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Abstract: In this thesis, the infrared structure of squared matrix elements in

quantum chromodynamics (QCD) is scrutinised. Specifically, the triple-collinear

splitting functions are decomposed and improvements to antenna subtraction are

sought through the construction of idealised antenna functions. The antenna-

subtraction technique has demonstrated remarkable effectiveness in handling next-

to-next-to-leading order (NNLO) infrared divergences for a wide range of QCD

processes relevant for colliders. However, since antenna functions were historically

extracted from matrix elements, they did not have uniform properties, which made

the generation of subtraction terms complex. Antenna subtraction up to NNLO is

reviewed, including the role of antenna functions. A general algorithm is detailed in

order to re-build antenna functions, with idealised features, directly from a specified

list of unresolved limits, for any number of real and virtual emissions. Using this

general algorithm, together with the decomposition of the triple-collinear splitting

functions, all the antenna functions required for NNLO QCD calculations in the

final-final configuration are constructed and it is demonstrated that they form a con-

sistent NNLO subtraction scheme. The idealised antenna functions should simplify

the generation of subtraction terms and minimise the introduction of spurious limits.

Additionally, the general algorithm sets out an initial blueprint for next-to-NNLO

(N3LO) idealised antennae for use in N3LO QCD calculations.
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Preface

Scientific research seeks to address the big questions. What is the nature of reality?

How can we improve the lives of those around us? Where do we fit into it all? These

questions cannot and should not be tackled alone. We must be able to communicate

theories concisely and be able to dispute them effectively. Scientific research is a

huge collaborative enterprise, more so than ever in the twenty-first century. It is a

privilege to play a small part in this fascinating journey.

The research presented in this PhD thesis sits within the global efforts of the particle

physics community to probe the fine structure of matter and its fundamental in-

teractions. Our best theoretical description of this is the widely successful and

sophisticated Standard Model of particle physics. The theories of the Standard

Model are described in a framework seemingly beyond that of reality - we manipu-

late imaginary numbers, quantify infinities and calculate in a non-integer number

of dimensions. Communicating in these terms has been our best way so far of ex-

plaining our real observations. However, there are still many open questions. How

do we describe the fundamental nature of gravity? Why does our universe possess

matter-antimatter asymmetry? What is the source of neutrino masses? How do

we address the hierarchy problem? And what is the nature of the huge portion of

unexplained mass and energy, dubbed dark matter and dark energy?

One way to address these questions is by rigorously testing the Standard Model

against precise observations and by analysing any discrepancies. These may hold

clues to the nature of New Physics. Since the correspondence between theories of

the Standard Model and collider physics is a research field in its own right - particle
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physics phenomenology - the goal of precision testing requires significant progress

and effort. In this thesis, we will focus on improvements to the antenna-subtraction

formalism. This formalism facilitates the prediction of real observables to a high

precision by using the underlying Standard Model theories, especially quantum

chromodynamics (QCD). Antenna subtraction relies upon building blocks called

antenna functions; it is the properties of these which we seek to idealise.

The thesis is organised as follows. In Chapter 1, we introduce the necessary the-

oretical framework in QCD for the main research. Chapter 2 justifies the role

of precision QCD calculations in the field of particle physics phenomenology. In

Chapter 3, we present research into the singular structure of matrix elements, in

the limit where three QCD particles are collinear. Chapter 4 introduces the gen-

eral antenna-subtraction formalism up to this point and motivates its necessary

improvements. In Chapters 5 and 6, we present the main research of this thesis: the

idealisation of antenna functions for high precision calculations. In Chapter 7, we

summarise the thesis and comment on possible future work.



Chapter 1

Quantum Chromodynamics

In this chapter, we will introduce and detail the concepts in QCD which are most

relevant for the bulk of this thesis. We will start with a brief description of the QCD

Lagrangian and its fields and our chosen matrix element formalism in Section 1.1.

Next, we will introduce ultraviolet (UV) divergences in QCD and their handling

via renormalisation in Section 1.2. Following on from that, we discuss the resultant

running of the strong-coupling constant in Section 1.3 and our use of perturbation

theory in the strong-coupling in Section 1.4. We introduce infrared (IR) divergences

in QCD and detail the universal infrared factorisation structures, which will be

crucial for the remainder of this thesis, in Section 1.5. Finally, we summarise the

chapter in Section 1.6.

1.1 QCD Lagrangian

QCD is a non-abelian field theory and the fundamental interactions of quarks and

gluons are determined by the form of the QCD Lagrangian (density),

LQCD =
∑
q

ψq(i /D −mq)ψq −
1
4F

a
µνF

a,µν . (1.1.1)

ψq represents a quark field of flavour q and transforms in the fundamental repres-

entation of the Lie group SU(Nc), while ψq ≡ ψ†qγ
0. In the Standard Model, there
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are six flavours of quark (u, d, s, c, b, t), in increasing order of mass, mq. The QCD

Lagrangian is both Lorentz invariant and gauge invariant under local transforma-

tions in SU(Nc), where Nc = 3 is the number of colours. The quark field transforms

as ψq → Uψq, where U is a matrix parametrised by local real rotations and the

(hermitian) generators of the fundamental and irreducible representation of SU(Nc),

ta, such that

U = exp
(
− igsθa(x)ta

)
, (1.1.2)

where a = 1, ..., N2
c − 1 and gs is the strong-coupling constant. The generators ta

obey the appropriate Lie algebra,

[ta, tb] = ifabctc, (1.1.3)

with totally antisymmetric structure constants, fabc, and the Gell-Mann matrices

λa/2 satisfy this algebra. The covariant derivative /D = γµ(∂µ+igsAaµta) is introduced

such that Dµψq → UDµψq under gauge transformations in the same way as ψq. This

ensures that ψq /Dψq is a gauge invariant term. As a result, gauge fields are introduced

to the theory, in the form of vector fields Aaµ, which in QCD are called gluons. Gluons

transform in the adjoint representation of SU(Nc) and their interactions with quarks

are encoded in the ψq /Dψq term. The quadratic terms in the quark fields in Eq. (1.1.1)

give the masses. If there were a mass term for gluons, it would look like,

1
2m

2
AA

a
µA

µ,a. (1.1.4)

Such a term is not gauge invariant, under the gauge transformation

Aaµ → Aaµ −
1
gs
∂µθ

a(x). (1.1.5)

This means that mass terms for gluons are forbidden by gauge invariance and so

gluons are massless. However, the combination of fields in the final term of Eq. (1.1.1)

is gauge invariant because of the form of the field-strength tensor,

F a
µν = ∂µA

a
ν − ∂νAaµ − gsfabcAbµAcν . (1.1.6)
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This final term encodes the self interactions of gluons.

Feynman rules can be deduced for the calculation of perturbative QCD matrix

elements (amplitudes). The details of these rules have been well documented but

are not necessary for explaining the work in this thesis, so we refer the reader to

Ref. [9] and other standard textbooks on quantum field theory. Computations using

the Feynman rules can become complicated very quickly with increasing numbers

of scattered particles, so it is convenient to separate the colour from the kinematics

in a calculation. In this thesis, we will be concerned with the unresolved limits of

colour-ordered matrix elements (or partial amplitudes). Their calculation presents

a number of challenges, which we will discuss later in this chapter. Colour factors

can be extracted by well documented rules in an automated process to all orders

so they are not a barrier to calculations [10–13]. The full matrix element can be

reconstructed by a sum over all independent colour structures, for example the

tree-level scattering amplitude, M0
ng, for n gluons is given by

M0
ng =

∑
σ∈Sn/Zn

Tr(taσ(1) ...taσ(n))M0
ng(σ(1)...σ(n)), (1.1.7)

where the sum is over the non-cyclic permutations of n elements, Sn/Zn, because

of the cyclicity of the trace andM0
ng is the colour-ordered matrix element. As the

name suggests, the colour-ordered matrix element has specific colour connections. In

the full matrix element, every gluon is equally connected to every other gluon but in

the colour-ordered case, only neighbouring gluons are connected, which can be seen

in Fig. 1.1. This means that, apart from simpler Feynman rules, the colour-ordered

i j k l

Figure 1.1: Diagram showing the colour-connections within a
colour-ordered matrix element [1].

matrix element has a smaller set of collinear divergences (when two particles travel

at such a similar angle as to be experimentally unresolved). From now on, we will

simply refer to the colour-ordered matrix element as the matrix element.
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pi

k

k − pi

pi

Figure 1.2: Generic diagram, containing a loop with momentum k
on an external leg with momentum pi.

1.2 Ultraviolet Divergences

A recurring and prevalent theme of this thesis is the presence and handling of

divergences (or infinities). In the context of quantum field theory, these appear in

configurations with very large momentum or very small momentum structures, known

respectively as ultraviolet and infrared. Infrared divergences are the main focus of

this thesis and will be introduced later in this chapter. Ultraviolet divergences

appear in the calculation of loop integrals, where the momentum, k, in the loop (the

virtual particle) must be allowed to take any value, including very large values. An

example of this is shown in Fig. 1.2. If we are to calculate real-world quantities,

where there are no divergences, we must have a procedure for handling and removing

these divergences; these are respectively regularisation and renormalisation.

Regularisation consists of parametrising the divergences with a quantity which must

be taken to a limit after performing the calculation. Therefore the divergences are not

removed but merely exposed and it becomes possible to quantify them analytically.

There are multiple regularisation schemes. The simplest is the momentum cut-off

scheme, where a momentum cut off Λ is introduced in any loop integral so that

the integration region does not reach infinity. Then the divergence is expressed in

terms of a function of Λ, which diverges when Λ→∞. The regularisation scheme

which we use throughout this thesis is called conventional dimensional regularisation

(CDR), where the number of space-time dimensions is deformed away from four to

d = 4 − 2ε and a physical observable only exists in the ε → 0 limit. This means

that an integral over d4k, for loop-momentum k, is now over ddk. The integrand
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is now integrated over a non-integer number of variables, rather than four, and a

whole toolkit of mathematics has been introduced to handle this [14]. As a result,

dimensional regularisation is an extremely elegant method, which expresses UV (and

some IR) divergences in terms of poles (inverse powers) of the small parameter ε,

while also retaining Lorentz and gauge invariance. In particular, CDR treats all

internal and external particles consistently within d dimensions. In d dimensions,

the mass dimensions of the QCD Lagrangian is also d. In order to keep the strong-

coupling constant, gs, dimensionless, it must be rescaled by a regularisation scale,

gs → µεgs. The regularisation scale µ is arbitrary and in principle any observable

should not depend on its value.

As stated earlier, using a regularisation scheme allows for analytic handling of diver-

gences. In the case of UV divergences in QCD we can handle them by renormalisation,

since QCD is a renormalisable field theory; that is, there are only a finite number of

matrix elements which superficially diverge in the UV regime. Since UV divergences

respect gauge invariance, we can reabsorb them to all orders into the definitions of

the fields, couplings and masses. We do this by calculating multiplicative factors

containing the UV divergences, which multiply the UV finite renormalised quantities

to give the unrenormalised or bare quantities. For a generic quantity λ, this looks

like

λ0 = Zλλ, (1.2.1)

where λ0 is the bare quantity, λ the renormalised quantity and Zλ the divergent

multiplicative factor. If we can expand Zλ in perturbation theory, Zλ ≡ 1 + δZλ =

1 + Cg2
s/ε +O

(
g4
s

)
. By rewriting the Lagrangian in terms of the various δZλ and

renormalised quantities, we find

LQCD = LQCD,renorm + δLQCD (1.2.2)

where the second term contains terms with δZλ and are the renormalisation coun-

terterms. By specifying renormalisation conditions based on the physical masses

and the coupling constant, we can generate a new set of Feynman rules for the
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counterterms. If perturbation theory is appropriate for the coupling constant, we

can calculate the contributions to Zλ order-by-order by identifying the UV divergent

parts of the theory order-by-order. There is some ambiguity in how the divergent

factors are determined. We can choose δZλ to remove only explicit ε poles - this is

called the minimal subtraction scheme (MS). In practice, due to similar structures

in loop integrals, it is convenient for the counterterms to absorb part of the finite

terms for simpler book-keeping - this is called the MS scheme. Where 1/ε would be

included in MS, we include 1/ε̄ = 1/ε− γE + ln(4π) +O (ε) in MS, where γE is the

Euler-Mascheroni constant.

1.3 Running of the Strong-Coupling Constant

One of the renormalised quantities is the strong-coupling constant, gs, given by

gs,0 = µεZgs(µ)gs(µ), (1.3.1)

where the renormalisation scale is µ and the scale-independence of the bare coupling

is made explicit. The renormalisation is imposed at a particular scale when defining

the counterterms and we set the regularisation scale equal to the renormalisation

scale because any result is independent of the regularisation scale. We can think of

the renormalisation scale as the typical energy scale for an experiment of interest.

For us this is typically the high energy regime appropriate for colliders such as

the Large Hadron Collider (LHC). This means that the renormalised measurable

coupling gs(µ), which we can extract from experiment, depends upon the scale µ.

We will now show that, given gs(µ0) at a particular scale µ0, we can predict the

behaviour of the strong-coupling constant at other scales and what this means for

QCD interactions.

We can differentiate the renormalised coupling with respect to µ to give

µ
dgs
dµ

= −εgs −
µ

Z2
gs

dZgs
dµ

µ−εgs,0, (1.3.2)
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and by the chain rule we have

µ

gs

dgs
dµ

= d ln gs
d lnµ = − ε

1 + gs
Zgs

dZgs
dgs

. (1.3.3)

Defining αs ≡ g2
s/(4π), this equation defines the so-called QCD beta function, which

when αs is small can be written as

β(αs) ≡
d lnαs
d lnµ2 = d ln gs

d lnµ = −
∞∑
n=1

βn−1

(
αs
2π

)n
. (1.3.4)

The coefficients of the QCD beta function in principle depend on the renormalisation

scheme and have been computed up to five loops in MS [15–19]. The leading

coefficient is scheme independent and is given by

β0 = Ncb0 +NF b0,F , (1.3.5)

where b0 = 11/6, b0,F = −1/3 and NF is the number of active quark flavours

accessible at the energy scale. Note that in the scenario where Nc = 3 and NF ≤ 16,

β0 > 0, which means that αs decreases for higher energy scales. We can see this

more clearly if we assume αs is small, truncate the series in Eq. (1.3.4) at β0 and

solve the equation to give

αs(µ2) = αs(µ2
0)

1 + β0
αs(µ

2
0)

2π ln
(
µ

2

µ
2
0

) , (1.3.6)

which can be used to find αs at a scale µ if it is known at a scale µ0. Hence, αs

must be extracted from experiment but importantly this equation demonstrates the

behaviour of αs at different scales. This behaviour is visualised in Fig. 1.3, including

experimental extractions of αs at a remarkably large range of scales. This is distinct

from conventional field theories, like quantum electrodynamics (QED), where the

coupling constant increases with energy scale. In QCD we therefore have the feature

that at high momentum transfer, quarks and gluons are free; this is called asymptotic

freedom. The low energy regime can be described as below ΛQCD ≈ 200 MeV, where

αs becomes large. In this regime, we cannot use perturbative QCD and we encounter



30 Chapter 1. Quantum Chromodynamics
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Figure 1.3: A collection of extractions of αs at various scales consist-
ent with the global average for αs(M2

Z) = 0.1179(9) [2].

colour confinement, where quarks and gluons are bound in colour-neutral hadrons

(baryons and mesons). Therefore we can only indirectly measure the properties of

free quarks and gluons.

At large energy scales, where the strong-coupling constant, αs, is small, we can use

perturbation theory to approximate calculations which are too complex to undertake

to all orders. We will now detail the perturbative framework used in high energy

QCD calculations.

1.4 Perturbation Theory in QCD

If we consider e+e− colliders, like LEP, at large centre of mass energies, we can

calculate approximate predictions for collider observables for different processes.

For example, e+e− → 2 jets. Jets can be defined as collimated beams of hadrons,

for which colliders can make observations, having classified them according to jet

algorithms [20–25]. A calculation we may wish to perform is the cross section, σ, for
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this process. Experimentally, a cross section is defined as the rate of collisions N for

the given process, normalised by the particle luminosity L, such that,

σ = dN

dt

1
L
. (1.4.1)

Theoretically, a cross section is extracted via a phase space integration over the matrix

elements, averaged over initial states and summed over final states. In calculating

the cross section we must include contributions from any Feynman diagrams which

would result in the measurement of two jets, that is two resolvable coloured particles.

Transitioning from the high energy collision scale to the low energy measurement

scale, the coloured particles (or partons) will spread their energy through a parton

shower and hadronisation process. They split into collinear groups and can emit

soft (zero energy) radiation, until they form bound states (hadrons) at energy scales

where αs is large. Focussing again on the hard cross section, the tree-level diagrams

are those which result in two jets with the smallest power of αs - leading order (LO).

At higher orders in αs, we can calculate corrections to the LO cross section, which

should be progressively smaller because αs is small at high energy scales. As such,

we can form a perturbative expansion in αs, given by

σ(e+e− → 2 jets) =
(
αs
2π

)m
σLO +

(
αs
2π

)m+1
σNLO (1.4.2)

+
(
αs
2π

)m+2
σNNLO +

(
αs
2π

)m+3
σN3LO +O(αm+4

s ),

where m is determined by the vertices of the lowest-order contribution. The left-

hand side of Fig. 1.4 shows the Born/LO diagram for the process, e+e− → 2 jets.

At next-to-leading order (NLO), there are two types of correction: virtual and real.

Neglecting corrections in quantum electrodynamics (QED), the only diagram with

one additional loop (virtual contribution) is the gluon-loop diagram in the centre of

Fig. 1.4. The gluon is an internal unobserved particle and therefore this diagram

contributes to the cross section of interest. Again, if we suppress QED, the only

diagrams with one additional unresolved real emission, are the diagram on the right-

hand side of Fig. 1.4 and one where the gluon is emitted from the anti-quark. These



32 Chapter 1. Quantum Chromodynamics

Figure 1.4: A small number of contributing diagrams to e+e− →
2 jets. From left to right: the Born/LO diagram, the
NLO loop diagram, one of the NLO unresolved emission
diagrams.

real corrections must be included because the gluon can be unresolved; unresolved

means the gluon either is soft (zero energy) or is collinear (same direction) as either

the quark or the anti-quark. In both cases, experimentally, this will appear as two jets

and so we must include this correction. The next-to-next-to-leading order (NNLO)

correction consists in general of three contributions: double-virtual (VV), real-virtual

(RV) and double-real (RR). At next-to-next-to-next-to-leading order (N3LO), we

have four contributions (VVV, RVV, RRV, RRR) etc. for higher orders. At higher

orders in αs, we encounter greatly increasing complexity. There are two reasons

for this. The first is that powerful methods for performing multi-loop calculations

are needed at higher orders, especially when the LO diagram is loop-induced. The

second is the presence of IR divergences of increasing complexity at higher orders.

IR divergences due to loop integrals appear explicitly as poles in the dimensional

regulator ε, while those due to unresolved real radiation appear implicitly in poles

of vanishing momentum structures.

Before continuing this discussion, it is important to introduce the theory behind

the other important classes of colliders: electron-proton (ep) and proton-proton (pp)

colliders. ep colliders, like HERA at DESY, and pp colliders, like the LHC, have

been highly successful at testing the theories of the Standard Model; we will explore

this in Section 2. However, to discuss these types of collisions, we need to introduce
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the parton model. The parton model is based on the assumption that when a

hadron is accelerated to high energies, the constituents behave like free point-like

particles; so quarks and gluons are the partons. In a scattering experiment, like deep

inelastic scattering in an ep collider, we assume that the electron scatters off a single

parton and so the hard interaction is between the electron and the single parton. In

order to relate the hard partonic cross section to the full hadronic cross section we

need information about the binding of partons in the hadron. This information is

formulated into parton distribution functions (PDFs), which give the number density

for a parton of flavour a to carry a momentum fraction xa of its parent hadron. PDFs

are non-perturbative in nature because they are determined by low energy scale QCD

phenomena. As such, PDFs are extracted by experiment, or by lattice QCD1. A

specific extraction of a proton PDF is shown in Fig. 1.5, where both the valence

quarks (uud) and the sea quarks and gluons are indicated. In calculations, we work

with renormalised PDFs, which depend on the factorisation scale, µF , and absorb IR

divergences due to initial state configurations. The factorisation scale is arbitrary

and separates the long distance physics, encoded in the PDF, from the short distance

physics, encoded in the partonic cross section. Due to the particular running of the

strong-coupling constant, the parton model is a good approximation for hadrons in

high energy collisions and we can write QCD factorisation formulae. For the case of

an ep collider, we have

σeA =
∑
a

∫ 1

0
dxafa|A(xa, µ2

F )σ̂ea(xa, µ2
F )
(
1 +O

(
ΛQCD/Q

))
, (1.4.3)

where A is the hadron, the sum runs over all parton flavours a, the integral is over the

momentum fraction in the hadron, fa|A(xa, µ2
F ) is the PDF, σ̂ea(xa) is the partonic

hard cross section and Q is the momentum transfer from the electron to the parton.

Note that it is the partonic scattering cross section, for an electron and parton a,

which we calculate in perturbation theory. This collision does not happen at a well

defined centre of mass energy, like in the e+e− collider, because only a fraction of
1Although we note that they are universal quantities.
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Figure 1.5: The NNPDF4.0 NNLO proton PDF at Q = 100.0
GeV [3]. Different colours represent the PDFs for differ-
ent flavours of quark, anti-quark and gluon as a function
of parton momentum fraction x, with error bars.

the hadron momentum takes part in the collision. As such, ep (and pp) colliders

can scan a range of partonic collision energies. This is also because we do not know

what type of parton will take part in the collision. For the case of a pp collider, we

have that

σAB =
∑
a,b

∫ 1

0
dxa

∫ 1

0
dxbfa|A(xa, µ2

F )fb|B(xb, µ2
F )σ̂ab(xa, xb, µ2

F )
(
1 +O

(
ΛQCD/Q

))
,

(1.4.4)

where A and B are the hadrons, partons a and b have momentum xa and xb, in A

and B respectively and they enter the partonic cross section σ̂ab(xa, xb). We have

given expressions here for full cross sections but similar relations hold for various

differential observables.

1.5 Infrared Divergences

Finally we can discuss the finer details of IR divergences in QCD calculations. As

mentioned earlier, IR divergences present themselves differently in virtual and real

corrections. In virtual corrections, IR divergences appear due to the low energy
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limit of loop integrals and in CDR take the form of poles in ε. We sometimes call

these explicit IR divergences. In real corrections, IR divergences appear due to the

unresolved configurations and take the form of vanishing momentum structures (in

the unresolved limits). We sometimes call these implicit IR divergences. This is

because any suitable observable (we will tighten this definition later) will require

integration over the phase space of the final state particles; when the real correction

is integrated over the unresolved phase space, the implicit IR divergences become

explicit in ε poles. These IR divergences would be a barrier to numerical calculations

and automation, if we could not demonstrate cancellation of the IR divergences in

the overall result for an observable. Fortunately, in QCD, we have the Kinoshita,

Lee, Nauenberg (KLN) theorem, which states that, for IR-safe observables, we have

cancellation between real and virtual IR divergences [26,27]. This cancellation can be

demonstrated at every order. IR-safe observables are functions of particle momenta,

before phase space integration, and are inclusive with respect to soft emissions

and collinear splittings. This means that for an IR-safe observable, F (n+1)({pi})

depending on (n+ 1) final state momenta, we have two types of feature:

(a) F (n+1)(..., pi, ...)
i soft−→ F (n)(..., pi−1, pi+1, ...), (1.5.1)

(b) F (n+1)(..., pi, pj, ...)
ij collinear−→ F (n)(..., (pi + pj), ...). (1.5.2)

Total cross sections are of course IR-safe but less inclusive observables can also

be IR-safe, including event selection cuts, detector geometry and differential cross

sections. Additionally, event shapes like thrust and number of jets are IR-safe.

Unfortunately, demonstrating the cancellation of IR divergences is non-trivial, espe-

cially beyond NLO, because the different corrections need integrating over different

multiplicity phase spaces. This is handled by a subtraction or slicing scheme, such

as antenna subtraction, which will be introduced in Chapter 4. Subtraction schemes

in general require knowledge of the universal IR singularity structure of matrix

elements, which is the focus of the rest of this chapter.

The structure of solely-virtual IR divergences is well documented at one and two
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loops, in terms of Catani’s IR singularity operators [28]. In the language of colour-

ordered matrix elements, which we use throughout, it is convenient to recast Catani’s

structures in terms of integrated dipoles in colour space [7, 29]:

J (`)(ε) =
∑
(i,j)
J (`)

2 (i, j)Ti ·Tj, (1.5.3)

J (2)(ε) =
∑
(q,q̄)

∑
g

J (2)
2 (q, q̄)

(
Tq + Tq̄

)
·Tg, (1.5.4)

where l = 0, 1 indicates the number of loops and i, j ∈ {q, q̄, g}. The operators,

Ti = (Ti)abc, are the generators (ta)bc for quarks and the structure constants fabc for

gluons. We further divide the J (`)
2 (i, j) according to their colour-structures,

J (1)
2 (q, q̄) = Nc J

(1)
2 (q, q̄) , (1.5.5)

J (1)
2 (q, g) = NcJ

(1)
2 (q, g) +NF Ĵ2

(1) (q, g) , (1.5.6)

J (1)
2 (g, g) = NcJ

(1)
2 (g, g) +NF Ĵ2

(1) (g, g) , (1.5.7)

and

J (2)
2 (q, q̄) = N2

c J
(2)
2 (q, q̄)− J̃2

(2) (q, q̄) +NcNF Ĵ2
(2) (q, q̄) , (1.5.8)

J (2)
2 (q, g) = N2

c J
(2)
2 (q, g) +NcNF Ĵ2

(2) (q, g)− NF

Nc

̂̃
J2

(2)
(q, g) +N2

F
̂̂
J2

(2)
(q, g) , (1.5.9)

J (2)
2 (g, g) = N2

c J
(2)
2 (g, g) +NcNF Ĵ2

(2) (g, g)− NF

Nc

̂̃
J2

(2)
(g, g) +N2

F
̂̂
J2

(2)
(g, g) , (1.5.10)

J (2)
2 (q, q̄) = N2

c

2 J
(2)
2 (q, q̄)− 1

2 J̃2
(2) (q, q̄) . (1.5.11)

We will now detail the structure of IR divergences in matrix elements when there is

at least one real emission and we focus on final-state (time-like) limits. We will also

present formulae in massless QCD for the remainder of this thesis. This is where

there are NF massless quarks, (naturally) massless gluons and (6−NF ) heavy quarks,

which are inaccessible at the relevant energy scales. We define Lorentz invariant

momentum quantities,

si,...,n ≡ (pi + ...+ pn)2. (1.5.12)

In the massless limit, sij = 2pi ·pj = 2EiEj(1−cos θij), where Ei, Ej are the energies



1.5. Infrared Divergences 37

of particles i, j and θij is the angle between them. Consider a typical propagator on a

Feynman diagram with i and j connected to an internal propagator with momentum

(pi + pj), as illustrated in Fig. 1.6. This propagator provides a denominator,

pi + pj

pi

pj

Figure 1.6: Generic diagram, where massless final states i and j
result from an internal propagator with momentum (pi+
pj).

1
(pi + pj)2 + iφ

= 1
sij + iφ

= 1
2EiEj(1− cos θij) + iφ

, (1.5.13)

which diverges if either particle is soft or they are collinear. In both of these limits,

sij → 0, so sij is a very convenient structure for describing real IR singularities. We

now have the tools to detail the singular factors of squared colour ordered matrix

elements in the relevant unresolved limits listed below. The factorisation formula

for a tree-level matrix element with n final state partons in an m-unresolved limit

is, in general, given by

M0
n ≡ |M0

n|2 → V 0
mM

0
n−m, (1.5.14)

where m is the number of colour-connected unresolved partons, V 0
m is the IR singular

factor (listed below) andM0
n−m is the reduced matrix element, with (n−m) final

state partons and a relevant reparametrisation of the momenta. If the unresolved

partons are not colour-connected, the unconnected limits can be taken sequentially

and the overall singular factor is given by a product of the colour-connected factors.

The universal factorisation properties of multi-particle matrix elements are important

for generating counterterms that can be used to isolate the infrared singularities that

are produced in particular regions of phase space, when one or more particles are un-
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resolved1. Most well studied are the single unresolved limits, where either one particle

is soft, or two are collinear, which are relevant for NLO calculations. At NNLO, one

is concerned with the double unresolved limits of tree-level matrix elements [38–41],

as well as the single unresolved limits of one-loop matrix elements [42–45].

1.5.1 Tree-level Single Unresolved Limits

Our notation is that i, j, k are momenta for three colour-connected partons of particle

type a, b, c. The tree-level soft factors are given by the following for a soft particle

with momentum j, radiated between two hard radiators with momenta i and k,

S(0)
g (ih, jg, kh) = S(0)

γ (ih, jγ, kh) = 2sik
sijsjk

, (1.5.15)

S(0)
q (ih, jq, kh) = S

(0)
q̄ (ih, jq̄, kh) = 0. (1.5.16)

The superscript h indicates when the particle is hard, while the subscript on the j

indicates its particle type.

The tree-level splitting functions P (0)
ab (ih, j) only contain singular configurations

consistent with b being unresolved, ie. j soft and ij collinear. They are related to

the usual spin-averaged splitting functions, cf. [46, 47], by

P (0)
qg (ih, j) = 1

sij
P (0)
qg (xj), (1.5.17)

P (0)
qg (i, jh) = 0, (1.5.18)

P
(0)
qq̄ (ih, j) = 1

sij
P

(0)
qq̄ (xj), (1.5.19)

P
(0)
qq̄ (i, jh) = 1

sij
P

(0)
qq̄ (1− xj), (1.5.20)

P (0)
gg (ih, j) = 1

sij
P sub,(0)
gg (xj), (1.5.21)

P (0)
gg (i, jh) = 1

sij
P sub,(0)
gg (1− xj), (1.5.22)

1See Ref. [30] for a review. These factorisation properties are also key in quantifying the accuracy
of parton branching algorithms in event generators and how these algorithms can eventually be
extended to increase their logarithmic accuracy, see for example Refs. [31–37]
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with

P (0)
qg (xj) =

(
2(1− xj)

xj
+ (1− ε)xj

)
, (1.5.23)

P
(0)
qq̄ (xj) =

(
1− 2(1− xj)xj

(1− ε)

)
= P

(0)
qq̄ (1− xj), (1.5.24)

P sub,(0)
gg (xj) =

(
2(1− xj)

xj
+ xj(1− xj)

)
, (1.5.25)

and

P sub,(0)
gg (xj) + P sub,(0)

gg (1− xj) ≡ P (0)
gg (xj). (1.5.26)

Here, xj is the momentum fraction of parton j in the ij collinear pair.

1.5.2 Tree-level Double Unresolved Limits

First, we consider the singular factors for the colour-ordered partons ih, j, k, lh, where

j, k are soft. The colour-connected double-soft limit is defined as the kinematic regime

where the invariants sij, sjk, sik, sjl, skl, sijk, sjkl become small. The tree-level colour

connected double-soft factors are given by

S(0)
gg (ih, j, k, lh) = 2sik

sijsjk

2sil
sijksjkl

+ 2sjl
sklsjk

2sil
sijksjkl

+ 2silTr(/i/l/j/k)
sijsjksklsijksjkl

+
2(1− ε)

(
sijskl − siksjl

)2

s2
jks

2
ijks

2
jkl

, (1.5.27)

S(0)
γγ (ih, j, k, lh) = 2sil

sijsjl

2sil
sikskl

, (1.5.28)

S
(0)
qq̄ (ih, j, k, lh) = 2sil

sjksijksjkl
−

2
(
sijskl − siksjl

)2

s2
jks

2
ijks

2
jkl

, (1.5.29)

and zero otherwise. Here we write the two-gluon soft factor in a suggestive manner

such that the first two terms are iterations of the single-soft-gluon eikonal factor and

Tr(/i/l/j/k) = silsjk − sijskl + siksjl . (1.5.30)

We also present the time-like triple-collinear limits of colour-connected particles

that were first discussed in Ref. [38]. Note that in this thesis we consider spin-
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averaged collinear limits, which are directly obtained by taking the collinear limit

of colour-ordered squared matrix elements. One could equivalently work in colour

space and retain information about the spin of the parton formed from the merger

of the collinear particles, as was done in Refs. [39,40]. The spin-unaveraged splitting

functions contain additional azimuthal correlations when the parent parton is a

gluon. These reflect different orientations of the final state particles with respect to

the gluon polarisation (and effectively with respect to other particles not involved in

the triple-collinear limit). These azimuthal correlations are not present in the case

where the parent parton is a quark, since the splitting function is proportional to

the identity operator in spin space.

We consider three colour-connected partons of particle type a, b, c with four-momenta

i, j, k, which become collinear in a process involving four or more partons. There are

also configurations in which particles that are not colour-connected can usefully be

thought of as colour-connected. This happens when there is more than one colour-

string - there is an antiquark at the end of one colour-string and a like flavour quark

at the beginning of another. For example, the matrix element

M0
n(..., q̄|q, ...) (1.5.31)

represents a situation where there are two colour-strings, one terminated by the

fundamental colour index of the q̄ and another initiated by the fundamental colour

index of the q. In this case, when the quark-antiquark pair are collinear, they combine

to form a gluon, which then connects, or pinches together, the two colour-strings,

M0
n(..., i, j|k...)→ P

(0)
aq̄q(i, j, k)M0

n−2(.., P, ...). (1.5.32)

In the triple-collinear limit, the collinear cluster has momentum

pµi + pµj + pµk = pµP . (1.5.33)

The triple-collinear limit is defined as the kinematic regime where the invariants sij,

sjk, sik, sijk become small and therefore p2
P ∼ 0. In this limit, we can write pi = xipP ,
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pj = xjpP and pk = xkpP with xi +xj +xk = 1. The particle P retains the quantum

numbers of the collinear partons and there are seven possible clusterings: ggg, qgg,

qγγ, gq̄q, qgq̄, qQ̄Q and qq̄q, where we have distinguished quarks of different flavour

by q and Q. The presence of the photon, γ, is to indicate the ‘QED-like’ triple

collinear limits in sub-leading colour squared matrix elements. One can consider the

photons to be abelianised gluons or colour-unconnected gluons. In the case of qγγ,

each γ is equally connected to q and not to the other γ. The triple-collinear splitting

functions depend on the momentum fractions and the small invariants. However, for

brevity we will suppress these arguments and use a shorthand notation,

P
(0)
abc(i, j, k) ≡ P

(0)
abc(xi, xj, xk; sij, sik, sjk, sijk). (1.5.34)

Triple-collinear splitting functions and their structure are the focus of Chapter 3,

thus we will not list their expressions here. Raw expressions for the spin-averaged

tree-level time-like triple-collinear splitting functions were first detailed in Ref. [38]

and unaveraged in Ref. [39].

The final types of double unresolved limits are iterated single unresolved limits. If

the particles involved in the two single unresolved limits are colour-unconnected,

then the singular factor is the product of the two single unresolved factors. In the

colour-connected double-collinear limit, the singular factor also takes a simple form.

That is, in the limit when two pairs of colour-connected particles become collinear,

the singular factor is a product of two simple-collinear splitting functions. The final

limit is the colour-connected soft-collinear limit, see Refs. [38,40], more specifically

the j soft and kl collinear limit of a colour-ordered matrix element with ordering,

..., i, j, k, l, .... In this limit the singular factor is given by

S
(0)
i;jkl(xk; i, j, k, l)

1
skl
P

(0)
kl (1− xk), (1.5.35)

where xk is the momentum fraction of k in the kl collinear pair and
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S
(0)
i;jkl(xk; i, j, k, l) = (sik + sil)

sijsjk

(
xk + sjk + xkskl

sjkl

)

= (sik + sil)
sij

{
2

sjk + sjl
+
(

1 + skl
sjkl

)[
xk
sjk
− 1
sjk + sjl

]}

≈ 2(sik + sil)
sij(sjk + sjl)

= S(0)
g (ih, j, (k + l)h), (1.5.36)

where last line is due to the squared bracket vanishing in the kl collinear limit and

we encounter the expected soft-collinear factor,

S(0)
g (ih, j, (k + l)h) 1

skl
P

(0)
kl (1− xk). (1.5.37)

1.5.3 One-loop Single Unresolved Limits

The factorisation formula for a one-loop matrix element with n final state partons,

in a single unresolved limit, takes a different form to the tree-level case,

M1
n ≡ 〈M1

n|M0
n〉+ 〈M0

n|M1
n〉 → V 1

1 M
0
n−1 + V 0

1 M
1
n−1, (1.5.38)

where M `
n−1 is the reduced squared matrix element with ` loops, (n− 1) final state

partons and a relevant reparametrisation of the momenta. Note that the matrix

element, |M1
n〉, is a renormalised colour-ordered matrix element. V 0

1 takes the form

of the tree-level single unresolved factors given above, while V 1
1 are the one-loop

single unresolved factors given below. Note that we will use the convenient definition

for “squared matrix elements”, which include all interference terms with ` loops, for

example,

M2
n ≡ 〈M2

n|M0
n〉+ 〈M0

n|M2
n〉+ 〈M1

n|M1
n〉, (1.5.39)

where |M2
n〉 is also a renormalised colour-ordered matrix element.

The universal soft and collinear factorisation properties of multi-particle real-virtual

matrix elements have been well studied in the literature [42–45]. In this section, we

list the unrenormalised, colour-ordered single unresolved factors at one loop in CDR,

which are consistent with the formulations in Refs. [1, 44, 45, 48–51]. The overall
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factor Rε is given by

Rε = eεγE
Γ2(1− ε)Γ(1 + ε)

Γ(1− 2ε) Re
[
(−1)−ε

]
, (1.5.40)

depending on the traditional gamma functions, Γ(x), defined in Appendix B.1. We

also use the convenient notation,

Sij =
(
sij
µ2

)−ε
. (1.5.41)

The full-colour (unrenormalised) one-loop soft factor is given by

S(1)
g (ih, j, kh) = NcS

(1)
g (ih, j, kh)− 1

Nc

S̃(1)
g (ih, j, kh) +NF Ŝ

(1)
g (ih, j, kh), (1.5.42)

where

S(1)
g (ih, j, kh) = −Rε

Γ(1− ε)Γ(1 + ε)
ε2

SijSjk
Sik

S(0)
g (ih, j, kh) , (1.5.43)

S̃(1)
g (ih, j, kh) = 0 , (1.5.44)

Ŝ(1)
g (ih, j, kh) = 0 , (1.5.45)

and formally we define any soft factor, where the particle type of j is not a gluon,

as zero. The tree-level single unresolved limits are given in Eqs. (1.5.15)-(1.5.22).

In general, the full-colour (unrenormalised) one-loop splitting function is colour-

decomposed according to

P(1)
ab (i, j) = NcP

(1)
ab (i, j)− 1

Nc

P̃
(1)
ab (i, j) +NF P̂

(1)
ab (i, j) . (1.5.46)

As at tree-level, we organise the splitting functions by which particle is a hard-

radiator. This means that P(1)
ab (ih, j) only contains singular configurations consistent

with b being unresolved (j soft and ij collinear) and is directly related to the usual

spin-averaged one-loop splitting functions given in terms of the momentum fraction

carried by particle j (xj).
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The q → qg one-loop splitting functions for i being the hard radiator are given by

P (1)
qg (ih, j) = 1

sij
P (1)
qg (xj) , (1.5.47)

P̃ (1)
qg (ih, j) = 1

sij
P̃ (1)
qg (xj) , (1.5.48)

P̂ (1)
qg (ih, j) = 0 , (1.5.49)

where

P (1)
qg (xj) = Sij

Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)

(
1− xj
xj

)ε
+G

(
xj

1− xj
, ε

)]
P (0)
qg (xj)

+ SijRε

(1− xjε)
2(1− 2ε) , (1.5.50)

P̃ (1)
qg (xj) = −Sij

Rε

ε2
G

(
xj

1− xj
,−ε

)
P (0)
qg (xj)− SijRε

(1− xjε)
2(1− 2ε) . (1.5.51)

Here G(w, ε) is defined as a class of hypergeometric functions for brevity,

G(w, ε) = 2F1 (1, ε, 1 + ε,−w)− 1,

= −
∞∑
n=1

(−ε)nLin (−w) ,

≡ (1 + w)−ε2F1

(
ε, ε, 1 + ε,

w

1 + w

)
− 1, (1.5.52)

where we have given G(w, ε) in three useful forms, including in terms of polylog-

arithms, Lin(−w). The definitions for the functions 2F1 and Lin(−w) are given

in Appendix. B.1. Note that in the w → 0 limit, G(w, ε) vanishes. It has the

ε-expansion,

G

(
xj

1− xj
, ε

)
= ε ln(1− xj)− ε2Li2

(
−xj

1− xj

)
+O

(
ε3
)
. (1.5.53)

The tree-level splitting function P (0)
qg is given in Eq. (1.5.23). In the complementary

case of j being the hard radiator, all splitting functions vanish identically,

P (1)
qg (i, jh) = 0 , P̃ (1)

qg (i, jh) = 0 , P̂ (1)
qg (i, jh) = 0 . (1.5.54)
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The g → qq̄ one-loop splitting functions are

P
(1)
qq̄ (ih, j) = 1

sij
P

(1)
qq̄ (xj) , (1.5.55)

P̃
(1)
qq̄ (ih, j) = 1

sij
P̃

(1)
qq̄ (xj) , (1.5.56)

P̂
(1)
qq̄ (ih, j) = 1

sij
P̂

(1)
qq̄ (xj) , (1.5.57)

and

P
(1)
qq̄ (i, jh) = 1

sij
P

(1)
qq̄ (1− xj), (1.5.58)

P̃
(1)
qq̄ (i, jh) = 1

sij
P̃

(1)
qq̄ (1− xj) , (1.5.59)

P̂
(1)
qq̄ (i, jh) = 1

sij
P̂

(1)
qq̄ (1− xj) , (1.5.60)

where

P
(1)
qq̄ (xj) = Sij

Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)

(
1− xj
xj

)ε
+ 1 +G

(
xj

1− xj
, ε

)

−G
(

xj
1− xj

,−ε
)

+ ε(13− 8ε)
2(3− 2ε)(1− 2ε)

]
P

(0)
qq̄ (xj) , (1.5.61)

P̃
(1)
qq̄ (xj) = −SijRε

[
1
ε2

+ 3 + 2ε
2ε(1− 2ε)

]
P

(0)
qq̄ (xj) , (1.5.62)

P̂
(1)
qq̄ (xj) = SijRε

[
− 2(1− ε)
ε(3− 2ε)(1− 2ε)

]
P

(0)
qq̄ (xj) , (1.5.63)

with P (0)
qq̄ defined in Eq. (1.5.24). Note that the symmetry of P (1)

qq̄ is preserved;

P
(1)
qq̄ (1− xj) ≡ P

(1)
qq̄ (xj). (1.5.64)

Finally, the g → gg one-loop splitting functions for i being the hard radiator are

given by

P (1)
gg (ih, j) = 1

sij
P sub,(1)
gg (xj) , (1.5.65)

P̃ (1)
gg (ih, j) = 0 , (1.5.66)

P̂ (1)
gg (ih, j) = 1

sij
P̂ sub,(1)
gg (xj), (1.5.67)



46 Chapter 1. Quantum Chromodynamics

while when j is the hard radiator,

P (1)
gg (i, jh) = 1

sij
P sub,(1)
gg (1− xj) , (1.5.68)

P̃ (1)
gg (i, jh) = 0 , (1.5.69)

P̂ (1)
gg (i, jh) = 1

sij
P̂ sub,(1)
gg (1− xj) . (1.5.70)

Here, the one-loop splitting functions are given in terms of the tree-level splitting

function P sub,(0)
gg , defined in Eq. (1.5.25),

P sub,(1)
gg (xj) = Sij

Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)

(
1− xj
xj

)ε
+G

(
xj

1− xj
, ε

)

−G
(

xj
1− xj

,−ε
)]

P sub,(0)
gg (xj)

+ SijRε

(1− 2xj(1− xj)ε)
2(1− ε)(1− 2ε)(3− 2ε) , (1.5.71)

P̂ sub,(1)
gg (xj) = SijRε

(
−(1− 2xj(1− xj)ε)

2(1− ε)2(1− 2ε)(3− 2ε)

)
, (1.5.72)

and they satisfy

P (1)
gg (xj) = P sub,(1)

gg (xj) + P sub,(1)
gg (1− xj) , (1.5.73)

P̂ (1)
gg (xj) = P̂ sub,(1)

gg (xj) + P̂ sub,(1)
gg (1− xj) . (1.5.74)

1.5.4 N3LO Unresolved Limits

At N3LO, one encounters the triple unresolved limits of tree-level matrix elements [52–

56], the double unresolved limits of one-loop matrix elements [57–62] and the single

unresolved limits of two-loop matrix elements [50,51,63–65]. These expressions are

very large and complex and we do not need to reproduce them for the purposes of

this thesis.
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1.6 Summary

The theoretical exploration of QCD stems from the definition of the fields, masses

and couplings in the QCD Lagrangian. Quarks and gluons receive their couplings

and self-couplings from these terms, from which we can deduce Feynman rules

for the calculation of QCD matrix elements. We explained that we decompose full

matrix elements into sums of products of colour structures and colour-ordered matrix

elements. For the purposes of this thesis, we are often concerned with the IR divergent

structure of these colour-ordered matrix elements. UV divergences were introduced

as the result of high energy limits in loop integrals and regularisation as a way

of parametrising the divergences. We also explained how renormalisation absorbs

the UV divergences into Lagrangian counterterms, leaving us with physical UV-

finite renormalised fields. As part of renormalisation, we encountered the running

of the strong-coupling constant, which explained asymptotic freedom and colour

confinement in QCD. At large energy scales, we showed that we can calculate

observables approximately by calculating a fixed number of leading terms in a

perturbative expansion in the strong-coupling. We also introduced the concepts of

real and virtual corrections to the leading order contribution to an observable. This

led to a discussion of the differing physics in ep and pp colliders compared to e+e−

colliders, including the definition of hadron PDFs. Finally we described how IR

divergences appear explicitly in ε poles in virtual corrections and implicitly in sij

poles in real corrections. By the KLN theorem, these IR divergences cancel order-

by-order in the strong-coupling expansion for IR-safe observables. We introduced

notation for the IR structure at one and two loops and also detailed the unresolved

limits for use in NLO and NNLO calculations. This chapter gives us the necessary

toolkit to describe the research presented in this thesis. However, we will spend

Chapter 2 motivating the research as part of greater efforts in particle physics

phenomenology.





Chapter 2

Phenomenology

In this chapter, we explain why higher order perturbative calculations in QCD are

important. We do this by placing the calculations in their phenomenological context.

In Section 2.1, we overview the theoretical benefits of higher order calculations

and the experimental motivation for predictions with greater precision. Next we

review the state-of-the-art in calculations for direct phenomenological comparison

in Section 2.2. We also remark, in this section, on the excellent agreement between

experiment and Standard Model predictions. In Section 2.3, we introduce and

evaluate the estimation of uncertainties in fixed-order calculations. We also compare

this to other sources of error in calculating a prediction for an observable. Finally,

we summarise the chapter in Section 2.4.

2.1 Why Higher Orders?

We start with a quote from the European Strategy for Particle Physics (2020, [66]):

Theoretical physics is an essential driver of particle physics that opens

new, daring lines of research, motivates experimental searches and provides

the tools needed to fully exploit experimental results ... The success of

the field depends on dedicated theoretical work and intense collaboration

between the theoretical and experimental communities.
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Theoretical research in particle physics encapsulates a large and varied field, in-

cluding fixed-order calculations, parton distribution functions, parton showers and

the modelling of non-perturbative effects, as well as investigating models for new

physics. Precise theoretical predictions that are adapted to the specific experimental

observables and that match the accuracy of the experimental measurements are

needed to extract fundamental Standard Model parameters. Typically, theoretical

predictions are obtained using perturbation theory as an expansion in the coupling.

The precision of the theoretical predictions is generally limited by a dependence

on unphysical renormalisation and factorisation scales, or through the modelling

of complicated final states with relatively few final state particles. This can be

systematically improved by including higher-order corrections. The LO prediction

captures the gross features of an observable. For example, an LO 2→ 2 calculation

cannot result in final states with transverse momentum and so higher orders are

needed to approximate the transverse momenta of final states. Inclusion of NLO

corrections is also required to estimate the normalisation of the predictions. Even

higher orders (NNLO, N3LO, . . . ) are needed to describe detailed event properties,

improve sensitivity to experimental cuts, or to achieve the goal of percent level

precision. Additionally, theoretical predictions at higher orders in QCD are useful

for improving the splittings modelled in the parton shower. This enables improved

matching of jet algorithms between theory and experiment.

Through precise experimental measurements, we can directly investigate the funda-

mental interactions of elementary particles at short distances, pushing the boundaries

of our knowledge and providing valuable insights into the fundamental interactions

that govern the universe. However, we can only learn from many experiments, in

no small part due to colour confinement, by comparison against precise theoretical

predictions. The exploration of particle physics, particularly in the absence of new

particle discoveries, holds immense significance. By scrutinising experimental data

with high precision, even the slightest deviations from the predictions of the Standard

Model can have profound implications for our understanding of the natural world.
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Such small deviations in measurements have the potential to revolutionise our know-

ledge and guide us towards physics beyond the Standard Model. Hence, precision

phenomenology emerges as a crucial component in the quest for new physics.

In the next section we will discuss the experimental and theoretical frontiers and

their delicate interplay.

2.2 Phenomenological Comparisons

On the theoretical side of particle physics, there have been a wide range of achieve-

ments, particularly driven by parallel experimental investigations. For multi-particle

final states (corresponding to 2→ 4, 5, . . . kinematics), the state-of-the-art are NLO

perturbative corrections. Automated programmes exist for calculating tree and one-

loop matrix elements together with the necessary infrared subtraction terms. These

are encapsulated in a number of multi-purpose event generator programs [67–70],

enabling NLO-accurate predictions for essentially any relevant collider process1.

At NNLO, calculations are mostly limited to 2→ 2 kinematics, such as di-jet produc-

tion [72,73], vector-boson-plus-jet production [74–76], photon-plus-jet-production [77,

78] or top quark pair production [79, 80]. Recent progress in the derivation of two-

loop 2→ 3 matrix elements has led to calculations for three-photon production [81],

diphoton-plus-jet production [82] and three-jet production [83]. Several infrared

subtraction methods have been developed for NNLO calculations; see Ref. [84] for

a review. We will also discuss these in Chapter 4. Implementations using these

methods are largely made on a process-by-process basis; most methods scale either

poorly or not at all to higher multiplicities.

At N3LO, inclusive [85–95] as well as more differential calculations have started

to emerge [33, 96–106], the latter mainly for 2 → 1 processes via the use of the

Projection-to-Born method [107] or transverse-momentum-slicing techniques (qT -

slicing) [108] to promote known NNLO subtraction schemes to N3LO. Calculations

1See Ref. [71] for a summary of available tools.
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for higher multiplicities are currently hindered by the lack of process-independent

local N3LO subtraction schemes. The need for NNLO and N3LO predictions for

phenomenologically relevant high-multiplicity processes highlights the importance

of developing a more systematic and structured infrared subtraction formalism.

NLO matching schemes such as MC@NLO [109] and POWHEG [110,111] have been

developed which systematically combine NLO fixed-order calculations with all-order

parton-shower resummation at leading logarithmic accuracy. These innovations

laid the foundations for the state-of-the-art multi-purpose event generators [68–70,

112, 113], see Ref. [114] for a review. Similarly, fully-differential NNLO matching

techniques are so far still in their infancy, as they require higher-order corrections

to be exponentiated in the shower algorithm [115]. Progress on including such

corrections in parton showers has been reported in Refs. [31,32,34,36,37,116–119].

Also, note that the concept of jets requires a correspondence between the coloured

final-state partons in a theoretical calculation and the collimated beams of hadrons

observed in an experiment. Identifying groups of detected hadrons into jets, by an

appropriate jet algorithm, is the IR-safe way of relating the measurements to a hard

partonic QCD cross section. Examples of IR-safe jet algorithms are the anti-kt [25],

kt [20] and Cambridge-Aachen [22] algorithms. Then a matching scheme bridges the

gap between energy scales by a parton shower and hadronisation process.

The calculations and tools described above have generally delivered very good agree-

ment between Standard Model predictions and collider experiments. In particular,

we can highlight the discovery of the Higgs boson at the LHC in 2012 [120,121]. Of

course, the LHC is just one of many colliders worldwide, which are all designed to

probe particular areas of particle physics. Colliders can be categorised according

to their shape (circular or linear) and according to the colliding particles (hadrons,

electrons or various ions). Focussing on the LHC, we can see remarkable agreement

between theoretical and experimental cross sections across a large number of pro-

cesses and many orders of magnitude in Fig. 2.1. As can be seen in Fig. 2.1, the

LHC enables us to scrutinise a wide range of observables involving Higgs bosons,
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Figure 2.1: Plot of cross section measurements by ATLAS at vari-
ous energies according to process and respective cross
section predictions [4].

electroweak bosons, top quarks and hadronic jets with high accuracy. With the

anticipated dataset from the High-Luminosity LHC, the statistical uncertainties on

many observables will be negligible and percent-level accuracy is likely to be achieved

experimentally. In the realm of perturbative QCD, reaching the desired level of re-

finement typically involves extending fixed-order calculations to at least NNLO in

the strong-coupling expansion. Equally, we can expect future colliders (eg. Future

Circular Collider, Circular Electron-Positron Collider, Super Proton-Proton Collider)

to both increase the energy of collisions (thus allowing more accessible states) and

increase luminosity (more collisions and better statistics). As such, development of

the tools required for high-multiplicity NNLO calculations and for N3LO calculations

is necessary to infer physics from the improved experimental tools.
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2.3 Uncertainties in Calculations

In performing fixed-order calculations, we accept that our prediction is not exact

but how do we estimate the uncertainty without calculating the next order? The

commonly accepted answer is to use scale variation. The idea can be demonstrated

in the running of the strong coupling, Eq. (1.3.6), Taylor-expanded to give,

αs(µ2) = αs(µ2
0)− β0

2πα
2
s(µ2

0) ln
(
µ2

µ2
0

)
+O

(
α3
s

)
. (2.3.1)

Thus by varying the renormalisation scale from µ to µ0, we are including terms of

higher order in the perturbation, where αs(µ2
0) is now the small parameter. Similarly,

we can vary the factorisation scale, which affects the renormalised PDFs according

to the DGLAP evolution equations. The evolution of a PDF depends on the all-

orders splitting functions but the NLO correction due to factorisation scale variation

depends only on the tree-level splitting functions and is given by,

fa|A(xa, µ2) = fa|A(xa, µ2
0)−αs(µ

2
0)

2π log
(
µ2

0

µ2

)∑
b

∫ 1

xa

dxb
xb
P

(0)
ab

(
xa
xb

)
fb|A(xb, µ2

0)+O
(
α2
s

)
.

(2.3.2)

Note that the sum is over all flavours of quarks and the gluons and we have chosen

to set the renormalisation scale equal to the factorisation scale here. We observe

that by varying the factorisation scale, we include additional terms at higher orders

in αs(µ2
0). Of course, scale variation is no substitute for calculating higher orders,

where additional channels and features can be modelled. Typically, a calculation is

performed by varying both the renormalisation and factorisation scales up and down

by a factor of 2 from some typical energy scale determined by the experiment.

An example of a calculation, showing the scale uncertainties at various orders, is

shown in Fig. 2.2. We can make a few observations. Firstly, it is clear that the

dependence on the unphysical scales falls dramatically with higher orders, motivating

the need for higher orders. Secondly the ratio of the NLO to the LO result is

particularly large and the NLO result falls outside of the scale uncertainty bounds

for the LO result. This is because of particular structures appearing in the NLO
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Figure 2.2: Theory predictions of the rapidity distribution for Z bo-
son production in proton-proton collisions at centre-of-
mass energy 14 TeV [5]. The error bands show the scale
uncertainties, where the renormalisation and factorisa-
tion scales are varied in the range MZ/2 ≤ µ ≤ 2MZ .

expressions and also because a new channel, qg → Zq, only contributes from NLO.

Since the gluon distribution is large, this creates a large ratio order-to-order. This

illustrates how scale uncertainty can only account for a portion of unknown higher-

order effects. Thirdly, the NNLO result does fall within the scale uncertainty bounds

for the NLO result, suggesting that the scale variations give a reliable estimate for

the NLO theoretical uncertainty. It also shows signs of perturbative convergence at

NNLO. Finally, due to the increased availability of channels and increased variability

of momentum configurations at NLO and NNLO, we see a different shape for the

distribution (not just normalisation), compared to LO, where it is approximately

flat for small rapidity.

Of course, the uncertainty in truncating a perturbative series is not the only source

of uncertainty in the full calculation of an observable. While those other parts of a

calculation are not the focus of this thesis, it is instructive to see the relative sources

of uncertainty. Fig. 2.3 shows the various sources of error for an inclusive Higgs boson

production cross section. The scale uncertainty gives an estimate of the missing

higher orders beyond the N3LO calculation. The errors associated with neglecting
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Figure 2.3: The sum of the sources of relative uncertainty as a
function of collider energy in an N3LO calculation of
inclusive Higgs boson production [6]. Each band shows
the size of the labelled source of uncertainty.

quark masses beyond NLO are given as δ(1/mt) and δ(t, b, c). The error associated

with missing higher electroweak corrections is given by δ(EW). δ(PDF+αs) denotes

the uncertainty in our knowledge of PDFs and αs, while δ(PDF+TH) is due to using

PDFs evaluated at NNLO but evaluating cross-sections at N3LO. The PDF and the

scale sources of uncertainty are the greatest sources in this case, both motivating

study of QCD at higher orders in αs. In fact, when scale uncertainty can often be

regarded as too small an estimate, calculations up to at least NNLO seem crucial.

Even in the case of Fig. 2.3, where the calculation has been performed to N3LO, the

scale uncertainty is of similar size to other uncertainty contributions, justifying the

calculation up to this order.

2.4 Summary and Outlook

With the increase in experimental precision, phenomenological tools need to be

refined to improve bounds on fundamental parameters and to detect potential devi-

ations from theory. For many observables, percent-level accuracy cannot be reached

without improvements in fixed-order calculations, parton distribution functions, par-

ton showers and modelling of non-perturbative effects. Improvements are being made
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in all these areas. In the field of perturbative QCD, this typically requires fixed-order

calculations to at least NNLO. While there are efficient automated programs for

calculating tree-level and one-loop matrix elements and for complete IR subtraction

at NLO, this is not the case at NNLO. At NNLO, calculations are limited to lower

multiplicity states, particularly due to the complex patterns of IR cancellation. At

N3LO, calculations are mainly limited to 2→ 1 processes, where NNLO subtraction

terms with one extra jet can be promoted to N3LO. Thanks to the developments in

both experimental and theoretical particle physics, we observe excellent agreement

across a wide range of observables. However, the search for discrepancies and new

physics necessitates reduction of theory uncertainties, including by calculating higher

orders and by developing the tools required for them. Scale variation is a useful tool

for estimating uncertainty in fixed-order calculations, despite its limitations because

it cannot account for channels and features unavailable at a certain order. Devel-

opments in fixed order calculations are also important as they can be a substantial

contributor to the overall uncertainty in Standard Model predictions.

In general, there are two obstacles to calculation at higher orders. First, knowledge

of the relevant tree-level and loop multi-particle matrix elements. There is factorial

growth in the number of Feynman diagrams and therefore the number of loop struc-

tures which need integrating with increasing perturbative order. In the framework

of dimensional regularisation, gauge-theory loop matrix elements contain explicit

infrared poles in the regulator ε of up to two powers per loop. The computation

of such matrix elements is sufficiently complicated that it is a field in its own right.

Second, a scheme to extract the implicit infrared divergences. These are produced by

integration of matrix elements with fewer loops and more external particles over the

unresolved or infrared-singular regions of the phase space, as discussed in Chapter 1.

The explicit poles and implicit poles are cancelled in IR-safe observables, thereby en-

abling the numerical evaluation over the whole of phase space. Subtraction schemes

are currently regarded as the most elegant solution to address these complexities

and they will be discussed in Chapter 4.





Chapter 3

Decomposition of Triple-Collinear

Splitting Functions

3.1 Introduction

One of the complications immediately evident at NNLO is the overlap between

iterated single unresolved and double unresolved limits. For example, the limit in

which three particles i, j and k become collinear (studied in Refs. [38–40]) is obtained

when invariants in the set {sij, sjk, sik, sijk} are small and there are two inverse

powers of them. This limit contains both single and double unresolved limits - an

iterated collinear contribution (which overlaps with soft and collinear limits), as well

as a genuinely double unresolved contribution. In this chapter we decompose the

triple-collinear splitting functions into products of two-particle splitting functions

and a remainder that is explicitly finite when any two of {i, j, k} are collinear.

To help with the discussion of the singularities present in the collinear limits of

real radiation matrix elements, we introduce the notion of internal and external

singularities. Internal singularities are associated with small invariants amongst the

set of collinear particles. External singularities involve other (spectator) particles

involved in the scattering through the definition of the momentum fraction. For
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example, when two particles, i and j are collinear we find the well known collinear

limit proportional to the two-particle splitting function,

1
sij
P

(0)
ab (xi).

The limit as sij → 0 references only particles in the collinear set and is therefore an

internal singularity. External singularities are both present in the splitting function

P
(0)
ab (xi) and associated with the momentum fraction limits xi → 0 or xi → 1. These

external singularities correspond to situations where one of {i, j} is collinear with

a spectator particle, or where one of the particles is soft. As in Ref. [38], we work

with colour-ordered matrix elements.

This chapter is organised as follows. We discuss the infrared singularity structure of

the triple-collinear splitting functions in Section 3.2. In Section 3.3 we discuss the

general structure of the triple-collinear limit and explain how to restructure it such

that the strongly-ordered limit is explicit and the remaining terms are manifestly

finite when any two of {i, j, k} are collinear. Results for the triple-collinear splitting

function for all of the various parton configurations are collected in Section 3.4. We

also analyse all of the internal and external single unresolved singularities of each of

the splitting functions. Finally, we summarise our findings in Section 3.5.

3.2 Singularity Structure of the Triple-Collinear

Splitting Function

The primary aim of this chapter is to rewrite the P (0)
abc splitting function in a way

that exposes its singularity structure. In particular, we aim to isolate the strongly-

ordered iterated contributions. In other words, we aim to rewrite the spin-averaged

and colour-ordered three-particle splitting function as,

P
(0)
abc(i, j, k) =

∑
perms

1
sijk

P
(0)
(ab)c (xk)

1
sij
P

(0)
ab

(
xj

1− xk

)
+ 1
s2
ijk

R
(0)
abc(i, j, k), (3.2.1)
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where P (0)
ab are the usual spin-averaged two-particle splitting functions (listed in

Section 1.5.1) and the remainder R(0)
abc(i, j, k) depends on the momentum fractions

and small invariants.

xi

xj

xk

P

(ab)

a

b

c

Figure 3.1: The iterated simple-collinear contribution to the triple-
collinear splitting function.

An iterated (or strongly-ordered) contribution is obtained through the product of

leading-order splitting functions, P × P , as illustrated in Fig. 3.1 and is given by

terms of the type,
P

(0)
(ab)c(xk)
sijk

× P
(0)
ab (yj)
sij

, (3.2.2)

where yj is the momentum fraction of the second splitting,

yj = xj
xi + xj

= xj
1− xk

. (3.2.3)

The invariants in the denominator are simply those corresponding to the two- and

three-particle invariants, sij and sijk1. The remainder (or uniterated) 1→ 3 splitting

function R(0)
abc is illustrated in Fig. 3.2.

The triple-collinear splitting functions contain both single and double unresolved

limits:

1. simple-collinear limits when two of {i, j, k} are collinear or one of {i, j, k} is

collinear with a spectator particle,
1Note that one could have chosen to define the strongly-ordered limit in which sijk is replaced

by sik + sjk.
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Figure 3.2: The remainder function R(0)
abc contains the parts of the

triple-collinear splitting function that are not contained
in the strongly-ordered iterated contribution.

2. single-soft limits when one particle is soft and is colour-connected to either the

other two particles, or a spectator particle,

3. double-collinear limits when two of {i, j, k} are collinear and the third is col-

linear with a spectator particle,

4. soft-collinear limits when one particle is soft and the other two are collinear or

one is collinear with a spectator particle,

5. double-soft limits when two particles are soft,

6. triple-collinear limits when two of {i, j, k} are collinear with a spectator particle

(this occurs only in the double-soft limits).

In order to explain what types of single unresolved singularities appear in the iterated

contributions, P×P , and the uniterated splitting function, R(0)
abc, we must first discuss

the different types of single unresolved singularities present in P (0)
abc .

There are two types of simple-collinear singularities present in a triple-collinear

splitting function. First, internal simple-collinear singularities like 1/sij, where i, j

are collinear. Internal simple-collinear singularities appear only in the iterated two-

particle splitting contributions. Second, external simple-collinear singularities like

1/xi, which indicate potential collinear factors with the spectator particles used to

define the momentum fractions. External simple-collinear singularities which are
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present in P (0)
abc appear only in the iterated two-particle splitting contributions. Al-

though, if P (0)
abc does not contain external simple-collinear singularities, there could

be a cancellation between external simple-collinear singularities in the P × P contri-

bution and those in the remainder R(0)
abc.

There are also two types of single-soft singularities. First, internal soft j singularities

encoded through typical eikonal factors like sik/(sijsjk). This type of singularity

is explicitly embedded in a triple-collinear splitting function and only appears in

the remainder R(0)
abc. This makes sense because internal single soft singularities are

inherently uniterated - this type of eikonal factor contributes the full weight of a triple-

collinear term without an sijk pole. Second, there are external soft j singularities

that appear in ‘hidden’ eikonal factors like xi/(xjsij). This type of singularity is

produced when the soft particle is colour-connected to a spectator particle. If present,

it only appears in the iterated two-particle splitting contributions.

We can summarise these important features as follows:

- Internal simple-collinear singularities like 1/sij appear only in P × P terms

(the iterated two-particle splitting contributions).

- When external simple-collinear singularities like 1/xi appear in P (0)
abc , they are

all contained in P × P terms.

- When external simple-collinear singularities like 1/xi do not appear in P (0)
abc ,

there could be terms proportional to 1/xi in P × P and R(0)
abc which cancel.

- Internal single soft singularities like sik/(sijsjk) appear only in R(0)
abc.

- External single soft singularities like xi/(xjsij) appear only in the iterated

P × P terms.
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3.3 General Structure of the Triple-Collinear

Splitting Function

As mentioned earlier, the triple-collinear limit is defined as the kinematic regime

where the invariants sij, sjk, sik and sijk all become small. In this region, the singular

factor has at most two net inverse powers of the small invariants. Additionally, since

the splitting functions are limits of squared matrix elements, there is the additional

physics constraint that there are at most two inverse powers of double invariants

(sIJ where I, J ∈ {i, j, k}) and at most two inverse powers of the triple invariant sijk.

Therefore, any triple-collinear splitting function can be represented by coefficients

βi(xi, xj, xk, ε) of 37 invariant pole structures:

P
(0)
abc(i, j, k) = β1

sjksijk
+ β2

sijsijk
+ β3

siksijk
+ β4

s2
jk

+ β5

s2
ij

+ β6

s2
ik

+ β7

sjksij
+ β8

sjksik
+ β9

sijsik
+ β10sij
s2
jksijk

+ β11sij
s2
iksijk

+ β12sjk
s2
ijsijk

+ β13

s2
ijk

+ β14sij
sjks

2
ijk

+ β15sij
siks

2
ijk

+ β16sjk
sijs

2
ijk

+ β17s
2
ij

s2
jks

2
ijk

+ β18s
2
ij

s2
iks

2
ijk

+ β19s
2
jk

s2
ijs

2
ijk

+
[
β20sjk
s2
iksijk

+ β21sjk
siks

2
ijk

+ β22s
2
jk

s2
iks

2
ijk

+ β23s
2
ij

siksjks
2
ijk

+ β24sij
siksjksijk

+ β25sjk
siksjksijk

+β26sik
s2
ijsijk

+ β27sik
s2
jksijk

+ β28sik
sijs

2
ijk

+ β29sik
sjks

2
ijk

+ β30s
2
ik

s2
ijs

2
ijk

+ β31s
2
ik

s2
jks

2
ijk

+ β32sik
sijsjksijk

+ β33s
2
ik

sijsjks
2
ijk

+ β34s
2
jk

sijsiks
2
ijk

+ β35sijsik
s2
jks

2
ijk

+ β36sijsjk
s2
iks

2
ijk

+ β37siksjk
s2
ijs

2
ijk

]
.

(3.3.1)

Using momentum conservation, any triple-collinear splitting function can be ex-

pressed in the basis of the first three lines of Eq. (3.3.1) (ie. β1 — β19, the non-square

bracketed terms).

The factorisation properties of squared matrix elements impose six additional re-

lationships amongst the βi. Of these there are two relationships between β4, β10,

β17, which are due to the absence of jk simple-collinear contributions of the form

1/s2
jk. Similar relationships hold for the coefficients of 1/s2

ij and 1/s2
ik. Therefore,

we propose an alternative basis in terms of 13 αi(xi, xj, xk, ε) invariant structures
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that make the physical constraints more evident,

P
(0)
abc(i, j, k) = α12

sjksijk
+ α13

sijsijk
+ α14

siksijk

+ α1

s2
ijk

+ α2Tr(/j/k/i/̀)
sjks

2
ijk

+ α3Tr(/i/j/k/̀)
sijs

2
ijk

+ α4Tr(/k/i/j/̀)
siks

2
ijk

+α23Tr(/i/j/k/̀)
sijsjksijk

+ α24Tr(/j/k/i/̀)
sjksiksijk

+ α34Tr(/k/i/j/̀)
siksijsijk

+α22Wjk

s2
jks

2
ijk

+ α33Wij

s2
ijs

2
ijk

+ α44Wik

s2
iks

2
ijk

. (3.3.2)

Here ` is a suitably normalised spectator momentum such that,

Tr(/i/j/k/̀) = xksij − xjsik + xisjk, (3.3.3)

while the quantity Wij is defined as

Wij = (xisjk − xjsik)2 − 2
(1− ε)

xixjxk
(1− xk)

sijsijk. (3.3.4)

In Eq. (3.3.2), the first three coefficients (α12, α13, α14) display any strongly-ordered

structure present, like in Eq. (3.2.1). The remaining structures are written in

combinations that are designed to be less singular in the simple-collinear limits.

For example, in the sij → 0 limit,

Tr(/i/j/k/̀) = O(√sij), (3.3.5)

so that there is no singular contribution in the ij collinear limit from the α3, α23 or α34

terms1. This can be shown explicitly by using the Sudakov momenta parametrisation

for two collinear partons [122,123],

pµi = xip
µ + kµT −

k2
T

2xip · n
nµ, (3.3.6)

pµj = (1− xi)pµ − kµT −
k2
T

2(1− xi)p · n
nµ, (3.3.7)

where p is the total longitudinal momentum of the ij pair, kT is the transverse
1Note that an alternative basis to the α basis could be chosen with somewhat different structures

to the trace structure used here. We choose the trace structure for its ‘natural’ interpretation
and see that it reflects the colour-ordering in the results. Another suitable basis would require
properties which follow equations similar to Eq. (3.3.5).
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momentum (so kT · p = 0), which approaches zero in the collinear limit and n is an

arbitrary light-like vector, such that

n2 = 0, n · kT = 0. (3.3.8)

The parametrisation also ensures the on-shell conditions:

p2
i = p2

j = p2 = 0. (3.3.9)

Using this parametrisation, we note that

Tr(/i/j/k/̀) = 4(p` · kT )(pk · p)− 4(pk · kT )(p` · p) +O
(
k2
T

)
, (3.3.10)

and

sij = − k2
T

xi(1− xi)
, (3.3.11)

so therefore Eq. (3.3.5) holds and both kT and sij approach zero in the ij collinear

limit, as expected.

Similarly, the α33 term also has no contribution in the sij → 0 limit. Wij has

been constructed from terms that appear in the triple-collinear limit and a second

term that is added to α13 (and subtracted from α33 in order to have the full spin-

averaged splitting functions in the strongly-ordered contributions). Both terms in

Wij are individually O(sij) when expanded but have opposite signs so thatWij/s
2
ij =

O(1/√sij). This is an integrable singularity that vanishes upon azimuthal integration

(in d-dimensions). To make this clear, strictly in the collinear ij limit, we can

interpret Wij in terms of the azimuthal angle with respect to the (ij) direction.

Following Ref. [34], we find that we can write

(xisjk − xjsik)2 = 4xixjxk
(1− xk)

sijsijk cos2 φij,kl, (3.3.12)

such that Wij has the form,

Wij = 4xixjxk
(1− xk)

sijsijk

(
cos2 φij,kl −

1
2(1− ε)

)
. (3.3.13)
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3.4 Results

In this section, we summarise our results for the triple-collinear splitting functions.

In each case, we find that the remainder R(0)
abc can be expressed in terms of a single

trace (rather than three in general). The α1 term from Eq. (3.3.2) is always some

combination of two auxiliary functions and they are a feature of the α basis:

A0(x, y) = 1− (1− x)
(1− y) , (3.4.1)

B0(x, y) = 1 + 2x(x− 2)
(1− y)2 + 4x

(1− y) . (3.4.2)

It is also convenient to divide each splitting function according to structures where

one parton can be described as hard, such that

P
(0)
abc(i, j, k) = P

(0)
abc(ih, j, k) + P

(0)
abc(i, jh, k) + P

(0)
abc(i, j, kh). (3.4.3)

3.4.1 Three Collinear Gluons

We consider the case where gluons i, j, k are in a particular colour-ordering. In other

words, the outer gluons i and k play a different role to the inner gluon j. We find

that,

P (0)
ggg(ih, j, k) = P sub,(0)

gg (xk)
sijk

P sub,(0)
gg

(
xj

1−xk

)
sij

+ P sub,(0)
gg (1− xi)

sijk

P (0)
gg

(
xj

1−xi

)
sjk

+ 1
s2
ijk

R
(0)
g(gg)(i, j, k), (3.4.4)

P (0)
ggg(i, jh, k) = P sub,(0)

gg (xk)
sijk

P sub,(0)
gg

(
xi

1−xk

)
sij

+ P sub,(0)
gg (xi)
sijk

P sub,(0)
gg

(
xk

1−xi

)
sjk

, (3.4.5)

P (0)
ggg(i, j, kh) = P (0)

ggg(kh, j, i), (3.4.6)

where

R
(0)
g(gg)(i, j, k) = 2(1− ε)Wjk

(1− xi)2s2
jk

+ 4(1− ε)xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

+a0(xi, xj, xk) + a(xi, xj, xk)
sijkTr(/i/j/k/̀)

sijsjk
, (3.4.7)
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and

a0(xi, xj, xk) = (1− ε)B0(xk, xi), (3.4.8)

a(xi, xj, xk) = −xkP
(0)
gg (xk)

xj(1− xi)
− P (0)

gg (xj)
xk

+ 2
xj(1− xk)

− 1− 1
(1− xi)(1− xk)

. (3.4.9)

We note that a contains poles in xi, xj and xk. Therefore, we write a in a manner

that exposes the residue of these poles, in terms of two-particle splitting functions.

Eqs. (3.4.4)–(3.4.9) are equivalent to Eq. (5.4) in Ref. [38] up to a normalisation of

a factor of 4.

As expected, there are no internal simple-collinear limits (i.e. relating to any of the

simple-collinear limits (sij → 0, sjk → 0 or sjk → 0) present in Eq. (3.4.7). All of the

internal simple-collinear limits are contained in the iterated contribution. However,

there are possible external and internal singularities when

(i) gluon I (for I ∈ {i, j, k}) is collinear with the spectator particle `, indicated

when there is one singular power of xI ,

(ii) gluon I is soft, indicated when there are two singular factors in the set

{sIJ , sIK , xI}.

These collinear and/or soft singularities can be present in the P (0)
gg ×P (0)

gg contribution

and/or in the remainders. Within the remainders, they are produced entirely by the

final term in Eq. (3.4.7) when,

a(xi, xj, xk) ∝
1
xI
. (3.4.10)

Given that

Tr(/i/j/k/̀) = xksij − xjsik + xisjk, (3.4.11)

there are two types of contribution in the remainders. Let us consider the two cases

in turn:
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• I = k (or I = i)

1
xk

sijkTr(/i/j/k/̀)
sijsjk

−→ xi
xk

sijk
sij
− xj
xk

sijksik
sijsjk

, (3.4.12)

• I = j

1
xj

sijkTr(/i/j/k/̀)
sijsjk

−→ xk
xj

sijk
sjk

+ xi
xj

sijk
sij
− sijksik
sijsjk

. (3.4.13)

(i) Gluon I is collinear with the spectator particle ` - external collinearity.

Let us first consider the external limits where the particle with small momentum

fraction is collinear to the spectator particle, sI` = xI → 0. These singular

structures are tabulated in Table 3.1.

The xi → 0 and xk → 0 contributions are shown in the first and third rows

of Table 3.1. These limits are related by the i↔ k symmetry, so let us focus

on the xk → 0 limit in the third row. All contributions are proportional to

P (0)
gg (xi). They originate in the iterated two-particle splitting and the second

term of Eq. (3.4.9). Note that by construction, there are no contributions from

R
(0)
g(gg)(k, j, i).

In the xj → 0 limit, there are contributions from the iterated two-particle split-

ting and the double unresolved R(0)
g(gg) splittings. However, these contributions

cancel and the P (0)
ggg splitting function does not exhibit a singularity in this

limit. This is as expected, since gluon j is only colour-connected to gluons i

and k so that there should be no collinear limit for gluon j with any spectator.

(ii) Gluon I is soft.

The soft I limit is obtained when those in the set {sIJ , sIK , xI} are small and

there are two inverse powers of them. The external soft contributions of the

form 1/(sIJxI) can be read off from Table 3.1. However there are also internal

soft j contributions coming from the third term in Eq. (3.4.13).

When gluon k is soft, we recover the expected limit describing collinear gluons

i and j with the soft gluon k radiated between the colour-connected partners
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j and `,

P (0)
ggg(i, j, k) k soft−→ 2xj

sjkxk

1
sij
P (0)
gg (xi). (3.4.14)

This limit comes entirely from the iterated two-particle splitting. The soft i

limit is obtained by k ↔ i symmetry.

In the soft j limit, the 1/(xjsij) and 1/(xjsjk) terms cancel between the P (0)
gg ×

P (0)
gg and R(0)

g(gg) contributions, such that

R
(0)
g(gg)(i, j, k)
s2
ijk

j soft−→
(
− xk
xjsjk

− xi
xjsij

+ sik
sijsjk

)
2
sik
P sub,(0)
gg (xk), (3.4.15)

P (0)
ggg(i, j, k) j soft−→ 2sik

sijsjk

1
sik
P (0)
gg (xk). (3.4.16)

This is precisely as expected for the emission of a soft gluon between the hard

(and collinear) radiators i and k.

The limit where both j and k are soft encodes xj → 0, xk → 0 and therefore xi → 1.

There are two types of contribution. First, there are iterated soft singularities in

P (0)
gg × P (0)

gg ,

P (0)
gg (xi)
sijk

P (0)
gg

(
xk

1−xi

)
sjk

+ P (0)
gg (xk)
sijk

P (0)
gg

(
xi

1−xk

)
sij

j,k soft−→

2
(1− xi)sijksjk

P (0)
gg

(
xk

1− xi

)
+ 4
xjxksijksij

. (3.4.17)

Second, there are double soft contributions in R(0)
g(gg)(i, j, k),

R
(0)
g(gg)(i, j, k)
s2
ijk

j,k soft−→ 2(1− ε)Wjk

(1− xi)2s2
jks

2
ijk

−
(

2
xk(1− xi)

+ 4
xj(1− xi)

)
Tr(/i/j/k/̀)
sijsjksijk

.

(3.4.18)

The second term in Eq. (3.4.18) is produced by a(xi, xj, xk).

The double soft singularities, when gluons i, j are soft, are obtained by the i ↔ k

interchange in Eqs. (3.4.17) and (3.4.18).

Finally, there are also double soft singularities when gluons i, k are soft, however,

because they are not colour-adjacent, they only appear in the P (0)
gg ×P (0)

gg contributions

as a product of two eikonal factors.
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We note that projecting the splitting function onto the α-basis of Eq. (3.3.2) forces

a link between the trace-like structures and the B0 terms that appear in a0, which is

evident in the xi → 1 limit. This corresponds to the xj → 0, xk → 0 limit because

the three momentum fractions sum to unity. We see that the second and third terms

of Eq. (3.4.7) are separately singular in this limit,

4(1− ε)xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

→ 4(1− ε)xk
(1− xi)2 , (3.4.19)

a0(xi, xj, xk) = (1− ε)B0(xk, xi) → −4(1− ε)xk
(1− xi)2 , (3.4.20)

and that the singular behaviour cancels when the terms are combined. The link

between the trace-like structures and the B0 terms (including A0 terms in generality)

is a feature of the α-basis of Eq. (3.3.2) and is repeated in all of the triple-collinear

splitting functions.
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ggg
P

(0)
gg (xi)
sijk

P
(0)
gg

(
xk

1−xi

)
sjk

+ (i↔ k) 1
s
2
ijk

R
(0)
g(gg)(i, j, k) 1

s
2
ijk

R
(0)
g(gg)(k, j, i) 1

s
2
ijk

P (0)
ggg(i, j, k)

xi → 0 + 1
sijsijk

xj
xi

[
2P (0)

gg (xk)
]

+ 1
sjksijk

1
xi

[
2P (0)

gg (xk)
] 0

+ 1
sijsjk

xj
xi

[
P (0)
gg (xk)

]

+ 1
sijsijk

xj
xi

[
− P (0)

gg (xk)
]

+ 1
sjksijk

1
xi

[
− P (0)

gg (xk)
]

+ 1
sijsjk

xj
xi

[
P (0)
gg (xk)

]

+ 1
sijsijk

xj
xi

[
P (0)
gg (xk)

]

+ 1
sjksijk

1
xi

[
P (0)
gg (xk)

]

xj → 0 + 1
sijsijk

xi
xj

[
2P (0)

gg (xk)
]

+ 1
sjksijk

xk
xj

[
2P (0)

gg (xk)
] + 1

sijsijk

xi
xj

[
− 2P sub,(0)

gg (xk)
]

+ 1
sjksijk

xk
xj

[
− 2P sub,(0)

gg (xk)
] + 1

sijsijk

xi
xj

[
− 2P sub,(0)

gg (1− xk)
]

+ 1
sjksijk

xk
xj

[
− 2P sub,(0)

gg (1− xk)
] 0

xk → 0 + 1
sijsijk

1
xk

[
2P (0)

gg (xi)
]

+ 1
sjksijk

xj
xk

[
2P (0)

gg (xi)
]

+ 1
sijsjk

xj
xk

[
P (0)
gg (xi)

]

+ 1
sijsijk

1
xk

[
− P (0)

gg (xi)
]

+ 1
sjksijk

xj
xk

[
− P (0)

gg (xi)
] 0

+ 1
sijsjk

xj
xk

[
P (0)
gg (xi)

]

+ 1
sijsijk

1
xk

[
P (0)
gg (xi)

]

+ 1
sjksijk

xj
xk

[
P (0)
gg (xi)

]

Table 3.1: Singular behaviour of the P (0)
ggg triple-collinear splitting function in the limit where individual momentum

fractions are small. The contributions from the iterated two-particle splittings are shown in column 2, while the
contributions from the two permutations of R(0)

g(gg) are shown in columns 3 and 4 and the contributions for the
entire splitting function P (0)

ggg is shown in column 5. Each row shows the singular limit for a different momentum
fraction tending to zero. The vertical displacement within each cell is organised by {sij, sjk, sik, sijk}.
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3.4.2 Two Gluons with a Collinear Quark or Antiquark

There are two distinct splitting functions representing the clustering of two gluons

and a quark which depend on whether or not the gluons are symmetrised over.

(a) In the case where gluon j is colour-connected to quark i and gluon k, we find

that,

P (0)
qgg(ih, j, k) = P (0)

qg (xk)
sijk

P (0)
qg

(
xj

1−xk

)
sij

+ P (0)
qg (1− xi)
sijk

P (0)
gg

(
xj

1−xi

)
sjk

+ 1
s2
ijk

R(0)
qgg(i, j, k) , (3.4.21)

P (0)
qgg(i, jh, k) = 0 , (3.4.22)

P (0)
qgg(i, j, kh) = 0 , (3.4.23)

where

R(0)
qgg(i, j, k) = 2(1− ε)

(1− xi)2
Wjk

s2
jk

+ 4(1− ε)xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

+ (1− ε)2

(1− xk)
Tr(/i/j/k/̀)

sij

+b0(xi, xj, xk) + b(xi, xj, xk)
sijkTr(/i/j/k/̀)

sijsjk
, (3.4.24)

and

b0(xi, xj, xk) = (1− ε) (B0(xk, xi)− 1 + (1− ε)A0(xi, xk)) , (3.4.25)

b(xi, xj, xk) = −xjP
(0)
qg (xj)

xk(1− xi)
− 2xkP (0)

qg (xk)
xj(1− xi)

+ 4
(1− xi)

− 3(1− ε).(3.4.26)

Eqs. (3.4.23)–(3.4.26) are equivalent to Eq. (5.5) in Ref. [38] up to a normalisation

of a factor of 4. By charge conjugation, we also have,

P
(0)
q̄gg(i, j, k) = P (0)

qgg(i, j, k). (3.4.27)

We observe that b contains inverse powers of xj and xk. The behaviour of the P (0)
qgg

triple-collinear splitting function in the limit where individual momentum fractions

are small is tabulated in Table 3.2. We see that there is no singular behaviour

as xi → 0. This reflects the fact that there is no singularity when the quark
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qgg

P
(0)
qg (xk)
sijk

P
(0)
qg

(
xj

1−xk

)
sij

+ P
(0)
qg (1−xi)
sijk

P
(0)
gg

(
xj

1−xi

)
sjk

1
s
2
ijk

R(0)
qgg(i, j, k) 1

s
2
ijk

P (0)
qgg(i, j, k)

xi → 0 0 0 0

xj → 0 + 1
sijsijk

xi
xj

[
2P (0)

qg (xk)
]

+ 1
sjksijk

xk
xj

[
2P (0)

qg (xk)
] + 1

sijsijk

xi
xj

[
− 2P (0)

qg (xk)
]

+ 1
sjksijk

xk
xj

[
− 2P (0)

qg (xk)
] 0

xk → 0 + 1
sijsijk

1
xk

[
2P (0)

qg (xj)
]

+ 1
sjksijk

xj
xk

[
2P (0)

qg (xj)
]

+ 1
sijsjk

xj
xk

[
P (0)
qg (xj)

]

+ 1
sijsijk

1
xk

[
− P (0)

qg (xj)
]

+ 1
sjksijk

xj
xk

[
− P (0)

qg (xj)
]

+ 1
sijsjk

xj
xk

[
P (0)
qg (xj)

]

+ 1
sijsijk

1
xk

[
P (0)
qg (xj)

]

+ 1
sjksijk

xj
xk

[
P (0)
qg (xj)

]

Table 3.2: Singular behaviour of the P (0)
qgg triple-collinear splitting

function in the limit where individual momentum frac-
tions are small.

and spectator momentum are collinear and that there is no soft quark singularity.

When xj → 0, we see that there are contributions from both the strongly-ordered

contribution and from R(0)
qgg which cancel in the full P (0)

qgg splitting function,

P (0)
qgg(i, j, k)

xj→0
−→ 0. (3.4.28)

When xk → 0, we see that the contributions from the strongly-ordered contribution

and from R(0)
qgg do not cancel in full P (0)

qgg splitting function.

In the soft k limit, only the strongly-ordered term contributes and we recover the

expected limit describing collinear partons i and j with the soft gluon k radiated

between the colour-connected partners j and `,

P (0)
qgg(i, j, k) k soft−→ 2xj

sjkxk

1
sij
P (0)
qg (xj). (3.4.29)

However, in the soft j limit the 1/(xjsij) and 1/(xjsjk) terms cancel between the
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P × P and R(0)
qgg contributions, such that

1
s2
ijk

R(0)
qgg(i, j, k) j soft−→

(
− 2xi
xjsij

− 2xk
xjsjk

+ 2sik
sijsjk

)
1
sik
P (0)
qg (xk), (3.4.30)

P (0)
qgg(i, j, k) j soft−→ 2sik

sijsjk

1
sik
P (0)
qg (xk). (3.4.31)

This is precisely as expected for the emission of a soft gluon between the hard (and

collinear) radiators i and k.

As in the three gluon splitting function, there are double soft singularities when

gluons j, k are soft. These are contained iteratively in the P × P contributions and

in R(0)
qgg(i, j, k), and are identical to Eqs. (3.4.17) and (3.4.18),

P (0)
qg (1− xi)
sijk

P (0)
gg

(
xj

1−xi

)
sjk

+ P (0)
qg (xk)
sijk

P (0)
qg

(
xj

1−xk

)
sij

j,k soft−→ 2
(1− xi)sijksjk

P (0)
gg

(
xj

1− xi

)
+ 4
xjxksijksij

, (3.4.32)

1
s2
ijk

R(0)
qgg(i, j, k) j,k soft−→ 2(1− ε)Wjk

(1− xi)2s2
jks

2
ijk

−
(

2
xk(1− xi)

+ 4
xj(1− xi)

)
Tr(/i/j/k/̀)
sijsjksijk

.

(3.4.33)

There are no other double soft singularities.

As noted earlier, Eq. (3.4.24) also appears to have spurious singularities in both the

xi → 1 and xk → 1 limits. As in the three gluon splitting function, the singular

xi → 1 behaviour present in the second term in Eq. (3.4.24) cancels against the

B0(xk, xi) term in b0. The singularity as xk → 1 in the third term cancels against a

similar singularity produced by the A0(xi, xk) term in b0.

(b) In the case where the gluons are abelianised (g̃) or two photons are collinear to

the quark, then the splitting function is symmetric under the exchange of the two

bosons (j, k). We find,

P (0)
qγγ(ih, j, k) = P (0)

qg (xk)
sijk

P (0)
qg

(
xj

1−xk

)
sij

+ P (0)
qg (xj)
sijk

P (0)
qg

(
xk

1−xj

)
sik

+ 1
s2
ijk

R(0)
qγγ(i, j, k) , (3.4.34)
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P (0)
qγγ(i, jh, k) = 0 , (3.4.35)

P (0)
qγγ(i, j, kh) = 0 , (3.4.36)

where

R(0)
qγγ(i, j, k) = − (1− ε)2

(1− xk)
Tr(/j/i/k/̀)

sij
− (1− ε)2

(1− xj)
Tr(/j/i/k/̀)

sik

+b̃0(xi, xj, xk) + b̃(xi, xj, xk)
sijkTr(/j/i/k/̀)

sijsik
, (3.4.37)

and

b̃0(xi, xj, xk) = (1− ε)
(
2− (1− ε)A0(xj, xk)− (1− ε)A0(xk, xj)

)
,(3.4.38)

b̃(xi, xj, xk) = −xjP
(0)
qg (xj)

xk(1− xi)
− xkP

(0)
qg (xk)

xj(1− xi)

+ 4
(1− xi)

− 4(1− ε) + (1− ε)2. (3.4.39)

Eqs. (3.4.34)–(3.4.39) are equivalent to Eq. (5.6) in Ref. [38] up to a normalisation

of a factor of 4. By charge conjugation, we have

P
(0)
q̄γγ(i, j, k) = P (0)

qγγ(i, j, k). (3.4.40)

The behaviour of the P (0)
qγγ triple-collinear splitting function in the limit where indi-

vidual momentum fractions are small is tabulated in Table 3.3. As in the previous

case, there is no singular behaviour as xi → 0 reflecting the fact that there is no

singularity when the quark and spectator momentum are collinear and that there

is no soft quark singularity. We also see that there are contributions from both the

strongly-ordered contribution and from R(0)
qγγ when xj → 0 and xk → 0 that do not

cancel in the full P (0)
qγγ splitting function. However, only the strongly-ordered term

contributes in the soft j or soft k limits,

P (0)
qγγ(i, j, k) j soft−→ 2xi

sijxj

1
sik
P (0)
qg (xk), (3.4.41)

P (0)
qγγ(i, j, k) k soft−→ 2xi

sikxk

1
sij
P (0)
qg (xj). (3.4.42)

It can be seen that the strongly-ordered terms contribute the full double soft j, k limit



3.4. Results 77

(a product of two eikonal factors) and there are no contributions from b̃(xi, xj, xk).

There are no other double soft singularities.

qγγ
P

(0)
qg (xk)
sijk

P
(0)
qg

(
xj

1−xk

)
sij

+ (j ↔ k)
1
s
2
ijk

R(0)
qγγ(i, j, k) 1

s
2
ijk

P (0)
qγγ(i, j, k)

xi → 0 0 0 0

xj → 0 + 1
sijsijk

xi
xj

[
2P (0)

qg (xk)
]

+ 1
siksijk

1
xj

[
2P (0)

qg (xk)
]

+ 1
sijsik

xi
xj

[
P (0)
qg (xk)

]

+ 1
sijsijk

xi
xj

[
− P (0)

qg (xk)
]

+ 1
siksijk

1
xj

[
− P (0)

qg (xk)
]

+ 1
sijsik

xi
xj

[
P (0)
qg (xk)

]

+ 1
sijsijk

xi
xj

[
P (0)
qg (xk)

]

+ 1
siksijk

1
xj

[
P (0)
qg (xk)

]

xk → 0 + 1
sijsijk

1
xk

[
2P (0)

qg (xj)
]

+ 1
siksijk

xi
xk

[
2P (0)

qg (xj)
]

+ 1
sijsik

xi
xk

[
P (0)
qg (xj)

]

+ 1
sijsijk

1
xk

[
− P (0)

qg (xj)
]

+ 1
siksijk

xi
xk

[
− P (0)

qg (xj)
]

+ 1
sijsik

xi
xk

[
P (0)
qg (xj)

]

+ 1
sijsijk

1
xk

[
P (0)
qg (xj)

]

+ 1
siksijk

xi
xk

[
P (0)
qg (xj)

]

Table 3.3: Singular behaviour of the P (0)
qγγ triple-collinear splitting

function in the limit where individual momentum frac-
tions are small.

3.4.3 Quark-Antiquark Pair with a Collinear Gluon

There are also two distinct splitting functions representing the clustering of a gluon

with a quark-antiquark pair into a parent gluon.

(a) When the gluon is colour-connected to the antiquark, we find that,

P
(0)
gq̄q(ih, j, k) = P sub,(0)

gg (1− xi)
sijk

P
(0)
qq̄

(
xk

1−xi

)
sjk

+ 1
s2
ijk

R
(0)
gq̄q(i, j, k) , (3.4.43)

P
(0)
gq̄q(i, jh, k) = 0 , (3.4.44)

P
(0)
gq̄q(i, j, kh) = P

(0)
qq̄ (xk)
sijk

P (0)
qg

(
xi

1−xk

)
sij

+ P sub,(0)
gg (xi)
sijk

P
(0)
qq̄

(
xk

1−xi

)
sjk

, (3.4.45)
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where

R
(0)
gq̄q(i, j, k) = − 2

(1− xi)2
Wjk

s2
jk

− (1− ε)
(1− xk)

Tr(/i/j/k/̀)
sij

− 4xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

+c0(xi, xj, xk) + c(xi, xj, xk)
sijkTr(/i/j/k/̀)

sijsjk
, (3.4.46)

and

c0(xi, xj, xk) = −B0(xk, xi) + 1− (1− ε)A0(xi, xk), (3.4.47)

c(xi, xj, xk) = −
P

(0)
qq̄ (xk)

xi(1− xi)
+ 2

(1− xi)

+1− 2xi + 2(xj − xk − 2xjxk)
(1− ε)(1− xi)

. (3.4.48)

Eqs. (3.4.43)–(3.4.48) are equivalent to Eq. (5.8) in Ref. [38] up to a normalisation

of a factor of 4. By charge conjugation, we have that,

P
(0)
gq̄q(i, j, k) = P

(0)
gqq̄(i, j, k). (3.4.49)

gq̄q

P
(0)
qq̄ (xk)
sijk

P
(0)
qg ( xi

1−xk
)

sij

+ P
(0)
gg (xi)
sijk

P
(0)
qq̄ ( xk

1−xi
)

sjk

1
s
2
ijk

R
(0)
gq̄q(i, j, k) 1

s
2
ijk

P
(0)
gq̄q(i, j, k)

xi → 0 + 1
sijsijk

xj
xi

[
2P (0)

qq̄ (xk)
]

+ 1
sjksijk

1
xi

[
2P (0)

qq̄ (xk)
]

+ 1
sijsjk

xj
xi

[
P

(0)
qq̄ (xk)

]

+ 1
sijsijk

xj
xi

[
− P (0)

qq̄ (xk)
]

+ 1
sjksijk

1
xi

[
− P (0)

qq̄ (xk)
]

+ 1
sijsjk

xj
xi

[
P

(0)
qq̄ (xk)

]

+ 1
sijsijk

xj
xi

[
P

(0)
qq̄ (xk)

]

+ 1
sjksijk

1
xi

[
P

(0)
qq̄ (xk)

]

xj → 0 0 0 0

xk → 0 0 0 0

Table 3.4: Singular Behaviour of the P (0)
gq̄q triple-collinear splitting

function in the limit where individual momentum frac-
tions are small.

The behaviour of the P (0)
gq̄q triple-collinear splitting function in the limit where in-

dividual momentum fractions are small is tabulated in Table 3.4. There are no

collinear limits between the quark/antiquark and the spectator. There is singular
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behaviour as xi → 0. In the soft i limit only the strongly-ordered term contributes,

R
(0)
gq̄q(i, j, k) i soft−→ 0, (3.4.50)

P
(0)
gq̄q(i, j, k) i soft−→ 2xj

sijxi

1
sjk

P
(0)
qq̄ (xk). (3.4.51)

There are double soft singularities when the qq̄ pair are both soft. These are contained

iteratively in the P (0)
gg × P

(0)
qq̄ contribution and in R(0)

gq̄q(i, j, k),

P (0)
gg (xi)
sijk

P
(0)
qq̄

(
xk

1−xi

)
sjk

j,k soft−→ 2
(1− xi)sijksjk

P
(0)
qq̄

(
xk

1− xi

)
, (3.4.52)

1
s2
ijk

R
(0)
gq̄q(i, j, k) j,k soft−→ − 2Wjk

(1− xi)2s2
jks

2
ijk

. (3.4.53)

We identify the double soft terms in Eq. (3.4.53) as uniquely double unresolved.

There are no other double soft singularities.

(b) The QED-like splitting, where the gluon, quark and antiquark form a photon-like

colour singlet is given by,

P
(0)
qgq̄(ih, j, k) = P

(0)
qq̄ (1− xk)
sijk

P (0)
qg

(
xj

1−xk

)
sij

+ P
(0)
qq̄ (1− xi)
sijk

P (0)
qg

(
xj

1−xi

)
sjk

+ 1
s2
ijk

R
(0)
qgq̄(i, j, k) , (3.4.54)

P
(0)
qgq̄(i, jh, k) = 0 , (3.4.55)

P
(0)
qgq̄(i, j, kh) = P

(0)
qq̄ (1− xk)
sijk

P (0)
qg

(
xj

1−xk

)
sij

+ P
(0)
qq̄ (1− xi)
sijk

P (0)
qg

(
xj

1−xi

)
sjk

+ 1
s2
ijk

R
(0)
qgq̄(i, j, k) , (3.4.56)

where

R
(0)
qgq̄(i, j, k) = (1− ε)

(1− xk)
Tr(/i/j/k/̀)

sij
+ (1− ε)

(1− xi)
Tr(/i/j/k/̀)

sjk

+c̃0(xi, xj, xk) + c̃(xi, xj, xk)
sijkTr(/i/j/k/̀)

sijsjk
, (3.4.57)

and

c̃0(xi, xj, xk) = −2 + (1− ε)A0(xi, xk) + (1− ε)A0(xk, xi), (3.4.58)
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qgq̄
P

(0)
qq̄ (1−xk)
sijk

P
(0)
qg (

xj
1−xk

)
sij

+ (i↔ k)
1
s
2
ijk

R
(0)
qgq̄(i, j, k) 1

s
2
ijk

P
(0)
qgq̄(i, j, k)

xi → 0 0 0 0

xj → 0
+ 1
sijsijk

xi
xj

[
2P (0)

qq̄ (xk)
]

+ 1
sjksijk

xk
xj

[
2P (0)

qq̄ (xk)
] + 1

sijsijk

xi
xj

[
− 2P (0)

qq̄ (xk)
]

+ 1
sjksijk

xk
xj

[
− 2P (0)

qq̄ (xk)
] 0

xk → 0 0 0 0

Table 3.5: Singular behaviour of the P (0)
qgq̄ triple-collinear splitting

function in the limit where individual momentum frac-
tions are small.

c̃(xi, xj, xk) = −
P

(0)
qq̄ (xi)
xj

−
P

(0)
qq̄ (xk)
xj

+ 2ε
(1− ε)xj. (3.4.59)

Eqs. (3.4.54)–(3.4.59) are equivalent to Eq. (5.10) in Ref. [38] up to a normalisation

of a factor of 4. Note that because of charge conjugation this splitting function is

symmetric under the exchange of the quark and antiquark i, k.

The behaviour of the P (0)
qgq̄ triple-collinear splitting function in the limit where in-

dividual momentum fractions are small is tabulated in Table 3.5. There are no

collinear limits between the quark/antiquark and the spectator. In the xj → 0 limit,

the contributions from the strongly-ordered terms and R(0)
qgq̄ cancel. However, in the

soft j limit the 1/(xjsij) and 1/(xjsjk) terms cancel between the P × P and R(0)
qgq̄

contributions, such that

1
s2
ijk

R
(0)
qgq̄(i, j, k) j soft−→

(
− 2xi
xjsij

− 2xk
xjsjk

+ 2sik
sijsjk

)
1
sik
P

(0)
qq̄ (xk), (3.4.60)

P
(0)
qgq̄(i, j, k) j soft−→ 2sik

sijsjk

1
sik
P

(0)
qq̄ (xk). (3.4.61)

There are no double soft singularities.
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3.4.4 Quark-Antiquark Pair with a Collinear Quark or

Antiquark

Finally, we consider the clustering of a quark-antiquark pair (QQ̄) and a quark q to

form a parent quark with the same flavour as q. There are two splitting functions,

one where the quark flavours are different and one where the quarks have the same

flavour.

(a) For distinct quarks, we have

P
(0)
qQ̄Q

(ih, j, k) = P (0)
qg (1− xi)
sijk

P
(0)
qq̄

(
xj

1−xi

)
sjk

+ 1
s2
ijk

R
(0)
qQ̄Q

(i, j, k) , (3.4.62)

P
(0)
qQ̄Q

(i, jh, k) = 0 , (3.4.63)

P
(0)
qQ̄Q

(i, j, kh) = 0 , (3.4.64)

where

R
(0)
qQ̄Q

(i, j, k) = − 2
(1− xi)2

Wjk

s2
jk

− 2xk
(1− xi)2

Tr(/i/j/k/̀)
sjk

− 2xj
(1− xi)2

Tr(/i/k/j/̀)
sjk

+d0(xi, xj, xk), (3.4.65)

and

d0(xi, xj, xk) = −1
2(B0(xj, xi) +B0(xk, xi)) + 1 + ε. (3.4.66)

Eqs. (3.4.62)–(3.4.66) are equivalent to Eq. (5.12) in Ref. [38], up to a normalisation

of a factor of 4. Note that this splitting function is symmetric under the exchange

of the quark and antiquark j, k of the same flavour and by charge conjugation we

have that,

P
(0)
qQ̄Q

(i, j, k) = P
(0)
qQQ̄

(i, j, k). (3.4.67)

Note that we have chosen to make this symmetry explicit in the trace structures.

There are no collinear limits between the quark/antiquark and the spectator, and

no soft limits.

The double soft singularities when the QQ̄ pair are both soft are contained iteratively
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in the P (0)
qg ×P

(0)
qq̄ contribution and in theWjk term in R(0)

qQ̄Q
(i, j, k), and are equivalent

to those given in Eqs. (3.4.52,3.4.53),

P (0)
qg (1− xi)
sijk

P
(0)
qq̄

(
xj

1−xi

)
sjk

j,k soft−→ 2
(1− xi)sijksjk

P
(0)
qq̄

(
xj

1− xi

)
, (3.4.68)

1
s2
ijk

R
(0)
qQ̄Q

(i, j, k) j,k soft−→ − 2Wjk

(1− xi)2s2
jks

2
ijk

. (3.4.69)

There are no other double soft singularities.

(b) For identical quarks, we have

P
(0)
qq̄q(ih, j, k) = 1

s2
ijk

R
(0)
qq̄q(i, j, k) , (3.4.70)

P
(0)
qq̄q(i, jh, k) = 0 , (3.4.71)

P
(0)
qq̄q(i, j, kh) = 1

s2
ijk

R
(0)
qq̄q(i, j, k) , (3.4.72)

where

R
(0)
qq̄q(i, j, k) = −2(1− ε)

(1− xi)
Tr(/i/j/k/̀)

sjk
− 2(1− ε)

(1− xk)
Tr(/i/j/k/̀)

sij

+d̃0(xi, xj, xk) + d̃(xi, xj, xk)
sijkTr(/i/j/k/̀)

sijsjk
, (3.4.73)

and

d̃0(xi, xj, xk) = −2(1− ε)(ε+ A0(xi, xk) + A0(xk, xi)), (3.4.74)

d̃(xi, xj, xk) = − 2xj
(1− xi)(1− xk)

+(1− ε)
(

(1− xk)
(1− xi)

+ (1− xi)
(1− xk)

+ 2 + ε

)
. (3.4.75)

Eqs. (3.4.70)–(3.4.75) are equivalent to Eq. (5.14) in Ref. [38], up to a normalisation

of a factor of 4. Because of charge conjugation,

P
(0)
q̄qq̄(i, j, k) = P

(0)
qq̄q(i, j, k). (3.4.76)

There are no collinear limits between the quark/antiquark and the spectator, and

no soft limits. There are no double soft singularities.
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3.4.5 N=1 SUSY Identity

The two particle and three particle splitting functions are related by an N = 1

supersymmetry (SUSY) identity that relates the mass of the spin-1 gluon to the

spin-1/2 gluino. The gluino can be identified as a quark in this scenario. At one

loop, the two particle cuts of the one-loop self energy are equal, leading to the

identity [124]

P (0)
gg (x) + P

(0)
qq̄ (x) = P (0)

qg (x) + P (0)
gq (x), (3.4.77)

which only holds in the d = 4, ε = 0 limit. This is because in dimensional regular-

isation the number of degrees of freedom of the gluon and gluino are not equal and

SUSY is broken. The left-hand side of Eq. (3.4.77) are the two particle cuts of the

one-loop gluonic self energy - i.e. the splitting functions which split from a gluon,

while on the right are those which split from a quark (gluino).

Similarly the triple-collinear splitting functions are related by the three-particle cuts

of the two-loop self energies leading to the N = 1 SUSY identity [38] (where ε = 0),

(P (0)
ggg + 2P (0)

gq̄q + P
(0)
qgq̄)(i, j, k) + (5 perms.)

= (2P (0)
qgg + P (0)

qγγ + 2P (0)
qQ̄Q

+ P
(0)
qq̄q)(i, j, k) + (5 perms.). (3.4.78)

The strongly-ordered contributions automatically satisfy Eq. (3.4.78) through re-

peated use of Eq. (3.4.77). The remaining contributions satisfy,

(R(0)
ggg + 2R(0)

gq̄q +R
(0)
qgq̄)(i, j, k) + (5 perms.)

= (2R(0)
qgg +R(0)

qγγ + 2R(0)
qQ̄Q

+R
(0)
qq̄q)(i, j, k) + (5 perms.). (3.4.79)

In Eq. (3.4.79), the terms proportional to each possible kinematic pole structure,

1/s2
ijk, 1/(sijksij), 1/(sijsjk), 1/s2

ij and cyclic permutations separately cancel. This

leads to relations amongst the coefficients of the trace-structures and amongst

the functions multiplying 1/s2
ijk. Additionally, by analysing terms proportional
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to 1/(sijsjk), the following relationship holds (where ε = 0):

2a(xi, xj, xk) + 2c(xi, xj, xk) + c̃(xi, xj, xk) + (i↔ k)

= 2b(xi, xj, xk) + b̃(xj, xi, xk) + d̃(xi, xj, xk) + (i↔ k). (3.4.80)

3.5 Summary

In this chapter, we have rewritten the triple-collinear splitting functions P (0)
abc in a

way that exposes the single and double unresolved limits. In particular, we have

isolated the strongly-ordered iterated contributions as products of the usual spin-

averaged two-particle splitting functions (generically P×P ) and a remainder function

R
(0)
abc(i, j, k) that is finite when any pair of {i, j, k} are collinear.

To help with the discussion of the unresolved limits, we introduced the notion of

internal and external singularities. Internal singularities are only associated with

small invariants in the set {sij, sik, sjk, sijk} and correspond to simple-collinear, single

soft or triple-collinear i, j, k contributions. By construction,

- Internal simple-collinear singularities between a pair of {i, j, k} lead to a factor

of 1/sij and are captured by the iterated two-particle splitting contributions

(P × P ). We write R(0)
abc in a way that makes it visibly finite in each of these

simple-collinear limits.

- Internal single soft singularities, when the soft particle is colour-connected

to the other two collinear particles, produce terms like sik/(sijsjk) and appear

only in R(0)
abc.

External singularities reference other particles involved in the scattering - for ex-

ample, the spectator particles used to define the momentum fractions of the three

collinear particles. This includes external simple-collinear singularities involving one

of the collinear particles and a spectator particle, soft radiation where one of the
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spectator particles is colour-connected to the collinear particle or other external

double unresolved singularities. These show up in the following way,

- When external simple-collinear singularities like 1/xi are present in the full

P
(0)
abc splitting function, they are all contained in P × P terms.

- When external simple-collinear singularities like 1/xi do not appear in the

full P (0)
abc splitting function, then any terms proportional to 1/xi in P × P will

cancel with analogous terms coming from R
(0)
abc.

- External single soft singularities where the soft particle is colour-connected

to a spectator particle produce terms like xi/(xjsij) and appear only in the

iterated P × P terms.

In the triple-collinear splitting function, there are two inverse powers of the small

invariants. Double collinear (two pairs of collinear particles), soft-collinear, double

soft or other triple-collinear limits than i, j, k, all depend on singularities involving

one or more of the momentum fractions and are all therefore external singularities.

In particular, the double soft limit requires at least one singular factor involving the

momentum fractions and is classed as an external singularity. These singularities

appear in both the iterated P × P terms and in R
(0)
abc. Double soft singularities

are always the overlap between triple-collinear {i, j, k} and external triple-collinear

singularities.

We find it useful to think of a hard radiator particle that emits possibly unresolved

radiation, together with a spectator particle. Therefore, we have split each splitting

function into at most three pieces according to this principle.

Decomposing the triple-collinear splitting functions, as presented in this chapter,

will prove crucial in developing idealised antenna functions for an improved NNLO

antenna-subtraction scheme. We will explore the idealisation of antenna functions

in Chapters 5 and 6, after introducing the antenna-subtraction architecture in

Chapter 4.





Chapter 4

Antenna Subtraction

This chapter is intended to illustrate the antenna subtraction method up to NNLO.

We will set the context in Section 4.1 by introducing the theory for both slicing and

subtraction schemes and examples of them at various orders. After that, we will

summarise the concept of antenna functions and the successes of antenna subtraction

at NNLO in Section 4.2. We will introduce all the antenna functions necessary

for NNLO calculations, including their integrals, and the momentum mappings

necessary for building subtraction terms. Next, we will explore the structure of

antenna subtraction at NLO in Section 4.3 before engaging in an extended study of

NNLO antenna subtraction in Section 4.4. This includes the definition of subtraction

terms for matrix elements with two real emissions, one real emission with one virtual

particle and two virtual particles. We end by summarising the chapter in Section 4.5.

4.1 Slicing and Subtraction

As discussed in Chapters 1 and 2, when performing higher-order calculations, a

particular challenge is the handling and cancellation of IR divergences across different

multiplicity phase spaces. In general, there are two classes of scheme for extracting

and handling the IR divergences: slicing and subtraction.
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Slicing schemes work by identifying a parameter which separates the IR-finite from

the IR-divergent regions of the phase space. For a generic differential m-jet cross

section, we have the full m+1 particle phase space dΦm+1, split into the IR-divergent

region dΨm+1 and the IR-finite region dΦm+1 \dΨm+1. The idea at NLO is presented

schematically by

dσ̂NLO =
∫
dΦm

V +
∫
dΦm+1

R, (4.1.1)

≈
∫
dΦm

V +
∫
dΦm+1\dΨm+1

R +
∫
dΨm+1

F, (4.1.2)

where V is the virtual correction and R is the real correction to the differential cross

section dσ̂. F will be introduced below. In the IR-finite regions, the phase-space

integration can be calculated numerically in 4 dimensions. In the IR-divergent re-

gions, slicing schemes utilise the universal factorisation properties of matrix elements.

They use these properties to approximate the real corrections in the IR-divergent

regions with a relevant function, F in the example above, which can be analytically

integrated in d dimensions. After integration, one can verify the cancellation of IR-

divergences expressed as ε-poles between the integrated analytic functions and the

virtual contributions. Complications arise in ensuring that the result is independent

of the slicing parameter, which only occurs if the approximation used is applied deep

enough within the singular regions. This cancellation of the slicing parameter must

be performed numerically, to a high enough accuracy, between the integrated parts

of the real corrections. However, the deeper we slice into the IR-divergent region,

the more unstable and computationally costly the numerical integration becomes.

Therefore, the final result is necessarily approximate because the functions intro-

duced in the IR-divergent regions are only completely valid when in the exact IR

limits and F neglects sub-leading terms.

Slicing schemes demonstrate non-local cancellation of the IR divergences because

they do not cancel point-by-point in phase space but instead cancel after integration.

Examples of slicing schemes include initial developments in the 1990s [125,126] and

more recent schemes such as qT -slicing [108, 127], which slices on the transverse
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momentum of a colour singlet, and N -jettiness [128, 129], which slices on an event

shape parameter.

Subtraction schemes work by the introduction of well chosen counterterms which

cancel the IR divergences point-by-point (locally) in the phase space. The combina-

tion of all the counterterms must contribute 0 to the final result. At NLO, this is

described schematically by

dσ̂NLO =
[ ∫

dΦm
V +

∫
dΦm+1

S

]
+
∫
dΦm+1

(R− S)

=
∫
dΦm

[
V +

∫
dΨ
S

]
+
∫
dΦm+1

(R− S), (4.1.3)

where S is the real subtraction term, which ensures that (R−S) is IR-finite at every

point in phase space. Since this combination is IR-finite, it can be integrated numer-

ically, utilising modern Monte Carlo sampling techniques. In order to demonstrate

full cancellation of IR divergences, a subtraction scheme must verify the cancella-

tion of ε-poles due to IR divergences in the first two terms of Eq. (4.1.3). This

requires the subtraction term, S, to be analytically integrable over a well-defined

single unresolved phase space, dΨ, which is defined according to

dΦm+1 = dΨdΦm. (4.1.4)

If this is the case, the implicit divergences in S, once integrated over dΨ, become

explicit as ε-poles and cancel against the integrand V under the dΦm integral.

At NLO, fully-differential calculations have been automated thanks to two general

subtraction schemes known as Catani-Seymour dipole subtraction [122] and FKS

subtraction [130], which were developed in the late-1990’s. The generality of these

subtraction schemes has facilitated two fully-differential NLO matching schemes,

known as MC@NLO [109] and POWHEG [110, 111] which systematically combine

NLO fixed-order calculations with all-order parton-shower resummation. Together

with automated one-loop matrix-element generators [70,131], these schemes are used

for fully-differential high-multiplicity processes. These NLO subtraction schemes
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form the backbone of state-of-the-art multi-purpose event generators [68,69,112,113,

132], see Ref. [71] for a recent summary. Furthermore, newer methods at NLO have

also been developed [133–135].

At NNLO, subtraction can be described schematically by

dσ̂NNLO =
∫
dΦm

V V

+
∫
dΦm+1

(RV − SRV ) +
∫
dΦm+1

SRV

+
∫
dΦm+2

(RR− SRR) +
∫
dΦm+2

SRR. (4.1.5)

There are three corrections at NNLO to the differential cross section dσ̂: double-real

(RR), real-virtual (RV ) and double-virtual (V V ). SRR is the double-real subtraction

term, which ensures that (RR− SRR) is IR-finite at every point in phase space; in

other words, SRR matches the implicit singularity structure of RR. The real-virtual

correction contains both types of IR divergence: implicit and explicit. SRV is chosen

such that the implicit divergences of RV are cancelled. While parts of SRV may

contain explicit divergences, the full SRV must be ε-finite. The ε-poles in RV are

subtracted by a different contribution, as we will see. The double-real correction

contains both single and double unresolved divergences which must be subtracted

by SRR. As such, we can rewrite SRR as

SRR = SRR,1 + SRR,2, (4.1.6)

to separate the single and double unresolved parts of SRR respectively. Terms in

SRR,1 must then be integrated over a single unresolved phase space (dΨ1, similarly

to NLO), generating ε-poles (up to ε−2), which cancel against those in RV under

the dΦm+1 integral, due to the KLN theorem. Terms in SRR,2 must be integrated

over a double unresolved phase space, dΨ2, generating ε-poles (up to ε−4). These

single and double unresolved phase spaces must satisfy, with unspecified momentum

mappings,

dΦm+2 = dΨidΦm+2−i, (4.1.7)
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for i ∈ {1, 2}. Using this we can express the finite blocks, in squared brackets, at

each level of the NNLO subtraction,

dσ̂NNLO =
∫
dΦm

[
V V +

∫
dΨ1

SRV +
∫
dΨ2

SRR,2

]

+
∫
dΦm+1

[
RV − SRV +

∫
dΨ1

SRR,1

]

+
∫
dΦm+2

[
RR− SRR

]
. (4.1.8)

The SRV term contains only single unresolved divergences and requires integration

over a single unresolved phase space (dΨ1, similarly to NLO), generating up to 2

further ε-poles in addition to those already present in SRV . The KLN theorem

ensures that, at the double-virtual level, all the explicit divergences (ε-poles) in V V

are cancelled under the dΦm integral by SRV integrated over a single unresolved

phase space and SRR,2 integrated over a double unresolved phase space.

Subtraction at NNLO therefore contains multiple complications not present at NLO:

we require cancellations to be apparent for many overlapping unresolved configura-

tions; at the real-virtual level we require cancellation of both implicit and explicit

singularities simultaneously; and we require more complex phase-space integrations.

There have been multiple approaches taken to create subtraction terms which minim-

ise these complications, each representing a different subtraction scheme. At NNLO,

there are the antenna subtraction scheme [1], projection-to-Born [107], CoLoRFul-

NNLO [136], nested soft-collinear subtraction [137], local analytic sector subtrac-

tion [138], geometric subtraction [139] and sector-improved residue subtraction [140];

see Ref. [84] for a review. The implementation of these methods is currently done

one process at a time and they do not straightforwardly scale to higher multiplicities.
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At N3LO, subtraction can be described schematically by

dσ̂N3LO =
∫
dΦm

V V V

+
∫
dΦm+1

(RV V − SRV V ) +
∫
dΦm+1

SRV V

+
∫
dΦm+2

(RRV − SRRV ) +
∫
dΦm+2

SRRV

+
∫
dΦm+3

(RRR− SRRR) +
∫
dΦm+3

SRRR. (4.1.9)

There are four corrections at N3LO to the differential cross section dσ̂: RRR, RRV ,

RV V and V V V . SRRR is the triple-real subtraction term, which ensures that (RRR−

SRRR) is IR-finite at every point in phase space. The double-real-virtual correction

(RRV ) contains both types of IR divergence: implicit and explicit. SRRV is chosen

such that the implicit divergences of RRV are cancelled. The same comments for

RRV can be applied to the real-double-virtual correction (RV V ) and its subtraction

term. The triple-real correction (RRR) contains single, double and triple unresolved

divergences which must be subtracted by SRRR. We can rewrite SRRR into single,

double and triple unresolved parts respectively,

SRRR = SRRR,1 + SRRR,2 + SRRR,3. (4.1.10)

Terms in SRRR,1 must then be integrated over a single unresolved phase space (dΨ1,

similarly to NLO), generating ε-poles (up to ε−2), which cancel against those in RRV

under the dΦm+2 integral, by the KLN theorem. Terms in SRRR,2 must be integrated

over a double unresolved phase space (dΨ2, similarly to NNLO), generating ε-poles

(up to ε−4). Terms in SRRR,3 must be integrated over a triple unresolved phase space,

dΨ3, generating ε-poles (up to ε−6). The SRRV term contains single and double

unresolved parts,

SRRV = SRRV,1 + SRRV,2, (4.1.11)

which require integration over a single (dΨ1) and double (dΨ2) unresolved phase

space respectively. The SRV V term contains single unresolved limits which require

integrating over a single unresolved phase space, dΨ1. The KLN theorem ensures that,
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at every level, all the explicit divergences (ε-poles) in each correction are cancelled

by integrated parts of various subtraction terms. Using the decomposed structure of

the subtraction terms we can present the finite blocks, in squared brackets, at each

level of the N3LO calculation,

dσ̂N3LO =
∫
dΦm

[
V V V +

∫
dΨ1

SRV V +
∫
dΨ2

SRRV,2 +
∫
dΨ3

SRRR,3

]

+
∫
dΦm+1

[
RV V − SRV V +

∫
dΨ1

SRRV,1 +
∫
dΨ2

SRRR,2

]

+
∫
dΦm+2

[
RRV − SRRV +

∫
dΨ1

SRRR,1

]

+
∫
dΦm+3

[
RRR− SRRR

]
. (4.1.12)

Unfortunately, due to the great complexity only hinted at here, a process-independent

subtraction scheme is not available. Whether an N3LO calculation is phenomenolo-

gically justified depends on the particular process but nonetheless there have been a

range of N3LO calculations to date. At N3LO, inclusive [85–95] and differential cal-

culations have started to emerge [33,96–105], the latter mainly for 2→ 1 processes

via the use of the Projection-to-Born method [107] or qT -slicing techniques [108]

to promote established NNLO calculations to N3LO. This is done by using fully

differential NNLO calculations for production of X+jet for an N3LO calculation of

X production, where the jet has been taken unresolved. We note that the first steps

towards an N3LO antenna-subtraction scheme have been taken in Refs. [106,141,142].

Nevertheless, calculations for higher multiplicities are currently hindered by the lack

of process-independent local N3LO subtraction schemes, since good progress is being

made on three-loop matrix elements, see Refs. [143–147].

4.2 Introduction to Antenna Subtraction

The antenna subtraction scheme is one of the most successful methods for fully-

differential NNLO calculations in QCD. It was first proposed for perturbative QCD

calculations with massless partons in electron-positron annihilation in Refs. [1, 148,
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149]. It allowed the calculation of the NNLO corrections to 3-jet production and

related event-shape observables in electron-positron annihilation [108,150–153]. The

extension of the scheme to the treatment of initial-state radiation relevant to pro-

cesses with initial-state hadrons was established at NLO in Ref. [154] and extended

to NNLO in Refs. [155–160]. A cornerstone of the antenna-subtraction framework

is that all of the integrals relevant for processes at NNLO with massless quarks are

known analytically [155, 157–159]. The scheme has now been applied to a range

of LHC processes through the parton-level NNLOJET Monte Carlo event gener-

ator. The extension of antenna subtraction for the production of heavy particles

at hadron colliders has been studied in Refs. [161–168]. Besides its application in

fixed-order calculations, the antenna framework has been utilised in antenna-shower

algorithms [169–174], where it enabled proof-of-concept frameworks for higher-order

corrections [31] and fully-differential NNLO matching [115].

Antenna subtraction is based on a simple idea: the singular behaviour of a matrix

element is determined by universal factorisation properties, so they are also present

in the lowest-multiplicity matrix elements. That is, any subtraction term can be built

out of universal building blocks, antenna functions, extracted from ratios of simpler

matrix elements. This has the benefit that the integration of each subtraction term is

usually less challenging than the state-of-the-art loop integrals. Additionally, antenna

functions smoothly interpolate between natural groups of unresolved singularities.

In particular, an antenna function should encode all the colour-ordered unresolved

singularities between two hard partons. An example of an antenna subtraction term

for a matrix element ML
m is given by

X`
n+2(ih1 , i3, . . . , in+2, i

h
2)ML−`

m−n(. . . , I1, I2, . . .) , (4.2.1)

where X`
n+2 represents an `-loop, (n + 2)-particle antenna, ih1 and ih2 represent the

hard radiators, and i3 to in+2 denote the n unresolved particles. Particle i carries

a four-momentum pµi . As the hard radiators may either be in the initial or in the

final state, final-final (FF), initial-final (IF) and initial-initial (II) configurations
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need to be considered in general. ML−`
m−n is the reduced matrix element, with n fewer

particles, ` fewer loops and where Ih1 and Ih2 represent the particles obtained through

an appropriate mapping,

{pi1 , pi3 , . . . , pin+2 , pi2} 7→ {pI1 , pI2}. (4.2.2)

At NLO, the number of loops ` is equal to 0 and the number of unresolved particles

is equal to 1; we only have the X0
3 (ih, j, kh)-type antennae. These contain the

unresolved singularities for ihj collinear, j soft and khj collinear. A suitable 3→ 2

mapping, for NLO FF configurations, requires

pI + pK = pi + pj + pk, p2
I = p2

K = 0, always,

pI = pi + pj, pK = pk, in ij collinear limit,

pK = pk + pj, pI = pi, in kj collinear limit,

pI = pi, pK = pk, in j soft limit.

A general on-shell momentum mapping which satisfies these properties is the antenna

mapping, first presented in Ref. [41]. It is given by,

pI = xpi + rpj + zpk, (4.2.3)

pK = (1− x)pi + (1− r)pj + (1− z)pk, (4.2.4)

where

x = 1
2(sik + sij)

[
(1 + ρ1)sijk − 2rsjk

]
, (4.2.5)

r = sjk
sij + sjk

, (4.2.6)

z = 1
2(sik + sjk)

[
(1− ρ1)sijk − 2rsij

]
, (4.2.7)

ρ2
1 = 1 + 4r(1− r) sijsjk

sijksik
. (4.2.8)

In the antenna framework, kinematic mappings are agnostic to the roles of the

parent radiator partons and the transverse recoil of any additional emission is shared

between them. Note that this is different to dipole-like kinematics, in which one of



96 Chapter 4. Antenna Subtraction

the parents is identified as the emitter and the other as the recoiler, whose role is

solely to absorb the transverse recoil. Similar mappings are available for the IF and

II configurations, which differ in how the recoil is redistributed [154].

At NNLO there are two additional cases: X0
4 corresponding to ` = 0 loops and n = 2

unresolved particles; and X1
3 corresponding to ` = 1 loop and n = 1 unresolved

particle. For subtraction terms at NNLO containing products of X0
3 functions, the

3 → 2 mapping can be iterated between the two terms. For subtraction terms

containing X1
3 , the 3 → 2 mapping can be used. However, for subtraction terms

at NNLO containing X0
4 antenna functions, used for subtracting colour-connected

double unresolved limits, a new 4→ 2 mapping is required.

At NNLO there is a FF double unresolved antenna momentum mapping to describe

the coalescence of four particles into two, (i, j, k, l)→ (I, L), which satisfies similar

properties to its NLO counterpart [41]. The properties it must obey are given by

pI + pL = pi + pj + pk + pl, p2
I = p2

L = 0, always,

pI = pi + pj, pL = pk + pl, in ij and kl collinear limit,

pI = pi, pL = pk + pl, in j soft and kl collinear limit,

pL = pl, pI = pi + pj, in k soft and ij collinear limit,

pI = pi + pj + pk, pL = pl, in ijk collinear limit,

pL = pj + pk + pl, pI = pi, in jkl collinear limit,

pI = pi, pL = pl, in jk soft limit. (4.2.9)

Therefore, it is suitable for four-parton antenna functions with divergent behaviour

in these limits only, where i and l are hard and j and k are unresolved. The FF

4→ 2 mapping is given in full by

pI = x1pi + x2pj + x3pk + x4pl, (4.2.10)

pL = (1− x1)pi + (1− x2)pj + (1− x3)pk + (1− x4)pl, (4.2.11)
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where

x1 = 1
2(sij + sik + sil)

[
(1 + ρ2)sijkl − x2(sjk + 2sjl)− x3(sjk + 2skl)

+(x2 − x3)
(
sijskl − siksjl

sil

)]
, (4.2.12)

x2 = sjk + sjl
sij + sjk + sjl

, (4.2.13)

x3 = skl
sik + sjk + skl

, (4.2.14)

x4 = 1
2(sil + sjl + skl)

[
(1− ρ2)sijkl − x2(sjk + 2sij)− x3(sjk + 2sik)

−(x2 − x3)
(
sijskl − siksjl

sil

)]
. (4.2.15)

ρ2 is defined by

ρ2
2 = 1 + (x2 − x3)2

s2
ils

2
ijkl

λ(sijskl, silsjk, siksjl)

+ 1
silsijkl

(
2(x2(1− x3) + x3(1− x2))(sijskl + siksjl − sjksil)

+4x2(1− x2)sijsjl + 4x3(1− x3)sikskl
)
, (4.2.16)

while the Källen function is given by

λ(x, y, z) = x2 + y2 + z2 − 2(xy + xz + yz). (4.2.17)

This mapping has the useful property that it reduces to the 3→ 2 antenna mapping

in any single unresolved limit. This proves crucial so that the single unresolved

divergences can be removed from X0
4M

0
m−2 by products like X0

3X
0
3M

0
m−2 with two

iterated 3→ 2 mappings. We will see this in more detail in Section 4.4.4.

At N3LO there are three additional cases: X0
5 corresponding to ` = 0 loops and

n = 3 unresolved particles; X1
4 corresponding to ` = 1 loop and n = 2 unresolved

particles; and X2
3 corresponding to ` = 2 loops and n = 1 unresolved particle.
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4.3 NLO Antenna Subtraction

While NNLO antenna subtraction will form the bulk of the discussion, it is instructive

to detail antenna subtraction at NLO, as it is considerably simpler. We can begin

with the generic NLO subtraction formula in Eq. (4.1.3), where we now specify the

content of the subtraction term in the FF case for the leading-colour calculation of

an m-jet cross section, correct to an overall factor,

S ∼
∑

perms
dΦm+1

∑
j

X0
3 (ih, j, kh)M0

m(..., I,K, ...)J (m)
m . (4.3.1)

The sum over permutations is the sum over all contributing colour-orderings, while

the sum over the unresolved particle j is the sum over all final state particles, so

that the subtraction term captures unresolved limits from any of the particles in

a particular colour-ordering. The antenna function X0
3 is different depending on

the particle content of i, j, k, denoted by a different letter. M0
m(..., Ih, Kh, ...) is

the reduced squared matrix element relative to the real squared matrix element

correction,

R ∼
∑

perms
M0

m+1(..., i, j, k, ...)J (m+1)
m , (4.3.2)

that S is subtracting against. The jet function J (m+n)
m applies the appropriate jet

algorithm for the experimental comparison, which ensures there are m jets from

m+ n partons, where we have suppressed its m+ n arguments. The arguments of

the reduced matrix element are related to those of the real matrix element by the

antenna momentum mapping for (i, j, k) → (I,K) in Eqs. (4.2.3) and (4.2.4) and

the colour-connections can be seen in Fig. 4.1. We specify that dΦm denotes the

i j k I K

Figure 4.1: Diagram showing the colour-connections within the mat-
rix element before and after the 3 → 2 antenna mo-
mentum mapping [1].
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2→ m particle phase space given in its unfactorised form by,

dΦm(p1, ..., pm; k1, k2) =
dd−1p1

2E1(2π)d−1 . . .
dd−1pm

2Em(2π)d−1 (2π)dδd(p1 + . . .+ pm − k1 − k2), (4.3.3)

where {pi} are the m final-state momenta, Ei is the energy component of the four-

momentum pi and {k1, k2} are the initial-state momenta. The subtraction terms

for a sub-leading colour calculation include more colour-connections because the full

correction cannot be written as a sum of squared colour-ordered matrix elements,

see Refs. [7, 160].

The success of antenna subtraction depends upon the analytic integrability of the

antenna functions. In the FF case at NLO which we focus on here, we integrate

antennae over the single unresolved antenna phase space, dΦXijk
. In order to compare

the integrated antennae to the virtual matrix element, the antenna phase space must

satisfy

dΦm+1(p1, ..., pi, pj, pk, ..., pm+1; k1, k2) =

dΦXijk
(pi, pj, pk; pI , pK)dΦm(p1, ..., pI , pK , ..., pm+1; k1, k2), (4.3.4)

which fixes dΦXijk
at m = 2 because dΦ2 = P2, a constant, we have

dΦXijk
= dΦ3

P2
. (4.3.5)

Full details are given in Ref. [175] and dΦXijk
in its factorised form is given in

Appendix B.1. We define the integrated antennae as

X 0
3 (sijk) = 8π2(4π)−εeεγE

∫
dΦXijk

X0
3 (ih, j, kh), (4.3.6)

where we have included a normalisation factor to account for powers of the strong-

coupling constant. By integrating the antennae, the subtraction term which cancels

against the virtual matrix element correction,

V ∼
∑

perms
M1

m(..., i, j, k, ...)J (m)
m , (4.3.7)
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can be denoted schematically by

∫
dΦXijk

S ∼
∑

perms

∑
i,j

X 0
3 (sij)M0

m(..., i, j, ...)J (m)
m , (4.3.8)

where the permutations are over those colour-orderings which contribute and the

sum is over all colour-adjacent dipole pairs, (i, j). Technically, there can be multiple

distinct antennae with the same-type parents, so the integrated antennae are grouped

into the integrated antenna dipoles, J (1)
2 (i, j), introduced in Section 1.5. Since the

J
(1)
2 have the same pole structure as Catani’s IR singularity operators [28, 29], the

virtual subtraction term is guaranteed to cancel the one-loop IR singularities in the

virtual correction. Additionally, the KLN theorem guarantees this cancellation, since

each term in the virtual subtraction term is an integrated version of a term in the

real subtraction term.

In Chapters 5 and 6 we propose an alternative formulation of antenna functions, so

we label the antenna functions extracted using the original method as X`,OLD
n+2 . The

original method for extracting the X0,OLD
3 is by fixing them according to a ratio of

simple tree-level squared matrix elements,

X0,OLD
3 (i, j, k) = Sijk/IK

M0
3 (i, j, k)

M0
2 (I,K)

, (4.3.9)

which contain the desired single unresolved limits. The two-particle squared matrix

element depends only on sIK = sijk. Here we focus only on the final-final config-

uration. Antenna functions can be classified into three categories: quark-antiquark

(qq̄), quark-gluon (qg) and gluon-gluon (gg). These represent the two parents in

the antenna’s momentum mapping. That is, the particle-type of Ih1 and Ih2 for an

antenna mapping (ih1 , i3, . . . , in+2, i
h
2) → (Ih1 , Ih2 ). Note that this is often, but not

always, the same as the particle-type of the antenna’s hard radiators, ih1 and ih2 .

• qq̄ X0,OLD
3 are obtained from matrix elements for the decay of a virtual photon

into three and two partons [1]. There is only one three-parton squared matrix

element for this case, qgq̄, so one antenna function, A0,OLD
3 .
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• qg X0,OLD
3 are obtained from matrix elements for the decay of a heavy neut-

ralino, in the minimally supersymmetric standard model (MSSM) [149]. The

gluino takes the role of the quark in this scenario. For the case of qg ∼ g̃g

parents, there are two three-parton squared matrix elements, g̃gg and g̃Q̄Q,

so there are two antenna functions, D0,OLD
3 and E0,OLD

3 .

• gg X0,OLD
3 are obtained from matrix elements for the decay of a Higgs boson

into three and two partons [148]. For the case of gg parents, there are two

three-parton squared matrix elements, ggg and gQ̄Q, so there are two antenna

functions, F 0,OLD
3 and G0,OLD

3 .

The definitions and integrals of these X0,OLD
3 are sufficient for a functioning NLO

subtraction scheme to handle IR divergences. The X0,OLD
3 antennae are consider-

ably simpler objects than those at NNLO, although we can see the traces of the

complexity present at NNLO. Let us consider the unresolved limits of two antennae,

A0,OLD
3 (iq, jg, kq̄) and D0,OLD

3 (iq, jg, kg). A0,OLD
3 (iq, jg, kq̄) contains the singular limits,

A0,OLD
3 (iq, jg, kq̄) → P (0)

qg (ih, j) in ij collinear limit, (4.3.10)

A0,OLD
3 (iq, jg, kq̄) → P (0)

qg (kh, j) in jk collinear limit, (4.3.11)

A0,OLD
3 (iq, jg, kq̄) → S(0)

g (ih, jg, kh) in j soft limit, (4.3.12)

and nothing else. Note that A0,OLD
3 (iq, jg, kq̄) does exactly as expected by con-

taining the three NLO unresolved limits between a hard quark-antiquark pair.

D0,OLD
3 (iq, jg, kg) however, contains the singular limits,

D0,OLD
3 (iq, jg, kg) → P (0)

qg (ih, j) in ij collinear limit, (4.3.13)

D0,OLD
3 (iq, jg, kg) → P (0)

gg (kh, j) + P (0)
gg (jh, k) in jk collinear limit, (4.3.14)

D0,OLD
3 (iq, jg, kg) → P (0)

qg (ih, k) in ik collinear limit, (4.3.15)

D0,OLD
3 (iq, jg, kg) → S(0)

g (ih, jg, kh) in j soft limit, (4.3.16)

D0,OLD
3 (iq, jg, kg) → S(0)

g (ih, kg, jh) in k soft limit, (4.3.17)

and nothing else. There are extra limits present, compared to A0,OLD
3 , because the
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gluon kg is connected to the quark iq ‘around the back’ in the defining matrix element

M0
3 (iq, jg, kg), and as such D0,OLD

3 (iq, jg, kg) contains a j ↔ k symmetry. This means

that D0,OLD
3 (iq, jg, kg) contains more unresolved limits than the NLO unresolved

limits between a hard quark-gluon pair. This is potentially problematic for creating

subtraction terms like Eq. (4.3.1), where each term in the ∑j should account for

j unresolved singularities only; that is ihj collinear, j soft and jkh collinear. If

one were to use D0,OLD
3 directly in Eq. (4.3.1), unresolved singularities would be

double-counted. Additionally, the antenna momentum mapping requires that two of

the particles in the antenna can be identified as hard and the other unresolved. In

practice there is a simple decomposition,

D0,OLD
3 (i, j, k) = d0,OLD

3 (i, j, k) + d0,OLD
3 (i, k, j), (4.3.18)

where d0,OLD
3 has the required antenna properties. Similarly,

F 0,OLD
3 (i, j, k) = f 0,OLD

3 (i, j, k) + f 0,OLD
3 (j, k, i) + f 0,OLD

3 (k, i, j), (4.3.19)

where f 0,OLD
3 (i, j, k) has the required antenna properties. Both d0,OLD

3 and f 0,OLD
3

are simple to integrate. Solving the same issue is not as convenient at NNLO, due

to the huge increase in complexity in the matrix element expressions, as we will see

later.

4.4 NNLO Antenna Subtraction

At NNLO, we encounter a number of additional features not present at NLO. The

most obvious feature is that we can form subtraction terms out of three types

of antenna functions: X0
4 , X1

3 and X0
3 . This means that we have many types of

subtraction term, designed to subtract different IR limits. Before discussing the

subtraction terms, we will introduce the new antenna functions at NNLO and how

to manipulate them.
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4.4.1 X0
4

X0
4 (ih, j, k, lh) are used to encapsulate all the single and double unresolved diver-

gences between two hard radiators, ih, lh, at tree-level. They are functions of the four

momenta (in the full phase space) and smoothly interpolate between the following

limits: double-soft (j, k), triple-collinear (ihjk or lhkj), double-collinear (two pairs

of collinear particles simultaneously), soft-collinear (one particle soft and another

pair collinear), single-soft (j or k) and simple-collinear. There are different antenna

functions depending on particle content. Since we also decompose squared matrix

elements according to colour structures, we have both leading-colour X0
4 and sub-

leading-colour X̃0
4 , with specific letters to indicate the particle content of i, j, k, l.

Their original extraction is similar to that of the X0,OLD
3 and is given by

X0,OLD
4 (i, j, k, l) = Sijkl/IL

M0
4 (i, j, k, l)
M0

2 (I, L)
, (4.4.1)

in terms of a ratio of colour-ordered squared matrix elements, where the two-particle

squared matrix element is a function of sIL = sijkl only. Like the X0
3 , they can

be categorised according to the parent partons, qq̄, qg or gg. Exactly as at NLO,

the matrix elements used are decays of a virtual photon, a heavy neutralino in the

MSSM and a Higgs boson respectively. We will not discuss the specific X0
4 here

because we will explore their full details in Chapter 5.

Once we have the appropriate 4 → 2 mapping, we can introduce the four-parton

antenna phase space for integrating X0
4 , which satisfies the factorisation formulae,

dΦm+2(p1, ..., pi, pj, pk, pl, ..., pm+2; k1, k2) =

dΦXijkl
(pi, pj, pk, pl; pI , pL)dΦm(p1, ..., pI , pL, ..., pm+2; k1, k2). (4.4.2)

The definition of the four-parton antenna phase space can be taken by setting m = 2,

to give

dΦXijkl
= dΦ4

P2
. (4.4.3)
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We then define the integrated antennae as

X 0
4 (sijkl) =

[
8π2(4π)−εeεγE

]2 ∫
dΦXijkl

X0
4 (ih, j, k, lh), (4.4.4)

with an appropriate normalisation. The method for performing the phase-space

integration consists of a few stages. Firstly, the four-particle phase space is rewritten

in terms of a tripole phase space, where momentum invariants are normalised to be

between 0 and 1. Then reverse unitarity-Cutkosky rules [176,177] are exploited to

express the integrals in terms of cut multi-loop diagrams. This facilitates the use

of multi-loop tools, which utilise integration-by-parts and other methods to express

the cut diagrams in terms of known scalar master integrals. The method is detailed

in full for the FF case in Ref. [175], the IF case in Ref. [155] and the II case in

Ref. [157].

The double unresolved antenna momentum mapping requires the identification of

two hard particles ih, lh and two unresolved particles j, k, and only has the desired

properties for certain colour-ordered unresolved limits. Unfortunately, the X0,OLD
4

extracted from four-particle matrix elements may have one or both of the follow-

ing problems. Firstly, the X0,OLD
4 are not always compatible with the mapping.

This happens when the antenna contains unresolved configurations for which the

mapping does not have favourable properties, like those four-parton limits absent

in Eq. (4.2.9). Secondly, the X0,OLD
4 may contain spurious limits that an antenna

should not typically contain. In the original formulation of antenna subtraction, cer-

tain antenna functions were decomposed into sub-antennae, for which two particles

can be identified as hard and two unresolved, and which were compatible with the

4 → 2 mapping. This was done at the cost of very long expressions (longer than

the full X0,OLD
4 ) and non-integrability of the sub-antennae. These sub-antennae

are extracted using complex combinations of N = 1 supersymmetry identities and

partial fractioning, which result in families of integrals that are outside the standard

techniques available. In turn, we gain the restriction that sub-antennae must appear

in subtraction terms in conjunction with certain other sub-antennae, such that they
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can be recombined at the integrated level to give the full integrated X 0
4 . The ideal

design features of the X0
4 and how to maximise them will be addressed in Chapter 5.

4.4.2 X1
3

X1
3 (ih, j, kh) are used to encapsulate the single unresolved divergences between two

hard radiators, ih, kh, at one-loop. We can recall from Section 1.5.3 that one-loop

squared matrix elements, M1
n, display a different type of IR factorisation compared

to tree-level, as in Eq. (1.5.38). There is a term corresponding to the unresolved

limits of M0
n, which are encapsulated by the X0

3 (we call this (tree×loop)) and a

term corresponding to the unresolved limits of M1
n (loop×tree), which are truly

one-loop limits. For this second term we define the X1
3 , which contains the one-loop

single unresolved limits set out in Section 1.5.3. The extraction of the X1
3 in the

original formulation uses the ratio of matrix elements [1],

X1,OLD
3 (i, j, k) = Sijk/IK

M1
3 (i, j, k)

M0
2 (I,K)

−X0,OLD
3 (i, j, k)M

1
2 (I,K)

M0
2 (I,K)

, (4.4.5)

where we can see the (tree×loop) contribution to the one-loop three-parton matrix

element has been removed using the X0
3 antennae and the two-particle matrix ele-

ments depend only on sIK = sijk. The same momentum mapping, (i, j, k)→ (I,K),

as for the X0
3 in Eqs. (4.2.3) and (4.2.4) can be used for the X1

3 . We expect different

singular factors, depending on particle content and colour structure. Since we decom-

pose matrix elements according to colour structures, we have both leading-colour X1
3 ,

sub-leading-colour X̃1
3 and closed-quark-loop X̂1

3 , with specific letters to indicate the

particle content of i, j, k. The X1
3 are integrated over the single unresolved antenna

phase space, dΦXijk
, the same as at NLO, so we define the integrated antennae as

X 1
3 (sijk) = 8π2(4π)−εeεγE

∫
dΦXijk

X1
3 (ih, j, kh). (4.4.6)

Unlike the tree-level antennae, the X1
3 contain both implicit and explicit IR diver-

gences. We will see that this adds another layer of complication to NNLO subtraction.

This is because the X1
3 are used to match and subtract certain implicit IR divergences
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from the real-virtual matrix element, while their explicit IR divergences will not, in

general, match those of the real-virtual matrix element. The X1
3 , in particular, will

be further explored in Chapter 6.

4.4.3 An Overview of the Subtraction Terms

The handling and cancellation of IR divergences across three different multiplicity

phase spaces requires the definition of many types of subtraction term. As can be

seen in the generic NNLO subtraction formula in Eq. (4.1.5), every subtraction term

appears in two places, so as to not change the overall result. It is useful to rewrite

Eq. (4.1.5) in terms of three integrals over different phase spaces,

dσ̂NNLO =
∫
dΦm

(V V − dσ̂U)

+
∫
dΦm+1

(RV − dσ̂T )

+
∫
dΦm+2

(RR− dσ̂S), (4.4.7)

where ∫
dΦm

dσ̂U +
∫
dΦm+1

dσ̂T +
∫
dΦm+2

dσ̂S = 0. (4.4.8)

Every term in dσ̂S has an integrated counterpart in either dσ̂T or dσ̂U . Every term

in dσ̂T is either an integrated counterpart of dσ̂S or has an integrated counterpart in

dσ̂U . Every term in dσ̂U is an integrated counterpart of certain terms in dσ̂T or dσ̂S.

The intricate structure of antenna subtraction can be seen in Fig. 4.2, across the

three levels. We will now give an overview of the purpose of each subtraction term

but more detailed discussions can be found in Refs. [1, 7, 160]. The discussion here

aims to explain the roles of the antenna functions in NNLO antenna subtraction

and to motivate the idealisation of antenna functions, described in Chapters 5

and 6. In those chapters we only focus on the construction of antennae for FF

calculations, so we will not describe subtraction terms which are only present in IF

and II configurations, including mass factorisation terms. We will also frame the

discussion around creating subtraction terms for one particular colour-ordering. This
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VV

RV

RR

˷˷˷˷

Figure 4.2: Structure of the antenna subtraction terms at NNLO [7].
Red arrows link together subtraction terms at one level
with an integrated counterpart at a higher level. A
single arrow represents (un)integration over a single un-
resolved phase space, two parallel disconnected arrows
represent (un)integration over two disconnected single
unresolved phase spaces and two parallel connected ar-
rows represent (un)integration over a double unresolved
phase space. Each contribution will be discussed in the
remainder of this chapter.

is appropriate for a calculation at leading-colour. In the case of sub-leading colour,

the subtraction terms include more colour connections. This is because the full

corrections cannot be written as a sum of squared colour-ordered matrix elements

but rather in terms of interferences of matrix elements with two colour-orderings.

4.4.4 Double-Real Subtraction Terms

At the double-real level, there are five contributions to the subtraction term, as

depicted in Fig. 4.2:

dσ̂S = dσ̂S,a + dσ̂S,b1 + dσ̂S,b2 + dσ̂S,c + dσ̂S,d. (4.4.9)
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The overall subtraction term, dσ̂S, must capture all the single and double unresolved

divergences in the double-real correction,

RR ∼
∑

perms
M0

m+2(..., i, j, k, l, ...)J (m+2)
m . (4.4.10)

The following formulae should be taken as schematic, not accounting for symmetry

factors and possible over-counting of singularities when using unidealised antenna

functions.

The first contribution to the double-real subtraction term is given by

dσ̂S,a ∼
∑

perms
dΦm+2

∑
j

X0
3 (ih, j, kh)M0

m+1(..., I,K, ...)J (m+1)
m . (4.4.11)

This contribution looks very similar to the NLO subtraction term in Eq. (4.3.1)

because it subtracts all the single unresolved divergences in the double-real correction,

via the sum over j, one unresolved parton at a time. The NLO antenna mapping is

also used for (i, j, k)→ (I,K), with the colour-connections demonstrated in Fig. 4.1.

Note that the jet function, J (m+1)
m , ensures that the m + 1 partons of the reduced

matrix element form the m jets of the Born matrix element. Unfortunately, this

results in the inclusion of double unresolved divergences. This is because one of

the partons in the reduced matrix element is allowed to be unresolved, in addition

to the unresolved parton j, handled by the X0
3 antenna. Some of these double

unresolved divergences match those in the double-real correction, namely the colour-

connected iterated single unresolved divergences. Others, however, are spurious (do

not match those in the double-real correction) and are counter-subtracted by other

contributions, which are introduced fix these limits. Since this contribution handles

single unresolved divergences, it has a counterpart, dσ̂T,a, at the RV level, which is

built out of integrated antennae, X 0
3 . This can be seen on the bottom-left of Fig. 4.2.

The second contribution to dσ̂S is given by

dσ̂S,b1 ∼
∑

perms
dΦm+2

∑
j,k

X0
4 (ih, j, k, lh)M0

m(..., I, L, ...)J (m)
m , (4.4.12)

where j, k are colour adjacent and we use the double unresolved antenna momentum
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mapping, (i, j, k, l)→ (I, L). The colour-connections for both full and reduced mat-

rix elements are shown in Fig. 4.3. This contribution is introduced to match the

i j k Il L

Figure 4.3: Diagram showing the colour-connections within the mat-
rix element before and after the 4 → 2 antenna mo-
mentum mapping [1].

colour-connected and uniterated double unresolved divergences of the double-real

correction. Each term in dσ̂S,b1 subtracts the double- and single unresolved diver-

gences of j, k, sandwiched between ih, lh, according to the antenna, X0
4 (ih, j, k, lh).

For the case when certain X0,OLD
4 are used, one cannot identify two hard radiat-

ors and two unresolved partons. In this case, combinations of sub-antennae are

used, with different mappings on each, and spurious unresolved divergences may

be introduced. This in turn requires the introduction of other antenna functions

to counter-subtract the spurious divergences. The arguments of these additional

antenna functions may not match the particle type or colour-ordering of the partons

in the double-real correction.

Since the single unresolved limits are handled by the dσ̂S,a contribution, the dσ̂S,b1

must be combined with the contribution dσ̂S,b2 , which subtracts the iterated single

unresolved limits from each term in dσ̂S,b1 . This gives the formula,

dσ̂S,b2 ∼ −
∑

perms
dΦm+2

∑
j

X0
3 (ih, j, kh)X0

3 (Ih, K, lh)M0
m(..., ĨK, K̃l, ...)J (m)

m ,

(4.4.13)

where we encounter products of two X0
3 antennae to account for iterated single

unresolved limits. The iterated NLO antenna momentum mappings, (i, j, k)→ (I,K)

and (I,K, l)→ (ĨK, K̃l), ensure that the iterated single unresolved limits are colour-

connected and ordered. The combination of dσ̂S,b1 and dσ̂S,b2 , along with dσ̂S,a,

ensures the cancellation of all colour-connected double unresolved divergences. Since

the dσ̂S,b1 contribution contains X0
4 antennae, it has a counterpart on the double-

virtual level, containing the integrated antennae, X 0
4 . The dσ̂S,b2 contribution has
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a counterpart on the real-virtual level, containing products of X 0
3 and X0

3 . These

relationships can both be seen in Fig. 4.2.

The first three contributions are enough to subtract all the IR divergences from the

double-real correction, when considering processes with up to four partons in the

double-real matrix elements. This is because all four partons are colour-connected

and no spurious limits are introduced in dσ̂S,a. Examples of Born processes which

generate up to four partons in the double-real correction include di-jet production

in e+e− colliders (FF), single-jet production in ep colliders (IF and FF), Drell-Yan

production (II and IF) and inclusive Higgs production (II and IF).

If we want to consider more complicated QCD processes with at least five partons at

the double-real level, we need to consider almost-colour-connected double unresolved

limits. For processes with at least six partons, we need the colour-unconnected

double unresolved limits. These are fixed by dσ̂S,c and dσ̂S,d respectively.

Let us consider a double-real matrix element with the colour-ordering

..., i, j, k, l,m, n, ... (4.4.14)

Since we are concerned with almost-colour-connected limits, we will focus on the

limits when j and l are unresolved. In the double-real matrix element, we would

expect some limits corresponding to j and l unresolved at the same time. In general,

we may subtract divergences in this limit by terms in dσ̂S,a and dσ̂S,b. In dσ̂S,a, there

are pairs of terms like

X0
3 (ih, j, kh)M0

m+1(..., I,K, l,m, n, ...)J (m+1)
m

+ X0
3 (kh, l,mh)M0

m+1(..., i, j,K ′,M, n, ...)J (m+1)
m , (4.4.15)

which over-count by a factor of two the limits when j and l are both unresolved.

This is because in the first term l can be unresolved in the reduced matrix element

(in addition to j in the antenna) and vice versa for the second term. This requires
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correcting in dσ̂S,c by terms like

−1
2X

0
3 (ih, j, kh)X0

3 (Kh, l,mh)M0
m(..., I, K̃l, l̃m, n, ...)J (m)

m

−1
2X

0
3 (kh, l,mh)X0

3 (ih, j,K ′h)M0
m(..., ĩj, j̃K ′,M, n, ...)J (m)

m . (4.4.16)

The colour connections before and after mappings for the first term are displayed in

Fig. 4.4.

i j k l Im lmKl

Figure 4.4: Diagram showing the colour-connections within the mat-
rix element before and after two 3 → 2 antenna mo-
mentum mappings, where the two antennae are adja-
cent [1].

If the presence of a X̃0
4 (kh, j, l,mh) term in dσ̂S,b1 is required, then the respective

terms in dσ̂S,b2 , which should remove the single unresolved limits from X̃0
4 (kh, j, l,mh),

are given by

−X0
3 (kh, j,mh)X0

3 (Kh, l,Mh)M0
m(..., i, K̃l, l̃M, n, ...)J (m)

m + (j ↔ l). (4.4.17)

In fact, these subtraction terms over-count divergences in X̃0
4 (kh, j, l,mh), so they

need correcting by additional terms in dσ̂S,c, since these types of limit are not present

in the double-real correction. The respective terms in dσ̂S,c to fix the over-counting

in Eq. (4.4.17) are given by

+1
2X

0
3 (kh, j,mh)X0

3 (Kh, l,Mh)M0
m(..., i, K̃l, l̃M, n, ...)J (m)

m + (j ↔ l). (4.4.18)

A subtraction term including X̃0
4 (kh, j, l,mh) may be required when considering the

sum of multiple colour-orderings, where we can recover Eq. (3.14) of Ref. [160].

Unfortunately, the structures introduced in dσ̂S,c include wide-angle soft divergences.

Additional terms are then added to dσ̂S,c, built out of products of single-soft factors

and X0
3 antennae, in order to remove these spurious divergences [150, 156]. For

example, the following is added to Eq. (4.4.18), in order to remove the wide-angle
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soft divergences,

− 1
2

(
S(0)
g (Kh, j,Mh)− S(0)

g (K̃lh, j, l̃Mh)
)
X0

3 (K, l,M)M0
m(..., i, K̃l, l̃M, n, ...)J (m)

m

+(j ↔ l). (4.4.19)

The structure of the dσ̂S,c contribution, as a whole, is inherited from the structure

of the more fundamental subtraction terms, dσ̂S,a, dσ̂S,b1 and dσ̂S,b2 , ensuring that

only the divergences present in the double-real matrix element are subtracted. In

practice this is done process-by-process, where cancellation may only be apparent

after summing over multiple colour-orderings. The dσ̂S,c contribution has a counter-

part on the real-virtual level, containing products of X 0
3 and X0

3 and also products

of integrated eikonal factors and X0
3 . This correspondence can be seen in Fig. 4.2.

The final term to be introduced is only present for processes with at least six partons

at the double-real level. It is included to correct for the colour-unconnected double

unresolved limits introduced in dσ̂S,a. In a similar way to Eq. (4.4.15), there are

pairs of terms in dσ̂S,a which over-count these limits by factor of two. For example

the colour-unconnected unresolved limits of j and m are over-counted in

X0
3 (ih, j, kh)M0

m+1(..., I,K, l,m, n, ...)J (m+1)
m

+ X0
3 (lh,m, nh)M0

m+1(..., i, j, k, L,N, ...)J (m+1)
m , (4.4.20)

since the other unconnected parton can become unresolved in the reduced matrix

element. This means that the dσ̂S,d contribution takes the form,

dσ̂S,d ∼ −
∑

perms
dΦm+2

∑
j,m

X0
3 (ih, j, kh)X0

3 (lh,m, nh)M0
m(..., I,K, L,N, ...)J (m)

m ,

(4.4.21)

where the sum is over all colour-unconnected pairs (j,m). Note that (i, k) are the

neighbours of j, while (l, n) are the neighbours of m, although it is not necessary

that k is colour-adjacent to l. The colour connections before and after the two 3→ 2

mappings are displayed in Fig. 4.5. The contribution dσ̂S,d is suitable for integration

over two disconnected antenna phase spaces, dΦXijk
and dΦXlmn

, which means that
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j k I Ki l m n L N

Figure 4.5: Diagram showing the colour-connections within the mat-
rix element before and after two 3 → 2 antenna mo-
mentum mappings, where the two antennae are discon-
nected [1].

it has a counterpart at the double-virtual level, as can be seen in Fig. 4.2.

4.4.5 Real-Virtual Subtraction Terms

At the real-virtual level, there are five contributions to the subtraction term, as

depicted in Fig. 4.2:

dσ̂T = dσ̂T,a + dσ̂T,b1 + dσ̂T,b2 + dσ̂T,b3 + dσ̂T,c. (4.4.22)

The overall subtraction term, dσ̂T , must cancel all the single unresolved divergences

and the explicit ε-poles in the real-virtual correction,

RV ∼
∑

perms
M1

m+1(..., i, j, k, ...)J (m+1)
m . (4.4.23)

The following formulae should be taken as schematic, not accounting for symmetry

factors and possible over-counting of singularities.

The first contribution to the real-virtual subtraction term is very similar to the

single-virtual subtraction term at NLO and is given by

dσ̂T,a ∼
∑

perms
dΦm+1

∑
i,j

X 0
3 (i, j)M0

m+1(..., i, j, ...)J (m+1)
m , (4.4.24)

where the permutations are over those colour-orderings which contribute and the

sum is over all colour-adjacent dipole pairs, (i, j). A more general expression would

replace the integrated antenna with the integrated antenna dipole, J (1)
2 (i, j), since

in principle, there can be multiple distinct antennae with the same-type parents.

Although it is the case that each J (1)
2 (i, j) depends on one integrated antenna, this

is not the case for the J (2)
2 (i, j), which show more complex dependences. We will
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return to the J (1)
2 and J (2)

2 in Chapter 6. Similarly to the virtual subtraction term at

NLO, since the J (1)
2 are directly related to Catani’s IR singularity operators [28, 29],

this contribution is guaranteed to cancel the explicit one-loop IR singularities (ε-

poles) in the real-virtual correction. Each term in dσ̂T,a corresponds to an integrated

version of a term in dσ̂S,a. Note that the jet function, J (m+1)
m , ensures that the m+ 1

partons of the tree-level matrix element form the m jets of the Born matrix element.

This results in spurious single unresolved limits being introduced in this contribution,

which may not match those in the real-virtual correction. These spurious singularities

are handled by the dσ̂T,c contribution.

Since one-loop matrix elements obey Eq. (1.5.38), when in a single unresolved limit,

there are two contributions to handle the single unresolved divergences in the real-

virtual correction. dσ̂T,b1 and dσ̂T,b2 handle the two pieces in

one-loop→ (tree× loop) + (loop× tree), (4.4.25)

respectively. The first case can be interpreted as requiring subtraction terms where

the unresolved factors are at tree-level (therefore X0
3 ) and the loop dependence is

held within the reduced matrix element. The second case can be interpreted as

requiring subtraction terms where the unresolved factors are at one-loop (therefore

X1
3 ) and the reduced matrix element is then tree-level.

A candidate for dσ̂T,b1 could be

∑
perms

dΦm+1
∑
j

X0
3 (ih, j, kh)M1

m(..., I,K, ...)J (m)
m , (4.4.26)

where the sum is over j unresolved between its colour-neighbours (i and k) and the

reduced matrix element (depending on (i, j, k) → (I,K)) is at one-loop. Unfortu-

nately, this is not adequate, since the reduced one-loop matrix element itself contains

explicit IR divergences. These have already been handled at the real-virtual level by

dσ̂T,a. Therefore we also need to add a counter term, which makes the contribution

ε-finite and can be constructed using the J (1)
2 operators. This gives us the ε-finite
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contribution,

dσ̂T,b1 ∼
∑

perms
dΦm+1

∑
j

X0
3 (ih, j, kh)

[
M1

m(..., I,K, ...) (4.4.27)

−
∑
I,K

J
(1)
2 (I,K)M0

m(..., I,K, ...)
]
J (m)
m ,

where the additional∑I,K is the sum over all colour-adjacent pairs within the reduced

matrix element M0
m(..., I,K, ...), including the mapped momenta and the unmapped

momenta. The downside of making this contribution ε-finite is that the second term

itself contains single unresolved divergences, due to the X0
3 prefactor, which must

also be handled by the dσ̂T,c contribution. Both terms in dσ̂T,b1 are introduced at

the real-virtual level and the presence of the X0
3 antenna makes them appropriate

for integration over the single unresolved phase space dΦXijk
. In practice, the first

and second terms relate to different parts of the double-virtual subtraction terms

after integration, dσ̂U,a1 and dσ̂U,b respectively.

A candidate for dσ̂T,b2 could be

∑
perms

dΦm+1
∑
j

X1
3 (ih, j, kh)M0

m(..., I,K, ...)J (m)
m , (4.4.28)

where the sum is over j unresolved, with the same mapping as the first term in

dσ̂T,b1 . This candidate correctly cancels the (loop × tree) unresolved limits in the

real-virtual correction. The combination of RV , the first term of dσ̂T,b1 and this

candidate is non-divergent in any unresolved limit. However, similarly to dσ̂T,b1 , this

candidate is not ε-finite, so the full contribution is given by

dσ̂T,b2 ∼
∑

perms
dΦm+1

∑
j

[
X1

3 (ih, j, kh)− J̄1
3 (i, j, k)X0

3 (ih, j, kh)
]
M0

m(..., I,K, ...)J (m)
m ,

(4.4.29)

where the term J̄1
3X

0
3 is defined such that it cancels the ε-poles present in the X1

3 .

This term assumes that the X1
3 have an ε-pole structure which is proportional to an

X0
3 . This feature is guaranteed when the X1

3 are extracted from matrix elements.

In Chapter 6, when we rebuild the X1
3 from the unresolved limits, we impose this

ε-pole structure on the X1
3 for internal consistency. Similarly to dσ̂T,b1 , the second
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term in dσ̂T,b2 introduces spurious unresolved limits at the real-virtual level. These

must be handled by the dσ̂T,c contribution. The first term in dσ̂T,b2 is introduced at

the real-virtual level and is suitable for integration over the single unresolved phase

space dΦXijk
. This is the X1

3 part of dσ̂T,b2 in Fig. 4.2, which corresponds to the

integrated antenna, X 1
3 , part of dσ̂U,c. The relationship between the second term of

dσ̂T,b2 and the other levels depends on the objects present in the pole-structure of

X1
3 and therefore J̄1

3 . In generic terms, one can write this integrated antenna string

as a linear combination of J (1)
2 with different arguments,

J̄1
3 (i, j, k) = JX

(
aJ

(1)
2 (sij) + bJ

(1)
2 (sjk) + cJ

(1)
2 (sik)

)
+MXJ

(1)
2 (sijk). (4.4.30)

Each J (1)
2 can be related directly to one X 0

3 . If an X0
3 (i′, j′, k′) were integrated over

the relevant single unresolved phase space, the integrated counterpart would depend

on two of the momenta in the real-virtual matrix element; this corresponds to the

JX terms. See dσ̂T,a in Eq. (4.4.24) for a similar integrated antenna dependence.

Therefore the JX terms in dσ̂T,b2 are integrated counterparts of the dσ̂S,b2 terms at

the double-real level, as can be seen in Fig. 4.2. Recall that the terms in dσ̂S,b2

contained iterated products of two X0
3 antennae. The integration of dσ̂S,b2 to the JX

terms can be sketched out as

∫
dΦX

i
′
j
′
k
′X

0
3 (i′, j′, k′)X0

3 ((ĩ′j′), (j̃′k′), l′)M0
m(..., ( ˜(ĩ′j′)(j̃′k′)), ((̃j̃′k′)l′), ...)

∼ X 0
3 ((ĩ′j′), (j̃′k′))X0

3 ((ĩ′j′), (j̃′k′), l′)M0
m(..., ( ˜(ĩ′j′)(j̃′k′)), ((̃j̃′k′)l′), ...)

∼ J
(1)
2 (sij)X0

3 (i, j, k)M0
m(..., I,K, ...). (4.4.31)

The first equality shows the integration over the phase-space of the primary antenna.

The second equality uses a relabelling of mapped momenta to the momenta of the

real-virtual matrix element and the correspondence of one J (1)
2 to one X 0

3 , which are

correct to normalisation factors. The final form of the term in Eq. (4.4.31) can be

identified with the JX terms in dσ̂T,b2 . The terms with the MX prefactor cannot

be identified as the integrated counterpart of any term at the double-real level, so

they must be introduced at the real-virtual level. As such, there is an integrated
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counterpart to the MX terms at the double-virtual level, as can be seen in Fig. 4.2.

After integration over dΦXijk
, the X0

3 in Eq. (4.4.29) becomes an X 0
3 and we find

terms which are an iterated product of two integrated antennae, X 0
3 ⊗X 0

3 .

The next contribution is introduced to match the renormalisation scale of the X1
3

to the renormalisation scale of the real-virtual matrix element µ2, rather than the

scale of the antenna sijk. Matching the renormalisation scale consists of redefining

the X1
3 in dσ̂T,b2 according to

X1
3 (ih, j, kh)→ X1

3 (ih, j, kh) + β0

ε

(4π)εe−εγE
8π2 X0

3 (ih, j, kh)
(sijk

µ2

)−ε
− 1

 . (4.4.32)

Note that this redefinition does not change the explicit ε-poles due to the form of

the squared bracket. β0 takes the form of b0 for a leading-colour X1
3 , b0,F for a

quark-loop X̂1
3 and 0 for a sub-leading-colour X̃1

3 . This contribution takes the form,

dσ̂T,b3 ∼
∑

perms
dΦm+1

β0

ε

(4π)εe−εγE
8π2

∑
j

X0
3 (ih, j, kh)

(sijk
µ2

)−ε
− 1

M0
m(..., I,K, ...)J (m)

m ,

(4.4.33)

where the sums are the same as in Eq. (4.4.29). This contribution ensures that the

(loop × tree) unresolved divergences are exactly cancelled. Since this contribution

must be introduced at this level, like the MX terms, these terms have integrated

counterparts at the double-virtual level, as shown in Fig. 4.2. The first term in the

square bracket in Eq. (4.4.33), once integrated, corresponds to the term labelled

β0X 0
3 in dσ̂U,c. The second term in the square bracket, once integrated, corresponds

to the term labelled dσ̂U,a0 .

The final contribution at the real-virtual level, dσ̂T,c, is introduced to cancel the

spurious unresolved divergences introduced by terms in dσ̂T,a, dσ̂T,b1 and dσ̂T,b2 . By

this stage, all the ε-poles of RV have been cancelled by dσ̂T,a. Also, dσ̂T,b1 , dσ̂T,b2

and dσ̂T,b3 are individually ε-finite. This means that the contribution dσ̂T,c must

also be ε-finite. We have still not accounted for the integrated counterparts to the

double-real contribution dσ̂S,c, which form dσ̂T,c0 , as in Fig. 4.2. Since we have only

sketched-out the form of dσ̂S,c, we can only engage in a similar discussion for dσ̂T,c.
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dσ̂T,c0 contains products of either integrated antennae, X 0
3 and X0

3 , or integrated

eikonal factors and X0
3 . The terms like Eq. (4.4.16) correspond to terms in dσ̂T,c0

like

1
2J

(1)
2 (sij)X0

3 (jh, k, lh)M0
m(..., i, J, L, ...)J (m)

m

+ 1
2J

(1)
2 (skl)X0

3 (ih, j, kh)M0
m(..., I,K, l, ...)J (m)

m , (4.4.34)

with mappings (j, k, l)→ (J, L) and (i, j, k)→ (I,K) for the two terms respectively.

These types of terms are needed to cancel some of the spurious unresolved divergences

in dσ̂T,a and the JX part of dσ̂T,b2 . In order to make dσ̂T,c ε-finite, terms like the

following would be added,

− 1
2J

(1)
2 (siJ)X0

3 (jh, k, lh)M0
m(..., i, J, L, ...)J (m)

m

− 1
2J

(1)
2 (sKl)X0

3 (ih, j, kh)M0
m(..., I,K, l, ...)J (m)

m , (4.4.35)

where the mapped momenta J and K enter the J (1)
2 dependence. These types of

terms are needed to cancel some of the spurious unresolved divergences in dσ̂T,b1 .

However, we note that the combination of the previous two expressions is not yet

ε-finite, this is only true for the full dσ̂T,c. These types of terms are introduced at

the real-virtual level and make up dσ̂T,c1 . They have integrated counterparts within

dσ̂U,b, as shown in Fig. 4.2. Other terms originating at the double-real level, like

Eq. (4.4.18), correspond to terms in dσ̂T,c0 like

−1
2J

(1)
2 (sjl)X0

3 (jh, k, lh)M0
m(..., J, L, ...)J (m)

m , (4.4.36)

with the mapping (j, k, l) → (J, L). These terms are needed to cancel some of the

spurious unresolved divergences in the JX part of dσ̂T,b2 . In order to make dσ̂T,c

ε-finite, terms like the following would be added,

+1
2J

(1)
2 (sjkl)X0

3 (jh, k, lh)M0
m(..., J, L, ...)J (m)

m . (4.4.37)

These terms are needed to cancel some of the spurious unresolved divergences in

dσ̂T,b1 and the MX part of dσ̂T,b2 . Terms like those in Eq. (4.4.37) are introduced at
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the real-virtual level and make up dσ̂T,c2 . They have integrated counterparts within

dσ̂U,c, as shown in Fig. 4.2. Only after the full combination of these types of terms

and the terms with integrated eikonal factors do we recover an ε-finite grouping

for dσ̂T,c, which cancels all spurious unresolved divergences introduced in the other

subtraction terms.

4.4.6 Double-Virtual Subtraction Terms

The IR structure of the two-loop squared matrix elements, with no unresolved

partons, mimics their defining structure in Eq. (1.5.39). These IR divergences can

be written in terms of Catani’s dipole operators, from Ref. [28], inserted between

reduced matrix elements (reduced by either one or two loops). Equivalently, we can

write them in terms of the integrated dipoles in colour space from Ref. [29], which

we have been using throughout. This gives us a complete and general formula,

dσ̂U = dσ̂U,a1 + dσ̂U,a0 + dσ̂U,b + dσ̂U,c, (4.4.38)

which is also given by

dσ̂U ∼
∑

perms
dΦm2

{
〈M0

m|J (1)(ε)|M1
m〉+ 〈M1

m|J (1)(ε)|M0
m〉

−β0

ε
〈M0

m|J (1)(ε)|M0
m〉

−〈M0
m|J (1)(ε)⊗J (1)(ε)|M0

m〉

+〈M0
m|J (2)(ε)|M0

m〉 − 〈M0
m|J

(2)(ε)|M0
m〉
}
J (m)
m , (4.4.39)

in terms of the full-colour structures defined in Eq. (1.5.3), where each term in

Eq. (4.4.38) is the respective line in Eq. (4.4.39). The integrated counterparts of

the subtraction terms, unaccounted for at the double-real and real-virtual levels, are

guaranteed to correctly cancel the IR singularities of the double-virtual correction by

the KLN theorem. The presence of the J (2) term is necessary to cancel unphysical

ε-poles in the quark-gluon integrated dipoles. This is due to to the extraction of

quark-gluon antennae from heavy neutralino decays in the MSSM. Such extractions
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include a small number of unresolved limits which are not present in QCD matrix

elements. These spurious limits are cancelled by combinations of other antenna

functions, which filter to the double-virtual level in J (2) [7, 178].

dσ̂U,a1 encapsulates the one-loop insertions in the one-loop squared matrix elements.

It can also be written as

dσ̂U,a1 ∼
∑

perms
dΦm

∑
i,j

X 0
3 (i, j)M1

m(..., i, j, ...)J (m)
m , (4.4.40)

where the sum is over all colour-adjacent dipole pairs, (i, j). This formula bears a

close resemblance to Eq. (4.4.24), except with a different squared matrix element.

We could also write this term with X 0
3 (i, j) replaced by J (1)

2 (i, j) (and a constant).

As can be seen in Fig. 4.2, this term is the integrated counterpart of the first term

in dσ̂T,b1 , integrated over the phase space of the X0
3 antenna.

dσ̂U,a0 is present to match the renormalisation scale in all elements of the subtraction

term. It can be written as

dσ̂U,a0 ∼
∑

perms
dΦm

β0

ε

(4π)εe−εγE
8π2

∑
i,j

X 0
3 (i, j)M0

m(..., i, j, ...)J (m)
m , (4.4.41)

which is the integrated counterpart of one of the terms in dσ̂T,b3 and we could equally

replace X 0
3 (i, j) with J (1)

2 (i, j).

dσ̂U,b encapsulates the case where there are two separate one-loop insertions within

the tree-level squared matrix element. It can also be written as

dσ̂U,b ∼
∑

perms
dΦm

∑
i,j

∑
k,l

J
(1)
2 (i, j)J (1)

2 (k, l)M0
m(..., i, j, ..., k, l, ...)J (m)

m , (4.4.42)

where the two sums over the two integrated dipoles are made explicit and run over

all contributing dipole pairs. This contribution can be usefully split into three

categories, as in Refs. [1, 160]: the colour-connected terms (c.c.), where the two

integrated dipoles share the same hard radiators, as shown in

dσ̂U,b,c.c. ∼
∑

perms
dΦm

∑
i,j

J
(1)
2 (i, j)J (1)

2 (i, j)M0
m(..., i, j, ...)J (m)

m ; (4.4.43)

the almost-colour-connected terms (a.c.c), where the integrated dipoles share one
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hard radiator, as shown in

dσ̂U,b,a.c.c. ∼
∑

perms
dΦm

∑
i,j

∑
k

J
(1)
2 (i, j)J (1)

2 (j, k)M0
m(..., i, j, k, ...)J (m)

m ; (4.4.44)

and the colour-unconnected terms (c.u.), where the integrated dipoles depend on

distinct hard radiators, as shown in

dσ̂U,b,c.u. ∼
∑

perms
dΦm

∑
i,j

∑
k,l 6=i,j

J
(1)
2 (i, j)J (1)

2 (k, l)M0
m(..., i, j, ..., k, l, ...)J (m)

m . (4.4.45)

All three categories are present in the integrated counterparts of the second term

of dσ̂T,b1 . The colour-connected and almost-colour-connected terms are present in

the integrated counterparts of dσ̂T,c1 . The integrated counterparts (over two single

unresolved phase spaces) of dσ̂S,d fall into the colour-unconnected category of dσ̂U,b,

as should be expected. These relationships are all evident in Fig. 4.2.

dσ̂U,c encapsulates the two-loop insertion in the tree-level squared matrix element.

It can be written as

dσ̂U,c ∼
∑

perms
dΦm

∑
i,j

J
(2)
2 (i, j)M0

m(..., i, j, ...)J (m)
m , (4.4.46)

where the sum is over all colour-adjacent dipole pairs, (i, j). For FF configurations,

the two-loop integrated dipoles can be written as a linear combination of the following

integrated antenna structures:

J
(2)
2 (i, j) = c1(X 0

3 ⊗X 0
3 )(i, j) + c2X 1

3 (i, j) + c3
β0

ε

(
sij
µ2

)−ε
X 0

3 (i, j) + c4X 0
4 (i, j).

(4.4.47)

These structures correspond to the pieces of dσ̂U,c as displayed in Fig. 4.2. (X 0
3 ⊗

X 0
3 )(i, j) refers to the convolution of two integrated X0

3 . Terms like this are the

integrated counterparts of the dσ̂T,c2 terms and the MX terms in dσ̂T,b2 . Terms

including X 1
3 are naturally the integrated counterparts of the X1

3 terms in dσ̂T,b2 .

The terms with β0 are the other terms necessary at the double-virtual level to match

the renormalisation scale of all elements to µ2. They are the integrated counterparts

of part of dσ̂T,b3 . The final category of dσ̂U,c includes X 0
4 and these terms are the
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integrated counterparts (over a double unresolved phase space) of dσ̂S,b1 .

This concludes the discussion of the general structure of antenna subtraction at

NNLO. We have focussed on the FF configuration, suitable for predictions for e+e−

colliders but the same discussion generalises to the IF and II configurations, after

adding suitable mass factorisation terms and integrations over the momentum frac-

tions of initial parton splittings.

We have so far given the traditional discussion of antenna subtraction, starting

at double-real level, then the real-virtual level and then the double-virtual level.

However, we note that there has been recent work in building the subtraction terms

in the opposite order. This is known as the colourful antenna subtraction method

detailed in Refs. [7, 29]. In this method, the first subtraction term to be deduced is

Eq. (4.4.39), which is completely general. The subtraction term is separated into the

contributions discussed here. The deduction of a corresponding subtraction term, at

the real-virtual or double-real level, relies upon the appropriate insertion of one or

two unresolved partons into the subtraction term, thus ‘unintegrating’ the term. The

insertion demands a variety of replacements and remapping. These include replacing

an integrated antenna with an unintegrated antenna, and remapping the momenta

in the reduced matrix element and jet function appropriate to the unintegrated

antenna function. The benefit of this procedure is that it is completely predictable

and general, so the procedure can be automated. Additionally, the colourful method

works in full-colour since the inference of subtraction terms begins from Catani’s

formulae for IR singularities at one and two loops in full-colour. This means sub-

leading colour is not significantly more complicated to calculate, as the double-virtual

subtraction terms determine the colour-correlations across the rest of the calculation.

The colourful antenna subtraction method complements the work presented in this

thesis; they both aim to make the generation of subtraction terms at NNLO simpler

and more automatable.
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4.5 Summary

In this chapter, we began by introducing the two main classes of method for the

handling of IR divergences in higher order calculations. Both classes handle implicit

and explicit IR divergences. Slicing schemes demonstrate non-local cancellation,

while subtraction schemes demonstrate local cancellation. Subtraction schemes are

generally preferable in the context of NNLO calculations, partly due to the need to

minimise CPU time in calculations. Since more elements of subtraction are handled

analytically and the subtraction is performed locally, the CPU load is often lower

than if slicing is used. On the other hand, slicing techniques are playing a crucial

role in the rise of N3LO calculations. This is because there is currently no process-

independent method for generating subtraction terms at N3LO. Instead, at N3LO,

slicing schemes benefit from the well-known IR structures at NNLO and promote

them by one order.

Antenna subtraction has shown to be highly successful at NNLO, as well as facilit-

ating N3LO calculations. This is partly because of the rich tapestry of subtraction

terms which can be constructed at NNLO using the antenna functions; these can

handle the IR divergences for any generic process, including at high-multiplicity.

The primary reason for the success of antenna subtraction is that the integrals of

antenna functions (and therefore subtraction terms) are known. This feature is often

absent or complex in other NNLO subtraction schemes and facilitates the construc-

tion of simple subtraction terms. In the original formulation, antenna functions were

extracted from low-multiplicity matrix elements, ensuring their simple-integrability.

This had the cost that antenna functions can include limits ‘around the back’, which

in turn complicates the creation of subtraction terms due to the inclusion of spurious

limits. We leave the fuller discussion of this topic and how it can be addressed to

Chapter 5.

We summarised the simple and elegant format of antenna subtraction at NLO first

and introduced the NLO antenna mapping suitable for FF configurations. We
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considered the 2 → m phase space and its factorisation into a 2 → m − 1 phase

space multiplied by the single unresolved antenna phase space used for integrating

X0
3 . We also described the fundamental features of the X0

3 , before moving onto those

of the X0
4 and the X1

3 . The remainder of the chapter consists in the definition of the

subtraction terms at NNLO for a generic IR-safe observable in the FF configuration.

Here we demonstrated the relationships between pairs of terms at two levels in the

subtraction and the intricate handling of both explicit and implicit IR divergences

and both double and single unresolved divergences.

However, the construction of subtraction terms is more complex than represented

here in three situations. Firstly, when one or two of the hard radiators is in the

initial state. In this situation, we require mass factorisation terms and the integrated

dipoles depend on the initial splittings. Secondly, when performing a sub-leading

colour calculation. In this situation the colour-orderings in the product of two matrix

elements is not necessarily the same, so the subtraction terms must cancel differently-

connected limits. Thirdly, when the antenna function needed for a particular term

contains limits other than those between two hard radiators. In this situation, we

cannot use the antenna mapping and we would also be including spurious limits.

The current solution is to utilise sub-antennae but this sacrifices the feature of

integrability of antenna functions. In the following chapters, we will address the

third element mentioned here, since the first two have been solved elsewhere.



Chapter 5

Constructing Idealised

Real-Radiation

Antenna Functions

5.1 Introduction

This chapter’s focus is on improvements to the antenna-subtraction scheme at NNLO.

In particular, we describe an algorithm to re-build real-radiation antenna functions

directly from the divergences we want them to contain, thus creating idealised

antenna functions. We note that some of the techniques employed in this chapter

have been used in other NNLO subtraction schemes such as Refs. [137, 138, 140].

While the antenna-subtraction formalism successfully enabled the calculation of

many processes at NNLO and even at N3LO, the complexity of the subtraction terms

becomes increasingly difficult with growing particle multiplicity. This is mainly due

to two reasons. Firstly, double-real radiation antenna functions derived from matrix

elements do not always identify which particles are the hard radiators. This is

particularly the case for gluons. To get around this, so-called sub-antenna functions

are introduced. The construction of sub-antenna functions at NNLO is extremely

cumbersome and typically introduces unphysical denominators that make analytic
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integration difficult. Often analytic integrals are known only for the full antenna

functions. This means that antenna-subtraction terms have to be assembled in

such a way that sub-antenna functions recombine to full antenna functions before

integration. Secondly, NNLO antenna functions can contain spurious singularities

that have to be removed by explicit counterterms, which in turn can introduce

further spurious singularities. In general, this can trigger an intricate chain of cross-

dependent subtraction terms that have no relation to the actual singularity structure

of the process at hand.

As a first step towards a refined antenna-subtraction scheme at NNLO, we construct

a full set of idealised single-real and double-real antenna functions. Instead of

building these from physical matrix elements, as done originally [1, 148, 149], we

build antenna functions directly from the relevant limits properly accounting for

the overlap between different limits. The universal factorisation properties of multi-

particle matrix elements when one or more particles are unresolved have been well

studied in the literature and serve as an input to the algorithm. The single unresolved

limits of tree-level matrix elements, where either one particle is soft or two are

collinear, are used to construct NLO antennae. While for the real-radiation NNLO

antennae, the double unresolved limits of tree-level matrix elements, with up to two

soft particles, or three collinear particles [38–41] are needed. We note that the triple-

unresolved limits of tree-level matrix elements are available for the construction of

real radiation N3LO antennae [52–56]. However, they may not be in a form to be

directly useful for N3LO antennae at this time.

The chapter is structured as follows. We outline the design principles for ideal-

ised real-radiation antenna functions in Section 5.2, before discussing the general

construction algorithm in Section 5.3. To illustrate the algorithm, we explicitly

construct a full set of single-real and double-real antenna functions for use in NLO

and NNLO antenna subtraction in Sections 5.4 and 5.5, respectively. We conclude

and give an outlook on further work in Section 5.6.
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5.2 Design Principles

Within the antenna framework, subtraction terms are constructed from antenna

functions which describe all unresolved partonic radiation (soft and collinear) between

a hard pair of radiator partons. In general, an antenna-subtraction term requires:

• antennae composed of two hard radiators that accurately reflect the infrared

singularities of the n unresolved partons radiated “between” them;

• an on-shell momentum mapping Fn+27→2, clustering n+2 particles into 2, while

preserving the invariant mass of the radiators used to define the “reduced”

matrix element; and

• a process- and antenna-dependent colour factor.

The calculation of colour factors strictly follows the non-abelian structure of QCD

and, while in principle cumbersome, can be automated to all orders [10–13]. A general

on-shell momentum mapping for multi-particle emissions in the antenna language

has been derived in Ref. [41] for massless particles and is given in Section 4.2.

Historically, antenna functions, X`
n+2, have been constructed directly from matrix

elements which have the desired singularities. However, we note that these “natural”

antenna functions do not share the same design principles we are describing – for

example, many natural antenna functions do not have two identified hard radiators.

All quark-antiquark antennae have two identified hard radiators but this is not the

case for quark-gluon or gluon-gluon antennae. This is because the matrix elements

used for extraction will inevitably have a divergent limit when one of the gluonic

radiators becomes soft. This makes the construction of the subtraction terms more

complex and correspondingly less automatable. Additionally, antenna momentum

mappings require a clear identification of two hard radiators so that the mapping is

appropriate for the limits the antenna is intended to describe. In order to counter

these issues, so-called sub-antenna functions have been created by the complicated
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use of supersymmetry relations, other antenna functions and partial fractioning

[150, 179]. The momentum mapping is then different for each sub-antenna. These

sub-antenna functions are in general difficult to integrate but can be combined such

that only the full antenna requires integration. In some cases, sub-antennae map onto

different types of matrix elements and multiple subtraction terms cannot be combined

easily. This means that a direct integration of the sub-antenna functions is required,

which is not feasible. In these cases, intricate process-dependent combinations of

other antennae have to be used to correct for over-subtraction of spurious limits.

We aim to design idealised antenna functions directly from their desired properties,

with a uniform template, in a way that simplifies the construction of subtraction

terms in general, while being straightforwardly integrable. Specifically, we impose

the following requirements on the idealised antenna functions:

1. each antenna function has exactly two hard particles (“radiators”) which cannot

become unresolved;

2. each antenna function captures all (multi-)soft limits of its unresolved particles;

3. where appropriate (multi-)collinear and mixed soft and collinear limits are

decomposed over “neighbouring” antennae;

4. antenna functions do not contain any spurious (unphysical) limits;

5. antenna functions only contain singular factors corresponding to physical

propagators; and

6. where appropriate, antenna functions obey physical symmetry relations (such

as line reversal).

We wish to emphasise again that the original NNLO antenna functions derived in

Refs. [1,148,149] do not obey these requirements, as they typically violate (some of)

these principles, as alluded to above. A subtlety is connected to (multi-)collinear

and soft-collinear limits. For example, any gluon can become soft in a multi-gluon
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matrix element, so a prescription has to be defined for distributing limits between

antennae that identify each of the gluons as being hard in turn.

In the following sections we will describe a general algorithm to construct real-

radiation antenna functions, following strictly these design principles. We will apply

it to the case of single-real and double-real radiation, required for NLO and NNLO

calculations.

5.3 The Algorithm

The main goal of the algorithm is to construct (multiple-)real-radiation antenna

functions containing singular limits pertaining to exactly two hard radiators plus an

(in principle) arbitrary number of additional particles that are allowed to become

unresolved. To this end, each limit is defined by a “target function”, which in the

following we will denote by Li. In general, there will be N such limits and we

denote the ordered set of limits by {Lj}. The target functions have to capture the

behaviour of the colour-ordered matrix element squared in the given unresolved limit

and are taken as input to the algorithm. While the target functions may include

process-dependent azimuthal terms, for the purposes of the present chapter we will

limit ourselves to azimuthally-averaged functions.

Antenna functions are defined over the full phase space appropriate to the respective

antenna, whereas each singular limit lives on a restricted part of phase space, with

one or more of the momenta being soft or collinear. We relate the two by a “down-

projector” P↓ that maps the invariants of the full phase space into the relevant

subspace. An associated “up-projector” P↑ restores the full phase space. That is,

it re-expresses all variables valid in the subspace in terms of invariants valid in

the full phase space. This is illustrated in Fig. 5.1. It is to be emphasised that

down-projectors P↓ and up-projectors P↑ are typically not inverse to each other, as

down-projectors destroy information about less-singular and finite pieces.
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Full Phase
Space
X0
n;i−1

Subspace
Li

P↓i P↑i

Figure 5.1: Visual representation of the down- and up-projectors
translating between the full phase space, on which an-
tenna functions are defined, and the subspaces, on which
the target functions are defined. Here X0

n;i−1 represents
the accumulated antenna function having taken into ac-
count the limits L1, . . . Li−1, which is projected into the
subspace relevant for limit Li by P↓i , subtracted from
Li and the remainder projected back into the full phase
space by P↑i .

We construct antenna functions using an iterative process, which requires as input

the full set of N unresolved limits we aim to capture (defined in terms of target

functions Li, with i running from 1 to N), together with the appropriate set of

“down-” and “up-projectors” pertaining to each of these limits.

The algorithm starts with the contribution corresponding to the deepest pole on the

integrated level and terminates upon reaching the level of finite corrections, i.e. terms

that integrate to corrections of O
(
ε0
)
. In each step of the iteration, we remove the

overlap of the target function with all previously considered limits and accumulate

the remainder. To this end, we subtract the projection of the accumulated antenna

function into the subspace relevant to the target limit, P↓iX0
n;i−1, from the target

function. The remainder (Li−P↓iX0
n;i−1) is then restored to the full phase space via

the associated up-projector P↑i before adding it to the accumulated antenna function.

Schematically, this procedure is shown in Fig. 5.2 for N target functions Li and can
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i = 1, X0
n;0 = 0, {Lj}, {P↓j}, {P↑j}

Li, X
0
n;i−1

Li

Li −P↓iX0
n;i−1

P↑i (Li −P↓iX0
n;i−1)

X0
n;i = P↑i (Li −P↓iX0

n;i−1) +X0
n;i−1

i = N? i→ i + 1

X0
n = X0

n;N

X0
n New Antenna

−P↓iX0
n;i−1

P↑i

+X0
n;i−1

yes

no

Figure 5.2: Flowchart representing the algorithm to construct a
tree-level n-particle antenna X0

n using an ordered set of
N limits {Lj} with associated down- and up-projectors.
X0
n;i represents the accumulation of the contributions

from the first i limits. The full antenna is obtained
when all N limits have been satisfied, X0

n = X0
n;N .
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be written as

X0
n;1 = P↑1L1 ,

X0
n;2 = X0

n;1 + P↑2(L2 −P↓2X0
n;1) ,

...

X0
n;N = X0

n;N−1 + P↑N(LN −P↓NX0
n;N−1) ,

(5.3.1)

where X0
n ≡ X0

n;N . In particular, restoring the kinematics to the full phase space in a

judicious way ensures that the antenna function can be expressed solely in terms of

invariants corresponding to physical propagators. This specifically guarantees that

the full antenna function can be integrated easily over its Lorentz-invariant antenna

phase space, just like the original antenna functions.

The algorithm resembles the ones in Refs. [137, 138, 140] in spirit, in the sense

that singular limits are considered subsequently, ordered according to the depth of

the associated explicit pole. However, there are two important differences to the

algorithms described in Refs. [137, 138, 140]. Firstly, we do not use our algorithm

to construct process-dependent subtraction terms (even though the construction

of the counterterms is in principle process independent) but to construct universal

antenna functions that are only assembled to process-dependent subtraction terms in

a separate (automatable) step, see Refs. [1,7,29,160]. Secondly, we always reconstruct

the kinematics of the subtraction term to the full phase space via up-projectors, a

step that is not strictly necessary for the sake of the subtraction but is vital to build

a function in terms of multi-particle invariants that is valid in the full phase space.

The set of target functions unambiguously defines the behaviour of the real-radiation

antenna function in all unresolved limits pertaining to the antenna at hand. In any

unresolved limit, the full antenna function has to approach the target function in

order to capture the correct singular behaviour of the respective squared matrix

element. In particular, the real-radiation antenna function has to be finite in all

limits not described explicitly by a target function. This ensures that no spurious

singularities enter, a feature not shared by antenna functions constructed directly
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from physical matrix elements. As alluded to above, an important aspect to consider

in the construction of antenna functions pertains to the presence of certain multi-

collinear and soft-collinear limits, which are shared by “neighbouring” antennae in the

antenna formalism. In these cases, the correct multi-collinear or soft-collinear limit

is only recovered in the sum over multiple antenna functions, each containing one of

the involved partons as a hard radiator. This means that each multi-collinear/soft-

collinear splitting function has to be decomposed over all possibilities to identify

one of the partons as the hard radiator before it can be used as a target function

for constructing idealised antenna functions. For simple-collinear splitting functions,

this decomposition is simple and has been identified already in Refs. [46, 47]. A

generalisation for triple-collinear splitting functions has been derived in Ref. [180]

and was detailed in Chapter 3. As a by-product of this procedure, soft-collinear

limits do not have to be entered as explicit inputs into the algorithm at NNLO.

A core part of our algorithm is the definition of down-projectors into singular lim-

its with corresponding up-projectors into the full phase space. In each step of the

construction, down-projectors are needed to identify the overlap of the so-far con-

structed antenna function with the target function of the respective unresolved limit,

whereas up-projectors are required to re-express the subtracted target function in

terms of antenna invariants. In this way, the full (accumulated) antenna function

can be expressed solely in terms of n-particle invariants and is therefore valid in the

full phase space. By choosing the up-projectors judiciously, the antenna function can

furthermore be expressed exclusively in terms of invariant structures corresponding

to physical propagators. As alluded to above, down-projectors P↓ and up-projectors

P↑ are not required to be inverse to each other.

The number of projectors depends directly on the perturbative order. At NLO, only

two types of down-projectors and their up-projectors into the full phase space are

needed,

S↓,C↓, and S↑,C↑, (5.3.2)

corresponding to the single-soft and simple-collinear limits. These will be discussed
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in detail in Section 5.4. At NNLO, three additional types of down-projectors are

needed,

DS↓,TC↓,DC↓, (5.3.3)

corresponding to the double-soft, triple-collinear and double-collinear limits. The

up-projectors into the full phase space are given by

DS↑,TC↑, and DC↑, (5.3.4)

respectively. While not relevant to the construction of the antenna functions, for the

sake of validating the correct singular behaviour of the constructed antenna functions,

one can further define a down-projector related to the soft-collinear limit, SC↓. Both

down-projectors and up-projectors at NNLO will be discussed in Section 5.5.

Up to NNLO, we have automated our algorithm in computer code based on MAPLE

and FORM [181, 182]. To make the construction explicit, we work through the

construction of all idealised single-real antenna functions as an example in Section 5.4

before constructing a full set of idealised double-real antenna functions in Section 5.5.

This constitutes a first step towards a refined antenna-subtraction formalism at

NNLO and beyond.

5.4 Single-Real Radiation Antennae

At NLO, we want to construct three-particle antenna functions X0
3 (iha, jb, khc ), where

the particle types are denoted by a, b and c, which carry four-momenta i, j and k

respectively. Particles a and c should be hard, and the antenna functions must have

the correct limits when particle b is unresolved. Frequently, we drop explicit reference

to the particle labels in favour of a specific choice of X according to Table 5.1.

We systematically start from the most singular limit and build the list of target func-

tions from single-soft and simple-collinear limits. For the particles of X0
3 (iha, jb, khc )

there are three such limits, corresponding to particle b becoming soft and particle b
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Quark-antiquark
qgq̄ X0

3 (ihq , jg, khq̄ ) A0
3(ih, j, kh)

Quark-gluon
qgg X0

3 (ihq , jg, khg ) D0
3(ih, j, kh)

qQ̄Q X0
3 (ihq , jQ̄, khQ) E0

3(ih, j, kh)
Gluon-gluon

ggg X0
3 (ihg , jg, khg ) F 0

3 (ih, j, kh)
gQ̄Q X0

3 (ihg , jQ̄, khQ) G0
3(ih, j, kh)

Table 5.1: Identification of X0
3 antennae according to particle type.

These antennae only contain singular limits when particle
b (or equivalently momentum j) is unresolved. Antennae
are classified as quark-antiquark, quark-gluon and gluon-
gluon according to the particle type of the parents (i.e.
after the antenna mapping).

becoming collinear to either a or c, expressed as

L1(ih, j, kh) = S
(0)
b (ih, j, kh) ,

L2(ih, j; k) = P
(0)
ab (ih, j) ,

L3(kh, j; i) = P
(0)
cb (kh, j) .

(5.4.1)

The tree-level soft factor S(0)
b is given by the eikonal factor for particle b radiated

between two hard radiators in Eq. (1.5.15) if b is a gluon and 0 if b is a quark.

The splitting functions P (0)
ab (ih, j) are given in Eqs. (1.5.17)-(1.5.25). Here, the

momentum fraction xj is defined with reference to the third particle in the antenna,

xj = sjk/(sik + sjk).

We note that we choose to use spin-averaged splitting functions, so there are no

azimuthal correlations in the constructed X0
3 . We will now take a short detour to

consider the handling of azimuthal correlations in antenna subtraction.

Constructing antenna functions with no azimuthal correlations is the correct choice

for antenna subtraction because one set of azimuthal correlations in an antenna

function will not in general match those in the process-specific matrix elements.

Instead, the azimuthal terms in the matrix elements are effectively averaged-out

by summing multiple pairs of correlated phase-space points during the subtraction

procedure. We can do this because azimuthal terms cancel against those terms
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related by a phase space rotation [150,183]. The azimuthal terms can be shown to

be proportional to cos(2φ+ α), where φ is the azimuthal angle around the collinear

direction. This means that if we sum the contributions from phase space points with

azimuthal angles φ and φ+ π/2, the azimuthal terms cancel. In this sense, antenna

subtraction is not truly local because cancellation is only demonstrated in the sum

of phase-space points, not point-by-point.

In a recent paper, Ref. [8], the authors use the idealised X0
3 antenna functions in a

first application to NLO subtraction of pp→ 3 jets. They focus on the subtraction

terms for the real correction matrix elements, gg → gggg and qg → qggg. Following

Ref. [156], trajectories are built into unresolved limits by scaling the relevant invari-

ants by a fraction x relative to the antenna invariant mass, sij... = xsijkl. Due to the

absence of azimuthal terms in our antenna functions, phase-space points are com-

bined that are correlated by angular rotations about the collinear direction in every

(multi-)collinear and soft-collinear limit in the full antenna-subtraction formalism.

Each histogram in Fig. 5.3 shows the relative agreement of the real subtraction terms

with the real matrix elements in digits, log10 (|1−R|), in two separate limits where

R is the ratio of the real correction and its subtraction term. The ratio, R, should

approach 1 in all unresolved limits and so (1 − R) should approach 0. We display

the plots for the final-final configuration only. Note that a smaller x indicates being

numerically closer to the limit. The dashed lines show the trajectory into the limit

point-by-point. The solid lines combine phase-space points related by an azimuthal

rotation of π/2 around the collinear direction. Since there are no azimuthal terms in

quark-initiated splittings, both the azimuthally averaged and unaveraged trajectories

show increasing agreement into the qg collinear limit. However, in the gg collinear

limit, while there is good agreement (and therefore successful subtraction) in the

azimuthally averaged case, this is not the case for the subtraction point-by-point.

In this case, the azimuthal terms in the matrix element are not subtracted and the

agreement does not get better deeper into the limit. These plots demonstrate the

validity of combining phase-space points that are correlated by angular rotations
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Figure 5.3: Numerical tests of the NLO final-final real subtraction
terms in the limit where a quark-gluon pair are collinear
(left frame) and where two gluons are collinear (right
frame). For three different values of the scaling para-
meter x, the relative agreement of the ratio R with 1 is
shown on a logarithmic axis. The dashed lines show the
trajectory into the limit point-by-point. The solid lines
combine phase-space points related by an azimuthal
rotation of π/2 around the collinear direction [8].

in the antenna-subtraction scheme. They also show that we do not need azimuthal

correlations in the idealised antenna functions.

We define the soft down-projector by its action on invariants as

S↓j :


sij 7→ λsij, sjk 7→ λsjk,

sijk 7→ sik,

(5.4.2)

and keep only the terms proportional to λ−2. For the corresponding up-projector

S↑j we choose a trivial mapping which leaves all variables unchanged. The collinear

down-projector we define as,

C↓ij :


sij 7→ λsij,

sik 7→ (1− xj)(sik + sjk), sjk 7→ xj(sik + sjk), sijk 7→ sik + sjk.

(5.4.3)

and keep only terms proportional to λ−1, while its corresponding up-projector we
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define as,

C↑ij :


xj 7→ sjk/sijk, (1− xj) 7→ sik/sijk

sik + sjk 7→ sijk

(5.4.4)

For convenience, we define a general single-real radiation tree-level antenna function

in terms of the contributions produced by the algorithm in Eq. (5.3.1) as,

X0
3 (ih, j, kh) = Ssoft(ih, j, kh) + Scol(ih, j; kh) + Scol(kh, j; ih) , (5.4.5)

where the individual pieces are given by

Ssoft(ih, j, kh) = S↑jL1(ih, j, kh) = L1(ih, j, kh), (5.4.6)

Scol(ih, j; kh) = C↑ij
(
L2(ih, j; kh)−C↓ijSsoft(ih, j, kh)

)
, (5.4.7)

Scol(kh, j; ih) = C↑kj
(
L3(kh, j; ih)−C↓kj

(
Ssoft(ih, j, kh) + Scol(ih, j; kh)

))
,

≡ C↑kj
(
L3(kh, j; ih)−C↓kjSsoft(ih, j, kh)

)
, (5.4.8)

and we have used the fact that the overlap between the two collinear contributions

is contained entirely in the projection of Ssoft(ih, j, kh) such that

C↓kjScol(ih, j; kh) = 0 . (5.4.9)

This algorithm guarantees that

S↓jX0
3 (ih, j, kh) = L1(ih, j, kh), (5.4.10)

C↓ijX0
3 (ih, j, kh) = L2(ih, j, kh), (5.4.11)

C↓kjX0
3 (ih, j, kh) = L3(ih, j, kh). (5.4.12)

In the following subsections, we derive the single-real radiation antennae for pairs

of quark-antiquark, quark-gluon and gluon-gluon parents. As a check, we also give

the analytic form of the three-particle antennae integrated over the fully-inclusive

d-dimensional antenna phase space,

X 0
3 (sijk) =

(
8π2 (4π)−ε eεγE

) ∫
d ΦXijk

X0
3 , (5.4.13)
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with d = 4− 2ε. As in Ref. [1], we have included a normalisation factor to account

for powers of the QCD coupling constant.

5.4.1 Quark-Antiquark Antennae

Building the antenna iteratively according to Eq. (5.3.1) using the list of limits in

Eq. (5.4.1), we find that the three-parton tree-level antenna function with quark-

antiquark parents is given (to all orders in ε) by

A0
3(ihq , jg, khq̄ ) = 2sik

sijsjk
+ (1− ε)sjk

sijksij
+ (1− ε)sij

sijksjk
. (5.4.14)

Eq. (5.4.14) differs from A0,OLD
3 , given in Eq. (5.5) of Ref. [1] that was derived

directly from the squared matrix element of γ∗ → qgq̄, at O (ε). We note that in

general X0
3 can differ from X0,OLD

3 at O
(
ε0
)
as we only require that they have the

same unresolved limits. Only in this specific case is the difference O (ε).

Integrating over the final-final antenna phase space, Eq. (5.4.13), yields

A0
3(sijk) = Sijk

[
1
ε2

+ 3
2ε + 19

4 −
7π2

12 +
(

113
8 −

7π2

8 −
25ζ3

3

)
ε

+
(

675
16 −

133π2

48 − 71π4

1440 −
25ζ3

2

)
ε2 +O

(
ε3
)]
, (5.4.15)

which, as expected, differs from the final-final integral of A0,OLD
3 , in Eq. (5.6) of

Ref. [1], starting from O (ε). We also use the convenient notation,

Sijk =
(
sijk
µ2

)−ε
. (5.4.16)

Integrals of the universal soft- and collinear-remainder terms in Eq. (5.4.5) (and in

this case Eq. (5.4.14)) are given in Appendix A.2 for increased clarity.

5.4.2 Quark-Gluon Antennae

Building the antenna iteratively according to Eq. (5.3.1) and using the list of soft

and collinear limits given in Eq. (5.4.1) adapted to the particle content, we find that
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D0
3(ihq , jg, khg ) = 2sik

sijsjk
+ (1− ε)sjk

sijksij
+ sijsik
s2
ijksjk

. (5.4.17)

Note that, owing to its origin in the neutralino-decay process, the D0,OLD
3 antenna

function given in Eqs. (4.3) and (4.9) of Ref. [149] contains two antennae, cor-

responding to the configurations: jg radiated between iq and kg, and kg radiated

between iq and jg. In Eq. (6.13) of Ref. [1], the full D0,OLD
3 was decomposed into

two sub-antennae, d0,OLD
3 (ihq , jg, khg ) and d0,OLD

3 (ihq , kg, jhg ), each of which contains the

soft limit of one of the gluons and part of the collinear limit between the gluons.

D0
3(ihq , jg, khg ) in Eq. (5.4.17) is therefore to be compared with d0,OLD

3 (ihq , jg, khg ) given

in Eq. (6.13) of Ref. [1]. Eq. (5.4.17) is more compact because it only contains terms

that contribute to the soft and collinear limits. The difference starts at O
(
ε0
)
in the

dimensional regularisation parameter ε. Integrating over the antenna phase space

yields,

D0
3(sijk) = Sijk

[
1
ε2

+ 5
3ε + 61

12 −
7π2

12 +
(

121
8 −

35π2

36 −
25ζ3

3

)
ε

+
(

723
16 −

427π2

144 −
71π4

1440 −
125ζ3

9

)
ε2 +O

(
ε3
)]
.(5.4.18)

This differs from the final-final integral of d0,OLD
3 (ihq , jg, khg ), which is a half of Eq. (6.9)

in Ref. [1], starting at O
(
ε0
)
.

Similarly, for the three-quark antenna, we find

E0
3(ihq , jQ̄, khQ) = 1

sjk
− 2sijsik
s2
ijksjk(1− ε)

, (5.4.19)

which is to be compared with E0,OLD
3 given in Eq. (4.9) of Ref. [149], which contains

terms that do not contribute to the quark-antiquark collinear limit starting at O
(
ε0
)
.

This has the consequence that the integrated antenna,

E0
3 (sijk) = Sijk

[
− 1

3ε −
3
4 +

(
−15

8 + 7π2

36

)
ε

+
(
−81

16 + 7π2

16 + 25ζ3

9

)
ε2 +O

(
ε3
)]
, (5.4.20)

differs from the final-final integral of E0,OLD
3 given in Eq. (6.15) of Ref. [1] starting
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at O
(
ε0
)
.

5.4.3 Gluon-Gluon Antennae

Directly constructing the antenna using Eq. (5.3.1) with the list of soft and collinear

limits given in Eq. (5.4.1) adapted to the particle content, we find that

F 0
3 (ihg , jg, khg ) = 2sik

sijsjk
+ siksjk
s2
ijksij

+ sijsik
s2
ijksjk

. (5.4.21)

The F 0,OLD
3 antenna function, obtained from Higgs boson decay (Eq. (4.3) of

Ref. [148]), has limits when any of the three gluons are soft. For this reason, it was

split into three permutations of the sub-antenna function f 0,OLD
3 (ihg , jg, khg ), given by

Eq. (7.13) of Ref. [1], which differs from Eq. (5.4.21) by terms that do not contribute

in any of the unresolved limits. Therefore, the integrated form,

F0
3 (sijk) = Sijk

[
1
ε2

+ 11
6ε + 65

12 −
7π2

12 +
(

129
8 −

77π2

72 −
25ζ3

3

)
ε

+
(

771
16 −

455π2

144 −
71π4

1440 −
275ζ3

18

)
ε2 +O

(
ε3
)]
,(5.4.22)

differs from the integrated form of f 0,OLD
3 (ihg , jg, khg ), which is a third of Eq. (7.9) in

Ref. [1], starting at O
(
ε0
)
.

The gQ̄Q antenna function is given by

G0
3(ihg , jQ̄, khQ) = 1

sjk
− 2sijsik
s2
ijksjk(1− ε)

. (5.4.23)

Note that G0
3(ihg , jQ̄, khQ) is identical to E0

3(ihq , jQ̄, khQ) because in both cases, the only

limit that is required is the g → Q̄Q collinear limit which is independent of the

particle type of the other hard radiator. The antenna derived from the Higgs-decay

matrix element G0,OLD
3 is given in Eq. (7.14) of Ref. [1] and contains terms that do

not contribute in the collinear limit. Integrating over the phase space, we find
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G0
3(sijk) ≡ E0

3 (sijk) (5.4.24)

= Sijk

[
− 1

3ε −
3
4 +

(
−15

8 + 7π2

36

)
ε

+
(
−81

16 + 7π2

16 + 25ζ3

9

)
ε2 +O

(
ε3
)]
, (5.4.25)

which differs from the integrated form of G0,OLD
3 , given in Eq. (7.15) of Ref. [1], at

O
(
ε0
)
.

5.5 Double-Real Radiation Antennae

At NNLO, we want to construct four-particle antenna functions X0
4 (iha, jb, kc, lhd),

where the particle types are denoted by a, b, c and d, which carry four-momenta i,

j, k and l respectively. Particles a and d should be hard and the antenna functions

must have the correct limits when particles b and c are unresolved. Frequently, we

again drop explicit reference to the particle labels in favour of a specific choice of X

according to Table 5.2.

For double-real-radiation antenna functions, we have to distinguish between the

case where the two unresolved particles are colour connected (which we denote by

X0
4 (iha, jb, kc, lhd)) and the case where they are not (which we denote by X̃0

4 (iha, jb, kc, lhd)).

The list of limits included in each case is different, due to different possible double-

and simple-collinear limits. Specifically, in X̃0
4 there are no bc-collinear limits but

there are ac- and bd-collinear limits, which are absent in X0
4 .

As at NLO, we systematically start from the most singular limit and build the list of

target functions using double- and single unresolved limits. The list of limits for the

X0
4 (iha, jb, kc, lhd) double-real antenna function, from most singular to least singular,



5.5. Double-Real Radiation Antennae 143

Quark-antiquark
qggq̄ X0

4 (ihq , jg, kg, lhq̄ ) A0
4(ih, j, k, lh)

qγγq̄ X̃0
4 (ihq , jγ, kγ, lhq̄ ) Ã0

4(ih, j, k, lh)
qQ̄Qq̄ X0

4 (ihq , jQ̄, kQ, lhq̄ ) B0
4(ih, j, k, lh)

qq̄qq̄ X0
4 (ihq , jq̄, kq, lhq̄ ) C0

4(ih, j, k, lh)
Quark-gluon

qggg X0
4 (ihq , jg, kg, lhg ) D0

4(ih, j, k, lh)
X̃0

4 (ihq , jg, kg, lhg ) D̃0
4(ih, j, k, lh)

qQ̄Qg X0
4 (ihq , jQ̄, kQ, lhg ) E0

4(ih, j, k, lh)
qgQ̄Q X0

4 (ihq , jg, kQ̄, lhQ) E
0
4(ih, j, k, lh)

qQ̄gQ X̃0
4 (ihq , jQ̄, kg, lhQ) Ẽ0

4(ih, j, k, lh)
Gluon-gluon

gggg X0
4 (ihg , jg, kg, lhg ) F 0

4 (ih, j, k, lh)
X̃0

4 (ihg , jg, kg, lhg ) F̃ 0
4 (ih, j, k, lh)

gQ̄Qg X0
4 (ihg , jQ̄, kQ, lhg ) G0

4(ih, j, k, lh)
ggQ̄Q X0

4 (ihg , jg, kQ̄, lhQ) G
0
4(ih, j, k, lh)

gQ̄gQ X̃0
4 (ihg , jQ̄, kg, lhQ) G̃0

4(ih, j, k, lh)
q̄qQ̄Q X0

4 (ihq̄ , jq, kQ̄, lhQ) H0
4 (ih, j, k, lh)

Table 5.2: Identification of X0
4 antennae according to particle type

and colour-structure. These antennae only contain sin-
gular limits when one or both of particles b and c (or
equivalently momenta j and k) are unresolved. Anten-
nae are classified as quark-antiquark, quark-gluon and
gluon-gluon according to the particle type of the parents
(i.e. after the antenna mapping).

is given by

L1(ih, j, k, lh) = S
(0)
bc (ih, j, k, lh) ,

L2(ih, j, k; lh) = P
(0)
abc(ih, j, k) ,

L3(ih, j, k, lh) = P
(0)
dcb(lh, k, j) ,

L4(ih, j, k, lh) = P
(0)
ab (ih, j)P (0)

dc (lh, k) ,

L5(ih, j, k, lh) = S
(0)
b (ih, j, kh)X0

3 (ih, k, lh) ,

L6(ih, j, k, lh) = S(0)
c (jh, k, lh)X0

3 (ih, j, lh) ,

L7(ih, j, k, lh) = P
(0)
ab (ih, j)X0

3 ((i+ j)h, k, lh) ,

L8(ih, j, k, lh) = P
(0)
bc (j, k)X0

3 (ih, (j + k), lh) ,

L9(ih, j, k, lh) = P
(0)
dc (lh, k)X0

3 (ih, j, (l + k)h) ,

(5.5.1)
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where for readability, we have suppressed the labels for the particle types inX0
3 . Here,

L1 contains the double soft contribution; L2 and L3 the triple-collinear contributions;

L4 the double-collinear contribution; L5 and L6 the single-soft limits; and L7, L8

and L9 the simple-collinear limits. The specific choices of X0
3 in L5 – L9 are fixed by

the flavour structure of the relevant single unresolved limits. Because the iterative

procedure is organised such that there are no overlaps between contributions of the

same level, the ordering of limits of the same type is not important – e.g. between

L2 and L3. For the X̃0
4 (iha, jb, kc, lhd), the list of limits is given by

L̃1(ih, j, k, lh) = S
(0)
bc (ih, j, k, lh) ,

L̃2(ih, j, k; lh) = P
(0)
abc(ih, j, k) ,

L̃3(ih, j, k, lh) = P
(0)
dcb(lh, k, j) ,

L̃4(ih, j, k, lh) = P
(0)
ab (ih, j)P (0)

dc (lh, k) ,

L̃5(ih, j, k, lh) = P (0)
ac (ih, k)P (0)

db (lh, j) ,

L̃6(ih, j, k, lh) = S
(0)
b (ih, j, lh)X0

3 (ih, k, lh) ,

L̃7(ih, j, k, lh) = S(0)
c (ih, k, lh)X0

3 (ih, j, lh) ,

L̃8(ih, j, k, lh) = P
(0)
ab (ih, j)X0

3 ((i+ j)h, k, lh) ,

L̃9(ih, j, k, lh) = P (0)
ac (ih, k)X0

3 ((i+ k)h, j, lh) ,

L̃10(ih, j, k, lh) = P
(0)
dc (lh, k)X0

3 (ih, j, (l + k)h) ,

L̃11(ih, j, k, lh) = P
(0)
db (lh, j)X0

3 (ih, k, (l + j)h) .

(5.5.2)

The tree-level double-soft factors are given in Eqs. (1.5.27)-(1.5.29) and zero other-

wise. The triple-collinear splitting functions P (0)
abc(ih, j, k), when particle a is hard,

are given in their decomposed form in Chapter 3. It may be useful for the reader to

note that P (0)
gγγ(ih, j, k) ≡ P (0)

ggg(k, ih, j). We exploit the decomposition into strongly-

ordered iterated contributions (which are products of the usual spin-averaged two-

particle splitting functions) and a remainder function R(0)
abc(i, j, k) that is finite when

any pair of {i, j, k} are collinear. Additionally, the projections of the double-soft

factors in the triple-collinear phase space are given in Appendix A.4 and they in-
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dicate the overlap between the two limits. The three-particle antennae appear-

ing in Eqs. (5.5.1) and (5.5.2) are those discussed in Section 5.4. For example,

X0
3 ((i+ j)h, k, lh) denotes the antenna with particle types (ab), c and d according to

Table 5.1 carrying momenta (i+ j), k and l respectively. In Appendix A.1, we list

in full the limits for each X0
4 , for convenient reference.

We highlight two observations here. Firstly, neither Eq. (5.5.1) nor Eq. (5.5.2)

include an explicit soft-collinear limit. These limits are present (and are verified

after X0
4 construction) but arise naturally from the combination of double-soft and

triple-collinear limits. Secondly, because the antenna functions are built from spin-

averaged splitting functions, there are no azimuthal correlations in the constructed

X0
4 . The effect of azimuthal-averaging has been discussed in Section 5.4.

Together with the list of limits, we need to have a procedure for mapping the antenna

into the particular limit subspace and then returning to the full phase space. We

define the double-soft down-projector for particles j and k soft as

DS↓jk :



sjk 7→ λ2sjk,

sij 7→ λsij, sik 7→ λsik, sjl 7→ λsjl, skl 7→ λskl,

sijk 7→ λsijk, sjkl 7→ λsjkl,

sijl 7→ sil, sikl 7→ sil, sijkl 7→ sil,

(5.5.3)

and we keep only terms proportional to λ−4. As at NLO, for the corresponding

up-projector DS↑jk we choose a trivial mapping which leaves all variables unchanged.

We define the triple-collinear down-projector for collinear particles i, j and k as

TC↓ijk :



sij 7→ λsij, sik 7→ λsik, sjk 7→ λsjk, sijk 7→ λsijk,

sijkl 7→ sil + sjl + skl,

sil 7→ xi
(
sil + sjl + skl

)
, sjkl 7→ (1− xi)

(
sil + sjl + skl

)
,

sjl 7→ xj
(
sil + sjl + skl

)
, sikl 7→ (1− xj)

(
sil + sjl + skl

)
,

skl 7→ xk
(
sil + sjl + skl

)
, sijl 7→ (1− xk)

(
sil + sjl + skl

)
,

(5.5.4)
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with xi + xj + xk = 1 and we keep only terms proportional to λ−2. Note that

when (1 − xi) appears in the numerator, expressions are simplified according to

(1− xi) = xj + xk and so on. The corresponding up-projector we define as

TC↑ijk :



xi 7→ sil/(sil + sjl + skl),

(1− xi) 7→ sjkl/(sil + sjl + skl),

xj 7→ sjl/(sil + sjl + skl),

(1− xj) 7→ sikl/(sil + sjl + skl),

xk 7→ skl/(sil + sjl + skl),

(1− xk) 7→ sijl/(sil + sjl + skl),

sil + sjl + skl 7→ sijkl.

(5.5.5)

The double-collinear down-projector for particles i||j and k||l we choose as

DC↓ij;kl :



sij 7→ λsij, skl 7→ µskl,

sil 7→ (1− xj)(1− yk)sijkl, sjl 7→ xj(1− yk)sijkl,

sik 7→ (1− xj)yksijkl, sjk 7→ xjyksijkl,

sijk 7→ yksijkl, sijl 7→ (1− yk)sijkl,

sikl 7→ (1− xj)sijkl, sjkl 7→ xjsijkl,

sijkl 7→ sik + sjk + sil + sjl,

(5.5.6)

and we keep only terms proportional to λ−1µ−1 in order to count the divergences of

both collinear limits separately. The corresponding up projector is

DC↑ij;kl :



xjyk 7→ sjk/sijkl,

xj 7→ (sjk + sjl)/sijkl,

yk 7→ (sik + sjk)/sijkl,

1/yk 7→ sijkl/sijk, 1/(1− yk) 7→ sijkl/sijl,

1/xj 7→ sijkl/sjkl, 1/(1− xj) 7→ sijkl/sikl.

(5.5.7)
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The single-soft down-projector acts on invariants as

S↓j :



sij 7→ λsij, sjk 7→ λsjk, sjl 7→ λsjl,

sijk 7→ sik, sijl 7→ sil, sjkl 7→ skl,

sijkl 7→ sikl,

(5.5.8)

and keeps only terms proportional to λ−2. For the corresponding up-projector S↑j ,

we again choose a trivial mapping which leaves all variables unchanged, in line with

the choice for the single-soft up-projector in Section 5.4.

The simple-collinear down-projector we choose as,

C↓ij :



sij 7→ λsij,

sik 7→ (1− xj)sijk, sjk 7→ xjsijk,

sil 7→ (1− xj)sijl, sjl 7→ xjsijl,

sijk 7→ sik + sjk,

sijl 7→ sil + sjl,

(5.5.9)

and keep only terms proportional to λ−1, while its corresponding up-projector we

define as,

C↑ij :



xj(sik + sjk) 7→ sjk, (1− xj)(sik + sjk) 7→ sik

xj(sil + sjl) 7→ sjl, (1− xj)(sil + sjl) 7→ sil

sik + sjk 7→ sijk,

sil + sjl 7→ sijl,

xj(1− xj) 7→ sjksil/(sijksijl),

xj 7→ sjk/sijk.

(5.5.10)

Note that there is an ambiguity on how to write xj and (1−xj) in terms of invariants.

In particular, we use the following identities,

x2
j = xj − xj(1− xj), (5.5.11)
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(1− xj)2 = 1− xj − xj(1− xj), (5.5.12)

xj(1− xj) 7→
sjksil
sijksijl

or siksjl
sijksijl

, (5.5.13)

to avoid repeated powers of triple invariants. Additional identities are imposed to

preserve the symmetry of the antenna.

Note that even after defining all projectors, some ambiguity remains. For example, if

we consider what happens to a term like sijl/sijl in the ijk triple-collinear subspace,

then

1 ≡ sil + sjl + sij
sijl

TC↓ijk−→ xi + xj
(1− xk)

≡ 1
TC↑ijk−→ 1,

while applying the process to the individual terms does not give back unity upon

summation in the full phase space,

sil
sijl

TC↓ijk−→ xi
(1− xk)

TC↑ijk−→ sil
sijl

,

sjl
sijl

TC↓ijk−→ xj
(1− xk)

TC↑ijk−→ sjl
sijl

,

sij
sijl

TC↓ijk−→ 0
TC↑ijk−→ 0.

It is clear that the sum of the last three lines is equivalent to unity in the triple-

collinear subspace. Exactly how one returns to the full space can introduce differences

there. These differences do not affect the limit in question but do influence less sin-

gular limits. These are corrected by the iterative process which systematically moves

from a more singular limit to a less singular limit, guaranteeing that each limit is

correctly described. However, after the iterative construction of the antenna function

is complete, there can still be differences in finite terms that do not contribute to

any limit.

For antennae where i, j, k and l are colour connected to adjacent particles, i.e. i to

j to k to l, we define the general antenna function as
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X0
4 (ih, j, k, lh) = Dsoft(ih, j, k, lh)

+Tcol(ih, j, k; lh) + Tcol(lh, k, j; ih)

+Dcol(ih, j; k, lh)

+Ssoft(ih, j, k; lh) + Ssoft(lh, k, j; ih)

+Scol(ih, j; k, lh) + Scol(j, k; ih, lh) + Scol(lh, k; j, ih), (5.5.14)

where the individual pieces are given by

Dsoft(ih, j, k, lh) = S↑jkL1(ih, j, k, lh) = L1(ih, j, k, lh) , (5.5.15)

Tcol(ih, j, k; lh) = TC↑ijk
(
L2(ih, j, k, lh)−TC↓ijkDsoft(ih, j, k, lh)

)
, (5.5.16)

Tcol(lh, k, j; ih) = TC↑lkj
(
L3(ih, j, k, lh)−TC↓lkj

(
Dsoft(ih, j, k, lh) + Tcol(ih, j, k; lh)

))
≡ TC↑lkj

(
L3(ih, j, k, lh)−TC↓lkjDsoft(ih, j, k, lh)

)
, (5.5.17)

Dcol(ih, j; k, lh) = DC↑ij;kl
(
L4(ih, j, k, lh)−DC↓ij;klX0

4;3(ih, j, k, lh)
)
, (5.5.18)

Ssoft(ih, j, k; lh) = S↑j
(
L5(ih, j, k, lh)− S↓jX0

4;4(ih, j, k, lh))
)
, (5.5.19)

Ssoft(j, k, lh; ih) = S↑k
(
L6(ih, j, k, lh)− S↓k

(
X0

4;4(ih, j, k, lh) + Ssoft(ih, j, k; lh)
))

≡ S↑k
(
L6(ih, j, k, lh)− S↓kX0

4;4(ih, j, k, lh)
)
, (5.5.20)

Scol(ih, j; k, lh) = C↑ij
(
L7(ih, j, k, lh)−C↓ijX0

4;6(ih, j, k, lh)
)
, (5.5.21)

Scol(j, k; ih, lh) = C↑jk
(
L8(ih, j, k, lh)−C↓jk

(
X0

4;6(ih, j, k, lh) + Scol(ih, j; k, lh)
))

≡ C↑jk
(
L8(ih, j, k, lh)−C↓jkX0

4;6(ih, j, k, lh)
)
, (5.5.22)

Scol(lh, k; j, ih) = C↑kl
(
L9(ih, j, k, lh)−C↓kl

(
X0

4;6(ih, j, k, lh) + Scol(ih, j; k, lh)

+Scol(j, k; ih, lh)
))

≡ C↑kl
(
L9(ih, j, k, lh)−C↓klX0

4;6(ih, j, k, lh)
)
, (5.5.23)

where we have used

TC↓lkjTcol(ih, j, k; lh) = 0, (5.5.24)

S↓kSsoft(ih, j, k; lh) = 0, (5.5.25)
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C↓jkScol(ih, j; k, lh) = 0, (5.5.26)

C↓klScol(ih, j; k, lh) = 0, (5.5.27)

C↓klScol(j, k; ih, lh) = 0, (5.5.28)

together with

X0
4;3(ih, j, k, lh) = Dsoft(ih, j, k, lh) + Tcol(ih, j, k; lh) + Tcol(lh, k, j; ih), (5.5.29)

X0
4;4(ih, j, k, lh) = X0

4:3(ih, j, k, lh) + Dcol(ih, j; k, lh), (5.5.30)

X0
4;6(ih, j, k, lh) = X0

4:4(ih, j, k, lh) + Ssoft(ih, j, k; lh) + Ssoft(j, k, lh; ih). (5.5.31)

An example of this type of antenna would be the leading-colour antenna with a

quark and an antiquark as hard radiators, emitting two gluons. In the same way as

for the X0
3 antennae, the algorithm ensures that for all limits

P↓iX0
4 (ih, j, k, lh) = Li(ih, j, k, lh). (5.5.32)

In addition, X0
4 (ih, j, k, lh) has the correct soft-collinear limits.

For sub-leading-colour antennae, where j and k are each colour connected to the

hard radiators and not to each other, we define a general antenna function X̃0
4 as

X̃0
4 (ih, j, k, lh) = Dsoft(ih, j, k, lh)

+Tcol(ih, j, k; lh) + Tcol(lh, k, j; ih)

+Dcol(ih, j; k, lh) + Dcol(ih, k; j, lh)

+Ssoft(ih, j, lh; k) + Ssoft(ih, k, lh; j)

+Scol(ih, j; k, lh) + Scol(ih, k; j, lh)

+Scol(lh, j; k, ih) + Scol(lh, k; j, ih), (5.5.33)

where Dsoft, Tcol, Dcol, Ssoft and Scol are defined analogously to Eq. (5.5.15) with

a similar absence of overlaps between terms at the same level as in Eqs. (5.5.24) -

(5.5.28). An example of this type of antenna would be one with quark and antiquark

hard radiators, emitting two photons/abelianised gluons. Again, the algorithm
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ensures that X̃0
4 satisfies

P↓i X̃0
4 (ih, j, k, lh) = L̃i(ih, j, k, lh), (5.5.34)

for all limits and has the correct soft-collinear limits.

We also give the analytic form of the four-particle antennae integrated over the fully

inclusive d-dimensional antenna phase space [1, 175],

X 0
4 (sijkl) =

(
8π2 (4π)−ε eεγE

)2 ∫
d ΦXijkl

X0
4 , (5.5.35)

including a normalisation factor to account for powers of the QCD coupling constant.

5.5.1 Quark-Antiquark Antennae

As shown in Table 5.2, there are four tree-level four-parton antennae with quark-

antiquark parents that describe the emission of

1. two colour-connected gluons (A0
4),

2. two photons, or equivalently two gluons that are not colour connected (Ã0
4),

3. the emission of a quark-antiquark pair of different flavour to the radiators (B0
4),

4. the emission of a quark-antiquark pair of the same flavour as the radiators

(C0
4).

These antenna functions can straightforwardly be obtained from matrix elements for

γ∗ → 4 partons [1] and the antenna functions constructed here are directly related

to the antenna functions given in Ref. [1] by

A0
4(ihq , jg, kg, lhq̄ ) ∼ A0,OLD

4 (iq, jg, kg, lq̄), (5.5.36)

Ã0
4(ihq , jg, kg, lhq̄ ) ∼ Ã0,OLD

4 (iq, jg, kg, lq̄), (5.5.37)

B0
4(ihq , jQ̄, kQ, lhq̄ ) ∼ B0,OLD

4 (iq, jQ̄, kQ, lq̄), (5.5.38)

C0
4(ihq , jq̄, kq, lhq̄ ) ∼ C0,OLD

4 (iq, jq̄, kq, lq̄), (5.5.39)
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in the sense that the new antennae should have the same double unresolved limits

as the original antenna (as indicated by the ∼ symbol).

To build the A0
4 antenna using the algorithm described in Section 5.3, we simply

identify the particles in the list of required limits given in Eq. (5.5.1) – b and c

are gluons, while a (d) are the quark (antiquark) hard radiators. In this case, the

three-particle antennae appearing in the required limits are of type A0
3. The resulting

expression for A0
4 is included in the auxiliary materials of Ref. [184]. It satisfies the

line reversal property,

A0
4(ih, j, k, lh) = A0

4(lh, k, j, ih). (5.5.40)

As an example of the numerical behaviour of the new antenna functions, in Fig. 5.4

we show numerical tests of the the new A0
4 against the original A0,OLD

4 . We follow Ref.

[156] and build trajectories into unresolved limits by scaling the relevant invariants by

a fraction x relative to the antenna invariant mass, sij... = xsijkl, similarly to Fig. 5.3.

Due to the absence of azimuthal terms in our antenna functions, we combine phase-

space points that are correlated by angular rotations about the collinear direction

in every (multi-)collinear and soft-collinear limit. Each histogram shows the relative

agreement of A0
4 and A0,OLD

4 in digits,

log10 (|1−R|) with R = A0
4

A0,OLD
4

. (5.5.41)

We wish to point out that due to the explicit line-reversal symmetry of A0
4, we only

show representative examples for each limit. In all unresolved limits, we find percent-

level agreement already for x = 10−2 and increasing agreement for smaller values

of x. Taking into account the different scaling behaviour of the double- and single

unresolved limits, it is evident that the antenna function develops quantitatively

similar behaviour in approaching the singularity.

Integrating over the antenna phase space, we find
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A0
4(sijkl) = S2

ijkl

+ 3
4ε4

+ 65
24ε3

+ 1
ε2

(217
18 −

13
12π

2
)

+ 1
ε

(44087
864 −

589
144π

2 − 71
4 ζ3

)

+
(1134551

5184 − 8117
432 π

2 − 1327
18 ζ3 + 373

1440π
4
)

+O (ε)
, (5.5.42)

which differs from A0,OLD
4 in Eq. (5.31) of Ref. [1], starting from the rational part

at O (1/ε). This is completely understood and is simply because the A0
3 given in

Eq. (5.4.14) differs at O (ε) from A0,OLD
3 given in Eq. (5.5) of Ref. [1]. The choice

of A0
3 impacts the algorithm at the stage of the single-soft limits, L5,6 ∼ S(0)

g A0
3.

Integrating the difference 2S(0)
g (A0,OLD

3 − A0
3) over the antenna phase space yields

precisely the observed discrepancy of O (1/ε). Integrated forms of the four-particle

antennae constructed by using the original set of three-particle antennae, X0,OLD
3 ,

derived directly from the squared matrix elements are listed in Appendix A.5. The

pole structure of Eq. (A.5.1) agrees precisely with Eq. (5.31) of Ref. [1] and differs

only at O
(
ε0
)
. We also use the convenient notation,

Sijkl =
(
sijkl
µ2

)−ε
. (5.5.43)

Integrals of the universal double unresolved contributions in Eq. (5.5.14) for all X0
4

are given in Appendix A.3 for increased clarity.

To build the Ã0
4 antenna, we identify a (d) as the quark (antiquark) hard radiators

and b and c as photons (or abelianised gluons). The resulting expression for Ã0
4 is

included in the auxiliary materials of Ref. [184]. It is symmetric under both line

reversal

Ã0
4(ih, j, k, lh) = Ã0

4(lh, k, j, ih) (5.5.44)

and exchange of the two gluons,

Ã0
4(ih, j, k, lh) = Ã0

4(ih, k, j, lh). (5.5.45)
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Figure 5.4: Numerical tests of the new A0
4 against A0,OLD

4 in all
relevant singular limits. For three different values of the
scaling parameter x, the relative agreement of the ratio
R = A0

4/A
0,OLD
4 with 1 is shown on a logarithmic axis.
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Integrating over the antenna phase space, we find

Ã0
4(sijkl) = S2

ijkl

+ 1
ε4

+ 3
ε3

+ 1
ε2

(
13− 3

2π
2
)

+ 1
ε

(861
16 −

9
2π

2 − 80
3 ζ3

)

+
(7105

32 −
39
2 π

2 − 80ζ3 + 29
120π

4
)

+O (ε)
, (5.5.46)

which differs from Ã0,OLD
4 in Eq. (5.32) of Ref. [1], starting from the rational part at

O (1/ε). The integrated form of Ã0
4 using the original set of three-particle antenna

functions, X0,OLD
3 , is given in Eq. (A.5.2), where the pole structure agrees precisely

with Ã0,OLD
4 in Eq. (5.32) of Ref. [1] and differs only at O

(
ε0
)
.

To construct B0
4 we identify b and c as a quark-antiquark pair (that is of different

flavour to the hard radiators a and d). The resulting expression for B0
4 is included

in the auxiliary materials of Ref. [184]. It is symmetric under line reversal,

B0
4(ih, j, k, lh) = B0

4(lh, k, j, ih), (5.5.47)

and exchange of the quark-antiquark pair,

B0
4(ih, j, k, lh) = B0

4(ih, k, j, lh). (5.5.48)

Integrating over the antenna phase space, we find

B0
4(sijkl) = S2

ijkl

− 1
12ε3

− 7
18ε2

+ 1
ε

(
−407

216 + 11
72π

2
)

+
(
−5917

648 + 145
216π

2 + 67
18ζ3

)
+O (ε)

, (5.5.49)

which differs from Eq. (5.39) of Ref. [1], starting from the rational part of O
(
ε0
)
.

The C0
4 antenna has no double-soft or single-soft limits. It is therefore considerably

simpler than the other quark-antiquark antennae. By construction, the only limit

it contains is when particles b, c and d are collinear – the q̄qq̄ triple-collinear limit

for identical quarks. The resulting expression for C0
4 is included in the auxiliary

materials of Ref. [184]. It is symmetric under the exchange of the two identical
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antiquarks in the triple-collinear group,

C0
4(ih, j, k, lh) = C0

4(ih, l, k, jh). (5.5.50)

This is as a direct result of the symmetry in the P (0)
qq̄q splitting function. Integrating

over the antenna phase space, we find

C0
4(sijkl) = S2

ijkl

+1
ε

(
−13

32 + 1
16π

2 − 1
4ζ3

)

+
(
−73

16 + 23
96π

2 + 23
8 ζ3 −

1
45π

4
)

+O (ε)
,(5.5.51)

which differs from C0,OLD
4 in Eq. (5.44) of Ref. [1], starting from O

(
ε0
)
.

5.5.2 Quark-Gluon Antennae

The antenna functions for quark-gluon parents have been systematically derived from

an effective Lagrangian describing heavy neutralino decay [149]. There are three

different configurations corresponding to the tree level processes χ̃→ g̃ggg (labelled

D0,OLD
4 ) and χ̃→ g̃qq̄g (with leading-colour and sub-leading colour antennae labelled

E0,OLD
4 and Ẽ0,OLD

4 respectively). Since these were based on matrix elements, the

D0,OLD
4 and E0,OLD

4 antennae did not strictly follow the design principles laid out

in Section 5.2. In particular, the antennae did not clearly specify which particles

should be hard radiators and over-included unresolved limits that are not desirable.

In Ref. [150], work was done to divide both D0
4 and E0

4 into sub-antennae with better

properties, however this yielded functions that were not analytically integrable. Here

we derive antennae that contain specific limits using the algorithm. As indicated in

Table 5.2, there are five antennae in total:

• Two types of antennae describe the qggg system: D0
4(ihq , jg, kg, lhg ) and

D̃0
4(ihq , jg, kg, lhg ). In D0

4, the two unresolved gluons are colour-connected, while
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in D̃0
4 they are disconnected. In terms of the antennae of Ref. [1],

D0,OLD
4 (iq, jg, kg, lg) ∼ D0

4(ih, j, k, lh) +D0
4(ih, l, k, jh) + D̃0

4(ih, j, l, kh) .

(5.5.52)

• Three types of antennae describe the qQ̄Qg system: E0
4(ihq , jQ̄, kQ, lhg ),

E
0
4(ihq , jg, kQ̄, lhQ) and Ẽ0

4(ihq , jQ̄, kg, lhQ). At leading colour, two configurations

are necessary: E0
4 in which the QQ̄ pair can be soft and the gluon is a hard

radiator, and E
0
4 where the gluon can be soft. The soft-gluon singularities

are therefore all contained in E
0
4 but the triple-collinear gQQ̄ singularities

are distributed between E0
4 and E0

4 according to Eq. (3.4.43). At sub-leading

colour, only one antenna is needed. These antennae are related to the antennae

of Ref. [1] by,

E0,OLD
4 (iq, jQ̄, kQ, lg) ∼ E0

4(ih, j, k, lh) + E
0
4(ih, l, k, jh) (5.5.53)

Ẽ0,OLD
4 (iq, jQ̄, kQ, lg) ∼ Ẽ0

4(ih, j, l, kh). (5.5.54)

To build the antennae using the algorithm, we simply identify the particles in the

list of required limits given in Eq. (5.5.1). For the D0
4 and D̃0

4 antennae, a is a

quark and b, c and d are gluons. For D0
4 the double-soft limit is S(0)

gg , while for

D̃0
4 the double-soft limit is S(0)

γγ . The colour-connected triple-gluon collinear limit is

shared between the three antennae in Eq. (5.5.52) according to the decomposition in

Eq. (3.4.4). The three-particle antennae that appear in the single unresolved limits

can be either of type A0
3 or type D0

3.

The resulting expressions for D0
4 and D̃0

4 are included in the auxiliary materials of

Ref. [184]. D0
4 has no symmetries, while D̃0

4 is symmetric under exchange of the

unresolved abelianised gluons,

D̃0
4(ih, j, k, lh) = D̃0

4(ih, k, j, lh). (5.5.55)

Note, in particular, that D̃0
4(ih, j, k, lh) encapsulates the triple-collinear limits P (0)

qγγ(ih, j, k)

and P (0)
ggg(j, lh, k), as given in Eq. (3.4.34) and Eq. (3.4.5) respectively. Integrating
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over the antenna phase space, we find

D0
4(sijkl) = S2

ijkl

+ 3
4ε4

+ 71
24ε3

+ 1
ε2

(118
9 −

13
12π

2
)

+ 1
ε

(11849
216 −

35
8 π

2 − 35
2 ζ3

)

+
(74369

324 −
8579
432 π

2 − 5473
72 ζ3 + 9

32π
4
)

+O (ε)
, (5.5.56)

D̃0
4(sijkl) = S2

ijkl

+ 1
ε4

+ 10
3ε3

+ 1
ε2

(29
2 −

3
2π

2
)

+ 1
ε

(26749
432 − 5π2 − 83

3 ζ3

)

+
(113227

432 − 1045
48 π2 − 818

9 ζ3 + 19
120π

4
)

+O (ε)
.(5.5.57)

The combination 2D0
4 + D̃0

4 agrees with the pole structure for D0,OLD
4 (given in

Eq. (6.45) of Ref. [1]), up to the rational part at O
(
1/ε2

)
. This is because the D0

3

antenna differs at O
(
ε0
)
from the three-particle antenna, d0,OLD

3 , used in Ref. [1].

The integrated forms of D0
4 and D̃0

4 using the original set of three-particle antenna,

given in Appendix A.5, restore the agreement with the pole structure of Eq. (6.45)

of Ref. [1] through to O
(
ε0
)
.

The expressions for E0
4 and E0

4 are given in the auxiliary materials of Ref. [184] and

have no symmetries. Integrating over the antenna phase space yields

E0
4 (sijkl) = S2

ijkl

− 1
12ε3

− 5
12ε2

+ 1
ε

(
−1463

864 + 1
8π

2
)

+
(
−38401

5184 + 77
108π

2 + 20
9 ζ3

)
+O (ε)

, (5.5.58)

E0
4(sijkl) = S2

ijkl

− 1
3ε3
− 35

24ε2
+ 1
ε

(
−5537

864 + 1
2π

2
)

+
(
−47345

1728 + 35
16π

2 + 80
9 ζ3

)
+O (ε)

. (5.5.59)

The combination E0
4 +E0

4 agrees with the pole structure of E0,OLD
4 (given in Eq. (6.51)

of Ref. [1]), up to the rational part at O
(
1/ε2

)
. This is because the E0

3 antenna

differs at O
(
ε0
)
from the three-particle antenna, E0,OLD

3 , used in Ref. [1]. Using

the original set of three-particle antenna functions leads to the integrated four-

particle antennae listed in Appendix A.5, which restores the agreement with the

pole structure of E0,OLD
4 in Eq. (6.51) of Ref. [1] through to O

(
ε0
)
.
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The sub-leading-colour antenna Ẽ0
4(ihq , jQ̄, kg, lhQ) only contains singularities associ-

ated with the Q̄gQ cluster – namely the triple-collinear limit, the soft-gluon limit

and the collinear limits Q̄g and gQ. These limits are independent of the particle

type of the first hard radiator a. The expression for Ẽ0
4 is included in the auxiliary

materials of Ref. [184]. Ẽ0
4 is symmetric under exchange of the quark-antiquark pair,

Ẽ0
4(ih, j, k, lh) = Ẽ0

4(ih, l, k, jh). (5.5.60)

Integrating over the antenna phase space, we find

Ẽ0
4 (sijkl) = S2

ijkl

− 1
6ε3
− 13

18ε2
+ 1
ε

(
−80

27 + 1
4π

2
)

+
(
−7501

648 + 13
12π

2 + 40
9 ζ3

)
+O (ε)

. (5.5.61)

The pole structure for Ẽ0
4 agrees with Ẽ0,OLD

4 (given in Eq. (6.52) of Ref. [1]), up

to the rational part at O
(
1/ε2

)
. This is because the E0

3 antenna differs at O
(
ε0
)

from the three-particle antenna, E0,OLD
3 , used in Ref. [1]. Using as input the original

three-particle antenna, E0,OLD
3 , restores the agreement through to O

(
ε0
)
.

5.5.3 Gluon-Gluon Antennae

Antenna functions for gluon-gluon parents have been systematically derived from

the effective Lagrangian describing Higgs boson decay into gluons [148]. There

are four possibilities, H → gggg (labelled F 0,OLD
4 ), H → ggQQ̄ (with leading-

colour and sub-leading colour antennae labelled G0,OLD
4 and G̃0,OLD

4 respectively)

and H → qq̄QQ̄ (labelled H0,OLD
4 ). The F 0,OLD

4 and G0,OLD
4 antennae also did not

follow the design principles laid out in Section 5.2, as they did not clearly specify

which particles should be hard radiators and/or over-included unresolved limits that

are not desirable. Ref. [179] reorganised the F 0,OLD
4 antenna into F 0,OLD

4, a and F 0,OLD
4, b

sub-antennae that had better properties but at the cost of introducing composite

denominators. Similar work was also carried out for the G0,OLD
4 antenna.
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Using our algorithm, we can build gluon-gluon antennae that do satisfy the ideal

design principles. As shown in Table 5.2 there are six antennae in total:

• Two types of antenna describe the gggg system: F 0
4 (ihg , jg, kg, lhg ) and

F̃ 0
4 (ihg , jg, kg, lhg ). They are related to the antenna of Ref. [1] by,

F 0,OLD
4 (i, j, k, l) ∼ F 0

4 (ih, j, k, lh) + 3 cyclic permutations

+ F̃ 0
4 (ih, j, l, kh) + F̃ 0

4 (lh, i, k, jh). (5.5.62)

In F 0
4 the two unresolved gluons are colour-connected, while in F̃ 0

4 they are

disconnected.

• Three types of antenna describe the gQQ̄g system: G0
4(ihg , jQ, kQ̄, lhg ),

G
0
4(ihg , jg, kQ, lhQ̄) and G̃0

4(ihg , jQ, kg, lhQ̄). At leading colour, two configurations

are necessary: G0
4 in which the QQ̄ pair can be soft and both gluons are hard

radiators, and G0
4 where one of the gluons can be soft (and the other is a hard

radiator). The soft-gluon singularities are therefore all contained in G0
4 but the

triple-collinear gQQ̄ singularities are distributed between G0
4 and G

0
4. They

are related to the antenna of Ref. [1] by,

G0,OLD
4 (ig, jQ, kQ̄, lg) ∼ G0

4(ih, j, k, lh)

+G
0
4(lh, i, j, kh) +G

0
4(ih, l, k, jh) . (5.5.63)

At sub-leading colour, only one antenna, G̃0
4(ihg , jQ̄, kg, lhQ), is needed. There

are no double-soft limits and only one triple-collinear limit describing the Q̄gQ

cluster. G̃0
4 is related to the antenna of Ref. [1] by,

G̃0,OLD
4 (ig, jQ, kQ̄, lg) ∼ G̃0

4(ih, j, l, kh) + G̃0
4(lh, k, i, jh) . (5.5.64)

• Finally, one gluon-gluon antenna is needed to describe the qq̄QQ̄ final state,

called H0
4 (ihq̄ , jq, kQ̄, lhQ), which is directly related to the analogous antenna in

Ref. [1],

H0,OLD
4 (iq̄, jq, kQ̄, lQ) ∼ H0

4 (ih, j, k, lh) . (5.5.65)
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Note that only different quark flavours need to be considered, since the identical-

flavour contribution to this final state is finite.

As for the previous antennae, we simply identify the particles in the list of required

limits given in Eq. (5.5.1). For the F 0
4 and F̃ 0

4 antennae, all particles are gluons.

For F 0
4 the double-soft limit is S(0)

gg , while for F̃ 0
4 the double-soft limit is S(0)

γγ . The

assignment of the triple-gluon splitting function to F 0
4 and F̃ 0

4 exactly parallels the

division for D0
4 and D̃0

4 and the triple-gluon collinear limit is shared between the two

antennae according to the decomposition in Eq. (3.4.4). The three-particle antennae

that appear in the single unresolved limits are all of type F 0
3 .

The resulting expressions for F 0
4 and F̃ 0

4 are included in the auxiliary materials of

Ref. [184]. Both F 0
4 and F̃ 0

4 satisfy the line reversal property,

F 0
4 (ih, j, k, lh) = F 0

4 (lh, k, j, ih) , (5.5.66)

F̃ 0
4 (ih, j, k, lh) = F̃ 0

4 (lh, k, j, ih) , (5.5.67)

while F̃ 0
4 is symmetric under the exchange of the two unresolved gluons,

F̃ 0
4 (ih, j, k, lh) = F̃ 0

4 (ih, k, j, lh) . (5.5.68)

After integration over the final-final antenna phase space, Eq. (5.4.13), we find the

following infrared pole structure,

F0
4 (sijkl) = S2

ijkl

+ 3
4ε4

+ 77
24ε3

+ 1
ε2

(511
36 −

13
12π

2
)

+ 1
ε

(50801
864 −

671
144π

2 − 69
4 ζ3

)

+
(415927

1728 −
9059
432 π

2 − 2819
36 ζ3 + 437

1440π
4
)

+O (ε)
, (5.5.69)

F̃0
4 (sijkl) = S2

ijkl

+ 1
ε4

+ 11
3ε3

+ 1
ε2

(289
18 −

3
2π

2
)

+ 1
ε

(30347
432 −

11
2 π

2 − 86
3 ζ3

)

+
(785743

2592 −
193
8 π2 − 916

9 ζ3 + 3
40π

4
)

+O (ε)
. (5.5.70)

The combination 4F0
4 + 2F̃0

4 agrees with the pole structure for F0,OLD
4 (given in

Eq. (7.45) of Ref. [1]), up to the rational part at O
(
1/ε2

)
. This is because the F 0

3
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antenna differs at O
(
ε0
)
from the three-particle antenna, f 0,OLD

3 , used in Ref. [1].

Using as input the original three-particle antenna, f 0,OLD
3 , restores the agreement

through to O
(
ε0
)
.

The resulting expressions for G0
4 and G0

4 are included in the auxiliary materials of

Ref. [184]. G0
4 has no symmetries, while G0

4 satisfies the line reversal property

G0
4(ih, j, k, lh) = G0

4(lh, k, j, ih). (5.5.71)

After integration over the antenna phase space, we find

G0
4(sijkl) = S2

ijkl

− 1
12ε3

− 4
9ε2

+ 1
ε

(
−649

432 + 7
72π

2
)

+
(
−1637

288 + 163
216π

2 + 13
18ζ3

)
+O (ε)

, (5.5.72)

G0
4(sijkl) = S2

ijkl

− 1
3ε3
− 109

72ε2
+ 1
ε

(
−5741

864 + 1
2π

2
)

+
(
−146651

5184 + 109
48 π

2 + 80
9 ζ3

)
+O (ε)

. (5.5.73)

The combination G0
4 + 2G0

4 agrees with the pole structure for G0,OLD
4 (given in

Eq. (7.52) of Ref. [1]), up to the rational part at O
(
1/ε2

)
. This is because the G0

3

antenna differs at O
(
ε0
)
from the three-particle antenna, G0,OLD

3 , used in Ref. [1].

Using as input the original three-particle antenna restores the agreement through to

O
(
ε0
)
.

As for the Ẽ0
4(ihq , jQ̄, kg, lhQ) antenna, the sub-leading colour antenna G̃0

4(ihg , jQ̄, kg, lhQ)

only contains singularities associated with the Q̄gQ cluster. These are the triple-

collinear limit, the soft-gluon limit and the collinear limits for Q̄g and gQ. These

limits are independent of the particle type of the first hard radiator a. The expression

for G̃0
4 is therefore the same as for Ẽ0

4 and is included in the auxiliary materials of

Ref. [184]. G̃0
4 is symmetric under exchange of the quark-antiquark pair,

G̃0
4(ih, j, k, lh) = G̃0

4(ih, l, k, jh). (5.5.74)
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Integrating over the antenna phase space, we find

G̃0
4(sijkl) = S2

ijkl

− 1
6ε3
− 13

18ε2
+ 1
ε

(
−80

27 + 1
4π

2
)

+
(
−7501

648 + 13
12π

2 + 40
9 ζ3

)
+O (ε)

. (5.5.75)

The combination 2G̃0
4 agrees with the pole structure for G̃0,OLD

4 (given in Eq. (7.52)

of Ref. [1]), up to the rational part at O
(
1/ε2

)
. This is as expected because the G0

3

antenna differs at O
(
ε0
)
from the three-particle antenna, G0,OLD

3 , used in Ref. [1].

Using as input the original three-particle antenna restores the agreement through to

O
(
ε0
)
.

The q̄qQ̄Q antenna, H0
4 , contains no double-soft, no triple-collinear and no single-soft

limits. It is composed entirely from the limits where q and q̄ and/or Q and Q̄ are

collinear. H0
4 is symmetric under the exchange of q and q̄ and/or Q and Q̄, as well

as the interchange of the quark pairs,

H0
4 (i, j, k, l) = H0

4 (j, i, k, l) = H0
4 (i, j, l, k) = H0

4 (j, i, l, k)

=H0
4 (k, l, i, j) = H0

4 (k, l, j, i) = H0
4 (l, k, i, j) = H0

4 (l, k, j, i). (5.5.76)

The resulting expression for H0
4 is given by

H0
4 (iq̄, jq, kQ̄, lQ) = 1

sijskl
+

2
(
siksjl + silsjk

)
sijskls

2
ijkl(1− ε)2

− 2((sik + sjl)(sil + sjk) + 2siksjl + 2silsjk)
sijskls

2
ijkl(1− ε)

−

(
sijkl + sik + sjk + sil + sjl

)
sijs

2
ijkl

×

(
siksjl + silsjk

)
sijksijl(1− ε)

−

(
sijkl + sik + sjk + sil + sjl

)
skls

2
ijkl

×

(
siksjl + silsjk

)
sjklsikl(1− ε)

.

(5.5.77)

Integrating over the antenna phase space, we find

H0
4(sijkl) = S2

ijkl

+ 1
9ε2

+ 1
2ε +

(283
162 −

17
108π

2
)

+O (ε)
. (5.5.78)

This agrees with the pole structure for H0,OLD
4 (given in Eq. (7.59) of Ref. [1]), up



164
Chapter 5. Constructing Idealised Real-Radiation

Antenna Functions

to the rational part at O (1/ε). It is instructive to compare the antenna generated

by our algorithm, Eq. (5.5.77), with the result given in Ref. [1] derived from matrix

elements,

H0,OLD
4 (iq̄, jq, kQ̄, lQ) = 1

s2
ijkl

2
(
siksjl − silsjk

)2

s2
ijs

2
kl(1− ε)

+

(
sik + sil + sjk + sjl

)2

sijskl
+ 2

(1− ε)

− 2((sik + sjl)(sil + sjk) + 2siksjl + 2silsjk)
sijskl(1− ε)

 .
(5.5.79)

Comparing Eq. (5.5.77) with Eq. (5.5.79), we make the following observations:

• The absence of double poles in sij and skl in Eq. (5.5.77). This is because

angular-averaged splitting functions were used to construct H0
4 , thereby ensur-

ing that azimuthal correlations are not present in the antenna.

• The presence of triple invariants in sijk and sjkl in the denominator. This is a

consequence of the C↑ projector, which defines the momentum fraction with

respect to one of the other two particles in the antenna. For example, for

the C↑ij projector, xj(1 − xj) → silsjk/(sijksijl). For most antennae, this is a

natural choice and generates singular structures that are already present in the

triple-collinear limit. In this particular case however, there is no triple-collinear

limit and this looks unnatural.

To demonstrate how the constructed antenna is affected by the choice of X0
3 antenna

in describing the single unresolved limits, Eq. (5.5.80) shows the expression generated

by the algorithm for H0
4 using the original G0,OLD

3 antenna for the single unresolved

limits,
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H0
4 (iq̄, jq, kQ̄, lQ)[G0,OLD

3 ] = 1
sijskl

+
2
(
siksjl + silsjk

)
sijskls

2
ijkl(1− ε)2

−2((sik + sjl)(sil + sjk) + 2siksjl + 2silsjk)
sijskls

2
ijkl(1− ε)

−

(
sijkl + sik + sjk + sil + sjl

)
sijs

2
ijkl

−

(
sijkl + sik + sjk + sil + sjl

)
skls

2
ijkl

. (5.5.80)

We see that the double unresolved contributions in the first two lines of Eq. (5.5.80)

are exactly the same as the double unresolved contribution in Eq. (5.5.77). The single

unresolved contributions (third and fourth lines) however are different because of

the choice of single-real antenna. In the i||j limit, the difference between Eq. (5.5.80)

and Eq. (5.5.77) is proportional to

1
sij
P

(0)
qq̄ (xj)

(
G0,OLD

3 ((i+ j), k, l)−G0
3((i+ j)h, k, lh)

)
(5.5.81)

with

(
G0,OLD

3 ((i+ j), k, l)−G0
3((i+ j)h, k, lh)

)
∼ −

(
sijkl + sik + sjk + sil + sjl

)
s2
ijkl

(5.5.82)

and

P
(0)
qq̄ (xj) = 1− 2xj(1− xj)

(1− ε)
C↑ij−→ 1−

(
siksjl + silsjk

)
sijksijl(1− ε)

. (5.5.83)

The dependence on the momentum fraction xj in Eq. (5.5.77) is precisely cancelled,

leading to the absence of triple invariants in the denominator of Eq. (5.5.80).

In Fig. 5.5, we show numerical tests of H0
4 against H0,OLD

4 in the relevant double

unresolved and single unresolved limits. The procedure is analogous to the one for

Fig. 5.4 and we show both versions of H0
4 : the one constructed using the new form

for G0
3 in Eq. (5.5.77) and the one using the original G0,OLD

3 antenna function in

Eq. (5.5.80).

In the double-collinear limit, both versions of H0
4 agree well with H0,OLD

4 ; as x
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Figure 5.5: Numerical tests of the new H0
4 against H0,OLD

4 in all
relevant singular limits. Solid lines represent tests of
H0

4 constructed with the new G0
3 antennae and dashed

lines represent tests with H0
4 constructed with G0,OLD

3 .
For three different values of the scaling parameter x, the
relative agreement of the ratio R = H0

4/H
0,OLD
4 with 1

is shown on a logarithmic axis.

decreases they both describe the double-collinear limit increasingly correctly. We

observe that the version constructed using the new G0
3 antenna produces much

sharper peaks at slightly larger values of log(|1−R|) compared to that based on the

G0,OLD
3 antenna.

In the single unresolved limits, we see much bigger differences; for the H0
4 using the

G0,OLD
3 antenna, there is good agreement, while there is very poor agreement for the

H0
4 using the new G0

3 antenna. This is as expected! In the single unresolved region,

the H0,OLD
4 antenna function, which is based on the H → qq̄QQ̄ matrix element

behaves as,

H0,OLD
4 ∼M0

4 (iq̄, jq, kQ̄, lQ) i||j−→ 1
sij
P

(0)
qq̄ (xj)M0

3 ((i+ j)g, kQ̄, lQ), (5.5.84)

while by construction, the new H0
4 antenna behaves as,

H0
4

i||j−→ 1
sij
P

(0)
qq̄ (xj)G0

3((i+ j)hg , kQ̄, lQ). (5.5.85)

SinceG0,OLD
3 is constructed from the three particle matrix element,M0

3 ((i+j)g, kQ, lQ̄),

the H0
4 antenna based on G0,OLD

3 is guaranteed to have the correct limit. However,
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the finite O
(
ε0
)
differences between G0

3 and G0,OLD
3 (see Eq. (5.5.82)) are multiplied

by 1/sij and therefore lead to a different single unresolved limit for the H0
4 antenna

using G0
3. In fact, although these differences are sub-leading in the double unresolved

region, they are responsible for the small numerical differences observed there.

Note that we do not require that the X0
4 antenna correctly describes the single

unresolved region; its role is to correctly describe the double unresolved limits. The

single unresolved limits are always correctly described by other subtraction terms.

As a result, the single unresolved limits introduced in the X0
4 must be subtracted

away. This leads to groups of subtraction terms like,

H0
4 (ih, j, k, lh)− E0

3(kh, j, ih)G0
3(Ih, K, lh)− E0

3(jh, k, lh)G0
3(Lh, J, ih), (5.5.86)

where we use antenna momentum mappings (k, j, i)→ (K, I) and (j, k, l)→ (J, L)

for the two iterated terms respectively. Provided that the same G0
3 is used for both

the construction of H0
4 and in the analogues of Eq. (5.5.86), the single unresolved

limits will be correctly described in the wider application of the subtraction scheme.

Additionally, we summarise the symmetry properties of the X0
4 constructed in this

chapter in Table 5.3.

5.6 Summary and Outlook

We have proposed a general algorithm for the construction of real-radiation antenna

functions directly from their desired unresolved limits. The technique makes use of

an iterative procedure to remove overlaps between different singular factors that are

subsequently projected into the full phase space. As the technique produces only

denominators that match physical propagators, all antenna functions can straightfor-

wardly be integrated analytically, which is a cornerstone of the antenna-subtraction

method.

We have implemented the algorithm in an automated framework for the construction

of antenna functions and explicitly demonstrated that our technique can be used for
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X0
4 (1h, 2, 3, 4h) Symmetries

A0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (4, 3, 2, 1)

Ã0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (4, 3, 2, 1) and (1, 2, 3, 4)↔ (1, 3, 2, 4)

B0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (4, 3, 2, 1) and (1, 2, 3, 4)↔ (1, 3, 2, 4)

C0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (1, 4, 3, 2)

D0
4(1h, 2, 3, 4h) None

D̃0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (1, 3, 2, 4)

E0
4(1h, 2, 3, 4h) None

E
0
4(1h, 2, 3, 4h) None

Ẽ0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (1, 4, 3, 2)

F 0
4 (1h, 2, 3, 4h) (1, 2, 3, 4)↔ (4, 3, 2, 1)
F̃ 0

4 (1h, 2, 3, 4h) (1, 2, 3, 4)↔ (4, 3, 2, 1) and (1, 2, 3, 4)↔ (1, 3, 2, 4)
G0

4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (4, 3, 2, 1)
G

0
4(1h, 2, 3, 4h) None

G̃0
4(1h, 2, 3, 4h) (1, 2, 3, 4)↔ (1, 4, 3, 2)

H0
4 (1h, 2, 3, 4h) (1, 2, 3, 4)↔ (2, 1, 3, 4) and (1, 2, 3, 4)↔ (1, 2, 3, 4)

and (1, 2, 3, 4)↔ (3, 4, 1, 2)

Table 5.3: Symmetries present for each X0
4 (1h, 2, 3, 4h) antenna.

single-real and double-real radiation antenna functions relevant to NLO and NNLO

calculations, respectively. In particular, we presented a full set of single-real and

double-real tree-level antenna functions. All of the idealised antenna functions we

have presented here have been checked both analytically and numerically against

the respective singular factors. As another strong validation, we have confirmed

the correctness of their pole structure explicitly on the integrated level. While the

single-real antenna functions differ from previously used ones only in finite pieces, a

residual dependence on the choice of single-real antennae is left in the construction

of double-real antenna functions. This ambiguity is reflected in a difference in sub-

leading poles starting from 1/ε2, while the deeper 1/ε4 and 1/ε3 poles correspond

to the universal double-soft and triple-collinear behaviour. This is understood and

poses no issues in application to the antenna-subtraction scheme when used with

the idealised single-real antenna functions.

This work marks the first step towards a refined antenna-subtraction framework, as

for the first time we have calculated a full set of double-real antenna functions that

correspond to true antennae, meaning that they consist of exactly two hard radiators
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and contain no spurious singularities. These features are vital for the subtraction

scheme, as they eliminate the need for auxiliary subtraction terms to remove such

spurious singularities.

Another avenue for future work might include the introduction of antenna functions

with azimuthal correlations. Here the main issue is matching the azimuthal cor-

relations with the process-specific matrix elements under consideration. For this

reason, in this chapter we removed the azimuthal correlations from the antennae by

using spin-averaged limits. In principle the azimuthal terms can be directly removed

from the matrix elements by using pairs (or multiple pairs) of correlated phase-space

points. Mass effects could also be included. The unresolved limits are known, see

Refs. [185–188], however the integration of the antennae over the massive phase

space is more involved.

To build a complete NNLO subtraction scheme, this work needs to be supplemented

by an equivalent construction of one-loop single-real antenna functions that serve

the purpose of real-virtual subtraction terms. This requires additional manipulation

of explicit ε-poles and hypergeometric functions, alongside the single-real unresolved

radiation. We leave this, as well as the description of a refined antenna-subtraction

framework, to Chapter 6.

The algorithm presented here can also be used to construct idealised real-radiation

antennae in the IF and II configurations, since these limits are also known. This will

be necessary for calculations involving initial coloured radiation, like in pp and ep

colliders. The X0
3 for the IF and II configurations have already been constructed in

Ref. [8]. Construction of the NNLO idealised antennae for the IF and II configurations

is left to future work.

While we have focused on the application to single-real and double-real antenna

functions, we wish to emphasise that the method can, in the future, be applied

to build antenna functions for triple-real radiation as well, given that all singular

factors with three unresolved particles are known [52–56]. This will form a substan-

tial contribution to enable fully-differential calculations at N3LO, where triple-real
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antenna functions can be used to subtract triple-unresolved singularities.



Chapter 6

Constructing Idealised Antenna

Functions with Real and Virtual

Radiation

6.1 Introduction

As remarked earlier, in the antenna subtraction scheme, antenna functions are used

to subtract specific sets of unresolved singularities, so that a typical subtraction

term for a matrix element ML
m has the form

X`
n+2(ih1 , i3, . . . , in+2, i

h
2)ML−`

m−n(. . . , Ih1 , Ih2 , . . .) , (6.1.1)

where X`
n+2 represents an `-loop, (n + 2)-particle antenna, ih1 and ih2 represent the

hard radiators, and i3 to in+2 denote the n unresolved particles. As the hard radiators

may either be in the initial or in the final state, final-final (FF), initial-final (IF)

and initial-initial (II) configurations need to be considered in general. ML−`
m−n is the

reduced matrix element, with n fewer final-state particles, ` fewer loops and where

Ih1 and Ih2 represent the particles obtained through an appropriate antenna mapping,

{pi1 , pi3 , . . . , pin+2 , pi2} 7→ {pI1 , pI2} (6.1.2)
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with pµi representing the four-momentum of particle i. At NLO antennae have

n = 1 and ` = 0, at NNLO one needs antennae with n = 2, ` = 0 and with

n = 1, ` = 1, while at N3LO, one needs antennae with n = 3, ` = 0, with n = 2, ` = 1

and with n = 1, ` = 2. In the original formulation of the antenna scheme, the

antennae were based on matrix elements describing radiation from processes with

two coloured particles: γ∗ → qq̄, χ̃→ g̃g and H → gg, covering the cases where the

coloured particles are massless quarks and gluons. The corresponding X0
4 , X1

3 and

X0
3 antennae are therefore perfect subtraction terms for the NNLO contributions

to processes with two coloured particles. It was straightforward to utilise these

matrix-element-based antennae for processes with three coloured particles, such as

e+e− → 3 jets, pp → V+jet, pp → H+jet and for the leading colour contributions

to four coloured particle processes like pp → 2 jets. Pushing to the next step, the

full colour pp → 2 jets required significant additional work [178]. Going beyond

the current state of the art with the matrix-element-based antenna approach is a

formidable task. This is because the complexity associated with the subtraction

terms becomes increasingly challenging as the particle multiplicity grows. This

complexity stems from two primary reasons.

Firstly, the double-real-radiation antenna functions obtained from matrix elements

do not always indicate which particles act as the hard radiators. This is particularly

the case for antennae involving gluons. To address this issue, sub-antenna functions

are introduced. However, constructing these sub-antenna functions at NNLO is an

arduous task and often involves introducing unphysical denominators that complicate

the analytic integration of the subtraction term. Additionally, analytic integrals are

usually known only for the complete antenna functions. As a result, the assembly

of antenna-subtraction terms requires careful manipulation to ensure that the sub-

antenna functions combine appropriately to form the full antenna functions before

integration.

Secondly, NNLO antenna functions can exhibit spurious limits that need to be

eliminated through explicit counterterms. However, these counterterms can introduce
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further spurious limits themselves. Consequently, this can initiate a complex chain of

interdependent subtraction terms that do not necessarily reflect the actual singularity

structure of the underlying process.

Both of these issues must be addressed in order to facilitate higher-multiplicity

calculations at NNLO. Additionally, the same issues will be present at N3LO to a

much greater degree. In Chapter 5 we addressed these issues in the construction of

idealised real-radiation antennae. Specifically, we introduced a general algorithm for

building real-radiation antenna functions directly from a specified set of infrared lim-

its with a uniform template, in a way that simplifies the construction of subtraction

terms in general, while still being straightforwardly analytically integrable. We then

applied it to the case of single-real and double-real radiation, required for NLO and

NNLO calculations. The technique makes use of an iterative procedure to remove

overlaps between different singular factors that are subsequently projected into the

full phase space. As the technique produces only denominators that match physical

propagators, all antenna functions could straightforwardly be integrated analytically,

which is a cornerstone of the antenna-subtraction method.

In this chapter, we extend the general algorithm to the construction of antennae

with ` 6= 0. Unlike in the solely real-radiation case, the mixed real and virtual

antenna functions contain both explicit and implicit singularities. To illustrate

the algorithm, we construct the real-virtual antennae (n = 1, ` = 1) explicitly.

The real-virtual antenna functions are built directly from the relevant one-loop

limits, properly accounting for the overlap between different limits. The universal

factorisation properties of multi-particle loop matrix elements, when one or more

particles are unresolved, have been well studied in the literature [42–45] and serve

as an input to the algorithm.

In addition to building a full set of idealised X1
3 antennae with both hard radiators

in the final state, we demonstrate that the idealised antenna functions (along with

the X0
3 and X0

4 of Chapter 5) form a complete NNLO subtraction scheme in which

the subtraction terms cancel the explicit singularities in the one- and two-loop
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matrix elements, without leftover infrared singularities hiding in the matrix elements

(either by under-counting or over-counting). This means that the idealised antenna

functions have to satisfy particular constraints. First, the cancellation of poles at

the real-virtual level means that the explicit poles in the X1
3 antenna have to cancel

against other real-virtual subtraction terms. In the antenna scheme, these explicit

poles are proportional to X0
3 antennae. Therefore, the X1

3 must have a particular

pole structure multiplying an X0
3 antenna function. At the double-virtual level, the

combinations of integrated antennae coming from the double-real and real-virtual

levels must match the explicit pole structure of the two-loop matrix elements. In the

antenna scheme, this is encoded through a combination of the J (2)
2 and J (1)

2 dipole

operators in colour space [160]. Provided that the pole structure from the relevant

combination of J (2)
2 and J

(1)
2 is unchanged, the subtraction terms will cancel the

explicit poles in the two-loop matrix elements.

The current approach to automation of antenna subtraction [7, 29] involves a refor-

mulation of the colour-ordered antenna subtraction technique in colour space. This

method, known as ‘colourful antenna subtraction’, offers a systematic way to con-

struct antenna subtraction terms by working downwards from the most virtual layer,

rather than starting from the maximally real layer and working up. By translating

infrared poles of virtual corrections captured by J (2)
2 and J (1)

2 into real-radiation di-

pole insertions in colour space, the method efficiently constitutes subtraction terms

for single-real radiation up to one-loop level and for double-real radiation at the

tree level. One of the key advantages of this approach is the avoidance of directly

handling the divergent behaviour of real-emission corrections. This feature repres-

ents a significant simplification at NNLO. The double-real subtraction term can be

obtained as the final step of a fully automatable procedure, eliminating the need to

deal with the involved infrared structure of double-real radiation matrix elements.

The completion of a consistent set of idealised antenna functions for (double-)real

and real-virtual radiation presented here will further reduce the complexity of the

subtraction terms, because they avoid the need to subtract spurious limits and
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therefore reduce the computational overhead associated with precision calculations.

The chapter is structured as follows. We outline the design principles for constructing

general X`
n+2 antenna functions in Section 6.2 as well as the principles for matching

to the other elements of an antenna-subtraction scheme. We describe the general

construction algorithm in Section 6.3 and give the specific details for the construc-

tion of final-final X1
3 in Section 6.4. Using the previous sections, we illustrate the

algorithm by explicitly constructing a full set of X1
3 real-virtual antenna functions

for hard radiators in the final state in Section 6.5. Finally, we define the J (2)
2

and J (1)
2 operators in this NNLO antenna-subtraction scheme (out of the idealised

{X0
3 , X

0
4 , X

1
3}) and compare their pole structure to the generic double-virtual pole

structures in Section 6.6. This demonstrates that the idealised subtraction terms

will cancel the explicit poles in the two-loop matrix elements and form a complete

NNLO subtraction scheme. We summarise the chapter in Section 6.7.

6.2 Design Principles

Within the antenna-subtraction framework, subtraction terms are constructed using

antenna functions that describe the unresolved partonic radiation (both soft and

collinear) emitted from a pair of hard radiator partons. The construction of an

antenna-subtraction term typically involves the following elements:

• antennae composed of two hard radiators that accurately capture the infrared

singularities arising from the emission of n unresolved partons;

• an on-shell momentum mapping that ensures that the invariant mass of the

antenna is preserved while producing the on-shell momenta that appear in the

“reduced” matrix element; and

• a colour factor associated with the specific process and antenna.

The latter two items on this list have been solved for general processes, while the

first is subject of this thesis and Refs. [184,189].
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In the following, we will describe the design principles we impose upon a general

idealised X`
n+2 antenna function, with at least one loop. As opposed to the ` = 0

case, antenna functions with additional virtual elements contain explicit poles in the

dimensional-regularisation parameter ε. We therefore impose two different sets of

design principles: the generic design principles discussed in Section 6.2.1 and the

antenna-scheme-dependent design principles discussed in Section 6.2.2. The former

principles ensure that the antenna function has the correct infrared limits but does

not fix these unambiguously. This ambiguity is resolved by the latter principles

which match the explicit singularity structure of the idealised antenna functions

onto a specific antenna-subtraction scheme.

6.2.1 Generic Design Principles

The generic design principles outlined in Chapter 5 are sufficient to ensure that

the antenna has the correct infrared limits. Specifically, we impose the following

requirements:

1. each antenna function has exactly two hard particles (“radiators”) which cannot

become unresolved;

2. each antenna function captures all (multi-)soft limits of its unresolved particles;

3. where appropriate (multi-)collinear and mixed soft and collinear limits are

decomposed over “neighbouring” antennae;

4. antenna functions do not contain any spurious (unphysical) limits;

5. antenna functions only contain singular factors corresponding to physical

propagators; and

6. where appropriate, antenna functions obey physical symmetry relations (such

as line reversal).
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As mentioned earlier, the original NNLO antenna functions derived in Refs. [1, 148,

149] do not obey all of these requirements, as they typically violate (some of) these

principles. This is particularly the case for quark-gluon or gluon-gluon antennae

because the matrix elements they are derived from will inevitably have a divergent

limit when one of the gluonic radiators becomes soft (thereby violating principle 1).

These principles will form the core of the algorithm for constructing X`
n+2 antennae

with the desired infrared limits.

6.2.2 Antenna-scheme-dependent Design Principles

The generic principles are sufficient to produce compact analytic expressions that

correctly capture the unresolved behaviour of `-loop matrix elements in the (multi-

)soft and (multi-)collinear limits. Unlike the ` = 0 case, these unresolved limits have

explicit singularities and therefore the X`
n+2 antennae constructed from them will

also carry explicit ε-poles.

However, it is straightforward to find combinations of terms that contain explicit

singularities but which do not contribute in any of the unresolved regions. Such

terms can be added to X`
n+2 without violating any of the generic principles. However,

doing so will clearly change the explicit pole structure. This means that the generic

principles alone lead to an inherent ambiguity in defining the X`
n+2 antennae.

If one wishes to design a full subtraction scheme, the real-virtual antennae must

both have the correct unresolved limits and have explicit pole structures of the

correct form that cancels against other terms in the subtraction scheme. Therefore,

we need to resolve the ambiguity in the explicit ε singularities by matching onto

a set of target ε-pole structures that ensure that the subtraction terms in each

multiplicity layer (a) correctly describe the unresolved limits of the matrix elements

and (b) precisely cancel the ε singularities of the matrix elements.

To match onto a particular antenna-subtraction scheme, we therefore introduce one

further principle:
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7. where appropriate, combinations of terms that are not singular in any unre-

solved region can be added to match onto “target poles”, T (ih1 , i3, ..., in+2, i
h
2).

To illustrate this principle for the case of the X1
3 , “target poles” T (ih, j, kh) take the

following schematic form within the NNLO antenna-subtraction scheme [1]:

T (ih, j, kh) = 1
ε2

∑
s

(
s

µ2

)−εX0
3 (ih, j, kh). (6.2.1)

In order to match onto such “target poles”, we are free to add certain combinations

of terms. An example of such a combination of terms is

1
ε2
µ2ε

(
s−εik + s−εijk − (sij + sik)−ε − (sik + sjk)−ε

)
X0

3 (ih, j, kh), (6.2.2)

which is not divergent in any unresolved limit. The combination of bracketed terms

suppresses the singular behaviour of A0
3 in the soft j, collinear ij and collinear

jk regions. Terms like those in Eq. (6.2.2) therefore do not affect the unresolved

behaviour of the X1
3 , if added in a second stage. However, adding such terms clearly

affects the explicit poles in the X1
3 antenna as can be seen from the expansion in ε,

1
ε

ln
(

1 + sijsjk
sijksik

)
X0

3 (ih, j, kh) +O
(
ε0
)
. (6.2.3)

This allows us to match the pole structure of the X1
3 antenna to the other subtraction

terms in a way that cancels the explicit poles at the real-virtual level.

These seven principles are sufficient to devise an algorithm for constructing a general

X`
n+2 antenna function and here we will apply it to the construction of X1

3 antenna

functions with final-final kinematics. We will build the X1
3 antenna functions from

the infrared limits and match them to the NNLO antenna-subtraction scheme. The

idealised X1
3 antenna functions form the final ingredients for improved final-final

antenna-subtraction at NNLO (along with the results of Chapter 5). To test for the

consistency of these ingredients, one has to integrate the real-virtual antennae over

the antenna phase space and combine all the various integrated implicit singularities

to cancel the explicit singularities of the two-loop matrix elements. This is detailed

in full in Section 6.6.
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6.3 The Algorithm

In Chapter 5, we proposed a general algorithm to build (multiple-)real radiation

antenna functions at tree-level. In this chapter (and originally Ref. [189]), we extend

this algorithm to the construction of X`
n+2 antenna functions, where ` 6= 0.

Unlike the algorithm for real-radiation antenna functions, the algorithm for X`
n+2

antenna functions has two distinct stages:

Stage 1. In this step we ensure that the antenna function has the correct infrared

singular limits. This stage closely follows the algorithm for real-radiation

antennae in Chapter 5. We systematically start from the most singular limit

and build the list of target functions, {Li}, from relevant (multi-)soft, (multi-

)collinear and soft-collinear limits.

As in Chapter 5, we define a down- (P↓i ) and up-projector (P↑i ) for each

unresolved limit (Li) to be included. A down-projector P↓i maps the invariants

of the full phase space to the relevant subspace. An associated up-projector

P↑i restores the full phase space by re-expressing all variables valid in the sub-

space in terms of invariants valid in the full phase space. It is to be emphasised

that down-projectors P↓i and up-projectors P↑i are typically not inverse to each

other, as down-projectors destroy information about less-singular and finite

pieces.

The down-projectors are necessary to identify the overlapping region between

the antenna function developed so far and the target function associated with

the unresolved limit under consideration. Conversely, up-projectors express the

argument in terms of antenna invariants. Furthermore, through careful selec-

tion of the up-projectors, the antenna function can be exclusively represented

using invariants corresponding to physical propagators.

The set of target functions provides a clear definition of the antenna function’s

behaviour in all unresolved limits specific to the particular antenna being
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considered. In each unresolved limit, the antenna function must approach the

corresponding target function to accurately capture the singular behaviour

exhibited by the squared matrix element. Additionally, the antenna function

must remain finite in all limits not explicitly described by a target function.

This crucial aspect guarantees the absence of spurious singularities (unlike

antenna functions extracted directly from physical matrix elements).

As explained in Chapter 5, the algorithm, which ensures the above character-

istics and meets the generic design principles, can be written as

X`
n+2;1 = P↑1L1 ,

X`
n+2;2 = X`

n+2;1 + P↑2(L2 −P↓2X`
n+2;1) ,

...

X`
n+2;N = X`

n+2;N−1 + P↑N(LN −P↓NX`
n+2;N−1) ,

(6.3.1)

where X`
n+2;N is the output of Stage 1.

Stage 2. The output of Stage 1 guarantees that X`
n+2;N has the chosen unresolved

limits {Li}. However, as discussed above this does not uniquely determine

the mixed real-virtual antenna since one can construct a term which contains

poles in ε but does not contribute in any of the unresolved limits (which we

will denote by TPoles). One is therefore at liberty to define different antenna-

subtraction schemes that differ by explicit ε-singular terms that do not affect

the unresolved singular limits of the antenna.

We therefore add an antenna-scheme-dependent Stage 2 that ensures that the

X`
n+2 antenna has the correct explicit poles to match onto the other types

of subtraction terms in the desired antenna-subtraction scheme. We fix the

scheme by specifying that the explicit ε-poles match certain defined “target

poles”,

T = T (ih1 , i3, ..., in+2, i
h
2). (6.3.2)

These target poles must be selected such that the constructed X`
n+2 is more
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convenient for use in a wider Nn+`LO subtraction scheme. Different schemes

would entail different choices for T .

As in Stage 1, we introduce certain projectors P↓T ,P
↑
T (at the relevant perturb-

ative order) to identify these additional ε-singular contributions which meet

all the design principles. Schematically, we can write this final step of the

algorithm as

X`
n+2 ≡ X`

n+2;N + P↑T (T −P↓TX`
n+2;N). (6.3.3)

and we require

P↓i
[
P↑T (T −P↓TX`

n+2;N)
]
≡ 0 ∀ i = 1, .., N. (6.3.4)

For later convenience we define the contribution from Stage 2 to be,

TPoles ≡ P↑T (T −P↓TX`
n+2;N). (6.3.5)

Taking into account both Stage 1 and Stage 2, the constructed mixed real-virtual

antenna for a given set of infrared limits {Li} and matched to a scheme in which

the required ε-poles are defined by T , will satisfy

P↓iX`
n+2 ≡ Li ∀ i = 1, .., N , (6.3.6)

P↓TX`
n+2 ≡ T. (6.3.7)

6.4 Construction of Real-Virtual Antenna

Functions

The above design principles and algorithm have been set-out for the construction of

a general X`
n+2 antenna function. Now we specialise to the case of constructing real-

virtual X1
3 antenna functions. Together with the idealised X0

3 and X0
4 of Chapter 5,

the X1
3 functions complete the re-formulation of all antenna functions necessary for

NNLO calculations, which now meet the design principles.
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Quark-antiquark
qgq̄ X1

3 (ihq , jg, khq̄ ) A1
3(ih, j, kh)

X̃1
3 (ihq , jg, khq̄ ) Ã1

3(ih, j, kh)
X̂1

3 (ihq , jg, khq̄ ) Â1
3(ih, j, kh)

Quark-gluon
qgg X1

3 (ihq , jg, khg ) D1
3(ih, j, kh)

X̃1
3 (ihq , jg, khg ) D̃1

3(ih, j, kh)
X̂1

3 (ihq , jg, khg ) D̂1
3(ih, j, kh)

qQ̄Q X1
3 (ihq , jQ̄, khQ) E1

3(ih, j, kh)
X̃1

3 (ihq , jQ̄, khQ) Ẽ1
3(ih, j, kh)

X̂1
3 (ihq , jQ̄, khQ) Ê1

3(ih, j, kh)
Gluon-gluon

ggg X1
3 (ihg , jg, khg ) F 1

3 (ih, j, kh)
X̂1

3 (ihg , jg, khg ) F̂ 1
3 (ih, j, kh)

gQ̄Q X1
3 (ihg , jQ̄, khQ) G1

3(ih, j, kh)
X̃1

3 (ihg , jQ̄, khQ) G̃1
3(ih, j, kh)

X̂1
3 (ihg , jQ̄, khQ) Ĝ1

3(ih, j, kh)

Table 6.1: Identification of X1
3 antennae according to particle type

and colour-structure. These antennae only contain sin-
gular limits when particle b (or equivalently momentum
j) is unresolved, in addition to explicit ε poles. Anten-
nae are classified as quark-antiquark, quark-gluon and
gluon-gluon according to the particle type of the parents
(i.e. after the antenna mapping).

We demonstrate the construction of real-virtual antenna functions, X1
3 (iha, jb, khc ),

where the particle types are denoted by a, b and c, which carry four-momenta i, j

and k, respectively. Particles a and c should be hard and the antenna functions

must have the correct limits when particle b is unresolved. Frequently, we drop

explicit reference to the particle labels in favour of a specific choice of X according

to Table 6.1.

For the specific case of X1
3 (iha, jb, khc ) there are three such limits (meeting the generic

design principles), corresponding to particle b becoming soft, particles a and b

becoming collinear, or particles c and b becoming collinear, so that the list of target

functions is the following,

L1(ih, j, kh) = S
(1)
b (ih, j, kh), (6.4.1)

L2(ih, j, kh) = P
(1)
ab (ih, j), (6.4.2)



6.4. Construction of Real-Virtual Antenna Functions 183

L3(ih, j, kh) = P
(1)
cb (kh, j). (6.4.3)

The precise definitions of the one-loop soft factor S(1)
b and the one-loop splitting

functions P (1)
ab are well known and we reproduce them in our notation in Section 1.5.3.

In order to match onto a particular antenna-subtraction scheme, we require a target

pole structure, T = T (ih, j, kh). We want to match the constructed X1
3 to the full

NNLO antenna-subtraction scheme and so we require the ε-poles to have a similar ε-

pole structure to theX1,OLD
3 of Ref. [1]. This means a collection of ε-poles multiplying

X0
3 antennae. By removing the contribution to the poles from the renormalisation

term, we write the full set of target poles, T (ih, j, kh), for the unrenormalised X1
3 as,

T (ihq , jg, khq̄ ) = −Rε

ε2

(
Sij + Sjk − Sijk

)
A0

3(ih, j, kh), (6.4.4)

T̃ (ihq , jg, khq̄ ) = −Rε

ε2

(
Sijk − Sik

)
A0

3(ih, j, kh), (6.4.5)

T̂ (ihq , jg, khq̄ ) = 0, (6.4.6)

T (ihq , jg, khg ) = −Rε

ε2

(
Sij + S[ik+jk] + Sjk − 2Sijk

)
D0

3(ih, j, kh), (6.4.7)

T̃ (ihq , jg, khg ) = −Rε

ε2

(
Sik − S[ik+jk]

)
D0

3(ih, j, kh), (6.4.8)

T̂ (ihq , jg, khg ) = 0, (6.4.9)

T (ihq , jQ̄, khQ) = −Rε

[ 1
ε2

(
Sij + Sik − 2Sijk

)
− 13

6εSjk
]
E0

3(ih, j, kh), (6.4.10)

T̃ (ihq , jQ̄, khQ) = −Rε

( 1
ε2

+ 3
2ε

)
SjkE

0
3(ih, j, kh), (6.4.11)

T̂ (ihq , jQ̄, khQ) = −Rε

2
3εSjkE

0
3(ih, j, kh), (6.4.12)

T (ihg , jg, khg ) = −Rε

ε2

(
Sij + Sik + Sjk − 2Sijk

)
F 0

3 (ih, j, kh), (6.4.13)

T̂ (ihg , jg, khg ) = 0, (6.4.14)

T (ihg , jQ̄, khQ) = −Rε

[ 1
ε2

(
Sij + Sik − 2Sijk

)
− 13

6εSjk
]
G0

3(ih, j, kh), (6.4.15)

T̃ (ihg , jQ̄, khQ) = −Rε

( 1
ε2

+ 3
2ε

)
SjkG

0
3(ih, j, kh), (6.4.16)

T̂ (ihg , jQ̄, khQ) = −Rε

2
3εSjkG

0
3(ih, j, kh). (6.4.17)

A reminder that Rε is an overall factor defined in Eq. (1.5.40). This factor ensures

that the X1
3 antennae derived here have the same overall normalisation as those in
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Ref. [1]. We have also used the convenient notation, Sij, to separate the loop-type

structures from the unresolved-type structures:

Sij =
(
sij
µ2

)−ε
, Sijk =

(
sijk
µ2

)−ε
, S[ik+jk] =

(
sik + sjk

µ2

)−ε
. (6.4.18)

The X0
3 (ih, j, kh) antennae appearing in Eqs. (6.4.4)–(6.4.17) are those constructed

in Chapter 5. Therefore, there are some differences compared to the pole structure

in Ref. [1] precisely due to differences between the definitions of the X0
3 (ih, j, kh) of

Chapter 5 and the X0,OLD
3 (ih, j, kh) of Ref. [1] (see Ref. [184] for a full discussion).

This is particularly the case for the D0
3 and F 0

3 antennae where the unresolved

singularities of F 0,OLD
3 are assigned to three F 0

3 antennae, while the unresolved

singularities present in D0,OLD
3 are found by combining two D0

3 antennae.

Finally, we note that the ε-singularities of D1,OLD
3 of Ref. [1] are split between D1

3

and a new type of antenna, D̃1
3,

P↓TD
1,OLD
3 ∼ T (ihq , jg, khg ) + T̃ (ihq , jg, khg ) + (j ↔ k), (6.4.19)

where ∼ reflects the fact that the LHS multiplies D0,OLD
3 while the RHS multiplies

D0
3. The reasons for the definition of D̃1

3 will become clear later in this chapter.

6.4.1 Template Antennae

For convenience, we define a general unrenormalised real-virtual antenna function

in terms of the contributions produced by the various steps of the algorithm. At

leading-colour, we have

X1
3 (ih, j, kh) = Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih)

+ TPoles(ih, j, kh) , (6.4.20)

while the corresponding sub-leading-colour expression is

X̃1
3 (ih, j, kh) = S̃col(1)(ih, j; kh) + S̃col(1)(kh, j; ih)

+ T̃Poles(ih, j, kh) , (6.4.21)
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and the quark-loop contribution is

X̂1
3 (ih, j, kh) = Ŝcol(1)(ih, j; kh) + Ŝcol(1)(kh, j; ih)

+ T̂Poles(ih, j, kh) , (6.4.22)

since the one-loop soft factor is only non-zero at leading-colour. The meanings of

the individual terms in Eqs. (6.4.20)–(6.4.22) will be made clear in the following

subsections, however, we note that in each equation the first line is produced by

Stage 1 of the algorithm and the second line is added in Stage 2. Therefore, we

expect that

S↓jTPoles(ih, j, kh) = 0 , (6.4.23)

C↓ijTPoles(ih, j, kh) = 0 , (6.4.24)

C↓jkTPoles(ih, j, kh) = 0 , (6.4.25)

and similarly for T̃Poles(ih, j, kh) and T̂Poles(ih, j, kh).

6.4.2 Stage 1

All X1
3 (ih, j, kh) antenna functions are defined over the full three-particle phase space,

whereas each unresolved limit lives on a restricted part of phase space: the j soft

limit, the ij collinear limit and the jk collinear limit.

We define the soft down-projector by its action on integer powers of invariants as

S↓j :


sij 7→ λsij, sjk 7→ λsjk,

sijk 7→ sik,

(6.4.26)

and keep only the terms proportional to λ−2.

For the corresponding up-projector S↑j we choose a trivial mapping which leaves

all variables unchanged. The collinear down-projector acts on integer powers of
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invariants and is defined in analogy to Eq. (5.4.3),

C↓ij :


sij 7→ λsij,

sik 7→ (1− xj)(sik + sjk), sjk 7→ xj(sik + sjk), sijk 7→ sik + sjk,

(6.4.27)

but keeps only terms of order λ−1. The corresponding up-projector is the same as

in Eq. (5.4.4),

C↑ij :


xj 7→ sjk/sijk, (1− xj) 7→ sik/sijk,

sik + sjk 7→ sijk.

(6.4.28)

This up-projector ensures the presence of sijk denominators, which are present in

matrix elements corresponding to physical propagators and means that the same

integration tools for one-loop matrix elements can be used in the integration of the

constructed X1
3 over its Lorentz-invariant antenna phase space.

The subtracted single unresolved one-loop factors are built from unrenormalised

colour-ordered limits and are given by

Ssoft(1)(ih, j, kh) = S↑jS
(1)
b (ih, j, kh) , (6.4.29)

Scol(1)(ih, j; kh) = C↑ij
(
P

(1)
ab (ih, j)−C↓ijSsoft(1)(ih, j, kh)

)
, (6.4.30)

Scol(1)(kh, j; ih) = C↑kj
(
P

(1)
cb (kh, j)−C↓kj

(
Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh)

))
,

≡ C↑kj
(
P

(1)
cb (kh, j)−C↓kjSsoft(1)(ih, j, kh)

)
, (6.4.31)

and analogously for the sub-leading colour and quark-flavour contributions. The

subscripts a, b, c represent the particle types which carry momenta i, j, k respectively.

The unrenormalised one-loop single unresolved limits are listed in full in Section 1.5.3.

We have used the feature that the only overlap between the ij- and jk-collinear limits

occurs in Ssoft(1) so that

C↓kjScol(1)(ih, j; kh) = 0, (6.4.32)

which was also observed in Chapter 5.
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At this point, we have iteratively constructed the quantity

X1
3;3(ih, j, kh) = Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih), (6.4.33)

such that,

S↓jX1
3;3(ih, j, kh) = S

(1)
b (ih, j, kh) , (6.4.34)

C↓ijX1
3;3(ih, j, kh) = P

(1)
ab (ih, j) , (6.4.35)

C↓jkX1
3;3(ih, j, kh) = P

(1)
cb (kh, j) , (6.4.36)

which carries all of the desired unresolved limits.

6.4.3 Stage 2

We now turn to the construction of TPoles(ih, j, kh), which does not contribute to

any unresolved limit but does contain explicit ε poles. In the language of Section 6.3,

then schematically,

TPoles(ih, j, kh) ≡ P↑T
(
T (ih, j, kh)−P↓TX1

3;3(ih,j,kh)

)
. (6.4.37)

We observe that each of the target pole structures in Eqs. (6.4.4)–(6.4.17) is of the

form,

Poles×X0
3 (ih, j, kh), (6.4.38)

where Poles is combination of ε-poles and factors like s−εij . We therefore choose to

achieve Stage 2 through two iterative steps (rather than one), adding a projector

for each step:

Step 1. We introduce a projector P↑X (and the trivial projector P↓X) to ensure that

the ε-poles are proportional to X0
3 (ih, j, kh) and

Step 2. we introduce projectors P↑ε and P↓ε to adjust the pole structure multiplying

X0
3 to match T (ih, j, kh).
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Step 1

We define the projector P↑X such that,

P↑X :


P

(0)
ab (ih, j) 7→ X0

3 (ih, j, kh),

P
(0)
cb (kh, j) 7→ X0

3 (ih, j, kh).
(6.4.39)

The inverse projector P↓X is simply unity.

We define TPolesX(ih, j, kh) to be the contribution arising from the action of P↑X
such that,

TPolesX(ih, j, kh) = (P↑X − 1)(Ssoft(1)(ih, j, kh) + Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih)),

= (P↑X − 1)X1
3;3(ih, j, kh). (6.4.40)

Ssoft(1)(ih, j, kh) does not contain splitting functions, so the action of P↑X on Ssoft

is trivial,

P↑XSsoft(1)(ih, j, kh) ≡ Ssoft(1)(ih, j, kh), (6.4.41)

which guarantees,

S↓jTPolesX(ih, j, kh) = 0 . (6.4.42)

Furthermore, because of the structure of the one-loop splitting functions, we also

have

C↓ijTPolesX(ih, j, kh) = 0, (6.4.43)

C↓jkTPolesX(ih, j, kh) = 0. (6.4.44)

We will explain more clearly how this is achieved in the specific example of A1
3 in

Section 6.4.5. We also note that following the iterative structure of Eq. (6.3.1), we

define the fourth step of the algorithm to be

X1
3;4(ih, j, kh) = X1

3;3(ih, j, kh) + (P↑X − 1)X1
3;3(ih, j, kh), (6.4.45)

≡ P↑XX1
3;3(ih, j, kh), (6.4.46)
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where X1
3;3(ih, j, kh) is given in Eq. (6.4.33).

Step 2

The operators P↓ε and P↑ε are defined as follows.

P↓ε is defined by Laurent-expanding the argument in ε and discarding terms of O
(
ε0
)

and higher.

P↑ε is defined by extending the argument to an all-orders expression in ε, which

agrees with the argument up to O
(
ε0
)
. This is not a unique action. For the case

of the X1
3 we choose, where possible, for P↑ε to result in linear combinations of

{s−εik , s−εijk, (sik + sjk)−ε} (which are simply-integrable objects) multiplied by simple

ε-poles and X0
3 . Only two structures are required for the construction of the X1

3 :

P↑ε
1
ε

ln
(

1 + sijsjk
siksijk

)
= 1
ε2

Λ1(ih, j, kh), (6.4.47)

P↑ε
2
ε

ln
(

1− sjk
sijk

)
= 2
ε2

Λ2(ih, j, kh), (6.4.48)

where

Λ1(ih, j, kh) = Sik + Sijk − S[ik+jk] − S[ik+ij], (6.4.49)

Λ2(ih, j, kh) = Sijk − S[ik+ij], (6.4.50)

with Sik etc. defined as in Eq. (6.4.18).

We define TPolesε(ih, j, kh) to be the contribution arising from the action of P↑ε and

P↓ε such that,

TPolesε(ih, j, kh) = P↑ε
(

P↓εT (ih, j, kh)−P↓ε
[
Ssoft(1)(ih, j, kh) (6.4.51)

+Scol(1)(ih, j; kh) + Scol(1)(kh, j; ih) + TPolesX(ih, j, kh)
])
.

These contributions typically contain a factor which suppresses all the unresolved

limits in the X0
3 to which it multiplies. Λ1 suppresses any contributions to the soft-j
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limit or the collinear-ij or collinear-jk limits. Λ2 suppresses contributions to the

soft-j or collinear-jk limits so that

S↓jTPolesε(ih, j, kh) = 0, (6.4.52)

C↓ijTPolesε(ih, j, kh) = 0, (6.4.53)

C↓jkTPolesε(ih, j, kh) = 0. (6.4.54)

We will explain more clearly how this works in detail in the specific example of A1
3

in Section 6.4.5.

In the iterative language of Eq. (6.3.1) the fifth and final step of the algorithm is

X1
3;5(ih, j, kh) = X1

3;4(ih, j, kh) + P↑ε
(
P↓εT (ih, j, kh)−P↓εX1

3;4(ih, j, kh)
)
, (6.4.55)

where we define the complete constructed antenna function,

X1
3 (ih, j, kh) ≡ X1

3;5(ih, j, kh). (6.4.56)

It is convenient to combine the contributions from Eqs. (6.4.40) and (6.4.51) to

obtain a single contribution (as in the antenna templates of Eqs. (6.4.20), (6.4.21)

and (6.4.22)) and we define

TPoles(ih, j, kh) ≡ TPolesX(ih, j, kh) + TPolesε(ih, j, kh). (6.4.57)

It is to be emphasised again that TPoles(ih, j, kh) does not contribute in any unre-

solved limit but does carry explicit poles in ε. Indeed, using Eqs. (6.4.42) - (6.4.44)

and Eqs. (6.4.52) - (6.4.54), it is straightforward to see that

S↓jTPoles(ih, j, kh) = 0 , (6.4.58)

C↓ijTPoles(ih, j, kh) = 0 , (6.4.59)

C↓jkTPoles(ih, j, kh) = 0 . (6.4.60)

Finally, the algorithm presented here ensures that

S↓jX1
3 (ih, j, kh) = S

(1)
b (ih, j, kh) , (6.4.61)
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C↓ijX1
3 (ih, j, kh) = P

(1)
ab (ih, j) , (6.4.62)

C↓jkX1
3 (ih, j, kh) = P

(1)
cb (kh, j) , (6.4.63)

and

P↓εX1
3 (ih, j, kh) = P↓εT (ih, j, kh) . (6.4.64)

6.4.4 Renormalisation

As a final step, we renormalise the antennae at scale µ2,

X1
3 (ih, j, kh) 7→ X1

3 (ih, j, kh)− b0

ε
X0

3 (ih, j, kh) , (6.4.65)

X̃1
3 (ih, j, kh) 7→ X̃1

3 (ih, j, kh) , (6.4.66)

X̂1
3 (ih, j, kh) 7→ X̂1

3 (ih, j, kh)− b0,F

ε
X0

3 (ih, j, kh) . (6.4.67)

We use the colour decomposition of β0,

β0 = Ncb0 +NF b0,F , (6.4.68)

where b0 = 11/6 and b0,F = −1/3.

6.4.5 A1
3 Construction in Full Detail

To make the construction explicit, we work through the construction of A1
3 as an

example before describing the full set of idealised real-virtual antenna functions in

Section 6.5. A1
3(ihq , jg, khq̄ ) is the leading-colour antenna function with quark and

antiquark hard radiators, which encapsulates the one-loop limits when the gluon

becomes unresolved. The relevant unresolved limits are

S(1)
g (ih, j, kh), P (1)

qg (ihq , jg), P (1)
qg (kq̄, jg), (6.4.69)

which are given in Section 1.5.3. Additionally, we choose a target for the ε-poles

before renormalisation, which is consistent with the above limits but matches the
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ε-pole structures appearing in the antenna-subtraction scheme. The target pole

structure for A1
3 is given by

T (ihq , jg, khq̄ ) = Rε

ε2

(
Sij + Sjk − Sijk

)
A0

3(ih, j, kh). (6.4.70)

We want to match the constructed X1
3 to the full NNLO antenna-subtraction scheme;

we therefore require the ε-poles to have a similar ε-pole structure to the X1,OLD
3 in

Ref. [1].

We choose to simplify our notation by using the following structure

G(w, ε) = 2F1 (1, ε, 1 + ε,−w)− 1,

= −
∞∑
n=1

(−ε)nLin (−w) ,

≡ (1 + w)−ε2F1

(
ε, ε, 1 + ε,

w

1 + w

)
− 1, (6.4.71)

where w = sjk/sik. Note that in the w → 0 limit, G(w, ε) vanishes.

Before renormalisation, A1
3 is built iteratively in the following order,

A1
3(ihq , jg, khq̄ ) = Ssoft(1)(ihq , jg, khq̄ ) (6.4.72)

+Scol(1)(ihq , jg; khq̄ ) + Scol(1)(khq̄ , jg; ihq ) + TPoles(ihq , jg, khq̄ ) ,

with the TPoles contribution constructed in two steps as in Section 6.4.3 according

to Eqs. (6.4.40) and (6.4.51),

TPoles(ihq , jg, khq̄ ) = TPolesX(ihq , jg, khq̄ ) + TPolesε(ihq , jg, khq̄ ). (6.4.73)

The first contribution is simply the one-loop soft factor,

Ssoft(1)(ihq , jg, khq̄ ) = S↑jS(1)
g (ih, j, kh) = −Rε

Γ(1− ε)Γ(1 + ε)
ε2

SijSjk
Sik

S(0)
g (ih, j, kh),

(6.4.74)

where S(0)
g is the tree-level eikonal factor given in Section 1.5.1.

The second piece is given by the overlap of the one-loop splitting function P (1)
qg (ih, j)

and the one-loop soft factor Ssoft(1) in the ij collinear limit, up-projected into the
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full phase-space,

Scol(1)(ihq , jg; khq̄ )

= C↑ij
(
P (1)
qg (ih, j)−C↓ijSsoft(1)(ihq , jg, khq̄ )

)
,

= Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik

(1− ε)sjk
sijsijk

+ SijG

(
sjk
sik
, ε

)
P (0)
qg (ihq , jg; khq̄ )

]

+SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) . (6.4.75)

Here we use the short-hand notation

P
(n)
ab (ih, j; k) = C↑ijP

(n)
ab (ih, j), (6.4.76)

to indicate an n-loop splitting function up-projected into the full phase space of the

antenna and the tree-level splitting functions, P (0)
ab , are given in Section 1.5.1.

The third contribution is given by

Scol(1)(khq̄ , jg; ihq )

= C↑kj
(
P (1)
qg (khq , jg)−C↓kj

(
Ssoft(1)(ihq , jg, khq̄ ) + Scol(1)(ihq , jg; khq̄ )

))
,

= C↑kj
(
P (1)
qg (khq , jg)−C↓kjSsoft(1)(ihq , jg, khq̄ )

)
,

= Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik

(1− ε)sij
sjksijk

+ SjkG

(
sij
sik
, ε

)
P (0)
qg (khq̄ , jg; ihq )

]

+SjkRε

(sijk − εsij)
sjksijk

1
2(1− 2ε) . (6.4.77)

Recalling from Eq. (5.4.14) that

A0
3(ihq , jg, khq̄ ) ≡ S(0)

g (ih, j, kh) + (1− ε)sjk
sijsijk

+ (1− ε)sij
sjksijk

,

≡ P (0)
qg (ihq , jg; khq̄ ) + (1− ε)sij

sjksijk
,

≡ P (0)
qg (khq̄ , jg; ihq ) + (1− ε)sjk

sijsijk
, (6.4.78)

it is straightforward to see that the terms proportional to SijSjk/Sik in Eqs. (6.4.74), (6.4.75)

and (6.4.77), combine to give a term which factorises onto A0
3(ihq , jg, khq̄ ) such that
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Ssoft(1)(ihq , jg, khq̄ ) + Scol(1)(ihq , jg; khq̄ ) + Scol(1)(khq̄ , jg; ihq )

= +Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik
A0

3(ih, j, kh)

+SijG
(
sjk
sik
, ε

)
P (0)
qg (ihq , jg; khq̄ ) + SjkG

(
sij
sik
, ε

)
P (0)
qg (khq̄ , jg; ihq )

]

+SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) + SjkRε

(sijk − εsij)
sjksijk

1
2(1− 2ε) . (6.4.79)

This combination completes Stage 1 of the algorithm and is to some extent a complete

construction of A1
3. It is complete in the sense that it encapsulates the fundamental

one-loop unresolved limits we require.

Stage 2 of the algorithm preserves the unresolved limits but includes explicit poles

that do not contribute in any limit. The next piece TPolesX ensures that the explicit

pole structure of the A1
3 factors onto A0

3:

TPolesX(ihq , jg, khq̄ ) = (P↑X − 1)
(
Ssoft(1)(ihq , jg, khq̄ ) + Scol(1)(ihq , jg; khq̄ ) + Scol(1)(khq̄ , jg; ihq )

)
,

= Rε

ε2

[
SijG

(
sjk
sik
, ε

)(
A0

3(ihq , jg, khq̄ )− P (0)
qg (ihq , jg; khq̄ )

)
+ SjkG

(
sij
sik
, ε

)(
A0

3(ihq , jg, khq̄ )− P (0)
qg (khq̄ , jg; ihq )

) ]
,

= Rε

ε2

[
SijG

(
sjk
sik
, ε

)
(1− ε)sij
sjksijk

+ SjkG

(
sij
sik
, ε

)
(1− ε)sjk
sijsijk

]
.

(6.4.80)

This term vanishes in the unresolved region for the following reason. The first term

in the final line appears to have a singularity in the jk collinear limit due to the 1/sjk

factor. However, in this limit the hypergeometric function G(sjk/sik, ε) approaches

zero and this behaviour therefore suppresses the singularity due to the 1/sjk factor.

A similar argument holds for the second term. As such, neither term in Eq. (6.4.80)

contributes to any unresolved limit, although they evidently do contribute explicit ε

poles. In summary,

S↓j
(

1
sijsjk

×G
(
sjk
sik
, ε

))
= 0 , (6.4.81)
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S↓j
(

1
sijsjk

×G
(
sij
sik
, ε

))
= 0 , (6.4.82)

C↓ij
(

1
sij
×G

(
sij
sik
, ε

))
= 0 , (6.4.83)

C↓jk
(

1
sjk
×G

(
sjk
sik
, ε

))
= 0 . (6.4.84)

The running total for A1
3 is given by

Ssoft(1)(ihq , jg, khq̄ ) + Scol(1)(ihq , jg; khq̄ ) + Scol(1)(khq̄ , jg; ihq ) + TPolesX(ihq , jg, khq̄ )

= +Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik

+SijG
(
sjk
sik
, ε

)
+ SjkG

(
sij
sik
, ε

)]
A0

3(ihq , jg, khq̄ ),

+SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) + SjkRε

(sijk − εsij)
sjksijk

1
2(1− 2ε) . (6.4.85)

Effectively, the tree-level splitting functions in Eq. (6.4.79) have been promoted to

full A0
3 antenna functions.

The next contribution, TPolesε, is also part of antenna-scheme matching, for which

we have the target pole structure proportional to A0
3, given in Eq. (6.4.70). The

resulting expression is given by

TPolesε(ihq , jg, khq̄ ) = P↑ε
(

P↓εT (ihq , jg, khq̄ )−P↓ε
[
Ssoft(1)(ihq , jg, khq̄ )

+Scol(1)(ihq , jg; khq̄ ) + Scol(1)(khq̄ , jg; ihq ) + TPolesX(ihq , jg, khq̄ )
])
,

= P↑ε
(

1
ε

ln
(

1 + sijsjk
siksijk

)
A0

3(ih, j, kh)
)
,

= Rε

ε2
Λ1(ih, j, kh)A0

3(ih, j, kh). (6.4.86)

As discussed earlier, the logarithmic structure of Λ1 suppresses all the unresolved

limits present in the A0
3 antenna at every order in ε. This structure also carries

a 1/ε2 factor, so TPolesε(ihq , jg, khq̄ ) contains explicit ε poles (which are important

for antenna-scheme matching) but does not contribute in the unresolved limits. In

summary,

S↓j
(
Λ1(ih, j, kh)A0

3(ih, j, kh)
)

= 0 , (6.4.87)
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C↓ij
(
Λ1(ih, j, kh)A0

3(ih, j, kh)
)

= 0 , (6.4.88)

C↓jk
(
Λ1(ih, j, kh)A0

3(ih, j, kh)
)

= 0 . (6.4.89)

Finally, including the renormalisation term and combining terms together, we find

a compact expression for A1
3 given by

A1
3(ih, j, kh) = Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik
+ SijG

(
sjk
sik
, ε

)
+ SjkG

(
sij
sik
, ε

)

+ Λ1(ih, j, kh)
]
A0

3(ih, j, kh)− b0

ε
A0

3(ih, j, kh)

+ SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) + SjkRε

(sijk − εsij)
sjksijk

1
2(1− 2ε) .

(6.4.90)

We verify that

S↓jA1
3(ih, j, kh) = S(1)

g (ih, j, kh) , (6.4.91)

C↓ijA1
3(ih, j, kh) = P (1)

qg (ih, j) , (6.4.92)

C↓jkA1
3(ih, j, kh) = P (1)

qg (kh, j) , (6.4.93)

and

P↓εA1
3(ih, j, kh) = P↓εT (ihq , jg, khq̄ ) . (6.4.94)

6.5 Real-Virtual Antenna Functions

In this section, we give compact expressions for the full set of real-virtual antennae

and their integrals. In deriving and integrating these antennae, we have made use

of MAPLE, hypexp [190,191] and FORM [181,182].

6.5.1 Quark-Antiquark Antennae

As shown in Table 6.1, there are three one-loop three-parton antennae with quark-

antiquark parents that describe the emission of a gluon, organised by colour structure:
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A1
3, Ã1

3 and Â1
3. The antenna functions constructed here are directly related to the

antenna functions given in Ref. [1] by

A1,OLD
3 (iq, jg, kq̄) ∼ A1

3(ihq , jg, khq̄ ) , (6.5.1)

Ã1,OLD
3 (iq, jg, kq̄) ∼ Ã1

3(ihq , jg, khq̄ ) , (6.5.2)

Â1,OLD
1 (iq, jg, kq̄) ∼ Â1

3(ihq , jg, khq̄ ) , (6.5.3)

where ∼ means that they contain the same limits as jg becomes unresolved, although

they may contain different ε poles.

In order to build these antennae using the algorithm in Section 6.3, we identify the

particles, included in the antenna, to specify the limits encapsulated by the X1
3 and

identify the target poles for the X1
3 , factorising on to the respective X0

3 (here A0
3).

The resulting formula from the algorithm (copied from above) is given by

A1
3(ih, j, kh) = Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik
+ SijG

(
sjk
sik
, ε

)
+ SjkG

(
sij
sik
, ε

)

+ Λ1(ih, j, kh)
]
A0

3(ih, j, kh)− b0

ε
A0

3(ih, j, kh)

+ SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) + SjkRε

(sijk − εsij)
sjksijk

1
2(1− 2ε) .

(6.5.4)

Integrating over the single unresolved antenna phase space (more details are given

in Appendix B.1), we yield the integrated antenna

A1
3(sijk) = S2

ijk

− 1
4ε4
− 31

12ε3
+ 1
ε2

(
−53

8 + 11
24π

2
)

+ 1
ε

(
−659

24 + 22
9 π

2 + 23
3 ζ3

)

+
(
−1345

12 + 199
24 π

2 + 635
18 ζ3 + 13

1440π
4
)

+O (ε)
 . (6.5.5)

This expansion differs from A1,OLD
3 in Eq. (5.18) of Ref. [1], starting from the rational

part at O (1/ε). In a similar way to the constructed A0
4 in Chapter 5, this is simply

because the A0
3 given in Eq. (5.4.14) differs at O (ε) from A0,OLD

3 of Ref. [1]. The

choice of A0
3 impacts the ε poles of A1

3 at both the unintegrated and integrated levels,

because A0
3 factorises onto explicit 1/ε2 poles in Eq. (6.5.4). If instead the original
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A0,OLD
3 , of Ref. [1], is used in Eq. (6.5.4), the integrated antenna in Eq. (B.3.1)

contains exactly the same poles as A1,OLD
3 in Eq. (5.18) of Ref. [1] and differs only

at O
(
ε0
)
.

Similarly, for the sub-leading-colour qq̄ antenna,

Ã1
3(ih, j, kh) = −Rε

ε2

[
SijG

(
sjk
sik
,−ε

)
+ SjkG

(
sij
sik
,−ε

)
− Λ1(ih, j, kh)

]
A0

3(ih, j, kh)

− SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) − SjkRε

(sijk − εsij)
sjksijk

1
2(1− 2ε) ,

(6.5.6)

and after integration we find the expression,

Ã1
3(sijk) = S2

ijk

+ 1
ε2

(
−5

8 + 1
6π

2
)

+ 1
ε

(
−19

4 + 1
4π

2 + 7ζ3

)

+
(
−447

16 + 29
16π

2 + 21
2 ζ3 + 7

60π
4
)

+O (ε)
 . (6.5.7)

This expansion only differs from Ã1,OLD
3 in Eq. (5.19) of Ref. [1] at O

(
ε0
)
. In this

case, the choice of A0
3 does not impact the ε poles of Ã1

3 because they are at most

1/ε and the A0
3 given in Eq. (5.4.14) differs only at O (ε) from A0,OLD

3 of Ref. [1].

For the quark-loop qq̄ antenna, there are no unrenormalised unresolved limits and

so the antenna is simply a renormalisation term:

Â1
3(ih, j, kh) = −b0,F

ε
A0

3(ih, j, kh) . (6.5.8)

The integrated version is given by

Â1
3(sijk) = S2

ijk

+ 1
3ε3

+ 1
2ε2

+ 1
ε

(19
12 −

7
36π

2
)

+
(113

24 −
7
24π

2 − 25
9 ζ3

)
+O (ε)

 , (6.5.9)

which only differs from Â1,OLD
1 in Eq. (5.20) of Ref. [1] at O

(
ε0
)
. In this case, the

choice of A0
3 does not impact the ε poles of Â1

3 because they are at most 1/ε and the

A0
3 given in Eq. (5.4.14) differs only at O (ε) from A0,OLD

3 of Ref. [1].
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6.5.2 Quark-Gluon Antennae

As shown in Table 6.1, there are six one-loop three-parton antennae with quark-gluon

parents organised by colour structure: D1
3, D̃1

3, D̂1
3, E1

3 , Ẽ1
3 and Ê1

3 . The antenna

functions constructed here are directly related to the antenna functions given in

Ref. [1] by

D1,OLD
3 (iq, jg, kg) ∼ D1

3(ihq , jg, khg ) + D̃1
3(ihq , jg, khg ) + (j ↔ k) , (6.5.10)

D̂1,OLD
3 (iq, jg, kq̄) ∼ D̂1

3(ihq , jg, khg ) + D̂1
3(ihq , kg, jhg ) , (6.5.11)

E1,OLD
3 (iq, jQ̄, kQ) ∼ E1

3(ihq , jQ̄, khQ) , (6.5.12)

Ẽ1,OLD
3 (iq, jQ̄, kQ) ∼ Ẽ1

3(ihq , jQ̄, khQ) , (6.5.13)

Ê1,OLD
3 (iq, jQ̄, kQ) ∼ Ê1

3(ihq , jQ̄, khQ) . (6.5.14)

Note that D1,OLD
3 was extracted from an effective Lagrangian describing heavy

neutralino decay into a gluino-gluon pair, where the gluino plays the role of the

quark [149]. Firstly, D1,OLD
3 contains unresolved configurations where either of the

gluons can be soft, so this is decomposed here such that only one gluon can be soft.

Secondly, the extracted antennae D1,OLD
3 (and D0,OLD

4 ) contain both leading-colour

and sub-leading colour limits and they receive special treatment in the antenna

scheme. In Chapter 5 and Ref. [184], we effectively split D0,OLD
4 into a combination

of D0
4 and D̃0

4 antennae and we perform a similar decomposition here of D1,OLD
3 into

D1
3 and D̃1

3. Due to the absence of a sub-leading colour D̃1,OLD
3 antenna, we only

have target poles, T (ihq , jg, khg ), for the combination of D1
3(ihq , jg, khg ) + D̃1

3(ihq , jg, khg ).

We choose to place the resulting TPolesε term in the formula for D1
3. To recap, the

combination of D1
3(ihq , jg, khg ) + D̃1

3(ihq , jg, khg ) have been used to match ε poles in the

existing antenna-subtraction-scheme, while D1
3(ihq , jg, khg ) contains the leading-colour

limits when j is unresolved and D̃1
3(ihq , jg, khg ) contains the sub-leading-colour limits

when j is unresolved. This means the two antennae, D1
3 and D̃1

3, could in principle

be used independently in subtraction terms to cancel relevant one-loop unresolved

limits but the ε-pole cancellation may require specific attention.
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The D1
3 formula is given by

D1
3(ih, j, kh) = Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik

+SijG
(
sjk
sik
, ε

)
+ SjkG

(
sij
sik
, ε

)
− SjkG

(
sij
sik
,−ε

)

+2Λ1(ih, j, kh)
]
D0

3(ih, j, kh)− b0

ε
D0

3(ih, j, kh)

+SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε)

+ Rε

2(1− ε)(1− 2ε)(3− 2ε)
Sjk
sjk

(
1− 2εsijsik

s2
ijk

)
, (6.5.15)

and after integration we find the expression

D1
3(sijk) = S2

ijk

− 1
4ε4
− 8

3ε3
+ 1
ε2

(
−1109

144 + 13
24π

2
)

+ 1
ε

(
−14603

432 + 49
18π

2 + 73
6 ζ3

)

+
(
−7985

54 + 8561
864 π

2 + 535
12 ζ3 + 79

480π
4
)

+O (ε)
. (6.5.16)

The D̃1
3 formula is given by

D̃1
3(ih, j, kh) = −Rε

ε2
SijG

(
sjk
sik
,−ε

)
D0

3(ih, j, kh)

−SijRε

(sijk − εsjk)
sijsijk

1
2(1− 2ε) , (6.5.17)

and after integration we find the expression

D̃1
3(sijk) = S2

ijk

+ 1
ε2

(
− 5

16 + 1
12π

2
)

+ 1
ε

(
−77

48 + 11
72π

2 + 5
2ζ3

)

+
(
−983

144 + 941
864π

2 + 55
12ζ3 −

7
180π

4
)

+O (ε)
. (6.5.18)

The combination of 2(D1
3 + D̃1

3) differs from D1,OLD
3 in Eq. (6.22) of Ref. [1], starting

from O
(
1/ε2

)
. In a similar way to the constructed D0

4 and D̃0
4 in Chapter 5, this is

simply because the D0
3 given in Eq. (5.4.17) differs at O

(
ε0
)
from d0,OLD

3 of Ref. [1].

The choice of D0
3 impacts the ε poles of D1

3 and D̃1
3 at both the unintegrated and

integrated levels because D0
3 factorises onto explicit 1/ε2 poles in Eq. (6.5.15) and

Eq. (6.5.17).
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The quark-loop qg antenna function is given by

D̂1
3(ih, j, kh) = −Rε

Sjk
sjk

1
2(1− ε)2(1− 2ε)(3− 2ε)

(
1− 2εsijsik

s2
ijk

)

− b0,F

ε
D0

3(ih, j, kh), (6.5.19)

and after integration we find the expression

D̂1
3(sijk) = S2

ijk

+ 1
3ε3

+ 5
9ε2

+ 1
ε

(125
72 −

7
36π

2
)

+
(97

18 −
35
108π

2 − 25
9 ζ3

)
+O (ε)

 .
(6.5.20)

This expansion differs from D̂1,OLD
3 /2 in Eq. (6.23) of Ref. [1], starting from the

rational part at O (1/ε). In the D̂1
3 formula, the poles are at most 1/ε and they only

appear in the renormalisation term. The finite difference between D0
3 and d0,OLD

3

from Ref. [1] therefore only impacts the O (1/ε) poles.

The E1
3 -type antennae contain contributions to only one limit – the jk collinear limit,

when the Q̄Q pair become collinear and as such they are simpler expressions than

the others. The first antenna is given by

E1
3(ih, j, kh) = −Rε

ε2

[
SjkG

(
sij
sik
,−ε

)
+ SjkG

(
sik
sij
,−ε

)

− Sjk
ε(13− 8ε)

2(3− 2ε)(1− 2ε) − 2Λ2(ih, j, kh)
]
E0

3(ih, j, kh)− b0

ε
E0

3(ih, j, kh) ,

(6.5.21)

where the Λ2/ε
2 term suppresses the only limit in the E0

3 to which it factorises (the

jk collinear limit) and thus only affects the ε pole structure of E1
3 . After integration

we find the expression

E1
3 (sijk) = S2

ijk

+ 11
18ε2

+ 1
ε

(56
27 −

1
9π

2
)

+
(4111

432 −
131
216π

2 − 4ζ3

)
+O (ε)

 ,
(6.5.22)

which differs from E1,OLD
3 in Eq. (6.34) of Ref. [1], starting from the rational part at

O (1/ε). In the E1
3 formula, the poles are at most 1/ε. The finite difference between

E0
3 and E0,OLD

3 from Ref. [1] therefore only impacts the O (1/ε) poles.
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The sub-leading-colour antenna is given by

Ẽ1
3(ih, j, kh) = −RεSjk

[
1
ε2

+ (3 + 2ε)
2ε(1− 2ε)

]
E0

3(ih, j, kh) , (6.5.23)

and after integration we find the expression

Ẽ1
3 (sijk) = S2

ijk

+ 1
6ε3

+ 13
18ε2

+ 1
ε

(613
216 −

1
4π

2
)

+
(3359

324 −
13
12π

2 − 31
9 ζ3

)
+O (ε)

,
(6.5.24)

which differs from Ẽ1,OLD
3 in Eq. (6.35) of Ref. [1], starting from the rational part

at O
(
1/ε2

)
. In the Ẽ1

3 formula, the poles are at most 1/ε2. The finite difference

between E0
3 and E0,OLD

3 from Ref. [1] therefore impacts the O
(
1/ε2

)
poles.

The quark-loop antenna is given by

Ê1
3(ih, j, kh) = −Rε

[
Sjk

2(1− ε)
ε(3− 2ε)(1− 2ε)

]
E0

3(ih, j, kh)− b0,F

ε
E0

3(ih, j, kh), (6.5.25)

and after integration we find the expression

Ê1
3 (sijk) = S2

ijk

+ 1
4ε +

(791
648 −

11
108π

2
)

+O (ε)
, (6.5.26)

which differs from Ê1,OLD
3 in Eq. (6.36) of Ref. [1], starting from the rational part at

O (1/ε). In the Ê1
3 formula, the poles are at most 1/ε. The finite difference between

E0
3 and E0,OLD

3 from Ref. [1] therefore impacts the O (1/ε) poles of Ê1
3 , although

these are the deepest poles in this case. This is because of cancellations at O
(
1/ε2

)
between the integrals of the first and second terms in Eq. (6.5.25).

6.5.3 Gluon-Gluon Antennae

As shown in Table 6.1, there are five one-loop three-parton antennae with gluon-

gluon parents organised by colour structure: F 1
3 , F̂ 1

3 , G1
3, G̃1

3 and Ĝ1
3. The antenna

functions constructed here are directly related to the antenna functions given in

Ref. [1] by

F 1,OLD
3 (ig, jg, kg) ∼ F 1

3 (ihg , jg, khg ) + F 1
3 (jhg , kg, ihg) + F 1

3 (khg , ig, jhg ) , (6.5.27)
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F̂ 1,OLD
3 (ig, jg, kg) ∼ F̂ 1

3 (ihg , jg, khg ) + F̂ 1
3 (jhg , kg, ihg) + F̂ 1

3 (khg , ig, jhg ) , (6.5.28)

G1,OLD
3 (ig, jQ̄, kQ) ∼ G1

3(ihg , jQ̄, khQ) , (6.5.29)

G̃1,OLD
3 (ig, jQ̄, kQ) ∼ G̃1

3(ihg , jQ̄, khQ) , (6.5.30)

Ĝ1,OLD
3 (ig, jQ̄, kQ) ∼ Ĝ1

3(ihg , jQ̄, khQ) . (6.5.31)

Note that F 1,OLD
3 was extracted from an effective Lagrangian describing Higgs boson

decay into gluons [148]. This means that F 1,OLD
3 contains unresolved configurations

where any one of the three gluons can be soft, so this is decomposed here such that

only one gluon can be soft. The same discussion can be applied to F̂ 1
3 .

The resulting formula for the three-gluon one-loop antenna function at leading-colour

is given by

F 1
3 (ih, j, kh) = Rε

ε2

[
− Γ(1− ε)Γ(1 + ε)SijSjk

Sik

+ SijG

(
sjk
sik
, ε

)
− SijG

(
sjk
sik
,−ε

)

+ SjkG

(
sij
sik
, ε

)
− SjkG

(
sij
sik
,−ε

)

+ 2Λ1(ih, j, kh)
]
F 0

3 (ih, j, kh)− b0

ε
F 0

3 (ih, j, kh)

+ Rε

2(1− ε)(1− 2ε)(3− 2ε)

[
Sij
sij

(
1− 2εsjksik

s2
ijk

)
+ Sjk
sjk

(
1− 2εsijsik

s2
ijk

)]
,

(6.5.32)

and after integration we find the expression

F1
3 (sijk) = S2

ijk

− 1
4ε4
− 11

4ε3
+ 1
ε2

(
−79

9 + 5
8π

2
)

+ 1
ε

(
−8339

216 + 55
18π

2 + 44
3 ζ3

)

+
(
−73169

432 + 5137
432 π

2 + 473
9 ζ3 + 181

1440π
4
)

+O (ε)
 .
(6.5.33)

This expansion differs from F1,OLD
3 /3 in Eq. (7.22) of Ref. [1], starting from the

rational part at O
(
1/ε2

)
. In the F 1

3 formula, the poles are at most 1/ε2. The finite

difference between F 0
3 and f 0,OLD

3 from Ref. [1] therefore impacts the O
(
1/ε2

)
poles.
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The quark-loop antenna function is given by

F̂ 1
3 (ih, j, kh) = Rε

2(1− ε)2(1− 2ε)(3− 2ε)

[
Sij
sij

(
1− 2εsjksik

s2
ijk

)

+ Sjk
sjk

(
1− 2εsijsik

s2
ijk

)]
− b0,F

ε
F 0

3 (ih, j, kh) , (6.5.34)

and after integration we find the expression

F̂1
3 (sijk) = S2

ijk

+ 1
3ε3

+ 11
18ε2

+ 1
ε

(17
9 −

7
36π

2
)

+
(437

72 −
77
216π

2 − 25
9 ζ3

)
+O (ε)

 .
(6.5.35)

This expansion differs from F̂1,OLD
3 /3 in Eq. (7.23) of Ref. [1], starting from the

rational part at O (1/ε). In the F̂ 1
3 formula, the poles are at most 1/ε and they only

appear in the renormalisation term. The finite difference between F 0
3 and f 0,OLD

3

from Ref. [1] therefore only impacts the O (1/ε) poles.

The formula for the one-loop gluon-splitting gg antenna function at leading-colour

is given by

G1
3(ih, j, kh) = −Rε

ε2

[
SjkG

(
sij
sik
,−ε

)
+ SjkG

(
sik
sij
,−ε

)

− Sjk
ε(13− 8ε)

2(3− 2ε)(1− 2ε) − 2Λ2(ih, j, kh)
]
G0

3(ih, j, kh)− b0

ε
G0

3(ih, j, kh) ,

(6.5.36)

and after integration we find the expression

G1
3(sijk) = S2

ijk

+ 11
18ε2

+ 1
ε

(56
27 −

1
9π

2
)

+
(4111

432 −
131
216π

2 − 4ζ3

)
+O (ε)

. (6.5.37)

Firstly, given that E0
3 = G0

3 and that E1
3 and G1

3 encapsulate the same limits,

these formulae (unintegrated and integrated) are identical for the E1
3 - and G1

3- type

antennae:

G1
3(ih, j, kh) = E1

3(ih, j, kh) , (6.5.38)

G̃1
3(ih, j, kh) = Ẽ1

3(ih, j, kh) , (6.5.39)

Ĝ1
3(ih, j, kh) = Ê1

3(ih, j, kh) . (6.5.40)
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Therefore the discussion for the G1
3-type antennae is the same as below Eq. (6.5.22),

Eq. (6.5.24) and Eq. (6.5.26), respectively. When the X0,OLD
3 from Ref. [1] are used,

the G1
3- and E1

3 - type antennae have a different pole structure but the same collinear

limits.

The sub-leading-colour antenna function is given by

G̃1
3(ih, j, kh) = −RεSjk

[
1
ε2

+ (3 + 2ε)
2ε(1− 2ε)

]
G0

3(ih, j, kh) , (6.5.41)

and after integration we find the expression

G̃1
3(sijk) = S2

ijk

+ 1
6ε3

+ 13
18ε2

+ 1
ε

(613
216 −

1
4π

2
)

+
(3359

324 −
13
12π

2 − 31
9 ζ3

)
+O (ε)

 .
(6.5.42)

See the discussion for Eq. (6.5.24), which also applies to Eq. (6.5.42).

The quark-loop antenna function is given by

Ĝ1
3(ih, j, kh) = −Rε

[
Sjk

2(1− ε)
ε(3− 2ε)(1− 2ε)

]
G0

3(ih, j, kh)− b0,F

ε
G0

3(ih, j, kh) , (6.5.43)

and after integration we find the expression

Ĝ1
3(sijk) = S2

ijk

+ 1
4ε +

(791
648 −

11
108π

2
)

+O (ε)
 . (6.5.44)

See the discussion for Eq. (6.5.26), which also applies to Eq. (6.5.44).

6.6 Antenna-Subtraction Scheme Consistency

Checks

In the antenna-subtraction scheme, the virtual (NLO) and double-virtual (NNLO)

subtraction terms can be written in terms of integrated dipoles denoted by J (1)
2 and

J
(2)
2 respectively, see Ref. [160]. These integrated dipoles are formed by systematically

combining integrated antenna-function contributions from the real and real-virtual

levels (together with appropriate mass factorisation terms in general). The NNLO
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integrated dipoles J (2)
2 naturally emerge from groups of integrated antenna functions

with the same parents at a given colour-level (and mass factorisation kernels) and,

together with combinations of J (1)
2 , reproduce and properly subtract the explicit

poles of the double-virtual contribution to the NNLO cross section. The integrated

dipoles are therefore intimately related to Catani’s IR singularity operators (see

Ref. [28]) which describe the singularities of virtual matrix elements. It is a non-

trivial check of an antenna scheme constructed directly from unresolved limits that

the integrated dipoles cancel the explicit poles of the double-virtual contribution.

In this section, we write down expressions for J (2)
2 (and J

(1)
2 ) and show that they

produce the correct pole structure.

We start from the expressions for the integrated dipoles in colour space (see Chapter 1

and Ref. [29]). In order to cancel the singularities of one- and two-loop matrix

elements, J (1)
2 and J (2)

2 (J (2)
2 ) must be related to J (1),OLD

2 and J (2),OLD
2 (J (2),OLD

2 ),

given in Ref. [178]. In particular, they must satisfy the following identities, which

ensure that they match the known singularity structures at one and two loops. At

NLO,

J (1)
2 (i, j) = J (1),OLD

2 (i, j) +O
(
ε0
)
, (6.6.1)

and at NNLO,

J (2)
2 (q, q̄)− β0

ε
J (1)

2 (q, q̄) = J (2),OLD
2 (q, q̄)− β0

ε
J (1),OLD

2 (q, q̄) +O
(
ε0
)
, (6.6.2)

J (2)
2 (g, g)− β0

ε
J (1)

2 (g, g) = J (2),OLD
2 (g, g)− β0

ε
J (1),OLD

2 (g, g) +O
(
ε0
)
, (6.6.3)

J (2)
2 (q, g) + J (2)

2 (g, q̄)− 2J (2)
2 (q, q̄)− β0

ε

(
J (1)

2 (q, g) + J (1)
2 (g, q̄)

)
= J (2),OLD

2 (q, g) + J (2),OLD
2 (g, q̄)− 2J (2),OLD

2 (q, q̄)

− β0

ε

(
J (1),OLD

2 (q, g) + J (1),OLD
2 (g, q̄)

)
+O

(
ε0
)
. (6.6.4)

Here we give the new definitions for the J (1)
2 and J (2)

2 pertaining to final-final config-

urations, which satisfy the above identities and are constructed from the integrated

versions of X0
3 and X0

4 presented in Chapter 5 and the integrated X1
3 constructed in

this chapter, thus completing the set of antenna functions required for the complete
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final-final NNLO subtraction scheme. The J (1)
2 are defined by

J
(1)
2

(
1q, 2q̄

)
= A0

3(s12), (6.6.5)

J
(1)
2

(
1q, 2g

)
= D0

3(s12), (6.6.6)

Ĵ2
(1) (1q, 2g) = 1

2E
0
3 (s12), (6.6.7)

J
(1)
2

(
1g, 2g

)
= F0

3 (s12), (6.6.8)

Ĵ2
(1) (1g, 2g) = G0

3(s12), (6.6.9)

while the J (2)
2 are defined below. For qq̄ antennae, the integrated dipoles read

J
(2)
2

(
1q, 2q̄

)
= A0

4(s12) +A1
3(s12) + b0

ε

(
s12

µ2

)−ε
A0

3(s12)− 1
2
[
A0

3 ⊗A0
3

]
(s12) ,

(6.6.10)

J̃2
(2) (1q, 2q̄) = 1

2Ã
0
4(s12) + 2C0

4(s12) + Ã1
3(s12)− 1

2
[
A0

3 ⊗A0
3

]
(s12) , (6.6.11)

Ĵ2
(2) (1q, 2q̄) = B0

4(s12) + Â1
3(s12) + b0,F

ε

(
s12

µ2

)−ε
A0

3(s12) , (6.6.12)

J
(2)
2

(
1q, 2q̄

)
= 1

2Ã
0
4(s12) + Ã1

3(s12)− 1
2
[
A0

3 ⊗A0
3

]
(s12) . (6.6.13)

For qg antennae, the integrated dipoles are given by

J
(2)
2

(
1q, 2g

)
= D0

4(s12) + 1
2D̃

0
4(s12) +D1

3(s12) + D̃1
3(s12) + b0

ε

(
s12

µ2

)−ε
D0

3(s12)

−
[
D0

3 ⊗D0
3

]
(s12) , (6.6.14)

Ĵ2
(2) (1q, 2g) = E0

4 (s12) + E0
4(s12) + D̂1

3(s12) + 1
2E

1
3 (s12) + b0,F

ε

(
s12

µ2

)−ε
D0

3(s12)

+ 1
2
b0

ε

(
s12

µ2

)−ε
E0

3 (s12)−
[
D0

3 ⊗ E0
3

]
(s12) , (6.6.15)

̂̂
J2

(2) (
1q, 2g

)
= 1

2 Ê
1
3 (s12) + 1

2
b0,F

ε

(
s12

µ2

)−ε
E0

3 (s12)− 1
4
[
E0

3 ⊗ E0
3

]
(s12) , (6.6.16)

̂̃
J2

(2) (
1q, 2g

)
= 1

2 Ẽ
0
4 (s12) + 1

2 Ẽ
1
3 (s12) . (6.6.17)
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Finally, for gg antennae, the integrated dipoles are

J
(2)
2

(
1g, 2g

)
= F0

4 (s12) + 1
2F̃

0
4 (s12) + F1

3 (s12) + b0

ε

(
s12

µ2

)−ε
F0

3 (s12)

−
[
F0

3 ⊗F0
3

]
(s12) , (6.6.18)

Ĵ2
(2) (1g, 2g) = G0

4(s12) + 2G0
4(s12) + F̂1

3 (s12) + G1
3(s12) + b0,F

ε

(
s12

µ2

)−ε
F0

3 (s12)

+ b0

ε

(
s12

µ2

)−ε
G0

3(s12)− 2
[
F0

3 ⊗ G0
3

]
(s12) , (6.6.19)

̂̂
J2

(2) (
1g, 2g

)
= 1

2H
0
4(s12) + Ĝ1

3(s12) + b0,F

ε

(
s12

µ2

)−ε
G0

3(s12)−
[
G0

3 ⊗ G0
3

]
(s12) ,

(6.6.20)

̂̃
J2

(2) (
1g, 2g

)
= G̃0

4(s12) + G̃1
3(s12) . (6.6.21)

Note that, apart from certain well understood rescalings (such as (1/3)F0
3 7→ F0

3 ,

(1/2)D0
3 7→ D0

3 and so on), Eqs. (6.6.5)–(6.6.21) have a very similar structure to

those appearing in Ref. [160].

We observe that Eqs. (6.6.5)–(6.6.9) satisfy Eq. (6.6.1). This is no surprise since the

integrated single-real antenna functions differ from those in Ref. [149] only in finite

pieces.

However, a residual dependence on the choice of single-real antennae is left in the

construction of double-real antenna functions and the real-virtual antenna functions

constructed in this chapter. The deepest 1/ε4 and 1/ε3 poles correspond to the

universal unresolved behaviour and are identical but the 1/ε2 and 1/ε poles are po-

tentially different. This is understood as finite differences in the single-real antennae

and should pose no issues in application to the antenna-subtraction scheme, when

used with a consistent set of X0
3 , X0

4 and X1
3 antenna functions. Indeed, this is

the case and we find that Eqs. (6.6.10)–(6.6.21) satisfy Eqs. (6.6.2)–(6.6.4), thereby

demonstrating the consistency of the NNLO antenna subtraction scheme based on

the antennae derived directly from the desired singular limits presented here and in

Refs. [184,189].
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6.7 Summary

In this chapter, we have extended the algorithm to build real-radiation antenna

functions presented in Chapter 5 to the case where explicit poles in ε are present,

pertaining to mixed real and virtual corrections in higher-order calculations. As

a proof of the applicability of our new method, we have explicitly derived all X1
3

antenna functions describing real-virtual radiation. Together with the real- and

double-real antenna functions, X0
3 and X0

4 , derived in Chapter 5, this completes the

derivation of a consistent set of idealised antenna functions for NNLO calculations

of processes with massless partons in the final state.

We have identified two complementary sets of design principles relating to mixed real

and virtual antenna functions, which we dubbed generic and subtraction-scheme-

dependent design principles. While the former ensures that each antenna function

has judicious physical properties and obeys all unresolved limits, the latter matches

the mixed real-virtual antennae onto the full antenna-subtraction scheme. We have

explicitly verified the consistency of the method at NNLO by recalculating the

integrated dipoles J (2)
2 and J (1)

2 in the new scheme. These have a direct relation to

the general Catani IR singularity operators and therefore the pole structure of one-

and two-loop matrix elements.





Chapter 7

Conclusions and Outlook

In this thesis, we have presented the research and background pertaining to the

idealisation of antenna functions. Primarily, this involved detailed study of NNLO

unresolved limits, in particular the triple-collinear splitting functions, and develop-

ment of an algorithm to build antenna functions directly from the limits and ε-poles

we want them to contain. This algorithm was explicitly realised for the construction

of X0
3 , X0

4 and X1
3 antenna functions in the final-final configuration, which underpin

a consistent antenna-subtraction framework at NNLO.

In Chapter 1, we introduced the foundational aspects of QCD necessary for the

research presented here. In Chapter 2, we highlighted the phenomenological context

for the antenna-subtraction framework.

Chapter 3 concerns the decomposition of the triple-collinear splitting functions into

products of two 1→ 2 splitting functions and a truly 1→ 3 remainder function. This

was achieved by a basis change, which organises terms in the triple-collinear splitting

functions by suppressing internal simple-collinear limits with a trace structure. The

decomposition enabled a full study of all the internal and external singularities

encoded within the triple-collinear splitting functions. This exposed the intricate

interplay between overlapping limits at NNLO. The most immediate benefit of this

work was in identifying triple-collinear splitting functions with one hard particle; this

formed a crucial input for the construction of idealised X0
4 antenna functions, using
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the algorithm detailed in Chapter 5. One could also envisage using the remainder

functions to isolate the solely double unresolved limits in an NNLO subtraction

scheme. For the purposes of improving antenna subtraction, it was not favourable

to construct solely double unresolved antennae. The reason for this is related to the

structure of the dσ̂T,b2 term, which includes terms with the X1
3 antenna functions.

This contribution must be ε-finite and as such there are counterterms, labelled JX

terms, which must be integrated counterparts of subtraction terms at the double-

real level. These unintegrated terms have the structure of iterated products of

colour-connected X0
3 antenna functions and their only role is to remove iterated

colour-connected single unresolved limits from the X0
4 antenna functions. Thus

the X0
4 antenna functions must include single and double unresolved limits. An

alternative reasoning is that the separation between the double unresolved and the

iterated single unresolved parts of X0
4 is not unique. Instead it is scheme dependent

and we define the generic single unresolved structures to be X0
3 in the antenna

scheme. As such, the scheme-appropriate way to subtract iterated single unresolved

limits from X0
4 is by a product of two X0

3 antenna functions.

In Chapter 4, we discussed the antenna-subtraction method, both at NLO and

NNLO, for the final-final configuration. While at NLO the subtraction terms take

a generic simple form, at NNLO we require many types of subtraction term. For

the double-real level, we need contributions to handle both the colour-connected,

almost-colour-connected and colour-unconnected double unresolved limits, as well

as the single unresolved limits. For the real-virtual level, we need contributions to

handle both the single unresolved limits and the explicit ε-poles due to the virtual

emission. For the double-virtual level, we need contributions to handle the various

two-loop IR-divergent structures. Within the subtraction terms at the double-real

level and the real-virtual level, we require counter-subtraction of spurious limits

or ε-poles introduced by other terms. Since the subtraction procedure at NNLO

is innately complex, we must seek to minimise the introduction of spurious limits

and optimise the formulation of NNLO subtraction terms. Both of these missions
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are addressed by the colourful antenna-subtraction method and the construction of

idealised antenna functions.

The construction of idealised real-radiation antenna functions was the focus of

Chapter 5; this was extended to include virtual radiation in Chapter 6. The al-

gorithm presented here has been used to build a complete set of idealised X0
3 , X0

4

and X1
3 antenna functions for the final-final configuration. These idealised antenna

functions encompass the unresolved limits between two hard radiators, making them

ideal candidates for generating antenna-subtraction terms. The extension of the

algorithm, for constructing antenna functions with virtual radiation, consists in a

prescription to fix the ε-poles at a second stage after fixing the unresolved limits.

Some of the old antenna functions were already in an idealised form, however many

of the X0
4 have improved structures compared to their earlier forms. This is where we

anticipate simplifications to the double-real subtraction terms for higher-multiplicity

processes. Improvements to the antenna-subtraction architecture will be essential for

going beyond the current state-of-the-art and addressing complicated processes such

as e+e− → 4 jets at NNLO. We believe that, apart from reducing the complexity

of subtraction terms, the idealised antenna functions will reduce the computational

overhead associated with precision calculations. Our assessment is based on the fact

that we have chosen our design principles in such a way that they avoid the need

for spurious subtraction terms as much as possible. The idealised antenna functions

could also find their application in parton showers and their matching to NNLO

calculations. From a more general point of view, the algorithm set-out here is general

and could be used to construct various singular structures, including sector antenna

functions, fragmentation antenna functions and massive antenna functions.

In order to address precision phenomenology at hadron colliders such as the LHC,

NNLO antenna functions for initial-final and initial-initial configurations are required.

These can be constructed using the same algorithm set-out in Chapters 5 and 6,

using the known initial-final and initial-initial unresolved limits. For the cancellation

of poles in virtual and double-virtual matrix elements, those antenna functions also
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need to be integrated over the respective initial-final and initial-initial antenna phase

spaces. We note that a first step in this direction has recently been taken and the

X0
3 antennae for the initial-final and initial-initial configurations have been derived

using this approach in Ref. [8].

We plan for the idealised NNLO antennae to be integrated into the automated an-

tenna framework, in conjunction with the colourful antenna-subtraction method.

This improved antenna-subtraction scheme would streamline the NNLO QCD calcu-

lation of full-colour pp→ 3 jets as well as bring other processes such as pp→ V+2

jets, pp→ H+2 jets and e+e− → 4 jets into scope (as and when the two loop matrix

elements become available). We can also anticipate interest in calculations for other

colliders than the LHC, with simpler configurations, such as the Electron-Ion Col-

lider (EIC), the International Linear Collider (ILC), the Circular Electron-Positron

Collider (CEPC) and the initial runs of the Future Circular Collider (FCCee). The

improved NNLO antenna-subtraction scheme will be equally valuable for providing

phenomenological comparison during the runs of these experiments.

Given the high complexity of the generic antenna-subtraction scheme at NNLO, it

is not surprising that developments for an N3LO antenna-subtraction scheme are in

their infancy. Such a scheme would have to follow a formula like Eq. (4.1.9). SRRR

would require building out of newX0
5 antenna functions with three unresolved partons

at tree-level, while also utilising X0
4 and X0

3 antenna functions. SRRV would require

building out of new X1
4 antenna functions with two unresolved partons at one-loop,

while also utilising X0
4 , X1

3 and X0
3 antenna functions. SRV V would require building

out of new X2
3 antenna functions with one unresolved parton at two-loops, while also

utilisingX1
3 andX0

3 antenna functions. The IR structure of three-loop squared matrix

elements is known, see Refs. [192,193], however it will be convenient to recast this

structure as a set of J (3)
2 integrated dipoles at three-loops. These will depend on the

new antenna functions at N3LO as well as the NNLO and NLO antennae. Recently,

these new N3LO antenna functions and their integrals have been computed with the

traditional approach, by using decays of a virtual photon [106], a heavy neutralino
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in the MSSM [142] and a Higgs boson [141]. Antenna subtraction at N3LO, using

these functions, should be viable for low multiplicity processes, since the antenna

functions are extracted from the matrix elements they subtract against and are the

perfect subtraction terms. However at higher multiplicities, formulating subtraction

terms may become exceedingly complex, since the N3LO antenna functions contain

many overlapping unresolved limits. The current limitations of the traditionally

extracted X0,OLD
4 , explored in Chapter 5, will be greatly multiplied in X0

5 and X1
4

extracted from matrix elements.

We therefore wish to stress that the algorithm presented in this thesis can straightfor-

wardly be promoted to N3LO calculations, provided that the appropriate unresolved

limits are known analytically. For the case of constructing idealised X0
5 antenna

functions, we require a decomposition of the tree-level quadruple-collinear splitting

functions, with one identified hard parton. However, the challenge of this task is not

to be underestimated due to the great complexity in the quadruple-collinear limits,

which include products of three iterated 1→ 2 splittings, products of one iterated

1 → 3 splitting with a 1 → 2 splitting and a truly 1 → 4 splitting. For the case

of constructing idealised X1
4 antenna functions, we require a decomposition of the

one-loop triple-collinear splitting functions, with one identified hard parton. This

is likely to require new techniques due to the handling of both implicit and explicit

divergences. For the case of constructing idealised X2
3 antenna functions, we require

a decomposition of the two-loop simple-collinear splitting functions, with one identi-

fied hard parton. This can be approached in a similar way to the decomposition of

the one-loop simple-collinear splitting functions, presented in Section 1.5.3. There

is also the question of where to fix the ε-poles of the X1
4 and X2

3 antenna functions.

For the X1
3 , this consisted in matching them to other known elements in the NNLO

subtraction scheme. We will require a larger balancing act at N3LO to build a fully

consistent subtraction scheme. As such, there is much work still to be done on

improving the antenna-subtraction scheme but it will continue to play a key role in

precision calculations for many years.
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X0
4 Appendix

A.1 X0
4 Limits

In this appendix we list, for convenience, the limits of all X0
4 constructed using the

algorithm of Chapter 5. If the result of an NNLO down-projector is not given for a

certain X0
4 , then its result is 0.

A0
4(1hq , 2g, 3g, 4hq̄)

S↓23A
0
4(1h, 2, 3, 4h) = S(0)

gg (1h, 2, 3, 4h) (A.1.1)

TC↓123A
0
4(1h, 2, 3, 4h) = P (0)

qgg(1h, 2, 3) (A.1.2)

TC↓234A
0
4(1h, 2, 3, 4h) = P (0)

qgg(4h, 3, 2) (A.1.3)

DC↓1234A
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)P (0)
qg (4h, 3) (A.1.4)

S↓2A0
4(1h, 2, 3, 4h) = 2s13

s12s23
A0

3(1h, 3, 4h) (A.1.5)

S↓3A0
4(1h, 2, 3, 4h) = 2s24

s23s34
A0

3(1h, 2, 4h) (A.1.6)

C↓12A
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)A0
3((1 + 2)h, 3, 4h) (A.1.7)

C↓23A
0
4(1h, 2, 3, 4h) = P (0)

gg (2, 3)A0
3(1h, (2 + 3), 4h) (A.1.8)

C↓34A
0
4(1h, 2, 3, 4h) = P (0)

qg (4h, 3)A0
3(1h, 2, (3 + 4)h) (A.1.9)
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SC↓2;34A
0
4(1h, 2, 3, 4h) = 2s134

s12s234
P (0)
qg (4h, 3) (A.1.10)

SC↓3;12A
0
4(1h, 2, 3, 4h) = 2s124

s123s34
P (0)
qg (1h, 2) (A.1.11)

Ã0
4(1hq , 2γ, 3γ, 4hq̄)

S↓23Ã
0
4(1h, 2, 3, 4h) = S(0)

γγ (1h, 2, 3, 4h) (A.1.12)

TC↓123Ã
0
4(1h, 2, 3, 4h) = P (0)

qγγ(1h, 2, 3) (A.1.13)

TC↓234Ã
0
4(1h, 2, 3, 4h) = P (0)

qγγ(4h, 3, 2) (A.1.14)

DC↓1234Ã
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)P (0)
qg (4h, 3) (A.1.15)

DC↓1324Ã
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 3)P (0)
qg (4,2) (A.1.16)

S↓2Ã0
4(1h, 2, 3, 4h) = 2s14

s12s24
A0

3(1h, 3, 4h) (A.1.17)

S↓3Ã0
4(1h, 2, 3, 4h) = 2s14

s13s34
A0

3(1h, 2, 4h) (A.1.18)

C↓12Ã
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)A0
3((1 + 2)h, 3, 4h) (A.1.19)

C↓13Ã
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 3)A0
3((1 + 3)h, 2, 4h) (A.1.20)

C↓24Ã
0
4(1h, 2, 3, 4h) = P (0)

qg (4h, 2)A0
3(1h, 3, (2 + 4)h) (A.1.21)

C↓34Ã
0
4(1h, 2, 3, 4h) = P (0)

qg (4h, 3)A0
3(1h, 2, (3 + 4)h) (A.1.22)

SC↓2;13Ã
0
4(1h, 2, 3, 4h) = 2s14

s12s24
P (0)
qg (1h, 3) (A.1.23)

SC↓2;34Ã
0
4(1h, 2, 3, 4h) = 2s14

s12s24
P (0)
qg (4h, 3) (A.1.24)

SC↓3;12Ã
0
4(1h, 2, 3, 4h) = 2s14

s13s34
P (0)
qg (1h, 2) (A.1.25)

SC↓3;24Ã
0
4(1h, 2, 3, 4h) = 2s14

s13s34
P (0)
qg (4h, 2) (A.1.26)

B0
4(1hq , 2Q̄, 3Q, 4hq̄)

S↓23B
0
4(1h, 2, 3, 4h) = S

(0)
qq̄ (1h, 2, 3, 4h) (A.1.27)

TC↓123B
0
4(1h, 2, 3, 4h) = P

(0)
qQ̄Q

(1h, 2, 3) (A.1.28)

TC↓234B
0
4(1h, 2, 3, 4h) = P

(0)
qQ̄Q

(4h, 3, 2) (A.1.29)
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C↓23B
0
4(1h, 2, 3, 4h) = P

(0)
qq̄ (2, 3)A0

3(1h, (2 + 3), 4h) (A.1.30)

C0
4(1hq , 2q̄, 3q, 4hq̄)

TC↓234C
0
4(1h, 2, 3, 4h) = 1

2P
(0)
qq̄q(2, 3, 4) (A.1.31)

D0
4(1hq , 2g, 3g, 4hg)

S↓23D
0
4(1h, 2, 3, 4h) = S(0)

gg (1h, 2, 3, 4h) (A.1.32)

TC↓123D
0
4(1h, 2, 3, 4h) = P (0)

qgg(1h, 2, 3) (A.1.33)

TC↓234D
0
4(1h, 2, 3, 4h) = P (0)

ggg(4h, 3, 2) (A.1.34)

DC↓1234D
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)P (0)
gg (4h, 3) (A.1.35)

S↓2D0
4(1h, 2, 3, 4h) = 2s13

s12s23
D0

3(1h, 3, 4h) (A.1.36)

S↓3D0
4(1h, 2, 3, 4h) = 2s24

s23s34
D0

3(1h, 2, 4h) (A.1.37)

C↓12D
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)D0
3((1 + 2)h, 3, 4h) (A.1.38)

C↓23D
0
4(1h, 2, 3, 4h) = P (0)

gg (2, 3)D0
3(1h, (2 + 3), 4h) (A.1.39)

C↓34D
0
4(1h, 2, 3, 4h) = P (0)

gg (4h, 3)D0
3(1h, 2, (3 + 4)h) (A.1.40)

SC↓2;34D
0
4(1h, 2, 3, 4h) = 2s134

s12s234
P (0)
gg (4h, 3) (A.1.41)

SC↓3;12D
0
4(1h, 2, 3, 4h) = 2s124

s123s34
P (0)
qg (1h, 2) (A.1.42)

D̃0
4(1hq , 2g, 3g, 4hg)

S↓23D̃
0
4(1h, 2, 3, 4h) = S(0)

γγ (1h, 2, 3, 4h) (A.1.43)

TC↓123D̃
0
4(1h, 2, 3, 4h) = P (0)

qγγ(1h, 2, 3) (A.1.44)

TC↓234D̃
0
4(1h, 2, 3, 4h) = P (0)

ggg(3, 4h, 2) (A.1.45)

DC↓1234D̃
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)P (0)
gg (4h, 3) (A.1.46)

DC↓1324D̃
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)P (0)
gg (4h, 2) (A.1.47)
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S↓2D̃0
4(1h, 2, 3, 4h) = 2s14

s12s24
D0

3(1h, 3, 4h) (A.1.48)

S↓3D̃0
4(1h, 2, 3, 4h) = 2s14

s13s34
D0

3(1h, 2, 4h) (A.1.49)

C↓12D̃
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)D0
3((1 + 2)h, 3, 4h) (A.1.50)

C↓13D̃
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 3)D0
3((1 + 3)h, 2, 4h) (A.1.51)

C↓24D̃
0
4(1h, 2, 3, 4h) = P (0)

gg (4h, 2)D0
3(1h, 3, (2 + 4)h) (A.1.52)

C↓34D̃
0
4(1h, 2, 3, 4h) = P (0)

gg (4h, 3)D0
3(1h, 2, (3 + 4)h) (A.1.53)

SC↓2;34D̃
0
4(1h, 2, 3, 4h) = 2s134

s12s234
P (0)
gg (4h, 3) (A.1.54)

SC↓3;24D̃
0
4(1h, 2, 3, 4h) = 2s124

s13s234
P (0)
gg (4h, 2) (A.1.55)

SC↓3;12D̃
0
4(1h, 2, 3, 4h) = 2s124

s34s123
P (0)
qg (1h, 2) (A.1.56)

SC↓2;13D̃
0
4(1h, 2, 3, 4h) = 2s134

s24s123
P (0)
qg (1h, 3) (A.1.57)

E0
4(1hq , 2Q̄, 3Q, 4hg)

S↓23E
0
4(1h, 2, 3, 4h) = S

(0)
qq̄ (1h, 2, 3, 4h) (A.1.58)

TC↓123E
0
4(1h, 2, 3, 4h) = P

(0)
qQ̄Q

(1h, 2, 3) (A.1.59)

TC↓234E
0
4(1h, 2, 3, 4h) = P

(0)
gq̄q(4h, 3, 2) (A.1.60)

C↓23E
0
4(1h, 2, 3, 4h) = P

(0)
qq̄ (2, 3)D0

3(1h, (2 + 3), 4h) (A.1.61)

E
0
4(1hq , 2g, 3Q̄, 4hQ)

TC↓234E
0
4(1h, 2, 3, 4h) = P

(0)
gq̄q(2, 3, 4h) (A.1.62)

DC↓1234E
0
4(1h, 2, 3, 4h) = P

(0)
qq̄ (4h, 3)P (0)

qg (1h, 2) (A.1.63)

S↓2E
0
4(1h, 2, 3, 4h) = 2s13

s12s23
E0

3(1h, 3, 4h) (A.1.64)

C↓12E
0
4(1h, 2, 3, 4h) = P (0)

qg (1h, 2)E0
3((1 + 2)h, 3, 4h) (A.1.65)

C↓23E
0
4(1h, 2, 3, 4h) = P (0)

qg (3, 2)E0
3(1h, (2 + 3), 4h) (A.1.66)

C↓34E
0
4(1h, 2, 3, 4h) = P

(0)
qq̄ (4h, 3)D0

3(1h, 2, (3 + 4)h) (A.1.67)
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SC↓2;34E
0
4(1h, 2, 3, 4h) = 2s13

s12s23
P

(0)
qq̄ (4h, 3) (A.1.68)

Ẽ0
4(1hq , 2Q̄, 3g, 4hQ)

TC↓234Ẽ
0
4(1h, 2, 3, 4h) = P

(0)
qgq̄(4h, 3, 2) (A.1.69)

S↓3Ẽ0
4(1h, 2, 3, 4h) = 2s24

s23s34
E0

3(1h, 2, 4h) (A.1.70)

C↓23Ẽ
0
4(1h, 2, 3, 4h) = P (0)

qg (2, 3)E0
3(1h, (2 + 3), 4h) (A.1.71)

C↓34Ẽ
0
4(1h, 2, 3, 4h) = P (0)

qg (4h, 3)E0
3(1h, 2, (3 + 4)h) (A.1.72)

F 0
4 (1hg , 2g, 3g, 4hg)

S↓23F
0
4 (1h, 2, 3, 4h) = S(0)

gg (1h, 2, 3, 4h) (A.1.73)

TC↓123F
0
4 (1h, 2, 3, 4h) = P (0)

ggg(1h, 2, 3) (A.1.74)

TC↓234F
0
4 (1h, 2, 3, 4h) = P (0)

ggg(4h, 3, 2) (A.1.75)

DC↓1234F
0
4 (1h, 2, 3, 4h) = P (0)

gg (1h, 2)P (0)
gg (4h, 3) (A.1.76)

S↓2F 0
4 (1h, 2, 3, 4h) = 2s13

s12s23
F 0

3 (1h, 3, 4h) (A.1.77)

S↓3F 0
4 (1h, 2, 3, 4h) = 2s24

s23s34
F 0

3 (1h, 2, 4h) (A.1.78)

C↓12F
0
4 (1h, 2, 3, 4h) = P (0)

gg (1h, 2)F 0
3 ((1 + 2)h, 3, 4h) (A.1.79)

C↓23F
0
4 (1h, 2, 3, 4h) = P (0)

gg (2, 3)F 0
3 (1h, (2 + 3), 4h) (A.1.80)

C↓34F
0
4 (1h, 2, 3, 4h) = P (0)

gg (4h, 3)F 0
3 (1h, 2, (3 + 4)h) (A.1.81)

SC↓2;34F
0
4 (1h, 2, 3, 4h) = 2s134

s12s234
P (0)
gg (4h, 3) (A.1.82)

SC↓3;12F
0
4 (1h, 2, 3, 4h) = 2s124

s123s34
P (0)
gg (1h, 2) (A.1.83)

F̃ 0
4 (1hg , 2g, 3g, 4hg)

S↓23F̃
0
4 (1h, 2, 3, 4h) = S(0)

γγ (1h, 2, 3, 4h) (A.1.84)

TC↓123F̃
0
4 (1h, 2, 3, 4h) = P (0)

ggg(2, 1h, 3) (A.1.85)
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TC↓234F̃
0
4 (1h, 2, 3, 4h) = P (0)

ggg(3, 4h, 2) (A.1.86)

DC↓1234F̃
0
4 (1h, 2, 3, 4h) = P (0)

gg (1h, 2)P (0)
gg (4h, 3) (A.1.87)

DC↓1324F̃
0
4 (1h, 2, 3, 4h) = P (0)

gg (1h, 3)P (0)
gg (4h, 2) (A.1.88)

S↓2F̃ 0
4 (1h, 2, 3, 4h) = 2s14

s12s24
F 0

3 (1h, 3, 4h) (A.1.89)

S↓3F̃ 0
4 (1h, 2, 3, 4h) = 2s14

s13s34
F 0

3 (1h, 2, 4h) (A.1.90)

C↓12F̃
0
4 (1h, 2, 3, 4h) = P (0)

gg (1h, 2)F 0
3 ((1 + 2)h, 3, 4h) (A.1.91)

C↓13F̃
0
4 (1h, 2, 3, 4h) = P (0)

gg (1h, 3)F 0
3 ((1 + 3)h, 2, 4h) (A.1.92)

C↓24F̃
0
4 (1h, 2, 3, 4h) = P (0)

gg (4h, 2)F 0
3 (1h, 3, (2 + 4)h) (A.1.93)

C↓34F̃
0
4 (1h, 2, 3, 4h) = P (0)

gg (4h, 3)F 0
3 (1h, 2, (3 + 4)h) (A.1.94)

SC↓2;34F̃
0
4 (1h, 2, 3, 4h) = 2s134

s12s234
P (0)
gg (4h, 3) (A.1.95)

SC↓3;24F̃
0
4 (1h, 2, 3, 4h) = 2s124

s13s234
P (0)
gg (4h, 2) (A.1.96)

SC↓3;12F̃
0
4 (1h, 2, 3, 4h) = 2s124

s34s123
P (0)
gg (1h, 2) (A.1.97)

SC↓2;13F̃
0
4 (1h, 2, 3, 4h) = 2s134

s24s123
P (0)
gg (1h, 3) (A.1.98)

G0
4(1hg , 2Q̄, 3Q, 4hg)

S↓23G
0
4(1h, 2, 3, 4h) = S

(0)
qq̄ (1h, 2, 3, 4h) (A.1.99)

TC↓123G
0
4(1h, 2, 3, 4h) = P

(0)
gq̄q(1h, 2, 3) (A.1.100)

TC↓234G
0
4(1h, 2, 3, 4h) = P

(0)
gq̄q(4h, 3, 2) (A.1.101)

C↓23G
0
4(1h, 2, 3, 4h) = P

(0)
qq̄ (2, 3)F 0

3 (1h, (2 + 3), 4h) (A.1.102)

G
0
4(1hg , 2g, 3Q̄, 4hQ)

TC↓234G
0
4(1h, 2, 3, 4h) = P

(0)
gq̄q(2, 3, 4h) (A.1.103)

DC↓1234G
0
4(1h, 2, 3, 4h) = P (0)

gg (1h, 2)P (0)
qq̄ (4h, 3) (A.1.104)

S↓2G
0
4(1h, 2, 3, 4h) = 2s13

s12s23
G0

3(1h, 3, 4h) (A.1.105)
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C↓12G
0
4(1h, 2, 3, 4h) = P (0)

gg (1h, 2)G0
3((1 + 2)h, 3, 4h) (A.1.106)

C↓23G
0
4(1h, 2, 3, 4h) = P (0)

qg (3, 2)G0
3(1h, (2 + 3), 4h) (A.1.107)

C↓34G
0
4(1h, 2, 3, 4h) = P

(0)
qq̄ (4h, 3)F 0

3 (1h, 2, (3 + 4)h) (A.1.108)

SC↓2;34G
0
4(1h, 2, 3, 4h) = 2s13

s12s23
P

(0)
qq̄ (4h, 3) (A.1.109)

G̃0
4(1hg , 2Q̄, 3g, 4hQ)

TC↓234G̃
0
4(1h, 2, 3, 4h) = P

(0)
qgq̄(4h, 3, 2) (A.1.110)

S↓3G̃0
4(1h, 2, 3, 4h) = 2s24

s23s34
G0

3(1h, 2, 4h) (A.1.111)

C↓23G̃
0
4(1h, 2, 3, 4h) = P (0)

qg (2, 3)G0
3(1h, (2 + 3), 4h) (A.1.112)

C↓34G̃
0
4(1h, 2, 3, 4h) = P (0)

qg (4h, 3)G0
3(1h, 2, (3 + 4)h) (A.1.113)

H0
4(1hq̄ , 2q, 3Q̄, 4hQ)

DC↓1234H
0
4 (1h, 2, 3, 4h) = P

(0)
qq̄ (1h, 2)P (0)

qq̄ (4h, 3) (A.1.114)

C↓12H
0
4 (1h, 2, 3, 4h) = P

(0)
qq̄ (1h, 2)G0

3((1 + 2)h, 3, 4h) (A.1.115)

C↓34H
0
4 (1h, 2, 3, 4h) = P

(0)
qq̄ (4h, 3)G0

3((3 + 4)h, 1, 2h) (A.1.116)

A.2 Integrals of Single-Unresolved Contributions

In this appendix we list the integration over the single-unresolved final-final phase

space for the different contributions of the X0
3 antennae.

The integration of the soft contribution Ssoft is simply the integral of the soft eikonal

S(0)
g and is the same for all antennae that contain a soft limit,

Ssoft(ih, jg, kh) = Sijk

( 1
ε2

+ 2
ε

+ 6− 7
12π

2 + ε
(

18− 25
3 ζ3 −

7
6π

2
)

+ε2
(

54− 50
3 ζ3 −

7
2π

2 − 71
1440π

4
)

+O(ε3)
)
.

(A.2.1)
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The integrals of the three different collinear remainders Scol (with the soft contribu-

tion subtracted) are,

Scol(ihq , jg; kh) = Sijk

(
− 1

4ε −
5
8 + ε

(
−31

16 + 7
48π

2
)

(A.2.2)

+ε2
(
−189

32 + 25
12ζ3 + 35

96π
2
)

+O(ε3)
)
,

Scol(ihg , jg; kh) = Sijk

(
− 1

12ε −
7
24 + ε

(
−15

16 + 7
144π

2
)

(A.2.3)

+ε2
(
−93

32 + 25
36ζ3 + 49

288π
2
)

+O(ε3)
)
,

Scol(ihQ, jQ̄; kh) = Sijk

(
− 1

3ε −
3
4 +

(
−15

8 + 7π2

36

)
ε (A.2.4)

+
(
−81

16 + 7π2

16 + 25ζ3

9

)
ε2 +O

(
ε3
))

.

Note that in all of the above formulae arguments merely serve the purpose of identi-

fying the particle content and the hard radiators. There is no dependence on the

particle momenta in the integrated contributions besides the overall normalisation

to the invariant mass sijk.

A.3 Integrals of Double-Unresolved

Contributions

In this appendix we list the integration over the double-unresolved final-final phase

space for the different contributions to the X0
4 antennae. These contributions do not

depend on the form chosen for the single-real antenna functions.

The integrals of the double-soft contribution Dsoft are simply given by the integration

of the double-soft factors S(0)
gg , S(0)

γγ and S(0)
qq̄ ,

Dsoft(ih, jg, kg, lh) = S2
ijkl

[
+ 3

4ε4
+ 89

24ε3
+ 1
ε2

(599
36 − π

2
)

+1
ε

(7705
108 −

787
144π

2 − 53
4 ζ3

)
(A.3.1)

+
(195547

648 − 2705
108 π

2 − 3371
36 ζ3 + 199

480π
4
)

+O (ε)
]
,
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Dsoft(ih, jγ, kγ, lh) = S2
ijkl

[
+ 1
ε4

+ 4
ε3

+ 1
ε2

(
18− 3

2π
2
)

+ 1
ε

(
76− 6π2 − 74

3 ζ3

)
+
(

312− 27π2 − 308
3 ζ3 + 49

120π
4
)

+O (ε)
]
,

(A.3.2)

Dsoft(ih, jq, kq̄, lh) = S2
ijkl

[
− 1

12ε3
− 17

36ε2
+ 1
ε

(
−277

108 + 11
72π

2
)

+
(
−4199

324 + 169
216π

2 + 67
18ζ3

)
+O (ε)

]
. (A.3.3)

The integrals over the nine triple-collinear remainders (with the double-soft contri-

bution subtracted) are,

T col(ihg , jg, kg; lh) = S2
ijkl

[
− 1

4ε3
+ 1
ε2

(
−499

288 −
1
24π

2
)

+ 1
ε

(
−1757

192 + 5
18π

2 − 2ζ3

)
+
(
−440147

10368 + 1363
576 π

2 + 11
12ζ3 −

1
18π

4
)

+O (ε)
]
,

(A.3.4)

T col(ig, jhg , kg; lh) = S2
ijkl

[
− 1

6ε3
− 9

16ε2
+ 1
ε

(413
864 + 1

4π
2 − 2ζ3

)
+
(25565

1728 + 79
96π

2 + 4
9ζ3 −

1
6π

4
)

+O (ε)
]
, (A.3.5)

T col(ihq , jg, kg; lh) = S2
ijkl

[
− 1

2ε3
+ 1
ε2

(
−187

96 −
1
24π

2
)

+ 1
ε

(
−5185

576 + 37
48π

2 − 9
4ζ3

)
+
(
−141871

3456 + 1685
576 π

2 + 347
24 ζ3 −

7
90π

4
)

+O (ε)
]
,

(A.3.6)

T col(ihq , jγ, kγ; lh) = S2
ijkl

[
− 1

2ε3
− 43

16ε2
+ 1
ε

(
−377

32 + 3
4π

2 − ζ3

)
+
(
−3003

64 + 129
32 π

2 + 34
3 ζ3 −

1
12π

4
)

+O (ε)
]
,

(A.3.7)

T col(ihq , jg, kq̄; lh) = S2
ijkl

[
− 1

6ε3
− 35

36ε2
+ 1
ε

(
−277

54 + 1
4π

2
)

+
(
−7967

324 + 35
24π

2 + 40
9 ζ3

)
+O (ε)

]
, (A.3.8)

T col(ihg , jq, kq̄; lh) = S2
ijkl

[
+ 1

72ε2
+ 1
ε

(
− 23

288 + 1
18π

2
)

+
(
−15857

5184 + 23
72π

2 + 3ζ3

)
+O (ε)

]
, (A.3.9)

T col(ihq̄ , jq, kg; lh) = S2
ijkl

[
− 1

3ε3
− 9

8ε2
+ 1
ε

(
−2927

864 + 1
2π

2
)

+
(
−16127

1728 + 27
16π

2 + 80
9 ζ3

)
+O (ε)

]
, (A.3.10)
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T col(ihq , jQ̄, kQ; lh) = S2
ijkl

[
+ 1

24ε2
+ 31

144ε +
(395

432 −
1
18π

2
)

+O (ε)
]
, (A.3.11)

T col(ihq , jq̄, kq; lh) = S2
ijkl

[
+1
ε

(
−13

32 + 1
16π

2 − 1
4ζ3

)
+
(
−73

16 + 23
96π

2 + 23
8 ζ3 −

1
45π

4
)

+O (ε)
]
.

(A.3.12)

The integrals over the nine double-collinear remainders (with the double-soft and

triple-collinear contributions subtracted) are,

Dcol(ihq , jg; kg, lhq̄ ) = S2
ijkl

[
− 3

16ε2
− 21

16ε +
(
−55

8 + 9
32π

2
)

+O (ε)
]
, (A.3.13)

Dcol(ihq , jγ; kγ, lhq̄ ) = S2
ijkl

[
+ 3

16ε2
+ 17

16ε +
(21

4 −
9
32π

2
)

+O (ε)
]
, (A.3.14)

Dcol(ihq , jg; kg, lhg ) = S2
ijkl

[
+ 23

72ε2
+ 335

144ε +
(32573

2592 −
23
48π

2
)

+O (ε)
]
, (A.3.15)

Dcol(ihq , jg̃; kg̃, lhg ) = S2
ijkl

[
+ 1

8ε2
+ 13

16ε +
(407

96 −
3
16π

2
)

+O (ε)
]
, (A.3.16)

Dcol(ihq , jg; kQ̄, lhQ) = S2
ijkl

[
− 1

4ε −
95
48 +O (ε)

]
, (A.3.17)

Dcol(ihg , jg; kg, lhg ) = S2
ijkl

[
+ 41

48ε2
+ 97

16ε +
(13997

432 −
41
32π

2
)

+O (ε)
]
, (A.3.18)

Dcol(ihg , jg̃; kg̃, lhg ) = S2
ijkl

[
+ 13

144ε2
+ 95

144ε +
(4693

1296 −
13
96π

2
)

+O (ε)
]
, (A.3.19)

Dcol(ihg , jg; kQ̄, lhQ) = S2
ijkl

[
− 1

18ε2
− 1

2ε +
(
−3905

1296 + 1
12π

2
)

+O (ε)
]
, (A.3.20)

Dcol(ihq̄ , jq; kQ̄, lhQ) = S2
ijkl

[
+ 1

9ε2
+ 13

36ε +
(139

324 −
1
6π

2
)

+O (ε)
]
. (A.3.21)

The remaining single-unresolved terms, Ssoft and Scol, are not universal, since they

depend on the choice of single-real antenna function. We do not list the integrals of

these contributions.

Note that in all of the above formulae arguments merely serve the purpose of identi-

fying the particle content and the hard radiators. There is no dependence on the

particle momenta in the integrated contributions besides the overall normalisation

to the invariant mass.
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A.4 Overlap of Double-Soft and Triple-Collinear

Contributions

The projections into the triple-collinear phase space for each of the three double-soft

factors are given by,

TC↓ijkS(0)
gg (ih, j, k, lh) = 2(1− ε)Wjk

s2
jks

2
ijk(1− xi)2 + 4xixjxk

sjksijk(1− xi)3 + 2x2
i

sijsijkxk(1− xi)

+ 2xi
sjksijkxk

− 8xi
sjksijk(1− xi)

+ 2xi
sijsjkxk

+ 2xi
sijsjk(1− xi)

,

(A.4.1)

TC↓ijkS(0)
γγ (ih, j, k, lh) = 4sjkx2

i

sijsiksijkxjxk
+ 4x2

i

sijsijkxjxk
+ 4x2

i

siksijkxjxk
, (A.4.2)

TC↓ijkS
(0)
qq̄ (ih, j, k, lh) = − 2Wjk

s2
jks

2
ijk(1− xi)2 −

4xixjxk
sjksijk(1− xi)3(1− ε)

+ 2xi
sjksijk(1− xi)

, (A.4.3)

where

Wij = (xisjk − xjsik)2 − 2
(1− ε)

xixjxk
(1− xk)

sijsijk . (A.4.4)

A.5 Integrals of X0
4 Antennae derived using the

X0
3 of Ref. [1]

In this appendix, we list the integrals over the antenna phase space of the X0
4

antennae constructed using the X0
3 antennae of Ref. [1]:

A0
4(sijkl) = S2

ijkl

+ 3
4ε4

+ 65
24ε3

+ 1
ε2

(217
18 −

13
12π

2
)

+ 1
ε

(43223
864 −

589
144π

2 − 71
4 ζ3

)

+
(1094807

5184 − 8117
432 π

2 − 1327
18 ζ3 + 373

1440π
4
)

+O (ε)
, (A.5.1)

Ã0
4(sijkl) = S2

ijkl

+ 1
ε4

+ 3
ε3

+ 1
ε2

(
13− 3

2π
2
)

+ 1
ε

(845
16 −

9
2π

2 − 80
3 ζ3

)
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+
(6865

32 −
39
2 π

2 − 80ζ3 + 29
120π

4
)

+O (ε)
, (A.5.2)

B0
4(sijkl) = S2

ijkl

− 1
12ε3

− 7
18ε2

+ 1
ε

(
−407

216 + 11
72π

2
)

+
(
−5809

648 + 145
216π

2 + 67
18ζ3

)
+O (ε)

, (A.5.3)

C0
4(sijkl) = S2

ijkl

+1
ε

(
−13

32 + 1
16π

2 − 1
4ζ3

)

+
(
−73

16 + 23
96π

2 + 23
8 ζ3 −

1
45π

4
)

+O (ε)
, (A.5.4)

D0
4(sijkl) = S2

ijkl

+ 3
4ε4

+ 71
24ε3

+ 1
ε2

(257
18 −

13
12π

2
)

+ 1
ε

(13661
216 −

35
8 π

2 − 35
2 ζ3

)

+
(22286

81 − 9335
432 π

2 − 5473
72 ζ3 + 9

32π
4
)

+O (ε)
, (A.5.5)

D̃0
4(sijkl) = S2

ijkl

+ 1
ε4

+ 10
3ε3

+ 1
ε2

(47
3 −

3
2π

2
)

+ 1
ε

(30313
432 − 5π2 − 83

3 ζ3

)

+
(132451

432 − 1129
48 π2 − 818

9 ζ3 + 19
120π

4
)

+O (ε)
, (A.5.6)

E0
4 (sijkl) = S2

ijkl

− 1
12ε3

− 5
12ε2

+ 1
ε

(
−1631

864 + 1
8π

2
)

+
(
−46315

5184 + 77
108π

2 + 20
9 ζ3

)
+O (ε)

, (A.5.7)

E0
4(sijkl) = S2

ijkl

− 1
3ε3
− 41

24ε2
+ 1
ε

(
−7325

864 + 1
2π

2
)

+
(
−22745

576 + 41
16π

2 + 80
9 ζ3

)
+O (ε)

, (A.5.8)

Ẽ0
4 (sijkl) = S2

ijkl

− 1
6ε3
− 35

36ε2
+ 1
ε

(
−1045

216 + 1
4π

2
)

+
(
−28529

1296 + 35
24π

2 + 40
9 ζ3

)
+O (ε)

, (A.5.9)

F0
4 (sijkl) = S2

ijkl

+ 3
4ε4

+ 77
24ε3

+ 1
ε2

(559
36 −

13
12π

2
)

+ 1
ε

(59249
864 −

671
144π

2 − 69
4 ζ3

)

+
(508343

1728 −
9923
432 π

2 − 2819
36 ζ3 + 437

1440π
4
)

+O (ε)
, (A.5.10)
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F̃0
4 (sijkl) = S2

ijkl

+ 1
ε4

+ 11
3ε3

+ 1
ε2

(313
18 −

3
2π

2
)

+ 1
ε

(34571
432 −

11
2 π

2 − 86
3 ζ3

)

+
(924559

2592 −
209
8 π2 − 916

9 ζ3 + 3
40π

4
)

+O (ε)
, (A.5.11)

G0
4(sijkl) = S2

ijkl

− 1
12ε3

− 4
9ε2

+ 1
ε

(
−745

432 + 7
72π

2
)

+
(
−6431

864 + 163
216π

2 + 13
18ζ3

)
+O (ε)

, (A.5.12)

G0
4(sijkl) = S2

ijkl

− 1
3ε3
− 139

72ε2
+ 1
ε

(
−8669

864 + 1
2π

2
)

+
(
−248495

5184 + 139
48 π

2 + 80
9 ζ3

)
+O (ε)

, (A.5.13)

G̃0
4(sijkl) = S2

ijkl

− 1
6ε3
− 41

36ε2
+ 1
ε

(
−1327

216 + 1
4π

2
)

+
(
−38291

1296 + 41
24π

2 + 40
9 ζ3

)
+O (ε)

, (A.5.14)

H0
4(sijkl) = S2

ijkl

+ 1
9ε2

+ 7
9ε +

(1345
324 −

1
6π

2
)

+O (ε)
. (A.5.15)

In all cases, we find agreement with the analogous integrated antenna given in Ref. [1]

through to O
(
ε0
)
.
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B.1 Integration of X1
3

The integrated antenna is obtained by integrating over the antenna phase space,

X 1
3 (sijk) =

(
8π2 (4π)−ε eεγE

) ∫
dΦXijk

X1
3 , (B.1.1)

with d = 4− 2ε. As in Ref. [1], we have included a normalisation factor to account

for powers of the QCD coupling constant. The antenna phase space is given by

dΦXijk
= 1

16π2
1

Γ(1− ε)

(
4π
sijk

)ε
sijkdI, (B.1.2)

with

dI = dyijdyjk
(
yijyjk(1− yij − yjk)

)−ε
, (B.1.3)

where 0 < yij < 1, 0 < yjk < 1 − yij and yIJ = sIJ/sIJK . Setting yjk = (1 − yij)z,

then

dI = dyij dz y−εij
(
1− yij

)1−2ε
z−ε (1− z)−ε, (B.1.4)

with 0 < yij, z < 1.
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The integrals we encounter are of the form,

∫ 1

0
2F1(±ε,±ε, 1± ε, z)zα(1− z)βdz (B.1.5)

= Γ(α + 1)Γ(β + 1)
Γ(α + β + 2) 3F2(±ε,±ε, α + 1, 1± ε, α + β + 2, 1),∫ 1

0
2F1(±ε,±ε, 1± ε, 1− z)zα(1− z)βdz (B.1.6)

= Γ(α + 1)Γ(β + 1)
Γ(α + β + 2) 3F2(±ε,±ε, β + 1, 1± ε, α + β + 2, 1),∫ 1

0
zα(1− z)βdz = Γ(α + 1)Γ(β + 1)

Γ(α + β + 2) . (B.1.7)

Also note the definitions for the hypergeometric functions are

2F1(a, b, c, z) = Γ(c)
Γ(b)Γ(c− b)

∫ 1

0
dt tb−1(1− t)c−b−1(1− zt)−a, (B.1.8)

and recursively,

n+1Fm+1(a1, ..., an, c, b1, ..., bm, d, z) =
Γ(d)

Γ(c)Γ(d− c)

∫ 1

0
dt tc−1(1− t)d−c−1

nFm(a1, ..., an, b1, ..., bm, tz), (B.1.9)

for n ≥ 2 and m ≥ 1 where

Γ(x) =
∫ 1

0
dy e−yyx−1, x > 0. (B.1.10)

The reader may also find the following series definitions useful,

2F1(a, b, c, z) =
∞∑
n=0

(a)n(b)n
(c)nΓ(n+ 1)z

n, (l)n = Γ(n+ l)
Γ(l) , (B.1.11)

and

3F2(a, b, c, d, e, z) =
∞∑
n=0

(a)n(b)n(c)n
(d)n(e)nΓ(n+ 1)z

n, (B.1.12)

in addition to the following identities,

Γ(x+ 1) = xΓ(x), Γ(1) = 1. (B.1.13)

Many further relations can be found in Ref. [194]. Additionally, the polylogarithms
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we refer to are defined by

Li2(x) = −
∫ 1

0
dy

ln(1− yx)
y

, (B.1.14)

and recursively,

Lin+1(x) =
∫ x

0
dy

Lin(y)
y

, (B.1.15)

for n ≥ 2. A fuller list of identities can be found in Ref. [195].

B.2 Expansions of Hypergeometric Functions

In this appendix, we give the expansions around ε = 0 of the 3F2 functions necessary

for integrating the X1
3 . They were performed using a combination of MAPLE code

and hypexp [190,191].

3F2 (ε, ε, 2− ε, 1 + ε, 3− ε, 1) =

1 + ε2
(
−3/4 +

(
π2/6

))
+ ε3

(
−9/4 +

(
π2/6

))
+ε4

(
−21/4 +

(
7
(
π2/6

))
/4 +

(
7
(
π2/6

)2
)
/10 + ζ3

)
+ε5

(
−45/4 +

(
13
(
π2/6

))
/4 +

(
4
(
π2/6

)2
)
/5 + (5ζ3) /2

)
+ε6

(
− 93/4 +

(
25
(
π2/6

))
/4 +

(
59
(
π2/6

)2
)
/40 +

(
31
(
π2/6

)3
)
/70

+ (11ζ3) /2−
(
π2/6

)
ζ3 + 3ζ5

)
+O

(
ε7
)
, (B.2.1)

3F2 (ε, ε, 1− ε, 1 + ε, 2− ε, 1) =

1 + ε2
(
−1 + π2/6

)
+ ε3

(
π2/3− 4

)
+ ε4

(
−12 +

(
5π2

)
/6 +

(
7π4

)
/360 + 2ζ3

)
+ε5

(
−32 + 2π2 +

(
2π4

)
/45 + 6ζ3

)
+O

(
ε6
)
, (B.2.2)

3F2 (−ε,−ε, 1− ε, 1− ε, 2− 3ε, 1) = 2F1 (−ε,−ε, 2− 3ε, 1) =

1 + ε2
(
−1 + π2/6

)
+ ε3 (4ζ3 − 4) + ε4

(
−12− 1/6π2 + 11/72π4

)
+ε5

(
−32 +

(
2ζ3π

2
)
/3− 4ζ3 −

(
2π2

)
/3 + 36ζ5

)
+ε6

(
−80− 16ζ3 + 8ζ2

3 − 2π2 −
(
11π4

)
/72 +

(
281π6

)
/2160

)
+O

(
ε7
)
,(B.2.3)
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3F2 (ε, ε,−ε, 1 + ε, 2− ε, 1) =

1 + ε3
(
−1 + π2/6− ζ3

)
+ ε4

(
−4 + ζ3 + π2/3− π4/360

)
+ε5

(
−12 + 2ζ3 − 3ζ5 +

(
5π2

)
/6 + π4/45 + ζ3π

2/6
)

+ε6
(
−32 +

(
2π4

)
/45 + 6ζ3 + 2π2 + ζ2

3 − ζ3π
2/6 + 3ζ5 − π6/630

)
+O

(
ε7
)
, (B.2.4)

3F2 (−ε,−ε,−ε, 1− ε, 2− 3ε, 1) =

1 + ε3
(
−1 +

(
π2/6

)
− ζ3

)
+ε4

(
−6 + 2

(
π2/6

)
−
(

17
(
π2/6

)2
)
/10 + 5ζ3

)
+ε5

(
−24 + 3

(
π2/6

)
+
(

36
(
π2/6

)2
)
/5 + 10ζ3 − 7

(
π2/6

)
ζ3 − ζ5

)
+ε6

(
− 80 + 2

(
π2/6

)
+
(

72
(
π2/6

)2
)
/5−

(
100

(
π2/6

)3
)
/21

+16ζ3 + 11
(
π2/6

)
ζ3 − 17ζ2

3 + 37ζ5

)
+O

(
ε7
)
, (B.2.5)

3F2 (ε, ε, 2− ε, 1 + ε, 4− ε, 1) =

1 + ε2
(
−37/36 +

(
π2/6

))
+ ε3

(
−179/54 +

(
5
(
π2/6

))
/3
)

+ε4
(
−215/27 +

(
101

(
π2/6

))
/36 +

(
7
(
π2/6

)2
)
/10 + (5ζ3) /3

)
+ε5

(
−8413/486 +

(
31
(
π2/6

))
/6 +

(
4
(
π2/6

)2
)
/3 + (23ζ3) /6

)
+ε6

(
− 52549/1458 +

(
799

(
π2/6

))
/81 +

(
169

(
π2/6

)2
)
/72

+
(

31
(
π2/6

)3
)
/70 + (229ζ3) /27−

(
5
(
π2/6

)
ζ3

)
/3 + 5ζ5

)
+O

(
ε7
)
, (B.2.6)

3F2 (ε, ε,−ε, 1 + ε, 1− ε, 1) =

1− ε3ζ3 −
(
ε4
(
π2/6

)2
)
/10

+ε5
((
π2/6

)
ζ3 − 3ζ5

)
+ ε6

((
−12

(
π2/6

)3
)
/35 + ζ2

3

)
+O

(
ε7
)
, (B.2.7)

3F2 (ε, ε, 1− ε, 1 + ε, 3− ε, 1) =

1 + ε2
(
−5/4 + π2/6

)
+ ε3

(
π2/2− 11/2

)
+ε4

((
7π4

)
/360 +

(
29π2

)
/24 + 3ζ3 − 17

)
+O

(
ε5
)
, (B.2.8)

3F2 (−ε,−ε, 2− ε, 1− ε, 3− 3ε, 1) =

1 + ε2
(
−3/4 +

(
π2/6

))
+ ε3 (−15/4 + 4ζ3)
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+ε4
(
−49/4−

(
3
(
π2/6

))
/4 +

(
11
(
π2/6

)2
)
/2
)

+ε5
(
−135/4−

(
15
(
π2/6

))
/4− 3ζ3 + 4

(
π2/6

)
ζ3 + 36ζ5

)
+ε6

(
− 341/4−

(
49
(
π2/6

))
/4−

(
33
(
π2/6

)2
)
/8

+
(

281
(
π2/6

)3
)
/10− 15ζ3 + 8ζ2

3

)
+O

(
ε7
)
, (B.2.9)

3F2 (−ε,−ε, 2− ε, 1− ε, 4− 3ε, 1) =

1 + ε2
(
−37/36 +

(
π2/6

))
+ ε3 (−227/54 + 4ζ3)

+ε4
(
−337/27−

(
37
(
π2/6

))
/36 +

(
11
(
π2/6

)2
)
/2
)

+ε5
(
−15847/486−

(
227

(
π2/6

))
/54− (37ζ3) /9 + 4

(
π2/6

)
ζ3 + 36ζ5

)
+ε6

(
− 116293/1458−

(
337

(
π2/6

))
/27−

(
407

(
π2/6

)2
)
/72

+
(

281
(
π2/6

)3
)
/10− (454ζ3) /27 + 8ζ2

3

)
+O

(
ε7
)
, (B.2.10)

3F2 (−ε,−ε,−ε, 1− ε, 1− 3ε, 1) =

1− ε3ζ3 −
(

17ε4
(
π2/6

)2
)
/10

+ε5
(
−7

(
π2/6

)
ζ3 − ζ5

)
+ ε6

((
−100

(
π2/6

)3
)
/21− 17ζ2

3

)
+O

(
ε7
)
,(B.2.11)

3F2 (−ε,−ε, 1− ε, 1− ε, 3− 3ε, 1) = 2F1 (−ε,−ε, 3− 3ε, 1) =

1 + ε2
(
−5/4 + π2/6

)
+ ε3 (4ζ3 − 9/2)

+ε4
(
−5/24π2 + 11/72π4 − 25/2

)
+O

(
ε5
)
, (B.2.12)

3F2 (−ε,−ε, 1− ε, 1− ε, 4− 3ε, 1) = 2F1 (−ε,−ε, 4− 3ε, 1) =

1 + ε2
(
π2/6− 49/36

)
+ ε3 (4ζ3 − 251/54)

+ε4
(
−49/216π2 + 11/72π4 − 1351/108

)
+O

(
ε5
)
, (B.2.13)

3F2 (−ε,−ε, 3− ε, 1− ε, 4− 3ε, 1) =

1 + ε2
(
−11/18 +

(
π2/6

))
+ ε3 (−403/108 + 4ζ3)

+ε4
(
−2717/216−

(
11
(
π2/6

))
/18 +

(
11
(
π2/6

)2
)
/2
)

+ε5
(
−134981/3888−

(
403

(
π2/6

))
/108− (22ζ3) /9 + 4

(
π2/6

)
ζ3 + 36ζ5

)
+ε6

(
− 2037343/23328−

(
2717

(
π2/6

))
/216−

(
121

(
π2/6

)2
)
/36
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+
(

281
(
π2/6

)3
)
/10− (403ζ3) /27 + 8ζ2

3

)
+O

(
ε7
)
. (B.2.14)

B.3 Integrals of X1
3 Antennae derived using the

X0
3 of Ref. [1]

In this appendix, we list the integrals over the antenna phase space of the renormal-

ised X1
3 antenna constructed using the X0

3 antennae of Ref. [1].

A1
3(sijk) = S2

ijk

− 1
4ε4
− 31

12ε3
+ 1
ε2

(
−53

8 + 11
24π

2
)

+ 1
ε

(
−647

24 + 22
9 π

2 + 23
3 ζ3

)

+
(
−1289

12 + 199
24 π

2 + 635
18 ζ3 + 13

1440π
4
)

+O (ε)
 , (B.3.1)

Ã1
3(sijk) = S2

ijk

+ 1
ε2

(
−5

8 + 1
6π

2
)

+ 1
ε

(
−19

4 + 1
4π

2 + 7ζ3

)

+
(
−435

16 + 29
16π

2 + 21
2 ζ3 + 7

60π
4
)

+O (ε)
 , (B.3.2)

Â1
3(sijk) = S2

ijk

+ 1
3ε3

+ 1
2ε2

+ 1
ε

(19
12 −

7
36π

2
)

+
(109

24 −
7
24π

2 − 25
9 ζ3

)

+O (ε)
 , (B.3.3)

D1
3(sijk) = S2

ijk

− 1
4ε4
− 8

3ε3
+ 1
ε2

(
−1193

144 + 13
24π

2
)

+ 1
ε

(
−8473

216 + 49
18π

2 + 73
6 ζ3

)

+
(
−18937

108 + 9485
864 π

2 + 535
12 ζ3 + 79

480π
4
)

+O (ε)
 , (B.3.4)

D̃1
3(sijk) = S2

ijk

+ 1
ε2

(
− 5

16 + 1
12π

2
)

+ 1
ε

(
−13

6 + 11
72π

2 + 5
2ζ3

)

+
(
−395

36 + 941
864π

2 + 55
12ζ3 −

7
180π

4
)

+O (ε)
 , (B.3.5)

D̂1
3(sijk) = S2

ijk

+ 1
3ε3

+ 5
9ε2

+ 1
ε

(139
72 −

7
36π

2
)

+
(443

72 −
35
108π

2 − 25
9 ζ3

)

+O (ε)
 , (B.3.6)
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E1
3 (sijk) = S2

ijk

+ 11
18ε2

+ 1
ε

(74
27 −

1
9π

2
)

+
(1441

108 −
149
216π

2 − 4ζ3

)
+O (ε)

 , (B.3.7)

Ẽ1
3 (sijk) = S2

ijk

+ 1
6ε3

+ 35
36ε2

+ 1
ε

(509
108 −

1
4π

2
)

+
(1670

81 −
35
24π

2 − 31
9 ζ3

)

+O (ε)
 , (B.3.8)

Ê1
3 (sijk) = S2

ijk

+ 1
3ε +

(172
81 −

11
108π

2
)

+O (ε)
 , (B.3.9)

F1
3 (sijk) = S2

ijk

− 1
4ε4
− 11

4ε3
+ 1
ε2

(
−85

9 + 5
8π

2
)

+ 1
ε

(
−9827

216 + 55
18π

2 + 44
3 ζ3

)

+
(
−88961

432 + 5665
432 π

2 + 473
9 ζ3 + 181

1440π
4
)

+O (ε)
, (B.3.10)

F̂1
3 (sijk) = S2

ijk

+ 1
3ε3

+ 11
18ε2

+ 1
ε

(19
9 −

7
36π

2
)

+
(167

24 −
77
216π

2 − 25
9 ζ3

)

+O (ε)
, (B.3.11)

G1
3(sijk) = S2

ijk

+ 11
18ε2

+ 1
ε

(169
54 −

1
9π

2
)

+
(3355

216 −
161
216π

2 − 4ζ3

)
+O (ε)

,(B.3.12)
G̃1

3(sijk) = S2
ijk

+ 1
6ε3

+ 41
36ε2

+ 1
ε

(325
54 −

1
4π

2
)

+
(9053

324 −
41
24π

2 − 31
9 ζ3

)

+O (ε)
 , (B.3.13)

Ĝ1
3(sijk) = S2

ijk

+ 7
18ε +

(895
324 −

11
108π

2
)

+O (ε)
 . (B.3.14)

For the A-type, E-type and G-type antennae, we find complete agreement with the

pole structure of the analogous integrated antennae given in Ref. [1]. For the D-type

and F -type antennae, we have utilised the X0
3 sub-antenna given in Eqs. (6.13) and

(7.13) of Ref. [1] respectively and therefore the pole structures of the combinations

2
(
D1

3 + D̃1
3

)
, 2D̂1

3, 3F1
3 and 3F̂1

3 agrees with the expressions for D1,OLD
3 , D̂1,OLD

3 ,

F 1,OLD
3 and F̂ 1,OLD

3 respectively, given by Eqs. (6.22), (6.23), (7.22) and (7.23) of

Ref. [1] respectively to O
(
ε0
)
.
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