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Using remote surveying technology and acoustic 

analysis tools to infer the impact of infrastructure 

expansion on bird biodiversity in the tropical 

rainforests of Brunei, Borneo. 

By Lucy Marthe Joyce Eberhardt 

 

General Abstract 

Tropical rainforests are the world’s most biodiverse biome but are increasingly threatened by 

anthropogenic stressors, such as urbanisation. Considering the current biodiversity crisis, 

gaining a deeper ecological understanding of the effects of such stressors on ecosystems, 

and the wildlife they harbour, is crucial. Due to its recent linkage to the more developed 

districts of the country, Temburong, a largely forested region of Brunei, presents an 

opportunity to collect baseline data to explore how infrastructure expansion impacts 

biodiversity. Using Autonomous Recording Units (ARUs) and camera traps, we deployed a 

wildlife monitoring network across current infrastructure expansion gradients in Temburong. 

Firstly, we examined spatial-temporal changes in soundscapes using the Acoustic 

Complexity Index and found unexpected results, with higher acoustic diversity at night and in 

less remote areas. Then, using Kaleidoscope Pro, we constructed and evaluated the 

performance of six Helmeted Hornbill (Rhinoplax vigil) recognisers – trainable algorithms 

capable of automatic detection of target calls – with each recogniser trained on different 

types of audio data. We found that a recogniser trained using a sample of calls of varying 

quality collected from within the study region performed best. Next, we applied species-

specific recognisers and explored the impact of infrastructure expansion on the Helmeted 

Hornbill and the Great Argus (Argusianus argus), a ground-dwelling pheasant. We found that 

both species occurred more frequently in areas further from road and buildings, and with 

higher vegetation biomass. Finally, we compared the detection rates of Great Argus between 

ARUs and camera traps and found that, despite ARUs having a higher detection rate, using 

both surveying methods simultaneously provided a more holistic understanding of the 

species’ ecology. This project showcases the use of two remote surveying technologies, 

coupled with acoustic analysis tools, to infer the impact of infrastructure expansion on birds 

in tropical rainforest ecosystems and highlights their contribution to eco-acoustics. 
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Chapter 1 

General Introduction 

1.1 Context 

Unlike much of science, the study of biodiversity has a time limit (Wilson 1992). More than 30 

years after E.O. Wilson made this statement, it is now truer than ever. The world is currently 

experiencing mass biodiversity loss, which some have labelled the Anthropocene or sixth 

mass extinction event (Ceballos et al., 2010; Ceballos et al., 2017; Cook et al., 2023). This 

anthropogenic erosion of biodiversity is occurring primarily due to unsustainable use of 

natural resources resulting in – but not limited to – habitat loss and climate change. One of 

the leading causes behind these issues is the large and rapidly growing human population, 

which surpassed 8 billion individuals in November 2022 (United Nations, 2022). Furthermore, 

approximately half of the global population lives in urban areas (Brenner & Schmid, 2014). 

The impact of such unprecedented urbanisation and infrastructure expansion on the 

environment remains uncertain. Urbanisation has been proposed as a major driver of 

biodiversity declines. Aside from direct land use change leading to habitat loss, recent 

research has suggested, for example, that some species are less successful in urbanised 

environments are they do not possess the necessary adaptations to find resources and avoid 

risks (Sol et al., 2014). The issue of biodiversity loss through urbanisation and infrastructure 

expansion is particularly concerning in the tropics as this zone simultaneously harbours the 

largest and fastest growing human population (Harding et al., 2020) and the highest species 

richness (Pillay et al., 2022; Wilson & Peter, 1988) worldwide. There is therefore an urgent 

need to protect biodiversity against the threat of urbanisation and infrastructure expansion – 

and deleterious anthropogenic impacts as a whole – not only for moral and fundamental 

scientific purposes, but also to maintain global ecosystem functioning. Hence, it is critical to 

gain further knowledge about the potential impacts of infrastructure expansion on natural 

systems. To do this requires new and better methods of monitoring wildlife. This thesis will 

focus on testing relatively novel monitoring methods in a tropical rainforest habitat and 

exploring bird biodiversity in relation to human infrastructure and natural habitat variability in 

Brunei Darussalam (henceforth abbreviated to ‘Brunei’), an independent state on the island 

of Borneo. 
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1.2 What is a rainforest? 

Typically, rainforests are divided into two types: temperate and tropical. Temperate 

rainforests are characterised by cool summers, strong wind disturbance and wet weather 

throughout the year. Temperate rainforests are found in high latitude zones on the East and 

West coast of the Pacific as well as North-Western Europe (Alaback, 1991). Tropical 

rainforests, however, are located at low latitudes, typically between 10 degrees north and 

south of the equator, and experience high temperatures and humidity year-round with heavy, 

yet seasonally varying amounts of rainfall (Park, 2002). This thesis will focus solely on 

tropical rainforests, and more specifically the avian wildlife they harbour and how best to 

monitor them.  

Tropical rainforests stretch across the equatorial regions of all four continents which overlap 

this latitudinal band, namely Central and South America, Africa, Asia, and Oceania (Hazarika, 

2013). Tropical rainforests are complex and diverse ecosystems, providing valuable habitat 

for numerous species across many taxa. Indeed, tropical rainforests are a global hub of 

biodiversity. Although only covering one-fifth of Earth’s continental surface (Pillay et al., 

2021), tropical rainforests are thought to harbour over half of the planet’s biodiversity (Pillay 

et al., 2022; Wilson & Peter, 1988). This is in part due to their age and climatic stability. 

Tropical rainforests are Earth’s oldest continuous habitat, first appearing as early as 300 

million years ago in the Carboniferous period (Falcon‐Lang et al., 2009), with some – like the 

Daintree rainforest in Australia – having resembled their present form for over 180 million 

years (Pierce & Roosevelt, 2021). Although all tropical rainforests have some common 

features, this is partly the result of convergent evolution seen between phylogenetically 

distinct organisms (Corlett & Primack, 2006). 

Most tropical rainforests have experienced an extremely stable climate of high temperatures, 

humidity, and rainfall over millions of years. Such long-lasting, stable conditions have allowed 

extensive evolution, leading to highly specific niche partitioning (Voskamp et al., 2017). 

Moreover, intra-annual climatic stability results in high productivity and no ‘rest period’, in 

terms of reproduction or activity level, in animals and plants. For instance, trees in tropical 

rainforests are deciduous by nature but evergreen in habit (Park, 2002), meaning they shed 

and grow leaves continuously throughout the year, a process at the heart of the tight nutrient 

cycling seen in such forests (Vitousek & Sanford, 1986). Without the constant presence of a 

rapidly decomposing leaf litter creating a thin layer of nutrient rich soil, plants in tropical 

rainforests would struggle to grow as the deeper soil is, in fact, very infertile (Place, 2001). 

Vegetation in tropical rainforests also plays a key role in creating these forests’ distinctive 

structural features. Plant life is organised into four vertical layers or ‘strata’: emergent trees, 
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canopy, understory, and forest floor (Park, 2002). Each vegetative stratum has unique biotic 

and abiotic characteristics, creating a series of micro-habitats throughout tropical rainforests 

(Basham et al., 2019). Complex habitats provide many refuges and niches for wildlife (Pace 

et al., 1999), which has been shown to increase levels of biodiversity (Niklaus et al., 2017). 

Tropical rainforests also proved to be important ecological refuges for many species during 

the ice-ages as they survived these periods relatively unchanged (Haffer & Prance, 2001).  

 

1.3 Why are tropical rainforests important? 

Tropical rainforests are both socially and aesthetically valuable as well as paramount for 

ecosystem functioning. Firstly, tropical rainforests are vital assets for local livelihoods, with 

many indigenous people reliant on them for food, shelter, and cultural identity (Ellen, 1998). 

Furthermore, tropical rainforests are a major source of raw materials, such as timber 

(Shearman et al., 2012), ores (Costa et al., 1999), and pharmaceuticals (Mendelsohn & 

Balick, 1995), essential to many aspects of modern society. Moreover, tropical rainforests 

have intrinsic value; with their unique biological make up, history and beauty, they are worthy 

of protection from anthropogenic impacts, irrespective of more direct service values (Park, 

2002; Zhou et al., 1997).  

As well as providing both vital habitats for over 50% of global biota (Wilson & Peter, 1988; 

Pillay et al., 2022) and crucial resources for human use, tropical rainforests provide 

numerous ecosystem services without which Earth could not continue to function as it does. 

Akin to how the loss of one species in a given ecosystem can have cascading effects on the 

ecological community (Lundberg et al., 2000; Petchey et al., 2008; Dunne & Williams, 2009), 

the loss of tropical rainforests would be devastating for the global ecosystem. Tropical 

rainforests play a key role in regulating the climate, both globally and locally, through the 

process of cloud formation and maintaining the water cycle (Foley et al., 2002). The 

vegetation in tropical rainforests also protects the land from erosion (Zuazo & Pleguezuelo, 

2009), floods (Wenhua, 2004) and droughts (Staal et al., 2020). Tropical rainforests often act 

simultaneously as a carbon sinks (Young, 2021) and oxygen sources (Belcher et al., 2021), 

thus significantly influencing atmospheric composition and potentially proving to be helpful in 

combating climate change. Nevertheless, studies have shown that some tropical rainforests 

might be becoming carbon sources due to deforestation and the burning of organic matter 

(Gatti et al., 2021; Baccini et al., 2017). A recent study revealed that only one major tropical 

rainforest – that of central Africa – remains a strong carbon sink (Harris et al., 2021). Harris 

et al. (2021) argues that the forests in the Amazon remain a net carbon sink for now but that 

they are on the verge of becoming a net carbon source, thus following in the footsteps of the 
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forests of Southeast Asia. Therefore, conservation efforts in tropical rainforests are not only 

needed to prevent biodiversity loss but also but maintain global ecosystem functioning.  

 

1.4 Threats 

As permanent and vast as tropical rainforests may seem, these valuable ecosystems are 

vulnerable as they are extremely sensitive to external pressures. Tropical rainforests have 

taken millions of years to evolve yet can be destroyed within a century due to anthropogenic 

impacts. Not only is the destruction of tropical rainforests detrimental to global ecosystem 

functioning, but it is also catastrophic in terms of species loss. Considering that tropical 

rainforests contain higher levels of biodiversity than all other habitats on Earth combined, it is 

reasonable to surmise that the damage done in these regions will contribute significantly to 

the anthropogenic extinction crisis we are currently experiencing (Ceballos et al., 2010; 

Ceballos et al., 2017; Cook et al., 2023). Identifying and understanding the reasons behind, 

and impacts of, the threats faced by tropical rainforests is paramount as this is the first step 

towards protecting these precious ecosystems. 

 

1.4.1 Habitat loss: land use change & deforestation 

The main cause of environmental damage and species decline in tropical rainforests is 

habitat loss and fragmentation (Püttker et al., 2020). The pressures on the land, and 

competition between different land uses, is immense. Land use change is sometimes defined 

as the shift from untouched natural landscapes to anthropogenically modified land, usually to 

benefit human economic activities (Paul & Rashid, 2017). In the case of tropical rainforests, 

this usually leads to the removal of vegetation (deforestation) to leave space for food 

production, infrastructure development, as well as the extraction of raw materials and energy 

production (Hartemink, 2010). Tropical rainforests across the globe are suffering from intense 

deforestation: Over 2.3 million km2 of tree cover has been lost between 2000 and 2012, with 

the tropics being the biggest victims (Hansen et al., 2013). Undoubtedly land use change has 

a negative impact on tropical rainforest ecosystems, both in terms of disrupting the 

ecosystem services they provide (Portela & Rademacher, 2001) but also as it reduces and 

fragments habitat available for wildlife. Although there is no clear consensus in the literature 

about whether habitat fragmentation per se truly has negative effects on biodiversity (Fahrig, 

2017; 2019; Fletcher et al., 2018), studies suggest that the ‘edge effect’ – created by having 

several smaller patches of habitat as opposed to one larger one – prevents smaller habitat 

‘islands’ from supporting some species, decreasing overall biodiversity (Laurance et al., 
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2011). It has been stated that habitat fragmentation not only reduces biodiversity by 13-75% 

but that it also negatively affects the ecosystem services tropical rainforests provide (Haddad 

et al., 2015). Considering 70% of the world’s remaining forest cover is less than 1km away 

from forest edge (Haddad et al., 2015), it is paramount that more research is conducted into 

this issue and immediate action is taken to reduce habitat fragmentation and conserve 

vulnerable species affected.  

Once removed, primary forests are replaced by secondary forests which sometimes have 

difficulty becoming established, as tropical rainforest soil is very infertile once the vegetation 

is removed (Hartemink et al., 2008). Deforestation breaks the nutrient cycle as there are no 

leaves falling on the forest floor to replenish the soil nutrients. Consequently, deforestation 

expedites further environmental damage such as soil erosion, floods, droughts, fires, and 

landslides (Ramos & Yamamoto, 2018). If secondary forests do manage to establish, studies 

have found that they are often less biodiverse as they cannot support all the species a 

primary forest can, due to reduced complexity of the vegetation structure (Klimes et al., 

2012). Despite these findings, comparative studies have shown that different species react 

differently to secondary forests habitat. Certain species groups’ abundance and diversity 

were unchanged (Yoshimoto et al., 2015) or even increased (Wu et al.,1996) in secondary as 

opposed to primary forests in China. Lastly, deforestation is contributing heavily towards 

climate change, as tropical rainforests are the primary absorber of carbon globally (Beer et 

al., 2010). The major degradations tropical rainforests are experiencing are resulting in an 

increase in global greenhouse gas emissions, with deforestation of tropical rainforests 

accounting for 11% of total emissions (Montero et al., 2020).  

Urbanisation and infrastructure expansion 

Urbanisation and infrastructure expansion are heavily anthropogenic factors which contribute 

to land use change and deforestation (Ehrhardt-Martinez, 1998), particularly in countries with 

a rapidly growing human population and/or striving to increase their national infrastructure 

and development (Myers, 2021; Laurance et al., 2009), which is the case in for many 

countries in Southeast Asia. The high human density in the tropics (Harding et al., 2020) 

coupled with the fact that the majority of the countries in this region are considered 

developing countries (Park, 2002), results in great pressure on the land. Developing 

countries typically have larger populations, at greater densities, and have a considerable 

reliance on the land for their survival and economic activities. Urban sprawl is a driving factor 

of deforestation in the tropics both directly and indirectly (Carr et al., 2005). Firstly, forest is 

being removed to create space for housing and other infrastructure needed in urban areas 

(DeFries et al., 2010). Secondly, rural exodus, and consequent increase in wealth, results in 

increased demand for high quality lifestyle resources, such as meat and dairy products 
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(Delgado, 2003; Elferink & Schierhorn, 2016). These demands worsen agricultural 

deforestation and ultimately drive climate change. Higher levels of urbanisation often result in 

transport infrastructure development to link urban areas together. Developing such 

infrastructure requires significant areas of land to be cleared of vegetation in a linear fashion, 

resulting not only in deforestation but also habitat fragmentation, biological invasions, 

increased hunting pressure due to ease of access, changes in predator-prey interactions, 

and wildlife deaths through collision (Laurance et al., 2009). 

Brunei, although a country in the tropics looking to expand its infrastructure, does not 

conform to the general trends seen in most countries in Southeast Asia. Brunei has quite a 

low population density and the majority of the population – circa 450,000 people according to 

Brunei’s Department of Economic planning and Statistics – is concentrated in the capital, 

Bandar Seri Begawan. Brunei is also a high-income country that is classified as developed 

and oil exporting (Ahmad, 2014). As explained in section 1.6 of this chapter, the infrastructure 

expansion happening in Brunei currently will facilitate commuting to rural areas but in doing 

so might have deleterious impacts of surrounding rainforest habitats and wildlife. 

Agriculture, exploitation of raw materials, and hydroelectric dams 

Although not hugely problematic in Brunei, agriculture, exploitation of raw materials, and 

hydroelectric dams present threats to many of the other tropical rainforests globally and 

awareness of these threats is important. 

Agriculture is the most significant contributor to land use change and deforestation in tropical 

rainforests due to the vast surface areas required and adverse farming practices used. 

Vegetation is often removed using the slash and burn method (Brady, 1996) to grow crops – 

namely oil palms (Carlson & Garrett, 2018) and animal feed (Carlson & Garrett, 2018) – as 

well as for pastoral use, such as castle grazing (Veiga et al., 2002; van Solinge, 2013). This 

results in habitat loss and homogeneity (Hamilton et al., 2020), causing drastic declines in 

biodiversity. Furthermore, the soil does not remain fertile for long, so farmers who cannot 

afford fertilizers repeat the process every few years, resulting in drastic levels of deforested 

land left in very poor condition, making it harder for secondary forest to grow. Hence, this 

method is only sustainable at very low levels (Kleinman et al., 1995). However, with 

approximately 40% of the world’s human population living in the tropics (Harding et al., 

2020), agriculture is responsible for more tropical rainforest deforestation than any other 

factor (Jayathilake et al., 2021).  

Exploitation of raw materials, namely timber (Damette & Delacote, 2011) and ores (Giljum et 

al., 2022), is a major contributor to land use change in tropical rainforests. Tropical 

rainforests are appealing to the logging industry as these forests have a very high density of 
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plant biomass compared to temperate forests (Lugo & Brown, 1991), leaving them 

overexploited by this trade. Furthermore, felling, log decks, skid trails, and logging roads all 

cause collateral damage (Asner et al., 2004). Mines also cause environmental issues in 

tropical rainforests such as further deforestation, long-lasting pollution of air, water, and soil 

from products used in the industry (Alvarez-Berrios & Aide, 2015). The increased ease of 

access created by roads to transport exploited raw materials out of the forests, exposes 

tropical rainforests to a plethora of other threats (Kleinschroth & Healey, 2017; Laurance et 

al., 2009).   

Although fighting climate change by providing renewable energy (Bakis, 2007), hydroelectric 

dams cause major land use change because of flooding, which has devastating impacts on 

tropical rainforests at all trophic levels. Seasonal flooding in areas adjacent to rivers is a 

naturally occurring phenomenon contributing to a healthy ecosystem (Ferreira & Stohlgren, 

1999), but tropical rainforests are not adapted to permanent, deep flooding. Dams also 

obstructs vital waterways, in turn disrupting the access to natural spawning grounds of many 

fish species, causing negative repercussions not only on fish populations but also on all 

animals – and people – who depend on these fish for food (Canas & Waylen, 2012). It is vital 

that the benefits hydroelectricity can provide are weighed up against the impacts this type of 

infrastructure has on the environment.  

 

1.4.2 Climate change 

There is a positive feedback loop between climate change and tropical rainforest damage. 

This cycle is paving the way towards a tipping point in which the synergistic actions of 

climate change and deforestation will transform tropical rainforests into dry savannah 

ecosystems (Sales et al., 2020). Climate change is weakening tropical rainforest 

ecosystems. Increases in temperatures are driving species to higher elevations where the 

climate is cooler but where weather patterns and humidity levels are dissimilar. If animals 

don’t emigrate, they are forced either to adapt to ever higher temperatures and unusually 

unpredictable climates or to die. Moreover, many of the threats faced by tropical rainforests 

act synergistically, ultimately aggravating each other. For instance, deforestation worsens 

climate change as the removal of trees results in less greenhouse gases (in this case CO2) 

being sequestered. Furthermore, when vegetation is burnt it releases the stored carbon 

(Padoch & Pinedo‐Vasquez, 2010), thus actively fuelling climate change. As well as 

controlled fires, tropical rainforests are experiencing ever increasing frequencies of wildfires, 

either ignited intentionally or as a result of environmental factors, such as reduced humidity 

stemming from increased global temperatures (Ma et al., 2022). The scale and frequency of 
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wildfires over the last decade is causing extensive damage to tropical rainforest ecosystems 

and wildfires are becoming significant contributors to climate change.  

 

1.4.3 Illegal wildlife poaching and trafficking 

Poaching is the illegal hunting, capture, and subsequent trade of wildlife and presents a 

threat to every tropical rainforest in the world. Despite often being connected to other illicit 

trade activities such as arms or drugs (Van Uhm et al., 2021), poaching is still regarded by 

many governments as a relatively ‘minor’ crime (Anderson & Jooste, 2014). This, coupled 

with the fact that wildlife traders often make very high profits (Le Duc, 1996), is resulting in an 

increase in poaching rates in recent years as regulations, controls, and punishments are 

minor compared to those of other illegal trading activities. Moreover, since the COVID-19 

related lockdowns, there has been sharp rises in poaching around the globe (Aditya et al., 

2021; Koju et al., 2021; Ndlovu et al., 2021; Quesada-Rodríguez et al., 2021; Rahman et al., 

2021; Behera et al., 2022), likely a combined result of damaged economies, decrease in food 

security, and reduced surveillance, in turn increasing the likelihood of another zoonotic 

pandemic. Furthermore, animals are often kept in very poor conditions due to the traders 

having to smuggle them through borders, which often leads to injury or death of live cargo. 

Overexploitation of certain rare, and thus highly sought after, species leaves their wild 

populations in a precarious state, rendering those species even more threatened (Challender 

et al., 2020). All charismatic taxa are targeted in tropical rainforests, from herpetofauna 

(Jestrzemski et al., 2013) and mammals (Wiafe, 2018) to birds (Pires & Clarke, 2011), with 

young birds often being taken straight from the nests (Wright et al., 2001). Poaching is 

creating additional ecological stressors to tropical rainforest ecosystems by removing 

keystone species and generating further holes in food chains, further weakening tropical 

rainforests and exacerbating the effects of other threats. However, new monitoring methods 

are providing affective poaching control techniques, such as the use of Autonomous 

Recording Units (ARUs) to automatically detect gunshot noise (Katsis et al., 2022) and 

camera traps to identify poaching hotspots (de Matos Dias et al., 2020). 

 

1.5 Monitoring biodiversity in tropical rainforests 

The first step in protecting tropical rainforests and the wildlife their harbour is gaining deeper 

ecological knowledge about the species, their behaviours, and their interconnectivity. 

Scientific monitoring of tropical rainforests can provide vital insights. A variety of monitoring 

methods for biodiversity have been used in tropical rainforests, which differ in their accuracy, 
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scale, and the type of data they collect, with some being more adapted to certain species 

than others. To monitor overall ecosystem health, biodiversity is a useful metric, as more 

biodiverse sites tend to be more stable, resistant, and productive (Johnson et al., 1996; 

Tilman, 1999). There are two common ways of undertaking such measurements: field 

surveys and remote sensing.  

Field surveys are in-person observations made by researchers whilst physically in the 

location being studied, with the aims of collecting data on the object of study (Eberhardt & 

Thomas, 1991). Field surveys are a more traditional monitoring method and can be 

undertaken in various forms such as linear transect lines, quadrats, point counts, trapping, or 

sampling substrates for further laboratory testing (Anderson, 1976; Karr, 1981; Ralph et al., 

1995; Woodcock, 2005; Janečka et al., 2008; Lucci Freitas et al., 2014; Mancini et al., 2022). 

According to the literature, field surveys are the dominant monitoring system employed to 

date (Mulatu et al., 2017), however this is because – until relatively recently – this was the 

only survey method available to scientists. Traditional field surveys do not necessarily require 

extensive and advanced hardware, but rather rely on field time, effort, and expertise. 

Although traditional surveying methods have provided invaluable baseline data in many 

habitats across the globe – including tropical rainforests, where, for example, mist nets have 

been used to study avifauna (Rahman, 2002) – they have many limitations. Despite not 

being resource intensive in terms of hardware, they require biological experts to spend a 

great amount of time in the field to gather relatively restricted spatial-temporal data. This 

significantly raises research costs as well as producing data at risk of being biased by the 

observer and limits monitoring to areas which are easily accessible.  

Remote sensing surveying methods have revolutionised the field of biological monitoring. Not 

only do they allow remote locations to be easily surveyed (Lim & Lee, 2017), but they are 

also unbiased, non-intrusive, systematic, usable by non-expert biologists, and applicable to 

vast spatial-temporal scales (Sethi et al., 2020). Remote sensing technologies can be left in 

the field for long periods of time, thus further reducing research costs (Lyra-Jorge et al., 

2008). Additionally, this survey method provides digital data which can be stored and 

analysed with greater ease. These data can be used to gain a comprehensive and general 

understanding of the overall biodiversity and environment studied, something that is hard to 

achieve using traditional surveying methods that are typically focused on smaller scale 

ecological questions. Remoting sensing encompasses several different surveying 

techniques, each providing a unique insight into the state of biodiversity and its changes in 

the studied areas.  
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Large scale remote sensing technologies, such as high-resolution satellite imaging and 

various types of electromagnetic radiation, can be used to examine ecologically relevant 

aspects of the globe’s surface. Remote sensing using satellites provides essential 

information on land use and cover over large geographic areas. For instance, satellite 

imagery has helped in mapping global wetlands (Ozesmi & Bauer, 2002), fires (Roy et al., 

2013), and sea-ice (Kwok, 2010) amongst other things. Both optical and laser sensors are 

currently being used to map forest coverage and detect land use changes (Sica et al., 2019), 

providing critical data for tropical rainforest conservation. Although there are maps available 

in the literature presenting data on tropical rainforest coverage, studies are often focused on 

a local area (Delgado-Aguilar et al., 2019), or at best on one biogeographic realm (Pulella et 

al., 2020) and many are outdated (Saatchi et al., 1997). Considering the urgency and rate of 

change tropical rainforests are experiencing currently, it is essential to have up-to-date global 

level mapping available of all tropical rainforests. Nevertheless, this technology requires the 

use of satellite imagery, and is therefore not accessible to researchers who lack the 

necessary budget or expertise. 

Smaller scale remote sensing technologies – such as camera traps, ARUs, and tracking 

devices such as Radio-frequency identification (RFID) tags – also provide vital monitoring 

data whilst being more accessible to smaller budget projects. Although these ground-based 

sensors do not solve the accessibility challenge of surveying remote areas as they need to 

be set up in the field, they nevertheless reduce the amount of time researchers must spend 

on the ground, and therefore in difficult conditions, without impairing the amount of data 

collected. Moreover, these devices allow finer-scale monitoring of individual animals and their 

interactions with their environment and each other, than satellite remote sensing does, 

enabling scientists to implement targeted conservation plans. For example, in the last few 

years, camera traps have helped delineate ecological corridors for Spectacled bears 

(Tremarctos ornatus) in the Peruvian Amazon (Sánchez et al., 2022) and estimate the 

endangered Amur leopard (Panthera pardus orientalis) population to 84 individuals (Vitkalova 

et al., 2018). ARUs have aided in the identification of eight previously unrecorded Dupont's 

Lark populations (Chersophilus duponti) (Pérez-Granados et al., 2018) as well as proving to 

be a promising tool to detect cryptic mammals such as the black lion tamarin (Leontopithecus 

chrysopygus) (Zambolli et al., 2022). RFID tags helped to shed light on how personality 

influences seed dispersal in small mammals (Brehm et al., 2019) as well as to study 

interspecific paper wasp interactions (Sumner et al., 2007). Although RFID tags are useful to 

track individuals, giving incredibly high-resolution data (Rafiq et al., 2021), they require 

baseline information on the environment studied and are more suited to answer very specific 

research questions about a relatively narrow field - often focusing on a few individuals of one 
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species. Camera traps and ARUs present themselves as more well-rounded technologies, 

enabling users to study animals at an individual scale whilst also offering the possibility of 

conducting wider scale ecological surveys. Additionally, ARUs provide a unique way of 

monitoring overall biodiversity, without necessarily having to focus on keystone species as a 

proxy, by studying the soundscape (Pijanowski et al., 2011). This novel analysis technique 

provides a systematic assessment metric of overall biodiversity by summarising certain traits 

in audio datasets. Thus, camera traps and ARUs are useful for environments which have 

been minimally monitored in the past – such as Brunei – as they survey all mobile or vocal 

species present in that environment, providing largescale but high-resolution data. 

 

1.6 Case study details 

Brunei is a small country situated on the island of Borneo and is one of Asia’s leading 

producers of liquefied natural gas, crude oil, and petroleum products (Ahmad, 2014), making 

the nation financially prosperous. This removes the need to exploit the local rainforest’s raw 

materials or exploit the land for agricultural reasons, unlike neighbouring Malaysia and 

Indonesia. The country’s Eastern exclave, Temburong, contains particularly pristine 

rainforests due to its historic geographical isolation from the capital city. According to the 

2020 population census conducted by Brunei’s Ministry of Finance and Economy, 97.5% of 

the population lives in the Western part of the country, leaving only 11 200 people living in 

Temburong. Unsurprisingly, Temburong is far less developed in terms of infrastructure (fewer 

roads and buildings), thus retaining more forest cover. Brunei’s only national park, Ulu 

Temburong, is located in the southern part of this sparsely populated district. However, in 

March 2020, Temburong was, for the first time, directly connected by road to the Western 

part of the country via the 27 km Sultan Haji Omar Ali Saifuddien (SOAS) bridge (Taylor, 

2022). This new, increased level of connection between the more populated side of Brunei 

and Temburong will likely bring about an increase in traffic and infrastructure development, 

including new roads and buildings in this Eastern district. Hence, it is anticipated that 

Temburong will become increasingly urbanised and will experience high levels of 

infrastructure expansion. One of the primary aims of this thesis is to document current 

biodiversity in the region in relation to infrastructure, prior to further development. 

Birds were chosen as the focal taxon in this study as they are good indicators of ecosystem 

health and are sensitive to environmental changes (Mekonen, 2017). Although not all species 

of birds are negatively affected by urbanisation (Møller, 2009; Maklakov et al., 2011), it is 

thought that overall species richness and evenness decreases in response to urbanisation 

(Marzluff, 2001). Parts of this study focus specifically of two species of birds: the Helmeted 
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Hornbill and the Great Argus. These species were chosen as they are charismatic and 

emblematic of Borneo’s tropical rainforests, often deeply embedded in local culture, making 

them key flagship species for conservation efforts (Philovenny & Mohd-Azlan, 2021; Aihara et 

al., 2008). Additionally, the Helmeted Hornbill is a canopy specialist whereas the Great Argus 

is a ground dwelling bird, thus allowing the study to explore the effect of infrastructure 

expansion on both extremes of avian ecologies. 

 

1.7 Aims and objectives 

Our study focused on the current infrastructure expansion in the Temburong district of Brunei, 

with a particular focus on the avian wildlife found in the tropical rainforest of this region. The 

biodiversity in Temburong has been understudied in the past and, to the best of our 

knowledge, there is little wildlife monitoring data for this region in the scientific literature. 

Thus, in this study, we use the remote sensing technologies of ARUs and camera traps to 

assess the biodiversity of Temburong’s TR, with a focus on avian diversity, and explore the 

potential impacts of infrastructure expansion on birds in this region.  

This thesis aims to: 

(i) Assess the impact of infrastructure expansion (main roads, presence of buildings, 

and forest quality) on overall bird biodiversity in Temburong’s tropical rainforest. 

(ii) Assess the impact of infrastructure expansion on two focal species of special 

conservation value (Helmeted Hornbill (Rhinoplax vigil) and Great Argus 

(Argusianus argus)) in Temburong’s tropical rainforest. 

(iii) Compare two remote surveying technologies (camera traps and ARUs), and 

associated audio analysis tools, to inform best practice for their use in tropical 

rainforest ecosystems. 

 

1.8 Thesis plan 

This thesis has been written in the format of chapters as stand-alone manuscripts as much 

as possible, to expediate potential paper publication. This necessarily results in some 

repetition of reference material amongst chapters. Repetition of methods has been avoided 

by extracting common methods to a single ‘General Materials and Methods’ chapter following 

the introduction. 

In Chapter 2, we provide background to the project, present fieldwork details, and lay out 

sampling protocols which apply to all four data chapters. ARUs and camera traps are paired 
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and placed along infrastructure expansion gradients, spanning from near roads and urban 

areas, into undisturbed tropical rainforest. 

In Chapter 3, we analyse the soundscapes to explore the impact of infrastructure expansion 

on overall bird biodiversity in Temburong’s tropical rainforest using the Acoustic Complexity 

Index. The level of infrastructure expansion is measured according to distance from main 

roads, distance from buildings and above ground biomass at recording sites.  

In Chapter 4, we construct and compare the performance of six semi-automated acoustic 

recognisers built to detect Helmeted Hornbill calls contained in an audio dataset. We vary the 

training data and the recogniser ‘learning’ methods to assess which yields the best results. 

In Chapter 5, we explore the impact of infrastructure expansion on Helmeted Hornbills and 

Great Argus in Temburong’s tropical rainforest. Their distribution and regularity of persistence 

at sites is explored according to distance to main roads, distance to buildings, and above 

ground biomass at recording sites using call count data extracted from the audio dataset 

using custom made species-specific recognisers. 

In Chapter 6, we compare ARUs and camera traps detection rates of Great Argus. Great 

Argus call count data from the audio dataset is quantitatively compared to paired camera trap 

images of Great Argus. The advantages and disadvantages of each remote sensing survey 

methods are discussed.  
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Chapter 2 

General Materials and Methods 

2.1 Study site 

The study was conducted in the Temburong district of Brunei. Brunei is a small country on 

the northern coast of the island of Borneo, Southeast Asia (Figure 2.1A), with a total land 

area of 5 765 km2 (Ahmad, 2014). Situated 4 degrees North of the equator, Brunei has a wet 

tropical climate, with an annual mean temperature of 27°C and annual rainfall of 2300 - 4000 

mm (Becek & Odihi, 2008). Approximately 72% of the land cover is forest (FAO, 2022), 

principally made up of mixed dipterocarp forest (Becek & Odihi, 2008). Brunei has 

remarkably pristine rainforest, likely as an indirect effect of the nation’s oil-based economy 

(Ahmad, 2014). Furthermore, Brunei is geographically split into two distinct regions: the 

districts of Belait, Tutong, and Brunei-Muara to the west and the – until recently – 

geographically isolated district of Temburong to the East (Figure 2.1B) where the study was 

conducted.  

 

2.2 Study design 

2.2.1 Recording sites 
To assess the current impact of infrastructure expansion on biodiversity in Temburong’s 

tropical rainforest environment, we deployed a series of ARUs and camera traps along 

infrastructure expansion gradients in this district. In total, 27 SongMeter Micros and 3 

SongMeter Minis from Wildlife Acoustics were deployed, each of which was paired with a 

Browning Recon Force Edge 4K camera trap (See Appendix A for equipment details). The 

recording pairs were set up at 69 randomly generated pre-determined GPS points, created 

using ArcMaps (details below), along infrastructure pressure gradients. Original grid 

generation did not take paths into account, as no map data was available on them. Later, in 

the field, we used existing trails where possible to hike as near as possible to the GPS 

coordinates without needing to cut trails, before going off trail to navigate closer to the 

randomly generated point.  

Effects of roads (ecological edge effects, likelihood of roadkill, access for hunters, etc.) can 

extend kilometres into the forest but generally expected to be strongest closest to the road 
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(Laurance et al., 2009). The study design was therefore created in a way to survey forest 

patches with varying levels of disturbance by placing the recorders near different types of 

roads, as well as different distances from these roads (as there could be potential interaction 

between the two). Thus, the recording sites were stratified to encompass three zones of 

varying general infrastructure pressure, classified into high, intermediate, and low 

infrastructure pressure (Figure 2.1C). The zone of high infrastructure pressure (HIP) was 

defined as the area in which the closest main road is Jalan Labu, a paved and well-

maintained highway with 80 km/hour speed limit for most of its length. This road also 

connects the East and West borders of Temburong as well as Bangar (capital of Temburong) 

and the SOAS bridge. It is the busiest road in Temburong. The zone of intermediate (or 

medium) infrastructure pressure (MIP) was defined as the area in which the closest main 

road was Jalan Batang Duri, a less well-maintained road with a speed limit of 65 km/hour. 

This road also links Bangar to Batang Duri, the last village accessible by road (when driving 

South in Temburong, towards Ulu Temburong National Park). This road has less traffic and is 

less frequently used than the highway. The zone of low infrastructure pressure (LIP) was 

situated in and around Ulu Temburong National Park and was accessed by boat as there are 

no roads in this area. Within the HIP and MIP zones, the recording sites were distributed 

along an infrastructure pressure gradient ranging from beside the road, to further into the 

forest in order to collect data from across the gradient. As there were no roads in the LIP 

zone, these study sites were conceived as a baseline with as little impact from roads as 

possible. 

The study design ensured even sampling across the landscape using the fishnets function in 

ArcMaps, where a randomised grid of points was created in each infrastructure pressure 

zone. Recording sites were designed to be a minimum of 1 km apart (recommendations from 

Wearn & Glover-Kapfer, 2017), using systematic grid sampling. However, for security 

reasons, in the LIP zone recording sites were located within sight (no closer than 10m) of the 

two ‘hiking’ trails along the ridges, created by the Kuala Belalong Field Studies Centre and 

managed by Universiti Brunei Darussalam. This was a limitation of the study design but 

movement elsewhere across the landscape was severely restricted due to difficult terrain. 

Nevertheless, recording sites were placed in such a way as to maximise inter-trap distance.  

The placement of some recording sites could not be positioned at the proposed GPS location 

due to inaccessibility or dangerous terrain. In such circumstances, we navigated as close as 

possible to the pre-generated GPS point and then positioned the units at the nearest 

accessible and safe point using the same standard set up method as follows. Both recording 

units were secured to the nearest suitable tree trunk at circa 2 m and 50 cm from ground 

level for ARUs and the camera traps respectively (Figure 2.2). Cameras were not placed 
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preferentially along trails, nor pointed at interesting features but we avoided pointing them at 

obstructions (boulders, tree buttresses, etc). Where possible, we placed them facing the 

largest field of view, or if an animal trail was present near the chosen tree, then the camera 

was placed at a 45-degree angle to the trail. If possible, the camera traps were placed facing 

north or south to reduce light movement of the sun triggering the camera trap. The time 

needed to deploy recording units was typically 1-3 units per day. Moreover, we had fewer 

recording units than deployment sites, so individual units were redeployed at multiple sites. 

Consequently, not all data were collected concurrently causing possible time-dependence 

between data points. To reduce this effect, we deployed the recording pairs at randomly 

chosen grid locations, thus ensuring the independence of data points in terms of time.  

There are risks that some of the findings might be confounded by the fact that there is spatial 

autocorrelation in the distribution of the different types of forests (Figure 2.1C). However, 

there were no alternatives as the different levels of infrastructure pressure were spatially 

autocorrelated. This was mainly due to the fact that there was only one of each type of road 

in the study area, limiting site location options. Attempts were made to reduce autocorrelation 

by deploying recording pairs at sites further west from the secondary main road but this was 

limited due to access problems and disturbances from quarries and agriculture which were 

thought to be possible confounding factors. However, due to correlation between some of the 

environmental variables (See Chapter 3: section 3.3.4), infrastructure pressures zones were 

not kept in the analysis models and a continuous variable (Distance to Nearest Main Road) 

was used instead, reducing these autocorrelative effects. 
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Figure 2.1 Map of study site generated using Google Earth Pro. A) Brunei (indicated by the 

red circle) is located on the northern coast of the island of Borneo, in South East Asia. B) 

Brunei has two geographically distinct regions, with the districts of Belait, Tutong, and Brunei-

Muara to the west and Temburong to the East. The study site is highlighted with the red box. 

C) Details of the locations of each recording site (N = 69), with the legend indicating the 

levels of infrastructure pressure each site was situated in. The coordinates of these points 

were randomly generated using grid sampling in ArcMaps within each infrastructure pressure 

zones. A camera trap and ARU were deployed at each of these sites for 30 days. The two 

study roads are also shown on the map.  
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Belait 

Tutong 
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Muara 
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Figure 2.2 Photographs of the recording units used in the study namely: A) an Autonomous 

Recording Unit (SongMeters by Wildlife Acoustics) and B) a camera trap (Browning Recon 

Force Edge 4K). Recording pairs were deployed at 69 randomly generated recording sites 

for 30 days, with respective Python locks to prevent theft, at heights of approximately 2m and 

50cm above ground level respectively to maximise efficient surveying capabilities. 

 

2.2.2 Sampling protocols and schedules 

Autonomous Recording Units 

The ARUs were pre-programmed to record at fixed times of day for a fixed amount of time 

(Table 2.1), with a 44.1 kHz sampling rate and an 18 dB gain (standard settings and 

recommended for SongMeters to record best quality sound). Studies adopt a variety of 

A) 

B) 
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different sampling regimes depending on study goal (Bradfer-Lawrence et al., 2019; Quinn et 

al., 2022; Towsey et al., 2014; Lellouch et al., 2014; Sueur et al., 2008; Depraetere et al., 

2012). Bradfer-Lawrence et al., 2019 suggested that 120h of recording in tropical 

environments balanced deployment length whilst capturing enough of the soundscape 

variability. The battery life for the SongMeters is approximately 122h for our sampling rate 

and gain settings, which matches well with the optimal recording time. The study showed that 

continuous recording is more effective at capturing soundscape variability in a shorter 

amount of time than subsampling. However, studies have also found significant positive 

correlations between acoustic complexity indices acquired from continuous recordings and 

recordings where only one in every five or one in every ten minutes were recorded. 

Moreover, the latter sampling schemes required 80% and 90% less storage space 

respectively than data derived from continuous recordings (Pieretti et al. 2015).  

Additionally, acoustic diurnal pattern differs among ecosystems. Indeed, different ecosystems 

need different sampling schedules to fully capture how acoustic activity changes over time, 

more precisely over a 24-hour period. Pieretti et al. (2015) shows that when there is a high 

and continuous presence of sounds in an environment, it would be better to have less dense 

recording regimes as sufficient information will be captured to correctly represent the 

community. However, in order to capture the diurnal variation of a more unpredictable 

soundscape, more intense sampling is necessary. A mix of both sampling intensities can be 

used, especially to capture more information at certain times of day, like dawn and dusk, 

where acoustic activity is known to peak.  

There have been very few eco-acoustic studies in Temburong to date, making it difficult to 

assess what would be the optimal sampling protocol to capture the soundscape found in this 

region. However, one study (Monacchi & Farina, 2019) detected most acoustic activity 

between 10:00 and 18:00. Furthermore, an audio project from the SAFE Project in Sabah, 

Malaysian Borneo (Sethi et al., 2020), detected dawn and dusk choruses as well as 

differences in the soundscape between the hours of day and night. Given their relatively 

close proximity and similar habitats, we assumed Temburong’s soundscapes would be 

broadly similar to that of Sabah’s forest ecosystems. We therefore adopted a sampling 

protocol that would allow us to survey across all hours of day and nighttime, with an 

additional focus on dawn and dusk to ensure we captured theses key choruses. 

Furthermore, given the available evidence on the benefits of audio subsampling, as opposed 

to continuous recoding, in terms of maximising biodiversity recording (given our ARUs were 

deployed for 30 days due to pairing with the camera traps), we used a subsampling regime 

(Table 2.1). This also meant that the audio recordings could run for the entire period of 

camera trap deployment.  



29 
 

Table 2.1 Sampling schedule used for the Autonomous Recording Units used in this study 

(SongMeters). The protocol was designed to balance deployment length (limited by battery 

life and capabilities to store and process the data collected) whilst capturing enough of the 

soundscape variability to ensure valid representation of the surveyed location. This was 

further ensured by sampling at all times of day, although an emphasis was brought upon 

dawn and dusk, where acoustic activity is known to peak. Sunrise and sunset time shifts are 

horizon-based calculations based on location and shifted to match the selected time-zone.  

Time of day Recording duration 

Dawn (circa 06:00 during the study period, 

though recorders were programmed to use 

daily sunrise data to trigger recordings) 

40 mins (20 mins before and after local 

sunrise time) 

Day time (08:00 to 17:00 included) First 7 mins of the hour 

Dusk (circa 18:00 during the study period, 

though recorders were programmed to use 

daily sunset data to trigger recordings) 

20 mins (10 mins before and after local 

sunset time) 

Night time (19:00 to 05:00 included) First 7 mins of the hour 

 

Camera traps 

The camera traps were deployed at each of the 69 recording sites for a 30-day period, 

following recommended good practice (Wearn & Glover-Kapfer, 2017). Table 2.2 shows the 

settings used in the camera traps deployed, following general recommendations from the 

manufacturer, given their intended use (principally to capture mammals and ground dwelling 

birds).  
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Table 2.2 Settings used for deployed camera traps used in this study (Browning Recon Force 

Edge 4K), deployed at 69 recording sites for 30 days each. Settings were programmed in a 

way such as to best capture intended targets, namely mammals and ground dwelling birds.  

Setting Description 

Capture mode: trail Captures still pictures during day and night 

time. 

Capture delay: 1 second Shortest possible delay available: does not 

record images within 1 second of the final 

image of a previous camera burst (see 

below for burst setting). 

Picture size: low (4 MP)  Set to balance image quality whilst 

maximising storage. 

Multishot mode: 8 rapid fire images (0.3s 

between each picture) 

Burst of 8 images aids detection of animals 

during image classification stage. 

Infra-red flash: fast motion  Fast exposure time is best for fast moving 

animals (esp. birds). 

Info strip on Provides info on images of camera 

identifier, date, time etc., which aids 

downstream data management. 

SD card management: off Ensures oldest pictures are not deleted if 

the SD card becomes full. 

 

2.2.3 Vegetation surveys 
To get a quantitative measure of the habitat at each recording site, a standardised vegetation 

survey was conducted at each site. The survey consisted of a 20 x 20-meter plot with the 

camera trap and audio recorder in the centre of the plot. Occasionally (n = 11 sites) a smaller 

plot was used when terrain precluded assessing a full-sized plot. The plots were then sub-

divided into 4 smaller plots to make recording data easier (Figure 2.3). Every tree in the plot 

with a Circumference at Breast Hight (CBH) greater than 30 cm was measured and the CBH 

recorded. Above Ground Biomass (AGB) was selected as a quantitative proxy for habitat 

structure and quality as higher biomass is associated with primary rainforests (Okuda et al., 

2004) namely as large trees, found solely in primary forests, make up nearly a quarter of 

biomass (Laurance et al., 2000). Nevertheless, since we were unable to gather height data 

for trees, we used the equation provided for estimating AGB when the tree height is 
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unavailable which is thought to be less accurate. We used an allometric equation previously 

used in tropical forests (below; Chave et al. 2014) for estimating AGB: 

AGBest = exp[-1.803 – 0.976E + 0.976 ln(ρ) + 2.673 ln (D) – 0.0299[ln(D)]2] 

where E is a measure of environmental stress, ρ is wood-specific density (g/cm3), and D is 

trunk diameter (cm). E increases with temperature seasonality (time plant is exposed 

stressful temperature) as well as being influenced by water stress. Chave et al. (2014) 

deemed this model the most appropriate for estimating AGB of tropical trees in the absence 

of tree height. E values for our recording sites were extracted using a global gridded raster 

layer and R code provided by Chave et al. (2014; http://chave.ups-

tlse.fr/pantropical_allometry.htm). As trees at recording sites were not identified to species 

level, we were unable to get wood-specific density values. Therefore, we used a mean value 

from a dataset generated from peer-reviewed literature (Phillips et al., 2019) instead. From 

this, the mean basal-area-weighted mean community wood density for old-growth moist 

forests in Asia is 0.594 g/cm3. D values were calculated by dividing the collected CBH 

measurements by π. Due to tree height not being available and using a mean wood-specific 

density value, our measure of AGB was likely not precise. Hence, associated results need to 

be read with some caution. 

 

Figure 2.3 Plot set up to conduct the vegetation surveys. A 20x20m plot was measured out 

at each of the 69 randomly generated recording sites, which was further roughly divided into 

four smaller subsections using two 20m ropes (represented by the wavy lines) to facilitate 

data recording, especially when counting the number of trees. The red star indicates the 

location of the camera trap and ARU within the plot. The recording pair was placed as close 

to the plot centre as possible but due to the necessity of having to be fixed to a big enough 

tree (typically > 30 cm in diameter) this was not always perfectly central to the plot. 

2
0
m

 

20m 

http://chave.ups-tlse.fr/pantropical_allometry.htm
http://chave.ups-tlse.fr/pantropical_allometry.htm
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2.3 Data analysis: pre-processing 

2.3.1 Audio data 

The sampling regime chosen resulted in, on average, 103.5 hours of recording per site. Due 

to slight variation in battery life and occasional malfunctions, not all the ARUs recorded for 

exactly the same number of days. Furthermore, there were occasional shorter-duration 

malfunctions within the sampling regimes, even for ARUs that otherwise recorded as 

intended. For example, some ARUs missed occasional time slots which they were 

programmed to record or recorded slightly shorter clips than they were programmed to. One 

of the major and most common malfunctions was the length of the dawn recordings. For 

unknown reasons, many of the ARUs recorded dawn clips of anywhere between 41 to 46 min 

of dawn audio (as opposed to the 40 min duration they were programmed to record). To 

standardise the dawn recordings across all sites, the first 40 mins were used in analyses, 

and the excess time was disregarded. Similarly, some of the ARUs recorded an additional 1 

min of audio data after each scheduled recording slot. These were also disregarded. A list of 

all the malfunctions can be found in Appendix B. However, most of these malfunctions were 

deemed to be minor and the data from ARUs that had malfunctioned slightly were retained 

and later standardised in appropriate fashion to the study questions, to avoid excessive data 

loss.  

 

2.3.2 Camera trap data 

As with the ARUs, some of the camera traps malfunctioned or were moved by animals 

(usually monkeys). Again, a list of all the non-standard recordings is provided in Appendix B. 

Most of the malfunctions were also deemed to be minor as the majority consisted of the 

cameras being moved slightly by wildlife, impeded image quality, or excessive photographs 

being taken, all of which did not prevent the data collected from being used. Thus, the data 

from the majority of camera traps were retained to avoid excessive loss of valuable data. 
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Chapter 3 

Using the Acoustic Complexity Index to quantify 

soundscapes across spatial-temporal scales in 

Temburong’s tropical rainforests 

3.1 Abstract 

Sound is omnipresent throughout the natural world and is a useful indicator of healthy 

ecosystem functioning. However, anthropogenic changes, such as infrastructure expansion, 

are resulting in a shift in soundscapes. New remote surveying technologies, like Autonomous 

Recording Units (ARUs), and approaches to synthesise acoustic data, such as acoustic 

indices, can be used to inform biodiversity assessments – despite a lack of consensus 

surrounding acoustic indices’ ecological accuracy. Using ARUs, we collected audio data at 69 

sites across a gradient of tropical rainforests in Temburong, Brunei, which ranged from 

pristine and remote forest to secondary forests close to human infrastructure. We computed 

Acoustic Complexity Indices (ACI) across recordings and compared results between 

Infrastructure Pressure Zones. In addition, we assessed the relationship between ACI and 

time of day, season, woody biomass, and distance to roads/buildings. As ACI has been 

shown elsewhere to correlate with bird abundance and diversity, we hypothesised scores to 

be higher in less disturbed areas and during dawn and, to a lesser extent, dusk, when birds 

are most vocal. Results showed significantly lower ACI scores in the low infrastructure 

pressure zone, with highest scores found in zones of intermediate infrastructure pressure. 

ACI declined significantly from midnight to midday and then increased again thereafter. ACI 

also declined significantly as distance to road increased and as the season progressed. 

Hence, many of our results were in the opposite direction to what we had initially 

hypothesised. We did, however, observe a marked diurnal pattern in ACI across all sites, with 

highest ACI variability at dawn. Higher ACI scores near roads could indicate dominance of 

highly vocal edge-dwelling species and/or an ecotone effect, whereby soundscapes are more 

complex due to a combination of vocalisations from both forest and non-forest species. It 

could also be that species are increasing their vocalisations to compensate against 

anthropogenic noise pollution to avoid masking, but this is unlikely given the low traffic 

volumes at most sites. This preliminary acoustic evaluation provides useful baseline 

information regarding the soundscapes on Bruneian forests.   
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3.2 Introduction 

The natural world is full of sights and sounds of particular importance to the organisms that 

live within it. As a visually dominant species, humans often underestimate the magnitude of 

the role sound plays in many ecosystems. From guiding fry towards coral reefs in tropical 

oceans (Arvedlund & Kavanagh, 2009) and echolocation helping mammals navigate 

(Thomas et al., 2004), to defending territories (Amorim & Neves, 2008; Pröhl, 2005; 

Wheeldon et al., 2021) and attracting mates (Lindström & Lugli, 2000; Thomson & Bertram, 

2014; Weisman & Ratcliffe, 2004), the presence of sound in nature is vital to maintain healthy 

ecosystem functioning. Pristine, intact habitats are often associated with more complex 

ecological communities, comprising both soniferous (sound producing) and non-soniferous 

organisms, than disturbed environments (Farina et al., 2021; Watson et al., 2018). 

Anthropogenic impacts on wildlife and their habitats are far-reaching and pervasive, with fast-

paced development being entrenched in modern society. Humans are indirectly causing a 

global shift in the biophony (sounds produced by non-human living organisms) either by 

forcing species to radically change their acoustic signals (Brumm & Slabbekoorn, 2005; 

Dooling & Popper, 2016; Potvin et al., 2011; Slabbekoorn & Peet, 2003), silencing them 

(Carson, 1962), or by driving them to extinction. One of the major factors inducing these 

negative changes is urbanisation and infrastructure expansion. Urban areas typically have 

less diverse habitats than non-disturbed areas, leading to habitat homogenisation 

(Andersson, 2006). Furthermore, urbanisation and infrastructure expansion frequently result 

in habitat fragmentation, further isolating ecosystems and reducing their resilience 

(Theodorou, 2022). Some species find such conditions inhospitable and struggle to adapt or 

are prone to human disturbance and hence avoid such areas, even if suitable habitat exists 

(Suraci et al., 2021). Considering the pace of global urbanisation and the already-vulnerable 

status of wildlife worldwide, it is crucial to develop rapid monitoring strategies.  

The very attribute of nature we are altering – biophony – can be used to study it, and 

ultimately aid in conservation decision-making. Eco-acoustics, the study of sound from a 

biological and ecosystem perspective, is a rapidly developing field of ecology in which audio 

recordings are used to answer ecological questions (Sueur & Farina, 2015). Audio recordings 

are typically acquired using Autonomous Recording Units (ARUs) which can be deployed for 

long periods of time in the field and record their surroundings. Thus, the audio data does not 

consist exclusively of the biophony, but rather is representative of the soundscape of that 

particular environment. A soundscape is the whole acoustic environment of a site – much like 

the landscape is the physical environment of a site – and consists of the biophony as well as 

the geophony (sounds produced by abiotic factors) and the anthrophony (sounds produced 

by human activities) (Pijanowski et al., 2011). By analysing the soundscape, it can be 
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possible to assess the state of biodiversity at a given location, as high acoustic activity has 

been correlated with high ecosystem structural complexity (Mammides et al., 2017). 

However, this is an indirect measurement as not all organisms produce acoustic signals and 

therefore some are acoustically indetectable. The use of eco-acoustics for biodiversity 

assessment uses soniferous species as bioindicators, as their presence is often dependant 

on that of other organisms (Farina et al., 2021). Various analytical tools can be used to 

extract information of interest from large audio datasets, with acoustic indices being a 

commonly applied approach to summarise the soundscape. 

Acoustic indices are powerful yet simple metrics which describe the ‘acoustic energy’ in an 

audio recording through reducing the complexity of an audio clip to a single score (Sueur et 

al., 2014), simplifying comparison among audio files. Over 60 acoustic indices have been 

developed in recent decades, each measuring slightly different aspects of the audio file, and 

correlating with slightly different aspects (Bradfer‐Lawrence et al., 2019). Most focus on 

extracting ecologically relevant parameters of the soundscape, providing a means to rapidly 

analyse large audio datasets, with the potential to inform about biodiversity at sites. The use 

of acoustic indices in biodiversity assessments assumes that ecosystems with a greater 

number of soniferous species will also have greater acoustic diversity, thus indicating higher 

biodiversity levels. Additionally, changes in soundscapes often reflect changes in ecosystem 

health (Tucker et al., 2014). Hence, monitoring soundscapes could provide information for 

proactive conservation strategies. The use of acoustic indices to quantify biodiversity or 

biodiversity change is still in its infancy and many studies using such indices have proven 

inconclusive or inconsistent (Alcocer et al., 2022). This may be due a lack of consistent 

guidelines being applied (Bradfer‐Lawrence et al., 2019) but may also indicate that there is 

not always a correlation between acoustic and biological diversity (Alcocer et al., 2022). 

Nevertheless, acoustic indices have a lot of potential in biodiversity monitoring.  

Although tropical rainforests soundscapes have been subject to several studies over the past 

decade, there remains a gap in the literature surrounding this ecosystem’s acoustic 

communities due to the relative novelty of the field of bioacoustics. Nevertheless, ARU 

technology has helped piece together and study in more detail than ever before the different 

elements which contribute to the soundscape: from biotic – birds (de Camargo et al., 2019; 

Goyette et al., 2011), mammals (de Oliveira et al., 2015; Heinicke et al., 2015; Kalan et al., 

2015), anurans (Anunciação et al., 2022; Lapp et al., 2021), and insects (Symes et al., 2022) 

– and abiotic – namely rain (Kumagai & Kume, 2012; Metcalf et al., 2020) – elements, to 

anthropogenic noises caused by proximate human activity – such as poaching (Katsis et al., 

2022). Temporal patterns have been explored in tropical rainforest soundscapes, but results 
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vary greatly geographically and are sensitive to changes in habitat (Burivalova et al., 2019, 

2022; Retamosa Izaguirre et al., 2021).  

One of the most used acoustic indices is the Acoustic Complexity Index (ACI), which was 

initially developed by Farina and Morri (2008) and further tested by Pieretti et al. (2011). The 

ACI was created to “produce a direct and quick quantification of bird vocalizations by 

processing the intensities registered in audio-files” (Pieretti et al., 2011). In other words, ACI 

is thought to significantly correlate with species richness for some taxa, although some 

studies found little to no correlation (Metcalf et al., 2021). This is partly because ACI, like 

most other acoustic indices, is a new method for analysing bioacoustics data and therefore is 

still to be fully explored and the metric’s true meaning realised. Due to its focus on birds, its 

widespread use, and its ease of computation, we chose to use the ACI to quantitatively 

describe the soundscapes across our recording sites in the tropical rainforests of Temburong, 

Brunei. The primary aim of this chapter is to conduct a preliminary acoustic evaluation of the 

soundscape of these areas and to explore the environmental factors influencing the 

soundscapes. 

We hypothesised a priori that the following patterns in acoustic complexity would occur in our 

tropical forest study systems: 

(1) That acoustic complexity would be low during darkness as a result of a small number 

of dominant invertebrates contributing to the soundscape. 

(2) That acoustic complexity would reach a maxima around dawn, with a secondary peak 

at dusk, when many birds and mammals vocalise, and fall to a diurnal minima at 

midday, associated with high temperatures and a consequent lack of activity by 

species.  

(3) That acoustic complexity would be higher in less disturbed areas, where a more 

complex habitat supports a higher number of species. 

(4) That relatively little variation in acoustic complexity would occur across the study 

period (circa 6 months), after controlling for diurnal patterns and environmental 

factors, due to the lack of distinct seasonality over this period. 

 

3.3 Methods 

3.3.1 Data collection 

For details on the study site, sampling protocols, and general data pre-processing, see 

Chapter 2. 
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3.3.2 Acoustic Complexity Index calculation 

Standardising audio file length 

The inconsistency of file length used in various acoustic indices studies (ranging from 30s to 

60 mins) suggests there is no consensus in the literature about the optimum duration or 

scheduling of audio recordings for biodiversity assessments (Bradfer‐Lawrence et al., 2019; 

Buxton et al., 2018; Depraetere et al., 2012; Fairbrass et al., 2017; Pieretti & Farina, 2013; 

Towsey et al., 2014). A key factor however is that all recordings are of the same duration in 

order for their scores to be comparable. The day and night recording durations in our study 

were typically 7 minutes in length (Chapter 2), thus this length was chosen as it would limit 

data pre-processing time, as only dawn and dusk files would have to be reformatted. Dawn 

and dusk recordings, which were 40 mins and 20 mins in duration respectively, were 

subsampled into equivalent 7 min clips. Any files affected by deviations from the recording 

protocol (See Appendix B) were removed to ensure all audio files used were the same 

duration. 

ACI computing 

ACI assumes that, typically, the intensity of biotic sounds is intrinsically variable, compared to 

many anthropogenic sounds which tend to be of constant intensities (Pieretti et al., 2011). 

ACI measures community activity by measuring the variability in sound intensities by 

comparing short-time averaged changes in acoustic energy across frequency and time 

periods (Bateman & Uzal, 2022). The ACI is calculated using a relatively simple formula 

based on a matrix of intensities taken from the spectrogram which is divided into temporal 

and frequency bins. The ACI then computes the absolute difference between two adjacent 

values of intensity within a frequency bin before adding up all these differences found in each 

temporal bin. To both reduce the effect of the distance of the birds to the recorder and get the 

relative intensity, the result is divided by the total sum of the intensity values in each temporal 

bin. Thus, ACI is obtained for each temporal and frequency bin. The ACI is then calculated 

for all temporal and frequency bins in the recording together (Pieretti et al., 2011). A high ACI 

value theoretically indicates high acoustic energy whereas a low ACI value would tend to 

represent a quiet soundscape. We used R to compute the ACI score of each file using the 

ACI() function of the package seewave (Sueur et al., 2008). All settings for the ACI() function 

were left at their default mode.  

Removing rainy files 

Geophony, specifically heavy rain and dripping of water droplets, is known to bias ACI results 

by producing very high ACI scores for files that do not contain high biophonic acoustic 
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diversity (Sánchez‐Giraldo et al., 2020). Heavy rain was common in our recordings: it was 

usual for it to rain very heavily almost every day during the deployment period. Hence, to 

avoid this skewing the results, we removed the data points we deemed were biased by rain. 

Although research has been done to automate this process using Power Spectrum Density 

(amplitude) and Signal-to-Noise Ratio thresholds at certain frequency bands (Metcalf et al., 

2020), due to software incompatibility issues we were not able to apply this method. Instead, 

we used a similar threshold-based method. To remove the rainy files from our ACI dataset we 

listened to (and viewed spectrograms of) a sample of audio files (>15 files at each score 

band), starting from the highest scoring file (372.9) and working our way down to the lower 

scores by increments of 10 until the score 200, then increments of 5 until the score 175, and 

then increments of 1 until rainy files appeared mainly absent, to ensure we found the most 

accurate cut off point. Listening to every file was not viable as there were over 4 033 files 

between the highest score and the rain threshold. Files containing rain were obvious visually 

(Figure 3.1) and confirmed auditorily. We determined a threshold ACI score of 160, where 

files with a score equal to or larger than this were highly likely to contain heavy to moderate 

rain, and files with a smaller score were unlikely to contain rain. This approach removed the 

majority of the rainy files which would bias the results, whilst keeping the truly high scoring 

files.  

  

Figure 3.1 A sample spectrogram of an audio file containing heavy rain, made using 

Kaleidoscope Pro, the acoustic analysis software used in this study. The audio file was 

recorded using an Autonomous Recording Unit, more specifically a SongMeter. The vertical 

lines and ‘busy’ sonic environment present in the sonogram are typical of an audio file 

containing rain. 
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3.3.3 Habitat variables 

Six habitat variables were initially measured: Distance to Nearest Main Road, Distance to 

Nearest Road, Nearest Road Type, Distance to Nearest Building, Infrastructure Pressure 

Zone, and Above Ground Biomass, which are described in more detail below. 

i) Distance to Nearest Main Road was measured using the Ruler (line) function in 

Google Earth Pro and defined as being the shortest linear path between the site 

and a main road. The three main roads in the study region were Jalan Labu, Jalan 

Batang Duri, and the track that continued from the terminus of Jalan Batang Duri 

proper. 

ii) The Distance to Nearest Road was measured using ArcMap and was defined as 

the shortest linear path between the site and the nearest road, no matter the size. 

iii) The Nearest Road Type variable was assigned to each site based on the nearest 

main road (Jalan Labu = highway; Jalan Batang Duri = secondary main road; or 

track = track at the end of Jalan Batang Duri). 

iv) The Distance to Nearest Building was also measured using ArcMaps and was 

defined as the shortest linear path between the site and a human built shelter. 

v) Each ARU site was allocated to an Infrastructure Pressure Zone (High 

Infrastructure Pressure = HIP; Medium Infrastructure Pressure = MIP; Low 

Infrastructure Pressure = LIP), which was the structured component of the 

stratified random ARU deployment protocol (Chapter 2) and was based on what 

the nearest road type was (highway = HIP; secondary main road = MIP; track = 

LIP).  

vi) Above ground woody vegetation biomass (henceforth Biomass) was calculated as 

described in Chapter 2 and was used as a proxy for habitat type and quality.  

 

3.3.4 Habitat variable correlation 

A Pearson correlation test was conducted to test the correlation between continuous 

variables (Distance to Nearest Main Road, Biomass, Distance to Nearest Road, and 

Distance to Nearest Building). Results (Appendix C: Table 3C.1) show that the variable 

Distance to Nearest Main Road and the variable Distance to Nearest Road were significantly 

associated. As multicollinearity is an issue in regression models, we chose to keep Distance 

to Nearest Main Road as we believed this would have a greater disturbance impact than 

nearest roads, which could be smaller roads or driveways used by few cars. 
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A Pearson’s Chi-squared test was conducted to test the association between categorical 

variables (Nearest Main Road Type and Infrastructure Pressure Zone). The two variables 

were highly associated (χ2 (4) = 131.27, p < 2.2-16; Appendix C: Table 3C.2). We chose to 

keep Nearest Main Road Type as this was considered more indicative of the human 

disturbance at a site than Infrastructure Pressure Zone.  

An ANOVA was conducted to test the association between the remaining continuous and 

categorical variables (Distance to Nearest Main Road, Biomass, and Distance to Nearest 

Building, and Nearest Main Road Type). The ANOVA showed that Distance to Nearest Main 

Road and Nearest Main Road Type were significantly associated (F(2, 66) = 26.56,  p = 3.45-

09). However ANOVA also showed that Biomass and Nearest Main Road Type were not 

significantly associated (F(2, 66) = 1.69, p = 0.19), and also that Distance to Nearest Building 

and Nearest Main Road Type were not significantly associated (F(2, 66) = 3.04, p = 0.05). 

Nevertheless, Nearest Main Road Type was discarded due to its significant association with 

the key variable Distance to Nearest Main Road (Appendix C: Figure 3C.1).  

Due to high association between many of these variables (see below), only Distance to 

Nearest Main Road, Distance to Nearest Building, and Biomass were retained as potential 

explanatory variables and used in the main model during statistical analysis. These three 

variables were chosen as they were deemed to be the most relevant to the research 

question. 

 

3.3.5 Time variables 

Two time variables were incorporated in the analyses: Time of Day and Julian Day. Time and 

date information were both extracted from the meta data associated with the audio files’ 

names. The Julian day was the continuous count of days since the beginning of the study 

period. 

 

3.3.6 Statistical analysis 

All statistical analyses and graphics were undertaken in R version 4.1.2 (R Core Team, 

2022). To investigate the impact of infrastructure expansion (measured by distances to 

nearest main roads, buildings, and biomass) and time (time of day and Julian day) on the 

ACI scores, we fitted a Linear Mixed Effects model using the lme() function, with Site as a 

random effect and Distance to Nearest Main Road, Distance to Building, Biomass, Time of 

Day, and Julian Day as dependant variables. We fitted Site as a random effect as we were 

not interested in the effect of Site on ACI but rather the effect of the independent 
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environmental variables across sites, so we needed to account for that variation. Due to the 

non-linearity of vocalisation changes through the diurnal cycle, the Time of Day variable was 

transformed to be measured as a modular deviation from mid-day (halfway between dawn 

and dusk – here, 12pm). This fitted the typical observed pattern of the ACI data and allowed 

for easier model interpretation than using a polynomial term.  

Additionally, we tested for statistical differences between the values of ACI calculated for 

each Infrastructure Pressure Zones (See Chapter 2: Figure 2.1C) using another linear mixed 

effect model (lme() function) with Site as a random factor. The effect of this variable on ACI 

was tested separately due to the high association between Infrastructure Pressure Zones 

and Distance to Nearest Main Road variables (See above). A mixed effect model was chosen 

instead of an ANOVA as the assumptions of an ANOVA test were not met: the data within 

each infrastructure pressure zone group was sub-grouped by site, and thus violated the 

assumption that the data are independent.  

 

3.4 Results 

Overview 

ACI scores ranged from 372.9 (containing rain) to 121.6 (Figure 3.2). After the data 

truncation at 160, the ACI scores of 53 715 audio files were used in the analyses (LIP           

n = 16 349; MIP n = 13 728; HIP n = 23 638). Some example spectrograms of files with a 

mid-range ACI score are provided for reference (Figure 3.3 & 3.4).  

 
DAYTIME RECORDING 
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Figure 3.2 Spectrogram of the audio file with the lowest ACI score of 121.6, recorded during 

the daytime at a Low Infrastructure Pressure site. The spectrogram was generated using 

Kaleidoscope Pro, the acoustic analysis software used in this study. The constant-frequency 

sounds present in the recording are insect stridulations (sounds made by rubbing together 

special bodily structures) which can be seen at multiple frequency bands (indicated by the 

red boxes). 

 

Figure 3.3 Example spectrogram of an audio file with a mid-range Acoustic Complexity Index 

score of 150.4, showing a typical nighttime soundscape, recorded at a Low Infrastructure 

Pressure site. The spectrogram was generated using Kaleidoscope Pro, the acoustic 

analysis software used in this study.  

NIGHTTIME RECORDING 
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Figure 3.4 Example spectrogram of an audio file recorded at dawn at a High Infrastructure 

Pressure site with a mid-range Acoustic Complexity Index score of 150.4. The spectrogram 

was generated using Kaleidoscope Pro, the acoustic analysis software used in this study. 

The red boxes indicate the noise produced by the passing of a car. The constant-frequency 

insect stridulations (sounds made by rubbing together special bodily structures) can be seen 

between 6-7 kHz. 

 

Distribution of the ACI data 

Although the ACI data were slightly left-skewed (Figure 3.5A), this was likely due to the 

truncation of the dataset at 160 to avoid bias by rain. The distribution of all ACI scores 

(including those computed for rainy files) is shown in Figure 3.5B. Thus, the data were 

deemed normally distributed.  

 

DAWN RECORDING 
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Figure 3.5 Distribution of the Acoustic Complexity Index (ACI) scores across all 69 recording 

sites A) truncated at 160 ACI to avoid bias by rain-dominated recordings B) including all files. 

Rain dominated files typically have very high ACI score as a result of the busy sonic 

environment created by the rain. However when using ACI to assess biodiversity levels 

through animal produced sounds, this can bias the results. Therefore it can be beneficial to 

remove rainy files from the analysis, as done in this study.  

 

Model results 

The linear mixed effect model, with Site as a random effect, indicated that ACI scores were 

related to both Time of Day and Distance to Nearest Main Road (Table 3.1). By contrast, 

Julian Day, Distance to Building, and Biomass did not significantly impact ACI scores (Table 

3.1). This model was slightly under-dispersed (dispersion statistic = 0.998).  

Time of Day had a significant positive relationship with ACI, meaning that there was a 

significant decline in ACI from midnight to midday and a significant increase of ACI from 

midday to midnight (t-value = 127.17; Table 3.1; Figure 3.6), for example with ACI increasing 

from 100 to 103.72 over a period of 6 hours from midday to midnight and decreasing from 

100 to 96.28 over a period of 6 hours from midnight to midday. Individual graphs of ACI 

variation were made for each key time of day (dawn, daytime, dusk, and night-time) (Figure 

3.7) to enable differences between individual sites to be represented graphically and to avoid 

masking of trends when amalgamating all the times of day into one graph. Distance to 

Nearest Main Road had a significant but weakly negative relationship with ACI (t-value = -

2.71; Table 3.1; Figure 3.8 & 3.9), for example with ACI decreasing from 100 to 99.81 for 

A) B) 
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each 10-kilometre increase of distance from the nearest main road. Julian Day was also 

weakly negatively related to ACI scores (Table 3.1; Figure 3.10). Due to marked diurnal 

patterns and to avoid masking trends in the data, the variation of ACI scores according to 

Distance to Nearest Main Road and Julian Day were only shown graphically for a sub-

selection of times of day (i.e. 8am and midnight for Distance to Nearest Main Road, and 8am 

for Julian Day). Two times of day were chosen for Distance to Nearest Main Road to account 

for possible variation in traffic through the day. 

 

Table 3.1 Statistical results from the Linear Mixed Effect Model with Site as a random effect 

applied to the Acoustic Complexity Index (ACI) score data. ACI scores were calculated in R 

for each audio recording in the dataset used. AIC was 292970.2. R2 (conditional) = 0.29. 

Random effect (Site): Standard Deviation: Intercept = 1.02; Residual = 3.69. Significant 

effects are shown in green (p < 0.05). Distance to building is the distance between each site 

and the nearest building, distance to nearest main road is the distance between each site 

and the nearest main road to that site, and biomass is the total above ground biomass 

calculated using an allometric equation previously used in tropical forests in conjunction with 

data collected in the field. The distance variables were measured using Google Earth Pro. 

The time variables (Julian day and time of day) were deducted from the metadata in the 

audio files. 

 Estimate Standard Error DF t-value p-value 

(Intercept) 147.05 3.05-1 53642 481.50 <0.0001 

Distance to 

Building 
-0.29-4 1.97-4 65 -1.48 0.1437 

Biomass -0.01-5 1.05-5 65 -0.91 0.3644 

Julian Day -3.01-3 1.64-3 53642 -1.83 0.0672 

Distance to 

Nearest Main 

Road 

-0.19-4 0.07-3 65 -2.71 0.0087 

Time of Day 0.62 4.91-3 53642 127.17 <0.0001 
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The linear mixed effect model, with Site as a random effect, for ACI scores across different 

Infrastructure Pressure Zones indicated that the ACI scores from the Low Infrastructure 

Pressure Zone were significantly lower than those from the Medium Infrastructure Pressure 

Zone (Estimate = 1.46 ± 0.32; DF = 66; t-value = 4.52; p-value <0.0001) and High 

Infrastructure Pressure Zone (Estimate = 0.95 ± 0.29; DF = 66; t-value = 3.25; p-value ≤ 

0.0018) but that ACI scores from the Medium Infrastructure Pressure Zone were not 

significantly higher than those from the High Infrastructure Pressure Zone (Estimate = 0.56 ± 

0.30; DF = 66; t-value = 1.7; p-value ≤ 0.0860). These trends can be seen in Figure 3.7.
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Figure 3.6 Diurnal patterns of the variation of Acoustic Complexity Index (ACI) scores over 

the 24h period (except 7am, as indicated by the dotted red lines, as this was not included in 

our recording protocol) across all 69 recording sites, grouped by Infrastructure Pressure 

Zones: A) Low Infrastructure Pressure Zone B) Medium Infrastructure Pressure Zone C) 

High Infrastructure Pressure Zone. Colours are the same as the ones in Figure 3.7 to 

facilitate comparison. ACI scores were calculated for each audio file in the dataset using R. 

Audio files including heavy rain were excluded from analysis to avoid bias when evaluating 

biodiversity acoustically, as this abiotic factor drives the ACI scores up despite the audio file 

not necessarily containing high levels of animal produced sounds. 
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Figure 3.7 Variation of Acoustic Complexity Index (ACI) scores at A) Dawn B) Day-time C) 

Dusk D) Night-time at each 69 recording sites. Scores are separated according to time of 

day to avoid masking possible patterns. ACI scores were calculated for each audio file in the 

dataset using R. Sites are ordered in ascending order in relation to distance to nearest main 

road (i.e. sites closest to main roads are towards the left) within each Infrastructure Pressure 

C) 

D) 

Dusk 

Night-time 

→ Increasing distance to nearest main road 

→ Increasing distance to nearest main road 
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Zone category (indicated by colour coded arrows). Colours indicate Infrastructure Pressure 

Zone Type: LIP = Low Infrastructure Pressure; MIP = Medium Infrastructure Pressure; HIP = 

High Infrastructure Pressure. Due to the large number of sites, not all the site names could 

be displayed. 
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Figure 3.8 Variation of Acoustic Complexity Index (ACI) scores according to Distance to Nearest Main Road at 8am for the A) Low 

Infrastructure Pressure Zone B) Medium Infrastructure Pressure Zone C) High Infrastructure Pressure Zone. The x axes are not continuous (as 

sites were not distributed in a linear fashion away from the roads, thus making the Distance to Nearest Main Road variable a categorical 

variable rather than a continuous variable) but are ordered in ascending order, with the smallest distance on the left. ACI scores were 

calculated for each audio file in the dataset using R. 
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Figure 3.9 Variation of Acoustic Complexity Index (ACI) scores according to Distance to Nearest Main Road at midnight for the A) Low 

Infrastructure Pressure Zone B) Medium Infrastructure Pressure Zone C) High Infrastructure Pressure Zone. The x axes are not continuous (as 

sites were not distributed in a linear fashion away from the roads, thus making the Distance to Nearest Main Road variable a categorical 

variable rather than a continuous variable) but are ordered in ascending order, with the smallest distance on the left. ACI scores were 

calculated for each audio file in the dataset using R. 
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Figure 3.10 Variation of Acoustic Complexity Index (ACI) scores according to Julian day at 8am for the A) Low Infrastructure Pressure Zone B) 

Medium Infrastructure Pressure Zone C) High Infrastructure Pressure Zone. Julian day assigns a number to each day in the study period to 

allows systematic comparisons to be made. ACI scores were calculated for each audio file in the dataset using R. 
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3.5 Discussion 

Infrastructure expansion and predictable temporal patterns can both affect biodiversity in a 

plethora of ways (Sparks & Menzel, 2002; Concepción et al., 2015; Lijun et al., 2019; 

Cassone & Kumar, 2022; Petersen et al., 2022; Theodorou, 2022). Using the Acoustic 

Complexity Index (ACI) (Pieretti et al., 2011), we quantitatively described the soundscape 

across the tropical rainforests of the Temburong district of Brunei, relating it to time of day, 

Julian day, level of biomass at the recording site, as well as distance to the nearest main 

road and building. We found that time of day had a significant impact on ACI, with scores 

diminishing from midnight to midday and then increasing thereafter. We also found that the 

distance between the site and the nearest main road had a significant negative effect on ACI, 

with scores diminishing as remoteness increases. The LIP zone had significantly lower ACI 

scores than the other two, with the MIP zone having the highest ACI scores. Similarly, Julian 

day had a slight negative effect on ACI, with scores diminishing throughout the study season. 

We did not find distance to building and biomass to have a significant effect on ACI scores.  

Most organisms – and thus ecosystems – on earth follow a daily pattern, or cycle, across the 

24-hour period, repeating certain activities at certain times of day, every day (Hardin & 

Panda, 2013). Abiotic factors – such as sunlight – repeatedly trigger certain behaviours in 

certain organisms, such as the dawn chorus for birds for instance (Gil & Llusia, 2020). Thus, 

the fact that time of day had a significant impact on ACI scores was in line with our 

expectations. However, as ACI has been described as an acoustic index particularly sensitive 

to bird vocalisations (Pieretti et al., 2011), we were expecting ACI to be lower at night-time, 

with a notable peak at dawn and a smaller one at dusk. Hence, some of our findings were 

the opposite of what we were expecting (aside from the minima at midday), thus our first two 

proposed hypotheses were not validated by our findings. Furthermore, this non-intuitive trend 

was seen across all Infrastructure Pressure Zones (Figure 3.6) and was the most significant 

factor in our model (Table 3.1). There was a clear distinction between day and night across 

all sites (Figure 3.7B and 3.7D), with night ACI scores being significantly higher. ACI trends 

over the 24-hour period do not seem to be consistent across studies, with some finding no 

trends (Bradfer‐Lawrence et al., 2019; Dröge et al., 2021), and others finding the opposite 

patterns to here (Budka et al., 2023; Farina et al., 2021). A study found similar patterns to the 

ones revealed here, but the study site was a coral reef, so comparisons remain tenuous 

(Bertucci et al., 2020). One study found that as land use intensity increases in tropical 

ecosystems, acoustic communities lose their typical diurnal patterns (including dawn and 

dusk peaks) and that insects increasingly dominate the soundscape at night (Burivalova et 

al., 2022) – providing a possible explanation for the absence of dawn and dusk peaks as well 

as high ACI values at night in our results. However, the lowest scoring audio file seems to 
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have many stridulating insects (Figure 3.2) and yet had a very lower ACI score (121.6), 

suggesting that these sounds are not driving ACI scores up. Daytime ACI scores seemed to 

vary more throughout the daytime (Figure 3.6) and between sites (Figure 3.7B) than at night-

time, where scores seemed more consistent throughout the night and between sites (Figure 

3.6 & Figure 3.7D). This might be indicative of a more homogenised nocturnal eco-acoustic 

community compared to daytime. Dawn saw the first drop of the day in ACI across all  

Infrastructure Pressure Zones but seemed to have the largest spread of ACI values of any 

time slot in the 24-hour period (Figure 3.6; Figure 3.7A). Thus, although a drop in ACI at 

dawn is in misalignment with our expectations, this greater variation around median dawn 

ACI values nevertheless portrays this hour as an important time of day for eco-acoustic 

communities, as expected. This counter-intuitive drop in ACI at dawn has been previously 

described in tropical climates but not temperate (Eldridge et al., 2018). Despite these 

observed trends, ACI scores were relatively stable across the 24-hour period, with revealed 

diurnal patterns being a lot less pronounced than those depicted using other acoustic indices 

in other studies (Bradfer‐Lawrence et al., 2019; Dröge et al., 2021). This suggests that ACI 

might not be the best predictor of diurnal patterns in soundscapes. However due to time and 

computing power limitations, we were not able to describe the soundscape using more than 

one index. Hence, further studies could undergo a similar study but use a multitude of 

commonly used acoustic indices (such as the Acoustic Diversity index, the Acoustic 

evenness index, the Normalised difference soundscape index, the Bioacoustic index, and the 

Acoustic entropy index) to explore which describe the diurnal patterns within the 

soundscapes in Temburong the best.  

As with daily activity patterns, ecosystems tend to follow yearly cycles of activity, known as 

seasonal cycles. Most organisms rely on predictable environmental conditions to undergo 

many of their essential behaviours, such as reproduction (Wingfield et al.,1992). However, 

depending on the climate of the ecosystem in question, variation within the cycle can be 

more or less pronounced. Ecosystems nearer the equator have less environmental variance 

between seasons than temperate climates nearer the poles, with the major change being the 

level of precipitation (Trenberth, 1983). Many areas in the tropics experience a ‘wet’ 

(otherwise known as a monsoon) and ‘dry’ season, instead of the four seasons which take 

place in temperate regions. However, changes in precipitation can be very localised even 

within certain parts of the tropics. For instance, Borneo has two monsoons (North-East 

monsoon between December and March, and the South-West monsoon between June and 

September), yet climate varies greatly between regions of the island, with the south being 

significantly drier than the north (Phillips & Phillips, 2014). Thus, the fact that we observed 

only a weakly significant negative effect of Julian day on ACI scores was in line with our 
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expectations – validating our 4th hypothesis –, as Brunei is a tropical ecosystem with little 

seasonal variation despite experiencing some shifts in precipitation levels. Our ARUs were 

deployed from February to July, thus monitoring the end of one monsoon, the dry period 

between the two, and the start of the next monsoon. Most acoustic studies are short term, 

and we did not find previous work exploring the seasonal variation of ACI in the tropics. 

Nevertheless, due to logistical limitations, we were only able to collect data for six months, 

leaving half the year with no data. Thus, it would be interesting to conduct a similar study in 

the latter half of the year to explore whether there is a greater impact of seasonality on ACI 

score than we have been able to describe here. 

Temporal patterns are not the only factor influencing Temburong’s eco-acoustic communities: 

the proximity of roads caused a significant, but small, increase in ACI scores. A similar trend 

was observed between Infrastructure Pressure Zones, with the LIP zone having significantly 

lower ACI scores than the other two Infrastructure Pressure Zones, followed by the HIP zone 

and then the MIP zone. Hence our 3rd proposed hypothesis was not validated by our findings. 

Indeed, this result was the opposite of what we were expecting to find, as generally there is a 

greater level of biodiversity in more remote areas, as roads cause detrimental effects to 

wildlife (Bennett, 2017; Laurance et al., 2009), theoretically inducing higher ACI scores. It is 

unlikely that the ACI scores are being directly driven up by traffic noise as it has been stated 

that ACI is insensitive to anthropogenic sounds (Eldridge et al., 2018; Pieretti et al., 2011). 

Nevertheless, another study correlating proximity of roads to ACI levels found similar trends 

(Pieretti & Farina, 2013), with others also finding lowest ACI scores in primary forests (Dröge 

et al., 2021). It can be suggested that higher ACI scores nearer roads could indicate a higher 

level of acoustic energy, but not necessarily a higher level of biodiversity. Species could be 

vocalising more and at greater amplitudes nearer roads to compensate for signal masking by 

traffic noise (Figure 3.3; Pieretti & Farina, 2013). Conversely, species in undisturbed 

environments may not need to vocalise as loudly or frequently to communicate the same 

amount of information as in a disturbed environment (Brumm, 2004; Brumm & Slabbekoorn, 

2005). Additionally, the presence of roads creates a larger area of edge habitat, potentially 

beneficial to certain species (Ries et al., 2004; Ries & Sisk, 2010). All it would take is a 

distinct and highly vocal species, with an acoustically complex call, that prospers in edge 

habitats – and thus dominates areas in proximity to roads – to drive ACI scores up in such 

sites. Furthermore, studies have shown that ecotones – such as the MIP zone – harbour 

more species that other habitats as they present an overlap in habitat types, thus supporting 

more organisms overall (Maes et al., 2014). Additionally, in naturally complex environments – 

such as primary rainforests – different species’ vocalisation boundaries may overlap, 

resulting in reduced acoustic intensity variation and ultimately lower ACI scores (Dröge et al., 
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2021). This might suggest that ACI is not an accurate (or at least reliable) biodiversity 

indicator in tropical ecosystems (Eldridge et al., 2018). Studies have found either positive, 

negative, or no correlations between species – notably bird – diversity and abundance and 

ACI scores (See Table 1 in Bateman & Uzal, 2022). Thus, more research must be conducted 

exploring the relationship between ACI scores and true biodiversity levels in order for such 

acoustic tools to become commonplace in rapid biodiversity assessments during 

conservation projects. To avoid having to undergo more fieldwork, future studies could lean 

on a project design used by Pieretti et al. (2011) where a recogniser is built to detect all bird 

calls and correlate findings to ACI scores and/or other acoustic indices. 

Nevertheless, other environmental variables we considered proxies for infrastructure 

expansion (proximity to buildings and level of biomass at the sites) did not significantly 

impact ACI. It is somewhat surprising that proximity to buildings did not significantly influence 

ACI scores as the presence of buildings, and more generally the presence of people, is 

known to cause negative anthropogenic impacts on organisms, ecosystems, and their 

interactions (Morris, 2010; Prakash & Verma, 2022). This is often due to noise (Sordello et 

al., 2020) or light pollution – namely Artificial Light at Night (ALAN) (Dominoni, 2015; Falchi et 

al., 2016; Gaston et al., 2015; Rich & Longcore, 2013) – being most prevalent in or near 

urban areas. Thus, the fact that buildings did not have a significant effect on ACI in 

Temburong, indicates that the proximity to human settlements is not causing significant 

disruption to the acoustic complexity of the soundscapes here. This is a positive result as 

noise and light disturbance can have widespread negative impact on biodiversity, ranging 

from changing foraging and reproduction behaviours, as well as organisms’ fitness, predation 

risk, and reproductive success – all of which can have cascading effects at larger ecological 

scales (Newport et al., 2014). Again, it is surprising that biomass did not impact ACI scores 

as we would expect a higher level of biomass to represent either greater structural 

complexity and/or resources present at a given site, and thus supporting more organisms 

(Basham et al., 2019; Niklaus et al., 2017; Pace et al., 1999), ultimately resulting in higher 

ACI scores. However, another study relating ACI to vegetation variables also found no 

correlation (Fuller et al., 2015), whilst another study found a positive correlation between the 

two (Farina & Pieretti, 2014) possibly suggesting that this index is not a reliable proxy to 

describe vegetative variations in habitats.  

Overall, using the ACI to quantitatively describe the soundscapes across our study area 

provided a good baseline understanding of Temburong’s eco-acoustic communities and how 

they respond to various temporal and environmental factors. Nevertheless, there remains too 

much uncertainty surrounding the biological meaning of the results of various acoustic 

indices, including that of the ACI, limiting their use in ecological research for now. Acoustic 
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indicators are not yet clear indicators for biodiversity and ecosystem health and thus have 

limited power over conservation decision-making until further development. Here we describe 

the diurnal and seasonal patterns in soundscapes, with ACI scores decreasing from midnight 

to midday and increasing thereafter, as well as decreasing slightly as the year progressed. 

ACI scores were sensitive to the proximity of roads, showing an unexpected increase closer 

to roads. However, ACI scores seemed unaffected by the presence of buildings or changes in 

biomass levels. We would like to emphasise that the use of acoustic indices in ecological 

studies is a relatively new practice and results of this chapter remain preliminary. Further 

work must be done to fully describe Temburong soundscapes (through using multiple 

acoustic indices simultaneously) and consolidate the true significance of ACI scores (through 

correlating results with other in situ proxies of biodiversity). 
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Chapter 4 

Comparing the performance of Helmeted 

Hornbill acoustic recognisers built using 

Kaleidoscope Pro 

4.1 Abstract 

Auditory signalling provides a means for key social communication in many species, with 

birds being amongst the most vocal taxa. Such vocalisations also provide a useful way for 

humans to detect and monitor vocal species. Autonomous Recording Units (ARUs) have 

revolutionised the field of surveying vocalising species, by providing a non-intrusive remote-

sensing technology capable of being deployed in the field for long periods of time, providing 

many benefits over traditional surveying methods. Nevertheless, extracting key information 

from large audio datasets in a reliable but time-efficient manner remains a challenge. Here, 

we build and trial six recognisers (algorithms to detect and extract target calls from audio 

data) to detect the call of Helmeted Hornbills (Rhinoplax vigil) using the software 

Kaleidoscope Pro. The recognisers varied in the type of training data provided and in the 

labelling of training calls. We tested all six recognisers on a subset of field data and 

compared their performance. We found that the recogniser trained using a sample of 

Helmeted Hornbill calls of varying quality, and where the calls were collected from within the 

study region, performed best overall. By contrast, recognisers trained using sample calls 

from across the species range (from an online audio repository) performed less well. 

Providing recognisers with training calls of varying perceived quality enables them to detect 

more target calls than those built on high-quality calls only, though at the expense of more 

false positives. The results suggested that recognisers are sensitive to the background noise 

in the training data as well as to the provenance of the training calls. Our findings that the 

use, in recogniser training, of generic calls from across a species range were less capable of 

detecting vocalisations than local recordings, leads us to recommend that, where possible, 

recogniser training data should be locally sourced – at least in situations where the algorithm 

is only to be applied locally. 
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4.2 Introduction 

Animal communication is a focus of social interaction in many species. Interactions are 

mediated via specific sensory domains and can be conveyed using cues such as displays 

(both through ritualistic movements and architectural structures), physical touch, scent 

production, and auditory signalling. Some even rely on multi-component signalling (Bro-

Jørgensen, 2010; Ruxton & Schaefer, 2013) making them vulnerable to environmental 

change. Auditory signalling is a frequently used mode of communication for invertebrates and 

vertebrates alike. Birds are amongst the most vocal taxa on earth (Gill & Bierema, 2013), 

producing alarm, mating, contact, and flight calls, as well as songs for some species. Some 

are capable of vocal learning and even compositional syntax, allowing them to express 

almost limitless meanings with a finite set of calls (Suzuki et al., 2016). Nevertheless, the 

study of complex animal communications remains in its infancy (Hebets, 2011; Higham & 

Hebets, 2013).  

The research community is developing new ways to record and analyse sounds created by 

biological organisms, otherwise known as biophony (Pijanowski et al., 2011). Efforts have 

mainly been concentrated on the study of wild animals, where biophony is placed in its 

ecological context, alongside geophony (sounds from non-biological origin) and anthrophony 

(sounds created by human activities). A breakthrough in terms of recording acoustic data was 

the use of Autonomous Recording Units (ARUs). By collaborating with engineers and 

computer scientists, biologists have created technology capable of remotely recording 

sounds in the field in an automated way. ARUs allow users to non-invasively survey animals 

to gain further understanding about their social interactions and monitor effects of variables 

of interest on phenology and wider biodiversity (Blumstein et al., 2011). ARUs offer a 

multitude of benefits over traditional survey methods, such as: removal of observer bias, 

digital datasets, higher repeatability and accuracy of data collection, increased sampling 

efforts for significantly lower costs, accessibility to remote locations, and ability to sample 

species that vocalise at anti-social times or too irregularly to monitor using traditional site-visit 

methods (Zwart et al., 2014). Although originally used principally for marine mammal 

research (Sousa-Lima et al., 2013), ARUs are increasingly used in terrestrial habitat surveys, 

particularly for avian studies (Shonfield & Bayne, 2017) because many members of this 

taxon are highly vocal. Additionally, ARUs allow collection of digital ‘big data’, often spanning 

large distances and/or time periods. 

Large scale acoustic recording projects which collect vast amounts of audio data are thought 

to be critical to future conservation monitoring for many vocalising species (Brandes, 2008). 

Nevertheless, extracting information of interest from the immense quantity of audio 
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recordings typically acquired remains problematic. Different elements can be drawn out from 

audio data depending on the research question. The data can be processed using a ‘big 

picture’ approach whereby the soundscape is analysed, often by summarising the acoustic 

structure of the data with acoustic indices (Chapter 3; Alcocer et al., 2022; Bradfer‐Lawrence 

et al., 2019; Sueur et al., 2014). Alternatively, the vocalisations of focal species can be 

detected, extracted, and their frequency compared to variables of interest and/or abundance 

estimated (Rycyk et al., 2022; Pérez-Granados & Schuchmann, 2021; Enari et al., 2019). 

However, finding a method that allows efficient and reliable extraction of information of 

interest from audio datasets can be challenging, a difficulty encountered with other 

automated data collection methods such as camera traps (Norouzzadeh et al., 2018). For 

example, the goal in this study is to detect the calls of a single bird species – the Helmeted 

Hornbill (Rhinoplax vigil) – to later assess the impact of land-use on this Critically 

Endangered species (BirdLife International, 2020; Chapter 5). We collected 7 141 hours of 

audio recording in total. Thus, assuming we worked 5 days per week for 8 hours per day, it 

would take 3.5 years just to listen to the audio data. Documenting detections and non-

detections would further add to the workload. Given the relatively small scale of this 

recording project, compared to larger scale and duration ARU projects, the critical need for 

automated processing and identification becomes clear (Blumstein et al., 2011). 

There are several software packages – both commercial and open source – available to 

automate the analysis of audio datasets, namely using recognisers: algorithms capable of 

automatically detecting and extracting target calls from audio data. These packages vary in 

terms of the different types of processing and classification algorithms they use, which are 

sometimes tailored to research aims as well as to the structure of the audio files and target 

sounds (Knight et al., 2017; Brooker et al., 2020). For instance, Brandes (2008) suggests 

there are at least five types of discrete sound unit shapes that make up bird sounds and a 

plethora of classification models that best suit each. Kaleidoscope Pro is one of the 

commercially available software packages (US$300 annual license, Wildlife Acoustics, USA) 

which aids in acoustic data processing by providing a ready-to-use algorithm to detect and 

classify acoustic sounds through Hidden Markov Models (HMM). Kaleidoscope allows users 

to build species-specific recognisers using this algorithm. Although it has been suggested 

that Kaleidoscope Pro is not the most reliable software and is often outperformed by other 

software packages (Wilhite et al., 2020; Brooker et al., 2020), it presents a user-friendly 

interface suitable for use by non-specialists. 

It has also been suggested that recogniser performance can vary according to the methods 

adopted during its building phase (Brooker et al., 2020). Here, we explore this suggestion by 

building a series of recognisers to detected Helmeted Hornbill calls using Kaleidoscope Pro 
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but employing different construction methods for each recogniser, (1) by varying the training 

datasets and (2) by adjusting the labelling of training calls. The individual recogniser 

performances are measured and compared, and the advantages and disadvantages of each 

are discussed. The aim being to identify a recogniser construction method that yields the 

best performing recogniser, specifically to detect Helmeted Hornbill calls in the audio dataset 

collected in the tropical forests of Temburong, Brunei.  

 

4.3 Methods 

4.3.1 Data collection 

For details on the study site, sampling protocols, and data pre-processing, see Chapter 2. 

 

4.3.2 Building recognisers 

Signal Parameters 

To locate target calls (in this case Helmeted Hornbill calls) in the data, recognisers (referred 

to as advanced classifiers in Kaleidoscope Pro) were made using Kaleidoscope Pro 5.4.8 

(Wildlife Acoustics Inc., Maynard, MA, USA), an automatic signal recognition software to aid 

in audio data analysis. To make the data processing more efficient, signal parameters of the 

Helmeted Hornbill call (frequency band of call, length of call, and time between calls) are 

entered into Kaleidoscope Pro before the scanning process begins, thus limiting the output 

detections to sounds that fit those criteria. The signal parameters used to help locate 

Helmeted Hornbill calls were acquired using example calls from Xeno-Canto (an online audio 

repository: www.xeno-canto.org), viewed using the Kaleidoscope Pro viewer window, which 

produces a real time spectrogram of audio recordings (See Figure 4.1). As the availability of 

Helmeted Hornbill calls on Xeno-Canto are restricted (to protect the species from trapping 

using audio playback), a special access agreement was obtained by directly contacting the 

website and explaining the goals of the research project. The signal parameters used to help 

detect Helmeted Hornbill calls were as follows: 250 Hz minimum frequency, 750 Hz 

maximum frequency, 10s minimum detection length, 25s maximum detection length, and 

2.8s maximum inter-syllable gap. The maximum inter-syllable gap is the length of time after a 

call syllable which, when exceeded without detection of another syllable, classes the next call 

syllable detected as a separate call. A 21.33ms Fast Fourier Transform (FFT) window was 

used as this was the recommended setting by Wildlife Acoustics, Inc. for low frequency 

sounds as it provides higher resolution of frequency. Due to the Helmeted Hornbill call being 

http://www.xeno-canto.org/
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so low frequency, it is acoustically partitioned from most other bird calls thus making it easier 

to detect amongst the bulk of higher frequency noise in the audio data. 

Training data 

To explore which construction approach yields the best recogniser in Kaleidoscope Pro, six 

different recognisers were built, and their performance compared. Some were built using only 

the data collected at the study sites as part of this research programme, whilst others were 

built on the same set of collected data in addition to downloaded Helmeted Hornbill calls from 

Xeno-Canto. In some recognisers, only high-quality calls were retained. A poor-quality call 

was defined as a masked or very faint Helmeted Hornbill call. The details on how each 

recogniser was built are provided in Table 4.1. The set of collected data used as training data 

across all recognisers was a subset of the total audio dataset collected at the study site. The 

training data were obtained from five ARUs. The localities of these five sites, all of which 

included some Helmeted Hornbill vocalisations, are not specified here to avoid informing 

future persecution. The training sites tended, from preliminary data exploration, to have more 

frequent calls. Although the selected sites were grouped, they were nonetheless selected as 

training data following the recommendation of Enari et al. (2019), as typically the more calls 

that are used to build a recogniser, the better it performs. 

Recogniser construction workflows 

The workflow used to build a recogniser in Kaleidoscope Pro is a three-tier process.  

i) Firstly, the software detects all the sounds in the training data provided that fit the a 

priori signal parameters given. Kaleidoscope Pro then automatically groups all the 

detections into clusters of similar sounds using the cluster analysis function. This 

process is based on statistical density (explained below), and results in the creation of 

a csv output file. As explained by Pérez-Granados & Schuchmann (2021), 

Kaleidoscope Pro estimates the ‘discrete cosine transform coefficients of the 

spectrum of the detections’ and fits a Hidden Markov Model based on the vector of 

these. This statistical-state machine model has been used in multiple software 

packages dealing with sound recognition due to their “robustness and flexibility for 

eco-acoustic signal classification across a variety of species” (Enari et aI., 2019). K-

means clustering (Pérez-Granados & Schuchmann, 2021) is then used to groups the 

vectors into clusters. Clusters are formed by grouping detections together based on 

minimising distances of each detection from ‘cluster centres’. The ‘maximum distance 

to cluster centre for building clusters’ was set to 0.5 for all six Recognisers, which is 

the recommended setting for this parameter. A smaller value for maximum cluster 

distance results in the creation of more clusters, with the sounds in each cluster being 



72 
 

more similar. Within each cluster, the detections are ordered from ‘closest-to’ to 

‘furthest-from’ the ‘cluster centre’, thus detections become less representative of the 

cluster as the list progresses. Kaleidoscope Pro also requires a ‘maximum distance 

from cluster centre to include outputs in the cluster’. In this case, the maximum value 

of 2 was inputted in the aims of maximising the target calls included in the output, 

despite the risk of increasing the number of false positives being falsely classified as 

target calls. Maximum number of states (target size of the HMM classification model) 

was set to 15, which is higher than the default setting. This higher value is 

recommended in the Kaleidoscope Pro documentation 

(https://www.wildlifeacoustics.com/resources/user-guides) for environments with a 

more diverse acoustic structure, as this can help tease apart subtle differences 

between similar sounds. As the study site was a biodiverse tropical rainforest, and 

given the results in Chapter 3, the audio data collected was deemed to have a 

‘diverse acoustic structure’. 

ii) Secondly, the user verifies all the detections in order to sort the target sounds from 

the other detections that also fit the signal parameters. This is done by manually 

labelling target sounds in the csv file, leaving non-target detections with their original 

cluster label. This will train the algorithm to further differentiate target and non-target 

calls in future datasets.  Detections which the user wishes to remove from the 

learning process altogether (e.g. heavily masked target calls) can be blank labelled.  

iii) Lastly, the same training dataset needs then to be re-scanned alongside the edited 

csv file to create a ksc file. The ksc file is a special file which can only be used by 

Kaleidoscope Pro and contains the mathematical models of the clusters that were 

made during the original cluster analysis process. The ksc file is the recogniser and it 

is scanned against new audio data to automatically detect target calls. 
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Table 4.1 Details on how each of the six recognisers (algorithms to detect and extract target 

calls from audio data) to detect Helmeted Hornbill calls were built in Kaleidoscope Pro 5.4.8 

(acoustic analysis software used in this study which groups calls based on similarity levels). 

Site calls refer to the ones collected in the field study area whilst Off-site calls are ones 

acquired through an audio repository. The audio repository used was Xeno-Canto, a free 

online audio file database. A poor-quality call was defined as a masked or very faint 

Helmeted Hornbill call. All other calls were considered high-quality. The calls were manually 

labelled by the user when processing the data. A blank labelled call is then removed from the 

recogniser training process. 

Recogniser Building method Number of calls labelled 

A - Site-only 

(all calls) 

Recogniser with prior labelling of a sample of Helmeted 

Hornbill calls of varying quality within the data collected 

in the study region.  

224 

B - Site-only 

(high 

quality) 

Recogniser with prior labelling of a sample of high-quality 

Helmeted Hornbill calls within the data collected in the 

study region. Poor-quality Helmeted Hornbill calls were 

blank labelled. 

147 

(77 blank labelled) 

C - Site (all 

calls) + off-

site (high 

quality) 

Recogniser with prior labelling of a sample of Helmeted 

Hornbill calls of varying quality from within the study 

region, augmented with a sample of high-quality calls 

from an audio repository, the latter collected from across 

the species range.  

345 

(224 from the study region and 

121 from audio repository) 

D - Site 

(high 

quality) + 

off-site 

(high 

quality) 

Recogniser with prior labelling of a sample of high-quality 

Helmeted Hornbill calls from within the study region, 

augmented with a sample of high-quality calls from an 

audio repository, the latter collected from across the 

species range. Poor-quality Helmeted Hornbill calls were 

blank labelled.  

268 

(147 from the study region and 

121 from audio repository and 

77 blank labelled) 

E- Off-site 

only (high 

quality) 

Recogniser with prior labelling of calls from across the 

species range from an audio repository, with all detected 

on-site Helmeted Hornbill calls blank labelled.  

121 

(224 blank labelled) 

F - Off-site 

(high 

quality) + 

on-site 

(unlabelled) 

Recogniser with prior labelling of Helmeted Hornbill calls 

from an audio repository containing calls from across the 

species range, with all detected Helmeted Hornbill calls 

from study site data left in original cluster.  

121 
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Figure 4.1 Sound spectrogram of a Helmeted Hornbill call acquired using Kaleidoscope Pro 5.4.8 software (the acoustic analysis software 

used in this study). The two horizontal lines indicate the frequency range (250 - 750 kHz) used in the construction of the Helmeted Hornbill 

recogniser (algorithm to detect and extract target calls from audio data) used for the detection of the target calls during analysis. The two 

coloured boxes indicated the two phases of the call (hoot and cackle). 
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4.3.3 Evaluating recogniser performance 

Test data subset 

To assess recogniser performance, all six recognisers were tested against the same subset 

of non-training data and the results compared. To create a test data subset, 69 audio 

samples (one per sampling site) were extracted, with the file from each site being randomly 

selected. Additionally, 35 further samples containing at least one Helmeted Hornbill call were 

included, with these 35 samples being evenly distributed across all sites known to have at 

least one audio file containing at least one Helmeted Hornbill call. The 35 samples were 

added due to the sparsity of Helmeted Hornbill calls, to ensure a minimum number of files in 

the test data subset contained Helmeted Hornbill calls. Samples consisting of recordings 

made at dawn or dusk were excluded from the subset and replaced with a new randomly 

selected file to ensure all audio files in the test data subset were the same length (7 

minutes), thus ensuring balanced stratified random sampling across sites. Therefore, in total, 

the test data subset was made up of 728 mins of acoustic survey ((69 + 35 sites) x 7 mins 

recording per site).  

Manual call detection 

Using the Kaleidoscope Pro viewer window, we manually scanned through spectrograms of 

the test data subset, whilst simultaneously listening to the audio. This allowed us to record all 

the Helmeted Hornbill calls present in the selected files as well as any other non-target calls. 

A Helmeted Hornbill call was defined as an individual making at least part of the whole 

Helmeted Hornbill call. Typically, Helmeted Hornbills tend to produce very long calls which 

can be sorted into two distinct phases: the hoots and the cackle (Figure 4.1). The hoot phase 

comes first and consists of a long series of low-pitched hoots which start off very widespread 

and accelerate in frequency over time until they reach a climax, otherwise known as the 

cackle phase (Haimoff, 1987). The recognisers were built to detect the hoot phase as it is 

lower in frequency and longer than the cackle phase. These factors make this phase of the 

call easier to detect as, in this environment, fewer animals vocalised at lower frequencies 

and the longer duration of the call increases the likelihood that the recognisers will detect it. 

The start and end time of each hoot phase was recorded manually. If a call could not be 

classified as a Helmeted Hornbill with confidence (due to masking or faintness), it was 

discarded from the analysis. 

Calculating performance metrics 

To determine the ability of each recogniser to correctly identify Helmeted Hornbill calls, a 

series of eight performance metrics were calculated (Table 4.2) based on a confusion matrix 

used to evaluate machine learning outcomes (Table 4.3). The manually detected start and 
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stop times were compared to each of the calls identified by all six recognisers: detection 

overlap between the two sets of start and stop times were taken on a second-by-second 

basis for all six recognisers. All metrics were then calculated for a 1000 randomly selected 

points as the data points were not independent of each other. This sampling process was 

repeated 1000 times to account for any possible sampling bias, with reported metrics 

calculated as the mean and standard deviation across all samples. The metrics were 

calculated in R version 4.1.2 (R Core Team, 2022) using the package pROC (Robin et al., 

2011). The area under the receiver operating characteristic curves (AUC - ROC) was used to 

assess the trade-off between the false positive rate and sensitivity (Table 4.2) and all 

performance metrics were used to assess which of the six recognisers performed best 

overall. The Area Under the Curve (AUC) can vary between 0 and 1. When AUC is 0, the 

recogniser is perfectly incorrect, whereas an AUC value of 1 signifies perfect discrimination. 

A value of 0.5 suggests a recogniser is performing no better than random. Hence AUC 

scores approaching 1 signify better discrimination in terms of predicting true positives and 

true negatives. 

 

Table 4.2 Metrics used to calculate and compare performance of the six Helmeted Hornbill 

recognisers (algorithms to detect and extract target calls from audio data). For all metrics, the 

scores are a value between 0 and 1 (except for TSS where values range from -1 to 1), with 1 

being a perfect performing recogniser. All metrics are defined in detail and their mathematical 

formula given. FP = False Positive; TN = True Negative; TP = True Positive; FN = False 

Negative; N = TP+FP+FN+TN. 

Metric & meaning Formula 

False Positive Rate (FPR) 

• A measure of the percentage of FP 

against all negatives 

 

𝐹𝑃

𝐹𝑃 + 𝑇𝑁
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Area Under the Curve (AUC) 

• Refers to the area under the receiver 

operating characteristic curve (AUC – 

ROC) which plots sensitivity against (1-

specificity) for all possible values of 

threshold probability (Metz, 1978) 

• AUC is the compromise between False 

Positive Rate and sensitivity 

 

𝐹𝑃𝑅

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦
 

 

Sensitivity 

• The proportion of TP correctly predicted 

• Equivalent to True Positive Rate or 

Recall 

If score < 1, recogniser is missing TP and thus 

has a higher False Negative Rate 

 

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Accuracy  

• The proportion of predictions the 

recognisers correctly assigned 

 

𝑇𝑃 +  𝑇𝑁

𝑁
 

 

Precision 

• The proportion of positive detections 

that are TP 

 

𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Specificity 

• The proportion of TN correctly 

predicted 

• Equivalent to True Negative Rate 

 

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
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(Cohen’s) Kappa (κ) 

• The proportion of chance-expected 

disagreements which do not occur 

(Cohen,1960) 

• Criticized for being dependent on 

prevalence 

 

(
TP + TN

N
) – 

(TP + FP) ∗  (TP + FN) +  (FN + TN) ∗ (TN + FP)
N2

1 −
(TP + FP) ∗  (TP + FN) + (FN + TN) ∗  (TN + FP)

N2

 

 

True Skill Statistic (TSS) 

• Alternative to Kappa but accounts for 

prevalence in the data 

 

(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 + 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦) − 1 

 

 

 

 

Table 4.3 Confusion matrix used in the performance evaluation of the six Helmeted Hornbill 

recognisers (algorithms to detect and extract target calls from audio data). FP = False 

Positive; TN = True Negative; TP = True Positive; FN = False Negative. Green cells show a 

correct result and red cells show an incorrect result. The best performing recogniser 

maximises the number of True Positives and True Negatives (correct results) whilst 

minimising the number of False Positives and False Negatives (incorrect results). Actual 

values refer to whether a call is a Helmeted Hornbill call or not and Predicted values refer to 

whether the recogniser in question states that a call is Helmeted Hornbill call or not. 

 
Actual values 

Positive Negative 

P
re

d
ic

te
d
 v

a
lu

e
s
 

P
o

s
it
iv

e
 

TP FP 

N
e

g
a

ti
v
e
 

FN TN 
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4.3.4 Statistical analysis of performance 

We tested for statistical differences between the values of AUC, Kappa, and TSS calculated 

for each recogniser using an ANOVA test for each metric respectively. We then performed a 

Tukey post-hoc pairwise tests to see where the significant differences laid.  

 

4.4 Results 

Recogniser A (built with prior labelling of a sample of Helmeted Hornbill calls of varying 

quality calls within the data collected in the study region and with no augmentation from the 

sample of high-quality calls from the audio repository (Table 4.1)) had the highest 

performance metric values overall (Table 4.4; Figure 4.2 & 4.3), though recognisers D and E 

were equally as good in terms of Precision and recognisers D, E, and F were equally as 

good in terms of Specificity (Table 4.4). Moreover, the three summary metrics (AUC, TSS, 

Kappa) were all in agreement regarding the ordering of model performance (Figure 4.2 & 

4.3). Thus, no single recogniser performed best in all aspects measured, but the best scoring 

one overall was recogniser A.  

The ANOVAs showed a significant difference between performance metric values of the 

recognisers’ AUC (F (5) = 13 588, p < 2-16), Kappa (F (5) = 15 867, p < 2-16), and TSS values 

(F (5) = 13 588, p < 2-16). The Tukey post-hoc tests for multiple comparisons showed that 

there was a statistically significant difference between the performances of all six recognisers 

for all three summary metrics. Thus, recogniser A performed significantly better than all the 

other recognisers in all three statistically tested metrics. 

 

 

 

 

 

 

 

 

 



80 
 

Table 4.4 Mean values of the six Helmeted Hornbill recognisers’ (algorithms to detect and 

extract target calls from audio data) performance metrics, along with their standard deviation, 

shaded according to the metric values in individual columns. Red signifies low values, 

through brown and pastel orange, to pastel blue and blue indicating higher values within a 

column. Higher values are optimal as they suggest greater recogniser performance. Full 

names of shortened Performance Metrics names are as follows: AUC = Area Under the 

Curve; Kappa = Cohen’s Kappa; TSS = True Skill Statistic. 

 Performance Metric 

Recogniser AUC Accuracy Precision Sensitivity Specificity Kappa TSS 

A 
0.788 

(±0.023) 

0.950 

(±0.007) 

0.968 

(±0.021) 

0.578 

(±0.047) 

0.998 

(±0.002) 

0.697 

(±0.040) 

0.576 

(±0.047) 

B 
0.697 

(±0.021) 

0.917 

(±0.009) 

0.952 

(±0.030) 

0.398 

(±0.042) 

0.997 

(±0.002) 

0.523 

(±0.044) 

0.395 

(±0.042) 

C 
0.719 

(±0.021) 

0.923 

(±0.008) 

0.948 

(±0.029) 

0.441 

(±0.042) 

0.996 

(±0.002) 

0.565 

(±0.042) 

0.437 

(±0.042) 

D 
0.708 

(±0.022) 

0.924 

(±0.009) 

0.968 

(±0.024) 

0.419 

(±0.044) 

0.998 

(±0.002) 

0.549 

(±0.045) 

0.417 

(±0.044) 

E 
0.633 

(±0.019) 

0.894 

(±0.010) 

0.963 

(±0.031) 

0.268 

(±0.037) 

0.998 

(±0.001) 

0.380 

(±0.045) 

0.266 

(±0.037) 

F 
0.572 

(±0.013) 

0.845 

(±0.011) 

0.947 

(±0.042) 

0.147 

(±0.026) 

0.998 

(±0.001) 

0.215 

(±0.035) 

0.145 

(±0.026) 
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Figure 4.2 Mean performance metric scores, with their respective standard deviations 

(represented by the error bars), of the three summary metrics (AUC = Area Under the Curve; 

Kappa = Cohen’s Kappa; TSS = True Skill Statistic) used to compare performance of all six 

Helmeted Hornbill recognisers (algorithms to detect and extract target calls from audio data). 

The recogniser with the highest mean performance metric scores is the best performing 

recogniser, successfully differentiating True Positives from False Positives and True 

Negatives from False Negatives. 
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Figure 4.3 The performance of the six recognisers (algorithms to detect and extract target 

calls from audio data) when detecting and classifying the call of Helmeted Hornbill within 

acoustic surveys made through the 24-hour period. The greater the Area Under the Curve 

(AUC), the better performing the recogniser. When AUC is 0, the recogniser is perfectly 

incorrect, whereas an AUC value of 1 signifies perfect discrimination. A value of 0.5 suggests 

a recogniser is performing no better than random. AUC scores approaching 1 (or the greater 

the coverage under the curve) signify better discrimination in terms of predicting True 

Positives and True Negatives, and thus indicate a better performing recogniser. 

A 
B 
C 

D 

E 

F 
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4.5 Discussion 

This study explored the suggestion that recogniser performance can vary according to the 

methods adopted during its building phase (Brooker et al., 2020) and provides guidance for 

potential users of such classification software. To do this, we developed six recognisers in 

Kaleidoscope Pro to automatically detect our target species (Helmeted Hornbill), using an 

array of different construction methods (Table 4.1) and compared their performance. We 

found significant differences in the performance of all six recognisers. Overall, the best 

performing recogniser (recogniser A) was built with prior labelling of a sample of Helmeted 

Hornbill calls of varying quality within the data collected in the study region. This recogniser 

had significantly higher AUC, TSS, and Kappa scores (Figure 4.2 & 4.3; Table 4.4) as well as 

higher/equal accuracy, precision, sensitivity, and specificity scores than any of the other five 

recognisers (Table 4.4). The only performance metrics recogniser A did not outperform all 

other recognisers in are precision and specificity: recognisers D and E had similar scores of 

precision, and recognisers D, E, and F had equal scores of specificity. 

This result suggests the best method for building the most effective Helmeted Hornbill 

recogniser overall in Kaleidoscope Pro is to use data from the study site, as opposed to 

across the species range, in the training phase. Although minimal research has been done to 

investigate the spatial variation of soundscapes (Pijanowski et al., 2011; Job et al., 2016; 

Mullet et al., 2016), the fact that recognisers built using training data from across the species 

range do not perform as well when applied to our dataset suggests variation between the 

soundscape of other areas within the species range and the soundscape in the study area 

(Rodriguez et al., 2014). The soundscape is defined as “the entire sonic energy produced by 

a landscape and is the result of the overlap of three distinct sonic sources: geophony, 

biophony, and anthrophony” (Farina, 2013). Soundscapes are created by the organisms of a 

particular biome and their surroundings and thus vary with location. The soundscape 

therefore contains all the ‘background’ and non-target sounds recognisers must separate 

from target sounds. The fact that the best performing recogniser used vocalisation records 

collected only within the local study region as training data, suggests this recogniser is more 

fine-tuned to discriminate the target sounds from non-target sounds within Temburong’s 

soundscape specifically. However, further research needs to be done to compare the 

performance of these recognisers in other locations: we hypothesise that recogniser A might 

not perform better than recognisers built using data from across the species range when 

applied to data collected outside of Temburong. This was not conducted in this study due to 

time constraints and lack of access to a similar audio dataset from a different location. 

Recognisers built using data from across the species range, although less efficient than 

recogniser A in Temburong, might be more adapted to use on data from across the species 
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range and thus have a more generalised usage than the latter. However, this discrepancy in 

recogniser performance between those trained with Xeno-Canto recordings versus on-site 

recordings might also be due to variation in recording devices or sound quality. Indeed, all 

the recordings in this study were made systematically and with the same recording devices 

whereas the recording methods for Xeno-Canto data vary and are ad hoc, potentially 

resulting in non-representative variability between calls and soundscapes present in these 

recordings.  

In general, studies using recognisers to detect focal species tend to use data collected within 

the study region to build recognisers (Rycyk et al., 2022; Pérez-Granados & Schuchmann, 

2021; Enari et al., 2019). The lower performance observed when using data from across the 

species range may also be due to geographic variation of the call across the species’ range. 

Although not yet studied in Helmeted Hornbills, animal vocalizations are known to differ not 

only within and between individuals but also between regions (Krebs & Kroodsma, 1980; 

Towsey et al., 2018; Helenbrook et al., 2019). Evaluating the utility of recognisers built on 

freely available data - such as are accessible on, for example, open-source audio databases 

– could be vital in more widespread adoption of recognisers in avian monitoring, as this could 

eliminate the time-consuming step of collecting training data in the field. 

Additionally, we found that the most effective Helmeted Hornbill recogniser was one that 

used sample calls irrespective of their perceived quality, outperforming recognisers built on 

only (perceived) higher quality recordings. Including lower quality calls modified the 

recognisers performance in several ways. By including such calls in the positive training data 

of a recogniser, the algorithm learns a broader array of target call examples and can thus 

correctly categorise some less distinctive calls within a dataset. Nevertheless, as indicated 

by recogniser A’s specificity score being equal to that of three other recognisers, this method 

represents a trade-off: despite detecting more target calls, this method also results in a 

higher false positive rate. This trade-off has been highlighted in other studies using 

Kaleidoscope Pro (Knight et al., 2017). Thus, although labelling all quality call types ensures 

higher precision, it concomitantly lowers specificity, in turn lowering the proportion of true 

negatives correctly predicted. Thus, these trade-offs should be considered alongside the 

research aims and objectives of a particular project. In this project, the aim was to detect the 

maximum number of Helmeted Hornbill calls in the data, even if this meant spending more 

time manually checking for false positives. In contrast to the findings here, a previous study 

suggested that training recognisers with only high-quality calls improves the overall 

performance of the recognisers and did not change the number of true positives detected 

(Knight & Bayne, 2019), suggesting that the importance of call quality in recogniser creation 
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may not be consistent. There is clear scope for a more extensive study to better understand 

the importance of call quality in recognisers. 

Despite recogniser A proving to be the best recogniser for Helmeted Hornbill calls made in 

Kaleidoscope Pro, this does not necessarily make it the best potential recogniser for 

Helmeted Hornbill calls overall. Kaleidoscope Pro is one of many acoustic analysis software 

programs available; others include Raven Pro, monitoR, SongScope, and deep machine 

learning algorithms such as convolutional neural networks.  Acoustic analysis software 

programs differ in their strengths and weaknesses depending on their signal detection 

methods, preferred frequency ranges, and robustness to noise (Brandes, 2008), which need 

to be considered alongside research aims. Although this varies by species and soundscape, 

comparative studies have found that Kaleidoscope Pro is not the best performing of these 

software programs (Brooker et al., 2020). This is depicted here in the low sensitivity score. 

Although recogniser A is the best performing recogniser out of the six made here in terms of 

sensitivity, 0.578 nevertheless remains a considerably lower score compared to other 

performance metrics. This suggests that there are true positives being misclassified as 

negatives and thus overlooked (as it was too time-costly to look through all the negative 

outputs to check for false negatives). Convolutional neural networks recognisers have 

repeatedly been found to work well as recognisers (Nolan et al., 2022; Zhong et al., 2021; 

Knight et al., 2017) but present a greater computational/coding challenge during construction 

for non-experts. Ease of use is also a parameter to be considered when building recognisers: 

there is a need for user-friendly software programs to be available to ecologists and 

conservationists. Kaleidoscope Pro provides this, whilst maintaining an adequate 

performance level. Nevertheless, although presenting a challenge in terms of knowledge of 

multiple software programs, the preferable alternative to convolutional neural networks 

recognisers is constructing several recognisers using an array of different acoustic software 

(Brooker et al., 2020).  

Regardless of the software used to extract desired elements from audio datasets, ARUs 

remain powerful tools for scientific research, particularly in light of the current biodiversity 

decline crisis (Ceballos et al., 2017). This surveying method is particularly useful for cryptic 

and rare species but also provides a cheaper, less intrusive, and more efficient way of 

monitoring wildlife. Here, we present a comparison of building methods for constructing 

recognisers in Kaleidoscope Pro for studying Helmeted Hornbills in Temburong’s tropical 

rainforests. Our highest performing recogniser offers the potential to easily extract Helmeted 

Hornbill calls from a set of audio data, despite not achieving high sensitivity scores, and is 

best suited to be used in areas with a similar soundscape to Temburong. Further testing 

needs to be conducted to see how this recogniser performs in other geographical regions 
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compared to recognisers which have a poorer performance in our study area but might have 

a higher transferability to datasets with broader soundscapes. It is of utmost importance 

however to take care when handling data and tools which concern Critically Endangered 

species such as the Helmeted Hornbill, as these could ultimately worsen the problem if 

shared to poachers or illegal wildlife traders. Despite recent progress in automated 

processing and identification in audio data, there nonetheless remains great challenges 

when it comes to extracting data of interest out of the mass of acoustic data collected. 

Although this technology already exists for bats (Smith et al., 2020), active acoustic 

monitoring could present a solution to this by only recording when the target sound is 

detected. By implementing the filtering step earlier in the acoustic workflow, ARUs with inbuilt 

recognisers could be the future of biological acoustic research through essentially being in 

situ detectors as well as recorders. However, applying this to birds presents greater 

challenges as their vocalisation frequency band is lower and thus more acoustically busy 

than that of bats, this process could save a lot of time in downstream data processing. 

  



87 
 

4.6 References 

Alcocer, I., Lima, H., Sugai, L.S.M. and Llusia, D., 2022. Acoustic indices as proxies for 
biodiversity: a meta‐analysis. Biological Reviews, 97(6), pp.2209-2236. 

BirdLife International. 2020. Rhinoplax vigil. The IUCN Red List of Threatened Species 2020: 
e.T22682464A184587039. https://dx.doi.org/10.2305/IUCN.UK.2020-
3.RLTS.T22682464A184587039.en. Accessed on 29 December 2022.  

Blumstein, D.T., Mennill, D.J., Clemins, P., Girod, L., Yao, K., Patricelli, G., Deppe, J.L., 
Krakauer, A.H., Clark, C., Cortopassi, K.A. and Hanser, S.F., 2011. Acoustic monitoring in 
terrestrial environments using microphone arrays: applications, technological considerations 
and prospectus. Journal of Applied Ecology, 48(3), pp.758-767. 

Bradfer‐Lawrence, T., Gardner, N., Bunnefeld, L., Bunnefeld, N., Willis, S.G. and Dent, D.H., 
2019. Guidelines for the use of acoustic indices in environmental research. Methods in 
Ecology and Evolution, 10(10), pp.1796-1807.  

Brandes, T.S., 2008. Automated sound recording and analysis techniques for bird surveys 
and conservation. Bird Conservation International, 18(S1), pp.S163-S173. 

Bro-Jørgensen, J., 2010. Dynamics of multiple signalling systems: animal communication in 
a world in flux. Trends in Ecology & Evolution, 25(5), pp.292-300.  

Brooker, S.A., Stephens, P.A., Whittingham, M.J. and Willis, S.G., 2020. Automated detection 
and classification of birdsong: An ensemble approach. Ecological Indicators, 117, p.106-609. 

Ceballos, G., Ehrlich, P.R. and Dirzo, R., 2017. Biological annihilation via the ongoing sixth 
mass extinction signalled by vertebrate population losses and declines. Proceedings of the 
National Academy of Sciences, 114(30), pp.E6089-E6096. 

Cohen, J., 1960. A coefficient of agreement for nominal scales. Educational and 
Psychological Measurement, 20(1), pp.37-46.  

Enari, H., Enari, H.S., Okuda, K., Maruyama, T. and Okuda, K.N., 2019. An evaluation of the 
efficiency of passive acoustic monitoring in detecting deer and primates in comparison with 
camera traps. Ecological Indicators, 98, pp.753-762. 

Farina, A., 2013. Soundscape ecology: principles, patterns, methods and applications. 
Springer Science & Business Media. Berlin. 

Gill, S.A. and Bierema, A.M.K., 2013. On the meaning of alarm calls: a review of functional 
reference in avian alarm calling. Ethology, 119(6), pp.449-461.  

Haimoff, E.H., 1987. A spectrographic analysis of the loud calls of helmeted hornbills 
Rhinoplax vigil. Ibis, 129(2), pp.319-326.  

Hebets EA. 2011. Current status and future directions of research in complex signaling. Curr. 
Zool. 57, i–v. 

Helenbrook, W.D., Linck, N.A., Pardo, M.A. and Suarez, J.A., 2019. Spatial variation in black-
headed night monkey (Aotus nigriceps) vocalizations. bioRxiv, p.688333. 

Higham, J.P. and Hebets, E.A., 2013. An introduction to multimodal 
communication. Behavioral Ecology and Sociobiology, 67, pp.1381-1388. 

Job, J.R., Myers, K., Naghshineh, K. and Gill, S.A., 2016. Uncovering spatial variation in 
acoustic environments using sound mapping. PloS one, 11(7), p.e0159883. 

https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22682464A184587039.en
https://dx.doi.org/10.2305/IUCN.UK.2020-3.RLTS.T22682464A184587039.en


88 
 

Knight, E., Hannah, K., Foley, G., Scott, C., Brigham, R. and Bayne, E., 2017. 
Recommendations for acoustic recognizer performance assessment with application to five 
common automated signal recognition programs. Avian Conservation and Ecology, 12(2). 

Knight, E.C. and Bayne, E.M., 2019. Classification threshold and training data affect the 
quality and utility of focal species data processed with automated audio-recognition 
software. Bioacoustics, 28(6), pp.539-554. 

Krebs, J.R. and Kroodsma, D.E., 1980. Repertoires and geographical variation in bird song. 
In Advances in the Study of Behavior (Vol. 11, pp. 143-177). Academic Press. Cambridge, 
Massachusetts. 

Metz, C.E., 1978, October. Basic principles of ROC analysis. In Seminars in nuclear 
medicine (Vol. 8, No. 4, pp. 283-298). WB Saunders. London. 

Mullet, T.C., Gage, S.H., Morton, J.M. and Huettmann, F., 2016. Temporal and spatial 
variation of a winter soundscape in south-central Alaska. Landscape Ecology, 31(5), pp.1117-
1137. 

Nolan, V., Scott, C., Yeiser, J.M., Wilhite, N., Howell, P.E., Ingram, D. and Martin, J.A., 2022. 
The development of a convolutional neural network for the automatic detection of Northern 
Bobwhite Colinus virginianus covey calls. Remote Sensing in Ecology and Conservation, 
9(1), pp. 46–61 

Norouzzadeh, M.S., Nguyen, A., Kosmala, M., Swanson, A., Palmer, M.S., Packer, C. and 
Clune, J., 2018. Automatically identifying, counting, and describing wild animals in camera-
trap images with deep learning. Proceedings of the National Academy of Sciences, 115(25), 
pp.E5716-E5725. 

Pérez-Granados, C. and Schuchmann, K.L., 2021. Passive acoustic monitoring of Chaco 
Chachalaca (Ortalis canicollis) over a year: vocal activity pattern and monitoring 
recommendations. Tropical Conservation Science, 14, p.19400829211058295. 

Pijanowski, B.C., Farina, A., Gage, S.H., Dumyahn, S.L. and Krause, B.L., 2011. What is 
soundscape ecology? An introduction and overview of an emerging new science. Landscape 
Ecology, 26(9), pp.1213-1232. 

R Core Team, 2022. R: A language and environment for statistical computing. R Foundation 
for Statistical Computing, Vienna, Austria. URL https://www.R-project.org/. 

Robin, X., Turck, N., Hainard, A., Tiberti, N., Lisacek, F., Sanchez, J.C. and Müller, M., 2011. 
pROC: an open-source package for R and S+ to analyze and compare ROC curves. BMC 
Bioinformatics, 12(1), pp.1-8.  

Rodriguez, A., Gasc, A., Pavoine, S., Grandcolas, P., Gaucher, P. and Sueur, J., 2014. 
Temporal and spatial variability of animal sound within a neotropical forest. Ecological 
Informatics, 21, pp.133-143. 

Ruxton, G.D. and Schaefer, H.M., 2013. Game theory, multi-modal signalling and the 
evolution of communication. Behavioral Ecology and Sociobiology, 67(9), pp.1417-1423.  

Rycyk, A.M., Berchem, C. and Marques, T.A., 2022. Estimating Florida manatee (Trichechus 
manatus latirostris) abundance using passive acoustic methods. JASA Express Letters, 2(5), 
p.051202. 

Shonfield, J. and Bayne, E., 2017. Autonomous recording units in avian ecological research: 
current use and future applications. Avian Conservation and Ecology, 12(1). 



89 
 

Smith, D.H., Borkin, K.M. and Shaw, W.B., 2020. A comparison of two bat detectors: which is 
most likely to detect New Zealand’s Chalinolobus tuberculatus? New Zealand journal of 
zoology, 47(3), pp.233-240. 

Sousa-Lima, R.S., Norris, T.F., Oswald, J.N. and Fernandes, D.P., 2013. A review and 
inventory of fixed autonomous recorders for passive acoustic monitoring of marine 
mammals. Aquatic Mammals, 39(1). 

Sueur, J., Farina, A., Gasc, A., Pieretti, N. and Pavoine, S., 2014. Acoustic indices for 
biodiversity assessment and landscape investigation. Acta Acustica United with Acustica, 
100(4), pp.772-781.  

Suzuki, T.N., Wheatcroft, D. and Griesser, M., 2016. Experimental evidence for compositional 
syntax in bird calls. Nature Communications, 7(1), pp.1-7.  

Towsey, M., Znidersic, E., Broken-Brow, J., Indraswari, K., Watson, D.M., Phillips, Y., 
Truskinger, A., Roe, P. and Street, G., 2018. Long-duration, false-colour spectrograms for 
detecting species in large audio datasets. Journal of Ecoacoustics, 2(1), pp.1-1. 

Wilhite, N.G., Howell, P.E. and Martin, J.A., 2020. Evaluation of acoustic recording devices to 
survey northern bobwhite populations. Wildlife Society Bulletin, 44(1), pp.200-207.  

Zhong, M., Taylor, R., Bates, N., Christey, D., Basnet, H., Flippin, J., Palkovitz, S., Dodhia, R. 
and Ferres, J.L., 2021. Acoustic detection of regionally rare bird species through deep 
convolutional neural networks. Ecological Informatics, 64, p.101333. 

Zwart, M.C., Baker, A., McGowan, P.J. and Whittingham, M.J., 2014. The use of automated 
bioacoustic recorders to replace human wildlife surveys: an example using nightjars. PloS 
one, 9(7), p.e102770. 

  



90 
 

Chapter 5 

Evaluating the impact of infrastructure 

expansion on the Helmeted Hornbill and 

the Great Argus using species-specific 

acoustic recognisers 

5.1 Abstract 

Brunei, like much of the world, is currently experiencing a major infrastructure expansion 

shift. A bridge linking Temburong, a rural district with limited direct connectivity, to the rest of 

Brunei was opened in 2020. This connection of Temburong to the rest of the country is 

expected to drive infrastructure development in the region, which could impact biodiversity. 

Here, we explore how two bird species of special conservation value – Helmeted Hornbills 

(Rhinoplax vigil) and Great Argus (Argus argusianus) – are affected by infrastructure 

expansion. We make and use two species-specific recognisers to automate the detection of 

the study species’ calls in an audio dataset, collected using Autonomous Recording Units 

(ARUs) at 69 sites along an infrastructure expansion gradient. We explored how call counts 

for each species, derived from the recognisers, were related to the distance to the nearest 

main road and nearest building, as well as to above-ground biomass. We also explored the 

diurnal vocal activity pattern for both species. We found that distance to nearest main road 

and building significantly impacted the number of Helmeted Hornbill calls, with more being 

detected as remoteness increased. Distance to main road was also related to the number of 

Great Argus calls, as was biomass, with more being detected further from roads and at sites 

with higher biomass. Our findings fit with the ecology of these species, as both prefer 

undisturbed forests, which tend to contain ecologically beneficial elements such as large 

nesting trees for Helmeted Hornbills and a deeper leaf-litter for foraging for Great Arguses. 

Additionally, both species, but particularly the Helmeted Hornbill, are at risk of poaching, a 

threat exacerbated by roads and proximity to human settlements. Here we demonstrate the 

potential vulnerability of these two threatened species to further development and show how 

ARUs, coupled with semi-automated processing and identification, presents a possible 

solution to ongoing monitoring.  
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5.2 Introduction 

With steadily increasing human populations (having exceeded 8 billion individuals in 

November 2022 (United Nations, 2022)), global urbanisation and infrastructure expansion 

has also experienced recent rapid growth (Gerten et al., 2019). This is an expected outcome 

of human population growth but is not without consequence on the natural world that 

surrounds it. People move to urban areas principally to seek greater chances of prosperity. 

The concomitant urban sprawl that comes with such levels of rural exodus is leading to what 

has been described as a “suburban planet” (Keil, 2017). As discussed in Chapter 1, these 

trends are heightened in the tropics due to greater human population densities (Harding et 

al., 2020) and greater numbers of developing countries found in this region of the world, in 

which rural exodus is more prominent (Park, 2002). Increased urbanisation also leads to 

increased transport infrastructure to link urban zones together. All these land use changes 

have direct and indirect deleterious impacts on tropical rainforest ecosystems and the 

biodiversity they harbour. Impacts include deforestation, habitat fragmentation, roadkill, 

changes to predator-prey interactions, and increased hunting pressures (Laurance et al., 

2009).  

Brunei is currently experiencing a major infrastructure expansion shift. With the opening of 

the SOAS bridge in 2020, the currently rural and sparsely populated Temburong District is 

now directly connected by road to the highly urbanised districts of Belait, Tutong, and Brunei-

Muara. This new road infrastructure has linked the Eastern part of Brunei to the capital city 

Bandar Seri Begawan, making Temburong a more desirable place to live, work, and visit 

(Polgar & Jaafar, 2018). Despite this being a positive change for the socio-economic 

development of the country, the bridge presents a potentially concerning ecological problem. 

Increased traffic density and infrastructure development is expected in response to the 

inevitable rise of Temburong’s population (Sembiring, 2021). This area hosts pristine 

rainforests, containing some of the highest levels of biodiversity globally (Dykes, 1996), and 

maintains remote and mountainous natural areas. Urban sprawl in Brunei-Maura has already 

reduced pristine rainforest cover in the country to less than 50% of the land area (Aban et al., 

2011). This not only impacts biodiversity but also causes disruption to local climates and 

ecosystem services the rainforest usually provides, such as heat and water absorption and 

soil protection. To date, there has not been an assessment of the impact of infrastructure 

expansion in Temburong, possibly because it has not been a cause for concern until the last 

few years which coincided with heavy Covid-19 restrictions in Brunei, preventing any 

research being undertaken (Omar & Halim, 2021).  
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In this chapter, we study the potential impact of infrastructure expansion on two tropical birds 

of special conservation interest in Borneo. We use distances to main roads and buildings, as 

well as biomass as proxies for infrastructure expansion and habitat quality respectively. The 

species studied are the Helmeted Hornbill (Rhinoplax vigil) and the Great Argus (Argusianus 

argus). Both species are charismatic and emblematic of Borneo’s tropical rainforests, often 

deeply embedded in local culture, making them key flagship species for conservation efforts 

(Philovenny & Mohd-Azlan, 2021; Aihara et al., 2008). The Helmeted Hornbill is part of the 

Hornbill (Bucerotidae) family of birds and has a range extending across the Sundaic 

lowlands, namely Thailand, Myanmar, Malaysia, Indonesia, Brunei, but is considered extinct 

in Singapore (BirdLife International, 2001). This species resides in primary semi-evergreen 

and evergreen lowland forest in rugged terrain up to elevations of 1 500m a.s.l. (BirdLife 

International, 2020A). However, the species only remains in small pockets of forest across its 

range due to factors such as habitat loss and poaching. The Helmeted Hornbill is the only 

species in the Hornbill family to have a solid ‘horn’, or casque, which it uses for aerial 

jousting when competing for mates, territories, or food. This solid casque has resulted in 

Helmeted Hornbills being heavily poached due to the casque’s value in the illegal wildlife 

trade market (Beastall et al., 2016); it is estimated to be worth five times more than elephant 

ivory (Collar, 2015). This trade is considered a primary reason for the plummet of the species’ 

population. There has been a sharp increase in illegal Helmeted Hornbill trafficking since 

2011, coinciding with BirdLife International’s decision to change the species’ conservation 

status to Critically Endangered (Jain et al., 2018; BirdLife International, 2020A).  

The Great Argus is also suffering from the twin threats of habitat loss and poaching – 

although not to the same extent as the Helmeted Hornbill – and is listed as Vulnerable on the 

IUCN Red List (BirdLife International, 2020B). This species is ground living and shares a very 

similar geographic range to the Helmeted Hornbill, residing in lowland rainforests up to 

elevations of around 900m a.s.l. (BirdLife International, 2020B). The Great Argus is 

constituted of two subspecies: the Bornean Great Argus (Argusianus argus grayi), studied 

here, and the Malay-Sumatra Great Argus (Argusianus argus argus) (Winarni et al., 2009) 

and is one of the largest of the Phasianidae family of birds. Although this species is cage-

trapped for the sale of feathers and for food, this harvesting appears to be for ceremonial 

reasons rather than commercial (BirdLife International, 2020B). The bird is known for its 

exploded-lek mating system whereby the males perform dances at designated sites which 

they clear on the forest floor (Johnsgard, 2002). Despite the mating system being 

polygynous, the female only lays 2 eggs a year, making Great Argus a K-selected species 

and, thus, less resilient to sudden environmental change than similar, but more fecund, 

species.  
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Acoustic communication is key to fundamental biological functions across many taxa, 

including mate attraction, territorial defence, interactions with conspecifics, and during 

foraging (Wilkins et al., 2013). The use of Autonomous Recording Units (ARUs) in ecological 

studies has revolutionised the study of vocalising but otherwise cryptic species in a cost-

efficient manner (Sugai et al., 2019). ARUs are similarly well suited to monitoring species 

concurrently across extensive remote regions. Both of these above characteristics are 

relevant to the two focal study species in Brunei. Both species are also well suited to 

censusing using ARUs as they produce distinct, long, and far-carrying loud calls. The 

Helmeted Hornbill call has been described as the “most distinctive call in Borneo” (Phillipps, 

2014) and is the loudest sound made by any animal in the rainforest, carrying up to 2 km 

(Haimoff, 1987). Typically, the Helmeted Hornbill call can be divided into two distinct phases: 

a series of hoots and a cackle (Figure 4.1). The hoot phase comes first and consists of a long 

series of low-pitched hoots which start off very widespread and accelerate in frequency over 

time until they reach a climax, otherwise known as the cackle phase. Although it is thought 

that this unique call is used mainly by males to defend territories and attract a mate, breeding 

pairs have been seen to engage in calling duets (Haimoff, 1987). The Great Argus has 

several different calls and although the species is heavily sexually dimorphic with males 

calling before performing mating dances (Davison, 1981B), females are also known to be 

vocal to defend foraging territories (Davison, 1981A).  

Recent advances in the field of bioacoustics have resulted in the development of a variety of 

software packages (Knight et al., 2017) with which users can construct recognisers: 

algorithms capable of automatically detecting and extracting target calls from audio data. 

Kaleidoscope Pro is one of the commercially available software packages (US$300 annual 

license, Wildlife Acoustics, USA) which aids in acoustic data processing namely by providing 

a ready-to-use algorithm to detect and classify acoustic sounds through Hidden Markov 

Models. Using this software, we develop and use recognisers designed specifically to identify 

the calls of the two species respectively. Using these recognisers, the primary objective of 

this chapter is to evaluate the impact of infrastructure expansion on the distribution and 

regularity of persistence at sites of the two species. A secondary aim is to explore their 

diurnal calling patterns to widen ecological knowledge for these elusive species. 

 

5.3 Methods 

5.3.1 Data collection 

For details on the study site, sampling protocols, and data pre-processing, see Chapter 2.  
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5.3.2 Recognisers 

In order to detect the relevant calls for the two focal species from the audio data collected, a 

variety of recognisers were developed using the software Kaleidoscope Pro 5.4.8 (Wildlife 

Acoustics Inc., Maynard, MA, USA). For details about the workflow of constructing 

recognisers in Kaleidoscope Pro, see Chapter 4: section 4.3.2. To be able to differentiate 

between target and non-target calls, recognisers must be provided with training data, within 

which the user manually labels what is a target call to ‘train’ the recogniser to automatically 

detect these in future audio data provided. 

The recognisers for both species were provided with the same set of data collected from the 

study site as training data. The training data were obtained from five ARUs. The localities of 

these five sites, all of which included some Helmeted Hornbill and Great Argus vocalisations, 

are not specified here to avoid informing future persecution. The training sites tended, from 

preliminary data exploration, to have more frequent calls than other sites. Although the 

selected sites were grouped, they were nonetheless selected as training data following the 

recommendation of Enari et al. (2019), as typically the more calls that are used to build a 

recogniser, the better it performs.  

To detect the Helmeted Hornbill calls, we selected the best performing recogniser 

(Recogniser A) from the six that were developed in Chapter 4. This recogniser was built with 

prior labelling of a sample of Helmeted Hornbill calls of varying quality, all derived from 

recordings collected within the study region. To detect Great Argus calls, another recogniser 

was created, using a similar protocol, i.e. built with prior labelling of a sample of Great Argus 

calls of varying quality within the data collected in the study region. However, in the case of 

the Great Argus recogniser, the training calls were augmented with a sample of high-quality 

Great Argus calls from the Xeno-Canto online audio repository (www.xeno-canto.org); the 

latter collected from across the species range. Despite the assessment of performance 

metrics in Chapter 4 indicating that the best performing recogniser was built using only data 

collected in the local study region, Great Argus calls from further afield were included in 

recogniser training due to the low numbers of Great Argus calls found within the data 

collected from the study region. This was therefore a compromise between having sufficient 

calls to build a working recogniser initially and the type of calls used in the building phase. 

We were granted special access to Great Argus calls from Xeno-Canto as the availability of 

these calls are restricted to protect the species from persecution arising from playback being 

used to detect or attract individuals.  

http://www.xeno-canto.org/
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To make the data processing more efficient, signal parameters (frequency band of call, length 

of call, and time between calls) are entered into Kaleidoscope Pro before the scanning 

process begins, thus reducing the output detections to sounds that fit those criteria. See 

Chapter 4 for details about the signal parameters used for the Helmeted Hornbill recogniser. 

The signal parameters used to find Great Argus calls were acquired by observing example 

calls from Xeno-Canto through the Kaleidoscope Pro viewer window. The signal parameters 

of the Great Argus call were measured using the spectrograms of a sample of example Great 

Argus calls (See Figure 5.1 for an example Great Argus call). The measurements were 

narrowed down to maximum precision through repeated trials using the clustering function. 

The final signal parameters used to detect Great Argus calls were as follows: 600 Hz 

minimum frequency, 1200 Hz maximum frequency, 15 s minimum detection length, 90 s 

maximum detection length, and 1.2 s maximum inter-syllable gap. A 21.33 ms Fast Fourier 

Transform window was used during the clustering phase of recogniser construction as this 

was the best setting for low frequency sounds because it provides higher resolution of 

frequency (see Kaleidoscope Pro user manual). The maximum distance to cluster centre for 

building clusters was set to 0.5 (recommended setting) and the maximum number of states 

was set to 15. See Chapter 4: 4.3 Methods for justification details about these parameters.  

Unlike Helmeted Hornbills who have a single, distinct call, Great Arguses typically produce 

three call types (Clink et al., 2021). To build the recogniser we focussed solely on the most 

common call type (‘kwow kwow’ call; Figure 5.1). This is the call type used by both sexes for 

territorial demarcation and during inter-pair disputes, whereas the other calls are produced 

by males only during mate attraction (Davison, 1981A). Hence, this was a more frequent call 

and, as a result, considered likely to be better at confirming the species presence at a site.  

 

5.3.3 Call count data 

The Helmeted Hornbill and the Great Argus recognisers were individually applied to the full 

audio dataset collected. All the outputs classified as positive detections were manually 

verified by the same observer (LE) and, hence, the true positive detections were 

differentiated the from the false positive detections. Detections were verified both auditorily 

and visually, the latter using the spectrogram viewer in Kaleidoscope Pro. We collated the 

data to record the total number of calls for each species for each recoding day, time of day, 

and site. We used total call count instead of presence/absence of calls at sites to have a 

higher resolution in our call count data as we assumed more calls at a site was indicative of 

greater use of that area. However as there was no way of differentiating individuals based on 

the calls recorded, we could not use number of calls to estimate population densities. Due to 
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slight variation in battery life and occasional malfunctions, not all the ARUs recorded for 

exactly the same number of days (See Appendix B for a list of deviations from the 

programmed regime). To standardise the measurements across all recording sites, we 

divided the total number of calls detected by the number of recording days and then 

multiplied that result by 30 (the average ARU deployment period) for both species at each 

site respectively. This calling rate was considered a proxy for the distribution and regularity of 

persistence at sites for each species and was then used as the dependant variable in models 

to relate each species vocal detection rate to habitat covariates. The data points were 

considered independent as they were placed sufficiently distant from each other to avoid 

duplicate detections of any vocalisation event and deployed following a stratified random 

distribution. 

 

5.3.4 Habitat variables & correlation 

Six habitat covariates were initially measured: Distance to Nearest Main Road, Distance to 

Nearest Road, Distance to Nearest Building, Nearest Road Type, Infrastructure Pressure 

Zone, and Biomass (See Chapter 3: section 3.3.3 for details). Due to high correlation 

between many of these variables (See Chapter 3: section 3.3.4 and Appendix C), only 

Distance to Nearest Main Road, Distance to Nearest Building, and Biomass were retained 

and used in statistical analysis as they were deemed to be the most relevant to the research 

question. 

 

5.3.5 Statistical analysis 

To investigate the impact of infrastructure expansion (measured by distances to main roads, 

buildings, and biomass) on the distribution and regularity of persistence at sites of Helmeted 

Hornbills and Great Arguses, we fitted the most appropriate model form for the analysis of 

each species. All statistical analyses and graphics were undertaken in R version 4.1.2 (R 

Core Team, 2022). For the Helmeted Hornbill call count data we fitted a Generalized Linear 

Model (GLM) with a Negative Binomial distribution using the glm.nb function from the MASS 

package as this was the model type that best fitted the distribution of this dataset. Despite 

the zero-inflated distribution of this data (Figure 5.2A), we did not fit a zero-inflated model 

here as the results did not converge. For the Great Argus call count data, we fitted a GLM 

with a Zero-inflated Negative Binomial distribution using the zeroinfl function from the pscl 

package, with Distance to Nearest Main Road, Distance to Building, and Biomass as 

predictors for the Poisson process, and Distance to Nearest Main Road as the predictor for 

the Bernoulli process. The Bernoulli process tries to model out the over-inflation from the 
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large number of zeros in the dataset and looks at presence/absence of calls. Only one 

variable was used for the Bernoulli process due to a lack of degrees of freedom: with only 69 

data points we could only fit models with a maximum of 6-7 degrees of freedom, following 

Harrell’s (2001) rule of 10 observations per parameter. The Poisson process considers how 

many times the birds have called if there is the presence of call(s). Additionally, using the 

mean and standard deviation of the call count data per 1-hour slot across all sites with at 

least one call recorded, diurnal calling patterns were explored for both species. Sites with no 

calls at all were disregarded for this part of the analysis as otherwise the data would be too 

zero-inflated. 
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Figure 5.1 Sound spectrogram of an example ‘kwow kwow’ Great Argus call acquired using Kaleidoscope Pro 5.4.8 software (the acoustic 

analysis software used in this study). The two horizontal lines indicate the frequency range (600 - 1200 kHz) used in the construction of the 

Great Argus recogniser (algorithm to detect and extract target calls from audio data) used for the detection of the target calls during analysis. 

This is one of several calls made by this species.
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5.4 Results 

5.4.1 Model results 

Zero-inflation and tests of normality 

The numbers of calls for both Helmeted Hornbills and Great Arguses within recording 

segments were highly zero inflated: over 49% and 63% of sites had no Helmeted Hornbill or 

Great Argus calls respectively. A Shapiro-Wilk test showed significant evidence of non-

normality for both the Helmeted Hornbill call count variable (W = 0.60, p = 2.02-12) and the 

Great Argus call count variable (W = 0.58, p = 9.56-13); see also Figure 5.2. 

 

A) 



100 
 

 

Figure 5.2 Distribution of the number calls per 30 day sampling period for A) the Helmeted 

Hornbill and B) the Great Argus. Frequency on the Y-axis refers to the number of sites (i.e. 

Autonomous Recording Units) which registered the call frequencies displayed on the X-axis, 

i.e. the majority of sites didn’t register a call for either species. Both histograms are zero-

inflated and highly suggestive of non-normality. 

 

Helmeted Hornbill 

The Negative Binomial GLM for the Helmeted Hornbill call count data indicated that Distance 

to Building was significantly positively related to call frequency, with the call count being 

greater further away from buildings (Z-value = 3.545; Table 5.1), for example with call count 

increasing by 11.12 calls for an increase of 10km from nearest building. Similarly, the 

Negative Binomial GLM for the Helmeted Hornbill call count data indicated that Distance to 

Nearest Main Road was significantly positively related to call frequency, with the call count 

being greater further away from roads (Z-value = 4.864; Table 5.1), for example with call 

B) 
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count increasing by 5.445 calls for a 10km increase of distance from the nearest main road. 

Biomass, by contrast did not have a significant impact on the number of calls. Nevertheless, 

all three variables were positively correlated with the number of calls (Figure 5.3), meaning 

that the greater the distance from the nearest main road or building and the greater the 

biomass, the higher the number of Helmeted Hornbill calls. This model was slightly over 

dispersed (dispersion Statistic = 1.139), but this was the best fitting model for this dataset 

and all the variables converged. 

 

Table 5.1 Statistical results from the Generalized Linear Model with a Negative Binomial 

distribution applied to the Helmeted Hornbill call count data. The target calls were extracted 

from the vast amounts of audio data using a species-specific recogniser (algorithm to detect 

and extract target calls from audio data) made in Kaleidoscope Pro (the acoustic analysis 

software used in this study). Distance to building is the distance between each site and the 

nearest building, distance to nearest main road is the distance between each site and the 

nearest main road to that site, and biomass is the total above ground biomass calculated 

using an allometric equation previously used in tropical forests in conjunction with data 

collected in the field. The distance variables were measured using Google Earth Pro. The 

null deviance was 108.20 on 68 degrees of freedom and the residual deviance was 64.13 on 

65 degrees of freedom. AIC was 333.46. R2 = 0.407 (McFadden’s pseudo R2). Significant 

effects are shown in green (p < 0.05). 

 Estimate Standard Error Z value p-value 

(Intercept) -1.346 0.437 -3.077 0.002093 

Biomass 2.834-05 1.693-05 1.674 0.094059 

Distance to 

Building 
1.112-03 3.136-04 3.545 0.000392 

Distance to 

Nearest Main 

Road 

5.445-04 1.119-04 4.864 1.15-06 
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Great Argus 

The Poisson count component of the Zero-Inflated Negative Binomial GLM for Great Argus 

call count data indicated that Biomass was weakly significantly positively related to call 

frequency, with the call count being greater with increasing levels of biomass (Z-value = 

5.144; Table 5.2A), for example with call count increasing by 0.09366 call for a 10 000 Mg 

increase of biomass per 400m2 plot. The model also indicated that Distance to Nearest Main 

Road was significantly positively related to call frequency (Table 5.2A), with the call count 

being greater with increasing distance to nearest main road (Z-value = 2.430; Table 5.2A), 

for example with call count increasing by 2.96 calls for a 10km increase in distance to 

nearest main road. Distance to Building, by contrast, did not have a significant impact on the 

number of calls (Table 5.2A). Nevertheless, all three variables were positively correlated with 

the number of calls (Figure 5.4), meaning that the greater the distance from the nearest main 

road or building and the greater the biomass, the higher the number of Great Argus calls. 

The model also suggested for the Bernoulli (zero-inflated, binary component) that Distance 

to Nearest Main Road had a significant but very small negative effect on the occurrence of 

calls (Table 5.2B), meaning that the likelihood of there being any Great Argus calls 

decreased as the distance from the nearest main road increased. Overall, this model was 

slightly under dispersed (dispersion Statistic = 0.930) but this was the best fitting model for 

this dataset and all the variables converged. 

 

Table 5.2 Statistical results from the Generalized Linear Model with a Zero-Inflated Negative 

Binomial distribution applied to the Great Argus call count data for A) the Poisson process 

(count model) and for B) the Bernoulli process (zero-inflated model). The target calls were 

extracted from the vast amounts of audio data using a species-specific recogniser (algorithm 

to detect and extract target calls from audio data) made in Kaleidoscope Pro (the acoustic 

analysis software used in this study). Distance to building is the distance between each site 

and the nearest building, distance to nearest main road is the distance between each site 

and the nearest main road to that site, and biomass is the total above ground biomass 

calculated using an allometric equation previously used in tropical forests in conjunction with 

data collected in the field. The distance variables were measured using Google Earth Pro. 

Log-likelihood was -96.73 on 7 degrees of freedom. R2 = 0.971 (adjusted R2 obtained using 

the r2_zeroinflated function from performance package in R). Significant effects are shown in 

green (p < 0.05). 
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A Estimate Standard Error Z value p-value 

(Intercept) 1.274-02 3.959-01 0.032 0.9743 

Biomass 9.366-06 1.821-06 5.144 2.70-07 

Distance to 

Building 
3.924-04 2.285-04 1.717 0.0859 

Distance to 

Nearest Main 

Road 

2.960-04 1.218-04 2.430 0.0151 

Log (theta) 8.841-01 2.070-01 4.271 1.94-05 

 

B Estimate Standard Error Z value p-value 

Intercept 2.0751212 0.5269815 3.938 8.22-05 

Distance to 

Nearest Main 

Road 

-0.0008758 0.0002151 -4.072 4.67-05 
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Figure 5.3 Relationship between the average number of Helmeted Hornbill calls per 30-day sampling period (at n = 69 recording sites) and the 

Distance to Nearest Main Road, Distance to Nearest Building, and Biomass respectively. The target calls were extracted from the vast amounts 

of audio data using a species-specific recogniser (algorithm to detect and extract target calls from audio data) made in Kaleidoscope Pro (the 

acoustic analysis software used in this study). Distance to building is the distance between each site and the nearest building, distance to 

nearest main road is the distance between each site and the nearest main road to that site, and biomass is the total above ground biomass 

calculated using an allometric equation previously used in tropical forests in conjunction with data collected in the field. The distance variables 

were measured using Google Earth Pro. The solid lines are the predicted model lines plotted using the predicted values from the Generalised 

Linear Model with a negative binomial distribution fitted to the Helmeted Hornbill call count data. Each one is plotted whilst keeping the other 

variables at their mean. The dotted lines represent standard error. R2 = 0.407 (McFadden’s pseudo R2).
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Figure 5.4 Relationship between the average number of Great Argus calls per 30-day sampling period (at n = 69 recording sites) and the 

Distance to Nearest Main Road, Distance to Nearest Building, and Biomass respectively. The target calls were extracted from the vast amounts 

of audio data using a species-specific recogniser (algorithm to detect and extract target calls from audio data) made in Kaleidoscope Pro (the 

acoustic analysis software used in this study). Distance to building is the distance between each site and the nearest building, distance to 

nearest main road is the distance between each site and the nearest main road to that site, and biomass is the total above ground biomass 

calculated using an allometric equation previously used in tropical forests in conjunction with data collected in the field. The distance variables 

were measured using Google Earth Pro. The solid lines are the predicted model lines plotted using the predicted values from the zero-inflated 

Generalised Linear Model with a negative binomial distribution fitted to the Great Argus call count data. Each one is plotted whilst keeping the 

other variables at their mean. The dotted lines represent 95% confidence intervals. R2 = 0.971 (adjusted R2 obtained using the r2_zeroinflated 

function from performance package in R).  
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5.4.2 Diurnal patterns 

The diurnal calling patterns of both studied species was explored and indicated very different 

vocalising behaviour. Helmeted Hornbills are most vocal around 10h00 but maintain a 

relatively high level of vocal activity throughout daylight hours, with call frequency rapidly 

dropping after dusk (Figure 5.5A). By contrast, Great Arguses have a major peak in vocal 

activity after dusk, at around 19h00, and are less vocal through the day than the Helmeted 

Hornbill (Figure 5.5B). Nevertheless, both figures have very large standard errors, thus 

indicating very high inter-site variability and that these patterns are driven by a few specific 

sites. The standard error bars go below 0 due to standard errors being larger than the 

means, this does not indicate that there were negative levels of calls at a site (minimum 

number of calls at a site was 0). 

 

  

A) 
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Figure 5.5 Diurnal calling patterns over the 24h period of the A) Helmeted Hornbill (Pattern 

calculated using n = 38 sites) and B) Great Argus (Pattern calculated using n = 27 sites). The 

study design included 69 randomly generated recording sites, at which one Autonomous 

Recording Unit (ARU) was set up to record for a 30-day period. Only the sites where at least 

one target species call was recorded were used in generating the diurnal calling patterns. 

The target calls were extracted from the vast amounts of audio data using species-specific 

recognisers (algorithms to detect and extract target calls from audio data) made in 

Kaleidoscope Pro (the acoustic analysis software used in this study). The two vertical dotted 

lines indicate dawn and dusk.  

 

5.5 Discussion 

Infrastructure expansion and associated forest degradation can both negatively influence the 

abundance and distribution of tropical bird species, ultimately homogenising the surrounding 

biota, resulting in a loss of biodiversity (Isaksson, 2018; Luck & Smallbone, 2010; Sewell & 

Catterall, 1998). In this study, we explored the effect of main roads, buildings, and biomass 

(taken as proxy measurements for levels of infrastructure expansion) on two such species: 

B) 
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the Helmeted Hornbill and the Great Argus. Both species’ populations are decreasing in 

recent years due to widespread habitat loss and ongoing hunting pressures (BirdLife 

International, 2020A & B). It is therefore paramount that more research is conducted into these 

species regarding their basic ecology and what environmental factors they are sensitive to. 

We used call count data as a proxy for distribution (through presence/absence) and regularity 

of persistence (number of calls) in both species. These data cannot be used to assess the 

abundance as such, as there is no way of telling if the detected calls are from the same 

individual repeatedly or several different individuals. Furthermore, using call count presents 

limitations as higher call rates could also be due to fruiting events, increased behavioural 

activities related to breeding or offspring, or something else. Nevertheless, we assume that a 

higher number of calls means the bird(s) spend(s) more time in that area and thus have more 

regular persistence.  

The three variables Distance to Nearest Main Road, Distance to Building, and Biomass each 

had a positive effect on the number of calls from both species (Table 5.1 & 5.2; Figure 5.3 & 

5.4). Thus, the greater the distance from the nearest main road or building and the greater 

the biomass, the higher the number of Helmeted Hornbill and Great Argus calls (Figure 5.3 & 

5.4).  However, we also found that Distance to Nearest Main Road had a very slight negative 

significant effect on Great Argus call presence, meaning the greater the distance from the 

road, the less likely there is to be a call in the first place. Nevertheless, taken into 

consideration the high intercept and the positive significant effect of Distance to Nearest Main 

Road on the number of calls, this negative effect is minor.  

The impacts of infrastructure expansion on the Helmeted Hornbill and the Great Argus are of 

concern but not surprising. Both species are threatened, with the Helmeted Hornbill listed as 

Critically Endangered and the Great Argus listed as Vulnerable on the IUCN Red List 

(BirdLife International, 2020A & B). This is, in part, because they both have a preference for 

undisturbed primary forest. Like other Hornbill species, Helmeted Hornbills need tall, large 

trees with large hollow cavities in which to nest (Utoyo et al., 2017). These are typically found 

in pristine, unlogged rainforests as trees need time to develop such characteristics 

(Chambers, 1998). Additionally, studies have shown that Helmeted Hornbills prefer large 

expanses of closed canopy forests (Hidayat et al., 2020), thus making the species sensitive 

to the impacts of habitat fragmentation. Furthermore, the interaction between these two 

factors further worsens their individual effects, as rainforest fragmentation has been linked to 

die-off of larger trees (Laurance et al., 2000). Similarly, Great Arguses have been shown to 

avoid colonising disturbed habitats, as they require a deep leaf litter layer, which is 

characteristic of primary forests, as this provides essential foraging substrate. Moreover, 

primary forests tend to have a more open understory, which the birds need for their display 
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grounds (Winarni et al., 2009). An open understorey may also facilitate movement of Great 

Arguses, due to their large size (length of circa 70 cm for females and up to 2m for males). 

These characteristics are typical of pristine primary rainforests and are lost when areas are 

disturbed by, e.g., infrastructure expansion, selective logging, mining, agriculture and edge 

effects (See Chapter 1: 1.4 Threats). Land use change – typically causing habitat loss in 

forest ecosystems – is one of the leading causes of biodiversity declines worldwide (Jantz et 

al., 2015). Thus, it follows that both species would be expected to spend more time in areas 

further from main roads and buildings, and where the biomass is higher, as indeed we found.  

A potential explanation for the slight negative significant effect of Distance to Nearest Main 

Road and Great Argus presence is the existence of primary forest-type habitats close to 

some parts of the highway. This therefore provides the ideal type of habitat for Great Arguses 

despite the proximity of a main road. Nevertheless, properly testing this hypothesis would 

require additional data to be collected, with perhaps a structured resurveying effort to ensure 

a good mix of primary and secondary forest both close to, and distant from roads. Future 

studies would need to ensure a balanced design of ARU deployment such that as many 

permutations as possible of biomass and disturbance values were sampled whilst minimising 

collinearity of the two variables to avoid obscuring inferences as to which factor is the 

primary driver of presence of the species.   

Helmeted Hornbills could be disproportionally affected by another threat concomitant to the 

presence of roads and buildings compared to Great Arguses: easier entry ways into the 

forest. These often result in an associated increase in illegal hunting in these remote 

ecological communities (Laurance et al., 2006, 2009). The hard yet easily sculpted casque of 

the Helmeted Hornbill is highly sort after in Chinese culture to fashion luxury, status-affirming 

objects and its demand has dramatically increased since 2011, with an estimated 6 000 

Helmeted Hornbills killed a year in West Kalimantan, Indonesia alone (Collar, 2015). The life-

history of this species worsens the impacts of such heavy poaching persecution. Even in 

optimal habitat conditions, the species occurs at low population densities, of between 0.05 to 

2.6 individuals per km2 (Medway & Wells 1971; Johns 2004). When exposed to slight hunting 

pressure, their population density has been shown to decline rapidly (Johns, 2004). 

Helmeted Hornbills follow a K-selection strategy, with individuals living up to 50 years and 

monogamous breeding pairs only laying one or two high-input eggs per breeding cycle, the 

latter lasting nearly half a year (Utoyo et al., 2017; Jain et al., 2018). Moreover, when nesting, 

the female is fully enclosed in the hollow nesting chamber, becoming completely dependant 

on the male for food. Thus, if one adult male is killed, this can have a cascading effect as the 

female and the chick cannot survive, and even if the female does, she will not breed for a 

long time and will be in a very poor condition due to heavy moulting (Collar, 2015). Extensive 
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collaborative efforts have occurred between the IUCN, BirdLife International, the Helmeted 

Hornbill Working Group, and various other conservation organisations, to create a 

conservation strategy and action plan which consists of eliminating the Helmeted Hornbill 

trade, protecting the remaining populations and their habitats, and conducting further 

research into the species (Jain et al., 2018), with the intention that the current work will 

contribute to the latter. Brunei is thought to be a stronghold for the species due to firearms 

being illegal and the country’s financial wealth allowing it to not exploit the rainforest. There 

would be benefits in repeating the study in areas where the bird is less protected. The 

species need for high quality primary forest habitat and sensitivity to hunting pressure 

coupled with its highly desirable casque leaves the survival of the Helmeted Hornbill species 

in a very precarious state going forward. Whether the species apparent avoidance of 

developed areas (and/or preference for primary forests) is driven by ecological and 

behavioural factors, or whether it is simply an artefact of areas where persecution is likely to 

occur would be a relevant topic for future study. 

Similarly, despite both species being negatively affected by lower Biomass levels, different 

factors could be causing these similar responses. One such of these factors could be 

differences in diet and foraging techniques. The Great Argus has a more varied diet than the 

Helmeted Hornbill, feeding on insects, shoots, flowers, fruits, and seeds, with tracked birds 

typically traveling less than circa 850m (± 211 m) per day (Davison, 1981A; Winarni et al., 

2009). Whereas the Helmeted Hornbill primarily feeds on figs and is known to travel far to 

forage (Kitamura et al. 2011; Kaur et al., 2019) – in turn making them key seed dispersers. 

Hence, we might expect much more variability in the consistency of Helmeted Hornbill calls 

at a site over longer time periods than those of the Great Argus. Although, to the best of our 

knowledge, Helmeted Hornbill territory size has not yet been measured, radio-tracking of the 

related Great Hornbill (Buceros bicornis) shows that its home-range can be up to 100 km2. 

Given that Helmeted Hornbills likely has a narrower dietary niche (feeding mainly solely on 

figs (Kitamura et al. 2011; Kaur et al., 2019)) it’s home range could be even larger (Jain et al., 

2018). Thus, it might be that the Great Argus needs habitats that are locally richer and more 

consistent, in terms of food supply, than the Helmeted Hornbill. However the Great Argus is 

probably less vulnerable than the Helmeted Hornbill as the species is more generalist: as 

long as there is lots of something they eat, and not necessarily everything they eat, they will 

persist. The environmental data collected during the current study do not allow us to test this 

hypothesis. 

The diurnal calling patterns showed that Helmeted Hornbills had a mid-morning vocalisation 

peak around 10h00 but that the species maintains a relatively high level of vocal activity 

throughout the daytime hours (Figure 5.5A). To the best of our knowledge this is the first 
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study of diurnal vocalisation patterns in Helmeted Hornbills. Great Arguses’ peak in vocal 

activity occurred after sunset (around 19h00) and individuals were far less vocal throughout 

the day than the Helmeted Hornbill (Figure 5.5B).  Another study of the circadian rhythms of 

Great Arguses (Clink et al., 2021), found contrasting results to ours, with singing events more 

likely in the early morning. This bout of calling mainly consisted, however, of the short call 

type which we did not focus on and serves a very different purpose, so is not comparable. 

Nevertheless, the study did find that the Great Argus was most vocal outside of daylight 

hours, in line with our findings.  

Despite the advantages of using acoustic data, such data has limitations. Call detections, 

which we used to infer presence and regularity of persistence could be impacted by reduced 

call rates (or reduced detection) near roads. For example, detectability could be impacted by 

road noise pollution, though this was considered unlikely to impact the current study given 

the relative low traffic volumes. Birds may however have been less vocal in areas of high 

persecution risk, and individuals may be less vocal in areas of lower densities (e.g., less 

need to defend territories). Additionally, using our data we were only able to build a 

recogniser which detected one type of Great Argus call. Future work could focus on building 

recognisers for all Great Argus call types and exploring how this impacts these findings. 

With global declines in diversity and abundance of species, it is becoming increasingly vital 

to focus conservation efforts on biodiversity hotspots like the rainforests of Borneo. 

Monitoring species to be able to detect changes, and to monitor the impacts of conservation 

interventions is vital. The current project has hopefully provided some baseline information 

on the occurrence of these two key species in Temburong, Brunei. This could serve as a 

useful baseline against which to assess changes due to infrastructure expansion, or due to 

conservation efforts. ARUs coupled with semi-automated processing and identification 

presents a possible solution to ongoing monitoring. Here, we present two recognisers built 

using Kaleidoscope Pro to affordably and automatically detect calls emitted by two target 

species: the Helmeted Hornbill and the Great Argus. The two species seem to be negatively 

impacted by the presence of main roads, buildings, and lower biomass levels. The former 

two factors potentially facilitate access to the forest namely for poachers, thus increasing the 

threat of hunting of both species but particularly the Helmeted Hornbill due to the high value 

of its solid casque. The utilisation of ARUs and recognisers for monitoring could not only be 

used for further research into these species’ behaviours and ecologies but could inform eco-

responsible policies and choices about future infrastructure development.  
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Chapter 6 

Comparing detection rates of Great Argus 

from audio recorders and camera traps  

6.1 Abstract 

Monitoring vulnerable rainforests is vital in implementing effective conservation strategies, 

yet traditional surveying methods present many limitations. Remote sensing technologies, 

such as camera traps and Autonomous Recording Units (ARUs), allow standardised, semi-

autonomous high-resolution monitoring of wildlife in hard-to-access habitats. These 

surveying methods are becoming commonplace for assessing species occurrences, whilst 

providing vital data about animal activity budgets, habitat use, and potentially densities. Here, 

we explore the suitability of two remote sensing methods to monitor Great Argus (Argusianus 

argus), a ground-dwelling pheasant of conservation concern. We quantitatively compared the 

number of days camera traps and ARUs detected at least one Great Argus to assess their 

utility and potential complementarity in monitoring. We applied a Great Argus recogniser to 

automate call detection within an audio dataset. We then statistically compared number of 

detection days from paired camera traps and ARUs deployed across 26 forest sites for which 

there was at least one record of the species. We also contrasted diurnal detectability patterns 

from the two surveying methods. We found that ARUs were significantly more likely to detect 

Great Arguses than camera traps but that the diurnal detection patterns differed between the 

methods. The greater detection rate of ARUs is likely principally to be due to their greater 

detection area and their reduced sensitivity to microtopographic barriers. Whilst camera traps 

did not provide additional sites of detection, compared to ARUs alone, they did provide 

records at times when the species was not vocalising (or when the ARU wasn’t recording), 

and hence provided a better understanding of the species’ ecology. However, once a 

recogniser has been developed for a species, data extraction from ARUs has low personnel 

overheads, whereas, in the absence of auto-image classification, camera traps have an 

ongoing processing time cost. Hence, if resources are limited for monitoring of rare vocal 

species, we suggest ARUs are preferable to use to detect species presence but, if resources 

allow, adding camera traps can provide additional information. 
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6.2 Introduction 

Tropical rainforests are essential ecosystems for both biodiversity and humanity. As well as 

comprising key habitats and possessing high intrinsic value, tropical rainforests provide a 

multitude of vital ecosystem services, including climate regulation (Foley et al., 2002). In 

spite of this, today’s tropical rainforests face a plethora of threats, including deforestation 

(Hansen et al., 2013), slash-and-burn agriculture (Brady, 1996) and overexploitation of non-

woody resources (Ripple et al., 2015). Despite existing on four of the world’s seven 

continents (Hazarika, 2013), tropical rainforests remain understudied (Brodie et al., 2012). 

Tropical rainforests are thought to harbour approximately half of global biodiversity (Wilson & 

Peter, 1988; Pillay et al., 2022) but many species remain undescribed (Giam et al., 2012). 

This is thought, in part, to be due to the extreme environmental conditions found in tropical 

rainforests ecosystems. With high annual temperatures and humidity levels, dense 

vegetation and often treacherous terrain, tropical rainforests are difficult to access and, thus, 

to monitor. Furthermore, most of them are in developing nations that lack the funding and 

capacity to conduct and publish scientific research, aggravating this issue. Consequently, 

given both their biodiversity and ecosystem service values, it is vital to develop survey 

techniques to help the scientific community gain a better understanding of these crucial 

ecosystems, to inform effective conservation strategies. 

A variety of survey techniques have been used to study wildlife in tropical rainforests. 

Traditional line transects are often used, whereby researchers look and listen for animals of 

interest along walked or driven routes (Anderson, 1976). Alternatively, point count samples 

are frequently used to monitor birds from fixed points (Ralph et al., 1995). At night, eyeshine 

surveys can be conducted using flashlights or headtorches to detect nocturnal animals’ eyes, 

using the reflective surface – tapetum lucidum – located behind their retina, which reflects 

the shined light towards the observer (Subalusky et al., 2009). Trap systems have also been 

used, such as mist nest for birds and bats (Karr, 1981; Mancini et al., 2022), pitfall traps for 

invertebrates (Woodcock, 2005), or baited traps used to attract and capture target taxa, such 

as butterflies (Lucci Freitas et al., 2014) as well as scat sampling, namely for elusive 

mammals (Janečka et al., 2008). Surveying rainforests canopies is often challenging but 

critical for biodiversity assessment, as most vertebrate rainforest species spend most of their 

time off the ground (Lowman & Moffett, 1993). Such monitoring requires more skills, often 

involving elaborate equipment – such as climbing gear, cranes, and canopy walkways – 

resulting in higher costs and safety risks (Houle et al., 2004; Lowman, 2009; Parker et al., 

1992). All of these traditional survey methods are time consuming, subject to observer bias, 

require expertise, and data collection protocols are often not so easily systematically 

reproducible.  
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Remote sensing surveys present a potential solution to these survey issues for some taxa by 

reducing time and field skill demands, and thus costs. They can also reduce observer bias 

and data can be collected in a repeatable and systematic way. Additionally, remote sensing 

technologies are less invasive than traditional surveys, which can provide less biased 

information. They also provide the users with a digital dataset, aiding downstream data 

processing and analysis.  

One method of remote-sensed wildlife monitoring is camera trapping. Although often 

regarded as a relatively new technology, camera traps have been used for over 100 years by 

hunters and then biologists (Sanderson & Trolle, 2005; Noss et al., 2013) to gain an insight 

into the lives of cryptic, rare, and shy species. Today’s digital camera traps are equipped with 

infrared sensors which, when triggered by a passing animal, take a photograph (WWF, 

2018). Camera traps can be deployed in the field for months at a time and have become a 

commonplace tool to assess species diversity and abundance, whilst also providing vital data 

about animals’ activity budgets and habitat use (Noss et al., 2013). This survey method helps 

biologists to inventory and monitor wildlife, both furthering ecological knowledge of study 

species, which, in turn, can inform conservation strategies. Nevertheless, camera trapping 

remains an underutilised technology due to the misalignment between the technological 

progress made in cameras, batteries, and data storage versus downstream data 

management tools (Harris et al., 2010). The speed of image processing is not keeping pace 

with the technological developments of camera hardware.  

Until recently, camera traps were the only automated wildlife monitoring tool in widespread 

use to conduct large scale spatiotemporal sampling. More recently, another remote sensing 

technology which now also allows users to conduct large spatiotemporal wildlife monitoring, 

is Autonomous Recording Units (ARUs). Used for bioacoustical monitoring, ARUs have 

revolutionised the field of wildlife remote sensing in the past decade and given rise to the 

new discipline of soundscape ecology (Pijanowski et al., 2011A). Like camera traps, ARUs 

can be left unattended in the field for long periods of time (Sidie-Slettedahl et al., 2015), 

recording the soundscape around them. A soundscape has been defined as “collection of 

sounds that emanate from landscapes” – namely biophony, geophony, and anthrophony: 

sounds produced by biological, geophysical and anthropological sources respectively 

(Pijanowski et al., 2011B). Thus, ARUs present themselves as a comparable technology to 

camera traps but allow researchers to detect species acoustically instead of visually. Like 

camera traps, the use of ARUs is currently limited by acoustic processing software lagging 

behind the rapid technological advances of ARU hardware. Nevertheless, ARUs and camera 

traps are proving to be an essential tool to further wildlife monitoring in hard-to-access 

ecosystems such as tropical forests. 
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Camera traps and ARUs present similar surveying capabilities but have rarely been used in 

conjunction (See Buxton et al., 2018 for literature review of studies that have compared 

these methods; Enari et al., 2019; Crunchant et al., 2020; Garland et al., 2020), with most 

finding ARUs to be more sensitive in species detection when studying vocalising animals. 

Here, we present the first study, to the best of our knowledge, where both methods were 

deployed simultaneously in Bruneian forests of Temburong, Borneo. We chose to focus this 

comparison on one species, the Great Argus (Argusianus argus). This was due to the 

species local cultural and conservation value, as well as its forest floor habitat use and its 

regular vocalization behaviour. The Great Argus is one of the largest species in the 

Phasiabidae family of birds and is given special ceremonial importance in local cultures. The 

species is listed as Vulnerable on the IUCN Red List (BirdLife International, 2020) due to 

habitat loss and poaching. Great Arguses are ground dwelling birds with distinct and loud 

calls (Clink et al., 2021), making them well suited to both camera trapping and ARU 

monitoring. Comparative studies of Great Argus vocalisations, conducted using traditional 

survey methods, suggested that line transects gave higher density estimates than point 

counts (Nijman, 2007). This study is a first step in conducting a similar study using remote 

sensing technologies. Our primary goal here is to evaluate which remote surveying method is 

best suited to the study of Great Arguses by comparing respective detection rates in order to 

guide future ecological studies on Great Arguses and similar species. A secondary aim is to 

give an overview of the advantages and disadvantages of both remote surveying methods. 

 

6.3 Methods 

6.3.1 Data collection 

For details on the study site, sampling protocols and data pre-processing, see Chapter 2. 

 

6.3.2 Great Argus detections  

Camera trap data 

To compare the audio survey results and camera images, we deployed camera traps at the 

same sites as the ARUs (See Chapter 2). The resultant images were sorted and identified 

manually. Photographs including all ground-foraging avian species were identified to species 

level where possible. Photographs including Great Arguses were separated, and the data 

aggregated to record the total number of days at each site that had at least one Great Argus 

detected. We chose to do this to control for duplicate events (resampling the same individual 

multiple times). If only part of the bird was visible on the camera trap photograph, it was 
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counted as a detection. Due to slight variation in battery life and occasional malfunctions, not 

all the camera traps recorded for exactly the same number of days (See Appendix B for a list 

of deviations from the programmed regime). To standardise the measurements across all 

sites, we divided the total number of detection days by the total number of surveying days 

and then multiplied that result by 30 (the average camera trap deployment period) at each 

site.  

Audio data 

To automate – and thus significantly accelerate – the detection of Great Argus calls in the 

audio data collected, we constructed a recogniser (as described in Chapter 5) in 

Kaleidoscope Pro 5.4.8 (Wildlife Acoustics Inc., Maynard, MA, USA), which is an automated 

signal recognition software to aid in audio data analysis. A recogniser was trained by the user 

to extract target sounds from the audio dataset. The recogniser was trained with prior 

labelling of a sample of Great Argus calls of varying quality from within the study region, 

augmented with a sample of high-quality calls from an audio repository (Xeno Canto 

(www.xeno-canto.org)), the latter collected from across the species range (For details see 

Chapter 4 & 5: Methods). Great Argus typically produces three different call types (Clink et 

al., 2021). To build the recogniser, we focussed solely on the most common call type (‘kwow 

kwow’ call; Figure 5.1). This is the call type used by both sexes for territorial demarcation and 

during inter-pair disputes. Other calls are produced by males but only during mate attraction 

(Davison, 1981). Hence, the ‘kwow kwow’ call was a much more frequent call and, as a 

result, considered likely to be better at confirming the species presence at a site.  

The resultant recogniser was applied to the full audio dataset collected. All the outputs 

classified as positive detections were manually verified and, hence, true positive detections 

were differentiated from false positive detections. Detections were verified both auditorily and 

visually, the latter using the spectrogram viewer in Kaleidoscope Pro. As with the camera 

traps, we collated the call detection data to record the total number of days at each site that 

had at least one call detected. We chose to do this to control for duplicate events, particularly 

as we then compared these results to camera trap photographs. Similarly to camera traps, 

due to slight variation in battery life and occasional malfunctions, not all the ARUs recorded 

for exactly the same number of days (See Appendix B for a list of deviations from the 

programmed regime). To standardise the measurements across all recording sites, we 

divided the total number of detection days by the total number of recording days and then 

multiplied that result by 30 (the average ARU deployment period) at each site.  

As discussed in Chapter 2, the ARUs were pre-programmed with a subsampling recording 

regime. This was to maximise survey efforts across the whole camera trap deployment 

http://www.xeno-canto.org/
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period whilst reducing maintenance requirements, as well as to maintain sufficient digital data 

storage space and battery life. Nevertheless, this presents a limitation to the study. Camera 

traps operated 24/7 and were constantly able to detect Great Arguses if present, whilst ARUs 

detection rates will tend to represent an underestimate of Great Argus calls present – an 

issue encountered in other comparison studies using similar survey methods (Enari et al., 

2019). Nevertheless, ARUs have a greater sampling range (discussed later) than camera 

traps so they still provide a good index.  

 

6.3.3 Statistical analysis 

Given the data recording approach adopted, we were able to pair daily detections of Great 

Arguses from cameras and ARUs at each site. Sites with no Great Argus detections arising 

from either survey methods (n = 43) were discarded from analysis as they were of no 

relevance to the study question, leaving 26 sites with Great Argus detections from a least 

one of the methods on at least one day (ARU n = 24 and camera trap n = 11). Thus, to test 

whether ARU and camera trap Great Argus detection rates differ, on average, in number of 

days with at least one detection, a Wilcoxon signed ranked test was fitted. To produce the 

diurnal activity pattern graphs, more sites were used for the ARU-produced pattern (n = 27) 

than were used in the statistical analysis (n = 24). This is due to times when recording pairs 

were redeployed due to camera trap malfunctions, despite the paired ARU functioning 

correctly in both deployments. There were 3 sites where this was the case and where the 

ARU in question captured some Great Argus calls. Thus, as data duplication wasn’t an issue 

here (as we were not comparing sites but rather observing overall calling patterns), these 

extra 3 audio surveys were retained to increase the dataset. All statistical analyses and 

graphics were undertaken in R version 4.1.2 (R Core Team, 2022).  

We also graphically explored how detection rates changed between survey methods 

according to distance to road and qualitatively compared diurnal patterns obtained using both 

surveying methods respectively. No statistical tests were conducted for these analyses.  

 

6.4 Results 

Camera traps were able to detect a large variety of bird species, of different sizes and 

behaviours, despite only being able to survey the forest floor and the lower parts of the 

understory (Table 6.1). There were 24 different species detected by our camera traps in total 

as well as 388 individual birds detected in total. 
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Table 6.1 Species detected by camera traps across all sites. The study design included 69 

randomly generated recording sites, at which one camera trap was set up to record for a 30-

day period. Photographs obtained from all camera traps were processed manually and 

species identified on a case-by-case basis. The species below are ordered from greatest to 

lowest number of detections.  

Species Common name 
Number of 

detections 

Pitta sordida Hooded Pitta 73 

Pellorneum malaccense Short-tailed babbler 66 

Pellorneum capistratum Black-capped babbler 60 

Rollulus rouloul Crested Partridge 52 

Lophura ignita Bornean Crested Fireback 32 

Argusianus argus Great Argus 26 

Chalcophaps indica Emerald Dove 21 

Larvivora cyane Siberian Blue Robin 12 

Copsychus,malabaricus White-rumped Shama 8 

Rallina fasciata Red Legged Crake 8 

Erythropitta granatina Garnet Pitta 5 

Kenopia striata Striped Wren-Babbler 5 

NA Non-identifiable 3 

Pycnonotus plumosus Olive-Winged Bulbul 3 

Carpococcyx radiceus Bornean Ground Cuckoo 1 

Cyanoptila cyanomelana Blue and White Flycatcher 1 

Stachyris maculata Chestnut-rumped Babbler 1 

Ketupa sumatranus Barred Eagle Owl 1 

Alophoixus phaeocephalus Yellow-Bellied Bulbul 1 

Stachyris nigricollis Black-Throated Babbler 1 

Malacopteron magnum Rufous-crowned Babbler 1 

Pellorneum bicolor Ferruginous Babbler 1 

Centropus sinensis Greater Coucal 1 

Gorsachius melanolophus Malaysian Night Heron 1 
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Tests of normality 

A Shapiro-Wilk test showed evidence of non-normality for both the audio (W = 0.90, p < 

0.01652) and camera trap (W = 0.55, p < 8.218-08) Great Argus detection rate (Figure 6.1), 

thus justifying the use of a non-parametric statistical test.  

 

Figure 6.1 Detection frequency of Great Argus across the 26 study sites by A) Autonomous 

Recording Units (ARUs) and B) camera traps. The study design included 69 randomly 

generated recording sites, at which one Autonomous Recording Unit (ARU) and one camera 

trap were set up to record for a 30-day period. A detection day was counted as such when 

one or more Great Argus was/were detected by the survey method in question. Sites with no 

Great Argus detections arising from either survey methods (n = 43) were discarded from 

analysis as they were of no relevance to the study question, leaving 26 sites with Great 

Argus detections from a least one of the methods on at least one day out of the 30-day study 

period (ARU n = 24 and camera trap n = 11).  

 

Detection rates 

Example samples of a Great Argus camera trap images obtained (Figure 6.2) and a Great 

Argus call (Figure 5.1) are presented for reference. The Wilcoxon signed rank test revealed a 

significant difference in the Great Argus detection rates between the two survey methods 

A) B) 
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(ARUs and camera traps): V = 340, p < 1.639-06, with ARUs being significantly more likely to 

detect Great Arguses if present (Figure 6.3). 

Additionally, the ARU detection rate seems to vary with distance between the recording site 

and the nearest main road, with more Great Argus calls being detected at sites further away 

from the nearest main roads (Figure 6.4). The camera trap detection rate however does not 

seem to be affected in the same way, remaining relatively constant – but lower than that of 

ARUs – in relation to distance between the recording site and the nearest main roads (Figure 

6.4). However, as stated in the methods, these trends were obtained through graphical 

observations and were not statistically tested in this study. 

 



124 
 

 

A) 

B) 

C) Figure 6.2 Sample camera trap photographs of A) 

male Great Argus B) female Great Argus C) a 

female Great Argus with her two chicks at night 

using infrared photography. The study design 

included 69 randomly generated recording sites, at 

which one camera trap was set up to record for a 

30-day period. Great Argus were detected at 11 

sites. Photographs obtained from all camera traps 

were processed manually and species identified on 

a case-by-case basis. 



125 
 

 

Figure 6.3 Detection rates of Great Argus by Autonomous Recording Units (ARU) and 

camera traps (camera) at the 26 recording sites with at least one Great Argus detection by 

either surveying method. The study design included 69 randomly generated recording sites, 

at which one ARU and one camera trap were set up to record for a 30-day period. A 

detection day was counted as such when one or more Great Argus was detected by the 

survey method in question. Sites with no Great Argus detections arising from either survey 

methods (n = 43) were discarded from analysis as they were of no relevance to the study 

question, leaving 26 sites with Great Argus detections from a least one of the methods on at 

least one day out of the 30-day study period (ARU n = 24 and camera trap n = 11).  
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Figure 6.4 Average number of days on which Great Arguses were detected by camera traps 

(camera) and/or by Autonomous Recoding Units (ARU) at each site, coloured according to 

Distance to Nearest Main Road (N = 26, some points are overlain by other). Each data point 

refers to a site. The general trend observed here is that as the distance to the nearest main 

road increases, ARUs detect more Great Arguses whereas the detection rate of camera traps 

remains stable and low. The study design included 69 randomly generated recording sites, at 

which one ARU and one camera trap were set up to record for a 30-day period. A detection 

day was counted as such when one or more Great Argus was detected by the survey method 

in question. Sites with no Great Argus detections arising from either survey methods (n = 43) 

were discarded from analysis as they were of no relevance to the study question, leaving 26 

sites with Great Argus detections from a least one of the methods on at least one day out of 

the 30-day study period (ARU n = 24 and camera trap n = 11). Distance to Nearest Main 

Road (here, Distance) is the distance between each site and the nearest main road to that 

site and was measured using Google Earth Pro.  
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Diurnal activity patterns 

ARUs showed relatively low but constant vocalisation activity through the day and night, with 

a large peak just after dusk at 19:00 (Figure 6.5A), In contrast, the camera traps revealed a 

peak of Great Argus activity at dawn and then a secondary peak mid-afternoon (Figure 6.5B), 

in line with findings by O'Brien & Kinnaird (2008) and depicting Great Arguses as mostly 

diurnal. The standard error bars go below 0 due to standard errors being larger than the 

means, this does not indicate that there were negative levels of calls at a site (minimum 

number of calls at a site was 0). These trends were made through graphical observations 

and were not statistically tested in this study.  

 

 

 

 

A) 
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Figure 6.5 Diurnal patterns of Great Argus detected by A) Autonomous Recording Units 

(ARUs) (194 calls across 27 sites) and B) camera trap (26 photographic bursts across 11 

sites, excluding consecutive bursts of the same individual(s)). The study design included 69 

randomly generated recording sites, at which one Autonomous Recording Unit (ARU) and 

one camera trap were set up to record for a 30-day period. Only the sites where at least one 

Great Argus was detected were used in generating the diurnal patterns. For the call diurnal 

pattern, Great Argus calls were extracted from the vast amounts of audio data using a 

species-specific recogniser (algorithms to detect and extract target calls from audio data) 

made in Kaleidoscope Pro (the acoustic analysis software used in this study). For the 

camera trap diurnal pattern, photographs obtained from all camera traps were processed 

manually and species identified on a case-by-case basis. The two vertical dotted lines 

indicate dawn and dusk.  

 

6.5 Discussion 

Monitoring tropical forests presents many challenges due to extreme terrain and climatic 

conditions, usually resulting in data on this biome – and the often cryptic and elusive animals 

it contains – being scarce (Stork et al., 2007; Shoo et al., 2005; Zinger et al., 2020). Our 

study demonstrated that, although ARUs had a higher Great Argus detection rate, on 

average, than camera traps (Figure 6.3), using the two remote sensing survey methods 

concurrently enabled a broader approach of monitoring rare tropical rainforest ground birds, 

B) 
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such as the Great Argus. The two surveying methods revealed different diurnal activity 

patterns (Figure 6.5), meaning they were detecting Great Arguses at different times of day, 

thus revealing the benefit of deploying both methods of remote-sensed wildlife monitoring 

tools. These differences could be due to several different factors discussed below. This study 

focuses on vertebrate taxa only and we acknowledge this as a limitation. 

Firstly, ARUs possess, on average, much greater detection areas than camera traps, of up to 

100 – 7 000 times greater (Enari et al., 2019). This allows them to detect Great Arguses, and 

other wildlife, further afield than camera traps can. Maximum camera trap sensor detection 

ranges vary between 9.1 – 30.5 m (Meek et al., 2012), with ours being 24 m in this study, but 

are frequently reduced to even smaller ranges when deployed in forest habitats because 

their field of view is often obstructed by vegetation or microtopography. By contrast ARUs 

possess much greater detection areas as they are less impaired by terrain and vegetation. 

Nevertheless, sound waves can also be attenuated by topography and vegetation and a 

greater detection range is not always advantageous. Camera traps’ restricted detection 

range can help pinpoint the location of animals to a much smaller area and thus allow more 

precise model results. Secondly, ARUs are not constrained by directionality. Unlike camera 

traps, which can only detect a target within a fixed field of view, ARUs have a 360-degree 

detection scope, thus providing a much larger detection circumference. Thus, the two survey 

methods are clearly not sampling the same areas, with ARUs – unlike camera traps – having 

the capabilities of detecting targets further afield and in all directions. 

The advantages of ARUs over cameras extends beyond their greater detection ranges. 

ARUs are able to provide additional information that other remote sensing technologies 

cannot. Although camera traps can help estimate factors such as breeding success – such 

as the photograph of the Great Argus with chicks in Figure 6.2C – and sex ratios through 

images, acoustic data enables researchers to investigate information that can only be 

extracted from auditive cues. For instance, socio-behavioural information can provide high 

resolution data about wild populations and individuals, such as state-specific signals. 

Although occupancy data is key to assess species distribution and abundance (Devarajan et 

al., 2020), it cannot explain the reasons behind population trends. Different types of calls 

from certain species are indicative of certain population dynamics, behavioural states and 

contexts, or life history events (Teixeira et al., 2019), such as male sika deer (Cervus nippon) 

calls signifying the density of potential breeding males and presence of females (Enari et al., 

2019) or curlew (Numenius arquata) calls indicating fledging success or predator activity 

(Grant et al., 2000). Moreover, due to their greater detection ranges discussed above, ARUs 

are a great advantage in conducting population density estimates of thinly distributed and/or 

cryptic vocalising species with small but non-contiguous territories, such as Dupont's 
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Lark (Chersophilus duponti) (Pérez-Granados et al., 2018). Nevertheless, phenology must be 

considered when using vocalisations for population estimates as these may vary according 

to other factors, such as breeding seasons. Thus, acoustic socio-behavioural data could 

provide further information and begin to close the gap of knowledge about the factors that 

drive population trends, hence helping authoritative bodies to better manage wildlife 

populations and their habitats going forward.  

Additionally, ARUs can be used to survey animals that do not live at ground level. Although 

arboreal camera traps – camera traps placed above ground level – have recently been 

emerging as an effective monitoring methodology for non-ground species (Bowler et al., 

2017; Moore et al., 2020; Monteza-Moreno et al., 2022; Zhu et al., 2022), most research 

projects set up camera traps up at ground level. Ground-level camera trapping is less 

resource intensive, accident prone, and logistically complex than arboreal camera trapping; 

especially in tropical rainforest where some trees are extremely tall and require specialist 

tree climbers or stands for access, making projects more costly (Houle et al., 2004; Moore et 

al., 2021). Although not as relevant for all habitat types, being able to easily survey non-

ground dwelling species is particularly advantageous in forest ecosystems. Forests are 

structurally complex habitats (McCleary & Mowat, 2002) – driving microhabitat and 

microclimatic heterogeneity (Ishii et al., 2004) – in turn creating greater number of refuges 

and niches (Pace et al., 1999), consequentially driving biodiversity (Tscharntke et al., 2012). 

This is particularly the case in tropical rainforests where many taxa exhibit strong 

preferences for height (Lowman & Moffett, 1993) and thus often occupy the canopy and 

understory vegetative strata instead of the forest floor. ARUs enable users to monitor non-

ground dwelling vocalising species with greater ease than arboreal camera traps due to their 

ability to detect targets which are out of sight. Furthermore, studies have found that animals 

show response to camera traps (Meek et al., 2014), suggesting they can detect them, 

potentially biasing data collected and disturbing wildlife. ARUs are more discrete than 

camera traps due to their small size, inconspicuous appearance, and silent operating. Thus, 

ARUs present themselves as a remote sensing technology with a broader and less biased 

potential surveying capability than camera traps, although restricted to use on vocalising 

species.  

Despite the greater surveying range and capability of ARUs, and the additional resolution of 

data they provide, study designs incorporating both remote sensing surveying methods 

remain advantageous as ARUs present some limitations. Some of the facets that make 

ARUs such good surveying tools also limit their use. As discussed above, ARUs provide vital 

socio-behavioural data via the analysis of acoustic cues, which can be vital in management 

and conservation decision-making (Teixeira et al., 2019) due to the relative ease of obtaining 
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high resolution data on cryptic and elusive vocal species using such tools. Inversely, this 

means that unless the target animal is communicating, or otherwise engaging in auditive 

social behaviours, they cannot be surveyed using ARUs as they are acoustically 

inconspicuous and thus will be non-detectable by ARUs. This could mean that, even if the 

study species is very vocal, only certain individuals could be detectable at certain times. For 

instance, in primates, dominance is a key predictor of vocal use (Kavanagh et al., 2021), 

meaning that subordinate individuals will be less likely to be detected by ARUs. Similarly, 

vocalisation levels of given species - such as the tropical oriol Icterus icterus – can vary with 

seasons, often being more frequent in breading season when mate attraction and territorial 

defence are at stake (Odom et al., 2017). Sex and age can also influence vocalisation rates 

(Enari et al., 2019; Bezerra et al., 2009). Camera traps, although having a reduced detection 

range compared to ARUs, will detect animals passing in front of them irrespective of what 

behaviour it is engaging in – given they are big enough to be captured by such a camera. 

Camera traps will reliably detect animals even if they are simply walking past or foraging, 

whereas ARUs mainly detect animals when they are engaging in a specific behaviour 

requiring the production of vocalisations, such as territorial or personal defence, mating and 

alarm calls, or other communications with conspecifics.  

As animals spend the majority of their time resting, traveling, feeding/foraging, and being 

vigilant (Wahungu et al., 2001; Kulp & Heymann, 2015; Rupert et al., 2018), it is reasonable 

to suggest that camera traps do present some unique benefits to remote sensing wildlife, as 

ARUs would not be able to detect vocal animals when engaging in these daily non-acoustic 

activities. This is evidenced by the misalignment of Great Argus diurnal activity patterns 

found using ARUs versus camera traps (Figure 6.5): the two survey methods are detecting 

the birds at different times of the day. Thus, together the two surveying methods provide a 

broader understanding of Great Argus ecology and activity patterns. ARUs and camera traps 

used in isolation would suggest very different activity patterns of the species. Using both in 

combination aids inference and understanding. Hence, camera traps provide a good 

complementary survey method for vocal species during their non-vocal activities (Colyn et 

al., 2020).  

Furthermore, the use of ARUs is limited to certain species and relies on greater quantities of 

additional biological information compared to that of camera traps. Fundamentally, ARUs can 

only be used to survey relatively vocal animals, which heavily restricts the potential study 

species. Furthermore, not all animals have distinct calls – like that of the Great Argus – and 

thus are either indecipherable from background noise or easily confused with that of another 

species. Due to the large size of most audio datasets, study species’ calls cannot be too 

sporadic, as this would render them almost impossible to find among the vastness of other 
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acoustic information stored in such datasets. To mitigate this issue however, audio data 

banks – such as Xeno Canto used here – can be utilised to enhance the number of calls and 

make it easier for statistically-driven recognisers to detect target calls in a dataset. Moreover, 

the use of ARUs to survey target species, relies on the previous knowledge of that animal’s 

call, information which is not always known and can vary greatly between and within 

individuals and geographic regions (Krebs & Kroodsma, 1980; Towsey et al., 2018; 

Helenbrook et al., 2019). Without this, no information of interest can be extracted from the 

audio dataset, thus rendering it redundant. Conversely, camera traps do not present the 

same issue as, on average, photographic, pictographic, and physical descriptions of animals 

are more widely available.  

The use of ARUs comes with technological challenges and relies on more analysis tools and 

skills than camera trapping. ARUs are relatively new to the field of remote sensing across 

large spatiotemporal scales and thus this innovative hardware is not yet answering to all the 

demands of the research community. For instance, battery life is severely reduced compared 

to that of camera traps when compared for the same surveying duration. For instance, our 

ARUs and camera traps were both deployed for approximately 30 days before running out of 

battery, with camera traps recording continuously throughout that period whilst ARUs were 

only recording for of total of less than 3.5 hours daily. Additionally, there is excessive 

attenuations of sound amplitude in ARU recordings, with sounds emitted at ground level 

being disproportionally attenuated compared to sounds emitted higher off the ground (Enari 

et al., 2019), reducing the potential uses of ARUs. If this technical issue was solved, ARUs 

could be used more reliably for analysing species’ habitat use and interactions (Rhinehardt et 

al., 2020) as well as for distance-sampling based population density estimates (Yip et al., 

2020; Sebastián-González et al., 2018) using microphone triangulation to calculate target 

location (Gayk & Mennill, 2020).  

Furthermore, ARUs require heavy data processing to extract desired information. Manual 

processing can be very lengthy and tedious but automated processing is unreliable and often 

computationally complex, requiring expert knowledge (Priyadarshani et al., 2018; Gibb et al., 

2019). Camera trap data on the other hand is quicker and easier to process but presents 

inter-observer biases (Zett et al., 2022), especially as inexperienced volunteers are often 

involved (Enari et al., 2019). Although many semi-automated species classification software 

packages are currently emerging – examples include Conservation AI (Chalmers et al., 

2019), Zamba (Driven Data, 2017), and more (Yu et al., 2013) –, most are focused on African 

or temperate wildlife, cannot be trained to specific datasets, and require image data sharing 

(Shepley et al., 2021). Thus, manually analysing camera trap images is preferred. Although 

not as time consuming as manually analysing audio data, it would be advantageous to 
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concentrate efforts into a few, trusted, and high performing camera trap image classification 

software packages. Software packages are also available to help manage camera trap data, 

like the R package camtrapR (Niedballa et al. 2016), which also helps speed up image 

processing. Hence, there is progress to make for both surveying methods in terms of 

technological challenges and data processing, but particularly for ARUs. 

Although ARUs have many advantages over the more traditional remote sensing survey 

method of camera trapping, using a hybrid survey design is optimal as this draws on the 

strengths of both surveying methods, reducing the situations where the target is 

imperceptible. It is worth noting however that once a recogniser has been developed for a 

species, data extraction from ARUs (at least in terms of checking apparent occurrences) has 

low personnel overheads, whereas, in the absence of auto-image classification, camera 

traps have an ongoing processing time cost. Hence, if resources are limited for monitoring of 

rare vocal species, we suggest ARUs are preferable to use to detect species presence but, if 

resources allow, adding camera traps can provide additional information, with little additional 

deployment effort. Here we present a comparative study focusing on Great Argus detection 

rates of ARUs and camera traps. We conclude that, although ARUs are significantly more 

likely to detect Great Arguses if present at a site, the addition of camera traps provided a 

more holistic dataset, detecting Great Arguses at different times of day than ARUs. Future 

studies using the collected data could compare distance-sampling based population density 

estimates of Great Arguses acquired through ARUs and camera traps respectively and 

explore whether a similar density of ARU and camera trap deployment – and hence with 

similar set-up and monitoring costs – could serve equally well to estimate populations or 

distributions. 
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Chapter 7 

General Discussion 

7.1 Overview 

In this thesis, we have used and applied cutting-edge remote surveying technology and 

analysis tools to push the boundaries of knowledge and understanding regarding the use of 

eco-acoustics to infer the impact of infrastructure expansion on birds in tropical rainforests 

ecosystems. Tropical rainforests provide an optimal challenge for eco-acoustic research as 

this biome presents many hotspots of biodiversity, resulting in complex soundscapes. 

Primarily using Autonomous Recording Units (ARUs), this project showcased two of the main 

audio analysis tools (acoustic indices and recognisers) and identified both the strengths and 

weaknesses of their implementation. Furthermore, by applying these tools to a large set of 

audio data, collected across an infrastructure expansion gradient in Brunei’s tropical 

rainforests, our work has explored the impact of several spatial-temporal factors on the 

soundscapes and species present in the study area. Here, we discuss and summarise the 

findings of this thesis and place in them a wider ecological context.  

 

7.2 Remote surveying technologies 

The use of ARUs during this project enabled us to collect a vast quantity of audio data across 

a large spatial-temporal scale, with little previous expertise. The ease of use provided by 

audio recorders, allows scientists with relatively little experience in this technology and little 

taxonomic expertise to conduct state-of-the-art research projects, thus opening the field of 

conservation ecology to a wider community and – consequently – accelerating 

understanding. ARUs are being increasingly used by researchers due to their advantages 

over traditional surveying methods. These advantages include reduced observer bias, 

permanent record of data and larger spatial-temporal surveying capabilities coupled with less 

time spent in the field (Shonfield & Bayne, 2017). The use of ARUs allow scientists to monitor 

animal communities or individuals at both small and large scales, in turn enabling them to 

assess the need for – or success of – conservation programs or study animal behaviour like 

never before. Indeed, several large-scale audio monitoring programs have been set up, 

including one of the largest ecological experiments globally: The SAFE Acoustics project in 

the Danum Valley Conservation Area in Sabah, Malaysia (Sethi et al., 2020). This project 
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allows real-time, remote surveying of the soundscape across a network of deployed ARUs 

and has been used in over 200 research projects, including assessing how to balance 

productive palm oil plantations in parallel with healthy ecological communities (Bicknell et al., 

2023). ARUs have also been used to track animal communication, allowing users to track 

migratory birds (Buxton et al., 2016; Farnsworth & Russell 2007; Sanders & Mennill 2014; 

Shonfield & Bayne, 2017) and even identify individuals in a non-invasive way to further infer 

return rates (Ehnes & Foote 2015; Petrusková et al., 2016) or other behaviours of interests at 

a local scale, such as habitat use (Mennill et al., 2006, 2012; Wang et al., 2005). However, 

due to the relative novelty of acoustic technology, there has been discrepancies between the 

methods used in eco-acoustic studies, consequentially resulting in inconsistent or 

incomparable findings (Bradfer‐Lawrence et al., 2019). Thus, in Chapter 2, we outline 

research protocols to gather the maximum amount of data possible given the hardware and 

time restrictions that were present during our fieldwork, whilst trying to keep in line with best-

practice guidance in the literature – bearing in mind our audio recording protocol was 

restricted by the camera traps we simultaneously deployed.  

Using both remote surveying technologies in conjunction permitted us to conduct a 

comparative study between the two remote surveying methods (Chapter 6), something that 

has – to the best of our knowledge – never been done before on birds in tropical rainforests 

ecosystems. Over the last decade, a handful of studies have integrated both remote 

surveying techniques in the aims of answering various ecological questions, such as 

abundance and distribution of species, as well as behavioural studies, at multiple trophic 

levels (Buxton et al., 2018A), with some focusing on anthropogenic impacts (Buxton et al., 

2017A; Derose-Wilson et al., 2015; Francis et al., 2015; Robinson et al., 2015). Most studies 

using both camera traps and ARUs simultaneously have mammals as their focal taxon 

(Crunchant et al., 2020; Diggins et al., 2016; Enari et al., 2017, 2019; Francis et al., 2015; 

Garland et al., 2020; Horton et al., 2015; Isbell and Bidner 2016; Wrege et al., 2017), making 

this study one of the few integrating these remote surveying technologies to study birds 

(Buxton et al., 2017A & B; Derose-Wilson et al., 2015; Robinson et al., 2015). Here, using a 

custom-built audio recogniser (an algorithm capable of automatically detecting and extracting 

target calls from audio data), we tallied calls of a vulnerable ground-bird – the Great Argus –

and compared the number of detection days at each site to that of camera traps. Although 

our findings clearly demonstrated the ARUs had a significantly higher detection rate overall, 

there was a divergence in the diurnal activity patterns constructed using both survey 

methods independently. Amalgamating data collected using both remote surveying 

technologies led to a more holistic understanding of the species’ ecology and increased 

chances of detection, thus providing with the potential also to improve abundance and 
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distribution studies. Despite the many opportunities such surveys permit, the main 

impediment that remains is data processing. 

 

7.3 Acoustic analysis tools 

Although recent development in acoustic technology has provided opportunities for 

unprecedented ‘big data’ collection, the difficulty lies in extracting information of interest from 

audio datasets. Two main acoustic analysis tools available to scientists today are acoustic 

indices and recognisers.  

Acoustic indices allow researchers to quantitatively summarise aspects of audio files in a 

standardised way (Towsey et al., 2014A), thus making recordings easily comparable. The 

main advantages of acoustic indices are their simplicity and ease of computing. Despite their 

relatively recent development, many eco-acoustic studies now utilise these indices for rapid 

biodiversity assessments and exploring patterns in spatial-temporal variation (Buxton et al., 

2018B). Acoustic indices have been used in many biomes across the globe, from tropical 

rainforests (Jorge et al., 2018; Moreno-Gómez et al., 2019; Retamosa Izaguirre et al., 2021) 

and temperate grasslands (Müller et al., 2022; Shamon et al., 2021), to polar regions (Bolgan 

et al., 2018; Yip et al., 2021) and even urban areas (Fairbrass et al., 2017; Rajan et al., 

2019), both in terrestrial and marine ecosystems, with some studies even starting to look at 

underground soil-soundscapes (Keen et al., 2022). They have helped describe, summarise, 

and compare soundscapes around the world like never before. Additionally, long-duration 

false colour spectrograms present a new method for interpreting index scores, by combining 

them to visually display temporally large soundscapes, which indirectly provides a novel, 

rapid way of monitoring species without the time-consuming need to build complex 

recognisers (Towsey et al., 2014B, 2018). Nevertheless, there remains heavy scepticism 

surrounding the ecological relevance of acoustic indices, as studies have found inconsistent 

findings when correlating them to various bioindicators (Bradfer‐Lawrence et al., 2019; 

Buxton et al., 2018B). In Chapter 3, we applied one of the most commonly used acoustic 

indices, the Acoustic Complexity Index (ACI), which was developed to “produce a direct and 

quick quantification of the bird vocalisations by processing the intensities registered in audio 

files” (Pieretti et al. 2011). In light of the ACI’s intended focus on bird vocalisations, our 

findings were the opposite of what we were expecting. Particularly in terms of the diurnal 

patterns observed, which showed a significant decrease of ACI during daytime compared to 

that at night, with a notable drop at dawn. Additionally, ACI was found to decline as 

remoteness increased, which we also found surprising. Although other studies have found 

similar trends and this could be explained by several factors (including the dominance of 
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highly vocal edge-loving species, ecotones supporting a wider community of species, or 

compensation against noise pollution), our findings described in Chapter 5 create a 

perplexing duality in our results. Using our custom-made acoustic recognisers developed in 

Chapter 4 and 5 for the Helmeted Hornbill (Rhinoplax vigil) and Great Argus (Argusianus 

argus), we found that, in the case of these two species at least, the birds had a greater 

regularity of persistence at sites further from roads. However due to logistical restrictions, we 

did not take in situ bird species diversity and abundance measurements (namely point count 

surveys), as done in other studies which also used acoustic indices (Bradfer-Lawrence et al., 

2020; Dröge et al., 2021; Eldridge et al., 2018; Jorge et al., 2018; Mammides et al., 2017; 

McGrann et al., 2022). Hence, we cannot directly correlate our ACI findings with bird species 

abundance and diversity and thus cannot fully conclude as to the exact ecological meaning 

of ACI in this study until additional work is conducted. 

The other major tool used in eco-acoustic research are recognisers. Once trained, these 

algorithms allow users to detect and extract target calls from large sets of audio data – a task 

that can otherwise take a very long time. For example, to manually listen to our dataset (7 

141 hours of audio recording), excluding any identification or classification, would have taken 

3.5 years (assuming a person works 5 days per week for 8 hours per day) – further 

highlighting the need for automated processing and identification in eco-acoustics. 

Nevertheless, much like acoustic indices, the reliability of recognisers has been questioned 

in the literature (Brooker et al., 2020). There is a plethora of programs that have been 

developed to date, based on a diversity of underlying algorithms (Brandes, 2008), which 

allow users to build custom-made species-specific recognisers. The main recogniser building 

software programs available to date are Song Scope, MonitoR, Raven Pro, Kaleidoscope 

Pro, and Convolutional neural networks. These programs have helped the scientific 

community study individuals and species within their ecosystems at a much faster pace than 

ever before. Kaleidoscope Pro, used in this thesis, is a commercially available software 

which presents a user-friendly interface – thus furthering the accessibility of eco-acoustics to 

a wider audience. Recognisers built using Kaleidoscope Pro’s have been previously 

suggested to perform poorly in comparative studies (Brooker et al., 2020; Knight et al., 

2017), however – to the best of our knowledge – Chapter 4 constitutes the first attempt at 

teasing apart which construction techniques in Kaleidoscope Pro result in better performing 

recognisers. Although this was not an original goal of the project, initial classifications of bird 

vocalisation data proved rather weak (possibly due to the complexity of rainforest 

soundscapes), suggesting a need for further exploration and refinement of recogniser 

construction. By trying different combinations of training data and labelling (‘teaching’ the 

algorithm what is and is not a target call) we concluded that using training data from the 
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study site and labelling all types of target call, irrespective of (perceived) quality, resulted in 

the best performing recogniser. However, even our best performing recogniser still produced 

many false positives, rendering the use of our recogniser semi-automated, as we had to 

manually check the ‘positive’ output for target calls. Nevertheless, as our goal was to detect 

the most target calls possible, even if that meant increasing the number of false positives, 

this was more acceptable in this study than a more balanced (in terms of sensitivity and 

specificity) recogniser that missed numerous calls. Thus, research goals must be considered 

when constructing a recogniser, as this is not necessarily the best outcome for all projects.  

 

7.4 Impact of infrastructure expansion on biodiversity 

Aside from evaluating acoustic tools, another major focus of this thesis was applying these 

tools to infer the ecological impact of infrastructure expansion in the study area. To do this we 

used a combination of approaches, namely the Acoustic Complexity Index (ACI) to analyse 

the soundscape and overall bird biodiversity, as well as the use of custom-made species-

specific recognisers to detect calls of the Helmeted Hornbill and the Great Argus. The ACI 

scores in Chapter 3 suggested a higher bird biodiversity nearer roads and in higher 

infrastructure pressure zones with no sensitivity to buildings or biomass. As mentioned 

previously, this might be due to ecotones supporting a greater diversity of species, whose 

vocalisations are adapted to different sound environments, and hence together they better 

‘fill’ the soundscape. However, ACI’s correlation with bird vocalisations remains theoretical, 

with many studies finding no such correlations, and thus high scores here could represent 

invertebrates or geophony. Meanwhile, our recognisers in Chapter 5 suggested both study 

birds had a greater regularity of persistence at sites further from roads and buildings as well 

as with greater biomass, thus not conforming to the overall bird biodiversity trends revealed 

by the ACI results. Nevertheless, this result was to be expected as the Helmeted Hornbill and 

Great Argus are forest interior specialists and thus are less likely to be found around the 

forest edge. Additionally, both methods revealed intriguing acoustic diurnal patterns. ACI 

showed a clear pattern of higher scores at night – theoretically indicating high bird 

vocalisation activity – whilst the patterns produced by our recogniser results were mixed. 

Helmeted Hornbills seemed to only vocalise during the daytime, whilst Great Argus vocalised 

through the 24h period, with their highest peak of vocal activity being after dusk.  

Both the ACI analyses and the individual species studies suggested that roads had a 

significant impact on biodiversity, evidencing that infrastructure expansion does not go 

without consequence. Roads, and other anthropogenic linear clearings, cause considerable 

ecological disturbance – such as chemical and nutrient pollution, increasing edge habitat, 
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increasing risks of roadkill, creating barriers or impassable clearings, changes in predator-

prey interactions, increased risk of biological and human invasions, frequently leading to 

increased poaching – and have been suggested to disproportionally affect tropical forests 

biodiversity (Laurance et al., 2009). Nevertheless, this type of infrastructure has been 

repeatedly reported to cause negative consequences across many different taxa and biomes 

(Dean et al., 2019; Dickie et al., 2017; Dorsey et al., 2015; Elzanowski et al., 2009; He et al., 

2019; Myers-Smith et al., 2006), with roads being amongst the most well understood linear 

disturbances. Mitigations to reduce the impact of such infrastructure include wildlife bridges 

and tunnels to allow for safe crossing (Teixeira et al., 2013; Van der Ree et al., 2009), limiting 

expansion in certain areas of special conservation value, investing in high-quality 

infrastructure to avoid downstream work and pollution (Laurance et al., 2009), and raising 

awareness about the issue.  

 

7.5 Future work 

The findings of this thesis provide an overview of the soundscapes across infrastructure 

expansion gradients (albeit a gradient towards the more undistributed end of the 

infrastructure expansion gradient) in Temburong, Brunei. One of the advantages of audio 

data, such as that collected here, is that one dataset can be used to answer numerous 

questions. Thus, future work could focus on further analysis of the soundscape, for example 

recalculating ACI over narrower ecologically relevant frequency bands (Metcalf et al., 2021) 

or by implementing frequency filters (Hyland et al., 2023). This could be used to block out 

stridulating insects, for example, and explore how this impacts current results. Additionally, 

the work carried out in Chapter 3 could be repeated with other acoustic indices to broaden 

our general understanding of Temburong’s soundscapes. In terms of recognisers, future work 

could look at constructing Helmeted Hornbill and Great Argus recognisers using other 

software programs, applying them to our audio dataset, and comparing results to those 

produced by Kaleidoscope Pro. The ecological work carried out in Chapter 5 could be 

repeated with any species of interest in the study area and results compared to our focal 

species, as well as the ACI scores, to further explore the relationship between bird 

vocalisations and ACI. Similarly, a comparison study between camera trap and acoustic data 

could be conducted on another vocalising ground-dwelling organism of interest. Moreover, in 

the future, citizen science could be explored as a way of identifying vocalisation in audio 

datasets, similarly to how it is already being done with camera trap data. Long term, further 

collaboration must be undertaken between ecologists and computer scientists, sound 
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specialists, and mathematicians to further the potential of both acoustic indices and 

recognisers. 

 

7.6 Conclusion 

Tropical rainforests are vital to many living organisms on Earth, including humans, providing 

stable, resource-rich habitats locally, as well as climate regulation globally. This biome is so 

vast and imposing – and is of immeasurable biological, cultural, and aesthetic value – yet is 

so vulnerable in the face of today’s anthropogenic threats, such as infrastructure expansion. 

Conserving tropical rainforest ecosystems is paramount, both for the wildlife they harbour 

and to maintain global ecosystem functioning. Recent progress in remote surveying 

technology and analysis tools have allowed researchers to monitor natural ecosystems, 

including hard-to-access rainforests, like never before. By using camera traps and ARUs, 

coupled with acoustic indices and recognisers, this thesis has depicted the advantages and 

disadvantages of these technologies and analysis tools, as well as showcased their practical 

application for exploring the sensitivity of bird communities to infrastructure expansion. The 

research presented here is valuable and constitutes one of the first studies of its kind in 

Brunei’s tropical rainforest ecosystems. Hopefully, it will act as a springboard for further 

research, both to continue developing the field of eco-acoustics and to gain further ecological 

knowledge to help mitigate the current biodiversity loss crisis. 
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Chapter 8 

Appendices 

8.1 Appendix A – Equipment details 

SongMeter and camera trap equipment details are listed in Table 1A.1 and 1A.2 respectively.  

 

Table 1A.1 Equipment details for the 27 SongMeters Micro and 3 Song Meter Mini used 

during fieldwork. 

Item SongMeter model Serial number 

1 SongMeter Micro (Wildlife Acoustics) SMM00843 

2 SongMeter Micro (Wildlife Acoustics) SMM00787 

3 SongMeter Micro (Wildlife Acoustics) SMM01298 

4 SongMeter Micro (Wildlife Acoustics) SMM01405 

5 SongMeter Micro (Wildlife Acoustics) SMM01489 

6 SongMeter Micro (Wildlife Acoustics) SMM00775 

7 SongMeter Micro (Wildlife Acoustics) SMM00972 

8 SongMeter Micro (Wildlife Acoustics) SMM00661 

9 SongMeter Micro (Wildlife Acoustics) SMM00672 

10 SongMeter Micro (Wildlife Acoustics) SMM01402 

11 SongMeter Micro (Wildlife Acoustics) SMM00662 

12 SongMeter Micro (Wildlife Acoustics) SMM01367 

13 SongMeter Micro (Wildlife Acoustics) SMM01404 

14 SongMeter Micro (Wildlife Acoustics) SMM01381 

15 SongMeter Micro (Wildlife Acoustics) SMM00653 

16 SongMeter Micro (Wildlife Acoustics) SMM00988 

17 SongMeter Micro (Wildlife Acoustics) SMM01000 

18 SongMeter Micro (Wildlife Acoustics) SMM01296 

19 SongMeter Micro (Wildlife Acoustics) SMM02432 

20 SongMeter Micro (Wildlife Acoustics) SMM01936 

21 SongMeter Micro (Wildlife Acoustics) SMM01400 

22 SongMeter Micro (Wildlife Acoustics) SMM01906 
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23 SongMeter Micro (Wildlife Acoustics) SMM01310 

24 SongMeter Micro (Wildlife Acoustics) SMM01403 

25 SongMeter Micro (Wildlife Acoustics) SMM00858 

26 SongMeter Micro (Wildlife Acoustics) SMM01483 

27 SongMeter Micro (Wildlife Acoustics) SMM00867 

28 SongMeter Mini (Wildlife Acoustics) SMA00646 

29 SongMeter Mini (Wildlife Acoustics) SMA00941 

30 SongMeter Mini (Wildlife Acoustics) SMA00521 

 

 

Table 1A.2 Equipment details for the 45 camera traps used during fieldwork. 

Item Camera trap model Serial number 

1 Browning Strike Force HD Pro X BTC-5HDPX 2110053111205HDPX 

2 Browning Strike Force HD Pro X BTC-5HDPX 2110066911205HDPX 

3 Browning Strike Force HD Pro X BTC-5HDPX 2110201911205HDPX 

4 Browning Strike Force HD Pro X BTC-5HDPX 2110065111205HDPX 

5 Browning Strike Force HD Pro X BTC-5HDPX 2110036411205HDPX 

6 Browning Strike Force HD Pro X BTC-5HDPX 2110041411205HDPX 

7 Browning Strike Force HD Pro X BTC-5HDPX 2110054311205HDPX 

8 Browning Strike Force HD Pro X BTC-5HDPX 2110040211205HDPX 

9 Browning Strike Force HD Pro X BTC-5HDPX 2110042211205HDPX 

10 Browning Strike Force HD Pro X BTC-5HDPX 2110049911205HDPX 

11 Browning Strike Force HD Pro X BTC-5HDPX 2110293811205HDPX 

12 Browning Strike Force HD Pro X BTC-5HDPX 2110050311205HDPX 

13 Browning Strike Force HD Pro X BTC-5HDPX 2110032611205HDPX 

14 Browning Strike Force HD Pro X BTC-5HDPX 2110302011205HDPX 

15 Browning Strike Force HD Pro X BTC-5HDPX 2110066011205HDPX 

16 Browning Strike Force HD Pro X BTC-5HDPX 2110301811205HDPX 

17 Browning Strike Force HD Pro X BTC-5HDPX 2110295111205HDPX 

18 Browning Strike Force HD Pro X BTC-5HDPX 2110066811205HDPX 

19 Browning Strike Force HD Pro X BTC-5HDPX 2110050411205HDPX 

20 Browning Strike Force HD Pro X BTC-5HDPX 2110094411205HDPX 

21 Browning Strike Force HD Pro X BTC-5HDPX 2110032911205HDPX 

22 Browning Strike Force HD Pro X BTC-5HDPX 2110288111205HDPX 
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23 Browning Strike Force HD Pro X BTC-5HDPX 2110217511205HDPX 

24 Browning Strike Force HD Pro X BTC-5HDPX 2110421711205HDPX 

25 Browning Strike Force HD Pro X BTC-5HDPX 2110298811205HDPX 

26 Browning Strike Force HD Pro X BTC-5HDPX 2110068011205HDPX 

27 Browning Strike Force HD Pro X BTC-5HDPX 2110043011205HDPX 

28 Browning Strike Force HD Pro X BTC-5HDPX 2110036111205HDPX 

29 Browning Strike Force HD Pro X BTC-5HDPX 2110043211205HDPX 

30 Browning Strike Force HD Pro X BTC-5HDPX 2110034111205HDPX 

31 Browning Strike Force HD Pro X BTC-5HDPX 2110052711205HDPX 

32 Browning Strike Force HD Pro X BTC-5HDPX 2110093511205HDPX 

33 Browning Strike Force HD Pro X BTC-5HDPX 2110300511205HDPX 

34 Browning Strike Force HD Pro X BTC-5HDPX 2110333611205HDPX 

35 Browning Strike Force HD Pro X BTC-5HDPX 2110292011205HDPX 

36 Browning Strike Force HD Pro X BTC-5HDPX 2110334811205HDPX 

37 Browning Strike Force HD Pro X BTC-5HDPX 2110024711205HDPX 

38 Browning Strike Force HD Pro X BTC-5HDPX 2110041511205HDPX 

39 Browning Strike Force HD Pro X BTC-5HDPX 2110067811205HDPX 

40 Browning Strike Force HD Pro X BTC-5HDPX 2110046111205HDPX 

41 Browning Strike Force HD Pro X BTC-5HDPX 2110051011205HDPX 

42 Browning Strike Force HD Pro X BTC-5HDPX 2110009811205HDPX 

43 Browning Strike Force HD Pro X BTC-5HDPX 2110033511205HDPX 

44 Browning Strike Force HD Pro X BTC-5HDPX 2110052511205HDPX 

45 Browning Strike Force HD Pro X BTC-5HDPX 2110334511205HDPX 
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8.2 Appendix B – Equipment malfunctions 

A list of all the deviations from the programmed regime for SongMeters and malfunctions for 

camera traps can be found in Table 2B.1 and 2B.2 respectively according to recording sites. 

Sites LIP7.2, LIP10.2, MIP4.2, and MIP34.2 are repeats due to camera trap malfunctions, not 

ARUs malfunction (but the latter was redeployed to have paired datasets recorded at the 

same time). 

 

Table 2B.1 All the deviations from the programmed regime for SongMeters. Rows with a ‘x’ 

indicates there were no deviations from the programmed regime by the SongMeter at that 

site. ‘Malfunctioned’ indicates when an audio file was not recorded for the correct amount of 

time (usually slightly shorter), often accompanied by a small, unopenable, error file. This 

usually happened near the end of the deployment period, when the SD card was nearly full. 

Recording site Comments  

AZ1 x 

AZ2 x 

AZ3 Recorded an extra 1 min of audio data after each scheduled recording 

slot. 

AZ4 x 

FREME2 x 

HIP1 Varying dawn recording length. 

HIP38 05/12 at 10h and 15h malfunctioned. 

HIP48 04/5 at 9h malfunctioned. Varying dawn recording length. 

HIP49 Varying dawn recording length 

HIP50 Varying dawn recording length 

HIP51 x 

HIP52 1 dusk file is half the length it should be. 6/13 (last day) at 16h, 18h, 

19h malfunctioned 

HIP53 Varying dawn recording length. 

HIP54 X 

HIP55 Varying dawn recording length. 

HIP57 Varying dawn recording length. Recorded an extra 1 min of audio data 

after each scheduled recording slot. 

HIP58 1 dawn file malfunctioned. 

HIP59 x 
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HIP60 Varying dawn recording length. 

HIP63 Varying dawn recording length. 

HIP64 Varying dawn recording length. 

HIP65 x 

HIP66 Varying dawn recording length. 

HIP67 Recorded an extra 1 min of audio data after each scheduled recording 

slot. 

HIP68 x 

HIP69 Varying dawn recording length. 

HIP70 Varying dawn recording length. 

J1 1 dawn file malfunctioned. 

J10 x 

J2 x 

J3 x 

J4 x 

J5 No audio files found, possibly due to SD car corruption. 

J6 x 

J7 Recorded an extra 1 min of audio data after each scheduled recording 

slot. 

J8 x 

J9 Last dusk file slightly shorter than normal (98kb). 

JBPLOT x 

LIP10 04/28 (last day) at 11h malfunctioned. 

LIP10.2 x 

LIP11 x 

LIP25 x 

LIP27 Varying dawn recording length. 

LIP35 Varying dawn recording length. 

LIP37 Varying dawn recording length. 

LIP44 Varying dawn recording length. 

LIP45 Varying dawn recording length. 

LIP7 1 dawn file slightly longer than normal. Recorded an extra 1 min of 

audio data after each scheduled recording slot. 

LIP7.2 x 

LIP8 x 

LIP9 x 
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MIP1 x 

MIP15 x 

MIP15 new 06/4 (last day) 4h malfunctioned 

MIP16 Varying dawn recording length. Recorded an extra 1 min of audio data 

after each scheduled recording slot. 

MIP22 Varying dawn recording length. 

MIP27 new x 

MIP28 Varying dawn recording length. 

MIP3 Varying dawn recording length. 

MIP34 x 

MIP34.2 x 

MIP35 Varying dawn recording length. 

MIP36 Only recorded for 6 days. 

MIP4 Varying dawn recording length. 

MIP4.2 x 

MIP40 Varying dawn recording length. 

MIP41 Varying dawn recording length. 

MIP42 Varying dawn recording length. 

MIP47 Varying dawn recording length. 

MIP48 x 

MIP8 Varying dawn recording length. 

MIP9 (Freme1) x 

MIP9.2 x 

SOAS x 

 

 

Table 2B.2 All the deviations from the programmed regime for camera traps. Rows with a ‘x’ 

indicates there were no deviations from the programmed regime by the camera trap at that 

site. ‘Glitched’ indicates that the camera trap took a very large series of images in a row 

without necessarily being triggered.  

Recording 

site 

Comments 

AZ1 x 

AZ2 Adjusted by a monkey (03/05/22). 
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AZ3 x 

AZ4 x 

FREME2 Adjusted by a monkey (05/05/22). 

HIP1 x 

HIP38 x 

HIP48 x 

HIP49 x 

HIP50 Adjusted by monitor lizard (13/3/22). 

HIP51 x 

HIP52 x 

HIP53 Condensation on some images. 

HIP54 Night overexposure. 

HIP55 x 

HIP57 Glitched and date reset to 1/1/2020 during deployment. Continued 

recording as normal after glitch. 

HIP58 x 

HIP59 x 

HIP60 Adjusted by monkey (26/2/22). Some grainy images. 

HIP63 Night overexposure. 

HIP64 x 

HIP65 Night overexposure. 

HIP66 Abnormal image light/quality. 

HIP67 Glitched twice. Continued recording as normal after the glitch.  

HIP68 Glitched and date reset to 1/1/2020 during deployment. Continued 

recording as normal after glitch. 

HIP69 Night overexposure. 

HIP70 x 

J1 x 

J10 Glitched and date reset to 1/1/2020 during deployment. Stops recording 

after glitch. 

J2 Night overexposure and lots of empty images. 

J3 Night overexposure. 

J4 Night overexposure. 

J5 Did not record any data. 

J6 Night overexposure. 

J7 x 
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J8 x 

J9 Night overexposure and condensation obscuring some images. 

JBPLOT Glitched and date reset to 1/1/2020 during deployment. Continued 

recording as normal after glitch. Condensation on some images. 

LIP10 Glitched (24/5/22). Stops recording after glitch.  

LIP10.2 Glitched (30/6/22 - 01/07/22). Does not resume normal functioning. 

LIP11 Night overexposure. Glitch (24/04/22) but continued recording as normal 

after glitch. 

LIP25 Glitch (16/4/22) but continued recording as normal after glitch. 

LIP27 SD card filled up on the first deployment day due to bees swarming 

around camera trap. 

LIP35 Night overexposure and condensation obscuring some images. Glitched 

(19/3/22) but continued recording as normal after the glitch. 

LIP37 Condensation distorting some images. 

LIP44 x 

LIP45 x 

LIP7 Adjusted by a monkey (30/03/22). 

LIP7.2 x 

LIP8 Some condensation (not too bad). 

LIP9 Some condensation (not too bad). 

MIP1 Condensation distorting some images. 

MIP15 Did not record for full deployment, may have run out of batteries. 

MIP15 new Strange image quality, some condensation. 

MIP16 x 

MIP22 x 

MIP27 new x 

MIP28 x 

MIP3 x 

MIP34 Did not record any data. 

MIP34.2 Glitch (27/6/22): does not reset until the end. Night overexposure.  

MIP35 x 

MIP36 Night overexposure. 

MIP4 Glitch (6/3/22) but continued recording as normal after the glitch. 

Adjusted by monkey. 

MIP4.2 x 

MIP40 x 
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MIP41 x 

MIP42 Night overexposure, condensation in some images. Glitch (22/2/22) but 

continued recording as normal after the glitch. 

MIP47 x 

MIP48 x 

MIP8 Stopped recording early, may have run out of battery.  

MIP9 (Freme 

1) 

x 

MIP9.2 x 

SOAS Glitch (04/06/22) but continued recording as normal after the glitch. 
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8.3 Appendix C – Habitat covariates correlation 

Statistical measures relating to the habitat covariates correlation. See Table 3C.1 for results 

of the Pearson’s correlation conducted between the continuous variables. See Table 3C.2 for 

the association between the categorical variables. See Figure 3C.1 for the association 

between the continuation variable Distance to Nearest Main Road and the categorical 

variable Nearest Main Road Type. 

 

Table 3C.1 Pearson’s correlation scores between continuous variables. Red cells indicate 

correlation scores greater than recommended the cut-off threshold of r = 0.7, in this case 

resulting in the variable Distance to nearest road being discarded during analysis. Distance 

to building is the distance between each site and the nearest building, distance to nearest 

main road is the distance between each site and the nearest main road to that site, distance 

to nearest road is the distance between each site and the nearest road to that site, and 

biomass is the total above ground biomass calculated using an allometric equation 

previously used in tropical forests in conjunction with data collected in the field. The distance 

variables were measured using Google Earth Pro. 

 

Distance to 

nearest main 

road 

Biomass 
Distance to 

nearest road 

Distance to 

nearest building 

Distance to 

nearest main 

road 

1    

Biomass 0.2831440 1   

Distance to 

nearest road 
0.9015533 0.3418768 1  

Distance to 

nearest building 
0.3523868 0.2685286 0.3705074 1 
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Table 3C.2 Association between the categorical variables Nearest main road type and 

Infrastructure Pressure Zone. HIP = High Infrastructure Pressure; MIP = Medium 

Infrastructure Pressure; LIP = Low Infrastructure Pressure. 
 

Infrastructure Pressure Zone 

HIP MIP LIP 

N
e

a
re

s
t 
m

a
in

 r
o

a
d

 

ty
p

e
 

Highway 30 0 0 

Secondary main 

road 
0 19 0 

Track 0 1 19 

 

 

Figure 3C.1 Association between the continuation variable Distance to Nearest Main Road 

and the categorical variable Nearest Main Road Type. Distance to Nearest Main Road is the 

distance between each site and the nearest main road to that site. Nearest Main Road Type 

was either highway, secondary main road, or track. Distances were measured using Google 

Earth Pro. 


