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Abstract 

Massive open online courses (MOOCs) have been proliferating because of the free or low-cost 

offering of content for learners, attracting the attention of many stakeholders across the entire 

educational landscape. Since 2012, coined as “the Year of the MOOCs”, several platforms have 

gathered millions of learners in just a decade. Nevertheless, the certification rate of both free and paid 

courses has been low, and only about 4.5–13% and 1–3%, respectively, of the total number of enrolled 

learners obtain a certificate at the end of their courses. Still, most research concentrates on completion, 

ignoring the certification problem, and especially its financial aspects. Thus, the research described in 

the present thesis aimed to investigate paid certification in MOOCs, for the first time, in a 

comprehensive way, and as early as the first week of the course, by exploring its various levels. First, 

the latent correlation between learner activities and their paid certification decisions was examined by 

(1) statistically comparing the activities of non-paying learners with course purchasers and (2) 

predicting paid certification using different machine learning (ML) techniques. Our temporal (weekly) 

analysis showed statistical significance at various levels when comparing the activities of non-paying 

learners with those of the certificate purchasers across the five courses analysed. Furthermore, we 

used the learner’s activities (number of step accesses, attempts, correct and wrong answers, and time 

spent on learning steps) to build our paid certification predictor, which achieved promising balanced 

accuracies (BAs), ranging from 0.77 to 0.95. Having employed simple predictions based on a few 

clickstream variables, we then analysed more in-depth what other information can be extracted from 

MOOC interaction (namely discussion forums) for paid certification prediction. However, to better 

explore the learners’ discussion forums, we built, as an original contribution, MOOCSent, a cross-

platform review-based sentiment classifier, using over 1.2 million MOOC sentiment-labelled reviews. 

MOOCSent addresses various limitations of the current sentiment classifiers including (1) using one 

single source of data (previous literature on sentiment classification in MOOCs was based on single 

platforms only, and hence less generalisable, with relatively low number of instances compared to our 

obtained dataset;) (2) lower model outputs, where most of the current models are based on 2-polar 
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classifier (positive or negative only); (3) disregarding important sentiment indicators, such as emojis 

and emoticons, during text embedding; and (4) reporting average performance metrics only, 

preventing the evaluation of model performance at the level of class (sentiment). Finally, and with the 

help of MOOCSent, we used the learners’ discussion forums to predict paid certification after 

annotating learners’ comments and replies with the sentiment using MOOCSent. This multi-input 

model contains raw data (learner textual inputs), sentiment classification generated by MOOCSent, 

computed features (number of likes received for each textual input), and several features extracted 

from the texts (character counts, word counts, and part of speech (POS) tags for each textual instance). 

This experiment adopted various deep predictive approaches – specifically that allow multi-input 

architecture - to early (i.e., weekly) investigate if data obtained from MOOC learners’ interaction in 

discussion forums can predict learners’ purchase decisions (certification). Considering the 

staggeringly low rate of paid certification in MOOCs, this present thesis contributes to the knowledge 

and field of MOOC learner analytics with predicting paid certification, for the first time, at such a 

comprehensive (with data from over 200 thousand learners from 5 different discipline courses), 

actionable (analysing learners decision from the first week of the course) and longitudinal (with 23 

runs from 2013 to 2017) scale. The present thesis contributes with (1) investigating various 

conventional and deep ML approaches for predicting paid certification in MOOCs using learner 

clickstreams (Chapter 5) and course discussion forums (Chapter 7), (2) building the largest MOOC 

sentiment classifier (MOOCSent) based on learners’ reviews of the courses from the leading MOOC 

platforms, namely Coursera, FutureLearn and Udemy, and handles emojis and emoticons using 

dedicated lexicons that contain over three thousand corresponding explanatory words/phrases, (3) 

proposing and developing, for the first time, multi-input model for predicting certification based on 

the data from discussion forums which synchronously processes the textual (comments and replies) 

and numerical (number of likes posted and received, sentiments) data from the forums, adapting the 

suitable classifier for each type of data as explained in detail in Chapter 7.  
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Chapter 1 : Introduction 

Online courses have been around for decades; however, they generally cater to a limited audience (Ng and 

Widom, 2014). To address this limitation and other e-learning challenges, massive open online courses 

(MOOCs) were developed specifically to reach an unlimited number of potential learners worldwide. 

MOOCs, within a concise history, have attracted a great deal of attention from many stakeholders across 

the entire educational landscape, primarily due to their easy accessibility, both in terms of physicality 

(online access) and cost (low or no cost) (Castillo et al., 2015; González Robinson, 2016), rendering them 

more inclusive than other forms of education (Longstaff, 2014).  

Tracing their history from MIT’s 2001 OpenCourseWare1 initiative, the term MOOC was officially 

coined in 2008 (Moreno-Marcos et al., 2018b), inspired by massive multiplayer online role-playing games 

(MMORPGs) (Greene, Oswald and Pomerantz, 2015). Later, MOOCs entered the modern age of 

successful commercialisation with today’s giant platforms, such as edX2, Udacity3, and Coursera4 , in 2011 

(Ng and Widom, 2014). The following year, 2012, highlighted unprecedented growth in audience and 

market and was named “The Year of the MOOC” (Pappano, 2012; Reich and Ruipérez-Valiente, 2019). 

Following the three pioneers above, many other platforms have been launched worldwide, such as 

 
1 www.ocw.mit.edu  

2 www.edx.org  

3 www.udacity.com  

4 www.coursera.org  

http://www.ocw.mit.edu/
http://www.edx.org/
http://www.udacity.com/
http://www.coursera.org/


 

 

2 

FutureLearn5 in the UK, MiriadaX6 in Spain, iversity7 in Germany, XuetangX8 in China, Veduca9 in Brazil, 

and Schoo10 in Japan (Qiu et al., 2016). 

MOOCs have become increasingly popular, and their scale and availability make it possible to offer a 

diverse set of (free or cheap) learning content to learners from all over the world in an accessible and 

engaging manner. With the low barrier of access, MOOCs have been gaining more registered learners 

annually after just over a decade. Thus, many MOOC providers, such as Coursera, edX, and FutureLearn 

– the top worldwide MOOC providers in terms of offerings – have started offering scalable online courses 

to the public. 

By the end of 2021, the number of MOOCs had reached almost 20,000 courses delivered via more than 

950 university partners worldwide. The total number of MOOC learners has surpassed 220 million (Shah, 

2021a). In 2018, the number of MOOCs platforms was 31 (Jaganathan, Sugundan and Sivakumar, 2018), 

but our research observed that this number had doubled as of 2022 to 63 platforms launched from 25 

countries; just over half of them (n = 32) were from four countries, namely the United States (n = 17), 

China (n = 6), Japan (n = 5), and Italy (n = 4). Figure 1.1 shows the distribution of these platforms by 

country of establishment. It is worth mentioning that some platforms are launched/owned through cross-

continent initiatives. Examples include the European Multiple MOOC Aggregator (EMMA)11 or even 

across the globe, FutureLearn, jointly owned by the Open University in the UK and the Australian human 

resource consulting company SEEK Ltd. Thus, we tagged these platforms to the country of establishment 

or the location of their current headquarters. 

 
5 www.futurelearn.com  

6 www.miriadax.net 

7 www.iversity.org  

8 www.xuetangx.com  

9 www.veduca.org  

10 www.schoo.jp  

11 www.platform.europeanmoocs.eu  

http://www.futurelearn.com/
http://www.miriadax.net/
http://www.iversity.org/
http://www.xuetangx.com/
http://www.veduca.org/
http://www.schoo.jp/
http://www.platform.europeanmoocs.eu/
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Figure 1.1. Global distribution of MOOC platforms. Locations denote the country of establishment of the platforms 

or their current headquarters. 

Compared to traditional online courses, MOOCs are open to any potential learner and typically charge fees 

from certificate-earning learners only12. When they were sponsored by the business incubators of top-

ranked universities, MOOCs were initially offered for free, at least to audit. This offering was concurrent 

with a global initiative to democratise education, which has helped attract a substantial number of 

registered learners (Dillahunt, Wang and Teasley, 2014; Lohr, 2020). This status marks the first few years 

of the emergence of MOOCs – the initial era of free and open MOOCs (Zhu, Sari and Lee, 2020). Later, 

with these platforms becoming more independent educational companies, monetised content has been 

necessary to fund the MOOCs and ensure the sustainability of these platforms. This trend resulted in 

monetised standard courses and included new forms of monetised content, such as micro-credentials, 

corporate training, and university degrees (Shcherbinin, Kruchinin and Ivanov, 2019; Cobos and Olmos, 

2018). 

1.1. Research Problem 

Keeping the recent proliferation of MOOCs in mind, there are some indications that the number of 

registered learners and course populations are declining due to the transition of these platforms from semi-

free to paywalled courses (Chuang and Ho, 2016). However, despite the unparalleled success of MOOCs, 

especially in terms of the burgeoning learner enrolment, one of the more disturbing aspects to date is the 

 
12 This applies neither to the free-certificate eligible courses (e.g. government initiatives) nor to the 

prepaid (paywalled) courses (e.g. degrees and corporate training courses).  
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staggeringly decreasing certification rates (Reich and Ruipérez-Valiente, 2019), a funnel with learners 

“leaking out” at various points along the learning pathway (Clow, 2013; Breslow et al., 2013). More critical 

is the issue that the paid certification percentage of a given course has also been declining over various 

runs/iterations; for instance, in some cases the number of certificate purchases dropped by as much as 50% 

in the latest course run compared to the first run (Alshehri, Alamri and Cristea, 2021). This challenging 

and constantly low certification rate has prompted substantial research on the topic (Gitinabard et al., 2018) 

and pushed several providers to explore potential business models for increasing revenues via numerous 

promotive strategies (Dellarocas and Van Alstyne, 2013). These strategies included, for instance, freely 

releasing a particular portion of the course content and requiring fees only to earn verified certificates and 

credentials (Reich and Ruipérez-Valiente, 2019). While this strategy has not yet contributed to improving 

the paid certification rate, the platforms still need a sustainable and sufficient source of revenue to recoup 

their operational costs. 

1.2. Research Motivations 

MOOC platforms have partnered with higher education institutions (HEIs), governmental bodies, and 

private corporations worldwide to provide certified academic curriculums and professional training. This 

offers an incredible opportunity to learners, considering the flexibility of MOOCs in terms of openness 

and accessibility from anywhere, facilitating a near-university campus learning experience (Almatrafi and 

Johri, 2018). It also helps MOOCs have enrolment arrays in thousands from diverse learners; nevertheless, 

the certification level within these courses is low. Therefore, addressing this challenge, which threatens 

platform sustainability, is a principal source of inspiration to conduct the existing research. 

Another motive is the lack of certification predictive models, which marks only 9% (n = 9/78) (Gardner 

and Brooks, 2018b) to 14% (n = 14/94) (Moreno-Marcos et al., 2018b) of the outputs of the total current 

MOOCs predictive models. This dearth is to some extent surprising and uninterpretable, considering the 

current inevitable transition of the platforms into paywalled commercialised content was intended to 

initially meet their operational costs. 

Machine learning (ML) techniques have been widely adopted not only in the educational setting 

(Kučak, Juričić and Đambić, 2018) in general but also more specifically in MOOC analytics (Zhu, Sari 

and Lee, 2020; Dalipi, Imran and Kastrati, 2018), addressing several challenges. With their incredible 

ability to handle big data within prediction and classification tasks, such techniques seem essential in 

analysing data-rich tasks such as MOOC dataset-based prediction tasks. With this in mind, the researcher 
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was motivated to apply various ML techniques (based on the type of data under analysis as further 

explained in Chapter 5, 6, and 7) to examine whether learner data can help predict course certificate 

attainment.  

Ultimately, this thesis is motivated by the desire to accurately detect learners not attaining their 

certificates, i.e., non-paying learners, as early as possible, to allow platform owners to intercede early and 

provide learners with any personalised intervention needed, which may in turn positively affect the 

certification rate (Rohloff, Sauer and Meinel, 2020), i.e. may convince the learner to purchase a certificate 

and, subsequently, help platforms build a more sustainable business model (King and Lee, 2022). 

1.3. Research Questions 

This thesis employs several ML models to investigate whether MOOC learners’ data can help predict their 

certification attainment at an early stage of the course. The research questions addressed in this thesis were 

developed based on the research gaps and the limitations of the current MOOC certification predictive 

models (explained in detail at the end of Chapter 3). Therefore, the umbrella research question this thesis 

tackles is: How can learners’ data in MOOCs be utilised for predicting paid certification? 

To help answer this broad research question, the following sub-questions were formulated: 

• RQ1: Do non-paying MOOC learners behave differently from course purchasers as to their 

activities of access and answering questions (attempts, correct and wrong answers)? 

This research question aims to statistically compare non-paying learners’ activities versus certificate 

purchasers’ activities to measure the extent to which the two groups’ activities differ. Subsequently, the 

second research question examines whether learners’ activities can be used to predict later certification 

behaviour. 

• RQ2: Can MOOC learner’s clickstream data (accesses, attempts, correct and wrong 

answers) and time spent on course steps predict paid certification for courses? 

Considering clickstream is a very rich source of data in MOOCs, we employed learners’ raw clickstreams 

(step accesses, correct and wrong answers) and computed time spent by each learner on each step (learning 

unit) to examine if they can predict learner certification attainment (or, more specifically, course certificate 

purchasing) in Chapter 5. 
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After analysing simple predictions based on a few clickstream variables, we then analyse more in-depth 

what other information can be extracted from MOOC interaction (namely discussion forums) for 

certification prediction. However, before exploring the learners’ discussion forums, the second experiment 

(in Chapter 6) contains the procedure followed in building MOOCSent – a cross-platform, review-based 

sentiment classifier – using over 1.2 million MOOC reviews to train the model.  Since the text dataset used 

in this specific experiment is unlabelled with learners’ sentiments, which are ideal determinants of learner 

success in MOOCs (Sraidi et al., 2022; Wen, Yang and Rose, 2014; Chaplot, Rhim and Kim, 2015; Dalipi, 

Zdravkova and Ahlgren, 2021), the pre-step is utilising MOOC discussion forums for predicting 

certification is labelling learners’ posts (comments and replies) with the corresponding sentiments which 

would help enrich our training dataset and improve the performance of the predictive model (as further 

discussed in section 6.3).  

Thus the third sub-question of this thesis was framed as follows: 

• RQ3: Can course reviews obtained from multiple MOOC platforms be used to build a 

reliable sentiment classifier? 

In the final experiment (in Chapter 7), learners discussion forums’ raw data (learner textual inputs), 

sentiment classification using MOOCSent, and computed features (number of likes received for each 

textual input), in addition to several features extracted from the texts (e.g. character counts, word counts, 

and part of speech (POS) tags for each textual instance) were used to predict paid certification. Thus, the 

fourth research question this thesis addresses is as follows: 

• RQ4: Can raw and computed data extracted from MOOC discussion forums predict paid 

certification for courses? 

1.4. Research Objectives 

This research project aims to examine the ability of ML to predict MOOC purchase (certification) at an 

early stage of the courses. To address the identified research questions in Section 1.3, the following 

research objectives were considered during this project: 

• RO1: To first survey the current MOOC certification predictive models, synthesise the results 

for a comprehensive and deep understanding of this field, elucidate the limitations of these 

models, and propose some areas of improvement for future works. This is an essential 
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preliminary step for addressing the main (umbrella) question of this thesis. Further explanation 

is presented in Chapter 3. 

• RO2: To statistically examine the difference in behaviour between non-paying learners and 

certificate earners to examine the extent to which the two groups behave differently. Research 

question 1 is addressed by this objective in Chapter 5. 

• RO3: To assess the capability of ML approaches for predicting certification in MOOCs using 

learners’ clickstream data (Chapter 5). Research question 2 is addressed by this objective. 

• RO4: To examine the extent to which the state-of-the-art NLP models can predict learners’ 

sentiments based on their end-of-course reviews. This is the main objective that can be 

achieved by addressing RQ3. Further details are presented in Chapter 6. 

• RO5: To assess to the capability of ML approaches for predicting certification in MOOCs 

using data from MOOC discussion forums (Chapter 7). Research question 4 is addressed by 

this objective. 

• RO6: To identify and adopt the most suitable approach for dealing with imbalanced data during 

building ML predictive models, considering the highly imbalanced data utilised in this research 

project. This can be done by adopting class-weighting predictive models (Chapter 5), 

augmenting the minor class data with a text augmenting model for textual data (Chapter 6), or 

generating new synthetic instances of the existing minority cases for numerical data (Chapter 

7). 

1.5. Thesis Contributions 

This thesis contributes to the knowledge and field of MOOC learner analytics with the following: 

• Systematically reviewing the literature using the 27-item checklist of Preferred Reporting Items 

for Systematic Review and Meta-analysis (PRISMA) Protocol for methodological rigour to 

increase the transparency and quality of the literature synthesis. The present review reveals 

several limitations within the works surveyed that were addressed later during this research 

project and presented an insight into the current state of the art in certification predictive 

modelling. Further details are discussed in Chapter 3 and 8. 
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• Collecting a 5-course rich learners’ dataset from FutureLearn that – although it is the world’s 

third largest platform in terms of the number of courses offered (Shah, 2021a) – has never been 

utilised for modelling and predicting paid certification according to our Systematic Literature 

Review (SLR) in Chapter 3. 

• Investigating various conventional and deep ML approaches for predicting paid certification in 

MOOCs using learner clickstreams (Chapter 5) and course discussion forums (Chapter 7). 

• Building the largest MOOC sentiment classifier (MOOCSent) based on learners’ reviews of 

the courses from the leading MOOC platforms, namely Coursera, FutureLearn and Udemy, 

which handles emojis and emoticons using dedicated lexicons that contain over three thousand 

corresponding explanatory words/phrases. 

• Developing a novel multi-input model for predicting certification based on the data from 

discussion forums. This model synchronously processes the textual (comments and replies) 

and numerical (number of likes posted and received, sentiments) data from the forums, 

adapting the suitable classifier for each type of data as explained in detail in Chapter 7. 

• Enhancing the understanding of learner behaviour through identifying the factors (features) 

associated with learners’ decision to purchase a course certificate (as explained in sections 

5.3.4 and 5.3.5). This can assist course providers, educators, and policymakers design effective 

strategies to promote and optimise the uptake of paid certification options. 

• Developing early predictive models - using various types of learners’ data - that can anticipate 

learners' decisions regarding paid certification in MOOCs at an early stage of the course. These 

models can be employed by course providers for timely forecasting learners' likelihood of 

opting for paid certification, enabling them to allocate resources more efficiently, tailor 

marketing efforts, and optimise course design. 

• Providing the potential for MOOC platforms for personalised interventions and support 

mechanisms for learners, taking into account their classified categories (non-paying or 

certificate purchasing). Accordingly, course providers can proactively engage with these 

learners, offer targeted incentives or assistance, and address any concerns they may have. This 

personalised approach is expected to enhance learner satisfaction, increase certification rates, 

and contribute to the overall success of MOOC platforms. 
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• Offering valuable insights for strategic decision-making and market analysis in the MOOC 

industry. Platforms can leverage the findings and predictive models to assess the viability of 

introducing new paid certification options, modify existing pricing structures, or target specific 

learner segments. This enables providers to make data-driven decisions, adapt to evolving 

market dynamics, and align their offerings with learner preferences and demands. 

1.6. Thesis Outline 

The research problem, scope, motivations, questions, objectives, and contributions have been outlined 

above, and the remainder of this thesis is organised as follows: 

• Chapter 2 (MOOCs: A Business Perspective): This chapter introduces a brief definition and 

history of MOOCs and presents the different types of MOOCs; it also provides a description 

of various MOOC platforms. Additionally, MOOC business models and, more specifically, 

monetisation tiers are discussed. 

• Chapter 3 (Systematic Literature Review): This chapter reviews the current MOOC 

certification predictive models in a systematic way using the PRISMA protocol. The chapter 

concludes with an organised synthesis of the works surveyed and also elaborates further on 

related topics such as the state of the art, limitations of the current models, and future 

opportunities for development. 

• Chapter 4 (Methodology): This chapter describes the methodology followed for answering the 

research questions addressed in this thesis. This includes the data used, any preprocessing steps 

conducted, the feature selection techniques, and the classification algorithms employed. 

Additionally, this chapter explains other experiment-related matters such as model evaluation 

(performance) metrics and visualisation tools adopted in the modelling experiments. 

• Chapter 5 (Predicting Paid Certification in MOOCs using Learners’ Weekly Clickstreams): 

This chapter contains an experiment on using the data on learners’ access, question answering, 

attempts, and time spent on each learning unit to predict paid certification (certificate 

purchase). The chapter describes the collected data and the preprocessing steps implemented. 

Next, the utilised approach and employed learning algorithms are discussed. Finally, the 

evaluation processes and results are presented and discussed. 
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• Chapter 6 (MOOCSent: A Sentiment Predictor for Massive Open Online Courses): This 

chapter compares the performance of the most common SA techniques using the largest 

collected MOOC review dataset. Firstly, the data collected and used for this experiment is 

described. Then, the utilised learning algorithms and the experiment setting are discussed. This 

is followed by reporting the model performance (per algorithm) and discussing the obtained 

results. 

• Chapter 7 (Discussion Forum-based Prediction of Paid Certification in MOOCs): This chapter 

presents an experiment using learners’ interaction in the discussion forums to predict paid 

certification. Firstly, the methodology followed for preprocessing textual and numerical data 

is presented. Next, the experiment setting is explained. Finally, the models’ performance 

metrics and results are presented and discussed. 

• Chapter 8 (Discussion): This chapter contains an extensive discussion of the thesis regarding 

its achieved results and novelty. It also discusses how these results add to the knowledge 

considering the existing literature. Additionally, it explains how the gaps identified within the 

SLR were addressed in the present thesis. 

• Chapter 9 (Conclusion): This chapter summarises the key contributions of the thesis and 

discusses the opportunities for future development. Figure 1.2 illustrates the thesis outline 

workflow with the key contributions in bold maroon. 
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Figure 1.2. Thesis outline workflow with the contributions in bold maroon.  
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Chapter 2 : MOOCs: A Business 

Perspective 

2.1. Prologue 

This thesis is about MOOC Paid Certification Prediction. To better understand the context of our umbrella  

research question, we need to explain its context: that of MOOCs, but also, that of the paid certification, 

and where it sits within the business side of MOOCs. Hence, this chapter introduces a brief definition and 

history of MOOCs and the various types of MOOCs currently in use; it also provides a description of the 

MOOC platforms. Additionally, MOOC business models and, more specifically, monetisation tiers are 

discussed. 

2.2. Definition of MOOCs 

MOOCs are a new form of distance learning defined as “institutionally-based formal education where the 

learning group is separated and where interactive communication technologies are used to connect the 

instructor, learners, and resources” (Simonson, Zvacek and Smaldino, 2019). Nevertheless, this definition 

includes the earlier version of the MOOCs business model, where they were institutionally based and 

embraced by the world’s leading universities, such as edX (founded by MIT and Harvard), Coursera, and 
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Udacity of Stanford University, FutureLearn of Open University, and XuentangX of Chinese Tsinghua 

University (Notaris, 2019; Lohr, 2020). The above platforms and the majority of the other subsequently 

launched platforms benefit from Higher Education Institutions (HEIs) as business accelerators during their 

first forming stages and Another difference between MOOCs and distance learning is instructors’ 

involvement in the teaching and learning processes. With the massive number of participants, a MOOC 

instructor can typically be the MOOC designer or the talent featured in a video displayed at any time point 

of the course without real-time human intervention. In addition, MOOC content is typically a web-based 

digitised representation (e.g. quizzes are self-marked and exams are programmed with self-scoring). 

Therefore, a distance learning course usually contains two essential components of the education process, 

namely distance teaching AND distance learning, which are not usually present in MOOCs (Simonson, 

Zvacek and Smaldino, 2019). 

Based on the above characteristics, MOOCs appear different (in terms of teaching) and more flexible 

(in terms of learning) at various levels compared to traditional distance learning courses. Thus, a MOOC 

can be defined as “an online course designed for a large number of participants that can be accessed by 

almost anyone anywhere, as long as they have an internet connection, is open to everyone without entry 

qualifications and offers a full/complete course experience online for free” (Brouns et al., 2014). This 

definition is more precise; nevertheless, it neglects the recent monetisation strategy that many platforms 

have followed. A more recent and financially aware definition of MOOCs is “an online learning 

environment that learners have open access to and can register for free or with low cost” (Zhu, Sari and 

Lee, 2020). Today, MOOCs are freely open to any potential learner, with a lower barrier to access, allowing 

them to gain millions of learners annually, and typically charge fees from certificate-earning learners only 

(Zhu, Sari and Lee, 2020). 

In this thesis we have used mostly the FutureLearn MOOC environment, due to convenience sampling, 

as explained in Section  4.2. We have, however, used also other platforms, for broader coverage of the 

various MOOC types, such as Coursera, Udemy, FutureLearn, Stanford in Chapter 6. 

2.3. Defining MOOC Certification 

MOOCs have been attracting more learners over time; nevertheless, statistics show that there has been a 

decrease in the number of yearly certificate earners due to the transition towards paid content (Cagiltay, 

Cagiltay and Celik, 2020). With the platforms monetising their courses, this new business model for 

MOOCs, coinciding with repeated iterations (course reruns) of the same content, has caused a noticeable 
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decline in the uptake of many courses over subsequent runs (Chuang and Ho, 2016). Moreover, even if the 

enrolment figures seem massive, the low certification rate, of just around 13% of the enrolled learners, and 

the worse paid certification rate, of less than 1% of the enrolled learners, appear as real challenges, which 

attracts the attention of many previous predictive works on MOOCs (Jordan, 2014; Alshehri et al., 2021; 

Alshehri, Alamri and Cristea, 2021; Alsheri et al., 2021; Arslan, Bagchi and Ryu, 2015). It is worth 

mentioning here that paywalled courses (e.g. university degrees) have better certification statistics, and 

40–90% of the enrolled learners earn a certificate of completion at the end of the course (Lohr, 2020). 

Considering MOOCs have their own characteristics, adopting traditional educational metrics such as 

certification to this unique form of education renders prediction in MOOCs a more challenging task 

(DeBoer et al., 2014). Additionally, while MOOCs are proliferating alongside the continuously emerging 

private corporation-managed platforms, a clear-cut and comprehensive definition of MOOCs is becoming 

more challenging. Thus, there is a need to define MOOC certification more clearly. 

Certification, compared to other MOOC outcomes, such as success, dropout, or learning achievements, 

which are pedagogically complex to measure or controversial to determine (Cobos and Jurado, 2018; 

Gitinabard et al., 2018), seems quite straightforward to define. Platforms set particular requirements (e.g. 

completing specific steps and scoring above a threshold for assignments and quizzes) to make the learner 

eligible for the course certificate (Blackmon and Major, 2016). While course completion and certification 

may sometimes be used interchangeably, they have different determinants and neither pre-require the 

other. A MOOC learner can complete a course without earning a certificate, especially in courses that do 

not require tuition fees in advance. Also, a learner can earn a certificate even before completing the course 

but after meeting the minimum requirements set by the platform. Completion typically refers to completing 

the entire course, usually defined by a specific number of steps in the form of videos, assignments, and 

quizzes. However, a literature review showed that previous studies have a different definition of 

completion (Gardner and Brooks, 2018b). Certification in MOOCs can be defined as earning enough points 

on course assignments to meet some predetermined threshold for the course (typically around 70%) and 

earning a certificate of accomplishment based on that (Gardner and Brooks, 2018b). However, this 

definition neglected the financial aspect of the certification, where most MOOCs require paying a 

predefined fee for obtaining a certificate of completion. As opposed to this, paid certification refers to 

earning a certificate that, unlike completion, has its own payment-related factors (Ruipérez-Valiente et al., 

2017). 

2.4. MOOCs: A Unique Concept of E-learning 
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Recent technological advancements have revolutionised the educational domain and blessed it with many 

learning experience improvements (Raja and Nagasubramani, 2018). MOOC platforms can virtually 

deliver their content worldwide among these new forms of education. They are unique in their 

characteristics compared to other forms of technology-based education. Their massiveness allows a much 

more extensive number of learners than in traditional or technology-enhanced classrooms. The number of 

enrolled learners reaches hundreds for specialised courses and thousands for more generic courses 

(Bonafini, 2018; Buholzer, Rietsche and Söllner, 2018). It is believed that MOOCs have emerged in 

response to the pressure put on universities to offer education that is accessible to all at any stage of their 

lives. Since their emergence, they have shown an overwhelming learner–teacher ratio compared to 

traditional e-learning classes. Besides the promotional free access to their learning content, this helps 

MOOCs attract significant attention from both the media and the educational community (Atiaja and 

Proenza, 2016). 

Openness plays a significant role in MOOC expansion, where learners can join a massive array of 

courses delivered by, as of 2021, almost one thousand universities worldwide (Shah, 2021a). Most courses 

have no prerequisites compared to traditional learning, and course materials on MOOC platforms can be 

accessed smoothly via the internet by diverse learners in terms of demographics, level of education, 

location, and profession. This encourages the heterogeneousness of learner characteristics and the 

intentions of populations in MOOCs (Koller et al., 2013; Chuang and Ho, 2016). Although MOOC 

populations in some platforms skew towards specific characteristics in terms of country of origin, gender, 

and level of education (Greene, Oswald and Pomerantz, 2015), they are still significantly more diverse 

than any other traditional or e-learning environments (Glass, Shiokawa‐Baklan and Saltarelli, 2016; 

Christensen et al., 2013). Nevertheless, identifying these highly diverse demographics and intentions (i.e. 

learner characteristics) is challenging. Although most MOOCs provide pre-course questionnaires to their 

learners, they are usually not mandatory to enrol in a given course so as to lower the entry barriers. This 

has led, however, to a shallow response rate to learner demographics questionnaires (Kizilcec and Halawa, 

2015; Whitehill et al., 2015; DeBoer et al., 2013). Consequently, most works on MOOC predictive 

modelling have focused on using learner’s activities, rather than their demographics, for modelling 

different MOOCs outputs (e.g. completion, dropout, or certification) (Gardner and Brooks, 2018b) 

(Moreno-Marcos et al., 2018b). 

The lax nature of completion and certification is another unique feature of MOOCs. In traditional face-

to-face and e-learning courses, learner performance (e.g. quizzes and exam results) is strictly considered a 

critical factor in counting academic credits or awarding official certificates after the end of the course. 

MOOCs, in contrast, more conveniently allow learners to reattempt automatically marked quizzes or even 
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retake the whole course in future runs (iterations) without any penalty imposed for previous failures or 

delays in completing a task. This level of freedom makes MOOCs a suitable learning environment for 

learners who want to learn a specific skill without the need to attend the whole course, hence having little 

or no interest in completion and, consequently, certificate attainment (Borrego, 2019; Zhu, 2021). 

Although some MOOCs have predefined start and end dates and intermediate due dates and are 

generally divided into time-boxed weekly learning content and introduced to learners on timely releases 

(Calise et al., 2019; Wang, Hemberg and O’Reilly, 2019), their asynchronicity in attendance is considered 

unique. Learners, especially in computer-graded MOOCs, do not have to “stick” to a specific timetable to 

attend the courses and interact either with the course content (e.g. videos) or with other learners (e.g. by 

posting in the course forum) (Mullaney and Reich, 2015). This high level of self-paced flexibility allows 

learners to freely view course content and interactively participate with others at any time. 

Whilst we are not directly targeting the learning side in this thesis, we include this for completeness, 

as learning is the primary target for MOOCs, which has to be taken into account even when predicting 

other factors (like Paid Certification). 

2.5. MOOCs History 

MOOCs have been gaining more interest since their introduction due to their early commitment to 

openness, promising access to worldwide top-ranking university education. Many early MOOC initiatives 

were funded by the Hewlett Foundation as part of their Open Educational Resources (OER) portfolio, 

aiming to provide openly accessible educational content to learners worldwide, including MIT Open 

Courseware and the Open University’s OpenLearn (Casserly, 2018). Nevertheless, nowadays, the concept 

of MOOCs has radically changed with the increasing emergence of MOOCs monetisation and investors’ 

willingness to return on their investments (Belleflamme and Jacqmin, 2016). 

The first MOOC was the University of Manitoba’s Connectivism and Connective Knowledge course 

(CCK08), which attracted just over 2,000 learners (Fini, 2009), after which the acronym MOOC was 

coined (Yousef et al., 2014), although many of these can be traced back to earlier (specifically 2007) e-

learning experiments such as the Introduction to Open Education, Social Media & Open Education and the 

OER movement in general (Iiyoshi and Kumar, 2010). 

Considering the few enrollees in the above initiatives, the real launch of MOOCs, as something 

considerably massive, was with Stanford University’s introduction of three courses in late 2011, where 



 

 

17 

each course had around 100,000 enrolled learners from over 190 countries (Perez-Pena, 2012). Soon after 

in the same year, MIT’s Open Online Learning initiative called MITx was announced. Later in 2012, 

Udacity was launched as a purely commercial enterprise (i.e. offering paywalled content only since its 

inception (Yousef and Sumner, 2021)), followed by the establishment of Coursera with a USD16 million 

fund from four major US universities. Hence, 2012 was the birth year of many of today’s leading platforms, 

including MIT and Harvard’s edX, with a fund of USD60 million from both institutions. The proliferation 

of MOOCs continued in 2013, with platforms launched outside the US for the first time. Two more leading 

platforms were launched that year: FutureLearn was introduced by 12 leading UK universities as a for-

profit platform (Brown, 2013), and MiriadaX was launched by more than one thousand Latin American 

universities, offering courses for Spanish-speaking learners (Atiaja and Proenza, 2016). 

After that many platforms were launched globally; a complete list of own elaboration of the present 

platforms is available in Appendix A. Figure 2.1 illustrates a timeline of the formation of MOOC platforms 

over the years and how business models have been updated. It shows how platforms have focused on paid 

content such as micro-credentials, corporate training, and degrees rather than aiming to deliver free 

courses. Over the last five years, free certificates or statements of accomplishment disappeared from most 

leading platforms, in line with the introduction of more paid content, such as corporate training and online 

degrees (Condé and Cisel, 2019). This is a logical transformation as platforms have belatedly realised free 

courses-only business model may not help in building a sustainable business model (Sharples, 2019) 

 

 
Figure 2.1. A timeline of MOOC platforms establishment (dashed arrow = influence; solid arrow = direct relation), 

cited from (Sharples, 2019). 

In this thesis, the focus is mainly on the FutureLearn platform, which is the main European one, due to 

both its importance in the UK as well as convenience sampling. We have, however, used also other 
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platforms, for broader coverage of the various MOOC types, such as Coursera, Udemy, FutureLearn, 

Stanford in Chapter 6. 

2.6. Types of MOOCs 

In contrast to the earlier 2007-2008 courses, the later MOOCs of 2011 onwards were different in content, 

assessment, and communication as they were not centred around networking and learner autonomy. They 

instead adopted a more traditional behaviourist strategy for offering learning content in consequent small 

units together with assessments based on multiple-choice tests to enable learners to monitor their own 

performance (Brown, 2013). This form of course design has become known as xMOOCs, while the earlier 

versions, which were learner centred, creative, and autonomous, were dubbed as cMOOCs because of their 

emphasis on connectivism (Hill, 2012). 

As shown in Figure 2.2, cMOOCs are decentralised (autonomous), allowing learners to set appropriate 

learning objectives and content independently; thus, no formal curriculum is supplied because learners are 

involved in constructing the curriculum. cMOOCs are based on the connectivist theories and emphasise 

connecting learners rather than offering learning content (Borrás-Gené, 2019). As cMOOCs do not assess 

learners’ progress, certificates of completion are not offered (Henukh et al., 2019). xMOOCs, in contrast, 

adopt the traditional university learning method where learning objectives are pre-defined by the instructor 

through short videos, lecturers, and instructor-led demonstrations (Yousef et al., 2014). 

Communication and collaboration are essential differences between cMOOCs and xMOOCs. Learners 

are expected to build a shared understanding of the topic and discuss their learning outcomes with others 

in cMOOCs. The learning resources in this type of MOOCs are a collection of outside-the-platform content 

such as Google Docs, Blogs, and other leading social media platforms such as YouTube, Twitter, and 

Facebook. xMOOCs, in contrast, host the learning content, such as videos and provide integrated 

discussion forums where learners can interact with peers unlimitedly, in addition to the ability to set 

notifications for any updates on the course (Daniel, 2012). Regarding certification, cMOOCs do not grant 

credentials to learners being self-organised and assessed, whereas xMOOCs, by design, take pre-steps for 

certificate eligibility, including computer-based assessments (Koutropoulos, 2013). 
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Figure 2.2. Characteristics of cMOOCs versus xMOOCs, cited from (Yousef and Sumner, 2021). 

In this thesis, the focus is on xMOOCs, where certification is part of the process, as this is what the 

aim of the prediction is. 

2.7. MOOCs as of 2022 

The last couple of years, coinciding with the spread of COVID-19 and the consequential lockdown of 

educational institutions and travel restrictions in many countries, were exceptional in MOOC history. 

About one-third of the total learners (60 million) joined in 2020 (Shah, 2020). By 2020, MOOCs had 

exceeded 180 million learners. The number of offerings reached 16,300 courses, of which 2,800 were 

launched in 2020. Additionally, the number of offered micro-credentials in 2020 increased substantially, 

with 360 new micro-credentials, from 820 in 2019. Furthermore, 19 new worldwide online degrees were 

introduced (a one-quarter increase) in 2020, totalling 67 MOOC-based degrees. This massive amount of 

content has been delivered by around 950 universities worldwide (Shah, 2020). One instance of the MOOC 

boom during the pandemic is Coursera, which had 10 million newly enrolled learners from mid-March to 

mid-May in 2020, which was 7 times the pace of new enrolment in the previous year. New enrolments at 

other counterparts, such as edX and Udacity, have also increased by similar multiples (Lohr, 2020). The 

following year showed continuously increasing 2020-like statistics. In 2021, MOOCs reached 220 million 

learners, 19,400 courses, 1,670 micro-credentials, and 70 MOOC-based degrees (Shah, 2021a). The 

proliferation of MOOCs continued, and the number of platforms reached 63 in 2022. 

Such statistics show the importance of this research, in terms of primarily monetary implications on the 

MOOC providers, and secondarily, on the educational reach of the MOOCs.  
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2.8. MOOC Business Models 

The initial aim of MOOCs was to provide access to educational resources to vulnerable learners. With this 

concept, MOOCs were expected to disrupt the education sector by “democratising learning” offering free 

courses at an economic scale via recording the course once and iteratively offering it to millions of learners 

(McGreal et al., 2013). However, it has been challenging to recover the substantial costs of running a 

platform, where many technical and human resources are involved,  with free or even low-cost standard 

courses only (Halsbenning and Niemann, 2021). While revenue generation has been a primary challenge 

(Burd, Smith and Reisman, 2015), platforms are expected to adopt a sustainable business model to meet 

their economic validity (Cusumano, 2013). 

The business models of universal electronic platforms have been found inappropriate for MOOC 

platforms because (1) the platforms are still in an immature stage with frequently-changeable business 

functionality (Farrow, 2019); (2) the complexity of investment in education where the value and return on 

investment (ROI) can only be determined post hoc; and (3) the competitive presence of government-funded 

educational initiatives, offering content for free and making the survival of MOOCs more critical 

(Halsbenning and Niemann, 2021). Hence, bespoke business models to consider the potential success 

opportunities and threats are essential for the sustainability of these platforms. 

 

Figure 2.3 shows a generic business model derived from most platforms (35 platforms) with 

exemplificatory notes of edX business model elements (Halsbenning and Niemann, 2021). The business 

model was built using the highly adopted business model canvas (BMC)   with fine adjustments for MOOC 

platforms. BMC is defined as “a strategic management tool that provides a visual representation of a 

company's business model, serving as a framework for describing, designing, and analyzing a business 

model (Osterwalder and Pigneur, 2010). Key Partners include charter members (e.g. universities), 

governments and non-governmental organisations (NGOs). Instructors and learners were split into 

customer relations and value propositions due to being substantially different customer types, requiring 

different service levels and support. Instructors and learners were also split into customer segments as  

platform content may be offered for institutional learners such as universities and corporations rather than 

individual learners. 
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Figure 2.3. Business model of MOOC platforms with exemplificatory notes. 

Revenue streams (learners) include various or even opposing monetisation strategies. For example, 

some platforms do not allow access to content before paying the fee, even in standard courses. In contrast, 

other platforms do not rely on any obligatory payments by learners, granting access to the whole course 

content and only charging for certificate issuance, preceded by achieving the minimum course-specific 

grade. This indicates that while MOOCs are generally offered similarly to the consequent, usually weekly, 

learning units (Brown, 2013), each platform has its own strategy for content monetisation, which is further 

explored in the next section. 

2.9. Monetisation of MOOCs  

Initially, MOOCs were developed to “democratise education” by offering free access to learners who 

cannot afford formal education (Dillahunt, Wang and Teasley, 2014; Lohr, 2020). With this proclaimed 

mission, the early courses attracted thousands of learners from different geographical and cultural 

backgrounds (Nkuyubwatsi, 2014). Nevertheless, these platforms later started seeking funds and forming 

separate learning corporations due to initial sponsorship streams drying out (Paldy, 2013). For instance, 
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while edX and Udacity were founded as institution-based nonprofit organisations, with all their offering 

free in 2012, they later had Silicon Valley’s leading venture firms funding these platforms to form their 

own business models, following the classic internet formula of “lure a big audience and figure out a 

business model later” (Lohr, 2020). During the early years of the emergence of MOOCs, platforms did not 

have a transparent partner-wise business model and kept exploring potential revenue opportunities with 

the assistance of their HIE partners (Baturay, 2015). This included, but was not limited to, several 

monetisation scenarios: (1) charging university partners for platform technical support, (2) signing profit-

sharing agreements with partners, and (3) charging course hosting fees based on the length of the course 

(Milheim, 2013). The evolutionary history MOOCs, from a financial perspective, can be divided into two 

phases: 

• 2009-2016, when courses were primarily offered free of charge. 

• 2017 to the present time, when most providers began monetising content, stopped offering free 

certification, and consequently generated revenues by offering credentials (Zhu, Sari and Lee, 

2020) (Condé and Cisel, 2019). 

With this new business model, providers, besides the classic single type of content (e.g. single time-limited 

courses), have begun developing additional educational products that range in price from low cost to highly 

expensive to enrol in, for example, degrees from world-class universities) (Wang, Hemberg and O’Reilly, 

2019; Shah, 2018b). While the standard courses offered by universities are still critical products on MOOC 

platforms, further additions, such as credentials by corporate and government entities, have been 

introduced. Hence, the essential “free for enrolment” open to any potential learner on MOOCs can act as 

a marketing principle for attracting more course certificate purchasers. 

In their journey to adopting the new financial business model, MOOC providers have gone (or are 

going) through six tiers of MOOC monetisation, as illustrated in Figure 2.4 (Shah, 2018b). These process 

steps range from the earlier free standalone courses to the recent fully paywalled online degrees. However, 

while this process of categorisation seems to be generally followed by many platforms, it has not 

necessarily been adopted by every platform towards monetising content (Taneja and Goel, 2014). 
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Figure 2.4. Tiers of MOOC monetisation, dates denote the first introduction of each tier, inspired by Shah (2018b). 

2.9.1. Free Courses 

The first tier is where a learner can audit a single course free of charge, typically without earning a 

certificate of completion. This is the most common style of learning in MOOCs, where the overwhelming 

majority of learners tend to learn for free. While most MOOC platforms offer free course auditing, only 

charging for certification (Liyanagunawardena et al., 2019), some courses are offered free, including a free 

certificate at the end of the course. However, these courses are scarce, accounting for less than 3% of 

MOOCs on some platforms as of 2021 (331 out of 10,004 on Coursera13 and 42 of 1,582 on FutureLearn14) 

and are usually sponsored to be offered for a free certificate. Additionally, some platforms offer learners 

the choice to pay for the certificates of some courses. For example, edX allows the learner to receive a free 

certificate “honour code” or pay a fee for a “verified certificate”15. 

The freemium offering, which is the most common MOOC pricing strategy (Porter, 2015), includes 

linking a sequence of services/products to the learner, where the first (i.e. course auditing) is offered at no 

cost and the latter (i.e. course certificate), which extends the free service, is offered at a certain fee. This 

service/product marketing strategy is prevalent in promoting MOOCs (Baker and Passmore, 2016). 

 
13 https://www.coursera.org/search  

14 https://www.futurelearn.com/courses  

15 https://edx.readthedocs.io/projects/open-edx-learner-guide/en/named-release-

cypress/SFD_certificates.html#:~:text=Honor%20code%20certificates%20are%20free,requirements%20t

o%20pass%20the%20course.  

Free courses

2011 Paid courses

2012 Micro-credentials

2013 Corporate training

2014 Online degrees

2018

https://www.coursera.org/search
https://www.futurelearn.com/courses
https://edx.readthedocs.io/projects/open-edx-learner-guide/en/named-release-cypress/SFD_certificates.html#:~:text=Honor%20code%20certificates%20are%20free,requirements%20to%20pass%20the%20course
https://edx.readthedocs.io/projects/open-edx-learner-guide/en/named-release-cypress/SFD_certificates.html#:~:text=Honor%20code%20certificates%20are%20free,requirements%20to%20pass%20the%20course
https://edx.readthedocs.io/projects/open-edx-learner-guide/en/named-release-cypress/SFD_certificates.html#:~:text=Honor%20code%20certificates%20are%20free,requirements%20to%20pass%20the%20course
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2.9.2. Certified Courses 

The following phase is where monetisation begins upgrading to obtain a course certificate of completion, 

still at a pre-defined low cost, ranging from a few tens of dollars to the low hundreds of dollars (Cagiltay, 

Cagiltay and Celik, 2020; Goli, Chintagunta and Sriram, 2019). This model is based on learners wishing 

to provide evidence of upskilling to potential employees. It requires learners to achieve a grade (e.g. 60% 

or more in edX and over 70% in FutureLearn for certificate purchasing eligibility) (Ruipérez-Valiente et 

al., 2017; Lee, 2018b). They are the lowest cost compared to the other tiers discussed below, offering the 

lowest threshold for a potentially more significant population. One of the main features of certified courses, 

compared to the following tiers, which typically require further instructor intervention, is the automated 

learning process on the provider platforms. Lectures in such courses are pre-recorded, and assignments are 

auto-graded and peer-reviewed16.  

Additionally, learner contributions in the discussion forums can be automatically analysed and marked 

based on their relevance to the course topic (García-Molina et al., 2020). Regarding paid certified courses, 

some platforms, such as Coursera17, offer financial aid or scholarships for learners who cannot afford 

course fees. Also, Coursera further categorises certificates based on the obtained score, where learners who 

achieve 65% or more of the maximum possible score receive a standard certificate, and those who achieve 

85% or more of the maximum possible score receive a distinction certificate (Jiang, Fitzhugh and 

Warschauer, 2014). 

2.9.3. Micro-credentials 

The third tier of MOOCs monetisation is represented by micro-credentials, a non-degree credentialing 

paradigm that consists of multiple single courses (typically spreading over six months in length). These 

range in price from a few hundred dollars to a few thousand dollars based on the programme content and 

the provider platform (Shah, 2018b; Pickard, Shah and De Simone, 2018). Micro-credentials are multi-

course series that have been offered since 2013 (with the edX introduction of XSeries) as a midpoint 

between standalone courses and fully online degrees (Shah, 2021b) and still offer relatively affordable and 

accessible learning content (Lemoine and Richardson, 2015). Again, depending on the offering platform, 

 
16 https://www.coursera.org/browse  

17 https://www.coursera.support/s/article/209819033-Apply-for-Financial-Aid-or-a-

Scholarship?language=en_US  

https://www.coursera.org/browse
https://www.coursera.support/s/article/209819033-Apply-for-Financial-Aid-or-a-Scholarship?language=en_US
https://www.coursera.support/s/article/209819033-Apply-for-Financial-Aid-or-a-Scholarship?language=en_US
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these courses have different trademark names (e.g. Specialisations18 on Coursera, XSeries19 on edX, 

ExpertTracks20 on FutureLearn, and Nanodegrees21 on Udacity) (Pickard, Shah and De Simone, 2018). 

The primary purpose of micro-credential development is to signal proficiency or experience in a 

specific area, which is less broad than an online degree covers. Although micro-credentials are usually not 

regulated and accredited by certifying third parties such as online degrees offered by universities, their role 

in reaching short-term goals is significant. This includes becoming qualified for a particular career or 

closing a skill gap in a specific area (Krauss, 2017; Lewis and Lodge, 2016). In addition, some micro-

credentials, especially longer and more expensive ones, offer credit earning for certain online degrees. 

Thus, learners who have already attended a specific micro-credential will be awarded credits for specific 

online degrees. This academic crediting scheme is available on some leading platforms, such as Coursera 

and edX (Pickard, Shah and De Simone, 2018). This is a valid business model, gradually bringing 

customers from cheaper offers to more substantial ones. 

The micro-credential pricing strategies vary by platform. For example, while some platforms require 

the full fee in advance, others allow learners to pay for each course individually. Another charging method 

is subscription-based learning, where a pre-defined tuition fee is payable on a monthly or term basis, such 

as Specialisations in Coursera and Nanodegrees on Udacity (Pickard, Shah and De Simone, 2018). 

2.9.4. Corporate Training 

The fourth tier of monetisation (corporate training) has targeted audiences from minor teams to the most 

prominent organisations since its introduction in 2014 (Bogdan et al., 2017). MOOCs have not only 

succeeded in academia but also in professional development, fostering the training of employees in a 

flexible way (Cobos and Olmos, 2018), for instance, the staff training agreement between Udacity and the 

IT service management company Pearson VUE and the agreement between MiriadaX and the Spanish 

telecommunication company Telefonica (White et al., 2014). The cost varies and can be on a per-user-per-

year basis or based on a custom pricing agreement, especially with large organisations and government 

entities (Shah, 2018b). MOOC providers have extensively adopted professional training over the past few 

years (Calise et al., 2019). At the same time, this has attracted the attention of both the private and public 

 
18 https://www.coursera.org/specialization 

19 https://www.edx.org/xseries  

20 https://www.futurelearn.com/experttracks  

21 https://www.udacity.com/nanodegree  

https://www.coursera.org/specialization
https://www.edx.org/xseries
https://www.futurelearn.com/experttracks
https://www.udacity.com/nanodegree
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sectors for a more flexible approach to staff training and upskilling (Notaris, 2019). With MOOC-based 

corporate training, the geographical constraints on staff training have been left behind. 

Additionally, training courses can now be monitored interactively due to the privileges the platforms 

grant to the corporates throughout, facilitating the administrative and legal affairs of the training courses. 

This helps monitor an employee’s progress over the training sessions and identify any course-related issues 

in real time (Condé and Cisel, 2019). Besides academic success, MOOCs have been used to foster 

employee development and provide required training (Vivian, Falkner and Falkner, 2014). Professional 

learning, which MOOCs typically support, is critical for developing and maintaining expertise in today’s 

workplace (Milligan and Littlejohn, 2014). Financially, corporate training has been adopted by MOOC 

platforms to monetise content and increase revenues (Arslan, Bagchi and Ryu, 2015). 

2.9.5. Online Degrees 

MOOCs were promoted for offering free courses as a promising solution to the global demand for higher 

education. Recently, platforms have been integrated into higher education institutions to develop paid 

programmes, including blended and fully online degree programmes. The offered courses are designed for 

post-secondary education and early and mid-career professionals who want to master specific job-related 

skills (Littenberg-Tobias and Reich, 2020). 

This last monetisation tier is where higher educational institutes are deeply involved in offering learners 

a campus-like learning experience. This includes further services (e.g. mentorship, office hours, and 

supervised exams). MOOC-based online degrees cost a few thousand to tens of thousands of dollars (Shah, 

2018b) and include bachelor’s and master’s degrees, mainly in technology, science, and business. The 

MOOC master’s degree takes two to three years and costs from USD16,000–22,000. Beyond the online 

accessibility from anywhere around the world, their attraction is that they are slightly cheaper than the 

traditional version of the same courses while promising similar quality (Shcherbinin, Kruchinin and 

Ivanov, 2019). 

2.10. Trends and Implications Resulting from 

MOOC Business Models 
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With this emergent phenomenon of a new monetisation scheme, providers have been able to transfer their 

free courses into revenue-generating educational content. This new development responds to the need for 

MOOC platforms, with their university partners, to reach a sustainable revenue model. However, this new 

orientation has affected MOOC statistics in recent years (Zhu, Sari and Lee, 2020). Several new trends that 

can be ascribed to MOOC monetisation have been observed, such as (1) the decrease in the number of 

annual newly enrolled learners; (2) the increasing offering of college credits, credentials, and degrees 

(Hollands and Kazi, 2019; Shah, 2018a); and (3) the prevalence of business-oriented services (e.g. courses 

dedicated to upskilling employees) (Schaffhauser, 2018; Shah, 2019). 

With the recent transition of MOOC platforms towards monetising their content, focusing on courses 

that generate more revenues (Lohr, 2020), a fully asynchronous new business model has been introduced 

that allows learners to access the entire course content on demand and complete the course at their own 

pace (Gardner and Brooks, 2018b). This transition seems to be an essential survival plan for many more 

platforms. For example, Udacity was almost forced out of business in 2018, laying off around half its 

workforce. However, the platform has survived with a further focus on corporate training (especially 

employee reskilling) and paid content in general (Lohr, 2020). 

The above distinctive features of MOOC financing outline an unmatched learning environment that is 

highly unique compared to other extensively studied forms of learning (e.g. on-campus and e-learning). 

Of the various business models implemented, the ones based on certification are the oldest and, thus, the 

longest running. Unlike the other forms of monetisation, which often demand (at least partial) upfront 

financial commitment in the form of payment models based on certification, they are highly risky, as they 

expect learners to pay at the end of their studies. However, they can also bring in potentially higher gains, 

as their low cost opens them to a much wider learner population than any of the other financial models. 

Even a small percentage of a substantial learner body [e.g. mid-career professionals (Littenberg-Tobias 

and Reich, 2020) and female learners with higher degrees (Samuelsen and Khalil, 2018)] could bring in 

potentially higher revenues than other streams. Thus, a mechanism to understand when and how they can 

transition to paid certification is essential. Certification, among other  profitable services of MOOCs, for 

example, course hosting fees and linking learners to potential employers, seems to be among the highest 

revenue drivers (Brown, 2013). Therefore, it is vital to survey previous certification predictive models. 

While MOOCs were analysed in the past and reviewed in the literature, including in surveys, there is no 

literature review up to now synthesising and analysing previous studies on MOOC certification 

predictive modelling; this is the gap we are addressing in this study. 
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2.11. Epilogue 

This chapter introduces a definition of MOOCs and MOOC certification. It also discusses the history and 

the types and platforms of MOOCs. Additionally, the data sources for modelling, business models, and the 

various tiers of monetisation are also discussed. The following chapter contains the methodology, 

synthesis, and results of our literature survey concerning certification prediction in MOOCs. 
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Chapter 3 : Systematic Literature 

Review 

3.1. Prologue 

This chapter reviews the current MOOC certification predictive models in a systematic way using the 

PRISMA protocol. The chapter concludes with an organised synthesis of the works surveyed along with 

further elaboration on related topics such as the limitations of the current models and future opportunities 

for development. 

3.2. Introduction 

Considering the modernness of MOOCs, being around for a decade and that providing platforms are still 

at their critical stage of building solid business models (Pappano, 2012), a clear review of previous 

certification models would help shed light on how these models have dealt with the low certification rate, 

i.e., predicted certification across the different MOOCs platforms. The current SLR, which deals with a 

total of 25 works predicting certification in MOOCs, as explained in detail in Section 0, is considered 

necessary to evaluate these studies’ definitions of MOOC certification and findings, as well as compare 

the results based on the methodologies the surveyed works followed. This objective is essential, 
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considering the different definitions of certification, i.e., free (where the prediction task does not need to 

include, typically, a learner’s financial decisions) or paid (where the learner pays a certain fee to earn a 

certificate of completion). An explicit exploration of how the surveyed models are similar/different based 

on the type of certification being addressed is essential. 

While most platforms generally follow similar approaches in terms of content delivery, looking in-

depth into their designed courses, the method of teaching, the type of learning content or even the data 

aggregated from different platforms show that each platform has its unique method of certification. Thus, 

a predictive model/algorithm may not be suitable for different courses/platforms (Lee, 2018b). For 

instance, some platforms provide learners with more visuals compared to audio content, others allow 

individuals to create and deliver courses, whereas some other platforms restrict this to institution-affiliated 

educators only. Similarly, the payment protocol for the course certificate differs, where it can be a pre-

requirement to join the course or done after finishing the whole. This logically stands against the concept 

of a one-fits-all predictive model, where each platform, dataset, sample of learners or prediction task has 

its own characteristics (Rizvi et al., 2022). Therefore, the conducted SLR compares the current MOOCs 

certification predictive models, based on all of the above factors, for a better insight into the state-of-art in 

MOOCs certification prediction. 

3.3. Previous Surveys on MOOCs 

Previous MOOC-related reviews of the literature have addressed several pedagogical concerns. These 

include some theoretical reviews, such as modelling learning and assessment in MOOCs (Joksimović et 

al., 2018), self-regulated learning (Wong et al., 2019) and teaching and learning progress (Deng, 

Benckendorff and Gannaway, 2019). Other reviews considered the practical side of MOOC studies, such 

as research methods, topics, and trends of empirical MOOC research (Zhu, Sari and Lee, 2020), didactic 

applications for Foreign Language Learning (Palacios Hidalgo, Huertas Abril and Gómez Parra, 2020) and 

the role of motivation in retention (Badali et al., 2022). Prediction-wise, a few studies have focused on the 

traditional challenges of low completion (e.g., predicting learner success (Gardner and Brooks, 2018b), 

predicting dropout (Mehrabi, Safarpour and Keshtkar, 2020; Dalipi, Imran and Kastrati, 2018) and 

identifying predictive model outcomes, features, and techniques used to evaluate predictive model 

performance) (Moreno-Marcos et al., 2018b). However, synthesising previous studies on MOOC 

certification, which include certification prediction models for free and paywalled courses, understanding 

MOOC business models, and exploring recent platform offerings (e.g., university degrees and corporate 
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training), has not been done to the best of our knowledge. This coincides with the few studies on the 

understanding, analysis, and modelling of MOOC certification in comparison to other more studied sides 

of MOOCs mentioned above (Cagiltay, Cagiltay and Celik, 2020). Since the beginning of their 

unprecedented proliferation a decade ago, we believe MOOCs have gone through advancement, especially 

content monetisation, as discussed in detail in Section 2.9, which deserves a separate survey to explore 

these financial trends. 

As the present study aims at surveying the previous works on MOOC certification predictive models 

since the emergence of MOOCs in 2011 (Ng and Widom, 2014) up until the end of 2021, we intend our 

study to be as inclusive as possible, keeping in mind the need to exclude any irrelevant previous work, 

which does not fall into our inclusion criteria as explained in Section 3.4.3. Further details on the inclusion 

and exclusion strategy are presented in Section 3.4.1. 

3.4. Surveyed Resources 

Our surveyed resources22 include two typically used collection databases: Scopus23 and Web of Science 

(WoS)24, the two most comprehensive abstract and citation bibliographic databases of peer-reviewed 

scientific journals and conference proceedings, with more than three billion cited references combined 

(Web of Science, Confident research begins here.  ; Pranckutė, 2021; Zhu and Liu, 2020). In addition to 

their tremendous number of indexed references, these databases index the majority of the publishers in the 

field of e-learning, and EDM, such as the Institute of Electrical and Electronic Engineers (IEEE) Xplore25, 

Association for Computing Machinery (ACM) 26, Springer27, Taylor & Francis Group28, ELSEVIER29 and 

ERIC30. Our adopted resources above index the conferences and journals, ordered alphabetically below, 

which are the typical venues for MOOC predictive modelling publications: 

 
22 Google Scholar was dropped from this survey for not allowing searching for keywords within abstracts, 

using wildcards and exporting the retrieved results. 

23 https://www.scopus.com 

24 https://www.webofscience.com  

25 https://ieeexplore.ieee.org  

26 https://www.acm.org 

27 https://www.springer.com  

28 https://www.tandfonline.com  

29 https://www.elsevier.com/en-gb  

30 https://eric.ed.gov  

https://www.scopus.com/
https://www.webofscience.com/
https://ieeexplore.ieee.org/
https://www.acm.org/
https://www.springer.com/
https://www.tandfonline.com/
https://www.elsevier.com/en-gb
https://eric.ed.gov/
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• British Journal of Educational Technology (BJET)31. 

• International Conference on Artificial Intelligence in Education (AIED)32. 

• International Conference on Educational Data Mining (EDM)33. 

• International Conference on Learning Analytics and Knowledge (LAK)34. 

• International Conference on Learning at Scale (L@S)35. 

• International Journal of Artificial Intelligence in Education (IJAIED)36. 

• Journal of Learning Analytics (JLA)37. 

• Journal of Educational Data Mining (JEDM)38. 

3.4.1. Inclusion and Exclusion Criteria 

This survey includes journal articles and conference papers that meet some essential requirements: (1) 

being written in English, (2) peer-reviewed to ensure the highest standards of research rigour and 

credibility, (3) providing an adequate explanation of the data used, the feature engineering approach 

followed, the learning algorithms adopted, and the results achieved. Our survey excludes other 

publications, such as pre-print, book chapters, books, and magazines. 

The keywords mooc*, “massive open online course*” and Certif* were used for retrieving the surveyed 

works. The surveyed websites’ search queries are not case-insensitive (i.e., the search keywords’ different 

cases, such as ‘MOOCs’ or ‘moocs’, are treated alike). Keyword phrases, signalling the necessity for 

retrieving documents that include exact word order, such as ‘Massive Open Online Course’, were applied 

using quotation marks; this has helped filter out many unrelated search results. ‘Predict*’ was not included 

with the search keywords (1) to make the retrieved studies as comprehensive as possible (2) and avoid 

 
31 https://www.bera.ac.uk/publication/british-journal-of-education-technology  

32 https://iaied.org  

33 https://educationaldatamining.org  

34 https://dl.acm.org/conference/lak  

35 https://learningatscale.acm.org  

36 https://iaied.org/journal  

37 https://learning-analytics.info/index.php/JLA  

38 https://jedm.educationaldatamining.org/index.php/JEDM  

https://www.bera.ac.uk/publication/british-journal-of-education-technology
https://iaied.org/
https://educationaldatamining.org/
https://dl.acm.org/conference/lak
https://learningatscale.acm.org/
https://iaied.org/journal
https://learning-analytics.info/index.php/JLA
https://jedm.educationaldatamining.org/index.php/JEDM
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missing any related studies tagged with synonyms (e.g., ‘classification’, ‘detection’ or ‘forecasting’), either 

within the title (Yeomans, Reich and Acm, 2017) or the abstract (Wang and Wang, 2019; Liao et al., 2017; 

Elbadrawy et al., 2016). 

Wildcards such as the asterisk (*), interpreted as a substitute for any number of letters, were used. We 

used an asterisk after each root form of a search term to include either any potential popular form of our 

search keywords (such as ‘MOOC’ as well as ‘MOOCs’) or any other possible form of that search term 

(e.g., ‘certifi*’ also collects information containing ‘certificate’ or ‘certified’), allowing all terms beginning 

with the same root word to be included in the search. Additionally, we use parentheses to override the 

order of precedence, where the expression(s) inside the parentheses is/are executed first. These search 

techniques are typically standard across the publishers’ database websites (Scopus39 and WoS40) 

surveyed(ACM Advanced Search; Springer Link Search Tips; IEEE Explore Search Tips; Web of Science 

Core Collection: Search Tips; Scpus: Tips and Tricks). 

The database search using the above protocol retrieved 446 studies (WoS n = 250 and Scopus n = 196). 

After merging the two files, 114 duplicated studies were removed, resulting in 332 unique studies, as 

shown in Table 3.1. Journal articles represented just over half of the total studies (n = 170), whereas 

conference papers (n = 134) represented about 40% of the retrieved studies. 

Table 3.1. The number of retrieved works from WoS and Scopus, distributed by the type of the work. 

Ref. Type WoS Scopus 

Journal Articles 88 82 

Conference Papers 91 43 

Book Chapters 11 7 

Reviews 2 3 

Early Accesses 0 3 

Editorials 2 0 

Total 194 138 

 

 
39 https://blog.scopus.com/tips-and-tricks  

40 https://clarivate.libguides.com/woscc/searchtips  

https://blog.scopus.com/tips-and-tricks
https://clarivate.libguides.com/woscc/searchtips
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Figure 3.1 shows the types of retrieved works distributed by the number of authors, where the dotted lines 

denote the mean, and the solid lines denote the median. The number of authors generally correlates with 

the significance of the work (i.e., journal articles and conference papers tend to have more authors). 

 
Figure 3.1. Types of retrieved studies distributed by the number of authors (M = solid lines, μ = dotted lines). 

The left-hand geometric network in Figure 3.2 illustrates the unique studies (n = 332 nodes) and the 

authors’ collaboration on different studies (157 edges). The edge weights represent the number of co-

authors of multiple works. Regarding author collaboration in different works, the data show that nearly 

one-third (n = 108) of the studies were authored by at least one author of different studies. The right-hand 

figure illustrates a network of author collaborations, where nodes denote unique authors (n = 945), and 

edges denote co-authorship (n = 1930). The edge weights between authors here represent the number of 

co-authored works. There are only 31 sole authors who independently authored at least one study, whereas 

two-to-four-author studies were the highest among our retrieved studies, as shown below. 
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Figure 3.2. Study-to-study (left) versus author-to-author network (right). 

3.4.2. Screening Process 

For the screening step of the studies, we used Rayyan41, a free, semi-automated online tool that expedites 

the screening of abstracts and titles in an interactive blind-reviewing environment (Ouzzani et al., 2016). 

Rayan is an AI-based tool that learns from preliminary raters’ manual labelling. It provides labelling 

suggestions for the awaiting studies, reducing the load on raters and providing them with experimentally-

approved high accuracy suggestions (Olofsson et al., 2017). 

In this stage, three independent raters, all with a PhD degree and previous research publication 

experience, went through the 332 titles and abstracts to label them as included or excluded based on the 

criteria mentioned in Section 5.2 above. During the screening, we flexibly erred on the side of inclusion 

for studies that indirectly contributed to the literature on MOOC certification prediction. This includes 

statistical studies (e.g., studies that investigated the impact of course fee payment on learners’ behaviours 

or the learners’ demographic determinants of certification) (Goli, Chintagunta and Sriram, 2019; Arslan, 

Bagchi and Ryu, 2015) or studies that minorly predicted certification with, or as a subsequent target of 

other outcomes, e.g. dropout or grades (Xu and Yang, 2016). Figure 3.3 shows a snapshot of the summary 

 
41 https://rayyan.ai  

https://rayyan.ai/
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report of the studies’ screening process, which took almost 12 hours and 27 sessions on average for each 

rater. 

 
Figure 3.3. Summary of studies screening conducted by the three raters. 

The screening resulted in 19 studies marked as included, 296 excluded, and 17 ‘conflict’ studies. Rayyan 

optionally allows raters to attach their reasons for the inclusion/exclusion decision. Fleiss’ Kappa, an 

adaptation of Cohen’s kappa for assessing the reliability of agreement between three or more raters 

(McHugh, 2012), was used to measure interrater reliability. The test resulted in k = 0.96, which signifies a 

substantial agreement between raters (Fleiss, Levin and Paik, 1981). 

Below is a list of the main exclusion reasons provided by raters, along with some instances of excluded 

studies: 

• Different outcomes: studies that predicted a different outcome to certification (e.g., dropout, 

retention, and assignment grades) (Impey, Wenger and Austin, 2015; Haddadi and Dahmani, 

2016; Rossano, Pesare and Roselli, 2017). 

• Non-peer-reviewed studies: books, pre-prints, and editorials (Michael Spector, 2017; Zheng, 

Chen and Burgos, 2018b; Zheng, Chen and Burgos, 2018c). 
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• Publications in foreign languages other than English (Gardair et al., 2016; Garcia Barrera, Gomez 

Hernandez and Monge Lopez, 2017; Sánchez, 2016; Vrillon, 2019; Njingang Mbadjoin and 

Chaker, 2021). 

• Assessment studies or surveys of MOOCs certification systems (Kumar, 2019; Kocdar, OKUR 

and Bozkurt, 2017; Fedorova and Skobleva, 2020; Canessa, Tenze and Salvatori, 2013). 

• Studies that already present matching keywords but are actually on entirely unrelated topics (e.g., 

studies of MOOC cybersecurity certification systems and certificate authentication) (Beckerle, 

Chatzopoulou and Fischer-Hübner, 2021; Zheng, Chen and Burgos, 2018a). 

3.4.3. Excluded Conflict Studies 

A subsequent session to review the full manuscript of the conflict studies took place. The total number of 

conflict studies was 17, out of which 11 were excluded and six were included, rendering the total number 

of selected studies (n = 25). The excluded studies include Greene, Oswald and Pomerantz (2015), which, 

in contrast to the other works that target predicting certification, used survival analysis to examine the 

degree to which the learner’s pre-stated intention of certificate attainment can predict the final exam result. 

The data analysed contains a pre-course survey within which a question about the learner's intention to 

obtain a course certificate after finishing the course. This feature, along with several other demographics 

and activities, was used to predict learners’ final grades, which is the main requirement. Still, no actual 

certification was included in the data; hence, Mourdi et al. (2019) predicted learner success (course 

completion) and dropouts using a Stanford open edX dataset of around 3,500 learners. Lim, Tang and 

Ravichandran (2017) examined the mediating effects of learner intention for enrolment on the correlation 

between facilitating conditions and habit (independent variables) and the course’s actual usage (dependent 

variable) by adapting the UTAUT2 model. Glance, Barrett and Hugh (2014) used log activities of 42 

Stanford University MOOCs to examine the attrition rate within course auditors and active participants. 

Isidro, Carro and Ortigosa (2018) employed various shallow and deep learning techniques to predict 

dropout in MOOCs. The present study emphasised that predictive model performance does not necessarily 

positively correlate with complexity. The study showed that simple shallow algorithms (e.g., NB and 

Decision Tree) outperformed Long Short-term Memory (LSTM) in their dropout prediction task (Jiang, 

Zhang and Li, 2015) in Chinese. 
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All the above studies, while adhering to our search protocol’s keywords and having at least one 

included rating, do not fall within the outline of this SLR and are hence excluded. Figure 14 illustrates the 

PRISMA-based flow diagram of the study identification-to-selection process. 

We followed the PRISMA framework (Moher et al., 2009; Page et al., 2021), the most frequently used 

and cited guideline for conducting systematic reviews and meta-analyses (Kite et al., 2015; Sitanggang et 

al., 2021; Page and Moher, 2017; O'Dea et al., 2021; Fleming, Koletsi and Pandis, 2014) to guide our 

research process. PRISMA contains four phases stepwise (identification, screening, eligibility, included) 

and a precise 27-item checklist (starting from how to title the present systematic review to declaring 

whether funding has been received to conduct the present systematic review) to increase the transparency 

and quality of the systematic review reported (Liberati et al., 2009). The protocol was followed while 

conducting this review; Nevertheless, some items were associated with meta analysis and thus not 

applicable to our analysis (see Appendix C for the full PRISMA 2020 checklist). Stage one involves 

developing the search protocol by determining the research questions, identifying the bibliographic 

databases, and defining the search keywords. Stages two and three subsequently involve applying inclusion 

and exclusion criteria. The last stage involved extracting data from the eligible studies and conducting the 

analysis, which was individually conducted by the author of the present thesis. Figure 3.4 illustrates this 

process in detail, along with the outcomes of each stage. 
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Figure 3.4. PRISMA flow diagram 

3.4.4. Categorisation Strategy 

Although the works surveyed aim to predict certification in MOOCs, each experiment has its own 

characteristics. Thus, selected studies for inclusion cannot be directly compared based on the final 

prediction’s numerical results (e.g., performance metrics such as accuracy from ML models or p-value for 

statistical models). One of the reasons for this heterogeneousness is the study-by-study variation in the size 

of the population, the number of MOOCs analysed, the included runs of each course, and the type of data 

utilised. Additionally, the methodologies followed and the metrics reported were divergent across all the 

works surveyed. Thus, this study instead categorises the surveyed works mainly based on the general 

methodologies followed along with visual synthesis from different angles: the data sources (platforms), 

course delivery interval in years, size of the data utilised (number of learners, courses, and runs), types of 

the data (Clickstream, demographics, discussion forum-based), classification models/algorithms, 
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performance metrics, prediction earliness and finally the type of certification (whether free or paid). For 

the visual representation of the synthesised studies, we used Plotly42: a Python graphing library which 

generates interactive web-based graphs (Sievert, 2020) as illustrated across Section 0. 

3.5. Certification Prediction in MOOCs 

3.5.1. Statistical Models 

While the primary purpose of this study is to identify the previous works on predicting certification in 

MOOCs, we also included previous works that used statistical analysis to identify the determinants of 

certifications, compare ‘free’ learners versus certificate earners or works that measure the difference 

between the activities of both types of learners (free and certificate). The surveyed statistical models 

typically use course-level data to provide a general outline of certified learners’ characteristics and 

activities based on course metadata. The models of this orientation have been grouped based on the type 

of data used for analysis, as below. 

3.5.1.1. Clickstream-based Models 

Wintermute, Cisel and Lindner (2021) conducted a network-based exploration of learners’ achievements 

by examining how a course-course interaction affects the likelihood of certification. The certification rate 

is about 8% of registered learners. Using more than one million course registration events by almost 400 

thousand learners on a French MOOC, the learners’ certification was modelled with Weibull Shape 

Parameter and Logistic Regression (LR). The study found that user engagement positively correlates with 

the certification rate in all 140 courses analysed. However, a registration burst (where a learner registers 

for multiple MOOCs within a short period) correlates negatively with the probability of certification. As 

suggested by the authors, this behaviour can be improved by restricting the registration to a pre-defined 

number of MOOCs over a certain period. However, this burst might represent a pattern of behaviours, such 

 
42 https://chart-studio.plotly.com/~shehri_m7#/  

https://chart-studio.plotly.com/~shehri_m7#/
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as the MOOC selection strategy, in which learners optimise their learning options, which may need further 

investigation. 

Wang, Hemberg and O’Reilly (2019) studied the impact of learner-obtained grades on their activities 

(two groups of learners: certified learners and continuously participating learners) during the remaining 

content of the course using data from two edX MOOCs. The study found that the activity level positively 

correlates with the learner grade, and the delta activity variation (calculated from the difference in the 

activity before and after the finalisation of a grade) also correlates positively with the grade. Regarding 

certificate earners’, delta grade (grade changes) was slightly different compared to delta activity, and active 

participants (who continually participated but were not interested in certification) had higher delta grades 

than certificate earners. It also found that learners' behaviours did not change significantly after reaching 

the minimal grade for certification and that the change in grades and activity is dependent on course 

characteristics (such as difficulty). More specifically, certified learners do not tend to change their 

behaviour during the course for later planned achievements. In particular, learners’ grades should not be 

assigned precedence in significantly interpreting learner behaviours. While no solid relationship was found 

between grades and activities, low grades and dropouts correlated considerably. 

To explore learners’ intention–behaviour gap in MOOCs (Celik and Cagiltay, 2023) investigated the 

change in learners’ intentions from completion and certification attainment to various outcomes. The study 

indicated that the intention-behaviour gap occurs in courses when learners do not reach the intended 

behaviours. The intention-behaviour gap for failing to act upon learners’ positive intentions was caused by 

inclined abstainers. According to the findings, these abstainers were mainly related to the individual learner 

(e.g. lack of time, insufficient prior knowledge of the topic, taking another course from another platform), 

technical issues (issues related to connectivity, low computer specification) or course design (content is 

not straightforward or not as expected, late assignment grading, the need for more interactive courses). 

This study highlighted some concerns that MOOC providers should consider to reduce the attention 

behaviour gap. 

3.5.1.2. Survey-based Models 

Using a pre-course survey, Yeomans, Reich and Acm (2017) examined the impact of prompting MOOC 

participants’ learning goals for success by reviewing learners’ intention to earn a certificate, having 

achieved grades between 70% and 80%. The study found that prompting learners’ pursuits in advance can 

increase the certification rate by 40%. The survey data revealed that almost 60% of learners intended to 
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certify; nevertheless, only 16% obtained certificates at the end of the course. They used Latent Dirichlet 

Allocation (LDA) for clustering the survey-extracted textual data, showing promising results in forecasting 

certification. Learners who planned to certificate were more likely to explain how they would engage with 

the course than non-paying learners, who only specified when and where they would engage with the 

course content. 

Using two runs of an introductory Python MOOC offered before and during the COVID-19 pandemic, 

Yee et al. (2022) examined how the pandemic influenced US learners’ success in MOOCs. Revealing the 

correlation between various measures of COVID-19 severity and certification rate, the study found some 

of these relationships significant. The preliminary analysis showed that the pandemic led to a higher 

absolute number of enrollees and certificate earners; nevertheless, the certification rate dropped when local 

pandemic severity increased. While the pandemic resulted in more motives for enrolling on MOOCs, such 

as quarantining and increasing unemployment, learners may have lost their motivation due to the growing 

effect of COVID-19 in their locales. Additionally, a strong (negative) correlation between the pandemic 

new cases and the certification rate change within the two runs was observed. Since a deep understanding 

of this association was unavailable, further analysis of the causal mechanisms of pandemic-related stressors 

and certification statistics may help improve certification predictive modelling. 

3.5.1.3. Discussion Forums-based Models 

(Joksimović et al., 2016) conducted a social network analysis (SNA) based on learners’ social interactions 

in the discussion forum to investigate the relationship between learners’ social centrality measures (i.e., 

degree, closeness, and betweenness) and their certificate attainment. The study used descriptive and 

statistical SNA on two runs of the same course (one in English and one in Spanish). It concluded that 

learner structural centrality with reciprocal ties with peers (more interaction with other learners) positively 

correlates with the likelihood of certificate attainment at the end of the course. However, certificate earners 

in the course's English version (run) were more likely to interact in the forum. 

Similarly, Jiang, Fitzhugh and Warschauer (2014) explored the association between learner centrality 

and performance using discussion forum data from two MOOCs but around double the number of learners 

analysed by . Learners were found to rarely interact with other learners in different performance groups 

(grades and attainments), suggesting that learners may use discussion forums to facilitate information flow 

and help-seeking rather than as a tool for social interaction with other learners. Additionally, the discussion 

forums were mainly used by a small percentage of learners who actively participated in commenting and 
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replying, far more than their peers. Regarding certification, one of the MOOCs (algebra) showed that 

certified learners were more central in discussion forums. In contrast, the other (financial planning) showed 

no association between learner centrality and the likelihood of certificate attainment. According to the 

authors, one possible reason for the above difference might be the nature of the MOOC itself. Algebra is 

more academic and prepares learners to succeed in higher education, whereas financial planning is more 

of a life skills course. As a result, learners who were active in the discussion forums in the latter course 

may not have been concerned about certificate attainment. 

Liu et al. (2022a) used discussion forums’ emotional and cognitive engagement, which have an 

interactive relationship but are rarely analysed at a deep level, to forecast learning achievements in 

MOOCs. The developed text classifier aimed at automatically detecting emotional and cognitive 

engagement and identifying their sophisticated relationships with course outcomes. The developed model 

first used interpretable NLP techniques for recognising emotional and cognitive engagement patterns using 

data from 8867 learners’ discussions. Next, the relationship between emotional and cognitive engagement 

and achievement was analysed. The structural equation modelling shows that learning achievement is 

highly influenced by learners’ emotional and cognitive engagement, especially with confused and positive 

emotions, which were highly correlated with learning achievements compared to negative emotions. The 

findings also indicated that co-occurring emotion and cognition indicators were more reliable predictors 

of learning achievement than other variables. This study reveals the significant role of learners’ emotions 

in discussion forums as a predictor of course outcomes and learning achievements. 

3.5.1.4. Multi-sources-based Models 

Some studies have used more than one type of data to model the certification in MOOCs. For instance, 

Arslan, Bagchi and Ryu (2015) explored the variables associated with MOOC certification using multi-

level modelling: learner’s characteristics, economy, culture-related variables, and country-level 

infrastructure of 24 developed and developing countries. The findings suggest that internet bandwidth and 

Hofstede’s uncertainty avoidance cultural dimension are positively associated with the likelihood of 

earning a MOOC certificate. Demographically, the study further found that gender, age, and level of 

education significantly correlate with certificate attainment on edX. Additionally, determinants of 

certification differ between developed and developing countries. Country-oriented variables in developing 

states, such as gross domestic product (GDP) per household with PC, significantly impact certification 

potential. On the other hand, all developed country learners’ demographics, especially learners’ age and 

levels of education, showed a high correlation with earning a certificate. Also, MOOC certificate earners 
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were, as found in earlier studies on learner characterisations, such as Davis et al. (2013), of younger age 

groups, higher level of education, and enrolled mainly for professional development. 

Similarly, Cagiltay, Cagiltay, and Celik (2020) statistically analysed course certification rates on edX, 

but with a larger dataset of 2.8 million learners of 122 MOOCs, the most extensive experiments in our 

survey in terms of the number of courses and learners. To analyse certificate attainment, the experiment 

used the courses’ metadata (average chapters completed, total number of chapters, total forum messages, 

and learners’ mean age). They found a positive relationship between the number of average chapters 

completed, mean age, the total number of forum messages and certification rates, in parallel with earlier 

findings by Hone and El Said (2016). In terms of course design, it was found that shorter and more 

interactive courses had higher certification rates. Discipline-wise, computer science and business courses 

were the most popular among learners. Most of the 3 million enrolled learners have degrees (bachelor’s, 

master’s, or both). These recent survey results are consistent with previous research on MOOC learners' 

higher education characteristics (Macleod et al., 2015; Bayeck, 2016; Christensen et al., 2013). These 

suggest that MOOCs are mainly designed to target professionals and that the fundamental motive of 

launching MOOCs, “democratising education”, has been discarded (Reich and Ruipérez-Valiente, 2019; 

Cagiltay, Cagiltay and Celik, 2020). More interestingly, the general decrease in yearly certified learners, 

regardless of the increasing number of enrolled learners found by Cagiltay, Cagiltay and Celik (2020), is 

concerning and pending further research. Although the data analysed was sourced from only one platform, 

which may not be considered a general trend across MOOC platforms, the massive size of analysed learners 

and their heterogeneous background suggest examining the reasons for this phenomenon at a deeper level. 

Samuelsen and Khalil (2018) statistically examined the correlation between the effort exerted over a 

specific time window and the likelihood of certificate attainment after achieving a final grade of at least 

55%. The data were sourced via logs and a pre-course survey, including learner demographics (age, gender, 

level of education), learner’s country of origin), video lessons, assignments, exams, and forum activities. 

This study examined the correlation between learners’ effort and learning achievements and expectedly 

found that learners who exert more effort (specifically, more active days on the platform) have a higher 

probability of certification. However, learners with more than 100 active days have a lower probability of 

certificate attainment. Regarding learner demographics, female learners with higher degrees had a higher 

probability of obtaining a certificate, whereas age was negatively correlated with certification. As 

explained earlier, this study used the learner’s number of active days to measure learner effort. However, 

this measure does not necessarily imply the effort exerted by the learner. Active time may indicate “active 

unattended sessions” rather than real active learning (Lee, 2018b). 
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Using two case studies, Littenberg-Tobias, Ruipérez-Valiente and Reich (2020) examined the impact 

of course price reduction by offering free certificate coupons on learners’ certification behaviour. The first 

analysed the participation and certification rates in seven runs of four paid MOOCs versus two independent 

free-certificate-eligible MOOCs for comparison. There was a significant increase in the certification rate 

from 3% in the paid courses to over four times (13%) in the free-certificate-eligible MOOCs. There was 

no significant difference in both groups’ demographics, apart from the country of origin, where the free 

certified learners were more likely to be from the United States. The second case study compared the 

behaviours and demographics of learners who purchased a computer science course against those who 

studied the same course after it was offered for free. Free learners were more likely to be women with a 

higher degree (mainly a PhD) and between 50-59 years old. The completion rates were 50% and 70% for 

free-certificate and paid-certificate courses, respectively, substantially higher than the completion rate in 

the standard post-paid courses, which stands at around 10% only. This study outlines learner behaviour 

differences in responding to MOOC price discounts. 

Cobos and Jurado (2018) explored the impact of a three-dimensional perspective: learner’s opinion 

(explicit attribute), interaction (implicit attribute), and context (contextual attribute) on obtaining a 

certificate (either free “honour” or paid “verified” at the learner’s decision) at the end of the course, using 

two MOOCs of different disciplines (science and social science). While the descriptive analysis conducted 

in this study introduced a fundamental general insight into the learners’ characteristics and behavioural 

patterns rather than a deeper statistically tested investigation of learners’ behaviours, it outlines some 

general statistics of learners’ certification behaviours in MOOC. From the total number of registered 

learners, the free (≈ 5%) and paid (≈ 3%) certification rate was higher in the social science course compared 

to the science course, where the free certification rate was around 4% and paid was around 1% only. This 

conforms with the findings of other studies, such as Wintermute, Cisel and Lindner (2021) and Littenberg-

Tobias, Ruipérez-Valiente and Reich (2020). A synthesis of the certification statistics across all the 

surveyed studies is provided in Section 0. Other findings by Cobos and Jurado (2018), which include the 

course discipline-based difference in learner grades, time spent on assignments, time spent on videos, and 

learner degree, indicate that each course has its own characteristics. Hence, merging courses from different 

disciplines may not yield informative analyses and results. 

Mullaney and Reich (2015) examined the influence of two different methods of course delivery 

(staggered versus all-at-one) on learner ontrackness, which was low in both paradigms. However, learners’ 

persistence, completion, and participation were different. The sequential release showed learners stayed in 

cohorts, accessing the content through the course material over the first weeks in lockstep. Later, most 

learners started engaging in steps different from the most current (assigned) one. The all-at-one release 



 

 

46 

paradigm was more asynchronous, in which almost all learners adapted their own individual pace through 

the course material. For certification, ontrackness modestly affected the certification positively, controlling 

for a learner’s number of active weeks, which was the strongest certification predictor in both courses but 

not in the same direction. The number of active weeks in the staggered course positively affected 

certification, whereas it negatively affected certification in the full release. According to the authors, a 

preliminary interpretation is that the all-in-one release allowed learners to reach the required certification 

score with less effort than the staggered course, where certificate-intended learners had to return to the 

course temporarily to keep attempting to reach the required certification grade score. Another interesting 

finding was that learners generally visit the first part of each course, the only portion of the course seen by 

a substantial number of learners. One recommended course redesign to entice learners is having an 

introductory substep each week summarising the main ideas and goals of the current week. The study 

concluded that releasing the course content in an all-at-one style is preferred for a more flexible learning 

experience. Course designers should consider this phenomenon while developing future runs or new 

MOOCs. 

Goli, Chintagunta and Sriram (2019) studied the impact of paying for a MOOC certificate in advance, 

or within the first weeks of the course on learners’ engagement. This study, in particular, examines the 

effect of two temporal variables on learners’ engagement: (1) the effect of the certificate, which showed a 

boost in learners’ engagement until reaching the minimum required grade for earning a certificate, and (2) 

the effect of sunk-cost fallacy on paying but not certified learners, which is proved time transient and lasts 

only for a specific time after making the course fee payment. The analysis used 70-edX-course data and 

showed that paying learners engaged with the course and scored assessment marks higher than free learners 

to meet the certification condition (passing threshold). The above two variables increased paying learner 

engagement by about 10% compared to other non-paying peers. However, the difference between the two 

groups shrank as soon as the learner met the required certification threshold. The difference was more 

significant in the average final scores (73% for paying and 33% for non-paying), which interprets paying 

learners' commitment to the grade certification threshold. The variables used in the study included the 

learner's total time spent (minutes), average session duration (minutes), average number of sessions, forum 

activities (#posts/#visits), average grade, and graduation rate. Such findings can help platforms and course 

designers modify accordingly (e.g., redesigning course milestones or rescheduling fee payments, which 

are required by the first 24 days of the course) to maximise learners’ engagement with the course content 

and, at the same time, help monetise courses. 
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3.5.2. Machine Learning Models 

3.5.2.1. Clickstream-based Models 

Coleman, Seaton and Chuang (2015) used LDA to explore behavioural patterns via learners' click streams. 

In this work, learners’ interaction with the courseware was considered a “bag of interaction”, from which 

probabilistic use cases were formed for clustering learners based on their behaviours using LDA. Using 

the probability distribution associated with each case, an interpretable representation of access patterns for 

each user was formed, which helped predict the likelihood of certification. With little data, using click 

stream only, this model achieves promising results (0.81 ± 0.01 accuracy). Nevertheless, examining the 

effect of more factors, such as population size and course structure, on the resulting use cases may help 

improve the model performance. 

Singhal (2023) predicted learners’ success using a HarvardXMITx-Course Dataset, which contains data 

for 641138. The proposed model is based on CNN, adopting eight possible input variables related to 

learners’ activities in MOOCs. The variables were tested as a preliminary step to identify their importance 

to the proposed predictive model; four inputs and two outputs were nominated to build the final version. 

The achieved performance of the proposed model ranged between 0.82 and 0.91 for predicting success and 

success level, respectively. The data adopted for building this predictive model include the number of daily 

activities, played videos, events, and the number of chapters opened. 

3.5.2.2. Survey-based Models 

Kostopoulos et al. (2021) recently built a multi-ML techniques-based certification predictive model and 

found that the weekly overall grades were the most predictor of certification. The 11-week dataset included 

some demographical variables (gender, employment status, current occupation) as well as some 

unexplored-before variables (professional experience in years, daily work hours, English language skills, 

digital proficiency skills, previous experience in MOOCs, mother tongue and average weekly available 

hours for study). The results show that boosting and ensemble were the top-performing algorithms, even 

without fine-tuning parameters (using the default values of parameters). 

Rõõm, Luik and Lepp (2022) adopted a decision tree for predicting learners’ success – measured via 

computing the difference between learners’ intentions and their actual course performance – and 
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certification in a computer programming MOOC. The factors (features) used to feed their model included 

learners’ characteristics, engagement metrics and data collected with a voluntary questionnaire in a 

computer programming MOOC. The results showed that learners’ prior education, prior experience with 

programming and online courses, use of the referred external materials and the motivation to obtain a 

certificate were the most influencing factors (representative features) for the predictive model to learn. The 

study concluded by suggesting complementing learning materials with links to external materials and 

developing a range of support mechanisms for learners to choose from, which may allow course providers 

to re-evaluate the resources used in the courses. 

3.5.2.3. Discussion Forums-based Models 

Jiang et al. (2014) employed learners’ social interaction in Coursera's MOOC discussion forum to build a 

certification predictive model using the first week-only data. The features used included social network 

degree, which measures the local centrality of the learner interacting with his peers in the course discussion 

forum. This measure has already been calculated and explored in the authors’ previous work (Jiang, 

Fitzhugh and Warschauer, 2014), whereas here, it was used for predicting certification using a logistic 

regression classifier. This study predicted not only certification but also the type of certificate earned, 

whether distinction or normal, with two prediction scenarios: distinction versus normal certificate and 

normal certificate versus no certificate. 

Liu et al. (2022b) used the temporal cognitive topic model (TCTM) – an unsupervised learning method 

- to measure the influence of learners’ cognitive engagement patterns (e.g. tentative or certain) and 

concerns (e.g. the topics in course content or logistics) on learner success in MOOCs. TCTM was 

specifically adopted to investigate learners’ interaction while discussing different topics at different time 

points of the course using data from a Modern Etiquette course. The study found that certification 

acquisition and examination grades were tentatively discussed by low-achievement group (cluster), 

whereas high-achievement learners discussed more on-task topics. Moreover, a moderation analysis 

revealed that the moderating effect of discussion guidance, especially for instructor-led guidance, between 

learning achievements and salient cognitive topics was significant. 

3.5.2.4. Multi-sources-based Models 
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This section reviews studies that employ machine learning for predicting certification in MOOCs, either 

using supervised or unsupervised learning. For instance, Ruipérez-Valiente et al. (2017) used a 

combination of raw and computed features to build the predictive models, which include the grade 

achieved in the assignments (problem progress), the percentage of the video watched (video progress), the 

total time spent on assignments (problem time), the total time spent on watching videos (video time), the 

total time spent on the whole course (total time), the total number of course visits (sessions), the number 

of events produced by the learner (events), the total number of days that learners logged (logs) and the 

time invested in each day of the course (constancy). These studies provide temporal (weekly-based) 

performance results and suggest focusing on the learners’ first four-week course activities only to build an 

effective predictive model. It also found that features, in terms of importance, play a massively different 

important role over the weeks; hence, early learner warning models should tune the weight of the variables 

accordingly during the different weeks of the course. 

Lee (2018b) used weekly-based features gathered from different sources, including videos, discussion 

boards, wikis, weekly assignments, quizzes, and midterm and final exams, to examine the effect of the 

uninterrupted time-on-task variable on certification. The present study attempts to address the claim that 

the previous predive model’s file logs could not recognise the off-task time during an active MOOC 

learning session (i.e., while the web browser window remains open but the learner is not present). To 

address this issue, sessions that are longer than pre-determined thresholds (10, 30, and 60 minutes) are 

excluded from the analysis. The findings unsurprisingly showed a positive correlation between learners' 

weekly learning activities and learning sessions and earning a course certificate. Interestingly, the 

likelihood of obtaining a certificate increases when more learning activities are performed in fewer 

sessions. This suggests that learning activities alone may not be sufficient to examine how learners self-

regulate their learning, and activity grouping would help form more meaningful learning experiences. 

The same author later used the same course data (Lee, 2019) to cluster learners to identify different 

groups of similar-characteristics learners using their weekly homework and quizzes. The clustering 

techniques include hierarchical clustering algorithms (HCA) and self-organising maps (SOM) and revealed 

several learning patterns based on various activities (e.g., number of attempted quizzes [problem-solving 

activity], weekly problem completion percentage, and certificate attainment). Next, a random cluster with 

an almost equal number of certified and non-paying learners was further analysed using logistic regression. 

As expected, certified learners attempted more problems compared to their peers. Holding all other 

predictor variables constant at their mean values, the log odds for certification increase when the learner 

solves one more weekly quiz or homework. The same positive correlation with certification was also 

observed with other variables (e.g., problem completion percentage on the due date). However, the 
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interesting finding in this study is how the weekly problem completion percentage negatively correlated 

with certification in the first two weeks of the course. According to the authors, one possible interpretation 

is that these learners exerted more effort when the course was easier. In addition, the weekly problem 

completion percentage started dropping from week four to the end of the course, which may also represent 

their despair in certificate attainment. 

Qiu et al. (2016) examined the correlation between learners’ demographics, forum interactions, 

behavioural patterns, and certification using data from the only Chinese MOOC platform in this survey 

XuetangX. One interesting finding is that learners who ask questions are more likely to complete the course 

and obtain a certificate than those who answer questions. This triggers an intention towards the scalability 

of MOOC forums and whether they have been effectively used either by learners to learn beyond the 

official content or by researchers for modelling certification. Our survey shows very little natural language 

processing (NLP)-based analysis of the content of the forums, where most of the studies only used 

numerical variables (e.g., the number of posts and replies) for prediction. Another finding of this study is 

the significant relation between learner level of education and course discipline. This shows that non-

degree learners are more likely to enrol in none-science courses, while graduate learners are likelier to 

enrol in science courses. Gender-wise, female learners enrolled and obtained certificates at a higher rate in 

economics, history, and sports courses compared to computer science and engineering, which were 

dominated more by male learners. Regarding the effort exerted by learners, graduates did fewer activities 

and spent less effective learning time but achieved a higher certification rate. This indicates that a learner’s 

knowledge is essential in increasing the likelihood of certificate attainment. 

Xu and Yang (2016) employed learners’ click stream activities (video watching) to cluster learners 

based on their motivation and then predict learners’ grades and certification. Using 10 edX courses, the 

model was tested on only support vector machine (SVM) but with four different kernels and reported 

performance’s general accuracy only. 

Tian et al. (2017) clustered learners into three grade-based groups and analysed learners’ behaviours 

statistically using learner activities: events, time spent in days, video watching, steps, and forum activities. 

K-means was used to find separability between the different categories. A further relationship analysis was 

conducted using learner categorisation based on learner access (registered: learners who have never 

accessed the courseware; active: access more than half of the course; general: represents the remaining 

learners). The three groups' percentages were roughly 37%, 57%, and 6%, respectively. Later, a certificate-

obtaining predictive model was developed using LDA, LR, and SVM classifiers. 
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Cobos and Olmos (2018) observed the traditional challenge of MOOCs, that despite the massive 

number of enrolled learners, courses still face many dropouts and low end-of-course certificate-earning 

rates. However, there are several reasons behind this phenomenon that MOOC providers should consider: 

• Many learners join MOOCs as ‘curious learners’ having no initial intention to complete the course 

or earn a certificate. 

• Learners do not spare enough time for self-learning activities. 

• Loss of interest in the course content due to various factors (e.g., difficulty, avoiding exams, or a 

stressful environment, specifically for certification). 

• The financial unwillingness to pay for the certificate, even if the certification requirements are 

met (Cobos and Olmos, 2018). 

This study used edX data from 15 runs of seven MOOCs to model certification and develop a Model 

Analyser System Plus for edX MOOCs (edX-MAS+) to classify learners as dropouts or certificate earners. 

They found that the Bayesian Generalized Linear Model and Stochastic Gradient Boosting performed the 

best, followed by simple artificial neural network (ANN) and random forest (RF). This suggests that deep 

models do not necessarily perform better for MOOC predictive modelling, considering the data size or the 

data linearity, where learners tend to have lower interaction towards the end of the course. 

Gitinabard et al. (2018) combined learner click stream and discussion forum data from two runs 

(offerings) of the same course to build a certification predictive model. The conducted features importance 

analysis indicated that learners’ total number of attempts, video views, votes (likes and dislikes of other 

comments), and posts were the most important features for predicting learner likelihood of certificate 

attainment. Thus, behavioural features were better predictors of certification than social behaviours, which 

might be because, typically, only a small group of learners participated in the course discussion forum. 

This study followed a sound methodological approach by training the predictive model on the course's first 

offering and testing the model performance using the latest offering available, practically simulating the 

real-world scenario in which MOOCs are offered in consecutive annual runs. However, the data were 

balanced (the none certificate earners class was down-sampled to match certificate earners) before training 

the model, which may challenge the model's reliability. Certification predictive models should deal with 

MOOCs' highly imbalanced datasets and provide real-life compatible solutions. 

Fotso et al. (2022) used various predictive algorithms, recurrent neural networks (RNNs), long short-

term memory (LSTM) and gated recurrent unit (GRU) to predict outcomes and learners’ interactions in 

MOOCs. The data adopted in their experiment was obtained from UNESCO’s International Institute for 

Capacity Building in Africa, which designs MOOCs for teacher training. The variables used to build the 
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models include social, geographical, and learning behaviours. This experiment is among the very few that 

fine-tuned the model parameters using L2 regularisation to improve the accuracy of the predictive model. 

The findings revealed that RNN was the best-performing predictor compared to the other deep learning 

architectures. Additionally, a correlation between video viewing, quiz answering, and the level of learner 

participation was observed. Also, the video or quiz length correlated with the viewing behaviour, where 

shorter videos and quizzes score a higher number of viewing (interaction). Such findings indicate the need 

for extensive analysis of designing futuristic courses regarding videos and quizzes. 

3.6. Synthesis of The Surveyed Works 

This section introduces a high-level outline and synthesis of the surveyed MOOC certification predictive 

models. We profile the data sources (platforms, course providers, number of courses/runs, number of 

learners, course delivery interval, and type of data used), adopted methodologies (algorithms/models, 

performance metrics), and model outputs (model prediction earliness, certification type, (i.e., free or 

paywalled) for better categorisation and synthesised analysis of the works surveyed. 

3.6.1. Data Sources 

3.6.1.1. Platforms 

The data sources for MOOCs prediction modelling have not been within the attention of several previous 

reviews on MOOCs research (Gardner and Brooks, 2018b). Exploring the sources (platforms) utilised for 

building MOOCs’ predictive models helps us understand how platform data plays a role in the current 

certification models. Our analysis shows that edX-based predictive models were overwhelming, where 

60% (n = 15) of the surveyed works used data from edX, as shown in  

Figure 3.5. 
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Figure 3.5. Distribution of the platforms from which the surveyed models obtained data. 

There is no specific explanation for this trend; nevertheless, we estimate that the ease of obtaining an edX 

API43 and access to some course financial details has played a role in this dominance. In addition, the data 

edX provides access to various course financial variables, as shown in Figure 3.6. Thus, this may have 

increased researchers' intention in modelling certification using edX data. 

 
43 https://course-catalog-api-guide.readthedocs.io/en/latest/index.html  

https://course-catalog-api-guide.readthedocs.io/en/latest/index.html
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Figure 3.6. A snapshot of the financial variables provided by the edX API. 

Concerning other giant platforms, Coursera, in contrast, has deprecated its API44 for unknown reasons and 

declared that the intellectual property of the course content and learner data are owned only by the partner 

institution (course provider)45. This is also the case with the most prominent European MOOC platform 

FutureLearn46 where learners' data are also under the management of the course providers. As illustrated 

in  

Figure 3.5, other providers were less represented (e.g., the French FUN, the Chinese XuetangX, and the 

Greek DEVOPS). Non-English-speaking learners form a considerable portion of MOOC participants and 

typically have different behaviour patterns, which require further analysis. These platforms may have 

sourced more literature on certification modelling than we surveyed in this work; nevertheless, they were 

excluded earlier in Section 3.4.1 for not being authored in English. 

3.6.1.2. Publication Years and Numbers of Learners/Courses/Runs 

 
44 https://build.coursera.org/app-platform/catalog/old.html  

45 https://www.coursera.org/about/terms  

46 https://www.futurelearn.com/info/terms/privacy-policy  

https://build.coursera.org/app-platform/catalog/old.html
https://www.coursera.org/about/terms
https://www.futurelearn.com/info/terms/privacy-policy
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The publication years ranged from 2014 to 2021, as shown in Figure 3.7 whereas the number of courses 

analysed in our surveyed works ranged from one to 140. The size of the nodes in the figure below denotes 

the number of learners in each work, ranging from only 961 learners in Kostopoulos et al. (2021) to 2.8 

learners in Cagiltay, Cagiltay and Celik (2020). Although the number of learners showed no association 

with the publication years, we observed a positive association between the number of courses and the 

publication years, as shown in Figure 3.7. 

 

 

Figure 3.7. The number of courses in each surveyed study distributed by publication year. Node colour darkness 

denotes the number of studies at that value (number of courses and publication year). 

Figure 3.8 illustrates the years covered by our surveyed works (the course delivery intervals). Eight works 

used data from single-year-delivered courses, whereas around 11 studies (60% of the course delivery 

interval stated models) used temporal data ranging from 2 to 5 years. 
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Figure 3.8. The surveyed models distributed by the course delivery intervals. Note: studies with undefined delivery 

intervals are excluded from this figure. 

Using different types and data sources typically helps yield better performance of the predictive models; 

nevertheless, we observed an expected inverse relationship between the amount of data used (i.e., the 

number of features employed) and the number of learners involved in the experiment. This is expected 

when researchers non-optionally lose more data due to dealing with missing values while adding more 

input features to their predictive models. For instance, Kostopoulos et al. (2021) used unique (non- 

previously explored) features to predict certification. However, the number of included learners was 

relatively low, with the lowest (n = 961) among our surveyed works. Another example is (Joksimović et 

al., 2016), where the authors dropped the survey-obtained data because it was not completed by most 

learners and sufficed with the discussion forum data (comments and replies). This allowed the authors to 

apply their model to a relatively large number of learners (almost 85,000). 

The data types employed by the surveyed works for predicting certification range from the most 

common data type of clickstream used in over 70% of the surveyed studies to the lowest-used source of 

pre-course surveys, as demonstrated in  

Figure 3.9. This is not surprising because clickstream data: 

• Are rich in information about learners and granular at various levels. 
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• Do not require more extensive human and computational pre-processing than other types, such as 

learner textual data (comments and replies). 

• Usually contain the data of all enrolled learners. 

• Are better predictors of MOOC learners’ behaviours compared to other data sources (e.g., 

clickstream, forum discussions, and assignments) (Gardner and Brooks, 2018a). 

 
Figure 3.9. Data types used in the surveyed studies. 

3.6.2. Adopted Methodologies 

3.6.2.1. Data Pre-processing and Features Engineering 

One of the core steps of feature engineering is feature selection, which was a crucial step in several 

surveyed studies not only for identifying the most representative features for prediction but also for 

improving the model performance. In contrast to the general tendency towards having more learners' data, 

which was briefly discussed in section 3.6.1.2 and more detail in this review's limitation section, the 

features used for building a predictive model should be more effective than many. However, not all the 

studies surveyed have explained the feature selection step. This might be due to the relatively limited 

number of already available features; hence, training the model on the whole dataset was the option. For 
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example, Ruipérez-Valiente et al. (2017) selected 11 variables to build the predictive model without 

explaining whether a feature selection had been conducted. 

Another reason for skipping feature selection is following statistical analysis rather than a machine 

learning approach. These studies tend to conduct descriptive statistics and correlations to measure the 

association between each variable (feature) and certification. For instance, Cagiltay, Cagiltay and Celik 

(2020) used a massive dataset of 2.8 million learners' activities (average chapters completed, total number 

of chapters, total forum messages) and demographics (learners’ mean age) to measure the association 

between these variables and certificate attainment. Besides other statistical analysis-based studies, this 

study typically aims to evaluate the correlation between the available variables and certification without 

further ML; hence, a feature selection may not be applicable in this scenario. This is the case with other 

statistical analysis-based studies surveyed, especially those that used very few sources or data types, such 

as Lee (2018b), who examined the effect of uninterrupted time on tasks on certification. 

The model's initial results, being promising due to the nature of the dataset itself, might be another 

reason for skipping the feature selection step. For example, Kostopoulos et al. (2021) reported high-

performance metrics of their model with an area under the curve (AUC) over 0.90 across all the algorithms 

employed and using only the course first-week data. Therefore, feature selection may be intentionally 

dropped due to the unnecessary from the author(s) perspective. However, this study later reported the 

importance of each feature to model performance using Shapley Additive exPlanations (SHAP) via 

plotting the SHAP value for each feature. This technique visually illustrates how much each feature has 

influenced the classifier’s decision. Another feature selection-based study is Gitinabard et al. (2018), where 

features with an importance measure of one or more were selected. 

Few studies have dedicated a separate subsection to feature selection. For instance, Cobos and Olmos 

(2018) developed a Model Analyser System for edX MOOCs (edX-MAS+), which automatically extracts, 

cleans, selects, and pre-processes course data (features) and makes them ready for feeding to the model. 

The tool automatically compiles several functionalities for processing the MOOC data to obtain the 

representative input variables before feeding them to the ML algorithms adopted for the prediction task. 

Thus, feature selection is part of the edX-MAS+ workflow. However, no further details on the method of 

computing feature importance were explained. 

3.6.2.2. Hyperparameter Fine-tuning 
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Although configuring predictive algorithm parameters is essential for improving model predictability, 

most surveyed works skipped this step or simply let the model assign the default parameters. Having the 

parameters tuned generally helps the model achieve better-forecast results and find and diagnose common 

modelling issues such as bias, underfitting, and over-fitting. Due to each experiment's different nature, this 

step improves the accuracy of the forecasted results. Some studies mentioned that tuning algorithm 

parameters were part of building their models without further details on what parameters and how they 

were tuned (Cobos and Olmos, 2018; Gitinabard et al., 2018). 

Kostopoulos et al. (2021) tuned some parameters in their eight adopted classifiers, mainly the learning 

rate and the minimum number of samples to split node, but most of the classifiers were used with the 

default values of the parameters. In particular, ensemble methods were used “without any special parameter 

configuration”, as stated by the authors. (Qiu et al., 2016) similarly reported tuning the parameters of one 

of the classifiers used (Latent Dynamic Factor Graph [LadFG]), which was the best performing compared 

to other algorithms (LR, SVM, factorisation machine [FM]). Nevertheless, the default-parameters-based 

performance of the baseline model was not reported; hence, we cannot determine the extent to which the 

parameter tunings helped improve the results. Tian et al. (2017) also reported tuning a few parameters, 

mainly related to SVM, which significantly improved based on various model deployments. 

The limited discussion and reporting of tuning parameters in the surveyed studies might be justified by 

the uncomplexity of predictive models and the limited time and computational resources MOOC models 

generally consume. However, we expect the surveyed works to be more specific on tuning parameters if 

more costly data (e.g., course video content or learner-generated textual data) were analysed, which was 

not done among the works surveyed in this review. 

3.6.2.3. Models/Algorithms 

Figure 3.10 demonstrates the modelling algorithms employed across the surveyed works. The main 

approaches followed involve statistical analysis (including descriptive statistics, correlation, and 

regression analysis), supervised machine learning (with only one study adopting deep learning), and 

unsupervised machine earning (clustering). Additionally, they include some other limitedly used 

algorithms/models: Bayesian models such as Bayesian Generalised Linear Model (BGLM), matrix 

decomposition such as Latent Dirichlet Allocation (LDA) and FM, discriminant analysis such as LDA2, 

and dimensionality reduction such as Self-organising Map (SOM). 
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Our study shows that regression was the most common technique, followed by ensemble-and tree-

based algorithms at an almost equal level of adoption. The little scope of DL-based models may be 

interpreted by the general linearity of MOOC data because (1) the majority of platforms log learners’ data 

on a weekly basis because MOOCs are minimally structured by design into consecutive weekly-based 

learning units (Yeomans, Reich and Acm, 2017; Wang, Hemberg and O’Reilly, 2019) and (2) there is a 

general decline of learner activities towards the end of the course. In parallel with this, recent experiments 

have found that complex deep models to classify MOOC learners may not necessarily boost prediction 

performance or overperform conventional ML algorithms (Aljohani and Cristea, 2021; Sebbaq, 2022). 

Regarding the below figure, multiple-algorithm works are counted multiple times. See Table 3.4 for the 

complete list of metric abbreviations and acronyms. 

 

 
Figure 3.10. The modelling algorithms employed in the surveyed works clustered by model type. 

The performance metrics reported in the surveyed works vary, as demonstrated in Figure 3.11, based on 

the algorithm/model used. We can see that cross-class metrics such as accuracy (Acc.), F1, and AUC have 

been mainly reported. This diversity of metrics is typical, considering that different metrics evaluate 

different aspects of performance quality, which vary based on the data used, the methodology followed 

and the research objectives. For example, eight studies (over one-third of the surveyed studies) reported 

accuracy solely or with other metrics. While accuracy, which works well when the number of samples 

belonging to each class is equal, may be informative in many classification tasks, MOOC certification 

datasets are usually highly imbalanced; hence, such a threshold-dependent metric may be misleading. 

Other metrics that evaluate performance over all possible thresholds, such as AUC, should be adopted 

more by MOOC certification predictive models. However, reporting appropriate performance metrics 

often depends on the outcome being measured and the objective of the prediction task. For instance, recall 
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(Rec.) may be the appropriate metric when the goal is a simple intervention (like reminding the learner), 

whereas precision (Prec.) might be the best metric for resource-intensive support to predict certification 

(Gardner and Brooks, 2018b). 

 

Figure 3.11. The model evaluation metrics reported for the surveyed works. Note: multiple-metric works are counted 

multiple times. 

3.6.3. Model Outputs 

3.6.3.1. Types of Certifications 

The surveyed studies reported a shallow certification rate, from less than 1% to only 3% of the registered 

learners for paid courses (Littenberg-Tobias, Ruipérez-Valiente and Reich, 2020; Cobos and Jurado, 2018; 

Alshehri et al., 2021) purchase a certificate, and around 4.5% to 13% of the enrolled learners for free 

courses (Ruipérez-Valiente et al., 2017; Littenberg-Tobias, Ruipérez-Valiente and Reich, 2020; Cobos and 

Jurado, 2018; Wintermute, Cisel and Lindner, 2021). These statistics are lower than the MOOC completion 

rate (broadly around 10%) due to the additional requirements of certificate attainment for freemium courses 
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(reaching a pre-defined threshold, of course, passing grade) and premium course certification. However, 

this low certification rate in MOOCs should not be interpreted as either the content being difficult to follow 

or the learners being unwilling to invest in learning. On the contrary, many learners are driven by the 

intellectual stimulation offered by MOOCs and want to use these courses for complementary lifelong 

learning, learning new skills, or simply exploring what learning is like outside of the confines of an 

institution (Kizilcec, Piech and Schneider, 2013). 

Regarding the course passing grade, a requirement for obtaining a certificate in most MOOC platforms, 

just over 30% of learners achieve the minimum passing grade (Goli, Chintagunta and Sriram, 2019). 

MOOC learners not only leak out at later stages of the course but also massively, even before the course 

commences. Learners enrolled in their course after registration are surprisingly less than half of the learners 

(only 46% to 60% of the total number of registered learners) (Alshehri, Alamri and Cristea, 2021; Cohen 

et al., 2019; Cagiltay, Cagiltay and Celik, 2020; Reich and Ruipérez-Valiente, 2019). Based on the above 

statistics, Figure 3.12 demonstrates that learners leak out through the course from a certification 

perspective. 

 
Figure 3.12. MOOCs certification leaks out towards the end of the course. Percentages are rounded and represent the 

total number of registered learners. 

Paid certification concerns modelling certificate purchasers’ behaviours and is a unique research area. This 

trend coincides with recent platforms’ introduction of more paywalled courses, such as university-affiliated 

online degrees and corporate training. The surveyed studies of this concept attempt to model learners’ 
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financial decisions by determining the most representative features for modelling course certificate 

purchase behaviour and building predictive models. 

3.6.3.2. Early Prediction Models 

Early prediction of certification is vital to detect learners' behaviours and provide them with timely support 

and effective intervention (Kostopoulos et al., 2021). In line with this concept, 40% (n = 10) of our 

surveyed studies addressed the need for early prediction of certification in MOOCs, but from a different 

perspective. For instance, Cobos and Olmos (2018) used MOOC temporal data of learners' daily and 

weekly activities to predict learner certificate attainment. Cagiltay, Cagiltay and Celik (2020) similarly 

built their experiment on a dataset that contains variable measures at three-time points of the course rather 

than the widely adopted weekly-based modelling: (1) at the beginning of interacting with the course 

content, (2) at the half-point of the course and (3) after finishing the course. This time-scale data dimension 

and the massive number of analysed learners of 2.8 million helped build a rich and fine-grained 

representation dataset. However, this dataset was recorded at a meta-level, which included measurements 

at the course level rather than of learners. Consistent with previous studies that investigated the importance 

of early prediction (Hone and El Said, 2016) (Cagiltay, Cagiltay and Celik, 2020), the likelihood of 

certification increases when a learner passes the midpoint of a course. 

Early prediction is essential for informing instructors of the estimated learners’ behaviour to provide 

them with relevant advice for better progress with the course (Cobos and Olmos, 2018). On this basis, 

Ruipérez-Valiente et al. (2017) suggested that early prediction should be associated with implementing an 

adaptive educational system for adapting the course content based on the learner's predicted behaviour. 

This study, in line with other early predictive models, suggests focusing on the first weeks of the course, 

specifically the first four weeks, to build an effective predictive model. Kostopoulos et al. (2021) used an 

11-week MOOC for early prediction and found that weekly grades were the most predictive features. It 

shows that boosting and ensemble were the top-performing algorithms, even without any parameter fine-

tuning performed (using the default parameter values). 

3.6.3.3. Computational and Time Cost of Modelling 

Only one study reported the performance of the employed algorithms from the time-costing perspective 

(Cobos and Olmos, 2018), which is, at the same time, the only study that used deep learning, along with 
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other traditional ML algorithms, for modelling. The study noted that neural networks, extreme gradient 

boosting, and random forest were the highest time-consuming algorithms for training, whereas NB took 

the most time for prediction (testing). As stated earlier, MOOC prediction models tend to use shallow 

learning algorithms. Therefore, the computational and time cost may not be a challenging variable 

compared to more complex deep learning tasks such as pure NLP or computer vision. 

3.6.3.4. Model Error Analysis 

Error analysis isolates and diagnoses the model’s classification errors into meaningful outputs and 

highlights the most frequent errors, along with the characteristics (input features and observations) 

associated with the model misclassification. Similar to feature selection and hyperparameter configuration, 

error analysis was rarely reported; only two surveyed studies have analysed their model’s erroneous 

classifications and reached the same conclusion. Moreover, Qiu et al. (2016) and Tian et al. (2017) found 

that the similarity between both groups (certified and noncertified learners) plays an essential role in model 

classification errors. They found that a significant proportion of the learners were actively engaged with 

the course content and, in the forum, behaved like certificate earners but did not obtain certificates. These 

learners were misclassified into the certified group. The opposite has also happened, where some inactive 

certified learners were misclassified. Additionally, the minimum score for certificate eligibility was found 

to be one of the challenging variables of the model, where many learners with scores hovering around the 

minimum score were misclassified. 
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Table 3.2. Outline of previous studies on MOOC certification prediction (n/a: missing, EM: Early Model, CT: Certification Type, other abbreviations are explained in the 

following tables) 

Ref. Platform Provider Delivery 

Interval 

#Courses: 

#Runs 

#Learners Data Type Models/s 

Algorithms 

Performance 

Metrics 

EM CT 

(Cobos and Olmos, 
2018) 

edX The University 
Autónoma of 
Madrid 

2015 – 2016 7:15 37,420  CS; DF; AQE LR, GB; SVM; K-
NN, RF; NN; NB; 
BGLM;  

AUC; ROC Y n/a 

(Arslan, Bagchi and 
Ryu, 2015) 

edX Harvard & MIT n/a n/a 358,433 CS; Dem. LR2 R; β; SE; t-ratio N n/a 

(Cagiltay, Cagiltay 
and Celik, 2020) 

edX MIT 2012 – 2016 122:n/a 2.8 million CS; DF LR2 R; β; SE; t-ratio 

 

Y n/a 

(Ruipérez-Valiente 
et al., 2017) 

edX Universidad 
Autónoma de 
Madrid (Spain, 
UAM) 

2014 1:1 3,530 CS; AQE RF; GB; kNN; LR AUC; F1; Acc. 

 

Y Paid 

(Lee, 2018b) edX  MIT 2014 1:1 12,981 CS; DF; AQE LR AUC; Rec, N Free 

(Goli, Chintagunta 
and Sriram, 2019) 

edX n/a 2012 – 2016 70:n/a 23,674 CS; DF; AQE LR2 M, P N Paid 

(Qiu et al., 2016) XuetangX n/a 2013 – 2014 11:n/a 88,112 CS; DF; Dem. LadFG; LR; 
SVM; FM 

AUC; Prec.; 
Rec.; F1 

N n/a 

(Xu and Yang, 
2016) 

edX  Harvard & MIT 2012 – 2013 10:n/a n/a CS; DF SVM Acc. N n/a 

(Alshehri, Alamri 
and Cristea, 2021) 

FutureLearn  Warwick University 2013 – 2017 5:23 245,255 CS; AQE RF, ET, LR, SVC Acc.; Rec. Y Paid 

(Tian et al., 2017) edX Harvard & MIT 2012 – 2013 11:n/a n/a CS; DF; AQE LDA; LR; SVM Acc.; Prec.; 
Rec.; F1 

N n/a 
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(Samuelsen and 
Khalil, 2018) 

edX Harvard & MIT 2012 – 2013 16:n/a 32,621 CS; DF; AQE PC; LR2 β; SE; CI N Free 

(Littenberg-Tobias, 
Ruipérez-Valiente 
and Reich, 2020) 

edX Harvard & MIT 3 years 6/12 50,927 CS; DF; AQE LR2 R2, F2, SE N Paid 

(Alshehri et al., 
2021) 

FutureLearn  Warwick University 2013 – 2017 5/23 245,255 CS; Dem. RF, GB, AdaB, 
XGB 

Acc.; Prec.; 
Rec.; F1 

Y Paid 

(Wintermute, Cisel 
and Lindner, 2021) 

FUN Universite ́ Nume ́ 
rique 

2013 – 2015 140:n/a 378,000 CS LR2 β N Free 

(Cobos and Jurado, 
2018) 

edX The University 
Autónoma of 
Madrid 

2016 2:2 5,011 CS, Dem; DF; AQE; 
PCS 

DS DS N Free 
+ 
paid 

(Yeomans, Reich 
and Acm, 2017) 

edX Harvard & MIT n/a 3:3 60,778 PCS DS; LDA2; LR2 DS, β; CI; 
AUC; R2; Z; 
SE 

Y n/a 

(Mullaney and 
Reich, 2015) 

edX MIT 2013 1:2 66,774 CS; Dem. LR2 Log; R2; SE N n/a 

(Wang, Hemberg 
and O’Reilly, 2019) 

edX MIT 2016 – 2017 2:6 n/a CS; AQE DS DS N Paid 

(Lee, 2019) edX MIT 2014 1:1 4,337 n/a HCA; SOM; LR R; SE Y n/a 

(Kostopoulos et al., 
2021) 

DEVOPS University Of 
Thessaly, Greece. 

2020 1:1 961 CS; Dem.; AQE; DF AdaB; GB; 
CART; ET; LDA; 
LGBM; LR; RF 

Acc.; AUC; 
Prec.; Rec.; F1 

Y Free 

(Jiang, Fitzhugh and 
Warschauer, 2014) 

Coursera University of 
California 

n/a 2:1 173,000 DF Permutation Test 
(corr) 

R N n/a 
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(Jiang et al., 2014) Coursera University of 
California 

n/a 1:1 37,933 DF LR Acc.; ROC; 

Prec.; Rec.; F1 

Y Free 

(Coleman, Seaton 
and Chuang, 2015) 

edX MIT 2013 1:1 43,758 CS LDA2 Acc.; Rec. Y Free 

(Joksimović et al., 
2016) 

Coursera The University of 
Edinburgh & ORT 
University Uruguay 

2015 2:2 84,786 DF LR2 P; SE Y n/a 

(Gitinabard et al., 
2018) 

Coursera; 
edX 

Columbia 
University 

2013 - 2015 1:2 65,203 CS; DF LR AUC; F1 Y n/a 
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Table 3.3. List of data type abbreviations and acronyms 

Abbreviation / 

Acronym 

Description 

AQE Assignments/Quizzes/Ex

ams 

CS Clickstream 

Dem Demographics 

DF Discussion Forum 

PCS Pre-course Survey 

 

Table 3.4. List of approaches, abbreviations, and acronyms 

Abbreviation / 

Acronym 

Description 

AdaB Adaptive Boosting 

BGLM Bayesian generalised linear model 

CART Classification and Regression Tree 

ET Extremely Randomised Trees 

FM Factorisation Machine 

GB Gradient Boosting  

HCA hierarchical clustering algorithms 

K-NN K-Nearest Neighbour 

LadFG Latent Dynamic Factor Graph 

LDA linear discriminant analysis 

LDA2 Latent Dirichlet Allocation 

LGBM Light Gradient Boosted Machine 

LR Logistic Regression  

LR2 Linear Regression  

NB Naïve Bayes 

NN Neural Network 

PC Pearson's Correlation 

RF Random Forest 

SOM Self-organising map 
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SVC Support Vector Classifier 

XGB XGBoostnig 

 

Table 3.5. List of metric abbreviations and acronyms 

Abbreviation / 

Acronym 

Description 

Acc. Accuracy 

AUC Area Under Curve 

CI Confidence Interval 

DS Descriptive Statistics 

F1 F1-score 

F2 f-test (f statistic) 

M Population mean 

P p-value 

Prec. Precision 

R Correlation Coefficient 

R2 Coefficient of Determination 

Rec. Recall 

SD Standard Deviation 

SE Standard Error 

β probability 

 

3.7. Limitations 

This section highlights the current MOOCs certification predictive models in terms of limitations and 

potential improvements. We reviewed the surveyed works from various aspects and reported 

methodological concerns such as generalisability, extensive experimental filtration, model 

replicability, and explainability. We also discussed opportunities for future research and improvement. 

3.7.1. Model Generalisability 
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The “need for more data for a higher level of model generalisation and further validating the achieved 

results” was the most stressed call by the surveyed studies. As demonstrated earlier in Figure 3.7, a 

considerable number of studies (n = 14/25) have based their findings on a few courses (from one to 

three courses only); thus, it is challenging to consider the findings of these models generalisable. 

Furthermore, learners’ behaviours and certification rates differ based on the subject and discipline of 

the MOOC (Cobos and Jurado, 2018). Therefore, building the model on a diverse dataset would help 

increase the findings’ generalisability and reliability of results. Nevertheless, one model’s 

performance cannot be compared to others due to the different characteristics of each single MOOC. 

For instance, learner demographics and activities tend to have different statistics based on various 

factors, such as the MOOC discipline; thus, a model applied to a specific dataset may not be suitable 

for static application to another dataset (Samuelsen and Khalil, 2018). This is truer when further 

variances are introduced (e.g., when two datasets are of different platforms), where the features are 

typically not unique. 

Thus, while training models on a domain-diverse dataset can help reach more reliably 

generalisable results, the results themselves should be interpreted with caution due to any potential 

biases, where the learners’ activities’ dataset used within an experiment may be filtered uniquely or 

potentially represent that certain MOOC provides only; hence, results may not be suitable for 

generalizability (Whitehill et al., 2017; Arslan, Bagchi and Ryu, 2015; Cagiltay, Cagiltay and Celik, 

2020). Therefore, including similar data (e.g., future runs of the same course or, more broadly, further 

courses of the same discipline within the same platform), seems a wise strategy to expand the current 

certification predictive models. This is the next move towards improving some of the surveyed 

models; for instance, (Joksimović et al., 2016) found that more data, typically from the same subject 

domains as their current datasets, such as social science, should be analysed to account for diverse 

learning settings and more generalisable results. Their work is already diverse in terms of the dataset 

used, where the authors conducted an SNA based on learners’ social interaction in the discussion 

forum using two runs of the same course (one in English and one in Spanish). However, other 

replications of (Joksimović et al., 2016) intercultural study “but in different course disciplines” are 

still needed to reveal how learners’ interaction is different or similar based on their cultural 

backgrounds. 

The above-suggested areas of future development correspond to the proposed future improvement 

mentioned in the studies surveyed. For instance, Tian et al. (2017) planned to collect more details 

about learner behaviours and\ examine the extent to which they may be more predictors of certification 

attainment. Also, Qiu et al. (2016) also found that more learner characteristics, or even newer courses, 
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would be worth analysing using their proposed social network. In contrast, Arslan, Bagchi and Ryu 

(2015) plan to include other non-ICT-related features in the future, such as MOOC structure. These 

factors may influence certification prediction and help yield better model performance. 

3.7.2. Sample extensive filtration 

Preliminary filtration can be an essential step in data pre-processing for removing noisy 

unrepresentative data, such as removing logs of learners who never accessed the course and thus have 

zero logged activities. However, one noticeable drawback of some of the surveyed works is the 

extensive filtration of learners involved in the experiments, thus affecting the experiment 

generalisability discussed earlier and nominating a tiny sample of learners. Such misconduct is usually 

and intentionally exercised by including more data types (demographics, click streams, discussion 

forum activities, assignments, and quizzes). 

Although MOOCs are developed and delivered in a similar approach, the comparison and 

generalizability of different models should at least be theoretically valid. Comparing the final outputs 

of the existing predictive certification models with the current research methods is not practical. 

Researchers tend to use highly-subsetted populations, which leads to the experiments being conducted 

under different conditions and the nature of the data; hence, the results would be risky to generalise. 

As discussed earlier, the studies reported different demographics and behaviours for being efficient in 

predicting certification, which is understandable due to the different data sources (platforms) and 

learner demographics. Therefore, population filtration, along with using many types of learner data 

(click streams, demographics, discussion forums, and surveys), negatively correlates with model 

generalisability. Also, there is massive diversity in the subpopulations analysed by the studies 

surveyed at the level of comparison. Even if two studies used the same type of data (e.g., question 

attempts or time spent), the other learner-related characteristics, such as demographics, are still 

unknown. 

Although population filtration can help understand the relationship between a specific variable and 

the likelihood of certification, such as learners’ prior intention to obtain a certificate (Yeomans, Reich 

and Acm, 2017) or the uninterrupted time on task (Lee, 2018b), this deprives the experiment of 

broadly understanding the behaviours of far larger segments of the learners' population. Moreover, as 

shown in Table 3.2, the studies tended to lose many learners when more conditions (filtration) and 

data types were involved in the experiment. 
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We, therefore, believe that using one source of data (e.g., learner’s demographics, forums 

discussions, question answering) might help build more generalisable models. This is especially the 

case with questionnaire-based experiments where the collected data are typically unique. For instance, 

surveying learners’ intention of certification in Yeomans, Reich and Acm (2017) or their professional 

experience in years, daily work hours, English language skills, digital proficiency skills, previous 

experience in MOOCs, mother tongue, and average weekly available hours for study (Kostopoulos et 

al., 2021) are typically unique to these experiments or platforms. 

3.7.3. Insufficient experimental elaboration 

Some of the surveyed works, specifically ML-based experiments, have skipped reporting essential 

parts of their experiments, such as feature engineering and selection steps that are considered vital in 

building an efficient predictive model, but were nevertheless not commonly reported within the 

surveyed works. Parameter fine-tuning was less reported within the surveyed works than feature 

engineering and selection. With the exception of Kostopoulos et al. (2021), which was the only work 

that described in detail the parameters tuned for each employed predictive algorithm, the surveyed 

works seem to use their algorithm with the default values, depriving of many tuning benefits such as 

improving model performance, reducing training time, and countering over-fitting, especially on small 

datasets. 

Another example of insufficient experimental elaboration is the random, unjustified approach 

followed. For instance, none of the surveyed works justifies adopting the employed predictive 

algorithms [i.e., whether (1) an initial experiment has been conducted to prove their performance on 

other algorithms or (2) they have been proved to outperform other algorithms according to the 

literature review]. Another example of an unjustified approach is the random training/test split. While 

70:30 splitting is commonly followed during predictive modelling, some studies [e.g., (Ruipérez-

Valiente et al., 2017) and (Tian et al., 2017)], which used 75% and 90% of the data, respectively, for 

training, did not justify why this specific splitting was decided and whether it improved model 

performance. 

3.7.4. Non-realistic Modelling 
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One of the methodology-related concerns we noticed within the surveyed works is that some models 

were not realistically actionable in a real-life scenario. For example, while some works aimed at 

building timely intervention and early detection of learners’ behaviours, others, marked as Early 

Model = N in Table 3.2, used up the whole course data for training the model, hence not applicable in 

an actual active MOOC, considering that learners decide on obtaining a certificate immediately after 

completing the course; hence, intervention at this late stage would be less practical. Another concern, 

even with the early predictive models, is training the model on early data [i.e., using the course's first 

week(s) and testing on the same course]. 

While this might be the only option for predictive models built only on one offering of the analysed 

course, multiple offerings-based models should temporarily build the experiment by training the 

model on all the early offerings of the course and testing on the last offering only. The latter concept 

was used to model other MOOC tasks, such as identifying at-risk learners (He et al., 2015) but was 

not followed by any of the certification prediction studies surveyed. However, it mimics real-life 

courses and would help build a more actionable, realistic predictive certification model. We 

understand that not all certification prediction works are aimed at real-time intervention; some studies 

have focused on explanatory and inferential analysis (i.e., statistical models). Thus, the issue discussed 

above is less relevant. However, for studies that promote real-time intervention and early prediction, 

the above concerns are essential to consider. 

Having shed light on some limitations of current predictive models, it is essential to ensure that 

the limitations discussed above are simply out of the researcher’s control. With most of these 

experiments being conducted on one course only, we understood that obtaining more data, either from 

subsequent runs of the same course or other courses, is challenging and restrains researchers from 

validating their models on larger datasets. We also considered researchers' challenges while 

attempting to access clean, complete, and modellable learners’ datasets. However, these limitations 

are still valid for future model improvement. 

The present thesis addresses several limitations identified within the surveyed literature review. 

Regarding generalisability, while the dataset we used was obtained from one platform only, it spans 

various runs (23) of 5 different MOOCs covering 4 distinct disciplines (literature, psychology, 

computer science, and business). This allowed us to longitudinally observe the changes in learners’ 

activities from a paid certification perspective as further discussed in Section 5.3.1 and predict paid 

certification based on a rich source of data. As shown in Table 3.2, most of the surveyed works were 

based either on one course or run/iteration. Another novelty of the present thesis is predicting paid 

certification in MOOCs at an early stage (starting with using data from the first week of the course 



 

 

74 

only). Our analysis showed that there are only 10 studies that adopted early prediction, out of which 

only one study explicitly predicts paid certification at an early point of the course using data from one 

run of an edX course. However, while edX has been extensively analysed (17 out of 25 studies), 

FutureLearn has never been explored from a paid prediction perspective, although it is considered the 

largest MOOC platform launched outside the United States. 

The present thesis additionally presents a novel ensemble model for predicting paid certification 

based on data from discussion forums. This model synchronously processes textual (comments and 

replies) and numerical (number of likes posted and received, sentiments, POS tags) data from the 

forums and uses various DL algorithms for prediction, which was never done in the previous literature 

to the best of our knowledge. 

3.8. Implications on Educational Practices 

Keeping the recent proliferation of MOOCs in mind, the critical issue comes to light that the paid 

certification rate of a given course has also been declining over various runs/iterations; for instance, 

in some cases, the number of certificate purchases dropped by as much as 50% in the latest course run 

compared to the first run (Alshehri, Alamri and Cristea, 2021). This challenging and constantly low 

certification rate has prompted substantial research (Gitinabard et al., 2018) and pushed several 

providers to explore more sustainable business models (Dellarocas and Van Alstyne, 2013). In line 

with the efforts exerted to address this challenge, the surveyed studies on the prediction and decline 

of MOOCs paid certification introduced several implications for educational practices.  

One of these implications is that the number of registered learners and course populations is 

declining, due to the transition of these platforms from semi-free to paywalled courses (Chuang and 

Ho, 2016). Despite the unparalleled success of MOOCs, especially in terms of the burgeoning learner 

enrolment, one of the more disturbing aspects to date is the staggeringly decreasing certification rates 

(Reich and Ruipérez-Valiente, 2019), a funnel with learners “leaking out” at various points along the 

learning pathway (Clow, 2013; Breslow et al., 2013). The issue is the balancing act between MOOC 

providers, trying to find ways to finance their offers, and MOOC consumers, the learners, who would 

prefer to learn for free (or very cheaply). From an educational perspective, free or very cheap, high-

quality, ubiqutous education is a perfect way to reach the largest coverage of the learners around the 
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world. Learners can learn via the ‘any-time’ and ‘any-place’ paradigm, in some cases, in their native 

language, and still be receiving a world-class education.  

However, the dropping numbers are concerning, both from an educational perspective – as learners 

are either not able or not willing to complete their courses; as well as from a financial perspective - as 

providers need to be able to explore course monetisation and platform sustainability via revenue 

generation. As has been explained in Chapter 2, there are many models for revenue generation. 

However, in this thesis, the focus is on the model that allows for cheap MOOCs, which support the 

ubiquitous, inclusive form of learning initially envisioned by the first MOOC proposers.   

Another implication on educational practices is that, whilst from a business perspective, charging 

for certifications can provide a sustainable revenue stream for MOOC providers, it can at the same 

time provide funds that can be reinvested in course quality, development, and platform maintenance. 

Thus, paid certification can help platforms become more stable via revenue generation, but it also  

obligates providers to maintain high-quality MOOCs to attract paying learners. From an educational 

approach, this extends to having assessments being processed by humans and course materials 

regularly reviewed by experts, privileges some platforms currently provide exclusively for paying 

learners. 

The surveyed studies in this chapter have also emphasised the importance of early intervention to 

address the lack of certification rate in MOOCs. However, although this thesis is focusing only on the 

certificate prediction, this does not need to be applied in practice by itself. Indeed, this can be 

combined with other approaches, including personalising learners’ experience, as proposed by other 

research(Rohloff, Sauer and Meinel, 2020). Predictive analytics could help identify individual 

learning styles, preferences, and needs (Jena, 2018). Consequently, by understanding how students 

typically behave, platforms could tailor the content and learning experiences to match each student's 

learning style, which may, in combination, lead to a further improved certification rate (Gitinabard et 

al., 2018). MOOC platform providers can consider implementing such adaptation methods in tandem, 

and educators may wish to recommend MOOCs based on the support they are providing to their 

learners. Educators may also wish to accept certain certificates provided by MOOCs they trust.  

3.9. Epilogue 
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This SLR contributes to presenting a synthesis of the state-of-the-art studies on MOOC certification 

prediction, considering the struggle of MOOC platforms to build their own business models along 

with the recent transition, since 2017, towards paywalled content like micro-credentials, corporate 

training, and online degrees with affiliate university partners. It also serves as a roadmap for the 

multidisciplinary community of researchers in the educational domain (e.g., data scientists, 

statisticians, and educators) to explore the prediction of certification in MOOCs from a wider angle. 

We followed the 27-item preferred reporting items for systematic reviews (PRISMA) protocol for 

methodological rigour while conducting this SLR to increase the transparency and quality of the 

systematic review reported. The next chapter discusses the methodology followed for addressing the 

research questions stated earlier in Section 1.3. 
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Chapter 4 : Methodology 

4.1. Prologue 

Having highlighted the aims, objectives, and questions of the present research in Chapter 1; provided 

an overview of MOOCs in general and specifically certification in Chapter 2; and systematically 

reviewed the literature to identify and discuss the related works in Chapter 3; this chapter explains the 

methodology followed for answering our research questions, including the data collection and 

preprocessing, feature engineering and selection, statistical tests and classification approaches, and 

the performance metrics adopted for evaluating the developed models in Chapter 5, 6 and 7. 

Additionally, the ethical standards which were considered during writing this thesis were discussed in 

Section 4.6. 

4.2. Data Collection 

A dataset of almost 250,000 learners from 5 FutureLearn MOOCs, obtained by ourselves from 

Warwick University was used in Chapter 5. The dataset of Warwick University includes 23 runs 

spread over 5 MOOC courses on 4 distinct subjects. These topic areas are literature (course: 

Shakespeare and his World [SP], duration: 10 weeks); psychology (courses: The Mind is Flat [TMF], 

duration: 6 weeks; and Babies in Mind [BIM], duration 4 weeks); computer science (course: Big Data 

[BD], duration 9 weeks), and business (course: Supply Chains [SC], duration 6 weeks). These courses 
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were delivered repeatedly in consecutive years (2013–2017). We used clickstreams in this experiment, 

whereas data extracted from learners’ discussion forums, along with text sentiment annotations by 

MOOCSent, were used for conducting the third experiment, in Chapter 7. 

One of the challenges of obtaining a MOOC dataset is that it is typically not owned by the platform. 

Course providers have the ultimate right to share learners’ data with any third party, that is, the 

platform operates as an electronic medium to deliver the course. This fact makes it challenging for 

researchers because platforms such as FutureLearn have more than 250 partners47. 

In Chapter 6, we used a broader dataset, from several platforms, Coursera, Udemy, FutureLearn, 

Stanford, representing just over 1.2 million manually-annotated reviews and comments, to train and 

test MOOCSent. Learner reviews were used to train the model, whereas comments were used to test 

the models as the ultimate purpose of this experiment is to label the learner text inputs as accurately 

as possible with the author’s sentiment. Table 4.1 presents the overall statistics of the datasets used in 

the three experiments conducted for the present thesis. Further explanations of the data collected and 

utilised in the three experiments are presented in Section 5.3.1, 6.4.1, and 7.3.1, respectively. 

Table 4.1. Overall statistics of the datasets 

Chapter #Courses Datatype Sample Size 

Chapter 5 5 Numerical 249,161 

Chapter 6 633 Textual only 1,280,427 

Chapter 7 5 Numerical & textual 28,638 

 

4.3. Statistical Test 

Our first step of exploring our dataset was examining whether it comes from a specific distribution. 

Kolmogorov–Smirnov test was conducted to ascertain this. As our data come from non-Gaussian 

(normal) distribution and the variables we are analysing are independent, we used the Mann-Whitney 

U test (also called Mann–Whitney–Wilcoxon (MWW) (McKnight and Najab, 2010)), 

a nonparametric test for testing the statistical significance of the difference of distributions. We use it 

 
47 https://www.futurelearn.com/partners  

https://en.wikipedia.org/wiki/Statistical_hypothesis_test
https://www.futurelearn.com/partners
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here to compare the activities of non-paying learners with certificate purchasers, as further explained 

in section 5.4.1. 

4.4. Predictive Machine Learning Approaches 

Since all the data utilised for training the baseline predictive/classifying models in the present thesis 

are appropriately labelled, supervised ML, a sub-field of artificial intelligence (AI), was adopted for 

predicting certification in MOOCs by employing algorithms to learn from samples (learner data), 

initially without applying certain programmed instructions (Goodfellow, Bengio and Courville, 2016). 

Various conventional ML, deep learning (DL), and NLP algorithms have been used through this study 

as detailed through the remaining subsections of this chapter. This section aims at presenting a 

theoretical background of the approaches followed to answer the research questions stated earlier. It 

also elucidates the technical concepts and the context that is essential to achieve the objectives of this 

thesis. Before explaining the algorithm used to conduct this research, we provide below a brief 

description of the various types of learning. 

There are three different types of learning approaches in ML algorithms (supervised, semi-

supervised and unsupervised), which can be adopted based on the nature of the problem and the 

available data for analysis. The supervision correlates with the data level of labelling, that is, 

unlabelled-data tasks tend to adopt unsupervised learning (such as clustering), semi-supervised 

learning is suitable for data with more unlabelled observations, whereas the fully (or the majority of 

observations) labelled-data tasks typically adopt supervised learning (such as prediction). The latter 

is known for its performance reliability (Alpaydin, 2020) and is therefore more commonly used 

compared to the other two learning approaches (Goodfellow, Bengio and Courville, 2016). 

Within supervised learning, there are two main concepts of learning, shallow (or conventional), 

which requires human intervention for feature extraction and is typically done manually during feature 

engineering. One sub-concept of conventional ML is DL, wherein the algorithm automatically extracts 

the features. Figure 4.1 illustrates these two concepts of learning. 
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Figure 4.1. Comparison of learning concepts in ML (upper) versus DL (lower), cited from Khan et al. (2021b). 

4.4.1. Conventional Models 

Given below is a list of conventional models that are structurally simple and yet efficient in 

performance (Rosasco, 2016). 

4.4.1.1. Logistic Regression (LR) 

Logistic regression (also known as logit regression) is estimating the parameters of a logit model, 

which models the probability of occurrence of an event through its log-odds – a linear combination of 

the independent variables(s). LR is typically used for classification tasks but more commonly used for 

binary classification tasks (Cramer, 2002). It estimates the parameters of the coefficient in a linear 

combination in binary output classification as shown in Figure 4.2. The probability of the output 

(either certainly 0 or certainly 1) is estimated via logits (scales of log-odds as shown in Figure 4.2) 

which explain the name of the classifier (Shah et al., 2020; Rawlings, Pantula and Dickey, 1998). 
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Figure 4.2. LR curve showing the (binary dependent variable) versus time spent on study in hours (continuous 

independent variable). 

4.4.1.2. Decision Tree (DT) 

Tree-based models are a set of classification/regression models where DT is the standard and the 

inspiration for the extended versions of the model, such as random forest and extremely randomised 

trees. Tree-based models repeatedly segment the input variables to build the DT using the most 

representative variables (features) of the dataset fed (Ali et al., 2012). The standard architecture of a 

DT consists of nodes and branches along with three building steps (splitting, stopping, and pruning) 

as shown in Figure 4.3, which illustrates an example of a single binary target (y) and two continuous 

variables (x1 and x2). Each node represents a choice which results in subdividing the records into 

subsets whereas the branches represent possible outcomes (occurrences) derived from a node, 

resulting in a hierarchy shaped DT. Hence, each node from the highest level of the tree (root nodes) 

to the lowest (leaf nodes) represents a rule of classification decision. Splitting controls which input 

variables are related to the target and is hence used for spitting a parent node into purer child nodes. 

The splitting procedure continues until the predetermined stopping criteria are met. The last 

component of a DT approach is pruning which aims first to grow a larger tree before pruning it 

(removing the less informative parts of the tree) until reaching an optimal tree size (Song and Ying, 

2015).  
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Figure 4.3. Example of DT based on a binary target variable, cited from Song and Ying (2015). 

4.4.1.3. Support Vector Machine (SVM) 

Support vector machine (also called support vector network) is widely used for classification, 

regression, and detection of outliers. SVM is primarily a non-probabilistic binary linear classifier 

(although some extended methods such as Platt Scaling use it as a probabilistic classifier, and it can 

be used as a non-linear classifier using Kernel Trick). SVM has been known for its competitive 

performance in high-dimensional space tasks. The algorithm maps training data as points in an n-

dimensional space and then defines a hyperplane (which denotes the distance between the two groups 

using the mapped points (support vectors) as illustrated in Figure 4.4. The hyperplane is fitted where 

the maximum width of the gap between the two groups is. Finally, new examples are mapped into the 

margin and classified based on the side of the gap that is mapped. There are several estimators 

developed based on SVM including C-support vector classification (SVC), which was used in our 

experiments. 
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Figure 4.4. Hyperplane splitting and classification mechanism in SVM (C= optimal hyperplane, A-B= optimal 

margin), cited from Asharf et al. (2020). 

4.4.1.4. Naïve Bayes (NB) 

Naïve Bayes (or simple independent Bayes) is a Bayes’ theorem-based probabilistic Bayesian 

classification technique. NB classifier assumes strong (naïve) independence between the features (i.e. 

the existence of one feature in a category has no relevance to the existence of other features). 

Regardless of its simplicity among other Bayesian network models, NB shows good performance in 

some sophisticated tasks such as multi-class and text classification tasks (Rish, 2001). 

4.4.2. Ensemble Models 

Ensemble modelling refers to using multiple diverse algorithms to predict an outcome. Therefore, it 

is based on the results of various classifiers that are combined and used for generating a majority vote 

out. While each individual algorithm has a different method of learning and depends on the application 

and the associated data for its performance accuracy, ensemble models can overcome this problem by 

achieving a generalisable result (being based on several voters (algorithms)) and at the same time 

addressing building a reliable model that can reduce variance and avoid overfitting (Asharf et al., 

2020). 

Ensemble learning can be based on bagging or boosting. Bagging trains n base learners based on 

random samples with replacement, allowing the model to proceed in parallel. In contrast, each model 
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in boosting focuses sequentially on the misclassification of the previous model as illustrated in Figure 

4.5. 

 
Figure 4.5. Bagging vs boosting ensemble learning methods, cited from Teja (2019). 

In bagging, various DT are involved on different samples of the training data and then the prediction 

is averaged based on the results obtained from all the DTs involved. The best examples of this 

technique are random forest and extremely randomised trees. The second ensemble learning principle 

is boosting, which adds ensemble members sequentially so as to correct the predictions made by 

previous models (i.e. iteratively changes the input data to focus on the misclassified instances by the 

previously fitted models). Next, a weighted average of the predictions is calculated and provided as 

the output (Brownlee, 2021). Boosting-based ensemble models include adaptive boosting, gradient 

boosting machines, and stochastic gradient boosting. 

4.4.2.1. Bagging-based Ensemble Models 

4.4.2.1.1. Random Forest (RF) 

RF is one of the tree-based (i.e. a forest of randomly created trees) algorithms that leverages the power 

of multiple DTs for classification. Thus, each node in the DT processes a random subset of the input 

variables to calculate the output. Finally, RF combines the outputs of each individual DT to make the 

final classification decision. Therefore, RF is an ensemble learning method that uses a combination of 

tree predictors where each tree depends on the value of a random vector. This algorithm samples these 

vectors independently and with the same distribution for all DTs in the forest (Breiman, 2001). 
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Figure 4.6. Illustration of RF classification technique, cited from (Khan et al., 2021a)). 

4.4.2.1.2. Extremely Randomised Trees (ET) 

It is also known as Extra Trees (ET) and has a structure similar to RF, where both choose a random 

collection of characteristics for each node splitting but with two different mechanisms: sampling and 

node splitting. Compared to RF, ET samples from the entire dataset during the construction of the 

tree, whereas RF subsamples the inputs with replacement (bootstrap replicas). This allows ET to 

reduce the chance of bias as different subsets of data are more likely to introduce different biases. The 

other advantage ET has on RF is the randomised splitting of nodes within the DT, which leads to less 

influence by specific input variables and hence reduced variance. The improved structure of ET led 

to better performance on different benchmark datasets compared to RF (Geurts, Ernst and Wehenkel, 

2006). 

4.4.2.2. Boosting-based Ensemble Algorithms 

4.4.2.2.1. Adaptive Boosting (AdaBoost) 
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AdaBoost is one of the early boosting-based ensemble algorithms which was introduced by Freund 

and Schapire to solve many complex problems, such as gambling, multiple-outcome prediction, and 

repeated games. It was based on the principle of combining the output of other learning algorithms 

(weak learners) to build a strong classifier (Freund and Schapire, 1997). As the name suggest, 

AdaBoost is adaptive to the misclassified predictions of the previous models, as it leverages and 

generates new weighted data point with less weighting assigned to the misclassified instances. Thus, 

the newly added model is more adaptive in addressing the previous model’s misclassifications 

(Schapire, 2013). 

4.4.2.2.2. Gradient Boosting Machines (GBM) 

Unlike AdaBoost which penalises wrong classification, GBM adopts the loss function (which can be 

the log loss in classification tasks or the mean average error in regression tasks) for improving the 

classification performance. Additionally, GBM continually minimises the loss, via utilising a gradient 

descent method, until it reaches the optimal point (Friedman, 2001). 

4.4.2.2.3. Stochastic Gradient Boosting (XGBoost) 

Stochastic gradient boosting is an optimised distributed GBM-based model with greater efficiency, 

flexibility, and portability. As a scalable end-to-end tree boosting system, XGBoost achieves better 

results with sparse data and weighted quantile sketch for approximate tree learning. XGBoost is a 

more regularised and extended version of GBM and hence has improved model generalisation 

capabilities (Chen and Guestrin, 2016). 

4.4.3. Sentiment Classification Methods 

4.4.3.1. TextBlob 

TextBlob is an open-source text-processing Python library that allows one to perform several tasks, 

including noun phrase extraction, translation, part-of-speech tagging, sentiment analysis, tokenisation, 
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and spelling correction. TextBlob is part of the well-known natural language toolkit (NLTK) and helps 

in reducing the computational cost of analysis. The tool generates a float value of a confidence level 

(between -1 and 1) for each text inserted and later annotates it as positive if > 0, negative if < 0, or 

neutral if = 0. These default thresholds however can be manually adjusted. 

TextBlob assesses sentiment via returning a tuple of form (polarity, subjectivity, and assessments), 

where polarity and subjectivity float within a range of -1 and 1, with 0 being very objective and 1 

being very subjective; assessments is a list of polarity and subjectivity scores for the assessed tokens. 

4.4.3.2. VADER 

Valence Aware Dictionary and Sentiment Reasoner (VADER) is a social media-based tool for general 

sentiment analysis. This open-source lexicon and rule-based tool uses a mix of qualitative and 

quantitative methods (a gold-standard list of lexical features along with their associated sentiment 

intensity measures), which are specifically attuned to sentiment in microblog-like contexts. 

Afterwards, the lexical features are combined, with consideration of five general rules, which embody 

grammatical and syntactical conventions, to express and emphasise sentiment intensity (Hutto and 

Gilbert, 2014). Similar to TextBlob, VADER generates a sentiment confidence level for each analysed 

text and allows resetting the thresholds of < 0, = 0, and > 0. 

4.4.3.3. Stanza 

Stanza is also an open-source Python natural language processing toolkit which can be used for 

lemmatisation, tokenisation, part-of-speech, multi-word token expansion, morphological feature 

tagging, sentiment tagging, dependency parsing, and named-entity recognition. This toolkit uses CNN 

for its architecture and massively supports more than 60 human languages. It was trained on 112 

datasets, including the Universal Dependencies treebanks and other multilingual corpora. In 

comparison with the lexicon and rule-based tools, Stanza features a language-agnostic fully neural 

pipeline for text analysis, including a native Python interface to the widely used Java Stanford 

CoreNLP software. This makes it capable of more functionality and more advanced tasks, like relation 

extraction and co-reference resolution (Qi et al., 2020). 
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4.4.4. Deep Models 

Deep learning is inspired by human brain neurons and can be defined as “a class of machine learning 

algorithms that uses multiple layers of nonlinear processing units for feature extraction and 

transformation” (Deng and Yu, 2014). Deep learning models are structurally based on artificial neural 

networks (ANN) that simulate human nervous system, which are connected to each other via 

electrochemical connections (synapses). Therefore, ANN follows the same structural design with a 

massive number of fully connected artificial neurons (AN) within adjacent layers. A weight parameter 

is assigned to each connection mimicking the neuron-to-neuron link in the biological synapse 

(Goodfellow, Bengio and Courville, 2016). The training step in a single neuron can be mathematically 

expressed as follows: 

𝑠 = ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

 (4.1) 

Where the weighted sum, s, is a neuron’s input calculated via multiplying the output of the previous 

layer’s neurons x1,x2,…xn with their weights w1,w2,…wn. An activation function (e.g. sigmoid, tanh 

and relu) is then used to obtain the final output as illustrated in Figure 4.7 below: 

 

 
Figure 4.7. A single AN’s training process. 

The final (output) layer, in classification tasks, uses an activation function (which adds a non-linear 

property to the output of a neuron, thus helping address complex problems) for generating a category 

probability distribution between the classes of the classification task. Next, a loss function is utilised 
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to measure the gradient error values between the desired output (𝑦) and the output (𝑦̂) generated by 

the ANN. 

Training neural networks involves two main training steps. The first step is forward pass (layer-

by-layer propagation) to generate output 𝑦̂. The second step is backwoard pass (gradient values 

propagation) using the loss (cost) function backwards from the output layer. This function measures 

the deviation between the predicted output and the ground truth, based on which the NN weights are 

optimised. During the building of the neural networks, several parameters such as the learning rate, 

number of epochs, batch size, and the number of hidden layers can be chosen. These parameters 

significantly affect the network training process, where they can significantly improve the network 

performance if tuned properly (Bhardwaj, Di and Wei, 2018). 

Overfitting is one of the common training issues an ANN may face, which occurs when the 

network becomes overly complex due to the high number of parameters (e.g. weights). There are 

various regularisation techniques such as dropout regularisation that can be used to control the risk of 

overfitting (Srivastava et al., 2014). Several DL techniques including CNN, RNN, LTSM, GRU, and 

BERT have been utilised in this study. 

4.4.4.1. Convolutional Neural Network (CNN) 

Akin to ANN, CNN (or ConvNet) consists of multiple weights and biases in layers but gives greater 

importance to the spatial structure of the input features. CNN has been commonly used for visual 

imagery, but it has also been effective in several NLP tasks such as search query (Chawla, 2021), 

sentiment analysis (Basiri et al., 2021), and text-based prediction (Kour and Gupta, 2022). CNN’s 

standard architecture contains three layers: a convolutional layer (where the input data is converted 

into feature maps), pooling layer (where the feature maps are processed and parameter reduction takes 

place), and connected layer (where the output features are processed into a fully connected layer).  

Unlike images, which are typically input as matrix of pixels in high-dimensional representation, 

textual data are input as a matrix of tokens of words or characters in a one-dimensional representation. 

There are some predetermined parameters (e.g. strides and filters) that are used to process such a 1D 

convolution via convolving the textual sequential input long vector (array) into a shorter vector. 

In Figure 4.8, the input is learners’ review which are tokenised into words, and each word is 

embedded into a word vector representation, thus an entire review is mapped into a matrix of size 
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𝑠 × 𝑑, where 𝑠 is the number of words in the review and 𝑑 is the dimention of the embedding space 

(shown as 5 in Figure 4.8). 

 

 
Figure 4.8. CNN architecture for sentence classification, inspired by (Zhang and Wallace, 2015). 

 

A convolution 𝑐𝑖  is operated via applying the non-linear function 𝑓 as follows: 

𝑐𝑖 = 𝑓 (∑ 𝑤𝑗,𝑘

𝑗,𝑘

(𝑋[𝑖:𝑖+ℎ−1])𝑗,𝑘 + 𝑏) (4.2) 

Where, 𝑐𝑖: the output (a concatenation of the convolution operator over all possible window of words 

in a learner review); 𝑓(𝑥): a non-linear function (e.g. relu); w: a weight; X: the current word 
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embedding; i: the current input vector; h: the size of the convolution (#words spanned); j: a position 

in the convolution kernel/filter k; b: a bias term; and [i:i]: a submatrix of X. 

Pooling layers are commonly used within CNN to reduce the size of the input while keeping the 

positional knowledge intact. Max pooling is one of the frequently applied pooling methods which 

passes the most important learnt features to subsequent layers while reducing the size (Sit et al., 2020). 

A max pooling is applied to each convolution, 𝑐𝑚𝑎𝑥 = 𝑚𝑎𝑥(𝑐), to extract the most representative 

feature for each convolution, independently of where in the learners’ review of this feature is located. 

Therefore, CNN is effective in identifying the most representative n-grams in the embedding space 

(Cliche, 2017). Max pooling is also used to generate a vector through combining all 𝑐𝑚𝑎𝑥  of each 

filter, which first passes through a fully connected hidden layer and then through a softmax layer to 

compute the final classification probability. Dropout layers are typically added within the network for 

reducing the probability of model overfitting (Srivastava et al., 2014). 

4.4.4.2. Recurrent Neural Network (RNN) 

RNN is distinguished from feedforward neural networks (FFNN) in the way the inputs are handled, 

where the state of the RNN is not lost, as in ANN, after an input is processed. The output (values) of 

processing nodes in RNN is saved and fed back into the model recurrently; thus, each node acts as a 

memory cell and self-learns towards correct classification during backpropagation. All the states in 

RNN remain active throughout the sequence (acting as a memory), as the output of each current state 

is processed and concatenated with the input of the next step of the sequence. This style of learning is 

suitable for language modelling because texts are typically represented as a sequence of tokens (words 

or characters), which is the reason for adopting RNN and achieving outstanding performance in many 

NLP tasks (Yin et al., 2017). 

RNN addresses the time twist, that standard FFNN has, through connections between passes and 

connections through time. A hidden state in RNN is calculated as follows: 

ℎ𝑡 = 𝑓 (ℎ(𝑡−1), 𝑥𝑡) (4.3) 

Where, xt: the input vector x at time t and t-1: the hidden state of the previous input at time. Figure 4.9 

shows the general architecture of RNN, where, xt: input vector; ht: hidden layer vector; ot: output 

vector; and tanh: activation function. 
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Figure 4.9. Architecture of RNN, cited from (lopez, 2019). 

Backpropagation is another unique feature of RNN compared to ANN, which refers to the mechanism 

of minimising the loss function via adjusting the weights and biases of the RNN (updating weights 

and biases based on backward passes). The weight gradient is calculated based on multiple iteration 

(passes) and then summed. The new weight of a node is calculated as 𝑤𝑛𝑒𝑤 =  𝑤𝑜𝑙𝑑 − 𝜂 ∗  
𝜕𝑐

𝜕𝑤
 , where 

𝜂 is the learnning rate and 𝜕𝑐/𝜕𝑤 is the gradient of the loss function. Thus, the updated node weights 

depend on the gradients of the activation functions of each node in the RNN. 

However, within large networks, backpropagation is associated with slowing the pace of RNN 

learning or, in some cases, not learning at all – a problem known as vanishing gradient, where the 

network weights remain unchanged. The gradient values are propagated to an earlier state and then 

either becomes smaller (progressively vanishes) or explodes, especially when modelling long 

dependencies such as lengthy sentences. This issue was tackled by developing LSTM, a more 

advanced architecture of RNN (Sherstinsky, 2020; LeCun, Bengio and Hinton, 2015). 

4.4.4.3. Long Short-Term Memory (LSTM) 

LSTM was introduced by Hochreiter and Schmidhuber (1997) as an extended version of RNN to 

control what information to send (or forget) to the next time step, which achieve unprecedented 

performance by being able to learn long-term dependency in data (LeCun, Bengio and Hinton, 2015). 

While each time step in RNN utilises one recurrent output only, LSTM produces a second recurrent 

output via a 4-gate cell as illustrated in Figure 4.10. The three gates in LSTM are as follows: 
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• Forget gate (for deciding which information needs attention and which to ignore): The 

current input xt and hidden state ht-1 are passed via sigmoid function (σ) that generates a 

value of ft between 0 and 1, measuring the importance of the previous output. 

• Input gate (for updating the cell status): The current input xt and previously hidden state 

ht-1 are passed through the second σ, which generate a value of it between 0 and 1, 

measuring the importance of the previous output. Next, the same xt and ht-1 are passed 

through the activation function tanh, which generates a vector (𝑐̃𝑡) with all possible values. 

• Output gate (for determining the value of the next hidden state): The current input xt and 

previously hidden state ht-1 are passed through the third σ. Next, the new cell state is passed 

through tanh. Thereafter, the final value is used by the network to decide on the 

information the hidden state should carry, which is later used for classification. 

 

 
Figure 4.10. Architecture of an LSTM cell.  

 

RNN gates can be mathematically expressed as follows: 

𝑓𝑡 = 𝜎(𝑤𝑓 × [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑓) 

𝑖𝑡 = 𝜎(𝑤𝑖 × [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑖) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 × [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑐) 

𝑐𝑡 = 𝑓𝑡  × 𝑐(𝑡−1) +  𝑖𝑡  × 𝑐̃𝑡 

(4.4) 
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𝑜𝑡 = 𝜎(𝑤𝑜 × [ℎ(𝑡−1), 𝑥𝑡] + 𝑏𝑜) 

ℎ𝑡 = 𝑜𝑡 × 𝑡𝑎𝑛ℎ(𝑐𝑡) 

Where, f represents the forget gate of a cell, i the input gate, 𝑐̃ the new value for cell state, c the updated 

state value based on the sum of the products of old states ct-1, o the output of 𝜎 which is utilised with 

the cell state c to compute the final decision. 

4.4.4.4. Gated Recurrent Units (GRU) 

GRU is similar to LSTM in terms of processing long-term dependencies. However, the distinguishing 

feature is that GRU merges both forget gate and input gate into one unit gate (update gate) as illustrated 

in Figure 4.11, thus previous memory is retained based on the size of the new dependencies (input). 

GRU consists of two gates (reset gate and update gate) and does not have protected hidden cell state, 

allowing full access to the allocated memory content (Chung et al., 2014). 

 

 
Figure 4.11. Architecture of GRU. 

 

GRU can be mathematically expressed as: 

𝑧𝑡 = 𝜎(𝑤𝑓 × [ℎ(𝑡−1), 𝑥𝑡]) (4.5) 
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𝑟𝑡 = 𝜎(𝑤𝑟 × [ℎ(𝑡−1), 𝑥𝑡]) 

ℎ̃𝑡 = 𝑡𝑎𝑛ℎ(𝑤𝑐 × [𝑟𝑡  × ℎ(𝑡−1), 𝑥𝑡]) 

ℎ𝑡 = (1 −  𝑧𝑡)  × ℎ(𝑡−1) +  𝑧𝑡 × ℎ̃𝑡 

Where z represents the update gate, r reset gate, which are calculated similarly to the input gate and 

forget gate in LSTM but without adding them to the formulas (first and second above). Additionally, 

LSTM changes the current hidden layer h, whereas in GRU the input x and the previous layer h(t-1) can 

modify the update gate and reset gate values. finally, the current layer is updated by z and r 

accordingly.  

4.4.4.5. Transformers  

Innovative DL models have been proliferating, and new models are regularly being introduced in 

recent years. One of the recently introduced neural network models is Transformer (Vaswani et al., 

2017; Wolf et al., 2019), which has been trending specifically within NLP tasks. Unlike other NLP 

systems that are RNN-based in terms of structure, Transformers are based on attention mechanism 

and encoder-decoder structure (Cho et al., 2014; Vaswani et al., 2017). Similarly to RNN-based 

models, the input data are sequentially handled by transformers; nevertheless, the essential difference 

is that transformers do not necessarily handle the input data in order given that its mechanism 

recognises the context and meaning each word represents within a text. This makes transformers “the 

first transduction model relying entirely on self-attention to compute representations of its input and 

output without using sequence-aligned RNNs or convolution” (Vaswani et al., 2017)  

4.4.4.5.1. BERT 

BERT is one of the architectures that are backed by transformers and mainly aims for understanding 

the relationship between words. It is one of the most advanced language representation models for a 

broad range of NLP tasks, such as question answering, language inference, and sentiment analysis. 

BERT is developed via pre-training a deep bidirectional representation, by jointly conditioning a two-

way context for all layers. Unlike directional models (left to right or right to left) such as RNN and 

LSTM, BERT and all other transformers process the whole sentence as one input rather than sequential 
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ordering, resulting in contextual learning of each word with respect to all other words in the sentence 

(Jose, 2020). 

BERT has two parameter-intensive settings: (1) BERTBASE: 12 layers, 768 hidden dimensions 

and 12 bidirectional self-attention heads with 110 million parameters and (2) BERTLARGE: 24 

layers, 1,024 dimensions and 16 bidirectional self-attention heads (in transformer) with 350 million 

parameters. BERT is trained from unlabelled data obtained from Wikipedia (2,500M words) and 

BookCorpus (800M words) to be fine-tuned for any NLP task (Devlin et al., 2018). 

The out-of-box version of BERT is excellent for general NLP tasks, whereas further training with 

masked language modelling (MLM), which is one of the training mechanisms adopted by BERT, may 

work better for domain-specific tasks (Briggs, 2021). With MLM training approach, 15% of the words 

in a sequence is masked with [MAS] tokens. For example, a learner comment that contains the text 

“this course is amazing” would be represented as “this course is [MASK]” with a vector representing 

each word. Next, the model will predict the masked part of the sentence with respect to all other words 

(Jose, 2020). 

As illustrated in Figure 4.12, the encoder output of the transformer encoder is passed to a fully 

connected classification layer. Next, the output is multiplied by an embedding matrix to calculate the 

predicted probability of the words. The loss function only handles the predictions of the masked 

words. BERT has two procedures, namely pre-training and fine-tuning. The same architecture is 

followed in both, apart from the output layers as shown in Figure 4.12. In pre-training, the same model 

parameters are used for initialising the models for different tasks, whereas in fine-tuning all the model 

parameters are fine-tuned.  
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Figure 4.12. BERT procedure for pre-training versus fine-tuning. [CLS]: special symbol added in front of every 

input example; [SEP]: special separator token, cited from (Devlin et al., 2018). 

Another BERT training mechanism is next sentence prediction (NSP). During training, the sentences 

are received in pairs, with half of them having exactly the same consecutive sentence as the second 

term, and the rest having random sentences as the second sentence. BERT eventually predicts the 

actual second sentence (whether actually connected to the first sentence) after applying some 

embedding procedures before feeding the sentences to the models as shown in Figure 4.13. The input 

embeddings are typically the sum of the three embeddings of tokens, segments, and positions. 

 

 
Figure 4.13. BERT input representation, cited from (Devlin et al., 2018). 

4.5. Performance Metrics 
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Several performance metrics have been used to measure the performance of the models developed 

within this thesis. This includes the standard metrics of recall and precision which can be computed 

from the confusion matrix illustrated in Figure 4.14.  
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Figure 4.14. Confusion Matrix of performance measurements. 

While recall measures how well a model predicts the positive instances, precision calculates the ratio 

of positive predicted instances that are in fact true positive instances. The mathematical expressions 

of these two metrics are: 

𝑅𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (4.6) 

𝑃𝑟𝑒𝑐 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (4.7) 

These metrics measure a model’s performance at the level of class. Therefore, for the model’s overall 

performance, we have further adopted other metrics such as F1, balanced accuracy (BA) and the total 

accuracy (Acc). F1 can be considered a trade-off between precision and recall. BA is defined as the 

average of recall obtained on each class which equals the arithmetic mean of sensitivity (true positive 

rate) and specificity (true negative rate). Acc. calculates the model’s overall performance, giving the 

same weighting for all classes by dividing the total number of correctly predicted instances by the 

total number of instances. Given below are the mathematical expressions for these performance 

metrics. 
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𝐹1 = 2 ∗
𝑃𝑟𝑒𝑐 ∗ 𝑅𝑒𝑐

𝑃𝑟𝑒𝑐 + 𝑅𝑒𝑐
 (4.8) 

𝐵𝐴 =  
1

2
 (

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+ 

𝑇𝑁

𝑇𝑁 + 𝐹𝑁
) 

(4.9) 

𝐴𝑐𝑐 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (4.10) 

4.6. Ethical Consideration 

Predictive modelling of learners’ behaviours in MOOCs has various positive and potentially beneficial 

applications to make learner’s experience better. This research is typically conducted using the already 

collected and extracted learners’ data. A consent from the learners to use their data for research 

purposes, typically during registration, is already obtained before this. However, this does not 

consequently grant a researcher the right to handle the data before some ethical standards are strictly 

considered. This includes researching towards the explicitly positive outcomes of the research, that is, 

not using learners’ data, especially sensitive ones such as financial data used in our analysis, for 

purposes other than those stated within the research. Other research ethical standards, referred to by 

the university ethics committee, include keeping the data secure and anonymising learners’ data – 

prior to analysis – by removing data that offer immediate identification of learners. All these standards 

were followed while undertaking the present research.  

4.7. Epilogue 

This chapter explains the methodology followed in answering the research questions. This includes 

description of the datasets collected from various MOOC platforms, the data preprocessing followed, 

features selection, statistical tests, predictive ML approaches and the metrics used to evaluate the 

models’ performance. In the next chapter, we use learners’ weekly activities to predict their 

purchasability of the course certificate.
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Chapter 5 : Predicting Paid 

Certification in MOOCs Based on 

Learners’ Weekly Activities 

5.1. Prologue 

This chapter focuses on using learners’ weekly activities (accesses, attempts, and correct and wrong 

answers) and the time spent on each learning step to predict paid certification in MOOCs. The 

experiment is based on 23 runs of 5 MOOCs obtained from the relatively unexplored MOOC platform 

of FutureLearn to first statistically measure the difference in terms of activities between non-paying 

learners and course purchasers and then predict course purchasability using various ML classifiers. 

5.2. Introduction 

Massive open online courses (MOOCs) have been more population due to the free or low-cost offering 

of their content since their noticeable emergence in 2012. While this has helped these platforms to 

gather millions of learners in just a decade, the certification rate of both free and paid courses has been 
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declining. Thus, this chapter uncovers the latent correlation between learner activities and their 

decision to purchase a course certificate via statistically comparing the activities of non-paying 

learners with course purchasers and predicting course certification using different classifiers, 

optimising for this inherently strongly imbalanced dataset. Our results show that learner activities are 

the best predictors of course purchasability using only the learner’s number of step accesses, attempts, 

correct and wrong answers and time spent. achieving promising BAs. across the 5 courses. 

Clickstreams have been adopted for prediction in MOOCs. Wintermute, Cisel and Lindner (2021) 

conducted a network-based exploration of learners’ achievements by examining how a course-course 

interaction affects the likelihood of certification, and found that user engagement positively correlates 

with the certification rate in all 140 courses analysed. Wang, Hemberg and O’Reilly (2019) studied 

the impact of learner-obtained grades on their activities during the remaining content of the course 

and found that learners' behaviours did not change significantly after reaching the minimal grade for 

certification. Additionally, Coleman, Seaton and Chuang (2015) used LDA to explore behavioural 

patterns via learners' clickstreams to predict the likelihood of certification, whereas Ruipérez-Valiente 

et al. (2017) used learners’ assignments, visits, and time spent on various activities for the same 

prediction target. 

These statistical and ML-based models, and other models that are explained in Section 3.5, which 

were based on other types of MOOC data, are either were based on one course or run/iteration, did 

not consider weekly (early) prediction or use data of paid courses. Considering the recent transition 

of MOOCs towards paid macro-programmes and online degrees with affiliate university partners, this 

chapter presents a fine-grain exploration of learner behaviours from a different point of view – non-

paying learners versus certificate purchasers. Specifically, this chapter attempts to answer the 

following research questions: 

• RQ1: Do non-paying MOOC learners behave differently from course purchasers as to 

their activities of access and answering questions (attempts, correct and wrong answers)? 

• RQ2: Can MOOC learner’s clickstream data (accesses, attempts, correct and wrong 

answers) and time spent on course steps predict paid certification for courses? 

It is worth mentioning that the first research question attempts to compare the activities of non-paying 

learners (NL) versus certificate purchasers (CP) using a systematic statistical methodology as shown 

in Section 3.5. Subsequently, the second research question examines whether learners’ activities can 

be used to predict later certification behaviour. 
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5.3. Experimental Setting 

5.3.1. Data Collection 

When a learner joins FutureLearn for a given course, the system generates logs to correlate unique 

IDs and time stamps to learners, recording learner activities such as weekly-based steps visited, 

completed, comments added, or question attempted (Alshehri et al., 2018). The current study is 

analysing data extracted from a total of 23 runs spread over 5 MOOC courses, on 4 distinct topic areas, 

all delivered through FutureLearn, by the University of Warwick. These topic areas are literature 

(course: Shakespeare and his World [SP], duration: 10 weeks); psychology (courses: The Mind is Flat 

[TMF], duration: 6 weeks; and Babies in Mind [BIM], duration 4 weeks); computer science (course: 

Big Data [BD], duration 9 weeks), and business (course: Supply Chains [SC], duration 6 weeks).  

These courses were delivered repeatedly in consecutive years (2013–2017); thus, we have data on 

several “runs” of each course. Table 5.1 shows the number of enrolled, non-paying learners (NL), as 

well as those having purchased a certificate (CP). Our data shows that learners accessed 3,007,789 

materials in total and declared 2,794,578 steps completed. Regarding these massive numbers, Table 

5.1 clearly illustrates the low certification rate (less than 1% of the enrolled learners). 

Table 5.1. The number of non-paying learners and certificate purchasers on 5 FutureLearn courses. 

Course #Runs #Weeks #Steps 
#Non-paying 

Learners 

#Certificate 

Purchasers 

BD 3 9 105 33,427 265 

BIM 6 4 75 48,771 670 

SC 2 6 118 5,808 69 

SP 5 10 134 51,842 500 

TMF 7 6 93 93,601 314 

Total 23 35 525 233,449 1,818 

 

While the very low certification rate has already been threatening MOOCs sustainability, subsequent 

runs yield worse certification rates. Our analysis shows that courses tend to lose enrollees and, 

consequently, purchasers, over the consecutive runs of a course, as shown in Table 5.2. 
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Table 5.2. The number of non-paying learners and certificate purchasers in each run. 

Course/Run #Non-paying 

Learners 

#Certificate 

Purchasers 

% 

BD 33,427 265 0.79 

BD1 16,385 118 0.72 

BD2 11,281 75 0.66 

BD3 5,761 72 1.25 

BIM 48,771 670 1.37 

BIM1 12,651 185 1.46 

BIM2 9,740 168 1.72 

BIM3 7,765 104 1.34 

BIM4 6,225 78 1.25 

BIM5 8,443 85 1.01 

BIM6 3,947 50 1.27 

SC 5,808 69 1.19 

SC1 4,572 50 1.09 

SC2 1,236 19 1.54 

SP 51,842 500 0.96 

SP2 15,914 227 1.43 

SP3 12,692 111 0.87 

SP4 15,881 102 0.64 

SP5 7,355 60 0.82 

TMF 93,601 314 0.34 

TMF1 10,058 29 0.29 

TMF2 22,929 48 0.21 

TMF3 15,068 98 0.65 

TMF4 10,314 43 0.42 

TMF5 13,463 37 0.27 

TMF6 14,254 37 0.26 

TMF7 7,515 22 0.29 

Grand Total 233,449 1,818 0.77 
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5.3.2. Data Preprocessing 

The obtained dataset went through several processing steps so as to prepare them before feeding them 

into the learning model. Considering some learners were found to be enrolled on more than one run 

of the same course, the run number was attached to the learner’s ID, to avoid any mismatch during 

joining learner activities over “several runs” with their current activities. 

The preprocessing further contained eliminating irrelevant data generated by organisational 

administrators (455 admins across the 23 runs analysed). Table 5.3 shows the four main features 

analysed in this study. 

Table 5.3. The features utilised for comparing learner activities and predicting course purchasability. 

Activity Source Activities (per week) 

Step Access (a) #Accessed steps 

Attempts (t) #Attempts 

Correct Answers (r) #Correct Answers 

Wrong Answers (f) #Wrong Answers 

5.3.3. Time-spent Analysis 

As the number of the step access was found to be a significant feature among our dataset, we further 

extended our analysis to examine the extent to which the time spent by learners on each step can 

predict paid certification. The step-based time spent feature, tspent –which we used here for prediction 

and which proved to be a highly representative factor helpful for learners’ purchasing prediction – 

represents a computed value (rather than being provided as a log variable within the obtained dataset). 

This feature was defined as the difference between the first time a given learner accesses a step 

(first_visited time stamp) and the time when that step is fully completed (last_completed time stamp), 

as per learner’s declaration (by clicking the ‘Mark as Completed’ button), as shown in Figure 5.1. 
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Figure 5.1. The interaction component on a Weekly step Page 

 

The time spent can be mathematically expressed as: 

𝑡𝑠(𝑙,𝑠) = 𝑡𝑐(𝑙,𝑠) − 𝑡𝑣(𝑙,𝑠) 
(5.1) 

where ts=time spent, tc= last_completed time stamp, tv= first_visited time stamp, l=the current 

learner, s=the current step. 

As our dataset has several logged dates and respective times for various activities of the learners 

in the system, the pd.to_datetime function was applied, to convert these variables into a set of strings 

(year, month, day, hour, minute) to enrich our input features and allow for an as high performance as 

possible with the few features available, as well as taking into account the aim to use features available 

early in each run to allow for early predictability. The latter aspect is critical as it means that course 

providers could use our prediction model to create early interventions and thus guide more of the 

learners towards paying behaviour, potentially increasing their revenue. 

5.3.4. Feature Extraction 
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The preliminary data shape is a timestamp log spread on different data frames based on the data log 

source (access log, question answering log, and time-spent log). As MOOCs are usually delivered on 

a weekly basis, it was essential to compute the various weekly activities of each learner generating a 

temporal matrix of their weekly activities. The newly processed learner activities matrix of each 

course is as follows: 

𝑙𝑎 = [   

𝑙1 𝑎𝑤(1−𝑛) 𝑡𝑤(1−𝑛)

𝑙2 𝑎𝑤(1−𝑛) 𝑡𝑤(1−𝑛)

𝑙𝑛 𝑎𝑤(1−𝑛) 𝑡𝑤(1−𝑛)

  

𝑟𝑤(1−𝑛) 𝑓𝑤(1−𝑛)  

𝑟𝑤(1−𝑛) 𝑓𝑤(1−𝑛)  

𝑟𝑤(1−𝑛) 𝑓𝑤(1−𝑛)  

𝑡𝑠𝑤,𝑠(1−𝑛)

𝑡𝑠𝑤,𝑠(1−𝑛)

𝑡𝑠𝑤,𝑠(1−𝑛)

] 

Where, l = learner ID (excluded during building the model), a = access, t = attempts, r = correct 

answers, f = wrong answers, w = week, n = the number of the weeks in a given course, s = step(s) in 

week w. 

5.3.5. Features Selection 

Our preprocessed number of features as can be seen in the la matrix above is considerably high because 

the total number of the main extracted features (4) has to be multiplied by the total number of weeks 

w in a given course c, in addition to the computed weekly time-spent features. This resulted in a large 

array of features, especially for long courses such as SP, where the number of weeks was 10, 

generating 174 features (40 features of access, attempts, correct and wrong answers, and 134 times 

pent-based features). However, while this would allow (1) a temporal fine-grain analysis of the course 

content and (2) a timely and early prediction of learner’s behaviours, in order to highlight the most 

representative features, feature selection techniques were applied.  

One of the key steps of data preparation for conventional ML models is feature selection which 

nominates the most representative variables, eliminates any none-informative (irrelevant) variables, 

helps build a more interpretable and less costly model, and more importantly, improves the 

performance of the classifier (Kuhn and Johnson, 2013). Also, considering our data comprise 

numerical inputs (predictors) and categorical output, Kendall’s Tau (Kendall rank correlation 

coefficient) was applied to measure the correlation between our predictors and target. Given below in 

(Figure 5.2-5.6) is a per-course illustration of the most important (correlated with the output) features 

truncated to 30 features due to page width limit. These are the most important features over the entire 

course; however, the features selected for early prediction (using only the first week data and the first 

half of the course) were selected accordingly. 
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Figure 5.2. Feature selection in BIM course. 

 

Figure 5.3. Feature selection in BD course. 
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Figure 5.4. Feature selection in SC course. 

 

 
Figure 5.5. Feature selection in SP course. 
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Figure 5.6. Feature selection in TMF course. 

5.3.6. Statistical Analysis 

Our first step in exploring our dataset was examining whether it comes from a specific distribution. 

To ascertain this, the Kolmogorov–Smirnov test was conducted. As our data come from non-Gaussian 

(normal) distribution and the variables we are analysing are independent, we used the Mann–Whitney 

U test (also called Mann–Whitney–Wilcoxon (MWW) (McKnight and Najab, 2010)), 

a nonparametric test for testing the statistical significance of the difference of distributions. We use it 

here to compare the activities of non-paying learners with certificate purchasers. The U value can be 

mathematically expressed as follows: 

𝑈 = 𝑅 −
𝑛(𝑛 + 1)

2
 

(5.2) 

Where, n: sample size and R: the sample’s sum of the ranks. 

5.3.7. Classification Algorithms 

Further to the statistical inference, the current study applied four different classification and regression 

algorithms to predict MOOC learners’ purchasing behaviour: RF, ET, LR, and SVC. These algorithms 

were chosen because they were able to predict course purchasability well by dealing with the 

massively imbalanced datasets and using at the same time only a very few features, as shown in Table 

https://en.wikipedia.org/wiki/Statistical_hypothesis_test
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5.3. These input features exist in any standard MOOC system, which further promotes our model as 

generalisable. There are some further features that can be utilised for learner behaviour prediction, for 

example, demographics or leaving surveys; these features are either not generated by every MOOC 

platform or logged later after the end of the course, making the early prediction of purchasing 

behaviour challenging. 

To simulate the real-world issue of the low certification rate in MOOCs, we fed the imbalanced 

data to the classification models without any modifications. We have initially used many other 

classification algorithms for this prediction tasks. However, the algorithms that do not deal well with 

imbalanced data, that is, those that have a parameter to define the class weight during learning, were 

excluded. 

To deal with our imbalanced dataset, we used the BA metric, which is defined as the average of 

recall obtained on each class (developers, 2007-2020). BA equals the arithmetic mean 

of sensitivity (true positive rate) and specificity (true negative rate) as follows: 

𝐵𝐴 =  
1

2
 (

𝑡𝑝

𝑡𝑝 + 𝑓𝑛
+

𝑡𝑛

𝑡𝑛 + 𝑓𝑛
) (5.3) 

5.3.8. Dealing with Bias 

Algorithms have been playing a significant role in shaping various aspects of e-learning systems, and 

consequently, many view their decisions and predictions as inherently objective and fair (Lee, 2018a) 

(Lee, 2018). However, a contrasting viewpoint has recently arisen, suggesting that algorithms 

frequently incorporate the prejudices of their developers or the broader society, leading to predictions 

or conclusions that exhibit evident bias against particular groups of learners (Baker and Hawn, 2021). 

Bias in education has been documented since the 1960s, with a recent high observation in predicting 

learners’ success and failure in schools (Christie et al., 2019) or, more importantly, within MOOC 

predictive models (Gardner, Brooks and Baker, 2019). 

The literature shows that algorithmic bias in education is heavily associated with learners’ 

demographics, namely gender identity, race, nationality, ethnicity, age, national origin and sexual 

orientation (Baker and Hawn, 2021). In our dataset used in the current experiment, the learners in each 

course have been included, regardless of their characteristics or demographical information. This is 

not only due to learners’ demographics missing from our dataset, but also for developing generalisable 
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models for predicting paid certification. This is in line with avoiding extensive sample filtration, which 

has been identified as one of the common limitations in the previous predictive model, as further 

explained in section 3.7.2. 

Another common approach to mitigate potential bias is data preprocessing and algorithmic metrics 

(Baker and Hawn, 2021), which were adopted in this experiment, to enhance the reliability and 

fairness of the predictive models. This includes data shuffling before training, which ensures that the 

predictive model is exposed to all different types and patterns of learners’ activities while learning. 

As a result, this strategy ensures the model remains general and does not overfit the training data 

through training on specific groups of learners. We also adopted the stratified cross-validation (CV) 

technique, which uses k folds (portions) of the data, preserving the same percentage of samples for 

each class in each fold to train and test the model on different iterations. CV architecture is commonly 

known for avoiding overfitting, by allowing the model to train on multiple train-test splits. 

Consequently, a better estimation of the model performance on unseen data is ensured. With k=10 and 

the statistics in Table 5.1 in mind, the training and test data size ratios are 30322:3370, 44496:4943, 

5289:586, 47107:5235 and 84523:9390 for the courses BD, BIM, SC, SP and TMF, respectively. 

5.4. Results 

5.4.1. Statistical analysis 

The results explore how our processed features can temporally identify course buyers based on their 

activity data. Our temporal analysis showed some statistical significance at various levels when 

comparing the behaviours of non-paying learners with those of the certificate purchasers across the 5 

courses analysed. Tables 5.5-5.8 show the statistical analysis results where bold values mean the most 

significant value in each course. As the courses analysed spanned over different numbers of weeks, 

we have selected the first, middle, and last weeks to report the results. Below are the results for the 

four analysed activities (Access, Attempts, Correct Answers, and Wrong Answers). 

For courses with an even number of weeks, we have selected the middle week closer to the start 

of the course for analysis. As shown in Table 5.5 to 5.8, our analysis indicated that paying learners 

were generally more engaged with the course content in accessing the content more frequently, 
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attempting more questions, answering more questions correctly, and reattempting more questions 

answered incorrectly. Since platforms allow learners several attempts to answer a question correctly, 

the latter (number of wrong answers) indicates certificate purchasers’ persistence to reach the 

minimum score required to be eligible for the course certificate. While all the statistical analysis results 

were very significant (p < 0.001, ranging from 4e-23 to 0), the test showed higher prediction power 

towards the end of the course. Course-wise, the difference in the activities of both groups of learners 

in SH was the most significant, whereas the significance of these four predictors based on the results 

of the last week can be placed in descending order: as attempts, correct answers, wrong answers, and 

access. Thus, non-paying course takers behave differently from course purchasers, in accessing 

content and answering questions (attempts, correct answers, and wrong answers). 

5.4.1.1. Access 

Table 5.4 below shows the statistical analysis results of comparing the number of accesses for non-

paying learners and certificate purchasers at three different time points of the course. Bold values refer 

to the most significant value in each scenario (week) in each course, whereas italic values refer to the 

p-value. Since the courses analysed spanned over different weeks, we have selected the first, middle, 

and last weeks to report the results. As seen in Table 5.5, the difference in the number of accesses 

becomes larger when learners reach the end of the course, with the last week generally having the 

most significant results. The only exception is the BD course, where the mid-week activity difference 

was more significant compared to the first and last weeks. All the statistical analysis results were 

significant, with p values ranging between 4e-23 and 6e-264 for SC 1st week and TMF last week, 

respectively.     

Table 5.4. Comparison of the number of accesses for non-paying learners and certificate purchasers at three 

different time points of the course. 

Course Measure 1st Week Mid-Week Last Week 

BIM U 3211971.5 2293014.5 2411750.5 

 P 5e-148*** 5e-250*** 5e-259*** 

BD U 476093 387020 561591 

 P 3e-103*** 6e-225*** 9e-209*** 

SC U 21763.5 13247.5 16621.0 

 P 4e-23*** 1e-52*** 2e-64*** 
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SH U 3304763.0 1772883.0 1437034.5 

 P 1e-97*** 6e-286*** 0*** 

TMF U 2160133.0 1436888.0 1370678.0 

 P 1e-85*** 2e-182*** 6e-264*** 

*: P < 0.05, **: P < 0.01, ***: P < 0.001. 

 

5.4.1.2. Attempts 

In Table 5.5, the statistical analysis results of comparing the number of attempts (either correct or 

wrong) for non-paying learners and certificate purchasers are provided. As in the earlier results in 

5.4.1.1, bold values refer to the most significant value in each scenario (week) in each course, whereas 

italic denotes the p value. The statistical significance has also followed a similar trend to the number 

of accesses, where course purchasers had larger statistics (number of attempts) towards the end of the 

course. All the statistical analysis results were significant, with p value ranging between 9e-38 and 

zero for SC 1st week and the last week of BIM, SH and TMF, respectively. 

Table 5.5. Comparison of the number of attempts for non-paying learners and certificate purchasers at three 

different time points of the course. 

Course Measure 1st Week Mid-Week Last Week 

BIM U 4080976.0 2682326.0 3333306.5 

 P 1e-117*** 0*** 0*** 

BD U 545904 555967 747421 

 P 4e-136*** 5e-269*** 2e-279*** 

SC U 23504.5 13759.0 19366.5 

 P 9e-38*** 2e-77*** 1e-88*** 

SH U 3828157.5 1844641.5 1984241.0 

 P 8e-84*** 0*** 0*** 

TMF U 1931024.0 1367316.5 1855830.0 

 P 4e-130*** 4e-257*** 0*** 

*: P < 0.05, **: P < 0.01, ***: P < 0.001. 
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5.4.1.3. Correct Answers 

Table 5.6 shows the statistical analysis results of comparing the correct answers for non-paying 

learners and certificate purchasers at three different time points of the courses analysed. Regarding 

statistical significance, correct answers also followed a similar trend to the number of accesses and 

attempts, where course purchasers had larger statistics (number of correct answers) towards the end 

of the course. As shown in Table 5.7, all the statistical analysis results were significant, with p values 

ranging between 4e-42 and zero for the SC 1st week and the last week of BIM and SH, respectively. 

Table 5.6. Comparison of the number of correct answers for non-paying learners and certificate purchasers at 

three different time points of the course. 

Course Measure 1st Week Mid-Week Last Week 

BIM U 3676853.0 2570707.5 3264674.5 

 P 3e-155*** 0*** 0*** 

BD U 531926 539949 752898 

 P 7e-142*** 7e-277*** 9e-279*** 

SC U 20705.5 13695.0 19429.5 

 P 4e-42*** 1e-77*** 1e-88*** 

SH U 2879619.5 1692500.0 1851654.5 

 P 5e-140*** 0*** 0*** 

TMF U 2228499.5 1430002.5 1916800.0 

 P 8e-116*** 5e-252*** 1e-308*** 

*: P < 0.05, **: P < 0.01, ***: P < 0.001. 

5.4.1.4. Wrong Answers 

Wrong answers are the fourth primary variable adopted for predicting certification in the present 

experiment. Table 5.7 shows the statistical analysis results comparing the number of wrong answers 

for non-paying learners and certificate purchasers at three different time points of the courses 

analysed. In terms of statistical significance, wrong answers also followed a similar trend to the 

number of accesses, attempts and correct answers, where course purchasers had larger statistics 

(number of wrong answers) towards the end of the course. As shown in Table 5.8, all the statistical 
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analysis results were significant, with p value ranging between 2e-11 and zero for SC 1st week and SH 

last week, respectively. 

Table 5.7. Comparison of the number of wrong answers for non-paying learners and certificate purchasers at 

three different time points of the course. 

Course Measure 1st Week Mid-Week Last Week 

BIM U 4532257.5 3621172.0 5021527.0 

 P 1e-95*** 9e-224*** 8e-256*** 

BD U 1125357.5 1292662 863940 

 P 8e-67*** 1e-95*** 1e-250*** 

SC U 59297.0 21375.5 23286.5 

 P 2e-11*** 1e-69*** 5e-83*** 

SH U 4198990.5 2045237.0 2292388.5 

 P 3e-68*** 5e-265*** 0*** 

TMF U 2082685.5 1540113.5 2005657.5 

 P 5e-125*** 6e-249*** 4e-310*** 

*: P < 0.05, **: P < 0.01, ***: P < 0.001. 

5.4.2. Prediction Performance 

The results shown in Table 5.8 compare the performance of our selected classifiers based on Rec and 

BA performance metrics. These results answer our second research question, on whether the learner 

clickstreams can be used to predict paid certification in MOOCs. The results achieved a promising 

BA across the five domain-varying courses, ranging from 0.77 to 0.95. The classifiers performed 

differently based on the course analysed, where SVC performed the best in BIM, ET in BD and SP, 

and LR in CS and TMF. In general, the improvement in the performance of the classifiers was lower 

towards the end of the courses compared to the difference between the first week only and the first 

half of the course. This may indicate that course purchasers exert more effort until they reach the 

minimum requirements for certification (typically just after the middle of the course). After that, the 

level of interest in the course content in terms of access, question answering, and time spent learning 

is reduced; hence, at this stage, activities that are more similar to non-paying learners are performed 

even by the paying course takers. 
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Table 5.8. clickstream-based Learner classification results distributed by course, class 0 = non-paying learners, 

class 1 = paid learners. 

Course Classifier 1st Week Mid-Week Last Week 

Rec_0 Rec_1 BA Rec_0 Rec_1 BA Rec_0 Rec_1 BA 

BIM RF 0.61 0.95 0.78 0.79 0.85 0.82 0.80 0.85 0.83 

ET 0.60 0.95 0.77 0.80 0.82 0.81 0.81 0.82 0.81 

LR 0.60 0.95 0.78 0.78 0.86 0.82 0.80 0.86 0.83 

SVC 0.59 0.96 0.78 0.79 0.87 0.83 0.80 0.87 0.84 

BD RF 0.78 0.96 0.87 0.87 0.86 0.86 0.87 0.95 0.91 

ET 0.76 0.98 0.87 0.85 0.90 0.88 0.86 0.95 0.91 

LR 0.76 0.98 0.87 0.86 0.88 0.87 0.86 0.95 0.91 

SVC 0.76 0.98 0.87 0.85 0.90 0.87 0.85 0.95 0.90 

CS RF 0.78 1.00 0.89 0.90 0.90 0.90 0.90 1.00 0.95 

ET 0.78 1.00 0.89 0.89 0.90 0.89 0.89 1.00 0.95 

LR 0.78 1.00 0.89 0.90 0.90 0.90 0.90 1.00 0.95 

SVC 0.78 1.00 0.89 0.90 0.85 0.87 0.89 1.00 0.95 

SP RF 0.55 0.98 0.77 0.79 0.96 0.87 0.84 0.91 0.87 

ET 0.55 0.98 0.77 0.79 0.96 0.88 0.84 0.92 0.88 

LR 0.58 0.95 0.76 0.84 0.90 0.87 0.84 0.90 0.87 

SVC 0.55 0.98 0.77 0.79 0.96 0.87 0.84 0.91 0.87 

TMF RF 0.66 0.96 0.81 0.80 0.93 0.86 0.85 0.86 0.86 

ET 0.66 0.98 0.82 0.81 0.89 0.85 0.84 0.86 0.85 

LR 0.66 0.98 0.82 0.80 0.93 0.86 0.84 0.86 0.85 

SVC 0.66 0.98 0.82 0.81 0.89 0.85 0.84 0.86 0.85 

 

The BA metrics on the “first week-only” data were relatively promising (0.82 on average) for a 

very early prediction, compared to the first half of the week and the whole course data (0.86 and 0.88, 

respectively). However, at the class level, the average of Rec_0 (non-paying learners) in the first-week 
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scenario was 0.67 compared with 0.83, using data from the first half of the course. We thus believe 

that mid-week should be considered a more reliable point of the course for classifying learners and 

consequently providing any planned intervention. In class weighing, we have used both approaches 

of automatic balancing by the algorithm (balanced) and manually assigning a weight for each class 

until the balanced optimal Recall is reached for both classes. This significantly affects the learning 

process; for instance, SC was the most challenging course to balance learning, as testing was done on 

a small set of four learners only. 

As discussed in Chapter 3, the correlation between the time spent on the course content and 

certification was statistically analysed by various previous works, including those by Cobos and 

Jurado (2018), who used the learners’ time spent on assignments and videos and Goli, Chintagunta 

and Sriram (2019) who used the total time spent (minutes) and the average session duration (minutes). 

Tian et al. (2017) analysed the correlation between the time learners spend on content in days and 

certification, whereas Qiu et al. (2016) examined the impact of effective learning time spent and 

certification attainment. However, the time spent on content as a feature for building a paid 

certification predictive model has not been used on MOOC data on a large scale. This highlights the 

contribution of the present experiment, which computed this feature of relatively large data of 23 runs 

of 5 courses. 

As there is no predefined strategy for selecting the most suitable algorithms for a specific 

classification task, this study followed an adequately justified approach to selecting algorithms. For 

instance, this experiment was based on using the data as-is, without oversampling any of the training 

dataset classes. As a result, the classification algorithms adopted in this experiment included class 

weighting among their fine-tuning parameters. The class_weight parameter uses the number of 

instances in each class to adjust weights inversely proportionally to each class size. Both automatic 

adjustment (balanced) and manual (giving each class a weight percentage) were assigned with iterative 

runs to reach optimal results. Other fine-tuned parameters included regularisation control (C, where 

smaller values specify stronger regularisation) and kernel in LR and SVC classifiers. For tree-based 

classifiers, the number of trees in the forest (n_estimators) and the maximum depth of the tree 

(max_depth) were tuned in RF and ET classifiers. These parameters significantly impacted the 

learning process in each of the corresponding classifiers mentioned above and were iteratively 

assigned integer, float, or Boolean values until an optimal model performance was reached. 

Regarding generalisability, while the dataset we used was obtained from one platform only, it 

spans various runs (23) of 5 different MOOCs, covering four distinct disciplines (literature, 

psychology, computer science, and business). This allowed us to longitudinally observe the changes 
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in learners’ activities from a paid certification perspective, as further discussed in Section 5.3.1 and 

predict paid certification based on a rich source of data. As shown in Table 3.2, most of the surveyed 

works were based either on one course or run/iteration. Another novelty of the present thesis is 

predicting paid certification in MOOCs at an early stage (starting with using data from the first week 

of the course only). Our analysis showed that only ten studies adopted early prediction, out of which 

only one study explicitly predicted paid certification at an early point of the course using data from 

one run of an edX course. However, while edX has been extensively analysed (17 out of 25 studies), 

FutureLearn has never been explored from a paid prediction perspective, although it is considered the 

largest MOOC platform launched outside the United States. 

5.5. Epilogue 

This chapter focuses on using learners’ weekly activities (accesses, attempts, and correct and wrong 

answers) and the time spent on each learning step to temporarily predict paid certification in MOOCs. 

The experiment is based on 23 runs of 5 MOOCs obtained from the relatively unexplored MOOC 

platform of FutureLearn to first statistically measure the difference in terms of activities between non-

paying learners and course purchasers and then predict course purchasability using various ML 

classifiers. In the next chapter, a MOOC sentiment classifier using reviews and comments data from 

various MOOC platforms is introduced, in addition to a comparison of the performance of different 

lexicon and DL-based classifiers, as a  step towards better predicting certification purchase. 
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Chapter 6 : MOOCSent: A Sentiment 

Predictor for Massive Open Online 

Courses 

6.1. Prologue 

After conducting an initial analysis involving straightforward predictions based on a limited set of 

clickstream variables in Chapter 5, our focus shifts in the current chapter, towards exploring a more 

complex predictor (i.e., discussion forums) of paid certification in MOOCs. However, since Sentiment 

Analysis (SA) has been identified as a key determinant of learners’ success in MOOCs (Kastrati et 

al., 2021; Dalipi, Zdravkova and Ahlgren, 2021), MOOCSent was built (as discussed in the present 

chapter) before delving into the examination of learners' discussion forums. Since the forum 

discussion dataset used in this thesis lacked labelled sentiments of learners, therefore, as a preliminary 

step towards harnessing MOOC discussion forums for certification prediction in Chapter 7, assigning 

sentiments to learners' posts, encompassing both comments and replies, was first conducted using 

MOOCSent. This sentiment labelling process aimed to enhance the richness of our training dataset 

and subsequently improve the predictive model's performance. 
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Thus, this chapter introduces a cross-platform MOOCs sentiment classifier, using over 1.2 million 

human-annotated learners’ comments and reviews obtained from 633 MOOCs. The classifiers 

adopted in this experiment varies from lexicon and rule-based (LRB) tools, to the more advanced 

language model of BERT.  

The purpose of constructing the MOOCSent model was to use the labelled dataset of 1.2 million 

MOOC reviews to train the model and subsequently apply it to label textual data from FutureLearn's 

learners (comprising comments and replies) with estimated sentiments. These estimated sentiments 

serve as input features in the third experiment in Chapter 7, which focuses on predicting certification 

outcomes based on discussion forums. 

6.2. Introduction 

The terms “Sentiment Analysis” (SA) and “Opinion Mining” are used interchangeably (Medhat, 

Hassan and Korashy, 2014), together with other terms with the same principal aim (Bonta and 

Janardhan, 2019). They are defined as the process of computational evaluation and classification of 

opinions from unstructured text to determine if they tend towards positive, negative, or neutral 

sentiments (Ahuja and Dubey, 2017). Sentiment analysis has become a valuable tool in solving a wide 

range of problems by extracting opinions and making decisions across different disciplines and fields, 

including sociology, marketing and advertising, psychology, economics, political science, and others 

(Hutto and Gilbert, 2014). Its widespread use can be attributed to the fact that opinions are important 

factors affecting human behaviours (Zhang, Wang and Liu, 2018). Adopting SA, particularly in the 

education domain, is an essential but a complicated task due to the specific nature of textual data and 

the volume of information learners generate on online learning platforms (Kastrati et al., 2021). 

Additionally, annotating learners’ expressed opinions and sentiments in MOOCs is a time-consuming 

and labour-intensive task. This might not be the case with small-scale MOOCs which typically contain 

relatively small number of textual inputs. However, manual labelling seems impractical for many 

online courses and specifically for MOOCs (Kastrati, Imran and Kurti, 2020). 

Another challenge in the SA domain is the struggle to identify sarcasm and irony in text, where, 

in some cases, the intended sentiment may be exactly the literal contrast to the words posted. For 

example, sarcastic sentences such as "Great job!" in a negative context might be misinterpreted if the 

classifier cannot capture the subtle nuances of language (Ilavarasan, 2020). Another challenge lies in 
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dealing with context-dependent expressions and ambiguous language. While sentiment lexicons play 

an essential role in sentiment detection tasks by providing sentiment information for words, the 

sentimental ambiguity - with these lexicons having one sentiment polarity for each word - is typically 

ignored. Thus, incorporating POS chunks with the words is expected to  solve the ambiguity of lexical 

sentiments where POS of context can be used for calculating the sentiment (Yin et al., 2020)  

Cultural and linguistic variations are also among the main challenges and can further complicate 

sentiment analysis since the same word/phrase may convey different sentiments in different cultural 

contexts (Mirza, Lukosch and Lukosch, 2023). This is related to cross-cultural polarity measurement 

using emotion detection, where sentiment analysis techniques are employed to measure the 

sentimental tone in multicultural or multilingual texts. One way to address this challenge is to compare 

and contrast the emotions expressed in different cultures or identify cultural-specific sentiment 

patterns using deep learning approaches (Mirza, Lukosch and Lukosch, 2023). These challenges 

underscore the need for advanced techniques and data-rich models to enhance the accuracy and 

robustness of sentiment analysis in real-world applications. 

With regard to the approaches used for SA, they include lexicon-based (rule-based), conventional, 

and deep ML models and, recently, complex language models such as BERT. While current and 

common lexicon-based classifiers (such as VADER (Hutto and Gilbert, 2014) and TextBlob (Loria, 

2018)) and conventional ML models such as NB) have been the most commonly used classifiers in 

the education domain (Dalipi, Zdravkova and Ahlgren, 2021), it is not obvious which is more 

appropriate and whether recent language models such as BERT can outperform these approaches. 

There are various concerns regarding the effectiveness and generalisability of the current literature 

on SA in MOOCs. This includes (1) using one single source of data (previous literature on sentiment 

classification in MOOCs was based on single platforms only, Coursera and edX being the most 

popular platforms (Bulusu and Rao, 2021)) and hence less generalisable with relatively low number 

of instances compared to our obtained dataset; (2) lower model outputs, where the majority of the 

surveyed models in Section 6.3 are based on 2-polar classifier (positive or negative); (3) disregarding 

important sentiment indicators, such as emojis and emoticons, during text embedding; and (4) 

reporting average performance metrics only, preventing the evaluation of model performance at the 

level of class (sentiment). 

In this chapter, we further fill this gap by comparing the various and currently widely used NLP 

methods (TextBlob, VADER, Stanza, and NB) for SA to validate these tools in the educational sector, 

especially in discussion forums in MOOC platforms. In addition, we propose MOOCSent using the 
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BERT-based model to predict sentiment in a massive dataset of around 1.2 million learners’ comments 

so as to find the most suitable model for sentiment prediction. Thus, the research question this chapter 

tackles is as follows: 

• RQ3: Can course reviews obtained from multiple MOOC platforms be used to build a 

reliable sentiment classifier? 

6.3. Related Work  

The researchers’ interest in SA began in the early 1990s (Ahuja and Dubey, 2017). Later, in 2000, it 

become one of the most active areas in NLP (Bonta and Janardhan, 2019). It has been employed in 

numerous studies of educational data mining using NLP methods. Bakharia (2016) used 3 cross-

domain MOOCs (education medicine and technology) to develop a 2-polarity learner sentiment 

classifier (negative or positive). In this study, several ML algorithms such as NB, SVM, and RF have 

been used. The data source was Stanford MOOCPosts dataset which contains approximately 30,000 

forum posts. Although all the classifications achieved an accuracy of over 0.70, only the average 

classification accuracy has been reported. In the transfer learning research, Wei et al. (2017) 

investigated cross-domain classification using deep neural network techniques based on CNN and 

LSTM to determine the polarity of the sentiment for a highly imbalanced dataset (17,936 (85%) 

positive posts and 3,157 (15%) negative posts). The reported metric was the overall accuracy of the 

different models, and the best preforming one achieved an overall Acc. of over 0.85. 

Clavié and Gal (2019) built two models, namely EduBERT and EduDistilBERT, to classify 

confusion, sentiment, and urgency. The dataset used for these models was derived from 11 Stanford 

courses and 18 courses from various public universities in the UK and the US. The best-performing 

algorithm was EduBERT for sentiment classification, achieving 89.78%. However, the study did not 

present the performance of the models for each class. Chen et al. (2019) used three randomly selected 

courses from the Stanford dataset mentioned above to predict SA. Three experiments were conducted 

to verify the effectiveness of the proposed model (1) using traditional supervised methods, that is, 

Random Forest and SVM (RBF); (2) using CNN with the pre-trained word vectors trained on GN and 

ELMo; and (3) using a semi-supervised learning model with 30% labelled data. The latter method 

improved the model accuracy and the F1 score by 2.8% and 3.2%, respectively. 
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Kastrati et al. (2020) built an aspect-based opinion and sentiment model for mining learners’ 

comments to predict their attitudes of these commented aspects. The dataset used for implementing 

the model contained over 21,000 manually annotated Coursera learners’ reviews. Various 

conventional and deep models including DT, N, SVM, GB, and CNN were adopted in this study. The 

experiment was replicated (Kastrati, Imran and Kurti, 2020) but with a larger dataset of 111,000 

sentiment-annotated reviews from Coursera and other traditional classes. The purpose was to use this 

classifier to label other unlabelled learners’ reviews, consequently reducing the need for labour-

intensive manual annotation. The proposed model achieved a promising performance in identifying 

aspect categories and sentiments within learners’ reviews. Yet, adapting contextualised word-

embedding models such as BERT is in the pipeline to further improve the performance of the model. 

Onan (2021) used a crawled CourseTalk dataset of 93,000 course reviews with several 

conventional, ensemble, and deep classifiers to build a sentiment classification model. The empirical 

analysis indicates that deep models outperform the other architecture with LSTM being the best 

sentiment classifier. Moreno-Marcos et al. (2018a) compared the performance of LR, SVM, DT, RF, 

NB, and SentiWordNet in detecting learners’ sentiments. The experiment used around 13,000 

comments obtained from an edX course and found RF to be the best classifier. The analysis found that 

positivity correlates with different time points of the course; for instance, learners tend to post more 

positive comments at the beginning of the course, whereas more negative posts were observed at 

critical stages of the course such as the deadlines for peer-review assessments. 

In the MOOCs domain there are some efforts of using SA on forum content for various purposes. 

For example, a popular target is using sentiment as a feature to predict learner attrition in MOOCs 

(Chaplot, Rhim and Kim, 2015). Literature shows a correlation between learners’ sentiment and their 

performance in MOOCs such as course quizzes, homework assignment and course completion. Wen, 

Yang and Rose (2014) examined the correlation between learners’ sentiments extracted from the 

comments posted weekly and the weekly dropout rate in 3 MOOCs. The study found that correlation 

is significant, recommending further consideration of learners’ weekly textual interaction. Similarly, 

Tucker, Pursel and Divinsky (2014) used a sentiment analyser (the Semantic Orientation CALculator 

(SO-CAL)) to mine a MOOC discussion forum. Next, quantified the learners’ sentiment impact on 

learner performance (grades, assignment, quizzes, exams) and learning outcomes. The purpose of this 

study was to determine whether there is a correlation between textual content expressed in the 

discussion forum and learner performance and learning outcomes. The results showed that learner 

positive sentiment slightly correlated with performance in quizzes, whereas a stronger correlation was 
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found between negative sentiment and homework assignment. Table 6.1 shows a list of the previous 

works compared to our SA predictor, MOOCSent. 

Table 6.1. Sentiment prediction models vs MOOCSent 

Cite. Dataset Source #Courses Classifiers Metrics 

(Moreno-Marcos et al., 
2018a) 

≈13k 
edX 

1 
LR, SVM, DT, RF, NB, 
SentiWordNet 

AUC, 
Kappa 

(Bakharia, 2016) ≈18k Stanford 3 NB, SVM, RF Acc 

(Wei et al., 2017) ≈18k Stanford 3 CNN, LSTM Acc 

(Li et al., 2019b) ≈19k 
China MOOC 

n/a 
Lexicon (DUTIR), CNN, GRU, 
BERT 

F1, Acc. 

(Clavié and Gal, 2019) n/a 
Stanford & 
other 

29 BERT Acc. 

(Kastrati et al., 2020) ≈21k 
Coursera 

n/a DT, NB, SVM, GB, CNN 
Prec., Rec., 
F1 

(Lundqvist, 
Liyanagunawardena and 
Starkey, 2020) 

=25k 
FutureLearn 

1 VADER, Wilcox Pratt P 

(Tucker, Pursel and 
Divinsky, 2014) 

≈26k 
Coursera 

1 SO-CAL Corr. 

(Chen et al., 2019) ≈30k Stanford 11 RF, SVM, CNN F1, Acc. 

(Wen, Yang and Rose, 
2014) 

≈36k 
Coursera 

3 Survival Analysis p 

(Munigadiapa and 
Adilakshmi, 2022) 

≈80k 
Stanford, IMDB 

11 NB, SVM, LR, CNN, LSTM 
Prec., Rec., 
F1, Acc. 

(Onan, 2021) =93k 
CourseTalk 

n/a 
KNN, RF, NB, AdaB, SVM, 
CNN, RNN, LSTM, GRU 

F1, Acc. 

(Kastrati, Imran and 
Kurti, 2020) 

≈111k 
Coursera & 
other 

n/a CNN, LSTM 
Prec., Rec., 
F1 

(Yang, 2021) =150k 
icourse163 

n/a GRU 
Prec., Rec., 
F1 

MOOCSent ≈ 1.2m 

Coursera, 

Udemy, 

FutureLearn, 

Stanford 

633 
TextBlob, VADER, CNN 

(Stanza), NB, BERT 

Prec., Rec., 

F1, Acc. 
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6.4. Methodology 

6.4.1. Data Collection 

Here, we propose a cross-platform MOOCs sentiment classifier using almost 1.2 million human-

annotated learners’ comments obtained from 633 MOOCs delivered via Coursera, Udemy, 

FutureLearn and Stanford University platforms. This makes our dataset the largest MOOC datasets 

collected for SA. 

6.4.1.1. Coursera, Udemy and FutureLearn (training data) 

The reviews dataset contains 1,250,830 reviews scraped from 622 Coursera, Udemy, and FutureLearn 

courses, in addition to the learner rating. The distribution of instances per class is shown in Table 6.2. 

After completing a given course, the learners were asked to provide their review about the course 

together with a 3-point-Likert-scale rating of the learner’s sentiment towards the course (positive, 

neutral, or positive). The rating makes the dataset already sentiment annotated, thus saving a great 

deal of time that would otherwise be spent on manual annotation. 

6.4.1.2. Stanford university (test data) 

This dataset, dubbed the Stanford MOOCPosts Dataset, is available for academic researchers by 

request. It contains anonymised learners’ posts in English from the discussion forums of 11 Stanford 

University online courses spanning over 3 different domain areas: education, humanities/sciences, and 

medicine (Agrawal et al., 2015). These textual posts were labelled by 3 human annotators across 6 

dimensions (Opinion, Question, Answer, Sentiment, Confusion, and Urgency). For sentiment, the 

range was from 1 to 7, with 1 = negative, 7 = positive, and 4 = neutral. For a better and fairer 

comparison with other approaches, we simplified by converting the 7-point scale into 3 classes as: 

Negative → sentiment (1–7) < 4, Neutral → sentiment (1–7)  [4, 5), Positive → otherwise.  

Therefore, the distribution of the classes is as follows: 4,387 instances in the negative class, 20,557 

in the neutral class, and 4,653 in the positive class (Table 2). 
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Table 6.2. Statistics of the experiment datasets 

Dataset #Negative  #Neutral  #Positive Total  

Coursera 29,234 32,073 706,966 768,273 

Udemy 17,036 38,349 304,172 359,557 

FutureLearn 1,259 3,853 117,888 123,000 

Stanford 4,387 20,557 4,653 29,597 

Total 51,916 94,832 1,133,679 1,280,427 

6.4.2. Data Preprocessing 

As shown in Table 6.2, the number of instances of the negative and neutral classes are relatively very 

low. Thus, augmenting the training data is a crucial step to help influence the model performance and 

prevent model overfitting. There are various data augmentation techniques such as random word 

insertion, random word deletion, and back translation. However, these methods may introduce 

semantic (meaning) variance and hence misrepresentation of learners’ reviews (Shorten, Khoshgoftaar 

and Furht, 2021). Therefore, we adopted one of the most used semantically preserving augmentation 

method called WordNet, which augments text by replacing words with their synonyms of the same 

POS from the WordNet thesaurus (Miller et al., 1990; Bayer, Kaufhold and Reuter, 2022). 

Data preprocessing also included removing unwanted characters, such as HTML/XML, 

punctuations, and non-alphabets, by using regular expressions. The last step contained removing stop-

words, lowering the cases of characters, reforming contractions into the original words, and grammar 

correction. 

Some preprocessing steps such as stemming, lemmatisation, and stopwords removal were skipped 

for BERT. These steps are useful while using lexicon-based predictors as the weighting scheme is 

usually tf-idf- or countervectoriser-based. Thus, the text contextuality is not important. However, 

context-aware semantic models such as BERT process stopwords-included context like the negation 

words (e.g. never, nor, not) to capture knowledge and can thus learn the true learner’s sentiment. 

Therefore, stopwords receive as much attention as the rest of the textual inputs by BERT due to its 

important role in structuring semantic representation (Qiao et al., 2019). 

Emojis and emoticons play a significant role in analysing sentiment; nevertheless, they are not by 

default recognised by language models. This includes advanced NLP models such as BERT, where 
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emojies and emoticons are tokenised as unknown [UNK]. Therefore, we use UNICODE_EMOJI and 

EMOTICONS_EMO lexicons to address this issue. These lexicons contain 221 emoticons and 3,521 

emojis with their corresponding explanatory words/phrases, which were used to convert emojis and 

emoticons into tokenisable inputs. Figure 6.1. depicts an example of converted emoji and emoticon 

into corresponding explanatory words. 

 

 
Figure 6.1. An example of converting emojis and emoticons into corresponding explanatory words. 

6.4.2.1. Dealing with Bias 

Addressing bias in text-based tasks is a sophisticated and ongoing challenge. This includes finding 

actionable techniques to promote fairness and ensure that the developed models are equitable and 

provide reliable results. It also includes improving the data collection methods for promoting 

transparency in NLP model development. There are some occasions where bias in NLP tasks is 

expected. This includes but is not limited to (1) using imbalanced sets of the different classes of the 

training dataset, (2) passing improperly tokenised texts, and (3) human annotating the model inputs, 

which increases the chance of unintentional encoding of annotators’ biases (Baker and Hawn, 2021).  

The current experimental methodology followed various techniques for mitigating potential bias. 

For instance, the data collected for building the predictive model was obtained from different courses 

(633) of different sources (4 platforms), making it not only the largest dataset collected for SA in the 

field of MOOC analytics but also the most diverse in terms of course types and disciplines (see table 

6.1 for more comparison). This helped build an SA classifier trained on four of the largest MOOC 

platforms (Coursera, Udemy, FutureLearn, Stanford), achieving a higher level of generalisability and 

reducing the model risk of being overfitting on a single platform. 

Another procedure followed to reduce potential bias is balancing the training data before training 

the model. As shown in Table 6.2, the number of instances of the negative and neutral classes is 

relatively low, marking only 12% combined, whereas positive comments mark the remaining portion. 
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Thus, augmenting the training data (namely negative and neutral classes ) is crucial to help influence 

the model performance and prevent any potential bias. There are various data augmentation 

techniques, such as random word insertion, random word deletion, and back translation. However, 

these methods may introduce semantic (meaning) variance and consequently misrepresent learners’ 

reviews (Shorten, Khoshgoftaar and Furht, 2021). Therefore, we adopted one of the most used 

semantically preserving augmentation methods called WordNet, which augments text by replacing 

words with their synonyms of the same POS from the WordNet thesaurus (Miller et al., 1990; Bayer, 

Kaufhold and Reuter, 2022). 

Having our collected dataset labelled by the learners themselves is another factor for mitigating 

any potential bias. Human manual labelling for training may introduce bias because annotators may 

unintentionally encode their biases. Since learners themselves annotate the data adopted, this typically 

represents higher accuracy in terms of annotation (Malko et al., 2021) and promotes the fairness of 

the results. Also, key sentiment indicators (i.e., emojis and emoticons) were properly encoded before 

tokenisation. Although emojis and emoticons play a significant role in analysing sentiment, they are 

not, by default, recognised by language models. This includes advanced NLP models such as BERT, 

where emojis and emoticons are tokenised as unknown [UNK]. Therefore, we use UNICODE_EMOJI 

and EMOTICONS_EMO lexicons to address this issue. These lexicons contain 221 emoticons and 

3,521 emojis with their corresponding explanatory words/phrases, which were used to convert emojis 

and emoticons into tokenisable inputs. Figure 6.1. depicts an example of converted emoji and 

emoticon into corresponding explanatory words. This can help the model train on the entirely 

representative texts typed by learners instead of assigning random tokens to these key inputs and, 

therefore, become more reliable and fairer. 

6.4.3. Sentiment Classification Methods 

6.4.3.1. TextBlob 

TextBlob is an open-source text-processing Python library that allows one to perform several tasks, 

including noun phrase extraction, translation, part-of-speech tagging, sentiment analysis, tokenisation, 

and spelling correction. TextBlob is part of the well-known natural language toolkit (NLTK) and helps 

in reducing the computational cost of analysis. The tool generates a float value of a confidence level 
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(between -1 and 1) for each text inserted and later annotates it as positive if > 0, negative if < 0, or 

neutral if = 0. These default thresholds however can be manually adjusted. 

TextBlob assesses sentiment via returning a tuple of form (polarity, subjectivity, and assessments), 

where polarity and subjectivity float within a range of -1 and 1, with 0 being very objective and 1 

being very subjective; assessments is a list of polarity and subjectivity scores for the assessed tokens. 

6.4.3.2. VADER 

Valence Aware Dictionary and Sentiment Reasoner (VADER) is a social media-based tool for general 

sentiment analysis. This open-source lexicon and rule-based tool uses a mix of qualitative and 

quantitative methods (a gold-standard list of lexical features along with their associated sentiment 

intensity measures), which are specifically attuned to sentiment in microblog-like contexts. 

Afterwards, the lexical features are combined, with consideration of five general rules, which embody 

grammatical and syntactical conventions, to express and emphasise sentiment intensity (Hutto and 

Gilbert, 2014). Similar to TextBlob, VADER generates a sentiment confidence level for each analysed 

text and allows resetting the thresholds of < 0, = 0, and > 0. 

6.4.3.3. Stanza 

Stanza is also an open-source Python natural language processing toolkit which can be used for 

lemmatisation, tokenisation, part-of-speech, multi-word token expansion, morphological feature 

tagging, sentiment tagging, dependency parsing, and named-entity recognition. This toolkit uses CNN 

for its architecture and massively supports more than 60 human languages. It was trained on 112 

datasets, including the Universal Dependencies treebanks and other multilingual corpora. In 

comparison with the lexicon and rule-based tools, Stanza features a language-agnostic fully neural 

pipeline for text analysis, including a native Python interface to the widely used Java Stanford 

CoreNLP software. This makes it capable of more functionality and more advanced tasks, like relation 

extraction and co-reference resolution (Qi et al., 2020). 

6.4.3.4. Naïve Bayes (NB) 
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Naïve Bayes (or simple independent Bayes) is a Bayes’ theorem-based probabilistic Bayesian 

classification technique. NB classifier assumes strong (naïve) independence between the features (i.e. 

the existence of one feature in a category has no relevance to the existence of other features). 

Regardless of its simplicity among other Bayesian network models, NB shows good performance in 

some sophisticated tasks such as multi-class and text classification tasks (Rish, 2001). 

6.4.3.5. BERT 

BBERT is one of the most advanced language representation models for a broad range of NLP tasks, 

such as question answering, language inference, and sentiment analysis. BERT is developed via pre-

training a deep bidirectional representation by jointly conditioning a two-way context for all layers. 

BERT has two parameter-intensive settings: (1) BERTBASE: 12 layers, 768 hidden dimensions, and 

12 bidirectional self-attention heads with 110 million parameters and (2) BERTLARGE: 24 layers, 

1,024 hidden dimensions, and 16 bidirectional self-attention heads (in transformer) with 350 million 

parameters. BERT is trained from unlabelled data obtained from Wikipedia (2,500M words) and 

BookCorpus (800M words) (Devlin et al., 2018). 

6.4.3.5.1. Embedding Layer 

BERT, in contrast to traditional embedding methods of Word2Vec or GloVe, provides a multiple, 

context-independent representation for each token. Its embedding layer takes a learner’s comment as 

input and calculates the token-level representations via the extracted knowledge of each sentence from 

the entire comment (Li et al., 2019a). Firstly, we pack the input features as follows: 

𝐸0 = (𝑒1 … 𝑒𝑛) (6.1) 

Where, en (n ∈ [1,N]) is the combination of the token embedding, position embedding, and segment 

embedding corresponding to the input token Xn. Note that [CLS] is a special symbol embedded prior 

to each comment input, and [SEP] is a special separator token splitting each comment/review into 

several sentences. Text input is tokenised and then converted to token IDs. Figure 6.2 shows a 

snapshot of the first layer of representation (token embedding), which include a tensor of token IDs 

(numerical tokens plus BERT special tokens such as CLSs and SEPs). 
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Figure 6.2. BERT input representation (The sum of the three embeddings) 

This tensor is padded into a length of max_len, 30, in the example shown in Figure 6.3. 

 

 
Figure 6.3. BERT-based text tokenisation 

The next step corresponds to the L transformer layers, where the token-level features are refined, layer 

by layer. Specifically, the representations 

𝐻1 = (ℎ11 … ℎ1𝑡) (6.2) 

at the l-th (l ∈ [1,L]) layer which are calculated as below: 

𝐻𝑖 = 𝑇𝑟𝑚𝑖  (ℎ𝑖 − 1) (6.3) 

Where Hl is the contextualised representation of the input tokens used for performing the predictions. 

The last_hidden_state is a sequence of hidden states of the last layer of the model. BertPooler is 

applied on the last_hidden_state to obtain the pooled_output. 
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Figure 6.4. BERT-based sentiment prediction model. 

6.4.3.5.2. Fine tuning 

We ran several experiments with different parameters, namely the type of BERT (Large Cased, Large 

Uncased, Base Uncased, Base Cased), maximum sequences length (between 100 and 256 sequences), 

Adam learning rate (ranging from 2e-5 to 5e-5), batch size (from 8–32), and the number of Epochs 

(between 2 and 5). We use the pre-trained uncased BERT-base model for fine-tuning. Taking into 

consideration the computational cost of BERT as a complex, large model along with the recommended 

parameters by the model authors, we set the above parameters as follows: 

• Early_stopping: To avoid overfitting, an early stopping threshold was specified for when the 

training accuracy reaches 0.95. 

• Training model = BERT Base Uncased. 

• Max_len = 200, based on the distribution of sequence lengths (see Figure 5). 

• #Epoch = 2, in association with the early stopping threshold specified earlier. 

• #Transformer layers = 12, with 768 hidden dimensions, 12 bidirectional self-attention heads. 
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• Batch_size = 16. 

• Learning_rate = 2e-5. 

As BERT works with fixed-length sequences, we set the max_len = 200 based on the token length of 

each review as illustrated in Figure 6.5. The running time of various experiments ranged from 7 h, 10 

min, and 43 s up to 16 h, 8 min, and 35s based on the parameters specified. We used Tesla V100-

SXM2 32GB GPU to run our experiments. 

 

Figure 6.5. Distribution of sequence lengths (tokens). 

6.5. Results  

Table 6.3 shows the results of our sentiment prediction model using TextBlob, VADER, Stanza, NB, 

and BERT. The negative, neutral, and positive metrics denote the recall for each class, whereas WF1 

denotes the weighted F1. Furthermore, macro F1 and accuracy (Acc.) were also reported, to explore 

the overall performance of the model. F1 can be considered a trade-off between precision and recall. 

BA is the average of recall obtained in each class, which equals the arithmetic mean of sensitivity (true 

positive rate) and specificity (true negative rate). Acc. calculates the model’s overall performance, 

giving the same weighting for all classes by dividing the total number of correctly predicted instances 

by the total number of instances. 

Table 6.3. Sentiment prediction results using TextBlob, VADER, Stanza, NB, and BERT.  

Model Negative Neutral Positive BA  WF1 F1 Acc 

TexBlob 0.74 0.65 0.78 0.72 0.71 0.68 0.70 

VADER 0.63 0.83 0.78 0.74 0.78 0.75 0.78 
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Stanza 0.69 0.82 0.79 0.76 0.79 0.76 0.79 

NB 0.61 0.87 0.83 0.77 0.78 0.81 0.82 

BERT 0.75 0.90 0.89 0.85 0.87 0.86 0.88 

 

Table 6.3 shows that BERT substantially outperformed the other sentiment classifiers for several 

reasons. First is (1) bidirectionality, where, unlike other conventional ML-based language models 

which process text in either left-to-right or right-to-left, BERT adopts a bidirectional approach for 

extracting knowledge from the processed text. Both directions are considered while learning each 

word’s context during training, allowing it to better capture the contextual information and 

relationships between words in a sentence. Another reason is (2) being based on transformer 

architecture, which enables BERT to process long-range dependencies in text efficiently. Since 

transformers utilise self-attention mechanisms, it helps the classifier focus on representative parts of 

the inputs, assisting the model to capture semantic relationships between words efficiently. The (3) 

contextual word embedding is another reason BERT usually outperforms conventional ML classifiers. 

Other classifiers such as NB, which, although as in Table 6.3, outperformed other unsupervised 

approach (TextBlob, VADER and Stanza), it adopts traditional word embeddings like Word2Vec and 

GloVe, producing static representations for word regardless of the context. In contrast, the BERT 

embedding mechanism regards word contextuality, capturing polysemy (multiple meanings of a 

word), handling text ambiguity via capturing intricate patterns in text and producing more nuanced 

representations. 

Considering the studies in Table 6.1, our developed model deals with several concerns regarding 

the effectiveness and generalisability identified within the current MOOC SA models. This includes 

(1) using one single source of data (previous literature on sentiment classification in MOOCs was 

based on single platforms only, Coursera and edX being the most popular platforms (Bulusu and Rao, 

2021)) and hence less generalisable with relatively low number of instances compared to our obtained 

dataset; (2) lower model outputs, where the majority of the surveyed models in Section 6.3 are based 

on 2-polar classifier (positive or negative); (3) disregarding important sentiment indicators, such as 

emojis and emoticons, during text embedding; (4) adopting relatively outdated text embedding 

mechanism and (4) reporting average performance metrics only, preventing the evaluation of model 

performance at the level of class (sentiment). Thus, MOOCSent contributes to the knowledge, by 

addressing these limitations. Another purpose of building MOOCSent was to label FutureLearn 

learners’ textual data (comments and replies) with their estimated sentiments, which were later 
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employed as input features in the third experiment in Chapter 7, for discussion forums-based paid 

certification prediction. 

With regard to the different version of BERT (Cased and uncased), learners are expected to use 

upper-case typing especially when expressing their sentiment. However, based on using both methods 

for training the model, BERT Base performed better and was hence chosen to build MOOCSent. This 

is in line with previous BERT-base sentiment or other text classification tasks, where uncased BERT 

has performed similarly to or even better than the Cased BERT (Jahan et al., 2021; Chiorrini et al., 

2021; Peluso, 2022). Cased BERT was used, and it achieved negative:0.62, neutral:0.95, positive:0.86, 

BA: 0.81, WF1:0.87, F1:0.84, Acc:0.87. It was excluded because it (1) takes more time for training 

due to higher variations of text representation (more vocabulary size as the model retains the original 

casing of words in the training data) thus time-consuming, (2) performs better than uncased BERT in 

some specific case-sensitive tasks where the case of words carries essential information such as 

Named Entity Recognition (NER) or part-of-speech tagging, (3) consumes more computational 

resources and in same time performed similarly to or even worse in SA tasks according to our 

experiment and previous experiments (Jahan et al., 2021; Chiorrini et al., 2021; Peluso, 2022). 

6.6. Epilogue  

This study aims to propose a cross-platform MOOCs sentiment classifier using almost 1.2 million 

human-annotated learners’ comments obtained from 633 MOOCs delivered via Coursera, 

FutureLearn, Udemy and Stanford University. The initial experiment employed four commonly used 

architectures for predicting sentiment (TextBlob, VADER, Stanza and NB). Next, we used a context-

aware classifier (BERT) for improving the sentiment classification, which outperformed the preceding 

classifiers, achieving BA (0.85). 

As it is seen from the data used in this experiment, learner sentiments generally change towards 

the end of the course, where learners’ posts tend to be neutral during the course (as in Stanford data) 

and more positive by the end of the course (as in Coursera, Udemy, and FutureLearn data). This 

indicates the significance of learner sentiments as inputs when analysing text generated by learners. 

Therefore, in the next chapter, we used MOOCSent for annotating learner posts (which is the ultimate 

objective of building the current sentiment classifier) over the course weeks before using the entire 

discussion forums data for predicting certification.  
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Chapter 7 : Forum-based Prediction of 

Paid Certification in MOOCs 

7.1. Prologue 

In this chapter we investigate if MOOC discussion forum-based data can predict learners’ purchase 

decisions (paid certification) using various conventional and deep learning classifiers. For our 

temporal (weekly) prediction, we used data extracted from discussion forums (comments, replies, and 

likes) besides MOOCSent-tagged sentiment features and POS tagging to predict paid certification in 

MOOCs, yielding promising accuracies of 74% on average. The findings of this experiment are 

expected to help in the design of future courses and the prediction of profitability of future runs. 

7.2. Introduction 

Interaction in MOOCs discussion forums has been an influencing factor for predicting various 

behaviours such as course completion and detection of needed instructor intervention (Cagiltay, 

Cagiltay and Celik, 2020; Alrajhi et al., 2022; Bonafini, 2017). Through social interaction and 

engaging with others, learners are believed to have more successful learning experience and greater 

commitment to the course content (Ferguson and Clow, 2015). The activities of learners in MOOC 
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discussion forums span various practices, including interacting with peers, replying to other’s 

expressed thoughts, asking questions about the course materials, and liking other learners’ comments. 

This provides learners with a rich source of learning in a fully asynchronous way compared to 

traditional learning (Diver and Martinez, 2015). 

While data extracted from MOOC discussion forums is commonly used to solve many MOOC 

challenges including dropout and identifying learners who require assistance, analysing learners' 

forum interactions to predict certification remains limited. Also, various types of learners’ collected 

data, for example, learner demographics, time spent on course content, and clickstream activities, have 

been used for predicting MOOC paid certification. However, according to our survey in Chapter 3, 

discussion forums, which are considered a rich source of learners’ interaction, have never been used 

for early predicting paid certification in MOOCs. Thus, this chapter proposes a forum-based predictor 

of learners’ financial decisions (course certificate purchase) via answering the following research 

question: 

• RQ4: Can raw and computed data extracted from MOOC discussion forums predict paid 

certification for courses? 

This study aims to predict the paid certification decisions of learners using MOOC discussion forums 

on whether the learners will purchase the course certificates. We use multidisciplinary course data 

from the relatively unexplored platform of FutureLearn to temporally predict purchase of certification. 

To the best of our knowledge, our temporal method in predicting MOOC learners’ financial decisions 

(purchasing a course certificate) using learners’ discussion forums has never been applied before. 

Unlike previous studies on certification, our proposed model aims to predict the financial decisions 

of learners on whether to purchase the course certificate. Also, our work is applied to a less frequently 

studied platform, FutureLearn, as shown in Table 3.2. Another concern we address is study size, with 

6 out of the total nine studies conducted on one course only. As learners may behave differently based 

on the course attended, previous models generalisability is unclear. Instead, we used a variety of 

courses from different disciplines, namely literature, psychology, computer science, and business. 

Our SLR shows that literature has seldom used discussion forums extensively for the prediction 

of certification attainment. More specifically, textual data and generated features such as POSs and 

sentiments have not been used for predicting paid certification in relatively little studied platforms 

like FutureLearn. 
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7.3. Methodology 

7.3.1. Data Collection 

During their learning journey, learners can interact with each other in the form of expressing their 

thoughts (comments), replying to others’ comments, and liking or disliking other learners’ textual 

inputs. Unlike other activities that are typically mandatory towards the eligibility for course certificate 

attainment such as step access and question answering, learner participation in discussion forums is 

completely optional. This indicates more openness and learner autonomy in terms of the type of 

activities learners conduct on MOOC platforms. 

The data used in this experiment were obtained from the discussion forums of the five FutureLearn 

topic-diverse courses (BD, BIM, SC, SP, and TMF). Table 7.1 shows the number of both non-paying 

and certificate-purchasing commenters compared to the total number of learners in each course. It can 

be seen that certificate purchasers were more interactive (almost 70% of certificate purchasers have 

at least posted a comment or replied to a comment), whereas non-paying commenters mark only 

around 11% of total number of non-paying learners. 

Table 7.1. The number of non-paying learners (NLs), non-paying commenters (NL Commenters), certificate 

purchasers (CPs) and certificate-purchasing commenters (CP Commenters) in the 5 FutureLearn courses. 

Cours

e 

#Comment

s 
#NLs 

#NL 

Commenters 
#CPs #CP Commenters 

BD 20,857 33,427 2,623 265 140 

BIM 57,044 48,771 8,331 670 485 

SC 6,013 5,808 484 69 37 

SP 148,742 51,842 7,649 500 405 

TMF 90,681 93,601 8,304 314 180 

Total 323,337 233,449 27,391 1,818 1,247 

7.3.2. Data Preprocessing 
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Preprocessing of the numerical features involves standard data manipulation such as replacing missing 

values to prepare the data for training. With regard to the textual features (comments and replies), 

regular expressions were used to remove unwanted characters, such as HTML/XML, punctuations, 

non-alphabet characters, etc., which are generally applied to filter out most unwanted text. 

Additionally, stopwords removal, lowering the cases of characters reforming contractions into the 

original words and grammar correction were also conducted. UNICODE_EMOJI and 

EMOTICONS_EMO lexicons were also used on this dataset to convert emojis and emoticons into 

tokenisable inputs, that is, converted into corresponding explanatory words. 

7.3.3. Weighing Scheme 

Term frequency-inverse document frequency (TF-IDF), which is the most common weighing scheme 

for text tokenisation, was used in this experiment. Unlike standard vectorisers, TF-IDF assigns a 

weight to each term in a document based on its frequency in the document (comment/reply) and a 

corpus of documents and generates a matrix of tokenised texts. After that, the vectors that represent 

the text can be used as input features for prediction. TF-IDF is calculated via two scores as follows: 

𝑡𝑓(𝑡, 𝑑) = 𝑙𝑜𝑔 (1 + 𝑓𝑟𝑒𝑞(𝑡, 𝑑)) 

𝑖𝑑𝑓(𝑡, 𝐷) = 𝑙𝑜𝑔 (
𝑁

 𝑐𝑜𝑢𝑛𝑡(𝑑 ∈ 𝐷: 𝑡 ∈ 𝑑) 
) 

𝑡𝑓𝑖𝑑𝑓(𝑡, 𝑑, 𝐷) = 𝑡𝑓(𝑡, 𝑑). 𝑖𝑑𝑓(𝑡, 𝐷) 

(7.1) 

Where, t: a term in a document (comment/reply) d and D: the whole corpus. 

7.3.4. Part of Speech (POS) Tags 

An example of further linguistic features such as POS tags is depicted in Figure 7.1, which too were 

measured based on the learners’ comments/replies and included in the input features. This helps (with 

other features such as word and character counts) disclose any linguistic patterns associated with our 

binary-target classification (non-paying commenters and certificate purchasing commenters).  
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Figure 7.1. An example of POS tagging for a BIM comment. 

We used the Penn treebank POS tagger, which was built on a corpus comprising over 4.5 million 

English words (Marcus, Santorini and Marcinkiewicz, 1993). After merging both discussion forums-

based raw and computed features, Table 7.2 was prepared, which shows the raw and computed 

features analysed in this study. 

Table 7.2. The features (per week) utilised for predicting course certificate attainment. 

Comment-based Features Reply-based Features 

#Comments #Replies 

% Positive comments posted % Positive replies posted 

% Neutral comments posted % Neutral replies posted 

% Negative comments posted % Negative replies posted 

#Likes received #Likes received 

Word count Word count 

Character count Character count 

tf-idf tf-idf 

POS tags POS tags 

 % Positive replies received 

 % Neutral replies received 

 % Negative replies received 

7.3.5. Data Resampling 

Considering the highly imbalanced dataset we used in this study, where the output classes ratio on 

average is around 22:1 as stated in Table 7.1, we oversampled the training data only using synthetic 

minority oversampling technique (SMOTE) (Chawla et al., 2002). SMOTE is a commonly used minor 

class oversampling method via generating synthetic samples of the minor class. Overcoming the 

overfitting issue, which typically occurs when random oversampling technique is adopted, SMOTE 

emphasises the minor class space and interpolates new instances similar to the original instances in 

terms of feature space. The validation architecture followed in this experiment is hold-out or train and 
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test (T/T) split with a ratio of 70:30 for training and test data. As SMOTE generates synthetic instances 

of the minor class, using CV may result in the same instance being simultaneously in the training and 

test set; thus, T/T is the proper validation architecture to use in the present experiment. With the 

statistics in Table 7.1 in mind, the overall test data size for assessing the model performance was 8591 

instances. 

7.3.6. Model Architecture 

The current experiment applied 4 deep classifiers: CNN, RNN, LSTM, and GRU, explained earlier in 

Section 4.4.4. Given that we employed both textual and numerical discussion forum-extracted 

features, we adopted these models for their ability – compared to other conventional ML models - to 

handle multi-inputs. 

The first layer of the model is the embedding layer – an embedding matrix – which performs as a 

lookup table of textual inputs (comments and replies) and converts the text_input into a dense 

representation. This layer maps each learner’s textual input representation (X) into a matrix of size: 

𝑙𝑐 × 𝑑 ∶ 𝑋 ∈ 𝑅𝑙𝑐×𝑑 , where l the the maximim length of textual inputs in course c, which equals 90 

percentile of the word count. 

In the CNN architecture, the output of the embedding layer is fed into a 1D CNN layer to process 

the text_input using ReLU as the activation function. Next, a flatten layer is applied to convert arrays 

into 1D vector. Next, a dropout layer is applied – with 0.5 value as commonly set (Srivastava et al., 

2014) – to reduce overfitting via setting input units to 0 with a frequency of rate at each step during 

training. The dropout layer is connected to a dense layer which is connected to a concatenate layer. 

The numerical feature inputs are also connected to the concatenate layer, which is connected to 

another dense layer. The final vector obtained is then fed into the output layer for classification. The 

other models of RNN, LSTM, and GRU followed a similar structure, apart from the second layer 

which was structured based on the corresponding model. Figure 7.2 depicts the overall workflow of 

our predictive model. 
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Figure. 7.2. General workflow illustration of the predictive model. 

7.3.7. Automated Hyperparameters Optimisation 

To minimise the time spent on manually optimising the hyperparameters of the predictive models, 

automated search for the optimal values of the hyperparameters was adopted. We used the Optuna 

(Akiba et al., 2019), a define-by-run framework, which dynamically searches and prunes the optimal 

parameters. Unlike previous hyperparameters tuning frameworks such as SMAC (Hutter, Hoos and 

Leyton-Brown, 2011), Vizier (Golovin et al., 2017), Autotune (Koch et al., 2018), and Hyperopt 

(Bergstra et al., 2015), Optuna enables a user to dynamically construct the search space more 

dynamically compared to previous frameworks. Thus, the effectiveness of optimisation is improved 

with Optuna by combining the efficient searching and pruning algorithm. 
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7.3.8. Dealing with Bias 

Data-based algorithmic bias in educational predictive models has been observed in several studies, 

which consequently emphasised the need for more representative data as one of the approaches to 

mitigate potential sources of unfairness (Baker and Hawn, 2021). While the dataset adopted in this 

experiment was obtained from one platform and only contains learners’ interactions in the course 

discussion forums, it shows considerable representation. The dataset spans various runs (23) of 5 

different MOOCs, covering 4 distinct disciplines (literature, psychology, computer science, and 

business), allowing to longitudinally predict paid certification based on a rich source of data. As shown 

in Table 3.2, most of the surveyed works were based either on one course or run/iteration. Another 

novelty of the present experiment is predicting paid certification in MOOCs at an early stage (starting 

with using data from the first week of the course only), which would be impossible without the high 

representation of the datasets used in this experiment. 

Considering the highly imbalanced dataset we used in this study, where the output classes ratio on 

average is around 22:1, as stated in Table 7.1, we oversampled the training data only using the 

Synthetic Minority Oversampling technique (SMOTE) (Chawla et al., 2002). SMOTE is a commonly 

used minor class oversampling method via generating synthetic samples of the minor class. 

Overcoming the overfitting issue, which is highly associated with bias and typically occurs when a 

random oversampling technique is adopted, SMOTE emphasises the minor class space and 

interpolates new instances similar to the original instances in the feature space. The “need for more 

data for a higher level of model generalisation and further validating the achieved results” was the 

most stressed call by the surveyed studies. As demonstrated earlier in Figure 3.7, a considerable 

number of studies (n = 14/25) have based their findings on a few courses (from one to three courses 

only); thus, it is challenging to consider the findings of these models generalisable. Furthermore, 

learners’ behaviours and certification rates differ based on the subject and discipline of the MOOC 

(Cobos and Jurado, 2018). Therefore, building the model on a diverse dataset would help increase the 

findings’ generalisability and the reliability of the results. 

One common procedure for mitigating algorithmic bias is comprehensively finetuning the 

algorithms’ metrics, which can help the model perform reasonably on all subcategories of the outputs 

(Baker and Hawn, 2021). Although this procedure may reduce the model’s overall accuracy (Xiang 

et al., 2022), it allows for more harmonious performance, i.e., BAs, indicating a fair consideration of 

all the output classes. Although configuring predictive algorithm parameters is essential for improving 

model predictability and fairness, most surveyed works in Chapter 3 (please see section 3.6.2.2 for 
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more details) skipped this step, or simply let the model assign the default parameters. Having the 

parameters tuned generally helps the model achieve better forecast results and find and diagnose 

common modelling issues such as bias, underfitting, and over-fitting.  

To address this issue, an automated search for the optimal values of the hyperparameters was 

adopted to (1) reduce any potential chance for bias and (2) minimise the time spent on manually 

optimising the hyperparameters of the predictive models. We used the Optuna (Akiba et al., 2019), a 

define-by-run framework which dynamically searches and prunes the optimal parameters. Unlike 

previous hyperparameters tuning frameworks such as SMAC (Hutter, Hoos and Leyton-Brown, 

2011), Vizier (Golovin et al., 2017), Autotune (Koch et al., 2018), and Hyperopt (Bergstra et al., 

2015), Optuna enables a user to dynamically construct the search space more dynamically compared 

to previous frameworks. Thus, the optimisation effectiveness is improved with Optuna by combining 

the efficient searching and pruning algorithm. 

It is worth noting that while the present experiment analysed in-depth learner’s interactions and 

textual inputs in the discussion forums to predict paid certification, which has not been done before, 

it may impose some bias. Table 7.1 shows that the number of NL Commenters was 27,391, which 

marks only around 12% of non-paying learners. However, the statistics are better for CP Commenter 

(1,247), where around 69% of certificate purchasers had at least 1 comment/reply posted, thus 

included in the analysis. 

7.4. Results 

The present experiment is aimed at the fourth research question, of whether raw and computed data 

extracted from MOOC discussion forums can predict paid certification. The raw data (learner textual 

inputs) from learner discussion forums, sentiment classification using MOOCSent, and computed 

features (number of likes received for each textual input), in addition to several features extracted 

from the texts (e.g. character counts, word counts, and part of speech (POS) tags for each textual 

instance) were used to build the predictive model. 

This section shows the performance of our temporal predictive model using the first-week data 

only (Table 7.3) and the first half of the course (Table 7.4) where Rec_0 = recall score for non-paying 

learners (NLs or Class 0) and Rec_1 = recall score for certificate purchasers (CPs or Class 1). 

Additionally, a comparison of the classifiers’ performance using BA, which is the most representative 
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performance metric in our experiment, using the first-week data only (BA1) and the first half of the 

course (BA2) distributed by courses and classification algorithms is provided in Figure 7.2. In Tables 

7.3 and 7.4, BA, WF1 and Acc were also reported to report the overall performance of the model. BA 

is defined as the average of recall obtained on each class, which equals the arithmetic mean of 

sensitivity (true positive rate) and specificity (true negative rate), whereas WF1 can be considered as 

a weighted trade-off between precision and recall. For Acc, it calculates the model’s overall 

performance, giving the same weighting for all classes by dividing the total number of correctly 

predicted instances by the total number of instances. 

 

 

Figure. 7.3. Learner classification results (BAs) using the first-week data only (BA1) and the first half of the 

course (BA2) distributed by courses and classification algorithms. 

The overall performance of the four employed algorithms achieved good Recall and Balanced 

accuracy with the first-week data only (average BA = 0.72), with considerable improvement when 

further features of the first half of the course were included (average BA = 0.77). Regarding the best 

classifiers, all four algorithms achieved similar performance, with CNN and GRU being equally the 

best in the first-week-only scenario and GRU being the leading classifier over the mid-course scenario. 

One considerable improvement at the class level was Rec_1, which reached 0.80 over the mid-course 

from 0.69 over the data for the first week only. 

The results in Tables 7.3  and 7.4 show that Rec_0 has decreased in 12 instances across the five 

courses. In these specific cases, the activities of both groups (NLs and CPs) were similar in the first 

week, which directed the classifiers towards one class (Class 0/NLs), resulting in lower Recall for the 

other class (CPs). However, while the decrease was by only around 1% on average (from 0.76 to 0.75), 

Reac_1 has jumped by 11% from 0.69 to 0.80, indicating a better performance of the predictive model 
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(BAs). This has resulted in higher BAs, which, on average, also improved (from 0.73 in the first week-

only experiment to 0.77 in the first half of the course). Therefore, the overall Recall of all classes 

should always be considered when assessing a model's predictability. 

Table 7.3. Learner classification results distributed by course using the first week data only; Rec_0 = recall 

score for non-paying learners (Class 0) and Rec_1 = recall score for certificate purchasers (Class 1). 

Course Classifier Rec_0 Rec_1 BA WF1 Acc 

BIM CNN 0.74 0.71 0.73 0.81 0.74 

RNN 0.70 0.69 0.69 0.78 0.70 

LSTM 0.75 0.67 0.71 0.82 0.74 

GRU 0.63 0.67 0.65 0.73 0.63 

BD CNN 0.79 0.60 0.70 0.84 0.78 

RNN 0.75 0.61 0.68 0.81 0.74 

LSTM 0.86 0.60 0.73 0.88 0.84 

GRU 0.73 0.67 0.70 0.81 0.73 

SC CNN 0.78 0.75 0.77 0.85 0.72 

RNN 0.79 0.64 0.72 0.83 0.78 

LSTM 0.86 0.60 0.73 0.88 0.85 

GRU 0.76 0.86 0.81 0.83 0.77 

SP CNN 0.84 0.64 0.74 0.88 0.83 

RNN 0.74 0.82 0.78 0.82 0.74 

LSTM 0.82 0.60 0.71 0.85 0.81 

GRU 0.68 0.96 0.82 0.78 0.69 

TMF CNN 0.70 0.82 0.76 0.80 0.70 

RNN 0.75 0.72 0.74 0.84 0.75 

LSTM 0.75 0.65 0.70 0.83 0.74 

GRU 0.75 0.60 0.68 0.84 0.75 

 

Table 7.4. Learner classification results distributed by course using the first half of the course; Rec_0 = recall 

score for non-paying learners (Class 0), Rec_1 = recall score for certificate purchasers (Class 1). 

Course Classifier Rec_0 Rec_1 BA WF1 Acc 

BIM CNN 0.82 0.68 0.75 0.86 0.81 
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RNN 0.67 0.75 0.71 0.77 0.67 

LSTM 0.67 0.78 0.73 0.77 0.68 

GRU 0.79 0.76 0.77 0.84 0.79 

BD CNN 0.69 0.83 0.76 0.78 0.70 

RNN 0.75 0.69 0.72 0.82 0.75 

LSTM 0.69 0.83 0.76 0.78 0.70 

GRU 0.67 0.86 0.77 0.77 0.68 

SC CNN 0.90 0.80 0.85 0.92 0.90 

RNN 0.77 0.80 0.79 0.84 0.77 

LSTM 0.85 0.71 0.78 0.87 0.84 

GRU 0.86 0.80 0.83 0.89 0.86 

SP CNN 0.74 0.80 0.77 0.81 0.74 

RNN 0.73 0.87 0.80 0.81 0.74 

LSTM 0.70 0.89 0.79 0.79 0.71 

GRU 0.72 0.97 0.85 0.81 0.73 

TMF CNN 0.71 0.84 0.78 0.81 0.72 

RNN 0.72 0.78 0.75 0.82 0.73 

LSTM 0.69 0.88 0.79 0.79 0.69 

GRU 0.77 0.69 0.73 0.85 0.76 

 

One of the reasons for clickstreams to be better predictors for paid certification is that they contain 

mandatory activities that learners, especially certificate seekers, need to perform to be eligible for 

certificate attainment. For instance, the average score in edX and FutureLearn that learners need to 

achieve for certificate eligibility is 65%. These requirements incentivise certificate purchasers to 

interact more with the course content, thus rendering more distinct data compared to non-paying 

learners. However, in discussion forums, participation is completely optional and – unlike the 

successive completion markings of the learning steps – can be performed at any time of the course. 

This resulted in a noisier and smaller dataset, as explained in Section 7.3.1 and consequently affected 

the predictive model performance. 

Both word-level and sentence-level (weekly inputs) were analysed in this thesis, based on the 

scenario of the experiment. In this specific experiment, the textual inputs are the sum of various inputs 

of a learner (comments/replies) with a certain scenario (first week only or the first half of the course). 
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Consequently, further computed features at the sentence level, besides weighing the text with tf-idf, 

were performed to enrich the inputs. This included standard computed features such as characters and 

word counting as well as POS tagging, which marks each word in the learner’s textual inputs based 

on its corresponding POSs at the sentence level. 

Using the Optuna framework, various DL parameters were automatically optimised in this 

experiment, including the model optimiser, learning rate, and the number of epochs. Optuna 

dynamically – based on the define-by-run principle – constructs the search space for the best set of 

parameters, maximising the number of trials conducted with less manual intervention. Thus, the 

effectiveness of optimisation is improved with Optuna by combining the efficient searching and 

pruning algorithm. With our fine-tuned parameters mentioned in section 7.3.7, the framework 

parallelises hyperparameter searches over multiple trials until the optimal result is reached. 

This MOOC prediction task is considered highly challenging, compared to other MOOC tasks, 

such as predicting dropout, completion, and learner characteristics. The reason for this is the severe 

data imbalance of the binary class, where course certificate purchasers account for less than 1% of the 

total number of enrolled learners. 

7.5. Epilogue 

This study compared four deep classifiers to predict course purchasability using discussion forum data 

from five MOOCs. Our proposed model achieved various BAs, averaging 0.77, using only the first 

half of course data. Thus, it can predict relatively early whether or not a learner will purchase a 

certificate at the end of the course based on their discussion forum-based interaction. 
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Chapter 8 : Discussion 

8.1. Prologue 

This chapter discusses the SLR outcomes and opportunities for future development in the field of 

certification prediction in MOOCs. Additionally, it explores the statistical and ML-based results of 

this thesis and the novelty and limitations based on the experiments conducted in Chapters 5, 6 and 7. 

It also elucidates how these results contribute to the knowledge considering the research gaps 

identified within the surveyed literature in Chapter 3. 

8.2. Introduction 

As stated earlier in Chapter 2, MOOCs were developed specifically to reach an unlimited number of 

potential learners, resulting in attracting the attention of millions of learners across the entire 

educational landscape. However, later, with these platforms becoming more independent educational 

companies, monetised content became necessary to fund MOOCs and ensure the sustainability of such 

platforms. This trend has resulted in the monetisation of standard courses and included new forms of 

monetised content, such as micro-credentials, corporate training, and university degrees. 

Despite the unparalleled success of MOOCs, the staggeringly decreasing certification rates and, 

more critically, the decline in the paid certification statistics of a given course over various 

runs/iterations, are considered great threats to platform sustainability.  
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The present thesis attempts to address this issue by firstly surveying the literature on predicting 

certification in MOOCs and identifying the limitations within the surveyed studies.  

Secondly, by adopting sequential steps through using learners’ clickstreams, reviews, and 

comments from various MOOC platforms and learners’ discussion forum interactions, it attempts to 

address the issue of predicting paid certification, and thus potentially helping both MOOC providers, 

as well as, indirectly, learners, based on various data available from a MOOC course, as well as at 

various time points of a course.  

Additionally, the contributions of the present thesis include building the sentiment classifier of 

MOOCSent, to predict sentiment in a massive dataset of around 1.2 million learners’ comments. The 

purpose of building MOOCSent was to use the colllected labelled 1.2 million MOOC reviews to train 

the model and then label FutureLearn textual data (comments and replies) with their estimated 

sentiments.  

These classified sentiments were later employed as input features in the third experiment, for 

discussion forums-based certification prediction, since the text dataset used in this specific experiment 

is unlabelled with learners’ sentiments, which have been noted as ideal determinants of learner success 

in MOOCs (Sraidi et al., 2022; Wen, Yang and Rose, 2014; Chaplot, Rhim and Kim, 2015; Dalipi, 

Zdravkova and Ahlgren, 2021). 

8.3. Systematic Literature Review 

Our SLR contributes to presenting a promising synthesis of the state of the art on this research topic, 

considering the struggle of MOOC platforms to build their own business models in addition to the 

recent transition, since 2017, towards paywalled content like micro-credentials, corporate training, 

and online degrees with affiliate university partners. It also serves as a roadmap for the 

multidisciplinary community of researchers in the educational domain (e.g. data scientists, 

statisticians, and educators) to explore the prediction of certification in MOOCs from a wider angle.  

The survey  in Section 3 identified the diverse methodologies followed and evaluated their 

applicability in a real-world scenario. Also, this survey categorised the surveyed models based on 

several aspects: their utilised input features, size, types of data used and their sources, model 

generalisability, prediction methods, and performance metrics reported. Additionally, several critical 

methodological concerns, as further discussed in Section 3.7, were highlighted, including (1) the need 



 

 

151 

for more data for a higher level of model generalisation and further validation of the achieved result; 

(2) sample extensive filtration, which was found positively correlated with including more features 

and consequently affecting model generalisability; (3) the insufficient experiment elaboration on 

essential parts of experiments, for example, feature engineering and selection; (4) parameters fine-

tuning, which was little reported within the surveyed works, (5) non-realistic modelling, where some 

models followed methodologies that were not actionable in real-life scenarios; and (6) the scarcity of 

models that could predict paid certification early. The present thesis addressed these limitations and 

methodological concerns from various aspects as discussed within the following subsections. 

 

8.4. Clickstream-based Prediction 

The results in section 5.4 firstly answered the first research question in Section 1.3 by exploring how 

our processed features (access, attempts, correct answers, and wrong answers) can temporally 

distinguish course certificate purchasers from non-paying learners based on their activity data. Our 

temporal analysis showed high statistical significance at various levels when comparing the 

behaviours of non-paying learners with those of certificate purchasers across the 5 courses analysed. 

Tables 5.5-5.8 in Section 5.4.1 show the statistical analysis results using the Mann–Whitney U test 

(of the 3 time points: first week, mid-week, and last week) in each course. As the courses analysed 

spanned over different numbers of weeks, we have selected the first, middle, and last weeks to report 

the results. Given below are the results for the four analysed activities (access, attempts, correct 

answers, and wrong answers). 

For courses with an even number of weeks, we have selected the middle week closer to the start 

of the course for analysis. Our analysis indicated that paying learners were generally more engaged 

with the course content, in terms of accessing the content more frequently, attempting more questions, 

and answering more questions correctly, and reattempting more questions answered incorrectly. 

Considering platforms allow learner several attempts to answer a question correctly, the later (number 

of wrong answers) indicates certificate purchasers’ persistence to reach the minimum score required 

to be eligible for the course certificate. While all the results of the statistical analysis were very 

significant (p < 0.001, ranging from 4e-23 to 0), the test showed more significance towards the end of 

the course. Course-wise, the difference in the activities of both group of learners in SH was the most 
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significant, whereas the significance of these 4 predictors based on the results of the last week can be 

placed in a descending order as attempts, correct answers, wrong answers, and access. Thus, non-

paying course takers behave differently from course purchasers as to their activities of access and 

answering questions (attempts, correct answers, and wrong answers). 

The second part of the results in Chapter 5 answers our second research question on whether the 

learner clickstreams can be used to predict paid certification in MOOCs. The results achieved a 

promising BA, ranging from 0.77 to 0.95, across the 5 domain-varying courses. The classifiers 

performed differently based on the course analysed, where SVC performed the best in BIM, ET in BD 

and SP, and LR in CS and TMF. In general, the improvement in the performance of the classifiers was 

lower towards the end of the courses compared to the difference between the first week only and the 

first half of the course. This may indicate that course purchasers exert more effort until they reach the 

minimum requirements for certification (typically just after the middle of the course). Thereafter, the 

level of interest in the course content in terms of access, question answering, and time spent learning 

is reduced; hence, at this stage, activities that are more similar to non-paying learners are performed 

even by the paying course takers. 

As discussed in Chapter 3, the correlation between the time spent on the course content and 

certification was statistically analysed by various previous works including those by Cobos and Jurado 

(2018) who used the learners’ time spent on assignments and videos and Goli, Chintagunta and Sriram 

(2019) who used the total time spent (minutes) and the average session duration (minutes). Tian et al. 

(2017) analysed the correlation between the time spent by learners on content in days and certification, 

whereas Qiu et al. (2016) examined the impact of effective learning time spent and certification 

attainment. However, the time spent on content as a feature for building a paid certification predictive 

model has not been used before on MOOC data in a large scale. This highlights the contribution of 

the present experiment which computed this feature of a relatively large data of 23 runs of 5 courses. 

8.5. MOOCSent Sentiment Classifier 

This experiment answers the third research question stated in Section 1.3 by building a cross-platform 

MOOCs sentiment classifier using over 1.2 million human-annotated learners’ comments and reviews 

obtained from 633 MOOCs. We used various lexicon-, ML-, and DL-based classifiers to evaluate the 

performance of our model. The ultimate objective of building this classifier was to annotate our 
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learner’s unlabelled comments in the dataset of FutureLearn posted weekly by the learners and use 

these with other input features for predicting paid certification based on learners’ interactions in 

discussion forums. 

Table 6.3 shows the results of our sentiment prediction model using TextBlob, VADER, Stanza, 

NB, and BERT, and it can be seen that the classifiers achieved different BA (average 0.76) ranging 

from 0.72 with TextBlob to 0.85 with BERT. Unsurprisingly, BERT outperformed lexicon and 

conventional ML-based classifiers due to its context-aware learning. This could be attributed to the 

fact that BERT uses text contextuality to capture representative knowledge from the processed text 

and thus detects the true learner’s sentiment and performs better compared to the other models. 

At the level of class (sentiment), the models were able to equally detect the neutral and positive 

classes better than the negative class. This is perhaps due to the nature (size) of the training data; 

nevertheless, it was augmented by replacing words with their synonyms of the same POS from the 

WordNet thesaurus as can be seen in Table 6.2. Model-wise, TextBlob seems more sentiment-

sensitive given that it is the only model that was able to detect both sentiment polarity (negative and 

positive) more than the neutral class. 

Regarding parameters fine-tuning, we observed a high correlation between the computational cost 

and the model being fine-tuned. For instance, the BERT-based experiment in MOOCSent in Chapter 

6 requires massive resources to use BERT where each run took around 17 hours to be completed. 

Thus, parameters were fine-tuned based on literature recommendations to reduce the computational 

cost and at the same time reach an optimal performance. However, in the last experiment, which was 

also based on DL algorithms but required relatively lower resources due to the size of the data used, 

an automatic fine-tuning (Optuna) was adopted. 

Regarding the selection of classifiers in Chapter 6 and 7, this step was based on the nature of the 

data used in each experiment. In MOOCSent, we adopted the most common lexicon-based and ML 

models to build the model. Next, we adopted BERT to further evaluate the level to which contextual 

architectures may improve the model performance. In Chapter 7, we adopted the most common DL 

architectures as our data contained two types of features, namely numerical and textual. The adopted 

models (CNN, RNN, LAST, and GRU) are commonly used for handling datasets of two or more 

inputs. 

The validation architectures adopted in our experiments were based on the nature of data analysed 

and the preprocessing conducted. In the first experiment, we used the stratified cross-validation (CV) 

technique, which uses k folds (portions) of the data, preserving the same percentage of samples for 
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each class in each fold to train and test the model on different iterations. The cross-validation 

architecture is generally better, as it avoids overfitting, by allowing the model to train on multiple 

train-test splits. Consequently, a better estimation of the model performance on unseen data is 

indicated. The other validation architecture is hold-out or train and test (T/T) split. This strategy was 

followed in MOOCSent experiment, as the Stanford dataset consists of over-the-course comments. 

Thus, we used it for testing the model performance, because the ultimate purpose of building the 

model was to annotate the FutureLearn comments and replies with sentiment for the final experiment. 

The T/T split was also adopted in the last experiment due to oversampling the training data. 

Considering this experiment contains a relatively lower number of instances of both classes, 

oversampling of the training data (using SMOTE) helped the model to improve its performance. As 

SMOTE generates synthetic instances of the minor class, using CV may result in the same instance to 

be in the training and test set at the same time; thus, T/T is the proper validation architecture to use in 

this case.  

Unlike most of the reported studies, our predictive model MOOCSent targets three (not only two) 

polarities: positive, negative and neutral, being able to capture more sentiment classes of learners 

(please refer to the performance of the model on the three classes in Table 6.3). A further extension 

could look into more detailed categories of sentiment. This was not further explored in this thesis, as 

the combined predictor outperformed the competition at the time, but could be considered for futher 

optimisation work. 

8.6. Discussion Forum-based Prediction 

This experiment is aimed at the fourth research question on whether raw and computed data extracted 

from MOOC discussion forums can predict course paid certification. In our final experiment (in 

Chapter 7), the raw data (learner textual inputs) from learner discussion forums, sentiment 

classification using MOOCSent, and computed features (number of likes received for each textual 

input), in addition to several features extracted from the texts (e.g. character counts, word counts, and 

part of speech (POS) tags for each textual instance) were used to build the predictive model. 

The overall performance of the four employed algorithms has achieved good recall and balance 

accuracy with the first week data only (average BA = 0.72), with considerable improvement when 

further features of the first half of the course were included (average BA = 0.77). Regarding the best 
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classifiers, all the four algorithms achieved similar performance, with CNN and GRU being equally 

the best in first week-only scenario, and GRU being the leading classifier over the mid-course 

scenario. One considerable improvement at the class level was Rec_1 which reached 0.80 over the 

mid-course from 0.69 over the data for the first week only. 

One of the reasons for the clickstreams to be better predictors for paid certification is that they 

contain mandatory activities that learners, especially certificate seekers, need to perform to be eligible 

for certificate attainment. For instance, the average score in edX and FutureLearn that learners need 

to achieve for certificate eligibility is 65%. These requirements incentivise certificate purchasers to 

interact more with the course content, thus rendering more distinct data compared to non-paying 

learners. However, in discussion forums, participation is completely optional and – unlike the 

successive completion markings of the learning steps – can be performed at any time of the course. 

This resulted in a noisier and smaller dataset as explained in Section 7.3.1 and consequently affected 

the predictive model performance. 

Both word-level and sentence-level (weekly inputs) analysis were adopted in this thesis based on 

the scenario of the experiment. For instance, MOOCSent uses textual inputs only to generate outputs 

(sentiment). Thus, word-level embedding (using the lexicon-based analyser and BERT tokeniser) was 

adopted. This is in line with adopting the most promising classifiers for that specific task, that is, 

sentiment classification. However, in the last experiment (in Chapter 7), the textual inputs are the sum 

of various inputs of a learner (comments/replies) with a certain scenario (first week only or the first 

half of the course). Consequently, further computed features at the sentence level, besides weighing 

the text with tf-idf, were performed to enrich the inputs. This included standard computed features 

such as characters and word counting as well as POS tagging, which marks each word in the learner’s 

textual inputs based on its corresponding POSs at the sentence level. 

Using the Optuna framework, various DL parameters were automatically optimised in this 

experiment including the model optimiser, learning rate, and the number of epochs. Optuna 

dynamically – based on define-by-run principle – constructs the search space for the best set of 

parameters maximising the number of trials conducted with less manual intervention. Thus, the 

effectiveness of optimisation is improved with Optuna by combining the efficient searching and 

pruning algorithm. With our fine-tuned parameters mentioned above, the framework parallelises 

hyperparameter searches over multiple trials until the optimal result is reached. 
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8.7. Potential Algorithmic Bias 

Algorithmic bias within the context of educational predictive models has been identified, shedding 

light on various facets of this increasing issue. Initially, it was noted that algorithms are often 

perceived as objective and fair, but a growing body of evidence suggests that they can inadvertently 

incorporate biases, leading to unfair outcomes for certain groups of learners. A recent survey shows 

that demographics specifically emerged as a critical factor associated with algorithmic bias in 

education, encompassing gender identity, race, nationality, ethnicity, age, national origin, and sexual 

orientation (Baker and Hawn, 2021). However, the research dataset employed in this thesis excluded 

demographic information, to develop a more generalisable predictive model for paid certification, thus 

avoiding extensive sample filtration that has plagued previous predictive models, as discussed in 

section 3.7.2. 

Our experiments employed several strategies to mitigate potential bias, including representative 

data preprocessing techniques and algorithmic metrics. These strategies included data shuffling, to 

expose the model to diverse learner activities, stratified cross-validation, to prevent overfitting, and 

oversampling of minority classes using the Synthetic Minority Oversampling Technique (SMOTE) to 

address the imbalanced dataset. Additionally, we used data labelled by learners aimed to enhance 

annotation accuracy and fairness in results. Key sentiment indicators, such as emojis and emoticons, 

were also appropriately encoded, to ensure more reliable and fairer results. The dataset was highly 

representative, comprising data from diverse MOOC platforms, disciplines, and runs. This diversity 

allowed for the longitudinal prediction of paid certification based on rich data sources, a notable 

contribution to the field. Moreover, early-stage prediction of paid certification was made possible due 

to the dataset's high representation power. 

An automated search for optimal hyperparameter values using the Optuna framework was 

employed, to finetune algorithmic parameters automatically. This approach aimed to reduce potential 

bias and minimise manual optimisation efforts, while improving model predictability and fairness. In 

conclusion, this study comprehensively addressed algorithmic bias in educational predictive models, 

offering insights into data collection, preprocessing, and algorithmic tuning strategies to promote 

fairness and reliability. The research contributes to the ongoing efforts to mitigate bias in MOOC 

predictive modelling, by emphasising the importance of representative datasets and thoughtful 

algorithmic design. 
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8.8. Limitations 

While the present thesis contributes novel knowledge in the field of predicting paid certification in 

MOOCs, it contains some limitations as is true for any research. Highlighting these limitations is 

expected to have a great impact on defining the directions for future improvement. 

• While MOOC providers have been going through various tiers of content monetisation 

(Figure 2.4), it is inevitable to engage learner data via research collaboration to achieve this 

goal in a timely manner. Our endeavours to obtain access to more data for further validation 

and generalisation of the findings of our experiments included formal requests submitted to 

many platforms, including Noon Academy (March 2019); Rawaq, KKUx, and Edraak 

(October 2019); and Coursera, Udemy, and edX (November 2019). All of these research 

collaboration proposals were rejected, except for Rawaq and Edraak who shared the data of 

three courses (51,804 learners) and two courses (2,377 learners), respectively, after several 

meetings. However, the data shared did not contain any information on certification. This 

again indicates the sensitivity of learners’ financial records and reservations of the platforms 

on sharing such data outside the organisation boundaries. 

• One of the limitations of our NLP-based analysis in Chapter 6 and 7 is that it dealt with 

English-only texts. This has been restricted by the language-specific NLP tools used for data 

preprocessing (such as text augmentation by paraphrases replacement in Chapter 6 and POS 

tagging in Chapter 7) which currently deal with English-only data. However, platforms based 

in English-speaking countries only form one fifth of the total number of providers worldwide 

(see Appendix A). This encourages us to explore other international platforms in the future 

and analyse how learners’ behaviour, specifically in terms of certification attainment, may 

differ. 

• It is worth mentioning that the finding of this thesis, although they were based on courses of 

different disciplines, may be platform specific. One instance is the statistics on the course 

loss enrollees and, consequently, purchasers, over the consecutive runs of the courses 

analysed. Although this decline in certification rate is a common issue with MOOCs due to 

the transition towards paid content (Cagiltay, Cagiltay and Celik, 2020), findings of our 

research are still subject to careful interpretation.  

• Another point to consider is that while different types of data (clickstreams and the features 

extracted from discussion forums) have been employed to predict paid certification for 
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courses, other types including pre- and post-course surveys and demographics can also be 

used (as stated in our SLR in Chapter 3) and they may yield promising results. However, 

regarding these two data types specifically, they are either rarely collected from many 

learners as responses are typically not mandatory or subject to response biases (Kizilcec and 

Halawa, 2015). A study of a massive dataset of 70 MOOCs found that only 25% of learners 

completed the demographic survey, and only around 2% earned certificates at the end of the 

course, hence rendering the portion of certified learners with known demographics very small 

(Goli, Chintagunta and Sriram, 2019). While platforms compete to lower entry barriers and 

ease restrictions on access to courses, they should consider making demographic survey 

completion mandatory for at least course purchasers so as to obtain more meaningful data 

from learners. 

8.9. Future Works 

The limitations discussed in Section 8.7 directly propose areas for development. Given below is a list 

of future works planned to improve the current thesis outcomes. 

• The last two years, coinciding with the spread of COVID-19 and the resulting lockdown of 

educational institutions and travel restrictions in many countries, were exceptional in 

MOOCs history. In 2020, around one-third of the total number of learners since the 

emergence of MOOCs (60 million of 180 million learners) had joined (Shah, 2020), and, by 

the end of the year, the number of offerings had reached 16,300 courses, out of which 2,800 

courses were launched within the year. This was in conjunction with the increase in the 

number of micro-credential courses offered that reached 360 from just 170 in 2019 and 19 

new online degrees that were introduced (Shah, 2020). The following year also showed a 

further pandemic-fuelled increase in the popularity of MOOCs. As of 2021, 40 new million 

learners enrolled in at least one MOOC and over 3,000 new courses were launched (Shah, 

2021a). This unprecedented transformation towards online learning, particularly in the case 

of MOOCs, appeals for a closer investigation of how learners progress in these courses and 

how MOOC learner success, in the form of obtaining a course completion certificate, can be 

modelled and predicted. Furthermore, there is a need for a comparative study to examine the 

extent to which learner activities, especially certification, has changed as a result of COVID-
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19. We wish that access to the recent runs of the courses analysed in this thesis would be 

granted by the University of Warwick. 

• Numerous sophisticated NLP models have been built based on the Transformers mechanism 

and transferer learning that have been enriching the NLP research society (Torrey and 

Shavlik, 2010). Besides BERT, Xlnet has been introduced subsequently which was trained 

on more data (over 130 GB of 32 billion words compared to 16 GB of 3.3 billion words in 

BERT) and achieved 2–20% improvement over BERT on different benchmark data (Yang et 

al., 2019). We plan to further expand our experiment in the future using Xlnet because our 

current computational resources are not adequate to use Xlnet, which uses 10 times more 

data than BERT and thus requires more time and computational resources for execution. 

• The sentiment annotator (MOOCSent) and POS taggers, which were built based on Penn 

Treebank of a corpus consisting of over 4.5 million English words, have been adopted to 

annotated English-only textual inputs in the discussion forums. However, considering 

MOOCs are learning platforms accessible worldwide, we noticed that some learners interact 

with each other in their own language. One of our next-step improvements is to expand our 

analysis to include further languages. This is considered especially for courses that are 

offered on FutureLearn by HEIs/instructors from non-English-speaking countries, such as 

the City University of Hong Kong and University of Malaya in Malaysia. 

8.10. Future Research Direction and 

Opportunities  

Based on the outcomes of our SLR and the methodological gaps highlighted in Section 3.7, future 

research direction and opportunities for improvement are discussed in this section. They are expected 

to help improve the transparency, performance, and scalability of the current MOOC certification 

predictive models. 

• The meagre statistics on the number of enrolled learners, which range between only 46% and 

60% of the registered learners, is an interesting phenomenon to be further analysed. MOOCs 

are generally well marketed, especially on social media, which yields a massive array of 

registered learners; nevertheless, the number of enrolled learners has shrunk massively 
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compared to the number of registered learners. It is still valid to investigate whether the 

course introductory materials, where a potential learner lands, might be reengineered to 

convince more learners to commence their courses. Some motivational strategies to 

encourage learners to enrol, such as regular reminders, have been recommended and have 

already been employed by platforms (Cagiltay, Cagiltay and Celik, 2020). However, the 

instructional design of the introductory content of the courses might be part of the reason that 

need further investigation. In relation to this, Mullaney and Reich (2015) suggested that 

reminding learners of the general course objectives at the beginning of each week might help 

increase the retention rate throughout the course. 

• Additionally, studying the impact of course prices on affordability seems to be an unexplored 

topic. Current studies have neither reported the impact of the course price on the certification 

nor explored the long-term impact of such an investment on learners’ future endeavours. 

Despite the difficulty of obtaining such data (e.g. the unavailability of course prices when 

they were offered and the more challenging prices of discontinued courses or runs), we hope 

that researchers will be able to explore the presence of such long-term financial impacts. 

• The non-replicability of the current certification predictive models is another concern to 

highlight, a common phenomenon in the educational technology field at large (Makel and 

Plucker, 2014). Replicability, especially with the rapid proliferation of different methods of 

modelling learner behaviours in MOOCs (Gardner and Brooks, 2018b), would help validate 

previously achieved results and find a helpful basis for comparing predictive certification 

models (Jiang, Fitzhugh and Warschauer, 2014). However, out of the 25 models surveyed, 

none either used a publicly accessible dataset or offered access to the dataset for future 

improvement to the proposed models by the broad community of educational data scientists. 

Compared to other MOOC predictive models that targeted different outputs from 

certification, such as predicting dropout rates and grades, various models were built based on 

public datasets (e.g. the Open University Learning Analytics Datasets [OULAD]48 and 

Knowledge Discovery and Datamining [KDD Cup 2015]49). Thus, future attempts to improve 

or even outperform the performance of these models are initially applicable. However, this 

is not the case with the surveyed predictive certification models which are only applied to 

privacy-restricted datasets. While this might be due to the sensitivity of certification data 

 
48 https://analyse.kmi.open.ac.uk/open_dataset  

49 http://moocdata.cn/challenges/kdd-cup-2015  

https://analyse.kmi.open.ac.uk/open_dataset
http://moocdata.cn/challenges/kdd-cup-2015
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(specifically, learner financial-related data), there is no such public dataset, and many 

attempts to standardise MOOC datasets sharing have either met a dead end or been 

terminated (Lohse, McManus and Joyner, 2019). 

• Regarding the “state-of-the-art” model, we note that after reviewing and synthesising the 

current certification predictive models in Table 3.2, it is challenging to reliably identify the 

state-of-the-art predictive certification model for various reasons, for example, the sources 

used for obtaining learners’ data, the populations subset for analysis and evaluation within 

the surveyed works (hence the sample distributions), the algorithms and metrics used for 

measuring model performance, and finally, the types of the certification these works predict 

that are altogether different from one work to another. Thus, it is difficult, if not impossible, 

to determine the state-of-the-art certification predictive models. Working towards state-of-

the-art models predicting MOOC certification would need an institutional initiative to 

provide a publicly available benchmark dataset and a protocol for executing and replicating 

experiments on this dataset by the researcher community. 

• Finally, last but not least, the models that we have proposed here for the prediction of paid 

certification can be directly used by course providers, especially FutureLearn, but generalised 

to other platforms, to early on understand if learners are going to purchase certificates on 

their platform. This may enable them to early interventions, as mentioned earlier in Section 

3.8, to attempt keeping those learners on the course longer, by, e.g. personalisation methods 

or other means. These interventions go beyond the scope of the current thesis, which proposes 

several ways towards predicting paid certification in Massive Open Online Courses 

(MOOCs). Nevertheless, this represents the most interesting avenue to explore for the future, 

together with exploring how our findings can be applied to other MOOC business models, as 

detailed in Chapter 2. 

8.11. Epilogue 

This chapter elucidates the outcomes of the SLR and future opportunities for development. 

Additionally, the statistical and ML-based results, novelty, limitations, and future works of this thesis 

based on the experiments conducted in Chapter 5, 6, and 7 are also discussed. The next chapter 

provides an overall summary of the present thesis. 
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Chapter 9 : Conclusion 

MOOCs have gained increasing interest since their emergence due to their early commitment to 

openness and access to worldwide university education. Over the past decade, platforms have gathered 

millions of learners from different backgrounds and levels of education. Nevertheless, nowadays, the 

concept of MOOCs has radically changed, with the increasing emergence of MOOC monetisation 

(paid certification, micro-credentials, corporate training, and online degrees) and investors’ 

willingness to return on their investments. Thus, the certification rate has been declining, due to 

content monetisation by platforms, resulting in a shallow rate of paid certification, where less than 5% 

of the total number of enrolled learners purchase a certificate at the end of their courses. 

Our SLR identified the current MOOC certification predictive models (25 studies) in a systematic 

approach, using the PRISMA protocol. The survey concluded with an organised synthesis of the works 

surveyed based on their utilised input features, size, types of data used and their sources, model 

generalisability, prediction methods, and performance metrics reported. Additionally, the limitations 

of the current predictive models were identified and discussed. This includes the need for more data 

for a higher level of model generalisation and further validation of the achieved result, sample 

extensive filtration, the insufficient experiment elaboration on essential parts of experiments, the 

dearth of reporting on parameters fine-tuning, and non-realistic or actionable modelling. Additionally, 

the scarcity of early predictive models, which is essential for timely intervention, and the little models 

on predicting paid certification were also discussed. 
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To address these challenges, we first explored the hidden connections between learner activities 

and their decisions to pursue paid certification through two main approaches: (1) statistical 

comparisons between the activities of non-paying learners and course purchasers and (2) the 

application of various ML techniques to predict paid certification. Our temporal analysis conducted 

on a weekly basis revealed significant statistical differences in the activities between non-paying 

learners and certificate recipients across the five courses analysed. Additionally, we leveraged learner 

activities, including the number of step accesses, attempts, correct and incorrect answers, and time 

spent on learning steps, to develop a paid certification predictor, achieving promising BAs ranging 

from 0.77 to 0.95. 

Subsequently, we extended our analysis to explore the wealth of information that can be extracted 

from MOOC interactions, particularly within discussion forums, to predict paid certification. Before 

delving into the discussion forums, we introduced MOOCSent, a cross-platform sentiment classifier 

for MOOC reviews constructed from a dataset of over 1.2 million sentiment-labeled MOOC reviews. 

MOOCSent addresses several limitations observed in existing sentiment classifiers, such as the 

reliance on single-source data and the use of two-polar classifiers (positive or negative) only. It also 

considers essential sentiment indicators, like emojis and emoticons, during text embedding, enabling 

the evaluation of model performance at a finer-grained level of sentiment. 

Finally, with the assistance of MOOCSent, we employed the learners' contributions to discussion 

forums, to predict paid certification. This multi-input model integrated raw textual inputs from 

learners, sentiment classifications generated by MOOCSent, computed features (e.g., number of likes 

received for each textual input), and various text-related features (e.g., character counts, word counts, 

and part-of-speech tags for each textual instance). Our experiment incorporated diverse deep 

predictive approaches, particularly those supporting multi-input architectures, to conduct early weekly 

investigations into whether data derived from MOOC learners' interactions in discussion forums can 

anticipate learners' decisions to pursue paid certification. 

In conclusion, this thesis makes concrete contributions to the field of MOOC learner analytics by 

(1) exploring various conventional and deep ML methods for predicting paid certification in MOOCs 

based on learner clickstream data and course discussion forums, (2) developing MOOCSent, the most 

extensive MOOC sentiment classifier, by analysing learners' reviews from leading MOOC platforms, 

namely Coursera, FutureLearn, and Udemy, and incorporating specialised lexicons encompassing 

over three thousand corresponding explanatory words and phrases related to emojis and emoticons, 

and (3) introducing an innovative multi-input model for predicting certification based on data from 
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discussion forums, which simultaneously processes textual elements (comments and replies) and 

numerical data (e.g., number of likes posted and received, sentiments).  
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Appendix A 

A list of MOOC Platforms distributed by the country of establishment, own elaboration. 

Country Platforms 
Total 

number 

United States Coursera, edX, Udemy, Udacity, Canvas, MIT 

OpenCourseWare, Khan, LinkedIn, Kadenze, skillShare, 

Domestika, CreativeLive, Microsoft Learn, The Great Course, 

HubSpot, Brilliant, Stanford Languita 

17 

China XuetangX, CNMOOC, Chinese University MOOC, Zhihuishu, 

Fanya, Xue Yin 

6 

Japan Schoo, gacco, Fisdom, JMOOC, OpenLearning 5 

Italy Federica, Polimi, EduOpen, EMMA 4 

France OpenClassrooms, FUN, OpenSAP 3 

India Swayam, Edureka, NPTEL 3 

Saudi Arabia kkuX, Rawaq, Future X 3 

Ireland Alison, Shaw Academy 2 

Taiwan Open Education, ewant 2 

Australia OpenLearning, openUniversity 2 

Germany iversity, openHPI 2 

Israel Campus-IL 1 

Jordan Edraak 1 

United 

Kingdom 

FutureLearn 1 

Indonesia IndonesiaX 1 

Finland MOOC.fi 1 

Spain Miriada X 1 

Mexico MéxicoX  1 

Russia Open Education  1 

Ukraine Prometheus 1 
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Thailand ThaiMOOC 1 

Brazil Veduca 1 

South Korea k-MOOC 1 

Austria iMooX 1 

Belgium KU Leuven 1 

Total  63 
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Appendix B 

Penn POS tags 

Tag Description Tag Description 

CC Coordinating conjunction PRP$ Possessive pronoun 

CD Cardinal number RB Adverb 

DT Determiner RBR Adverb, comparative 

EX Existential there RBS Adverb, superlative 

FW Foreign word RP Particle 

IN Preposition or subordinating 

conjunction 

SYM Symbol 

JJ Adjective TO to 

JJR Adjective, comparative UH Interjection 

JJS Adjective, superlative VB Verb, base form 

LS List item marker VBD Verb, past tense 

MD Modal VBG Verb, gerund or present participle 

NN Noun, singular or mass VBN Verb, past participle 

NNS Noun, plural VBP Verb, non-3rd person singular present 

NNP Proper noun, singular VBZ Verb, 3rd person singular present 

NNPS Proper noun, plural WDT Wh-determiner 

PDT Predeterminer WP Wh-pronoun 

POS Possessive ending WP$ Possessive wh-pronoun 

PRP Personal pronoun WRB Wh-adverb 
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Appendix C 

PRISMA 2020 Checklist 

 

Section and 

Topic  

Checklist item  Page 

Number 

TITLE 

Title  Identify the report as a systematic review. 29 

INTRODUCTION 

Rationale  Describe the rationale for the review in the context of 

existing knowledge. 

30 

Objectives  Provide an explicit statement of the objective(s) or 

question(s) the review addresses. 

29 

METHODS 

Eligibility 

criteria  

Specify the inclusion and exclusion criteria for the review 

and how studies were grouped for the syntheses. 

31 

Information 

sources  

Specify all databases, registers, websites, organisations, 

reference lists and other sources searched or consulted to 

identify studies. Specify the date when each source was last 

searched or consulted. 

31 

Search strategy Present the full search strategies for all databases, registers 

and websites, including any filters and limits used. 

40 

Selection process Specify the methods used to decide whether a study met the 

inclusion criteria of the review, including how many 

reviewers screened each record and each report retrieved, 

whether they worked independently, and if applicable, details 

of automation tools used in the process. 

35 

Data collection 

process  

Specify the methods used to collect data from reports, 

including how many reviewers collected data from each 

report, whether they worked independently, any processes 

for obtaining or confirming data from study investigators, 

and if applicable, details of automation tools used in the 

process. 

37 
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Data items  List and define all outcomes for which data were sought. 

Specify whether all results that were compatible with each 

outcome domain in each study were sought (e.g. for all 

measures, time points, analyses), and if not, the methods 

used to decide which results to collect. 

51 

List and define all other variables for which data were sought 

(e.g. participant and intervention characteristics, funding 

sources). Describe any assumptions made about any missing 

or unclear information. 

51 

Study risk of bias 

assessment 

Specify the methods used to assess risk of bias in the 

included studies, including details of the tool(s) used, how 

many reviewers assessed each study and whether they 

worked independently, and if applicable, details of 

automation tools used in the process. 

n/a 

Effect measures  Specify for each outcome the effect measure(s) (e.g. risk 

ratio, mean difference) used in the synthesis or presentation 

of results. 

n/a 

Synthesis 

methods 

Describe the processes used to decide which studies were 

eligible for each synthesis (e.g. tabulating the study 

intervention characteristics and comparing against the 

planned groups for each synthesis (item #5)). 

n/a 

Describe any methods required to prepare the data for 

presentation or synthesis, such as handling of missing 

summary statistics, or data conversions. 

n/a 

Describe any methods used to tabulate or visually display 

results of individual studies and syntheses. 

39 

Describe any methods used to synthesize results and provide 

a rationale for the choice(s). If meta-analysis was performed, 

describe the model(s), method(s) to identify the presence and 

extent of statistical heterogeneity, and software package(s) 

used. 

n/a 

Describe any methods used to explore possible causes of 

heterogeneity among study results (e.g. subgroup analysis, 

meta-regression). 

n/a 

Describe any sensitivity analyses conducted to assess 

robustness of the synthesized results. 

n/a 

Reporting bias 

assessment 

Describe any methods used to assess risk of bias due to 

missing results in a synthesis (arising from reporting biases). 

n/a 

Certainty 

assessment 

Describe any methods used to assess certainty (or 

confidence) in the body of evidence for an outcome. 

n/a 

RESULTS 

Study selection  Describe the results of the search and selection process, from 

the number of records identified in the search to the number 

39 
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of studies included in the review, ideally using a flow 

diagram. 

Cite studies that might appear to meet the inclusion criteria, 

but which were excluded, and explain why they were 

excluded. 

37 

Study 

characteristics  

Cite each included study and present its characteristics. 40 

Risk of bias in 

studies  

Present assessments of risk of bias for each included study. n/a 

Results of 

individual 

studies  

For all outcomes, present, for each study: (a) summary 

statistics for each group (where appropriate) and (b) an effect 

estimate and its precision (e.g. confidence/credible interval), 

ideally using structured tables or plots. 

n/a 

Results of 

syntheses 

For each synthesis, briefly summarise the characteristics and 

risk of bias among contributing studies. 

65 

Present results of all statistical syntheses conducted. If meta-

analysis was done, present for each the summary estimate 

and its precision (e.g. confidence/credible interval) and 

measures of statistical heterogeneity. If comparing groups, 

describe the direction of the effect. 

65 

Present results of all investigations of possible causes of 

heterogeneity among study results. 

n/a 

Present results of all sensitivity analyses conducted to assess 

the robustness of the synthesized results. 

n/a 

Reporting biases Present assessments of risk of bias due to missing results 

(arising from reporting biases) for each synthesis assessed. 

n/a 

Certainty of 

evidence  

Present assessments of certainty (or confidence) in the body 

of evidence for each outcome assessed. 

n/a 

DISCUSSION 

Discussion  Provide a general interpretation of the results in the context 

of other evidence. 

51 

Discuss any limitations of the evidence included in the 

review. 

69 

Discuss any limitations of the review processes used. 31 

Discuss implications of the results for practice, policy, and 

future research. 

69 

OTHER INFORMATION 

Registration and 

protocol 

Provide registration information for the review, including 

register name and registration number, or state that the 

review was not registered. 

n/a 
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Indicate where the review protocol can be accessed, or state 

that a protocol was not prepared. 

n/a 

Describe and explain any amendments to information 

provided at registration or in the protocol. 

n/a 

Support Describe sources of financial or non-financial support for the 

review, and the role of the funders or sponsors in the review. 

n/a 

Competing 

interests 

Declare any competing interests of review authors. n/a 

Availability of 

data, code and 

other materials 

Report which of the following are publicly available and 

where they can be found: template data collection forms; 

data extracted from included studies; data used for all 

analyses; analytic code; any other materials used in the 

review. 

39 

  



 

 

173 

References 

ACM Advanced Search. Available at: https://dl.acm.org/search/advanced (Accessed: 

24/11/2021 2021). 

Agrawal, A., Venkatraman, J., Leonard, S. and Paepcke, A. (2015) 'YouEDU: addressing 

confusion in MOOC discussion forums by recommending instructional video clips'. 

Ahuja, S. and Dubey, G. 'Clustering and sentiment analysis on Twitter data'. 2017 2nd 

International Conference on Telecommunication and Networks (TEL-NET): IEEE, 1-5. 

Akiba, T., Sano, S., Yanase, T., Ohta, T. and Koyama, M. 'Optuna: A next-generation 

hyperparameter optimization framework'. Proceedings of the 25th ACM SIGKDD 

international conference on knowledge discovery & data mining, 2623-2631. 

Ali, J., Khan, R., Ahmad, N. and Maqsood, I. (2012) 'Random forests and decision trees', 

International Journal of Computer Science Issues (IJCSI), 9(5), pp. 272. 

Aljohani, T. and Cristea, A. I. 'Training Temporal and NLP Features via Extremely 

Randomised Trees for Educational Level Classification'. International Conference on 

Intelligent Tutoring Systems: Springer, 136-147. 

Almatrafi, O. and Johri, A. (2018) 'Systematic review of discussion forums in massive 

open online courses (MOOCs)', IEEE Transactions on Learning Technologies, 12(3), pp. 

413-428. 

Alpaydin, E. (2020) Introduction to machine learning. MIT press. 

Alrajhi, L., Pereira, F. D., Cristea, A. I. and Aljohani, T. 'A Good Classifier is Not 

Enough: A XAI Approach for Urgent Instructor-Intervention Models in MOOCs'. 

International Conference on Artificial Intelligence in Education: Springer, 424-427. 

Alshehri, M., Alamri, A. and Cristea, A. I. 'Predicting Certification in MOOCs Based on 

Students’ Weekly Activities'. International Conference on Intelligent Tutoring Systems: 

Springer, 173-185. 

Alshehri, M., Alamri, A., Cristea, A. I. and Stewart, C. D. (2021) 'Towards Designing 

Profitable Courses: Predicting Student Purchasing Behaviour in MOOCs', International 

Journal of Artificial Intelligence in Education, pp. 1-19. 

Alshehri, M., Foss, J., Cristea, A. I., Kayama, M., Shi, L., Alamri, A. and Tsakalidis, A. 

'On the need for fine-grained analysis of Gender versus Commenting Behaviour in 

MOOCs'. Proceedings of the 2018 The 3rd International Conference on Information and 

Education Innovations: ACM, 73-77. 

Alsheri, M. A., Almari, A., Cristea, A. I. and Stewart, C. D. 'forum-based Prediction of 

Certification in Massive Open Online Courses'. Association for Information Systems. 

https://dl.acm.org/search/advanced


 

 

174 

Arslan, F., Bagchi, K. and Ryu, S. (2015) 'A Preliminary Evaluation of the determinants 

of certification success in MOOCs: A multi-level study'. 

Asharf, J., Moustafa, N., Khurshid, H., Debie, E., Haider, W. and Wahab, A. (2020) 'A 

review of intrusion detection systems using machine and deep learning in internet of 

things: Challenges, solutions and future directions', Electronics, 9(7), pp. 1177. 

Atiaja, L. A. and Proenza, R. (2016) 'The MOOCs: origin, characterization, principal 

problems and challenges in Higher Education', Journal of e-learning and Knowledge 

Society, 12(1). 

Badali, M., Hatami, J., Banihashem, S. K., Rahimi, E., Noroozi, O. and Eslami, Z. (2022) 

'The role of motivation in MOOCs’ retention rates: a systematic literature review', 

Research and Practice in Technology Enhanced Learning, 17(1), pp. 1-20. 

Baker, R. M. and Passmore, D. L. (2016) 'Value and pricing of MOOCs', Education 

Sciences, 6(2), pp. 14. 

Baker, R. S. and Hawn, A. (2021) 'Algorithmic bias in education', International Journal of 

Artificial Intelligence in Education, pp. 1-41. 

Bakharia, A. 'Towards cross-domain MOOC forum post classification'. Proceedings of the 

Third (2016) ACM Conference on Learning@ Scale, 253-256. 

Basiri, M. E., Nemati, S., Abdar, M., Cambria, E. and Acharya, U. R. (2021) 'ABCDM: 

An attention-based bidirectional CNN-RNN deep model for sentiment analysis', Future 

Generation Computer Systems, 115, pp. 279-294. 

Baturay, M. H. (2015) 'An overview of the world of MOOCs', Procedia-Social and 

Behavioral Sciences, 174, pp. 427-433. 

Bayeck, R. (2016) 'Exploratory study of MOOC learners’ demographics and motivation: 

The case of students involved in groups', Open Praxis, 8(3), pp. 223-233. 

Bayer, M., Kaufhold, M.-A. and Reuter, C. (2022) 'A survey on data augmentation for text 

classification', ACM Computing Surveys, 55(7), pp. 1-39. 

Beckerle, M., Chatzopoulou, A. and Fischer-Hübner, S. 'Towards Cybersecurity MOOC 

Certification'. 2021 IEEE European Symposium on Security and Privacy Workshops 

(EuroS&PW): IEEE, 1-11. 

Belleflamme, P. and Jacqmin, J. (2016) 'An economic appraisal of MOOC platforms: 

Business models and impacts on higher education', CESifo Economic Studies, 62(1), pp. 

148-169. 

Bergstra, J., Komer, B., Eliasmith, C., Yamins, D. and Cox, D. D. (2015) 'Hyperopt: a 

python library for model selection and hyperparameter optimization', Computational 

Science & Discovery, 8(1), pp. 014008. 



 

 

175 

Bhardwaj, A., Di, W. and Wei, J. (2018) Deep Learning Essentials: Your hands-on guide 

to the fundamentals of deep learning and neural network modeling. Packt Publishing Ltd. 

Blackmon, S. J. and Major, C. H. (2016) MOOCs and Higher Education: Implications for 

Institutional Research: New Directions for Institutional Research, Number 167. John 

Wiley & Sons. 

Bogdan, R., Holotescu, C., Andone, D. and Grosseck, G. (2017) 'How MOOCs are being 

used for corporate training?', eLearning & Software for Education, 2. 

Bonafini, F. C. (2017) 'The effects of participants' engagement with videos and forums in 

a MOOC for teachers' professional development', Open Praxis, 9(4), pp. 433-447. 

Bonafini, F. C. (2018) 'Characterizing Super-Posters in a MOOC for Teachers' 

Professional Development', Online Learning, 22(4), pp. 89-108. 

Bonta, V. and Janardhan, N. K. a. N. (2019) 'A comprehensive study on lexicon based 

approaches for sentiment analysis', Asian Journal of Computer Science and Technology, 

8(S2), pp. 1-6. 

Borrás-Gené, O. 'Empowering MOOC participants: Dynamic content adaptation through 

external tools'. European MOOCs Stakeholders Summit: Springer, 121-130. 

Borrego, Á. (2019) 'The impact of MOOCs on library and information science education', 

Education for Information, 35(2), pp. 87-98. 

Breiman, L. (2001) 'Random forests', Machine learning, 45(1), pp. 5-32. 

Breslow, L., Pritchard, D. E., DeBoer, J., Stump, G. S., Ho, A. D. and Seaton, D. T. 

(2013) 'Studying learning in the worldwide classroom research into edX's first MOOC', 

Research & Practice in Assessment, 8, pp. 13-25. 

Briggs, J. (2021) 'Masked-Language Modeling With BERT'. Available at: 

https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c 

(Accessed 10/11/2022). 

Brouns, F., Mota, J., Morgado, L., Jansen, D., Fano, S., Silva, A. and Teixeira, A. M. 'A 

networked learning framework for effective MOOC design: the ECO project approach'. 

EDEN Conference Proceedings, 161-172. 

Brown, S. 'Back to the future with MOOCs'. ICICTE 2013 Proceedings, 237-246. 

Brownlee, J. (2021) 'A Gentle Introduction to Ensemble Learning Algorithms', Machine 

Learning Mastery. 

Buholzer, F., Rietsche, R. and Söllner, M. (2018) 'Knowing what learners like–

Developing a cultural sensitive peer assessment process in MOOCs'. 

https://towardsdatascience.com/masked-language-modelling-with-bert-7d49793e5d2c


 

 

176 

Bulusu, A. and Rao, K. R. 'Sentiment analysis of learner reviews to improve efficacy of 

massive open online courses (MOOC’s)-A survey'. 2021 Fifth International Conference 

on I-SMAC (IoT in Social, Mobile, Analytics and Cloud)(I-SMAC): IEEE, 933-941. 

Burd, E. L., Smith, S. P. and Reisman, S. (2015) 'Exploring business models for MOOCs 

in higher education', Innovative Higher Education, 40(1), pp. 37-49. 

Cagiltay, N. E., Cagiltay, K. and Celik, B. (2020) 'An Analysis of Course Characteristics, 

Learner Characteristics, and Certification Rates in MITx MOOCs', International Review 

of Research in Open and Distributed Learning, 21(3), pp. 121-139. 

Calise, M., Kloos, C. D., Reich, J., Ruiperez-Valiente, J. A. and Wirsing, M. (2019) 

Digital Education: At the MOOC Crossroads Where the Interests of Academia and 

Business Converge: 6th European MOOCs Stakeholders Summit, EMOOCs 2019, Naples, 

Italy, May 20–22, 2019, Proceedings. Springer. 

Canessa, E., Tenze, L. and Salvatori, E. (2013) 'Attendance to massive open on-line 

courses: Towards a solution to track on-line recorded lectures viewing', Bulletin of the 

IEEE Technical Committee on Learning Technology, 15(1), pp. 36-39. 

Casserly, C. (2018) '10 years of OER: What funders can learn from a historical moment', 

Hewlett Foundation. 

Castillo, N. M., Lee, J., Zahra, F. T. and Wagner, D. A. (2015) 'MOOCS for development: 

Trends, challenges, and opportunities', International Technologies & International 

Development, 11(2), pp. 35. 

Celik, B. and Cagiltay, K. (2023) 'Did you act according to your intention? An analysis 

and exploration of intention–behavior gap in MOOCs', Education and Information 

Technologies, pp. 1-28. 

Chaplot, D. S., Rhim, E. and Kim, J. 'Predicting student attrition in MOOCs using 

sentiment analysis and neural networks'. Work. 17th Int. Conf. Artif. Intell. Educ. AIED-

WS 2015, 7-12. 

Chawla, N. V., Bowyer, K. W., Hall, L. O. and Kegelmeyer, W. P. (2002) 'SMOTE: 

synthetic minority over-sampling technique', Journal of artificial intelligence research, 

16, pp. 321-357. 

Chawla, S. (2021) 'Application of convolution neural network in web query session 

mining for personalised web search', International Journal of Computational Science and 

Engineering, 24(4), pp. 417-428. 

Chen, J., Feng, J., Sun, X. and Liu, Y. (2019) 'Co-training semi-supervised deep learning 

for sentiment classification of MOOC forum posts', Symmetry, 12(1), pp. 8. 

Chen, T. and Guestrin, C. 'Xgboost: A scalable tree boosting system'. Proceedings of the 

22nd acm sigkdd international conference on knowledge discovery and data mining, 785-

794. 



 

 

177 

Chiorrini, A., Diamantini, C., Mircoli, A. and Potena, D. 'Emotion and sentiment analysis 

of tweets using BERT'. EDBT/ICDT Workshops. 

Cho, K., Van Merriënboer, B., Bahdanau, D. and Bengio, Y. (2014) 'On the properties of 

neural machine translation: Encoder-decoder approaches', arXiv preprint 

arXiv:1409.1259. 

Christensen, G., Steinmetz, A., Alcorn, B., Bennett, A., Woods, D. and Emanuel, E. 

(2013) 'The MOOC phenomenon: Who takes massive open online courses and why?', 

Available at SSRN 2350964. 

Christie, S. T., Jarratt, D. C., Olson, L. A. and Taijala, T. T. (2019) 'Machine-Learned 

School Dropout Early Warning at Scale', International Educational Data Mining Society. 

Chuang, I. and Ho, A. (2016) 'HarvardX and MITx: Four Years of Open Online Courses--

Fall 2012-Summer 2016'. 

Chung, J., Gulcehre, C., Cho, K. and Bengio, Y. (2014) 'Empirical evaluation of gated 

recurrent neural networks on sequence modeling', arXiv preprint arXiv:1412.3555. 

Clavié, B. and Gal, K. (2019) 'Edubert: Pretrained deep language models for learning 

analytics', arXiv preprint arXiv:1912.00690. 

Cliche, M. (2017) 'BB_twtr at SemEval-2017 task 4: Twitter sentiment analysis with 

CNNs and LSTMs', arXiv preprint arXiv:1704.06125. 

Clow, D. 'MOOCs and the funnel of participation'. Proceedings of the third international 

conference on learning analytics and knowledge: ACM, 185-189. 

Cobos, R. and Jurado, F. 'An exploratory analysis on MOOCs retention and certification 

in two courses of different knowledge areas'. 2018 IEEE Global Engineering Education 

Conference (EDUCON): IEEE, 1659-1666. 

Cobos, R. and Olmos, L. 'A learning analytics tool for predictive modeling of dropout and 

certificate acquisition on MOOCs for professional learning'. 2018 IEEE international 

conference on industrial engineering and engineering management (IEEM): IEEE, 1533-

1537. 

Cohen, A., Shimony, U., Nachmias, R. and Soffer, T. (2019) 'Active learners’ 

characterization in MOOC forums and their generated knowledge', British journal of 

educational technology, 50(1), pp. 177-198. 

Coleman, C. A., Seaton, D. T. and Chuang, I. 'Probabilistic use cases: Discovering 

behavioral patterns for predicting certification'. Proceedings of the second (2015) acm 

conference on learning@ scale, 141-148. 

Condé, J. and Cisel, M. 'On the use of MOOCs in companies: A panorama of current 

practices'. European MOOCs Stakeholders Summit: Springer, 37-46. 

Cramer, J. S. (2002) 'The origins of logistic regression'. 



 

 

178 

Cusumano, M. A. (2013) 'Are the costs of'free'too high in online education?', 

Communications of the ACM, 56(4), pp. 26-28. 

Dalipi, F., Imran, A. S. and Kastrati, Z. 'MOOC dropout prediction using machine 

learning techniques: Review and research challenges'. Global Engineering Education 

Conference (EDUCON), 2018 IEEE: IEEE, 1007-1014. 

Dalipi, F., Zdravkova, K. and Ahlgren, F. (2021) 'Sentiment analysis of students’ feedback 

in MOOCs: A systematic literature review', Frontiers in Artificial Intelligence, 4, pp. 

728708. 

Daniel, J. (2012) 'Making sense of MOOCs: Musings in a maze of myth, paradox and 

possibility', Journal of interactive Media in education, 2012(3). 

Davis, H., Leon, K. D. M., Vera, M. and White, S. (2013) 'MOOCs for Universities and 

Learners', An analysis of motivating factors. 

DeBoer, J., Ho, A. D., Stump, G. S. and Breslow, L. (2014) 'Changing “course” 

reconceptualizing educational variables for massive open online courses', Educational 

researcher, 43(2), pp. 74-84. 

DeBoer, J., Stump, G. S., Seaton, D., Ho, A., Pritchard, D. E. and Breslow, L. 'Bringing 

student backgrounds online: MOOC user demographics, site usage, and online learning'. 

Educational data mining 2013. 

Dellarocas, C. and Van Alstyne, M. W. (2013) 'Money models for MOOCs', 

Communications of the ACM, August, 56(8), pp. 25-28. 

Deng, L. and Yu, D. (2014) 'Deep learning: methods and applications', Foundations and 

trends® in signal processing, 7(3–4), pp. 197-387. 

Deng, R., Benckendorff, P. and Gannaway, D. (2019) 'Progress and new directions for 

teaching and learning in MOOCs', Computers & Education, 129, pp. 48-60. 

developers, s.-l. (2007-2020) Metrics and scoring: quantifying the quality of predictions. 

Available at: https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-

accuracy-score (Accessed: 30/03/2021 2021). 

Devlin, J., Chang, M.-W., Lee, K. and Toutanova, K. (2018) 'Bert: Pre-training of deep 

bidirectional transformers for language understanding', arXiv preprint arXiv:1810.04805. 

Dillahunt, T., Wang, Z. and Teasley, S. D. (2014) 'Democratizing higher education: 

Exploring MOOC use among those who cannot afford a formal education', International 

Review of Research in Open and Distributed Learning, 15(5), pp. 177-196. 

Diver, P. and Martinez, I. (2015) 'MOOCs as a massive research laboratory: Opportunities 

and challenges', Distance Education, 36(1), pp. 5-25. 

Elbadrawy, A., Polyzou, A., Ren, Z., Sweeney, M., Karypis, G. and Rangwala, H. (2016) 

'Predicting student performance using personalized analytics', Computer, 49(4), pp. 61-69. 

https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-accuracy-score
https://scikit-learn.org/stable/modules/model_evaluation.html#balanced-accuracy-score


 

 

179 

Farrow, R. (2019) 'Massive Open Online Courses for Business Learning: Key research, 

best practices and pathways to innovation'. 

Fedorova, E. P. and Skobleva, E. I. (2020) 'Application of blockchain technology in 

higher education', European Journal of Contemporary Education, 9(3), pp. 552-571. 

Ferguson, R. and Clow, D. 'Examining engagement: analysing learner subpopulations in 

massive open online courses (MOOCs)'. Proceedings of the Fifth International 

Conference on Learning Analytics And Knowledge: ACM, 51-58. 

Fini, A. (2009) 'The technological dimension of a massive open online course: The case of 

the CCK08 course tools', The International Review of Research in Open and Distributed 

Learning, 10(5). 

Fleiss, J. L., Levin, B. and Paik, M. C. (1981) 'The measurement of interrater agreement', 

Statistical methods for rates and proportions, 2(212-236), pp. 22-23. 

Fleming, P. S., Koletsi, D. and Pandis, N. (2014) 'Blinded by PRISMA: are systematic 

reviewers focusing on PRISMA and ignoring other guidelines?', PLoS One, 9(5), pp. 

e96407. 

Fotso, J. E. M., Batchakui, B., Nkambou, R. and Okereke, G. (2022) 'Algorithms for the 

development of deep learning models for classification and prediction of learner behaviour 

in moocs',  Artificial Intelligence for Data Science in Theory and Practice: Springer, pp. 

41-73. 

Freund, Y. and Schapire, R. E. (1997) 'A decision-theoretic generalization of on-line 

learning and an application to boosting', Journal of computer and system sciences, 55(1), 

pp. 119-139. 

Friedman, J. H. (2001) 'Greedy function approximation: a gradient boosting machine', 

Annals of statistics, pp. 1189-1232. 

Garcia Barrera, A., Gomez Hernandez, P. and Monge Lopez, C. (2017) 'ATTENTION TO 

DIVERSITY IN MOOCS: A METHODOLOGICAL PROPOSAL', EDUCACION XX1, 

20(2), pp. 215-233. 

García-Molina, S., Alario-Hoyos, C., Moreno-Marcos, P. M., Muñoz-Merino, P. J., 

Estévez-Ayres, I. and Delgado Kloos, C. (2020) 'An algorithm and a tool for the automatic 

grading of MOOC learners from their contributions in the discussion forum', Applied 

Sciences, 11(1), pp. 95. 

Gardair, C., Bousquet, G., Lehmann-Che, J., de Bazelaire, C., de Cremoux, P., Van Nhieu, 

J. T., Sockeel, M., Battistella, M., Calvani, J. and Gervais, J. 'Les coulisses d’un Massive 

Open Online Course (MOOC) sur le diagnostic des cancers'. Annales de Pathologie: 

Elsevier, 305-311. 

Gardner, J. and Brooks, C. 'Dropout model evaluation in MOOCs'. Thirty-Second AAAI 

Conference on Artificial Intelligence. 



 

 

180 

Gardner, J. and Brooks, C. (2018b) 'Student success prediction in MOOCs', User 

Modeling and User-Adapted Interaction, 28(2), pp. 127-203. 

Gardner, J., Brooks, C. and Baker, R. 'Evaluating the fairness of predictive student models 

through slicing analysis'. Proceedings of the 9th international conference on learning 

analytics & knowledge, 225-234. 

Geurts, P., Ernst, D. and Wehenkel, L. (2006) 'Extremely randomized trees', Machine 

learning, 63(1), pp. 3-42. 

Gitinabard, N., Khoshnevisan, F., Lynch, C. F. and Wang, E. Y. (2018) 'Your actions or 

your associates? Predicting certification and dropout in MOOCs with behavioral and 

social features', arXiv preprint arXiv:1809.00052. 

Glance, D. G., Barrett, P. H. R. and Hugh, R. 'Attrition patterns amongst participant 

groups in Massive Open Online Courses'. ASCILITE Conference, Dunedin, New Zealand. 

Retrieved from http://ascilite2014. otago. ac. nz/files/fullpapers/16-Glance. pdf. 

Glass, C. R., Shiokawa‐Baklan, M. S. and Saltarelli, A. J. (2016) 'Who takes MOOCs?', 

New Directions for Institutional Research, 2015(167), pp. 41-55. 

Goli, A., Chintagunta, P. K. and Sriram, S. (2019) 'Effect of Payment on User 

Engagement in MOOCs', Available at SSRN 3414406. 

Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J. and Sculley, D. 'Google 

vizier: A service for black-box optimization'. Proceedings of the 23rd ACM SIGKDD 

international conference on knowledge discovery and data mining, 1487-1495. 

González Robinson, K. (2016) 'New internationalization opportunities for Higher 

Education Institutions: A strategic framework for the cross-border provision of Massive 

Open Online Courses (MOOCs)'. 

Goodfellow, I., Bengio, Y. and Courville, A. (2016) Deep learning. MIT press. 

Greene, J. A., Oswald, C. A. and Pomerantz, J. (2015) 'Predictors of retention and 

achievement in a massive open online course', American Educational Research Journal, 

52(5), pp. 925-955. 

Haddadi, L. and Dahmani, F. B. 'An assessment planner for MOOCs based ODALA 

approach'. 2016 Intl IEEE Conferences on Ubiquitous Intelligence & Computing, 

Advanced and Trusted Computing, Scalable Computing and Communications, Cloud and 

Big Data Computing, Internet of People, and Smart World Congress 

(UIC/ATC/ScalCom/CBDCom/IoP/SmartWorld): IEEE, 855-862. 

Halsbenning, S. and Niemann, M. 'Sustainable MOOC Platforms-Searching for Business 

Models of the Future'. ECIS. 

He, J., Bailey, J., Rubinstein, B. and Zhang, R. 'Identifying at-risk students in massive 

open online courses'. Proceedings of the AAAI Conference on Artificial Intelligence. 

http://ascilite2014/


 

 

181 

Henukh, A., Nikat, R., Simbolon, M., Nuryadin, C. and Baso, Y. 'Multimedia 

development based on web connected Massive Open Online Courses (cMOOCs) on the 

basic physics material'. IOP Conference Series: Earth and Environmental Science: IOP 

Publishing, 012160. 

Hill, P. (2012) 'Four Barriers that MOOCs must overcome to build a sustainable model', 

Recuperado el, 1, pp. 166. 

Hochreiter, S. and Schmidhuber, J. (1997) 'Long short-term memory', Neural 

computation, 9(8), pp. 1735-1780. 

Hollands, F. and Kazi, A. (2019) 'MOOC-based alternative credentials: What’s the value 

for the learner', Educause Review. 

Hone, K. S. and El Said, G. R. (2016) 'Exploring the factors affecting MOOC retention: A 

survey study', Computers & Education, 98, pp. 157-168. 

Hutter, F., Hoos, H. H. and Leyton-Brown, K. 'Sequential model-based optimization for 

general algorithm configuration'. International conference on learning and intelligent 

optimization: Springer, 507-523. 

Hutto, C. and Gilbert, E. 'Vader: A parsimonious rule-based model for sentiment analysis 

of social media text'. Proceedings of the international AAAI conference on web and social 

media, 216-225. 

IEEE Explore Search Tips. Available at: https://ieeexplore.ieee.org/Xplorehelp/searching-

ieee-xplore/search-tips (Accessed: 24/11/2021 2021). 

Iiyoshi, T. and Kumar, M. (2010) Opening up education: The collective advancement of 

education through open technology, open content, and open knowledge. The MIT Press. 

Ilavarasan, E. 'A Survey on Sarcasm detection and challenges'. 2020 6th International 

Conference on Advanced Computing and Communication Systems (ICACCS): IEEE, 

1234-1240. 

Impey, C. D., Wenger, M. C. and Austin, C. L. (2015) 'Astronomy for astronomical 

numbers: A worldwide massive open online class', International Review of Research in 

Open and Distributed Learning, 16(1), pp. 57-79. 

Isidro, C., Carro, R. M. and Ortigosa, A. 'Dropout detection in MOOCs: An exploratory 

analysis'. 2018 International Symposium on Computers in Education (SIIE): IEEE, 1-6. 

Jaganathan, G., Sugundan, N. and Sivakumar, S. (2018) 'MOOCs: A Comparative analysis 

between Indian scenario and Global scenario', International Journal of Engineering & 

Technology, 7(4), pp. 854-857. 

Jahan, M. S., Beddiar, D. R., Oussalah, M. and Arhab, N. (2021) 'Hate and Offensive 

language detection using BERT for English Subtask A'. 

https://ieeexplore.ieee.org/Xplorehelp/searching-ieee-xplore/search-tips
https://ieeexplore.ieee.org/Xplorehelp/searching-ieee-xplore/search-tips


 

 

182 

Jena, R. (2018) 'Predicting students’ learning style using learning analytics: a case study 

of business management students from India', Behaviour & Information Technology, 

37(10-11), pp. 978-992. 

Jiang, S., Fitzhugh, S. M. and Warschauer, M. 'Social positioning and performance in 

MOOCs'. Workshop on graph-based educational data mining. 

Jiang, S., Williams, A., Schenke, K., Warschauer, M. and O'dowd, D. 'Predicting MOOC 

performance with week 1 behavior'. Educational data mining 2014. 

Jiang, Z., Zhang, Y. and Li, X. (2015) 'Learning behavior analysis and prediction based on 

MOOC data', Journal of computer research and development, 52(3), pp. 614. 

Joksimović, S., Manataki, A., Gašević, D., Dawson, S., Kovanović, V. and De Kereki, I. 

F. (2016) 'Translating network position into performance: Importance of centrality in 

different network configurations'. Proceedings of the sixth international conference on 

learning analytics & knowledge, 314-323. 

Joksimović, S., Poquet, O., Kovanović, V., Dowell, N., Mills, C., Gašević, D., Dawson, 

S., Graesser, A. C. and Brooks, C. (2018) 'How do we model learning at scale? A 

systematic review of research on MOOCs', Review of Educational Research, 88(1), pp. 

43-86. 

Jordan, K. (2014) 'Initial trends in enrolment and completion of massive open online 

courses', International Review of Research in Open and Distributed Learning, 15(1), pp. 

133-160. 

Jose, K. (2020) 'RNNs, LSTMs, CNNs, Transformers and BERT'. Available at: 

https://medium.com/analytics-vidhya/rnns-lstms-cnns-transformers-and-bert-

be003df3492b. 

Kastrati, Z., Arifaj, B., Lubishtani, A., Gashi, F. and Nishliu, E. 'Aspect-Based Opinion 

Mining of Students' Reviews on Online Courses'. Proceedings of the 2020 6th 

International Conference on Computing and Artificial Intelligence, 510-514. 

Kastrati, Z., Dalipi, F., Imran, A. S., Pireva Nuci, K. and Wani, M. A. (2021) 'Sentiment 

analysis of students’ feedback with NLP and deep learning: A systematic mapping study', 

Applied Sciences, 11(9), pp. 3986. 

Kastrati, Z., Imran, A. S. and Kurti, A. (2020) 'Weakly supervised framework for aspect-

based sentiment analysis on students’ reviews of MOOCs', IEEE Access, 8, pp. 106799-

106810. 

Khan, M. Y., Qayoom, A., Nizami, M. S., Siddiqui, M. S., Wasi, S. and Raazi, S. M. K.-

u.-R. (2021a) 'Automated Prediction of Good Dictionary EXamples (GDEX): A 

Comprehensive Experiment with Distant Supervision, Machine Learning, and Word 

Embedding-Based Deep Learning Techniques', Complexity, 2021. 

https://medium.com/analytics-vidhya/rnns-lstms-cnns-transformers-and-bert-be003df3492b
https://medium.com/analytics-vidhya/rnns-lstms-cnns-transformers-and-bert-be003df3492b


 

 

183 

Khan, P., Kader, M. F., Islam, S. R., Rahman, A. B., Kamal, M. S., Toha, M. U. and 

Kwak, K.-S. (2021b) 'Machine learning and deep learning approaches for brain disease 

diagnosis: principles and recent advances', IEEE Access, 9, pp. 37622-37655. 

King, I. and Lee, W.-I. (2022) 'Exploring Global MOOC Ecosystems',  A Decade of 

MOOCs and Beyond: Platforms, Policies, Pedagogy, Technology, and Ecosystems with an 

Emphasis on Greater China: Springer, pp. 117-132. 

Kite, J., Indig, D., Mihrshahi, S., Milat, A. and Bauman, A. (2015) 'Assessing the 

usefulness of systematic reviews for policymakers in public health: a case study of 

overweight and obesity prevention interventions', Preventive Medicine, 81, pp. 99-107. 

Kizilcec, R. F. and Halawa, S. 'Attrition and achievement gaps in online learning'. 

Proceedings of the second (2015) ACM conference on learning@ scale, 57-66. 

Kizilcec, R. F., Piech, C. and Schneider, E. 'Deconstructing disengagement: analyzing 

learner subpopulations in massive open online courses'. Proceedings of the third 

international conference on learning analytics and knowledge: ACM, 170-179. 

Kocdar, S., OKUR, M. R. and Bozkurt, A. (2017) 'An examination of xMOOCS: An 

embedded single case study based on Conole’s 12 dimensions', Turkish Online Journal of 

Distance Education, 18(4), pp. 52-65. 

Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J. and Xu, Y. 'Autotune: A 

derivative-free optimization framework for hyperparameter tuning'. Proceedings of the 

24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, 

443-452. 

Koller, D., Ng, A., Do, C. and Chen, Z. (2013) 'Retention and intention in massive open 

online courses: In depth', Educause review, 48(3), pp. 62-63. 

Kostopoulos, G., Panagiotakopoulos, T., Kotsiantis, S., Pierrakeas, C. and Kameas, A. 

(2021) 'Interpretable Models for Early Prediction of Certification in MOOCs: A Case 

Study on a MOOC for Smart City Professionals', IEEE Access, 9, pp. 165881-165891. 

Kour, H. and Gupta, M. K. (2022) 'An hybrid deep learning approach for depression 

prediction from user tweets using feature-rich CNN and bi-directional LSTM', Multimedia 

Tools and Applications, pp. 1-37. 

Koutropoulos, A. (2013) 'MOOCs in Higher Education: Options, Affordances, Pitfalls 

(Part 2)', Learning Solutions Magazine. 

Krauss, S. M. (2017) 'How competency-based education may help reduce our nation’s 

toughest inequities', Lumina Issue Papers. Lumina Foundation. http://hdl. handle. 

net/10919/83258. 

Kučak, D., Juričić, V. and Đambić, G. (2018) 'MACHINE LEARNING IN 

EDUCATION-A SURVEY OF CURRENT RESEARCH TRENDS', Annals of DAAAM & 

Proceedings, 29. 

http://hdl/


 

 

184 

Kuhn, M. and Johnson, K. (2013) Applied predictive modeling. Springer. 

Kumar, K. (2019) 'A study of veterinary scholars’ perception of MOOCs', Information 

and Learning Sciences. 

LeCun, Y., Bengio, Y. and Hinton, G. (2015) 'Deep learning', nature, 521(7553), pp. 436-

444. 

Lee, M. K. (2018a) 'Understanding perception of algorithmic decisions: Fairness, trust, 

and emotion in response to algorithmic management', Big Data & Society, 5(1), pp. 

2053951718756684. 

Lee, Y. (2018b) 'Effect of uninterrupted time-on-task on students’ success in Massive 

Open Online Courses (MOOCs)', Computers in Human Behavior, 86, pp. 174-180. 

Lee, Y. (2019) 'Using self-organizing map and clustering to investigate problem-solving 

patterns in the massive open online course: An exploratory study', Journal of Educational 

Computing Research, 57(2), pp. 471-490. 

Lemoine, P. A. and Richardson, M. D. (2015) 'Micro-credentials, nano degrees, and 

digital badges: New credentials for global higher education', International Journal of 

Technology and Educational Marketing (IJTEM), 5(1), pp. 36-49. 

Lewis, M. J. and Lodge, J. M. (2016) 'Keep calm and credential on: Linking learning, life 

and work practices in a complex world',  Foundation of digital badges and micro-

credentials: Springer, pp. 41-54. 

Li, X., Bing, L., Zhang, W. and Lam, W. (2019a) 'Exploiting BERT for end-to-end aspect-

based sentiment analysis', arXiv preprint arXiv:1910.00883. 

Li, X., Zhang, H., Ouyang, Y., Zhang, X. and Rong, W. 'A shallow BERT-CNN model for 

sentiment analysis on MOOCs comments'. 2019 IEEE International Conference on 

Engineering, Technology and Education (TALE): IEEE, 1-6. 

Liao, P., Sun, Y., Ye, S., Li, X., Su, G. and Sun, Y. 'Predicting learners' multi-question 

performance based on neural networks'. 2017 International Conference on Behavioral, 

Economic, Socio-cultural Computing (BESC): IEEE, 1-6. 

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., 

Clarke, M., Devereaux, P. J., Kleijnen, J. and Moher, D. (2009) 'The PRISMA statement 

for reporting systematic reviews and meta-analyses of studies that evaluate health care 

interventions: explanation and elaboration', Journal of clinical epidemiology, 62(10), pp. 

e1-e34. 

Lim, C. L., Tang, S. F. and Ravichandran, P. 'A Study on the Mediation Effects of 

Intention to Enroll in MOOCs on its Actual Usage'. Proceedings of the 8th International 

Conference on E-Education, E-Business, E-Management and E-Learning, 30-33. 



 

 

185 

Littenberg-Tobias, J. and Reich, J. (2020) 'Evaluating access, quality, and equity in online 

learning: A case study of a MOOC-based blended professional degree program', The 

Internet and Higher Education, 47, pp. 100759. 

Littenberg-Tobias, J., Ruipérez-Valiente, J. A. and Reich, J. (2020) 'Studying learner 

behavior in online courses with free-certificate coupons: Results from two case studies', 

International Review of Research in Open and Distributed Learning, 21(1), pp. 1-22. 

Liu, S., Liu, S., Liu, Z., Peng, X. and Yang, Z. (2022a) 'Automated detection of emotional 

and cognitive engagement in MOOC discussions to predict learning achievement', 

Computers & Education, 181, pp. 104461. 

Liu, Z., Mu, R., Yang, Z., Peng, X., Liu, S. and Chen, J. (2022b) 'Modeling temporal 

cognitive topic to uncover learners’ concerns under different cognitive engagement 

patterns', Interactive Learning Environments, pp. 1-18. 

Liyanagunawardena, T. R., Lundqvist, K., Mitchell, R., Warburton, S. and Williams, S. A. 

(2019) 'A MOOC Taxonomy Based on Classification Schemes of MOOCs', European 

Journal of Open, Distance and E-learning, 22(1), pp. 85-103. 

Lohr, S. (2020) 'Remember the MOOCs? After near-death, they’re booming', The New 

York Times, 26. 

Lohse, J. J., McManus, C. A. and Joyner, D. A. 'Surveying the MOOC data set universe'. 

2019 IEEE Learning With MOOCS (LWMOOCS): IEEE, 159-164. 

Longstaff, E. (2014) 'The prehistory of MOOCs: Inclusive and exclusive access in the 

cyclical evolution of Higher Education', Journal of Organisational Transformation & 

Social Change, 11(3), pp. 164-184. 

lopez, d. (2019) Recurrent Neural Network (RNN), Long-Short Term Memory (LSTM) & 

Gated Recurrent Unit (GRU). Available at: http://dprogrammer.org/rnn-lstm-gru 

(Accessed: 22/10/2022. 

Loria, S. (2018) 'textblob Documentation', Release 0.15, 2. 

Lundqvist, K., Liyanagunawardena, T. and Starkey, L. (2020) 'Evaluation of student 

feedback within a MOOC using sentiment analysis and target groups', International 

Review of Research in Open and Distributed Learning, 21(3), pp. 140-156. 

Macleod, H., Haywood, J., Woodgate, A. and Alkhatnai, M. (2015) 'Emerging patterns in 

MOOCs: Learners, course designs and directions', TechTrends, 59(1), pp. 56-63. 

Makel, M. C. and Plucker, J. A. (2014) 'Facts are more important than novelty: 

Replication in the education sciences', Educational Researcher, 43(6), pp. 304-316. 

Malko, A., Paris, C., Duenser, A., Kangas, M., Molla, D., Sparks, R. and Wan, S. 

'Demonstrating the reliability of self-annotated emotion data'. Proceedings of the Seventh 

Workshop on Computational Linguistics and Clinical Psychology: Improving Access, 45-

54. 

http://dprogrammer.org/rnn-lstm-gru


 

 

186 

Marcus, M., Santorini, B. and Marcinkiewicz, M. A. (1993) 'Building a large annotated 

corpus of English: The Penn Treebank'. 

McGreal, R., Kinuthia, W., Marshall, S. and McNamara, T. (2013) Open educational 

resources: Innovation, research and practice. Commonwealth of Learning. 

McHugh, M. L. (2012) 'Interrater reliability: the kappa statistic', Biochemia medica, 22(3), 

pp. 276-282. 

McKnight, P. E. and Najab, J. (2010) 'Mann‐Whitney U Test', The Corsini encyclopedia 

of psychology, pp. 1-1. 

Medhat, W., Hassan, A. and Korashy, H. (2014) 'Sentiment analysis algorithms and 

applications: A survey', Ain Shams engineering journal, 5(4), pp. 1093-1113. 

Mehrabi, M., Safarpour, A. R. and Keshtkar, A. A. (2020) 'Massive Open Online Courses 

(MOOCs) dropout rate in the world: A systematic review protocol'. 

Michael Spector, J. (2017) 'A critical look at MOOCs',  Open education: From OERs to 

MOOCs: Springer, pp. 135-147. 

Milheim, W. D. (2013) 'Massive open online courses (MOOCs): Current applications and 

future potential', Educational Technology, pp. 38-42. 

Miller, G. A., Beckwith, R., Fellbaum, C., Gross, D. and Miller, K. J. (1990) 'Introduction 

to WordNet: An on-line lexical database', International journal of lexicography, 3(4), pp. 

235-244. 

Milligan, C. and Littlejohn, A. (2014) 'Supporting professional learning in a massive open 

online course', International Review of Research in Open and Distributed Learning, 15(5), 

pp. 197-213. 

Mirza, M., Lukosch, S. and Lukosch, H. 'Twitter Sentiment Analysis of Cross-Cultural 

Perspectives on Climate Change'. International Conference on Human-Computer 

Interaction: Springer, 392-406. 

Moher, D., Liberati, A., Tetzlaff, J., Altman, D. G. and Group*, P. (2009) 'Preferred 

reporting items for systematic reviews and meta-analyses: the PRISMA statement', Annals 

of internal medicine, 151(4), pp. 264-269. 

Moreno-Marcos, P. M., Alario-Hoyos, C., Muñoz-Merino, P. J., Estévez-Ayres, I. and 

Kloos, C. D. 'Sentiment analysis in MOOCs: A case study'. 2018 IEEE Global 

Engineering Education Conference (EDUCON): IEEE, 1489-1496. 

Moreno-Marcos, P. M., Alario-Hoyos, C., Muñoz-Merino, P. J. and Kloos, C. D. (2018b) 

'Prediction in MOOCs: A review and future research directions', IEEE Transactions on 

Learning Technologies, 12(3), pp. 384-401. 



 

 

187 

Mourdi, Y., Sadgal, M., El Kabtane, H. and Fathi, W. B. (2019) 'A machine learning-

based methodology to predict learners’ dropout, success or failure in MOOCs', 

International Journal of Web Information Systems. 

Mullaney, T. and Reich, J. 'Staggered versus all-at-once content release in massive open 

online courses: Evaluating a natural experiment'. Proceedings of the Second (2015) ACM 

Conference on Learning@ Scale, 185-194. 

Munigadiapa, P. and Adilakshmi, T. (2022) 'MOOC-LSTM: The LSTM Architecture for 

Sentiment Analysis on MOOCs Forum Posts',  Computational Intelligence and Data 

Analytics: Proceedings of ICCIDA 2022: Springer, pp. 283-293. 

Ng, A. and Widom, J. (2014) 'Origins of the Modern MOOC (xMOOC)', Hrsg. Fiona M. 

Hollands, Devayani Tirthali: MOOCs: Expectations and Reality: Full Report, pp. 34-47. 

Njingang Mbadjoin, T. and Chaker, R. (2021) 'Les liens entre les objectifs de formation, 

les facteurs sociodemographiques et la reussite chez des participants a un MOOC 

professionnalisant', McGill Journal of Education/Revue des sciences de l'éducation de 

McGill, 56(1), pp. 149-170. 

Nkuyubwatsi, B. (2014) 'Cultural translation in massive open online courses (MOOCs)', 

EMOOCs, pp. 122-129. 

Notaris, D. D. 'Reskilling Higher Education Professionals'. European MOOCs 

Stakeholders Summit: Springer, 146-155. 

O'Dea, R. E., Lagisz, M., Jennions, M. D., Koricheva, J., Noble, D. W., Parker, T. H., 

Gurevitch, J., Page, M. J., Stewart, G. and Moher, D. (2021) 'Preferred reporting items for 

systematic reviews and meta‐analyses in ecology and evolutionary biology: a PRISMA 

extension', Biological Reviews, 96(5), pp. 1695-1722. 

Olofsson, H., Brolund, A., Hellberg, C., Silverstein, R., Stenström, K., Österberg, M. and 

Dagerhamn, J. (2017) 'Can abstract screening workload be reduced using text mining? 

User experiences of the tool Rayyan', Research synthesis methods, 8(3), pp. 275-280. 

Onan, A. (2021) 'Sentiment analysis on massive open online course evaluations: a text 

mining and deep learning approach', Computer Applications in Engineering Education, 

29(3), pp. 572-589. 

Osterwalder, A. and Pigneur, Y. (2010) Business model generation: a handbook for 

visionaries, game changers, and challengers. John Wiley & Sons. 

Ouzzani, M., Hammady, H., Fedorowicz, Z. and Elmagarmid, A. (2016) 'Rayyan—a web 

and mobile app for systematic reviews', Systematic reviews, 5(1), pp. 1-10. 

Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. 

D., Shamseer, L., Tetzlaff, J. M., Akl, E. A. and Brennan, S. E. (2021) 'The PRISMA 

2020 statement: an updated guideline for reporting systematic reviews', International 

journal of surgery, 88, pp. 105906. 



 

 

188 

Page, M. J. and Moher, D. (2017) 'Evaluations of the uptake and impact of the Preferred 

Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) Statement and 

extensions: a scoping review', Systematic reviews, 6(1), pp. 1-14. 

Palacios Hidalgo, F. J., Huertas Abril, C. A. and Gómez Parra, M. (2020) 'MOOCs: 

Origins, concept and didactic applications: A systematic review of the literature (2012–

2019)', Technology, Knowledge and Learning, 25(4), pp. 853-879. 

Paldy, L. G. (2013) 'MOOCs in your future', Journal of College Science Teaching, 42(4), 

pp. 6. 

Pappano, L. (2012) 'The Year of the MOOC', The New York Times, 2(12), pp. 2012. 

Peluso, C. (2022) Temporal Summarization: a Transformer-Based Approach. Politecnico 

di Torino. 

Perez-Pena, R. (2012) 'Top universities test the online appeal of free', The New York 

Times, 18, pp. A15. 

Pickard, L., Shah, D. and De Simone, J. 'Mapping microcredentials across MOOC 

platforms'. 2018 Learning With MOOCS (LWMOOCS): IEEE, 17-21. 

Porter, S. (2015) 'The economics of MOOCs: a sustainable future?', The Bottom Line, 

28(1/2), pp. 52-62. 

Pranckutė, R. (2021) 'Web of Science (WoS) and Scopus: The Titans of Bibliographic 

Information in Today’s Academic World', Publications, 9(1), pp. 12. 

Qi, P., Zhang, Y., Zhang, Y., Bolton, J. and Manning, C. D. (2020) 'Stanza: A python 

natural language processing toolkit for many human languages', arXiv preprint 

arXiv:2003.07082. 

Qiao, Y., Xiong, C., Liu, Z. and Liu, Z. (2019) 'Understanding the Behaviors of BERT in 

Ranking', arXiv preprint arXiv:1904.07531. 

Qiu, J., Tang, J., Liu, T. X., Gong, J., Zhang, C., Zhang, Q. and Xue, Y. 'Modeling and 

predicting learning behavior in MOOCs'. Proceedings of the ninth ACM international 

conference on web search and data mining: ACM, 93-102. 

Raja, R. and Nagasubramani, P. (2018) 'Impact of modern technology in education', 

Journal of Applied and Advanced Research, 3(1), pp. 33-35. 

Rawlings, J. O., Pantula, S. G. and Dickey, D. A. (1998) Applied regression analysis: a 

research tool. Springer. 

Reich, J. and Ruipérez-Valiente, J. A. (2019) 'The MOOC pivot', Science, 363(6423), pp. 

130-131. 

Rish, I. 'An empirical study of the naive Bayes classifier'. IJCAI 2001 workshop on 

empirical methods in artificial intelligence, 41-46. 



 

 

189 

Rizvi, S., Rienties, B., Rogaten, J. and Kizilcec, R. F. (2022) 'Beyond one-size-fits-all in 

MOOCs: Variation in learning design and persistence of learners in different cultural and 

socioeconomic contexts', Computers in Human Behavior, 126, pp. 106973. 

Rohloff, T., Sauer, D. and Meinel, C. 'Students' Achievement of Personalized Learning 

Objectives in MOOCs'. Proceedings of the Seventh ACM Conference on Learning@ 

Scale, 147-156. 

Rõõm, M., Luik, P. and Lepp, M. (2022) 'Learner success and the factors influencing it in 

computer programming MOOC', Education and Information Technologies, pp. 1-19. 

Rosasco, L. (2016) 'Introductory Machine Learning Notes', University of Genoa ML, 

2017. 

Rossano, V., Pesare, E. and Roselli, T. (2017) 'Are computer adaptive tests suitable for 

assessment in MOOCs', Journal of e-Learning and Knowledge Society, 13(3). 

Ruipérez-Valiente, J. A., Cobos, R., Muñoz-Merino, P. J., Andujar, Á. and Kloos, C. D. 

'Early prediction and variable importance of certificate accomplishment in a MOOC'. 

European Conference on Massive Open Online Courses: Springer, 263-272. 

Samuelsen, J. and Khalil, M. 'Study effort and student success: a MOOC case study'. 

International Conference on Interactive Collaborative Learning: Springer, 215-226. 

Sánchez, M. 'Assessing the quality of MOOC using ISO/IEC 25010'. 2016 XI Latin 

American Conference on Learning Objects and Technology (LACLO): IEEE, 1-4. 

Schaffhauser, D. (2018) 'Coursera’s CEO on the evolving meaning of ‘MOOC.’', Campus 

Technology. 

Schapire, R. E. (2013) 'Explaining adaboost',  Empirical inference: Springer, pp. 37-52. 

Scpus: Tips and Tricks. Available at: https://blog.scopus.com/tips-and-tricks (Accessed: 

24/11/2021 2021). 

Sebbaq, H. (2022) 'Fine-tuned BERT Model for Large Scale and Cognitive Classification 

of MOOCs', The International Review of Research in Open and Distributed Learning, 

23(2), pp. 170-190. 

Shah, D. (2018a) 'The Second Wave of MOOC Hype Is Here, and It’s Online Degrees', 

Available: Ed Surge. Available at: https://www.edsurge.com/news/2018-05-21-the-second-

wave-of-mooc-hype-is-here-and-it-s-online-degrees. 

Shah, D. (2018b) 'Six Tiers of MOOC Monetization', A product at every price point, Class 

Central. Verfügbar unter https://www. class-central. com/report/six-tiers-mooc-

monetization. 

Shah, D. (2019) 'Coursera’s Monetization Journey: From 0 to $100+ Million in Revenue', 

ClassCentral. com. 

https://blog.scopus.com/tips-and-tricks
https://www.edsurge.com/news/2018-05-21-the-second-wave-of-mooc-hype-is-here-and-it-s-online-degrees
https://www.edsurge.com/news/2018-05-21-the-second-wave-of-mooc-hype-is-here-and-it-s-online-degrees
https://www/


 

 

190 

Shah, D. (2020) 'By The Numbers: MOOCs in 2020'. Available at: 

https://www.classcentral.com/report/mooc-stats-2020/ (Accessed 15/11/2021). 

Shah, D. (2021a) By The Numbers: MOOCs in 2021, online. Available at: 

https://www.classcentral.com/report/mooc-stats-2021/ (Accessed: 02/02/2022). 

Shah, D. (2021b) Massive List of MOOC-based Microcredentials. Available at: 

https://www.classcentral.com/report/list-of-mooc-based-microcredentials/ (Accessed: 

22/04/2022). 

Shah, K., Patel, H., Sanghvi, D. and Shah, M. (2020) 'A comparative analysis of logistic 

regression, random forest and KNN models for the text classification', Augmented Human 

Research, 5(1), pp. 1-16. 

Sharples, M. (2019) 'Visions for the future of educational technology', EDUCATIONAL 

VISIONS, pp. 151. 

Shcherbinin, M., Kruchinin, S. V. and Ivanov, A. G. (2019) 'MOOC and MOOC degrees: 

new learning paradigm and its specifics', Management Applied. Science Technologies, 10, 

pp. 1-14. 

Sherstinsky, A. (2020) 'Fundamentals of recurrent neural network (RNN) and long short-

term memory (LSTM) network', Physica D: Nonlinear Phenomena, 404, pp. 132306. 

Shorten, C., Khoshgoftaar, T. M. and Furht, B. (2021) 'Text data augmentation for deep 

learning', Journal of big Data, 8(1), pp. 1-34. 

Sievert, C. (2020) Interactive web-based data visualization with R, plotly, and shiny. CRC 

Press. 

Simonson, M., Zvacek, S. M. and Smaldino, S. (2019) 'Teaching and learning at a 

distance: Foundations of distance education 7th edition'. 

Singhal, M. S. (2023) 'Predicting Student Performance using Big Data Analysis and 

Neural Network in Massive Open Online Courses (MOOCs)'. 

Sit, M., Demiray, B. Z., Xiang, Z., Ewing, G. J., Sermet, Y. and Demir, I. (2020) 'A 

comprehensive review of deep learning applications in hydrology and water resources', 

Water Science and Technology, 82(12), pp. 2635-2670. 

Sitanggang, A. B., Putri, J. E., Palupi, N. S., Hatzakis, E., Syamsir, E. and Budijanto, S. 

(2021) 'Enzymatic Preparation of Bioactive Peptides Exhibiting ACE Inhibitory Activity 

from Soybean and Velvet Bean: A Systematic Review', Molecules, 26(13), pp. 3822. 

Song, Y.-Y. and Ying, L. (2015) 'Decision tree methods: applications for classification 

and prediction', Shanghai archives of psychiatry, 27(2), pp. 130. 

Springer Link Search Tips. Available at: https://link.springer.com/searchhelp (Accessed: 

24/11/2021 2021). 

https://www.classcentral.com/report/mooc-stats-2020/
https://www.classcentral.com/report/mooc-stats-2021/
https://www.classcentral.com/report/list-of-mooc-based-microcredentials/
https://link.springer.com/searchhelp


 

 

191 

Sraidi, S., Smaili, E. M., Azzouzi, S. and Charaf, M. E. H. 'A sentiment analysis based 

approach to fight MOOCs’ drop out'. Networking, Intelligent Systems and Security: 

Proceedings of NISS 2021: Springer, 509-520. 

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. and Salakhutdinov, R. (2014) 

'Dropout: a simple way to prevent neural networks from overfitting', The journal of 

machine learning research, 15(1), pp. 1929-1958. 

Taneja, S. and Goel, A. (2014) 'MOOC providers and their strategies', International 

Journal of Computer Science and Mobile Computing, 3(5), pp. 222-228. 

Teja, P. S. (2019) 'Bagging and Boosting'. Available at: 

https://medium.com/@saitejaposam9/bagging-and-boosting-2b6cd4a6bda1 (Accessed 

06/10/2022). 

Tian, Y., Wen, Y., Yi, X., Yang, X. and Miao, Y. 'Predicting Learning Effect by Learner’s 

Behavior in MOOCs'. International Conference on Intelligent Data Engineering and 

Automated Learning: Springer, 524-533. 

Torrey, L. and Shavlik, J. (2010) 'Transfer learning',  Handbook of research on machine 

learning applications and trends: algorithms, methods, and techniques: IGI global, pp. 

242-264. 

Tucker, C., Pursel, B. K. and Divinsky, A. 'Mining student-generated textual data in 

MOOCs and quantifying their effects on student performance and learning outcomes'. 

2014 ASEE Annual Conference & Exposition, 24.907. 1-24.907. 14. 

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł. 

and Polosukhin, I. (2017) 'Attention is all you need', Advances in neural information 

processing systems, 30. 

Vivian, R., Falkner, K. and Falkner, N. (2014) 'Addressing the challenges of a new digital 

technologies curriculum: MOOCs as a scalable solution for teacher professional 

development', Research in Learning Technology, 22(1), pp. 24691. 

Vrillon, E. (2019) 'Une nouvelle évaluation de la réussite dans les MOOC à partir de 

registres d’usages individuels', Questions Vives. Recherches en éducation, (31). 

Wang, L., Hemberg, E. and O’Reilly, U.-M. 'The Influence of Grades on Learning 

Behavior in MOOCs: Certification vs, Continued Participation'. 2019 IEEE Learning With 

MOOCS (LWMOOCS): IEEE, 122-127. 

Wang, L. and Wang, H. 'Learning behavior analysis and dropout rate prediction based on 

MOOCs data'. 2019 10th International Conference on Information Technology in 

Medicine and Education (ITME): IEEE, 419-423. 

Web of Science Core Collection: Search Tips. Available at: 

https://clarivate.libguides.com/woscc/searchtips (Accessed: 24/11/2021 2021). 

https://medium.com/@saitejaposam9/bagging-and-boosting-2b6cd4a6bda1
https://clarivate.libguides.com/woscc/searchtips


 

 

192 

Web of Science, Confident research begins here.  . Available at: 

https://clarivate.com/webofsciencegroup/solutions/web-of-science/ (Accessed: 

23//11/2021 2021). 

Wei, X., Lin, H., Yang, L. and Yu, Y. (2017) 'A convolution-LSTM-based deep neural 

network for cross-domain MOOC forum post classification', Information, 8(3), pp. 92. 

Wen, M., Yang, D. and Rose, C. 'Sentiment Analysis in MOOC Discussion Forums: What 

does it tell us?'. Educational data mining 2014: Citeseer. 

White, S., Davis, H., Dickens, K., León, M. and Sánchez-Vera, M. M. 'MOOCs: What 

motivates the producers and participants?'. International Conference on Computer 

Supported Education: Springer, 99-114. 

Whitehill, J., Mohan, K., Seaton, D., Rosen, Y. and Tingley, D. (2017) 'Delving deeper 

into MOOC student dropout prediction', arXiv preprint arXiv:1702.06404. 

Whitehill, J., Williams, J., Lopez, G., Coleman, C. and Reich, J. (2015) 'Beyond 

prediction: First steps toward automatic intervention in MOOC student stopout', Available 

at SSRN 2611750. 

Wintermute, E. H., Cisel, M. and Lindner, A. B. (2021) 'A survival model for course-

course interactions in a Massive Open Online Course platform', PloS one, 16(1), pp. 

e0245718. 

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C., Moi, A., Cistac, P., Rault, T., 

Louf, R. and Funtowicz, M. (2019) 'Huggingface's transformers: State-of-the-art natural 

language processing', arXiv preprint arXiv:1910.03771. 

Wong, J., Baars, M., Davis, D., Van Der Zee, T., Houben, G.-J. and Paas, F. (2019) 

'Supporting self-regulated learning in online learning environments and MOOCs: A 

systematic review', International Journal of Human–Computer Interaction, 35(4-5), pp. 

356-373. 

Xiang, F., Zhang, X., Cui, J., Carlin, M. and Song, Y. 'Algorithmic Bias in a Student 

Success Prediction Models: Two Case Studies'. 2022 IEEE International Conference on 

Teaching, Assessment and Learning for Engineering (TALE): IEEE, 310-315. 

Xu, B. and Yang, D. (2016) 'Motivation classification and grade prediction for MOOCs 

learners', Computational intelligence and neuroscience, 2016. 

Yang, H. 'Chinese Sentiment Analysis of MOOC Reviews Based on Word Vectors'. 2021 

2nd International Conference on Artificial Intelligence and Education (ICAIE): IEEE, 68-

71. 

Yang, Z., Dai, Z., Yang, Y., Carbonell, J., Salakhutdinov, R. R. and Le, Q. V. (2019) 

'Xlnet: Generalized autoregressive pretraining for language understanding', Advances in 

neural information processing systems, 32. 

https://clarivate.com/webofsciencegroup/solutions/web-of-science/


 

 

193 

Yee, M., Roy, A., Stein, J., Perdue, M., Bell, A., Carter, R. and Miyagawa, S. 'The 

Relationship Between COVID-19 Severity and Computer Science MOOC Learner 

Achievement: A Preliminary Analysis'. Proceedings of the Ninth ACM Conference on 

Learning@ Scale, 431-435. 

Yeomans, M., Reich, J. and Acm (2017) 'Planning Prompts Increase and Forecast Course 

Completion in Massive Open Online Courses'. 7th International Learning Analytics and 

Knowledge Conference (LAK), Simon Fraser Univ, Vancouver, CANADA, Mar 13-17. 

NEW YORK: Assoc Computing Machinery, 464-473. 

Yin, F., Wang, Y., Liu, J. and Lin, L. (2020) 'The construction of sentiment lexicon based 

on context-dependent part-of-speech chunks for semantic disambiguation', IEEE Access, 

8, pp. 63359-63367. 

Yin, W., Kann, K., Yu, M. and Schütze, H. (2017) 'Comparative study of CNN and RNN 

for natural language processing', arXiv preprint arXiv:1702.01923. 

Yousef, A. M. F., Chatti, M. A., Schroeder, U., Wosnitza, M. and Jakobs, H. 'The state of 

MOOCs from 2008 to 2014: A critical analysis and future visions'. International 

conference on computer supported education: Springer, 305-327. 

Yousef, A. M. F. and Sumner, T. (2021) 'Reflections on the last decade of MOOC 

research', Computer Applications in Engineering Education, 29(4), pp. 648-665. 

Zhang, L., Wang, S. and Liu, B. (2018) 'Deep learning for sentiment analysis: A survey', 

Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 8(4), pp. e1253. 

Zhang, Y. and Wallace, B. (2015) 'A sensitivity analysis of (and practitioners' guide to) 

convolutional neural networks for sentence classification', arXiv preprint 

arXiv:1510.03820. 

Zheng, Q., Chen, L. and Burgos, D. (2018a) 'Certificate Authentication and Credit System 

of MOOCs in China',  The Development of MOOCs in China: Springer, pp. 261-276. 

Zheng, Q., Chen, L. and Burgos, D. (2018b) 'Emergence and development of MOOCs',  

The development of MOOCs in China: Springer, pp. 11-24. 

Zheng, Q., Chen, L. and Burgos, D. (2018c) 'Evaluation Models of MOOCs in China',  

The Development of MOOCs in China: Springer, pp. 207-227. 

Zhu, J. and Liu, W. (2020) 'A tale of two databases: The use of Web of Science and 

Scopus in academic papers', Scientometrics, 123(1), pp. 321-335. 

Zhu, M. (2021) 'Enhancing MOOC learners’ skills for self-directed learning', Distance 

Education, 42(3), pp. 441-460. 

Zhu, M., Sari, A. R. and Lee, M. M. (2020) 'A comprehensive systematic review of 

MOOC research: Research techniques, topics, and trends from 2009 to 2019', Educational 

Technology Research and Development, 68(4), pp. 1685-1710. 



 

 

194 

 


	Dedication
	Declaration
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Chapter 1 : Introduction
	1.1. Research Problem
	1.2. Research Motivations
	1.3. Research Questions
	1.4. Research Objectives
	1.5. Thesis Contributions
	1.6. Thesis Outline

	Chapter 2 : MOOCs: A Business Perspective
	2.1. Prologue
	2.2. Definition of MOOCs
	2.3. Defining MOOC Certification
	2.4. MOOCs: A Unique Concept of E-learning
	2.5. MOOCs History
	2.6. Types of MOOCs
	2.7. MOOCs as of 2022
	2.8. MOOC Business Models
	2.9. Monetisation of MOOCs
	2.9.1. Free Courses
	2.9.2. Certified Courses
	2.9.3. Micro-credentials
	2.9.4. Corporate Training
	2.9.5. Online Degrees

	2.10. Trends and Implications Resulting from MOOC Business Models
	2.11. Epilogue

	Chapter 3 : Systematic Literature Review
	3.1. Prologue
	3.2. Introduction
	3.3. Previous Surveys on MOOCs
	3.4. Surveyed Resources
	3.4.1. Inclusion and Exclusion Criteria
	3.4.2. Screening Process
	3.4.3. Excluded Conflict Studies
	3.4.4. Categorisation Strategy

	3.5. Certification Prediction in MOOCs
	3.5.1. Statistical Models
	3.5.1.1. Clickstream-based Models
	3.5.1.2. Survey-based Models
	3.5.1.3. Discussion Forums-based Models
	3.5.1.4. Multi-sources-based Models

	3.5.2. Machine Learning Models
	3.5.2.1. Clickstream-based Models
	3.5.2.2. Survey-based Models
	3.5.2.3. Discussion Forums-based Models
	3.5.2.4. Multi-sources-based Models


	3.6. Synthesis of The Surveyed Works
	3.6.1. Data Sources
	3.6.1.1. Platforms
	3.6.1.2. Publication Years and Numbers of Learners/Courses/Runs

	3.6.2. Adopted Methodologies
	3.6.2.1. Data Pre-processing and Features Engineering
	3.6.2.2. Hyperparameter Fine-tuning
	3.6.2.3. Models/Algorithms

	3.6.3. Model Outputs
	3.6.3.1. Types of Certifications
	3.6.3.2. Early Prediction Models
	3.6.3.3. Computational and Time Cost of Modelling
	3.6.3.4. Model Error Analysis


	3.7. Limitations
	3.7.1. Model Generalisability
	3.7.2. Sample extensive filtration
	3.7.3. Insufficient experimental elaboration
	3.7.4. Non-realistic Modelling

	3.8. Implications   on Educational Practices
	3.9. Epilogue

	Chapter 4 : Methodology
	4.1. Prologue
	4.2. Data Collection
	4.3. Statistical Test
	4.4. Predictive Machine Learning Approaches
	4.4.1. Conventional Models
	4.4.1.1. Logistic Regression (LR)
	4.4.1.2. Decision Tree (DT)
	4.4.1.3. Support Vector Machine (SVM)
	4.4.1.4. Naïve Bayes (NB)

	4.4.2. Ensemble Models
	4.4.2.1. Bagging-based Ensemble Models
	4.4.2.1.1. Random Forest (RF)
	4.4.2.1.2. Extremely Randomised Trees (ET)

	4.4.2.2. Boosting-based Ensemble Algorithms
	4.4.2.2.1. Adaptive Boosting (AdaBoost)
	4.4.2.2.2. Gradient Boosting Machines (GBM)
	4.4.2.2.3. Stochastic Gradient Boosting (XGBoost)


	4.4.3. Sentiment Classification Methods
	4.4.3.1. TextBlob
	4.4.3.2. VADER
	4.4.3.3. Stanza

	4.4.4. Deep Models
	4.4.4.1. Convolutional Neural Network (CNN)
	4.4.4.2. Recurrent Neural Network (RNN)
	4.4.4.3. Long Short-Term Memory (LSTM)
	4.4.4.4. Gated Recurrent Units (GRU)
	4.4.4.5. Transformers
	4.4.4.5.1. BERT



	4.5. Performance Metrics
	4.6. Ethical Consideration
	4.7. Epilogue

	Chapter 5 : Predicting Paid Certification in MOOCs Based on Learners’ Weekly Activities
	5.1. Prologue
	5.2. Introduction
	5.3. Experimental Setting
	5.3.1. Data Collection
	5.3.2. Data Preprocessing
	5.3.3. Time-spent Analysis
	5.3.4. Feature Extraction
	5.3.5. Features Selection
	5.3.6. Statistical Analysis
	5.3.7. Classification Algorithms
	5.3.8. Dealing with Bias

	5.4. Results
	5.4.1. Statistical analysis
	5.4.1.1. Access
	5.4.1.2. Attempts
	5.4.1.3. Correct Answers
	5.4.1.4. Wrong Answers

	5.4.2. Prediction Performance

	5.5. Epilogue

	Chapter 6 : MOOCSent: A Sentiment Predictor for Massive Open Online Courses
	6.1. Prologue
	6.2. Introduction
	6.3. Related  Work
	6.4. Methodology
	6.4.1. Data Collection
	6.4.1.1. Coursera, Udemy and FutureLearn (training data)
	6.4.1.2. Stanford university ( test data)

	6.4.2. Data Preprocessing
	6.4.2.1. Dealing with Bias

	6.4.3. Sentiment Classification Methods
	6.4.3.1. TextBlob
	6.4.3.2. VADER
	6.4.3.3. Stanza
	6.4.3.4. Naïve Bayes (NB)
	6.4.3.5. BERT
	6.4.3.5.1. Embedding Layer
	6.4.3.5.2. Fine tuning



	6.5. Results
	6.6. Epilogue

	Chapter 7 : Forum-based Prediction of Paid Certification in MOOCs
	7.1. Prologue
	7.2. Introduction
	7.3. Methodology
	7.3.1. Data Collection
	7.3.2. Data Preprocessing
	7.3.3. Weighing Scheme
	7.3.4. Part of Speech (POS) Tags
	7.3.5. Data Resampling
	7.3.6. Model Architecture
	7.3.7. Automated Hyperparameters Optimisation
	7.3.8. Dealing with Bias

	7.4. Results
	7.5. Epilogue

	Chapter 8 : Discussion
	8.1. Prologue
	8.2. Introduction
	8.3. Systematic Literature Review
	8.4. Clickstream-based Prediction
	8.5. MOOCSent Sentiment Classifier
	8.6. Discussion Forum-based Prediction
	8.7. Potential Algorithmic Bias
	8.8. Limitations
	8.9. Future Works
	8.10. Future Research Direction and Opportunities
	8.11. Epilogue

	Chapter 9 : Conclusion
	Appendix A
	Appendix B
	Appendix C
	References

