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Abstract: Machine learning and data intensive methods can be applied to a

plethora of research domains. We apply supervised and unsupervised machine

learning, Monte Carlo simulations and statistical tools to three diverse areas of

research, tackling a range of computational and data analysis challenges unique to

their respective environments.

Using SHERPA – a Monte Carlo event generator – as a Standard Model machine we

generate thousands of particle collision events. We employ a range of neural network

architectures to determine the most powerful discriminating features which eliminate

vast numbers of background events enabling us to calculate new constraints on the

charm Yukawa coupling at the Large Hadron Collider and future projections.

Hartlepool Nuclear Power Station has a rich array of instrumentation that con-

tinuously monitors reactor health as frequently as every second, at all times. We

apply unsupervised machine learning and Bayesian tools to scrutinise anomalous

behaviour in the data which is indicative of instrumentation degradation prior to

instrumentation failure.

JUNE – an agent based epidemiological simulation – is used to extract novel social



mixing matrices at Cox’s Bazar, a refugee camp in Bangladesh containing ∼600, 000

displaced people. These contact matrices can be used to understand social interac-

tions and disease spread and therefore provide better utilisation of limited resources.
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Chapter 1

Introduction

Machine learning and data intensive tools can be applied to a plethora of research

domains involving high dimensional and complex datasets. These tools have the

power to distil meaningful and concise information from large datasets. In this

thesis, we will apply supervised and unsupervised machine learning, Monte Carlo

simulations and statistical tools to three diverse areas of research. Each of these

three distinctive projects tackled a range of computational and data analysis issues

which we will address throughout this thesis.

In the first part of this thesis, the introductory chapters will outline the prerequisite

concepts required across the projects. We present methods in supervised and unsu-

pervised machine learning in Chapter 2 which are relevant only in Chapter 5 where

we use supervised machine learning tools to eliminate backgrounds in a cut-flow

analysis and in Chapter 6 where we make use of unsupervised machine learning tools

to understand anomalous trends in time-series data. The explanations of the tech-

niques of machine learning and data intensive science are drawn from the reference

textbook [3]. In Chapter 3 we will review the stochastic simulation tools employed

in Chapter 5 and Chapter 7. In these chapters we make use of SHERPA a particle

physics event generator and JUNE an agent based epidemiological simulation tool.

In Chapter 4 we will outline the key physics concepts relevant for Chapter 5. In this

chapter we largely follow the reference textbooks [4–6].
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• In Chapter 5 of this thesis, we will discuss current and future constraints on

the measurement of charm Yukawa coupling. Many of the concepts introduced

in Chapter 2 and Chapter 3 and Chapter 4 will be utilised in this chapter. We

will use the Monte Carlo event generator SHERPA to produce a vast dataset

of background and signal processes and apply systemic cuts to preferentially

retain signal over background using a selection of neural network architectures.

Then the CLs statistical likelihood profiling method [7,8] is used to extract a

meaningful interpretation of the determined value of the Yukawa coupling, or

to be more precise its upper-bound confidence limit.

• In Chapter 6, I present work on the industrial placement undertaken at Hartle-

pool Power Station in collaboration with Durham University Centre for Doc-

toral Training in Data Intensive Science and EDF. The placement was conduc-

ted between 16th September 2020 – 17th April 2021. The keys aims of this

project were to expand upon and explore novel decision support tools which

could be used to indicate reactor and or instrumentation health. We apply

unsupervised machine learning methods introduced in Chapter 2 to explore

the large multi-dimensional time series dataset produced from a large array

of sensors in the cooling system and reactor core at Hartlepool power station.

We test the applicability of these tools to detect changes in the operational

parameters of the instrumentation and the reactor itself. Unexpected or an-

omalous behaviour can be indicative of instrumentation degradation prior to

instrumentation failure. Detection of these behavioural changes allows for

safer operation and efficient replacement of key instrumentation. These new

monitoring techniques were delivered with a demo dashboard which demon-

strates the methods outlined in this chapter for a subset of the operational

data measured at Hartlepool power station.

• Lastly, in Chapter 7, I present another industrial placement undertaken with

United Nations (UN) Global Pulse in collaboration with Durham University
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Centre for Doctoral Training in Data Intensive Science. The placement oc-

curred between 17th January 2022 – 17th August 2022. The UN Global Pulse

is a data driven department of the United Nations in which teams of digital

engineers work together with global governments to apply modern data science

and forecasting tools with novel technologies fulfill the goals of the UN in

responding to modern, global challenges [9]. The aim of the placement was to

derive new social mixing contact matrices for Cox’s Bazar using a combination

of survey data and Monte Carlo simulations of the camp. Contact matrices are

particularly useful in understanding social mixing and disease spread and as

these matrices are not well known for the Global South or vulnerable popula-

tions. We develop algorithms within JUNE (an individual based epidemiology

tool discussed in Chapter 3) to understand social mixing and derive contact

matrices Cox’s Bazar, a refugee camp in Bangladesh in which the understand-

ing of social mixing is paramount to limit disease spread and better utilise

limited humanitarian aid.

This thesis aims to tie together a range of data driven tools across a wide range of

domains of research, pulling together robust tools that are regularly exploited in

particle physics to other branches of academic pursuit.





Part I

Introductory Content





Chapter 2

Machine Learning

Machine learning (ML) is an exceedingly powerful tool to aid in the comprehension

of vast and complex datasets. It is a rapidly evolving field that is applicable across

many areas of research and everyday life [10].

ML is a general catch-all term for algorithms that are able to “learn” without direct

supervision to perform a range of tasks requiring some level of pattern recognition.

A key benefit of ML tools is that the more data we provide during the training stage

the more powerful and accurate they can become, providing the task and dataset

are appropriate.

ML models fall into two general classes, supervised and unsupervised. A supervised

model requires labeled input and output data during the training processes to

inform the learning process whereas an unsupervised model does not and it extracts

structures in the data automatically. Any type of supervised neural network requires

a carefully curated labeled dataset which can be very resource intensive process to

collate. Alternatively, unsupervised methods such as Principal component analysis or

K-means clustering do not, they infer arbitrary classifications based on the underlying

structure of the data.

ML algorithms can be trained for a number of purposes:

• Classification: An input can be interpreted and classified to a selection of
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categories.

• Dimensional reduction: An multi-dimensional input is transformed into a lower

dimensional representation with minimal loss of information.

• Anomaly detection: A prediction is made as to how representative a new datum

is to the training dataset.

• Prediction: Given an input time series a prediction can be made about the

data in the past or future.

• Data generation: The generation of new artificial data which is representative

of the training dataset.

An intuitive example of a ML algorithm is the Binary Decision Tree (BDT). They

are as powerful as they are computationally quick, and easy to interpret. When

trained the BDT classifies the data with a sequence of simple binary decisions, for

example is the petal length > 70 mm? [11]. This flow of decisions is often depicted

as a branching tree in which every decision creates a new branch.

More complex than the BDT is the Neural Network (NN). NNs are powerful tools

which are able to approximate any function that is defined by the data, however as

the complexity of the data increases so must the NN and the size of the training

set which becomes increasingly challenging to label accurately and efficiently. NNs

however can be trained on artificial data (with appropriate considerations), thus we

turn our attention to Monte Carlo generated data to train models.

2.1 Machine Learning In Context

In this thesis we will apply ML methods to two areas of research. Firstly, we

will apply supervised ML methods to future projections of data produced from the

Large Hadron Collider in Chapter 5. Then in Chapter 6 we apply unsupervised ML
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methods to the vast array of instrumentation at Hartlepool Power Station which

constantly monitor the reactor health.

• In Chapter 5 we turn our attention to the Large Hadron Collider (LHC). The

quantity of data produced at the LHC is astronomical. The raw data generated

at LHCb from each raw event is roughly 50 kB in size and with as many as

40 million proton beam crossings per second we have 1.5 TB of data being

generated every single second. Processing and storing this quantity of data

is not economically or technologically possible thus the LHC uses real-time

data analysis referred to as “triggering”. Triggering is used to discard as much

as 99.999% of the data [12]. Despite discarding so much data there is still

∼10PB of data being stored every year which has to be analysed in a smart

way. The method of discarding uninteresting events is a cut-flow, this is when

a series of successive cuts are applied which will reduce the total number

of events in the sample. These cuts can be simple, such as cuts on event

properties for example demanding an anti-kT jet with a minimal pT or they

can involve more nuanced relationships derived from complex observables from

highly multidimensional datasets. The choice of observables can be determined

heuristically, for simple datasets using a good physical intuition. However for

increasingly complex datasets machine learning can be a powerful tool. Any

cut-flow should preferentially discard background or uninteresting events over

the signal or otherwise interesting events. At the LHC BDTs and NNs are

particularly popular [13].

The efficiency and interpretability of BDTs makes them well suited as a trigger

level classifier at the LHC. At the LHC they implement a two stage triggering

process. The level 1 trigger is automatic and computationally cheap, it looks at

surface level features of the events such as very high energy particles or particles

in unusual spatial or energetic combinations within the detector. Next, the

level 2 trigger takes the information from a whole event and performs more

sophisticated analyses and checks for signatures in the data which could be
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indicative of new physics.

NNs can be applied to a range of purposes in a high energy physics (HEP)

context [14].

– Classification: Extract signal events from a large background or jet clas-

sification.

– Dimensional reduction: Creating new and interesting observables, or

investigate a dimensional space in which that data has the most variance.

– Anomaly detection: Discover new and interesting physics that are not

representative of some model (e.g. the Standard Model).

– Generative Adversarial Neural Networks (GANs): Generate fast event

generators.

We will apply a range of NN architectures to create an efficient cut-flow which

rejects uninteresting background events preferentially over signal events by

many orders of magnitude. This cut-flow will allow us to place tighter con-

straints on the Yukawa charm coupling using Standard Model Monte Carlo

simulated data.

• In Chapter 6 we apply two unsupervised ML methods to provide indicators for

transient behaviour at Hartlepool Power Station. The station has a vast array

of instrumentation sampling data at a frequency no less than several times

per minute. A team of engineers and various tools are already implemented

which monitor these readings live at all time to ensure maximal reactor and

instrumentation conditions. The safe operation at any nuclear power station is

paramount, measuring and understanding every detail of the reaction process

is a key part of ensuring the continued safe operation.

In particular, we examine hourly averaged data over a decade from two reactor

cores which have over three hundred fuel rod monitoring channels each with

thermocouples and control rod position readouts. Further, each reactor comes
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with corresponding cooling systems which monitor: water inlet temperature,

outlet temperature, pressure, saline and chemical contents of the vacuum and

condenser systems. These readings are deeply complex, containing features

sensitive to the power grid demand, ambient temperature, sea temperature

and the weather. The features come with complex correlations and periodic

behaviour and in some cases missing or corrupted readings. All these challenges

have to be addressed before any attempt at applying machine learning methods

can be performed.

We investigate two promising avenues for further research which will aid in

future tools to monitor reactor and instrumentation health. These two ML

methods are complimentary tools which look for anomalies in the data – that

is when a set of data points are no longer well represented by underlying

distributions understood from previous data. In this project we step away from

NNs for the benefit of interpretability, the chosen models provide probabilistic

interpretations from easily understood predefined parameters, compared with

NNs in which the learnt parameters are not always intuitive.

2.2 Neural Networks

While the structure of a NN is dependent on the form of the input data and the

required task the fundamental building blocks remain unchanged. The name and

structure of NNs were inspired by the structure and function of the brain, the neurons

and synapses in the brain are mimicked in the nodes and interconnected layers in a

NN and the firing of neurons is emulated by the activation functions. While this is

obviously a charming analogy in fact the complexity, adaptability and functionality

of the human brain far exceeds any NN to date. A more accurate picture of the

function of a NN is to consider it as learning an approximate function which maps

any input data to the output in which the parameters of the function are stored

within the structure of the NN itself.
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The simplest component of a neural network is the perceptron which consists of an

input layer which takes our data, passes it to a node which performs a set of simple

operations defined by set of parameters stored in that node and returns an output

value. A perceptron is represented graphically in Fig. 2.1.

x1

x2

x3

x4

∑
σ ŷ

ω1
ω2
ω3
ω4

b

Figure 2.1: The perceptron, the building block of any
neural network. A input vector of data x are
transformed by the fitted weights ω, bias, b and
chosen activation function σ to generate an out-
put value, ŷ.

The perceptron shown in Fig. 2.1 can alternatively be expressed mathematically as,

ŷ = σ(
i=4∑
i=1

ωixi + b) , (2.2.1)

where xi defines our input data, ωi the edge weights, b the bias and finally σ the

activation function. Activation functions are introduced to produce a non-linear

response and act as a regulator in the NN. There are a plethora of choices and in

Fig. 2.2 we show a selection of the most common choices which will become important

during the training procedure.

In supervised learning we have a training dataset, X of length N which will have

known output values, Y . We can define a loss function which compares the known

values Y against the predicted outputs Ŷ and informs us how well the NN is per-

forming. The loss function can take a variety of forms; a popular choice is the mean

squared error,

LMSE = 1
N

N∑
i=1

(yi − ŷi)2 . (2.2.2)

The performance of the NN can be improved by minimising the loss function with

respect to the model parameters – the weights and biases. This is done by a process
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Figure 2.2: A selection of the most common activation func-
tions. We depict a binary step, linear, rectified
linear unit (ReLU), leaky ReLU, sigmoid, soft-
plus, tanh and tan−1.

known as backpropagation in which we evaluate the gradient of the loss function with

respect to the parameters. This gradient can then be used to incrementally change

the value of the parameters in the downwards direction of the loss function landscape

at that location in parameter space. A simple numerical method of updating the

parameters is a gradient descent approach,

ϕ′ = ϕ− α∇ϕL(ϕ) . (2.2.3)

Here ϕ defines any parameter in the model with the primed value being its new

updated value, ∇ϕ is the partial derivative with respect to ϕ and α is the learning

rate, a positive scalar that defines the stepsize downhill. The learning rate can be

arbitrarily chosen or an optimal value can be selected from a range of values for each

iteration of backpropagation – a line search. This process is iterated and produces a

downward trajectory in the loss landscape towards – ideally – the global minimum

which will be the best set of parameters for the training data and architecture.

Gradient descent is a powerful tool for situations in which the minimum of a loss
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landscape can not be analytically solved. However, poor choices of the learning rate

can yield non-optimal results. If the learning rate is too small, stepsize and therefore

convergence can be slow. Further, we may find ourselves in a local minimum in the

loss landscape as we have scoped a smaller portion of parameter space. Alternatively,

if the learning rate is too large we will jump around the minimum never settling at

the minimum. This is why a line search or a learning rate schedule is used where

we start with a large value and decrease its value as the loss plateaus towards the

minimum.

The training procedure of a NN typically involves splitting the data into (at least1)

2 sets, a training set and a validation set. The purpose the training set is to

fit the parameters of the model such that the loss function is minimised whereas

the validation set is used only for validation and model assessment. Having an

independent validation set provides a set of data which the network has never been

exposed so that independent performance metrics can be calculated. A NN can

be described as overfit if the NN performs extremely well for the training set but

poorly for the validation set, this implies that the network is learning the training set

precisely and thus generalises poorly on new unseen data. Having an independent

check allows us to truncate the training process at an optimal point where the loss

is minimised and also when the loss in the validation set is minimised. The training

process is outlined below:

1. Forward pass: Xb is passed through the network, calculating the loss function

of all data.

2. Backpropagation: The model parameters are updated.

3. Repeat 1. and 2.: Loop through every batch of data, Xb.

4. Repeat 1., 2. and 3.: Loop for a large number of epochs or until some other
1More sets can be used for hyper-parameter tuning, model selection or a test set which is

carefully curated to contain interesting example data points so that you can compare models with
independent data.
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criteria is satisfied.

If a training set is especially large it is typical to slice it up into batches to mitigate

any hardware bandwidth issues and thus improve overall efficiency. The training

procedure and choice of model architecture leaves us with a large number of hyper-

parameters to consider. Hyper-parameters define the learning process or model

architecture, these include the number of epochs, batch sizes, learning rates and the

initial parameter state which directly affect the learning process. We also have the

number of nodes, hidden layers, choice of activation functions and loss function which

should also be considered carefully as they affect the models’ performance for certain

tasks and its susceptibility to overtraining. For example, certain activation functions

generate a non-linear response which improves the NNs ability to model complex non-

linear functions, so we might choose a ReLU or a sigmoid for certain nodes. However,

a ReLU can take value 0 which sets its value permanently, it therefore becomes a

dead neuron which no longer contributes to the network output. The sigmoid is

susceptible to the vanishing gradient problem. This is where the gradients used

to update the network become increasingly small approaching zero and precision

of the system. This means that the weights of the earlier nodes in the network

become slow to update or they stop updating entirely during the backpropagation

procedure. Long strings of many interconnected nodes are particularly susceptible to

the vanishing gradient problem as the use of the chain rule compounds the effect of

the small gradients. These issues can be mitigated by ensuring weights remain close

to unity by data normalisation, trying different activation functions or alternatively

introducing new structures in large NNs such as recurrent blocks [15] which include

skip connections.

Many techniques exist to speed up the training process, make it more generalisable

and reduce overfitting:

• Feature engineering: Construct features that are independent and contain high

variance.
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• Feature regularisation: Normalise and standardise the input data across the

sample such that their values typically remain in the interval [−1, 1].

• Data augmentation: Use inherent symmetries in the data to create new data

points (e.g. flipping of images) or introducing small changes to the input data

to increase network robustness.

• Weight normalisation: The weights of a node can normalised at each step to

mitigate the vanishing gradient problem.

• Batch randomisation: Shuffle the data points in each batch at every epoch.

• Dropout layers: Introduce dropout layers which will randomly kill neurons in

each batch which serves to reduce overfitting.1

With the key concepts of the perceptron defined, we can begin to construct more

complex architectures. Firstly, we will discuss dense fully connected neural net-

works (DFCNs) which are simple feedforward networks composed of stackings of the

perceptron in height and width forming new hidden layers. Secondly, we discuss

convolutional neural networks (CNNs) which are optimal for datasets which have

grid-like topologies. This could be a time-series or images in which neighbouring

data points contain correlations which should be exploited and learned by the model

by use of convolutional operations. A convolution can be thought of as applying

a filter over an image which may extract features such as edges or perform noise

reduction with blurring, the parameters in these CNNs learn these types of filter

kernels. Lastly, we define recurrent neural networks (RNNs) which process sequential

data in a way that parameters are shared over many nodes or edges. They can be

configured to take inputs of variable sizes and they contain complex structures which

store the state of previous (or future) inputs. Thus they can be powerful tools in

interpreting patterns between present and past (or future) data points.

1Dropout layers only exist at training time and are removed in validation and deployment.
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Figure 2.3: An example dense fully connected feed forward
neural network. Here a vector x of length 4
feeds into the network which has 3 hidden layers
each with depth of 5. A single output value ŷ
is calculated.

We will use all of these types of networks in Chapter 5 to maximally exploit subtle

differences between out signal and background classes:

• Event observables (cf. Sections 4.5.1 and 5.4 ) → DFCN,

• Jet observables (cf. Sections 4.5.2 and 5.4) → DFCN,

• Jet images (cf. Section 5.4) → CNN,

• Jet particle flows (cf. Sections 3 and 5.4) → RNN,

• Vertex observables (cf. Sections 4.5.3 and 5.4.2) → Time distributed – DFCN,

• Vertex particle flows (cf. Section 5.4.2) → Time distributed – RNN.

2.2.1 Dense Fully Connected Networks

A DFCN is one which comprises of many layers where every node in each layer is

connected to every node in the next. A model is described as deep if it contains many

hidden layers, this is where the terminology deep learning originates. An example

architecture is shown in Fig. 2.3. In a DFCN we can consider each hidden layer as

learning increasingly abstracted features.
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2.2.2 Convolutional Neural Networks

Convolutional neural networks are powerful tools for data types where the input

data is correlated between neighbouring values in some manner. The networks are

called convolutional as at least one layer performs a convolution calculation instead

of general matrix multiplication, mathematically a convolution is described as,

s(t) = (x ∗ k)(t) =
∫
x(a)k(t− a)da . (2.2.4)

In ML terminology we describe x as the input and k as the kernel and the output

s(t) as the feature map. In the context of CNNs we discretise the input and kernel

to handle discrete data,

S(i) = (x ∗ k)(i) =
∑

a

x(a)k(i− a) . (2.2.5)

For two dimensional data such as images we can define a two dimensional convolution,

S(i, j) = (x ∗ k)(i, j) =
∑

a

∑
b

x(a, b)k(i− a, j − b) . (2.2.6)

A two dimensional convolution can be thought of as passing a kernel over an image

and summing element-wise the products of the elements that overlap the kernel as

depicted in Fig. 2.4. The convolution can of course be extended to an arbitrarily

large number of dimensions. It could be suggested that one could use a DFCN

network for image processing, an array describing an image could be flattened into

a one dimensional array and training could commence. However, the properties of

CNN architectures make it well suited for image processing as they have increased

performance with reduced complexity. A CNN is sparsely connected, the nodes of

each layer are not connected to every node of the previous layer which does two

things: the number of calculations is greatly reduced and the receptive field of the

nodes are reduced. The receptive field is the collection of nodes that affect each

other, a reduced receptive field (in the context of kernel filters) forces the early

hidden layers to detect smaller meaningful features like edges first before the more

abstracted features spanning whole images. Secondly, we have parameter sharing,
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Figure 2.4: An algebraic example of two dimensional convo-
lution. This convolution is “valid”, the convolu-
tion is only calculated when the kernel overlaps
the image fully. Figure from [3].

each convolutional layer defines a kernel which acts over many nodes reducing the

complexity of the neural network substantially. Using a DFCN for a purpose well

suited to a CNN is likely to be susceptible to poorer performance, longer training

times and overfitting. A convolutional layer is defined by three steps:

1. Convolution stage,

2. Detector stage,

3. Pooling stage.

The convolution stage we have already discussed it is the stage which performs the

convolution of nodes with a kernel. The detector stage applies activation functions

such as those defined in Fig. 2.2 to the node outputs for the same purposes as the

DFCN – to introduce non-linearity. Lastly, the pooling stage calculates a summary

statistic over a region in the image, for example the average, minimum or maximum

value. Pooling is introduced to enforce translational invariance, we generally wish
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to be sensitive to the feature existing but not to exactly where it exists in the image.

Pooling also reduces the dimensionality of the data flowing through the network

reducing the complexity of the CNN. After a handful of convolutional layers their

outputs can be combined in the architecture to transition into fully connected hidden

layers and finally to the output layer.

2.2.3 Recurrent Neural Networks

Recurrent neural networks are used to process one dimensional sequential data such

as speech, written language or dynamical systems. There are two key differences

between the RNNs and DFCNs: an RNN takes advantage of parameter sharing like

the CNN but also an RNN is “stateful”. A stateful network is one which retains

some information about a past or future state in the data, enforcing connections

between difference features in a time-correlated way. To define the structure of a

RNN we consider a classical dynamically evolving system which is defined by some

function, f with parameters, θ that maps the previous state, s(t−1) to the new one

s(t),

s(t) = f(s(t−1); θ) . (2.2.7)

In the context of RNNs we can instead consider a hidden layer dynamical state, h

that depends on some driving force, x the features in the data input vector,

h(t) = f(h(t−1), x(t); θ) . (2.2.8)

This approach is particularly powerful as it allows us to iterate arbitrarily many

times thus we can feed in input data of arbitrary length.

There exist a few choices for how to use the state information, it can be passed

only to other RNN cells in the past or future or alternatively also to other layers

in the network (cf. Fig. 2.5 depicts the state being passed in to other layers and

future RNN cells). Each of these options comes with a unique balancing act between

complexity and training efficiency. Simple RNNs (see Fig. 2.5) have significant draw
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Figure 2.5: An example neural network consisting of a
chain of RNN cells. The state of each cell, h(t)
is fed into the next cell and can be fed to fur-
ther layers deeper in the model.

backs: they are highly susceptible to the vanishing gradient problem and they have

a short-term memory in which they have a hard time retaining information over long

sequences. To combat these issues more complex RNN layers: the Long Short Term

Memory (LSTM) and the Gated Recurrent Unit (GRU) layers were invented. Both

of these comprise of cells which introduce a set of structures known as gates which

calculate thresholds in the data indicating a level of retention or importance. In this

thesis, we will make use of GRUs only. In each GRU cell i, we define a set of input

weights ωi,j, recurrent weights ψi,j and biases bi which parameterise the activation of

the reset and update gates and the hidden layer. u and r correspond to the update

and reset gates activation,

u
(t)
i = σ(bu

i +
∑

j

ωu
i,jx

(t)
j +

∑
j

ψu
i,jh

(t)
j ) , (2.2.9)

and

r
(t)
i = σ(br

i +
∑

j

ωr
i,jx

(t)
j +

∑
j

ψr
i,jh

(t)
j ) . (2.2.10)

Finally we can define the update equation for the state,

h
(t)
i = u

(t−1)
i h

(t−1)
i +(1−u(t−1)

i ) tanh
bi +

∑
j

ωi,jx
(t)
j +

∑
j

ψi,jr
(t−1)
j h

(t−1)
j

 , (2.2.11)

where x(t) is the input vector of features for a time t and h(t) is the current hidden

layer state vector. Sigmoid, σ and tanh are the choice of activation functions used

in the GRU such that the update and reset values are regulated between 0 and 1
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Figure 2.6: Left: A simple RNN which takes information
from the hidden state of the previous cell to
determine its output. Right: A GRU, intro-
ducing an update and reset gate indicated by
the red dashed bounding box. ∑ represents the
weighted sum plus bias, + and × are element
wise addition and multiplication and 1− trans-
forms an input x as x → 1 − x. Finally σ and
tanh represent the sigmoid and tanh activation
functions.

and the overall cell activation between −1 and 1. This keeps the cell regulated and

allows the update and reset gates to individually ignore features or mark importance

in the state vector.

Finally, we introduce time distributed layers which slice an input vector and apply

the same identical NN layer across each slice. This is a useful tool if we want each

slice of the data to undergo the same transformations from a given layer in the neural

network, thus extracting the same features from each. The outputs from the time

distribution can then be concatenated into dense layers.

2.3 Unsupervised Machine Learning

We have discussed at length neural networks which are an examples of supervised

machine learning, in Chapter 6 we will make use of two examples of unsupervised

learning, Principal Component Analysis (PCA) and Bayesian Online Change Point

Detection (BOCPD) which are tools we employ for anomaly detection.



2.3. Unsupervised Machine Learning 37

2.3.1 Principal Component Analysis

PCA [3] is a powerful unsupervised machine learning tool which transforms a high

dimensional dataset into a lower one by transforming the data along components

containing the most variance 1, 2, ..., k and dropping the lower variance dimensions

k+ 1, k+ 2, ...,m. Dimensional reduction allows for easier data visualization, quicker

computation and easier model training without loss of information. If we keep k

components containing a threshold variance we can ensure information about the

features is not lost. Intuitively we define the 1st PCA component direction with the

unit vector ŵ as such:

σk=1 = argmax{
∑

i

(x(i) · ŵ)2} . (2.3.1)

Alternatively the PCA components can be determined by calculating the eigenvectors

vk and eigenvalues λk of the matrix xT · x where x is our n×m matrix dataset with

n rows of samples with m columns of features. The eigenvectors form the weight

matrix W = (v1,v2, ...,vm) which are ordered in terms of their eigenvalues such that

λi > λi+1 therefore generate a diagonalised matrix Λ = Diag(λ1, λ2, ..., λm). Then

the transformed data is;

P = W T · x . (2.3.2)

Much like the supervised neural networks, PCA performs best on standardised and

centred values which are calculated with the following transformations;

xi,j = xi,j − µ(xj)
σ(xj)

, (2.3.3)

where µ(xj) and σ(xj) are the mean and standard deviation across all available

samples for feature j. Nominal data to one standard deviation will now exist in the

range [−1, 1].

PCA works under the assumption that the measurements are independent and

stationary. For a non-stationary series, any new data point will be poorly represented

in the transformation thus we can use PCA as a means of anomaly detection. Further,
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Figure 2.7: Operational example of PCA on a dummy data-
set. Left: Depiction the raw data and arrows in-
dicating the PCA component directions. Right:
Normalised and transformed data. Histograms
over each the axis are also shown.

if new data points in general are poorly represented then this might be an indication

of changing distributions in the original, un-transformed data. To quantify this we

introduce two test statistics, the Hotelling-T 2 statistic and the square predictive

error also known as the Q statistic. These statistics are often used to monitor time

dependent processes in various industrial settings [16–18] not dissimilar from the

data in Chapter 6. The T 2 statistic is defined as;

T 2 = xTP:kΛ−1
:k P T

:k x . (2.3.4)

Which gives us a measure of deviations of the latent variables as understood within

the first k PCA variables. If we have large deviations in these latent variables we see

an increase in T 2. A constraint can be placed on the values of T 2 which we deem

an acceptable variation in our data with a confidence limit,

α
T

2 = k(n2 − 1)
n(n− k) Fk,n−k(αcrit) . (2.3.5)

Fk,n−k(αcrit) defines the Fisher-Snedecor distribution with a confidence αcrit which

for the 99% confidence limit, αcrit = 0.01. The Fisher-Snedecor distribution is a
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continuous probability distribution that is often used as a tool in analysis of variance

or F tests [19]. The Q statistic is defined as such;

Q = xT(I − P:kP T
:k )x . (2.3.6)

The Q statistic gives us a measure of the goodness of fit of the sample and is directly

related to the models understanding of the noise of the m−k rejected PCA variables.

The Q statistic can also constrain our confidence in the sample data point with the

approximation [20],

αQ = θ1

zαcrit

√
2θ2h

2
0

θ1
+ 1 + θ2h0(1 − h0)

θ2
1

1/h0

, (2.3.7)

where e.g. zαcrit = 2.33 is the z score required for αcrit = 0.01 in a two tailed

confidence limit and

θi =
m∑

j=k+1
λi

j where i = 1, 2, 3 and h0 = 1 − 2θ1θ3

3θ2
2
. (2.3.8)

Comparing the PCA transformed values, T 2 and Q statistic enables PCA to be used

as a form of anomaly detection. Any values of large magnitude in the transformed

space or in these statistics then indicates that the data point is badly explained by

the PCA model.

2.3.2 Bayesian Online Change Point Detection

Bayesian modelling is broadly speaking any modelling technique that incorporates a

degree of certainty into the model building. Here we define a Bayesian approach to

detecting “change points” (CPs). A change point is described as a point in the data

at which we see a distinct change in the properties of the underlining distributions

producing that data. There are a plethora of CPs detection algorithms [21], however

a key benefit of a Bayesian approach is the probabilistic nature of the method and

interpretability it provides.
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Figure 2.8: An example piecewise distribution with two
change points located at the red dashed lines.

Consider the example shown in Fig. 2.8 which depicts a piecewise distribution made

from three Gaussian distributions which have different parameters in each of the

three regions. The point at which these underlying parameters (the mean and

variance) change are known as change points. The goal of Bayesian change point

detection (BCPD) is to identify where these CPs lie with some confidence which

depends on our priors the best estimate for the underlying distributions and the

uncertainty on the data and the data itself. BCPD falls into one of two types, online

and offline. Offline requires the full dataset before looking for CPs which typically

means our priors are better informed but we lose the possibility of live forecasting.

Bayesian online change point detection (BOCPD) allows us to actively update our

priors as we collect more data and return probabilistic certainties of CPs. We follow

the methodology of Adams and Mackay [22], making only minor adjustments in how

the sequence parameters are handled.

We describe CPs in data in terms of run lengths l, for every additional data point

if we consider it part of the same distribution lt+1 = lt + 1 i.e. the run length has

increased by one. Alternatively, if we consider the new data point belonging to a

different distribution then lt+1 = 0. To take a probabilistic approach, we consider

all possible run lengths, for example a data point at t = 5 has 6 possible run length

paths (see Fig. 2.9).

New data points continue as a member of the sequence of length lt = t − tstart of

all previous points, which start at tstart. A drop to lt = 0 indicates the current run
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Figure 2.9: Example of all possible run length paths
between t = 0 and t = 5.

is truncated and a new sequence begins – there is a CP. The BOCPD algorithm

gives each (t, l) coordinate a probability value which is normalised to 1 over t of

constant value, these probabilities are mapped to a matrix L(t, l) which identifies the

most likely t where the underlying distributions have changed. To implement this

procedure, we first have to make an underlying assumption about the distribution

our data originates from, our prior π(l)
t . This prior depends on the distribution of

the data in all possible possible run lengths lt at time t. It is common to assume that

the data is approximately drawn from a Gaussian distribution with µ(x) indicating

the mean of the series x and α is standard error such that,

π
(l)
t = N

(
xt | µ = µ(xt−l : xt), σ = max

(
αt−l : αt

))
. (2.3.9)

Next we define a hazard function H this is a hyper-parameter estimator of the

frequency of CPs expected in the series, we can define it as,

H(τ) = 1
λ
, (2.3.10)

where λ is a timescale estimator for a memoryless process where we consider CPs

to be independent. The analysis is not hugely sensitive to this value if the CPs are

clearly defined or the errors are narrow with respect to the magnitude of the data.

The algorithm is as outlined in Alg. 1.
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Alg. 1: The BOCPD algorithm.
Input Data: L(t, l) = 0, except L(0, 0) = 1
t: The active time step
l: The sequence length
if Online then

Observe new datum: xt+1
for l ∈ length(xt) do

Calculate mean of sequence: µl
t = µ(xt−l : xt)

Calculate estimated standard deviation of sequence: σl
t = max

(
αt−l : αt

)
Determine priors: π(l)

t+1 = N (xt+1|µl
t, σ

l
t)

Calculate growth probabilities: L(t+ 1, r + 1) = L(t, l)π(l)
t+1(1 −H)

end
Calculate CP probabilities: L(t+ 1, 0) = ∑l

li=1 L(t, li)π(l)
t+1H

for l ∈ length(xt) do

Determine sequence length probabilities: P (l) = L(t+ 1, l)∑
li=0 L(t+ 1, li)

Update growth probabilities: L(t+ 1, l) = P (l)
end

end
Set new t : t = t+ 1

In this algorithm an additional optimization can be used to improve computational

efficiency, we truncate the series from lcrit and above given∑t
lcrit

L(t, l) < β for a given

threshold probability β. Here we take β = 10−5. This prevents a long probability tail

for large l and unnecessary computation on vanishingly small probability sequences.

Running the BCPD algorithm on the test dataset (Fig. 2.8) we produce probability

matrix L(t, l) depicted in Fig. 2.10. We see drops from high sequence lengths l to

low values around where the CPs are known to exist. It should be noted BOCPD

works only on de-trended or stationary data. A stationary dataset is one in which

the mean and variance do not change over time. If there is any seasonality in the

data it will interpret this as an almost continuous set of CPs because the underlying

distributions are continuously evolving.
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Figure 2.10: Top: Colour map of matrix L(t, l) with red
indicated lmax where the probability is largest
for each time step t. Bottom: An example
piecewise Gaussian data like Fig. 2.8.

2.4 Performance Metrics

Throughout this thesis, we use ML tools to perform classification tasks where we wish

to filter data points into predetermined categories. To determine the effectiveness of

our models it is common to examine a confusion matrix and its associated elements.

A confusion matrix C tells us how data points are classified by our model splitting
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Figure 2.11: An example confusion matrix in which data
points of two classes P and N can be classified
into, true positives (TP), true negatives (TN),
false positives (FP) and false negatives (FN).

up the results into true positives (TP), true negatives (TN), false positives (FP)

and false negatives (FN) and we use these to define other metrics. The confusion

matrices can be normalised Ĉ across their rows to present percentage classification
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Figure 2.12: Left: Example ROC Curve from data depicted
in Fig. 2.7. Key threshold choices maximising
each of accuracy A, precision P , recall R and
F1 score are marked. Right: Metrics A, P ,
R and F1 as a function of the the decision
boundary x′

1.

rates into the predicted classes. Accuracy A is defined as,

A = TP + TN
TP + TN + FP + FN , (2.4.1)

which tells us how well we correctly predict data points. However this is not neces-

sarily the best metric depending on the task in hand. Accuracy is a poor metric if

we have unbalanced classes or we care about the relative ratios of TP to FN or FP.

It is worth considering the precision P and recall R metrics,

P = TP
TP + FP , (2.4.2)

R = TP
TP + FN , (2.4.3)

P and R can be weighted together to create the F1 score,

F1 = 2PR
P +R

, (2.4.4)

which is a balance between the precision and recall. Receiver Operating Character-

istic (ROC) curves are a powerful way to assess the classifying power of a model,

each point on a ROC curve corresponds to a threshold which leads to a particular
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false positive rate (fpr) and a true positive rate (tpr),

fpr = FP
FP + TN , (2.4.5)

tpr = TP
TP + FN . (2.4.6)

The threshold can be selected to maximise our chosen metric (accuracy, recall,

precision or F1). In Fig. 2.12 we show the ROC curve produced from data depicted

in Fig. 2.7 where we build a simple classifier using x′
1 as the decision boundary.

The closer the ROC curve pushes towards the top left the better the classifier is

performing, if the ROC curve is a diagonal line the classifier is a random guesser

these are characterised by the area under the curve (AUC). For a binary classifier

an AUC of 1 is a perfect classifier, 0.5 a random guesser and 0 an anti-classifier (i.e.

inverted labels).
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Monte Carlo Simulations

Monte Carlo simulations are computational techniques in which we aim to produce

data representative of reality using stochastic methods. They are particularly power-

ful tools as they can be used to produce artificial data which is based on a series

of priors and model assumptions. The artificial data can be used to scrutinise our

underlying assumptions or theoretical models used to originally create it. Thus, we

have a way to independently check our understandings of the physical word in a

quantitative and statistical way.

Monte Carlo methods are particularly well established in particle physics for the

modelling of high energy collisions. The behaviour of particles can be understood to

follow stochastic processes defined by our theories. The behaviour of people can also

be treated in a similar manner where individuals with certain characteristics exist

in a virtual world and interact. These types of models where every individual is

modeled independently are known as an agent-based models. By treating individual

people as stochastic agents that follow a set of rules and probability distributions

we can understand large groups of people and their behaviour as a community. The

properties of the community and its demographics are determined by the rules which

govern single agents. In the same way that many collision events between many

particles might yield a distribution describing the mass distribution of say, the Higgs

boson, a simulation of many people over several days can yield distributions providing
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insight into attendance rates or social mixing rates at various locations in a virtual

world. In an event generator we gain insight into various physical processes, potential

new physics or rare decays where-as in an agent-based model we analogously gain an

understanding of how different demographics of people interact in different locations

in the simulated virtual world. Therefore, we can employ a Monte Carlo simulation

to understand social mixing of different demographics.

In this thesis we apply these two types of Monte Carlo simulations in two different

domains which we will explore in the two sections of this chapter. In Chapter 5 we

will use SHERPA a general purpose event generator as a Standard Model simulator

with which we can constrain our understanding of the Yukawa Charm coupling.

Then in Chapter 7, we use and build upon JUNE [23] an agent based Monte Carlo

epidemiological framework for modelling social interactions.

3.1 Monte Carlo Event Generators for Particle

Physics

A Monte Carlo event generator is a tool in which we aim to simulate collision

events that occur at various particle colliders using stochastic methods. They are

particularly useful as they provide a way to test our models against experimental

observations, develop new models, create new more robust analysis tools and allow

a greater flexibility and control over processes we want to study. There exist a

large selection of generators, HERWIG [24,25], PYTHIA [26] and SHERPA [27] to focus

particularly on the high energy physics general purpose event generators. The

chronology of event generation can be broken down into the following steps:

1. Hard process: The set of matrix elements are generated (e.g. COMIX [28],

AMEGIC++ [29]) that define a process are used to sample phase-space points –

a set of incoming and outgoing particles and their four momentum – which are

possible under conservation laws and the relevant parton distribution functions
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(e.g. NNPDF 3.0 PDFs [30] from LHAPDF [31]). These phase space points

are sampled in a clever way with algorithms such as RAMBO [32] which gives

each phase-space point a probability based on the particle masses and their

distribution in space. This probability provides a weighting which relates the

phase-space point to its contribution to the total cross section of the process.

These weightings can be used to systematically reject or accept space-space

points such that the full phase space is probed efficiently, we call an accepted

point an event and the set of rejected and accepted events trails.

2. Parton shower: The parton shower describes the evolution of the high energy

hard scale down to the hadronisation scale (e.g. CSSHOWER [33]). This is the

regime where perturbation theory and our understanding of QED and QCD

can be implemented. We model the parton shower with an evolving scale, the

choice varies by event generator some choices include virtuality, perpendicular

momentum or angular distance. This scale is iteratively reduced by allowing

the partons to undergo splitting in which they produce softer and more collinear

radiation until all of the particles are below the cut off hadronisation scale

∼1 GeV. The quarks shower gluons but the gluons can themselves shower

gluons or split into quarks generating new flavour content. The splitting

process is defined by the Dokshitzer–Gribov–Lipatov–Altarelli–Parisi (DGLAP)

equations and the Altarelli-Parisi splitting functions [34–36]. This technology

also models the initial state radiation by backwards evolving the input partons

of the hard process up to the original scale of the partons in the beam.

3. Hadronisation: When we reach the hadronisation scale, perturbation theory

breaks down and thus we have to consider empirical non-perturbation models

such as the string (Lund string model [26]) or cluster models [37]. The final

products are required to be colourless due to confinement therefore the partons

have to be clustered into colour neutral objects such as baryons and mesons.

4. Hadronic decays: The hadrons produced may not have a long lifetime and they
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may decay within the detector, it is typical that the majority of the detected

decay products end up as pions and kaons (e.g. SHERPA’s built-in models for

hadron decays).

5. Underlying event: Aside from the hard process we also have to consider the

remnants of the hard process which can themselves interact and therefore

undergo all or some of the above – which should not be overlooked. This can

be incorporated in multiple parton interaction models (e.g. AMISIC++ [38]).

6. Detector simulation (optional): Lastly, the final four momentum objects pro-

duced in the event generator are not representative of real data for several

reasons:

• Detector geometry: Detector components do not fully enclose the inter-

action vertex as certain components do not span all values of η.

• Spacial-resolution: The calorimeter cells have a finite size thus, we have

a minimum resolution in (η, ϕ) for which we can place particles or distin-

guish them.

• Instrumentation effects: The measurements of induced currents from

particle interactions with the detector are subject to digitisation error

and there is inherent electrical noise which leads to an uncertainty in the

energy measurements.

There exist tools such as DELPHES [39] which can estimate these effects with

energy smearing and position discretisation by summing the energy of tracks

in the discrete calorimeter cells.

We can see these steps outlined in Fig. 3.1
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Figure 3.1: Schematic of a hadron-hadron collision at a had-
ron collider such as the LHC. The incoming
hadrons are indicated by the three green arrows
representing the valence quark content of the
beams. The red blob at the centre indicates the
hard process. The initial state and final state
radiation are shown in blue and red respectively
which are directly connected to the hard process
which constitutes the parton shower. Hadron-
isation is shown by the green blobs after the
final state radiation and then their subsequent
decays from further green blobs. We see the
underlying event indicated by the purple and
cyan blobs. Figure from [5].

3.2 Monte Carlo Simulations for Social Mixing

Agent based models are a class of simulations in which we model the behaviour of

some system by introducing a set of rules and stochastic conditions which determine

the behaviour of individual interacting agents. These types of models are particularly

powerful for understanding disease spread and social interactions and developing

epidemic mitigation strategies [40,41]. By simulating any scenario from the bottom-
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up, we gain an understanding of the emergence of macroscopic properties from

microscopic ones belonging to the agents. In particular, we will look at agent based

models in which the agents are individual people which interact within a virtual

world in various virtual settings. We make use of the JUNE framework [23] which

was built initially to model the COVID-19 pandemic in the United Kingdom as

an independent open-source epidemic model. We will extend the JUNE framework

with a social interaction tracking class which takes virtual contact surveys at every

simulated time step at every virtual venue. JUNE was build with flexibility in mind

such that it can be extended to further settings [42]. JUNE has a large number of

parameters that can be individually changed. Census information, social behaviour

and enforced pandemic measures can all be customised for unique locations or social

behaviours. Many hyper parameters can be tuned to the emerging macroscopic

epidemiological behaviours such as case, death and hospitalisation rates to build a

reliable epidemiological simulation. Alternatively various social policies such as lock

downs or social distancing can be studied for better pandemic mitigation strategies.

Here we present a general outline of the virtual world construction in agent based

models. More details can be found in Section 7.2.2 with more specifics of JUNE.

1. Geography and demography: The virtual population is created using geograph-

ical census data. The framework divides the geography into a hierarchy of

three layers:

• Regions: Areas on the scale of counties.

• Super Areas: Areas containing a few thousand households.

• Areas: Areas containing a few hundred households at most.

The virtual population is constructed by creating the individuals represented

in the census in which each agent has a sex, age and a residential area. Further

attributes can often be assigned if required (and available) such as sexuality,

gender and race. In the location of interest in this project, the only available

data are those of sex, age and residential area.
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2. Household construction: The first venue that the agent will attend is that of

their household. The virtual population is sorted into households of varied

types depending on the distribution of typical household properties and types.

These could include internal household properties such as:

• people per household,

• number of children,

• spousal age gap,

• mother child age gap,

or external properties:

• number of nuclear households,

• number of single parent households,

• number of multi-generational households.

In Section 7.2 we will detail this procedure.

3. Venue construction: The agents can move around the simulation between a

selection of social settings in which they can interact with other agents outside

of their household. There are two classes of venues:

• Assigned venues: Venues which only specific agents are required to attend

on a regular basis, these include workplace or educational settings.

• Unassigned venues: Venues that any agent can attend with a probabilistic

chance depending on their individual characteristics. Examples include

shops and recreational spaces like cinemas, pubs or community centres.

All of the venues are assigned to geographical areas in the model such that

agents generally travel to venues local to them. Assigned venues have specific

agents allocated to that location and they must attend (unless overridden by

social policies or rules e.g. sickness) at the allotted times.
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After the virtual world is constructed, simulations can commence. The simulation

time is divided into discrete timesteps within calendar days. The calendar date

system allows for behavioural differences between weekdays and weekends, this is

particularly important for the workplace and educational settings. An individual in

a typical day is expected to attend an assigned venue, such as 8 hours at work before

they then attend in other venues and return home for the night and remaining hours.

While the assigned venue is predetermined, the other activities are chosen based

on a stochastic process. The probabilities for attending a venue type are modelled

on a Poisson process which depends on the agents characteristic properties. The

particular venue is chosen randomly from the closest of that type of venue up to

some travel limit.

At each time step, the social interaction of the agents at each location in the vir-

tual world can be modelled. Social mixing can be quantified into social mixing

matrices ∆ij which is the number of contacts in a characteristic time between person

of characteristics i that contacts person of characteristics j. Contact matrices that

represent social mixing patterns in populations are a vital input to epidemiological

models [43,44]. There are many choices of the type and format of these social mixing

matrices, we will address several in Chapter 7 they can depend on normalisation,

characteristic binning and social mixing type [45–47]. Traditionally, contact matrices

are derived using large scale surveys, where participants record the number of con-

tacts they have in different locations and the ages of the people they came into

contact with [48]. In Chapter 7 we will develop a novel mixed-method approach

which combines an agent based model with a light-weight contact survey.

Naturally, agent based models come with a large selection of hyper-parameters which

define the virtual world and the agents behaviour. In this project we ignore the

epidemiological elements of JUNE and the parameters associated to the disease spread

specifically. We focus on tuning parameters relating to that of venue demographics

agent behaviour such that they are representative of reality by comparing against

survey findings conducted in our particular setting.
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Particle Physics

In Chapter 5, we will concern ourselves with methods to improve current constraints

on the upper-bound of the charm Yukawa coupling yc and provide projections on

expected confidence limits as we move into the high luminosity phase of the LHC. In

this chapter we will present the required requisite physics for this goal. A presentation

of the Standard Model (SM) of particle physics can be found in the Appendix A.

4.1 The Charm Yukawa Coupling

In the SM without the Higgs boson there exists no way to introduce mass terms

for the charm quark in a gauge invariant way. In order to generate mass for these

particles we must introduce a scalar field with the following distinctive Lagrangian

term – the Higgs sector Lagrangian,

LHiggs = (DµH)†(DµH) − V (H)

= (DµH)†(DµH) − µ2H†H − λ(H†H)2 ,

(4.1.1)

where we have the covariant derivative,

Dµ = ∂µ − igY

Y

2 Bµ − ig
σi

2 W
i
µ . (4.1.2)
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The Higgs field has a scalar potential that depends on two parameters, µ and λ such

that if µ2 < 0 then there exists a minima in the potential at a non-zero value of the

field. The scalar field transforms in a non-trivial way under SU(2)L as a doublet

made up of two scalar complex fields, ϕ+ and ϕ0 in terms of four real scalar fields,

ϕ1, ϕ2, ϕ3 and ϕ4;

H =

ϕ
+

ϕ0

 = 1√
2

ϕ
1 + iϕ2

ϕ3 + iϕ4

 . (4.1.3)

Using Eq. (4.1.1) we can show that the potential is minimised for µ2 < 0 when,

|H|2 = H†H = −µ2

2λ = ν2

2 . (4.1.4)

Where we have defined a new quantity ν, the vacuum expectation value (VEV) of the

Higgs boson potential and it is experimentally determined to be ν ≈ 246 GeV [49].

The Higgs field can be re-written under the unitary gauge where ϕ3 is chosen to

align in the radial direction of the potential and thus h are perturbations uphill from

the VEV;

H = 1√
2

 0

ν + h

 . (4.1.5)

There is actually flexibility in the gauge choice, the four real fields imply there are in

fact four degrees of freedom, three of these correspond to modes which move along

the equipotential of the Higgs potential which give rise to three massless Goldstone

boson modes. In gauging away these modes the missing degrees of freedom act as

the longitudinal modes of the SM gauge bosons giving them mass. The final mode

(moving in the radial direction) feels a quadratic potential where perturbations, h are

understood to be excitations corresponding to a massive particle, the Higgs boson.

We can show by substitution into Eq. (4.1.1) that coefficients in the quadratic terms

of the Higgs boson, h2 equate to the Higgs boson mass,

mh =
√

2λν2 . (4.1.6)

We can further introduce an interaction term between the Higgs boson and the
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fermions – the Yukawa sector Lagrangian.

LYukawa = −(yu)ij q̄
i
LH̃u

j
R − (yd)ij q̄

i
LHd

j
R − (ye)ij l̄

i
LHe

j
R + h.c. , (4.1.7)

where the indices i and j run over the generations of particles. In Eq. (4.1.7) we

introduce the conjugate Higgs doublet, H̃ = iσ2H∗ to extract the up type quark

fields and we use the Higgs double H to extract the down type quark fields and

leptons. Looking explicitly at the first generation up quark and by substituting in

the Higgs doublet and its conjugate,

LYukawa = −(yu)11q̄
2
LH̃uR − (yu)11ūRH̃

†q2
L

= −(yu)11(h+ ν)√
2

(ūLuR + ūRuL)

= −(yu)11hūu√
2

− (yu)11νūu√
2

,

(4.1.8)

it is possible to read off the mass term, mu = yuν/
√

2, where yu is the Yukawa

coupling for the up quark. It is straightforward to repeat this process for the

remaining fermions and retrieve similar expressions. Alternatively, we can consider

the Yukawa coupling as a function of the mass,

yi =
√

2
ν
mi . (4.1.9)

As exemplified in Eq. (4.1.9) the Yukawa coupling is directly proportional to the

mass of the particle concerned. Given the hierarchy of the fermion masses this poses

a significant challenge in the determination of the Yukawa coupling to the second-

generation quarks which are considerably lighter than much of the massive content

of the SM. In addition, the event topologies and in particular the jet structures are

not particularly distinctive for processes involving H→cc̄ decays. It is particularity

difficult to extract a significant number of H→cc̄ events as compared to processes

involving H→bb̄ due to weak event features and the relatively small branching fraction.

Background processes with cross sections many orders of magnitude larger than any

H→cc̄ process can span similar areas of phase-space in significant numbers therefore

making them difficult to eliminate in a cut-flow analysis.
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4.2 Collider Physics

The LHC is the latest particle collider build at CERN it is a 27km ring of super

conducting magnets which accelerates protons to ultra relativistic speeds. Bunches

of these protons collide at key locations around the storage ring where detectors are

placed. Two such detectors are the “A large ToroidaL ApparatuS” (ATLAS) [50] and

“Compact Muon Solenoid” (CMS) [51] detectors. These detectors have an array of

instruments which determine the energy, mass and charge of the outgoing particles

from the collisions.

The collision of two bunches of protons produces extremely complex structures which

can be understood using our understanding of the SM or new physics models. This

defines particle physics phenomenology – the application of theoretical physics to

understand experimental data – one such success story is the discovery of the Higgs

boson. The inclusion of the Higgs boson in the SM was very strongly theoretically

motivated and it was hoped that Tevatron, LEP or (more likely) the future LHC

would discover this particle – which it did in 2012 [52,53]. Further, phenomenology

can be utilised to build Monte Carlo models ( Section 3.1) which simulate the

collisions at real-world or future colliders thus contributing to further tests of the

SM or beyond the Standard Model (BSM) models.

There are a few key points that need to be discussed to understand precisely how

colliders differ from one another. Firstly, consider the beam constituents, if only

leptons are used then any processes relating to QCD and the strong force are much

less accessible than in hadron colliders. However, the beam choice of composite

particles like protons comes at the expense of an uncertainty of the flavour and

momentum of the particles interacting in the hard process. The collision of a parton

from within the proton carries only a fraction of the total energy of the proton which

can be modelled with parton distribution functions (PDFs). The centre of mass

energy determines kinematic viability of processes and it is defined as the sum of

the energies of the colliding particles in the centre of mass frame (e.g. protons at
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the LHC),

ECM =
√
s =

√
(p1 + p2)2 . (4.2.1)

Here we introduce s, the Mandelstam invariant which is the sum of the two beam

four-momenta, p1 and p2 squared. The four momentum, p = (E,p) is defined by the

beam particle energy, E and three momentum, p. Again, in the case of a proton

proton collision, where the partons involved in the hard-process collision take a

fraction of the energy of the beam, the actual centre of mass energy of the collision

is much less and is also uncertain. The LHC is described as having a centre of mass

energy of 14 TeV however individual collision events only have a centre of mass energy

of a fraction of this. Further, it is not known which constituents have participated in

the collision, this has to be inferred from the event structure and particles detected

in the final state. Alternatively, a collider involving leptons which have no internal

structure and which only interact via the electromagnetic and weak forces therefore

provide a much “cleaner” collision. However, in a circular collider it is important to

discuss synchrotron radiation; charged particles of mass, m0 and energy, E moving

in a circular path of radius, R will radiate energy at a rate per turn,

δE ∝ E4

m4
0R

. (4.2.2)

Therefore building a circular collider of equivalent energy for a electron collider

compared with proton collider is significantly harder as the rate of loss of beam

energy is astronomically higher.

Luminosity is a measure of the instantaneous rate of collision events per unit time

per cross section. The total number of events for a given instantaneous luminosity

L is,

N = σ(s)
∫

Ldt . (4.2.3)

The cross section, σ(s) is the probability an event will occur at a given centre of mass

energy s. It is more common to discuss the integrated luminosity which is a measure

of the accumulated data at a collider and as it is independent of the cross section. It
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is simply a metric of the total amount of data delivered. The integrated luminosity

naturally increases over run time, but also increases with increased instantaneous

luminosity. Run 1 of the LHC concluded with an integrated luminosity delivered

of 20 fb−1, Run 2 with 150 fb−1 and Run 3 is expected to reach 300 fb−1. By 2028

it is expected that the LHC will move into the High-Luminosity phase of the LHC

in which it is expected to achieve an integrated luminosity of 3000 fb−1. The shear

scale of the statistics that this will provide will yield new opportunities to scrutinise

processes under greater sensitivity [54].

Figure 4.1: A cross-section schematic of the ATLAS de-
tector at the LHC [55]

Collision event data is measured at key locations around the storage rings – the

detectors. A cross sectional schematic of the ATLAS detector is shown in Fig. 4.1

where sections of the detector are clearly distinguished into layers [56]:

• Tracking Chamber (Inner Detector),

• Electromagnetic Calorimeter (ECAL),
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• Hadronic Calorimeter (HCAL),

• Muon Spectrometer.

The tracking chamber measures the charged particles, their direction, momentum

and magnitude of charge. This part of the detector is also used to determine impact

parameters of particles to a vertex (see Section 4.3) and determine the primary vertex

of an event, this is particularly useful as it can be used to mitigate and segment pile-

up information. Many bunches of protons collide per second which can cause multiple

collision events per bunch crossing. The ability to distinguish individual collision

events via primary vertex fitting is critical. ECALs are designed to absorb most

of the particles from the collision, those which interact with scintillation material

and produce photons which can be measured. This portion of the detector is most

sensitive to electrons, positrons and photons. HCALs are designed to measure the

hadrons which pass through the ECAL unperturbed. These hadrons collide with the

nuclei in a dense absorber material which can produce secondary particles. These

particles interact with scintillation material producing photons which can be detected.

The decay of these particles is described as a shower which forms structures such

as jets (see Section 4.4) which can be used to examine the identity of the original

hadron producing them. Lastly, we have the Muon Spectrometer which measures

precisely the energy and location of muons which thus far have not interacted with

the detector. This portion of the detector is the largest and outermost portion. All

the information collected by the detector can be used to reconstruct a picture of an

event.

The detector is designed as a cylindrical barrel and therefore we map the direction

of particle tracks to a cylindrical co-ordinate system. We define the beam axis to be

along the z-axis such that event data is transitionally invariant and we define two

angles, the azimuthal angle ϕ and the polar angle, θ. A natural set of co-ordinates

to consider that can be mapped onto the surface of the detector are ϕ and the
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pseudorapidity η,

η = − ln
(

tan θ2

)
. (4.2.4)

In particular, differences in these quantities (∆ϕ and ∆η) are Lorentz invariant for

boosts along the beam axis for relativistic particles. The rapidity difference ∆y is

always Lorentz invariant for boosts along the beam axis for any particle where the

rapidity y,

y = 1
2 ln E + pz

E − pz

. (4.2.5)

We choose to use ∆η such that we can define a measure of angular separation, ∆R

which is a Lorentz invariant as a function of angular quantities only. This quantity

will be useful for defining jets,

∆R =
√

∆η2 + ∆ϕ2 . (4.2.6)

Particles which have large high transverse momentum compared with their rest mass

can be considered relativistic. The transverse momentum is given by,

pT =
√
p2

x + p2
y . (4.2.7)

The two incoming beams have equal and opposite momenta entirely in the z axis thus

we know that the total momentum in the frame of the detector is zero. We therefore

know if ∑ pT ̸= 0 then we have particles that the detector has failed to detect, which

could be neutrinos or alternatively BSM particles, we call this difference from zero

the missing momentum. These quantities can be used to define the dimensions of

the detectors such that we can build realistic and representative analysis in Monte

Carlo generators. For example the Inner Detector of ATLAS is unable to perform

vertex determination with tracks with pT < 0.1 GeV and |η| > 2.5 due to the physical

dimensions of the detector barrel and instrumentation limitations. The Monte Carlo

event generators provide a further avenue for validation of theories of physics we

wish to test and we will discuss them further in Chapter 3.1.
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4.3 Vertex Fitter

In order to fit useful observables such as invariant masses we need to understand

which particles belong to a particular event otherwise the data is contaminated by

pile-up effects. An interesting high-energy collision could be contaminated by other

soft collisions or from other collision events between different protons a single proton-

proton bunch crossings, which makes it difficult to reconstruct the objects in each

event final state. One of many techniques used to tidy the collision data is vertex

fitting, particles sharing the same primary vertex are considered to be constituents of

a single particle collision event. In the case of Monte Carlo simulations the primary

vertex of an event is known by definition, the origin of the co-ordinate system (0, 0, 0).

However, in the case of the LHC this position needs to be determined so that the

separate events in pile-up with different primary vertices can be distinguished. The

current method of vertex fitting is adapted from the Adaptive Multi-Vertex fitter

(AMVF) algorithm [57] which takes the reconstructed tracks and an estimate vertex

position and iteratively improves upon the vertex position and gradually down

weights potential outliers (tracks that do not share that vertex). In Fig. 4.2 we see

a schematic for a single event which is defined by its primary vertex which all the

particles in that event share. The figure also shows secondary vertices which result

from the decay of short lived particles produced in the primary vertex. Higher order

vertices can also be produced where particles produced from decays may themselves

decay.

In order to fit a vertex from a set of tracks we have to define a loss function which

assesses the quality of fit. We define the least squares estimator which sums the

(standardised) impact parameters di(v) of all n tracks from the vertex position v,

L(v) = 1
2

n∑
i=1

χi(v)2 = 1
2

n∑
i=1

di(v)2

σ2
i

. (4.3.1)

The impact parameters are the perpendicular distance between the point of closest

approach of the particle track and the vertex and σi is an uncertainty of the impact
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Figure 4.2: Schematic of a a primary and secondary ver-
tex. The green blob represents the hard process
and primary vertex. The red blob a secondary
displaced vertex. d0 indicates the impact para-
meter of a particular final state particle to the
primary vertex, indicating its origin is from a
displaced vertex. Figure from [58].

parameter. This loss function can be minimised by taking the derivative with respect

to v and setting it to zero,

∂L(v)
∂v

=
n∑

i=1
χi(v)χi(v)

∂v
= 0 . (4.3.2)

This expression can be solved for the optimal vertex position exactly or using numer-

ical techniques such as gradient descent or more sophisticated methods like Kalman

filters [59]. This fitting algorithm can be improved upon by weighting the tracks by

down-weighting tracks that are less likely to be associated to the vertex instead of

outright rejecting them. The weights are defined in terms of χi for each track i,

ωi(χ2
i ) = e−χ

2
i/2T

e−χ
2
i/2T + e−χ

2
C/2T

. (4.3.3)

Eq. (4.3.3) depends on two hyper parameters, a temperature T which controls the

shape of the weight distribution and a cut off χC which defines the threshold value

where the weight should equal 0.5 i.e. where a track is considered more likely to be
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an outlier than not.
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Figure 4.3: The distribution of weights for a standardised
distance, χi for a selection of temperatures, T
which all share the same cut off threshold of
χC = 2.5.

T is reduced during the procedure as an annealing scheme which helps the vertex

fitter fall into a global minimum. Eq. (4.3.2) can now be modified to incorporate

the weights,
∂L(v)
∂v

=
n∑

i=1
ωi(χi(v)2)χi(v)χi(v)

∂v
= 0 . (4.3.4)

This equation can not be solved exactly so we move to iterative procedures in which

an initial vertex position provides a set of weightings which then provides a new

improved vertex position. The procedure is repeated until a convergence stops or

a desired precision is reached. This vertex fitting methodology can be use to fit

primary, secondary and even tertiary vertices for a single event (cf. Fig. 4.2), we

apply the same procedure for higher order vertices by considering a subset of the

particle tracks – for example a jet suspected to be from a b-hadron decay – then we

can retrieve these higher order vertices.
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4.4 Jet Clustering

As unstable and highly energetic particles propagate they can decay into a plethora

of hadrons or soft partons and photons. This collection of particles tend to be

clustered together within η, ϕ space and we call this collection of particles a jet. To

define a jet quantitatively we need to group together the particle tracks in a way that

is not dependent on the soft or collinear emissions i.e. it is infrared and collinear

safe (see Section 4.5). This is particularly important for Monte Carlo simulations

in which we do not want the jet algorithms to be dependent on stochastic processes

of the parton shower as that could lead to ambiguity in the number of jets or their

properties for example the addition of a soft gluon. Jet algorithms take particles

within a radius R and iteratively combine pairs of them into quasi-particles until

certain criteria are reached; the remaining quasi-particles define the jets. There exist

a selection of jet clustering algorithms and here we will focus on the general class of

kT sequential algorithms. These cluster particles recursively based on its transverse

momenta. We define two variables in momentum space,

diB = p2p
T,i , (4.4.1)

for a distance of one particle to the beam i and

dij = min{diB, djB}∆Rij

R
, (4.4.2)

for a pair of particles (or beam) i, j. The clustering proceeds iteratively where any

objects with the smallest dij are clustered, if diB < dij then i is clustered with the

beam otherwise i, j are clustered together. This is repeated until the smallest dij

exceeds some cut off value, dc which defines the minimal separation between each

jet to one another and to the beam. This algorithm is parameterised by the cut off

dc, the cone-like size R and lastly the exponent of the momentum p. The exponent

parameterises different kT type algorithms:

• p = 1: The kT algorithm [60],
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• p = 0: The Cambridge-Aachen algorithm [61],

• p = −1: The anti-kT algorithm [62].

Each of these paradigms of jet clustering provides a unique clustering of tracks into

jets. The kT algorithm is the original sequential jet clustering algorithm and it

clusters particles preferentially in order of increasing transverse momentum. The

Cambridge-Aachen algorithm clusters by proximity in η, ϕ space and it is not a

dependent to the magnitude of the momentum. These two methods cluster particles

into relatively irregular shapes, whereas the anti-kT algorithm provides more regular

shapes by clustering from hardest particle to the softest. These sequential type

jet clustering algorithms are infrared and collinear safe and in particular the anti-

kT algorithm produces regular conical jet shapes. Further, the extracted jet-axis

from the anti–kT algorithm is insensitive to soft radiation therefore it simplifies the

calorimeter energy calibration procedure. These properties mean it has been adopted

as the default choice at the LHC. The choice of jet size R and dc varies depending on

the experiment or analysis constructed, for example when looking for Higgs fat jets,

we look for relatively large jets (i.e. R ≈ 1) and require that the transverse momenta

of the jet exceed the rest mass (i.e. dc > 125 GeV). After clustering the events

into jets we can define further observables in the event based on jet structure and

displaced vertices from short lifetime hadrons decays. These are useful to conduct

jet flavour tagging.

4.5 Observables

There is a plethora of potential observables that are used to glean insight into the

underlying hard process of an event. In order for an observable to be insightful we

look for observables that are infrared and collinear safe, this is particularly important

for Monte Carlo simulations where we do not want our results to be dependent on

stochastic effects.



68 Chapter 4. Particle Physics

• Infrared Safe: Features are not dependent on the introduction of soft (low

energy) radiation. For example the addition of a low energy gluon in the

parton shower does not appreciably change a feature in the final state.

• Collinear Safe: Features are not dependent on the introduction of a collinear

(or nearly collinear) particle on top of the path of another particle. For example

collinear splitting of a particle into two particles.

It is important that these requirements are met as it allows for easier comparison of

Monte Carlo data to experiment data. In the work in Chapter 5 there are a large

number of observables that are investigated, although not all that we will define are

ultimately used we will define all of them for completeness. The observables can

be separated into a few categories, global observables, jet observables and vertex

observables. We consider such a expansive selection of observables so that we can

exploit many subtle differences between the signal processes and the backgrounds

we which to eliminate. Not all of the features that are considered are infrared or

collinear safe.

4.5.1 Global Observables

Observables which characterise the whole event and its topology.

• Particle multiplicities: NP. Number of reconstructed particle tracks, can be

all particles or subsets of charged (NP±) or flavoured (NPf ). Which is not

a collinear and infrared safe observable. This observable is not used in our

cut-flow.

• Number of jets: Njets. Total number of jets in an event defined by R, dc and p.

• Missing transverse momentum: ET, miss. The total energy undetected from

invisibles such as neutrinos.



4.5. Observables 69

• Number of isolated leptons: Niso ℓ. Total number of isolated leptons which are

defined by the following criteria. For each identified lepton track we demand

that the total transverse energy of all particles in a cone of size Riso around

the lepton direction is constrained to not exceed 5% of the lepton transverse

energy ET,ℓ, ∑
∆Ri<Riso

ET,i ≤ 0.05 · ET,ℓ . (4.5.1)

This feature is infrared and collinear safe as the isolated leptons can be con-

strained to be sufficiently hard that the associated reconstructed leptons are

directly mapped to the hard process.

• Number of displaced vertices: Nvertex. The total number of reconstructed

displaced vertices defined by the T annealing scheme and χC .

4.5.2 Jet Observables

Observables which characterise an individual jet.

• Particle multiplicities: NP∈jet. Number of reconstructed particle tracks con-

tained within the jet, can be all particles or subsets of charged (NP±∈jet) or

flavoured (NPf ∈jet). Which is not a collinear and infrared safe observable. This

observable is not used in our cut-flow.

• Tagged: ftag. Is the jet tagged to contain t, b, c or µ. If the jet can be associated

to a hard process this feature can be infrared and collinear safe.

• Jet clustering distance ratios: Dn→n−1. During each iterative step in the jet

clustering algorithm we calculate distances, dij for the clustering n to n − 1

quasi-particles. We can re-cluster and record these distances and normalise

them with respect to the transverse momentum of the original jet to the beam,

pT, jet,

Dn→n−1 =

√
dn→n−1

ij

pT, jet
. (4.5.2)
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In particular we consider;

– D3→2,

– D2→1,

– D3→2/D2→1.

• Momentum: pµ
jet. Four momentum of the reconstructed jet. The four momenta

can be used to define the following further features:

– Energy: Ejet = EP∈jet = p0
jet or energy contained in charged particles

EP±∈jet,

– Transverse jet momentum: pT, jet,

– Invariant Mass: mjet =
√
p2

jet,

– Pseudo-rapidity: ηjet,

– Azimuthal angle: ϕjet.

• Transverse momentum in jet: p⊥∈jet. The sum of the transverse momentum of

the track constituents of the jet with respect to the unit vector axis of the jet,

p̂jet.

p⊥∈jet =
√
p2

x + p2
y ∋ p̂jet · ẑ = 1 . (4.5.3)

• Pull: t [63]. A vector which describes the connectedness of subjets within

a larger jet. Its magnitude |t| or its parallel (t∥) and perpendicular (t⊥)

projection to some axis can be calculated.

t =
∑
i∈jet

pT,i(∆R′
i)

pT, jet
(∆R′

i) , (4.5.4)

where (∆R′
i) = (∆yi,∆ϕi) with the ∆x the difference between the constituent

i and jet values of x and ∆R′
i its magnitude which is a new angular separation

with y the rapidity.
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• Angularities: λx
a [64]. These generalised angularities probe the angular, ener-

getic structure of jets,

λx
β = 1

(pT, jet)xRβ

∑
i∈jet

(pT,i)x∆Rβ
i . (4.5.5)

• Eccentricity: ϵ [65]. Describes the deviation of the energy jet profile from a

perfect circle. We define a matrix M ,

M =
∑
i∈jet

 (∆ηi)2 (∆ηi)(∆ϕi)

(∆ϕi)(∆ηi) (∆ϕi)2

 . (4.5.6)

Eccentricity is defined by the two eigenvalues of M which we order by their

magnitude, λmax > λmin,

ϵ = 1 − λmin

λmax
. (4.5.7)

A value of ϵ = 0 describes the energy as evenly distributed in a circle whereas

ϵ = 1 the momenta is distributed along an infinitely elongated object.

• Planar Flow: Pf [66]. Measures the degree to which the jets energy is evenly

spaced over the plane defining the face of the jet. Planar flow is extracted by

considering the following matrix,

I = 1
mjet

∑
i∈jet

1
Ei

 (px,i)2 (px,i)(py,i)

(py,i)(px,i) (py,i)2

 ∋ p̂jet · ẑ = 1 , (4.5.8)

where the components px,i, py,i define the perpendicular momentum to the jet

in each orthogonal direction. The eigenvalues of I, λ1 and λ2 determine the

planar flow,

Pf = 4λ1λ2

(λ1 + λ2)2 . (4.5.9)

• Subjets: We can re-cluster the jet but now demanding that the algorithm

truncate the procedure at N jets. These will define the Nsubjets subjets of the

original jet. These can be used to probe subjet structures explicitly:

– N-subjettiness: τN [67]. A measure of to what degree a jet can be described
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as N subjets.

τN = 1
pT, jetR

∑
i∈jet

pT,imin(∆R1,i,∆R2,i, ...,∆RN,i) , (4.5.10)

where each ∆Rk,i are calculated between the jet constituents i and can-

didate subjet, k up to N subjets. Values tending towards zero indicate

a greater degree of subjettiness. These values on their own are not par-

ticularly insightful so we look at the ratios, τxy = τx/τy in particular

τ21.

– Rotation: θ2. The angle required to align 2 subjets along a unit vector

axis in (∆η,∆ϕ) with respect to the jet.

– Fractional energy of subjet: zN . The fractional energy of the subjet with

respect to the jet. We can also look at the energy balance between any 2

subjets, zxy = zx/zy.

– Particle multiplicities: Nsubjet, P. Number of reconstructed particle tracks,

can be all particles or subsets of charged (Nsubjet, P±) or flavoured (Nsubjet, Pf ).

Which is not a collinear and infrared safe observable. This observable is

not used in our cut-flow.

– Boosted plane angular separation: θ̂n̂,m̂. Boosting into the rest frame of

the jet we can measure the angular separation between the subjets and

an arbitrary plane defined by the unit vectors n̂, m̂.

– Impact parameter: dki
. The impact parameter of the subjet i to the

primary vertex.

4.5.3 Vertex Observables

Observables which characterise a vertex and the particles associated with it.

• Particle multiplicities: NP∈vertex. Number of reconstructed particle tracks, can

be all particles or subsets of charged (NP±∈vertex) or flavoured (NPf ∈vertex).
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Which is not a collinear and infrared safe observable. This observable is used

indirectly by including particle level features of the hardest particles.

• Momentum: pµ
vertex. Total four momentum flowing through the vertex. Simil-

arly to the jets we can define further derived features:

– Energy: Evertex = p0
vertex,

– Transverse vertex momentum: pT, vertex,

– Invariant Mass: mvertex =
√
p2

vertex.

• Position: xµ
vertex. The position of the reconstructed vertices can define the

following:

– Distance from primary vertex: |xvertex|. The physical distance from the

primary vertex, can also express this in longitudinal and transverse dis-

tances, |xz,vertex| and |xT,vertex| respectively.

• Root mean square impact parameter: dRMSD
vertex . Each track associated to each

vertex has an impact parameter di, thus we can consider the spread of the

track impact parameters.

• Order: Overtex. Tracking the momentum flow between vertices and their relative

positions we can assign an ordering to their formation. Primary vertices are

order 1, secondary order 2 and so on.

Particle multiplicities are discussed here as they feed into one of the ML architectures

discussed in Chapter 5 indirectly. We take a selection of the most energetic particles

associated to a vertex (as many as 5) and input their proprieties separately such

that multiplicities inform the model parametrically. This large but by no means

complete selection of observables provides a portal into the structure of different

event topologies which we will use to build a cut-flow analysis and machine learning

classifiers.
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4.6 Analysis and Searches

This section will outline how a statistical search can be conducted using LHC data

and standard statistical methods. Discovering or placing tighter constraints on meas-

urements or parameters can be formulated as an hypothesis test. The methodology

used in Chapter 5 uses the statistical tools and the CLs method outlined in [7, 8].

After data on an event is collected we reconstruct the event into a list of final

state particles where we know their momentum, charge and primary or secondary

vertex. This information can be used to construct useful observables of an event.

After many events we can construct distributions of many observables to conduct

searches for new physics. A simple example of this are resonance searches. Any

event that includes an unstable particle will follow a Breit-Wigner distribution and

if the particle mass is within the range of centre of mass energies available to the

collider the resonance will be accessible.

f(s) = 1
(s−m2

R)2 + Γ2
Rm

2
R

, (4.6.1)

where mR is the mass of the resonance and ΓR is the total decay width. The discovery

of the Higgs boson followed this methodology, in Fig. 4.4 we see the invariant mass

of the diphoton candidates histogrammed by number of events. We see a clear bump

at ∼125 GeV, which is indicative of the Higgs.

To perform a statistical test we define a signal strength µ = σ/σSM, which is the ratio

of the measured cross section from a certain process from experimental or Monte

Carlo data to the predicted cross section in the SM. The observable of the choice x

is histogrammed into bins i, for example the invariant mass of diphotons as used in

Fig. 4.4 for the determination of the Higgs mass. The data in each bin constitute

the sum of all signal and background processes,

Ni = µsi + bi , (4.6.2)

where if we expect a SM result µ → 1 and si and bi are the number of signal and
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Figure 4.4: Distribution of invariant mass of diphoton can-
didates [52].

background events. There are two schemes determining the null hypothesis and

alternative hypothesis:

• New signal discovery: µ → 0 where the background describing a known pro-

cesses is our null hypothesis. The alternative hypothesis is when we have any

quantity of signal processes µ ̸= 0.

• Limit setting: The null hypothesis is when µ → 1 describing the known

background plus the BSM signal. This is tested against the background only

alternative hypothesis, µ → 0.

We construct a likelihood function from the product of Poisson probabilities for each

bin given ni occurrences,

L(µ,θ) =
N∏

i=1

(µsi + bi)ni

ni!
e−(µsi+bi) . (4.6.3)

θ describes the set of nuisance parameters which characterise underlying probability

distribution functions from which the signal and background distributions originate or

alternatively, we add nuisance parameters which define uncertainty in measurements.

For example, we can modify the background and signal bin values by Gaussian priors
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to wrap in the associated errors,

s′
i(θ) = αssi ∋ αs ∼ N (µαs

, σαs
) ,

b′
i(θ) = αbbi ∋ αb ∼ N (µαb

, σαb
) .

(4.6.4)

These normal priors N have to be included in the likelihood the profile likelihood

ratio so that it is sensitive to changes in θ = {µαs
, σαs

, µαb
, σαb

},

L(µ,θ) →
N∏

i=1

(µs′
i + b′

i)ni

ni!
e−(µs

′
i+b

′
i)N (µαs

, σαs
)N (µαb

, σαb
) . (4.6.5)

Now, to test a set of hypothesises with value µ we consider the profile likelihood

ratio,

λ(µ) = L(µ, ˆ̂θ)
L(µ̂, θ̂)

. (4.6.6)

The ˆ̂
θ is the value of θ which maximizes L for a certain value of µ, it is the condi-

tional maximum-likelihood estimator of θ. Whereas θ̂ and µ̂ are the unconditional

maximized estimators of L for which µ is allowed to vary freely. The introduction of

nuisance parameters has the effect of broadening the likelihood function in µ com-

pared to when the nuisance parameters are fixed, thus there is greater uncertainty

and therefore loss of information due to the nuisance parameter uncertainties. Using

λ(µ) we define a test statistic which measures the goodness of fit between the data

and the hypothesized value of µ. The likelihood ratio varies between 0 and 1, where

λ = 1 implies a good fit between data and a hypothesized value of µ. A standard

choice for the test statistic is,

tµ = −2 ln(λ(µ)) . (4.6.7)

As tµ increases we have an decreasing compatibility of the data and µ. We quantify

this discrepancy by computation of the p-value

pµ =
∫ ∞

tµ,obs

f(tµ|µ)dtµ , (4.6.8)

where tµ,obs is the value of the test statistic from the observed experimental or

Monte Carlo data. f(tµ|µ) defines the probability distribution function of tµ for a
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fixed signal strength µ. In the CLs methodology we calculate pµ in two cases, the

background only assumption, CLb and under the signal assumption as a function of

µ, CLs+b. Finally we have,

CLs = CLs+b

1 − CLb
= 1 − αCL , (4.6.9)

where αCL defines our desired confidence limit, if we wish to determine the 95% con-

fidence limit we solve for µ in CLs = 0.05. The value of tµ,obs can either be determined

experimentally, or by a simulated dataset. The probability distribution function,

f(tµ|µ) can be determined from repeated sampling from the likelihood distribution

and its associated priors. It is possible to create a direct relationship between µ

and various SM coupling constants under the κ framework [68] or alternatively to a

coupling constant corresponding to BSM physics.
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Chapter 5

Constraining Charming Higgs

decays

5.1 Introduction

In this chapter we present work relating to the determination of improved limits

on the charm Yukawa coupling. As the LHC moves into its high luminosity phase

the precision of existing measurements will greatly improve. Couplings hitherto

inaccessible will become subject to scrutiny providing exciting prospects for Higgs

couplings to second generation quarks, rare decays or potential BSM physics [54]. In

particular, I will present theoretical results for new confidence limits of the charm

Yukawa coupling expressed under the κ framework for a LHC luminosity of 150 fb−1

and 3000 fb−1. This will be done by considering the following three channels: Vector

Boson Fusion (VBF), W Higgs-Strahlung and Z Higgs-Strahlung production of a

Higgs boson and its subsequent decay into charm quarks. These signal processes

come with significant backgrounds so to eliminate these as much as possible and

to reduce false positives, we apply a set of simple kinematic and jet feature cuts

and build neural network architectures of three types: jet features, jet images and

particle-level features. We then additionally consider two further neural network

architectures with inputs involving vertex features and particle-level features to
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enhance light, charm and bottom jet discrimination.

The 2012 discovery of the Higgs boson H with a mass of 125 GeV by the ATLAS and

CMS collaborations at the LHC [52,53,69] completed the experimental verification

of the SM of particle physics and initiated a step-change in our quest to understand

nature at its fundamental scale. Since this discovery, the focus has shifted to

measuring the new bosons’ properties and interactions and to constrain the effects of

possible new physics manifesting through subtle deviations from SM predictions. A

central part of these efforts has been the determination of the Higgs boson couplings

to the other SM particles. By the end of Run 2, couplings to the SM gauge bosons [70–

72] and to the massive third generation fermions [70, 73–78] have been measured,

and the first coupling to the second-generation fermions, i.e. to the muon, has been

constrained [70,79,80].

The next natural fermion coupling to consider is that of the Higgs Yukawa coupling

to charm quarks which will provide a further, stringent test of the universal role

of the Higgs boson in the generation of fundamental masses (see Section 4.1 and

Appendix A). Various channels have been suggested, some of them introducing an

associated photon [81], or the decay into cc̄ quarkonia, for example in decays such as

H → J/ψ + γ [82–84], or by recasting measurement of the H → bb̄ branching ratio,

for example in [85–87]. We will analyse the prospects for such a measurement in

three channels, namely the production of Higgs bosons and their subsequent decay

into charm quarks in association with Z or W bosons and in VBF,

pp → H→cc̄jj +X 0-lepton channel, 0L. cf. Fig. 5.1, (left),

pp → W→ℓνℓ
H→cc̄ +X 1-lepton channel, 1L. cf. Fig. 5.1, (centre),

pp → Z→ℓℓ̄H→cc̄ +X 2-lepton channel, 2L. cf. Fig. 5.1, (right).

In all processes it is important to consider the branching ratio of the Higgs boson

to the charm quark. In the SM its value is BrH→cc̄ = 2.89% [70] is significantly

smaller than its counterpart, the branching ratio to the b quarks, around 58.2% [70].

In previous studies [88, 89], the production of b quarks has been identified as a
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Figure 5.1: The feynman diagrams for the three Higgs pro-
duction channels considered.

significant non-trivial background, along with signatures from QCD, vector boson

and tt̄ production.

To provide a simple interpretation of the results and facilitate straightforward com-

parison with experimental studies [88, 89], we will express the signal strength µ in

the κ-framework [68] and use the CLs method [8] to estimate the upper-bound for

κc at the 95% level (cf. Section 4.6).

Modifying our observed signal counts, si by the signal strength µi in each bin, i of a

given distribution,

Ni(µ) = bi + µsi , (5.1.1)

and assuming an unmodified background, µ = 1, defines the SM value and variations

in its value are equivalent to varying κc in some parametric way derived below. For

different signal processes l, i.e. for the 0-lepton, 1-lepton and 2-lepton signatures,

the µl represent ratios of cross sections σl times branching ratios in the narrow width

approximation:

µl = σl · BrH→cc̄

σSM
l · BrSM

H→cc̄

, (5.1.2)

where the σl denote the cross sections of the Higgs boson production processes l

and BrH→cc̄ is the branching ratio of the Higgs boson to charm quarks, ΓTot
H→cc̄/ΓH .

The superscript “SM” indicates the SM values, its absence refers to values obtained
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under variations of the signal strength. In the κ framework all couplings of particles

X to the Higgs boson are independently modified by multiplying them with some

κX thus transforming the total Higgs width,

ΓTot
H = ΓTot,SM

H

(
κ2

sBr
SM
H→ss̄ + κ2

cBr
SM
H→cc̄ + κ2

bBr
SM
H→bb̄ + κ2

tBr
SM
H→tt̄ + κ2

τBr
SM
H→τ τ̄ +

κ2
µBr

SM
H→µµ̄ + κ2

ZBr
SM
H→ZZ + κ2

WBr
SM
H→WW + κ2

gBr
SM
H→gg + κ2

γBr
SM
H→γγ+

κ2
γZBr

SM
H→γZ

)
/
(
1 −BrBSM

)
.

(5.1.3)

Where any decays beyond SM physics are represented by the BSM branching fraction

BrBSM which we set to 0. We also take the coupling to the first generation fermions

to be negligible due to their very small masses compared with second- and third-

generation particles. In the following, we will assume that only the charm Yukawa

coupling is modified by a factor κc with all other κX set to 1, which in turn will

result in modified partial and total decay widths of the Higgs boson and thus,

µi =
[
κ2

cΓSM
H→cc̄

ΓTot
H

]
/

[
ΓSM

H→cc̄

ΓTot, SM
H

]
. (5.1.4)

In which the total width is simplified,

ΓTot
H = ΓTot,SM

H κ2
cBr

SM
H→cc̄ . (5.1.5)

Previous analysis with such a framework sets the expected limit at 95% confidence

for µVH(cc̄) ≤ 31+12
−8 at ATLAS [90] measured at an integrated luminosity of 139 fb−1

and µVH(cc̄) ≤ 7.6+3.4
−2.3) at CMS [91] measured at 138 fb−1.

The quadratic dependence of κc on µ leads to some limitations in the maximal

resolvable value of µ that leads to a meaningful value of κc. This value sits at

µ = 1/BrSM
H→cc̄ = 34.6.
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5.2 Simulation

For the analysis, signal and background samples are generated with SHERPA 2.2.9 [92],

using LO-merged samples throughout [93–95]. The signal and background processes

considered are:

• VBF, with H → cc̄ (signal class 0L) and H → bb̄,

• WH-associated production, with H → cc̄ (signal class 1L) and H → bb̄,

• ZH-associated production, with H → cc̄ (signal class 2L) and H → bb̄,

• vector boson (W → ℓν, Z → ℓℓ̄) production + jets,

• vector boson pair production + jets, where one of the two bosons decays

hadronically,

• pure QCD multijets,

• tt̄ production + jets,

where we merge up to two additional jets to the core process. We use the NNPDF 3.0

PDFs [30] from LHAPDF [31], the COMIX matrix element generator [28] for the LO

matrix element, the CSSHOWER [33] for the simulation of QCD radiation, AHADIC++

as the hadronisation model [96], PHOTONS++ [97] for the emission of photons in the

decays of the W and Z bosons and SHERPA’s built-in models for the underlying event

and hadron decays. Using the default prescription for setting the renormalisation

and factorisation scales in multi-jet merging, we obtain theoretical uncertainties from

their variation by a factor of fR,F = 2 in both directions and forming the envelope

of the 7-points, schematically

{fR, fF } =
{

(1
2 ,

1
2) ; (1

2 , 1) ; (1, 1
2) ; (1, 1) ; (1, 2) ; (2, 1) ; (2, 2)

}
. (5.2.1)

The rationale for using this approach is two-fold: First of all, including higher-order

QCD corrections does not induce any sizable change in the shape of distributions, but
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only alters the overall cross section [98] which can usually be captured by applying

a flat K-factor to the overall sample. For the processes we consider, this K-factor

is of the order of 1.3 or below, thereby increasing the total number of events by

up to 30%, which in turn translates to a decrease of the statistical uncertainty by

about 10%. Secondly, apart from increasing total event numbers, the higher-order

corrections reduce scale uncertainties, typically by a factor of two or more. As we are

only able to roughly estimate experimental uncertainties, our approach of potentially

overestimating the theory uncertainties therefore merely translates into the results

being more conservative.

5.3 Analysis Strategy

5.3.1 Initial Cuts

For each of the three signal topologies, there is a unique set of cuts summarised

in Tab. 5.1. These cuts are chosen to take advantage of the event shape and jet

structures provided by the Higgs fatjet structure and the isolated lepton properties.

The observables used in these cuts are presented in Section 4.5 and details of the

jet clustering algorithm and its parameters in Section 4.4. They are encoded in a

RIVET [99] analysis and detailed by:

1. ET, miss is reconstructed from the total sum of visible particles i, with

|ηi| < 4 and pT,i > 100 MeV , (5.3.1)

and it is particularly powerful in enhancing or suppressing events with (1L)

and without (0L, 2L) decaying W bosons.

2. To isolate leptons, we demand that the total transverse energy of all particles

in a cone of angular size Riso = 0.2 (cf. (4.2.6)) around the lepton direction is
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Cut # 0L 1L 2L
ET, miss ≤ 30 GeV 1 ✓ X ✓
ET, miss ≥ 30 GeV 1 X ✓ X
0 Isolated Leptons 2 ✓ X X
1 Isolated Leptons 2 X ✓ X
2 Isolated Leptons 2 X X ✓

1+ fatjet 3 ✓ ✓ ✓
Candidate fatjet 4 ✓ ✓ ✓

2 forward QCD jets 5 ✓ X X
pT, miss + pT ℓiso,1 and fatjet B2B 5 X ✓ X
pT ℓiso,1 + pT ℓiso,2 and fatjet B2B 5 X X ✓

1+ Secondary vertices 6 ✓ ✓ ✓
2 subjets 7 ✓ ✓ ✓

Simple Vertex cuts 8 ✓ ✓ ✓
Machine Learning cuts 9 ✓ ✓ ✓

Table 5.1: Cut-flow for each channel.

constrained by 5% of the lepton transverse energy ET,ℓ,

∑
∆Ri<Riso

ET,i ≤ 0.05 · ET,ℓ . (5.3.2)

We require the exact number of 0, 1 (ℓiso,1), or 2 (ℓiso,1, ℓiso,2) isolated leptons

for the 0L, 1L and 2L topologies respectively.

3. We demand the Higgs decay products to form a fatjet, defined by the anti-kT

algorithm [62, 100] with R = 1.0 and pT > 250 GeV and we require events to

contain at least one such fatjet.

4. To identify the required single candidate fatjet, the highest-pT fatjet must

contain at least three particles, but no isolated lepton and its invariant mass

must satisfy

75 GeV < mjet < 175 GeV , (5.3.3)

cf. Fig. 5.2 for an illustration that motivates our choice.

5. In addition, we place some cuts that uniquely identify specific signal topologies:

• for the VBF (0L) topology, we require two forward anti-kT jets (R = 0.4,
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Figure 5.2: Normalised histogram of the reconstructed
fatjet mass in the 0L channel. Shaded region
indicates the error estimated from PDF4LHC
scale variation convention and statistics.

pT > 20 GeV) j1 and j2 and with a minimal rapidity separation and

combined invariant mass,

∆yj1j2 > 2.5 and mj1j2 > 400 GeV . (5.3.4)

• For the two V H topologies (1L and 2L), we demand that the combined

momentum of the two isolated leptons (2L) or of the isolated lepton and

missing transverse momentum (1L) is anti-parallel to the fatjet momentum

within a tolerance of R = 0.4.

6. The fatjet must contain at least one reconstructed secondary vertex with at

least two charged tracks. An adapted vertex fitter [57, 101] (see Section 4.3)

performs a minimisation of weighted impact parameters, di over points of

closest approach of charged particles contained within the fatjet. Vertices

within 1 mm of each other are considered unresolved and are merged.

7. The fatjet must contain at least two subjets (anti-kT: ∆R = 0.4, pT > 20 GeV).
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8. Further cuts are applied on the reconstructed primary vertex, namely the

invariant mass of the total momentum of particles associated to it and the root

mean square distance of particle tracks to the vertex,

mvertex < 1 TeV and dRMSD
primary < 3 mm , (5.3.5)

which are determined empirically studying histograms of distributions over

signal and background.

In Fig. 5.3 we exhibit, as an example, the resulting cut-flow for the 0L channel

(VBF).

VBFH→cc
QCD
VBFH→bb
ZZ + jets
Z + jets

1

10 1
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N
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0 1 2 3 4 5 6 7 8 9
1

10 1
10 2
10 3
10 4
10 5
10 6
10 7

Ncut

R
at

io

Figure 5.3: Example cut-flow for the 0L channel. The
N th cut, Ncut is performed in the N th bin of
the x-axis. Shaded region indicates the er-
ror estimated from PDF4LHC scale variation
convention and statistics. Backgrounds where
Nprocess << NVBFH→cc̄

are omitted for clarity.
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5.4 Machine Learning improvements

5.4.1 ML “Booster”

In a ninth stage of the cut-flow, we boost the cut-based analysis through a set of

multivariate neural networks (MVA) with combined inputs from three different data

types. The input features used in these cuts are presented in Section 4.5. This MVA

is trained with TensorFlow [102] on ∼10, 000 events of each background and signal

processes that have survived the initial cuts:

1. “Observable”: a dense fully connected network trained with global event and

fatjet features. A large selection of features are fed into the multivariate neural

network. A number of global event and jet observables can be considered1 in

order to best distinguish between the classes and only the features with the

strongest Shapley values [103] (see Fig. 5.5 – Fig. 5.7) or uniqueness with re-

spect to the other MVA input datatypes. Shapley values provide a quantitative

measure of cooperation between different features in a ML method. Specifically

we compare the mean Shapley contribution across all classes, S̄ which provides

a metric of the classifying power of a feature across all classes. Features seen

to be contributing the least to classification can be removed from the model,

which decreases the model complexity with little loss in classifying power. The

chosen subset of observables used are:

• jet mass: mjet,

• missing transverse energy: ET, miss,

• total perpendicular momentum in jet: p⊥∈jet,

• 2-subjettiness: τ2, subjets are re-clustered by the kT algorithm with R =

1.0.

• subjet energy fraction: z1 and z2,
1A full list of the considered observables and their definitions can be found in Section 4.5.
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• planar flow: Pf .

These observables are standardised and normalised,

O′
i = Oi − µ(O)

σ(O) . (5.4.1)

This normalisation is a standard ML technique to improve training and per-

formance (cf. Section 2.2).

2. “Image”: a dense fully connected convolutional neural network trained on

rotated “jet images”. We create “two-dimensional calorimeter” images for the

fatjet centred on its axis and apply simple pre-processing steps to standardise

the images using standard computer vision techniques (see Section 2.2.2):

(a) Center: Redefine co-ordinates in (η, ϕ) such that the jet axis lies at (0,0).

(b) Rotate: Rotate (η, ϕ) such that any subjets align on the ϕ-axis1.

(c) Image set-up: An ‘image’ which spans η, ϕ ∈ (−R,R) with 21x21 pixels.

(d) Build: For each particle, i in the jet add some variable x in the bin (ηi, ϕi).

(e) Scale: For each image scale such that 0 < Iη,ϕ < 255.

The algorithm above can be extended from grey-scale to a colour image, in

this work we consider RGB images where the pixel variable x is,

R = −
∑

P∈jet
log
(
Ei/Ejet

)
,

G = −
∑

P∈jet
log
(
pT, jet

)
,

B = NP±∈jet .

Jet images exemplified in Fig. 5.4 are fed into the CNN. A pre-processing

function centres and normalises the images in each colour channel c, Ic such
1This defines the observable θ2.
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that they only contain integer values between 0-255,

Iηi,ϕi
c = Iηi,ϕi

c − min(Iη,ϕ
c )

max(Iη,ϕ
c ) − min(Iη,ϕ

c )
. (5.4.2)

Similarly to the observables dataset logarithm and normalisation improves the

gradient decent performance, allowing the network to be more sensitive to the

full range of feature values and enables faster learning during backpropagation.

The Image datasets also undergo some on-the-fly augmentation; once imported,

there is a random chance of pixel shifting and randomised horizontal and

vertical flipping,

• Flipping: Iη,ϕ
c → I−η,ϕ

c , Iη,−ϕ
c , I−η,−ϕ

c .

• Shifting: Iη,ϕ
c → Iη±∆,ϕ

c , Iη,ϕ±∆
c , Iη±∆,ϕ±∆

c .

These changes artificially generate more data and enforce discrete symmetries

and any make the network robust to any numerical issues encountered.
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Figure 5.4: Example mean fatjet images signal and back-
ground in the 0L, VBF channel for each colour
channel, Left: R. Center: G. Right: B.
Top: VBF(H→cc̄) Bottom: QCD.
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3. “Flow”: a dense fully connected recursive neural network trained on ordered

particle-level features within the fatjet. particle-level features are fed into a

recursive neural network. To provide the neural network with a structured

sequence of particles, up to ten fatjet constituents are ordered in energy. The

particle-level features are:

• η displacement w.r.t. fatjet axis: ∆ηp = ηp − ηjet.

• ϕ displacement w.r.t. fatjet axis: ∆ϕp = ϕp − ϕjet.

• R displacement w.r.t. fatjet axis, ∆Rp =
√

∆η2
p + ∆ϕ2

p.

• Energy: log
(
Ep

)
.

• Perpendicular momentum: log
(
pT,p

)
.

• Energy fraction: log
(
Ep

Ejet

)
.

• Perpendicular momentum fraction: log
(
pT,p

pT, jet

)
.

Again we standardise these particle features across the training dataset and

all particles,

F ′
i = Fi − µ(F )

σ(F ) . (5.4.3)

The structure of each of these parts are shown in Fig. 5.8.

The neural networks are trained over many epochs with a train-validation split of 90%–

10% and the network with the highest validation accuracy from any epoch is kept.

We note that at this stage there is confusion between the H → cc̄ and H → bb̄ class as

this ML “booster” makes no attempt to build a b and c jet classifier. The distinction

between H → bb̄ and H → cc̄ is addressed with another network architecture, the ML

charm-bottom discriminator. In each channel we report overall retention of signal

excluding H → bb̄. The results for signal retention and background rejection are

summarised in Tab. 5.2 for ϵs and ϵb the signal acceptance and background rejection

efficiencies (excluding H → bb̄), where the cut is performed by only retaining events

in which the signal class has the highest predictive probability in the network.
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work are indicated in black coloured text , oth-
ers in grey. The Shapley contribution to each
channel classification of dominant processes are
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Figure 5.8: The neural network architectures; Top:
MLbooster. Bottom: MLb↔c.
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connected dense layer, Conv2D: A two di-
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NN #L ϵs ϵb

MVA 0 83.9% 78.1%
MVA 1 72.0% 84.7%
MVA 2 81.5% 74.7%

Table 5.2: MLbooster Neural network efficiencies for each
channel.

The trained models are converted into a format suitable to run natively in RIVET [99]

using the Frugally Deep header library [104].

5.4.2 ML Charm vs. Bottom Discriminator

Finally, we construct a neural network to discriminate the H → cc̄ signal from the

H → bb̄ background, based on the structure of the displaced vertices. There are

many examples of superior classifiers for c and b jet classifiers used by experiments,

including MV2 and DL1 [105]. However, here we construct our own multivariate

neural network that uses primary and secondary vertex features to discriminate

between fatjets with only light constituents, with c hadrons and with b hadrons.

This network has two inputs:

1. “vertex observable”: a time distributed fully connected network with input

features describing up-to five reconstructed vertices with ten features:

• number of reconstructed vertices: Nvertex.

• total number of tracks: NP∈vertex.

• vertex invariant mass: mvertex.

• vertex energy: Evertex.

• distance from primary vertex: |xvertex|.

• transverse distance from primary vertex: |xT, vertex|.

• RMSD of impact parameters: dRMSD
vertex .
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• standard deviation of squared impact parameters: σ(d2
vertex).

• polar angle of vertex: θvertex.

• order of vertex: Overtex.

OVi
is necessarily 0 for the primary vertex; then any vertices within a cone

with opening angle θ = π/4 are subsequently numbered in order of distance

from the primary vertex. This provides the neural network with reinforcement

of a natural ordering in displaced vertices in any event.

2. “vertex flow”: uses particle-level features of the five hardest particles, p of each

vertex with the following inputs:

• η displacement w.r.t. fatjet axis: ∆ηp = ηp − ηjet.

• ϕ displacement w.r.t. fatjet axis: ∆ϕp = ϕp − ϕjet.

• R displacement w.r.t. fatjet axis, ∆Rp =
√

∆η2
p + ∆ϕ2

p.

• energy fraction: log
(
Ep

Ejet

)
.

• longitudinal impact parameter: dz,p.

• transverse impact parameter: dT,p.

All of these features are normalised over a weighted mean over all features for all

classes, leading to the results summarised in Tab. 5.3. The vertex booster network

NN #L ϵs ϵb

Vertex MVA 0 58.8% 84.3%
Vertex MVA 1 66.2% 78.5%
Vertex MVA 2 51.3% 90.0%

Table 5.3: MLb↔c Neural Network efficiencies for each chan-
nel.

was also independently trained on a streamlined dataset consisting of H → bb̄,

H → cc̄ and QCD fatjets with a minimal cut-flow for comparison to other analyses.

We find ϵH→cc̄ = 72% and background rejection ϵb = 75%. Comparing directly with
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Figure 5.9: Normalised contact matrices for signal versus
combined backgrounds for each channel;
Top: MLbooster. Bottom: MLb↔c.

the JetFitterCharm Algorithm [106] and demanding similar signal efficiencies, we

obtain background rejection rates summarised in Tab. 5.4.

ϵc 1/ϵb 1/ϵl

“Loose” 0.95 1.65 1.03
“Medium” 0.21 13.2 149

Table 5.4: Summary of neural network efficiencies selected
ϵc on the streamlined fatjet dataset, resulting
in ϵl light jet, ϵb bottom jet and ϵc charm jet
efficiencies.
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Figure 5.10: ROC curves for each channel and architecture;
Left: MLbooster. Right: MLb↔c.
We report AUC of 0.85, 0.86, 0.83 for chan-
nel 0, 1 and 2 respectively for the MLbooster
and then 0.81, 0.82, 0.81 for channel 0, 1 and
2 respectively for MLb↔c for the correct clas-
sification of only our signal process in each
channel.

5.5 Results

5.5.1 Limitations of the κ Framework

To determine the 95% confidence limit on the signal strength, µ0L, µ1L and µ2L

we use a CLs [8] frequentist approach implemented in RooFit/RooStats [107–109]

and treat SHERPA as a SM simulator (see Section 4.6). µ(κ,Br) is derived from

Eq. (5.1.4) as

µc = κ2
c

1 +BrSM
H→cc̄(κ2

c − 1)
. (5.5.1)

We use the CLs method to determine the confidence limits on µi. The likelihood

function used incorporates uncertainties due to statistics σN,x =
√
N , luminosity

σL = 2.5% [110] and scale variations σα. Therefore,

L(µ, s,b) = N (L′, L, σL)N (α′
s, αs, σαs

)N (α′
b, αb, σαb

)

×
∏
x

P(bx + sx, L
′(α′

bb
′
x + µα′

ss
′
x))N (b′

x, bx)N (s′
x, sx) .

(5.5.2)

The uncertainties are parameterised with a Gaussian smearing over our expected
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values and the priors N and P are Gaussian and Poisson distributions, respectively.

Profiling the likelihood function for each channel determines the confidence limits as

a function of µi, with i = 0L, 1L or 2L. These independent channels are combined into

one confidence limit which could be inverted to a confidence limit on κc. However,

when inverting Eq. (5.5.1) we get,

κ2
c = µi(1 −BrSM

H→cc̄)
1 − µBrH→cc̄

, (5.5.3)

which does not have a well defined value of κc for µc > 1/BrH→cc̄.

As we explore this region of µ-values with our analysis and in order to avoid counter-

intuitive results for κc, we only quote projections for limits on µ.

100 101 102

µ

10−1

100

101

102

κ
c

1. Direct µc and 3. direct µc with c↔ b

2. Indirect µcb

4. Indirect µcb with c↔ b

Figure 5.11: κ(µ) plotted in three instances. Blue:
direct H → cc̄ defined in Eq. (5.5.1).
Green: The indirect measurement defined
in Eq. (5.5.4). Purple: The indirect meas-
urement with charm-bottom discrimination
defined in Eq. (5.5.6) evaluated with mean
values of the efficiencies given in Tab. 5.3.

Expanding on ideas formulated for example in [85, 86], we also suggest an indirect

measurement, in which H → cc̄ and H → bb̄ are combined to the signal class and
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modified together with µcb. This extension transforms Eq. (5.5.1) into,

µcb = κ2
cBr

SM
H→cc̄ + κ2

bBr
SM
H→bb̄

(BrSM
H→cc̄ +BrSM

H→bb̄)
1

(1 +BrSM
H→bb̄(κ

2
b − 1) +BrSM

H→cc̄(κ2
c − 1))

, (5.5.4)

and the limitation to resolve κc becomes,

BrH→bb̄

(BrH→bb̄ +BrH→cc̄)
1

1 −BrH→cc̄

< µcb <
1

BrH→cc̄ +BrH→bb̄

. (5.5.5)

If we further introduce H → cc̄ and H → bb̄ discrimination in the cut-flow with the

MLb↔c network Eq. (5.5.4) becomes,

µcb = ϵcκ
2
cBr

SM
H→cc̄ + (1 − ϵb)κ2

bBr
SM
H→bb̄

(ϵcBr
SM
H→cc̄ + (1 − ϵb)BrSM

H→bb̄)
1

(1 +BrSM
H→bb̄(κ

2
b − 1) +BrSM

H→cc̄(κ2
c − 1))

.

(5.5.6)

the factors ϵc and 1 − ϵb re-weight the expected event counts contributing to the

signal strength based on the performance of the charm-bottom discriminator, MLb↔c.

Now the limitation on κc is given by;

(1 − ϵb)BrH→bb̄

(1 − ϵb)BrH→bb̄ + ϵcBrH→cc̄)
1

1 −BrH→cc̄

< µcb <
ϵc

(ϵcBrH→cc̄ + (1 − ϵb)BrH→bb̄)
.

(5.5.7)

The limits of µ leading to a resolvable κc are determined for κb = 1. These expressions

are illustrated in Fig. 5.11.

5.5.2 µ Results

In each channel we consider the primary contributions of uncertainties in the determ-

ination of µ. This can be done by fixing nuisance parameters in turn and varying

each quantity by its pre-fit (initial uncertainties fed into likelihood) and post-fit

(post fitted values from maximization of profiled likelihood) values.

In Fig. 5.12 we exhibit four classes of uncertainties,

1. Statistical,

2. Luminosity,
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3. Systematics (“Sys”),

4. Monte Carlo (“MC”).

Statistical uncertainties occur from the total counts in each bin in the likelihood

function. The systematics from the 7-point envelope function in scale variations of

fF , fR and lastly the Monte Carlo uncertainty from SHERPA. From this we can read

off which backgrounds have the largest impact on the precise determination of µ:

QCD, W+jets (W) production and Z+jets (Z) production processes for the 0L, 1L

and 2L channels, respectively. It is worth stressing that measurements in the 2L

channel, while being the most sensitive channel in this analysis, are dominated by the

statistics from the limited cross-section of the signal process and lower luminosity.
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We explored four ways for the µ extraction:

1. direct,

2. indirect,

3. direct with b ↔ c,

4. indirect with b ↔ c.

We summarise the interplay of the different analysis steps and the variation of µc

and µcb in Tab. 5.5.

cut-flow MLbooster MLb↔c κ dependence
1 ✓ ✓ X µc(κc)
2 ✓ ✓ X µcb(κc, κb)
3 ✓ ✓ ✓ µc(κc)
4 ✓ ✓ ✓ µcb(κc, κb)

Table 5.5: Summary of the cut-flows and neural networks
architectures used in each of the methods and
which of the κc, κb that are allowed to vary. Here
MLbooster refers to the ML “booster” network
and MLb↔c the ML b ↔ c discriminator network.

Fitting to distributions of various observables or to pairs of observables yields con-

straints for the the signal strengths µc. The following histograms over observables

showed the best discriminating power:

• boosted subjet separation angle: H(θĤ,k̂12
),

• fatjet mass: H(mjet),

• planar flow: H(Pf ),

• 2-subjettiness: H(τ2),

• subjet energy fraction: H(z1).
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Figure 5.12: Uncertainty contributions to the 95% confid-
ence limit of signal strength µ for Hmjet for the
jet mass distribution. Uncertainties are shown
for total statistics, luminosity, systematic un-
certainty and Monte Carlo simulation uncer-
tainty over all signal and background classes
for each channel and compared with the total
uncertainty. Pre-fit uncertainties shown in the
outlined bars and post-fit uncertainties by the
filled in bars. Top: 0L. Centre: 1L. Bottom:
2L.
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H(θĤ,k̂12
, Pf )
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)

H(mjet, Pf )

H(mjet, τ2)

H(mjet, z1)

H(τ2, Pf )

H(z1, Pf )

H(z1, τ2)

1. Direct

1 10 100

µcb(κc, κb)
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H(θĤ,k̂12
, z1)

H(mjet, θĤ,k̂12
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H(θĤ,k̂12
, Pf )
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Figure 5.13: Comparison over binned likelihood distributions showing the 95% confidence limit on the
signal strength µ at

∫
Ldt = 150fb−1 and the green and yellow colours bars showing its 1σ

and 2σ errors.
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H(θĤ,k̂12
, τ2)
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H(θĤ,k̂12
, Pf )
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Figure 5.14: Comparison over binned likelihood distributions showing the 95% confidence limit on the
signal strength µ at

∫
Ldt = 3000fb−1 and the green and yellow colours bars showing its 1σ

and 2σ errors.
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We present results for the four methods over all distributions for an integrated

luminosity of 150 fb−1 in Fig. 5.13 and for 3 ab−1 in Fig. 5.14. The figures exhibit

the 95% confidence limits of all considered 1-dimensional fits and two-dimensional

fits with the 1σ and 2σ uncertainty bands.

Search µ w/ HbestHmjet Hbest∫
Ldt = 150 fb−1

1. Direct, µc 53.7+22.7
−15.9 42.7+17.4

−12.4 H(mjet, Pf )
2. Indirect, µcb 4.0+1.3

−0.9 3.1+1.0
−0.7 H(mjet, θĤ,k̂12

)
3. Direct, µc with b ↔ c discrimination 48.1+19.2

−13.8 8.0+3.6
−2.3 H(z1, Pf )

4. Indirect, µcb with b ↔ c discrimination 4.7+1.6
−1.1 2.0+0.6

−0.4 H(z1, Pf )∫
Ldt = 3000 fb−1

1. Direct, µc 35.5+14.0
−10.3 12.1+5.1

−3.4 H(mjet, Pf )
2. Indirect, µcb 3.0+0.8

−0.6 1.5+0.2
−0.2 H(mjet, θĤ,k̂12

)
3. Direct, µc with b ↔ c discrimination 33.9+13.2

−8.9 2.1+0.6
−0.4 H(z1, Pf )

4. Indirect, µcb with b ↔ c discrimination 4.0+1.2
−0.8 1.1+0.1

−0.1 H(z1, Pf )
Table 5.6: Combined µ bounds at 95% confidence for four

methods for the Hmjet and Hbest distributions.
We compare results obtained from the fatjet dis-
tribution (Hmjet) – the method of choice for the
experimental analyses so far – with results we
obtained from a best combination of two observ-
ables, Hbest and indicate them in the last column.

One way in which the impact of dominant statistical uncertainties can be counterac-

ted is by performing a two-dimensional fit and constraining the sum of bins on each

axis to one another and therefore their uncertainty to one another. We summarize

the µ limits we obtain in Tab. 5.6 for the standard choice H(mjet), used by the

experimental analyses so far and our most powerful combination of distributions,

Hbest. Due to the small branching fraction of H → cc̄ we have a very low signal

count at low luminosity. Moving forward into the high luminosity phase of the LHC

with around 3000 fb−1 we will be less limited by statistics. This impacts on the
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efficiency of the ML “booster” cuts, which greatly improve our confidence limit by a

factor of two over the initial cuts at 150 fb−1.

The two-dimensional fitting technique leads to an improvement in the obtained

confidence limits by (on average) a factor of 2 over their one-dimensional counterparts.

We also see that while distributions involving mjet provide good fits, other choices

of observable work just as well or even better hinting at possible new avenues of

exploration. The ML b ↔ c discriminator network provides an improvement to the

value of the confidence limit of a factor 2 in the direct case but only 1.1 in the

indirect case. Our best fit result is κc ≤ 3.18+0.94
−0.60 (µc ≤ 8.0+3.6

−2.3) at 150 fb−1 at the

95% confidence limit. This result is compatible to SM within 4.0 standard deviations

and is competitive with current ATLAS and CMS values of κc ≤ 8.5+3.9
−3.9 [111] and

κc ≤ 3.4 [91] determined at 139 fb−1 and 138 fb−1 respectively. These results may

have scope for enhancement by considering a wider range of features and multi-

dimensional fitting rather than the using the “standard” H(mjet) choice as we have

demonstrated in these findings.

Moving into the high luminosity regime we see again an enhanced benefit from

two-dimensional fits by a factor of ∼2 over one-dimensional fits. At 3 ab−1 our best

fit µ values tighten and the limits become resolvable under the κ framework. The

direct measurement provides the best expected upper-bound of κc ≤ 1.47+0.21
−0.16 which

is again competitive against the ATLAS projection at 3 ab−1 for the 95% confidence

limit of κc ≤ 3.0 [111].

5.6 Conclusions

We studied prospects for a determination of the charm Yukawa coupling and its

constraints with present and future LHC data. We considered the production of the

Higgs boson in Higgs-Strahlung and weak boson fusion processes, leading to final

states with 0, 1, or 2 leptons and the subsequent decay of the Higgs boson into a

fatjet. We augmented a simple cut-based strategy with a multivariate “booster” step
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and showed that this enhances the sensitivity of the analysis. We also investigated

the impact of a neural network based discriminator for fatjets containing only light

partons, charm or bottom quarks and found a measurable impact. As a by-product,

we suggested an indirect measurement strategy where the branching ratio of a Higgs

boson into heavy quarks – charm or bottom – is used in conjunction with the known

value of the bottom Yukawa coupling to infer the charm Yukawa coupling. The

signal strength in any case is extracted from fits to observable distributions and it is

shown that the fatjet mass is not necessarily the best-suited observable. Further it is

found that two-dimensional fits can further boost the sensitivity by about a factor of

two to four compared to fits to a single observable, motivating further investigations.
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Chapter 6

Anomaly Detection at Hartlepool

Power Station

6.1 Introduction

Hartlepool Power Station is located in the North East of England and is capable of

providing enough power for two million homes. It consists of two advanced gas-cool

reactors (AGR), which have been operational since 1983 [112] and is one of four

sites using AGR style reactors in the UK. There are a vast array of sensors and

monitoring techniques of the reactor and its health which ensure the safety standards

at Hartlepool are very high. There exist multiple fail-safes in its operation and the

sensors have conservative operational parameters which are closely monitored at all

times to ensure the reactor remains safe [113].

We investigate a set of tools that have the potential to better inform engineers of

changes in the operational parameters of a nuclear power plant. These changes could

be indicative of unexpected load drops or be indications of a developing fault in the

essential sensors and instrumentation. An unexpected load drop is any event which

leads to a drop in reactor power output that could be indicative of a fault in the

reactor systems. In these drops one of two things occur: the reactor automatically
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trips which brings the nuclear reaction to a halt safely or the engineers trip the

reactor manually to mitigate any potential risk. There are other reasons that the

reactor would be brought offline than unexpected load drops: routine refuelling or

maintenance – data in these regions we consider to be healthy, the reactor is behaving

as we nominally expect. We are interested in comparing these healthy regions with

those regions prior to a known trip which we will refer to as monitor regions. The

goal is to build a framework of tools packaged into a demonstration dashboard in

which an engineer could monitor a live feed of the variables measured in systems of

the reactor. This would better inform them of any potential changes in the structure

of the data that could be indications of faults developing and so prompt them to

manually check for issues. In this work we outline the methods and details of the

mathematical tools used and their successes. Then in the Appendix B we provide a

user guide for the dashboard.

The data is segmented into different regimes based on the reactor operation at that

time. In this section graphs will contain shaded portions indicating the different

regions:

• monitor : Regions prior to a known unplanned trip highlighted in green.

• healthy: Regions in which the reactor is operating nominally at full capacity

for over one week prior to refueling and they are indicated in blue.

• down: Regions where the reactor has ≤ 40% power output in red.

Fig. 6.1 left shows an example healthy region which shows the power output slowly

being manually lowered over the course of a ∼4+ hour period until the reactor

is deliberately tripped at around 40% capacity. This is in contrast to the right

in which the reactor automatically is tripped from around 100% capacity almost

instantaneously. These typical regimes of operation can be used as a template to

manually collect a dataset of these regions prior to these load drops which we can

then confirm against the reported trip logs.
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Figure 6.1: Percentage of maximum reactor power output
“R1 BF604”.
Left: a healthy refuelling region. Right: a trip
monitor region.
The highlighted colours indicate data regimes
used in training predictive models. Blue: A
healthy region. Green: A monitor region. Red:
Period of reactor downtime.
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Figure 6.2: Top: Reactor 1 power output data over the full
data range, 2010 – 2020. Bottom: Difference
between sequential hourly measurements.
The highlighted colours indicate data regimes
used in training predictive models. Blue: A
healthy region. Green: A monitor region. Red:
Period of reactor downtime.

In Fig. 6.2 we see a set of highlighted regions indicating the data we will use for

developing our analysis tool chain, all other data are discarded. This discarded data

includes reactor downtime or regions which have a duration of less than 1 week. The

data kept are indicated by the blue and green regions which are those known to be

healthy, or leading up to a trip and are also at least 1 week in duration. In 2015

Reactor 1 was operating at a reduced capacity so as to limit boiler temperatures
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until certain modifications to the reactor had been conducted. This can be seen

clearly in Fig. 6.2 between 2015—2016. As this region is not representative of typical

reactor operation we discard the data from this time. In particular we have 15 and

13 trip events in Reactor 1 (R1) and Reactor 2 (R2), respectively and there are also

13 and 12 healthy refuelling regions in R1 and R2, respectively these healthy data

are truncated 1 week prior to the refuelling as in this week the reactor is prepared

for going offline; this preparation may alter the nominal behaviour of many of the

measured variables so we discard data from this region.

The data presented in this section graphically are collected from R1 only and from two

reactor systems specifically, the condenser and vacuum pumps. Later in Section 6.5

we will also consider the Channel Gas Outlet (CGO) dataset monitoring the fuel

rod channels. Each reactor is functionally identical to one another, so for now we

will examine the data from one. We can treat each reactor as independent identical

systems so any R1 trained model would be functional for R2. A subset of possible

measurements from each system is considered, the condenser data has 11 features and

the vacuum subsystem consists of 28 features which include measurements such as

feed and outlet water temperatures, pressure and dissolved chemical concentrations.

These features are good indicators of system health and should be stable in nominal

operation. Our datasets are pulled from 10 years of historical data in the years

between 2010 and 2020 and we sample the data over 1 hour windows in the interest

of keeping computational cost down during the data exploration. We calculate the

mean and standard deviation over each hour interval as an estimate of the value and

error of that data point during that period. In fact many of the measurements are

sampled as frequently as every few seconds, giving scope for more granular or coarse

monitoring. An example feature is plotted in Fig. 6.3 for the R1 condenser inlet

temperature and as shown by the 5σ error bars the data is relatively stable over each

hour window except in some instances, indicated by the large highlighted error bars.

In some cases measurements are “missing” or “nan” values (those which are faulty),

in which case these values are filled in with quadratic interpolation to give a good
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Figure 6.3: “R1 CC237 A”, Condenser inlet temperature
over a portion of a monitor region. The red
highlighted region indicate the 5σ error bars.

estimator for the value. However, it is noted that these points are almost entirely

contained within reactor downtimes and usually isolated from one another so they

can be interpolated from their neighbours. Fig. 6.3 also gives a good indication

of the challenge faced here, there are varied levels of periodicity in the data, high

levels of noise and as will be shown there are many dependencies between features

and external parameters. We will tackle these issues with a number of standard

time series analysis tools and a novel approach which bootstraps periodicity into our

analysis.

In the interest of presentation and brevity, we will follow the example monitor

region 19/7/2019 - 9/10/2019 (Fig. 6.3) throughout the presentation of the tools

and methodologies. Further any plots in which we consider an analysis technique

involving just one feature we will use “R1 CC237 A” which is a measure of a condenser

inlet temperature.

6.2 Tools and Techniques

In order to best tackle the task of anomaly detection we need to get around a

number of challenges typically associated with any time series analysis involving

time dependent datasets. Typical approaches take the time series and perform a

number of transformations to produce a “stationary time series” [114]. This allows
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for more stable forecasting and a more detailed understanding of the time series.

A stationary time series is one which is strictly independent of time for example

a random walk, or white noise. Producing a stationary time series from a non-

stationary time series can be done by methods of differencing, removing trends and

seasonality or parametrisation. The reactor data has seasonality predominantly on

yearly, weekly and daily scales. Methods of differencing are powerful for long and

complete datasets as is fitting seasonality and trends, however we would like to be

able to examine the data over shorter timescales. By considering the data over

short time scales we avoid preprocessing all of the historical data, potentially many

times which quickly becomes computationally expensive with higher dimensional

data. Here the approach that we focus on is parameterisation. We examine the

frequency spectrum of the data provided by Fourier transforms over a weekly rolling

windows fitting to a simple power law model – making seasonality in the data

inherent. All analyses are implemented in PYTHON using the standard libraries that

can be installed with PIP, the PYTHON package manager.

6.2.1 Frequency Analysis

The frequency spectrum of each feature is analysed using the discrete Fourier trans-

forms (DFT) which extracts a frequency decomposition composing the original data

into frequency components f and their amplitudes A. The discrete nature of the

data and its length constrains the possible frequencies in the range 1/2T ≤ f ≤ 1/2∆T

with ∆T = 1 hour and T = 10 years, in the most extreme range. DFT is defined for

a set of N data points xn measured at time t = n∆T and is given by the following

equation,

Xk =
N−1∑
n=0

xn exp
(−i2π

N
nk
)

for k = 0, 1, . . . , N − 1 , (6.2.1)

where Xk are complex valued Fourier transformed variables of the data xn and

k = 0, 1, . . . , N − 1 are directly mapped to evenly spaced frequencies defined by the

sampling rate, f = 0, 1/2T , . . . , 1/2∆T . The amplitude Ak and phase ϕk are defined
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for a given frequency:

Ak = 1
N

|Xk| , (6.2.2)

ϕk = arctan
(

Im(Xk)
Re(Xk)

)
. (6.2.3)

The data can now be expressed in the form,

xn =
N−1∑
k=0

Ak cos(2πfkt+ ϕk) . (6.2.4)

The Fourier transformed data are fit to the following power spectrum model which

depends on A|f=1 and α using χ2 fitting [115],

A = A|f=1f
α , (6.2.5)

where A|f=1 is the amplitude at f = 1 Hz and α is some exponent characterising the

frequency power spectrum. This equation defines a power law frequency spectrum,

there are two special cases:

• α = −1: White Noise. Uniform energy density per frequency interval,

• α = −2: Pink Noise. Uniform energy density per octave.

Pink noise power spectra are remarkably common in nature [116] and provides a

way to make seasonality in our data inherent as it is found that all of the features

fit this frequency power law nicely. This power spectrum equation can be fit over a

rolling window across the data, thus we can extract a new time dependent feature

α(t) which will remain constant if the frequency spectra remains constant. The

standard error of the data is used to inform the χ2 fit [115],

αxt
= σ(xt)√

Nwindow
. (6.2.6)

This error can then be associated with the amplitudes Ak, this will then reduce the

affects of low amplitude oscillations on the fitting which could be associated with

noise not a physical process where the magnitude of the uncertainty is the data is

comparable to the magnitude of the noise.
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Figure 6.4: The frequency spectrum of “R1 CC237 A” and
its best fit line for the power spectrum. The ver-
tical lines indicate key harmonics of multiples
of daily oscillations fh = Nday−1.

Fig. 6.4 shows an example pink noise fit on one feature “R1 CC237 A” over an entire

monitor region. We see strong peaks at multiples f = Nday−1, indicating harmonic

oscillations over fractions of the day which is seen in the raw feature plot Fig. 6.3.

We are interested in how the exponent of this fit, α changes over time. Changes in

the frequency structure of the data will be reflected in changes in α and its quality of

fit therefore the oscillatory structure in the data is inherent. However it is important

to note the χ2 fit is only sensitive to the following frequencies fmin = 1/2Twindow. A

sufficiently large window should be chosen so that larger frequencies we to understand

are well represented in the model fit.

6.2.2 Motivating Frequency Decomposition

In this section, we consider two methodologies of unsupervised learning that we intro-

duced in Chapter 2 PCA and BOCPD and why these methods require stationarity,

that is the underlying distributions generating the data are static and de-trended.

As outlined in the introductory chapters to this thesis, PCA and BOCPD tools

provide a method of probabilistic interpretation by the T 2-Hotelling and Q statistics

and L(l, t) matrix. In particular the easy interpretation is particularly important

in this context, while NNs may be quicker to set up and deploy they can often be
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considered black-boxes in which we gain little or no insight into the underlying data.

This is something that could be considered problematic at a nuclear power station.
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Figure 6.5: An example trip monitor region for the feature
space “R1 CC237 A” and “R1 CC237 B”.
Top: Normalised variables, Centre: p-values
of the T 2 statistic, Bottom: p-values of the
Q statistic. Red line indicates the confidence
limit, αcrit = 0.01. Black line indicates the
overall value of T 2 or Q and the colour lines
are the marginalised values over the features.

Fig. 6.5 shows an example monitor region over time for a two variables and its T 2

and Q statistics using a “rolling PCA” model which will be explained in detail in

Section 6.3.2 using the raw data in which there is no attempt at de-trending. There

are issues with using PCA over the full duration or a very large window, the raw data

is non-stationary over long time intervals (i.e. daily, yearly effects caused by weather

and power demands). PCA is not appropriate with non-stationary data, a problem

which we will use frequency analysis to address. Further to this, a long window

duration which contains anomalous data will have its model behaviour altered and

performance impacted by said anomalous points. This non-stationarity can be seen

in the periodic oscillations the top subplot in Fig. 6.5 and the periodic drop in T 2

and Q p-values.

Next if we instead apply BOCPD (see Fig. 6.6 ) we see the raw data generates a

large collection of CPs because we have failed to de-trend our data. Regardless, it is

however possible to see from the lighter portions of the heat map a saw-tooth pattern

over longer periods of time which indicates longer period changes to the structure of

the time series. Another step we can take to aid the BOCPD in dealing with slow
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Figure 6.6: BOCPD for an example trip monitor region
for feature “R1 CC237 A”. Dashed orange lines
indicate CPs, when lmax = 0.
Top: The colour map of matrix L(t, r) with
red indicated lmax where the probability of a
new sequence is largest. Bottom: The example
feature “R1 CC237 A” before a trip.

continuous trends is to take a first order differences. That is, we take the difference

between neighbouring time-series data points which has the effect of removing linear

trends. The tolerance of the BOCPD for noisy data is captured by the values of

σl
t, to make the analysis more forgiving to larger deviations from the mean we can

scale the σ by our desired confidence. We multiply the standard deviation σ of the

data in a sample sequence by a scaling factor of 5 to give a wider tolerance. In the

following section we combine these tools and techniques and act them on our data.

6.3 Methodology

In the previous sections, the main tools have been explored with a set of examples

and plots and we have justified the requirement of de-trending. Now we combine the

tools into a set of complementary anomaly detection frameworks using the entirety

of the data and features together. A final preprocessing step that is found to be

particularly powerful is taking a first order differences which is performed on both

BOCPD methods and the PCA data before being standardised. This helps to deal

with slow moving long term linear trends.
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6.3.1 α-Analysis

We can use Eq. (6.2.5) to parameterise our data using α exponent over a rolling

time window, any changes in frequency space of the data will be reflected in changes

in α(t). The time scale for the rolling window of one week is chosen, this gives a

reasonable number of data points to perform our fit to the power spectrum equation

and enough points to “thermalise” our models making them less susceptible to noise

in the data over small time scales while providing prompt forecasting.
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Figure 6.7: Example α(t) fit for an example trip monitor
region for α analysed “R1 CC237 A”.
Top: α(t) fit over “R1 CC237 A”. Bottom: “R1
CC237 A” before a trip. Highlighted regions
indicate the 5σ error bounds.

Using this rolling window method we do however sacrifice the first window duration

for forecasting to determine α(t) over the first window, this is why the top portion

of Fig. 6.7 starts later than the raw feature in Fig. 6.7. Similarly, in BOCPD the

first window is required to build the priors in the model.

The BOCPD σ values are determined from the χ2 fit parameter errors and scaled to

5σ confidence to give a wider tolerance for long sequences with noisy data. Fig. 6.6

compared with Fig. 6.8 shows better stability in extracted CPs compared with the

original raw feature. Looking for commonality in CPs between related features will

provide insight into specific areas of the systems which may have altered. This alone

is not enough to say anything substantial about the measurements; we look to PCA

to give indications of how anomalous the features may be. However, in the case of
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Figure 6.8: BOCPD for an example trip monitor region for
α analysed “R1 CC237 A”.
Top: The colour map of matrix L(t, r) with red
indicated lmax where the probability of a new
sequence is largest. Bottom: The example α(t)
of “R1 CC237 A” before a trip.

“R1 CC237 A” the strong change points occur when changes in the periodic structure

of the data change.

6.3.2 Rolling Window PCA

We implement a PCA method similar to those implemented in [16–18] which informs

our certainty in changes in the operation of R1 and R2. Once the model is fit, we

calculate the T 2 and Q statistic live which forms a “trigger” for regions which may

require the attention of an engineer. Our trigger is,

α
T

2 < αcrit and αQ < αcrit . (6.3.1)

In this work, unless specified otherwise, we take αcrit = 0.01 which corresponds to a

99% confidence limit that the data is anomalous. In these conditions we catch the

extremal data with respect to the PCA models which are fit over a rolling window

which error checks the subsequent new data point and its T 2 and Q statistic before

refitting in the following window. Further to this trigger we can require a minimum

number of consecutive data points in which these criteria are met i.e. multiple

anomalous data points in a row. Any regions with at least one hour of triggered

data points are highlighted in orange. A powerful feature of this methodology is
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Figure 6.9: An example trip monitor region for the α pro-
cessed feature space “R1 CC237 A” and “R1
CC237 B”.
Top: Normalised variables, Centre: p-values
of the T 2 statistic, Bottom: p-values of the
Q statistic. Red line indicates the confidence
limit, αcrit = 0.01. Black line indicates the
overall value of T 2 or Q and the colour lines
are the marginalised values over the features.

the potential to marginalise T 2 and Q over individual input features. This can be

done by calculating the T 2 and Q statistic for new data point x and replacing all

feature values with their mean in the current window µ(xf(t − Twindow : t)) except

the chosen feature xf . This provides a deeper insight into which feature is dominant

in producing the anomaly or if many or all of the features are correlated. In Fig. 6.9

we see highlighted regions (14th August 2019, 2nd September 2019, 15th September

2019) which are not successfully highlighted by Fig. 6.5 using only one feature input

alone. However looking at Fig. 6.8 we see clear indications of CPs from lmax dropping

in value significantly at these dates except in 2nd September instance in which the

raw data had a large error bar (see Fig. 6.3) thus BOCPD has not considered this

a CP. We see that between these two methods we have extracted the dates where

the distributions have changed or if there is an impulse spike in the data or its error.

The PCA and BOCPD models acting on the α - analysis data have picked these out

and highlighted them for the user. However it is important to note this does not

necessarily indicate a fault, that is for the engineer to confirm. It is also useful to

note that the power of the PCA analysis improves with more features, considering

one or two features makes the analysis more sensitive to statistical noise especially
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in features which have large oscillations.

BOCPD is implemented in the dashboard but we will discuss it no further and

focus on the PCA methodology and results as the time constraints of the placement

took us in that direction. However, the BOCPD provides a promising avenue for

monitoring tools in particular it could be expanded into higher dimensions to study

correlated features.

6.3.3 Improvements to Rolling Window PCA

As noted in the previous section, the PCA detection is only sensitive to changes

if the window prior contains mostly nominal behaviour. Therefore if we detect an

anomaly that satisfies a very strict αcrit threshold the next window is less sensitive

to comparable anomalies because the previous data point which was anomalous

has “inflated” the standard deviation of the windowed data. To get around this

we implement a rolling average flag rate of anomalous data β̄ where we instead

use a different αcrit which has been carefully chosen by generating ROC curves (cf.

Section 2.4). The rolling average flag rate is calculated,

β̄(t1) =

∑t1
ti=t0

β

(
α

T
2(ti), αQ(ti)

)
W

(
t1 − ti

)
t1 − t0

, (6.3.2)

where, β(α1, α2) is a Boolean value such that,

β(x, y) =


1 if x < αcrit and y < αcrit

0 if x ≥ αcrit and y ≥ αcrit

. (6.3.3)

We also have W (t1 − ti) which is a window smoothing function, providing a greater

weighting on nearer time points if required. For the rest of the work we define

W (t1 − ti) = 1 therefore Eq. (6.3.2) transforms to a unweighted rolling mean. We

can now demand that this rolling rate exceeds a new threshold,

β̄ > β̄crit , (6.3.4)
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which tells us that the rate of anomalous data points in the time series has reached

some critical rate in which we can consider the previous rolling window of data as

anomalous and requiring investigation.

6.3.4 Optimization

We can optimise our model hyper parameters such as αcrit using the metrics accuracy,

precision, recall or F1 score depending on what section of the confusion matrix we

care about most (cf. Section 2.4). F1 score is the most useful as we want to ensure

we have a balance between the precision and recall which come at the expense of one

another. We will use ROC curves to inform our choices of the hyper parameters along

with the confusion matrices. Our optimization for rolling window rate threshold is

outlined in Alg. 2.

Alg. 2: Algorithm to pick the optimum αcrit and β̄crit.
Input Data: αcrit,i = 0

for αcrit,i ∈ [10−8, 0.9] do
Determine anomalous points with T 2 and Q thresholds set at αcrit,i

Produce ROC curves with β̄ forming the decision boundary

Calculate AUC
end

Set αcrit from αcrit,i with greatest AUC ROC curve

Pick β̄crit optimising for the chosen metric and αcrit

The hyper-parameters tuning to pick αcrit and β̄crit is executed on a subset of the

labeled data using the typical reactor profiles outlined in the introduction.

6.4 Results

It is difficult to build a metric which leads to perfect precision in determining if a

reactor trip is to occur over large timescales (many hours or days), this is largely

because many of the complex, interconnected precursors are not known. However
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after trip events have occurred, investigations have been completed where the cause

of the trip in the preceding minutes or hours are known. Specifically the causes

for the trips are known for 11 out of the 15 reactor trips for R1. There are also 15

examples of the data in confirmed healthy regions which provide us with a nominal

baseline test set. In this section we will look at case examples and then study how we

can develop a flagging procedure for potential unexpected trip events. The approach

developed involves combining multiple methods outlined in Section 6.3. We run

the PCA analysis keeping 1 PCA feature with a rolling 1 week window with on a

combination of α(t) analysed features. Naturally, PCA requires a set of features so we

cluster them into natural combinations of subsystems. For example we could consider

“CC236” clusters which incorporates the following features “R1 CC236 A” and “R1

CC236 B” or alternatively “CC” features will take all condenser features. Clustering

the system in “CC” type features we have 14 original features including “CC205”,

“CC236”, “CC237”, “CC601”, “CC206”, “CC213”, “CC214” and “CC216” with A

and B channels where appropriate.1 It is also important to note that the metrics

and confusion matrices reported are not a perfect indicator of the performance of the

models. Much of the data in the monitor regions may in fact occur before any fault

develops and also anomalous data might exist in healthy regions of which we are

unaware. Therefore they may be mislabeled data within the dataset, so the metrics

reported should be taken largely with a qualitative interpretation not a quantitative

one.

Here we will report results for the example monitor region (19/7/2019 – 9/10/2019)

in which a fault developed which lead to an unresponsive control rod in the hour

preceding the trip. The PCA analysis flags 6 regions; Fig. 6.10 shows a screen grab

from the analysis dashboard (cf. Appendix B) which indicates the 6 flag regions.2

For convenience, the following regions are highlighted:
1A and B refers to independent subsystems of the feature which are otherwise identical in a

given reactor.
2The dashboard has a zoom-in functionality to aid the user and reports the number of flag

regions.
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Figure 6.10: Under the hood view of Dashboard PCA stat-
istics. An trip monitor region using features
of type “CC”. Top: Normalised variable (col-
oured) and overall (black). Centre: p-values
of the T 2 statistics for each feature (black) and
overall (purple). Bottom: p-values of the Q
statistics for each feature (black) and overall
(purple). The red lines indicate the αcrit con-
fidence limit threshold.

• 12th August 2019,

• 2nd September 2019,

• 16th September 2019,

• 22nd September 2019,

• 29th September 2019,

• 9th October 2019.

A few notes about these regions, 9th October is detecting the initial onset of the

reactor trip. The rods were found to be drifting into the core which will alter the

majority of the parameters. By looking at the marginalised T 2 and Q statistic we

determine that the pressure and temperature in the condenser in the hour preceding

are the culprit features. It is expected that the temperature and pressure will be

affected if the reaction is being throttled. Fig. 6.11 shows a dip in many of the
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Figure 6.11: Under the hood view of Dashboard PCA stat-
istics. An trip monitor region using features
of type “CC”. Top: Normalised variable (col-
oured) and overall (black) Centre: p-values of
the T 2 statistics for each feature (black) and
overall (purple) Bottom: p-values of the Q
statistics for each feature (black) and overall
(purple). The red lines indicate the αcrit con-
fidence limit threshold.

features in the upper plot leading to T 2 and Q dropping below the αcrit thresholds at

6am 9th October 2019, the reactor trip time was recorded at 11:36am. An important

consideration about the flagged regions is that if we have an impulse in the features

we can often see the α - analysis report it twice. This occurs for 22nd September

and then 29th September one week later exactly as the impulse leaves the rolling

PCA window it notices a change in the distribution which is simply an artefact of

the previous anomaly (cf. Fig. 6.12) leaving the window.

In the dashboard we can see which features are responsible for the flagging by taking

the marginal contributions of each feature to the test statistics. In Fig. 6.12 the test

statistics are dominated by changes in “R1 CC601 B”. Taking a look at the raw plots

of this feature we see a sharp change in its behaviour. In Fig. 6.13 we show the raw

feature data for two of the features and clearly see an impulse in “R1 CC601 B” on

the 22nd September, however we see no such large deviation in other features such

as “R1 CC237 B” at this date. These are the kind of changes in the behaviour of the

data we wish to successfully detect and determine features or subsystems which are



6.4. Results 133

Figure 6.12: Under the hood view of Dashboard PCA
statistics. A trip monitor region using fea-
tures of type “CC”. Top: Normalised variable
(coloured) and overall (black). Centre: T 2

statistics for each feature (black) and overall
(purple). Bottom: Q statistics for each feature
(black) and overall (purple). The red lines in-
dicate the αcrit confidence limit threshold.

Figure 6.13: Dashboard view of two features.
Left: Dashboard screen grab from variable
plots of “R1 CC601 B”. Right:Dashboard
screen grab from variable plots of “R1 CC237
B”.

responsible. The analysis is also unaware of intentional reactor operation changes

however an engineer would be aware of how operational changes in the reactor are

likely to change measurement readings. We can get a measure of our success by

comparing the rate of flagging anomalous regions between the healthy control regions

and the monitor regions as defined in section 6.1. If we profile αcrit for the feature

types “CC” we produce Fig. 6.14.
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Figure 6.14: α - analysis results for the “CC” family of fea-
tures. The 1 hour duration flag rates between
the monitor and healthy classes.

In particular for αcrit = 0.01 we report an average flagging rate R̄F (αcrit) which

describes the time average number of αcrit threshold exceeding events over the data:

• monitor regions: R̄F (αcrit)−1 = 25.1 days,

• healthy regions: R̄F (αcrit)−1 = 27.3 days.

The result indicates on average we see more anomalous data points in the regions

known to lead up to a trip than those not per day, however the rates are not significant

between the two classes. In fact, this margin is off little use for distinguishing possible

anomalous behaviour. The sensitivity of the tools can be improved and adjusted

by tweaking the αcrit parameter if this rate is deemed too frequent or not frequent

enough. We introduce β̄crit which exploits the noted difference in flag rate between the

classes derived from αcrit alone which gives us room to build a classifier. Calculating

the rolling mean of flag rates, β̄(t) of at least 1 hour duration and using these values

we can build a simple classifier that picks an optimal threshold rate of anomalous

regions for the optimal αcrit using Alg. 2. A simple decision tree is employed with one

decision β̄(t) > β̄crit then data points within the window t− Twindow : t are labeled a

monitor region, thus we now report the flagging rate, R̄F (αcrit, β̄crit) which describes

rolling time average of the β̄crit threshold exceeding events over the data.

In Fig. 6.15 we see a subtle difference in the flag rates between healthy and monitor

data where the healthy line is consistently above monitor for αcrit < 0.01. This
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Figure 6.15: α - analysis results for the “CC” family of fea-
tures.
Left: The 1+ hour duration rolling average
flag rates between the monitor and healthy
classes optimised for accuracy. Right: ROC
curve, key threshold choices maximising each
of accuracy A, precision P , recall R and F1
score are marked with crosses.

indicates anomalous behaviour in the healthy regions is less common than the monitor

regions. This is further demonstrated by a weak performance in the classifier and

a low AUC in the given ROC curve. It is important to recall we built a dataset by

naively assuming that all the data within a healthy region contains no anomalies

and a monitor region is entirely anomalous. This leads to poor performance metrics

due to large proportions of the dataset potentially being mislabelled, so the reported

confusion matrices and ROC curves are shown as demonstrations of the classifying

power despite this naive approach, thus exploited with the aid of human investigation,

but not automation. The dataset could not be labeled more precisely as the exact

precursor to the events that led to anomalous or unexpected operational changes

in the reactor are not always determined. The results from introducing β̄crit as the

classification boundary are presented in Tab. 6.1 for optimisations in A and F1 score.

The rates R̄F (αcrit, β̄crit)−1 indicate that the models are flagging anomalous data

points in the monitor regions more frequently than the healthy counterparts. This

demonstrates an improved classifying power by the introduction of a rolling average

flagging rate them even if it is limited. If the choice of optimisation metric is F1
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metric αcrit β̄crit
R̄F (αcrit, β̄crit)−1

Monitor Healthy
A 0.18 0.33 day−1 13.5 days 16.3 days
F1 0.015 0.40 day−1 65.0 days 77.0 days

Table 6.1: The “CC” alpha processed dataset results for
the rolling average flagging rate analysis.

score we retrieve a much higher R̄F (αcrit, β̄crit) than for accuracy. F1 score reduces

the number of FN but at the expense of a lower trigger rate over both classes. This

could be a suitable trade off where we do not wish the detection system to trigger

repeatedly and frequently. We can further dissect the results of the models with the

confusion matrices presented in Fig. 6.16. These matrices are generated using the

classification of single data points that exceed the threshold β̄crit not regions with

multiple concurrent threshold exceeders.

In the accuracy optimised matrices it is clear there is classifying power shown in values

of the TN and TP boxes. It may seem like this is not a significant result giving an

overall accuracy of 57.2% but it is important to be aware of a few points. This simple

threshold classifier is assuming the rate values form independent measurements when

in actually this is not the case. The value of each rate depends on any flags over the

previous rolling window and the PCA fitted model which again depends on a rolling

window. There are large portions of the monitor regions of the dataset which are

mostly likely to in fact be healthy regions in the reactor due to our naive labeling

procedure. It is also perfectly possible that there was anomalous behaviour in a

healthy region in this test set however because these data points were not before an

unexpected trip we assume they are all perfectly nominal.

The results here assume that there is no human intervention or oversight, where a

human might simply disregard a flag due to a planned change in the operational

parameters (e.g. change in grid power demand) of the reactor which may occur

more in certain systems therefore there exists a number of FP which can be quickly
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Figure 6.16: The “CC” alpha processed dataset confusion

matrices for the rolling average flagging rate
analysis. Where C are the un-normalised and
Ĉ the normalised confusion matrices respect-
ively.

discarded. Alternatively, an engineer may spot a genuine point of concern and

investigate before the PCA models become “thermalised” to anomalous behaviour

in the following points. This is why the dashboard has the functionality to look at

marginal flag rates responsible from individual features, the user can identify which

features have deviated to prompt human investigation or intervention.

These results indicate there is a small level of classifying power in our methods, but it

is not suitable for full automation and does require human consideration as opposed

to directly taking the classification of the PCA models at face value. Further work

into various subsystem of the “CC” class of features could have yielded better results
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than the combination we present here. We will now turn our attention to another

dataset which is more closely connected to the reactor core itself rather than its

supporting systems.

6.5 Channel Gas Outlet Dataset

The methods outlined in this work can also be applied to other datasets including

the CGO dataset. This dataset comprises of 324 channels of temperature and gag

positions of the control rods over time. These features are strongly correlated with

the power output of the reactor so potential good indicators for reactor health.

We can use the toolkit we have developed and use the following features; reactor

power, gag and thermocouple for each channel in which we aim to find indications

of failing thermocouples or unexpected changes in reactor power output. In some

cases thermocouples are known to be faulty in otherwise healthy operation of the

reactor, the large number of thermocouples and known symmetries in the reactor

mean this is an acceptable tolerance of operation in the reactor. For example it is

known that there exist channel partners in the reactor, which are pairs of highly

correlated channels due to the symmetric nature of the reactor which introduce a

redundancy in the instrumentation, but for now we omit that consideration (see

Fig. 6.17). It is beneficial to find a developing fault such that instrumentation can

be replaced in the following reactor refueling cycle to improve efficiency of plant

maintenance. In the 324 channels we take an hourly average over each feature in

the period 1st January 2018 – 31st December 2019 where the reactor is running at

full power. For each channel we know exactly where it was considered “healthy”,

“degrading” or “faulty” and we discard any data after which the channel thermocouple

is considered faulty, therefore our methods can be applied to flag anomalies in the

raw data before a region is declared faulty. A “degrading” thermocouple is one which

displays a miscalibration or loss of sensitivity but it is still usable whereas a “faulty”

thermocouple behaves incorrectly and the readings need to be ignored entirely. Here
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Figure 6.17: Cross section of R1 reactor core indicating the
324 channels, C25 is shown in purple.
Heatmap depicts the p-values of the Engle-
Granger co-integration test [117] for temper-
ature of channel C25. V19 is found to be
highly co-integrated – this is the channel part-
ner of C25 indicated in deep red diametrically
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we use raw feature data and not α - analysis because the CGO dataset does not

express any periodicity and the time series is largely stationary. In Fig. 6.18 we have
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Figure 6.18: Two example datasets of a the CGO correl-
ated features, Gag position “GA201”, Ther-
mocouple temperature “RP209” and Power
output “BF603”.
Left: CGO data for channel C25, a channel
not regarded as faulty. Right: CGO data for
channel M05, a channel regarded as faulty in
the grey region onward.

two channels for comparison, the yellow regions indicate any combination of features

are violating the αcrit threshold and red when the marginalised thermocouple T 2
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and Q statistic p-values are dominant. If a marginalised feature is responsible for

a flag, then that suggests that there is not a coupling of behaviour in the features

in the reactor such as those expected from asking the reactor to reduce the power

output by moving the gag positions. A single marginalised feature being responsible

suggests a change in instrumentation not reactor behaviour. In C25 there are some

regions identified which are explained by adjustments to the gag position or power,

the first jump in each is not highlighted because it is contained within our first PCA

window (i.e. the thermalisation time) of two weeks duration. In the M05 channel we

see in the red highlighted region that the value of the thermocouple shifts but the

power and gag do not, this is indicative of a fault. The PCA method has successfully

picked out the fault on the same day as it was determined by engineers. In C25 there

is also a red region which corresponds to the thermocouple being declared degrading

but not faulty in the CGO logs. This method does lead to a high false positive

rate, in fact on average in any channel there is one false positive every ∼50 days.

However correcting for the average expected adjustments to the gag or output over

a channel around 3.75 times per year per channel (of which the engineer will be

aware) we recover a false positive rate of once every ∼154 days per channel, this

gives us a greater confidence in the anomaly detection toolkit. There are in fact 4

channels in which a fault develops in 2018 – 2020 and we get at least one flag in

the previous month for each channel which is indicative of an anomaly. Now we

have justified structural differences in the dataset we apply the PCA rolling window

rates method. Here we have 14 healthy and 14 monitor regions by considering the

data from 2010 – 2020 (performing the same grooming of data as the condenser and

vacuum data) and perform our rolling average rate analysis on flagged regions which

are at least 1 day in length. Similarly to the previous dataset in section 6.6 we can

build a simple threshold rates classifier. We still have classifying power despite the

apparent rates appearing to be more similar than for the condenser and vacuum

dataset (cf. Tab. 6.19). The results from performing optimizations for accuracy and

F1 are presented in Tab. 6.2.
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Figure 6.19: Results for the CGO family of features,
“RP209”, “GA201”, “BF603”.
Left: The 1+ hour duration rolling average
flag rates between the monitor and healthy
classes optimised for accuracy. Right: ROC
curve, key threshold choices maximising each
of accuracy A, precision P , recall R and F1
score are marked with crosses.

metric αcrit β̄crit
R̄F (αcrit, β̄crit)−1

Monitor Healthy
A 0.41 0.071 day−1 ∞ days ∞ days
F1 0.45 0.38 day−1 10.3 days 66.0 days

Table 6.2: CGO dataset results for the rolling average flag-
ging rate analysis.

These results demonstrate clear power in distinguishing between the monitor and

healthy classes with a significant differences between the R̄F (αcrit, β̄crit)−1 values

for the F1 score optimisation. The optimisation for accuracy in this case clearly

demonstrates why it is a poor metric for imbalanced classes. The best accuracy

score for this data is found when the model chooses an unachievable β̄crit value of

0.071 day−1. This value is larger than the rolling window size therefore β̄crit never

exceeded and we never predict a monitor region. These results are presented in a

set of confusion matrices in Fig. 6.20.

We get considerably more balanced confusion matrices here than the condenser and

vacuum datasets looked at previously. This dataset requires more careful considera-

tion than the “CC” features as there are frequent adjustments to the gag positions
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Figure 6.20: The CGO dataset confusion matrices,for the

rolling average flagging rate analysis. Where
C are the un-normalised and Ĉ the normalised
confusion matrices respectively.

and power outputs due to operational changes due to power grid demands or reactor

fuel stages. The many operational reactor changes are easily identifiable by an

engineer so in many cases these events can be discarded immediately. Eliminating

these changes from the dataset however provides more promising results for the use

of the PCA toolkit in the CGO dataset than the “CC” family of features.
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6.6 Conclusions

The tools developed and discussed in this work are intended to be entirely informative

for an engineer and makes no claim at predicting the possibility of an unexpected

reactor trip in a certain period of time. What the tools do is provide a way to

examine the distributions together through PCA and separately through BOCPD

to provide an engineer with greater insight into potential subtle changes in the

operational parameters of the reactor systems which could be indicative of faults

developing or unexpected changes. The BOCPD is the most powerful, for efficient

and easy interpretability of the predictive of changes in the distributions across all

the provided features, it also had the additional bonus of being easily adapted to

online detection. However much like the PCA a certain amount of preprocessing

is required to make the data stationary which is performed by the α-analysis and

first order differencing. These methods unfortunately sacrifice a window of data for

model thermalisation. The PCA models provide another perspective into how well

we can understand the live data against fitted models and conversely how anomalous

the data is. The average PCA is limited in the sense that anomalous points are

absorbed into the previous window fit, this can make PCA less sensitive to other

changes in the window as the variance in window has been increased.

The success of the models is demonstrated by examining the rate of flagging regions,

which in themselves can be used to build a classifier. While the results reported

may not be perfectly labeled as we have made assumptions about individual set of

data points in each class, the results do demonstrate clear classifying power in our

methods. These methods if implemented could be further validated by tackling the

naive data labeling procedure. This would allow the methods to be refined with a

more appropriate dataset while also reporting correct metrics of performance. We

find the optimal threshold p-values, (αcrit and β̄crit) for accuracy or F1 metrics and

if the rolling rate exceeds this value there is an indication that the systems are

developing anomalous behaviour. These thresholds have been fitted for a selection
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of features and implemented into a dashboard with a user guide which can be found

in Appendix B.



Chapter 7

Social Mixing Matrices at Cox’s

Bazar

7.1 Introduction

Contact matrices are an important ingredient in age-structured epidemic models to

inform the simulated spread of the disease between sub-groups of the population.

These matrices are generally derived using resource-intensive diary-based surveys

and few exist in the Global South or tailored to vulnerable populations. In par-

ticular, no contact matrices exist for refugee settlements – locations under-served

by epidemic models in general. In this section we present a novel, mixed-method

approach, for deriving contact matrices in populations which combines a lightweight,

rapidly deployable, survey with an agent-based model of the population informed

by census and behavioural data. We use this method to derive the first set of con-

tact matrices for the Cox’s Bazar refugee settlement in Bangladesh. To validate

our approach, we apply it to the UK population and compare our derived matrices

with well-known contact matrices collected using traditional methods. Our find-

ings demonstrate that our mixed-method approach addresses challenges faced by

traditional and agent-based approaches to deriving contact matrices. It also shows

potential for implementation in resource-constrained environments.
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Epidemics such as COVID-19 have led to devastating consequences for afflicted

individuals and their societies. Understanding how such infectious diseases spread,

anticipating future trajectories for transmission and gathering evidence to inform

decision-making efforts to prevent, mitigate and respond to epidemics is therefore of

vital importance. Mathematical and computational models to simulate disease spread

are regularly used to support these efforts. Contact matrices are key to understanding

social mixing patterns in populations and a vital input to epidemiological models [43,

44]. Despite renewed efforts to develop such models, additional work must be done

to ensure they are available to all [118].

In this work we present a new method for determining contact patterns based on

combining the information gained from increasingly sophisticated models of disease

spread, with that from lightweight surveys which can be rapidly rolled out to popu-

lations of interest. We attempt to provide information on contact patterns without

requiring the traditional, costly methods of contact data collection. Specifically,

we will focus on the use case of the Cox’s Bazar refugee settlement in Bangladesh.

Epidemics in refugee and internally displaced person (IDP) settlements are common-

place and tend to spread rapidly [119] and only very few models have been designed

to simulate outbreaks in these unique environments and to inform public health

decision-making [118]. Given the application domain, we believe this is not just an

important area in which to contribute knowledge about disease spread patterns, but

also a challenging test case which demonstrates the strengths of our methodology.

Throughout this work we will use the JUNE-COX model [42], an agent-based model

built on the JUNE framework [23]. An agent-based model is one in which individuals

are modelled stochastically with unique properties. In the JUNE model we construct

a virtual population at the level of individual residents within a digital twin of the

Cox’s Bazar settlement, where the individuals have a sex and age.1 Interactions

are simulated between the agents – the virtual residents – in a number of “venues”
1Individuals also have an infection history, which we will not consider here except to state

that the JUNE-COX model is fitted with epidemic responses including policies like isolation and
hospitalisation. These results run with simulations in which all disease models are turned off.
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or “locations” that include: shelters; food distribution centres; market places; and

learning centres. We use the information from the lightweight survey to guide these

interaction patterns based on the demographics of the agents attending the venues

over time.

The contact matrices encode information on the number and duration of contacts

between people of one age group and another and are usually specific to certain

venues or locations in which people interact. There are various types of matrices

which can be used both separately and in combination, including (i) one-directional,

contact matrices NCM [45] which count the (normalised) number of contacts a person

in category i has with a person in category j, (ii) bi-directional reciprocal matrices

NCMR [45] which also add the number of contacts people in category j have with

persons in i and (iii) venue contact matrices NCMV [46,47] which assume that every

person at venue L has contact with everybody else present. Here we will discuss a

approaches for estimating all three types of matrices. Traditionally, contact matrices

are derived using large scale surveys in which participants record the number of

contacts they have in different locations and the ages of the people they came into

contact with. Additional metadata is sometimes collected, such as the intensity

of the contact (e.g. physical or non-physical) and the duration of each individual

contact. Surveys of these types have predominantly been run in the Global North,

with comparatively few serving countries in which many particularly vulnerable

communities reside [120]. One such work has published contact matrices for an IDP

settlement [121] and no such work exists on contact matrices in refugee settlements.

While such traditional methods of collecting contact data may be considered the gold

standard, they are extremely resource consuming to collect and therefore cannot

be run easily during an ongoing outbreak. As an alternative to these expensive

direct means of contact data collection, several other methods have sought a more

indirect approach. Using the information from existing contact surveys conducted in

8 European countries [45] and knowledge of the underlying demographic structures

in these populations, Prem et al. [122] used a Bayesian hierarchical model to project
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these matrices onto 144 countries given similar demographic data and underlying

similarities between each of these countries and the original 8 selected in the direct

data collection. This has recently been expanded to 177 countries [123].

Similarly, census/demographic data have also been used to construct synthetic pop-

ulations which are then used to estimate contact matrices. Fumanelli et al. [46] use

such data from 26 European countries to construct representative synthetic house-

hold, school, workplace and ‘general community’ environments and then assume that

each individual in each setting has a single contact with every other member. This

has been extended to 35 countries, while also incorporating finer-grained data to

develop more representative virtual populations [124]. The same approach is used by

Xia et al. [125] for the setting of Hong Kong. While such approaches are beneficial

as they do not require the expensive collection of long-term contact survey data,

they are limited by the assumption that different venues contain static populations

and that within venue mixing is homogeneous.

By combining demographic data with data sources such as time use surveys [126,127]

or transportation surveys [47], stochastic approaches – e.g. agent-based models –

have been developed to capture a broader variety of mixing patterns in populations.

These approaches expand on those described above by exploring many permutations

of possible venue mixing. Despite this, these methods still present similar limitations

to those described above. Namely, in the absence of any prior information on

interaction patterns, it is largely assumed that each agent contacts every other agent

in those venues. As a partial remedy to this challenge, disease data is commonly

used to fit arbitrary hyperparameter multipliers to these matrices. While this is

generally a necessity to be able to forecast disease spread even when using directly

collected contact data [128], due to differences between disease transmission routes

this may not resolve the errors at the matrix element level. The output of this process

does not provide an understanding of the base level of contacts, but rather a set of

contact matrices for each disease. This limits the usefulness and generalisability of

such matrices in comparison to corresponding matrices from directly collected data.
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In this work, we seek to accomplish two things: i) Develop a methodology which ad-

dresses the challenges above by taking a mixed-method approach to deriving contact

matrices. It combines techniques of extracting contact matrices from sophisticated

agent-based models, with information derived from a lightweight survey designed to

inform and validate the model-derived matrices, while being significantly less expens-

ive to run than the traditional large-scale contact surveys. ii) Use this new approach

to present some of the first contact matrices for a refugee settlement. Because of their

use in different types of models the matrices need different normalization, either to

the full population, as in the case of location-unspecific simple compartment models

of the SEIR (susceptible, exposed, infected and recovered) type, or to the part of

the population actually visiting a venue. We will therefore present results for all

three types of contact matrices, for a variety of locations, either normalised to the

overall population “P” type contact matrices (PNCM, PNCMR and PNCMV) or to

the actual users of a location “U” type matrices (UNCM, UNCMR and UNCMV).

This work was motivated to contribute to the global call to action laid out in prior

work, which aims to develop new methods and mechanisms of data collection for

modelling disease spread in refugee and IDP settlements [118].

7.2 Methods

The goal of our method is to construct location-dependent social contact matrices

with a high level of granularity without resorting to detailed contact surveys. We

achieve this by fitting the (virtual) contact matrices of an individual-based model con-

structed from higher-resolution demographic data of the population to the real-world

results from lightweight surveys with a much lower resolution. The resolution and

accuracy implicit to the model allows us not only to infer the highly-granular contact

matrices, but also allows us to give a first estimate of the associated uncertainties.

We describe the model as high-resolution here because it is well informed compared

to the contact survey. Collection and distribution of aid around the camp and its
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demand reliably inform the census data in the camp. However, as the lightweight

survey is conducted such a small scale (∼300 people) it has potentially large bias

and great uncertainty which take into account. In the following we further detail

this procedure and apply it to the construction of social contact matrices for the

residents of Cox’s Bazar refugee settlement.

7.2.1 The Survey

The level of detail accessed by surveys in refugee camp settings is often heavily con-

strained by resource considerations (timing, number of enumerators, need for rapid

results etc.) and the highly aggregate contact survey run in the Cox’s Bazar refugee

settlement between October-November 2020 is no exception. During this period,

the settlement was continuing to experience cases of COVID-19 [129]. However,

reported case numbers were low and the settlement activity had largely returned

to pre-pandemic levels, with the exception that learning centres (schools) remained

closed and masks were still being worn [130, 131]. The following demonstrates the

ability to rapidly run a survey during a public health emergency, in a resource-light

way, while producing representative results of the contact patterns which can be

used in future studies and modelling works. Although a more intensive survey – such

as a diary-based longitudinal study – would provide more precise and accurate data,

the ability to perform such a survey may be limited by the number of researchers

available or more practical concerns such a limiting social contacts between members

of the community and enumerators during a public health crisis.

The survey underpinning the study was conducted by experienced enumerators

from the UNHCR Community Based Protection (CBP) team, following standard

UNHCR practices [132,133]. Its objective was to collect information on the number

of contacts people of different demographics have with others in different venues

they attend during a typical day. The survey considered only three categories of

residents, defined by their age: children (< 18 years), adults (≥ 18 and < 60 years)
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and seniors (≥ 60 years) and we constrained the set of surveyed locations to those

contained in the digital twin, JUNE-COX. Data was collected from 22 camps in the

Kutapalong-Balukhali Expansion Site (part of the Cox’s Bazar refugee settlement).

In each camp the respondents were two male and two female residents in each of

the three age brackets. In addition, two persons with disabilities were surveyed in

each camp, resulting in a total of 22 × 14 = 308 respondents. Details of the survey

can be found in Appendix C.2 and the accompanying metadata to the anonymous

results [134]. The respondents were asked if they attend various venues and, if so, to

estimate the number of adults and children they come into contact with there. To

avoid skewing results through uncharacteristically long or short times at a venue, the

respondents were asked how much time they generally spend at those venues at any

given visit such that the total contacts can be re-scaled to contacts per hour. Since

the JUNE modelling framework and much of the demographic data underpinning

JUNE-COX do not distinguish adults (18-59) and seniors (>59) we choose to combine

the data in these two age bins into one “adult” category, thereby arriving at highly

aggregate 2 × 2 total contact contact matrices tij1 for the various locations L.2 We

use the survey to calculate UNCMR type matrices for different locations. Here we

present the methodology to calculate the different versions of the contact matrices:

1. One-directional contact matrices [45], NCM, (UNCM and PNCM): Following

the notation in [135] the PNCM are denoted as M with elements mij defined

by mij = tij/nj with tij the aggregate total number of contacts of nj survey

respondents in category j reported with people in category i.

There is a subtle difference to the UNCM with elements µij, where the aggregate

number of contacts tij is normalised to the number of actual users in the venue,

ηj, µij = tij/ηj.

To make contact between the PNCM and UNCM, one therefore merely has
1We interpret contact matrix ∆ij such that person i contacts person j and graphically as

subgroup on x-axis contacts subgroup on y-axis.
2To improve the readability of the manuscript we refrain, where possible, from explicitly indexing

contact matrices etc. with a location index.
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to re-normalise to the overall number of respondents in category j, mij =

tij/nj = µijηj/nj = µijaj, where aj denotes the attendance rate to the venue

in category j. This re-normalisation can be performed for any conversion from

population normalised “P” to user “U” normalised matrices.

2. Bi-directional, reciprocal contact matrices [45], NCMR, (UNCMR and PNCMR):

Following, again [135], the PNCMR are denoted by C and their elements are

defined as

cij = 1
2

(
mij +mji

wi

wj

)
= 1

2wj

(
tij
wj

nj

+ tji

wi

ni

)
, (7.2.1)

where the wi,j are the overall population sizes in categories i and j. This

motivates the notion of these matrices being normalised to the overall popu-

lation. While using these matrices in compartment models, their application

in individual-based models may lead to unwanted results. As an example con-

sider the case of contacts between adults and children in school settings and

assuming that this is meant to primarily capture the contact of teachers and

pupils. Normalising the number of contacts to the overall adult population

size would obviously lead to a massively reduced average number of contacts

compared to a more correct normalization to the number of teachers in the

respective age bins. We therefore define the user-normalised contact matrices

UNCMR Γ with entries

γij = 1
2ωj

(
tij
ωj

ηj

+ tji

ωi

ηi

)
, (7.2.2)

where ωi,j denote the actual users attending the venue, i.e. ωi = wiai. In

fact, since we resolve the random movement of individuals to distinct locations

in JUNE, we use the Γ instead of the C that are more relevant for compart-

ment models. However, we also present results for the population-normalised

PNCMR, which can be obtained by simple re-scaling by attendance factors ai

and aj from the Γ.
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3. Isotropic venue contact matrices, NCMV, (UNCMV and PNCMV): due to the

lack of attendance data we cannot directly derive such matrices bij and βij

from the survey. However they can be determined virtually.

There is one further subtlety, the contact survey was conducted such that there is

an equal number of men and women respondents. However the Cox’s Bazar is 48%

and 52% men and women by population respectively, we therefore re-weight the

contact matrices by sex. Finally, we comment on our treatment of the uncertainties

in the survey results. Given the small survey sample size, we right-censor the data at

the level of the 90th percentile and perform a bootstrap analysis [136] to determine

the median number of contacts between subgroups, µij. We assume the uncertainty

of this value, ∆µij, to be well estimated by the standard error of the bootstrap

distribution of the median. A note should be made that the contact survey is done

retrospectively so we expect an element of recall bias within the respondents answers.

We choose to right censor the distribution of numerical answers to remove more

extreme responses and further we take the median statistic and apply a bootstrap

method to estimate median contact patterns and its errors. These errors can be

used within our model to apply further stochasticity to agents contact patterns.

From ∆µij it is straightforward to derive the uncertainty, ∆γij, of the reciprocated

matrices, we assume the error in the contacts are dominated by the error from

reported number contacts per hour at a venue. We take ωi,j in Eq. (7.2.2) as an

exact quantity from the survey.

7.2.2 The Model

For the construction of the digital twin and simulator we use an existing individual-

based model, JUNE-COX [42], specifying the original JUNE modelling framework [23]

to the demographics of the Cox’s Bazar refugee settlement. (Note that the original

application of the JUNE framework was to model the spread of COVID-19 in the

UK and we will refer to this UK specific specification as JUNE-UK.) Both JUNE-UK
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matrix symbols matrix symbols

CM t, tij

UNCM µ, µij PNCM M, mij

UNCMR Γ, γij PNCMR C, cij

UNCMV β, βij PNCMV B, bij

Population venue ηij Population world ωij

Population survey venue nij Population survey world wij

Table 7.1: The CM are time normalised, the various UNCM
are further normalised by population at the ven-
ues, while the PNCM are instead normalised by
the total population.

and JUNE-COX use census data to create a virtual population at the individual level,

with JUNE-COX specifically focusing here on the Kutapalong-Balukhali Expansion

Site of Cox’s Bazar. The census data of its population is organised according to a

geographical hierarchy; the ∼600, 000 residents are distributed over the 21 camps

(“regions”) which make up the Kutapalong-Batukhali Expansion Site (in reality

there are 22, however, we combine Camp-20 and the Camp-20 extension together

given data availability constrains), these contain between 2-7 UNHCR Admin level-2

blocks (“super areas”) comprising ∼5000 people, which in turn are composed of

sub-blocks (“areas”) with 90 households on average. The geographical distribution

of individuals and their households is explicitly incorporated in the model through

the geo-locations of the area centres.

The sex and ages of the individuals in Cox’s Bazar is known to the level of super

areas precisely, however we do not know the exact household location of individuals

to households. Therefore households are constructed stochastically by clustering
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Figure 7.1: The population pyramid of Cox’s Bazar. Male
population is shown on the left in blue and
female on the right in red. The percentage of
the population of each category is quoted.

individuals into households according to their age, sex and the following reported

properties of the camp in order to create realistic demographic household structures:

• Macroscopic properties:

1. The distribution of household sizes in the camp (known at the region

level) (cf. Fig. 7.3),

2. The distribution of households in shared shelters (cf. Fig. 7.3),

3. Population demographics (cf. Fig. 7.1),

4. The proportion of one, two and multi-generational households (cf. Fig. 7.2).

• Microscopic properties:

1. The probability of single parent household (cf. Fig. 7.2),

2. The mean spousal age gap (cf. Fig. 7.4),

3. The mean age of mother at birth of first child (cf. Fig. 7.4),
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4. The distribution of number of children per household (cf. Fig. 7.4).

These properties are all known at the super-area level unless specified otherwise.

The resulting household demographic structures can be seen in Fig. 7.2 and shelter

sizes in Fig. 7.3. The age brackets for each demographic are inferred from survey

and data from the settlement. Children [0 – 18], 18 is the age at which marriage is

legal for women (21 for men), Adults [18 – 49] (49 being chosen to provide a realistic

age gap for potential grandparents, twice the average mother-child age gap, 22.43

years plus the average spousal age gap, 4.73 years). [49 – 100] for old adults, the

remaining ages in the camp. JUNE-COX has an over clustering of children with single

parent housing, this due to any remaining children being randomly clustered into

households with adults after the children with couples houses are constructed. The

microscopic properties of the clustered households are summarised between Fig. 7.2

and Fig. 7.4.

The number of households are predetermined at the area level throughout the camp,

however the household demographic statistics are reported at the region level and

the household size at the camp wide level. Therefore we have to assume that the

camp to region to area statistics can be applied from large geographical areas to

smaller ones where the information is unavailable without loss of generality. The

agent household clustering is adapted from JUNE-COX [42] as outlined in Appendix

S1 and the new methodology is outlined below:

• We first create empty houses with sizes fitting the distribution shown in Fig. 7.3.

• We partition the houses in two groups containing subgroups of demographic

properties:

1. Households with children:

– Single parent households,

– Multi-generational households,

– Two parent households.
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reported in the figure for completeness. JUNE-
COX data reported with scaled error bars of the
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hold clustering.

2. Households without children,

• For all households, allocate one young adult (18-49) to each household, if

available.

• For single parent households, allocate one young adult (18-49) with an age

gap drawn from the adult age gap distribution (see Fig. 7.4) of opposite sex

to current resident, if available.

• For all households, allocate all children into households randomly while en-

forcing a 1 year age gap between them and adult child age gap drawn from

distribution (see Fig. 7.4), if available.
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Figure 7.3: Figure of key shelter properties. Left: distri-
bution of household family sizes. Middle: dis-
tribution of shelter sizes. Right: Proportion of
one and two household shelters. Green repres-
ents the reconstruction in JUNE and Blue the
reported data (if available). JUNE-COX data
reported with scaled error bars of the standard
deviation over 20 independent household clus-
tering.

• Allocate older adults (50+) to multi-generational households with an adult age

gap or adult child age gap drawn from distributions (see Fig. 7.4) for opposite

sex old adult current resident (grandparents age gap) and young adult current

resident (parent – grandparent age gap), if available.

• Any remaining adults (18+) are allocated randomly to any remaining house-

holds with space under the following priority,

1. Multi-generational households,

2. Households without children,

3. Households with children.

This methodology ensures that JUNE-COX households reflect the household demo-
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Figure 7.4: Figure of microscopic household properties.
Left: distribution of household male female age
gap in houses containing only two adults in the
range [24-49]. Middle: distribution adult child
age gaps in households containing one adult
[24-49] and the eldest child [0-18]. Right: dis-
tribution of number of children by household.
Green represents the reconstruction in JUNE-
COX and black dashed lines the reported mean
data (if available). JUNE-COX data reported
with scaled error bars of the standard deviation
over 20 independent household clustering.

graphics with a key emphasis on ensuring multi-generational households are repres-

ented proportionately.

After the individuals are created and clustered into households, JUNE-COX constructs

different venues in the settlement given their latitude and longitude coordinates:

food distribution centres; non-food distribution centres (including LPG distribution

centres); e-voucher outlets; community centres; safe spaces for women and girls;

religious centres; learning centres; hand pumps and latrines. To simulate the move-

ment of individuals in the settlement we decompose each calendar day into discrete

time-steps in units of hours. JUNE uses calendar days to distinguish weekday and
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Figure 7.5: The mean probability to attend certain venues
in any weekday 2 hour timestep interval by age
by sex. Left: Men. Right: Women.

weekend activity profiles where certain venues will be closed.1 Many individuals

have fixed, static, activities, such as the 4 hours at the learning centres for enrolled

children and the adults specified as teachers. There is also a fixed 14 hours night-

time period, during which everyone returns to their shelter. However, the remaining

time is free and people are distributed dynamically. Each person not otherwise

occupied (e.g. working, or at a medical facility) is assigned a set of probabilities for

undertaking other activities in their free time in the model. These probabilities are

part of our social interaction model and depend on the age and sex of the person

(Fig. 7.5). They are based on previously collected data capturing daily attendance

rates and coarse estimates in proportions of adult/child and male/female attendance

(see previous work for details on these calculations and associated data sources [42]

and have been further augmented by a series of interviews with CBP officials as

detailed in Appendix C.3 and probabilities tuned such that populations reflect the

interview see Fig. 7.6).

Given N possible activities with associated probabilities per hour given by λ1, ..., λN ,

for an agent with characteristic properties p, the overall probability, P , of an in-
1This can be further customised in JUNE to specific daily closures or behavioural patterns,

however for this proof of concept we only specify weekday and weekend variations.
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Figure 7.6: Left: The unique person attendance rates per
day for the virtual venue. Right: The unique
person attendance by time of day for the vir-
tual venue. The green shading represents the
discrete timestep bins of the simulation. JUNE
can in general distinguish between days of the
week however in JUNE-COX we only model dif-
ferences between weekend and weekdays.

dividual being involved with any activity in a given time interval ∆t is modelled

through a Poisson process

P = 1 − exp
(

−
N∑

i=1
λi(p)∆t

)
. (7.2.3)

If the agent participates in at least one of these activities, the specific activity i is

selected according to

Pi = λi(p)∑N
i=1 λi(p)

, (7.2.4)
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and the person is moved to the relevant location. If no activity is selected, the

individual will stay in their shelter.

One of the outcomes of this exercise is condensed in Fig. 7.5, which shows the

probabilities that men and women attend the different venues in the model as a

function of their age.

The attendance probabilities were tuned to achieve the desired attendance rates

reported in the questionaire Appendix C.3. These rates were chosen such that they

represent an “average” day of any particular day of the week in the camp ignoring

any changes of behaviour from religious or national events or annual variations in

climate and weather.

It is important to stress that such census and demographic data is by default recorded

by UNHCR and other non-governmental organisations (NGOs) operating in refugee

and IDP settlements and it can be further supplemented or clarified by the survey

described above or by interviews with settlement staff. This implies that it is a

relatively straightforward exercise to apply our procedure outlined here to other

settlements.

7.2.3 A Mixed-Method Approach

We have now set the stage to combine the information about the aggregate contact

patterns with our highly-detailed model of interactions in a representative virtual

population and to interrogate the model and extract detailed, survey informed,

matrices. JUNE uses stochastic methods to simulate contacts between members of

the virtual population which can be used to construct synthetic CMs. The random

behaviour of the virtual population is encoded in repeatedly sampling the γij from

a Poisson distribution, γ̃ij ∼ P(κij) with the argument κij distributed according to

a normal distribution,

κij ∼ N (µ̄, σ) with µ = ∆T
T
γij and σ = ∆T

T
∆γij , (7.2.5)
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Venue, V Characteristic time, TL (hours)
Community centres 1.00 ± 0.02
Distribution centres 1.00 ± 0.05
e-voucher outlets 0.8 ± 0.1
Female friendly spaces 1.00 ± 0.02
Learning centres 1.5 ± 0.1
Non-food distribution centres 1.00 ± 0.05
Pump and latrines 0.7 ± 0.1
Religious centres 1.00 ± 0.01

Table 7.2: The characteristic time, TL in hours for each
venue reported in the survey. Value and error
are determined using proportionate weighting
between men and women using a median boot-
strap method. Derived from Appendix C.3

with the γij and their uncertainty (∆γij) taken from the survey and re-scaled by the

ratio of the typical time people attend a location, T (cf. Tab. 7.2) and the size of

the emulation time-step in the model, ∆T . It is important to sample the argument

κij so that we encapsulate errors from the bootstrap methodology in the contact

survey into our model. Finally we statistically round the individual instances γ̃ij to

integer values, since the model agents can only contact a discrete number of other

agents within the model with discrete characteristics. The resulting emulated set of

γ̃ij are normalised such that they represent an individual agent’s integer contacts

per timestep. Averaging generates the γ̂ij which can be directly compared with the

γij obtained from the survey.

In the simulation we aim to perform a virtual survey on the virtual population, as

close as possible to the conditions in the real-world light-weight surveys. We sample

individual behaviour over 28 virtual days to obtain individual γ̃ij’s every time an

agent attends a venue, the algorithm is outlined in Alg. 3.

The venues are filled according to the probabilities described above, Eq. (7.2.3),

Eq. (7.2.4) and we “measure” the total raw contacts t̂ij in the simulation. To further

insure the correct total expected attendance time at the virtual venues compared

with the real world, we proportionally close venues to approximate their possible
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Alg. 3: The virtual survey. Loop over all venues and people and simulate
Pcontacts between i and j subgroups from survey. The contacts can then
be clustered into arbitrary subgroups k, l. We allow for multiple contacts
between the same people at venue L.
Input Data: t̂Lij = [0]kl

t̂Lkl, number of contacts between subgroup k and l at venue L,
η̂L

i , population of subgroup i at venue L,
PL, list of agents at venue L,
TL, total time,
∆T , simulation time step,
γ̃L

kl, Stochastic Poisson sampled contacts between subgroup k and l at venue L,
for L ∈ Venues do

for Px ∈ People @ L, PL do
i = subgroup(Px)
TL = TL + ∆T
η̂L

i = η̂L
i + 1 for j ∈ Lsubgroups do

Generate γ̃L
ij if γ̃L

ij = 0 then
continue

else
Generate randomly a list of Pcontacts of γ̃L

ij people at L in
subgroup j not including Px

end
end
for Pc ∈ Pcontacts do

k = subgroup(Px)
l = subgroup(Pc)
t̂Lkl = t̂Lkl + 1

end
end

end
t̂Lkl = t̂Lkl/T

L
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fractional opening times as compared with the chosen timesteps in the simulation.

This procedure allows us to directly compare resulting matrices t̂ij, γ̂ij and ĉij with

their real-world counterparts tij, γij and cij above. Even more, we are not constrained

to the creation of virtual 2 × 2 contact matrices only, but can infer matrices for

any sub-classification i and j that our simulation allows – in the results we present

here, the i and j are age brackets of size 1 year. The final type(s) of contact matrix,

PNCMV and UNCMV , b̂ij and β̂ij, can also be calculated with a minor modification

to the algorithm instead of generating a list of people pj at the venue in contact

with each person pi, we allow “democratic/isotropic” contacts of all people:

β̂ij = η̂j − δij . (7.2.6)

For each entry, ij, this represents the total contacts the η̂i people with characteristics i

at the venue have with the population of the venue in each subgroup. The Kronecker-

δ corrects for “self-contacts”.

7.3 Results

In this section we present the results of the contact matrices derived from our

mixed-method approach. We begin by validating our method in the context of the

UK where we compare our results against contact patterns directly collected by a

traditional survey [135]. We recognise that the UK and Cox’s Bazar are very different

settings however, this validation step simply acts as a closure and sanity check in

the context of a well understood and studied setting in which we can test our mixed

method approach. Once our method has been validated, we present the matrices

for the Cox’s Bazar refugee settlement. Throughout, we use several key metrics to

determine the similarity between any two sets of matrices:

1. Normalised Canberra distance, DC [137]:

DC(C,C ′) = 1
Dim(C) − Z

∑
i

∑
j

|Cij − C ′
ij|

|Cij| + |C ′
ij|
, (7.3.1)
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where C and C ′ represent two contact matrices we wish to compare, Dim

denotes the number of elements, Dim(Cn×m) = n ·m and Z is the number of

zero elements of the difference (Cij − C ′
ij).;

2. Q index as measure of assortativity [138],

Q =
Tr(C/∑ij Cij) − 1

Dim(C) − 1 . (7.3.2)

3. Dissimilarity index, I2
s [139]

I2
s = 1

2
⟨(X − Y )2⟩Fc

σ4
p

, (7.3.3)

where σp is the standard deviation of the ages of the population and ⟨(X −

Y )2⟩Fc
represents the expectation age difference between contacts x and y of

the function Fc(x, y),

Fc(x, y) = f(x)CL
xyf(y)∑

x

∑
y f(x)CL

xyf(y)∆x∆y
, (7.3.4)

here ∆x and ∆y are the age bin sizes from the contact survey.

The normalised Canberra distance gives an estimation of the similarity between

two matrices – approaching 0 when they are more similar and 1 when dissimilar.

The remaining statistics measure the level of assortativity – the level of diagonal

dominance and therefore the rate at which similar ages interact compared with

dissimilar ages. The Q index ranges from 0 – homogeneous, proportionate mixing –

to 1 – fully assortative. I2
s measures the deviation from perfect assortativity with a

value of 0 when fully assortative and 1 for homogeneous interactions.

7.3.1 UK Validation

The first step of our virtual survey validation is to compare our results with that of

real surveys conducted in far greater granularity. JUNE-UK has had extensive tuning

for COVID-19 modelling in the UK [23,128,140]. As a proof-of-concept, we focus on
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the most complex contact matrix – that of the household – and compare the contact

matrices produced by the simulation with those from a traditional diary-based

survey [135]. The input contact matrix is constructed from a combination of this

data, the Office of National Statistics (ONS) census data of UK households [141,142]

and UK population demographics [143]. Since the UK census for household types

distinguishes children (kids, K, <18 years old), young adults such as students or other

dependent resident (Y, assumed 18-25 years old in JUNE-UK), adults (A, assumed

26-65 years old) and older adults (O, assumed >65 years old), we aggregated the

granular contact matrix derived from the survey into a significantly coarser 4 × 4

matrix mapping the census categories. We also corrected for different household

types to better incorporate the details of the venue-specific heterogeneities in their

demographic composition. For more details on this procedure, see specifically Section

4 and Appendix C of the original description of the JUNE-UK modelling setup [23].

The results in Fig. 7.7 show the 4 × 4 input matrix derived from the aggregation

process described above and a comparison of the output of the PNCMR Γ̂ from the

JUNE-UK model virtual contact survey with the results of the matrix C from the tra-

ditional survey. This provides a closure test ensuring that JUNE-UK returns realistic

contact matrices from coarse aggregate matrices. This closure test is performed to

explicitly demonstrate that the agent movement and contact tracing infrastructure

in JUNE produces self consistent results provided the virtual settings are a realistic

approximation of the real world and its social interactions. Using the setting of the

UK for which a plethora of contact matrices and census information is available

we can trust that the virtual survey in JUNE has a valid methodology. Clearly, our

mixed-method approach is able to reproduce the broad structure of the real-world

data – especially capturing the patterns of contacts between children and their par-

ents represented in the off-diagonal structures. The original survey did not contain

information on the contacts of younger children due to constraints on the data col-

lection methodology; our method is able to fill this gap. This is shown in Fig. 7.7

where the JUNE matrices provide predictions of the child–child contacts for young
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Figure 7.7: Left: The derived input interaction matrix,

UNCMR for “Households”, “Companies” and
“Schools”, where the labels “W” refers to “Work-
ers”, “S” students, “T”, teachers. Center:
The simulated age-binned PNCMR matrix with
entries Ĉij from JUNE-UK. Right: The BBC
Pandemic project contact matrices, C, with
entries cij.

children in the settings of households and schools.

To further validate our approach, we compare the Q, I2
s and DC metrics of the two

matrices. Tab. 7.3 shows that the first two metrics are in close agreement, with

the overall Canberra distance being close to 0, thereby confirming the similarity

of the matrices. Indeed, the difference between the measures of assortativity are

comparable or better than those found in similar studies but which do not make
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Household Company School

Q I2
s DC Q I2

s DC Q I2
s DC

BBC Pandemic 0.14 0.36 0.026 0.31 0.13 0.14

JUNE-UK PNCMR 0.12 0.30 0.32 0.0026 0.42 0.73 0.21 0.050 0.63

Table 7.3: Contact matrix statistics calculated for JUNE-
UK and BBC Pandemic project reported for
households, company and school mixing. These
statistics are calculated for the UK demography
reported by ONS in 2011 [143].

use of the guiding input aggregate matrix as we do here [127]. Given these strong

findings, together with the visual and structural similarities of the matrices, we

consider our mixed-method approach to be reasonably validated for application to

settings in which intensive survey-based approaches to deriving contact patterns are

not feasible. For real-world applications, we note that our methodology is clearly not

exactly reproducing the original surveys; however, users will have to decide whether

these errors are acceptable in comparison to having little or no knowledge about

contact patterns, or making necessary assumptions about these patterns. We will

discuss further in the conclusions of this work but this methodology is clearly subject

to structure and rules applied in the simulation. It is also worth noting that the

virtual agent behaviour of JUNE-UK is much better informed than those in JUNE-

COX. This will become clear in the disparity between NCM, NCMR and NCMV

type contact matrices. PNCMV matrices presented in the Fig. 7.8 and PNCMR

matrices in Fig. 7.7 have the same general shape and scaling of features. In the case

of JUNE-COX derived matrices NCM, NCMR and NCMV types are less similar.

7.3.2 Contact Matrices in Cox’s Bazar Refugee Settlement

The derived contact matrices are presented at the end of this section (Section 7.3.2).
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Figure 7.8: The normalised venue contact matrices
(PNCMV) by age as simulated in JUNE-UK.

The lightweight survey in the camp was conducted across the following venues: “com-

munity centres”, “distribution centres”, “e-voucher outlets” and “formal education

centres”. For the remaining two venues – “play groups” and “shelters” – we assume

that everyone generally mixes with everyone else in that location given the assumed

small groups of children who play together, as well as the dense shelter environments.

Since certain shelters are shared between multiple families, we differentiate intra-

and inter-family mixing with the latter being represented by the diagonal elements

of the aggregate matrix (i.e. setting these to the number of contacts within each of

the two families in the shelter and with the off diagonal elements set to the number

of contacts between the families). As discussed in previous work [42], we set the

number of contacts within the families or play groups to the average size of these

respective groups assuming homogeneous mixing in these settings. In the case of the

play groups we dis-aggregate the population into three age groups 3-6, 7-11 and 12-17

which mix homogeneously to emulate children typically interacting with children of

similar age. We report the results for the UNCMR γij of the prior information and of

the survey in Fig. 7.9 and Fig. 7.10. These CMs provide a closure test by comparing

them to the UNCM µ̂ij results from performing a virtual survey in JUNE-COX with
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the same coarse population categories. In the two figures we use the shorthand “T”

and “S” for teachers and students in the learning centres and “Hx” for household x

in a shared shelter.

Once we have determined the UNCM and confirmed that their stochastic uncertain-

ties are within the uncertainties of the input interaction matrices, we can perform

any custom binning for arbitrary group characteristics. Fig. 7.12 shows the final fully

dis-aggregated (by age and venue) set of matrices for the Cox’s Bazar refugee set-

tlement based on the input contact matrices from the lightweight survey, combined

with our highly-detailed agent-based model of the settlement. The combination

of these two techniques leads to interesting consequences in the structure of the

derived contact matrices. Contact rates from the light-weight survey provide the

baseline coarse social interaction patterns between broad subgroups at a given venue.

Whereas, the agent-based model embeds the dynamics from data on the social be-

havior of individuals, connecting many independent venues within the model. In

particular, we see bands due mainly to 11-18 year olds for two reasons. Firstly,

many behavioural patterns are defined differently for adults and children leading

to attendance differences at 18. Secondly, at 11 years of age men are permitted to

attend the religious centres. Due to the high rate of attendance observed at the

religious centres, there is a drop in attendance at other non-religious centre venues

of this age group relative to other age groups.

In Fig. 7.12, we can clearly see the effects of the different age groups as a consequence

of the underlying social dynamics. For example, we observe large differences in the

number of contacts between all age groups with adults in the community centres

relative to the distribution centres, with substructures based on the age profile of

children attending these locations shown through the higher number of contacts in

younger age brackets. In addition, the learning centre matrices show a clear mix

of contacts between children in their mixed classes and their teachers – this matrix

also encodes information on the enrollment rate of children in the education system,

with lower enrollment rates as the age of children increase. Finally, the detailed
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information available on household and shelter composition appears in the shelter

contact matrix which contains a number interesting features. We reconstruct a strong

leading diagonal which represents persons of similar ages living together; siblings,

parents and grandparents of similar ages the width of the band reflects spousal

age gaps and minimal age gaps between consecutive siblings. Using more detailed

information about the average age of parents at the birth of their first child we also

develop off-diagonal structure in the upper left and lower right quadrants. There is an

almost linear structure corresponding to children and parents interacting and aging

together. This structure then tapers off indicating interactions in multi-generational

households before many children would leave home at around 18.

A simpler approach is to just assume that everyone contacts everyone else in these

dense settings in the absence of other information – we also present the results for

the corresponding UNCMV in Fig. 7.13. However, clearly there is a significant loss

of information in doing this, in comparison to the mixed-method approach, as can

be seen in the absence of structural detail in many of the UNCMV matrices.

Population normalised matrices can be calculated from the user normalised matrices

with a simple re-scaling as described above. We present these for completeness

and the varied utility of each normalisation in different model types in, Fig. 7.14,

Fig. 7.15, Fig. 7.16.

Here we present the contact matrices derived from JUNE-COX.1 Each of the contact

matrix elements derived from JUNE come with an associated standard error, these

errors are typically very small due to the long run time (28 simulated days) and the

small variance in overall attendance rates of difference demographic groups at each

of the venues.

1We interpret contact matrix ∆ij such that person i contacts person j and graphically as
subgroup on x-axis contacts subgroup on y-axis.
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Presentation of Contact Matrices

The first set of matrices reported here are those which provide the closure test where

we directly compare the UNCMR contact matrices from the real world survey with

the virtual survey with the survey subgroups:

1. Non-survey derived UNCMR matrices (cf. Fig. 7.9),

2. Survey derived UNCMR matrices (cf. Fig. 7.10).

The second set of matrices reported here are fully age disaggregated are constructed

from the virtual survey. We report:

1. UNCM (cf. Fig. 7.11),

2. UNCMR (cf. Fig. 7.12),

3. UNCMV (cf. Fig. 7.13),

4. PNCM (cf. Fig. 7.14),

5. PNCMR (cf. Fig. 7.15),

6. PNCMV (cf. Fig. 7.16).
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Figure 7.9: Left: Two pairs of UNCMR for the virtual ven-
ues determined prior to the light-weight survey.
Right: The JUNE-COX virtual survey in the
same coarse population bins. Captions report-
ing the Canberra distance between them.
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Figure 7.10: Left: The UNCMR from the contact survey
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Figure 7.11: The normalised contact matrices (UNCM) by
age as simulated in JUNE-COX. Note that the
data inputs in (g) and (j) stem from a previous
survey.
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Figure 7.12: The reciprocal normalised contact matrices
(UNCMR) by age as simulated in JUNE-COX.
Note that the data inputs in (g) and (j) stem
from a previous survey.
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Figure 7.13: The normalised venue contact matrices
(UNCMV) by age as simulated in JUNE-COX.
Note that the data inputs in (g) and (j) stem
from a previous survey.
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Figure 7.14: The normalised venue contact matrices
(PNCM) by age as simulated in JUNE-COX.
Note that the data inputs in (g) and (j) stem
from a previous survey.
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Figure 7.15: The population normalised contact matrices
(PNCMR) by age as simulated in JUNE-COX.
Note that the data inputs in (g) and (j) stem
from a previous survey.
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Figure 7.16: The normalised venue contact matrices
(PNCMV) by age as simulated in JUNE-COX.
Note that the data inputs in (g) and (j) stem
from a previous survey.
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7.4 Discussion

The matrices presented in this work are among the first contact matrices derived for

a refugee settlement. While not collected using traditional survey methods, we use

a mixed-method approach for their calculation, which presents a new way to collect

contact data. This is particularly useful in settings, such as in refugee settlements,

in which data collection can present many challenges and therefore needs to be

lightweight and integrated in to existing data collection regimes and programming.

We are able to perform closure tests on the contact matrices we derive and show

that they clearly demonstrate great potential for a lightweight survey and an agent-

based model to provide deeper insights into social environments when combined

together. The survey and JUNE-COX derived contact matrices are initially validated

by a comparison of their Canberra distances and their elements over the survey

subgroups ij. These values are found to be very close to zero with the exception

of the e-voucher outlets in which child – child contacts are higher in JUNE-COX

than reality. This discrepancy can be explained by considering that the survey

has a high uncertainty in the expected child – child contacts, an error in which

JUNE-COX incorporates into the contact tracking algorithm. That is the large error

in the number of contacts causes the children to contact a large range of people

despite the low probability of attendance of children reported at the e-voucher venues.

The children agents that do attend an e-voucher venue will sample the number of

contacts they should make from a broader distribution due to this larger error from

the survey. Further validation is performed with JUNE-UK derived matrices on age-

disaggreagated contact matrices in which we are able to use other statistics such

as I2
S and Q. These matrices were found to be in good agreement with other more

intensive contact surveys. This validation ensures that the combination of coarse

input contact matrices and the attendance rates responsible for agent dynamics yield

representative contact patterns over all ages.

In the case of refugee settlements, the derived contact matrices can be used to
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understand the social contact patterns using data already collected regularly by

international organisations such as UNHCR, while being supplemented by data

which can easily be collected by enumerators in a resource-efficient way. The highly-

detailed matrices derived for the Cox’s Bazar settlement demonstrate clear inter-age

mixing patters which are crucial inputs to other epidemic models to represent realistic

social mixing patterns. In particular, clear features are present in the matrices due

to differing attendance rates and household compositions.

From the technical perspective, there are several further considerations and lim-

itations to this methodology that become apparent when analysing the full age-

disaggregated contact matrices (see Section 7.3.2). These pertain to the way in

which the data is collected and the model is constructed and can be used as ways to

diagnose the performance of the method:

1. Subgroup classification:

Subgroup classification refers to the broad definition of subgroups defined in

the model. Throughout JUNE-COX and JUNE-UK we define “Adults”, “Chil-

dren”, “Teachers”, “Workers” etc. which all have unique parameters and rules

governing their behaviour. Subgroups defined by age can lead to strong band-

ing artifacts in the contact matrices. These effects can be mitigated by blurring

the age cut-off with some finite probability – e.g. that a child of 17 may behave

like an adult. This mitigation should only be implemented in situations in

which we are certain that there should not be a discontinuity in behaviours

in the real world. For example, only over 11 year old men are permitted to

attend the religious centres and hence we expect a sharp cut off in the contact

matrices whereas in many other venues we expect a gradual shift in behaviour

as children move into adolescence and then adulthood. This can be a positive

feature of the model – i.e. that the model represents the behavioural and move-

ments patterns correctly and forces agents to make a choice between activities

they perform as they would in real life – however, this relies on reasonable

behavioural data, insights and assumptions. This is demonstrated most clearly
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in the shelters contact matrices in which the household clustering places adults

and children differently based on fixed rules derived from survey and census

data.

2. Virtual venue demography:

The dynamics of virtual spaces in the simulation are dictated by the probab-

ilistic attendance rates (see Fig. 7.5) and age cut offs. The attendance rates

are a function of age, sex, time and venue which leads to different demograph-

ies across the virtual spaces and therefore different social mixing behaviours.

Again, due to the nature of the simulation in which we have strict probabilistic

rules which determine the attendance of different subgroups (children, adults,

age or sex etc.), we can get strong divisions between groupings. This is shown

by the discontinuities in the heat-map representation of the contact matrices.

In particular, only men over the age of 11 are permitted to attend the religious

centres leading to discontinuities in the religious centre contact matrices. In

JUNE-UK, there is no simulation of parent-teacher interactions at school that

might occur during pick up or drop off times and the virtual school setting

is strictly modelling student-teacher interactions where any teacher-teacher

interactions would be restricted to the classroom setting. Further, no children

attend any work place settings and agents can only be employed or attend a

work place venue between the ages of 18-65. The contact matrices produced

from JUNE-UK therefore lack certain features shown by the BBC Pandemic pro-

ject. However, this is a problem all such approaches that rely on an imperfect

virtual representation of reality can experience.

3. Virtual world rules and behaviour patterns:

The combination of the above points leads to complex inter-connected beha-

viours across the simulation. Considering the behaviour of coarser subgroups

across all venues we see more general behaviours emerge; for instance, children

are less likely to attend any virtual venue than adults and men are more likely
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to attend any venue than women due to the attendance at religious centres

which increases the overall rate of men not staying in the shelters compared

to women, leading to an asymmetry in the shelter contact matrix. An 11-18

year old is more likely to see a 6-11 year old than the converse. A 6-11 year

old is more likely to be home than a 11-18 year old therefore on average in

any timestep a 6-11 year old will not contact an 11-18 year old in shelters, but

when the 11-18 year old is home they will likely contact the 6-11 year old. The

normalisation of contacts by users (or population) and contact duration (as

done throughout) makes this effect visible. There are other instances, such as

the community centres, in which we see a banding effect which is an induced

artifact from the movement criterion of the agents in the model. The high

attendance rate expected of 11+ men leads to a reduction in attendance of

this group across all other venues and many of the contact matrices show a

banding effect between 11 – 18 due to this behaviour.

Given the level of detail contained within the model-derived contact matrices, they

have the ability to reveal potential short-comings in both the survey setup as well

as the modelling of the virtual world, as they reflect how sophisticated and well

understood each venue type is. This means that the amount of resources needed

to be expended on collecting more data on certain locations can be estimated in

order to improve certain matrices. These can be traded-off against the resources

available and the relative expected gain from their expenditure. In this work, we

validated our contact tracker in two very different models, JUNE-UK and JUNE-COX.

In the former, we demonstrated that the NCMR agree well with data collected using

traditional methods (cf. Fig. 7.7, Tab. 7.3). In the latter, NCMV type contact

patterns are not available as our extracted contact matrices used coarse survey

information on venue attendance to inform the simulation of contact patterns there,

with the notable exception of the shelters, which are relatively precisely captured by

the census data. Our mixed-method approach allows us to partially compensate for

the gaps in detailed understanding of demographic structures at the lesser-known
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venues.

7.5 Conclusion

In this work we demonstrate the complementary power of a lightweight contact

survey, approximate details about venues and their attendance rates by different

demographic groups and an agent-based model to generate detailed social contact

matrices. In the case of the Cox’s Bazar refugee settlement, we use an existing model

of the settlement developed using the JUNE framework to perform a virtual contact

survey, which is informed by the highly aggregate real world survey, to produce

more granular contact matrices which can be further interrogated. Our constructed

contact matrices will provide an important input to future disease spread modelling

or social dynamic studies in the settlement and provide a baseline which can be

translated to other settlements as well. Further, our method can easily be adapted to

other settings for which detailed contact matrices are not available, thereby enabling

the use of disease models in contexts where previously large assumptions would

have had to have been made about contact patterns. Contact matrices form the

backbone of many disease models and so calculating them at a global scale, with the

specific inclusion of those groups who are often most vulnerable to disease spread,

is essential [118].





Chapter 8

Conclusions

In this thesis, we apply a range of data intensive and machine learning methods

to a range of research domains. We see that these tools are exceedingly powerful

in dissecting extremely complex, large multi-dimensional datasets and distilling the

information they represent into something useful and comprehensible.

In particular, we start by using SHERPA as a Standard Model Monte Carlo event

generator in which we can determine present and future constraints on the upper

bound of the Yukawa charm coupling. We configure SHERPA to produce a selection of

signal and background processes in three key channels which can be distinguished by

the isolated lepton count in the final state, namely: Vector Boson Fusion, W Higgs-

strahlung and Z Higgs-strahlung Higgs production channels. The signal processes

are defined by those in which the Higgs boson decays into two charm quarks directly.

We examine the jet structure of the boosted fatjet produced by Higgs’ decay into

two charm quarks and subsequent decays. The structure of this fatjet and its subjets

are scrutinised using a range of observables which we use to build a cut-flow first

heuristically and then with cuts informed by neural networks. Two multivariate

neural network architectures are used which take a selection of data input types.

One network aims to distinguish processes with Higgs fatjets from those without

and the second aims to distinguish Higgs to charm decays from Higgs to bottom

decays. The first network takes inputs of jet observables, jet images and particle flow
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information and the second takes displaced vertex observables and vertex particle flow

information. This cut-flow eliminates several orders of magnitude of the background

processes compared with the signal processes and the remaining surviving events

are used to produce a selection of histograms of observables. These histograms

are used to perform a statistical analysis under the κ-framework using the CLs

method. The κ-framework provides us with a direct way to relate the signal strength

modifier to a value which directly modifies the Yukawa coupling. The neural

network based cuts eliminate enough background so we can extract the Yukawa

charm coupling. Thus, we can determine confidence limits on the Yukawa coupling.

The derived coupling confidence limits are competitive to the current limits placed

by experiments. Further, it is shown that novel choices in the profiling histogram

could provide better constraints on couplings profiled under the κ-framework than

the typical choice of invariant jet mass. We produce a set of competitive limits and

projections on the Yukawa coupling compared with those produced by ATLAS and

CMS.

Next we turn to the unsupervised methods of principal component analysis and

Bayesian change point detection to understand underlying distributions of various

instrumentation measurements at Hartlepool power station. Changes in the beha-

viour of the measurements could be indicative of faults or unexpected load drops.

We examined two types of regions: monitor those known to precede faults and load

drops versus, healthy those understood to experience nominal reactor behaviour. We

employ principal component analysis and Bayesian online change point detection

as tools in anomaly detection, due to their efficiency and ready interpretability as

opposed to neural networks which are far less interpretative. The ability to under-

stand the analysis that the modelling tool performs is paramount, particularly at a

nuclear power station. Although the labeling procedure used to classify between the

healthy and monitor regions is naive, the tools explored here demonstrated a clear

classifying ability. These methods were packaged into a demonstration dashboard

for further investigation by the engineers and scientists at Hartlepool power station.
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Analysis tools which provide further insight into unexpected or anomalous behaviour

can only improve the efficiency and safe operation of the power plant. This allows for

more efficient replacement of faulty instrumentation and more intuitive operational

tools for engineer interpretation.

Lastly, we apply rigorous methods and tools from physics and epidemiology to the

social sciences and in particular we focus on using large agent based models to extract

social mixing contact matrices. These contact matrices are particularly important in

epidemiological models to understand how a disease will spread through a population

in a healthcare emergency. In particular, we focus on Cox’s Bazar, a refugee camp

containing a population of ∼600, 000 vulnerable people. We develop algorithms in

JUNE – an agent based epidemiological simulation tool – to track agents over time

and their social interactions within the model at various social settings. At each

timestep in the simulation, we conduct a virtual contact survey at all venues which

can be used to determine social mixing matrices of various types. The algorithms and

synthetic contact matrices are validated in JUNE-UK, a version of the model in which

social settings and parameters of the model have been carefully tuned using census

data and COVID-19 modelling data. The produced synthetic contact matrices can

be directly compared with real-world survey derived contact matrices. With this

satisfactory validation procedure we produce a selection of contact matrices for Cox’s

Bazar, which will be utilised in future work to better aid crisis response and refugee

camp development.

While this thesis is broad in scope, we have only scratched the surface of the complex-

ity, applicability and functionality of machine learning and data intensive methods

that are available. As these tools continue to develop and the efficiency of processing

larger datasets continues to improve, we will find that they will only become more

powerful allies in data wrangling, comprehension and processing for years to come.

Machine learning and data intensive tools encourage promising advancements across

all fields of human endeavour, from understanding the smallest subatomic particles

to ensuring the safe operation of carbon neutral power for the future or indeed,
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tackling complex humanitarian challenges of our time.



Appendix A

The Standard Model

The Standard Model of particle physics is the one of the most precise, accurate and

most complete theories in science. The theory explains the fundamental interactions

of known matter with three of the four forces of nature, namely; the strong, weak

and electromagnetic forces. The SM has undergone repeated tests over many dec-

ades providing theoretical predictions for particles and their masses, couplings and

interactions. One of the many great successes of the SM is the most recent discovery

of the Higgs boson in 2012 at the Large Hadron Collider with the ATLAS and CMS

experiments [52, 53], this new scalar particle is consistent with the long theorised

boson by Peter Higgs’ (and others) in 1964 [144–148]. Despite the apparent great

successes of the SM there still exist phenomena that are currently unexplained:

• Neutrino oscillations: What generates the Neutrino masses?

• Cosmological measurements: What is Dark Matter and Dark Energy?

• The CP problem: Why is there matter-antimatter asymmetry?

• Flavour problem: Why do the mass scales of the fermions span many orders

of magnitude?

• Gravity: How does the fourth force of nature fit in?
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Many researchers spend large portions of time developing beyond the standard model

(BSM) theories to attempt to answer these pressing questions and issues and as of

today no particles or forces from beyond the SM have been found at the LHC. As no

new particles have shown up in the last decade we instead find ourselves in an era of

precision measurements. That is, we aim measure couplings and the free parameters

of the SM more and more precisely so that we might better understand the parts of

the SM which have tensions against reality – where BSM physics might be lurking.

One such choice of free parameters of the SM is shown in Tab. A.1.

Name symbol # Comments

Quark Yukawa couplings: yu, yd, ys, yc, yb, yt 6
}

or massesLepton Yukawa couplings: ye, yµ, yτ 3
CKM mixing angles: θ12, θ13, θ23 3
CKM CP violating phase: δ 1
Gauge couplings: g, gY , gs 3 } or mZ , mW , αs

QCD vacuum angle: θQCD 1
Higgs vacuum expectation value: ν 1
Higgs mass: mh 1

19
Table A.1: One such parametrisation of the 19 free para-

meters of the SM.

The SM is formulated into a quantum field theory (QFT) in which the particle

content is summarised in Tab. A.2, that is, each of these particles are treated as

excitations in quantum fields in which their interactions are determined by the

following gauge structure,

SU(3)c × SU(2)L × U(1)Y .

The individual gauge groups SU(3)c, SU(2)L and U(1)Y each give rise to vector

gauge bosons that mediate a force of nature. SU(3)c is responsible for the strong

force and its interactions – Quantum Chromodynamics (QCD) – where c refers to

colour charge with values red, green, blue. The group structure SU(N) gives rise to

N2 − 1 generators and therefore 8 strong force carrying gluons (Ga, a = [1, 8]) which
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fermions bosons

quarks u c t g h
d s b γ

leptons νe νµ ντ Z
e µ τ W

Table A.2: Tabular representation particle content of the
SM of particle physics. The quarks and leptons
are arranged by isospin and generation. The
vector gauge bosons and the Higgs scalar boson
are located in the right most columns.

interact with coloured objects, the quarks and other gluons. SU(2)L mediates the

weak isospin, which is exclusive to only the left handed fermions hence the subscript

L, here we get 3 vector bosons (W i, i = [1, 3]). Lastly we have U(1)Y which only

couples to hypercharge, Y with one force carrying boson (B). These gauge bosons

are not the typical force carrying bosons that are generally discussed or reported in

Tab. A.2. To give rise to these familiar bosons we turn to Higgs mechanism and the

spontaneous symmetry breaking (SSB) of the SM gauge symmetry;

SU(3)c × SU(2)L × U(1)Y → SU(3)c × U(1)EM .

In the case of SSB in the SM this process is known as electroweak symmetry breaking

(EWSB) where the Higgs mechanism (see Section A.3) provides an explanation of

the unification of the electromagnetic and weak forces into the electroweak sector

at very high energy. At low energy we see the weak and electromagnetic forces as

distinct, EWSB gives rise to U(1)EM which is the group responsible for quantum

electrodynamics (QED) and its force carrier the photon (A). EWSB produces the

massive W± and Z bosons mediating the weak force via the Higgs mechanism.

The SM Lagrangian which encapsulates all the interactions, coupling constants and

evolution of the SM fundamental particles can be decomposed into distinct sectors;

LSM = Lgauge + Lfermion + LHiggs + LYukawa + LCP violating . (A.0.1)
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A.1 The Gauge Sector

The gauge sector is responsible for the dynamics of the gauge fields and it describes

their self interactions,

Lgauge = − 1
4F

µνFµν

= − 1
4G

a,µνGa
µν − 1

4W
i,µνW i

µν − 1
4B

µνBµν ,

(A.1.1)

where Ga,µν , W i,µν , Bµν are the field strength tensors corresponding to each gauge

group. In general for spin one fields we can define the field tensors as,

Gx
µν = ∂µG

x
ν − ∂νG

x
µ − gfxyzGy

µG
z
ν . (A.1.2)

Gx
ν is a 4-vector bosonic field for each x corresponding to one of the N2−1 generators,

fxyz describes the structure constants which obey following the Lie algebra,

[ta, tb] = ifabctc , (A.1.3)

where t are the generators of the group and we define g a coupling constant. In

SU(3) we get a set of 9 non-zero structure constants fabc:

f 123 = 1 ,

f 147 = f 246 = f 257 = f 345 = −f 156 = −f 367 = 1
2 ,

f 458 = f 678 =
√

3
2 .

(A.1.4)

SU(2) the structure constants can be shown to be the fully anti-symmetric tensor,

ϵabc. Lastly, in an Abelian group such as U(1) we know that the generators commute

and therefore the structure constants vanish, so we have the following field tenors:

Ga
µν = ∂µG

a
ν − ∂νG

a
µ − gsf

abcGb
µG

c
ν ,

W a
µν = ∂µW

i
ν − ∂νW

i
µ − gϵabcW b

µW
c
ν ,

Ba
µν = ∂µBν − ∂νBµ .

(A.1.5)

From Eq. (A.1.1) and Eq. (A.1.5) we can infer insight into the gauge bosons inter-

actions. Firstly, we see that the fields responsible for gluons and weak iso-spin, have
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quadratic terms in their fields (e.g. Gb
µG

c
ν and W b

µW
c
ν ) which provides a mechanism

for self interaction whereas the final field for hypercharge does not. By performing

infinitesimal gauge transformations, namely;

Gx
µ → Gx

µ − 1
g
∂µα

x + fxyzαyGz
µ , (A.1.6)

we can consider if additional terms in the Lagrangian retain local symmetries in

the SM. In particular if we consider adding mass terms to our Lagrangian such as

m2
GGµG

µ we show that the Lagrangian is no longer gauge invariant, therefore the

massive bosons we observe must be introduced via the Higgs mechanism in EWSB.

A.2 The Fermion Sector

The fermionic sector describes the interaction of the quarks and leptons and their

interaction with the gauge fields,

Lfermion = iΨ̄ /DΨ . (A.2.1)

The fermions are represented as Dirac spinors, Ψ and the dynamics of their interac-

tions are encapsulated in the covariant derivative Dµ,1

Dµ = ∂µ − igY

Y

2 Bµ − ig
σi

2 W
i
µ − igs

λa

2 G
A
µ . (A.2.2)

Here gY , g and gs are the coupling strengths to each of the gauge fields from U(1)Y,

SU(2)L and SU(3)c respectively. We also introduce the Pauli matrices σ as the

generators for SU(2)L and the Gell-Mann matrices λ as the generators from SU(3)c

and note that the generator for U(1)Y is the identity thus the fields transform with

a scalar multiplier we call hypercharge, Y . Each of the fermion fields has a unique

representation under each gauge group, singlet 1, doublet 2 or triplet 3 (see Tab. A.1).

Fermions are divided into quarks and leptons and further by their generation and

lastly by left or right handedness. For example an individual u quark (left or right

1We note here the usual “slash” notation, /D = γµDµ where γ are the gamma Dirac matrices.
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Field SU(3)c SU(2)L U(1)Y

qL 3 2 1/3
uR 3 1 4/3
dR 3 1 −2/3
lL 1 2 −1
ℓR 1 1 −2
νR – – –

Table A.3: Fermion field multuplets and their representa-
tions or hypercharge for each gauge group.

handed), uL/R transforms as a triplet under SU(3)c ,

u =


ur

ug

ub

 .

The constants r, g, b represent the QCD colour charges. The left handed quarks of

a single generation transform as a SU(2)L doublet with an up and down type quark

as,

qL =

uL

dL

 .

Similarly, the left handed leptons of a single generation transform as,

lL =

νL

ℓL

 .

Where we have the charged lepton, ℓL and its generational counterpart neutrino, νL.

The right handed particles in the SM, uR, dR and eR all transform trivially under

SU(2)L and exist as singlets. As alluded to by the omission of entries in Tab. A.3

we in fact do not have a right handed neutrino νR in the SM. We can now explicitly

write the Lagrangian for the fermion sector for the first generation,

Lfermion = iq̄L /DqL + iūR /DuR + id̄R /DdR+

il̄L /DlL + iēR /DeR .

(A.2.3)

The asymmetry between left and right handed particles in the SM has consequences
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for mass generation of fermion fields. Writing down the mass term mΨ̄Ψ, we can

decompose the field into left and right handed components using the left and right

handed projection operators:

ΨL = PLΨ = 1 − γ5

2 Ψ , ΨR = PRΨ = 1 + γ5

2 Ψ , (A.2.4)

where γ5 = iγ0γ1γ2γ3. Evaluating the mass term with the left and right decomposi-

tion,

mΨ̄Ψ = m(Ψ̄LΨR + Ψ̄RΨL) . (A.2.5)

This demonstrates a mixing of left and right handed fields is required to generate

mass via an explicit mass term, this term is in fact not gauge invariant because the

left and right fields transform differently. Therefore the mass of our fermions can

not be generated in this way and again, we must look to the Higgs Mechanism.

A.3 The Higgs Sector and Higgs Mechanism

The Higgs boson was introduced to the SM to provide a means for many of the SM

particles to gain mass in a gauge invariant way. The terms constituting the Higgs

sector Lagrangian are the following,

LHiggs = (DµH)†(DµH) − V (H)

= (DµH)†(DµH) − µ2H†H − λ(H†H)2 ,

(A.3.1)

where we have the covariant derivative,

Dµ = ∂µ − igY

Y

2 Bµ − ig
σi

2 W
i
µ . (A.3.2)

The Higgs field has a scalar potential that depends on two parameters, µ and λ such

that if µ2 < 0 then there exists a minima in the potential at a non-zero value of the

field.
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Field SU(3)c SU(2)L U(1)Y

H 1 2 1
Table A.4: Higgs field multiplet and its representations or

hypercharge for each gauge group.

To understand the Higgs properties, we first define it as an SU(2)L doublet made up

of two scalar complex fields, ϕ+ and ϕ0 in terms of four real scalar fields, ϕ1, ϕ2, ϕ3

and ϕ4;

H =

ϕ
+

ϕ0

 = 1√
2

ϕ
1 + iϕ2

ϕ3 + iϕ4

 . (A.3.3)

Using Eq. (A.3.1) we can show that the potential is minimised for µ2 < 0 when,

|H|2 = H†H = −µ2

2λ = ν2

2 . (A.3.4)

Where we have defined a new quantity ν, the vacuum expectation value (VEV) of the

Higgs boson potential and it is experimentally determined to be ν ≈ 246 GeV [49].

The Higgs field can be re-written under the unitary gauge where ϕ3 is chosen to

align in the radial direction of the potential and thus h are perturbations uphill from

the VEV;

H = 1√
2

 0

ν + h

 . (A.3.5)

There is actually flexibility in the gauge choice, the four real fields imply there are in

fact four degrees of freedom, three of these correspond to modes which move along

the equipotential of the Higgs potential which give rise to three massless Goldstone

boson modes. In gauging away these modes the missing degrees of freedom act as

the longitudinal modes of the SM gauge bosons giving them mass. The final mode

(moving in the radial direction) feels a quadratic potential where perturbations, h are

understood to be excitations corresponding to a massive particle, the Higgs boson.

We can show by substitution into Eq. (A.3.1) that coefficients in the quadratic terms
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of the Higgs boson, h2 equate to the Higgs boson mass,

mh =
√

2λν2 . (A.3.6)

After EWSB we can take this gauge choice and expand the covariant derivative term

of the Higgs Lagrangian around the Higgs VEV,

|DµH|2 =
∣∣∣∣∣ 1√

2

∂µ − i

2(gYBµ + gW 3
µ) −ig

2 (W 1
µ − iW 2

µ)

−ig

2 (W 1
µ + iW 2

µ) ∂µ + i

2(−gYBµ + gW 3
µ)

 ·

 0

(h+ ν)


∣∣∣∣∣
2

= 1
2

∣∣∣∣∣
 −ig

2 (W 1
µ − iW 2

µ)(h+ ν)

∂µ(h) + i

2(−gYBµ + gW 3
µ)(h+ ν)


∣∣∣∣∣
2

= (∂µh)2

2 + g2

8 (W 1
µ − iW 2

µ)(W 1,µ + iW 2,µ)(h+ ν)2−

1
8(gW 3

µ − gYBµ)(gW 3,µ − gYB
µ)(h+ ν)2 .

(A.3.7)

Eq. (A.3.7) has been written in a deliberately leading way, it is clear to see that there

are linear combinations of the massless gauge fields which now exist as quadratic

mass terms in the Lagrangian namely,

W±
µ = 1√

2
(W 1

µ ∓ iW 2
µ) , Zµ = gW 3,µ − gYB

µ√
g2 + g2

Y

= cWW
3,µ − sWB

µ .

(A.3.8)
Where W+

µ , W−
µ and Zµ

1 are our familiar massive force carrying vector bosons.

Therefore we can substitute these new fields into Eq. (A.3.7),

|DµH|2 = (∂µh)2

2 + g2

4 W
−
µ W

+,µ(h+ ν)2 − (g2 + g2
Y )

8 ZµZ
µ(h+ ν)2 . (A.3.9)

The mass terms can now be directly read from Eq. (A.3.9),

mW = νg

2 , mZ =
ν
√
g2 + g2

Y

2 . (A.3.10)

It should also be noted there is another orthogonal boson which has no coupling to

the Higgs, the photon,

Aµ = cWW
3,µ + sWB

µ . (A.3.11)

1Where cW = cos θW , sW = sin θW and θW is the Weinburg weak mixing angle.
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As the photon has no coupling to the Higgs we see that it is massless, mA = 0. In

summary, the Higgs boson has taken a non-zero VEV which leads to EWSB, the

gauge bosons linked to the three broken generators gain mass and the remaining

generator associated with U(1)EM is unbroken so that the gauge boson retains 0

mass, we now have the more familiar vector gauge bosons mentioned in Tab. A.2

and a complete picture of the SM particles. All that now remains is to explain mass

generation for the fermions.

A.4 The Yukawa Sector

As seen in the previous sections, the terms in the Lagrangian so far reviewed that

involve fermions do not have a gauge invariant way of generating mass and so again

we must turn to the Higgs. We introduce an interaction term between the Higgs

boson and the fermions,

LYukawa = −(yu)ij q̄
i
LH̃u

j
R − (yd)ij q̄

i
LHd

j
R − (ye)ij l̄

i
LHe

j
R + h.c. , (A.4.1)

where the indices i and j run over the generations of particles. In Eq. (A.4.1) we

introduce the conjugate Higgs doublet, H̃ = iσ2H∗ to extract the up type quark

fields and we use H as defined in Section A.3 to extract the down type quark fields

and leptons. Looking explicitly at the first generation up quark and by substituting

in the Higgs doublet and its conjugate,

LYukawa = −(yu)11q̄
2
LH̃uR − (yu)11ūRH̃

†q2
L

= −(yu)11(h+ ν)√
2

(ūLuR + ūRuL)

= −(yu)11hūu√
2

− (yu)11νūu√
2

,

(A.4.2)

it is possible to read off the mass term, mu = yuν/
√

2, where yu is the Yukawa

coupling for the up quark. It is straightforward to repeat this process for the

remaining fermions and retrieve similar expressions. The Yukawa matrices yij are

not necessarily diagonal, the flavour (for the weak interactions) and mass basis (for
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interactions with the Higgs) of the quarks maybe rotated with respect to one another.

Let us introduce two unitary matrices, U and D such that we can define a new object,

M ;

(Mu)ij = U †
L(yu)ijUR

(Md)ij = D†
L(yd)ijDR .

(A.4.3)

These matrices transform the fermion yields from a flavour basis to a mass basis

or vice versa. In interactions with neutral currents (those mediated by the photon

or Z boson), transformations into a new basis will cancel out due to terms such as

U †
LUL which by the unitary definition equate to the identity. In charged current

interactions (those mediated by the W bosons), we get mixing between the up

and down type quarks with terms such as U †
LDL. These terms define the Cabibbo-

Kobayashi-Mashawa (CKM) matrix which is parameterised by 4 parameters, three

angles and a phase [49];

VCKM =


c12c13 s12c13 s13e

−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13

 . (A.4.4)

Where cij = cos θij and sij = sin θij are the sine and cosine of the CKM matrix

mixing angles θ12, θ13 and θ23 and δ the CP violating phase. This parametrisation

is accomplished by constraining the CKM matrix by the unitarity property and

applying global phases to the quark fields reducing 9 possible parameters in a 3 × 3

matrix to 4.

A.5 Complete Picture of the Standard Model

For completeness there is one final term in the SM, an additional CP-violating term

proportional to the final yet un-discussed free-parameter in the SM.

LCP violating = θQCD
g2

s

32π2G
a
µνϵµνσρG

a,σρ . (A.5.1)
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This term is gauge invariant therefore permitted in the SM, however current measure-

ments constrain it tightly as being unnaturally small and non-zero, current bounds

set it as |θQCD| ≤ 10−10 [149,150] and therefore can be assumed to be zero exactly.

Now we have the complete picture of the SM, its particles and their interactions,

LSM = − 1
4F

µνFµν

+ iΨ̄ /DΨ + h.c.

+ Ψ̄iyijΨjϕ+ h.c.

+ |(Dµϕ)|2 − V (ϕ) .

(A.5.2)

A.6 Beyond the Standard Model

The SM is a very complete picture explaining many of the fundamental particles

and their interactions to unprecedented precision. However, as briefly outlined at

the start of this appendix there exist a number of short comings in the SM.

• Neutrino oscillations: SM neutrinos are only left handed which therefore means

they do not have mass in the SM, right handed components are necessary for

mass generation from the Yukawa sector. However experimental observations of

neutrino oscillations imply that they do in fact have non-zero masses [151–153].

• Cosmological measurements: Velocities of galaxies in clusters and rotational

curves of stars contained within galaxies imply greater mass exists than is

visible and explainable by the 3 fundamental forces of nature of the SM [154,

155]. This undetectable mass is coined “Dark Matter” and it is calculated

to take up roughy ≈ 26% of the energy content of the universe. Further to

this measurements of the rate of the expansion of the universe requires an

introduction of a new form of energy, Dark Energy [156,157] which is ≈ 68%

of the energy content of the universe.

• The CP problem: The vast majority of the observable matter content of the

universe is matter, not antimatter. There exist CP violating processes which
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treat matter and antimatter differently within the SM however, these processes

are not enough to explain the disparity between the amount of matter and

antimatter that exists in the present day [158].

• Flavour problem: There is no natural explanation of the size and scaling of

CKM parameters or Yukawa couplings between each generation of matter

within the SM [159]. These parameters are only defined by experimental

observation.

• Gravity: There exists no force carrying boson for gravity within the SM.

This summary of a selection of problems is not to discredit the SM, but it is clear

there is room for improvement and additions to the SM of physics. In this thesis we

will discuss methods to more tightly constrain the Yukawa coupling to the charm

quark and such methods might be applied to probe other parameter constraints

in the SM, so that we might find hints to BSM physics or discover new tensions

between theory and reality.





Appendix B

Anomaly Detection at Hartlepool

Power Station Dashboard

During the placement at Hartlepool Power Station a GUI dashboard was developed

in which engineers at the plant can test and understand the tool chains developed.

The information in this appendix is the documentation provided which details the

dashboards use.

The dashboard provided is intended for use of an engineer to give an idea of changes

in the operational parameters. To that end there needs to be some manual inter-

pretation and set up. The dashboard has been developed with the condenser and

vacuum pump systems in mind however can be extended to any other set of systems.

To ensure correct functionality the following points need to be kept in mind:

1. We require at around ∼100 data points per window to run α analysis. e.g. A

week for hourly sampling,

2. Systems may be correlated,

3. Systems which do not feature strong periodicity will not benefit from α analysis,

4. The rates thresholds will need refitting on any unseen dataset, but the dash-

board will still function omitting the threshold line i.e. Using R̄F (αcrit) instead
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of R̄F (αcrit, β̄crit).

1. The α analysis outlined in this report requires an initial week of data to fit the

first α(t) with hourly sampling. The Fourier transform and χ2 fit requires enough

data points to reasonably understand the underlying periodicity in the data and get

a good fit on α(t0).

2. Systems may be correlated, one such example is the CGO data. The thermocouple

temperature “RP209” in the channels of the reactor depend most closely on two

other features: the power output of the reactor “BF603” and the gag control depth

“GA201”. If we naively plug in the thermocouple data alone we neglect to consider

they are coupled to a changes in the gag or power output. Therefore sensible

combinations of variables should be used. Running the thermocouple, gag and power

through the PCA model together gives us a better understanding of which features

are changing independently of other features by using the marginalised T 2 and Q

statistic.

3. If a feature has low periodicity then there will be no significant benefit in running

the α analysis. This is particularly true of the CGO dataset in which there are

long linear trend changes but no daily, weekly or yearly behaviour. This is why the

dashboard provides a “raw” option which skips the α analysis step entirely and only

takes first order differences.

4. The threshold line is optimized for each family of features e.g. “CC”. If an optimal

fit does not exist in the parameters file Vars.py then the mean rolling threshold line

will be omitted. One can be added by adding an entry into the parameters file.

The dashboard is designed to make the analysis as customisable, intuitive and easy

to navigate as possible. To this end, the graphs are all fully interactive and each tab

contains a read out of key information of the plots shown. The dashboard also creates

a cache of processed data and graphs to prevent needlessly recomputing the same

data. To load data into the dashboard simply drop .xlsx files into “data/RawData”.

The .xlsx files must be named for the variable e.g. “R1 BF603.xlsx” and there must
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be three columns, in this case “Timestamps”, “R1 BF603” and “Error” which contain

the PI explorer timestamp, the values of R1 BF603 and the standard deviations of

R1 BF603 respectively. The dashboard will comes with demonstration data with

the correct format as an example. This tool was constructed using Dash and Plotly

in Python3, the installation of required packages can be performed with pip, the

default package installer for PYTHON. There will be provided install script which

will function on Windows and Linux machines.

The dashboard is sub-divided into a set of tabs namely:

1. Variables,

2. Fourier Analysis,

3. Alpha Analysis,

4. BOCPD,

5. PCA.

Tabs 1 and 2 are intended for data exploration and visualization. Variables provides

plots of the raw data provided in the “RawData” folder and a basic read back.

Fourier Analysis provides some insight into the mathematics underling in the α

analysis. The remaining tabs 3, 4 and 5 run some form of analysis and have some

dependencies on each other e.g. BOCPD analysis will be unavailable for α data

unless the Alpha Analysis tab has run the required processing for data you wish to

process. The dashboard is also able to keep a log of graphs or runs details that are

performed to keep a record of when certain combinations of features where checked

or produced. These are saved in the “cachefiles/” folder.

The rest of this section will briefly explain the operation and features of each tab

and any dependencies.



208
Appendix B. Anomaly Detection at Hartlepool Power Station

Dashboard

B.1 Variables

Figure B.1: Screenshot of tab Variables

The Variables tab provides an overview of the raw features being fed into the

dashboard for quick sanity check on which features are loaded in. On the left hand

side there is a readout summarizing the highlighted regions start time t0, end time

t1, the duration and time step between readings. The dashboard automatically

detects units in seconds, minutes, hours and days. It also calculates the mean µ,

standard deviation σ, minimum and maximum values. The selector labelled “None”

and “Trans” mean centres the features for easier comparison between features which

have a large difference their means.

Features on this tab include:

• dropdown feature selector,

• input feature string search,

• input errors factor multiplier,

• selector to re-scale features,
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• interactive graph, hover mouse for info and zoom. Double click to reset,

• slider to highlight region of graph in purple,

• on left info of key statistics over the region highlighted,

• info button explaining tab usage,

and dependencies:

• .xlsx files in the “data/RawData” folder.

B.2 Fourier Analysis

Figure B.2: Screenshot of tab Fourier Analysis

The Fourier Analysis tab provides an demonstration the α analysis fit. It is possible

to adjust with the window size with is indicated by the highlighted region and the

minimum frequency of the fit. These changes will re-perform the calculation and

display the Fourier transform in the top graph and the power law spectrum red

with a red line. On the left hand side there is a readout summarizing the fit on the
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highlighted region and general information. Lastly, the Fourier spectrum graph has

vertical lines corresponding to key frequencies we might expect which is harmonics

in weekly or daily oscillations.

Features on this tab include:

• dropdown feature selector,

• input feature string search,

• input errors factor multiplier,

• linear or log y-axis scale selector,

• interactive graphs, hover mouse for info and zoom. Double click to reset,

• slider to highlight region of graph in purple. Region used for fitting frequency

spectrum,

• on left info of key statistics over the region highlighted,

• info button explaining tab usage,

and its dependencies;

• .xlsx files in the “data/RawData” folder.
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B.3 Alpha Analysis

Figure B.3: Screenshot of tab Alpha Analysis

The Alpha Analysis tab has the functionality to run the α analysis over the chosen

feature or on all features by clicking the Run button. The run button loops through

all the files containted within the “data/RawData” folder and produces the corres-

ponding α .xlsx sheets. To process one feature select the feature to analyse and

click Run at the top. Takes roughly around one minute per event depending on the

size of the .xlsx file. A load icon and the progress bar will appear update to show

the user that code is running behind the scenes. The dashboard will save results in

“data/AlphaData”. The size of fitting the window can be adjusted in the Var.py file

the default is 7 days. Some key statistics are calculated and displayed on the left

about the α series produced. Lastly clicking on a α data point in the upper graph

will highlight a region in the lower graph showing which window produced the α.

Features on this tab include:

• dropdown feature selector,

• input feature string search,
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• input errors factor multiplier for graphs,

• run button on selected feature,

• interactive graphs, hover mouse for info and zoom. Double click to reset,

• alpha graph data points clickable to highlight region of raw feature that data

point is calculated from,

• on left info of key statistics over the region highlighted,

• info button explaining tab usage,

• run button. Loops over all Dropdown options and produces .xlsx files in

“data/AlphaData”. Progress bar updates every 5 seconds,

and its dependencies:

• .xlsx files in the “data/RawData” folder.

B.4 BOCPD

Figure B.4: Screenshot of tab BOCPD
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The upper graph shows the BOCPD heat map and the lower plot the feature fed into

the BOCPD analysis. In the top plot the heatmap represents the L(r, t) probability

matrix where the darker highlighted regions indicate points on the plot which are

the most likely and the white regions are vanishingly unlikely. Clicking on this plot

will highlight what sequence in the feature produces this run length. The thick black

line is the most probable sequence length at this particular time where this line

drops to 0 we plot a vertical line. This is a strongly defined CP. Much like the Alpha

Analysis tab this tab has the functionality to run through all the “data/RawData”

or “data/AlphaData/” folders’ .xlsx files and produce the corresponding BOCPD

.xlsx sheets. Simply select the feature and click Run which takes around 1 minute

per event depending on the length of the region. A load icon and the progress bar

will appear update to show the user that code is running behind the scenes. Some

key statistics are calculated and displayed on the left. Lastly, clicking on a sequence

length data point in the upper graph will highlight a region in the lower graph

showing which data would consist on a sequence of that length.

Features on this tab include:

• dropdown feature selector,

• input feature string search,

• “Alpha” or “Raw” selection to run data from “data/RawData” or “data/Al-

phaData”,

• run button on selected feature,

• interactive graphs, hover mouse for info and zoom. Double click to reset,

• BOCPD graph data points clickable to highlight region of sequence for which

a series is that long,

• on left info of key statistics over the region highlighted,

• info button explaining tab usage,
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• run button. Loops over all dropdown options and produces .xlsx files in

“data/RawData” or “data/AlphaData”. Progress bar updates every 5 seconds,

and its dependencies:

• .xlsx files in the “data/RawData” folder for “Raw” option,

• .xlsx files in the “data/AlphaData” folder for “Alpha” option.

B.5 PCA

Figure B.5: Screenshot of tab PCA

The PCA tab takes either “Raw” or “Alpha” data from “data/RawData” or “data/Al-

phaData” folders which can be selected using the multiselect dropdown menu. Click

Run to perform the analysis, this will take around 30/40 seconds to complete de-

pending on the length of the data. We then produce two plots, the top shows the

rolling rates. The lower plot shows the normalised distance in standard deviations

of the PCA fitted features from their mean. A distance of two or more from zero is

unlikely in the model and five or more is exceedingly unlikely. Any regions flagged as
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anomalous in both T 2 and Q will appear in yellow or red. Red for the marginalised

feature selected in the bottom dropdown menu is shown to violate the threshold on

its own and yellow if the threshold is violated in general across all features. Some

key statistics are displayed on the left, the two to monitor most closely are µ(λ)

which is the mean fractional variance in the kept PCA components, if this value

drops below around 0.6 consider adding extra PCA components through the NPCA

variable in Var.py. The other to monitor is NRisk which is the number of flagged

anomalous regions which counts the data points violating the thresholds.

Features on this tab include:

• dropdown feature selector,

• input feature string search,

• “Alpha” or “Raw” selection to run data from “data/RawData” or “data/Al-

phaData” folders,

• run button. Runs the PCA rolling window analysis for the selection,

• interactive graphs, hover mouse for info and zoom. Double click to reset,

• on left info of key statistics over the region highlighted,

• info button explaining tab usage,

• dropdown feature selector for marginal feature comparison,

and its dependencies:

• .xlsx files in the “data/RawData” folder for “Raw” option,

• .xlsx files in “data/AlphaData” folder for “Alpha” option.
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B.6 Changing Default Parameters

In the dashboard install directory there is a file Var.py which can be edited to

adjust various parameters involved in analysis or dashboard functionality. It is

recommended many parameters are left alone as they have been carefully tuned

except when the file provides further information.



Appendix C

Social Mixing Matrices at Cox’s

Bazar

In this appendix we detail supplementary information from the placement with

UN Global Pulse. Appendix C.1 details the released contact matrices and the

available open source code used to derive them. Appendix C.2 details the contact

survey which was performed within the camp which provides the information used

to derive the aggregate interaction matrices implemented in JUNE-COX. Lastly,

Appendix C.3 details the questions posed to the Community Based Protection team

and the information they provided which was used to tune the rules and social

patterns within JUNE-COX.

C.1 Code and Availability

• JUNE and JUNE-UK: The current public release of the JUNE simulation frame-

work and by extension the latest version of the JUNE-UK model, can be found

at https://github.com/IDAS-Durham/JUNE

• JUNE-COX: The current public release of JUNE-COX epidemic model can be

found at https://github.com/UNGlobalPulse/UNGP-settlement-modelling

https://github.com/IDAS-Durham/JUNE
https://github.com/UNGlobalPulse/UNGP-settlement-modelling
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• Data: The data from the survey is available by application at https://

microdata.unhcr.org/index.php/catalog/587

• Contact Survey: Details and calculation at https://github.com/UNGlobalPulse/

UNGP-contact-survey

• JUNE-UK Household contact matrix: Details and calculation at https://

github.com/IDAS-Durham/june_household_matrix_calculation

• Contact Matrix Results: Our contact matrices are reported here https://

github.com/IDAS-Durham/june_mixed_method_CM_results formatted in ex-

cel documents for convenience.

C.2 Survey

The survey between October-November 2020 was conducted by enumerators from

the UNHCR Community Based Protection team who regularly conduct surveys

within the settlement following standard UNHCR practices [132, 133]. Data was

collected from 22 camps in the Kutapalong-Balukhali Expansion Site (part of the

Cox’s Bazar refugee settlement) consisting of 2 men and 2 women in each of the

following categories: < 18 years; ≥ 18 years < 60; ≥ 60 years. In addition 2 persons

with disabilities were surveyed to make a total of 308 respondents. Anonymised

results and additional metadata, can be accessed through UNHCR [134].

The survey was conducted by enumerators randomly sampling households in each

camp and visiting them in person. Only one respondent per household was permitted

and responses were collected using the Kobo Toolbox [160] based on the Open Data

Kit [161]. The survey was formatted as follows (italicised text is spoken):

This questionnaire has been designed by teams from United Nations Global Pulse and

UNHCR and is to inform efforts to better understand how people move around in the

camp and interact with others to better understand how COVID-19 might spread in

the camp to inform future COVID-19 protection measures.

https://microdata.unhcr.org/index.php/catalog/587
https://microdata.unhcr.org/index.php/catalog/587
https://github.com/UNGlobalPulse/UNGP-contact-survey
https://github.com/UNGlobalPulse/UNGP-contact-survey
https://github.com/IDAS-Durham/june_household_matrix_calculation
https://github.com/IDAS-Durham/june_household_matrix_calculation
https://github.com/IDAS-Durham/june_mixed_method_CM_results
https://github.com/IDAS-Durham/june_mixed_method_CM_results
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Good day by name is ____ from UNHCR and I am here to conduct a survey. This

study is part of a scientific research project from United Nations Global Pulse and

UNHCR. In this study, we will ask questions to better understand how people move

around in the camp and interact with others. Your decision to complete this study is

completely voluntary and you may decline to answer at any time. Your answers will

be completely anonymous. The results of the research may be presented at scientific

meetings or published in scientific journals. For any questions or comments please

contact: ____. The survey should not take longer than 30 minutes.

1. • If adult: Do you declare that you are at least 18 years of age and that

you agree to complete this survey voluntarily?

• If child:

– To parent or guardian: Do you declare that you are at least 18

years of age, that you are the parent or guardian of this child and that

you give consent for your child to complete this survey voluntarily?

– To child: Do you declare that this is your parent or guardian and

that you give consent to complete this survey voluntarily?

2. Sex: Female, Male, Other, Do not want to answer

3. Location at the time: ____ (camp)

4. Age: under 18, over 18 but under 60, over 60

5. Disability: Y/N

6. Do you have access to a face mask? Y/N

7. When the learning centres were open, did you attend any formal education?

Y/N

8. • If yes:
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(a) When you attended formal education, how much time do you spend

there? 30 minutes, 1 hour, 1 hour and 30 minutes, 2 hours, other

(please specify)

(b) When you attended formal education, approximately how many chil-

dren do you come into contact with (for example, talk to)?

(c) When you attended formal education, approximately how many adults

do you come into contact with (for example, talk to)?

9. Do you ever go to a food distribution center? Y/N

10. • If yes:

(a) When you go to a food distribution center, how much time do you

spend there? 30 minutes, 1 hour, 1 hour and 30 minutes, 2 hours,

other (please specify)

(b) When you go to a food distribution center, approximately how many

children do you come into contact with at the center (for example,

talk to)?

(c) When you go to a food distribution center, approximately how many

adults do you come into contact with at the center (for example, talk

to)?

(d) When you go to the food distribution center, do you wear a mask in

the center?

11. Do you ever go to an e-voucher outlet? Y/N

12. • If yes:

(a) When you go to an e-voucher outlet, how much time do you spend

there? 30 minutes, 1 hour, 1 hour and 30 minutes, 2 hours, other

(please specify)

(b) When you go to an e-voucher outlet, approximately how many children

do you come into contact with at the outlet (for example, talk to)?
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(c) When you go to an e-voucher outlet, approximately how many adults

do you come into contact with at the outlet (for example, talk to)?

(d) When you go to an e-voucher outlet, do you wear a mask in the

outlet?

13. Do you ever go to a community center? Y/N

14. • If yes:

(a) When you go to a community center, how much time do you spend

there? 30 minutes, 1 hour, 1 hour and 30 minutes, 2 hours, other

(please specify)

(b) When you go to a community center, approximately how many chil-

dren do you come into contact with at the center (for example, talk

to)?

(c) When you go to a community center, approximately how many adults

do you come into contact with at the center (for example, talk to)?

(d) When you go to a community center, do you wear a mask in the

center?

15. Do you ever go to a religious meeting? Y/N

16. • If yes:

(a) When you go to a religious meeting, how much time do you spend

there? 30 minutes, 1 hour, 1 hour and 30 minutes, 2 hours, other

(please specify)

(b) When you go to a religious meeting, approximately how many children

do you come into contact with at the meeting (for example, talk to)?

(c) When you go to a religious meeting, approximately how many adults

do you come into contact with at the meeting (for example, talk to)?

(d) When you go to a religious meeting, do you wear a mask in the

meeting?
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17. (a) When you go to a water pump or latrine, how much time do you spend

there? 30 minutes, 1 hour, 1 hour and 30 minutes, 2 hours, other (please

specify)

(b) When you go to a water pump or latrine, approximately how many children

do you come into contact with (for example, talk to)?

(c) When you go to a water pump or latrine, approximately how many adults

do you come into contact with (for example, talk to)?

(d) When you go to a hand pump or latrine, do you wear a mask?

C.3 Questions for the CBP team

To supplement our analysis, a series of informal interviews were conducted with

members of the Cox’s Bazar refugee settlement UNHCR Community Based Pro-

tection (CBP) team. In each of these interviews a set of general enquires into the

behaviour and attendance rates were asked of members of the protection team which

worked closely with those venue types.

This questionnaire has been designed by teams from United Nations Global Pulse and

UNHCR and is to inform efforts to better understand how people engage with each

venue in the camp and the demography of the venues.

For the following venues: Community centres, Female friendly spaces, Food distribu-

tion centres, E-voucher outlets, Non-food distribution centres – including LPG and

blanket centres – Religious centres and Learning centres. Where you are able and

suitably informed please could you answer the following questions;

1. • Can you describe what a day looks like at venue ?

– How many people do you expect at minimum and peak times?

– How do these days and numbers of people vary by day, week, month/season?

– Why do you think there are these variations?
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2. • What is the makeup of multigenerational households – are there generally

three generations or more?

– Do these households include extended family?

– Is this a cultural issue or a space constraint?

3. • What age do children typically move through the camp independently?

– Move out from parents shelter?

– Go to venues on their own? (e.g collect items from the distribution

centres for their shelter)

– How many hours do they spend moving around in the camp independ-

ently?

– Who do they mostly have contact with when they move around? (e.g.

more children, teachers at school, other adults? all)

4. • What time do venues close?

Here we outline the key findings from the interviews used to define the virtual venues

in JUNE-COX.

• Community centres and Female friendly spaces:

– Busiest in morning.

– Typically 35-40 people per day.

– Closed Friday and Saturday.

– Less busy during rainy season and religious holidays but more busy in

national holidays.

• Distribution centres (Food and Non-Food):

– Typically 300-400 people per day.

– Sunday busiest day 500 people per day.
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– Families permitted to collect food every two weeks.

– Children not permitted on their own.

• E-voucher:

– Same as Distribution Centers.

– No limit on frequency of attendance.

• Learning Centers:

– Children (4-13) attend in morning or afternoon slots of 2-3 hours.

– Typically 80-100 children per group.

– Closed Friday and Saturday

– Less busy during rainy season.

• Religious Centers:

– Attended only by men 11+ in age.

– Five daily prayers throughout the day.

– Typically 150-200 people per day.

– Friday busiest day 200-300 people.

– Less busy during rainy season but more busy in religious holidays 600-700.
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