrey’s scale for Bayes factors [53] could aid in this.

4.4.3 Validation Data

The use of validation data plays a pivotal role in the tuning of hyperparameters for

many statistical learning models, with examples being random forests [77], smooth-

ing splines [30] andK-nearest neighbours [78]. Indeed, the introduction of additional

data at the deforestation stage to ensure the model constructed in the planting stage

has not overfit to the training data is beneficial for the creation of a generalisable

output model.

There is an additional challenge in the use of validation data for UNCOVER

compared to a standard training-validation set split, due to the initial construction
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of the MST. One could construct the MST with all of the data and then restrict

the edge removal process to only remove edges that leave at least one training

observation in all clusters. This, however, would not mimic the prediction of new

observations and crucially would result in the model building process having some

dependence on the validation data. Therefore, the construction of the MST shall

be solely based on the training data. We then add the validation data as if they

were independent new observations, and therefore assign them to the cluster of

their nearest training data neighbour. This process is detailed in algorithm 13,

where v ⊂ {1, . . . , n} is the index set of the training data, v∁ = {1, . . . , n}\v is the

index set of the validation data and Gv
Tv = (

⋃K
k=1V

v
k,T

v) is the graph obtained from

applying the planting stage of UNCOVER on the training data.

Algorithm 13: Validation Data Addition

Input : Covariate Matrix — X, Training Data Index Set — v,
Training Data MSF Graph — Gv

Tv = (
⋃K

k=1V
v
k,T

v), Variable Subset — P
Initialisation : Let T = Tv, v∁ = {1, . . . , n}\v.
Step 2 : for i ∈ v∁ do

Let
j = argmin

a∈v
{∥xi,P − xa,P∥2}

Update T = T ∪ {i, j}.
end

Step 3 : Let GT = (
⋃K

k=1Vk = {1, . . . , n},T).
Result : Complete Data Graph — GT = (

⋃K
k=1Vk = {1, . . . , n},T)

The Bayesian model associated with Gv
Tv will have Bayesian evidence Zv. Given

the set of component vertex sets V = {V1, . . . ,VK} from the graph GT (obtained

from algorithm 13), the measure of the model’s performance will then be based upon

the posterior predictive distribution

π(yv∁ | Xv∁·,Xv·,yv,V) := ϖ =

∫
π(yv∁ | B,Xv∁·,V)π(B | Xv·,yv,V)dB (4.23)

where B = {β1, . . . ,βK}. Note that Vv
k ⊆ Vk for k = 1, . . . , K, therefore

π(B | Xv·,yv,V) = π(B | Xv·,yv,V
v) (4.24)

This then allows for, in combination with the property of observations being i.i.d.,
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the following reformulation of π(yv∁ | Xv∁·,Xv·,yv,V) given in equation (4.23):

ϖ =

∫
π(yv∁ | B,Xv∁·,V)π(B | Xv·,yv,V)dB

=
1

Zv

∫
π(yv∁ | B,Xv∁·,V)π(yv | B,Xv·,V)π(B)dB

=
1

Zv

∫
π(y | B,X,V)π(B)dB

=
Z

Zv
(4.25)

where Z is the Bayesian evidence of the full posterior generated from GT. Of course

in a Bayesian setting this reformulation is not necessary for the estimation of ϖ

as we can simply use samples from the posterior of the training data model. As

we will see in chapter 5, however, in order to improve computational speed we

may not always have access to posterior samples, and therefore this form of ϖ

is required. Additionally, this form allows for an algorithm structured similarly

to previous deforestation algorithms, namely that of working solely with Bayesian

evidences.

We can now reintroduce edges which increaseϖ instead of the Bayesian evidence,

as an increase in ϖ translates to an increase in the model’s ability to predict the

correct response of the validation data. The formal algorithm is given as algorithm

14.

Note that without restriction, a model which overfits in the planting stage (likely

resulting in small clusters) is likely to produce clusters which have no validation data

attached in the deforestation stage. This clearly is harmful as due to the indepen-

dence of clusters we gain no insight into the generalisability of the small cluster

sub-model. To remedy this, we insist that any edge removed in the planting stage

of UNCOVER must not result in a cluster without any validation data attached.

Formally, we apply algorithm 13 to the initial one-cluster graph to obtain GT. Then

we only consider the removal of edge {i, j} from the training data graph Gv
Tv if the

resulting graph (
⋃K+1

k=1 Vk,T\(R ∪ {i, j})) has the following property:

Vk ⊈ v for k = 1, . . . , K + 1 (4.26)
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Algorithm 14: Validation Data Deforestation Criterion

Input : Covariate Matrix — X, Response Vector — y,
Variable Subset — P, Training Data Index Set — v,
Training Data MSF Graph — Gv

Tv = (
⋃K

k=1V
v
k,T

v), ESS Threshold — ξ,
Training Data Model’s Bayesian Evidence — Zv, Number of Samples — N ,
Removed Edge Set — R
Step 1 : Obtain GT = (

⋃K
k=1Vk = {1, . . . , n},T) from algorithm 13. From

the resulting V1, . . . ,VK estimate Z =
∏K

k=1 Zk using K applications of
algorithm 4.
Step 2 : Let

ϖ =
Z

Zv

Step 3 : Obtain (Zv){i,j}
+
and Z{i,j}+ for each {i, j} ∈ R through algorithm

8. Let

ϖ{i,j}+ =
Z{i,j}+

(Zv){i,j}+

Step 4 : Let
ϵ = arg max

{i,j}∈R
{ϖ{i,j}+}

if ϖϵ+ > ϖ then

Update Tv = Tv ∪ ϵ, T = T ∪ ϵ, Zv = (Zv)ϵ
+
and Z = Zϵ+ . Let

Gv
Tv = (

⋃K−1
k=1 Vv

k,T
v) and GT = (

⋃K−1
k=1 Vk,T) be the updated

subgraphs. Update R = R\ϵ. Go to Step 1.
end
Result : Gv

Tv , Zv,R, Complete Data Graph — GT,
Complete Data Model’s Bayesian Evidence — Z

This method of deforestation offers an almost automatic selection process, with

the only choice being that of v. Typically the selection of training data is random,

with a split parameter o ∈ [0, 1] determining the proportion of data used to train the

model. Selection of o is not an easy choice, however. Higher values of o gives more

assurance that the structure of the covariate data is captured by the training data

but could lead to poor generalisability. Alternatively, low values of o could give

better generalisability and less restrictions on the choice of edges in the planting

stage, but then lead to a model unable to capture the true clustering structure.

As a final note, it is important to highlight the work done previously on gener-

alisability of Bayesian evidences (or marginal likelihoods) by Lofti et.al [79]. Here

they discuss the potential pitfalls of using solely the Bayesian evidence as a quality

measure and introduce the Conditional Marginal Likelihood (CML) as an alterna-
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tive. The CML is equivalent to our validation data set-up in the one-cluster model.

Whilst not specifically focused on clustering problems and the challenges that come

with providing validation data for K sub-models, the recognition of validation data

as a viable method of model selection with Bayesian evidences gives a strong justi-

fication for use of this method in practice.

4.4.4 Response Diversity

In a frequentist framework, as discussed previously in chapter 3, a misleading phe-

nomenon about the quality of a cluster’s sub-model occurs when we partition the

data such that one cluster contains only one response type — the sub-model typi-

cally degenerates, and we obtain an output of this one response type regardless of

the input. This fits the training data perfectly but is likely not to generalise well,

therefore UNCOVER is designed to alleviate this issue through the use of Bayesian

priors to restrict the model from making one class predictions with certainty.

However, whilst we ensure probabilistic predictions with UNCOVER, it is still

possible to produce a one response type cluster. Given these clusters are undesir-

able and not particularly informative, a reasonable criterion to set (to avoid such

clusters being present in the final output) is that the number of unique responses

for observations in a cluster is greater than one.

Insistence on only one observation response being in the minority class may not

be a strong enough criterion to ensure generalisability of the sub-models, and so we

introduce a minimum minority factor υ ∈ {1, . . . , n†} such that:

υ ≤
∑
i∈Vk

yi ≤ |Vk| − υ for k = 1, . . . , K (4.27)

where Vk are the vertex sets of the K clusters in the model and n† is the number of

observations in the total dataset which have an associated response in the minority

class (i.e. n† ≤ n
2
). One must make a considered choice for υ, as υ indirectly restricts

the number of clusters in the final model. To see this, note that if υ = n†

K
then a

model with K + 1 clusters automatically breaks the criterion as there will exist a

cluster with less than n†

K
observations with response in the overall minority class.
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The deforestation method for a diverse response in each cluster follows a similar

process to that of a minimum size for each cluster. Indeed, given this similarity it is

also worth noting that as with the size of clusters criterion it is possible we achieve

a better model at some iteration of the planting stage of UNCOVER than at the

end of the deforestation stage, and so a saved optimal criterion fitting model at the

planting stage is also required here. The diverse response criterion could even be

said to fall within the umbrella term of basic deforestation criteria, though we make

the distinction here as the basic criteria mentioned in subsection 4.4.1 are of interest

primarily to the stakeholder, whereas a diverse response has appeal mainly from a

modelling perspective. The formal algorithm is given in algorithm 15.

Algorithm 15: Diverse Response Deforestation Criterion

Input : Covariate Matrix — X, Response Vector — y, ESS Threshold — ξ,
Graph — GT = (

⋃K
k=1Vk,T), Bayesian Evidence — Z,

Number of Samples — N , Removed Edge Set — R,
Minimum Count of Minority Class Responses Allowed for each Cluster — υ
Step 1 : Obtain Z{i,j}+ for {i, j} ∈ R through algorithm 8.
Step 2 : Let
R′ = {{i, j} ∈ R : (υ >

∑
a∈Vk

ya ∪ υ > |Vk| −
∑

a∈Vk
ya) ∪ (υ >∑

b∈Vl
yb ∪ υ > |Vl| −

∑
b∈Vl

yb) where i ∈ Vk, j ∈ Vl}. Let

ϵ = arg max
{i,j}∈R

{Z{i,j}+} ϵ′ = arg max
{i,j}∈R′

{Z{i,j}+}

if Zϵ+ > Z then

Update T = T ∪ ϵ and update Z = Zϵ+ . Let GT = (
⋃K−1

k=1 Vk,T) be the
updated subgraph. Update R = R\ϵ. Go to Step 1.

else
if υ ≤

∑
a∈Vk

ya ≤ |Vk| − υ ∀ k = 1, . . . , K then
Stop.

else

Update T = T ∪ ϵ′ and update Z = Z(ϵ′)+ . Let GT = (
⋃K−1

k=1 Vk,T) be
the updated subgraph. Update R = R\ϵ′. Go to Step 1.

end

end
Result : GT, Z,R
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4.4.5 Summary

Deforestation criteria can be used for either practical or theoretical purposes. If

real-world restrictions such as budgets influences the form of the desired model for

the stakeholder, this can be met through basic criteria such as a maximum number

of clusters. If generalisability of the model to new data is of concern, then other

deforestation criteria such as the use of validation data may be more appropriate.

There is of course overlap between these two goals of practicality and model quality,

with different criteria often resulting in the same output. There is also no restriction

on the number of criteria used in a single UNCOVER algorithm, for example it is

perfectly reasonable to require a maximum number of clusters, all of which have

at least a certain number of observations with response in the minority class. In

conclusion, deforestation is intended as a flexible framework for model selection

within the UNCOVER context in order to meet a pre-specified criterion or criteria.

4.5 The UNCOVER Algorithm

Algorithms 16, 17 and 18 provide the general UNCOVER method, namely initiali-

sation, the planting stage and the deforestation stage. Note here that the algorithm

employs a stopping criterion, κ, at the planting stage in the form of number of

clusters. This is in contrast to previous explanations of the dangers of stopping the

algorithm in the planting stage, however, in a practical setting one must balance ex-

ploration against compute time. Therefore, whilst it is advised to set κ ∈ {1, . . . , n}

as large as possible, for large data problems a lower value of κ may be more suitable

(see appendix B.1 for more details).

Note that the deforestation variable input can be one of (κ,k, ν, o, υ) depend-

ing on the deforestation criterion. Additionally, for the basic or diverse response

deforestation criteria, the graph Gv
Tv meeting the specific criteria is as previously

discussed in 4.4, i.e.

• Number of Clusters — Gv
Tv has K ≤ κ components.

• Size of Clusters — The partition of the vertex set of Gv
Tv ,Vv =

⋃K
k=1V

v
1, . . . ,V

v
K ,
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Algorithm 16: UNCOVER — Initialisation

Input : Covariate Matrix — X, Response Vector — y,
Deforestation Variable (Validation Criterion Only) — o,
Variable Subset — P
Step 1 : if Validation Data Deforestation Criterion then

Randomly select o× n observation indices to form v.
else

Let v = {1, . . . , n}.
end
Step 2 : Obtain the complete graph from the Euclidean distance matrix of
Xv,P.
Step 3 : Obtain the minimum spanning tree edge-induced subgraph Gv

Tv

from algorithm 6.
Step 4 : if Validation Data Deforestation Criterion then

Obtain GT = (V = {1, . . . , n},T) from algorithm 13.
else

Let GT = Gv
Tv

end
Result : Training Data Minimum Spanning Tree Graph — Gv

Tv ,
Complete Data Minimum Spanning Tree Graph — GT,
Training Data Index Set — v

into the K components of the graph is such that |Vv
k| ≥ k for k = 1, . . . , K.

• Diverse Response — The partition of the vertex set of Gv
Tv ,Vv =

⋃K
k=1V

v
1, . . . ,V

v
K ,

into the K components of the graph is such that υ ≤
∑

i∈Vv
k
yi ≤ |Vv

k| − υ for

k = 1, . . . , K.

Additionally, one may notice that the algorithms detailing UNCOVER have a

final output of just the training data graph, and not posterior samples. This is

due to the iterated batch importance sampling algorithm (4) being replaceable with

other Bayesian evidence approximation algorithms (see section 5.4) which may not

require posterior samples. Note, the graph is the key component here as it defines

the clusters, which defines the model, which then ultimately defines the posterior.

Samples from this posterior (which may be required for prediction) can then be

obtained through K implementations of algorithm 4, which gives K sets of weighted

samples which can combined to achieve B and W , where; B is an N × K(p + 1)

matrix such that βr,(k−1)(p+1)+i is the rth regression coefficient sample from the kth

cluster for variable i− 1 and W is an N ×K(p+ 1) associated weight matrix.
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Algorithm 17: UNCOVER — Planting Stage

Input : Covariate Matrix — X, Response Vector — y,
Deforestation Variable, Training Data MST Graph — Gv

Tv ,
Complete Data MST Graph — GT, ESS Threshold — ξ,
Number of Samples — N , Stopping Criterion — κ
Initialisation : Let R = ∅.
Step 1 : Obtain Zv from algorithm 4. Let Gbest = Gv

Tv , Zbest = Zv.
Step 2 : Let Z̃ = Zv. if Validation Data Response Criterion then

Update Gv
Tv , Zv and R through algorithm 7, with the alteration that

edges should not be considered for removal if their removal in GT leaves
components containing no validation observations.

else
Update Gv

Tv , Zv and R through algorithm 7. if Basic or Diverse
Response Deforestation Criteria then

If Gv
Tv meets the specific criterion then let Gbest = Gv

Tv , Zbest = Zv.
end

end

Step 3 : if Zv = Z̃ then
Stop.

else
Update Gv

Tv , Zv and R through algorithm 9. if Basic or Diverse
Response Deforestation Criteria then

If Gv
Tv meets the specific criterion then let Gbest = Gv

Tv , Zbest = Zv.
end

end
Step 4 : if K = κ then

Stop.
else

Go to step 2.
end
Result : Gv

Tv , Training Data Model’s Bayesian Evidence — Zv,
Removed Edge Set — R, Best Criteria Meeting Graph —Gbest,
Best Criteria Meeting Model’s Bayesian Evidence — Zbest

4.6 Simulated Example

In this section we aim to highlight the capabilities of the UNCOVER method com-

pared to established methods on a challenging simulated example. This dataset is

comprised of spiral data, with a clustering set-up comprised such that knowledge

of the response is required alongside the structure of the data in covariate space to

fully understand the true clusters present.

In order to compare the methods, we require metrics of both cluster assignment
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Algorithm 18: UNCOVER — Deforestation Stage

Input : Covariate Matrix — X, Response Vector — y,
Deforestation Variable, Training Data MSF Graph — Gv

Tv ,
Training Data Model’s Bayesian Evidence — Zv, Removed Edge Set — R,
Training Data Index Set — v, ESS Threshold — ξ, Variable Subset — P,
Number of Samples — N
⋆ Basic or Diverse Criteria Only: Best Criteria Meeting Graph —Gbest,
Best Criteria Meeting Model’s Bayesian Evidence — Zbest

Step 1 : if Basic or Diverse Response Deforestation Criteria then
if Number of Clusters Deforestation Criterion then

Update Gv
Tv , Zv and R through algorithm 10.

end
if Size of Clusters Deforestation Criterion then

Update Gv
Tv , Zv and R through algorithm 11.

end
if Diverse Response Deforestation Criterion then

Update Gv
Tv , Zv and R through algorithm 15.

end
if Zv ≥ Zbest then

Let Gout = Gv
Tv .

else
Let Gout = Gbest.

end

end
Step 2 : if Maximal Regret Deforestation Criterion then

Update Gv
Tv , Zv and R through algorithm 12. Let Gout = Gv

Tv .
end
Step 3 : if Validation Data Deforestation Criterion then

Update; Gv
Tv , Zv and R and obtain; GT and Z through algorithm 14. Let

Gout = Gv
Tv .

end
Result : Final MSF Graph — Gout

and predictive power. Both the metrics we use in this analysis will be based on ele-

ments of the confusion matrix for binary outputs, given in table 4.1. For prediction,

the output is a binary response of success (i.e Y = 1) or failure (i.e. Y = 0) and so

a true positive for training observation i occurs when the model predicts a success

(i.e. ŷi = 1) and the actual response for this observation is a success (i.e. yi = 1).

This logic naturally extends to explain the meaning behind the other elements of the

confusion matrix. In terms of cluster assignment, we consider pairwise similarity of

observations as our output. For example, with training observations i and j, if i and

j are predicted to have the same cluster assignment this is a positive and otherwise
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is a negative. If the actual cluster assignment places the two observations in the

same cluster and the predicted cluster assignment does as well then this is a true

positive result. So one could view the confusion matrix for prediction as the sum of

n individual matrices for each of the training observations, and for cluster assign-

ment as the sum of
(
n
2

)
individuals matrices for each of the pairwise comparisons

of the training observations. Note that a pairwise comparison confusion matrix is

applied here instead of a simpler metric such as the number of individual obser-

vations matching their actual cluster, as the arbitrary labelling of clusters results

potentially misleading results. As a simple example of where individual metrics fail,

consider a clustering which has partitioned the observations into the correct clusters.

Depending on the label chosen, this clustering will be measured as either completely

correct or completely incorrect.

Predicted Output

Actual Output
True Positive (TP) False Negative (FN)
False Positive (FP) True Negative (TN)

Table 4.1: Confusion Matrix.

In terms of predictive power, a standard utilisation of the confusion matrix is

the AUC — Area Under the Receiver Operating Characteristic (ROC) Curve [80].

The ROC curve is achieved by plotting the True Positive Rate (TPR)

TPR =
TP

TP + FN
(4.28)

against the False Positive Rate (FPR)

FPR =
FP

FP + TN
(4.29)

at different thresholds between 0 and 1 (where for threshold a an observation’s

predicted response is classified as a success 1 or failure 0 depending on whether the

associated predicted probability of success is above or below a). Note that prediction

of success for UNCOVER is achieved through the posterior predictive distribution

which gives an estimate of the probability of success. The AUC is simply the area

under this curve. Based on the assumption that it is desirable to achieve a high TPR
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and low FPR regardless of the threshold we set for binary predictions, the AUC will

achieve maximum value of 1 if this is the case. If the opposite is true then the AUC

will achieve the minimum of 05. For assignment of success probabilities completely

at random, we would expect TPR = FPR regardless of the threshold and as such

the AUC = 0.5.

For cluster assignment, we utilise the elements of the confusion matrix through

the Fowlkes–Mallows index (FMI) [81]:

√
TP

TP + FP
× TP

TP + FN
(4.30)

The FMI is a combination of two measures; the first being given we assign two

observations to the same cluster how often are the observations actually in the same

cluster
(

TP
TP+FP

)
and the second being given two observations are actually in the same

cluster how often do we assign them to the same cluster
(

TP
TP+FN

)
. Naturally for a

suitable clustering both measures will be high. The FMI is also largely governed by

the number of true positives as opposed to the number of true negatives, which is

justifiable from a clustering perspective as a pair of observations both being correctly

assigned to the same cluster contains much more information than both observations

correctly being assigned to different clusters.

An output which performs well for both measures will then represent an ideal

model for stakeholders. Established methods typically excel in one of these measures,

but not both.

Note that for unsupervised methods such as K-means or hierarchical clustering

which produce a hard clustering output we apply sequential predictive modelling

to obtain a separate model for each of the clusters. The choice of model is flexible

and so we opt to build Bayesian logistic regression models here, with the same

justification as given for their use in UNCOVER. The default prior will be a standard

normal, and new observations are assigned to the cluster of their nearest training

data observation.

5Though this case may suggest an encoding issue as a switch of the classes results in the perfect
model.
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4.6.1 Spirals

The covariate data X ∈ R4000×2 will be simulated as follows:

xi1 ∼


−4(i−1) cos( 4π(i−1)

1999 )
3×1999

+ U(−0.05, 0.05) if i ∈ {1, . . . , 2000}
4(i−2001) cos( 4π(i−2001)

1999 )
3×1999

+ U(−0.05, 0.05) if i ∈ {2001, . . . , 4000}
(4.31)

xi2 ∼


−4(i−1) sin( 4π(i−1)

1999 )
3×1999

+ U(−0.05, 0.05) if i ∈ {1, . . . , 2000}
4(i−2001) sin( 4π(i−2001)

1999 )
3×1999

+ U(−0.05, 0.05) if i ∈ {2001, . . . , 4000}
(4.32)

This data produces two spirals contained within the hypercube [0, 2]× [0, 2]. With

this covariate data, we define four clusters, with specification of the regression coef-

ficients and response as follows:

β1 = (0,−8, 3)T (4.33)

β2 = (0, 5,−9)T (4.34)

β3 = (0, 10, 5)T (4.35)

β4 = (0,−14, 9)T (4.36)

yi ∼



Bern((1 + e−(1,xT
i )β1)−1) if i ∈ {1, . . . , 1000}

Bern((1 + e−(1,xT
i )β2)−1) if i ∈ {1001, . . . , 2000}

Bern((1 + e−(1,xT
i )β3)−1) if i ∈ {2001, . . . , 3000}

Bern((1 + e−(1,xT
i )β4)−1) if i ∈ {3001, . . . , 4000}

(4.37)

The resulting complete dataset can be visualised in figure 4.5. Note that from this

dataset an 80 : 20 split of the data is taken for each cluster (which each cluster

containing 1000 observations) to obtain training and test datasets.

The non-linear structure of the data presents challenges for methods such as

Mixture of Experts (MoEs) and K-means, as the clusters are not linearly separable.

Additionally, as some clusters are not separated in the covariate space, reliance on

solely the covariates for cluster generation will lead to unsatisfactory results. This

can be showcased by applying the methods of K-means, hierarchical clustering,
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Figure 4.5: Spiral Dataset. The left plot shows the covariate data with their
associated true clusters (shown through the colouring) and the right plot shows the
covariate data with their associated responses (shown through the colouring).

Finite Mixtures of Logistic Regression (FMLR) models and MoEs to the dataset.

Note that as the true number of clusters is known here, we pre-specify for all methods

that the outputted number of clusters K = 4. The results6 are shown in table 4.2.

Method
Train Test

FMI AUC FMI AUC

K-means 0.2516276 0.6735 0.2546817 0.6839

HC–SL 0.6772377 0.7649 0.6751498 0.7672

HC–CL 0.2625201 0.6937 0.2622268 0.6903

HC–AL 0.2606972 0.6796 0.256761 0.6677

FMLR NA 0.7011 NA 0.6842

MoE 0.298163 0.8586 0.3027186 0.8705

HMoE 0.2727915 0.7312 0.2695054 0.7238

Table 4.2: Performance metrics for established methods on the spirals dataset.

Clearly from a cohort detection perspective HC–SL has the best performance,

although even this methods clusters do not resemble the true clustering, as is evident

from the predictive performance of HC–SL. On the other hand, MoE had (unsurpris-

ingly) the best predictive performance, but at the cost of not being able to recognise

the non-linear cohort structure in the data, resulting in poor FMI values.

In order to examine UNCOVER’s performance as a whole on this dataset we must

first provide an analysis on the applicability of each of the deforestation criteria for

this type of problem. For consistency we shall keep all other parameters fixed for

6The abbreviations that have not been previously specified are as follows: Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage (HC–CL), Hier-
archical Clustering — Average Linkage (HC–AL) and Hierarchical Mixture of Experts (HMoE).
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each run of UNCOVER, that being the number of samples N = 1000, effective

sample size threshold ξ = N
2

and the stopping criterion κ = 10. We begin with

the number of clusters deforestation criterion, whose results for various ‘maximum

number of clusters’ thresholds can be seen in figure 4.6. Here we can see that any

Figure 4.6: UNCOVER performance metrics on the spiral dataset when the ‘num-
ber of clusters’ deforestation criterion is specified . The metrics FMI (left) and AUC
(right) are shown for an increasing maximum number of clusters being allowed in
the final output. Dashed lines in each plot shows the maximum value obtained by
previous methods for both the training data (blue) and the test data (purple). For
FMI the dashed lines represent single linkage hierarchical clustering and for AUC
the dashed lines represent one level mixture of experts.

specification of the maximum number of clusters allowed (κ) above 2 outperforms

the previous methods both in terms of cohort detection and in predictive modelling.

However, it must be noted that all 10 runs of UNCOVER attained their maximum

number of allowed clusters in the output. Indeed, for κ > 4 it was deemed beneficial

to remove a small number7 of observations which belong to a large cluster but whose

responses appears contradictory to the regression signal present in the large cluster.

Whilst a fair comparison of UNCOVER with this deforestation criterion would be

to consider the scenario when κ = 4, which does not suffer this small cluster issue8,

in an unknown cluster setting the potential creation of small clusters due to an

overfitting of the data is undesirable.

A natural solution to this is the next deforestation criterion considered, setting

a minimum cluster size. The results of this criterion for various minimum sizes are

7This is evident through observing the FMI values for the training data, which do not greatly
fall for large values of κ as only small numbers of observations are affected.

8The smallest cluster size for κ = 4 is 791.
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seen in figure 4.7. Here we can see a similar story to that of the maximum number

Figure 4.7: UNCOVER performance metrics on the spiral dataset when the ‘size
of clusters’ deforestation criterion is specified. The metrics FMI (left) and AUC
(right) are shown for an increasing minimum cluster size threshold. Dashed lines
in each plot shows the maximum value obtained by previous methods for both the
training data (blue) and the test data (purple). For FMI the dashed lines represent
single linkage hierarchical clustering and for AUC the dashed lines represent one level
mixture of experts. The natural logarithm of the minimum cluster sizes are shown,
with the actual sizes used being 6, 12, 25, 50, 100, 200, 400, 800, 1600 and 3200.

of clusters criterion, mainly that with a reasonable specification we can out-perform

all non-UNCOVER methods tested previously. Interestingly, unlike the maximum

number of clusters criterion, the number of clusters does not increase as the cluster

size restriction decreases, such that even at the generous threshold of 6 observations

UNCOVER returns four clusters resembling the true cluster structure. This perhaps

suggests that in unknown cluster settings the minimum cluster size criterion should

be preferred, as it mitigates UNCOVER’s propensity to create small observation

clusters to further enhance the Bayesian evidence of the larger clusters. This does

not necessarily invalidate the number of clusters criterion, however. In practical

settings in may be more natural for stakeholders to place restrictions on the number

of cohorts as opposed to the size of cohorts in the training data. We also note

that for a cluster size of 800 (the logarithm of which is 6.68) we see an unusual

drop in predictive performance despite the model still being able to theoretically

retrieve the four true clusters. This is due to the overlap of observations that occur

between clusters 1 and 2 and between clusters 3 and 4, making it impossible to obtain

a perfect true cluster separation through UNCOVER. The issue of overlapping is

discussed in section 6.1.
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Instead of controlling the size of the outputted clusters to mitigate the overfitting

issue, one could control the diversity in the response. This naturally leads to the

response diversity deforestation criterion, in which we specify for all clusters a mini-

mum number of observations whose associated response is in that cluster’s minority

class — υ. The simplest case is when υ = 1, ensuring that every cluster has at least

one observation with a response of 1 and at least one observation with a response

of 0 but for larger values of υ we can gain a greater confidence that the outputted

clusters are capturing a signal within the data instead of defining an area of the

space where all training observations have a similar response. The results of this

criterion on the spiral dataset for differing υ is given in figure 4.8. Here we can see

Figure 4.8: UNCOVER performance metrics on the spiral dataset when the re-
sponse diversity deforestation criterion is specified. The metrics FMI (left) and
AUC (right) are shown for an increasing minimum minority response class thresh-
old. Dashed lines in each plot shows the maximum value obtained by previous
methods for both the training data (blue) and the test data (purple). For FMI the
dashed lines represent single linkage hierarchical clustering and for AUC the dashed
lines represent one level mixture of experts. The natural logarithm of the minimum
minority response class thresholds are shown, with the actual values used being 2j

for j = 0, . . . , 9.

that as expected we can outperform the non-UNCOVER methods previously tested

with relative ease, and in fact for υ > 1 we remove the overfitting issue. Whilst this

criterion therefore appears relatively robust and simple to specify, one must note

that is possible to encounter settings where small overfit clusters appear with υ ≥ 2,

and in general specification of the number of minority response classes which give

an acceptable regression signal may be difficult and require careful consideration of

the balance of responses in the overall data. Finally for this criterion, we note that

extreme specifications of υ typically result in a collapse to a one-cluster model, as
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is the case here when υ = 29.

The next deforestation criterion we consider is maximal regret. As previously

stated in section 4.4.2, specification of the maximal regret factor is difficult to obtain

without knowledge of how the Bayesian evidence behaves for this specific problem.

In light of this, we specify a generous range of thresholds — 3j for j = 1, . . . , 10,

which for j = 10 allows combinations of clusters even when the resulting Bayesian

evidence is almost 60000 times worse than the current Bayesian evidence. The

results of evaluating these thresholds are given in figure 4.9. Even at the extremes

Figure 4.9: UNCOVER performance metrics on the spiral dataset when the max-
imal regret deforestation criterion is specified. The metrics FMI (left) and AUC
(right) are shown for an increasing maximal regret threshold. Dashed lines in each
plot shows the maximum value obtained by previous methods for both the training
data (blue) and the test data (purple). For FMI the dashed lines represent single
linkage hierarchical clustering and for AUC the dashed lines represent one level mix-
ture of experts. The natural logarithm of the maximal regret thresholds are shown,
with the actual values used being 3j for j = 1, . . . , 10.

of our given range of thresholds, the resulting output performs well in both cohort

detection and predictive modelling. For the maximal regret parameter ν = 3 we

revert back to the overfitting issue where the threshold is not restrictive enough

to prevent small clusters being formed to accommodate large clusters. However,

from ν = 38 onwards we consistently produce four large clusters which resemble

the true clustering. Interestingly, even for seemingly large values of maximal regret,

combining any of the four large clusters is seen as too detrimental an action to take.

Indeed, the maximal regret criterion is powerful due to the fact that overfitting

(which UNCOVER is sometimes prone to) only results in small gains in the Bayesian

evidence, as opposed to the much larger gains UNCOVER makes when creating
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clusters that generalise well. The result of which is a seemingly robust method

when one has enough knowledge of the problem to specify a threshold.

The final criterion we consider is the validation data criterion, the seemingly

most autonomous of the deforestation criteria. Whilst a train:validation split is all

that is required, the size of the training data must still be specified through the

proportion parameter o ∈ [0, 1]. Therefore, we assess the effect o has on the output

from UNCOVER with this criterion. Note that we must also assess the variability of

outputs for certain thresholds as UNCOVER is governed by the covariate structure

found in the training data, which clearly is dependent not only on the size of the

training data but also the individual observations within the training data. Assess-

ment of the variability of output is determined through several runs at particular

thresholds. The results are shown in figure 4.10. The first noteworthy element of

Figure 4.10: UNCOVER performance metrics on the spiral dataset when the
validation data deforestation criterion is specified. The metrics FMI (left) and AUC
(right) are shown for an increasing fraction of the data assigned as training data,
each with multiple runs (10). Individual run results for this method’s training data
and test data are given as blue and purple points, and their mean results are given
as cyan and pink respectively. Dashed lines in each plot shows the maximum value
obtained by previous methods for both the training data (blue) and the test data
(purple). For previous methods, the training data consisted of both the training
data and validation data for this method. For FMI the dashed lines represent single
linkage hierarchical clustering and for AUC the dashed lines represent one level
mixture of experts.

figure 4.10 is that when only a small amount of observations are assigned as training

data, the results are poor. In terms of FMI values, this is due to the small amount

of training observations not being able to capture the spiral structure in covariate

space. Therefore, the resulting minimum spanning tree will not contain the nec-
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essary edges to create the four true clusters through edge removal. Regarding the

AUC values, whilst it is possible to capture the true clustering signal through the

production of additional clusters9, the small amount of observations results in weak

signals between the response and the covariates and so the strong true cluster sig-

nals are not able to be uncovered in the planting stage, leading to a poor predictive

performance.

For higher training data fractions these problems are seemingly mitigated, as

there is a sufficient amount of data to capture the covariate structure as well as the

true clustering signals. However, figure 4.10 does not reveal whether this particular

criterion is robust to overfitting. Figure 4.11 addresses this question through visual-

isation of the number of clusters and smallest cluster sizes of the various individual

runs. Here we see that whilst it appears that as the training fraction increases we

Figure 4.11: UNCOVER cluster information on the spiral dataset when the val-
idation data deforestation criterion is specified. The number of clusters (left) and
smallest cluster size (right) of the various runs are shown for an increasing fraction
of the data assigned as training data, each with multiple runs (10). Individual run
results are given as black points, and their mean results are given as red points.
Note that when determining the smallest cluster size, both training and validation
data are considered.

output fewer clusters, the variability in the runs for larger training data fractions is

high. This can also be deduced from examination of the smallest cluster sizes, as it

appears that although larger training set fractions allow for the possibility of large

cluster sizes that one might expect (i.e. a smallest cluster size near 800 and a high

9If a true cluster is disconnected by the minimum spanning tree graph, with sufficient data
UNCOVER will create multiple clusters for the one true cluster, each with the same regression
coefficients.
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FMI value indicate the correct clusters were selected in this setting), these fractions

also allow the possibility of small clusters which overfit the data. This is likely the

result of clusters only requiring the assignment of a single validation observation.

Naturally, smaller clusters are much more likely to only be represented by a sin-

gle validation observation, which therefore can lead to the potentially misleading

conclusion that the small cluster generalises well due to its prediction of a single

observation’s response. Note that this scenario is more common for large training

fractions as a result of the scarcity of validation observations. Indeed, for small

sized training data (in comparison to the validation data) there is an abundance of

data to test generalisability and so this small cluster issue is softened10. The caveat

to this analysis, however, is that for large amounts of data one should have more

confidence in capturing the structure in the covariates and the cluster signals even

with a small training data fraction. As a result, we have more flexibility to lower

the fraction to increase the possibility that all clusters uncovered have a sufficient

amount of validation data attached to thoroughly test the generalisability of the

clusters.

As a final point, one may wonder why it is not insisted upon that the overall

training fraction is upheld for each individual cluster or why we do not insist more

than one validation observation is attached to any cluster formed. The reasoning for

the former point is that it is not trivial to enforce, as this insistence would clearly

have a large impact on which (if any) training data graph edges would be suitable to

remove, leading in some cases to one-cluster models despite a clear clustering struc-

ture. The latter point also can lead to edge eligibility policy that is too restrictive

whilst simultaneously introducing another parameter which is difficult to specify for

a given problem.

In conclusion for the deforestation criteria, it has been shown that in this exam-

ple, for the majority of specifications, UNCOVER outperforms established methods

— even in the scenario where the true number of clusters for these established meth-

ods are known. In addition to this, each criterion has been evidenced as a viable

10For training data fraction o = 0.05, the smallest cluster size out of all runs was 35.
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choice to address the overfitting issue, with the selection of the criteria dependent

of the specific needs of the stakeholder. Basic criteria is a clear choice for a stake-

holder requiring interpretable cohorts which can be actioned upon. If the aim is

generalisability of the model in the presence of test data, criteria such as the vali-

dation criterion, maximal regret or response diversity are appropriate choices, with

each criterion coming with their own requirements. Validation data requires a large

number of observations, maximal regret requires knowledge of the behaviour of the

Bayesian evidence and response diversity requires knowledge of the balance of the

responses11.

What is common in all versions of UNCOVER, however, is the reliance on the

Bayesian evidence, with its subsequent reliance on the choice of prior. Given the

Bayesian evidence’s sensitivity to the prior [50], one may question how UNCOVER

performs for different priors. To examine this behaviour, we select a deforestation

criterion which gave near perfect results, that being the minimum size of any cluster

being greater or equal than 400 observations. We then shall select nine multivari-

ate normal priors representing all combinations of three choices of mean and three

choices of variance. The means are (0, 0, 0)T , (0,−2, 2)T and (0, 10, 5)T — the stan-

dard option, a mean close to all true cluster’s regression coefficients and a mean

representing a single cluster’s true coefficients, namely β3. The variances take the

structure of the identity matrix I3 multiplied by a constant, either 1, 16 or 64. The

increasing spread gives a vaguer prior, but one more likely to produce samples close

to all true regression coefficients.

Figure 4.12 shows the results. Regarding the log Bayesian evidence, we can see

that when the variance becomes more diffuse the final output does not differ sig-

nificantly. This is due to the fact that the prior is less informative, and given the

deforestation criterion forces each cluster produced to consist of a large number of

observations, this allows the likelihood to have a dominating effect12. In contrast,

when the prior is more concentrated the position of the prior mean has greater im-

11General recommendations for all deforestation criteria are given in appendix B.1.
12This dominating effect need not occur due to diffuse priors however. An increase in the number

of training observations would also cause less reliance on the prior.
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Figure 4.12: Heatmaps of various metrics of the UNCOVER algorithm output
at differing prior specifications. These are; the natural logarithm of the Bayesian
evidence (top left), the FMI values (top right) and the AUC values (bottom). The
factors A, B and C refer to the means (0, 0, 0)T , (0,−2, 2)T and (0, 10, 5)T respec-
tively. The factors D, E and F refer to the variances I3, 16I3 and 64I3 respectively.
All outputs bar the bottom right heatmap (which refers to the test data) refer to
the training data.

pact, as seen for the prior N ((0, 10, 5)T , I3). This prior’s location and spread makes

it difficult to produce samples close to the true coefficients of some clusters (even

with the number of training observations being greater or equal to 400), resulting

in the poor Bayesian evidence.

An interesting advantage of ill-placed priors, however, is their ability to restrict

overfitting. In more detail, consider a common scenario with UNCOVER, that

being a large cluster benefiting from removing a small number of observations that

in reality are part of the large cluster. A well-placed prior ensures that this small

number of observations are explained relatively well as their own cluster, and so

they are removed. An ill placed prior on the other hand explains these observations

extremely poorly (as the number is small and so the prior has a dominating effect)

and so UNCOVER decides not to remove them. In essence poorly chosen priors

ensure that only clusters with large amounts of observations are formed as for these
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clusters the prior has an insignificant effect. The caveat to this is of course that an

ill-chosen prior may miss key clustering structure and restricts the user if there is

genuine prior knowledge on the potential region of cluster’s regression coefficients.

The effects of ill-chosen priors for overfitting cannot be fully seen for this example

due to the deforestation criterion but potentially can be partially seen in the FMI

values. Indeed, whilst the FMI values for all priors are relatively similar, the greatest

FMI values are reserved for the worst placed prior. This is a consequence of the edge

connecting the two spirals being positioned such that a few observations belonging

to one cluster are seen as more beneficial to another cluster with a well specified

prior. For the poorly specified prior more relevance is placed on each cluster having

a large number of observations and so the removal of those observations from one

cluster is ultimately not seen as preferential.

Regarding the AUC, the bottom left image in figure 4.12 shows that for the

training data the AUC values are extremely similar but in general the prior cen-

tered at (0,−2, 2)T performs better, as expected. The test data AUC is slightly

more informative, however, showcasing that for a concentrated ill centered prior,

predictive performance can be lower as UNCOVER struggles to produce posteriors

near the true coefficients.

As mentioned above, due to the dataset size and the choice of deforestation

criterion (which ensures each cluster contains at least 400 observations), the likeli-

hood has a dominating effect over the prior. For smaller sized datasets the prior is

much less likely to be dominated by the likelihood resulting in the choice of prior

potentially having a larger impact.

To showcase this, we construct two new datasets — one containing 2000 observa-

tions and one containing 400 observations. Both datasets are generated in the same

manner as the original spirals dataset, i.e. through equations (4.31 — 4.37), with

the key difference being the number of observations in each spiral and the number

of observations in each cluster. Each spiral will contain n
2
observations and each

true cluster will contain n
4
observations, with n being either 2000 or 400 depending

on the dataset. The minimum cluster size k will also require adjustment due to

the new dataset size. So, for the 2000-observation dataset k = 200 and for the
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400-observation dataset k = 40. With this set-up, we shall assess the effect of the

prior using the same nine priors as used with the full dataset.

For the 2000-observation dataset, the results of the nine priors are shown in

figure 4.13. The results are similar to the results found with the original dataset,
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Figure 4.13: Heatmaps of various metrics of the UNCOVER algorithm output at
differing prior specifications, for the 2000-observation spiral dataset. These are; the
natural logarithm of the Bayesian evidence (top left), the FMI values (top right)
and the AUC values (bottom). The factors A, B and C refer to the means (0, 0, 0)T ,
(0,−2, 2)T and (0, 10, 5)T respectively. The factors D, E and F refer to the variances
I3, 16I3 and 64I3 respectively. All outputs bar the bottom right heatmap (which
refers to the test data) refer to the training data.

however, there are two specific priors which lead to poor results, namely the priors

N
(
(0, 0, 0)T , I3

)
and N

(
(0, 10, 5)T , I3

)
. Indeed, both these priors have a lower

Bayesian evidence, FMI value and AUC value (for both training and test data)

when compared to priors with a well-placed prior mean or even diffuse ill-placed

priors. Additionally, the prior N
(
(0, 10, 5)T , I3

)
failed to even produce 4 clusters

as an output (a 3 cluster model was selected instead). This is a consequence of

the smaller sample size, where if a prior is concentrated on an ill-placed prior mean

the number of observations cannot correct for this by allowing the likelihood to

dominate the prior. It should be noted however that the well-specified prior mean
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(for any prior variance specification) and the ill-specified prior means with diffuse

prior variances all performed well in spite of the reduced number of observations.

For the 400-observation dataset, the results of the nine priors are shown in figure

4.14. When the dataset is this size the true clusters do not contain enough obser-
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Figure 4.14: Heatmaps of various metrics of the UNCOVER algorithm output at
differing prior specifications, for the 400-observation spiral dataset. These are; the
natural logarithm of the Bayesian evidence (top left), the FMI values (top right)
and the AUC values (bottom). The factors A, B and C refer to the means (0, 0, 0)T ,
(0,−2, 2)T and (0, 10, 5)T respectively. The factors D, E and F refer to the variances
I3, 16I3 and 64I3 respectively. All outputs bar the bottom right heatmap (which
refers to the test data) refer to the training data.

vations to present a strong regression signal. As a consequence, the optimal cluster

assignment for UNCOVER is unlikely to be the true clustering, and the prior mean

(0,−2, 2)T may not be as well placed here as it was for the larger spiral datasets.

Indeed, with weaker signals present, the standard prior mean option has more ap-

peal and performs stronger than previously seen. Despite it’s placement in covariate

space being less of an asset, the prior mean (0,−2, 2)T also performs well, as does the

prior mean (0, 10, 5)T when the prior variance is sufficiently diffuse. For these priors,
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one of two 3-cluster solutions is selected13, both of which have a similar performance

in terms of Bayesian evidence and AUC values for training and test data. Obviously

as the cluster assignments differ the FMI values will vary slightly, but as we would

not expect UNCOVER to return the true clustering here the FMI values have less

relevance. The only prior yet to be discussed is the prior with mean (0, 10, 5)T and

variance I3. This prior performs poorly as the prior mean is still ill-placed here and

the sample size of the dataset is such that this poorly chosen prior has a large impact

on the Bayesian evidence and subsequently the cluster assignment (this prior is the

only prior selected to produce a 2-cluster output). As stated previously, making the

prior more diffuse can help alleviate the choice of prior mean and in this specific

setting allows the output of UNCOVER to return to a better performing 3-cluster

solution.

In summary, for optimal results one should opt for a prior well centered and

diffuse enough to be able to capture the true cluster’s coefficients with relative ease.

This of course is by no means a trivial task, but prior knowledge of the problem and

possible clustering structure can help with specification (see appendix B.1 for more

details). This being said, all prior choices in the original spiral dataset resulted in

the correct number of clusters being specified and so with a deforestation criterion

such as minimum number of observations, which encourages posteriors to rely less

on the prior, even ill specified priors can perform well with a large sized dataset.

4.7 Summary

UNCOVER offers an output that contains many features designed for stakeholder

interpretability. Examples of this are; the hard clustering output achieved through

the graphical representation of data, the flexible deforestation criteria to match

stakeholder needs and the use of covariate structure through minimum spanning

forests (which ensures observations with vastly different attributes are unlikely to

belong to the same cohort). Guiding edge removal and reintroduction through the

13Which output is selected depends on both the prior chosen and the variation in estimation of
the Bayesian evidence.
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model’s Bayesian evidence also allows for the relationship between the covariates and

the response to govern the formation of the cohorts, offering an improvement upon

unsupervised methods. UNCOVER also offers various additional benefits, such as;

the ability to return a single cluster if no clustering structure is present, the lack

of pre-specified parameters which are unlikely to be known a priori (e.g. number of

clusters) and the ability to dictate the clustering structure through a sub-selection

of the covariates whilst simultaneously allowing all covariates to contribute to the

model.
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CHAPTER 5

Implementation of UNCOVER

With interpretability forming a core principle for UNCOVER (and indeed this thesis

in general), a thorough consideration of the practicalities of implementation must be

carried out. Specifically, this refers to the computational bottleneck of implementing

multiple Sequential Monte Carlo (SMC) samplers. In principle UNCOVER relies

on a new run of an SMC sampler for each model considered (in order to obtain

the Bayesian evidence of said model), so the cost of comparing models becomes

extremely large if näıvely implemented. This is evident even in the first iteration of

UNCOVER, which requires n− 1 posteriors to be sampled in order to discover the

optimal split of the initial one cluster model. Whilst this is a large improvement

on the 2n−1 − 1 posteriors that would have to be sampled in an exhaustive search

not utilising minimum spanning trees, this number of posteriors is still significant

for large n. Additionally, the greedy nature of the algorithm does ensure that the

amount of subsequent model generations diminishes as the algorithm progresses, as

even with a blunt recalculation of all possible models through edge removal with

a K-cluster current model the number of generations is n − K ≤ n − 1. Edge

reintroduction further compounds the number of SMC runs required, however, as

does the type of deforestation criterion applied.

113



The result in any case is that a significant amount of computation time must

be devoted to the vast amount of posteriors to be sampled through SMC, and so

it is vital that this bottleneck is addressed in order to allow UNCOVER to feasibly

be used on real-world datasets. A standard approach one may take is to abandon

the use of SMC samplers entirely or attempt to use them sparingly (this will be

discussed in section 5.4), however, the benefits of using SMC make it a desirable

method for UNCOVER. Indeed, frequentist methods such as information criteria do

not provide samples from the posterior for obvious reasons and come with large data

assumptions that cannot always be met. Other methods which do provide posterior

samples such as Markov Chain Monte Carlo [37] often cannot provide the Bayesian

evidence easily, which is clearly not desirable for UNCOVER. Therefore, given that

SMC samplers provide all the necessary information required for UNCOVER, before

consideration of alternative approaches we shall take measures to ensure the use of

SMC in UNCOVER is as efficient as possible.

What follows in this chapter is the approach made to help achieve a computation-

ally efficient version of UNCOVER using SMC samplers, namely using memoisation

and reverse iterated batch importance sampling. The viability of alternatives to

SMC are then discussed in the form of replacing SMC with asymptotic approxima-

tions for large clusters. Incorporation of these techniques then results in the final

contribution to this chapter, an R package which provides a user-friendly method for

using UNCOVER on real data.

5.1 Memoisation

Whilst it is true that the UNCOVER algorithm requires the generation of a vast

amount of different models for comparison, it is also true that the majority of models

produced will be extremely similar to a previously generated model, as they are

usually nested with respect to which observations are included. Consider as a simple

example figure 5.1. Removal of the edge highlighted in blue gives the two vertex sets

V1 = {2} and V2 = {1, 3, . . . , 10}. If we were then to remove the edge highlighted

in green we would obtain the vertex sets V′
1 = {2, 9} and V′

2 = {1, 3, . . . , 8, 10}.
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Figure 5.1: Minimum spanning tree of ten samples of N ((0, 0)T , I2). Vertex labels
correspond to the index of the observation. The majority of edges are given as black
lines, with the exceptions being the green and blue dashed lines, used to highlight
edges discussed in chapter 5.

Clearly the two partitions lead to similar vertex sets and therefore similar posteriors.

This similarity of models can be a major asset when using Chopin’s Iterated

Batch Importance Sampling (IBIS) method [9], as if the final posterior of model A

contains observations that are a subset of observations that form the posterior of

model B, then model A’s posterior is a bridging distribution of model B’s posterior.

Therefore, storage of previous runs of a sequential Monte Carlo sampler (namely

the weighted samples and the Bayesian evidence) could have potentially large com-

putational savings, since model B’s posterior simply requires further data updating

of model A’s posterior.

As such, we require a mechanism for both efficient storage and retrieval of IBIS

sample sets from intermediate posteriors. In order to introduce this to UNCOVER

we must first introduce two concepts, that of a cache and function memoisation.

Definition 5.1.1 (Cache). A cache is a storage object. Objects added to the cache

are assigned a unique key such that these objects can be accessed without computation

if the correct key is specified.
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Definition 5.1.2 (Function Memoisation). A memoised function is a function with

a local cache such that when the function is called the output is stored in the cache

with a unique key based on the function arguments. If the function is called again

with the same arguments then the results of the first call are given without compu-

tation.

Call f(args) Convert arguments to key

Is key in function cache?

Output

Compute function output

Store key and
output in cache

yes

no

Figure 5.2: Flowchart detailing the memoisation process for a function.

It is important to note here that the cache does not possess infinite storage, and

when the cache becomes full an eviction policy [82] may be required to retain the

most important objects. Eviction policies determine which object to remove when

a new object needs to be stored, and the policy adopted by the memoised functions

in UNCOVER is Least Recently Used (LRU). The LRU policy time stamps cache

objects when an action is performed, that being either when they enter the cache

or when the object is called from the cache (for function memoisation this is when

the function is called with arguments matching the object’s key). When an object

must be evicted due to insufficient space to store a new result, the object with the

oldest time stamp is removed. This encourages the most useful objects to stay in

the cache, where usefulness is determined by how recently the object has been used

by the user.

A key feature of function memoisation is that the arguments of the function are

stored (as a key) within the function’s cache, meaning that when the function is

called with specific arguments, only one check has to be made — if the argument
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key is in the cache or not. In order to utilise memoisation for UNCOVER, however,

we must introduce a new form of key lookup — for a specified argument A (being

the set of observation indices in the target posterior), we want to identify the object

in the cache whose argument is the largest subset of A. This check is required as

the output (being posterior samples and the Bayesian evidence) from the largest

subset of A (in the cache) can then be instantly accessed and subsequently used as

a bridging distribution to obtain the target posterior.

The non-memoised version of IBIS used in UNCOVER requires the addition of

|A| batches, but for a subset A′ ⊆ A which is in the cache the memoised version

of IBIS used in UNCOVER only needs to compute the addition of |A\A′| batches.

Naturally when A′ = A no evaluation of the IBIS function is necessary and we revert

back to standard memoisation after the cache check.

5.1.1 Look After the Pounds and the Pennies Look After

Themselves — Cache Management

The computational gains of memoisation in this setting is not guaranteed, as the

savings we make in not running the IBIS function from scratch might be offset by

the time taken to discover the largest subset in the cache. It would appear a balance

must be struck between having too large a cache, meaning that the cache checks

are more time consuming than running the function from scratch, and too small a

cache, meaning that checks are fast but rarely find a useful subset.

However, there is another option, that of an evaluation policy1. An evaluation

policy is a system for determining when it is beneficial to check the cache and when

it is beneficial to run the function from scratch. Letting A be the target observation

index set, we propose the evaluation policy be to only check the cache when

|A| ≥ ρ (5.1)

where ρ ∈ {1, . . . , n} is the evaluation threshold. The intuition behind this policy is

1Note that ‘evaluation policy’ is distinct from ‘eviction policy’, which is always LRU for UN-
COVER.
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that if A is small enough than the amount of time spent checking the cache, finding

a bridging distribution, and then running the remainder of the function will likely

be more than simply running the function from scratch. However, if A is deemed

sufficiently large2 then it is deemed worthwhile to ‘take a risk’ on checking the cache

to find a large subset, as if one exists the computation saved could be substantial.

An examination of the computational efficiency of UNCOVER for varying values of

ρ is given in section 5.2.1.

5.1.2 Eviction Policy Optimisation

With only a finite cache option available one may wonder how detrimental object

eviction can be to the UNCOVER algorithm. The LRU eviction policy is a generally

efficient policy to promote useful subsets being kept in the cache, but this policy

is only as effective as the model selection scheme used in UNCOVER. Explaining

further, for a given iteration of UNCOVER, all edge removals must be considered; if

these edge removals are selected at random, the sub-models observation index sets

are not likely to contain significant overlap and therefore this presents an inefficient

method. Figure 5.1 gives a prime example of this, as if the edge {2, 9} was selected

originally then selection of {5, 8} as the next edge removal is inefficient, as neither

of the two sets this forms are a subset of index sets in the cache.

If we can traverse the graph in an optimal manner, we can ensure that we are

likely to be successful in finding an effective subset when checking the cache, whilst

simultaneously evicting objects from the cache that are unlikely to be required in the

future. The latter point can also be highlighted through figure 5.1, as removing edge

{2, 9} creates sub-models valuable to the removal of {3, 9}, but if {3, 9} is the last

edge removal considered then the models created by removing edge {2, 9} may have

been evicted. Graph traversal can be achieved in many ways [83], but we opt for

creating an order of edges by first considering the diameter path (see section 3.3.1),

and then subsequent branches encountered on this path in a sequential manner.

This algorithm is given as algorithm 19. Note edges are added to the queue in

2Sufficiency here is determined by many factors such as general computation time of the func-
tion, cache size etc.
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batches but the order of the edges within a batch can be random. The result is p,

which is an ordered version of the Minimum Spanning Tree (MST). As algorithm 19

requires an MST as an edge set, this is applied only on the initial one-cluster graph

in UNCOVER, with the ordering remaining fixed thereafter.

Algorithm 19: Depth First Search of a Minimum Spanning Tree

Input : Minimum Spanning Tree Graph — GT = (V,T)
Initialisation : Let p = ∅. Get the diameter path p⋆. Let p⋆1 = {i, j}. Add
i to Ṽ. Let Q be a queue containing all edges which have i as an endpoint.
Step 1 : Let j be the first vertex not in Ṽ seen as an endpoint in the queue
Q. Let {a, j} be the corresponding edge in Q. Update p = p ∪ {a, j},
Ṽ = Ṽ ∪ {j} and add all edges which include j and another vertex not in
Ṽ as endpoints to the front of Q.
Step 2 : if Ṽ = V then

Stop.
else

Go to Step 1.
end
Result : Ordered Edge Set — p

Applying algorithm 19 on the example given in figure 5.1 would give the ordered

set

p = {{2, 9}, {3, 9}, {3, 7}, {6, 7}, {6, 8}, {5, 8}, {4, 6}, {7, 10}, {1, 10}} (5.2)

This depth first approach allows the full exploration of a branch of the tree before the

exploration of another, optimising the use of the current objects in the cache. An-

other possible method is a breadth first search [83], which aims to explore branches

simultaneously. However, if the number of branches is large then for small caches

this risks important objects being evicted whilst cycling through the edges in each

separate branch.

In summary, memoisation is a powerful tool for fast implementation of UN-

COVER, when suitable policies are chosen. In order to showcase the effect that

memoisation with this policy has on the computation time of UNCOVER, we first

introduce a concept which further enhances the potential benefits of storing previous

results — reverse iterated batch importance sampling.
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5.2 RIBIS: Reverse Iterated Batch Importance

Sampling

Memoisation of the Iterated Batch Importance Sampling (IBIS) function has allowed

the computational challenge of large cluster Bayesian evidence estimation to be

mitigated significantly in situations where a previous index set is a subset of the

new target index set — by starting from the bridging distribution provided by the

former and adding observations. However, a natural question then arises as to

whether it is conversely possible to utilise information from Sequential Monte Carlo

(SMC) samplers whose associated index set is a superset of the new target index

set? This has a clear use within UNCOVER, as the example shown in figure 5.1

highlights. Indeed, as previously stated the removal of the edge highlighted in blue

requires the computation of the posteriors containing observations belonging to the

sets V1 = {2} and V2 = {1, 3, . . . , 10}. If the edge highlighted in green is then

subsequently removed, we obtain index sets V′
1 = {2, 9} and V′

2 = {1, 3, . . . , 8, 10}.

We have seen the benefit of memoisation for obtaining the posterior containing

V′
1 from the posterior containing V1; however, it must be noted that V′

2 and V2

also differ by a single observation, yet through the current use of memoisation the

information we have on the posterior containing V2 is not utilised.

Starting from an initial posterior distribution π0 = π(β|X,y,A′), where A′ ⊆

{1, . . . , n} is an index set containing the observations used in the posterior, we seek

to remove (rather than add) observations until we reach the target distribution

πΥ = π(β|X,y,A), where A ⊂ A′. Assuming we adopt Chopin’s IBIS method (with

a batch size of one) as previously done for adding observations, the reverse bridging

distributions are obtained by removing an observation at each step, giving

πt = π

(
β

∣∣∣∣∣ X,y,A′\
t⋃

s=1

Bs

)
=

[
n∏

i=1

[π(yi | β,xi)]
1(i∈A′\

⋃t
s=1 Bs)

]
π(β) (5.3)

where Bs ∈ A′\A such that (B1, . . . ,BΥ) is a permutation of the ordered set of

A′\A. This results in the following updates to the importance weights given in
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equation (3.25)3:

w̃{t+1}
r =

γt+1(β
{t}
r )

γt(β
{t}
r )

=

[
n∏

i=1

[
π(yi | β{t}

r ,xi)
]
1(i∈Bt+1)

]−1

(5.4)

As seen previously we can measure the degeneracy of the weights through the Ef-

fective Sample Size (ESS). However, whilst use of the ESS as an indicator of weight

degeneracy is still valid, it is important to take into consideration the subtle differ-

ences in how the weights become degenerate in Reverse Iterated Batch Importance

Sampling (RIBIS).

When moving from prior to posterior in the typical way (through addition of

observations), we expect the posterior to contract. Indeed, under certain conditions

which can be met through specification of a suitable prior, the Bernstein von Mises

theorem [41] shows that

√
n(β − β0)

D−−−−→ N (0, I(β0)
−1) (5.5)

where β0 is the true value of β and I(·) is the Fisher information matrix. This

implies that the variance of the posterior contracts at a rate of n−1.

Therefore, in the traditional application of IBIS, as we transition from one bridg-

ing distribution to the next the distributions contract, and the weights of the samples

in the tail of the partial posteriors degenerate rapidly relative to the weights of sam-

ples towards the center of the distribution. Subsequently, in the resampling step,

‘tail’ samples are much more likely to be removed. This does not necessarily hold

when considering RIBIS, however. Returning to equation (5.4), note that the weight

here is determined by the observation Bt+1, such that samples of the posterior πt

which explain this observation well (i.e. result in a high likelihood) are now given a

small weighting as Bt+1 is to be removed. However, for large |A′\
⋃t

s=1 Bs| where

the likelihood has a dominating effect, there is a high chance that the center of

this posterior will explain observation Bt+1 well (noting that Bt+1 ∈ A′\
⋃t

s=1Bs).

So, in general, samples in the center will have low weighting (due to weights being

3Note here that subscript r refers to sample index and not cluster index.
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determined by the inverse likelihood), but in the tails of πt this is less likely. Again

assuming |A′\
⋃t

s=1Bs| is large such that the Bernstein von Misses theorem holds,

πt will be centered in a similar position to the center of πt+1. Therefore, for samples

distributed around the centre of πt, the weights will approximately be 1 (with 1

being the lowest achievable un-normalised weight here). For samples in the tail of

πt, however, the density of these samples will be significantly higher in πt+1 than πt,

because in reverse we undergo posterior expansion rather than posterior contraction.

This then results in ‘tail’ samples being favoured when resampling.

This preference for samples in the tail of πt is not explicitly detrimental to the

process. Indeed, before resampling the weighted mean µ and weighted covariance

Σ are estimated to form a multivariate normal proposal. Due to the larger weights

in every tail of the distribution, the theoretical form of the proposal distribution

will have a similar center to πt+1 but with a highly inflated variance. The samples

from this proposal used in the one-step independent Metropolis–Hastings sampler

will then cover the center of the target distribution as well as the tails of the target

distribution. Therefore, even with a high probability of only retaining tail samples

after resampling, the ‘move’ step of RIBIS should provide proposals which give a

wide coverage of the target distribution.

There is an issue present with RIBIS, however, as obtaining consistent tail in-

formation even with an inflated normal proposal is still challenging. Recall the

acceptance stage of the one-step independent Metropolis–Hasting sampler is given

as

α(β{t},β{t+1}) = min

{
1,

πt+1(β
{t+1} | X,y,A′\

⋃t+1
s=1 Bs)q(β

{t} | µ,Σ)
πt+1(β

{t} | X,y,A′\
⋃t+1

s=1 Bs)q(β
{t+1} | µ,Σ)

}
(5.6)

where q(·) is the probability density function of the multivariate normal proposal.

Samples which move towards the center of the target distribution have a high prob-

ability of acceptance. This is due to the large target distribution ratio

πt+1(β
{t+1} | X,y,A′\

⋃t+1
s=1 Bs)/πt+1(β

{t} | X,y,A′\
⋃t+1

s=1 Bs) and the proposal ra-

tio q(β{t} | µ,Σ)/q(β{t+1} | µ,Σ) ≈ 1, as the proposal will theoretically be hyper

expanded compared to the target distribution so moves towards the center have a
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bigger effect on the target than on the proposal. Consequently, moves towards the

tails of πt+1 from the tails of πt will have a low probability of acceptance due to

the expansive proposal again resulting in the target ratio having a dominating effect

(with clearly the preference being for the target distribution not to move to an area

of low density4).

Additionally, we must consider the detrimental effect rejection has on the pro-

cess. For IBIS, rejection of a proposed sample leads to a sample from a previous

distribution remaining in the set of samples, and this sample will either contain

information about a high density region of the new distribution or provide tail in-

formation about the new distribution. For RIBIS, it will be highly unlikely (as pre-

vious distributions are contracted posteriors) that the remaining sample will provide

any tail information for the new distribution when the proposal is rejected. This

effect will be compounded through subsequent resample-move steps, culminating in

a biased estimation of the Bayesian evidence.

It is important to note here that this indication of bias is restricted to the setting

where we take only a finite number of steps using the independent Metropolis–

Hasting sampler. Indeed, for the weighted Gaussian proposal distribution used in

IBIS, the Metropolis–Hastings algorithm asymptotically is guaranteed to provide

samples from the target posterior, even in situations where this posterior is an

expansion of the proposal. This guarantee is only asymptotic, however; for an

efficient algorithm we aim to take as few Metropolis–Hastings steps as possible.

As a result, this biasing effect will be present in RIBIS, and a less computationally

expensive solution is required than simply insisting on a large number of Metropolis–

Hastings steps when moving the samples.

Figure 5.3 showcases the bias issue through the generation of 3000 log Bayesian

evidences. The red points are obtained through repetition of the following proce-

dure 1000 times using the iris dataset: first 30 observations are added to the prior

(a standard normal) using IBIS to obtain an estimate for the log Bayesian evidence

at this particular partial posterior (plotted on the x-axis), then all remaining obser-

4Though of course moves into the tails of πt+1 are not impossible.
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Figure 5.3: Multiple runs of IBIS and RIBIS (without transform) to obtain log(Z)
for a partial posterior of the iris dataset containing 30 observations. The species
response was altered to either ‘versicolor’ or ‘not versicolor’ to obtain a binary
output. Red points represent runs with different initialisations whereas blue points
represent runs with the same initialisation. The black line represents the scenario
where the IBIS output is identical to the RIBIS output.

vations are added using IBIS, before being removed using RIBIS to obtain a second

estimate of the 30 observation partial posterior log Bayesian evidence (plotted on

the y-axis). The blue points are obtained by taking the samples from a single fixed

full IBIS posterior and reversing to the 30 observation partial posterior (repeated

1000 times), enabling visualisation of the variation solely in the RIBIS procedure.

To highlight the bias, the line y = x has been added to the plot. As the two esti-

mates are of the same quantity, the points should fall along this line, but there is a

clear downward bias in the RIBIS estimate.

In order to combat this bias, we will assume that the Bernstein von Mises theorem

holds and that the target distribution contains a large number of observations. This

assumption is crucial, as the closer to the prior we get, the further away our proposal

distribution becomes from the prior (if the prior is not a multivariate normal), and

the suitability of the following proposed transformation weakens.

If the number of observations in the target distribution is large then all bridging

distributions including the initial distribution will have a large number of observa-

tions as well (since we work in reverse), and so we can assume that all distribu-
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tions in the RIBIS sequence are approximately N
(
β0,

I(β0)
−1

n

)
. Therefore, letting

|A′\
⋃t

s=1 Bs| = n{t}:

β{t} ∼ πt ≈ N
(
β0,

I(β0)
−1

n{t}

)

=⇒

√
n{t}

n{t} − 1
(β{t} − β0) + β0 ∼̇ N

(
β0,

I(β0)
−1

n{t} − 1

)
≈ πt+1 (5.7)

as |Bs| = 1 for all s = 1, . . . ,Υ. Consequently, we propose applying the transforma-

tion in equation (5.7) to the current sample set in order to obtain an approximate

sample from the next bridging distribution. This provides approximate tail samples

for the next bridging distribution and as a result can counter the one-step biasing

effect witnessed previously. Finally, we approximate β0 using the weighted mean

which forms the mean for the proposal distribution. A simple illustration of this

can be seen in figure 5.4. Here we can see that through the transformation of the

Figure 5.4: Densities of the current distribution (black), target distribution (red)
and proposal distribution (green). Four rows of points are also given representing
the position of distribution samples. The first row gives samples from current distri-
bution, the second row gives weighted samples (with weight corresponding to size)
of the target distribution, the third row is obtained by resampling the second row
of points according to weight and the fourth row is obtained by applying the trans-
formation in equation (5.7) to the third row of points.

samples before the move step, we have obtained tail information about the target

distribution, which is clearly not available before the transformation and difficult to
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obtain through one-step Metropolis–Hastings moves.

The full procedure is detailed in algorithms 20 and 21. The necessity for algo-

rithm 20 comes from the fact that in order to apply the transformation in equation

(5.7) we need un-weighted samples from the current distribution.

Algorithm 20: Resample-Move step for algorithm 21

Input : Number of Samples — N , Distribution Samples — (β1, . . . ,βN)
T ,

Distribution Weights — w = (w1, . . . , wN)
T , Distribution Index Set — A′,

Covariate Matrix — X, Response Vector — y
Step 1 : Let (β̃1, . . . , β̃N)

T = (β1, . . . ,βN)
T . Let q ∼ N (µ,Σ) with

µ = wT (β1, . . . ,βN)
T , Σ =

(
(β1, . . . ,βN)

T − µ
)T

diag{w}
(
(β1, . . . ,βN)

T − µ
)

Step 2 : for r = 1, . . . , N do

Sample βr from {β̃1, . . . , β̃N}, where P(βr = β̃s) = ws

Update βr using algorithm 3, replacing πt+1 with π(β | y,X,A′).
end
Result : (β1, . . . ,βN)

T

We can witness the one-step bias correction by revisiting the iris example shown

in figure 5.3, and applying the bias-correcting RIBIS algorithm. The results are

shown in figure 5.5, where the biasing effect is clearly rectified. A real-world ex-

ample can be seen for the mall customers dataset [84, 85], where we take as our

binary response 1{spending score ≤ 50}, with sex, age and income as the covariates

(summary information is showcased in table B.2, given in appendix B.2.1). Again,

the log Bayesian evidence is obtained from the partial posterior of a sample of 30

observations through either IBIS from a standard normal prior or RIBIS from the

full posterior of all 200 observations. The results of this experiment can be seen in

figure 5.6.

5.2.1 Implementation Within UNCOVER

Just as the benefits of memoisation have been highlighted for the IBIS algorithm,

the same is true of RIBIS. One may not even need separate memoised functions, as

the two processes can be combined through a wrapper algorithm (see algorithm 22).

Memoisation of this wrapper function has no effect on the evaluation policy but

does have an effect on the eviction policy. To see this, we note that now when
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Algorithm 21: RIBIS for target π(β|X,y,A) from π(β|X,y,A′)

Input : Standard IBIS Parameters — (X, y, ξ, N), Target Index Set — A,
Current Index Set — A′, Current Posterior Samples — (β1, . . . ,βN)

T ,
Current Posterior Weights — w = (w1, . . . , wN)

T ,
Current Model’s Bayesian Evidence — Z
Initialisation : Obtain (β

{0}
1 , . . . ,β

{0}
N )T from algorithm 20. Let

t = 0, t̃ = 0,Υ = |A′\A| and (B1, . . . ,BΥ) be a permutation of A′\A.
Step 1 : for r = 1, . . . , N do

Let w̃t+1
r =

[∏n
i=1

[
π(yi | β{t}

r ,xi)
]
1

(
i∈

⋃t+1
s=t̃+1

Bs

)]−1

end

Let w{t+1} = w̃{t+1}∑N
r=1 w̃

{t+1}
r

Step 2 : Pool together identical samples: Let δ† be the index vector of the
unique elements of (β

{t}
1 , . . . ,β

{t}
N )T . Let δ†† ∈ N|δ†| be such that

δ††i = |{r ∈ {1, . . . , N} : βr = βδ†i
}|.

Step 3 : if ∑
r∈δ†

w{t+1}
r δ††r

2/∑
r∈δ†

(
w{t+1}

r δ††r
)2

< ξ

then

Let (β̃
{t}
1 , . . . , β̃

{t}
N )T = (β

{t}
1 , . . . ,β

{t}
N )T . Let q ∼ N (µ,Σ) with

µ = (w{t+1})T (β
{t}
1 , . . . ,β

{t}
N )T ,

Σ =
(
(β

{t}
1 , . . . ,β

{t}
N )T − µ

)T
diag{w{t+1}}

(
(β

{t}
1 , . . . ,β

{t}
N )T − µ

)
For r = 1, . . . , N sample β{t}

r from {β̃{t}
1 , . . . , β̃

{t}
N } (where

P(β{t}
r = β̃

{t}
s ) = w

{t+1}
s ), let β{t}

r =
√

|A′|−t̃
|A′|−t−1

(β{t}
r − µ) + µ and

sample β{t+1}
r using algorithm 3.

Update Z = Z × 1
N

∑N
r=1 w̃

{t+1}
r . Let t̃ = t+ 1.

else

(β
{t+1}
1 , . . . ,β

{t+1}
N )T = (β

{t}
1 , . . . ,β

{t}
N )T

end
Step 4 : if t+ 1 = Υ then

if t̃ = Υ+ 1 then
Stop.

else

Update Z = Z × 1
N

∑N
r=1 w̃

{t+1}
r . Stop.

end

else
Update t = t+ 1. Go to step 1.

end

Result : Target Distribution Output — [(β
{t+1}
1 , . . . ,β

{t+1}
N )T ,w{t+1}, Z]
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Figure 5.5: Multiple runs of IBIS and RIBIS (with transform) to obtain log(Z) for
a partial posterior of the iris dataset containing 30 observations. Dataset and IBIS
estimates are the same of those in figure 5.3. Red points represent runs with different
initialisations whereas blue points represent runs with the same initialisation. The
black line represents the scenario where the IBIS output is identical to the RIBIS
output.

checking the cache, we search for either the largest subset of our target observation

index set A or the smallest set which contains A as a subset. The additional choice

one has for index sets in the cache pairs well with the depth first search used to

order the edge removals. Recall the initial intention behind the search — to create

a sequence of posteriors that differ from their previous model by only the addition

of a single observation. However, note that the removal of an edge creates another

vertex set, which previously had no benefits for the eviction policy, as they represent

a sequence of posteriors which differ from their previous model by only the removal

of a single observation. These posteriors can now be used through RIBIS.

We test the computational benefits of memoisation using a sample of 100 obser-

vations for each of the three Gaussians from the simulated dataset given in figure

4.4. As a result, for all runs a maximum number of clusters deforestation criterion

was used, with κ = 3. All other flexible parameters for UNCOVER (for example κ,

ξ, N) are kept consistent throughout runs, with the adjustable parameter being the

cache checking threshold. These results are given in figure 5.7, where a threshold

value of 0 implies we always check the cache and a threshold value of 301 implies

we never check the cache.
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Figure 5.6: Multiple runs of IBIS and RIBIS to obtain log(Z) for a partial posterior
of the mall customer dataset containing 30 observations. Blue points represent runs
when the bias correction is in place and orange points represent runs when the bias
correction is not in place (regarding the RIBIS algorithm).

Figure 5.7 showcases the subtly in specifying this threshold for computational

speed up, as never checking the cache is costly due to never utilising the similar

previous posteriors we have sampled from, but always checking the cache clearly is

detrimental also as significant time is spent searching the cache for useful objects.

When considering the Bayesian evidences, what is notable is the consistency of

output one can achieve through use of SMC estimation as we observe no obvious

systematic drift as the threshold varies. There also appears to be (excluding one

outlier) lower variability of output for the scenario where we always check the cache.

This is to be expected as always checking the cache ensures that previous posteriors

are utilised much more often, and as a result posterior samples are recycled to a

much greater extent, reducing variability. The outlier is important, however, as it

showcases that this constant recycling of samples can be detrimental if the initial

samples (to be constantly re-used) are a poor representation of the posterior.

Finally, note that we introduced restrictions here which may have a detrimental

effect for low values of the memoisation threshold, but are crucial for an accept-

able output. Specifically, we highly recommend that any posterior that contains a
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Algorithm 22: IBIS and RIBIS Wrapper

Input : Covariate Matrix — X, Response Vector — y,
Target Index Set — A, Current Index Set — A′, ESS Threshold — ξ,
Current Model’s Bayesian Evidence — Z ′, Number of Samples — N ,
Current Posterior Samples — (β′

1, . . . ,β
′
N)

T ,
Current Posterior Weights — w′

Step 1 : if A ⊂ A′ then
Obtain (β1, . . . ,βN)

T , w and Z from algorithm 21.
else

Let Bs = σ(s) for s ∈ A\A′. Obtain (β1, . . . ,βN)
T , w and Z from a

modified version of algorithm 4, where instead of initialising with the
prior we initialise with the posterior π(β | X,y,A′).

end
Result : Target Distribution Posterior Samples — (β1, . . . ,βN)

T ,
Target Distribution Posterior Weights — w,
Target Model’s Bayesian Evidence — Z

number of observations below a certain threshold5 should not be obtained through

RIBIS. This is to ensure that the asymptotic properties of the posterior (which the

transformation relies upon) are upheld, however, this will have a knock-on effect of

reducing the usefulness of the cache for posteriors with small numbers of observa-

tions. Therefore, the threshold at which one excludes the use of RIBIS should be

a key consideration when selecting a memoisation threshold. Additionally, we also

note that if the optimal posterior selected from the cache requires using RIBIS, and

the number of observations to remove is more than the number of observations in

the target posterior, then we insist on applying IBIS from prior samples instead for

obvious computational reasons.

It is important to mention that this is just one example of memoisation for a

specific problem and a specific cache size. The conclusion one should draw from this

experiment is that the extreme thresholds (i.e. always or never checking the cache)

do not necessarily result in the fastest algorithms. Regarding quality of output, it

is advised to avoid checking the cache in at least some situations to avoid the risk

of poor initial samples having a knock-on effect for the rest of the algorithm6.

5This can be specified by the user, with an ad-hoc recommendation being 30, although the
appropriate threshold is problem specific (see appendix B.1 for more details).

6See appendix B.1 for further details.
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Figure 5.7: An UNCOVER algorithm’s performance for different cache checking
thresholds (i.e. if the number of observations in a posterior exceeds this thresh-
old we check the cache for similar index sets). The left plot shows the algorithms
performance with respect to computational time whereas the right plot shows the
logarithm of the algorithm’s Bayesian evidence output. Black dots represent indi-
vidual runs while red dots represent the mean for that threshold.

5.3 Save States

Section 5.1 gave an insight into a non-conventional use of memoisation, due to the

similarity sub-models are likely to have with previous computations. However, the

main usage of function memoisation outside of UNCOVER, to remember results of

a function evaluation for later use, has yet to be thoroughly discussed.

Referring specifically to sub-models, we have seen previously that actions based

on a specific edge only affect the clusters which contain the endpoints of said edge

in the current graph. Therefore, if in the current iteration a cluster is not selected

to be spilt or merged with another cluster, then repeating all the edge actions that

were performed on said cluster in the next iteration will give the same sub-posteriors

discovered in the current iteration. A simple example of this can be seen in figure

5.8, where here we have two clusters, red and blue. Suppose that in one iteration

we assess all edge removals in the blue and red clusters, consequently finding the

optimal edges to remove for both the blue cluster and the red cluster. Then suppose

we opt to remove an edge in the red cluster, highlighted in green. For the next

iteration, the optimal edge to remove in the blue cluster will be the same, as the

sub-posteriors created through removing the edges in the blue cluster will be the

same as the previous iteration.

This hints at not necessarily using memoisation, as this risks optimal edge re-
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Figure 5.8: Minimum Spanning Forest of ten samples of N ((0, 0)T , I2). Vertex
labels correspond to the index of the observation, with colour corresponding to
cluster. The majority of edges are given as black lines, with the exception being the
green dashed line, highlighted for discussion in section 5.3.

moval sub posteriors getting evicted from the cache, but instead a separate storage

system S for retained optimal edge actions.

The first instance of this is when removing edges. As this is done per cluster

assuming a subgraph of just the connected component in question (see algorithm 7),

we simply save the two Bayesian evidences of the clusters produced from the optimal

edge removal in this component. So for cluster k and optimal edge {i, j} ∈ Tk we

store Z
{i,j}−
k1 and Z

{i,j}−
k2 with their associated index sets as an object in S. If an

edge removal benefits the system, the cluster which contains the overall optimal

edge to be removed no longer needs to be stored in S (as it is retained in the

updated iterations graph), so we remove it from S. Then for the next iteration’s

edge removals the only information required is the optimal edges for the two clusters

that are not represented in S.

The second instance of this is for edge reintroductions. Before any edge is re-

moved, we save the Bayesian evidence of the current cluster to be split, along with

that cluster’s associated observation index set, as an object in S. As a result, for

each edge in R we have an associated object in S. So, when checking to see if this

edge is beneficial to reintroduce, if the two clusters formed by splitting the stored

cluster have not been further split, the object in S provides an instant evaluation
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of that cluster’s Bayesian evidence. Of course this may not always be the case and

so, if the clusters have been further split, we would calculate the Bayesian evidence

from scratch and then let this (alongside the new associated index set) replace the

defunct object in S. Additionally, if an edge is reintroduced, then the object asso-

ciated with the reintroduced edge is removed from S. The structure of S is given in

5.1. This then operates as a form of memoisation, albeit with (given the potential

importance of the information stored in S) a highly customised cache structure and

eviction policy.

Edge Action Reference Object

Removal

1
Information on the optimal edge to

remove in cluster 1 or Blank
...

...

K
Information on the optimal edge to

remove in cluster K or Blank

Reintroduction

σ(R)1
Partial or full information on the

cluster formed by reintroducing edge σ(R)1
...

...

σ(R)|R|
Partial or full information on the

cluster formed by reintroducing edge σ(R)|R|

Table 5.1: The structure of S.

5.4 Asymptotic Approximations

Previous sections in this chapter have focused entirely on ensuring that the use of

Sequential Monte Carlo (SMC) samplers is as efficient as possible. However, even

with the utilisation of previous results, it is likely that, for some stages in particularly

large problems, SMC samplers will still be too computationally expensive. An ex-

ample of this is for the first Bayesian evidence that is calculated for the one-cluster

model. No previous posteriors have been obtained and so we must run Iterated

Batch Importance Sampling (IBIS) from prior samples to the full posterior with all

observations included, which could be an expensive process for large n. Therefore,

in extreme situations such as this we must look to make asymptotic approximations

that can be computed with little expense.

As discussed in section 3.2.1, for large enough n (where n is the number of
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observations) a transformation of the Bayesian Information Criterion (BIC) gives

a suitable approximation of the Bayesian evidence7. The exact suitability of this

approximation depends on three main factors:

1. Number of observations — is n large enough that the error term in the ap-

proximation is negligible.

2. Choice of prior — does the prior either; violate any assumptions made for the

derivation of the BIC or have significant influence on the posterior with the

data provided.

3. Separability — Are the observations completely separable such that the max-

imum likelihood estimator is not finite.

Factor 2 is somewhat avoidable through the specification of a weakly informative

prior. Factor 3, whilst not avoidable, is easily tested by whether or not an iteratively

reweighted least squares algorithm converges; this can be done through the glm

function in R. Factor 1 is less straightforward, having some dependence on factors 2

and 3, and as such an ad-hoc threshold is suggested as a flexible parameter such that

this can be adjusted to suit each individual problem. Note that a high threshold

is not inherently problematic in practice, as factor 1 dovetails precisely with the

setting where IBIS is slow.

In order to assess the viability of BIC, we must first consider the maximum

likelihood:

L̂ = π(y | X, β̂1, . . . , β̂K ,V) =
K∏
k=1

n∏
i=1

π(yi | xi, β̂k)
1(i∈Vk) (5.8)

Due to the hard clustering enforced independence of the components, we can express

L̂ =
∏K

k=1 L̂k, where L̂k is the maximum likelihood of the sub-model generated by

observations in Vk. This represents a problem, however, as if there is separability in

7Laplace’s approximation [86] is also a suitable approximation, and can provide a more accu-
rate estimate of the Bayesian evidence. However, computationally it is more expensive to apply
Laplace’s approximation using the function LaplaceApproximation [87] than it is to calculate the
BIC through the function BIC [88], and so we opt for a transformation of the BIC as our large n
approximation.
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one of the sub-models then at least one β̂k will have none finite values, resulting in

the overall BIC value being a poor estimator of the Bayesian evidence. Unfortunately

this scenario is not uncommon, as for every iteration of UNCOVER we shall consider

edge removals which leave one observation in its own cluster — automatically giving

a singular sub-likelihood.

The separation of the likelihood does not need to be viewed as limiting factor,

however, as this can be used as an advantage due to the posterior being a product

of sub-posteriors. Indeed, as has been seen before in equation (4.12), the Bayesian

evidence is also separable (i.e. Z =
∏K

k=1 Zk). Therefore, if |Vk| is sufficiently large

and the corresponding observations do not suffer from separability, then

Zk ≈ BICk = L̂k × |Vk|−
p
2 (5.9)

where p = |βk|. As in UNCOVER the estimation of Zk is done separately for each

k = 1, . . . , K, BICk can simply be dropped in as a replacement for IBIS (algorithm

4) if deemed appropriate. The algorithm for obtaining BICk is given in algorithm

23. This algorithm can be implemented in R [88] using the function BIC.

Algorithm 23: BIC Generation for Vk

Input : Covariate Data for Cluster k — XVk,·,
Response Vector for Cluster k — yVk

, Convergence Threshold — η > 0,
Starting Value Vector for Regression Coefficients — βk

Step 1 : Obtain the maximum likelihood estimator β̂k through algorithm 5.
Step 2 : Let

BICk = π(yVk
| XVk,·, β̂k)× |Vk|−

|β̂k|
2

Result : BIC Value for Cluster k — BICk

We can showcase the advantages and disadvantages of approximating the Bayesian

evidence with a transformation of the BIC value with the following highly artificial

example, designed to highlight the crucial behaviour of BIC estimation. Note that

this example is not run through the whole UNCOVER algorithm. We simulate a

dataset with covariates from a mixture of ten Gaussians with increasing numbers of
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observations in each group, such that in total X ∈ R25575×2 = (X1, . . . ,X10)T

xj
i ∼ N

(
(j, j)T ,

1

36
I2

)
(5.10)

where j = 1, . . . , 10, Xj ∈ R(25×2j−1)×2 and i = 1, . . . , (25 × 2j−1). We also insist

that each of the 10 groups has a differing relationship with the response such that:

βj =
6

cos(uj) + sin(uj)

(
j,

sin(uj)

cos(uj)− sin(uj)
,

− cos(uj)

cos(uj)− sin(uj)

)
(5.11)

uj ∼ U(0, 2π) (5.12)

yji ∼ Bern
(
(1 + e−(1,(xj

i )
T )βj)−1

)
(5.13)

where y = (y1, . . . ,y10)T , j = 1, . . . , 10 and i = 1, . . . , (25× 2j−1). This dataset can

be visualised in figure 5.9.

Figure 5.9: Ten cluster Gaussian dataset, with increasing cluster size as the center
of the Gaussian increases from (1, 1)T to (10, 10)T . Colours correspond to observa-
tion’s associated responses.

Initially, we approximate the Bayesian evidence of each cluster using just BIC

values and take the product of these values to be the total Bayesian evidence es-

timate. Then, we replace the Bayesian evidence estimate of the smallest (i.e. the

computationally most tractable) cluster with an estimate using the standard IBIS

algorithm (algorithm 4) with 1000 samples and an ESS threshold of 500. We repeat

this process, successively estimating the next most computationally tractable cluster

136



by IBIS rather than BIC, until every cluster has their Bayesian evidence estimated

by the IBIS algorithm. This process is repeated 10 times to assess the variability

of our estimates. We also produce 10 estimates of the log Bayesian evidence using

only the standard IBIS algorithm but with 10000 samples and an ESS threshold of

5000, in order to provide a reliable baseline for the true Bayesian evidence. Finally,

we note that as the true coefficients are known we can use their mean and variance

as parameters for the standard normal prior. Clearly this will not be available in

real-world scenarios. However, as the true coefficients are varied (see table 5.2), the

prior specification simply ensures that the prior mean is not centered around the

true coefficient of any particular cluster.

Cluster β1 β2 β3
1 -1.081264 -3.6674217 4.7486859

2 4.937830 2.8246206 -5.2935355

3 -22.800575 1.9134925 5.6866991

4 28.538204 -1.2706377 -5.8639133

5 31.035329 -5.9962969 -0.2107690

6 34.704636 -5.9962485 0.2121424

7 -57.620843 5.1455318 3.0860173

8 64.148431 -5.3969724 -2.6215814

9 75.273299 -4.8974832 -3.4662168

10 -62.660040 0.2721807 5.9938233

Mean 10.769097 -2.174598 0.640837

Table 5.2: Coefficient Matrix for the true coefficients of the ten Gaussian example,
along with the mean of these coefficients.

The results of this process in terms of log computational time and log Bayesian

evidence are given in figure 5.10.

The left-hand plot of figure 5.10 showcases the exponential growth in time that

occurs when replacing BIC estimation with estimation through the SMC method

(i.e. IBIS), with the anomaly when all clusters are estimated by BIC occurring due

to the fact that this estimation in some runs happened instantaneously, meaning that

on a log scale this tends to towards minus infinity and therefore skews the result.

On the other hand, the right-hand plot shows that using IBIS results in much more

accurate estimation than using BIC as an estimator. This is particularly true for

small clusters where the asymptotic assumptions made to justify the use of BIC

do not hold. The pink dashed line shows this, as initially we make large gains in
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Figure 5.10: Log computation time and log Bayesian evidence for the ten Gaussian
example shown in figure 5.9. A cluster not estimated through SMC is estimated by
BIC. Black dots represent individual runs while red dots represent the mean. For
the right-hand plot the blue dotted line represents the mean log Bayesian evidence
for 10 SMC sampler runs on all ten Gaussians with 10000 samples and the pink
dotted line represents the line passing through the mean log(Z) for 0 SMC clusters
and 10 SMC clusters (with 1000 samples).

accuracy when using SMC samplers for the small clusters as BIC is quite a poor

approximation. Incidentally for the large clusters (i.e. clusters on the right-hand side

of figure 5.9) the gains made by replacing a BIC estimator with an SMC estimator are

not as pronounced. This results in runs dropping below the pink line initially before

eventually rising above, meaning that we gain more by replacing smaller clusters

with a more accurate estimation method than we do replacing larger clusters with a

more accurate estimation method. This justifies the asymptotic considerations one

must make when attempting to use BIC as an estimator (see appendix B.1 for a

further discussion on when it is appropriate to use a transformation of the BIC as

an estimate for the Bayesian evidence) .

As a final note, having discussed the implementation of memoisation for SMC

samplers (with the method having clear benefits for both IBIS and RIBIS), we must

also do so for estimation using BIC values. Indeed, memoisation is possible for

the BIC method as we can use the coefficients of similar models as the starting

coefficients in algorithm 23. Whilst possible, the speed at which this algorithm

is carried out in R through BIC (specifically through glm) makes it almost always

detrimental to check the cache, and so only for extremely large datasets do we

encourage the use of memoisation for BIC value calculation.
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5.5 ‘UNCOVER’ Package

The UNCOVER package [11] developed in R provides the UNCOVER algorithm as the

primary function, with a separate options function for further specification of param-

eters. Additionally, the one batch Iterated Batch Importance Sampling (IBIS) and

RIBIS wrapper for Bayesian logistic regression is also given as a function, again with

a separate options function to allow for flexible parameter specification. These two

main functions are implemented with all tools highlighted in this chapter available

to the user and purposely held in a separate options function. The justification for

this is that this allows the algorithms to be accessible to users at every level — it is

possible for a novice to simply run the algorithm without knowledge of concepts such

as memoisation (although this may result in a slow run time) whilst also allowing a

user more comfortable with these ideas to increase the efficiency of computation.

5.5.1 Dependencies

The UNCOVER package requires several dependencies:

1. mvnfast [89] — This package is required for fast generation of samples from

multivariate Gaussian distributions.

2. igraph [90] — This package is required for the graphical structures used within

UNCOVER.

3. memoise [91] — This package is required for the memoisation of functions

within UNCOVER.

4. stats [88] — This package is required for fast calculation of distances, sam-

pling from uniform distributions and for fast calculation of weighted covariance

matrices.

5. cachem [92] — This package is required for the generation of caches used within

UNCOVER.

6. Other [93–98] — These packages are used for asthetics.
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In order to utilise memoisation for UNCOVER we rely on function memoisation

through memoise which itself relies on cache generation through cachem. However,

it must be noted that the keys used for function caches are unique strings and not

the arguments of the function. This creates a problem with checking the cache, as

we no longer can retrieve the argument of an object in the cache, which is used

to determine if the object is a suitable bridging distribution for IBIS or RIBIS. To

bypass this problem, we simply insist that the IBIS function returns the observation

index set as one of the outputs.

Additionally, we also need to consider function memoisation for situations where

we do not manually check the cache and the problems that arise from having multiple

arguments. For example, the IBIS and RIBIS wrapper function requires a target

index set A and a current index set A′ as arguments. However, after we have

obtained the target posterior samples from the function we no longer have interest

in which bridging distribution we started from (target posterior samples alongside

the Bayesian evidence are valid regardless of whether the initial samples were from

the prior or a bridging distribution based on A′). So when we store this object in the

cache, the key which is generated should only be defined by the argument A, as that

is the only argument of interest related to the output. Thankfully it is possible to

only consider certain arguments for key generation when using the function memoise

in the package memoise.

5.5.2 UNCOVER Function

The framework for the R function UNCOVER is given as:

UNCOVER(X, y, mst var = NULL, options = UNCOVER.opts(), stop criterion

= 5, deforest criterion = "None", prior mean = rep(0,ncol(X)+1),

prior var = diag(ncol(X)+1), verbose = TRUE)

where the algorithm specific arguments are as follows:

X — Covariate matrix.

y — Response vector.
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mst var — Covariates used for construction of the minimum spanning tree (P).

The default is to use all covariates.

stop criterion — Stopping criterion κ.

deforest criterion — Deforestation criterion.

prior mean, prior var — The default prior for a cluster sub-model is a Gaus-

sian. These specify the hyper-parameters for this prior.

Note how we allow the specification of no deforestation stage, with this being

the default. Of course this is not generally advisable, however, this does allow for

a novice user to run the function without specific knowledge of the deforestation

criteria detailed in section 4.4. If a deforestation criterion is required, however, this

can be specified through deforest criterion and options. The options argument

for UNCOVER can only specified through the function UNCOVER.opts, which actually

allows for much more than deforestation criterion specification, and is given as:

UNCOVER.opts(N = 1000, train frac = 1, max K = Inf, min size = 0, reg =

0, n min class = 0, SMC thres = 30, BIC memo thres = Inf, SMC memo thres

= Inf, ess = N/2, n move = 1, prior.override = FALSE, rprior = NULL,

dprior = NULL, diagnostics = TRUE, RIBIS thres = 30, BIC cache =

cachem::cache mem(max size = 1024 * 1024^2, evict = "lru"), SMC cache =

cachem::cache mem(max size = 1024 * 1024^2, evict = "lru"), ...)

where the algorithm specific arguments are as follows:

N — Number of samples required for the Sequential Monte Carlo (SMC) sampler.

train frac — What fraction of the data should be used as training data. Only

required for validation data deforestation criterion.

max K — Maximum number of clusters allowed in the final output. Only required

for number of clusters deforestation criterion.

min size — Minimum number of observations a cluster must have in the final

input. Only required for size of clusters deforestation criterion.
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reg — Maximum regret factor. Only required for maximal regret deforestation

criterion.

n min class — Minimum number of observations whose response is in the minor-

ity class allowed per cluster. Only required for balanced response deforestation

criterion.

SMC thres—Threshold. Posteriors which contain a number of observations above

this threshold attempt Bayesian evidence estimation through the Bayesian Infor-

mation Criterion (BIC).

BIC memo thres, SMC memo thres, BIC cache, SMC cache — Thresholds and

caches for the memoisation of the BIC transformation function and the SMC

sampler. Posteriors which contain a number of observations above the thresholds

check their respective caches for similar previous evaluations.

ess — Effective sample size threshold ξ.

n move — UNCOVER allows for multiple Metropolis–Hasting steps to be carried out

at a time to ensure the samples are more representative of the target distribution,

which can lead to a better estimate of the Bayesian evidence. n move specifies

how many steps are taken.

prior.override, rprior, dprior — Arguments to specify a custom prior in

terms of sampling function (rprior) and density function (dprior). Only holds

if prior.override is TRUE.

RIBIS thres — Threshold. If using an SMC sampler to calculate the Bayesian

evidence of a posterior and the observations in this posterior form a subset of

a previously generated posterior (which is in SMC cache), then to consider using

RIBIS the number of observations in the target posterior must be above this

threshold.

UNCOVER.opts allows the user to specify deforestation criteria, several computa-

tional efficiency tools and allows the specification of differing prior beliefs than that

of a Gaussian prior. One should be cautious with prior specification, however, as
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certain choices can violate the assumptions made for the usage of BIC values and

RIBIS. Certain choices of prior (for example a point mass) may even violate the

similarity of neighbouring distributions which standard IBIS relies on to produce a

suitable estimate of the Bayesian evidence.

The diagnostics argument for UNCOVER.opts being set to TRUE allows UNCOVER

to collect diagnostic information as the algorithm progresses, which always includes

the changes in the log Bayesian evidence when an action is performed and then can

provide additional information on an aspect of interest depending on the deforesta-

tion criteria specified. For example, for the number of clusters criterion, diagnostics

will track the number of clusters after each edge action.

5.5.3 IBIS.logreg Function

In addition to UNCOVER, if one wished to obtain posterior samples and the Bayesian

evidence of a particular cluster, one could use IBIS.logreg:

IBIS.logreg(X, y, options = IBIS.logreg.opts(), prior mean =

rep(0,ncol(X)+1), prior var = diag(ncol(X)+1))

where the algorithm specific arguments follow that of the arguments for the function

UNCOVER.

As with UNCOVER, we also provide an options argument to allow for further

specification. This will always be an output from the function IBIS.logreg.opts:

IBIS.logreg.opts(N = 1000, ess = N/2, n move = 1, weighted = FALSE,

prior.override = FALSE, rprior = NULL, dprior = NULL,...)

where again algorithm specific arguments follow that of the arguments for the func-

tion UNCOVER. The exception to this, however, is the argument weighted, which

indicates whether the output posterior samples should be weighted or unweighted.

If weighted is FALSE, we force the final samples to be progressed through n move

Metropolis–Hastings steps to get an unweighted sample.
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5.5.4 Summary

The UNCOVER package allows for the direct application of the concepts introduced

in chapter 4, specifically the UNCOVER algorithm. Chapter 5 highlights the pos-

sibilities for computational speed-up through various tools, and as such these ideas

are formed within the package function. Additionally, the package also provides

a specific version of Chopin’s IBIS algorithm on Bayesian logistic regression prob-

lems. The two main functions also support the visualisation of their respective

outputs through tailored plotting functions which showcase aspects such as cluster

assignment (only relevant for UNCOVER), posterior samples, fitted values and diag-

nostics. Finally, prediction is also possible, again through tailor made functions

which predict responses of new covariate data through estimation of the posterior

predictive distribution. For more detail on the package including basic examples,

documentation can be found on the Comprehensive R Archive Network (CRAN) —

https://cran.r-project.org/web/packages/UNCOVER/index.html.
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CHAPTER 6

Application of UNCOVER

In section 4.6 a synthetic spiral dataset was presented, which highlighted the flex-

ibility of the UNCOVER model when modelling data with non-linear cohorts that

were not clearly separable in covariate space. Whilst a useful tool in revealing the

potential of the UNCOVER method, this example will rarely replicate in real-world

scenarios as we would expect considerably more noise. Therefore, this chapter aims

to provide an application of UNCOVER to real-world data and the various chal-

lenges that arise when analysing non-synthetic problems. In particular this chapter

will showcase UNCOVER’s suitability in scenarios where the data may possess a

clustering structure less clearly defined than the clustering structure seen previously

in the spirals example.

Before practical examples are showcased we first present an examination of UN-

COVER in the presence of increasing noise, be that noise in covariate space or noise

in both covariate space and the regression signal, for a simulated dataset. Following

on from this we present three real-world datasets (obtained from the UCI Machine

Learning Repository [84]) in which aspects of UNCOVER can be tested; a wine

dataset which has known clusters based on wine type [99] to test noise interference,

an abalone dataset [100] which assesses misleading clustering structure and a heart
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disease dataset [101] which assesses the role of categorical variables in UNCOVER.

6.1 Colliding Gaussians

For UNCOVER’s main competitor, mixture of experts models, it is clear that non-

linear covariate structures present a challenge in discovering the most appropriate

clustering pattern. This is due to specification of the gating network, which can be

adapted for non-linear clusters, but this requires either a hierarchical model (which

requires a large amount of clusters to capture the non-linearity) or a non-linear

gating network (which requires prior knowledge of the covariate structure which

may be unreasonable in high dimensions).

What perhaps is less clear is the extent to which unsupervised methods (com-

bined with sequential predictive modelling) underperform when compared to UN-

COVER. Indeed, in scenarios where the clustering structure in the relationship be-

tween the response and the covariates is not synonymous with the clustering struc-

ture present in covariate space, unsupervised methods clearly fail, as seen in section

2.1.3. In situations where the clustering structure in covariate space is synonymous

with that of the clustering structure in the relationship between the response and

the covariates, one may hypothesise that a correctly specified unsupervised method1

will perform at a similar level to that of UNCOVER. This, however, is dependent

on level of separability of the clusters.

In real-world scenarios even with synonymous clustering structures we would still

expect noise in the observations to cause some degree of overlap between clusters in

covariate space. In order to test the effect of this overlap on clustering methods, we

present the following scenario. Let X ∈ R2000×2 be a covariate matrix such that for

1Even in the synonymous clustering structure scenario an ill-chosen clustering method can still
perform poorly. A clear example of this is K-means on non-linearly separable clusters.
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observation i:

xi ∼



N

(−3,−3)T ,

0.75 0.7

0.7 0.75


 if i ∈ {1, . . . , 1000}

N

(3, 3)T ,

0.75 0.7

0.7 0.75


 if i ∈ {1001, . . . , 2000}

(6.1)

This covariate data represents two Gaussians which are unlikely to overlap, therefore

creating a clear clustering structure in covariate space. We also insist upon each

Gaussian having a different relationship between the covariates and the response,

such that

β1 = (6, 1, 1)T (6.2)

β2 = (−6, 1, 1)T (6.3)

yi ∼

Bern((1 + e−(1,xT
i )β1)−1) if i ∈ {1, . . . , 1000}

Bern((1 + e−(1,xT
i )β2)−1) if i ∈ {1001, . . . , 2000}

(6.4)

The results of the dataset can be seen in figure 6.1. Having generated the co-

Figure 6.1: Base dataset for colliding Gaussians example. The response is shown
through the colour of the points.

variates X and the response y, we now fix these values and create a sequence of
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datasets indexed by c, (Xc,yc) for c ∈ [0, 3], through the following deterministic

transformation on the original simulations:

xc
i =

xi + (c, c)T if i ∈ {1, . . . , 1000}

xi − (c, c)T if i ∈ {1001, . . . , 2000}
(6.5)

As c → 3 the two Gaussians converge to completely overlap with each other, remov-

ing the clustering structure apparent in covariate space.

The specification of yc is dependent on whether we consider noise in just the

covariates (section 6.1.1) or in the covariates and the signal between the covariates

and the response (section 6.1.2). For all examples, an 80 : 20 split of the data

for each cluster is made to obtain training and test datasets2. This allows for the

comparison of previously introduced unsupervised methods with UNCOVER, where

we select a stopping criterion of κ = 4 and a deforestation criterion of a minimum

cluster size of 500 observations. In order for a fair comparison, for each unsupervised

method we allow the number of clusters to range from one to five, with the optimal

K selected through use of the gap statistic3, using Tibrishani et.al’s [17] method of

selecting K.

6.1.1 Covariate Noise

As the noise we consider is only in the covariates, we retain the regression coefficients

defined in equations (6.2) and (6.3). This, however, requires a resampling of the

responses for each c > 0, and so we define yc as:

yci ∼

Bern((1 + e−(1,(xc
i )

T )β1)−1) if i ∈ {1, . . . , 1000}

Bern((1 + e−(1,(xc
i )

T )β2)−1) if i ∈ {1001, . . . , 2000}
(6.6)

A visualisation of the Gaussians when c = 1.5 is shown in the left-hand plot of figure

6.2.

2This split will be held constant throughout the sequence of datasets.
3This is valid here as a multivariate Gaussian distribution is log-concave.
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Figure 6.2: Covariates from the colliding Gaussian example when c = 1.5 (i.e
one Gaussian has been translated by the vector (1.5, 1.5)T and one Gaussian has
been translated by the vector (−1.5,−1.5)T ). The response yc has either; been re-
sampled for this value of c (left) or remain unchanged from the initial y representing
a change in the coefficients (right). This is shown through the colour of the points.

The signal as a result remains despite the cluster collision in covariate space, and

therefore as the data transitions from a synonymous clustering structure to a non-

synonymous cluster structure (as when the Gaussians begin to overlap and there is no

longer a clustering structure present in covariate space) the unsupervised methods

should begin to fail. On the other hand, UNCOVER can utilise the response to

still detect the true clustering structure even when there is some overlap present

and therefore should outperform unsupervised methods for larger values of c. Note

that for complete overlap it is unlikely that UNCOVER will perform well, as the

minimum spanning tree structure used to initialise the method will not be able to

distinguish between the two clusters. The Fowlkes–Mallows Index (FMI) for various

methods, for increasing values of c, are given in figures 6.3 (for the training data)

and 6.4 (for the test data). Note that for the one-cluster model TP
TP+FP

= 1 and as

the cluster sizes are equal TPR = 0.5, such that FMI =
√
0.5 ≈ 0.707. Therefore,

what figures 6.3 and 6.4 reveal is that while all models can correctly identify the

two clusters when they are trivially separable, the collapse to a one cluster model

occurs much more rapidly when the response is not jointly modelled, leading to

UNCOVER maintaining a high FMI value for larger values of c. The outlier here

is when c = 2.25, however, the overlap between the two Gaussians at this point is

substantial and so producing a two-cluster model which provides a better predictive

model may result in a worse FMI value. Indeed, after this point the overlap is so

149



Figure 6.3: A comparison of unsupervised methods (K-means, Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage
(HC–CL), and Hierarchical Clustering — Average Linkage (HC–AL)) and UN-
COVER’s FMI values for differing values of c in the colliding Gaussian example
with noise in just the covariates. FMI values are calculated for the training data.

considerable that even UNCOVER cannot detect a second cluster, and at c = 3

(complete overlap) there is no clear signal and therefore a one-cluster model is the

most appropriate choice.

Regarding the AUC, the results are given in figures 6.5 (for the training data)

and 6.6 (for the test data). As the two Gaussians collide, the difference in their

relationship with the response remains intact, giving a clear two-cluster model. How-

ever, for a large enough value of c the overlap will be significant enough to distort

the signal such that the two-cluster model can no longer be detected, resulting in

a one cluster model being preferred. This occurs for c ≥ 2.625 in this particular

experiment4. This is not to say that a one cluster logistic regression model is accu-

rately portraying the relationship between the response and the covariates. Indeed,

as figures 6.5 and 6.6 show, the predictive power of a one cluster model for complete

cluster overlap (c = 3) is much worse than the well separated scenario (c = 0) as

when c = 3 the regression signals are completely distorted. As a result, an indica-

4Figures 6.5 and 6.6 appear to imply that a one cluster model is produced at c = 2.25. This
is not the case, however, and is simply a result of the difference between a one cluster model and
UNCOVER’s two-cluster output for c = 2.25 being minimal in terms of the AUC.

150



Figure 6.4: A comparison of unsupervised methods (K-means, Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage
(HC–CL), and Hierarchical Clustering — Average Linkage (HC–AL)) and UN-
COVER’s FMI values for differing values of c in the colliding Gaussian example
with noise in just the covariates. FMI values are calculated for the test data.

tion of high performance is a method’s ability to resist collapsing to a one cluster

model for large values of c. In this regard UNCOVER can produce a two-cluster

model (due to the incorporation of the response in cluster assignment) at values of

c higher than any of the competing unsupervised methods (as these methods ignore

the response for cluster assignment).

It is important to consider in this scenario the impact of the deforestation crite-

rion. Indeed, selecting a minimum cluster size of 500 requires the regression signal

for either cluster to be detectable for over half of the observations in said cluster (as

the training data contains 800 observations of each true cluster). Therefore, whilst

the collapse to a one cluster model occurs at c = 2.625 in this particular experiment,

by reducing the minimum cluster size we could reasonably expect the value of c at

which collapse occurs to be much closer to 3, with the natural trade-off being that

there will be many misassigned observations for each ‘true’ cluster. One may even

expect with a lower minimum cluster size for three clusters to form (two represent-

ing the two areas that are not overlapped and one completely overlapped cluster);

however, this is rarely the case. If three clusters form, the ‘overlapping’ third cluster

will have such a distorted signal that the Bayesian evidence will be very low. Given

151



Figure 6.5: A comparison of unsupervised methods (K-means, Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage
(HC–CL), and Hierarchical Clustering — Average Linkage (HC–AL)) and UN-
COVER’s AUC values for differing values of c in the colliding Gaussian example
with noise in just the covariates. AUC values are calculated for the training data.

this would occur when there is significant overlap, the number of observations in

this ‘bad’ cluster would be large. Therefore, the formation of this cluster is unlikely

to be beneficial to the entire model.

Finally, note that when c is large, the Gaussians operate in areas of the covariate

space such that it is possible for the responses of a cluster to be of only one type

(i.e. yci = 0 if i corresponds to an observation in the first cluster and yci = 1 if i

corresponds to an observation in the second cluster). In this setting one may have

concerns that the true cluster signals are lost due to the lack of response diversity.

This setting does not occur in this experiment, however, if the clusters did only have

one response type one would expect UNCOVER to return a one cluster model as it

could not detect any regression signal in the true clusters. It should be highlighted,

however, that this is only likely to occur at large values of c, and so a loss of

signal due to response diversity is likely to coincide with a loss of signal due to

overlapping. Therefore, this response diversity scenario results in similar outputs to

the experiment showcased in figures 6.3—6.6.
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Figure 6.6: A comparison of unsupervised methods (K-means, Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage
(HC–CL), and Hierarchical Clustering — Average Linkage (HC–AL)) and UN-
COVER’s AUC values for differing values of c in the colliding Gaussian example
with noise in just the covariates. AUC values are calculated for the test data.

6.1.2 Covariate & Signal Noise

Noise need not just be present in covariate space. Indeed, a separate form of noise

can be found in the signal between the covariates and the response, and these forms

of noise are not mutually exclusive. Therefore, the addition of signal noise is con-

sidered in the colliding Gaussian example through fixing the response as c increases,

i.e.

yci = yi ∀c, i (6.7)

As y remains fixed, the regression coefficients must change with c in the following

manner:

βc
1 = (6− 2c, 1, 1)T (6.8)

βc
2 = (−6 + 2c, 1, 1)T (6.9)

A visualisation of the Gaussians when c = 1.5 is shown in the right-hand plot of

figure 6.2.

This specification of the regression coefficients combined with the covariate shift

153



described in equation (6.5) allows for an experiment similar to the experiment show-

cased in section 6.1.1 to be conducted as c → 3.

The results of this experiment, regarding the FMI, are in fact identical to the

FMI results when there is just noise in the covariates. For the unsupervised methods

this is to be expected as cluster assignment is not derived through consideration of

the response for these methods, and the response is the only changing factor for

these two experiments. Conversely, UNCOVER does rely on the response for cluster

assignment so a change in output may be expected. However, this does not occur

as although complete overlap has a different meaning for each experiment (with

just covariate noise complete overlap represents two clusters occupying the same

covariate space whereas when there is covariate and signal noise this represents a

single cluster model) UNCOVER can only output a single model regardless. As a

result, the transition from a two-cluster model to a one-cluster model is identical for

the two experiments with regards to UNCOVER.

Whilst the FMI values are identical for both experiments, this is not the case

when considering the AUC. This is due to a one cluster model clearly having a

greater predictive power than a two-cluster model where the clusters are completely

overlapping distorting the regression signals. Therefore, we showcase the AUC re-

sults for the covariate and signal noise experiment in figures 6.7 (for the training

data) and 6.8 (for the test data).

As the two Gaussians collide, the difference in their relationship with the response

lessens, leading to the one-cluster model at c = 3. Therefore, the strength of the

joint clustering and cohort detection method here is how smoothly it can detect

that transition, as a remnant of the differing regression signals will be apparent up

until c = 3. In this aspect UNCOVER outperforms the entirety of the unsupervised

methods, detecting the differing signals for large values of c (for example c = 1.875).

Indeed, for large values of c UNCOVER is able to produce two clusters which perform

better than the one-cluster model at predicting the response of both the training

data and the test data. Out of the unsupervised methods considered here, K-means

clearly is the superior method, which is due to the shape and uniformity of cluster

size in this setting encouragingK-means to produce a split along the lineX2 = −X1.
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Figure 6.7: A comparison of unsupervised methods (K-means, Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage
(HC–CL), and Hierarchical Clustering — Average Linkage (HC–AL)) and UN-
COVER’s AUC values for differing values of c in the colliding Gaussian example
with noise in the covariates and regression signals. AUC values are calculated for
the training data.

However, even in this scenario which aids K-means clustering, the disregard of the

response results in K-means producing a one cluster model before the clustering

signals become undetectable (again the clear example of this is c = 1.875, when all

methods bar UNCOVER produce a one cluster model). Finally, note that whilst

we included the option of producing at most four clusters in the final output, no

model’s final output was more than 2 clusters at any point.

6.2 Wine Quality

The effect of overlapping clusters in covariate space can be detrimental for UN-

COVER when attempting to detect underlying clustering structures, as seen in sec-

tion 6.1. Whilst the example given in said section is hypothetical, there exists many

real-world scenarios where this situation occurs. A prime of example of this is the

wine quality dataset, where several physicochemical attributes of a sample of wine

are given, with the task to determine the quality of sample. Quality is measured

on a scale of 1 to 10, and so to reduce this to a binary response we state that wine

samples given a score of 7 or above are classed as ‘good’ quality wine and samples
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Figure 6.8: A comparison of unsupervised methods (K-means, Hierarchical Clus-
tering — Single Linkage (HC–SL), Hierarchical Clustering — Complete Linkage
(HC–CL), and Hierarchical Clustering — Average Linkage (HC–AL)) and UN-
COVER’s AUC values for differing values of c in the colliding Gaussian example
with noise in the covariates and regression signals. AUC values are calculated for
the test data.

given a score less than 7 are classed as ‘bad’ quality wine. Other variables in this

dataset are summarised in table B.3, given in appendix B.2.2. The interpretation

of colour from this table is that it should be considered as a covariate. This is a

slight misnomer, as technically the attribute is derived from the fact that the wine

quality dataset is formed from two datasets — one dataset for red wine samples

and one dataset for white wine samples. In actuality, colour should be treated as a

variable defining two clusters. Indeed, the behaviour between the physicochemical

attributes and wine quality differs significantly depending on the colour of the wine.

To highlight this point, figure 6.9 shows (for a selection of attributes) the difference

in the posteriors for each colour when a Bayesian logistic regression model (with a

standard normal prior) is chosen5.

If access to the colour variable was not available, such that the clustering struc-

ture was no longer known a priori, one would hope that the UNCOVER method

would be able to recover the wine colour clustering structure through use of the

5For the remainder of this section posteriors from the true clustering refers to this Bayesian
logistic regression model with standard normal prior.
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Figure 6.9: Posterior samples for the red wine dataset and the white wine dataset.
Coefficients associated with covariates residual sugar, sulphates and alcohol are
shown.

other variables in the dataset. This is not automatically guaranteed, however, as

the remaining attributes may not be able to sufficiently separate the two types of

wine in covariate space. This therefore represents a real-world scenario of cluster

overlap or noise within the covariates.

As the Minimum Spanning Tree (MST) dictates the possible clusters formed in

UNCOVER, the sub-selection of the attributes which are used to construct the MST

(i.e. P) can be carefully selected to alleviate the potential overlap of the two true

clusters. One possible method of selecting P is to make use of the cut property

(Lemma 3.3.1). Explaining further, for a complete graph cut such that the two

sets created by the cut correspond to the two wine colour sets, the edge with the

minimum weight (determined by distance) in the cut set must be in the MST. That

is not to say, however, that other edges in this cut set will then be excluded from

the MST, and indeed if more than one edge from the cut set is present in the MST

then it is impossible for UNCOVER to produce clusters which directly correspond

to the wine colour clusters. Therefore, if we can reduce the number of ‘cut set’ edges
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in the MST through specification of P we then will increase the separation of the

two wine colour sets.

The number of possible combinations of P is considerable (2p=11 = 2048) so,

given an MST must be constructed for each combination, a less excessive method will

be required instead of assessing all possible constructs of P. The method adopted

is similar to that of forward selection [30]; we initially begin with P = ∅, then for

each step we assess which variable’s inclusion would reduce the amount of ‘cut set’

edges in the MST the most and add that variable to P. This method is formally

given in algorithm 24. The end result of applying this greedy method is that seven

attributes are selected to form P (volatile acidity, residual sugar, chlorides, free

sulfur dioxide, total sulfur dioxide, density and alcohol) which reduced the number

of ‘cut set’ edges included in the MST to 32.

This specification of P clearly fails to completely separate the two wine colour

clusters entirely, presenting a challenge for the UNCOVER method. To examine

the behaviour of UNCOVER in this setting, we specify a prior to be a multivariate

normal whose mean and variance are derived from the mean and variance of the

combined set of posterior samples showcased in figure 6.9. This ensures both true

cluster posteriors are easily obtainable from the prior. Furthermore, we specify the

deforestation criterion to be maximal regret, with a log maximal regret parameter

of log(ν) ≈ 8 (i.e. in the deforestation stage we will not restrict the reintroduc-

tion of edge {i, j} if the resulting Bayesian evidence Z{i,j}+ satisfies the inequality

log(Z{i,j}+) > log(Z) − 8 when compared to the current Bayesian evidence Z).

Additionally, the stopping criterion is specified as κ = 5.

The resulting output from this run was the uncovering of three clusters, sum-

marised in table 6.1. The size and response distribution of the clusters indicate that

overfitting has not occurred, and the colour distribution of the clusters clearly shows

each cluster has a dominant colour, be that white for clusters 1 and 3 or red for

cluster 2.

If the relationship between the covariates and the response are the same for

clusters 1 and 3 this would represent a constraint of the UNCOVER method imposed

through the structural restrictions of the MST. Indeed, whilst construction of an
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Algorithm 24: Variable Selection for the Wine Quality Dataset

Input : Covariate Matrix — X ∈ Rn×p, Response Vector — y ∈ {0, 1}n,
Red Wine Observation Index Set — Vred,
White Wine Observation Index Set — Vwhite

Initialisation : Let P = ∅.
Step 1 : for a = 1, . . . , p do

Let Ga = (V,Ea) such that

V = {1, . . . , n}
Ea = {{i, j}; i ∈ V, j ∈ V, i ̸= j}

with edge {i, j} having weight eaij = ∥xi,a − xj,a∥2. Obtain minimum
spanning tree Ta from algorithm 6 and let pa be the cardinality of the
cut set, i.e.

p
a = |{{i, j} ∈ Ta; i ∈ Vred, j ∈ Vwhite}|

end

Add b = argmina=1,...,p{pa} to P and let p = pb.
Step 2 : for c ∈ {1, . . . , p}\P do

Let Gc = (V,Ec) such that

V = {1, . . . , n}
Ec = {{i, j}; i ∈ V, j ∈ V, i ̸= j}

with edge {i, j} having weight ecij = ∥xi,P∪{c} − xj,P∪{c}∥2. Obtain
minimum spanning tree Tc from algorithm 6 and let pc be the
cardinality of the cut set, i.e.

p
c = |{{i, j} ∈ Tc; i ∈ Vred, j ∈ Vwhite}|

end

Let d = argminc∈{1,...,p}\P{pc} and pd = minc∈{1,...,p}\P{pc}.
Step 3 : if pd ≤ p then

Add d to P and let p = pd. if P = {1, . . . , p} then
Stop.

else
Go to Step 2.

end

else
Stop.

end
Result : Covariate Indices Subset — P

MST is necessary to reduce the number of possible partitions of the data and to

capture the structure within the covariates, this process ensured that a complete

separation of the true colour clusters was not possible at any stage of the algorithm.

159



Cluster Size Successes Failures Red White

1 991 54 937 1 990

2 1344 175 1169 1324 20

3 2983 779 2204 34 2949

Table 6.1: Cluster summary information for the wine quality UNCOVER run.
Successes and failures refer to the number of observations in the cluster whose as-
sociated quality score was good or bad respectively. Red and White refer to the
number of observations in the cluster of said colour.

A consequence of this is a true cluster may be represented by several clusters in the

output of UNCOVER. This is potentially problematic in scenarios where there is

a cost associated with cluster-tailored intervention plans, as we then are creating

an unnecessary cost for each additional cluster to the true clusters. However, if the

relationship is different for clusters 1 and 3 then it is possible that UNCOVER may

have detected further clustering structure within the white colour cluster.

To investigate this we first inspect the posterior distributions of the UNCOVER

output, focusing on the same coefficients showcased in figure 6.9. This is shown in

figure 6.10. Comparing the posteriors of the true clusters to the posteriors of the

Figure 6.10: Posterior Samples for the clusters produced by UNCOVER on the
wine quality dataset. Coefficients associated with covariates residual sugar, sul-
phates and alcohol are shown.
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UNCOVER output, we note that clusters 2 and 3 appear to represent the red and

white posteriors respectively, with cluster 1 showcasing different behaviour. From

these figures though it is not clear if cluster 1 was formed to create a stronger

concurrence between clusters 2 and 3 and the true clusters or if cluster 1 was formed

as UNCOVER detected a genuine differing relationship. This can be evaluated

through the predictive power of cluster 1 — using the posteriors from both the true

clusters and the UNCOVER output we predict the probability of success (i.e. Y = 1)

for observations assigned to cluster 1, then using these predictions we calculate the

AUC for both sets of predictions. The AUC for the UNCOVER method being

significantly higher for these observations suggests cluster 1 is a genuine cluster

whilst the contrary suggests cluster 1 is only generated to further benefit one of the

other two clusters. The results for this cluster as well as the other two clusters are

found in table 6.2. From this table we can confidently state that we have detected a

Observations Assigned To UNCOVER AUC True Clustering AUC

Cluster 1 0.7433 0.6178

Cluster 2 0.8862 0.8858

Cluster 3 0.7956 0.7925

Table 6.2: AUC comparison table for the true clustering and the clustering pro-
duced by UNCOVER. The first column partitions the observations into the three
UNCOVER clusters, then the AUC value for these observation’s predictions against
the response are given for both the UNCOVER method posterior (second column)
and the true clustering posterior (third column).

further clustering structure within the white cluster, as we see a clear improvement

in the AUC for cluster 1. This is further justified by the fact that neither of cluster

2 nor cluster 3 have benefited significantly from the generation of cluster 1.

In summary, whilst the presence of noise does remove the possibility for complete

concurrence with true clustering structures, the incorporation of the response does

allow for the UNCOVER method to attempt to produce the closest representation

of the true clusters it can achieve with the structure given, and in some scenarios can

even detect further clustering structure. This presents the UNCOVER method as

a desirable choice in comparison with its supervised competitors. Indeed, one may

assume that for noisy datasets finite mixtures of logistic regression models represent

a suitable choice as they are not restricted by any covariate structure. However, as
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discussed previously, clustering for these models is utilised as a mechanism within

the algorithm and therefore this clustering cannot be applied to new data. Mixture

of Expert (MoE) models on the other hand requires further integration.

In order to compete with UNCOVER, MoE models must produce a model with

high predictive power and clusters which seemingly relate to the true clustering

(this aids interpretability to stakeholders as wine colours are clearly distinguishable

cohorts). To allow for a fair comparison with respect to the latter point we insist

the clustering be derived in the same covariate space as was derived for UNCOVER

(i.e. only using the covariates in P). This hinders MoE models predictive power as

the ‘experts’ cannot use other covariates outside P and so highlights an advantage

of UNCOVER models as they can use different sets of covariates for different stages

of the algorithm.

The results of a standard MoE model and a hierarchical MoE model are given in

table 6.3 (the number of clusters is selected to be 3 for both models, withK = (2, 1)T

for the hierarchical model). From this table we can see that the clusters generated

MoE Method Cluster Red White AUC

Standard
1 670 2412

0.84122 463 639
3 226 908

Hierarchical
1 764 2099

0.83062 524 501
3 71 1359

Table 6.3: Cluster summary information for the wine quality MoE runs. Red and
White refer to the number of observations in the cluster of said colour. AUC refers
to the AUC when considering predictions for all observation responses.

by the MoE models do not bare any resemblance to the true clusters — potentially a

result of the linearly separable property of these models not being able to sufficiently

cope with the structure of the two-colour clusters. Furthermore, the AUC values

of the two methods fall below the AUC value of the UNCOVER method (0.8418),

albeit not substantially. In essence, by switching to a MoE model we remove the

interpretability of the clusters for a slightly worse predictive model. Therefore, on

this basis UNCOVER appears to be the most suitable choice for this noisy dataset

— though in general one should be cautious of noise affecting the MST, as this
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has the potential to force UNCOVER to produce multiple clusters with the same

behaviour.

6.3 Abalone Age

One of the interesting features of the UNCOVER model is the automatic selection

of the number of clusters and more specifically the possibility of outputting a one

cluster model. This ability has been seen previously in section 6.1.2, where com-

pletely overlapping Gaussians in this scenario required a one cluster output. Outside

of simulated examples, this setting occurs frequently, with many existing clustering

algorithms failing to recognise an absence of clustering structure if the number of

clusters must be pre-specified.

A dataset which highlights this issue of cluster selection clearly is the abalone

dataset. Here the target variable Y is number of rings on an abalone’s shell. The

covariates X used in this analysis6 are detailed in table B.4, given in appendix B.2.3.

Without background knowledge on the significance of rings on an abalone’s shell,

one may initially suspect that the sex covariate may contain clustering information.

This can be visually examined through figure 6.11. From figure 6.11 it is clear that

there is not a substantial difference in either the covariates or response when com-

paring males with females, which therefore does not suggest any difference between

these two groups. However, the difference between infants and adults (with adults

being male and females) in the covariates is substantial and therefore suggests a

potential clustering structure.

We now make the assumption that sex in general is difficult to determine for

abalones, and that future data would not necessarily contain information about sex.

This prompts the omission of sex as an attribute in the model, which in turn gives

a potential clustering structure which is not explicitly given but can be discovered

through the other covariates.

6There are weight attributes other than whole weight contained within the abalone dataset,
however, we make the assumption that due to ethical concerns (the measurement of the other
weights require the abalone to not be alive) these attributes are unobtainable for future abalones
and we therefore omit these covariates from our analysis.
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Figure 6.11: Abalone covariates and response (Rings). Points are coloured accord-
ing to sex, with red points representing females, green points representing infants
and blue points representing males.

In addition to this assumption, we would also have to create a binary response by

classifying rings into two groups (for example this could be achieved by classifying

based on whether the number of rings is greater than or less than a particular

threshold). After obtaining binary response, we may näıvely conclude based on

initial assessment that there are two clusters present in this dataset. For existing

methods mentioned previously which do not automatically select the number of

clusters (i.e. K-means clustering, hierarchical clustering, finite mixtures of logistic

regressions and mixture of experts) a pre-selection of K = 2 would be the natural

choice if we were to produce a model for this data. However, for this dataset the

selection of any K > 1 would be unnecessary due to the context of the response.

Indeed, the number of rings on an abalone’s shell is directly related to age7, as is

the grouping of the sex attribute into infants and adults. The consequence of this is

that for any response threshold chosen both infants and adults will have the same

relationship between the covariates and the response; as the continuous attributes

7An abalone’s number of rings plus 1.5 gives the abalone’s age.
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in the dataset all increase as an abalone grows with age, the relationship for both

clusters will be that as an abalone psychically grows the probability of the abalone

having a large number of rings increases. To highlight this point visually figure

6.12 shows the covariate’s interaction with the response. From figure 6.12 it is clear

Figure 6.12: Abalone covariates. Points are coloured according to number of rings.

that the link between sex and ring number is such that a one cluster model is a

better representation of the relationship between covariates and response8 than a

two-cluster model where the clusters correspond to infants and adults.

Having established intuitively that a one cluster model should explain the data

better than a two cluster ‘infant–adult’ model, we can now test UNCOVER’s ability

to recognise this. The deforestation method selected is the response diversity crite-

rion with minimum minority class factor υ = 1009. In order to ensure a fair test of

UNCOVER’s capabilities, we set the number of rings threshold to 8, such that the

8Although the covariate structure is not strictly linear the increase in number of rings as the
covariates increase appears linear and so a one cluster logistic regression model should perform
well.

9The choice of υ is made to ensure that UNCOVER does not overfit the data, and indeed the
both the infant (420) and adult (485) cluster’s minimum number of observations with minority
response class is well above this threshold.
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response Y = 1 if the number of rings exceeds 8 and Y = 0 otherwise. Using this

threshold allows the size of minimum minority response class to be 420 for infants

and 485 for adults (both much larger than υ) and therefore if there are genuinely

two clusters based on infants and adults, UNCOVER should be able to produce

this as an output. We also specify that the stopping criterion κ = 4 as opposed to

κ = 2 to allow UNCOVER to produce a K > 2 cluster model if it is deemed more

beneficial than a one or two cluster model.

As hypothesised, with these specifications UNCOVER produces only a single

cluster as an output, therefore recognising that a two cluster ‘infant–adult’ model, or

indeed any model with a clustering structure, does not explain the data better than

a no cluster model. Even the reduction of υ to only require a cluster to contain 10

observations with a minority response still produces a one cluster model. Therefore,

we have confidence that the one-cluster model is genuinely the most appropriate

model and not the result of an overly restrictive criterion.

6.4 Heart Disease & Incorporation of Categorical

Variables

In previous sections categorical variables such as wine colour in section 6.2 or sex in

section 6.3 are either treated as cluster information or variables which are excluded

from the model. Seemingly this suggests that UNCOVER is unable to integrate cat-

egorical variables in the model construction process, which is not the case. Bayesian

logistic regression models can clearly incorporate categorical variables through an

appropriate specification of the design matrix. There is, however, a caveat when

considering the variables which form the Minimum Spanning Tree (MST), as the

Euclidean distance used to weight the edges of the graph is an unsuitable dissimi-

larity metric for categorical variables.

The Euclidean distance can of course be replaced by another more suitable metric

to incorporate mixed type variables. However, as stated in section 4.1.1, the selection

of a metric for mixed variables is challenging for general datasets.

A practical example of a dataset containing a mix of continuous and categorical
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variables is the heart disease dataset, whose binary response Y is the presence (Y =

1) or absence (Y = 0) of heart disease for a patient, with the patients attributes10

detailed in table B.5, given in appendix B.2.4.

Several attributes are categorical and therefore cannot be included in P with

the Euclidean distance metric, however, this alone does not justify their removal

entirely. Indeed, complete exclusion of the categorical variables suggests that either

categorical variables do not provide any information on the behaviour of the response

or that categorical variables only provide generalised information on numerical at-

tributes already present in the data. Neither of these statements can be applied to

all datasets. To labour the point with this particular dataset, we conduct two runs

of the UNCOVER algorithm with the Euclidean distance metric — one excluding

the categorical covariates completely (the ‘exclusion’ model) and one excluding the

categorical covariates from just P (the ‘inclusion’ model as we are including the

categorical covariates in the logistic regression models). Keeping the exact same

specifications of the parameters for each UNCOVER run, an improvement on the

Bayesian evidence of the ‘inclusion’ model over the ‘exclusion’ model suggests that

one cannot simply exclude categorical variables from an UNCOVER model.

The specifications we give to UNCOVER are the following: the deforestation

criterion is a minimum cluster size of 30 observations, a stopping criterion κ = 10

and the MST variables are selected to be age, thalach and oldpeak. The results

of the two runs are shown in table 6.4, showing that the inclusion of categorical

variables allowed UNCOVER to detect a two cluster system which was not appar-

ent when the categorical variables were excluded from the data. Furthermore, the

Inclusion Model Exclusion Model

Number of Clusters 2 1

Log Bayesian Evidence −155.6319 −170.4736

Minimum Cluster Size 49 297

Minimum Minority Class 11 137

Table 6.4: Information on two runs of UNCOVER for the heart disease dataset,
one including categorical variables and one excluding categorical variables.

10Some attributes in this dataset are omitted to produce a setting in which UNCOVER can
detect a clustering structure.
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second cluster detected does not appear to be a result of overfitting as there is a

sufficient number of observations within the cluster (49) and a sufficient amount of

observations whose corresponding response is in the minority response class (11).

Regarding the Bayesian evidences, if one were to carry out a Bayesian hypothesis

test that the inclusion model is an improvement upon the exclusion model using the

Bayes factor and Jeffreys Scale [51, 53], then the result would be decisive support

for the inclusion model over the exclusion model.

As a final point, note that the detection of a clustering structure is not the only

benefit one can obtain from including categorical variables. Indeed, even in settings

where both inclusion and exclusion models produce one cluster outputs, the inclusion

of categorical variables may simply provide a model which explains the data more

accurately11. This does not suggest, however, that all variables should be included in

every situation, as UNCOVER is not exempt from the benefits of variable selection.

Ultimately, the impracticality of including categorical variables in P (when using

the Euclidean distance metric) does not justify an ad-hoc selection of variables solely

based on type (i.e. selection of only numerical attributes).

6.5 Summary

In real-world settings, UNCOVER is well adapted to provide a suitable output for

a plethora of challenging situations. In this chapter, this has been demonstrated

on one synthetic and three diverse real-world problems, which highlight effective

performance in the face of a range of different challenges.

The most common amongst these challenges was addressed in the first two ex-

amples, that being the presence of noise causing overlap between the true clusters.

Whilst UNCOVER is partially hindered by the distorted covariate structure due to

the noise, the utilisation of the response ensures that the clusters outputted will

still attempt to resemble the true clusters. This may result in additional clusters

being generated which have the same behaviour as an existing cluster (but these

11This is the conclusion one arrives at if all attributes (i.e. introduction of the variables ‘ca’, ‘cp’
and ‘thal’ to the dataset) are utilised.
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clusters cannot be combined due to the constraints of the MST structure). Indeed,

UNCOVER was also shown to enable detection of clustering structure long after

unsupervised methods collapse to a singular cluster. Another common challenge is

the possibility of no clustering structure being present in the data, and in this case

UNCOVER can automatically produce a one cluster model which accounts for this.

Finally, for datasets which contain a mixture of numerical and categorical vari-

ables, UNCOVER can proceed with a model which takes into account all variables by

either restricting P to only contain numerical covariates or (in some circumstances)

by replacing the Euclidean distance metric (which defines similarity between obser-

vations) with a suitable alternative such as Gower’s distance.
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CHAPTER 7

Optimal Hold-out Sets: An Application in Updating Risk

Scores

In this chapter we present the final contribution of this thesis, concerning an im-

portant and related topic to the previous chapters. This contribution addresses a

more general problem, that being the practical implications of updating predictive

models (like UNCOVER) where the previous incarnation has already been deployed

and had an effect on the population. The problem this may have on model updating

is discussed in section 7.1, with one solution to this being the use of hold-out sets.

A method for the specific size one should select for a hold-out set is proposed and

a practical implementation through the use of emulation [102] is detailed. Given that

interpretability is a core aim of UNCOVER and that the intention of this method is

to be used in practical settings, it is important to consider the scenario of UNCOVER

replacing an existing predictive model. This is done in section 7.4, as part of a wider

consideration of the consequences of a clustering structure being present in the data

used to construct these models.

The work done in this chapter formed part of a larger collaborative project with

Louis Aslett, James Liley and Sami Haidar on the discovery of an optimal hold-out

set size in the context of updating models [12]. However, the contributions detailed
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after section 7.1 is the sole work of the author, unless stated otherwise.

For clarity of presentation, the notation in this chapter should be treated as

self-contained.

7.1 Problem Outline

The use of UNCOVER was primarily motivated by uncovering cohorts of patients for

the Scottish Population At Risk of Readmission and Admission (SPARRA) model,

introduced in section 1.2. These statistically modelled cohorts could then be com-

pared to expertly identified cohorts which were utilised in version 3 (v3) of the

model. Note that version 4 (v4) of SPARRA did not include an explicit cohort

clustering structure, and therefore implementation of UNCOVER within SPARRA

would give a fifth version of the model.

This model updating may present a challenge, however, as the deployment of

previous models is likely to have led to interventions being made by clinicians, on

the basis of the predictions given by the most recent model they had available at

the time. This creates a causal pathway between the covariates and the response

through the previous model’s predictions, confounding the output of the current

model. An example of this would be the ASPRE score [103], a predictive model

to detect the probability of a patient developing pre-eclampsia during pregnancy.

For patients with a high risk of developing pre-eclampsia, aspirin can be prescribed

to lower said risk. However, it is not advised that aspirin is universally applied

as this treatment itself contains a slight risk of detrimental effects1. In light of

this score, for high risk patients, medical professionals will intervene to prescribe

aspirin. Now assume a new version of the model, say ASPRE 2, is developed (either

through more accurate modelling techniques or population drift [12]). Due to the

interventions made based on the previous model, individuals whose covariate values

previously suggested a high risk of developing pre-eclampsia are now unlikely to have

a corresponding response of pre-eclampsia developed, as they have been treated with

1This risk of these detrimental effects occurring is less than the risk of developing pre-eclampsia,
but clearly in situations where a patient is extremely unlikely to develop pre-eclampsia then the
risk of taking aspirin would outweigh the risk of developing pre-eclampsia.
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aspirin. As a result, strong indicators of pre-eclampsia in the initial model are no

longer present in the updated model, lowering the predictive power of the updated

model even if the technique theoretically should lead to more accurate results. This

particular case highlights a situation of ‘better’ models performing worse [13].

One could argue for using the same dataset to train the models for each new

version, but there are scenarios in which this is not desirable, for example when

distribution of the covariates and the response drifts [12] over time, independent of

intervention effects. In this setting the data used for training the previous model

would not be appropriate for training the current model. Letting fe(· | Xe,ye) be

the predictor function from the version e model, trained on data (Xe,ye), when we

come to build model e+ 1 we will in fact be modelling

Ye+1 | Xe+1, fe(Ye+1 | Xe+1,Xe,ye) (7.1)

This highlights the fact that the response at the time model e+1 is being developed

now depends on the previous model through interventions based on fe(· | Xe,ye).

To further complicate matters, the actual intervention effects are unlikely to be

known or quantifiable, and simply ignoring the previous model (known as näıve

model updating) leads to a less accurate model [13].

A potential solution to this issue would be to build the models on a hold-out set

in which no prediction is given, and so the responses for these observations when the

next version of the model is constructed do not depend on any intervention effects

from the current model. In more detail, we define an intervention set (X i
e, Y

i
e ) and a

hold-out set (Xh
e , Y

h
e ), which is used to create the predictor function fe(· | Xh

e ,y
h
e ).

This ensures that whilst Y i
e+1 will be dependent on fe(Y

i
e+1 | X i

e+1,X
h
e ,y

h
e ) as well

as X i
e+1, Y

h
e+1 will only be dependent on Xh

e+1, i.e.

Y i
e+1 | X i

e+1, fe(Y
i
e+1 | X i

e+1,X
h
e ,y

h
e ) (7.2)

Y h
e+1 | Xh

e+1 (7.3)

Therefore, construction of a new model based on the hold-out data will allow for

the modelling of the desired system.
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We make the fairly standard assumption here that all models produced provide

some benefit to the population they are used on, and as such we intend to select

as small a hold-out set as possible to minimise the number of individuals that do

not benefit from the model. However, a hold-out set which is too small would

mean we cannot accurately predict the response. Therefore, we require an optimal

hold-out set size which can balance these two aspects. Letting n⋆ be the optimal

hold-out set size, in order to devise a method to obtain n⋆ we must first define the

costs associated with selecting a particular hold-out set size n. We let C1(X) be a

random function of a random variable representing the cost for an individual who

did not receive a prediction from the model (that is, the clinician acts only on other

non-model information). The cost function C1(·) is random as we assume there

is not a deterministic approach all clinicians take for individuals. Therefore, the

expected cost over the distribution of C1 and Xh
e+1 is defined as

k1 = Eπ(C1,Xh
e+1)

(C1(X
h
e+1)) (7.4)

We also let C2(X | Xh
e , Y

h
e ) be a random function of random variables represent-

ing the cost for an individual who did receive a prediction from the model (hence

dependence on the hold-out data). As this cost now depends on the model built

using the hold-out data, the cost is a function of the size of that set (only the size is

relevant here as we take the expectation over the distribution of individuals in the

hold-out set). Therefore,

k2(n) = Eπ(C2,Xi
e+1)

(
Eπ(Xh

e ,Y
h
e )(C2(X

i
e+1 | Xh

e , Y
h
e ))
)

(7.5)

Letting ℵ be the total size of the population2, the total cost of employing a hold-out

set of size n, ℓ(n), is obtained through the addition of individual costs for members

of the hold-out set and the intervention set, i.e.

ℓ(n) = k1n+ k2(n)(ℵ − n) (7.6)

2If the total population size is unknown but a specific dataset is available then we can take the
ℵ to be the size of the dataset.
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The following two sections of this chapter will introduce a method of discov-

ering n⋆, the minimiser of the function ℓ(n). This will be done by first making

some assumptions on the system to enable a solution to be found, then attempt-

ing to minimise ℓ through the use of an emulator and the technique of expected

improvement.

As justification for the use of emulation, we note that evaluation of ℓ(n) is likely

to be expensive as many hold-out sets and models must be constructed to gain

an accurate approximation of the costs, meaning we are limited in the number of

evaluations one can make in search of the minimum. Additionally, both k1 and k2(n)

may require approximation through Monte Carlo estimation. This gives uncertainty

in the values of k1 and k2(n). Therefore, although ℓ(n) is deterministic, the process

of evaluating ℓ(n) results in ℓ(n) giving possibly different results for the same value

of n. Both of these issues can be tackled with an emulation framework.

7.2 Assumptions

In order to develop a method to discover the optimal hold-out set size, one must be

convinced that such a size exists. Our solution space is restricted in the following

ways; n⋆ ∈ {0, . . . ,ℵ}. The scenario that we wish to eliminate here is that n⋆ = 0

or n⋆ = ℵ as these solutions imply that either a hold-out set size should not exist or

that the model should not exist. Note that at these extremes we have

ℓ(0) = ℵk2(0) (7.7)

ℓ(ℵ) = ℵk1 (7.8)

and therefore we can separate this issue into three cases.

7.2.1 k2(0) < k1

This setting corresponds to the scenario where the cost incurred by giving a member

of the intervention set a prediction using a model trained on no data (for example a

logistic regression model where the parameters are derived through expert opinion) is
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less than the cost incurred by a member of the hold-out set not receiving a prediction

at all. Here we need to assume the following:

Assumption 1: There exists 0 < ג < ℵ such that ℵ−ג
ℵ (k1 − k2(ג)) > k1 − k2(0).

Assumption 1 states that for some amount of data less than the entire population,

the difference in expected cost between an individual who receives a prediction from

this model and an individual who receives no prediction at all will be greater than

the difference in expected cost between an individual who receives a prediction from

a model based on no data and an individual who receives no prediction at all, by at

least a factor of ℵ
ℵ−ג > 1. This appears to be a reasonable assumption as it simply

insists that the model at some point justifies its hold-out size. This results in the

following lemma, which proves the existence of an optimal hold-out set size:

Lemma 7.2.1 (Optimal Hold-out Set Size Existence for k2(0) < k1). Let As-

sumption 1 hold and let k2(0) < k1. Then there exists 0 < ג < ℵ such that

ℓ(ג) < ℓ(0) < ℓ(ℵ).

Proof. Note k2(0) < k1 =⇒ ℵk2(0) < ℵk1 =⇒ ℓ(0) < ℓ(ℵ). Also, note that

ℵ−ג
ℵ (k1 − k2(ג)) > k1 − k2(0) =⇒ k1ג + (ℵ− (ג)k2(ג < ℵk2(0) =⇒ ℓ(ג) < ℓ(0). As

a result we have ℓ(ג) < ℓ(0) < ℓ(ℵ).

7.2.2 k2(0) = k1

This setting corresponds to the scenario where the cost incurred by giving a member

of the intervention set a prediction based on no data is the same as the cost incurred

by a member of the hold-out set not receiving a prediction at all. On the surface this

situation appears rare but this can occur when personnel utilising the predictions

simply ignore predictions based on no data or when members of the hold-out set are

given no-data predictions as standard.

Theoretically this set-up is extremely similar to that seen before, and so again

we rely on assumption 1, which reduces to the much weaker assumption that there

exists 0 < ג < ℵ such that k1 > k2(ג). Indeed, all that is required here is that there

is some amount of data less than the entire population where the expected cost to

an individual who receives a prediction from the resulting model is less than the

175



expected cost to an individual who receives no prediction (or a prediction from a

no-data model). The following lemma in this situation proves the existence of an

optimal hold-out set size:

Lemma 7.2.2 (Optimal Hold-out Set Size Existence for k2(0) = k1). Let As-

sumption 1 hold and let k2(0) = k1. Then there exists 0 < ג < ℵ such that

ℓ(ג) < ℓ(ℵ) = ℓ(0).

Proof. Note k2(0) = k1 =⇒ ℵk2(0) = ℵk1 =⇒ ℓ(0) = ℓ(ℵ). Also, note that

k2(ג) < k1 =⇒ (ℵ− (ג)k2(ג < (ℵ− k1(ג =⇒ −k1+(ℵג (ג)k2(ג < ℵk1 =⇒ ℓ(ג) <

ℓ(ℵ). As a result we have ℓ(ג) < ℓ(ℵ) = ℓ(0).

7.2.3 k2(0) > k1

This setting corresponds to the scenario where the cost incurred by giving a member

of the intervention set a prediction based on no data is more than the cost incurred

by a member of the hold-out set not receiving a prediction at all. Again here all that

is required is the weak assumption that there exists 0 < ג < ℵ such that k1 > k2(ג).

This then gives the final existence lemma:

Lemma 7.2.3 (Optimal Hold-out Set Size Existence for k2(0) > k1). Let there exists

0 < ג < ℵ such that k1 > k2(ג) and let k2(0) > k1. Then we have ℓ(ג) < ℓ(ℵ) = ℓ(0).

Proof. Note k2(0) > k1 =⇒ ℵk2(0) > ℵk1 =⇒ ℓ(0) > ℓ(ℵ). Also, note that

k2(ג) < k1 =⇒ (ℵ− (ג)k2(ג < (ℵ− k1(ג =⇒ −k1+(ℵג (ג)k2(ג < ℵk1 =⇒ ℓ(ג) <

ℓ(ℵ). As a result we have ℓ(ג) < ℓ(ℵ) < ℓ(0).

7.2.4 Summary

We have provided a thorough examination of the robustness of the assumption that

an optimal hold-out size exists, in various settings depending on one’s interpretation

of k2(0). However, k2(0) is governed by the specification of the initial model and so

in essence there is control over which case one may find oneself in. Indeed, one can

force k1 = k2(0) by giving members of the hold-out set a prediction using a model

trained on no data instead of no prediction at all. Assuming this same model is
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used for members of the intervention set when n = 0 we force the equality. This

would allow for a much weaker assumption to be made, as discussed in section 7.2.2;

that we do not require the entire population as training data to produce a beneficial

model.

Aside from assumption 1, there is an implicit assumption we have made through-

out this, that being:

Assumption 2: k1 does not depend on n.

This on the surface appears to be a reasonable assumption, as at the very least mem-

bers of the hold-out set do not receive a prediction based on any data, and therefore

should not be reliant on the number of observations in a model which is not used on

said members. However, there are scenarios worth considering in which implicitly

k1 depends on n. For example, when the personnel who are able to provide inter-

ventions subconsciously learn aspects of the model used on the intervention set and

apply this to members of the hold-out set. One could argue that it is very unlikely

that a human could completely learn a model’s behaviour simply through exposure

to the predictive element of the model. Indeed, it is worth noting that interventions

can take place without reference to a model, and so even if this phenomenon is taking

place in a minimal way the link between intervention and model is tenuous enough

to assume this is a natural intervention and therefore simply contributing towards

population drift [12]. Nevertheless, the possibility of the assumption being broken

necessitates a solution, which can be achieved through blind interventions. That is,

personnel who can make interventions receive a prediction for a member regardless

of the set the member belongs to (as alluded to earlier this can be a prediction from

a model trained on no data for hold-out set members), but crucially they are not

informed which set the member belongs to. This then does not encourage subcon-

scious learning of the behaviour of the model as the ‘intervener’ has no knowledge of

which model is making the predictions. Of course, a substantially worse model for

the hold-out set would increase the likelihood of the intervener deciphering which

set a given individual belongs to based on their prediction, and so in this setting it is

recommended that the no-training data model is constructed using expert opinion.

Finally, note that we have just proved the existence of an optimal hold-out set
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size n⋆, and not that n⋆ is unique. Proof of uniqueness requires further assumptions

to be made alongside an extension of the total cost function ℓ(·)3 [12].

7.3 Emulation of ℓ(n)

With the existence of a non-trivial optimal hold-out set size justified, we now require

a principled method of locating such a size. First we note that the intervention set

cost k2(·) is governed entirely by the learning curve of the model selected [104] to be

used on the ‘held out’ data. In this setting, the learning curve of a particular model is

formed by obtaining the expected prediction error of the model given the amount of

the training data used to construct the model (i.e. n). The shape of learning curves

for certain models have been studied previously, such as decision trees [105], but in

general the form of a learning curve for a particular model and population is difficult

to obtain exactly. This is due to the fact that for any training dataset of size n, there

is likely to be a substantially large number of different combinations of individuals

that can form such a set. Therefore, in order to evaluate the expected prediction

error at n we must obtain the prediction error for all of the possible training dataset

configurations, which for any reasonably sized population is impractical.

In well-behaved settings one could imagine the expected prediction error of a

model decreasing as the amount of training data increases. An example of this

would be specification of k2(n) as

k2(n) = a1n
−a2 + a3 (7.9)

where a = (a1, a2, a3)
T is a vector of constants with a2 > 0. However, it is no

guarantee that the learning curve (and hence k2(n)) behaves in this manner. Indeed,

learning curves can display a non-montonic behaviour, for example displaying a

double descent [104].

With an unknown learning curve shape, one may be tempted to evaluate k2(n)

for all n ∈ {1, . . . ,ℵ − 1} to determine the shape of the curve and therefore locate

3Currently this is only defined for n ∈ {0, . . . ,ℵ}.
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the minimum. This brute force strategy is likely to be too expensive to practically

implement, however; even if the cost was simulated the amount of simulations re-

quired would be significant. Indeed, simulation would require multiple evaluations

for differing training datasets for each of the ℵ− 1 sizes. Instead, one solution is to

represent our uncertainty about ℓ as a Gaussian Process [106], such that:

ℓ ∼ GP

(
m(n), c(n, n′) = σ2

u exp

{
−
(
n− n′

ζ

)2
})

(7.10)

where m(n) is a mean function which typically we shall assume takes the desired

form of equation (7.9), and σ2
u and ζ are hyperparameters of the covariance function

c(n, n′), which takes the form of a exponentiated quadratic to allow for a smooth

output. Specification of σu and ζ should be made on the prior beliefs of the un-

certainty of m(n) as a surrogate for ℓ(n) at specific values of n and the strength of

correlation between different hold-out set sizes respectively. Recommendations for

σu and ζ are problem specific, however, σu should be specified with consideration of

our belief in the mean function’s ability to replicate the behaviour of the total loss

function. In addition to this, ζ should be specified with consideration of the size of

the population, as hold-out sets of similar size should have highly correlated outputs

whereas hold-out sets of drastically different sizes should not necessarily have highly

correlated outputs. Bower et.al [107] provide a useful discussion on selection of these

hyperparameters in one-dimensional settings, although even a poor specification of

these hyperparameters can be rectified with continued evaluation of the the total

loss function at different hold-out set sizes.

For a given value of n, evaluating the total cost ℓ(n) then provides data which

can be used to update our beliefs on the form of the function (i.e. updating the

Gaussian process emulator). Whilst ℓ(n) is deterministic, evaluation of ℓ(n) re-

quires approximations of expectations, which has inherent variability. Typically we

evaluate ℓ(n) through simulation4, where given a hold-out set size n one follows the

procedure below to obtain an estimate for k2(n):

4Though in situations where this is too expensive one could rely on expert opinion or a literature
review. In this setting, equations (7.11) and (7.12) will have a different specification.
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1. Sample n individuals from the population to form the hold-out set.

2. Construct model f using the hold-out set as training data.

3. Sample an individual from the population that is not already in the hold-out

set and calculate the cost.

Repetition of these steps multiple times gives several values, and taking the average

gives the Monte Carlo estimator of k2(n) that can be used to evaluate ℓ(n). Note

that as k1 does not depend on n this can be derived through expert opinion on the

behaviour of the cost when no model is in place (or a no-data model is in place).

Notationally, we define n as a vector of hold-out set sizes which corresponded to

an evaluation of the total cost, with n1 as the vector of unique values in n. The

corresponding evaluations we label d and d1 respectively, where

d1i =
1

|{j : nj = n1
i }|

∑
j:nj=n1

i

dj (7.11)

and finally we represent the variability of our individual estimations with the stan-

dard error σ1, where

σ1
i =

√√√√ 1

(|{j : nj = n1
i }| − 1)× |{j : nj = n1

i }|
∑

j:nj=n1
i

(dj − d1i )
2 (7.12)

Clearly this specification requires at least two evaluations to be made for a particular

value of n1
i (i.e. |{j : nj = n1

i }| > 1)5.

The standard treatment of variability in evaluation is treated through the in-

troduction of a nugget term [106] to our emulator, which is a secondary Gaussian

process with 0 mean function and constant variance. This is not appropriate, how-

ever, in this setting for two reasons. The first reason is that we would not expect

the variance of our estimate to be constant in n (i.e. the variance is a function of

the hold-out set size: Var(d1i ) = g(n1
i )). Indeed, proof of the variance of d1i depen-

5If one had prior knowledge on the variance of evaluations, Var(d1i ) then two evaluations are

not required as σ1
i would become

√
Var(d1

i )

|{j:nj=n1
i }|

.
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dence on n1
i can be witnessed through consideration of the extreme values of n1

i . For

large values of n1
i model fits should be more stable, resulting in consistent model

predictions which in turn results in total cost evaluations which have low variabil-

ity. In contrast, small values of n1
i give less stable model fits, inconsistent model

predictions and consequently higher variability in the total cost evaluations. Even

allowing for non-constant variance in n, a nugget term would be misleading for a

second reason; nugget terms account for noise in the evaluation due to the exclusion

of explanatory variables, which here would be the hold-out data, intervention data

and their respective costs. However, whilst inclusion of these would create a deter-

ministic function, this function would not be ℓ(n) as clearly ℓ(n) only relies on the

size of the hold-out set. In addition to these reasons, the use of a nugget term does

not allow for multiple evaluations to reduce the variance in our evaluations. Indeed,

the inherent variance in single evaluations of the total cost at n1
i is mitigated in our

emulator by taking the average of multiple evaluations at n1
i ; therefore σ

1
i decreases

as |{j : nj = n1
i }| increases. This technique of variance reduction is not available if

we capture the variability with a nugget term.

Referring back to our evaluations d1, we represent this variability by stating that

d1i = ℓ(n1
i )+ϵ where ϵ ∼ N (0, (σ1

i )
2). This then gives the following joint distribution

ℓ(n)
d1

 ∼ N

m(n)

m(n1)

 ,

 c(n, n) c(n,n1)

c(n1, n) c(n1,n1) + diag{(σ1)2}

 (7.13)

where m(n1)i = m(n1
i ), c(n,n

1)i = c(n1, n)Ti = c(n, n1
i ), c(n

1,n1)ij = c(n1
i , n

1
j) and

diag{(σ1)2}ij = (σ1
i )

2
1(i = j). Equation (7.13) can then be used to specify the

conditional distribution of ℓ | d1:

ℓ | d1 ∼ GP(µ(n),Ψ(n)) (7.14)

µ(n) = m(n) + c(n,n1)
[
c(n1,n1) + diag{(σ1)2}

]−1 {d1 −m(n1)} (7.15)

Ψ(n) = c(n, n)− c(n,n1)[c(n1,n1) + diag{(σ1)2}]−1c(n1, n) (7.16)

µ(n) and Ψ(n) are known as the Bayes linear update equations [106], and these two

concepts will encapsulate the emulator ℓ when locating the minimum.
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7.3.1 Expected Improvement

Given the Bayes linear update equations, we have a process for the addition of total

cost evaluations to better understand the behaviour of the function ℓ(n). Indeed,

each evaluation (i.e. addition to d) improves our understanding of the true function

by either observing the behaviour of the function at a new point or decreasing the

standard error of a previously considered value of n.

The question that remains, however, is which value of n to evaluate next? Selec-

tion of n for evaluation clearly must aid in locating the minimum, and so we must

balance exploration with exploitation. Exploration of the different sizes is important

for gaining information about the total cost function, but equally important is the

exploitation of values of n which give low total cost. A popular choice of metric [108]

for assessing the viability of a point to be evaluated is the improvement function

Imp(n) = max{0, d− − ℓ(n)} (7.17)

where d− = min{d1} represents a fixed ‘known’ minimum. Clearly maximising this

function would be suitable for discovering the minimum if we could evaluate ℓ(n)

for each n. However, we are in the scenario where we assume this is impractical

and so the expected value of this function is required instead. Therefore, letting

ℶ = d−−ℓ(n) and noting that for n we have ℶ under ℓ | d1 to be N (d−−µ(n),Ψ(n)),

taking the expectation with respect to ℓ | d1 gives:

Eℓ|d1(Imp(n)) =

∫ ∞

0

ℶ πℓ|d1(ℶ)dℶ

=

∫ ∞

−(d−−µ(n))√
Ψ(n)

[√
Ψ(n)z + d− − µ(n)

]
ϕ(z)dz (7.18)

where z ∼ N (0, 1) and ϕ(·) is the pdf of a standard normal. This integral can be

solved analytically [109], and gives the following ‘expected improvement’ function

EI(n) := Eℓ|d1(Imp(n)) = (d− − µ(n))Φ

(
d− − µ(n)√

Ψ(n)

)
+
√
Ψ(n)ϕ

(
d− − µ(n)√

Ψ(n)

)
(7.19)
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in which to maximise. Note that in rare situations where Ψ(n) = 0, Imp(n) must

be 0, and therefore EI(n) = 0.

We therefore proceed as follows; starting with an initial set of evaluations d1

and their respective standard errors σ1, calculate EI(n) for n = 1, . . . ,ℵ − 1 and

locate the maximum. Then evaluate the value of n which gave this maximum,

updating d1 and σ1. As this process is repeated we gain more information on the

true location of the minimum of the total cost. Whilst the infinite repetition of this

process will guarantee the location of the minimum is found and that EI(n) = 0 for

n = 1, . . . ,ℵ − 1 [12], this is clearly not practical and so we introduce a stopping

criterion which is a threshold η1 such that when maxn=1,...,ℵ−1{EI(n)} < η1 we stop

and take the current value n1
argmini{d1} as the optimal hold-out set size n⋆.

Introducing such a criterion may lead to the selection of a hold-out size n1
i whose

corresponding mean evaluation, d1i , has large standard error. This can also be true

of other hold-out sizes, with large variability of output potentially meaning the true

optimal hold-out set is not selected. To mitigate this problem, when the stopping

criterion has been met, giving d−, we insist on another criterion to bring an end to

the process; that being that for all n1
j ∈ n1, d1j − 3σ1

j > d− ∪ σ1
j < η2 where η2 is

a constant. If this criterion is not met then we evaluate the process again at all n1
j

who failed the criterion, update d1j and restart the expected improvement process.

This method is detailed in algorithm 25.

As mentioned previously, minimisation through expected improvement has the

benefit of providing a balance between exploration and exploitation, justifying its

use over other ‘acquisition functions’ (functions which aid in acquiring the minimum)

such as the probability of improvement [108]. This balance is evident through con-

sideration of what values of n produce large values of EI(n). For values of n where

the posterior mean is much lower than the posterior mean of our current known op-

timal size then EI(n) will be large (i.e. we exploit values of n where we are confident

of discovering an improvement). Alternatively, for unexplored values of n with high

posterior variance EI(n) will also be large, encouraging exploration. Generally if our

current known optimal size has high variance this will also encourage exploration

due to our lack of confidence in the accuracy of our current estimate.
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Algorithm 25: Total Cost Minimisation Through Expected Improvement

Input : Multiset of Sizes — n, Set of Unique Sizes — n1,
Total Cost Evaluations — d, Total Cost Evaluations for Unique Sizes — d1,
Standard Errors — σ1, Mean Function — m(n), Stopping Threshold — η1,
Covariance Function Hyperparameters — (σu, ζ), Variance Threshold — η2,
Minimum Number of Evaluations Per Size — τ > 1
Initialisation : Let c(n, n′) be defined as in equation (7.10). Let

µ(n) = m(n) + c(n,n1)
[
c(n1,n1) + diag{(σ1)2}

]−1 {d1 −m(n1)}
Ψ(n) = c(n, n)− c(n,n1)[c(n1,n1) + diag{(σ1)2}]−1c(n1, n)

Step 1 : Let d− = min{d1}.
for n = 1, . . . ,ℵ − 1 do

Calculate

EI(n) = (d− − µ(n))Φ

(
d− − µ(n)√

Ψ(n)

)
+
√
Ψ(n)ϕ

(
d− − µ(n)√

Ψ(n)

)

end
Step 2 : if maxn=1,...,ℵ−1{EI(n)} < η1 then

Let
ñ = {n1

j ∈ n1 : d1j − 3σ1
j ≤ d− ∩ σ1

j ≥ η2}

if ñ = ∅ then
Stop.

end

else
Let ñ = argmaxn=1,...,ℵ−1{EI(n)}.

end
Step 3 : for j ∈ ñ do

if j ∈ n1 then
Add j to n, approximate the total cost at this size and add this to d.
Update d1 and σ1.

else
Add j to n τ times. Approximate the total cost at this size τ times
and add this to d. Calculate the average of these τ evaluations
along with their standard error and add these to d1 and σ1

respectively. Update n1.
end

end
Step 4 : Update µ(n) and Ψ(n). Go to step 1.
Result : Minimum Hold-out Set Size — n⋆ = n1

argmini{d1}
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7.3.2 Random Forest Example

The application of optimal hold-out sets need not be restricted to medical settings or

indeed be applied to data with clustering structure — the scope of hold-out sets as

a solution to model updating considers all predictive models in which interventions

are possible. To showcase this we take the car dataset [84], which contains 1728

observations and has covariates describing the features of a car detailed in table

B.6, given in appendix B.2.5. The response variable describes the acceptability of

the car, which can have possible values of ‘Not Acceptable’, ‘Acceptable’, ‘Good’ or

‘Very Good’. However, for the purpose of this example we reduce this to a binary

choice of either not acceptable or other, as the key response of interest is when a

car’s quality is not acceptable.

Constructing a model to predict acceptability will then allow for a pre-evaluation

of future cars, with cars predicted as unacceptable intervened upon such that for the

actual evaluation the majority of cars then get classified as acceptable or better (i.e.

good or very good). An example of this process would be if safety was deemed a key

predictor is car acceptability — for cars which are predicted to be not acceptable

interventions can be made to improve the safety such that for the actual evaluation

the car is deemed acceptable or better. With regards to model updating, without

a hold-out set this presents an issue as in this example consistent intervention on

safety results in the next model not being able to identify safety as a key predictor, as

we no longer have data which is informative on poor safety leading to unacceptable

cars.

This showcases the need for hold-out sets in this setting, and so the procedure

detailed in section 7.3 can be carried out given a model. The model chosen for this

example is a random forest model [30], an ensemble method which combines several

decision trees. Random forests can be used in binary classification settings as a

predictive model, as for a given observation x individual decision trees can predict

the response to be either a success (i.e. y = 1) or a failure (i.e. y = 0), with the

random forest prediction being the majority vote.

Taking a random initial set of sizes to form n1, we then replicate each of these
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sizes 10 times to form n. Evaluation of the system for n and then taking the average

costs along with their respective standard errors will give d, d1 and σ1. In order

to do this, however, we require specification of k1 and k2(n). We define cost to

a particular individual in the intervention set who received a particular prediction

through table 7.1. We assume no model is given to the hold-out set and that the

Predicted Output

Actual Output
True Positive (TP) = 0.5 False Negative (FN) = 1
False Positive (FP) = 0.5 True Negative (TN) = 0

Table 7.1: Cost matrix for a member of the intervention set. Note this is based on
the confusion matrix given in table 4.1.

expected cost is k1 = 0.5. The mean function m(n) we base on equation (7.9) and

so has the form

m(n) = k1n+ (a1n
−a2 + a3)(ℵ − n) (7.20)

where a1, a2 and a3 are derived by fitting the curve k2(n) = (a1n
−a2 + a3) to the

evaluated expected cost to individuals in the intervention set. This gives a1 =

24.4335334, a2 = 0.8805692 and a3 = 0.2798915. For the covariance function hyper-

parameters6 we specify σu = 100 and ζ = 150. Finally, we specify η1 = 1, η2 = 10

and τ = 10. The resulting emulator for the initial data is given in figure 7.1 alongside

the expected improvement function for this initialisation.

As expected, our initial emulator behaves in a similar manner to that of the mean

function for the initial evaluations, and these evaluations taken at certain values of n

indicate that there does exist a hold-out set size that minimises the total cost. The

effect of incorporating σ1 into our emulator is also showcased here, as the posterior

emulator variance Ψ(n) is greater than zero even at the evaluated sizes. For larger

hold-out set sizes as discussed previously there is less variability in the evaluations

due to the stability of model and so Ψ(n) will be considerably smaller as n −→ 1728.

Regarding the expected improvement function, the initial need for exploration

can be seen to dominate here as there is a large region of the input space yet to be

6These hyperparameters can be specified in this setting through a grid search of plausible values.
In absence of a natural objective to optimise, evaluation of these values can be carried out through
visual inspection (as in the left sided plot of figure 7.1) of the emulator’s suitability to the initial
data d1.
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Figure 7.1: Initial emulator (left) of the car random forest emulation example
along with the initial expected improvement function (right). For the left-hand plot
black points represent d1 and for the right-hand plot the blue dashed line highlights
the maximum of EI(n).

explored (namely the subset {680, . . . , 1192}). Exploitation of current evaluations

(or sizes near to current evaluations) will occur through maximising EI(n) after

evaluations of the unexplored region have been made.

Running algorithm 25 then gives the emulator output seen in figure 7.2, which

gives a final optimal hold-out size as n⋆ = 235. Whilst the general behaviour of

Figure 7.2: Outputted emulator from running algorithm 25 on the car random
forest emulation example.

the emulator still resembles that of the mean function (in terms of a sharp decrease

in total cost followed by a gradual increase), through continued evaluation it is

clear that the true total cost function ℓ(n) deviates significantly from the initial

assessment of total cost function (i.e. m(n)). This highlights the flexibility of the
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emulation framework. One could argue that fitting a curve, using equation 7.20,

through the final version of d1 would also give a reasonable representation of the

true total cost function. However, for true total cost curves that differ in form (for

example a double descent curve) from the specified function fit to d1, the results

can be inaccurate.

In summary, by holding out a small percentage (13.6%) of the population we

can ensure that key predictors of the model are not lost through intervention for the

next model update.

7.4 The Effects of Clustering

Given the content of previous chapters, one may wonder how the presence of a clus-

tering structure (regarding the relationship between the covariates and the response)

effects the procedure of locating the minimum total cost. A general detrimental ef-

fect of a clustering structure can occur if the data we possess does not contain all

clusters present in the population. Note here that whilst it is assumed we have

population level data available for knowledge of the value ℵ, if this is not the case it

is perfectly valid to take the size of the dataset available as ℵ. Taking this approach,

however, does allow for the possibility of clusters in the population to have no rep-

resentation in the sample dataset. Therefore, one must be mindful when collating

samples of the population to ensure that the resulting dataset is sufficiently diverse.

Assuming that there is a clustering structure present and that all clusters are

represented sufficiently in our dataset, the model choice has a large knock-on effect

on the behaviour of the expected improvement process. If the model chosen is not

designed to account for clustering structure, then the function ℓ(n) may behave in

non-standard ways. Explaining further, typically we expect k2(n) to decrease as n

increases as we learn more about the behaviour of the system. For a model that

does not account for a clustering structure (e.g. standard logistic regression) we do

not expect k2(n) to decrease as n increases as the clustering structure will distort

the signal. The result of this is that k2(n) behaves in a similar fashion to k1 as

the model does not provide much insight to lower costs, violating our assumption
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that the model is beneficial. Therefore, if a clustering structure is present, providing

a model that cannot detect or manage this structure will fail to be beneficial and

therefore render the concerns of intervention effects mute as the model will likely

not have an effect.

Conversely the model chosen could be designed to account for clustering struc-

ture. Here we would expect for large values of n that k2(n) will be small, as all

clusters should be represented in the hold-out set. For small values of n, however,

it remains a possibility that large clusters are not represented sufficiently in the

hold-out set and therefore individuals in the intervention set that belong to such

unrepresented clusters will receive poor predictions, leading to a higher cost for

those individuals. This will have a knock-on effect on the expected cost k2(n) and

consequently the total cost. As a result, typically for data with a clustering structure

present the optimal hold-out set will be larger to ensure each cluster is represented.

7.4.1 Clustering Examples

For the entirety of this section we shall keep the covariates X ∈ Rℵ=200×2 consistent,

namely

xi ∼

N ((−1,−1)T , I2) if i ∈ {1, . . . , 100}

N ((1, 1)T , I2) if i ∈ {101, . . . , 200}
(7.21)

This low-dimensional simple dataset is chosen for complete clarity on when the data

presents clustering structure and when it does not, as will be shown in the following

examples.

First we consider the standard setting where there is no clustering structure

present in the data. To mimic this setting we simulate the response in the following

way:

β = (0,−0.5,−0.5)T (7.22)

yi ∼ Bern((1 + e−(1,xT
i )β)−1) for i = 1, . . . , 200 (7.23)
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This dataset can be visualised in figure 7.3. As we are in the one-cluster setting,

Figure 7.3: One-cluster dataset for the two-Gaussian emulation example. Colours
correspond to response type.

a standard logistic regression model is a suitable choice for this data. As seen

previously in section 7.3.2, we take a random initial set of sizes to form n1, we then

replicate each of these sizes 10 times to form n. Evaluation at these sizes gives d,

d1 and σ1. In order to do this, however, we again must specify k1 and k2(n). We

define cost to a particular individual in the intervention set who received a particular

prediction through table 7.1. Note that here a hard prediction of success is given

if the estimated probability of success is greater than 0.5. As before, we assume

no model is given to the hold-out set and that the expected cost is k1 = 0.5. The

mean function m(n) has the form given in equation (7.20), where a1, a2 and a3 are

derived by fitting the curve k2(n) = (a1n
−a2 + a3) to the evaluated expected cost to

individuals in the intervention set. This gives a1 = 1107.8762717, a2 = 3.1861977

and a3 = 0.2556594. For the covariance function hyperparameters7, we specify

σu = 10
√
3 and ζ = 15. Finally, we specify η1 = 1, η2 = 6 and τ = 10. The

resulting emulator for the initial data is given in figure 7.4 alongside the expected

improvement function for this initialisation.

7As with the random forest example, these hyperparameters can be specified in this setting
through a grid search of plausible values. In absence of a natural objective to optimise, evaluation
of these values can be carried out through visual inspection (as in the left sided plot of figure 7.4)
of the emulator’s suitability to the initial data d1.

190



Figure 7.4: Initial emulator (left) of the one-cluster emulation example along with
the initial expected improvement function (right). For the left-hand plot black
points represent d1 and for the right-hand plot the blue dashed line highlights the
maximum of EI(n).

Even from the initial few points evaluated we can see that the total cost is

behaving in a standard way. Small hold-out set sizes do not learn the behaviour

of the system and therefore have large total cost, but the total cost decreases as

we learn more about the system. Finally, when enough data is collected to fully

understand the behaviour of the system, the total cost increases as n increases due

to the fact that we are unnecessarily adding individuals to the hold-out set. Also

note that although EI(n) < 1 ∀ n = 1, . . . ,ℵ the algorithm will not necessarily

immediately terminate as the standard error of our evaluated points may still be

large. Indeed, from the left-hand plot in figure 7.4 we can see that although large

values of n ∈ n1 have little posterior variability8 (due to the consistency of model

output), the same cannot be said for smaller values of n ∈ n1, suggesting more

evaluations may be required for an accurate approximation of the total cost at these

smaller values.

Running algorithm 25 then gives the emulator output seen in figure 7.5, which

gives a final optimal hold-out size as n⋆ = 23. Figure 7.5 clearly shows that the

process of discovering the minimum total cost did indeed require evaluating further

values of n. This was due to the high standard error associated with suspected op-

timal hold-out set sizes, and so initially these standard errors were reduced through

further evaluations which then in turn altered the emulator allowing for un-evaluated

8As the red curves are narrow for black points at large values of n ∈ n1 but wide for black
points at small values of n ∈ n1.
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Figure 7.5: Outputted emulator from running algorithm 25 on the one-cluster
emulation example. Black points here represent d1.

sizes to potentially be selected. Additionally, note that the posterior variance is

greatly reduced at certain small values of n ∈ n1 as the algorithm evaluated these

values many times to ensure an accurate approximation of the total cost was made

in promising areas. For larger values of n ∈ n1, such as n = 152, the standard error

is still large but we are reasonably confident that further evaluations would not alter

d1i (where i is such that n1
i = 152) enough that it would be lower than the current

known minimum.

We now alter the responses such that a two-cluster scenario is present, namely:

β1 = (−6,−3,−3)T (7.24)

β2 = (6,−3,−3)T (7.25)

yi ∼

Bern((1 + e−(1,xT
i )β1)−1) if i ∈ {1, . . . , 100}

Bern((1 + e−(1,xT
i )β2)−1) if i ∈ {101, . . . , 200}

(7.26)

which can be visualised in figure 7.6.

We keep the parameters of our emulator the same as for the one-cluster dataset,

with the exception that as we have different initial evaluations, the constants (a1, a2, a3)
T

which govern the mean function (as seen in equation (7.20)) will differ, and these

are specified as a1 = 0.18145298, a2 = 0.00388301 and a3 = 0.29676975. The result-
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Figure 7.6: Two-cluster dataset for the two-Gaussian emulation example. Colours
correspond to response type.

ing initial emulator, alongside the initial expected improvement function, are given

in figure 7.7. In this setting the mean function m(n) has interestingly been able

Figure 7.7: Initial emulator (left) of the two-cluster emulation example along
with the initial expected improvement function (right). For the left-hand plot black
points represent d1 and for the right-hand plot the blue dashed line highlights the
maximum of EI(n).

to capture the constant total cost across n based only on the initial points. Com-

paratively µ(n) is distorted more towards the specific placements of these initial

points, whose true total cost may not be accurate based on only τ = 10 evaluations.

Again, the expected improvement function implies that there is little improvement

to be made on the current ‘known’ minimum, but as algorithm 25 progresses and

we increase the certainty in our previous evaluations this may change. The results

of running algorithm 25 can be seen is figure 7.8, which gives the optimal hold-out
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set size of n⋆ = 98. The resulting emulator, however, shows with more evaluations

the total cost is likely to be fairly constant across n, as was our initial suspicion.

This highlights the ineffectiveness of hold-out sets for non-beneficial models, as the

cost to an individual in the hold-out set is equivalent to the cost to an individual in

the intervention set when the model cannot learn the behaviour of the system.

Figure 7.8: Outputted emulator from running algorithm 25 on the two-cluster
emulation example. Black points here represent d1.

In order to compare this to a model which can detect clustering structure, we

keep all parameters the same, expect we replace the standard logistic regression

model with UNCOVER. Of course, this will give different initial evaluations and

so (a1, a2, a3)
T will change again, giving a1 = 2.4169461, a2 = 0.2711138 and a3 =

−0.2391386. Additionally, we require specification for UNCOVER’s parameters,

and so we select a stopping criterion of κ = 2 and a deforestation criterion of a

minimum cluster size of min{n, 25} observations9. The resulting initial emulator

along with the initial expected improvement function are given in figure 7.9.

The use of a model which can handle a clustering structure then allows us to

revert to the usual setting where k2(n) decreases as n increases, as seen in figure 7.9

through the decrease and subsequent increase of both m(n) and µ(n) as n increases.

9This stopping criterion results in the algorithm making only one edge removal before defor-
estation, which saves a lot of computation time and is appropriate as we know there are only two
clusters present.
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Figure 7.9: Initial emulator (left) of the two-cluster emulation example, using an
UNCOVER model, along with the initial expected improvement function (right).
Black points represent d1 and the blue dashed line highlights the maximum of EI(n).

Of course, this is just the initial emulator, and further evaluations may reveal differ-

ent behaviour. Therefore, we run algorithm 25 to obtain the optimal hold-out set.

The resulting emulator is given in figure 7.10, which gave an optimal hold-out size of

n⋆ = 71. Figure 7.10 shows that with multiple evaluations applied to retrieve n⋆ the

Figure 7.10: Outputted emulator from running algorithm 25 on the two-cluster
emulation example where UNCOVER was the model used. Black points here rep-
resent d1.

total cost still behaves in the expected fashion, which we would expect given that

the model choice does result in beneficial outputs. The process using UNCOVER is

similar to that of the one-cluster dataset using a standard logistic regression model,

although due to the presence of two clusters more data is required for the optimal

hold-out set in order to guarantee both clusters are sufficiently represented.

195



7.5 Summary

In general the problem of model updating can be solved through the use of a hold-

out set, the size of which can be optimised through specification of the various costs

one encounters through implementation of a model. Locating this optimum can

also be achieved with Bayesian optimisation through emulation of the total cost

function, which will be between 1 and ℵ − 1 provided certain assumptions are met.

Key among these assumptions is that the model is beneficial and therefore members

of the intervention set benefit from an accurate model. When there is clustering

present in the population, however, this assumption can be violated by a model

which cannot handle such a clustering structure.

UNCOVER clearly is a model that can handle clustering structure and so meets

the assumptions required for the existence of an optimal hold-out set. Interestingly,

setting certain parameters of UNCOVER can showcase the power of emulation for

discovering the minimum. For example, consider the UNCOVER example in section

7.4.1, where we can see from figure 7.10 that the emulator behaves in a similar

fashion to the mean function m(n) which acts as the emulator prior. However,

the total cost function does not behave like m(n) for n < 50. This is due to

the deforestation criterion being the minimum size of a cluster must be greater or

equal to min{n, 25}, when n is the training data size (i.e. the hold-out set size).

Therefore, in order to obtain a two-cluster output we require n = 50. As a result,

assuming that a one cluster model learns very little about the behaviour of the

system, k2(n) ≈ k1 for n < 50 and so the total cost should be roughly constant

for this range of n. Consequently, the total cost for n < 50 should approximately

be 100, a large deviation away from m(n). This can be shown by adding the point

n = 25 (initially with 10 evaluations, then continued evaluation until the standard

error is below 6) to the emulator. This can be seen in figure 7.11.

Clearly the point n = 25 deviates significantly from our prior mean function

m(n), but our posterior mean function µ(n) can account for this. This is in a

setting where we have a solid understanding of the total cost function, but for other

models where the behaviour of the total cost is unknown, this flexibility is crucial
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Figure 7.11: Outputted emulator from running algorithm 25 on the two-cluster
emulation example (where UNCOVER was the model used) and then adding the
point n = 25 (pink) through evaluation 113 times. Black points here represent d1.

in determining the optimal hold-out set and not relying too heavily on prior beliefs.

As a final point on the use of UNCOVER in safe model updating, if a population

is suspected to contain a clustering structure, then an initial UNCOVERmodel using

the entire population could be beneficial in reducing the size of the hold-out set. In

more detail, if an initial run using UNCOVER produced a K > 1 cluster model, for

subsequent hold-out sets a stratified sampling approach can be taken to form the

set such that each cluster is represented in the training data for the model. The

hard clustering output from UNCOVER makes this possible and would result in

less variability in the evaluations at lower set sizes as well as the model potentially

learning the behaviour of the system at much smaller sizes10. If UNCOVER initially

detected no clustering structure then this gives confidence in using the previous

method of random sampling to form hold-out sets. Whilst this approach has the

potential to greatly reduce the hold-set size, there may be ethical issues to consider

— for example a member of a small cluster will have a much greater chance of being

in the hold-out set than a member of a large cluster.

10Assuming a clustering structure is present and UNCOVER is the model in question.
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CHAPTER 8

Conclusion

The use of clustering in predictive modelling requires careful consideration of stake-

holder’s priorities. Typically focus has been heavily weighted either towards inter-

pretability of the resulting cohorts (at the expense of model accuracy) or towards

predictive power of the model (at the expense of solid cohort descriptions). UN-

COVER aims to provide a method of predictive modelling which gives equal weight

to the detection of clear cohorts, such that separate action plans can be developed

for cohort members based on their cohort’s particular relationship with the response.

With respect to cohort detection, UNCOVER insists potential cohorts adhere to

the structure of the covariates, realised through a Minimum Spanning Tree (MST),

but this structure can be formed through a subset of the covariates. This gives the

user the ability to select the subset of covariates most beneficial in uncovering a

clustering structure. The use of MSTs also allows for few assumptions to be made

on the shape or properties of the clusters (that may not be known a priori).

For model accuracy, the inclusion of a response is incorporated from the begin-

ning of the algorithm, with a Bayesian product of logistic regression models being

selected as the overall model framework. This allows a comparison of models with

different partitions of the data through the Bayesian evidence — an appropriate
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metric given the small amounts of data one might encounter for a particular cluster.

This also gives a key property to UNCOVER if one has doubts about the presence

of any clustering at all, in that UNCOVER allows the inclusion of a one cluster

model as an acceptable output. Indeed, an advantage of the UNCOVER method is

that the number of clusters is not required to be known prior to running the algo-

rithm. Additionally, we also utilise the Bayesian evidence to produce a methodical

approach to meeting pre-specified ‘deforestation’ criteria similar to that of pruning.

As utilisation of this method is clearly encouraged in general settings, the im-

plementation of UNCOVER is made available through the R package UNCOVER. This

package has been specifically designed to allow for ease of use, with default settings

put in place for accessibility to novices but also deep specifications available for users

more familiar with the UNCOVER methodology. The specifications may range from

theoretical parameters, such as a threshold for use of the Bayesian information crite-

rion and deforestation criteria, to more computational aspects such as the threshold

for cache checking within a tailored memoisation framework.

Finally, application of UNCOVER in real-world settings may result in the re-

placement of a previously implemented model, therefore necessitating discussion

regarding the problems of model updating. In general, näıve model updating may

result in better models performing worse due to interventions effects, with a pos-

sible solution to this being the notion of a hold-out set. A hold-out set requires

an optimal size such that the cost to individuals in the population in minimised,

and this can be tackled through the minimisation of a total cost function using a

surrogate model and the method of expected improvement. Referring back to the

clustering context, UNCOVER can be of significant use here in determining if there

is any clustering present in the population as well as giving clarity to the cohorts

that need to be represented in the hold-out set for accurate modelling.

8.1 Future Work

The research conducted in this thesis has opened many interesting avenues of further

research that can be applied in the fields of theory, computation and application.
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8.1.1 Seeing the Wood Through the Trees

In terms of theory, an interesting question surrounds the selection of the subset of

covariates P. The intention of specifying P was to allow for either the stakeholder

or statistician to reduce the dimensionality of the covariate space, which could be

done to focus on key demographics where the detection of cohorts would be bene-

ficial to the stakeholder, or to discover a covariate structure in which a supervised

clustering structure is most apparent. This requires a certain level of knowledge by

the user, however. Therefore, a more automatic selection of P could be desirable. A

standard solution would be to run UNCOVER multiple times for different selections

of the covariates and select the P which gives the largest model Bayesian evidence.

This solution represents an attempt at optimising P. Another view one could take

is not which P gives the clustering structure with the best model (according to the

Bayesian evidence), but which clustering structure gives a consistently good model1

regardless of P. For small training data this viewpoint will avoid a potentially mis-

leading selection of P which gives a model that generalises poorly. Additionally, a

solution for this viewpoint can be incorporated into a single run of UNCOVER, by

changing P after every edge removal. Changing P will then update the Minimum

Spanning Forest (MSF) with K components back to a Minimum Spanning Tree

(MST) with one component. To get back to a K-component MSF, for each edge

{i, j} in the set of the K − 1 previous graph removed edges, we remove the longest

edge in the path from i to j in the new graph. We would then update the cluster

index sets V1, . . . ,VK accordingly and then consider edge reintroduction based on

the new P-determined graph. The theoretical properties (for example, is the al-

gorithm guaranteed to reach a natural stopping point with a changing structure?)

alongside implementation factors would be of great interest to explore.

1A ‘good’ model here refers to a model that makes accurate predictions of new and existing
data.
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8.1.2 Beyond Logistic Regression

The entirety of this thesis has focused on the special case of logistic regression models

as a basis for UNCOVER. However, the framework developed for UNCOVER is not

specific to logistic regression, and in many cases is easily replaceable with another

base model. The simplest example of this would be probit regression, another model

for a binary response. If the response was continuous then the standard regression

model would represent a direct replacement for logistic regression.

The aspect that each of these base models have in common is that they are all

parametric models, and therefore posteriors along with Bayesian evidences can all

be obtained from these models. An interesting avenue to explore, however, is how

non-parametric models can be incorporated within UNCOVER. One could change

the metric from the Bayesian evidence to a metric that does not require probabilistic

modelling (such as the AUC) or a more challenging prospect would be to attempt to

derive parametric counter-parts to the non-parametric model such that a posterior

and Bayesian evidence could be derived. An example of this would be a classic

decision tree, where the unknown parameters in which to construct a posterior are

the split parameters, but crucially here the observations would not be i.i.d. and

so this presents further challenges. Tackling this problem would then allow for

promising connections to be made between UNCOVER and the area of Bayesian

inference which replaces the likelihood with a loss function [110].

8.1.3 Batched Spanning Trees

Whilst several techniques have been implemented (as discussed in chapter 5) in order

to improve the computation time of UNCOVER, a significant procedure which has

not yet been discussed is the construction of the initial MST. For large data this will

take considerable time, and this problem is further exacerbated when considering the

techniques discussed in section 8.1.1. Several algorithms aside from Prim’s algorithm

have been devised to tackle the computational burden of MST construction [63–65],

of which it is future work to implement within UNCOVER. For extremely large

datasets, however, the computational burden will still remain as all such algorithms
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depend on the number of vertices n.

Interesting considerations to make here are the advantages and disadvantages

of parallelisation of this process. If we were to spilt the vertices into batches, we

could compute the MSTs for each of these batches in parallel. Then, to obtain

the final graph we would construct the overall spanning tree by only considering

edges that are in the individual MSTs and edges between batches. The result would

be a spanning tree but this is not guaranteed to be an MST, therefore the gains

we make in computation time may be potentially lost in not obtaining an accurate

representation of the covariate structure. A parallelisable method such as this which

gives spanning trees with a structure close to that of an MST would be a key area

to explore to ensure UNCOVER has wide use in large data settings.

8.1.4 Cluster Caches

When considering the eviction policy for the caches involved in UNCOVER, we

use the standard least recently used policy alongside a careful edge ordering to

produce an efficient use of memoisation. In addition to this, we also have made

use of specialised save states, which are deemed too important to risk eviction from

the cache. An alternative option is to combine these two concepts into cluster

specific caches. In this setting, we produce a cache per cluster and a cache per edge

removed. Initially starting with one cluster cache, labelled cache ‘Cluster – 1’, we

would discover the optimal edge ϵ to remove in the standard way. Then, before

splitting the cluster, we would re-categorise the current cluster cache as an edge

cache, now labelled ‘Edge – ϵ’, and then split the cluster. The two new clusters

would then each receive a new cluster cache labelled cache ‘Cluster – 1’ and cache

‘Cluster – 2’. If an edge ϵ was reintroduced, we would first remove the two cluster

caches of the clusters to be combined and then re-categorise the ϵ edge cache to be

the cluster cache of the newly formed combined cluster.

As hard clustering dictates observations are confined to their own cluster there

would be no loss of information by having specific cluster caches. However, given

that we may have a restriction on the size of a cache and the number of clusters at

any one point of UNCOVER is unknown, determining the size of multiple caches
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presents a challenge. We of course will know the maximum number of clusters

through specification of the stopping criterion, so we can state that there will be at

most κ+κ− 1 caches at any time. Simply dividing the allotted total cache size by

κ+κ− 1 for the individual cache sizes, however, is inefficient as we only reach this

number of clusters at most once in the algorithm. An adaptive cache sizing policy

is an interesting solution to this problem, but careful consideration must be made

on how the caches are modified when they are ‘downsized’ by the presence of a new

cluster or ‘upsized’ by the combination of clusters.

8.1.5 Influential Observations

A paper by Broderick et.al [111] raises an important issue of a phenomenon that

occurs when a small group of observations within a dataset are highly influential on

the inferences one makes when utilising the data. In circumstances where this is not

due to finite data or outliers, removal of such observations drastically changes the

conclusions drawn, which could have a detrimental impact if actions are taken on

the basis of these conclusions. This has an extremely large impact on the problem

of optimal hold-out sets seen in chapter 7. If we assume that inclusion of this small

group of observations gives a much more accurate model, then the hold-out set is

much more sensitive to its contents as opposed to simply its size. Ignoring the

presence of a small influential group will lead to a total cost function which is highly

variable and favours much larger sizes of the optimal hold-out set to increase the

possibility of capturing this small group.

If we could identify the individuals in the population which are influential prior

to determining the hold-out set, we can make adjustments to ensure this group is

represented, therefore lowering the variability and allowing for a smaller hold-out set

size. Broderick et.al suggest such a method in their paper, but an alternative would

be to use an adaptation of UNCOVER. Instead of taking the product of Bayesian

evidences as our metric we take the maximum Bayesian evidence per observation2.

Assuming the large majority of observations act as noise for the influential group,

2Such that for cluster k with observation index set Vk and Bayesian evidence Zk, the Bayesian
evidence per observation would be Zk\|Vk|.
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this version of UNCOVER will highlight the influential group or groups by consider-

ing them as an optimal cluster. Implementation as well as theoretical considerations

would need to be made for this version of UNCOVER, as well as the ethical aspects

of application (e.g. if observations corresponded to patients is it ethical to allow

some patients to never receive an accurate prediction by always being in the hold-

out set?).
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281, Akadémiai Kiadó Location Budapest, Hungary, 1973. 3.2.1

[46] J. E. Cavanaugh and A. A. Neath, “The Akaike information criterion: Back-
ground, derivation, properties, application, interpretation, and refinements,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 11, no. 3,
p. e1460, 2019. 3.2.1

[47] C. M. Hurvich and C.-L. Tsai, “Regression and time series model selection in
small samples,” Biometrika, vol. 76, no. 2, pp. 297–307, 1989. 3.2.1

[48] G. Schwarz, “Estimating the dimension of a model,” The Annals of Statistics,
pp. 461–464, 1978. 3.2.1

[49] S. Konishi and G. Kitagawa, “Information criteria and statistical modeling,”
2008. 3.2.1

[50] F. Llorente, L. Martino, D. Delgado, and J. Lopez-Santiago, “Marginal like-
lihood computation for model selection and hypothesis testing: an extensive
review,” SIAM Review, vol. 65, no. 1, pp. 3–58, 2023. 3.2.2, 4.6.1

208



[51] H. Jeffreys, “Some tests of significance, treated by the theory of probability,”
in Mathematical Proceedings of the Cambridge Philosophical Society, vol. 31,
pp. 203–222, Cambridge University Press, 1935. 3.2.2, 6.4

[52] R. E. Kass and A. E. Raftery, “Bayes factors,” Journal of the american sta-
tistical association, vol. 90, no. 430, pp. 773–795, 1995. 3.2.2

[53] H. Jeffreys, The theory of probability. OuP Oxford, 1998. 3.2.2, 4.4.2, 6.4, B.1

[54] N. Friel and J. Wyse, “Estimating the evidence – a review,” Statistica Neer-
landica, vol. 66, no. 3, pp. 288–308, 2012. 3.2.2

[55] P. J. Green, “Reversible jump Markov chain Monte Carlo computation and
Bayesian model determination,” Biometrika, vol. 82, no. 4, pp. 711–732, 1995.
3.2.3, A.4

[56] R. M. Neal, “Markov chain sampling methods for Dirichlet process mixture
models,” Journal of Computational and Graphical Statistics, vol. 9, no. 2,
pp. 249–265, 2000. 3.2.3, A.4, A.4

[57] K. Pearson, “LIII. On lines and planes of closest fit to systems of points
in space,” The London, Edinburgh, and Dublin Philosophical Magazine and
Journal of Science, vol. 2, no. 11, pp. 559–572, 1901. 3.3

[58] A. Unwin and K. Kleinman, “The iris data set: In search of the source of
virginica,” Significance, vol. 18, 2021. 3.3

[59] D. B. West et al., Introduction to graph theory, vol. 2. Prentice hall Upper
Saddle River, 2001. 3.3.1

[60] B. M. Moret and H. D. Shapiro, “An empirical analysis of algorithms for
constructing a minimum spanning tree,” in Algorithms and Data Structures:
2nd Workshop, WADS’91 Ottawa, Canada, August 14–16, 1991 Proceedings
2, pp. 400–411, Springer, 1991. 3.3.2

[61] R. C. Prim, “Shortest connection networks and some generalizations,” The
Bell System Technical Journal, vol. 36, no. 6, pp. 1389–1401, 1957. 3.3.2,
4.1.1

[62] J. B. Kruskal, “On the shortest spanning subtree of a graph and the traveling
salesman problem,” Proceedings of the American Mathematical Society, vol. 7,
no. 1, pp. 48–50, 1956. 3.3.2

[63] D. R. Karger, P. N. Klein, and R. E. Tarjan, “A randomized linear-time algo-
rithm to find minimum spanning trees,” Journal of the ACM (JACM), vol. 42,
no. 2, pp. 321–328, 1995. 3.3.2, 8.1.3

[64] B. Chazelle, “A minimum spanning tree algorithm with inverse-Ackermann
type complexity,” Journal of the ACM (JACM), vol. 47, no. 6, pp. 1028–1047,
2000. 3.3.2, 8.1.3

209



[65] S. Pettie and V. Ramachandran, “An optimal minimum spanning tree algo-
rithm,” Journal of the ACM (JACM), vol. 49, no. 1, pp. 16–34, 2002. 3.3.2,
8.1.3

[66] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
algorithms. MIT press, 2022. 3.3.2

[67] S. Varma and R. Simon, “Iterative class discovery and feature selection using
minimal spanning trees,” BMC Bioinformatics, vol. 5, no. 1, pp. 1–9, 2004.
3.3.2
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APPENDIX A

Further Information on Previous Clustering Methods

A.1 The Effect of K-means Clustering in Covari-

ate Space

When convergence of theK-means algorithm (algorithm 26) has been reached to give

index sets V1, . . . ,VK (with associated centroids c1, . . . , cK), the centroids induce a

Voronoi diagram [112] which consists of Voronoi regions R1, . . . ,RK of the covariate

space, defined by the Euclidean distance metric and c1, . . . , cK .

Definition A.1.1 (Voronoi Region). Given a distance metric d(·, ·) and centroids

c1, . . . , cK, a Voronoi region of the space R is given by

Rk = {x ∈ R : d(x, ck) ≤ d(x, cl) ∀ l ̸= k}

It is important to note here that the covariate space is not partitioned by

R1, . . . ,RK , as Rk ∩ Rl ̸= ∅ for neighbouring regions. However, regions defined

in a similar way except with a strict inequality on the distance measures will form

a partition when considered with the decision boundaries. Therefore, a Voronoi

diagram gives a strong indication into the topology of the possible regions of the
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Figure A.1: Voronoi diagram from centroids (white) produced by K-means. Black
points indicate observations.

covariate space formed by the presence of new data, as once the centroids have

reached stability with the training data, new data can be assigned a cluster based

on Euclidean distance to the nearest centroid.

A.2 Visualisation of the Hierarchical Clustering

Algorithm

The choice of K is still a quantity that requires specification before algorithm 27

can be run. However, by selecting K = 1 for agglomerative clustering (or K = n

for divisive clustering) and saving the output at each iteration we can obtain the

outputted clusters for every value of K. Plotting this as a dendrogram then allows

for a clear visual inspection of which value of K is most suitable. An example of this

for a sample of the iris dataset [113,114] (using the Euclidean distance metric and the

complete linkage method) is shown in figure A.2. We can also utilise dendrograms to

identify the differences in clustering output that occur for different linkage methods,

as seen in figure A.3.

This additional level of visualisation (as well as more flexibility in the shape of

clusters produced by the algorithm) gives in some aspects hierarchical clustering a

advantage over K-means for both interpretability and potential predictive power.
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Algorithm 26: Euclidean distance K-means

Input : Number of Clusters — K, Covariate Matrix — X = (x1, . . . ,xn)
T ,

Centroid Matrix — C = (c1, . . . , cK)
T

Initialisation : Let Ṽ1 = ∅, . . . , ṼK = ∅
Step 1 : Let Vk = ∅ for k = 1, . . . , K.
Step 2 : for i = 1, . . . , n do

for k = 1, . . . , K do

Calculate dk = ∥xi − ck∥2 =
√∑p

j=1(xij − ckj)2

end
Assign observation i to cluster k⋆ = argmink∈{1,...,K} {dk} by adding i to
Vk⋆

end
Step 3 : for k = 1, . . . , K do

Let

ck =
1

|Vk|
∑
i∈Vk

xi

end

Step 4 : if Ṽk ̸= Vk ∀ k = 1, . . . , K then

Let Ṽk = Vk for k = 1, . . . , K. Go to step 1.
else

Stop.
end
Result : C, Index Sets — V1, . . . ,VK

However, we must note that the visual appeal of dendrograms softens as the number

of observations increase; for large data problems dendrograms are not a suitable

substitute for a plot of the covariate values along with their cluster assignment.

A.3 The Gap Statistic

The gap statistic is a popular method used to determine the number of clusters

for unsupervised methods. Here the smallest K is selected such that Gap(K) ≥
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Figure A.2: Dendrogram for agglomerative complete linkage hierarchical clustering
on a sample of 30 observations from the iris dataset.
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Figure A.3: Dendrograms for agglomerative hierarchical clustering using the single
linkage (left) and average linkage (right) methods, on a sample of 30 observations
from the iris dataset.

Gap(K + 1)− sK+1, where:

ωK(V
′
1, . . . ,V

′
K) =

K∑
k=1

1

2|V′
k|
∑

i,j∈V′
k

∥xi − xj∥22 (A.1)

Ω̄ =
1

Ω

Ω∑
b=1

log(ωK(V
b
1, . . . ,V

b
K)) (A.2)

Gap(K) = Ω̄− log(ωK(V1, . . . ,VK)) (A.3)

sK =

√√√√Ω + 1

Ω2

Ω∑
b=1

(log(ωK(Vb
1, . . . ,V

b
K))− Ω̄)2 (A.4)
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Algorithm 27: Hierarchical clustering

Input : Number of Clusters — K > 1, Distance Metric — d,
Covariate Matrix — X = (x1, . . . ,xn)

T , Linkage Function — f
Step 1 : if Agglomerative then

Let V = {V1, . . . ,Vn} where V1 = {1}, . . . ,Vn = {n}
else

Let V = {V1} where V1 = {1, . . . , n}
end
Step 2 : if Agglomerative then

Let
(Vk,Vl) = arg min

Vk ̸=Vl

{f(d,X,Vk,Vl)}

Update Vk = Vk ∪Vl and remove Vl.
else

for k = 1, . . . , | V | do
Let {Ṽ(1)

k,1, Ṽ
(1)
k,2}, . . . , {Ṽ

(2|Vk|−1−1)
k,1 , Ṽ

(2|Vk|−1−1)
k,2 } be all possible

partitions of Vk. Let

tk = arg max
t∈{1,...,2|Vk|−1−1}

{f(d,X, Ṽ
(t)
k,1, Ṽ

(t)
k,2)}

end
Let

k⋆ = arg max
k∈{1,...,|V|}

{f(d,X, Ṽ
(tk)
k,1 , Ṽ

(tk)
k,2 )}

Let Ṽ
(tk⋆ )
k⋆,1 = V|V|+1 and Ṽ

(tk⋆ )
k⋆,2 = V|V|+2. Add V|V|+1 and V|V|+2 to V.

Remove Vk⋆ from V. For k > k⋆ update the index of Vk to k − 1.
end
Step 3 : if |V| = K then

Stop.
else

Go to step 2.
end
Result : Set of Index Sets — V

with Ω specified by the user. The index sets Vb
1, . . . ,V

b
K are obtained through

unsupervised clustering on a simulated dataset Xb such that

xb
ij ∼ U

(
min

a∈{1,...,n}
{xaj}, max

a∈{1,...,n}
{xaj}

)
(A.5)

This in essence creates sets of samples from a uniformly distributed hypercube to

mimic a scenario where one would typically not expect to discover a clustering struc-

ture. We note that this method requires the assumption of log-concave distributions
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for the cluster densities, which may not be valid for certain datasets. This method

can also create additional uncertainty in the form of estimation and can introduce

measures of cluster quality that are not necessarily generally favorable (for example

compactness of clusters).

A.4 Clustering Methods Which Treat K as Un-

known

Here we give a brief introduction into two methods which apply a Bayesian treat-

ment to the number of clusters K — Reversible Jump Markov Chain Monte Carlo

(RJMCMC) and Dirichlet Process Priors (DPP).

RJMCMC acts as a trans-dimensional Metropolis–Hastings algorithm, where at

each iteration the algorithm first selects which dimension to move to, generates a

certain number of random values (u) such that the dimensions of the current state

and the target state match, applies a mapping from the current state and current

random values to the proposal state and then accepts this proposal with probability:

min

{
1,

πt+1(Θ
{t+1}, k{t+1})j(k{t} | k{t+1})q(u{t} | u{t+1})

πt+1(Θ
{t}, k{t})j(k{t+1}|k{t})q(u{t+1} | u{t})

det(J)

}
(A.6)

where t is the indicator of where we are in the chain, j(·) is the Probability Density

Function (PDF) of the dimension sampler, q(·) is the PDF of the random number

sampler and J is the Jacobian of the mapping from (Θ{t},u{t}) to (Θ{t+1},u{t+1}),

i.e.

J =

(
∂(Θ{t+1},u{t+1})

∂π(Θ{t},u{t})

)
(A.7)

The formation of the acceptance probability is such that the resulting Markov Chain

is reversible and therefore will converge to desired joint posterior [55].

DPP models offer an entirely different modelling framework whilst still treating

K as unknown. There are a vast number of potential applications of DPP models

for clustering purposes, such as to determine the number of experts for mixture

of experts models [115]. However, by far the most commonly used approach is
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an unsupervised infinite mixture of models [56]. This model can then be used for

supervised problems using sequential predictive modelling. So for unsupervised DPP

models, the set up is as follows:

π(X | Θ⋆
1, . . . ,Θ

⋆
n) =

n∏
i=1

π(xi | Θ⋆
i ) (A.8)

Θ⋆
i ∼ G (A.9)

G ∼ DP(G0, a) (A.10)

where DP is a Dirichlet Process [116] with base distribution G0 and concentration

parameter a. A distribution for distributions, centered around G0, is typically what

DP(G0, a) is thought of, with draws from DP(G0, a) becoming more varied the larger

a is. The goal here is to sample from π(Θ⋆
1, . . . ,Θ

⋆
n | X), and observations with the

same parameters gives the clusters as a result. However, typically the problem can

be simplified through consideration of the finite setting and introduction of a cluster

assignment variable z:

π(X | z,Θ1, . . . ,ΘK) =
n∏

i=1

π(xi | Θzi) (A.11)

π(zi | τ ) = Mult(τ ) (A.12)

Θk ∼ G0 (A.13)

τ ∼ Dir
( a

K
, . . . ,

a

K

)
(A.14)

From this the conditional distribution for zi can be derived as

π(zi = k | z−i,X,Θ1, . . . ,ΘK) ∝ π(xi | Θk)

∑
j ̸=i 1(zj = k) + a

K

n− 1 + a
(A.15)

Thenn we can extend the problem by not constraining the number of clusters to

be a finite value. Here we let K −→ ∞, and for clarity we now give the clusters

currently represented by z labels {1, . . . , K ′}, which gives

π(zi = k | z−i,X,Θ1, . . . ,ΘK′) ∝ π(xi | Θk)

∑
j ̸=i 1(zj = k)

n− 1 + a
(A.16)
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But now in the infinite cluster setting we must consider the scenario in which zi is

equal to a value k which is not in {1, . . . , K ′}, which has the following probability

π(zi /∈ {1, . . . , K ′} | z−i,X,Θ1, . . . ,ΘK′) ∝ a

n− 1 + a

∫
π(xi | Θ)dG0(Θ) (A.17)

If we can analytically solve this integral (which is possible if G0 is a conjugate prior)

then we have all the necessary components to sample a cluster for observation i,

based on the current state of the other parameters1. With the cluster association

variables sampled, we will have an updated set of labels {1, . . . , K ′}, leading to the

conditional distributions for each of the parameters {1, . . . , K ′} being

π(Θk|z,X,Θ1, . . . ,Θk−1,Θk+1, . . . ,ΘK′) = π(Θk|z,X1(z=k),·) (A.18)

where X1(z=k),· are all observations i such that zi = k. Again if G0 is a conjugate

prior then we shall be able to sample from these distributions directly. All together

we have the tools to perform a version of Markov Chain Monte Carlo known as Gibbs

sampling [117] to obtain samples from the full posterior. This particular method

is one of many described by Neal [56], who gives an excellent insight into how to

practically utilise DPP’s.

1Note here that if observation i is in a cluster of its own, say k, then the probability of sampling
cluster k is 0, and so the associated Θk should be removed.
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APPENDIX B

UNCOVER Parameter Specification & Dataset Information on

Independent Variables

B.1 UNCOVER Parameter Specification

Whilst the amount of parameters required for the specification of an UNCOVER

algorithm is vast, this is a deliberate choice to ensure flexibility in specification to ei-

ther meet a specific stakeholder requirement or to improve computational efficiency.

However, without a comprehensive list detailing recommendations for the various

parameter specifications, new users of the UNCOVER framework face a daunting

task1. Therefore, what follows in this section is a table which summarises the default

parameters, together with a complete list of the parameters required for UNCOVER.

This list offers further guidance and explanation to the table as to which values to

select for said parameters. For further context on the purpose of these parameters

see chapters 4 and 5.

1The R package UNCOVER [11] alleviates this by providing defaults for the majority of parameters
for the function UNCOVER.
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Parameter Default

Minimum Spanning
Variable Subset — P {1, . . . , p}

Tree Construction

Iterated Batch Number of SMC Samples — N 1000
Importance Sampling ESS Threshold — ξ 0.5×N

Early Termination Stopping Criterion — κ n

Deforestation Criteria

Maximum Number of Clusters — κ < κ
Minimum Size for Clusters — k > n× κ−1

Maximal Regret Factor — ν > 100
Training Data Fraction — o 0.8
Minimum Number of Minority

> n†

κClass Observations for Clusters — υ

Memoisation Cache Evaluation Threshold — ρ max{1, n× 2−κ}
Reverse Iterated

RIBIS Observation Threshold — ρ̄ 30
Batch Importance Sampling

Asymptotic Approximations
Asymptotic Approximation

> ρ
Threshold — n̄

Table B.1: UNCOVER parameters, along with their deafults (or more generalised
properties of the parameter recommendations if a natural default is not available).
Parameters are also grouped into distinct aspects of the UNCOVER algorithm.

• Variable Subset — P: This parameter can be specified either through stake-

holder requirements or variable selection methods with preliminary UNCOVER

runs. In lieu of these options, one can use {1, . . . , p} (where p is the number

of covariates) as a default.

• Number of SMC samples — N : As N has a direct effect on the accuracy of

Bayesian evidence estimations, one recommends selecting N to be as large

as computationally feasible. However, UNCOVER requires the generation of

several Bayesian evidences and so in practical terms lower values of N might be

necessary. As a rough guide, through experimentation with several datasets,

1000 samples appears to give robust outcomes2.

• ESS Threshold — ξ: The effective sample size again has a direct impact on the

accuracy of the Bayesian evidence estimate, as the more frequently the samples

are rejuvenated through a move step the more likely the samples are to be

2Note that in the seminal paper for IBIS [9], Chopin recommended much larger values for N .
In this paper, however, the IBIS scheme was not intended to be used multiple times as part of a
larger algorithm.
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representative of the target distribution, which in turn results in the Bayesian

evidence estimate being more likely to be accurate. As a consequence, the

desired specification of ξ would naturally beN such that we rejuvenate at every

iteration of the IBIS scheme. This is not computationally efficient, however,

and so a lower value of ξ is typically required. Through experimentation and

suggested defaults in other pieces of work [118] this lower recommended value

is N
2
.

• Stopping Criterion — κ: As κ only aids computational efficiency, the theoret-

ical default is to use the number of observations n as this effectively removes

the criterion from the algorithm. However, practically, one should aim to se-

lect κ as a value slightly above the number of suspected clusters. Explaining

further, when we have obtained the true clusters (assuming the number of true

clusters was equal to the number of suspected clusters) additional overfitting

steps in UNCOVER are time consuming and unnecessary, as they will only

be rectified in the deforestation stage. However, selecting κ slightly above the

number of suspected clusters gives UNCOVER the flexibility to temporarily

create more clusters than necessary if earlier mistakes were made due to the

greedy nature of the algorithm.

• Maximum Number of Clusters — κ: Selection of κ should either be specified

by the stakeholder or should be a conservative estimate on the number of

suspected clusters. In general κ < κ to ensure the deforestation stage is

impactful if the stopping criterion is met. Note κ only needs to be specified if

the ‘Number of Clusters’ criterion is selected.

• Minimum Size for Clusters — k: Selection of k should either be specified by

the stakeholder or should be a judgement on the minimum number of obser-

vations a cluster would require to detect a regression signal. The latter point

will depend on factors such as general response diversity and local response

diversity in specific areas of the covariate space. In general k > n
κ to ensure

the deforestation stage is impactful if the stopping criterion is met. Note k

only needs to be specified if the ‘Size of Clusters’ criterion is selected.
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• Maximal Regret Factor — ν: As mentioned previously, maximal regret is

intrinsically linked to Bayes Factors (rearranging equation (4.22) presents ν as

an upper bound on a Bayes factor with the current model as the null model).

This suggests using Jeffreys scale [53] to select a default, i.e. as we want the

evidence for the current model to be decisive to not reintroduce an edge, we

should set ν = 100. However, this assumes the current model at the end of the

planting stage is an acceptable output (hence being labeled the null model)

when in fact without reintroducing edges the current model is likely to have

succumb to overfitting. Therefore, we recommend a value for ν in general to

be larger than 100 to encourage edge reintroduction. Note ν only needs to be

specified if the ‘Maximal Regret’ criterion is selected.

• Training Data Fraction — o: The common choice for train:validation splits of

the dataset is 80 : 20, i.e o = 0.8. As discussed in section 4.6.1, for UNCOVER

this is not always optimal as a small number of validation observations makes it

less likely that small clusters outputted in the planting stage can be adequately

assessed. As a result, in general we recommend 0.8 as a default but with the

caveat that for large data problems smaller values of o are advised. Note o

only needs to be specified if the ‘Validation Data’ criterion is selected.

• Minimum Number of Minority Class Observations for Clusters — υ: As seen

in section 4.6.1, relatively small values of υ lead to promising results. In

general, however, specification of υ should be made with consideration to the

response diversity of the overall dataset. One has more freedom to select a

larger value of υ with a balanced response dataset than with an imbalanced

response dataset. Typically, υ > n†

κ (where n† is the number of observations

in the total dataset which have an associated response in the minority class)

to ensure the deforestation stage is impactful if the stopping criterion is met.

Note υ only needs to be specified if the ‘Diverse Response’ criterion is selected.

• Cache Evaluation Threshold — ρ: Section 5.2.1 highlights the difficultly in

specifying a ρ which is universally computationally efficient, as the compu-

tational efficiency depends on various factors such as the minimum spanning
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tree structure, the cache size, the choice of prior et cetera. As a basic rule,

however, one can specify that ρ = max
{
1, n

2κ

}
, as this ensures that for every

possible cluster split one of the two new clusters formed will require the cache

to be checked. This value may not give the optimal choice for ρ for a given

problem, but (for values of κ where n ≥ 2κ) it allows the algorithm to move

away from the extremes of never checking the cache or always checking the

cache.

• RIBIS Observation Threshold — ρ̄: Specification of ρ̄ is problem specific and

strongly related to how close the prior is to target distribution for any posterior

encountered during the UNCOVER algorithm. Due to Bernstein von Mises

theorem [41] asymptotically the transformation in RIBIS will be appropriate

which suggests setting ρ̄ to be large, but in practice this is computationally in-

efficient as the RIBIS algorithm is then rarely utilised. We have found through

experimentation on the datasets presented in this thesis that relatively low val-

ues of ρ̄ are robust, and so we give an ad-hoc recommendation of ρ̄ = 30.

• Asymptotic Approximation Threshold — n̄: Like the RIBIS observation thresh-

old, specification of n̄ is largely dependent on the choice of prior (uninformative

priors can result in posteriors that are well approximated by a transformation

of the BIC for small values of n̄ for example). Therefore, whilst we do not

give a specific default for n̄, we do recommend specifying n̄ to be large. Ad-

ditionally, n̄ > ρ to ensure that it is possible to check the cache for the SMC

sampler.

Whilst not necessarily falling under the term ‘parameter’, there is one final spec-

ification for UNCOVER that is crucial — the base prior π(·). The form of the

prior is left to the discretion of the user, however, for computational efficiency it is

recommended that for the prior chosen i.i.d. samples are easily obtainable (as prior

samples are required to initialise the IBIS scheme). Additionally, if one intends on

using features which require asymptotic approximations (i.e. ρ̄ and n̄), then care

needs to be taken to ensure that the Bernstein von Mises theorem holds with the

choice of prior. For example, for clusters encountered in UNCOVER whose poste-
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riors require an asymptotic approximation of the Bayesian evidence, a multivariate

uniform prior covering an area of low posterior density is unlikely to satisfy the con-

ditions of the Bernstein von Mises theorem. By this reasoning we recommend the

multivariate normal Np+1(·, ·) as a default, as the support is Rp+1 and it takes the

same distributional form as the posterior when the number of observations tends to

infinity (provided the Bernstein von Mises theorem holds).

Finally, with the default form of the prior being a multivariate normal, one must

also specify the prior mean and prior variance. Experimentation with a multivariate

prior in section 4.6.1 shows that if one has prior knowledge (possibly gained from

expert opinion) on the posterior means for each of the suspected clusters, then

selection of a prior mean ‘close’ to all posterior means is advised. This clearly

will not always be possible, and so as a secondary default we recommend selecting

the prior mean µ = (0, ...0)T , as this should perform well with a scaled dataset.

Additionally, one should select a diffuse3 prior variance Σ, in order to mitigate the

negative effects on the output that can occur if µ is ill-placed.

B.2 Dataset Information on Independent Variables

B.2.1 Customers Data

Attribute Type Summary

Sex Categorical Count : ‘Female’ (112), ‘Male’ (88)

Age Numerical Mean: 38.85, SD : 13.96901

Income (k — $) Numerical Mean: 60.56, SD : 26.26472

Table B.2: Mall customers dataset variables, along with their type and summary
information (either mean and standard deviation or factor counts).

3How diffuse the variance should be is problem specific, however, experimentation has shown
the prior variance Σ = 16Ip+1 as an ad-hoc default performs well with prior mean µ = (0, ...0)T .
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B.2.2 Wine Quality Data

Attribute Type Summary

Fixed Acidity Numerical Mean: 7.21552275, SD : 1.319776662

Volatile Acidity Numerical Mean: 0.34417074, SD : 0.168264321

Citric Acid Numerical Mean: 0.31852200, SD : 0.147176538

Residual Sugar Numerical Mean: 5.04960511, SD : 4.500645455

Chlorides Numerical Mean: 0.05670045, SD : 0.036864803

Free Sulfur Dioxide Numerical Mean: 30.03046258, SD : 17.804364756

Total Sulfur Dioxide Numerical Mean: 114.10774727, SD : 56.783847640

Density Numerical Mean: 0.99453624, SD : 0.002965541

pH Numerical Mean: 3.22463896, SD : 0.160403301

Sulphates Numerical Mean: 0.53340165, SD : 0.149752704

Alcohol Numerical Mean: 10.54922214, SD : 1.185963672

Colour Categorical Count : ‘Red’ (1359), ‘White’ (3959)

Table B.3: Wine quality dataset variables, along with their type and summary
information (either mean and standard deviation or factor counts).

B.2.3 Abalone Data

Covariate Type Summary

Sex Categorical Count : ‘Female’ (1307), ‘Infant’ (1342), ‘Male’ (1528)

Shell Length Numerical Mean: 0.5239921, SD : 0.12009291

Shell Diameter Numerical Mean: 0.4078813, SD : 0.09923987

Shell Height Numerical Mean: 0.1395164, SD : 0.04182706

Whole Weight Numerical Mean: 0.8287422, SD : 0.49038902

Table B.4: Abalone dataset variables, along with their type and summary infor-
mation (either mean and standard deviation or factor counts).
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B.2.4 Heart Disease Data

Attribute Type Summary

age Numerical Mean: 54.54208754, SD : 9.0497357

sex Categorical Count : ‘Female’ (96), ‘Male’ (201)

trestbps Numerical Mean: 131.69360269, SD : 17.7628064

chol Numerical Mean: 247.35016835, SD : 51.9975825

fbs Categorical
Count : ‘Above 120 mg/dl’ (43),
‘Equal/Below 120 mg/dl’ (254)

restecg Categorical
Count : ‘Normal’ (147), ‘ST—T Wave Abnormality’ (4),
‘Probable/Definite Left Ventricular Hypertrophy’ (146)

thalach Numerical Mean: 149.59932660, SD : 22.9415621

exang Categorical Count : ‘Yes’ (97), ‘No’ (200)

oldpeak Numerical Mean: 1.05555556, SD : 1.1661228

slope Categorical Count : ‘Downsloping’ (21), ‘Flat’ (137), ‘Upsloping’ (139)

Table B.5: Heart disease dataset variables, along with their type and summary
information (either mean and standard deviation or factor counts).

B.2.5 Car Data

Attribute Type Summary

Buying Price Categorical
Count : ‘Low’ (432), ‘Medium’ (432),

‘High’ (432), ‘Very High’ (432)

Maintenance Price Categorical
Count : ‘Low’ (432), ‘Medium’ (432),

‘High’ (432), ‘Very High’ (432)

Number of Doors Categorical
Count : ‘Two’ (432), ‘Three’ (432),
‘Four’ (432), ‘Five or More’ (432)

Capacity Categorical
Count : ‘Two’ (576), ‘Four’ (576),

‘More Than Four’ (576)

Boot Size Categorical Count : ‘Small’ (576), ‘Medium’ (576), ‘Big’ (576)

Safety Categorical Count : ‘Low’ (576), ‘Medium’ (576), ‘High’ (576)

Table B.6: Car dataset variables, along with their type and summary information
(factor counts).

229


	Abstract
	Declaration
	Acknowledgements
	List of Figures
	List of Tables
	Dedication
	Introduction
	Motivation
	SPARRA: Scottish Population At Risk of Readmission and Admission
	Contributions Overview
	Outline

	Supervised & Unsupervised Clustering
	Unsupervised Clustering
	K-means Clustering
	Hierarchical Clustering
	Sequential Predictive Modelling
	Summary

	Supervised Clustering
	Finite Mixtures of Logistic Regressions
	Mixture of Experts
	Summary


	Bayesian Frameworks & Graphical Representations of Data
	The Bayesian Paradigm
	Importance Sampling
	Sequential Monte Carlo

	Selection of K
	Frequentist Model Selection — Information Criteria
	Bayesian Model Selection
	Bayesian Treatment of K
	Summary

	Graphical Representation of Data
	Basic Graph Terminology
	Minimum Spanning Trees


	UNCOVER: Utilising Normalisation Constant Optimisation Via Edge Removal
	Initialisation
	Sub-selection of Covariates
	Bayesian Product Logistic Regression Models

	Assessing Cluster Quality
	Component Generation
	Edge Removal
	Edge Reintroduction
	Combination of Edge Actions

	Deforestation
	Basic Criteria
	Maximal Regret
	Validation Data
	Response Diversity
	Summary

	The UNCOVER Algorithm
	Simulated Example
	Spirals

	Summary

	Implementation of UNCOVER
	Memoisation
	Look After the Pounds and the Pennies Look After Themselves — Cache Management
	Eviction Policy Optimisation

	RIBIS: Reverse Iterated Batch Importance Sampling
	Implementation Within UNCOVER

	Save States
	Asymptotic Approximations
	`UNCOVER' Package
	Dependencies
	UNCOVER Function
	IBIS.logreg Function
	Summary


	Application of UNCOVER
	Colliding Gaussians
	Covariate Noise
	Covariate & Signal Noise

	Wine Quality
	Abalone Age
	Heart Disease & Incorporation of Categorical Variables
	Summary

	Optimal Hold-out Sets: An Application in Updating Risk Scores
	Problem Outline
	Assumptions
	k2(0) < k1
	k2(0) = k1
	k2(0) > k1
	Summary

	Emulation of (n)
	Expected Improvement
	Random Forest Example

	The Effects of Clustering
	Clustering Examples

	Summary

	Conclusion
	Future Work
	Seeing the Wood Through the Trees
	Beyond Logistic Regression
	Batched Spanning Trees
	Cluster Caches
	Influential Observations


	Further Information on Previous Clustering Methods
	The Effect of K-means Clustering in Covariate Space
	Visualisation of the Hierarchical Clustering Algorithm
	The Gap Statistic
	Clustering Methods Which Treat K as Unknown

	UNCOVER Parameter Specification & Dataset Information on Independent Variables
	UNCOVER Parameter Specification
	Dataset Information on Independent Variables
	Customers Data
	Wine Quality Data
	Abalone Data
	Heart Disease Data
	Car Data



