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Abstract

The thesis reports transferring the ultracold RbCs molecules to the absolute ground state
and a trapping light that eliminates the differential AC Stark shift.

We build a laser system to perform Stimulated Raman Adiabatic Passage (STIRAP)
for the molecules trapped in tweezers, which transfer the molecules from the weakly-
bounded state to the absolute ground state. We use the offset cavity stabilisation tech-
nique to stabilise the laser frequencies to a passive cavity to narrow the laser linewidths
while keeping the laser frequency tunable. We then align the beams to the molecules.

We demonstrate a “magic” laser frequency to eliminate the differential AC Stark shift
of the rotational states in the ground vibrational state of RbCs molecule and to increase
the rotational coherence time of multiple states. We study the AC Stark effect caused
by the trapping light. We calculate the polarisabilities of the rotational states near a
narrow electronic from X1Σ+ state to b3Π0 state and found at certain laser frequency
the polarisabilities become the same. We measure the transition frequencies to different
vibrational states in the excited electronic state experimentally. We perform microwave
spectroscopy to measure the light shift and show that the shift vanishes at the magic
frequency. We confirmed the coherence in 1 ms timescale by measuring the Ramsey
fringe contrast.
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Chapter 1

Introduction

1.1 Producing Ground State Molecules in an Optical

Trap

1.1.1 Why Ultracold Polar molecules?

Ultracold polar molecules are ideal candidates to realise a series of proposals in quantum

science. They exhibit reasonably large electric dipole moments which offers a system to

explore anisotropic long-range dipole-dipole interactions tunable by external fields. Polar

molecules exhibit dipole-dipole interactions in the electronic ground state, in states that

have negligible spontaneous emission, and therefore have potentially longer lifetimes than

e.g. Rydberg atoms. Furthermore, the additional vibrational and rotational degrees of

freedom give the molecules rich internal structure that can be useful in many applications.

For example, this provides a bigger Hilbert space to imprint information and realise a

more complex platform than the neutral atom counterparts. Therefore, the system of the

molecules have many potential applications, including quantum simulation[1, 2], quantum

information [3, 4], precision measurement of the fundamental constants [5] and quantum-

state-controlled chemistry [6–9]. Particularly, the rich structure of molecules facilitate the

simulation of many-body physics [10–12], which is more difficult for neutral atoms.

For diatomic molecules, only the heteronuclear species have large permanent electric

dipole moments that are required by many applications, because the asymmetric distri-

bution of the electrons around the nuclei forms a dipole moment. We implement laser

cooling to cool the constituent atoms, so we focus on alkali atoms which are suitable for

this process. In our experiment we choose to use 87Rb133Cs molecule which has some

advantages. For example, it’s chemically stable so have a long lifetime; it has a large
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electric dipole moment of 1.23 D in the molecular frame.

Most of the applications requires cooling and trapping the molecules in an optical trap

as well as controlling the internal quantum states. In the previous years, much work has

been done in our group to develop these tools [13–15]. In this work, we focus on two

aspects of the research in this field: transferring the molecules to the ground state by

Stimulated Raman Adiabatic Passage (STIRAP) and extend their rotational coherence

using “magic” trapping.

1.1.2 Creating Ultracold Molecules - an Overview

In this section we discuss the steps to produce ultracold 87Rb133Cs (hereafter referred

to as RbCs) molecules in an optical trap using the indirect method. We first produce

ultracold 87Rb and 133Cs atoms using laser cooling, then we use magnetoassociation by

sweeping over a Feshbach resonance to associate the atoms to a bounded molecular state

followed by transferring the molecules to the absolute ground state by STIRAP. Below

we will introduce each step of this process.

Laser Cooling of the Constituent Atoms

Laser cooling is a robust method to cool atoms down to ∼ µK. This method is based on

a transition between two energy states of an atom, normally the transition between 2P3/2

state and 2S1/2 state for alkali metal atoms, i.e., the D2 line. Resonant light is incident to

a gas of atoms to drive the transitions. The atom absorbs a photon and the momentum

is changed by ℏk⃗ along the direction of k⃗, where k⃗ is the wave vector of the light. The

lifetime of the upper state is short, so the atom will emit a photon of the same frequency

in a random direction and experience a momentum change in the opposite direction of

the emitted photon. Then the atom is excited and the same process happens over and

over again. The average of the momentum change due to the emission of the photon over

a time is zero, meaning the atom experiences a net force in the direction of the light that

slows it down. To reduce the velocity of an atom notably, > 105 photons need to be

scattered. The reason why this method can’t be readily applied to the molecules is that

this process requires a closed transition, the population only decays back to the initial

state after being excited, which is difficult for molecules due to the rich vibrational and

rotational structure.
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Magentoassociation

When we have the pre-cooled atoms of the two species, we can associate them to make

molecules. Magnetoassociation uses a controlled magnetic field to associate the atoms.

The atoms begin in the free atomic state at the magnetic field above Feshbach resonance.

When the magnetic filed is ramped down over a Feshbach resonance at a slow enough

speed, the atoms adiabatically follow an avoided crossing and end up with a bounded

molecular state.

Stimulated Raman Adiabatic Passage

Stimulated Raman Adiabatic Passage, or STIRAP, is a general method to transfer popu-

lation between states that are not directly coupled to each other via an intermediate state.

The intermediate state can be strongly coupled to both the initial and the final state, but

in the process it’s never populated. This system can be described by a three-level model

which will be discussed in detail in Chapter 2. In our experiment we use this technique to

transfer the weakly-bounded molecules associated by Feshbach association to their ground

electronic and rovibrational state. We have achieved the STIRAP efficiency of 93% [16],

but in other paper, the transfer efficiency of unity was achieved [17]. Compared to other

methods like a resonant π pulse in a two-state transition, STIRAP is relatively robust

to the changes in the experimental parameters, for instance the variation of the light

intensity and the single-photon detuning [18]. After first proposed in 1989, STIRAP was

initially used to study collisional dynamics in molecular beam experiments. Nowadays,

STIRAP has been used in many fields and systems. A complete review of STIRAP and

its applications can be found in Ref. [19].

1.2 The AC Stark Effect and the Related Decoher-

ence

Many proposed applications of the ultracold polar molecules take advantage of the dipole-

dipole interaction between the molecules. These interactions can be controlled by external

fields, for instance, static electric field or microwaves. Many of those applications requires

the molecules being confined in optical lattices and high occupancy of the lattices. Occu-

pancy fraction greater than 30% has been demonstrated by the previous works on RbCs

Feshbach molecules [20] and KRb molecules [21] by associating the pre-filled constituent

atoms in lattice sites. To successfully simulate the other systems using the confined
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molecules, three criteria needs to be satisfied. One, the lifetime of the molecules in the

lattice must be much greater than the evolving time of the Hamiltonian investigated. Two,

the coherence time of the quantum states involved in the physical simulation process must

be much greater than the characteristic interaction time associated with the interaction

energy. The potential energy of the dipole-dipole interaction Vdd of two electric dipoles

of ∼1 D in the lattice spacing of 500 nm is ∼ h× 1 kHz. Hence the coherence time needs

to be greater than h/Vdd, i.e., ∼1 ms. Three, the Feshbach state and the absolute ground

state of the molecule should have the same or similar polarisability to prevent excitation

to higher lattice bands during the STIRAP process.

Previously we have studied the decoherence in the hyperfine states in the rotational

ground state [22]. The careful choice of the magnetic field and the direction of the polar-

isation with respect to the magnetic field (known as the “magic angle”) has been used to

greatly reduce this decoherence.

In this work, we aim to eliminate decoherence between different rotational states. To

do this, we will study the AC Stark effect of the light near a narrow transition between

a singlet and a triplet electronic state to eliminate the decoherence between rotational

states. We use the pre-established analytical equations to calculate the polarisabilities of

the rotational states near this transition and show that they can be tuned by the light

frequency such that the light shift of the transitions can be eliminated. This leads to a

“magic frequency” that can extent the coherence time significantly. We then experimen-

tally demonstrate the application of this magic frequency.
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Chapter 2

Transferring Molecules to the

Ground State in a New Experiment

The molecules produced by the magnetoassociation step described in Chapter 1 are in

weakly-bound states with binding energies typically 1MHz. In this thesis we call the

weakly-bound state “Feshbach state”. The lifetime of this state is ∼100 ms. Furthermore,

since the electric dipole moment d is proportional to r−7 where r is the inter-atomic

separation, the molecules in the Feshbach state only have a negligible electric dipole

moment. Therefore, for most of the applications, we want to transfer the molecules to their

electronic and rovibrational ground state. STIRAP offers an efficient, robust and coherent

method to transfer the molecules from their Feshbach state to the absolute ground state.

In this chapter, the mathematical principle of STIRAP and the experimental setup of the

laser system for it is described. The frequencies of the STIRAP lasers are stabilised to

an optical cavity using a modified Pound-Drever-Hall technique, which is also described

in this chapter.

2.1 The Theory of STIRAP in a 3-level System

In this section, we will look at the STIRAP process in an ideal 3-level system. The

Feshbach state (referred to as |F ⟩) and the ground state (referred to as |G⟩) are both

coupled to a common electronic excited state (referred to as the excited state |E⟩) by two

laser frequencies. The light coupling the Feshbach state and the excited state is called

the pump light, and the light coupling the ground state and the excited state is called the

Stokes light. The diagram of such a system is shown in Fig. 2.1 (a). The pump (Stokes)

light has a Rabi frequency ΩP (ΩS) and a detuning ∆P (∆S) which is also shown in
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Figure 2.1: The illustration of an ideal STIRAP process. (a) Scheme for coupling the three

relevant molecule states which are labelled as |G⟩, |F ⟩ and |E⟩. The blue and red lines

indicate the pump and Stokes laser frequencies with Rabi frequencies of ΩP and ΩS and

detunings from the excited state of ∆P and ∆S. (b) Example STIRAP pulse sequence.

The Rabi frequency of the Stokes light starts high and is ramped down sigmoidally,

whilst the pump Rabi frequency is ramped up. The typical timescale for STIRAP in our

experiment is anticipated to be ∼ 20 µs. (c) The time evolution of the population in

each state. The green, purple and black lines indicate the normalised population of state

|F ⟩, |G⟩ and |E⟩, respectively. The population is gradually transferred from |F ⟩ to |G⟩
without populating |E⟩. The transfer time is τ .

Fig. 2.1 (a). The single-photon detunings of the two lights from resonance are

ℏ∆P = ℏ(ωP0 − ωP ) (2.1a)

ℏ∆S = ℏ(ωS0 − ωS), (2.1b)

where ωP0 and ωS0 are the resonant frequencies of the pump and the Stokes transitions,

ωP and ωS are the corresponding light frequencies.

The Hamiltonian of such a 3-level system in the rotating-wave approximation and

neglecting loss is given by:

Ĥ =


0 ΩP (t) 0

ΩP (t) 2∆P ΩS(t)

0 ΩS(t) 2(∆P −∆S)

 . (2.2)

If we set ∆P = ∆S = 0, i.e., the lasers on two-photon resonance, we can solve the
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analytical eigenstates of the above Hamiltonian to be:

|a+⟩ = sin θ sinϕ |F ⟩+ cosϕ |E⟩+ cos θ sinϕ |G⟩ (2.3)

|a0⟩ = cos θ |F ⟩ − sin θ |G⟩ (2.4)

|a−⟩ = sin θ cosϕ |F ⟩ − sin θ |E⟩+ cos θ cosϕ |G⟩ , (2.5)

where θ and ϕ are the mixing angles. θ is given by

tan θ =
ΩP

ΩS

. (2.6)

ϕ is not relevant to the discussion of STIRAP but here we also give its expression:

tan 2ϕ =

√
Ω2

P + Ω2
S

∆P

. (2.7)

The state |a0⟩ is the dark state where there is no |E⟩ component. This state is crucial

for transferring the population directly from |F ⟩ to |G⟩. When ΩP = 0 and ΩS > 0, the

dark state |a0⟩ becomes equivalent to |F ⟩. When ΩP > 0 and ΩS = 0, the dark state

becomes equivalent to |G⟩. When ΩP and ΩS are both non-zero, the dark state is the

superposition of |F ⟩ and |G⟩. The sequence of light pulses is often described as “counter-

intuitive” [23]. The initial state the molecular population is in is |F ⟩. To initialise all the

population to the dark state, the Stokes light is first switched on with pump light off. In

this case the compositions of |F ⟩ in |a+⟩ and |a−⟩ are both zero whilst the composition in

|a0⟩ is 1. So this operation initialises the molecules to the dark state. Then the intensity

of the Stokes light is ramped down and pump ramped up to change the mixing angle θ and

hence the composition of |a0⟩. Eventually the Stokes light is ramped off and pump light

is on. The excited state |E⟩ is short-lived; the population in this state decays to a series

of lower states. Therefore populating |E⟩ leads to the loss of the molecules. If the ramps

of the pump and the Stokes lights are slow enough, the whole process is adiabatic and all

the population stays in the dark state. Thus the states |a+⟩ and |a−⟩ are never populated,
which means the state |E⟩ is never populated, so the loss of population is avoided and an

efficiency of the process of 100% is achieved. In practice the perfect adiabaticity cannot

be achieved as the ramps cannot be infinitely slow, the reason of which will be discussed

in the next section. As the result, a small portion of the population is transfer to |E⟩ and
lost.

Figure 2.1 (b) shows the Rabi frequencies with which we drive the pump and Stokes

transitions during STIRAP process. As described above, the Stokes light (red line) is

switched on and ramped off, the pump light (blue line) is ramped on. The time of the

ramps is denoted by τ . Figure (c) shows the changes of the normalised population of state
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|F ⟩, |G⟩, and |E⟩ throughout the STIRAP pulse sequence in the ideal case where there

is no loss. This sequence is completely reversible. For RbCs molecules that we use in

out experiment, previous spectroscopy work has determined that the wavelengths of the

pump and the Stokes light are 1557 nm and 977 nm, respectively [24]. These two beams

will be discussed in details later in this chapter.

2.2 Experimental Requirements

The experiment requirements of STIRAP are imposed by the need for high efficiency. In

the last section we assumed a perfect adiabatic process and thus a 100% efficient process.

In this section we discuss the practical efficiency of the transfer (P ) due to non-adiabaticity

of the dark state evolution. The efficiency is given by [25]

P = exp

(
−π2γ

Ω2
0τ

− Dτ

2

)
. (2.8)

In this equation, P is the transfer efficiency, γ is the natural linewidth of |E⟩, Ω0 is

the reduced Rabi frequency, Ω0 =
√

Ω2
S + Ω2

P , where ΩS and ΩP are the highest Rabi

frequencies in the whole process of each light, τ is the transfer time and D is the linewidth

associated with the frequency difference between the two lasers. To get the maximum

efficiency we need to minimise the term in the bracket in Eq. (2.8), which gives the

condition for an efficient transfer [26]:

Ω2
0

π2γ
≫ 1

τ
≫ D. (2.9)

Looking from the left to the right, γ is determined by the chosen excited state |E⟩ and the

reduced Rabi frequency Ω0 is limited by the available laser power and cannot be increased

indefinitely. This sets the lower limit on τ . Then the laser linewidth associated with the

frequency difference between the two lasers D needs to fulfill the right inequality.

It is important to search a wide range of states for a suitable |E⟩ state that satisfies

sever criteria. It needs to have a narrow natural linewidth γ, needs to be a mixed state to

couple singlet with triplet molecular electronic potentials and needs to be isolated from

other transitions. This requires both the lasers to be widely tunable over an overlapping

frequency range to cover as many states as possible to find the optimum |E⟩ state. Once

γ is set, the minimum duration of the transfer τ is set in turn, then the laser linewidth

D associated with the frequency difference must be narrow enough, which is the second

requirement. In the experiment the two lasers are stabilised to the same optical cavity

so the noise in frequencies is correlated, thus D is minimised. In previous work in our
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group [24] it has been found that there are transitions allowing pulse durations on the

order of ∼10 µs. This indicates the laser linewidth for an efficient transfer needs to be on

the order of kHz.

2.3 Optical Cavities

2.3.1 Introduction

In optics, a device composed of two highly reflective mirrors aligned to the same axis is

called an optical cavity or a Fabry-Pérot Interferometer. This device plays an essential

role in the laser frequency stabilisation technique we use to provide the required linewidths

of the STIRAP lasers. This technique will be introduced in Section 2.4. In this section we

consider an ideal lossless cavity with linear geometry. The cavity theory will be described,

followed by the characterisation of the cavity used in the experiment. For more details of

the cavity theory, one can refer to optical or laser textbooks, for example, [27–29].

The light injected into the cavity is reflected back and forward between the two mirrors.

The light can only be transmitted when the cavity length L is an integer times the half

wavelength λ, i.e.,

L = n · λ
2
, n ∈ N, (2.10)

as at this frequency a standing wave is built within the cavity. The region in the frequency

space where no light can be transmitted is called the free spectral range of the cavity which

is referred as ∆νfsr in this thesis. From the above equation one can readily derive that

∆νfsr =
c

2L
, (2.11)

where c is the speed of light. It is the narrow transmission (and reflection) spectrum

that we use as a frequency reference to stabilise the laser frequencies provided the cavity

length is stable. The details of the transmission and the reflection coefficients will be

given below.

2.3.2 Cavity Theory

General Solution of The Cavity Field

The Hermite-Gaussian beams, or usually referred to as Gaussian beams, are the eigen-

states of the electric field oscillating in an optical resonator such as a cavity. The expres-
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sion of this electric field can be derived in the paraxial wave approximation. Hermite-

Gaussian beams are expressed by [30]

Ẽ(x, y, z, t) =
w0

w(z)
Hl

[√
2

x

w(z)

]
Hm

[√
2

y

w(z)

]
exp

[
−x2 + y2

w2(z)

]
× exp

[
−i

k(x2 + y2)

2R(z)
+ i(1 + l +m) arctan

z

zR

]
× exp [i(ωt− kz)]

, (2.12)

where E(x, y, z, t) is the electric field, Hl and Hm are Hermite polynomials of order l

and m, k is the wave vector, ω is the angular frequency of the light, and the rest of

the quantities in this equation will be discussed later. The eigenstates with Hermite

polynomials of order l and m are usually called TEMlm where TEM stands for Transverse

Electric and Magnetic which are both transverse in the paraxial wave approximation. The

simplest solution can be obtained if one sets l = m = 0, then the electric field will reduced

to Gaussian solution as the zeroth order Hermite polynomials equals 1. The Gaussian

solution is

Ẽ(x, y, z) =
w0

w(z)
exp

[
−x2 + y2

w2(z)

]
exp

[
−i

k(x2 + y2)

2R(z)
+ i arctan

z

zR

]
exp (−ikz), (2.13)

ignoring time t. w(z) is the spot size of the beam at z (z-axis is the propagation direction)

and w0 is the spot size at z = 0, i.e., the beam waist, and they are given by

w(z) = w0

[
1 +

(
z

zR

)2
] 1

2

. (2.14)

R(z) is the radius of curvature of the equiphase surface at z and reads

R(z) =
z2 + z2R

z
. (2.15)

In the above equations zR is the Rayleigh range which describes the divergence of the

beam:

zR =
πw2

0

λ
. (2.16)

It is the distance along the propagation direction from the waist to the position where

the beam cross area has doubled.

As shown in Eq. (2.12), there are multiple solutions of the cavity field labelled by l

and m. The frequency spacing between them is [31]

νn,l,m =
c

2L

[
n+ (l +m+ 1)

arccos
√
g1g2

π

]
, n, l,m ∈ N, (2.17)

where n is the label for longitudinal modes as in Eq. (2.10), l and m are the labels of the

transverse modes as in Eq.(2.12), gi = 1− L/Ri are the resonator g parameters with Ri

being the radius of curvature of the i-th mirror of the cavity.
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Transmission and Reflection

Ẽr

Eosc˜ Et̃Einc˜

optical axis

mirror 1 mirror 2

r1, t1 r2, t2

Figure 2.2: A two-mirror optical cavity. The light bouncing in the cavity interferes with

itself and only builds up at certain wavelengths. The incident, reflected, transmitted and

oscillation fields are labelled in the figure. For normal incidence, all the beams are along

the optical axis.

The transmission and reflection spectra of the cavity are one of the most important

traits of the cavity, which will be discussed in this sub-section. Figure 2.2 shows the

diagram of the electric fields relevant to the cavity. The light is incident to mirror 1 of

the cavity. A portion of the incident light is immediately reflected and the other enters

the cavity and oscillates inside the cavity forming the oscillating field. Some of this field

leaks through mirror 2 and becomes the transmitted field; some leaks through mirror 1

and interferes with the directly reflected field and in total becomes the reflected field.

When a plane wave light is incident to a mirror, the reflected and transmitted light

are

Ẽr = rẼinc, (2.18a)

Ẽt = tẼinc, (2.18b)

with r and t being the amplitude reflection and transmission coefficient, respectively.

Then the intensity reflection and transmission coefficient are r2 and t2. We only consider

lossless mirrors, in which case we have r2 + t2 = 1 from the conservation of energy. The

parameters of the mirrors of the cavity are shown in the figure.

For a cavity, there are generally three cases in terms of the mirror parameters [32]:

• undercoupled for t21 < t22;

• impedance matched for t21 = t22;

• overcoupled for t21 > t22.

The reflection and the transmission of a cavity are very different for each case. In this

work we mainly consider an impedance-matched cavity, but the transmission and the

11



reflection coefficient for the general case without assuming the relations between the mirror

parameters will also be given. For the impedance-matched case, we write r1 = r2 = r and

t1 = t2 = t.

Figure 2.3: The ratio of the transmitted (orange) and the reflected (blue) light intensity

to the incident light intensity of an optical cavity. The values are calculated for a finesse

of 30 and a free spectral range of 1.5 GHz based on Eq. (2.20b) and Eq. (2.22b).

First we look at the cavity transmission. The field transmission is [32]

Ẽt

Ẽinc

=
−t1t2 exp(−ikL)

1− r1r2 exp(−i2kL)
, (2.19a)

Ẽt

Ẽinc

=
−t2 exp(−ikL)

1− r2 exp(−i2kL)
, (2.19b)

where in Eq. (2.19b) t1 = t2 = t and r1 = r2 = r and the other variables were defined

before. The transmitted field is dependent on the light frequency which is related to the

wave vector k. Then the light intensity transmission can be described by

It
Iinc

=
t21t

2
2

1 + r21r
2
2 − 2r1r2 cos 2kL

, (2.20a)

It
Iinc

=
1

1 + 2r2

(1−r2)2
cos 2kL

, (2.20b)

where It and Iinc are the intensities of the transmitted and incident light. Equation (2.20a)

gives the cavity transmission in general cases; Eq. (2.20b) describes the impedance-

matched cavity transmission and is the well-known Airy function. The variable of the

cosine 2kL is the light phase shift after one round trip in the cavity. Using k = ω/c and

Eq. (2.11), the one round trip phase shift can also been expressed as ω/∆νfsr where ω is

the light angular frequency and ∆νfsr is the cavity free spectral range. From Eq. (2.20b)
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Figure 2.4: The complex reflection coefficient F (ω) of the cavity. Figure (a) shows |F (ω)|
(blue solid line) corresponding to the E-field reflectance and |F (ω)|2 (orange dashed line)

corresponding to the reflectance of the intensity. The phase of F (ω) is shown in (b). At

ν/νfsr = 1, where νfsr is the free spectral range in frequency of the cavity, the phase jumps

from −90◦ to 90◦ due to the reflection’s vanishing. The E-field reflectance is not smooth

at this frequency but the intensity reflectance is smooth. For a critically coupled cavity,

the end point of F (ω) on the complex plane is always on the circle that is tangent to the

imaginary axis at the origin as shown in (c) and rotates anticlockwise as the frequency

increases. When the laser frequency is on resonance F (ω) = 0.

one can model the transmission of an impedance-matched cavity. Figure 2.3 shows the

modelled cavity transmission signal for a cavity with a free spectral range of 1.5 GHz in

the orange line. The full-width-half-maximum (FWHM) of the peaks in the transmission

spectrum (or the cavity modes) is used to specify the linewidth of the peaks. This quan-

tity is called cavity linewidth. In this work we use ∆νcav to denote the FWHM of the

cavity modes in frequency. It can be derived by equating the transmission to one half and

solve the frequency.

Another important quantity of the cavity is the finesse (F). It is given by

F =
∆νfsr
∆νcav

=
π

2 arcsin
(

1−r1r2
2
√
r1r−2

) . (2.21)

The modelling shown in Fig. 2.3 considers a finesse of 30. Practically one have a cavity

of a much higher finesse and the peaks in the transmission signal can be much narrower.

We are also interested in the reflected field and its intensity from the cavity. Here

we give the cavity reflection coefficient as a function of the incident light angular fre-

13
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f1=-100 mm f2=100 mm
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Figure 2.5: The cage setup for cavity mode-matching. A set of lenses modifies the beam

after the fibre collimator to produce the desired waist at the plane mirror. The lens for

the 977 nm and the 1557 nm beam have the same focal lengths. The fibre collimator and

the lenses are mounted in a cage system. The beam waist and focus position can be fine

adjusted by changing the lens separation d.

quency [33]:

F (ω) =
Ẽr

Ẽinc

= −r1 +
t21r2 exp

(
i ω
∆νfsr

)
1− r1r2 exp

(
i ω
∆νfsr

) , (2.22a)

F (ω) =
Ẽr

Ẽinc

=
r
[
exp

(
i ω
∆νfsr

)
− 1
]

1− r2 exp
(
i ω
∆νfsr

) , (2.22b)

where F (ω) is the complex reflection coefficient and ω = 2π × ν is the angular frequency

of the incident field. Equation (2.22a) gives the reflection coefficient in general cases;

Eq. (2.22b) gives the reflection coefficient of impedance-matched cavity. The total re-

flected light is the superposition of the light directly reflected by the first mirror that

never enters the cavity and the the leaked light from the standing wave inside the cavity.

The blue line in Fig. 2.3 shows the intensity of the reflected light calculated by taking

the modulus square of F (ω). The parameters are the same as those used to calculate the

transmitted light. Figure 2.4 shows the modulus and the phase of F (ω). At the resonant

frequency the reflected light vanishes and causes the discontinuity in the phase as shown

in Fig. 2.4 (a) and (b). It can be proven that for an impedance-matched cavity, the head

of F (ω) on the complex plane lays on the circle centred at −1
2
with a radius of 1

2
. The

arrow of F (ω) rotates anticlockwise as the frequency increases. When the light is on

resonance, F (ω) is at the origin. The complex reflection coefficient is important as we

will use it to understand the frequency stabilisation technique used in this work.
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1557 nm Beam 977 nm Beam

(a) (b)

Figure 2.6: The modelling of the waist size (red) and the focus position (blue) as functions

of the lens separation d in the cage system for (a): 1557 nm and (b): 977 nm beam. The

desired beam waist and the focus position at corresponding lens separation for each beam

are shown by the filled circles.

Mode-matching

The optical field of the cavity has multiple eigen solutions, but we want to couple as

much light into the TEM00 mode (or the Gaussian mode) as possible which is called

mode-matching. This is done when the shape of the light matches the cavity geometry.

The radius of curvature of the beam at the positions of each mirror must match the radius

of curvature of each mirror. We use a cavity with one flat mirror and one curved mirror

in the experiment. Below we analyse the required beam shape to suit the cavity.

The radius of curvature of the beam at the waist is ∞, so it is necessary to set the

focus at the flat mirror. Then the beam waist size is decided by the radius of curvature of

the curved mirror. Since usually the radius of curvature of the curved mirror is a known

value, we can calculate the required beam waist from it. Use Eq. (2.15) and Eq. (2.16)

and set R(0) = ∞, R(L) = R, one can easily derive

w1 =
[4(LR− L2)]

1
4

√
k

, (2.23)

where w1 is the waist at the flat mirror, L is the length of the cavity, R is the radius of

curvature of the curved mirror and k is the wave vector.

We use lenses in a cage system to modify the beam. The beam waist is determined by

Eq. (2.23), and the distance from the waist to the position of the last lens in the cage is

also restricted by the layout of the optical table. On the one hand, we must accommodate

the vacuum system for the cavity and the optics for locking and overlapping in between

them; on the other hand, the size of the optical table is limited so the distance cannot be
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(a) (b)

Figure 2.7: (a): The ULE cavity on Viton Balls on the Zerodur Mounting Block. (b): The

ULE cavity in the vacuum housing. The material surrounding the cavity is thermal

insulation. The upper black object is the heater.

too large. The cage system can ensure the right waist at an appropriate distance, whose

diagram is shown in Fig. 2.5. The fibre collimator and two lenses of focal length −100 mm

and 100 mm are mounted in the same cage. This makes alignment easy and facilitates

adjusting the separation of the lenses d. The 1557 nm light and the 977 nm light use the

same combination of lenses.

The waist size and position of the beam after the cage will change as separation d

changes. We can model them by the ABCD-matrix formalism. The modelling results of

the beams with the two STIRAP wavelengths are given in Fig. 2.6. The focus position

measured from the last lens in the cage is shown on the left axes in blue; the beam waist

is shown on the right axes in red. The modelling is based on the 1/e2 beam radii of the

collimators which are measured beforehand. The desired waist at the plane mirror of each

beam is calculated by Eq. (2.23) and shown in the figures by the red closed circles. The

waist is 0.315 mm for 1557 nm light and 0.249 mm for 977 nm light. The corresponding

distances from the last lens to the waist are 1065 mm and 746 mm, respectively, as shown

by the blue circles. These distances are acceptable. The desired waist can be achieved by

∼10 mm separation for 1557 nm light and ∼15 mm for 977 nm light.

2.3.3 Optical Cavity Characterisation

In this section, we will present and characterise the optical cavity used in our experiment.

We use a commercial cavity manufactured by Stable Laser System. The spacer of the

cavity is made of an Ultra-Low-Expansion (ULE) material. This material is special be-

cause there is a zero crossing of the thermal expansion coefficient. At the zero crossing
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Figure 2.8: The transmission signal of the 1557 nm light showing mode-matching to

the cavity. Figure (a) shows the good mode-matching signal. The two visible peaks are

adjacent Gaussian modes. The insert figure has the same x- and y- axis labels as the main

figure with a y-axis scale of 1/100 of that of the main figure and shows the amplitudes of

the higher order transverse modes which are not visible in the main figure. At good mode-

matching, the Gaussian modes are of two orders of magnitude higher than the transverse

modes. Figure (b) shows the bad mode-matching. The spacing between the higher order

modes agrees with Eq. (2.17).

temperature the thermal expansion coefficient is zero, which minimises the drift of the

spacer length caused by the temperature drift. This temperature is hard to be predicted

precisely [34]. Stable Laser System, the supplier of the cavity, measured the zero crossing

temperature of the spacer to be 27(1) ◦C. We stabilse the temperature of the cavity to

this value. One of the mirrors of the cavity is plane; the other one is curved and has a ra-

dius of curvature of 50 cm. This facilitates mode-matching as introduced in Section 2.3.2.

The mirror coating is customised to provide high finesse at 420 nm, 977 nm, 1013 nm and

1556 nm. Among them, 977 nm and 1556 nm are the wavelengths of the STIRAP lasers,

420 nm and 1013 nm are the wavelengths of the lasers also locked to the same cavity but

not relevant to STIRAP and they will not be discussed in this thesis.

Figure 2.7 (a) shows a picture of the cavity. The cavity spacer is 10 cm long; the

mirror diameter is 1 inch. The cavity sits in the vacuum housing provided by Stable

Laser System as shown in Fig. 2.7 (b). Inside the vacuum housing, the cavity is placed on

a Zerodur mounting block which is supported on Viton balls. The pressure in the vacuum

housing is kept at 1.7× 10−7 mbar by the ion pump produced by Gamma vacuum. There

is thermal insulation in the vacuum can. The temperature inside the can is set to the zero

crossing temperature by the temperature controller and measured by thermistors (General

Electric MC65F103B).
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Figure 2.9: The measurement of the free spectral range of the cavity at two wavelengths.

The carrier is stabilised to a cavity mode and sidebands are generated by modulating

the light phase. The offset of sidebands from the carrier can be tuned by tuning the

modulation frequency. The free spectral range is measured by tuning the offset frequency

and recording the cavity transmission signal (filled circles). The data are fitted to the

Lorentzian function (solid lines) to extract the centre position and the linewidth.

The characteristics of the cavity are summarised in Table 2.1. The cavity was char-

acterised at two STIRAP wavelengths, 977 nm and 1557 nm. The free spectral range,

cavity linewidth, finesse and the beam waist ω1 are given in the table.

Figure 2.8 shows the cavity transmission signal of the 1557 nm light when the laser

frequency is scanned over roughly 1 free spectral range. The case of good mode-matching

is shown in Fig. 2.8 (a). The two high peaks are the adjacent Gaussian modes and the

small peaks in the insert are the higher order transverse modes. Note that the y-scale

of the insert is 1/100 of the y-scale of the main figure, so most of the light power is

coupled into TEM00 mode. For a case of bad mode-matching, all the transverse modes

are present and the power of each mode is lower than the power of good mode-matching.

The signal for the 977 nm laser is similar. The designed reflectivity of the cavity mirrors

at these wavelengths is lower than 0.5%, correspondingly, the minimum finesse is 5000.

The expected maximum cavity linewidth νcav is 300 kHz. This is less than the linewidth of

the free running lasers. Therefore, in Fig. 2.8 (a), the transmission peaks are too narrow

to measure the width, and it doesn’t give information of the free spectral range.

To precisely measure the cavity free spectral range, we add two sidebands beside

the carrier and stabilise1 the carrier to a cavity mode (TEM00, the same below). This

1The laser stabilisation will be introduced in Section 2.4.
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operation narrows the laser linewidth to be less than the cavity linewidth. Then we can

tune the spacing between the carrier and the sidebands and measure the transmission

signal. When the sidebands are away from cavity modes only the carrier is transmitted.

When the sidebands overlap with the next cavity mode they are transmitted and the

transmitted power of light rises and thus we can measure the free spectral range. The

results of the 977 nm light and the 1557 nm light are shown in Fig. 2.9 by the filled blue and

orange circles. The shape of the transmitting signal is described by Eq. (2.20b) and can be

approximated by a Lorentzian function. Fitting the data to a Lorentzian function (solid

lines) can extract the centres of the peaks which is the free spectral range and the peak

linewidths. From Fig. 2.9 one can see that the data of the 977 nm light is close to the fitted

line while the data of the 1557 nm light is more noisy. Here we discuss the reason. In our

setup we use fibre EOMs for both beams, but they are of different model. The output end

of the fibre with the EOM for 1557 nm light is unangled, which means the retroreflection

between the fibre output and the first mirror of the cavity forms another optical resonator.

This makes the light intensity after the EOM oscillate. Since this oscillation is outside

the EOM, it can be tuned out by the demodulation phase and won’t affect frequency

stabilisation (details see Section 2.4), but it affects the light intensity passes through the

cavity. Therefore, the data of the 1557 nm light is noisy as the transmitted light from the

cavity is measured. The finesse can also be calculated. The exact numbers of ∆νfsr and

∆νcav and the finesse of each light are given in Table 2.1. The reason why the free spectral

ranges ∆νfsr for the two wavelengths are slightly different is that the coating of the cavity

mirrors has different refractive indices at different wavelengths, which slightly changes

the total cavity length for different wavelengths. The theoretical free spectral range given

by c/2L is 1499.0 MHz. Considering the value of the cavity length is provided by the

manufacturer and the error of it is unclear, the measured value agrees well with the theory.

The values of finesse measured in this way are given in the column of “Finesse 1”. The

linewidth of the frequency stabilised laser is about 3 orders of magnitude less than that of

the cavity linewidth so it won’t affect the results of ∆νcav. We will see the laser linewidth

in Section 2.5.2.

To better measure the cavity finesse, we also measure the cavity dynamic response

signal of the reflected light [35]. The signal can be detected when the input laser frequency

is swept across the cavity resonant frequency with a reasonably high scan rate. The mirrors

of the cavity are not perfectly reflective, therefore, a portion of the input field will enter

the cavity and bounce between the cavity mirrors forming a cavity field. The modulation

of the input light frequency induces an oscillating component in the cavity field. This
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λ (nm) ∆νfsr (MHz) ∆νcav (kHz) Finesse 1 Finesse 2 w1 (mm)

977 1498.8123(9) 74(3) 200(8)× 102 204(2)× 102 0.249

1557 1498.7907(9) 74(3) 202(8)× 102 / 0.315

Table 2.1: The summary of the cavity characteristics for each wavelength. The cavity

spacer length is 10 cm, one mirror is plane, the other is curved with a radius of curvature

of 50 cm. In the table, Finesse 1 is measured from the cavity transmission signal; Finesse 2

is measured from the cavity dynamic response signal. w1 is the waist at the plane mirror.

cavity field can be described by the differential equation [35]

dEcav

dt
=

(
ρ− 1

τ
+

i2ρω̇L

τc
t

)
Ecav +

i
√
T1

τ
E0, (2.24)

where Ecav is the amplitude of the cavity field, t is time, ρ is the cavity round-trip loss

factor, τ is the uninterrupted round-trip time, i is the imaginary unit, ω̇ is the frequency

sweep rate, L is the length of the cavity, c is the speed of light in vacuum, T1 is the power

transmission coefficient of the first cavity mirror, E0 is the field amplitude of the input

field. Again, due to the non-unity reflectance of the cavity mirrors, some of the cavity

field will leak from the first cavity mirror and be combined with the directly reflected

field from it. We can use a photodiode to detect this signal while sweeping the input light

frequency.

The differential equation Eq. 2.24 indicates that the oscillating component of the

cavity field decays over time. The decay time of this signal indicates the mirror reflection

coefficient and hence the finesse. The decay time is characterised by the storage time

τs which is defined as the time required for the cavity field to decay to 1/e of its initial

strength. It is related to the finesseF by

τs =
2FL

πc
. (2.25)

The dynamic response signal of the 977 nm light reflected from the cavity is shown

in Fig. 2.10 (a) and (b) with a linear and a logarithm y-axis scale. The signal and

fitted curve shown in Fig. (a) and (b) are identical. The overall trend of the oscillating

signal can be seen in Fig. (a) while Fig. (b) offer a better view for the peaks with small

amplitudes at linger time. The original data is smoothed by taking a rolling average of

40 points around each data point. The heights of the peaks of the oscillation are fitted

to an exponential decay function to extract the storage timeτs. Due to the photodiode

responsivity, the signal amplitude in the fitting function is multiplied by an arbitrary

number, before arbitrary offsets are added to the time and the amplitude. Then the only
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Figure 2.10: The cavity dynamic response signal measured with the 977 nm light reflected

from the cavity. The data is smoothed by taking the rolling average of the 40 points around

each point. The orange line is a fitting of the envelope of the dynamic response signal

(blue) to an exponential decay function. The fitting parameters include the storage time

τs, the oscillation amplitude scale, an offset to the amplitude and an offset to the time.

The storage time is extracted from the fitting. The first 3 peaks are lower than the fitting

line because the light hasn’t fully built up in the cavity. They are excluded from the

fitting. Figure (a) and (b) show the identical signal and the fitted curve with linear and

logarithm y-axis scales. Due to the limit of a logarithm y-axis scale, only the upper half

of the signal is shown in (b).

free parameter in the fitting function is the storage time τs. The first three peaks are

neglected in the fitting because by the time they appear the light hasn’t fully built up in

the cavity. The storage time from this signal is 4.33(5) µs which corresponds to a finesse

of 204(2)× 102. This is given in Table 2.1 as “Finesse 2”. It agrees with the “Finesse 1”

within the error and has a smaller error bar. In the time frame of this project the signal

for the 1557 nm light hasn’t been measured.
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2.4 Laser Frequency Stabilisation With an Optical

Cavity

This section introduces the theory of the Pound-Drever-Hall (PDH) technique [36] we use

to stabilise the frequency of the lasers for STIRAP.

2.4.1 Introduction

The stabilisation of laser frequency is critical for many applications ranging from precise

spectroscopy to atomic clocks. A key characteristic describing the short-term stability of

laser frequency is the laser linewidth which is the width of its optical spectrum and features

its frequency stability. Another type of the laser frequency stability is the long-term

stability which describes the drift of the centre frequency over a longer time. The free-

running linewidth is inadequate for the application in STIRAP without active stabilization

of the laser frequency and the long-term frequency stability is also needed. Therefore, the

lasers for STIRAP need to be frequency stabilised, or “locked”. There has been many

frequency stabilisation techniques developed before using atomic transitions as a frequency

reference. These include frequency modulation spectroscopy [37] and modulation transfer

spectroscopy [38] which limit the linewidth to sub-MHz level. But for the lasers for

STIRAP, those techniques are ineffective as there are no suitable atomic transitions in

the desired frequency region, so the signal used to correct the laser frequency (the “error

signal”) can’t be generated. Furthermore, based on the requirements on the STIRAP

lasers described in Section 2.2, good relative stability between the two lasers are needed

and their linewidths need to be in the range of kHz. Therefore, a narrow, arbitrary

frequency reference point is needed to generate the error signal. We use an optical cavity

to produce the frequency reference which has been introduced in Section 2.3. In this

section, we describe a modified Pound-Drever-Hall technique to generate the error signal

allowing the laser frequencies to the stabilised to the desired cavity mode while keeping

the frequencies tunable, i.e. offset sideband locking [39].

2.4.2 Standard Pound-Drever-Hall (PDH) Locking

Before introducing the offset sideband locking technique, we first review the principles

of the standard Pound-Drever-Hall (PDH) frequency stabilisation based on [36]. An

optical cavity with a high finesse has a series of narrow resonant modes as described

in Section 2.3.2. The general idea of the PDH stabilisation technique is to measure the
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Figure 2.11: Diagram of the setup for the standard Pound-Drever-Hall locking. The solid

lines represent light; the dashed lines represent RF signals. The light coming from the

laser is modulated by a phase modulator and then sent to an optical cavity. The reflected

light from the cavity is detected by a photodiode. The signal from the photodiode and

the signal driving the phase modulator after a phase shifter are mixed then pass through

a low pass filter to derive the error signal. This signal is fed back to the laser to correct

its frequency.

frequency of the laser with an optical cavity, and the result of the measurement is fed back

to the laser to adjust the laser frequency. A typical setup diagram for this technique is

shown in Fig. 2.11. The function of each component and the mechanism of this technique

will be described in detail below based on [36].

One can measure the transmitted signal of the optical cavity. When the laser frequency

is on resonance with the cavity, the transmission is nearly 100%. However, there are some

problems with this method. One is that the fluctuation of the laser intensity is coupled

with the fluctuation of the frequency, both of which cause the transmitted light intensity

to change. The other is that the transmission signal is symmetric in terms of frequency

around resonance, so the electronics can’t distinguish whether the laser frequency is above

or below resonance.

A better method is to measure the reflected signal of the cavity instead. This decouples

the fluctuations in frequency and intensity because the reflected light will always be zero

no matter how much the intensity fluctuations when the laser is on resonance. The

conceptual model is that although the reflection signal is also symmetric in terms of

frequency, one can measure the derivative of the reflection signal which is antisymmetric.

Note that practically we don’t measure the derivative of the reflection signal. This is only

to facilitate understanding of the technique.

Previously in Section 2.3.2, we have carefully derived the complex cavity reflection
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coefficient F (ω) of the electric field. There is a discontinuity in the phase of the reflection

coefficient F (ω) around the laser frequency being equal to the cavity free spectral range

times an integer (Fig. 2.4 (b)) which can be used to tell if the laser frequency is below or

above the cavity resonance frequency. The phase of the light can’t be measured directly,

but one can modulate the light phase and generate two sidebands with opposite phases

and fixed frequency difference. Then the beating signal of the sidebands indicates the

phase of the reflected light.

The laser phase can be modulated by a phase modulator, for example, an electro-optic

modulator (EOM). The electric field of the incident light to the cavity at certain point in

the space with its phase modulated is

Ẽinc = E0e
i(ωt+β sinΩt), (2.26)

where ω is the frequency of the light, Ω is the modulation frequency and β is the mod-

ulation depth. The power of the light is P0 = 1
2
cϵ0|E0|2 × A where A is the area of the

beam. Using Jacobi-Anger expansion

eiz cos θ =
∞∑

n=−∞

inJn(z)e
inθ, (2.27)

and

J−n(z) = (−1)nJn(z), (2.28)

where Jn(z) is Bessel function of the first kind of order n, at small modulation depth β,

this electric field can be expanded by Bessel functions to

Ẽinc ≈ E0

[
J0(β)e

iωt + J1(β)e
i(ω+Ω)t − J1(β)e

i(ω−Ω)t
]
. (2.29)

The Bessel functions of higher orders are neglected for small β. One can see that there

are three bands in the modulated beam: a carrier with angular frequency ω and two

sidebands with angular frequencies ω ± Ω and opposite phases. The power of the carrier

and the first order sidebands is Pc and Ps, respectively, where

Pc =
1

2
cϵ0|E0J0(β)|2 × A = J0(β)

2P0, (2.30)

Ps =
1

2
cϵ0|E0J1(β)|2 × A = J1(β)

2P0. (2.31)

For small β we have

Pc + 2Ps ≈ P0. (2.32)

This expansion allows us to treat each band independently. To calculate the reflected elec-

tric field, we can multiply each beam by the reflection coefficient F at the corresponding

frequency. We derive the reflected field:

Ẽr = E0

[
F (ω)J0(β)e

iωt + F (ω + Ω)J1(β)e
i(ω+Ω)t − F (ω − Ω)J1(β)e

i(ω−Ω)t
]
. (2.33)
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What we can measure with a photodiode is the power of the reflected light which is

proportional to the square modulus of the electric field. The power of the reflected beam

with angular frequency Ω is given to first order by

Pr,Ω =Pc|F (ω)|2 + Ps|F (ω + Ω)|2 + Ps|F (ω − Ω)|2

+ 2P0J0(β)J1(β)Re[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] cosΩt

+ 2P0J0(β)J1(β)Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)] sinΩt

+ (2Ω terms).

(2.34)

In this expression, the cosΩt and the sinΩt terms are from the beat note between the car-

rier

Ideal mixer
Input

signal 1 Output
signal

Input
signal 2

Figure 2.12: An ideal mixer.

and the sidebands and the 2Ω terms are from the side-

bands beating against each other. It is the the cosΩt and

the sinΩt terms that we care about because they tell us

the phase of the carrier. We can use a mixer to extract

the amplitude of the oscillations at angular frequency

Ω. The diagram of an ideal mixer is shown on the left.

The mixer accepts two input signals and produces one

output signal which is the product of the input signals.

Considering the trigonometric identities below:

sin a sin b =
cos (a− b)− cos (a+ b)

2
(2.35a)

cos a cos b =
cos (a− b) + cos (a+ b)

2
(2.35b)

sin a cos b =
sin (a− b) + sin (a+ b)

2
, (2.35c)

one can see that the output frequencies are the sum and difference of the input frequencies.

To get the amplitude of the the Ω terms, the signal from the photodiode and the signal

at the modulation frequency Ω are fed to a mixer, the output of which consists of the

error signal as the DC component and the 2Ω components. A low pass filter is used to

filter the higher frequency components. There are two terms with angular frequency Ω

that are proportional to the real part and the imaginary part of the term in the square

bracket in Eq. (2.34), respectively.

At high modulation frequency (Ω ≫ ∆νcav), when the carrier is near resonance, all

the sidebands are reflected. Hence we have F (ω±Ω) ≈ −1 and |F (ω)|2 ≈ 0 (see Fig. 2.4).

Then

F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω) ≈ −2i · Im[F (ω)]. (2.36)
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(a) (b)

Figure 2.13: Modelling of the PDH error signal. (a): The calculated error signals for 0◦

(labelled by imaginary) and 90◦ phase shift (labelled by real) of the input signals to the

mixer with the cavity finesse being 20000. The imaginary and the real part correspond to

the sinΩt and the cosΩt term, respectively. 0◦ phase shift produces a good error signal.

(b): The error signals at 0◦ phase difference with a series of values of finesse. Increasing

the finesse sharpens the error signal.

In the above equation the real part vanishes. The reflected power becomes

Pr,Ω = 2Ps − 4P0J0(β)J1(β)Im[F (ω)] sinΩt+ (2Ω terms). (2.37)

To select the sine term in Eq. (2.34), the phase shift between the inputs of the mixer

needs to be carefully tuned such that the DC component is non-zero. To obtain the sine

term, we need 0 phase shift as sinΩt · sinΩt produces the cos (Ωt− Ωt) = 1 term. The

phase shift can be controlled by a delay line, a phase shifter or tuning the signal phase

on the function generator.

Having shown that F (ω)F ∗(ω + Ω) − F ∗(ω)F (ω − Ω) is nearly purely imaginary, we

take the imaginary part of this quantity as the error signal Perr which reads

Perr = 2P0J0(β)J1(β)Im[F (ω)F ∗(ω + Ω)− F ∗(ω)F (ω − Ω)]. (2.38)

Figure 2.13 (a) shows both the real and the imaginary part of F (ω)F ∗(ω+Ω)−F ∗(ω)F (ω−
Ω). The modulation frequency is two orders of magnitude greater than the cavity linewidth.

Note that the x-axis is the frequency of the carrier, ω/2π, with respect to a resonant fre-

quency. When the carrier is near resonance, the real part vanishes while the imaginary

part produces a steep error signal that can be used to stabilise the laser frequency. The

error signals with different ratios of the modulation frequency and the cavity linewidth are

presented on Fig. 2.13 (b). With the same modulation frequency and cavity free spectral

range, increasing the finesse steepens the centre slope of the error signal.
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Now we calculate the gradient of the centre slope with some approximations. We

rewrite the carrier angular frequency as:

ω = ωN + δω, (2.39)

where ωN is the nearest resonant (angular) frequency associated with an integer number

N of the cavity modes (i.e. ωN = N ·∆ωfsr), δω is the (angular) frequency deviation from

resonance. Then we have2

ω

∆νfsr
= 2πN +

δω

∆νfsr
. (2.40)

When near resonance, we have δω/∆νfsr ≪ 1 and δω/∆νcav ≪ 1. For a cavity with high

finesse, we can make the approximation [40]:

F =
∆νfsr
∆νcav

=
∆ωfsr

∆ωcav

≈ π

1− r2
. (2.41)

From Eq. (2.22b), Eq. (2.40) and Eq. (2.41) one can derive the reflection coefficient is

F (ω) =
i

π

δω

∆νcav
. (2.42)

Substituting F (ω) into Eq. (2.38) with the above equation and considering F (ω ± Ω) ≈
−1, the error signal can be written as

Perr ≈ − 4

π
P0J0(β)J1(β)

δω

∆νcav

= −8P0J0(β)J1(β)
δν

∆νcav
,

(2.43)

where δν = δω/2π is the frequency deviation. Note that this approximation is only valid

when the conditions of δω/∆νcav ≪ 1 and high finesse are met. When near resonance, the

error signal is proportional to the frequency deviation. The coefficient of proportionality

is the frequency discriminant D. For the standard PDH technique,

DPDH = − 8

∆νcav
P0J0(β)J1(β). (2.44)

Note that this equation is only valid for standard PDH technique. In our experiment

we use a modified technique whose frequency discriminant can’t be described by this

equation. From Fig. 2.13 one can see that the error signal is linear around 0 frequency

deviation then suddenly becomes non-linear for higher deviations.

2in this equation we have a term of δω
∆νfsr

because this term is useful in the equation of the reflection

coefficient
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ω
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(a) Standard PDH Locking (b) Offset Sideband Locking

Figure 2.14: Diagram of the laser frequency components with modulation. (a) shows

the carrier and the sidebands with the standard PDH modulation. The directions of the

arrows indicates the phase. The two PDH sidebands have opposite phases and lower

amplitude than the carrier at low modulation depth. The carrier is locked to a cavity

mode (red arrow). (b) shows the bands generated by dual modulations. As an example,

the offset sideband with higher frequency is locked to a cavity mode (red arrow), the

spacing between which and the carrier is tunable.

2.4.3 Offset Sideband Locking

In the last section we have reviewed the standard PDH technique, but this technique

has some limits. The major one is the laser frequency can only be stabilised to one of

the cavity modes. We have shown that the STIRAP lasers are required to be tunable

to search for suitable states for transfer. Therefore, in this section we introduce offset

sideband locking (OSB) technique [39] adding tunability to the carrier frequency. This is

achieved by locking a sideband to the cavity mode and the laser frequency is tuned by

changing the spacing between the sideband and the laser frequency. The diagram of the

experiment setup is shown in Section 2.5.1. A small amount of light is picked off and

sent to the cavity for locking, the rest of the light is not modulated and has the same

frequency as the carrier.

Offset sideband locking is a modification of the standard PDH technique, where addi-

tional sidebands are generated in the laser beam and used to stabilise the laser frequency.

In this technique, we apply two modulation signals with different frequencies to the beam

to modulate its phase. The light field incident to the cavity with two modulations is

Ẽinc = E0e
i(ωt+β1 sinΩ1t+β2 sinΩ2t), (2.45)

where the modulation depth and the modulation frequency of the first (second) modu-

lation are β1 (β2) and Ω1 (Ω2). We assume Ω2 > 2Ω1 and β1 > β2. Below we will see

that the second assumption is the requirement to maximise the frequency discriminant.
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Figure 2.15: The values of the square of the Bessel functions and their product which

determine the frequency discriminant of the offset sideband locking. The modulation

depths are chosen to maximise the discriminant according to Eq. (2.46). β1 and β2

are to be set to 1.841 (the right grey dashed line) and 1.082 (the left gery dashed line),

respectively, to maximise J1(β1)
2 and J0(β2)J1(β2).

Similar to the last section, this light field can be expanded by Bessel functions of the

first kind to first order. The diagrams of the frequency components of the standard PDH

locking and offset sideband locking are presented in Fig. 2.14. For standard PDH locking,

the carrier (the red arrow) is stabilised to a cavity mode. Two sidebands are generated

for stabilisation to which we refer as the “PDH sidebands”.

The frequency diagram of one example of sideband offset locking is shown in Fig. 2.14 (b).

In this example, the sideband generated by the first modulation with higher frequency (the

red arrow) is stabilised to a cavity mode. We refer to the sidebands generated by the first

modulation as the “offset sidebands”. The spacing between the offset sidebands and the

carrier in the frequency domain can be tuned by tuning the modulation frequency Ω1.

To stabilise the offset sideband, two PDH sidebands with opposite phases are generated

around them by the second modulation featured by its frequency Ω2. Note that one can

also lock using the offset sideband at lower frequency. This technique allows us to stabilise

the laser frequency, tracking the carrier frequency at any frequency between two cavity

modes by tuning Ω1. For a cavity with a free spectral range of 1.5 GHz, the maximum

required Ω1 is 750 MHz. This signal can be easily generated by a function generator with

linewidth below 100 Hz.
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The frequency discriminant of this technique DOSB is given by [39]

DOSB =
8

∆νcav
P0J

2
1 (β1)J0(β2)J1(β2), (2.46)

where P0 = 1
2
cϵ0|E0|2 × A is the power of the light. The high frequency discriminant

is crucial for achieving a narrow laser linewidth by stabilisation. Practically, the cavity

linewidth is determined by the cavity mirrors and the light power is restricted by the

laser power, so we need to choose the modulation depths β1 and β2 carefully to maximise

the frequency discriminant. Figure 2.15 plots the values of the Bessel functions of the

first kind and their product. Accordingly, β1 and β2 are to be set to 1.841 and 1.082,

respectively. In Section 2.3.3 we have shown that the cavity linewidth of the light at

977 nm is 74(3) kHz. Then we can calculate the frequency discriminant based on this

value.

2.5 Experimental Locking Demonstration

In this section, the experiment system used to stabilise the frequency of the STIRAP

lasers is presented. We use the offset sideband locking technique to stabilise the laser

frequencies. This technique allows the laser frequency to be tunable while minimising the

frequency deviation. The parameters of the feedback circuitry are optimised to reduce the

laser frequency noise and maximise the lock bandwidth. To characterise the performance

of the system, we measure the noise spectra of the error signal both with and without

demodulation. The laser linewidth and the lock bandwidth are estimated from that data.

2.5.1 Experimental Setup

Figure 2.16 shows the diagram of the optical system used to lock the lasers to the ULE

cavity discussed in Section 2.3.3. This system will be referred to as the STIRAP laser

system in the following contents.

In the Fig. 2.16, the laser used to couple the Feshbach state to the excited state in

the molecule (pump laser) is denoted by red. The laser to couple the excited state to the

ground state (Stokes laser) is denoted by orange. We use two Toptica DL pro External

Cavity Diode Lasers as the light sources of the two lasers needed to perform STIRAP.

Each laser head has a built-in optical isolator to prevent optical feedback from entering

the laser diode. Both lasers can be tuned across a wide frequency range. The pump laser

can be tuned from 1490 nm to 1580 nm. The maximum output power behind the isolator

is 51 mW. The Stokes laser has the maximum output power of 90 mW behind the isolator
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Figure 2.16: The STIRAP laser system. The pump laser at∼1557 nm (red) and the Stokes

laser at ∼977 nm (orange) are locked to the ULE cavity using offset sideband locking.

There are another two lasers at∼420 nm (blue) and∼1013 nm (yellow) respectively locked

to the same cavity. D1 is a dichroic mirror for combining the light from the 420 nm laser

with the other beams. BS1 is a non-polarising 50:50 beam splitter for combining the

light from the 1013 nm laser with the light from the 977 nm laser. The functions of each

component are explained in the main text.
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and can be tuned from 930 nm to 990 nm. The pump and Stokes lasers need to couple

the weakly-bound Feshbach state and the rovibronic ground state to a common excited

state. Previous works have identified the wavelengths corresponding to the transition

energies from the Feshbach state to the excited state and from the rovibronic ground

state to the excited state are 1556.7804(3) nm and 977.0621(1) nm, respectively [24, 41].

For the characterisation of the locking performance, the pump laser is centred at 1557 nm

and the Stokes laser is centred at 977 nm. The absolute wavelengths are measured with

Bristol Instruments 621A laser wavelength meter whose operating range is 520-1700 nm

and accuracy 20 MHz. Its accuracy was confirmed by measuring the wavelength of laser

driving the 5P3/2 ↔ 4D5/2 transition in Rb at 1529nm [42]. In order to isolate the

lasers from changes in the lab environment, the laser heads are placed inside home-made

PALIGHT boxes with 30 mm thick foam filling the gap between the box and the laser

head to reduce acoustic vibrations coupling to the laser cavity.

The cavity performs the function of the optical reference to which the lasers are referred

to stabilise the frequency and is used to narrow the linewidth of the lasers. Hence it is

the core of the locking system. The theory and the characterisation of the cavity are

presented in Section 2.3.2 and Section 2.3.3, respectively.

The setup for the pump and Stokes lasers are similar. Only a small amount of light

is needed for locking. Therefore, after being output from the laser head, ∼4% of the

laser power is picked off using an uncoated wedged blank and coupled to the fibre EOM

before it’s sent to the cavity for frequency stabilisation. Another ∼4% of the laser power

is also picked off and currently blocked but could be sent to a wavemeter to monitor the

absolute laser frequency. The rest of the laser power (∼92%) is transmitted and sent

to the main experiment. The purpose of the wedged blanks is to deviate the second

reflection beam from the first reflection beam and the incident beam. Furthermore, to

keep the good polarisation purity of the light from the laser head in both the reflected

and the transmitted beam, it is required that the incident angle to the blank must be

small enough such that the reflectivity of the s-polarised light and the p-polarised light

are similar and the polarisation purity won’t be largely affected. In the experiment, the

blanks are placed to minimise the incident angle while ensuring the reflected beam is not

blocked by the other optics on the table.

The function of the EOM is to modulate the phase of the light in order to generate the

sidebands used for locking and offset, which is essential for sideband offset locking. Both

EOMs are fibre coupled. The part numbers of the EOM are EOSPACE PM-0K5-10-PFA-

PFA-980 for 977 nm and Thorlabs LN65S-FC for 1557 nm. These EOMs are non-resonant

and have a bandwidth of 10 GHz, which is wider than the free spectral range of the cavity
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and hence can be used to produce a locking sideband at any point in between the cavity

modes allowing the laser frequency to be stabilised as well as continuously tunable. They

can operate at multiple driving frequencies simultaneously, allowing the PDH and the

offset modulation to be applied using the same EOM. They also have low Vπ, allowing

them to be driven at a relatively low voltage.
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Figure 2.17: The electronic setup to achieve offset sideband locking. The PDH modula-

tion signal from output 2 of the function generator and the offset modulation signal are

combined at the combiner and sent to the EOM. The signal from output 1 is sent to the

mixer to mix with the signal from the photodiode and to demodulate it to get the error

signal. The phase difference of two outputs of the function generator can be set on the

function generator control panel. The error signal is sent to a Fast Analog Linewidth

Control (FALC) pro for PID control. The mixer is integrated inside the FALC module in

practice which sends a signal to the laser head to tune the laser frequency.

The light output from the fibre is modified by the mode-matching cage such that its

waist position is at the planer mirror of the cavity and its waist size is 0.25 mm to match

the beam with the cavity geometry. The waist size is governed by Eq. (2.23). The 977 nm

light is combined with another 1013 nm light (yellow) at BS1 which is a non-polarising

50:50 beam splitter. At the dichroic mirror D2, the 1557 nm laser is combined with the

977 nm and the 1013 nm laser. Then at the dichroic mirror D1, another laser of 420 nm

wavelength (denoted by blue) is combined. The photodiodes detecting the photon signals

are labelled by the signal type and the photon polarisation. The reflected signal and

the transmitted signal are labelled by “R” and “T”, respectively and the polarisation (s-

and p-light) of the light is further noted in the bracket. Note that it’s hard to combine

or separate 977 nm laser light and 1013 nm laser light with a standard dichroic mirror
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because their wavelengths are too close. Hence they are combined with a 50:50 beam

splitter and detected by the same photodiode.

From our experience of setting up STIRAP in another lab, the STIRAP lasers are

sensitive to environmental vibrations. It’s important to isolate the optical cavity and the

fibre EOMs from the vibrations. The cavity is placed on an optical table with a vibration

isolation platform in the same lab as the main experiment table. Both EOMs and most

of the associated fibres are mounted in a home-made stainless steel mount to prevent the

EOM and the fibre from being disturbed by the vibrations. The stainless steel mounts

are placed on the same optical table as the cavity.

Light destined for the main experiment passes through an acoustic optical modulator,

or AOM3, and is subsequently transmitted to the main experiment by optical fibres. The

first order diffraction beam of the AOM is used in the main experiment. The AOMs are

centred at 74 MHz (977 nm) and 80 MHz (1557 nm), respectively. The frequencies of the

lasers are up-shifted by the corresponding frequency. The two AOMs can produce the

laser pulses needed for STIRAP. The driving signals for intensity control are generated by

Direct Digital Synthesis (DDS). The signals are sent to amplifiers (Mini-Circuits ZHL-1-

2W+) and control the shape of the intensity curve by changing the diffraction efficiency.

The beam can be blocked by the shutter before the AOM to prevent light leakage.

The electronic setup of the 977 nm and the 1557 nm laser are identical. Figure 2.17

shows the set-up diagram for offset sideband locking to the cavity. The PDH modulation

signal ωPDH and the signal to mix with the photodiode signal are both from the RIGOL

DG822 2 channel 25 MHz function generator but using different outputs. The two channels

of the function generator are controlled independently. The frequencies of the two outputs

are set to be the same and the phases can be tuned on the control panel of the function

generator. To control the phase difference between the two outputs, the phase of one

output stays fixed and the phase of the other one is tuned. Every time the function

generator is switched on, the phase difference is adjusted to maximise the error signal

amplitude. In terms of PDH modulation frequency ωPDH, the lasers are modulated at

2π × 24.1 MHz (977 nm) and 2π × 18.95 MHz (1557 nm).

The offset modulation signal ωoffset is from another RF signal generator (Windfreak

SynthHD V2) which can output frequencies up to 15 GHz. This frequency is higher than

the free spectral range of the cavity and can produce a locking sideband at any point in

between the cavity modes. The PDH modulation signal and the offset modulation signal

are combined at the combiner(Mini-Circuits ZAPD-2-252-S+) and sent to the fibre EOM.

3ISOMET 1205C-843 for 977 nm and ISOMET M1205-P80L-0.6 (1550nm) for 1557 nm
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Figure 2.18: (a): The PDH error signal at one of the offset sidebands. (b): The cavity

transmission signal of the PDH carrier and the sidebands generated by PDH phase mod-

ulation in terms of the detuning from the carrier frequency (blue) and the same signal

recorded for 20 ms when the laser is locked (black). The two blue lines in (a) and (b)

share the same x-axis. The x-axis of the black line is time and is omitted in the figure

and its y-axis is the same as the blue line in (b). The dotted line crosses zero volts. The

modulation frequency is ωPDH = 2π × 24.1 MHz. It can be seen that the detuning of the

sidebands from the carrier is the same as the modulation frequency. A zoom onto the

centre slope of the error signal is shown in (c). The red dashed line is the fitting to a

straight line.

The choice of the modulation depth of the two modulations are described in Section 2.4.3.

In the experiment the modulation depths are set by the voltage of the modulation signals.

The modulation depth is 1.08(2) for PDH modulation and 2.11(4) for offset modulation

for the 977 nm laser. For 1557 nm laser, by the time this thesis is written, it hasn’t been

properly modulated and locked. The reflected light signal from the cavity is received by

the 800-1700 nm photodiode (Thorlabs PDA05CF2), the bandwidth range of which is

0 − 150 MHz. The photodiode has a quoted responsivity with gain of ∼4.7 V/mW at

977 nm and ∼10.5 V/mW at 1557 nm. The reflected light of the 1557 nm laser and the

977 nm laser are detected with separate photodiodes of the same model. Note that as

shown in Fig. 2.16, the 977 nm laser and the 1013 nm laser are detected on the same

photodiode. These two lasers need to be locked at the same time. To avoid causing

harmonic mixinf of the signals, ωPDH of the 977 nm laser and the 1013 nm laser must be

set as far apart as possible. The 1013 nm laser is modulated at 13.9 MHz. Thus when the

signal from the photodiode is demodulated at the mixer, the error signal of the different

lasers is extracted with the corresponding frequency ωPDH applied to the mixer.

The output of the mixer is processed by the Fast Analog Linewidth Control (FALC)
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pro which is a fast laser locking module from Toptica. It has a quoted 50 MHz bandwidth

and < 10 ns signal delay. This module has a built-in mixer and a PID regulator. The

error signal is processed by the module which produces a signal sent to the laser head to

correct the laser frequency. Behind the mixer, there is a signal at 2×ωPDH in addition to

the error signal which is at DC. To filter the signal at higher frequency, a low-pass filter is

needed. But instead of adding a physical low-pass filter, the piezo in the laser head plays

the role of a low-pass filter due to its limited response time.

νoffsetνoffset

νFSR

Figure 2.19: An example of the error signal that is generated by dual phase modulation of

the light using an EOM. The laser is scanning over a large frequency range to include two

adjacent cavity modes in one scan. The leftmost and rightmost signals are the carriers

and are at the frequencies of the cavity modes. The frequency difference between them

is the free spectral range of the cavity. The two smaller signals in the middle are the

sidebands and are generated by the offset modulation. Their detuning from the carrier

is set be the offset modulation frequency. Here the amplitude of the sidebands are tuned

lower than that of the carriers to show their relations more clearly.

Figure 2.18 shows the error signal measured on the oscilloscope from the monitor

port on FALC and the transmission signal of the cavity including the PDH carrier and

sidebands. The frequencies are the detuning from the carrier frequency. The modulation

frequency is ωPDH = 2π × 24.1 MHz. The error signal is measured with a low pass filter

(Mini-Circuits BLP-5+, 5 MHz) and is further processed by a software low pass filter in

Python, threshold 60 kHz. One can clearly see that the error signal crosses zero at the
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frequencies of the carrier and the sidebands. The transmission signal when the laser is

locked is also shown. All the light is transmitted with small intensity fluctuations around

the peak. A zoom-in to the centre slope of the error signal is given in the right panel.

The steep slope close to zero detuning is approximately linear and can be fitted to a

linear function to find the gradient of the slope to which the laser frequency is stabilised

(red dashed line). From Eq. (2.46) one can calculate the frequency discriminate which

is approximately the gradient of the centre slope. Using the measured cavity finesse

and FWHM in Section 2.3.3 and the modulation depth, we derive that the frequency

discriminant DDSB = 10.4(6) V/MHz. To measure the gradient, 19 error signals are

recorded within 5 hours and the centre gradient of each is calculated using the method

described above. The mean value and standard deviation are then calculated. This

measurement yields a gradient of 11(1) V/MHz ignoring the minus sign as the direction

of the slope is set by the internal FALC design to give the correct feedback to the laser.

The standard error is quoted. The error signals over a wider frequency range is given in

Fig. 2.19 where two sets of cavity peaks are shown. One of the offset sidebands is locked

to the cavity and the carrier frequency can be tuned by changing the offset frequency.

2.5.2 Locking Performance

We expect the laser linewidths below 1 kHz can be achieved using the PDH locking

technique with our cavity. To characterise the performance of the lock, one needs to

measure the laser linewidth with precision below 1 kHz. To do this, one of the techniques

is the self-heterodyne method [43]. In this method, the laser light is split into two paths,

one of which is delayed with a fibre and the light frequency-shifted with respect to the

other before both beams are recombined, and the resulting beat response is measured. The

laser linewidth can be inferred from the width of this beat spectrum [44]. The coherence

length of the laser of 1 kHz linewidth is ∼50 km, which means the fibre must be longer

than 50 km. This is impractical. One can send the laser through the same fibre multiple

times to delay it [45], but the total loss will be too high as there is loss each time the laser

passes through the fibre. Adding a fibre amplifier can compensate this but the amplifier

itself will introduce new noise so the true linewidth still can’t be measured.

Here, we use another method to the optimise the locking parameters and estimate the

laser linewidth. A part of the error signal before the mixer is extracted with a directional

coupler (Mini-Circuits ZFDC-15-6+, CPL=15 dB at 26 MHz) and measured in a spectrum

analyser. Then one can adjust the PID parameters to push away the servo bumps and

reduce the noise around the centre. Figure 2.20 (a) shows the noise spectra when the
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Figure 2.20: The noise of the lock. (a) The noise spectra measured before the mixer. The

x-axis is the frequency deviation from the PDH modulation frequency. The noise spectra

of the unlocked laser (green), optimum lock (orange) and lock with high gain (blue) are

shown. (b) The noise spectrum of the optimum lock measured from the error signal after

the mixer of the locked laser (blue); the background noise from the photodiode and the

spectrum analyser (orange) and the noise from the error signal without locking (green).

The insert shows the same signal measured on a oscilloscope over 2ms, with the black

dashed line showing the RMS voltage.

laser is unlocked (green), locked with the optimum parameters (orange) and locked with

the gain being too high (blue). The x-axis is the frequency deviation from the PDH

modulation frequency 24.1 MHz. With the optimum parameters the noise up to the servo

bump is suppressed comparing to the unlocked laser. The optimum locking parameters

suppresses the noise up to the servo bump comparing to the unlocked laser and pushes

away the servo bump without causing lock oscillation. The lock starts to oscillate when

the gain is too high and the noise around the modulation frequency is increased. The

peak is at ∼1.7 MHz indicating the lock bandwidth is ∼1.7 MHz.

Figure 2.20 (b) shows the error signal measured behind the mixer when the laser is

locked. The peak is at ∼1.7 MHz which agrees with the bandwidth measure before the

mixer. The pulse duration of STIRAP is ∼ 10 µs corresponding to ∼1 MHz. Hence we

care about the noise around 1 MHz the most. The insert shows the same signal measured

on a oscilloscope with a 5 MHz low pass filter in 2 ms which is much longer than the

pulse duration. The RMS voltage is 0.017 V. The voltage fluctuation corresponds to the

laser frequency fluctuation. From the gradient of the error signal central slope that is

calculated in Section 2.5, one can estimate the laser linewidth is about 1.5(3) kHz.

As an outlook, there are two additional methods we can employ to estimate the laser
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linewidth. One: in our previous experiment of RbCs quantum gas in a different lab,

a very similar laser system for STIRAP has already built [24] and ground state RbCs

molecules have been successfully produced [16]. We can estimate the linewidth with the

same method as above and compare the results. Two: in addition the previous mentioned

lab, we are also building a similar laser system for STIRAP for quantum site microscopy

of RbCs in a different lab. Hence there will be three laser system with very similar set-up.

we can beat the lasers in the different labs against each other and measure the width of

the beating signal which gives an idea of the maximum linewidth of all the lasers.

2.6 Main Experiment

In order to perform STIRAP, the lights from pump and Stokes lasers need to be transferred

to another optical table (referred to as the main table) on which the vacuum apparatus

for the atoms is placed and the main experiment is conducted. In this section, we will

discuss the setup on the main table to combine the lights and to focus them to the atomic

cloud. The alignment method will be introduced, too.

2.6.1 Experimental Setup

The whole laser system of the experiment is complex as different laser are needed for

cooling and trapping different species of atoms. Additional lasers are required to excite

atoms to their Rydberg state as this is a hybrid platform of molecules and Rydberg atoms.

Those lasers are irrelevant to STIRAP and are not the focus of this thesis. Since some

of the laser beams are combined with the STIRAP light before being sent to the atoms,

they will be mentioned briefly. Figure 2.21 shows the diagram of the setup to transfer the

beams to the the atoms. The pump and Stokes light are both sent from the “STIRAP”

table (diagram is in Fig. 2.16) using polarisation maintaining (PM) optical fibres. There

are 5 beams combined in total in Fig.2.21. Each beam is shown in one colour. All the

beams are combined by the dichroic mirrors (D1-D3), except the Stokes light (977 nm) and

the light at 1013 nm which have different polarisation and are combined at the polarised

beam splitter (PBS). The optical traps trapping the atoms and the molecules are in the

vacuum chamber. There is a flipper mirror in front of the vacuum chamber. This can

be used to reflect the light onto a camera which is situated roughly at the same distance

from the flipper mirror as the distance from the flipper mirror to the atoms. This allows

us to characterise the beam at the position of the atoms.

It is important to have as high a Rabi frequency as possible to reduce the pulse time
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Figure 2.21: The diagram of the STIRAP laser system on the experimental table. The

pump (red) and Stokes (orange) beams are combined with 3 other beams and sent to the

atomic cloud. The cage systems are employed to focus the pump and Stokes beams to

the atoms, the details of which are given in the main text. The Stokes light at 977 nm

is combined with the light at 1013 nm by a polarised beam splitter (PBS). The other

beams are combined by the dichroic mirrors (D1-D3). Before the vacuum chamber that

contains the atoms, there is a flipper mirror to reflect the beams to a camera placed

roughly at the same distance from the flipper mirror as that from the mirror to the atoms

for characterising the beams. The details of the vacuum are omitted.

during the STIRAP process. The short duration is desired because it makes the transfer

more robust to dephasing given the same dephasing rate. The atoms and the molecules

are trapped in optical tweezers whose sizes are ∼1 µm. Then we aim to make an array

of tweezers to exploit the rich physics provided by the molecules. The STIRAP beams

need to be tightly focused to increase the Rabi frequency but the waist should not be

smaller than the size of the tweezer array. Due to space limitations on the main table,

the STIRAP light outputs (the fibre collimators) must be placed ∼900 mm away from

the atoms, which means the pump and the Stokes lights must be tightly focused at a long

distance. To achieve this, the pump and Stokes beams are shaped using a set of lenses

before combining with the other beams. With this optical system, we are able to focus

the beams as well as adjust the axial and radial position of the beam waist.

Due to the time scale of this project, only the pump light has been focused. The

light from the pump laser is first diverged by a concave lens then converged by a convex

lens to nearly collimated. It is then focused by another convex lens just in front of the
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dichroic mirror D2. The purpose of this is to reduce aberration and beam apodisation on

the further optics. To simplify the alignment, the collimator and the first two lenses are

assembled in a cage system. The concave lens is mounted on a Z-axis translation mount

which offers repeatable Z-axis travel within the cage system (Thorlabs SM1ZA). Moving

this mount along the cage changes the separation between the lenses and the collimator in

the cage system and thus achieves the fine adjustment of the beam waist position without

largely affecting its size. The radial position of the beam can be tuned by the two mirrors

with the differential adjuster (Thorlabs DM22) which can create a fine adjustment of

25 µm/revolution, making the increment as small as 0.5 µm possible. This means the

radial waist position can by moved by 500 µm/revolution, allowing us to align the pump

beam to within ±10 µm. The horizontal size of the waist is 67(3) µm; the vertical size is

40.2(9) µm. This beam size can accommodate ∼10 optical tweezers providing the spacing

between the tweezers is around 4 µm which is the spacing we commonly have. The light

intensity is 3.8(3)× 105 mW/cm2 with 16 mW before entering the chamber.

The Stokes light is also first expanded by a concave lens after outputted from the

fibre collimator then focused by a convex lens. To simplify the alignment, the collimator

and the two lens are assembled in a cage system, too. The waist size can be tuned by

changing the separation between the two lenses. The radial position can be tuned by

the PBS and the mirror. The PBS is mounted on a kinematic mount with two adjusters

(Thorlabs KM100PM). We expect to achieve a beam waist of ∼65 µm. The correspond

light intensity is 3.8× 105 mW/cm2 with 25 mW before entering the chamber.

2.6.2 Alignment to the Molecules

It is important to align the beams to the atoms within a small fraction of the beam size

to get the highest Rabi frequency for the corresponding transitions. Here the technique of

aligning the STIRAP beams to the atoms is described. For coarse alignment, the STIRAP

beams are overlapped with a previously aligned 420 nm beam as shown in Fig. 2.21. This

light is for exciting Rb atoms to a Rydberg state and has been previously aligned by

minimising the number of the atoms in the MOT when the light at 420 nm is switched

on, because this light can disturb the MOT and stop the atoms from being trapped. To

overlap the other beams with it, the flipper mirror is flipped so the lights are reflected

to the direction of the camera (Thorlabs CS165MU/M) that responds to the light with

∼300 nm to 1100 nm wavelength. For the Stokes light at 977 nm, it can be overlapped

with the 420 light on camera. For the pump light at 1557 nm, we use a knife edge instead.

First only the 420 nm light is switched on and the knife edge is set to the centre of the
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beam where the power drops to one half of the total power. Then keeping the knife edge

position fixed, the 420 nm light is switched off and the pump light is switched on and

centred at the knife edge where its power also drops to one half. This process is done in

both vertical and horizontal dimension. Only the pump beam is aligned when this thesis

is written.

After the coarse alignment, the fine alignment can be done by measuring the one-

photon and two-photon spectroscopy signal of the molecule on a strong transition. The

pump light can be aligned by minimising the pulse time and laser power used to remove

the molecules. The Stokes light can be aligned by minimising the pulse time and laser

power needed to obtain the ground state molecules.

2.7 Conclusion

2.7.1 Summary

In this chapter, we discussed the details of STIRAP - the technique to transfer the

molecules to their ground state. We reviewed the theory of STIRAP. We introduced

the offset sideband lock technique along with the cavity theory. We described the laser

system to stabilise the laser frequencies and to perform STIRAP. The laser linewidth is

estimated to be ∼1.5(3) kHz when locked using this technique. The lock bandwidth is

estimated to be ∼1.7 MHz. We developed the method to align the beams to a small

focus at the molecular sample to maximise the Rabi frequencies. We developed a system

to control the light intensities to deliver the pulses needed for STIRAP. We are ready

to perform molecular spectroscopy and transfer of molecules to the ground state using

STIRAP.

42



Chapter 3

AC Stark Effect, Molecular

Polarisability and Magic Conditions

In this chapter, we introduce the effect of the trapping laser on the energy of the rotational

states of the molecules through the AC Stark effect, and demonstrate a “magic trap” which

eliminates the decoherence caused by this effect.

3.1 AC Stark Effect

3.1.1 Molecular Polarisability and the AC Stark Effect

In this section, we derive the Hamiltonian to describe the AC Stark effect in a diatomic

molecule. The coordinate system used in this work to describe the molecular polarisability

and the laser polarisation is shown in Fig. 3.1. We choose the z-axis as the quantisation

axis in which direction the magnetic field is applied. We assume a linearly polarised light

propagating along the x-axis. The direction of the electric field (EDT) of the light, i.e. the

polarisation direction is in the yoz plane. The polarisation has an angle to z of β. The

inter-atomic axis of the molecule lays at an angle θ to z and θ′ to the light polarisation. In

the molecular frame, it’s important to note the polarisability components parallel to the

axis α∥, and the component perpendicular to the axis α⊥, which are typically different.

The molecular polarisability ααα is a tensor in general, describing the polarisation of the

molecule in three directions. In the molecular frame, it can be written as

ααα =


α11 α12 α13

α21 α22 α23

α31 α32 α33

 , (3.1)
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Figure 3.1: The coordinate system to describe the polarisability of the molecule and

the laser polarisation. x, y, z axes form the laboratory coordinate system. z is the

quantisation axis. Assume a linearly polarised light propagating along x, the electric field

of the light is EDT in the yoz plane and has an angle of β to z. Assume the molecule

is also in the yoz plane. 1, 2 and 3 are the axes of the molecule’s coordinate system.

1 overlaps with x. The angle between the inter-atomic axis of the molecule and z is θ,

between inter-atomic axis and the laser polarisation is θ′. α∥ and α⊥ are the polarisability

components along and perpendicular to the inter-atomic axis of the molecule, respectively.

Another α⊥ is parallel to x and is not shown in this figure.

where the subscripts 1, 2, 3 are the axes of the molecular coordinate system as shown

in Fig. 3.1. For a diatomic molecule in a coordinate system shown in Fig. 3.1, we have

α11 = α22 = α⊥ and α33 = α∥, all the other elements are zero. Then we can simplify the

polarisability tensor in Cartesian coordinates to

ααα =


α⊥

α⊥

α∥

 . (3.2)

The molecular polarisability interacts with the oscillating electric field of the off-

resonant light in an optical trap. We assume that the light is polarised along the z-axis

such that β = 0, θ = θ′. The electric field seen by the molecule in its own frame is
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therefore

EEE = E


0

sin θ

cos θ

 , (3.3)

where E is the magnitude of the electric field of the trap light. This is related to the

intensity of the light I by

I =
1

2
ϵ0cE

2, (3.4)

where ϵ0 is the permittivity of free space and c is the speed of light.

Now we are able to construct the Hamiltonian of the AC Stark effect HAC using [46]

HAC = −EEE ·ααα ·EEE. (3.5)

Substituting Eq. (3.2) and Eq. (3.3) into Eq. (3.5) and replacing E2 by the intensity yields

HAC = −(α∥ cos
2 θ + α⊥ sin2 θ)× 2I

ϵ0c
. (3.6)

At this point we choose to define new terms to describe the polarisability of the molecule

α(0) =
1

3
(α∥ + 2α⊥), (3.7a)

α(2) =
2

3
(α∥ − α⊥). (3.7b)

Here, α(0) is the isotropic polarisability and describes the component of the polarisability

that does not depend on the orientation of the molecule with respect to the trap light.

Conversely, α(2) is the anisotropic component of the polarisability and therefore does

depend on the orientation of the molecule. Using these newly defined terms, Eq.(3.5) can

be written as

HAC = −[α(0) + α(2)P2(cos θ)]×
2I

ϵ0c
, (3.8)

where P2(cos θ) is the second associated Legendre polynomial, given by P2(cos θ) =

(3 cos2 θ− 1)/2. Comparing Eq. (3.6) and Eq. (3.8) to the energy of a distributed charge

in the light field ε ∝ −αI, one can see that the total polarisability α(θ) is

α(θ) = α∥ cos
2 θ + α⊥ sin2 θ = α(0) + α(2)P2(cos θ). (3.9)

Now we calculate the matrix elements of the AC Stark Hamiltonian in the basis of

|N,MN⟩, the rotational angular momentum and its projection along z. The wavefunc-

tions in this basis are simply the spherical harmonic functions. Meanwhile, P2(cos θ) is

proportional to a spherical harmonic Y2,0. Though we assumed the polarisation direction

is along z before, this is not always the case generally, hence to obtain a more general
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expression, we need to rotate the polarisation by an angle β by multiplying Y2,0 by the

reduced Wigner rotation matrix d2M,0(β) as the polarisation is only rotated about x. Then

we can derive the matrix elements by integrating. The matrix elements are [47]:

⟨N ′,M ′
N | Iα |N,MN⟩

= Iα(0)δNN ′δMNM ′
N

+ Iα(2)
∑
M

d2M,0(β)(−1)M
′
N

√
(2N + 1)(2N ′ + 1)

×

(
N ′ 2 N

0 0 0

)(
N ′ 2 N

−M ′
N M MN

)
,

(3.10)

where the first term is the isotropic energy, the second term is anisotropic, and the symbols

in the brackets in the second term are Wigner 3j-symbols. The matrix element is non-

zero only when the following three conditions are all satisfied: |N ′ − N | ∈ {0, 2}, 0 ≤
|M ′

N −MN | ≤ 2 and M = M ′
N −MN . The isotropic component α(0) shifts all the diagonal

elements by the same amount and hence doesn’t affect the transition energy, though it

contributes to optical trapping. The anisotropic component α(2) has non-zero off-diagonal

elements which can mix the different hyperfine states in the excited rotational states. For

N = 0, the anisotropic term is zero, so only α(0) contributes to the polarisabilities of all

the hyperfine states, and α(0) is the same for all the rotational states. For N = N ′ = 1, if

we neglect the off-diagonal elements in N , the matrix element with MN ,M
′
N = 0,+1,−1

is [47]

⟨1,M ′
N | Iα |1,MN⟩

= Iα(0) +
Iα(2)

5


2P2(cos β) − 3√

2
sin β cos β + 3√

2
sin β cos β

− 3√
2
sin β cos β −P2(cos β) −3

2
sin2 β

+ 3√
2
sin β cos β −3

2
sin2 β −P2(cos β)

 ,
(3.11)

where all the angular dependence is encoded in β. All the diagonal terms of the matrix

have the P2(cos β) dependence. Therefore all the diagonal elements can be set to zero by

tuning the polarisation β0 ≈ 54.7◦. At this angle all the diagonal elements are removed,

but the off-diagonal terms still play a role and can lead to higher-order shifts in the

energies.

3.1.2 Electronic Transitions

Long coherence times between rotational states are essential for most applications of polar

molecules, e.g. [48]. The energy of the dipole-dipole interaction between RbCs molecules

in a lattice will be of order ∼ 1 kHz. Hence the coherence time must be at least 1 ms
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for experiments to be sensitive to these interaction. The rotational coherence time can

be limited by the trap-induced light shift of the transitions [49]. In the last section we

saw that, α(2) mixes the different hyperfine states in the rotationally excited states, and

the energy shifts and couplings between states of the molecules in an optical trap are

affected by both the light intensity and the polarisation. However, what we have not

yet considered is that the magnitude of α(2) depends on the frequency (or wavelength)

of the trap light. In this section we investigate reducing the light shift of the rotational

transitions of RbCs molecules by tuning α(2) to zero by a trapping laser at the “magic

laser frequency”.

We first briefly introduce the the molecular term symbols for the diatomic molecules.

In those molecules, the electronic spin and orbital angular momenta are conserved. Only

unfilled subshells contribute to those momenta. In general the molecular term symbol

take the following form:

n2S+1Λ
(+/−)
Ω , (3.12)

where n is analogous to the principle quantum number for atoms and uses capital let-

ters X,A,B,C,... for singlet states and lower case letters a, b, c,... for triplet states in

(typically) ascending order of energy with X conventionally being the lowest state; S is

the total spin angular momentum quantum number, Λ is the quantum number of the

total orbital angular momentum of the electrons about the internuclear axis, Λ = 0, 1, 2, 3

corresponds to Σ,Π,∆,Φ; the subscript Ω is then the axial projection of the electronic

angular momentum and nuclear spins; the superscript +/− applies only to Σ states la-

beling the symmetry of the electronic wavefunction with respect to reflection in a plane

containing the nuclei. So the lowest RbCs molecular electronic state is written as X1Σ+.

The molecule-frame polarisabilities α∥, α⊥ depend on the laser frequency. In particular,

tuning close to 1Σ →1 Σ electronic transitions will affect α∥, while tuning close to
1Σ →1 Π

transitions affects α⊥. To develop a rotationally magic trap, we consider a transition from

the ground electronic state X1Σ+ to the excited triplet state b3Π0. The X1Σ+ state is

the ground electronic state. The transition from a single state to a triplet state is usually

forbidden by selection rules. But the b3Π0 state is coupled to the single state A1Σ+

by spin-orbit coupling, therefore, the states in the ground electronic state X1Σ+ can be

coupled to the lowest states of the b3Π0 state which have a small admixture of the A1Σ+

state. This mixing is crucial to enabling STIRAP from the triplet Feshbach state to the

singlet ground state [16]. Transitions to states at the bottom of the b3Σ0 potential are

particularly narrow, facilitating optical trapping with the laser near this frequency with

relatively low photon scattering rates. As we are driving the transition to the admixed

component, tuning close to this transition only affects α∥.
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To eliminate the decoherence caused by the AC Stark shift of the trapping laser, we

will look at the molecular polarisabilities and the AC Stark shift at laser frequencies

near these transitions in Section 3.2 and end up with identifying a “magic frequency”

for rotational states. The resonance transition frequency from the lowest rovibrational

state (v = 0, N = 0) in the X1Σ+ state to the (v′, N ′ = 1) state in the b3Π0 state

is referred to as ωv′ . v′, N ′ denotes the vibration and rotation quantum numbers for

the target electronically excited state in b3Π0. A set of theoretical and experimentally

measured transition frequency values are given in Table 3.1. When near resonance, the

laser frequency ω is referred to as the detuning from the transition frequency ∆v′ = ω−ωv′ .

In this work, the detuning ∆v′ < 2π×10 GHz is describes as near-resonance and medium-

detuned otherwise.

3.2 Theory of the Magic Trap for RbCs

3.2.1 Magic Conditions for (N = 0, MN = 0) → (N = 1, M ′
N = 0)

Transition

Near-resonance Polarisabilities for N = 0 and N = 1 States

In this section, we look at the magic condition where the polarisabilities of the N = 0

and N = 1 ground states are the same by looking for the laser frequencies at which

the anisotropic component of polarisability α(2) of each state goes to zero. We examine

both near-resonance and medium-detuned regimes to find the optimum detuning near the

transitions from X1Σ+ potential to b3Π0 potential. The theory framework of this section

is proposed by Guan et al. in Ref. [49].

We first introduce how the RbCs molecular states are labelled. In the previous section,

the label for the electronic states was already explained. For a given electronic state, there

are multiple vibrational, rotational and hyperfine states. The vibrational states of a RbCs

molecule is determined by the vibrational motions of the Rb and Cs atoms relative to

each other in a diatomic molecule. For a given electronic state, the vibrational states are

labelled by letter v. The transition frequencies between vibrational states are typically

∼ THz, much smaller than those between electronic states. For a given vibrational state,

a molecule can experience different rotational motions and rotational angular momenta

due to the rotation of the atoms over an axis that is not parallel to the interatomic axis.

This type of motions corresponds to the molecular rotational states. In this thesis, the

rotational states are labelled by letter N . The transition frequencies between rotational
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states depends on the angular momenta of the states and the rotational constant Bv which

is related to the associated vibrational state. The typical rotational transition frequencies

are ∼ GHz.

The molecular hyperfine structure is much more complicated than that of atoms. The

total angular momentum of a molecule is FFF =NNN + IIIRb + IIICs. The
87Rb nucleus and the

133Cs nucleus have a nuclear spin quantum number (I) of 3/2 and 7/2, respectively. The

quantum number used to describe the hyperfine states depends on the external magnetic

field. At zero field, the total angular FFF is conserved, hence F is a good quantum number.

With an external magnetic field, a rotational manifold spits to (2N+1)(2IRb+1)(2ICs+1)

Zeeman-hyperfine sublevels. For example, there are 32 sublevels for rotational stateN = 0

and 96 sublevels for N = 1. At low magnetic field, F is nearly a good quantum number

and the states can be approximately described by F and MF . MF is the the projection of

F to the quantisation axis, in this case the direction of the magnetic field. At high field,

the individual projections MN , m
Rb
I and mCs

I become nearly good quantum numbers, as

the magnetic field decouples the different angular momenta. HenceMF = MN+mRb
I +mCs

I

is also nearly a good quantum number. MF is the only (nearly) good quantum numbers

in all regimes. After STIRAP, a magnetic field of 181.6 G is applied to the molecules. In

this regime, the only good quantum number is MF . We use N and MF to label the states.

The absolute ground state of the RbCs molecule at this field is N = 0, MF = 5. The state

with N = 0, MF = 5 is the spin-stretched state. We label the molecular rotational and

hyperfine states in the X1Σ+ electronic potential and v = 0 vibrational state by (N,MF )k,

where N and MF were introduced before, k is the index of the Zeeman sublevels with

the same N and MF in order of ascending energy. So (N = 0,MF = 5)0 has the lowest

energy at the given magnetic field.

Using the results in Ref. [49], the polarisabilities for N = 0,MN = 0 (i.e. N = 0,MF =

5) and N = 1,MN = 0 (i.e. N = 1,MF = 5) states are approximated by

αN=0 = −3πc2

2ω3
v′

Γ0,v′

3∆v′
+

1

3
αbg,∥ + αbg,⊥, (3.13)

and

αN=1 = −3πc2

2ω3
v′

[
cos2(β)

3

Γ0,v′

∆v′ + 2Bv + 2Bv′
+

3 + cos2(β)

15

Γ0,v′

∆v′ + 2Bv − 4Bv′

]

+
2 cos2(β) + 1

5
αbg,∥ +

4− 2 cos2(β)

5
αbg,⊥,

(3.14)

respectively. In these equations, αN is the dynamic polarisability of the rotational state

N , c is speed of light, ωv′ is the resonant frequency of the transition from (v = 0, N = 0)
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state of X1Σ+ potential to (v′, N ′ = 1) state of b3Π0 potential, ∆v′ is the detuning of the

laser frequency from the above stated transition. In this chapter, all the laser frequency

will be referred to as the detuning from this transition unless otherwise stated. The

angle between the laser polarisation direction and the magnetic field direction is β. Note

that this angle is different from the angle θ in Eq. (3.9) which is the angle between the

molecular axis and the magnetic field. Moreover, this angle is the same as the angle β in

Eq. (3.11). Bv and Bv′ are the rotational constants for the v state of X1Σ+ potential and

the v′ state of b3Π0 potential, respectively. The parameter Γ0,v′ is the transition width of

the transition specified by v′; it is given by

Γ0,v′ =
ω3
v′

3πϵ0ℏc3
|µ0,v′ |2, (3.15)

where µ0,v′ is the transition dipole moment between the v = 0 state of the X1Σ+ potential

and the v′ state of the b3Π0 potential. αbg,∥ and αbg,⊥ are the background polarisabilities

in the direction parallel and perpendicular to the molecular axis. In these equations

they include the contributions from all the far-detuned vibrational states in the electronic

states with Ω = 0 and Ω = 1, respectively [50–52].

The actual polarisability of one state consists of the contributions from the transitions

to all vibrational states. The background polarisabilities αbg,∥ and αbg,⊥ account for the

contribution from strong transitions to other potentials which are very far detuned from

the light. To calculate the contribution from the b3Π0 transitions we must also sum over

all possible transitions to various vibrational states. In practice, it’s adequate to include

the transitions up to v′ = 3 as the transition width of the transitions to higher vibrational

states are small enough and can be neglected. The relevant parameters of Eq. (3.13) and

Eq. (3.14) are summarised in Table. 3.1. For some parameters, both the theoretical and

the experimentally measured values are given. In all the calculations in this thesis the

theoretical values are used unless otherwise stated.

Note that Eq. (3.13) and Eq. (3.14) can only describe the states with MN = 0, there-

fore, only the π transitions driven by linearly polarised microwave parallel to the magnetic

field can be described by these equations. In these transitions ∆MF = 0. The linearly

polarised microwave perpendicular to the magnetic field drives σ+ and σ− transitions

(∆MF = ±1 and MN ̸= 0), for these transitions the analytical equations are not valid

anymore.

We consider the transition (N = 0,MF = 5) → (1, 5) and the associated decoherence

mechanism. As described by Eq. (3.9), the molecular polarisability consists of the isotropic

term α(0) and the anisotropic term α(2). The contributions of α(2) to the polarisabilities

of each rotational state are different, causing a shift in the transition frequency between
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Quantity Value Reference

ωv′=0 261533.392× 2π GHz [49]

261571.87(6)× 2π GHz This work

ωv′=1 263036.075× 2π GHz Predicted parameters

for the transition [49]

263065.63(6)× 2π GHz This work

ωv′=2 264533.289× 2π GHz Predicted parameters

for the transition [49]

264555.60(6)× 2π GHz This work

ωv′=3 266025.212× 2π GHz Predicted parameters

for the transition [49]

Γ0,v′=0 15.5× 2π kHz [49]

9.6(1.8)× 2π kHz Paper in progress

Γ0,v′=1 6.84× 2π kHz [49]

7.8(1.5)× 2π kHz Paper in progress

Γ0,v′=2 1.44× 2π kHz [49]

Γ0,v′=3 0.206× 2π kHz [49]

Bv 490.155(5) MHz [53]

490.173 994(45) MHz [54]

Bv′ 510 MHz [49]

αbg,∥ 0.127× h kHz/(W/cm2) [49]

αbg,⊥ 0.0340× h kHz/(W/cm2) [49]

Table 3.1: The summary of the parameters for RbCs molecules up to v′ = 3. v′ is the

label of the vibrational states in b1Π0 potential. ωv′ is the transition energy from the v = 0

state in X1Σ+ potential to the v′ state in b1Π0 potential. The data of transition width

Γ0,v′ , rotational constants Bv and Bv′ and background polarisabilities αbg,∥ and αbg,⊥ are

also listed. For those parameters of which two values are given, the first one is quoted

and the second one is our experimentally measured value.
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(a) (b)

β

Figure 3.2: Dynamic polarisabilities of N=0 and N=1 states at β = 0◦ (a) and 90◦ (b)

calculated from Eq. (3.13), (3.14) and the method described in the main text. The blue

circle in (b) shows the curves of αN=0 and αN=1 cross at 2.7 GHz.

the rotational transitions. This light shift is the dominant source of decoherence in the

processes involving the two states in our previous experiments whenever in an optical

trap. The coherence time τ2 of two states is given by

τ2 =
1

|α1,s − α2,s| × I
, (3.16)

where α1,s and α2,s are the total polarisabilities of N = 0 and N = 1 states by summing

over the transitions to all the vibrational states, I is the light intensity. The coherence

time can be infinitely lone when the polarisabilities of the two states are equal.

We can eliminate the decoherence by eliminating α(2). For the molecules in their

ground electronic state (X1Σ), the transitions to the 1Σ symmetry electronic states con-

tribute to α∥, the transitions to the 1Π symmetry electronic states contribute to α⊥.

When the laser frequency is close to the electronic transitions between v = 0 state in

the X1Σ+ potential and the lowest vibrational states in the b3Π0 potential that is weakly

mixed with A1Σ+, only α∥ can be tuned significantly by the laser. α∥ can be tuned as the

laser frequency changes and α⊥ doesn’t change. This is because that the light is linearly

polarised and near the vibrational transitions which are along the internuclear axis. This

only affects the polarisability parallel to the axis. As α∥ and α⊥ are components of α(2),

by tuning the laser detuning from the transition, one can equate α∥ and α⊥, then the

tensor polarisability term α(2) vanishes. At this detuning the polarisabilities of the two

states are equal and there is no light shift.

We calculate the dynamic polarisabilities of N = 0,MF = 5 and N = 1,MF = 5 states

as functions of detuning and look for intersections to find a potential magic detuning. The

results for the small detunings near the transition from (v = 0, N = 0) state in X1Σ+
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potential to (v′ = 0, N ′ = 1) state in b3Π0 potential are shown in Fig. 3.2. A magnetic

field with a strength of 181 G is applied to the molecules along the z-axis. The cases of

the driving laser polarisation parallel and perpendicular to the magnetic field is shown

in (a), (b), respectively. This is an example to show that αN=0 is independent of the

angle β while αN=1 can be tuned by β. At β = 90◦ there is only one pole in αN=1

comparing to two poles at β = 0◦. Furthermore, the curves of αN=0 and αN=1 cross at

∆v′ = 2π × 2.7 GHz at β = 90◦ (shown by the blue circle in Fig. 3.2 (b)), which makes

it a magic detuning for coupling N = 0 and N = 1 states. At the magic detuning,

αN=0 = αN=1 = −h× 2.71kHz/(W/cm2), so it’s possible to trap the molecules in a low-

field seeking trap U = −Iα?. This crossing feature doesn’t exist for β = 0◦, which means

this magic detuning is still polarisation-dependent and α(2) ̸= 0. From Eq. (3.11) we see

that the polarisability should be independent on the polarisation direction when α(2) = 0,

therefore, this magic frequency is not good enough to tune α(2) to zero. Below we show

that a nearly polarisation-independent magic detuning for N = 0 and N = 1 states exists

in the medium-detuned range.

The Magic Frequency in Medium-detuned Regime

To search for a magic frequency at which α(2) is 0, we calculate the dynamic polarisabilities

of N = 0 and N = 1 rotational states in a wider range of the detuning from the transition

from (v = 0, N = 0) state in X1Σ+ electronic state to (v′ = 0, N ′ = 1) state in b3Π0

electronic state at different laser polarisation. The result is shown in Fig. 3.3. The

polarisabilities are calculated from -1 THz to more than 5 THz. The polarisabilities of

αN=1 state at β = 0◦ and β = 90◦ are both shown. The poles in the figure correspond

to the resonant transition frequencies to higher vibrational states (v′) in b3Π0 potential,

which is indicated on the top of the figure. The inset shows the same quantities in a small

range of ∆v′ in 214 − 226 GHz. It can be seen that all the three curves nearly cross the

same point in the figure, meaning that the dynamic polarisabilities of the two states are

nearly the same at one detuning frequency, and this holds for all the laser polarisation

angles. This suggests a magic frequency exists near the resonance transition frequency

from (v = 0, N = 0) state in X1Σ+ potential to (v′ = 0, N ′ = 1) state in b3Π0 potential

for states N = 0,MF = 5 and N = 1,MF = 5. This magic frequency tunes their dynamic

polarisabilities to nearly identical.

The transition frequency shift δν of the transition from (0, 5) state to (1, 5) state in

the ground electronic and vibrational state is given by

hδν = I(α1,s − α0,s), (3.17)
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Figure 3.3: Main: The dynamic polarisabilities of N = 0 and N = 1 rotational states

in the ground electronic and vibrational state at the detuning more than 5 THz. αN=0

(black line) is independent of the laser polarisation. For αN=1, The polarisabilities for

laser polarisation parallel (red line) and perpendicular (blue line) to the magnetic field

are calculated. The poles in the curves correspond to the resonant transition frequencies

to higher vibrational states. The x-axis is given in frequency. Inset: A zoom-in to the

detuning around 220 GHz (indicated by the box in the main). The three curves nearly

cross the same point.

where h is the Planck constant, I is the light intensity, α0,s and α1,s are the total po-

larisabilities of N = 0 and N = 1 states calculated by summing over the transitions to

different v′ states as described before, respectively. The light shift is proportional to the

difference in the polarisabilities. The results of the polarisability difference are given in

Fig. 3.4. The difference of α1 and α0 for the laser polarisation parallel to the magnetic

field (β = 0◦) and perpendicular to the magnetic field (β = 90◦) are calculated. The poles

in the figure correspond to transitions to different vibrational states. In the x-axis range

of this figure the poles for transitions to different rotational states cannot be resolved.

Once the light intensity is known, the light shift can be calculated. It can be seen that

at the magic detuning, the differences in polarisabilities of both polarisations are zero,

indicating a polarisation-independent magic trap.

Experimentally we can measure the difference of the polarisabilities of the molecules

by measuring the light shift of the transition frequency of (N = 0,MF = 5) → (1, 5) of

the ground electronic and vibrational state. We measure the transition frequencies with
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Figure 3.4: The difference of α1 and α0 over a detuning range from -3000 GHz to 5000 GHz

caused by the AC stark shift of the trapping light. The difference is calculated using the

equations for the analytical dynamic polarisabilities at β = 0◦ (orange line) and β = 90◦

(blue line). The difference in the polarisability leads to the light shift of the transition

(N = 0,MN = 5) → (1, 5). At the magic detuning, the difference in α0 and α1 of both

polarisations vanishes, making light shifts go down to 0.

and without the presence of the light by microwave spectroscopy. The light shift can

be inferred by comparing the transition frequencies with the light on to that in the free

space. The details of the experiment will be given in Section 3.3.

Predicted Coherence Time at The Magic Frequency

We are interested in the coherence time at the magic frequency when we couple N = 0

and N = 1 states. The purpose of the magic trap is to eliminate differential AC Stark

shift between the states we want to couple together and hence create a long coherence

time in a system involving these states. The coherence time τ2 of two states is given by

Eq. (3.16).

We calculate the expected coherence time at the frequencies around the magic fre-

quency for different a light intensity of 600 W/cm2 as shown in Fig. 3.5. This light

intensity corresponds to ∼1 µK trap depth for the polarisability at the magic frequency.

Experimentally the light intensity at the molecules can be readily changed in different

ways; we use a single pass AOM before the fibre to control the light power coupled to the

fibre, or we can use different lenses in the setup to vary the beam waist at the position

of molecules. In Fig. 3.5, the frequencies are relative to νmagic = 218900 MHz which is

the magic detuning frequency at β = 0◦. The results are given in a relative large fre-
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Figure 3.5: The expected coherence time at different polarisation angles. The frequencies

are relative to νmagic = 218900 MHz which is the magic detuning frequency for polari-

sation being parallel to the magnetic filed. An intensity of 600 W/cm2 is used in the

calculation. This intensity corresponds to ∼1 µK trap depth for the polarisability at the

magic frequency. The solid line shows the expected coherence time for β = 0◦; the dashed

line shows the expected coherence time for β = 90◦.

quency range, but the coherence time is still long at hundreds of megahertz away from

the magic frequency. The laser frequency can be stabilised such that the linewidth is

within 20 MHz ensuring a long coherence time.. The coherence time curves of the parallel

polarisation and the perpendicular polarisation don’t overlap well with each other in this

range indicating there’s still a small angle dependence of the magic detuning.

3.2.2 Extend the Magic Condition to Higher Excited Rotational

States

In the previous section, we have shown that there is a magic frequency near the transition

from v = 0, N = 0 state in X1Σ+ potential to v′ = 0, N ′ = 1 state in b3Π0 potential

in the medium-detuned regime. In this section we will show that this frequency is also

near-magic for higher rotationally excited states in the ground electronic and vibrational

state.
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Theoretical Basis of the Magic Frequency for Multiple Rotational States

We employ the same method as the last section to search for the magic frequency for

multiple rotational states, i.e., looking for the crossing in the dynamic polarisability curves.

The general formula of the dynamic polarisability of the rotational states in the ground

electronic and vibrational state illuminated by the light whose frequency is near the

transitions to the states in b2Π0 potential is given by [49]

αN =− 3πc2

2ω3
v′

[
AN(β)

Γ0,v′

∆v′ + LN

+BN(β)
Γ0,v′

∆v′ +RN

]
+ [AN(β) +BN(β)]αbg,∥ + [1− AN(β)−BN(β)]αbg,⊥,

(3.18)

where LN and RN gives the pole positions of the left and the right branch, respectively,

and AN(β) and BN(β) are the angular factors, and all the other parameters were defined

before. The pole positions are

LN = N(N + 1)Bv − [N(N − 1)− 2]Bv′ , (3.19)

and

RN = N(N + 1)Bv − [(N + 1)(N + 2)− 2]Bv′ , (3.20)

where Bv and Bv′ are the rotation constants for the states in X1Σ+ potential and b3Π0

potential, respectively as stated before. The angular factors AN(β) and BN(β) are

AN(β) =


(N+1)(N−1)

2(2N+1)(2N−1)

+ N2+1
2(2N+1)(2N−1)

cos2 β, N > 0

0, N = 0,

(3.21)

and

BN =
(N + 2)(N + 1)

2(2N + 3)(2N + 1)
+

N(N + 1)

2(2N + 3)(2N + 1)
cos2 β, (3.22)

where β is the angle between the linearly polarised laser and the uniform magnetic field.

In Section 3.2.1 we have stated that the transitions from the (v = 0, N = 0) state

of the X1Σ+ potential to all the far-detuned vibrational states of the b3Π0 potential

contribute to the total dynamic polarisability. Below we will give the formula of the

dynamic polarisability including the contribution of all the vibrational states. For this

purpose, one needs to sum the dynamic polarisability over all the vibrational states which

are specified by their transition frequencies ωv′ , transition widths Γ0,v′ and corresponding

laser detuning ∆v′ . Practically one only needs to consider the vibrational states from

v′ = 0 up to v′ = 3, as for higher states the transition widths are too small and can

be neglected (the transition widths are listed in Table 3.1). Therefore, the dynamic
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polarisability near the transition from the rotational state N = 0 of the X1Σ+ potential

to the rotational trapping state of the quantum number N of the b3Π0 potential can be

approximated by

αN =
3∑

v′=0

−3πc2

2ω3
v′

[
AN(β)

Γ0,v′

∆v′ + LN

+BN(β)
Γ0,v′

∆v′ +RN

]
+ [AN(β) +BN(β)]αbg,∥ + [1− AN(β)−BN(β)]αbg,⊥.

(3.23)

The background polarisability terms are not summed as αbg,∥ (αbg,⊥) already include the

contribution from the transitions to all the vibrational states in the electronic states with

Ω = 0 (Ω = 1). In Eq. (3.23), the detuning ∆v′ are relative the the transition frequency

to the corresponding vibrational state in the b3Π0 potential specified by v′, i.e. ωv′ which

can be found in Table. 3.1. Note that for a certain laser frequency, ∆v′ is different for the

different target vibrational states v′, but once the detuning relative to v′ = 0 state is set,

the detuning relative to the other vibrational states will also be set and can be calculated

by subtracting the energy difference between the corresponding vibrational states.

Now we rewrite the equation for the polarisability by making an approximation. Pre-

viously we have seen that the magic detuning frequency for N = 0 state and N = 1 state

at β = 0◦ is 218.900 GHz. We consider the situation where we set the detuning to or

near the magic detuning.. As LN and RN have the same magnitude as Bv and Bv′ which

are less than 1 GHz, the magnitude of the detuning is much larger than that of LN and

RN , i.e. |∆v′ | ≫ |LN | and |∆v′ | ≫ |RN |, and one can Taylor-expand Eq. (3.23) around
LN

∆v′
= 0 and RN

∆v′
= 0. Then it can be derived that

αN = [AN(β) +BN(β)]

[
3∑

v′=0

(
−3πc2

2ω3
v′

Γ0,v′

∆v′

)
+ αbg,∥ − αbg,⊥

]
+αbg,⊥+TN(∆v′ , β), (3.24)

where TN(∆v′ , β) is the remaining term and reads

TN(∆v′ , β) = [AN(β)LN +BN(β)RN ]
3∑

v′=0

(
3πc2

2ω3
v′

Γ0,v′

∆2
v′

)
+O

(
Γ0,v′L

2
N

∆3
v′

)
+O

(
Γ0,v′R

2
N

∆3
v′

)
.

(3.25)

We will analyse this term in detail later. According to Eq. (3.24), one can always find the

detuning ∆v′,cr such that

3∑
v′=0

(
−3πc2

2ω3
v′

Γ0,v′

∆v′,cr

)
+ αbg,∥ − αbg,⊥ = 0 (3.26)

is satisfied by ∆v′,cr. Then the first term of Eq. (3.24) vanishes and the dynamic polaris-

ability becomes

αN = αbg,⊥ + TN(∆v′,cr, β). (3.27)
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N 0 1 2 3 4 5 6

αN/h [Hz/(W/cm2)] 34.00 34.17 34.10 34.06 34.01 33.95 33.88

Difference from αN (%) 0 0.5 0.3 0.2 0.03 -0.1 -0.4

Table 3.2: The values of the dynamic polarisabilities of different states at ∆v′ = 220.32

GHz.

In the medium-detuned regime, we have |∆v′| ≫ |Γ0,v′|, and the remaining term

TN(∆v′,cr, β) can be neglected. From Eq. (3.27) it can be seen that in this case, both

the β-dependence and the N -dependence of αN is eliminated, and for all the rotational

states, the frequency-dependent dynamic polarisabilities are tuned to the same by the

trapping light at this detuning; therefore, the trap is magic for all rotational states at

this laser detuning frequency. This detuning can eliminate the energy shift between the

different rotational states and hence remove the source of decoherence. We describe this

laser frequency as the ”magic frequency” or ”magic detuning”. The value of the magic

detuning is approximately calculated by solving Eq. (3.26) and the dynamic polarisability

is approximately equal to αbg,⊥. Solving Eq. (3.26) numerically gives ∆v′,cr = 220.32 GHz.

The corresponding laser frequency and wave length is 261.75371 THz and 1145.35 nm.

The values of the dynamic polarisabilities of a series of states are given in Table. 3.2.

The Dynamic Polarisabilities Near the Magic Frequency

To have a better idea of the magic frequency, we look at the dynamic polarisabilities of a

series of rotational states as functions of the the laser detuning. We are particularly inter-

ested in the values of the dynamic polarisabilities around the theoretical magic detuning

frequency. Figure 3.6 shows the αN curves with N = 0 to 6 around the magic detuning

near the resonance transition to the v′ = 0 vibrational state in the b3Π0 potential. The

dynamic polarisabilities are calculated by Eq. (3.23). Figure 3.6 (b) shows the zoom-in

figure into the detuning close to the magic detuning frequency. For N = 0, 1, 2, the curves

of αN cross each other in the detuning window of 218 GHz to 219.5 GHz. This forms a

near triple magic frequency window.

The precise crossing points of the curves of α0 and α1, α1 and α2, α0 and α2 are

at 218.90 GHz, 218.15 GHz, 219.20 GHz, respectively. These values are different from

that calculated from Eq. (3.26) despite of the small differences. The difference is due to

the higher-order corrections in the remaining term TN (∆v′ , β). The values of αN at the

near-magic window are consistent with the value of αbg,⊥ as predicted by Eq. (3.27).

For the physics processes that involve three rotational levels, even though the three
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(a) (b)

Figure 3.6: The dynamic polarisabilities of the rotational states from N = 0 to 6 near

the resonance transition to the v′ = 0 state of the b3Π0 potential. A magnetic field of

181 G is applied alone the z-axis. The laser polarisation is parallel to the magnetic field,

i.e. β = 0◦. No electric field is applied. (a) shows the dynamic polarisabilities in a wider

detuning range. The dashed line indicates the position of 0. (b) shows a zoom-in near

the magic detuning. A near triple magic condition exist for N=0, 1, 2.

curves do not intersect each other at the same frequency, their values are very close in the

frequency window of 1.5 GHz wide (from 218 GHz to 219.5 GHz) as shown in Fig. 3.6 (b).

The percent difference |αN − αN ′ |/|αN ′ | for any pair of N and N ′ with N and N ′ being

0, 1, 2 in this window is less than 0.3%. This near triple magic frequency window can be

further tuned to a true triple magic frequency by adding a weak static electric field [49],

but this outside the scope of this thesis.

To further evaluate the validity of the approximation adopted by Eq. (3.24), we can

calculate the remaining term TN(∆v′ , β) given by Eq. (3.25) and compare it to the αN

values in Fig. 3.6 to find the effect of the TN(∆v′ , β) term. As Eq. (3.24) is obtained by a

Taylor expansion, the remaining term is an infinite series of polynomials with each term

being a higher order infinitesimal as the previous one. The first four terms of TN(∆v′ , β)
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β
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Figure 3.7: Evaluation of TN(∆v′ , β). (a) Shows the TN(∆v′ , β) curves of the dynamic

polarisabilities of N = 0, 1 rotational states near the resonance transition to the v′ = 0

state of the b3Π0 potential. (b) and (c) show the zoom-in curves for small detunings and

large detunings around the magic detuning, respectively. The right axes of (b) and (c)

also show TN/αmagic where αmagic is the dynamic polarisability at the magic frequency.

Note the 1/1000 factor of the right axis in (c). The remaining term is large at small

detuning but small for large detunings. At magic detuning it’s very small comparing to

the polarisability value.

are

TN(∆v′ , β) = (AN(β)LN +BN(β)RN)
3∑

v′=0

(
3πc2

2ω3
v′

Γ0,v′

∆2
v′

)

− (AN(β)L
2
N +BN(β)R

2
N)

3∑
v′=0

(
3πc2

2ω3
v′

Γ0,v′

∆3
v′

)

+ (AN(β)L
3
N +BN(β)R

3
N)

3∑
v′=0

(
3πc2

2ω3
v′

Γ0,v′

∆4
v′

)

− (AN(β)L
4
N +BN(β)R

4
N)

3∑
v′=0

(
3πc2

2ω3
v′

Γ0,v′

∆5
v′

)
+O

(
Γ0,v′L

6
N

∆7
v′

)
+O

(
Γ0,v′R

6
N

∆7
v′

)
,

(3.28)

where all the variables were defined before. We can go further and write the complete

form of TN(∆v′ , β) as the sum of the infinite series:

TN(∆v′ , β) =
∞∑
x=1

(−1)x+1

[
[AN(β)L

x
N +BN(β)R

x
N ]

3∑
v′=0

(
3πc2

2ω3
v′

Γ0,v′

∆x+1
v′

)]
, (3.29)

where x is the power of the polynomials. The dependence of TN(∆v′ , β) on the angle β

is hidden in AN(β) and BN(β). This is an alternating series and it converges. Figure 3.7
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shows the results of the calculation of the remaining term TN(∆v′ , β) based on Eq. (3.29).

The conditions in this figure is the same as the conditions used in Fig. 3.6, i.e. the

magnetic field is 181 G and alone the z-axis and the electric field is 0. The angle between

the light polarisation and the magnetic field at both β = 0◦ and β = 90◦ are shown.

Figure 3.7 (a) shows the curves of TN(∆v′ , β) with N = 0, 1 as functions of the detuning

∆v′=0 in the range the same as Fig. 3.6 (a). Figure 3.7 (b) shows the remaining term at

the small detunings; Fig. 3.7 (c) shows that at large detunings near the magic detuning.

In Fig. 3.7 (b) and (c), the ratio between TN(∆v′ , β) and αmagic, TN/αmagic, is also shown

on the right hand side y-axes of the plots.

Since we have AN(β) = 0 and RN = 0 for N = 0, the value of TN(∆v′ , β) is 0 at all

the detuning values for N = 0, which is shown by the black line in the Fig. 3.7. Hence for

N = 0 αN can be strictly expressed by Eq. (3.24) excluding the TN(∆v′ , β) term. But for

the other αN with N ̸= 0 this is not the case. The absolute values of TN(∆v′ , 0) are large

at small ∆v′=0, but decrease rapidly when ∆0 increases. It can be seen from the right

hand side axis of Fig. 3.7 (c) that at magic detuning, the remaining terms are much less

than the dynamic polarisability, with the TN(∆v′ , 0) at all the ∆v′=0 values being within

0.5% of αN . This is consistent with the results shown in Fig. 3.6. Note that Fig. 3.7 is

calculated by Eq. (3.29), but a cutoff number was adopted as an infinite number of terms

cannot be processed by the computer. In this calculation, a cutoff number of 20 was used.

From Fig. 3.6 one can see that a near-magic window exists for N = 0, 1 and 2, but the

dynamic polarisability curves for N = 3 and higher are almost parallel to that of N = 2

in the medium-detuned regime and don’t intersect with the curves of the lower rotational

states. This can be explained by the behaviour of the angular factors AN(β) and BN(β)

in Eq. (3.21) and Eq. (3.22) at large N values. For N ≫ 1, 1/N ≪ 1, then Eq. (3.21) and

Eq. (3.22) can be expanded in terms of 1/N and become [49]

AN(β) =
1 + cos2(β)

8
+O

(
1

N2

)
, (3.30)

and

BN(β) =
1 + cos2(β)

8
+

sin2(β)

8N
+O

(
1

N2

)
. (3.31)

From the expansion we know that when N increases, both Eq. (3.30) and Eq. (3.31)

become independent of N. In Eq. (3.23), [AN(β) + BN(β)] is the coefficient of the ∆v′

term, which means for large N values, the slope of the αN curves in the medium-detuned

regime become similar and the curves are asymptotic if we neglect the remaining term

TN(∆v′ , β). Hence the αN curves are not expected to cross each other but still close

and become almost parallel to each other for high N values. Considering the near-magic
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window for N = 0, 1, 2 and the asymptotic behaviour of the higher N values, a near-

magic frequency to trap the molecules which tunes the dynamic polarisabilities of different

rotational states very close to each other should be possible in experiment.

From the results and the discussions above, we can conclude that a magic frequency

window of a few gigahertz wide exists for multiple rotational states of the ground electronic

and vibrational state. In this frequency window the dynamic polarisabilities of each

state are very close to each other offering significantly long coherence time for the RbCs

molecules going through multiple rotational transitions.

3.2.3 Polarisation Dependence of the Magic Frequency

According to Eq. (3.27), the dynamic polarisabilities of all the rotational levels are the

same at the magic detuning whose value is given by Eq. (3.26) if the remaining term

TN(∆v′ , β) can be neglected. This makes the magic frequency independent of the po-

larisation. However, if we take the TN(∆v′ , β) term into consideration, there is a weak

dependence of the dynamic polarisabilities on the polarisation directions. In this section

we will address the effect of this factor.

Since the dynamic polarisabilities are affected by the angle between the laser polari-

sation direction and the magnetic field direction (denoted by β), the magic frequency is

also affected by this angle. To investigate the effect of β on the magic frequency, we take

a closer look at the analytical equation of the dynamic polarisabilities. The difference

between the dynamic polarisabilities of two rotational states N1 and N2 is given by

αN1 − αN2 = [AN1(β) +BN1(β)− AN2(β)−BN2(β)]

[
3∑

v′=0

(
−3πc2

2ω3
v′

Γ0,v′

∆v′

)
+ αbg,∥ − αbg,⊥

]
+ [TN1(∆v′ , β)− TN2(∆v′ , β)],

(3.32)

where all the variables were defined before. The magic detuning can be found by setting

Eq. (3.32) to zero. If we neglect the TN(∆v′ , β) terms, this can be done by setting the

terms in either the first or the second bracket to zero. We call the terms in the first bracket

the angular term and the terms in the second bracket the frequency term. The magic

detuning given by Eq. (3.26) tunes the frequency term to zero. Then the dependence of

αN1 − αN2 on β only comes from the TN(∆v′ , β) terms, which is a weak dependence. The

reason why the calculated magic detuning deviates from the value predicted by Eq. (3.26)

is that the term in the first and the second bracket as a whole must compensate for the

TN(∆v′ , β) terms which are small. However, when we set the term in the first bracket to

zero, the TN(∆v′ , β) terms actually cannot compensated for so the two-state true magic
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Figure 3.8: Polarisation dependence of the magic detuning for any two of N = 0, 1, 2

states. The magic detuning is the detuning at which the dynamic polarisability curves of

the two states cross. The blue line shows the magic detunings as a function as the angle

β between the laser polarisation direction and the magnetic field direction for N = 0 to

N = 1 states. The orange line shows that for N = 1 to N = 2 states, green for N = 0

to N = 2 states. All the states have MN = 0. (a) Shows the three curves cross at

two points, meaning the three states have nearly the same magic frequencies at certain

laser polarisation. (b) and (c) show the zoom in to the crossings of the magic detuning

curves. Their positions in (a) are indicated by dotted lines. The y axis of (b) νdet,1 =

magic detuning−219414 MHz. The y axis of (c) νdet,2 = magic detuning−218590.1 MHz.

detuning disappears.

we can calculate the magic frequency at different angles by searching for the crossings

of the polarisability curves of two rotational states involved in a physical process. The

magic detunings for three states of N = 0, 1, 2 as functions of β are shown in Fig. 3.8. The

blue line shows the magic detunings for states N = 0 and N = 1. The orange and green

lines show those for N = 1, 2 and N = 0, 2 states. Take the blue line as an example, the

position of the pole is at the angle β that sets the angular term to zero, then the magic

detuning diverges. Around this angle the angular term is not zero but relatively small,

then the detuning needs to deviate more to compensate for the TN(∆v′ , β) terms. In this

angle regime the magic detuning has an increased polarisation dependence. In the regime

β being far from the pole, the polarisation dependence is nearly eliminated. This is the

same case for the other curves, too.

From Fig. 3.8 (a) we can see that at β = 0◦ the magic frequencies for the three

states are very close, but there is a difference of ∼1.5 GHz. This is the same as what we
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see in Fig. 3.6. By considering the angular dependence of the magic detunings, we can

tune the magic detunings by working at certain polarisation direction. On Fig. 3.8, the

three curves cross at two points, meaning the three states have nearly the same magic

frequencies at those laser polarisation. The zoom in plots of the magic detunings at these

β are shown in Fig. 3.8 (b) and (c) show the zoom in plot around the crossings near

50.455◦ and 66.03535◦, respectively. The y axes of Fig. 3.8 (b) and (c) are detuning from

the the value where the three curves cross. In (b) the y axis νdet,1 equals magic detuning

minus 219414 MHz. The y axis νdet,2 of (c) is magic detuning minus 218590.1 MHz.

3.3 Experimental Results

3.3.1 Introduction of the Experiment

In our experiment, we produce the ultracold 87Rb133Cs molecules by magnetoassociate

the pre-cooled 87Rb and 133Cs atoms using Feshbach association [55]. Then the molecules

are transferred to the electronic and rovibrational ground state using Stimulated Raman

Adiabatic Passage (STIRAP) technique [16].

The STIRAP transfers the molecules to the state with N = 0 and MF = 5, the

absolute ground state at the magnetic field of 181.6 G applied to molecules. Using the

state labelling method described in 3.2.1, the ground state at this field is labelled as

(N = 0,MF = 5)0. The details of this process were described in Chapter 21. In our

experiment, the apparatus is able to produce up to 4000 ground state molecules in one

experiment cycle. For imaging the molecules, they are brought back to the free atomic

states by inverting the STIRAP process and tuning the magnetic field back across the rel-

evant interspecies Feshbach resonance. The results atoms are then imaged by absorption

imaging. This means only the population in the absolute ground state is imaged, giving

us a state-selective imaging method.

The 1146 nm light is generated by a homebuilt external cavity diode laser (ECDL)

that produces up to 20 mW light power at the molecules. Depending on the intensity

required, the beam waist can be varied from 20 µm to 440 µm. We can also vary the

power of the light by using a combination of λ/2 waveplate and the polarisation beam

splitter (PBS) cube and varying the waveplate axis direction. When needed, we stabilise

the laser frequency with reference to the 977 nm STIRAP laser using a scanning transfer

1The experimental apparatus for STIRAP described in Chapter 2 in this thesis is in the optical tweezer

lab which is similar but not identical to the optical system for STIRAP in the lab in which the magic

trap experiments were conducted. For a description of the STIRAP apparatus in this lab, see Ref. [24].
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(a) (b)

Figure 3.9: (a): The Rabi oscillations to determine the microwave pulse duration for

a π-pulse. The blue and red lines are the fittings of the data. (b) An example of the

microwave spectroscopy for the transition from (N = 0,MF = 5)0 to (N = 1,MF = 6)0.

The molecules in N = 0 state is imaged.

cavity lock [56]. The estimated upper limit of the locked laser linewidth is ∼20 MHz from

the narrowest features we observed. The frequency of this laser is tuned by changing the

angle of the grating in the laser. The frequency is measured by Bristol Instruments 621A

laser wavelength meter whose operating range is 520-1700 nm and precision 70 MHz.

3.3.2 Spectroscopy of N = 0 → 1 Transitions

Wemeasure the transition frequencies from the ground vibrational state inX1Σ+ potential

to the vibrational states in b3Π0 potential. We shine the 1146 nm laser light on the ground

state molecules for 1 ms with a peak intensity of 7(1)× 10−4 W/cm2. We tune the laser

frequency close to the transition frequencies and measure the number of the molecules in

the ground state. The only allowed transitions are to the rotational states of N ′ = 1 in

each v′ states. A loss of the molecules is expected when the laser is on resonance with an

allowed transition. Thus we can find the centre frequency. We measured the transition

frequencies to the vibrational states with v′=0, 1, 2 in b3Π0 potential. The results are

listed in Table. 3.1 as ωv′ and the references are labelled as “this work”. The transition

frequency ωv′=0 is 261571.87(6) × 2π GHz. The error of this measurement is limited by

the accuracy of the wavelength meter which is 20 MHz. Note that although we have the

precise experimentally measured transition frequency values, in this thesis we still give all

the laser detunings relative to the theoretical value of ωv′=0 = 261533.392×2π GHz unless

otherwise stated. The theoretical value of ωv′=0 is shown in the first row of Table. 3.1.
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We then measure the differential light shift between N = 0 and N = 1 rotational

states. We excite the molecules from (N = 0,MF = 5)0 state to (N = 1,MF = 6)0 state

by the unpolarised microwave with the molecules being illuminated by the 1146 nm laser.

We measure the transition frequency between the two rotational states and compare it to

the transition frequency in the free space to derive the light shift induced by the 1146 nm

light.

Figure 3.9 shows the measurement of the Rabi frequency in the free space and an

example of the microwave spectroscopy. The blue filled circles in Fig. 3.9 (a) show a Rabi

oscillation driven by the microwave at high power; the blue line shows a fitting of the

data and the corresponding Rabi frequency is 7.50(5) kHz. The red empty circles show

the first half period of a Rabi oscillation at lower microwave power; the red line shows the

fitting and gives a Rabi frequency of 0.46(3) kHz. In the experiment, we use the lower

microwave power and a pulse duration of 1 ms to generate a coherent π-pulse to transfer

all the populations to (1, 6)0 state when the microwave is on resonance. Figure 3.9 (b)

shows an example microwave spectroscopy and a fitting of the data to determine the

centre frequency. The x-axis is the microwave frequency relative to the centre frequency

of the transition.

The results of the measurement of the differential light shift between state (0, 5)0

and state (1, 6)0 is shown in Fig. 3.10. The light shift induced by the 1146 nm light is

measured as a function of the laser frequency. In this figure the laser frequencies are shown

as the detuning relative to the experimentally measured transition frequency. The poles

correspond to the transitions to v′ = 0, 1 and 2, respectively. The dashed lines are at the

experimentally measured transition frequencies shown in Table 3.1 by laser spectroscopy;

we can see a good agreement between two measurements. In this figure the transitions

to higher rotational states in b3Π0 potential cannot be resolved but this is not prohibited

by the laser frequency resolution in principle. The destination state of this transition has

MF = 6, which means MN = 1, mRb
I = 3/2, mCs

I = 7/2. The spin-stretched states ensures

that MN is a good quantum number. For other states MN can’t be known for sure.. The

polarisability of this state cannot be described by the theory presented in Section 3.2.2,

hence we cannot fit the data to a theoretical function. But the frequency of the magic

detuning is nearly the same as predicted by the theory we have.
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Figure 3.10: Light shift of the transition from (0, 5)0 state to (1, 6)0 state caused by the

linearly polarised laser at 1146 nm with β = 90◦. Note that the detuning in the x-axis is

given relative to the measured transition frequency to v′ = 0, i.e., 261571.87 × 2π GHz.

The light shift of each point in this figure is measured by microwave spectroscopy. An

example spectroscopy is shown in Fig. 3.9 (b). The dashed vertical lines are at the

previously measured frequencies of the transitions to different vibrational states v′ in

b3Π0 potential. At magic detuning the light shift is 0. The theory presented in Section

3.2.2 and Fig. 3.4 only holds for π transitions and hence doesn’t agree with the results in

this figure.

3.3.3 Rotational Coherence of N = 0 → 1 Near the Magic Wave-

length

We investigate the rotational coherence of the molecules associated with the superposition

of (0, 5)0 state and (1, 5)0 state around magic frequency. For this purpose we can use

Ramsey method which has been an essential method for precision measurement in atomic

and molecular physics since it was first introduced [57]. An example of its application

can be found in Ref. [58]. In this section we first briefly review the principles of Ramsey

method, then the experimental results of the phase-varying Ramsey is presented.

The process of Ramsey sequence can be more easily understood in a Block sphere

representation. Consider a simple two-level system with the ground state |0⟩ and the

excited state |1⟩. |0⟩ is at the south pole of the Block sphere, |1⟩ is at the north pole.

The population is in state |0⟩ initially. In the first step of Ramsey sequence, they are

driven by the microwaves with a Rabi frequency of Ω and a detuning from the resonant
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Figure 3.11: Fringe contrast of the phase-varying Ramsey measurement. Each point

represents a single experiment. The molecules are initially in (0, 5)0 spin-stretched state.

Two microwave pulses are turned on with an evolving time T = 1 ms in between. The

microwave pulse time τ and its Rabi frequency Ω are such that τΩ = π/2, i.e. π/2 pulse.

The microwave frequencies are on resonance with the transitions from N = 0 to N = 1.

We fix the phase of the first microwave pulse and vary the phase of the second pulse

and measure the fringes of the Rabi oscillation. The decrease of fringe contrast is an

indication of dephasing. The blue empty circles show the fringe contrast of π transition,

the red filled circles show that of σ+ transition. The blue dashed line and the red solid

line are a fitting of the data, respectively.

transition frequency ∆ and a pulse duration τ . The angle by which the state vector is

rotated is Ω′τ where Ω′ =
√
Ω2 +∆2 is the effective Rabi frequency. The axis by which

the state vector rotates is determined by ∆ and ϕ0 which is the phase of the microwaves.

A pulse with Ω′τ = π/2, i.e. π/2 pulse drives the state vector to the equator. In the

second step the system evolves freely for a time of T . In this period time the state vector

precess along the equator at angular frequency ∆. Hence if the detuning ∆ is 0, the state

vector will stay at the same place. At last, a second microwave pulse with Rabi frequency

Ω, detuning ∆, pulse duration τ and phase ϕ rotates the state vector by π/2 again. The

rotation axis depends on the phase of the second pulse ϕ.

There are two types of Ramsey measurement one can do. One type is time-varying

Ramsey measurement in which the evolving time T is varied and population in the ground

state is measured, the other type is phase-varying Ramsey measurement in which the

phase of the second e.m. wave pulse ϕ is varied. In both cases the population in the

ground state will oscillate as the time T or the phase ϕ is varied. Due to the gravity, the
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molecules drop from the imaging area of STIRAP, which causes a loss of the molecules,

hence the decrease of maximum population of the ground state during oscillation. As

long as the population in the ground state still goes to 0, the molecular states are still

coherent. The decoherence causes a decrease of the maximum population of the ground

state during the oscillation and an increase of the minimum population, so the ground

state population no longer decreases to zero. One can distinguish the two processes by

measuring the fringe contrast of the oscillation. A decoherence causes the decrease in the

fringe contrast. With no decoherence the contrast should be 1. The fringe contrast is

related to the transition energy shift caused by the AC Stark shift. The contrast decay

exponentially as the evolving time T and the polarisability difference between two states

and reads

C = exp (
−T |∆α|I

h
), (3.33)

where C is the fringe contrast, T is the evolving time, ∆α = αN=1−αN=0 is the difference

in the polarisabilities of the two states, I is the light intensity and h is the Planck constant.

We measure the fringe contrast as a function of laser frequency by a set of phase-

varying Ramsey measurements. We drive a transition between N = 0 and N = 1 rota-

tional states with microwave. The two microwave pulse are both on resonance and are

π/2 pulses. We fix the evolving time T at 1 ms and the phase of the first microwave and

vary the phase of the second microwave. In the whole process the molecule is illuminated

by the 1146 nm light. Then we change the frequency of the light and repeat the Ramsey

sequence to measure the fringe contrast st different laser frequencies around the magic

frequency. The measurement is done for both π and σ+ transitions. π transition refers to

the transition from state |N = 0,MF = 5⟩ to state |N = 1,MF = 5⟩. σ+ transition refers

to the transition from state |N = 0,MF = 5⟩ to state |N = 1,MF = 6⟩. The results are

shown in Fig. 3.11 by blue empty circles (π transition) and red filled circles (σ+ tran-

sition). Each point in the figure is an experiment of Ramsey measurement. The x-axis

of the figure is relative to the experimentally measured magic frequency value νmagic. At

the magic frequency both the π and the σ+ transitions have the fringe contrast equaling

1, which is a sign of full coherence in the period on 1 ms. The blue dashed line and the

red solid line show fittings of the data to Eq. (3.33). The difference of the widths of the

fringe contrast feature is due to the sensitivity of the differential light shift to the laser

frequency of different combinations of the states. It is also inversely proportional to the

Ramsey time which is fixed in this measurement.
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Figure 3.12: The diagram of the two methods to transfer the population from (0, 5)0 state

to (2, 7)0 state. The states are labelled in the uncoupled basis |N,MN ,m
Rb
I ,mCs

I ⟩ but MF

is also given. All the populations begin with the lowest rotational and hyperfine state

(0, 5)0. (a): Two-step transfer between N = 0, 1, 2 using two one-photon transitions. (b):

Two-photon transfer from N = 0 to 2. The N = 1 state is never populated.

3.3.4 Spectroscopy of N = 1 → 2 Transition

Having measured the spectroscopy of the transition from N = 0 to N = 1, in this section

we address the transition further to the second rotationally excited state N = 2 and

confirm the magic frequency is also valid for this state. There are two ways to drive the

transition from the ground rotational state to the second excited rotational state, the

diagram of which are shown in Fig. 3.12. In this experiment we use a two-step transfer

method which is shown in Fig. 3.12 (a). The molecules begin with the lowest rotational

and hyperfine state and is first transferred to (1, 6)0 spin-stretched state by a σ+ microwave

transition. They are further transferred to (2, 7)0 spin-stretched state by a σ+ microwave

with a frequency of ∼1960 MHz.

There is another method which we don’t use in this experiment to transfer the popu-

lation shown in Fig. 3.12 (b). The molecules are transferred using a two-photon process

in a single step. The two microwave frequencies are near resonance but have a detuning

∆. This is to prevent from populating the intermediate N = 1 state. Both microwaves

are turned on simultaneously, the power of them should be tuned such that the two

microwaves have similar Rabi frequencies.

We use the method shown in Fig. 3.12 (a) to drive the transition from (0, 5)0 to (1, 6)0

state. We measure the light shift of the transition frequencies from (1, 6)0 state to (2, 7)0

state as a function of the laser frequency. We first use a resonant π pulse to transfer the

molecules from (0, 5)0 to (1, 6)0 state, the pulse time is 67 µs. Then we pulse on another

π pulse for 1 ms to transfer the molecules to (2, 7)0 state. The power of this pulse is

set such that 1 ms pulse time corresponds to a π pulse. We finally pulse on another π

71



Figure 3.13: The light shift of the σ+ transition from N = 1 to 2 state caused by the

1146 nm laser. The laser frequency is given relative to 261571.87 GHz, the experimen-

tally measured transition frequency. The transition frequency at each laser detuning is

measured by microwave spectroscopy and compared to that in the free space. The red

empty circles show the light shift data of β = 0◦. The blue filled circles show the data of

β = 90◦. The grey shaded area around 0 shows the uncertainty of the free space transition

frequency. The red solid and the blue dashed lines are the fittings of the data to straight

lines. The shaded areas show the uncertainties of the fittings. The two lines cross x-axis

at the same laser detuning within the error.

pulse resonant to the transition from (0, 5)0 to (1, 6)0 for 67 µs to bring any population

remaining in (1, 6)0 state back to (0, 5)0 state for imaging. The reason why we use the

short pulse time for N = 0 → 1 transition is that the molecules can only be held in the

trap of 1146 nm for ∼1 ms and we need to have a lone pulse time for the N = 1 → 2

transition to get a narrow spectroscopic feature. We repeat this process and change the

microwave frequency of the second pulse to measure the spectroscopy of the transition

from (1, 6)0 to (2, 7)0 to find the transition frequency. We first measure the transition

frequency in free space. Then we shine the 1146 nm light on the molecules and measure

the transition frequency shifted by the light. The light shift is the transition frequency

with the light minus the transition frequency in free space.

We measure the light shift of the transition frequency caused by the 1146 nm light

near the experimentally measured magic frequency for both horizontal and vertical light

polarisation. The results are shown in Fig. 3.13. The laser frequencies are given relative

to the experimentally measured transition frequency from v = 0 state in X1Σ+ potential

to v′ state in b3Π0 potential which is 261571.87 GHz. The light shifts caused by the
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light with two polarisations are both zero at the same laser frequency within the error.

This demonstrates a magic laser frequency for the coupling of the (1, 6)0 and (2, 7)0 spin-

stretched states.

3.4 Conclusion

3.4.1 Summary

In this chapter, we present a theoretical calculation of the the “magic frequency” for

RbCs molecules to eliminate the anisotropic AC Stark shift followed by experimental

demonstration of this method. we introduced the AC Stark effect caused by the trapping

light and the corresponding light shift and the decoherence in molecular rotational states.

We derived the matrix elements of the interaction energy, treating the isotropic and

anisotropic components of the molecular polarisability separately. We gave the analytical

equation for the polarisabilities of different rotational states at laser frequencies near

a narrow transition between singlet and triplet electronic states. By investigating the

behaviours of the polarisability, we identify a ∼1.5 GHz wide “near magic” frequency

window in which the polarisabilities of the rotational states N = 0, 1, 2 become nearly the

same. We further demonstrated that the magic frequencies of each states can be tuned by

the light polarisation direction and be within 4 kHz of each other at certain polarisation

direction.

We measured the transition frequencies from the ground rovibrational state in the

ground electronic potential to different vibrational states in the b3Π0 state. We then mea-

sured the light shift of the transition between (0, 5)0 state and (1, 6)0 state by microwave

spectroscopy, from which we show the light shift vanishes at the magic frequency. We

further measured the phase varying Ramsey fringe contrast to confirm that at the magic

frequency, the rotational coherence time for N = 0, 1 states lasts at least 1 ms. We sub-

sequently measured the light shift of the transition from (1, 6)0 state and (2, 7)0 state at

two light polarisation directions and showed that in both cases the light shift becomes

zero at the same frequency. Thus we confirm a magic frequency for N = 0, 1, 2 states

exists.
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Chapter 4

Conclusions

In this work, we have described a laser system to transfer magnteoassociated molecules in

optical tweezers to their ground rovibrational state using STIRAP. This is an important

step towards producing ground state RbCs molecule array defined by tweezers, which

have many applications in quantum science. We have further demonstrated a magic

trapping wavelength that eliminates the differential light shift between the rotational

states of the molecule caused by the AC Stark effect of the trapping light. We expect

that this wavelength can significantly lengthen the rotational coherence time available in

experiments.

4.1 Summary

We have introduced the method to make ultracold RbCs molecules in an optical trap: the

pre-cooled constituent atoms are magnetoassociated using a Feshbach resonance before

transferred to the rovibrational ground state by STIRAP using an intermediate state. We

have introduced the theory of STIRAP based on a three-level system. We then gave the

requirements on the linewidth of the STIRAP lasers. To achieve sufficiently low linewidth,

an active frequency stabilisation technique need to be used to narrow the laser linewidth

as well as ensure the long-term frequency stability. Here a modified Pound-Drever-Hall

(PDH) technique is applied; we introduced the theory of the locking technique: the lasers

are modulated by EOMs and referenced to a cavity to derive the error signal. This allows

the laser frequency to be tunable while locked. We have introduced the cavity theory

and characterised the cavity by measuring its finesse and free spectral range. We have

experimentally demonstrated the locking technique with a simple, robust laser system

and have estimated that the linewidth of the locked laser is ∼1.5(3) kHz and that the
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lock bandwidth is ∼1.7 MHz. Then we have described the setup to combine the beams

and to align the beams to the atoms.

Coherence is essential for many proposed applications of ultracold molecules. In this

work, we have focused on the decoherence introduced by the AC Stark effect of the

trapping laser. We have given the polarisability of the molecules and the Hamiltonian

of the interaction between the linearly polarised light and the molecules. Following the

approach by Guan et al. [49], we have separated the isotropic and the anisotropic term

of the molecular polarisability and given the matrix elements of each of them. We have

then given the equation of the molecular polarisability of different rotational states in

the ground vibrational states. Based on that equation and a series of experimentally

measured parameters, we found a “magic frequency” that eliminates the light shift of the

transitions between the lowest rotational states. We experimentally measure the transition

frequency from the ground electronic and vibrational state to various vibrational states in

the excited b3Π0 electronic state which can be used in the polarisability calculations. We

have measured the light shifts of N = 0 → 1 and N = 1 → 2 transitions near the magic

frequency and confirmed that they vanish st the magic frequency. We further confirmed

the coherence time is maximised on the 1 ms time scale by the fringe contrast of the phase

varying Ramsey measurement.

4.2 Outlook

There are many future goals we would to achieve in our group with the ground state

molecule experiment platform. In this section, we will talk about some of the directions

as a continuation of the work done in this thesis.

4.2.1 Making Ground State Molecules in Optical Tweezers

In Chapter. 2 we have introduced the STIRAP theory and the laser system. Previously in

our tweezer lab, the 87Rb and 133Cs atoms have been successfully prepared in their relative

motional ground state in tweezers [59], which is an important step towards creating RbCs

molecules. During the time this thesis was written, we have seen the success in the

formation of Feshbach molecules in optical tweezer arrays and the subsequent transfer of

the molecules to the ground state using the apparatus described in this thesis.
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4.2.2 Application of the Magic Wavelength in a 3D Lattice

In this thesis we measured the transition frequency to different vibrational states in b3Π0

potential, but we don’t know the transition widths with confidence. The next step is to

measure the light shift near the poles corresponding to the transitions to higher vibrational

states and extract the transition widths. We also notice that the light shift can be zero

at frequencies near these poles, which makes these frequencies “magic” frequency, too.

As a full characterisation, the magic frequencies near higher order poles should also be

measured.

Currently the intensity of the 1146 nm laser we use in our experiment is not high

enough to trap molecules. This limits the time by which we can hold the molecules to

∼1 ms. The next step of implementing the magic frequency is to use another laser source

working at 1146 nm with higher output power to make an optical trap and confine the

molecules. We can then measure the lifetime and the rotational coherence time in the

magic trap.

The further goal of the experiment described in Chapter 3 is to construct a 3D optical

lattice for RbCs molecules. To achieve this, three beams in x, y, x directions are needed.

We can judiciously choose the polarisation directions and the frequencies of the beams

to make a “magic” 3D lattice making using of the polarisation-dependence of the magic

frequency.

4.2.3 Optical Tweezers for Robust Entangling Molecular Gate

Polar molecules have been proposed as a promising platform for quantum information

processing [4, 60] as the strong dipole-dipole interactions between molecules and the long

coherence time makes them a good candidate of qubits. The quantum information can be

encoded in the hyperfine states of the molecules. The molecules trapped in an controlled

array of tweezers is especially a powerful tool for this application [61–64]. A long coherence

time is essential for all the proposed applications. A potential way to extent the coherence

time of the molecules in tweezers is to use the magic frequency investigated in this thesis,

i.e., to use the laser at 1146 nm to make “magic tweezers” and to trap the molecules.
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