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Abstract 

 

 

This thesis investigates the cost-effectiveness of agricultural non-point source pollution control 

policies through a biophysical-economic model for the Eden catchment in North-West England. 

Firstly, the presented thesis extensively reviews agri-environmental policy in the UK and the 

economic literature on non-point source pollution control. Moreover, in the context of current 

agricultural reforms in the UK and recent technological progress in agricultural technology, 

policy recommendations are drawn from a purpose-built biophysical-economic model covering 

six key non-point source pollutants (nitrogen and phosphorus to both the river and 

groundwater, sediment, and carbon emissions). The model is implemented in GAMS and 

characterised by a novel level of biophysical detail in the literature, including six farm types, six 

livestock types, 10 hydrological connectivity levels, five soil types, four slope types, 45 years of 

observed weather data, and 25 crops selected from 24 crop rotations. Policies are assessed over 

a range of abatement ambitions to facilitate evidence for different policymaker objectives. 

Overall, incentive-based fertiliser input taxes are found to be the most cost-effective policy 

mechanism in the Eden catchment. Notably, the presented results confirm previous findings in 

the literature of inelastic fertiliser demand. Consequently, high levels of taxation are required to 

achieve non-point source pollution abatement. Further, the novel assessment of Precision 

Agriculture in the context of a detailed catchment-scale biophysical-economic model highlights 

the necessary preconditions for precision agriculture to be cost-effectively implemented. 

Modelling of spatially targeted policies moreover highlights the synergies between spatial 

targeting and precision agriculture in this respect. Policymakers should ensure sufficient 

heterogeneity in biophysical variables (soil-types, slope-types, and hydrological connectivity 

levels) to safeguard successful applications of both spatial targeting and precision agriculture.  
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1. Introduction 

Over the last three decades, non-point source (NPS) pollution from agriculture has been 

recognised as a key factor in the significant water quality degradation observed in the EU and 

across the world (Spofford, Krupnick and Wood, 1986; Buckley and Carney, 2013; Casado et al., 

2019). Consequentially, NPS pollution has become a focal concern for agri-environmental policy 

in Europe and the USA (Hanley, Whitby and Simpson, 1999; Claassen and Horan, 2001). To 

support these policy efforts, economic research increasingly investigates efficient and cost-

effective NPS pollution control policies in agriculture. Research has focussed particularly on 

biophysical-economic modelling which accounts for the interdisciplinary challenges of 

examining agri-environmental policies. Several studies for example examine policy measures to 

reduce diffuse agricultural nitrogen (N) pollution (e.g. Berntsen et al., 2003; Belhouchette et al., 

2011; Bourgeois, Ben Fradj and Jayet, 2014). The current once-in-a-generation reform of UK agri-

environmental policy following Brexit calls for up-to-date economic evidence on cost-effective 

policy options to control agricultural NPS pollution. This thesis aims to contribute to this need 

for evidence by addressing gaps in the literature as outlined in the following section.  

1.1.   Objective 

As touched upon above, the key objective of this thesis is to provide an up-to-date evidence 

base on the cost-effectiveness of different agri-environmental policies in the UK and support the 

current work on the UK’s agricultural transition (DEFRA, 2020). In addition to UK political 

developments, the global agricultural sector has seen significant technological advances over 

the past two decades. Increasing quantitative and environmental demands on food production 

have prompted substantial innovation in agricultural production (Finger et al., 2019). The 

progressive use of information technology in the agricultural sector is referred to as “Precision 

Agriculture” (PA) (see section 3.4.1 for details). Previous empirical economic literature has 

largely not accounted for PA or has used a limited farm specific modelling framework. This thesis 

therefore aims to provide insights into PA’s influence on catchment-scale yield and NPS 

outcomes. 

In addition to influencing yield and pollution outcomes, technological progress in PA has also 

extended the possibility frontier of agri-environmental policy. This development specifically 

applies to spatially targeted agri-environmental policies. Theoretically, numerous studies have 

shown these interventions to be more efficient and cost-effective than uniformly applied 

policies, as they account for differences in local biophysical conditions which represent a key 
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variable in agricultural production (Ribaudo, Osborn and Konyar, 1994; Yang et al., 2003; 

Lungarska and Jayet, 2018). However, previous research has deemed the implementation of 

spatially targeted agri-environmental policy too costly in the real world due to high monitoring 

and transaction costs (Lintner and Weersink, 1999). The described new developments in PA 

provide the data and monitoring powers necessary to reduce implementation costs and make 

spatially targeted applications of agri-environmental policies feasible in the real world (Gebbers 

and Adamchuk, 2010). By empirically investigating the economic and environmental impact of 

PA and spatially targeted agri-environmental policies as well as potential synergies between 

them, this research will contribute to the evidence base on currently available policy options. 

Finally, previous biophysical-economic modelling of agri-environmental policy has necessarily 

been limited in its detail by current computational capabilities. This fact has led to simplifications 

of biophysical processes in primary agricultural production which significantly influence key yield 

and pollution outcomes particularly relating to crop rotations, weather data and hydrological 

connectivity levels. Using a novel simulated biophysical data set for the Eden catchment in the 

UK, this thesis extends previous works by explicitly considering hydrological connectivity levels 

and modelling a novel combination of crop rotations, weather data, soil-, and slope-types (see 

Table 39, p. 157). 

The following section outlines the structure of the presented thesis. 

1.2.   Thesis Structure 

This section provides an overview of the remaining chapters of the thesis. Firstly, chapter 2 

provides the UK’s agri-environmental policy context from the 1980s to today. Subsequently, 

chapter 3 reviews the previous economic literature on NPS pollution, agri-environmental policy 

and agricultural technologies. Chapter 4 describes the theoretical framework and modelling 

approaches of the biophysical-economic model while chapter 5 analyses the input data and 

baseline output data for model validation. Chapter 6 presents the results of the scenario analysis 

and chapter 7 discusses the presented results within the context of the existing literature. 

Finally, chapter 8 summarises the findings and draws out the resulting policy recommendations 

before discussing the limitations of the thesis and considerations for future work.  
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2. Agri-Environmental Policy in the UK 

The following chapter contextualises current policy demands through an overview of the last 

four decades of agri-environmental policy in the UK from its beginnings to the present. This 

includes environmental policies (e.g.: Water Framework Directive (WFD)) and agricultural 

policies (e.g.: Single Payment Scheme (SPS), the Basic Payment Scheme)) which are not classified 

as agri-environmental measures but impact agricutlural production and its environmental 

externalities. 

2.1.   Agri-Environmental Policy in the UK 

Since the first UK agri-environmental policies were introduce in the 1980s, policy objectives have 

gradually evolved from a production-focussed approach towards seeking to increase 

environmental benefits (see Figure 1, p. 20 for timeline). Initially, environmental concerns in 

England focussed on protecting and conserving biodiversity. Among the first agri-environmental 

policies, the Wildlife & Countryside Act introduced protective measures focussed on 

endangered bird species and National Parks (UK Government, 1981). Farmers were offered 

income forgone payments to incentivise the reduction of damaging operations. Subsequently, 

the Broads Grazing Marsh Conservation Scheme of 1985 used simple hectare based pay-outs 

for compliance with management restrictions on the Halveragte Marshes in contrast to the 

previously used forgone-profit-system (Hart and Wilson, 2000, p. 101). With a significantly high 

uptake of 89% the scheme managed to reduce the degradation of the Marshes and became a 

model for European measures of the ‘80s and ‘90s. 

2.2.   Environmentally Sensitive Areas (1987) 

As European integration deepened and agricultural policy across Europe became increasingly 

assimilated, UK agri-environmental policy was mainly shaped by European reforms. “Regulation 

797/85 on Improving the Efficiency of Agricultural Structures” (1985) was one of the first 

European Acts to explicitly address the need for conservation of agricultural resources. The 

adoption of Regulation 797/85 in the UK prompted the introduction of Environmentally 

Sensitive Areas (ESAs) in 1987 (Hart and Wilson, 2000, p. 101). These sought to define for 

protection parts of the country with high landscape-, historic-, or wildlife-value by offering 

incentives to farmers to adopt conservation practices (Natural England, 2019). Farmers in 

selected areas could sign up for 10-year management agreements with the Department for 

Environment, Food and Rural Affairs (DEFRA) and receive annual payments on a hectare basis 
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for adhering to conservation management practices. From 1987 to 1994 the number of areas 

qualifying as ESAs was gradually increased to 22 in England and relatively high uptake up to the 

end of the programme in 2005 lead to a 10% cover of the English agricultural land (DEFRA, 2006; 

Natural England, 2012).  



 

20 
 

Figure 1: Timeline of UK agri-environmental policy 
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2.3.   Countryside Stewardship Scheme (1991)  

The ESA programme was supplemented by the Countryside Stewardship Scheme (CSS) in 

1991. The CSS aimed to protect the most important areas outside the designated ESAs 

through the same incentive mechanisms used in the ESA programme and both schemes are 

now collectively referred to as the classic schemes (Natural England, 2009, p. 2). Carey et al.’s 

(2000) evaluation of CSS found that on average these schemes had a positive environmental 

effect (mean score of 2.4 on scale of -5 to 5) and a high probability of compliance (mean score 

of 3.1 on scale of -  to  ), where scores were assigned according to an appraisal team’s 

judgement of the available evidence. However, the authors report that environmental 

effectiveness varied significantly between different landscape types (SD 1.5) and notable 

inconsistencies existed in compliance between agreement holders (SD 1.7). Overall, the 

classic schemes achieved relatively high participation levels and are credited with slowing the 

environmental degradation of the British countryside due to increasing agricultural 

intensification over the 20th century (Natural England, 2009, p. 10). However, as farmers 

could enter agreements on subsections of their farms, concerns arose over the so-called 

“halo effect”: participants may have shifted intensive practices away from sections under 

agreement towards other farm areas, thereby relocating environmental degradation as 

opposed to reducing it (Hart and Wilson, 2000, p. 105).  

2.4.   Nitrates Directive (1991) 

The Nitrates Directive was adopted by the European Commission in 1991 in response to rising 

water pollution from agriculture across the EU and has since become an integral part of UK 

agri-environmental policy. It focusses on regulating and limiting agricultural practices related 

to N fertiliser application and storage as well as livestock management. Firstly, the directive 

sets out guidance on identifying priority areas for waterbodies which include freshwater and 

groundwater containing nitrate concentrations greater than 50 mg/l as well as eutrophic 

freshwaters (European Commission, 2019c). To protect the defined priority areas, “Nitrate 

Vulnerable Zones” (NVZs) were introduced. NVZs are designated by individual member states 

to specifically include priority areas on their territory or to extend to the entire national 

territory. In addition to nationally applicable voluntary Codes of Good Agricultural Practice, 

farmers in designated NVZs are subject to more stringent regulation. In England, crop specific 

quantitative, spatial, and temporal limits on N application are imposed to account for varying 

pollution risks based on seasons and distances to water bodies (DEFRA and EA, 2018b). In 
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addition, farmers are required to record and retain their fertiliser applications in “fertilisation 

plans” for five years. Enforcement inspections by the Environment Agency (EA) further 

require farmers to keep risk-N-pollution-maps of the farm holding which detail field locations 

and slopes, land drains, manure stores, and water bodies (DEFRA and EA, 2018b).  

Over the years the cover of NVZs in the UK has gradually increased. However, due to the 

devolved implementation of NVZs in the UK, their land cover varies significantly between 

countries. As of 2020 NVZ land cover ranged from 100% (Northern Ireland and Wales) to 55% 

(England) and 14% of Scotland (Vivid Economics, 2020, p. 19). Evidence on the effectiveness 

of the Nitrates Directive and NVZs in the UK also shows variation. The 2018 status report 

from the European Commission on the Nitrate Directive found that the UK soil N surplus was 

amongst the highest of the member states for the period 2012-14 (European Commission, 

2018, p. 4). However, a report from the House of Commons Environmental Audit Committee 

(2018, p. 45) found a general reduction in N and phosphorous (P) surpluses in UK soils since 

2000, indicating that policies of the Nitrates Directive may have positively impacted UK 

farming practices over time. In a more local study, Macgregor and Warren (2016) 

investigated the effectiveness of NVZs for the River Eden catchment specifically, which also 

forms part of this analysis. They found that NVZs had positively influenced farmers’ attitudes 

towards the environmental impact of farming and noted that there has been a significant 

improvement in the catchment’s N concentration parameters since the implementation of 

the NVZ. However, the authors noted that the observed decline in fertiliser rates is also 

correlated with significant increases in fertiliser prices over the period and could not be 

singularly attributed to the establishment of the NVZ. Despite mixed evidence on their 

effectiveness, NVZs in particular and the Nitrates Directive generally, have remained a 

fundamental element of UK NPS pollution control and have become part of more recently 

introduced legislation like the Water Framework Directive (WFD). 

 

2.5.   Water Framework Directive (2000) 

In late 2000 European water policy was consolidated and extended in its purview under the 

WFD. The primary goal of the WFD was to achieve “good ecological status” for all European 

waters by 2015, allowing for extensions until 2027 in specific circumstances (European 

Commission, 2019b). To accomplish this target, other directives focussing on specific water 

pollution issues such as the Nitrates Directive, the Industrial Emissions Directive and the 



2 - Agri-Environmental Policy in the UK 

23 
 

Urban Waste Water Treatment Directive are now coordinated under the WFD (European 

Commission, 2019a). In contrast to previous water pollution policies, the WFD follows a “river 

basin management” approach which guides the coordination and implementation of policies 

according to geographically and hydrologically established watershed boundaries rather than 

politically-motivated national boundaries (European Commission, 2019a). Management 

plans are to be created and updated for every river basin subject to European legislation on 

a six-year-cycle. Although there are no specified policy recommendations, the WFD calls for 

evidence-based policies to be employed and has spurred significant scientific interest and 

economic analyses investigating optimal agri-environmental policy design (Collins and 

McGonigle, 2008). However, the effectiveness of the WFD is difficult to assess, both ex-ante 

and ex-post, due to the vague definition of the key target of “good status”. The general 

definition of ecological status levels provided by the directive are insufficiently precise for 

valuation studies on potential benefits of implementation (Martin-Ortega and Berbel, 2010). 

In England, seven River Basin Districts (RBDs) were identified and river basin management 

plans (RBMPS) were published in 2009 and updated in 2015 (DEFRA and EA, 2019). The 

Solway Tweed RBD for example, encompasses areas in Northeast England and Southeast 

Scotland including the River Eden catchment which is the case study of this analysis. In the 

updated RBMPS, the Environment Agency and SEPA (2021) highlight the role advice and 

guidance as well as catchment partnerships play in increasing the percentage of surface and 

groundwaters in the RBD meeting a good or better condition than the currently-reported 

50%. They specifically highlight the effectiveness of partnerships of farmers, advisory 

services, and water companies collaborating to tackle the continuing issue of agricultural NPS 

pollution in the RBD. However, as condition improvements have been offset by newly 

identified deteriorations, the overall water environment in the RBD has remained stable 

since 2015 (EA and SEPA, 2021, p. 10). Earlier data on the general status of surface waters in 

England echoes this finding. Little change is observed in ecological status between 2008-2017 

and official estimates suggest about 25% of UK waterbodies will not reach the target of “good 

status” by 202  (Priestley and Barton, 2018). Although the status of water protection in the 

UK has fallen short of the objectives stated by the WFD, the legislation is considered to have 

been a significant influence in British water policy and an important factor in preventing 

further water quality degradation.  
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2.6.   Environmental Stewardship (2005) 

In 2005 the classic schemes were combined in the new Environmental Stewardship (ES) 

scheme (Natural England, 2009, p. 11). ES was comprised of two levels of conservation 

efforts: Entry Level Stewardship (ELS), and Higher Level Stewardship (HLS) (RPA, DEFRA and 

Natural England, 2019). Land management agreements under ELS included generally simple 

and effective conservation practices lasting for 5 years while HLS agreements were more 

complex, long term (10 years) and tailored to the local circumstances. In addition, Organic 

Entry Level Stewardship (OELS) existed for organic and mixed conventional land management 

agreements. In line with the previous agri-environmental systems, farmers entering 

agreements were paid flat rates per ha on land entered into the scheme (Natural England, 

2013). Participants chose between different management options which support the main 

objectives of the scheme and vary in their availability across the country to account for spatial 

heterogeneity in conservation needs: wildlife conservation, enhancing landscape quality and 

character, preserving the historic environment, protecting water quality and reducing soil 

erosion, safeguarding existing soil carbon levels, and providing a response to climate change 

(Natural England, 2013, p. 9). ES was successful in encouraging wide coverage of areas of 

arable land with 60% of that arable land being under ELS agreements in 2012 alone (Emery 

and Franks, 2012). However, evidence from evaluation studies found that the uptake 

patterns of ELS limit ecological benefits of the scheme which were a primary target. Boundary 

management constituted up to half of the ELS compensation payments, yet benefits for 

ornithological biodiversity of boundary management have been found to be limited, thereby 

limiting the overall ecological benefits of ELS implementation (Davey et al., 2010, p. 470). 

2.7.   Catchment Sensitive Farming (2005) 

The Catchment Sensitive Farming (CSF) programme was introduced in late 2005 with the 

objective to “encourage action from farmers to help achieve Water Framework Directive […] 

and SSSI objectives”(CSF Evidence Team, 2014, p. 7). The programme identified priority 

catchments through which it primarily provides farmers with advice and training on more 

sustainable practices as well as some financial assistance with the costs of implementing 

water pollution mitigation measures (CSF Evidence Team, 2014, p. 7). Its third phase ended 

in 2014; however, CSF officers continue to provide advice and training as well as support 

farmers through novel agri-environmental schemes like the New Countryside Stewardship 

programme (see section 2.10, p. 27). Although the selection of broad priority areas was 

common in previous programmes like ESAs, personalised management advice through the 
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CSF officers introduced a new layer of spatial targeting at the farm-level. An evaluation of the 

CSF’s effectiveness found that it achieved significant reductions in pesticide levels in rivers 

and sediment pressures on those rivers (CSF Evidence Team, 2014). Nonetheless, the 

evaluation highlights that CSF displays three-year lags in achieving environmental impacts in 

the priority areas as advisors require time to build relationships within local farming 

communities.  

2.8.   Single Payment Scheme (2005) 

The Single Payment Scheme (SPS) was also implemented in 2005 following the 2003 reform 

of the Common Agricultural Policy (CAP). The SPS superseded previous European agricultural 

payments and decoupled them from production-linked targets (European Commission, 

2009). The simplification of agricultural support into one payment based on land 

entitlements sought to encourage farmers to respond to market demand and avoid 

overproduction issues observed under previous schemes (Massot, 2019). Further, SPS 

included cross-compliance conditions which farmers had to meet in order to receive full 

payments. These cross-compliance conditions included statutory management requirements 

which maintain good environmental conditions on agricultural land like restrictions on water 

abstraction as well as permit requirements for discharges which affect groundwater (DEFRA, 

2012). As the cross-compliance conditions intended to set lower bounds on agriculture-

driven environmental degradation, they were relatively unambitious and mainly raised 

farmer’s transaction costs by increasing their administrative obligations. However, these 

initial conservation measures within the CAP proved insufficient for protecting agricultural 

landscapes and the 2013 CAP reform shifted further attention and resources towards rural 

development and environmental conservation including poverty reduction measures in rural 

areas and promoting low-carbon agricultural practices (Holden et al., 2017, p. 10; Negre, 

2019).  

2.9.   Basic Payment Scheme (2015) 

Following the 2013 CAP reform, the SPS was replaced by the Basic Payment Scheme (BPS) in 

2015. In a manner similar to the SPS, the operation of the BPS is based on production-

decoupled entitlements farmers can claim on their land. However, to address environmental 

concerns, the BPS includes a greening component which is worth 30% of the total BPS 

payment and requires farmers above a certain holding size to (RPA, 2019a): (i) implement 

crop diversification measures, (ii) preserve permanent grassland and (iii) create Ecological 
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Focus Areas. Ecological Focus Areas include specified agricultural measures which promote 

ecological and environmental restoration (e.g.: buffer strips, field margins, catch crops, cover 

crops, and hedges). Despite some overlap with agreements prior to 2012, BPS operated 

alongside the Environmental Stewardship programmes and continues to compliment the 

New Countryside Stewardship (NCS) programme. Farm inspections are conducted by the RPA 

to verify compliance on roughly 1% of the farms that submit BPS claims. Although the 

inspection rate is significantly lower than that observed in some other European countries 

(e.g.: 5% inspection rate in Ireland (Department of Agriculture Food and the Marine, 2019, 

p. 29)) compliance rates in the UK have significantly increased over the period of BPS 

implementation from 79.08% to 91.06% from 2015 to 2019 respectively1. The reduction in 

non-compliance despite the relatively low probability of inspection may be explained by the 

increasingly stringent penalties imposed for non-compliance. As found by the Farm 

Inspection and Regulation Review (2018) significant fines are being issued for minor offences, 

which has led to dissatisfaction within the farming community. Notwithstanding, these 

substantial penalties may explain the high compliance rates in accordance with principle-

agent theory. In line with criticisms regarding the NCS programme’s implementation outlined 

below, farmers report significant delays in payments of the BPS which lead to uncertainty 

among producers and hinder production planning (NFU, 2019). Moreover, a 2017 review by 

the European Court of Auditors raised concerns over the environmental effectiveness of the 

new greening component. The auditors highlight that the scheme lacks clear and sufficiently 

ambitious environmental targets and effectively remains an income support system as 

payments exceed amounts warranted by the environmental requirements (European Court 

of Auditors, 2017, p. 7). This analysis is further supported by the evaluation of the Alliance 

Environment and Thünen Institute who find that over 90% of total UK arable land was either 

already diversified in 2014, exempted from diversification measures or still undiversified in 

2014 and 2015; this evaluation indicates that greening policies may have a small impact on 

promoting change towards environmentally positive farming practices (Alliance 

Environnement and Thünen Institute, 2017, p. 40). Moreover, some environmental 

indicators targeted by the greening measures were found to have worsened during the 

implementation period with, for example, permanent grassland cover in the UK for example 

decreasing by around 13% between 2014 and 2015 (Alliance Environnement and Thünen 

Institute, 2017, p. 52).  

 
1 Source: Information Request to RPA (RFI 5341, 5 February 2020). 
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2.10. New Countryside Stewardship (2016)  

The New Countryside Stewardship (NCS) was introduced in 2016 and encourages agricultural 

management to promote natural landscape and biodiversity preservation (Zhang et 

al., 2017). The scheme replaced the ES programme, the English Woodland Grant Scheme 

(EWGS) and capital grants from the CSF programme (Natural England, 2018). The NCS 

comprises Mid-Tier and Higher-Tier agreements regarding conservation management 

between DEFRA and farmers (RPA et al., 2019). For the five-year Mid-Tier agreements 

farmers can select from 146 options of effective and relatively simple management changes 

and capital investments which support the scheme’s environmental and ecological objectives 

(see Appendix A, Table 40, p. 169 for details).  

As the focus of this thesis is diffuse pollution control, this review concentrates on the 

management options concerned with reducing agricultural NPS pollution. Of the 

management options listed under NCS Mid-Tier, 18 can be categorised as targeting 

agricultural diffuse pollution with 16 of these options being targeted towards specific areas 

which are generally high risk. In addition to management options which generally provide 

yearly payments on a hectare basis, the Mid-Tier also includes capital items which provide 

support over two years for capital farm infrastructure investments with significant 

environmental or ecological benefits. Two years into the programme, to help facilitate 

adoption and guide farmers towards relevant options, four specific offers (Arable, Lowland 

grazing, Mixed farming, Upland) were created. These offers comprise options relevant to the 

particular land type, but do not include capital items. Applications to these offers are not 

competitive and are granted to any applicant meeting the requirements. This system is in 

contrast to all other applications to NCS which are assessed and ranked according to their 

environmental impact in the local area; in those cases, only the most environmentally 

effective applications are granted.  

The Higher-Tier agreement accommodates more complex and site-specific changes to 

agricultural management in order to achieve environmental and ecological improvements. 

The agreements are negotiated between the Rural Payment Agency and farmers in a two-

step competitive application process and can last up to 20 years (RPA, 2019b). Although 

Higher-Tier agreements are more sophisticated and tailored than Mid-Tier agreements, a 

number of Mid-Tier options and capital items can be included in Higher-Tier agreements. 
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Despite efforts to simplify the NCS application process, it remains time consuming and 

requires significant documentation which can be a barrier to adoption. In addition, important 

issues with the NCS’ administrative implementation have been reported, including delays in 

contract provision from the RPA and late payments (NFU, 2019).  

2.11. Farming Rules for Water for England (2018) 

In April 2018 The Reduction and Prevention of Agricultural Diffuse Pollution (England) 

Regulations (2018)  came into force. These regulations signed eight rules referred to as the 

Farming Rules for Water (FRfW) into law which specifically address farm fertiliser and soil 

management to reduce diffuse pollution from agriculture (DEFRA, 2018b). The rules were 

introduced to achieve water quality targets under the European WFD; however, they are also 

aligned with the UK government’s strategy to implement less-prescriptive and more 

outcome-focussed agri-environmental policies following the UK’s departure from the EU. 

Although the rules include specified spatial restrictions on fertiliser application and livestock 

feeder positions, they also require farmers to assess risks for NPS pollution and 

independently implement appropriate mitigation strategies (DEFRA, 2018b). The “advice led 

enforcement” of the rules primarily addresses offences through advice issued by the EA and 

reserves prosecution for persistent offences in order to foster a more collaborative approach 

to agri-environmental policy between regulators and stakeholders (DEFRA and EA, 2018a, 

pp. 5, 6). Farm operators have welcomed the exclusion of additional record keeping 

requirements in the rules as well as the cooperative approach of the advice-led enforcement 

(NFU, 2018). This focus on outcomes and reducing the administrative burden on stakeholders 

is likely to promote efficiency and improve acceptance of the policies within the farming 

community. However, concerns have been raised that the lack of clear definitions could 

entail diverse interpretations by inspectors across England and thus lead to incongruous 

enforcement of the FRfW (NFU, 2018). In addition, the possibly subjective readings of central 

terms in the regulations like “significant risk of pollution” could provide legal loopholes and 

impact effective enforceability in line with Meran and Schwalbe’s (1987) critique of collective 

fining. Indeed, due to significant uncertainty within the sector regarding the application of 

the regulation, the EA issued the Regulatory Position Statement (RPS) 252 (2021)2. The RPS 

temporarily amended Rule 13 and allowed farms to exceed crop need in fertilisation if 

 
2 expired on the 1st of March 2022 
3 Rule 1 includes the requirement for land managers to plan the use of manures and fertilisers 
according to crop need and water pollution risks(DEFRA, 2018b). 
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contingency plans were in place to reduce the risk of pollution from fertilisation. 

Subsequently, Defra published statutory guidance on the application of the farming rules for 

water (DEFRA, 2022c) providing more clarity on the definition of a significant risk of pollution 

depending on the readily available N content of organic fertilisers.  

As farmers adhering to NVZ regulation and BPS cross compliance-conditions are likely to 

meet the FRfW already (DEFRA and EA, 2018a, p. 8), the additionality and environmental 

impact of the measures is likely to be low. Bhogal, Anthony and Gooday (2021) modelled the 

impact of the application of Rule 1. Their results are summarised in Table 1. 

Table 1: Bhogal, Anthony and Gooday’s (2021) modelled impact of farming rules for water 
rule 1 on pollution outcomes 

Pollutants Effect on nutrient losses  
from manure applications 

Effect on total loss  
from UK agriculture 

Nitrate  

leaching 
-60% -1.5% 

Ammonia 

emissions 
+ 10% +2% 

P loss +30% +5% 

 

While they predict a significant reduction in nitrate losses from organic fertiliser applications, 

the authors find an increase in ammonia emissions and P losses due to the application of the 

rules. They highlight the need to balance different pollution risks in NPS pollution regulation, 

which is exemplified in the pollution swapping demonstrated in Table 1. The rules currently 

focus on the type of organic manure that is being applied and the timing of the application. 

However, the authors suggest that the application method and the soil conditions and 

coverage during application also significantly impact the pollution risk from organic 

fertilisation. Further evidence of the effectiveness of the FRfW is expected to be available 

with the first formal review (expected no later than September 2025 (DEFRA, 2022c)).  

2.12. Environmental Land Management Schemes (2022) 

Over a seven-year transition period from 2021 to 2027, The Environmental Land 

Management (ELM) schemes are gradually replacing the European CAP in England. While BPS 

CAP payments are progressively reduced, the offering and funding available under the ELM 

schemes is increasing (DEFRA, 2020) . This section summarises the published plans for the 

post-transition offering as outlined in DEFRA’s (January 2023) update. Going forward, 
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ongoing financial support in the agricultural sector will come from three key schemes 

compensating farmers for practices which are environmentally beneficial beyond the 

regulatory baseline: 

1) Sustainable Farming Incentive (SFI):  

• Aimed at farmers adopting farming practices which protect nature and enhance farm 

productivity.  

• Support for specific actions which are grouped into main standards (to date nine 

standards have been published for 2023). 

• Offer allows farmers to choose specific actions from different standards and is 

compatible with actions offered under CS. 

 

2) Countryside Stewardship and CS Plus:  

• Expanded and refined offer of the existing CS scheme to support actions targeted by 

habitats, features, and location. 

• CS Plus further includes incentives for land managers to partner locally and deliver 

results on a larger scale. 

 

3) Landscape Recovery:  

• Support for environmentally beneficial, large scale, long-term projects  

• Bespoke agreements are being offered to a smaller number of successful applicants 

through a competitive process. 

• In 2022 funding was awarded to 22 projects which cover 40 000 hectares collectively 

with a focus on rivers and habitat protection. 

• Round two, opening in 2023, will focus on protected sites, carbon emission targets 

and habitat creation. 

 

Over the agricultural transition period, these schemes are complemented by one-off 

payment schemes which mainly support improvements to farm productivity and resilience. 

Most relevant to environmental improvements are grants available for investments in 

equipment, technology and infrastructure which include match-funded support to build 

slurry storage (DEFRA, 2022b). 

The three on-going support schemes aim to respond to recommendations made in the Stacey 

Review (2018) on UK farm inspection and regulations regarding simplifications and flexibility 

in the regulatory approach. The review highlighted the need for more simplified, efficient 

and incentive-led agricultural regulation, having previously identified 182 different 

regulatory instruments and noted the complexity in existing guidance (Stacey, 2018, p. 43). 

Due to the ELM schemes’ rapid development and ongoing roll out, the evidence on 

effectiveness is limited. The report by the National Audit Office (2021, p. 14) further 
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highlights potential uptake issues with only a 5% response rate to SFI pilot trials from eligible 

farmers. Published results from ELM development trials corroborate evidence from previous 

policy evaluations (see CSF and WFD above) and suggest that support through advisers plays 

a key role in maximising environmental benefits from agri-environmental schemes (DEFRA, 

2021c).  

As outlined above, the scheme design published to date still follows an action-based 

approach. This method is in contrast to an earlier focus on moving towards payments-by-

results with some promising outcomes in early trials (Chaplin, Mills and Chiswell, 2021). 

Notably, the referenced trials focussed on biodiversity outcomes. The return to action-based 

schemes may be rationalised by the difficulty of applying payment-by-results to other key 

agricultural pollution issues such as nutrient pollution in rivers. The NPS nature of river 

nutrient pollution contributes to these challenges and is further discussed in the following 

chapter. 
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3. Literature Review 

The following chapter firstly reviews the economic literature on NPS pollution (section 3.1) 

and policy instruments to control agricultural NPS pollution (section 3.2). Subsequently, 

section 3.3 discusses the literature on spatially targeted policy applications and section 3.4 

reviews previous work on agricultural technologies in economic agri-environmental policy 

analyses. 

3.1.   Economic Definition of Non-Point Source Externalities 

Environmental externalities are famously defined by Baumol and Oates (1988, p. 17) as 

situations in which the production or utility functions of an agent (A) are dependent on real 

variables which are determined by other agents, independently of the welfare implications 

the chosen variable values entail for A. Namely, a person’s welfare may depend on the quality 

of water at their disposal. Water quality is influenced by the production decisions of farmers 

in the area, who in turn, however, do not consider water quality impacts in their production 

decisions.  

Griffin and Bromley (1982) specifically focus on agricultural environmental pollution and 

describe it as a “non-point externality”. The authors define non-point externalities as 

occurring when it is impossible to directly observe and attribute individual externality 

contributions to different economic agents. Their work underscores the difficulty of 

observing diffuse pollution which implies significant challenges in tracing it to the polluters 

and implementing agri-environmental policies (Shortle and Horan, 2017). A further 

characteristic of NPS pollution, which constitutes an important challenge in control design, is 

the stochastic nature of the natural processes involved in diffuse pollution (Spofford, 

Krupnick and Wood, 1986; Halstead et al., 1991). As diffuse pollution levels depend on a 

number of factors, including transport parameters, geographical characteristics of the area 

and stochastic environmental variables like precipitation, it is difficult to forecast pollution 

levels even if all production decisions of polluters could be observed (Shortle and Horan, 

2001).  

Over the years economic theory and empirical research have sought to address the question 

of how to efficiently control agricultural NPS pollution. A variety of different policies and 

application methods have been investigated. The following section will discuss the major 

policy instruments which have been proposed and review some of the proposed application 

methods. 
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3.2.   Policy Instruments 

Policies to address environmental issues are commonly categorised by their fundamental 

working mechanism into “command-and-control” and “incentive-based” mechanisms (Hahn 

and Stavins, 1992). In the context of agricultural pollution, command-and-control policies 

(also referred to as regulation-based approaches) leave less flexibility for farmers in their 

production decisions than incentive-based policies (also referred to as market-based 

approaches) to achieve an environmental goal. Incentive-based policies provide incentives 

for farmers to meet environmental targets, however, specific production choices remain 

free. Examples of command-and-control policies include technological and management 

requirements as well as emission limits and set-aside requirements, whilst incentive-based 

policies typically comprise taxes, subsidies, and pollution permit markets. Given the scope of 

this thesis, agri-environmental subsidies are not appraised and are recommended for future 

research (see section 8.4, p. 166). This section firstly discusses previous economic evidence 

on the comparative performance of incentive and regulation-based policies (Section 3.2.1), 

before providing an in depth review of some of the commonly investigated incentive policies 

(Section 3.2.2). Finally, Section 3.2.3 reviews literature on combining such incentive and 

regulation-based policies into mixed policy approaches. 

3.2.1.   Economic Incentive vs Regulation-Based Policies 

Griffin and Bromley (1982) were among the first to explicitly consider NPS externalities in 

their adaptation of Baumol and Oates’ framework for point source externalities. The authors 

focus on the spatial externality of agricultural water pollution which constitutes nutrients 

and chemicals leaching off agricultural fields into the water system. They extend a static 

theoretical model for point externality control to account for the unobservability of individual 

NPS emissions. They show that both least cost incentive and regulation policies can be 

implemented by focusing efforts on the inputs which determine emissions rather than 

emissions themselves. The modelled policies specifically include: (i) an incentive policy 

(tax/subsidy for emission determinants), (ii) regulation standards, (iii) differentiated 

management incentives for polluting production activities and (iv) a combination of 

regulation standards and management incentives (see p. 549 f.). The authors find that all four 

considered policies theoretically constitute allocatively efficient policy outcomes. 

Nonetheless, they highlight differences in information requirements and potential 

implementation costs between the instruments. Further, the analysis of Griffin and 
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Bromley (1982) employs non-stochastic pollution functions and hence does not account for 

uncertainty in the relationship between inputs and NPS emissions. 

These uncertainties are addressed by Shortle and Dunn (1986) who revisit the policies 

investigated by Griffin and Bromley (1982). Namely, their analysis includes incomplete 

information on the biophysical run-off process as well as ex ante uncertainty about the 

weather which in turn plays a significant role in the process. Moreover, the authors consider 

more realistic scenarios such as asymmetric information between farmers and regulators 

regarding farm profits, multiple polluters, and different levels of farmers’ risk aversion. The 

theoretical analysis confirms the efficiency equivalence of Griffin and Bromley’s four policies 

for the single polluter case without uncertainty or asymmetric information. However, when 

uncertainty and asymmetric information are accounted for, incentive policies targeting 

management practices outperform the remaining policy instruments. This is mainly due to 

the fact that they leave farmers the flexibility to use their expert knowledge in production 

decisions while also signalling them relatively more information on the expected externalities 

associated with these decisions than do other policy instruments (see Shortle and Dunn, 

1986, p. 675).  

Kampas and White’s (2004) work also accounts for the stochastic nature of agricultural NPS 

pollution and additionally investigates the impact of policies’ administrative costs on their 

cost-effectiveness. The authors employ a biophysical-economic model to rank the cost-

effectiveness of diffuse N pollution control policies in reaching the European Nitrate Directive 

target for the Kennet catchment (Southwest England). The range of investigated policies 

includes (i) emission permits, (ii) an emission tax, (iii) a N input quota, (iv) a targeted N quota, 

(v) a N tax, (vi) a land tax and (vii) a set-aside requirement (see p. 117). The analysis 

demonstrates that when administrative costs are ignored, a uniformly applied emission tax 

is the most cost-effective NPS pollution control. However, when administrative costs are 

accounted for, N input taxation outperforms emission taxation in terms of efficiency. 

Moreover, the authors test how sensitive the results are to changes in the assumed level of 

the policymaker’s risk aversion and level of administrative costs. Notably, set-aside 

requirements are found to become less cost-effective as the regulator’s risk aversion 

increases. The rankings are, however, shown to be robust to changes of up to 30% in the 

assumed magnitude of administrative costs.  

More recently, Wang and Baerenklau (2015) investigated the cost-effectiveness of different 

nitrate control policy scenarios using a dynamic biophysical-economic model which is 
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calibrated to a representative dairy farm in the San Joaquin Valley (California, USA). The 

authors simulate a number of regulation-based policies including a nutrient management 

plan, a field emission limit and a downstream emission limit, as well as two incentive-based 

measures given by a field emission charge and a downstream emission charge. In line with 

previous works, their results suggest incentive measures to be more cost-effective in 

pollution control than regulation-based policies. Further, their analysis finds that emission-

based instruments outperform the input-oriented policy. However, these results could be 

due to the fact that the only input measure simulated is a regulation-based approach. 

Moreover, the authors do not include administrative costs, which, given Kampas and White’s 

(2004) results discussed above, may explain the favourable performance of emission based 

policies. Wang and Baerenklau’s (2015) work also investigates the impact of alternative 

production technology choices on the cost of complying to agri-environmental regulation, 

the details of which are reviewed in section 3.4.  

Overall, the reviewed evidence suggests that incentive-based policies generally outperform 

regulation-based measures. This performance ranking is due to the fact that incentives leave 

farmers’ more flexibility to decide how to achieve pollution reduction in production than 

command-and-control policies do. As farmers can be assumed to have more information on 

their costs and revenues, their production decisions are more likely to be cost-minimising 

than regulations imposed by a government which has imperfect information regarding 

farmers’ costs and revenues (Shortle and Dunn, 1986). This principle is further supported by 

the findings of more recent empirical studies (Kampas and White, 2004; Wang and 

Baerenklau, 2015). However, as highlighted by Shortle and Horan (2017), the complex 

biophysical characteristics of NPS pollution (spatial, temporal, and stochastic variations, 

unobservability and complex transport pathways for multiple pollutants, see section 3.1) 

comprise ‘wicked challenges’ for finding cost-effective NPS pollution control policies. They 

particularly highlight the fact that economic incentives, whilst remaining theoretically 

interesting, have been scarcely implemented and largely failed to demonstrate successful 

real-world results. Therefore, along with authors such as Ribaudo (2015), Shortle and Horan 

(2017) call further research into alternative approaches including: command-and-control 

policies, mixed policies, and supporting behavioural change and collective-action through 

outreach and extension services. Indeed, commentators in the specific debate surrounding 

incentive and regulation-based policy approaches to NPS pollution have suggested that a 

combination of economic and regulation-based measures may be more cost-effective than 

are individual incentive policies (Baumol and Oates, 1988, Chapter 13; Schuler and Sattler, 
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2010). Further, empirical evidence on such mixed policy instruments is reviewed in section 

3.2.3. Firstly, the following section will provide a more detailed review of the different types 

of economic incentives which are commonly investigated in the literature. 

3.2.2. Economic Incentive Policies 

As mentioned in the previous sections incentive-based policies include a variety of different 

measures which all address farmers’ incentive structure in different ways to promote 

agricultural NPS pollution abatement. One of the key differences in incentive-based 

measures is their target. “Input-based” are distinguished from “ambient” measures, where 

the former target individual polluters’ production choices which are linked to agricultural NPS 

pollution, while ambient measures are aimed at NPS pollution levels directly and polluters’ 

collective choices (Shortle and Horan, 2013). Another important difference in incentive-

based measures is the instrument used to change incentives. Taxes and permit markets can 

be considered some of the most popular incentive instruments analysed in the economic 

literature. The following sections firstly review previous economic analyses on environmental 

taxation of inputs (section 3.2.2.1) and the ambient environment (section 3.2.2.2), before 

discussing marketable pollution permits in the context of agricultural NPS pollution. 

3.2.2.1. Input Tax 

As discussed above, the unobservability of agricultural NPS pollution complicates attempts 

to control NPS emissions directly. Regulating agricultural inputs which are known to impact 

NPS emissions therefore provides an attractive indirect approach to pollution abatement. 

Input taxes have thus become a popular incentive-based tool investigated in the literature 

on agri-environmental policy. The following discussion reviews four studies which analyse 

the conditions under which input taxes may be a cost-effective measure to control 

agricultural NPS pollution.  

In an early analysis, Larson, Helfand and House (1996) investigate which inputs in particular 

are most cost-effectively addressed to achieve reduction targets for agricultural nitrate 

pollution from irrigated Californian agriculture in a second-best scenario. Their results 

suggest that a water tax is more cost-effective than taxing N and provides welfare results 

similar to first-best policy outcomes. This finding is explained by the limited substitutability 

between inputs in the Mitscherlich-Baule production function used (see section 4.5) and the 

relatively higher elasticity of pollution with respect to water than to N in the employed 

pollution function. The results are shown to be robust as regards the use of alternative 

production functions including quadratic and square root functions. However, the numerical 
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analysis does not include a formal treatment of basic production heterogeneity (such as 

differences in soil quality) which may influence the results. Nonetheless, the study highlights 

the significance of the elasticities of agricultural output and of the environmental externality 

with respect to inputs for the cost-effectiveness of an input tax.  

Using simulated data from EPIC, Martínez and Albiac (2004) compare the cost-effectiveness 

of two input taxes to other incentive and regulation-based policies in the context of the 

European WFD in the Ebro basin in Spain. The policies specifically include a tax on water 

prices/m3, a tax on N prices/kg and a tax on N emissions (€/kg), as well a limit on N kg/ha 

applied varied by crop type. The authors assess these policies based on resulting changes to 

welfare, farm quasi-rent and N leaching for the irrigation district. In line with Larson, Helfand 

and House (1996), the results suggest that the cost-effectiveness of input taxation 

significantly depends on the choice of input. However, conversely to Larson, Helfand and 

House’s (1996) static model results, Martínez and Albiac’s (2004) dynamic model results 

suggest that water taxes are a relatively inefficient instrument of NPS pollution control and 

N taxation achieves superior pollution abatement at a lower cost to producers. This 

divergence in results can be explained by the fact that Martínez and Albiac (2004) account 

for policy effects beyond the period of policy implementation. The authors explain that a 

water tax leads to a build-up of N in the soil and thereby increases nitrate leaching in the 

following periods which are omitted from Helfand and House’s (1996) static analysis. This 

highlights the importance of considering the dynamics of biophysical processes in agricultural 

NPS pollution in policy analysis. In line with the theoretical expectation discussed above, the 

authors find the incentive-based measure of an emissions tax to be the most cost-effective 

policy option. Although, their policy ranking suggests that the regulation-based limit on N 

application outperforms both of the simulated input taxation measures, the authors caution 

against the significant difficulties of ensuring compliance with the N limit.  

Focusing on market dynamics as opposed to biophysical dynamics, Claassen and Horan 

(2001) investigated agricultural NPS pollution control measures in a flexible price framework. 

They focus on uniform and non-uniform input taxation in a framework of numerous sub-

regions with heterogeneous production and independence in terms of policy setting. Their 

analytical exposition highlights the “pecuniary externalities” which arise from input taxation 

when prices are endogenous. These constitute the effects of taxation in one sub-region which 

are transmitted between different sub-regions through markets. A tax-induced rise in the 

price of fertiliser in a sub-region for example leads to a local substitution away from fertiliser 

towards land in the sub-region which in turn entails a fall in the general market price of 
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fertiliser. Consequentially, fertiliser consumption in other sub-regions is likely to increase, 

leading to a rise in NPS pollution driven by the market price effects which interlink sub-

regions (Claassen and Horan, 2001, pp. 5–6). Given the size of this thesis’ study catchment 

(see section 5.1 for details), the possibility of defined sub-regions which could realistically 

face different prices is limited. Therefore, prices in this thesis are treated as exogenous and 

Claassen and Horan’s (2001) market dynamics points are not quantitatively explored. 

However, their work highlights the importance for coordination in policy efforts across larger 

regions to ensure pan-regionally effective outcomes (see Section 3.3 for discussion of the 

empirical illustration of their model). 

More recently, Jayet and Petsakos (2013) also consider the effects of implementing a uniform 

tax across heterogeneous subregions. They specifically investigate the effectiveness of a N 

input tax under two wider European policy scenarios and different implementation scales in 

France. The authors compare the welfare implications of a tax on fertiliser N content in the 

setting of (i) the CAP at the base year 2002 and (ii) the CAP after its 2003 reform. Moreover, 

their analysis includes three different applications scales of the N tax: (i) national level, (ii) 

basin level, and (iii) regional level. They find that N demand is relatively inelastic and that a 

100% tax at the national scale only reduces consumption between 50.5% for the base year 

2002 scenario and 51.6% for the post 2003 scenario. Their analysis shows that substitution 

effects occur when the tax is implemented at higher-level scales due to significant regional 

differences in production practices and fertiliser use, which lead to unintended effects on 

national N consumption. They suggest that in order to provide efficient N reductions, N taxes 

should be implemented at smaller scales and possibly combined with N application 

standards.  

Largely, the reviewed studies suggest that input taxation chiefly in the form of N or water 

taxation can constitute an effective policy intervention; however, the yield and emission 

elasticities with respect to inputs as well as longer-term biophysical dynamics of pollution 

should be considered in policy design (Larson, Helfand and House, 1996; Martínez and Albiac, 

2004). Moreover, the review has highlighted the potential benefits of mixing incentive-based 

policies like input taxes with command-and-control measures which has indeed been a 

separate point of emphasis in the literature (see section 3.2.3). Finally, the question 

regarding the appropriate choice for application levels of agri-environmental policies raised 

by Jayet and Petsakos (2013) is further discussed in section 3.3. 
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Due to the stochastic nature of NPS pollution some commentators argue that excessive 

uncertainty remains in understanding the relationship between input application and 

pollution generation. They argue that the success of input taxation in curbing NPS pollution 

is therefore too uncertain to be relied upon and suggest an approach of ambient taxation 

instead which is discussed in the following section. 

 

3.2.2.2. Ambient Taxation 

In her seminal theoretical contribution, Segerson (1988) proposes an ambient pollution tax 

as an efficient tool to control NPS pollution. Regulators declare their desired threshold 

level (𝑝̅) of pollution (𝑝) and a tax (𝑡) is imposed on polluters, where the latter could have a 

positive (tax) or negative (subsidy) value. The magnitude and sign of 𝑡 is determined by the 

amount that 𝑝 exceeds (falls short of) the defined threshold 𝑝̅. In the case of multiple 

polluters, the tax becomes a collective tax. Importantly, each potential polluter is charged 

the entire marginal benefit of lower levels of ambient pollution (𝐵′) through the collective 

tax, as opposed to a fraction (𝐵′/𝑛, where 𝑛 denotes the number of potential polluters) 

(Segerson, 1988, p. 95). This approach allows the ambient tax to address issues of moral 

hazard and ensure that each polluter faces the appropriate marginal incentives, given the 

uncertain relationship between abatement and ambient pollution levels. Relative to direct 

regulation and input taxation, the ambient tax is less invasive in firms’ production decisions 

and therefore likely to be more efficient. Moreover, the associated implementation costs are 

likely to be significantly lower as information only needs to be collected for the ambient level 

of pollution rather than individual polluters effluents or practices. 

Meran and Schwalbe (1987) similarly investigated the issue of enforceable NPS pollution 

control policies in the context of uncertainty and unobservability of individual contributions. 

Their model proposes a combination of effluent taxation and collective fining in the context 

of asymmetric information between polluters and regulators concerning individual pollution 

emissions. Polluters are taxed based on reported emission levels. If the sum of reported 

emissions is smaller than the observed level of emissions, all polluters are collectively fined. 

Supporting Segerson’s (1988) analysis, the authors suggest a combination of ambient 

environmental standards and collective fining if these standards are not met in the context 

of stochastic pollution functions. However, Meran and Schwalbe highlight two important 

issues related to these approaches which equally apply to Segerson’s (1988) work and its 

extensions such as that of Xepapadeas (1991). Firstly, the effective enforceability of collective 
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fining requires that every polluter who influences the level of aggregate emissions is known 

to the regulators and potentially subject to the fine. Secondly, the implementation of a 

collective fine may be difficult as punishment through criminal law requires evidence of guilt 

in countries across the world. Such a policy may require a strict application of civil law (e.g., 

imposing damage payments on polluters for health problems associated with excessive 

pollution) or more significant legal technicalities. Finally, the authors are concerned about 

the financial strain that a collective fining approach may impose on firms in the market which 

is addressed in some extensions of collective fining models. 

Indeed, Xepapadeas (1991) builds on Segerson’s (1988) notion of a collective ambient 

pollution tax and extends it to address the excessive financial strain to which it could subject 

a large group of firms. In contrast to Segerson, Xepapadeas’ theoretical model assumes that 

ambient pollution levels are a deterministic function of individual levels of pollution. 

Nonetheless, the model also considers the case of asymmetric information where individual 

pollution contributions are unobservable and only ambient pollution levels can be 

monitored. The contracts for NPS pollution control between the government and a group of 

polluters reward polluters with a subsidy for pollution abatement. Similarly to the ambient 

tax, the magnitude of the subsidy received by individual firms depends on the difference 

between observed ambient environmental quality (𝑞) and the desired ambient 

environmental quality (𝑞̅) specified by the government. The higher the difference (𝑞̅ − 𝑞) the 

higher the subsidy that firms receive. However, when (𝑞̅ > 𝑞) a randomly chosen polluter is 

fined while the remaining polluters receive the subsidy. The greater the probability of being 

fined, the lower the fine required to achieve an optimal environmental outcome.  

The efficacy of this “random fining” approach proposed by Xepapadeas (1  1) was tested in 

an experimental study by Alpizar et al. (2004). They re-enacted the random fining scenario 

with a sample of Costa Rican coffee mill managers and a sample of Costa Rican students in a 

game theoretical laboratory. Their results suggest Xepapadeas’ theoretical model over-

predicts efficient pollution abatement outcomes and may require further testing. Moreover, 

Alpizar et al. ‘s (2004) study also established that individuals may perceive collective fining to 

be ethically preferable to random fining. As random fining involves punishing an agent 

regardless of their actual pollution contribution it is regarded as more unfair than the 

traditional collective fining approach. 

Indeed, experimental evidence by Spraggon (2002) in favour of the ambient tax for NPS 

pollution as proposed by Segerson (1988) is not supported by more recent evidence by 
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Cochard, Willinger and Xepapadeas (2005), who experimentally investigate the efficiency and 

reliability of four NPS pollution control policies popular in the literature. Specifically, they 

examine (i) an input tax, (ii) a tax (subsidy) for ambient levels higher (lower) than the social 

optimum, (iii) a tax if ambient levels are higher than the social optimum and (iv) a collective 

fine when pollution exceeds the target. In contrast to Spraggon (2002), the authors consider 

a status quo scenario, as well as assuming an “endogenous externality” where polluters 

themselves are affected by ambient pollution. The results suggest that an input tax and an 

ambient tax are highly socially efficient and reliable, while the collective fine is only relatively 

efficient and varies more between different groups in a given time period. However, the 

tax/subsidy on ambient pollution is found to reduce social welfare relative to the status quo 

scenario as well as to be highly variable both between groups and time periods, thus 

weakening the case for ambient taxation as an optimal policy instrument. 

The above review has shown that despite the popularity of the theoretical propositions of 

ambient taxation for NPS pollution (Segerson, 1988; Xepapadeas, 1991), the experimental 

evidence questions the efficacy of ambient taxation (Alpízar, Requate and Schram, 2004; 

Cochard, Willinger and Xepapadeas, 2005). Moreover, Cabe and Herriges (1992) 

demonstrate that a successful implementation of ambient taxes is highly dependent on 

polluters having accurate information on the biophysical process of NPS pollution and their 

contribution to ambient levels of pollution. For example, if producers incorrectly assume that 

the ambient pollution levels are largely unaffected by their production decisions, an ambient 

tax effectively becomes a lump sum charge to producers. In such a case of asymmetry 

between the producers’ and regulators’ information, the effectiveness of ambient tax 

regimes is limited significantly and they are outperformed in terms of cost-effectiveness by 

regulation on emission and production technologies, which are generally considered to be 

less efficient than incentive measures (Cabe and Herriges, 1992, p. 142). In the real world, 

the requirements to meet informational symmetry between producers and regulators are 

costly to fulfil and unlikely to represent producers’ reality (Shortle and Horan, 2013). The 

analysed evidence motivates the exclusion of ambient taxation from the empirical analysis 

of this thesis. The following section discusses another popular incentive-based measure 

proposed in the literature: marketable pollution permits (MPPs). 

3.2.2.3. Marketable Pollution Permits 

MPPs constitute another environmental policy intervention which has become more popular 

in academic analyses as well as political application over the last three decades. The basic 

concept is attributed to the 1968 work of John Dales and involves the creation and auctioning 
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of property rights for environmental quality management (Baumol and Oates, 1988, p. 177). 

In practice, government regulators create a limited number of pollution permits, for N 

emissions for example, which are distributed or auctioned amongst the relevant polluters of 

a region and can subsequently be traded among these participating polluters. Over the years, 

different variations of MPPs, adjusted for the type of targeted pollutants, participating 

polluters and spatial implementation have been discussed in the economic literature. This 

section will initially discuss the key theoretical economic concepts related to MPPs before 

examining empirical work and case studies related to agricultural NPS pollution markets in 

particular.  

The three key theoretical economic design features which are necessary to ensure an 

efficient MPP system for water quality issues in particular are highlighted by Shortle and 

Horan (2013, p. 128): (i) a defined tradeable pollution commodity for the different polluters 

relevant to the water quality issue at hand, (ii) defined trading rules for these commodities 

between the polluters, as well as (iii) a limit on total supply of pollution commodities to 

ensure that the overall water quality target can be met. Different approaches to these key 

features have been proposed in the literature with the most fundamental differences in the 

first feature, namely, the definition of the tradeable pollution commodity.  

For such an approach to define the tradeable pollution commodity, Montgomery (1972) 

provided the theoretical foundation for two prominent variations in the literature: “pollution 

licenses” (PL) and “emission licenses” (EL). In a PL system, licenses define the right to pollute 

such that set environmental quality standards are met at certain monitoring points. Thus, PL 

systems focus on the environmental impact of emissions and account for spatial differences 

in the effects pollution has. Consequently, PL markets require polluters to purchase “a 

portfolio” of licenses for every monitoring point impacted by their emissions. In contrast, EL 

systems define licenses directly in terms of pollution quantities which polluters are allowed 

to emit, ostensibly ignoring the spatial heterogeneity of pollution impacts on the 

environment. Montgomery demonstrates that as a result EL systems cannot reach efficient 

outcomes under one-for-one trading between different locations. Achieving an efficient 

outcome in EL markets requires the definition of pollution zones and strong restrictions on 

the initial license allocations between zones such that environmental quality standards for 

all monitoring points can be met at least cost. The author shows that PL systems on the other 

hand achieve an efficient market equilibrium regardless of the initial distribution of licenses. 
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Both the discussed PL and EL systems have received extensive criticism in the economic 

literature (Baumol and Oates, 1988, Chapter 12). In PL systems the transaction costs for 

polluters associated with maintaining “a portfolio” of different licences for the different 

monitoring points have been deemed prohibitively high. For an efficient market equilibrium 

in NPS water pollution control in particular, Prabodanie, Raffensperger and Milke (2010) 

highlight that the heterogeneous time line in which NPS emissions impact receptor points 

requires the creation of different markets for different impact time scales in addition to the 

different monitoring point markets. Thus, PL systems are generally not deemed an optimal 

NPS water pollution control measure. The specific initial allocation of licences required for 

an efficient market equilibrium in EL systems in turn poses significant policy limitations. 

Krupnick, Oates and Van de Verg (1983) stress that regulators are, firstly, unlikely to 

determine the optimal initial allocation of permits correctly as it requires complete 

information on emissions and abatement costs. Secondly, regulators are excessively 

restricted by the required initial allocation and unable to respond to political concerns in 

policy application. The authors therefore propose an alternative system, called pollution 

offsets (PO), which combines some features from both the PL and EL systems. In line with the 

EL system, permits in a PO market are defined as pollution quantities that firms are allowed 

to emit. However, they must be traded such that the environmental quality standards are 

not violated at any monitoring point. Consequently, as Baumol and Oates (1988, p. 185) 

highlight, PO permits for different polluters may only be exchanged at the ratio of their 

“transfer coefficients”. Transfer coefficients represent the impact one unit of emissions from 

a specific polluter has on the environmental quality of a specific receptor point, thus their 

ratio captures the possible substitution between different PO permits whilst adhering to 

environmental quality targets at every receptor point. To implement such a PO system 

regulators require an up-to-date biophysical model to ensure that no transactions violate any 

environmental standards at any monitoring points; however, transaction costs are 

significantly reduced relative to a PL system as PO only involves one market which polluters 

participate in, as opposed to the “portfolio of markets” required by the PL system (Krupnick, 

Oates and Van De Verg, 1983). 

Over the years different variations and extensions of the three outlined theoretical MPPs 

have been proposed in the literature. Particular attention has been paid to issues like the 

optimal definition of transfer coefficients (Malik, Letson and Crutchfield, 1993) and the 

implications of pollutants’ spatial heterogeneity for MPP design (Lankoski, Lichtenberg and 

Ollikainen, 2008). For water pollution specifically, the appropriate way to address point and 
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NPSs of water pollution in MPP systems has been an important research emphasis. In line 

with the majority of real world implemented schemes, the market-based water pollution 

control literature has focussed on MPPs involving trades between point sources and 

agricultural NPSs (Hansen, Termansen and Hasler, 2019). However, a more recent 

programme in New Zealand has further sparked interest in MPPs allowing trades exclusively 

between agricultural NPSs (Shortle, 2013). In the following, key findings from implemented 

programmes will be discussed focussing initially on point-/NPS-trading and the example of 

the Pennsylvania Nutrient Credit Trading Program (PNCTP) in the United States (Pennsylvania 

Department of Environmental Protection, 2020) before analysing aspects of agricultural NPS 

trading using the example of Lake Taupo in New Zealand (Waikato Regional Council, 2019).  

This summary of the PNCTP key features is based on Shortle (2012) who provides an in depth 

description of the programme which was established in 2005 to reduce agricultural NPS 

pollution pressures into Chesapeake Bay. The programme allows agricultural non-point 

pollution sources to generate pollution permits for N and P by adopting management 

practices which reduce the nutrient flow to the bay beyond a minimum threshold. Point 

sources may also generate pollution permits for reducing nutrient pollution to the bay. Point 

source polluters can purchase these permits from farmers or other point source polluters, in 

order to meet their capped point source pollution allowance. Although no formal trading 

ratio is applied, restrictions and thresholds result in more than one unit of NPS pollution 

being abated for every purchased point source permit unit. The effectively higher trading 

ratio between NPS and point sources mirrors many other trading programmes and can be 

explained by policymakers’ preferences regarding the uncertainty involved in measuring NPS 

emissions; however, it is not necessarily supported by theoretical evidence on optimal 

trading ratios (Malik, Letson and Crutchfield, 1993). Economic theory suggests that efficient 

and effective trading ratios could be 1:1 or lower and heavily depend on the scientific 

evidence around their design features, therefore, the fact that economic evidence has 

seldom been consulted in the design of MPPs could be contributing to their limited success 

(Shortle, 2013, p. 68). 

Trades between the PNCTP market participants can be negotiated directly or, since 2010, be 

completed through a Nutrient Credit Clearinghouse. The low trading volume observed in the 

PNCTP exemplifies a wider criticism of applying MPPs to water pollution issues. As Fisher-

Vanden and Olmstead (2013) highlight, the trading volumes observed in most water quality 

MPPs are too low to provide efficient market outcomes. The authors summarise a number 

of factors found in the literature which explain the limited uptake observed across water 
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MPPs: Firstly, evidence suggests that distrust of the implementation of new measures within 

the farming community is stifling trade volumes in NPS-point source markets from the supply 

side. This low supply of NPS pollution reduction permits may be further exacerbated by 

alternative pollution abatement subsidy schemes available to farmers which crowd out 

supply side market participation. Moreover, demand from point sources may be low due to 

disincentivising liability rules being attached to MPP programmes or due the surrounding 

environmental regulatory framework lacking the stringency to promote point source 

participation.  

The Lake Taupo Nitrogen Market (LTNM) in New Zealand is the first MPP to impose a cap on 

and to facilitate trade between agricultural NPS polluters (Duhon et al., 2015). This summary 

of the LTNM is based on Kerr, Greenhalgh and Simmons’ (2015) detailed description of the 

programme that became operational in 2011. The LTNM was introduced as part of legislation 

which aims to restore the water quality of Lake Taupo to 2001 levels by 2080 and limits the 

amount of agricultural N leaching into the lake. Annual permits were allocated based on the 

farm’s highest annual N emission levels for the years 2001-5 by which farms may not exceed 

the annual emission limit indicated by their permit allocation. The N leaching levels were 

calculated using a nutrient budgeting model and are enforced through a monitoring 

programme. Farmers can trade permits amongst each other within the Lake Taupo 

catchment to provide flexibility in the implementation of the N reduction. In addition, the 

Lake Taupo Protection Trust was set up to permanently purchase and take out of circulation 

production permits and agricultural land, respectively, within the catchment. Thereby, the 

total amount of N leaching in the catchment is reduced whilst also reducing the resulting 

financial burden on the farming community.  

The programme has met its preliminary target of a 20% reduction in N emissions in 2015 

(Tabaichount et al., 2019). However, it is unclear whether this success is mainly attributable 

to the Lake Taupo Protection Trust buy-back scheme which is not necessarily linked to an 

MPP framework and therefore cannot provide empirical support for the use of MPPs in 

controlling agricultural NPS pollution (Kerr, Greenhalgh and Simmons, 2015). In addition, as 

Duhon et al. (2015) report, there have been some questions raised over the accuracy with 

which the nutrient budgeting model captures the farms’ N output. Given incomplete data 

provision from some farms and divergences between the assumptions of the employed 

model and some farm management styles of the catchment, there could be significant 

discrepancies between the model output on which the programme crucially relies and real 

farm N outputs. This issue is related to the inherent unobservability of agricultural NPS 
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pollution and has hindered the effective implementation of other MPP NPS pollution control 

measures (Fisher-Vanden and Olmstead, 2013). Moreover, although the transaction costs 

associated with the LTNM are deemed low in comparison to similar international MPPs, they 

have nonetheless been found to significantly and negatively affect the trade volumes of the 

programme (Duhon et al., 2015). These significant transaction costs further contribute to the 

drivers of inefficiently low trade volumes discussed in the context of point-NPS trading and 

the PNCTP above.  

In summary, the theoretical debate surrounding MPPs applied to agricultural NPS water 

pollution control has provided detailed insights into aspects of MPP design which are crucial 

to ensure economically efficient outcomes. PLs and ELs, first proposed by 

Montgomery (1972), have respectively been found to entail excessively high transaction 

costs for producers and have been shown to fall short of an economically efficient outcome 

without a specific initial optimal allocation of permits which is practically infeasible for 

regulators to implement. 

 A POs system is a hybrid version of the PL and EL systems which was introduced by Krupnick, 

Oates and Van de Verg (1983) in response to criticisms of the latter systems. In a PO market, 

trading ratios are determined by the regulators using biophysical models to ensure an 

efficient economic outcome. Based on variations and extensions of these fundamental 

theoretical works, a variety of water quality MPP programmes have been implemented over 

the years. The programmes relevant to agricultural NPS pollution can be categorised into two 

groups based on the pollution sources involved in trade: point–NPS markets and NPS-NPS 

markets. Of the first, more widely employed type, the PNCTP has been discussed as a 

prominent example. The analysis has shown that the programme’s efficient functioning has 

been impeded by low trading volumes which may be attributed to a number of reasons 

including farmers’ distrust of the system, substitute agri-environmental programmes 

available to farmers as well as a lack of stringency in the general environmental regulatory 

framework. Low trade volumes which prohibit efficient market solutions have also been a 

significant issue for the discussed LTNM which to date has been the only implemented NPS-

NPS market. In addition, there have been concerns regarding the accuracy with which the 

nutrient budgeting model underlying the LTNM programme captures the participating farms’ 

N outputs. Moreover, the LTNM programme includes a land-buy-back programme which may 

be driving the observed reduction in N emissions as opposed to the MPP. The analysis 

suggests that although there have been promising advances in the theoretical design of 

market-based approaches to controlling agricultural NPS pollution, real world applications 
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are often not grounded in theoretical evidence and leave significant doubt regarding their 

efficacy and practicality. Given the systemic issues displayed by implemented MPPs for 

agricultural NPS pollution control and the limited scope of this thesis, MPPs are not included 

in the quantitative analysis presented.  

The following section discusses studies which investigate the combination of incentive-based 

measures analysed in this section and command-and-control policies to curb agricultural NPS 

pollution. 

3.2.3.   Mixed Instruments 

The seminal work of Baumol and Oates (1988, Chapter 13) on environmental externalities 

includes qualifications to the general economic finding discussed above that incentive-based 

measures are preferable to command-and-control policies in terms of social welfare 

outcomes. The authors stress that the stochastic nature of many forms of environmental 

pollution require time-sensitive changes in behaviours which cannot be achieved by many 

incentive-based policies such as taxes or subsidies. They demonstrate that when pollution is 

assumed to be a random variable, taxes can result in higher social costs than command-and-

control policies at times of substantial pollution. These higher social costs may be so 

significant that they outweigh efficiency gains achieved from taxation relative to command-

and-control policies during times of normal pollution levels. The authors show that a 

combination of command-and-control and incentive-based policies leads to an improved 

social welfare outcome relative to the single policy scenario. Their theoretical analysis is 

highly relevant to agricultural NPS pollution due to its stochastic nature discussed above. The 

mixed policy approach is therefore likely to provide an optimal combination of policy 

mechanisms to respond to random weather events which chiefly influence NPS pollution. 

Nonetheless, economic analyses of environmental policies to control pollution have 

traditionally focused on investigating and comparing individually applied policies. However, 

some more recent contributions have included analyses of so called “mixed instruments” 

which combine different policy mechanisms such as incentive-based and command-and-

control policies (Bennear and Stavins, 2007).  

Vatn et al. (1997) simulate three agri-environmental policies for Norway individually as well 

as combined and provide insights into key considerations when planning mixed policy 

interventions. The investigated policies include: (i) a N tax, (ii) a subsidy for switching from 

autumn to spring tillage and (iii) a management requirement of cultivating catch crops. When 

individually applied, the N tax is found to be most cost-effective in terms of social cost per 
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hectare of N abatement, while the spring tillage subsidy is found to provide the smallest 

reductions in N leaching compared to alternative policies. These results are mirrored in the 

combined versions of the policies where the combination of the catch crop requirement and 

the N tax achieve more cost-effective reductions in N than the combination of a spring tillage 

subsidy and a N tax. The authors highlight that although spring tillage does not effectively 

reduce N leaching it does significantly reduce soil losses, thus cost-effectiveness rankings will 

depend on the priorities of policymakers. They further find that the policies affect different 

types of farms in the study areas in different ways. A N tax for example has greater impacts 

on milk and beef production than on grain producers who can substitute away from 

N fertilisation to the use of leguminous cover crops. In contrast, milk producers are not 

strongly affected by cover crop requirements due to the naturally high percentage of 

grassland associated with dairy farms. Their findings stress that the interactions of these 

policy mechanisms need to be taken into account in mixed policy design to avoid unintended 

consequences.  

In the context of UK agri-environmental policy, Aftab, Hanley and Baiocchi (2010) investigate 

mixed regulation and incentive policies with a biophysical-economic model for the West 

Peffer catchment (Eastern Scotland). Specifically, the four mixed instruments include: (i) a 

set-aside requirement with a N tax, (ii) a set-aside requirement with farm stocking density 

reductions, (iii) farm-stocking density reductions with a N tax and (iv) a set-aside requirement 

with both a N tax and farm stocking density reductions. These policy combinations were 

compared to individual versions of the policies, further including emission taxation and 

emission quotas. The results suggest that mixed policies can be particularly effective when 

the given geographical or informational circumstances prevent individual approaches from 

being effective. Moreover, the authors find that the cost-effectiveness of mixed policies 

further depends on weather conditions and should be favoured in ‘wet’ weather conditions 

as opposed to ‘average’ years. 

Aftab, Hanley, and Baiocchi’s (2017) analysis of the transferability of NPS pollution control 

policies between two relatively similar Scottish catchments also includes a comparison of 

individual and mixed instruments. The policy combinations investigated (details in Table 2) 

were simulated for four different levels of stringency over ten consecutive years. The policies’ 

stringency is expressed as the likelihood of the catchment exceeding the EU WFD standard 

of 11.3 mg N/L ambient nitrate concentration and ranged from 10% to 1% (1% being the most 

stringent).  
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Table 2: Summary of policies investigated in Aftab, Hanley, and Baiocchi (2017) 

Command-and-Control Incentive-based Mixed 

Land retirement Input tax Land retirement & Input tax 

Stocking density 

reduction 
 Stocking density reduction & Input tax 

  
Land retirement & 

Stocking density reduction & Input tax 

 

The authors’ results show that the cost-effectiveness ranking of different policies is highly 

dependent on the stringency of the regulatory target and limited in its transferability 

between catchments. Individual policies generally tend to be more cost-effective at lower 

stringency targets. Mixed instruments, in contrast, are generally able to reach more stringent 

standards for N pollution at lower costs to society. In both catchments the target of 1% non-

compliance over 10 years is most cost-effectively reached by a combination of a set-aside, a 

stocking density reduction, and an input tax. The findings indicate that the choice to combine 

multiple policies should be guided by the risk aversion of the policymakers. Mixed 

instruments appear to be preferable for agents seeking to minimise the risk of environmental 

degradation and maximise the likelihood of achieving the environmental target over time. 

The authors further support the findings of Kampas and White (2004),  reviewed above, that 

high transaction costs render emission taxes inefficient as policy options in the real world. 

These results motivate their exclusion from this analysis in favour of lower transaction cost 

policies.  

The reviewed literature has demonstrated that mixed instruments can improve agri-

environmental policy cost-effectiveness in particular for more extreme weather scenarios 

and stringent regulatory targets (Baumol and Oates, 1988; Aftab, Hanley and Baiocchi, 2010, 

2017). Moreover, mixed instruments may be used to account for heterogeneous agricultural 

production in a catchment as different farm types are affected differently by individually 

applied measures (Vatn et al., 1997). The following section explores the evidence on spatially 

targeting policies in order to account for the spatial heterogeneities of catchments. 
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3.3.   Application: Uniform and Spatially Targeted Policies 

Beyond their underlying economic mechanism, pollution control policies are characterised 

by their uniform or targeted spatial application. Economic theory reasons that the benefits 

of policy efforts are maximised cost-effectively if the policies target zones which yield the 

maximum environmental return for their cost (Claassen, Cattaneo and Johansson, 2008). 

Numerous studies have tested this conjecture empirically in their investigations on optimal 

policy design. This section reviews some of the evidence on spatially targeted agri-

environmental policies.  

Ribaudo, Osborn and Konyar (1994) empirically investigate the effects of spatially targeting 

agricultural NPS pollution control measures in the context of counties suffering from high 

levels of diffuse pollution in the USA. In particular, the authors focus on set-aside 

requirements to improve water quality by reducing nutrient and sediment pollution as well 

as soil erosion. They simulate four different scenarios with increasing degrees of targeting 

towards the most polluted areas (measured as crop-land pollution-load potential and 

distance from a waterbody). Their results demonstrate that the costs (measured as 

reductions in producer and consumer surplus due to crop price increases) of set-aside 

requirements fall drastically as they become more spatially targeted. Simultaneously, water 

quality benefits initially rise significantly as targeting increases, before falling to levels 

comparable to the minimally targeted scenario for the most targeted scenario (Ribaudo, 

Osborn and Konyar, 1994, p. 82). These findings suggests that spatial targeting can 

significantly improve the cost-effectiveness of agri-environmental policy, although the trade-

off between cost reduction and environmental benefits for highly targeted scenarios should 

be considered. This thesis builds on the authors’ findings by investigating policies targeted 

by real pollution potential (i.e., hydrological connectivity (see section 4.6, p. 89)) as opposed 

to the proxy measure of distance to a waterbody. 

Given the difficulty of implementing first-best targeted policies for different pollution 

sources, Helfand and House (1995) use lettuce production in the Salinas Valley, California 

USA as an empirical example to evaluate the magnitude of differences between first- and 

second-best policies (i.e. differentiated and uniformly applied pollution control measures). 

The modelled policies are summarised in Table 3. 
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Table 3: Policies modelled by Helfand and House (1995) 

Uniform  
(Second-Best Alternatives) 

Spatially Targeted  
(First-Best) 

Input tax on all pollution sources 
Input tax differentiated  

by soil-type and input 

Percentage reduction requirement  

for all inputs 
 

Tax on single input  

Limit for single input  

 

The results of their study indicate that the second-best policies of a uniform input tax on a 

single input, a uniform input tax on different soil-types, and a uniform percentage reduction 

requirement for all inputs can achieve efficiency outcomes similar to those of the 

differentiated optimal policy. These findings suggest that such second-best policies could be 

preferable to first-best spatially targeted policies if significant information requirements and 

implementation costs are associated with the latter.  

Claassen and Horan (2001), provide evidence on the distributional impacts of spatially 

targeted policies and empirically illustrate their model in the context of corn production in 

the Northern parts of the Central USA (see section 3.2.1 for the discussion of their theoretical 

model). In accordance with previous works on the topic, they find that non-uniform taxation 

is more economically efficient than uniform taxation. The effects of both types of taxes on 

the different interest groups (consumers/taxpayers, fertiliser producers, owners of capital 

and labour resources, and landowners) vary. However, the benefits to landowners due to 

substitution effects from a fertiliser tax are spread more equally across the sub-regions in the 

case of a non-uniform tax relative to a uniform tax. This distribution relates to the findings of 

Griffin and Bromley (1982) and contradicts the common perception that non-uniform 

taxation is less equitable than uniform taxation.  

Contrasting uniform policies with differentiated policies in both temporal as well as spatial 

dimensions, Xabadia, Goetz and Zilberman (2008) propose a dynamic framework to analyse 

input taxes for managing issues of stock pollution. The analysis also accounts for precision 

technologies which will be further discussed in section 3.4 of this thesis. Xabadia, Goetz and 

Zilberman’s (2008) theoretical model demonstrates that a dynamic input tax differentiated 

both technologically and spatially would constitute an optimal policy intervention. Given the 
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practical difficulties of differentiating policies dynamically and spatially the authors consider 

two second-best alternative cases: (i) a dynamic but spatially uniform input tax and (ii) a static 

but spatially and technologically differentiated tax. They find the dynamic but spatially 

uniform input tax affects production at the extensive margin and increases the net benefit of 

cultivating lower quality land. Therefore, the dynamic but spatially uniform input tax entails 

greater efficiency losses the greater the changes in production and associated emissions are, 

and the greater the number of hectares on which these changes take place. Meanwhile, the 

static but spatially differentiated tax is found to lie in between the initial and final values of 

its dynamic version. Thus, the static but spatially differentiated tax leads to higher welfare 

losses if the initial stock value diverges significantly from the steady-state stock value and the 

decay of the pollutant is small. To quantify the differences in welfare between the policies 

Xabadia, Goetz and Zilberman (2008) use the issue of waterlogging in the San Joaquin Valley, 

California USA as a numerical illustration. The empirical work shows a static but spatially 

differentiated tax leads to a 14% welfare loss relative to the optimal, while a dynamic but 

spatially uniform policy entails a 36% welfare loss relative to the optimal. These results 

suggest that spatially differentiating policies may be superior to the imposition of dynamic 

policies in terms of welfare losses. However, a sensitivity analysis demonstrates that rankings 

of the policies are highly dependent on the level of land heterogeneity as well as the 

magnitude of the initial environmental degradation. The importance of considering land 

heterogeneity in agri-environmental policy design motivates the novel biophysical detail 

included in this analysis (see section  4.3, p. 74). 

Helin et al. (2013) also focus on land heterogeneity in their spatially explicit bio-economic 

model for the southern Finish Lepsämänjoki catchment. The optimisation accounts for key 

field aspects such as soil-type, slope-type, and distance from forest edge and assesses the 

combination of spatial targets for water quality improvement and biodiversity conservation 

in agri-environmental policy. While the conversion of agricultural land into grass set-aside 

and the reduction of fertilisation are found to be the most cost-effective nutrient abatement 

measure, cost-effective biodiversity conservation involves converting agricultural land into 

meadow nectar plant set-aside. The authors show that both objectives can be efficiently 

combined by optimally targeting the conversion of agricultural land into both grass and 

meadow plant set-aside. For example, targeting fields with steep slopes and fields close to 

forest edges significantly reduces the costs of implementing the agri-environmental policies. 

These findings demonstrate the benefits of combining different environmental goals in policy 
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design but also highlight the importance of spatially targeting policies in order to maximise 

their cost-effectiveness. 

More recently, Lungarska and Jayet (2018) use a biophysical-economic model to investigate 

the effect of spatially differentiated agri-environmental policy to reduce nitrate leaching in 

France. The authors simulate an input tax on mineral N fertiliser for different levels of spatial 

differentiation in polluted areas, namely, (i) a farm and water body specific tax, (ii) a water 

body specific tax, (iii) uniform tax rates per river-basin-district, and (iv) a nationally uniform 

tax rate. The different scenarios are assessed in terms of the associated changes to farmers’ 

gross margin, tax revenue, fertiliser application, nitrate leaching, and stocking densities. Their 

results show that corresponding to theoretical predictions, the more targeted policy entails 

less significant losses in terms of farm gross margin. However, they also show some limited 

adverse effects of the input tax including substitution towards manure fertilisation and crops 

which are less demanding in N but more-polluting. These outcomes highlight the point that 

the possible substitution effects of spatially targeted approaches need to be considered in 

policy design – a point more widely applicable to all agri-environmental policies. This thesis 

reflects the significance of substitution effects stressed by Lungarska and Jayet (2018) in 

analysing modelled policies’ impacts on farmers’ land use and fertilisation choices (see 

section 6.3, p. 138). 

Hasler et al. (2014) extend their scope beyond a national scale and investigate cost-effective 

strategies for N and P nutrient abatement in the drainage basin of the Baltic Sea. They 

implement a non-linear optimisation model in GAMS to investigate the importance of 

accounting for spatial heterogeneities at the sub-catchment scale in agri-environmental 

policy design. The investigated policies include six abatement strategies for N and P 

abatement which appear to be implemented as command-and-control policies. Their results 

suggest that including spatial heterogeneities in abatement cost calculations significantly 

improves their accuracy. Moreover, their analysis ranks the cost-effectiveness of policies 

within the 22 main sub-drainage basins of the Baltic Sea whilst taking into account variation 

in nutrient retention (a key hydrological characteristic in NPS pollution generation). The 

authors suggest that once computational powers will allow the cost-effectiveness analysis 

for the entire Baltic Sea drainage basin to include hydrological characteristics, this should 

further improve the distribution of policy measures at finer resolutions of the optimisation 

problem. Their work highlights the importance of including traditionally considered spatial 

variables like soil-type as well as hydrological characteristics like nutrient retention in agri-

environmental policy analysis which are both a focus of this thesis (see chapter 4 for details). 
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Hasler et al. (2019) specifically focus on spatially targeting agricultural NPS N pollution 

interventions based on heterogeneity in hydrological characteristics of catchments. They also 

focus on N retention which they define as the extent to which there is a difference between 

N levels at the source and the recipient water body. Low levels of retention in a catchment 

imply levels of pollution in recipient water bodies similar to pollution levels at the source, 

which aids abatement effectiveness. Their biophysical-economic model for the Limfjorden 

catchment in Denmark suggests that targeting N abatement measures according to 

heterogeneous levels of N retention of the catchment led to significant reductions in 

abatement costs. The authors further find these cost savings to be relatively insensitive to 

the uncertainty in the correct identification of retention levels. Their results underscore the 

importance of accounting for spatially heterogeneous hydrological characteristics when 

designing agricultural NPS pollution. 

Finally, the research discussed in this section demonstrates that in addition to the underlying 

mechanisms, the spatial application of agri-environmental policies can significantly impact 

their cost-effectiveness (Ribaudo, Osborn and Konyar, 1994; Xabadia, Goetz and Zilberman, 

2008; Helin et al., 2013; Lungarska and Jayet, 2018). In addition to traditionally considered 

spatial variables such as soil- and slope-types, the reviewed literature further suggests that 

hydrological characteristics should inform spatial targets (Hasler et al., 2014, 2019). 

However, until now little attention has been paid to the synergies between new technological 

developments in the agricultural sector and NPS pollution control. Therefore, the following 

section reviews the treatment of technology in previous biophysical-economic studies. 

3.4.   Technology 

In addition to the treatment of spatial heterogeneity, the treatment of technology is a key 

feature of economic analyses in agri-environmental policy. The emergence of more advanced 

production technologies changes the parameters for both production externalities and policy 

interventions. Therefore, an accurate representation of the sector’s current technological 

status is crucial to ensure that economic analyses provide pertinent policy recommendations. 

However, the majority of previous economic studies considering agricultural NPS pollution 

control assume unspecified homogeneous production technologies. Notably, the studies 

which do include a more explicit treatment of technology primarily focus on irrigated 

agriculture and irrigation precision technologies. Given the low instance of irrigated 

agriculture observed in the study catchment of this thesis, irrigation technologies do not form 

part of the presented work. Nonetheless, it is useful to review previous treatments of 
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heterogeneous technologies in the literature. Therefore, this section initially reviews three 

studies which do include a more explicit treatment of technology before discussing current 

technological developments in the sector and their representation in the literature. 

Khanna, Isik and Zilberman (2002) address the role of new input-efficiency enhancing 

technologies in their economic model of agricultural NPS pollution control. Specifically, they 

investigate the cost-effectiveness of subsidies to increase the adoption of such conservation 

technologies in irrigated cotton production in California. The authors present a framework 

which allows microunits to choose between two types of technology (traditional and 

conservation) as well as an input use level from a continuous scale. Their analysis highlights 

the different effects through which policy measures reduce pollution (see Table 4).  

 

Table 4: Policy effects which reduce pollution (Khanna, Isik and Zilberman, 2002) 

Policy Effect Mechanism 

Switching effect Switching to conservation technology 

Intensive margin effect Reducing input use with a given technology 

Extensive margin effect Cropping pattern changes 

Note: created based on (Khanna, Isik and Zilberman, 2002, p. 159) 

 

They find that while the input tax involves all three effects on abatement, different types of 

subsidies to support technological adoption are more limited in their pollution-abating 

incentives. Further, the provision of subsidies may encourage entry to the industry and entail 

increasing levels of pollution. Moreover, in order to achieve switching effects, significant 

cost-sharing subsidies may be required which may be prohibitively costly to implement. In 

line with the results of Helfand and House (1995), Khanna, Isik and Zilberman (2002) find that 

the differences in abatement costs between the first-best (input taxation) and second-best 

policy (a combination of an input-reducing and a cost-sharing subsidy restricted to farmers 

pre-existing in the market) are negligible. Therefore, subsidies to incentivise the adoption of 

agricultural conservation technologies may represent a cost-effective policy alternative to 

input taxation, if the subsidies’ implementation costs should prove to be lower than those 

for input taxation. However, in contrast to the interests of these authors on pure 

conservation technologies, this thesis is focussed on PA which has seen recent technical 

progress and an associated fall in adoption costs. PA’s potentially significant private 

productivity benefits suggest that the economic rationale for subsidies supporting PA 
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adoption is relatively weak. Therefore, subsidies for PA adoption are not quantitatively 

considered in this analysis. 

As mentioned in section 3.3, Xabadia, Goetz and Zilberman’s (2008) work on dynamic 

spatially differentiated policies also includes an explicit treatment of PA technology for 

irrigated cotton production in California. Their analytical framework incorporates traditional 

and precision technologies, where the latter exhibit a higher input-efficiency use and 

implementation cost, as well as a lower pollution coefficient relative to the former. The 

theoretical analysis suggests that a dynamic but spatially uniform input tax incentivises 

production on lower quality land and the use of more-polluting traditional technologies as 

opposed to precision technologies. The authors’ numeric example further demonstrates that 

a static, spatially differentiated tax entails the highest adoption rate of precision technology 

(62.4% of farmland) compared to the other modelled second-best policies, as well as the 

lowest efficiency loss relative to the optimal dynamic spatially differentiated tax (13.8%). The 

study therefore highlights that the design of agri-environmental policies may significantly 

affect the technological choices of farmers which in turn impact the cost-effectiveness of 

policies in achieving environmental targets. This result underscores the importance of 

accounting for farmers’ technological choices in agri-environmental policy analyses and 

motivates the analysis of PA in the context of policy design in this thesis (see section 4.7, 

p. 94).  

More recently, Wang and Baerenklau (2015) account for technological heterogeneity in 

irrigated agricultural production in their assessment of nitrate pollution control policies (see 

also section 3.2.1). They include two different types of irrigation systems as well as two 

manure handling systems. The modelled manure handling systems include a flush lagoon 

system and a scrape-tank. The authors assert that the scrape-tank consumes less water in 

the spreading process, despite being more labour and capital intensive, which is likely to 

improve leaching outcomes. The representation of irrigation technology includes a furrow 

irrigation system and a more technologically advanced linear move system which typically 

improves irrigation efficiency and reduces water usage (Wilson, Coupal and Hart, 1987). 

Wang and Baerenklau’s (2015) findings suggest that the optimal technological choice varies 

between the different policy interventions and significantly affects the cost-effectiveness of 

different policies by reducing on-farm compliance costs. While a combination of a flush 

lagoon and a furrow irrigation system is linked to the lowest losses in farm income under a 

downstream emission charge, the combination of a flush-lagoon and a linear move system 

minimises farm income losses under a field emission limit (Wang and Baerenklau, 2015, 
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p. 146). The authors further account for in-field heterogeneity in terms of irrigation levels 

(over-, under-, and mean-irrigated sub-fields). They demonstrate that the two irrigation 

technologies may impact nitrate leaching, yield and water consumption parameters of the 

three sub-field types in different ways (e.g.: scrape-tank manure handling reduces nitrate 

leaching from over-irrigated subfields; however, increases nitrate leaching from mean-

irrigated subfields in the process). Their results thus highlight the importance of accounting 

for both technological as well as biophysical heterogeneities in agricultural production. These 

synergies between in-field heterogeneities in biophysical characteristics and improved 

agricultural production technologies is embodied by PA which is discussed in the following 

section. 

3.4.1.   Precision Agriculture 

Rising population pressures and heightened environmental awareness across the world have 

resulted in increasing quantitative and qualitative demands on food production over the past 

two decades. In turn, these changing demands have spurred significant innovation in 

agricultural production (Finger et al., 2019). The use of information technology in primary 

agricultural production has rapidly increased since the late 1990s and early 2000s and has 

come to be known as “PA”. The key objective of PA is to spatially and temporally optimise 

input use and management practices given localised farming conditions (Pierce and Nowak, 

1999, p. 4). Today, numerous PA tools facilitate such tailored and targeted agricultural 

production using developments in monitoring and sensing technology as well as data 

collection methods (Balafoutis, Evert and Fountas, 2020). PA is frequently used across both 

livestock and arable production systems, utilizing for example techniques ranging from the 

use of milking robots for dairy enterprises to satellite imaging for arable crop monitoring 

(Fournel, Rousseau and Laberge, 2017; Weersink et al., 2018). More recent innovations 

further include microbes-based technologies for disease and drought resistance as well as 

mobile applications for technology rental and sharing (Aulbur et al., 2019). This section 

initially discusses the focal point of this thesis on variable rate nutrient application (VRNA), 

provides a summary of the fundamental mechanisms of VRNA, and considers PA adoption 

before analysing the previous economic research on the use of PA.  

As discussed, PA technologies in both the livestock and arable sector have a potential for dual 

positive impacts on profitability as well as environmental sustainability. Moreover, arable 

and livestock innovations complement each other as outputs from arable production are 

inputs in livestock production and vice versa. Due to the limited scope of this thesis, its 
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analysis focusses on PA innovations in the arable sector. These are of particular interest in 

economic policy analyses due to the strong link between the intensive production margin 

and environmental outputs in arable production (i.e., changes in fertiliser application on a 

field significantly impact agricultural diffuse pollution) relative to livestock production, where 

the extensive margin mainly influences diffuse pollution (e.g., manure production is mainly 

influenced by the number of cattle on a farm rather than the intensity with which cattle are 

managed) (Bayrische Landesanstalt für Landwirtschaft, 2019)).  

Following Balafoutis et al. (2017) available PA technologies for arable farming can be broadly 

categorised into: (i) guidance systems, (ii) recording technologies, and (iii) reacting 

technologies. Guidance technologies include software and appliances that guide agricultural 

machinery over fields, while recording technologies comprise sensor and satellite equipment 

which collect spatial data relevant to agricultural production. Finally, reacting technologies 

use guidance systems and recording technologies to vary the in-field application of 

agricultural inputs (e.g.: variable rate fertilisation, irrigation, and pesticide application). Crop 

and soil sensing as well as fertilisation have been a key focus of agricultural research projects, 

resulting in relatively more available agronomic evidence on their impacts (Balafoutis, Evert 

and Fountas, 2020). Among reacting PA technologies, variable rate fertilisation specifically 

has the widest application potential as it is relevant to every crop regardless of irrigation 

requirements and chosen production method (e.g.: organic or conventional). Therefore, this 

thesis focusses on PA technologies for arable production systems and variable rate 

fertilisation technologies in particular.  
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Figure 2: Effects of constant rate fertilisation in fields with heterogeneous yield potentials 

 

VRNA allows farmers to account for the heterogeneity of in-field conditions when applying 

fertiliser (Balafoutis et al., 2017). VRNA technologies are based on the principle that soil 

conditions and plant nutrient requirements differ within fields. As visualised in Figure 2, a 

uniform application of fertiliser may therefore lead to significant misallocation of nutrients 

and entail nutrient runoff in low-yield field zones as well as under-application in high-yield 

field zones. The working mechanisms used in VRNA to achieve this improved allocation of 

nutrients to plant needs are summarised and contrasted with Constant Rate Fertilisation 

(CRF) in Figure 3. Firstly, VRNA technologies can use (i) data on previous years’ yields through 

recorded yield maps, (ii) data on current plant growth through onboard sensors for 

chlorophyll content, for example or (iii) a combination of both to determine the site-specific 

in-field fertilisation requirements (Schellberg and Lock, 2009). Secondly, software on the 

tractor and hardware on the fertiliser spreader tailors the application of nutrient contents  
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Figure 3: Advantages of Variable Rate Nutrient Application (VRNA) 
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according to the previously determined nutrient requirements. For organic fertiliser (manure 

and slurry) this process involves further real time measurement of nutrient contents, as nutrient 

concentration varies significantly within organic fertiliser (Lorenz and Erdle, 2018). In contrast, 

inorganic fertiliser generally contains constant nutrient concentrations and does not require 

additional real time sensing. Stamatiadis et al. (2018) found VRNA significantly reduces total 

fertiliser consumption at constant yields, which positively affected both farm profitability and 

the environmental impact of farm operations. These dual benefits in economic and 

environmental terms have led to increasing interest and support for PA technologies from 

governmental organisations (Ausschuss fuer Bildung Forschung und 

Technikfolgenabschaetzung, 2006; The Parliamentary Office of Science and Technology, 2015; 

European Parliamentary Research Service, 2016).  

Nonetheless, adoption rates for VRNA have remained low, despite the significant environmental 

and economic benefits outlined  previously, as well as the strong uptake of PA guidance systems 

across the global farming sector (Bramley and Ouzman, 2018; Lowenberg-Deboer and Erickson, 

2019). A recent study of EU farmers finds that the uncertainty regarding performance and higher 

skill needs associated with sophisticated PA technologies are key drivers of their slow adoption 

(Barnes et al., 2019). Given the high capital and time investments of acquiring PA technology 

and the necessary skills for their application, typically risk averse farmers require more certainty 

regarding financial profitability. The authors suggest that financial incentives, information 

campaigns, and subsidised skill training would be the most effective policies to boost adoption 

rates and further exploit the sustainable intensification benefits PA technologies have to offer. 

In addition, the innovative production technologies of PA require new legislative frameworks to 

ensure users’ safety and privacy (European Parliamentary Research Service, 2016). As the 

efficiency gains of PA rely on data collection and exchange at unprecedented scales in primary 

agricultural production, policies regarding data protection in the industry are needed to ensure 

producers feel confident that their data is secure (Balafoutis, Evert and Fountas, 2020). Within 

the European Union the application of the General Data Protection Regulation (GDPR) in 2018 

has provided some basis for protection for novel agricultural data collected by PA technologies 

(European Parliament, 2016). However, as Wiseman et al. (2019) highlight, whether agricultural 

data should be classified as personal data and therefore be covered by the GDPR remains 

controversial. Further clarification of the legislation in this area is important for the continued 

growth of PA technology in the agricultural sector and could provide an example for future UK 
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policies. However, any policy efforts should be guided by economic cost-effectiveness 

assessments to ensure a welfare maximising allocation of public resources.  

Previous economic assessments of PA have primarily focussed on business level profitability and 

stress the difficulty of generalising results, as profitability depends on many factors with 

significant heterogeneity between farms. Schneider and Wagner (2008) conducted field trials on 

two German farms in Saxony-Anhalt and compare site-specific PA in-field management with 

uniform management, as part of the government funded German study on the future of 

sustainable agriculture preagro. From the field trials and survey data the authors find on-farm 

economies of scale of using PA technologies as costs are inversely related to the amount of PA 

equipment in operation on a farm. However, they caution against blanket statements regarding 

PA profitability and emphasise the importance of farm-specific characteristics. This opinion is 

further reflected by Griffin et al.’s (2018) more recent review of the PA profitability evidence 

focussing on equipment efficiency gains to be made through farm investments in PA as well as 

their return and risk management. They also highlight the individual farm characteristics which 

influence PA profitability at the farm-level including topographic conditions, changing labour 

requirements, and compatibility with existing technologies. In particular, a more in-depth 

analysis of the on-farm economic costs and benefits of VRNA is provided by Heege (2013). He 

reports the results of published experiments in the UK and Germany which indicate that VRNA 

improves the efficiency of N usage (Heege, 2013, p. 262). Improved N use efficiency entails 

improvements in farm profits through gains in yield quantity and quality or cost savings due to 

reduced N fertiliser consumption. Moreover, higher N use efficiency provides environmental 

benefits by decreasing N leaching from fertilisation and enhancing groundwater quality. The 

author calculates that the economic benefit of VRNA technology for winter-wheat corresponds 

to approximately 45€/ha (Heege, 2013, p. 265). Given purchasing costs of €46,500, annual 

depreciation, interest and repair costs of 20%, and €300 annual sensor servicing costs, he 

therefore finds that VRNA technologies become profitable for farmers starting at a fertilised 

area of 175ha.  

In a one farm biophysical-economic model for corn and soybean production in Kentucky USA, 

Schieffer and Dillon (2015) investigate the interactions between PA and agri-environmental 

policies. Specifically, they analyse the adoption of (i) an integral valve auto-steer system with 

GPS receiver, (ii) a VRNA spreader, (iii) automatic section control self-propelled sprayer, and 

(iv) a combination of all three technologies (Schieffer and Dillon, 2015, pp. 48, 50). They include 

the interaction effects of PA adoption with input taxes and quantity limits on N and carbon. Their 
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results on VRNA specifically suggest that N application increases through the adoption of PA to 

increase yields and net returns. Further, the input efficiency gains through PA increase the unit 

abatement cost of input taxes incurred by producers and lead to increases in N consumption 

rather than decreases. The authors therefore suggest that PA interaction with incentive based 

agri-environmental policies can lead to unintended consequences. Importantly, this study 

approximates N pollution with N consumption and does not consider important biological 

factors in the impacts of NPS pollution such as variations in soils, slopes, and hydrological 

connectivity. Higher N applications on less hydrologically connected land could represent a 

smaller environmental risk than smaller N applications on higher risk land. The authors highlight 

the need for future analyses of PA in the context of more detailed biophysical modelling. This 

thesis extends their work by analysing PA in a biophysical model including heterogeneity in 

geographic variables and the impact of hydrology on agricultural NPS pollution.  

As one of the only such works to date, Karpinski (2014) analyses the wider economic impacts of 

introducing PA technologies across Germany. In her cost-benefit analysis, experts linked to the 

preagro project (Werner et al., 2008) provide valuations of the environmental benefits 

associated with using PA on an agricultural enterprise in Wulfen (Saxony-Anhalt, Germany) for 

the years 2005-2007. Further, adjusted benefit transfer and Contingent Valuation Method 

(CVM) estimates for these environmental benefits were used to include the social value of arable 

PA technology adoption in the analysis. She estimates a mean benefit of arable PA technology 

between 24. 1€/ha and 244. 0 €/ha and finds an introduction of PA across East-Germany to 

provide a net benefit of €4 .  million. As the estimates rely on the strong assumption that the 

studied farm in Wulfen is representative for the whole of East-Germany in terms of its 

biophysical and farm business characteristics, the author cautions against basing policy 

conclusions on them and calls for further research into the economic impact of a countrywide 

introduction of PA technologies. 

 

The reviewed literature demonstrates the significant potential of PA technologies to 

simultaneously support both environmental improvements and rising demands on food 

security. PA applications in the arable sector and VRNA technologies in particular exhibit a strong 

capacity to entail both environmental and economic benefits (Heege, 2013; Stamatiadis et al., 

2018). However, previous economic assessments of VRNA technologies have largely focussed 

on issues of business level profitability. A farm-level assessment of PA’s environmental impact 

and interaction with agri-environmental policy excludes crucial biophysical details of the 
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agricultural NPS pollution generation process (Schieffer and Dillon, 2015). Using Germany as a 

case study, the only previous study including the wider economic and environmental impacts of 

introducing arable PA technologies at the country scale estimates the societal benefits to be 

significant (Karpinski, 2014). However, the analysis relies on extensive assumptions which 

prohibit larger policy conclusions. Given the promising yet indefinite results surrounding the 

wider benefits of PA technology use in agriculture, the need for further economic research has 

been well-established globally and highlighted in the UK context in particular (Higgins, Schellberg 

and Bailey, 2019). Moreover, considering the major shifts in UK agricultural policy due to take 

place over the course of this decade, such research is becoming increasingly urgent. This thesis 

therefore seeks to contribute to the literature on wider economic and environmental impacts 

associated with arable PA technologies using as an example VRNA techniques in a detailed 

biophysical-economic modelling context.  
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4. Methodology 

This chapter outlines the methodological choices of the thesis in building a biophysical-

economic model and assessing agricultural NPS pollution control policies. Section 4.1 reviews 

commonly employed modelling approaches in the literature, focussing on agent-based 

modelling and traditional optimisation techniques in mathematical programming. Section 4.2 

presents the economic framework of the model, while section 4.3 provides an overview of 

its biophysical components. The production function data simulation process is explained in 

section 4.4, while section 4.5 discusses evidence on the appropriate functional forms for 

production functions in biophysical-economic models. Finally, section 4.6 describes the 

process of including hydrological connectivity in the model and section 4.7 presents the 

approach to modelling PA. 

4.1.   Modelling Approaches  

The literature review demonstrates that various modelling approaches are used in the 

economic literature on agri-environmental policy issues. Most economic analyses employ 

mathematical programming models to investigate agri-environmental issues instead of 

econometric models due to reduced aggregate data requirements (Berger, 2001). 

Traditionally, optimisation techniques in mathematical programming for economic agri-

environmental policy analyses have included linear, integer, and non-linear programming 

models. However, in recent years some studies have used agent-based modelling, a relatively 

recent mathematical programming approach. This section initially considers agent-based 

modelling techniques before discussing traditional optimisation techniques and the choice 

of non-linear programming in this analysis. 

Agent-based modelling is a mathematical programming approach used to model complex 

interactions between agents, which facilitate predictions on the diffusion of environmental 

innovations and changes in resource usage, for example (Berger, 2001; Maes and Passel, 

2017). Due to their versatile nature and evolving applications, controversy remains regarding 

defining the characteristics and scope of agent-based models (Hanappi, 2017, p. 449). 

Nevertheless, as demonstrated by Janssen (2005, p. 2 ff.), “Cellular Automata” and “Agents” 

can be identified as some of the central components of agent-based modelling analyses in 

environmental and ecological economics. A cell characterises the fundamental unit of 

Cellular Automata and can assume different states. The states of a cell for the subsequent 
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period are determined via transition rules that depend on the neighbouring cells' states and 

are defined by the modellers. The spatial dimension of cellular automata facilitates the 

analysis of inherently spatial agri-environmental issues (Balmann, 1997). The definition of an 

“agent” in the literature is more controversial, as Crooks and Heppenstall (2012, p. 87) assert. 

Nonetheless, the authors identify three characteristics that are common in most agents: 

(i) autonomy (they are free to interact and exchange information with other agents), 

(ii) heterogeneity (they can have attributes that distinguish them from other agents like age 

or qualification), and (iii) activity (in simulation agents exercise autonomous influence) 

(Crooks and Heppenstall, 2012, p. 87). The behaviour and interactions between agents are 

governed by rules defined by the researchers (Barbati, Bruno and Genovese, 2012). 

The described flexibility of agent-based modelling facilitates more realistic representations 

of behaviour in the real world which may lead to more accurate outcomes in policy analysis 

(Shortle and Horan, 2013). Moreover, agent-based models like evolutionary algorithms can 

provide useful approximations when spatially explicit problems exceed the capacity of 

optimisation techniques (Kling, 2011). Recently, they have been employed to assess 

agricultural pollution policy issues ranging from Thai pesticide regulation to Chinese land 

lease policies (Grovermann et al., 2017; Li, Rodriguez and Tang, 2017). Nonetheless, 

significant issues with the approach remain. Firstly, there are difficulties validating agent-

based models as traditional optimisation techniques are unavailable for comparison (Barbati, 

Bruno and Genovese, 2012). Secondly, agent-based model results are highly dependent on 

the assumptions made by individual researchers, and techniques to prove the reliability of 

results are still unavailable (Hanappi, 2017). Consequently, comparisons between models are 

of limited use in establishing model validity as varying assumptions may be reasonable and 

contradicting results on the same policy problem are seemingly viable. Moreover, extensive 

data is required to create agent-based models with behavioural rules that closely match 

reality (Crooks and Heppenstall, 2012).  

Traditional optimisation techniques in mathematical programming are differentiated into 

linear, integer, and binary programming as well as non-linear programming (Kaiser and 

Messer, 2011). They all involve either minimising or maximising an objective function, but 

differ in the functional forms of constraints and objective functions (Williams, 1991). 

Formerly, linear programming models were commonly used in economic analyses of 

agricultural production, primarily for farm decision support models (Arfini et al., 2016). Such 

models describe the farm enterprise as a linear combination of farm activities where 
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technical coefficients measure the contribution of individual activities to the objective and 

facilitate the maximisation of the objective value (Ten Berge et al., 2000). However, linear 

functions do not realistically capture complex biophysical relationships between yield and 

pollution variables inherent to agricultural activities (see section 4.5). As computational 

powers have advanced, analyses have moved towards positive mathematical programming 

techniques like integer and non-linear programming models (Arfini et al., 2016).  

Integer programming problems require integer solutions to some or all variables and are 

therefore further differentiated into pure integer programming (PIP) or mixed integer 

programming (MIP) models (Williams, 1991, p. 154). MIP models are more commonly used 

as they are less restrictive and generally easier to solve. Integer programming allows 

optimisation of discrete decision problems and has been predominantly applied to 

conservation reserve selection in the economic agri-environmental context (Önal and Briers, 

2003, 2006; Wang, Önal and Fang, 2018). However, large optimisation problems involving 

discrete variables suffer from significant solving issues, which limit their applicability for large 

scale applications and high numbers of integer constraints (Önal et al., 2016; Yao, Zhang and 

Murray, 2018). 

Non-linear programming (NLP) models allow non-linear relationships between variables to 

be included within the optimisation problem. This approach is particularly useful for agri-

environmental issues as they often involve non-linear yield and pollution processes. Their 

application ranges from analyses concerned with reducing agricultural nutrient pollution in 

the Baltic Sea (Hasler et al., 2014) to impact assessments of glyphosate bans in Germany 

(Böcker, Möhring and Finger, 2019). Relative to linear constraints, non-linear constraints 

require more sophisticated algorithms, including merit functions to balance meeting the 

constraints and optimising the objective function (Gill, Murray and Wright, 1981, p. 206). 

Furthermore, models for large catchments, including spatial interdependence, may exceed 

the capacity of non-linear optimisation techniques (Kling, 2011). Nonetheless, as spatial 

dependencies can be accounted for outside the optimisation problem, whilst including the 

essential non-linear yield functions, NLP has become a popular tool in analyses concerned 

with agricultural production (Aftab, Hanley and Kampas, 2007; Louhichi, Flichman and 

Boisson, 2010). 

Overall, agent-based models may provide interesting exploratory results for issues involving 

complex behavioural interactions between agents, such as technological diffusion or climate 

adaptation in the agricultural sector (Berger, 2001; Berger and Troost, 2014). However, the 
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validity and reliability of agent-based model results remain difficult to assess for optimisation 

problems. Further, farmers’ production decisions, which are central to this research, involve 

limited complex interactions between agents. These interactions are reasonably well 

understood and have been represented with optimisation techniques in the literature. In 

addition, as the primary concern of this research is the effectiveness of policy and the impact 

of PA, as opposed to the diffusion of such new technologies, optimisation techniques are 

chosen over agent-based modelling. The following section discusses the central economic 

framework and key theoretical assumptions that underpin the biophysical-economic model. 

4.2.   Theoretical Economic Model Framework  

The economic framework of the analysis builds on the seminal work of Baumol and Oates 

(1988). In a world of imperfect competition and information, the authors highlight the 

unrealistic informational requirements associated with achieving optimal environmental 

policy outcomes - namely, equating the marginal net damage due to agricultural production 

with its marginal net benefit to society. To overcome the informational issues of optimal 

policymaking, they suggest the implementation of environmental standards. Policymakers 

define politically chosen minimum standards that safeguard acceptable conditions for the 

quality of life. Subsequently, agri-environmental policies can be implemented to achieve the 

defined standards at minimum cost to society and are thus ‘cost-effective’ (Ribaudo, Horan 

and Smith, 1999, p. 23). Given duality, the concept only relies on profit or revenue maximising 

agents instead of perfect information or competition. Thus, the criterion for policy 

implementation is shifted from optimality in a first-best world to cost-effectiveness in a 

second-best world.  

Regulatory targets: 

In line with previous work, the environmental objective of the policymaker is expressed as a 

reduction in nutrient leaching (Martínez and Albiac, 2006; Semaan et al., 2007). Following its 

exit from the European Union, the UK is in the process of developing new regulatory agri-

environmental targets. Currently, provisional targets for water nutrient pollution from 

agriculture are set at a 40% reduction in nutrient load by 2037 (DEFRA, 2022a). A popular 

approach in the literature is the assessment of daily pollutant concentrations  in water bodies 

in line with the European standard of the Nitrates Directive and WFD (Balana, Vinten and 

Slee, 2011; Bouraoui and Grizzetti, 2014; Aftab, Hanley and Baiocchi, 2017). However, due to 

the novel level of biophysical detail and number of observed weather-years included in this 
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analysis (see Table 39, p. 157), the evaluation of daily pollution concentrations was 

computationally infeasible. In addition, as outlined above, current preliminary UK policy 

targets are expressed in nutrient load as opposed to concentration. Therefore, this thesis 

analyses the policies’ associated abatement potential in terms of pollutant load to maximise 

its relevance in supporting current policy development.  

Mathematical representation of the non-linear optimisation model: 

Formally, the objective of the policymaker is to minimise the cost of achieving a chosen level 

of pollution abatement through the implementation of an agri-environmental policy. This 

cost is given by the difference in the unrestricted catchment gross margin and the catchment 

gross margin after policy implementation (Aftab, Hanley and Baiocchi, 2010), leading to the 

objective function in equation 1. 

𝑀𝑖𝑛 (Π − Π𝑟,𝑒)   (1) 

Where Π represents catchment gross margin before policy implementation and Π𝑟,𝑒 

represents restricted catchment gross margin after the policy application for a given level of 

fertiliser application technology 𝑒. Equation 2 demonstrates the mathematical 

representation of restricted catchment gross margin. 

Π𝑟,𝑒 = ∑ ( 𝑌𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 𝑝𝑐 − 𝐿𝑓,𝑠,𝑑,ℎ,𝑐  (𝑘𝑓,𝑐,𝑒 + 𝑁𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 𝑝𝑁  𝜏𝑁 + 𝑃𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 𝑝𝑃 𝜏𝑃))

𝑓,𝑠,𝑑,ℎ,𝑐

 

+ ∑ [𝜋𝑓,𝑙,𝑒 − ∑ (𝐿𝑓,𝑠,𝑑,ℎ,𝑔 (𝑘𝑓,𝑔,𝑒 + 𝑁𝑓,𝑠,𝑑,ℎ,𝑔,𝑒 𝑝𝑁 𝜏𝑁 + 𝑃𝑓,𝑠,𝑑,ℎ,𝑔,𝑒 𝑝𝑃 𝜏𝑃))]
𝑓,𝑠,𝑑,ℎ,𝑔𝑓,𝑙

 

+ ∑ [𝑌𝑓,𝑔,𝑚,𝑒 𝑝𝑔 − 𝑌𝑓,𝑔,𝑏,𝑒(𝑝𝑔 + 𝑘𝑡)]𝑓,𝑔   + 𝐿𝑓,𝑠,𝑑,ℎ,𝑎𝜓𝑎 + 𝑇    (2) 

𝑌𝑓,𝑠,𝑑,ℎ,𝑐,𝑒 is the yield of crop 𝑐 in tonnes grown on the land of farm 𝑓, soil 𝑠, slope 𝑑 and 

hydrological connectivity level ℎ, for a given level of fertiliser application technology 𝑒. Prices 

are represented by 𝑝 and as appropriate indexed over sale crops 𝑐, artificial 𝑁 or 𝑃 fertiliser, 

or forage crops 𝑔.  𝜏𝑁 and 𝜏𝑃 represent taxes levied on N and P, respectively.  𝜋𝑙 is the gross 

margin achieved per livestock head, excluding forage costs. 𝐿𝑓,𝑠,𝑑,ℎ,𝑐 , 𝐿𝑓,𝑠,𝑑,ℎ,𝑔 and 

𝐿𝑓,𝑠,𝑑,ℎ,𝑎represent the farmland of a particular soil-type, slope-type and hydrological 

connectivity allocated to a sale crop (𝑐), forage crop (𝑔),  and set-aside or stocking density 

reduction (𝑎)  respectively.  𝑘𝑓,𝑐,𝑒 and 𝑘𝑓,𝑔,𝑒 capture variable costs associated with growing 

sale crops and forage crops, respectively, which include the cost of crop protection, seed, 

and plant material as well as labour costs. 𝑁𝑓,𝑠,𝑑,ℎ and 𝑃𝑓,𝑠,𝑑,ℎ are the fertiliser application 
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levels in kg/ha of N and P, applied respectively. 𝑌𝑔,𝑚 represents the forage crop yield in 

tonnes that is sold within the catchment while 𝑌𝑔,𝑏 represents the forage crop yield in tonnes 

bought from within the catchment incurring an additional transport cost (𝑘𝑡).  𝜓𝑎 represents 

payments for set-aside or stocking density reduction4, transfer payments for revenue-neutral 

policies are captured by  𝑇. 

It is assumed that individual farms maximise their gross margin subject to the constraints of 

their farm assets and agronomic production requirements such as feeding needs and labour 

requirements (Schuler and Sattler, 2010; Schönhart et al., 2011; Lungarska and Jayet, 2018). 

The total gross margin is given by subtracting total variable costs, further specified in Table 

5, from total farm revenue (Louhichi et al., 2010, p. 586). 

Table 5: Components of farm total gross margin 

Total Revenues 
(TR) 

• Sales from agricultural products 

• Transfer payments 

Total variable costs 
(TVC) 

• Cost of fertiliser and fertiliser taxation 

• Cost of crop protection 

• Cost of seed and plant material 

• Cost of animal feed 

• Cost of employed labour 

• Cost of contracted PA machinery 

 

A farm’s primary asset is its exogenously given land endowment. The land endowment is 

given in terms of the numbers of hectares of the different soil-slope-type and hydrological 

connectivity level combinations included in the model, which vary in their yield and pollution 

generation potential (see section 4.3 for details). A farm’s productive capacity is therefore 

constrained by the size and quality of its land endowment. Moreover, the important spatial 

aspects of NPS pollution generation are accounted for without an explicitly spatial treatment 

of the choice variables (i.e., land parcels are not indexed over geographical coordinates), 

which facilitates computation.  

 
4 Given the revenue natural policy design and exclusion of subsidies from this analysis, 𝜓𝑎 is assumed to be zero. 



4 - Methodology 

71 
 

 

Land use and the level of fertiliser application are the primary choice variables that determine 

farm gross margin. The four broad land-use choices available to farmers include (i) cultivating 

sale crops, (ii) cultivating feed crops to meet on-farm livestock feeding requirements or (iii) 

selling certain feed crops to other farms within the catchment, and (iv) leaving the land as 

set-aside to receive environmental subsidies. The number of livestock on a farm are 

endogenously determined by the farm’s production choices in growing feed crops to meet 

the specified livestock feeding requirements. These feeding requirements include hay, silage 

and pasture grazing needs specific to the six different livestock types included in the model 

(see Table 6 for description of the livestock types and Appendix A, Table 41 for details of the 

feeding requirements). Farmers within the catchment may trade fodder beet and maize feed 

crops amongst each other to meet their livestock feeding requirements. Trades use farm-

gate prices with an added transport cost based on haulage weight (SAC Consulting, 2018). 

Intra-catchment exclusive trading prohibits pollution leakage through bought-in feed crops 

and accurately represents pollution generated by the catchment’s agricultural activities. The 

N and P pollution associated with livestock grazing is factored into the pollution estimates of 

grazing and aftermath grazing crops simulated in EPIC. Livestock manure which accrues over 

the housing period is used for fertilisation and reduces the cost of purchasing artificial 

fertiliser. 

Table 6: Description of included livestock types 

Livestock model 
labels 

Description 

Dairy 8,500 l all year calving (1 cow) 

Sheep1 improved hill breeds (100 ewes tupped) 

Sheep2 extensive hill breeds (100 ewes tupped) 

Finish1 finishing spring-born suckled calves at 18-20 months (1 steer) 

Finish2 forage based finishing dairy steers at 24 months (Holstein) 

Suckler upland suckler cows, calving period Feb-April (1 cow with calf) 

Note: livestock descriptions and corresponding grossmargin and forage assumptions sourced from 
SAC Consulting (2018)  

 

Multiple farm types are modelled to facilitate an assessment of a policy’s impact (Blanco, 

2016). The model in this thesis will follow the nine ‘robust types’ proposed in the UK Farm 

Classification of DEFRA to aid its policy relevance. These robust farm types include: Cereals, 

General Cropping, Horticulture, Specialist Pigs, Specialist Poultry, Dairy, Less Favourable Area 

(LFA) Grazing Livestock, Lowland Grazing Livestock, and Mixed farms (Farm Business Survey 
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and DEFRA, 2014, p. 3). From this list, which is designed for the whole of England, the five 

types most representative for the Eden catchment are chosen for modelling. This decision 

was based on the Farm Business Survey5 data and personal communication with local experts 

from the River Eden Trust. The chosen farm types are: Cereals, Dairy, LFA Grazing Livestock, 

Lowland Grazing Livestock, and Mixed Farms, where LFA and Lowland Grazing Livestock 

include different combinations of sheep, beef finishing, and suckler cows.  

Table 7: Modelled farms type distributional attributes 

No. 
Hypothetical 

farm 
position 

Farm-type and livestock-type Soil-type Slope-type 

1 Upland 
LFA Grazing Livestock  

(sheep + suckler) 
Less 

productive 
Steeper 

2 Lowland 
Dairy farm  

(dairy + some finish) 
More 

productive 
Less Steep 

3 Upland 
LFA Grazing Livestock  

(sheep + suckler) 
Mixed Mixed 

4 Lowland 
Lowland Grazing Livestock  

(dairy + finish) 
Mixed Mixed 

5 Lowland 
Cereal  

(sale crops) 
More 

productive 
Mixed 

6 Lowland 
Mixed  

(sale crops + sheep) 
Mixed Mixed 

 

In addition to heterogeneity of the farm outputs in different main crops and livestock, the 

model also includes heterogeneity in the inputs through variation in the land qualities 

allocated to the different modelled farms. Table 7 summarises the modelled farm 

heterogeneity in terms of the assumed geographical position, livestock produced, and soil 

slope distribution. As the dominant farm type for the Eden, LFA Grazing Livestock is modelled 

twice with two different soil-/slope-type distributions. All farms are assumed to be of equal 

size and should be treated as representative farms of the average farm size for the Northwest 

of England 77 ha (DEFRA, 2021a). Earlier trials including different farm sizes were 

computationally costly and did not indicate a significant role of farm size differences in NPS 

pollution outcomes. However, given the well-documented important impact that differences 

 
5 http://www.farmbusinesssurvey.co.uk/regional/Reports-on-Farming-in-the-Regions-of-England.asp (accessed 

5/5/2020) 

http://www.farmbusinesssurvey.co.uk/regional/Reports-on-Farming-in-the-Regions-of-England.asp
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in soil, slope and hydrological connectivity have on NPS pollution control, heterogeneity in 

these variables was prioritised over heterogeneity in farm size. 

Modelled policies 

Following the literature, the modelled policies include incentive-based, command-and-

control measures as well as mixed policy measures. Although transaction costs are not 

explicitly included in the empirical modelling - in favour of novel biophysical details (see Table 

39, p. 157), spatial targeting, and PA - they have informed the choice of policies. Firstly, a 

nutrient tax on fertilisers is modelled as an incentive-based pollution control policy popular 

in the literature (Claassen and Horan, 2001; Berntsen et al., 2003; Semaan et al., 2007; Jayet 

and Petsakos, 2013). This increases the unit cost of crop fertilisation and restricts agricultural 

production at the intensive margin (Xabadia, Goetz and Zilberman, 2006). Secondly, a set-

aside policy is modelled as a command-and-control measure. Set-aside policies require a 

certain number of parcels to be taken out of production to reduce overall pollution load and 

create “buffer zones” to aid natural absorption of leached nutrients (Khanna et al., 2003; 

Yang et al., 2003). A stocking density reduction was tested as an additional regulation-based 

policy. Stocking density reductions prescribe a maximum grazing livestock unit per hectare. 

They restrict the intensity of production by (i) a reduction in livestock numbers, (ii) an 

increase in grazing land sustaining the same number of livestock, or (iii) a combination of 

both (Aftab, Hanley and Baiocchi, 2017).  Moreover, considering the evidence that combining 

incentive and command-and-control policies may improve their cost-effectiveness (Aftab, 

Hanley and Baiocchi, 2010), a mixture of set-aside and nutrient tax policies was modelled. 

Finally, to assess the impact of spatial targeting in agri-environmental policy in the context of 

technological advances in the sector, the set-aside policy is modelled as a uniform and a 

spatially targeted application. 

The model is implemented in GAMS (GAMS Development Corporation, 2019), in line with 

numerous studies in the literature (Berntsen et al., 2003; Kampas and White, 2004; Martínez 

and Albiac, 2006; Hasler et al., 2014; Wang, Önal and Fang, 2018; Böcker, Möhring and Finger, 

2019). The non-linear optimisation includes 126,905 single equations and 274,478 single 

variables at the baseline6. Section 4.3 presents details on the biophysical input data for the 

model.  

 
6 The code for the baseline model is presented in Appendix C from p. 199. 
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4.3.   Biophysical Model Components 

Figure 4 (p. 75) provides an overview of the model structure and demonstrates how the 

different data inputs relate to each other. For the biophysical data, crop-specific yield and 

pollution functions were estimated based on simulation data from the Environmental Policy 

Integrated Climate (EPIC) model. For the 58 years of weather data7, 58 different functions 

per crop were estimated. Crop-specific yield and pollution functions were averaged across 

the weather-years. Following data cleaning and testing, 45 weather-years were used in the 

final model. In the optimisation, the weather-averaged yield functions are used to determine 

farmers’ optimal crop sets and fertiliser application levels. Outside the optimisation, the 

optimal choice variable levels are used in the average pollution function to calculate the 

average pollution levels associated with the determined optimal production choices. This 

structure is facilitated by the exclusion of emission-based policies following the literature 

review (see section 3.2.3, p. 49 for details). Moreover, outside the optimisation, the 

estimated weather-year-specific pollution functions were used to determine the statistical 

variability for the estimated baseline pollution levels (see section 5.4.5, p. 125). Geographical 

data from NSRI NATMAP8 provides the soil/slope combinations observed in the catchment. 

The economic data pertaining to agricultural production in the optimisation is taken from the 

widely used UK farm management handbooks Redman (2018) and SAC Consulting (2018). 

Catchment hydrological risk derived from hydrological connectivity data in SCIMAP9 is used 

to reflect the environmental risk associated with agricultural pollution from specific 

slope/soil combinations within the catchment. The hydrological risk estimates are assumed 

to be exogenous. The following sections explain the simulation process for the yield and 

pollution data (section 4.4) before discussing the literature on functional forms of the 

production functions and presenting the functional form chosen for this thesis (section 4.5). 

 

 
7 A weather year is defined as daily weather (precipitation, minimum and maximum temperatures, relative 
humidity, and wind speed variables) data for 365 days https://www.metoffice.gov.uk/services/data (accessed 
18/6/2020) 
8 http://www.landis.org.uk/data/series.cfm (accessed 29/4/2020) 
9 http://www.scimap.org.uk/ (accessed 15/6/2020) 

https://www.metoffice.gov.uk/services/data
http://www.landis.org.uk/data/series.cfm
http://www.scimap.org.uk/
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Figure 4: Overview of data inputs in baseline model structure 
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4.4.  Simulation of Yield and Pollution Data 

 

The yield and environmental pollution data are based on simulations from the Environmental 

Policy Integrated Climate (EPIC) model (Williams, 1990), which were run as part of a wider ESRC 

funded project (Economic and Social Research Council, 2019) in collaboration with the Durham 

University Mathematics and Geography departments. Wang et al. (2012, p. 1448) provide an 

overview of the EPIC model components. They explain that EPIC has four main components 

(pesticide, hydrology, carbon and N cycling, multi-cropping and crop competition) as well as 

components for weather, erosion, tillage, crop growth, and soil temperature. These allow the 

model to estimate the effects of different land management practices on key environmental 

indicators like nutrient leaching and provide important data for assessing policy impacts. 

Furthermore, EPIC can provide daily estimates and long-term simulations across multiple 

decades, thereby offering time scale flexibility for policy analyses (Balkovič et al., 2013). In 

addition, detailed input files allow the model to be calibrated to local conditions of the area of 

interest. These features have made it a popular foundation for biophysical-economic analyses 

of agri-environmental policy (Wang et al., 2022). Applications of EPIC in the European context 

include studies on NPS pollution control in Spain (Martínez and Albiac, 2004), diffuse N pollution 

in Italy (Semaan et al., 2007), the cost-effectiveness of agri-environmental programs in Austria 

(Schönhart et al., 2011), as well as soil erosion mitigation strategies in Tunisia (Louhichi, 

Flichman and Boisson, 2010) in a non-European country. In the following, details of the 

computational steps involved in the EPIC simulations for this thesis’ data are presented before 

discussing the data inputs required for the simulations.  
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Figure 5: Flow chart of EPIC simulation process for this project (adapted from EPIC user manual) 

 

 

Figure 5 was adapted from the EPIC user manual version 0810 (Gerik et al., 2015, p. 3) and 

illustrates the sequence of computational steps in the EPIC simulation process relevant to this 

thesis. At the beginning of a simulation, EPIC initialises and reads the data before starting 

computations for the first day in the simulation (e.g., Day 1). Using the daily weather data for 

Day 1 (1st January 1954 for this analysis), EPIC computes the effect of Day 1’s weather on the 

chosen soil and water variables. Subsequently, the specified management techniques are 

applied to the land and the crop to compute their impact on the relevant soil and crop variables. 

This facilitates the computation of crop growth as well as the crop’s impact on the soil and water 

variables. The Day 1 output variables are then stored and used as inputs to initialise the following 

increment day (which is Day 2 in this example), with the simulation process then starting again. 

The process continues until the simulation reaches Day 365, which represents the end of the 

first simulation year. After which, the output is summarised after computing the effect of crop 

growth on the soil and water variables to provide the yearly snapshot of the chosen output 

variables. This yearly snapshot is saved and carried forward, with some outputs reported at the 

daily or monthly level depending on the variable concerned10. The described process is then 

repeated for the second year of the simulation, starting with simulation day 366. As this study 

 
10 NPS pollution from agricultural production mainly consists of continuous variables which exhibit changes relevant 

for economic analyses on a daily basis. However, crop growth variables are only relevant for economic analysis in 
terms of final yield harvested which only change once or twice in a simulation year on harvest days. Therefore, 
pollution output is considered at a daily frequency while yield outputs are saved at monthly frequencies. 
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initially used    years’ worth of daily weather data, therefore simulation Day 21,170 represents 

the planned end of the simulation. The model stops at this stage, and the output summaries 

produced at the end of Day 21,170 are saved as the final simulation output. Figure 6 (see p. 79) 

details the inputs required for the described simulation steps and provides an overview of the 

resulting outputs for the Eden catchment. 

Weather data: 

Firstly, 58 years of daily observed weather data (1954-2011) from the UK’s Meteorological 

Office11 were used as precipitation, minimum and maximum temperatures, relative humidity, 

and wind speed variables in the simulations for the catchment. As mentioned in section 4.3 

(see p. 74), following data cleaning and testing 45 weather-years were used in the final model. 

The reviewed literature demonstrates that in addition to yields (Basso et al., 2013), weather 

conditions also significantly impact agricultural NPS pollution and affect the effectiveness of NPS 

control policies (Aftab, Hanley and Baiocchi, 2010). Therefore, the novel range of real-world 

weather scenarios used in the biophysical-economic model of this thesis (see Table 39, p. 157) 

will contribute to the knowledge on the relationship between weather scenarios and NPS 

pollution control policies. 

Soil- and slope-types: 

This description of the soil and slope data is based on Reaney (2012). Data on the catchment 

soils was sourced from NSRI NATMAP soil mapping with links to the Hydrology and Agronomy 

soil series data12, which provide a national mapping of UK soil properties. Soils were grouped 

into five soil-types, and their classifications were based on the two soil properties which are the 

most relevant to diffuse pollution generation: ‘Surface Percentage Runoff’ (SPR) and ‘Base Flow 

Index’ (BFI). Soil property parameters for the chosen soil-types were either based on an area-

weighted  

 
11 https://www.metoffice.gov.uk/services/data (accessed 18/6/2020) 
12 http://www.landis.org.uk/data/series.cfm (accessed 29/4/2020) 

 

https://www.metoffice.gov.uk/services/data
http://www.landis.org.uk/data/series.cfm
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Figure 6: Overview of EPIC simulation inputs and outputs using the Eden catchment as an example 
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average value or a majority-selected value in the case of categorical data or significant 

discrepancies between different values. Table 8 provides a summary of the names, descriptions, 

and areas covered for the chosen soil-types. In addition to prevalent soil-types, degrees of 

steepness representative of the catchment were also included in the simulations (4 different 

slopes, see Table 9 for a list of the chosen slopes).  

Table 8: Soil-type descriptions and catchment proportions 

Soil Label Classification and Description Area (ha) 
Proportion of 

Catchment (%) 

Soil 1 
Wick: light loamy drift with 

siliceous stones 
64,211 51 

Soil 2 
Newbiggin: reddish medium 

loamy drift with siliceous stones 
45 0.001 

Soil 3 
Malvern: loamy lithoskeletal 

basic crystalline rock 
19,159 15 

Soil 4 
Clifton: reddish medium loamy 

drift with siliceous stones 
42,020 33 

Soil 5 
Winter Hill: mixed eriophorum 

and sphagnum peat 
964 1 

Total area  126,400  

 

Table 9: Slope values and catchment proportions 

Slope Label Slope Values (%) Area (ha) 
Proportion of 

Catchment (%) 

Slope 1 0 – 1.39 11,678 9 

Slope 2 1.4 – 4.19 37,641 30 

Slope 3 4.2 – 7 30,696 24 

Slope 4 7.01 – 12.8 46,384 37 

 

Crop rotations: 

Another key influence on agricultural outputs is crop rotations. Crop rotations describe the 

plantation of different plant species in a particular sequence over time on the same land 

(Bullock, 1992, p. 309). Since the early days of agriculture, crop rotations have been recognised 

to improve yields and soil health relative to monoculture practices that grow the same plant 

species on the same land over extended periods of time (Robinson, 1966; Nevens and Reheul, 

2001). The length and composition of crop rotations further affect agricultural output in terms 

of yield and environmental indicators. In addition, more complex rotations, including 
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leguminous meadows, for example, can improve soil fertility for productive purposes and 

increase soil organic carbon levels, thereby addressing climate change issues (Triberti, Nastri 

and Baldoni, 2016). 

Based on agronomic expert opinions, various rotations representative of typical systems 

implemented in the UK were chosen for the simulations. The 24 simulated River Eden catchment 

rotations range from five to 12 years in length. In addition, 12 long-term monocropping 

simulations spanning 40 years were simulated, including the different grazing and cutting grass 

types grown as well as one miscanthus simulation. Details on the rotations are provided in Table 

43, Table 44 and Table 45 in Appendix A. The rotations were modelled for every soil-slope-type 

combination to provide agricultural output and pollution data representative of the catchment. 

One simulation repeats a rotation over the 58 years of weather data provided. To further 

maximise the use of the weather data, the number of simulations done per rotation is equal to 

the length of the rotation (i.e., the number of crops in the rotation), where each simulation starts 

with a different crop at simulation year 1. This process is illustrated in Table 10 using rotation 9 

as an example. Simulation 1 uses the first crop in the rotation (maize in the case of rotation 9) 

in simulation year 1 or weather data year 1954. The subsequent simulation years plant crops 

following the order dictated by the rotation and repeat the rotation for the remaining weather 

data years. Simulation 2 starts with the last crop in the rotation (silage kill in rotation 9) in 

simulation year 1, before repeating the rotation for the remaining weather data years. 

Subsequent simulations continue to iterate through the crops in the rotation as starting crops 

in simulation year 1 until every crop has been used as a starting crop in simulation year 1. This 

procedure ensures that agricultural outputs for every crop are simulated for every weather-year 

in the dataset and allows the biophysical-economic model to capture the variability and 

uncertainty in agricultural production associated with the weather in a particular year. 
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Table 10: Illustration of simulation weather data use for rotation 9 

 

 
 

1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 … 2009 2010 2011 

Year of 

Simulation 
1 2 3 4 5 6 7 8 9 10 11 12 … 56 57 58 

Simulation 

1 
MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* … MAIZE* MAIZE* SIL3 (R) 

Simulation 

2 
SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* … SIL3 (K) MAIZE* MAIZE* 

Simulation 

3 
SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) … SIL3 SIL3 (K) MAIZE* 

Simulation 

4 
SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 … SIL3 (R) SIL3 SIL3 (K) 

Simulation 

5 
MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) SIL3 SIL3 (K) MAIZE* MAIZE* SIL3 (R) … MAIZE* SIL3 (R) SIL3 

Note: R= Reseed, K=Kill (end of grass in rotation), *=whole-cropped, example crop pair discussed in section 5.2.1, p. 99 
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Crop management scenarios: 

In addition to weather, soil-type, and degrees of steepness, management practices significantly 

impact agricultural outputs in terms of yield and environmental indicators. The simulation, 

therefore, included two different broad management scenarios, which are briefly explained in 

Table 11. The scenarios include practices traditionally associated with conventional agriculture 

like the use of artificial fertilisers and a conservation practice, including the use of farmyard 

manure.  

Table 11: Management scenarios in EPIC simulation 

Management 
Scenario 

Brief 
 Explanation 

Artificial Fertiliser Fertilisation using synthetic fertiliser 

Farmyard Manure Fertilisation using livestock manure 

 

The majority of the crops included in the model assume artificial fertiliser use, which remains 

the predominant practice for tillage crops in UK agriculture (DEFRA, 2018a). In addition, 

16 tillage crops are simulated with fertilisation using livestock manure. As a by-product of 

livestock husbandry, manure is often considered a waste product on farms with limited arable 

farm activities. However, manure contains valuable nutrients and organic matter, which can 

support soil health indicators such as soil organic carbon stocks (Maillard and Angers, 2014). 

Particularly in light of the sharp price rises for artificial fertiliser in 2021, there has been more 

interest in organic fertilisation (AHDB, 2022). Therefore, the simulated farmyard manure crops 

allow this thesis to capture current agricultural production decisions.  

The process of simulating a crop rotation over the 58 years of weather data presented above 

was repeated for every discussed management scenario. The following section presents 

analyses of the yield and pollution data received from the simulations. In addition, the following 

section discusses the literature informing the choice of functional form for the production and 

pollution functions of the biophysical-economic model.  
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4.5.   Production and Pollution Functions 

Economic models of agricultural production and its externalities are built on crop production 

and pollution functions which capture the biophysical processes involved. As agricultural 

production and externalities depend on local conditions, the choice of functional form should 

be guided by both general agronomic theory and local data at hand without any a priori 

assumptions (Frank, Beattie and Embleton, 1990). However, due to the complexity of the 

concerned natural processes, controversy remains over the appropriate functional forms for the 

production and pollution functions in these agri-economic models (Jayet and Petsakos, 2013). 

This section firstly reviews the debate on the issue of functional forms for crop production 

functions and analyses the appropriate functional form for this thesis. Subsequently, the 

pollution functions commonly employed in the literature are examined. Examples of the 

discussed production and pollution functions are presented in Table 12 (see p. 86) and Table 

13  (see p. 87) respectively. 

Due to the computational simplicity associated with quadratic production functions, several 

studies apply them in their agri-economic analyses (Martínez and Albiac, 2004, 2006; Louhichi, 

Flichman and Boisson, 2010). However, early evidence by Ackello-Ogutu, Paris and 

Williams (1985) suggests that quadratic functional forms overestimate the maximum yield and 

optimal fertiliser recommendations. Moreover, the authors highlight that a quadratic functional 

form allows for substitution between inputs (i.e., nutrients) which is contentious within biology. 

Further, they argue that the presented parameters lack agronomic interpretations.  

Empirical evidence largely discredits using a quadratic functional form for agricultural 

production functions and favours either the von Liebig or the Mitscherlich-Baule functional form 

(Frank, Beattie and Embleton, 1990; Llewelyn and Featherstone, 1997; Rosenzweig et al., 1999). 

The von Liebig functional form is based on the Law of the Minimum, which is attributed to the 

work of Justus von Liebig in 1855 (Harmsen, 2000). His work considers crop growth to be 

proportional to the supply of the limiting factor ceteris paribus, where the limiting factor may 

be a nutrient, water or light (Ferreira, Zocchi and Baron, 2017). Consequentially, in a two-input 

factor scenario (e.g. N and water), plant growth displays a linear relationship with the supply of 

N until the water becomes the limiting factor and crop yield reaches a plateau when neither 

water nor N are limiting (Llewelyn and Featherstone, 1997). Indeed, some empirical evidence 

suggests that linear von Liebig specifications better fit real production data than various 

polynomial specifications (Ackello-Ogutu, Paris and Williams, 1985; Grimm, Paris and Williams, 

1987). However, as Paris (1992) stresses, the linear relationship between inputs and plant 
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growth is highly controversial and has produced the Mitscherlich and Mitscherlich-Baule 

functions as notable extensions adhering to the growth plateau of the Law of the Minimum. He 

asserts that the single-input Mitscherlich equation addresses the linearity issue by introducing 

an exponential function. Furthermore, only the Mitscherlich-Baule extension to two or more 

inputs further introduces a degree of substitution between inputs.  

Frank, Beattie and Embleton (1990) test the Mitscherlich-Baule functional form against the 

discussed alternative specifications and find it preferable. Their findings are supported by 

Llewelyn and Featherstone (1997), who also include a non-linear extension of the von Liebig 

functional form in comparing different production functional forms. More recent applications, 

such as Wang and Baerenklau (2014), also favour the Mitscherlich-Baule specification due to its 

differentiability and agronomic interpretation. The authors further demonstrate that 

convergence problems in estimating the Mitscherlich-Baule function reported by Martínez and 

Albiac (2006) can be overcome by increasing iteration limits of regression models and using 

complementary methodologies such as data visualisation. 

The literature analysis has demonstrated that quadratic production functions exhibit poor yield 

prediction powers and lack biological interpretations of coefficients (Ackello-Ogutu, Paris and 

Williams, 1985). Moreover, empirical analyses have shown that the Mitscherlich-Baule 

specification represents yield behaviour more accurately than the von Liebig specifications 

(Frank, Beattie and Embleton, 1990; Llewelyn and Featherstone, 1997). Importantly, in contrast 

to discussed alternatives, the Mitscherlich-Baule functional form is twice differentiable and 

corresponds to agronomic interpretations13 (Wang and Baerenklau, 2014). Therefore, the 

Mitscherlich-Baule functional form should generally be preferred for agricultural production 

functions. Furthermore, statistical analysis of the simulated yield data used in this thesis 

suggests that the Mitscherlich-Baule functional form is an appropriate fit for the yield data at 

hand (see section 5.2.1 for details)14.  

  

 
13 The agronomic interpretation of the functions coefficients is beyond the scope of this thesis. 
14 Statistical fitting of different yield functions was performed with the help of Dr Jonathan Cumming. 
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Table 12: Examples of production functions 

Quadratic: (Rosenzweig et al., 1999) 

 

𝑌𝑖 = 𝛼1 + 𝛼2(𝑁𝑖) + 𝛼3(𝑊𝑖) + 𝛼4(𝑁𝑖)2 + 𝛼5(𝑊𝑖)2 + 𝛼6(𝑁𝑖𝑊𝑖) 

 

𝑌𝑖: estimated crop yield; 𝑁𝑖: applied N; 𝑊𝑖: total water amount (precipitation and irrigation); 
𝛼: parameter. 

Linear von Liebig: (Frank, Beattie and Embleton, 1990) 

 

𝑌𝑖 = min (𝑌∗, 𝛽1 + 𝛽2𝑁𝑖, 𝛽3 + 𝛽4𝑃𝑖) 

 

𝑌∗: is the max yield when neither N nor water is limiting; 𝑃𝑖: applied phosphorous;  𝛽: parameter. 

Non-Linear von Liebig: (Paris, 1992) 

 

𝑦𝑖 = 𝑚𝑖𝑛[𝑚(1 − 𝑘𝑁𝑒−𝛽𝑁𝑁𝑖), 𝑚(1 − 𝑘𝑝𝑒−𝛽𝑃𝑃𝑖)] + 𝑢𝑖  

 

𝑚: asymptotic plateau common to both inputs; 𝑘: parameter; 𝑢𝑖: the experimental error. 

Mitscherlich-Baule: (Rosenzweig et al., 1999) 

 

𝑌𝑖 = 𝛽1[1 − exp(−𝛽2(𝛽3 + 𝑁𝑖))][1 − exp(−𝛽4(𝛽5 + 𝑊𝑖))] 

𝑌𝑖: estimated crop yield; 𝑁𝑖: applied N; 𝑊𝑖: total water amount (precipitation and irrigation); 
𝛽1 − 𝛽5: parameters 

 

In contrast, to yield functions, the optimal choice for pollution functions in biophysical-economic 

models has received less explicit attention in the literature. This could be explained by the fact 

that crop yield as the principal product is of more immediate significance than pollution in 

agricultural production. Indeed, despite environmental considerations increasingly shaping 

European agricultural policy since the 1980s, production concerns quickly begin to dominate 

political agendas in the face of food security issues (Posthumus et al., 2010). This trend is 

reflected in the less explicit treatment of agricultural pollution functions in the economic 

literature. Among the studies which do consider pollution functions, some make use of 

experimental data to estimate them. However, like this thesis, most works rely on simulated 

data, which facilitates the inclusion of diverse variables and a more holistic representation of 

diffuse pollution (Vatn et al., 1997). Generally, the choice of pollution function in the literature 

is data-driven, and frequently studies employ quadratic or square-root polynomial functions to 
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represent nutrient leaching from the soil (Helfand and House, 1995; Martínez and Albiac, 2004). 

Examples of the functions employed in the literature are presented in Table 13.  

Table 13: Examples of pollution functions 

Cubic: Nitrate (Lord and Mitchell, 1998) 

 

𝑁𝑖𝑡𝑟𝑎𝑡𝑒 𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 𝑝𝑜𝑡𝑒𝑛𝑡𝑖𝑎𝑙 = 𝑎 + 𝑏𝑁 + 𝑐𝑁2 + 𝑑𝑁3 

 

𝑎, 𝑏, 𝑐, 𝑑: fitted constants; 𝑁: applied nitrogen fertiliser 

Restricted quadratic and square-root: Nitrate (Larson, Helfand and House, 1996) 

 

𝑁𝑂3 = 𝛽0 + 𝛽1𝑁 + 𝛽2𝑊 + 𝛽3𝑁 ∗ 𝑊 + 𝜀 

 

𝑁𝑂3: nitrate leached, 𝛽: parameters, 𝑁: nitrogen applied, 𝑊: water applied, 
 𝜀: disturbance term 

Linear: Nitrate (Jayet and Petsakos, 2013) 

 

𝑒(𝑁) = 𝐴 × 𝑁 + 𝐵 

 

𝑒 = 𝑁𝑂3 − 𝑁 𝑙𝑜𝑠𝑠𝑒𝑠; 𝐴, 𝐵: estimated parameters 

Linear: Soil Erosion (Schuler and Sattler, 2010) 

 

𝐴 = 𝑅 × 𝐾 × 𝐿𝑆 × 𝐶𝑃 

 

𝐴: average annual soil loss in t/ha; 𝑅: rainfall erosivity index, 𝐾: soil erodibility factor; 𝐿𝑆: topographic 
factor (L is slope length, S is slope inclination); 𝐶: cropping factor; 𝑃: conservation practice factor. 

 

Given the lack of clear evidence in the bioeconomic literature on specific functional forms for 

pollution functions, the chosen functional forms were based on theoretical relationships 

between pollutants and fertiliser inputs as well as data exploration. The chosen functions for the 

six pollution variables of interest in this analysis are presented in Table 14.
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Table 14: Functional forms and theoretical reasoning for pollution functions 

Pollution Variable Function of N and or P Theoretical Reasoning 

Sediment 

mobilised (t/ha) 
𝛽0,𝑍𝐿𝑂𝐴𝐷 + 𝛽1,𝑍𝐿𝑂𝐴𝐷 × 𝑁 

Plant growth is driven by N application. Larger plants with more developed 

root systems reduce erosion. However, sediment pollution is more strongly 

influenced by the employed tillage system than the level of fertilisation. 

N to River 

(kg/ha) 
𝛽0,𝑁𝑅𝐿𝑂𝐴𝐷 + 𝛽1,𝑁𝑅𝐿𝑂𝐴𝐷 × 𝑁 

Increased N application increases the amount of N available on and in the soil, 

increasing N leaching to the river. 

N to groundwater 

(kg/ha) 
𝛽0,𝑁𝐺𝐿𝑂𝐴𝐷 + 𝛽,1𝑁𝐺𝐿𝑂𝐴𝐷 × 𝑁 

Increased N application increases the amount of N available on and in the soil, 

increasing N leaching to groundwater. 

P to the river 

(kg/ha) 

𝛽0,𝑃𝑅𝐿𝑂𝐴𝐷 + 𝛽1,𝑃𝑅𝐿𝑂𝐴𝐷 × 𝑁

+ 𝛽2,𝑃𝑅𝐿𝑂𝐴𝐷 × 𝑃

+ 𝛽3,𝑃𝑅𝐿𝑂𝐴𝐷 × 𝑃 × 𝑁 

Increased P application increased P leaching to the river. Increased plant 

growth through increased N application can reduce the amount of P leaching 

as larger plants absorb more of the available P. 

P to groundwater 

(kg/ha) 

𝛽0,𝑃𝐺𝐿𝑂𝐴𝐷 + 𝛽1,𝑃𝐺𝐿𝑂𝐴𝐷 × 𝑁

+ 𝛽2,𝑃𝐺𝐿𝑂𝐴𝐷 × 𝑃

+ 𝛽3,𝑃𝐺𝐿𝑂𝐴𝐷 × 𝑃 × 𝑁 

Increased P application increased P leaching to groundwater. Increased plant 

growth through increased N application can reduce the amount of P leaching 

as larger plants absorb more of the available P. 

Carbon emission 

(kg/ha) 

𝛽0,𝐶𝐹𝐸𝑀 + 𝛽1,𝐶𝐹𝐸𝑀 × 𝑁 + 𝛽2,𝐶𝐹𝐸𝑀 × 𝑃

+ 𝛽3,𝐶𝐹𝐸𝑀 × 𝑃 × 𝑁 

Increased fertiliser application (N and/or P) may increase carbon emissions due 

to increased machinery use and soil perturbation. 
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Graphical and statistical summary statistics of the fitted pollution functions are presented in 

chapter 5. The following section presents the framework and data used to capture hydrological 

connectivity in this thesis. 

4.6.  Hydrology Framework 

In addition to soil-type, degrees of steepness, and management scenarios, geographical features 

such as the hydrological connectivity of a land parcel are key predictors of NPS pollution 

generation (Heathwaite, Quinn and Hewett, 2005). As illustrated in Figure 7 (see p. 90) there is 

significant variation within the degree of hydrological connectivity of different agricultural fields 

to water bodies. While some land parcels show direct hydrological pollution pathways to water 

bodies, other land parcels are not highly connected to a water body. Consequentially, the 

environmental impact of NPS pollution generated from different land parcels will vary 

significantly. For example, a field with a soil-/slope-type combination prone to generating NPS 

pollution may not be hydrologically connected to a water body and therefore not pose a high 

risk of NPS pollution. However, a land parcel with a relatively low-risk soil-/slope-type 

combination in terms of NPS pollution generation may be highly connected to a water body and, 

therefore, in effect, pose a high NPS pollution risk. Previous biophysical-economic models which 

analyse agri-environmental policies largely fail to capture the hydrological risk component of 

NPS pollution. However, accurately capturing total NPS pollution generation risk is necessary to 

effectively design spatially targeted policies. Therefore, this thesis builds on previous works and 

includes the hydrological connectivity within the catchment in its analysis. The hydrological 

connectivity data was sourced from SCIMAP15 with the help of Dr Sim Reaney.  

 
15 http://www.scimap.org.uk/ (accessed 15/6/2020) 

http://www.scimap.org.uk/
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Figure 7: Illustration of relationship between NPS pollution risk and hydrological connectivity 
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The following description of SCIMAP and its process of predicting hydrological connectivity is 

based on the SCIMAP documentation (Reaney and Wells, 2014). SCIMAP uses the Network Index 

(Lane et al., 2004; Lane, Reaney and Heathwaite, 2009), which assesses the risk of the land 

parcels in a landscape becoming saturated. Further, the Network Index accounts for the 

probability of a saturated land parcel being connected to a flow path, contributing to NPS 

pollution in the connected water body. In addition, SCIMAP uses the topographic wetness index 

(Beven and Kirkby, 1979), which captures spatial heterogeneities in soil moisture across the 

landscape. The SCIMAP predictions were tested on the Upper Rye catchment in North Yorkshire, 

which is hydrologically, geomorphologically, and climatologically comparable to the Eden 

catchment and found to satisfactorily predict hydrological connectivity (Lane, Reaney and 

Heathwaite, 2009). 

Hydrological connectivity is represented as a ranking parameter ranging from 0 – 1, where 0 

represents the lowest and 1 the highest hydrological connectivity level for all land covers within 

the catchment. For the biophysical-economic model, the catchment’s agricultural land is divided 

into intervals of hydrological connectivity at a scale of 0.116. The resulting levels of connectivity 

are presented in Table 15.  

Table 15: Definition of hydrological connectivity Intervals at different scales 

Intervals of 0.1 

Conn_1 = [0 - 0.1] 

Conn_2 = [0.11 - 0.2] 

Conn_3 = [0.21 - 0.3] 

Conn_4 = [0.31 – 0.4] 

Conn_5 = [0.41 – 0.5] 

Conn_6 = [0.51 – 0.6] 

Conn_7 = [0.61 – 0.7] 

Conn_8 = [0.71 – 0.8] 

Conn_9 = [0.81 – 0.9] 

Conn_10 = [0.91 - 1] 

 
16 An alternative finer resolution distribution with 100 hydrological connectivity levels was investigated but ultimately 
not used in the model due to computational constraints. See Appendix A, Figure 33, p. 181 for the finer resolution 
distribution for intervals of 0.01. 
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The connectivity levels may be interpreted in line with the following example: At the scale of 0.1 

(jumps of 10 percentile), a connectivity level of Conn_3 would imply a level of connectivity within 

the 21st and 30th percentile, meaning the risk of NPS is between 21 and 30 percentage points 

higher than the lowest level of NPS pollution.  

The data further provides the catchment area in m2 attributed to a certain soil/slope-type 

combination and connectivity interval. Therefore, this data facilitates the introduction of 

hydrological connectivity as an additional index in the biophysical-economic model. The 

generated NPS pollution calculated by the model is multiplied by the associated hydrological risk 

factor to reflect the true NPS pollution risk.  

The distribution of hydrological connectivity across the agricultural land of the catchment is 

represented in Figure 8 for intervals of 0.1. The analysis demonstrates that 4 . % of the Eden’s 

agricultural area is characterised by levels of hydrological connectivity within the 21st to 30th 

percentile above the minimum level of hydrological connectivity. 

 

Figure 8: Distribution of hydrological connectivity levels (intervals of 0.1) across soils and slopes 
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Figure 8 and Figure 9 further demonstrate that the majority of the catchment’s agricultural land 

is characterised by relatively low hydrological connectivity, with   .  % of the Eden’s 

agricultural area displaying levels of hydrological connectivity equal to or below the 40th 

percentile on the connectivity ranking. Further, only 0.39% of the agricultural land is classified 

as relatively high risk based on their hydrological connectivity of within or above the 

70th percentile ranking. 

Figure 9: Cumulative distribution of hydrological connectivity levels (intervals of 0.1) across soils 
and slopes 

 

 

Table 16 shows a more detailed breakdown of the land cover types of the catchment’s 

agricultural land. The land cover types are based on the Centre for Ecology & Hydrology’s land 

cover map of 2007; Appendix A, Table 47, p. 174 provides details of the agricultural land 

classification (Centre for Ecology & Hydrology, 2021). The 2007 land cover map classification of 

agricultural land differs only in minor ways from the more recent 2015 land cover map 

classification in that the 2007 version contains the rough grassland class, which is no longer 

included in the 2015 land cover map (Centre for Ecology & Hydrology, 2017). Table 16 further 

demonstrates that, on average, the agricultural land covers of the Eden catchment are 
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characterised by lower levels of hydrological connectivity and relatively little variation. Close to 

70% of the catchment agricultural land is classified as improved grassland with an average level 

of hydrological connectivity within 22 percentage points of the catchment’s minimum level of 

hydrological connectivity. Meanwhile, only 1.6% of the catchment area is classified as neutral 

grassland with a mean level of hydrological connectivity up to 26 percentage points above the 

entire catchment's minimum.  

Table 16: Mean level of hydrological connectivity by landcover type 

Catchment 
land cover 

Area 
(ha) 

Percentage of 
total agricultural 

area 

Mean level of 
hydrological 
connectivity 

Arable and 
Horticulture 

22,370 17.7 0.23 

Improved Grassland 86,083 68.1 0.22 

Rough Grassland 15,875 12.6 0.22 

Neutral Grassland 2,002 1.6 0.26 

Note: Land covers are defined following the Centre for Ecology & Hydrology Land Cover Map 
(2007)(Centre for Ecology & Hydrology, 2021) 

 

4.7.   Modelling Precision Agriculture 

As discussed in chapter 3 (section 3.4.1), PA firstly facilitates improved data collection on 

production-relevant variables such as soil heterogeneity and fertiliser requirements relative to 

conventional agricultural technologies. Secondly, PA allows farmers to optimise their production 

decisions according to the collected data using VRNA fertilisation, for example. Therefore, in a 

theoretical economic framework, we can assume that farmers operating with conventional 

agricultural technologies do so under incomplete information regarding their production 

functions.  PA technologies move farmers from incomplete information towards complete 

information as they receive more information on the optimal management decisions like 

hectare-specific fertiliser application levels. Specifically, VRNA technology allows the farmer to 

apply fertilisers according to the hectare-specific crop requirements and avoid site-specific over-

or under-application. Such optimised fertiliser application may lead to fertiliser savings and NPS 

pollution reductions at the farm-level (Basso et al., 2016). At the cost of obtaining and operating 

the technology, PA thereby reduces inefficiencies and shifts farmers from inside the production 

possibility frontier onto the production possibility frontier.  
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This thesis incorporates PA technology into its biophysical-economic model by building on the 

economic framework presented. The model focuses exclusively on the impact of PA on N 

application and does not consider P for three main reasons. Firstly, the N content of manure is, 

on average, 2.8 times higher than its P content across the different livestock types considered 

in the model (Crooks et al., 2020). Secondly, the per hectare crop requirement for N generally 

significantly outweighs the crop requirement for P for grain crops and forage crops (SAC 

Consulting, 2018). Finally, N's dominance in terms of manure content and crop requirements 

has led to an exclusive focus on the impact of PA on N in the technical PA literature. To the best 

of my knowledge, agronomic studies investigating the effects of VRNA, to date, have not 

included specific treatments of P fertilisation. Given the weight of N in manure composition as 

well as fertiliser requirements and the lack of reliable evidence regarding the effects PA has on 

P fertilisation, this thesis’ treatment of VRNA focuses on N fertilisation. Therefore, the impact of 

using PA relative to conventional agricultural technology is modelled by N efficiency factors that 

capture the improvements in N use associated with using PA.  

As discussed in section 3.4.1, quantitatively measuring the exact impact of PA technology on 

fertiliser efficiency, grain yields, and environmental indicators has been difficult due to the 

multitude of variables that significantly impact agricultural production. The difficulties 

associated with capturing all relevant variables in field trials explain the wide range of estimates 

for N efficiency gains that have been found in the literature on VRNA technology.  

A detailed agronomic field trial in Germany, for example, finds that the beneficial effects of 

VRNA for N fertilisation and N surplus in the soil are highly dependent on additional yield-limiting 

variables such as water availability in the soil (Zillmann et al., 2006). However, in an earlier field 

trial on winter wheat, Ehlert, Schmerler and Voelker (2004) find that VRNA entails N fertiliser 

savings of 10-12%. More recently, Stamatiadis et al. (2018) find 38% N fertiliser savings with 

VRNA relative to a uniform application.  

Colaço & Bramley (2018) provide a comprehensive review of the available evidence on sensor-

based fertiliser applications. The authors find that most studies report N fertiliser savings 

ranging from 5% - 45% at relatively constant grain yield levels. This thesis, therefore, uses a range 

of efficiency factors from 5% - 45% representing the range of efficiency gains in N fertilisation 

from VRNA technology currently suggested by the literature. 

The EPIC simulation assumes conventional agricultural production conditions with imperfect 

information on the biophysical variables relevant to that agricultural production. Therefore, the 

production functions obtained from the simulation can be assumed to be inside the production 
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possibility frontier. Under PA use, PA efficiency factors (EF) are applied to the yield functions to 

simulate the shift towards perfect information and onto the production possibility frontier. This 

approach demonstrates the range of relative differences between production using PA and 

conventional technologies currently assumed in the literature. More N reaches the plants to 

stimulate growth in the PA scenario at equal total N application levels relative to the 

conventional technology scenario. One, therefore, expects higher yields in the PA scenario but 

equal levels of pollution relative to the conventional scenario at constant total N application 

levels. The costs of using PA are modelled as contractor costs per hectare for fertilisation with 

an added charge for variable rate application net of farmers’ average constant rate fertilisation 

costs per hectare, which are included in the general variable crop costs (Redman, 2018, p. 196). 

This approach facilitates addressing the research objectives around PA’s influence on catchment 

scale yield and NPS outcomes (see section 1.1, p. 16). 
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5. Model Baseline 

This chapter presents the details of the model baseline. Section 5.1 provides an overview of the 

study catchment’s main characteristics. Sections 5.2 and 5.3 summarise the biophysical and 

economic data, respectively, which underpins the analysis. Finally, section 5.4 provides the 

details of the model baseline results. 

5.1.   Study Catchment: The Eden 

The catchment analysed in this thesis is the Eden, located in the Northwest of England. The Eden 

forms part of the demonstration test catchment network run by DEFRA to investigate cost-

effective ways to reduce diffuse pollution from agriculture (Eden DTC - A Defra Demonstration 

Test Catchment, 2020). It spans 2,310 km2 and is characterised by various land covers “with four 

dominant classes: arable; intensive or improved pasture; extensive pasture; and moorland” 

(Reaney et al., 2011, p. 1021). With an average annual rainfall of 2,800 mm, precipitation levels 

in the Eden catchment are high relative to the English mean (EA, 2009). Over the period from 

January 1959 to April 2021, the mean temperature in the Eden was 8.2 °C, including highs of 

31.1 °C and lows of -25.4 °C (own calculations based on Met Office (2012)). The location and 

geographic characteristics of the Eden facilitate a wide representation of the conditions 

observed in agricultural production across Northern England and Scotland. With respect to 

agricultural activity, the catchment is livestock intensive and exhibits both upland and lowland 

farms. In the following, details on the catchment-specific biophysical input data are presented. 

Section 5.2 discusses the yield and environmental pollution data. 

 

5.2.   Biophysical Data  

The following sections firstly summarise the yield data (section 5.2.1) used in this analysis before 

presenting the pollution data (section 5.2.2) employed in this biophysical-economic model. 

5.2.1.   Yield Data 

This section discusses the characteristics of the yield data received from the EPIC simulation, 

describes the transformation of the raw simulation data into yield functions used in the 

biophysical-economic model, and presents the results of analyses on the yield functions. 

As demonstrated in section 4.4, the output provided by EPIC for each crop includes several 

variables related to both yield and environmental pollution data. Firstly, we turn to the yield 
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data. The definitions of the variables included in the EPIC yield output files are shown in Table 

17. Whether a crop yield is counted as grain yield or forage yield depends on the harvesting 

methods used in the EPIC simulation, which are pre-defined by the EPIC modellers. Therefore, 

the variables relevant for the yield of interest in this thesis vary between crops. 

Table 17: EPIC variables and definitions 

EPIC Variable Definition 

GYLD Grain Yield (DM t/ha) 

FYLD Forage Yield (DM t/ha) 

BIOM Total Biomass (DM t/ha) 

BGBM Below Ground Biomass including GYLD (DM t/ha) 

 

The EPIC variable combinations relevant to the modelled crop types are presented in Table 18. 

The combinations were determined based on Gerik et al. (2015) and personal communications 

with the EPIC team. Different management intensity levels were modelled for grazing and 

cutting grasses, including varying numbers of cuts and, thus, varying numbers of fertiliser 

applications. The relevant EPIC variable combinations are fixed for every crop across the two 

management scenarios in Table 11. 

Table 18: EPIC yield variables used for each crop 

EPIC yield variables used in model 

Crop EPIC variable combination 

Winter wheat GYLD 

Whole-cropped winter wheat GYLD + FYLD 

Winter barley GYLD 

Spring barley GYLD 

Winter oil seed rape GYLD 

Spring oats GYLD 

Potatoes GYLD 

Spring beans GYLD 

Whole-cropped maize GYLD + FYLD 

Stubble turnips (July) FYLD 

Stubble turnips (Spring) FYLD 
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EPIC yield variables used in model 

Fodder beet GYLD 

Grazing grass (two cuts) FYLD 

Grazing grass (three cuts) FYLD 

Grazing grass (four cuts) FYLD 

Grazing grass (six cuts) FYLD 

Grazing LFA FYLD 

Silage grass (one cut) FYLD 

Silage grass (two cuts) FYLD 

Silage grass (three cuts) FYLD 

Silage grass (four cuts) FYLD 

Silage LFA FYLD 

Hay (two cuts) GYLD + FYLD 

Hay LFA GYLD + FYLD 

Miscanthus GYLD + FYLD 

Note: each crop was modelled in different rotations to capture the impact of crop sequence 

 

Due to the high number of combinations (crop, rotation, weather-year, soil, slope, and 

management scenario), 1,985,920 different yearly yield and pollution output files were 

estimated for the Eden catchment. Several “unique crop pairs” were chosen from the rotations 

to reduce the output for further analysis to a manageable size. A crop pair denotes two crops 

grown in a sequence as part of a particular rotation. The optimisation uses the yield and 

pollution output in a year of the second crop in the pair.  Nonetheless, these outputs are also 

influences by the impacts of the first crop in the pair. Accounting for previous crops when 

considering NPS pollution and yield is important as soil characteristics (e.g., nutrient availability 

in the soil) continue to be impacted by the cultivated crop beyond the year of cultivation. The 

crop pair concept can be illustrated using the second and third crops in Eden rotation 9 from 

Table 10 (see p. 82, highlighted by a red ellipse) as an example. In this crop pair, silage reseed 

with three cuts is planted in the current year; therefore, yield and pollution outputs for silage 

reseed with three cuts are recorded in the model. However, the preceding crop (whole-cropped 

maize in this example) will significantly impact yield and pollution generated in the current year. 

Therefore, by defining crop pairs, we can account for and compare the impact farmers’ different 

planting decisions of the previous year have on the current year’s environmental and economic 

indicators. For every management scenario, between 60 and 98 crop pairs were chosen for 

further analysis. Crop pair choice was informed by obtaining a sample representative of farmers’ 

planting behaviour in the Eden.  
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For the chosen crop pairs, the relevant EPIC yield variables (see Table 18) were extracted from 

the EPIC output files in cooperation with Dr Jonathan Cumming. Subsequently, Mitscherlich-

Baule yield functions were fitted to the simulated yield data. The Mitscherlich-Baule functional 

form was chosen based on its theoretical properties (see section 4.5 for a detailed discussion on 

the preference for a Mitscherlich-Baule functional form) and simple model adequacy tests as 

opposed to more rigorous tests for non-nested models such as the J-test or the N-test (as 

investigated by Pesaran (1982)). N and P were chosen as the two varying inputs, and the 

estimations used range from zero to the defined crop-specific fertiliser maxima (see Appendix 

A, Table 46 for details). Equation 3 presents the weather-year- (𝑤), soil- (𝑠), and slope- (𝑙) specific 

yield function where 𝛽0𝑤𝑠𝑙, 𝛽1𝑤𝑠𝑙 , 𝛽2𝑤𝑠𝑙 , 𝛽3𝑤𝑠𝑙 , 𝛽4𝑤𝑠𝑙  are the estimated coefficients17 and 𝑌𝑖𝑤𝑠𝑙  

presents the dry weight EPIC unique crop pair yield in t/ha for the chosen N (𝑁𝑖) and P (𝑃𝑗) 

fertilisation levels in kg/ha.                                                                                                                                                    

𝑌𝑖𝑗𝑤𝑠𝑙 = 𝛽0𝑤𝑠𝑙[1 − exp(−𝛽1𝑤𝑙(𝛽2𝑤𝑠𝑙 + 𝑁𝑖))][1 − exp(−𝛽3𝑤𝑠𝑙(𝛽4𝑤𝑠𝑙 + 𝑃𝑗))] (3) 

 

As demonstrated in Figure 4 (see p. 75), inside the optimisation of the biophysical-economic 

model, a yield function fitted as an average over the 45 different weather-years is used in the 

final model. This approach facilitates computation and accounts for the fact that ex-ante farmers 

cannot predict the year’s weather when making crop cultivation and fertiliser application 

decisions.  

Yield Scaling 

A few average weather functions showed unrealistically low fertiliser responses for some soil-

slope combinations. These were traced to batch errors in the EPIC data. To ensure consistency 

in the available soil-slope combinations, the yield functions for every unique crop were scaled 

in Python following the subsequently presented steps: 

1) The dry weight yield (t/ha) for the 20 soil-/slope-type combinations were evaluated at 

maximum P application and five levels of N application ranging from the crop-specific 

minimum to the crop-specific maximum.  

2) The soil-slope combination (r*), which displayed the highest response to N across the 

application range was chosen as the representative function for the unique crop.  

 
17 As mentioned in section 4.5 the Mitscherlich-Baule coefficients allow for agronomic interpretation; however, the 
details of this agronomic interpretation are beyond the scope of this thesis. 
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3) The scaling factor for each soil-slope combination was determined by subtracting the r* 

average yield across the N application range from every soil-slope combination of the 

unique crop. 

4) The yield function coefficients 𝛽0, 𝛽1, 𝛽2, 𝛽3, 𝛽4 for all soil-slope combinations were set 

equal to the r* yield function coefficients. The scaling factor 𝛽5 calculated in step three 

was added to the yield function resulting in the scaled function: 

𝑌𝑖𝑗𝑤𝑠𝑙 = 𝛽5wsl + 𝛽0𝑤[1 − exp(−𝛽1𝑤(𝛽2𝑤 + 𝑁𝑖))][1 − exp(−𝛽3𝑤(𝛽4𝑤 + 𝑃𝑗))] (4) 

 

EPIC yield estimates are reported in dry weight tonnes per ha (Gerik et al., 2015). A dry weight 

tonne is a conceptual unit that assumes 0% crop moisture content and is used to calculate 

animal husbandry feeding requirements. The use of dry weight tonnes per ha allows EPIC to be 

applied in many different geographical settings where there may be significant variation in crop 

moisture content at harvest. In reality, however, agricultural transactions occur in terms of fresh 

weight yield (i.e., weight including the typical crop-specific moisture content at harvest). 

Therefore, yield functions are converted from dry weight to fresh weight through multiplication 

by a “Fresh Weight Correction Factor” (FWCF). Each crop-specific FWCF is reported in Table 19. 

Following the recommendation of the EPIC team, the FWCF is based on the typical crop DM 

content reported by Henry and Morrison (1916). 

Table 19: Fresh Weight Correction Factor 

Crop 
Fresh Weight 

Correction Factor* 

 Page reference 
for crop DM content  

Henry and Morrison (1916) 

Winter wheat 1.109 p. 634 

Winter barley 1.093 p. 634 

Winter oilseed rape 1.1 p. 636 

Spring barley 1.093 p. 634 

Spring oats 1.092 p. 634 

Potatoes 1.788 p. 645 

Spring beans 1.134 p. 636 

Whole-cropped maize 1.737 p. 645 

Whole-cropped winter wheat 1.702 p. 646 

Stubble turnips (July) 1.905 p. 645 

Stubble turnips (Spring) 1.905 p. 645 

Fodder beet 1.87 p. 644 

Grazing Grass LFA 1** - 

Silage LFA 1.728 p. 646 

Hay LFA 1.12 p. 639 
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Crop 
Fresh Weight 

Correction Factor* 

 Page reference 
for crop DM content  

Henry and Morrison (1916) 

Silage (one cut) 1.728 p. 646 

Silage (two cuts) 1.728 p. 646 

Silage (three cuts) 1.728 p. 646 

Silage (four cuts) 1.728 p. 646 

Hay (two cuts) 1.12 p. 639 

Grazing grass (two cuts) 1** - 

Grazing grass (three cuts) 1** - 

Grazing grass (four cuts) 1** - 

Grazing grass (six cuts) 1** - 

*Fresh Weight Correction Factor calculated from 1 + (1 – DM content). 
**Grazing forage requirements are calculated in kg of DM/ha (SAC Consulting, 2018, p. 72); 
therefore, grazing grass is not converted to fresh weight. 

 

Further testing revealed that the absolute fresh weight yield values achieved by the scaled yield 

functions at average fertiliser application significantly differed from levels expected in the 

Northwest of England for a number of the modelled crops. This divergence could be explained 

by deviations for the Northwest of England in the DM content from the values provided by Henry 

and Morrison (1916). Therefore, an “EPIC correction factor” was calculated for the unique crops 

which exhibited fresh weight yield values above or below those expected. This step ensures that 

absolute yield levels reflect the reality of the Northwest of England whilst maintaining the 

relative yield response to fertilisation, which was found to be realistic. The EPIC correction factor 

was based on the division of expected yields for the North West of England sourced from SAC 

Consulting (2018) by the fresh weight yield at mean N and P application averaged across the 

soil- and slope- types. Notably, DM yield was used for grazing grasses to facilitate forage 

requirement calculations. 

Graphical illustrations of the discussed fresh weight yield functions are presented in Figure 10 

to Figure 13. The four chosen crops represent those most commonly cultivated crops (winter 

wheat: Figure 10; winter barley: Figure 11; spring barley: Figure 12; and oilseed rape: Figure 

13)18 in the North West of England where the Eden catchment is located. The plots show fresh 

weight yield in tonnes per hectare averaged across weather-years for all slope-types (0-12.8%) 

and soil-type Newbiggin (soil 2). The plotted fertiliser ranges for N, and P extend from 0 to the 

specified fertiliser maxima (see Table 46). The plots show a generally strongly positive 

relationship between N applied and yield. However, the yield response to P application is less 

 
18 http://www.farmbusinesssurvey.co.uk/regional/Reports-on-Farming-in-the-Regions-of-England.asp (accessed 

5/5/2020) 

http://www.farmbusinesssurvey.co.uk/regional/Reports-on-Farming-in-the-Regions-of-England.asp
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pronounced, which could be explained by P saturation in the soils (see section 6.3). Peaks and 

troughs observed in the yield functions for spring barley and winter oilseed rape, in particular, 

may be explained by the variation in steepness levels which are included in the graphs. As 

discussed further below, agronomic research has shown some negative correlation between 

slope and yield (Jiang and Thelen, 2004). However, as the strength of the correlation may vary 

between different crop types, spring barley and winter oilseed rape may therefore be more 

susceptible to changes in slope than winter wheat and winter barley. This hypothesis is 

supported by Figure 14 and Figure 15, which show that the fresh weight yield functions for spring 

barley and winter oilseed rape on Newbiggin soil and slope one (0 - 1.4%) follow a smooth 

relationship between fertiliser inputs and yield without unexpected peaks and troughs.  
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Figure 10: Plot of yield function winter wheat (WW4) for artificial fertiliser Scenario, Newbiggin, four slopes (0-12.8%) and N, P fertiliser ranges 0-max 
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Figure 11: Plot of yield function winter barley (WBAR7) for artificial fertiliser scenario, Newbiggin, four slopes (0-12.8%) and N, P fertiliser ranges 0-max 

 

 

  



 

106 
 

Figure 12: Plot of yield function spring barley (SBAR3) for artificial fertiliser scenario, Newbiggin, four slopes (0-12.8%) and N, P fertiliser ranges 0-max 
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Figure 13: Plot of yield function winter oilseed rape (WOSR1) for artificial fertiliser scenario, Newbiggin, four slopes (0-12.8%) and N, P fertiliser ranges 0–max 

 



 

108 
 

Figure 14: Plot of yield function spring barley (SBAR3) for artificial fertiliser scenario, Newbiggin, slope 1 (0-1.39%) and N, P fertiliser ranges 0-max 
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Figure 15: Plot of yield function winter oilseed rape (WOSR1) for artificial fertiliser scenario, Newbiggin, slope 1 (0-1.39%) and N, P fertiliser ranges 0-max 
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Analysis of the yield data shows that while there is some variation in the productivity of the 

different soil-types in terms of yield output per hectare (see Table 20) there is less variation in 

yield across different levels of steepness (see Table 21).  

Table 20: Soil productivity ranking for average fertiliser application across all slopes and crops 

Sorted by mean (descending) Yield in t/ha* 

Ranking Soil-type Mean Median Max Min 

1 Newbiggin 16.39 6.77 68.87 0 

2 Wick 15.32 6.41 67.85 0 

3 Clifton 15.19 6.09 65.48 0 

4 Malvern 15.11 6.17 69.50 0 

5 Winter Hill 14.76 6.33 66.28 0 

*For fertiliser application, range from crop-defined maximum – 50% of crop-defined maximum. See 
Table 46 in the appendix for details on the crop-specific fertiliser application maxima. 
Note: Calculated using full set of 86 crops, final model includes 25 crops for computational reasons. 

 

The smaller variation in productivity between slope-types relative to the variation between soil-

types is aligned with expectation. Agronomic research has shown some negative correlation 

between slope and crop yields (Jiang and Thelen, 2004); however, these are in part indirect 

effects of other soil properties (e.g. water availability) which are correlated with slope. 

Moreover, the strength of the slope-yield relationship varies between crop types, further 

explaining the lower between-slope variation in yields across all crop types. 

Table 21: Slope productivity ranking for average fertiliser application across all soils and crops 

Sorted by mean 
(descending) 

Yield in t/ha* 

 Slope Interval (%) Mean Median Max Min 

1 1.4 – 4.19 15.48 6.46 69.50 0 

2 0 – 1.39 15.46 6.53 67.85 0 

3 4.2 – 7 15.39 6.47 68.09 0 

4 7.01 – 12.8 15.08 6.39 68.87 0 

*For fertiliser application, range from crop-defined maximum – 50% of crop-defined maximum. See 
Table 46 in the appendix for details on the crop-specific fertiliser application maxima. 
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Test of heterogeneity between different crop rotations and crop rotation positions 

The Wilcoxon Signed Rank test was used to test the hypothesis that crop rotations and positions 

within crop rotations significantly impact yield outcomes. The scaled yield functions of the 

artificial fertiliser scenario (see p. 100) were used to calculate dry weight yield in tonnes per 

hectare at mean N and P application levels for all soil slope combinations. Specifically, the 

Wilcoxon Signed Rank test was used to test the null hypothesis that there is no significant 

difference between the yield distributions of two versions of a crop grown in different crop 

rotations or placed at different positions within the crop rotation19. Out of 208 resulting crop 

pairs, 178 pairs rejected the null at the 5% significance level, while 30 pairs failed to reject the 

null of insignificant differences in yield distributions. The results thus suggest that 85% of the 

crops in the sample show significant differences in yield distributions when placed in different 

crop rotations or positions within the same rotation. Those results demonstrate the importance 

of including realistic crop rotations in biophysical-economic models to accurately represent yield 

and pollution trade-offs. Further, the finding highlights this thesis’ contribution in using the EPIC 

dataset and its uniquely extensive number of crop rotations and different crops in the literature 

(see Table 39, p.157). 

5.2.2. Pollution Data 

The six pollution variables chosen for the analysis are presented in section 4.5, along with their 

chosen functional forms (see Table 14, p.88). The daily and monthly pollution data from the EPIC 

simulation (see section 4.5 for details) were converted into 45 yearly pollution function 

estimates corresponding to the 45 included weather-years. These were combined into an 

average pollution function to facilitate the analysis of general pollution trends.  

Due to some EPIC batch inconsistencies, the pollution functions were scaled in Python using the 

following steps: 

1) Slopes were scaled using a step function, where values: 

• between 0.04 - 1 were not scaled 

• greater than 1 were set to 1 

• below 0.04 were set to 0.04 

 
19The Wilcoxon Signed rank test was chosen over parametric alternatives as the number of crop pairs constituting the 
test samples (20) was insufficient to assume normality required for alternative parametric tests. Testing each sample 
for normality was deemed impractical given the number of crop pair yield samples. See Appendix C, p.243 for the 
Python code implementation. 
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2) The intercepts were scaled to an interval of +/- 100% of a realistic value taken from 

the literature (see section 5.4.4, p. 120 for comparison of final pollution outputs to 

the literature). 

Figure 16 (p. 113) plots examples of the average weather-year pollution function for NRLOAD 

and ZLOAD. Both are assumed to mainly be functions of N application and plotted here for 

SIL1_1 on soil 2 (Newbiggin) and slope 1.  The displayed relationships of the pollution functions 

are mostly in line with the expectations outlined in Table 14 (see p. 88). The pollution indicators 

display slope coefficients which suggest a small relationship between the indicator and N 

application. Such weak relationships can be explained by two main abstractions which underpin 

the presented functions. Firstly, the pollution indicators are influenced by numerous stochastic 

variables such as wind, sunlight, rainfall, and temperature, which are all accounted for and 

synthesised by EPIC but cannot feasibly be included in the pollution functions of the biophysical-

economic model. Therefore, some of the presented pollution functions may be effectively 

underspecified as other influential variables are not included. Secondly, the plotted functions 

are averaged over the 45 weather-years, thereby further abstracting from the complexity and 

variation in the individual weather-year data. These two abstractions may weaken the 

relationship between pollution indicators and N application relative to the relationships 

observed in individual weather-year data and functions, including further variables. However, 

the average weather-year pollution functions remain useful for analysing and identifying broad 

trends in the relationships between pollutants and fertiliser applications as well as potential 

synergies and trade-offs.  

Figure 17 (p. 114) and Figure 18 (p. 115) present the graphs for the Carbon Emissions (in kg/ha) 

and Phosphorus to the River (in kg/ha) respectively, which depend on both N and P applications. 

The carbon emissions captured within the EPIC variable CFEM are assumed to be gaseous and 

represent soil carbon emissions associated with specific tillage systems (personal 

correspondence with EPIC team, September 18, 2020). These soil CO2 emissions are considered 

the largest contributor to agricultural total carbon emissions and are significantly higher under 

conventional tillage systems than under conservation tillage systems (Cillis et al., 2018). Carbon 

emissions from fuel consumption in different tillage systems are not captured. Carbon emissions 

are positively related to both increased N and P applications. However, the unitary effect of N is 

larger than that of P. Figure 18 demonstrates that P pollution increases with P application and 

decreases with N application. This trend may be due to plant growth, which is mainly driven by 

N application, improving P absorption and reducing P pollution.  
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Figure 16: Bi-variate pollution functions for SIL1_1 on soil 2 and slope 1 (0-1.39%) 
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Figure 17: Carbon emission for SIL1_1 on soil 2 and slope 1 (0-1.39%) 
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Figure 18: Phosphorus to River SIL1_1 soil 2 slope 1 (0-1.39%) 
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5.3.   Economic Data 

The data relating to farm business production was primarily collected from Redman (2018) and 

SAC Consulting (2018). It includes the gross margins for livestock production, labour costs for 

livestock and crop production, variable costs for crop production, and farm-gate prices for 

produced crops. The farm type classification (see section 4.2), according to DEFRA (2014) 

guidance, used the UK standard output coefficients (SOC) 2013 (European Commission, 2020) 

converted into pound sterling. At the time of this work, the UK SOC 2013 were still being used 

for farm-type classification within the UK Farm Business Survey. SOCs measure a farm’s average 

monetary agricultural output for crops and livestock in euros per hectare and head of livestock, 

respectively. A farm’s gross agricultural standard output is calculated by summing the product 

of the SOCs and the farm’s chosen land allocation and herd sizes. Farm types are classified as 

belonging to the activity which constitutes more than two-thirds of the farm’s gross standard 

output. Farms are designated as “mixed farms” if no single agricultural activity contributes two-

thirds of the farm’s gross standard output. 

5.4.   Baseline Catchment Outputs 

This section presents and discusses the model’s baseline outputs. Section 5.4.1 presents the 

exogenous land allocation between farms, section 5.4.2 analyses the baseline output mix and 

crop allocation while section 5.4.3 discusses the baseline livestock output. Finally, section 5.4.4 

analyses the baseline pollution outputs before section 5.4.5 presents the sensitivity analysis of 

pollution outcomes to individual weather-years. 

 

5.4.1.   Farmland Allocation 

The six representative farms are assumed to be of equal size (21,067 ha). Table 22 summarises 

the assumed land distribution between farms by the total number of hectares of a particular 

slope, soil and hydrological connectivity type (see Annex Table 48 for the full distribution). 
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Table 22: Distribution of slope, soil and hydrological connectivity by farm 

 farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

Slope (ha) 

S1 2 2107 1053 1604 5316 1596 

S2 1982 8689 10354 4213 4213 8190 

S3 6320 98 4213 11036 4458 4571 

S4 12763 10173 5447 4213 7079 6710 

Soils (ha) 

L1 8427 10161 8182 16832 4898 15711 

L3 2107 2267 8466 2107 2107 2107 

L4 10460 8427 3962 2107 13840 3225 

L2 6 2 24 0 11 2 

L5 68 211 433 21 211 21 

Hydrological connectivity (ha) 

H1 717 71 44 237 801 481 

H2 12041 8176 6557 2564 8562 10672 

H3 7929 11122 9810 16618 9222 7840 

H4 147 1306 3939 1425 1674 1520 

H5 178 240 667 116 407 244 

H6 42 85 28 79 199 149 

H7 12 30 17 22 170 94 

H8 1 22 5 5 26 56 

H9 0 10 1 0 6 11 

H10 0 5 0 0 1 1 

 

The land allocation was generated through a linear optimisation problem implemented in GAMS 

(see code in Appendix C p.239). Soil- and slope-types were allocated between the farm types to 

broadly align with their farming activity and hypothetical position outlined in Table 7  (see p. 72). 

 

5.4.2.   Cropland Allocation and Output 

The model’s land allocation and output were calibrated to the distributions observed in the 

North West of England in 2019, as published by DERFA (2021a). The baseline calibration was 

conducted by adding flexibility constraints based on observed data and agronomic rationale to 

the model20. Care was taken to achieve a baseline cropland allocation similar to the observed 

 
20 Positive Mathematical Programming (Howitt, 1995) would be an alternative calibration approach. This 
would further reduce the risk of overly restrictive constraints impairing the policy response. 
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reality in the Eden catchment whilst maintaining enough model flexibility to respond to 

subsequently implemented scenario shocks. Table 23 compares the baseline distribution of land 

allocation between crops to the distribution observed in the Northwest of England in 2019 and 

demonstrates their close alignment. The calibration prioritised the cropland allocation 

distribution over the output distribution, as the cropland allocation is expected to be more 

stable and less affected by price volatility than output distributions.  

Table 23: Comparison of baseline land allocation to main crop groups to observed catchment 
land allocation 

Main 
crop groups 

Observed 
percentage of total 

catchment* 

Baseline percentage of 
total catchment 

Baseline percentage 
point deviation 

Barley 3.8 7.1 3.2 

Grassland 
(grazing + 
cutting) 

78.0 77.2 -0.8 

Maize 1.4 7.1 5.7 

Oilseed Rape 0.5 3.1 2.6 

Potato 0.7 0.8 0.1 

Wheat 3.7 4.7 1.0 

*Calculated from the 2019 Agricultural Facts - Northwest of England by DERFA (2021a) 

 

Table 24 compares the average baseline yield by crop group in tonnes per hectare to the average 

yield expectation in tonnes per hectare as given by SAC Consulting (2018).  

Table 24: Comparison of average yield by crop group at the baseline to expectation 

Crop 
group 

Average* baseline yield 
(t/ha) 

Average yield expectation** 
(t/ha) 

Percentage 
difference 

Barley 7.3 6.7 9% 

Grassland 

(grazing + 

cutting) 

22.9 23.4 -2% 

Maize 44.3 40.0 11% 

Oilseed 

Rape 
4.7 4.0 17% 

Potato 80.5 65.0 24% 

Wheat 8.1 8.0 2% 

*Yield averaged across farms, soil, slope, and hydrological connectivity level by crop group 
**Yield expectation based on SAC Consulting (2018) 
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The average baseline yields closely align with expected yields; most crops deviate less than 11%. 

Oilseed Rape and potato crops show slightly elevated yields (17% and 24% above expectation, 

respectively). These deviations are unlikely to significantly affect results as they comprise the 

least prominent crop groups and jointly comprise less than 1.2% of the catchment’s land 

allocation.  

5.4.3.   Livestock Output 

Table 25 compares the baseline distribution of livestock output (defined as the contribution to 

catchment gross margin) to the distribution of output observed in the North West of England in 

2019 (DEFRA, 2021a). The presented output distributions also demonstrate alignment. 

Table 25: Comparison of baseline livestock output contributions to actual catchment output 
contributions 

 

Livestock type 
Regional observed 
percentage output 

contribution 

Baseline output 
contribution 

Baseline percentage 
point deviation 

Beef 8.7 17.2 8.4 

Milk 39.3 58.5 19.3 

Sheep 7.4 11.5 4.1 

 

Table 26 compares the baseline post-forage livestock gross margin averaged by livestock group 

to the expectation based on SAC Consulting (2018). The baseline profitability aligns with 

observed expectations, particularly for beef and dairy, which vary less than 1% from expectation. 

The baseline sheep post-forage gross margin is, on average, 43% below expectation. This finding 

could be explained by the fact that sheep grazing in the Eden may be more extensively managed 

than in the model (less fertiliser and labour input). In general, the gross margin reflects the falling 

profitability of sheep which has been observed over the past years21.  

 
21 Farmers’ observed behaviour of continuing to engage in low profit activities such as sheep farming could be seen 
as a violation of the rationality assumption underpinning this analysis. However, work such as Malawska and 
Topping’s (2016) agent based model investigation demonstrate that analyses of farm behaviour in the context of agri-
environmental policies are relatively insensitive to varying assumptions on farmers’ rationality. These findings support 
this thesis’ modelling of farmers as rational agents. 
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Table 26: Comparison of the average livestock gross margin to the expected post-forage gross 
margin 

Livestock 
groups 

Livestock gross 
margin (£/head*) 

Expectation of gross 
margin (£/head*) † 

Percentage deviation 
from expectation 

Beef 267.3 268.3 -0.4 

Dairy 1212.9 1222.0 -0.7 

Sheep 760.2 1334.0 -43.0 

*For sheep £/100 head 
†Calculated based on SAC Consulting (2018) 

At the baseline, farms are not trading forage crops amongst each other. This behaviour 

corresponds to limited forage crop trading between farms in the real world due to the low value, 

which does not support transport costs to other farms. 

The farmyard manure produced significantly exceeds the crop needs of the catchment. 

Assuming that all excess farmyard manure will be applied, the nutrient balance at the baseline 

amounts to +271 kg/ha of N and +65kg/ha of P. This result reflects the nutrient surplus observed 

in the published nutrient balance for the Northwest of England of +111.4 kg/ha of N and 

10.2 kg/ha of P (DEFRA, 2021b). The larger surplus in the baseline compared to DEFRA-calculated 

nutrient balances could be explained by the uncertainty involved in the DEFRA statistics. The 

DEFRA nutrient balances rely on self-reported data from the June Survey regarding artificial 

fertiliser application (DEFRA, 2021b). We would expect farmers to under-report their use of 

fertiliser to appear compliant with nutrient management best practices. In addition, rising input 

costs may have reduced the actual observed housing period in the Eden below the six months 

assumed by the model. 

5.4.4.   Pollution Output 

This section presents the baseline pollution and fertilisation levels for the catchment. Table 27 

presents the baseline total catchment emissions as well as the per hectare average emissions by 

pollutant for the catchment. 

Table 27: Baseline emissions by pollutant averaged across weather-years catchment total and 
per hectare average 

Pollutant Abbreviation 
Catchment 

total 
(in ‘000s) 

Catchment 
average/hectare 

unit 

Carbon Emission CFEM 5,404 44.9 kg 

Nitrogen to Groundwater NGLOAD 3,634 28.5 kg 

Nitrogen to River NRLOAD 289 2.5 kg 
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Pollutant Abbreviation 
Catchment 

total 
(in ‘000s) 

Catchment 
average/hectare 

unit 

Phosphorus to 

Groundwater 
PGLOAD 406 3.9 kg 

Phosphorus to River PRLOAD 328 2.8 kg 

Sediment Mobilised ZLOAD 320 2.7 t 

 

The presented scaled per hectare pollution values align with the ranges found in the literature 

(e.g. N leaching (Dybowski et al., 2020), N leaching (Ulén et al., 2007), sediment pollution 

(da Rocha Junior et al., 2018)). Per hectare pollution is influenced by five key variables within 

the model: soil-type, slope-type, level of hydrological connectivity, crop grown, and level of 

fertilisation. The following tables in this section present the different impacts of each of these 

key variables on baseline average pollution per hectare. Notably, the individual influence of the 

key variables on pollution outcomes cannot be isolated. Therefore, the averages for the 

individual variables need to be considered within the context of all other influences. 

Firstly, Table 28 differentiates average pollution per hectare by the soil-types included in the 

model as well as the soil-types’ share in total catchment land. The impact of soil-types on 

average pollution is relatively small and non-uniform across different pollutants at the baseline. 

This finding may be due to the uneven distribution of soil-types within the catchment. Soils two 

and five both cover less than 1 % of the catchment area, while soils one, three and four each 

cover 51%, 15%, and 33% of the catchment, respectively. This uneven distribution is likely to 

skew average pollution values of the underrepresented soil-types as the distribution of other 

variables (e.g., crops grown) is less likely to average out. The relatively small absolute differences 

between soils may further be explained by the fact that the soils are relatively similar in their 

characteristics (see section 6.3).  

Table 28: Average baseline pollution per hectare by soil 

Soil 
Catchment land 
Proportion (%) 

CFEM 
(kg) 

NGLOAD 
(kg) 

NRLOAD 
(kg) 

PGLOAD 
(kg) 

PRLOAD 
(kg) 

ZLOAD 
(t) 

L1 50.80% 46.79 35.40 2.33 3.44 2.72 2.46 

L2 0.04% 28.57 8.93 2.13 4.07 3.15 2.20 

L3 15.16% 74.14 64.95 2.91 4.59 3.45 4.27 

L4 33.24% 21.82 2.55 1.87 2.10 1.99 1.83 

L5 0.76% 63.10 9.44 5.28 9.45 3.25 2.90 

Note: Soil pollution values are shaded according to their relative rank within the pollutant where 
lighter (darker) shading indicates relatively lower (higher) average pollution per hectare. 
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Table 29 shows the average pollution per hectare for different slope-types. The relative ranking 

of slope-types varies by pollutants in line with expectations. Sediment pollution is highest for 

the steepest modelled slope S4, which is explained by the higher risk of erosion associated with 

steeper slopes (Müller et al., 2014, p. 79). On the other hand, N leaching into the groundwater 

is found to be lower for steeper slopes. This fact further corresponds with expectation, as water 

and N is more likely to seep into lower soil layers and leach into groundwater at lower levels of 

steepness. Steeper slopes, on the other hand, may lead to increased water runoff, which washes 

N into proximate water bodies (such as rivers). This is less clearly pronounced in slope 1 of the 

average N leaching to rivers per hectare, most likely due to the low overall catchment proportion 

of slope 1. Nevertheless, slope 4 has the second highest NRLOAD average pollution load per 

hectare which corresponds to the expectation outlined above. Notably, P leaching into 

groundwater is less clearly impacted by slope-type due to its immobility in the soil. Surface water 

P leaching into rivers (PRLOAD) is driven by its interaction with suspended sediment (Bowes, 

House and Hodgkinson, 2003) which is reflected in the correlation between PRLOAD and ZLOAD 

in Table 29. 

Table 29: Average baseline pollution per hectare by slope 

Slope 
Catchment land 
Proportion (%) 

CFEM 
(kg) 

NGLOAD 
(kg) 

NRLOAD 
(kg) 

PGLOAD 
(kg) 

PRLOAD 
(kg) 

ZLOAD  
(t) 

S1 9% 65.53 47.63 3.18 4.64 3.89 3.14 

S2 30% 41.59 21.89 2.13 4.29 2.68 2.19 

S3 24% 18.45 7.55 1.59 2.48 1.86 1.63 

S4 37% 34.53 20.97 2.58 3.17 2.02 3.92 

Note: Slope pollution values are shaded according to their relative rank within the pollutant where lighter 
(darker) shading indicates relatively lower (higher) average pollution per hectare. 

 

Thirdly, the effect of hydrological connectivity on baseline average pollution per hectare is 

presented in Table 30. In line with expectations, pollution per hectare increases with 

hydrological connectivity across pollutants. However, as discussed in section 4.6 and presented 

in the second column of Table 30, the distribution of hydrological connectivity within the 

catchment is heavily skewed towards low levels of hydrological connectivity. The small amount 

of highly connected land will likely impact the average pollution calculation.  
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Table 30: Average baseline pollution per hectare by hydrological connectivity 

Hydro 
Catchment 

land 
Proportion (%) 

CFEM 
(kg) 

NGLOAD 
(kg) 

NRLOAD 
(kg) 

PGLOAD 
(kg) 

PRLOAD 
(kg) 

ZLOAD 
(t) 

H1 1.86% 4.86 3.40 0.37 0.42 0.34 0.33 

H2 38.43% 16.67 10.14 0.97 1.35 1.08 1.02 

H3 49.48% 24.78 13.74 1.44 2.39 1.76 1.90 

H4 7.92% 32.36 15.96 2.06 3.37 2.29 1.90 

H5 1.46% 49.20 28.07 2.68 4.59 2.85 2.42 

H6 0.46% 60.97 32.03 3.57 5.93 4.00 4.18 

H7 0.27% 75.98 52.21 4.33 5.96 4.79 5.39 

H8 0.09% 89.94 64.10 4.64 7.47 5.62 4.98 

H9 0.02% 93.51 62.07 4.75 7.67 5.71 4.69 

H10 0.00% 120.51 97.93 5.61 8.39 7.22 5.58 

Note: Hydrological pollution values are shaded according to their relative rank within the pollutant 
where lighter (darker) shading indicates relatively lower (higher) average pollution per hectare. 

Table 31 presents the baseline average of pollutants per hectare by the main crop groups. Across 

pollutants, grassland demonstrates some of the highest per hectare levels of pollution. This 

result may be explained by grassland being one of the highest input crops in the catchment in 

terms of fertilisation (see Table 32 for average per hectare nutrient application by crop type). 

 

Table 31: Average baseline pollution per hectare by main crop group 

Crop group 
CFEM  
(kg) 

NGLOAD 
(kg) 

NRLOAD 
(kg) 

PGLOAD 
(kg) 

PRLOAD 
(kg) 

ZLOAD 
(t) 

Barley 30.40 5.17 2.79 2.85 2.44 2.26 

Grassland 67.07 48.03 3.19 5.88 4.10 3.84 

Maize 0.62 1.70 0.20 0.13 0.13 0.14 

Oilseed rape 46.99 9.90 1.80 3.49 2.07 1.82 

Potato 1.36 1.31 0.88 0.65 0.65 0.71 

Wheat 47.39 44.26 1.64 2.14 1.99 2.07 
Note: crop group pollution values are shaded according to their relative rank within the pollutant 
where lighter (darker) shading indicates relatively lower (higher) average pollution per hectare. 

 

In addition, grassland fertilisation occurs over up to 6 doses spread throughout the growing 

season (March – August). This detail contrasts with cereal crops which receive two to three 

fertilisation doses between October and May. A higher number of fertilisation doses requires 

increased use of machinery, which therefore explains the elevated carbon emissions per hectare 

observed for grasslands compared to other crop groups. The relatively high sediment pollution 
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(ZLOAD) observed for grassland is driven by the assumption that increased N application 

indirectly reduces erosion by stimulating root system growth (see Table 14). 

Maize would typically be expected to be a more-polluting crop as it is a high-input crop. 

However, the maize grown in the catchment is 100% whole-cropped feeding maize which 

receives lower inputs and can therefore be expected to be less-polluting.  Table 32 demonstrates 

that average N input, particularly for maize in the catchment, is significantly lower than that of 

other crop groups. Potatoes show medium-low pollution levels per hectare relative to the other 

crop groups for nutrient pollution and carbon emissions. Potatoes would usually also be 

expected to be a relatively more-polluting crop (particularly for sediment pollution) as potato 

fields are characterised by more pronounced and frequent furrows than cereal fields. However, 

similarly to maize, their low- to mid-range average N fertiliser application at the baseline drives 

their low- to mid-range average per hectare sediment pollution levels (see Table 32). Moreover, 

the fact that potatoes only constitute 1% of overall catchment land use and are grown 

exclusively on soil 4 - the least polluting soil in terms of sediment pollution at the baseline 

(see Table 28) – will skew the average potato sediment baseline pollution level relative to other 

crops. 

Table 32: Baseline total and average crop group fertiliser application 

Crop Group 
Total Nitrogen 

(kg) 
Total 

Phosphorus (kg) 
Land (% of 
catchment) 

Nitrogen 
(kg/ha) 

Phosphorus 
(kg/ha) 

Barley 1,221,418 127,498 7% 137 14 

Grassland 23,734,574 5,003,423 77% 244 51 

Maize 161,870 427,181 7% 18 48 

Oilseed 

Rape 
879,685 174,225 3% 222 44 

Potato 81,145 41,842 1% 82 42 

Wheat 1,319,525 87,455 5% 222 15 

 

Barley, winter oilseed rape, and wheat show relatively high levels of ZLOAD, pollution given their 

extended period of crop cover. Analogously to maize and potato, this result is driven by the 

assumed positive relationship between N application and sediment pollution in this model. The 

following section presents the sensitivity analysis of pollution outcomes to the different 

weather-years. 
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5.4.5.   Weather Sensitivity 

As outlined in section 5.2.2 (p. 111), the pollution estimates presented above are based on 

average pollution functions. This section discusses the sensitivity of these pollution estimates to 

the individual 45 pollution years using the baseline land and fertiliser allocation. Table 33 

presents the measures of variability between the pollutants’ weather-specific levels.  

Table 33: Sensitivity of pollutants across 45 weather-years 

Pollutant Variance SD Mean Maximum Minimum Unit 

CFEM 3,533.3 59.4 44.9 280.6 0.07 kg/ha 

NGLOAD 3,253.1 57.0 28.5 251.4 0.01 kg/ha 

NRLOAD 13.1 3.6 2.5 10.8 0.18 kg/ha 

PGLOAD 23.0 4.8 3.9 26.6 0.02 kg/ha 

PRLOAD 7.9 2.8 2.9 12.6 0.02 kg/ha 

ZLOAD 20.1 4.5 2.7 25.4 0.01 t/ha 

Note: Estimates based on baseline land allocation and fertiliser input 

 

Firstly, the range of pollution levels indicated by the maximum and minimum values are 

considerable. Minima of close to no pollution could be explained by a year of optimal weather 

conditions. Given the Eden catchment’s exceptionally high level of average rainfall 

(see 5.1, p. 97), a dryer year with moderate rainfall at periods appropriate for supporting plant 

growth could lead to the very low pollution levels shown. As weather patterns are becoming 

increasingly extreme and “optimal” weather-years scarcer due to climate change, we expect 

both the maximum and minimum pollution levels to increase further over the coming years.  

 

Table 34: Annual pollution level deviation from mean by pollutant 

Pollutant 
Annual pollution 

levels within mean 
+/- SD (%) 

Annual pollution 
levels outside mean 

+/- SD (%) 

Annual pollution 
levels greater than 
one SD + mean (%) 

CFEM 88 12 12 

NGLOAD 87 13 13 

NRLOAD 91 9 9 

PGLOAD 89 11 11 

PRLOAD 82 18 15 

ZLOAD 93 7 7 
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Despite the considerable range of the pollution levels for the six pollutants between 82% - 93% 

of annual pollution levels fall within one SD of their mean (see Table 34). This distribution 

suggests that while there are significant deviations from mean pollution levels in 18% - 7% of 

years, most weather-years lead to pollution outcomes relatively close to their mean.  The results 

further demonstrate that the significant deviations from the mean are almost exclusively higher 

pollution levels rather than lower pollution levels (i.e., the pollution level distribution is right-

skewed). Given the potentially significant long-term effects of exceptionally high pollution level 

events, 7% - 15% of such events for the different pollutants could still represent a significant 

environmental threat. This finding underlines the importance of using large weather datasets to 

capture the impacts of weather-years on NPS pollution outcomes. Particularly considering the 

climate change effects discussed above, the significance of detailed weather-year-specific 

datasets in biophysical-economic NPS pollution analyses will further increase in the near future. 

 

 

This chapter has presented the data underlying the baseline scenario of this analysis. It has 

demonstrated its calibration to reflect the observed reality of the Eden catchment. The 

description of the uniquely diverse considered variables and their complex interactions were 

shown to drive the baseline model results. Finally, the sensitivity of pollution levels to individual 

weather-years was found to be moderate with a right-skew of extreme weather events. 

Chapter  6 builds on these examined model features and presents the policy scenario results in 

the context of the baseline features examined in this chapter. 
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6. Results 

This chapter presents the results of the policy evaluation. First, section 6.1 outlines the details 

of the modelled policies. Next, section 6.2 showcases the policies’ pollution and gross margin 

trade-offs for the main pollutants identified as being of interest. Subsequently, section 6.3 

explores the modelled policies’ impact on key variables which drive the presented results.  

 

6.1.   Modelled Policies 

The choice of modelled policies was informed by the review of the previous literature and policy 

mechanisms (see section 4.1, p. 73). The choices include a range of incentive-based policies, 

command-and-control policies, and mixed instruments. Table 35 summarises the scenario 

details of the main modelled policies.  

Policies were modelled to levels of stringency beyond realistic levels of implementation to find 

their maximum pollution abatement potential. For the targeted set-aside policy, the steepest 

slope (S4) was chosen due to the higher risk of river nutrient and sediment pollution generally 

associated with steeper slopes (see section 5.4.4.). The maximum targeted set-aside level was 

set to the total amount of slope 4 available in the catchment (37% of catchment land). 

Groundwater nutrient pollution may be more-effectively abated by targeting flatter slopes. 

Policies targeting flatter slopes with set-aside to improve groundwater pollution were not 

modelled as in the Solway Tweed River Basin District, in which the Eden catchment is situated, 

around 90% of groundwater is already classified as being in good chemical condition while only 

45% of surface waters are in at least good ecological condition (EA and SEPA, 2021). This suggests 

that surface water pollution is a clear priority within the Eden catchment, an assessment which 

informed the policy design of this analysis. For the mixed instruments combining an N tax and 

set-aside policy, the set-aside levels (1%, 2%, and 5%) were chosen based on the most cost-

effective combinations found in extensive initial trials.  
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Table 35: Details of modelled policy scenarios 

Modelled 
Policies 

Scenario Description 

Non-targeted 
set-aside 

- Set-aside 1% - 40% of catchment agricultural land  
o Increments of 1 percentage point 

Targeted 
 set-aside 

- Set-aside 1% - 37% of catchment agricultural land of slope 4 
o Increments of 1 percentage point 

N tax 
- N tax from 50% - 5,000%  

o Increments of 50 percentage points from 2,000% 
o Increments of 5,000 percentage points to 5,000% 

Mixed N tax & 
1% set-aside* 

- N tax from 50% - 5,000%  
o Increments of 50 percentage points from 2,000% 
o Increments of 5,000 percentage points to 5,000% 

- Set-aside of 1% of catchment agricultural land 

Mixed N tax & 
2% set-aside 

- N tax from 50% - 5,000%  
o Increments of 50 percentage points from 2,000% 
o Increments of 500 percentage points to 5,000% 

- Set-aside of 2% of catchment agricultural land 

Mixed N tax & 
5% set-aside 

- N tax from 50% - 5,000%  
o Increments of 50 percentage points from 2,000% 
o Increments of 500 percentage points to 5,000% 

- Set-aside of 5% of catchment agricultural land 

Precision 
Agriculture 

- Fertiliser efficiency factor from 5% - 45%  
o Increments of 5 percentage points 

P tax* 
- P tax from 50% - 5,000% 

o Increments of 50 percentage points from 2,000% 
o Increments of 500 percentage points to 5,000% 

N tax 
& P tax 

- N tax from 50% - 2,000%  
o Increments of 50 percentage points  

- P tax from 50% to 2,000% 
- Increments of 50 percentage points  

Note: To facilitate visual representation of the results, policies lacking cost-effectiveness were 
*excluded from summary trade-off graphs for all pollutants 

 

Further set-aside variations targeting soil-types and hydrological connectivity were modelled in 

initial trials. However, they were not shown to be cost-effective and are therefore not reported 

here. The Eden catchment characteristics which drive this result are further discussed in 

section 6.3. As an alternative command-and-control policy to set-aside, a stocking density 

reduction policy was also found to not be cost-effective in initial trials and is therefore not 

reported. Finally, PA was modelled using the range of efficiency factors following the 

methodology outlined in section 4.7.  
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6.2.   Policy Trade-offs between Gross Margin and Pollutants 

This section examines the modelled policies’ high-level results across pollutants before 

examining unique trends for individual pollutants. For each policy, scenarios of increasing 

stringency were modelled according to the increments detailed in Table 35. 

Figure 19 to Figure 24 show the trade-off between pollution abatement of each identified key 

pollution variable and social costs for the modelled policies described in Table 35. The trade-offs 

are modelled as percentage changes from the baseline level of the pollutant and the catchment 

gross margin (see section 5.4 for details on the baseline). Changes from baseline pollution levels 

are captured along the x-axis while changes from baseline catchment gross margin are 

presented along the y-axis. No change from the baseline pollution and catchment gross margin 

is represented in the upper right corner of the graphs. Each symbol along the graph represents 

one policy scenario. For a given level of pollution abatement, the policy with the smallest 

associated reduction in catchment gross margin represents the most cost-effective policy (i.e., 

in the graphs presented below, policies closer to the x-axis are relatively more cost-effective 

than alternative policies). The graphs do not include non-optimal model solutions. Moreover, 

optimal runs at high intervention rates were excluded when they ceased to provide cost-

effective abatement options to aid visual representation. 

High-level cross-pollutant policy results 

Overall, Figure 19 to Figure 24 demonstrate that policies’ abatement behaviours are similar 

across the modelled pollutants (except for NGLOAD which will be addressed in more detail 

below). Across the pollutants, policies show similar levels of high cost-effectiveness up to the 

regulatory target of around 20% abatement, which is achieved at a maximum social cost of 

around 5% of the catchment gross margin. 

Generally, a combined N & P tax and an individual N tax provide the most cost-effective 

abatement for mid- to low-level regulatory targets across pollutants. For higher regulatory 

targets (above around 30% of abatement), an individually applied N tax provides more cost-

effective pollution abatement. The strong disincentive on both N and P application through 

taxation provides initially strong abatement, before the combined N & P tax becomes too costly 

and the single input N tax becomes more cost-effective. Notably, the results demonstrate the 

price inelastic demand for fertiliser, as high levels of N taxation are required to achieve 

reductions in artificial N application. An N tax of around 800% reduces N consumption by around 

10%. 
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Across the pollutants, an individual set-aside policy generally does not present the most cost-

effective option (the exceptions of NGLOAD and carbon emissions are discussed below). Up to 

a regulatory target of around 25-30% of baseline pollution abatement, spatially targeting the 

set-aside policy to the highest pollution risk slope-type, provides modest improvements to cost-

effectiveness. At higher levels of spatially targeted set-aside farmers are given less choice over 

which land to take out of production. They are forced to set-aside relatively more productive 

land of slope-type 4 instead of relatively less productive land of other slope-types in a non-

spatially targeted scenario. The more prescriptive targeted set-aside is, therefore, less cost-

effective than the non-targeted set-aside at high set-aside levels. The mechanisms driving the 

limited scope for spatial targeting within the Eden catchment are further explored in section 6.3. 

A mixed policy combining set-aside with N taxation is generally found to outperform an 

individual set-aside policy and shows the highest maximum abatement potential of the 

modelled policies across most pollutants. A level of 2% set-aside generally outperforms the 

alternative levels of set-aside modelled (1% and 5%). However, the mixed instrument remains 

less cost-effective than the modelled N tax (see section 7.2 for further discussion of this result). 

PA is shown to provide between around 2% to 20% pollution reduction across the pollutants for 

the assumed efficiency factors between 5% and 45% at a social cost between 4% and 3%. 

Efficiency gains show diminishing returns to pollution abatement as efficiency gains up to 20% 

show the largest marginal pollution abatement of the modelled efficiency factor increments. PA 

does not individually represent the most cost-effective approach to pollution abatement 

amongst the modelled policies. However, the Eden catchment characteristics suggest it is not a 

high-potential location for PA (section 6.3 for more details), reducing its cost-effectiveness in 

pollution abatement in the Eden catchment.  

Individual pollutant results 

NRLOAD (Figure 19) largely conforms to the high-level trends described above. Notably, a 

combined N & P tax increases more sharply in social cost beyond 25% abatement than for other 

pollutants (excluding NGLOAD). Further, the two mixed instruments demonstrate some 

reversed pollution abatement potential as the N tax increases. The mechanisms driving these 

results will be explored in section 6.3. 
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Figure 19: N to river and gross margin trade-off graph for all cost-effective policies 
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NGLOAD (Figure 20) shows policy responses similar in their trends to the responses observed 

for NRLAOD (Figure 19). However, the groundwater responses are more pronounced than the 

river responses. This difference may be explained by the fact that N is highly mobile in the soil 

and thus easily leaches into the groundwater (Stahr et al., 2016, p. 174). Therefore, policies 

targeting N pollution are translated more directly into the groundwater pollution levels. The 

more pronounced policy responses are showcased by policy failures for all N incentive policies 

(N tax, N & P tax, and mixed instruments) at lower policy stringency levels than for the other 

analysed pollutants. These non-cost-effective options have been removed from the graph to aid 

visual analysis. Set-aside, which targets N pollution at the extensive margin also shows a more 

pronounced response in groundwater N abatement, achieving around double the river N 

abatement for groundwater at a given level of social costs. Non-targeted set-aside in particular 

is shown to have the highest maximum abatement potential at close to 80% groundwater N 

abatement. 

For both P to river (Figure 21) and to groundwater (Figure 22), the combined N & P tax is 

relatively more cost-effective for medium-ambition P abatement (around 10% - 35% 

abatement).  This is explained by the direct incentive on P application that in contrast to other 

modelled policies is included in this combined policy. On the other hand, high levels of the 

N & P tax (beyond around 30%) are excessively costly to farmers and, therefore, less cost-

effective. Notably, P to groundwater does not show more prominent policy responses than P to 

the river, observed for N (Figure 19 and Figure 20). This is explained by the lower soil mobility of 

P relative to N, with less P therefore likely to leach into the water (Stahr et al., 2016, p. 175).  
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Figure 20: N to groundwater and gross margin trade-off graph for all cost-effective policies 
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Figure 21: P to river and gross margin trade-off graph for all cost-effective policies 
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Figure 22: P to groundwater and gross margin trade-off graph for all cost-effective policies 
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Figure 23: Sediment and gross margin trade-off graph for all cost-effective policies 

 

 



 

137 
 

Figure 24: Carbon emissions and gross margin trade-off graph for all cost-effective policies 
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For sediment abatement (Figure 23), there is less differentiation in cost-effectiveness between 

the different modelled policies at lower abatement levels than for other pollutants. These 

findings may be driven by the modelled policies focussing on fertiliser input taxation, which does 

not directly influence incentives around sediment pollution. Notably, N taxation is the most cost-

effective policy for mid- to high-level abatement (around 30-50%) while a mixed N tax with 5% 

set-aside has the highest abatement potential (53%). This result is not in line with the general 

expectation that set-aside policies are the most direct intervention for sediment pollution and 

is further investigated in section 6.3. 

Low to medium levels of carbon emission abatement (up to around 30% baseline abatement) 

are achieved at similar levels of cost-effectiveness through N taxation, N & P taxation, and set-

aside. An N tax is less cost-effective for carbon emissions than for other pollutants. Monetary 

incentives to reduce N application do not directly reduce the number of machine-hours which 

drive carbon emissions if fertiliser rates are reduced in response to the policy rather than the 

number of applications. Beyond 30% of baseline carbon emission abatement, non-targeted set-

aside is the most cost-effective policy to achieve NPS pollution control and also achieves the 

maximum abatement potential (at 57%). 

 

6.3.   Policy Mechanisms 

This section further analyses the policy results presented in section 6.2 through the changes in 

the key variables of land use, artificial N application and livestock numbers as appropriate. In 

addition, the impact of general catchment characteristics on the policies’ effectiveness is 

examined. 

P tax 

As mentioned in Table 35 the modelled single P tax did not show significant abatement potential 

and was therefore excluded from the pollution – gross margin trade-off figures. The 

ineffectiveness of the P tax is in line with expectations given the low response of yield functions 

to P application in this analysis (see section 5.2.1). This low response is driven by the immobility 

of P in the soil, which leads to longer-term soil availability than N. The low yield response is 

further exacerbated by P saturation in the catchment soils discussed in section 5.4.3, commonly 

seen across European agricultural land (Stahr et al., 2016, p. 175ff.). Due to the low P yield 

response, farmers are applying P close to the defined per hectare lower bound at the baseline, 

which diminishes the scope for further reducing P application in response to a P tax. 
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N tax 

As shown in Figure 19 to Figure 24, the N tax shows consistently increasing abatement across 

pollutants between levels 500% - 1,000% and 1,200%-1,850% (scenarios 10-20 and 24-37). A 

temporary trend reversal is seen for an N tax interval between 1,000% and 1,200% across the 

examined pollutant variables, where the abatement potential is slightly lower (between around 

1 and 9 percentage points) than for the previous and following N tax interval. This behaviour is 

driven by the changes in land use at the extensive margin shown in Figure 25 and Figure 26 (see 

Appendix B for the remaining crops in Figure 35, p. 183). As the price of artificial fertiliser rises 

beyond 600% (scenario 11), farms substitute away from the higher-input grazing crop of 

GRAZE6_1_FYM (Figure 25) and silage crop of SIL4_2_FYM (Figure 26) towards the lower-input 

grazing crop GRAZE4_3_FYM and SIL2_1 respectively.  

Figure 25: Land use change in response to N tax policy scenarios (Part 1) 

 

 

 

At the N tax interval between 1,100% and 1,400% (scenario 22-28), the rise in land allocation 

towards the lower-input silage crop exceeds the fall in the higher-input silage crop.  
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Figure 26: Land use change in response to N tax policy scenarios (Part 2) 

 

This behaviour further corresponds to the observed shift in the intensive margin (proportion of 

catchment N fertiliser application in Figure 27 and Figure 28). The intensive production focus 

shifts away from the higher-input silage crop SIL4_2_FYM towards the lower-input silage crop 

SIL2_1 whose share in artificial N application increases more sharply around the interval 1,100% 

and 1,400% (scenario 22-28) than the share of SIL4_2_FYM falls. This result is explained by the 

fact that as farms shift from higher-input crops to lower-input crops (substitution effect), they 

initially compensate for their lost yield by increasing production on the lower-input crops at the 

intensive margin (increasing fertiliser application) as well as the extensive margin (increasing 

land allocation). This matches the pollution abatement behaviour displayed in the trade-off 

graphs. Notably, the revenue neutral policy design also reduces farmers’ income effect in 

response to the tax policy. The discussed land use changes at the high taxation levels underline 

the discussion of the inelastic N demand in section 6.2. Livestock numbers22 drop by up to 13% 

across the modelled N tax scenarios. 

 
22 Measured in Grazing Livestock Units. 
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Figure 27: Crop share of catchment N fertiliser application for N tax policy scenarios (Part 1) 

 

 

Figure 28: Crop share of catchment N fertiliser application for N tax policy scenarios (Part 2)  
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The outlined response in land use and fertiliser application to an individual N tax is mirrored in 

the modelled mixed policies which contain an N tax element (combined N & P tax; mixed N tax 

& 1%, 2% and 5% set-aside). This finding explains the similar shape in the pollution response. 

Combined N & P tax 

For the N & P tax, the abatement steadily increases up to around 20% of abatement at a social 

cost below 2% of the baseline catchment gross margin. Thereafter, the social cost of abatement 

increases significantly, and an additional abatement of about 10-20% is achieved while 

sacrificing about 10% of the catchment gross margin. As highlighted in section 6.2, for NRLOAD 

and NGLOAD the social cost of abatement increases more significantly than for PRLOAD and 

PGLOAD at higher tax levels and their maximum abatement potential is reached at about 25% 

of baseline pollution. This outcome is explained by the fact that absolute levels of P application 

are significantly lower than N application. Therefore, the cost of P represents a smaller 

proportion of a farm’s total costs, and a P tax will be associated with a lower social cost than an 

N tax. However, as the tax rate increases the combined effect of the N&P tax reduces its cost-

effectiveness relative to other policies at higher abatement levels (see section 6.2, p. 129). 

Set-aside 

Figure 19 to Figure 24 show that set-aside has a high maximum abatement potential, particularly 

for CFEM and NGLOAD. However, for most pollutants and regulatory targets, set-aside does not 

represent the most cost-effective abatement tool compared to other modelled policies. This 

finding is in line with expectation because the social cost of set-aside is greater than the cost of 

input taxes. For set-aside land, output (yield) actually falls to zero rather than only being reduced 

due to a less intensive application of inputs. 

Further Figure 29 – Figure 31 demonstrate, that in contrast to the N tax, the set-aside policy 

does not entail a significant shift from higher-input towards lower-input crops. These results are 

in line with expectations since set-aside acts by restricting the extensive production margin 

rather than incentivising the intensive production margin. 
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Figure 29: Land use change in response to non-targeted set-aside policy (Part 1) 

 

Figure 30 and Figure 31 demonstrate that as the set-aside requirement increases, non-FYM 

crops tend to be replaced with FYM crops. This finding is driven by the need for farmers to empty 

their FYM storage23. Farms have limited FYM storage available for their herd size and need to  

Figure 30: Land use change in response to non-targeted set-aside policy (Part 2) 

 

 
23 To aid computation, the model assumes that farms can store up to 80% of the organic N nutrients and 50% of the 

P nutrients of organics produced on-farm. The higher allowance for N is driven by the higher ratio of N to P in manure. 
Exact N & P ratios vary widely due multiple factors including different storage and feeding practices (e.g.: covered or 
uncovered storage, N & P reduced feeding (Pomar et al., 2011)). 
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spread the FYM produced by their livestock over the land. Therefore, as more land is taken out 

of production, less land is available to spread FYM and some of the land allocated to non-FYM 

crops has to be allocated to FYM crops. 

Moreover, the proportion of fodder crops generally declines as a proportion of total catchment 

land. This behaviour is further driven by the up to 47% reduction in livestock numbers over the 

analysed scenarios as less land is available for extensive livestock rearing. Notably the effect of 

set-aside on livestock numbers is significantly more pronounced than the impact of an N tax. 

Figure 31: Land use change in response to non-targeted set-aside policy (Part 3) 

 

Figure 23 (see p. 136) demonstrates that the non-targeted set-aside does not achieve the 

highest sediment pollution abatement potential amongst the modelled policies. As highlighted 

in section 6.2, this result is unexpected, due to the more significant influence tillage systems 

have on sediment pollution compared to N application. Taking land out of production and 

thereby eliminating tillage would be expected to reduce sediment pollution more significantly 

than a change in the level of fertiliser application. However, this finding is explained by the 

impact of the 78% grassland share in the catchment’s land allocation (see Table 23, p.118).  

Grassland does not require regular tillage throughout the growth cycle and provides permanent 

soil cover. This fact reduces its potential for sediment pollution relative to the modelled sale 

crops such as wheat and barley, which require tillage and provide more limited soil coverage. 

Consequentially, we expect the additional sediment abatement effect of set-aside compared to 

grassland to be less significant. Given the high proportion of grassland in the catchment at the 
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baseline, this context explains the more limited sediment abatement potential of set-aside in 

the Eden.  

In addition, the fact that sediment pollution in this analysis is primarily modelled as a function 

of N application may contribute to the lower effectiveness of set-aside in reducing sediment 

pollution. Although the EPIC simulation accounts for the impacts of tillage systems, the effect of 

changes to fertiliser application on sediment abatement may be over-estimated due to the 

functional form linking sediment pollution to N fertiliser application (see Table 14). This 

assumption may lead to overestimating the maximum abatement potential of policies targeting 

the intensive margin of N application and explain the relatively lower performance of set-aside 

on sediment pollution.  

Mixed N tax & set-aside 

Figure 19 to Figure 24  demonstrate that the mixed instruments of combining an N tax with a 

set-aside (1%, 2%, and 5% level) display a pollution abatement behaviour similar to an individual 

N tax. As mentioned in section 6.2, the mixed policies generally provide slightly more cost-

effective pollution abatement than an individual set-aside policy for most pollutants and have a 

higher maximum abatement potential. NGLOAD and CFEM are notable exceptions for the higher 

maximum abatement potential of mixed N tax and set-aside instruments. This finding is 

explained by the limited maximum abatement potential of an individual N tax for both 

pollutants, explained in section 6.2. For NGLOAD, that limitation is driven by failures of 

N incentive policies due to the more direct N-to-groundwater pathway, as described earlier. For 

CFEM, an N tax’s limited maximum abatement impact is driven by its limited impact on machine 

hours, as described previously. The modelled mixed instruments do not outperform the 

analysed N tax in terms of cost-effectiveness. However, they do also provide a higher maximum 

abatement potential than the individual N tax for most of the examined pollutants (see Table 

38, p. 151). The mixed instrument with a 2% set-aside appears to outperform the modelled 5% 

set-aside mixed instrument for low levels of pollution abatement. However, around an 

abatement target of 25-30%, the 5% mixed instrument tends to slightly outperform the 2% 

mixed instrument. Land use changes in response to both mixed instruments are generally very 

similar (see Appendix B, Figure 42, p. 190 - Figure 47, p. 195). Nonetheless, lower-input crop 

land share rises at a faster rate in the 2% than the 5% mixed instrument at similar levels of 

higher-input land shares between scenarios 17 – 25 (N tax levels: 850% - 1,250%) which may 

explain the slight trend reversal. Moreover, the 5% mixed instrument reaches a higher maximum 

abatement potential than the 2% mixed instrument. 
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Examining the underlying responses in terms of land use change and variations in the intensity 

of fertiliser use confirms that the mixed instruments’ responses closely correspond to the N tax 

responses (see Appendix Figure 42 – Figure 44 for the land use change response). Notably, 

farmers substitute away from fertiliser-intensive crops towards less intensive crops. This 

behaviour explains the similarities in the abatement response of mixed instruments to the 

individual N tax. 

Spatial targeting 

As outlined in section 3.3, we expect the set-aside policies which are spatially targeted towards 

the most polluting soils, slopes, and hydrologically connected land to provide significant cost-

effectiveness improvements over uniformly applied set-aside policies at low to medium policy 

stringency levels. However, as mentioned in section 6.1, set-aside policies targeting soils and 

hydrologically connected land were not cost-effective in early trials. Section 6.2 further 

demonstrated that a set-aside policy targeted towards the most polluting slope-type, provides 

pollution abatement at a similar or only marginally smaller social cost than a uniformly applied 

set-aside policy for low to medium stringency levels across the pollutants in this analysis.24 The 

combination of three key characteristics of the Eden catchment contributes to the limited cost-

effectiveness of spatial targeting in this analysis: 

1) The distribution of soils and hydrological connectivity 

Firstly, as outlined in Table 8 and Table 36, the soil distribution is dominated by soil 1 and soil 4 

which represent more than 80% of the total catchment. This low level of heterogeneity leads to 

more homogeneous pollution outcomes and marginal costs of abatement. Therefore, the scope 

for targeting policies towards soil-types with lower marginal abatement costs is reduced. 

Analogously, the distribution of hydrological connectivity is also dominated by less-

hydrologically-connected land with 90% falling below the 30th and 98% below the 40% percentile 

of the catchment’s maximum level of hydrological connectivity (see Figure 9). Again, this fact 

leads to more homogeneous pollution outcomes and marginal abatement costs within the 

catchment and reduces the ability to target policies towards highly hydrologically connected 

land. Therefore, the distribution of soils and hydrological connectivity within the catchment 

suggests that spatially targeting policies by soils and hydrological connectivity will not lead to 

improvements in cost-effectiveness. This theory was confirmed in early trials of set-aside 

policies targeted towards high pollution-risk soils and high levels of hydrological connectivity. 

 
24 Livestock numbers are reduced slightly less (by 41%) than under uniform set-aside policy (by 47%) across scenarios. 
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2) The soil composition 

Secondly, the included soils have very similar texture properties as demonstrated in Table 36 

which shows the catchment soils’ texture proportions in the three key variables: clay, silt, and 

sand. 

Table 36: Composition of soil-types in the Eden catchment 

Soil-types 
CLAY  
(%) 

SILT  
(%) 

Sand 
 (%) 

Proportion of Catchment  
(%) 

L 1 15.6 22.5 61.9 50.80 

L 2 21.5 26.8 51.8 0.03 

L 3 12.7 30.1 57.2 15.16 

L 4 22.7 33.2 44.1 33.24 

L 5 23.3 30.7 46.0 0.76 

 

These characteristics are further visually illustrated in Figure 32, which shows the catchment 

soils in the context of the soil texture triangle. Given that the difference in texture composition 

between the dominant soils 1 and 4 is 18, 11, and 7 percentage points for sand, silt, and clay, 

respectively, we would not expect to see large differences in pollution outcomes and marginal 

abatement costs due to soil-types. These findings further exacerbate the effects of the skewed 

distribution of soils within the catchment discussed above and reduce the scope for cost-

effective spatially targeted policies. 
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Figure 32: Soil texture triangle (Source: Queensland Government, 2022) 

 

 

 

3) The dominance of grassland in catchment land allocation 

Finally, the catchment slopes detailed in Table 9 show some variation (ranges from 0% to 12.8%) 

which includes the threshold of 3% at which the pollution potential from tilled agricultural land 

would be expected to be significant, particularly for sediment pollution (Müller et al., 2014). 

However, as shown in Table 23 and discussed in detail above (see p. 144), 78% of the catchment 

is covered by grassland, which provides perennial cover and reduces the sediment load potential 

from land. This context further explains the relatively small impact of spatial targeting set-aside 

by slope-type to reduce sediment pollution in the Eden catchment. 
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Precision agriculture 

The implementation of PA has minimal impact on farmers’ land use choices (see Appendix B, 

Figure 48 ,p. 196 and Figure 50, p. 198). Moreover, livestock numbers remain largely unchanged 

across the modelled scenarios. Table 37 demonstrates that as the PA efficiency factor 

increases (5% - 45%) artificial N fertiliser consumption in the catchment decreases (0.7% – 3.7%) 

and overall yield in the catchment increases (0.9% - 7.6%). The PA implementation increases 

productivity as increased farm outputs are generated with reduced inputs.  

Table 37: Effect of Precision agriculture on results - total fertiliser consumption and average 
yield per hectares 

PA efficiency factor scenario 
(%) 

N fertiliser consumption 
relative to baseline  

(%) 

Yield relative to baseline  
(%) 

5 99.3 100.9 

10 99.0 101.8 

15 98.2 102.8 

20 96.9 103.3 

25 96.8 104.0 

30 96.6 104.8 

35 96.4 105.6 

40 96.3 106.6 

45 96.3 107.6 

 

As mentioned in section 6.2, the environmental benefits of PA are around 2% to 20% pollution 

abatement across the pollutants for the increasing levels of assumed efficiency gains.  These 

findings are driven by the reduced fertiliser consumption and the increased yield output. In 

addition to pollution abatement, PA provides further benefits such as increased data availability 

and the opportunity to take advantage of automation, which will be discussed in section 7.2. 

Currently, the social cost associated with the implementation of PA for pollution abatement 

(between 4% and 3% of catchment gross margin) is higher than other modelled policy options. 

As outlined in section 4.7, PA costs are modelled as contractor costs in this analysis. This 

modelling approach could also represent joint machinery ownership agreements which are 

popular among smallholder farms, to reduce high capital investment costs and risks associated 

with PA. The cost of PA implementation will likely decrease going forward as technological 
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advances further reduce capital costs. We expect these cost savings to be passed on directly to 

joint owners and indirectly to farmers purchasing contractor services through reduced service 

costs.  

The synergies between PA and spatial targeting relate primarily to the catchment preconditions 

required for their successful implementation. In particular, the distribution of soils and 

hydrological connectivity outlined above, which limit the Eden catchment’s suitability for 

spatially targeted policies, analogously apply to its suitability for PA implementation. PA requires 

heterogeneity in catchment characteristics to provide efficiency benefits through targeted input 

application (Schneider and Wagner, 2008). Notably, this analysis does not model efficiency 

factors as a function of catchment characteristics which may therefore overestimate the 

benefits of PA in the Eden catchment, which is further discussed in section 8.3.  

This chapter has presented the results of the modelled policy scenarios by looking at the 

responses of individual pollutants before analysing the individual policy mechanisms. The 

following chapter synthesises the policy implications of the findings and contextualises them 

within the literature. 
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7. Discussion 

This chapter discusses the results presented in chapter 6. Section 7.1 compares the modelled 

policies in a regulatory target matrix, and section 7.2 compares the results to previous findings 

in the literature reviewed in chapter 3.   

7.1.  Policy Outcomes 

The cost-effectiveness of the modelled policies is ranked in Table 38 for the key pollutants 

(NRLOAD, PRLOAD, ZLOAD, and CFEM) in the Eden catchment at three levels of pollution 

abatement (20%, 40%, and maximum abatement potential). 

Table 38: Results summary for key modelled policies and pollutants 
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Non-

targeted 

set-aside 

NRLOAD 2 2.0 4 9.0 4 25.0 9.0 

PRLOAD 4 2.0 4 9.0 5 29.0 9.0 

ZLOAD 3 2.0 4 9.0 4 33.0 9.0 

CFEM 2 2.0 2 6.0 1 56.0 14.5 

Targeted 

set-aside 

NRLOAD 2 2.0 5 10.0 6 21.0 10.0 

PRLOAD 4 2.0 5 10.0 6 21.0 10.0 

ZLOAD 2 1.5 5 9.5 5 23.0 9.5 

CFEM 1 1.0 6 14.5 5 32.0 14.5 

N tax 

NRLOAD 1 1.0 1 3.5 2 47.0 5.0 

PRLOAD 2 1.0 1 3.5 3 46.0 5.0 

ZLOAD 1 1.0 1 4.0 2 51.0 5.5 

CFEM 3 3.0 1 5.0 4 37.0 5.0 

Mixed N 

tax & 2% 

set-aside 

NRLOAD 2 2.0 2 6.0 1 48.0 7.0 

PRLOAD 3 1.5 2 5.0 2 48.0 6.5 

ZLOAD 2 1.5 2 6.0 3 37.0 6.0 

CFEM 1 1.0 3 7.0 3 38.0 7.0 
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Mixed N 

tax & 5% 

set-aside 

NRLOAD 3 2.5 3 7.0 3 46.0 9.5 

PRLOAD / / 3 6.5 1 50.0 8.0 

ZLOAD / / 3 6.5 1 53.0 8.5 

CFEM / / 4 8.0 2 41.0 8.0 

Precision 

Agriculture 

NRLOAD 4 4.0 / / 5 22.0 9.0 

PRLOAD 5 3.0 / / 7 17.0 0.5 

ZLOAD 4 3.5 / / 6 19.0 0.5 

CFEM 4 3.5 / / 7 18.0 0.5 

N & P tax 

NRLOAD 1 1.0 4 9.0 5 22.0 9.0 

PRLOAD 1 0.5 2 5.0 4 40.0 9.5 

ZLOAD 2 1.5 2 6.0 3 37.0 6.0 

CFEM 1 1.0 5 9.0 6 31.0 9.0 

Note: *ranked by social cost in ascending order, **ranked by max abatement potential in descending 
order 

 

The groundwater variables (NGLOAD and PGLOAD see Figure 20 and Figure 22) are excluded for 

representation purposes in this overview, as surface water pollution is a more pressing issue in 

the Eden catchment than groundwater pollution (see section 6.1). As illustrated in Figure 19  – 

Figure 24, the intervals 0-20%, 20%-40% and maximum abatement potential represent points of 

more consistent policy behaviour and therefore represent appropriate summary points. The 

following section discusses these policy rankings and findings in more detail in the context of 

the literature explored in chapter 3. 

7.2.   Contextualising Results with Previous Findings 

Firstly, as highlighted in section 6.2 and demonstrated in Table 38, an individual N tax and N&P 

tax provide the most cost-effective pollution abatement for low- to mid-level abatement 

targets. The outperformance of the incentive-based tax policies relative to the regulation-based 

set aside policies corresponds to findings in the previous literature discussed in section 3.2.1. 
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This result aligns with the reviewed economic expectation that higher degrees of freedom, 

which farmers have under incentive-based policies, facilitate lower abatement costs than those 

under regulation-based policies imposed by a government with imperfect information on 

farmers’ cost curves (Shortle and Dunn, 1986). Kampas and White (2004) also find a N input tax 

to act as a cost-effective policy option, particularly when transaction costs are accounted for. 

Without transaction costs, they find an emission tax to be the most cost-effective policy. As 

outlined above (see section 4.2, p. 73), transaction costs were not explicitly accounted for in the 

modelling of this thesis in favour of novel biophysical details (see Table 39, p. 157), spatial 

targeting, and PA. However, the significance of transaction costs did inform the selection of 

modelled policies and motivated the exclusion of emission taxes (Aftab, Hanley and Baiocchi, 

2017, p. 15). Therefore, this thesis also supports the cost-effectiveness ordering of input taxation 

before set-aside as found by Kampas and White (2004).  

Further, demand for N fertiliser is found to be very price inelastic with 800% N tax achieving a 

10% reduction in N consumption (see section 6.2). Jayet and Petsakos (2013) generally also find 

N fertiliser use in France to be relatively price inelastic; however, their results suggest a higher 

elasticity (100% tax leading to 15%-20% reduction in nitrate emissions at the national  to regional 

level) than the results presented in this thesis. The presented results closely align with Schmidt 

et al. ‘s (2017) more recent agent-based analysis of N surplus in Switzerland which found an 

800% N tax to reduce N surplus by 10%. The authors suggest that the low response to the N tax 

may be partially explained by the large proportion of dairy and livestock farming in the Swiss 

agricultural sector which aligns with the described Eden catchment characteristics (see 

section 5.4.2,  p. 117). As Schmidt et al. (2017) suggest, the higher gross margins of livestock 

farms relative to cereal farms lead to less elastic N fertiliser demand. 

In addition to N demand elasticity, this thesis’ detailed analysis of the N tax response finds 

that farms shift from higher-input crops to lower-input crops. In the process, as illustrated in 

section 6.3, they initially compensate for their lost yield by increasing production on the lower-

input crops at the intensive margin (increasing fertiliser application) as well as the extensive 

margin (increasing land allocation). This outcome aligns with Jayet and Petsakos’ (2013) findings 

for a livestock intensive catchment (Basse-Normandie, France). They suggest that an N tax leads 

to some increases at the extensive margin for permanent meadows (relatively lower-input land 

allocation) as well as some increases at the intensive margin of these meadows (higher number 

of livestock on the meadows). 

Secondly, mixed policy instruments generally show the highest maximum abatement 

potential but are not cost-effective at lower abatement levels (see Table 38). This result 

mirrors Aftab, Hanley and Baiocchi’s (2010) finding that mixed instruments’ relative cost-
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effectiveness improves at higher regulatory targets in the Scottish West Peffer catchment. Their 

results further suggest that single instruments outperform mixed instruments in average 

weather-years. These conclusions closely align with the findings of this thesis based on average 

weather-years. Bourgeois, Ben Fradj and Jayet (2014) also find that mixed-policy instruments 

improve cost-effectiveness for N water pollution abatement in France. The authors consider a N 

tax and low input crop subsidy instead of the set-aside requirements evaluated above. However, 

their results also suggest that mixed instruments are not more cost-effective in reducing gaseous 

(nitrous oxide and ammonia) pollution abatement which is mirrored in the results for carbon 

emissions in this thesis (see Figure 24, p. 137). 

Thirdly, set-aside is generally not found to be cost-effective across the modelled pollutants 

(see Table 38, p. 151). As mentioned above, this finding corresponds to the economic intuition 

that command-and-control policies are outperformed by incentive-based policies. Moreover, 

the observed general decrease in set-aside cost-effectiveness at higher regulatory targets aligns 

with Kampas and White’s (2004) finding that at higher reliability levels set-aside becomes the 

least cost-effective policy instrument. As discussed in section 6.3, on set-aside land output 

(yield) falls to zero rather than only being reduced due to a less intensive application of inputs 

in the alternative modelled policies. As regulatory targets increase, farmers have less choice as 

to which land to take out of production which increases the policies’ social cost. 

As discussed in section 6.3, set-aside does not lead to increases at the intensive margin (i.e., 

farmers are not increasing fertiliser application to compensate for yield losses due to set-

aside). However, they do shift towards FYM crops due to limited FYM storage. In contrast, Chakir 

and Thomas’ (2022) recent econometric work on the intensive margin effects of set-aside 

suggests that as farmers increase set-aside in response to a rise in set-aside subsidy, their 

fertiliser consumption does increase to compensate for reduced output. In the revenue neutral 

policy setting model of this thesis, this income effect is not observed as no set-aside subsidy is 

modelled. Moreover, given the constraints on FYM storage, the share of FYM crops increases in 

line with set-aside requirements as farms compensate for land taken out of production to empty 

their manure stores (see p. 143) which may outweigh potential income and substitution effects.  

As demonstrated in Table 38 (see p. 151), set-aside does not achieve the highest sediment 

abatement potential amongst the modelled policies. As outlined in sections 6.2 and 6.3, this 

result does not align with the expectation that set-aside achieves the highest sediment 

abatement potential due to its more direct theoretical link to sediment pollution than other 

modelled policies such as fertiliser taxation. However, Hodge et al.’s (2006) report on set-aside 

options for English agricultural policy suggest that the impact of set-aside measures are highly 

dependent on individual catchment characteristics. This statement is supported by 
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Secchi et al.’s (2007) modelling work on the cost-effectiveness of an agricultural water pollution 

abatement policy combination including set-aside for 13 watersheds in Iowa, USA. They find 

sediment abatement varies significantly between watersheds (6% - 65%) driven by differences 

in size and environmental conditions of the watersheds. As further outlined in section 6.3 for 

this thesis the relatively low sediment abatement potential of set-aside policy may be explained 

by the 78% grassland cover of the assessed Eden catchment. 

Spatially targeted set-aside is slightly more cost-effective than uniformly applied set-aside at 

lower levels; however, the cost-effectiveness ranking inverts at high regulatory targets 

(see  Table 38, p. 151). In the context of irrigated corn production in the Ebro basin of the Iberian 

Peninsula, Martínez and Albiac (2006) also find that spatially differentiated pollution control 

policies provide a small welfare improvement compared to a homogeneously applied standard. 

Notably, their work differentiates between different soil-types as opposed to the slope-targeted 

policies reported in this thesis. In contrast to the soil-types included in this thesis (see p. 147), 

the soil-types included in Martínez and Albiac’s (2006) analysis show significant differences in 

key soil characteristics (e.g.: 40 percentage point range in irrigation efficiency level and up to 

267% variation in water-holding capacity (m3/ha) (Martínez and Albiac, 2006, p. 525)). Hasler et 

al. (2019) find that spatially targeting NPS N pollution control policies according to 

heterogeneous hydrological factors (specifically N retention from the root zone to the coast) 

significantly reduces abatement costs in the Danish Limfjorden catchment. The authors stress 

that the Limfjorden catchment is characterised by high variation in N retention (spanning from 

0 – 100% with a 65% average) and that, in line with the findings of this thesis, spatial targeting 

has a smaller effect on catchments with lower heterogeneity levels in hydrological connectivity. 

These findings support the discussion in section 6.3, highlighting that the Eden catchment’s 

limited heterogeneity in the soil-types and hydrological connectivity levels explain why spatially 

targeted policies by soils and hydrological connectivity were not found to be cost-effective. They 

further emphasise the contribution of the novel biophysical details included in this thesis’ 

analysis of spatially targeted policies (see Table 39, p. 157 which compares this model with to 

the previous literature). These details facilitated identifying the preconditions necessary for 

cost-effectively spatial targeting NPS pollution control policies. 

PA shows diminishing returns to abatement and potential for pollution abatement in 

conjunction with wider policy goals but is not cost-effective on its own (see section 6.3, 

p. 149). In contrast, Schieffer and Dillon’s (2015) simulation of VRNA shows an increased N 

consumption and carbon footprint due to higher average N application to increase yields and 

net returns. Their one farm model focusses on cereal production in western Kentucky and 

includes a limited representation of biophysical conditions (e.g.: two crop rotations, 
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N application as a proxy for N runoff). The model presented in this thesis extends their work as 

a catchment-scale analysis of PA in an economic model with a novel biophysical detail in the 

literature (see Table 39, p. 157). The presented results of this thesis which include both 

increased yield and reduced fertiliser consumption combine the two effects that Heege (2013) 

highlights as the key VRNA impacts on N use efficiency. However, the presented results also 

demonstrate that these efficiency improvements of PA do not outweigh the costs associated 

with them. These findings may be partially explained by the Eden catchment characteristics 

highlighted in section 6.3 which include its lack of heterogeneity and dominance of grassland. It 

may be further explained by the fact that farm size is assumed constant in this analysis. 

Schneider and Wagner’s (2008) findings in the context of cereal crop cultivation suggest that 

VRNA costs per hectare fall as farm size increases. Moreover, as mentioned in section 6.3, this 

thesis has not considered additional non-monetised benefits associated with PA application. 

Schneider and Wagner’s (2008) survey results suggest these non-monetised benefits of PA may 

be significant to farmers including time savings, improved information for management 

decisions, and easier documentation. Quantifying such non-monetised benefits of PA in cost-

effectiveness analysis and investigating differences between farm sizes suggests interesting 

starting points for future research (see section 8.4). 

Finally, different crop rotations and positioning in crop rotations lead to significantly different 

average yield outcomes (see p. 111). These results align with the agronomic findings of Florio 

and Nosetto (2022) who find that crop rotations significantly impact water-table depth and 

consequently yields in the south of Córdoba Province (Argentina). Their hydrologically focussed 

modelling suggests that intense crop rotations can result in water table levels deeper than the 

optimum depth zone and thereby reduce crop yields. Götze, et al.’s (2017) agronomic 

experimental field trials on crop rotations’ impacts on sugar beet yields in Et dorf (Saxony-

Anhalt, Germany) further support their significance in yield outcomes. They find that crop 

rotations significantly impact the technological yield quality of sugar beet (sugar content and 

potassium content). Additionally, they find white sugar yield increases with cropping intervals 

of crop rotations, although they were unable to statistically verify this result. Therefore, both 

agronomic modelling and experimental studies support the contribution of this thesis 

demonstrating the importance of detailed crop rotation modelling in biophysical-economic 

models. Table 39 summarises the key model features of the literature reviewed in this thesis 

and demonstrates the novel extent of the biophysical details included in this work. Notably, to 

the best of my knowledge the number of crop rotations included has only been achieved once 

by Aftab, Hanley and Baiocchi (2017), however, in the context of a smaller number crops, 

weather-years, as well as soil- and slope-types. 
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Table 39: Key biophysical model feature comparison of reviewed literature 

 

PAPER 
NO. OF 
CROPS 

NO. OF  
CROP  

ROTATIONS 

NO. OF  
SOIL- 
TYPES 

NO. OF 
 SLOPE- 
TYPES 

FARM 
TYPES 

HYDROLOGICAL 
CONNECTIVITY 

WEATHER-
YEARS 

STUDY LOCATION KEY POLLUTANTS 

Aftab, Hanley  
& Baiocchi  

(2010) 
4 u.s.* 3 u.s.* 4 

Not explicit  
but hydrological model * 

9 
West Peffer Catchment  

(Eastern Scotland) 
▪ Nitrate 

Aftab, Hanley 
 & Baiocchi  

(2017) 
8 

34 (M)* 
33 (B)* 

3 u.s.* 
5 (M)* 
7 (B) * 

 

Not explicit  
but hydrological model * 

10 

Motray 
 Catchment (M)* 

Brothock 
 Catchment (B)* 

(Scotland)  

▪ Nitrogen 

Alpizar et al. 
(2004) 

experimental 

Bourgeois, 
Ben Fradj & Jayet  

(2014) 
14 u.s.* u.s.* u.s.* 157 

Not explicit  
but hydrological model * 

u.s.* France 
▪ Nitrate 
▪ Ammonia 
▪ Nitrous Oxid 

Cabe & Herriges 
(1992) 

theoretical 

Chakir & Thomas  
(2022) 

Econometric estimation 
Department of Meuse 

(France) 

▪ Elasticity of 
input demand 

▪ Intensity of 
input use/  
land unit 

Claassen & Horan  
(2001) 

1 u.s.* 4 u.s.* u.s.* u.s.* u.s.* North Central USA 
▪ Nitrogen 
▪ Phosphorus 

Florio & Nosetto 
(2022) 

4 4 4 3 1 
Hydro-economic  

model 
31  

South of Cordoba 
Province 

 (Argentina) 

▪ Water table 
levels 
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PAPER 
NO. OF 
CROPS 

NO. OF  
CROP  

ROTATIONS 

NO. OF  
SOIL- 
TYPES 

NO. OF 
 SLOPE- 
TYPES 

FARM 
TYPES 

HYDROLOGICAL 
CONNECTIVITY 

WEATHER-
YEARS 

STUDY LOCATION KEY POLLUTANTS 

Griffin & Bromley  
(1982) 

theoretical 

Hasler et al. 
(2019) 

12 u.s.* 2 u.s.* 

90 
Sub-

catchment
s 

Monitoring and 
modelled data 

u.s.* 
Limfjorden catchment 

(Denmark) 
▪ Nitrogen 

Hasler et al. 
 (2014) 

9 u.s.* u.s.* u.s.* 
22 

(regions) 
Hydro-economic model 11 

Drainage basin  
of the Baltic Sea 

▪ Nitrogen 
▪ Phosphorus 

Helfand & House 
(1995) 

1 u.s.* 2 u.s.* 1 
Not explicit  

but hydrological model * 
1 

Salinas Valley/ 
California (USA) 

▪ Nitrate 

Helin et al.  
(2013) 

3 u.s.* 3 6 1 
Not explicit  

but hydrological model * 
u.s.* 

Middle Lepsämänjoki 
Sub -Catchment 

(Southern Finland) 

▪ Nitrogen 
▪ Phosphorus 
▪ Biodiversity 

Jayet & Petsakos  
(2013) 

32 u.s.* 5 u.s.* 14 u.s.* 1 France ▪ Nitrogen 

Kampas & White  
(2004) 

u.s.* u.s.* u.s.* u.s.* 1 
Not explicit 

 but hydrological model 
* 

u.s.* 
Kennet Catchment 

(South West England) 
▪ Nitrate 

Khanna, Isik  
& Zilberman 

 (2002) 
1 u.s.* 

Beta Distribution 
(3, 3) 

u.s.* u.s.* u.s.* 
San Joaquin Valley/ 

California (USA) 
▪ Polluted 

Drainage 

Larson, Helfand  
& House  
(1996) 

1 u.s.* u.s.* u.s.* 1 u.s.* 1 
Salinas Valley/ 

 California (USA) 
▪ Nitrate 

Lungarska & Jayet 
(2018) 

9 u.s.* u.s.* u.s.* 
6 

(regions) 
u.s.* u.s.* France 

▪ Surface water 
Nitrate 
concentration 

MartInez & Albiac  
(2004) 

6 u.s.* 1 u.s.* u.s.* 
Not explicit but 

 nitrogen dynamics in 
soil 

u.s.* 
Ebro basin 

(Iberian Peninsula) 
▪ Nitrate 
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PAPER 
NO. OF 
CROPS 

NO. OF  
CROP  

ROTATIONS 

NO. OF  
SOIL- 
TYPES 

NO. OF 
 SLOPE- 
TYPES 

FARM 
TYPES 

HYDROLOGICAL 
CONNECTIVITY 

WEATHER-
YEARS 

STUDY LOCATION KEY POLLUTANTS 

MartInez & Albiac 
(2006) 

1 u.s.* 3 u.s.* u.s.* 
Not explicit  

but hydrological model * 
1 

Ebro Basin 
(Iberian Peninsula) 

▪ Nitrate 

Meran & Schwalbe 
(1987) 

theoretical 

Ribaudo, Osborn  
& Konyar  

(1994) 
8 u.s.* u.s.* u.s.* 

10 
(regions) 

Not explicit  
but hydrological model * 

u.s.* USA 
▪ Nitrogen 
▪ Herbicides 
▪ Insecticides 

Schieffer & Dillon 
(2015) 

2 2 2 u.s.* 1 u.s.* 30 
Western Kentucky  

(USA) 

▪ Nitrogen  
Run off 

▪ Carbon 
emissions 

Schmidt et al.  
(2017) 

Agent based model Switzerland 
▪ Nitrogen Farm 

Gate Balance 

Secchi et al.  
(2007) 

u.s.* u.s.* u.s.* 7 13 
Not explicit  

but hydrological model * 
18 Iowa (USA) 

▪ Sediment 
▪ Total Nitrogen 
▪ Total 

Phosphorus 

Sergerson  
(1988) 

theoretical 

Shortle & Dunn 
 (1986) 

theoretical 

Spraggon  
(2002) 

experimental 

Vatn et al.  
(1997) 

u.s.* u.s.* 3 3 4 
Not explicit  

but hydrological model * 
20 

South Eastern  
Norway 

▪ Nitrogen, 
▪ Ammonia, 
▪ Phosphorus 
▪ Sediment 

Wang & Baerenklau 
(2015) 

5 6 9 u.s.* 1 
Not explicit  

but hydrological model * 
u.s.* 

San Joaquin Valley/ 
California (USA) 

▪ Nitrogen 
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PAPER 
NO. OF 
CROPS 

NO. OF  
CROP  

ROTATIONS 

NO. OF  
SOIL- 
TYPES 

NO. OF 
 SLOPE- 
TYPES 

FARM 
TYPES 

HYDROLOGICAL 
CONNECTIVITY 

WEATHER-
YEARS 

STUDY LOCATION KEY POLLUTANTS 

Xabadia, Goetz,  
& Zilberman  

(2008) 
Theoretical with numerical example 

San Joaquin Valley/ 
California (USA) 

▪ Water logging 

Xepapadeas  
(1991) 

theoretical 

This thesis 25 
24 (short term) 
10 (long term) 

5 4 6 10 45 
Eden Catchment 

Northwest England 

▪ ZLOAD 
▪ NRLOAD 
▪ NGLOAD 
▪ PRLOAD 
▪ PGLOAD 
▪ CFEM 

Notes: (B): Brothock Catchment; u.s.: unspecified – details not explicitly disclosed in paper; Not explicit but hydrological model: hydrological connectivity not explicit variable 
index but hydrological factors included in modelling; (M): Motray Catchment 

 

 

This chapter has summarised the presented results (section 7.1) and discussed the presented results in the context of the reviewed literature (section 7.2). 

The following chapter summarises each chapter, draws out the key policy recommendations, discusses the thesis’ limitations, and highlights areas for future 

research.
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8. Conclusion 

This chapter concludes this thesis by firstly outlining the focus points of each chapter 

(section 8.1) and subsequently highlighting the key policy recommendations drawn from this 

work (section 8.2). Moreover, the limitations of the thesis are discussed in section 8.3 and points 

for future research are described in section 8.4. 

8.1.   Summary 

This thesis has investigated the cost-effectiveness of agricultural NPS pollution control policies 

through a biophysical-economic model for the Eden catchment (North-West England). Chapter 1 

provides the context and motivation of this research, namely (i) the current once-in-a-

generation reform of agricultural policy in the UK, (ii) the continuously pressing issue of 

agricultural NPS pollution in the UK, and (iii) the recent technological progress in agriculture 

expanding the feasibility set of spatially targeted agri-environmental policies and potential use 

of PA which have not previously been addressed in the literature. Further the chapter outlines 

the key research objective. Firstly, incentive, regulation-based, and mixed policy instruments are 

simulated and compared to provide up-to-date policy recommendations (see section 8.2, 

p. 163). PA and spatially targeted policies are analysed in the novel context of a catchment-scale 

detailed biophysical-economic model (including hydrological connectivity, crop rotations, and 

extensive observed weather data). The results highlight the necessary precondition of sufficient 

catchment heterogeneity in the key biophysical variables (soils, slopes, and hydrological 

connectivity) to cost-effectively employ both spatially targeted policies and PA (see section 6.3, 

p. 146). Moreover, the sensitivity analysis suggests that extensive observed weather data is 

significant for NPS pollution due to years with exceptionally high pollution. 

Chapter 2 summarises and describes the developments of agri-environmental policy in the UK 

from UK leadership on agri-environmental policy issues in the 1980s (see section 2.1) through 

increasing European influence through the Nitrates Directive and WFD (sections 2.4 and 2.5 

respectively) and direct payments (sections 2.8 and 2.9) towards the current post-Brexit UK agri-

environmental policies (sections 2.11 and 2.12). 

Given the context of UK agri-environmental policy set out in the previous chapter, chapter 3 

reviews the economic literature on NPS control policies. Following the definition of NPS 

externalities (section 3.1), previous evidence on different types of policy interventions is 

analysed in section 3.2. Economic research exploring application methods of agri-environmental 
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policies are reviewed in section 3.3 and existing work on agricultural technology including PA is 

explored in section 3.4. 

Informed by the review of the existing literature, chapter 4 outlines the methodological details 

of the biophysical-economic model. The chapter includes the chosen modelling approach of a 

non-linear optimisation model, the theoretical economic model description (sections 4.1 

and 4.2), and the model structure (section 4.3). Moreover, section 4.4 describes the simulation 

and modelling details of the yield and pollution data using the EPIC model, while section 4.5 

discusses the production functions’ functional form choice of the Mitscherlich-Baule functional 

form for yield and polynomial functional form for the pollution functions. Finally, the framework 

accounting for hydrology using SCIMAP is presented in section 4.6 and the approach to 

modelling PA through a N efficiency factor is explained in section 4.7. 

The model described in the previous chapter is validated in chapter 5. The data used is presented 

in sections 5.2 and 5.3 relating to the simulated biophysical and economic data collated from 

various published sources. The model’s baseline outputs are compared to observed outcomes 

in section 5.4 which finds that the proportions of crop land allocation, output, and pollution 

outcomes generally closely match the observed outcomes of the Eden catchment and 

expectations from the literature. 

Subsequently the scenario model results are reviewed in chapter 6. Section 6.2 presents and 

discusses the results of the scenario policy analysis focussing on the modelled impacts on the six 

key investigated pollutants (NRLOAD Figure 19, NGLOAD Figure 20, PRLAOD Figure 21, PGLAOD 

Figure 22, ZLAOD Figure 23, and CFEM Figure 24). Section 6.3 provides a more detailed analysis 

of the underlying policy mechanisms driving the key results of the seven modelled policies. 

These include the land use changes and fertiliser crop share changes in response to the modelled 

policies. Moreover, the Eden catchment’s limited heterogeneity in soil compositions and 

hydrological connectivity, as well as grassland as its main land cover limit the effectiveness of 

spatial targeting and PA efficiency. 

Chapter 7 initially provides a succinct summary of the policy pollution outcomes in section 7.1 

(see Table 38).  Section 7.2 then provides a discussion of the previous chapter’s key results in 

the context of the literature reviewed in chapter 3. This discussion is summarised in the 

following section below to provide the context of the policy recommendations of this thesis. 
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8.2.   Policy Recommendations 

This section draws out the policy recommendations from the results discussion of section 7.2.  

Firstly, the results presented in section 6.2 suggest that across the analysed pollutants, the 

modelled policies show high levels of cost-effectiveness for mid – lower regulatory abatement 

targets. Specifically, up to around 20% of abatement is achieved at a maximum social cost of 

around 5% of catchment gross margin. These results provide a general reference point for 

policymakers when balancing the ambition of environmental abatement with political 

considerations of farmers’ economic position. 

As outlined in section 7.2, the finding that a combined N&P tax and an individual N tax provide 

the most cost-effective abatement for mid – low level regulatory targets aligns with the 

economic intuition concerning incentive- and regulation-based controls and is generally 

supported by the literature (Shortle and Dunn, 1986; Kampas and White, 2004). This result is 

surprising given the model also demonstrates that demand for N fertiliser is highly inelastic - 

further in line with previous work (Schmidt et al., 2017). Policymakers interested in the 

economically cost-effective option of fertiliser input taxation should therefore be aware of the 

high levels of revenue neutral N tax required to achieve behavioural change in farmers (800% 

tax leads to 10% reduction in N consumption). In the revenue neutral context of this analysis the 

associated social costs are only around 0.5% of catchment gross margin. However, in real world 

applications perceptions of taxation levels as high as 800% may have strategic implications and 

warrant political consideration. Moreover, the analysis illustrated in section 6.3 demonstrates 

that as farmers shift from higher-input to lower-input crops in response to the N tax, they initially 

compensate for lost yield by increasing production on the lower-input crops at both the 

intensive and extensive margins. The resulting slight reversal of the N taxes pollution abatement 

trend should therefore be considered when implementing an N tax to avoid unintended 

consequences. 

As outlined in section 7.2, an individual set-aside policy is not found to be cost-effective 

particularly at higher regulatory targets, corresponding to the reviewed literature (Kampas and 

White, 2004). Further, a set-aside policy is not found to provide the highest abatement potential 

of the modelled policies which may be explained by the individual Eden catchment 

characteristics given the variable results of set-aside effectiveness in the literature (see 

section 7.2; Hodge et al., 2006; Secchi et al., 2007). The model results contrast with Chakir and 

Thomas’ (2022) findings, as increasing levels of set-aside are not associated with increasing 

fertiliser intensity (see section 7.2). However, given the FYM storage constraints that farmers 
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face, they substitute non-FYM crops for FYM crops as set-aside increases. These results suggest 

that set-aside may not be the economically preferred policy option for the Eden catchment. 

However, if set-aside is chosen as a policy instrument, unintended consequences - such as 

increased organic fertilisation intensity on cultivated fields in livestock heavy catchments as the 

Eden - should be considered. To improve the cost-effectiveness of set-aside, the results suggest 

that policymakers may wish to combine set-aside to a mixed policy instrument with an N tax 

particularly at high regulatory targets (Aftab, Hanley and Baiocchi, 2010). Mixed instruments 

also achieve the highest maximum pollution abetment potential across the analysed pollutants, 

excluding gaseous CFEM (Bourgeois, Ben Fradj and Jayet, 2014). 

Previously, transaction costs of spatially targeted policies were deemed significant and 

potentially too high for successful real-world implementation (Lintner and Weersink, 1999). 

However, given technological progress, improved mapping systems and remote sensing, 

transaction costs of spatially targeted policies have fallen notably and are unlikely to present 

excessive challenges to successful real-world implementation (Gebbers and Adamchuk, 2010). 

Spatially targeted policies according to slope-types are found to provide only insignificant cost-

effectiveness improvements with respect to uniformly applied policies, while targeting 

according to soil-types and hydrological connectivity levels provides no cost-effectiveness 

benefits and has not been reported. As discussed in section 7.2, this finding can be explained by 

Eden’s specific catchment characteristics (low level of heterogeneity and significant grassland 

cover) which the literature supports as a key influence on the cost-effectiveness of spatially 

targeted policies (Martínez and Albiac, 2006; Hasler et al., 2019). These results highlight the 

importance of considering catchments’ detailed biophysical characteristics and ensuring they 

are sufficiently heterogeneous to ensure spatial targeting can be a cost-effective NPS control 

tool.  

PA is shown to lead to increased productivity though reduced fertiliser consumption and 

increased yields at the catchment scale. Both mechanism are  recognised as key impacts of VNRA 

in the literature based on experimental field evidence (Heege, 2013) as discussed in section 7.2. 

However, this thesis does not find PA alone to be a cost-effective tool for NPS control as costs 

of implementation outweigh the achieved productivity benefits. These results may be explained 

by a number of factors related to the lack of heterogeneity in the Eden catchment and significant 

grassland cover (78%) outlined above for the spatial targeting results. In catchments which meet 

the pre-conditions of sufficient heterogeneity, PA therefore may be a potential tool to support 

NPS pollution control efforts. Moreover, additional non-monetised benefits of PA highlighted in 
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the literature (e.g., time savings, improved data for management decisions, and simplified 

documentation (Schneider and Wagner, 2008)) have not been quantified in this analysis. Future 

work is needed to quantify these benefits and accurately assess the economic rationale for 

investments in PA (see section 8.4). However, the presented results nonetheless suggest 

policymakers could consider support for PA (in suitable catchments) to promote wider strategic 

goals given that the private case for farmer investment in PA still appears to be relatively weak 

while productivity gains and environmental benefits appear promising. 

Finally, this thesis has included a novel level of biophysical detail in its modelling (see Table 39). 

Crop rotations are found to lead to significantly different average yield outcomes (see p. 111) 

which highlights the need for bioeconomic models including crop rotations to evaluate NPS 

pollution control policies. The importance of detailed biophysical data in this research is further 

strengthened by the significance of heterogeneity (e.g., soil, slope, hydrological connectivity 

types, and weather data) for success in using spatial targeting and PA discussed above. Policy 

evaluations including targeted policy options should therefore be based on state-of-the-art 

details in biophysical-economic modelling. The following section explores the limitations of this 

thesis. 

8.3.   Limitations 

The following describes the key limiting aspects of this thesis which need to be considered when 

interpreting the results.  

Firstly, as discussed in section 6.3, a limitation of this work is the pollution function assumption 

that sediment pollution is inversely related to N application. Although the assumption is 

theoretically meaningful given biological processes (see Table 14, p. 88), it produces unrealistic 

pollution responses to agri-environmental policies. For example, we would expect nil input set-

aside to entail lower sediment pollution relative to grassland due to the reduced tillage 

operations compared to grassland. Moreover, potato crops which have a relatively low N 

application level in this model (see 5.4.4, p. 124) would be expected to have high sediment 

values due to the furrows and the limited field coverage they provide during the year. The 

assumed relationship between N application and sediment pollution may, therefore, limit the 

possible comparison between set-aside’s effect on sediment pollution and the effect of 

alternative crops. 

Secondly, the efficiency factors assumed in the modelling of VRNA are independent of the crop, 

soil-, and slope-type as well as the heterogeneity of the catchment and weather patterns within 
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the catchment. Realistically, PA technology generally, and VRNA in particular, are highly 

dependent on these variables. Although it is a meaningful starting point for PA in biophysical-

economic modelling, VRNA’s more simplistic representation in this thesis may not leverage the 

extensive biophysical modelling detail included with respect to VRNA analysis. As the current 

quantified evidence on the interactions between VRNA and particular crop-, soil-, slope-, and 

hydrological connectivity-types as well as weather variations across field parcels for grassland is 

still in its infancy, it has not been possible to include more precise assumptions for the Eden 

catchment at this stage (see section 8.4 for further discussion). 

Finally, as outlined above (see section 4.2, p. 73) transaction costs were only considered 

qualitatively and not explicitly accounted for in favour of the included novel biophysical details, 

spatial targeting, and PA. Their qualitative consideration informed the modelled policy selection 

and motivated the exclusion of emission targeting policies following the previous literature 

(Aftab, Hanley and Baiocchi, 2017, p. 15). Transaction and administration costs significantly 

impact the cost-effectiveness of policies and influence policymakers’ choices. Therefore, 

although beyond the scope of this thesis, a quantitative appraisal of transaction costs and 

emission-based policies would give a more holistic picture of policymakers’ trade-offs.  How the 

listed limitations could inform future research is further explored in the following section. 

8.4.   Future Works 

This section builds on the discussion of section 8.3 and draws out future areas of research from 

the presented thesis. 

Firstly, as computing power continues to improve, future work could include additional policy 

modelling alongside the extensive biophysical detail included in this thesis. Analysing the 

emission-based policies discussed above (see section 8.3)  would involve an amended model 

structure. Pollution functions would need to be included inside the optimisation requiring simple 

functional forms and a significantly larger NLP model. Alongside included transaction costs, this 

model extension could provide valuable and more complete quantitative insights into 

policymakers’ policy choice sets. Moreover, as the quantitative evidence on the interactions 

between VRNA and particular geographic features improves, additional policy modelling could 

include a mixed instrument of PA application and NPS control policies. This work could build on 

Eskeland and Devarajan’s (1995) demonstration of the benefits of combining taxes with 

automobile regulation to approximate emission tax outcomes whilst avoiding associated 

monitoring costs. The cited example is transferrable to agricultural nutrient pollution and 
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suggests that combining an input tax with a technological requirement of less-polluting 

(precision) technology represents a cost-effective alternative to an emission tax with its 

significant monitoring costs. Using a catchment with the necessary pre-conditions for successful 

PA application, extending Schieffer and Dillon’s (2015) one-farm model of PA combined with an 

N tax to a more-detailed catchment-scale biophysical model would be a particularly interesting 

future line of inquiry. Moreover, as outlined above, subsidies were not investigated, given the 

scope of this thesis. However, modelling the cost-effectiveness of a grant or subsidy for PA 

technologies in the context of sufficiently heterogeneous catchments could provide important 

insights given policymaker’s interest (BMEL, 2022; Rural Payments Agency, 2023). 

In addition to policy modelling, further work is needed on PA and biophysical interactions 

modelling. As PA development and adoption increases, improved data availability will facilitate 

detailed PA modelling assumptions. Following the discussion of section 8.2 (see p. 164), concrete 

further work building on the presented analysis should consider assumptions regarding PA costs 

and PA’s non-monetised benefits. As explained above, VRNA costs per hectare fall are inversely 

related to farm size (Schneider and Wagner, 2008). Future work with a wider scope should 

consider including farm size heterogeneity and investigate its impact on PA cost-effectiveness. 

As also mentioned above, PA includes numerous non-monetised benefits such as labour savings, 

inputs reduction, and human capital improvements through improved skills (Sonntag et al., 

2022). Quantifying these benefits to provide a more comprehensive assessment of the cost-

effectiveness of PA as a tool for both NPS pollution control and productivity enhancement would 

provide valuable insights for policymakers.  

On the biophysical side, further work is required on the PA efficiency factor and interactions 

between hydrology and yield outcomes. Further exploration of more-differentiated PA 

efficiency factor modelling could provide important insights on PA interactions with biophysical 

characteristics once the state of agri-environmental evidence has sufficiently progressed 

(section 8.3). The presented analysis’ yield functions assume homogenous weather and rainfall 

across the catchment and its fields. In reality, we expect rainfall to vary between land parcels so 

as to introduce further yield heterogeneity. Additionally, given currently uncertain data on the 

interaction of PA efficiency coefficients with crop-, soil-, slope-, and hydrological connectivity-

type, the PA efficiency coefficient is kept constant across the catchment. Further work with 

more-advanced PA data available could investigate modelling PA performance in a 

heterogeneous weather catchment and a PA efficiency factor dependent on the level of 

heterogeneity in crop, soil, slope, and hydrological connectivity types within the catchment’s 

subunits. Finally, further work could extend this thesis by building on the work of Florio & 
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Nosetto (2022) regarding the interactions between hydrology, crop rotations and topography. 

Adding an explicit hydrological connectivity interaction in yield functions within the context of 

the detailed biophysical modelling of this thesis could provide further insights into site-specific 

NPS pollution control management.
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Appendix A 

Table 40: Number of Countryside Stewardship Grants available by grant type, land use, and tier 

Grant type 
No of 
grants 

Land use 
No of 
grants 

Tiers, offers & 
standalone items 

No of 
grants 

Option 107 Arable land 36 Higher Tier 240 

Capital item 115 Boundaries 17 Mid Tier 146 

Supplement 22 Coast 10 Offer: Arable 11 

  Educational access 10 Offer: lowland grazing 7 

  Flood risk 38 Offer: Mixed farming 14 

  Grassland 51 Offer: Upland 8 

  Historic environment 15 Standalone capital items 24 

  
Livestock 

management 
22   

  Organic land 16   

  Priority habitats 92   

  
Trees (non-

woodland) 
22   

  Uplands 227   

  Vegetation control 9   

  Water quality 78   

  Pollinators 24   

  Woodland 27   

Based on information from : (RPA and Natural England, 2019) 

Table 41: Livestock annual forage requirements 

Livestock 

Grazing forage 
requirement in 

DMt/  
animal unit 

Hay forage 
requirement in 

FWt/  
animal unit 

Silage forage 
requirement in 

FWt/  
animal unit 

Page reference 
in SAC 

Consulting 
(2018) 

Dairy 1.83 - 10.97 p. 133 

Sheep 1 

(100 

ewes) 

56.67 2.50 - p. 181 

Sheep 2 

(100 

ewes) 

- 2.00 - p. 179 

Suckler 1.67 - 5.62 p. 151 

Finish 1 1.61 - - p. 163 

Finish 2 2.32 - 7.27 p. 171 
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Table 42: Abbreviations for all crop names in the simulated rotations 

Eden Crop 
Abbreviation 

Crop Name 

FBEET Fodder Beet 

GRAZE 2 Grazing Grass (2 fertiliser applications) 

GRAZE 3 Grazing Grass (3 fertiliser applications) 

GRAZE 4 Grazing Grass (4 fertiliser applications) 

GRAZE 6 Grazing Grass (6 fertiliser applications) 

GRAZE LFA Grazing Grass on LFA 

HAY LFA Hay on LFA 

HAY2 Hay (2 cuts) 

MAIZE(WC) Whole-cropped Maize 

MISC* Miscanthus 

POT Potatoes 

SBAR Spring Barley 

SBEANS† Spring Beans 

SIL LFA Silage on LFA 

SIL1 Silage (1 cut) 

SIL2 Silage (2 cuts) 

SIL3 Silage (3 cuts) 

SIL4 Silage (4 cuts) 

SOATS Spring Oats 

STURNIP (JULY)* July Stubble Turnips 

STURNIP (SPRING)* Spring Stubble Turnips 

WBAR Winter Barley 

WOSR Winter Oil Seed Rape 

WW Winter Wheat 

WW(WC) Whole-cropped Winter Wheat 

Note: *Crops which were simulated in the EPIC crop rotations but not featured in 
the final model (rare crops in Eden or leguminous crops with no fertiliser input) 
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Table 43: Crop rotations No. 1 - 12 

Year in 
Rotation 

Rotation Number 

 1 2 3 4 5 6 7 8 9 10 11 12 

1 SBAR WBAR SBAR WBAR SBAR WW WW WW 
MAIZE 

(WC) 
WW(WC) WW(WC) WW 

2 
HAY LFA 

RESEED 

SIL LFA 

RESEED 

GRAZE 

LFA 

RESEED 

WBAR SOATS WBAR WBAR WBAR 
MAIZE 

(WC) 
WBAR WBAR SBAR 

3 HAY LFA SIL LFA 
GRAZE 

LFA 

SIL 1 

RESEED 

HAY 2 

RESEED 

STURNIP 

(SPRING) 
POT SBAR 

SIL3 

RESEED 
WOSR 

STURNIP 

(SPRING) 
FBEET 

4 HAY LFA SIL LFA 
GRAZE 

LFA 
SIL 1 HAY 2 SBAR SBAR 

GRAZE 3 

RESEED 
SIL 3 WBAR WBAR 

SIL3 

RESEED 

5 HAY LFA SIL LFA 
GRAZE 

LFA 
SIL 1 HAY 2 

GRAZE 2 

RESEED 

SIL3 

RESEED 
GRAZE 3 SIL 3 KILL 

GRAZE 4 

RESEED 

GRAZE 2 

RESEED 
SIL 3 

6 HAY LFA SIL LFA 
GRAZE 

LFA 
SIL 1 KILL 

HAY 2 

KILL 
GRAZE 2 SIL 3 GRAZE 3  GRAZE 6 GRAZE 2 SIL 3 

7 
HAY LFA 

KILL 

SIL LFA 

KILL 

GRAZE 

LFA KILL 
  GRAZE 2 SIL 3 

GRAZE 3 

KILL 
 GRAZE 6 GRAZE 2 SIL 3 KILL 

8      GRAZE 2 SIL 3   GRAZE 6 GRAZE 2  

9      GRAZE 2 SIL 3    GRAZE 2  

10      
GRAZE 2 

KILL 
SIL 3 KILL    

GRAZE 2 

KILL 
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Table 44: Crop rotations No. 13-24 

Year in 
Rotation 

Rotation Number 

 13 14 15 16 17 18 19 20 21 22 23 24 

1 WW WW WW(WC) WW(WC) WW WW(WC) WW WW WW(WC) WW(WC) WW WW(WC) 

2 WBAR WBAR WBAR WBAR WBAR WBAR WBAR WBAR WBAR WBAR WBAR SBAR 

3 
MAIZE 
(WC) 

WBAR FBEET FBEET SBAR SBAR SBAR SBAR SBAR SBAR SBAR BEANS 

4 SBAR 
SIL3 

RESEED 
GRAZE 4 
RESEED 

SIL3 
RESEED 

BEANS POT 
STURNIP 
(SPRING) 

FBEET 
MAIZE 
(WC) 

SBAR 
STURNIP 

(JULY) 
POT 

5 WBAR SIL 4 GRAZE 4 SIL 4 WW(WC) 
SIL3 

RESEED 
SIL 2 

RESEED 
SIL3 

RESEED 
MAIZE 
(WC) 

GRAZE 4 
RESEED 

MAIZE 
(WC) 

MAIZE 
(WC) 

6 
GRAZE 

3 
RESEED 

SIL 4 
KILL 

GRAZE 4 SIL 4 
GRAZE 2 
RESEED 

SIL 4 SIL 2 SIL 3 
SIL3 

RESEED 
GRAZE 6 

MAIZE 
(WC) 

MAIZE 
(WC) 

7 
GRAZE 

3 
POT 

GRAZE 4 
KILL 

SIL 4 KILL GRAZE 4 SIL 4 SIL 2 SIL 3 SIL 4 GRAZE 6 
SIL3 

RESEED 
FBEET 

8 
GRAZE 

3 
SBAR POT 

MAIZE 
(WC) 

GRAZE 4 SIL 4 SIL 2 SIL 3 SIL 4 GRAZE 6 SIL 3 WOSR 

9 
GRAZE 

3 
WOSR  

MAIZE 
(WC) 

GRAZE 4 SIL 4 SIL 2 SIL 3 SIL 4 GRAZE 6 
SIL 3 
KILL 

 

10 
GRAZE 

3 
  SBAR GRAZE 4 SIL 4 SIL 2 SIL 3 SIL 4 GRAZE 6   

11 
GRAZE 
3 KILL 

  WOSR GRAZE 4 SIL 4 KILL 
SIL 2 
KILL 

SIL 3 
KILL 

SIL 4 
GRAZE 6 

KILL 
  

12     
GRAZE 4 

KILL 
   SIL 4 KILL    
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Table 45: Long-term Eden crop rotations No. 25-35  

Rotation Number Continuous Crop (cultivated for 40 years) 

25 HAY LFA RESEED 

26 SIL LFA RESEED 

27 GRAZE LFA RESEED 

28 GRAZE 2 RESEED 

29 GRAZE 2 RESEED 

30 GRAZE 2 RESEED 

31 GRAZE 2 RESEED 

32 SIL 2 RESEED 

33 SIL 2 RESEED 

34 HAY 2 RESEED 

35 MISC 1 

Table 46: Maximum fertiliser application limits by Eden crop 

Crop 
Max Nitrogen application 

(kg/ha) 
Max Phosphorous application 

(kg/ha) 

WW 225 90 

WW(WC) 225 90 

WBAR 140 90 

SBAR 132 88 

WOSR 225 75 

SOATS 121 77 

POT 180 120 

SBEANS 0 70 

MAIZE(WC) 120 75 

STURNIP (JULY) 165 105 

STURNIP (SPRING) 140 105 

FBEET 120 75 

GRAZE LFA 90 56 

SIL LFA 114 42 

HAY LFA 75 35 

SIL1 120 42 

SIL2 220 60 

SIL3 280 60 

SIL4 360 70 

HAY2 125 50 

GRAZE 2 120 35 

GRAZE 3 176 40 

GRAZE 4 275 50 

GRAZE 6 330 50 

MISC 150 150 
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Table 47: Land cover class details 

Land cover broad habitat Details 

Arable and Horticulture 
Annual crops, perennial crops (e.g.: berries and orchards) 

and freshly ploughed land. 

Improved Grassland 
Higher productivity and lack of winter senescence 

relative to semi-natural grasslands 

Rough Grassland 
Mix of areas of managed, low productivity grassland, plus 

some areas of semi-natural grassland. 

Neutral Grassland 

Determined based on botanical composition and includes 

semi-improved grasslands managed for silage, hay, or 

pasture. 

Note: Table adapted from Centre for Ecology & Hydrology Appendix 1 (2011, p. 12) 

 

Table 48: Full distribution of soil, slope, hydrological connectivity allocation 
by farm (in hectares) 

   farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

S1 L1 H1 1.79 3.87 5.6    

S1 L1 H2     522  

S1 L1 H3  1813.21 153.59 407.08  26.11 

S1 L1 H4   527.05  111.83 951.12 

S1 L1 H5   229.18 101.9  47.92 

S1 L1 H6   1.18 1.57 92.63 17.62 

S1 L1 H7   1.17  85.93 17.9 

S1 L1 H8     8 26.47 

S1 L1 H9     4.48 4.68 

S1 L1 H10     0.04 0.11 

S1 L3 H1  0.39    6.02 

S1 L3 H2      273 

S1 L3 H3     1180  

S1 L3 H4    1087.98  62.02 

S1 L3 H5   1.41  186.45 34.13 

S1 L3 H6     5.26 53.78 

S1 L3 H7      50.59 

S1 L3 H8  0.46   0.84 15.84 

S1 L3 H9  2.02    5.9 
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   farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

S1 L3 H10  2.3    0.5 

S1 L4 H1  3.09   9.8  

S1 L4 H2  74.21   372.79  

S1 L4 H3  139.87  2.05 1468.07  

S1 L4 H4  41.88 133.89  894.23  

S1 L4 H5     208  

S1 L4 H6   0.27  69.94  

S1 L4 H7     69.07  

S1 L4 H8  12.71   11.35  

S1 L4 H9  6.45   1.25  

S1 L4 H10  2.27   0.6  

S1 L2 H1  0.06   0.02  

S1 L2 H2     1.07  

S1 L2 H3  1.6   3.98  

S1 L2 H4  0.04   0.94 2.38 

S1 L2 H5     1.54  

S1 L2 H6  0.28   0.1  

S1 L2 H7  0.09   0.03  

S1 L2 H8     0.15  

S1 L2 H9     0.01  

S1 L2 H10  0.1   0.03  

S1 L5 H1     0.09  

S1 L5 H2  0.28   2.54  

S1 L5 H3  1.49   2.64  

S1 L5 H4    1.89   

S1 L5 H5    0.91   

S1 L5 H6    0.47   

S1 L5 H7     0.76  

S1 L5 H8    0.46   

S1 L5 H9     0.02  

S2 L1 H1    39.45   

S2 L1 H2 85.01 1357   2067.72 520.26 
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   farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

S2 L1 H3 951.49 1041.72 2093.84 3572.38 998.74 5041.83 

S2 L1 H4  108.7 2461.3    

S2 L1 H5   415    

S2 L1 H6   0.45 76.4  49.15 

S2 L1 H7    22.32  18.68 

S2 L1 H8    3.96  4.75 

S2 L1 H9      0.25 

S2 L3 H1  1.42 14.3  6.73  

S2 L3 H2   444.8   765.2 

S2 L3 H3  808.23 2268.17  93.6  

S2 L3 H4  398.55 140.45    

S2 L3 H5  9.11    87.83 

S2 L3 H6  6.38    25.23 

S2 L3 H7   12.92 0.03 2.42  

S2 L3 H8   3.15   4.46 

S2 L3 H9  0.75 0.37    

S2 L3 H10  0.02     

S2 L4 H1  45.54     

S2 L4 H2 62.97 2043.02 143.26 10.19 498.01 142.55 

S2 L4 H3 878.41 1855.55 2349.06 488.64 24.48 1523.86 

S2 L4 H4  671.37   468.63  

S2 L4 H5  212     

S2 L4 H6  76.99     

S2 L4 H7  22.54     

S2 L4 H8  8.12     

S2 L4 H9  0.64     

S2 L4 H10  0.03     

S2 L2 H1   0.27    

S2 L2 H2   5.23    

S2 L2 H3     3.55  

S2 L2 H4   0.6    

S2 L2 H5  0.01 0.14    
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   farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

S2 L2 H6   0.05    

S2 L2 H7  0.01 0.01    

S2 L2 H8   0.01    

S2 L2 H9   0.14    

S2 L5 H1      0.59 

S2 L5 H2 3.48 19.43     

S2 L5 H3     28.89 3.22 

S2 L5 H4  0.56   11.99  

S2 L5 H5     5.9 1.5 

S2 L5 H6  1.71   2.7  

S2 L5 H7 0.89     0.24 

S2 L5 H8  0.02    0.03 

S3 L1 H1 81.98      

S3 L1 H2   936.65 1067.8 247.59 3197.96 

S3 L1 H3 1003.04 95.75 760.98 7660.23   

S3 L1 H4 7.32  249.24 334.69  88.74 

S3 L1 H5 102      

S3 L1 H6 30.43      

S3 L1 H7 10.61      

S3 L1 H8 0.82      

S3 L3 H1 26.34     8.94 

S3 L3 H2 211.97  953.88 148.83 225.32  

S3 L3 H3 965.14  858.06 779.92  26.88 

S3 L3 H4 25.18     163.82 

S3 L3 H5 21.17     8.11 

S3 L3 H6 5.53     1.79 

S3 L3 H7      4.41 

S3 L3 H8      2.89 

S3 L3 H9 0.08     0.17 

S3 L4 H1     5.58 77.61 

S3 L4 H2 259.81  6.14 170.35 3395.57 88.13 

S3 L4 H3 3563.69  438 872.47 306.96 588.89 
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   farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

S3 L4 H4     165.18 237.82 

S3 L4 H5      64.14 

S3 L4 H6 0.54    20.28  

S3 L4 H7 0.68    4.4  

S3 L4 H8 0.1 0.1  0.18 0.38 0.49 

S3 L4 H9   0.02 0.04   

S3 L2 H1   0.4    

S3 L2 H2   2.85    

S3 L2 H3 0.48  1.37 0.02   

S3 L2 H4   0.28    

S3 L2 H5 0.04  0.07    

S3 L2 H6 0.01  0.02    

S3 L2 H7   0.01    

S3 L2 H8   0.21    

S3 L2 H9 0.07  0.12    

S3 L5 H1     1.32  

S3 L5 H2 0.39   0.39 40.22  

S3 L5 H3  1.79 5.07  42.58 5.19 

S3 L5 H4 2.62     5.11 

S3 L5 H5    0.34 1.68 0.13 

S3 L5 H6    0.47 1.04  

S3 L5 H7    0.03 0.25  

S4 L1 H1 188.64   142.59  387.77 

S4 L1 H2 5919.32 984.14  776.28 210.28 5309.98 

S4 L1 H3  4735.13  2625.72 549.15  

S4 L1 H4   333    

S4 L1 H5 38.47 13.66     

S4 L1 H6 5.64  14.13    

S4 L1 H7  7.44     

S4 L1 H8 0.16 0.06     

S4 L3 H1 344      

S4 L3 H2  594.49 3232.06 89.88 181.11 2.47 
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   farm_1 farm_2 farm_3 farm_4 farm_5 farm_6 

S4 L3 H3 391.49 442.44 536.44  206.95 502.67 

S4 L3 H4 99.37      

S4 L3 H5 16.4   0.05   

S4 L3 H6     5.81  

S4 L3 H7     6.62  

S4 L3 H8     5.56  

S4 L4 H1 70.78 16.75 23.14 50.84 748.48  

S4 L4 H2 5472.91 3103.31 397.31 289.12 764.49 372.85 

S4 L4 H3 150.32  342.44 208.98 4312.44 115.82 

S4 L4 H4  85.1 93.06  19.69 9.15 

S4 L4 H5  4.89 20.81 12.79   

S4 L4 H6   11.51 0.45  1.4 

S4 L4 H7  0.02 2.85   2.04 

S4 L4 H8  0.27  0.57  0.6 

S4 L4 H10      0.01 

S4 L2 H1 3.18      

S4 L2 H2 1.81  6.95    

S4 L2 H3   2.87    

S4 L2 H4   0.54    

S4 L2 H5   0.2    

S4 L2 H6   0.02    

S4 L2 H8   1.34    

S4 L5 H1    4.6 28.74  

S4 L5 H2 22.98  427.91 11.04 33.06  

S4 L5 H3 25.08 185.4  0.46  5.06 

S4 L5 H4 12.18    1.89  

S4 L5 H5     2.94  

S4 L5 H6     1.35  

S4 L5 H7     0.06  

Total   
21066.8

1 

21066.8

3 

21066.8

1 

21066.8

1 

21066.8

1 

21066.7

6 
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Table 49: Soil/slope distribution in the catchment 

Soil Slope 
Soil/Slope area  

(ha) 
Percentage of total soil- 

type area 
Percentage of total 

slope-type area 

L1 S1 5164 8% 44% 

L1 S2 20930 33% 56% 

L1 S3 15876 25% 52% 

L1 S4 22242 35% 48% 

L2 S1 12 27% 0% 

L2 S2 10 22% 0% 

L2 S3 6 13% 0% 

L2 S4 17 37% 0% 

L3 S1 2969 15% 25% 

L3 S2 5094 27% 14% 

L3 S3 4438 23% 14% 

L3 S4 6658 35% 14% 

L4 S1 3522 8% 30% 

L4 S2 11526 27% 31% 

L4 S3 10268 24% 33% 

L4 S4 16705 40% 36% 

L5 S1 12 1% 0% 

L5 S2 81 8% 0% 

L5 S3 109 11% 0% 

L5 S4 763 79% 2% 



 

181 
 

Figure 33: Distribution of hydrological connectivity levels (intervals of 0.01) across soils and slopes 
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Figure 34: Cumulative distribution of hydrological connectivity levels (intervals of 0.01) across soils and slopes  
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Appendix B 

Figure 35: Land use change in response to N tax policy scenarios (Part 3) 
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Figure 36: Land use change in response to targeted set-aside policy scenarios (Part 1) 
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Figure 37: Land use change in response to targeted set-aside policy scenarios (Part 2) 
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Figure 38: Land use change in response to targeted set-aside policy scenarios (Part 3) 
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Figure 39: Crop share of catchment N fertiliser application for targeted set-aside tax policy scenarios (Part 1) 
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Figure 40: Crop share of catchment N fertiliser application for targeted set-aside tax policy scenarios (Part 2) 
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Figure 41: Crop share of catchment N fertiliser application for targeted set-aside tax policy scenarios (Part 3) 
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Figure 42: Land use change in response to mixed instrument N tax & 5% set-aside policy scenarios (Part 1) 
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Figure 43: Land use change in response to mixed instrument N tax & 5% set-aside policy scenarios (Part 2) 
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Figure 44: Land use change in response to mixed instrument N tax & 5% set-aside policy scenarios (Part 3) 
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Figure 45: Land use change in response to mixed instrument N tax & 2% set-aside policy scenarios (Part 1) 
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Figure 46: Land use change in response to mixed instrument N tax & 2% set-aside policy scenarios (Part 2) 
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Figure 47: Land use change in response to mixed instrument N tax & 2% set-aside policy scenarios (Part 3) 
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Figure 48: Land use change in response to PA scenarios (Part 1) 
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Figure 49: Land use change in response to PA scenarios (Part 2) 

  



 

198 
 

Figure 50: Land use change in response to PA scenarios (Part 3) 
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Appendix C 

This appendix includes the GAMS and Python code for the key results of the presented thesis. 

GAMS Code 

Firstly, the GAMS code of the baseline model is presented. The baseline model is composed of 

the main model file (p. 199), the parameters loading file (p. 216), the file with the loop structure 

and loading of parameters for calculations outside the optimisation (p. 226), and finally the 

parameters for the results reporting (p. 235). The baseline main model and loop structure code 

was amended for each policy scenario analysis (including 40 solves per policy scenario). In 

addition to the main model, the small linear optimisation model used to allocate the catchment 

land between the representative farms is presented on p. 239. 

 

Main Model Baseline  

File name: ‘Policies_Base05.gms’ 
 

$offlisting 

$include Parameter_Base05.gms 

****Main model**** 

****run with reslim=12000000000 in command line 

Table farm_area (ID, slope, soil, hydro, farm, value) 'number of ha of soil slope type combination per farm from farm 
area optimisation problem'; 

$gdxin All_parameters_62.gdx 

****read farm area parameter into gdx file 

$load farm_area 

****load parameter into model 

$gdxin 

****close gdx file 

; 

TABLE farm_area_2 (slope, soil, hydro, farm, value) 'number of ha of soil slope type combination per farm'; 

farm_area_2 (slope, soil, hydro, farm, value)= SUM(ID, farm_area (ID, slope, soil, hydro, farm, value)); 

****eliminate ID index which is used for reading parameters from Excel into gdx 

; 

****Limits on minimum and maximum livestock standard output production to include different farm types****199 
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TABLE stan_out_li_lolim (farm, livestock) 'Lower limit for livestock percentage of farm standard output in %' 

            dairy   finish1  finish2   suckler   sheep1  sheep2      

farm_1       0         0       0         5        5       2    

farm_2       50        5       5         0        0       0    

farm_3       0         0       0         2        2       1  

farm_4       50        5       5         0        0       0    

farm_5       0         0       0         0        0       0    

farm_6       0         0       0         2        2       1   

; 

 

TABLE stan_out_li_uplim (farm, livestock) 'Upper limit for livestock percentage of farm standard output in %'        

            dairy   finish1  finish2   suckler   sheep1  sheep2      

farm_1        25        25     25         70       70      70     

farm_2        80        70     70         25       25      25   

farm_3        25        25     25         70       70      70   

farm_4        80        70     70         25       25      25    

farm_5         5         5      5          5        5       5   

farm_6         5         5     10          5       25      25             

; 

 

****Limits on minimum and maximum livestock numbers to support farm type implementation**** 

TABLE farm_live_lolim (farm, livestock)'Lower limit for livestock number per farm' 

dairy   finish1  finish2   suckler   sheep1     sheep2                   

farm_1 0         0       0         20       10        10                 

farm_2 50        10      10        0        0         0                    

farm_3        0         0       0         20       10        10                   

farm_4        50        10      10        0        0         0                    

farm_5        0         0       5         0        0         0                    

farm_6        0         0       0         0        10        10                                                

; 

TABLE farm_live_uplim (farm, livestock)'Upper limit for livestock number per farm' 

dairy       finish1     finish2     suckler     sheep1      sheep2  

farm_1  20000      20000        20000      20000      20000        20000     

farm_2  20000      20000        20000      20000      20000        20000     

farm_3  20000      20000        20000      20000      20000        20000     

farm_4  20000      20000        20000      20000      20000        20000     
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farm_5  20000      20000        20000      20000      20000        20000     

farm_6  20000      20000        20000      20000      20000        20000                                                                

; 

PARAMETER stan_out_cr_lolim (farm) 'Lower limit on percentage of standard output originating from cash crops' 

/                 

farm_1   =         0  

farm_2   =         0  

farm_3   =         0  

farm_4   =         0 

farm_5   =         70 

farm_6   =         30 

 / 

delta 'parameter to block degenerate cycling' / 1/ 

****Definition of parameters transformed from simple inputs**** 

farm_land(farm)'Area in hectares allocated to a farm' 

catch_land 'Total catchment area in 1000 ha' 

crop_var_cost (crop)'variable costs associated with crops (labour, seeding) excluding fertilisation' 

crop_buy_cost (crop)'cost of buying crops including transport costs in £100' 

live_margin (livestock)'livestock grossmargin net of labour costs in £10' 

land_resource (slope, soil, hydro, farm)'binary parameter to indicate land resource 0=no resouce, 1=resource' 

set_aside_land 'land in hectares that needs to be set aside'; 

 

farm_land(farm)=SUM((slope, soil, hydro),farm_area_2 (slope, soil, hydro, farm, "value")); 

crop_var_cost (crop) = crop_cost (crop, 'value')+(crop_lab_requ (crop, 'value') * lab_cost ('value', 'value')); 

crop_buy_cost (trade_feed_cr)= crop_price (trade_feed_cr, 'value')+Trans_cost('value', 'value'); 

live_margin (livestock)=[Live_grmrg (livestock, 'value')- (lab_cost ('value', 'value') * Live_lab_requ (livestock, 
'value'))]/10; 

land_resource (slope, soil, hydro, farm) = 0+1$farm_area_2 (slope, soil, hydro, farm, 'value'); 

catch_land=SUM((slope, soil, hydro, farm),farm_area_2 (slope, soil, hydro, farm, "value"))/1000; 

display land_resource,  farm_land, catch_land; 

 

TABLE div_constr(farm,group_types_cr) 'Lower limits for % of crop groups which make up crop standard output' 

            spcr_lolim  wicr_lolim           

farm_1          0             0      

farm_2          0             0     

farm_3          0             0     
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farm_4          0             0     

farm_5          10            10    

farm_6          5             5       

; 

TABLE farm_ligm_lolim (farm,livestock)'Lower limit for livestock grossmargin in £100' 

            dairy  finish1  finish2 suckler sheep1 sheep2  

farm_1      -500   -500       -500   -500    -500   -500 

farm_2      -500   -500       -500   -500    -500   -500 

farm_3      -500   -500       -500   -500    -500   -500 

farm_4      -500   -500       -500   -500    -500   -500 

farm_5      -500   -500       -500   -500    -500   -500 

farm_6      -500   -500       -500   -500    -500   -500            

; 

POSITIVE VARIABLES 

N_FYM_TOTAL (farm)                                       'Total nitrogen in 10000kg available in farm yard manure of farm' 

P_FYM_TOTAL (farm)                                       'Total phosphor in 10000kg available in farm yard manure of farm' 

N_AF (slope, soil, hydro, farm, crop)                     'Artificail nitrogen in kg/ha ' 

P_AF (slope, soil, hydro, farm, crop)                     'Artificial phosphor in kg/ha' 

N_FYM (slope, soil, hydro, farm, crop)                    'FYM nitrogen applied in kg/ha' 

P_FYM (slope, soil, hydro, farm, crop)                    'FYM phosphor applied in kg/ha' 

N_FYM_STOR (farm)                                        'FYM nitrogen 10000kg not applied this year and stored on farm' 

P_FYM_STOR (farm)                                        'FYM phosphor 10000kg not applied this year and stored on farm' 

YIELD_DM(slope, soil, hydro, farm, crop)                  'Crop yield in t/ha not corrected for fresh weight' 

T_YIELD_FW(slope, soil, hydro, farm, crop)                'Crops yield in tonnes corrected for fresh weight excluding 
grass which is DM' 

CR_TOTAL_COST (slope, soil, hydro, farm, crop)            'Farm cost from crop production in £100' 

LAND (slope, soil, hydro, farm, crop)                     'Farm land ha of particular slope and soil type allocated to 
production of secific crop' 

LIVE_NUM (farm, livestock)                               'Number of livestock on farm' 

SOLD_FEED_crop (farm,trade_feed_cr)                      'Silage crops sold to other farm in freshweight t' 

FEED_CRREV(farm, trade_feed_cr)                          'Revenue from selling feeding crops in £100' 

FEED_CRCOST (farm)                                       'Farm cost of buying feed crops in £100' 

LI_SILBUY_FORAGE_TOTAL_COST (farm, livestock)            'Cost of buyinig feed crops per livestock type in £100' 

TOTAL_FORAGE_TOTAL_COST (farm, livestock)                'Total forage costs per livestock type in £100' 

BUY_FEED_CROP (farm,trade_feed_cr)                       'Silage crops bourght from other farm in freshweight t' 

CR_GM(slope, soil, hydro, farm, cash_crop)                'Gross Margin contribution of cash crops in £100' 
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LIVE_HAY_PERC (farm, livestock)                          'Percentage of available FW hay yield fed to certain livestock 
type' 

LIVE_GRAZE_PERC (farm, livestock)                        'Percentage of available DM grazing yield fed to certain 
livestock type' 

LIVE_SILAGE_PERC (farm, livestock)                       'Percetnage of home produced FW silage yield fed to certain 
livestock type' 

FED_SALE_PERC (farm)                                     'Percentage of available FW silage yield sold to other farms' 

FEEDCR_GM(farm,trade_feed_cr)                            'Gross Margin contribution of sold feed crops per type in £100' 

CR_PERC_STAN_OUTPUT (slope, soil, hydro, farm, crop)      'Percentage of standard ouput attributed to crops 
including soil slope type indexes' 

LI_PERC_STAN_OUTPUT (farm,livestock)                     'Percentage of standard output attributed to livestock' 

TOTAL_STAN_OUTPUT(farm)                                  'Total farm standard output in £1000' 

LIVE_SILBUY_PERC (farm, livestock)                       'Percentage of bought in silage that is consumed by certain 
animal type' 

GRAIN_CR_LAND (farm)                                     'Total land in ha allocated to grain crops on a farm in 1000 ha'                

FARM_T_YIELD_FW(farm, crop)                              'Crops yield in tonnes corrected for fresh weight excluding grass 
which is DM summed over slope, soil, hydro' 

CATCH_CROP_LAND (crop)                                   'Land in the catchment attributed to a certain crop in 1000 ha' 

FARM_CR_TOTAL_COST (farm, crop)                          'Farm cost from crop production in £100 summed over slope, 
soil, hydro' 

CR_PERC_STOU_FC(farm,crop)                               'farm Crop percentage standard output summed over soil, 
slope, hydro' 

FARM_CR_LAND (farm,crop)                                 'Farm land allocated to a particular crop in ha' 

REBATE                                                   'Catchment Grossmaring rebate that farmer recieve from tax' 

; 

FREE VARIABLES 

CATCH_GM                                                 'Catchment farm gross margin in £100,000' 

LI_GM(farm, livestock)                                   'Gross Margin contribution of livestock per type in £100' 

N_YLD_FUNCT (slope, soil, hydro, farm, crop)              'Intermediate calculation of the nitrogen yield function 
parameter'   

P_YLD_FUNCT (slope, soil, hydro, farm, crop)              'Intermediate calculation of the phosphorus yield function 
parameter' 

; 

EQUATIONS 

E1, E2, E3, E6, E7, E10, E11, E12, E13, E14, E15, E16, E17, E18, E19, 

E20, E21, E22, E23, E24, E25, E26, E27, E28, E29, E33, E35, E36, 

E30, E31, E32, E37, E38, E39, E40, E41, E45, E44, E46, E48, E49, E50, 

E51, E52, E53, E54, E55, E56, E57, E58, E59, E61, E62, E63; 

 

****Yield and Fertiliser Constraints**** 
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E1 (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm).. 

         YIELD_DM (slope, soil, hydro, farm, crop) =E=  yieldfunc_data (crop, slope, soil, "b5")+ [yieldfunc_data (crop, 
slope, soil, "b0") * (1 - exp (N_YLD_FUNCT (slope, soil, hydro, farm, crop))) *(1 - exp (P_YLD_FUNCT (slope, soil, 
hydro, farm, crop)))]; 

****'Crop yield in dry weight ' 

 

E55 (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm).. 

N_YLD_FUNCT (slope, soil, hydro, farm, crop) =E= yieldfunc_data (crop, slope, soil, "b1") + {yieldfunc_data (crop, 
slope, soil, "b2") * N_AF (slope, soil, hydro, farm, crop)}; 

****Nitrogen component of yield function 

 

E56(slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm).. 

P_YLD_FUNCT (slope, soil, hydro, farm, crop) =E= yieldfunc_data (crop, slope, soil, "b3") + {yieldfunc_data (crop, 
slope, soil, "b4") * P_AF (slope, soil, hydro, farm, crop)} ; 

****Phosphorus component of yield function 

 

E2 (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm).. 

         T_YIELD_FW (slope, soil, hydro, farm, crop) =E= LAND (slope, soil, hydro, farm, crop) *dmfw_corr(crop, 
'value') * yield_corr_data(crop,'EPIC_corr') * YIELD_DM (slope, soil, hydro, farm, crop); 

****'Crop yield in fresh weight (excluding grazing which remains in dryweight: dmfw_corr =1)' 

 

E57 (farm, crop).. 

FARM_T_YIELD_FW(farm, crop)=E= SUM((slope, soil, hydro)$land_resource (slope, soil, hydro, farm), 
T_YIELD_FW (slope, soil, hydro, farm, crop)); 

****Calculating the freshweight yield in tonnes of a certain crop type produced per farm 

 

****Land Allocation Constraints**** 

E3 (slope, soil, hydro, farm).. 

        SUM (crop, LAND (slope, soil, hydro, farm, crop)) =E= farm_area_2 (slope, soil, hydro, farm, "value"); 

****'Land allocation constraint' 

         

E54 (crop).. 

        CATCH_CROP_LAND (crop)=E= SUM ((slope, soil, hydro, farm), LAND (slope, soil, hydro, farm, crop))/1000 ; 

****Variable to calculate the catchment land allocated to a particular crop type in 1000 hectares     

  

*****Fertiliser and Manure Calculations**** 

E6 (farm).. 

N_FYM_TOTAL (farm) =E= SUM(livestock, FYM_output (livestock, "N", "value")*LIVE_NUM (farm, livestock))/10000; 
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****Total nitrogen production from farm yard manure in kg; 

 

E7 (farm).. 

P_FYM_TOTAL (farm) =E=   SUM(livestock, FYM_output (livestock, "P", "value")*LIVE_NUM (farm, 
livestock))/10000; 

****Total phosphor production from farm yard manure in kg 

 

E10(farm).. 

N_FYM_TOTAL (farm) - N_FYM_STOR (farm) =E= [SUM((slope, soil, hydro, crop)$land_resource (slope, soil, hydro, 
farm), N_FYM (slope, soil, hydro, farm, crop)* LAND (slope, soil, hydro, farm, crop))/10000]; 

****Farmyard nutrients applied per ha aggregated over soil, slope, hydro can not exceed the total amount of FYM 
produced on farm 

 

E11(farm).. 

P_FYM_TOTAL (farm) - P_FYM_STOR (farm) =E= [SUM((slope, soil, hydro, crop)$land_resource (slope, soil, hydro, 
farm), P_FYM (slope, soil, hydro, farm, crop)* LAND (slope, soil, hydro, farm, crop))/10000]; 

****Farmyard nutrients applied per ha aggregated over soil, slope, hydro can not exceed the total amount of FYM 
produced on farm 

 

****Costs and Revenues for Cash crops**** 

E12 (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm).. 

        CR_TOTAL_COST (slope, soil, hydro, farm, crop) =E= LAND (slope, soil, hydro, farm, crop) * [(P_AF (slope, 
soil, hydro, farm, crop) * fert_cost ('P','value')*(1+P_tax)) + (N_AF (slope, soil, hydro, farm, crop) * fert_cost 
('N','value')*(1+N_tax))  + crop_var_cost (crop)]/100 ; 

****Crop total cost in 100£/ha 

                                                             

E58(farm, crop).. 

FARM_CR_TOTAL_COST (farm, crop)=E= SUM((slope, soil, hydro)$land_resource (slope, soil, hydro, 
farm),CR_TOTAL_COST (slope, soil, hydro, farm, crop)); 

****Crop total cost in 100£/ha 

 

****Livestock Feeding Requirements**** 

E13 (farm, livestock).. 

        SUM(silage_cr, FARM_T_YIELD_FW(farm,  silage_cr)) *  LIVE_SILAGE_PERC (farm, livestock)/100+ 
SUM(trade_feed_cr, BUY_FEED_CROP (farm, trade_feed_cr))* LIVE_SILBUY_PERC (farm, livestock)/100 

        =E= LIVE_NUM (farm, livestock) * silage_requ (livestock, 'value'); 

****'Definition of variable for minimum yield required for silage' 

 

E14 (farm ).. 

        SUM (livestock, LIVE_SILAGE_PERC (farm, livestock)) + FED_SALE_PERC (farm) =E= 100+delta*0.001; 
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****'Imposing constraint that home produced silage percentage fed summed over livestock type plus percentage of 
home produced silage sold must be smaller than 100' 

 

E15 (farm ).. 

        SUM (livestock, LIVE_SILBUY_PERC (farm, livestock)) =E= 100; 

****'Imposing constraint that percentage of bought silage fed summed over livestock type must be 100' 

 

E16 (farm, livestock).. 

         SUM (graze_cr, FARM_T_YIELD_FW(farm, graze_cr))* LIVE_GRAZE_PERC (farm, livestock)/100 =E=  
LIVE_NUM (farm, livestock) * Graze_requ (livestock, 'value') ; 

****'Definition of variable for minimum yield required for grazing' 

 

E17 (farm ).. 

       SUM (livestock, LIVE_GRAZE_PERC (farm, livestock)) =E= 100+delta*0.001 ; 

****'Imposing constraint that graze percentage fed summed over livestock type must equal unity' 

 

E18(farm, livestock).. 

         SUM(hay_cr, FARM_T_YIELD_FW(farm, hay_cr))* LIVE_HAY_PERC (farm, livestock)/100  =E= LIVE_NUM 
(farm, livestock) * Hay_requ (livestock, 'value'); 

****'Definition of variable for minimum yield required for hay' +A3(farm, livestock) 

  

E19 (farm ).. 

      SUM (livestock, LIVE_HAY_PERC (farm, livestock)) =E= 100+delta*0.001; 

****'Imposing constraint that hay percentage fed summed over livestock type must equal unity' 

 

*****Trade Allowance for Feeding**** 

E20 (farm).. 

       SUM(trade_feed_cr, SOLD_FEED_CROP (farm, trade_feed_cr)) =E= SUM(trade_feed_cr, FED_SALE_PERC 
(farm)/100 * FARM_T_YIELD_FW(farm, trade_feed_cr)) ; 

****'Definition of variable for percentage of silage yield which is sold' 

 

E21 .. 

    SUM ((farm, trade_feed_cr), BUY_FEED_CROP (farm, trade_feed_cr))- SUM ((farm, 
trade_feed_cr),SOLD_FEED_CROP (farm, trade_feed_cr))=E=0; 

*Constraint allowing only within-catchment trading 

 

****Livestock Revenue and Costs including Feeding Crops****     

E22 (farm,trade_feed_cr).. 



Appendix C 

207 
 

       FEED_CRREV(farm, trade_feed_cr) =E= SOLD_FEED_CROP (farm, trade_feed_cr)* crop_price 
(trade_feed_cr, 'value')/100; 

****'Farm revenue from selling feed crops in 100£'  

        

E23 (farm).. 

        FEED_CRCOST (farm)=E= SUM(trade_feed_cr, BUY_FEED_CROP (farm, trade_feed_cr) * crop_buy_cost 
(trade_feed_cr))/100; 

****'Farm cost from bought feed crops in 100£' 

         

E24 (farm, livestock).. 

        LI_SILBUY_FORAGE_TOTAL_COST (farm, livestock) =E= FEED_CRCOST (farm) * LIVE_SILBUY_PERC 
(farm, livestock)/100; 

****'Total cost for silage forage bought in in 100Â£ per animal type' 

 

E25 (farm, livestock).. 

        TOTAL_FORAGE_TOTAL_COST (farm, livestock) =E= SUM (graze_cr, FARM_CR_TOTAL_COST (farm, 
graze_cr)) * LIVE_GRAZE_PERC (farm, livestock)/100 + SUM(silage_cr, FARM_CR_TOTAL_COST (farm, 
silage_cr)) *  LIVE_SILAGE_PERC (farm, livestock)/100 + SUM( hay_cr, FARM_CR_TOTAL_COST (farm, hay_cr)) * 
LIVE_HAY_PERC (farm, livestock)/100 + LI_SILBUY_FORAGE_TOTAL_COST (farm, livestock); 

*'Total cost for forage  in £100 per animal type (including all 3 different forage types and bought in forage)' 

     

****Farm Type Standard Output Constraint**** 

E26 (farm) .. 

        TOTAL_STAN_OUTPUT (farm) =E=  [(SUM((slope, soil, hydro, crop)$land_resource (slope, soil, hydro, farm), 
cr_stan_output_coeff(crop, 'value') * LAND (slope, soil, hydro, farm, crop))) + SUM (livestock, li_stan_output_coeff 
(livestock, 'value') * LIVE_NUM (farm, livestock))]/1000 ; 

****'Calculation of total standard output in £1000'  

        

E27 (farm,livestock).. 

      LI_PERC_STAN_OUTPUT (farm, livestock)/100 * TOTAL_STAN_OUTPUT (farm) =E=  li_stan_output_coeff 
(livestock, 'value') * LIVE_NUM (farm, livestock)/1000; 

****'Calculation of the livestock percentage of the standard output in £1000' 

        

E28 (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm).. 

     CR_PERC_STAN_OUTPUT (slope, soil, hydro, farm, crop)/100 * TOTAL_STAN_OUTPUT (farm)   =E=  
cr_stan_output_coeff(crop, 'value') * LAND (slope, soil, hydro, farm, crop)/1000; 

****'Calculation of the crop percentage of the standard output in £1000' 

 

****Gross Margin (Catchment, farm, crop, livestock)**** 

E29 (slope, soil, hydro, farm, cash_crop)$land_resource (slope, soil, hydro, farm).. 



Appendix C 

208 
 

        CR_GM (slope, soil, hydro, farm, cash_crop) =E= T_YIELD_FW (slope, soil, hydro, farm, cash_crop) * 
crop_price (cash_crop, 'value')/100 

                                                - CR_TOTAL_COST (slope, soil, hydro, farm, cash_crop); 

****'Gross Margin contribution of cash crops in £100 

 

E30 (farm,trade_feed_cr).. 

        FEEDCR_GM (farm, trade_feed_cr) =E= FEED_CRREV (farm,trade_feed_cr) - (FARM_CR_TOTAL_COST 
(farm, trade_feed_cr) * FED_SALE_PERC (farm)/100); 

****'Gross Margin contribution of sold feed crops per type in £100' 

 

E31(farm, livestock).. 

        LI_GM (farm, livestock) =E=  LIVE_NUM (farm, livestock) * live_margin (livestock) -   
TOTAL_FORAGE_TOTAL_COST (farm, livestock) ;                                     

****'Farm Gross Margin contribution of livestock per type in £100' 

 

E32 .. 

        CATCH_GM  =E= [(SUM((slope, soil, hydro, farm, cash_crop)$land_resource (slope, soil, hydro, farm), CR_GM 
(slope, soil, hydro, farm, cash_crop))) + SUM((farm, livestock), LI_GM (farm, livestock)) + SUM((farm, 
trade_feed_cr), FEEDCR_GM (farm, trade_feed_cr)) +REBATE]/1000; 

****CATCH_GM in £100 000 

 

****Bounds**** 

N_AF.up (slope, soil, hydro, farm, AF_crop) = 0+ N_uplim (AF_crop, 'value') ; 

****upper limit on nitrogen in kg/ha for AF crops 

 

P_AF.up (slope, soil, hydro, farm, AF_crop) = 0+ P_uplim (AF_crop, 'value') ; 

****upper limit on phosphorus in kg/ha for AF crops 

 

N_AF.fx (slope, soil, hydro, farm, set_aside) = 0 ; 

****nitrogen in kg/ha fixed to 0 for set-aside crops 

 

P_AF.fx (slope, soil, hydro, farm, set_aside) = 0 ; 

****phosphorus in kg/ha fixed to 0 for set-aside crops 

 

N_AF.lo (slope, soil, hydro, farm, AF_crop) = 0+ N_lolim (AF_crop,'value') ; 

****lower limit on nitrogen in kg/ha for AF crops 

 

P_AF.lo (slope, soil, hydro, farm, AF_crop) = 0+ P_lolim (AF_crop, 'value') ; 
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****lower limit on phosphorus in kg/ha for AF crops 

 

N_AF.up (slope, soil, hydro, farm, FYM_crop) = 0+ N_uplim (FYM_crop, 'value') -FYMcr_FN_fx(FYM_crop,'value'); 

****upper limit on nitrogen in kg/ha for FYM crops net the amount of FYM applied 

 

P_AF.up (slope, soil, hydro, farm, FYM_crop) = 0+ P_uplim (FYM_crop, 'value') -FYMcr_FP_fx(FYM_crop,'value'); 

****upper limit on phosphorus in kg/ha for FYM crops net the amount of FYM applied 

 

N_AF.lo (slope, soil, hydro, farm, FYM_crop)=  0+((N_lolim (FYM_crop,'value') -
FYMcr_FN_fx(FYM_crop,'value'))$(N_lolim (FYM_crop,'value') > FYMcr_FN_fx(FYM_crop,'value'))) ;   

 

                                                                                                                                                                            

P_AF.lo (slope, soil, hydro, farm, FYM_crop) =  0+((P_lolim (FYM_crop, 'value') -
FYMcr_FP_fx(FYM_crop,'value'))$(P_lolim (FYM_crop, 'value') >FYMcr_FP_fx(FYM_crop,'value')));  

 

LI_PERC_STAN_OUTPUT.lo (farm,livestock)  = stan_out_li_lolim (farm, livestock); 

****farm specific lower limit on the percentage of standard output coming from livestock 

     

LI_PERC_STAN_OUTPUT.up (farm,livestock) = stan_out_li_uplim (farm, livestock); 

****farm specific upper limit on the percentage of standard output coming from livestock 

 

N_FYM.fx (slope, soil, hydro, farm, FYM_crop) = 0+FYMcr_FN_fx(FYM_crop,'value'); 

****fixing the amount of N and FYM crop receives from FYM 

 

P_FYM.fx (slope, soil, hydro, farm, FYM_crop) =  0+FYMcr_FP_fx(FYM_crop,'value'); 

****fixing the amount of P and FYM crop receives from FYM 

 

N_FYM.fx (slope, soil, hydro, farm, AF_crop) =0; 

****setting amount of N an AF crop receives from FYM to 0 

 

P_FYM.fx (slope, soil, hydro, farm, AF_crop) =0; 

****setting amount of P an AF crop receives from FYM to 0 

 

N_FYM.fx (slope, soil, hydro, farm, set_aside) =0; 

****setting amount of N an AF crop receives from FYM to 0 

 

P_FYM.fx (slope, soil, hydro, farm, set_aside) =0; 
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E59(farm,crop).. 

    CR_PERC_STOU_FC(farm,crop) =E= SUM((slope, soil, hydro)$land_resource (slope, soil, hydro, 
farm),CR_PERC_STAN_OUTPUT (slope, soil, hydro, farm, crop)); 

   

 

E33 (farm).. 

    SUM(cash_crop,CR_PERC_STOU_FC(farm, cash_crop)) =G= stan_out_cr_lolim (farm); 

 

LIVE_NUM.lo(farm, livestock) = farm_live_lolim (farm,livestock); 

LIVE_NUM.up(farm, livestock) = farm_live_uplim (farm,livestock); 

N_YLD_FUNCT.lo (slope, soil, hydro, farm, crop) = -50; 

P_YLD_FUNCT.lo (slope, soil, hydro, farm, crop) = -280; 

N_YLD_FUNCT.up (slope, soil, hydro, farm, crop) =  50; 

P_YLD_FUNCT.up (slope, soil, hydro, farm, crop) =  20; 

 

YIELD_DM.lo (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm)=0.01; 

YIELD_DM.up (slope, soil, hydro, farm, crop)$land_resource (slope, soil, hydro, farm)=70; 

 

LAND.up (slope, soil, hydro, farm, crop)= farm_area_2 (slope, soil, hydro, farm,"value"); 

 

LI_GM.lo(farm, livestock)= farm_ligm_lolim (farm,livestock); 

LI_GM.up (farm, livestock)=500000; 

 

TOTAL_FORAGE_TOTAL_COST.up (farm, livestock)=1000; 

  

E35 (farm).. 

    SUM((slope, soil, hydro,spring_crop),LAND (slope, soil, hydro, farm, spring_crop))*100 =G= 
div_constr(farm,"spcr_lolim")*GRAIN_CR_LAND (farm); 

****land allocated to spring crops in a farm must be greater than a certain percentage of the grain crop land 

 

E36 (farm).. 

    SUM((slope, soil, hydro,winter_crop),CR_PERC_STAN_OUTPUT (slope, soil, hydro, farm, winter_crop)) =G= 
div_constr (farm,"wicr_lolim"); 

 

E37 .. 

    SUM(osr_crop,CATCH_CROP_LAND (osr_crop))*100=L= 20*SUM(farm,GRAIN_CR_LAND (farm)); 
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E38 .. 

    SUM(ww_crop,CATCH_CROP_LAND (ww_crop))*100=L= 30*SUM(farm,GRAIN_CR_LAND (farm)); 

     

E39.. 

    SUM(pot_crop,CATCH_CROP_LAND (pot_crop))*100=L= 5*SUM(farm,GRAIN_CR_LAND (farm)); 

 

E40.. 

SUM((farm,livestock),LIVE_NUM (farm, livestock)*Graze_LU (livestock, "value")) =L= SUM( 
(farm,forage_cr),SUM((slope, soil, hydro),LAND (slope, soil, hydro, farm, forage_cr))* EPIC_stockden 
(forage_cr,"value")*stock_den_reduc); 

 

E41.. 

SUM(maize_cr,CATCH_CROP_LAND (maize_cr))*100=G= 2*(SUM(crop,CATCH_CROP_LAND (crop))-
SUM(farm,GRAIN_CR_LAND (farm))); 

     

E44.. 

CATCH_CROP_LAND ("SBAR11")=E= CATCH_CROP_LAND ("SBAR12") ; 

 

E45.. 

    SUM(bar_crop,CATCH_CROP_LAND (bar_crop))*100=L= 45*SUM(farm,GRAIN_CR_LAND (farm)); 

 

E46.. 

CATCH_CROP_LAND ("WOSR1")=E= CATCH_CROP_LAND ("WOSR2"); 

 

E48.. 

CATCH_CROP_LAND("GRAZE4_1")=E= CATCH_CROP_LAND ("GRAZE2_1"); 

 

E49.. 

SUM(farm, N_FYM_STOR (farm)) =L=0.8*SUm(farm,N_FYM_TOTAL (farm)); 

****no more than 50% of total N manure produced may be stored 

 

E50.. 

SUM(farm,P_FYM_STOR (farm)) =L=0.5*SUm(farm,P_FYM_TOTAL (farm)); 

****no more than 25% of total N manure produced may be stored 

 

E51(farm).. 
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GRAIN_CR_LAND (farm)=E= SUM((slope, soil, hydro,cash_crop)$land_resource (slope, soil, hydro, farm), LAND 
(slope, soil, hydro, farm, cash_crop))/1000; 

****calculating the area on a farm that is allocated to cash grain crops in 1000 ha 

 

E52.. 

SUM(maize_cr, CATCH_CROP_LAND (maize_cr))*100=L= 20*(SUM(crop, CATCH_CROP_LAND (crop))-
SUM(farm, GRAIN_CR_LAND (farm)));     

 

E53.. 

SUM(farm, GRAIN_CR_LAND (farm))*100=G=15*SUM(crop, CATCH_CROP_LAND (crop)); 

 

E61.. 

CATCH_CROP_LAND ("GRLFA2")=G= catch_land*Setaside_requ; 

 

E62.. 

SUM((aside_slope, aside_soil, aside_hydro, farm),LAND (aside_slope, aside_soil, aside_hydro, farm, "GRLFA2")) 
=G= catch_land*1000*Slope_setaside_requ; 

 

E63.. 

REBATE =E=SUM((slope, soil, hydro, farm, crop),LAND (slope, soil, hydro, farm, crop) * [(P_AF (slope, soil, hydro, 
farm, crop) * fert_cost ('P', 'value')*(P_tax)) + (N_AF (slope, soil, hydro, farm, crop) * fert_cost ('N', 
'value')*(N_tax))])/100; 

****Rebate farms receive from tax in 100£ 

 

MODEL    Baseline05 /all/ ; 

option Savepoint=1; 

****save the solution as advanced basis 

Baseline05.ScaleOpt = 1; 

****enable manual scaling: 

execute_loadpoint 'policies_030_1_p'; 

****provide advanced basis from previous solve of the model 

 

****Manual scaling of variables and equations**** 

LIVE_NUM.scale(farm,livestock)= 10; 

LAND.scale (slope, soil, hydro, farm, crop)=10; 

FED_SALE_PERC.scale (farm)=1/100;  

LIVE_GRAZE_PERC.scale (farm, livestock) =1/100; 

CATCH_CROP_LAND.scale (crop) =1/100; 
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YIELD_DM.scale (slope, soil, hydro, farm, crop)=1/100; 

E26.scale (farm)=1/10; 

E27.scale (farm,livestock)=1/10; 

E28.scale (slope, soil, hydro, farm,crop)=1/10; 

 

****Provide initial values independent of the loaded advanced basis****          

TOTAL_STAN_OUTPUT.l('farm_1')   = 33.219 ;            

TOTAL_STAN_OUTPUT.l('farm_2')   = 45.647 ;            

TOTAL_STAN_OUTPUT.l('farm_3')   = 34.646 ;            

TOTAL_STAN_OUTPUT.l('farm_4')   = 45.699 ; 

TOTAL_STAN_OUTPUT.l('farm_5')   = 18.252 ;                     

TOTAL_STAN_OUTPUT.l('farm_6')   = 32.933 ;                                              

              

LIVE_NUM.l('farm_1','sheep1 ')=  1741.460 ;             

LIVE_NUM.l('farm_1','finish2')= 18023.388 ;       

LIVE_NUM.l('farm_1','dairy  ')=  3374.541 ;       

LIVE_NUM.l('farm_1','suckler')=  4038.058 ;             

LIVE_NUM.l('farm_2','finish1')=  4953.307 ;       

LIVE_NUM.l('farm_2','finish2')= 14246.002 ;       

LIVE_NUM.l('farm_2','dairy  ')= 14838.620 ;             

LIVE_NUM.l('farm_3','sheep1 ')=  1993.530 ;       

LIVE_NUM.l('farm_3','sheep2 ')=    43.764 ;             

LIVE_NUM.l('farm_3','finish2')= 18797.423 ;       

LIVE_NUM.l('farm_3','dairy  ')=  3519.464 ;       

LIVE_NUM.l('farm_3','suckler')=  1684.591 ;             

LIVE_NUM.l('farm_4','finish1')=   4958.906;       

LIVE_NUM.l('farm_4','finish2')= 14276.218 ;       

LIVE_NUM.l('farm_4','dairy  ')= 14855.391 ;             

LIVE_NUM.l('farm_5','finish1')=  1980.534 ;       

LIVE_NUM.l('farm_5','finish2')=  1980.534 ;       

LIVE_NUM.l('farm_5','dairy  ')=   370.818 ;       

LIVE_NUM.l('farm_5','suckler')=  2218.648 ;       

LIVE_NUM.l('farm_6','sheep1 ')=  1040.036 ;       

LIVE_NUM.l('farm_6','sheep2 ')=   925.409 ;       

LIVE_NUM.l('farm_6','finish1')=   478.611 ;       

LIVE_NUM.l('farm_6','finish2')=  7147.351 ;       
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LIVE_NUM.l('farm_6','dairy  ')=   669.104 ;       

LIVE_NUM.l('farm_6','suckler')=  4003.329 ;         

 

LI_PERC_STAN_OUTPUT.l('farm_1','sheep1   ')= 41.501  ;      

LI_PERC_STAN_OUTPUT.l('farm_1','sheep2   ')=  2.000  ;          

LI_PERC_STAN_OUTPUT.l('farm_1','finish2  ')= 25.000   ;      

LI_PERC_STAN_OUTPUT.l('farm_1','dairy    ')= 25.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_1','suckler  ')=  5.000  ;           

LI_PERC_STAN_OUTPUT.l('farm_2','finish1  ')=  5.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_2','finish2  ')= 14.380  ;      

LI_PERC_STAN_OUTPUT.l('farm_2','dairy    ')= 80.000  ;           

LI_PERC_STAN_OUTPUT.l('farm_3','sheep1   ')= 45.551  ;      

LI_PERC_STAN_OUTPUT.l('farm_3','sheep2   ')=  1.000  ;          

LI_PERC_STAN_OUTPUT.l('farm_3','finish2  ')= 25.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_3','dairy    ')= 25.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_3','suckler  ')=  2.000  ;          

LI_PERC_STAN_OUTPUT.l('farm_4','finish1  ')=  5.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_4','finish2  ')= 14.395  ;      

LI_PERC_STAN_OUTPUT.l('farm_4','dairy    ')= 80.000  ;           

LI_PERC_STAN_OUTPUT.l('farm_5','finish1  ')= 5.000   ;      

LI_PERC_STAN_OUTPUT.l('farm_5','finish2  ')=  5.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_5','dairy    ')=  5.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_5','suckler  ')=  5.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_6','sheep1   ')= 25.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_6','sheep2   ')= 22.245  ;      

LI_PERC_STAN_OUTPUT.l('farm_6','finish1  ')= 0.670   ;      

LI_PERC_STAN_OUTPUT.l('farm_6','finish2  ')= 10.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_6','dairy    ')=  5.000  ;      

LI_PERC_STAN_OUTPUT.l('farm_6','suckler  ')=  5.000  ;      

 

N_FYM_TOTAL.l('farm_1')=  75.710;       

N_FYM_TOTAL.l('farm_2')= 128.621;       

N_FYM_TOTAL.l('farm_3')=  71.254;       

N_FYM_TOTAL.l('farm_4 ')=128.802 ;      

N_FYM_TOTAL.l('farm_5')=  18.684;       

N_FYM_TOTAL.l('farm_6')=  34.911;       
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P_FYM_TOTAL.l('farm_1')=  27.262 ;       

P_FYM_TOTAL.l('farm_2')=  51.426 ;       

P_FYM_TOTAL.l('farm_3')=  25.400 ;       

P_FYM_TOTAL.l('farm_4')=  51.495 ;       

P_FYM_TOTAL.l('farm_5')=   6.680 ;       

P_FYM_TOTAL.l('farm_6')=  12.430 ;     

 

File gck/%system.fn%.gck/; 

put gck; 

$onput 

NONOPT  

BLOCKPIC 

BLOCKLIST 

$offput 

putclose ; 

option nlp = gamschk; 

option limrow = 0; 

option limcol = 0; 

 

SOLVE  Baseline05 maximising  CATCH_GM  using NLP; 

 

$include reporting_Base05.gms 

***Report the solver and model status**** 

Run_stat_base ("model_stat")= Baseline05.modelStat; 

Run_stat_base ("solve_stat")= Baseline05.solveStat; 

 

****Unloading reporting output into gdx file **** 

execute_unload 
'Baseline_out06.gdx',Catch_stats_base,Crop_report_base,farm_live_base,Pol_report_an_base,Fert_report_base,La
nd_report_base, 

Li_gm_report_base,Cr_gm_report_base,Catch_gm_report_base,Cr_cost_report_base, 
Pol_report_sum_base,total_base,Sediment_soil_tot_base, 

  Sediment_slope_tot_base,Sediment_crop_tot_base,Sediment_soil_av_base, 

 Sediment_slope_av_base,Sediment_crop_av_base,Run_stat_base,report_catch_base, Crop_report_C_base 
,Live_report_base,report_hydro_base ;  

;  
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Parameter Loading 

File name: ‘Parameter_Base05.gms’ 
 

$offlisting 

****Defining sets and parameters**** 

SET 

alli 'all items'                                    

/ b0, b1, b2, b3, b4,b5,a1, a2, a3,farm_1, farm_2, farm_3,farm_4, farm_5, farm_6,farm_7, farm_8, farm_9, 
farm_10,farm_11, farm_12, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, L1, L2,L3, L4, L5, S1, S2, S3,S4, N, P, 
FBEET1 , FBEET2, FBEET3, GRAZE4_2, GRAZE4_3, GRAZE6_1, GRAZE_6_2, GRAZE2_1, GRAZE2_2, 
GRAZE2_3,GRAZE3_1,GRAZE3_2,GRAZE3_3,GRAZE4_1, GRAZE6_2,GRLFA1 ,GRLFA2 ,GRAZE6_3, GRLFA3 
,HAY2_1 ,HAY2_2 ,HAY2_3 ,HAYLFA1, HAYLFA2, HAYLFA3, MAIZ1, MAIZ2, MAIZ3, MAIZ4, MAIZ5, MAIZ6, 
POTA1, POTA2, POTA3, POTA5, SBAR1, SBAR10, SBAR11 ,SBAR12 ,SBAR13 ,SBAR14, SBAR2, SBAR3, 
SBAR4, SBAR5 ,SBAR6 ,SBAR7 ,SBAR8 ,SBAR9 ,SIL1_1 ,SIL1_2 ,SIL1_3 ,SIL2_1 ,SIL2_2 ,SIL2_3 ,SIL3_1, 
SIL3_2, SIL3_3, SIL3_4, SIL4_1, SIL4_2 ,SIL4_3 ,SIL4_4 ,SILFA1 ,SILFA2 ,SILFA3, SOATS1, WBAR0, WBAR1, 
WBAR2, WBAR3, WBAR4, WBAR5, WBAR6, WBAR7, WBAR8, WOSR1, WOSR2, WOSR3, WW1, WW2, WW3, 
WW4, WWWC1, WWWC2, WWWC4, WWWC5, Land_crop_fl, Land_crop_l, Land_crop_perc, land_prop, crop_cost, 
crop_price, crop_lab_requ, N_uplim , P_uplim, dmfw_corr,Live_grmrg, Live_lab_requ, Silage_requ, Graze_requ, 
Hay_requ,crop_Contr_GM, Live_Contr_GM, value, ww, wbar, wosr, sbar, soats, pot, sbeans, maize_wc, ww_wc, 
sturnip_jul, sturnip_sp, fbeet, frape_cc, wrye_cc, sturnip_cc, must_cc,graze_lfa, sil_lfa, hay_lfa, sil_1, sil_2, sil_3, 
sil_4, hay_2, graze_2, graze_3, graze_4, graze_6, Li, Cr, Crop_Land_Perc, Crop_standard_output, 
Livestock_standard_output, TOTAL_ST_OUT_MANUAL,STAN_OUT_PERC_CHK, 
sheep1,sheep2,finish1,finish2,finish3,dairy,suckler, TOC, WTR_IC, WTR_N, WTG_IC, WTG_N, ZLOAD_IC, 
ZLOAD_N, CLOAD_IC, CLOAD_N, RSPC_IC, RSPC_N,SAC_YLD, EPIC_corr, NRLOAD_IC, NRLOAD_N, 
NGLOAD_IC, NGLOAD_N, PRLOAD_I, PRLOAD_N, PRLOAD_P, PRLOAD_N_P, PGLOAD_I, PGLOAD_N, 
PGLOAD_P, PGLOAD_N_P, DN2O_IC, DN2O_N, CFEM_I, CFEM_N, CFEM_P, CFEM_N_P,labhrs_total 'total farm 
labour hours', FTE 'Full time equivalent as definded by the DEFRA SLRs for farm size classification', spcr_lolim, 
wicr_lolim, osr_uplim, FBEET1_FYM, FBEET2_FYM, FBEET3_FYM, GRAZE4_2_FYM, GRAZE4_3_FYM, 
GRAZE6_1_FYM, GRAZE6_2_FYM, GRAZE2_1_FYM, GRAZE2_2_FYM, GRAZE2_3_FYM, GRAZE3_1_FYM, 
GRAZE3_2_FYM, GRAZE3_3_FYM, GRAZE4_1_FYM, GRAZE6_3_FYM, GRLFA1_FYM, GRLFA2_FYM, 
GRLFA3_FYM, HAY2_1_FYM, HAY2_2_FYM, HAY2_3_FYM, HAYLFA1_FYM, HAYLFA2_FYM, HAYLFA3_FYM, 
MAIZ1_FYM, MAIZ2_FYM, MAIZ3_FYM, MAIZ4_FYM, MAIZ5_FYM,  MAIZ6_FYM,  POTA1_FYM ,POTA2_FYM,  
POTA3_FYM, POTA5_FYM, SBAR1_FYM, SBAR10_FYM, SBAR11_FYM, SBAR12_FYM, SBAR13_FYM, 
SBAR14_FYM, SBAR2_FYM, SBAR3_FYM, SBAR4_FYM, SBAR5_FYM, SBAR6_FYM, SBAR7_FYM, 
SBAR8_FYM, SBAR9_FYM, SIL1_1_FYM, SIL1_2_FYM, SIL1_3_FYM, SIL2_1_FYM, SIL2_2_FYM, SIL2_3_FYM, 
SIL3_1_FYM, SIL3_2_FYM, SIL3_3_FYM, SIL3_4_FYM, SIL4_1_FYM, SIL4_2_FYM, SIL4_3_FYM, SIL4_4_FYM, 
SILFA1_FYM, SILFA2_FYM, SILFA3_FYM, SOATS1_FYM, WBAR0_FYM, WBAR1_FYM, WBAR2_FYM, 
WBAR3_FYM, WBAR4_FYM, WBAR5_FYM, WBAR6_FYM, WBAR7_FYM, WBAR8_FYM, WOSR1_FYM, 
WOSR2_FYM, WOSR3_FYM, WW1_FYM, WW2_FYM, WW3_FYM, WW4_FYM, WWWC1_FYM,                   
WWWC2_FYM, WWWC4_FYM, WWWC5_FYM, sc1*sc8, scenario_setup, scenario_results, setaside/ 

supcrop(Alli) 'superset of crops'/FBEET1_FYM, FBEET2_FYM, FBEET3_FYM, GRAZE4_2_FYM, GRAZE4_3_FYM, 
GRAZE6_1_FYM, GRAZE6_2_FYM, GRAZE2_1_FYM, GRAZE2_2_FYM, GRAZE2_3_FYM, GRAZE3_1_FYM, 
GRAZE3_2_FYM, GRAZE3_3_FYM, GRAZE4_1_FYM, GRAZE6_3_FYM, GRLFA1_FYM, GRLFA2_FYM, 
GRLFA3_FYM, HAY2_1_FYM, HAY2_2_FYM, HAY2_3_FYM, HAYLFA1_FYM, HAYLFA2_FYM, HAYLFA3_FYM, 
MAIZ1_FYM, MAIZ2_FYM, MAIZ4_FYM, MAIZ5_FYM, MAIZ6_FYM, POTA1_FYM, POTA2_FYM, POTA3_FYM, 
POTA5_FYM, SBAR1_FYM, SBAR10_FYM, SBAR11_FYM, SBAR12_FYM, SBAR13_FYM, SBAR14_FYM, 
SBAR2_FYM, SBAR3_FYM, SBAR4_FYM, SBAR5_FYM, SBAR6_FYM, SBAR7_FYM, SBAR8_FYM, SBAR9_FYM, 
*GRAZE2_1_FYM, SIL1_1_FYM, SIL1_2_FYM, SIL1_3_FYM, SIL2_1_FYM, SIL2_2_FYM, SIL2_3_FYM, 
SIL3_1_FYM, SIL3_2_FYM, SIL3_3_FYM, SIL3_4_FYM, SIL4_1_FYM, SIL4_2_FYM, SIL4_3_FYM, SIL4_4_FYM, 
SILFA1_FYM, SILFA2_FYM, SILFA3_FYM, SOATS1_FYM, *SIL2_1_FYM, WBAR0_FYM, WBAR1_FYM, 
WBAR2_FYM, WBAR3_FYM, WBAR5_FYM, WBAR4_FYM, WBAR6_FYM, WBAR7_FYM, WBAR8_FYM, 
WOSR1_FYM, WOSR2_FYM, WOSR3_FYM, WW1_FYM, WW2_FYM, WW3_FYM, WW4_FYM, WWWC1_FYM, 
WWWC2_FYM, WWWC5_FYM, FBEET1, FBEET2, FBEET3, GRAZE4_2, GRAZE4_3, GRAZE6_1, GRAZE6_2, 
GRAZE2_1, GRAZE2_2, GRAZE2_3, GRAZE3_1, GRAZE3_2, GRAZE3_3, GRAZE4_1, GRAZE6_3, GRLFA1, 
GRLFA2, GRLFA3, HAY2_1, HAY2_2, HAY2_3, HAYLFA1, HAYLFA2, HAYLFA3, MAIZ1, MAIZ2, MAIZ4, MAIZ5, 
MAIZ6, POTA1, POTA2, POTA3, POTA5, SBAR1, SBAR10, SBAR11, SBAR12, SBAR13, SBAR14, SBAR2, 
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SBAR3, SBAR4, SBAR5, SBAR6, SBAR7, SBAR8, SBAR9, *GRAZE2_1, SIL1_1, SIL1_2, SIL1_3, SIL2_1, SIL2_2, 
SIL2_3, SIL3_1, SIL3_2, SIL3_3, SIL3_4, SIL4_1, SIL4_2, SIL4_3, SIL4_4, SILFA1, SILFA2, SILFA3, SOATS1, 
*SIL2_1, WBAR0, WBAR1, WBAR2, WBAR3, WBAR5, WBAR6, WBAR7, WBAR8, WOSR1, WOSR2, WOSR3, 
WW1, WW2, WW3, WW4, WWWC1, WWWC2, WWWC5 

/ 

beta (alli) 'beta coefficients of yield function'   /b0, b1, b2, b3, b4,b5/ 

alpha (alli) 'alpha coefficients for pollution fucntion'/ a1, a2, a3/ 

scenario (alli) 'scenarios' /sc1*sc8/ 

ordr (alli) 'ordering scnerio input and output' /scenario_setup,scenario_results/ 

farm(alli) 'farm types included in the model'       / 

farm_1   'Sheep & suckler upland farm (less productive soils and more steep slopes)', 

farm_2   'Dairy & finish lowland farm (more productive soils and less steep slopes)', 

farm_3   'Sheep & suckler upland farm (mixed soils and mixed slopes)', 

farm_4   'Dairy & finish lowland farm (mixed soils and mixed slopes)', 

farm _5   'Cereal lowland farm (more productive soils and mixed slopes)', 

farm_6   'Mixed cereal and sheep farm (mixed soils and mixed slopes)'/ 

 

soil(alli)                             /L1 'Wick',  L3 'Malvern', L4 'Clifton', L2 'Newbiggin', L5 'Winterhill' / 

 

aside_soil (soil)  'soil types for spatially targeted set_aside'   

/L4 'Clifton', L2 'Newbiggin', L5 'Winterhill'/                    

slope(alli)                                         /S1 '0-1.39', S2 '1.4-4.19, S3 '4.2-7', S4 '7.01-12.8'/ 

aside_slope (slope)'slope levels for spatially targeted set_aside' /S4 '4.01-7.3'/ 

hydro(alli) 'hydrological connectivity/risk levels' /H1, H2, H3, H4, H5, H6, H7, H8, H9, H10/ 

aside_hydro (hydro)'hydrological connectivity levels for spatially targeted set_aside'/H3, H4, H5, H6, H7,H8, H9, H10/ 

nutrients (alli) 'in kg per ha'                     /N, P/ 

crop (supcrop) 'crops'                                 /SBAR11, FBEET1, SIL1_1, GRAZE6_3, GRLFA2, GRLFA1, HAY2_1, 
HAYLFA1, MAIZ1, SILFA1, WW1, WBAR0, WOSR1, POTA1, WWWC1, SOATS1, 
GRAZE2_1,GRAZE2_2,GRAZE3_1,GRAZE4_1,GRAZE6_1_FYM, GRAZE4_3_FYM, FBEET2 ,FBEET3 , 
SBAR12,SBAR13_FYM ,SBAR2_FYM, SIL2_1, SIL3_1 , SIL3_2_FYM, SIL4_1,SIL4_2_FYM, WW2, WW3, WW4, 
WW4_FYM, WBAR1, WBAR2, WBAR3_FYM, WBAR4_FYM, WBAR5_FYM, MAIZ4_FYM, MAIZ5_FYM, WOSR2, 
WOSR3, POTA2,POTA3_FYM,POTA5_FYM, WWWC2, GRLFA3_FYM, GRLFA1_FYM, GRLFA3, HAYLFA2 , 
HAYLFA3, LT_GRAZFLA/ 

cash_crop (crop)'non feed crops for sale'           / SBAR11, WW1, WBAR0, WOSR1,POTA1, SOATS1,SBAR12 
,SBAR13_FYM ,SBAR2_FYM, WOSR2, WOSR3, WBAR1, WBAR2, WBAR3_FYM, WW2, WW3, WW4, WW4_FYM, 
POTA2, WBAR4_FYM, WBAR5_FYM, POTA3_FYM, POTA5_FYM/ 

spring_crop (cash_crop)'spring cereal cash crops'   /SBAR11, SBAR12, SBAR13_FYM, SOATS1, SBAR2_FYM/ 

winter_crop (cash_crop)'winter cereal cash crops'   /WW1, WW2, WW3, WW4, WW4_FYM, WBAR0, WBAR1, 
WBAR2, WBAR3_FYM, WBAR4_FYM, WBAR5_FYM/ 

osr_crop (cash_crop)'oil seed rape crop'            /WOSR1, WOSR2, WOSR3/       

ww_crop (cash_crop)'winter wheat sale crop'         /WW1, WW2, WW3, WW4, WW4_FYM/ 
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bar_crop (cash_crop)'barley crops'                  /SBAR11, SBAR12, SBAR13_FYM, WBAR0, WBAR1, WBAR2, 
WBAR3_FYM, WBAR4_FYM, WBAR5_FYM, SBAR2_FYM/ 

 

pot_crop (cash_crop)'potato crop'                   /POTA1, POTA2, POTA3_FYM, POTA5_FYM/ 

silage_cr (crop) 'silage crops'                       

/SIL1_1, FBEET1, FBEET2, FBEET3, MAIZ1, SILFA1, WWWC1, SIL2_1, SIL3_1 , SIL4_1 , SIL4_2_FYM, 
SIL3_2_FYM, WWWC2, MAIZ4_FYM, MAIZ5_FYM/ 

graze_cr (crop) 'graze crops'                         

/GRAZE6_3,GRLFA1, GRAZE2_1, GRAZE2_2, GRAZE3_1, GRAZE4_1, GRAZE6_1_FYM, GRAZE4_3_FYM, 
GRLFA3_FYM, GRLFA1_FYM, GRLFA3/                                                     

 

hay_cr (crop) 'hay crops'                            /HAY2_1 ,HAYLFA1 / 

forage_cr (crop) 'forage crops'                     
/GRAZE2_1,GRAZE2_2,GRAZE3_1,GRAZE4_1,GRAZE6_3,GRLFA1,GRAZE6_1_FYM, GRAZE4_3_FYM, HAY2_1 
, HAYLFA1, SIL1_1, SIL2_1, SILFA1, SIL4_2_FYM, SIL3_2_FYM, GRLFA3_FYM, GRLFA1_FYM, GRLFA3/ 

maize_cr (crop)  'maize crops'                      /MAIZ1 ,MAIZ5_FYM,MAIZ4_FYM/ 

trade_feed_cr (silage_cr) 'feed crops traded amongst farmers' 

/FBEET1,FBEET2,FBEET3,MAIZ1 ,MAIZ5_FYM,MAIZ4_FYM/ 

set_aside(crop) /GRLFA2/ 

FYM_crop (crop) / 

GRAZE6_1_FYM,MAIZ5_FYM,MAIZ4_FYM,POTA3_FYM,SBAR2_FYM,SIL3_2_FYM,SIL4_2_FYM,WBAR4_FYM,
WBAR5_FYM,POTA5_FYM, SBAR13_FYM,WBAR3_FYM,GRAZE4_3_FYM, 
WW4_FYM,GRLFA3_FYM,GRLFA1_FYM/ 

AF_crop(crop) /SBAR11, FBEET1, SIL1_1,GRAZE6_3,GRLFA2, HAY2_1, HAYLFA1, MAIZ1, SILFA1, WW1, 
WBAR0, WOSR1, POTA1, WWWC1, SOATS1, GRAZE2_1, GRAZE2_2, GRAZE3_1, GRAZE4_1, FBEET2 
,FBEET3 , SBAR12, SIL2_1, SIL3_1 , SIL4_1, WW2,WW3,WW4, WBAR1, WBAR2, WOSR2, WOSR3, POTA2, 
WWWC2, GRLFA3/ 

pol_crop 'set of crop names used in pollution data' 

/FBEET1_FYM, FBEET2_FYM, FBEET3_FYM, GRAZ4_2_FYM, GRAZ4_3_FYM, GRAZ6_1_FYM, GRAZ6_2_FYM, 
GRAZE2_1_FYM, GRAZE2_2_FYM, GRAZE2_3_FYM, GRAZE3_1_FYM, GRAZE3_2_FYM, GRAZE3_3_FYM, 
GRAZE4_1_FYM, GRAZE6_3_FYM, GRLFA1_FYM, GRLFA2_FYM, GRLFA3_FYM, HAY2_1_FYM, HAY2_2_FYM, 
HAY2_3_FYM, HAYLFA1_FYM, HAYLFA2_FYM, HAYLFA3_FYM, MAIZ1_FYM, MAIZ2_FYM, MAIZ4_FYM, 
MAIZ5_FYM, MAIZ6_FYM, POTA1_FYM,POTA2_FYM,POTA3_FYM,POTA5_FYM, SBAR1_FYM, SBAR10_FYM, 
SBAR11_FYM, SBAR12_FYM, SBAR13_FYM, SBAR14_FYM, SBAR2_FYM, SBAR3_FYM, SBAR4_FYM, 
SBAR5_FYM, SBAR6_FYM, SBAR7_FYM, SBAR8_FYM, SBAR9_FYM, SGRAZ2_1_FYM, SIL1_1_FYM, 
SIL1_2_FYM, SIL1_3_FYM, SIL2_1_FYM, SIL2_2_FYM, SIL2_3_FYM, SIL3_1_FYM, SIL3_2_FYM, SIL3_3_FYM, 
SIL3_4_FYM, SIL4_1_FYM, SIL4_2_FYM, SIL4_3_FYM, SIL4_4_FYM, SILFA1_FYM, SILFA2_FYM, SILFA3_FYM, 
SOATS1_FYM, SSIL2_1_FYM, WBAR0_FYM, WBAR1_FYM, WBAR2_FYM, WBAR3_FYM, WBAR5_FYM, 
WBAR6_FYM, WBAR7_FYM, WBAR8_FYM, WOSR1_FYM, WOSR2_FYM, WOSR3_FYM, WW1_FYM, 
WW2_FYM, WW3_FYM, WW4_FYM, WWWC1_FYM, WWWC2_FYM, WWWC5_FYM,FBEET1,FBEET2,FBEET3, 
GRAZ4_2, GRAZ4_3, GRAZ6_1, GRAZ6_2, GRAZE2_1, GRAZE2_2, GRAZE2_3, GRAZE3_1, GRAZE3_2, 
GRAZE3_3, GRAZE4_1, GRAZE6_3, GRLFA1, GRLFA2, GRLFA3, HAY2_1, HAY2_2, HAY2_3, HAYLFA1, 
HAYLFA2, HAYLFA3, MAIZ1, MAIZ2, MAIZ4, MAIZ5, MAIZ6,POTA1,POTA2,POTA3,POTA5, SBAR1, SBAR10, 
SBAR11, SBAR12, SBAR13, SBAR14, SBAR2, SBAR3, SBAR4, SBAR5, SBAR6, SBAR7, SBAR8, SBAR9, 
SGRAZ2_1, SIL1_1, SIL1_2, SIL1_3, SIL2_1, SIL2_2, SIL2_3, SIL3_1, SIL3_2, SIL3_3, SIL3_4, SIL4_1, SIL4_2, 
SIL4_3, SIL4_4, SILFA1, SILFA2, SILFA3, SOATS1, SSIL2_1, WBAR0, WBAR1, WBAR2, WBAR3, WBAR5, 
WBAR6, WBAR7, WBAR8, WOSR1, WOSR2, WOSR3, WW1, WW2, WW3, WW4, WWWC1, WWWC2, WWWC5/ 
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livestock (alli) 'livestock types'                   

 /dairy '8,500 l, all year calving (1 cow)', 

 sheep1 'improved hill breeds (100 ewes tupped)', 

sheep2 'extensive hill breeds (100 ewes tupped)', 

finish1 'finishing spring-born suckled calves at 18-20 months (1 steer)', 

finish2 'forage based finishing dairy steers at 24 months (holstein)', 

suckler 'upland suckler cows, calving period Feb-April(1 cow with calf)'/ 

value (alli) 'value used in parameter declaration'  /value/                                                                              

crop_dtb(alli) 'crop names used in input database'  /ww, wbar, wosr, sbar, soats, pot, sbeans, maize_wc, ww_wc, 
sturnip_jul, sturnip_sp, fbeet, frape_cc, wrye_cc, sturnip_cc,must_cc, graze_lfa, sil_lfa,hay_lfa, sil_1, sil_2, sil_3, 
sil_4,hay_2, graze_2, graze_3, graze_4, graze_6, setaside/ 

product_cat(alli)'product type categories'          /Li 'livestock', Cr 'crops'/ 

yield_corr_cat (alli)'names for yield expectations and corrections' / SAC_YLD, EPIC_corr/ 

poll_funct_coeff (alli)'pollution function intercept and coefficient names' /TOC, WTR_IC, WTR_N, WTG_IC, WTG_N, 
ZLOAD_IC, ZLOAD_N, CLOAD_IC, CLOAD_N, RSPC_IC, RSPC_N, NRLOAD_IC, NRLOAD_N, NGLOAD_IC, 
NGLOAD_N, PRLOAD_I, PRLOAD_N, PRLOAD_P, PRLOAD_N_P, PGLOAD_I, PGLOAD_N, PGLOAD_P, 
PGLOAD_N_P, DN2O_IC, DN2O_N, CFEM_I, CFEM_N, CFEM_P, CFEM_N_P/ 

group_types_cr(alli)'crop group types used for diversity constraint'      /spcr_lolim,wicr_lolim,osr_uplim/ 

ID                                                 / ID_63_01, ID_63_02, ID_63_03, ID_63_04, ID_63_05, ID_63_06, ID_63_07, 
ID_63_08, ID_63_09, ID_63_10, ID_63_11, ID_63_12, ID_63_13, ID_63_14, ID_63_15, ID_63_16, ID_63_17, 
ID_63_18, ID_63_19, ID_63_20, ID_63_21, ID_63_22, ID_63_23, ID_63_24, ID_63_25, ID_63_26, ID_63_27, 
ID_63_28, ID_63_29,Land_alloc_GAMS_3,Land_alloc_GAMS_4/ 

; 

****Loading Yield Function Data into model from GDX All_parameters_63.gdx created by running Gdx_load.gms**** 

****define intermediate parameters over intermediate set which contains names of crops used in excel file**** 

TABLE dtbyieldfunc_data(ID,Crop,Slope, Soil, beta) 'variable costs crop production in ï¿½/ha excluding fertiliser 
cost'; 

*read parameter into gdx file 

$gdxin All_parameters_63.gdx 

*load parameter into model 

$load dtbyieldfunc_data 

$gdxin 

 

TABLE yieldfunc_data(Crop,Slope, Soil, beta) 'variable costs crop production in ï¿½/ha excluding fertiliser cost'; 

yieldfunc_data(Crop,Slope, Soil, beta)= SUM(ID, dtbyieldfunc_data(ID,Crop,Slope, Soil, beta)); 

; 

 

TABLE dtbyield_corr_data(ID,Crop,yield_corr_cat) 'SAC_YLD - expected freshweight yield in t/ha EPIC_corr - 
correction factor for yield function to reach expected freshweight yield in t/ha'; 

$gdxin All_parameters_63.gdx 
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$load dtbyield_corr_data 

$gdxin 

 

TABLE yield_corr_data(Crop,yield_corr_cat) 'SAC_YLD - expected freshweight yield in t/ha EPIC_corr - correction 
factor for yield function to reach expected freshweight yield in t/ha'; 

yield_corr_data(Crop,yield_corr_cat)=SUM(ID,dtbyield_corr_data(ID,Crop,yield_corr_cat)); 

 

***crop Parameters*** 

Parameter dtbcrop_cost (ID, crop_dtb, value) 'database variable costs crop production in 100ï¿½/ha excluding 
fertiliser cost'; 

$gdxin All_parameters_63.gdx 

$load dtbcrop_cost 

$gdxin 

; 

*define set which maps the intermediate names from excel to unique crop pairs used in model files 

Set mapindx(crop,crop_dtb) / 

SBAR11.'sbar',  SBAR12.'sbar',SBAR13_FYM.'sbar',SBAR2_FYM.'sbar', FBEET1.'fbeet', FBEET2.'fbeet', 
FBEET3.'fbeet', MAIZ1.'maize_wc',MAIZ5_FYM.'maize_wc',MAIZ4_FYM.'maize_wc', SIL1_1.'sil_1', SILFA1.'sil_lfa', 
SIL2_1.'sil_2', SIL3_1.'sil_3',SIL3_2_FYM.'sil_3', SIL4_1.'sil_4',SIL4_2_FYM.'sil_4', GRAZE2_1.'graze_2', 
GRAZE2_2.'graze_2', GRAZE3_1.'graze_3', GRAZE4_1.'graze_4',GRAZE4_3_FYM.'graze_4', 
graze6_3.'graze_6',graze6_1_FYM.'graze_6', HAY2_1.'hay_2', HAYLFA1.'hay_lfa', GRLFA1.'setaside', 
GRLFA3.'graze_lfa',GRLFA3_FYM.'graze_lfa',GRLFA1_FYM.'graze_lfa', 
WW1.'ww',WW2.'ww',WW3.'ww',WW4.'ww',WW4_FYM.'ww', WBAR0.'wbar', WBAR1.'wbar', WBAR2.'wbar', 
WBAR3_FYM.'wbar', WBAR4_FYM.'wbar',WBAR5_FYM.'wbar',                 WOSR1.'wosr', WOSR2.'wosr', 
WOSR3.'wosr', POTA1.'pot',POTA2.'pot',POTA3_FYM.'pot',POTA5_FYM.'pot', WWWC1.'ww_wc',WWWC2.'ww_wc', 
SOATS1.'soats'/ 

                     

polmap (supcrop,pol_crop) 

/FBEET1_FYM.'FBEET1_FYM', FBEET2_FYM.'FBEET2_FYM', FBEET3_FYM.'FBEET3_FYM', 
GRAZE4_2_FYM.'GRAZ4_2_FYM', GRAZE4_3_FYM.'GRAZ4_3_FYM', GRAZE6_1_FYM.'GRAZ6_1_FYM', 
GRAZE6_2_FYM.'GRAZ6_2_FYM', GRAZE2_1_FYM.'GRAZE2_1_FYM', GRAZE2_2_FYM.'GRAZE2_2_FYM', 
GRAZE2_3_FYM.'GRAZE2_3_FYM', GRAZE3_1_FYM.'GRAZE3_1_FYM', GRAZE3_2_FYM.'GRAZE3_2_FYM', 
GRAZE3_3_FYM.'GRAZE3_3_FYM', GRAZE4_1_FYM.'GRAZE4_1_FYM', GRAZE6_3_FYM.'GRAZE6_3_FYM', 
GRLFA1_FYM.'GRLFA1_FYM', GRLFA2_FYM.'GRLFA2_FYM', GRLFA3_FYM.'GRLFA3_FYM', 
HAY2_1_FYM.'HAY2_1_FYM', HAY2_2_FYM.'HAY2_2_FYM', HAY2_3_FYM.'HAY2_3_FYM', 
HAYLFA1_FYM.'HAYLFA1_FYM', HAYLFA2_FYM.'HAYLFA2_FYM', HAYLFA3_FYM.'HAYLFA3_FYM', 
MAIZ1_FYM.'MAIZ1_FYM', MAIZ2_FYM.'MAIZ2_FYM', MAIZ4_FYM.'MAIZ4_FYM', MAIZ5_FYM.'MAIZ5_FYM', 
MAIZ6_FYM.'MAIZ6_FYM', POTA1_FYM.'POTA1_FYM', POTA2_FYM.'POTA2_FYM', POTA3_FYM.'POTA3_FYM', 
POTA5_FYM.'POTA5_FYM', SBAR1_FYM.'SBAR1_FYM', SBAR10_FYM.'SBAR10_FYM', 
SBAR11_FYM.'SBAR11_FYM', SBAR12_FYM.'SBAR12_FYM', SBAR13_FYM.'SBAR13_FYM', 
SBAR14_FYM.'SBAR14_FYM', SBAR2_FYM.'SBAR2_FYM', SBAR3_FYM.'SBAR3_FYM', 
SBAR4_FYM.'SBAR4_FYM', SBAR5_FYM.'SBAR5_FYM', SBAR6_FYM.'SBAR6_FYM', 
SBAR7_FYM.'SBAR7_FYM', SBAR8_FYM.'SBAR8_FYM', SBAR9_FYM.'SBAR9_FYM', 
GRAZE2_1_FYM.'SGRAZ2_1_FYM', SIL1_1_FYM.'SIL1_1_FYM', SIL1_2_FYM.'SIL1_2_FYM', 
SIL1_3_FYM.'SIL1_3_FYM', SIL2_1_FYM.'SIL2_1_FYM', SIL2_2_FYM.'SIL2_2_FYM', SIL2_3_FYM.'SIL2_3_FYM', 
SIL3_1_FYM.'SIL3_1_FYM', SIL3_2_FYM.'SIL3_2_FYM', SIL3_3_FYM.'SIL3_3_FYM', SIL3_4_FYM.'SIL3_4_FYM', 
SIL4_1_FYM.'SIL4_1_FYM', SIL4_2_FYM.'SIL4_2_FYM', SIL4_3_FYM.'SIL4_3_FYM', SIL4_4_FYM.'SIL4_4_FYM', 
SILFA1_FYM.'SILFA1_FYM', SILFA2_FYM.'SILFA2_FYM', SILFA3_FYM.'SILFA3_FYM', 
SOATS1_FYM.'SOATS1_FYM', SIL2_1_FYM.'SSIL2_1_FYM', WBAR0_FYM.'WBAR0_FYM', 
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WBAR1_FYM.'WBAR1_FYM', WBAR2_FYM.'WBAR2_FYM', WBAR3_FYM.'WBAR3_FYM', 
WBAR5_FYM.'WBAR5_FYM', WBAR6_FYM.'WBAR6_FYM', WBAR7_FYM.'WBAR7_FYM', 
WBAR8_FYM.'WBAR8_FYM', WOSR1_FYM.'WOSR1_FYM', WOSR2_FYM.'WOSR2_FYM', 
WOSR3_FYM.'WOSR3_FYM', WW1_FYM.'WW1_FYM', WW2_FYM.'WW2_FYM', WW3_FYM.'WW3_FYM', 
WW4_FYM.'WW4_FYM', WWWC1_FYM.'WWWC1_FYM', WWWC2_FYM.'WWWC2_FYM', FBEET1.'FBEET1', 
FBEET2.'FBEET2', FBEET3.'FBEET3', GRAZE4_2.'GRAZ4_2', GRAZE4_3.'GRAZ4_3', GRAZE6_1.'GRAZ6_1', 
GRAZE6_2.'GRAZ6_2', GRAZE2_1.'GRAZE2_1', GRAZE2_2.'GRAZE2_2', GRAZE2_3.'GRAZE2_3', 
GRAZE3_1.'GRAZE3_1', GRAZE3_2.'GRAZE3_2', GRAZE3_3.'GRAZE3_3', GRAZE4_1.'GRAZE4_1', 
GRAZE6_3.'GRAZE6_3', GRLFA1.'GRLFA1', GRLFA2.'GRLFA2', GRLFA3.'GRLFA3', HAY2_1.'HAY2_1', 
HAY2_2.'HAY2_2', HAY2_3.'HAY2_3', HAYLFA1.'HAYLFA1', HAYLFA2.'HAYLFA2', HAYLFA3.'HAYLFA3', 
MAIZ1.'MAIZ1', MAIZ2.'MAIZ2', MAIZ4.'MAIZ4', MAIZ5.'MAIZ5', MAIZ6.'MAIZ6', POTA1.'POTA1', POTA2.'POTA2', 
POTA3.'POTA3', POTA5.'POTA5', SBAR1.'SBAR1', SBAR10.'SBAR10', SBAR11.'SBAR11', SBAR12.'SBAR12', 
SBAR13.'SBAR13', SBAR14.'SBAR14', SBAR2.'SBAR2', SBAR3.'SBAR3', SBAR4.'SBAR4', SBAR5.'SBAR5', 
SBAR6.'SBAR6', SBAR7.'SBAR7', SBAR8.'SBAR8', SBAR9.'SBAR9', GRAZE2_1.'SGRAZ2_1', SIL1_1.'SIL1_1', 
SIL1_2.'SIL1_2', SIL1_3.'SIL1_3', SIL2_1.'SIL2_1', SIL2_2.'SIL2_2', SIL2_3.'SIL2_3', SIL3_1.'SIL3_1', 
SIL3_2.'SIL3_2', SIL3_3.'SIL3_3', SIL3_4.'SIL3_4', SIL4_1.'SIL4_1', SIL4_2.'SIL4_2', SIL4_3.'SIL4_3', 
SIL4_4.'SIL4_4', SILFA1.'SILFA1', SILFA2.'SILFA2', SILFA3.'SILFA3', SOATS1.'SOATS1', SIL2_1.'SSIL2_1', 
WBAR0.'WBAR0', WBAR1.'WBAR1', WBAR2.'WBAR2', WBAR3.'WBAR3', WBAR5.'WBAR5', WBAR6.'WBAR6', 
WBAR7.'WBAR7', WBAR8.'WBAR8', WOSR1.'WOSR1', WOSR2.'WOSR2', WOSR3.'WOSR3', WW1.'WW1', 
WW2.'WW2', WW3.'WW3', WW4.'WW4', WWWC1.'WWWC1', WWWC2.'WWWC2'/ 

; 

SET mapindxFYM (FYM_crop, crop_dtb) 

/SBAR2_FYM.'sbar', SBAR13_FYM.'sbar', MAIZ5_FYM.'maize_wc', MAIZ4_FYM.'maize_wc', SIL3_2_FYM.'sil_3', 
SIL4_2_FYM.'sil_4', graze6_1_FYM.'graze_6', WBAR4_FYM.'wbar', WBAR3_FYM.'wbar', WBAR5_FYM.'wbar', 
POTA3_FYM.'pot', POTA5_FYM.'pot', GRAZE4_3_FYM.'graze_4', WW4_FYM.'ww', GRLFA3_FYM.'graze_lfa', 
GRLFA1_FYM.'graze_lfa'/ 

; 

PARAMETER 

crop_cost(crop,value)'variable costs crop production in 100ï¿½/ha excluding fertiliser cost', 

dtbcrop_lab_requ (ID, crop_dtb, value) 'database standard annual labour requirements in h/ha', 

crop_lab_requ(crop,value), 

dtbcrop_price (ID, crop_dtb, value) 'database crop price farmgate in 100ï¿½/t', 

crop_price(crop,value)'crop price farmgate in 100ï¿½/t', 

dtbN_uplim (ID, crop_dtb, value) 'database limit of N in kg/ha which can be applied to different crops', 

N_uplim(crop,value), 

dtbN_lolim (ID, crop_dtb, value) 'database lower limit of N in kg/ha application to different crops', 

N_lolim(crop,value), 

dtbP_uplim (ID, crop_dtb, value) 'database limit of P in kg/ha application to different crops', 

P_uplim(crop,value), 

dtbP_lolim (ID,crop_dtb, value) 'database lower limit of P in kg/ha application to different crops', 

P_lolim(crop,value), 

dtbFert_cost (ID,Nutrients, value)'Fertiliser cost in 100ï¿½/kg', 

Fert_cost (Nutrients, value)'Fertiliser cost in 100ï¿½/kg', 

dtbDmfw_corr (ID, crop_dtb, value) 'database dry matter fresh weight correction factor based on dry matter content', 

Dmfw_corr(crop,value)'dry matter fresh weight correction factor based on dry matter content', 
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cr_stan_output_coeff(crop,value)'standard output coefficient in 1000ï¿½/ha sourced from Eurostat', 

dtbSAC_cropgmrg (ID,crop_dtb, value) 'database SAC grossmargin including fertiliser costs in ï¿½/ha', 

dtbcr_stan_output_coeff (ID, crop_dtb, value) 'database standard output coefficient in 1000ï¿½/ha sourced from 
Eurostat', 

SAC_cropgmrg (crop, value) 'SAC grossmargin including fertiliser costs in ï¿½/ha'; 

 

$gdxin All_parameters_63.gdx 

$load dtbcrop_lab_requ 

$load dtbcrop_price 

$load dtbN_uplim 

$load dtbN_lolim 

$load dtbP_uplim 

$load dtbP_lolim 

$load dtbFert_cost 

$load dtbDmfw_corr 

$load dtbcr_stan_output_coeff 

$load dtbSAC_cropgmrg 

$gdxin 

; 

crop_cost(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbcrop_cost(ID, crop_dtb, value))); 

crop_lab_requ(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbcrop_lab_requ(ID, crop_dtb, value))); 

crop_price(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbcrop_price(ID,crop_dtb,value))); 

N_uplim(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbN_uplim(ID,crop_dtb,value))); 

N_lolim(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbN_lolim(ID,crop_dtb,value))); 

P_uplim(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbP_uplim(ID, crop_dtb,value))); 

P_lolim(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbP_lolim(ID,crop_dtb,value))); 

Fert_cost (Nutrients, value)= SUm(ID, dtbFert_cost (ID,Nutrients, value)); 

Dmfw_corr(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbDmfw_corr(ID, crop_dtb,value))); 

cr_stan_output_coeff(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbcr_stan_output_coeff(ID, crop_dtb, 
value))); 

SAC_cropgmrg (crop, value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbSAC_cropgmrg (ID,crop_dtb, value))); 

display yieldfunc_data, yield_corr_data, crop_cost, crop_lab_requ, SAC_cropgmrg, cr_stan_output_coeff, 
Dmfw_corr, Fert_cost, P_lolim, N_uplim, N_lolim, P_uplim, crop_price 

; 

  

****General Parameters and hydrological risk**** 

PARAMETER 
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 dtbLab_cost (ID,value,value)'cost of labour in ï¿½/hr', 

 Lab_cost (value,value)'cost of labour in ï¿½/hr', 

 dtbScale_effect_coeff (ID, farm,value)'scale effect efficienc  for crops', 

 Scale_effect_coeff (farm,value)'scale effect efficienc  for crops', 

 dtbTrans_cost (ID,value,value)'cost of forage haulage in 100ï¿½/t', 

 Trans_cost (value,value)'cost of forage haulage in 100ï¿½/t', 

 dtbhydro_fact (ID,hydro,value)'hydrological risk factor for pollution function', 

 hydro_fact (hydro,value)'hydrological risk factor for pollution function' 

; 

$gdxin All_parameters_63.gdx 

$load dtbLab_cost 

$load dtbScale_effect_coeff 

$load dtbTrans_cost 

$load dtbhydro_fact 

$gdxin 

; 

Lab_cost (value,value)= SUm(ID, dtbLab_cost (ID,value,value)); 

Scale_effect_coeff (farm,value)= SUM(ID, dtbScale_effect_coeff (ID, farm,value)); 

Trans_cost (value,value)= SUm(ID, dtbTrans_cost (ID,value,value)); 

hydro_fact (hydro,value)= SUM(ID, dtbhydro_fact (ID,hydro,value)); 

 

display Lab_cost, Scale_effect_coeff, Trans_cost, hydro_fact 

 

****livestock Parameters**** 

PARAMETER 

 dtbli_stan_output_coeff (ID,livestock, value) 'standard output coefficient in 1000ï¿½/animal unit sourced from 
Eurostat', 

 li_stan_output_coeff (livestock, value) 'standard output coefficient in 1000ï¿½/animal unit sourced from Eurostat', 

 dtbLive_grmrg (ID,livestock, value)'Livestock grossmargin excluding forage costs in 100ï¿½/head', 

 Live_grmrg (livestock, value)'Livestock grossmargin excluding forage costs in 100ï¿½/head', 

 dtbsilage_requ (ID,livestock, value)'yearly silage requirement in FW t/per animal unit', 

 silage_requ (livestock, value)'yearly silage requirement in FW t/per animal unit', 

 graze_requ (livestock, value) 'yearly grazing requirement in DM t/per animal unit', 

 dtbgraze_requ (ID,livestock, value) 'yearly grazing requirement in DM t/per animal unit', 

 dtbhay_requ (ID,livestock, value) 'yearly hay requirement in FW t/per animal unit', 

 hay_requ (livestock, value) 'yearly hay requirement in FW t/per animal unit', 
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 dtbLive_lab_requ (ID,livestock, value) 'labour hours requirement per livestock type', 

 Live_lab_requ (livestock, value) 'labour hours requirement per livestock type', 

 dtbSAC_grmg_post_for (ID,livestock, value) 'SAC post-forage grossmargin per animal head in ï¿½', 

 dtbFYM_output (ID,livestock, nutrients, value) 'Total kg of nutrient in manure output by livestock over housing 
period', 

 FYM_output (livestock, nutrients, value) 'Total kg of nutrient in manure output by livestock over housing period', 

 dtbEPIC_stockden (ID,crop_dtb, value) 'database stocking density in LU/ha assumed in EPIC', 

 EPIC_stockden(crop,value)'Stocking density in LU/ha assumed in EPIC', 

 dtbGraze_LU (ID,Livestock, value) 'Livestock unit (LU) system is a reflection of the annual energy requirements of 
different livestock' 

 dtbFYMcr_FN_fx (ID,crop_dtb, value) 'Amount of FYM N in kg/ha applied to each FYM crop', 

 Graze_LU (Livestock, value) 'Livestock unit (LU) system is a reflection of the annual energy requirements of different 
livestock', 

 SAC_grmg_post_for (livestock, value) 'SAC post-forage grossmargin per animal head in ï¿½', 

 FYMcr_FN_fx (FYM_crop, value) 'Amount of FYM N in kg/ha applied to each FYM crop', 

 dtbFYMcr_FP_fx (ID,crop_dtb, value) 'Amount of FYM P in kg/ha applied to each FYM crop', 

 FYMcr_FP_fx (FYM_crop, value) 'Amount of FYM P in kg/ha applied to each FYM crop' 

; 

$gdxin All_parameters_63.gdx 

$load dtbli_stan_output_coeff 

$load dtbLive_grmrg 

$load dtbsilage_requ 

$load dtbhay_requ 

$load dtbLive_lab_requ 

$load dtbgraze_requ 

$load dtbSAC_grmg_post_for 

$load dtbFYM_output 

$load dtbEPIC_stockden 

$load dtbGraze_LU 

$load dtbFYMcr_FN_fx 

$load dtbFYMcr_FP_fx 

$gdxin 

; 

li_stan_output_coeff (livestock, value) = SUM(ID, dtbli_stan_output_coeff (ID,livestock, value)); 

Live_grmrg (livestock, value) = SUM(ID, dtbLive_grmrg (ID,livestock, value)); 

silage_requ (livestock, value)= SUM(ID, dtbsilage_requ (ID,livestock, value)); 
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hay_requ (livestock, value)=SUM(ID, dtbhay_requ (ID,livestock, value)); 

graze_requ (livestock, value)= SUM(ID,dtbgraze_requ (ID,livestock, value)); 

Live_lab_requ (livestock, value) = SUM(ID, dtbLive_lab_requ (ID,livestock, value)); 

SAC_grmg_post_for (livestock, value) = SUM(ID,dtbSAC_grmg_post_for (ID,livestock, value)); 

FYM_output (livestock, nutrients, value) = SUM(ID, dtbFYM_output (ID,livestock, nutrients, value)); 

EPIC_stockden(crop,value) = SUM(ID, sum(mapindx(crop,crop_dtb), dtbEPIC_stockden(ID,crop_dtb,value))); 

Graze_LU (Livestock, value)= SUM(ID, dtbGraze_LU (ID,Livestock, value)); 

FYMcr_FN_fx (FYM_crop, value)= SUM(ID, sum(mapindxFYM(FYM_crop,crop_dtb), dtbFYMcr_FN_fx (ID,crop_dtb, 
value))); 

FYMcr_FP_fx (FYM_crop, value)= SUM(ID, sum(mapindxFYM(FYM_crop,crop_dtb), dtbFYMcr_FP_fx (ID,crop_dtb, 
value))); 

 

display li_stan_output_coeff, Live_grmrg, silage_requ, graze_requ, hay_requ, Live_lab_requ, SAC_grmg_post_for, 
FYM_output, EPIC_stockden, Graze_LU, FYMcr_FN_fx, FYMcr_FP_fx 

$include Loops_Base05.gms 

****include file with specification of scenarios and reporting sets and parameters 
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Loading Additional Parameters and Scenario Loop structure  

File name: ‘Loops_Base05.gms’ 
 

PARAMETER 

N_tax N tax as fraction of price of N /0/ 

*N_tax_scen(scenario) 'N tax multiplier'  /sc1=0/ 

Setaside_requ Set aside requirement as a fraction of the total available agricultural land /0/ 

*Setaside_scen (scenario) 'Set aside requirement multiplier'/sc1=0/ 

Stock_den_reduc 'Stocking density proportion of original EPIS stocking density'/1/ 

*Stock_den_reduc_scen (scenario) stocking density reduction multiplier/sc1=1/ 

P_tax P tax as fraction of price of N /0/ 

*P_tax_scen(scenario) 'P tax multiplier'  /sc1=0/ 

Slope_setaside_requ 'Set aside requirement multiplier for particular slope'/0/ 

*Slope_setaside_scen (scenario)/sc1=0/ 

; 

$ontext 

**used in scenarios to save scenario parameters 

PARAMETER 

sN_tax saving N initial value, 

sSetaside_requ saving Setaside requirement initial value, 

sStock_den_reduc saving initial stocking density reduction value, 

sP_tax saving N initial value, 

sSlope_setaside_requ saving initial stocking density reduction for specific slope value, 

; 

sN_tax=N_tax; 

sSetaside_requ=Setaside_requ; 

sStock_den_reduc=Stock_den_reduc; 

sP_tax=P_tax; 

sSlope_setaside_requ=Slope_setaside_requ; 

$offtext 

$offlisting 

 

****Definition of parameters for calculations outside the optimisation for summary purposes**** 

SET 

OUT1 /OUT_60_01,OUT_60_02, OUT_60_03,OUT_60_04,OUT_60_05,OUT_60_06/ 

OUT2 / OUT_60_04_AF,OUT_60_04_FYM/ 
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Year / 1969 * 2013/ 

; 

****Loading Pollution Data**** 

TABLE mdtbpollution_data (OUT1,OUT2,Slope, Soil, pol_crop,Year, poll_funct_coeff) 'pollution function intercepts 
and coefficients'; 

$gdxin OUT_parameters_60.gdx 

$load mdtbpollution_data 

$gdxin 

; 

TABLE pollution_data (Slope, Soil, Crop,Year, poll_funct_coeff) 'pollution function intercepts and coefficients'; 

pollution_data (Slope, Soil, Crop,Year, poll_funct_coeff)= SUM((OUT1,OUT2), sum(polmap (supcrop, pol_crop), 
mdtbpollution_data (OUT1, OUT2, Slope, Soil, pol_crop, Year, poll_funct_coeff))); 

display pollution_data 

; 

*****Loading SLR data for farm size classification 

PARAMETER 

 dtbSLR_crop_coeff (OUT1,crop_dtb, value) 'standard labour requirement coefficient in hrs/ha sourced from DEFRA 
2014', 

 SLR_crop_coeff(crop,value), 

 dtbSLR_live_coeff (OUT1,livestock, value) 'Standard Labour Requirement coefficient for livestock in hrs per head', 

 SLR_live_coeff (livestock, value) 'Standard Labour Requirement coefficient for livestock in hrs per head' 

; 

$gdxin OUT_parameters_60.gdx 

$load dtbSLR_crop_coeff 

$load dtbSLR_live_coeff 

$gdxin 

; 

SLR_crop_coeff(crop,value) = sum(OUT1, sum(mapindx(crop, crop_dtb), dtbSLR_crop_coeff (OUT1, crop_dtb, 
value))); 

SLR_live_coeff (livestock, value)= SUM(OUT1, dtbSLR_live_coeff (OUT1,livestock, value)); 

 

display SLR_crop_coeff,  SLR_live_coeff 

; 

SET 

report 'terms used in report writing' 

/Land_crop_f '% of land attributed to a crop group by farm', 

Land_crop_l '% of land attributed to a crop group by soil type', 

Land_crop_perc '% of land attributed to a crop group over the catchment', 
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Land_alloc 'Land.l' 

Crop_standard_output 'Crop standard output in ï¿½', 

STAN_OUT_PERC_CHK 'Sum of crop and livestock standard output percentage shares', 

TOTAL_ST_OUT_MANUAL 'Total standard output per farm in ï¿½' 

Forage_Totcost 'Total forage cost in ï¿½1000 per animal' 

SAC_dev_Liprofit 'Percentage difference between the SAC and model post forage and labour gross margin' 

Farm_total_area 'Farm area in ha' 

Farm_size 'Farm size measured in full time yearly labour requirement following FBS standard' 

Crop_land_perc 'Percetnage of total farm land allocated to a particular crop' 

Cr_perc_stan_out 'Percentage of crops to total standard output summed over the soil, slope, hydro' 

YLD_check 'Checking yield for excessively high yielding crops' 

 

******************Crops****************** 

Av_YLD 'Average yield in tonnes per ha by soil, slope and hydro type' 

AVYLD_FSLC 'Calculating the average yield per hectare only including used sets averaged over hydrology' 

AVYLD_FSC 'Calculating the average yield per hectare only including used sets averaged over hydrology, soil' 

AVYLD_FC 'Calculating the average yield per hectare only including used sets averaged over hydrology, soil,slope' 

AVYLD_C 'Calculating the average yield per hectare only including used sets averaged over hydrology, 
soil,slope,farm' 

Avha_cropsrev 'Average crop revenue per hectare' 

Fert_cost 'Average crop fertiliser costs per hectare' 

Crop_cost 'Other crop costs per hectare' 

P_level_FLSH 'level of P application in kg/ha' 

N_level_FLSH 'level of N application in kg/ha'                                                

P_level_FLS 'level of P application averaged over hydrological connectivity in kg/ha' 

N_level_FLS 'level of N application averaged over hydrological connectivity in kg/ha' 

Pup_lim 'Phosphor upper limit in kg/ha' 

Plo_lim 'Phosphor lower limit in kg/ha' 

Nup_lim 'Nitrogen upper limit in kg/ha' 

Nlo_lim 'Nitrogen lower limit in kg/ha' 

P_level 'level of P application averaged over soil, slope, farm and hydrological connectivity in kg/ha' 

N_level 'level of N application averaged over soil, slope, farm and hydrological connectivity in kg/ha' 

P_level_LS 'level of P application averaged over farm and hydrological connectivity in kg/ha' 

N_level_LS 'level of N application averaged over farm and hydrological connectivity in kg/ha' 

P_level_FLSCH 'level of P application in kg/ha' 

N_level_FLSCH 'level of N application in kg/ha' 
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Poll_value 'level of pollutant' 

M_N_AF_rep ‘Marginal N artificial fertiliser report’ 

M_P_AF_rep ‘Marginal P artificial fertiliser report’ 

M_N_FYM_rep ‘Marginal N farmyard manure fertiliser report’ 

M_P_FYM_rep ‘Marginal P farmyard manure fertiliser report’ 

M_N_YLD_FUNCT ‘Marginal N yield function value report’ 

M_P_YLD_FUNCT ‘Marginal P yield function value report’ 

N_AF_rep ‘N artificial fertiliser report’ 

P_AF_rep ‘P artificial fertiliser report’ 

N_FYM_rep ‘N farmyard manure report’ 

P_FYM_rep ‘P farmyard manure report’ 

N_YLD_FUNCT ‘N yield function value report’ 

P_YLD_FUNCT ‘P yield function value report’ 

Crop_profit 'Grossmargin achieved per t of crop averaged over soil, slope, farm, hydro' 

Number 'Number of unique crops within a crop group' 

Dev_from_exp 'Average percentage deviation from the SAC expected yield' 

SAC_expect 'per ha SAC yield expectation' 

labhrs_total 'total labour hours needed by farm' 

li 'livestock standard output' 

cr ' crop standard output' 

very_small '<0.5 FTE spare time, 0.5<1 FTE part time' 

small       '1<2 FTE full time' 

medium      '2<3 FTE full time' 

large       '3<5 FTE full time' 

very_large  '>=5 FTE' 

Out_percdev 'output percentage deviation from expectation' 

total 

average 

model_stat 'model status number' 

solve_stat 'solver status number' 

 

******************Livestock******************                                                

No 'Number of livestock per farm (in 100ewes tupped for sheep)' 

Li_gmrg 'Pre forage and labour cost livestock gross maring in ï¿½ per animal' 

Li_labcost 'Annual labour cost in ï¿½ per animal' 

Li_profit 'Post forage and labour cost livestock grossmargin in ï¿½ per animal' 
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Li_stan_out 'Livestock standard output in ï¿½' 

Li_gm_coeff 'Difference between pre-forage grossmargin and livestock labour costs in ï¿½ per animal' 

milk 'dairy category for catchment output contribution' 

sheep 'sheep category for catchment output contribution (sheep1, sheep2)' 

beef 'beef category for catchment output contribution (finish1, finish2, suckler)' 

Out_contr 'Percentage contribution to catchment output' 

DEFRA_dt 'Defra data on the real-world situation in the catchment' 

live_out_perc 'percentage of livestock output as percentage of total in the catchment' 

live_out 'livestock output of the catchment' 

cr_out 'crop output of the catchment' 

feedcr_out 'feed crop sale output of the catchment' 

catch_out 'catchment output' 

barley, wheat, maize, potato, oilseed_rape, grazing, setaside 

land_perc 'percentage of catchment land allocated to a crop group defined by DEFRA' 

exp_land_perc 'expected percentage of catchment land allocated to a crop group as defined by DEFRA' 

land_percdev 'percentage points deviation of model land allocation from expectation' 

N_FYM_par 'parameter to calculate the mean N FYM application' 

P_FYM_par 'parameter to calculate the mean P FYM application' 

tot_appl 'total fym in kg applied' 

tot_prod 'total fym in kg produced on farm' 

excess_kg   'excess amount of fym in kg produced that is not applied' 

excess_perc   'excess amount of fym produced that is not applied as percentage of total produced' 

stock_den 'farm stocking density (livestock units per hectare)' 

 

*******************Pollution*************************** 

TOC                  'Organic carbon in soil profile (in kg/ha) ' 

WTR                  'Water to river WTR (in m3)' 

WTG                  'Water to deep percolation (in m3)' 

ZLOAD                'Sediment mobilised (in t / ha)' 

CLOAD                'C to river (in kg per day)' 

RSPC                 'CO2 respiration (in kg/ha)' 

NRLOAD               'N to River (load, in kg per day' 

NGLOAD               'N to groundwater (load, in kg per day)' 

PRLOAD               'P to river (in kg per day)  ' 

PGLOAD               'P to groundwater (load, in kg / day)' 

DN2O                 'Nitrous oxide loss (in kg/ha)' 
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CFEM                 'Carbon emission (in kg/ha)' 

TOC_HR               'Organic carbon in soil profile with hydrological risk (in kg/ha) ' 

WTR_HR               'Water to river WTR with hydrological risk (in m3)' 

WTG_HR               'Water to deep percolation with hydrological risk (in m3)' 

ZLOAD_HR             'Sediment mobilised with hydrological risk (in t / ha)' 

CLOAD_HR             'C to river with hydrological risk (in kg per day)' 

RSPC_HR              'CO2 respiration with hydrological risk (in kg/ha)' 

NRLOAD_HR            'N to River with hydrological risk (load, in kg per day' 

NGLOAD_HR            'N to groundwater with hydrological risk (load, in kg per day)' 

PRLOAD_HR            'P to river with hydrological risk (in kg per day)  ' 

PGLOAD_HR            'P to groundwater with hydrological risk (load, in kg / day)' 

DN2O_HR              'Nitrous oxide loss with hydrological risk (in kg/ha)' 

CFEM_HR              'Carbon emission with hydrological risk (in kg/ha)' 

Neg_pol_aux          'Auxiliary variable to count neg pollution values' 

Neg_pol              'Counts of negative pollution values for soil/slope/crop type' 

hydro_ck,land_ck  

/ 

pol_vars  (report)  'pollution variables'/ 

TOC                  'Organic carbon in soil profile (in kg/ha) ' 

WTR                  'Water to river WTR (in m3)' 

WTG                  'Water to deep percolation (in m3)' 

ZLOAD                'Sediment mobilised (in t / ha)' 

CLOAD                'C to river (in kg per day)' 

RSPC                 'CO2 respiration (in kg/ha)' 

NRLOAD               'N to River (load, in kg per day' 

NGLOAD               'N to groundwater (load, in kg per day)' 

PRLOAD               'P to river (in kg per day)  ' 

PGLOAD               'P to groundwater (load, in kg / day)' 

DN2O                 'Nitrous oxide loss (in kg/ha)' 

CFEM                 'Carbon emission (in kg/ha)' 

TOC_HR               'Organic carbon in soil profile with hydrological risk (in kg/ha) ' 

WTR_HR               'Water to river WTR with hydrological risk (in m3)' 

WTG_HR               'Water to deep percolation with hydrological risk (in m3)' 

ZLOAD_HR             'Sediment mobilised with hydrological risk (in t / ha)' 

CLOAD_HR             'C to river with hydrological risk (in kg per day)' 

RSPC_HR              'CO2 respiration with hydrological risk (in kg/ha)' 
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NRLOAD_HR            'N to River with hydrological risk (load, in kg per day' 

NGLOAD_HR            'N to groundwater with hydrological risk (load, in kg per day)' 

PRLOAD_HR            'P to river with hydrological risk (in kg per day)  ' 

PGLOAD_HR            'P to groundwater with hydrological risk (load, in kg / day)' 

DN2O_HR              'Nitrous oxide loss with hydrological risk (in kg/ha)' 

CFEM_HR              'Carbon emission with hydrological risk (in kg/ha)'  

P_level_FLSCH ‘P level for farm, soil, slope, crop, hydrology’ 

N_level_FLSCH ‘P level for farm, soil, slope, crop, hydrology’ 

/ 

 

farmsizes (report) 'Defra farm size classification by SLRs fulltime equivalent' 

/ very_small '<0.5 FTE spare time, 0.5<1 FTE part time', small '1<2 FTE full time', medium '2<3 FTE full time', large 
'3<5 FTE full time', very_large  '>=5 FTE'/ 

 

standardout (report) 'Standard output categories' 

/li 'livestock standard output' 

cr 'crop standard output' 

/ 

 

fym_report (report) 'Categories for farm yard manure statistics' 

/ 

tot_appl 'total fym in kg applied' 

tot_prod 'total fym in kg produced on farm' 

excess_kg   'excess amount of fym in kg produced that is not applied' 

excess_perc   'excess amount of fym produced that is not applied as percetnage of total produced' 

/ 

 

livestock_dtb (report) 'set used to read in livestock parameter from the input data' / milk, sheep, beef/ 

crop_group_dtb (report) 'set used to read in expected land use percentage of catchment'/barley, wheat, maize, 
potato, oilseed_rape, grazing,setaside/ 

chk_report(report)'set used to check crop yield average calculations'/hydro_ck,land_ck/ 

 

**define mappings to match crop sets used in input file "database" to the model crop sets 

mapindx2(crop_dtb,crop) 

/sbar.'SBAR11', sbar.'SBAR12', sbar.'SBAR13_FYM', sbar.'SBAR2_FYM', fbeet.'FBEET1', fbeet.'FBEET2', 
fbeet.'FBEET3', maize_wc.'MAIZ1', maize_wc.'MAIZ4_FYM', maize_wc.'MAIZ5_FYM', sil_1.'SIL1_1', sil_2.'SIL2_1', 
sil_3.'SIL3_1', sil_3.'SIL3_2_FYM', sil_4.'SIL4_1', sil_4.'SIL4_2_FYM', sil_lfa.'SILFA1', graze_2.'GRAZE2_1', 
graze_2.'GRAZE2_2', graze_3.'GRAZE3_1', graze_4.'GRAZE4_1', graze_4.'GRAZE4_3_FYM', 



Appendix C 

233 
 

graze_6.'GRAZE6_3', graze_6.'GRAZE6_1_FYM', hay_2.'hay2_1', hay_lfa.'HAYLFA1', graze_lfa.'GRLFA1', 
graze_lfa.'GRLFA1_FYM', graze_lfa.'GRLFA3_FYM', graze_lfa.'GRLFA3', ww.'WW1', ww.'WW2', ww.'WW3', 
ww.'WW4', ww.'WW4_FYM', wbar.'WBAR0', wbar.'WBAR1', wbar.'WBAR2', wbar.'WBAR3_FYM', 
wbar.'WBAR4_FYM', wbar.'WBAR5_FYM', wosr.'WOSR1', wosr.'WOSR2', wosr.'WOSR3', pot.'POTA1', pot.'POTA2', 
pot.'POTA3_FYM', pot.'POTA5_FYM', ww_wc.'WWWC1', w_wc.'WWWC2', soats.'SOATS1'/ 

mapindx3 (livestock_dtb, livestock)  

/ milk.'dairy', sheep.'sheep1', sheep.'sheep2', beef.'finish1', beef.'finish2', beef.'suckler'/ 

mapindx4 (crop_group_dtb, crop) /barley.'SBAR11', barley.'SBAR12', barley.'SBAR13_FYM', barley.'SBAR2_FYM', 
barley.'WBAR0', barley.'WBAR1', barley.'WBAR2', barley.'WBAR3_FYM', barley.'WBAR4_FYM', 
barley.'WBAR5_FYM', wheat.'WW1', wheat.'WW2', wheat.'WW3', wheat.'WW4', wheat.'WW4_FYM', maize.'MAIZ1', 
maize.'MAIZ5_FYM', maize.'MAIZ4_FYM', potato.'POTA1', potato.'POTA2', potato.'POTA3_FYM', 
potato.'POTA5_FYM', oilseed_rape.'WOSR1',oilseed_rape.'WOSR2',oilseed_rape.'WOSR3', grazing.'GRLFA1', 
grazing.'GRLFA3', grazing.'GRAZE2_1', grazing.'GRAZE2_2', grazing.'GRAZE3_1', grazing.'GRAZE4_1', 
grazing.'GRAZE4_3_FYM', grazing.'GRAZE6_3', grazing.'GRAZE6_1_FYM', grazing.'hay2_1', grazing.'HAYLFA1', 
grazing.'SIL1_1', grazing.'SIL2_1', grazing.'SIL3_1', grazing.'SIL3_2_FYM', grazing.'SIL4_1', grazing.'SIL4_2_FYM', 
grazing.'SILFA1', grazing.'FBEET1', grazing.'FBEET2', grazing.'FBEET3', setaside.'GRLFA1' 

/; 

PARAMETERS 

dtbcatch_out_contr (OUT1,livestock_dtb, value) 'Percentage contribution to output in the North West region for 
livestock based on DEFRA (21) Agriucltural Facts -North West (NW)', 

catch_out_contr(livestock_dtb, value) 'Percentage contribution to output in the North West region for livestock based 
on DEFRA (21) Agriucltural Facts -North West (NW)', 

dtbLive_output (OUT1,livestock, value) 'Output per head of livestock in ï¿½ (per 100 ewes tupped for sheep)', 

Live_output (livestock, value) 'Output per head of livestock in ï¿½ (per 100 ewes tupped for sheep)', 

dtbLand_expect_dtb  (OUT1, crop_group_dtb, Value) 'Percentage  of catchment land allocated to particular crop 
based on DEFRA (2021) Agricultural Facts - North West (NW)', 

Land_expect_dtb  (crop_group_dtb, Value) 'Percentage  of catchment land allocated to particular crop based on 
DEFRA (2021) Agricultural Facts - North West (NW)', 

$gdxin OUT_parameters_60.gdx 

$load dtbcatch_out_contr 

$load dtbLive_output 

$load dtbLand_expect_dtb 

$gdxin 

; 

catch_out_contr(livestock_dtb, value) = SUM(OUT1, dtbcatch_out_contr (OUT1,livestock_dtb, value)); 

Live_output (livestock, value)= SUM(OUT1, dtbLive_output (OUT1,livestock, value));  

Land_expect_dtb  (crop_group_dtb, Value)=SUM(OUT1, dtbLand_expect_dtb  (OUT1, crop_group_dtb, Value) ); 

display catch_out_contr, Live_output, Land_expect_dtb 

 

****Defining parameters for reporting**** 

PARAMETERS 

Catch_stats_base (report,report) 'Parameter for reporting catchment statistics relative to the FBS data' 
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Crop_report_base  (Alli,Alli,report) 'Costs, revenues' 

farm_live_base (farm,livestock,report) 'Number of livestock heads per farm (sheep in 100 ewes tupped)' 

report_catch_base (Alli,report) 'costs, revenues and pollution contributions of different production activities catchment 
scale' 

Crop_report_C_base (Alli,report) 'Crop statistics by unique crop for whole catchment' 

Live_report_base (Alli,Alli,report) 'Nos, costs, revenues, profits associated with livestock' 

total_base (report) 'Parameter for reporting totals of certian variables so only need one index' 

report_hydro_base (Alli,Alli,Alli,Alli,Alli, report) 'calculation at hydrological risk area scale' 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,report) 'Pollution parameter reporting yearly' 

Fert_report_base (slope, soil, hydro,farm,crop,report) 'Fertiliser application reporting' 

Land_report_base (slope, soil, hydro, farm, crop) 'Land allocation reporting' 

Li_gm_report_base (farm, livestock) 'Livestock grossmargin reporting' 

Cr_gm_report_base (slope, soil, hydro, farm, cash_crop) 'Crop grossmargin reporting' 

Catch_gm_report_base  'Catchment grossmargin reporting' 

N_tax_rep_base  'Calculated check of the current % of the N tax' 

Cr_cost_report_base      (slope,soil, hydro,farm, crop) 'Crop cost in 10Â£ per tonnes' 

Fert_cost_report_base 'N tax as proportion of N cost' 

Setaside_report_base 'Setaside as proportion of total catchment area' 

Setaside_slope_report_base 'Setaside of particular slope type as proportion of total catchment area' 

Pol_report_sum_base (report) 'Pollution parameter averaged over the years' 

Pol_report_chng_base (report) 'Percentage change in the pollution parameter relative to the baseline' 

Sediment_soil_av_base (soil,report) 'Average sediment pollution by soil type' 

Sediment_slope_av_base (slope,report) 'Average sediment pollution by slope type' 

Sediment_crop_av_base (crop,report) 'Average sediment pollution by crop type' 

Sediment_soil_tot_base (slope,soil, hydro,farm,crop,report)  'Total sediment pollution by soil type per ha' 

Sediment_slope_tot_base (slope,soil, hydro,farm,crop,report)  'Total sediment pollution by soil type per ha' 

Sediment_crop_tot_base (slope,soil, hydro,farm,crop,report) 'Total sediment pollution by soil type per ha' 

Run_stat_base (report) 'Reporting of model and solver status for the solve in GAMS number' 

; 

TABLE farmsize_def (farmsizes, value) 'FTE bounds below which farm is classified as a particular farmsize' 

value 

very_small 1 

small  2 

medium  3   

large  5 

very_large  5  ;  
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Parameters for Results Reporting 

Filename: ‘Reporting_Base05.gms’ 

 

****report catchment wide output statistics**** 

total_base ("live_out")= round((SUM((farm,livestock), LI_GM.l(farm, livestock)*Live_output (livestock, "value"))),2); 

total_base ("cr_out")= round((SUM((slope, soil, hydro, farm, cash_crop), T_YIELD_FW.l (slope, soil, hydro, farm, 
cash_crop) * crop_price (cash_crop, 'value')*100)),2); 

total_base ("feedcr_out")= round((SUM((farm, trade_feed_cr), SOLD_FEED_CROP.l (farm, trade_feed_cr)* 
crop_price (trade_feed_cr, 'value')*100)),2); 

total_base ("catch_out") =round((total_base ("live_out")+total_base ("cr_out")+total_base ("feedcr_out")),2); 

total_base ("stock_den")$SUM((slope,soil, hydro,farm,forage_cr),LAND.l (slope,soil, 
hydro,farm,forage_cr))=round(SUM((farm, livestock),LIVE_NUM.l (farm, livestock)*Graze_LU (Livestock, 
"value"))/SUM((slope,soil, hydro,farm,forage_cr),LAND.l (slope,soil, hydro,farm,forage_cr)),2); 

report_catch_base (livestock, "live_out_perc") =round(SUM(farm, LI_GM.l(farm, livestock)*Live_output (livestock, 
"value"))/total_base ("catch_out")*100,2); 

Crop_report_C_base (crop,"Crop_land_perc")$SUM((slope, soil, hydro, farm),farm_area_2 (slope, soil, hydro, 
farm,"value"))= SUM((slope, soil, hydro,farm), LAND.l (slope,soil, hydro,farm,crop))/SUM((slope, soil, hydro, 
farm),farm_area_2 (slope, soil, hydro, farm,"value"))*100; 

 

****calculate catchment wide metrics of activities**** 

Catch_stats_base (livestock_dtb,"Out_contr")=  round(sum(mapindx3 (livestock_dtb, livestock),report_catch_base 
(livestock, "live_out_perc")),2) ; 

Catch_stats_base (livestock_dtb,"DEFRA_dt") =round(catch_out_contr (livestock_dtb, "value"),2); 

Catch_stats_base (livestock_dtb,"DEFRA_dt") =round(catch_out_contr (livestock_dtb, "value"),2); 

Catch_stats_base(livestock_dtb, "Out_percdev")= round((Catch_stats_base (livestock_dtb,"Out_contr")-
Catch_stats_base (livestock_dtb,"DEFRA_dt"))/Catch_stats_base (livestock_dtb,"DEFRA_dt")*100,2); 

Catch_stats_base (crop_group_dtb,"exp_land_perc") = round(Land_expect_dtb  (crop_group_dtb, "Value"),2); 

Catch_stats_base (crop_group_dtb,"land_perc") = round(sum(mapindx4(crop_group_dtb,crop), Crop_report_C_base 
(crop,"Crop_land_perc")),2); 

Catch_stats_base (crop_group_dtb,"land_percdev")$Catch_stats_base 
(crop_group_dtb,"exp_land_perc")=round((Catch_stats_base (crop_group_dtb,"land_perc") - Catch_stats_base 
(crop_group_dtb,"exp_land_perc"))/Catch_stats_base (crop_group_dtb,"exp_land_perc")*100,2); 

report_hydro_base(slope,soil, hydro,farm,crop,"Av_YLD")$LAND.l (slope,soil, hydro,farm, crop) =  dmfw_corr(crop, 
'value') * yield_corr_data(crop,'EPIC_corr') * YIELD_DM.l (slope, soil, hydro, farm, crop); 

Crop_report_base(farm, crop,"AVYLD_FC")$SUM((slope,soil, hydro),LAND.l (slope,soil, hydro,farm,crop)) = (SUM 
((slope,soil, hydro), report_hydro_base(slope,soil, hydro,farm,crop,"Av_YLD")*LAND.l (slope,soil, hydro,farm,crop)))/ 
SUM((slope,soil, hydro),LAND.l (slope,soil, hydro,farm,crop)); 

Crop_report_base(farm, crop,"SAC_expect")=  yield_corr_data(Crop,"SAC_YLD") ; 

Crop_report_base(farm, crop, "Cr_perc_stan_out") = SUM ((slope, soil, hydro), CR_PERC_STAN_OUTPUT.l (slope, 
soil, hydro, farm, crop)); 
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****report key livestock metrics**** 

Live_report_base (farm, livestock, "Li_profit")$LIVE_NUM.l (farm, livestock)= round(LI_GM.l (farm, 
livestock)*1000/LIVE_NUM.l (farm, livestock),2); 

Live_report_base (farm, livestock, "SAC_dev_Liprofit")$LIVE_NUM.l (farm, livestock) = round(((LI_GM.l (farm, 
livestock)*1000/LIVE_NUM.l (farm, livestock))-SAC_grmg_post_for(livestock, 
"value"))/SAC_grmg_post_for(livestock, "value")*100,2); 

farm_live_base   (farm,livestock,"No") = round(LIVE_NUM.l (farm, livestock),2); 

farm_live_base   (farm, livestock, "Li_profit") = round(Live_report_base (farm, livestock, "Li_profit"),2); 

farm_live_base   (farm, livestock, "SAC_dev_Liprofit") = round(Live_report_base (farm, livestock, 
"SAC_dev_Liprofit"),2); 

 

****report total pollution levels in relevant units**** 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"TOC")$LAND.l (slope,soil, hydro,farm,crop) = 
pollution_data (Slope, Soil, Crop,Year, "TOC")*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"WTR")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "WTR_IC") + pollution_data (Slope, Soil, Crop,Year, "WTR_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"WTG")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "WTG_IC") + pollution_data (Slope, Soil, Crop,Year, "WTG_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"ZLOAD")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "ZLOAD_IC") + pollution_data (Slope, Soil, Crop,Year, "ZLOAD_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"CLOAD")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "CLOAD_IC") + pollution_data (Slope, Soil, Crop,Year, "CLOAD_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"RSPC")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "RSPC_IC") + pollution_data (Slope, Soil, Crop,Year, "RSPC_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"NRLOAD")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "NRLOAD_IC") + pollution_data (Slope, Soil, Crop,Year, "NRLOAD_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"NGLOAD")$LAND.l (slope,soil, hydro,farm,crop) 
=(pollution_data (Slope, Soil, Crop,Year, "NGLOAD_IC") + pollution_data (Slope, Soil, Crop,Year, "NGLOAD_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"PRLOAD")$LAND.l (slope,soil, hydro,farm,crop) 
=(pollution_data (Slope, Soil, Crop,Year, "PRLOAD_I") + pollution_data (Slope, Soil, Crop,Year, "PRLOAD_N") * 
N_AF.l(slope, soil, hydro, farm, crop) + pollution_data (Slope, Soil, Crop,Year, "PRLOAD_P") * P_AF.l(slope, soil, 
hydro, farm, crop) + pollution_data (Slope, Soil, Crop,Year, "PRLOAD_N_P") * P_AF.l(slope, soil, hydro, farm, crop) * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"PGLOAD")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "PGLOAD_I") + pollution_data (Slope, Soil, Crop,Year, "PGLOAD_N") * 
N_AF.l(slope, soil, hydro, farm, crop) + pollution_data (Slope, Soil, Crop,Year, "PGLOAD_P") * P_AF.l(slope, soil, 
hydro, farm, crop)  + pollution_data (Slope, Soil, Crop,Year, "PGLOAD_N_P") * P_AF.l(slope, soil, hydro, farm, crop) 
* N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"DN2O")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "DN2O_IC") + pollution_data (Slope, Soil, Crop,Year, "DN2O_N") * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 
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Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"CFEM")$LAND.l (slope,soil, hydro,farm,crop) = 
(pollution_data (Slope, Soil, Crop,Year, "CFEM_I") + pollution_data (Slope, Soil, Crop,Year, "CFEM_N") * 
N_AF.l(slope, soil, hydro, farm, crop) + pollution_data (Slope, Soil, Crop,Year, "CFEM_P") * P_AF.l(slope, soil, 
hydro, farm, crop) + pollution_data (Slope, Soil, Crop,Year, "CFEM_N_P") * P_AF.l(slope, soil, hydro, farm, crop) * 
N_AF.l(slope, soil, hydro, farm, crop))*LAND.l (slope,soil, hydro,farm,crop)*hydro_fact (hydro,'value'); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"P_level_FLSCH")$LAND.l (slope,soil, 
hydro,farm,crop)=P_AF.l(slope, soil, hydro, farm, crop)*LAND.l (slope,soil, hydro,farm,crop); 

Pol_report_an_base (slope, soil, hydro, farm, crop, Year,"N_level_FLSCH")$LAND.l (slope,soil, 
hydro,farm,crop)=N_AF.l(slope, soil, hydro, farm, crop)*LAND.l (slope,soil, hydro,farm,crop); 

 

****report levels of fertiliser application in kg/ha**** 

Fert_report_base (slope, soil, hydro, farm, crop,"N_AF_rep") =  N_AF.l (slope, soil, hydro, farm, crop); 

Fert_report_base (slope, soil, hydro, farm, crop,"P_AF_rep") =  P_AF.l (slope, soil, hydro, farm, crop);   

Fert_report_base (slope, soil, hydro, farm, crop,"N_FYM_rep") = N_FYM.l (slope, soil, hydro, farm, crop);  

Fert_report_base (slope, soil, hydro, farm, crop,"P_FYM_rep") = P_FYM.l (slope, soil, hydro, farm, crop);  

Fert_report_base (slope, soil, hydro,farm,crop,"N_YLD_FUNCT") = N_YLD_FUNCT.l (slope, soil, hydro, farm, crop);  

Fert_report_base (slope, soil, hydro,farm,crop,"P_YLD_FUNCT") = P_YLD_FUNCT.l (slope, soil, hydro, farm, crop); 

 

Fert_report_base (slope, soil, hydro, farm, crop,"M_N_AF_rep") =  N_AF.m (slope, soil, hydro, farm, crop); 

Fert_report_base (slope, soil, hydro, farm, crop,"M_P_AF_rep") =  P_AF.m (slope, soil, hydro, farm, crop);   

Fert_report_base (slope, soil, hydro, farm, crop,"M_N_FYM_rep") = N_FYM.m (slope, soil, hydro, farm, crop);  

Fert_report_base (slope, soil, hydro, farm, crop,"M_P_FYM_rep") = P_FYM.m (slope, soil, hydro, farm, crop);  

Fert_report_base (slope, soil, hydro,farm,crop,"M_N_YLD_FUNCT") = N_YLD_FUNCT.m (slope, soil, hydro, farm, 
crop);  

Fert_report_base (slope, soil, hydro,farm,crop,"M_P_YLD_FUNCT") = P_YLD_FUNCT.m (slope, soil, hydro, farm, 
crop); 

 

****Report levels of key variables across scenarios**** 

Land_report_base (slope, soil, hydro, farm, crop) =LAND.l (slope, soil, hydro, farm, crop); 

Li_gm_report_base(farm, livestock) =LI_GM.l(farm, livestock); 

Cr_gm_report_base (slope, soil, hydro, farm, cash_crop)= CR_GM.l(slope, soil, hydro, farm, cash_crop); 

Cr_cost_report_base (slope,soil, hydro,farm, crop)=CR_TOTAL_COST.l (slope, soil, hydro, farm, crop); 

Catch_gm_report_base = CATCH_GM.l; 

****Calculate pollution averaged over weather years and summed over slope, soil, hydro, farm, and crop ****                                                

Pol_report_sum_base("TOC") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base (slope, soil, hydro, 
farm, crop, Year,"TOC"))/card(Year); 

Pol_report_sum_base("WTR") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base (slope, soil, hydro, 
farm, crop, Year,"WTR"))/card(Year); 

Pol_report_sum_base("WTG") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base (slope, soil, hydro, 
farm, crop, Year,"WTG"))/card(Year); 
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Pol_report_sum_base("ZLOAD") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, hydro, 
farm, crop, Year,"ZLOAD"))/card(Year); 

Pol_report_sum_base("CLOAD") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, hydro, 
farm, crop, Year,"CLOAD"))/card(Year); 

Pol_report_sum_base("RSPC") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, hydro, 
farm, crop, Year,"RSPC"))/card(Year); 

Pol_report_sum_base("NRLOAD") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, 
hydro, farm, crop, Year,"NRLOAD"))/card(Year); 

Pol_report_sum_base("NGLOAD") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, 
hydro, farm, crop, Year,"NGLOAD"))/card(Year); 

Pol_report_sum_base("PRLOAD") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, 
hydro, farm, crop, Year,"PRLOAD"))/card(Year); 

Pol_report_sum_base("PGLOAD") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, 
hydro, farm, crop, Year,"PGLOAD"))/card(Year); 

Pol_report_sum_base("DN2O") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, hydro, 
farm, crop, Year,"DN2O"))/card(Year); 

Pol_report_sum_base("CFEM") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, soil, hydro, 
farm, crop, Year,"CFEM"))/card(Year); 

Pol_report_sum_base("P_level_FLSCH") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, 
soil, hydro, farm, crop, Year,"P_level_FLSCH"))/card(Year); 

Pol_report_sum_base("N_level_FLSCH") = SUM((slope, soil, hydro, farm, crop, Year),Pol_report_an_base(slope, 
soil, hydro, farm, crop, Year,"N_level_FLSCH"))/card(Year); 

 

****Calculate where sediment pollution is most significant**** 

Sediment_soil_tot_base (slope, soil, hydro, farm, crop,"total")$LAND.l (slope, soil, hydro, farm, crop) = 
SUM(Year,Pol_report_an_base(slope, soil, hydro, farm, crop, Year,"ZLOAD")/LAND.l (slope, soil, hydro, farm, 
crop))/card(Year); 

Sediment_slope_tot_base (slope, soil, hydro, farm, crop,"total") $LAND.l (slope, soil, hydro, farm, crop) = 
SUM(Year,Pol_report_an_base(slope, soil, hydro, farm, crop, Year,"ZLOAD")/LAND.l (slope, soil, hydro, farm, 
crop))/card(Year); 

Sediment_crop_tot_base (slope, soil, hydro, farm, crop,"total") $LAND.l (slope, soil, hydro, farm, crop) = 
SUM(Year,Pol_report_an_base(slope, soil, hydro, farm, crop, Year,"ZLOAD")/LAND.l (slope, soil, hydro, farm, 
crop))/card(Year); 

Sediment_soil_av_base (soil,"average")= SUM((slope,hydro, farm, crop), sediment_soil_tot_base (slope, soil, hydro, 
farm, crop,"total"))/(card(slope)*card(hydro)*card(farm)*card(crop)); 

Sediment_slope_av_base (slope,"average")  = SUM((soil, hydro, farm, crop), sediment_slope_tot_base (slope, soil, 
hydro, farm, crop,"total"))/(card(soil)*card(hydro)*card(farm)*card(crop)); 

Sediment_crop_av_base (crop,"average")  = SUM((slope, soil, hydro, farm), sediment_crop_tot_base (slope, soil, 
hydro, farm, crop,"total"))/(card(slope)*card(hydro)*card(farm)*card(soil)); 
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Land Allocation Linear Optimisation Programme 

****Model to optimally allocate land to different farms in line with constraints**** 

Set 

Alli 'All items set'                                      

/value, L1, L2 , L3 , L4 , L5 ,S1 , S2 , S3 , S4, H1, H2, H3, H4, H5, H6, H7, H8, H9, H10, farm_1 , farm_2 , farm_3 , 
farm_4, farm_5, farm_6,area,catch_total,farm_total/                                 

soil(alli)   'soil types' /L1 'Wick', L2 'Newbiggin', L3 'Malvern', L4 'Clifton', L5 'Winterhill' / 

slope(alli) 'slopes' /S1 '0-0.8', S2 '0.81-2.4', S3 '2.41-4.0', S4 '4.01-7.3'/ 

hydro(alli) 'hydrological connectivity/risk levels' /H1, H2, H3, H4, H5, H6, H7, H8, H9, H10/ 

value (alli) 'value used in parameter declaration' /value/ 

farm(alli) 'farms in the main model' /farm_1, farm_2, farm_3, farm_4, farm_5, farm_6/ 

report(alli) 'set used for reporting'  /value, catch_total, farm_total/ 

; 

*read in the connectivity data from csv: 

*call excel file and specify the cell frame from which the parameter should be read 

$call gdxxrw.exe edenTableConn10.csv par=land_data rng=A1:D201 cDim=1 rDim=3 

*define intermediate parameter over intermediate set which contains names of crops used in excel file 

Table land_data (slope, soil, hydro, value) 'land available to be allocated between the farms in m^2'; 

*read parameter into gdx file 

$gdxin edenTableConn10.gdx 

*load parameter into model 

$load land_data 

$gdxin 

display land_data 

; 

 

Parameter 

Farm_size   'min size of representative farms in ha' /21066.81/; 

TABLE 

Farm_soil_prop (farm, soil) 'minimum proportion of farm land belonging to certain soil' 

L1 L2 L3 L4 L5 

farm_1  0.4 0 0.1 0 0   

farm_2  0 0 0.1 0.4 0.01 

farm_3  0.2 0 0.1 0.1 0.001 

farm_4  0.2 0 0.1 0.1 0.001 

farm_5  0 0  0.1 0.4 0.01 
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farm_6  0.2 0 0.1 0.1 0.001 

; 

TABLE 

Farm_slope_prop (farm, slope) 'minimum proportion of farm land that should belong to certain soil' 

S1 S2 S3 S4       

farm_1  0 0 0.3 0.3        

farm_2  0.1 0.3 0 0      

farm_3  0.05 0.2 0.2 0.2      

farm_4  0.05 0.2 0.2 0.2      

farm_5  0.05 0.2 0.2 0.2      

farm_6  0.05 0.2 0.2 0.2       

; 

POSITIVE VARIABLES 

ALLOC_LAND (slope, soil, hydro, farm) 'land allocated to farms in ha' 

T_FARM_LAND (farm) 'Total land allocated to a farm (over soil, slope, hydro type)' 

LAND_PROP (slope, soil, hydro, farm) 'Proportion of land in ha of particular slope, soil, hydro type available 
allocated to particular farm(0-1)' 

FARM_PROP (slope, soil, hydro, farm) 'Proportion of total farm land in ha that is particular slope, soil, hydro 
combination' 

SURPLUS_LAND (slope, soil, hydro) 'Land that has not been allocated in ha' 

; 

FREE VARIABLES 

SUM_SURPLUS                     'Surplus land in ha summed over slope, soil, hydro' 

; 

 

EQUATIONS 

E1, E2, E3, E4, E5, E6, E7, E8; 

 

E1 (slope, soil, hydro).. 

SUM(farm, ALLOC_LAND (slope, soil, hydro, farm)) =L= land_data (slope, soil, hydro, "value")*0.0001; 

****The land allocation summed over farms must equal the available land data scaled for model performance 

 

E2 (slope, soil, hydro, farm) .. 

LAND_PROP (slope, soil, hydro, farm)*(land_data (slope, soil, hydro, "value")*0.0001)=E= ALLOC_LAND (slope, 
soil, hydro, farm); 

****The land allocation is defined by land data multiplied by the proportion of land (0-1) of particular slope, soil, hydro 
type allocated to farm. 

E3 (farm).. 
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T_FARM_LAND (farm) =E= SUM((slope, soil, hydro), ALLOC_LAND (slope, soil, hydro, farm)); 

****The total land allocated to a farm is given by the land allocation summed over slope, soil, hydro. 

 

E4 (slope, soil, hydro, farm).. 

ALLOC_LAND (slope, soil, hydro, farm) =E= FARM_PROP (slope, soil, hydro, farm)*T_FARM_LAND (farm); 

****The land allocation is defined by the total land allocated to a farm multiplied by the proportion of land (0-1) of 
particular slope, soil, and hydro type allocated to a farm. 

 

E5 (slope, soil, hydro).. 

(land_data (slope, soil, hydro, "value")*0.0001)- SUM(farm, ALLOC_LAND (slope, soil, hydro, farm)) =E= 
SURPLUS_LAND (slope, soil, hydro); 

****Non-allocated land by slope, soil, and hydro is given by the subtraction of the allocated land summed over farms 
from the land data.  

E6.. 

SUM_SURPLUS =E= SUM((slope, soil, hydro), SURPLUS_LAND (slope, soil, hydro) ); 

****Total non-allocated land is given by non-allocated land summed over slope, soil, and hydro. 

 

 

E7 (soil, farm).. 

SUM((slope, hydro), FARM_PROP (slope, soil, hydro, farm)) =G= Farm_soil_prop (farm, soil); 

****'The proportion of total farm land in ha summed over slope and hydro combination must be greater than the 
minimum proportion of farm land belonging to certain soil'  

 

E8 (slope, farm).. 

SUM((soil, hydro), FARM_PROP (slope, soil, hydro, farm)) =G=Farm_slope_prop (farm, slope); 

****'Proportion of total farm land in ha summed over soil and hydro combination must be greater than the minimum 
proportion of farm land belonging to certain slope'  

 

****Defining bounds**** 

SUM_SURPLUS.lo=0; 

****The non-allocated land lower bound is 0. 

T_FARM_LAND.fx (farm) = Farm_size; 

****The overall farm size is fixed to the representative farm size. 

****Model definition**** 

MODEL    land_alloc /all/ ; 

****Running GAMSCK**** 

File gck/%system.fn%.gck/; 

put gck; 
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$onput 

NONOPT  

$offput 

putclose ; 

option nlp = gamschk; 

option limrow = 0; 

option limcol = 0; 

 

SOLVE  land_alloc minimising  SUM_SURPLUS  using LP; 

****Solve statement 

PARAMETER 

farm_area (Alli, Alli, ALli, Alli, Alli) 'Parameter to report the land allocation between the farms to read into GAMS'; 

****Definition of farm area parameter for output generation 

 

farm_area (slope, soil, hydro, farm, "value") = round (ALLOC_LAND.L (slope, soil, hydro, farm),2); 

*unload the land allocation in a gdx file to read into main model 

execute_unload 'Land_alloc_GAMS_4.gdx', farm_area; 
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Python Code 

This section firstly presents the Python code used to implement the Wilcoxon Signed Rank test 

of yield heterogeneity between crops in different rotations from p. 243. This test for 

heterogeneity is discussed in the main text on p. 111. Subsequently, the Python code 

implementing the weather year sensitivity analysis presented in the main text section 5.4.5 is 

presented below from p. 249. 

 

Wilcoxon Signed Rank Test 

import pandas as pd 
pd.options.mode.chained_assignment = None  
import numpy as np 
from numpy import mean, absolute 
from tqdm import tqdm 
import xlrd 
import seaborn as sns 
import matplotlib.pyplot as plt 
 
 
# Loading the yield function data set: 
df = pd.read_fwf( 
    r'C:\Users\lioba\OneDrive - Durham University\Work\PhD\Data\EPIC\Yield 
Function\YLD_checks_May_June2020\AF\AF-ave_2.fwf') 
#Maximum Nitrogen applied in kg/ha 
N_max = {} 
wb = xlrd.open_workbook( 
    r'C:\Users\lioba\OneDrive - Durham University\Work\PhD\Data\EPIC\Yield 
Function\YLD_checks_May_June2020\N_P_response_AF.xlsx') 
sh1 = wb.sheet_by_index(0) 
row_count = sh1.nrows 
for i in range(1, row_count): 
    cell_value_crop = sh1.cell(i, 0).value 
    cell_value_id = sh1.cell(i, 1).value 
    N_max[cell_value_crop] = cell_value_id 

# Minimum Nitrogen applied in kg/ha 
N_min = {} 
for i in range(1, row_count): 
    cell_value_crop = sh1.cell(i, 0).value 
    cell_value_id = sh1.cell(i, 2).value 
    N_min[cell_value_crop] = cell_value_id 
# Maximum Phosphorus applied in kg/ha 
P_max = {} 
for i in range(1, row_count): 
    cell_value_crop = sh1.cell(i, 0).value 
    cell_value_id = sh1.cell(i, 3).value 
    P_max[cell_value_crop] = cell_value_id 

# Minimum Phosphorus applied in kg/ha 
 
# creating lists of the N and P values corresponding to the particular crop in order to add as a column to the 
dataframe: 
N_max_lst = [] 
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for i in df.index: 
    N_max_lst.insert(i, N_max[df.iat[i, 2]]) 
 
N_min_lst = [] 
for i in df.index: 
    N_min_lst.insert(i, N_min[df.iat[i, 2]]) 
 
P_max_lst = [] 
for i in df.index: 
    P_max_lst.insert(i, P_max[df.iat[i, 2]]) 
 
# check the length of the columns is correct: 
if len(N_min_lst) == len(N_max_lst) == len(P_max_lst) == len(df): 
    print("Correct number of columns") 
else: 
    print("Error in column length") 
 
# add the columns to the dataframe: 
df["N_min"] = N_min_lst 
df["N_max"] = N_max_lst 
df["P_max"] = P_max_lst 
df["N_Q1"] = ((df["N_max"] - df["N_min"]) / 4) + df["N_min"] 
df["N_Q2"] = ((df["N_max"] - df["N_min"]) / 2) + df["N_min"] 
df["N_Q3"] = ((df["N_max"] - df["N_min"]) / 4 * 3) + df["N_min"] 
 
# dropping crops which are not in the model: 
df.drop(df.loc[df['CROPS---'] == 'BEAN1'].index, inplace=True) 
df.drop(df.loc[df['CROPS---'] == 'BEAN2'].index, inplace=True) 
df.drop(df.loc[df['CROPS---'] == 'STUR1'].index, inplace=True) 
df.drop(df.loc[df['CROPS---'] == 'STUR2'].index, inplace=True) 
df.drop(df.loc[df['CROPS---'] == 'STUR3'].index, inplace=True) 
graze4_1_iidx = list(range(100, 120)) 
print(len(graze4_1_iidx)) 
for i in range(0, 20): 
    df.drop(graze4_1_iidx[i], inplace=True) 
 
# Extracting the list of crops present in the file: 
crop_dbl_lst = [] 
crop_dbl_lst = df.iloc[0:-1, 2] 
print(len(crop_dbl_lst)) 
 
# reindexing the dataframe: 
df.index = range(0, len(crop_dbl_lst) + 1) 
 
# print the column names in order to specify them: 
print(df.head(0)) 
# calculate the YLD_min,Q1,Q2,Q3,max: 
df["YLD_min"] = df["----B0--"] * (1 - np.exp(df["------B1---"] + df["-----B2---"] * df["N_min"])) * ( 
            1 - np.exp(df["-----B3---"] + df["----B4-----"] * df["P_max"])) 
df["YLD_Q1"] = df["----B0--"] * (1 - np.exp(df["------B1---"] + df["-----B2---"] * df["N_Q1"])) * ( 
            1 - np.exp(df["-----B3---"] + df["----B4-----"] * df["P_max"])) 
df["YLD_Q2"] = df["----B0--"] * (1 - np.exp(df["------B1---"] + df["-----B2---"] * df["N_Q2"])) * ( 
            1 - np.exp(df["-----B3---"] + df["----B4-----"] * df["P_max"])) 
df["YLD_Q3"] = df["----B0--"] * (1 - np.exp(df["------B1---"] + df["-----B2---"] * df["N_Q3"])) * ( 
            1 - np.exp(df["-----B3---"] + df["----B4-----"] * df["P_max"])) 
df["YLD_max"] = df["----B0--"] * (1 - np.exp(df["------B1---"] + df["-----B2---"] * df["N_max"])) * ( 
            1 - np.exp(df["-----B3---"] + df["----B4-----"] * df["P_max"])) 
 
# calculate percentage change in yield between minimum and maximum N application: 
df["YLD_perc_chng"] = (df["YLD_max"] - df["YLD_min"]) / df["YLD_min"] * 100 
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# rank the percentage change in yields within each unique crop 
df["response_rank"] = df.groupby("CROPS---")["YLD_perc_chng"].rank("dense", ascending=False) 
df["AV_YLD"] = (df["YLD_min"] + df["YLD_Q1"] + df["YLD_Q2"] + df["YLD_Q3"] + df["YLD_max"]) / 5 
 
 
# check that the rank function has given the correct value 
print(len(df) / 20)  # =86 
rank_min_names = df.groupby("CROPS---")["response_rank"].idxmin() 
rank_min_names.index = range(0, len(rank_min_names + 1)) 
chng_max_names = df.groupby("CROPS---")["YLD_perc_chng"].idxmax() 
chng_max_names.index = range(0, len(chng_max_names + 1)) 
 
if len(rank_min_names) == len(chng_max_names): 
    print("correct lengths") 
else: 
    print("error") 
for i in range(0, len(chng_max_names)): 
    if rank_min_names[i] != chng_max_names[i]: 
        print(f'Error: rank:{rank_min_names[i]} change max:{chng_max_names[i]}') 
# repeating the list of highest ranked indexes 20 times to create list that is the same length as the dataframe. 
Facilitates use of the appropriate element for every crop 
rank_repeat = rank_min_names.repeat(20) 
rank_repeat.index = range(0, len(rank_repeat)) 
rank_repeat = rank_repeat.astype(int) 
if len(rank_repeat) != len(df): 
    print('error') 
# creating empty column for B5 coefficient: 
df["B5"] = 0 
# filling B5 column by subtracting the average of the highest ranked index from the other averages 
for i in range(0, len(df)): 
    df.iloc[i, 22] = df.iloc[i, 21] - df.iloc[rank_repeat[i], 21] 
# replacing B0-B4 of the other crops with the B0-B4 from the highest ranked index: 
for i in range(0, len(df)): 
    df.iloc[i, 3] = df.iloc[rank_repeat[i], 3] 
    df.iloc[i, 4] = df.iloc[rank_repeat[i], 4] 
    df.iloc[i, 5] = df.iloc[rank_repeat[i], 5] 
    df.iloc[i, 6] = df.iloc[rank_repeat[i], 6] 
    df.iloc[i, 7] = df.iloc[rank_repeat[i], 7] 
 
# Minimum Phosphorus applied in kg/ha 
P_min={} 
for i in range (1, row_count): 
    cell_value_crop = sh1.cell(i,0).value 
    cell_value_id = sh1.cell(i,4).value 
    P_min[cell_value_crop] = cell_value_id 
#creating lists P values corresponding to the particular crop in order to add as a column to the dataframe: 
P_min_lst=[] 
for i in df.index: 
    P_min_lst.insert(i, P_min[df.iat[i, 2]]) 
#check the length of the columns is correct: 
if len(P_min_lst) ==len(df): 
    print("Correct number of columns") 
else: 
    print("Error in column length") 
 
#add the columns to the dataframe: 
df["P_min"] = P_min_lst 
df["N_Q2"] = ((df["N_max"]-df["N_min"])/2) + df["N_min"] 
df["P_Q2"] = ((df["P_max"]-df["P_min"])/2) + df["P_min"] 
 
#drop N and P min and max columns from the data frame 
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df.drop("N_min", axis=1, inplace=True) 
df.drop("P_min", axis=1, inplace=True) 
df.drop("N_max", axis=1, inplace=True) 
df.drop("P_max", axis=1, inplace=True) 
df.drop("YLD_min", axis=1, inplace=True) 
df.drop("YLD_Q1", axis=1, inplace=True) 
df.drop("YLD_Q2", axis=1, inplace=True) 
df.drop("YLD_Q3", axis=1, inplace=True) 
df.drop("YLD_max", axis=1, inplace=True) 
df.drop("YLD_perc_chng", axis=1, inplace=True) 
df.drop("response_rank", axis=1, inplace=True) 
df.drop("AV_YLD", axis=1, inplace=True) 
#calcualte the required YLD value for N and P Q2: 
# recalculating the YLD values to reflect the scaled functions: 
 
df["YLD_Q2"] = df["B5"] + (df["----B0--"] * (1 - np.exp(df["------B1---"] + df["-----B2---"] * df["N_Q2"])) * ( 
            1 - np.exp(df["-----B3---"] + df["----B4-----"] * df["P_Q2"]))) 
 
#create copy of the dataframe: 
df2=df.copy() 
df2.drop("N_Q1", axis=1, inplace=True) 
df2.drop("N_Q3", axis=1, inplace=True) 
df2.drop("----B0--", axis=1, inplace=True) 
df2.drop("------B1---", axis=1, inplace=True) 
df2.drop("-----B2---", axis=1, inplace=True) 
df2.drop("-----B3---", axis=1, inplace=True) 
df2.drop("----B4-----", axis=1, inplace=True) 
df2.drop("B5", axis=1, inplace=True) 
 
# calculate the soil average per unique crop: 
df2_soil_av = df2.groupby(['CROPS---',"L"], as_index= False)[["YLD_Q2"]].mean() 
 
#adding crop group columns to data frame: 
#reading in crop croup dictionary data: 
wb=xlrd.open_workbook(r'C:\Users\lioba\OneDrive - Durham University\Work\PhD\Data\EPIC\Yield 
Function\YLD_checks_May_June2020\N_P_response_AF.xlsx') 
sh2=wb.sheet_by_index(1) 
row_count = sh2.nrows 
#creating crop group dictionary: 
crop_group={} 
for i in range (1, row_count): 
    cell_value_crop = sh2.cell(i,0).value 
    cell_value_id = sh2.cell(i,1).value 
    crop_group[cell_value_crop] = cell_value_id 
 
 
import scipy 
from scipy.stats import wilcoxon 
 
#creating list with crop group names corresponding to the dataframe df2: 
crop_group_lst=[] 
for i in df2.index: 
    crop_group_lst.insert(i, crop_group[df2.iat[i,2]]) 
 
#check the list length is correct: 
if len(crop_group_lst) != len(df2): 
    print("Error in list length") 
 
#adding crop group to the data frame as a column: 
df2["crop_group"] = crop_group_lst 
#count the number of unique crops in each crop group: 
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group_members=df2.groupby("crop_group" )[["CROPS---"]].nunique() 
group_members["crop_group"] =group_members.index 
group_members.index=range(0, len(group_members)) 
#check the numbers of unique crops in each crop group add up to 86: 
sum_check=group_members.sum(axis=0) 
print(sum_check)  
 
#determine indexes from which the crop group starts in df2: 
group_members["idx_range"] = 0.0000 
 
group_members.iat[0,2]= group_members.iat[0,0]*20 
for i in range(1,len(group_members)): 
    group_members.iat[i,2]= (group_members.iat[i,0] * 20) + group_members.iat[(i-1),2] 
group_members["idx_range"] =group_members["idx_range"].astype(int) 
 
group_members["idx_start"] =0.00 
for i in range(1,len(group_members)): 
    group_members.iat[i,3]=  group_members.iat[(i-1),2] 
group_members["idx_start"] =group_members["idx_start"].astype(int) 
 
#sort the dataframe by crop_group and reindex: 
df2.sort_values(["crop_group", "CROPS---", "S", "L"], axis=0, inplace=True) 
df2.index = range(0, len(df2)) 
 
test_results ={} 
for i in tqdm(list(range(0,1720,20))): 
    crop1=df2.iloc[i:i+20,5] 
    iterable_lst=[x for x in range(0,1720,20) if x != i] 
    for j in iterable_lst: 
        crop2 = df2.iloc[j:j + 20, 5] 
        #add the output to the dictionary: 
        w, p = wilcoxon(crop1, y=crop2, zero_method='wilcox', correction=False, alternative='two-sided') 
        test_results[df2.iat[i,2], df2.iat[j,2]]= w, p 
#create a dataframe with the results in two columns and the crop pair as the index 
results_df = pd.DataFrame.from_dict(test_results,orient="Index") 
results_df.columns = ["statistic","p_value"] 
#create transposed version of the first dataframe where crop pairs are in the columns 
results_df_2 = pd.DataFrame.from_dict(test_results) 
#extract the names of the columns from the dataframe as a list of tuples 
index_lst = list(results_df_2.head(0)) 
#separate the tuples into two list of tuples: 
crop_pair1=[x[0]for x in index_lst] 
crop_pair2=[x[1]for x in index_lst] 
#add the lists to the original results dataframe as columns 
results_df["crop_1"]=crop_pair1 
results_df["crop_2"]=crop_pair2 
#reindex the original dtaframe to remove the crop pairs from the index: 
results_df.index = range(0, len(results_df)) 
 
#create new column with crop group corresponding to the unique crop 
results_df["crop_group_1"]= "empty" 
results_df["crop_group_2"]= "empty" 
#fill the new columns using the crop_group dictionary and the crop1 and crop2 columns: 
for i in results_df.index: 
    results_df.iat[i,4] = crop_group[results_df.iat[i,2]] 
    results_df.iat[i,5] = crop_group[results_df.iat[i,3]] 
#create a copy of the dataframe 
results_final_df = results_df.copy() 
#create a list of the index of all rows for which the crop groups for crop1 and crop 2 are not equal: 
index_to_drop=[] 
for i in range(0,len(results_final_df)-1): 
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    if results_final_df.iat[i,4] != results_final_df.iat[i,5]: 
        index_to_drop.append(i) 
 
#drop all rows for which the crop groups for crop1 and crop 2 are not equal: 
for i in index_to_drop: 
    results_final_df.drop([i], inplace=True) 
#reindex the final data frame: 
results_final_df.index=range(0, len(results_final_df)) 
results_final_df.to_excel("YLD_Wilcoxon_Signed_Rank_AF_scaled_YLD_functions_2_2_21.xlsx") 
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Sensitivity Analysis 

####using data including the scaling of the pollution functions  
import numpy as np 
import gdxpds  
import pandas as pd 
gdx_file= r'C:\Users\lioba\OneDrive - Durham University\Work\GAMS-
modeling\Crop_test_July2020\Section4_2_poll_19.gdx' 

#extract the parameters in the gdx file into an ordered dictionary of dataframes 
dataframes = gdxpds.to_dataframes(gdx_file,r'C:\GAMS\win64\29.1\GMSPython') 
#create a list of all the parameters contained in the dictionary: 
parameter_lst=list(dataframes) 
#save annual pollution 
pol_df_an=dataframes['pol_report'] 
pol_df2_an=dataframes['pol_report'] 
 
#average over years 
pol_df=pol_df_an.groupby(['slope','soil','hydro','crop','report'], as_index=False)['Value'].mean() 
pol_df2=pol_df2_an.groupby(['slope','soil','hydro','crop','report'], as_index=False)['Value'].mean() 
#read in the land data 
gdx_file2= r'C:\Users\lioba\OneDrive - Durham University\Work\GAMS-
modeling\Crop_test_July2020\Baseline05_p.gdx' 
#extract the parameters in the gdx file into an ordered dictionary of dataframes 
dataframes2 = gdxpds.to_dataframes(gdx_file2,r'C:\GAMS\win64\29.1\GMSPython') 
parameter_lst2=list(dataframes2) 
df_land=dataframes2['LAND'] 
#calculate total catchment size 
total=df_land['Level'].sum() 
#drop unnecessary columns 
df_land.drop(['Marginal',  'Lower',  'Upper',  'Scale'],axis=1, inplace=True) 
#rename the columns 
df_land.columns.values[0] = "Slope" 
df_land.columns.values[1] = "Soil" 
df_land.columns.values[2] = "Hydro" 
df_land.columns.values[3] = "Farm" 
df_land.columns.values[4] = "Crop" 
df_land.columns.values[5] = "Land" 
#eliminate spaces in columns so accessible through calling 
df_land.columns = df_land.columns.str.strip() 
 
#calculate the % of each soil type of the catchment: 
soil_type_df=df_land.groupby("Soil", as_index=False)['Land'].sum() 
soil_type_df['Percentage']=soil_type_df['Land']/total 
#sum over farms to get rid of them 
df_land=df_land.groupby(["Slope","Soil","Hydro","Crop"], as_index=False)['Land'].sum() 
 
#caluclate how much of each soil type is of what slope type: 
soil_slope_df=df_land.groupby(["Soil","Slope"], as_index=False)['Land'].sum() 
#soil_slope_df['Soil_tot']=000 
#for i in range(0, len(soil_slope_df)): 
 

soil_slope_df.iat[i,3]=soil_type_df.iat[soil_type_df.Soil[soil_type_df.Soil==soil_slope_df.Soil[i]].index.values.astype(int
),1] 
#calculate the % of each hydrological connectivity of the catchment: 
hydro_type_df=df_land.groupby("Hydro", as_index=False)['Land'].sum() 
hydro_type_df['Percentage']=hydro_type_df['Land']/total 
 
print(soil_type_df.Soil[soil_type_df.Soil==soil_slope_df.Soil[5]].index.values.astype(int)) 
#calcute the mean across the weather years: 
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pol_tot=pol_df.groupby(['slope','soil','hydro','crop','report'], as_index=False)['Value'].mean() 
pol_tot=pol_tot.groupby('report', as_index=False)['Value'].sum() 
 
#add the land data to the yearly averaged pollution data 
pol_df=pol_df.merge(df_land, left_on=['slope','soil','hydro','crop'], right_on=['Slope','Soil','Hydro','Crop']) 
pol_df.drop(['Slope','Soil','Hydro','Crop',],axis=1, inplace=True) 
 
#add the land data to the yearly pollution data 
pol_df_an.rename({'slope':'Slope', 'soil':'Soil', 'hydro':'Hydro', 'crop':'Crop'}, inplace=True) 
pol_df_an=pol_df_an.merge(df_land, left_on=['slope','soil','hydro','crop'], right_on=['Slope','Soil','Hydro','Crop']) 
pol_df_an.drop(['Slope','Soil','Hydro','Crop'],axis=1, inplace=True) 
 
#averaged across years: 
#read in the map for the crop groups 
mapindx4 ={ 
'SBAR11':'barley','SBAR12':'barley','SBAR13_FYM':'barley','SBAR2_FYM':'barley','WBAR0':'barley','WBAR1':'barley','
WBAR2':'barley','WBAR3_FYM':'barley', 
'WBAR4_FYM':'barley','WBAR5_FYM':'barley','WW1':'wheat','WW2':'wheat','WW3':'wheat','WW4':'wheat','WW4_FYM'
:'wheat','MAIZ1':'maize', 
'MAIZ5_FYM':'maize','MAIZ4_FYM':'maize','POTA1':'potato','POTA2':'potato','POTA3_FYM':'potato','POTA5_FYM':'p
otato','WOSR1':'oilseed_rape','WOSR2':'oilseed_rape', 
'WOSR3':'oilseed_rape','GRLFA1':'grazing','GRLFA3':'grazing','GRAZE2_1':'grazing','GRAZE2_2':'grazing','GRAZE3
_1':'grazing','GRAZE4_1':'grazing','GRAZE4_3_FYM':'grazing', 
'GRAZE6_3':'grazing','GRAZE6_1_FYM':'grazing','HAY2_1':'grazing','HAYLFA1':'grazing','SIL1_1':'grazing','SIL2_1':'g
razing','SIL3_1':'grazing','SIL3_2_FYM':'grazing', 
'SIL4_1':'grazing','SIL4_2_FYM':'grazing','SILFA1':'grazing','FBEET1':'grazing','FBEET2':'grazing','FBEET3':'grazing','
GRLFA2':'setaside'} 
units = {'ZLOAD':"t/ha", 'NRLOAD':"kg/day", 'NGLOAD':"kg/day",'PRLOAD':"kg/day", 'PGLOAD':"kg/day", 
'CFEM':"kg/ha"} 
description = {'ZLOAD':"Sediment Mobilised , 'NRLOAD':"Nitrogen to River ", 'NGLOAD':"Nitrogen to Groundwater 
",'PRLOAD':"Phosphorus to River ", 'PGLOAD':"Phosphorus to Groundwater ", 'CFEM':"Carbon Emission 
",'P_level_FLSCH':'P applied','N_level_FLSCH':'N applied'} 
 
pol_df['crop_group']=pol_df['crop'].map(mapindx4) 
 
 
#calculate pollution per hectare 
pol_df['Pol_ha']=pol_df['Value']/pol_df['Land'] 
#average by soil 
soil_df=pol_df.groupby(['soil','report'], as_index=False)['Pol_ha'].mean() 
soil_df=soil_df.pivot(index='soil', columns='report', values='Pol_ha') 
 
slope_df=pol_df.groupby(['slope','report'], as_index=False)['Pol_ha'].mean() 
slope_df=slope_df.pivot(index='slope', columns='report', values='Pol_ha') 
 
hydro_df=pol_df.groupby(['hydro','report'], as_index=False)['Pol_ha'].mean() 
hydro_df=hydro_df.pivot(index='hydro', columns='report', values='Pol_ha') 
 
crop_group_df=pol_df.groupby(['crop_group','report'], as_index=False)['Pol_ha'].mean() 
crop_group_df=crop_group_df.pivot(index='crop_group', columns='report', values='Pol_ha') 
 
#whole catchment averages per hectare: 
catch_df=pol_df.groupby(['report'], as_index=False)['Pol_ha'].mean() 
 
#######for yearly pollution 
 
pol_df_an['crop_group']=pol_df_an['crop'].map(mapindx4) 
 
#calculate pollution per hectare 
pol_df_an['Pol_ha']=pol_df_an['Value']/pol_df_an['Land'] 
#average by soil 



Appendix C 

251 
 

soil_df_an=pol_df_an.groupby(['soil','Year','report'], as_index=False)['Pol_ha'].mean() 
#soil_df=soil_df.pivot(index='soil', columns='report', values='Pol_ha') 
 
slope_df_an=pol_df_an.groupby(['slope','Year','report'], as_index=False)['Pol_ha'].mean() 
#slope_df=slope_df.pivot(index='slope', columns='report', values='Pol_ha') 
 
hydro_df_an=pol_df_an.groupby(['hydro','Year','report'], as_index=False)['Pol_ha'].mean() 
 
crop_group_df_an=pol_df_an.groupby(['crop_group','Year','report'], as_index=False)['Pol_ha'].mean() 
#crop_group_df=crop_group_df.pivot(index='crop_group', columns='report', values='Pol_ha') 

 
#whole catchment averages per hectare 
catch_df_an=pol_df_an.groupby(['report','Year'], as_index=False)['Pol_ha'].mean() 
catch_df_an.rename({'report':'report','Year':'Year','Pol_ha':'Mean_pol_ha'},axis=1, inplace=True) 
catch_df_an['Max']= pol_df_an.groupby(['report','Year'], as_index=False)["Pol_ha"].max().iloc[:,2] 
catch_df_an['Min']= pol_df_an.groupby(['report','Year'], as_index=False)["Pol_ha"].min().iloc[:,2] 
 
#variance from the individual year 
df_pol_var_all=pol_df_an.groupby('report', as_index=False)["Pol_ha"].var() 
df_pol_var_all.rename({'report':'report','Pol_ha':'Variance'},axis=1, inplace=True) 
df_pol_var_all['Std']=np.sqrt(df_pol_var_all['Variance']) 
 
#adding the mean, max and min values 
df_pol_var_all_withmean=df_pol_var_all.merge(catch_df, left_on=['report'], right_on=['report']) 
df_pol_var_all_withmean.rename({'report':'report','Variance':'Variance','Std':'Std','Pol_ha':'Mean_ha'},axis=1, 
inplace=True) 
df_pol_max=pol_df.groupby(['report'], as_index=False)['Pol_ha'].max() 
df_pol_max.rename({'report':'report','Pol_ha':'Max_ha'},axis=1, inplace=True) 
df_pol_max['Min_ha']=pol_df.groupby(['report'], as_index=False)['Pol_ha'].min().iloc[:,1] 
 
#final output dataframe for output to Excel 
df_final_poll_spread =df_pol_var_all_withmean.merge(df_pol_max,left_on=['report'], right_on=['report'] ) 
 
#add the upper and lower range of SD +/- mean to the data frame: 
df_final_poll_spread['mean_plus_SD']=df_final_poll_spread['Mean_ha']+df_final_poll_spread['Std'] 
df_final_poll_spread['mean_minus_SD']=df_final_poll_spread['Mean_ha']-df_final_poll_spread['Std'] 
#create new data frame with the SD range around the mean to calculate percentage of #results outside mean +/- SD 
df_pol_range=pol_df_an.merge(df_final_poll_spread, left_on=['report'], right_on=['report']) 
df_pol_range['Out_range']=(df_pol_range['Pol_ha'] < df_pol_range['mean_minus_SD'] )|(df_pol_range['Pol_ha'] > 
df_pol_range['mean_plus_SD']) 
df_pol_range['Top_outlier']=(df_pol_range['Pol_ha'] > df_pol_range['mean_plus_SD']) 
 
df_pol_range_group=df_pol_range.groupby(['report'], as_index=False)['Out_range'].sum() 
df_pol_range_group['all']=df_pol_range.groupby(['report'], as_index=False)['Out_range'].count().iloc[:,1] 
df_pol_range_group['In_range']=df_pol_range_group['all']-df_pol_range_group['Out_range'] 
df_pol_range_group['In_range_perc']=df_pol_range_group['In_range']/df_pol_range_group['all']*100 
df_pol_range_group['Out_range_perc']=df_pol_range_group['Out_range']/df_pol_range_group['all']*100 
df_pol_range_group['Top_outlier']=df_pol_range.groupby(['report'], as_index=False)['Top_outlier'].sum().iloc[:,1] 
df_pol_range_group['Above_range_perc']=df_pol_range_group['Top_outlier']/df_pol_range_group['all']*100 
 
file = r'C:\Users\lioba\OneDrive - Durham 
University\Work\PhD\Data\Output_trials\GAMS_EXCELoutputs_29072023.xlsx' 
with pd.ExcelWriter(file, engine='openpyxl', mode='a', if_sheet_exists='replace') as writer: 
   df_pol_range_group.to_excel(writer, sheet_name='Spread_significance2' , startrow=0, index=True) 
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