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Abstract

The formation of swirling vortex rings and their early time evolution, resulting from
the controlled discharge of an incompressible fluid into a stationary equivalent fluid
bulk, is explored both numerically and experimentally for swirl number S ∈ [0, 1].
For the numerical work, two practically realisable inlet conditions are investigated
with swirl simultaneously superposed onto a linear momentum discharge; the cor-
responding circulation based Reynolds number is 7500. The results reveal that, for
S > 1/2, the addition of swirl promotes the breakdown of the leading primary vor-
tex ring structure, giving rise to the striking feature of significant negative vorticity,
or opposite sign vorticity (OSV), generation in the region surrounding the primary
vortex ring core, whose strength scales with S2. Through a non-linear interaction
with the vortex breakdown, the radius of the primary toroidal vortex core is rapidly
increased; consequently, the self-induced propagation velocity of the leading ring
decreases with S and vortex stretching along the circular primary vortex core in-
creases counteracting viscous diffusion effects. The latter governs the evolution of
the peak vorticity intensity and the swirl velocity magnitude in the primary ring
core, the circulation growth rate of this ring, as well as the vorticity intensity of the
trailing jet and hence its stability. This combination of effects leads to an increased
dimensionless kinetic energy for the primary ring with increasing S and results in
an almost linearly decreasing circulation based formation number, F. In a rigorous
complementary experimental investigation, OSV is observed by introducing swirl
using a rotating pipe, varying the time period before the piston stroke to achieve
the desired swirl strength at a Reynolds number of 1000. Rotating pipe is found to
generate a secondary flow altering the inlet condition. Nevertheless, it is observed,
using short periods of pipe rotation and higher angular speed, that it is possible to
generate a swirling vortex ring with less OSV production and all the related effects
discussed above. The relation between F and the radius of the vortex ring is investi-
gated through manipulation of ring radius growth, achieved through its interaction
with a preceding vortex ring. Reducing radius growth, facilitates an increase of the
circulation of the vortex ring, which in turn affects its F value.
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CHAPTER 1

Introduction

Circular vortex rings, coherent toroidal shaped circular vortex structures charac-

terised by closed vortex lines, often arise as a consequence of an impulsive or pul-

satile discharge of momentum from a nozzle, or orifice, to an adjacent quiescent open

or confined region. Examples include, a volcanic eruption (Pulvirenti et al., 2023;

Taddeucci et al., 2021) and the exchange of blood from the left atrium to the left

ventricle of the heart, via the mitral valve, during the ventricular diastolic phases of

a cardiac cycle (Arvidsson et al., 2016; Gharib et al., 2006; Töger et al., 2012), as

shown in Figure 1.1. Vortex rings are intriguing unsteady flows, which evolve and

propagate forward at a self-induced velocity; they are comprised of closed (circular)

vortex lines transporting a bubble volume of rotating fluid, determined by the forma-

tion process. It was not until the nineteenth century that related scientific research

began to emerge, inspired by their spontaneity; since the experimental observations

of Reynolds (1876) concerning the slowdown of a vortex ring’s propagation velocity

and the first simplified theoretical model of a circular vortex filament derived by

Helmholtz (1858a), numerous investigations of vortex ring behaviour have appeared

in the open literature. Only those of direct relevance to work reported here are

reviewed and discussed below.
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(a) (b)

Figure 1.1: Example of the formation and propagation of vortex rings generated in:
(a) volcano eruption and (b) the human heart. Figures taken from Pulvirenti et al.
(2023) –left; Arvidsson et al. (2016) –right.

1.1 Formation process

When fluid is rapidly discharged from a nozzle or orifice, the azimuthal component

of vorticity in the boundary layer present along the inner (circular) wall of a nozzle,

or in the case of an orifice opening the shear layer present between the central jet

which forms and the quiescent ambient fluid, rolls up during momentum discharge

giving rise to the resultant toroidal vortex ring structure. The amount of volume and

enstrophy from the discharged fluid delivered to the ring structure is proportional

to the duration of the discharge (Lim and Nickels, 1995; Shariff and Leonard, 1992).

In a controlled environment, the formation process that produces a vortex ring can

be quantified by a simple parameter, namely the stroke ratio that represents the

amount of flow discharged, and is defined as:

L

Do

=
1

D

∫
Up(t) dt, (1.1)

where Up(t) is the instantaneous discharge velocity in the axial flow direction and

assumed uniform across the usually circular discharge plane of diameter Do; L is
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the equivalent stroke length (Figure 1.2).

θ

U

U

L

t fo t Ω

Figure 1.2: Illustration of flow discharge through an orifice and the subsequent
formation of a vortex ring. Uz(t) denotes the actual velocity profile at the orifice
exit, while Up(t) represents the assumed velocity applied to the slug model. Ω is the
angular velocity of the flow for the cases with swirl and L is the piston displacement
from an initial time to to tf .

Another important scalar used to describe the strength of any vortex flow is its

circulation, Γ, around a closed curve C. It measures the vorticity flux through the

area enclosed by the curve C (Saffman, 1995). In the literature pertaining to vortex

rings, its dimensionless version Γ∗ is often employed, which is defined as follows:

Γ∗ =
Γ

U0Do

=
1

U0Do

∮
C

u · dl =
1

U0Do

∫
A

(∇× u) dA

=
1

U0Do

∫
A

ωθ dA, (1.2)

where u = (ur, uθ, uz) is the velocity vector in cylindrical coordinates (r, θ, z) – see

Figure 1.2, dl is the differential of the curve length C, Uo = Up(t) is the time average

discharge velocity, A is the area enclosed by C (Figure 1.2) and ωθ is the azimuthal

component of vorticity in cylindrical coordinates, namely:

ωθ =
∂ur
∂z

− ∂uz
∂r

. (1.3)
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The Slug Flow Model is a simple technique used to predict the circulation gen-

erated by a piston-cylinder system. It can estimate the flux circulation for a specific

L/Do. However, certain assumptions must be considered, such as a constant veloc-

ity Up(t) over the orifice cross-section outside to the boundary layer and zero radial

flow velocity, ur, at the nozzle/orifice exit at all times. Under these assumptions,

the circulation flux solely depends on Up, as shown below:

∂Γslug

∂t
=

∫ Do/2

0

ωθUzdr =

∫ Do/2

0


�
�
��7
0

∂ur
∂z

− ∂Uz

∂r

Uz dr

≈ 1

2
Up(t)

2, (1.4)

where Uz(t) denotes the actual velocity profile at the orifice exit.

However, as reported by Didden (1979), the slug flow model underestimates

the circulation. At early times, the flow around the orifice edge accelerates due

to the roll-up process of the vortex sheet, resulting in a more significant vorticity

flux; Figure 1.2 provides a representation of the actual velocity profile, Uz(t). As

time progresses, the velocity profile approaches a parabolic shape, typical of flow

in a pipe, where the maximum velocity remains larger than Up and forms a thicker

boundary layer, keeping the vorticity flux higher than that expected for the flow slug

model. Didden (1979) through experimental work, proposed the following modified

slug flow model equation:

Γ

UoDo

= 0.16 + 0.57
L

Do

,
L

Do

> 0.6. (1.5)

In their well-known experiment, Gharib et al. (1998) studied the formation of

vortex rings generated by a piston-nozzle arrangement and found that when L/Do

is smaller than a limiting value, all of the fluid discharged from the piston motion

is entrained into the rolled up vortex ring, with the circulation proportional to L,

in agreement with the slug model. However, for larger L/Do, only a fraction of the

fluid discharged is entrained into the ring structure before it pinches off, with the

remaining fluid giving rise to a trailing jet. This limiting L/Do is the formation
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number, F, which is typically about 3 ∼ 4 and, as stated by the above authors, is

reached when “The apparatus is no longer able to deliver energy at a rate compatible

with the requirement that a steadily translating vortex ring has maximum energy with

respect to impulse-preserving iso-vortical perturbations”.

Figure 1.3 shows flow visulaizations of three vortex rings with different L/Do at

the same dimensionless time T ∗(tUo/Do) = 8, where t defines time (seconds), and

F≈4. No trailing jet is apparent for the first ring (viewed from top to bottom) with

L/Do = 2, and the ring size is slightly smaller than the other cases. In the second

ring with L/Do = 3.8, the presence of a trailing jet is negligible close to the ring,

indicating that the ring has already detached from the trailing jet. The last ring

with L/Do = 14.5 maintains a similar size to the previous case; however, a strong

trailing jet remains attached to the ring, showing that the size of the ring remains

constant after F is exceeded.

Figure 1.3: Visualization of vortex rings at a dimensionless time T ∗ = Uot/Do = 8
for different L/Do = 2, 3.8, 14.5 and F≈ 4. Figure taken from Gharib et al. (1998).
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The methodology proposed by Gharib et al. (1998) for determining the value of

F is illustrated in Figure (1.4). It involves comparing the total circulation, Γ∗
Total,

obtained by applying equation (1.2) over an area covering the vortex ring and the

trailing jet, with the circulation of the ring Γ∗
Ring, where the area only covers the

ring core after it detaches from the trailing jet – see Figure 1.2. The dimensionless

time T ∗ at which both circulations intersect is denoted as F:

T ∗
int =

tUo

Do

=
L

Do

= F, (1.6)

where T ∗
int represents the dimensionless time at which the intersection of Γ∗

Total and

Γ∗
r occurs.

Figure 1.4: Determination of the formation number F based on the variation of the
total, Γ∗

Total and the leading ring circulation, Γ∗
Ring, with T

∗.

They also proposed a theoretical model to predict F, based on the intersection

of the dimensionless kinetic energy, α(E, I,Γ), of the nozzle discharge (a decreas-

ing function of time), and the limit for a steady vortex ring of α ≈ 0.33. The

dimensionless kinetic energy α is defined as follows:

α =
E√
ρIΓ3

, (1.7)
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where

E = 2π

∫ ∫
A

(
u2z + u2r

)
rdrdz, (1.8)

I = π

∫ ∫
A

(
ωθr

2
)
drdz; (1.9)

Γ represents the circulation defined in (1.2), I the hydrodynamic impulse and E is

the kinetic energy. quantities are expressed for axisymmetric flow.

Shusser and Gharib (2000) presented an alternative explanation of the mecha-

nisms involved in F. They showed that at detachment of the vortex ring from the

trailing jet, the propagation velocity of the ring equals the trailing jet velocity in the

fluid surrounding of the ring. This result aligns with Gharib et al. (1998) hypothesis

that detachment happens because the apparatus can no longer provide the necessary

energy for a stable vortex ring.

Subsequently, Gao and Yu (2010) highlighted that a vortex ring does not nec-

essarily detach from an accompanying trailing jet when the formation number is

reached, showing instead that α decays during the formation process and pinch-off

occurs when α ≲ 0.33. Recently, Limbourg and Nedić (2021) have reported that

kinetic energy, hydrodynamic impulse and circulation, which determine α, reach

their asymptotic values at different times. Therefore, even when a leading ring ac-

quires its maximum circulation, its energy and impulse continue to increase until

the ‘optimal formation time’, which is larger than F, is reached.

The formation number reflects the main time scale for characterising the dynam-

ics of vortex rings, and has been shown to be a fairly robust parameter with only

a weak dependence on the Reynolds number (Gan, 2010; Gan et al., 2012; Gharib

et al., 1998), defined as:

Re =
U0Do

ν
, (1.10)

where ν is the kinematic viscosity. Rosenfeld et al. (1998) reported a maximum

difference of just 10% between a linear, trapezoidal and impulse velocity programme,

but with a strong dependence on the axial velocity profile Uz(r), viz. the discharge

velocity distribution along the radial direction; for instance, it is decreased by 400%

for a parabolic Uz(r) profile compared to a uniform one.
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1.2 Vortex rings with swirl

Superposing a swirl component uθ(r) onto Uz(r) is another effective way of ma-

nipulating F. Using both experiment and Large Eddy Simulation (LES), He et al.

(2020b) showed that F decreases with increasing swirl strength almost linearly; this

is primarily because the increased radial velocity of the ring core during the forma-

tion process weakens the delivery of vorticity from the nozzle to the leading vortex

core. More importantly, if swirl strength is sufficiently strong, the flow structure

during formation is changed remarkably; the convex vortex bubble surface is ac-

companied by a windward stagnation point, that is observed in the case of non-

or weakly-swirling vortex rings, concaves inwards, similar to the breakdown mech-

anism of closed vortex lines to double spirals in a continuous jet with strong swirl

(Billant et al., 1998; Brown and Lopez, 1990). Despite these valuable insights, the

fundamental mechanism of vorticity evolution and the breakdown process remains

to be revealed.

If a vortex ring is generated by axial momentum only, there is no mechanism to

trigger the swirl velocity uθ upon initiation, but weak swirl velocity will develop in

the core of a well formed isolated vortex ring when it loses stability at large time

and undergoes transition from a laminar state to a turbulent one (depending on the

formation Reynolds number). This is coupled with azimuthal waves forming along

the toroidal core due to instability (Gan et al., 2011; Maxworthy, 1977; Saffman,

1978), promoting energy decay.

Generating homogeneous and solid-body rotating swirl velocity flux in tandem

with the axial velocity flux, and strictly confined within and through the desired

discharge section, is not easily achievable in practice. Naitoh et al. (2014) studied

swirling vortex rings experimentally by physically rotating the associated piston-

nozzle system, similar to the mechanism used to generate a solid-body-rotating

swirling jet by Liang and Maxworthy (2005). This arrangement invariably contam-

inates the ambient fluid in contact with the generator during rotation preparation.

In He et al. (2020a,b), swirl was generated by installing static twisting vanes close

to the exit of a piston-nozzle arrangement, similar to jet engine combustion cham-

ber inlets. The strength of swirl was adjusted by vanes of different twist angles,
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allowing the simultaneous onset of swirl linear momentum, but at the cost of tur-

bulence ‘contamination’ from the complex boundary layer washed off the surface of

the vanes.

From the point of view of related direct numerical simulation studies (Cheng

et al., 2010; Gargan-Shingles et al., 2015; Virk et al., 1994), swirl has either been

directly superposed onto a well-formed isolated Gaussian ring or generated by wrap-

ping additional vortex lines around the toroidal vortex core in the azimuthal direc-

tion, without any practical consideration as to its generation.

The effect of additional swirl on flow field behaviour is striking. Naitoh et al.

(2014) studied the long term evolution of a compact vortex ring for L/D ∈ (1.25, 1.8)

and swirl number S, defined here as:

S =
ΩRo

Uo

=
ΩDo

2Uo

, (1.11)

where Ro = Do/2 is the orifice radius and Ω is the angular speed of the flow at

the orifice, in the range S ∈ (0, 0.75). The above definition of S is in line with that

adopted in Liang and Maxworthy (2005) for their continuous swirling jet experiment.

Alternative definitions of S based on the ratio of swirl and axial momentum have

been used in studies where rotation is not strictly of a solid-body rotation type

(Candel et al., 2014).

Naitoh et al. (2014) found that increasing S resulted in faster decay of the ring

propagation velocity, and speculated that it is related to the higher exchange rate

with increasing S of the fluid material between the ring volume and the ambient

surroundings. They also observed a pair of weak vortices’ in the longitudinal central

measurement plane, with oppositely signed (negative) vorticity in front of the leading

ring, which grows during the formation process and decays quickly afterwards owing

to the decay of swirl as illustrated in Figure 1.5(b). They also reported a decrease

in the ring’s circulation with increasing S, because of the so-called ‘peeling off’ of

vortex lines around the ring core, which discharges vorticity from the leading ring

to the wake. In addition to the effect of F, He et al. (2020a,b) found that although

increasing swirl shrinks the vortex bubble length, which is the flow transported by
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the vortex ring, along the symmetry axis, it increases the ring radius growth rate.

For compact swirling rings L/D = 1.5, the onset of the azimuthal wave along the

vortex core is also promoted with S at large time.

Cheng et al. (2010)’s simulation of rings for S ∈ [0, 4] showed that a secondary

ring like flow of negative azimuthal vorticity is formed ahead of the leading ring for

S > 0; see Figure1.5 (a). The formation of this flow is a consequence of a secondary

flow generated by the strong swirling flow in the primary vortex core, similar to the

Dean vortex observed in a pipe section with non-zero curvature. The secondary flow

consists of a pair of vortices of opposite sign whose strength increases with S. The

positive vorticity merges with the primary ring increasing its strength, while the neg-

ative vorticity interacts with the primary ring in the sense of vorticity cancellation.

This secondary flow makes a significant contribution to the dynamic behaviour of

the overall vortex structure. For sufficiently large S, the propagation direction of the

compact ring structure can be altered from one of moving downstream to upstream.

Gargan-Shingles et al. (2015) also noticed a shear layer of opposite sign around the

main vortex core in their simulations of rings for L/D = 2.5. By analysing the az-

imuthal component of the momentum equation, neglecting the viscous terms, they

concluded that the convective acceleration of the azimuthal velocity plays a key role

in the generation of this shear layer.

The vortex lines introduced in Virk et al. (1994) induce additional azimuthal ve-

locity inside the vortex core analogous to a magnetic field induced by an alternating

current in a toroidal coil invoking the Biot-Savart law, see Batchelor (1967) Chapter

2:

ui = − Γ

4π

∮
s× dl

|s|3
, (1.12)

where ui is the induced velocity, the vector s is taken from the vortex line to a point

on a curve in space, and the differential arc length is represented by dl.

They showed the ring radius grew faster with larger azimuthal velocity stemming

from the centrifugal effect, which is supported by He et al. (2020b). In Verzicco et al.

(1996), swirl flow in compact laminar vortex rings with L/D < 1 results from the

rotation of the whole flow field. They observed similar flow characteristics to those

of other authors, such as decreased axial propagation velocity and secondary ring
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formation with oppositely signed vorticity in front of the leading ring.

1.3 Interaction between vortex rings

A vortex ring induces an irrotational concentric velocity field (Batchelor, 1967).

Following the Biot-Savart law in a 2D plane; see Figure 1.6, a vortex core generates

a sequence of concentric streamlines, whose velocity magnitude depends on the

strength, ΓRing, and radial distance from the core centre, rc, with velocity ui, namely:

ui =
ΓRing

2πrc
. (1.13)

(a) (b)

T

S=0 S=2

S=0.25

Figure 1.5: (a) Isosurfaces of ωθ showing the evolution of a vortex ring for S=0 and
2. The red isosurface indicates ωθ > 0 and blue isosurfaces indicated ωθ < 0. (b)
Contour plot of the vorticity field in Cartesian coordinates showing the formation
of opposite sign vorticity ahead of the vortex ring for S=0.25. Figures taken from
Cheng et al. (2010)–left; Naitoh et al. (2014)–right.
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Figure 1.6: Vorticity contour plot of one vortex ring core and the streamlines formed
around it representing ui

The induced ui from one core propels the other core downstream and vice versa,

allowing the vortex ring to propagate. If another vortex ring is generated sub-

sequently, the self-induced velocity of the initial ring will diminish the rear one,

reducing its radius and increasing its propagation velocity. At the same time, the

trailing ring’s induced velocity will increase the radius of the one preceding it and

reduce its propagation velocity. The phenomenon of a subsequently formed ring

passing through is known as ”leapfrogging” (Maxworthy, 1972); see in Figure 1.7.

The interaction of two coaxial vortex rings has been studied widely for decades.

It began with the observations of Helmholtz (1858b) concerning the interaction

of two vortex rings in his work on vortex dynamics, followed by the theoretical

model proposed by Sommerfeld (1950). Subsequent to this several articles appeared

dedicated to theoretically analysing a system of two or more coaxial vortex rings

(Borisov et al., 2014; Davila et al., 2022; Mavroyiakoumou and Berkshire, 2020;

Shariff et al., 1989; Tophøj and Aref, 2013). Most employ the point vortices method,

which assumes an inviscid flow in which the whole vorticity is concentrated at points

the space, achieving an infinite number of leapfrogging events for a specific set of

parameters. However, experiments tell a different story.

Batchelor (1967), in his book ”Introduction to fluid dynamics”, made an ”invita-

12



(a)

(b)

(c)

(d)

(e)

(f)

(c)

(d)

(f)

Figure 1.7: Visualisation of a leapfrogging. Figure taken from Lim (1997)

tion” to experimental scientists, suggesting the possibility of achieving two leapfrogs

in a laboratory, namely two passages of one ring through the other before they

merge. In one of the classic works associated with vortex rings, Maxworthy (1972)

dedicated the last section of his paper to the interaction between two vortex rings.

He was unable to achieve a single leapfrog with two rings having similar circulation

and Re=600 (based on the initial ring propagation velocity). Information about the

time delay between the formation of rings was not provided. He observed that the

induced velocity from the leading ring distorts the following vortex ring, which was

entrained by the leading one, forming a single large vortex ring.

Oshima et al. (1975) reported similar results, which used three different time

delays between two rings with similar circulation and Re=150. For a time delay of

2.4 seconds, the following ring could not catch the leading one, and its propagation

appeared unaffected by the induced velocity of the leading ring. With a 1.8 seconds
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delay, the following ring reached the leading one, which engulfed it; finally, for a 1.5-

second delay, the following ring engulfed the leading one immediately after passing

through it. In summary, they suggested that the vortex cores of such rings should

be smaller in comparison to the ring radius in order to reduce the deformation

experienced and avoid their merger.

The first successful leapfrogging experiment in a laboratory was performed by

Yamada and Matsui (1978), whose main change was to increase the Re to 1600

(based on the initial ring propagation velocity). They compared the trajectories

of both rings from their experiments with those obtained by point vortex theory

showing remarkable agreement. Finally, they mention that a second leapfrogging

event was achieved, however, no figure is provided. Extending his previous work and

including the findings of Yamada and Matsui (1978), Oshima (1978) constructed a

diagram showing the region where leapfrogging is successful in two fluid, water and

air, based on the Re number and the delay time, T , between the rings as presented

in Figure 1.8(a). However, as is clearly it is not a universal region; every orifice

diameter,D, used in this work reflects a different region. Besides, most of the suc-

cessful areas were achieved when smoke rings were employed instead of water vortex

rings, suggesting the existence of another dimensionless number that characterises

leapfrogging. Another diagram, proposed subsequently by Lim (1997), Figure 1.8(b)

in terms of the same parameters reveals a single region when leapfrogging is possible.

In their diagram, as the Re decreases, the time delay, t∗, to achieve leapfrogging in-

creases, unlike Oshima’s diagram, where the time delay decreases with the Reynolds

number.

From their numerical work, Shariff et al. (1989) suggest a connection between Re

and successful leapfrogging depends on the vortex core size. A vortex ring generated

with a low Re forms a thick vortex core susceptible to core distortion, making it

hard to achieve leapfrogging. Following this idea, Satti and Peng (2013) performed

experiments for vortex rings with different core sizes and different time intervals

between the rings; The core size was determined by L/Do and calculated from

the cross-sectional area of the vortex core after applying a threshold of 5% the

peak vorticity value. Double leapfrogging was observed for their middle-size core

14



(a) (b)

(c) (d)

Figure 1.8: Evolution of diagrams showing regions of successful leapfrogging based
on different parameters over the years; (a)Oshima (1978) where W denotes the case
in water and D the nozzle diameter, (b) Lim (1997), (c,d) Cheng et al. (2015) for
a core radius 0.2 and 0.1 times the initial ring radius respectively where ho denotes
the initial distance of the leadering vortex ring from the nozzle.

generated by L/Do = 1.5, with a time interval between strokes equal to half of

the stroke ratio (t∗ = 0.75). They observed that the following ring experienced a

higher shear, induced by the leading ring, increasing the shedding of vorticity to

the wake. They also presented the evolution of each ring’s circulation, where an

evident decay is observed before the first leapfrog is achieved. The faster decay

is attributed to vorticity cancellation when both rings are aligned radially, where

the following ring cores are closer to each other. For a shorter time interval, the

following ring merged with the leading one straight away, while for a longer time

interval, just one leapfrog is achieved before the rings merge. Finally, for a vortex

ring with a smaller core, the deformation of the following ring together with its
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circulation decrease was found to be much smaller; however, only one leapfrog was

possible due to the lower magnitude of the induced velocity field. Meanwhile, for

their larger vortex ring core size experiments leapfrogging was not observed. Cheng

et al. (2015), via a numerical investigation of viscous vortex rings, pointed out that

a larger core requires a higher Reynolds number to achieve leapfrogging, presenting

diagrams similar to those discussed above, but with Re plotted against the initial

distance of the leading ring from the nozzle, ho, and for two vortex core sizes, see

Figure 1.8(c-d).

While most of the literature concerning the interaction between two or more

vortex rings focuses on achieving leapfrogging, an interesting finding was made by

Fu et al. (2014) and subsequently Fu and Liu (2015), that have studied the use

of vortex rings as a locomotive force in nature. In their experiment, they created

two consecutive vortex rings with the same stroke ratio and observed an increase in

impulse of up to 50% for the second piston stroke for rings with L/Do = 1. They

found that as the stroke ratio was increased, this impulse augmentation decreased,

reaching a 10% gain for L/D = 4. The same trend was observed when the time

interval between piston strokes was increased. In both cases, the decrease in impulse

augmentation was related to the distance between the rings. For small stroke ratios,

the leading ring’s propagation velocity is slow, resulting in a strong interaction with

the following ring upstream. As the stroke ratio increases, the propagation velocity

also increases, reducing interaction with the following ring. Although Fu et al. (2014)

suggests that the additional impulse input may promote fluid entrainment, further

discussion on the formation process of the following ring is needed.

Another important feature related to a series of successively generated vortex

rings was observed by Qin et al. (2018), where the circulation of the last vortex

ring generated in the vortex chain increases by up to 10%. Experimentally, they

generated a chain of rings with the same stroke ratio and time interval. Two modes

were reported: the formation enhancement mode (FEM) and the formation restraint

mode (FRM). The latter one was observed when the vortex rings were generated

consecutively with a minor or zero time interval when L/Do = 1 or 2. As the number

of generated rings was increased, the drop in ring circulation of the last ring also
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increased compared to the circulation of an isolated ring. This loss of the ring’s

circulation seems to be more pronounced for rings with L/Do = 1 than L/Do = 2,

where up to 20% of the ring’s circulation is lost for the fifth vortex ring compared to

an equivalent isolated ring. The formation enhancement mode, on the other hand,

is observed when generating only two vortex rings, with a time interval higher than

a half second for L/Do = 1 and one second for L/Do = 2. However, if this interval

exceeds a specific time, the circulation gain decreases, approaching the equivalent

isolated ring case as expected.

(a) (b)

Figure 1.9: Circulation augmentation (Γinteract = Γring − Γring−isolated) as a function
to the parameter ∆r/∆d2 for (a) L/Do = 1 and (b) L/Do = 2. In experiment
1, several vortex rings were produced instantaneously, one after the other. For
experiment 2, only two rings are generated with an interval time. ∆r is the difference
in the vortex radii, and ∆d2 is the square of the axial distance between the vortex
rings. Figure taken from Qin et al. (2018)

According to Qin et al. (2018), the above two modes can be characterised and

identified in terms of the ratio between the difference in the vortex radii, ∆r, and the

square of the axial distance between the vortex rings, ∆d2, as shown in the Figure 1.9

where the FEM occurs for small ∆r/∆d2. Even though it is clear that the induced

velocity of the vortex ring is responsible for these modes, further investigation is

needed as to its role during the formation process of vortex rings. Due to the vortex

rings observed in the FEM having a L/Do smaller than the formation number, there

are two most likely hypotheses to explain the circulation enhancement. The first

hypothesis is that the following ring engulfs some vorticity from the leading ring.
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The second hypothesis is an increase in the vortex flux coming from the nozzle,

which is consistent with the findings of Fu et al. (2014) and Fu and Liu (2015)

regarding impulse augmentation.

The overarching aim of the present work is to study the influence of the addition

of swirl on the global flow dynamics of impulsively generated vortex rings, in par-

ticular in relation to their formation process and early time evolution, features that

have not been addressed sufficiently in the past. Additionally, based on observations

made in the study of swirling vortex rings, it explores how the effect of a preceding

vortex ring can enhance the formation of a vortex ring.

The thesis is structured in the following manner:

• Chapter 1, the fundamental properties of a vortex ring are explained, followed

by an overview of previous numerical and experimental work that illustrate

the characteristics observed when swirl is added to a vortex ring as well as the

interaction between two or more vortex rings.

• Chapter 2 provides a comprehensive account of the numerical and experimental

methods utilised in the research. The computational domain, flow conditions,

discretisation technique, solution algorithm, and turbulent model employed in

the numerical part as well as its validation, are explained in detail. Addition-

ally, a precise description of the experimental rig, techniques performed, and

devices involved is provided.

• Chapter 3 presents a comprehensive set of results obtained from the numerical

analysis performed. It covers the nature of the three-dimensional flow field

and the characterisation of the vorticity dynamics, with a particular focus on

the mechanism behind the generation of negative vorticity. The chapter also

explores the impact of swirl on the kinematic features of the flow field and

concludes by addressing the dependence of F on the strength of the swirl.

• Chapter 4 focuses on the experimental analysis of swirling vortex rings. The

feasibility of generating an inlet velocity with solid body rotation, as utilised

in the numerical work, is tested using a rotating pipe. The experimental work

is compared with features observed in Chapter 3 and confirms some of the
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hypotheses. Also, it introduces a new method to generate swirling vortex

rings faster and with different characteristics.

• Chapter 3, it was found that there is a correlation between the ring radius

and F. Chapter 5 delves deeper into this relationship by examining how two

collinear vortex rings with different strengths and separations interact. The

main objective is to control the ring radius of the following ring during its

formation by manipulating its interaction with the preceding vortex ring. This

study also analyses the effect of the ring radius on important quantities such

as circulation or strength, as well as the dimensionless energy of the ring and

its impact on the core structure.

• Conclusions are drawn in Chapter 6 and suggestions for future work provided.
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CHAPTER 2

Methodology

The work presented in this thesis consists of three investigations focused on under-

standing some exciting features regarding vortex rings. Each study was approached

differently, starting with a rigorous numerical exploration and finishing using two de-

tailed and thorough experimental investigations. The purpose of this Chapter is to

introduce and describe the numerical and experimental methodology and techniques

that were used to generate the findings discussed in Chapters 3, 4 and 5.

2.1 Governing equations

The Navier-Stokes equations, which are constrained by the continuity equation, are

used to describe the formation and evolution of vortex rings. Despite being known

for over a century, only a few flows can be solved analytically using these equations.

Circular vortex lines and Hill spherical vortex models are the simplest for vortex

rings, see Batchelor (1967) Chapter 7. Although both models are based on several

assumptions, they provide useful information regarding the self-induced velocity of

the ring. To analyse and comprehend the formation and evolution of a vortex ring, a

numerical solution of the Navier-Stokes equations is necessary. The continuity equa-
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tion and Navier-Stokes equations for an incompressible flow are written in Cartesian

coordinates are:
∂ux
∂x

+
∂uy
∂y

+
∂uz
∂z

= 0, (2.1)

∂ux
∂t

+ ux
∂ux
∂x

+ uy
∂ux
∂y

+ uz
∂ux
∂z

= −∂p
∂x

+ ν

[
∂2ux
∂x2

+
∂2ux
∂y2

+
∂2ux
∂z2

]
, (2.2)

∂uy
∂t

+ ux
∂uy
∂x

+ uy
∂uy
∂y

+ uz
∂uy
∂z

= −∂p
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+ ν

[
∂2uy
∂x2

+
∂2uy
∂y2

+
∂2uy
∂z2

]
, (2.3)

∂uz
∂t

+ ux
∂uz
∂x

+ uy
∂uz
∂y

+ uz
∂uz
∂z

= −∂p
∂z

+ ν

[
∂2uz
∂x2

+
∂2uz
∂y2

+
∂2uz
∂z2

]
, (2.4)

where p is the kinematic pressure and p/ρ, ν is the kinematic viscosity. The flow

can be assumed incompressible since the velocities are low, lower than 1 m/s. The

second term on the left-hand side in equation (2.4) refers to the advective transport

related to the inertia, and the second term on the right-hand side to the diffusive

transport related to the viscous forces acting on the flow.

It is important to exercise caution when implementing numerical methods. The

solutions obtained are only approximations of the Navier-Stokes equations, which

means it’s crucial to analyse the errors that occur during discretisation and iterative

processes. Therefore, the quality of the grid and an appropriate interpolation scheme

are the main fundamental steps to ensure the accuracy of numerical results.

Due to the complexity involved in solving the Navier-Stokes equations numeri-

cally, OpenFOAM®, which stands for Open-source Field Operation and Manipula-

tion was employed in the work reported here. This software is a set of C++ libraries

that enables problems from fluid mechanics to electromagnetism to be solved using

a range of meshing tools, customisable numerical solvers and pre/post-processing

utilities –see Figure 2.1(OpenCFD, 2024b). Additionally, a large global commu-

nity continuously contribute to the number of resources available, which has made

OpenFOAM very popular and widely accepted in the scientific community.
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Figure 2.1: Overview of OpenFOAM’s structure, Figure taken from OpenCFD
(2024b)

2.2 Numerical Methodology

2.2.1 Method of solution

In order to apply numerical methods, it is necessary to discretise ordinary or partial

differential equations. This involves dividing the continuous time into smaller time

steps, denoted by ∆t. Additionally, the space is divided into cells that contain rele-

vant field values such as velocity and temperature. As a result of the discretisation

method, solving partial differential equations is replaced by solving a set of linear

equations using a variety of algorithms.

Finite Volume Method (FVM)

In OpenFOAM, the discretisation method used is the finite volume method (FVM).

This method divides the computational domain into multiple connected polyhedral

finite control volumes, where the conservation equations for mass, momentum and

energy are formed by balancing the fluxes between the inflows and outflows at each

volume’s surfaces. For instance, when discretising the advection term∇·(uΨ), where

ψ is a general parameter, the integral surface obtained by applying Gauss’s theorem

to the finite control volume is broken down and approximated as a summation

over its faces. Due to the small size of the faces, the flux calculation over them is
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approximated as the value at the face centre, as (Greenshields and Weller, 2022)

follows:

∇ · (uΨ) = lim
∆V→0

1

∆V

∫
S

u⃗ · n̂ΨdS ∼ 1

∆V

∑
S

u⃗S · n̂SΨS =
1

∆V

∑
S

ϕSΨS (2.5)

where n̂ is the normal vector, ϕs the volumetric flux at the surface. In contrast to

a staggered grid arrangement, where the velocity component values are stored at

the face centres, OpenFOAM uses a co-located grid. This means that all the flow

variables, such as u⃗, p, and T , are only stored at the finite volume centroids (Liu and

Hinrichsen, 2014). In order to obtain the values at the face centroids, ΨS, an interpo-

lation scheme is required. This scheme combines the values from the centroid of the

control volume ΨO and its neighbour ΨN , as illustrated in Figure 2.2. OpenFOAM

uses an interpolation scheme based on the Rhie & Chow interpolation, consisting

of a linear interpolation and a correction term related to the pressure gradient.

This correction term helps to avoid chequerboard oscillations that can arise with

co-located grids, ensuring that the velocity remains oscillation-free (Bartholomew

et al., 2018; Kärrholm, 2006; Rhie and Chow, 1983).

Flux

Figure 2.2: Sketch of two adjacent control volumes with their respective centroidS,
PO (owner cell), PN (neighbour cell) highlighting the shared surface and its centroid.
Ψ represents the quantity transported by the flux and S is the volume surface

The present study employs the central differencing/linear scheme to compute the

gradient and Laplacian terms. This scheme is known for its second-order accuracy,

which makes it highly precise. However, a linear interpolation scheme may lead to
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unstable numerical results for the advection/divergence term, producing unbounded

solutions. For this term, a LUST (Linear-Upwind Stabilised Transport) is used,

which is a fixed blended scheme with 0.25 linearUpwind and 0.75 linear weights

(OpenCFD, 2024a). The linear interpolation model takes the following form, where

β is an interpolation factor(Ferziger et al., 2019):

ΨS = βΨN + (1− β)ΨO β =
|pS − pO|
|pN − pO|

0 ≤ β≤1. (2.6)

For temporal discretisation, an implicit second-order scheme named ”backward”

is implemented in OpenFOAM. It is important to note that this scheme is not the

same as Euler backwards, named Euler in OpenFOAM. The backward scheme is

defined as:

∂ΨO

∂t
=

3Ψn+1
O − 2Ψn

O − 2Ψn
O +Ψn−1

O

2∆t
+O(∆t2), (2.7)

where n is the current time step and n − 1 and n + 1 the previous and forward

time step, respectively (Marić et al., 2014). The value of ∆t is set to 1 × 10−4

seconds. It is worth noting that since an implicit discretisation scheme is used, it is

not necessary to satisfy the Courant–Friedrichs–Lewy (CFL) number condition to

ensure numerical stability.

After discretising all the terms in the Navier-Stokes equations and arranging,

a linear system is obtained that can be represented in the following matrix form,

where M is a matrix of known coefficients:

M u = −∆p. (2.8)

Even though, for an incompressible flow, there are four equations (three from

each velocity component of the momentum equation and the continuity equation)

with four variables (ux, uy, uz and p), there is no specific equation for pressure. This

creates a problem known as pressure-velocity coupling.
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PISO algorithm

In order to solve the pressure-velocity coupling problem for an incompressible tran-

sient flow, the PISO algorithm (Pressure Implicit with Splitting of Operators) pro-

posed by Issa (1986) is implemented. The first step (not exclusive to the PISO

algorithm) is to find an explicit expression to compute the pressure field. This can

be achieved by extracting the diagonal from the matrix M , named A = diag(M ),

to obtain:

M u = Au−H → H = Au−M u, (2.9)

whereH is a residual matrix. The reason for extracting the diagonal from matrixM

is to simplify the calculation of its inverse A−1 = 1/A. Subsequently, by multiplying

equation (2.9) by A−1, gives:

u = A−1H −A−1∆p, (2.10)

named Momentum corrector. Finally, the continuity equation for incompressible

flows (∇ · u = 0) is applied to obtain an explicit equation for the pressure field

namely:

∇·(A−1∆p) = ∇·(A−1H ). (2.11)

The PISO algorithm involves the following overall steps:

1. Solve equation (2.8), also known as Momentum predictor, obtaining an initial

guess of the velocity field from the previous iteration of the pressure field.

However, u does not satisfy the continuity equation yet.

2. With the initial guess u, the residual H is computed using the equation (2.9).

3. The pressure field equation is solved via equation (2.11).

4. The corrected velocity field that satisfies the continuity equation is calculated

explicitly using equation (2.10).

5. As the velocity field has changed, so too has H . Therefore, step 2 and the

following are repeated. This process is known as the inner loop and is one of
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the primary differences between the SIMPLE and PISO algorithms. In SIM-

PLE, the iteration starts with the momentum predictor and is repeated until

the pressure converges. However, in PISO, repeating the iteration process for

every time step would be computationally expensive. Therefore, the momen-

tum predictor is solved only once per time step. After the PISO loop, the

improved velocity becomes the earlier time value in the next time step. This

increases the accuracy of the time derivative of the momentum equation. An-

other difference is that SIMPLE requires under-relaxation due to the absence

of a time derivative, which reduces the diagonal dominance. (Ferziger et al.,

2019; Wimshurts, 2019).

2.2.2 Turbulence model

The turbulent model used in this work is Large Eddy Simulation (LES). This model

is based on the ”energy cascade” theory proposed by Richardson (1922) and subse-

quently developed by Kolmogorov (1941) and illustrated in Figure 2.3. According to

this concept, the kinetic energy is initially introduced to the turbulent flow through

production mechanics at the largest scales of motion. Subsequently, the energy is

transferred to smaller scales, continuing the transfer process until viscous action

finally dissipates the energy. In simpler terms, most of the initial kinetic energy is

concentrated in large unstable eddies. These eddies break down and transfer their

energy to smaller eddies until viscous processes dissipate the kinetic energy (Pope,

2000).

The energy cascade occurs primarily through an inviscid process where the mesh

resolves the eddies of large and medium scales. When dealing with smaller scales,

a problem arises as the minimum number of cells required to solve an eddy is four.

However, if the viscous dissipation is not strong enough to break down these small

eddies and convert them into heat, the eddies will remain in the flow field, increasing

the flow’s kinetic energy. To solve this issue, a sub-grid model is required for smaller

eddies, whose purpose is to artificially increase the turbulence dissipation rate by

adding a new term to the kinematic viscosity (equation 2.12), allowing it to dissipate
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Figure 2.3: Plot of the kinetic energy from larger to smaller eddies, known as the
energy cascade. l is the characteristic length of the flow and η the Kolmogorov
length microscale. Figure taken from Greenshields and Weller (2022).

just the smallest eddies:

ν = ν + νsgs. (2.12)

In a Direct Numerical Simulation (DNS), the Navier-Stokes equations must be

solved for all eddy scales, making it computationally expensive. However, a low-

pass filtering procedure is executed for a Large Eddy Simulation (LES), where the

filtered velocity field ũi can be computed on a coarser grid. The unsteady and

spatially filtered incompressible Naiver-Stokes equations that have been resolved

numerically are:
∂ũi
∂xi

= 0, (2.13)

∂ũi
∂t

+ ũj
∂ũi
∂xj

= − ∂p̃

∂xi
+

∂

∂xj

[
(ν + νsgs)

∂ũi
∂xj

]
, (2.14)

which are expressed in a Cartesian coordinate that is the default coordinate system

used by OpenFoam and where ũi and p̃ are the filtered velocity components and the

pressure (which includes the density term 1/ρ), respectively, at the grid level. The

sub-grid viscosity νsgs is approximated using the Smagorinsky model (Smagorinsky,

1963) as:

νsgs = (Cs∆)2
√

2S̃ijS̃ij, (2.15)
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where ∆ is the filter characteristic length scale. S̃ij is the strain rate tensor and Cs is

the Smagorinsky constant, which was set to 0.094. While the dynamic Smagorinsky

model (Germano et al., 1991; Lilly, 1992), with the Smagorinsky constant com-

puted in terms of the local flow conditions, is often used for jet flows, the classical

Smagorinsky model has been shown to produce comparable accuracy in a number

of recent investigations of vortex ring related flows at a similar Re employed here

(e.g. New et al., 2021).

2.2.3 Mesh decomposition and validation

The distribution of grid points used to form the structured mesh employed to gen-

erate solutions is provided in Table 2.1. The computational domain is segmented

into four coaxial, contiguous cylindrical volumes: three of radial length R1, R2 and

R3 (see Figure 2.4 (a)), and one associated exclusively with the nozzle volume for

inlet Case A. The mesh in the axial and radial directions was carefully distributed to

ensure sufficient spatial resolution in the vortex core region where velocity gradients

are largest.

To avoid singularity issues at r = 0 associated with the mesh cells converging

to a single point at the cylinder centre (Gullberg, 2017; Tucker, 2016), a smoothed

square prism-like mesh structure, also know as a butterfly grid, is implemented in

the vicinity of r = 0 as shown in Figure 2.4 (c), extending a distance D0/5 from

r = 0. Such a meshing approach was adopted by He et al. (2020b), ensuring the

required level of accuracy for the current flow problem. Required also is a careful

meshing strategy at the interface between the prismatic and contiguous adjacent

cylindrical region, without which numerical artefacts can be triggered there, for

example promotion of azimuthal instability. For the evolutionary time duration

investigated in the present work, no pronounced effect, e.g. the appearance of a

dominant azimuthal wave number of m = 3 along the primary vortex core, was

detected for the associated physical quantities of interest.
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Figure 2.4: (a) Flow geometry (not to scale) and boundary conditions; shown also
the mesh segmentation adopted for the accompanying computations, consisting of
four adjoining contiguous coaxial cylindrical volumes (0, 1, 2 and 3) - one for inlet
Case A only and three of radial length R1, R2 and R3 - as detailed in Table 2.1.
(b) Inlet geometries for Case A and Case B (not to scale) and associated coordinate
system. (c) Cross-section(not to scale) showing the radially distributed structured
mesh arrangement employed when 0 < r < Do/2 for all z.

The impact of the adopted meshing strategy and grid distribution on the accu-

racy of the LES solver were evaluated by resolving the turbulence kinetic energy

(TKE), M(x, t), see Pope (2004), as

M(x, t) =
ksg(x, t)

kr(x, t) + ksg(x, t)
, (2.16)

where kr is the resolved TKE, and ksg is the sub-grid energy. M and both kr and ksg

are functions of space, x, and time, t. The histogram of M , presented in Figure 2.5
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Case Volume Domain size Number of grid points

A

0 −0.1≤z/Do ≤ 0 r/Do≤0.5 25(z) 77(r) 128(θ)
1 0≤z/Do ≤ 20 r/Do ≤ 0.5 450(z) 77(r) 128(θ)
2 0≤z/Do ≤ 20 0.5<r/Do ≤ 1.5 450(z) 80(r) 128(θ)
3 0≤z/Do ≤ 20 1.5<r/Do≤5 450(z) 30(r) 128(θ)

B
1 0≤z/Do≤20 r/Do ≤ 0.5 450(z) 77(r) 128(θ)
2 0≤z/Do≤20 0.5<r/Do≤1.5 450(z) 80(r) 128(θ)
3 0≤z/Do≤20 1.5<r/Do≤5 450(z) 30(r) 128(θ)

Table 2.1: Structured mesh distribution arrangement, detailing how the computa-
tional domain was segmented into 3 coaxial contiguous cylindrical volumes, 1, 2,
and 3, of radial length R1, R2, R3, respectively (see Figure 2.4 (a)). The contiguous
axial cylindrical volume 0 is associated with inlet Case A only; see Figure 2.4 (b).

(a), confirms that at least 80% of the flow field TKE is resolved. The mesh grids

having the lowest resolutions contributing to the other 20% of the TKE, are those

along the outer cylindrical domain surface, which has negligible effect on the flow

of interest. Given the unsteady nature of the flow under investigation, M here is

the time averaged result over the entire piston stroke duration, which is equivalent

to a dimensionless discharge duration T ∗ ⩽ 6 (T ∗ = tUo/Do) for the case of S = 1,

where the strongest velocity gradient and turbulence occurs from among all the cases

investigated and over the entire scrutinised duration. Accordingly, for all the other

cases considered and later time, resolution is always better than 80%. This is similar

to the resolution assessment applied in the pulse jet simulation of Coussement et al.

(2012).
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Figure 2.5: (a) Histogram of the mesh grid resolution of TKE when S = 1 and the
inlet condition is Case A, averaged over 0 ⩽ T ∗ ⩽ 6. (b) Comparison of the total
circulation when S = 0 and the inlet condition is Case B, with that of Rosenfeld
et al. (1998) for a similar flow condition; for both flows, Re = 2500, the equivalent
discharge slug time is L/Do = 6, and Γ∗.

In addition to the above, the resultant circulation for the case S = 0 is compared

with that from the corresponding direct numerical simulation, in an axisymmetric

domain, conducted by Rosenfeld et al. (1998) for non-swirl vortex rings issuing from

an orifice geometry of the Case B type. Figure 2.5 (b) shows that Γ∗ as calculated by

Rosenfeld et al. (1998) is in very good agreement with the result generated using the

computational approach outlined above, in terms of both the Γ∗ growth rate and the

asymptotic value after discharge terminates at T ∗ = 6, further validating the viscous

dissipation model adopted in the current numerical methodology. Figure 2.6 shows

important characteristic quantities such as ring trajectory, self-induced propagation

velocity, u′z, and vorticity distribution in the vortex core. These quantities were

obtained by replicating the inlet velocity programme from the experimental work

described in Chapter 5. The figure demonstrates a good agreement between the

experimental and numerical results.
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'

Figure 2.6: Comparison between numerical and experimental work, with inlet condi-
tions and velocity program set to match experimental work for a single ring (L/D=4)
as discussed in Chapter 5. (a) the trajectory of one of the vortex cores, (b) propa-
gation velocity, and (c) vorticity distribution at the core at T ∗ = 4.5 and where rc is
the local radial coordinate with rc = 0 at the core centroid; a is the time-dependent
characteristic core radius, as defined in section 3.3.6
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2.3 Experimental methodology

Few studies have been undertaken related to vortex rings with swirl primarily focused

on theoretical or numerical analysis, while to the best of the author’s knowledge

only three experimental studies have been published addressing the production of

swirling vortex rings, each utilizing different swirl arrangements. Chronologically,

the first of them was conducted by Verzicco et al. (1996),see Figure 2.7 (a), who

created a vortex ring by pushing a specific amount of fluid through an orifice plate

located in the wall of a water tank. The entire apparatus was placed on a rotating

table capable of achieving a range of angular velocities from 0.1 to 1 radians per

second. Their study reports that rings produced with the above setup showed similar

characteristics to those observed in previous theoretical or numerical investigations,

such as a decrease in propagation velocity and the formation of negative vorticity1

ahead of the ring. For rotation rates higher than a specific value, where the fluid

discharged from the orifice no longer forms a vortex ring, Coriolis forces become

dominant.

Later, Naitoh et al. (2014) produced swirling vortex rings with a piston-cylinder

setup having an outer and inner acrylic cylinder as illustrated in Figure 2.7 (c).

The outer cylinder, along which the piston moves, is fixed to the wall of the test

tank; the inner rotating cylinder, which penetrates into the surrounding fluid bulk

is connected by a timing belt to a stepper motor located at the top of the tank.

A dividing screen was positioned close to the nozzle exit to isolate any unwanted

vorticity generated by the timing belt.

For each experiment, the pipe was rotated at angular velocities ranging from 0

to 3π radians per second for 15 seconds before the piston stroke. Finally, He et al.

(2020b) opted to utilize axial swirlers consisting of 12 vanes placed at the nozzle

exit; Figure 2.7 (b), with the trailing angle of these vanes determining the angular

velocity added to the flow. Even though the axial swirlers instantly produced a flow

close to a solid body rotation, it simultaneously contaminated the flow leading to

turbulent vortex rings.

1This refers to azimuthal vorticity with the opposite sign to that of the ring (ωθ < 0).
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The methods discussed above each have their own advantages and disadvantages,

which influence the characteristics of the swirling vortex ring under investigation.

Below, a different arrangement for the apparatus and experimental methodology

employed in the work reported in this thesis –see Chapters 4 and 5– is reported that

sets it apart from the above earlier studies.

(a)

(c)

(b)

Figure 2.7: Schematic diagrams the rigs and swirlers of previous investigators (a)
Verzicco et al. (1996); (b) He et al. (2020b); (c) Naitoh et al. (2014).

2.3.1 Apparatus

The experiments were performed in a stationary glass water tank of length 2400mm,

width 900 mm and height 800 mm, as illustrated in Figure 2.8. A piston-cylinder

system, with a inner diameter of 40 mm and a thickness of 10 mm, was employed

34



to generate an impulsive fluid motion, but unlike previous associated experimental

work, the system was not directly mounted in the water tank. Instead, it was

connected to an external second system or swirl system, via two hoses that imparted

azimuthal velocity to the discharged flow.

The swirl system, shown schematically in Figure 2.8 (b,c,d), consisted of a 450

mm long perspex tube of diameter of 42mm and thickness 8mm passing through and

fixed to the wall of the water tank. Inside the tube is an internal arrangement able to

rotate smoothly and whose axis is concentrically aligned. The internal arrangement

consists of four sections, as shown in Figure 2.8 (d).

• A rotor connected to a stepper motor, labelled M-2 in the Figure 2.8 (b,c).

• A 100 mm long pipe section with an outlet diameter of 25 mm containing a

sequence of six holes distributed lengthwise on its surface and at 60◦ interval

of rotation, through which enters the water from the piston-cylinder system

to the rotation pipe.

• A 90 mm long and 32 mm inner diameter divergent nozzle whose purpose is

to increase the azimuthal velocity by increasing the diameter of the rotating

pipe.

• A perspex tube with the same inner diameter as the nozzle exit and a length

of 200 mm whose purpose is to study the flow inside the rotating pipe.

Most of the swirl system sections are push-fit, except for the connection between

the rotor and the 100 mm pipe. Two grub screws were placed between the perspex

tube and the nozzle to ensure the system rotates homogeneously. To maintain

alignment of the internal system, a PTFE bearing and rubber O-ring are placed

within the 100 mm tube before the nozzle and 20 mm before the exit of the outer

tube, respectively. These components also help to prevent fluid from the piston-

cylinder system flowing into the gap between the outer tube and the 200 mm long

perspex tube and reaching the water tank.

The swirl system protrudes approximately 250 mm into the tank, and to which

a perspex disc of 320 mm diameter is attached to the exit of the outer tube via a
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push-fit assembly at the edge. A 32 mm diameter orifice Do was manufactured by

laser cutting, ensuring concentricity with the orifice and proper alignment with the

200 mm perspex tube at the exit. A 1 mm gap was left between the inner perspex

tube and the disc to allow free rotation. The use of a honeycomb was considered as

an alternative because it facilitates faster establishment of the velocity distribution

as a solid body rotation contrary to relying on diffusion from a rotating perspex tube

(Liang and Maxworthy, 2005). However, the honeycomb was found to generate noise

in the system resulting in unstable vortex rings; for that reason, it was ultimately

discarded.

For the experiments, two stepping motors were utilized: one for the piston-

cylinder system, M-1, and one for the swirl system, M-2 see Figure 2.8 (b). The

M-1 motor governs the piston’s movement, which in a previous study (He et al.,

2020b) attained a speed of 0.5 m/s with an acceleration of 25 m/s2. In the current

experiments, the maximum speeds required were 0.04 m/s with a maximum accel-

eration of 0.4 m/s2, which are significantly lower. The piston motion was controlled

by the software Motion Perfect 5 from TRIO Ltd., which uses BASIC language to

implement a velocity programme and add information from external devices. The

communication between Motion Perfect and the stepper motor and the reading of

external signals was performed by a Smartdrive Ltd. (SA28) driver. The M-2 used

to create the solid-body rotation is controlled by an Arduino board Ldt. The Ar-

duino interface uses C++ to handle the velocity program as well as reading and

writing external signals. Communication with the M-2 is facilitated through the

driver MA860H.

36



Laser
sheet

FOV

side view

  Top view

Water tank

Water tank

Orifie disc

Camera

O-ring PTFE Bearing

Rotor

Nozzle

Piston

Piston-cylinder system

swirl system

M-2 
   

M-1 
  

Laser

(a)

(d)

(b) (c)

Piston

M-2
rotor

 
   Tank

M-1 

Figure 2.8: Illustrative schematics of the experiment setup. (a) Side view of the 2D
PIV arrangement for the experiments discussed in Chapter 5, (b) Top view with the
piston-cylinder and swirl systems highlighted in red, (c) picture of the top view, (d)
internal arrangement of the swirl system.
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2.3.2 Flow visualisation and PIV

The study employed two-dimensional and stereoscopic PIV (Particle Image Ve-

locimetry) to obtain the velocity field with two and three components on a specific

plane, in a non-invasive way. To achieve this, it requires an illumination source,

one high-speed camera for two-dimensional and two cameras for stereoscopic PIV,

seeding particles with a similar density to the working media and of a suitable size to

minimize distortion in the flow, and a timing circuit. The precision of the method is

primarily determined by the PIV’s temporal resolution ∆t, which is the time interval

between successive frames used to calculate the velocity field.

To determine the displacement and velocity vector, particles from an interroga-

tion window, which is obtained by gridding the field of view (FOV), with a time

difference of ∆t are compared through cross-correlation to find the best match be-

tween two-time steps. However, only one vector is calculated for each grid, with

the interrogation window’s size defining the spatial resolution of the PIV. If the ∆t

chosen is too big, or the interrogation window too small, particles at the initial time

will not appear in the interrogation window at the next time step, leading to incor-

rectly calculated velocities vectors. This also emphasizes the significance of suitable

particle seeding in the flow. Silver-coated hollow glass spheres with a diameter of

10µm were used as seeding particles for all experiments performed in the present

work.

Two-dimensional PIV

This technique is used for the experiments discussed in Chapter 5 and the first

section of Chapter 4 to obtain the velocity of the flow. The arrangement for the

experiments in Chapter 4 is that of Figure 2.8 (a). A continuous laser (Beijing SUM

Laser Technology Co. Ltd.) is used as an illumination source and located at the

bottom of the water tank, emitting a beam of 532 nm wavelength (green) with a

power of 5 Watts. A lens generates a laser sheet with an estimated thickness between

1− 2 mm covering the entire FOV at the central cross-section of the tank that runs

parallel to the tank wall and intersects with the orifice. The tank was filled with tap

water and kept at a temperature of around 18 ◦C during the experiments, having a
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kinematic viscosity ν = 1.054 mm2/s.

A four-megapixel high-speed camera Mini WX Photron Ltd. is used to obtain

the images, providing up to 2048×2048 pixel resolution at 1080fps. This study used

a 250 Hz frame rate, equating to a PIV ∆t of 4 ms with a resolution of 2048× 1536

pixels, giving a FOV of 7Do x 4.4Do as shown in Figure 2.8 (a). Estimation of the

PIV ∆t is based on the average velocity at the orifice Uo as well as an interrogation

window of 16× 16 pixels. The raw images were analysed by the software DaVis 7.2

to obtain velocity fields with an overlap size of 50%, giving a spatial resolution of

0.86 mm based on vector spacing. A 300 mm × 300 mm metallic plate, as shown

in Figure 2.9 (a), was used to calibrate the software. The plate is black and has a

grid of white dots with a diameter of 2 mm distributed on its surface and separated

by 20 mm each other, forming a 2D cartesian coordinate system. Even though it is

not appreciated in Figure 2.9 (a), the calibration plate has two depths. For every

couple of white dots columns, one is about 2 mm deeper. This allows the software

to include all the particles illuminated by the laser sheet with approximately the

same thickness.

The first set of experiments in Chapter 4 aims to study the flow inside the rotation

pipe from the swirl system discussed in section 2.3.1. To achieve the desired FOV

as is shown in Figure 2.9 (b), the camera had to be positioned no more than 1 meter

away from the orifice disk. To make this possible, the water tank was emptied and

a small tank was added around the pipe emerging from the main tank. In this

case, FOV is represented by a square with a length of 2.17Do and a resolution of

1024 × 1024 pixels, with the perspex tube at the centre (see Figure 2.9(b)). For

the purpose of estimating the PIV ∆t, the interrogation window previously utilized

in the experiments from Chapter 4 is now applied. In this instance, the maximum

azimuthal velocity uθ(Do/2) is being utilized instead as the characteristic velocity

giving a ∆t of 20 ms which means a 50 Hz frame rate with a spatial resolution

of 0.54 mm based on vector spacing. A perspex disc of 30 mm diameter with a

grid sticker was placed inside the 200 mm long tube to calibrate the software. For

both experiments discussed above, each case studied had five repetitions, and the

resulting vector fields were averaged to reduce the vorticity noise created in the
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background.

(a) (b)

(c) (d)
20 mm 2mm 32mm

Figure 2.9: Calibration plates and FOV employed for the two-dimensional PIV,
where the seed particles are illuminated by the laser. For the experiments in (a,c)
Chapter 5 and (b,d) Chapter 4

In order to achieve a successful PIV, it is crucial to ensure that all devices in-

volved are operating with the same clock. To accomplish this, a synchronizer NI

BNC-2121 created by National Instruments Ltd. is utilized. This device can re-

ceive a Transistor-Transistor Logic, TTL, input signals and, with the assistance of

LabVIEW, can control other devices through TTL output signals. For all the exper-

iments performed in this work, the initial time is established through the movement

of the piston. As explained in section 2.3.1, the driver used for M-1 has the ability

to send digital outputs. A BASIC code in MotionPerfect is used to send an output

signal 1 ms after the piston’s initial displacement. This signal serves as the trigger

that starts the time for the other devices connected to the synchronizer.
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During the two-dimensional PIV experiments, the synchronizer produces two

outlet signals in response to the trigger signal it receives as illustrated in Figure 2.11

(a). The first signal, a rectangular pulse lasting for 1 ms, has a chosen frequency

based on the time step required to study the evolution of the flow. This signal

is directed towards a high-speed camera set in ”Random reset” mode. This mode

captures three consecutive images with a time step equivalent to the chosen PIV

∆t every time it receives a pulse. The second signal targets the continuous laser,

but unlike the camera signal that acts as a trigger, the pulse length and frequency

of the laser signal control when the laser works and, consequently, the amount of

light captured by the camera. Another difference compared to the first signal is

that the pulse frequency is the same as the inverse of PIV ∆t. This means that

the laser works even when the camera is not recording but ensures that the laser is

on every time the camera works (Figure 2.11 (a)). Although two frames per pulse

are sufficient to calculate the velocity field, three frames were compared in case the

acceleration vector was needed. However, this was not to be the case, so only the

velocity field obtained from the transition between the second and third frame is

analysed in Chapter 4.

Stereoscopic PIV

Stereoscopic PIV is a technique similar to two-dimensional PIV. It calculates the

velocity field on a plane (FOV) and also considers the velocity component that

moves across the plane. This requires the use of a different laser that can resolve

the third direction, as the laser sheet generated by the continuous laser is not thick

enough. Additionally, a second high-speed camera is required. To track particles

in the normal direction of the FOV, the cameras must be angled in relation to the

surface of the water tank’s normal vector, as illustrated in Figure 2.10 (b). Two

perspex prisms were situated near the cameras on the side walls of the water tank.

The surfaces of the prisms facing the camera were positioned parallel to the lens

surface to reduce any refraction-related disruptions. The prisms were filled with

water, including the tiny gap between the prism and the tank wall. It’s important

to note that the refractive indices of water and perspex are similar.
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Figure 2.10: Illustrative schematic of the arrangement used to perform the experi-
ments from Chapter 4: (a) to investigate the azimuthal velocity inside the rotating
pipe via a 2D PIV whose FOV is shown in the top right; (b) to investigate vortex
rings with swirl where two cameras were implemented to perform a stereoscopic
PIV. (c) Picture of the arrangement used for the calibration in the stereoscopic PIV
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The location of the FOV is the same as the one discussed above section 2.3.2,

with a size of 6.8Do × 6.8Do and a resolution of 1536 × 1536. In these experiments,

the second motor (M-2) is utilized to impart azimuthal velocity to the vortex rings.

To ensure synchronization between both stepping motors, a signal from the M-1

driver is sent directly to the Arduino board, which functions as a trigger for the M-2

motor. An illumination device (Oxford Lasers Ltd.) was used that can produce two

pulsed laser beams with a power of 1.5 W and a wavelength of 532 nm (Green), with

a pulse repetition rate of 15 Hz. Figure 2.11 (b) illustrates how the synchronizer

generates four TTL signals for the laser device, with two signals per laser (trigger

and Lamp).

The power of the laser beams is controlled by the time delay between each trigger

and Lamp signals named Q, which was set to 0.19 ms for both lasers based on

previous experiments (He et al., 2020b). The two laser beams are required because

the pulse repetition rate of 15 Hz (60 ms) is too large to be considered as ∆t.

Therefore, each laser beam illuminates one of the two frames required to compute

the velocity field. This is illustrated in Figure 2.11 (b), where the time difference

between the laser’s trigger signals has to match with the chosen ∆t.

Two PIV ∆t values were computed to establish the temporal resolution, one for

axial displacement and another for the third direction. After analyzing both, the

chosen PIV ∆t was 20 ms, corresponding to the axial displacement with the lowest

value. To ensure that the particles moving in the third direction were accurately

measured during the PIV ∆t selected, the laser sheet thickness was set at 4 mm,

which allowed the particles to displace a quarter of the sheet’s thickness (Gan, 2010).

The interrogation window was configured to have dimensions of 32x32 pixels with

a 50% overlap, resulting in a spatial resolution of 1.7 mm based on vector spacing.

The same calibration plate discussed earlier was used. The white dot grid is present

on both sides of the plate, which facilitates the calibration of both cameras. One

specific dot must be selected on one side and its corresponding dot from the other

side. This enables the software to merge both images and calculate the third velocity

component that is perpendicular to the plate. For this experiment, six repetitions

were performed for each case studied.
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Figure 2.11: Timing programme controlled by the synchronizer for (a) Two-
dimensional PIV and (b) Stereoscopic PIV. f is the frequency of the signal.
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CHAPTER 3

Formation and evolution of vortex rings with weak to

moderate swirl

3.1 Introduction

A swirling vortex ring exhibits certain characteristics, including an expansion of

its radius while its propagation speed decreases, the creation of negative azimuthal

vorticity in front of the ring, and a lower formation number F. Even though previous

studies have examined each of these attributes, their origin and relationship to each

other remain uncertain. The overarching aim of this Chapter is to study theoretically

the influence of the addition of swirl on the global flow dynamics of impulsively

generated vortex rings, in particular in relation to their formation process and early

time evolution.
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3.2 Problem formulation

3.2.1 Flow geometry and boundary conditions

The flow geometry employed in the investigation consists of a horizontally aligned

cylindrical domain, open at one end, with a concentrically aligned inlet, centred on

r = 0, at the other, as shown in Figure 2.4 (a), mimicking a sufficiently large but

finite sized confinement typical of a corresponding laboratory-based experimental

set-up. For reasons outlined subsequently, two different inlet geometries, denoted

Case A and B – see Figure 2.4 (b) – are explored for the generation of swirling

vortex rings.

Incompressible, Newtonian fluid (density, ρ = 1000 kg/m3, kinematic viscosity

ν = 1× 10−6 m2/s2) is impulsively discharged from the inlet, of diameter Do = 25

mm, into the same bulk fluid at rest occupying an adjoining cylindrical domain,

of diameter 10Do and length 20Do. These dimensions are sufficient to ensure the

proximity of the confining boundaries will have no effect on the solutions obtained

(Danaila et al., 2015), the case S = 1 representing a worst case scenario. To this

end the adequacy of the domain size is reinforced in Chapter 3 where it is shown

that the growth rate of the vortex ring core radius increases with swirl strength.

The maximum radial coordinate of the ring core for S = 1, is ≈ 1.5Do, for the time

duration of interest, which is sufficiently far away from the confining surface of the

cylindrical wall, i.e. the induced velocity on this surface from the ring circulation is

negligible at this distance.

The geometry and dimensions of the computational domain used in the numerical

work try to emulate a circular water tank where one of its plane walls has an inlet at

the centre. Two inlet geometries are considered, named Case A and Case B, which

will be discussed later.

At time t = 0 seconds, the fluid in the entire numerical domain is at rest. The

inlet condition is solid body rotation, which means that uθ = Ωr (see Figure 3.1)

where Ω is the angular speed (rad/s). Both axial, z, and swirl, θ, momentum at

the inlet surface are initiated and terminated impulsively with infinite acceleration

and deceleration, respectively. The velocity programme is illustrated in Figure 3.1.
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Figure 3.1: (a) solid body rotation velocity distribution at the inlet and (b) the
impulsive velocity programme used to generate all the vortex rings analysed in this
section.

For the axial component, uniform and constant velocity is applied over the inlet

surface, U0 = 0.1 m/s, and independent of r or θ as shown in Figure 2.4 (b). The

attendant boundary conditions comprise of no-slip everywhere other than at the inlet

and outlet; for the latter, being sufficiently distant from the inlet, satisfaction of a

zero-gradient constraint is specified. To compute the turbulent viscosity at the wall,

the “nutUWallFucntion” was implemented based on y+. Additionally, regarding the

inlet turbulence, it should be noted that the initial estimation of κin is 2.5 × 10−5,

which is based on the following equation:

κin =
2

3
(|u|It)2 . (3.1)

This estimation results in a turbulence intensity, It, of approximately 4%, which

can be considered a medium intensity suitable for internal low-speed flows such as

pipes (Greenshields and Weller, 2022). To investigate the formation process and

the dependence of the vorticity entrainment capability of the leading ring on swirl

strength, the fluid discharge time is set as equivalent to L/Do = 6, a constant. L

is computed as L = Uots where ts is the stroke time. This produces a flow that is

of a starting jet type, allowing determination of its influence on the roll-up of the

trailing jet, or the wake flow behind the primary leading ring. Orifice based and

slug circulation, Γslug, –see equation (1.4) based Reynolds numbers can be defined,
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regardless of swirl strength, as:

Re =
U0Do

ν
= 2500, or Re =

Γslug

ν
=
U2
0 ts
2ν

=
U0L

2ν
= 7500, (3.2)

respectively. Here, Re is taken to be 7500, the same as that in the work of Rosenfeld

et al. (1998).

Swirl is generated as a solid-body rotation at a rate 0 ≤ Ω ≤ 8 (rad/s); based

on which the dimensionless swirl number S is defined here as:

S =
ΩRo

Uo

=
ΩDo

2Uo

, (3.3)

where Ro = Do/2 is the orifice radius. The above definition of S is in line with that

adopted in Liang and Maxworthy (2005) for their continuous swirling jet experiment.

The S spectrum investigated in the present work is S = 0 (non-swirl) and S =

1/4, 1/2, 3/4, 7/8, 1, spanning the regimes of weak swirl to total vortex breakdown

in a continuous swirling jet (Liang and Maxworthy, 2005).

Returning to the matter of the different inlet geometries investigated, Case A

resembles the orifice exit geometry utilised in the experiments of Gan (2010), where

a large no-slip circular surface is placed flush with the exit of a short nozzle at

z = 0. The inlet surface is positioned at z = −0.1Do resulting in a nozzle length

of 0.1Do. This length has been carefully chosen to imitate a realistic experimental

configuration: on the one hand, since swirl is also fluxed through the inlet plane,

rolling-up of the non-swirl fluid volume inside this nozzle at the start of the discharge

needs to be minimised; on the other hand, the quiescent fluid in the region z > 0,

before the start of discharge, should be minimally affected by momentum diffusion

from the fluid in (solid-body) rotation preparation, which can often be realised by

a physically rotating nozzle (Liang and Maxworthy, 2005; Naitoh et al., 2014).

In order to examine the impact of the short nozzle associated with Case A, on

the swirl strength inside the rolled up ring structure, comparisons can be made with

results obtained for a idealised inlet, an orifice with a nozzle of zero length, where the

inlet surface is flush at z = 0, namely Case B (Rosenfeld et al., 1998). The source

of vorticity in the vortex ring is different for the two cases. For Case A, it is from
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the boundary layer which develops on the inner surface of the inlet nozzle section of

length 0.1Do. Owing to Richardson’s annular effect (Richardson and Tyler, 1929),

in a typical pulsatile flow inside a short pipe this boundary layer is appreciably

different from the one of a paraboloid velocity distribution in an otherwise fully

developed and continuous flow in a long pipe. The superposed swirl component will

also affect the boundary layer profile. In Case B, it is from the shear layer that

develops between the discharge velocity (the vector sum of U0 and ΩRo) and the

ambient fluid. In both cases, vorticity in the boundary layer that develops on the

surface flush with the orifice exit plane (the r − θ plane) will also be washed out

and entrained into the ring structure attributable to the induced velocity of the

leading primary ring core during its early development, before it propagates away.

These important features and their impact on the forming of the ring are discussed

in section 3.3.2.

3.3 Results and discussion

The simulations were conducted on Durham University’s supercomputer, Hamilton,

using 24 processors and each second of simulation required approximately 40 hours

of CPU time. It took 60 days to run all the cases discussed.

OpenFoam operates in Cartesian coordinates, but using cylindrical coordinates

for this problem is more convenient. Matlab was used to transform the velocity

and vorticity vectors from Cartesian to cylindrical coordinates. The equation below

demonstrates how the value of uθ was calculated, which can also be applied to find

the value of ωθ:

uθ = −uxsin (θ) + uycos (θ) , (3.4)

where θ is the azimuthal angle in the x-y plane, ux and uy are the velocity compo-

nents in a Cartesian coordinate system, (z, y, z).
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3.3.1 Vortex structure comparison

Figure 3.2 provides a comparison of the associated vortex structure at different times

during the evolution of the flow for swirl numbers S = 0 and 1, and inlet Case A;

in which the leading, toroidally shaped primary ring is clearly identifiable together

the wake, or trailing jet. Figure 3.2, lef-hand column, reveals that the primary

ring core, when S = 0, remains almost perfectly axisymmetric for the duration of

the simulation, and the absence of any negative vorticity (ωθ < 0) in that ωθ > 0

everywhere (denoted as red isosurfaces) – the opposite of what is observed in the

remaining images, Figure 3.2, right-hand column, when S = 1, and which display

a number of distinguishing features. First, significant regions of negative vorticity

(denoted as blue isosurfaces) are found to exist surrounding the main vortex core

at the times shown, and is indeed found to be present from the outset. Second,

the flow structure loses stability at large time, Figure 3.2(d), manifesting as a wavy

primary vortex core and a broken vortex structure in the azimuthal direction and

featuring both positive and negative vorticity outside of the vortex core. At T ∗ = 12,

a secondary vortex ring can also be seen which rolls up at the downstream end of the

trailing jet when discharge stops. As discussed later, in section 3.3.6, the strength

of this secondary ring depends on S, and has non-trivial impact on the growth of

the leading ring circulation.

The amplitude of the wave along the vortex core can be estimated in terms of

the degree of asymmetry of the core centroid, whose coordinates (R,Z) for a given

θ plane can be obtained from:

R(θ) =

∫∫
ωθ(θ)r drdz∫∫
ωθ(θ) drdz

Z(θ) =

∫∫
ωθ(θ)z drdz∫∫
ωθ(θ) drdz

, (3.5)

where regions in which ωθ ⩾ ωθ(max)e−1 in the primary vortex core are assumed to

contribute; here ωθ(max) is the maximum ωθ in the vortex core centre. the vorticity

ωθ < 0 is not considered for this calculation. Figure 3.3 examines the time evolution

of the standard deviation, σR, of R(θ) for different representative swirl numbers and

inlets Case A and B. σR is defined as:
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(c)

(e) (f)
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(d)

secondary 

vortex ring

Figure 3.2: Vortex structure visualized, for swirl numbers S = 0, 1 and inlet Case A,
as isosurfaces of ωθDo/Uo = [levels :− 2.5,−1.25, 2.5, 5], with red and blue denoting
positive and negative values of vorticity, respectively. (a) S = 0 at T ∗ = 6; (b) S = 1
at T ∗ = 6 (the moment the discharge stops), (c) S = 0, T ∗ = 8, (d) S = 1, T ∗ = 8,
(e) S = 0, T ∗ = 10, (f) S = 1, T ∗ = 10, (g) S = 0, T ∗ = 12, (h) S = 1, T ∗ = 12.
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Figure 3.3: Evolution of vortex core asymmetry, expressed in terms of the standard
deviation, σR, of R(θ) given by equations (3.5) (3.6) and for different S values and
both inlets Case A and B. The dotted line represents the standard deviation of the
axial position Z(θ).

σR =

√√√√ n∑
i=1

(
R(θ)− R̄

)2
n

, (3.6)

where R̄ is the azimuthal average ring radius and n represents every plane. Waviness

is also reflected in the Z(θ) component, which is consistent. Note that the absolute

ring radius R increases rapidly over time as S increases, as discussed in section 3.3.3,

in particular for the case T ∗ > 6 and S ⩾ 3/4.

The primary core in Figure 3.2 (d) exhibits a wave number for the azimuthal

asymmetry of m = 3, which is determined by spectral analysis of R(θ). The time

dependence of the magnitude of the primary spectral peak also agrees well with

that of σR. Accordingly, Figure 3.3 reveals that for the Re under investigation,

core waviness develops to a noticeable level for T ∗ > 8, other than when S = 0 with

experiments showing that azimuthal waviness does not develop until after very large

time (Maxworthy, 1977). The corresponding temporal behaviour for S = 1 and inlet

Case B, confirms that the loss of azimuthal symmetry is instability induced, which

is not driven by the choice of inlet geometry. The amplitude of the waves, reflected

by σR, increases with time, as well as S. Although the azimuthal instability will

eventually lead to turbulence and breakdown of the vortex core; before this occurs

the leading primary ring propagates downstream as a coherent structure – which is

typically isolated and compact after it detaches from the trailing jet.
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The dominant wave number m induced by instability depends non-linearly on S,

and could also be time dependent. However it only becomes important at relatively

large time (see the experiment of He et al., 2020a). The present study considers small

time only; that is, before core waves develop significantly. As such, for T ∗ ⩽ 12,

axisymmetric flow is a reasonable assumption, permitting the process of azimuthal

averaging to reflect the global behaviour of these flows in their axisymmetric r − z

planes.

3.3.2 Distribution of azimuthal vorticity ωθ

Regions of ωθ > 0

As the dominant vorticity component in a non-swirling vortex ring, regions of ωθ >

0 in a swirling ring reflect a weak dependence on S. They mainly originate as a

consequence of a ωθ flux from a modified boundary layer profile at an orifice exit,

as in Case A. Figure 3.4(a) shows the dependence of the axial velocity uz on r at

the z = 0 plane when T ∗ = 0.4, which correctly replicates the Richardson’s annular

effect similarly observed in starting jets, where uz becomes a maximum (≈ 1.2U0) at

r ≈ 0.95Ro outside of the boundary layer and a minimum (≲ U0) at r = 0 satisfying

mass conservation (Didden, 1979; Lim and Nickels, 1995). It also is related to the

acceleration of uz close to the orifice edge induced by the rolled-up vortex core at

an earlier time, which increases the magnitude of ∂uz/∂r and in turn that of ωθ; see

equation (1.3).

The flux of circulation associated with ωθ through the orifice exit can be calcu-

lated, using equation (1.3), as:

∂Γ

∂t
=

∫ Ro

0

ωθuzdr =

∫ Ro

0

(
∂ur
∂z

− ∂uz
∂r

)
uz dr

=

∫ Ro

0

∂ur
∂z

uz︸ ︷︷ ︸
Γ(ur)

dr +
1

2
u2z

∣∣∣∣
r=0︸ ︷︷ ︸

Γ(uz)

. (3.7)

The second term in equation (3.7) is related to the slug model and is only connected

to uz at the axis (r = 0), since uz = 0 at r = Ro. The dependence of ur on r is
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Figure 3.4: (a) Dependence of uz on r at z = 0 [Case A]; for Case B, uz = U0, and
independent of S. (b) Dependence of ur on r [Case A]. (c) Dependence on S of the
total circulation flux ∂Γ/∂t at z = 0 [Case A and B]. (d) Dependence on S of the
total circulation components Γur , Γuz defined in equation (3.7) [Case A]. The plots
all correspond to T ∗ = 0.4 and the direction of the arrow in (a) and (b) indicates
increasing S.
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shown in Figure 3.4(b), where ur is clearly non-zero at z = 0 owing to the velocity

induced by the rolled-up vortex core (Didden, 1979). Nevertheless, it is an order

of magnitude smaller than uz. The total circulation flux ∂Γ/∂t through the orifice

plane, shown in Figure 3.4(c), reveals a weak dependence on S for Case A only.

Figure 3.4 (d) further reveals the effect of S on the production of ∂Γ/∂t for Case A.

It can be seen also from equation (3.7) that adding swirl diminishes the contribution

from Γ(uz), but increases that from Γ(ur). Although the contribution of Γ(ur) can

be significant if the ur profile is purposely manipulated (see Krieg and Mohseni,

2013, for example), the straight nozzle in Case A implies that it is moderate here.

For the idealised orifice, Case B, no surface is present for a boundary layer to

develop, unlike Case A, and the uz(r) profile is independent of S at z = 0 which is

exactly the inlet plane. Therefore no swirl induced ωθ flux effect exists, as evidenced

in Figure 3.4 c, where only the Γ(uz) term in equation (3.7) contributes. It is a

constant for Case B and of similar magnitude to the same term for Case A. However,

immediately outside the exit (e.g. at z = 0.1Do) the primary ring core introduces a

Γ(ur) effect which results in a similar dependence on S, as shown in Figure 3.4 (d),

rendering the overall ∂Γ/∂t similar to that of Case A.

Profiles of the kind provided in Figure 3.4 (uz, ur and their associated circulation

contributions Γ(uz) Γ(ur)) are transient. The ones shown in this figure are for

T ∗ = 0.4; a time when the primary ring is in the early stages of being formed and its

location is very close to the orifice exit. The primary core imposes a strong influence

on these quantities, which feeds back to the vorticity flux. This is a mutual process.

When the leading ring propagates away (in both the z and r direction depending

on S), its influence, especially the Γ(ur) component, fades as does ∂Γ/∂t; hence, the

growth of the total Γ in the flow domain (discussed later in section 3.3.6), tends to

be steady. Compared to Case A, the steady shear layer (or trailing jet) outside of

the orifice exit in Case B is thinner in general owing to the absence of the boundary

layer effect present in the former, which results in slightly smaller ∂Γ/∂t and, more

importantly, is more prone to instability (Zhao et al., 2000).

The overall effect also implies that the peak ωθ in the vortex core centre is smaller

for Case B than Case A and is less sensitive to S; for Case A, it increases weakly with
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S at early formation time. This is supported by the findings shown in Figure 3.6,

even after the absolute peak vorticity is scaled by the instantaneous ring radius R(t);

the rationale of choosing this scaling parameter is discussed next.

Figure 3.5: (a) Vector field and vorticity contour plot at T ∗ = 3.8 and S = 0. (b)
Velocity distribution within the vortex core from a frame of reference moving with
the ring and where rc is the local radial coordinate with rc = 0 at the core centroid;
a is the time-dependent characteristic core radius, as defined in section 3.3.6 and Ω
is the angular speed for the approximate solid body rotation velocity. (c) pressure
contour plot. (d) Comparison between the Pressure distribution within the vortex
core and the Rankine vortex.
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Figure 3.6: Evolution of ω∗
θ(max), the scaled peak vorticity in the ring core centre,

for different S. The solid lines are fitting function ω∗
θ(max) ∼ (T ∗ − T ∗

0 )
−1, where

T ∗
0 = −1 and −1.37 for Case A and B, respectively, are virtual time origins.

Soon after the vortex core is formed, roll-up of ωθ in the vortex sheet from the

orifice wraps around the outside of the core, leaving the core largely unaffected

and remaining Gaussian like (Saffman, 1975, 1995). The flow distribution within

the vortex core exhibits similar characteristics to a Rankine vortex. Although the

vorticity distribution is not constant like in the Rankine vortex, it has a solid body

velocity distribution as observed from the velocity field in Figure 3.5(a) and plotted

in Figure 3.5(b). A region of low pressure – see Figure 3.5(c) – generates the

centripetal force to maintain this distribution, as per the equation:

∂p

∂r
= ρ

u2c
r

∼ ρΩ2r, (3.8)

where uc is the velocity distribution in the core in a frame of reference moving with

the vortex ring and whose origin is at the core centre. Ω denotes the angular speed

that corresponds to the approximate solid body rotation distribution. The pressure

distribution within the core shows good agreement with the Rankine vortex model

compared in Figure 3.5(d) for rc/a ≤ 1, where a is the core radius defined in section

3.3.6.

In the absence of swirl and assuming the curvature of the toroidal core to be

negligible (i.e. R large), the distribution of ωθ(r, t) in the moving frame of reference

centred at the core for an infinitely long vortex tube can be approximated by a Lamb-
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Oseen vortex (Fukumoto and Moffatt, 2000; Saffman, 1978; Weigand and Gharib,

1997), which is a solution of the generalised vorticity equation:

∂ω

∂t
= ν

(
∂2ω

∂r2
+

1

r

∂ω

∂r

)
. (3.9)

following the initial and boundary conditions:

ω(0, 0) = Co, ω(0, t) = 0, ω(∞, t) = Co, (3.10)

equation 3.9 lead to an exact solution of the form:

ω(r, t) =
Co

4πνt
exp

(
− r2

4νt

)
= ω(0, t) exp

(
−r

2

r2c

)
, (3.11)

where ω(0, t) is the peak ωθ in the core centre and rc the core radius. Here a local

coordinate system is adopted with r = 0 at the centre of the vortex core, instead of

the orifice geometry. Assuming that the circulation of the vortex core Γc, which is

related to the peak vorticity ω(0, t) via

ΓRing =

∫ rc

0

2πω(0, t) exp

(
−r

2

r2c

)
r dr = πr2c

(
1− e−1

)
ω(0, t), (3.12)

is constant, implies that there is no dissipation of vorticity.

The time varying volume V (t) of this toroidal core, if assumed to remain toroidal

by neglecting the azimuthal wave which develops at larger time, is written as

V (t) = 2πR (t)Ac (t) ∼ 2π2R(t)r2c ∼ V (0)t, (3.13)

where Ac(t) is the cross-sectional area of the circular core, R(t) the ring radius

as a function of time and V (0) is the initial volume of the core at t = 0. The

(inviscid) stretching effect alone does not change V (t); this can be seen from Kelvin’s

circulation theorem, which states that in an ideal fluid where only conservative body

forces are exerted, there is a constant circulation about any closed material filament

moving with the flow. In simple terms, this means that the vorticity in a material

filament of length δl obeys ω(t)/δl(t) = C for constant C. V (t) only grows under
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the effect of viscous diffusion, i.e. rc ∼
√
νt, which results in the last term of

equation (3.13).

Equation (3.12) and equation (3.13) results in the following relationship:

ω(0, t) ∼ ΓRing

r2c
∼ R(t)

V (t)
∼ R(t)

t
, (3.14)

which shows that as the ring radius increases, the peak vorticity also increases and

decreases with time. The evolution of the scaled peak vorticity, ω∗
θ , in the ring core

centre is then

ω∗
θ(max) =

[
ωθ(0, t)

R(t)

](
D2

o

U0

)
∼ 1

T ∗ . (3.15)

This relationship is demonstrated in Figure 3.6 for inlet Cases A and B. It can be

seen from equation (3.14) that without vortex stretching (constant R), ω(0, t) ∼ t−1;

in which case Figure 3.6 essentially manifests the decay of ωθ(0, t) due to viscous

diffusion, after the vortex stretching effect is scaled. It further suggests that the R

behaviour, i.e. the stretching of the toroidal vortex core, is an important influential

factor induced by swirl on top of viscous diffusion. Figure 3.6 also reveals that

the difference between the decay profiles of ω∗
θ(max) diminishes as T ∗ increases,

becoming almost indistinguishable once discharge terminates at T ∗ = 6.

As to the overall circulation of the leading ring, the differing swirl strength

does not impact the similarity of the ωθ roll-up process in the core area during

the formation process. This is confirmed by the almost universal Gaussian like

ωθ distribution, regardless of S or orifice geometry (as discussed in section 3.3.4).

Nevertheless, swirl weakly affects the evolution of the leading ring circulation, as

evidenced in Figure 3.8, where Γ∗
Ring is the circulation of the leading ring normalised

in accordance with equation (1.2). The algorithm used to produce this figure was

designed specifically to isolate only the leading ring area, excluding the trailing

jet which is not fully rolled into the ring core area. Previous experimental studies

achieved this through a high vorticity field threshold, which removed most of the

trailing jet or, Γ∗
Ring is computed only after the ring had detached from the trailing

jet. The algorithm used in this work is described as follows:

• A reference point is determined based on the flow field’s maximum or minimum
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vorticity (depending on the core), corresponding to a point close to the core

centroid; see Figure(3.7)(a).

• The vorticity field is interpolated onto lines expanding radially from the ref-

erence point.

• For every line, a displacement radially outward, ∆r, is made while evaluat-

ing the vorticity magnitude at each step. As the vorticity has a Gaussian

distribution, it decreases as ∆r moves farther from the centre. The process

continues until an increase in vorticity is detected for three consecutive radial

steps, which indicates the presence of the trailing jet. The point where the

increase started is labelled as P1 in Figure 3.7(b). If there is no increase in

vorticity, the process stops and records the point where the vorticity becomes

zero and is labelled as P2.

• The vortex core is enclosed by a closed curve formed by the points register,

which separates it from the trailing jet. All vorticity outside this region is

removed.

It shows that during discharge (T ∗ ⩽ 6) the mechanism of ωθ delivery to the

leading ring volume is fairly universal, with Γ∗
Ring increasing subtly with S due to

higher ωθ flux. For T ∗ > 6, the behaviour of Γ∗
Ring for Case A and B begin to

deviate from one another. With reference to Figure 3.8(a), for S = 0 and 1/4, Γ∗
Ring

continues to increase by ingesting vorticity (ωθ > 0) from the trailing jet to the

leading ring , whilst for S ⩾ 1/2, Γ∗
Ring increases until T ∗ ≳ 8, before decaying at a

rate proportional to S. This is due to the stronger vorticity cancellation between the

ring core (ωθ > 0) and the peripheral region of ωθ < 0 (as discussed in section 3.3.2),

which increases with S and overwhelms the vorticity ingested from the trailing jet.

Figure 3.8 (b) examines the impact of orifice geometry on the evolution of Γ∗
Ring.

For clarification purpose, only S = 0 and 1 are shown, the behaviour of other S cases

being consistent. In line with ω∗
θ(max) in Figure 3.6, Case B displays an appreciably

smaller Γ∗
Ring for the same S owing essentially to the absent ωθ flux effect at the orifice

exit illustrated in Figure 3.4, but the overall dependence on T ∗ is similar to that of

Case A.
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Figure 3.7: (a) Vorticity contour plot showing the line where ωθ is interpolated and
the curve formed by points P1 or P2 of each line that separates the ring core from the
trailing jet. (b) ωθ distribution of the ring core and the area around it. where the
reference point as well as the points P1 and P2 are pointed out. rc is the local radial
coordinate with rc = 0 at the core centroid; a is the time-dependent characteristic
core radius, as defined in section 3.3.6

Regions of ωθ < 0

A striking consequence of the presence of swirl in the flow of interest, is the gener-

ation of significant regions of ωθ < 0 (negative vorticity) from the start of the for-

mation process, as reported by Gargan-Shingles et al. (2015); Naitoh et al. (2014),

Cheng et al. (2010) and He et al. (2020b); although in the case of the latter it is un-

certain whether the negative vorticity originates from the boundary layer washed off

the surface of the vanes creating the swirl velocity component. From figure 3.9(a),

S = 1 and inlet Case A, three distinct regions of ωθ < 0 can be identified. Region I

stems from ωθ ∼ ∂ur/∂z in the boundary layer developed by the inward flush of fluid

induced by the circulation of the leading vortex core (ωθ > 0); Region II issues from

the orifice and is related to the imposed axial velocity profile, i.e. ωθ ∼ −∂uz/∂r;

Region III is the main contributor of ωθ < 0 and is formed ahead and in the prox-

imity of the main vortex core (see also Figure 3.2 (b)), as observed in the above

studies. Note that for inlet Case B the intensity in Region II is much weaker than

that in Case A, in accordance with the uz profile imposed at the orifice exit; see

61



(a)

(b)

Figure 3.8: Evolution of the leading ring circulation Γ∗
Ring. (a) All S [Case A]; (b)

comparison of Case A and B for S = 0 and 1.

Figure 3.4 (a).

The magnitude of ωθ in Regions I and II increases slightly with S; for the former

this is attributed to the increment of ΓRing Figure 3.8), hence the stronger ur induced

on the vertical wall outside the orifice; for the latter it is due to the slight increase of

∂uz/∂r on the inner side of the jet at the orifice exit (Figure 3.4 (a)). They are both

weaker than that in Region III, where ωθ(< 0) is of the same order of magnitude as

ωθ(> 0) in the leading vortex ring core, as shown in Figure 3.9 (a).

Cheng et al. (2010) attributes the formation of negative vorticity observed in

their work to the secondary flow induced by uθ in the toroidal core, by a mechanism

analogous to the secondary flow induced inside a curved pipe. In their study, this

secondary flow is characterized by the formation of a vortex pair commonly known as

Dean vortices, within which, positive vorticity feeds the primary vortex ring having

the same vorticity sign, increasing its circulation; meanwhile, the negative vorticity

interacts with the primary ring, forming complex vortex structures. A suitable

dimensionless number that characterizes this phenomenon is the Dean number De,

the ratio of the product of centrifugal and inertia forces to the viscous force (Berger
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(a) (b)

T

Figure 3.9: (a) ωθ contours for S=1 at T ∗ = 4; Regions I, II and III indicate the
presence of negative vorticity [Case A]. Distribution of ωθ for Case B at the same S
and T ∗ is very similar albeit the absence of Region II. (b) Dependence on time of
the production rate of ωθ < 0 due to vortex tilting, for different S [Case A]. [Symbol
legend is the same as that for Figure 3.8 (a).]

et al., 1983), given by

De =

[
2a(t)uθ(t)

ν

] [
a(t)

R(t)

] 1
2

=

[
2a(t)

Do

] 3
2
[
uθ(t)

U0

] [
Do

2R(t)

] 1
2

Re; (3.16)

where a(t) is the core radius. In the toroidal vortex core, both the radius rc and

swirl velocity uθ(t) are time dependent, as well as the ring radius R(t). The order

of magnitude of the maximum De for the cases investigated, viz. S = 1, can be

estimated, by taking 2a(t) ∼ Do/10, uθ ≲ ΩRo/2 = U0/2 (as detailed in section

3.3.4), Do ≲ 2R(t). It turns out that typically De < 40 (in the range of 20 to 55) for

0.4 < T ∗ < 6, whilst for the swirling rings in Cheng et al. (2010), De ∼ 640, an order

of magnitude greater. Note that the swirl component in Cheng et al. (2010) was

superposed onto a well formed Gaussian ring and has a very different uθ distribution

in the ring core, which is discussed in section 3.3.4.

According to Berger et al. (1983), secondary flow is induced at De > 36 and

remains laminar until De ≈ 176. On the one hand, a Dean vortex pair similar
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to that of Cheng et al. (2010) is not observed in the present study; on the other,

the intensity of the negative vorticiy in their study is appreciably lower, albeit at

a De one order of magnitude larger. This suggests that when the swirl component

is generated simultaneously with ring formation, some other mechanism dominates

the generation of negative vorticity in Region III.

Inspired by the work of Brown and Lopez (1990), Darmofal (1993) adopted a

theoretical approach to explain that for a continuous swirling jet, negative vorticity

originates from the tilting of ωz, which eventually leads to vortex breakdown. It is

an inviscid process. This can be seen from the ωθ component of the inviscid vorticity

equation:
Dωθ

Dt
= ωr

∂uθ
∂r

+ ωz
∂uθ
∂z

+
urωθ

r
, (3.17)

where D/Dt is the standard material derivative in cylindrical polar coordinates and:

ωz =
1

r

∂(ruθ)

∂r
, ωr = −∂uθ

∂z
. (3.18)

The production of negative vorticity in Region III is postulated to originate from

the tilting terms (the first two terms on the rhs of equation (3.17)); while the vortex

stretching term (the last term) amplifies its intensity at a rate proportional to ur,

as expected. For vortex rings without swirl, uθ = 0, the contribution from vortex

tilting is zero and therefore negative vorticity is never observed in Region III in this

case. The production of negative vorticity from the tilting terms can be quantified

by substituting equation (3.18) into the first two terms of equation (3.17), resulting

in: (
∂ωθ

∂t

)
T

= −∂uθ
∂z

∂uθ
∂r

+
1

r

∂(ruθ)

∂r

∂uθ
∂z

; (3.19)

(
∂ωθ

∂t

)
T

= −∂uθ
∂z

∂uθ
∂r

+

(
uθ
r

+
∂uθ
∂r

)
∂uθ
∂z

; (3.20)

(
∂ωθ

∂t

)
T

=
1

2

∂

∂z

(
uθ

2

r

)
; (3.21)

the subscript ‘T’ on the lhs denoting vortex tilting. Since the term on the rhs, which

is the gradient with respect to z, is negative in the leading area and approximately

coincides with Region III (figure not shown, but can be inferred from the uθ distri-
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bution in the r − z plane, as discussed in section 3.3.4), negative ωθ is generated

there, regardless the direction of uθ. According to the distribution of ∂ (uθ
2/r) /∂z

(figure not shown), strong tilting initiates on r = 0 closer to the windward stag-

nation point in the moving frame (this is discussed further in section 3.3.3). Fluid

having negative vorticity is then transported and stretched around the vortex core;

uθ inside the core does not contribute directly to the generation of negative vorticity.

This supports the finding of Gargan-Shingles et al. (2015) that the gradients of uθ

are the source terms of the negative ωθ. The rate at which the total circulation, ΓT,

is produced by vortex tilting can be obtained from:

∂ΓT

∂t
=

∫
A

(
∂ωθ

∂t

)
T

dA =
∂

∂t

∫
A

(ωθ)T dA =
1

2

∫
A

[
∂

∂z

(
uθ

2

r

)]
dA, (3.22)

where the constant integration area A is the same as that in equation (1.2), which

is the entire flow domain. Figure 3.9 (b) shows the change in ∂ΓT/∂t, over the

discharge duration (0 < T ∗ ⩽ 6), calculated using equation (3.22) with the uθ

distribution over A; confirming that for S = 0, no negative vorticity is generated

due to zero uθ everywhere. The rate of production of negative vorticity from vortex

tilting appears to be constant for a given S for T ∗ > 2, and mainly contributed by

Region III. It suggests that even though uθ intensity in the vortex core decreases over

time due to viscous diffusion (see section 3.3.4), the production rate is maintained,

since the gradient w.r.t. z is contributed to from the peripheral area of the core.

The production rate is also a non-linear function of S, as evidenced by the uneven

spacing between the lines in Figure 3.9 (b).

Thus, the dependence of ΓT on time can be evaluated as

ΓT (t) =
1

2

∫ t

0

∫
A

[
∂

∂z

(
uθ

2

r

)]
dA dt, (3.23)

which suggests that ΓT scales like

ΓT ∼ u2θ ∼ (SU0)
2 ∼ S2. (3.24)

Figure 3.10 (a) presents the time variation of the circulation associated with the
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Figure 3.10: (a) Time variation of Γ(−), the circulation associated with ωθ(< 0)
in regions II and III of Figure 3.9 (a). Inlet Case B, for S > 1/4, shows behaviour
consistent with that for Case A. [Symbol legend is the same as that for figure 3.8
(a)]. (b) Dependence on S of the total circulation

∑
t Γ(−) associated with ωθ < 0

in Regions II and III, integrated over 0 < T ∗ ⩽ 6, and that contributed by vortex
tilting calculated via equation (3.23); although these results are for inlet Case A,
those for inlet Case B show consistent behaviour, but are roughly 3% higher for each
S.

negative vorticity in Regions II and III, excluding Region I. This circulation is

denoted Γ(−), and calculated by integrating ωθ over the two Regions. It suggests

that for S ⩾ 1/2, Region III (vortex tilting ΓT) is the main source of negative

vorticity generation, and Γ(−) scales with S2 according to equation (3.24). For

S = 1/4 and both inlet Case A and B, the main contribution to Γ(−) is Region

II, and therefore the scaling does not hold; for S = 1/4 and Case B, the weaker

∂uz/∂r diminishes the magnitude of Γ(−) compared to that for Case A. Note that

the stretching term in equation (3.17) does not contribute to the generation of Γ(−)

in an inviscid flow, according to Kelvin’s circulation theorem.

In addition, Figure 3.10 (a) shows that the production of negative vorticity starts

in tandem with the formation of the primary ring. Unlike the flow studied in Brown

and Lopez (1990) and Darmofal (1993), where vortex breakdown is caused by flow

instability, for the vortex ring flow considered here, which is a starting swirling jet,

the roll-up of the primary vortex core triggers the breakdown from t = 0. For any

S > 0, u2θ > 0, and the ur induced by the primary core promotes the generation of

negative ωθ by tilting ωz.
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The total negative vorticity produced from vortex tilting during formation can

also be calculated from equation (3.23) by setting the upper integration limit to

T ∗ = 6, the total discharge time. The result is shown in figure 3.10 (b) in terms of

S dependence. The variation of the total ΓT is consistent with that of Γ(−), with

the difference contributed by Region II, which in general increases appreciably with

S.

It is worth noting that Naitoh et al. (2014) reported low intensity negative vor-

ticity in Region III, which dissipates quickly without much interaction with the

primary ring structure where ωθ > 0. The important difference in their flow field is

the low piston stroke ratio of L/D < 2, where almost all the vorticity flux through

the nozzle exit was able to be entrained into the primary ring volume. Small L/D

gives rise to a reduced circulation of the primary ring, and subsequently diminishes

the negative vorticity production rate by weakening vortex tilting (as discussed fur-

ther in section 3.3.3). Thus, it can be argued that the formation of regions of ωθ < 0

is related more to the vortex tilting mechanism triggered by the swirling primary

vortex ring structure.

3.3.3 Growth of the primary ring radius R

In Figure 3.11 (a), the dependence of the trajectory of vortex’s centroid on S, calcu-

lated via equation (3.5) for inlet Case B, is compared; the background image shown

is the ωθ contour for S = 0 at T ∗ = 8. It reveals an unequivocal incremental trend

for the ring radius R in the r-direction, accompanied by a strong decrease of the ring

core penetration distance in the z-direction as S increases. This is in agreement with

the experimental findings of He et al. (2020b) for a similar inlet condition, although

at a Re an order of magnitude higher and swirl not strictly of solid-body rotation

type. For S ⩽ 1/2, trajectory dependence on S appears to be weak; for S > 1/2,

this dependence becomes clearly stronger and seems to have a more-or-less linear

dependence (equal spacing) on S. For inlet Case A, similar trajectories and contour

plots arise, with a clear secondary ring arising in the wake for S> 0; unlike Case B,

no secondary ring is present when S = 0.
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(a)

(b)

Figure 3.11: (a) Swirl number specific vortex core centroid trajectories for T ∗ ⩽ 8
[Case B]; shown also is the ωθ contour plot associated S = 0 at T ∗ = 8. (b) Evolution

of the ring radius R [Case A]; the solid line is the fitting function R ∼ (T ∗)1/4 for
S = 0. The direction of the arrow in (b) indicates increasing S. [Symbol legend is
the same as that for Figure 3.8 (a).]
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In previous studies, growth of the ring radius in the presence of swirl has com-

monly been attributed to the centrifugal force associated with uθ in the core but

has not been discussed in any detail. In Virk et al. (1994), where uθ peaks in the

ring core, the ring growth rate is much smaller (≈ 4%); since the swirl in their work

is parameterised according to the degree of polarization, it is difficult to directly

compare their swirl intensity with that of the present work. The isolated Gaussian

ring prior to the superposition of uθ can effectively be considered as being formed

after a sufficiently small discharge time. Alternatively, in the experimental study of

Naitoh et al. (2014), for a similar physical formation process, the growth rates of R

for similar S values are also smaller. This discrepancy is likely owing to the smaller

discharge ratio, which was L/D = 2, compared to the value 6 in the present study.

It suggests that whilst the centrifugal effect is indubitably responsible for the radial

growth of an isolated and well-formed swirling ring, it is not the dominant factor

during the vortex roll-up process, not least for long discharge times.

In Figure 3.11 (a), a secondary ring is seen to be forming at the far end of

the trailing jet, as highlighted; see also Figure 3.2 (d). Typically one (sometimes

two) secondary ring(s) can be observed to form just after discharge terminates, due

to shear layer instability, but they should not be confused with a stopping vortex

having the opposite sign to the leading ring. Their characteristics depend strongly

on S. The only exception is for S = 0 and Case A, where no clear secondary ring is

seen. This is because this case has the most stable shear layer of all the cases under

investigation; it has zero swirl and its shear layer is also thicker than for S = 0 and

inlet Case B, as mentioned in section 3.3.2.

For inlet Case A, Figure 3.11 (b) shows that for a ring without swirl, S = 0, the

behaviour of R can evidently be described by a power law in T ∗, viz. R ∼ (T ∗)γ

with γ ≈ 1/4. It stems from dimensional analysis by considering the conservation

of the specific hydrodynamic impulse, I, of the isolated leading ring when S = 0 at

high Re where viscous effects are unimportant (Gan, 2010; Glezer and Coles, 1990)

R(t) ∼ (t− t0)
1
4 (I)

1
4 , (3.25)
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where t0 is some virtual time origin to account for the orifice radius Ro. By neglecting

the effect of added mass and the trailing jet:

I =
1

2

∫
V

x× ω dV ≈ π

∫
Ac

r2ωθ dA, (3.26)

which is unidirectional in z. x is position vector in cylindrical coordinates x =

(r, θ, z). The small discrepancy between the fitted line and the data points in Fig-

ure 3.11 (b) can be attributed to the effect of the trailing jet as well as the moderate

Re. For S > 0, no reasonable corresponding power law relation is found due to a

non-linear mechanism associated with swirl, which is discussed below.

Figures 3.12 (a) and (b) compare ωθ contour plots when S = 0 and 1 for inlet

Case A, together with instantaneous in-plane streamlines in the moving frame of

reference travelling at the instantaneous propagation velocity of the leading primary

vortex ring, u′z, in the axial, z-direction (this is discussed further in section 3.3.5).

The stagnation point, denoted as sp, is determined to lie at the axial position where

uz = 0 at r = 0 in this moving frame. For S = 0, figure 11 (a), the primary

vortex core essentially moves in the axial direction with the radial velocity of the

core u′r ≪ u′z. The primary vortex is surrounded by the classical-shaped bubble

(with wake) as revealed by the streamlines. The stagnation point is always located

upstream of the vortex core as shown in Figure 3.12 (c), with Zsp, the difference

between the z coordinate of sp and that of the vortex core centroid, slowly increasing

with time. This reflects the growth of the ring bubble volume due to entrainment

of surrounding ambient fluid into the bubble (Gan, 2010). Although not shown,

similar behaviour is observed for S = 1/4 and 1/2.

In contrast, for S = 1, Figure 3.8(b), the vortex bubble breaks down as if the ring

is about to pass over a (moving) bluff body. The relative position of the stagnation

point, as shown in Figure 3.8(c), suggests that initially at T ∗ = 0.8, the shape of the

bubble is similar for all the S cases, but for S ⩾ 3/4, the stagnation point gradually

moves towards the primary core, passing through (Zsp = 0) at T ∗ ≈ 4 and 5.6,

when S = 1 and 7/8, respectively. This upstream translation (in the moving frame)

implies a deceleration of uz at r = 0 around the stagnation point, which, in turn,
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Figure 3.12: Instantaneous ωθ contour plots at T ∗ = 6.4 for (a) S = 0, (b) S = 1
[Case A]; the overlaid dashed lines are the in-plane instantaneous streamlines in
the frame of reference moving at the instantaneous u′z. sp indicates the location
of the stagnation point on r = 0 in this moving frame and Zsp is the distance
between sp and the vortex core centroid. (c) Dependence of Zsp on time [Case A];
the corresponding dashed lines shown are for Case B and S = 0 and 1 only, since
the remaining S cases follow a pattern consistent with Case A. [Symbol legend is
the same as that for Figure 3.8 (a).]
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accelerates ur as a consequence of satisfying continuity, similar to the breakdown

mechanism in a continuous swirling jet (Billant et al., 1998; Darmofal, 1993). This

is associated with the formation of the ωθ < 0 region, as can be clearly observed in

Figure 3.12 (b) echoing Figure 3.9 (a), and can be interpreted via the Biot-Savart

integral (Brown and Lopez, 1990):

uz (0, z) =
1

2

∞∫
−∞

∞∫
0

r2ωθ

[r2 + (z − ź)2]3/2
dr dź. (3.27)

That is, regions of ωθ < 0 must be responsible for the deceleration of uz near the

stagnation point and hence the behaviour change of Zsp with S. The S dependent

accelerated ur, induced by the primary vortex core in the present case, further

promotes the generation of negative vorticity, creating a non-linear feedback for

it (Darmofal, 1993), as well as for the behaviour of R in Figure 3.11 (b) and the

downstream movement of the stagnation point in Figure 3.12 (b). This complex

mechanism explains the difficulty in identifying a single working scaling law for R

and all S.

Likewise, Figure 3.12 (c) also shows that the behaviour of Zsp varies non-linearly

as a function of S, showing an abrupt change between S = 1/2 and 3/4, suggesting

the existence of a critical (or minimum) swirl number 1/2 ≲ Sc < 3/4 for breakdown

to occur. Finding this critical Sc is left as topic for future investigation.

3.3.4 Distribution of azimuthal velocity uθ

In previous numerical studies (Cheng et al., 2010; Hattori et al., 2019), swirl was

superposed onto a well-formed circular Gaussian vortex ring (in terms of the ωθ

distribution) as an axisymmetric and Gaussian distributed uθ(r), with maximum

intensity at the core centre. However, in practice, such a distribution of uθ is hard

to realise, if indeed possible; instead, it is more practical to introduce it via the

roll-up process of the swirling vortex sheet in inlet geometries like Case A and B,

as demonstrated in Figure 3.13 (a) which shows the swirling fluid material in the

vortex core region appears to be diluted by engulfing the non-swirling ambient fluid

at this early roll-up stage. The weaker uθ in the core centre for Case A can plausibly
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be attributed to the roll-up of the non-swirling fluid in the short 0.1Do long nozzle

section (see Figure 2.4) at the beginning of the formation process, which is equivalent

to T ∗ ∈ (0, 0.1].

The distribution of uθ(r) through the vortex core centre is plotted in Figure 3.13

(b) together with the distribution of ωθ(r). The vortex core can clearly be identified

as the classical Gaussian like ωθ distribution centred at r ≈ 0.6Do for both inlet

Cases A and B. It can be observed that at the core centre where ωθ peaks, the

magnitude of uθ is only about 1/5 and 1/2 of the maximum input swirl velocity ΩRo,

or SU0, for Case A and B, respectively. This is approximately a local minima, instead

of a local maxima. The peripheral region at r ≈ 0.55Do and 0.7Do, having larger

uθ, is the trace of the rolled-up layer from the edge of the orifice (see Figure 3.13

(a)), which does not diffuse towards the core centre in an efficient manner to make it

Gaussian even over the entire scrutinised duration. In contrast, the viscous diffusion

leads to a more homogeneously distributed uθ(r) in the core area for both cases,

diminishing their initial inhomogeneity. This is illustrated in Figures 3.13(c) and

(d), where the time dependence of the uθ distribution in the core is presented. By

T ∗ ≈ 4, approximate homogenisation is reached and the geometrical dependence

fades out thereafter in a manner of similarity. The local minima at rc/a ≈ 1.8,

separating the shear layer and the core area, also appears to persist.

In Figure 3.13 (b), the inner shear layer can also be seen as a second ωθ peak

centred at r ≈ 0.5Do, aligned with the orifice edge. The ωθ intensity of the second

peak for Case A is also larger, in line with the primary peak. The shear layer

associated with uθ is also consistent with this second peak. This is reflected by an

almost linearly rapid drop of uθ over the range 0.45Do ≲ r ≲ 0.53Do, at almost

the same rate for both orifice geometries. For r ≲ 0.45Do, ωθ ≈ 0 and solid-body

rotation manifests in both cases as a constant gradient ∂uθ/∂r, with that of Case B

appreciably larger as expected.

The typical ωθ distribution shown in Figure 3.13 (b) largely replicates that of a

non-swirling vortex ring with a Gaussian core during formation (figure not shown),

which suggests that introducing swirl does not significantly alter the similar ωθ

distribution in the core area, and hence the fundamental roll-up process. However,
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Figure 3.13: (a) Contour plot of the magnitude of uθ in the r− z plane for S = 1 at
T ∗ = 0.8 [Case A and B]: the vertical dashed lines shown pass through the vortex
core centroid based on ωθ (point P2), determined by equation (3.5); point P1 marks
the maximum uθ along the dashed lines. (b) Distribution of uθ and ωθ along the
dashed lines in (a). (c-d) Variation of uθ(r) distribution, at different times, in the
core area [Case A and B], where rc is the local radial coordinate with rc = 0 at
the core centroid; a is the time dependent characteristic core radius, as defined in
section 3.3.6.
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different orifice geometries do have a clear impact on the peak ωθ. That is, whilst

Case B results in stronger uθ in the vortex core, ωθ there is weaker, as also shown

in Figure 3.6.

Figure 3.14 presents the evolution of the averaged swirl intensity uθ over the core

area where ωθ ⩾ ωθ(max)e−1:

ūθ =
2π

a

∫ rc

o

uθrdr. (3.28)

A key feature is the dependence of uθ on orifice geometry. Owing to the discharge

of an initially non-swirling fluid volume contained within the short 0.1Do nozzle

section, the maximum uθ attainable in the core centre for Case A is ≈ 0.35ΩRo. In

the absence of such a non-swirling volume, the maximum uθ in Case B is ≈ 0.5ΩRo.

The non-swirling volume in Case A also leads to a gentle increment of uθ but of short

duration (for T ∗ ≲ 1.2) before decay starts, whilst Case B displays a monotonic

decay of uθ in the core centre. The difference between the uθ intensity as well as its

decay rate for the two geometries becomes fairly small after discharge terminates at

T ∗ = 6. Comparing the dependence of uθ on S, it is clear that stronger swirl has

lower resistance against uθ decay, for both inlet geometries. The decay of uθ can be

well described by an exponential function of the form

uθ
SU0

∼ C1 exp (−C2T
∗) + C3, (3.29)

where C1, C2 and C3 are coefficients which are obviously S dependent even after the

scaling factor S is incorporated. Figure 3.13 infers that the swirl component uθ in the

vortex core originates from the rolling up of the swirling shear layer outside the inlet

orifice’s edge. It then diffuses according to the effect of viscosity. The distribution of

uθ(r) around the vortex core can be considered as a canonical diffusion problem of the

axial velocity w inside a circular zone of infinite length (assuming zero curvature,

R → ∞). The diffusion process is governed by an equation of the same form as

equation (3.9) with the variable ω replaced by w.
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The boundary and the initial conditions are

∂w

∂r

∣∣∣∣
rc=a

= 0 w(r, 0) = F (r), (3.30)

the first of which can be inferred with reference to Figure 3.13 (c,d); a approximates

the radius of the core area and F (r) is the arbitrary initial distribution of w which

stems from the roll-up process. Again, a local coordinate system is adopted where

rc = 0 is at the centre of the circular core area. Being analogous to the equation

of heat conduction in cylindrical coordinates with an insulated boundary, the exact

solution (Hahn and Özişik, 2012) for w is

w(r, t) =
2

a2

∫ a

0

rF (r)dr +
∞∑
n=1

CnJ0 (λnr) exp
(
−νλ2nt

)
, (3.31)

where J0 is a Bessel function of the first kind of order zero and λn is one of the

positive roots of J0(λ) = 0. The coefficient Cn is given by:

Cn =

∫ a

0

rF (r)J0 (λnr) dr∫ a

0

rJ2
0 (λnr) dr

. (3.32)

Relaxing the boundary condition in (3.30), or including the curvature effect of the

finite ring radius R, in general, should only alter the dependence of w(r, t) on r, but

not on t.

Naitoh et al. (2014) suggests that the decay of uθ in the vortex core is attributable

to the exchange of fluid between the ring and the ambient non-swirling fluid, the

rate of which increases with S. Even though this effect could play an important role,

it appears that uθ behaviour is related to the combined effect of viscous diffusion (as

shown) and the increment of ring radius R. As the initially irrotational free vortex

flow outside a vortex undergoing solid-body rotation, which in this case is the jet

rotating in the r − θ plane issuing from the orifice, is similar to a Rankine vortex

albeit of a finite length and influenced by the primary vortex roll-up, uθ in the ring

core approximately decreases as R−1 at a given time. Accordingly, a dimensionless
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Figure 3.14: Spatially averaged azimuthal velocity uθ in the core area, (a) Case A, (b)
Case B; the solid lines are fitting functions for S = 1 of the form of equation (3.29).
(c) Dependence of u∗θ on T ∗ scaled as per equation (3.33); the fitting lines follow
equation (3.34). The direction of the arrow in (b) indicates increasing S.
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swirl velocity u∗θ can be defined as:

u∗θ =
uθR(t)

ΩR2
o

=
uθR(t)

SU0Ro

. (3.33)

The dependence of u∗θ on T
∗ is shown in Figure 3.14 (c). The effectiveness of the

scaling factor R(t) is clear as it removes the effect of S for a given orifice geometry,

which is a dominant factor for the early time evolution of u∗θ. The decay rate of

u∗θ becomes almost geometrically independent after discharge terminates at T ∗ = 6.

Taking equations (3.25) and (3.29), the time dependence of u∗θ can well be described

by:

u∗θ ∼ (T ∗)γ [exp (−µT ∗) + F ] , (3.34)

which is S independent. For the fitting lines shown in figure 3.14 (c), γ takes a

universal value of 1/4, which seems to be attributed to the constant I in the z

direction applied to all the cases tested. The fact that µ = 1/4 (= γ, which could

be a coincidence) suggests that the uθ diffusion rate depends only weakly on the

inlet orifice geometry. F , representing the behaviour of the initial roll-up of uθ into

the core area, see equation (3.31), is apparently geometrically dependent, with a

value 0.16 and 0.22 for inlet Case A and B, respectively. In general, the power law

term in equation (3.34) dominates at early time, T ∗ ≲ 4, with the exponential term

dominating subsequently.

Physically, the scaling of equation (3.33) simply confirms that the strength (cir-

culation) of the Rankine vortex mentioned above is proportional to S, as expected,

and the decay of this circulation becomes asymptotically similar for the two orifices,

following the specified function of time in equation (3.34).

The behaviour of the time dependent (specific) angular momentum L(t) of the

toroidal vortex core can also be inferred from equation (3.33), which can be written

as:

L(t) =

∫
V

x× u dV ∼ V (t)R(t)uθ(t) ∼ f(t, S), (3.35)

where V (t) is the volume of the toroidal vortex core at time t and f(t, S) denotes
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some function describing the evolution of L. It is not difficult to see that:

L (T ∗) ∼ S (T ∗)γ+1 [exp (−µT ∗) + F ] . (3.36)

It can be deduced that for the range plotted in Figure 3.14, L remains an increasing

function of T ∗, and increases according to viscous diffusion; i.e. the vortex ring

entrains uθ from the shear layer to the peripheral area around the core, which then

diffuses towards the core centre. For T ∗ ≫ 9, entrainment of uθ from the shear layer

terminates, and the decay rate of u∗θ is much greater and becomes S dependent. This

later stage is governed by viscous dissipation (figure not shown).

3.3.5 Propagation velocity u′z of the primary vortex ring

The leading primary ring structure propagates downstream as a compact coherent

structure soon after the vorticity delivered by the shear layer outside the inlet orifice

rolls up forming the vortex core. The magnitude of the propagation velocity is

influenced by the self induced velocity of the toroidal core, the shear layer in the

trailing jet, as well as the swirl component. The dependence of this propagation

velocity in the axial direction, u′z, on both time and swirl strength is presented in

Figure 3.15; u′z is calculated based on the azimuthal average of the core centroid

z−coordinate as in equation (3.5).

Evidently, additional swirl decreases u′z, which is supported by previous numeri-

cal and experimental studies (He et al., 2020b; Naitoh et al., 2014; Virk et al., 1994).

The effect of S is weak at small time but gradually becomes more pronounced. The

effect also appears to be stronger for larger S, i.e. u′z(S = 0) ≈ u′z(S = 1/4) ≫

u′z(S > 1/2); u′z(S = 0) ≈ 2.35u′z(S = 1). For S ⩽ 1/2, despite the different absolute

magnitude, the dependence of u′z on T ∗ appears similar to that of a vortex ring

without swirl. That is, u′z tends to a constant maximum value, before pinch-off, as

a monotonic function. For S ⩾ 3/4, the behaviour of u′z changes appreciably. For

example, u′z for S = 3/4 is a maximum at T ∗ ≈ 3, and then decreases to a stabilised

value at T ∗ ≳ 6 when discharge terminates. S = 7/8 and 1 display additional com-

plexity of u′z behaviour after T ∗ = 6; this is related to the influence of the stronger
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Figure 3.15: Leading vortex ring propagation velocity in the axial direction, u′z.
Symbols denote inlet Case A and dotted lines Case B. The direction of the arrow
indicates increasing S.

secondary ring after discharge ends, as shown in Figure 3.11 (a).

Comparing the overall behaviour of u′z for Case A and B, it is evident that except

for very early time, T ∗ ≲ 1, the values obtained for Case A are consistently larger

than for Case B. Their difference, ∆u′z, is relatively small for S ⩽ 1/2, but greatly

increases as S becomes larger. Dependence of ∆u′z on T ∗ also appears to be more

complex for large S. Plausibly, this is owing to the non-linear influence on S of the

ωθ flux, viz. ∂Γ/∂t, leading to a larger ΓRing (see Figure 3.8) and hence u′z in Case

A, as well as the more unstable shear layer of the trailing jet in Case B.

Saffman (1995) provided a comprehensive model of u′z for an isolated and per-

fectly circular thin core ring with swirl, which can be written as:

u′z =
ΓRing

4πR

 ln

(
8

ϵ

)
︸ ︷︷ ︸

T1

− 0.5 +
1

Γ2
Ring

∫ a

0

γ2c (r)

r
dr︸ ︷︷ ︸

T2

− 8π

Γ2
Ring

∫ a

0

u2θr dr︸ ︷︷ ︸
T3

+ f(w),

(3.37)

where ϵ = a/R is the ratio of the core radius a (which is discussed again in section

3.3.6) to the ring radius R calculated via equation (3.5). Term T1 is the canonical

estimation of u′z for a (thin-cored) vortex ring without swirl, which is proportional to

the leading ring circulation ΓRing; term T2 is the additional correction factor which
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involves the detailed distribution of ωθ in the core, viz

γc(r) = 2π

∫ r

0

rωθ(r)dr where γc(a) = ΓRing. (3.38)

In the above equation, and in terms T2, T3 of equation (3.37), a local coordinate

system is applied such that r = 0 is at the vortex core centroid and a perfectly

circular core cross-section is assumed. Term T3 quantifies the contribution from the

azimuthal flow uθ. The last term f(w) accounts for the effect of the trailing jet and

the regions of ωθ < 0, which are not included in Saffman’s model.

Equation (3.37) shows that if f(w) is neglected, for a given ΓRing and R, in-

troducing uθ slows down u′z. Based on a force-balance argument, Lim and Nickels

(1995) suggests that this is related to the balance between the following forces, see

Figure 3.16:

• The concept of vortex line tension, denoted as Fsv, refers to the curve of the

vortex line that creates a ring where the velocity inside the curve is higher

than the velocity outside the curve. This generates a pressure difference that

tends to reduce the size of the ring.

• Kutta lift Fkl is a force generated by a body in relative motion to the ambient

fluid.

• Fr is the force caused by the rotational flow, uc in the core, resulting in a drop

in pressure that contracts the ring.

• FS is the force related to the addition of swirl, uc that increases the centrifugal

force.

Therefore, to preserve the force balance, the Kutta lift has to decrease with the

additional uθ and consequently the propagation velocity u′z of the ring. The effect

of swirl-induced vortex tilting and breakdown further complicates matters.

The contribution from each of the three terms in equation (3.37) is evaluated

and presented in Figure 3.17, which unequivocally shows that T1 dominates the

other two, regardless of S. The direct influence of T3, which is associated with uθ

generated by the mechanism in this study, is one order of magnitude smaller. Its
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Figure 3.16: illustration of the vortex core and the force-balance argument where
Fst stands for the vortex line tension, FS is force related with the swirl, Fr is the
force related to the flow within the core, uc and FKL is the Kutta lift.

contribution is indirectly reflected by R, hence ϵ in T1, as well as the common factor

ΓRing/(4πR). In this respect, the detailed γ(r) distribution in equation (3.38) is

least important. Figure 3.17 (a) also suggests that the contribution when S = 1 to

T1 is larger than when S = 0, owing to smaller ϵ, but the overall u′z is significantly

smaller as demonstrated in Figure 3.15, because of the smaller common factor. It

shows that the radius of the leading ring R is the key parameter determining u′z.

Figure 3.17 (b) demonstrates that T3(A) < T3(B), inline with the findings for the

spatially averaged uθ in the vortex core discussed in section 3.3.4. Influence from

both diminishes, as uθ decays under viscous diffusion.

3.3.6 Formation process of the leading ring

Determination of the formation number F, according to the definition of Gharib

et al. (1998), is illustrated in Figure 3.18 (a), which is the value of T ∗ when the total

circulation Γ delivered by the orifice attains the maximum possible circulation of the

leading ring, ΓRing, following pinch-off. Despite the three-dimensional nature of the

flow, i.e. the instantaneous streamlines around the vortex core are of helical type

owing to the swirling component, and discharge time also impacts on the detailed
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Figure 3.17: (a) Comparison of the relative contribution, Tn, to u
′
z from the three

terms in equation (3.37) for S = 1, where (A) and (B) denote inlet Case A and B,
respectively. The shades of grey increases from T1 to T3, T1 being the lightest shade.
The area under the dashed line in (a) is for the T1 term for the case S = 0. (b) is a
magnified view of the area in (a), represented by the dashed box in the bottom left
hand corner.

formation process as discussed in Limbourg and Nedić (2021), here the classical

circulation based formation number evaluated in the r−z plane is investigated, since

the enstrophy of the flow is dominated by ωθ. However, only ωθ > 0 is included when

calculating the circulation for both the total domain and the leading ring ΓRing. As

demonstrated in section 3.3.2, regions of ωθ < 0 originate from the tilting of ωz (the

swirl component). It is not produced by the inlet orifice directly, and its influence

is taken into account in terms of interaction and cross-cancellation with the region

of ωθ > 0. As S increases, the contribution from the negative vorticity becomes

significant as shown in Figure 3.10. For comparison purposes the total circulation

is calculated, including ωθ < 0, and also displayed for S = 1; including the negative

vorticity, leads to the total circulation dropping to zero at T ∗ = 8 when the leading

ring just gains maximum positive ωθ. For S = 0, the total circulation is largely

unaffected in the absence of ωθ < 0 production.

The total circulation in Figure 3.18 (a) shows that even though the Γ flux at the

orifice exit increases with S, see equation (3.7), cancellation of positive and negative

vorticity leads to a similar growth rate for the different S cases, especially at early
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Figure 3.18: (a) Determination of the formation number F based on the variation
of the total, ΓTotal, and the leading ring, ΓRing, circulation with T ∗ for inlet Case A.
The leading ring circulation value ΓRing is taken from Figure 3.8 (b). Symbols are for
Γ calculated from positive ωθ (with a small threshold) only; dashed lines represent
Γ obtained without applying a threshold (including ωθ < 0). (b) Dependence of
formation number on swirl number S. ♢ F (H), ⃝ F (A), 2 F (B) where k = dF/dS.
(A), (B) and (H) signify Case A, Case B, and He et al. (2020b), respectively.
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time. Also because of such cancellation, the growth rate of the total circulation

when S = 1 decreases, unlike that for S = 0 where the growth rate remains constant

in accordance with the constant ωθ flux at the orifice exit. The total circulation

maximises when the discharge terminates at T ∗ = 6, as expected. After that the

total circulation when S = 1 decreases dramatically because of cancellation by the

strong negative vorticity, but ΓRing continues to grow until T ∗ ≈ 8. The dependence

of F on S is essentially determined by the maximum ΓRing alone, which is detailed

in section 3.3.2, because of the insensitivity of S to the total circulation magnitude.

F determined in this way is presented in Figure 3.18 (b) for Case A and B,

together with the experimental results in He et al. (2020b). For S = 0, F ≈ 3, which

is similar to the simulation result of Rosenfeld et al. (1998). The values of F in the

experiment of He et al. (2020b) are smaller but in a consistent way at a given S,

plausibly owing to the higher turbulence levels introduced by the swirl generating

vanes and the slightly different ways of determining F. Figure 3.18 (b) reflects a

remarkably similar linear relation between the behaviour of (the circulation-based)

F with S, excluding and offset by the value at S = 0. It is insensitive to Re,

turbulence level, and the detailed uθ distribution in the vortex core from a practical

swirl generation mechanism. In particular, the two orifice geometries result in very

similar gradients, k.

A second method proposed by Gharib et al. (1998) for the determination of F

uses the generic dimensionless kinetic energy α defined as:

α =
E√
ρIΓ3

, (3.39)

where Γ and I are calculated from equation (1.2) and (3.26), respectively. In energy

terms, pinch-off occurs when α delivered by the nozzle (decreases with time) drops

to the asymptotic value of an isolated ring αr. For rings with S = 0, the leading ring

reaches an asymptotic status at T ∗ ≈ 12, as shown in Figures 3.8 and 3.18 (a). This

occurs when the leading ring pinches-off from its trailing jet, and the corresponding

limiting energy for the leading ring is αr ≈ 0.33. As swirl uθ induces ωθ < 0 for

the S > 0 cases, no asymptotic status is reached, due to vorticity cancellation.
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Figure 3.19: The dependence of (a) ϵ = a/R and (b) αr calculated using equa-
tion (3.40), with time for inlet Case A. Similar behaviour is found for inlet Case B –
the dashed curve shown on both figures is for this case and S = 0. The direction of
the arrow indicates increasing S. [Symbols legend is the same as that for figure 3.15.]

Approximating the ring as a member of the Norbury-Fraenkel family (Fraenkel,

1972; Norbury, 1973), Shusser and Gharib (2000) proposed an expression for αr as

a function of a single parameter ϵ, defined as the ratio of core radius a to ring radius

R, such that:

αr =

ln

(
8

ϵ

)
− 7

4
+

3

8
ϵ2 ln

(
8

ϵ

)
2

√
π

(
1 +

3

4
ϵ2
) . (3.40)

The core radius a is taken as the equivalent radius for an area of ωθ ⩾ ωθ(max)e−2,

and ϵ = a/R is plotted in Figure 3.19 (a). As discussed above, the consequence of

adding swirl is reflected in the r − z plane in the promotion of ring radius growth.

This tends to reduce a because of the stretching of the vortex core, which in turn

significantly reduces ϵ. In comparison, the slow incremental change of ϵ for S = 0

is the result of (viscous) diffused core area counteracting the growth of R; see Fig-

ure 3.11. Thus, αr increases with S as shown in Figure 3.19 (b). Consequently, the

minimum rate of energy delivered by the orifice, necessary to support the formation

of the vortex ring, is reached early, which leads to a decreased F.
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The variation of αr, with the resultant formation number is in line with that

reported in Dabiri and Gharib (2005) where their αr is manipulated by an iris nozzle

whose exit diameter can be varied during ring formation. For an expanding exit,

α delivered from a nozzle discharge increases, which tends to delay the pinch-off of

the leading ring and increase F (Gharib et al., 1998). This however is counteracted

by the higher R growth rate of the ring, increasing αr by 25%, reducing the gain

of circulation, which results in only a small increment of F. For a reducing exit, α

delivery from a nozzle is basically unaffected but the modified ωθ distribution in the

vortex core diminishes αr to a value close to Hill’s spherical vortex and consequently

F is up to 70% higher than for a static nozzle exit diameter. This is consistent with

what is shown in Figure 3.18 (b) and 3.19 (b) for a given inlet geometry. Additionally,

comparing the two S = 0 cases, the slightly smaller αr in Case B also leads to a

larger F.

To better understand the ΓRing growth in Figure 3.8 (b), Figure 3.20 (a) examines

its time derivative for S = 0 and 1, revealing a decreasing functional relationship

with time. This agrees with the decrease over time of energy delivery from the

orifice to the leading ring (Gharib et al., 1998). S = 0 for inlet Case A shows a mild

∂ΓRing/∂t decrease with time up to T ∗ ≈ 9; whilst for S = 1, the decrease is roughly

two-fold faster on average for T ∗ ⩽ 6 and is similar for both orifice inlet geometries.

This can be plausibly explained by the larger αr for S = 1, see Figure 3.19 (b),

where energy delivery by the orifice is relatively less efficient.

The additional uθ does not seem to contribute efficiently to the energy supplied

from the inlet orifice to the leading ring, where the swirl component of the kinetic

energy, u2θ, is a small fraction (20% for T ∗ < 2 to 6% for T ∗ = 4 for S=1) of the

r − z plane components, u2z + u2r, in the core area. In contrast, its contribution is

adverse, in terms of the generation of ωθ < 0 regions (from vortex tilting) leading to

cross-cancellation of ωθ > 0 (originating from the orifice) in two regions as shown in

Figure 3.9 (a) and 3.12 (b). The first is in the trailing jet, especially the part close to

the ring core in Region III, which strongly affects the last stage of vorticity delivery

to the core. The second is over a large area surrounding the primary ring core,

which modifies the ωθ distribution from Gaussian-like on the core edge in contact
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Figure 3.20: (a) Dependence of the time derivative of the ring circulation for S = 0
[Case A] and 1 [Case A and B], with time. (b) Ratio between the maximum ωθ in
the trailing jet and the maximum ωθ of the primary vortex ring at T ∗ = 8 [Case A
and B].

with the region of ωθ < 0, reduces the core radius slightly and further diminishes ϵ

and hence increases αr.

Finally, in Figure 3.20(a) when T ∗ ≥ 6, a faster decay of ∂ΓRing/∂t is observed for

both inlet cases with S=1. This is attributable to the formation of Kelvin-Helmholtz-

like instability in the shear layer promoted by the addition of swirl that amplifies as

a secondary ring forming at the downstream end of the trailing jet after discharge

terminates at T ∗ = 6, as discussed in section 3.3.3. The secondary ring engulfs

the surrounding vorticity in the shear layer and, therefore, diminishes the vorticity

delivered to the leading vortex ring affecting its formation process (see also Gao

and Yu, 2010; Zhao et al., 2000). This is observed in the slight difference between

cases A and B (T ∗ ≥ 6) where the former decreases faster due to the formation of

a stronger secondary ring as shown in Figure 3.20(b). It is also evident that ωθ(jet)

increases with S non-linearly, which even exceeds the ωθ(max) of the primary ring

for Case A and S > 3/4. This agrees with the stronger shear layer delivered by Case

A discussed in section 3.3.2, even though it is less prone to instability than for inlet

Case B ( section 3.3.2).
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3.4 Conclusion

In the present study, the physical effects of additional swirl, for swirl numbers

S ∈ [0, 1], on orifice generated circular vortex rings have been investigated over

their formation process, together with their subsequent further development soon

after discharge terminates. The formation of strong negative azimuthal vorticity

ωθ < 0 is a striking feature observed to surround the primary vortex ring core from

time zero; the associated circulation Γ(−) ∼ S2. This is believed to be generated

by the tilting of ωz, which acquires a projection in the θ direction generating the

gradient of ∂uθ/∂z, eventually leading to a vortex breakdown type of mechanism for

S > 1/2 given sufficient discharge supply. The breakdown effect is manifested by

the displacement of the windward stagnation point downstream of the primary ring

core position. The region of ωθ < 0 surrounding the primary vortex ring plays an

important role for rings with S > 0. Firstly, it displaces the windward stagnation

point (in a moving frame), further promoting the vortex breakdown process; sec-

ondly, it reduces vorticity delivery to the ring core by cross-cancellation of ωθ > 0

at the edge of the primary vortex core.

Another important feature is the dependence of the non-linear growth of the

ring radius R on S, which is a direct consequence of vortex breakdown. R, which is

responsible for the stretching of the toroidal vortex core in the θ direction, is shown

to be a key scaling factor for the intensified peak vorticity in the primary core,

ωθ(max), and the diminishing swirl intensity in the core centre, uθ, at a particular

moment in time. Viscous diffusion, on the other hand, significantly contributes to the

time evolution of these two quantities. The increased R is also the dominant factor

for the reduced self-induced leading ring propagation velocity, u′z, with increasing S.

Compared to R, the direct contribution from uθ to u′z appears to be unimportant.

Increased R growth with increasing S is a critical factor in understanding the

formation process. The circulation based formation number F is shown to be a

decreasing function of S, following a linear relationship whose coefficients appear to

be insensitive to the detailed vortex roll-up process. The decreasing dependence of

F on S is mainly caused by: firstly, the decreased core size to R ratio increasing

the dimensionless ring energy αr; secondly, cancellation between positive and the
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negative ωθ in the region peripheral to the ring core; thirdly, the adverse influence

of a secondary ring that forms on vorticity delivery to the leading ring at the end of

the discharge period.

Finally, comparing the same S, the short nozzle of inlet Case A provokes an ap-

preciably larger vorticity intensity in the centre of both leading and secondary rings,

but smaller swirl intensity in the leading ring core area. Nonetheless, this does not

appear to have significant impact on other physical quantities.
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CHAPTER 4

Experimental study of swirling vortex rings

In Chapter 3, it was noted that the distribution of uθ from the swirling jet during

the formation process of the vortex ring is the primary source of the negative az-

imuthal vorticity characteristic of swirling vortex rings. Its generation is related to

its gradient:

1

2

∂

∂z

(
uθ

2

r

)
, (4.1)

which value is higher around the centre of the swirling jet. This negative vorticity

leads to the radial expansion of the vortex ring, which in turn results in a decrease

in its formation number.

In the previous chapter, a solid-body rotation velocity distribution was applied

at the inlet. However, in a laboratory setting, achieving the same condition requires

a tangential stress applied by a rotating cylinder. This stress is dissipated through

viscosity and transferred towards the centre of the cylinder. This phenomenon is

described by the partial differential equation:

∂uθ
∂t

= ν

(
∂2uθ
∂r2

+
1

r

∂uθ
∂r

− uθ
r2

)
, (4.2)
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its solution for a flow inside a single rotating cylinder of radius, a, with a zero

initial angular velocity, uθ(r, 0) = 0, and a cylinder with a constant angular speed,

uθ(a, t) = Ω, is:

uθ(r, t) = Ωr + ΩDo

∞∑
n=1

J1

(
λn

2r
Do

)
λnJ0(λn)

exp

(
−λ2n

4νt

D2
o

)
, (4.3)

where J0 and J1 are Bessel functions of the first kind of order zero and one, and λn

are the value where J1(λ) = 0 (Batchelor, 1967). The velocity evolution correspond-

ing to equation (4.3) is shown in Figure 4.1. The flow is assumed to be a solid-body

rotation only when the tangential stresses inside the cylinder are zero everywhere,

which theoretically takes around 1 minute to establish. Even though using a rota-

tion cylinder requires some time to have a flow fully established, using a partially

established velocity distribution could reduce the formation of negative vorticity due

to uθ close to the centre, where most of the negative vorticity is generated, being

negligible.

Figure 4.1: Velocity evolution of a flow inside a single rotating cylinder. The black
line represents the solid-body rotation velocity distribution.

This chapter is divided into two parts. The first part discusses the challenges

of forming swirling vortex rings using a rotating cylinder. The second aims is to

reduce the formation of negative vorticity and its consequences by using partially
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established solid body rotation velocity distributions.

4.1 Results and discussion

4.1.1 Addition of swirl

As part of the experiment, M-2 generated three angular speeds of Ω = 2, 3.9, and

5.85 rad/s. These speeds were then tested at three different positions within the

acrylic cylinder, which conforms to the swirl system discussed in Chapter 2. The

positions tested were located at l = Do, 2Do, and 3Do from the orifice exit in the

upstream direction. uθ was computed from the experimental data as follows:

uθ = uycosθ − uxsin(θ), (4.4)

where θ is the polar angle in which the coordinate centre coincides with the centre

of the disc. In the figures presented below, a spatial average uθ is used. This average

was obtained by interpolating the uθ field into different concentric circles with radii

r ∈ (0, Do/2] as illustrated in Figure 4.2 (a), and calculating the uθ average from

each circle.

After 60 seconds of continuous cylinder rotation, Figure 4.1 demonstrates that

the flow is fully established. However, in reality, the flow does not achieve a velocity

distribution similar to that of a solid-body rotation. Comparing Figures 4.2 (a) and

(b), it is observed a significant difference in the central region of the tube, where uθ

is almost zero for 0 < r < Do/4, for the latter. Figure 4.2 (a) shows the velocity

distribution of solid-body rotation, while Figure 4.2 (b) shows the actual distribution

of uθ for Ω1 = 2 rad/s and l = 2Do after 78 seconds of rotation. In Figure 4.2 (c),

the velocity profiles in the rotating tube are compared to the theoretical model

represented by dashed lines. The experiment agrees with the mathematical model

during the first 12 seconds. However, at t = 24, the experimental results show a

lower uθ, and this difference increases as r approaches the tube centre, and it is more

pronounced as the rotation time increases. The experimental flow never reached the

solid body rotation velocity distribution.
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Figure 4.2: uθ distribution for (a) a solid-body rotation, (b) experimental results
for Ω1 = 2 rad/sec and l = 2Do after 78 seconds of rotation. (c) Evolution of the
velocity profile, theoretically represented in dash lines and experimentally for the
same parameters as (b) (Batchelor, 1967). The velocities used in equation (4.4)are
illustrated in (a).

The angular velocity of the rotating cylinder is another factor that affects the

development of the uθ distribution. In Figure 4.3 (a), the uθ profiles are shown for

a higher angular speed of Ω2 = 3.9 rad/s. Discrepancies with the theoretical model

can be observed even before the first 12 seconds. Moreover, there is an unexpected

decay of uθ near the rotating tube wall, which contradicts the no-slip condition.

These observations suggest the presence of a secondary flow that constrains the

development of uθ. The same graph also shows a curve for Ω3 = 5.8 rad/s and 12

seconds, which demonstrate an even more significant impact of the secondary flow on
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the uθ profile both towards the centre and close to the rotating pipe. Furthermore,

Figure 4.3 (b) illustrates the velocity profiles for Ω1 at l = Do and 2Do, revealing

a faster decay for uθ in the former case. These observations show the correlation

between the secondary flow and the uθ magnitude, as well as a stronger influence

near the orifice exit.

Figure 4.3: Evolution of the velocity profile for (a) Ω2 = 4 at l = 2Do where Ω3 = 5.8
rad/s and (b) for Ω1 = 2 at l = Do and l = 2Do. The former are represented by
dots and pointed out.

In order to study the characteristics of the secondary flow, an axi-symmetric

laminar simulation was conducted in OpenFoam. The computational domain is

depicted in Figure 4.4 (a), which is similar to the one that was utilized in Chapter

3. The domain comprises a cylindrical tank of length 15Do and radius 5Do. A

10Do long pipe with a diameter of Do = 32 mm is located at the centre of the tank

representing a section of the swirl system. It meets the no-slip condition and rotates

with an angular speed of Ω2 = 3.9 rad/s, which is the only source of movement in

the system. Based on this angular speed, the Reynolds number is defined as:

Re =
D2

oΩ

2ν
≈ 1000. (4.5)

A total of 26000 grid points are distributed mainly in the pipe and around the

orifice exit within the computational domain.

95



Figure 4.4: (a) Computation domain of the axi-symmetric simulation showing the
streamlines in the r-z plane generated by the rotation of the pipe. (b) A closer look
at the exit of the orifice. A dashed line marks the location where uθ and uz were
obtained, (c) evolution of uz and (d) uθ profiles where the dash lines represent the
theoretical velocities (Batchelor, 1967) and the symbols the numerical velocities. Uo

is the discharge velocity defined in equation 4.8

In Figure 4.4 (a,b), it is entrained that the rotation of the pipe, in addition to uθ,
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also generates an axial flow, uz, inside the pipe. Near the pipe wall, uz is positive,

where the flow is discharged in the tank. But, close to the pipe centre, uz is negative,

where the flow from the tank is absorbed into the pipe. The source of this flow is

the pressure difference inside the pipe and the tank. It is a known fact that the

pressure in a streamline increases outwards from the centre of curvature, and this

can be expressed by the following equation:

∂p

∂r
=
u2

r
, (4.6)

where R is the radius of curvature, creating a zone of high pressure near the pipe

wall. Due to the fluid being expelled from the pipe, fluid around the orifice exit with

initially zero uθ is entrained to replace it, forming a recirculation zone along the pipe

illustrated by streamlines In Figure 4.4 (b), it can be seen that the entrained flow

occupies the central region of the pipe, decreasing uθ.

The velocity profiles of uz and uθ are shown for Ω2 = 3.9 rad/s and at l = Do

in Figure 4.4 (c) and (d). Initially, uz is negligible for the first 6 seconds. Then,

at t = 12s, a velocity profile is formed where uz has a similar magnitude in both

directions. Subsequently, The velocity of the flow entrained almost doubles the flow

discharge velocity, increasing to above 30% of the characteristic discharge velocity Uo

defined in equation (4.8). The velocity profiles obtained from uθ exhibit differences

with equation (4.3) similar to the experiments, where the solid-body rotation velocity

distribution is not attained. However, there is a difference near the pipe wall. In the

experiments, there was a sudden decrease of uθ in that zone, which was not observed

in the simulation. This suggests that the anomalies observed close to the pipe wall

when the rotation speed increases may be due to an error in the PIV technique, as

it did not consider uz to estimate PIV ∆t.

As the flow with uθ ∼ 0 from the tank moves inside the pipe, its strength

diminishes, which explains the faster deviation from the theoretical model observed

for l = Do compared to l = 2Do in Figure 4.3 (b). This is further supported by

the numerical work in Figure 4.5 (a), where uθ was obtained from various positions

inside the pipe, revealing a significant difference between the orifice exit profile and a

position one orifice diameter (Do) inside the pipe. Moreover, increasing the angular
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speed of the rotating pipe results in more fluid being entrained by the pipe, leading

to a greater decrease in uθ, as demonstrated in the experiments, Figure 4.3, (a) and

numerically Figure 4.5(b).

Figure 4.5: uθ profiles (a) at different positions inside the pipe and (b) different
angular speeds after 75 seconds of pipe rotation.

It is worth noting that the uθ profiles shown earlier in Figure 4.2,4.3,4.4 and 4.5

are still valid solutions of the equation 4.3 regardless of an increase in the angular

speed or the proximity to the orifice exit where measurements were taken. For

example, the velocity profile at l = 2Do for 12 seconds matches with the curve at

l = Do after 24 seconds; see Figure 4.3 (b). The effect of the secondary flow on

uθ(r, t) only affects the exponential term, consequently delaying the time evolution

of the solution. A new solution that takes into account the influence of the secondary

flow would look like the equation (4.7), where η is a function of z and uz:

uθ(r, t) = Ωr + ΩDo

∞∑
n=1

J1

(
λn

2r
Do

)
λnJ0(λn)

exp

(
−λ2n

4νt

D2
o

)
exp (f(η)) , (4.7)

However, further work is needed to determine f(η).

An interesting feature observed during the experiments was a recirculation zone

formed at the orifice exit, similar to the one in Figure 4.4, but on a smaller scale.

This occurred during the rotation of the pipe and before the piston stroke. As
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the secondary flow developed, the fluid near the pipe wall was discharged to the

tank, as mentioned earlier. However, instead of dissipating in the tank due to

viscosity, it was entrained by the pipe, as shown in Figure 4.6, forming a recirculation

zone at the orifice edge. But, it is only observed for the highest angular velocity

Ω(S = 1) ≥ 2 rad/s at the bottom section of the orifice exit. This could be related

to an alignment problem in the swirl system that, as is shown in Figure 4.9 (f),

creates some instabilities in the bottom vortex core.

recirculation 

    zone

Figure 4.6: Illustrative schematic of the orifice exit, where a recirculation zone is
generated due to pipe rotation.

4.1.2 Clean vortex rings

As mentioned at the beginning of this chapter, a partially established distribution

of uθ could help in reducing the generation of negative vorticity and its related

consequences1. The objective is to create vortex rings with an azimuthal velocity

corresponding to different swirl numbers, S, while minimizing vorticity production

with an opposite sign. However, before that, it is essential to create a benchmark

case of swirling vortex rings after 70 seconds of pipe rotation that ensures a fully

established velocity profile.

1For both this chapter and the next one summarizing the experimental work, the vorticity is
expressed in Cartesian coordinates. Instead of using the term ”negative vorticity,” the term ”
OSV’ which stands for opposite sign vorticity, is used.
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Fully established swirling vortex rings

A maximum angular speed of Ω1 = 2 rad/s was selected for the pipe. This choice

was made because it closely matched the theoretical model for up to 12 seconds and

reduced the intensity of the recirculation zone at the orifice exit. Furthermore, in

order to achieve a maximum swirl number of S = 1, the discharge velocity was set

to Uo = 0.03125 m/s, which gives a Re(DoUo/ν) ≈ 1000. A trapezoidal velocity

program, Up(t), was employed, with an acceleration of 0.07m/s2 and a deceleration

of 0.035m/s2. The former lasted for 20% of the piston stroke time, ∆t, while the

latter lasted for 40%. The maximum speed of Up was 0.029 m/s with a piston stroke

time of 2.05 sec. Das et al. (2017) suggested this program to minimize the formation

of stopping vortices. This is discussed in further detail in the following chapter. The

value Uo is the average discharged velocity at the orifice exit:

Uo =
1

∆t

∫ ∆t

0

ϕcUp(t)dt, (4.8)

where ϕ is a positive constant that accounts for the different pipe diameters in the

piston-cylinder and swirl systems as per the continuity equation. The stroke ratio

used is L/Do = 2, and with S(2ΩDo/Uo) = 0, 0.25, 0.5 and 1.

Opposite sign vorticity (OSV) and ring circulation

The velocity field and vorticity contour plots for S = 0.25, 0.5 and 1 are shown in

Figure 4.7. The vorticity is calculated from the velocity field by applying the central

difference scheme to equation:

ω =
∂uy
∂z

− ∂uz
∂y

, (4.9)

expressed in Cartesian coordinates u = (ux, uy, uz). The difference in the production

of OSV is quite evident, particularly between S = 0.25 and 0.5. Although the OSV

is weak for S = 0.25, its location, which is close to the centre, agrees with the finding

from Chapter 3 concerning the relationship between OSV and the distribution of

uθ. This is also observed for S = 0.5 and 1 where the onset of OSV formation
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occurs at the centre and then moves around the vortex core interacting with it and

causing destabilization and vorticity cancellation. Also, the velocity field allows us

to observe the vortex breakdown reported in Chapter 3.

Figure 4.7: Velocity field (first column) and vorticity contour (second column) plot
at T ∗ = 5 for (a,b) S = 0.25, (c,d) S = 0.5 and (e,f) S = 1, with a threshold of
|ω| > 0.25 s−1 for all the cases.

To measure the production of OSV, Figure 4.8 (a) compares the circulation
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generated by the OSV at different S values. The threshold |ω| > 0.25 s−1 is applied

to remove background noise from the cross-correlation process. As expected, the

circulation increases as S increases. For T ∗ < 5, the increase in circulation is

directly proportional to the increment in S. Specifically, when S is raised from 0.25

to 0.5, the resulting Γ∗ doubles that S = 0.25. When S is further increased to 1,

the resulting Γ∗ is roughly twice that S = 0.5. However, the threshold applied is

not enough to remove most of the background noise with a magnitude, |ω| ∼ 1 s−1,

but applying a threshold with that value would remove regions of OSV that are not

related to the background noise. To discard the noise, the time-average circulation

of the OSV for the S = 0 case was calculated and subtracted from the other S cases.

This time-average circulation includes the OSV from the background noise and the

regions I and II; see Chapter 3. The circulation after subtraction is shown as dashed

lines in Figure 4.8 (a). The difference is small for S = 0.5 and S = 1 but larger for

S = 0.25, where the time-average circulation is even greater in some periods given

positive circulations.

In Figure 4.8 (b) and (c), the same dimensionless circulation is shown as in

Chapter 3, Figure 3.10. The numerical simulation revealed that for S = 0.25, the

circulation magnitude was higher than in the other swirl numbers studied, which

collapsed into a single curve. This difference was attributed to a different source

of OSV for S = 0.25, related to the discharge velocity profile rather than the uθ

distribution. The threshold |ω| > 0.25 s−1, shown in Figure 4.8 (b), also has a

higher value for the S = 0.25 case, but it was not separated from the other cases,

being similar to the curve for S = 0.5. As a result, the conclusion from Chapter

3 about the source of OSV for S = 0.25 is not applicable since it has the same

dimensionless circulation as the S = 0.5 case, where there is a strong production

of OSV which comes from uθ. In Figure 4.8 (c), the time-average circulation of the

S = 0 case was subtracted, which decreased the circulation significantly, especially

for S = 0.25. The maximum value of circulation for S = 0.25 dropped from around

2.5 to 1.5. However, it is still close to the circulation obtained from S = 0.5.

Additionally, regardless of the method used to remove the background noise, the

dimensionless circulation for S = 1 had the lowest magnitude. This is explained by
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Figure 4.5 (b), which shows that for higher swirl numbers, the magnitude of uθ is

closer to zero as it approaches the centre. This reduction would also decrease the

formation of OSV observed in Figure 4.8(b) and (c).

Figure 4.8: Evolution of the dimensionless circulation is shown in (a) using equation
(1.2) with a threshold of |ω| > 0.25 represented by marks and subtracting the time-
average circulation for S = 0 represented by dashed lines. (b) and (c) show the
dimensionless circulation, as defined by equation (3.24), for different values of S.
The former uses a threshold of |ω| > 0.25, while the latter subtracts the time-
averaged circulation for S = 0.

When T ∗ is greater than 5, there is a sudden decrease in the circulation for S = 1.

This drop occurs because of the strong interaction between the vortex ring and the

OSV, leading to vortex cancellation. As a result, the circulation values become

similar to those observed for the S = 0.5 case. Figure 4.9 shows the vorticity contour

plots for S = 0.5 (first row) and S = 1 (second row) at different T ∗ values of 4, 5,

and 6. At T ∗ = 4 and S = 1, the OSV has surrounded the vortex core, destabilizing

it and leading to vorticity cancellation. At T ∗ = 5, it is not possible to distinguish
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between the two swirl numbers. Still, a zone of high OSV concentration is formed

for S = 0.5, causing a delay in the cancellation process as a low vorticity magnitude

zone dissipates faster. At T ∗ = 6, most of the OSV has been dissipated or cancelled

for S = 1. This cancellation can be observed in the shape of the vortex core,

particularly the one with negative vorticity, see Figure 4.9 (f). This vortex interacts

with the OSV as well as the recirculation flow at the orifice exit discussed earlier.

Vorticity cancellation can be observed through an alternate method: the vortex

Figure 4.9: vorticity contour plots for S = 0.5 (first row) and S = 1 (second row)
at different T ∗ values of 4 (a,d), 5 (b,e), and 6 (c,f).

ring circulation. Figure 4.10 compares the evolution of the vortex ring circulation

for different values of S. In all cases, there is a decay in Γ∗
Ring, which increases as

S grows due to the effects of viscosity dissipation and vorticity cancellation. After

T ∗ = 5, the rate of decline for S = 1 increases due to a stronger interaction with the

OSV, also observed in Figure 4.8 (a). Although the ring vorticity and OSV both

decrease, the decrease is more pronounced for the OSV because of its weaker vorticity

magnitude. As mentioned before, with reference to Figure 4.9 (f), the negative

vortex core is more unstable than the positive one due to its early interaction with

the recirculation flow at the orifice exit. The dotted line in Figure 4.10 captures this
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effect, showing a faster decrease in its circulation than the positive vortex core. It

is for this reason that all ΓRing and ΓOSV values presented in this section come from

the positive vortex ring core. Due to its short stroke ratio, L/Do = 2, ΓRing was not

determined by any method, but only by a threshold of ω > 1.

Figure 4.10: Evolution of the ring circulation Γ∗
Ring for all S. The dotted line (· · · )

refers to the circulation of the negative core shown in Figure 4.9 (f)

Propagation

Based on Chapter 3, it was concluded that the formation of OSV close to the centre

of the vortex ring results in an axial velocity that moves in the opposite direction to

the ring’s propagation velocity. This leads to the formation of a stagnation point,

which, following the continuity equation, enhances the radial velocity of the vortex

ring. Figure 4.11(a) shows the evolution of the ring radius, R for different S values.

R was determined using the vortex core centroids defined as follows:

R =

∫∫
ωy dydz∫∫
ω dydz

Z =

∫∫
ωz dydz∫∫
ω dydz

. (4.10)

As the swirl number increases, there is a significant increase in the vortex ring

radius. At S = 1 and T ∗ ≈ 6.5, there is a 30% growth compared to a non-swirling

ring. The cases with S=0.25 and 0.5 show a positive increase rate throughout the

studied period. However, for 6.5 < T ∗ < 7.5, the radius of the ring with S=1
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decreases, reaching the same values as S = 0.5. This change in radial propagation

is due to the instabilities triggered by the interaction with the OSV. To observe this

behaviour in more detail, Figure 4.12 shows the trajectories of the cores for a vortex

ring with S = 1 as well as the vorticity contour plots starting from T ∗ = 5, in steps

of 0.5, up to T ∗ = 8. It can be seen that the negative core radius (blue) does not

increase, but rather the opposite happens for 6.5 < T ∗ < 7.5. The same is observed

for the positive core (red) but for T ∗ > 7.5.

Figure 4.11: (a) Evolution of (a) the ring radius and (b) propagation velocity for
different S.

Figure 4.11 (b) shows the different propagation velocities, u
′
z for every S, which

confirms the relation between the ring radius and propagation velocity given by:

u
′

z ∼
ΓRing

4πR
. (4.11)

In the case where S = 1, the rate at which the velocity decays changes when T ∗ = 6.

The speed then stays relatively constant until T ∗ = 8. During this same time

interval, the radius of the ring drops and then begins to increase again after T ∗ > 8.

As expected, the propagation velocity decreases during this time. The same pattern

is observed with the S = 0.5 vortex ring, where there is faster radius growth for
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Figure 4.12: Trajectories of the core centroids obtained from equation (4.10) and
the vorticity contour plots, from T ∗ = 5 to 8, with 0.5 time steps increments.

T ∗ > 7.5, leading to a faster decay of the propagation velocity.

Azimuthal velocity uθ

As described in Chapter 2, the implementation of stereoscopic PIV enables the

examination of the distribution of uθ for different S values as well as the vorticity

contour plot for |ω| = 1 represented by dashed lines. Figure 4.13 displays the uθ

distribution for S=0.5 at T ∗ = 4, 5, 6, 7, 8 and 9.

Initially, the vortex sheet carries uθ from the orifice to the vortex core through

the roll-up process. After the formation of the vortex ring is complete, when the

trailing jet is no longer present at T ∗ ≈ 6, the uθ that was not engulfed by the ring

forms a wake which is stretched and dissipated as the vortex ring moves downstream.

These contour plots illustrate that only a small percentage of the uθ delivered from

the swirl system ends up in the vortex rings. This uθ is mostly derived from the

boundary layer that is formed in the swirl system when the fluid is discharged. This

ensures that the ring engulfs the uθ with the highest magnitude. It is interesting

to note in Figure 4.13 (e) how opposite sign uθ (in comparison with the uθ in the
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Figure 4.13: uθ distributions for S = 0.5 at (a) T ∗ = 4, (b) T ∗ = 5, (c) T ∗ = 6, (d)
T ∗ = 7, (e) T ∗ = 8 and (f) T ∗ = 9. The dashed lines represent a vorticity contour
plot for |ω| = 1.

closer vortex core) moves around the vortex core. This uθ is transported by OSV,

as shown in Figure 4.13 (b) at T ∗ = 5, where two regions of OSV are present around

the centre. Since the uθ distribution is not perfectly symmetric, the corresponding

OSV, for every core, transports uθ that correspond to the other vortex core, as seen

in Figure 4.13 (c) at T ∗ = 6. Another feature only observed for the S = 0.5 case is

found in Figure 4.13(e) and (f), which is the sudden increase of negative uθ. The

mechanism behind this phenomenon is still uncertain, but from a series of vorticity

distributions, it was observed that this is not developed in the z-r plane, but it

is transported in the azimuthal direction. However, further analysis is needed to
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resolve this issue.

Figure 4.14: The uθ distribution in the vortex core is represented by a red dashed
line for S = 1 at different values of T ∗, namely (a) T ∗ = 1.65, (b) T ∗ = 2, (c) T ∗ = 3,
(d) T ∗ = 4, and (e) T ∗ = 5. The red dot indicates the core centroid and the vertical
black dashed line shows where the profile, presented in Figure 4.15, was obtained.
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Figure 4.15: uθ profile evolution at the vortex core. The coordinate system is located
at the vortex centroid and scaled with the ring radius, a.

In Figure 4.14, a closer view of the distribution of uθ in the vortex core for S = 1

is shown. The red dashed line represents the core area, and the red dot represents

the core centroid. At T ∗ = 1.65, the vortex ring is still in the process of formation. It

is observed that uθ is engulfed in the core via the roll-up of the vortex sheet. Later,

uθ covers most of the core area, but its distribution appears to be independent of

the vorticity distribution, leaving zones of low or zero uθ inside the core.

Figure 4.15 shows the evolution of the uθ profile in the core, which complements

the uθ distributions. The profiles were extracted from the vertical dashed lines in

Figure 4.14 and were plotted on a coordinate system with the core centroid set as

the origin and scaled by the core radius, a. A vertical line has been added to indicate

the centre of the vortex core.

For T ∗ = 1.65, there are two peaks for uθ: one for the trailing jet (on the left)

and the other for the uθ that has been engulfed by the vortex core through the

roll-up process but has not yet reached the core centre where uθ is zero. At a later

time, uθ reaches the core centre, but its maximum value was not found at this point

for all the times analyzed, as a Gaussian distribution would suggest. Instead, the

110



uθ distribution is denser in the half closer to the ring centre, as reported in Chapter

3. uθ decays abruptly for the other half. This behaviour is observed in Figure 4.14,

where a weak zone of uθ is located mainly in the second half of the core. It appears

that the uθ distribution is more symmetric in the propagation direction.

To quantitatively analyse uθ in the vortex ring core, the spatial average in the

vortex core was calculated, uθ, similar to that which was done in Chapter 3 –see

equation(3.28)–. The region from where the data was collected is shown by the

dashed lines in Figure 4.13 (excluding the OSV regions), which corresponds to the

core area after applying the threshold and representing only a fraction of the uθ

distribution. The results are presented in Figure 4.16 (a), along with the highest

value of uθ in the core for different S, as Naitoh et al. (2014) presented. Both

parameters exhibit a noticeable variation among the three cases examined, which

corresponds to the difference in angular velocities employed for each case:

ūθ(S = 1) ∼ 2ūθ(S = 0.5) ∼ 4ūθ(S = 0.25). (4.12)

In contrast to the findings in Chapter 3, as illustrated in Figure 3.14, no noticeable

decay in uθ was observed for any of the cases or the effect of vortex ring stretching.

In Figure 4.16 (a), the three dashed lines represent the time averages of uθ for each

S, and with the exception of the case S = 0.5 for T ∗ > 7 where a sudden increment

mentioned above takes place, these constant values accurately describe the behaviour

of uθ over the analysed time period. However, applying the dimensionless azimuthal

velocity:

u∗θ =
4uθR(t)

ΩD2
o

=
2uθR(t)

SU0Do

, (4.13)

used in Chapter 3 to capture the ring radius effect causes a partial collapse of the

different curves shown in Figure 4.16 (c). This partial collapse is more related to

the 1/S factor, as the effect of the ring radius seems minuscule.

4.1.3 Partially established swirling vortex rings

Previously, it was observed that only a small portion of the uθ provided by the swirl

system contributes to the formation of the vortex ring. This small portion is located
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Figure 4.16: Evolution of (a) spatial average uθ in the vortex core where the dashed
lines represent the time average uθ, (b) the maximum uθ in the core and (c) the
dimensionless u∗θ used in Chapter 3 for all S

in the boundary layer that is created during the flow discharge and becomes a vortex

sheet that rolls up to form the vortex ring. Figure 3.4 (a) and 5.17 (b) show that this

boundary layer only represents around 10% of the orifice radius. Therefore, using a

partially established uθ profile it is possible to produce a swirling vortex ring with

a specific S and with a low uθ close to the orifice centre, which would reduce the

formation of OSV.

The previous section established that the theoretical time required to achieve

a solid body rotation profile was approximately 60 seconds, which we refer to as
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”preparation time.” Assuming that only the flow near the pipe’s wall contributes to

forming a vortex ring, increasing the pipe’s angular speed can reduce the preparation

time while maintaining similar flow conditions as in the case of a lower angular speed

with a longer preparation time. To quantify this, the average value of uθ using the

theoretical model for the domain of 0.4 < r/Do < 0.5 was calculated:

uθp =
10

Do

∫ Do/2

0.8Do/2

uθ(r, t)dr. (4.14)

In Figure 4.17 (a), two examples of the areas under the uθ profiles at 5 and 30

seconds are shown, where uθ was calculated. The selected domain represents 20%

of the orifice radius to ensure that most of the uθ located in the vortex core comes

from this region. Figure 4.17 (b) shows the evolution of uθp. During the first 10

seconds, it has a higher increment and then reaches an asymptotic state after 20

seconds. For the ideal case where uθ has a solid body rotation like distribution, the

ūθ for a swirling vortex ring is:

uθp =
10

Do

∫ Do/2

0.8Do/2

uθ(r, t)dr =
10Ω

Do

∫ Do/2

0.8Do/2

rdr =
9

20
DoΩ, (4.15)

or in dimensionless form:

uθp/Uo =
9

10
S; (4.16)

that is, the value reached by uθp in Figure 4.17 (b) as time goes to infinity. Therefore,

to generate a vortex ring with S = 0.5, which implies a maximum uθp/Uo = 0.45

(ideal case), the preparation time needed is less than 5 seconds for a swirl system set

to generate vortex rings with S = 1. For that reason, to compare different swirling

vortex rings, it is important to characterise them, regardless of the angular speed of

the rotating pipe, in terms of how S is defined. The time-averaged angular velocities

shown in Figure 4.16(a) were used for this purpose.
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Figure 4.17: (a) Comparison between the two areas under the uθ profile (based
on the theoretical model) at 5 and 30 seconds and for 0.4 < r/Do < 0.5, where
uθp is calculated. (b) Evolution of ūθp with a Ω set to generated S = 1. The red
dashed lines mark the different preparation times used in the experiment and their
corresponding dimensionless uθ values. The yellow dashed line indicates the uθp
required to create a ring with S = 0.5. (c) Comparison between the time-averaged
uθ for different preparation times and their corresponding uθp, where the scalar
β = 3.4 is applied to compare the velocity behaviours.
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In the upcoming experiment, five distinct preparation times were utilized: 0, 5,

10, 15, and 20 seconds. These times were compared to the previously studied cases

of 75 seconds, representing a fully established velocity profile. It is important to

note that this time interval did not incorporate the period when the piston stroke

occurred, which took approximately 2 seconds. All the other parameters remained

the same as in the previous experiment.

Different vorticity contour plots for varying preparation times are shown in Fig-

ure 4.18. When the swirl system was only active during the piston stroke, no visible

changes occurred in the vortex ring. However, after 5 seconds of preparation time,

the onset of OSV formation is observed, increasing with longer preparation times.

As shown in Figure 4.18 (a), the ring is initially isolated, but as the preparation time

increases, a wake starts to form, despite all the rings having the same L/Do = 2.

In Chapter 3, it was discussed that the addition of swirl increases the vorticity

flux. However, computing the total circulation for each case at T ∗ = 4 resulted in

Γ∗
Total = 1.7±0.1, suggesting that the observed trailing jet is caused instead by a re-

duction in the formation number. This phenomenon is also evident when comparing

the core sizes in Figure 4.18.

In order to classify the vortex rings generated for each preparation time, Fig-

ure 4.19 displays the different values of uθ as well as the maximum uθ in the vortex

core. The time-averaged uθ used to characterize the vortex ring are shown as dashed

lines, and their respective values are presented in Table 4.1 as well as for different

swirl numbers studied in the previous section with the corresponding uθp for each

case. Only values below T ∗ = 5 were used to compute the time average uθ due to

the interaction between the vortex ring and the OSV, which destabilizes the core

affecting the uθ. In both methods of analyzing uθ, a considerable increase is ob-

served between the 0 and 5 seconds preparation time, equivalent to around 50% of

the maximum uθ obtained for the S = 1 case. When the preparation time exceeds

5, the variation between different cases is small. This can be attributed to the rapid

growth of uθp, which is illustrated in Figure 4.17 (b). In the first 5 seconds, uθp

increases from 0 to 65% of Uo, but subsequently, the increment is only around 15%

from 5 to 20 seconds.
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Figure 4.18: Vorticity contour plots at T ∗ = 4 for different preparation times (a) 0,
(b) 5, (c) 10, (d) 15, (e) 20 and (f) 75

S Preparation time (sec)
0.25 0.5 1 0 5 10 15 20

uθ/Uo 0.09 0.17 0.29 0.048 0.2 0.22 0.23 0.24
uθp/Uo 0.225 0.45 0.9 - 0.65 0.75 0.8 0.83

Table 4.1: Time-average azimuthal velocity, uθ, values for different S with a prepa-
ration time of 75 sec and for preparation times: 0, 5, 10, 15 and 20 seconds and
their corresponding uθp.

116



Figure 4.19: Evolution of (a) spatial average uθ in the vortex core where the dashed
lines represent the time average uθ, (b) the maximum uθ in the vortex core for all
S.

According to the model, it estimates that the preparation time required to gen-

erate a vortex ring with S = 0.5 is around 2.25 seconds. Based on time averaged uθ,

the case S = 0.5 is in good agreement with the experimentally obtained value of uθ

for a preparation time of 5 seconds. The difference between the preparation times

is attributed to the secondary flow generated during the pipe rotation. Besides, the

model assumes that all the fluid in the vortex core comes from the flow discharged

through the orifice, which is not entirely accurate as some of the fluid comes from

the ambient flow with null uθ. In order to measure the impact of the engulfing

of ambient flow, Figure 4.19 (c) compares the estimated uθp for different prepara-

tion times with the values obtained in experiments. Although there is a noticeable

difference between the cases, the behaviour is similar, increasing slightly after five

seconds. By multiplying uθ by a scalar β of 3.4, represented in a dashed line, both

curves coincide, compensating for the decrease in uθ due to the engulfing of ambient

flow.
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After 5 seconds of preparation time, uθ increases to 20% of Uo and then only

slightly to 24% over the next 15 seconds. This confirms the effect of the evolution

of the uθp in the uθ engulfed by the ring core. Assuming that the S = 1 case with a

preparation time of 75 seconds has the maximum uθp possible, which is 90%, when

divided by β, the expected velocity is 26.5% meanwhile, the actual time averaged

uθ was 29%, which shows good agreement with the model.

Figure 4.20: Evolution of the dimensionless circulation calculated from the OSV and
subtracting it the time averaged OSV circulation for S = 0 to reduce that influence
of the background noise. (a) For the preparation times: 0, 5, 10, 15 and 20 seconds
and (b) comparing S = 0, 0.25 and 1 cases (dotted lines) with the preparation times
0, 5 and 20 seconds.

Generating swirling vortex rings with varying preparation times is aimed at re-

ducing the production of OSV. Figure 4.20(a) displays the circulations that are

solely calculated from OSV for each preparation time. The average circulation gen-

erated by the OSV for the S = 0 case was subtracted to avoid the background noise.

Similar to uθ, the production of OSV experiences a significant increase between 0

and 5 seconds of preparation time. In the case of zero seconds, OSV production
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is weak and comparable to the circulation caused by background noise, as shown

in Figure 4.18 (a), where no OSV was detected. For preparation times longer than

five seconds and T ∗ < 5, a more notable difference is observed between the various

preparation times, unlike uθ, which remains almost constant. This finding supports

the hypothesis that the OSV is more strongly related to the uθ distribution around

the centre rather than the 20% near the pipe wall. For T ∗ > 5, all the circulation,

except for the zero preparation time, decreases in magnitude due to the vorticity

cancellation discussed in the previous section.

Figure 4.20 (b) compares Γ∗(OSV ) for three preparation times 0, 5 and 20, with

the circulation calculated from S = 0.25, 0.5 and 1. As expected, the circulation for

S = 0.25 has a higher magnitude than the zero seconds case. Based on the model,

the preparation time to produce a vortex ring with S = 0.25 is 2.25 seconds, similar

to the duration of a piston stroke (∼ 2 seconds). Therefore, theoretically, a zero

preparation time would produce a vortex ring similar to one for S = 0.25. However, a

period of approximately 1-2 seconds is necessary to achieve a constant angular speed

in the swirl system. During a five seconds preparation time, there was a noticeable

decrease in circulation magnitude compared to S = 0.5 (represented by a dotted

line). The time average circulation for S = 0.5 is 0.29, while for the five-second

preparation time, it is only 0.23. This represents a 25% reduction in Γ∗(OSV ). As

a result, the vortex ring produced by five seconds of preparation time has a uθ that is

17% higher than that of S = 0.5, with 25% less OSV produced. For the case where

the preparation time is 20 seconds, the reduction in Γ∗(OSV ) is approximately 17%

compared to the case with S = 1. However, it is not reliable to compare these two

scenarios as the one with 20 seconds of preparation time produces a vortex ring with

S ≈ 0.8 according to the model. But, it is noteworthy that for the 20 seconds case,

the value of uθ is 20% lower than that of the S = 1 case. This suggests that shorter

preparation times result in a better combination of reduced Γ∗(OSV ) and uθ. This

supports the hypothesis discussed earlier because uθ is negligible near the centre in

the early stages (see Figure 4.1), and as time progresses, it increases in this region,

leading to an increase in the OSV formation.

Although Figure 4.18 showed the formation of a trailing jet, which indicates a
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decrease in the formation number, Figure 4.21 does not reveal a clear difference in

the ring circulation for the preparation times studied at the early time, T ∗ < 3.

However, a clear decay rate is observed in each case due to vorticity cancellation

and viscous dissipation. As the preparation time increases, the OSV also increases,

which enhances the vorticity cancellation and is reflected in the decay rates of Γ∗
Ring.

For instance, comparing the ring circulation for a preparation time of five seconds

with the S = 0.5 case, the latter has a faster decay rate due to a higher production

of OSV. Similar behaviour is observed for S = 1, represented in a black dotted line.

Figure 4.21: Evolution of the ring circulation Γ∗
ring for all the time preparations.

The dotted line refers to the circulation for S = 0.5 and S = 1.

Previously, it was found that the production of OSV is responsible for the growth

of the ring radius. This is illustrated in Figure 4.22 (a), where the ring radius is

shown for different preparation times. As the preparation time increases, the OSV

production increases, resulting in an increase in R. The mechanism responsible

for this behaviour is discussed in detail in Chapter 3. In the same way that uθ and

Γ∗(OSV ) vary, there is a significant increase between the zero and five seconds cases.

The former has the same values as the no swirl case due to the low production of

OSV. When comparing R for S = 0.5 (represented by the red dashed line) with

the five seconds preparation time, a considerable decrease of about 20% is observed

for the latter. The lower OSV production can explain this decrease during the five

seconds preparation time, which supports the argument presented in Chapter 3.

Besides, due to the higher uθ of the five seconds case, the centrifugal effect discussed
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by He et al. (2020b); Virk et al. (1994) becomes negligible.

Figure 4.22 (b) shows the propagation velocities for different preparation time

vortex rings. As in the previous sections, it follows the relation u
′
z ∼ 1/R. In

Chapter 3, it was discussed using equation (3.37), which describes the propagation

velocity of a vortex ring as well as the importance of each term in the equation, as

illustrated in Figure 3.17. Comparing the five seconds case with S = 0.5 confirms

that the influence of the third term, which involves uθ is minuscule and u
′
z is more

sensitive to R.

Figure 4.22: (a) Evolution of (a) the ring radius, R and (b) propagation velocity for
different preparation times.
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4.2 Conclusions

In this chapter, swirling vortex rings were investigated experimentally. It was shown

that it is not feasible to replicate a fully developed solid body rotation inlet condition,

as employed in numerical simulations, by using a rotating pipe. This is due to the

formation of a secondary flow caused by the pressure difference between the flow

in the vicinity of the rotating pipe wall (which creates a high-pressure region) and

the fluid outside the swirl system. Consequently, as the flow in the high-pressure

region is discharged to the tank, the flow from outside the swirl system with zero uθ

is engulfed to replace it, affecting the development of uθ, especially at the centre of

the pipe. The strength of this secondary flow increases with longer periods of pipe

rotation and higher angular speeds.

Experimental generation of vortex rings with L/Do = 2 and S = 0.25, 0.5, and 1

was carried out. To ensure a fully established inlet flow, the pipe was left rotating for

75 seconds prior to the piston stroke. This period was referred to as the ”preparation

time.” The results obtained show similar characteristics to those of the swirling ring

studied numerically. Opposite sign vorticity (OSV) was formed around the centre of

the vortex ring, with its magnitude increasing with S. This OSV propagates around

the vortex core, leading to vorticity cancellation that destabilised the vortex ring.

Vortex rings with different values of uθ were produced by varying the preparation

time of the swirl system. By increasing the angular speed of the pipe, a vortex ring

with a similar uθ to a S = 0.5 case was produced in just five seconds instead of

the usual 75 seconds of preparation time. This method generates swirling vortex

rings faster and reduces the formation of OSV by shortening the preparation time

during which uθ has not fully developed at the centre of the rotating pipe. When

comparing the Γ∗(OSV ) generated for two vortex rings with similar uθ but different

preparation times and angular speeds, it was found that the shorter preparation

time with the higher angular speed resulted in a 25% decrease in OSV formation.

However, it was reported that the decrease in OSV diminishes as preparation time

increases.

A method has been proposed to determine the average azimuthal velocity, uθ, of

a vortex ring based on the preparation time. This method assumes that only the uθ
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located in the boundary layer formed during the piston stroke will be transported

by the vortex sheet and ultimately be engulfed by the ring. Therefore, the average

uθ value near the rotating pipe wall, uθp, should be similar to the uθ of the vortex

ring. By comparing the uθ of a vortex ring with S = 0.5 generated after 75 seconds

of preparation time with another where this method was applied, it was found that

there was a difference of 17%. This result shows promise, but the model needs

to be more robust and consider the effect of the secondary flow and the angular

acceleration of the rotating pipe.

The production of swirling vortex rings with reduced creation of OSV confirms

some of the findings of the simulation work in Chapter 3, such as:

• For R growth, the formation of OSV is the dominant factor for a vortex ring,

generated by an impulsive discharge of momentum instead of the centrifugal

effect discussed in previous research.

• The propagation velocity of the vortex ring is primarily determined by the

behaviour of R, with a minor influence from azimuthal velocity uθ in the

vortex core.

• The formation of the OSV for vortex rings, generated by an impulsive discharge

of momentum, is related to the uθ distribution in the swirling jet instead of

the ūθ via Dean vortices.
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CHAPTER 5

Enhancing a vortex ring’s circulation via its interaction with

another vortex ring

One of the critical parameters affecting a vortex ring’s formation process is its ra-

dius, which is related to the kinetic energy of the ring as discussed in Chapter 3. The

implication is that to increase the circulation and, consequently, the formation num-

ber of a vortex ring, it is necessary to reduce its radius. Dabiri and Gharib (2005)

achieved this by varying their nozzle exit diameter; during vortex ring formation

they observed an increase of up to 70% in the corresponding formation number. An

alternative approach to reducing ring radius during formation, and easier to perform

in a laboratory, is due to the effect of a preceeding vortex ring.

The experiment described in this chapter aims to enhance the circulation of

the vortex ring by increasing its formation number by manipulating the radius of

the ring during formation through its interaction with an earlier discharged vortex

ring; unlike previous studies, leapfrogging is avoided as it destabilises the following

vortex ring. The study considers the circulation augmentation observed by Qin et al.

(2018), but the problem investigated differs in nature.
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5.1 Problem specification

The focus is on the interaction of two rings only, with a fixed Re = (DoUo/ν) of

around 1900 for all cases; Uo is the time-average velocity of the flow at the orifice

with a magnitude of 0.0625m/s. This value was obtained by applying continuity to

account for the diameter difference between the swirl and piston-cylinder systems,

as discussed in Chapter 4. The time difference, T ∗
off = toffUo/Do, and the stroke

ratio, L/Do, of the leading ring are the two parameters analyzed. By varying the

latter, it is possible to produce vortex rings with different core sizes and propagation

velocities, which can significantly alter the ring interaction. The stroke ratio for the

following ring is fixed at four, which is greater than the formation number (F ∼

2.73), allowing it to absorb more vorticity from the trailing jet due to interaction

with the leading ring.

Previous investigations (Didden, 1979; Lim and Nickels, 1995; Weigand and

Gharib, 1997) have reported the formation of a secondary vorticity known as ”stop-

ping vortices” during the formation of vortex rings. These vortices are generated

when the piston decelerates and a reverse flow region forms at the orifice’s edge,

with an OSV compared to the primary vortex ring. This secondary vorticity inter-

feres with the formation process of the primary vortex, mainly reflected in the rings’

diameter. However, its effect is only relevant during the early formation process,

because of its OSV causing it to travel upstream within the tube and reducing its

influence on the primary vortex ring over time. It is important to note that the

stopping vortex is not related to the vorticity formed at the orifice plate wall, due to

the boundary layer formed by the induced velocity of the vortex core at an earlier

time, having the same sign as the stopping vortex.

The formation of stopping vortices is critical when two or more vortex rings

are generated consecutively. The stopping vortex moves in the reverse direction to

the motion of the leading vortex ring, but the new piston stroke that produces the

following ring pushes the stopping vortex downstream. As Asadi et al. (2018) ob-

served, in their investigation about the propagation of periodically generated vortex

rings, there is a strong interaction between the stopping vortex and the following

ring, which triggers instabilities mainly in the stopping vortex, leading to its break-
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down, causing a significant impact on the formation and propagation of the following

vortex rings as illustrated in Figure 5.1.

(a) (b) (c)

Figure 5.1: Isosurface of vorticity magnitude at three different dimensionless times,
t/T , (a) 2, (b) 3.75 and (c) 5. T is the period of the pulsed jet, and the labels ”L”
and ”S” represent the leading rings and stopping vortices, respectively. Figure taken
from Asadi et al. (2018).

To prevent the formation of stopping vortices close to the orifice edge, all the

vortex rings generated in the tank described in Chapter 2, reported subsequently,

follow the velocity programme proposed by Das et al. (2017). This piston time

history consists of a trapezoidal velocity programme characterized by a slow decel-

eration, in this case of around 40% of the time taken by the piston to complete

one stroke and an acceleration of 20%. These values are in line with their proposed

criteria, where if the ratio of the acceleration impulse Iacc, and total impulse Itotal,

namely Iacc/Itotal < 0.85 no stopping vortex is formed. The impulse is calculated as

I =
∫ t

0
U2
pdt where Up is the piston velocity and the time, t, defines which impulse

has been calculated.

Figure 5.2 provides a visual representation of the parameters and velocity pro-

gramme applied. The first ring formed is labelled ring B and the second ring A.

For the former, three different stroke ratios are studied L/Do = 1.5, 2, 2.5, which

allows for the generation of rings with different core areas and strengths. However,

the focus here is on ring A, for which stroke ratio is fixed at four as mentioned

above. Also, three time differences were implemented, T ∗
off = toffUo/Do = 1.8, 3,

6 for every stroke ratio of ring B. The dimensionless time T ∗
off and T ∗

on = tonUo/Do

represent the piston’s status. In Figure 5.3, the vorticity contour plots for rings A
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and B at T ∗ = 2 are presented to show how the position of ring B varies for each

case studied. Table 5.1 summarises all the parameters used in the experiment, and

Figure 5.3. A total of 26 experiments were conducted, each repeated five times with

a 10-minute interval. Only 10 experiments are presented.

Figure 5.2: Visual representation of all cases studied. Each row shows a different
stroke ratio for ring B, (a-c) L/Do = 1.5, (d-f) L/Do = 2, (g-h) L/Do = 2.5; and
each column represents a different T ∗

off , Up stands for the piston speed and umax is
the highest speed reached by the piston.

Re(DoUo/ν) 1900
Ton(L/Do) Ring A 4
Ton(L/Do) Ring B 1.5 2 2.5
Toff (toffUo/Do) 1.8 3 6

Table 5.1: Reynolds number and the parameter varied in the experiments performed

127



Figure 5.3: Vorticity contour plot of Ring A and B for all the cases studied at
T ∗ = 2. Each column represents a different stroke ratio, 1.5, 2.0 and 2.5, for Ring
B, and each row represents the time difference Toff from top to bottom 1.8, 3, 6,
respectively.
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5.2 Results and discussion

5.2.1 Alterations in the trajectories of two vortex rings dur-

ing their interaction.

The trajectory of a pair of vortex rings can be used to identify how strongly they

interact. The induced velocity of each ring affects the radius of the other ring,

expanding the leading (B) and shrinking the following (A) ring, which in turn affects

the propagation velocity of them both as discussed at the beginning of this Chapter.

In order to study the propagation of a vortex ring, it is necessary to identify the

core’s centroid. These are the points where the velocity is zero in a frame of reference

that moves with the vortex ring (Limbourg and Nedić, 2021). The same definition

as used in Chapter 3 for an axisymmetric vortex is employed here to identify those

points:

R =

∫∫
ωr drdz∫∫
ω drdz

Z =

∫∫
ωz drdz∫∫
ω drdz

. (5.1)

For an accurate core centroid estimation, vortex ring cores must be isolated from

their trailing jet. When conducting experiments, a distinct technique is required to

distinguish and separate the vortex core from the rest of the flow. This is because

the experimental data collected is not as consistent as the numerical data collected

in Chapter 3. It involves enclosing the vortex core in a box (Fig 5.4 (b)) by following

these steps:

• A threshold of 2 S−1 is used to remove the background cross-correlation error

located mainly in the region where the velocity field is close to zero.

• The highest and lowest vorticity points are manually identified at the start

time. Starting from these points, a displacement upstream of ∆z is made

while evaluating the vorticity magnitude at each step until it reaches zero.

This identifies the upstream boundary.

• The centre of the vortex ring is identified as the middle point of the radial
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distance between the ring cores from the previous step. One-half of the length

is set as the ring radius, R. This value fixes each core’s top or bottom boundary.

• A specific length is set for the downstream and the top or bottom boundaries,

depending on the core, to ensure the vortex core remains inside the box and

excludes vorticity from ring (B).

• For the next time step, a 10∆z×10∆r box is placed downstream of the previous

points to identify the highest and lowest vorticity points as shown in Figure

5.4(b). These will be the new reference points used to restart the process.

Although this method is easy to implement, it may not be reliable for early times

T ∗ < 4. In most cases, the ring has not detached properly from the trailing jet by

this time and the box that encloses the core could include parts of the associated

trailing jet. For that reason, only values computed for T ∗ > 4 were used for the

study of ring circulation.

Figure 5.4: (a) Vorticity contour plot of vortex rings A and B, highlighting the box
generated to separate the vortex core from the trailing jet. The trailing jet and ring’s
core are also identified. (b) Visual representation of the method used to identify the
new reference point R(t). An area of size 10∆z×10∆r is located at the ring core
with the reference point from the previous time step R(t−∆t) on its upstream side.
The point with the maximum or minimum vorticity, depending on the core, in the
box becomes R(t).

Once the core of the vortex ring A has been isolated from the trailing jet, equation

(5.1) is applied to determine the core’s centroid. The trajectories followed for both
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rings, A and B, are shown in Figure 5.6 for all the cases studied. The first row

shows an intenser interaction when T ∗
off = 1.8, especially for (a), where ring B’s

radius increases considerably as ring A approaches, causing it to shrink slightly.

The different rates of change in the radii of the rings are caused by their circulation.

As shown in equation 1.13, the vortex strength Γ, along with the radial distance,

determines the induced velocity’s magnitude. In this case, the velocity induced by

ring A on ring B is greater. Also, the effect of the distance between the rings is

observed as the stroke ratio L/Do of ring B increases. In Figure 5.6 (c), although

the circulation of ring A and T ∗
off are the same as in (a), a weaker interaction is

observed due to the increase in the propagation velocity of vortex ring B, which is

directly proportional to the ring’s circulation 1. For the rest of the cases, the change

in the trajectories of both rings appears negligible, with ring A’s trajectory bounded

by the equivalent single ring case (blue line).

ring A ring B

Figure 5.5: Vorticity contour plot where the position of ring A, rc1, and B, rc2, as
well as their components (Z,R), used in equation 5.2 , are illustrated.

1Since the first model proposed by Kelvin (1867), more complex expressions have been published
for modelling the propagation velocity of a vortex ring, but they all share the same common factor
Γ/4πR
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Figure 5.6: Trajectories of the vortex ring based on the vorticity centroids. For
rings A (×), B (•) and for the case with a single ring (−). Each column represents a
different stroke ratio for Ring B, 1.5, 2.0 and 2.5, and each row represents the time
difference Toff from top to bottom 1.8, 3.0, 6, respectively.
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5.2.2 Evolution and correlation between the ring radius, its

circulation and kinetic energy.

As discussed in Chapter 3, the equation (3.40) provided by Shusser and Gharib

(2000) relates the dimensionless kinetic energy, α, with the ring radius, R, via the

parameter ϵ = a/R, approximating the ring as a member of Norbury’s family of

vortex rings (Norbury, 1973). An increase in the radius of the vortex ring produces

a rise in its kinetic energy, which in turn decreases the amount of time it absorbs

vorticity from the trailing jet. This leads to a lower formation number F and the

final circulation (Ortega-Chavez et al., 2023). Accordingly, it should be possible to

increase the formation number of the ring by reducing its radius during formation.

This would decrease the kinetic energy of the ring, allowing it to absorb more vor-

ticity from the trailing jet. Figures 5.7, 5.10 and 5.13 present the evolution of the

circulation of vortex ring A, its radius and kinetic energy for the cases mentioned

above; see table 5.1.

For T ∗
off = 1.8, where the interaction is stronger according to Figure 5.6, a slight

decrease in R is observed for all cases compared to the single ring case, the difference

being more pronounced at early times (Figure 5.7 (b)). However, no distinction is

observed between the cases involving two rings for T ∗ < 4.

When T ∗ is greater than 5, the strength of the interaction with ring B increases,

leading to a higher rate of shrinkage for ring A as (L/Do)B decreases. This behaviour

is explained in Figure 5.7 (d) which compares the distance between rings, ∆rc,

defined as follow:

∆rc =
√
(Rc2 −Rc1)2 + (Zc2 − Zc1)2, (5.2)

where Zc1 and Zc2 are the axial position of each ring. As time passes, ∆rc

decreases more rapidly with (L/Do = 1.5)B due to its slower propagation velocity,

which keeps it closer to ring A, causing a stronger interaction. This explains why the

decay of the ring radius occurs when T ∗ is greater than 4, and it is faster as (L/Do)B

decreases. The consequences of the interactions are also reflected in the values of α

and ΓRing. Figure 5.7 (c) displays the dimensionless kinetic energy of ring A where

α drops below 0.33, which corresponds to the single ring case (Gharib et al., 1998);
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also Figure 5.7 (a) confirms the expected increase in ring circulation. For example,

the case with (L/Do = 2)B has the lowest kinetic energy and gains approximately

13% circulation compared to the single ring case, increasing its formation number

from 2.73 to 3 1. However, no gain is observed in the circulation of the ring, nor a

decrease in its kinetic energy, even though its radius is shrinking as a consequence

of the proximity of ring B when (L/Do = 1.5)B.

Figure 5.8 compares two vorticity contour plots at the same time, T ∗ = 5, for

(L/Do = 1.5)B and (L/Do = 2)B. It is evident that the core for (L/Do = 1.5)B is

detached from the trailing jet, which appears more unstable than the (L/Do = 2)B

case, where the vortex ring remains attached to the trailing jet. This suggests

that the proximity of ring B triggers instabilities in the trailing jet, causing early

separation and halting core growth. Nevertheless, a sudden increase in the ring’s

circulation is observed for (L/Do = 1.5)B close to T ∗ = 5.6. After the core detaches,

the section of the trailing jet closest to the core breaks, and some vorticity from

that section moves around the core until it is engulfed, which increases the ring’s

circulation. But, this is not enough to surpass the (L/Do = 2)B case. The break

and engulfing of a section of the trailing jet is illustrated in Figure 5.9. After this,

the circulation starts to decay due to the process of leapfrogging beginning, which

causes instabilities and vorticity cancellation. The same occurs for (L/Do = 2)B

and (L/Do = 2.5)B but at a slower rate.

1To determine F, only the total circulation, ΓTotal, from the single ring case is used.
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Figure 5.7: Evolution of ring A: (a) Circulation, (b) radius, (c) dimensionless kinetic
energy and (d) ring separation for T ∗

off = 1.8.

Figure 5.8: vorticity contour plots for (a) (L/Do = 1.5)B, and (b) (L/Do = 2)B for
T ∗
off = 1.8 at T ∗ = 5.

135



Figure 5.9: vorticity contour plots of the case (L/Do = 1.5)B at: (a)T ∗ = 5.3, (b)
T ∗ = 5.45 and (c) 5.75 with the section of interest highlighted

For T ∗
off = 3 (Figure 5.10), there is a more significant difference in the evolution

of the ring radius than in the previous T ∗
off value analysed. An interesting factor

is that for the cases with (L/Do = 1.5)B and (L/Do = 2)B, the radius has a

similar length to the single ring case. However, there is still an increase in the ring

circulation. It is precisely this gain of circulation that makes the ring increase its

size. During the rolling-up process of a vortex ring, the radius experiences its most

significant change, growing as long as the ring core absorbs vorticity from the trailing

jet. Therefore, the extra vorticity gained for ring A should also increase its radius.

For T ∗
off = 1.8 discussed above, the interaction between the rings is strong enough

to counter the ring growth due to the gain of vorticity, keeping it below the single

ring case radius. On the other hand, although the interaction is weaker for T ∗
off = 3,

it is still strong enough to shrink ring A, gain extra vorticity, and maintain a radius

similar to the single ring case despite the increase in ring circulation.

Comparing the interaction strength via ∆rc for T ∗
off = 3 and T ∗

off = 6 reveals

differences in the distance between rings, where the latter duplicates the length of

the former affecting the strength of the interaction.
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Figure 5.10: Evolution of the ring A: (a) Circulation, (b) radius, (c) dimensionless
kinetic energy and (d) ring separation for T ∗

off = 3.
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It is interesting to note that in Figure 5.10, the radius of (L/Do = 2.5)B does

not grow at the same rate as the other (L/Do)B, and αr has values even above the

single ring case. Based on the earlier ratios explanations, the circulation gain should

be lower than in the other cases, as shown in Figure 5.10 (a). This would decrease

the ring growth, and with nothing to counteract it, Ring A would be more sensitive

to the shrinking generated by Ring B. Also, it is unlike when T ∗
off = 1.8, where

the higher circulation gain corresponded to (L/Do = 2)B. Here, the maximum

circulation is for the (L/Do = 1, 5)B case, which increases its circulation by around

11% pushing the formation number from 2.73 to 2.96. This is due to the rings being

further apart than when T ∗
off = 1.8. For instance, over the period studied, the case

(L/Do = 1, 5)B for T ∗
off = 3 exhibits one Do longer ∆z than the T ∗

off = 1.8 case.

This leads to a weaker interaction between the rings and reduces the development of

instabilities in the trailing jet observed for T ∗
off = 1.8 (see Figure 5.8) that promotes

the detachment of rings from the trailing jet, thus constraining its growth. Around

T ∗ ≈ 4.5, the strength of the interactions between the rings begins to increase. This

is reflected in a decrease of R, which follows a similar pattern to that observed for

T ∗
off = 1.8, but at a slower rate. The interaction also has an effect on the ring’s

circulation, which begins to decline around the same time.

The point vortex model is now used to better understand the rings’ interaction

strength, see Batchelor (1967) Chapter 7. Figure 5.11 (d) illustrates how the system

of two vortex rings is changed for a four-point vortices model where the vorticity

cores are assumed to be concentrated in a point that induces a velocity with con-

centric streamlines whose magnitude is giving by equation (1.13). Figures 5.11 (a-c)

display the radial velocity induced by two vortex points Γ(B) and −Γ(B) with one

point corresponding to one core of the ring A for different T ∗
off . The position of

the vortex points is based on the core centroids calculated previously. A consid-

erable change is observed in the magnitude of the induced radial velocity, ur−i, as

T ∗
off increases, being almost negligible for T ∗

off = 6. Based on these results, the

behavior for (L/Do)B = 2.5 with T ∗
off = 1.8 should be similar to the case with

(L/Do)B = 1.8 and T ∗
off = 3 due to the similarity of the ur−i values in each case.

However, with respect to circulation, the maximum values for each case are 2.62 and
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2.72 for (L/Do)B = 2.5 and (L/Do)B = 1.5, respectively. Also, there is a noticeable

difference in the evolution of the ring radius between the two cases, indicating a

complex phenomenon that is not limited only to the radial velocity induced on ring

A.

Figure 5.11: Induced radial velocity ur−i from ring B on ring A based on the point
vortex model: (a) T ∗

off = 1.8, (b) T ∗
off = 3, (c) T ∗

off = 6, (d) Sketch of the model
implemented.
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Despite the low ur−i observed at T ∗
off = 6, there is still a gain in the ring’s

circulation, as shown in Figure 5.13 (a). As expected, the gain of circulation ∆Γ∗
Ring

drops from 0.32 to 0.22 with a formation number of 2.9 for the case (L/Do)B = 1.5,

which shows the biggest increment. Although the Γ∗
Ring difference between the

three (L/Do)B values is small, it is still interesting to analyse their behaviour. For

example, when (L/Do)B = 1.5, there is a sudden increase in circulation that has

also been observed and discussed previously for other T ∗
off and the same (L/Do)B.

Figure 5.12 shows the evolution of the core of ring A for (L/Do)B = 1.5 and T ∗
off = 6.

It demonstrates the same features as Figure 5.9; described as follows:

• A section of the trailing jet develops instabilities that eventually roll-up, cre-

ating zones of high vorticity; see Figure 5.12 (a).

• Following the point vortex model, the induced axial velocity, uz−i, between the

vortex cores reaches its maximum value at the centre of the ring as illustrated

by the velocity field in Figure 5.14 (a), and its magnitude is increased due

to shrinking of the ring. It is important to point out that this method of

increasing the circulation of the vortex ring happens when the interaction of

the ring A and B increases T ∗ > 4 and R starts to decay.

• The section of the trailing jet with high vorticity is accelerated, travelling

around the core with an axial velocity higher than the propagation velocity of

the ring until it is subsequently engulfed by the vortex ring.

To quantify the acceleration of flow between the vortex cores mentioned in the

second point, the evolution of velocity at the ring’s centre, u′o, is shown in Fig-

ure 5.14(b) for T ∗
off = 1.8. It appears that the flow accelerates earlier for higher

(L/Do)B. At (L/Do)B = 1.5, there is a faster acceleration at 5 < T ∗ < 6, which

is the same period when Ring A gained extra circulation, which validates the me-

chanics described. This method of increasing the circulation of the vortex ring is

supported by the hypothesis in Shusser and Gharib (2000), which suggests that the

vortex ring detaches from the trailing jet and stops its formation process when the

velocity of the vortex ring matches the velocity of the jet flow near the ring. How-

ever, in Figure 5.12, it is observed that the trailing jet weakens as it approaches
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the centre due to vorticity cancellation, decreasing the absorption of vorticity. Al-

though sudden increments were observed for (L/Do)B = 1.5, this behaviour appears

to be general and dependent on the competition between trailing jet acceleration

and vorticity cancellation.

For the case (L/Do)B = 2, ring circulation grows slowly and reaches its maximum

vorticity at T ∗ ≈ 7, which is similar to the maximum circulation seen at (L/Do)B =

1.5. This case exhibits unique behaviour extending its formation process longer

than any of the other cases studied; even if the maximum circulation decreases by

4% in comparison to the case (L/Do)B = 2 and T ∗
off = 1.8, it seems that ∆rc is

optimal because after reaching its maximum circulation it does not decay as rapidly

as the other cases. Table 5.2 shows the maximum circulation of the ring, Γ∗
Ring, its

corresponding R, and F for each case.

T ∗
off

1.8 3 6
(L/Do)B Γ∗

r Rr/Do F Γ∗
r Rr/Do F Γ∗

r Rr/Do F
1.5 2.61 0.6 2.87 2.76 0.63 2.96 2.67 0.7 2.92
2 2.76 0.64 3 2.69 0.68 2.94 2.68 0.67 2.93
2.5 2.62 0.62 2.88 2.6 0.68 2.86 2.59 0.7 2.85

Single ring case Γ∗
Ring = 2.44 R/Do = 0.71 F=2.73

Table 5.2: Maximum ring circulation, Γ∗
Ring, its corresponding R and F for each case

investigated.

Figure 5.12: vorticity contour plots of the case (L/Do = 1.5)B and T ∗
off = 6 at: (a)

T ∗ = 3.8, (b) T ∗ = 4.4 and (c) T ∗ = 4.8 with the section of interest highlighted
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Figure 5.13: Evolution of the ring A: (a) Circulation, (b) radius, (c) dimensionless
kinetic energy and (d) ring separation for T ∗

off = 6

5.2.3 Kinematics of the vortex rings interaction

A different way of analysing the interaction between the vortex rings is to examine

ring A’s propagation velocity and radial velocity. Figure 5.15 shows the velocities

calculated using a fifth-degree polynomial fit and central difference scheme for ring

A. The fitting technique was implemented to prevent sudden spikes in the graph

caused by uncertainty in the experimental data and the program used to isolate the
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Figure 5.14: (a) Velocity field and vorticity contour plot for (L/Do)B at T ∗ = 5.3
and T ∗

off = 1.8 where u′c is the velocity between the vortex cores. (b) Evolution of
the axial velocity at the ring centre, u′o, for different (L/Do)B and T ∗

off = 1.8.

core.

The biggest changes in the velocities are observed for T ∗
off = 1.8 (Figure 5.15

(a,b)) where there is an increase of up to 25% on the propagation velocity for

(L/Do = 2)B. One reason for the increase in propagation velocity is the contraction

of ring A, while the other is due to an increase in its circulation, as shown in Figure

5.10 (a). This increase can be explained by the relation Γ/4πR, which accounts for

the continuous increment of u
′
z for (L/Do)B = 2. Similar behaviour is observed for

(L/Do)B = 1.5, whose velocity at early times is lower due to its lower circulation.
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However, unlike (L/Do)B = 2.5, which reaches an asymptotic state, its propagation

velocity continues to grow until it overtakes (L/Do)B = 2.5 as a consequence of the

circulation gain observed at T ∗ > 5. This phenomenon is also clearly observed when

T ∗
off = 3 and the same (L/Do)B. Besides, all cases with (L/Do)B = 1.5 show a lower

u
′
z at T ∗ < 4. This confirms a lower growth rate due to instabilities in the trailing

jet and vorticity cancellation discussed in the previous section.

For all cases, including a single ring, radial velocity u
′
r decelerates due to the

rolling-up process. At early time T ∗ < 1, ring A grows at its maximum rate, reflected

in a sudden increase of its radius. Although the ring continues to grow, it does so

at a lower rate, explaining the deceleration of u
′
r. Some of the arguments already

discussed can be confirmed based on u
′
r. For instance, the cases (L/Do)B = 2 and

(L/Do)B = 2.5 in Figure 5.15 (b) show a different deceleration rate for 3 < T ∗ < 6

in comparison with (L/Do)B = 1.5 where u
′
r decays faster, caused by a stronger

interaction with ring B and its lower circulation gain that counteracts the drop of

u
′
r. However, for T

∗ < 6, an increase in the circulation is observed in Figure 5.7 (a),

which leads to a sudden increase in u
′
r. This behaviour is also observed for T ∗

off = 3

and 6 in line with the increase of their corresponding u
′
z for the (L/Do)B = 1.5 case,

being more pronounced for T ∗
off = 3 where a higher circulation gain was achieved.
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Figure 5.15: Propation velocity u
′
z and radius velocity u

′
r of ring A for different T ∗

off :

(a) u
′
z with T ∗

off = 1.8 , (b) u
′
r with T ∗

off = 1.8, (c) u
′
z with T ∗

off = 3, (d) u
′
r with

T ∗
off = 3, (e) u

′
z with T ∗

off = 6 and (f) u
′
r with T

∗
off = 6.
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5.2.4 Core distribution

When analyzing the evolution of ∆rc for different T
∗
off values, it is observed that the

strength of interaction between the rings increases as time progresses until leapfrog-

ging is achieved for some cases (for the rest, the FOV is too small to observe it

happening). Thus far, the impact of this time-varying interaction has been dis-

cussed in terms of significant quantities that describe a vortex ring, including its

circulation, energy, and trajectories. However, to better understand the evolution of

these quantities, as studied in the last section, it is necessary to analyse the changes

in the core via its vorticity distribution and velocity uc.

In Figure 5.16, the distribution of vorticity and velocity is presented for T ∗
off =

1.8, where the strongest interaction is observed, and all (L/Do)B. The data was

obtained from a line in the axial direction that passes through the centroid of the

core of ring A. The radial direction, rc, origin is located at the core centroid and

is scaled with the core radius obtained after applying the threshold (ωmax)e
−1; uc

is the tangential velocity inside the core and like a Rankine vortex (Saffman, 1995)

that approaches a solid body rotation.

At T ∗ = 2, no significant difference is observed between the single ring case and

the others for both ω and uc shown in Figure 5.16 (a) and (d). However, at T ∗ = 4,

the vorticity distribution spreads out due to shrinking of the ring, and the interaction

becomes evident. The same effect was studied in Chapter 2 for swirling rings but

with the opposite effect. It is interesting to note that the maximum vorticity, ωmax,

is basically the same for all cases which oppose the relation:

ω(0, t) ∼ R(t)

t
, (5.3)

studied in Chapter 3 that predicts a decrease in the maximum vorticity as R de-

creases. The interaction with ring B causes the ring circulation to change, but not

the maximum vorticity in the core. Figure 3.6 shows that ωmax decreases even dur-

ing its formation when more vorticity is absorbed; a stronger vortex sheet is the

only way to increase ωmax and offset the decrease in ωmax due to the shrinkage.

Figure 5.16 (e) shows an interesting distribution of uc that reflects the effect of
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the shrinking ring. Assuming that uc describes a solid body rotation uc = ω̄rc, the

value ω̄ appears to be the same for all (L/Do)B but it is lower than the single ring

case which is reflected in the decreases of kinetic energy of the ring:

E ∼ 1

2
(uc)

2 ∼ ω̄2r2c . (5.4)

At T ∗ = 6, ωmax decreases for different (L/Do)B, especially (L/Do)B = 1.5.

Figure 5.7 (b) explains why, for ring A, the decay of ωmax is due to its increased

interaction with ring B, leading to not only a decreased R but also stronger dissipa-

tion. For uc at T
∗ = 6, the difference of ω̄ between it and the single ring case, and

others, is no longer significant.

Figure 5.16: Vorticity (a,b,c) and velocity distribution (d,e,f) in the vortex core of
ring A at different time T ∗ for T ∗ = 1.8.
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5.2.5 Effect in the vorticity flux

Although the velocity programme used for ring A is consistent across all cases, there

was an increase in the vortex flux during the second stroke, as demonstrated by the

total circulation of the flow field in Figure 5.17 (a). For each case, the circulation was

calculated immediately following the end of the piston stroke that forms ring A, at

approximately T ∗ = 4.08, excluding the circulation from the first piston stroke (ring

B) and applying a threshold for ω < 2. The most significant increase is observed

for T ∗
off = 1.8, where a stronger interaction between the rings occurs, as previously

discussed. Interestingly, the case with (L/Do)/B = 1.5, where it is known that ring

B remained closer to the orifice, has the lowest increment of only 8%, compared to

a 14% increase for (L/Do)B = 2.5. The same trend is observed for the other T ∗
off

cases, but with a lower increment in the total circulation.

In the experiments, ring A’s stroke ratio was deliberately set higher than its

formation number to increase its circulation by absorbing vorticity from the trailing

jet. However, Qin et al. (2018) report that the vortex ring circulation increases with

certain combinations of parameters such as the number of rings produced, stroke

number, the time difference between the piston strokes, and which specific ring is

analysed. All the cases with an increase in their circulation have a stroke ratio below

their formation number. Unfortunately, the authors did not describe the mechanism

involved in this increase. Since there is no trailing jet, the only source of vorticity

available to increase the ring’s circulation is another vortex ring or a vortex sheet

with a higher strength. The former option may be related to the merging of two

rings due to leapfrogging. Alternatively, a stronger vortex sheet would involve the

induced velocity generated by the leading ring. However, according to Qin et al.

(2018), the circulation of the entire flow field does not experience any changes as a

result of interaction among multiple vortex rings.

For the results shown in Figure 5.17 (a), the circulation gain is unrelated to

including vorticity from ring B. So, the only source could be the induced velocity.

However, due to its irrotational nature, the induced velocity can only generate vor-

ticity inside the orifice. For instance, it is well known that the flow ejected by the

nozzle’s velocity profile changes significantly during the formation process due to the
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strong vorticity generated by the roll-up of the vortex sheets at the orifice’s edge.

The induced velocity from the early vortex ring accelerates the flow near the orifice

wall Figure 5.17 (b), increasing its boundary layer and then producing a stronger

vortex sheet. As the vortex rings separate from the orifice, the velocity profile tends

to be parabolic, as expected for pipe flow (Didden, 1979). This evolution of the

velocity profile is similar to the annular effect observed by Richardson and Tyler

(1929) in oscillating pipe flow. Prior to the formation of ring A, the ring B for

(L/Do)B = 1.5 has moved downstream a distance equivalent to 1.4Do from the ori-

fice. This indicates that any induced velocity in the axial direction within the orifice

would be minimal since it is inversely proportional to the distance from the source

of vorticity, rendering it an unlikely possibility. Additionally, if this is true, the case

with a (L/Do)B = 1.5, where ring B is closer to the orifice, would result in a greater

increase in total circulation.

A possible alternative explanation is the influence of the induced radial velocity

on the circulation increase. In the study of Krieg and Mohseni (2013), the impact of

non-zero radial velocity on impulse and kinetic energy of vortex rings is investigated.

Their results showed that the impulse and kinetic energy of the flow discharged by

the nozzle increase up to 90% for a converging radial velocity, also showing an

increase in the total circulation. ur−i also has a converging distribution at the

orifice, and even though the induced radial velocity from ring B would be weak, the

shrinking that ring A experiences could change the ur−i distribution or magnitude.

But, as shown in Figure 5.11 (d), the induced velocity in the radial direction is also

stronger for (L/Do)B = 1.5, contradicting the behaviour observed in Figure 5.17 (a).

Although the previous arguments explain the increases in the vortex flux due to the

interaction between two rings, the mechanism involved in the higher circulation gain

observed as (L/Do)B increases remains unclear; further investigation is required.
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Figure 5.17: (a) Total circulation ΓTotal−A of ring A at T ∗ ≈ 4.08 for all the cases
studied. The dashed line represents the single-ring case total circulation. (b) Evolu-
tion of the axial velocity profile at the nozzle exit; Figure taken from Didden (1979).

Conclusion

In this chapter, the manipulation of R, which is modified by its interaction with a

preceding vortex ring, and its correlation with F has been rigorously investigated

for nine cases which correspond to three-time intervals T ∗
off = 1.8, 3 and 6 and three

strokes ratios for the leading Ring (B), (L/Do)B = 1.5, 2 and 2.5. For the following

ring (A) L/Do was fixed to 4. A decrease of R was observed for all the cases but was

more pronounced for T ∗
off = 1.8 due to the proximity of ring B. As expected, the

shrink of ring A reduced its kinetic energy α, which is reflected in an enhancement

of the ring’s circulation of up to 13% and increasing F by up to 10% in comparison

with the single ring case.

Three different mechanisms were observed for the ring’s circulation gain:

• For T ∗ < 4, ring A shrinks, reducing its kinetic energy. This allows it to absorb

more vorticity while still attached to the trailing jet.

• For T ∗ > 5, the interaction between rings A and B intensifies as ring B slows

down and ring A speeds up due to the evolution of their respective radii,

R. This destabilizes the trailing jet of ring A, which generates regions of

high vorticity, leading to its detachment. The high vorticity region is partly

accelerated by the induced velocity of ring B but mainly by ring A, whose
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contraction of its radius accelerates the flow passing through. The vorticity

patch travels around the vortex core until it is engulfed by the ring A.

• The formation of a preceding vortex ring increases the vortex flux generated

by a following vortex ring.
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CHAPTER 6

Conclusions

In this thesis, the effects of adding swirl, S, to vortex rings generated by an impulsive

discharge of momentum from an orifice have been investigated both numerically and

experimentally. In the numerical analysis, a solid body rotation velocity distribution

was used in addition to the discharge velocity to add swirl. The resulting swirling

vortex rings were found to exhibit the following characteristics:

1. An increase in the production of opposite sign vorticity (OSV), which increases

with S.

2. A growth in the ring radius as S increases.

3. A decrease in the propagation velocity of the vortex ring.

4. An increase in S causes a decrease in the formation number, F, resulting in

vortex rings with lower circulation.

The above features for swirling vortex rings have been reported in earlier studies,

each addressing the problem from different perspectives and with different degrees of

rigour. What is unique about the current work is it considers the formation process,

together with the nature of the swirling discharge; the latter being a key feature

underpinning the investigation carried out.
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From the numerical results generated, three sources of OSV were identified:

• The first is caused by the induced velocity from the ring core interacting with

the wall, which creates a boundary layer/vortex sheet with an OSV to that of

the vortex core. This source is slightly affected by S but only in terms of the

strength and position of the vortex core.

• The second is related to the discharge velocity profile, which again is slightly

affected by S.

• The third source is related to the addition of swirl and is described in detail

below.

Previous studies have proposed that OSV is produced by the angular velocity, uθ,

within the vortex core, either due to its distribution or through inducing a secondary

flow (Dean vortices). However, in the case of a vortex ring created by an impulsive

discharge of momentum, OSV is generated instead by the uθ in the swirling jet.

The swirling jet has axial vorticity, ωz, and due to the roll-up process of the vortex

ring, the uθ distribution of the swirling jet changes, tilting the vorticity vector and

generating a new component in the azimuthal direction. This process is captured

by the following expression:

(
∂ωθ

∂t

)
T

=
1

2

∂

∂z

(
uθ

2

r

)
; (6.1)

the subscript ‘T’ on the lhs denoting vortex tilting.

In order to generate the same solid body rotation inlet condition as in the nu-

merical work, a rotating pipe was used in the complementary experimental work

undertaken. The theoretical model suggested that it would take approximately 60

seconds to achieve the desired distribution. However, during the experiments, a sec-

ondary flow was observed due to the pressure difference between the rotating pipe

and the tank. This flow caused fluid to eject from the inside of the pipe and near its

wall into the tank, and also entrained fluid from the tank with zero uθ, preventing

the establishment of a fully developed solid body rotation velocity profile. Instead,

the steady velocity profile achieved is a partially established solid body rotation only.
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As the pipe’s angular velocity increases, the secondary flow’s intensity increases as

well, which affects uθ.

Nevertheless, instead of being a problem, a partially established solid body rota-

tion profile confirms the physics emerging from the results from the numerical work

pertaining to characteristics 1. to 3., as follows:

• A partially established solid body rotation profile has a small uθ magnitude

close to the centre where the gradient in equation ( 6.1) is stronger. Then,

by decreasing the rotation time of the pipe (preparation time) and increasing

the angular speed, it is possible to create swirling vortex rings with a higher

angular velocity in their core, uθ, and a lower production of OSV.

• Reducing the production of OSV leads to a decrease in the ring radius growth

characteristic in swirling vortex rings. This supports the argument that OSV,

higher close to the jet centre, induces an axial flow component, uz, in the

opposite direction of the ring’s propagation, generating a stagnation point

which increases the radial velocity, ur, due to having to satisfy the continuity

equation. This phenomenon was also observed in two vortex rings with similar

ūθ but different OSV production, indicating that the centrifugal effect is weaker

in the growth of the ring radius.

• The reduction in the velocity of the swirling vortex ring is mainly due to an

increase in its radius, where the propagation velocity of the ring axially, u
′
z, is

inversely proportional to the ring radius, R. To investigate the effect of ring

velocity on OSV production, two swirling rings with similar ūθ but different

R behaviour were compared. The result confirmed that the ūθ has a minor

influence on u
′
z, as illustrated in Figure 3.17.

Estimating the value of ūθ is possible based on the preparation time. This

estimation was made by considering that most of the fluid forming a vortex ring

comes from the boundary layer inside the orifice during the flow discharge. Only

the uθ in this region will be engulfed by the ring. Therefore, the estimated ūθ

is similar to the average uθ in the vicinity of the rotating pipe wall. Among the

preparation times studied, it is estimated that one of five seconds would produce
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a ūθ corresponding to a ring with S = 0.5. The results show a difference of about

17%, which is explained by the pipe rotation during the piston stroke that was not

included in the estimation, as well as the effect of the secondary flow.

In the numerical simulations, the correlation between the variables S and F was

explained by the growth of the vortex ring radius, R, and its connection to the ring

energy, α. According to Gharib et al. (1998), the vortex ring will continue to grow as

long as the energy of the trailing jet is higher than that of the vortex ring. F occurs

when both energies are equal. As the vortex ring radius increases, the dimensionless

kinetic energy of the vortex ring also increases, decreasing the time available for the

vortex ring to absorb vorticity from the trailing jet.

In order to address characteristic 4. an additional experiment was conducted

that was not directly related to swirling vortex rings. This experiment aimed to

increase the value of F by reducing the growth of R during the formation of a vortex

ring through its interaction with a preceding vortex ring. The experiment tested

vortex rings with different strengths and separations, resulting in an increase of F up

to 10%. Consequently, the ring circulation, ΓRing, increased by 13%. Furthermore,

the value of α was calculated, and it was observed that its value decreases as R

decreases and ΓRing increases, which confirms the finding of the numerical work.

In summary, the schematic on the following page represents the results obtained

from both the numerical and experimental studies. A feedback process exists be-

tween the formation of OSV and R increase, significantly influencing the vortex

ring’s kinematics and formation.
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The roll-up process 
trigger the formation of 
OSV by       deforming     
of the jet. 

The OSV increases    

The increase of               
decreases the propagation 
velocity of the vortex 
ring    .

The increase of               
decreases the formation 
number F.

 

6.1 Future work

The following avenues for further research, investigation and determination are sug-

gested, a number of which are already in progress:

• While experiments have been conducted involving swirling vortex rings with

varying preparation times and L/Do = 4, due to time constraints the corre-

sponding in-depth analysis was not performed, but is required. The experi-

ments aimed to establish the relationship between F and the preparation time,

and to determine whether the generation of OSV is related to the L/Do value

used, since the dimensionless interpretation of its circulation does not consider

this factor.

• Further analysis is needed to describe the relation S ∼ f (R).

• Inclusion of the influence of the secondary flow present in a rotating pipe in

equation (4.3), to more accurately predict ūθ.

• The carrying out of simulations for the cases explored experimentally in Chap-

ter 5, to confirm and explain increased vorticity flux during a second piston

stroke.

• Expand and publish the results presented in Chapters 4 and 5.

156



Bibliography
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OpenFOAM user script

’
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A.1 0 folder

U

p

k

nut

A.2 constant folder

transportProperties

turbulenceProperties

A.3 system folder

BlockMeshDict

controlDict

fvSchemes

fvSolution
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       volVectorField;
    location    "0";
    object      U;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions      [0 1 -1 0 0 0 0];
internalField   uniform (0 0 0);
boundaryField
{
     inlet
    {
        type            cylindricalInletVelocity;
        origin          (0 0 0);
        axis            (0 0 1);
        axialVelocity   table
(
(0 0.1)
(1.49 0.1)
(1.5 0)
);
        radialVelocity  constant 0;
        rpm             constant 76.4;
        value           uniform (0 0 0);
    }  
    pipe
    {
        type           noSlip;
    }
    tapa
    {
        type            noSlip;
    }
    outlet
    {
        type            zeroGradient;
    }
    tank
    {
        type            noSlip;
    }
}
// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       volScalarField;
    location    "0";
    object      p;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions      [0 2 -2 0 0 0 0];

internalField   uniform 0;
boundaryField
{
    inlet
    {
        type            zeroGradient;
    }
    pipe
    {
        type            zeroGradient;
    }
    tapa
    {
        type            zeroGradient;
    }
    outlet
    {
        type            fixedValue;
        value           uniform 0;
    }
    tank
    {
        type            zeroGradient;
    }
}
// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       volScalarField;
    location    "0";
    object      nut;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions      [0 2 -1 0 0 0 0];

internalField   uniform 0;

boundaryField
{
    inlet
    {
        type         nutUWallFunction;
        value           uniform 0;
    }
    pipe
    {
        type            nutUWallFunction;
        value           uniform 0;
    }
    tapa
    {
        type            nutUWallFunction;
        value           uniform 0;
    }
    outlet
    {
        type            nutUWallFunction;
        value           uniform 0;
    }
    tank
    {
        type            nutUWallFunction;
        value           uniform 0;
    }
}

// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       volScalarField;
    location    "0";
    object      k;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
dimensions      [0 2 -2 0 0 0 0];
internalField   uniform 0
boundaryField
{
    inlet
    {
        type            fixedValue;
        value           uniform 0.000025;
    }
    pipe
    {
        type            fixedValue;
        value           uniform 0;
    }
    tapa
    {
        type            fixedValue;
        value           uniform 0;
    }
    outlet
    {
        type            inletOutlet;
        inletValue      uniform 0;
        value           uniform 0;
    }
    tank
    {
        type            fixedValue;
        value           uniform 0;
    }
}
// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "constant";
    object      transportProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

transportModel  Newtonian;

nu              [0 2 -1 0 0 0 0] 1e-06;

// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
| =========                 |                                                 |
| \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox           |
|  \\    /   O peration     | Version:  2.3.0                                 |
|   \\  /    A nd           | Web:      www.OpenFOAM.org                      |
|    \\/     M anipulation  |                                                 |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "constant";
    object      turbulenceProperties;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

simulationType  LES;

LES
{
turbulence      on;
LESModel       Smagorinsky;

delta          cubeRootVol;

printCoeffs     on;

cubeRootVolCoeffs
{
    deltaCoeff      1;
}

maxDeltaxyzCoeffs
{
    deltaCoeff      1;
}

SmagorinskyCoeffs
{
    filter          simple;
}

}

// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    object      blockMeshDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

scale 0.01;

vertices
(
     (0.5 0 -0.25)   //0
    (0 0.5 -0.25)    //1
    (-0.5 0 -0.25)    //2
    (0 -0.5 -0.25)    //3
    (0.5 0 0)         //4
    (0 0.5 0)         //5
    (-0.5 0 0)         //6
    (0 -0.5 0)      //7
    
    (1.25 0 -0.25)   //8
    (0 1.25 -0.25)    //9
    (-1.25 0 -0.25)    //10
    (0 -1.25 -0.25)    //11
    (1.25 0 0)         //12
    (0 1.25 0)         //13
    (-1.25 0 0)         //14
    (0 -1.25 0)      //15
    
    
    (0.5 0 0)         //16
    (0 0.5 0)         //17
    (-0.5 0 0)         //18
    (0 -0.5 0)      //19
    
    (0.5 0 50)         //20
    (0 0.5 50)         //21
    (-0.5 0 50)         //22
    (0 -0.5 50)      //23
    
    
    (1.25 0 0)   //24
    (0 1.25 0)    //25
    (-1.25 0 0)    //26
    (0 -1.25 0)    //27
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    (1.25 0 50)         //28
    (0 1.25 50)         //29
    (-1.25 0 50)         //30
    (0 -1.25 50)      //31
    
    (3.25 0 0)   //32
    (0 3.25 0)    //33
    (-3.25 0 0)    //34
    (0 -3.25 0)    //35
    (3.65 0 50)         //36
    (0 3.65 50)         //37
    (-3.65 0 50)         //38
    (0 -3.65 50)      //39
    (12.5 0 0)   //40
    (0 12.5 0)    //41
    (-12.5 0 0)    //42
    (0 -12.5 0)    //43
    (12.5 0 50)         //44
    (0 12.5 50)         //45
    (-12.5 0 50)         //46
    (0 -12.5 50)      //47
);

blocks
(
    hex (0 1 2 3 4 5 6 7) (32 32 25) simpleGrading (1 1 1)
    hex (8 9 1 0 12 13 5 4) (32 45 25) simpleGrading (1 1.5 1)
    hex (9 10 2 1 13 14 6 5) (32 45 25) simpleGrading (1 1.5 1)
    hex (10 11 3 2 14 15 7 6) (32 45 25) simpleGrading (1 1.5 1)
    hex (11 8 0 3 15 12 4 7) (32 45 25) simpleGrading (1 1.5 1)
    hex (16 17 18 19 20 21 22 23) (32 32 450) simpleGrading (1 1 43)

    hex (24 25 17 16 28 29 21 20) (32 45 450) simpleGrading (1 1.5 43)
    hex (25 26 18 17 29 30 22 21) (32 45 450) simpleGrading (1 1.5 43)
    hex (26 27 19 18 30 31 23 22) (32 45 450) simpleGrading (1 1.5 43)
    hex (27 24 16 19 31 28 20 23) (32 45 450) simpleGrading (1 1.5 43)
    
    hex (32 33 25 24 36 37 29 28) (32 80 450) simpleGrading (1 0.3 43)
    hex (33 34 26 25 37 38 30 29) (32 80 450) simpleGrading (1 0.3 43)
    hex (34 35 27 26 38 39 31 30) (32 80 450) simpleGrading (1 0.3 43)
    hex (35 32 24 27 39 36 28 31) (32 80 450) simpleGrading (1 0.3 43)
    
    hex (40 41 33 32 44 45 37 36) (32 30 450) simpleGrading (1 0.05 43)
    hex (41 42 34 33 45 46 38 37) (32 30 450) simpleGrading (1 0.05 43)
    hex (42 43 35 34 46 47 39 38) (32 30 450) simpleGrading (1 0.05 43)
    hex (43 40 32 35 47 44 36 39) (32 30 450) simpleGrading (1 0.05 43)
   
);

edges
(
arc 8 9 (0.8838 0.8838 -0.25)
arc 12 13 (0.8838 0.8838 0)
arc 9 10 (-0.8838 0.8838 -0.25)
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arc 13 14 (-0.8838 0.8838 0)
arc 10 11 (-0.8838 -0.8838 -0.25)
arc 14 15 (-0.8838 -0.8838 0)
arc 11 8 (0.8838 -0.8838 -0.25)
arc 15 12 (0.8838 -0.8838 0)

arc 0 1 (0.30177 0.30177 -0.25)
arc 4 5 (0.30177 0.30177 0)
arc 1 2 (-0.30177 0.30177 -0.25)
arc 5 6 (-0.30177 0.30177 0)
arc 2 3 (-0.30177 -0.30177 -0.25)
arc 6 7 (-0.30177 -0.30177 0)
arc 3 0 (0.30177 -0.30177 -0.25)
arc 7 4 (0.30177 -0.30177 0)

arc 16 17 (0.30177 0.30177 0)
arc 20 21 (0.30177 0.30177 50)
arc 17 18 (-0.30177 0.30177 0)
arc 21 22 (-0.30177 0.30177 50)
arc 18 19 (-0.30177 -0.30177 0)
arc 22 23 (-0.30177 -0.30177 50)
arc 19 16 (0.30177 -0.30177 0)
arc 23 20 (0.30177 -0.30177 50)

arc 24 25 (0.8838 0.8838 0)
arc 28 29 (0.8838 0.8838 50)
arc 25 26 (-0.8838 0.8838 0)
arc 29 30 (-0.8838 0.8838 50)
arc 26 27 (-0.8838 -0.8838 0)
arc 30 31 (-0.8838 -0.8838 50)
arc 27 24 (0.8838 -0.8838 0)
arc 31 28 (0.8838 -0.8838 50)

arc 32 33  (2.298 2.298 0)
arc 36 37 (2.5809 2.5809 50)
arc 33 34 (-2.298 2.298 0)
arc 37 38 (-2.5809 2.5809 50)
arc 34 35 (-2.298 -2.298 0)
arc 38 39 (-2.5809 -2.5809 50)
arc 35 32 (2.298 -2.298 0)
arc 39 36 (2.5809 -2.5809 50)

arc 40 41  (8.8388 8.8388 0)
arc 44 45 (8.8388 8.8388 50)
arc 41 42 (-8.8388 8.8388 0)
arc 45 46 (-8.8388 8.8388 50)
arc 42 43 (-8.8388 -8.8388 0)
arc 46 47 (-8.8388 -8.8388 50)
arc 43 40 (8.8388 -8.8388 0)
arc 47 44 (8.8388 -8.8388 50)
);

boundary
(
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    inlet
    {
        type wall;
        faces
        (
            (0 1 2 3)
            (8 9 1 0)
            (9 10 2 1)
            (10 11 3 2)
            (11 8 0 3)
        );
    }
    out1
    {
        type wall;
        faces
        (
            (5 4 7 6)
            (13 12 4 5)
            (14 13 5 6)
            (15 14 6 7)
            (12 15 7 4)
            
        );
    }
    
    pipe
    {
        type wall;
        faces
        (
            (12 13 9 8)
            (13 14 10 9)
            (14 15 11 10)
            (15 12 8 11)
          
        );
    }
     tapa
    {
        type wall;
        faces
        (
            (16 17 18 19)
            (24 25 17 16)
            (25 26 18 17)
            (26 27 19 18)
            (27 24 16 19)
            (32 33 25 24)
            (33 34 26 25)
            (34 35 27 26)
            (35 32 24 27)
            (40 41 33 32)
            (41 42 34 33)
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            (42 43 35 34)
            (43 40 32 35)
        );
    }
  
  outlet
    {
        type wall;
        faces
        (
            (21 20 23 22)
            (21 29 28 20)
            (22 30 29 21)
            (23 31 30 22)
            (20 28 31 23)
            (37 36 28 29)
            (30 38 37 29)
            (31 39 38 30)
            (28 36 39 31)
            (45 44 36 37)
            (46 45 37 38)
            (47 46 38 39)
            (44 47 39 36)      
        );
    }

      tank
    {
        type wall;
        faces
        (
            (44 45 41 40)
            (45 46 42 41)
            (46 47 43 42)
            (47 44 40 43)     
        );
    } 
    
);

mergePatchPairs
(
(out1 tapa)
);
// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "system";
    object      controlDict;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

application     pisoFoam;

startFrom       latestTime;

startTime       0;

stopAt          endTime;

endTime        1;

deltaT         1e-04;

writeControl    timeStep;

writeInterval   1000;

purgeWrite      0;

writeFormat     ascii;

writePrecision  6;

writeCompression off;

timeFormat      general;

timePrecision   6;

runTimeModifiable true;

functions
{
 turbulenceFields1
    {

        type        turbulenceFields;
        libs        ("libfieldFunctionObjects.so");
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        // Either field or fields entries

        fields                  (k R); 

        enabled                 true;

        writeControl            writeTime;

        executeControl          timeStep;

        executeInterval         1;

    }
  
    fieldAverage1
    {
        type            fieldAverage;
        libs            ("libfieldFunctionObjects.so");
        writeControl    writeTime;
 
        fields
        (
            U
            {
                mean        on;
                prime2Mean  on;
                base        time;
            }
        );
    }

}

// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "system";
    object      fvSchemes;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes
{
    default         backward;
}

gradSchemes
{
     default         Gauss linear;
}

divSchemes
{
    default         none;
    div(phi,U)      Gauss LUST unlimitedGrad(U);
    div(phi,k)      Gauss limitedLinear 1;
    div(phi,nuTilda) Gauss limitedLinear 1;
    div(phi,s1)     Gauss linearUpwind grad(s1);
    div((nuEff*dev2(T(grad(U))))) Gauss linear;
}

laplacianSchemes
{
    default         Gauss linear corrected;
}

interpolationSchemes
{
    default         linear;
}

snGradSchemes
{
    default         corrected;
}
fluxRequired 
{
default  no;
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   p        ;
   pcorr    ;
}

// ************************************************************************* //
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/*--------------------------------*- C++ -*----------------------------------*\
  =========                 |
  \\      /  F ield         | OpenFOAM: The Open Source CFD Toolbox
   \\    /   O peration     | Website:  https://openfoam.org
    \\  /    A nd           | Version:  7
     \\/     M anipulation  |
\*---------------------------------------------------------------------------*/
FoamFile
{
    version     2.0;
    format      ascii;
    class       dictionary;
    location    "system";
    object      fvSolution;
}
// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers
{
    p
    {
        solver          GAMG;
        tolerance       1e-04;
        relTol          0.01;
        smoother        GaussSeidel;
        nPreSweeps      0;
        nPostSweeps     2;
        cacheAgglomerarion true;
        nCellsInCoarsestLevel 10;
        agglomerator    faceAreaPair;
        mergeLevels     1;
    }

    pFinal
    {
        $p;
        smoother        DICGaussSeidel;
        tolerance       1e-05;
        relTol          0;
    }

    pcorr
    {
        $p;
        tolerance       1e-05;
        relTol          0.01;
    }
    
    "(U|k|B|nuTilda)"
    {
        solver          smoothSolver;
        smoother        symGaussSeidel;
        tolerance       1e-05;
        relTol          0.01;
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    }
    "(U|k|B|nuTilda)Final"
    {
        $U;
        tolerance       1e-05;
        relTol          0.01;
    }
     "s.*"
    {
        solver          PBiCGStab;
        preconditioner  DILU;
        tolerance       1e-08;
        relTol          0;

           minIter 1;
    }
}

PISO
{
    nCorrectors     2;
    nNonOrthogonalCorrectors 3;
    pRefCell    0;
    pRefValue    0;
}

// ************************************************************************* //
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