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Abstract

We look at a class of random spatial graphs constructed on random points (points

of a Poisson process) in Euclidean space with edges defined by a geometrical rule

based on proximity. Specifically, each point is joined by an edge to its nearest

neighbour in a given direction specified by a cone. The unrestricted case is the

ordinary nearest-neighbour graph; the restricted case is a version of the minimal

directed spanning forest (MDSF) introduced by Bhatt & Roy. These graphs have

been widely used for modelling networks with spatial content, such as in the com-

munications sector, social networks, and transportation networks. The large-sample

asymptotic behaviour of the total edge length of these graphs is our main interest.

For the ordinary nearest-neighbour graph, the appropriate central limit theorem is

due to Avram & Bertsimas. For the MDSF, the limit theory is known (Penrose &

Wade) in two special cases, namely the ‘south’ and ‘south-west’ versions: here the

limit is not normal, due to the presence of long edges near to the boundary. In this

thesis, we will extend the limit theory to the case of general cones; depending on the

parameters, the limit distribution may be normal, or the convolution of a normal

distribution with a non-normal element due to boundary effects whose distribution

can be characterized by a fixed-point equation.
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Chapter 1

Introduction

1.1 Overview

This thesis explores the asymptotic behaviour of the total edge length of a family

of random spatial graphs called the minimal directed spanning forest (MDSF) con-

structed on random points in Euclidean space. These graphs are constructed using

randomly distributed points in the unit square, and edges are added based on a

geometrical rule determined by proximity and a directional relation specified by a

cone in the plane. There are several cases of directional relations. The first two

cases (south & south-west versions) were studied by Penrose and Wade [31], who

proved their limit theory. In this work, we consider five new cases (general cones)

associated with unit square (see Section 4.3 for more details) singly-aligned cones

and unaligned cone. We extend the limit theory for the south-west version to the

case of general cones whose distribution depends well on the parameters. The pri-

mary objective of this thesis is to establish limit theorems for the total edge length

of these graphs as the number of points tends to infinity, with a particular focus on

convergence in distribution results. Additionally, we aim to illustrate the distinct

behaviour of these models concerning the orientation of cones when compared to

previous models.

5
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1.2 Background on Random Spatial Graphs

This section covers background knowledge of classical results related to random spa-

tial graphs and introduces some new insights. The probabilistic limit theory for such

random spatial graphs began with the seminal paper by Beardwood, Halton, and

Hammersley [5]. In their work, they established the proof of the law of large num-

bers for the travelling salesman problem (TSP), a famous problem in combinatorial

optimization [5]. Graphs with spatial content are of significant interest and serve as

desirable models for real-world networks. To gain a comprehensive understanding of

the theory of Erdős-Rényi random graphs, see, e.g., [13]. In the Erdős-Rényi model,

a random graph on the vertex set V is constructed by including each pair of vertices

as an edge independently with some probability p. A graph has no spatial structure

to the graph; an edge between two vertices is equally likely [13, 44].

There has been a recent interest in graphs constructed using random points in

Euclidean space. In this construction, points are independently and uniformly dis-

tributed within a unit square, and their edges are defined based on a geometrical rule

that considers proximity. Examples of such graphs include the nearest-neighbour

graph, the Euclidean minimal spanning tree, and various other geometric graphs.

These types of graphs, collectively known as spatial graphs, hold significant impor-

tance in applied probability research and find extensive applications in modelling

social networks and statistical procedures.

One object we are interested in studying in this thesis is the total edge length

of the graph (our random variable). This random variable can be obtained by

considering the points in a space. Edges, which form segments aligned in various

directions, have real lengths. These lengths are summed to create a random variable

representing the total edge length of the graph. Studying simple models of random

spatial graphs is a natural choice for inference or prediction due to our main in-

terest in understanding their typical behaviours. Several types of graphs can be

constructed using these random points, including the nearest-neighbour graph, the

minimal spanning tree (MST), and graphs associated with the Voronoi diagram and
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Delaunay triangulation.

The nearest-neighbour graph (NNG) is a directed graph that connects each point

to its nearest neighbour. In the nearest-neighbour graph, it is important to note that

the contributions to the total edge length from points are not independent due to

the finite-range dependence. This dependence exhibits a form of local dependency,

meaning that only nearby points can influence each other. Consequently, the total

edge length of these graphs satisfies law of large numbers and central limit theorem

as the number of points tends to infinity. Notable examples of laws of large numbers

can be found in the works (Beardwood, Halton, and Hammersley) [5].

While the idea of central limit theorems (CLTs) has been around for some

time, significant progress was made in the 1980s, by Ramey [37] and Bickel and

Breiman [10]. Regarding Ramey’s approach, Avram and Bertsimas [3, p.1034] note

that “his approach, although very interesting, did not succeed because he needed

some unproven, but plausible, lemmas from continuous percolation”. Bickel and

Breiman successfully proved the first CLT for the NNG making use of intricate

fourth moment estimates. Later, a more robust approach was provided by work of

Avram and Bertsimas [3], using the technique of the dependency graph introduced

by Baldi and Rinott [4].

A variation on the ordinary nearest-neighbour graph is to place a restriction on

the possible directions of edges. A model of this type, called the minimal directed

spanning forest (MDSF), was introduced by Bhatt and Roy [8]. For the MDSF, the

limit theory for the total edge length of the graph defined on random points has been

established by Penrose and Wade [31] in two special cases of directional restrictions:

the ‘south’ and ‘south-west’ versions. In these cases, the limiting distribution is

given by the sum of a normal component in bulk and a contribution caused by the

boundary effects due to the appearance of long edges near boundary of the unit

square.

In the unrestricted case, Avram and Bertsimas [3] provided the proof of central

limit theorems (CLTs) and the rate of convergence for various quantities defined in
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terms of graphs constructed on random points (these points generated by the Poisson

process within the unit square) in geometrical probability. This technique is par-

ticularly adept at handling sums of weakly-dependent random variables, quantified

through dependency graphs introduced by Baldi and Rinott [4].

Moving from an unrestricted to a restricted case involves introducing generaliza-

tions that constrain the direction of a cone within the unit square. This restriction

is the primary focus of the minimal directed spanning forest (MDSF). In MDSF,

a set of points within [0, 1]2 allows edges only in specific relative directions, which

can be achieved through a cone or, equivalently, in terms of a partial order in R2.

In Bhatt and Roy [8] explored the ‘south-west’ model, so each vertex is joined by

an edge to its nearest neighbour in the south-west direction. Bhatt and Roy [8]

considered not the total edge length, but the length of edges joined to an additional

vertex inserted at the origin. Penrose and Wade [32] considered the same quantity,

and the length of the longest edge; the limiting distributions of these quantities are

expressed in the form of certain Dickman-type distributions, which are derived from

the Poisson-Dirichlet distribution.

The term ‘MDSF’ is derived from its corresponding formulation for a global op-

timization problem, such as the ordinary minimal spanning tree, but with a direc-

tional constraint. In general, the directional constraint is expressed using a partial

order. Previous work on ordinary nearest-neighbour graphs respected directional

constraints developed by Smith [41], and a closely related model to the ‘south’ ver-

sion is associated with Manna [23].

Recalling the concept introduced by Bhatt and Roy [8], in the ‘south-west’ ver-

sion, edges are exclusively connected in the relative ‘south-west’ direction, with some

constraints (in a sense) for a directed edge from every vertex to a minimal element

when defined in terms of a tree. In the ‘south’ version, each point is connected by an

edge to its nearest-neighbour at a lower vertical coordinate. The limit distribution

of the total edge length for both ‘south’ and ‘south-west’ versions is characterized

by the sum of a normal component within the bulk, along with a contribution due
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to boundary effects. These boundary contributions can be described in terms of

the On-line nearest-neighbour graph (ONG), whose distribution can be character-

ized by a fixed-point equation. Boundary effects are significant and can be used to

describe the minimal directed spanning tree (MDST) using the simplest form of a

one-dimensional structure known as a directed linear tree (DLT), which is sequen-

tially generated. In the DLT model, points in an interval arrive one by one, and each

point in the sequence is an independent and uniformly random point connected by

an edge to its nearest predecessor based on Euclidean distance. Examples associated

with DLT include network modelling and molecular fragmentation, as seen in [6, 7],

and among others. Other recent work on the minimal directed spanning tree and

On-line nearest-neighbour graph or related models includes [9, 43].

In the present work, we apply the limit theory concepts used in calculating the

total edge length of minimal directed spanning forest Penrose and Wade [31] to our

models, which exhibit more interesting behaviour. In our new cases mentioned ear-

lier, we initially divide the unit square into three regions with perfectly chosen sizes

with respect to the Poisson point process. These regions include bulk, intermediate,

and bottom boundary regions within [0, 1]2 (see Chapter 4 in more details). Our

results for the bulk for both singly-aligned cones match with Penrose and Wade [31]

result (in a sense) converging to a normal distribution as the number of points tends

to infinity. Similarly, our results for the bottom boundary for both singly-aligned

cones correspond to Penrose and Wade [31]. In this case, the central limit theory

deviates from a normal distribution because the boundary effects disturb the na-

ture of central limit theory. Moreover, the distribution of boundary effects can be

characterized by a fixed-point equation. Finally, choosing the intermediate region

associated with both singly-aligned cones is deliberate to ensure that (in the limit)

the bulk and bottom boundary contributions do not influence each other. Moreover,

the contribution to the total edge length from points in this intermediate region has

a variance converging to zero as the number of points becomes sufficiently large.

These limits for regions bulk, intermediate, and boundary can then be combined to

give the limit theory for the total edge length of MDSF on the whole unit square.

The last case is referred to as an unaligned cone, where none of the edges of a cone
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are aligned with a coordinate axis. In this case, the limit distribution follows a

normal distribution as there is no boundary contribution occurs.

This thesis presents convergence results for the unrestricted and restricted ver-

sions of the minimal directed spanning forest as the number of points becomes very

large, as we will introduce in Chapters 3 and 4. The study of such random spatial

graphs has been motivated by various fields. These graphs have found extensive

applications in modelling networks with spatial content, including communication

networks, social networks, and transportation platforms.

1.3 Organization of the Chapters

This thesis contains eight chapters, including the introduction. Our thesis focuses on

limit theorems for various nearest-neighbour graphs respecting the unit square. Most

of the results in this thesis are concerned with large sample asymptotic behaviour

for the total edge length of these graphs. Our results consist of the laws of large

numbers, convergence in distribution, and central limit theorems. These results are

fundamental to the field of probability theory and have considerable applications

in various areas of science and engineering. We will also demonstrate these results

as the number of points tends to infinity. Chapter 8 contains concluding remarks,

further research and research achievements from Chapter 3 to 7.

The overview of this thesis goes as follows. Chapters 1 – 3 introduce nearest-

neighbour graphs and the minimal directed spanning forest (MDSF) that we will

consider for the remainder of the thesis. We will provide historical background, mo-

tivation, and further references related to these topics. Minimal directed spanning

forest (MDSF) is a particular graph that recently received significant attention, first

explored by Bhatt and Roy [8], as a potential model for telecommunications and

drainage networks. We present our main Theorem 3.3.2 for this thesis in Chap-

ter 3, which will cover all types of general cones with respect to the unit square.

Chapter 3 concludes by describing the distribution of the non-normal limit random

variable that appears in Theorem 3.3.2 and arises from the boundary effects for the
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singly-aligned cones. This distribution is the unique solution to a fixed point equa-

tion studied previously in Penrose and Wade [31]. Some of the material in these

Chapters 1 – 3 is adapted from [3, 32, 45].

Chapter 4 discusses the process of partitioning the unit square. Initially, we par-

tition the unit square into three segments: bulk, intermediate, and bottom boundary

within [0, 1]2. To define and identify various cone geometries, we use terms like ‘com-

panions’, ‘boundary’, and ‘bulk’. We also examine the concept of local dependence

and characterize the unit square in terms of its boundary and bulk. Finally, we

explore the size of each region. By determining the size of each region, we can gain

a better understanding of the distribution of points within the unit square.

In Chapter 5, we formally define the terminology of the dependency graph. We

demonstrate that the dependency graphs with finite-range dependence provide a

normal approximation as the number of points becomes sufficiently large. From a

geometrical perspective, we divide the whole square into little squares, with side

lengths chosen based on the Poisson point process. We also apply the local depen-

dence approach introduced by Avram & Bertsimas [3] to both singly-aligned and

unaligned cones, particularly focusing on bulk within [0, 1]2. Furthermore, we pro-

vide the proof of Theorem 5.1.1 (CLT for the bulk), and we discuss some general

results related to geometric probability, particularly concerning stabilizing function-

als (stabilization methodology), which we use to prove Theorem 5.1.2. This theorem

states that as the number of points tends to infinity, the variance of the total edge

length from the bulk of [0, 1]2 converges to a finite positive limit. Finally, we will

provide the proof of part (iii) of our main result Theorem 3.3.2 for the unaligned

cone.

Chapter 6 explores one-dimensional nearest-neighbour graphs using randomly

generated points uniformly distributed within the interval [0, 1]. These graphs are

of particular interest and prove essential for analysing the boundary effects in the

random minimal directed spanning forest with respect to [0, 1]2. Additionally, this

chapter addresses the convergence in distribution to the total edge length of the
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random MDSF within [0, 1]2. The limit distribution of total edge length involves

two independent components: a normal element arising from points in the bulk

(as discussed in Chapter 5) and a non-normal element resulting from boundary

effects as given by (Theorem 6.1.1); this theorem will provide an important step in

demonstrating the convergence behaviour to our main result Theorem 3.3.2 (ii) for

both singly-aligned cones. To analyse these boundary effects, we shall use results

from Chapter 3 and Chapter 5, where the stabilisation methodology deals with

the normal element. Finally, we demonstrate how the directed linear forest (DLF)

can be used to analyse the limiting behaviour of the contribution to the total edge

length of the random minimal directed spanning forest near the boundary of the

unit square.

Chapter 7 will offer two fundamental results associated with the interaction

between bulk and boundary region of the unit square. First, we will show that as

the number of points tends to infinity, the contribution to the total edge length

from points in the intermediate region has variance converging to zero as given

by (Theorem 7.2.1). Following that, we will show the asymptotic independence of

the random variables corresponding to the contributions to the total edge length

converging from the bulk and boundary regions. Finally, we will provide the proof

of part (ii) of our main result Theorem 3.3.2 for both singly-aligned cones.

Chapter 8 contains concluding remarks, further research and research achieve-

ments from Chapters 3 to 7.



Chapter 2

Mathematical Prerequisites

2.1 Introduction

This chapter is designed to present mathematical introductions to several topics:

random spatial graphs, the Poisson distribution, Poisson point processes, the con-

vergence of random variables, and inequalities.

In Section 2.2, we outline the construction of random spatial graphs using the

definition of the Euclidean norm. We will also offer an example of a random spatial

graph, namely the nearest-neighbour graph, and introduce some fundamental defi-

nitions related to graph theory. Section 2.3 discusses the Poisson distribution with

its properties and theorems, alongside an introduction to the Poisson point pro-

cesses. Section 2.5 provides an exposition on the convergence of random variables.

Section 2.6 highlights various inequalities, which we later rely on.

In the following section, we deliver one example of our spatial graphs and the

rest of examples provided, for example, see Wade [44].

13



2.2. Random Spatial Graphs 14

2.2 Random Spatial Graphs

Random spatial graph is one of the essential models in probability theory. It displays

profound mathematical properties and has a wide and valuable range of applications

in many scientific fields in modelling various networks with spatial content, such as

communications networks, social networks, and transportation platforms. The ran-

dom spatial graph is a stochastic process that can be constructed on randomly

distributed points in the unit square, with edges added according to some geometri-

cal rule based on proximity. In particular, these graphs in which each point joins by

an edge to its nearest neighbour are locally determined in some sense. This topic has

been extensively researched for a while, and notable examples include the Euclidean

minimal spanning tree and the nearest-neighbour graph with its variants [31, 44].

Let ∥·∥ be the norm on space Rd for X = (x1, . . . , xd) ∈ Rd. We write

∥X∥ :=

√√√√ d∑
i=1

|xi|2.

Here, we provide a brief overview of fundamental graph theory concepts (see [14]

for more details). In graph theory, a graph, denoted as G, is defined as an ordered

pair G = (V,E), where V represents a countable set of points or vertices, and E

represents a set of unordered pairs of vertices selected from V . For the purposes

of this thesis, we treat V as a random finite subset of Euclidean space, specifically

V = v1, v2, v3, . . . , vn ⊆ Rd, usually d = 2. Every unordered pair of E denotes an

edge between vertices v, u ∈ V . The graphical representation of the graph G is

created by representing the points in V as nodes and connecting them with edges

defined by the pairs in E.

2.2.1 The Nearest-Neighbour Graph (NNG)

In this section, we introduce the concept of the nearest-neighbour graph (NNG).

Nearest-neighbour graphs (NNG) and nearest-neighbour distances (NND) can be

defined in any metric space, and find extensive applications in various fields of

applied science. These fields include the social sciences, geography, and ecology,
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primarily focusing on proximity data analysis. For multivariate analysis, nearest-

neighbour graphs and nearest-neighbour distances as well non-parametric statistics

explored in many areas of research, such as classification, regression, goodness of

fit, dimensionality, two and multiple sample problems, see e.g. [10, 15, 17, 18], and

among others. Here is the definition; see for example, Wade [44].

Definition 2.2.1 (Nearest neighbour graph). Let X be a finite set of points in R2.

The nearest-neighbour graph on X is defined by joining a directed edge each point

x ∈ X to its nearest neighbour y ∈ X \ {x}, whenever such a neighbour exists.

Figure 2.1 below shows the realization of the nearest-neighbour graph with 50

random points uniformly generated in the unit square.

Figure 2.1: Realization of the NNG, with 50 random points uniformly generated

in the unit square.

2.3 Poisson Distribution

In 1837, Simeon Denis Poisson introduced the Poisson distribution as part of his

research on probability theory, which he documented in his work titled “Recherches

sur la probabilité des jugements en matière criminelle et en matière civile” [42]. This

research focused on addressing misconceptions related to the random probability

associated with discrete events occurring at various time intervals, particularly in
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the context of legal judgments. In 1860, Simon Newcomb extended the application

of the Poisson distribution by modelling it to describe the number of stars observed

in a given region of space [16]. Ladislaus Bortkiewicz made a significant contribution

by further extending the Poisson distribution. In 1898, he applied this extension

to assess and analyse the number of Prussian army soldiers killed by horse kicks.

Ladislaus Bortkiewicz’s work not only had implications in the field of mathematics

but also found practical applications in engineering and related disciplines.

Poisson distribution is a discrete probability distribution and an aspect of prob-

ability theory and statistics. It is used to describe the probability of a given number

of events occurring within a fixed period and/or space. For the rest of the intervals,

for example, area, distance, or even volume, Poisson distribution is used and ex-

pressed for the number of events, see for example, [38]. An important feature of the

Poisson distribution is its ability to estimate the count of events that occur indepen-

dently and randomly [2]. This makes a valuable tool for analysing and predicting

the occurrence of rare events or events with low probabilities.

Below we state the definition of Poisson distribution with parameter λ , see for

example [12].

Definition 2.3.1. A discrete random variable X is said to have a Poisson distri-

bution with non-negative parameter λ, if for ℓ ∈ Z+, the probability mass function

(pmf) of X is

P(X = ℓ) =
exp(−λ)λℓ

ℓ!
. (2.3.1)

If (2.3.1) holds, we write X ∼ Po(λ).

The following result is the “additivity property” of the Poisson distribution. It

states that the sum of two independent Poisson random variables is also Poisson

[12].

Theorem 2.3.2. If X ∼ Po(µ) and Y ∼ Po(λ) are independent, then X + Y ∼

Po(µ+ λ).
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Proof. To find the probability mass function of the sum of two independent Poisson

random variables X + Y , then we apply the partition theorem to obtain

P(X + Y = n) =
n∑

ℓ=0

P(X + Y = n|X = ℓ)P(X = ℓ)

=
n∑

ℓ=0

P(Y = n− ℓ|X = ℓ)P(X = ℓ)

=
n∑

ℓ=0

P(Y = n− ℓ)P(X = ℓ) =
n∑

ℓ=0

exp(−λ)λn−ℓ

(n− ℓ)!

exp(−µ)µℓ

ℓ!

=
n∑

ℓ=0

exp(−λ)(exp(−µ))

ℓ!

(
n

ℓ

)
µℓλn−ℓ

=
exp(−(µ+ λ))

n!

n∑
ℓ=0

(
n

ℓ

)
µℓλn−ℓ =

exp(−(λ+ µ))(λ+ µ)n

n!
.

The last part of this equality is used the binomial theorem. The last expression is the

probability mass function of a Po(µ+ λ) distribution, i.e. X + Y ∼ Po(µ+ λ).

2.4 Poisson Point Processes

Poisson point process stands as one of the most commonly employed counting pro-

cesses. It is typically used in situations where it is necessary to count specific events

that occur at a certain rate but in a completely random manner, devoid of any dis-

cernible structure. Poisson point process is considered a fundamental technique in

geometrical probability. Here is a formal definition of the Poisson process. Consider

a Poisson point process denoted as Pλ, which is a random countable subset of the

unit square. The key characteristic of this process is the randomness in the place-

ment of points within the square, and the parameter λ governs the intensity or rate

of point occurrences (see Kingman’s book [21] for more details about the general

definition and theory of Poisson processes).

In this thesis, we use | · | to denote both the cardinality (i.e., number of elements)

for a finite set, and to denote the area (two-dimensional Lebesgue measure) for a

subset of R2. Next we provide the definition of the Poisson point process with

intensity λ.
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Definition 2.4.1. For λ > 0, the random countable set Pλ ⊂ R2 is said to be

a homogeneous Poisson point process on [0, 1]2 with intensity λ, if the following

two properties are satisfied by the collection of counting random variables N(A) =

|A ∩ Pλ| (the number of points in set A ⊆ [0, 1]2). The properties are given as

follows.

• For every n ∈ N, and all pairwise disjoint A1, . . . , An ⊆ [0, 1]2, the random

variables N(A1), . . . , N(An) are independent.

• The random variable N(A) ∼ Po(λ|A|), where |A| is the area of A ⊂ R2.

Alternative description in terms of randomized binomial process is given as fol-

lows. Assume that X1, X2, X3, . . . be a sequence of random variables on Rd, inde-

pendently identically distributed with the uniform density on [0, 1]2. So for n ∈ N,

we can write

Xn := {X1, X2, . . . , Xn}.

Here, Xn is a point process consisting of n independent identically distributed ran-

dom variable on Rd, for us we consider only d = 2. We can obtain a Poisson point

process by considering a random number of the random variables X1, X2, . . . For

λ > 0, let Nλ be a Poisson random variable independent of {X1, X2, . . . }, then

XNλ
= {X1, X2, . . . , XNλ

} is a Poisson process with intensity λ.

2.5 Convergence of Random Variables

This section will discuss two important theorems in probability: the law of large

numbers (LLN) and the central limit theorem (CLT). Specifically, we will focus on

these theorems in this thesis.

The concept of convergence of random variables is fundamental in probability

theory and statistics. It deals with the behaviour of random variable sequences

as they grow. Understanding the convergence of random variables is essential for

making statistical inferences and drawing conclusions from data. There are many

types of convergence for random variables lasted below, each having its properties



2.5. Convergence of Random Variables 19

and implications. We define these types of convergence as follows. Let X1, X2, . . .

be a sequence of random variables, e.g., see A. Gut [20] for more details.

Definition 2.5.1. A sequence of random variablesX1, X2, X3, . . . converges in prob-

ability to the random variable X if for every ϵ > 0, that

lim
n→∞

P(|Xn −X| ≥ ϵ) = 0.

Definition 2.5.2. A sequence of random variables X1, X2, X3, . . . converges almost

surely (a.s.) to the random variable X, if

P
({

lim
n→∞

Xn = X
})

= 1.

The law of large numbers used to play a central role in probability and statistics.

The law of large numbers states that as the number of independent and identically

distributed random variables becomes sufficiently large, the sample mean (average)

of these variables converges in probability to the expected value of the distribu-

tion. For example, let X1, X2, ..., Xn be a sequence of independent and identically

distributed random variables, if E[Xi] = µ, then Xn
a.s.→ µ, where

Xn =

∑n
i=1Xi

n
.

This is the classical strong law of large numbers.

Definition 2.5.3. Let p ≥ 1. A sequence of random variables X1, X2, X3, . . . con-

verges in pth-mean to the random variable X, if

lim
n→∞

E(|Xn −X|p) = 0.

For a random variable X, write FX for the cumulative distribution function

FX(x) := P(X ≤ x).

Definition 2.5.4. A sequence of random variables X1, X2, X3, . . . converges in dis-

tribution to the random variable X, if

lim
n→∞

FXn(x) = FX(x), for all x ∈ C(FX),
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where C(FX) = {x : FX(x) is continuous at x} which is the set of continuity points

of FX .

The previous concept is illustrated by the famous central limit theorem (CLT).

The CLT states that if certain conditions are met, then the sum of a large number

of random variables will have an approximately normal distribution. For example,

let X1, X2, ..., Xn be a sequence of independent and identically-distributed random

variables with mean E[Xi] = µ and variance Var[Xi] = σ2 < ∞. Then, we define

Zn =
X − µ

σ/
√
n

=

∑n
i=1Xi − nµ√

nσ2
,

the central limit theorem states that, if Φ(x) is the standard normal cumulative

distribution function

lim
n→∞

P(Zn ≤ x) = Φ(x), for all x ∈ R,

i.e., converges in distribution to standard normal random variable as n → ∞.

Slutsky’s Theorem is a fundamental result in probability and statistics that de-

scribes the limiting behaviour of sequences of random variables and their relation-

ships as they approach their limits. This theorem offers valuable insights into how

the convergence of random variables impacts the convergence of functions involving

these variables. Slutsky’s Theorem (e.g., see Theorems 11.3 and 11.4 in A. Gut [20])

given as follows.

Theorem 2.5.5. Let X1, X2, . . . and Y1, Y2, . . . be sequences of random variables,

such that Xn converges in distribution to X and Yn converges in probability to a

constant c ∈ R. Then, as n → ∞

Xn + Yn
d→ X + c,

XnYn
d→ Xc,

Xn

Yn

d→ X

c
,

the last statement requires that c ̸= 0.

We present the argument for the addition only, since the result for the rest will

follow the same process.
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Proof. Let ϵ > 0. For x ∈ R,

FXn+Yn(x) = P(Xn + Yn ≤ x) ≤ P({Xn + Yn ≤ x} ∩ {|Yn − c| < ϵ})

+P(|Yn − c| ≥ ϵ)

≤ P(Xn ≤ x− c+ ϵ) +P(|Yn − c| ≥ ϵ). (2.5.1)

Similarly,

FXn+Yn(x) ≥ P(Xn ≤ x− c+ ϵ). (2.5.2)

Hence, if x− c, x− c+ ϵ, and x− c− ϵ are continuity points of FX , then it follows

from inequality (2.5.1), inequality (2.5.2), and convergence of Xn + Yn, that

FX(x− c− ϵ) ≤ lim inf
n→∞

FXn+Yn(x) ≤ lim sup
n→∞

FXn+Yn(x) ≤ FX(x− c+ ϵ).

Finally, let ϵ → 0, and as n → ∞,

FXn+Yn(x) → FX(x− c),

which is the cumulative distribution function of c+X.

2.6 Inequalities

In probability theory, inequalities are the mathematical relationships between dif-

ferent events on random variables. These inequalities are essential for analysing and

bounding probabilities on certain events or random variables. Here are a few notable

inequalities connected with probability (see, e.g., [20, 25] for more details).

Markov’s Inequality

Markov’s inequality provides an upper bound on the probability that a non-negative

random variable is greater than or equal to a positive constant. Let X be any non-

negative random variable, i.e., P[X ≥ 0] = 1, and λ is a positive constant, then we

can write P[X ≥ λ] ≤ E[X]
λ

, which is known by Markov’s inequality.
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Cauchy–Schwarz Inequality

The Cauchy-Schwarz inequality is a fundamental mathematical inequality. There

are several equivalent ways to express this inequality, but one of the most common

forms is given as follows. For any two random variables X and Y on the same

sample space, then E[|XY |] ≤ E[X2]
1
2 · E[Y 2]

1
2 , where inequality holds if and only

if X = αY , for some constant α ∈ R.

Minkowski’s Inequality

Minkowski’s inequality is a significant mathematical inequality. It states that, for

any random variables X and Y , and 1 ≤ p < ∞, the following statement holds

E[|X + Y |p]1/p ≤ E[|X|p]1/p + E[|Y |p]1/p.



Chapter 3

Minimal Directed Spanning Forest

(MDSF)

In this chapter, we study the concept of the minimal directed spanning forest

(MDSF) in the unit square. MDSF is a particular graph that recently received

significant attention, first explored by Bhatt and Roy [8], as a potential model for

telecommunications and drainage networks.

Section 3.1 defines the concept of rays and the classification of cones. Section 3.2

introduces the background of MDSF. The MDSF defines with parameters θ, ϕ on a

locally finite set of points in the unit square. In Section 3.3, we presents our main

Theorem 3.3.2 for this thesis, which will cover all types of general cones with respect

to the unit square. Finally, in Section 3.4, we show that a non-normal contribution

from near boundary of the unit square, its contribution to the total edge length of

the graph can be characterized by a fixed-point equation.

3.1 Direction Cones and Partial Orders

This section defines our cone with parameters θ, ϕ in the unit square. The directional

relation that specifies which edges are permitted is expressed through a cone Cθ,ϕ(x),

or, equivalently, via a partial order. Note that this thesis only considers the general

23
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cone in the unit square, not a partial order. We give below the formal definitions

of rays and the cone classification with parameters θ, ϕ. Figure 3.1 below shows the

general cone with some cone constraints in [0, 1]2.

θ

ϕ

x

Cθ,ϕ(x)

10

1

Figure 3.1: General cone in the unit square.

Definition 3.1.1. For x ∈ R2 and any angle α ∈ [0, 2π) define the ray from x

with angle α to be the half-line {x + ceα : c ∈ R+} where eα = (− sinα, cosα) in

standard basis of R2.

Call the 4 rays from x with angle α ∈ {0, π
2
, π, 3π

2
} the coordinates axes from

x (or axes for short). In our methodology, a general cone can be defined by two

parameters θ ∈ [0, 2π) and ϕ ∈ (0, π], given by the following definition.

Definition 3.1.2. For θ ∈ [0, 2π), ϕ ∈ (0, π). Define Cθ,ϕ(x) to be the cone with

apex at x formed as a union of rays from x with angle α ∈ [θ, θ + ϕ], measured

anticlockwise from the vertical direction.

The cone Cθ,ϕ(x) can also be used to define a partial order on R2. Recall that

a partial order ≼, (see e.g., [22]) in general, is a binary relationship between the

elements of the set V , such that

(a) ≼ is reflexive, meaning that u ≼ u, ∀ u ∈ V ;

(b) ≼ is transitive, meaning that if u ≼ v, v ≼ w then u ≼ w, ∀ u, v, w ∈ V ;
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(c) ≼ is anti-symmetric, meaning that if u ≼ v and v ≼ u then u = v, ∀ u, v ∈ V .

The partial order satisfies the equivalence relations, so by setting x,y ∈ R2 (e.g.,

see Wade [45] for more details), the following equivalence relation holds.

x
θ,ϕ

≼ y ⇐⇒ x ∈ Cθ,ϕ(y). (3.1.1)

We use θ, ϕ to define a partial order
θ,ϕ

≼ on R2 via (3.1.1). There are three types

of general cones
θ,ϕ

≼ , we list them in the following definition.

Definition 3.1.3. (Cone classification): We classify the following categories
θ,ϕ

≼ ,

θ ∈ [0, 2π), and ϕ ∈ (0, π), as follows.

(a) The general cone is called doubly-aligned if both θ and θ + ϕ are in π
2
Z.

(b) The general cone is called singly-aligned if exactly one of θ and θ + ϕ belongs

to π
2
Z.

(c) The general cone is called unaligned if neither θ nor θ + ϕ belongs to π
2
Z.

The coordinate-wise partial order is a special case of a partial order, (for example

see Figure 3.2 Right panel) denoted by ‘

π
2
,π
2

⪯ ’ on [0, 1]2. The coordinate-wise partial

order satisfies the following property, for x1 ≤ x2 and y1 ≤ y2 if and only if

(x1,x2)
θ,ϕ

≼ (y1,y2).

3.2 MDSF: Definition, Background, Simulations

We define the the minimal directed spanning forest on a locally finite set X of points

in [0, 1]2 as follows, using the cones Cθ,ϕ(x) defined in the previous section.

Definition 3.2.1 (Directed nearest-neighbours). Fix θ ∈ [0, 2π), ϕ ∈ (0, π). Let

X ⊆ R2 be locally finite, non-empty with x ∈ X . Then,

• if X ∩ Cθ,ϕ(x) = {x}, set

Dθ,ϕ(x;X ) := 0

Nθ,ϕ(x,X ) := x,
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• if |X ∩ Cθ,ϕ(x)| ≥ 2, set

Dθ,ϕ(x;X ) := inf {∥y − x∥ : y ∈ Cθ,ϕ(x) \ {x}} .

By local finiteness Dθ,ϕ(x;X ) is an attained by some y ∈ X ∩ Cθ,ϕ(x) \ {x},

hence (Dθ,ϕ(x;X ) > 0). Choose arbitrary Nθ,ϕ(x;X ) ∈ X ∩ Cθ,ϕ(x) \ {x},

such that

∥x−Nθ,ϕ(x;X )∥ = Dθ,ϕ(x;X ).

The Nθ,ϕ(x;X ), if different from x, is the directed nearest neighbour of x in X

(with respect to angles θ, ϕ), and Dθ,ϕ(x;X ) is the corresponding nearest-neighbour

distance.

Definition 3.2.2 (Minimal directed spanning forest). For fixed cone parameters

θ, ϕ, let X be a finite set of points in R2. The minimal directed spanning forest

on X is defined by joining each point x ∈ X by an edge to its directed nearest

neighbour Nθ,ϕ(x;X ), provided this is different from x, i.e., the closest point chosen

from the set of points in X \ {x} that lies inside the cone Cθ,ϕ(x).

Bhatt and Roy [8] introduced the concept of the minimal directed spanning tree

(MDST), and they illustrated that the MDST on random points in [0, 1]2 are similar

to the standard minimal spanning tree and the nearest-neighbour graph for a set of

points in the plane. The uniqueness of their method is to consider all edges aligned

in the ‘south-west’ direction. The motivation behind exploring the concept of the

MDST arises from its applications in communications and drainage networks [8,

32, 39]. One notable aspect that sets limit theory for the MDST apart from the

ordinary nearest-neighbour graph (NNG) is the consideration of boundary effects.

These boundary effects can introduce non-Gaussian contributions to the limit be-

haviour, making the study of MDSTs particularly relevant and distinct in scenarios

where spatial distribution plays an essential role. Boundary effects in the context of

minimal directed spanning trees are a consequence of the constraints placed on the

direction of edges. These constraints arise due to the potential occurrence of long

edges near the lower and left boundaries of [0, 1]2. Understanding the properties

of minimal directed spanning trees when applied to random points within square,
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especially as the number of points tends to infinity, is a topic of significant interest.

It allows us to explore the behaviour of MDSTs under various conditions and gain

insights into their limit behaviour, which can be important in various applications

and studies involving spatial networks and distributions.

We also use the concept of minimal directed spanning forest, which is basically

the minimal directed spanning tree when the edges are removed from the origin

0 (see for example, Figure 3.2 (Right Panel)). However, MDSF is more practical

when the models assess the general partial order, e.g. see Wade [44]. The ‘south-west’

directional model can be extended to a large class of direction, defined in terms of

cones parameterised by two angles θ, ϕ, as described in Section 3.1. Different cones

within this parameterisation can influence the presence and behaviour of boundary

effects, making a versatile framework for studying spatial networks under various

directional constraints.

Figure 3.2 shows the difference between the south and south-west versions in the

unit square. Figure 3.2 shows the minimal directed spanning forest with 50 uniform

points generated randomly in the unit square. The Left Panel is the south version.

The Right Panel is the ‘south-west’ version (also, is called a doubly-aligned cone

since the long edges are aligned with the square [0, 1]2). The difference between the

south and ‘south-west’ versions is that in the doubly-aligned cone, there are two

boundary contributions from the bottom boundary and the most left boundary of

the square. In the south case, there is only one boundary contribution from the

lower vertical coordinate.

Figure 2.1 in Section 2.2 and Figure 3.2 (Right Panel) highlight the difference

between the NNG and MDSF models. For the NNG model, each point is joined to

its nearest neighbour (without any further condition). In the MDSF model, each

point is joined to the nearest neighbour chosen from these points to the south-west

direction. For NNG model, there is no boundary contribution associated with total

edge length, as a result, the central limit theorem holds. On the other hand, in

MDSF model, there are two boundary contributions from bottom boundary and
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from most left boundary of the square. The limit distribution will follow two inde-

pendent components: (i) a normal contribution from the bulk and (ii) a non-normal

contribution from the near boundary of the unit square, whose distribution can be

characterized by a fixed-point equation, for example, see Penrose and Wade [31] for

more details.

Figure 3.2: Realizations of the MDSF with 50 random points uniformly generated

in the unit square. Left Panel south version with parameters: θ = π
2
, ϕ = π; and

south-west version with parameters: θ = ϕ = π
2
.

Figures 3.3 – 3.5 below show the MDSF with 50 uniform points generated ran-

domly in the unit square for both singly-aligned cones (obtuse and acute angles)

and the unaligned cone. These diagrams show very long edges near the boundary

of the unit square. The limit theory for the total edge length of these graphs does

not follow a normal distribution, as the nature of the central limit theorem in this

situation is disrupted due to long edges near the boundary. Both singly-aligned

cones have one aligned ray along the side of the square. Moreover, it shows that

asymptotically a non-normal limit due to boundary effects. The unaligned cone has

no rays aligned with a square; as a result, it shows asymptotically a normal limit

since no boundary effects are occurring.
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Figure 3.3: A realization of the MDSF, with 50 random points uniformly generated

in the unit square with parameters: θ = π
2
, ϕ = 3π

4
; and a histogram of simulated

total edge lengths from a sample of 5× 104 simulations. The histogram is overlaid

with a plot of the normal density with mean and variance matching the sample mean

and variance, illustrating an apparent non-normal distribution, due to boundary

effects.

Figure 3.4: A realizations of the MDSF, with 50 random points uniformly gener-

ated in the unit square with parameters: θ = π
2
, ϕ = π

4
; and a histogram is overlaid

with a plot of the normal density with mean and variance matching the sample mean

and variance, illustrating an apparent non-normal distribution, due to boundary ef-

fects.
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Figure 3.5: Realization of the MDSF, with 50 random points uniformly generated

in the unit square with parameters: θ = π
8
, ϕ = π

4
; and a histogram is overlaid with

a plot of the normal density with mean and variance matching the sample mean and

variance, illustrating an apparent a normal distribution, due to absence of boundary

effects.

3.3 Limit Theorem for Total Edge-Length

This section will state our main result for this thesis Theorem 3.3.2. Recall the

definition of Nθ,ϕ(x) and Dθ,ϕ(x;X ) from Definition 3.2.1. In the case that |X ∩

Cθ,ϕ(x)| ≥ 2, then Nθ,ϕ(x,X ) is a nearest neighbour of x, and Dθ,ϕ(x;X ) is the

distance from x to this nearest neighbour.

Definition 3.3.1 (Total edge length of MDSF). Let L(X ) be the length of the

minimal directed spanning forest on the locally finite set X in [0, 1]2 i.e.,

L(X ) =
∑
x∈X

Dθ,ϕ(x;X ) =
∑
x∈X

∥x−Nθ,ϕ(x;X )∥.

Recall from the Definition 2.4.1 that Pλ is a homogeneous Poisson point process

on [0, 1]2 of intensity λ. The main objective here is to study the centred total length

of the minimal directed spanning forest. Let L̃λ = L(Pλ)−E[L(Pλ)] be the centred

total length in [0, 1]2. The main result of this thesis is given below.

Theorem 3.3.2. Let θ ∈ [0, 2π), ϕ ∈ (0, π). There exists a distribution Q on R

and constants sϕ ∈ (0,∞) such that if Q1, Q2, Z are mutually independent with
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Q1, Q2 ∼ Q and Z ∼ N (0, 1), then the following limit theorems hold.

(i) If (θ, ϕ) is doubly-aligned, then, as λ → ∞,

L̃λ
d→ sϕZ +Q1 +Q2. (3.3.1)

(ii) If (θ, ϕ) is singly-aligned, then, as λ → ∞,

L̃λ
d→ sϕZ +Q1. (3.3.2)

(iii) If (θ, ϕ) is unaligned, then, as λ → ∞,

L̃λ
d→ sϕZ. (3.3.3)

Remark 3.3.3. The normal random variable sϕZ arises from the edges in bulk (see

Section 5.3). The non-normal elements Q1, Q2 arise from the edges near boundary,

where the minimal directed spanning forest is asymptotically close to the directed

linear forest (see Section 6.2).

Remark 3.3.4. Part (i) of Theorem 3.3.2 was previously proved by [Penrose and

Wade [31], Theorem 2.1.]. Parts (ii) & (iii) complete the classification for cones with

parameters θ ∈ [0, 2π) and ϕ ∈ (0, π). The proof of part (iii) of Theorem 3.3.2 will

be provided in Section 5.4, and the proof of part (ii) will be provided in Section 7.4.

The proof of Theorem 3.3.2 has the following plan. We shall show in Chapter 5

that the contribution to the total edge length of the MDSF from edges away from the

boundary of the unit square converges in distribution to a normal random variable.

Following that in Chapter 6, we will show that the contribution from edges close

to the boundary converges in distribution to a non-normal random variable, whose

distribution can be characterized by a fixed-point equation. Finally, in Chapter 7,

we will show the asymptotic independence between these two contributions, and

moreover, that the contribution to the total edge length of the MDSF from the

intermediate region converges in probability to zero as the number of points becomes

sufficiently large.
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Note that the singly-aligned cones fall into two cases: either ϕ < π
2
or ϕ > π

2
. By

symmetry, the statement Theorem 3.3.2 (ii) only needs proving for the two specific

cone types θ = π
2
, ϕ < π

2
(acute case) and θ = π

2
, ϕ > π

2
(obtuse case). In future

sections, the names “acute” and “obtuse” refer to these specific cone types as shown

in Figure 4.3 and Figure 4.4. Similarly, the only unaligned cones we need to consider

for Theorem 3.3.2 (iii) are the three specific cases, as shown in Figures 4.5 – 4.7.

Also, see Figures in Appendix B for the classification of general cones.

We give a description of the distributionQ in the next section via a distributional

fixed-point equation.

3.4 Fixed-point Equation for Boundary Contri-

bution

In this section, we shall see that in some cases, the non-normal contribution from

near boundary of the unit sqaure. Those boundary contributions can be character-

ized by a fixed-point equation. The distribution of the random variables Q1 and Q2,

that appear in Theorem 3.3.2 derived from points close to the bottom boundary of

the unit square and is denoted by Q, (see Penrose and Wade [31] for more details).

We define below our limiting distribution Q in terms of a distributional fixed-point

equation in (3.4.1). By
d
=, we denote equality in distribution.

Q
d
= U + UQ′ + (1− U)Q′′ + U logU + (1− U) log(1− U), (3.4.1)

where Q,Q′, Q′′ ∼ Q, U, (1−U) ∼ U(0, 1) and U,Q′, Q′′ are independent. Theorem 3

of Rösler [40] states that there is a unique mean 0, finite-variance, distributionQ sat-

isfies (3.4.1). The higher order moments of Q are obtained recursively from (3.4.1).

Lemma 3.4.1. For Q ∼ Q, the unique mean-zero, finite variance solution to (3.4.1),

we have Var[Q] = 2− π2

6
.

Proof. From equation (3.4.1), we let f(U) = U+U logU+(1−U) log(1−U), where

U and (1 − U) have the same distribution, i.e., U, (1 − U) ∼ U(0, 1); where also
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Q′, Q′′ ∼ Q, and Q′, Q′′ are independent random variables. We assume E[Q] = 0

and E[Q2] < ∞.

Now we want to find the expectation and the variance of the random variable

Q. To do this, we need to square equation (3.4.1) and apply the expectation. By

Theorem 3 of Rösler [40], we see that E[Q] = 0. Then,

Q2 d
= U2Q′2 + (1− U)2Q′′2 + f(U)2 + 2UQ′(1− U)Q′′ + 2f(U)UQ′ + 2f(U)(1− U)Q′′,

(3.4.2)

note that the stated terms 2UQ′(1 − U)Q′′, 2f(U)UQ′, and 2f(U)(1 − U)Q′′ are

equal zero in expectation.

Next we apply the expectation to (3.4.2), then

E[Q2] = E[U2]E[Q′2] + E[(1− U)2]E[Q′′2] + E[f(U)2]. (3.4.3)

Since U and (1 − U) have the same distribution, we have E[U2] = E[(1 − U)2] =∫ 1

0
u2 du = 1

3
. Now, we consider E[Q2] = 1

3
(E[Q2] + E[Q2] + E[f(U)2]) implies

1
3
E[Q2] = E[f(U)2], which implies E[Q2] = 3E[f(U)2] since E[Q2] = E[Q′2] =

E[Q′′2].

Now we want to find f(U)2, and apply the expectation

f(U)2 = U2 + U2 log2 U + (1− U)2 log2(1− U) + 2U2 logU

+ 2U(1− U) log(1− U)

+ 2U(1− U) logU log(1− U).

(3.4.4)

hence (3.4.4), yields

E[f(U)2] = E[U2] + E[U2 log2 U ] + E[(1− U)2 log2(1− U)]

+ 2E[U2 logU ]

+ 2E[U(1− U) log(1− U)]

+ 2E[U(1− U) logU log(1− U)]. (3.4.5)
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From E[f(U)2], we know E[U2] = 1/3, and using integration by part to find

E[U2 log2 U ] =

∫ 1

0

u2 log2 u du = 0−
∫ 1

0

1

3
u3 1

u
log u du

= −2

3

∫ 1

0

u2 log u du

= −
(
−2

3

)∫ 1

0

1

3
u3 1

u
du

=

(
−2

3

)(
−1

3

)∫ 1

0

u2 du =
2

27
. (3.4.6)

Note since U and (1−U) have the same distribution, that E[(1−U)2 log2(1−U)] =

E[U2 log2 U ] = 2
27
.

Next we have E[2U2 logU ] which will follow the same calculation as in (3.4.6),

hence

E[2U2 logU ] = 2

∫ 1

0

u2 log u du =
−2

9
. (3.4.7)

Now we need to find E[2U logU(1−U) log(1−U)]. Then we can write it, as follows

E[2U logU(1− U) log(1− U)] =

∫ 1

0

2u log u log(1− u) du

+

∫ 1

0

−2u2 log u log(1− u) du. (3.4.8)

We examine (3.4.8) separately. To do this, we need first to find the Taylor series of

log(1− U). Let y = log(1− U) for |U | < 1 implies y′ = − 1
1−U

= −
∑∞

n=0 U
n, then

log(1− U) = −
∞∑
n=0

Un+1

n+ 1
= −

∞∑
n=1

Un

n
, (3.4.9)

this is the power series, and it is converged since |U | < 1. Hence (3.4.9), yields

E[2U logU(1− U) log(1− U)] = 2

∫ 1

0

u log u log(1− u) du

= −
∫ 1

0

2
∞∑
n=1

un+1

n
log u du

= −
∞∑
n=1

2

n

∫ 1

0

un+1 log u du

=
∞∑
n=1

2

n

(
1

(n+ 2)2

)
. (3.4.10)
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We calculate the second part of (3.4.8), as follows∫ 1

0

−2u2 log u log(1− u) du =
∞∑
n=1

2

n

∫ 1

0

un+2 log u du = −
∞∑
n=1

2

n

(
1

(n+ 3)2

)
.

(3.4.11)

Combining (3.4.10) and (3.4.11), equation (3.4.8), yields

E[2U logU(1− U) log(1− U)] =
∞∑
n=1

(
2

n

(
1

(n+ 2)2
− 1

(n+ 3)2

))
. (3.4.12)

Next, we want to calculate E[2U(1 − U) log(1 − U)], so since U and (1 − U) have

the same distribution, we can write E[2U(1− U) log(1− U)] as follows

E[2U(1− U) log(1− U)] = E[2U logU ]− E[2U2 logU ] = −1

2
−
(
−2

9

)
= − 5

18
.

(3.4.13)

Finally, combining (3.4.6), (3.4.7), (3.4.12), and (3.4.13), which yields (3.4.5) to be

3E[f(U)2] = 3

(
1

3
+

4

27
− 2

9
− 5

18
+

∞∑
n=1

2

n

(
1

(n+ 2)2
− 1

(n+ 3)2

))

= 3

(
− 1

54
+

∞∑
n=1

(
2

n(n+ 2)2
− 2

(n+ 1)(n+ 3)2
+

2

(n+ 3)2

(
1

n+ 1
− 1

n

)))

= 3

(
− 1

54
+

2

9
−

∞∑
n=1

(
2

n(n+ 1)(n+ 3)2

))

= 3

(
− 1

54
+

2

9
−

∞∑
n=1

(
2/9

n
− 1/2

n+ 1

))
, by telescoping series

= 3

(
− 1

54
+

2

9
−

∞∑
n=1

(
2/9

n
− 1/2

n+ 1
+

(1/2− 2/9)

n+ 3
+

1/3

(n+ 3)2

))

= 3

(
− 1

54
+

2

9
−

∞∑
n=1

(
2

9

(
1

n
− 1

n+ 3

)
− 1

2

(
1

n+ 1
− 1

n+ 3

)
+

1/3

(n+ 3)2

))

= 3

(
− 1

54
+

5

18

5

6
− 1

3

(
∞∑
n=1

1

n2
− 1− 1

4
− 1

9

))
= 3

(
23

108
+

49

108
− 1

3

π2

6

)
= 3

(
72

108
− π2

18

)
= 2− π2

6
.



Chapter 4

Partitions of the Unit Square:

Companions, Boundary, and Bulk

4.1 Introduction

This chapter aims to highlight the concept of partitioning the unit square, taking

into consideration companions, boundaries, and the bulk region. We will use the

tiles and companions as essential tools for analysing the properties of square.

In Section 4.2, we illustrate how R2 can be divided into squares labelled by Z2,

each having a side length denoted as S. We explain the concept of local dependence

in terms of these squares and the scale parameter S. Moving into Section 4.3, we

will identify some ‘good’ choices of companions for the different cone geometries.

In Section 4.4, we will go through the concept of bulk and boundary, providing a

general understanding of these regions. Additionally, we discuss local dependence,

which is an essential aspect of our analysis, particularly when studying bulk region.

Finally, Section 4.5 demonstrates the size of different regions within the square, a

key component of our analysis.

36
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4.2 Tiles and Companions

In this section, our focus shifts towards the examination of tiles and companions.

The intuitive idea here is to divide the whole of R2 into a grid of boxes, which

we call ‘tiles’. Then we will introduce the concept of companion. Our definitions

of tiles and companions provide a way to describe the the local dependence of the

random variables appearing in the collection of edge lengths in the minimal directed

spanning forest originating from points in the bulk, which will be made precise

later, in Section 5.2.2, once we have introduced the concept of dependency graph.

The details will depend on the geometry of the cones and corresponding choice of

companion (we see this in Section 4.3). First we give the formal definition of tile.

Fix a scale parameter S, which will always be the reciprocal of a positive integer.

For every p = (p1, p2) ∈ Z2 we define an associated tile T (p) which is the square

whose top right corner is the point (p1S, p2S), the bottom left corner is the point

((p1 − 1)S, (p2 − 1)S). More generally, we have the following definition.

Definition 4.2.1. For any V ⊆ Z2 define T (V ) ⊆ R2 by

T (V ) := ∪q=(q1,q2)∈V [(q1 − 1)S, q1S]× [(q2 − 1)S, q2S],

and write T (q) for T ({q}).

The next two definitions give a distance function and a ball for the index set Z2

of tiles.

Definition 4.2.2. For p = (p1, p2) ∈ Z2 and q = (q1, q2) ∈ Z2, we define

d(p, q) = max(|p1 − q1|, |p2 − q2|).

Definition 4.2.3. Let Sp,R be the ball of radius R such that Sp,R = {q ∈ Z2 :

d(p, q) ≤ R}.

Lemma 4.2.4. Suppose z ∈ T (p), z′ ∈ T (q) satisfy ∥z − z′∥ ≤ CS for C > 0, then

d(p, q) ≤ ⌊C⌋+ 1.
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Proof. Let x be the horizontal (Euclidean) distance between z and z′, and y be

the vertical (Euclidean) distance between z and z′. Then by triangle inequality

we have ∥z − z′∥ =
√
x2 + y2 ≤ CS, this means x ≤ CS and y ≤ CS where

x ≤
√

x2 + y2 = ∥z − z′∥ ≤ CS and similarly for y ≤
√

x2 + y2 = ∥z − z′∥ ≤ CS.

Suppose for a contradiction that |p1 − q1| ≥ ⌊C⌋+ 2. This implies that there must

be a vertical strip of at least ⌊C⌋+1 squares wide separating p and q, which means

the horizontal distance x is least (⌊C⌋ + 1)S. But ⌊C⌋ + 1 > C, which contradicts

our assumption x ≤ CS. Similarly, y ≤ CS implies |q2 − p2| ≤ ⌊C⌋ + 1. Hence,

d(p, q) = max{|p1 − q1|, |p2 − q2|} ≤ ⌊C⌋+ 1, as indicated in Figure 4.1.

z

z′

x
y

3S

p

q

Figure 4.1: Squares p = (p1, p2) and q = (q1, q2), satisfy |p1 − q1| = 4 so x ≥ 3S

for all z ∈ p and z′ ∈ q.

Now, we define the concept of companion and determine conditions that will

allow us to find R explicitly, which appears in the Definition 4.2.3. Recall by the

Definition 3.1.2 that Cθ,ϕ(x) is a cone has apex at x formed as a union of rays from x

with angle α ∈ [θ, θ+ϕ], measured anticlockwise from a vertically upward direction.

Definition 4.2.5. For θ ∈ [0, 2π) and ϕ ∈ (0, π), for each p ∈ Z2, call q ∈ Z2 a

companion of p if for all x ∈ T (p), it holds that T (q) ⊆ Cθ,ϕ(x).

Note that, q is a companion of p if and only if q− p is a companion of 0 = (0, 0).



4.2. Tiles and Companions 39

Definition 4.2.6. For squares p = (p1, p2), r = (r1, r2) with r a companion of 0,

define ρ(r) := |r1|+ |r2|+ 2. Then, we call

Sp,ρ(r) = {q ∈ Z2 : d(q, p) ≤ |r1|+ |r2|+ 2},

the ball of stabilization associated with p and r. Note that, Sp,ρ(r) = p+ S0,ρ(r).

The next result shows how companions lead to local dependence. Recall by

Definition 3.2.1 that Nθ,ϕ(x,X ) is a nearest neighbour of x on the locally finite set

X .

Theorem 4.2.7. Suppose r ∈ Z2 is a companion of 0. Then for any locally finite

set X ⊆ R2, p ∈ Z2, and x,y ∈ X with x ∈ T (p), y ∈ T (p + r), we have

Nθ,ϕ(x;X ) ∈ T (Sp,ρ(r)).

Proof. Take 0 with companion r. Suppose x,y ∈ X with x ∈ T (p), y ∈ T (p + r).

By Definition 4.2.5, it holds that T (p+r) ⊆ Cθ,ϕ(x) and hence y ∈ Cθ,ϕ(x), so y is a

candidate nearest-neighbour of x. Moreover, ∥y−x∥ ≤ S
√
(|r1|+ 1)2 + (|r2|+ 1)2,

since

(|r1|+ |r2|+ 3/2)2 = r21 + 3|r1|+ 9/8

+ r22 + 3|r2|+ 9/8 + 2|r1||r2|

> (|r1|+ 1)2 + (|r2|+ 1)2,

then ∥y−x∥ ≤ (|r1|+|r2|+3/2)S, see Figure 4.2. Since x has at least one candidate

nearest-neighbour (namely y), by Definition 3.2.1, we have

Dθ,ϕ(x;X ) = ∥x−Nθ,ϕ(x;X )∥ ≤ ∥x− y∥ ≤ (|p1|+ |p2|+ 3/2)S.

Finally, let q ∈ Z2 be such that Nθ,ϕ(x;X ) ∈ T (q). Then Lemma 4.2.4 implies

d(p, q) ≤ |r1| + |r2| + 2, hence we verify that q ∈ Sp,ρ(r) (see Definition 4.2.6), and

so Nθ,ϕ(x;X ) ∈ T (q) ⊆ T (Sp,ρ(r)).
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T (p + r)

y

x

T (p)

(|
r
2
|+

1
)S

Sp,ρ(r)

(|r1| + 1)S

Figure 4.2: Here r ∈ Z2 is a companion of p in the ball Sp,ρ(r) with vertical distance

(|r2|+ 1)S and horizontal distance (|r1|+ 1)S.

The next result follows directly from Theorem 4.2.7.

Corollary 4.2.8. Suppose r ∈ Z2 is a companion of 0. Let X be a locally finite set,

and x,y ∈ X satisfy x ∈ T (p) and y ∈ T (p + r) for some p ∈ Z2. Then, for any

locally finite Y ⊆ R2 \ T (Sp,ρ(r))

Dθ,ϕ(x;X ) = Dθ,ϕ(x;X ∩ T (Sp,ρ(r))) = Dθ,ϕ(x;X ∩ T (Sp,ρ(r)) ∪ Y).

Proof. Theorem 4.2.7 implies that Nθ,ϕ(x;X ∩ T (Sp,ρ(r))∪Y) can not be in Y since

T (Sp,ρ(r)) ∩ Y = ∅, so Nθ,ϕ(x;X ∩ T (Sp,ρ(r)) ∪ Y) = Nθ,ϕ(x;X ∩ T (Sp,ρ(r)) for any

Y ⊆ R2 \ T (Sp,ρ(r)). Moreover, the identity Nθ,ϕ(x;X ) = Nθ,ϕ(x;X ∩ T (Sp,ρ(r)) is

just the special case of Y = X \T (Sp,ρ(r)). The statement follows from the definition

of Dθ,ϕ(x,X ).

Remark 4.2.9. In other words, given the conditions of Corollary 4.2.8, Dθ,ϕ(x;X ) is

not affected by any changes to X outside of T (Sp,ρ(r)).
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4.3 Identifying Companions for Different Cone Ge-

ometries

In this section, we study different types of cone geometries in the unit square. As

mentioned in the discussion after the statement of Theorem 3.3.2 we consider five

types of cone:

(a) singly-aligned, obtuse case,

(b) singly-aligned, acute case,

(c) unaligned, contains no axes,

(d) unaligned, contains one axis,

(e) unaligned, contains two axes.

Proposition 4.3.1 below, identifies companion in each case. The above categories

are illustrated in Figures 4.3 (case (a)), 4.4 (case (b)), 4.5 (case (c)), 4.6 (case (d)),

and Figure 4.7 (case (e)), helping us to understand the various geometric of the

configurations.

Proposition 4.3.1.

(a) (Obtuse): Let θ = π/2, ϕ > π/2. Set h = cot(ϕ− π
2
). Then (0,−(⌊h⌋+2)) is

a companion of 0.

(b) (Acute): Let θ = π/2, ϕ < π/2. Set h = 2 cot(ϕ). Then (−(⌊h⌋ + 2),−1) is

a companion of 0.

(c) (Unaligned case I): Let 0 < θ < π
2
and θ + ϕ < π

2
. Then there exists a

companion r of 0 with d(0, r) ≤
⌊

3√
2
(1 + csc(ϕ/2))

⌋
+ 1.

(d) (Unaligned case II): Let 0 < θ < π
2
and π

2
< θ+ϕ < π. Set h0 = max(cot(π

2
−

θ), cot(θ + ϕ− π
2
)). Then, (−(⌊h0⌋+ 2), 0) is companion of 0.

(e) (Unaligned case III ): Let 0 < θ < π
2
, θ + ϕ > π, where ϕ < π. Set h1 =
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cot(π
2
−θ) and h2 = cot(θ+ϕ−π). Then (−(⌊h1⌋+2), 0) and (0,−(⌊h2⌋+2))

are both companions of 0.

hS

ϕ − π
2

⌊h⌋ + 1 square

S

z

T (0)

r = (0,−(⌊h⌋ + 2)) T (r)

x

α

Figure 4.3: Case (a): obtuse angle with θ = π
2
and ϕ ∈ (π

2
, π) with h = cot(θ− π

2
).

Square r = (0,−(⌊h⌋+ 2)) is a companion of 0.

Proof of Proposition 4.3.1 (a).

Let r = (0,−(⌊h⌋+ 2)). We need to show that r is a companion of 0. It is enough

to show that for every x ∈ T (0) and every z ∈ T (r), z ∈ Cθ,ϕ(x). Take z ∈ T (r),

then |x1 − z1| ≤ S and |x2 − z2| > (⌊h⌋+ 1)S. Let α be the angle of ray from x to

z measured anticlockwise relative to the downward vertical. Then,

| tanα| ≤ |x1 − z1|
|x2 − z2|

≤ 1

⌊h⌋+ 1
< tan

(
ϕ− π

2

)
,

since 1
⌊h⌋+1

< 1
h
= tan(ϕ− π

2
). So angle α is contained in (−π

2
, ϕ− π

2
), which implies

that z ∈ Cθ,ϕ(x).
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ShS

α
ϕ

2S

T (0)

x

T (r)

r = (−(⌊h⌋ + 2),−1)

z

⌊h⌋ + 1 square

Figure 4.4: Case (b): acute angle θ, ϕ with h = 2 cot(ϕ) and r = (−(⌊h⌋+ 2),−1)

is companion of 0.

Proof of Proposition 4.3.1 (b).

Let r = (−(⌊h⌋+2),−1). We need to show that r is a companion of 0. It is enough

to show that for every x ∈ T (0) and every z ∈ T (r), z ∈ Cθ,ϕ(x). Take z ∈ T (r),

then |x1 − z1| ≥ (⌊h⌋+ 1)S and |x2 − z2| ≤ 2S. Let α be the angle of ray from x to

z measured anticlockwise relative to the leftward horizontal. Then,

| tanα| ≤ |x2 − z2|
|x1 − z1|

≤ 2

⌊h⌋+ 1
<

2

h
= tan(ϕ),

by the definition of h = 2 cot(ϕ). Then |α| < ϕ, which implies z ∈ Cθ,ϕ(x).

ϕ

y

ϕ

Cθ,ϕ(y)

Cθ,ϕ(x)

x ∈ T (0)

C1

z1

z2

C2

w
w ∈ T (r)

√
2S

S√
2z1

ϕ

Cπ+θ,ϕ(y)

S√
2

ϕ
2

∥y − x∥

Figure 4.5: Case (c): unaligned cone with 0 < θ < π
2
and θ+ϕ < π

2
, and containing

no axes, with r is a companion of 0.

Proof of Proposition 4.3.1 (c).

We make use of the fact that if y ∈ Cθ,ϕ(x), then x ∈ Cπ+θ,ϕ(y), where Cπ+θ,ϕ(y)

is a rotation by π of the cone Cθ,ϕ(y), see Figure 4.5.
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Consider tile T (0) and the circle C1 of radius
S√
2
that contains T (0). Let y ∈ R2

be a point such that Cπ+θ,ϕ(y) contains C1, and hence all points in T (0). We

can choose y so that supx∈T (0) ∥x − y∥ ≤ ℓ = S√
2
(1 + csc(ϕ/2)) since ∥x − y∥ ≤

∥x− z1∥+ ∥z1 − y∥ where z1 is the center of the C1, and y can be chosen so that

∥z1 − y∥ = S√
2
csc(ϕ/2). By the first statement, this means that y ∈ Cθ,ϕ(x) for

all x ∈ T (0), and hence Cθ,ϕ(y) ⊆ ∩x∈T (0)Cθ,ϕ(x). Hence r is a companion of 0 if

T (r) ⊆ Cθ,ϕ(y). Let C2 be a circle inside Cθ,ϕ(y) large enough to guarantee that

it contains some tile T (r). The circle of radius
√
2S centred at z2 with distance

∥z2 − y∥ =
√
2S csc(ϕ/2) will achieve this, see Figure 4.5. Then for any w ∈ T (r)

and x ∈ T (0), we have

∥w − x∥ = ∥w − z2∥+ ∥z2 − y∥+ ∥y − x∥

≤ 3√
2
S(1 + csc(ϕ/2)).

Hence by Lemma 4.2.4, we obtain

d(0, r) ≤
⌊

3√
2
(1 + csc(ϕ/2))

⌋
+ 1.

θ

ϕ

x ∈ T (0)
r

θ

ϕ

π
2

− θ

θ + ϕ − π
2

x ∈ T (0)
r

Figure 4.6: Case (d): unaligned cone with 0 < θ < π
2
and π

2
< θ + ϕ < π, and it

contains one axes, and r = (−(⌊h0⌋+ 2), 0) is a companion of 0.

Proof of Proposition 4.3.1 (d).

We use the fact that Cθ,ϕ(x) = C0,θ+ϕ(x) ∩ Cθ,π−θ(x) where both C0,θ+ϕ(x) and

Cθ,π−θ(x) are singly-aligned cones with obtuse angles at x. Hence we can deduce

using part (a) that for C0,θ+ϕ(x), any square (−r1, 0) is a companion of 0 when
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r1 ≥
⌊
cot(θ + ϕ− π

2
)
⌋
+ 2, and for Cθ,π−θ(x), any square (−r1, 0) is a companion of

0 when r1 ≥
⌊
cot(π

2
− θ)

⌋
+ 2. Therefore r = (−(⌊h0⌋ + 2), 0) is a companion of 0

for both cones, and hence is a companion of 0 for their intersection.

θ

ϕ

x ∈ T (0)

r1

r2

x ∈ T (0)

r1

r2

θ

ϕ

π
2

− θ

θ + ϕ − π

Figure 4.7: Case (e): unaligned cone with 0 < θ < π
2

and θ + ϕ > π,

and it contains two axes, and companions r1 = (−(
⌊
cot(π

2
− θ)

⌋
+ 2), 0) and

r2 = (0,−(⌊cot(θ + ϕ− π)⌋+ 2)) of 0.

Proof of Proposition 4.3.1(e).

We use the fact that Cθ,ϕ(x) = Cπ
2
,θ+ϕ−π

2
(x) ∪ Cθ,π−θ(x) where both Cπ

2
,θ+ϕ−π

2
(x)

and Cθ,π−θ(x) are singly-aligned cones with obtuse angle at x. Then from part (a)

we know that

r2 =
(
0,−(

⌊
cot(θ + ϕ− π

2
− π

2
)
⌋
+ 2)

)
= (0,−(⌊cot(θ + ϕ− π)⌋+ 2)),

is a companion of 0 for Cπ
2
,θ+ϕ−π

2
(x), and therefore a companion of 0 for Cθ,ϕ(x).

Similarly, we know r1 = (−(
⌊
cot(π

2
− θ)

⌋
+ 2), 0) is a companion of 0 for Cθ,π−θ(x),

and therefore a companion of 0 for Cθ,ϕ(x).

4.4 Boundary and Composition of the Unit Square

In this section, we focus our attention on locally finite sets X in the unit square [0, 1]2.

Recall by Definition 3.3.1 that L(X ) is the total length of MDSF on X ⊆ [0, 1]2.

We define two regions of [0, 1]2, R3
λ (where long edges may appear) and R1

λ (where

a local dependence property holds, as we explain more in Chapter 5). In order to
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discuss the contribution to L(X ) coming from different regions of [0, 1]2, we define

the following notation.

Definition 4.4.1. For R ⊆ R2, define

L(X ;R) =
∑

x∈X∩R

Dθ,ϕ(x;X ).

For the unaligned cone, we may take R3
λ to be empty; for the singly-aligned

cones R3
λ will be a narrow strip [0, 1]× [0, λ−σ] along the bottom boundary of [0, 1]2.

Once R3
λ is chosen, the bulk R1

λ is chosen to satisfy two conditions:

1. that the terms Dθ,ϕ(x;X ) contributing to L(X ;R1
λ) exhibit local dependence,

and

2. that the nearest-neighbour Nθ,ϕ(x;X ) of any point x ∈ X ∩R1
λ is not in R3

λ.

For the random sets Pλ that we will consider, condition 1) will allow us to prove

a CLT for L(Pλ;R1
λ) and condition 2) will ensure an asymptotic independence of

L(Pλ;R1
λ) and L(Pλ;R3

λ) (see Section 4.5 for more details). This motivates the

definition of compatible bulk given below in Definition 4.4.5. Concerning condi-

tion 1), for x ∈ X ⊆ [0, 1]2, local dependence of Dθ,ϕ(x;X ) can be achieved in

two ways. Either, we find a companion p + r of p, where p satisfies x ∈ T (p),

to apply Theorem 4.2.7 which requires that T (p + r) ∩ [0, 1]2 ̸= ∅; alternatively,

Nθ,ϕ(x;X ) ∈ T (Sp(x),R) may hold simply because all candidate nearest-neighbours

are within a bounded distance of x, for example because x is close to the boundary

of [0, 1]2, and Cθ,ϕ(x) ∩ [0, 1]2 has small diameter. We quantify this second case as

follows.

Definition 4.4.2. For S > 0 and p ∈ Z2, define

ν(p) := sup{∥x− y∥ : x ∈ T (p),y ∈ Cθ,ϕ(x) ∩ [0, 1]2}.
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x ∈ T (p)

ν(p)

y

ϕ

Cθ,ϕ(x)

Figure 4.8: Furthest Euclidean distance between x ∈ T (p) and y ∈ Cθ,ϕ(x) is

given by ν(p).

Lemma 4.4.3. Fix θ, ϕ. Let X ⊆ [0, 1]2 be a locally finite set. Suppose ν(p) ≤ δS

for some δ > 0. For all x ∈ X ∩ T (p), we have Nθ,ϕ(x;X ) ∈ T (Sp,⌊δ⌋+1) ∩ [0, 1]2.

Proof. Suppose x ∈ X ∩T (p) and consider Nθ,ϕ(x;X ) which by definition is a point

in Cθ,ϕ(x) ∩ X ⊆ Cθ,ϕ(x) ∩ [0, 1]2. Therefore,

∥x−Nθ,ϕ(x;X )∥ ≤ ν(p) ≤ δS.

Let q be such that Nθ,ϕ(x;X ) ∈ T (q). By Lemma 4.2.4, d(p, q) ≤ ⌊δ⌋ + 1, in other

words, q ∈ Sp,⌊δ⌋+1.

Definition 4.4.4. Let TS be the set of all tiles in [0, 1]2, given by

TS = {p ∈ Z2 : T (p) ⊆ [0, 1]2}.

Note that, for a particular scale S being the reciprocal of a positive integer, TS

consist of all p = (p1, p2) ∈ Z2 satisfying (1 ≤ p1 ≤ 1
S
and 1 ≤ p2 ≤ 1

S
).

We now give the definition of compatible bulk. In Definition 4.4.5 below, R3
λ

is an arbitrary region of [0, 1]2 that we will later set to be a boundary region of

[0, 1]2 where we expect to see long edges. The conditions (A) & (B1)/(B2) ensure

the conditions 1) & 2) described above are satisfied for R1
λ and R3

λ. For now, think

of λ as an arbitrary parameter that determines the region R3
λ and S as an arbitrary
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scale. In fact, we will see in Chapter 5 that λ will be the intensity of our Poisson

process and S will be chosen as a function of λ, with S ∼
√

c log λ
λ

.

Definition 4.4.5. Fix θ, ϕ, S. Let C0 ⊆ Z2 be a finite (non-empty) set of compan-

ions of 0. Let R3
λ ⊆ [0, 1]2 and let δ ≥ 0. Define the following three properties of

p ∈ TS satisfying:

(A) : p+ r ∈ TS and T (Sp,ρ(r)) ∩R3
λ = ∅ for some r ∈ C0.

(B1) : ν(p) ≤ δS and

(B2) : (∪x∈T (p)Cθ,ϕ(x)) ∩R3
λ = ∅.

Let BBB ⊆ TS be any set of squares each satisfying either (A) or both (B1) & (B2).

Let R1
λ = T (BBB) ⊆ [0, 1]2. We call R1

λ is a compatible bulk (for θ, ϕ, C0, R3
λ, δ and

S).

Now we specify the “boundary” region for each cone. We will start with singly-

aligned cones (obtuse and acute angles) and unaligned cone in the unit square.

Note in the statement of Lemma 4.4.6 (below) that h is the same as that defined

in Proposition 4.3.1 (a), and in the statement of Lemma 4.4.7 (below) that h is the

same as that defined in Proposition 4.3.1 (b).

Lemma 4.4.6. (Obtuse) Set θ = π
2
and ϕ ∈ (π

2
, π). Let C0 = {r} = {(0,−(⌊h⌋ +

2))}, R3
λ = [0, 1]× [0, λ−σ] for σ ∈ (1

2
, 2
3
), δ = 0, R = ⌊h⌋+ 5, and R+ 1 ≤ 1

S
< λσ.

Then, R1
λ = [0, 1]× [RS, 1] is a compatible bulk.

Proof. Let BBB be all squares in TS satisfying property (A), so that by definition

T (BBB) is a compatible bulk. We need to show that T (BBB) = [0, 1] × [RS, 1]. By

Definition 4.2.6, we have

Sp,ρ(r) = {q ∈ Z2 : d(q, p) ≤ |r1|+ |r2|+ 2},

so for this companion Sp,ρ(r) = Sp,⌊h⌋+4, (see Figure 4.9). Now for p = (p1, p2) ∈ TS

to satisfy (A), we need T (Sp,⌊h⌋+4) ∩ R3
λ = ∅ which holds if p2 − ⌊h⌋ − 4 ≥ 2 (i.e.,

p2 ≥ ⌊h⌋ + 6) since this guarantees that p is not in the bottom row of tiles in TS
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(which necessarily contains R3
λ since S > λ−σ). We also need p + r ∈ TS which

requires 1 ≤ p1 ≤ 1
S
and p2 − ⌊h⌋ − 2 ≥ 1. Hence,

BBB =

{
p ∈ Z2 : 1 ≤ p1 ≤

1

S
, ⌊h⌋+ 6 ≤ p2 ≤

1

S

}
,

and then, recalling Definition 4.2.1, we have T (BBB) = [0, 1] × [(⌊h⌋ + 5)S, 1], see

Figure 4.3.

1/S

Sp,⌊h⌋+4

(p1, p2 − (⌊h⌋ + 4))

p = (p1, p2)

λ−σ

Figure 4.9: This ball is centred at p with radius ⌊h⌋+ 4.

Lemma 4.4.7. (Acute) Set θ = π
2
and ϕ ∈ (0, π/2). Let C0 = {r} = {(−(⌊h⌋ +

2),−1)} and R3
λ = [0, 1] × [0, λ−σ]. Set δ = (⌊h⌋ + 2) secϕ, R = max(⌊h⌋ +

6, ⌊(⌊h⌋+ 2) tanϕ⌋ + 2), and R + 1 ≤ 1
S
< λσ. Then, R1

λ = [0, 1] × [RS, 1] is a

compatible bulk.

Proof. DefineBBB = {p ∈ TS : p2 > R}. We will show that all p ∈ BBB either satisfy (A)

or both (B1) and (B2), which implies that T (BBB) = R1
λ is a compatible bulk.

Suppose p ∈ BBB has p1 > ⌊h⌋ + 2, then p + r ∈ TS since p1 + r1 > 0 (and

p2 + r2 > R − 1 > 0). Also, since ρ(r) = ⌊h⌋ + 5 and p2 > R ≥ ⌊h⌋ + 6, we have

T (Sp,⌊h⌋+5) ∩R3
λ = ∅ (because p2 − ⌊h⌋ − 5 > 1). Therefore p satisfies (A).

Otherwise, suppose p ∈ BBB has p1 ≤ ⌊h⌋ + 2, then Definition 4.4.2 implies that

ν(p) ≤ (⌊h⌋ + 2)S secϕ = δS by choice of δ, so p satisfies (B1). To prove that p
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satisfies (B2), it is enough to show that for any x ∈ T (p) any y ∈ Cθ,ϕ(x)∩[0, 1]2 has

y2 > λ−σ (this forces y /∈ R3
λ). But this follows, since p2 > R ≥ ⌊(⌊h⌋+ 2) tanϕ⌋+

2 , i.e., p2 ≥ ⌊(⌊h⌋+ 2) tanϕ⌋ + 3, and x ∈ T (p) means x2 ≥ (p2 − 1)S ≥

(⌊(⌊h⌋+ 2) tanϕ⌋+ 2)S and x2 − y2 ≤ (⌊h⌋+ 2)S tanϕ ≤ (⌊(⌊h⌋+ 2) tanϕ⌋+ 1)S.

So that y2 ≥ S > λ−σ so y /∈ R3
λ, and therefore p satisfies (B2), see Figure 4.10.

Hence T (BBB) = [0, 1]× [RS, 1] = R1
λ is a compatible bulk, see Figure 4.4.

x = (x1, x2)

y = (y1, y2)

A

ϕ

m
ℓ

(⌊h⌋ + 2)S

(⌊h⌋ + 6)S

Figure 4.10: For acute case, we have tanϕ = ℓ/A implies ℓ = A tanϕ where

A ≤ (⌊h⌋+ 2)S.

Lemma 4.4.8. (Unaligned) Set 0 < θ < π
2
and ϕ < π with θ + ϕ /∈ {π

2
, π}.

Let R3
λ = ∅ (no boundary) and let R1

λ = [0, 1]2. There exists a finite set C0 of

companions of 0, large enough δ and small enough S such that R1
λ is a compatible

bulk.

Since R3
λ = ∅, condition (A) reduces to p + r ∈ TS for some r ∈ C0 and (B1) is

trivially satisfied. Hence, we just need to show for all p ∈ TS that either p+ r ∈ TS

for some r ∈ C0, or ν(p) ≤ δS. The argument for the 3 types of unaligned cone are

very similar but rely on different parts of Proposition 4.3.1, so we prove the 3 cases

separately.

Proof. Case (I) (Proposition 4.3.1 (c)):
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T (Cleft)

T (Ctop)

p

p + r

θ

x

DS

ℓ
ϕ

DS

x

DS
θϕ

ℓ

ℓ = DS sec(θ + ϕ)

ℓ
=

D
S

c
sc

θ

DS

Figure 4.11: Case (I) for the unaligned cone.

Set D =
⌊

3√
2
(1 + csc(ϕ/2))

⌋
+ 1, and let r be a companion satisfying d(0, r) ≤

D, which exists by Proposition 4.3.1 (c). Let C0 = {r}, let 1
S

≥ D and define

Cleft = {p = (p1, p2) ∈ Z2 : 1 ≤ p1 ≤ D, 1 ≤ p2 ≤ 1
S
} and Ctop = {p = (p1, p2) ∈ Z2 :

1 ≤ p1 ≤ 1
S
, 1
S
−D+1 ≤ p2 ≤ 1

S
}. If p ∈ TS \ (Cleft ∪ Ctop), then p+ r ∈ TS because

p+ r ∈ Sp,D and p+ r is a square above and to the left of p (see Figure 4.11).

If p ∈ Cleft, then ν(p) ≤ DS csc θ and if p ∈ Ctop, then ν(p) ≤ DS sec(θ+ ϕ) (see

Figure 4.11). Hence taking δ = max(D csc θ,D sec(θ + ϕ)), we have ν(p) ≤ δS for

all p ∈ Cleft ∪ Ctop.

Proof. Case (II) (Proposition 4.3.1 (d)):

T (Cleft)

pp + r

θ

ℓ2

x

ℓi = DS secϕi

DS

ℓ1
ϕ1

ϕ2

DS

Figure 4.12: Case (II) for the unaligned cone.
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Set D = ⌊h0⌋ + 2, where h0 is as defined in Proposition 4.3.1 (d). Then r =

(−D, 0) is a companion of 0. Set C0 = {r}, let 1
S
≥ D and define Cleft = {p =

(p1, p2) ∈ Z2 : 1 ≤ p1 ≤ D, 1 ≤ p2 ≤ 1
S
} as before. If p ∈ TS \ Cleft, then p+ r ∈ TS

(see Figure 4.12).

If p ∈ Cleft then ν(p) = max(ν1(p), ν2(p)) where ν1(p) = sup{∥x − y∥ : x ∈

T (p),y ∈ Cθ,ϕ(x) ∩ [0, 1]2, y2 ≥ x2} and ν2(p) = sup{∥x − y∥ : x ∈ T (p),y ∈

Cθ,ϕ(x) ∩ [0, 1]2, y2 ≤ x2} and νi(p) ≤ DS secϕi for each i = 1, 2, where ϕ1, ϕ2 are

angles satisfying 0 < ϕi < π
2
and ϕ = ϕ1 + ϕ2 (see Figure 4.12). Hence taking

δ = max(D secϕ1, D secϕ2), we have ν(p) ≤ δS for all p ∈ Cleft.

Proof. Case (III) (Proposition 4.3.1 (e)):

T (Cleft)

T (Cbottom)

pp + r1

θ

ℓ2 = DS secϕ2

x

ℓ1

ϕ1

ϕ2

ℓ2

ℓ
1

=
D

S
se

c
ϕ
1

DS

DS

p

p + r2
DS

Figure 4.13: Case (III) for the unaligned cone.

Set D = max(⌊h1⌋ + 2, ⌊h2⌋ + 2), where h1 and h2 are as defined in Proposi-

tion 4.3.1 (e). The squares r1 = (−(⌊h1⌋ + 2), 0) and r2 = (0,−(⌊h2⌋ + 2)) are

both companions of 0. Set C0 = {r1, r2}, let 1
S
≥ D and define Cleft as before. Let

Cbottom = {p = (p1, p2) ∈ Z2 : 1 ≤ p1 ≤ 1
S
, 1 ≤ p2 ≤ D}. If p ∈ TS \ Cleft, then

p+ r1 ∈ TS and if p ∈ TS \ Cbottom, then p+ r2 ∈ TS (see Figure 4.13). Hence for all

p ∈ TS \ (Cleft ∩ Cbottom), then is an r ∈ C0 with p+ r ∈ TS.

If p ∈ Cleft∩Cbottom, then ν(p) = max(ν1(p), ν2(p), ν3(p)) where ν1(p) = sup{∥x−

y∥ : x ∈ T (p),y ∈ Cθ,ϕ(x) ∩ [0, 1]2, y2 ≥ x2}, ν2(p) = sup{∥x − y∥ : x ∈ T (p),y ∈
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Cθ,ϕ(x) ∩ [0, 1]2, y1 ≥ x1}, and ν3(p) = sup{∥x − y∥ : x ∈ T (p),y ∈ Cθ,ϕ(x) ∩

[0, 1]2, y1 ≤ x1, y2 ≤ x2}, and νi(p) ≤ DS secϕi for each i = 1, 2, where ϕ1, ϕ2 are

angles satisfying 0 < ϕi < π
2
and ϕ = ϕ1 + ϕ2 +

π
2
. Also ν3(p) ≤

√
2DS (see

Figure 4.13). Hence taking δ = max(D secϕ1, D secϕ2,
√
2D), then ν(p) ≤ δS for

all p ∈ Cleft ∩ Cbottom.

4.5 Regions in the Unit Square

In this section, we aim to study the regions in the unit square. These regions are

often used as a framework for spatial analysis and are fundamental when studying

point processes and random graphs within the unit square. Understanding the

interplay between boundary and bulk regions is essential for effectively modelling

and analysing spatial graphs. We will explore the region of the unit square for both

singly-aligned cones (obtuse and acute angles). The other type of cone geometry is

such an unaligned cone that the entire square falls under the bulk region in [0, 1]2,

as shown below in Figure 4.14.

Bulk

Intermediate

Boundary

R1
λ

R2
λ

R3
λ

BulkR1
λ

Figure 4.14: Region of the unit square (bulk, intermediate and boundary) for both

singly-aligned and unaligned cones.

We consider the following regions in the unit square: region R1
λ covers the bulk

of [0, 1]2, region R3
λ covers the bottom boundary, and R2

λ covers the intermediate

region. In the case of an unaligned cone, the entire unit square is considered part

of the bulk region, denoted as R1
λ ≡ [0, 1]2. This simplification arises from the fact
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that no boundary effects are associated with an unaligned cone.

In the following definition we assume that λ is sufficiently large and S chosen so

that the conditions of the relevant Lemma 4.4.6 – 4.4.8 hold.

Definition 4.5.1. Let (θ, ϕ) be singly-aligned. Let S > λ−σ, and σ ∈ (1
2
, 2
3
),

R1
λ := [0, 1]× [RS, 1]; (4.5.1)

R2
λ := [0, 1]×

[
λ−σ, RS

]
; (4.5.2)

R3
λ := [0, 1]×

[
0, λ−σ

]
, (4.5.3)

where R is such that R1
λ is compatible bulk specified by Lemmas 4.4.6, 4.4.7, with

R = R(θ, ϕ) as given in those statements. Moreover, if (θ, ϕ) is unaligned, we take

R1
λ = [0, 1]2 and R2

λ = R3
λ = ∅, so that R1

λ is a compatible bulk according to

Lemma 4.4.8.

Recall from the Definition 2.4.1 that Pλ is a homogeneous Poisson point process

on [0, 1]2 with intensity λ. The next definition is to define the total length for all

regions in [0, 1]2.

Definition 4.5.2. For i = 1, 2, 3, define

Li
λ = L(Pλ;Ri

λ),

and define L̃i
λ = Li

λ − E[Li
λ] the centered random variable.

Here, we explore the size of the unit square. Initially, we partition the unit

square into three segments, each with its choice size, as shown in Figure 4.14, the

three segments: bulk, intermediate and bottom boundary. The reason for parti-

tioning the unit square into these specific regions is to ensure that the central limit

theorem (CLTs) holds due to local dependence in the R1
λ bulk region. The R3

λ bot-

tom boundary which causes an approximation process to one-dimensional distance

due to boundary effects. Finally, the intermediate region R2
λ exhibits asymptotic

independence between the bulk and bottom boundary of the unit square.

Chapters 5 – 7 progressively involved the foundational concepts established in
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Chapters 3 and 4, each introducing more spatial relationships and their consequen-

tial implications. Chapter 5 focuses on local dependence, demonstrating how com-

ponents within a finite range exhibit interdependence owing to compatible bulk.

The chapter substantiates this by offering proof of the central limit theorem (The-

orem 5.1.1). Chapter 6 explores boundary effects, particularly emphasizing the

impact of one-dimensional distance and employing linear directed forest as an ana-

lytical tool to demonstrate the proof of Theorem 6.1.1. In what follows, Chapter 7

extends these ideas, exploring the concept of intermediate region and emphasizing

the interaction between bulk and bottom boundary arising from the compatible bulk

in the unit square. The chapter offers proof of Theorem 7.2.1, continuing to leverage

the foundational ideas from Chapter 4 to explain the complex relationships between

different spatial components in more significant detail.

We will start in the next chapter with our study of the bulk region R1
λ in the

unit square.



Chapter 5

Local Dependence and Central

Limit Theorems

5.1 Introduction

This chapter explores several key topics. We will discuss the concept of the local

dependence and central limit theorems, little squares and typical configurations,

Poisson point process associated with squares, dependency graphs, and their con-

nection to normal approximation. Finally, deliver the proofs of central limit theorem

(Theorem 5.1.1) and convergence of variance (Theorem 5.1.2), which are our main

results in this chapter.

The main result in Section 5.2 is on the normal approximation for a sum of weakly

dependent variables by the dependence graph approach. Our methodology for prov-

ing the central limit theorems concerning geometrical probability relies heavily on

dependency graphs. Avram and Bertsimas [3] have employed the dependence graph

method to establish the proof of the central limit theorems for nearest-neighbour

graphs and various other random geometric structures. Also, Section 5.2 presents

probabilistic and geometric insights of the unit square. Section 5.3 discusses the

analysis for the homogeneously stabilizing and some certain moments conditions for

the random variable ξ.

56
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In this section, we will use the dependency graph and method of moments. Re-

garding ease of use in applications, both the dependency graph method and method

of moments require checking tail bounds for the radius of stabilization, where, in

most cases, this process is generally straightforward whenever possible. However,

the method of moments requires a more complicated version of the bounded mo-

ments condition as given in Lemma 5.3.9. On the other hand, the dependency

graph method requires separate computations of variances if one explicitly intends

to determine the resulting normal variable’s variance.

The main quantity we are interested in here is the total edge length of the graph

L1
λ. Recall from Definition 4.5.2 that L1

λ =
∑

x∈Pλ∩R1
λ
Dθ,ϕ(x;Pλ), where Dθ,ϕ(x;Pλ)

is the distance from point x to its nearest neighbour in Pλ ∩ Cθ,ϕ(x) and Pλ is a

homogeneous Poisson point process on [0, 1]2 with intensity λ. Recall by Defini-

tion 4.5.1 that R1
λ = [0, 1]× [RS, 1], for the constant R given in Lemmas 4.4.6, 4.4.7,

and 4.4.8. Previously, S was an arbitrary scale parameter that we will now fix.

Note that our choice S ∼
√

c log λ
λ

for some c sufficiently large, means that S sat-

isfies the conditions of Lemmas 4.4.6 – 4.4.8. Define b(c, λ) :=
√

c log λ
λ

, and we let

aλ := min(1
2
, b(c,max(3, λ))). For λ large enough (i.e., λ ≥ λ(c) depending on c),

we have aλ = b(c, λ). We divide the unit square [0, 1]2 into k2
λ little squares, where

kλ :=
⌊

1
aλ

⌋
is the number of squares along each side of the unit square, each having

side length S = 1/kλ. Below we state the main results of this chapter.

Theorem 5.1.1. For all θ, ϕ, there exists c0 > 0 such that for any S as defined

above using c > c0 the following statement holds. Let R1
λ be the compatible bulk

for θ, ϕ specified in Lemmas 4.4.6 – 4.4.8, i.e., R1
λ = [0, 1] × [RS, 1], where R = 0

(unaligned) or R = R(θ, ϕ) ∈ (0,∞) (singly-aligned). Then, for every y ∈ R, we

have

lim
λ→∞

P

{
L1

λ − E[L1
λ]√

Var[L1
λ]

≤ y

}
= Φ(y),

where Φ(y) is the cumulative distribution function (cdf) of N (0, 1).

Theorem 5.1.2. For all θ, ϕ, there exists c0 > 0 such that for any S as defined

above using c > c0 the following statement holds. Suppose ϕ ∈ (0, π). Let R1
λ be the
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compatible bulk for θ, ϕ specified in Lemmas 4.4.6 – 4.4.8, i.e., R1
λ = [0, 1]× [RS, 1],

where R = 0 (unaligned) or R = R(θ, ϕ) ∈ (0,∞) (singly-aligned). There exists

sϕ ∈ (0,∞) such that the following statement holds.

lim
λ→∞

Var(L1
λ) = s2ϕ.

We give the proof of the central limit theorem (CLTs) for the ordinary nearest

neighbour graphs in Sections 5.2 using the technique of dependence graph. The proof

of convergence of variance is given in Section 5.3 using the stabilization methodology.

5.2 Convergence to Normal Distribution

This section discusses the probabilistic technique useful in studying random geo-

metric graphs. This technique mainly focuses on the Poisson process and normal

approximations as the number of points tends to infinity.

Avram and Bertsimas [3] give the proof of central limit theorems of convergence

for the nearest-neighbour graph using a dependency graph technique of Baldi and

Rinott [4]. The fundamental concept here is that the graph’s structure, in a sense, is

locally determined. Consequently, with high probability, the dependency structure

of graph exhibits a finite range dependence. We will use the dependence structure

for all our problems associated with bulk to show convergence to a normal random

variable as the number of points becomes very large. These points are generated by

a Poisson process within the square [0, 1]2.

The Poisson distribution is commonly used to approximate the sum of many

independent Bernoulli random variables with small means. Conversely, if these

means are bounded away from 0 and 1, the sum is approximated by a normal

distribution. Our specific interest lies in scenarios where most, but not all, pairs

of variables are independent. In such cases, the notation and concepts associated

with dependency graphs offer a valuable means of characterizing this notion of near-

independence, see for example [26].
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5.2.1 Dependency Graph

We apply the results of dependency graphs with a finite-range dependence to the

minimal directed spanning forest. We shall show the results where we have general-

ized the local dependence approach of Avram and Bertsimas [3] to the bulk of [0, 1]2.

The main result of this section is on the normal approximation for a sum of weakly

dependent variables by the dependency graph method. This result states that the

dependency graphs with a finite-range dependence give a normal approximation as

the intensity λ tends to infinity.

Definition 5.2.1 (Dependency graph). Let V be a finite, non-empty set. Suppose

that {Zp : p ∈ V} is a collection of random variables. Then G = (V , E) is said to be a

dependency graph for {Zp}p∈V if it has the following property: for every C1, C2 ⊆ V

with C1 ∩ C2 = ∅ such that there is no edge in E that has one end in C1 and the

other in C2, the collections of random variables {Zp : p ∈ C1} and {Zq : q ∈ C2} are

independent.

Theorem 5.2.2 (Baldi and Rinott [4]). Let (Vλ)λ>0 be a sequence of finite sets,

and {Zλ,p}p∈Vλ
accompanying collections of random variables admitting dependency

graphs Gλ = (Vλ, Eλ) for all λ > 0. Define Jλ to be the sum Jλ =
∑

p∈Vλ
Zλ,p. Let

Dλ be the maximum degree of the dependency graph Gλ. Let |Zλ,p| ≤ Aλ, where Aλ

is constant, i.e., P(|Zλ,p| ≤ Aλ) = 1 for all p ∈ Vλ and all λ. Define σ2
λ = V ar(Jλ).

Then,

sup
y∈R

∣∣∣∣P{Jλ − E[Jλ]

σλ

≤ y

}
− Φ(y)

∣∣∣∣ ≤ 32(1 +
√
6)

(
|Vλ|D2

λA3
λ

σ3
λ

) 1
2

. (5.2.1)

Thus, if the right hand side of the inequality (5.2.1) tends to 0 as λ → ∞, then

the left hand side of the inequality implies convergence in distribution to standard

normal distribution, i.e.,

if

(
|Vλ|D2

λA3
λ

σ3
λ

) 1
2

→ 0 as λ → ∞, then
Jλ − E[Jλ]

σλ

d→ N (0, 1) as λ → ∞.
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5.2.2 Local Dependence in MDSF Bulk

We split the unit square [0, 1]2 into little squares whose size is chosen so that with

high probability, the Poisson process will have a point in every little square. More-

over, such ‘typical configurations’ of points exhibit a finite-range dependence, as the

nearest neighbour of each point is only determined by the points in nearby little

squares. Then, we represent L1
λ as a sum of a collection of random variables associ-

ated with the little squares. To apply Theorem 5.2.2, we need to determine the ap-

propriate values of |Vλ|, Dλ, Aλ, and σλ, to ensure that
|Vλ|D2

λA
3
λ

σ3
λ

→ 0 as λ → ∞.

The choice of size of the little square gives natural bounds on |Vλ| and Dλ; we need

to also bound Aλ from above and σλ from below. First, we show that the event

we require for finite-range dependence has a high probability of occurring (i.e., with

probability tending to 1 as λ → ∞).

Here, we briefly define and recall the relevant terminology. The square [0, 1]2 ⊆

R2 is tiled by tiles T (p), where p = (p1, p2), with p1, p2 integers satisfying 1 ≤ pi ≤ kλ

for each i = 1, 2. Recall that from Definition 2.4.1 of Pλ is a homogeneous Poisson

point process on [0, 1]2 with intensity λ, i.e., Pλ := {Yi ∈ [0, 1]2 : 1 ≤ i ≤ Nλ}, where

Nλ ∼ Po(λ). Let Nλ,p be the number of points from the Poisson process Pλ in each

little square p, in other words, Nλ,p = |Pλ ∩ T (p)|. By the definition of the Poisson

process, the random variable Nλ,p ∼ Po(µ) is Poisson distributed with parameter

µ = λ|T (p)| = λS2 = λ
k2λ
. Inequalities 1

aλ
− 1 < kλ =

⌊
1
aλ

⌋
≤ 1

aλ
imply

λa2λ ≤ λ

k2
λ

≤ λ

(
1

aλ
− 1

)−2

= λa2λ(1− aλ)
−2 ≤ 4λa2λ,

thus we have µ is bounded by λa2λ ≤ µ ≤ 4λa2λ. Note that, in the last inequality we

use that aλ ≤ 1
2
by definition.

Recall we have by Definition 4.4.4 that TS is the set of all tiles in [0, 1]2, in

other words, TS = {p ∈ Z2 : T (p) ⊆ [0, 1]2}. Define Bλ be the event such that

Bλ = ∩p∈TS
{1 ≤ Nλ,p ≤ 12 c log λ}. Then, since µ ≤ 4c log λ the probability P(Bλ)

is bounded from below by P (∩p∈TS
{1 ≤ Nλ,p ≤ 3µ}). We make use of a standard

fact that the Poisson random variable is concentrated around its mean. For example,
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Lemma 1.2 from [26], states that if X ∼ Po(µ), then

P[X ≥ 3µ] ≤ exp (−µH(3)) , (5.2.2)

where H satisfies H(c) = 1− c + c log c, so that H(3) ≈ 1.295837 ≥ 1.

The next result gives a probability of the event Bλ, as λ → ∞.

Lemma 5.2.3. Suppose c > 11. We have P(Bλ) ≥ 1− λ−10. In particular,

P(Bλ) → 1, as λ → ∞.

Proof. By independence property of the Poisson point Process, we have

P(Bλ) = Πp∈TS
P(1 ≤ Nλ,p ≤ 12 c log λ) ≥ Πp∈TS

P(1 ≤ Nλ,p ≤ 3µ).

Then P(Nλ,p = 0) = e−µ by definition, and from inequality (5.2.2), we have

P(Nλ,p ≥ 3µ) ≤ exp (−µ H(3)) ≤ e−µ. Hence,

P(1 ≤ Nλ,p ≤ 3µ) ≥ 1−P(Nλ,p = 0)−P(Nλ,p ≥ 3µ) ≥ 1− 2e−µ.

Using k2
λ = λ

µ
then,

P(Bλ) = Πp∈TS
P(1 ≤ Nλ,p ≤ 3µ) ≥ (1− 2e−µ)k

2
λ

= exp
{
k2
λlog(1− 2e−µ)

}
= exp

{
λ

µ
log(1− 2e−µ)

}
.

The expression exp
{

λ
µ
log(1− 2e−µ)

}
is increasing in µ for µ > 0. To see this,

note that:

1. λ
µ
is decreasing in µ;

2. log(1− 2e−µ) is negative and increasing in µ.

Hence, the product λ
µ
log(1− 2e−µ) is increasing in µ. Therefore,

P(Bλ) ≥ exp

{
λ

µ
log(1− 2e−µ)

}
≥ exp

{
λ

c log λ
log(1− 2e−c log λ)

}
.
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Using the inequality log(1− y) ≥ −2y which holds for 0 ≤ y ≤ 1
2
, and the fact that

2e−c log λ ≤ 1
2
for λ large enough, then

P(Bλ) ≥ exp

{
−2λ

c log λ
· 2e−c log λ

}
= exp

{
−4λ1−c

c log λ

}
≥ 1− 4λ1−c

c log λ
.

Taking c large enough say c > 11, hence

P(Bλ) ≥ 1− λ−10, and therefore P(Bλ) → 1 as λ → ∞.

The next result is the heart of our development of the bulk with respect to

the unit square, and it works for all types of general cones, i.e., singly-aligned and

unaligned cones. Also, it proves the finite range dependence for squares in the bulk

of [0, 1]2. Recall by Definition 4.5.1 that R1
λ = [0, 1] × [RS, 1], where R is constant

given in Lemmas 4.4.6 – 4.4.8. Call p ∈ Z2 a square in the bulk if T (p) ⊆ R1
λ.

Definition 5.2.4. Let Lλ,p be the sum of edge lengths for all edges started in square

p, then

Lλ,p =
∑

x∈Pλ∩T (p)

Dθ,ϕ(x,Pλ).

The following property encapsulates the finite-range dependence of the variables

Lλ,p for squares p in the bulk.

Proposition 5.2.5. Let δ and C0 be the parameter appearing in Lemmas 4.4.6 –

4.4.8 for which R1
λ is a compatible bulk. Define ρ = max(⌊δ⌋+1,max{ρ(r) : r ∈ C0})

where ρ(r) = |r1|+ |r2|+ 2 for r = (r1, r2) ∈ C0. Given Bλ occurs, then

1. The nearest neighbour of any point x ∈ Pλ ∩T (p) is in T (Sp,ρ) for all p in the

bulk.

2. If p and q are squares in the bulk and d(p, q) > 2ρ then the lengths Lλ,p and

Lλ,q are independent. More generally, if C1, C2 are collections of squares in the

bulk such that d(p, q) > 2ρ for all p ∈ C1, q ∈ C2, then the random variables

{Lλ,p : p ∈ C1} and {Lλ,q : q ∈ C2} are independent.
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Sp,ρ

p

p + r

q

q + r

Sq,ρ

R1
λ

Figure 5.1: Example of two balls in the [0, 1]2, and they are not overlapped each

other.

Proof. Since R1
λ is a compatible bulk, any p ∈ TS with T (p) ⊆ R1

λ either satisfies

condition (A) or (B1) (see Definition 4.4.5). If (A) holds, then T (p + r) ⊆ [0, 1]2

for some r ∈ C0. Given Bλ occurs, we have Pλ ∩ T (p + r) ̸= ∅, so we can apply

Theorem 4.2.7 to the square p, which proves that Nθ,ϕ(x;Pλ) ∈ T (Sp,ρ(r)) ⊆ T (Sp,ρ)

for any point x ∈ Pλ ∩ T (p). Otherwise, if (B1) holds, then ν(p) ≤ δS, so we can

apply Lemma 4.4.3 to the square p, which proves that Nθ,ϕ(x;Pλ) ∈ T (Sp,⌊δ⌋+1) ⊆

T (Sp,ρ) for any point x ∈ Pλ ∩ T (p). Hence property 1 holds as claimed.

Property 1) implies 2): The length contributing to Lλ,p is coming from points

in square p and their nearest-neighbours. By property 1, these points are all con-

tained in T (Sp,ρ), and therefore Lλ,p is only determined by the Poisson point process

restricted to T (Sp,ρ). Since d(p, q) > 2ρ, the balls T (Sp,ρ) and T (Sq,ρ) are disjoint,

and therefore the lengths Lλ,p and Lλ,q are determined by the Poisson process in

non-overlapping regions (e.g. see Figure 5.1). This implies the independence of Lλ,p

and Lλ,q by the independence property of Poisson process. Note that conditioning

on the event Bλ is equivalent to conditioning separately on the numbers of points

in each square so conditioning on Bλ preserves the independence property of the

Poisson process.

Remark 5.2.6. In all cases (singly aligned or unaligned cone), property 2 of Proposi-
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tion 5.2.5 will allow us to define a dependency graph on all the set of squares in the

bulk, that has an edge between p and q having a distance d(p, q) ≤ 2ρ. Importantly,

this gives a maximum degree of (1+4ρ)2 that is independent of λ (see Section 5.2.3).

We now turn to upper bound for Aλ to apply Theorem 5.2.2. We shall show

the upper bound on the length of Lλ,p. Recall by Definition 5.2.4 that Lλ,p =∑
x∈Pλ∩T (p) Dθ,ϕ(x,Pλ) is the sum of the lengths for all edges started in square p.

Recall that S = 1/kλ, where kλ =
⌊

1
aλ

⌋
and aλ = min(1

2
, b(c,max(3, λ))) with

b(c, λ) :=
√

c log λ
λ

. For any c, there is some λ(c), so that aλ = b(c, λ) for λ ≥ λ(c).

Also, the inequality holds 1
aλ

− 1 ≤ kλ ≤ 1
aλ
, which implies 1− aλ ≤ aλkλ ≤ 1, and

therefore, aλkλ → 1 as λ → ∞ (using that aλ → 0 as λ → ∞). Thus for large

enough λ, we have aλkλ ≥ 1/2, in other words, S = 1/kλ ≤ 2aλ = 2
√

c log λ
λ

. The

upper bound on the length of Lλ,p is provided in the following proposition.

Proposition 5.2.7. There is a constant m such that for large enough λ, given Bλ

occurs, and for all p with T (p) ⊆ R1
λ, we have

Lλ,p ≤ m
(log λ)

3
2

λ
1
2

,

holds almost surely.

Proof. To prove Proposition 5.2.7, we need to check two aspects, they are

1. The maximum possible length of an edge contributing to Lλ,p becomes suffi-

ciently small as λ → ∞.

2. The number of points in square p, Nλ,p, does not grow too large as λ → ∞.

Both aspects will follow due to the conditioning on Bλ.
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a

p

b

[(ρ + 1)S
√

2

(ρ + 1)S squares

1
kλ

(ρ + 1)S squares

Figure 5.2: The longest distance between point a bottom-corner and b top-corner

is [(ρ+ 1)S]
√
2 in [0, 1]2 with horizontal and vertical distances ≤ (ρ+ 1)S.

Given Bλ occurs, by the Definition 5.2.4 and Proposition 5.2.5, we know that the

nearest neighbour of any x in Pλ ∩ T (p) must lie in T (Sp,ρ), then

Lλ,p =
∑

x∈Pλ∩T (p)

Dθ,ϕ(x;Pλ) ≤ Nλ,p max
a∈T (p),b∈T (Sp,ρ)

∥a− b∥

= Nλ,p max
a,b

(√
(a1 − b1)2 + (a2 − b2)2

)
≤ Nλ,p

√
((ρ+ 1)S)2 + ((ρ+ 1)S)2 = Nλ,p(ρ+ 1)S

√
2.

By definition of Bλ, we have Nλ,p ≤ 12 c log λ, S = 1/kλ ≤ 2aλ = 2
√

c log λ
λ

, and

hence

Lλ,p ≤ Nλ,p(ρ+ 1)S
√
2 ≤ 12

√
2 c log λ (ρ+ 1)S ≤ 24

√
2 c

3
2 (ρ+ 1)

(log λ)
3
2

λ
1
2

.

Thus the upper bound on the length of Lλ,p has obtained, i.e., Lλ,p ≤ m (log λ)
3
2

λ
1
2

,

where m is constant, in other words, m = 24
√
2 c

3
2 (ρ+ 1).

For the ingredient to Theorem 5.2.2, we want to show a lower bound on the

variance of L1
λ. Recall from Definition 4.5.2, that L1

λ =
∑

x∈Pλ∩R1
λ
Dθ,ϕ(x;Pλ), where

Dθ,ϕ(x;Pλ) is the distance from point x to its nearest neighbour in Pλ ∩ Cθ,ϕ(x).

The lower bound on the variance of L1
λ is provided in the following result.

Proposition 5.2.8. There exists q > 0 (depending on ϕ), such that, for all λ > 1,

Var[L1
λ] ≥ q.
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We omit the proof of Proposition 5.2.8 here, as the proof follows similar lines to

that of Proposition 5 in Avram and Bertsimas [3].

5.2.3 Proof of Central Limit Theorem

We give the proof of Theorem 5.1.1 in this subsection. The next lemma is a useful

tool to establish the proof of CLT. The idea behind the lemma is to show the

difference between the expectation and its conditional expectation, as well as the

variance and its conditional variance.

Recall we have Bλ = ∩p∈TS
{1 ≤ Nλ,p ≤ 12 c log λ}, where Nλ,p = |Pλ ∩ T (p)|

and TS = {p ∈ Z2 : T (p) ⊆ [0, 1]2}. Throughout this section, take c > c0 > 11

so that the condition of Lemma 5.2.3 applies. Recall from Definition 4.5.2, that

L1
λ =

∑
x∈Pλ∩R1

λ
Dθ,ϕ(x;Pλ), where Dθ,ϕ(x;Pλ) is the distance from point x to its

nearest neighbour in Pλ ∩ Cθ,ϕ(x).

Lemma 5.2.9. For large enough λ, we have

∣∣E[L1
λ]− E[L1

λ|Bλ]
∣∣ ≤ 5λ−4, and

∣∣Var(L1
λ |Bλ)−Var(L1

λ)
∣∣ ≤ 30λ−3.

Proof. Write B∁
λ for the complement of the event Bλ. We want to show the difference

|E[L1
λ]− E[L1

λ|Bλ]| is small. We write

∣∣E[L1
λ]− E[L1

λ|Bλ]
∣∣ = 1

P(Bλ)
|E[L1

λ]P(Bλ)− E[L1
λ1Bλ

]|

=
1

P(Bλ)
|E[L1

λ]P(Bλ)− E[L1
λ] + E[L1

λ1B∁
λ
]|

≤ P(B∁
λ)

P(Bλ)
E[L1

λ] +
1

P(Bλ)
E[L1

λ1B∁
λ
].

To bound E[L1
λ1B∁

λ
], we use the following aspects, they are,

1. The contribution to L1
λ from each point in the Poisson point process is at most

the diameter of [0, 1]2, which equals
√
2.

2. The number of points in the square [0, 1]2 is Nλ ∼ Po(λ).
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3. Using Cauchy-Schwarz inequality to bound E[Nλ1B∁
λ
] ≤ E [N2

λ ]
1
2 P
(
B∁
λ

) 1
2 .

Using the above aspects along with Lemma 5.2.3, which states that P(B∁
λ) ≤

λ−10, we find

E[L1
λ1B∁

λ
] ≤

√
2 E

[
Nλ1B∁

λ

]
≤

√
2 E

[
N2

λ

] 1
2 P
(
B∁
λ

) 1
2

≤
√
2
(
Var(Nλ) + E[Nλ]

2
) 1

2 P
(
B∁
λ

) 1
2
, where Nλ ∼ Po(λ)

≤
√
2
(
λ+ λ2

) 1
2
(
λ−10

) 1
2 ≤ 2λ1−5 = 2λ−4. (5.2.3)

Note that, we use the fact that Var(Nλ) = E[N2
λ ] − [E(Nλ)]

2 implies E[N2
λ ] =

Var(Nλ) + [E(Nλ)]
2, where E[Nλ] = λ and E[N2

λ ] = λ+ λ2. Therefore, E[L1
λ1B∁

λ
] ≤

2λ−4.

Finally, by Lemma 5.2.3, we know that P(Bλ) >
1
2
for sufficiently large enough λ,

so we obtain the difference between the expectation and its conditional expectation,

as follows ∣∣E[L1
λ]− E[L1

λ|Bλ]
∣∣ ≤ 2λ−10 · λ

√
2 + 2 · 2λ−4 ≤ 5λ−4. (5.2.4)

The first term in (5.2.4) tends to 0 as λ → ∞ much quicker compare the second

term.

Next we will consider the conditional variance, given by

Var(L1
λ|Bλ) = E

[
(L1

λ − E[L1
λ|Bλ])

2|Bλ

]
= E[(L1

λ)
2|Bλ]− (E[L1

λ |Bλ])
2.

Therefore,∣∣Var(L1
λ)−Var(L1

λ|Bλ)
∣∣ ≤ |E[(L1

λ)
2]− E[(L1

λ)
2|Bλ]|+ |E(L1

λ)
2 − E[L1

λ|Bλ]
2|.

Recall that (L1
λ)

2 ≤ (
√
2Nλ)

2. We use fourth moment of the Poisson distribution

(E[N4
λ ] ≤ 2λ4 for sufficiently large enough λ) along with Cauchy-Schwarz inequality,

hence

E
[
(L1

λ)
2
1B∁

λ

]
≤ 2E[N2

λ1B∁
λ
]

≤ 2E[N4
λ ]

1
2P(B∁

λ)
1
2 ≤ 2

√
2λ4 (λ−10)

1
2 ≤ 2λ2 · λ−5

√
2 = 2λ−3

√
2.

(5.2.5)
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Hence, by (5.2.5) along with Lemma 5.2.3, we get

∣∣E[(L1
λ)

2]− E[(L1
λ)

2|Bλ]
∣∣ = 1

P(Bλ)
|E[(L1

λ)
2]P(Bλ)− E[(L1

λ)
2
1Bλ

]|

=
1

P(Bλ)
|E[(L1

λ)
2]P(Bλ)− E[(L1

λ)
2] + E[(L1

λ)
2
1B∁

λ
]|

≤ P(B∁
λ)

P(Bλ)
E[(L1

λ)
2] +

1

P(Bλ)
E[(L1

λ)
2
1B∁

λ
]

≤ 2λ−10 · 2(λ+ λ2) + 2λ−3 · 2
√
2 ≤ 6λ−3. (5.2.6)

Thus, |E[(L1
λ)

2]− E[(L1
λ)

2|Bλ]| ≤ 6λ−3.

Now, we consider |E[L1
λ]

2 − E[L1
λ|Bλ]

2|. Recall that, for λ sufficiently large

enough, we have P(Bλ) > 1
2
, and by second moment of the Poisson distribution,

that E[N2
λ ] = λ+λ2. Then, we obtain the difference between the squares, as follows

|E[L1
λ]

2 − E[L1
λ|Bλ]

2| = |(E[L1
λ]− E[L1

λ|Bλ])|(E[L1
λ] + E[L1

λ |Bλ]). (5.2.7)

The first term |E[L1
λ]−E[L1

λ|Bλ]| is bounded by (5.2.4). Next we have, E[L1
λ|Bλ] =

E[L1
λ1Bλ

]

P(Bλ)
≤ 2E[L1

λ], so the second term of (5.2.7), becomes

E[L1
λ] + E[L1

λ|Bλ] ≤ 3λ ·
√
2, (5.2.8)

hence (5.2.7), yields

|E[L1
λ]

2 − E[L1
λ|Bλ]

2| ≤ 5λ−4 · 3λ
√
2 = 15

√
2λ−3. (5.2.9)

Finally, combine (5.2.6) and (5.2.9), we obtain the second part of the Lemma 5.2.9

∣∣Var(L1
λ)−Var(L1

λ |Bλ))
∣∣ ≤ 6λ−3 + 15

√
2λ−3 ≤ 30λ−3.

Recall from Definition 4.5.2 that L1
λ =

∑
x∈Pλ∩R1

λ
Dθ,ϕ(x;Pλ), where Dθ,ϕ(x;Pλ)

is the distance from point x to its nearest neighbour in Pλ in [0, 1]2. Define Ũλ :=

L1
λ−E[L1

λ|Bλ]√
Var[L1

λ|Bλ]
. We now apply Theorem 5.2.2 to show that the conditional distribution

of Ũλ (given Bλ) converges to a normal distribution.
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Lemma 5.2.10. Let Φ(y) be the cumulative distribution function of a standard

normal distribution, i.e., N (0, 1). Given Bλ occurs, we have

sup
y∈R

∣∣∣P(Ũλ ≤ y|Bλ)− Φ(y)
∣∣∣→ 0, as λ → ∞. (5.2.10)

Proof. We prove Lemma 5.2.10 using Theorem 5.2.2. Recall that µ is the expected

number of points in each little square, where µ = λ
k2λ

satisfies c log λ ≤ µ ≤ 4c log λ

for large enough λ. Recall that, |Vλ| is the cardinality of the finite set Vλ of vertices

defined by Vλ = {p ∈ TS : T (p) ⊆ R1
λ ⊆ TS}. So |Vλ| ≤ |TS| = k2

λ. The

edges in the graph are determined by the finite-range dependence, in other words,

Eλ = {(p, q) ∈ Vλ × Vλ such that d(p, q) ≤ 2ρ}, as given in Proposition 5.2.5. The

maximal degree of the dependence graph of Gλ = (Vλ, Eλ) satisfies Dλ ≤ (1 + 4ρ)2.

Also, recall from Proposition 5.2.7, we get Lλ,p ≤ Aλ = m (log λ)
3
2

λ
1
2

≤ m

c
3
2
· µ

3
2

λ
1
2
, where

m = 24
√
2 c

3
2 (ρ+ 1). From Proposition 5.2.8, we have that for large enough λ,

σ2
λ = Var[L1

λ|Bλ]
Lemma 5.2.9

≥ Var[L1
λ]− 30λ−3

Proposition 5.2.8

≥ q − 30λ−3 ≥ q

2
> 0. (5.2.11)

Hence,

(
|Vλ|D2

λA3
λ

Var[L1
λ|Bλ]3

) 1
2

=

k2
λ [(1 + 4ρ)2]

2
[
mµ1+ 1

2/c
3
2λ

1
2

]3
(q/2)3


1
2

=

 λ
µ
[1 + 4ρ]4

[
m3µ

9
2/λ

3
2

]
c

9
2 (q/2)3


1
2

=


(

λ
µ

) 1
2
[1 + 4ρ]2

[
m

3
2µ

9
4/λ

3
4

]
c

9
4 (q/2)

3
2

 =
[1 + 4ρ]2m

3
2

c
9
4 (q/2)

3
2

·

[(
λ

µ

) 1
2 µ

9
4

λ
3
4

]

≤ w ·

[(
λ

1
2

λ
3
4

)
µ

9
4

µ
1
2

]
≤ w

µ1+ 3
4

λ
1
4

≤ w
[4c log λ]1+

3
4

λ
1
4

→ 0, as λ → ∞,

where w is constant. Since, we have chosen µ < 4c log λ for some c > 11, this obtains

the last inequality which tends to 0 as λ → ∞. Therefore, Theorem 5.2.2 implies

that as λ → ∞,

L1
λ − E[L1

λ|Bλ]

σ2
λ

d→ N (0, 1).
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Now we show that the unconditional law of the random variable Ũλ also con-

verges to a normal distribution.

Lemma 5.2.11. For every y ∈ R, we have

sup
y∈R

∣∣∣P(Ũλ ≤ y)− Φ(y)
∣∣∣→ 0, as λ → ∞, (5.2.12)

where Φ(y) is a cumulative distribution function of N (0, 1).

Proof. By the law of total probability, we have

|P(Ũλ ≤ y)− Φ(y)| = |P(Bλ)P(Ũλ ≤ y|Bλ)

+P(B∁
λ)P(Ũλ ≤ y|B∁

λ)− Φ(y)(P(Bλ) +P(B∁
λ))|

≤ P(Bλ)|P(Ũλ ≤ y|Bλ)− Φ(y)|+P(B∁
λ)|P(Ũλ ≤ y|B∁

λ)− Φ(y)|.

Here P(Bλ) and P(B∁
λ) are non-negative terms, so that

sup
y∈R

|P(Ũλ ≤ y)− Φ(y)| ≤ sup
y∈R

[
P(Bλ)|P(Ũλ ≤ y|Bλ)− Φ(y)|

]
+ sup

y∈R

[
P(B∁

λ)|P(Ũλ ≤ y|B∁
λ)− Φ(y)|

]
≤ sup

y∈R
|P(Ũλ ≤ y|Bλ)− Φ(y)|+P(B∁

λ),

where the last inequality comes from the fact that P(Bλ) and |P(Ũλ ≤ y|B∁
λ)−Φ(y)|

are both bounded above by 1. So, the first expression on the right-hand side tends to

0 by Lemma 5.2.10, and the second term tends to 0 as λ → ∞ by Lemma 5.2.3.

Finally, we need a lemma that shows Uλ :=
L1
λ−E[L1

λ]√
Var[L1

λ]
, the centred and rescaled

version of L1
λ unconditional on Bλ, is in fact close to Ũλ for large enough λ.

Lemma 5.2.12. The random variables Uλ and Ũλ satisfy Uλ = (1 + uλ) Ũλ + vλ,

where

uλ :=

√
Var[L1

λ|Bλ]−
√

Var[L1
λ]√

Var[L1
λ]

= O
(
λ−3
)
,

and

vλ :=
E[L1

λ|Bλ]− E[L1
λ]√

Var[L1
λ]

= O
(
λ−4
)
.
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Proof. We are going to write Ũλ in terms of Uλ. From Proposition 5.2.8, we have

Var(L1
λ) ≥ q > 0, then

Uλ =
L1

λ − E[L1
λ]√

Var[L1
λ]

=
L1

λ − E[L1
λ|Bλ] + E[L1

λ|Bλ]− E[L1
λ]√

Var[L1
λ]

, by Lemma 5.2.9

=
L1

λ − E[L1
λ|Bλ]√

Var[L1
λ]

+O
(
λ−4
)

=

√
Var[L1

λ|Bλ]√
Var[L1

λ]

(
L1

λ − E[L1
λ|Bλ]√

Var[L1
λ|Bλ]

)
+O

(
λ−4
)
, by Lemma 5.2.10

=

[√
Var[L1

λ] +
√

Var[L1
λ|Bλ]−

√
Var[L1

λ]√
Var[L1

λ]

]
Ũλ +O

(
λ−4
)

=
(
1 +O(λ−3)

)
Ũλ +O

(
λ−4
)
, by Lemma 5.2.9.

We can now deliver the proof of the central limit theorem (CLTs). Here we have

all the ingredients to establish the proof of Theorem 5.1.1.

Proof of Theorem 5.1.1.

Proof. We only present the argument for y > 0 since the result for y < 0 will follow

the same process. Now we use the monotonicity of the cumulative distribution

function (cdf), for that we use P(Uλ ≤ y) = P
(
(1 + uλ)Ũλ + vλ ≤ y

)
. Let ϵ > 0

be a small enough constant. Suppose we choose λ sufficiently large enough such

that |uλ| < ϵ and |vλ| < ϵ, which is possible, since uλ and vλ tend to 0, as λ → ∞.

For y > 0, and for all small enough ϵ, we have 1
1−ϵ

≤ 1 + 2ϵ, hence

P(Uλ ≤ y) = P
(
(1 + uλ) Ũλ + vλ ≤ y

)
= P

(
(1 + uλ) Ũλ ≤ y − vλ

)
≤ P

(
(1 + uλ) Ũλ ≤ y + ϵ

)
= P

(
Ũλ ≤ y + ϵ

1 + uλ

)
≤ P

(
Ũλ ≤ y + ϵ

1− ϵ

)
≤ P

(
Ũλ ≤ (1 + 2ϵ)(y + ϵ)

)
.

Then,

lim sup
λ→∞

P(Uλ ≤ y) ≤ lim
λ→∞

P
(
Ũλ ≤ (1 + 2ϵ)(y + ϵ)

)
= Φ((1 + 2ϵ)(y + ϵ)) ,



5.3. Convergence of Variance 72

and by continuity normal cumulative distribution function, we have

lim
ϵ→0

Φ ((1 + 2ϵ)(y + ϵ)) = Φ(y).

Therefore, lim supλ→∞P(Uλ ≤ y) ≤ Φ(y).

Next, we do the other direction lim inf, so for (y > 0), we have

P(Uλ ≤ y) = P
(
(1 + uλ) Ũλ + vλ ≤ y

)
≥ P

(
(1 + uλ) Ũλ ≤ y − ϵ

)
≥ P

(
Ũλ ≤ y − ϵ

1 + ϵ

)
≥ P

(
Ũλ ≤ (1− 2ϵ)(y − ϵ)

)
,

where here we use that 1
1+ϵ

≥ 1− 2ϵ and y− ϵ > 0 for all small enough ϵ > 0. Then,

lim inf
λ→∞

P(Uλ ≤ y) ≥ lim
λ→∞

P
(
Ũλ ≤ (1− 2ϵ)(y − ϵ)

)
= Φ((1− 2ϵ)(y − ϵ)) ,

and again by the continuity normal cdf, we have

lim inf
λ→∞

P(Uλ ≤ y) ≥ lim
ϵ→0

Φ ((1− 2ϵ)(y − ϵ)) = Φ(y).

Together, the bounds on the lim sup and lim inf yield

Φ(y) ≤ lim inf
λ→∞

P(Uλ ≤ y) ≤ lim sup
λ→∞

P(Uλ ≤ y) ≤ Φ(y).

Thus, limλ→∞ P(Uλ ≤ y) = Φ(y).

5.3 Convergence of Variance

In this section, we will use the methodology of stabilization to prove the convergence

of variance (Theorem 5.1.2), which we present in the following subsections.

5.3.1 Stabilization

The recent proof the concept of stabilizing functionals of point sets is playing a valu-

able role in constructing the fundamental methods for developing limit theorems for

functionals of random point sets in R2. To be specific, the general results of central

limit theorems and laws of large numbers for stabilizing functionals were provided
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by Penrose and Yukich [33]. One could employ the results in reference [33] to derive

the central limit theorem (as given earlier in this chapter) for edges in the bulk

of the unit square for the minimal directed spanning forest (MDSF). Penrose and

Yukich [27, 30, 33] conducted several works to enhance the stabilization technique

to provide fundamental geometric probability results. Some considered laws of large

numbers, see e.g., Penrose and Yukich [34] and central limit theorems [33, 36] that

applied to a broad range of stabilizing functionals, including minimal spanning tree,

nearest-neighbour graph, percolation, and Boolean models. The latest results on

stabilization considered convergence of random measures in geometrical probability;

see, for example, [28, 29, 35], and among others.

Here we state our notations and definitions to establish the proof of Theo-

rem 5.1.2. We define Ωλ, λ > 0, to be a family of subsets of [0, 1]2. There are

two cases associated with Ωλ such that:

1. (θ, ϕ) is unaligned, when we take Ωλ ≡ [0, 1]2 for all λ, and

2. (θ, ϕ) is singly-aligned, when we take Ωλ = [0, 1] × [αλ, 1], where αλ ∈ (0, 1)

is any sequence such that αλ

√
λ ≥ 2 for all λ, and limλ→∞ αλ = 0 and αλ >√

c log λ
λ

for large enough λ, where c > c0 is large enough.

The latter cone cases includes the sequence αλ = RS and then Ωλ = R1
λ, because for

S = 1/kλ with kλ =
⌊

1
aλ

⌋
, we have Raλ ≤ αλ = RS = R⌊

1
aλ

⌋ ≤ R
1
aλ

−1
= Raλ

1−aλ
≤ 2Raλ,

meaning αλ and aλ exhibit the same asymptotic behaviour.

Recall that from Definition 3.2.1, we have Dθ,ϕ(x;X ) is the distance from point

x to its nearest neighbour in X ∩ Cθ,ϕ(x), where X is locally finite set of points.

Recall by the Definition 3.1.2 that Cθ,ϕ(x) is a cone with apex at x formed as a

union of rays from x with angle α ∈ [θ, θ + ϕ], measured anticlockwise from the

vertical direction.

Definition 5.3.1. For x ∈ R2 and X ⊆ R2 a locally finite set, let ξ(x;X ) be the

distance from point x to its nearest neighbour in X ∩ Cθ,ϕ(x), i.e.,

ξ(x;X ) := Dθ,ϕ(x;X ∪ {x}). (5.3.1)
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Note that ξ is homogeneous, meaning that

ξ(sx; sX ) = sξ(x;X ), for all s > 0;

this follows from the fact that the norm is homogeneous. Moreover, ξ is translation-

invariant, meaning that

ξ(x;X ) = ξ(y + x,y + X ), for all y ∈ R2.

We define a re-scaled version of ξ as follows.

Definition 5.3.2. Let x ∈ Ωλ, then for λ > 0, we define

ξλ(x;X ) := ξ(λ
1
2x;λ

1
2X )1Ωλ

(x) = λ
1
2 ξ(x;X )1Ωλ

(x) = λ
1
2Dθ,ϕ(x;X ∪ {x})1Ωλ

(x),

where the first equality follows from the fact that ξ(x;X ) = Dθ,ϕ(x;X ∪ {x}) is

homogeneous.

Remark 5.3.3. Note that, in both cases (unaligned, or singly-aligned for the appro-

priate choice of αλ), we have

L1
λ =

∑
x∈Pλ∩Ωλ

Dθ,ϕ(x;Pλ) = λ− 1
2

∑
x∈Pλ

ξλ(x;Pλ).

5.3.2 Radius of Stabilization in MDSF

Now we introduce some notations and definitions of the radius of stabilization which

some adapted from [29]. We employ the concept of stabilization with respect to ξ.

Recall that ∥ · ∥ is the Euclidean norm on R2. For r > 0 and x ∈ R2, let Br(x)

denotes the Euclidean ball centered at x with radius r, in other words, Br(x) =

{y ∈ R2 : ∥y − x∥ ≤ r}. Recall that we define X as a locally finite set of points in

R2.

Definition 5.3.4. The radius of stabilization of ξ at x ∈ R2 with respect to the

point set X ⊆ R2 and subset A ⊆ R2 is defined to be the smallest r ∈ Z+, such that

ξ(x;X ∩Br(x)) = ξ(x; (X ∩Br(x)) ∪ Y), for all finite Y ⊆ A \Br(x). (5.3.2)

We write R(x;X , A) for this smallest r; if no such r exists, set R(x;X , A) = ∞.
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Br(x)

r

Ωλ x

Y

Figure 5.3: If one adds additional points farther away from the nearest-neighbour,

that does not change the value of the function ξ, i.e., for all finite set Y ∈ R2 that

Y ⊆ R2 \Br(x).

Note that Definition 5.3.4 applies for any functional ξ, but we are exclusively

concerned with ξ(x;X ) = Dθ,ϕ(x;X ∪{x}). In what follows, R(x;X , A) will always

be the radius of stabilization of ξ(x;X ) = Dθ,ϕ(x;X ∪ {x}).

Definition 5.3.5. For x ∈ [0, 1]2, we define the random variable Rλ(x) by

Rλ(x) = R(λ
1
2x;λ

1
2Pλ, λ

1
2 [0, 1]2),

where R(x;X , A) is the radius of stabilization for ξ at x with respect to X , A (see

Definition 5.3.4).

Definition 5.3.6. For all x,y ∈ [0, 1]2, we define

νθ,ϕ(x) := sup{∥x− y∥ : y ∈ Cθ,ϕ(x) ∩ [0, 1]2}.

Note that ξ(x;X ) ≤ νθ,ϕ(x) for all x ∈ [0, 1]2 and X ⊆ [0, 1]2.

Definitions 5.3.4 – 5.3.6 immediately yield the following properties for R(x;X )

and Rλ(x).

Lemma 5.3.7. For ξ the functional defined in Definition 5.3.1, and for all locally

finite X ⊆ R2 and all x ∈ R2, the radius of stabilization for ξ is given by
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R(x;X ) =

⌈Dθ,ϕ(x;X ∪ {x})⌉ if Dθ,ϕ(x;X ∪ {x}) > 0,

∞ if Dθ,ϕ(x;X ∪ {x}) = 0.

For all x ∈ [0, 1]2, the random variable Rλ(x) satisfies

Rλ(x)

= ⌈λ 1
2 ξ(x;Pλ)⌉ if ξ(x;Pλ) > 0,

≤ ⌈λ 1
2νθ,ϕ(x)⌉ if ξ(x;Pλ) = 0.

The following monotonicity property for R will be useful.

Lemma 5.3.8. For all A ⊆ R2, all locally finite X ⊆ A, and all x,y ∈ A, the

following inequality holds.

R(x;X , A) ≥ R(x;X ∪ {y}, A).

Proof. Fix x,y ∈ R2 and X ⊆ R2. We show that for each r ≥ 0 if condition (5.3.2)

(from Definition 5.3.4) holds for the set X , then it also holds for the set X ∪ {y}.

Suppose (5.3.2) holds, X with ξ(x;X∩Br(x)) = 0. This requires that ((X∩Br(x))∪

Y) ∩ Cθ,ϕ(x) = ∅ for all Y ⊆ A \Br(x), then

ξ(x; ((X ∪ {y}) ∩Br(x)) ∪ Y) = ξ(x; (X ∪ {y}) ∩Br(x)) = ξ(x; (X ∪ {y}) ∩Br(x)),

for all finite Y ⊆ A \Br(x).

Now, ξ(x;X ∩ Br(x)) > 0, so there is a nearest neighbour of x in x ∩ Br(x) of

distance at most r, hence there also is a nearest neighbour of x in (X ∪{y})∩Br(x)

of distance at most r. Then for all Y ⊆ A \Br(x), the nearest neighbour of x is in

((X ∪ {y}) ∩Br(x)) ∪ Y cannot be in Y , so

ξ(x; (X ∪ {y}) ∩Br(x)) ∪ Y) = ξ(x; (X ∪ {y}) ∩Br(x)),

in other words, (5.3.2) holds for X ∪{y}. Hence the infimum over r satisfying (5.3.2)

for X∪{y} is less than or equal to infimum of r satisfying condition (5.3.2) for X .

The limit theorems associated with L1
λ require some certain moments conditions

on ξλ(x;Pλ). Recall by Definition 5.3.1 that ξ(x;X ) is the distance from point
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x to its nearest neighbour in the locally finite set X in [0, 1]2. In the following

lemma, we will show that the functional ξ satisfies the moment conditions for all

types of general cones. First, we need to evaluate the moments of the functional

ξλ(x;Pλ), as indicated in Lemma 5.3.9 (a) (below). Additionally, we analyse the

moments of the functional ξ in case where it’s possible to include points located

further away from the nearest neighbour without changing the value of the function,

i.e., ξλ(x;Pλ∪{y}), as demonstrated in Lemma 5.3.9 (b), e.g., see Figure 5.3. Lastly,

we need to verify the tail bound for Rλ(x), as detailed in Lemma 5.3.12 for singly-

aligned and Lemma 5.3.16 for the unaligned cone.

Lemma 5.3.9. For all λ ≥ 1, c > 0, let p > 0. Provided that 2cϕc > p, ξ satisfies

the moment conditions

(a) supλ≥1 supx∈Ωλ
E[ξpλ(x;Pλ)] < ∞,

(b) supλ≥1 supx,y∈Ωλ
E[ξpλ(x;Pλ ∪ {y})] < ∞.

Note since ξλ(x;Pλ) ≤ Rλ(x) any bounds we obtain on the tail probability or

moments of Rλ immediately apply to those of ξλ too. Also, if ξλ(x;Pλ) > 0 we have

Rλ(x) ≤ ξλ(x;Pλ) + 1.

Remark 5.3.10. Lemma 5.3.9 doesn’t hold for all pth moments simultaneously, but

for any p, we can find a big enough value of c, for which 2cϕc > p will be true, but

not for all values of p at the same time. For example, if we want to be held, say

p = 100, we can do this by choosing c large enough, but it might not be held for

p = 1000 for the same c and so on.

Remark 5.3.11. In the terminology of Penrose (Definition 2.3 [29]) ξ is homoge-

neously stabilizing. Most of the work in checking Penrose’s condition amounts to

estimate on tails of R(x;λ
1
2Pλ) or equivalently of Dθ,ϕ(x;λ

1
2Pλ).

Before proving that our choice of ξ satisfies the moments condition for Lemma 5.3.9,

we need to introduce geometrical definitions and lemmas. To prove Lemma 5.3.9,

it suffices to demonstrate that ξpλ(x;Pλ) ≤ Rλ(x) and ξpλ(x;Pλ ∪ {y}) ≤ Rλ(x).
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To do this, we need to identify an upper bound on the random variable Rλ(x).

First, we identify for each s > 0 a region Aθ,ϕ(x, s) of cone Cθ,ϕ(x) that is suitably

large, so that Rλ(x) is only bigger than s if the region Aθ,ϕ(x, s) does not contain

any points of Pλ. Then the lower bound on the area |Aθ,ϕ(x, s)| will determine an

upper bound for P(Rλ(x) ≥ r). Lemmas 5.3.14 and 5.3.15 will determine the lower

bound on the region |Aθ,ϕ(x, s)| for both singly-aligned cones. Following that, we

will provide the proof of the upper bound for P(Rλ(x) ≥ r) for both singly-aligned

cones. Second (unaligned-cone), Lemma 5.3.16 will determine an upper bound for

P(Rλ(x) ≥ r) using Lemma 5.3.17 to provide the appropriate lower bound on the

region |Aθ,ϕ(x, s)| and Lemma 5.3.18 in which Aθ,ϕ(x, s) = Aθ,ϕ(x, ν(x)) contains a

sector with angle apex at x bounded below by ϵ and radius of length at most ϵν(x).

Finally, on page 88 we provide the proof of Lemma 5.3.9 since the proof relies on

several auxiliary lemmas and definitions (as mentioned above) to determine the ap-

propriate bound on the random variable P(Rλ(x) ≥ r) for all cases of the general

cones associated with the unit square.

Here we will start with a result that holds for both singly-aligned cones, in other

words, obtuse and acute case. Recall that for singly-aligned cone, Ωλ = [0, 1]×[αλ, 1],

where αλ = RS and then Ωλ = R1
λ, because for S = 1/kλ with kλ =

⌊
1
aλ

⌋
and

Raλ ≤ αλ ≤ 2Raλ. We will prove the next lemma starting with the obtuse and then

acute case respectively.

Lemma 5.3.12. Suppose x ∈ R2, and λ > 0, the tail probability of Rλ(x) is

bounded, as follows

τλ(r) := sup
x∈Ωλ

P(Rλ(x) ≥ r) ≤


exp{−cϕr

2}, if 2 ≤ r ≤ αλ

√
λ

exp{−λcϕα
2
λ}, if αλ

√
λ ≤ r ≤

√
2λ+ 1

0, if r >
√
2λ+ 1

(5.3.3)

where cϕ is a constant.
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θ

αλ

Ωλ

0 1

1

ϕ
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Aθ,ϕ(x, s)
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αλ

x

Aθ,ϕ(x, s)
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1

Figure 5.4: The set Aθ,ϕ(x, s) for different choices of x and s.

To prove Lemma 5.3.12, we give a geometrical definition and lemma, so that the

lower bound on the area |Aθ,ϕ(x, s)| will determine an upper bound for P(Rλ(x) ≥

r). Recall Br(x) denotes the Euclidean ball centered at x with radius r, in other

words, Br(x) = {y ∈ R2 : ∥y − x∥ ≤ r}. For any singly-aligned cone (obtuse or

acute) the region Aθ,ϕ(x, s) is defined as follows.

Definition 5.3.13. Let Aθ,ϕ(x, s) be the region in [0, 1]2, such that

Aθ,ϕ(x, s) = Cθ,ϕ(x) ∩Bs(x) ∩ [0, 1]2.

For ϕ > π
2
, the lower bound on |Aθ,ϕ(x, s)| is uniform in x ∈ Ωλ.

Lemma 5.3.14. Suppose ϕ > π
2
. For all x ∈ Ωλ and for all λ ≥ 1, there exists cϕ,

such that

inf
x∈Ωλ

|Aθ,ϕ(x, s)| ≥ cϕ(s ∧ αλ)
2, for all s > 0.

Proof. We show Aθ,ϕ(x, s) always contains a sector with apex at x, angle ϕ− π
2
, and

radius s ∧ αλ.

• If 0 < s ≤ αλ, since x ∈ Ωλ we claim that the region Aθ,ϕ(x, s) will not cross

the bottom boundary of [0, 1]2 (see Figure 5.4, Left Panel) and always we get

at least a sector of radius s completely inside the unit square with angle ϕ− π
2
.

• If s > αλ, then Aθ,ϕ(x, s) contains Aθ,ϕ(x, αλ) and so the above argument

shows that it contains the red sector of radius αλ.
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For ϕ < π
2
, we do not have a uniform lower bound, and instead we determine

a bound in terms of the distance to the nearest boundary. For x = (x1, x2). Let

ℓ(x) = min(x1, x2).

Lemma 5.3.15. Suppose ϕ < π
2
. There exists cϕ, such that

|Aθ,ϕ(x, s)| ≥ cϕ(s ∧ ℓ(x))2, for all x ∈ Ωλ.

Proof. If s ≤ ℓ(x), Aθ,ϕ(x, s) equals the sector Cθ,ϕ(x)∩Bs(x) which has area cϕs
2.

Otherwise, for s > ℓ(x), Aθ,ϕ(x, s) contains Aθ,ϕ(x, ℓ(x)), so it has area ≥

cϕℓ(x)
2.

Now we can deliver the proof of Lemma 5.3.12 for first case of the singly-aligned

cone, obtuse case.

Proof of Lemma 5.3.12 (Obtuse case)

Proof. Since Rλ(x) ≤ ⌈λ 1
2νθ,ϕ(x)⌉ (by Lemma 5.3.7) and νθ,ϕ(x) ≤

√
2, we have

Rλ(x) ≤
√
2λ+ 1. Therefore, P(Rλ(x) ≥ r) = 0 for r >

√
2λ+ 1.

For any x ∈ Ωλ and by the fact that (if A ⊆ B then P(A) ≤ P(B)), then

P(Rλ(x) ≥ r) ≤ P(Pλ ∩ Aθ,ϕ(x, λ
− 1

2 r) = ∅) = exp{−λ|Aθ,ϕ(x, λ
− 1

2 r)|}. (5.3.4)

Using Lemma 5.3.14 and inequality (5.3.4) and taking a supremum over x ∈ Ωλ,

gives

sup
x∈Ωλ

P(Rλ(x) ≥ r) ≤ sup
x∈Ωλ

exp{−λ|Aθ,ϕ(x, λ
− 1

2 r)|} = exp{−λ inf
x∈Ωλ

|Aθ,ϕ(x, λ
− 1

2 r)|}

≤ exp{−λcϕ(λ
− 1

2 r ∧ αλ)
2}.

This upper bound matches that claimed in the statement for the cases r < αλ

√
λ

and r > αλ

√
λ.
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Now we deliver the proof of Lemma 5.3.12 for the second case of singly-aligned

cone, acute case.

Proof of Lemma 5.3.12 (Acute case)

Proof. The inequality (5.3.4) holds for the acute case as well. Here, we have by

Lemma 5.3.15 that

P(Aθ,ϕ(x, λ
− 1

2 r) ∩ Pλ = ∅) = exp{−λ|Aθ,ϕ(x, λ
− 1

2 r)|} ≤ exp{−λcϕ(λ
− 1

2 r ∧ ℓ(x))2}.

The statement P(Rλ(x) ≥ r) = 0 if r > ν(θ,ϕ)(x)
√
λ + 1 holds since Rλ(x) ≤

⌈λ 1
2νθ,ϕ(x)⌉, by Lemma 5.3.7.

The left-hand side of the inequality (5.3.4), yields

P(Rλ(x) ≥ r) ≤

exp{−λcϕ(λ
− 1

2 r ∧ ℓ(x))2}, if r ≤ ν(θ,ϕ)(x)
√
λ+ 1

0, if r > ν(θ,ϕ)(x)
√
λ+ 1.

(5.3.5)

Now consider the supremum of the right hand side of (5.3.5) over all x ∈ Ωλ. If

r >
√
2λ+ 1, then r > νθ,ϕ(x)

√
λ+ 1 for all x ∈ Ωλ, so supx∈Ωλ

P(Rλ(x) ≥ r) = 0.

Otherwise, for r ≤
√
2λ + 1, if νθ,ϕ(x)

√
λ + 1 < r, then P(Rλ(x) ≥ r) = 0, so

taking the supremum over x ∈ Ωλ, gives

sup
x∈Ωλ

P(Rλ(x) ≥ r) ≤ exp{−λ inf
x∈Ωλ:νθ,ϕ(x)

√
λ≥r−1

cϕ(λ
− 1

2 r ∧ ℓ(x))2}.

But for x ∈ Ωλ, if ℓ(x) ≤ αλ then x1 ≤ αλ (since x2 ≥ αλ for all x ∈ Ωλ)

and νθ,ϕ(x) ≤ secϕ · ℓ(x), i.e., ℓ(x) ≥ cosϕ · νθ,ϕ(x) see Figure 5.5. Therefore the

minimum of ℓ(x) over {x ∈ Ωλ : νθ,ϕ(x)
√
λ ≥ r−1} is at least αλ∧cosϕ ·λ− 1

2 (r−1).

So taking a supremum over x ∈ Ωλ, gives

sup
x∈Ωλ

P(Rλ(x) ≥ r) ≤ exp{−λcϕ(αλ ∧ λ− 1
2 r ∧ cosϕλ− 1

2 (r − 1))2}

≤ exp{−λcϕ(αλ ∧ cosϕλ− 1
2 (r − 1))2}.

For r ≥ 2, we have

αλ ∧ cosϕλ− 1
2 (r − 1) ≥ αλ ∧

cosϕ

2
λ− 1

2 r ≥ cosϕ

2
(αλ ∧ λ− 1

2 r),
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because cosϕ
2

< 1, hence

sup
x∈Ωλ

P(Rλ(x) ≥ r) ≤ exp{−cϕ(λα
2
λ ∧ r2)}.

αλ

Ωλ

ν

xℓ

ϕ

αλ

ν

xℓ

αλ

αλ

ϕ

Figure 5.5: Acute angle in different regions in the square with considering the

longest/shortest rays of the cone near the boundary.

Unaligned cone

Here we turn our attention to the unaligned cone where the cone has no rays aligned

with a square. We will start by introducing the necessary notations and lemmas

for our analysis. These notations and lemmas will be served for our subsequent

discussions and proofs. Recall by Definition 5.3.13 that Aθ,ϕ(x, s) is a region in

[0, 1]2, i.e., Aθ,ϕ(x, s) = Cθ,ϕ(x) ∩ Bs(x) ∩ [0, 1]2, where Bs(x) is the Euclidean

ball centered at x with radius s. Recall by the Definition 5.3.6 that νθ,ϕ(x) =

sup{∥x− y∥ : y ∈ Cθ,ϕ(x) ∩ [0, 1]2} for all x,y ∈ [0, 1]2. Recall from Lemma 5.3.7

we have, for all x ∈ Ωλ that Rλ(x) ≤ ⌈λ 1
2νθ,ϕ(x)⌉ ≤ λ

1
2νθ,ϕ(x) + 1.

Lemma 5.3.16. Let Ωλ = [0, 1]2. For all λ > 0, we have

τλ(r) := sup
x∈Ωλ

P(Rλ(x) ≥ r) ≤

exp{−c′ϕr
2}, if 2 ≤ r <

√
2λ+ 1

0, if r ≥
√
2λ+ 1.

(5.3.6)
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To prove 5.3.16, we require a lower bound for the region Aθ,ϕ(x, s), this lower

bound will be provided in the following lemma.

Lemma 5.3.17. (Unaligned case.) There exists cϕ > 0, such that

|Aθ,ϕ(x, s)| ≥ cϕ(s ∧ νθ,ϕ(x))
2, for all x ∈ [0, 1]2

To prove this, we will need the following claim.

Lemma 5.3.18. For θ, ϕ unaligned, Aθ,ϕ(x, ν(x)) contains a sector with angle at x

bounded below by ϵ and radius of length ≥ ϵν(x).

Proof. Fix θ, ϕ (unaligned). Let x ∈ [0, 1]2. By definition of νθ,ϕ(x) the ball

Bνθ,ϕ(x)(x) contains Cθ,ϕ(x) ∩ [0, 1]2, so A(x) := Aθ,ϕ(x, νθ,ϕ(x)) = Cθ,ϕ(x) ∩ [0, 1]2

and since y 7→ ∥x − y∥ is convex, its maximum over y ∈ A(x) (equal to νθ,ϕ(x))

is attained at an extreme point of the convex set A(x), in other words either at a

corner of [0, 1]2 or one of the two boundary points z1, z2 along the extreme rays of

Cθ,ϕ(x), (e.g., see [19] for maxima of convex functions).

For the unaligned case there are three situations we consider here, so either the

cone contains one perpendicular ray, two perpendicular rays, or no perpendicular

ray as detailed below.

In the case when cone contains one perpendicular ray the point y ∈ A(x) max-

imising ∥x− y∥ is necessarily on the boundary orthogonal to and intersecting that

ray. Hence the maximum νθ,ϕ(x) is attained at a point on H, the line containing

this boundary and is therefore at most the maximum of the two distances ∥x− v1∥

and ∥x − v2∥ where v1 & v2 are the points of intersection between line H and

the two extreme rays of Cθ,ϕ(x). Write p1 for the point of intersection of line H

and the perpendicular ray in Cθ,ϕ(x) and ϕ1 and ϕ2 for the two angles between

extreme rays and the perpendicular ray (so that ϕ1, ϕ2 > 0 and ϕ = ϕ1 + ϕ2).

See Figures 5.6 – 5.8 for the possible cases (where Cθ,ϕ(x) contains zero, one or

two corners of [0, 1]2). For each i = 1, 2, we have ∥x − p1∥ = cosϕi∥x − vi∥. So

∥x − p1∥ ≥ ϵmax{∥x − v1∥, ∥x − v2∥}, where ϵ = min{cosϕ1, cosϕ2} > 0 because
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w2

v2

w1

v1

z1

z2

xp1H
ϕ2

ϕ1

1

1
2

ϕ1 = arctan( 1
2
)

Figure 5.6: Cone contains one perpendicular ray, and the region A(x) contains

two corners in the square with angle ≥ 2 arctan(1
2
).

ϕi <
π
2
for each i = 1, 2. Since νθ,ϕ(x) ≤ max{∥x− v1∥, ∥x− v2∥} as argued earlier

we have ∥x−p1∥ ≥ ϵνθ,ϕ(x). Then A(x) contains a sector with apex at x and angle

at least the min{ϕ1, ϕ2, 2 arctan(
1
2
)} > 0, and radius at least ϵνθ,ϕ(x).

If cone contains two perpendicular rays. Then ϕ = π
2
+ϕ1+ϕ2 for some positive

ϕ1, ϕ2, e.g., see Figure 5.9. Now decompose Cθ,ϕ(x) into C1(x)∪C2(x) where Ci(x)

is a cone with angle π
4
+ ϕi, (see Figure 5.9). Let A(x) = A1(x) ∪ A2(x) where

Ai(x) = A(x) ∩ Ci(x) formed by bisecting A(x) along the ray that bisects Cθ,ϕ(x)

into C1(x) and C2(x). Then νθ,ϕ(x) = max{ν1(x), ν2(x)}, where νi(x) = sup{∥x−

y∥ : y ∈ Ai(x)}. Now each cone Ci(x) contains only one perpendicular ray, so

repeating the previous argument shows that there are positive constants ϵ1, ϵ2 such

that for each i = 1, 2, Ai(x) contains a sector with apex at x, angle at least ϵi and

radius at least ϵiνi(x). Therefore A(x) contains sector with angle at least min{ϵ1, ϵ2}

and radius at least min{ϵ1, ϵ2}ν(x), e.g., see Figure 5.9.

Final case: if cone contains no perpendicular ray and A(x) doesn’t contain a

corner of square, (see Figure 5.10) then A(x) is a triangle. This triangle has angles

ϕ, α, β where 0 < ϕ < π
2
, π

2
< α < π, and 0 < β < π

2
, and the edges of the triangle

incident to x have lengths ν(x) and ℓ(x) = sinβ
sinα

ν(x). Since sinα > sin β > 0, the
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Figure 5.7: Cone contains one perpendicular ray and the region A(x) contains a

corner w of the square, and it has angles ≥ min{ϕ1, ϕ2}.

v2 = z2

p1

v1 = z1

x

ϕ1

ϕ2

H

Figure 5.8: Cone contains one perpendicular ray and A(x) contains no corner of

the square, and it has angles ϕ1 + ϕ2 ≥ min{ϕ1, ϕ2}.
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Figure 5.9: Cone contains two perpendicular rays and A(x) does not contain any

corner of the square.

p1

ϕ
ν(x)

p2

αβ

x
p1

ϕ

ν(x)

p2

x

α

β

ℓ(x)

x
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Figure 5.10: Cone does not contain any perpendicular rays and no corner in the

square.

constant ϵ = sinβ
sinα

satisfies 0 < ϵ < 1. Hence A(x) contains a sector of angle ϕ > 0

and radius at least ϵν(x).

If A(x) contains a corner of the square (see Figure 5.11) then A(x) is the union

A1(x)∪A2(x) of two triangles each with a vertex at x and angle ϕi where ϕ1+ϕ2 = ϕ.

Note that νi(x) = sup{∥y − x∥ : y ∈ Ai(x)} is equal to ν(x) for each i = 1, 2.

Without loss of generality, suppose ϕ1 ≥ ϕ2, so ϕ1 ≥ 1
2
ϕ > 0 and ϕ1 ≤ ϕ < π

2
. Since

A1(x) is a triangle, using the argument above shows that A1(x) contains a sector

with apex at x, angle ≥ ϵ, and radius ≥ ϵν1(x) = ϵν(x).

Now we will apply Lemma 5.3.18 to establish the lower bound which we are

interested in given by Lemma 5.3.17.
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p1

ϕ1

ϕ2

p2A2(x)

A1(x)

x

Figure 5.11: Cone doesn’t include any perpendicular rays and A(x) contains a

corner in the square.

Proof of Lemma 5.3.17

Proof. By the claim Aθ,ϕ(x, ν(x)) contains a sector with angle at least ϵ and radius

of length ≥ ϵν(x).

If s > ϵν(x), then Aθ,ϕ(x, s) = Aθ,ϕ(x, ν(x)) ∩ Bs(x) (by definition of νθ,ϕ that

Aθ,ϕ(x, ν) = Cθ,ϕ(x)∩ [0, 1]2) contains a sector of angle at least ϵ and radius at least

ϵν(x), hence

|Aθ,ϕ(x, s)| ≥
1

2
ϵ(ϵν(x))2 ≥ 1

2
ϵ3(s ∧ ν(x))2.

Otherwise, if s ≤ ϵν(x), then Aθ,ϕ(x, s) = Aθ,ϕ(x, ν(x))∩Bs(x) contains a sector

with angle ≥ ϵ and radius = s, hence

|Aθ,ϕ(x, s)| ≥
1

2
ϵs2 ≥ 1

2
ϵ(s ∧ ν(x))2.

Note that Bs(x) contains a sector with angle ≥ ϵ and radius s.

Now we have all the ingredients to obtain the proof of Lemma 5.3.16 using the

lemmas and claims mentioned earlier. Recall by Definition 5.3.13 that Aθ,ϕ(x, s)

is a region in [0, 1]2, i.e., Aθ,ϕ(x, s) = Cθ,ϕ(x) ∩ Bs(x) ∩ [0, 1]2 where Bs(x) is the

Euclidean ball centered at x with radius s, and recall by the Definition 3.1.2 that

Cθ,ϕ(x) is a cone with apex at x formed as a union of rays from x with angle

α ∈ [θ, θ + ϕ], measured anticlockwise from the vertical direction. Recall by the
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Definition 5.3.6 that νθ,ϕ(x) = sup{∥x − y∥ : y ∈ Cθ,ϕ(x) ∩ [0, 1]2} for all x,y ∈

[0, 1]2.

Proof of Lemma 5.3.16

Proof. For all x ∈ Ωλ the inequality (5.3.4) for both singly-aligned cones holds for

the unaligned cone. This implies,

P(Rλ(x) ≥ r) ≤

exp{−λ|Aθ,ϕ(x, λ
− 1

2 r)|}, if r ≤ ⌈λ 1
2ν(x)⌉

0, if r > ⌈λ 1
2ν(x)⌉.

If r >
√
2λ+1, then ⌈λ 1

2ν(x)⌉ ≤ ⌈
√
2λ⌉ < r for all x ∈ Ωλ, so P(Rλ(x) ≥ r) = 0

for all x ∈ Ωλ. Therefore, supx∈Ωλ
P(Rλ(x) ≥ r) = 0.

Otherwise,

sup
x∈Ωλ

P(Rλ(x) ≥ r) = sup
x∈Ωλ:λ

1
2 ν(x)≥r−1

P(Rλ(x) ≥ r)

by (5.3.4)

≤ sup
x∈Ωλ:λ

1
2 ν(x)≥r−1

exp{−λcϕ(λ
− 1

2 r ∧ ν(x))2}, by Lemma 5.3.17

≤ exp{−λcϕ(λ
− 1

2 (r − 1))2} ≤ exp{−c′ϕr
2), for r ≥ 2.

Now we use the above lemmas and definitions to state the proof of Lemma 5.3.9.

Our aim is to show 2cϕc > p with ξ satisfies the moment conditions. Recall by the

Definition 5.3.5 that Rλ(x) = R(λ
1
2x;λ

1
2Pλ, λ

1
2 [0, 1]2) for x ∈ R2, where R(x;X , A)

is a radius of stabilization for ξ at x with respect to X and A. Also, recall from

Definition 5.3.1 that ξ(x;X ) is the distance from point x to its nearest neighbour

in X ∩ Cθ,ϕ(x), such that ξ(x;X ) = Dθ,ϕ(x;X ∪ {x}).

Proof of Lemma 5.3.9

Proof. For all x ∈ Ωλ and for all λ ≥ 1, we have

ξλ(x;Pλ}) = λ
1
2 ξ(x;Pλ) ≤ ⌈λ

1
2 ξ(x;Pλ)⌉ ≤ Rλ(x).
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Also, we have for all x ∈ Ωλ and λ ≥ 1, that

ξλ(x;Pλ ∪ {y}) ≤ ⌈λ
1
2 ξ(x;Pλ ∪ {y)⌉ ≤ R(λ

1
2x;λ

1
2 (Pλ ∪ {y}), [0, λ

1
2 ]2)

≤ R(λ
1
2x;λ

1
2Pλ, [0, λ

1
2 ]2) = Rλ(x).

So to prove both statements (a) and (b) from Lemma 5.3.9, it suffices to prove that

supλ≥1 supx∈Ωλ
E[Rλ(x)

p] < ∞.

For all x ∈ Ωλ, the p
th moment of Rλ(x) can be calculated using the tail-integral

formula for expectation which is given, as follows

E[Rλ(x)
p] =

∫ ∞

0

P(Rλ(x)
p ≥ s)ds ≤ 2p +

∫ ∞

2p
P(Rλ(x) ≥ s

1
p )ds. (5.3.7)

We make change of variable in (5.3.7) by letting λ
1
2 r = s

1
p , and s = 2p implies

r = 2λ− 1
2 . Use

√
2λ+ 1 < 3

√
λ for λ ≥ 1, the right-hand-side of (5.3.7), becomes∫ ∞

2λ− 1
2

P(Rλ(x) ≥ λ
1
2 r)pλ

p
2 rp−1dr ≤ pλ

p
2 (

∫ αλ

0

P(Rλ(x) ≥ λ
1
2 r)rp−1dr

+

∫ 3

αλ

P(Rλ(x) ≥ λ
1
2 r)rp−1dr

+

∫ ∞

3

P(Rλ(x) ≥ λ
1
2 r)rp−1dr)

≤ pλ
p
2

(∫ ∞

0

exp{−λcϕr
2}rp−1dr +

∫ 3

0

exp{−λcϕα
2
λ}rp−1dr

)
+ 0, by Lemma 5.3.12.

(5.3.8)

We make another change of variable on this expression
∫∞
0

exp{−λcϕr
2}rp−1dr,

by setting y = λcϕr
2 implies dy = 2λcϕrdr and dr = dy

2λcϕr
, where r2 = y

λcϕ
implies

that r = ( y
λcϕ

)
1
2 , then rp−1dr = rp−2dy

2λcϕ
, which yields

pλ
p
2

∫ ∞

0

exp{−λcϕr
2}rp−1dr = pλ

p
2

∫ ∞

0

exp{−y}
(

y

λcϕ

) p−2
2 1

2λcϕ
dy =

1

2
pc

− p
2

ϕ Γ
(p
2

)
,

by the integral definition
∫∞
0

exp{−y}y p
2
−1dy = Γ(p

2
).

Setting Cp =
1
2
c
− p

2
ϕ Γ(p

2
), the upper bound in (5.3.8), becomes

Cp + pλ
p
2 exp{−λcϕα

2
λ}
∫ 3

0

rp−1dr = Cp + (9λ)
p
2 exp{−λcϕα

2
λ}. (5.3.9)
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Finally, we show that (9λ)
p
2 exp{−λcϕα

2
λ} → 0 as λ → ∞ for c big enough. To see

this, observe that whatever value we choose for c, we have αλ → 0, so αλ < 1
2
for

sufficiently large λ.

Hence,

(9λ)
p
2 exp{−λcϕα

2
λ} ≤ (9λ)

p
2 exp

{
−λcϕ

c log λ

λ

}
≤ (9λ)

p
2 exp{−cϕc log λ}

= (9λ)
p
2 exp{log λ−cϕc}

= (9λ)
p
2λ−cϕc → 0 as λ → ∞,

(5.3.10)

provided that cϕc >
p
2
, i.e., c > p

2cϕ
. Therefore,

sup
λ≥1

sup
x∈Ωλ

E[Rλ(x)
p] ≤ Cp + sup

λ≥1
[(9λ)

p
2 exp{−λcϕα

2
λ}] < ∞.

as required.

In the subsequent discussion, we focus on another condition known as the ‘power-

law stabilization’ of the functional ξ at point x. Instead of relying on moment

conditions, we turn to tail-bounds. We introduce the following definition to elucidate

the concept of the tail probability of the radius of stabilization.

Definition 5.3.19. For s > 0, and λ ≥ 1, we have

τ(s) := sup
λ≥1

τλ(s),

where τλ(s) := supx∈Ωλ
P(Rλ(x) ≥ s).

Note that, in the singly-aligned cone, Lemma 5.3.12 gives the upper bound (5.3.3)

for τλ(s). In the unaligned cone, Lemma 5.3.16 gives the upper bound (5.3.6) for

τλ(s).

In the singly-aligned cone we prove the following condition on τ(s), which says

that ξ is power-law stabilizing with power q.

Lemma 5.3.20. (singly-aligned cone:) Let q > 0. If 2cϕc > q, then

sup
s≥1

sqτ(s) < ∞. (5.3.11)
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Proof. Take s fixed but sufficiently large so that for all λ satisfying
√
2λ + 1 ≥ s,

we have αλ >
√

c log λ
λ

. The supremum of τλ(s) over λ ≥ 1 is equal to the supremum

over λ such that
√
2λ+ 1 ≥ s and for this range of λ, Lemma 5.3.12 gives

τλ(s) ≤ exp(−cϕ(s
2 ∧ λα2

λ)) ≤ exp(−cϕ(s
2 ∧ c log λ))

≤ exp

(
−cϕ

(
s2 ∧ c log

(
(s− 1)2

2

)))
.

Hence, for large enough s,

τ(s) = sup
λ≥1

τλ(s) ≤ exp

(
−cϕ · c log

(
(s− 1)2

2

))
= 2cϕc · (s− 1)−2cϕc = o(s−q),

(5.3.12)

implying sqτ(s) → 0 as s → ∞.

Remark 5.3.21. In particular Lemma 5.3.20 shows that we may choose c > c0 > 0

large enough such that (5.3.11) holds for q = 304, as will be required for verify-

ing hypothesis of Theorem 5.3.23 below. Following [29], we say ξ is power-law of

stabilizing of order q = 304.

Lemma 5.3.22. (Unaligned cone:) For s > 0 and λ ≥ 1, the following inequality

holds.

τ(s) = sup
λ≥1

τλ(s) ≤ exp{−c′ϕs
2},

so sqτ(s) → 0, for any q > 0.

We omit the proof of Lemma 5.3.22 which follows immediately from Lemma 5.3.16.

Furthermore, it is established that Lemma 5.3.20 also holds for the unaligned cone.

5.3.3 Proof of Convergence of Variance

Now we have all the ingredients along with a combination of sufficient versions of

Theorem 2.1 and Theorem 2.2 [29] to establish the proof of our main Theorem 5.1.2.

Recall from Definition 4.5.2, that L1
λ =

∑
x∈Pλ∩R1

λ
Dθ,ϕ(x;Pλ) where Dθ,ϕ(x;Pλ) is

the distance from point x to its nearest neighbour in Pλ and Pλ is homogeneous

Poisson process with intensity λ. Recall from Definition 5.3.1 that ξ(x;X ) is the
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distance from point x to its nearest neighbour in X ∩ Cθ,ϕ(x). Also, recall L̃1
λ =

L1
λ − E[L1

λ], (L̃1
λ is centered random variable). Here we restate the Theorems 2.1

and 2.2 of [29] as follows.

Theorem 5.3.23. Suppose ξ(x,X ) is homogeneously stabilizing and translation-

invariant. Suppose also that ξ(x,X ) satisfies the moments conditions of Lemma 5.3.9

for p = 4, and is power-law stabilizing for order q = 304. Then there exists s2ϕ < ∞

such that λ−1Var
∑

x∈Pλ
ξλ(x;Pλ) → s2ϕ, as λ → ∞.

Remark 5.3.24. The limit sϕ appearing in Theorem 5.3.23 can be expressed in terms

of functionals of a homogeneous Poisson process on R2, which is rotationally invari-

ant (see [29] for more details), and therefore depends only on ϕ and not θ.

Proof of Theorem 5.1.2.

Proof. We show that we may apply Theorem 5.3.23 with ξ(x,X ) = Dθ,ϕ(x,X ).

First, in the unaligned cone, Lemma 5.3.22 shows that ξ is q power-law stabilizing

for any q > 0, and in particular for q = 304; similarly, ξ satisfies the p = 4 moments

condition. Second, in the singly-aligned cone, Lemmas 5.3.9 and 5.3.20 show the

same conditions are satisfied provided c > c0 in the definition of S satisfies 2cϕc > 4

and 2cϕc > 304; taking c0 =
152
cϕ

suffices for this. Hence Theorem 5.3.23 applies.

Therefore,

λ−1Var

[∑
x∈Pλ

ξλ(x;Pλ)

]
= λ−1(λ

1
2 )2Var

 ∑
x∈Pλ∩R1

λ

ξ(x;Pλ)


= Var

 ∑
x∈Pλ∩R1

λ

ξ(x;Pλ)

 ,

hence,Var(L1
λ) ≡ Var(L̃1

λ) → s2ϕ, as λ → ∞ for some sϕ < ∞. By Proposition 5.2.8,

this limit s2ϕ is greater than or equal to q > 0, and therefore positive.



5.4. Proof of Theorem 3.3.2 (iii) 93

5.4 Proof of Theorem 3.3.2 (iii)

In this section, we will provide the proof of our main result of this thesis specifically

part (iii) of Theorem 3.3.2. This proves only holds for the unaligned cone since

R1
λ = [0, 1]2. In our proof, we will use the ingredients mentioned above along with

the proof of Theorem 5.1.1 and Theorem 5.1.2.

For the unaligned cone, R1
λ = [0, 1]2 so Lλ = L1

λ. Then apply Slutsky (Theo-

rem 2.5.5) to
L1
λ−E[L1

λ]√
Var[L1

λ]
and

√
Var[L1

λ], using Theorems 5.1.1 & 5.1.2 to give

L̃λ = L̃1
λ =

L1
λ − E[L1

λ]√
Var[L1

λ]
·
√

Var[L1
λ]

d→ sϕZ, as λ → ∞.



Chapter 6

Boundary Effects

6.1 Introduction

This chapter aims to provide an important ingredient for the proof of second part

of the main result in this thesis (Theorem 3.3.2, (ii)) for both singly-aligned cones.

Recall from Chapter 4 that for both the obtuse case (Lemma 4.4.6) and acute case

(Lemma 4.4.7), we define a non-empty boundary region R3
λ = [0, 1] × [0, λ−σ], for

σ ∈ (1
2
, 2
3
) where we expect to see long edges. Recall from Definition 4.5.2 that

L3
λ = L(Pλ,R3

λ) is the contribution to the total length from points in Pλ ∩ R3
λ,

where Pλ is the homogeneous Poisson process of intensity λ, and L̃3
λ = L3

λ − E[L3
λ]

is centered random variable. We will show convergence in distribution of L̃3
λ as the

intensity λ tends to infinity. Recall
d→ denotes convergence in distribution. The

principal result of this chapter is Theorem 6.1.1.

Theorem 6.1.1. If (θ, ϕ) is singly-aligned, then

L̃3
λ

d→ Q, as λ → ∞, (6.1.1)

where the distribution of Q is characterized by the fixed point equation (3.4.1).

The concept proof of the Theorem 6.1.1 is to show that the minimal directed

spanning forests (MDSF) near the bottom boundary, which is close to a directed

linear forest (DLF) system (definition given in Section 6.2) can be defined as a

94
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sequence of random variables coupled to the points of the MDSF. To make this

clear, we need to produce an explicit sequence of random variables such that DLF

coupled to the Poisson point process Pλ with intensity λ on (0, 1]2, on which the

MDSF can be constructed and we constructed the directed linear forest on the same

process.

In Section 6.2, we introduce the directed linear forest in order to compare a

asymptotic behaviour of the total edge length of L̃3
λ with Theorem 6.3.2. In Sec-

tion 6.3, we prove Theorem 6.3.2 for the obtuse cone, and in Section 6.4 we prove

for the acute cone. Lastly, in Section 6.5, we derive the proof of Theorem 6.1.1 for

both singly-aligned cones since the proof is identical for obtuse case and acute case.

6.2 Directed Linear Forest

In this section, we will present the results of our analysis of the directed linear forests,

and we will provide proof for these results in the following sections. Our analysis

persists, focusing on the minimal directed spanning forest constructed over randomly

selected points within the unit square. Specifically, we focus on the lengths of edges

in proximity to the boundaries of the unit square. The objective is to identify

the limiting distribution for random MDSF concerning regions near the boundaries.

The on-line nearest-neighbour graph serves as a characterisation tool, assisting in

our understanding of these limiting distributions.

The directed linear forest is in studying random directed graphs and graph the-

ory. It is primarily employed in analysing minimal directed spanning forests in

various geometric settings respecting the unit square. In the context of DLF, the

term ‘linear’ signifies that the edges of the forest follow a linear ordering, often from

left to right or right to left. This ordering constraint distinguishes DLF from other

graph structures and is essential in understanding its behaviour and applications.

The directed linear forest shares similarities with the on-line nearest neighbour

process regarding one-dimensional distance, with the key distinction that the edges

exclusively extend to the left of a newly added point in a sequence. In analysing
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random minimal directed spanning forest within the unit square (0, 1)2 with respect

to the general cone ≼, the DLF plays an essential role, particularly concerning edges

located near the boundaries. These boundary regions allow for the estimation of the

MDSF using DLF principles. The objective of this section primary is to establish the

essential properties and definitions of DLF. Subsequently, we will observe that the

total edge length contributed by points near the boundaries converges in distribution

to the limit of the total edge length of the DLF as a number of points tends to infinity.

To provide a better understanding, let us first define the directed linear forest

(DLF) as DLF(n). The DLF(n) is a graph on the sequence of independent and uni-

formly distributed random variables on (0, 1), in other words, (Xi, i = 1, 2, . . . , n) ∈

(0, 1)n so that a directed edge joins Xi to closest Xj with j < i and Xj < Xi, i.e.,

(earlier in the sequence and to the left). In the directed linear forest, every point in

a sequence of independent uniform random points within an interval is connected to

its closest left neighbour among the preceding points; for example, see Penrose and

Wade [31] for further details.

Now we start with some notations and definitions that will be used throughout

this chapter to prove the Theorem 6.1.1. By the property of Poisson process the

region R3
λ contains Mλ points, where Mλ ∼ Po(λ1−σ). Recall that U denotes

the uniform random variable on [0, 1], and
d
= denotes equality in distribution. Let

Vλ := Pλ ∩ R3
λ and, as above, let Mλ = card(Vλ) be the cardinality (number of

elements) of Vλ. We order these points (i.e., Vλ) by y-coordinate so that in two-

dimensional space, we have the set of points Vλ := (Zi = (Xi, Yi), i = 1, 2, . . . ,Mλ),

where Y1 < Y2 < · · · < YMλ
. We couple the MDSF in two-dimensional space on

these points Vλ with the directed linear forest defined on the x-coordinates (Xi, i =

1, 2, . . . ,Mλ). This sequence is formally denoted as Uλ.

Definition 6.2.1. Let D(Uλ) be the total length of the DLF on the sequence Uλ

given by

Uλ := (Xi, i = 1, 2, . . . ,Mλ),

where Mλ ∼ Po(λ1−σ).
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Define Qn be the total length of the DLF(n). We recall Theorem 3.1 of Penrose

and Wade [31] below for the total length of the directed linear forest DLF(n).

Theorem 6.2.2 (Penrose and Wade [31]). As n → ∞,

Qn − E[Qn]
d→ Q, (6.2.1)

where Q ∼ Q is characterized by the fixed point equation (3.4.1).

1

λ−σ

0 1

z1

z6

z4

z8

z3
z2

z5

z7

0 1x7x5x2x8x3x6x1x4

Figure 6.1: Left Panel: Realization of two dimensional distance with obtuse case,

for example, z6 can pick z3 as a nearest neighbour in d = 2, but this can’t be

happened when d = 1,, where zi, i = 1, 2, . . . and xi, i = 1, 2, . . . are points of Poisson

process in [0, 1]2; Right Panel: transformation from two-dimensional distance to one-

dimensional distance of the directed linear forest.

Recall that
Lp

→ denotes convergence in pth mean, we consider p = 1, 2. To prove

Theorem 6.1.1, we need to control the difference between the total edge lengths of

the coupled MDSF and DLF provided in the following theorem.

Theorem 6.2.3. If (θ, ϕ) is singly-aligned. Then,

Sλ = L3
λ −D(Uλ)

L2

→ 0, as λ → ∞. (6.2.2)

Before proving Theorem 6.2.3, we first write L3
λ and D(Uλ) as sums of random

variables associated with points in Vλ. For this we require the following definitions.

Definition 6.2.4. Let J(i) be the index of the nearest left neighbour of Xi such

that J(i) < i, defined by

J(i) := argmax
j

{Xj : Xj < Xi, j < i},
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and set

J(i) := ∞ if {Xj : Xj < Xi, j < i} = ∅.

Definition 6.2.5. Let K(i) be the index of the nearest neighbour in the cone

Cθ,ϕ(Zi) \ {Zi} of Zi, defined by

K(i) := argmin1≤k≤Mλ
k ̸=i

{∥Zk − Zi∥ : Zk ∈ Cθ,ϕ(Zi)},

and set

K(i) := ∞ if Cθ,ϕ(Zi) \ {Zi} contains no points of Vλ.

Recall that Mλ is the number of points of the finite set Vλ, i.e., Mλ ∼ Po(λ1−σ).

Using Definition 6.2.4, we can write D(Uλ) as

D(Uλ) =

Mλ∑
i=1

|Xi −XJ(i)|1{J(i)<∞}. (6.2.3)

and using Definition 6.2.5, we can write L3
λ as

L3
λ =

Mλ∑
i=1

∥Zi − ZK(i)∥1{K(i)<∞}. (6.2.4)

Hence Sλ =
∑Mλ

i=1 ∆i, where ∆i = ∥Zi−ZK(i)∥1{K(i)<∞}−|Xi−XJ(i)|1{J(i)<∞}, and

to prove Theorem 6.2.3 we need to show that Sλ converges in L2 to 0 as λ → ∞.

The arguments required for this are slightly different for the two type of cones.

Section 6.3 covers the obtuse cone and Section 6.4 covers the acute cone.

6.3 Coupling for Obtuse Cone

We begin by defining a region of R3
λ for each point of Vλ which plays an important

role in controlling the size of ∆i.

Definition 6.3.1. For each i = 1, 2, . . . ,Mλ, define

Ei := {(x, y) ∈ R3
λ : x > Xi, (x, y) ∈ Cθ,ϕ(Zi)}.
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Note that Ei is always contained in a right-angled triangle with height λ−σ and

width tan(ϕ− π
2
)λ−σ.

0 1

Ei

λ−σ

Xi

tan(ϕ − π
2
)λ−σ

XJ(i)XK(i)

ZJ(i)

ZK(i)

0 1

Zi

ϕ − π
2

λ−σ

R3
λ

Ei

XiXJ(i) XK(i)

ZJ(i)

ZK(i)

0 1

Zi = (xi, yi)

ϕ − π
2

Figure 6.2: Left Panel: Realization of two-dimensional distance with obtuse case

and error term is Ei i.e. the little triangle, the bottom picture is projected to one-

dimensional distance in this case Pλ ∩ Ei = ∅; similarly for the Right Panel: if

K(i) < ∞ and ZK(i) ∈ Ei, then J(i) ̸= K(i).

Write Ei defined as above, we write Sλ =
∑Mλ

i=1∆i as S ′
λ + S ′′

λ where S ′
λ =∑Mλ

i=1 ∆i1A∁
i
, and S ′′

λ =
∑Mλ

i=1∆i1Ai
, and Ai = {J(i) < ∞, K(i) < ∞, ZK(i) ∈ Ei}.

We examine these two sums S ′
λ and S ′′

λ separately. First consider the sum for S ′
λ

which will be provided in Lemma 6.3.2 and S ′′
λ given in Lemma 6.3.4.

Lemma 6.3.2. Suppose that σ ∈ (1
2
, 2
3
). Let S ′

λ be defined as above, then

S ′
λ

L2

→ 0, as λ → ∞.

Proof. Given that A∁
i occurs, exactly one of the events

(i) {K(i) = ∞},

(ii) {J(i) = ∞, K(i) < ∞},

(iii) {J(i) < ∞, K(i) < ∞, ZK(i) /∈ Ei}.

occurs.

Case (i): K(i) = ∞ means Cθ,ϕ(Zi) contains no other points of Vλ, so J(i) = ∞
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also. Then ∆i = 0− 0 = 0.

Case (ii): J(i) = ∞ and K(i) < ∞, means Cθ,ϕ(Zi) contains ZK(i) the nearest-

neighbour of Zi (hence K(i) < i) but XK(i) > Xi (otherwise J(i) < ∞). Hence

ZK(i) ∈ Ei and ∆i = ∥Zi − ZK(i)∥ satisfies

0 ≤ ∥Zi − ZK(i)∥ ≤ sec
(
ϕ− π

2

)
λ−σ, (6.3.1)

since the length ∥Zi − ZK(i)∥ is at most the length of the hypotenuse of Ei.

Case (iii): J(i) < ∞, K(i) < ∞, and ZK(i) /∈ Ei means K(i) < i and XK(i) < Xi,

hence |XJ(i) − Xi| ≤ |XK(i) − Xi| by definition of J(i). Also, ZJ(i) ∈ Cθ,ϕ(Zi) so

∥ZK(i)−Zi∥−∥ZJ(i)−Zi∥ by definition of K(i). Then by the inequality the following

inequalities hold

|XJ(i) −Xi| ≤ |XK(i) −Xi| ≤ ∥ZK(i) − Zi∥

≤ ∥ZJ(i) − Zi∥ ≤ |XJ(i) −Xi|+ |YJ(i) − Yi|

≤ |XJ(i) −Xi|+ λ−σ.

Therefore, ∆i = ∥ZK(i) − Zi∥ − |XJ(i) −Xi| satisfies 0 ≤ ∆i ≤ λ−σ.

Combining cases (i), (ii), and (iii), yields

0 ≤ ∆i1A∁
i
≤ sec

(
ϕ− π

2

)
λ−σ. (6.3.2)

Now apply the absolute value over S ′
λ and use the right-hand side of (6.3.2),

hence

|S ′
λ| = |

Mλ∑
i=1

∆i1A∁
i
| ≤

Mλ∑
i=1

sec
(
ϕ− π

2

)
λ−σ = Mλλ

−σ sec
(
ϕ− π

2

)
. (6.3.3)

Squaring and applying the expectation over S ′
λ and using the right-hand side of (6.3.3),

yields

E[(S ′
λ)

2] ≤ E

[(
λ−σMλ sec

(
ϕ− π

2

))2]
=
(
λ−σ sec

(
ϕ− π

2

))2
E[(Mλ)

2].

By the second moment of Poisson distribution, we have E[(Mλ)
2] ≤ 2(λ1−σ)2, since

Mλ ∼ Po(λ1−σ). Whence, since σ ∈ (1
2
, 2
3
),

E[(S ′
λ)

2] ≤ 2λ2−2σ · λ−2σ sec2
(
ϕ− π

2

)
≤ 2λ2−4σ sec2

(
ϕ− π

2

)
→ 0, as λ → ∞.

(6.3.4)
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Thus as λ → ∞, S ′
λ

L2

→ 0, we obtain the lemma.

We turn our attention to the second sum S ′′
λ. We show in the following lemma

that S ′′
λ converges in L2 to 0 as the intensity λ tends to infinity. Recall by definition of

S ′′
λ =

∑Mλ

i=1∆i1Ai
, where Mλ ∼ Po(λ1−σ), Ai = {J(i) < ∞, K(i) < ∞, ZK(i) ∈ Ei},

and ∆i = ∥Zi−ZK(i)∥1{K(i)<∞}−|Xi−XJ(i)|1{J(i)<∞}. In the proof we will relate the

length |XJ(i) −Xi|1{J(i)<∞} to the spacings of the order statistics of X1, X2, . . . , Xi

as given by the following definition.

Definition 6.3.3. Denote the (increasing) order statistics of the random variables

X1, X2, . . . , Xi by X(1) < X(2) < · · · < X(i) and set X(0) := 0, X(i+1) := 1. Define

the corresponding spacings by Ii,j := X(j) −X(j−1) for j ∈ [1, i+ 1].

Note that, since X1, . . . , Xi are independent identically distributed U(0, 1) ran-

dom variables, for each j, we have Ii,j ∼ β(1, i).

0 1
Xi

Ii,2Ii,1 Ii,i+1

XJ(i)

Figure 6.3: At arrival time of ith points there are gaps of length Ii =

(Ii,1, Ii,2, . . . , Ii,i+1) ∼ Dirichlet(1, 1, . . . , 1), where
∑i+1

j=1 Ii,j = 1 with initial Ii,1 ∼

β(1, i) and
∑k

j=1 Ij ∼ β(k, i+ 1− k) with respect to [1, i+ 1].

This definition is key in establishing the proof of Lemma 6.3.4, below, as it

provides the necessary foundation for our argument, especially with regard to the

spacings Ii,j between order statistics of uniform random variables.

Lemma 6.3.4. Suppose that σ ∈ (1
2
, 2
3
). Then,

S ′′
λ

L2

→ 0, as λ → ∞.

Proof. We are going to partition on the size of Mλ, so either Mλ > 3λ1−σ or Mλ ≤

3λ1−σ, in other words, S ′′
λ = S ′′

λ1{Mλ≤3λ1−σ}+S ′′
λ1{Mλ>3λ1−σ}. We want show that, as

λ → ∞

E[(S ′′
λ)

2] = E[(S ′′
λ1{Mλ≤3λ1−σ})

2] + E[(S ′′
λ1{Mλ>3λ1−σ})

2] → 0. (6.3.5)



6.3. Coupling for Obtuse Cone 102

First observe that the absolute value of S ′′
λ is bounded by Mλ

√
2, since |∆i| ≤

√
2.

Then by Cauchy–Schwarz inequality and the 4th moments of Poisson distribution

(i.e., if X ∼ Po(µ) then E[X4] ≤ 15µ4, for µ > 1), we get

E[(S ′′
λ1{Mλ>3λ1−σ})

2] ≤ 2E[M2
λ1{Mλ>3λ1−σ}]

≤ 2(E[M4
λ ])

1
2P(Mλ > 3λ1−σ)

1
2

≤ 2(16λ4−4σ)
1
2 e−

1
2
λ1−σ ≤ 8λ2e−

1
2
λ1−σ → 0, as λ → ∞,

(6.3.6)

by the inequality (5.2.2). Therefore, E[(S ′′
λ1{Mλ>3λ1−σ})

2] → 0, as λ → ∞. Now

we consider the term S ′′
λ1{Mλ≤3λ1−σ}. We write ∆̃i = ∆i1Ai

so that ∆i1Ai
≡ ∆̃i1Ai

.

Then,

|S ′′
λ1{Mλ≤3λ1−σ}| ≤

⌊3λ1−σ⌋∑
i=1

|∆i1Ai
|1{Mλ≤3λ1−σ} ≤

⌊3λ1−σ⌋∑
i=1

|∆̃i|1Ai
. (6.3.7)

Squaring and applying the expectation over S ′′
λ given in (6.3.7), the right-hand side

yields

E[(S ′′
λ1{Mλ≤3λ1−σ})

2] ≤
⌊3λ1−σ⌋∑
i,j=1

E[|∆̃i||∆̃j|1Ai∩Aj
]. (6.3.8)

We apply the Cauchy-Schwarz inequality (twice) to each term in the sum in (6.3.8),

then

E[|∆̃i||∆̃j|1Ai∩Aj
] ≤ E[(∆̃i∆̃j)

2]
1
2P(Ai ∩ Aj)

1
2 ≤ E[∆̃4

i ]
1
4E[∆̃4

j ]
1
4P(Ai ∩ Aj)

1
2 ,

which yields

E[(S ′′
λ1{Mλ≤3λ1−σ})

2] ≤
⌊3λ1−σ⌋∑
i,j=1

E[∆̃4
i ]

1
4E[∆̃4

j ]
1
4P(Ai ∩ Aj)

1
2 . (6.3.9)

Here we want to find P(Ai ∩ Aj) appears in (6.3.9). To do so, we let P(Ai ∩

Aj) ≤ P(Wλ > 0), where Wλ is the number of points of Pλ in Ei ∪ Ej. Since

|Ei∪Ej| ≤ cλ−2σ (because |Ei∪Ej| ≤ |Ei|+ |Ej| and each E is a triangle with area

at most cϕλ
−2σ, for some constant cϕ > 0). So Wλ is a Poisson random variable with
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parameter less than or equal to cϕλ
1−2σ, then E[Wλ] ≤ cλ1−2σ for σ > 1

2
. Hence, by

Markov’s inequality

P(Ai ∩ Aj) ≤ P(Wλ ≥ 1) ≤ cλ1−2σ, for σ >
1

2
. (6.3.10)

Finally, we bound |∆̃i| = |∆i|1Ai
which will lead to a bound on E[∆̃4

i ]. Given Ai

occurs, the point ZK(i) is in Ei, so we have by (6.3.1) that

0 ≤ ∥ZK(i) − Zi∥ ≤ sec
(
ϕ− π

2

)
λ−σ. (6.3.11)

Subtracting |XJ(i) −Xi| from each side gives bound on ∆i as

− |XJ(i) −Xi| ≤ ∆i ≤ −|XJ(i) −Xi|+ sec
(
ϕ− π

2

)
λ−σ. (6.3.12)

Then we apply the absolute value over ∆i, we write (6.3.12), as follows

|∆i| ≤ |XJ(i) −Xi|+ sec
(
ϕ− π

2

)
λ−σ.

In terms of |∆̃i| = ∆i1Ai
, we have

|∆̃i| ≤ |XJ(i) −Xi|1{J(i)<∞} + sec
(
ϕ− π

2

)
λ−σ.

From (6.3.9), we need to find the 4th moment of ∆̃i. Using the fact that for a, b > 0,

we have (a+ b)4 ≤ (2max{a, b})4 = 24max{a4, b4} ≤ 24(a4 + b4), hence

∆̃4
i ≤

(
|XJ(i) −Xi|1{J(i)<∞} + λ−σ sec

(
ϕ− π

2

))4
≤ 24

(
|XJ(i) −Xi|41{J(i)<∞} + λ−4σ sec4

(
ϕ− π

2

))
. (6.3.13)

Next we aim to find the expectation of |XJ(i) − Xi|41{J(i)<∞}. We relate the

length |XJ(i) −Xi|41{J(i)<∞} to the spacings Ii,j between order statistics of uniform

random variables (see Definition 6.3.3). We think of point in Zi = (Xi, Yi) ∈ Vλ as

an arrival at time Yi of a point at Xi ∈ [0, 1]. By the Poisson property, each Xi

is uniformly distributed on [0, 1], and the ordering of points in Vλ by y-coordinate

means points arrive in order X1 then X2 then X3 and so on. At the arrival time

of ith point Xi, the points X1, X2, . . . , Xi are placed in one of i! possible orders:

if X(1) < X(2) · · · < X(i) are the order statistics of X1, X2, . . . , Xi, then for any
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permutation π ∈ Si the probability P(X(j) = Xπ(j),∀j = 1, . . . , i) = 1
i!
Let Gj be

the event {Xi = X(j)}, which has probability P(Gj) =
1
i
for all j = 1, . . . , i. If Gj

occurs, and j ̸= 1, the length |XJ(i)−Xi| equals Ii,j the gap between X(j) and X(j−1).

Otherwise, if G1 occurs then J(i) = ∞. So |XJ(i)−Xi|41{J(i)<∞} =
∑i

j=2(Ii,j)
4
1{Gj},

where Ii,j and Gj are independent random variables. Then, we have

E
[
|XJ(i) −Xi|41{J(i)<∞}

]
= E

[
i∑

j=2

(Ii,j)
4
1{Gj}

]

=
i∑

j=2

E
[
(Ii,j)

4
]
P(Gj) =

1

i
·

i∑
j=2

E
[
(Ii,j)

4
]
. (6.3.14)

Let Ii,j ∼ β(1, i), where β is Beta distribution, then by its definition we derive

E[(Ii,j)
4], as follows

E[(Ii,j)
4] =

∫ 1

0

x4(1− x)i−2

B(1, i− 1)
dx =

B(5, i− 1)

B(1, i− 1)
=

Γ(5)Γ(i− 1)

Γ(5 + i− 1)
· Γ(i)

Γ(1)Γ(i− 1)

=
4!(i− 1)!

(i+ 3)!
=

4!(i− 1)!

(i+ 3)(i+ 2)(i+ 1)i(i− 1)!

=
4!

(i+ 3)(i+ 2)(i+ 1)i
. (6.3.15)

Thus by (6.3.15), the right-hand side of (6.3.14), yields

E
[
|XJ(i) −Xi|41{J(i)<∞}

]
=

1

i
·

i∑
j=2

E
[
(Ii,j)

4
]

=
i− 1

i
· 4!

(i+ 3)(i+ 2)(i+ 1)i
≤ 4!

i4
. (6.3.16)

Combining (6.3.13) and (6.3.16), yields

E[∆̃4
i ] ≤

24 · 4!
i4

+ 24 · λ−4σ sec4
(
ϕ− π

2

)
. (6.3.17)
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Combining inequalities (6.3.9), (6.3.10), and (6.3.17) results

E[(S ′′
λ1{Mλ≤3λ1−σ})

2] ≤
(
cλ1−2σ

) 1
2

⌊3λ1−σ⌋∑
i=1

E[∆̃4
i ]

1
4


2

≤ c′λ
1
2
−σ

⌊3λ1−σ⌋∑
i=1

(
24 · 4!
i4

+ 24 · λ−4σ sec4
(
ϕ− π

2

)) 1
4


2

≤ c′λ
1
2
−σ

⌊3λ1−σ⌋∑
i=1

(
2 · 4! 14

i
+ 2 · λ−σ sec

(
ϕ− π

2

))
2

≤ c′′λ
1
2
−σ
(
log(3λ1−σ) + λ1−2σ

)2 → 0, as λ → ∞, for σ >
1

2
,

(6.3.18)

where

(∑⌊3λ1−σ⌋
i=1 E[∆̃4

i ]
1
4

)2

=
∑⌊3λ1−σ⌋

i,j=1 E[∆̃4
i ]

1
4E[∆̃4

j ]
1
4 , and c, c′, and c′′ are con-

stants. Since σ > 1
2
, the right-hand side of (6.3.18) tends to 0 as λ → ∞, hence

S ′′
λ1{Mλ≤3λ1−σ}

L2

→ 0, as λ → ∞. Note that in line 2 of the above inequality, we use

(a+ b)
1
4 ≤ a

1
4 + b

1
4 for a, b ≥ 0, also in line 4 we use

∑n
i=1

1
i
≤ 1+ log n ≤ 2 log n for

all n > e.

Finally, we combine (6.3.6) and (6.3.18), with (6.3.5) which completes the proof.

Here we have all ingredients to deliver the proof of Theorem 6.2.3. Recall

that Sλ = L3
λ − D(Uλ) =

∑Mλ

i=1 ∆i, where ∆i = ∥Zi − ZK(i)∥1{K(i)<∞} − |Xi −

XJ(i)|1{J(i)<∞} and Mλ ∼ Po(λ1−σ).

Proof of Theorem 6.2.3. (Obtuse case) Combining Lemma 6.3.2 and Lemma 6.3.4

and applying Minkowski’s inequality to S ′
λ and S ′′

λ. Hence, Sλ = S ′
λ + S ′′

λ
L2

→ 0, as

λ → ∞.

6.4 Coupling for Acute Cone

In this section, we will employ the same notations and definitions as in the obtuse

case, specifically referencing Definition 6.2.4 for J(i) and Definition 6.2.5 for K(i).
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It’s worth noting that the set Ei differs from its use in the obtuse cone.

Before proving Theorem 6.2.3, recall that Sλ = L3
λ−D(Uλ) and we define D(Uλ)

by (6.2.3) and L3
λ by (6.2.4) as the sums of random variables associated with points

in Vλ. Let Sλ =
∑Mλ

i=1 ∆i, where ∆i = ∥Zi−ZK(i)∥1{K(i)<∞}− |Xi−XJ(i)|1{J(i)<∞},

and to prove Theorem 6.2.3, we need to show that Sλ converges in L2 to 0 as λ → ∞.

For this we require the following definitions. We begin by defining a region of R3
λ

for each point of Vλ, which plays an important role in controlling the size of ∆i.

Definition 6.4.1. For each i = 1, 2, . . . ,Mλ, define

Ei := {(x, y) ∈ R3
λ : x < Xi, y < Yi, (x, y) /∈ Cθ,ϕ(Zi)}.

Note that Ei is always contained in a right-angled triangle with height λ−σ and

width λ−σ cotϕ.

Definition 6.4.2. Let J̃(i) be defined in terms of the X-process as the index of the

nearest left neighbour of Xi at distance greater than λ−σ cotϕ such that J̃(i) < i

(see Figure 6.5), defined by

J̃(i) := argmax
j

{Xj : Xj < Xi − λ−σ cot(ϕ), j < i},

and set

J̃(i) = ∞ if {Xj : Xj < Xi − λ−σ cot(ϕ), j < i} = ∅.

Definition 6.4.3. Let I(i) ≤ i be defined by

I(i) := argminj{Xj : Xi − λ−σ cotϕ ≤ Xj ≤ Xi, j ≤ i}.

The definitions of Ei and J̃(i) mean that if J̃(i) < ∞ then ZJ̃(i) /∈ Ei. The

definitions of J̃(i) and I(i) mean that if J̃(i) < ∞ then XJ̃(i) and XI(i) are a

consecutive pair of order statistics of the random variable X1, X2, . . . , Xi.
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0 1

Ei

XiXJ(i)XK(i)

ZJ(i)

ZK(i)

0 1

Zi

ϕ

λ−σ R3
λ

Ei

XiXK(i)XJ(i)

ϕZK(i)

ZJ(i)

0 1

Zi = (xi, yi)

Figure 6.4: Left Panel: Realization of two-dimensional distance with acute case

and error term is Ei i.e. the little triangle, the bottom picture is projected to

one-dimensional distance in this case Pλ ∩ Ei = ∅; Right Panel: if J(i) < ∞ and

ZJ(i) ∈ Ei, then J(i) ̸= K(i).

0 1

Ei

XiX
J̃(i)

≤ λ−σ cotϕ

XJ(i)XK(i)

ZJ(i)

Z
J̃(i)

ZK(i)

0 1

Zi R3
λϕ

λ−σ

X
J̃(i) Xi

I
I(i),J̃(i)

λ−σ

XI(i)

Figure 6.5: Left Panel: In the one-dimensional picture the interval of length ≤

λ−σ cotϕ contains the projection of any point in the little triangle Ei; the point XJ̃(i)

is the projection of a candidate nearest neighbour that cannot be in Ei; Right Panel:

The distance between Xi & XJ̃(i) is of the form |XJ̃(i) −Xi| ≤ |XJ̃(i) −XI(i)|+ λ−σ

where I(i) ≤ i, and J̃(i), I(i) are consecutive order statistics.

Write Ei defined as above, we write Sλ =
∑Mλ

i=1∆i as S ′
λ + S ′′

λ, where S ′
λ =∑Mλ

i=1∆i1A∁
i
and S ′′

λ =
∑Mλ

i=1∆i1Ai
, and Ai = {J(i) < ∞, K(i) < ∞, ZJ(i) ∈ Ei}.

Notice here that the definition of Ai refers to the event ZJ(i) ∈ Ei, in contrast to the

definition for the obtuse cone, which refers to event ZK(i) ∈ Ei. We examine these

two sums S ′
λ and S ′′

λ separately. First consider the sum for S ′
λ given in Lemma 6.4.4

and S ′′
λ given in Lemma 6.4.5.
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Lemma 6.4.4. Suppose that σ ∈ (1
2
, 2
3
). Let S ′

λ be defined as above, then

S ′
λ

L2

→ 0, as λ → ∞.

Proof. Given that A∁
i occurs, exactly one of the events

(a) {J(i) = ∞},

(b) {J(i) < ∞, K(i) = ∞},

(c) {J(i) < ∞, K(i) < ∞, ZJ(i) /∈ Ei}.

occurs. Note that cases (a), (b), and (c) correspond to the cases (i), (ii), and (iii)

appearing in proof of Lemma 6.3.2 but with the roles of J(i) & K(i) swapped.

Case (a): If J(i) = ∞ then Cθ,ϕ(Zi) contains no other points of Vλ, so K(i) = ∞

also. Then ∆i = 0− 0 = 0 as for the case (i) in Lemma 6.3.2.

Case (b): If K(i) = ∞ and J(i) < ∞, means Cθ,ϕ(Zi) \ {Zi} is empty, but there

is a candidate nearest neighbour with XJ(i) < Xi and J(i) < i. Hence ZJ(i) is in Ei

and |∆i| = |XJ(i) −Xi|, satisfies

0 ≤ |XJ(i) −Xi| ≤ λ−σ cot(ϕ). (6.4.1)

Since the length |XJ(i) −Xi| is at most the width of triangle Ei.

Case (c): J(i) < ∞, K(i) < ∞ and ZJ(i) /∈ Ei means ZJ(i) ∈ Cθ,ϕ(Zi), hence

by definition of K(i), we have ∥ZK(i) − Zi∥ ≤ ∥ZJ(i) − Zi∥. Also, XK(i) < Xi and

K(i) < i, hence |XJ(i) −Xi| ≤ |XK(i) −Xi| by definition of J(i). Then, by triangle

inequality the following inequalities hold

|XJ(i) −Xi| ≤ |XK(i) −Xi| ≤ ∥ZK(i) − Zi∥ ≤ ∥ZJ(i) − Zi∥

≤ |XJ(i) −Xi|+ |YJ(i) − Yi|

≤ |XJ(i) −Xi|+ λ−σ.

Therefore ∆i = ∥ZK(i) − Zi∥ − ∥ZJ(i) − Zi∥ satisfies 0 ≤ ∆i ≤ λ−σ. So combining

cases (a), (b), and (c) we see that |∆i|1A∁
i
≤ λ−σ cot(ϕ).
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Apply the absolute value over S ′
λ and use the bound on |∆i|1A∁

i
, to get

|S ′
λ| = |

Mλ∑
i=1

∆i1A∁
i
| ≤

Mλ∑
i=1

λ−σ cot(ϕ) = Mλλ
−σ cot(ϕ). (6.4.2)

Squaring and applying the expectation over S ′
λ, hence

E[(S ′
λ)

2] ≤ E
[
(λ−σMλ cot(ϕ))

2
]
= (λ−σ cot(ϕ))2E[(Mλ)

2].

By the second moment of Poisson distribution we have E[(Mλ)
2] ≤ 2(λ1−σ)2, since

Mλ ∼ Po(λ1−σ). Whence, since σ ∈ (1
2
, 2
3
),

E[(S ′
λ)

2] ≤ 2λ2−2σ · λ−2σ cot2(ϕ) ≤ 2λ2−4σ cot2(ϕ) → 0, as λ → ∞. (6.4.3)

Thus, we obtain the lemma.

We show in the following lemma that S ′′
λ converges in L2 to 0 as the intensity

λ tends to infinity. Let Ai = {J(i) < ∞, K(i) < ∞, ZJ(i) ∈ Ei}. We have by

definition of S ′′
λ that S ′′

λ =
∑Mλ

i=1 ∆i1Ai
, where ∆i = ∥Zi − ZK(i)∥1{K(i)<∞} − |Xi −

XJ(i)|1{J(i)<∞}, and Mλ ∼ Po(λ1−σ).

Lemma 6.4.5. Suppose that σ ∈ (1
2
, 2
3
). Then,

S ′′
λ

L2

→ 0, as λ → ∞.

Proof. We follow the proof of Lemma 6.3.4 where possible but making appropri-

ate changes specific to the acute case where necessary. We are going to parti-

tion on the size of Mλ, so either Mλ > 3λ1−σ or Mλ ≤ 3λ1−σ, in other words,

S ′′
λ = S ′′

λ1{Mλ≤3λ1−σ} + S ′′
λ1{Mλ>3λ1−σ}. We want show that as λ → ∞,

E[(S ′′
λ)

2] = E[(S ′′
λ1{Mλ≤3λ1−σ})

2] + E[(S ′′
λ1{Mλ>3λ1−σ})

2] → 0. (6.4.4)

First observe that the absolute value of S ′′
λ is bounded by

√
2Mλ, since |∆i| ≤

√
2.

Then by Cauchy–Schwarz inequality and the 4th moments of Poisson distribution,

we have

E[(S ′′
λ1{Mλ>3λ1−σ})

2] ≤ 2E[M2
λ1{Mλ>3λ1−σ}]

≤ 2(E[M4
λ ])

1
2P(Mλ > 3λ1−σ)

1
2

≤ 2(16λ4−4σ)
1
2 e−

1
2
λ1−σ ≤ 8λ2e−

1
2
λ1−σ → 0, as λ → ∞, (6.4.5)
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by the inequality (5.2.2). Therefore, E[(S ′′
λ1{Mλ>3λ1−σ})

2] → 0 as λ → ∞.

Now we consider the term S ′′
λ1{Mλ≤3λ1−σ}. We write ∆̃i := ∆i1Ai

so that ∆i1Ai
≡

∆̃i1Ai
. Then,

|S ′′
λ1{Mλ≤3λ1−σ}| ≤

⌊3λ1−σ⌋∑
i=1

|∆i1Ai
|1{Mλ≤3λ1−σ} ≤

⌊3λ1−σ⌋∑
i=1

|∆̃i|1Ai
. (6.4.6)

Squaring and applying the expectation over S ′′
λ given in (6.4.6), hence the right hand

side yields

E[(S ′′
λ1{Mλ≤3λ1−σ})

2] ≤
⌊3λ1−σ⌋∑
i,j=1

E[|∆̃i||∆̃j|1Ai∩Aj
]. (6.4.7)

We apply the Cauchy-Schwarz inequality (twice) to each term in the sum in (6.4.7),

then

E[|∆̃i||∆̃j|1Ai∩Aj
] ≤ E[(∆̃i∆̃j)

2]
1
2P(Ai ∩ Aj)

1
2 ≤ E[∆̃4

i ]
1
4E[∆̃4

j ]
1
4P(Ai ∩ Aj)

1
2 ,

which yields

E[(S ′′
λ1{Mλ≤3λ1−σ})

2] ≤
⌊3λ1−σ⌋∑
i,j=1

E[∆̃4
i ]

1
4E[∆̃4

j ]
1
4P(Ai ∩ Aj)

1
2 . (6.4.8)

Here we want to find P(Ai ∩ Aj) appears in (6.4.8). To do so, we let P(Ai ∩

Aj) ≤ P(Wλ > 0), where Wλ is the number of points of Pλ in Ei ∪ Ej. Since

|Ei∪Ej| ≤ cλ−2σ (because |Ei∪Ej| ≤ |Ei|+ |Ej| and each E is a triangle with area

at most cϕλ
−2σ, for some constant cϕ > 0). So Wλ is a Poisson random variable with

parameter less than or equal to cϕλ
1−2σ, then E[Wλ] ≤ cλ1−2σ for σ > 1

2
. Hence, by

Markov’s inequality

P(Ai ∩ Aj) ≤ P(Wλ ≥ 1) ≤ cλ1−2σ, for σ >
1

2
. (6.4.9)

Now we need to find an upper bound for E[∆̃4
i ] that appears in (6.4.8). At this

point the proof deviates from the one for the obtuse case. For the obtuse case we

showed that the length ∆i was close to the one-dimensional distance |XJ(i)−Xi| (see

inequality (6.3.12)). In the acute case, as we will see, the corresponding argument
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only yields an upper bound on ∆i in terms of two-dimensional distance ∥ZK(i)−Zi∥

and we need an additional argument to bound ∆i in terms of an appropriate one-

dimensional distance. Given J(i) < ∞ and K(i) < ∞, by the definition of J(i), we

have XK(i) ≤ XJ(i), so

|XJ(i) −Xi| ≤ |XK(i) −Xi| ≤ ∥ZK(i) − Zi∥. (6.4.10)

Hence 0 ≤ ∆i ≤ ∥ZK(i) − Zi∥. Note that ∥ZK(i) − Zi∥ is the long two-dimensional

distance. So we need to work out to find the upper bound in terms of one-dimensional

distance, and this is provided by the following two statements.

First, if J̃(i) = ∞, then set {Xj : Xj < Xi − λ−σ cot(ϕ), j < i} is empty. But

K(i) < i since ZK(i) ∈ Cθ,ϕ(Zi) so the inequality XK(i) ≥ Xi − λ−σ cotϕ must hold

to avoid a contradiction. Then, by triangle inequality

∥ZK(i) − Zi∥ ≤ λ−σ + |XK(i) −Xi| ≤ λ−σ + λ−σ cot(ϕ) ≤ λ−σ(1 + cot(ϕ)).

(6.4.11)

Second, if J̃(i) < ∞, we know ZJ̃(i) /∈ Ei and so ZJ̃(i) ∈ Cθ,ϕ(Zi). Then by

definition 6.4.3 of I(i) along with triangle inequality, we have

∥ZK(i) − Zi∥1{J̃(i)<∞} ≤ ∥ZJ̃(i) − Zi∥1{J̃(i)<∞}

≤
(
|XJ̃(i) −Xi|+ λ−σ

)
1{J̃(i)<∞}

≤
(
|XJ̃(i) −XI(i)|+ |XI(i) −Xi|+ λ−σ

)
1{J̃(i)<∞}

≤
(
|XJ̃(i) −XI(i)|+ λ−σ(1 + cot(ϕ))

)
1{J̃(i)<∞}.

In term of ∆̃i = ∆i1Ai
, the upper bound of ∆̃i is given by the following inequality

0 ≤ ∆̃i ≤ |XJ̃(i) −XI(i)|1{J̃(i)<∞} + λ−σ(1 + cot(ϕ)) ≤ max
j

Ii,j + λ−σ(1 + cot(ϕ)).

(6.4.12)

For the final inequality, we used that XJ̃(i), XI(i) are a consecutive pair of order

statistics and therefore equal to Ii,j for some j ∈ {1, . . . , i + 1}. From (6.4.12), we

need to find the 4th moments of ∆̃i, hence

∆̃4
i ≤ 24 · (max

j
I4i,j + (λ−σ(1 + cotϕ))4). (6.4.13)



6.4. Coupling for Acute Cone 112

r

Figure 6.6: We look at the most left spacing, so the distance here is P(Ii,j > r) =∫ 1

r
i(1 − x)i−1dx = (1 − r)i, i.e., the probability of this event Ii,j > r if and only if

there is no points to the right.

To calculate the 4th moments of ∆̃i, we first need to find the marginal probability

density function (pdf) of the spacing. Let Ii,j ∼ β(1, i), where β is Beta distribution

and i is number of points. The pdf is given as follows, fIi,j(x) = i(1−x)i−1 (e.g. see

Figure 6.6). The P(Ii,j > r) = (1 − r)i for all j = 1, . . . , i + 1. The probability of

the maximum over all j given by

P(max
j

Ii,j > r) = P(∪i+1
j=1{Ii,j > r}) ≤ (i+ 1)(1− r)i ≤ (i+ 1)e−ir,

which holds for all r ≥ 0. Choosing r = 5 log i
i

, gives P
(
maxj Ii,j >

5 log i
i

)
≤ 2i−4.

Since Ii,j ≤ 1 for all j, we have

max
j

I4i,j ≤
(
5 log i

i

)4

1
maxj I4i,j≤(

5 log i
i )

4 + 1
maxj I4i,j>(

5 log i
i )

4 . (6.4.14)

Apply the expectation over maxj I
4
i,j appears in (6.4.14), hence

E(max
j

I4i,j) ≤
(
5 log i

i

)4

+P

(
max

j
I4i,j >

(
5 log i

i

)4
)

≤
(
5 log i

i

)4

+
2

i4
≤ 627 log4 i

i4
, for i ≥ 3. (6.4.15)

Combining inequalities (6.4.13) and (6.4.15) yields

E[∆̃4
i ] ≤

24C log4 i

i4
+ 24λ−4σ(1 + cotϕ)4 =

24C log4 i

i4
+ 24c′′λ−4σ. (6.4.16)
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Combining (6.4.8), (6.4.9), and (6.4.16), results

E[(S ′′
λ1{Mλ≤3λ1−σ})

2] ≤
(
cλ1−2σ

) 1
2

⌊3λ1−σ⌋∑
i=1

E[∆̃4
i ]

1
4


2

≤ c′λ
1
2
−σ

⌊3λ1−σ⌋∑
i=1

(
24C log4 i

i4
+ 24c′′λ−4σ

) 1
4


2

≤ c′λ
1
2
−σ

2C

⌊3λ1−σ⌋∑
i=1

(
log i

i
+ 2c′′λ−σ

)
2

≤ c′′λ
1
2
−σ
(
(log(3λ1−σ))2 + λ1−2σ

)2 → 0, as λ → ∞, for σ >
1

2
,

(6.4.17)

where

(∑⌊3λ1−σ⌋
i=1 E[∆̃4

i ]
1
4

)2

=
∑⌊3λ1−σ⌋

i,j=1 E[∆̃4
i ]

1
4E[∆̃4

j ]
1
4 , and c, c′, and c′′ are con-

stants. Since σ > 1
2
, the right hand-side of (6.4.17) tends to 0 as λ → ∞, and hence

S ′′
λ1{Mλ≤3λ1−σ}

L2

→ 0 as λ → ∞. Note that in line 2 of the above inequality, we use

(a+b)
1
4 ≤ a

1
4 +b

1
4 for a, b ≥ 0, also in line 4 we use

∑n
i=1

log i
i

≤ 2 log2 n for all n > e.

Finally, we combine (6.4.5) and (6.4.17) with (6.4.4), which completes the proof.

The proof of Theorem 6.2.3 in the acute case now follows exactly as for the

obtuse case.

Proof of Theorem 6.2.3. We combine Lemma 6.4.4 and Lemma 6.4.5 and apply

Minkowski’s inequality to S ′
λ and S ′′

λ, which yields Sλ = S ′
λ+S ′′

λ
L2

→ 0, as λ → ∞.

6.5 Convergence to Boundary Limit

In this section, we derive the proof of Theorem 6.1.1 for both singly-aligned cones

since the proof is identical for both obtuse case and acute case. Theorem 6.1.1

plays a significant role in our analysis in which the approximation process to one-

dimensional distance holds due to the boundary effect. These boundary effects can
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be characterized by the fixed point equation given by (3.4.1). Recall that Theo-

rem 6.1.1 states that the total edge length L̃3
λ converges in distribution to Q, where

the distribution of Q ∼ Q given by the fixed point equation (3.4.1) as the number

of points tends to infinity.

Proof of Theorem 6.1.1

Proof. Recall that, Qn is the total length of the DLF(n). Define qn := E[Qn], then

qn =
n∑

i=2

1

i+ 1
= log(n+ 1) + c+O

(
1

n

)
,where c = γ − 3

2
, (6.5.1)

for γ denotes Euler’s constant, in other words, γ = limn→∞
(∑n

i=1
1
i
− log n

)
, (see

e.g. [1]).

By definition, qMλ
=
∑∞

n=0 qn1{Mλ=n} = E[QMλ
|Mλ], where Mλ ∼ Po(λ1−σ). By

the strong law of large numbers, Mλ
a.s.→ ∞ as λ → ∞.

By (6.5.1), there exists a random variable ϵλ and a constant C < ∞ such that

qMλ
= log(Mλ + 1) + c+ ϵλ, (6.5.2)

where |ϵλ| ≤ C
Mλ+1

and hence ϵλ → 0 a.s. as λ → ∞.

Now observe that, by the strong law of large numbers for the Poisson random

variable Mλ and continuity of log, we have

log(Mλ+1)−log λ1−σ = log

(
Mλ + 1

λ1−σ

)
= log

(
Mλ + 1

E[Mλ]

)
a.s.→ 0, as λ → ∞. (6.5.3)

Next, we apply the expectation over log(Mλ + 1) and we will show that, as

λ → ∞

|E[log(Mλ + 1)]− log λ1−σ| → 0. (6.5.4)
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By triangle inequality and Cauchy-Schwarz inequality, we write (6.5.4), as follows

|E[log(Mλ + 1)]− log λ1−σ| = |E[log(Mλ + 1)1
{|Mλ−λ1−σ |≤λ

3
4 (1−σ)}

]

+ E[log(Mλ + 1)1
{|Mλ−λ1−σ |> λ

3
4 (1−σ)}

]− log λ1−σ|

≤ | log(λ1−σ(1 +O(λ− 1
4
(1−σ))))1

{|Mλ−λ1−σ |≤λ
3
4 (1−σ)}

− log λ1−σ|

+
(
E[(log(Mλ + 1))2] ·P[|Mλ − λ1−σ| > λ

3
4
(1−σ)]

) 1
2

≤ O(λ− 1
4
(1−σ)) + log λ1−σ · 1

{|Mλ−λ1−σ |> λ
3
4 (1−σ)}

+
(
E[(log(Mλ + 1))2] ·P[|Mλ − λ1−σ| > λ

3
4
(1−σ)]

) 1
2
.

(6.5.5)

By Chernoff bounds on the tail probabilities of a Poisson distribution (e.g., see

Corollary 4.6 [24]), that (P(|Mλ − λ1−σ| > λ
3
4
(1−σ)))

1
2 ≤ exp{−1

3
λ

1
2
(1−σ)}, hence the

inequality (6.5.5) can be written, as follows

|E[log(Mλ + 1)]− log λ1−σ| ≤ O(λ− 1
4
(1−σ)) + 2λ1−σ exp

{
−1

3
λ

1
2
(1−σ)

}
→ 0, as λ → ∞,

(6.5.6)

for σ > 1
2
, where in the inequality (6.5.5) line 3 we use log(1 + x) ≤ x for all x > 0.

Next we want to show the difference between qMλ
and its expectation is con-

verging to 0 almost surely as λ → ∞. To do so, by (6.5.2), (6.5.3), and triangle

inequality, we have

|qMλ
− E[qMλ

]| = | log(Mλ + 1) + c+ ϵλ − E[log(Mλ + 1)]− c+ o(1)|

≤ | log(Mλ + 1)− log λ1−σ|+ |E[log(Mλ + 1)]− log λ1−σ|+ ϵλ + o(1)

a.s.→ 0, as λ → ∞, (6.5.7)

where we reserve o(1) for non-random sequence.

It remains to compare |qMλ
−E[QMλ

]| with inequality (6.5.7) using the fact that

for all n ∈ Z+, we have from (6.5.1) that

|qn − (γ − 3

2
)− log(n+ 1)| ≤ c

n+ 1
. (6.5.8)
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Here we replace the error term appears in (6.5.8), so by triangle inequality, we have

|qMλ
− E[QMλ

]| ≤ |qMλ
− (γ − 3/2)− log(Mλ + 1)|

+ | − E[qMλ
] + (γ − 3/2) + E[log(Mλ + 1)]|

+ | log(Mλ + 1)− E[log(Mλ + 1)]|

≤ c

Mλ + 1
+ E

[
c

Mλ + 1

]
+ | log(Mλ + 1)− E[log(Mλ + 1)]|,

since Mλ
a.s.→ ∞ as λ → ∞, the last term of the inequality almost surely convergence

to 0, as λ → ∞, also by (6.5.7). Where E
[

c
Mλ+1

]
= c

λ1−σ → 0, as λ → ∞, thus by

Slutsky’s theorem the right-hand side converges almost surely to 0 as λ → ∞.

Finally, it remains to show that as λ → ∞, L̃3
λ

d→ Q, where the distribution

of Q ∼ Q characterized by the fixed point equation (3.4.1). Recall that L̃3
λ =

L3
λ − E[L3

λ]. We use the above calculations to obtain the proof of Theorem 6.1.1.

Hence,

L̃3
λ = (L3

λ −QMλ
) + (QMλ

− qMλ
) + (qMλ

− E[qMλ
]) + (E[qMλ

]− E[L3
λ]). (6.5.9)

The first bracket converges in L2 and hence in P to 0, as λ → ∞ by Theorem 6.2.3,

note that QMλ
as defined here is the same as D(Uλ) appearing in Theorem 6.2.3.

The second bracket converges in distribution to Q, as λ → ∞ by Theorem 6.2.2,

where Q given by equation (3.4.1), here we use that Mλ → ∞, a.s. as λ → ∞.

The third bracket converges a.s. to 0, as λ → ∞ by inequality (6.5.7). The final

bracket converges to 0, as λ → ∞. To see this, note that E[qMλ
] = E[QMλ

] and

Theorem 6.2.3 implies L2 convergence of QMλ
−L3

λ to 0, hence E[|QMλ
−L3

λ|] → 0,

as λ → ∞. Hence, by Slutsky’s theorem we obtain the proof of Theorem 6.1.1.



Chapter 7

Asymptotic Independence

7.1 Introduction

This chapter illustrates the analysis of the asymptotic independence between the

bulk and bottom boundary of the unit square. In Section 7.2, we will introduce

Theorem 7.2.1 shortly, which states that the contribution to the total edge lengths

from points in of R2
λ (intermediate region) has variance converging to zero as the

intensity λ tends to infinity. This theorem holds for both singly-aligned cones (obtuse

and acute angles) in the unit square. In Section 7.4 we prove part (ii) of our main

Theorem 3.3.2 stated in Chapter 3 for both singly-aligned cones in the unit square.

7.2 Intermediate Region for both Singly-Aligned

Cones

We turn our attention to the area of R2
λ in the unit square. The purpose of intro-

ducing this the intermediate region will, asymptotically, contain enough points to

ensure that the contribution of the bulk to the total edge length does not interfere

with the contribution from bottom region, and vice versa, within the unit square.

This provides the asymptotic independence. We will show shortly that the limiting

distribution is given by the sum of a normal component in the bulk and a non-normal

117
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component arising from edges near boundary of [0, 1]2, whose distribution can be

characterized by a fixed-point equation (3.4.1) Recall that
d→ denotes convergence

in distribution.

Theorem 3.3.2 (ii). If (θ, ϕ) is singly-aligned, then

L̃λ
d→ sϕZ +Q1, as λ → ∞,

where Z & Q1 are independent with Z ∼ N (0, 1) and Q1 ∼ Q.

We will prove part (ii) of Theorem 3.3.2 for both singly-aligned cones.

Now we start defining the intermediate region with respect to the unit square.

Recall by the Definition 4.5.1 for σ ∈ (1
2
, 2
3
) that R2

λ = [0, 1]× [λ−σ, RS], for R given

in Lemmas 4.4.6 and 4.4.7 for singly-aligned cones; also recall R3
λ = [0, 1]× [0, λ−σ].

Recall by the Definition 2.4.1 of Pλ is a homogeneous Poisson point process on [0, 1]2

with intensity λ. Recall by the Definition of 4.5.2 that L2
λ =

∑
x∈Pλ∩R2

λ
Dθ,ϕ(x,Pλ),

where Dθ,ϕ(x,Pλ) is the distance from point x to its nearest neighbour in Pλ ∩

Cθ,ϕ(x), and L̃2
λ = L2

λ − E[L2
λ] is centered random variable. The principal result of

this section is the following theorem.

Theorem 7.2.1. Let L̃2
λ be defined as above. Then, as λ → ∞,

L̃2
λ

P→ 0. (7.2.1)

Before we start working on the proof of Theorem 7.2.1, we require certain pre-

liminary results and notations. Recall S = 1
kλ
. We partition R2

λ region into

ℓλ =
⌊

λ1−σ

c log2 λ

⌋
cells Γi, i = 1, . . . , ℓλ (from left to right) of height RS − λ−σ and

width 1
ℓλ
. Similarly, partition R3

λ region into cells βi, i = 1, . . . , ℓλ (also from left

to right) of height λ−σ and width 1
ℓλ

, see Figure 7.1. For each i = 1, . . . , ℓλ define

Xi :=
∑

x∈Pλ∩Γi
Dθ,ϕ(x,Pλ) and define τi = {|Pλ ∩ βi| > 0} as the event that βi

contains at least one point of Poisson process Pλ. Recall that aλ =
√

c log λ
λ

for large

enough λ, and also, recall kλ =
⌊

1
aλ

⌋
. The ratio of the height and width of the cells

Γi given by

height(Γi)

width(Γi)
=

(
R

kλ
− λ−σ

)
·
⌊

λ1−σ

c log2 λ

⌋
∼
√

log λ

λ
· λ1−σ

c log2 λ
→ 0, as λ → ∞.
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1

λ−σ

RS

ℓλ cells

ΓiΓi−1Γi−2Γi−3 Γj+1 Γj+2 Γj+3

1/ℓλ

βiβi−1βi−2βi−3 βj+1 βj+2 βj+3

Figure 7.1: Partitioning the regions of R2
λ and R3

λ in [0, 1]2.

z2

βi−2βi−3 βi−1 βi βi+1 βj−2 βj−1 βj βj+1

z1
ϕ − π

2

Γj Γj+1Γj−2 Γj−1Γj−3

z3z3

z1

Γi Γi+1Γi−1Γi−2Γi−3

Āi Āj

RS
ϕ − π

2

Figure 7.2: Obtuse angle; the regions of the unit square where Xi1τi−2
depends

only on Pλ ∩ Āi and Xj1τj−2
depends only on Pλ ∩ Āj.
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βi βi+1βi−1βi−2βi−3 βj−1βj−2βj−3

z1ϕ

Γj Γj+1Γj−2 Γj−1Γj−3

βj βj+1

z3

z2

z3

z1

Γi Γi+1Γi−1Γi−2Γi−3

Āi Āj

ϕ
RS

Figure 7.3: Acute angle; the regions of the unit square where Xi1τi−2
depends only

on Pλ ∩ Āi and Xj1τj−2
depends only on Pλ ∩ Āj.

Let Āi be the region in R2
λ such that Āi =

⋃
i−3≤ℓ≤i+1(Γj ∪ βj). In the following

lemma, we show for large enough λ, the random variable 1τi−2
Xi is determined by

Pλ ∩ Āi because Āi and Āj are disjoint sets for |i − j| > 4, similarly for Āj, see

Figures 7.2 and 7.3.

Lemma 7.2.2. For i, j = 1, . . . , ℓλ with |i− j| > 4. The random variables 1τi−2
Xi

and 1τj−2
Xj are independent (with the convention that τ−1 = τ0 = Ω).

Proof. First we show that given τi−2, the nearest-neighbour of any point in Pλ ∩ Γi

must lie in Āi (for sufficiently large λ). Let z1 ∈ Pλ ∩ Γi. For all i = 1, . . . , ℓλ, the

nearest neighbour of z1 can not be in
⋃

j>i+1(Γj ∪ βj). This is immediate for the

acute cone, for the obtuse cone we need to check that for z2 ∈ Cθ,ϕ(z1) with x2 > x1

then z2 ∈ Āi. Hence,

x2 − x1 < RS tan
(
ϕ− π

2

)
<

1

ℓλ
, (7.2.2)

which holds for large enough λ.

Hence for i = 1, 2, 3, 4, the nearest-neighbour of z1 can only be found in Āi. For

i ≥ 5, given that τi−2 occurs, take z3 ∈ Pλ ∩ βi−2. Note that z3 is in Cθ,ϕ(z1) for

large enough λ, and hence a candidate nearest neighbour for z1. This is true for all

λ for the obtuse case (since x3 < x1 and y3 < y1), and for the acute case, we observe

that

x3 < x1 −
1

ℓλ
< x1 −RS cotϕ, (7.2.3)

since S = O(aλ) = O

(√
log λ
λ

)
= o( 1

ℓλ
) because 1

ℓλ
≥ log2 λ

λ1−σ and σ > 1
2
. Inequal-

ity (7.2.3) and y3 < y1 implies z3 ∈ Cθ,ϕ(z1).
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Now suppose z2 ∈ Cθ,ϕ(z1) but not in Āi (see Figures 7.2 and 7.3). By the earlier

reasoning we must have x2 < x3 − 1
ℓλ

since z2 is to the left of cell Γi−3. We want to

show that the Euclidean distance between points z1 and z3 ∈ βi−2 is much smaller

than the distance between z1 ∈ Γi and z2 /∈ Āi. Since S = o( 1
ℓλ
), for large enough

λ, we have

∥z2 − z1∥ ≥ |x2 − x1| > |x2 − x1| −
1

ℓ λ
+RS ≥ |x3 − x1|+ |y3 − y1| ≥ ∥z3 − z1∥,

hence z2 is not a nearest neighbour of z1.

We deduce that the random variable 1τi−2
Xi is determined by Pλ ∩ Āi. Indeed,

either τi−2 does not occur (not possible for i = 1 or 2) meaning βi−2 is empty

and 1τi−2
Xi ≡ 0; otherwise τi−2 occurs and Xi =

∑
x∈Pλ∩Γi

Dθ,ϕ(x,Pλ) is the sum

of nearest neighbour distances, where each distance Dθ,ϕ(x,Pλ) is determined by

Pλ ∩ Āi.

Finally, for |i − j| > 4, the region Āi and Āj are disjoint, so the random vari-

ables 1τi−2
Xi and 1τj−2

Xj depend on disjoint regions of Poisson process Pλ, so are

independent.

To prove Theorem 7.2.1, it is enough to show that the variance of L2
λ converges to

0 as the intensity λ tends to infinity, where this is provided in the following lemma.

Lemma 7.2.3. As λ → ∞,

Var[L2
λ] → 0. (7.2.4)

Proof. For simplicity of notation, we write L2
λ =

∑ℓλ
i=1Xi, where Xi = Xi1τi−2

+

Xi1τ∁i−2
, for i = 1, . . . , ℓλ, then

Var(L2
λ) = Var

(
ℓλ∑
i=1

Xi

)
= Var

(
ℓλ∑
i=1

Xi1τi−2
+

ℓλ∑
i=1

Xi1τ∁i−2

)
. (7.2.5)

To show Var(L2
λ) → 0, it is enough to see that Var

(∑ℓλ
i=1Xi1τi−2

)
→ 0 and

Var
(∑ℓλ

i=1Xi1τ∁i−2

)
→ 0, as λ → ∞. To see this, we make use of the fact that if Y
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c12 c13 c14
c15c21

c31

c41

c51

Xkλ

X1

Xkλ
X1

0

0

Figure 7.4: Here cij = Cov(X ′
i, X

′
j), which is 0 if |i− j| > 4 by Lemma 7.2.2. For

fixed i, condition |i − j| ≤ 4, means we get at most 9-choices of j. The number of

non-zero covariances is most 9ℓλ .

and Z are random variables, then Var(Y +Z) = Var(Y )+Var(Z)+2Cov(Y, Z) ≤

Var(Y ) +Var(Z) + 2
√

Var(Y )Var(Z) by Cauchy-Schwarz inequality.

Here we set X ′
i = Xi1τi−2

. Observe that Cov(X ′
i, X

′
j) = 0, if |i− j| > 4 for large

enough λ by Lemma 7.2.2. Therefore, (see Figure 7.4) that

Var

(
ℓλ∑
i=1

X ′
i

)
=

ℓλ∑
i,j=1

Cov(X ′
i, X

′
j) =

ℓλ∑
i,j=1

|i−j|≤4

Cov(X ′
i, X

′
j) ≤ 9ℓλ max

i,j
Cov(X ′

i, X
′
j)

≤ 9ℓλ max
i

Var(X ′
i),

(7.2.6)

where the last inequality follows from Cauchy-Schwarz inequality.

Now, we want to find the maxi Var(X ′
i). Recall by definitions of ℓλ =

⌊
λ1−σ

c log2 λ

⌋
and aλ =

√
c log λ

λ
for large enough λ. We need first to find |X ′

i | using the fact that

Var(X ′
i) ≤ E[(X ′

i)
2], then

|X ′
i| ≤ |Pλ ∩ Γi|

5

ℓλ
, (7.2.7)

since (see proof of Lemma 7.2.2) given τi−2, the nearest neighbour of any Pλ ∩ Γi is

in Āi. Here |Pλ ∩ Γi| is Poisson with

max
i

E[|Pλ ∩ Γi|] ≤
λRS

ℓλ
= O

(
λσ− 1

2 log
5
2 λ
)
.
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Squaring [|X ′
i|2] given in (7.2.7) and apply the expectation over E[|X ′

i|2], hence

|X ′
i|2 ≤ |Pλ ∩ Γi|2

25

ℓ2λ
and E[|Pλ ∩ Γi|2] = O

((
λσ− 1

2 log
5
2 λ
)2)

. (7.2.8)

By comparing (7.2.7) and (7.2.8), we get

max
i

Var(X ′
i) = O

(
λ4σ−3 log9 λ

)
. (7.2.9)

By Cauchy-Schwarz inequality along with (7.2.9), we obtain

ℓλmax
i

Var(X ′
i) = O

(
ℓλλ

4σ−3 log9 λ
)

= O
(
λ3σ−2 log7 λ

)
→ 0, as λ → ∞, since σ <

2

3
.

Hence by (7.2.6), we obatin

Var

(
ℓλ∑
i=1

Xi1τi−2

)
→ 0, as λ → ∞. (7.2.10)

Consider Var
(∑ℓλ

i=1Xi1τ∁i−2

)
≤ E

((∑ℓλ
i=1Xi1τ∁i−2

)2)
using X ′

i ≤
√
2|Pλ∩R2

λ|,

we have

E

( ℓλ∑
i=1

Xi1τ∁i−2

)2
 ≤ 2E

|Pλ ∩R2
λ|2
(

ℓλ∑
i=3

1τ∁i−2

)2
 ≤ 2E

(
|Pλ ∩R2

λ|2
)
ℓ2λ ·P

(
τ ∁1

)
,

(7.2.11)

where the final inequality follows from independence |Pλ ∩ R2
λ| and 1τ∁i−2

, and the

Cauchy-Schwarz inequality applied to the identically distributed random variables

1τ∁i−2
, for i = 1, . . . , ℓλ. Then,

E(|Pλ ∩R2
λ|2) ≤ E(|Pλ|2) ≤ 2λ2, (7.2.12)

and

P
(
τ ∁1

)
≤ exp{−c log2 λ} = O(λ−10), for λ → ∞. (7.2.13)

Combine inequalities (7.2.11), (7.2.12), and (7.2.13) we obtain

Var

(
ℓλ∑
i=1

Xi1τ∁i−2

)
= O

(
λ2ℓ2λλ

−10
)
= O

(
λ2+2−2σ−10

)
→ 0, as λ → ∞. (7.2.14)
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Finally, by combining inequalities (7.2.10) and (7.2.14), we obtain

Var

(
ℓλ∑
i=1

Xi1τi−2
+

ℓλ∑
i=1

Xi1τ∁i−2

)
→ 0, as λ → ∞.

Therefore, the above sums tend to 0 when 1
2
< σ < 2

3
.

7.3 Asymptotic Independence Between Bulk and

Bottom Boundary

In this section, we will demonstrate for both singly-aligned cones the independent

relationship between the bulk and bottom boundary of the unit square [0, 1]2; specif-

ically between the random variables L̃1
λ and L̃3

λ.

Recall S = 1
kλ

and by the Definition 4.4.4 that TS = {p ∈ Z2 : T (p) ⊆ [0, 1]2}.

Let C := {p = (p1, p2) ∈ Z2 : 1 ≤ p1, p2 ≤ kλ}, where kλ =
⌊

1
aλ

⌋
‘little squares’.

Recall by Definition of the regions 4.5.1 of the unit square [0, 1]2, specifically, for

σ ∈ (1
2
, 2
3
), we have

R1
λ := {(x, y) : 0 ≤ x ≤ 1, RS ≤ y ≤ 1};

R2
λ := {(x, y) : 0 ≤ x ≤ 1, λ−σ ≤ y ≤ RS};

R3
λ := {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ λ−σ}.

Let C1 be the squares in TS corresponding to R1
λ (bulk region), in other words,

C1 = {p = (p1, p2) ∈ Z2 : 1 ≤ p1 ≤ kλ, R + 1 ≤ p2 ≤ kλ}, so T (C1) = R1
λ. Let C2

be the remaining squares in TS excluding the bottom row, i.e., C2 = {p = (p1, p2) ∈

Z2 : 1 ≤ p1 ≤ kλ, 2 ≤ p2 ≤ R} and C3 be the bottom row, i.e., C3 = {p = (p1, 1) ∈

Z2 : 1 ≤ p1 ≤ kλ}. Then T (C2 ∪ C3) = R2
λ ∪ R3

λ and T (C2) ⊆ R2
λ and T (C3) ⊆ R3

λ.

Note also that T (C1 ∪ C2) ⊆ R1
λ ∪R2

λ.

Let B′
λ be the event such that B′

λ = {Pλ ∩ T (p) ̸= ∅ ∀ p ∈ C1 ∪ C2} (meaning

every square in C1 ∪ C2 contains at least one point of Poisson process Pλ). Since

Bλ ⊆ B′
λ, we have by Lemma 5.2.3 that P(B′

λ) ≥ P(Bλ) → 1 as λ → ∞, then

P(B′
λ) → 1, as λ → ∞.
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Use the above information and combine with next lemma which gives the asymp-

totic independence between the random variables L̃1
λ and L̃3

λ. Recall from Def-

inition 4.5.2 that L1
λ =

∑
x∈Pλ∩R1

λ
Dθ,ϕ(x,Pλ) where Dθ,ϕ(x,Pλ) is the distance

from point x to its nearest neighbour in Pλ and L̃1
λ = L1

λ − E[L1
λ] is centred ran-

dom variable. Recall by the Definition 4.5.2 that L3
λ =

∑
x∈Pλ∩R3

λ
Dθ,ϕ(x,Pλ), and

L̃3
λ = L3

λ − E[L3
λ] is centered random variable.

Lemma 7.3.1. Suppose (θ, ϕ) is singly-aligned. The random variables L̃1
λ1B′

λ
and

L̃3
λ are independent.

Proof. We show L̃1
λ1B′

λ
is determined by Pλ ∩ (R1

λ ∪R2
λ), whereas L̃3

λ is determined

by Pλ ∩ R3
λ. Since R1

λ ∪ R2
λ and R3

λ are disjoint, then the random variables L̃1
λ1B′

λ

and L̃3
λ are independent by the spatial independence property of the Poisson process

Pλ.

Suppose B′
λ occurs, where B′

λ is determined by Pλ∩T (C1∪C2) ⊆ Pλ∩ (R1
λ∪R2

λ).

Lemma 4.4.6 in the obtuse case and Lemma 4.4.7 in the acute case imply that R1
λ =

T (C1) is a compatible bulk, which means that for each p ∈ C1 either p+ r ∈ TS and

T (Sp,ρ(r))∩R3
λ = ∅ for some r ∈ C0 (Definition 4.4.5, (A)) or (∪x∈T (p)Cθ,ϕ(x))∩R3

λ =

∅ (Definition 4.4.5, (B2)), where C0 is given by Lemmas 4.4.6 & 4.4.7. Now let x be

a point in Pλ ∩ R1
λ, set p ∈ C1 such that x ∈ T (p). If p satisfies (A), then (noting

that p+ r ∈ Sp,ρ(r) implies T (p+ r) ∩R3
λ = ∅) Pλ ∩ T (p+ r) ̸= ∅, so we deduce by

Theorem 4.2.7 that Nθ,ϕ(x;Pλ) ∈ T (Sp,ρ(r)), hence Nθ,ϕ(x;Pλ) /∈ R3
λ.

Otherwise, if p satisfies (B2) then, because Nθ,ϕ(x;Pλ) is by definition in Cθ,ϕ(x),

we have Nθ,ϕ(x;Pλ) /∈ R3
λ. Hence L1

λ =
∑

x∈Pλ∩R1
λ
Dθ,ϕ(x;Pλ) is a sum of random

variables determined by Pλ ∩ (R1
λ ∪ R2

λ), and therefore L̃1
λ1B′

λ
is determined by

Pλ ∩ (R1
λ ∪R2

λ) as claimed.

Finally, it is clear from the geometry of the cone that Nθ,ϕ(y;Pλ) ∈ Cθ,ϕ(y) ⊆ R3
λ

for all y ∈ Pλ ∩R3
λ, so L̃3

λ is determined by Pλ ∩R3
λ.
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7.4 Proof of Theorem 3.3.2 (ii)

In this section, we have all the ingredients to establish the proof of part (ii) of our

main result Theorem 3.3.2, which will show the asymptotic independence of the

random variable L̃i
λ for i = 1, 2, 3.

Proof of Theorem 3.3.2 (ii). It is clear that L̃1
λ

d→ sϕZ as λ → ∞ for some sϕ ∈

(0,∞) using Theorems 5.1.1 & 5.1.2 (compare with proof of Theorem 3.3.2 (iii)).

Also, L̃3
λ

d→ Q1 as λ → ∞ by Theorem 6.1.1 and L̃2
λ

P→ 0 by Theorem 7.2.1. We

show that L̃1
λ1B′

λ
∁

P→ 0 as λ → ∞. To see this, for all ϵ > 0, we have

P(|L̃1
λ1B′

λ
∁| > ϵ) ≤ P(B′

λ
∁) ≤ P(B∁

λ) → 0, as λ → ∞. (7.4.1)

By Slutsky theorem we have that as λ → ∞, L̃1
λ1B′

λ
= L̃1

λ − L̃1
λ1B′

λ
∁

d→ sϕZ. By the

independence and proved in Lemma 7.3.1, we have

L̃1
λ1B′

λ
+ L̃3

λ

d→ sϕZ +Q1, as λ → ∞, (7.4.2)

and the random variables Z and Q1 are independent. Therefore, by (7.4.2) and

Slutsky theorem, we obtain our main result

L̃λ = (L̃1
λ1B′

λ
+ L̃3

λ) + (L̃1
λ1B′

λ
∁ + L̃2

λ)
d→ sϕZ +Q1.

Since the first bracket converges in distribution to the random variables sϕZ + Q1

and the second bracket converges in probability to 0 as λ → ∞ by (7.4.1) and

Theorem 7.2.1.



Chapter 8

Conclusions

8.1 Discussion

Our thesis focuses on analysing the total edge length of the minimal directed span-

ning forest (MDSF), which an interesting and relevant research topic in the field of

graph theory and network analysis. The total edge length is the sum of the lengths

of the edges.

We present three main cases: (i) double-aligned cone, (ii) singly-aligned cone,

and (iii) unaligned cone. We extend the limit theory of the doubly aligned cone to

the case of general cone; here, the limit distribution will depend on the parameters

θ and ϕ. The limit distribution for the total edge length of the MDSF has at most

two (independent) components namely (i) a normal contribution from the bulk and

in some cases, (ii) a non-normal contribution from near the boundary of the unit

square. The boundary contributions can be characterized by a fixed-point equation.

The limit theory for the unaligned cone follows a normal distribution as there is no

boundary contribution.

We have generalized the local dependence approach of Avram and Bertsimas [3],

who proved CLTs for the ordinary nearest-neighbour graph using the technique of

dependency graph of Baldi and Rinott [4]. We extend the theoretical approach of

127
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Penrose and Wade [31] for the doubly-aligned cone to work for a general cone, giving

limit results for the singly-aligned cone and unaligned cone in the unit square.

One direction for possible future work to investigate further and obtain weak

convergence results for the total power-weighted edge lengths for the general dimen-

sion respecting the MDSF on Pλ in (0, 1)d for d ≥ 3, on the general cone. Even

in the two-dimensional setting, some other cases are yet to be obtained, including

general reflex cones (π < ϕ < 2π) in the unit square, or cones in other polygonal

domains.

θ

ϕ

θ

ϕ

θ

ϕ

Figure 8.1: Three reflex cones, and a regular polygonal domain.
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Figure 8.2: Realizations of the MDSF with 50 and 100 random points uniformly

generated in the unit square with respect to doubly-aligned reflex cone, as in the

first picture in Figure 8.1. Is this a normal limit?
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Appendix A

The Dirichlet and

Poisson-Dirichlet distribution

In this chapter, we will discuss the concept of the Dirichlet and Poisson-Dirichlet

distributions, along with exploring certain distributions, properties obtained as lim-

its according to the Theorem 6.1.1 in Chapter 6.

The Dirichlet distribution will have significance in the later portions of the the-

ory, particularly in the context of spacings and one-dimensional nearest-neighbour

graphs, as discussed in Chapter 6. Currently, it forms the fundamental basis for

the Poisson-Dirichlet distribution, which plays a central role in this chapter. In

this section, we recall what is the Dirichlet distribution and the Poisson-Dirichlet

distribution see for example [11] for more details.

Let ∆n ⊂ Rn denote the n-dimensional simplex, that is

∆n := {(x1, . . . , xn) ∈ Rn : xi ≥ 0, 1 ≤ i ≤ n;
n∑

i=1

xi ≤ 1}.

Definition A.0.1.

(1) We call a random vector (X1, . . . , Xn) a Dirichlet distribution with parameters

α1, . . . , αn if Xn = 1 −
∑n−1

i=1 Xi and (X1, . . . , Xn−1) is distributed on the simplex
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∆n−1 with density

Γ(α1 + . . . αn)

Γ(α1) . . .Γ(αn)
xα1−1
1 . . . x

αn−1−1
n−1 (1− x1 − · · · − xn−1)

αn−1.

(2) We further call (X1, . . . , Xn) a symmetric Dirichlet distribution (with parameter

α) if αi = α for all i.

Let (X1, . . . , Xn) be a symmetric Dirichlet distribution with parameter α = λ
n

for some λ > 0. For some fixed k (k < n), let (X(1), . . . , X(k)) be the vector of

the first k order statistics of (X1, . . . , Xn), where X(1) ≥ X(2) ≥ · · · ≥ X(n). By

(Kingman [21]), when n → ∞, for each k we have

(X(1), . . . , X(k))
d−→ (Z1, Z2, . . . , Zk),

where the infinite sequence (Z1, Z2, . . . ) satisfies

Z1 ≥ Z2 ≥ . . . ,
∞∑
j=1

Zj = 1.

Definition A.0.2. We call above distribution (Z1, Z2, . . . ) a Poisson-Dirichlet dis-

tribution with parameter λ.



Appendix B

Cone classification

In this chapter, we will demonstrate the cone configurations for all type of general

cones in the unit square. As mentioned in the discussion there are five new cases

we study in this thesis. The first case which is called the doubly-aligned cone where

both θ & θ+ϕ are in π
2
Z, (see Figure B.1 below) limit distribution for doubly-aligned

cone obtained by Penrose & Wade. The second case of the general cone is called

a singly-aligned if exactly one of θ and θ + ϕ belongs to π
2
Z as indicated below.

Finally, the general cone is called unaligned if neither θ nor θ + ϕ belongs to π
2
Z as

shown below.

θ = π
2
, θ + ϕ = π θ = 0, θ + ϕ = π

2
θ = π, θ + ϕ = 3π

2
θ = 3π

2
, θ + ϕ = 2π

Figure B.1: Doubly-aligned cones in the unit square.

Here we have both singly-aligned cones (obtuse and acute angles) with parameter

θ.
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ϕ

ϕ

Figure B.2: Singly-aligned cones in the unit square with parameter θ = 0.

ϕ
ϕ

Figure B.3: Singly-aligned cones in the unit square with parameter θ = π
2
.

ϕ
ϕ

Figure B.4: Singly-aligned cones in the unit square with parameter θ = π.

ϕ
ϕ

Figure B.5: Singly-aligned cones in the unit square with parameter θ = 3π
2
.

Here we have the singly-aligned cone with respect to the sum of parameters θ

and ϕ in [0, 1]2.
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θ + ϕ = π
2

ϕ

θ

θ + ϕ = 5π
2

θ

ϕ

Figure B.6: Singly-aligned cones in the unit square.

θ

ϕ

θ

ϕ

Figure B.7: Singly-aligned cones in the unit square with parameters θ + ϕ = π.

θ

ϕ

θ

ϕ

Figure B.8: Singly-aligned cones in the unit square with parameters θ + ϕ = 3π
2
.

θ

ϕ

θ

ϕ

Figure B.9: Singly-aligned cones in the unit square with parameters θ + ϕ = 2π.

We are now shifting our focus to the unaligned cone within the square. The

unaligned cone exhibits various cone shapes, as shown in the following diagrams. In
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this discussion, we are examining the scenario of an unaligned cone that contains

no axes.

θ
ϕ

θ

ϕ
θ

ϕ θ

ϕ

Figure B.10: Unaligned cone in the unit square.

Here we consider the unaligned cone, and it contains one axes.

θ

ϕ θ

ϕ θ

ϕ

θ

ϕ

Figure B.11: Unaligned cone in the unit square.

Finally, we consider the unaligned cone, and it contains two axes.

ϕ

ϕ

ϕ

ϕ

Figure B.12: Unaligned cone in the unit square.
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