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Abstract

The weight distribution of an error correcting code is a crucial statistic in determining its

performance. One key tool for relating the weight of a code to that of its dual is the MacWil-

liams Identity, first developed for the Hamming association scheme. This identity has two

forms: one is a functional transformation of the weight enumerators, while the other is a

direct relation of the weight distributions via eigenvalues of the association scheme. The

functional transformation form can, in particular, be used to derive important moment

identities for the weight distribution of codes. In this thesis, we focus initially on extending

the functional transformation to codes based on skew-symmetric and Hermitian matrices.

A generalised b-algebra and new fundamental homogeneous polynomials are then identi-

fied and proven to generate the eigenvalues of a specific subclass of association schemes,

Krawtchouk association schemes. Based on the new set of MacWilliams Identities as a

functional transform, we derive several moments of the weight distribution for all of these

codes.
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Chapter 1
Introduction

“Codes are a puzzle. A game, just like any other game.” - Alan Turing.

This piece of the puzzle is a small part of a very big picture. We begin with a step back in

time to Ancient Egypt.

1.1 A brief history

Back around 1900 BC, the tomb of Khnumhotep II [34, Chapter 3] is carved out of stone in

the necropolis and adorned with decorations and inscriptions about his life. A few of them

contain abnormal hieroglyphs that some believe were a deliberate attempt to hide details

of sacred rituals, a very early example of cryptography [59]. Taking a huge leap forward in

time by 1300 years we arrive in Ancient Sparta. The Spartans wrote on a strip of parchment

paper wrapped around a cylinder [63], which could only be deciphered by a reader if they

had an identical cylinder. This could be the first example of a shared key used to encrypt

and decrypt messages.

2000 BC 2023 AD

1900 BC

Egyptians

600 BC

Spartans

60 BC

Caesar

750 AD

al-Khalil

1918 AD

Enigma

Figure 1.1.1: Some selected known developments of cryptography

Jumping to the time of Julius Caesar [46] where a more sophisticated concealment was

deployed, again for military purposes. He was known to use a substitution cipher [24] to

hide messages, a key part of his strategic success. Walking through the modern calendar

we stumble across the man who wrote the first dictionary of the Arabic language and the

“Book of Cryptographic Messages”, al-Khalil, [31] in southern Arabia. Being an independent

1



1.2. THE DIGITAL AGE

thinker he pioneered the use of mathematics to analyse all permutations and combinations

of Arabic letters, which in turn influenced decryption using frequencies. This led to an

extended period of Arab focus on cryptanalysis, the use of mathematics to break codes

systematically.

Running through the Middle Ages, cryptography is used more widely across the globe. One

of the more famous examples in England involved Mary Queen of Scots who was implicated

in the Babington Plot [7], designed to assassinate Queen Elizabeth I, when her encrypted

messages were intercepted and deciphered. We land in Germany at the end WWI. The

famous Engima machine is invented by Arthur Scherbius [49], a German engineer. Most

notably it was used intensively by the German military in WWII. The advantage of Enigma

was not just the complexity of the coding, but also the ability to change the configuration

of the key, which the Germans did on a daily basis.

1.2 The Digital Age

The use of cryptography rapidly picks up the pace into the Digital Age. Long distance

communications became the norm in every day life. For the average person the need for

efficient transmission and storage of data became essential. Early systems such as semaphore

and Morse code rapidly evolved into advanced digital encoding systems such as those used in

space communications. The challenge for those applications was to overcome the frequency

of errors induced by noisy interference or faulty storage of data. Codes that could detect

and correct errors efficiently became imperative.

The internet is born. With it came the need for secure communication between people who

aren’t able to share a secret key beforehand. The Diffie-Hellman key exchange [14] was

invented to conceal a message using mathematics that is very difficult to reverse. This is at

the heart of the public key systems still in use today such as RSA [52] and ECC [35]. Fast

forward to the late 20th century, the first scheme to use randomisation in its encryption

system is introduced, the McEliece cryptosystem.

1.3 Into the Quantum Era

We drop over the precipice and free fall into the Quantum Era. As the quantum computer

arrives, the length of time required to break conventional algorithms will plummet. It has

already been shown that Shor’s algorithm [56] can be used by quantum computers to break

existing codes in a reasonable time. There is a constant tension between those who are

devising new ways of keeping a message secret and those who are just as determined to

intercept and decipher it. That is why there is a continuous need for ongoing research into

ever more sophisticated techniques to thwart the ever more ingenious and powerful attackers.

2



1.4. THIS PIECE OF THE PUZZLE

1.4 This piece of the puzzle

With the general big picture painted, we can now turn to the piece of the puzzle that

this thesis contributes. Error-correcting codes could themselves be a standalone motivation

for this research. For instance, rank metric codes have been shown to be optimal when

correcting criss-cross errors used in digital communications [19]. They are powerful in their

own right, but are also a strong contender for advanced cryptosystems.

One of those contenders that is believed to be secure against Shor’s algorithm is the classical

McEliece cryptosystem. A weakness of this scheme is the very large public key used to

scramble the message. To combat this, Delsarte first spots the potential of the rank metric

in the use of error correcting codes. Rank metric codes are known to be more efficient in some

circumstances [36]. Gabidulin also notes this and, after identifying other potential metrics,

focuses on the rank metric and produces encoding and decoding algorithms for maximal

codes in this new setting [21]. Their lateral thinking opens the door to the possibilities of

using other metrics with other association schemes.

One way to improve on the existing codes in the rank metric is to seek better underlying

structures that retain the level of security but improve efficiency. The natural progression

from the standard rank metric is to explore other rank-based metrics, such as the skew rank

that we first investigate here. The well known MacWilliams Identity is a tool that has long

been used to find and evaluate new codes and their potential. In particular we offer a unified

functional transform that covers the Hamming, rank, skew rank and Hermitian association

schemes, inspired by MacWilliams’ original identity for the Hamming association scheme

[41] and the use of a q-algebra by Gadouleau and Yan [22]. Moreover we establish new

generalised identities for the moments of the weight distribution of these schemes.

The structure of this thesis is as follows. Chapter 2 introduces cryptosystems based on

error correcting codes before presenting an overview of association schemes, the different

scenarios we are exploring. We then outline different association schemes and the exist-

ing theory in each instance, including the familiar Hamming case. Chapter 3 is the first

association scheme investigated in detail. A new q-algebra for skew-symmetric matrices is

developed, and homogeneous polynomials are identified which are used to prove the new

MacWilliams Identity as a functional transform specifically for skew-symmetric matrices.

Chapter 4 confirms the idea that we can find a new form of the MacWilliams Identity as a

functional transform for Hermitian matrices using the same methods as for skew-symmetric

matrices. In Chapter 5 the previous chapters are analysed and used to prove a new gen-

eralised form of the identity and a generator for the eigenvalues of Krawtchouk association

schemes. The resulting moments of their weight distributions are then developed. Finally

Chapter 6 offers conclusions and some suggestions for future work. My work in this thesis

has been extracted into a published paper with some guidance from both of my supervisors.

3



Chapter 2
Background

In this thesis we are particularly interested in error-correcting codes, frequently used in

public key cryptosystems, which involve both a public key and a private key. The public

key is openly available and used to encrypt a message and the private key is used to decrypt

it and is only known by those who are authorised [60]. This eliminates the need for any two

parties to “meet” beforehand to agree a secret key before sending a secure message between

themselves. The public key is like an open padlock which is given out freely to lock any

message (encrypt) but only those who possess the private key to open it once it has been

locked (decrypt).

Two of the most commonly used public key cryptosystems today are RSA [52] (named

after its inventors Rivest, Shamir, and Adlemen in 1977) and Elliptic Curve Cryptography

[35] (ECC). RSA depends on the hardness of factorising a product of large primes whereas

ECC depends on the difficulty of solving the discrete logarithm problem [44] [35]. As the

speed and efficiency of computers and algorithms for breaking these codes has increased,

so have the parameters of these (and other) systems to keep them secure. The National

Institute of Standards and Technology (NIST) at the US Department of Commerce provides

recommendations on the size of RSA and ECC keys which have increased over time. For

example, they have risen from 1024 bits [47] in around 2002 to 2048 bits for RSA and from

P-256 to P-384 for ECC [16].

The goal is to find crypto-systems which have an easy to use (not too large) public key, high

difficulty of decoding without the private key, and sufficiently efficient decoding with the

private key.

2.1 Error-Correcting Codes

The first effective error-correcting code was invented by Richard Hamming in 1950 [30] and

is still used in some computer storage applications today. Other early examples include the

4



2.2. CRYPTOSYSTEMS BASED ON ERROR CORRECTING CODES

Hadamard code that was used in NASA’s Mariner 9 Probe to send images of Mars back to

Earth. The Golay code [26] and Reed Solomon codes [41, Chapter 9] were used in the later

Voyager 1 and 2 missions to Jupiter and beyond. More recently, Reed-Solomon codes are

extensively used in commercial products today such as CD and DVD storage and are still

extensively used in 2-dimensional bar codes such as QR codes to minimise reading errors in

damaged images [65]. These examples and many other types of error-correcting codes are

described in [41].

In general, error-correcting codes work by taking an encoding of a message using a finite

alphabet (e.g. binary) and adding some additional information which increases the message

length in such a way that errors can be detected and corrected [41, Chapter 1]. The aim is

to transmit (or store) information as efficiently as possible while correcting as many errors

as possible. These two goals are conflicting: the more redundant information is added the

less efficient the code, but the more errors can be detected and corrected.

Many, but not all, codes have a fixed block length, n, and are linear subspaces of an n-

dimensional vector space over a finite field. Linear algebra and algebraic geometry have

been used extensively [41], [32], [39] to look for optimal (or “extremal”) codes. This is

using the block length, the dimension of the code as a subspace, a distance metric on the

vector space (such as the Hamming, Euclidean or rank metrics), and a bilinear form (such as

the Euclidean or Hermitian inner products) on the space to define duality (orthogonality).

Most notably Hamming weight enumerators (and more recently those of other association

schemes) have been analysed to classify the structure of “good” codes. A well known tool is

the MacWilliams Identity relating the weight enumerator of a code to that of its dual [39],

together with Andrew Gleason’s follow on theorems about the properties of self dual codes

[25].

Again many, but not all, codes can be generated by evaluating a function at a set of points

which are rational over the underlying finite field. This can be generalised by defining

curves over the field with a number of rational points. In the case of Reed-Solomon codes,

for example, the points lie on a projective straight line [32].

It is the variations of these alphabets, parameters, metrics and bilinear forms that offer

many opportunities to explore further optimisation of code performance.

2.2 Cryptosystems based on Error Correcting Codes

In 1978 Robert McEliece published a proposal to link these two areas by using an error-

correcting code to create a public key cryptosystem. The “difficult” problem for any in-

terceptor to solve would depend on the difficulty of recovering the original unencrypted

message, rather than on the difficulty of factorising integers or solving a discrete logarithm.

McEliece’s idea was to use a binary Goppa code [4], a scrambled form of its generator matrix

and a random additional error vector to the resulting message word [43].
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The current public key cryptosystems, such as 2048-bit RSA, are considered secure against

attacks using current computer technology [16] but in 1994 Peter Shor [57] devised an

algorithm which would allow a quantum computer, whenever one is built, to break them in

polynomial time. In other words, they will be broken.

As a result, cryptographers are racing to develop alternative cryptosystems that might not

be so vulnerable to quantum algorithms. NIST launched a competition to find a future

standard for post-quantum cryptography at the end of 2016 [47]. In January 2019, the

seventeen candidates remaining in the ‘semi-finals’ were: seven based on error-correcting

codes, one on isogenies of supersingular elliptic curves and nine based on lattices [45]. The

code based candidates used a mixture of Hamming metric and rank metric based codes and

included McEliece type cryptosystems. In 2022 NIST announced four candidates as finalists,

one of which is the Classic McEliece, and a further one to standardise and implement

(Crystals-Kyber based on lattices, not error correcting codes).

2.3 Association Schemes and Distance Regular Graphs

Association schemes give a particular structure to a set and that structure has been found to

be useful when investigating properties of linear codes. Here we introduce the basic proper-

ties of an association scheme, focusing in particular on metric association schemes. We also

identify their relationship with distance regular graphs which offers further understanding

of these abstract concepts by visualisation.

2.3.1 Preliminaries

Definition 2.3.1. A symmetric association scheme with n classes, (X , R), is defined

as a finite set X of v points and n+1 relations R = {R0, . . . , Rn}, which satisfy the following

conditions:

R0 = {(x, x) | x ∈ X } (2.3.1)

(x, y) ∈ Ri =⇒ (y, x) ∈ Ri (2.3.2)

{R0, R1, . . . , Rn} is a partition of X × X (2.3.3)

(x, y) ∈ Rk =⇒ |{z ∈ X | (x, z) ∈ Ri, (z, y) ∈ Rj}| = cijk (2.3.4)

where cijk is a constant and is called the intersection number. That is, if x, y ∈ Rk, the

number of z ∈ X that are i away from x and j away from y is a constant, cijk, independent of

the choice of x and y. In other words, the relations satisfy having an identity, are symmetric,

form a partition and have intersection numbers.

We note that many different texts use the notation p
(k)
i,j instead of cijk, as in [8, (2.1)].

Definition 2.3.2. If (x, y) ∈ Ri we call x and y ith associates.
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The valency [3, p43] of each relation is defined as vi = cii0 which, for any x ∈ X is the

number of z ∈ X such that (x, z) ∈ Ri. It is immediately obvious that
∑

i cii0 = v.

We note that there are non-symmetric association schemes but we are only focusing on those

which are “symmetric” in this thesis.

There are some well known identities for the valencies and the intersection numbers that

can be useful when using the theory of association schemes [3, Lemma 2.1.1]. The most

interesting identity to note is that
n∑

j=0

cijk = vi.

z

x y

i j

k

Figure 2.3.1: Visualisation of points
and relations in an association
scheme.

This identity can be explained in a bit more de-

tail. Using Figure 2.3.1, let x, y ∈ X , (x, y) ∈

Rk. Then we see that

vi = |{z : (x, z) ∈ Ri}|

=
∑
j

|{z : (x, z) ∈ Ri, (z, y) ∈ Rj}|

=
∑
j

cijk.

We go on to define the set of adjacency

matrices that can be used to record and

analyse the properties of the association

scheme.

Definition 2.3.3 ([41, p613]). The adjacency matrix , Di, of Ri is defined to be a v × v

matrix where each row and each column represents a point in X and where

(Di)x,y =

1 if (x, y) ∈ Ri,

0 otherwise.

(2.3.5)

Lemma 2.3.4. Using the properties of an (X , R) symmetric association scheme [3, Lemma

2.1.1] we have that,

1.

D0 = I (2.3.6)

2.

DT
i = Di (2.3.7)

7
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3.

n∑
i=0

Di =


1 . . . 1
...

. . .
...

1 . . . 1

 = J (2.3.8)

4.

DiDj =

n∑
k=0

cijkDk = DjDi, for i, j = 0, . . . , n. (2.3.9)

5.

DiJ = JDi = viJ (2.3.10)

Conversely, any set of {0, 1} matrices, D0, . . . , Dn, that satisfies (2.3.6) - (2.3.10) with

cijk, vi ∈ Z+ is the collection of adjacency matrices of an association scheme.

Proof. (1) D0 = I holds immediately from (2.3.1).

(2) DT
i = Di holds immediately from (2.3.2).

(3)

n∑
i=0

Di = J holds immediately from (2.3.3).

(4) Proving Equation (2.3.9), if (x, y) ∈ Rk, then the matrix (DiDj)x,y = cijk by (2.3.4),

and by (2.3.5), (Dk)x,y = 1. So we have

(DiDj)x,y = cijk(Dk)x,y.

Now since (DiDj)x,y takes the intersection number of (x, y) ∈ Rk, we need to include

all values of k, therefore

DiDj =

n∑
k=0

cijkDk = DjDi

as required.

(5) Now we prove Equation (2.3.10). By definition of Di, every row and column contains

vi 1’s. Therefore when we multiply by J , we sum these 1’s, which is vi in every case

by (2.3.4).

2.3.2 The Bose-Mesner Algebra

The eigenvalues of these adjacency matrices play an important part in looking for optimal

codes. That is, those with maximal distance for a given size. The algebra of these matrices

was first explored by Bose and Nair [2] in 1939 and later developed by Bose and Mesner [1]

after whom it was named. The important results are outlined here.

8
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To work with these adjacency matrices we define a set which consists of all complex linear

combinations of the adjacency matrices. That is,

B =

{
B =

n∑
i=0

biDi | bi ∈ C

}
.

This set then forms a ring with the operations of matrix addition and matrix multiplication

with the added property of the multiplication being commutative by (2.3.9). As this set is a

ring and also a vector space, it forms an algebra and is called the Bose-Mesner Algebra

of the association scheme.

Since B is commutative the members of B can be simultaneously diagonalised [23], i.e.

there exists a single invertible matrix P ∈ B, such that P−1BP is a diagonal matrix for

each B ∈ B. As a consequence there exists a unique alternative basis consisting of primitive

idempodent matrices E0, . . . , En, of size v×v. A primitive idempotent, Ei, is an idempotent

such that it cannot be written as a direct sum of two other non-zero idempotents. So these

idempotent matrices in the alternative basis satisfy the following equations,

E2
i = Ei ∀ i (2.3.11)

EiEj = 0 if i ̸= j (2.3.12)

n∑
i=0

Ei = I.

It is conventional to choose E0 = 1
vJ .

Since {E0, . . . , En} is a basis for B there exist uniquely defined complex numbers pk(i) such

that

Dk =
n∑

i=0

pk(i)Ei, k = 0, . . . , n. (2.3.13)

We also have,

DkEi =

n∑
j=0

pk(j)EjEi

(2.3.12)
= pk(i)EiEi

(2.3.11)
= pk(i)Ei. (2.3.14)

Thus the pk(i)’s are the eigenvalues of Dk by definition. The rank of each matrix Ei,

denoted ψi, is the multiplicity of each eigenvalue pk(i) [3, p45].

Since the Di’s also form a basis of B we can also express each Ek as a linear combination

of the Di. We then define

Ek =
1

v

n∑
i=0

qk(i)Di, k = 0, . . . n (2.3.15)
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such that qk(i) represent the coefficients of the change of basis matrix from Di’s to the Ei’s.

We then call the qk(i)’s the dual eigenvalues [42] of the association scheme. We also

define the eigenmatrices of the association scheme, P = (pik) and Q = (qik), to be the

(n + 1) × (n + 1) matrices consisting of the eigenvalues pk(i) and qk(i) respectively. The

eigenmatrices P and Q have the following properties.

Theorem 2.3.5. For P and Q eigenmatrices of a symmetric association scheme, we have,

1.

p0(i) = q0(i) = 1 (2.3.16)

2.

pk(0) = vk, qk(0) = ψk (2.3.17)

3.
n∑

i=0

ψkpk(i)pℓ(i) = vvkδkℓ (2.3.18)

4.
n∑

i=0

viqk(i)qℓ(i) = vψkδkℓ (2.3.19)

5.

ψjpi(j) = viqj(i), i, j = 0, . . . , n (2.3.20)

6.

|pk(i)| ≤ vk, |qk(i)| ≤ ψk (2.3.21)

7.
n∑

j=0

pk(i) =

n∑
i=0

ciki (2.3.22)

The proofs for these properties are well known and can be found at [3, Lemma 2.2.1]. The

equations (2.3.18) and (2.3.19) are called the orthogonality relations [41, Theorem 3]. For

emphasis, p0(i) = 1 since by Equation (2.3.14) and we have D0 = I, immediately, p0(i) = 1.

We briefly introduce the idea of a formal dual association scheme. Delsarte [13, Section

II C] proves that under some assumptions (explained below) on an (X , R) n-class association

scheme, you can find the dual association scheme which is an (X ′, R′) n-class association

scheme derived from the valencies, vi, multiplicities, ψi and eigenmatrices, P and Q of the

original scheme by

v′i = ψi ψ′
i = vi P ′ = Q Q′ = P.

The ability to find a dual is, however, dependent on the scheme being “regular” as defined in

[8, Section 2.6.1]. We do not discuss regularity in more detail here as it is beyond the scope

of this thesis. In this thesis Delsarte’s condition of regularity is met and in fact, since X is

10
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always a vector space, the association schemes we consider here are all translation schemes.

That is, if for all z ∈ X , i = 0, . . . , n we have (x, y) ∈ Ri =⇒ (x + z, y + z) ∈ Ri, then

it is regular and we can find the scheme’s dual. Futhermore we only consider association

schemes which are formally self dual, i.e. when P = Q. In fact, the association schemes

studied in this paper are all metric translation schemes. So when we discuss a code, C and

its dual, C⊥ in an (X , R) n-class association scheme, we have C ,C⊥ ∈ X .

2.3.3 Metric Association Schemes and Distance Regular Graphs

In this thesis we only consider association schemes that have a distance metric, which confers

on the scheme an ordering of the relations.

Definition 2.3.6. For a (X , R) symmetric n-class association scheme, we define a function

d : X ×X → R with d(x, y) = i whenever (x, y) ∈ Ri and the function satisfies the following

conditions,

d(x, y) ≥ 0

d(x, y) = 0 ⇐⇒ x = y

d(x, y) = d(y, x).

We say the association scheme is metric if d is a metric on X , i.e. for all x, y, z ∈ X we

have

d(x, y) + d(y, z) ≥ d(x, z). (2.3.23)

This is equivalent to for (x, y) ∈ Ri, (y, z) ∈ Rj , (x, z) ∈ Rk we have that for cijk ̸= 0, then

k ≤ i+ j.

If an association scheme is metric, then we can relate a graph G with it by setting the edges

to be E = {(x, y) ∈ R1} [3, Chapter 1]. A simple example is shown in Figure 2.4.3 in Section

2.4.2 which has 8 codewords over F3
2.

This graph is known as a distance regular graph and is defined below. For any n-class metric

association scheme there is an associated distance regular graph, and vice versa, for every

distance regular graph there is an associated n-class metric association scheme.

Definition 2.3.7 ([3, Chapter 1]). A distance regular graph is a graph G = (V,E) in

which for any two vertices x, y ∈ V , the number of vertices at distance i from x and j from

y depend only on i and j, and the distance between x and y.

Briefly, if we have a distance regular graph, then we define the points of the association

scheme to be the vertices and (x, y) ∈ R1 if there is an edge between x and y. From that,

we can say that (x, z) ∈ Ri if the shortest path between x and z is length i.

So then, the natural question to ask is, can we take any finite set together with a metric and

11
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always find a distance regular graph/metric association scheme? Unfortunately this isn’t

the case, as proven by [55, Theorem 8].

We now define a P -polynomial scheme and conclude that a metric association scheme is a

P -polynomial scheme.

Definition 2.3.8 ([41, p660]). An association scheme is called a P-polynomial scheme

if there exists non-negative real numbers z0, . . . , zn, with z0 = 0 and real polynomials

Φ0(z), . . . ,Φk(z), where the degree of Φk(z), is k such that

pk(i) = Φk(zi), i, k = 0, . . . , n.

Theorem 2.3.9 ([8, Theorem 5.6, Theorem 5.16]). An association scheme is metric if and

only if it is a P -polynomial scheme, so the eigenvalues of the association scheme, pk(i), are

indeed polynomials.

Although not proven here, there are multiple ways of proving this statement. One is from

MacWilliams and Sloane [41, Theorem 6, Chapter 21], another is from Brouwer [3, Propos-

ition 2.7.1] and originally proved by Delsarte [8, Theorem 5.6, Theorem 5.16].

Considering metric association schemes where X is a finite dimensional vector space over

a finite field and therefore a finite abelian group, we can introduce the concept of an inner

product, ⟨ , ⟩. More details on how the inner product arises in this situation can be found

in [3, p72].

In this situation, given an inner product, and since we have a finite vector space, we can

identify a dual vector subspace, C⊥, for any subspace C ⊆ X , such that

C⊥ =
{
x ∈ X | ⟨x, y⟩ = 0 ∀ y ∈ C

}
.

In this thesis we only consider finite dimensional vector spaces over a finite field, X , so

to find the orthogonal points we only need to consider when the inner product is 0 and

not involve character theory. We can note that as in Delsarte [9, Section 3] this would be

equivalent to the character of the inner product being 1 if the two points are orthogonal.

2.3.4 Generalised Krawtchouk Polynomials

From the orthogonality relations (2.3.18), (2.3.19) we can see the polynomials, pk(i), form a

set of polynomials which take the same form but with a range of parameters which we call

a family. For the association schemes studied in this thesis, this family has been shown to

be the generalised Krawtchouk Polynomials introduced by Delsarte [11][61].

First we present a notation used by Delsarte [12, p21] called the b-nary Gaussian coefficients.

Also note, for ease, we define σi =
i(i−1)

2 for i ≥ 0.
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Definition 2.3.10. For x, k ∈ Z+, b ∈ R, b ̸= 1 the b-nary Gaussian coefficients are

defined as

b

[
x

k

]
=

k−1∏
i=0

bx − bi

bk − bi

with

b

[
x

0

]
= 1.

It is useful to note that if we take the limit as b tends to 1, we in fact obtain the usual

binomial coefficients,

lim
b→1

k−1∏
i=0

b

bx − bi

bk − bi
= lim

b→1

k−1∏
i=0

(b− 1)

(b− 1)

(
bx−i−1 + bx−i−2 + . . .+ 1

)
(bk−i−1 + . . .+ 1)

=

k−1∏
i=0

x− i

k − i

=

(
x

k

)
.

This relationship helps when comparing the similarities between the analysis for the Ham-

ming, the rank, the skew rank and the Hermitian association schemes.

Below are some identities relating to the b-nary Gaussian coefficients which are useful in

simplifying notation, and can be used for different values of b from [12]. For b ∈ R/{1},

x, i, j, k ∈ Z+, y ∈ R we have

b

[
x

k

]
=

b

[
x

x− k

]
(2.3.24)

b

[
x

i

]
b

[
x− i

k

]
=

b

[
x

k

]
b

[
x− k

i

]
(2.3.25)

x−1∏
i=0

(
y − bi

)
=

x∑
k=0

(−1)x−kbσx−k

b

[
x

k

]
yk (2.3.26)

x∑
k=0 b

[
x

k

] k−1∏
i=0

(
y − bi

)
= yx (2.3.27)

j∑
k=i

(−1)k−ibσk−i

b

[
k

i

]
b

[
j

k

]
= δij (2.3.28)

where δij is the Kronecker delta function. The following identities are each used in the rest
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of this thesis but can be shown trivially to be equal.

b

[
x

k

]
=

b

[
x− 1

k

]
+ bx−k

b

[
x− 1

k − 1

]
(2.3.29)

=
b

[
x− 1

k − 1

]
+ bk

b

[
x− 1

k

]
(2.3.30)

=
bx−k+1 − 1

bk − 1 b

[
x

k − 1

]
(2.3.31)

=
bx − 1

bx−k − 1 b

[
x− 1

k

]
(2.3.32)

=
bx − 1

bk − 1 b

[
x− 1

k − 1

]
. (2.3.33)

We also define a b-nary beta function which is closely related to the b-nary Gaussian coeffi-

cients, and aid us in notation throughout this thesis.

Definition 2.3.11. We define a b-nary beta function for x ∈ R, k ∈ Z+ as

βb(x, k) =

k−1∏
i=0 b

[
x− i

1

]
. (2.3.34)

Lemma 2.3.12. We have for all x ∈ R, k ∈ Z+,

1.

βb(x, k) =
b

[
x

k

]
βb(k, k) (2.3.35)

2.

βb(x, x) =
b

[
x

k

]
βb(k, k)βb(x− k, x− k) (2.3.36)

3.

βb(x, k)βb(x− k, 1) = βb(x, k + 1). (2.3.37)

Proof. (1) We have

βb(x, k) =

k−1∏
i=0 b

[
x− i

1

]
=

k−1∏
i=0

bx−i − 1

b− 1

=

k−1∏
i=0

(
bx−i − 1

) (
bk−i − 1

)
(bk−i − 1) (b− 1)

=

k−1∏
i=0

bx − bi

bk − bi

k−1∏
i=0

bk−i − 1

b− 1

=
b

[
x

k

]
βb(k, k)

as required.
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(2) Now we have

b

[
x

k

]
βb(k, k)βb(x− k, x− k) =

k−1∏
i=0

bx − bi

bk − bi

k−1∏
r=0

bk−r − 1

b− 1

x−k−1∏
s=0

bx−k−s − 1

b− 1

=

x−1∏
i=0

bx−i − 1

b− 1

= βb(x, x)

as required.

(3) And finally we have,

βb(x, k)βb(x− k, 1) =
b

[
x− k

1

] k−1∏
i=0 b

[
x− i

1

]
= βb(x, k + 1).

Now that we have some additional notation, we can write Delsarte’s [11, (15)] generalised

Krawtchouk polynomials neatly.

Definition 2.3.13. For b, c ∈ R, b ≥ 1, c > 1
b , n ∈ Z+ x, k ∈ {0, . . . , n}, then Delsarte’s

[11] generalised Krawtchouk polynomials are defined as

Pk(x, n) =

k∑
j=0

(−1)k−j (cbn)
j
b(

k−j
2 )

b

[
n− j

n− k

]
b

[
n− x

j

]
. (2.3.38)

Again, if we take b→ 1, then the generalised Krawtchouk polynomials become the Krawtchouk

polynomials in the usual sense. That is, the Hamming Krawtchouk polynomials for q ≥ 2

are,

Pk(x, n) =

k∑
j=0

(−1)k−jqj
(
n− j

n− k

)(
n− x

j

)
. (2.3.39)

We note that equation (2.3.39) is equal to [41, (53), (55), (56)], specifically for obtaining

[41, (56)] we use the substitution j = “k − j” and rearrange the sum.

Delsarte proved that the eigenvalues of an association scheme satisfy a recurrence relation

with specific initial values, namely for b ∈ R+, y ∈ Z+ and x, k ∈ {0, 1, . . . , y} the recurrence

relation is

Pk+1(x+ 1, y + 1) = bk+1Pk+1(x, y)− bkPk(x, y) (2.3.40)
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with initial values,

Pk(0, y) =
b

[
y

k

] k−1∏
i=0

(
cby − bi

)
P0(x, y) = 1,

with c ∈ R, c > 1
b . He then concluded that the only solution to this recurrence relation

with these specific initial values are the generalised Krawtchouk polynomials as defined in

Equation (2.3.38).

Delsarte also considers any association scheme to find a relationship between the inner

distribution of an association scheme and its dual [8, (6.9)]. Before we do this, we need to

introduce some notation.

Definition 2.3.14. Let (X , R) be an n-class association scheme. The inner distribution

of a subgroup X ⊆ X , is the (n+1)-tuple, c = (c0, . . . , cn), where ci is the average number

of points of X being ith associates of a fixed point of X.

We note that in this thesis we only consider association schemes where the inner distribution

becomes a weight distribution with an associated metric.

Theorem 2.3.15 (The MacWilliams Identity for Association Schemes). Let (X , R) be an

n-class association scheme with dual n-class association scheme (X , R′). For a pair of dual

subgroups X,X ′ ⊆ X , let c = (c0, . . . , cn) be the inner distribution of X and c′ = (c′0, . . . c
′
n)

be the inner distribution of X ′. If P and Q are the eigenmatrices of (X , R) then

|X|c′ = cQ

|X ′|c = c′P.

2.4 The Hamming Association Scheme

2.4.1 Introduction, Background and Jessie MacWilliams

Richard Hamming invented the first error-correcting code, where the distance between two

codewords is the number of places where they differ. This distance metric is now known as

the Hamming metric. The Hamming metric has been extensively used since its conception in

1950, initially alongside a binary code where each word has a fixed length and each position

is 0 or 1. One example of a code that was implemented successfully using the Hamming

metric was the Golay Code [26], a [24, 12, 8]-code, which transmitted one of the first few

“mosaics” of the planet Jupiter, pictured in Figure 2.4.1, from the Voyager 1 spacecraft. It

is comprised of nine separate photographs taken from around 4.7 million miles away from

Jupiter itself.
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Figure 2.4.1: Mosaic of Jupiter as
seen by Voyager 1 [33]

Jessie MacWilliams contributed much into the

study of coding theory and most importantly,

alongside Neil Sloane, identified the well known

MacWilliams Identity that relates the weight

enumerator of a code to that of its dual using

a functional transformation.

2.4.2 Preliminaries

To introduce the well known Hamming scheme

we first must summarise some definitions and

properties.

Definition 2.4.1. For all a = (a1, . . . , an), b = (b1, . . . , bn) ∈ Fn
q , we define the Hamming

distance between a and b to be

dH(a, b) = | {i | ai ̸= bi} |.

In other words, the number of entries in the vectors which differ.

Any subspace of Fn
q can be considered as an Fq-linear code, C .

The minimum Hamming distance of such a code C , denoted as dH(C ), is simply the

minimum Hamming distance over all possible pairs of distinct codewords in C . When there

is no ambiguity about C , we denote the minimum Hamming distance as dH . It is common

in the literature for the Hamming metric to denote the minimum distance as d when there

is no ambiguity on the distance metric. If the dimension of the subspace (code) is k, then

the code is referred to as a [n, k, dH ]-code.

To illustrate the idea of error correction more clearly in the Hamming scheme, we introduce

the concept of spheres around each codeword.

Definition 2.4.2. A ball , of radius r ∈ Z, r ≤ n, about a point a ∈ Fn
q , is

Br(a) = {b ∈ Fn
q | d(a, b) ≤ r}.

So the ball about a contains all the possible words that differ from a by up to r places.

If the number of errors is less than half of the minimum distance then it is guaranteed that,

in theory at least, the original intended codeword can be identified and corrected. The two

different situations when dH is odd and when dH is even are illustrated in Figure 2.4.2. If

dH = 2m then dH − 1 errors can be detected but only m − 1 errors can be corrected; if

dH = 2m+ 1 then 2m errors can be detected and m errors corrected.

More formally,

17
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A
m − 1

B
m − 1

d = 2m

A
m

B
m

d = 2m + 1

Figure 2.4.2: Balls of radius ⌊dH−1
2 ⌋.

Theorem 2.4.3 ([50, Theorem 2, Chapter 1]). A code C with minimum distance dH can

detect up to dH − 1 errors and correct up to r = ⌊dH−1
2 ⌋ errors.

Proof. Suppose that is not the case, so there exists two codewords a, b ∈ Fn
q such that

Br(a)∩Br(b) ̸= ∅. Then there exists c ∈ Br(a)∩Br(b) such that dH(a, c) ≤ r and d(b, c) ≤ r.

So

dH(a, b) ≤ dH(a, c) + dH(c, b) ≤ 2r ≤ dH − 1

which is a contradiction of minimum distance.

Now a weight enumerator for the Hamming metric is introduced which records the number

of codewords of each weight in a code.

Definition 2.4.4. For all a ∈ Fn
q the Hamming weight , w is the number of non-zero

entries in a. It is clear that if C ⊆ Fn
q is a linear code then the minimum Hamming

weight of C is dH . Then Hamming weight function of a is defined as the homogeneous

polynomial

fH(a) = Y wXn−w.

Let C ⊆ Fn
q be a code. Suppose there are ci codewords in C with Hamming weight i for

0 ≤ i ≤ n. Then the Hamming weight enumerator of C , denoted as WH
C (X,Y ), is

defined to be

WH
C (X,Y ) =

∑
a∈C

fH(a) =

n∑
i=0

ciY
iXn−i. (2.4.1)

We call the (n+1)-tuple, c = (c0, . . . , cn) of coefficients of the Hamming weight enumerator,

the Hamming weight distribution of the code C .

Example 2.4.5. A simple example to look at is the well known Hamming code of length
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7, explicitly written out below.



(0, 0, 0, 0, 0, 0, 0), (0, 0, 0, 1, 1, 0, 1),(0, 0, 1, 0, 1, 1, 1), (0, 0, 1, 1, 0, 1, 0)

(0, 1, 0, 0, 0, 1, 1), (0, 1, 0, 1, 1, 1, 0),(0, 1, 1, 0, 1, 0, 0), (0, 1, 1, 1, 0, 0, 1)

(1, 0, 0, 0, 1, 1, 0), (1, 0, 0, 1, 0, 1, 1),(1, 0, 1, 0, 0, 0, 1), (1, 0, 1, 1, 1, 0, 0)

(1, 1, 0, 0, 1, 0, 1), (1, 1, 0, 1, 0, 0, 0),(1, 1, 1, 0, 0, 1, 0), (1, 1, 1, 1, 1, 1, 1)


There are 16 codewords in total and it forms a 4-dimensional subspace of F7

2. There is 1

codeword of weight 0, 7 of weight 3, 7 of weight 4 and 1 of weight 7. Thus the weight

enumerator is X7 + 7Y 3X4 + 7Y 4X3 + Y 7. This example is shown with other details in

Appendix A.1.

The number of vectors in Fn
q of Hamming weight w is (q − 1)w

(
n
w

)
. The total number of

vectors in Fn
q is qn. So the Hamming weight enumerator of Fn

q is

Ωn =

n∑
i=0

(q − 1)i
(
n

i

)
Y iXn−i. (2.4.2)

Some more examples can be found in Appendix A.1 which give a general idea of a code and

its properties.

To be able to define a dual code in this association scheme, we first need an inner product.

For the Hamming association scheme we take the usual scalar product.

Definition 2.4.6. The dual code , C⊥ ⊆ Fn
q , of a code, C ⊆ Fn

q , is defined as

C⊥ =
{
a ∈ Fn

q | a · b = 0 ∀ b ∈ C
}
.

2.4.3 Eigenvalues of the Hamming Association Scheme

000
100

001 101

111
011

010
110

Figure 2.4.3: Distance regular graph
of a Hamming Scheme with q = 2
and n = 3.

MacWilliams and Sloane claim that the most im-

portant example for coding theory is the Ham-

ming or “hypercubic” association scheme [41,

Chapter 1, Section 3]. A frequently used clear

example of the association scheme with n = 3

and q = 2 can be seen in Figure 2.4.3.

Explicitly, we have the (X , R) n-class Ham-

ming association scheme where X = Fn
q and

Ri = {(x, y) | dH(x, y) = i}, and is a metric as-

sociation scheme as the triangle inequality holds

for the Hamming distance. In this scheme, the
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eigenvalues are defined as

pk(i) = Pk(i, n)

where Pk(i, n) are the Hamming Krawtchouk polynomials (2.3.39).

2.4.4 MacWilliams Identity as a Functional Transform

Here we introduce the seminal result for relating the weight enumerator of a code with the

weight enumerator of the code’s dual for the Hamming association scheme, developed by

Jessie MacWilliams.

Theorem 2.4.7 (The MacWilliams Identity for the Hamming Scheme). Let C ⊆ Fn
q be an

[n, k, dH ]-linear code, with Hamming weight distribution c = (c0, . . . , cn) and C⊥ ⊆ Fn
q its

dual code, with Hamming weight distribution c′ = (c′0, . . . , c
′
n). Then

WH
C⊥(X,Y ) =

1

|C |
WH

C (X + (q − 1)Y,X − Y ) . (2.4.3)

The proof of the MacWilliams Identity for the Hamming association scheme uses character

theory and the Hadamard transform, and can be found at [41, Theorem 13, p146]. The

theorem above can also equivalently be written as

n∑
i=0

c′iY
iXn−i =

1

|C |

n∑
i=0

ci(X − Y )i(X + (q − 1)Y )n−i. (2.4.4)

2.4.5 Moments of the Hamming Weight Distribution

MacWilliams and Sloane then investigate the weights of a code further by looking at their

binomial moments. We follow their analysis in the general case here and show the example

for the binary case at the end. These moments are calculated so that statistical data about

the weights within a code can be used to give insight into details of the code such as the

spread, centering and skewness.

Theorem 2.4.8. For an [n, k, dH ]−linear code, C ∈ Fn
q , with weight distribution c =

(c0, . . . , cn), and dual code C⊥ with weight distribution c′ = (c′0 . . . , c
′
n), the binomial mo-

ments of the Hamming weight distribution are, for all φ ∈ {0, . . . , n},

n−φ∑
i=0

(
n− i

φ

)
ci = qk−φ

n∑
i=0

(
n− i

n− φ

)
c′i (2.4.5)

and
n∑

i=φ

(
i

φ

)
ci = qk−φ

φ∑
i=0

(−1)i(q − 1)φ−i

(
n− i

n− φ

)
c′i. (2.4.6)

Proof. MacWilliams herself used two different methods to derive these moments. The first

used set theory and combinatorics and the other used character theory [38].

20



2.4. THE HAMMING ASSOCIATION SCHEME

First we prove (2.4.5). We extend the idea of the proof in [41, p131] in the case where q = 2,

for general prime powers, q, using differentiation and the Leibniz Rule, to illustrate that the

later proofs presented in this thesis can also be applied here. We have directly from (2.4.4),

applied to the dual code,

n∑
i=0

ciY
iXn−i =

1

qn−k

n∑
i=0

c′i(X − Y )i (X + (q − 1)Y )
n−i

.

To anticipate the proofs in Chapters 3 and 4 we use the notation (φ) for differentiation with

respect to X and {φ} for differentiation with respect to Y . So on the LHS we take the φth

derivative with respect to X.

(
n∑

i=0

ciY
iXn−i

)(φ)

= φ!

n−φ∑
i=0

(
n− i

φ

)
ciY

iXn−i−φ.

The RHS is slightly more complicated. Again we take the derivative but we need to use the

Leibniz Rule in order to do so.(
1

qn−k

n∑
i=0

c′i (X − Y )i (X + (q − 1)Y )
n−i
)(φ)

=
1

qn−k

n∑
i=0

φ∑
k=0

c′i

(
φ

k

)(
(X − Y )i

)(φ−k) (
(X + (q − 1)Y )n−i

)(k)
=

1

qn−k

n∑
i=0

φ∑
k=0

c′i

(
φ

k

)
(n− i)!

(n− i− k)!

i!

(i− φ+ k)!

× (X − Y )i−φ+k(X + (q − 1)Y )n−i−k.

Now evaluate at X = Y = 1, which means that all terms are 0 except when, i− φ+ k = 0

so,

(
1

qn−k

n∑
i=0

c′i(X − Y )i (X + (q − 1)Y )
n−i

)(φ)

=
1

qn−k

n∑
i=0

c′i

(
φ

φ− i

)
(n− i)!

(n− φ)!

i!

(0)!
qn−φ

=
1

qn−k

n∑
i=0

c′iφ!

(
n− i

n− φ

)
qn−φ.

Now equating the LHS and RHS we obtain,

φ!

n−φ∑
i=0

(
n− i

φ

)
ci =

1

qk

n∑
i=0

c′iφ!

(
n− i

n− φ

)
qn−φ.

Therefore,
n−φ∑
i=0

(
n− i

φ

)
ci = qk−φ

n∑
i=0

(
n− i

n− φ

)
c′i.
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Now we prove (2.4.6). Differentiating with respect to Y we have,

(
n∑

i=0

ciY
iXn−i

){φ}

= φ!

n∑
i=φ

(
i

φ

)
ciY

i−φXn−i.

Again the RHS is more complicated. We take a similar approach and use the Leibniz Rule,

again with respect to Y .(
1

qn−k

n∑
i=0

c′i (X − Y )i (X + (q − 1)Y )
n−i
){φ}

=
1

qn−k

n∑
i=0

φ∑
k=0

c′i

(
φ

k

)(
(X − Y )i

){φ−k} (
(X + (q − 1)Y )n−i

){k}
=

1

qn−k

n∑
i=0

φ∑
k=0

c′i(−1)φ−k(q − 1)k
(
φ

k

)
(n− i)!

(n− i− k)!

i!

(i− φ+ k)!

× (X − Y )i−φ+k(X + (q − 1)Y )n−i−k.

Now evaluate at X = Y = 1, which means that all terms are 0 except when, i− φ+ k = 0

so,

(
1

qn−k

n∑
i=0

c′i(X − Y )i (X + (q − 1)Y )
n−i

){φ}

=
1

qn−k

φ∑
i=0

c′i(−1)i(q − 1)φ−i

(
φ

φ− i

)
× (n− i)!

(n− φ)!

i!

(0)!
qn−φ

=
1

qn−k

φ∑
i=0

c′i(−1)i(q − 1)φ−iφ!

(
n− i

n− φ

)
qn−φ.

Now equating the LHS and RHS we obtain,

φ!

n∑
i=φ

(
i

φ

)
ci =

1

qn−k

φ∑
i=0

c′i(−1)i(q − 1)φ−iφ!

(
n− i

n− φ

)
qn−φ.

Therefore,
n∑

i=φ

(
i

φ

)
ci = qk−φ

φ∑
i=0

(−1)i(q − 1)φ−i

(
n− i

n− φ

)
c′i.

We can in fact simplify Theorem 2.4.8 if φ is less than the minimum distance of the dual

code.

Corollary 2.4.9. Let d′H be the minimum Hamming distance of C⊥. If 0 ≤ φ < d′H then

n−φ∑
i=0

(
n− i

φ

)
ci = qk−φ

(
n

φ

)
(2.4.7)
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and
n∑

i=φ

(
i

φ

)
ci = qk−φ(q − 1)φ

(
n

φ

)
. (2.4.8)

Proof. Since 0 ≤ φ < d′H then c′0 = 1 and c′1 = c′2 = . . . = c′φ = 0 and the corollary

follows.

Example 2.4.10. Consider the case where q = 2. When φ = 0, then using (2.4.6)

n∑
i=0

ci = 2kc′0 = 2k

as expected. Setting φ = 1, we have

n∑
i=1

ici = 2k−1
1∑

i=0

(−1)i
(
n− i

n− 1

)
c′i

=
2k

2
(n− c′1)

So if c′1 = 0 i.e. the minimum distance of the dual is greater than 1 then,

n∑
i=1

ici
2k

=
n

2

the average, as expected. Now if we consider φ = 2 we have,

n∑
i=2

(
i

2

)
ci = 2k−2

2∑
i=0

(−1)i(2− 1)2−i

(
n− i

n− 2

)
c′i

= 2k−2

(
n(n− 1)

2
c′0 − (n− 1)c′1 + c2

)
.

So if c′1 = c′2 = 0 i.e. the minimum distance of the dual is greater than 2 then,

n∑
i=0

i(i− 1)

2
ci = 2k−2n(n− 1)

2
.

Thus from the average above we have,

n∑
i=0

i2ci
2k

−
n∑

i=0

ici
2k

=

n∑
i=0

i2ci
2k

− n

2
=

1

4
n(n− 1),

Simplifying gives
n∑

i=0

i2ci
2k

=
1

4
n(n+ 1),

the second moment of the code.
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2.4.6 Maximum Distance Separable Codes

Codes that attain the Singleton Bound (2.4.9) are called Maximum Distance Separable

(MDS) codes, which for an [n, k, dH ]-code means that dH = n − k + 1. MDS codes have

been studied extensively since they offer the maximum potential efficiency for a given rate

of error correction. Surprisingly the Hamming weight distribution is completely determined

by its parameters, which is also presented in, for example, [41, Theorem 6, Chapter 11]. In

this section we derive those parameters using the MacWilliams Identity and moments of the

Hamming association scheme in a manner that we then extend to the skew rank association

scheme (Section 3.5) and the Hermitian rank association scheme (Section 4.5). First we

shall state and prove the Singleton bound and we also need a little lemma.

Theorem 2.4.11 (The Singleton Bound for the Hamming Metric). If C ⊆ Fn
q is a linear

[n, k, dH ]-code then,

|C | ≤ qn−dH+1. (2.4.9)

Codes that attain the Singleton bound are referred to as maximal codes or Maximum Distance

Separable (MDS) codes.

Proof. First we note that the number of codewords in Fn
q is qn. Now since every codeword in

C is distinct, and deleting each dH−1 first letters of each codeword, then all pairs of resulting

codewords must be distinct as the minimum distance between the original codewords is dH .

Since the length of each word is n−dH+1 then there are at most qn−dH+1 words. Therefore

|C | ≤ qn−dH+1. Furthermore, since C is a linear [n, k, dH ]-code, then qk ≤ qn−dH+1 we also

have n− k ≥ dH − 1.

We follow on with a useful lemma. Equivalent theorems are stated and proved in Sections

3.5.3 and 4.5.3.

Lemma 2.4.12. If a0, a1, . . . , aℓ and b0, b1, . . . , bℓ are two sequences of real numbers and if

aj =

j∑
i=0

(
ℓ− i

ℓ− j

)
bi

for 0 ≤ j ≤ ℓ, then

bi =

i∑
j=0

(−1)i−j

(
ℓ− j

ℓ− i

)
aj (2.4.10)

for 0 ≤ i ≤ ℓ.

Proof. This result uses the property of binomial coefficients (2.3.28), that

j∑
k=i

(−1)k−i

(
k

i

)(
j

k

)
= δij .
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Then for 0 ≤ i ≤ ℓ,

i∑
j=0

(−1)i−j

(
ℓ− j

ℓ− i

)
aj =

i∑
j=0

(−1)i−j

(
ℓ− j

ℓ− i

)( j∑
k=0

(
ℓ− k

ℓ− j

)
bk

)

=

i∑
k=0

i∑
j=k

(−1)i−j

(
ℓ− j

ℓ− i

)(
ℓ− k

ℓ− j

)
bk

=

i∑
k=0

bk

(
ℓ−k∑

s=ℓ−i

(−1)i−ℓ+s

(
s

ℓ− i

)(
ℓ− k

s

))
(2.3.28)
=

i∑
k=0

bkδ(ℓ−i)(ℓ−k) =

i∑
k=0

bkδik

= bi

as required.

We also have the following theorem which is used in the proof of 2.4.14.

Theorem 2.4.13 ([41, Theorem 2, p318]). If a linear [n, k, dH ]-code C ⊆ Fn
q is MDS, then

its dual C⊥ ⊆ Fn
q is also MDS and is a linear [n, n− k, k + 1]-code.

It is interesting to note that the weight distribution of an MDS code is only dependent on

the parameters n, k, dH and not on the particular choice of the code.

Proposition 2.4.14 ([41, Theorem 6, Chapter 11]). Let C ⊆ Fn
q be a linear MDS code with

weight distribution c, and minimum distance dH . Then we have c0 = 1 and for 0 ≤ r ≤

n− dH ,

cdH+r =

r∑
i=0

(−1)r−i

(
dH + r

dH + i

)(
n

dH + r

)(
qi+1 − 1

)
.

Proof. The proof of this statement is left as an exercise for the reader in [41], so we have

the proof here instead. We have from Corollary 2.4.9, for 0 ≤ φ < d′H ,

n−φ∑
i=0

(
n− i

φ

)
ci = qk−φ

(
n

φ

)
.

Now if a linear code C is MDS, with minimum distance dH then C⊥ is also MDS with

minimum distance d′H = n − dH + 2 [41, Theorem 2, Chapter 11]. So (2.4.7) holds for

0 ≤ φ ≤ n − dH = d′H − 2. We note that the proposition so far holds for φ ≤ d′H − 1 but

d′H − 2 is sufficient here. We therefore have c0 = 1 and c1 = c2 = . . . = cdH−1 = 0 and
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setting φ = n− dH − j for 0 ≤ j ≤ n− dH we obtain

(
n

n− dH − j

)
+

dh+j∑
i=dH

(
n− i

n− dH − j

)
ci = qk−n+dH+j

(
n

n− dH − j

)
j∑

r=0

(
n− dH − r

n− dH − j

)
cr+dH

=

(
n

n− dH − j

)(
qk−n+dH+j − 1

)
.

Applying Lemma 2.4.12, setting ℓ = n− dH and br = cr+dH
then letting

aj =

(
n

n− dH − j

)(
qk−n+dH+j − 1

)
gives

j∑
r=0

(
n− dH − r

n− dH − j

)
br = aj

and so

br = cr+dH

(2.4.10)
=

r∑
i=0

(−1)r−i

(
n− dH − i

n− dH − r

)
ai

=

r∑
i=0

(−1)r−i

(
n− dH − i

n− dH − r

)(
n

n− dH − i

)(
qk−n+dH+i − 1

)
.

But we have

(
n− dH − i

n− dH − r

)(
n

n− dH − i

)
(2.3.24)
=

(
n− (dH + i)

n− (dH + r)

)(
n

dH + i

)
(2.3.25)
=

(
dH + r

dH + i

)(
n

n− (dH + r)

)
(2.3.24)
=

(
dH + r

dH + i

)(
n

dH + r

)
.

Therefore

cr+dH
=

r∑
i=0

(−1)r−i

(
dH + r

dH + i

)(
n

dH + r

)(
qi+1 − 1

)
since dH = n− k + 1 as C is MDS, as required.

2.5 The Rank Association Scheme

2.5.1 Introduction and Background

In the search for an improved error-correcting code to use as the base for a new cryptosystem,

changing the alphabet is just one choice that can be made. Another choice is the metric

used to measure the distance between any two words in the code. Traditionally that has

been the Hamming metric as mentioned.

Gabidulin [18] prepared a whole list of different metrics. One was the rank metric which was

first proposed for use in error-correcting codes by Delsarte in 1975 [9] and further developed
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by Gabidulin himself in 1985 [21]. The approaches of Gabidulin and Delsarte are described

and compared in Section 2.5.2 below.

McEliece type cryptosystems have been proposed based on rank metric codes [20],[48] and

in particular on Maximum Rank Distance (MRD) linear codes because they have efficient

decoding algorithms and much smaller public keys than comparable Hamming metric sys-

tems [22]. Unfortunately, some MRD codes have significant invariant subspaces which make

them vulnerable to attack [37] and they have been broken in original and modified forms.

The challenge is still there, though, to find secure cryptosystems based on rank metric codes

because of their smaller public keys and, for example, Loidreau [37] has proposed more

recently yet another variation which is claimed to be secure, by scrambling the Gabidulin

structures sufficiently.

Less research has been applied to the corresponding identities for rank metric codes. Delsarte

[9] did find relations between the rank weights of a code and its dual using association

schemes but it was Gadouleau and Yan [22] who found the rank weight enumerator of a

linear code [21] as a functional transformation of the rank weight enumerator of its dual.

Ravagnani [51] generalised the proof to all Delsarte rank metric codes and established that

all linear codes can be regarded as a “Delsarte rank metric code”. Gadouleau and Yan [22]

used a method of proof similar to MacWilliams and Sloane [41] whereas Ravagnani [51]

focused on the linear algebra and combinatoric approach.

Consequently, it seems that there is value in exploring further codes based on the rank

metric. To explore this further it is first necessary to understand in detail the theories used

in Delsarte [9] and Gadouleau and Yan [22]. These theories are outlined in this section, 2.5.

2.5.2 Delsarte, Gabidulin, Gadouleau and Yan

Delsarte and Gabidulin developed two distinct definitions of the codes with the rank metric.

Delsarte [9] worked withm×n arrays or matrices over Fq whereas Gabidulin [21] used vector

subspaces of Fn
qm .

Gabidulin [20] gives a useful summary and comparison of the two representations and shows

that all linear vector representation codes can be mapped onto a linear matrix representa-

tion code. (Note that a linear matrix code mapped in the other direction to a vector code is

not necessarily linear [20, Section 2]). In [21] he specifies a norm on the space of matrices,

which defines the rank metric, and goes on to develop theories for codes (subspaces) based

on the rank distance. He also investigates the characteristics of maximal codes and their

constructions. Ravagnani [51] further proved that the mapping from vector to matrix pre-

serves cardinality and rank distribution and that therefore matrix rank metric codes can be

considered as a generalisation of vector rank metric codes.

Delsarte [9] introduces codes based on a rank metric by considering matrices of a certain

size over a finite field. Identifying a bijection between matrices and bilinear forms, Delsarte
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applies his theory of association schemes to rebuild the MacWilliams Identity for codes with

the rank metric.

Gadouleau and Yan [22] extended the known theories of rank metric codes by developing the

MacWilliams Identity as a functional transform in the same way as MacWilliams did origin-

ally for the Hamming metric. Having a version of this theorem in this form allows weight

enumerators of potentially unknown dual codes to be found from the weight enumerators of

known codes. They subsequently used the functional transform to develop previously undis-

covered identities between the moments of the rank weight distribution of codes and their

duals. Their method was based on character theory and q-algebra rather than association

schemes or combinatorics as used by Delsarte [9] and Grant and Varanasi [29] [28]. Finally

from these new identities, called “moments of the rank distribution”, the rank weight dis-

tribution of maximal codes in this setting is derived as an alternative to Delsarte’s [9] and

Gabidulin’s [21] derivation.

Below are the key definitions and results for the two representations of rank metric codes.

Notation in the different sources varies so the notation of Gadouleau and Yan [22] has

been adopted here where possible for consistency with their later proofs, but material from

Gabidulin [20], [21] and Ravagnani [51] has been used.

2.5.3 Preliminaries

The definitions below are equivalent to the theory in Gadouleau and Yan [22], but have been

adapted to match this interpretation of the underlying space.

Definition 2.5.1. Let A = (aij) be a matrix of size m× n with entries in a finite field Fq

where q is a prime power. This could be represented as an n-dimensional vector,

x = (x1, . . . , xn) ∈ Fn
qm

where for i = 1, . . . , n, xi =

m∑
j=1

aijαj with {α1, . . . , αm} being a basis of Fqm

Each matrix, A, can be associated with a corresponding bilinear form, which is a map

A : V ×W → Fq

where V is an m-dimensional vector space over Fq with fixed basis {e1, e2, . . . , em}, W is

an n-dimensional vector space over Fq with fixed basis {e′1, e′2, . . . , e′n} where

A
(
ei, e

′
j

)
= aij .

Definition 2.5.2. For all A ∈ Fm×n
q we define the rank weight of A, R(A) = r, to be

the usual column rank of the matrix over Fq. For all A,B ∈ Fm×n
q , we define the rank
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distance between A and B to be

dR(A,B) = R(A−B).

Any subspace of Fm×n
q can be considered as an Fq-linear code, C , with each matrix of rank

r in C representing a codeword of weight r and with the distance metric being the rank

metric. That is, for A,B ∈ Fm×n
q and a, b ∈ Fq, aA+bB ∈ C . For clarity, the rank distance

must always be less than the minimum of {m,n} as the column rank must be less than or

equal to n, the row rank must be less than or equal to m and the column rank and row rank

must be the same, a common result of linear algebra.

The minimum rank distance of such a code C , denoted as dR(C ), is simply the minimum

rank distance over all possible pairs of distinct codewords in C . When there is no ambiguity

about C , we denote the minimum rank distance as dR.

As with the Hamming metric, bounds can be established [22, (1)] on the maximum size of

a code C over Fm×n
q with minimum rank distance dR given by

|C | ≤ min
{
qm(n−dR+1), qn(m−dR+1)

}
. (2.5.1)

We call the bound (2.5.1) the Singleton bound for codes with the rank metric. Codes that

attain the Singleton bound are referred to as maximal codes or Maximum Rank Distance

(MRD) codes.

Again, similar to the Hamming metric, we introduce a weight enumerator for the rank metric

to count the number of codewords of each weight.

Definition 2.5.3. For all A ∈ Fm×n
q with rank weight r, the rank weight function of A

is defined as the homogeneous polynomial

fR(A) = Y rXn−r.

Let C ⊆ Fm×n
q be a code. Suppose there are ci codewords in C with rank weight i for

0 ≤ i ≤ n. Then the rank weight enumerator of C , denoted as WR
C (X,Y ), is defined to

be

WR
C (X,Y ) =

∑
A∈C

fR(A) =

n∑
i=0

ciY
iXn−i. (2.5.2)

We call the (n+ 1)-tuple, c = (c0, . . . , cn) of coefficients of the weight enumerator the rank

weight distribution of the code C .

Example 2.5.4. An example of such a code with q = 2 and n = m = 3 is where C is the
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subspace generated by the following matrices;
0 1 0

1 0 0

0 0 0

 ,


1 1 0

0 1 0

0 0 0

 ,


0 0 1

0 0 0

1 0 0

 ,


0 0 0

0 0 1

0 1 0

 .

There are 16 matrices (codewords) in this code. The only codeword of rank 0 is the all-zero

matrix and there are none of rank 1. There are exactly 9 codewords of rank 2, and exactly

6 codewords of rank 3 and the rank weight enumerator of the code is X3 + 9Y 2X + 6Y 3.

It is readily checked that the set of n×m matrices over Fq together with the rank distance

defined above, forms a metric association scheme by satisfying the axioms in Definitions

2.3.1, 2.3.6 and Equation (2.3.23).

Before going any further, we take the general b-nary Gaussian coefficients and b-nary beta

function as defined in Section 2.3.1 with the parameter b set to q, q > 1, for the rank metric,

q

[
x

k

]
=

k−1∏
i=0

qx − qi

qk − qi
,

βq(x, k) =

k−1∏
i=0 q

[
x− i

1

]
.

We also have the alpha function as defined in [22, Section 2.3] for x, k ∈ Z+,

α(x, k) =

k−1∏
i=0

(
qx − qi

)
. (2.5.3)

Here we have a useful theorem proven by Laksov which counts the number of matrices of a

given rank in Fn×m
q [64, Proposition 3.1].

Theorem 2.5.5. The number of matrices in Fm×n
q of rank r is

ξm,n,r =

r−1∏
i=0

(
qm − qi

) (
qn − qi

)
(qr − qi)

(2.5.4)

which can also be written as

ξm,n,r =
q

[
n

r

]
α(m, r). (2.5.5)

We also note the rank weight enumerator of the whole space, Fm×n
q is

Ωm,n =

n∑
i=0

ξm,n,iY
iXn−i.

Using Theorem 2.5.5 it is useful to see some coefficients of the rank weight enumerator for
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some small size matrices over Fq. We note that the rank weight for a m×n matrix, is equal

to that of its transpose. A good example of this is shown in Table 2.5.1.

m× n Total Rank Weight Enumerator

ξm,n,0 ξm,n,1 ξm,n,2 Ωm,n

1× 1 q 1 q − 1 - X + (q − 1)Y

1× 2 q2 1 q2 − 1 0 X + (q2 − 1)Y

2× 1 q2 1 q2 − 1 0 X + (q2 − 1)Y

2× 2 q4 1
(
q2 − 1

)
(q + 1) q

(
q2 − 1

)
(q − 1) X2 +

(
q2 − 1

)
(q + 1)XY + q

(
q2 − 1

)
(q − 1)Y 2

Table 2.5.1: Coefficients of the rank weight enumerator for small matrices over Fq.

In this setting we define an inner product as follows

⟨A,B⟩ = Tr
(
ABT

)
where Tr(A) means the trace of A. We note that also Tr

(
ABT

)
= Tr

(
BAT

)
=∑m

i=1

∑n
j=1 aijbij where A = (aij) and B = (bij), so satisfies the symmetric condition

for an inner product.

Now we define the dual of a code.

Definition 2.5.6. The dual code , C⊥ ⊆ Fm×n
q , of a code, C ⊆ Fm×n

q , is defined as

C⊥ =
{
A ∈ Fm×n

q | ⟨A,B⟩ = 0 ∀ B ∈ C
}
.

The following theorem by Gabidulin relates the minimum distance of a maximal rank code

to the minimum distance of its dual which is also proven to be maximal.

Theorem 2.5.7 ([21, Theorem 3]). Without loss of generality, assume n ≤ m. A code

C ⊆ Fm×n
q with minimum rank distance dR is MRD if and only if its dual C⊥ ⊆ Fm×n

q is

also MRD with minimum rank distance d′R = n− dR + 2.

q-Product, q-Power and q-Transform

The weight enumerator of a linear code C ⊆ Fm×n
q is a homogeneous polynomial. Gadouleau

and Yan introduce an operation, the q-product [22, Definiton 3], on homogeneous polyno-

mials that help to express the relation between the weight enumerator of a code and that of

its dual.

Definition 2.5.8. Let

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i,

b(X,Y ;λ) =

s∑
i=0

bi(λ)Y
iXs−i,
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be two homogeneous polynomials inX and Y , of degrees r and s respectively, and coefficients

ai(λ) and bi(λ) respectively, which are real functions of λ and are 0 unless otherwise specified.

For example bi(λ) = 0 if i /∈ {0, 1, . . . , s}.

The q-product, ∗, of a(X,Y ;λ) and b(X,Y ;λ) is defined as

c(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ)

=

r+s∑
u=0

cu(λ)Y
uXr+s−u

(2.5.6)

with

cu(λ) =

u∑
i=0

qisai(λ)bu−i(λ− i).

Definition 2.5.9 ([22, Defintion 4]). The q-power of a(X,Y ;λ) is defined by


a[0](X,Y ;λ) = 1,

a[1](X,Y ;λ) = a(X,Y ;λ),

a[k](X,Y ;λ) = a(X,Y ;λ) ∗ a[k−1](X,Y ;λ) for k ≥ 2.

Definition 2.5.10 ([22, Definition 5]). Let a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i. The q-transform

of a(X,Y ;λ) is defined to be the homogeneous polynomial

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
[i] ∗X [r−i]

where Y [i] is the ith q-power of the homogeneous polynomial Y and X [r−i] is the (r − i)th

q-power of the homogeneous polynomial X.

In the theory that follows, relating the weight enumerator of a code to its dual, we consider

the following two polynomials which turn out to be critical to formulate and prove the

MacWilliams Identity as a functional transform.

First let

µ(X,Y ;λ) = X +
(
qλ − 1

)
Y. (2.5.7)

The q-powers of µ(X,Y ;m) provide an explicit form for the weight enumerator of Fm×n
q ,

the set of matrices of order m × n. Theorem 2.5.11 and Theorem 2.5.12, seen below, are

noted in [22, Lemma 2].

Theorem 2.5.11. If µ(X,Y ;λ) is as defined above, then for all k ≥ 1

µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u
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where

µu(λ, k) =
q

[
k

u

]
α(λ, u).

Specifically, the weight enumerators for Fm×n
q , the set of matrices of size m × n over Fq,

denoted by Ωm,n, is given by,

Ωm,n = µ[n](X,Y ;m).

Second, consider the polynomial

ν(X,Y ;λ) = X − Y. (2.5.8)

Theorem 2.5.12. If ν(X,Y ;λ) is as defined above, then for all k ≥ 1,

ν[k](X,Y ;λ) =

k∑
u=0

(−1)uqσu

q

[
k

u

]
Y uXk−u. (2.5.9)

2.5.4 Eigenvalues of the Association Scheme of Matrices over a

Finite Field

The following theory uses the results from Gadouleau and Yan [22]. Here we take the

polynomials which are proven to be generalised Krawtchouk polynomials which in turn are

the eigenvalues of this association scheme.

We begin by considering the set of matrices over a finite field with the rank metric. The

relations are defined by A,B ∈ Fm×n
q being ith associates if they have rank distance i apart,

i.e. dR(A,B) = i. Then, again similar to the Hamming association scheme, it can be readily

shown that [9, p229] it is a metric association scheme and we will call it the rank association

scheme. In this scheme, the eigenvalues are defined as [9, (A10)]

pk(i) = Pk(i, n)

where Pk(i, n) are the generalised Krawtchouk polynomials (2.3.38) with b = q and c = 1.

So specifically the rank Krawtchouk polynomials for q ≥ 2 are [11, (15)],

Pk(x, n) =

k∑
j=0

(−1)k−jqjmqσk−j

q

[
n− j

n− k

]
q

[
n− x

j

]
(2.5.10)

with,

Pk(0, n) =
q

[
n

k

]
α(m, k).

The initial values follow from the theory of association schemes and represent the valencies

of each relation.
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2.5.5 MacWilliams Identity as a Functional Transform

Again similar to the Hamming metric, here we have an identity that relates the rank weight

enumerator of a code to the rank weight enumerator of its dual code, taken from [22, Theorem

1].

Theorem 2.5.13 (The MacWilliams Identity for the Rank Association Scheme). Let C ⊆

Fm×n
q be an [n, k, dR] linear code, with rank weight distribution c = (c0, . . . , cn) and C⊥ ⊆

Fm×n
q its dual code, with rank weight distribution c′ = (c′0, . . . , c

′
n). Then

WR
C⊥(X,Y ) =

1

|C |
W

R

C (X + (qm − 1)Y,X − Y ) (2.5.11)

=
1

|C |

n∑
i=0

ci(X − Y )[i] ∗ (X + (qm − 1)Y )
[n−i]

. (2.5.12)

The proof of this theorem uses the q-algebra on homogeneous polynomials as in Equation

(2.5.7) and Equation (2.5.8) in order to present the MacWilliams Identity in the desired

polynomial form. It then identifies subspaces of the code that are generated by a single

element and are shown to be themselves MRD. Since they are MRD, the rank weight enu-

merators of their duals can be found and are only dependent on the rank of the selected

codeword [22, Proposition 1]. The formula is proved directly by induction by considering

how many extensions of a codeword will be linearly dependent on the original. They con-

clude by finding the rank weight enumerator of each of these subcodes as a q-product of

q-powers of µ(X,Y, ;λ) and ν(X,Y ;λ). This allows the MacWilliams Identity for the rank

metric to be expressed in a form analogous to the original MacWilliams Identity for the

Hamming metric, Theorem 2.4.7.

The proof is only shown in outline here because it could not be mimicked for the skew

rank association scheme due to its lack of maximal properties in the subspaces. That is,

the proof relies on subspaces of the code that are generated by a single element and are

maximal. For the skew rank association scheme no such relevant subspaces could be found

that were maximal. As a result an alternative approach had to be devised.

2.5.6 Delsarte’s MacWilliams Identity

Delsarte explicitly studies the association scheme of matrices over a finite field with the rank

metric in his paper [9]. Here he writes his MacWilliams Identity [9, Theorem 3.3], in terms

of matrices built from generalised Krawtchouk polynomials.

Theorem 2.5.14 (The MacWilliams Identity for the Rank Metric). Let C ⊆ Fm×n
q be a

code with weight distribution c = (c0, c1, . . . , cn) and C⊥ ⊆ Fm×n
q be its dual code with weight

distribution c′ = (c′0, c
′
1, . . . , c

′
n). Then,

c′ =
1

|C |
cP (2.5.13)
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where P = (pxk) is defined as the (n+1)× (n+1) matrix with pxk = Pk(x, n), and Pk(x, n)

are the rank Krawtchouk polynomials as defined in equation (2.5.10).

Delsarte gives an elegant proof based on ring theory.

2.5.7 Moments of the Rank Weight Distribution

Since we are working in a new q-algebra, we state here the q-derivatives that are defined [22,

Definition 5 & Definition 6] and some properties that are proven [22, Lemma 3-6], before

going on to investigate the moments of the rank weight distribution of linear codes.

Definition 2.5.15. For q ≥ 2, the q-derivative at X ̸= 0 of a real-valued function f(X)

is defined as

f (1)(X) =
f(qX)− f(X)

(q − 1)X

and the q−1-derivative at Y ̸= 0 of a real-valued function g(Y ) is defined as

g{1}(Y ) =
g(q−1Y )− g(Y )

(q−1 − 1)Y
.

Here we list the important results of the derivatives. The proofs and theory that generated

these results can be seen in [22, Lemma 3, Lemma 5].

Lemma 2.5.16. 1. The φth q-derivative of f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i is given by

f (φ) (X,Y ;λ) =

r−φ∑
i=0

fi(λ)q
φ(1−i)+σφβq(i, φ)Y

iXr−i−φ. (2.5.14)

2. The φth q−1-derivative of g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i is given by

g{φ} (X,Y ;λ) =

s∑
i=φ

gi(λ)q
φ(1−i)+σφβq(i, φ)Y

i−φXs−i. (2.5.15)

Theorem 2.5.17 is an amalgamation of [22, Proposition 4, Proposition 5]. These equations

are known as the q-moments of the weight distribution for codes using the rank metric.

Theorem 2.5.17. For an [n, k, dR]−linear code, C ⊆ Fm×n
q , with weight distribution c =

(c0, . . . , cn), and dual code C⊥ ⊆ Fm×n
q with rank weight distribution c′ = (c′0 . . . , c

′
n), we

have
n−φ∑
i=0 q

[
n− i

φ

]
ci = qm(k−φ)

n∑
i=0 q

[
n− i

n− φ

]
c′i (2.5.16)

and

n∑
i=φ

qφ(n−i)

q

[
i

φ

]
ci = qm(k−φ)

φ∑
i=0

(−1)iqσiqi(φ−i)

q

[
n− i

n− φ

]
α(m− i, φ− i)c′i. (2.5.17)
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Note. The proof of this theorem follows the same method as that outlined in Theorem 2.4.8

for the Hamming metric.

Corollary 2.5.18. Let d′R be the minimum rank distance of C⊥. If 0 ≤ φ < d′R then

n−φ∑
i=0 q

[
n− i

φ

]
ci = qm(k−φ)

q

[
n

φ

]

and
n∑

i=φ

qφ(n−i)

q

[
i

φ

]
ci = qm(k−φ)

q

[
n

φ

]
α(m,φ).

Proof. For 0 ≤ φ < d′R, then c
′
0 = 1, c′1 = . . . = c′φ = 0.

2.5.8 Maximum Rank Distance Codes

In the special case when C is an MRD code (i.e. when it attains the Singleton bound (2.5.1)

for codes with the rank metric), Gadouleau and Yan [22] provide a method for finding the

rank weight distribution of MRD codes with minimum distance dR. Similar to the case

in the Hamming metric, the rank weight distribution for MRD codes depends only on the

parameters of the code and not the code itself. The following theorem is first developed by

Delsarte and Gabidulin [9, Theorem 5.6], [21, Theorem 5] and was re-proven by Gadouleau

and Yan [22, Proposition 9] using Theorem 2.5.17 and Corollary 2.5.18.

Proposition 2.5.19. Let C ⊆ Fm×n
q be a linear MRD code with weight distribution c, and

minimum distance dR. Then we have c0 = 1 and for 0 ≤ r ≤ n− dR

cdR+r =

r∑
i=0

(−1)r−iqσr−i

q

[
dR + r

dR + i

]
q

[
n

dR + r

](
qm(i+1) − 1

)
.

2.6 The Skew Rank Association Scheme

2.6.1 Introduction and Background

Inspired by the work of Gadouleau and Yan, it was natural to ask the question of what other

metrics could we build a “q-algebra” for and for what association schemes could we identify

a version of the MacWilliams Identity as a functional transform. The obvious first choice to

explore after the rank metric, is the skew rank metric applied to the association scheme of

skew-symmetric matrices. We shall call this the skew rank association scheme.

2.6.2 Delsarte

Delsarte was particularly motivated by association schemes [8] and that seems to be what

drove him to study different metrics and consequently to investigate different codes based

on these metrics. One of the cases he considered was alternating bilinear forms over a finite
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field, which we can directly relate to the association scheme of skew-symmetric matrices

with the skew rank metric [12]. Many of Delsarte’s results in this paper and his earlier work

have formed the basis of the further developments presented in this thesis.

2.6.3 Preliminaries

We first introduce key definitions and background theory required for formation of the

MacWilliams Identity as a functional transform for the skew rank association scheme.

Definition 2.6.1. Let A be a matrix of size t× t with entries in a finite field Fq, where q

is a prime power. Then A = (aij) is called a skew-symmetric matrix, if AT = −A.

The set of these skew-symmetric matrices is denoted Aq,t and the order of the matrix is t.

Although the following aspect of the theory is not used in this thesis, it is interesting to note

that each skew-symmetric matrix, A, can be associated with a corresponding alternating

bilinear form and more information on alternating bilinear forms can be found in [12, Section

2.1].

Theorem 2.6.2. Aq,t is a
(
t
2

)
-dimensional vector space over Fq.

The proof of this theorem is trivial and hence omitted. For Aq,t we define the parameters

n =

⌊
t

2

⌋
, m =

t(t− 1)

2n
.

We also follow the convention that the empty product is taken to be 1 and the empty sum

is taken to be 0.

Again similar to the rank metric, we take the general b-nary Gaussian coefficients and b-nary

beta function as defined in Section 2.3.1 with the parameter b set to q2, q > 1. We have,

q2

[
x

k

]
=

k−1∏
i=0

q2x − q2i

q2k − q2i
,

βq2(x, k) =

k−1∏
i=0 q2

[
x− i

1

]
.

We use a significant number of definitions for the skew rank metric taken from Delsarte [12].

We note that the column rank of a skew-symmetric matrix is always even, so we can write

the rank as 2s for some s ∈ Z+.

Definition 2.6.3. For all A ∈ Aq,t with column rank 2s we define the skew rank weight

of A, SR(A), to be s.

For all A,B ∈ Aq,t, we define the skew rank distance between A and B to be

dSR(A,B) = SR(A−B).
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It is easily verified that dSR(A,B) is a metric over Aq,t since SR(A−B) is the rank metric

[21] [22] divided by 2 and we will call it the skew rank metric.

Any subspace of Aq,t can be considered as an Fq-linear code, C , with each matrix of skew

rank s in C representing a codeword of weight s and with the distance metric being the

skew rank metric.

The minimum skew rank distance of such a code C , denoted as dSR(C ), is simply the

minimum skew rank distance over all possible pairs of distinct codewords in C . When there

is no ambiguity about C , we denote the minimum skew rank distance as dSR.

It can be shown that [12, p.33] the cardinality, |C |, of a code, C , over Fq based on t × t

skew-symmetric matrices and minimum skew rank distance dSR satisfies

|C | ≤ qm(n−dSR+1). (2.6.1)

In this thesis, we call the bound in (2.6.1) the Singleton bound for codes with the skew

rank metric. Codes that attain the Singleton bound are referred to as maximal codes or

Maximum Skew Rank Distance (MSRD) codes.

Once again, an equivalent skew rank weight enumerator is introduced.

Definition 2.6.4. For all A ∈ Aq,t with skew rank weight s, the skew rank weight

function of A is defined as the homogeneous polynomial

fSR(A) = Y sXn−s.

Let C ⊆ Aq,t be a code. Suppose there are ci codewords in C with skew rank weight i for

0 ≤ i ≤ n. Then the skew rank weight enumerator of C , denoted as WSR
C (X,Y ), is

defined to be

WSR
C (X,Y ) =

∑
A∈C

fSR(A) =

n∑
i=0

ciY
iXn−i. (2.6.2)

The (n + 1)-tuple, c = (c0, . . . , cn) of coefficients of the weight enumerator, is called the

skew rank weight distribution of the code C .

Example 2.6.5. An example of such a code with q = 3 and t = 4 is where C is the set of

skew-symmetric matrices, A = (aij) with 1 ≤ i, j ≤ 4, such that;


a1j ∈ Fq, j > 1

a23 = a24 = 0

a34 ∈ Fq.

→


0 a12 a13 a14

−a12 0 0 0

−a13 0 0 a34

−a14 0 −a34 0


There are 81 matrices (codewords) in this code. It is easily seen that a codeword has skew

38



2.6. THE SKEW RANK ASSOCIATION SCHEME

rank 2 if and only if a12 and a34 are both nonzero. Therefore, there is 1 codeword of skew

rank 0, 44 codewords of skew rank 1 and 36 codewords of skew rank 2. Thus, the skew rank

weight enumerator of the code is X2 + 44XY + 36Y 2.

Many ways of describing the number of skew-symmetric matrices have been developed by

various authors such as [62, Proposition 2.1, p627], [40, Theorem 3, p155] and [41, Theorem

2, p437]. The following is (for the purpose of this thesis) in the best format.

Theorem 2.6.6 ([5, Theorem 3, p24]). The number of skew symmetric matrices of order t

and skew rank s, for 0 ≤ s ≤ n is

ξt,s = q2σs

2s−1∏
i=0

(
qt−i − 1

)
s∏

i=1

(
q2i − 1

) . (2.6.3)

We also then note the skew rank weight enumerator of Aq,t is

Ωt =

n∑
i=0

ξt,iY
iXn−i. (2.6.4)

It is useful to see the resulting skew rank weight enumerators for some small size matrices.

From the results of the counts of matrices of skew rank s,(s = 0, . . . , n), and size t we

list the coefficients of the skew rank weight enumerator in Table 2.6.7 for matrices of size

1× 1, 2× 2, 3× 3 and 4× 4 over Fq.

t× t Total Skew Rank Weight Enumerator

ξt,0 ξt,1 ξt,2 Ωt

1× 1 1 1 - - 1

2× 2 q 1 q − 1 - X + (q − 1)Y

3× 3 q3 1 q3 − 1 - X + (q3 − 1)Y

4× 4 q6 1
(
q2 + 1

) (
q3 − 1

)
q2
(
q3 − 1

)
(q − 1) X2 +

(
q2 + 1

) (
q3 − 1

)
XY + q2

(
q3 − 1

)
(q − 1)Y 2

Table 2.6.7: Coefficients of the skew rank weight enumerator for small matrices in Aq,t.

Example 2.6.1. For t = 4 and q = 3 the skew rank weight enumerator of A3,4 is

X2 +
(
32 + 1

) (
33 − 1

)
XY + 32

(
33 − 1

)
(3− 1)Y 2 = X2 + 260XY + 468Y 2.

The coefficients for 6 × 6 skew-symmetric matrices have been listed in Appendix A.2. We

now define an inner product on Aq,t by

(A,B) 7→ ⟨A,B⟩ = Tr
(
ATB

)
where Tr(A) means the trace of A.
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Definition 2.6.2. The dual code , C⊥ ⊆ Aq,t, of a code, C ⊆ Aq,t, is defined as

C⊥ =
{
A ∈ Aq,t | ⟨A,B⟩ = 0 ∀ B ∈ C

}
.

The following theorem by Delsarte relates the minimum distance of a maximal skew rank

code to the minimum distance of its dual which is also proven to be maximal.

Theorem 2.6.3 ([12, Theorem 5]). A code C ⊆ Aq,t with minimum skew rank distance

dSR is MSRD if and only if its dual C⊥ is also MSRD with minimum skew rank distance

d′SR = n− dSR + 2.

2.6.4 Eigenvalues of the Association Scheme of Skew-Symmetric

Matrices

We consider the set of skew-symmetric matrices over a finite field with the skew rank metric.

We then have an n-class (Aq,t, R) metric association scheme withRi = {(A,B) | dSR(A,B) =

i} which we will call the skew rank association scheme. In this scheme, the eigenvalues are

defined as [9, (A10)]

pk(i) = Pk(i, n)

where Pk(i, n) are the generalised Krawtchouk polynomials (2.3.38) with b = q2, and n =⌊
t
2

⌋
, m = t(t−1)

2n . So the skew rank Krawtchouk polynomials for q ≥ 2 are [12, p31]

Pk(x, n) =

k∑
j=0

(−1)k−jqmjq2σk−j

q2

[
n− j

n− k

]
q2

[
n− x

j

]
. (2.6.5)

2.6.5 Maximum Skew Rank Distance Codes

In the special case when C is an MSRD code (i.e. when it attains the Singleton bound

(2.6.1) for codes with the skew rank metric), Delsarte provides a method for finding the

skew rank weight distribution of MSRD codes with minimum distance dSR. Again similar

to the cases in the Hamming and rank metric, the skew rank weight distribution for MSRD

codes depends only on the parameters of the code and not the code itself.

Proposition 2.6.4 ([12, (31)]). Let C ⊆ Aq,t be a linear MSRD code with weight distribu-

tion c, and minimum distance dSR. Then we have c0 = 1 and for 0 ≤ i ≤ n− dSR,

cn−i =

n−dSR∑
j=i

(−1)j−iq2σj−i

q2

[
j

i

]
q2

[
n

j

](
qm(n−dSR+1−j) − 1

)
.

Delsarte uses a proof involving the P -transform on the properties of the Pk(i)’s, [12, (29)].
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2.7 The Hermitian Association Scheme

2.7.1 Introduction and Background

After Hermitian matrices came on the mathematics scene in 1855, named after Charles

Hermite, they were first used to investigate new ideas in number theory since they have the

property, shared with real symmetric matrices, that their eigenvalues are always real. This

definition of a matrix that is equal to the conjugate transpose of itself was then extended

not just to complex matrices but to matrices over a finite field. In 1954 Carlitz and Hodges

[6] focused on counting the numbers of Hermitian matrices with particular properties and

in 1981 Stanton [61] investigated the association scheme of Hermitian matrices with the

related Krawtchouk polynomials. Stanton also studied different schemes such as the rank

association scheme, but used hypergeometric series to formulate his results. Certain rank

properties of Hermitian matrices were investigated in the 2010’s by Sheekey, Gow et al.

[15][27] but the matrices that are relevant to the rank weight enumerator of subspaces of

Hermitian matrices were developed by Schmidt [53], published in 2017.

2.7.2 Schmidt

Schmidt investigates sets of n×n Hermitian matrices over Fq2 with distance function defined

by the rank metric. He studies codes in this association scheme, which we call the Hermitian

association scheme, that arise from these parameters and in particular those with a given

minimum distance. Importantly he develops bounds on the size of these codes and identifies

the conditions for the weight distribution of such codes to be determined entirely by their

parameters. Unlike the rank association scheme with general m×n matrices, Schmidt shows

that weight distributions of maximal additive codes are not uniquely determined and proves

this using counterexamples. It is also interesting to note that within the theory building

to his results, he generates a form of the eigenvalues of these association schemes which is

integral to his development of the bounds.

2.7.3 Preliminaries

We begin with some assumptions and definitions relating to Hermitian matrices over a finite

field, Fq2 , where q is a prime power. Once again we follow the convention that the empty

product is taken to be 1 and the empty sum is taken to be 0. We also use σi =
i(i−1)

2 for

i ≥ 0.

We write the conjugate of x ∈ Fq2 as x = xq. Then for a t× t matrix over Fq2 , we write H†

for the conjugate transpose matrix of H.

Definition 2.7.1. Let H be a t×t matrix over Fq2 . Then H = (hij) is called a Hermitian

matrix if H = H†. The set of these Hermitian matrices is denoted Hq,t.
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Theorem 2.7.2. Hq,t is a t2-dimensional vector space over Fq.

The proof of Theorem 2.7.2 is trivial and hence omitted.

Since we will need a Gaussian coefficient, we take the definition used by Schmidt [53, p3]. It

turns out that if we set b = −q we can then use our general b-nary Gaussian coefficients and

the b-nary beta function as defined in Section 2.3.1 as these two definitions of the Gaussian

coefficients are equivalent. So we have,

−q

[
x

k

]
=

k−1∏
i=0

(−q)x − (−q)i

(−q)k − (−q)i
,

β−q(x, k) =

k−1∏
i=0 −q

[
x− i

1

]
.

Definition 2.7.3. For all H ∈ Hq,t we define the Hermitian rank weight of H,

HR(A) = h, to be the usual column rank of the matrix over Fq. For all H,J ∈ Hq,t,

we define the Hermitian rank distance between H and J to be

dHR(H,J) = HR(H − J).

It is easily verified that dHR(H,J) is a metric over Hq,t.

Note. This definition is identical to Definition 2.5.2 for the rank metric, but we call it the

Hermitian rank distance to distinguish between cases.

Again similar to the other metrics, any subspace of Hq,t can be considered as an Fq-linear

code, C , with each matrix of rank h in C representing a codeword of weight h, defined

below, and with the distance metric being the rank metric defined in Definition 2.7.3.

Theminimum Hermitian rank distance of such a code C , denoted as dHR(C ), is simply

the minimum Hermitian rank distance over all possible pairs of distinct codewords in C .

When there is no ambiguity about C , we denote the minimum Hermitian rank distance as

dHR.

The following bound is proven explicitly in [53, Theorem 1] using the relationship between

the inner distributions and the eigenvalues of the association scheme which happens to also

obtain one of the sets of moments of the association scheme. It then uses the subgroup

properties of the code to show that the bound holds. So we have that the cardinality |C | of

a code C over Fq2 based on t× t Hermitian matrices and minimum Hermitian rank distance

dHR satisfies

|C | ≤ qt(t−dHR+1). (2.7.1)

In this thesis, we call the bound (2.7.1) the Singleton bound for codes with the Hermitian

rank distance. Codes that attain the Singleton bound are referred to as maximal codes or

Maximum Hermitian Rank Distance (MHRD) codes. Yet again, we introduce a Hermitian
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rank weight function for codes using the Hermitian rank distance.

Definition 2.7.4. For all H ∈ Hq,t with Hermitian rank weight h, the Hermitian rank

weight function of H is defined as the homogeneous polynomial

fHR(H) = Y hXt−h.

Let C ⊆ Hq,t be a code. Suppose there are ci codewords in C with Hermitian rank weight

i for 0 ≤ i ≤ t. Then the Hermitian rank weight enumerator of C , denoted as

WHR
C (X,Y ) is defined to be

WHR
C (X,Y ) =

∑
H∈C

fHR(H) =

t∑
i=0

ciY
iXt−i. (2.7.2)

The (t + 1)-tuple, c = (c0, . . . , ct) of coefficients of the Hermitian rank weight enumerator,

is called the Hermitian rank weight distribution of the code C .

Example 2.7.5. An example of such a code with q = 2 and t = 3 is where C is the set of

Hermitian matrices, H over F4 such that;

C =




0 0 0

0 0 0

0 0 0

 ,


1 α 0

1 + α 0 0

0 0 0

 ,


0 0 α

0 1 0

1 + α 0 0

 ,


0 0 0

0 0 1 + α

0 α 1




1 α α

1 + α 1 0

1 + α 0 0

 ,


1 α 0

1 + α 0 1 + α

0 α 1

 ,


0 0 α

0 1 1 + α

1 + α α 1

 ,


1 α α

1 + α 1 1 + α

1 + α α 1




with multiplication table below.

0 1 α 1 + α

0 0 0 0 0
1 0 1 α 1 + α
α 0 α 1 + α 1

1 + α 0 1 + α 1 α

Thus there are 8 matrices (codewords) in this code, 1 of Hermitian rank 0, 3 of Hermitian

rank 2 and 4 of Hermitian rank 3. Thus its Hermitian rank weight enumerator is X3 +

3Y 2X + 4Y 3.

Here we have a way of describing the number of Hermitian matrices adapted from [6, The-

orem 3, p398].

Theorem 2.7.6. The number of Hermitian matrices of order t and Hermitian rank weight
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h is given by

ξt,h = qσh ×

h−1∏
i=0

q2t−2i − 1

h∏
i=1

qi − (−1)i

= (−1)h(−q)σh ×

h−1∏
i=0

(−q)2t−2i − 1

h∏
i=1

(−q)i − 1

.

We also then note the Hermitian rank weight enumerator of Hq,t is

Ωt =

t∑
i=0

ξt,iY
iXt−i.

Using Theorem 2.7.6 it is useful to see some coefficients of the Hermitian rank weight enu-

merator for some small size matrices over Fq in Table 2.7.7 below.

t× t Total Hermitian Rank Weight Enumerator

ξt,0 ξt,1 ξt,2 ξt,3 Ωt

1× 1 q 1 q − 1 - - X + (q − 1)Y

2× 2 q4 1 (q2 + 1)(q − 1) q(q2 + 1)(q − 1) -
X2 + (q2 + 1)(q − 1)Y X +
q(q2 + 1)(q − 1)Y 2

3× 3 q9 1 (q − 1)(1 + q2 + q4) q(q2 + 1)(q − 1)(1 + q2 + q4) q3(q3 − 1)(q2 + 1)(q − 1)

X3 + (q − 1)(1 + q2 +
q4)Y X2 + q(q2 + 1)(q −
1)(1+q2+q4)Y 2X+q3(q3−
1)(q2 + 1)(q − 1)Y 3

Table 2.7.7: Coefficients of the Hermitian rank weight enumerator for small matrices in Hq,t.

Example 2.7.1. For t = 3 and q = 2 the Hermitian rank weight enumerator of H2,3 is

X3 + 21Y X2 + 210Y 2X + 280Y 3.

We define an inner product on Hq,t by

(H,J) 7→ ⟨H,J⟩ = Tr
(
H†J

)
where Tr(H) means the trace of H.

Definition 2.7.2. The dual code , C⊥ ⊆ Hq,t, of a code, C ⊆ Hq,t, is defined as

C⊥ =
{
H ∈ Hq,t | ⟨H,J⟩ = 0 ∀ J ∈ C

}
.

2.7.4 Eigenvalues of the Association Scheme of Hermitian Matrices

We consider the set of Hermitian matrices over a finite field with the Hermitian rank metric.

We have an n-class (Hq,t, R) metric association scheme withRi = {(H,J) | dHR(H,J) = i}.

Then, again similar to the Hamming, rank and skew rank association schemes, it can be

readily shown that [3, Section 9.5 C] it is an association scheme, and we call it the Hermitian
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association scheme. In this scheme, the eigenvalues are defined as [53, (4)]

pk(i) = Pk(i, t)

where Pk(i, t) are the eigenvalues, which we call the Hermitian rank Krawtchouk polynomi-

als, as defined in Schmidt [53, (4)] as

Pk(x, t) = (−1)k
k∑

j=0

(−q)σk−j+tj

−q

[
t− j

t− k

]
−q

[
t− x

j

]
. (2.7.3)

We note that the eigenvalues, Pk(i, t), are the only solution to the following recurrence

relation with specific initial values, seemingly different to the recurrence relation by Delsarte

[11, (1)]. So for q ∈ R, x, y ∈ Z+ and x, k ∈ {0, 1, . . . , y} the recurrence relation as defined

in [53, Lemma 7] is

Pk+1(x+ 1, t+ 1) = Pk+1(x, t+ 1) + (−q)2t+1−xPk(x, t) (2.7.4)

with initial values

Pk(0, t) = ξt,k (2.7.5)

P0(x, t) = 1. (2.7.6)

Schmidt proves that these Hermitian rank Krawtchouk polynomials satisfy this recurrence

relation (2.7.4) and the initial values, and are therefore the eigenvalues of the Hermitian

association scheme.

2.7.5 Moments of the Hermitian Rank Weight Distribution

The following proposition is obtained in the proof of [53, Theorem 1] by Schmidt, by com-

bining the eigenvalues of the association scheme [53, (5)] with the entries of the dual inner

distribution [53, (7)]. The following are not stated directly as a proposition or corollary,

but we write them here in the notation used in this thesis so we can draw parallels with the

comparable results from other association schemes.

Proposition 2.7.3. For 0 ≤ φ ≤ n, q ≥ 2 a prime power, and a linear code C ⊆ Hq,t and

its dual C⊥ ⊆ Hq,t with weight distributions c = (c0, . . . , ct) and c′ = (c′0, . . . , c
′
t), respect-

ively we have
t−φ∑
i=0 −q

[
t− i

φ

]
ci =

1

|C⊥|
(
−(−q)t

)t−φ
φ∑

i=0 −q

[
t− i

t− φ

]
c
′

i.

We can simplify Proposition 2.7.3 if φ is less than the minimum distance of the dual code.

45



2.7. THE HERMITIAN ASSOCIATION SCHEME

Corollary 2.7.4. Let d′R be the minimum rank distance of C⊥. If 0 ≤ φ < d′HR then

t−φ∑
i=0 −q

[
t− i

φ

]
ci =

1

|C⊥|
(
−(−q)t

)t−φ

−q

[
t

φ

]
.

Proof. We have c′0 = 1 and c′1 = . . . = c′φ = 0.

2.7.6 Maximum Hermitian Rank Distance Codes

Unlike the skew rank, rank and Hamming association schemes, there isn’t an equation

that shows that the Hermitian rank weight distribution of all MHRD codes are uniquely

determined by their parameters. It can be shown that for dHR odd, the dual of an MHRD

code, C⊥ is also MHRD. In that case, the weight distribution can be uniquely determined

by [53, Theorem 3]. That is

cn−i =

n−dHR∑
j=i

(−1)j−i(−q)σj−i

−q

[
j

i

]
−q

[
n

j

](
|C |
qnj

(−1)(n+1)j − 1

)
.

If, on the other hand, the minimum distance of an MHRD code is even, then it has been

shown that codes which are maximal with given parameters can have multiple different

weight distributions. However, their dual weight distributions are not always maximal.

Schmidt gives examples where the minimum distance is 2 [53, Section 3] to show this expli-

citly. So if a MHRD code has minimum distance even, then the weight distribution is not

necessarily uniquely determined by its parameters.
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Chapter 3
The Skew Rank Association Scheme

Now considering the association scheme of skew-symmetric matrices with the skew rank

metric, the aim is to find the MacWilliams Identity as a functional transform using an

appropriate type of “q-algebra”. Firstly we shall present an overview of what we already

know from Section 2.6, before going on to some more specific preliminaries in Section 3.1.

In Section 3.2 we introduce an adapted version of the q-algebra used in [22, Section 3.1]

and we identify two homogeneous polynomials which are integral to the development of the

transform of the MacWilliams Identity. In fact, the powers of one of these polynomials turn

out to be the weight enumerator of the space of skew-symmetric matrices of a given size

t. Armed with these polynomials, we can derive a new explicit form of the Krawtchouk

polynomials. It is proven that these new forms are indeed the generalised Krawtchouk

polynomials and therefore are the eigenvalues of the association scheme using a recurrence

relation heavily studied by Delsarte [11]. Finally, we can then state the MacWilliams Identity

for the skew rank association scheme as a functional transform.

After we have established the MacWilliams Identity, it is useful to think about the moments

of the skew rank weight distribution. Firstly we shall introduce two derivatives on this space,

analogous to the q-derivative and the q−1 derivative developed by Gadouleau and Yan [22,

Definiton 5, 6]. Once these have been defined and some properties developed, they are used

to generate moments of the skew rank weight distribution which can be utilised to explore

characteristics of the codes. In the special case of MSRD codes, i.e. when the code attains

the Singleton bound (2.6.1), it shown that the weight distribution of the code is uniquely

determined by its parameters and is not dependent on the code itself.
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3.1 Preliminaries

3.1.1 Parameters

As a reminder, as we are considering the skew rank association scheme, (Aq,t, R), we have

b = q2 and we set n =
⌊
t
2

⌋
and m = t(t−1)

2n .

For the skew rank association scheme we have the general b-nary Gaussian coefficients and

b-nary beta function as defined in Section 2.3.1. Namely,

q2

[
x

k

]
=

k−1∏
i=0

q2x − q2i

q2k − q2i
,

βq2(x, k) =

k−1∏
i=0 q2

[
x− i

1

]
.

To make notation simpler and while there is no ambiguity, in this section we shall write

q2

[
x

k

]
=

[
x

k

]
and βq2(x, k) = β(x, k). We also have that σi =

i(i−1)
2 as usual.

As a reminder we can also now re-state the generalised Krawtchouk (2.6.5) polynomials for

the skew rank association scheme as defined by Delsarte [12, (15)],

Pk(x, n) =

k∑
j=0

(−1)k−jqmjq2σk−j

[
n− j

n− k

][
n− x

j

]
.

We also take Delsarte’s MacWilliams Identity for general association schemes and write it

here explicitly for the skew rank association scheme, as we will use it later in the proof of

the MacWilliams Identity as a functional transform in Section 3.3.2.

Theorem 3.1.1. Let C ⊆ Aq,t be a code with skew rank weight distribution c = (c0, . . . , cn)

and C⊥ be its dual code with skew rank weight distribution c′ = (c′0, . . . , c
′
n) and the (n +

1) × (n + 1) eigenmatrix of the skew rank association scheme P = (pxk), consisting of the

eigenvalues Pk(x, n) = pxk, then we have

c′ =
1

|C |
cP . (3.1.1)

3.1.2 The Gamma Function

To aid us in notation, we define a new function, that we call the gamma function, for this

setting. This is analogous to the alpha function introduced by Gadouleau and Yan [22,

Section 2.3].

Definition 3.1.2. The skew-q-ary gamma function for x ∈ R, k ∈ Z is defined to be

γ(x, k) =

k−1∏
i=0

(
qx − q2i

)
.
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The statement of the count of matrices of size t × t, Theorem 2.6.6, can then be rewritten

as

ξt,k =

[
n

k

]
γ(m, k). (3.1.2)

Proof. We have,

[
n

k

]
γ(m, k) =

k−1∏
i=0

q2n − q2i

q2k − q2i

k−1∏
i=0

(
qm − q2i

)

=

k−1∏
i=0

q2i
(
q2n−2i − 1

) k−1∏
i=0

q2i
(
qm−2i − 1

)
k−1∏
i=0

q2i
(
q2k−2i − 1

)

=



q2σk

2k−1∏
i=0

(
q2n−i − 1

)
k∏

i=1

(
q2i − 1

) if t = 2n,

q2σk

2k−1∏
i=0

(
q2n+1−i − 1

)
k∏

i=1

(
q2i − 1

) if t = 2n+ 1.

= q2σk

2k−1∏
i=0

(
qt−i − 1

)
k∏

i=1

(
q2i − 1

)
as required.

Lemma 3.1.3. We have the following identities for the skew-q-ary gamma function:

1.

γ(x, k) = qk(k−1)
k−1∏
i=0

(
qx−2i − 1

)
,

2.
γ(2x, k)

γ(2k, k)
=

[
x

k

]
=

∏k−1
i=0

(
q2x−2i − 1

)∏k
i=1 (q

2i − 1)
,

3.

γ(x+ 2, k + 1) =
(
qx+2 − 1

)
q2kγ(x, k), (3.1.3)

4.

γ(x, k + 1) =
(
qx − q2k

)
γ(x, k). (3.1.4)

Proof.
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(1)

γ(x, k) =

k−1∏
i=0

(
qx − q2i

)
=

k−1∏
i=0

q2i
k−1∏
i=0

(
qx−2i − 1

)
= qk(k−1)

k−1∏
i=0

(
qx−2i − 1

)
.

(2)

[
x

k

]
=

k−1∏
i=0

(
q2x − q2i

)
k−1∏
i=0

(
q2k − q2i

) =
γ(2x, k)

γ(2k, k)
=

k−1∏
i=0

(
q2x−2i − 1

)
k∏

i=1

(
q2i − 1

) .

(3)

γ(x+ 2, k + 1) =

k∏
i=0

(
qx+2 − q2i

)
=
(
qx+2 − 1

) k∏
i=1

(
qx+2 − q2i

)
=
(
qx+2 − 1

)
q2k

k−1∏
i=0

(
qx − q2i

)
=
(
qx+2 − 1

)
q2kγ(x, k).

(4)

γ(x, k + 1) =

k∏
i=0

(
qx − q2i

)
=
(
qx − q2k

) k−1∏
i=0

(
qx − q2i

)
=
(
qx − q2k

)
γ(x, k).

3.2 The Skew-q-Algebra

The skew rank weight enumerators of any linear code C ⊆ Aq,t are homogeneous polynomi-

als. Taking inspiration from [22, Definition 3] we introduce operations, the skew-q-product,

the skew-q-power and the skew-q-transform, on homogeneous polynomials that will help to

express the relation between the weight enumerator of a code and that of its dual.
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3.2.1 The Skew-q-Product, Skew-q-Power and the Skew-q-Transform

Definition 3.2.1. Let

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i

b(X,Y ;λ) =

s∑
i=0

bi(λ)Y
iXs−i

be two homogeneous polynomials in X and Y with coefficients ai(λ) and bi(λ) respectively,

which are real functions of λ that are 0 unless otherwise specified. For example bi(λ) = 0

if i /∈ {0, 1, . . . , s}. The skew-q-product, ∗, of a(X,Y ;λ), of degree r, and b(X,Y ;λ) of

degree s, is defined as

c(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ)

=

r+s∑
u=0

cu(λ)Y
uXr+s−u

(3.2.1)

with

cu(λ) =

u∑
i=0

q2isai(λ)bu−i(λ− 2i). (3.2.2)

We note that as with the q-product in [22, Lemma 1], the skew-q-product is not commutative

or distributive in general. However, if a(X,Y ;λ) = a is a constant independent of λ, the

following property holds:

a ∗ b(X,Y ;λ) = b(X,Y ;λ) ∗ a = ab(X,Y ;λ).

Another property is that if the degree of a(X,Y ;λ) and c(X,Y ;λ) are the same then,

{a(X,Y ;λ) + c(X,Y ;λ)} ∗ b(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ) + c(X,Y ;λ) ∗ b(X,Y ;λ)

and

a(X,Y ;λ) ∗ {b(X,Y ;λ) + c(X,Y ;λ)} = a(X,Y ;λ) ∗ b(X,Y ;λ) + a(X,Y ;λ) ∗ c(X,Y ;λ).

Definition 3.2.2. The skew-q-power is defined by


a[0](X,Y ;λ) = 1,

a[1](X,Y ;λ) = a(X,Y ;λ),

a[k](X,Y ;λ) = a(X,Y ;λ) ∗ a[k−1](X,Y ;λ) for k ≥ 2.

Definition 3.2.3 ([22, Definition 4]). Let a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i. We define the
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skew-q-transform to be the homogeneous polynomial

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
[i] ∗X [r−i]

where Y [i] is the ith skew-q-power of the homogeneous polynomial Y and X [r−i] is the

(r − i)th skew-q-power of the homogeneous polynomial X.

3.2.2 Using the Skew-q-Product in the Skew Rank Association Scheme

In the theory that follows we consider the following special polynomials which fulfil a similar

role in each chapter. First, let

µ(X,Y ;λ) = X +
(
qλ − 1

)
Y. (3.2.3)

The skew-q-powers of µ(X,Y ;m) provide an explicit form for the weight enumerator of Aq,t,

the set of skew-symmetric matrices of order t.

Theorem 3.2.4. If µ(X,Y ;λ) is as defined above, then

µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u for k ≥ 1, (3.2.4)

where

µu(λ, k) =

[
k

u

]
γ(λ, u).

Specifically, the weight enumerators for Aq,t, the set of skew-symmetric matrices of size

t ≥ 1, denoted by Ωt, is given by,

Ωt = µ[n](X,Y ;m)

where n =
⌊
t
2

⌋
and m = t(t−1)

2n .

Proof. The proof follows the method of induction. Consider k = 1, so

µ[1](X,Y ;λ) = µ(X,Y ;λ) = X +
(
qλ − 1

)
Y.

Then

µ0(λ, 1) = 1 =

[
1

0

]
γ(λ, 0)

µ1(λ, 1) =
(
qλ − 1

)
=

[
1

1

]
γ(λ, 1).

So

µu(λ, 1) =

[
1

u

]
γ(λ, u) (3.2.5)
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as required for k = 1. Now assume the theorem is true for k ≥ 1. Then

µ[k+1](X,Y ;λ) = µ(X,Y ;λ) ∗ µ[k](X,Y ;λ)

=
(
X +

(
qλ − 1

)
Y
)
∗

(
k∑

u=0

[
k

u

]
γ(λ, u)Y uXk−u

)

=

k+1∑
i=0

fi(λ)Y
iXk+1−i

where,

fi(λ) =

i∑
j=0

q2jkµj(λ, 1)µi−j(λ− 2j, k)

=µ0(λ, 1)µi(λ, k) + q2kµ1(λ, 1)µi−1(λ− 2, k)

(3.2.5)
=

[
k

i

]
γ(λ, i) + q2k

(
qλ − 1

) [ k

i− 1

]
γ(λ− 2, i− 1)

(3.1.3)(2.3.32)
=

q2(k−i+1) − 1

q2(k+1) − 1

[
k + 1

i

]
γ(λ, i)+q2k

q2i − 1

q2(k+1) − 1
q2(1−i)

[
k + 1

i

]
γ(λ, i)

= γ(λ, i)

[
k + 1

i

](
q2(k−i+1) − 1 + q2(k−i+1)

(
q2i − 1

)
q2(k+1) − 1

)

= γ(λ, i)

[
k + 1

i

]

since for i ≥ 1 we only need to consider the first two coefficients as when j ≥ 2 then

µj(λ, 1) =
[
1
j

]
γ(λ, j) = 0 since

[
1
j

]
= 0 when j ≥ 2. So it is true for k + 1. Therefore by

induction the first part of the theorem is true. Now consider µ[n](X,Y ;m), then clearly

µ[n](X,Y ;m) =

n∑
u=0

[
n

u

]
γ(m,u)Y uXn−u

(3.1.2)
=

n∑
u=0

ξt,uY
uXn−u (2.6.4)

= Ωt

as required.

Second, consider the polynomial

ν(X,Y ;λ) = X − Y.

Theorem 3.2.5. If ν(X,Y ;λ) is as defined above, then for all k ≥ 1,

ν[k](X,Y ;λ) =

k∑
u=0

νu(λ, k)Y
uXk−u =

k∑
u=0

(−1)uqu(u−1)

[
k

u

]
Y uXk−u. (3.2.6)

Proof. We perform induction on k. It is easily checked that the theorem holds for k = 1.
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Now assume the theorem holds for k ≥ 1. For clarity, ν0(λ, 1) = 1 and ν1(λ, 1) = −1. Then,

ν[k+1](X,Y ;λ) = ν(X,Y ;λ) ∗ ν[k](X,Y ;λ)

= (X − Y ) ∗

(
k∑

u=0

(−1)uqu(u−1)

[
k

u

]
Y uXk−u

)

=

k+1∑
i=0

gi(λ)Y
iXk+1−i

where

gi(λ) =

i∑
j=0

q2jkνj(λ, k)νi−j(λ− j, k)

(3.2.6)
= (−1)iq0qi(i−1)

[
k

i

]
+ (−1)(−1)i−1q2kq(i−1)(i−2)

[
k

i− 1

]
(2.3.32)(2.3.33)

= (−1)iqi(i−1) q
2(k−i+1) − 1

q2(k+1) − 1

[
k + 1

i

]
+(−1)iq2kqi(i−1)q−2(i−1) q2i − 1

q2(k+1) − 1

[
k + 1

i

]
=

(−1)iqi(i−1)

q2(k+1) − 1

[
k + 1

i

]{
q2(k−i+1) − 1 + q2k−2i+2+2i − q2k−2i+2

}
= (−1)iqi(i−1)

[
k + 1

i

]

since if i ≥ 1 we only consider the first two terms of the sum as when j ≥ 2 then νj(λ, 1) = 0

as required.

3.3 The MacWilliams Identity for the Skew Rank As-

sociation Scheme

In this section we introduce the skew-q-Krawtchouk polynomials which we prove are equal

to the generalised Krawtchouk polynomials that are identified in [11, (15)] and [9, (A10)] for

the skew rank association scheme. In this way a new q-analog of the MacWilliams Identity

for dual subgroups (or codes) of skew-symmetric matrices over Fq is presented and proven.

The proof is by comparison with a traditional form of the identity as given in [12, Theorem 3]

and proved in [9, (3.14)]. We note that this method for proving the MacWilliams Identity as

a functional transform is different to the one presented in Gadouleau and Yan [22, Theorem

1]. They use character theory, the Hadamard transform and a decomposition of the subspace

into component MRD subspaces. We are unable to mimic that proof in this case, due to

the lack of relevant maximal subspaces that are generated by a single element in the skew

rank association scheme. In exploring the possibility of using subspaces in this new way we

found the skew rank weight enumerator for the dual of a specific skew-symmetric matrix,
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an example of which has been included in Appendix A.3.

3.3.1 The Skew-q-Krawtchouk Polynomials

We now consider the following set of polynomials which arise in finding the skew-q-transform

of µ(X,Y ;m) and ν(X,Y ;m) as defined in Section 3.2.2.

Definition 3.3.1. For t ∈ Z+, x, k ∈ {0, 1, . . . , n} where n = ⌊ t
2⌋, and m = t(t−1)

2n we define

the the skew-q-Krawtchouk Polynomial as

Ck(x, n) =

k∑
j=0

(−1)jq2j(n−x)qj(j−1)

[
x

j

][
n− x

k − j

]
γ(m− 2j, k − j).

The value of the skew-q-Krawtchouk polynomial, Ck(x, n), depends on m, which in turn

depends on the parity of t. However, it behaves in the same way regardless of the parity of

t, and so we shall use our shorthand notation and only make the dependence on n explicit.

We first prove that the Ck(x, n) satisfy the recurrence relation (2.3.40) and the specific

initial values and are therefore the generalised Krawtchouk polynomials. That is, for the

skew rank association scheme with q ∈ R+, n ∈ Z+ and x, k ∈ {0, 1, . . . , n} the recurrence

relation is

Pk+1(x+ 1, n+ 1) = q2(k+1)Pk+1(x, n)− q2kPk(x, n)

and the specific initial values the Ck(x, n) need to meet are the initial values for the gener-

alised Krawtchouk polyonimals, Pk(x, n), namely

Pk(0, n) =

[
n

k

]
γ(m, k) (3.3.1)

P0(x, k) = 1. (3.3.2)

Proposition 3.3.2. For all x, k ∈ {0, . . . , n} we have

Ck+1(x+ 1, n+ 1) = q2(k+1)Ck+1(x, n)− q2kCk(x, n). (3.3.3)

Proof. We consider all three terms sequentially. First note that

[
x

j − 1

]
= 0 when j = 0.
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Then

Ck+1(x+ 1, n+ 1)

=

k+1∑
j=0

(−1)jq2j(n−x)qj(j−1)

[
x+ 1

j

][
n− x

k + 1− j

]
γ (m+ 2− 2j, k + 1− j)

= Ck+1(x+ 1, n+ 1)|j=k+1

(2.3.30)
+

k∑
j=0

(−1)jq2j(n−x)+j(j−1)

{[
x

j − 1

]
+ q2j

[
x

j

]}

×
[

n− x

k + 1− j

]
γ (m+ 2− 2j, k + 1− j)

= Ck+1(x+ 1, n+ 1)|j=k+1

+

k∑
j=1

(−1)jq2j(n−x)+j(j−1)

[
x

j − 1

][
n− x

k + 1− j

]
γ(m+ 2− 2j, k + 1− j) (3.3.4)

(3.1.3)
+

k∑
j=0

(−1)jq2j(n−x)+j(j−1)+m+2+2(k−j)

[
x

j

][
n− x

k + 1− j

]
γ (m− 2j, k − j)

(3.3.5)

−
k∑

j=0

(−1)jq2j(n−x)+j(j−1)+2k

[
x

j

][
n− x

k + 1− j

]
γ(m− 2j, k − j) (3.3.6)

= Ck+1(x+ 1, n+ 1)|j=k+1 + α1 + α2 + α3

where α1, α2, α3 represent summands (3.3.4), (3.3.5), (3.3.6) respectively and for notation,

|j=k+1 means “the term when j = k + 1”.

Second,

q2(k+1)Ck+1(x, n)

=

k+1∑
j=0

(−1)jq2(k+1)q2j(n−x)qj(j−1)

[
x

j

][
n− x

k + 1− j

]
γ(m− 2j, k + 1− j)

= q2(k+1) Ck+1(x, n)|j=k+1

(3.1.4)
+

k∑
j=0

(−1)jq2j(n−x)+j(j−1)+m+2+2(k−j)

[
x

j

][
n− x

k + 1− j

]
γ(m− 2j, k − j)

(3.3.7)

−
k∑

j=0

(−1)jq2j(n−x)+j(j−1)+2k+2(k−j+1)

[
x

j

][
n− x

k + 1− j

]
γ(m− 2j, k − j)

(3.3.8)

= q2(k+1) Ck+1(x, n)|j=k+1 + α2 + β1
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where β1 represents the summand (3.3.8). Third,

q2kCk(x, n) =

k∑
j=0

(−1)jq2j(n−x)+j(j−1)+2k

[
x

j

][
n− x

k − j

]
γ(m− 2j, k − j),

= ρ, say.

So let C = Ck+1(x+ 1, n+ 1)− q2(k+1)Ck+1(x, n) + q2kCk(x, n). Then,

C = α1 + α3 − β1 + ρ+ Ck+1(x+ 1, n+ 1)|j=k+1 − q2(k+1) Ck+1|j=k+1 .

Consider α3 − β1 + ρ. Then we have

α3 − β1 =

k∑
j=0

(−1)j+1q2j(n−x)+j(j−1)+2k

[
x

j

][
n− x

k + 1− j

]
γ(m− 2j, k − j)

(
1− q2(k−j+1)

)
(2.3.31)
=

k∑
j=0

(−1)j+1q2j(n−x)+j(j−1)+2k
(
1− q2(k−j+1)

)[x
j

]

× q2((n−x)−(k−j)) − 1

q2(k+1−j) − 1

[
n− x

k − j

]
γ(m− 2j, k − j)

=

k∑
j=0

(−1)jq2(j+1)(n−x)+j(j+1)

[
x

j

][
n− x

k − j

]
γ(m− 2j, k − j) (3.3.9)

−
k∑

j=0

(−1)jq2j(n−x)+j(j−1)+2k

[
x

j

][
n− x

k − j

]
γ(m− 2j, k − j)

= τ − ρ

where τ represents the summand in (3.3.9). Thus,

C = α1 + τ + Ck+1(x+ 1, n+ 1)|j=k+1 − q2(k+1) Ck+1(x, n)|j=k+1 .

Now,

Ck+1 (x+ 1, n+ 1)|j=k+1 − q2(k+1) Ck+1(x, n)|j=k+1

= (−1)k+1q2(k+1)(n−x)q(k+1)k

{[
x+ 1

k + 1

]
− q2(k+1)

[
x

k + 1

]}
(2.3.30)
= (−1)k+1q2(k+1)(n−x)q(k+1)k

[
x

k

]
= −τ |j=k.
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Now consider α1.

α1 =

k∑
j=1

(−1)jq2j(n−x)+j(j−1)

[
x

j − 1

][
n− x

k + 1− j

]
γ(m+ 2− 2j, k + 1− j)

=

k−1∑
j=0

(−1)j+1q2(j+1)(n−x)+j(j+1)

[
x

j

][
n− x

k − j

]
γ(m− 2j, k − j)

= −τ + τ |j=k.

Thus C = 0 and so the Ck(x, n) satisfy the recurrence relation (3.3.3).

Lemma 3.3.3. The Ck(x, n) are the generalised Krawtchouk polynomials. In other words,

Ck(x, n) = Pk(x, n). (3.3.10)

Proof. The Ck(x, n) satisfy the recurrence relation (3.3.3) and the initial values of the

Ck(x, n) are

Ck(0, n) =

k∑
j=0

(−1)jq2jnqj(j−1)

[
0

j

][
n

k − j

]
γ(m− 2j, k − j)

=

[
n

k

]
γ(m, k)

since

[
0

j

]
= 0 for j > 0, and

C0(x, n) = (−1)0q0(n−x)q0
[
x

0

][
n− x

0

]
γ(m, 0)

= 1

as required.

We note that this explicit form for the generalised Krawtchouk polynomials is distinct from

the three forms presented in [11, (15)] as shown in Example 5.2.10.

3.3.2 The MacWilliams Identity for the Skew Rank Association

Scheme

We now use the skew-q-Krawtchouk polynomials to prove the q-analog form of the MacWil-

liams Identity for the skew rank association scheme. We note that this form is similar to the

q-analog of the MacWilliams Identity developed in [22, Theorem 1] for linear rank metric

codes over Fqm but differs in the parameters of the q-algebra and the meaning of the variable

m.
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Let the skew rank weight enumerator of C ⊆ Aq,t be

WSR
C (X,Y ) =

n∑
i=0

ciY
iXn−i

and of its dual, C⊥ ⊆ Aq,t be

WSR
C⊥ (X,Y ) =

n∑
i=0

c′iY
iXn−i.

Theorem 3.3.4 (The MacWilliams Identity for the Skew Rank Association Scheme). Let

C ⊆ Aq,t be a linear code with weight distribution c = (c0, . . . , cn) with n =
⌊
t
2

⌋
and

m = t(t−1)
2n , and C⊥ ⊆ Aq,t its dual code with weight distribution c′ = (c′0, . . . , c

′
n). Then

WSR
C⊥ (X,Y ) =

1

|C |
W

SR

C (X + (qm − 1)Y,X − Y ) .

Proof. For 0 ≤ i ≤ n we have

(X − Y )
[i] ∗ (X + (qm − 1)Y )

[n−i]

=
(
ν[i](X,Y ;n)

)
∗
(
µ[n−i](X,Y ;m)

)
(3.2.4)(3.2.6)

=

(
i∑

u=0

(−1)uqu(u−1)

[
i

u

]
Y uXi−u

)
∗

n−i∑
j=0

[
n− i

j

]
γ(m, j)Y jXn−i−j


(3.2.1)
=

n∑
k=0

(
k∑

ℓ=0

q2ℓ(n−i)(−1)ℓqℓ(ℓ−1)

[
i

ℓ

][
n− i

k − ℓ

]
γ(m− 2ℓ, k − ℓ)

)
Y kXn−k

=

n∑
k=0

Ck(i, n)Y
kXn−k

(3.3.10)
=

n∑
k=0

Pk(i, n)Y
kXn−k.

So then we have

1

|C |
W

SR

C (X + (qm − 1)Y,X − Y ) =
1

|C |

n∑
i=0

ci

n∑
k=0

Pk(i, n)Y
kXn−k

=

n∑
k=0

(
1

|C |

n∑
i=0

ciPk(i, n)

)
Y kXn−k

(3.1.1)
=

n∑
k=0

c′kY
kXn−k

=WSR
C⊥ (X,Y ).

In this way we have shown that the MacWilliams Identity for a code and its dual based

on skew-symmetric matrices over Fq can be expressed as a q-transform of homogeneous
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polynomials in a form analogous to the original MacWilliams Identity for the Hamming

association scheme and the q-analog developed by Gadouleau and Yan [22] for the rank

association scheme.

3.4 The Skew-q-Derivatives

To complete our skew-q-algebra, in this section we develop a new skew-q-derivative and

skew-q−1-derivative to help analyse the coefficients of skew rank weight enumerators. This

is analogous to the q-derivatives applied to the rank association scheme [22, Definition 5, 6]

with the parameter q replaced by q2.

3.4.1 The Skew-q-Derivative

Definition 3.4.1. For q ≥ 2, the skew-q-derivative at X ̸= 0 for a real-valued function

f(X) is defined as

f (1) (X) =
f
(
q2X

)
− f (X)

(q2 − 1)X
.

For φ ≥ 0 we denote the φth skew-q-derivative (with respect to X) of f(X,Y ;λ) as

f (φ)(X,Y ;λ). The 0th skew-q-derivative of f(X,Y ;λ) is f(X,Y ;λ). For any a ∈ R, X ̸= 0,

and real-valued function g(X), we have

[f(X) + ag(X)]
(1)

= f (1)(X) + ag(1)(X).

Lemma 3.4.2.

1. For 0 ≤ φ ≤ ℓ, φ ∈ Z+ and ℓ ≥ 0,

(
Xℓ
)(φ)

= β(ℓ, φ)Xℓ−φ.

2. The φth skew-q-derivative of f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i is given by

f (φ) (X,Y ;λ) =

r−φ∑
i=0

fi(λ)β(r − i, φ)Y iXr−i−φ. (3.4.1)

3. Also,

µ[k](φ)(X,Y ;λ) = β(k, φ)µ[k−φ](X,Y ;λ) (3.4.2)

ν[k](φ)(X,Y ;λ) = β(k, φ)ν[k−φ](X,Y ;λ). (3.4.3)

Proof.
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(1) For φ = 1 we have

(
Xℓ
)(1)

=

(
q2X

)ℓ −Xℓ

(q2 − 1)X
=
q2ℓ − 1

q2 − 1
Xℓ−1 =

[
ℓ

1

]
= β(ℓ, φ)Xℓ−1.

The rest of the proof follows by induction on φ and is omitted.

(2) Now consider f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i. We have,

f (1) (X,Y ;λ) =

(
r∑

i=0

fi(λ)Y
iXr−i

)(1)

=

r∑
i=0

fi(λ)Y
i
(
Xr−i

)(1)
=

r−1∑
i=0

fi(λ)β(r − i, φ)Y iXr−i−1.

Then the case of φ = 1 holds. The rest of the proof follows by induction on φ and is

omitted.

(3) Now consider µ[k] =

k∑
u=0

µu(λ, k)Y
uXk−u where µu(λ, k) =

[
k

u

]
γ(λ, u) as in Equation

(3.2.4). Then we have

µ[k](1)(X,Y ;λ) =

(
k∑

u=0

µu(λ, k)Y
uXk−u

)(1)

=

k∑
u=0

µu(λ, k)Y
u

((
q2X

)k−u −Xk−u

(q2 − 1)X

)

=

k−1∑
u=0

q2(k−u) − 1

q2 − 1

[
k

u

]
γ(λ, u)Y uXk−u−1

(2.3.32)
=

k−1∑
u=0

(q2k − 1)
(
q2(k−u) − 1

)
(q2(k−u) − 1)(q2 − 1)

[
k − 1

u

]
γ(λ, u)Y uXk−u−1

=

(
q2k − 1

q2 − 1

)
µ[k−1](X,Y ;λ)

(2.3.34)
= β(k, 1)µ[k−1](X,Y ;λ).

Then the case of φ = 1 holds. The statement of the theorem, µ[k](φ)(X,Y ;λ) =

β(k, φ)µ[k−φ](X,Y ;λ), then follows by induction on φ and is omitted.

Now consider ν[k](X,Y ;λ) =

k∑
u=0

(−1)uqu(u−1)

[
k

u

]
Y uXk−u as in Equation (3.2.6).
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Then we have

ν[k](1)(X,Y ;λ) =

k∑
u=0

(−1)uqu(u−1) q
2(k−u) − 1

q2 − 1

[
k

u

]
Y uXk−u−1

(2.3.32)
=

k−1∑
u=0

(−1)uqu(u−1)

(
q2k − 1

) (
q2(k−u) − 1

)(
q2(k−u) − 1

)
(q2 − 1)

[
k − 1

u

]
Y uXk−1−u

=

(
q2k − 1

q2 − 1

)
ν[k−1](X,Y ;λ)

(2.3.34)
= β(k, 1)ν[k−1](X,Y ;λ).

So ν[k](φ)(X,Y ;λ) = β(k, φ)ν[k−φ](X,Y ;λ) follows by induction also and is omitted.

We now need a few smaller lemmas in order to prove the Leibniz rule for the skew-q-

derivative.

Lemma 3.4.3. Let

u (X,Y ;λ) =

r∑
i=0

ui(λ)Y
iXr−i

v (X,Y ;λ) =

s∑
i=0

vi(λ)Y
iXs−i.

1. If ur(λ) = 0 then

1

X
[u (X,Y ;λ) ∗ v (X,Y ;λ)] =

u (X,Y ;λ)

X
∗ v (X,Y ;λ) . (3.4.4)

2. If vs(λ) = 0 then

1

X
[u (X,Y ;λ) ∗ v (X,Y ;λ)] = u

(
X, q2Y ;λ

)
∗ v (X,Y ;λ)

X
. (3.4.5)

Proof.

(1) If ur(λ) = 0,

u (X,Y ;λ)

X
=

r−1∑
i=0

ui(λ)Y
iXr−i−1.
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Hence

u (X,Y ;λ)

X
∗ v (X,Y ;λ)

(3.2.2)
=

r+s−1∑
k=0

(
k∑

ℓ=0

q2ℓsuℓ(λ)vk−ℓ(λ− 2ℓ)

)
Y kXr+s−1−k

=
1

X

r+s−1∑
k=0

(
k∑

ℓ=0

q2ℓsuℓ(λ)vk−ℓ(λ− 2ℓ)

)
Y kXr+s−k

+
1

X

r+s∑
ℓ=0

q2ℓsuℓ(λ)vr+s−ℓ(λ− 2ℓ)Y r+sX0

=
1

X

r+s∑
k=0

(
k∑

ℓ=0

q2ℓsuℓ(λ)vk−ℓ(λ− 2ℓ)

)
Y kXr+s−k

=
1

X
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since vr+s−ℓ(λ− 2ℓ) = 0 for 0 ≤ ℓ ≤ r − 1 and uℓ(λ) = 0 for r ≤ ℓ ≤ r + s. So

1

X

r+s∑
ℓ=0

q2ℓsuℓ(λ)vr+s−ℓ(λ− 2ℓ)Y r+sX0 = 0.

(2) Now if vs(λ) = 0,

v (X,Y ;λ)

X
=

s−1∑
i=0

vi(λ)Y
iXs−1−i.

Then similarly,

u
(
X, q2Y ;λ

)
∗ v (X,Y ;λ)

X

(3.2.2)
=

r+s−1∑
k=0

(
k∑

ℓ=0

q2ℓ(s−1)q2ℓuℓ(λ)vk−ℓ(λ− 2ℓ)

)
Y kXr+s−1−k

=
1

X

r+s−1∑
k=0

(
k∑

ℓ=0

q2ℓ(s−1)q2ℓuℓ(λ)vk−ℓ(λ− 2ℓ)

)
Y kXr+s−k

+
1

X

r+s∑
ℓ=0

q2ℓsuℓ(λ)vr+s−ℓ(λ− 2ℓ)Y r+sX0

=
1

X

r+s∑
k=0

(
k∑

ℓ=0

q2ℓ(s−1)q2ℓuℓ(λ)vk−ℓ(λ− 2ℓ)

)
Y kXr+s−k

=
1

X
[u(X,Y ;λ) ∗ v(X,Y ;λ)]

since vr+s−ℓ(λ− 2ℓ) = 0 for 0 ≤ ℓ ≤ r and uℓ(λ) = 0 for r + 1 ≤ ℓ ≤ r + s. So

1

X

r+s∑
ℓ=0

q2ℓsuℓ(λ)vr+s−ℓ(λ− 2ℓ)Y r+sX0 = 0

as required.

Theorem 3.4.4 (Leibniz rule for the skew-q-derivative). For two homogeneous polynomials

in X and Y , f(X,Y ;λ) and g(X,Y ;λ) with degrees r and s respectively, and for φ ≥ 0, the

φth skew-q-derivative of their skew-q-product is given by
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[f (X,Y ;λ) ∗ g (X,Y ;λ)]
(φ)

=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(r−ℓ)f (ℓ) (X,Y ;λ) ∗ g(φ−ℓ) (X,Y ;λ) . (3.4.6)

Proof. For simplification, we shall write f(X,Y ;λ) as f(X,Y ) and similarly g(X,Y ;λ) as

g(X,Y ). Now by differentiation we have

[f (X,Y ) ∗ g (X,Y )]
(1)

=
f
(
q2X,Y

)
∗ g
(
q2X,Y

)
− f (X,Y ) ∗ g (X,Y )

(q2 − 1)X

=
1

(q2 − 1)X

{
f
(
q2X,Y

)
∗ g
(
q2X,Y

)
− f

(
q2X,Y

)
∗ g (X,Y )

+ f
(
q2X,Y

)
∗ g (X,Y )− f (X,Y ) ∗ g (X,Y )

}
=

1

(q2 − 1)X

{
f
(
q2X,Y

)
∗
(
g
(
q2X,Y

)
− g (X,Y )

)}
+

1

(q2 − 1)X

{(
f
(
q2X,Y

)
− f (X,Y )

)
∗ g (X,Y )

}
(3.4.5)
= f

(
q2X, q2Y

)
∗

{
g
(
q2X,Y

)
− g (X,Y )

(q2 − 1)X

}
(3.4.4)
+

{
f
(
q2X,Y

)
− f (X,Y )

(q2 − 1)X

}
∗ g (X,Y )

= q2rf (X,Y ) ∗ g(1) (X,Y ) + f (1) (X,Y ) ∗ g (X,Y ) (3.4.7)

since gs(λ)Y
s
(
q2X

)0
= gs(λ)Y

sX0, so we can use (3.4.5). Similarly, fr(λ)Y
r
(
q2X

)0
=

fr(λ)Y
rX0, so we can use (3.4.4) So the initial case holds. Assume the statement holds true

for φ = φ, i.e.

[f (X,Y ) ∗ g (X,Y )]
(φ)

=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(r−ℓ)f (ℓ) (X,Y ) ∗ g(φ−ℓ) (X,Y ) .

Now considering φ+ 1 and for simplicity writing f(X,Y ;λ), g(X,Y ;λ) as f, g we have
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[f ∗ g](φ+1)
=

[
φ∑

ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(r−ℓ)f (ℓ) ∗ g(φ−ℓ)

](1)

=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(r−ℓ)

[
f (ℓ) ∗ g(φ−ℓ)

](1)
(3.4.7)
=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(r−ℓ)

(
q2(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1) + f (ℓ+1) ∗ g(φ−ℓ)

)

=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ+1)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

+

φ+1∑
ℓ=1

[
φ

ℓ− 1

]
q2(φ−ℓ+1)(r−ℓ+1)f (ℓ) ∗ g(φ−ℓ+1)

=

[
φ

0

]
q2(φ+1)rf ∗ g(φ+1) +

φ∑
ℓ=1

[
φ

ℓ

]
q2(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

+

[
φ

φ

]
q2(φ+1−φ−1)(r−φ−1+1)f (φ+1) ∗ g

+

φ∑
ℓ=1

[
φ

ℓ− 1

]
q2(φ+1−ℓ)(r−ℓ+1)f (ℓ) ∗ g(φ−ℓ+1)

= q2(φ+1)rf ∗ g(φ+1) + f (φ+1) ∗ g

+

φ∑
ℓ=1

([
φ

ℓ

]
+ q2(φ−ℓ+1)

[
φ

ℓ− 1

])
q2(φ−ℓ+1)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

(2.3.29)
=

φ∑
ℓ=1

[
φ+ 1

ℓ

]
q2(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ+1−ℓ) +

[
φ+ 1

0

]
q2(φ+1)rf ∗ g(φ+1)

+

[
φ+ 1

φ+ 1

]
q2(φ+1−φ−1)f (φ+1) ∗ g

=

φ+1∑
ℓ=0

[
φ+ 1

ℓ

]
q2(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ+1−ℓ)

as required.

3.4.2 The Skew-q−1-Derivative

Definition 3.4.5. For q ≥ 2, the skew-q−1-derivative at Y ̸= 0 for a real-valued function

g(Y ) is defined as

g{1} (Y ) =
g
(
q−2Y

)
− g (Y )

(q−2 − 1)Y
.

For φ ≥ 0 we denote the φth skew-q−1-derivative (with respect to Y ) of g(X,Y ;λ) as

g{φ}(X,Y ;λ). The 0th skew-q−1-derivative of g(X,Y ;λ) is g(X,Y ;λ). For any a ∈ R, Y ̸= 0

and real-valued function f(Y ),

[f(Y ) + ag(Y )]
{1}

= f{1}(Y ) + ag{1}(Y ).
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Lemma 3.4.6.

1. For 0 ≤ φ ≤ ℓ, φ ∈ Z+ and ℓ ≥ 0,

(
Y ℓ
){φ}

= q2(φ(1−ℓ)+σφ)β(ℓ, φ)Y ℓ−φ.

2. The φth skew-q−1-derivative of g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i is given by

g{φ} (X,Y ;λ) =

s∑
i=φ

gi(λ)q
2(φ(1−i)+σφ)β(i, φ)Y i−φXs−i. (3.4.8)

3. Also,

µ[k]{φ}(X,Y ;λ) = q−2σφβ(k, φ)γ(λ, φ)µ[k−φ](X,Y ;λ− 2φ) (3.4.9)

ν[k]{φ}(X,Y ;λ) = (−1)φβ(k, φ)ν[k−φ](X,Y ;λ). (3.4.10)

Proof.

(1) For φ = 1 we have

(
Y ℓ
){1}

=

(
q−2Y

)ℓ − Y ℓ

(q−2 − 1)Y
=

(
q−2ℓ − 1

q−2 − 1

)
Y ℓ−1

= q−2ℓ+2β(ℓ, 1)Y ℓ−1.

So the initial case holds. Assume the case for φ = φ holds. Then we have

(
Y ℓ
){φ+1}

=
(
q2(φ(1−ℓ)+σφ)β(ℓ, φ)Y ℓ−φ

){1}
= q2(φ(1−ℓ)+σφ)β(ℓ, φ)

q−2(ℓ−φ)Y ℓ−φ − Y ℓ−φ

(q−2 − 1)Y

= q2(φ(1−ℓ)+σφ)

(
q−2(ℓ−φ) − 1

q−2 − 1

)
β(ℓ, φ)Y ℓ−φ−1

(2.3.34)
= q2φ(1−ℓ)qφ(φ−1)q−2(ℓ−φ)q2

q2(ℓ−φ) − 1

q2 − 1

φ−1∏
i=0

[
ℓ− i

1

]
Y ℓ−φ−1

= q2((φ+1)(1−ℓ)+σφ+1)β(ℓ, φ+ 1)Y ℓ−φ+1.

Thus the statement holds by induction.

(2) Now consider g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i. For φ = 1 we have

g{1} (X,Y ;λ) =

(
s∑

i=0

gi(λ)Y
iXs−i

){1}

=

s∑
i=0

gi(λ)q
2(−i+1)β(i, 1)Y i−1Xs−i.
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As β(i, 1) = 0 when i = 0 we have

g{1} (X,Y ;λ) =

s∑
i=1

gi(λ)q
2((1−i)+σ1)β(i, 1)Y i−1Xs−i.

So the initial case holds. Now assume the case holds for φ = φ i.e.

g{φ} (X,Y ;λ) =

s∑
i=φ

gi(λ)q
2φ(1−i)+2σφβ(i, φ)Y (i−φ)Xs−i. Then we have

g{φ+1} (X,Y ;λ) =

 s∑
i=φ

gi(λ)q
2(φ(1−i)+σφ)β(i, φ)Y i−φXs−i

{1}

=

s∑
i=φ

gi(λ)q
2(φ(1−i)+σφ)β(i, φ)q−2(i−φ−1)β(i− φ, 1)Y i−φ−1Xs−i

(2.3.34)
=

s∑
i=φ

gi(λ)q
2(φ+1)(1−i)+2σφ

φ−1∏
j=0

q2(i−j) − 1

q2 − 1


×
(
q2(i−φ) − 1

)
q2 − 1

Y i−φ−1Xs−i

=

s∑
i=φ

gi(λ)q
2(φ+1)(1−i)+2σφβ(i, φ+ 1)Y i−φ−1Xs−i

=

s∑
i=φ+1

gi(λ)q
2(φ+1)(1−i)+2σφβ(i, φ+ 1)Y i−φ−1Xs−i

since when i = φ, β(φ,φ+ 1) = 0. So by induction Equation (3.4.8) holds.

(3) Now consider µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u where µu(λ, k) =

[
k

u

]
γ(λ, u) as in

Equation (3.2.6). Then we have

µ[k]{1}(X,Y ;λ) =

(
k∑

u=0

µu(λ, k)Y
uXk−u

){1}

=

k∑
u=1

µu(λ, k)q
2(1−u)β(u, 1)Y u−1Xk−u

=

k−1∑
r=0

µr+1(λ, k)q
2(1−(r+1))β(r + 1, 1)Y r+1−1Xk−r−1

=

k−1∑
r=0

[
k

r + 1

]
γ(λ, r + 1)q−2rβ(r + 1, 1)Y rXk−1−r

(2.3.33)(3.1.3)
=

k−1∑
r=0

[
k − 1

r

]
q2k − 1

q2(r+1) − 1

(
qλ − 1

)
q2rq−2rγ(λ− 2, r)

× β(r + 1, 1)Y rXk−1−r

(2.3.37)
=

k−1∑
r=0

[
k − 1

r

]
q2k − 1

q2 − 1

(
qλ − 1

)
q2rq−2rγ(λ− 2, r)Y rXk−1−r

= q−2σ1β(k, 1)γ(λ, 1)µ[k−1](X,Y ;λ− 2).

67



3.4. THE SKEW-q-DERIVATIVES

Now assume that the statement holds for φ = φ. Then we have

µ[k]{φ+1}(X,Y ;λ) =

[
q−2σφβ(k, φ)γ(λ, φ)µ[k−φ](X,Y ;λ− 2φ)

]{1}
(3.2.4)
= q−2σφβ(k, φ)γ(λ, φ)

(
k−φ∑
r=0

[
k − φ

r

]
γ(λ− 2φ, r)Y rXk−φ−r

){1}

= q−2σφβ(k, φ)γ(λ, φ)

k−φ∑
r=1

[
k − φ

r

]
γ(λ− 2φ, r) (Y r)

{1}
Xk−φ−r

= q−2σφβ(k, φ)γ(λ, φ)

k−φ−1∑
u=0

[
k − φ

u+ 1

]
γ(λ− 2φ, u+ 1)

×
(
Y u+1

){1}
Xk−φ−u−1

= q−2σφβ(k, φ)γ(λ, φ)

k−φ−1∑
u=0

[
k − φ

u+ 1

]
γ(λ− 2φ, u+ 1)

× q2(1−(u+1))β(u+ 1, 1)Y u+1−1Xk−φ−u−1

(2.3.33)(3.1.3)
= q−2σφβ(k, φ)γ(λ, φ)

k−(φ+1)∑
u=0

[
k − φ− 1

u

]

×
(
q2(k−φ) − 1

) (
q2(u+1) − 1

)(
q2(u+1) − 1

)
(q2 − 1)

q2uq−2u
(
qλ−2φ − 1

)
× γ(λ− 2(φ+ 1), u)Y uXk−(φ+1)−u

= q−2σφq−2φγ(λ, φ+ 1)β(k, φ+ 1)µ[k−(φ+1)](X,Y ;λ− 2(φ+ 1))

= q−2σφ+1γ(λ, φ+ 1)β(k, φ+ 1)µ[k−(φ+1)](X,Y ;λ− 2(φ+ 1))

as required. Now consider ν[k] =

k∑
u=0

(−1)uqu(u−1)

[
k

u

]
Y uXk−u as defined in Theorem

3.2.5. Then we have

ν[k]{1}(X,Y ;λ) =

(
k∑

u=0

(−1)uqu(u−1)

[
k

u

]
Y uXk−u

){1}

=

k∑
u=1

(−1)uqu(u−1)

[
k

u

]
(Y u)

{1}
Xk−u

=

k−1∑
r=0

(−1)(r+1)qr(r+1)q2(1−(r+1))

[
k

r + 1

]
β(r + 1, 1)Y r+1−1Xk−r−1

(2.3.33)
= −

k−1∑
r=0

(−1)rqr(r−1)q2rq−2r

[
k − 1

r

](
q2k − 1

) (
q2(r+1) − 1

)(
q2(r+1) − 1

)
(q2 − 1)

Y rXk−r−1

= (−1)1β(k, 1)ν[k−1](X,Y ;λ).

So the case for φ = 1 holds Now assume that the statement holds for φ = φ. Then we
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have

ν[k](X,Y ;λ){φ+1} =
[
(−1)φβ(k, φ)ν[k−φ](X,Y ;λ)

]{1}
= (−1)φβ(k, φ)

k−φ∑
u=1

(−1)uqu(u−1)

[
k − φ

u

]
(Y u)

{1}
Xk−φ−u

= (−1)φβ(k, φ)

k−φ−1∑
r=0

(−1)r+1qr(r+1)q−2(r+1)+2

[
k − φ

r + 1

]
× β(r + 1, 1)Y r+1−1Xk−φ−r−1

(2.3.33)
= (−1)φ+1β(k, φ)

k−φ−1∑
r=0

(−1)rqr(r−1)

[
k − (φ+ 1)

r

]

×
(
q2(k−φ) − 1

) (
q2(r+1) − 1

)(
q2(r+1) − 1

)
(q2 − 1)

Y rXk−φ−1−r

= (−1)φ+1β(k, φ+ 1)ν[k−(φ+1)](X,Y ;λ)

as required.

Now we need a few smaller lemmas in order to prove the Leibniz rule for the skew-q−1-

derivative.

Lemma 3.4.7. Let

u (X,Y ;λ) =

r∑
i=0

ui(λ)Y
iXr−i

v (X,Y ;λ) =

s∑
i=0

vi(λ)Y
iXs−i.

1. If u0(λ) = 0 then

1

Y
[u (X,Y ;λ) ∗ v (X,Y ;λ)] = q2s

u (X,Y ;λ)

Y
∗ v (X,Y ;λ− 2) . (3.4.11)

2. If v0(λ) = 0 then

1

Y
[u (X,Y ;λ) ∗ v (X,Y ;λ)] = u

(
X, q2Y ;λ

)
∗ v (X,Y ;λ)

Y
. (3.4.12)

Proof.

(1) Suppose u0(λ) = 0. Then

u (X,Y ;λ)

Y
=

r∑
i=1

ui(λ)Y
i−1Xr−i =

r−1∑
i=0

ui+1(λ)Y
iXr−i−1.
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Hence

q2s
u (X,Y ;λ)

Y
∗ v (X,Y ;λ− 2)

= q2s
r+s−1∑
u=0

(
u∑

ℓ=0

q2ℓsuℓ+1(λ)vu−ℓ(λ− 2ℓ− 2)

)
Y uXr+s−1−u

= q2s
r+s−1∑
u=0

(
u+1∑
i=1

q2(i−1)sui(λ)vu−i+1(λ− 2i)

)
Y uXr+s−1−u

= q2s
r+s∑
j=1

(
j∑

i=1

q2(i−1)sui(λ)vj−i(λ− 2j)

)
Y j−1Xr+s−j

=
1

Y

r+s∑
j=0

(
j∑

i=0

q2isui(λ)vj−i(λ− 2i)

)
Y jXr+s−j

=
1

Y
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since when j = 0,

j∑
i=0

q2isui(λ)vj−i(λ− 2i) = 0 as u0(λ) = 0.

(2) Now if v0(λ) = 0, then

v (X,Y ;λ)

Y
=

s∑
j=1

vj(λ)Y
j−1Xs−j

=

s−1∑
i=0

vi+1(λ)Y
iXs−i−1.

So,

u
(
X, q2Y ;λ

)
∗v (X,Y ;λ)

Y

=
r+s−1∑
u=0

 u∑
j=0

q2j(s−1)q2juj(λ)vu−j+1(λ− 2j)

Y uXr+s−1−u

=

r+s∑
ℓ=1

ℓ−1∑
j=0

q2jsuj(λ)vℓ−j(λ− 2j)

Y ℓ−1Xr+s−ℓ

=
1

Y

r+s∑
ℓ=1

 ℓ∑
j=0

q2jsuj(λ)vℓ−j(λ− 2j)

Y ℓXr+s−ℓ

=
1

Y

r+s∑
ℓ=0

 ℓ∑
j=0

q2jsuj(λ)vℓ−j(λ− 2j)

Y ℓXr+s−ℓ

=
1

Y
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since when j = ℓ,

ℓ∑
j=0

q2jsuj(λ)vℓ−j(λ− 2j) = 0 as v0(λ) = 0.

Theorem 3.4.8 (Leibniz rule for the skew-q−1-derivative). For two homogeneous polyno-

mials in Y , f(X,Y ;λ) and g(X,Y ;λ) with degrees r and s respectively and for φ ≥ 0, the
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φth skew-q−1-derivative of their skew-q-product is given by

[f (X,Y ;λ) ∗ g (X,Y ;λ)]
{φ}

=

φ∑
ℓ=0

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)f{ℓ} (X,Y ;λ) ∗ g{φ−ℓ} (X,Y ;λ− 2ℓ) .

Proof. For simplification we shall write f(X,Y ;λ), g(X,Y ;λ) as f(Y ;λ), g(Y ;λ). Now by

differentiation we have

[f (Y ;λ) ∗ g (Y ;λ)]
{1}

=
f
(
q−2Y ;λ

)
∗ g
(
q−2Y ;λ

)
− f (Y ;λ) ∗ g (Y ;λ)

(q−2 − 1)Y

=
1

(q−2 − 1)Y

{
f
(
q−2Y ;λ

)
∗ g
(
q−2Y ;λ

)
− f

(
q−2Y ;λ

)
∗ g (Y ;λ)

+ f
(
q−2Y ;λ

)
∗ g (Y ;λ)− f (Y ;λ) ∗ g (Y ;λ)

}
=

1

(q−2 − 1)Y

{
f
(
q−2Y ;λ

)
∗
(
g
(
q−2Y ;λ

)
− g (Y ;λ)

)}
+

1

(q−2 − 1)Y

{(
f
(
q−2Y ;λ

)
− f (Y ;λ)

)
∗ g (Y ;λ)

}
(3.4.12)
= f (Y ;λ) ∗

(
g
(
q−2Y ;λ

)
− g (Y ;λ)

)
(q−2 − 1)Y

(3.4.11)
+ q2s

(
f
(
q−2Y ;λ

)
− f (Y ;λ)

)
(q−2 − 1)Y

∗ g (Y ;λ− 2)

= f (Y ;λ) ∗ g{1} (Y ;λ) + q2sf{1} (Y ;λ) ∗ g (Y ;λ− 2) .

So the initial case holds. Assume the statement holds true for φ = φ, i.e.

[
f (X,Y ;λ) ∗ g (X,Y ;λ)

]{φ}
=

φ∑
ℓ=0

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)f{ℓ} (X,Y ;λ) ∗ g{φ−ℓ} (X,Y ;λ− 2ℓ) .

Now considering φ + 1 and for simplicity writing f(X,Y ;λ), g(X,Y ;λ) as f(λ), g(λ) we

have
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[
f (λ) ∗ g (λ)

]{φ+1}
=

[
φ∑

ℓ=0

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ} (λ− 2ℓ)

]{1}
(3.4.2)
=

φ∑
ℓ=0

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− 2ℓ)

+

φ∑
ℓ=0

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)q2(v−φ+ℓ)f{ℓ+1} (λ) ∗ g{φ−ℓ} (λ− 2ℓ− 2)

=

φ∑
ℓ=0

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− 2ℓ)

+

φ+1∑
ℓ=1

[
φ

ℓ− 1

]
q2(ℓ−1)(s−φ+ℓ−1)q2(s−φ+(ℓ−1))

× f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− 2ℓ)

= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

[
φ

ℓ

]
q2ℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− 2ℓ)

+

[
φ

φ

]
q2(φ+1)(s+1)q−2φ−2f{φ+1} (λ) ∗ g (λ− 2(φ+ 1))

+

φ∑
ℓ=1

[
φ

ℓ− 1

]
q2(ℓ−1)(s−φ+ℓ−1)q2(s−φ+(ℓ−1))

× f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− 2ℓ)

= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

([
φ

ℓ

]
+ q−2ℓ

[
φ

ℓ− 1

])
q2ℓ(s−φ+ℓ)

× f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− 2ℓ)

+ q2s(φ+1)f{φ+1} (λ) ∗ g (λ− 2(φ+ 1))

(2.3.30)
= f (λ) ∗ g{φ+1−ℓ} (λ) +

φ∑
ℓ=1

q−2ℓ

[
φ+ 1

ℓ

]
q2ℓ(s−φ+ℓ)

× f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− 2ℓ)

+

[
φ+ 1

φ+ 1

]
q2(φ+1)(s−φ−1+(φ+1))

× f{φ+1} (λ) ∗ g{φ+1−(φ+1)} (λ− 2(φ+ 1))

=

φ+1∑
ℓ=0

[
φ+ 1

ℓ

]
q2ℓ(s−(φ+1)+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− 2ℓ)

as required.

3.4.3 Evaluating the Skew-q-Derivative and the Skew-q−1-Derivative

Now we need to introduce some lemmas which yield useful results when developing moments

of the skew rank weight distribution. These lemmas are analogous to parts of the proof of

[22, Proposition 4], but in more detail.
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Lemma 3.4.9. For j, ℓ ∈ Z+, 0 ≤ ℓ ≤ j and X = Y = 1,

ν[j](ℓ)(1, 1;λ) = β(j, j)δjℓ. (3.4.13)

Proof. Consider

ν[j](ℓ)(X,Y ;λ)
(3.4.3)
= β(j, ℓ)

j−ℓ∑
u=0

(−1)uqu(u−1)

[
j − ℓ

u

]
Y uXj−ℓ−u.

So

ν[j](ℓ)(1, 1;λ) = β(j, ℓ)

j−ℓ∑
u=0

(−1)uqu(u−1)

[
j − ℓ

u

]
(2.3.35)
= β(ℓ, ℓ)

[
j

ℓ

] j−ℓ∑
u=0

(−1)uqu(u−1)

[
j − ℓ

u

]
(2.3.24)(2.3.25)

= β(ℓ, ℓ)

j∑
k=ℓ

(−1)k−ℓqσk−ℓ

[
j

k

][
k

ℓ

]
(2.3.28)
= β(ℓ, ℓ)δℓj = β(j, j)δjℓ.

Lemma 3.4.10. For any homogeneous polynomial, ρ (X,Y ;λ) and for any s ≥ 0,

(
ρ ∗ µ[s]

)
(1, 1;λ) = qλsρ(1, 1;λ). (3.4.14)

Proof. Let ρ (X,Y ;λ) =

r∑
i=0

ρi(λ)Y
iXr−i, then by Theorem 3.2.4 we have,

µ[s](X,Y ;λ) =

s∑
t=0

[
s

t

]
γ(λ, t)Y tXs−t =

s∑
t=0

µ
[s]
t (λ)Y tXs−t

and using the skew-q-product we have

(
ρ ∗ µ[s]

)
(X,Y ;λ) =

r+s∑
u=0

cu(λ)Y
uX(r+s−u)

where

cu(λ) =

u∑
i=0

q2isρi(λ)µ
[s]
u−i(λ− 2i).
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Then

(
ρ ∗ µ[s]

)
(1, 1;λ) =

r+s∑
u=0

cu(λ) =

r+s∑
u=0

u∑
i=0

q2isρi(λ)µ
[s]
u−i(λ− 2i)

=

r+s∑
j=0

q2jsρj(λ)

(
r+s−j∑
k=0

µ
[s]
k (λ− 2j)

)

=

r∑
j=0

q2jsρj(λ)

(
s∑

k=0

µ
[s]
k (λ− 2j)

)

=

r∑
j=0

q2jsρj(λ)

(
s∑

k=0

[
s

k

]
γ(λ− 2j, k)

)
(2.3.27)
=

r∑
j=0

q2jsρj(λ)q
(λ−2j)s

= qλsρ(1, 1;λ)

since ρj(λ) = 0 when j > r and µ
[s]
k (λ− 2j) = 0 when k > s.

3.5 Moments of the Skew Rank Distribution

Here we explore the moments of the skew rank distribution of a subgroup of skew-symmetric

matrices over Fq and that of its dual. These are the Gaussian binomial moments of the

weight distribution comparable to the binomial moments in the Hamming case which are

demonstrated and illustrated well in [41, p131] and for rank metric codes over Fqm in [22,

Prop 4]. Deriving these moments help us evaluate the important parameters of each code.

The moments derived from the skew-q-derivative and the skew-q−1-derivative look similar,

but the first takes the derivative with respect to X whilst the second takes the derivative

with the respect to Y .

3.5.1 Moments derived from the Skew-q-Derivative

Proposition 3.5.1. For 0 ≤ φ ≤ n and a linear code C ⊆ Aq,t and its dual C⊥ ⊆ Aq,t

with weight distributions c = (c0, . . . , cn) and c′ = (c′0, . . . , c
′
n), respectively we have

n−φ∑
i=0

[
n− i

φ

]
ci =

1

|C⊥|
qm(n−φ)

φ∑
i=0

[
n− i

n− φ

]
c
′

i.

Proof. We apply Theorem 3.3.4 to C⊥, giving

WSR
C (X,Y ) =

1

|C⊥|
W

SR

C⊥ (X + (qm − 1)Y,X − Y )
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or equivalently

n∑
i=0

ciY
iXn−i =

1

|C⊥|

n∑
i=0

c′i (X − Y )
[i] ∗ [X + (qm − 1)Y ]

[n−i]

=
1

|C⊥|

n∑
i=0

c′iν
[i](X,Y ;m) ∗ µ[n−i](X,Y ;m). (3.5.1)

For each side of Equation (3.5.1), we shall apply the skew-q-derivative φ times and then

evaluate at X = Y = 1.

For the left hand side, we obtain

(
n∑

i=0

ciY
iXn−i

)(φ)
(3.4.1)
=

n−φ∑
i=0

ciβ(n− i, φ)Y iX(n−i−φ).

Letting X = Y = 1 then gives

n−φ∑
i=0

ciβ(n− i, φ)
(2.3.35)
=

n−φ∑
i=0

ci

[
n− i

φ

]
β(φ,φ)

= β(φ,φ)

n−φ∑
i=0

ci

[
n− i

φ

]
.

We now move on to the right hand side. For simplicity we write µ(X,Y ;m) as µ and

similarly ν(X,Y ;m) as ν. Then by Theorem 3.4.4,

(
1

|C⊥|

n∑
i=0

c′iν
[i] ∗ µ[n−i]

)(φ)
(3.4.6)
=

1

|C⊥|

n∑
i=0

c′i

(
φ∑

ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(i−ℓ)ν[i](ℓ) ∗ µ[n−i](φ−ℓ)

)

=
1

|C⊥|

n∑
i=0

c′iψi(X,Y ;m)

where

ψi(X,Y ;m) =

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(i−ℓ)ν[i](ℓ)(X,Y ;m) ∗ µ[n−i](φ−ℓ)(X,Y ;m).
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So with X = Y = 1

ψi(1, 1;m)
(3.4.2)
=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(i−ℓ)β(n− i, φ− ℓ)

(
ν[i](ℓ) ∗ µ[n−i−φ+ℓ]

)
(1, 1;m)

(3.4.14)
=

φ∑
ℓ=0

[
φ

ℓ

]
q2(φ−ℓ)(i−ℓ)β(n− i, φ− ℓ)qm(n−i−(φ−ℓ))ν[i](ℓ)(1, 1;m)

(3.4.13)
=

φ∑
ℓ=0

q2(φ−ℓ)(i−ℓ)

[
φ

ℓ

]
β(n− i, φ− ℓ)qm(n−i−(φ−ℓ))β(i, i)δiℓ

(2.3.35)
=

[
φ

i

][
n− i

φ− i

]
β(φ− i, φ− i)qm(n−φ)β(i, i)

(2.3.36)
=

[
n− i

φ− i

]
qm(n−φ)β(φ,φ).

Thus

1

|C⊥|

n∑
i=0

c′iψi(1, 1;m) =
1

|C⊥|

φ∑
i=0

c′i

[
n− i

φ− i

]
qm(n−φ)β(φ,φ)

(2.3.24)
= β(φ,φ)

qm(n−φ)

|C⊥|

φ∑
i=0

c′i

[
n− i

n− φ

]
.

Combining the results for each side, and simplifying, we finally obtain

n−φ∑
i=0

ci

[
n− i

φ

]
=
qm(n−φ)

|C⊥|

φ∑
i=0

c′i

[
n− i

n− φ

]

as required.

Note. In particular, if φ = 0 we have

n∑
i=0

ci =
qmn

|C⊥|
c′0 =

qmn

|C⊥|
.

In other words

|C ||C⊥| = qmn.

We note that mn = t(t−1)
2 for skew-symmetric matrices and q

t(t−1)
2 is the number of skew-

symmetric matrices of size t× t. This is the simple fact that the dimensions of a code and

that of its dual add up to the dimension of the whole space they belong to.

We can simplify Proposition 3.5.1 if φ is less than the minimum distance of the dual code.

Corollary 3.5.2. Let d′SR be the minimum skew rank distance of C⊥. If 0 ≤ φ < d′SR then

n−φ∑
i=0

[
n− i

φ

]
ci =

1

|C⊥|
qm(n−φ)

[
n

φ

]
.

Proof. We have c′0 = 1 and c′1 = . . . = c′φ = 0.
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3.5.2 Moments derived from the Skew-q−1-Derivative

The next proposition relates the moments of the skew rank distribution of a linear code to

those of its dual, this time using the skew-q−1-derivative of the MacWilliams Identity for the

skew rank association scheme. Before proceeding we first need the following two lemmas.

Lemma 3.5.3. Let δ(λ, φ, j) =

j∑
i=0

[
j

i

]
(−1)iq2σiγ(λ− 2i, φ). Then for all λ ∈ R, φ, j ∈ Z,

δ(λ, φ, j) = γ(2φ, j)γ(λ− 2j, φ− j)qj(λ−2j). (3.5.2)

Proof. Initial case: j = 0.

δ(λ, φ, 0) =

[
0

0

]
(−1)0q2σ0γ(λ, φ) = γ(λ, φ) = γ(2φ, 0)γ(λ, φ)q0(λ).

So the initial case holds. Now assume the case is true for j = ȷ and consider the ȷ+ 1 case.

δ(λ, φ, ȷ+ 1) =

ȷ+1∑
i=0

[
ȷ+ 1

i

]
(−1)iq2σiγ(λ− 2i, φ)

(2.3.30)
=

ȷ+1∑
i=0

(
q2i
[
ȷ

i

]
+

[
ȷ

i− 1

])
(−1)iq2σiγ(λ− 2i, φ)

=

ȷ∑
i=0

[
ȷ

i

]
(−1)iq2σiq2iγ(λ− 2i, φ) +

ȷ∑
i=0

[
ȷ

i

]
(−1)i+1q2σi+1γ(λ− 2(i+ 1), φ)

(3.1.3)
=

ȷ∑
i=0

[
ȷ

i

]
(−1)iq2iq2σi

(
qλ−2i − 1

)
q2(φ−1)γ(λ− 2i− 2, φ− 1)

(3.1.3)
−

ȷ∑
i=0

[
ȷ

i

]
(−1)iq2σi+1

(
qλ−2i−2 − q2(φ−1)

)
γ(λ− 2i− 2, φ− 1)

=

ȷ∑
i=0

[
ȷ

i

]
(−1)iq2σiγ(λ− 2i− 2, φ− 1)qλ−2

(
q2φ − 1

)
= qλ−2

(
q2φ − 1

)
δ(λ− 2, φ− 1, ȷ)

= qλ−2
(
q2φ − 1

)
γ(2(φ− 1), ȷ)qȷ(λ−2ȷ−2)γ(λ− 2− 2ȷ, φ− 1− ȷ)

(3.1.3)
= q(ȷ+1)(λ−2(ȷ+1))γ(2φ, ȷ+ 1)γ(λ− 2(ȷ+ 1), φ− (ȷ+ 1)).

since

[
ȷ

i− 1

]
= 0 when i = 0 and

[
ȷ

i

]
= 0 when i = ȷ+ 1. Hence by induction the lemma is

proved.

Lemma 3.5.4. Let ε(Λ, φ, i) =

i∑
ℓ=0

[
i

ℓ

][
Λ− i

φ− ℓ

]
q2ℓ(Λ−φ)(−1)ℓq2σℓγ(2(φ− ℓ), i− ℓ). Then for

all Λ ∈ R, φ, i ∈ Z,

ε(Λ, φ, i) = (−1)iq2σi

[
Λ− i

Λ− φ

]
. (3.5.3)
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Proof. Initial case i = 0,

ε(Λ, φ, 0) =

[
0

0

][
Λ

φ

]
q0(−1)0q0γ(2φ, 0) =

[
Λ

φ

]
(−1)0q0

[
Λ

Λ− φ

]
=

[
Λ

φ

]
.

So the initial case holds. Now suppose the case is true when i = ı. Then

ε(Λ, φ, ı+ 1) =

ı+1∑
ℓ=0

[
ı+ 1

ℓ

][
Λ− ı− 1

φ− ℓ

]
q2ℓ(Λ−φ)(−1)ℓq2σℓγ(2(φ− ℓ), ı+ 1− ℓ)

(2.3.29)
=

ı+1∑
ℓ=0

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ

]
q2ℓ(Λ−φ)(−1)ℓq2σℓγ(2(φ− ℓ), ı+ 1− ℓ)

+

ı+1∑
ℓ=1

q2(ı+1−ℓ)

[
ı

ℓ− 1

][
Λ− ı− 1

φ− ℓ

]
q2ℓ(Λ−φ)(−1)ℓq2σℓγ(2(φ− ℓ), ı+ 1− ℓ)

= A+B, say.

Now

A
(3.1.4)
=

(
q2φ − q2ı

) ı∑
ℓ=0

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ

]
q2ℓ(Λ−1−φ)(−1)ℓq2σℓγ(2(φ− ℓ), ı− ℓ)

=
(
q2φ − q2ı

)
ε(Λ− 1, φ, ı)

=
(
q2φ − q2ı

)
(−1)ıq2σı

[
Λ− ı− 1

Λ− 1− φ

]

and

B =

ı∑
ℓ=0

q2(ı−ℓ)

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ− 1

]
q2(ℓ+1)(Λ−φ)(−1)ℓ+1q2σℓ+1γ(2(φ− ℓ− 1), ı− ℓ)

= −q2(ı+Λ−φ)ε(Λ− 1, φ− 1, ı)

= −q2(ı+Λ−φ)(−1)ıq2σı

[
Λ− ı− 1

Λ− φ

]
.

So

ε(Λ, φ, ı+ 1) = A+B = (−1)ıq2σı

{(
q2φ − q2ı

) [Λ− ı− 1

Λ− φ− 1

]
− q2(ı+Λ−φ)

[
Λ− ı− 1

Λ− φ

]}
(2.3.31)
= (−1)ı+1q2σı

{
q2(ı+Λ−φ)

[
Λ− ı− 1

Λ− φ

]
−
(
q2φ − q2ı

) (q2(Λ−φ) − 1
)(

q2(φ−ı) − 1
) [Λ− ı− 1

Λ− φ

]}

= (−1)ı+1

[
Λ− (ı+ 1)

Λ− φ

]
q2σı

{
q2(ı+Λ−φ)

(
q2(φ−ı) − 1

)
−
(
q2φ − q2ı

) (
q2(Λ−φ) − 1

)
q2(φ−ı) − 1

}

= (−1)ı+1q2σı+1

[
Λ− (ı+ 1)

Λ− φ

]

as required.
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Proposition 3.5.5. For 0 ≤ φ ≤ n and a linear code C ⊆ Aq,t with dimension k and its

dual C⊥ ⊆ Aq,t with weight distributions c = (c0, . . . , cn) and c′ = (c′0, . . . , c
′
n), respectively

we have

n∑
i=φ

q2φ(n−i)

[
i

φ

]
ci = qk−mφ

φ∑
i=0

(−1)iq2σiq2i(φ−i)

[
n− i

n− φ

]
γ(m− 2i, φ− i)c′i.

Proof. As per Proposition 3.5.1, we apply Theorem 3.3.4 to C⊥ to obtain

WSR
C (X,Y ) =

1

|C⊥|
W

SR

C⊥ (X + (qm − 1)Y,X − Y )

or equivalently

n∑
i=0

ciY
iXn−i =

1

|C⊥|

n∑
i=0

c′i (X − Y )
[i] ∗ (X + (qm − 1)Y )

[n−i]

=
1

|C⊥|

n∑
i=0

c′iν
[i](X,Y ;m) ∗ µ[n−i](X,Y ;m). (3.5.4)

For each side of Equation (3.5.4), we shall apply the skew-q−1-derivative φ times and then

evaluate at X = Y = 1.

For the left hand side, we have

(
n∑

i=0

ciY
iXn−i

){φ}
(3.4.8)
=

n∑
i=φ

ciq
2φ(1−i)+2σφβ(i, φ)Y i−φXn−i (3.5.5)

(2.3.35)
=

n∑
i=φ

ciq
2φ(1−i)+2σφ

[
i

φ

]
β(φ,φ)Y i−φXn−i. (3.5.6)

Then using X = Y = 1 gives

n∑
i=φ

ciq
2φ(1−i)+2σφ

[
i

φ

]
β(φ,φ)Y i−φXn−i =

n∑
i=φ

q2φ(1−i)+2σφβ(φ,φ)

[
i

φ

]
ci.

We now move on to the right hand side. For simplicity we shall write µ(X,Y ;m) as µ(m)

and similarly ν(X,Y ;m) as ν(m). Then,

ψi(m)
(3.4.10)(3.4.9)

=

φ∑
ℓ=0

[
φ

ℓ

]
q2ℓ(n−i−φ+ℓ)

{
(−1)ℓβ(i, ℓ)ν[i−ℓ](m)

}
∗
{
q−2σφ−ℓβ(n− i, φ− ℓ)γ(m− 2ℓ, φ− ℓ)µ[n−i−φ+ℓ](m− 2φ)

}
.

Now let

Ψ(X,Y ;m− 2φ) = ν[i−ℓ](X,Y ;m) ∗ γ(m− 2ℓ, φ− ℓ)µ[n−i−φ+ℓ](X,Y ;m− 2φ).
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We apply the skew-q-product, reorder the summations and set X = Y = 1 giving

Ψ(1, 1;m− 2φ)

=

n−φ∑
u=0

[
u∑

p=0

q2p(n−i−φ+ℓ)ν[i−ℓ]
p (m)γ(m− 2ℓ− 2p, φ− ℓ)µ

[n−i−φ+ℓ]
u−p (m− 2φ− 2p)

]

=

i−ℓ∑
r=0

q2r(n−i−φ+ℓ)ν[i−ℓ]
r (m)γ(m− 2ℓ− 2r, φ− ℓ)

[
n−i−φ+ℓ∑

t=0

µ
[n−i−φ+ℓ]
t (m− 2φ− 2r)

]
(2.3.27)
=

i−ℓ∑
r=0

q2r(n−i−φ+ℓ)q(m−2φ−2r)(n−i−φ+ℓ)ν[i−ℓ]
r (m)γ(m− 2ℓ− 2r, φ− ℓ)

(3.2.6)
= q(m−2φ)(n−i−φ+ℓ)

i−ℓ∑
r=0

(−1)rq2σr

[
i− ℓ

r

]
γ(m− 2ℓ− 2r, φ− ℓ)

= q(m−2φ)(n−i−φ+ℓ)δ(m− 2ℓ, φ− ℓ, i− ℓ)

(3.5.2)
= q(m−2φ)(n−i−φ+ℓ)q(i−ℓ)(m−2i)γ(2(φ− ℓ), i− ℓ)γ(m− 2i, φ− i).

Noting that q2ℓ(n−i−φ+ℓ)q−2σφ−ℓ = q2ℓ(n−i)q−2σφq2σℓ we get

ψi(1, 1;m) =

φ∑
ℓ=0

(−1)ℓ
[
φ

ℓ

]
q2ℓ(n−i−φ+ℓ)q−2σφ−ℓβ(i, ℓ)β(n− i, φ− ℓ)Ψ(1, 1;m− 2φ)

(2.3.36)
= q−2σφβ(φ,φ)

φ∑
ℓ=0

(−1)ℓq2ℓ(n−i)q2σℓ

[
i

ℓ

][
n− i

φ− ℓ

]
Ψ(1, 1;m− 2φ).

Writing

q−2σφq2ℓ(n−i)q(m−2φ)(n−φ−i+ℓ)q(i−ℓ)(m−2i) = q2σφq2φ(1−n)qm(n−φ)q2ℓ(n−φ)q2i(φ−i)

= qθq2l(n−φ)

gives

ψi(1, 1;m) = qθβ(φ,φ)γ(m− 2i, φ− i)

i∑
ℓ=0

(−1)ℓq2ℓ(n−φ)q2σℓ

[
i

ℓ

][
n− i

φ− ℓ

]
γ(2(φ− ℓ), i− ℓ)

(3.5.3)
= (−1)iqθq2σiβ(φ,φ)

[
n− i

n− φ

]
γ(m− 2i, φ− i).

Combining both sides, we obtain

n∑
i=φ

q2φ(1−i)+2σφβ(φ,φ)

[
i

φ

]
ci =

1

|C⊥|

n∑
i=0

c′i(−1)iqθq2σiβ(φ,φ)

[
n− i

n− φ

]
γ(m− 2i, φ− i).

Thus

n∑
i=φ

q2φ(n−i)

[
i

φ

]
ci =

qm(n−φ)

|C⊥|

φ∑
i=0

(−1)iq2σiq2i(φ−i)

[
n− i

n− φ

]
γ(m− 2i, φ− i)c′i.
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If C has dimension k we have

|C | = qk, |C⊥| = qmn−k,

so
qm(n−φ)

|C⊥|
=
qm(n−φ)

qmn−k
= qk−mφ

as required.

We can simplify Proposition 3.5.5 if φ is less than the minimum distance of the dual code.

Also we can introduce the dual diameter , ϱ′SR, defined as the maximum distance between

any two codewords of the dual code and simplify Proposition 3.5.5 further.

Corollary 3.5.6. If 0 ≤ φ < d′SR then

n∑
i=φ

q2φ(n−i)

[
i

φ

]
ci = qk−mφ

[
n

φ

]
γ(m,φ).

For ϱ′SR < φ ≤ n then

φ∑
i=0

(−1)iq2σiq2i(φ−i)

[
n− i

n− φ

]
γ(m− 2i, φ− i)ci = 0.

Proof. First consider 0 ≤ φ < d′SR, then c
′
0 = 1, c′1 = . . . = c′φ = 0. Also since

[
n

n− φ

]
=[

n

φ

]
the first statement holds. Now if ϱ′SR < φ ≤ n then applying Proposition 3.5.5 to C⊥

gives

n∑
i=φ

q2φ(n−i)

[
i

φ

]
c′i = qmn−k−mφ

φ∑
i=0

(−1)iq2σiq2i(φ−i)

[
n− i

n− φ

]
γ(m− 2i, φ− i)ci.

So using c′φ = . . . = c′n = 0 we get

0 =

φ∑
i=0

(−1)iq2σiq2i(φ−i)

[
n− i

n− φ

]
γ(m− 2i, φ− i)ci

as required.

3.5.3 MSRD Codes

As an application of the MacWilliams Identity, we can derive an alternative proof for the

explicit coefficients of the skew rank weight distribution for MSRD codes to that in [12,

Theorem 4]. This is analogous to the results for MRD codes presented in [22, Proposition

9].

Firstly a lemma that will be needed.
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Lemma 3.5.7. If a0, a1, . . . , aℓ and b0, b1, . . . , bℓ are two sequences of real numbers and if

aj =

j∑
i=0

[
ℓ− i

ℓ− j

]
bi

for 0 ≤ j ≤ ℓ, then also for 0 ≤ i ≤ ℓ we have,

bi =

i∑
j=0

(−1)i−jq2σi−j

[
ℓ− j

ℓ− i

]
aj .

Proof. This result uses the property of skew-q-ary Gaussian coefficients (2.3.28). That is

j∑
k=i

(−1)k−iq2σk−i

[
k

i

][
j

k

]
= δij .

Then for 0 ≤ i ≤ ℓ,

i∑
j=0

(−1)i−jq2σi−j

[
ℓ− j

ℓ− i

]
aj =

i∑
j=0

(−1)i−jq2σi−j

[
ℓ− j

ℓ− i

]( j∑
k=0

[
ℓ− k

ℓ− j

]
bk

)

=

i∑
k=0

i∑
j=k

(−1)i−jq2σi−j

[
ℓ− j

ℓ− i

][
ℓ− k

ℓ− j

]
bk

=

i∑
k=0

bk

(
ℓ−k∑

s=ℓ−i

(−1)i−ℓ+sq2σi−ℓ+s

[
s

ℓ− i

][
ℓ− k

s

])
(2.3.28)
=

i∑
k=0

bkδik

= bi

as required.

The following proposition can be seen to be equivalent to [21, (15)].

Proposition 3.5.8. Let C ⊆ Aq,t be a linear MSRD code with weight distribution c =

(c0, . . . , cn). Then we have c0 = 1 and for 0 ≤ r ≤ n− dSR

cdSR+r =

r∑
i=0

(−1)r−iq2σr−i

[
dSR + r

dSR + i

][
n

dSR + r

](
qm(dSR+i)

|C⊥|
− 1

)
.

Proof. From Corollary 3.5.2 we have

n−φ∑
i=0

[
n− i

φ

]
ci =

1

|C⊥|
qm(n−φ)

[
n

φ

]

for 0 ≤ φ < d′SR. Now if a linear code C is MSRD, with minimum distance dSR then C⊥ is

also MSRD with minimum distance d′SR = n − dSR + 2 [12, p35]. So Corollary 3.5.2 holds
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for 0 ≤ φ ≤ n− dSR = d′SR − 2. We therefore have c0 = 1 and c1 = c2 = . . . = cdSR−1 = 0

and setting φ = n− dSR − j for 0 ≤ j ≤ n− dSR we get

[
n

n− dSR − j

]
+

dSR+j∑
i=dSR

[
n− i

n− dSR − j

]
ci =

1

|C⊥|
qm(dSR+j)

[
n

n− dSR − j

]
j∑

r=0

[
n− dSR − r

n− dSR − j

]
cr+dSR

=

[
n

n− dSR − j

](
qm(dSR+j)

|C⊥|
− 1

)
.

Applying Lemma 3.5.7 with ℓ = n− dSR and br = cr+dSR
then letting

aj =

[
n

n− dSR − j

](
qm(dSR+j)

|C⊥|
− 1

)

gives
j∑

r=0

[
n− dSR − r

n− dSR − j

]
br = aj ,

so

br = cr+dSR
=

r∑
i=0

(−1)r−iq2σr−i

[
n− dSR − i

n− dSR − r

]
ai

=

r∑
i=0

(−1)r−iq2σr−i

[
n− dSR − i

n− dSR − r

][
n

n− dSR − i

](
qm(dSR+i)

|C⊥|
− 1

)
.

But we have

[
n− dSR − i

n− dSR − r

][
n

n− dSR − i

]
(2.3.24)
=

[
n− (dSR + i)

n− (dSR + r)

][
n

dSR + i

]
(2.3.25)
=

[
dSR + r

dSR + i

][
n

n− (dSR + r)

]
(2.3.24)
=

[
dSR + r

dSR + i

][
n

dSR + r

]
.

Therefore

cr+dSR
=

r∑
i=0

(−1)r−iq2σr−i

[
dSR + r

dSR + i

][
n

dSR + r

](
qm(dSR+i)

|C⊥|
− 1

)

as required.

Note. We note again that mn = t(t−1)
2 for skew-symmetric matrices and |C ||C⊥| = qmn

which can be can be used to simplify this to

cr+dSR
=

r∑
i=0

(−1)r−iq2σr−i

[
dSR + r

dSR + i

][
n

dSR + r

](
|C |qm(dSR+i−n) − 1

)
.
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Chapter 4
The Hermitian Association Scheme

Having sucessfully developed a q-algebra for skew-symmetric matrices to prove the MacWil-

liams Identity as a functional transform, we now investigate whether a similar process can

be applied to the association scheme of Hermitian matrices, once again with the rank metric.

We shall call this scheme the Hermitian association scheme.

As before we begin with an overview of what we already know from Section 2.7, followed by

some more specific preliminaries in Section 4.1. Section 4.2 introduces yet another form of a

q-algebra before identifying two further homogeneous polynomials relevant to this particular

space. Again the powers of these polynomials turn out to be the weight enumerator of the

set of Hermitian matrices of a given size t. Equipped with these polynomials, which we note

are significantly different to the ones identified in the skew rank metric, another explicit

form of the Krawtchouk polynomials is found. It is then proven that these polynomials are

indeed generalised Krawtchouk polynomials using a different recurrence relation, one used

by Schmidt [53, Lemma 7], rather than the relation used by Delsarte [11, (1)]. We later

prove that the two recurrence relations are equivalent in Section 5.1.2. Then we have the

ability to state and prove the MacWilliams Identity for the Hermitian association scheme

as a functional transform.

Following the same structure as Chapter 3, two derivatives on this space are derived analog-

ous to the q-derivative and q−1-derivative for the rank association scheme [22, Definiton 5,

6] and the ones shown in Section 3.4. We can also then find the moments of the Hermitian

rank weight distribution. Slightly differently to the skew rank case, when we consider MHRD

codes, (Maximum Hermitian Rank Distance codes), we already know that if the minimum

distance is even, the Hermitian rank weight distribution of the code is not uniquely determ-

ined, so we have to restrict our conclusions to the special case when a code is MHRD and

also the minimum distance is odd.

The aim of this, as well as extending the MacWilliams Identity as a functional transform

in this setting, is to draw similarities between these methods with a view to potentially
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generalising the results. In this case, the associated algebra and the relevant homogeneous

polynomial have the same form but different parameters. The new Krawtchouk polynomials

are then derived in exactly the same fashion. They are compared to known eigenvalues using

a recurrence relation, all of which are distinct from the eigenvalues and recurrence relation

used in Chapter 3.

4.1 Preliminaries

4.1.1 Parameters

Similar to the skew rank association scheme, let’s remind ourselves of some of the notation

from Section 2.7 for the b-nary Gaussian coefficients and the b-nary beta function. As we

are working with the Hermitian association scheme we set the parameter b = −q. So we

have

−q

[
x

k

]
=

k−1∏
i=0

(−q)x − (−q)i

(−q)k − (−q)i
=

k−1∏
i=0

bx − bi

bk − bi
,

β−q(x, k) =

k−1∏
i=0 −q

[
x− i

1

]
.

To make notation simpler and while there is no ambiguity, in this section we shall write

−q

[
x
k

]
=
[
x
k

]
and β−q(x, k) = β(x, k). We also have that σi =

i(i−1)
2 as usual. In addition,

in the interest of keeping notation simpler, we shall write b instead of −q throughout this

chapter.

As a reminder, we have the eigenvalues of the association scheme, defined by Schmidt [53,

(4)] as

Pk(x, t) = (−1)k
k∑

i=0

bσk−i+ti

[
t− i

t− k

][
t− x

i

]
.

We state Delsarte’s MacWilliams Identity explicitly for Hermitian association schemes.

Theorem 4.1.1. Let C ⊆ Hq,t be a code with Hermitian rank weight distribution c =

(c0, . . . , cn) and C⊥ be its dual code with Hermitian rank weight distribution c′ = (c′0, . . . , c
′
n)

and the (n + 1) × (n + 1) eigenmatrix of the Hermitian association scheme P = (pxk),

consisting of the eigenvalues Pk(x, n) = pxk, then we have

c′ =
1

|C |
cP . (4.1.1)

4.1.2 The Negative-q Gamma Function

Again we define another function, this time we call it the negative-q gamma function, to aid

us with notation in this association scheme.
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Definition 4.1.2. We define the Negative-q gamma function for x ∈ R, k ∈ Z to be

γ′(x, k) = (−1)k
k−1∏
i=0

(
bx + bi

)
=

k−1∏
i=0

(
−bx − bi

)
.

Theorem 2.7.6 can then be rewritten as below.

Theorem 4.1.3. The number of Hermitian matrices of order t and Hermitian rank h can

be rewritten as

ξt,h =

[
t

h

]
γ′(t, h). (4.1.2)

Proof. We have

[
t

h

]
γ′(t, h) = (−1)h

h∏
i=1

bt−i+1 − 1

bi − 1

h−1∏
i=0

(
bt + bi

)

= (−1)h

h−1∏
i=0

bt−i − 1

h∏
i=1

(−1)i
(
qi − (−1)i

)
h−1∏
i=0

(
bt−i + 1

)
bi

= (−1)h

h−1∏
i=0

bi
(
b2t−2i − 1

)
h∏

i=1

(−1)i
(
qi − (−1)i

)

= (−1)hbσh

h−1∏
i=0

b2t−2i − 1

h∏
i=1

(−1)i
(
qi − (−1)i

)

=
(−1)h(−1)σhqσh

(−1)σh+1

h−1∏
i=0

q2t−2i − 1

h∏
i=1

qi − (−1)i

= qσh ×

h−1∏
i=0

q2t−2i − 1

h∏
i=1

qi − (−1)i

= ξt,h.

Lemma 4.1.4. We have the following identities for the negative-q gamma function:
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1.

γ′(x, k) = bσk

k−1∏
i=0

(
−bx−i − 1

)
2.

γ′(x, k) = bk−1
(
− bx − 1

)
γ′(x− 1, k − 1) (4.1.3)

3.

γ′(x, k + 1) =
(
−bx − bk

)
γ′(x, k). (4.1.4)

Proof.

(1)

γ′(x, k) =

k−1∏
i=0

(
−bx − bi

)
=

(
k−1∏
i=0

bi

)
k−1∏
i=0

(
−bx−i − 1

)
= bσk

k−1∏
i=0

(
−bx−i − 1

)
.

(2)

γ′(x, k) =

k−1∏
i=0

(
−bx − bi

)
= (−bx − 1)

k−1∏
i=1

(
−bx − bi

)
= (−bx − 1)

k−1∏
i=1

b
(
−bx−1 − bi−1

)
= (−bx − 1) bk−1

k−2∏
i=0

(
−bx−1 − bi

)
= (−bx − 1) bk−1

k−2∏
i=0

(
−bx−1 − bi

)
= bk−1 (−bx − 1) γ′(x− 1, k − 1).

(3)

γ′(x, k + 1) =

k∏
i=0

(
−bx − bi

)
=
(
−bx − bk

) k−1∏
i=0

(
−bx − bi

)
=
(
−bx − bk

)
γ′(x, k).
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4.2 The Negative-q-Algebra

The weight enumerators of any linear code C ⊆ Hq,t are homogeneous polynomials. We

introduce an operation, the negative-q-product, on homogeneous polynomials that will help

express the relation between the Hermitian rank weight enumerator of a code and that of

its dual. The negative-q-power and negative-q-transform are analogous to those for the rank

association scheme [22, Section 3.1] and the skew rank association scheme, as in Section 3.2.

4.2.1 The Negative-q-Product, Negative-q-Power and the Negative-

q-Transform

Definition 4.2.1. Let

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i

b(X,Y ;λ) =
s∑

i=0

bi(λ)Y
iXs−i

be two homogeneous polynomials in X and Y with coefficients ai(λ) and bi(λ) respectively,

which are real functions of λ that are 0 unless otherwise specified. For example bi(λ) = 0

if i /∈ {0, 1, . . . , s}. The negative-q-product , ∗, of a(X,Y ;λ) degree r, and b(X,Y ;λ) of

degree s, is defined as

c(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ) (4.2.1)

=

r+s∑
u=0

cu(λ)Y
uXr+s−u (4.2.2)

with

cu(λ) =

u∑
i=0

(−q)isai(λ)bu−i(λ− i).

We note that as with the q-product in [22, Lemma 1], the negative-q-product is not com-

mutative or distributive in general. However, as in Chapter 3, if a(X,Y ;λ) = a is a constant

independent of λ, the following property holds:

a ∗ b(X,Y ;λ) = b(X,Y ;λ) ∗ a = ab(X,Y ;λ).

Another property is that if the degrees of a(X,Y ;λ) and c(X,Y ;λ) are the same then,

{a(X,Y ;λ) + c(X,Y ;λ)} ∗ b(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ) + c(X,Y ;λ) ∗ b(X,Y ;λ)

and

a(X,Y ;λ) ∗ {b(X,Y ;λ) + c(X,Y ;λ)} = a(X,Y ;λ) ∗ b(X,Y ;λ) + a(X,Y ;λ) ∗ c(X,Y ;λ).
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Definition 4.2.2. The negative-q-power is defined by


a[0](X,Y ;λ) = 1

a[1](X,Y ;λ) = a(X,Y ;λ)

a[k](X,Y ;λ) = a(X,Y ;λ) ∗ a[k−1](X,Y ;λ) for k ≥ 2.

Definition 4.2.3 ([22, Definition 4]). Let a(X,Y ;λ) =
∑r

u=0 ai(λ)Y
iXr−i. We define the

negative-q-transform to be the homogeneous polynomial

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
[i] ∗X [r−i].

4.2.2 Using the Negative-q-Product in the Hermitian Association

Scheme

In the theory that follows we consider the following two polynomials. First let

µ(X,Y ;λ) = X +
(
−bλ − 1

)
Y. (4.2.3)

The negative-q-powers of µ(X,Y ; t) provide an explicit form for the Hermitian rank weight

enumerator of Hq,t, the set of Hermitian matrices of order t.

Theorem 4.2.4. If µ(X,Y ;λ) is defined as above, then

µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u for k ≥ 1, (4.2.4)

where

µu(λ, k) =

[
k

u

]
γ′(λ, u).

Specifically, the weight enumerators for Hq,t, the set of Hermitian matrices of size t ≥ 1,

denoted by Ωt, is given by

Ωt = µ[t](X,Y ; t). (4.2.5)

Proof. The proof follows the method of induction. Consider k = 1, so

µ[1](X,Y ;λ) = µ(X,Y ;λ) = X +
(
−bλ − 1

)
Y.

Then

µ0(λ, 1) = 1 =

[
1

0

]
γ′(λ, 0)

µ1(λ, 1) =
(
−bλ − 1

)
=

[
1

1

]
γ′(λ, 1).
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So

µ[1]
u (λ, 1) =

[
1

u

]
γ′(λ, u)

as required for k = 1. Now assume the theorem is true for k ≥ 1. Then

µ[k+1](X,Y ;λ) = µ(X,Y ;λ) ∗ µ[k](X,Y ;λ)

=
(
X +

(
−bλ − 1

)
Y
)
∗

(
k∑

u=0

[
k

u

]
γ′(λ, u)Y uXk−u

)

=

k+1∑
i=0

fi(λ)Y
iXk+1−i

where,

fi(λ) = µ0(λ, 1)µi(λ, k) + bkµ1(λ, 1)µi−1(λ− 1, k)

=

[
k

i

]
γ′(λ, i) + bk

(
−bk − 1

) [ k

i− 1

]
γ′(λ− 1, i− 1)

(2.3.32)
=

bk−i+1 − 1

bk+1 − 1

[
k + 1

i

]
γ′(λ, i)

(4.1.3)(2.3.33)
+ bk

bi − 1

bk+1 − 1
bi−1

[
k + 1

i

]
γ′(λ, i)

= γ′(λ, i)

[
k + 1

i

](
bk−i+1 − 1 + bk−i+1

(
bi − 1

)
bk+1 − 1

)

= γ′(λ, i)

[
k + 1

i

]

since for i ≥ 1 we only need to consider the first two coefficients as when j ≥ 2 then

µj(λ, 1) = 0. So it is true for k + 1. Therefore by induction the first part of the theorem is

true. Now consider µ[t](X,Y ; t), then clearly

µ[t](X,Y ; t) =

t∑
u=0

[
t

i

]
γ′(t, u)Y uXt−u

(4.1.2)
=

t∑
u=0

ξt,uY
uXt−u (4.2.5)

= Ωt

as required.

Second, consider the polynomial

ν(X,Y ;λ) = X − Y.

Theorem 4.2.5. If ν(X,Y ;λ) is as defined above, then for all k ≥ 1,

ν[k](X,Y ;λ) =

k∑
u=0

νu(λ, j)Y
uXk−u =

k∑
u=0

(−1)ubσu

[
k

u

]
Y uXk−u. (4.2.6)

Proof. We perform induction on k. It is easily checked that the theorem holds for k = 1.
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Now assume the theorem holds for k ≥ 1. For clarity, ν0(λ, 1) = 1 and ν1(λ, 1) = −1. Then

ν[k+1](X,Y ;λ) = ν(X,Y ;λ) ∗ ν[k](X,Y ;λ)

= (X − Y ) ∗

(
k∑

u=0

(−1)ubσu

[
k

u

]
Y uXk−u

)

=

k+1∑
i=0

gi(λ)Y
iXk+1−i

where

gi(λ) =

i∑
j=0

bjkνj(λ, j)νi−j(λ− j, k)

= b0(1)(−1)ibσi

[
k

i

]
+ bk(−1)(−1)i−1bσi−1

[
k

i− 1

]
(2.3.32)
= (−1)ibσi

bk+1−i − 1

bk+1 − 1

[
k + 1

i

]
(2.3.33)
+ bk(−1)ibσi−1

bi − 1

bk+1 − 1

[
k + 1

i

]
= (−1)ibσi

[
k + 1

i

]{
bk+1−i − 1

bk+1 − 1
+ bkb1−i bi − 1

bk+1 − 1

}
= (−1)i

bσi

bk+1 − 1

[
k + 1

i

] {
bk+1−i − 1 + bk+1 − bk+1−i

}
= (−1)ibσi

[
k + 1

i

]

since if i ≥ 1 then we only need to consider the first two terms of the sum as when j ≥ 2

then νj(λ, 1) = 0, as required.

4.3 The MacWilliams Identity for the Hermitian Asso-

ciation Scheme

In this section we introduce the negative-q-Krawtchouk polynomials which we then prove are

equal to the eigenvalues that are identified in [53, (4)] of the association scheme of Hermitian

matrices over Fq2 . In this way a new q-analog of the MacWilliams Identity for the Hermitian

association scheme is presented and proven by comparison with a traditional form of the

identity as given in [12, Theorem 3].

4.3.1 The Negative-q-Krawtchouk Polynomial

In comparison to the eigenvalues defined in Equation (2.7.3), a new set of polynomials is

derived, which arise in finding the negative-q-transform of µ(X,Y ; t) and ν(X,Y ; t). We

then go on to prove that these new polynomials are indeed the eigenvalues of the association

scheme by proving that they are solutions to the recurrence relation used in [53, Lemma 7].

We note here that the recurrence relation used by Delsarte could not be used directly here

because the parameters lay outside of the scope of validity. Specifically, q is defined to be

strictly greater than or equal to 1 [11, Section 5.1], whereas in this section the equivalent
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parameter is negative. So instead, the recurrence relation used by Schmidt is the one we

use here.

Definition 4.3.1. For t ∈ Z+, x, k ∈ {0, 1, . . . , t} we define the Negative-q-Krawtchouk

Polynomial as

Ck(x, t) =

k∑
j=0

(−1)jbj(t−x)bσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j). (4.3.1)

We first prove that the Ck(x, t) satisfy the recurrence relation (2.7.4) and the initial values

in Equations (2.7.5), (2.7.6) and are therefore the eigenvalues of the association scheme.

Proposition 4.3.2. For all x, k ∈ {0, 1, . . . , t} we have

Ck+1(x+ 1, t+ 1) = Ck+1(x, t+ 1) + b2t+1−xCk(x, t).

Proof. We look at all three terms separately. Firstly,

Ck+1(x+ 1, t+ 1) =

k+1∑
j=0

(−1)jbj(t−x)bσj

[
x+ 1

j

][
t− x

k + 1− j

]
γ′(t+ 1− j, k + 1− j)

= Ck+1(x+ 1, t+ 1)|j=k+1

(2.3.30)
+

k∑
j=0

(−1)jbj(t−x)bσj

{[
x

j − 1

]
+ bj

[
x

j

]}[
t− x

k + 1− j

]
× γ′(t+ 1− j, k + 1− j)

= Ck+1(x+ 1, t+ 1)|j=k+1

+

k∑
j=0

(−1)jbj(t−x)bσj

[
x

j − 1

][
t− x

k + 1− j

]
γ′(t+ 1− j, k + 1− j)

(4.3.2)

(4.1.3)
+

k∑
j=0

(−1)j+1bj(t−x−1)+k+t+1bσj

[
x

j

][
t− x

k + 1− j

]
γ′(t− j, k − j)

(4.3.3)

+

k∑
j=0

(−1)j+1bj(t−x)+kbσj

[
x

j

][
t− x

k + 1− j

]
γ′(t− j, k − j) (4.3.4)

= Ck+1(x+ 1, t+ 1)|j=k+1 + α1 + α2 + α3

where α1, α2, α3 represent (4.3.2), (4.3.3), (4.3.4) respectively and for notation |j=k+1

means “the term when j = k + 1”.
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Second,

Ck+1(x, t+ 1) = Ck+1(x, t+ 1)|j=k+1

(4.1.3)
+

k∑
j=0

(−1)j+1bl(t−x−1)+t+k+1bσj

[
x

j

][
t+ 1− x

k + 1− j

]
γ′(t− j, k − j)

+

k∑
j=0

(−1)j+1bl(t−x)+kbσj

[
x

j

][
t+ 1− x

k + 1− j

]
γ′(t− j, k − j)

= Ck+1(x, t+ 1)|j=k+1

(2.3.29)
+

k∑
j=0

(−1)j+1bj(t−x−2)+2k+t+2bσj

[
x

j

][
t− x

k + 1− j

]
γ′(t− j, k − j)

(4.3.5)

+

k∑
j=0

(−1)j+1bj(t−x−1)+k+t+1bσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j) (4.3.6)

(2.3.29)
+

k∑
j=0

(−1)j+1bj(t−x−1)+2k+1bσj

[
x

j

][
t− x

k + 1− j

]
γ′(t− j, k − j)

(4.3.7)

+

k∑
j=0

(−1)j+1bj(t−x)+kbσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j) (4.3.8)

= Ck+1(x, t+ 1)|j=k+1 + β1 + β2 + β3 + β4

where β1, β2, β3, β4 represent (4.3.5), (4.3.6), (4.3.7), (4.3.8) respectively. Thus,

b2t−x+1Ck(x, t) =

k∑
j=0

(−1)jbj(t−x)+2t−x+1bσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j)

= ρ1

So let C = Ck+1(x+ 1, t+ 1)− Ck+1(x, t+ 1)− b2t+1−xCk(x, t). so

C = Ck+1(x+1, t+1)|j=k+1 +α1 +α2 +α3 −Ck+1(x, t+1)|j=k+1 −β1 −β2 −β3 −β4 − ρ1.

Claim 1: α2 − β1 − β2 − ρ1 = 0.

α2 − β1 =

k∑
j=0

(−1)j+1bl(t−x−1)+k+t+1bσj

[
x

j

][
t− x

k + 1− j

]
γ′(t− j, k − j)

(
1− bk−j+1

)
(2.3.31)
=

k∑
j=0

(−1)jbj(t−x)+t+1bσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j)

(
bt−x − bk−j

)
= ρ1 + β2

Thus α2 − β1 − β2 − ρ1 = 0.
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Claim 2: α1 + α3 − β3 − β4 = (−1)kbk(t−x+1)+t−xbσk+1

[
x

k

]
γ′(t− k, 0).

α3 − β3 =

k∑
j=0

(−1)j+1bj(t−x)+kbσj

[
x

j

][
t− x

k + 1− j

]
γ′(t− j, k − j)

(
1− bk−j+1

)
(2.3.31)
=

k∑
j=0

(−1)jbj(t−x+1)bσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j)

(
bt−x − bk−j

)
=

k∑
j=0

(−1)jbj(t−x+1)+t−xbσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j) + β4 (4.3.9)

So

C = Ck+1(x+ 1, t+ 1)|j=k+1 − Ck+1(x, t+ 1)|j=k+1 + α1

+

k∑
j=0

(−1)jbj(t−x+1)+t−xbσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j) (4.3.10)

= Ck+1(x+ 1, t+ 1)|j=k+1 − Ck+1(x, t+ 1)|j=k+1 + α1 + ρ2

where ρ2 represents the summand in (4.3.10). Now,

α1 =

k∑
j=1

(−1)jbj(t−x)bσj

[
x

j − 1

][
t− x

k + 1− j

]
γ′(t+ 1− j, k + 1− j)

since the

[
x

j − 1

]
= 0 when j = 0. Now let ℓ = j − 1, j = ℓ+ 1

α1 =

k−1∑
ℓ=0

(−1)ℓ+1b(ℓ+1)(t−x)bσℓ+1

[
x

ℓ

][
t− x

k − ℓ

]
γ′(t− ℓ, k − ℓ)

=

k−1∑
j=0

(−1)j+1bj(t−x+1)+t−xbσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j).

So we have,

ρ2 + α1 =

k∑
j=0

(−1)jbj(t−x+1)+t−xbσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j)

+

k−1∑
j=0

(−1)j+1bj(t−x+1)+t−xbσj

[
x

j

][
t− x

k − j

]
γ′(t− j, k − j)

= (−1)kbk(t−x+1)+t−xbσk+1

[
x

k

][
t− x

0

]
γ′(t− k, 0).
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Thus Claim 2 holds. So

C = bk(t−x)+k+t−xbσk

[
x

k

][
t− x

0

]
γ′(t− k, 0)

+ (−1)k+1b(k+1)(t−x)bσk+1

[
x+ 1

k + 1

][
t− x

0

]
γ′(t− k, 0)

− (−1)k+1b(k+1)(t+1−x)bσk+1

[
x

k + 1

][
t+ 1− x

0

]
γ′(t− k, 0)

= (−1)kb(k+1)(t−x)bσk+1

{[
x

k

]
−
[
x+ 1

k + 1

]
+

[
x

k + 1

]
bk+1

}
(2.3.30)
= 0.

Lemma 4.3.3. The Ck(x, t) are the eigenvalues of the Hermitian association scheme. In

other words,

Ck(x, t) = Pk(x, t). (4.3.11)

Proof. The Ck(x, t) satisfy the recurrence relation (2.7.4) and the initial values of the Ck(x, t)

are

Ck(0, t) =

k∑
j=0

bjt(−1)jbσj

[
0

j

][
t

k − j

]
γ′(t− j, k − j)

=

[
t

k

]
γ′(t, k)

C0(x, t) = (−1)0b0bσ0

[
x

0

][
t− x

0

]
γ′(t, 0)

= 1

4.3.2 The MacWilliams Identity for the Hermitian Association Scheme

We now use the negative-q-Krawtchouk polynomials to prove the q-analog form of the

MacWilliams Identity for the Hermitian association scheme. The new form below uses a

functional transformation of the weight distribution rather than explicit use of the eigenval-

ues. Notably, the form developed in this paper is similar to the q-analog of the MacWilliams

Identity developed in [22] for linear rank metric codes over Fqm and is similar to the q-

analog of the MacWilliams Identity developed in Chapter 3 but differs in the form of the

new Krawtchouk polynomial.
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Let the Hermitian rank weight enumerator of C ⊆ Hq,t be

WHR
C (X,Y ) =

t∑
i=0

ciY
iXt−i

and of its dual, C⊥ ⊆ Hq,t be

WHR
C⊥ (X,Y ) =

t∑
i=0

c′iY
iXt−i.

Theorem 4.3.4 (The MacWilliams Identity for the Hermitian Association Scheme). Let

C ⊆ Hq,t be a linear code with weight distribution c = (c0, . . . , cn) and C⊥ ⊆ Hq,t its dual

code with weight distribution c′ = (c′0, . . . , c
′
n). Then

WHR
C⊥ (X,Y ) =

1

|C |
W

HR

C

(
X + (−bt − 1)Y,X − Y

)
.

Proof. For 0 ≤ i ≤ n we have

(X − Y )
[i] ∗

(
X +

(
−bt − 1

)
Y
)[t−i]

=
(
ν[i](X,Y ; t)

)
∗
(
µ[t−i](X,Y ; t)

)
(4.2.4)(4.2.6)

=

(
i∑

u=0

(−1)ubσu

[
i

u

]
Y uXi−u

)
∗

 t−i∑
j=0

[
t− i

j

]
γ′(t, j)Y jXt−i−j


(4.2.1)
=

t∑
k=0

(
k∑

ℓ=0

(−1)ℓbℓ(t−i)bσℓ

[
i

ℓ

][
t− i

k − ℓ

]
γ′(t− ℓ, k − ℓ)

)
Y kXt−k

=

t∑
k=0

Ck(i, t)Y
kXt−k

(4.3.11)
=

t∑
k=0

Pk(i, t)Y
kXt−k.

So then we have

1

|C |
W

HR

C

(
X +

(
−bt − 1

)
Y,X − Y

)
=

1

|C |

t∑
i=0

ci (X − Y )
[i] ∗

(
X +

(
−bt − 1

)
Y
)[t−i]

=
1

|C |

t∑
i=0

ci

t∑
k=0

Pk(i, t)Y
kXt−k

=

t∑
k=0

(
1

|C |

t∑
i=0

ciPk(i, t)

)
Y kXt−k

(4.1.1)
=

n∑
k=0

c′kY
kXt−k

=WHR
C⊥ (X,Y )
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In this way we have shown that the MacWilliams Identity for the Hermitian association

scheme can be expressed as a q-transform of homogeneous polynomials in a form analogous

to the original MacWilliams Identity for the Hamming metric and the q-analogs developed

by Gadouleau and Yan [22] for the rank association scheme and in Chapter 3 for the skew

rank association scheme.

4.4 The Negative-q-Derivatives

In this section we develop a new negative-q-derivative and negative-q−1-derivative to help

analyse the coefficients of Hermitian rank weight enumerators. This is analogous to the

q-derivative applied to the rank metric in [22] with the parameter q replaced by −q = b.

4.4.1 The Negative-q-Derivative

Definition 4.4.1. For q ≥ 2, the negative-q-derivative atX ̸= 0 for a real-valued function

f(X) is defined as

f (1) (X) =
f (bX)− f (X)

(b− 1)X
.

For φ ≥ 0 we denote the φth negative-q-derivative (with respect to X) of f(X,Y ;λ) as

f (φ)(X,Y ;λ). The 0th negative-q-derivative of f(X,Y ;λ) is f(X,Y ;λ). For any a ∈ R, X ̸=

0, and real-valued function g(X),

[f(X) + ag(X)]
(1)

= f (1)(X) + ag(1)(X).

Lemma 4.4.2.

1. For 0 ≤ φ ≤ ℓ, φ ∈ Z+ and ℓ ≥ 0,

(
Xℓ
)(φ)

= β(ℓ, φ)Xℓ−φ.

2. The φth negative-q-derivative of f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i is given by

f (φ) (X,Y ;λ) =

r−φ∑
i=0

fi(λ)β(r − i, φ)Y iXr−i−φ. (4.4.1)

3. Also,

µ[k](φ)(X,Y ;λ) = β(k, φ)µ[k−φ](X,Y ;λ) (4.4.2)

ν[k](φ)(X,Y ;λ) = β(k, φ)ν[k−φ](X,Y ;λ). (4.4.3)
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Proof. (1) For φ = 1 we have

(
Xℓ
)(1)

=
(bX )

ℓ −Xℓ

(b− 1)X
=
bℓ − 1

b− 1
Xℓ−1 =

[
ℓ

1

]
Xℓ−1 = β(ℓ, φ)Xℓ−1.

The rest of the proof follows by induction on φ and is omitted.

(2) Now consider f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i. We have,

f (1) (X,Y ;λ) =

(
r∑

i=0

fi(λ)Y
iXr−i

)(1)

=

r∑
i=0

fi(λ)Y
i
(
Xr−i

)(1)
=

r−1∑
i=0

fi(λ)β(r − i, φ)Y iXr−i−1.

Then the case of φ = 1 holds. The rest of the proof follows by induction on φ and is

omitted.

(3) Now consider µ[k] =

k∑
u=0

µu(λ, k)Y
uXk−u where µu(λ, k) =

[
k

u

]
γ′(λ, u) as in Equation

(4.2.4). Then we have

µ[k](1)(X,Y ;λ) =

(
k∑

u=0

µu(λ, k)Y
uXk−u

)(1)

=

k∑
u=0

µu(λ, k)Y
u

(
(bX)

k−u −Xk−u

(b− 1)X

)

=

k−1∑
u=0

b(k−u) − 1

b− 1

[
k

u

]
γ′(λ, u)Y uXk−u−1

(2.3.32)
=

k−1∑
u=0

(bk − 1)
(
b(k−u) − 1

)
(b(k−u) − 1)(b− 1)

[
k − 1

u

]
γ′(λ, u)Y uXk−u−1

=

(
bk − 1

b− 1

)
µ[k−1](X,Y ;λ)

(2.3.34)
= β(k, 1)µ[k−1](X,Y ;λ).

Then the case of φ = 1 holds. The statement of the theorem, µ[k](φ)(X,Y ;λ) =

β(k, φ)µ[k−φ](X,Y ;λ), then follows by induction on φ and is omitted.
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Now consider ν[k] =

k∑
u=0

(−1)ubσu

[
k

u

]
Y uXk−u as in Equation (4.2.6). Then we have

ν[k](1)(X,Y ;λ) =

k∑
u=0

(−1)ubσu
b(k−u) − 1

b− 1

[
k

u

]
Y uXk−u−1

=

k−1∑
u=0

(−1)ubσu

(
bk − 1

) (
b(k−u) − 1

)(
b(k−u) − 1

)
(b− 1)

[
k − 1

u

]
Y uXk−1−u

=
bk − 1

b− 1
ν[k−1](X,Y ;λ)

= β(k, 1)ν[k−1](X,Y ;λ).

The statement of the theorem, ν[k](φ)(X,Y ;λ) = β(k, φ)ν[k−φ](X,Y ;λ), then follows

by induction also and is omitted.

We now need a few smaller lemmas in order to prove the Leibniz rule for the negative-q-

derivative.

Lemma 4.4.3. Let

u (X,Y ;λ) =

r∑
i=0

ui(λ)Y
iXr−i

v (X,Y ;λ) =

s∑
i=0

vi(λ)Y
iXs−i.

1. If ur(λ) = 0 then

1

X
[u (X,Y ;λ) ∗ v (X,Y ;λ)] =

u (X,Y ;λ)

X
∗ v (X,Y ;λ) . (4.4.4)

2. If vs(λ) = 0 then

1

X
[u (X,Y ;λ) ∗ v (X,Y ;λ)] = u (X, bY ;λ) ∗ v (X,Y ;λ)

X
. (4.4.5)

Proof.

(1) If ur(λ) = 0,

u (X,Y ;λ)

X
=

r−1∑
i=0

ui(λ)Y
iXr−i−1.
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Hence

u (X,Y ;λ)

X
∗ v (X,Y ;λ) =

r+s−1∑
k=0

(
k∑

ℓ=0

bℓsuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−1−k

=
1

X

r+s−1∑
k=0

(
k∑

ℓ=0

bℓsuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−k

+
1

X

r+s∑
ℓ=0

bℓsuℓ(λ)vr+s−ℓ(λ− ℓ)Y r+sX0

=
1

X
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since vr+s−ℓ(λ− ℓ) = 0 for 0 ≤ ℓ ≤ r − 1 and uℓ(λ) = 0 for r ≤ ℓ ≤ r + s so

1

X

r+s∑
ℓ=0

bℓsuℓ(λ)vr+s−ℓ(λ− ℓ)Y r+sX0 = 0.

(2) Now if vs(λ) = 0,

v (X,Y ;λ)

X
=

s−1∑
i=0

vi(λ)Y
iXs−1−i.

Then

u (X, bY ;λ) ∗ v (X,Y ;λ)

X
=

r+s−1∑
k=0

(
k∑

ℓ=0

bℓ(s−1)bℓuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−1−k

=

r+s−1∑
k=0

(
k∑

ℓ=0

bℓ(s−1)bℓuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−1−k

+
1

X

r+s∑
ℓ=0

bℓsuℓ(λ)vr+s−ℓ(λ− ℓ)Y r+sX0

=
1

X
[u(X,Y ;λ) ∗ v(X,Y ;λ)]

since vr+s−ℓ(λ− ℓ) = 0 for 0 ≤ ℓ ≤ r and uℓ = 0 for r + 1 ≤ ℓ ≤ r + s.

Theorem 4.4.4 (Leibniz rule for the negative-q-derivative). For two homogeneous poly-

nomials in X and Y , f(X,Y ;λ) and g(X,Y ;λ) with degrees r and s respectively, and for

φ ≥ 0, the φth negative-q-derivative of their negative-q-product is given by

[f (X,Y ;λ) ∗ g (X,Y ;λ)]
(φ)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)f (ℓ) (X,Y ;λ) ∗ g(φ−ℓ) (X,Y ;λ) . (4.4.6)

Proof. For simplification, we shall write f(X,Y ;λ) as f(X,Y ) and similarly g(X,Y ;λ) as
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g(X,Y ). Now by differentiation we have

[f (X,Y ) ∗ g (X,Y )]
(1)

=
f (bX, Y ) ∗ g (bX, Y )− f (X,Y ) ∗ g (X,Y )

(b− 1)X

=
1

(b− 1)X

{
f (bX, Y ) ∗ g (bX, Y )− f (bX, Y ) ∗ g (X,Y )

+ f (bX, Y ) ∗ g (X,Y )− f (X,Y ) ∗ g (X,Y )

}
=

1

(b− 1)X
{f (bX, Y ) ∗ (g (bX, Y )− g (X,Y ))}

+
1

(b− 1)X

{
(f (bX, Y )− f (X,Y )) ∗ g (X,Y )

}
(4.4.5)
= f (bX, bY ) ∗

{
g (bX, Y )− g (X,Y )

(b− 1)X

}
(4.4.4)
+

{
f (bX, Y )− f (X,Y )

(b− 1)X

}
∗ g (X,Y )

= brf (X,Y ) ∗ g(1) (X,Y ) + f (1) (X,Y ) ∗ g (X,Y )

since f(X,Y ) is a homogeneous polynomial. So the initial case holds. Assume the statement

holds true for φ = φ, i.e.

[f (X,Y ) ∗ g (X,Y )]
(φ)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)f (ℓ) (X,Y ) ∗ g(φ−ℓ) (X,Y ) .

Now considering φ+ 1 and for simplicity writing f(X,Y ;λ), g(X,Y ;λ) as f, g we have

[f ∗ g](φ+1)
=

[
φ∑

ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)f (ℓ) ∗ g(φ−ℓ)

](1)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)

(
b(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1) + f (ℓ+1) ∗ g(φ−ℓ)

)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ+1)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

+

φ+1∑
ℓ=1

[
φ

ℓ− 1

]
b(φ−ℓ+1)(r−ℓ+1)f (ℓ) ∗ g(φ−ℓ+1)

=

[
φ

0

]
b(φ+1)rf ∗ g(φ+1) +

φ∑
ℓ=1

[
φ

ℓ

]
b(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

+

[
φ

φ

]
b(φ+1−φ−1)(r−φ−1+1)f (φ+1) ∗ g

+

φ∑
ℓ=1

[
φ

ℓ− 1

]
b(φ+1−ℓ)(r−ℓ+1)f (ℓ) ∗ g(φ−ℓ+1)

= b(φ+1)rf ∗ g(φ+1) + f (φ+1) ∗ g +
φ∑

ℓ=1

([
φ

ℓ

]
+ b(φ−ℓ+1)

[
φ

ℓ− 1

])
× b(φ−ℓ+1)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)
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Then applying Equation (2.3.29) yields

φ∑
ℓ=1

[
φ+ 1

ℓ

]
b(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ+1−ℓ) +

[
φ+ 1

0

]
b(φ+1)(r)f ∗ g(φ+1)

+

[
φ+ 1

φ+ 1

]
b(φ−1−φ−1)f (φ+1) ∗ g

=

φ+1∑
ℓ=0

[
φ+ 1

ℓ

]
b(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ+1−ℓ)

as required.

4.4.2 The Negative-q−1-Derivative

Definition 4.4.5. For q ≥ 2, −q = b, the negative-q−1-derivative at Y ̸= 0 for a

real-valued function g(Y ) is defined as

g{1} (Y ) =
g
(
b−1Y

)
− g (Y )

(b−1 − 1)Y
.

For φ ≥ 0 we denote the φth negative-q−1-derivative (with respect to Y ) of g(X,Y ;λ) as

g{φ}(X,Y ;λ). The 0th negative-q−1-derivative of g(X,Y ;λ) is g(X,Y ;λ). For any a ∈

R, Y ̸= 0 and real-valued function f(Y ),

[f(Y ) + ag(Y )]
{1}

= f{1}(Y ) + ag{1}(Y ).

Lemma 4.4.6. 1. For 0 ≤ φ ≤ ℓ, φ ∈ Z+, ℓ ≥ 0,

(
Y ℓ
){φ}

= bφ(1−ℓ)+σφβ(ℓ, φ)Y ℓ−φ.

2. The φth negative-q−1-derivative of g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i is given by

g{φ} (X,Y ;λ) =

s∑
i=φ

gi(λ)b
φ(1−i)+σφβ(i, φ)Y i−φXs−i. (4.4.7)

3. Also,

µ[k]{φ}(X,Y ;λ) = b−σφβ(k, φ)γ′(λ, φ)µ[k−φ](X,Y ;λ− φ) (4.4.8)

ν[k]{φ}(X,Y ;λ) = (−1)φβ(k, φ)ν[k−φ](X,Y ;λ). (4.4.9)
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Proof. (1) For φ = 1 we have

(
Y ℓ
){1}

=

(
b−1Y

)ℓ − Y ℓ

(b−1 − 1)Y
=

(
b−ℓ − 1

b−1 − 1

)
Y ℓ−1

= b1−ℓβ(ℓ, 1)Y ℓ−1.

So the initial case holds. Assume the case for φ = φ holds. Then we have

(
Y ℓ
){φ+1}

=
(
b(φ(1−ℓ)+σφ)β(ℓ, φ)Y ℓ−φ

){1}
= b(φ(1−ℓ)+σφ)β(ℓ, φ)

b−(ℓ−φ)Y ℓ−φ − Y ℓ−φ

(b−1 − 1)Y

= bφ(1−ℓ)+σφβ(ℓ, φ)b1−(ℓ−φ)β(ℓ− φ, 1)Y ℓ−φ−1

(2.3.37)
= b(φ+1)(1−ℓ)+σφ+1β(ℓ, φ+ 1)Y ℓ−(φ+1).

Thus the statement holds by induction.

(2) Now consider g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i. For φ = 1 we have

g{1} (X,Y ;λ) =

(
s∑

i=0

gi(λ)Y
iXs−i

){1}

=

s∑
i=0

gi(λ)b
(−i+1)β(i, 1)Y i−1Xs−i.

As β(i, 1) = 0 when i = 0 we have

g{1} (X,Y ;λ) =

s∑
i=1

gi(λ)b
(1−i)+σ1β(i, 1)Y i−1Xs−i.

So the initial case holds. Now assume the case holds for φ = φ i.e.

g{φ} (X,Y ;λ) =
s∑

i=φ

gi(λ)b
φ(1−i)+σφβ(i, φ)Y i−φXs−i. Then we have

g{φ+1} (X,Y ;λ) =

 s∑
i=φ

gi(λ)b
φ(1−i)+σφβ(i, φ)Y i−φXs−i

{1}

=

s∑
i=φ

gi(λ)b
φ(1−i)+σφβ(i, φ)b−(i−φ−1)β(i− φ, 1)Y i−φ−1Xs−i

(2.3.34)
=

s∑
i=φ

gi(λ)b
(φ+1)(1−i)+σφ

φ−1∏
j=0

(
bi−j − 1

) (
bi−φ − 1

)
(b− 1)(b− 1)

Y i−φ−1Xs−i

=

s∑
i=φ

gi(λ)b
(φ+1)(1−i)+σφ+1β(i, φ+ 1)Y i−φ−1Xs−i

=

s∑
i=φ+1

gi(λ)b
(φ+1)(1−i)+σφ+1β(i, φ+ 1)Y i−φ−1Xs−i

since when i = φ, β(φ,φ+ 1) = 0. So by induction Equation (4.4.7) holds.
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(3) Now consider µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u where µu(λ, k) =

[
k

u

]
γ′(λ, u) as in

Equation (4.2.4). Then we have

µ[k]{1}(X,Y ;λ) =

(
k∑

u=0

µu(λ, k)Y
uXk−u

){1}

=

k∑
u=0

µu(λ, k)b
1−uβ(u, 1)Y u−1Xk−u

=

k−1∑
r=0

µr+1(λ, k)b
1−(r+1)β(r + 1, 1)Y r+1−1Xk−r−1

=

k−1∑
r=0

[
k

r + 1

]
γ′(λ, r + 1)b−rβ(r + 1, 1)Y rXk−1−r

(2.3.33)
=

k−1∑
r=0

[
k − 1

r

](
bk − 1

) (
br+1 − 1

)
(br+1 − 1) (b− 1)

×
(
−bλ − 1

)
brb−rγ′(λ− 1, r)Y rXk−1−r

= b−σ1β(k, 1)γ′(λ, 1)µ[k−1](X,Y ;λ− 1).

So the case for φ = 1 holds. Now assume that the statement holds for φ = φ. Then

we have

µ[k]{φ+1}(X,Y ;λ) =

[
b−σφβ(k, φ)γ′(λ, φ)µ[k−φ](X,Y ;λ− φ)

]{1}

= b−σφβ(k, φ)γ′(λ, φ)

(
k−φ∑
r=0

[
k − φ

r

]
γ′(λ− φ, r)Y rXk−φ−r

){1}

= b−σφβ(k, φ)γ′(λ, φ)

k−φ−1∑
u=0

[
k − φ

u+ 1

]
γ′(λ− φ, u+ 1)

× b1−(u+1)β(u+ 1, 1)Y u+1−1Xk−φ−u−1

(4.1.3)(2.3.34)
= b−σφβ(k, φ)γ′(λ, φ)

k−(φ+1)∑
u=0

[
k − φ− 1

u

](
bk−φ − 1

) (
bu+1 − 1

)
(bu+1 − 1) (b− 1)

× bub−u
(
qλ−φ − 1

)
γ′(λ− (φ+ 1), u)Y uXk−(φ+1)−u

= b−σφ+1γ′(λ, φ+ 1)β(k, φ+ 1)µ[k−(φ+1)](X,Y ;λ− (φ+ 1))

as required. Now consider ν[k](X,Y ;λ) =

k∑
u=0

(−1)ubu(u−1)

[
k

u

]
Y uXk−u as in Equation
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4.2.6. Then we have

ν[k]{1}(X,Y ;λ) =

(
k∑

u=0

(−1)ubσu

[
k

u

]
Y uXk−u

){1}

=

k−1∑
r=0

(−1)r+1bσr+1b1−(r+1)

[
k

r + 1

]
β(r + 1, 1)Y r+1−1Xk−r−1

(4.1.3)(2.3.34)
= −

k−1∑
r=0

(−1)rbσrbrb−r

[
k − 1

r

](
bk − 1

) (
br+1 − 1

)
(br+1 − 1) (b− 1)

β(r, 1)Y rXk−r−1

= (−1)1β(k, 1)ν[k−1](X,Y ;λ).

Now assume that the statement holds for φ = φ. Then we have

ν[k](X,Y ;λ){φ+1} =
[
(−1)φβ(k, φ)ν[k−φ](X,Y ;λ)

]{1}
= (−1)φβ(k, φ)

k−φ∑
u=1

(−1)ubσu

[
k − φ

u

]
(Y u)

{1}
Xk−φ−u

= (−1)φβ(k, φ)

k−φ−1∑
r=0

(−1)r+1bσr+1b−(r+1)+1

[
k − φ

r + 1

]
× β(r + 1, 1)Y r+1−1Xk−φ−r−1

(2.3.33)
= (−1)φ+1β(k, φ)

k−φ−1∑
r=0

(−1)rbσr

[
k − (φ+ 1)

r

]

×
(
bk−φ − 1

) (
br+1 − 1

)
(br+1 − 1) (b− 1)

Y rXk−φ−1−r

= (−1)φ+1β(k, φ+ 1)ν[k−(φ+1)](X,Y ;λ)

as required.

Now we need a few smaller lemmas in order to prove the Leibniz rule for the negative-q−1-

derivative.

Lemma 4.4.7. Let

u (X,Y ;λ) =

r∑
i=0

ui(λ)Y
iXr−i

v (X,Y ;λ) =

s∑
i=0

vi(λ)Y
iXs−i.

1. If u0(λ) = 0 then

1

Y
[u (X,Y ;λ) ∗ v (X,Y ;λ)] = bs

u (X,Y ;λ)

Y
∗ v (X,Y ;λ− 1) . (4.4.10)
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2. If v0(λ) = 0 then

1

Y
[u (X,Y ;λ) ∗ v (X,Y ;λ)] = u (X, bY ;λ) ∗ v (X,Y ;λ)

Y
. (4.4.11)

Proof.

(1) Suppose u0(λ) = 0. Then

u (X,Y ;λ)

Y
=

r∑
i=0

ui(λ)Y
i−1Xr−i =

r−1∑
i=0

ui+1(λ)Y
iXr−i−1

Hence

bs
u (X,Y ;λ)

Y
∗ v (X,Y ;λ− 1) = bs

r+s−1∑
u=0

(
u∑

ℓ=0

bℓsuℓ+1(λ)vu−ℓ(λ− ℓ− 1)

)
Y uXr+s−1−u

= bs
r+s−1∑
u=0

(
u+1∑
i=1

b(i−1)sui(λ)vu−i+1(λ− i)

)
Y uXr+s−1−u

= bs
r+s∑
j=1

(
j∑

i=1

b(i−1)sui(λ)vj−i(λ− i)

)
Y j−1Xr+s−j

=
1

Y

r+s∑
j=0

(
j∑

i=0

bisui(λ)vj−i(λ− i)

)
Y jXr+s−j

=
1

Y
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since when j = 0,

j∑
i=0

bisui(λ)vj−i(λ− i) = 0 as u0(λ) = 0.

(2) Now if v0(λ) = 0, then

v (X,Y ;λ)

Y
=

s∑
j=1

vj(λ)Y
j−1Xs−j

=

s−1∑
i=0

vi+1(λ)Y
iXs−i−1.

So,

u (X, bY ;λ) ∗ v (X,Y ;λ)

Y
=

r+s−1∑
u=0

 u∑
j=0

bj(s−1)bjuj(λ)vu−j+1(λ− j)

Y uXr+s−1−u

=
1

Y

r+s∑
ℓ=1

 ℓ∑
j=0

bjsuj(λ)vℓ−j(λ− j)

Y ℓXr+s−ℓ

=
1

Y

r+s∑
ℓ=0

 ℓ∑
j=0

bjsuj(λ)vℓ−j(λ− j)

Y ℓXr+s−ℓ
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since when j = ℓ,

j∑
i=0

bisui(λ)vj−i(λ− i) = 0 as v0(λ) = 0.

Theorem 4.4.8 (Leibniz rule for the negative-q−1-derivative). For two homogeneous poly-

nomials in Y , f(X,Y ;λ) and g(X,Y ;λ) with degrees r and s respectively, for φ ≥ 0, the

φth negative-q−1-derivative of their negative-q-product is given by

[f (X,Y ;λ) ∗ g (X,Y ;λ)]
{φ}

=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (X,Y ;λ) ∗ g{φ−ℓ} (X,Y ;λ− ℓ) .

(4.4.12)

Proof. For simplification we shall write f(X,Y ;λ), g(X,Y ;λ) as f(Y ;λ), g(Y ;λ). Now by

differentiation we have

[
f (Y ;λ) ∗ g (Y ;λ)

]{1}
=
f
(
b−1Y ;λ

)
∗ g
(
b−1Y ;λ

)
− f (Y ;λ) ∗ g (Y ;λ)

(b−1 − 1)Y

=
1

(b−1 − 1)Y

{
f
(
b−1Y ;λ

)
∗ g
(
b−1Y ;λ

)
− f

(
b−1Y ;λ

)
∗ g (Y ;λ)

+ f
(
b−1Y ;λ

)
∗ g (Y ;λ)− f (Y ;λ) ∗ g (Y ;λ)

}
=

1

(b−1 − 1)Y

{
f
(
b−1Y ;λ

)
∗
(
g
(
b−1Y ;λ

)
− g (Y ;λ)

)}
+

1

(b−1 − 1)Y

{(
f
(
b−1Y ;λ

)
− f (Y ;λ)

)
∗ g (Y ;λ)

}
(4.4.11)
= f (Y ;λ) ∗

(
g
(
b−1Y ;λ

)
− g (Y ;λ)

)
(b−1 − 1)Y

(4.4.10)
+ bs

(
f
(
b−1Y ;λ

)
− f (Y ;λ)

)
(b−1 − 1)Y

∗ g (Y ;λ− 1)

= f (Y ;λ) ∗ g{1} (Y ;λ) + bsf{1} (Y ;λ) ∗ g (Y ;λ− 1) .

So the initial case holds. Assume the statement holds true for φ = φ, i.e.

[
f (X,Y ;λ) ∗ g (X,Y ;λ)

]{φ}
=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (X,Y ;λ) ∗ g{φ−ℓ} (X,Y ;λ− ℓ) .

Now considering φ + 1 and for simplicity writing f(X,Y ;λ), g(X,Y ;λ) as f(λ), g(λ) we

have
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[
f (λ) ∗ g (λ)

]{φ+1}

=

[
φ∑

ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ} (λ− ℓ)

]{1}
(4.2.1)
=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)bs−φ+ℓf{ℓ+1} (λ) ∗ g{φ−ℓ} (λ− ℓ− 1)

=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

φ+1∑
ℓ=1

[
φ

ℓ− 1

]
b(ℓ−1)(s−φ+ℓ−1)bs−φ+(ℓ−1)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

φ∑
ℓ=1

[
φ

ℓ− 1

]
b(ℓ−1)(s−φ+ℓ−1)b(s−φ+(ℓ−1))f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

[
φ

φ

]
b(φ+1)(s+1)b−φ−1f{φ+1} (λ) ∗ g (λ− (φ+ 1))

= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

([
φ

ℓ

]
+ b−ℓ

[
φ

ℓ− 1

])
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− ℓ)

+ bs(φ+1)f{φ+1} (λ) ∗ g (λ− (φ+ 1))

(2.3.30)
= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

b−ℓ

[
φ+ 1

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− ℓ)

+

[
φ+ 1

φ+ 1

]
b(φ+1)(s−φ−1+(φ+1))f{φ+1} (λ) ∗ g{φ+1−(φ+1)} (λ− (φ+ 1))

=

φ+1∑
ℓ=0

[
φ+ 1

ℓ

]
bℓ(s−(φ+1)+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− ℓ)

as required.

4.4.3 Evaluating the Negative-q-Derivative and the Negative-q−1-

Derivative

Here we introduce some lemmas which yield useful results when developing moments of the

Hermitian rank weight distribution.

Lemma 4.4.9. For j, ℓ ∈ Z+, 0 ≤ ℓ ≤ j and X = Y = 1,

ν[j](ℓ)(1, 1;λ) = β(j, j)δjℓ. (4.4.13)
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Proof. Consider

ν[j](ℓ)(X,Y ;λ)
(4.4.3)
= β(j, ℓ)ν[j−ℓ](X,Y ;λ) = β(j, ℓ)

j−ℓ∑
u=0

(−1)ubσu

[
j − ℓ

u

]
Y uX(j−ℓ)−u.

So

ν[j](ℓ)(1, 1;λ) = β(j, ℓ)

j−ℓ∑
u=0

(−1)ubσu

[
j − ℓ

u

]
(2.3.35)
= β(ℓ, ℓ)

[
j

ℓ

] j−ℓ∑
u=0

(−1)ubσu

[
j − ℓ

u

]
(2.3.24)(2.3.25)

= β(ℓ, ℓ)

j∑
k=ℓ

(−1)k−ℓbσk−ℓ

[
j

k

][
k

ℓ

]
(2.3.28)
= β(ℓ, ℓ)δℓj = β(j, j)δjℓ.

Lemma 4.4.10. For any homogeneous polynomial, ρ (X,Y ;λ) and for any s ≥ 0,

(
ρ ∗ µ[s]

)
(1, 1;λ) = (−1)sbλsρ(1, 1;λ). (4.4.14)

Proof. Let ρ (X,Y ;λ) =

r∑
i=0

ρi(λ)Y
iXr−i. Then by Theorem 4.2.4 we have,

µ[s](X,Y ;λ) =

s∑
t=0

µ
[s]
t (λ)Y tXs−t =

s∑
t=0

[
s

t

]
γ′(λ, t)Y tXs−t.

Thus giving (
ρ ∗ µ[s]

)
(X,Y ;λ) =

r+s∑
u=0

cu(λ)Y
uX(r+s−u)

where

cu(λ) =

u∑
i=0

bisρi(λ)µ
[s]
u−i(λ− i).
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Then

(
ρ ∗ µ[s]

)
(1, 1;λ) =

r+s∑
u=0

cu(λ) =

r+s∑
u=0

u∑
i=0

bisρi(λ)µ
[s]
u−i(λ− i)

=

r+s∑
j=0

bjsρj(λ)

(
r+s−j∑
k=0

µ
[s]
k (λ− j)

)

=

r∑
j=0

bjsρj(λ)

(
s∑

k=0

µ
[s]
k (λ− j)

)

=

r∑
j=0

bjsρj(λ)

(
s∑

k=0

[
s

k

]
γ′(λ− j, k)

)
(2.3.27)
=

r∑
j=0

bjsρj(λ)
(
−bλ−j

)s
= (−1)sbλsρ(1, 1;λ)

since ρj(λ) = 0 when j > r and µ
[s]
k (λ− j) = 0 when k > s.

4.5 Moments of the Hermitian Rank Distribution

Here we explore the moments of the Hermitian rank distribution of a subgroup of Hermitian

matrices over Fq2 and that of its dual. Similar results for the Hamming association scheme

were derived in [41, p131], for the rank association scheme in [22, Prop 4] and for the skew

rank association scheme in Section 3.5.

4.5.1 Moments derived from the Negative-q-Derivative

The following proposition is obtained in the proof by Schmidt [53, Theorem 1], by combining

the eigenvalues of the association scheme [53, (5)] with the coefficients of the dual inner

distribution [53, (7)]. In this paper an alternative method for deriving the moments is

presented using the MacWilliams Identity and the negative-q-derivative.

Proposition 4.5.1. For 0 ≤ φ ≤ t, −q = b, and a linear code C ⊆ Hq,t and its dual

C⊥ ⊆ Hq,t with weight distributions c = (c0, . . . , ct) and c′ = (c′0, . . . , c
′
t), respectively we

have
t−φ∑
i=0

[
t− i

φ

]
ci =

1

|C⊥|
(
−bt
)t−φ

φ∑
i=0

[
t− i

t− φ

]
c
′

i.

Proof. We apply Theorem 4.3.4 to C⊥ to get

WHR
C (X,Y ) =

1

|C⊥|
W

HR

C⊥

(
X + (−bt − 1)Y,X − Y

)
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or equivalently

t∑
i=0

ciY
iXt−i =

1

|C⊥|

t∑
i=0

c′i (X − Y )
[i] ∗

[
X + (−bt − 1)Y

][t−i]

=
1

|C⊥|

t∑
i=0

c′iν
[i](X,Y ; t) ∗ µ[t−i](X,Y ; t). (4.5.1)

For each side of Equation (4.5.1), we shall apply the negative-q-derivative φ times and then

evaluate at X = Y = 1.

For the LHS, we obtain

(
t∑

i=0

ciY
iXt−i

)(φ)

(4.4.1)
=

t−φ∑
i=0

ciβ(t− i, φ)Y iXt−i−φ.

Setting X = Y = 1 we then have

t−φ∑
i=0

ciβ(t− i, φ)
(2.3.35)
=

t−φ∑
i=0

ci

[
t− i

φ

]
β(φ,φ)

= β(φ,φ)

t−φ∑
i=0

ci

[
t− i

φ

]
.

We now move on to the RHS. For simplicity we write µ(X,Y ; t) as µ and similarly ν(X,Y ;n)

as ν. We have

(
1

|C⊥|

t∑
i=0

c′iν
[i] ∗ µ[t−i]

)(φ)

(4.4.6)
=

1

|C⊥|

t∑
i=0

c′i

(
φ∑

ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)ν[i](ℓ) ∗ µ[t−i](φ−ℓ)

)

=
1

|C⊥|

t∑
i=0

c′iψi(X,Y ; t)

where

ψi(X,Y ; t) =

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)ν[i](ℓ)(X,Y ; t) ∗ µ[t−i](φ−ℓ)(X,Y ; t).

Then with X = Y = 1,

ψi(1, 1; t)
(4.4.2)
=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)β(t− i, φ− ℓ)

(
ν[i](ℓ) ∗ µ[t−i−φ+ℓ]

)
(1, 1; t)

(4.4.14)
=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)β(t− i, φ− ℓ)

(
−bt
)t−i−(φ−ℓ)

ν[i](ℓ)(1, 1; t)

(4.4.13)
=

φ∑
ℓ=0

b(φ−ℓ)(i−ℓ)

[
φ

ℓ

]
β(t− i, φ− ℓ)

(
−bt
)t−i−(φ−ℓ)

β(i, i)δiℓ

(2.3.35)
=

[
φ

i

][
t− i

φ− i

]
β(φ− i, φ− i)

(
−bt
)t−φ

β(i, i)

(2.3.36)
=

[
t− i

φ− i

] (
−bt
)t−φ

β(φ,φ).
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So

1

|C⊥|

t∑
i=0

c′iψi(1, 1; t) =
1

|C⊥|

φ∑
i=0

c′i

[
t− i

φ− i

] (
−bt
)t−φ

β(φ,φ)

(2.3.24)
= β(φ,φ)

1

|C⊥|
(
−bt
)t−φ

φ∑
i=0

c′i

[
t− i

t− φ

]
.

Combining the results for each side, and simplifying, we finally obtain

t−φ∑
i=0

ci

[
t− i

φ

]
=

1

|C⊥|
(
−bt
)t−φ

φ∑
i=0

c′i

[
t− i

t− φ

]

as required.

Note. In particular, if φ = 0 we have

t∑
i=0

ci =
(−bt)t

|C⊥|
c′0 =

(−bt)t

|C⊥|
.

In other words

|C ||C⊥| =
(
−bt
)t

= (−1)t(−1)t
2

qt
2

= qt
2

as expected.

We can simplify Proposition 4.5.1 if φ is less than the minimum distance of the dual code.

Corollary 4.5.2. Let d′HR be the minimum rank distance of C⊥. If 0 ≤ φ < d′HR then

t−φ∑
i=0

[
t− i

φ

]
ci =

1

|C⊥|
(
−bt
)t−φ

[
t

φ

]
.

Proof. We have c′0 = 1 and c′1 = . . . = c′φ = 0.

4.5.2 Moments Derived from the Negative-q−1-Derivative

The next proposition relates the moments of the negative rank distribution of a linear code

to those of its dual, this time using the negative-q−1-derivative of the MacWilliams Identity

for the Hermitian rank association scheme. There is a slight difference in the way that these

two lemmas are defined compared to the skew rank case (and the rank case presented in

[22, Appendix D]). In the skew rank case, δ(λ, φ, j) is defined using two gamma functions

and a power of q2. This form was effective there because of the particular formulation of the

gamma function, which does not hold in this case. That is, one of the products in Equation

(4.5.2) is identical to the gamma function in the skew case, due to the fact that the multiplier

of bφ is 1. In the Hermitian case, the multiplier of bφ in the gamma function is −1, so the

simplification of the product to a gamma function cannot be made. Therefore one of the
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gamma functions in Lemma 4.5.3 has to be replaced with a more general product.

Lemma 4.5.3. Let δ(λ, φ, j) =

j∑
i=0

[
j

i

]
(−1)ibσiγ′(λ− i, φ). Then for all λ ∈ R, φ, j ∈ Z,

δ(λ, φ, j) = (−1)j
j−1∏
i=0

(
bφ − bi

)
γ′(λ− j, φ− j)bj(λ−j). (4.5.2)

Proof. We follow the proof by induction. Initial case: j = 0.

δ(λ, φ, 0) =

[
0

0

]
(−1)0bσ0γ′(λ, φ) = γ′(λ, φ) = γ′(λ, φ)q0(λ).

So the initial case holds. Now assume it is true for j = ȷ and consider the case where ȷ+ 1.

δ(λ, φ, ȷ+ 1) =

ȷ+1∑
i=0

[
ȷ+ 1

i

]
(−1)ibσiγ′(λ− i, φ)

(2.3.30)
=

ȷ+1∑
i=0

(
bi
[
ȷ

i

]
+

[
ȷ

i− 1

])
(−1)ibσiγ′(λ− i, φ)

=

ȷ∑
i=0

[
ȷ

i

]
(−1)ibσibiγ′(λ− i, φ) +

ȷ∑
i=0

[
ȷ

i

]
(−1)i+1bσi+1γ′(λ− (i+ 1), φ)

(4.1.3)
=

ȷ∑
i=0

[
ȷ

i

]
(−1)ibibσi

(
−bλ−i − 1

)
bφ−1γ′(λ− i− 1, φ− 1)

(4.1.4)
−

ȷ∑
i=0

[
ȷ

i

]
(−1)ibσi+1

(
−bλ−i−1 − bφ−1

)
γ′(λ− i− 1, φ− 1)

=

ȷ∑
i=0

[
ȷ

i

]
(−1)ibσiγ′(λ− i− 1, φ− 1)(−bλ−1) (bφ − 1)

= −bλ−1 (bφ − 1) δ(λ− 1, φ− 1, ȷ)

= −bλ−1 (bφ − 1) (−1)ȷ
ȷ−1∏
i=0

(
bφ−1 − bi

)
bȷ(λ−ȷ−1)γ′(λ− ȷ− 1, φ− ȷ− 1)

(4.1.3)
= (−1)ȷ+1b(ȷ+1)(λ−(ȷ+1))

ȷ∏
i=0

(
bφ − bi

)
γ′(λ− (ȷ+ 1), φ− (ȷ+ 1))

since

[
ȷ

i− 1

]
= 0 when i = 0. Hence by induction the lemma is proved.

Lemma 4.5.4. Let ε(Λ, φ, i) =

i∑
ℓ=0

[
i

ℓ

][
Λ− i

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
. Then for

all Λ ∈ R, φ, i ∈ Z,

ε(Λ, φ, i) = (−1)ibσi

[
Λ− i

Λ− φ

]
.

Proof. We follow the proof by induction. Initial case i = 0,

ε(Λ, φ, 0) =

[
0

0

][
Λ

0

]
b0(−1)0b0 =

[
Λ

φ

]
(−1)0b0

[
Λ

Λ− φ

]
(2.3.24)
=

[
Λ

φ

]
.
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So the initial case holds. Now suppose it is true when i = ı. Then

ε(Λ, φ, ı+ 1) =

ı+1∑
ℓ=0

[
ı+ 1

ℓ

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
(2.3.29)
=

ı+1∑
ℓ=0

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
+

ı+1∑
ℓ=1

b(ı+1−ℓ)

[
ı

ℓ− 1

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
= A+B, say.

Now

A =
(
−bφ − bı

) ı∑
ℓ=0

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−1−φ)(−1)ℓbσℓ

ı−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
=
(
−bφ − bı

)
ε(Λ− 1, φ, ı)

=
(
−bφ − bı

)
(−1)ıbσı

[
Λ− ı− 1

Λ− 1− φ

]

and

B =

ı∑
ℓ=0

b(ı−ℓ)

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ− 1

]
b(ℓ+1)(Λ−φ)(−1)ℓ+1bσℓ+1

ı−ℓ−1∏
j=0

(
bφ−ℓ−1 − bj

)
= −b(ı+Λ−φ)ε(Λ− 1, φ− 1, ı)

= −b(ı+Λ−φ)(−1)ıbσı

[
Λ− ı− 1

Λ− φ

]
.

So

ε(Λ, φ, ı+ 1) = A+B

= (−1)ıbσı

{(
bφ − bı

) [Λ− ı− 1

Λ− 1− φ

]
− b(ı+n−φ)

[
Λ− ı− 1

Λ− φ

]}
(2.3.31)
= (−1)ı+1bσı

{
bı+n−φ

[
Λ− ı− 1

Λ− φ

]
−
(
bφ − bı

) (bΛ−φ − 1
)

(bφ−ı − 1)

[
Λ− ı− 1

Λ− φ

]}

= (−1)ı+1

[
Λ− (ı+ 1)

Λ− φ

]
bσı

{
bı+n−φ

(
bφ−ı − 1

)
−
(
bφ − bı

) (
bΛ−φ − 1

)
(bφ−ı − 1)

}

= (−1)ı+1bσı+1

[
Λ− (ı+ 1)

Λ− φ

]

as required.

Proposition 4.5.5. For 0 ≤ φ ≤ t and a linear code C ⊆ Hq,t with dimension k and its

dual C⊥ ⊆ Hq,t with weight distributions c = (c0, . . . , cn) and c′ = (c′0, . . . , c
′
n), respectively
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we have

t∑
i=φ

bφ(t−i)

[
i

φ

]
ci =

1

|C⊥|
(
−bt
)t−φ

φ∑
i=0

(−1)ibσibi(φ−i)

[
t− i

t− φ

]
γ′(t− i, φ− i)c′i.

Proof. As in Proposition 4.5.1, we apply Theorem 4.3.4 to C⊥ to obtain

WHR
C (X,Y ) =

1

|C⊥|
W

HR

C⊥

(
X + (−bt − 1)Y,X − Y

)
or equivalently

t∑
i=0

ciY
iXt−i =

1

|C⊥|

t∑
i=0

c′i (X − Y )
[i] ∗

(
X + (−bt − 1)Y

)[t−i]

=
1

|C⊥|

t∑
i=0

c′iν
[i](X,Y ; t) ∗ µ[t−i](X,Y ; t). (4.5.3)

For each side of Equation (4.5.3), we shall apply the negative-q−1-derivative φ times and

then evaluate at X = Y = 1. i.e.

(
t∑

i=0

ciY
iXt−i

){φ}

=

(
1

|C⊥|

t∑
i=0

c′iν
[i](X,Y ; t) ∗ µ[t−i](X,Y ; t)

){φ}

. (4.5.4)

For the LHS, we obtain

(
t∑

i=0

ciY
iXt−i

){φ}

=

t∑
i=φ

cib
φ(1−i)+σφβ(i, φ)Y i−φXt−i

(2.3.35)
=

t∑
i=φ

cib
φ(1−i)+σφ

[
i

φ

]
β(φ,φ)Y i−φXt−i

(4.5.5)

Then using X = Y = 1 gives

t∑
i=φ

cib
φ(1−i)+σφ

[
i

φ

]
β(φ,φ)Y i−φXt−i =

t∑
i=φ

bφ(1−i)+σφβ(φ,φ)

[
i

φ

]
ci. (4.5.6)

We now move on to the RHS, for simplicity writing µ(X,Y ; t) as µ(t) and ν(X,Y ; t) as ν(t).

We have

(
1

|C⊥|

t∑
i=0

c′iν
[i](t) ∗ µ[t−i](t)

){φ}

(4.5.7)

(4.4.12)
=

1

|C⊥|

t∑
i=0

c′i

(
φ∑

ℓ=0

[
φ

ℓ

]
bℓ(t−i−φ+ℓ)ν[i]{ℓ}(t) ∗ µ[t−i]{φ−ℓ}(t− ℓ)

)

=
1

|C⊥|

n∑
i=0

c′iψi(t) (4.5.8)
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say. Then

ψi(t)
(4.4.9)(4.4.8)

=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(t−i−φ+ℓ)

{
(−1)ℓβ(i, ℓ)ν[i−ℓ](t)

}
∗
{
b−σφ−ℓβ(t− i, φ− ℓ)γ′(t− ℓ, φ− ℓ)µ[t−i−φ+ℓ](t− φ)

}
.

Now let

Ψ(X,Y ; t− φ) = ν[i−ℓ](X,Y ; t) ∗ γ′(t− ℓ, φ− ℓ)µ[t−i−φ+ℓ](X,Y ; t− φ).

Then we apply the negative-q-product, reorder the summations and set X = Y = 1 which

gives

Ψ(1, 1; t− φ)

=

t−φ∑
u=0

[
u∑

p=0

bp(t−i−φ+ℓ)ν[i−ℓ]
p (t)γ′(t− ℓ− p, φ− ℓ)µ

[t−i−φ+ℓ]
u−p (t− φ− p)

]

=

i−ℓ∑
r=0

br(t−i−φ+ℓ)ν[i−ℓ]
r (t)γ′(t− ℓ− r, φ− ℓ)

[
t−i−φ+ℓ∑

w=0

µ[t−i−φ+ℓ]
w (t− φ− r)

]
(2.3.27)
=

i−ℓ∑
r=0

br(t−i−φ+ℓ)(−1)t−i−φ+ℓb(t−φ−r)(t−i−φ+ℓ)ν[i−ℓ]
r (t)γ′(t− ℓ− r, φ− ℓ)

= (−1)t−i−φ+ℓb(t−φ)(t−i−φ+ℓ)
i−ℓ∑
r=0

(−1)rbσr

[
i− ℓ

r

]
γ′(t− ℓ− r, φ− ℓ)

= (−1)t−i−φ+ℓb(t−φ)(t−i−φ+ℓ)δ(t− ℓ, φ− ℓ, i− ℓ)

(4.5.2)
= (−1)t−i−φ+ℓb(t−φ)(t−i−φ+ℓ)(−1)i−ℓb(i−ℓ)(t−i)

i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
γ′(t− i, φ− i)

= (−1)t−φb(t−φ)(t−i−φ+ℓ)b(i−ℓ)(t−i)
i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
γ′(t− i, φ− i).

Noting that bℓ(t−i−φ+ℓ)b−σφ−ℓ = bℓ(t−i)b−σφbσℓ gives

ψi(1, 1; t) =

φ∑
ℓ=0

(−1)ℓ
[
φ

ℓ

]
bℓ(t−i−φ+ℓ)b−σφ−ℓβ(i, ℓ)β(t− i, φ− ℓ)Ψ(1, 1; t− φ)

(2.3.36)
= b−σφβ(φ,φ)

φ∑
ℓ=0

(−1)ℓbℓ(t−i)bσℓ

[
i

ℓ

][
t− i

φ− ℓ

]
Ψ(1, 1; t− φ).

Writing that

b−σφbℓ(t−i)b(t−φ)(t−φ−i+ℓ)b(i−ℓ)(t−i) = bσφbφ(1−t)bt(t−φ)bℓ(t−φ)bi(φ−i) (4.5.9)

= bθbℓ(t−φ) (4.5.10)
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gives

ψi(1, 1; t) = (−1)t−φbθβ(φ,φ)γ′(t− i, φ− i)

i∑
ℓ=0

(−1)ℓbℓ(t−φ)bσℓ

[
i

ℓ

][
t− i

φ− ℓ

] i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
= (−1)t−φ(−1)ibθbσiβ(φ,φ)

[
t− i

t− φ

]
γ′(t− i, φ− i) (4.5.11)

by Lemma 4.5.4.

Substituting the results from (4.5.6), (4.5.8) and (4.5.11) we have

t∑
i=φ

bφ(1−i)+σφβ(φ,φ)

[
i

φ

]
ci =

1

|C⊥|

t∑
i=0

c′i(−1)t−φ+ibθbσiβ(φ,φ)

[
t− i

t− φ

]
γ′(t− i, φ− i).

Thus cancelling and rearranging gives,

t∑
i=φ

bφ(t−i)

[
i

φ

]
ci =

(−bt)t−φ

|C⊥|

φ∑
i=0

(−1)ibσibi(φ−i)

[
t− i

t− φ

]
γ′(t− i, φ− i)c′i

as required.

We can simplify Proposition 4.5.5 if φ is less than the minimum distance of the dual code.

Also we can introduce the dual diameter , ϱ′R, defined as the maximum distance between

any two codewords of the dual code and simplify Proposition 4.5.5 further.

Corollary 4.5.6. If 0 ≤ φ < d′HR then

t∑
i=φ

bφ(t−i)

[
i

φ

]
ci =

1

|C⊥|
(
−bt
)t−φ

[
t

φ

]
γ′(t, φ).

For ϱ′R < φ ≤ t then

φ∑
i=0

(−1)ibσibi(φ−i)

[
t− i

t− φ

]
γ′(t− i, φ− i)ci = 0.

Proof. First consider 0 ≤ φ < d′HR, then c
′
0 = 1, c′1 = . . . = c′φ = 0. Also since

[
t

t− φ

]
=[

t

φ

]
the statement holds. Now if ϱ′R < φ ≤ n then applying Proposition 4.5.5 to C⊥ gives

t∑
i=φ

bφ(t−i)

[
i

φ

]
c′i =

1

|C |
(
−bt
)t−φ

φ∑
i=0

(−1)ibσibi(φ−i)

[
t− i

t− φ

]
γ′(t− i, φ− i)ci.

So using c′φ = . . . = c′t = 0 we have

0 =

φ∑
i=0

(−1)ibσibi(φ−i)

[
t− i

t− φ

]
γ′(t− i, φ− i)ci

as required.
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4.5.3 MHRD Codes

As an application for the MacWilliams Identity, we can derive an alternative proof for the

explicit coefficients of the Hermitian rank weight distribution for some MHRD codes to

that in [53, Theorem 3]. This is analogous to the results for MRD codes presented in [22,

Proposition 9] and Proposition 3.5.8. Firstly a lemma, analogous to the rank and skew rank

cases, that will be needed.

Lemma 4.5.7. If a0, a1, . . . , aℓ and b0, b1, . . . , bℓ are two sequences of real numbers and if

aj =

j∑
i=0

[
ℓ− i

ℓ− j

]
bi

for 0 ≤ j ≤ ℓ, then also for 0 ≤ i ≤ ℓ we have,

bi =

i∑
j=0

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

]
aj .

Proof. For 0 ≤ i ≤ ℓ,

i∑
j=0

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

]
aj =

i∑
j=0

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

]( j∑
k=0

[
ℓ− k

ℓ− j

]
bk

)

=

i∑
k=0

i∑
j=k

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

][
ℓ− k

ℓ− j

]
bk

=

i∑
k=0

bk

(
ℓ−k∑

s=ℓ−i

(−1)i−ℓ+sbσi−ℓ+s

[
s

ℓ− i

][
ℓ− k

s

])
(2.3.28)
=

i∑
k=0

bkδik

= bi

as required.

Before we write our next proposition, we shall explain a similar proposition presented by

Schmidt [53, Theorem 3]. Theorem 3 states that if a code, C , has minimum distance dHR,

and its dual, C⊥, has minimum distance at least t−dHR+1, then the weight distribution is

uniquely determined by its parameters. Moreoever, if dHR is odd and the code C meets the

Singleton bound, i.e. |C | = qt(t−dHR+1) (2.7.1) then, by [53, Theorem 1], C⊥ has minimum

distance at least t − dHR + 2 and the conditions for [53] Theorem 3 are met. However, if

dHR is even and C meets the Singleton bound, the weight distribution cannot necessarily

be determined uniquely by its parameters and Schmidt provides a counterexample to show

this. Consequently the following proposition looks specifically at codes which are MHRD,

i.e. meets the Singleton bound, with minimum distance, dHR, odd. We can then use [53,

Theorem 1] and Corollary 4.5.2 to derive the unique weight distribution of the code as a
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function of its parameters equivalent to [53, Theorem 3].

Proposition 4.5.8. Let C ⊆ Hq,t be a linear MHRD code with weight distribution c =

(c0, . . . , ct) and minimum distance dHR odd. Then we have c0 = 1 and for 0 ≤ r ≤ t− dHR,

cr+dHR
=

r∑
i=0

(−1)r−ibσr−i

[
dHR + r

dHR + i

][
t

dHR + r

](
(−bt)dHR+i

|C⊥|
− 1

)
.

Proof. From Corollary 4.5.2, for 0 ≤ φ < d′HR we have

t−φ∑
i=0

[
t− i

φ

]
ci =

1

|C⊥|
(
−bt
)t−φ

[
t

φ

]
.

Now if a linear code C is MHRD, with minimum distance dHR odd, then C⊥ is also MHRD

with minimum distance d′HR = t− dHR +2 by [53, Theorem 1]. So Corollary 4.5.2 holds for

0 ≤ φ ≤ t− dHR = d′HR − 2. We therefore have c0 = 1 and c1 = c2 = . . . = cdHR−1 = 0 and

setting φ = t− dHR − j for 0 ≤ j ≤ t− dHR gives

[
t

t− dHR − j

]
+

dHR+j∑
i=dHR

[
t− i

t− dHR − j

]
ci =

1

|C⊥|
(
−bt
)dHR+j

[
t

t− dHR − j

]
j∑

r=0

[
t− dHR − r

t− dHR − j

]
cr+dHR

=

[
t

t− dHR − j

](
(−bt)dHR+j

|C⊥|
− 1

)
.

Applying Lemma 4.5.7 with ℓ = t− dHR and br = cr+dHR
then setting

aj =

[
t

t− dHR − j

](
(−bt)dHR+j

|C⊥|
− 1

)

gives
j∑

r=0

[
t− dHR − r

t− dHR − j

]
br = aj

and so

br = cr+dHR
=

r∑
i=0

(−1)r−ibσr−i

[
t− dHR − i

t− dHR − r

]
ai

=

r∑
i=0

(−1)r−ibσr−i

[
t− dHR − i

t− dHR − r

][
t

t− dHR − i

](
(−bt)dHR+i

|C⊥|
− 1

)
.

But we have

[
t− dHR − i

t− dHR − r

][
t

t− dHR − i

]
(2.3.24)
=

[
t− (dHR + i)

t− (dHR + r)

][
t

dHR + i

]
(2.3.25)
=

[
dHR + r

dHR + i

][
t

t− (dHR + r)

]
(2.3.24)
=

[
dHR + r

dHR + i

][
t

dHR + r

]
.
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Therefore

cr+dHR
=

r∑
i=0

(−1)r−ibσr−i

[
dHR + r

dHR + i

][
t

dHR + r

](
(−bt)dHR+i

|C⊥|
− 1

)

as required.
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Chapter 5
The Generalised MacWilliams Identity

as a Functional Transform

We have successfully extended a q-algebra for each of the skew rank and the Hermitian

association schemes from the q-algebra for the rank association scheme by Gadouleau and

Yan [22, Section 3.1]. We now explore ways in which the theory that has been studied could

be generalised with a view to applying it to a wider group of metric association schemes.

The association schemes that have been studied so far are all formally self dual metric

association schemes with eigenvalues that satisfy Delsarte’s recurrence relation with specific

initial values. We will call any association scheme with these characteristics a Krawtchouk

association scheme.

We summarise the results for each association scheme. From that we develop a theory that

encompasses the four classes of association schemes studied in this thesis.

This chapter is arranged as follows. Section 5.1 presents a summary of results from the q-

algebra approach for the individual metrics, summarised in Tables 5.1.1 and 5.1.2. Section

5.2 recaps some of the already known theory of association schemes and proposes a general

gamma function which arises from a component of the solutions to the recurrence relation.

It is interesting to note here that once these functions are introduced, we can then write the

valencies of Krawtchouk association schemes in a neat and compact form, that depends only

on its parameters and not the particular structure of the underlying space. The remaining

sections follow a similar pattern to those in Chapter 3 and Chapter 4. Section 5.3 is the

generalised q-algebra that we have called the b-algebra. Here we introduce the b-product,

b-power and b-transform, as well as what we call the “fundamental polynomials”. These

polynomials are a generalisation of the homogeneous polynomials presented in the previous

chapters and once again, if we take the b-power of one of these polynomials then we can

find the weight enumerator of the whole space dependent only on the parameters of the
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association scheme.

In Section 5.4 a generalised polynomial that we call the b-Krawtchouk polynomial is proposed

and shown to represent the eigenvalues of a relevant association scheme. The recurrence

relation that it satisfies is an extension of the relation defined in [11, (1)] to include the

Hermitian association scheme case where the parameter b = −q. Using these tools the

MacWilliams Identity is proven as a generalised functional transform that applies to all

the schemes we have studied and potentially to a wider class of self dual metric association

schemes that have eigenvalues that satisfy the recurrence relation with a specific set of initial

values.

Since the theory for the q-derivatives, skew-q-derivatives and the negative-q-derivatives are

all analogous to one another, it was relatively straightforward to find analogous b-derivatives

which are presented in Section 5.5. This then takes us on nicely to our final Section, 5.6,

where we calculate the moments of the weight distribution of these association scheme

highlighting the special case when we have a code and its dual both being maximal.

Chapter 5 is a late addition to this thesis. The earlier chapters represent significant ad-

vances in the development of the MacWilliams Identity as a functional transform. While

documenting these developments a new challenge was identified, which is how, if at all, these

theories might be unified. The difficulties involved identifying the relevant characteristics

of each association scheme, including how the dual of a code can be defined in general. In

particular, it was also difficult to see how their distinct parameters could be blended together

to build a general form for the gamma function, for the relevant q-algebra and, crucially, for

the fundamental polynomials.

5.1 More of the Individual Association Schemes

Now, to be able to confirm our expectations that we are able to generalise the theory

outlined in the previous two chapters, we need to check some results in the other schemes.

Specifically, to confirm that the recurrence relation defined by Delsarte [11, (1)] is consistent

with the ones used by Gadouleau and Yan [22, Appendix C] and Schmidt [53, Lemma 7].

5.1.1 The Rank Association Scheme

As we have the majority of the theory for the rank metric already, we need to explain why

the recurrence relation in [22, (C.1)] is equivalent to the more general recurrence relation in

[11, (1)].

The recurrence relation stated in [22] is as follows,

Pk+1(x+ 1;m+ 1, n+ 1) = qk+1Pk+1(x;m,n)− qkPk(x;m,n)
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which at a glance of it looks identical to the recurrence relation presented in [11] below

Pk+1(x+ 1, n+ 1) = qk+1Pk+1(x, n)− qkPk(x, n)

but with an extra parameter in each term. In fact these recurrence relations are indeed the

same but the reasoning isn’t as obvious. In the case of Fm×n
q , bilinear forms in Delsarte

notation, there are two parameters m and n. In order to maintain a constant power of q, as

specified by Delsarte [11, Section 5.1 (ii)], we will see in our later analysis that this equates

to m− n being a constant. Therefore, as n increases so must m.

Although not their main method of proof, Gadouleau and Yan do also show that the rank-

Krawtchouk polynomials are indeed the generalised Krawtchouk polynomials by satisfying

the recurrence relation above [22, Appendix C], so we do not need to restate the MacWilliams

Identity for the rank metric as we now have all the information we need.

5.1.2 The Hermitian Association Scheme

We note that substituting the parameters b = −q into the recurrence relation in [11, (1)]

yields the same formula as Schmidt [53, Lemma 7] despite the parameters lying outside

the bounds of the definition given by Delsarte. For the following proposition we take the

b-nary Gaussian coefficients as defined in Equation (4.1), the negative-q-gamma function as

defined in Definition 4.1.2 and the eigenvalues of the association scheme, Ck(x, n) as defined

in Equation (4.3.1).

Proposition 5.1.1. For b = −q ∈ R, b ̸= 0, x, k ∈ {0, . . . , n} the recurrence relation from

[53, Lemma 7],

Ck+1(x+ 1, n+ 1) = Ck+1(x, n+ 1) + b2n+1−xCk(x, n)

has the same solutions as the recurrence relation from [11, (1)],

Ck+1(x+ 1, n+ 1) = bk+1Ck+1(x, n)− bkCk(x, n)

where Ck(x, n) are the eigenvalues of the association scheme of Hermitian matrices.

Proof. We show that

Ck+1(x, n+ 1) + b2n+1−xCk(x, n) = bk+1Ck+1(x, n)− bkCk(x, n).

Let α1 = bk+1Ck+1(x, n) and α2 = bkCk(x, n) and also let β1 = Ck+1(x, n + 1) and β2 =
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b2n+1−xCk(x, n). Then using the eigenvalues defined in (4.3.1) we have,

α1 = bk+1
k+1∑
j=0

(−1)jbj(n−x)bσj

[
x

j

][
n− x

k + 1− j

]
γ′(n− j, k + 1− j)

α2 = bk
k∑

j=0

(−1)jbj(n−x)bσj

[
x

j

][
n− x

k − j

]
γ′(n− j, k − j)

β1 =

k+1∑
j=0

(−1)jbj(n+1−x)bσj

[
x

j

][
n+ 1− x

k + 1− j

]
γ′(n+ 1− j, k + 1− j)

β2 = b2n+1−x
k∑

j=0

(−1)jbj(n−x)bσj

[
x

j

][
n− x

k − j

]
γ′(n− j, k − j).

Consider α1|j=k+1 and β1|j=k+1. Then,

α1|j=k+1 = bk+1(−1)k+1b(k+1)(n−x)bσk+1

[
x

k + 1

][
n− x

0

]
γ′(n− k + 1, 0)

β1|j=k+1 = (−1)k+1b(k+1)(n+1−x)bσk+1

[
x

k + 1

][
n+ 1− x

0

]
γ′(n+ 1− k − 1, 0)

since γ′(x, 0) = 1 for any x ∈ R. So α1|j=k+1 = β1|j=k+1. Now rearranging α1 and β1 we

have

α1 = bk+1
k+1∑
j=0

(−1)jbj(n−x)bσj

[
x

j

][
n− x

k + 1− j

]
γ′(n− j, k + 1− j)

(2.3.31)(4.1.4)
=

k∑
j=0

(−1)jbj(n−x)+1bσj

[
x

j

]
bn−x−k+j − 1

bk+1−j − 1

[
n− x

k − j

] (
−bn−j − bk−j

)
γ′(n− j, k − j)

+ α1|j=k+1

β1 =

k+1∑
j=0

(−1)jbj(n+1−x)bσj

[
x

j

][
n+ 1− x

k + 1− j

]
γ′(n+ 1− j, k + 1− j)

(2.3.33)(4.1.3)
=

k∑
j=0

(−1)jbj(n+1−x)bσj

[
x

j

]
bn+1−x − 1

bk+1−j − 1

[
n− x

k − j

]
bk−j

(
−bn+1−j − 1

)
γ′(n− j, k − j)

+ β1|j=k+1.

Now let C = α1 − α2 − β1 − β2. Then

α1 − α2 − β1 − β2 =

k∑
j=0

(−1)jbj(n−x)βσj

[
x

j

][
n− x

k − j

]
γ′(n− j, k − j)

×

(
bk+1

(
−bn−j − bk−j

) (bn−x−(k−j) − 1
)

bk+1−j − 1
− bk

− bjbk−j
(
−bn+1−j − 1

) bn+1−x − 1

bk+1−j − 1
− b2n+1−x

)
+ α1|j=k+1 − β1|j=k+1.
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But

bk+1
(
−bn−j − bk−j

)(bn−x−(k−j) − 1
)

bk+1−j − 1
− bk − bjbk−j

(
−bn+1−j − 1

) (bn+1−x − 1
)

bk+1−j − 1
− b2n+1−x

=
bk

bk+1−k − 1

(
bk+1

(
−bn−j+1 − bk−j+1

) (
bn−x−k+j − 1

)
×
(
−bn+1−j − 1

) (
bn+1−x − 1

))
− bk − b2n+1−x−k

=
bk

bk+1−k − 1

(
− b2n+1−k−x − bn−x+1 + bn−j+1

+ bk−j+1 + b2n+2−x−j − bn+1−j + bn+1−x − bk+1−j + 1

− 1− b2n+1−x+1−j + b2n+1−x−k
)

= 0.

Therefore C = 0, and α1 − α2 = β1 + β2. Therefore the recurrence relations have the same

solutions.

5.1.3 The Overview

To summarise the results obtained so far in this thesis, Table 5.1.2 highlights the features

we need in each association scheme. At a glance there are evident similarities but significant

differences. For each case we have listed the associated metric, the number of classes in the

relevant association scheme, the underlying space, the homogeneous polynomial used in the

MacWilliams Identity, the “fundamental polynomial”, the known eigenvalues of the scheme

and its valencies. In all cases q is a power of a prime. The final row is the accumulation

of the results from analysing the ways in which the differences can be assimilated in a

general theory. The other table, Table 5.1.1, details the allocation of the general parameters

identified for each case. The analysis that led to these conclusions is outlined in the rest of

this chapter.
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5.2 Preliminaries

Since we are considering the more general idea of metric schemes (and therefore P -polynomial

schemes) we don’t specify the details of any codes and spaces they are in, but rather consider

parameters of their association schemes. So as before in Definition 2.3.1, we have a finite set

X of v points and n + 1 relations forming a symmetric association scheme with n classes.

In this chapter we are only considering metric schemes which are self dual, i.e. when there

is an ordering of the relations as in Definition 2.3.6 and the eigenmatrices P and Q coincide,

and also only considering those with eigenvalues that satisfy Delsarte’s recurrence relation

[11, (1)] with specific initial values.

5.2.1 b-nary Identities

We begin by rewriting here the generalised b-nary identities that we will be using, plus a

new important generalised gamma function which we have developed using a comparison of

the earlier gamma functions and alpha function.

Definition 5.2.1. For x, k ∈ Z+, b ∈ R, b ̸= 1 the b-nary Gaussian coefficients are

defined as

b

[
x

k

]
=

k−1∏
i=0

bx − bi

bk − bi

with

b

[
x

0

]
= 1.

Again we note that, as in Section 2.3.1, for the Hamming metric when we want to take

b = 1, this definition would be undefined. So we take the limit b → 1, leaving us with the

usual binomial coefficients.

Also note for ease we also define σi =
i(i−1)

2 for i ≥ 0 and we write
b

[
x
k

]
as
[
x
k

]
. Here are

some identities relating to the b-nary Gaussian coefficients which are useful in simplifying

notation, and can be used for different values of b from [12]. For b ∈ R, b ̸= 1, x, i, j, k ∈ Z+,

y ∈ R we have

[
x

k

][
x

k

]
=

[
x

x− k

]
(5.2.1)[

x

i

][
x− i

k

]
=

[
x

k

][
x− k

i

]
(5.2.2)

x−1∏
i=0

(
y − bi

)
=

x∑
k=0

(−1)x−kb(
x−k
2 )
[
x

k

]
yk (5.2.3)

x∑
k=0

[
x

k

] k−1∏
i=0

(
y − bi

)
= yx (5.2.4)

j∑
k=i

(−1)k−ibσk−i

[
k

i

][
j

k

]
= δij . (5.2.5)
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The following identities are each used in the rest of this paper but can be shown trivially to

be equal.

[
x

k

]
=

[
x− 1

k

]
+ bx−k

[
x− 1

k − 1

]
(5.2.6)

=

[
x− 1

k − 1

]
+ bk

[
x− 1

k

]
(5.2.7)

=
bx−k+1 − 1

bk − 1

[
x

k − 1

]
(5.2.8)

=
bx − 1

bx−k − 1

[
x− 1

k

]
(5.2.9)

=
bx − 1

bk − 1

[
x− 1

k − 1

]
. (5.2.10)

Definition 5.2.2. We define a b-nary Beta function for x, b ∈ R, b ̸= 1, k ∈ Z+, as

βb(x, k) =

k−1∏
i=0

[
x− i

1

]
. (5.2.11)

Similar to the b-nary Gaussian coefficients, in the Hamming case when we want to use b = 1

we take the limit as b→ 1 instead.

Lemma 5.2.3. We have for all x ∈ R, k ∈ Z+,

1.

βb(x, k) =

[
x

k

]
βb(k, k), (5.2.12)

2.

βb(x, x) =

[
x

k

]
βb(k, k)βb(x− k, x− k), (5.2.13)

3.

βb(x, k)βb(x− k, 1) = βb(x, k + 1). (5.2.14)

To aid us in notation, we define a new b-nary gamma function, which is a component of the

expression derived from setting x = 0 in the generalised Krawtchouk polynomials (2.3.38).

Definition 5.2.4. We define the b-nary gamma function for x, b, c ∈ R, k ∈ Z+, cb > 1,

to be

γb,c(x, k) =

k−1∏
i=0

(
cbx − bi

)
.

Lemma 5.2.5. We have the following identities for the b-nary Gamma function:

1.

γb,c(x, k) = bσk

k−1∏
i=0

(
cbx−i − 1

)
(5.2.15)

2.

γb,c(x+ 1, k + 1) =
(
cbx+1 − 1

)
bkγb,c(x, k) (5.2.16)
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3.

γb,c(x, k + 1) =
(
cbx − bk

)
γb,c(x, k). (5.2.17)

Proof.

(1)

γb,c(x, k) =

k−1∏
i=0

(
cbx − bi

)
=

(
k−1∏
i=0

bi

)
k−1∏
i=0

(
cbx−i − 1

)
= bσk

k−1∏
i=0

(
cbx−i − 1

)
.

(2)

γb,c(x+ 1, k + 1) =

k∏
i=0

(
cbx+1 − bi

)
=
(
cbx+1 − 1

) k∏
i=1

(
cbx+1 − bi

)
=
(
cbx+1 − 1

) k∏
i=1

b
(
cbx − bi−1

)
=
(
cbx+1 − 1

)
bk

k−1∏
i=0

(
cbx − bi

)
=
(
cbx+1 − 1

)
bkγb,c(x, k).

(3)

γb,c(x, k + 1) =

k∏
i=0

(
cbx − bi

)
=
(
cbx − bk

) k−1∏
i=0

(
cbx − bi

)
=
(
cbx − bk

)
γb,c(x, k).

Note. The b-nary beta and b-nary gamma functions are new expressions which have been

developed to unify the following theories in Hamming, rank, skew rank and Hermitian

association schemes.
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5.2.2 Recurrence relation

Below is the recurrence relation we will use to define our set of association schemes. The

recurrence relation, for b ∈ R, b ̸= 0 n ∈ Z+ and x, k ∈ {0, 1, . . . , n} is

Fk+1(x+ 1, n+ 1) = bk+1Fk+1(x, n)− bkFk(x, n) (5.2.18)

for any function Fk(x, n). It is noted that in using this recurrence we have slightly extended

the ranges of the parameters to encompass all of the association schemes studied in this

thesis. A proof that this recurrence relation is valid for the case of the Hermitian association

scheme, for which the values of b lie outside the range specified by Delsarte, is shown in

Proposition 5.1.1.

We can now define the set of the association schemes that we want to consider in this chapter.

Definition 5.2.6. For an (X , R) n-class formally self dual metric translation association

scheme with defined parameters b, c ∈ R we say it is a Krawtchouk association scheme

if the eigenvalues, Pk(x, n), for x, k ∈ {0, 1, . . . , n} satisfy the recurrence relation

Pk+1(x+ 1, n+ 1) = bk+1Pk+1(x, n)− bkPk(x, n)

with specific initial values

Pk(0, n) =

[
n

k

]
γb,c(n, k) (5.2.19)

P0(x, n) = 1. (5.2.20)

In fact, we can find a new set of polynomials which satisfy the recurrence relation with these

initial values and therefore are the eigenvalues of the Krawtchouk association schemes.

5.2.3 The b-Krawtchouk Polynomials

Definition 5.2.7. For an n-class Krawtchouk association scheme where x, k ∈ {0, 1, . . . , n},

b ∈ R, b ̸= 0, we define the the b-Krawtchouk Polynomial as

Ck(x, n; b, c) =

k∑
j=0

(−1)jbj(n−x)bσj

[
x

j

][
n− x

k − j

]
γb,c(n− j, k − j).

For simplicity we shall write Ck(x, n; b, c) as Ck(x, n) since b and c pertain to the underlying

structure of the space are being worked in and are therefore constants. The way these

polynomials arise will be explained in Section 5.3. We first prove that the Ck(x, n) satisfy

the recurrence relation (5.2.18) and the initial values (5.2.19), (5.2.20) and therefore are the

eigenvalues of the Krawtchouk association schemes.
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Proposition 5.2.8. For b, c ∈ R, b ̸= 0, cb > 1 and for all x, k ∈ {0, . . . , n} we have

Ck+1(x+ 1, n+ 1) = bk+1Ck+1(x, n)− bkCk(x, n). (5.2.21)

Proof. We look at all three terms sequentially. First, noting that

[
x

j − 1

]
= 0 when j = 0,

Ck+1(x+ 1, n+ 1)

=

k+1∑
j=0

(−1)jbj(n−x)bσj

[
x+ 1

j

][
n− x

k + 1− j

]
γb,c (n+ 1− j, k + 1− j)

= Ck+1(x+ 1, n+ 1)|j=k+1

(5.2.7)
+

k∑
j=0

(−1)jbj(n−x)+σj

{[
x

j − 1

]
+ bj

[
x

j

]}[
n− x

k + 1− j

]
γb,c (n+ 1− j, k + 1− j)

= Ck+1(x+ 1, n+ 1)|j=k+1 (5.2.22)

+

k∑
j=1

(−1)jbj(n−x)+σj

[
x

j − 1

][
n− x

k + 1− j

]
γb,c(n+ 1− j, k + 1− j) (5.2.23)

(5.2.16)
+

k∑
j=0

(−1)jcbj(n−x)+σj+n+1+k−j

[
x

j

][
n− x

k + 1− j

]
γb,c (n− j, k − j) (5.2.24)

−
k∑

j=0

(−1)jbj(n−x)+σj+k

[
x

j

][
n− x

k + 1− j

]
γb,c(n− j, k − j) (5.2.25)

= Ck+1(x+ 1, n+ 1)|j=k+1 + α1 + α2 + α3

where α1, α2, α3 represent summands (5.2.23), (5.2.24), (5.2.25) respectively and for nota-

tion, |j=k+1 means “the term when j = k + 1”.

Second,

bk+1Ck+1(x, n) =

k+1∑
j=0

(−1)jbk+1bj(n−x)bσj

[
x

j

][
n− x

k + 1− j

]
γb,c(n− j, k + 1− j)

= bk+1 Ck+1(x, n)|j=k+1

(5.2.17)
+

k∑
j=0

(−1)jcbj(n−x)+σj+n+1+k−j

[
x

j

][
n− x

k + 1− j

]
γb,c(n− j, k − j)

−
k∑

j=0

(−1)jbj(n−x)+σj+k+k−j+1

[
x

j

][
n− x

k + 1− j

]
γb,c(n− j, k − j)

(5.2.26)

= bk+1 Ck+1(x, n)|j=k+1 + α2 + β1.
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Where β1 represents the summand (5.2.26). Third,

bkCk(x, n) =

k∑
j=0

(−1)jbj(n−x)+σj+k

[
x

j

][
n− x

k − j

]
γb,c(n− j, k − j),

= ρ, say.

So let C = Ck+1(x+ 1, n+ 1)− bk+1Ck+1(x, n) + bkCk(x, n). We have,

C = α1 + α3 − β1 + ρ+ Ck+1(x+ 1, n+ 1)|j=k+1 − bk+1 Ck+1(x, n)|j=k+1 .

Consider α3 − β1 + ρ. Then

α3 − β1 =

k∑
j=0

(−1)j+1bj(n−x)+σj+k

[
x

j

][
n− x

k + 1− j

]
γb,c(n− j, k − j)

(
1− bk−j+1

)
(5.2.8)
=

k∑
j=0

(−1)j+1bj(n−x)+σj+k
(
1− bk−j+1

) [x
j

]

× b(n−x)−(k−j) − 1

bk+1−j − 1

[
n− x

k − j

]
γb,c(n− j, k − j)

=

k∑
j=0

(−1)jb(j+1)(n−x)+σj+1

[
x

j

][
n− x

k − j

]
γb,c(n− j, k − j) (5.2.27)

−
k∑

j=0

(−1)jbj(n−x)+σj+k

[
x

j

][
n− x

k − j

]
γb,c(n− j, k − j)

= τ − ρ,

where τ represents the summand in (5.2.27). Thus,

C = α1 + τ + Ck+1(x+ 1, n+ 1)|j=k+1 − bk+1 Ck+1(x, n)|j=k+1 .

Now,

Ck+1 (x+ 1, n+ 1)|j=k+1 − bk+1 Ck+1(x, n)|j=k+1

= (−1)k+1b(k+1)(n−x)bσk+1

{[
x+ 1

k + 1

]
− bk+1

[
x

k + 1

]}
(5.2.7)
= (−1)k+1b(k+1)(n−x)bσk+1

[
x

k

]
= −τ |j=k
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Now consider α1.

α1 =

k∑
j=1

(−1)jbj(n−x)+σj

[
x

j − 1

][
n− x

k + 1− j

]
γb,c(n+ 1− j, k + 1− j)

=

k−1∑
j=0

(−1)j+1b(j+1)(n−x)+σj+1

[
x

j

][
n− x

k − j

]
γb,c(n− j, k − j)

= −τ + τ |j=k.

Thus C = 0 and so the Ck(x, n) satisfy the recurrence relation (5.2.18).

Lemma 5.2.9. The Ck(x, n) are the eigenvalues of the Krawtchouk association scheme. In

other words,

Ck(x, n) = Pk(x, n). (5.2.28)

Proof. The Ck(x, n) satisfy the recurrence relation (5.2.21) and the initial values of the

Ck(x, n) are

Ck(0, n) =

k∑
j=0

(−1)jbjnbσj

[
0

j

][
n

k − j

]
γb,c(n− j, k − j)

=

[
n

k

]
γb,c(n, k)

as

[
0

j

]
= 0 unless j = 0 and

C0(x, n) = (−1)0b0b0
[
x

0

][
n− x

0

]
γb,c(n, 0)

= 1

as required.

We note that this form for the eigenvalues is distinct from the three forms presented in [11,

Section 5.1].

Example 5.2.10. Consider the association scheme of skew-symmetric matrices with t = 4,

then n = 2 and m = 3. We let the 3 forms presented in [11, Section 5.1], starting with

Equation (15), be Pk(x, n), Qk(x, n) and Rk(x, n) in the order they appear in the paper.

Then looking term by term we have the resulting Table 5.2.1 for k = 1 and x = 1.
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Eigenvalues j = 0 j = 1
∑1

j=0

C1(1, 2) q3 − 1 −q2 q3 − q2 − 1

P1(1, 2) −q2 − 1 q3 q3 − q2 − 1

Q1(1, 2) q3 − q2 −1 q3 − q2 − 1

R1(1, 2)
(
q2 + 1

) (
q3 − 1

)
−q5 q3 − q2 − 1

Table 5.2.1: Components of the eigenvalues for Ck(x, n) compared to others

We can clearly see in this example that the sum of the terms is the same, but the individual

components cannot be equated on a term by term basis.

5.2.4 Weight Functions

Given that we are only working with translation association schemes where the set of points

X is a vector space, we can always attribute a weight function for that scheme since we

will always have a distance between points and a 0 element. Mathematically speaking, if we

let (X , R) be an n-class translation scheme, we say that if x, y are n distance apart, then

(x, y) ∈ Rn. Since X is a vector space, then x − y, 0 ∈ X . Consequently, since x, y are

distance n apart, then (x− y, 0) ∈ Rn also.

Definition 5.2.11. For an (X , R) n-class Krawtchouk association scheme and x ∈ X , we

define the scheme weight of x to be ω if and only if (x, 0) ∈ Rω.

Definition 5.2.12. For an (X , R) n-class Krawtchouk association scheme, and for all

x ∈ X of weight ω, the scheme weight function of x, denoted fS(x), is defined as the

homogeneous polynomial

fS(x) = Y ωXn−ω.

Now let C ⊆ X be a code. Suppose there are ci codewords in C with weight i for 0 ≤ i ≤ n.

Then the scheme weight enumerator of C , denoted WS
C (X,Y ), is defined as,

WS
C (X,Y ) =

∑
ζ∈C

fS(ζ) =

n∑
i=0

ciY
iXn−i.

The (n + 1)-tuple, c = (c0, . . . , cn) of coefficients of the weight enumerator is called the

scheme weight distribution of the code C .

We note that since we are only working with metric association schemes, we can always

define theminimum distance of a code C . Denoted dS(C ) or dS , it is simply the minimum

distance between all possible pairs of codewords in C , dependent on the metric being used.

In previous chapters we have looked at counting the number of elements of a particular

weight in the overall space individually using a combinatorial approach. In contrast here we

use the valencies of the association scheme to identify those values in general.
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Theorem 5.2.13. For b, c ∈ R, b ∈ R, b ̸= 1, cb > 1 the number of elements, x ∈ X with

weight ω in an (X , R) n-class Krawtchouk association scheme is

ξn,ω =

[
n

ω

]
γb,c(n, ω). (5.2.29)

Proof. The number of elements of weight ω, is the ωth valency of the Krawtchouk association

scheme. Since the ωth valency is the initial value Pω(0, n), the statement is proved.

A direct consequence of this is the ability to find the scheme weight enumerator of X ,

denoted Ωn, as

Ωn =

n∑
i=0

ξn,iY
iXn−i. (5.2.30)

As a reminder, we rewrite the MacWilliams Identity, Theorem 2.3.15, formulated by Delsarte

[8, (6.9)]. We note that in this chapter we are only considering formally self dual association

schemes, i.e. when the eigenmatrices P and Q are the same.

Theorem 5.2.14 (The MacWilliams Identity for Association Schemes). Let (X , R) be an

n-class Krawtchouk association scheme with dual n-class Krawthouck association scheme

(X , R′). For a pair of dual subgroups X,X ′ ⊆ X , let c = (c0, . . . , cn) be the inner dis-

tribution of X and c′ = (c′0, . . . c
′
n) be the inner distribution of X ′. If P and Q are the

eigenmatrices of (X , R) then

|X|c′ = cQ

|X ′|c = c′P.

5.3 The b-Algebra

As seen from the individual association schemes, the weight enumerators of any linear code

C ⊆ X are homogeneous polynomials. We can now generalise the various “q-algebras” into

a succinct b-algebra, which can be used in all settings. This helps us express the relations

between the weight enumerator of a code and the weight enumerator of the code’s dual.

5.3.1 The b-Product, b-Power and b-Transform

Definition 5.3.1. Let

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i

b(X,Y ;λ) =

s∑
i=0

bi(λ)Y
iXs−i

be two homogeneous polynomials in X and Y with coefficients ai(λ) and bi(λ) respectively,

which are real functions of λ and are 0 unless otherwise specified. For example bi(λ) = 0 if
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i /∈ {0, 1, . . . , s}. The b-product , ∗, of a(X,Y ;λ) and b(X,Y ;λ) is defined as

c(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ) (5.3.1)

=

r+s∑
u=0

cu(λ)Y
uXr+s−u (5.3.2)

with

cu(λ) =

u∑
i=0

bisai(λ)bu−i(λ− i).

We note that as with the q-product in [22, Lemma 1], the b-product is not commutative

or distributive in general. However, if a(X,Y ;λ) = a is a constant independent of λ, the

following two properties holds:

a ∗ b(X,Y ;λ) = b(X,Y ;λ) ∗ a = ab(X,Y ;λ).

Separately if the degree of a(X,Y ;λ) and c(X,Y ;λ) are the same then,

(
a(X,Y ;λ) + c(X,Y ;λ)

)
∗ b(X,Y ;λ) = a(X,Y ;λ) ∗ b(X,Y ;λ)

+ c(X,Y ;λ) ∗ b(X,Y ;λ)

and

b(X,Y ;λ) ∗
(
a(X,Y ;λ) + c(X,Y ;λ)

)
= b(X,Y ;λ) ∗ a(X,Y ;λ)

+ b(X,Y ;λ) ∗ c(X,Y ;λ).

Definition 5.3.2. For a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
iXr−i the b-power is defined by

a[0](X,Y ;λ) = 1

a[1](X,Y ;λ) = a(X,Y ;λ)

a[k](X,Y ;λ) = a(X,Y ;λ) ∗ a[k−1](X,Y ;λ) for k ≥ 2.

Definition 5.3.3 ([22, Definition 4]). Let a(X,Y ;λ) =

r∑
u=0

ai(λ)Y
iXr−i. We define the

b-transform to be the homogeneous polynomial

a(X,Y ;λ) =

r∑
i=0

ai(λ)Y
[i] ∗X [r−i].
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5.3.2 Fundamental Polynomials

We can now also generalise what we call the “fundamental polynomials” which is one of the

key tools used in proving the MacWilliams Identity previously in each setting. Let

µ(X,Y ;λ) = X +
(
cbλ − 1

)
Y (5.3.3)

where b and c are constants related to the space under consideration. The b-powers of

µ(X,Y ;n) provide an explicit form for the weight enumerator of (X , R), the Krawtchouk

association scheme with n classes.

Theorem 5.3.4. If µ(X,Y ;λ) is as defined above, then

µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u for k ≥ 1, (5.3.4)

where

µu(λ, k) =

[
k

u

]
γb,c(λ, u).

Specifically, the weight enumerators for (X , R), the n-class Krawtchouk association scheme,

denoted by Ωn, is given by

Ωn = µ[n](X,Y ;n).

Proof. The proof follows the method of induction. Consider k = 1, so

µ[1](X,Y ;λ) = µ(X,Y ;λ) = X +
(
cbλ − 1

)
Y.

Then

µ0(λ, 1) = 1 =

[
1

0

]
γb,c(λ, 0)

µ1(λ, 1) =
(
cbλ − 1

)
=

[
1

1

]
γb,c(λ, 1).

So

µu(λ, 1) =

[
1

u

]
γb,c(λ, u)

and

Ω1 =

1∑
i=0

[
1

u

]
γb,c(λ, u)Y

iX1−i = µ[1](X,Y ; 1)
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as required for k = 1. Now assume the theorem is true for k ≥ 1. Then

µ[k+1](X,Y ;λ) = µ(X,Y ;λ) ∗ µ[k](X,Y ;λ)

=
(
X +

(
cbλ − 1

)
Y
)
∗

(
k∑

u=0

[
k

u

]
γb,c(λ, u)Y

uXk−u

)

=

k+1∑
i=0

fi(λ)Y
iXk+1−i

where,

fi(λ) =

i∑
j=0

bjkµj(λ, 1)µi−j(λ− j, k)

= µ0(λ, 1)µi(λ, k) + bkµ1(λ, 1)µi−1(λ− 1, k)

=

[
k

i

]
γb,c(λ, i) + bk

(
cbλ − 1

) [ k

i− 1

]
γb,c(λ− 1, i− 1)

(5.2.16)(5.2.9)(5.2.10)
=

bk−i+1 − 1

bk+1 − 1

[
k + 1

i

]
γb,c(λ, i)+b

k bi − 1

bk+1 − 1
b1−i

[
k + 1

i

]
γb,c(λ, i)

= γb,c(λ, i)

[
k + 1

i

](
bk−i+1 − 1 + bk−i+1

(
bi − 1

)
bk+1 − 1

)

= γb,c(λ, i)

[
k + 1

i

]

since for i ≥ 1 we only need to consider the first two coefficients as when j ≥ 2 then

µj(λ, 1) =
[
1
j

]
γ(λ, j) = 0 since

[
1
j

]
= 0 when j ≥ 2. So it is true for k + 1. Therefore by

induction the first part of the theorem is true. Now consider µ[n](X,Y ;n), then clearly

µ[n](X,Y ;n) =

n∑
u=0

[
n

u

]
γb,c(n, u)Y

uXn−u

(5.2.29)
=

n∑
u=0

ξn,uY
uXn−u (5.2.30)

= Ωn

as required.

Now for the other fundamental polynomial. Interestingly we let ν(X,Y ;λ) = X − Y , which

is the exact same polynomial in all the cases previously studied.

Theorem 5.3.5. For all k ≥ 1,

ν[k](X,Y ;λ) =

k∑
u=0

νu(λ, k)Y
uXk−u (5.3.5)

where

νu(λ, k) = (−1)ubσu

[
k

u

]
.
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Proof. We perform induction on k. For k = 1 we have

ν[1](X,Y ;λ) = ν(X,Y ;λ) = X − Y.

Clearly we also have

(−1)0bσ0

[
1

0

]
Y 0X1 + (−1)1bσ1

[
1

1

]
Y 1X0 = X − Y

as required. Now assume the theorem holds for k ≥ 1.

ν[k+1](X,Y ;λ) = ν(X,Y ;λ) ∗ ν[k](X,Y ;λ)

= (X − Y ) ∗

(
k∑

u=0

(−1)ubσu

[
k

u

]
Y uXk−u

)

=

k+1∑
i=0

gi(λ)Y
iXk+1−i

where

gi(λ) =

i∑
j=0

bjkνj(λ, 1)νi−j(λ− j, k)

= b0(1)(−1)ibσi

[
k

i

]
+ bk(−1)(−1)i−1bσi−1

[
k

i− 1

]
(5.2.9)(5.2.10)

= (−1)ibσi
bk+1−i − 1

bk+1 − 1

[
k + 1

i

]
+bk(−1)ibσi−1

bi − 1

bk+1 − 1

[
k + 1

i

]
= (−1)ibσi

[
k + 1

i

]{
bk+1−i − 1

bk+1 − 1
+ bkb1−i bi − 1

bk+1 − 1

}
= (−1)i

bσi

bk+1 − 1

[
k + 1

i

] {
bk+1−i − 1 + bk+1 − bk+1−i

}
= (−1)ibσi

[
k + 1

i

]

since for i ≥ 1 we only need to consider the first two coefficients as when j ≥ 2 then

νj(λ, 1) = 0 as since
[
1
j

]
= 0 when j ≥ 2, thus the statement holds.

5.4 The Generalised MacWilliams Identity

We can now begin to put the final pieces of the puzzle together to be able to state and

prove the MacWilliams Identity for a n-class Krawtchouk association scheme. Since we

have proven that the Ck(x, n) are also eigenvalues of the Krawtchouk association scheme,

we can then invoke Delsarte’s MacWilliams Identity (Theorem 2.3.15) in the proof of our

functional transform version.
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5.4.1 Generalised MacWilliams Identity

As a reminder from Section 2.3.3, since we are considering Krawtchouk association schemes

where X is a finite abelian group and so we can define an inner product on the space X [3,

p72]. Then we can define for any subgroup (code), C , of X , a dual subgroup (dual code),

C⊥ such that

C⊥ =
{
x ∈ X | ⟨x, y⟩ = 0 ∀ y ∈ C

}
.

Finally, the one we’ve been waiting for, we can write a generalised MacWilliams Identity

as a functional transform for an (X , R) n-class Krawtchouk association scheme. Let the

weight enumerator of C ⊆ X be,

WS
C (X,Y ) =

n∑
i=0

ciY
iXn−i

and of its dual, C⊥ ⊆ X be

WS
C⊥(X,Y ) =

n∑
i=0

c′iY
iXn−i.

Theorem 5.4.1 (The MacWilliams Identity for an n-class Krawtchouk Association Scheme).

Let C ⊆ X be an linear [n, k, dS ]-code, with weight distribution c = (c0, . . . , cn) and

C⊥ ⊆ X its dual code, with weight distribution c′ = (c′0, . . . , c
′
n). Then

WS
C⊥(X,Y ) =

1

|C |
W

S

C (X + (cbn − 1)Y,X − Y ) (5.4.1)

=
1

|C |

n∑
i=0

ci(X − Y )[i] ∗ (X + (cbn − 1)Y )
[n−i]

. (5.4.2)

Proof. For 0 ≤ i ≤ n we have

(X − Y )
[i] ∗ (X + (cbn − 1)Y )

[n−i]

=
(
ν[i](X,Y ;n)

)
∗
(
µ[n−i](X,Y ;n)

)
(5.3.4)(5.3.5)

=

(
i∑

u=0

(−1)ubσu

[
i

u

]
Y uXi−u

)
∗

n−i∑
j=0

[
n− i

j

]
γb,c(n, j)Y

jXn−i−j


(5.3.1)
=

t∑
k=0

(
k∑

ℓ=0

(−1)ℓbℓ(n−x)bσℓ

[
x

ℓ

][
n− x

k − ℓ

]
γb,c(n− ℓ, k − ℓ)

)
Y kXn−k

=

n∑
k=0

Ck(i, n)Y
kXn−k.

140



5.5. THE b-DERIVATIVES

So then we have

1

|C |
W

S

C (X + (cbn − 1)Y,X − Y ) =
1

|C |

n∑
i=0

ci (X − Y )
[i] ∗ (X + (cbn − 1)Y )

[n−i]

=
1

|C |

n∑
i=0

ci

n∑
k=0

Ck(i, n)Y
kXn−k

=

n∑
k=0

(
1

|C |

n∑
i=0

ciCk(i, n)

)
Y kXn−k

(5.2.14)
=

n∑
k=0

c′kY
kXn−k

=WS
C⊥(X,Y ).

5.5 The b-Derivatives

In this section we develop a derivative. It should be clear that this section essentially reworks

Section 4.4 with a more general b-algebra.

5.5.1 The b-Derivative

To begin with, we consider the derivative with respect to X.

Definition 5.5.1. For b ̸= 1, the b-derivative at X ̸= 0 for a real-valued function f(X) is

defined as

f (1) (X) =
f (bX)− f (X)

(b− 1)X
.

For φ ≥ 0 we denote the φth b-derivative (with respect to X) of f(X,Y ;λ) as f (φ)(X,Y ;λ).

The 0th b-derivative of f(X,Y ;λ) is f(X,Y ;λ). For any a ∈ R, X ̸= 0, and real-valued

function g(X), [
f(X) + ag(X)

](1)
= f (1)(X) + ag(1)(X).

Once again for the Hamming metric we take the formal definition of a derivative and take

the limit of the function as b→ 1. That is, let b = 1+h, h ∈ R, then the derivative becomes,

f (1)(X) = lim
h→0

f((1 + h)X)− f(X)

hX

and so converts into the derivative in the usual sense of polynomials [41, Problems (5), p98].

Now we have the definition of a derivative we can demonstrate some important results for

homogeneous polynomials in general and the fundamental polynomials in particular.

Lemma 5.5.2.
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1. For 0 ≤ φ ≤ ℓ, φ ∈ Z+ and ℓ ≥ 0,

(
Xℓ
)(φ)

= βb(ℓ, φ)X
ℓ−φ.

2. The φth b-derivative of f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i is given by

f (φ) (X,Y ;λ) =

r−φ∑
i=0

fi(λ)βb(r − i, φ)Y iXr−i−φ. (5.5.1)

3. Also,

µ[k](φ)(X,Y ;λ) = βb(k, φ)µ
[k−φ](X,Y ;λ) (5.5.2)

ν[k](φ)(X,Y ;λ) = βb(k, φ)ν
[k−φ](X,Y ;λ). (5.5.3)

Proof.

(1) For φ = 1 we have

(
Xℓ
)(1)

=
(bX )

ℓ −Xℓ

(b− 1)X
=
bℓ − 1

b− 1
Xℓ−1 =

[
ℓ

1

]
Xℓ−1 = βb(ℓ, φ)X

ℓ−1.

The rest of the proof follows by induction on φ and is omitted.

(2) Now consider f(X,Y ;λ) =

r∑
i=0

fi(λ)Y
iXr−i. We have,

f (1) (X,Y ;λ) =

(
r∑

i=0

fi(λ)Y
iXr−i

)(1)

=

r∑
i=0

fi(λ)Y
i
(
Xr−i

)(1)
=

r−1∑
i=0

fi(λ)βb(r − i, φ)Y iXr−i−1.

So the initial case holds. The rest of the proof follows by induction on φ and is omitted.

(3) Now consider µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u where µu(λ, k) =

[
k

u

]
γb,c(λ, u) as
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in Theorem 5.3.4. Then we have

µ[k](1)(X,Y ;λ) =

(
k∑

u=0

µu(λ, k)Y
uXk−u

)(1)

=

k∑
u=0

µu(λ, k)Y
u

(
(bX)

k−u −Xk−u

(b− 1)X

)

=

k−1∑
u=0

bk−u − 1

b− 1

[
k

u

]
γb,c(λ, u)Y

uXk−u−1

(5.2.9)
=

k−1∑
u=0

(bk − 1)
(
bk−u − 1

)
(bk−u − 1)(b− 1)

[
k − 1

u

]
γb,c(λ, u)Y

uXk−u−1

=

(
bk − 1

b− 1

)
µ[k−1](X,Y ;λ)

(5.2.11)
= βb(k, 1)µ

[k−1](X,Y ;λ)

So µ[k](φ)(X,Y ;λ) = βb(k, φ)µ
[k−φ](X,Y ;λ) follows by induction on φ and is omitted.

Now consider ν[k](X,Y ;λ) =

k∑
u=0

(−1)ubσu

[
k

u

]
Y uXk−u as in Theorem 5.3.5. Then we

have

ν[k](1)(X,Y ;λ) =

k∑
u=0

(−1)ubσu
bk−u − 1

b− 1

[
k

u

]
Y uXk−u−1

(5.2.9)
=

k−1∑
u=0

(−1)ubσu

(
bk − 1

) (
bk−u − 1

)
(bk−u − 1) (b− 1)

[
k − 1

u

]
Y uXk−1−u

=
bk − 1

b− 1
ν[k−1](X,Y ;λ)

(5.2.11)
= βb(k, 1)ν

[k−1](X,Y ;λ).

So the initial case holds. Thus ν[k](φ)(X,Y ;λ) = βb(k, φ)ν
[k−φ](X,Y ;λ) follows by

induction also and is omitted.

We now need a few smaller lemmas in order to prove the Leibniz rule for the b-derivative.

Lemma 5.5.3. Let

u (X,Y ;λ) =

r∑
i=0

ui(λ)Y
iXr−i

v (X,Y ;λ) =

s∑
i=0

vi(λ)Y
iXs−i.

1. If ur(λ) = 0 then

1

X

[
u (X,Y ;λ) ∗ v (X,Y ;λ)

]
=
u (X,Y ;λ)

X
∗ v (X,Y ;λ) . (5.5.4)
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2. If vs(λ) = 0 then

1

X

[
u (X,Y ;λ) ∗ v (X,Y ;λ)

]
= u (X, bY ;λ) ∗ v (X,Y ;λ)

X
. (5.5.5)

Proof. (1) If ur(λ) = 0,

u (X,Y ;λ)

X
=

r−1∑
i=0

ui(λ)Y
iXr−i−1.

Hence

u (X,Y ;λ)

X
∗ v (X,Y ;λ) =

r+s−1∑
k=0

(
k∑

ℓ=0

bℓsuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−1−k

=
1

X

r+s−1∑
k=0

(
k∑

ℓ=0

bℓsuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−k

+
1

X

r+s∑
ℓ=0

bℓsuℓ(λ)vr+s−ℓ(λ− ℓ)Y r+sX0

=
1

X
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since vr+s−ℓ(λ− ℓ) = 0 for 0 ≤ ℓ ≤ r − 1 and uℓ(λ) = 0 for r ≤ ℓ ≤ r + s. So

1

X

r+s∑
ℓ=0

bℓsuℓ(λ)vr+s−ℓ(λ− ℓ)Y r+sX0 = 0.

(2) Now if vs(λ) = 0,

v (X,Y ;λ)

X
=

s−1∑
i=0

vi(λ)Y
iXs−1−i.

Then

u (X, bY ;λ) ∗ v (X,Y ;λ)

X
=

r+s−1∑
k=0

(
k∑

ℓ=0

bℓ(s−1)bℓuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−1−k

=

r+s−1∑
k=0

(
k∑

ℓ=0

bℓ(s−1)bℓuℓ(λ)vk−ℓ(λ− ℓ)

)
Y kXr+s−1−k

+
1

X

r+s∑
ℓ=0

bℓsuℓ(λ)vr+s−ℓ(λ− ℓ)Y r+sX0

=
1

X
[u(X,Y ;λ) ∗ v(X,Y ;λ)]

since vr+s−ℓ(λ− ℓ) = 0 for 0 ≤ ℓ ≤ r and uℓ = 0 for r + 1 ≤ ℓ ≤ r + s.

Theorem 5.5.4 (Leibniz rule for the b-derivative). For two homogeneous polynomials in

X and Y , f(X,Y ;λ) and g(X,Y ;λ) with degrees r and s respectively, the φth (for φ ≥ 0)

b-derivative of their b-product is given by

[
f (X,Y ;λ) ∗ g (X,Y ;λ)

](φ)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)f (ℓ) (X,Y ;λ) ∗ g(φ−ℓ) (X,Y ;λ) . (5.5.6)
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Proof. For simplification, we shall write f(X,Y ;λ) as f(X,Y ) and similarly g(X,Y ;λ) as

g(X,Y ). Now by differentiation we have

[
f (X,Y ) ∗ g (X,Y )

](1)
=
f (bX, Y ) ∗ g (bX, Y )− f (X,Y ) ∗ g (X,Y )

(b− 1)X

=
1

(b− 1)X

{
f (bX, Y ) ∗ g (bX, Y )− f (bX, Y ) ∗ g (X,Y )

+ f (bX, Y ) ∗ g (X,Y )− f (X,Y ) ∗ g (X,Y )

}
=

1

(b− 1)X

{
f (bX, Y ) ∗ (g (bX, Y )− g (X,Y ))

}
+

1

(b− 1)X

{
(f (bX, Y )− f (X,Y )) ∗ g (X,Y )

}
(5.5.5)
= f (bX, bY ) ∗

{
g (bX, Y )− g (X,Y )

(b− 1)X

}
(5.5.4)
+

{
f (bX, Y )− f (X,Y )

(b− 1)X

}
∗ g (X,Y )

= brf (X,Y ) ∗ g(1) (X,Y ) + f (1) (X,Y ) ∗ g (X,Y )

since g(X,Y ) has the same degree of g(bX, Y ) and similarly, f(X,Y ) has the same degree

as f(bX, Y ). So the initial case holds. Assume the statement holds true for φ = φ, i.e.

[
f (X,Y ) ∗ g (X,Y )

](φ)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)f (ℓ) (X,Y ) ∗ g(φ−ℓ) (X,Y ) .

145



5.5. THE b-DERIVATIVES

Now considering φ+ 1 and for simplicity we write f(X,Y ;λ), g(X,Y ;λ) as f, g we have

[
f ∗ g

](φ+1)

=

[
φ∑

ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)f (ℓ) ∗ g(φ−ℓ)

](1)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)

[
f (ℓ) ∗ g(φ−ℓ)

](1)
=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(r−ℓ)

(
b(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1) + f (ℓ+1) ∗ g(φ−ℓ)

)

=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ+1)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

+

φ+1∑
ℓ=1

[
φ

ℓ− 1

]
b(φ−ℓ+1)(r−ℓ+1)f (ℓ) ∗ g(φ−ℓ+1)

=

[
φ

0

]
b(φ+1)rf ∗ g(φ+1) +

φ∑
ℓ=1

[
φ

ℓ

]
b(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

+

[
φ

φ

]
b(φ+1−φ−1)(r−φ−1+1)f (φ+1) ∗ g

+

φ∑
ℓ=1

[
φ

ℓ− 1

]
b(φ+1−ℓ)(r−ℓ+1)f (ℓ) ∗ g(φ−ℓ+1)

= b(φ+1)rf ∗ g(φ+1) + f (φ+1) ∗ g

+

φ∑
ℓ=1

([
φ

ℓ

]
+ b(φ−ℓ+1)

[
φ

ℓ− 1

])
b(φ−ℓ+1)(r−ℓ)f (ℓ) ∗ g(φ−ℓ+1)

(5.2.6)
=

φ∑
ℓ=1

[
φ+ 1

ℓ

]
b(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ+1−ℓ) +

[
φ+ 1

0

]
b(φ+1)(r)f ∗ g(φ+1)

+

[
φ+ 1

φ+ 1

]
b(φ−1−φ−1)f (φ+1) ∗ g

=

φ+1∑
ℓ=0

[
φ+ 1

ℓ

]
b(φ+1−ℓ)(r−ℓ)f (ℓ) ∗ g(φ+1−ℓ).

5.5.2 The b−1-Derivative

Essentially, since the b-derivative finds a derivative with respect to X it is natural to identify

a comparable b−1-derivative which can be used to develop a derivative with respect to Y .

Definition 5.5.5. For b ̸= 1, the b−1-derivative at Y ̸= 0 for a real-valued function g(Y )

is defined as

g{1} (Y ) =
g
(
b−1Y

)
− g (Y )

(b−1 − 1)Y
.

For φ ≥ 0 we denote the φth b−1-derivative (with respect to Y ) of g(X,Y ;λ) as g{φ}(X,Y ;λ).

The 0th b−1-derivative of g(X,Y ;λ) is g(X,Y ;λ). For any a ∈ R, Y ̸= 0 and real-valued
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function f(Y ), [
f(Y ) + ag(Y )

]{1}
= f{1}(Y ) + ag{1}(Y ).

Again for the Hamming metric, we take the formal definition of a derivative and take the

limit of the function as b→ 1, i.e. let b−1 = 1 + h, h ∈ R. Then the derivative becomes,

g{1}(Y ) = lim
h→0

g((1 + h)Y )− g(Y )

hY

and so again converts into the derivative in the usual sense of polynomials [41, Problems

(5), p98] with respect to Y .

Similar to the b-derivative, since we have the definition of a derivative now with respect to

Y we can demonstrate some important results for homogeneous polynomials in general and

the fundamental polynomials in particular.

Lemma 5.5.6.

1. For 0 ≤ φ ≤ ℓ, φ ∈ Z+ and ℓ ≥ 0,

(
Y ℓ
){φ}

= bφ(1−ℓ)+σφβb(ℓ, φ)Y
ℓ−φ.

2. The φth b−1-derivative of g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i is given by

g{φ} (X,Y ;λ) =

s∑
i=φ

gi(λ)b
φ(1−i)+σφβb(i, φ)Y

i−φXs−i. (5.5.7)

3. Also,

µ[k]{φ}(X,Y ;λ) = b−σφβb(k, φ)γb,c(λ, φ)µ
[k−φ](X,Y ;λ− φ) (5.5.8)

ν[k]{φ}(X,Y ;λ) = (−1)φβb(k, φ)ν
[k−φ](X,Y ;λ). (5.5.9)

Proof.

(1) For φ = 1 we have

(
Y ℓ
){1}

=

(
b−1Y

)ℓ − Y ℓ

(b−1 − 1)Y
=

(
b−ℓ − 1

b−1 − 1

)
Y ℓ−1

=
bb−ℓ

(
1− bℓ

)
1− b

Y ℓ−1

= b1−ℓβb(ℓ, 1)Y
ℓ−1.
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So the initial case holds. Assume the case for φ = φ holds. Then we have

(
Y ℓ
){φ+1}

=
(
bφ(1−ℓ)+σφβb(ℓ, φ)Y

ℓ−φ
){1}

= bφ(1−ℓ)+σφβb(ℓ, φ)
b−(ℓ−φ)Y ℓ−φ − Y ℓ−φ

(b−1 − 1)Y

= bφ(1−ℓ)+σφβb(ℓ, φ)b
1−(ℓ−φ)βb(ℓ− φ, 1)Y ℓ−φ−1

(5.2.14)
= b(φ+1)(1−ℓ)+σφ+1βb(ℓ, φ+ 1)Y ℓ−(φ+1).

Thus the statement holds by induction.

(2) Now consider g(X,Y ;λ) =

s∑
i=0

gi(λ)Y
iXs−i. For φ = 1 we have

g{1} (X,Y ;λ) =

(
s∑

i=0

gi(λ)Y
iXs−i

){1}

=
s∑

i=0

gi(λ)
(
Y i
){1}

Xs−i

=

s∑
i=0

gi(λ)b
−i+1βb(i, 1)Y

i−1Xs−i.

As βb(i, 1) = 0 when i = 0 and σ1 = 0 then we have

g{1} (X,Y ;λ) =

s∑
i=1

gi(λ)b
1−i+σ1βb(i, 1)Y

i−1Xs−i.

So the initial case holds. Now assume the case holds for φ = φ i.e.

g{φ} (X,Y ;λ) =

s∑
i=φ

gi(λ)b
φ(1−i)+σφβb(i, φ)Y

i−φXs−i.

Then we have

g{φ+1} (X,Y ;λ) =

 s∑
i=φ

gi(λ)b
φ(1−i)+σφβb(i, φ)Y

i−φ

{1}

Xs−i

=

s∑
i=φ

gi(λ)b
φ(1−i)+σφβb(i, φ)b

−(i−φ−1)βb(i− φ, 1)Y i−φ−1Xs−i

(5.2.11)
=

s∑
i=φ

gi(λ)b
(φ+1)(1−i)+σφ

φ−1∏
j=0

(
bi−j − 1

) (
bi−φ − 1

)
(b− 1)(b− 1)

Y i−φ−1Xs−i

=

s∑
i=φ

gi(λ)b
(φ+1)(1−i)+σφ+1βb(i, φ+ 1)Y i−φ−1Xs−i

=

s∑
i=φ+1

gi(λ)b
(φ+1)(1−i)+σφ+1βb(i, φ+ 1)Y i−φ−1Xs−i

since when i = φ, βb(φ,φ+ 1) = 0. So by induction Equation (5.5.7) holds.
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(3) Now consider µ[k](X,Y ;λ) =

k∑
u=0

µu(λ, k)Y
uXk−u where µu(λ, k) =

[
k

u

]
γb,c(λ, u) as

in Theorem 5.3.4. Then we have

µ[k]{1}(X,Y ;λ) =

(
k∑

u=0

µu(λ, k)Y
uXk−u

){1}

(5.5.7)
=

k∑
u=1

µu(λ, k)b
1−uβb(u, 1)Y

u−1Xk−u

=

k−1∑
r=0

µr+1(λ, k)b
1−(r+1)βb(r + 1, 1)Y r+1−1Xk−r−1

=

k−1∑
r=0

[
k

r + 1

]
γb,c(λ, r + 1)b−rβb(r + 1, 1)Y rXk−1−r

(5.2.16)(5.2.10)
=

k−1∑
r=0

[
k − 1

r

]
bk − 1

br+1 − 1

(
cbλ − 1

)
brb−rγb,c(λ− 1, r)

× βb(r + 1, 1)Y rXk−1−r

= b−σ1βb(k, 1)γb,c(λ, 1)µ
[k−1](X,Y ;λ− 1).

Now assume that the statement holds for φ = φ. Then we have

µ[k]{φ+1}(X,Y ;λ) =

[
b−σφβb(k, φ)γb,c(λ, φ)µ

[k−φ](X,Y ;λ− φ)

]{1}

= b−σφβb(k, φ)γb,c(λ, φ)

(
k−φ∑
r=0

[
k − φ

r

]
γb,c(λ− φ, r)Y rXk−φ−r

){1}

= b−σφβb(k, φ)γb,c(λ, φ)

k−φ∑
r=1

[
k − φ

r

]
γb,c(λ− φ, r) (Y r)

{1}
Xk−φ−r

= b−σφβb(k, φ)γb,c(λ, φ)

k−φ−1∑
u=0

[
k − φ

u+ 1

]
γb,c(λ− φ, u+ 1)b1−(u+1)

× βb(u+ 1, 1)Y u+1−1Xk−φ−u−1

(5.2.16)(5.2.10)
= b−σφβb(k, φ)γb,c(λ, φ)

k−(φ+1)∑
u=0

[
k − φ− 1

u

]

×
(
bk−φ − 1

) (
bu+1 − 1

)
(bu+1 − 1) (b− 1)

bub−u

×
(
cbλ−φ − 1

)
γb,c(λ− (φ+ 1), u)Y uXk−(φ+1)−u

= b−σφb−φγb,c(λ, φ+ 1)βb(k, φ+ 1)µ[k−(φ+1)](X,Y ;λ− (φ+ 1))

= b−σφ+1γb,c(λ, φ+ 1)βb(k, φ+ 1)µ[k−(φ+1)](X,Y ;λ− (φ+ 1)).

As required. Now consider ν[k](X,Y ;λ) =

k∑
u=0

(−1)ubu(u−1)

[
k

u

]
Y uXk−u as defined in
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Theorem 5.3.5. Then we have

ν[k]{1}(X,Y ;λ) =

(
k∑

u=0

(−1)ubσu

[
k

u

]
Y uXk−u

){1}

=

k−1∑
r=0

(−1)r+1bσr+1b1−(r+1)

[
k

r + 1

]
βb(r + 1, 1)Y r+1−1Xk−r−1

(5.2.11)
= −

k−1∑
r=0

(−1)rbσrbrb−r

[
k − 1

r

](
bk − 1

) (
br+1 − 1

)
(br+1 − 1) (b− 1)

Y rXk−r−1

= (−1)1βb(k, 1)ν
[k−1](X,Y ;λ).

Now assume that the statement holds for φ = φ. Then we have

ν[k](X,Y ;λ){φ+1} =
[
(−1)φβb(k, φ)ν

[k−φ](X,Y ;λ)
]{1}

= (−1)φβb(k, φ)

k−φ∑
u=1

(−1)ubσu

[
k − φ

u

]
(Y u)

{1}
Xk−φ−u

= (−1)φβb(k, φ)

k−φ−1∑
r=0

(−1)r+1bσr+1b−(r+1)+1

[
k − φ

r + 1

]
× βb(r + 1, 1)Y r+1−1Xk−φ−r−1

(5.2.10)
= (−1)φ+1βb(k, φ)

k−φ−1∑
r=0

(−1)rbσr

[
k − φ− 1

r

]

×
(
bk−φ − 1

) (
br+1 − 1

)
(br+1 − 1) (b− 1)

Y rXk−φ−1−r

= (−1)φ+1βb(k, φ+ 1)ν[k−(φ+1)](X,Y ;λ).

as required.

Now we need a few smaller lemmas in order to prove the Leibniz rule for the b−1-derivative.

Lemma 5.5.7. Let

u (X,Y ;λ) =

r∑
i=0

ui(λ)Y
iXr−i

v (X,Y ;λ) =

s∑
i=0

vi(λ)Y
iXs−i.

1. If u0(λ) = 0 then

1

Y

[
u (X,Y ;λ) ∗ v (X,Y ;λ)

]
= bs

u (X,Y ;λ)

Y
∗ v (X,Y ;λ− 1) . (5.5.10)
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2. If v0(λ) = 0 then

1

Y

[
u (X,Y ;λ) ∗ v (X,Y ;λ)

]
= u (X, bY ;λ) ∗ v (X,Y ;λ)

Y
. (5.5.11)

Proof.

(1) Suppose u0(λ) = 0. Then

u (X,Y ;λ)

Y
=

r∑
i=0

ui(λ)Y
i−1Xr−i =

r−1∑
i=0

ui+1(λ)Y
iXr−i−1

Hence

bs
u (X,Y ;λ)

Y
∗ v (X,Y ;λ− 1)

= bs
r+s−1∑
u=0

(
u∑

ℓ=0

bℓsuℓ+1(λ)vu−ℓ(λ− ℓ− 1)

)
Y uXr+s−1−u

= bs
r+s−1∑
u=0

(
u+1∑
i=1

b(i−1)sui(λ)vu−i+1(λ− i)

)
Y uXr+s−1−u

= bs
r+s∑
j=1

(
j∑

i=1

b(i−1)sui(λ)vj−i(λ− i)

)
Y j−1Xr+s−j

=
1

Y

r+s∑
j=0

(
j∑

i=0

bisui(λ)vj−i(λ− i)

)
Y jXr+s−j

=
1

Y
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since when j = 0,

j∑
i=0

bisui(λ)vj−i(λ− i) = 0 as u0(λ) = 0.

(2) Now if v0(λ) = 0, then

v (X,Y ;λ)

Y
=

s∑
j=1

vj(λ)Y
j−1Xs−j

=

s−1∑
i=0

vi+1(λ)Y
iXs−i−1.
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So,

u (X, bY ;λ) ∗ v (X,Y ;λ)

Y
=

r+s−1∑
u=0

 u∑
j=0

bj(s−1)bjuj(λ)vu−j+1(λ− j)

Y uXr+s−1−u

=

r+s∑
ℓ=1

ℓ−1∑
j=0

bjsuj(λ)vℓ−j(λ− j)

Y ℓ−1Xr+s−ℓ

=
1

Y

r+s∑
ℓ=1

 ℓ∑
j=0

bjsuj(λ)vℓ−j(λ− j)

Y ℓXr+s−ℓ

=
1

Y

r+s∑
ℓ=0

 ℓ∑
j=0

bjsuj(λ)vℓ−j(λ− j)

Y ℓXr+s−ℓ

=
1

Y
(u (X,Y ;λ) ∗ v (X,Y ;λ))

since when j = ℓ,

j∑
i=0

bisui(λ)vj−i(λ− i) = 0 as v0(λ) = 0.

Theorem 5.5.8 (Leibniz rule for the b−1-derivative). For two homogeneous polynomials

in Y , f(X,Y ;λ) and g(X,Y ;λ) with degrees r and s respectively, the φth (for φ ≥ 0)

b−1-derivative of their b-product is given by

[
f (X,Y ;λ) ∗ g (X,Y ;λ)

]{φ}
=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (X,Y ;λ) ∗ g{φ−ℓ} (X,Y ;λ− ℓ) .

(5.5.12)

Proof. For simplification we shall write f(X,Y ;λ), g(X,Y ;λ) as f(Y ;λ), g(Y ;λ). Now by

differentiation we have

[
f (Y ;λ) ∗ g (Y ;λ)

]{1}
=
f
(
b−1Y ;λ

)
∗ g
(
b−1Y ;λ

)
− f (Y ;λ) ∗ g (Y ;λ)

(b−1 − 1)Y

=
1

(b−1 − 1)Y

{
f
(
b−1Y ;λ

)
∗ g
(
b−1Y ;λ

)
− f

(
b−1Y ;λ

)
∗ g (Y ;λ)

+ f
(
b−1Y ;λ

)
∗ g (Y ;λ)− f (Y ;λ) ∗ g (Y ;λ)

}
=

1

(b−1 − 1)Y

{
f
(
b−1Y ;λ

)
∗
(
g
(
b−1Y ;λ

)
− g (Y ;λ)

)}
+

1

(b−1 − 1)Y

{(
f
(
b−1Y ;λ

)
− f (Y ;λ)

)
∗ g (Y ;λ)

}
(5.5.11)
= f (Y ;λ) ∗

(
g
(
b−1Y ;λ

)
− g (Y ;λ)

)
(b−1 − 1)Y

(5.5.10)
+ bs

(
f
(
b−1Y ;λ

)
− f (Y ;λ)

)
(b−1 − 1)Y

∗ g (Y ;λ− 1)

= f (Y ;λ) ∗ g{1} (Y ;λ) + bsf{1} (Y ;λ) ∗ g (Y ;λ− 1) . (5.5.13)
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since g(Y ;λ) has the same degree as g(b−1Y ;λ) and similarly, f(Y ;λ) has the same degree

as f(b−1Y ;λ). So the initial case holds. Assume the statement holds true for φ = φ, i.e.

[
f (X,Y ;λ) ∗ g (X,Y ;λ)

]{φ}
=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (X,Y ;λ) ∗ g{φ−ℓ} (X,Y ;λ− ℓ) .

Now considering φ + 1 and for simplicity we write f(X,Y ;λ), g(X,Y ;λ) as f(λ), g(λ) we

have

[
f (λ) ∗ g (λ)

]{φ+1}
=

[
φ∑

ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ} (λ− ℓ)

]{1}
(5.5.13)
=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)bs−φ+ℓf{ℓ+1} (λ) ∗ g{φ−ℓ} (λ− ℓ− 1)

=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

φ+1∑
ℓ=1

[
φ

ℓ− 1

]
b(ℓ−1)(s−φ+ℓ−1)bs−φ+(ℓ−1)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

[
φ

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

φ∑
ℓ=1

[
φ

ℓ− 1

]
b(ℓ−1)(s−φ+ℓ−1)b(s−φ+(ℓ−1))f{ℓ} (λ) ∗ g{φ−ℓ+1} (λ− ℓ)

+

[
φ

φ

]
b(φ+1)(s+1)b−φ−1f{φ+1} (λ) ∗ g (λ− (φ+ 1))

= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

([
φ

ℓ

]
+ b−ℓ

[
φ

ℓ− 1

])
× bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− ℓ)

+ bs(φ+1)f{φ+1} (λ) ∗ g (λ− (φ+ 1))

(5.2.7)
= f (λ) ∗ g{φ+1} (λ) +

φ∑
ℓ=1

b−ℓ

[
φ+ 1

ℓ

]
bℓ(s−φ+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− ℓ)

+

[
φ+ 1

φ+ 1

]
b(φ+1)(s−φ−1+(φ+1))f{φ+1} (λ) ∗ g{φ+1−(φ+1)} (λ− (φ+ 1))

=

φ+1∑
ℓ=0

[
φ+ 1

ℓ

]
bℓ(s−(φ+1)+ℓ)f{ℓ} (λ) ∗ g{φ+1−ℓ} (λ− ℓ)

as required.
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5.5.3 Evaluating the b-Derivative and the b−1-Derivative

At this point we need to introduce a couple of lemmas which yield useful results when

developing moments of the weight distribution.

Lemma 5.5.9. For j, ℓ ∈ Z+, 0 ≤ ℓ ≤ j and X = Y = 1,

ν[j](ℓ)(1, 1;λ) = βb(j, j)δjℓ. (5.5.14)

Proof. Consider

ν[j](ℓ)(X,Y ;λ)
(5.5.3)
= βb(j, ℓ)ν

[j−ℓ](X,Y ;λ) = βb(j, ℓ)

j−ℓ∑
u=0

(−1)ubσu

[
j − ℓ

u

]
Y uX(j−ℓ)−u.

So

ν[j](ℓ)(1, 1;λ) = βb(j, ℓ)

j−ℓ∑
u=0

(−1)ubσu

[
j − ℓ

u

]
(5.2.12)
= βb(ℓ, ℓ)

[
j

ℓ

] j−ℓ∑
u=0

(−1)ubσu

[
j − ℓ

u

]
(5.2.1)(5.2.2)

= βb(ℓ, ℓ)

j∑
k=ℓ

(−1)k−ℓbσk−ℓ

[
j

k

][
k

ℓ

]
(5.2.5)
= βb(ℓ, ℓ)δℓj = βb(j, j)δjℓ.

Lemma 5.5.10. For any homogeneous polynomial, ρ (X,Y ;λ) and for any s ≥ 0,

(
ρ ∗ µ[s]

)
(1, 1;λ) =

(
cbλ
)s
ρ(1, 1;λ). (5.5.15)

Proof. Let ρ (X,Y ;λ) =

r∑
i=0

ρi(λ)Y
iXr−i, then from Theorem 5.3.4

µ[s](X,Y ;λ) =

s∑
t=0

µ
[s]
t (λ)Y tXs−t =

s∑
t=0

[
s

t

]
γb,c(λ, t)Y

tXs−t

and (
ρ ∗ µ[s]

)
(X,Y ;λ) =

r+s∑
u=0

cu(λ)Y
uX(r+s−u)

where

cu(λ) =

u∑
i=0

bisρi(λ)µ
[s]
u−i(λ− i).
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Then,

(
ρ ∗ µ[s]

)
(1, 1;λ) =

r+s∑
u=0

cu(λ)

=

r+s∑
u=0

u∑
i=0

bisρi(λ)µ
[s]
u−i(λ− i)

=

r+s∑
j=0

bjsρj(λ)

(
r+s−j∑
k=0

µ
[s]
k (λ− j)

)

=

r∑
j=0

bjsρj(λ)

(
s∑

k=0

µ
[s]
k (λ− j)

)

=

r∑
j=0

bjsρj(λ)

(
s∑

k=0

[
s

k

]
γb,c(λ− j, k)

)
(5.2.4)
=

r∑
j=0

bjsρj(λ)
(
cbλ−j

)s
=
(
cbλ
)s
ρ(1, 1;λ)

since ρj(λ) = 0 when j > r and µ
[s]
k (λ− j) = 0 when k > s.

5.6 The b-Moments of the Weight Distribution

This final section develops a theory of b-moments analogous to Section 3.5 and Section 4.5

and as before produces comparable formulas to the binomial moments in the Hamming case.

Again the moments derived from the b-derivative and the b−1-derivative are not exactly the

same, as the first is using the derivative with respect to X and the other is using the

derivative with respect to Y .

5.6.1 Moments derived from the b-Derivative

In the first case we consider the moments of the weight distribution with respect to X.

Proposition 5.6.1. For an (X , R) n-class Krawtchouk association scheme, 0 ≤ φ ≤ n,

and a linear code C ⊆ X , and its dual C⊥ ⊆ X with weight distributions c = (c0, . . . , cn)

and c′ = (c′0, . . . , c
′
n) respectively we have

n−φ∑
i=0

[
n− i

φ

]
ci =

1

|C⊥|
(cbn)

n−φ
φ∑

i=0

[
n− i

n− φ

]
c
′

i.

Proof. We apply Theorem 5.4.1 to C⊥ to get

WS
C (X,Y ) =

1

|C⊥|
W

S

C⊥ (X + (cbn − 1)Y,X − Y )
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or equivalently

n∑
i=0

ciY
iXn−i =

1

|C⊥|

n∑
i=0

c′i (X − Y )
[i] ∗ [X + (cbn − 1)Y ]

[n−i]

=
1

|C⊥|

n∑
i=0

c′iν
[i](X,Y ;n) ∗ µ[n−i](X,Y ;n). (5.6.1)

For each side of Equation (5.6.1), we shall apply the b-derivative φ times and then evaluate

at X = Y = 1.

For the left hand side, we obtain

(
n∑

i=0

ciY
iXn−i

)(φ)
(5.5.1)
=

n−φ∑
i=0

ciβb(n− i, φ)Y iXn−i−φ.

Setting X = Y = 1 we then have

n−φ∑
i=0

ciβb(n− i, φ)
(5.2.12)
=

n−φ∑
i=0

ci

[
n− i

φ

]
βb(φ,φ)

= βb(φ,φ)

n−φ∑
i=0

ci

[
n− i

φ

]
.

We now move on to the right hand side. For simplicity we write µ(X,Y ;n) as µ and similarly

ν(X,Y ;n) as ν. We have

(
1

|C⊥|

n∑
i=0

c′iν
[i] ∗ µ[n−i]

)(φ)
(5.5.6)
=

1

|C⊥|

n∑
i=0

c′i

(
φ∑

ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)ν[i](ℓ) ∗ µ[n−i](φ−ℓ)

)

=
1

|C⊥|

n∑
i=0

c′iψi(X,Y ;n)

where

ψi(X,Y ;n) =

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)ν[i](ℓ)(X,Y ;n) ∗ µ[n−i](φ−ℓ)(X,Y ;n).

Then with X = Y = 1,

ψi(1, 1;n)
(5.5.2)
=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)βb(n− i, φ− ℓ)

(
ν[i](ℓ) ∗ µ[n−i−φ+ℓ]

)
(1, 1;n)

(5.5.15)
=

φ∑
ℓ=0

[
φ

ℓ

]
b(φ−ℓ)(i−ℓ)βb(n− i, φ− ℓ) (cbn)

n−i−(φ−ℓ)
ν[i](ℓ)(1, 1;n)

(5.5.14)
=

φ∑
ℓ=0

b(φ−ℓ)(i−ℓ)

[
φ

ℓ

]
βb(n− i, φ− ℓ) (cbn)

n−i−(φ−ℓ)
βb(i, i)δiℓ

(5.2.12)
=

[
φ

i

][
n− i

φ− 1

]
βb(φ− i, φ− i) (cbn)

n−φ
βb(i, i)

(5.2.13)
=

[
n− i

φ− i

]
(cbn)

n−φ
βb(φ,φ).
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5.6. THE b-MOMENTS OF THE WEIGHT DISTRIBUTION

So

1

|C⊥|

n∑
i=0

c′iψi(1, 1;n) =
1

|C⊥|

φ∑
i=0

c′i

[
n− i

φ− i

]
(cbn)

n−φ
βb(φ,φ)

(5.2.1)
= βb(φ,φ)

1

|C⊥|
(cbn)

n−φ
φ∑

i=0

c′i

[
n− i

n− φ

]
.

Combining the results for each side, and simplifying, we finally obtain

n−φ∑
i=0

ci

[
n− i

φ

]
=

1

|C⊥|
(cbn)

n−φ
φ∑

i=0

c′i

[
n− i

n− φ

]

as required.

Note. In particular, if φ = 0 we have

n∑
i=0

ci =
(cbn)

n

|C⊥|
c′0 =

(cbn)
n

|C⊥|
.

We can simplify Proposition 5.6.1 if φ is less than the minimum distance of the dual code.

Corollary 5.6.2. Let d′S be the minimum distance of C⊥. If 0 ≤ φ < d′S then

n−φ∑
i=0

[
n− i

φ

]
ci =

1

|C⊥|
(cbn)

n−φ

[
n

φ

]
.

Proof. We have c′0 = 1 and c′1 = . . . = c′φ = 0.

5.6.2 Moments derived from the b−1-Derivative

The next proposition once again relates the moments of the weight distribution of a linear

code to those of its dual, this time using the b−1-derivative of the MacWilliams Identity for

a Krawtchouk association scheme. As is the case for the Hermitian association scheme, we

must adapt the definition of δ(λ, φ, j) in Lemma 5.6.3 to make this definition applicable to

all values of the parameter c found in Table 5.1.1.

Lemma 5.6.3. Let δ(λ, φ, j) =

j∑
i=0

(−1)i
[
j

i

]
bσiγb,c(λ− i, φ). Then for all λ ∈ R, φ, j ∈ Z,

δ(λ, φ, j) =

j−1∏
i=0

(
bφ − bi

)
γb,c(λ− j, φ− j)

(
cbλ−j

)j
. (5.6.2)

Proof. Initial case: j = 0.

δ(λ, φ, 0) =

[
0

0

]
(−1)0bσ0γb,c(λ, φ) = γb,c(λ, φ) = (λ, φ)

(
cb0(λ)

)
.
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So the initial case holds. Now assume the case is true for j = ȷ and consider the ȷ+ 1 case.

δ(λ, φ, ȷ+ 1) =

ȷ+1∑
i=0

[
ȷ+ 1

i

]
(−1)ibσiγb,c(λ− i, φ)

(5.2.7)
=

ȷ+1∑
i=0

(
bi
[
ȷ

i

]
+

[
ȷ

i− 1

])
(−1)ibσiγb,c(λ− i, φ)

=

ȷ∑
i=0

[
ȷ

i

]
(−1)ibσibiγb,c(λ− i, φ) +

ȷ∑
i=0

[
ȷ

i

]
(−1)i+1bσi+1γb,c(λ− (i+ 1), φ)

(5.2.16)
=

ȷ∑
i=0

[
ȷ

i

]
(−1)ibibσi

(
cbλ−i − 1

)
bφ−1γb,c(λ− i− 1, φ− 1)

(5.2.17)
−

ȷ∑
i=0

[
ȷ

i

]
(−1)ibσi+1

(
cbλ−i−1 − bφ−1

)
γb,c(λ− i− 1, φ− 1)

=

ȷ∑
i=0

[
ȷ

i

]
(−1)ibσiγb,c(λ− i− 1, φ− 1)(cbλ−1) (bφ − 1)

= cbλ−1 (bφ − 1) δ(λ− 1, φ− 1, ȷ)

= cbλ−1 (bφ − 1)

ȷ−1∏
i=0

(
bφ−1 − bi

)
cȷbȷ(λ−ȷ−1)γb,c(λ− ȷ− 1, φ− ȷ− 1)

= (bφ − 1)

ȷ−1∏
i=0

(
bφ−1 − bi

)
(cbλ−1)cȷbȷ(λ−(ȷ+1))γb,c(λ− (ȷ+ 1), φ− (ȷ+ 1))

=
(
cbλ−(ȷ+1)

)(ȷ+1)
ȷ∏

i=0

(
bφ − bi

)
γb,c(λ− (ȷ+ 1), φ− (ȷ+ 1))

since

[
ȷ

i− 1

]
= 0 when i = 0. Hence by induction the lemma is proved.

Lemma 5.6.4. Let ε(Λ, φ, i) =

i∑
ℓ=0

[
i

ℓ

][
Λ− i

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
. Then for

all Λ ∈ R, φ, i ∈ Z,

ε(Λ, φ, i) = (−1)ibσi

[
Λ− i

Λ− φ

]
. (5.6.3)

Proof. Initial case i = 0,

ε(Λ, φ, 0) =

[
0

0

][
Λ

φ

]
b0(−1)0b0 =

[
Λ

φ

]
(−1)0b0

[
Λ

Λ− φ

]
=

[
Λ

φ

]
.

So the initial case holds. Now suppose the case is true when i = ı. Then
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ε(Λ, φ, ı+ 1) =

ı+1∑
ℓ=0

[
ı+ 1

ℓ

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
(5.2.6)
=

ı+1∑
ℓ=0

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
+

ı+1∑
ℓ=1

b(ı+1−ℓ)

[
ı

ℓ− 1

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
= A+B, say.

Now

A =
(
bφ − bı

) ı∑
ℓ=0

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ

]
bℓ(Λ−1−φ)(−1)ℓbσℓ

ı−ℓ∏
j=0

(
bφ−ℓ − bj

)
=
(
bφ − bı

)
ε(Λ− 1, φ, ı)

=
(
bφ − bı

)
(−1)ıbσı

[
Λ− ı− 1

Λ− 1− φ

]

and

B =

ı∑
ℓ=0

b(ı−ℓ)

[
ı

ℓ

][
Λ− ı− 1

φ− ℓ− 1

]
b(ℓ+1)(Λ−φ)(−1)ℓ+1bσℓ+1

ı−ℓ−1∏
j=0

(
bφ−ℓ−1 − bj

)
= −b(ı+Λ−φ)ε(Λ− 1, φ− 1, ı)

= −b(ı+Λ−φ)(−1)ıbσı

[
Λ− ı− 1

Λ− φ

]
.

So

ε(Λ, φ, ı+ 1) = A+B

= (−1)ıbσı

{(
bφ − bı

) [Λ− ı− 1

Λ− 1− φ

]
− b(ı+Λ−φ)

[
Λ− ı− 1

Λ− φ

]}
(5.2.8)
= (−1)ı+1bσı

{
bı+Λ−φ

[
Λ− ı− 1

Λ− φ

]
−
(
bφ − bı

) (bΛ−φ − 1
)

(bφ−ı − 1)

[
Λ− ı− 1

Λ− φ

]}

= (−1)ı+1

[
Λ− (ı+ 1)

Λ− φ

]
bσı

{
bı+Λ−φ

(
bφ−ı − 1

)
−
(
bφ − bı

) (
bΛ−φ − 1

)
(bφ−ı − 1)

}

= (−1)ı+1bσı+1

[
Λ− (ı+ 1)

Λ− φ

]

as required.

Proposition 5.6.5. For an (X , R) n-class Krawtchouk association scheme, 0 ≤ φ ≤ n and

a linear code C ⊆ X and its dual C⊥ ⊆ X with weight distributions c = (c0, . . . , cn) and
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c′ = (c′0, . . . , c
′
n) respectively we have

n∑
i=φ

bφ(n−i)

[
i

φ

]
ci =

1

|C⊥|
(cbn)

n−φ
φ∑

i=0

(−1)ibσibi(φ−i)

[
n− i

n− φ

]
γb,c(n− i, φ− i)c′i.

Proof. As per Proposition 5.6.1, we apply Theorem 5.4.1 to C⊥ to obtain

WS
C (X,Y ) =

1

|C⊥|
W

S

C⊥ (X + (cbn − 1)Y,X − Y )

or equivalently

n∑
i=0

ciY
iXn−i =

1

|C⊥|

n∑
i=0

c′i (X − Y )
[i] ∗ (X + (cbn − 1)Y )

[n−i]

=
1

|C⊥|

n∑
i=0

c′iν
[i](X,Y ;n) ∗ µ[n−i](X,Y ;n). (5.6.4)

For each side of Equation (5.6.4), we shall apply the b−1-derivative φ times and then evaluate

at X = Y = 1. i.e.

(
n∑

i=0

ciY
iXn−i

){φ}

=

(
1

|C⊥|

n∑
i=0

c′iν
[i](X,Y ;n) ∗ µ[n−i](X,Y ;n)

){φ}

. (5.6.5)

For the left hand side, we obtain

(
n∑

i=0

ciY
iXn−i

){φ}

=

n∑
i=φ

cib
φ(1−i)+σφβb(i, φ)Y

i−φXn−i

(5.2.12)
=

n∑
i=φ

cib
φ(1−i)+σφ

[
i

φ

]
βb(φ,φ)Y

i−φXn−i.

(5.6.6)

Then using X = Y = 1 gives

n∑
i=φ

cib
φ(1−i)+σφ

[
i

φ

]
βb(φ,φ)Y

i−φXn−i =

n∑
i=φ

bφ(1−i)+σφβb(φ,φ)

[
i

φ

]
ci. (5.6.7)

We now move on to the right hand side. For simplicity we shall write µ(X,Y ;n) as µ(n)

and similarly ν(X,Y ;n) as ν(n). We have,

(
1

|C⊥|

n∑
i=0

c′iν
[i](n) ∗ µ[n−i](n)

){φ}

(5.6.8)

(5.5.12)
=

1

|C⊥|

n∑
i=0

c′i

(
φ∑

ℓ=0

[
φ

ℓ

]
bℓ(n−i−φ+ℓ)ν[i]{ℓ}(n) ∗ µ[n−i]{φ−ℓ}(n− ℓ)

)
(5.6.9)

=
1

|C⊥|

n∑
i=0

c′iψi(n) (5.6.10)
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say. Then,

ψi(n)
(5.5.9)(5.5.8)

=

φ∑
ℓ=0

[
φ

ℓ

]
bℓ(n−i−φ+ℓ)

{
(−1)ℓβb(i, ℓ)ν

[i−ℓ](n)
}

∗
{
b−σφ−ℓβb(n− i, φ− ℓ)γb,c(n− ℓ, φ− ℓ)µ[n−i−φ+ℓ](n− φ)

}
.

Now let

Ψ(X,Y ;n− φ) = ν[i−ℓ](X,Y ;n) ∗ γb,c(n− ℓ, φ− ℓ)µ[n−i−φ+ℓ](X,Y ;n− φ).

Then we apply the b-product, reorder the summations and set X = Y = 1 to obtain

Ψ(1, 1;n− φ)

=

n−φ∑
u=0

[
u∑

p=0

bp(n−i−φ+ℓ)ν[i−ℓ]
p (n)γb,c(n− ℓ− p, φ− ℓ)µ

[n−i−φ+ℓ]
u−p (n− φ− p)

]

=

i−ℓ∑
r=0

br(n−i−φ+ℓ)ν[i−ℓ]
r (n)γb,c(n− ℓ− r, φ− ℓ)

[
n−i−φ+ℓ∑

w=0

µ[n−i−φ+ℓ]
w (n− φ− r)

]
(5.2.4)
=

i−ℓ∑
r=0

br(n−i−φ+ℓ)
(
cbn−φ−r

)(n−i−φ+ℓ)
ν[i−ℓ]
r (n)γb,c(n− ℓ− r, φ− ℓ)

=
(
cbn−φ

)n−i−φ+ℓ
i−ℓ∑
r=0

(−1)rbσr

[
i− ℓ

r

]
γb,c(n− ℓ− r, φ− ℓ)

=
(
cbn−φ

)n−i−φ+ℓ
δ(n− ℓ, φ− ℓ, i− ℓ)

(5.6.2)
=

(
cbn−φ

)n−i−φ+ℓ (
cbn−i

)i−ℓ
i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
γb,c(n− i, φ− i)

= cn−φb(n−φ)(n−i−φ+ℓ)b(i−ℓ)(n−i)
i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
γb,c(n− i, φ− i).

Noting that bℓ(n−i−φ+ℓ)b−σφ−ℓ = bℓ(n−i)b−σφbσℓ we get

ψi(1, 1;n) =

φ∑
ℓ=0

(−1)ℓ
[
φ

ℓ

]
bℓ(n−i−φ+ℓ)b−σφ−ℓβb(i, ℓ)βb(n− i, φ− ℓ)Ψ(1, 1;n− φ)

(5.2.13)
=

φ∑
ℓ=0

(−1)ℓ
[
φ

ℓ

]
bℓ(n−i−φ+ℓ)b−σφ−ℓ

[
i

ℓ

]
βb(ℓ, ℓ)

×
[
n− i

φ− ℓ

]
βb(φ− ℓ, φ− ℓ)Ψ(1, 1;n− φ)

(5.2.13)
= b−σφβb(φ,φ)

i∑
ℓ=0

(−1)ℓbℓ(n−i)bσℓ

[
i

ℓ

][
n− i

φ− ℓ

]
Ψ(1, 1;n− φ).

Writing that

b−σφbℓ(n−i)b(n−φ)(n−φ−i+ℓ)b(i−ℓ)(n−i) = bσφbφ(1−n)bn(n−φ)bℓ(n−φ)bi(φ−i)

= bθbℓ(n−φ)
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we get

ψi(1, 1;n) = cn−φbθβb(φ,φ)γb,c(n− i, φ− i)

i∑
ℓ=0

(−1)ℓbℓ(n−φ)bσℓ

[
i

ℓ

][
n− i

φ− ℓ

] i−ℓ−1∏
j=0

(
bφ−ℓ − bj

)
(5.6.3)
= cn−φbθbσiβb(φ,φ)

[
n− i

n− φ

]
γb,c(n− i, φ− i). (5.6.11)

Substituting the results from (5.6.7), (5.6.10) and (5.6.11) we have

n∑
i=φ

bφ(1−i)+σφβb(φ,φ)

[
i

φ

]
ci =

1

|C⊥|

n∑
i=0

c′i(−1)icn−φbθbσiβb(φ,φ)

[
n− i

n− φ

]
γb,c(n− i, φ− i).

Thus cancelling and rearranging gives,

n∑
i=φ

bφ(n−i)

[
i

φ

]
ci =

(cbn)
n−φ

|C⊥|

φ∑
i=0

(−1)ibσibi(φ−i)

[
n− i

n− φ

]
γb,c(n− i, φ− i)c′i

as required.

We can simplify Proposition 5.6.5 if φ is less than the minimum distance of the dual code.

Also we can introduce the dual diameter , ϱ′S , defined as the maximum distance between

any two codewords of the dual code and simplify Proposition 5.6.5 further.

Corollary 5.6.6. If 0 ≤ φ < d′S then

n∑
i=φ

bφ(n−i)

[
i

φ

]
ci =

1

|C⊥|
(cbn)

n−φ

[
n

φ

]
γb,c(n, φ).

For ϱ′S < φ ≤ n then

φ∑
i=0

(−1)ibσibi(φ−i)

[
n− i

n− φ

]
γb,c(n− i, φ− i)ci = 0.

Explicitly for the Hamming association scheme, when b = 1 and c = q we have for ϱ′S <

φ ≤ n,
φ∑

i=0

(−1)i
(
n− i

n− φ

)
(q − 1)

φ−i
ci = 0.

Moreover for φ = n,
n∑

i=0

(−1)i(q − 1)n−ici = 0.

Proof. First consider 0 ≤ φ < d′S , then c
′
0 = 1, c′1 = . . . = c′φ = 0. Also since

[
n

n− φ

]
=

[
n

φ

]
the statement holds. Now if ϱ′S < φ ≤ n then applying Proposition 5.6.5 to C⊥ gives

n∑
i=φ

bφ(n−i)

[
i

φ

]
c′i =

1

|C |
(cbn)

n−φ
φ∑

i=0

(−1)ibσibi(φ−i)

[
n− i

n− φ

]
γb,c(n− i, φ− i)ci.
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So using c′φ = . . . = c′n = 0 we get

0 =

φ∑
i=0

(−1)ibσibi(φ−i)

[
n− i

n− φ

]
γb,c(n− i, φ− i)ci

as required. For the Hamming association scheme, we use that b = 1, c = q and the b-nary

Gaussian coefficients become the usual binomal coefficients and we have immediately

0 =

φ∑
i=0

(−1)i
(
n− i

n− φ

)
(q − 1)φ−ici.

Moreover when φ = n,

n∑
i=0

(−1)i
(
n− i

0

)
(q − 1)φ−ici =

n∑
i=0

(−1)ici = 0.

5.6.3 Maximum Distance Codes in the Association Scheme

As an application for the MacWilliams Identity, we can derive an explicit form of the coef-

ficients of the weight distribution for an (X , R) n-class association scheme for maximal

distance codes. This generalises the results for MDS codes [41, Theorem 6, Chapter 11],

MRD codes [22, Proposition 9], MSRD codes in Section 3.5.3 and MHRD codes in Section

4.5.3.

Firstly a lemma that will be needed.

Lemma 5.6.7. If x0, x1, . . . , xℓ and y0, y1, . . . , yℓ are two sequences of real numbers and if

xj =

j∑
i=0

[
ℓ− i

ℓ− j

]
yi

for 0 ≤ j ≤ ℓ, then

yi =

i∑
j=0

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

]
xj

for 0 ≤ i ≤ ℓ.
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Proof. For 0 ≤ i ≤ ℓ,

i∑
j=0

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

]
xj =

i∑
j=0

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

]( j∑
k=0

[
ℓ− k

ℓ− j

]
yk

)

=

i∑
k=0

i∑
j=k

(−1)i−jbσi−j

[
ℓ− j

ℓ− i

][
ℓ− k

ℓ− j

]
yk

=

i∑
k=0

yk

(
ℓ−k∑

s=ℓ−i

(−1)i−ℓ+sbσi−ℓ+s

[
s

ℓ− i

][
ℓ− k

s

])
(5.2.5)
=

i∑
k=0

ykδik

= yi

as required.

Before going any further we need some restrictions on the codes we consider to be able to use

the following proposition. We are only considering (X , R) n-class Krawtchouk association

schemes. From there we are restricted to linear codes C ⊆ X with minimum distance dS

and their dual codes C⊥ ⊆ X with minimum distance d′S such that dS + d′S = n+ 2. This

restriction is necessary since the “first pair of universal bounds” [13, Section IV.F] is met

in equality if and only if dS + d′S = n+ 2. We call codes that meet these bounds maximal

codes. More details on these “universal bounds”, which are the equivalent Singleton bounds,

for any P -polynomial scheme can be found in [13, Section IV.F].

Proposition 5.6.8. For an (X , R) n-class Krawtchouk association scheme let C ⊆ X be

a maximal linear code with weight distribution c = (c0, . . . , cn) and minimum distance dS.

Let the dual of C be the maximal linear code C⊥ with minimum distance d′S = n− dS + 2.

Then we have c0 = 1 and for 0 ≤ ω ≤ n− dS,

cdS+ω =

ω∑
i=0

(−1)ω−ibσω−i

[
dS + ω

dS + i

][
n

dS + ω

](
cbn(dS+i)

|C⊥|
− 1

)
.

Proof. Now from Corollary 5.6.2 we have

n−φ∑
i=0

[
n− i

φ

]
ci =

1

|C⊥|
(cbn)

n−φ

[
n

φ

]

for 0 ≤ φ < d′S . Now since we have a linear code C which is maximal, with minimum

distance dS and we have C⊥ which is also maximal with minimum distance d′S = n−dS +2,

Corollary 5.6.2 holds for 0 ≤ φ ≤ n − dS = d′S − 2. We therefore have c0 = 1 and

c1 = c2 = . . . = cdS−1 = 0 and setting φ = n− dS − j for 0 ≤ j ≤ n− dS we obtain
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[
n

n− dS − j

]
+

dS+j∑
i=dS

[
n− i

n− dS − j

]
ci =

1

|C⊥|
(cbn)

dS+j

[
n

n− dS − j

]
j∑

ω=0

[
n− dS − ω

n− dS − j

]
cω+dS

=

[
n

n− dS − j

](
(cbn)

dS+j

|C⊥|
− 1

)
.

Applying Lemma 5.6.7 with ℓ = n− dS and bω = cω+dS
then setting

aj =

[
n

n− dS − j

](
(cbn)

dS+j

|C⊥|
− 1

)

gives
j∑

ω=0

[
n− dS − ω

n− dS − j

]
bω = aj

and so

bω = cω+dS
=

ω∑
i=0

(−1)ω−ibσω−i

[
n− dS − i

n− dS − ω

]
ai

=

ω∑
i=0

(−1)ω−ibσω−i

[
n− dS − i

n− dS − ω

][
n

n− dS − i

](
(cbn)

dS+i

|C⊥|
− 1

)
.

But we have

[
n− dS − i

n− dS − ω

][
n

n− dS − i

]
(5.2.1)
=

[
n− (dS + i)

n− (dS + ω)

][
n

dS + i

]
(5.2.2)
=

[
dS + ω

dS + i

][
n

n− (dS + ω)

]
(5.2.1)
=

[
dS + ω

dS + i

][
n

dS + ω

]
.

Therefore

cω+dS
=

ω∑
i=0

(−1)ω−iq2σω−i

[
dS + ω

dS + i

][
n

dS + ω

](
qm(dS+i)

|C⊥|
− 1

)
as required.
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Chapter 6
Conclusions and Future Work

6.1 Summary

This thesis begins by introducing key concepts of association schemes and reviews the liter-

ature on the Hamming and rank association schemes studied by MacWilliams [41], Delsarte

[9] and Gadouleau and Yan [22]. Specifically the MacWilliams Identity in its various forms

and the idea of a q-algebra is presented. Chapter 2 also details some key algebraic func-

tions, namely the b-nary Gaussian coefficients and their properties and a new b-nary beta

function both of which contribute heavily to the simplification of the subsequent analysis.

The Hamming scheme, being the most researched to date, is used as the primary example

to show key concepts of association schemes applied to coding theory. For instance, for the

binary Hamming scheme, shown in Figure 2.4.3, the visualisation as a cube is relatively easy

to comprehend. After the well known MacWilliams Identity is introduced for the Hamming

scheme, immediately the binomial moments of the Hamming weight distribution are stated

and proved. Finally the concept of maximal codes, useful for their optimal performance, is

introduced and a proposition stated in [41, Theorem 6, Chapter 11], based on the length,

dimension and minimum distance of the code only, is proved. The existing results for the

rank association scheme, studied by Gadouleau and Yan [22], skew rank association scheme,

studied by Delsarte [12] and the Hermitian association scheme studied by Schmidt [53] are

also outlined in a similar fashion. The main result highlighted in the rank association scheme

is the MacWilliams Identity as a functional transform. Although it appears to be very sim-

ilar to the functional transform in the Hamming case, the way that these two identities was

initially proved are very different.

Using the concepts in Gadouleau and Yan [22], which had been applied to the rank associ-

ation scheme, we adapt the methods to the different association scheme with skew-symmetric

matrices. The first hurdle to jump is the q-algebra from the rank association scheme to one

that could be applied in this setting and also create a new gamma function. Gadouleau and
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Yan [22] introduced two homogeneous polynomials which were used in the proof of their

MacWilliams Identity. However, this proof relied on identifying maximal subgroups of a

code and the specific properties of matrices with the rank metric which could not be trans-

ferred to skew-symmetric matrices in general. Instead, we identify two new homogeneous

polynomials, similar to those in the rank case, use them to generate the eigenvalues of the

association scheme and then apply Delsarte’s MacWilliams Identity [8, (6.9)] to prove our

new MacWilliams Identity as a functional transform. We go on to use the new MacWilliams

Identity, along with some skew-q-derivatives to derive new results for the moments of the

skew rank distribution with respect to X and with respect to Y . We conclude in this chapter

that, similar to the Hamming and rank association schemes, maximal codes with the skew

rank metric can be explicitly determined by their length, dimension and minimum distance

only.

To test the applicability of these new methods to another association scheme, the Hermitian

association scheme is investigated. Once again we have to define the building blocks of

a relevant q-algebra and gamma function to start our journey. Similar to the skew rank

association scheme, new homogeneous polynomials have to be found that could be used to

generate the eigenvalues of this association scheme. We use a different recurrence relation

from the one in Chapter 3 [11, (1)], provided by Schmidt [53, Lemma 7], to prove that

our newly generated polynomial does indeed represent the eigenvalues of this association

scheme, because the parameters lay outside the valid range quoted by Delsarte [11]. Once

we have all this in place we then can successfully state and prove the MacWilliams Identity

as a functional transform for the Hermitian association scheme. Next we formulate the

moments of this association scheme using the new MacWilliams Identity and the negative-

q-derivatives. The lemmas used to support the proof of these moments are not directly

transferable from the rank and skew rank association schemes. The extension to maximal

codes is a lot more involved due to the nature of Hermitian matrices. The difficulty arises

because when the minimum distance of a code is even, the weight distribution of a maximal

(MHRD) code is not always uniquely determined.

In writing up these two chapters a clear pattern emerges. So as an addition to this thesis,

Chapter 5 is written to unify the results for the four association schemes studied. Although

the similarities between these association schemes are clear, the way to formulate a uniform

theory is much less obvious. The first problem to solve is to show that in the Hermitian

association scheme, the solutions to the recurrence relation used in Chapter 4 are also

solutions to the recurrence relation used by Delsarte [11, (1)], applied in Chapter 3, with

the specific parameter of b = −q. The next problem is to harmonise the different gamma

and alpha functions and the definition of the b-algebra. The general gamma function can be

related back to a component of the specific initial values of the solutions to the recurrence

relation by Delsarte, which in turn offers a compact expression for the valencies of the

association scheme. The next issue is to amalgamate the homogeneous polynomials used to
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generate the eigenvalues of each scheme into two “fundamental polynomials” and to seek

the parameters that achieve that amalgamation.

In conclusion this thesis develops a way of obtaining the MacWilliams Identity as a functional

transform for self dual metric translation association schemes whose eigenvalues satisfy a

recurrence relation with specific initial values, which we have called Krawtchouk association

schemes. In addition we generate the eigenvalues for these association schemes using two

fundamental polynomials from the parameters of the association scheme.

6.2 Extensions of work

As already mentioned, we have shown for the specific case of the Hermitian association

scheme that the solutions to the recurrence relation by Delsarte [11, (1)] coincide with the

solutions to the recurrence relation used by Schmidt [53, Lemma 7]. So we can conjecture

that the validity of the range of parameters, b, for the recurrence relation established by

Delsarte [11, (1)] can be extended to any value of b ∈ R, b ̸= 0. If confirmed this would be

one basis for extending the theory presented in this paper further.

One objective for the future is to apply these MacWilliams Identities and their moments to

find explicit new codes and implement them. One further is to take this initial generalisation

(of the MacWilliams Identity and its related moments) for the four association schemes

studied in this thesis as an inspiration for applying it to a broader set of association schemes.

For the latter, we can first consider the Eberlein polynomials, also studied by Delsarte in [11,

Section 5.2]. He finds that these polynomials satisfy the same recurrence relation heavily

used in this thesis, whilst also noting that once again they give the eigenvalues of a particular

family of association schemes with specified initial values. The family he identified is the

Johnson scheme and its q-analog, the Grassmann graphs highlighted pink in Table 6.2.2.

We ask, can we adapt the theory developed here in this thesis to find an equivalent set of

fundamental polynomials that generate the eigenvalues for these association schemes?

One immediate difference to the schemes studied in this thesis, is even though the Johnson

scheme is a P -polynomial scheme, the eigenmatrices P and Q are not equal, i.e. the Johnson

scheme is not self dual. We suspect that this can be accommodated. The MacWilliams

Identity formulated by Delsarte [8, (6.9)] for any association scheme can still be applied, but

in terms of a functional transform, we may be able to relate the inner distribution with the

outer distribution rather than a code and its dual.

The other scheme to extend the theory to is the association scheme of symmetric matrices,

and its associated quadratic forms graph highlighted in blue in Table 6.2.2. In theory since

the eigenvalues of this association scheme are proven by Stanton [61] to be Krawtchouk

polynomials, it should be relatively straightforward to check and apply the theory to this

case. Saying that, there are additional complexities because the associated distance regular
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graph is not distance transitive [3, Table 6.2] [17]. We can also note here that quadratic and

symmetric forms are closely linked and studied extensively by Schmidt [54].

6.2.1 Further extensions to other classes of association schemes

Below in Table 6.2.2 is a summary table taken from [3, Table 6.1] which has a list of “dis-

tance transitive” graphs with classical parameters, and also graphs with classical parameters

which are not distance transitive. These have the potential to have the theory presented

in this paper extended to them. The graphs highlighted in purple are those related to the

Krawtchouk association schemes studied in this thesis. In terms of notation we follow what

is presented by Brouwer, the “classical parameters”. That is, d is the diameter, i.e. the

number of classes; b is the basis of the Gaussian binomials used and β + 1 is our cbn, noted

in Table 5.1.1. All the association schemes studied in this thesis are formally self dual,

(defined in Section 2.3.2) so we have not needed to introduce the final parameter α + 1 as

these schemes have b = α + 1. The reason Table 6.2.2 is included is to give an indication

of the potential scope for expanding this approach to other similar association schemes so

it is not critical to understand all the details. For more details including definitions of the

graphs and their parameters see [3, Table 6.1]. It is defined for self dual graphs with classical

parameters that m is either m = n = 2d+ 1 or m+ 1 = n = 2d and for those which are not

distance transitive we have m is either m = n = 2d− 1 or m− 1 = n = 2d.

Graphs with classical parameters [3, Table 6.1]
Name d b α+ 1 β + 1

Johnson graph J(n, d), n ≥ 2d d 1 2 n− d+ 1

Grassmann graph n ≥ 2d d q q + 1
[
n−d+1

1

]
Dual polar graph e ∈

{
0, 12 , 1,

3
2 , 2
}

d q 1 qe + 1

U(2d, r) d −r 1+r2

1−r
1−(−r)d+1

1−r

Half dual polar graph Dn,n(q) d q2
q

[
3
1

]
q

[
m+1
1

]
Exceptional Lie graph E7,7(q) 3 q4

q

[
5
1

]
q

[
10
1

]
Gosset graph E7(1) 3 1 5 10

Triality graph
3
D4,2(q) 3 −q 1

1−q q

[
3
1

]
Witt graph M24 3 −2 −3 11
Witt graph M23 3 −2 −1 6

Halved cube 1
2H(n, 2) d 1 3 m+ 1

Self dual graphs with classical parameters [3, Table 6.1]
Hamming graph H(d, n) d 1 1 n

Bilinear forms graph n ≥ d d q q qn

Alternating forms graph d q2 q2 qm

Hermitian forms graph q = r2 d −r −r −(−r)d
Affine E6(q) graph 3 q4 q4 q9

Extended ternary Golay code graph 3 −2 −2 9
Graphs with classical parameters but not distance transitive [3, Table 6.2]

Pseudo Dm(q) graphs d q 1 2

Dist. 1-or-2 in simpletic dual polar graph d q2
q

[
3
1

]
q

[
m+1
1

]
Doob graph d 1 1 4

Quadratic forms graphs d q2 q2 qm

Table 6.2.2: Classical parameters of some distance regular graphs
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6.2.2 Sidel’nikov’s Theorem

In the Hamming scheme, the power moments of the weight distribution of an [n, k, dH ]-

code, C , agree with those of the binomial distribution up to the minimum distance of its

dual code, C⊥. About 50 years ago in 1971, Sidel’nikov [58] proved this in the case of

binary codes and Delsarte later extended this to other finite fields [10, Lemma 4] with the

Hamming metric. As the dual distance increases, the deviation of this curve from a normal

distribution decreases. Figure 6.2.1 shows an example of the graph of the weight distribution

of a ternary code with the Hamming metric.

0 3 6 9 12 15 18 21 24 27 30
0

0.5

1

1.5

2

2.5

3
·105

Weight

C
ou

n
t

Figure 6.2.1: Weight distribution of ternary [24, 12, 9] quadratic residue code

The core ideas used in the proof by Delsarte are that the power moments agree up to the

dual distance, and if they do agree, then the distributions are “close”.

In this thesis we have developed a good understanding of the binomial moments thanks

to the MacWilliams Identity as a functional transform. The natural question then is can

we follow Sidel’nikov’s strategy, replacing the central moments with the binomial moments.

Moreover if this can be done, there is the possibility of extending this idea to all Krawtchouk

association schemes. The scaling of any resulting graphs may need to be adjusted such as

by use of the logarithmic scales due to the b-algebra used in this thesis.

Another idea to explore is finding the power moments of the association schemes studied

in this thesis and then finding a probability distribution whose moments agree up to the

dual distance. The power moments for the Hamming association scheme are derived in [41,

Problems (7), Chapter 5] using an operator y
(

d
dy

)
instead of differentiating with respect to

y. We question what the q-analog of this would be and whether it does indeed produce the

power moments of each association scheme.
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6.3. CONCLUSION

6.3 Conclusion

There is an accelerating need for increasingly secure digital communications and storage.

Contributions to this can be made by deploying strategies such as “crypto-segmentation”

(where different coding algorithms are used for different segments of data) and “crypto-

agility” (where algorithms and keys are changed with high frequency). But alongside these

we are compelled to find and implement algorithms that are not only much more secure but

also continue to be practical on a day to day basis.

Error correcting codes can play a significant role in that range of coding algorithms. The

weight distribution of an error correcting code is one critical set of data that helps to evaluate

its effectiveness. For non-trivial codes, the weight distribution can be hard to find and the

MacWilliams Identity as a functional transform has been an invaluable tool for achieving that

for many years. This research has extended the range of codes for which the MacWilliams

Identity can be used in the form of a functional transform. It has specifically extended it to

codes based on skew-symmetric and Hermitian matrices over finite fields. Moreover, it has

then proven a general theory that covers these and other previously known examples into a

common and consistent form. The theory has drawn heavily on the parallel between codes

and the known properties of certain classes of association schemes.
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Appendix A
Extra Examples

A.1 Example Codes in the Hamming Metric

Four small codes are explored in this section, illustrated in Tables A.1.1 and A.1.2 and are

all based on the binary alphabet. As they are small, they can be listed in full and this helps

to illustrate an overall view on the type of codes we work with. For more details including

the parity check matrix definition see [41, Chapter 1]

Name of code Example A Example B

Message words (0, 0), (0, 1), (1, 0), (1, 1) (0, 0), (0, 1), (1, 0), (1, 1)

Space F3
2 F4

2

Parity Check Rules x3 = x1 + x2 x3 = x1 and x2 = x4

Parity Check Matrix
PCM

(
1 1 1

)  1 0 1 0

0 1 0 1


Generator Matrix G

 1 0 1

0 1 1

  1 0 1 0

0 1 0 1


Code C (0, 0, 0) (0, 1, 1) (1, 0, 1) (1, 1, 0) (0, 0, 0, 0) (0, 1, 0, 1) (1, 0, 1, 0) (1, 1, 1, 1)

Weights ξn,i 1 of weight 0, 3 of weight 2 1 of weight 0, 2 of weight 2, 1 of weight 4

Weight Enumerator
Ωn

X3 + 3XY 2 X4 + 2X2Y 2 + Y 4

Minimum Distance
dH

2 2

Max # of errors that
can be corrected

⌊
dH−1

2

⌋
= 0

⌊
dH−1

2

⌋
= 0

[n, k, dH ]-code [3, 2, 2]-code [4, 2, 2]-code

Dual Code C ⊥ (0, 0, 0) (1, 1, 1) (0, 0, 0, 0) (1, 0, 1, 0) (0, 1, 0, 1) (1, 1, 1, 1)

Dimension of Dual 1 2

Table A.1.1: Two codes, in F3
2 and F4

2
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A.1. EXAMPLE CODES IN THE HAMMING METRIC

Name of code Hamming (7,4) Code Extended Hamming (8,4) Code

Message words
The 16 message words in F4

2, of the
form {x1, x2, x3, x4}

Same as Hamming (7,4) Code.

Space F7
2 F8

2

Parity Check Rules
x5 = x1+x3+x4, x6 = x1+x2+x3,
x7 = x2 + x3 + x4.

As for Hamming (7, 4) plus x8 = x1 +
x2 + · · ·+ x7

Parity Check Matrix
PCM


1 0 1 1 1 0 0

1 1 1 0 0 1 0

0 1 1 1 0 0 1




1 0 1 1 1 0 0 0

1 1 1 0 0 1 0 0

0 1 1 1 0 0 1 0

1 1 0 1 0 0 0 1


Generator Matrix G


1 0 0 0 1 1 0

0 1 0 0 0 1 1

0 0 1 0 1 1 1

0 0 0 1 1 0 1




1 0 0 0 1 1 0 1

0 1 0 0 0 1 1 1

0 0 1 0 1 1 1 0

0 0 0 1 1 0 1 1



Code C

(0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 1, 1, 0, 1)
(0, 0, 1, 0, 1, 1, 1) (0, 0, 1, 1, 0, 1, 0)
(0, 1, 0, 0, 0, 1, 1) (0, 1, 0, 1, 1, 1, 0)
(0, 1, 1, 0, 1, 0, 0) (0, 1, 1, 1, 0, 0, 1)
(1, 0, 0, 0, 1, 1, 0) (1, 0, 0, 1, 0, 1, 1)
(1, 0, 1, 0, 0, 0, 1) (1, 0, 1, 1, 1, 0, 0)
(1, 1, 0, 0, 1, 0, 1) (1, 1, 0, 1, 0, 0, 0)
(1, 1, 1, 0, 0, 1, 0) (1, 1, 1, 1, 1, 1, 1)

(0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 1, 1, 0, 1, 1)
(0, 0, 1, 0, 1, 1, 1, 0) (0, 0, 1, 1, 0, 1, 0, 1)
(0, 1, 0, 0, 0, 1, 1, 1) (0, 1, 0, 1, 1, 1, 0, 0)
(0, 1, 1, 0, 1, 0, 0, 1) (0, 1, 1, 1, 0, 0, 1, 0)
(1, 0, 0, 0, 1, 1, 0, 1) (1, 0, 0, 1, 0, 1, 1, 0)
(1, 0, 1, 0, 0, 0, 1, 1) (1, 0, 1, 1, 1, 0, 0, 0)
(1, 1, 0, 0, 1, 0, 1, 0) (1, 1, 0, 1, 0, 0, 0, 1)
(1, 1, 1, 0, 0, 1, 0, 0) (1, 1, 1, 1, 1, 1, 1, 1)

Weights ξn,i
1 of weight 0, 7 of weight 3, 7 of
weight 4 , 1 of weight 7

1 of weight 0, 14 of weight 4, 1 of weight
8

Weight Enumerator Ωn X7 + 7X4Y 3 + 7X3Y 4 + Y 7 X8 + 14X4Y 4 + Y 8

Minimum Distance dH 3 4

Max # of errors that
can be corrected

⌊
dH−1

2

⌋
= 1

⌊
dH−1

2

⌋
= 1

[n, k, dH ]-code [7, 4, 3]-code [8, 4, 4]-code

Dual Code C ⊥

(0, 0, 0, 0, 0, 0, 0) (0, 1, 1, 1, 0, 0, 1)
(1, 1, 1, 0, 0, 1, 0) (1, 0, 0, 1, 0, 1, 1)
(1, 0, 1, 1, 1, 0, 0) (1, 1, 0, 0, 1, 0, 1)
(0, 1, 0, 1, 1, 1, 0) (0, 0, 1, 0, 1, 1, 1)

(0, 0, 0, 0, 0, 0, 0, 0) (0, 0, 0, 1, 1, 0, 1, 1)
(0, 0, 1, 0, 1, 1, 1, 0) (0, 0, 1, 1, 0, 1, 0, 1)
(0, 1, 0, 0, 0, 1, 1, 1) (0, 1, 0, 1, 1, 1, 0, 0)
(0, 1, 1, 0, 1, 0, 0, 1) (0, 1, 1, 1, 0, 0, 1, 0)
(1, 0, 0, 0, 1, 1, 0, 1) (1, 0, 0, 1, 0, 1, 1, 0)
(1, 0, 1, 0, 0, 0, 1, 1) (1, 0, 1, 1, 1, 0, 0, 0)
(1, 1, 0, 0, 1, 0, 1, 0) (1, 1, 0, 1, 0, 0, 0, 1)
(1, 1, 1, 0, 0, 1, 0, 0) (1, 1, 1, 1, 1, 1, 1, 1)

Dimension of Dual 3 2

Table A.1.2: The Hamming (7,4) code and the Extended Hamming (8,4) code.
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A.2. THE COEFFICIENTS FOR THE SKEW RANK WEIGHT ENUMERATOR Ω6

A.2 The coefficients for the skew rank weight enumer-

ator Ω6

The coefficients for the skew rank weight enumerator, Ω6, are found explicitly below using

Equation (2.6.3). We have,

ξ6,0 = 1

m = 6, s = 1 ξ6,1 =
q0
(
q6−0 − 1

) (
q6−0 − 1

)
(q2 − 2)

=

(
q6 − 1

) (
q5 − 1

)
(q2 − 1)

=
(
1 + q2 + q4

) (
q5 − 1

)
,

m = 6, s = 2 ξ6,2 =
q2(1)

(
q6 − 1

) (
q5 − 1

)
����(
q4 − 1

) (
q3 − 1

)
(q2 − 1)����(

q4 − 1
)

q2
(
q5 − 1

) (
q3 − 1

) (
1 + q2 + q4

)
m = 6, s = 3 ξ6,3 =

q6����(
q6 − 1

) (
q5 − 1

)
����(
q4 − 1

) (
q3 − 1

)
����(
q2 − 1

)
(q − 1)

����(
q2 − 1

)
����(
q4 − 1

)
����(
q6 − 1

) ,

= q6
(
q5 − 1

) (
q4 − q3 − q + 1

)
.

So we can add to the Table 2.6.7 and produce Table A.2.1 below.

t× t Total Skew Rank Weight

ξt,0 ξt,1 ξt,2 ξt,3

1× 1 1 1 - - -

2× 2 q 1 q − 1 - -

3× 3 q3 1 q3 − 1 - -

4× 4 q6 1
(
q2 + 1

) (
q3 − 1

)
q2
(
q3 − 1

)
(q − 1) -

6× 6 q15 1
(
1 + q2 + q4

) (
q5 − 1

)
q2
(
q5 − 1

) (
q3 − 1

) (
1 + q2 + q4

)
q6
(
q5 − 1

) (
q4 − q3 − q + 1

)
t× t q

t(t−1)
2 1 See Carlitz Formula (2.6.3)

Table A.2.1: Coefficents of the skew rank weight enumerator for small matrices in Aq,t.

From this we derive the skew rank weight enumerator, Ω6:

Ω6 = 1×X3Y 0

+
(
1 + q2 + q4

) (
q5 − 1

)
X2Y 1

+ q2
(
q5 − 1

) (
q3 − 1

) (
1 + q2 + q4

)
X1Y 2

+ q6
(
q5 − 1

) (
q4 − q3 − q + 1

)
X0Y 3

= X3 +
(
1 + q2 + q4

) (
q5 − 1

)
X2Y 1

+ q2
(
q5 − 1

) (
q3 − 1

) (
1 + q2 + q4

)
X1Y 2 + q6

(
q5 − 1

) (
q4 − q3 − q + 1

)
Y 3
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A.3. THE CANONICAL FORM

A.3 The Canonical form

If the skew rank of a skew-symmetric matrix, A is s with 0 ≤ s ≤ n, say, then A is congruent

to the canonical t× t matrix [5, (3.1)],


E2

E2

. . .

E2

Ot−2s



where E2 =

(
0 1

−1 0

)
and Ot−2s is the zero matrix of order t− 2s. As an example we find

the number of matrices in the dual of diag {E2,O2}, the canonical 4×4 matrix of skew rank

1. Clearly any matrix B ∈ Aq,4 with b12 = 0 is in this dual, so there are q5 such matrices

in total. So we want to find the number of B2 such that ⟨diag {E2,O2} , B2⟩ = 1. That is

〈
0 1 0 0

−1 0 0 0

0 0 0 0

0 0 0 0

 ,


0 b12 b13 b14

−b12 0 b23 b24

−b13 −b23 0 b34

−b14 −b24 −b34 0


〉

= 1.

Using row reduction, Table A.3.1 below can be found showing the number of these matrices

broken down by skew rank.

Skew Rank 0 1 2 TOTAL

b13 ̸= 0 0 q3(q − 1) q3(q − 1)2 q4(q − 1)

b13 = 0 0 q2(q − 1) q2(q − 1)2 q3(q − 1)

b14 ̸= 0 (b23 ̸= 0) (b23 = 0)

b13 = 0

b14 = 0 0 q2(q − 1) 0 q2(q − 1)

b23 ̸= 0

b13 = 0, b14 = 0

b23 = 0, b24 = 0 0 (q − 1) 0 (q − 1)

b34 ̸= 0

b13 = 0, b14 = 0

b23 = 0, b24 = 0 1 0 0 1

b34 = 0

b13 = 0, b14 = 0 0 q(q − 1) 0 q(q − 1)

b23 = 0, b24 ̸= 0

TOTAL 1 q4 + q3 − q2 − 1 q5 − q4 − q3 + q2 q5

Table A.3.1: Skew ranks of 4× 4 skew-symmetric matrices in the dual of diag{E2,O2}.

This analysis was explored as it offered a potential route to count the coefficients of the

weight enumerator of the dual of a space spanned by a single matrix.
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A.3. THE CANONICAL FORM
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Nomenclature

The next list describes several symbols that have been used within the body of the docu-

ment. The symbols have been sorted into relevant chapter groups, although some notations

which span the latter chapters have been included in Association Schemes Notation and

Krawtchouk Association Schemes only. These notations can be adapted using the appropri-

ate b parameter.

Association Schemes Notation

[n, k, d] Code of dimension k, words of length n, with minimum distance d

c Inner distribution

B The Bose-Mesner algebra

C Code

C⊥ Dual code

X Set of finite points

b

[
x
k

]
b-nary Gaussian coefficient

b

(
x
k

)
Binomial coefficient

ψ(i) Multiplicity of pk(i)

σi Shorthand for i(i−1)
2

cijk Intersection numbers

d(x, y) Distance function d

Di The adjaceny matrix

E Set of edges

Ei Idempotent matrix
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NOMENCLATURE

G A graph

J The all 1’s matrix

P Eigenmatrix

pk(i) Eigenvalues

Pk(x, n) Generalised Krawtchouk polynomial

Q Dual Eigenmatrix

qk(i) Dual eigenvalues

R Set of relations

Ri ith relation

V Set of vertices

v Number of points in X

vi Valency of qk(i)

βb(x, k) b-nary Beta function

Hamming Scheme Notation

· Vector scalar product

Fn
q Finite field of dimension n over q where q is a power of a prime

Br(a) Ball of radius r about a point a

dH Hamming distance

w Hamming weight

WH
C (X,Y ) Hamming weight enumerator of X and Y

MDS Maximum Distance Separable

Krawtchouk Association Scheme Notation

(φ) Differentiation with respect to X

∗ b-product

δ(λ, φ, j) Separate function for moments

µ(X,Y ;λ) First fundamental polynomial

ν(X,Y ;λ) Second fundamental polynomial

a(X,Y ;λ) b-transform of a polynomial a(X, y;λ)
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NOMENCLATURE

{φ} Differentiation with respect to Y

a[i](X,Y ;λ) b-power of a polynomial a(X,Y ;λ)

Ck+1(x, t) b-Krawtchouk Polynomial

Number sets

C Complex numbers

Z+ Set of positive integers

Rank Scheme Notation

α(x, k) Alpha function

A Matrix of size m× n

Fm×n
q Finite field of dimension m× n over q where q is a power of a prime

Ωm,n Rank weight enumerator of Fm×n
q

ξm,n,r Number of matrices of size m× n of rank r

dR Minimum rank weight

R(A) Rank weight of matrix A

Tr(A) Trace of A

WR
C (X,Y ) Rank weight enumerator

MRD Maximum rank distance

Skew Rank Scheme Notation

γ(x, k) Gamma function

Aq,t Set of skew-symmetric matrices of size t with entries in the field Fq

Ωt Skew rank weight enumerator of Aq,t

ξt,s Number of skew-symmetric matrices of size t× t of skew rank s

dSR Minimum skew rank distance

SR(A) Skew rank of a matrix A

WSR
C (X,Y ) Skew rank weight distribution of C

MSRD Maximum skew rank distance

Hermitian Rank Scheme Notation

H† Conjugate transpose of H
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NOMENCLATURE

γ′(x, k) Negative Gamma function

Hq,t Set of Hermitian matrices of size t× t over Fq2

Ωt Hermitian rank weight enumerator of Hq,t

x Conjugate of x ∈ Fq2

dHR Minimum Hermitian rank distance

WHR
C (X,Y ) Hermitian rank weight distribution of C

MHRD Maximum Hermitian rank distance
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