
Durham E-Theses

Contributions to Statistical Reproducibility and

Small-Sample Bootstrap

SIMKUS, ANDREA

How to cite:

SIMKUS, ANDREA (2023) Contributions to Statistical Reproducibility and Small-Sample Bootstrap,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/15294/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15294/
 http://etheses.dur.ac.uk/15294/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


Contributions to

Statistical Reproducibility

and Small-Sample Bootstrap

Andrea Simkus

A Thesis presented for the degree of

Doctor of Philosophy

Department of Mathematical Sciences

University of Durham

England

June 2023



Dedicated to
My beloved children, my caring husband, and my inspiring parents



Contributions to Statistical Reproducibility and

Small-Sample Bootstrap

Andrea Simkus

Submitted for the degree of Doctor of Philosophy

June 2023

Abstract

This thesis consists of three contributions: an investigation of bootstrap methods for

small samples, an overview of reproducibility, and advances on the topic of test repro-

ducibility. These contributions are inspired by statistical practice in preclinical research.

Small samples are a common feature in preclinical research. In this thesis, an extensive

simulation study is carried out to explore whether bootstrap methods can perform well

with such samples. This study compares four bootstrap methods: nonparametric predic-

tive inference bootstrap, Banks bootstrap, Hutson bootstrap, and Efron bootstrap. The

thesis concludes that bootstrap methods can provide a useful estimation and prediction

inference for small samples. Some initial recommendations for practitioners are provided.

There are no standardised definitions for reproducibility. This work further contributes

to the existing literature by classifying reproducibility definitions from the literature into

five types, and providing an overview of reproducibility with a focus on issues related to

preclinical research, and on statistical reproducibility and its quantification.

This research explores the variability of statistical methods from the statistical re-

producibility perspective. It considers reproducibility as a predictive inference problem.

The nonparametric predictive inference (NPI) method, which is focused on the prediction

of future observations based on existing data, is applied. In this work, statistical repro-

ducibility is defined as the probability of the event that, if the test was repeated under

identical circumstances and with the same sample size, the same test outcome would be

reached. This thesis presents contributions to NPI reproducibility for the t-test and the

Wilcoxon-Mann Whitney test. As one of the prevailing patterns, a test statistic falling

close to the test threshold leads to low reproducibility. In a preclinical test scenario,

reproducibility of a final decision involving multiple pairwise comparisons is studied.
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Chapter 1

Introduction

1.1 Overview

This thesis presents three contributions: it explores the performance of bootstrap meth-

ods at making an estimation and prediction inference for small samples, it presents an

extensive overview of reproducibility, and it presents some advances on the topic of test re-

producibility. Small-sample bootstrap and statistical reproducibility are under-explored,

yet of considerable importance to scientific research; and they show potential application

in preclinical research.

The first research question explored in this thesis is whether a bootstrap method can

provide useful inference for small samples. In preclinical research, the sample sizes are

usually small. This is mainly due to cost and animal welfare requirements. The main

issue of small samples is that it is hard and sometimes impossible to determine the un-

derlying distribution of the data, and some statistical tests require an assumption of an

underlying distribution, e.g. the t-test requires that the distribution is approximately

Normal. Chapter 2 provides new insights into the performance when it comes to esti-

mating population characteristics, and making prediction inference for small sample sizes

for four bootstrap methods, NPI bootstrap (NPI-B), Banks bootstrap (Banks-B), Hutson

bootstrap (Hutson-B) and Efron bootstrap (Efron-B). It focuses on data simulated from

Normal, Lognormal, Exponential and Mixed-Normal distributions. This study confirms

that the NPI bootstrap method performs well at making prediction inference for small

sample sizes, but it also presents further findings regarding the smoothened bootstrap

2
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methods, Banks-B and Hutson-B, and their performance when it comes to the estimation

of population characteristics.

Bootstrap methods are often used for building confidence intervals, and for estimation

of the bias and standard error of a statistic [71]. Section 2.2 will present a summary

of the use of bootstrap methods in pharmaceutical research. One of the applications is

bootstrap hypothesis testing. Due to small sample sizes, there are many cases where

the Normality assumption is assumed incorrectly and thus the t-test is used incorrectly.

One can use a nonparametric counterpart, such as the Wilcoxon Mann-Whitney test.

However, nonparametric tests are less powerful than parametric ones. This problem can

be overcome by the use of a nonparametric bootstrap method, which does not require

the assumption of a particular underlying distribution. Therefore, bootstrap method

application in hypothesis testing for small samples is what will be explored in this research.

Reproducibility is a highly discussed topic in pharmaceutical settings and in other

research fields. A better understanding of the reproducibility of tests is crucial for pre-

clinical research, as a lack of reproducibility contributes to failure rates in drug discovery

and development processes, increasing costs, and decreasing efficiency. Chapter 3 presents

a literature review on the topic of reproducibility, summarising several important debates.

There is no standardised definition of reproducibility and related terms. Chapter 3 clas-

sifies the available definitions from the existing literature into five categories, which we

refer to as Type A to Type E. Furthermore, this chapter outlines reasons for low repro-

ducibility and suggests ways to improve the reproducibility presented in the literature on

reproducibility and it introduces some reproducibility issues related to preclinical research.

The main focus of this chapter is on statistical reproducibility. Various interpretations of

and debates in statistical reproducibility are discussed, as well as quantification methods

offered in the literature.

This work formulates reproducibility as a predictive inference problem. Statistical

reproducibility provides inference on the probability that the same test outcome would be

reached, if the test was repeated under identical conditions. The nonparametric predictive

inference (NPI) method is used to quantify statistical reproducibility.

NPI statistical reproducibility has been developed by Coolen, Maturi-Coolen, Bin-

Himd and Alqifari [5, 31, 50, 52, 53]. The first application of NPI to study reproducibility
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was presented by BinHimd and Coolen [31,52], who explored NPI reproducibility for sim-

ple nonparametric tests – one-sample sign test, one-sample Wilcoxon signed rank test,

two-sample rank sum test and the Wilcoxon Mann-Whitney test (WMT) – and they

also developed NPI bootstrap [53], which will be introduced in Chapter 2. Alqifari and

Coolen [5, 49] developed NPI reproducibility for tests on population quantiles and for a

precedence test. Coolen, Marques and Coolen-Maturi [144, 145] studied reproducibility

for likelihood ratio tests.

NPI reproducibility has not yet been presented for the t-test, which is a common test

used in preclinical research. This thesis contributes to the literature by presenting NPI

reproducibility for the t-test and its application in a real-world scenario. P -values and

measures of effect size, such as Cohen’s d, play a role in decision making. Thus, as part of

the statistical reproducibility topic, this work explores whether there is any relationship

between reproducibility and p-values or effect sizes. Reproducibility of a final decision

reached through multiple pairwise comparison is also studied. This topic has not yet

been explored in the literature.

NPI reproducibility probability is traditionally expressed in lower and upper repro-

ducibility probabilities. However, it is challenging to analytically derive exact lower and

upper reproducibility probabilities for large sample sizes or for parametric tests. Thus,

this research focuses on the estimation of reproducibility probabilities. Two implemen-

tations of NPI are used to quantify statistical reproducibility: NPI bootstrap (NPI-B)

and sampling of orderings. The NPI-B method provides a point estimate of reproducibil-

ity probabilities while the sampling of orderings method provides estimates of lower and

upper reproducibility probability. The main focus is on reproducibility calculated via

NPI-B. Sampling of orderings is briefly considered in this thesis for both the WMT and

the t-test.

The rest of the chapter is organised as follows: Section 1.2 summarises background

information on preclinical research. Section 1.3 outlines two pairwise comparison tests, the

t-test and the WMT. Nonparametric Predictive Inference (NPI) is presented in Section 1.4

and NPI for reproducibility is introduced in Section 1.5. Sampling of orderings, a method

used to calculate estimates of lower and upper NPI reproducibility, is discussed in Section

1.6. Finally, the outline of this thesis is given in Section 1.7.
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1.2 Background to preclinical research

Preclinical research encompasses all research that is done before a particular drug is

tested on humans. Preclinical research consists of in vivo studies, where initial studies

are carried out on rodents and later studies are carried out on animals more similar

to humans, such as pigs and dogs; and of in vitro studies, which are carried out on

cells, or organ-on-a-chip, such as bone marrow-on-a-chip. This research has been linked

to collaboration with AstraZeneca (AZ). The welfare of animals in animal testing is of

crucial importance and a culture of care is nurtured in preclinical research. For example,

measures are put in place in order to avoid compassion fatigue, i.e. when clinicians become

too hard-hearted. AZ is dedicated to the 3R principles [84]: Replacement, Reduction and

Refinement. Replacement means avoiding or replacing the use of animals, reduction means

minimising the number of animals used and refinement means minimising animal suffering

and improving welfare. This work will further elaborate on these principles in Section 3.5,

which addresses some issues regarding the reproducibility of studies that specifically relate

to preclinical research. Examples of treatment areas in preclinical research are oncology,

asthma and diabetes. There is a variety of different types of studies: for example, in an

efficacy study, the disease response to the drug (or different doses of the drug) is examined

in an animal model, whereas a toxicity study examines the safety profile of the drug, or

different doses of the drug.

In clinical trials, there are regulations that make sure that clinicians follow statis-

tician’s advice, which is not the case in preclinical studies. However, at AstraZeneca,

all scientists have to follow Good Statistical practice (GSP) [160]. GSP is built on 9

statistical principles: animal numbers, analysis, randomisation, experimental procedures,

design, blocking, monitoring, controls and blinding. Also, ARRIVE (Animal Research:

Reporting of In Vivo Experiments) guidelines [10] are followed. In experimental design,

sample sizes and the number of groups is decided based on power; simulations are made

based on historical data, effect size and variance, where both the worst-case and plausible

scenarios are simulated. There is discussion between biologists and statisticians about the

experimental design. Statisticians need to have good social skills, as well as good data

exploration skills. Statisticians advise biologists and carry out statistical health checks

(SHC), they also educate biologists.
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The pharmaceutical industry has moved from standardisation to embracing variabil-

ity because of standardisation fallacy. One of the reasons is the translational failure,

i.e. failure at clinical level following a successful preclinical stage. This failure is partly

due to the fact that animals sometimes react differently to drugs than humans and preclin-

ical research starts with a healthy animal, inducing a medical condition, and subsequently

treating it, whereas human patients already have the disease at the treatment stage. This

topic is interlinked with reproducibility and will be further addressed in Section 3.5.4.

1.3 Pairwise comparison tests

This thesis explores reproducibility in relation to two pairwise comparison tests: the t-test

and the Wilcoxon Mann-Whitney test (WMT). These are the standard parametric and

nonparametric tests for testing a difference in central tendency. Both tests are commonly

used in preclinical research statistical analysis [93]. Their test assumptions are the same

except that the t-test assumes that the data is Normally distributed. Chapter 4 focuses

on reproducibility of the two-sample one-sided tests.

Let X1, . . . , Xnx be independent and Normally distributed random variables with mean

x, sample standard deviation sx and sample size nx. Let Y1, . . . , Yny be independent and

Normally distributed random variables with mean y, sample standard deviation sy and

sample size ny. The t-test compares these two random samples. The t-test tests the null

hypothesis H0: x = y against H1: H1: x > y (in the upper-sided t-test), H2: x < y (in

the lower-sided t-test) or H3: x 6= y (in the two-sided t-test).

The test statistic of the t-test, t, is a standardised value. H1 is rejected if t > tn+m−2,α,

H2 is rejected if −t < tn+m−2,α and H3 is rejected if |t| > tn+m−2,α
2
. The calculation of the

t-statistic and the number of degrees of freedom (df) depends on whether equal variance

of samples is assumed or not. For the equal variance t-test, the t-statistic is calculated

using Equation (1.1).

t =
x− y

sp
√

1
nx

+ 1
ny

, where sp =

√
(nx − 1)s2

x + (ny − 1)s2
y

nx + ny − 2
(1.1)

and df = nx + ny − 2. The calculated sp is the pooled standard deviation.
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The unequal variance t-test is called the Welch t-test and its t-statistic is calculated

via Equation (1.2).

t =
x− y√
s2x
nx

+
s2y
ny

(1.2)

and the degrees of freedom are calculated via Satterthwaite’s correction displayed in

Equation (1.3).

df =
(nx − 1)(ny − 1)

(nx − 1)c2
2 + (ny − 1)c2

1

, where c1 =

s2x
nx

s2x
nx

+
s2y
ny

and c2 = 1− c1 (1.3)

As a complementary to the t-test, Cohen’s d is an often used measure of the standard-

ised effect size for comparisons of two samples. Throughout this thesis, the term Cohen’s

d is used rather than the term standardised effect size to mimic the terminology used in

preclinical research. Cohen’s d is given by Equation (1.4) [43], where s is the average of

the two individual sample standard deviations, sx and sy, i.e. s = sx+sy
2

. Here s is used

instead of sp because two simulated samples in pairwise tests in Chapter 4 are always of

the same size, and the samples in the preclinical scenario in Chapter 4 are nearly of the

same size while their standard deviations are similar.

d =
(x− y)

s
(1.4)

For the Wilcoxon Mann-Whitney test (WMT), there are N = nx + ny observations

of X1, . . . , Xnx and Y1, . . . , Yny , which are two independent and identically distributed

random samples. These samples are mutually independent and their distributions are

continuous. X1, . . . , Xnx is a sample from some distribution F and Y1, . . . , Yny is a sample

from some distribution G. WMT tests the null hypothesis H0: F (t) = G(t) for every t, i.e.

X and Y variables have the same probability distribution but the common distribution is

not specified, against the alternative hypothesis H1: G(t) = F (t− δ) for every t. To test

whether the distribution F is shifted to the left of G, i.e. for positive δ, the upper-sided

WMT is used, whereas to test whether the distribution F is shifted to the right of G,

i.e. for negative δ, the lower-sided WMT is used. To test whether there is any shift, the

double-sided WMT is used.
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Nonparametric WMT ranks the observations from the combined two samples of N =

nx+ny X-values and Y -values. The test statistic of the WMT is the sum of the ranks for

observations from the Y sample. Let S1 denote the rank of Y1, . . . , Sny denote the rank

of Yny . These ranks are within the combined sample. WMT leads to the statistic Z

Z =

ny∑
j=1

Sj. (1.5)

For the upper-tailed two-sample WMT, H0 is rejected if Z ≥ Zα. For the lower-tailed

one-sided two-sample WMT, H0 is rejected if Z ≤ ny(nx +ny + 1)−Zα. Zα is the critical

value and it can be read from the tables, which can be found in [108].

For large samples of X and Y (i.e. with nx > 10 or ny > 10), large sample approx-

imation is used. This approximation is based on the suitably standardised asymptotic

Normality of Z [108]. Under the H0, the mean and the variance of Z are:

E0(Z) =
ny(nx + ny + 1)

2
(1.6)

var0(Z) =
nxny(nx + ny + 1)

12
(1.7)

and the approximate Z is denoted by Z∗.

Z∗ =
Z − E0(Z)

{var0(Z)} 1
2

=
Z − ny(nx+ny+1)

2

{nxny(nx+ny+1)

12
} 1

2

(1.8)

For the upper-tailed one-sided test, H0 is rejected if Z∗ ≥ zα and for the lower-tailed

one-sided test, H0 is rejected if Z∗ ≤ −zα. For α = 0.05, z0.05 = 1.645. The large sample

approximation will be used in the analysis of datasets in Section 4.7.

1.4 Nonparametric predictive inference (NPI)

Nonparametric predictive inference (NPI) [48, 51] has been applied in many areas, for

example, in finance [15], system reliability [54], operations research [47] and receiver

operating characteristic analysis [58]. NPI is based on Hill’s assumption A(n), which is a

post-data assumption that gives conditional probabilities for a future observation [106].
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Let X1, . . . , Xn, Xn+1 be real-valued exchangeable random quantities. X1, . . . , Xn are

observed and the aim is to make inference based on future observations via Hill’s assump-

tion. The ordered observed values are x(1) < x(2) < . . . < x(n) and let x(0) = −∞ and

x(n+1) = ∞, or use known or assumed bounds for the support of the random quantities,

say x(0) = L and x(n+1) = R [47]. Then for the future observation Xn+1, based on n

observations, the assumption A(n) is [47]:

P (Xn+1 ∈ (x(j−1), x(j))) =
1

n+ 1
, for j = 1, 2, . . . , n+ 1. (1.9)

This means that Xn+1 is equally likely to be in any of the intervals created by the ordered

observed data. Note that under A(n) it is assumed that there are no ties. In the NPI

framework, ties can be dealt with by breaking them by a very small amount [56,57,146].

When relevant, jitter function in R is used in this research.

The NPI approach can also be used for multiple future observations via the consecutive

application of Hill’s assumption A(n), A(n+1), . . . , A(n+m−1), which together are denoted by

A(·) [49]. An ordering Oi represents the possible positions of the m > 1 future observations

relative to the n data observations. There are
(
n+m
n

)
possible orderings of m among

the n observations, and under A(·) all these orderings are equally likely [49, 88], as is

implied by Equation (1.10). Let Sij denote the number of future observations in the

interval Ij = (x(j−1), x(j)) given the specific ordering Oi, where i = 1, . . . ,
(
n+m
n

)
and

j = 1, . . . , n+ 1. Here sij are non-negative integers and
∑n+1

j=1 s
i
j = m.

P (
n+1⋂
j=1

{Sij = sij}) = P (Oi) =

(
n+m

n

)−1

, i = 1, . . . ,

(
n+m

n

)
(1.10)

Any specific ordering only specifies the number of future observations in each interval Ij,

no assumptions are made about the exact location of the future observations within the

interval Ij.

Uncertainty is traditionally expressed using lower and upper probabilities in the NPI

framework [13]. This is because the exact position of future points is not relevant within

this framework. What matters is that a future point belongs to an interval Ij between

two consecutive observations x(j−1) and x(j). Lower probability of the event of interest

A is the maximum lower bound for the precise probability of the event A. In hypothesis

testing, the event A could be either the rejection or non-rejection of the null hypothesis.
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Informally, lower reproducibility probability reflects the evidence certainly in favour of

the event A [13]. In the NPI framework, lower probability takes into account only the

orderings of m future observations among the n current observations for which the event A

has to hold [49]. Upper probability is the minimum upper bound for the event A, reflecting

all evidence that could be possibly in favour of the event A. In the NPI framework, upper

probability takes into account all orderings for which the event A could hold [49].

A note on exchangeability

Hill’s assumption requires that random quantities are exchangeable. Exchangeability

does not imply a form of dependence, else one could not learn from the observations

about non-observed random quantities, but one cannot just add any form of dependence.

For example, one could not add a constraint, nor another known form of dependence.

Exchangeability also does not imply a form of independence. If random quantities X and

Y are independent, then any information we get (or assume) about X does not change our

knowledge or beliefs about Y . A(n) is employed in cases where there is little knowledge

about the random quantity of interest or when a choice has been made not to use this

information, thus independence is not a suitable assumption.

In the NPI framework, exchangeability implies - for real-valued quantities - that the

orderings are equally likely before observing the values. In a frequentist statistics setting,

A(n) then fills in the values of n observations and hence leads to the 1
n+1

probability for

the future observation to be inside each interval between two consecutive observations.

Strictly speaking, if one would attempt a minimal formulation, X1, . . . , Xn+n (for n future

observations) would not need to be exchangeable, as only the A(·) assumptions are needed.

Hence the exchangeability of the first n (which are being observed) would not be required.

Nevertheless, it makes sense to assume that all the random quantities are exchangeable.

1.5 NPI for reproducibility probability

Reproducibility and statistical reproducibility are widely discussed topics and their def-

initions are not clearly defined in the existing literature, as will be demonstrated in

Chapter 3. This thesis focuses on statistical reproducibility and it interprets it as a pre-



11

diction problem. It narrows statistical reproducibility down to the variability of statistical

methods, which exists due to the variability of data, rather than further aspects of re-

producibility. This thesis adopts the following definition of statistical reproducibility: the

probability of the event that, if a test was repeated under identical circumstances and

with the same sample size, the same test outcome would be reached. The classical fre-

quentist approach is unsuitable for solving a predictive problem, thus NPI, as described

in Section 1.4, is employed. NPI is focused on future observations, making it a good

approach for inference on reproducibility.

In the setting of hypothesis tests, the test outcome means the rejection or non-rejection

of the H0. Statistical reproducibility can be determined in the following manner: After

performing a hypothesis test on the original sample of size n, we determine whether or

not to reject the H0 based on the value of the test statistic. We then predict a future

sample of size n, where all orderings of the n future observations among the n actual

data observations are equally likely. Next, we determine whether H0 is certainly rejected,

possibly rejected, possibly not rejected, or certainly rejected for each ordering of the future

observations. For the lower reproducibility probability, we count all orderings for which

the conclusion is certainly the same as for the actual test for the lower reproducibility

probability. For the upper reproducibility probability, we include the ‘possibly’ orderings

where the conclusion is the same as for the actual test.

The NPI reproducibility probability does not imply anything about getting the test

outcome ‘right’; for that, traditional aspects of hypothesis testing, such as the level of

significance, power and other related post-data metrics, are relevant. To calculate NPI

reproducibility, the full data set is required; different data with the same value of the test

statistics can lead to different reproducibility values. To provide high quality analysis,

other statistical methods including power, effect size (ES) and p-value could be used

together with statistical reproducibility. NPI reproducibility is another property that

allows decision makers to extend the decision-making capacity in making more robust

decisions. In pharmaceutical research, at each stage of the process one needs to decide

whether to continue to a further study or repeat the test. NPI reproducibility probability

is another metric to help the team of practitioners and statisticians make this decision.

As will be explained in Section 3.5, in preclinical research, the discussion of repro-
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ducibility is focused on adhering to good statistical practice and on embracing the in-

evitable variability caused by the use of animals. NPI reproducibility research is not

concerned with the issue of deviations stemming from the fact that animal testing is

never carried out under identical conditions, e.g. mice have slightly different properties

and new experiments are often carried out in different laboratories. This research is solely

and exclusively limited to the investigation of reproducibility of statistical tests, based on

the original test scenario data and the description of the data and the statistical analysis.

While much of the discussion on reproducibility in the literature is on whether an exper-

iment can actually be reproduced under similar circumstances, that is irrelevant for NPI

reproducibility because NPI reproducibility does not include an actual second experiment.

1.6 Sampling of orderings to estimate NPI-RP

NPI reproducibility is customarily expressed in lower and upper reproducibility prob-

abilities, RP and RP , because A(n) is not a sufficient assumption to calculate precise

probability of an event A, as discussed in Section 1.4. BinHimd [31] presented a method

for calculating RP and RP for the upper-tailed two-sample Wilcoxon Mann-Whitney

test (WMT) by considering all the orderings of m future observations among the n cur-

rent observations. This method will be further described in Section 4.5.1. However,

calculating precise RP and RP is computationally not feasible for larger sample sizes,

as shown in BinHimd’s thesis [31], but it is possible to estimate them. NPI bootstrap

(NPI-B), which will be introduced in Section 2.3.3, is one of the tools that can be used to

estimate reproducibility probability. However, NPI-B provides a point estimate of repro-

ducibility probability, it does not enable presentation of the results in terms of imprecise

reproducibility probabilities. This thesis explores a method that calculates estimates for

lower and upper reproducibility probabilities through sampling of orderings. Instead of

analytically deriving lower and upper reproducibility through considering all the possible

orderings, only a selected amount of orderings is sampled. Sampling of orderings for the

likelihood test was presented by Marques et al. [55, 144,145].

Sampling of orderings reduces the computing time and enables the calculation of esti-

mates for imprecise reproducibility probabilities for larger number of original points. This
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method will be illustrated in Chapter 4: the sampling of orderings method is employed

to calculate the estimates for NPI-RP for the Wilcoxon Mann-Whitney test in Section

4.5 and then the heuristics for approximating NPI-RP lower and upper reproducibility

probability for the t-test are presented in Section 4.6.

1.7 Outline of the thesis

The rest of this thesis is organised as follows: Chapter 2 compares the performance of

different bootstrap methods for estimation and prediction inferences via a simulation

study. The focus is on making inferences for small samples. Both Normal and other

distributions are considered in this simulation study. Chapter 3 introduces the topic of

reproducibility. It addresses the issue that there are no standardised definitions for re-

producibility and it classifies the definitions from the literature into five types. Reasons

for bad reproducibility and suggestions for improvement offered in the literature are dis-

cussed. The chapter further provides insights into the discussions regarding statistical

reproducibility. An overview of metrics for quantification of reproducibility is presented

and, finally, the NPI method for quantification of reproducibility is placed in the context

of the wider literature. Chapter 4 explores reproducibility for pairwise tests. An algo-

rithm for calculating bootstrapped reproducibility for the pairwise t-test is presented and

explored in a simulation study; and an algorithm for calculating the reproducibility of the

final decision, when multiple pairwise comparisons are carried out, is introduced. Both

algorithms are applied to a real-life scenario from preclinical research. This part of the

chapter is based on a paper co-published by the author of this thesis in the Statistical

Methods in Medical Research journal [192]. Estimation of lower and upper reproducibil-

ity probabilities via the sampling of orderings is illustrated on the WMT and heuristics

for approximating NPI-RP lower and upper reproducibility probability for the t-test are

discussed. NPI reproducibility estimation via both the NPI-B method and the sampling

of orderings is further illustrated on the rate of growth data for not Normally distributed

datasets. The thesis concludes with a summary of the findings and with the formulation

of future research questions in Chapter 5. Calculations have been done using R versions

3.2.4 (Chapter 4) and 3.6.3 (Chapter 2). R code is provided in Appendix C.



Chapter 2

Bootstrap performance for small

samples

2.1 Introduction

Smaller samples are common in biomedical research [177]. These smaller samples are

limited in the ability to justify model assumptions underlying most classic statistical

techniques. Within the setting of biomedical research, there are often few historical studies

to guide the decision-maker on assumptions about the underlying distribution of the data.

Thus, there is an increased possibility of making decisions based on wrong assumptions.

For example, sometimes Normal distribution is assumed incorrectly with small sample

sizes. In such cases, the data might contain outliers, or the Normal distribution might

not fit the data well. Therefore, there is practical value in exploring bootstrap methods

for smaller samples.

In the literature, we have not encountered Efron-B as a commonly used method in

preclinical studies with small sample sizes. This could be because the most commonly used

bootstrap method for the quantification of uncertainty in the estimation of parameters,

Efron-B, is not considered to be a reliable method for very small sample sizes [42, 201].

Efron-B has primarily been created for large samples, where it shows good performance in

estimation. The main argument supporting Efron-B, the asymptotic argument, is based

on the fact that the empirical distribution, from which a sample is taken in Efron-B,

converges to the real underlying population distribution if the number of data increases

14
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to infinity [27]. However, Efron-B does not perform well in the case of estimation for small

samples as it does not provide good coverage [18]. Efron [78] proposed bias-corrections to

his bootstrap method, bias-corrected and accelerated bootstrap (BCa) and approximate

bootstrap confidence (ABC) intervals, to improve the bootstrap coverage, but he admits

that “their coverage accuracy can still be erratic for small sample sizes” [78].

The purpose of this chapter is to compare four bootstrap methods: Efron bootstrap

(Efron-B), Banks bootstrap (Banks-B), NPI bootstrap (NPI-B) and Hutson bootstrap

(Hutson-B), when applied with small samples. This chapter provides new insights into

the performance in making estimation and prediction inferences for small sample sizes

for these four bootstrap methods. The investigation is done via a simulation study car-

ried out for data simulated from Normal, Lognormal, Exponential and Mixed-Normal

distributions. This chapter considers the estimation of various population characteristics:

mean, median, variance, first quartile (Q1), third quartile (Q3) and interquartile range

(IQR). The main research question is whether a bootstrap method can provide useful

information when used with small samples. Another aim of the study is to provide some

initial recommendations on the small-sample bootstrap for practitioners.

Banks-B is not a well-known bootstrap method, but it has potential to successfully

quantify the uncertainty in sample-based estimates of population characteristics for small

samples [18]. Hutson-B [111] has been introduced as a new quantile function estimation

method for generating bootstrap samples, rather than a bootstrap method. This thesis

views it, however, as a bootstrap method. NPI bootstrap has been developed for pre-

diction inference. Efron-B has been used in bootstrap hypothesis testing to calculate

approximate p-values when comparing means of two samples. Initial investigations have

been done for small sample sizes by Dwivedi et al. [73]. Section 2.6 extends this study to

include Banks-B and NPI-B.

This chapter begins by reviewing some of the uses of bootstrap methods in phar-

maceutical research in Section 2.2. These are mostly based on Efron bootstrap. This

section focuses on application of bootstrap methods in both preclinical and clinical re-

search. Most of the literature has focused on large samples and clinical studies rather

than preclinical studies with small samples. Section 2.3 introduces four bootstrap meth-

ods (Efron-B, Banks-B, NPI-B, Hutson-B) and percentile and BCa confidence intervals.
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Section 2.4 assesses the performance in the estimation of population characteristics for the

four bootstrap methods. This is followed by a comparison study of the bootstrap methods’

performance in prediction in Section 2.5. Section 2.6 explores bootstrap hypothesis test-

ing, including Banks-B and NPI-B in the investigation. Section 2.7 summarises findings

of this chapter and outlines suggestions for potential future research.

2.2 Bootstrap methods in pharmaceutical research

This section will introduce, rather than give a completely overview of, some of the practi-

cal uses of the bootstrap method. It focuses on the published literature utilising bootstrap

methods in pharmaceutical research. Most of these examples are from clinical research

and they focus on large sample sizes. These applications will be introduced first. We en-

countered only few studies focusing on small sample sizes and only one of them presented

a real life example from preclinical research. The possible explanation for bootstrap meth-

ods not being commonly used with small samples is that the most commonly known and

applied bootstrap method is Efron’s bootstrap, which has not shown good performance

for small samples, as discussed in Section 2.1. This overview serves as both a motivation

for the exploration carried out in this chapter, and as a list of possible areas that could

be explored with bootstrap methods for small samples. This chapter will show that the

bootstrap method has a potential use for small samples. Bootstrap applications for large,

medium and small samples are presented in Sections 2.2.1, 2.2.2 and 2.2.3, respectively.

There is no universally accepted definition of small, medium and large sample size and

it is outside the scope of this thesis to discuss what sample size is still small and what

is not. This thesis will focus on sample sizes n = 4, 6, 8, 10 when assessing the boot-

strap method’s performance in estimation and on n = 4, 6, 8, 10, 20 when assessing the

bootstrap performance in prediction.

2.2.1 Applications for large samples

In practice, the Efron’s bootstrap method is often used to estimate bias and standard

error, or to construct confidence intervals [71]. An accurate estimate of the uncertainty

associated with parameter estimates is important to avoid misleading inferences. Walters
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and Campbell [204] explored Efron-B use in the estimation of standard errors and BCa

confidence intervals, which will be defined in Section 2.3.5, for parameters calculated

during the analysis of health-related quality of life outcomes (HRQoL). An example of

such parameter estimate, θ̂, is the mean difference (intervention mean - control mean).

HRQoL data are often recorded on an ordinal scale and they typically have bounded,

discrete and skewed underlying distributions and the sample sizes are large. In four

studies, the bootstrap method was compared to the conventional statistical methods,

such as the linear regression. Conventional ordinary least squares estimates of standard

error and confidence interval for the group regression coefficient were compared with

their bootstrap counterparts. The sample sizes in these studies were large: they range

from 100-250. Walters and Campbell [204] concluded that the conventional statistical

methods and the bootstrap methods produced similar results, i.e. similar standard errors

and confidence intervals.

Efron-B has also been used in hypothesis testing [97]. Walters and Campbell [204]

explored the use of Efron-B for hypothesis testing, using algorithm from Efron and Tib-

shirani [78, p.224], when analysing the above mentioned four studies focused on HRQoL.

Walters and Campbell [204] concluded that the bootstrap method led to similar p-values

as the conventional statistical methods. The explanation for this conclusion could be

linked to the use of sufficiently large sample sizes. According to the central limit theorem,

sample means are approximately Normally distributed for large sample sizes. Thus, the

t-test is an appropriate test for large samples. Similarly, Efron-B is suitable for large

samples, as explained in Section 2.1.

Bootstrap methods have also been applied in power and sample size calculations

[164,170]. Traditional methods for power and sample size calculations require an estimate

of treatment effect and sample variance, and they are based on known distributions [164].

However, there are cases where traditional power calculation methods cannot be used, i.e.

when the Normal distribution cannot be reasonably assumed, or where the study decision

is based on co-primary outcome measurements [164]. Co-primary outcome measurements

were not defined in [164] but, in a different source, co-primary endpoints were defined as

“two or more trial endpoints, each measured among a group of patients and each equally

important in determining efficacy” [39], where the endpoint is a clinical variable reflecting
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the condition of a disease. Peng et al. [164] illustrated the application of the bootstrap

method in the power analysis and sample size estimation on two examples of clinical trial

designs, both focused on large samples. In the first example, in a study of a drug for the

Alzheimer’s disease, two co-primary outcome variables, one with categorical data and one

with data on a continuous scale, were compared between treatment and placebo group.

The focus was on sample sizes varying from 75 to 125. For each variable, p-value was

calculated: p1 and p2. H0 was not rejected if p1 ≥ α or p2 ≥ α for some given α. The aim

of the study was to determine the sample size which would provide 80% dual outcome

power. Dual outcome power is “the probability of observing a significant drug versus

placebo comparison with respect to both primary efficacy variables” [164]. Data for each

outcome variable of each group were generated. For the continuous variable, random data

were generated, based on the given population mean and standard deviation. For the cat-

egorical variable, a probability distribution of a categorical variable was used to calculate

its cumulative distribution, and pseudo-random numbers were generated and mapped “to

categorical values by associating the quantile to that random number” [164]. In the sec-

ond example, bootstrap power analysis was carried out for the stratified Wilcoxon test for

sample sizes varying from 100 to 900. Power was calculated in two steps: First, a large

number of bootstrap sample data sets were generated from the original trial data set.

Secondly, the original statistical test was applied to each bootstrap data set generated

and power was estimated as the percentage of the times the null hypothesis was rejected

for these bootstrap samples [164].

2.2.2 Applications for medium samples

So far, the cited literature focused mostly on large samples. The focus of this section will

be on medium sample sizes. Barber and Thompson [20] compared conventional methods,

such as the t-test and the Wilcoxon Mann-Whitney test, and bootstrap hypothesis testing

for comparison of the arithmetic mean of costs in two treatment groups. The cost data

are from health economic evaluations, which guide health care policy decisions. The

data are often highly skewed [20]. Two examples were given, one of large sample size

(n1 = 70 and n2 = 74), and second of medium sample size (n1 = 18 and n2 = 14).

It could be argued that in the first example the sample size is medium, not large and
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that in second example the sample size is small, not medium. Barber and Thompson

concluded that for the large sample size study, the t-test yielded similar results as the

bootstrap hypothesis test. For small to medium sample sizes, Barber and Thompson [20]

recommended to report bootstrap analysis results, or to use these to check robustness of

parametric methods. The named advantage of using bootstrap methods was the avoidance

of having to make assumptions about the underlying distribution of the data. However,

Barber and Thompson [20] highlighted that bootstrap methods rely on the assumption

that the empirical distribution adequately represents the true distribution of the data.

Barber and Thompson [20] recommended using BCa or bootstrap-t confidence intervals

rather than percentile confidence intervals because coverage error for percentile confidence

intervals can be large if the distribution of θ̂ is not symmetrical around the observed

value [20]. The applicability of bootstrap-t confidence intervals for the estimation of

location statistics has also been suggested by Efron and Tibshirani [78].

The bootstrap method has been used in human immunophenotyping research. Holmes

and He [109] employed Hutson-B, which will be introduced in Section 2.3.4, and they re-

ferred to it as Q(n)-bootstrap. Clinical studies in this area usually have small and wide

datasets, 1 < n < 50 of human participants, and, for each participant, many param-

eters 1 < p < 1000 are estimated. The underlying distribution of the data cannot be

ascertained. Thus, the bootstrap method was chosen to estimate immune parameter.

Q(n)-bootstrap presumes linearity for extrapolation but it does not assume any stronger

assumption [109]. Holmes and He [109] gave an example of medium size participants of

study, with n = 35 participants, related to seasonal dose of influenza vaccine. The study

was interested in age-related changes in immune features and simple linear regression was

applied. The sample order statistics of the regression residuals were used for the estima-

tion of the quantile function [109]. Resampling with B = 2500 bootstrap samples was

carried out from residuals and the stratified sampling study design was used. The goal

of the study was to calculate confidence intervals on parameter estimates, imposing min-

imum assumptions on the data, while obtaining accurate and not too narrow confidence

intervals in order to achieve minimal bias, low variance and interpretability [109]. Holmes

and He [109] concluded that confidence intervals based on Efron-B with percentile CI were

narrower than for Q(n)-bootstrap, Hutson-B, for approximately 68% of the 229 features.
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Q(n)-bootstrap had better coverage probabilities compared to Efron-B with both per-

centile CI and bootstrap-t CI, and compared to smoothed kernel quantile estimator [186].

Holmes and He [109] credited the improvement of the coverage probabilities to the tail

extrapolation.

2.2.3 Applications for small samples

Tsukamoto et al. [200] used the bootstrap method in the diagnostics of neurodegener-

ative diseases. When evaluating images from positron emission tomography (PET) or

single-photon emission computed tomography (SPECT), it can be assumed that data dis-

tribution may be inappropriate and, thus, it is appropriate to choose a method which does

not require an assumption about the underlying distribution of the data. Tsukamoto et

al. [200] proposed the use of nonparametric bootstrap, Efron-B, or smoothed bootstrap,

a slightly adjusted Hutson-B, in the statistical evaluation of the decrease of regional cere-

bral blood flow (rCBF), a measure of local neuronal activity, in a SPECT image. The

two bootstrap methods were used to calculate a standardised distribution of the Z-score.

Z-scores were calculated for each pixel value at (k, l) coordinates of an image for both

the control and patient data set of sample size n. Pixels are the smallest components

in the digital image. The decrease of rCBF at the pixel was considered statistically sig-

nificant when a Z-score exceeded a threshold, T0 [200]. In the example given, control

data set of n = 95 images was studied. In the simulation, subsamples from the original

dataset of small to medium sample sizes, n = 5, 10, 15, 20, 30, 40, were considered. For

each sample size, 20 datasets were subsampled. For each sample, B = 5000 bootstrap

samples were created. Tsukamoto et al. [200] concluded that both bootstrap methods

produced more consistent results than traditional methods for small samples, n = 5, 10,

and in cases where the control set was small, the smooth bootstrap method, Hutson-B,

was recommended.

Dwivedi et al. [73] performed an extensive simulation study to compare the nonpara-

metric bootstrap test with standard parametric, nonparametric, and permutation tests,

for comparisons of means of two independent samples, two dependent samples, and more

than two independent samples, for data of various sample sizes, n = 3, 4, 5, 6, 7, 8, 9, 10, 15,

from both Normal and skewed underlying distribution. As discussed in Section 2.1, min-
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imum or even no assumptions can be made about the underlying distribution of the data

with small samples, and Efron-B does not provide good coverage for small samples [18].

Dwivedi et al. [73] addressed the latter issue by drawing Efron-B samples from the com-

bined original sample. Note that Dwivedi et al. used the phrase pooled sample, the phrase

combined sample will be used in this chapter instead, as the term pooled is usually associ-

ated with variance. Hall and Wilson [97] also advised that resampling should reflect the

null hypothesis, as this increases the power of the bootstrap test. Let θ̂ be the estimate of

the data characteristics calculated from the original data sample and θ̂∗ be the estimate

calculated from the bootstrap sample. Hall and Wilson [97] explained that resampling

|θ̂∗ − θ̂| is more meaningful than resampling |θ̂∗ − θ0|. This is because if θ0 is far from

the true value of θ, then the difference |θ̂∗ − θ0| will not appear large compared to the

nonparametric bootstrap distribution of |θ̂∗ − θ0| and the bootstrap test is less likely to

reject the null hypothesis even in cases when the alternative hypothesis is true. Moreover,

drawing bootstrap samples from uncombined original samples leads to less resampling

variability [73]. Dwivedi et al. [73] concluded that the pooled nonparametric bootstrap

t-test is preferable to other statistical methods for small sample size studies for the com-

parison of two means. This is especially the case when comparing two datasets with

unequal variances, unequal sample sizes, and with underlying distributions, which are not

Normal [73].

Apart from the simulation study, Dwivedi et al. [73] presented two examples from

clinical studies. The first example was a clinical study on epilepsy, which compared

the percent seizure reduction between an active arm with sample size nactive = 6 and a

control arm with sample size ncontrol = 5, among subjects who had more than 18 seizures

per month, using unpaired Student’s t-test, Welch t-test, nonparametric bootstrap t-test,

Wilcoxon rank sum test, and asymptotic permutation t-test [73]. Wilcoxon rank sum

test did not reject H0, whereas the other tests did. Moreover, for each treatment group

where ncontrol = 10 and nactive = 7, the change in seizure frequency from baseline to post

intervention among subjects who had more than 14 seizures per month was compared

using paired tests. For the active group, all paired tests found there was reduction in

seizure frequency.

The second example was a clinical trial on motivational interviewing which sought to
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improve treatment engagement. Two groups, motivational intervention (MI) and standard

intervention (SI) were compared, using unpaired Student’s t-test, Welch t-test, nonpara-

metric bootstrap t-test, Wilcoxon rank sum test, and asymptotic permutation t-test. The

treatment retention and substance use at 28 days and 84 days after randomisation were

recorded for both groups. Data from each treatment group were randomly selected, with

different sample sizes. Variety of samples sizes were explored, e.g. nMI = 6, nSI = 3;

nMI = 20, nSI = 10; and nMI = 173, nSI = 177. The conclusion made was that for unequal

sample sizes and unequal variances, p-values obtained using the Welsch t-test and the

nonparametric bootstrap t-test were similar but different from p-values obtained through

other tests. Bootstrap hypothesis testing will be further explored in conjunction with

Banks-B and NPI-B in Section 2.6.

Lastly, this section briefly outlines an article that focused both on preclinical study

and small sample size. Mager and Göller [141] discussed the use of bootstrap methods

for data that does not follow the Normal distribution in safety assessment in preclinical

pharmacokinetics and in toxicokinetics. The sample sizes in safety assessment are usually

small. In such studies, concentrations are recorded at multiple time points and the statis-

tics of interest are the standard error of AUC|tK0 and the arithmetic mean of AUC|tK0 .

Here AUC represents the area under the concentration-time profile. For a specific dosage,

the concentration-time profile plots the exposure to drug versus time after the dosage.

Let tK be a time point. AUC|tK0 measures exposure to a drug from time point 0 to time

point tk; it is the area underneath the curve between time point 0 and time point tk. Two

bootstrap methods, pseudoprofile-based bootstrap and the pooled data bootstrap, were

employed. Introduction of these two bootstrap methods is beyond the scope of this thesis.

Data from three different pharmacokinetic models were analysed. Sample sizes in these

models were small: n = 4 or n = 5. The two bootstrap methods showed to be powerful

tools in the safety assessment in the cases where data were not Normally distributed or

when it was required to estimate additional secondary pharmacokinetic parameters and

their variability. The named advantage of using the bootstrap method, as opposed to the

standard method, was that the bootstrap method did not require assumptions about the

underlying distribution and both the secondary pharmacokinetic parameters and their

variability (such as standard deviations and standard errors) could be assessed [141].
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2.3 Bootstrap methods

Bootstrap [78] is one of the resampling methods available to a practitioner, together

with the jacknife method [185], the delta method [42], subsampling [42], permutation

tests [71,78], randomisation tests [59], the cross-validation method [78], and Monte Carlo

methods [59]. Resampling methods allow the computation of a variety of statistics from

limited data while making minimal distribution assumptions.

The advantages of the bootstrap method compared to other resampling methods are

that the conceptual understanding behind and implementation of the bootstrap method

is simple and straightforward, and there is a variety of bootstrap methods to choose from

which allows for flexibility. The variety of bootstrap methods can also be considered a dis-

advantage as it makes it harder for practitioners to choose a particular bootstrap method.

Other disadvantages are: the bootstrap method requires more computer time than other

resampling methods, such as the jacknife method, and the most commonly known boot-

strap method, Efron-B, does not show good performance for small samples compared to

jacknife which shows a better performance [76]. However, this chapter shows that even the

bootstrap method can provide useful inference with small samples. Moreover, bootstrap

methods do not require an assumption of a particular distribution.

Bootstrap methods can be divided based on how the population is approximated [71]

into nonparametric, semi-parametric [40] and parametric bootstrap. In nonparametric

bootstrap, no particular distribution is assumed, whereas in the parametric bootstrap [40]

a distribution is assumed, the parameters of which are estimated and these estimates

are used to draw bootstrap samples. This thesis will focus on nonparametric bootstrap

methods. The consideration of parametric bootstrap is outside the scope of this chapter’s

simulation study because the focus is on small samples, for which it is usually not possible

to accurately determine the distribution.

The main focus of this chapter is on four bootstrap methods: the nonparametric

ordinary bootstrap, Efron-B [69, 74, 75, 77, 78], which is a bootstrap method commonly

used for the quantification of uncertainty in the estimate, mainly for large sample sizes;

Banks-B [18], which is not a well-known bootstrap method but it has a potential to

perform well in the estimation of population characteristics for small sample sizes [18];

Hutson-B [111], a bootstrap method utilising semi-parametric quantile function estimator,
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which has been applied in practical applications for small samples (see Section 2.2); and

NPI-B [53], which has been developed for prediction rather then estimation, nevertheless,

it has been also used for estimation in [2].

Banks-B and Hutson-B are two different smoothed bootstrap methods. Smoothened

bootstrap methods provide more variability of the bootstrap sample than ordinary boot-

strap. Smoothened bootstrap methods overcome a problem of Efron-B for small samples:

Efron-B samples underestimate the true variability of the data as there are only a few

values to sample from [104].

Initial study into the performance in the estimation of population characteristics of

another bootstrap method, the smoothed bootstrap using Gaussian kernel (Kernel-B),

has been carried out. Kernel-B is not included in the main study because it involves

more issues, including the determination of the smoothing parameter, which would divert

the focus of the main investigation. The initial findings for Kernel-B are reported in

Appendix A.5.2.

One bootstrap method can be used to create different types of confidence intervals,

e.g. the percentile, basic, accelerated, studentised, or bias-corrected, accelerated (BCa)

bootstrap, the test-inversion bootstrap method and the Studentised test-inversion boot-

strap method. This chapter focuses on percentile confidence intervals because they are

simple to implement and they have been employed by Banks [18] in his simulation study.

This thesis also briefly considers BCa confidence intervals. Efron proposed using BCa

confidence intervals in order to improve the bootstrap coverage [78]. BCa confidence

intervals will be explored in relation to the estimation of population characteristics for

small samples. There are many available R packages in CRAN for bootstrap methods,

to name some, package bootstrap is based on Efron and Tibshirani [78], boot is based

on Davison and Hinkley [64] and bcaboot focuses on calculating bias corrected boot-

strap confidence intervals. Further overviews of the bootstrap method can be found

in [41,42,64,78,96,137,142,185].

2.3.1 Efron bootstrap

The Efron’s bootstrap method (Efron-B) has also been referred to as nonparametric boot-

strap [73]. In this method, the unknown underlying distribution F is replaced with the
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empirical distribution Fn of the observed data x1, x2, . . . , xn [78]. In the Efron-B method,

there are n data observations and the size of the bootstrap sample is m. Let N denote

the number of bootstrap samples. This bootstrap method is just sampling with replace-

ment: For each iteration of the bootstrap, m values are sampled with replacement from n

original values with equal probability to create one Efron-B sample y = (y1, y2, . . . , ym).

In total, N Efron-B samples are created and these bootstrap samples are used for the

chosen inference.

2.3.2 Banks bootstrap

Banks [18] used linear interpolation histospline smoothing between two consecutive or-

dered observations when he introduced the smoothed versions of two bootstrap methods:

Efron’s and Bayesian (Rubin’s) bootstrap. “Histospline is a smooth density estimate

based only on the information in a histogram” [31]. In his paper, Banks compared

those with the Bayesian bootstrap and Efron bootstrap. This thesis is interested in

the smoothed Efron’s bootstrap introduced by Banks, hereafter called Banks bootstrap

(Banks-B), after Banks who invented it. Banks-B shows promising initial findings about

its performance in quantifying the uncertainty in sample-based estimates of population

characteristics for small samples [18], as discussed in Section 2.1. In the existing liter-

ature, there is work on smoothed Rubin’s bootstrap [1, 129, 148], which was the main

focus of Banks’ paper [18]. Banks-B has not received as much attention as a more known

smoothened bootstrap method, Kernel-B, which will be introduced in Appendix A.5.1.

Coolen and BinHimd [53] paid further attention to Banks’ version of smoothed Efron’s

bootstrap.

In the Banks-B method, there are n data observations and a bootstrap sample of size

m is generated. The mass 1/(n+ 1) is spread uniformly between two consecutive ordered

observations, X(i) and X(i+1), for i = 1, . . . , n+ 1.

Banks and BinHimd set the left and right bounds of support for Banks-B, x(0) and

x(n+1), as the minimum and maximal values of the support of the finite distribution.

Banks [18] applied NPI-B to data that follow a Beta distribution, which is defined on

[0, 1]. BinHimd [31], who did further investigation into Banks-B, also assumed finite

support for Banks-B and in her comparison study of the bootstrap methods, she used a
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Uniform distribution on a finite interval. This thesis adopts the same approach to the

selection of the left and the right bounds of support for Banks-B as for NPI-B, which

will be introduced in Section 2.3.3, thus, Banks-B can be applied to data with underlying

distributions defined on both the infinite and finite intervals.

The Banks-B method is as follows [18]:

1. Create n+ 1 intervals from ordered n observations;

2. Sample an interval with equal probability;

3. From that interval, sample a value uniformly;

4. In total sample m values, following Steps 2 and 3, to form a Banks-B sample;

5. Create in total N Banks-B samples.

2.3.3 NPI bootstrap

NPI-B is based on A(·), which was introduced in Section 1.4, and it is consistent with the

concept of all orderings of future observations being equally likely [53]. NPI-B differs from

Efron-B [78] and Banks-B [18], mainly as NPI-B was developed for prediction, while the

Efron-B and Banks-B methods are aimed at quantifying the uncertainty in the estimation

of population characteristics [31, 53]. In NPI-B and Banks-B, the bootstrapped observa-

tions are not restricted to already observed values. The difference between Banks-B and

NPI-B is that, after sampling a value for NPI-B, this value is added to the data set before

another value is sampled. This way, the number of intervals, in the partition of the part

of the real-line, increases. For the first sampled value in Banks-B, the probability of it

being in each interval is 1
n+1

, however, when another new value is added, this probability

changes. For example, Banks-B is less likely to have the second sampled value in the same

interval as the first sampled value and more likely to have it in a different interval. This is

not the case for NPI-B. Thus, NPI-B is exactly calibrated [134, p.541]. Exactly calibrated

means that when we simulate a model on a computer, we achieve the same proportion of

events in the long run. In NPI-B, an event represents a particular combination of new

points. In the frequentist theory, exact calibration is a strong consistency property. It

always leads to results that are consistent with inferences based on empirical probabilities.
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In the NPI-B method, there are n data observations and interest is in m future ob-

servations. Let N denote the number of bootstrap samples. In the following algorithm,

sampling from the first interval, (x(0), x(1)), and the last interval, (x(n), x(n+1)) will be

explained later. The NPI-B method is as follows [31]:

1. Take n ordered observations x(1) < x(2) < . . . < x(n), assuming there are no ties;

2. These n observation create n+ 1 intervals.

3. Randomly sample one of the n+ 1 intervals, each with equal probability;

4. From that interval, sample one future value, uniformly in a finite interval;

5. Add that value to the data: increasing n to n+ 1, and order the values;

6. Repeat Steps 2-5, now with n+ 1 data, to get a further future value;

7. In total sample m values to form an NPI-B sample, y = (y1, y2, . . . , ym), following

Steps 2-6;

8. Create in total N NPI-B samples.

To apply NPI-B on the real-line, assumptions have to be made about the first interval,

(x(0), x(1)), and the last interval, (x(n), x(n+1)), as these are often not known. Finite or

infinite intervals can be selected [31]. In this thesis, five range selections are considered.

For the finite bootstrap procedure, where a bounded interval is defined, x(0) and x(n+1)

needs to be chosen. To do so, the left (L) and right (R) bounds of the support are

selected, and x(0) and x(n+1) are set to x(0) = L and x(n+1) = R, respectively. In finite

bootstrap, a value is sampled uniformly from the first or the last interval. In this thesis,

three approaches are considered for the finite bootstrap and then infinite, bootstrap is

explored. Approach I and II are special cases of Approach III. This thesis uses the phrase

half-infinite (Approach V) for infinite bootstrap employed for datasets defined on [0,∞).

I. L = x(1)−maxi(x(i)−x(i−1)) and R = x(n) +maxi(x(i)−x(i−1)), where i = 2, 3, . . . , n;

II. L = x(1) − c ∗ IQR, R = x(n) + c ∗ IQR where c ∗ IQR is the interquartile range

(IQR) of the original dataset multiplied by a constant c > 0;
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III. L = x(1) − v, R = x(n) + v where v > 0 is a constant;

IV. Infinite bootstrap: There are n+ 1 intervals created by n observations. For intervals

between x(1) and x(n), the same procedure is used as for finite intervals. To sample

from (−∞, x(1)) and (x(n), ∞), Normal distribution tails fitted to the intervals

are assumed, with estimated mean µ =
x(1)+x(n)

2
and estimated standard deviation

σ =
x(n)−µ

Φ−1( n
n+1

)
, where Φ denotes the cumulative of the standard Normal distribution

[31]. σ is estimated using the properties of the Normal cumulative function: P (Y >

x(n)) = 1− Φ
(x(n)−µ

σ

)
= 1

n+1
[31].

V. Half-infinite bootstrap: L = 0, a value from the last interval, (x(n),∞), is sampled

by assuming tails of an Exponential distribution. To estimate the parameter of

Exponential distribution, λ, the cumulative function P (Y < y) = 1− e(−λy) is used.

Given that P (Y > x(n)) = n
n+1

, the parameter λ = ln(n+1)
x(n)

is estimated [31].

This thesis explores all five ways to define the range in this chapter and in Chapter 4.

2.3.4 Hutson bootstrap

Hutson [111] introduced a new quantile function estimation method for generating boot-

strap samples: the semi-parametric composite quantile function estimator, which com-

bines a parametric model with a standard linear interpolation quantile function estimator.

Quantile function specifies the value of a random variable, given the chosen probability,

in such a way that the probability of the variable is less than or equal to that value.

Although this method was not formulated by Hutson [111] as a bootstrap method, but

rather as a function for generating bootstrap samples, for simplicity, this thesis calls it

Hutson bootstrap (Hutson-B). Hutson [111] showed that Hutson-B improves the coverage

probabilities of the standard bootstrap percentile confidence intervals. Hutson-B allows

ties [111]. Two applications of Hutson-B in pharmaceutical research were introduced in

Section 2.2.

Let x(1) ≤ x(2) ≤ . . . ≤ x(n) be ordered observation from an i.i.d sample of size n

from a continuous distribution F defined on the real line. Then Equation (2.2) presents

the semi-parametric composite quantile function estimator, as defined by Hutson [111].
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In what follows, b·c is the floor function, n′ = n + 1, ε is defined in Equation (2.1) and

0 < u < 1.

ε = n′u− bn′uc (2.1)

Q̂T (u) =


x(1) + (x(2) − x(1)) log((n+ 1)u), if 0 < u ≤ 1

1+n

Q̂L(u) = (1− ε)x(b(n+1)uc) + εx(b(n+1)uc+1), if 1
1+n

< u < n
1+n

x(n) − (x(n) − x(n−1))) log((n+ 1)(1− u)), if n
1+n
≤ u < 1

(2.2)

Q̂L(u) in Equation (2.2) represents the standard linear interpolation quantile function

estimator. Hutson-B, as defined in Equation (2.2), is used for distributions defined on

(−∞,∞), such as Normal and Mixed-Normal distribution. For distributions defined on

(0,∞), such as Lognormal and Exponential distributions, Equation (2.3) is used instead.

Q̂T (u) depends on the data sample. In Figure 2.1, an illustration of plots of Q̂T (u) is

provided for two simple data samples of sample size n = 8, a ∼ N(0,1) and b ∼ Exp(1),

where a=(-0.836, -0.820, -0.626, 0.184, 0.330, 0.487, 0.738, 1.595) and b=(0.140, 0.146,

0.436, 0.540, 0.755, 1.182, 1.230, 2.895).

Q̂T (u) =


εx(1), if 0 < u ≤ 1

1+n

Q̂L(u) = (1− ε)xb(n+1)uc + εxb(n+1)uc+1, if 1
1+n

< u < n
1+n

x(n) − (x(n) − x(n−1)) log((n+ 1)(1− u)), if n
1+n
≤ u < 1

(2.3)

The following algorithm creates m Hutson bootstrap values from the n original values:

1. Take n ordered observations x(1) ≤ x(2) ≤ . . . ≤ x(n) from an i.i.d. sample of size n;

2. Generate a random sample of size m from the standard uniform distribution;

3. Apply the semi-parametric composite quantile function estimator Q̂T (u) to the m

values generated in Step 2, forming an Hutson-B sample;

4. Create in total N Hutson-B samples.
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(b) Sample b ∼ Exp(1), nb = 8

Figure 2.1: Plots of Q̂T (u) for two simple data samples

Hutson [111] compared Hutson-B [111] to other two quantile function estimators: Hut-

son and Ernst’s [110] sample quantile function estimator and Harrel-Davis kernel quantile

function estimator (see Sheather and Marron [186]). The details regarding these quantile

functions are outside the scope of this thesis. For n = 10, 25 he compared coverage prob-

ability at α = 0.05 for a variety of distributions (Normal, Logistic, Laplace, Cauchy, Ex-

ponential, half-Normal and Rayleigh) and for the estimation of various statistics (mean,

median, standard deviation, skewness, excess kurtosis, Q3 and upper decile). He con-

cluded that the performance of Hutson-B is superior to the other two quantile function

estimators, the biggest difference was apparent at n = 10. Hutson [111] acknowledged a

limitation of Hutson-B: that it is unable to fully capture the tail behaviour of heavy-tailed

distributions, such as of Cauchy distribution.

Hutson-B has been applied in hydrology, particularly in extrapolation of hydrological

extremes. Jagtap et al. [123] further developed on Hutson-B and compared it with non-

parametric and parametric bootstrap, focusing on coverage probability for small samples,

when estimating high hydro-meteorological quantiles and extreme events. Sample sizes

explored in the simulation study were n = 10, 25, 50, 100. An example of precipitation

dataset with n = 25, 27, 37, 37, 84, 117 was given.

Further work has been done by Hutson [112], who developed a sigmoidal quantile

function estimator and a hybrid quantile function estimator. The latter combines the

properties of the kernel quantile function with the sigmoidal quantile function estima-
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tor. Hutson [112] argued that the generalised sigmoidal quantile function “can estimate

quantiles beyond the range of the data, which is important for certain applications given

smaller sample sizes” [112]. The study of those variations of Hutson-B is outside the scope

of this thesis and a topic for future research.

2.3.5 Coverage and bootstrap confidence intervals

This chapter presents a study which assesses both the estimation and prediction perfor-

mances by focusing on coverage of confidence intervals. The term coverage refers to the

proportion of the times in the long run that a confidence interval contains the true value

of interest. Ideally, coverage should equal the confidence level. A (1 − 2α)100% confi-

dence interval (CI) is used when estimating an unknown parameter from a sample. The

(1 − 2α)100% confidence interval, (θ̂(α), θ̂(1−α)), can be written as Equation (2.4), where

θ̂(α) and θ̂(1−α) are both functions of the data X, the confidence level is (1 − 2α) ∈ [0, 1]

and it does not depend on θ. If 90% confidence intervals are formed for chosen population

parameter θ for 100 samples, 90 of these confidence intervals are expected to include the

true value of θ.

P (θ̂(α) ≤ θ ≤ θ̂(1−α)) = 1− 2α (2.4)

A confidence interval can be calculated for a chosen population characteristic of inter-

est, such as mean, median, variance, Q1, Q3, or IQR. This section will introduce percentile

confidence intervals and BCa confidence intervals, both of which will be employed in Sec-

tion 2.4. Percentile confidence intervals have also been called quantile confidence intervals

in the literature, however, this thesis will use the term percentile confidence intervals.

To calculate a confidence interval for a chosen population characteristic of interest, θ,

the following inputs are important: B independent bootstrap samples y∗1, y∗2, . . . , y∗B,

each of size m, and the bootstrap replication of θ̂ corresponding to each bootstrap sample

θ̂∗(b) = s(y∗b), for b ∈ {1, 2 . . . , B}. Here s represents the formula calculating a particular

sample statistic. The θ̂∗s are ordered in an ascending order. For BCa confidence intervals,

the knowledge is required about the estimate of θ based on the observed data of the

original sample, θ̂ = s(x), and the original sample, x = (x1, x2, . . . , xn). For example, if θ
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is the true population mean, θ̂ = s(x) = 1
n

∑n
i xi is the sample mean, i.e. estimate of the

true population mean based on the original sample.

The 100(1 − 2α) percentile confidence interval (θ̂∗(α), θ̂∗(1−α)) is computed by taking

the (Bα)th and (B(1−α))th value of the ordered θ̂∗s. θ̂∗(α) stands for the 100αth percentile

of B θ̂∗s. For example, 90% percentile confidence interval, i.e. at α = 0.05, is the interval

(θ̂∗(50), θ̂∗(950)).

As stated in Section 2.1, Efron has improved the percentile confidence intervals, to ac-

count for and correct the bias and the skewness of the bootstrap parameter estimate. The

two improved versions of the Efron-B confidence intervals are the bias-corrected and accel-

erated bootstrap (BCa) and the approximate bootstrap confidence (ABC) intervals [69].

ABC analytically approximates the BCa interval endpoints [69] and it is less computa-

tionally demanding compared to BCa. Given ABC and BCa similarity, the performance

in estimation for small samples (n = 4, 6, 8, 10) is studied only for BCa intervals. An

advantage of BCa confidence intervals over percentile confidence intervals named in the

literature is their high order of accuracy [31].

In order to calculate BCa confidence intervals, the bias-correction ẑ0 and the acceler-

ation â need to be computed first. The bias-correction ẑ0, calculated via Equation (2.5),

is based on the θ̂∗(b)s and the original sample estimate, θ̂. Thus, ẑ0 is influenced by the

choice of the bootstrap method.

ẑ0 = Φ−1

(
#{θ̂∗(b) < θ̂}

B

)
(2.5)

The acceleration â adjusts the skewness of the bootstrap distribution. The acceleration

â is based on the original sample, not the bootstrap samples, and it can be computed in

multiple ways. This thesis employs the method described by Efron and Tibshirani [78],

which utilises jackknife values of a statistic θ̂ = s(x). Let x(−i) be the original sample

with the ith point xi deleted. Now θ̂(−i) = s(x(−i)) and θ̂(·) is defined in Equation (2.6).

θ̂(·) =
n∑
i=1

θ̂(−i)/n (2.6)

Then â is defined in Equation (2.7).

â =

∑n
i=1(θ̂(·) − θ̂(−i))

3

6{
∑n

i=1(θ̂(·) − θ̂(−i))2} 3
2

(2.7)
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α1 = Φ

(
ẑ0 +

ẑ0 + zα

1− â(ẑ0 + zα)

)
(2.8)

α2 = Φ

(
ẑ0 +

ẑ0 + z1−α

1− â(ẑ0 + z1−α)

)
(2.9)

The (1−2α) BCa interval is (θ̂∗(α1), θ̂∗(α2)); α1 and α2 can be calculated via Equations

(2.8) and (2.9), respectively. R functions were written for implementation.

When calculating BCa intervals for Efron-B for small samples for the estimation of

quantiles and IQR for Normally distributed data (see Section 2.4.2) and for the estimation

of most statistics for Lognormally distributed data (see Section 2.4.3), a problem arose for

Efron-B. The problem was that in some cases, the output of θ̂∗(α1) was NA. This happened

when α1 < 0.001. At α1 = 0.001, θ̂∗(α1) is the smallest bootstrap sample statistic, given

N = 1000, and below α1 = 0.001, θ̂∗(α1) is undefined. This problem most likely occurred

because Efron bootstrap samples only contain values from the original observations and

in cases where the sample size of the original sample is small, there are very few values to

sample from. The problem was fixed in the R code by setting α1 = 0.001 if α1 < 0.001.

Bootstrap-t confidence intervals have also been used in research [20]. In some sources,

they are also called the Student’s t method [127] and the percentile method with a stu-

dentised pivot [18]. Bootstrap-t confidence intervals assume that θ̂∗(b)−θ̂
ŝe(b)

is approximately

t-distributed [127]. (1 − 2α)% bootstrap-t confidence intervals at a certain α level is(
θ̂− t(1−α)

n−1 ŝe, θ̂− t(α)
n−1ŝe

)
[78]. Bootstrap-t confidence intervals are suitable for the estima-

tion of confidence intervals for location statistics, such as the sample mean [69]. However,

bootstrap-t confidence intervals can be unpredictable for small samples and in nonpara-

metric situations [69]. Despite this, Banks [18] explored bootstrap-t confidence intervals

in his simulation study of the performance of Banks-B for small samples. Further discus-

sion about the suitability of bootstrap-t confidence intervals is outside the scope of this

thesis and bootstrap-t confidence intervals are not included in this simulation study.

To summarise, there is no consensus on the recommendation of a particular confidence

interval for small samples and the scope of this thesis is limited to percentile and BCa

confidence intervals.
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2.4 Bootstrap coverage performance in estimation

This study assesses how well the four bootstrap methods (Efron-B, Banks-B, Hutson-

B and NPI-B) perform at quantifying the uncertainty in the estimation of population

characteristics (mean, variance, median, Q1, Q3 and IQR), with a focus on small sample

sizes (n = 4, 6, 8, 10). NPI-B [31, 53] is aimed at prediction, not estimation. NPI-B is

included in this study to explore whether in some cases it can provide good confidence

intervals in the estimation inference.

There are two bootstrap method comparison studies that inspired this further in-

vestigation into the bootstrap coverage performance in quantifying the uncertainty in the

estimation of population characteristics for small samples. The first one is Banks’ compar-

ison of Banks-B, smoothened Bayesian bootstrap, Efron-B and Bayesian bootstrap [18].

Banks [18] looked at the estimation of the mean, median and variance, considering three

sample sizes: n = 5, 10, 20. Note that for the estimation of median he used n = 6 instead

of n = 5 for computational simplicity. The data in his study come from Beta distributions

with different parameters. Banks [18] used a goodness-of-fit test to compare confidence

regions, which will be also carried out in this section.

The second study is BinHimd’s comparison of the bootstrap performance in estima-

tion [31]. BinHimd [31] compared three bootstrap methods, Efron-B, Banks-B and NPI-B

on finite intervals, using Uniform and Beta distributions. For each bootstrap method, Bin-

Himd [31] generated B = 1000 bootstrap samples, she calculated a chosen statistic for each

bootstrap sample, θ̂∗(b), b ∈ {1, . . . , B}, and then she calculated the variance, bias, abso-

lute error, and mean square error of θ̂∗(b)s for the three bootstrap methods, focusing on the

estimation of mean, variance and Q3, for sample sizes n = 20, 50, 100, 200, 500, 1000. Bias,

mean square error and absolute error are commonly used measures of statistical accuracy

of estimators [78]. On the real-line, BinHimd compared only Efron-B and NPI-B, using

Uniform, Normal and Gamma distributions, and sample sizes n = 20, 50, 100, 200, 500;

apart from the same analysis, she also considered coverage of 90% and 98% confidence

intervals for the two bootstrap methods. BinHimd used BCa confidence intervals instead

of percentile confidence intervals.

The limitations of Banks’ and BinHimd’s work is that in their exploration of Banks-B,

they focused on data generated from distributions with finite support. Infinite support
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has been explored only for NPI-B, not for Banks-B. This study further explores Banks-B

and NPI-B in cases where there is infinite support and for distributions that BinHimd or

Banks did not consider, i.e. Mixed-Normal, Exponential and Lognormal. BinHimd did

not consider sample sizes below n = 20 in her comparison study of the bootstrap methods

performance in the estimation of population characteristics. Hutson-B has never been

compared to Banks-B and NPI-B. This study extends the exploration, focusing on smaller

samples, n = 4, 6, 8, 10, and by including Hutson-B in the comparison study.

The methodology has been inspired by Banks [18] and Al Luhayb [4]. Banks [18]

introduced the algorithm for the bootstrap method comparison based on chi-square good-

ness of fit test and he considered 20 and 100 confidence regions.. Later Al Luhayb [4]

adopted the algorithm to compare the generalised Banks’ smoothed bootstrap method

and Efron-B for right-censored data. Al Luhayb considered 10 confidence regions. Al

Luhayb [4] considered sample sizes n = 6, 10, 20, 40, 100, he focused on the estimation of

Q1, Q2 and Q3 and he based his analysis on the χ2-value. He concluded that the gen-

eralised Banks’ bootstrap performed well in the estimation of the first, second and third

quartiles. The main difference between the algorithm employed in this thesis and the sim-

ulations from which the algorithm was adopted is that there are several runs carried out

in the algorithm to improve the robustness of the conclusions, whereas Banks [18] and Al

Luhayb [4] presented results from only one run. The outputs of the simulation study in-

troduced in this thesis are presented in boxplots rather than in tables to allow for a visual

comparison of the bootstrap methods. Banks [18] also compared the algorithm outputs

for the studentised confidence intervals. However, the consideration of these confidence

intervals is outside the scope of this thesis.

In Section 2.4.1, the algorithm for the evaluation of the bootstrap performance in esti-

mation is presented, and two metrics for the evaluation of the performance are introduced.

The algorithm is applied to data from four different distributions: Normal, Exponential,

Lognormal and Mixed-Normal. The simulation outputs are presented in three parts: Sec-

tion 2.4.2 discusses observations for data generated from Normal distribution; Section 2.4.3

analyses conclusions for data generated from Lognormal and Exponential distributions;

and Section 2.4.4 examines findings for data generated from Mixed-Normal distribution.

Finally, Section 2.4.5 summarises the findings of the study of the bootstrap performance
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in estimation.

2.4.1 Methodology

The simulation for evaluation of the performance in estimation for the bootstrap methods

is described in Algorithm 1. In this investigation, N = 1000, B = 1000, m = n and

M = 20. M present the number of runs of the algorithm. The choice of using B = 1000 is

in alignment with other work on bootstrap confidence intervals (see Efron and Tibshirani

[78]). The main focus is on sample sizes n = 4, 6, 8, 10. Unless stated otherwise, (1−2α)%

percentile confidence intervals are calculated in Algorithm 1.

To assess the performance of bootstrap methods, this investigation focuses on two

metrics generated through simulations: the coverage at 90% confidence interval (CI) and

the χ2-value arising from a chi-square goodness of fit test on the confidence regions. The

chi-square goodness of fit test tests the hypothesis that all confidence regions have equal

coverage probabilities for the given statistic of interest [18]. Both metrics are important

for the bootstrap method assessment of its performance in the estimation of population

characteristics. Thus, the conclusions are based on both metrics.

The first metric used to assess the performance in the estimation of a particular

population characteristic is the coverage at 90% CI. There are three types of coverage:

under-coverage (below 90%), good coverage (around 90%) or over-coverage (above 90%).

The best coverage at 90% CI is at (or close to) 90% as this shows that the bootstrap

method provides the expected estimate at this level. Over-coverage means that the

method provides more precise estimates than it should whereas under-coverage means

that the method provides less precise estimates than it should. Under-coverage is worse

than over-coverage because over-coverage at least guarantees the performance in the es-

timation of population characteristics and it is risk-free whereas under-coverage is not

informative about the accuracy of the estimation. While over-coverage sounds ideal, it

is not because the confidence intervals are too wide. Brief investigation into coverage at

95% CI for the estimation of mean and variance showed same pattern for both coverage

at 90% and 95% CI, but there is more under-coverage at 95% CI. Thus, reporting just

90% is a reasonable action.
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Algorithm 1 Bootstrap performance in the estimation of population parameter θ

1: Generate N data sets {xik}nk=1, i ∈ 1, . . . , N , of sample size n from the chosen popu-

lation;

2: For each data set, apply the bootstrap method to generate B bootstrap samples of

size m, {yib∗k }mk=1, and calculate the statistic of interest for each of those bootstrap

samples, θ̂∗i (b), b ∈ {1, 2 . . . , B};

3: For each data set, compute (1 − 2α)% confidence intervals (θ̂
∗(α)
i , θ̂

∗(1−α)
i ) for θ at

different confidence levels (α = 0.05, 0.1, . . . , 0.45);

4: For each data set and for each confidence level, record whether θ ∈ (θ̂
∗(α)
i , θ̂

∗(1−α)
i );

5: For each confidence level, calculate the proportion of confidence intervals for which

θ ∈ (θ̂
∗(α)
i , θ̂

∗(1−α)
i ): ρα = 1

N

∑N
i=1 1{θ ∈ (θ̂

∗(α)
i , θ̂

∗(1−α)
i )}.

6: Calculate the observed statistics, O(j), for 10 confidence region, j = 1, 2, . . . , 10, across

all N . O(j) =
∑N

i=1 1{θ ∈ CRi
(j)}. O(j) can be calculated from Step 5, as follows:

O(1) = Nρ0.45, O(2) = N(ρ0.4−ρ0.45), O(3) = N(ρ0.35−ρ0.4), . . . , O(9) = N(ρ0.05−ρ0.1),

O(10) = N(1− ρ0.05).

7: Carry out the chi-square goodness of fit test on O(j) and record the χ2-value and the

coverage (in %) at 90% confidence interval;

8: Repeat Steps 2-7M times in total. For each run, report the coverage at 90% confidence

interval (in %), i.e. 100ρ0.05, and the χ2-value.

The second metric of interest is the χ2-value calculated via the chi-square test. The

added value of using χ2-value alongside coverage at 90% CI is that it assesses “the dis-

crepancy in coverage probability” [18]. The chi-square test considers 10 confidence regions

with their observed values O(j) for j = 1, 2, . . . , 10. Confidence region is defined as fol-

lows [4]:

CR(j) = (θ̂∗(
αj+1

2
), θ̂∗(

αj
2

)) ∪ (θ̂∗(1−
αj
2

), θ̂∗(1−
αj+1

2
)), α1 = 1, αj+1 = αj − 0.1 (2.10)

In Algorithm 1, the nominal coverage probability of each confidence region is set at

0.10. Thus, CR(1) = (θ̂∗0.45, θ̂∗0.5) ∪ (θ̂∗0.5, θ̂∗0.55) = (θ̂∗0.45, θ̂∗0.55), CR(2) = (θ̂∗0.4, θ̂∗0.45) ∪

(θ̂∗0.55, θ̂∗0.6), CR(3) = (θ̂∗0.35, θ̂∗0.4) ∪ (θ̂∗0.6, θ̂∗0.65), . . . , CR(10) = (θ̂∗0, θ̂∗0.05) ∪ (θ̂∗0.95, θ̂∗1).

The actual coverage at each confidence region can be calculated from (1−2α)% confidence

intervals at different α levels, α = 0.05, 0.1, . . . , 0.45. This is done in the following way:
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θ ∈ CR(1) iff (if and only if) {θ ∈ 10% CI}, θ ∈ CR(2) iff {θ ∈ 20% CI} ∩ {θ /∈ 10% CI},

θ ∈ CR(3) iff {θ ∈ 30% CI} ∩ {θ /∈ 20% CI}, . . . , θ ∈ CR(10) iff {θ /∈ 90% CI}.

The expected value for each confidence region is Ej = N/10 and χ2 =
∑10

j=1
(Oj−Ej)2

Ej
.

The χ2-statistic compares the size of any discrepancies between the expected values and

the actual values, given the number of data sets, N , and the number of confidence regions

considered, i.e. 10 in Algorithm 1. The statistic χ2 has a Chi-squared distribution with

9 degrees of freedom and H0 is rejected when χ2 > 16.919 (at α = 0.05). The lower

the χ2-value is, the better the bootstrap method performs. When the χ2-values become

large, then it is clear that the bootstrap method performs poorly. It is important to check

whether a high χ2-value is mainly caused by under-coverage or over-coverage. Thus,

the χ2-value and coverage at 90% CI are considered together to arrive at an assessment

of the performance of a bootstrap method in the estimation of a particular population

characteristic.

A small simulation was run to study what would be the effect on the χ2-value of

increasing N = 1, 000 to N = 10, 000, and of increasing the number of confidence regions

from 10 to 20. In both cases, the prevailing patterns and comparisons between different

bootstrap methods remain similar. When N is set to 10, 000 instead of 1, 000, the squared

differences between Oj and Ej become much larger, by a roughly factor of 102 each,

while the denominator only becomes larger by a factor of 10. Thus, the cell observations

are about 10 times larger, with random variation, meaning the χ2-value is roughly 10

times larger for N = 10, 000 than for N = 1, 000. Clearly, increasing the number of

data emphasises the discrepancy between the null hypothesis of equal numbers per cell

and the actual case. Using 20 instead of 10 confidence regions in Algorithm 1 did not

affect the conclusions made regarding bootstrap method comparison. Efron-B performs

notably worse when 20 instead of 10 confidence regions are used in Algorithm 1, i.e.

it has higher χ2-value, compared to the other bootstrap, however the conclusions made

regarding bootstrap method comparison remain the same.
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2.4.2 Normally distributed data

This section presents findings on the bootstrap method performance in the estimation

of population characteristic for Normally distributed data. The data are simulated from

Normal distribution with mean µ = 1 and standard deviation σ = 1. Because of the stan-

dardising properties of Normal distributions, the performance in estimation is not affected

by the choice of parameters. If different parameters were chosen and the simulation study

was carried out, the same patterns would be seen. For the Normal distribution, the true

population characteristics calculations are: Q1 for N(µ, σ2) equals to µ − 0.67448σ and

Q3 for N(µ, σ2) equals to µ+ 0.67448σ. Thus, true Q1 for N(1, 12) is 0.32552 and Q3 for

N(1, 12) is 1.67448.

For Banks-B and NPI-B, finite range (Approach I, Section 2.3.3) is assumed and

findings on the estimation of population characteristics are presented. The influence of

the tails assumption for these two bootstrap methods will be considered later.

Brief consideration of larger samples

This study of the bootstrap performance in estimation is primarily concerned with small

sample sizes (up to n = 10). Nevertheless, for the estimation of mean (Figure 2.2) and

variance (Figure 2.3), the simulations have been carried out for a larger spectrum of

sample sizes, n = 4, 6, 8, 10, 20, 50, 100. The inclusion of larger sample sizes has shown

a pattern: the Efron-B performance improves as n increases, i.e. χ2-value decreases and

the coverage at 90% CI improves as n increases. Efron-B has a very good performance

in the estimation of mean from n = 20: χ2-value is low and the coverage at 90% CI is

close to the ideal coverage. In the estimation of variance, Efron-B is the best performing

bootstrap only for n = 100. These findings are consistent with the asymptotic theory [63]

that is a theoretical justification for Efron-B [63], as discussed in Section 2.1. As the

sample size n increases, the sample becomes more representative of the real underlying

population distribution. The rest of this chapter will be devoted to smaller sample sizes.

Estimation of mean

For the estimation of mean for sample sizes n = 4, 6, 8, 10 for Normally distributed data

(part of Figure 2.2), Banks-B and Hutson-B are the best performing bootstrap methods
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Figure 2.2: Coverage at 90% CI and χ2-values, estimation of mean, N(1,1), n =

4, 6, 8, 10, 20, 50, 100, finite (Approach I) Banks-B and NPI-B, 20 simulations
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Figure 2.3: Coverage at 90% CI and χ2-values, estimation of variance, N(1,1), n =

4, 6, 8, 10, 20, 50, 100, finite (Approach I) NPI and Banks-B, 20 simulations
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from the perspective of both metrics of assessment. Banks-B is marginally better for

n = 6, 8, 10 because it has the lowest χ2-values for these sample sizes. For both Hutson-B

and Banks-B, there is over-coverage at 90% CI for n = 8, 10 rather than under-coverage.

The performance in the estimation of mean for NPI-B is the best at n = 4 where there is

ideal coverage at 90% CI and the χ2-values for NPI-B are the lowest, however, even at this

case, the χ2-values for NPI-B are larger than for Banks-B and Hutson-B. There is very

large variation of simulation outputs for Efron-B at n = 4 and n = 6. There are some

discrepancies between Figures 2.2 (a) and 2.2 (b): For n = 4, the coverages at 90% CI are

differently ordered for NPI-B, Hutson-B and Banks-B to the inaccuracies in χ2-values -

whereas NPI-B has the best coverage at 90% CI, it has the third best χ2-value; Hutson-B

has the second best coverage, but the best χ2-value; and Banks-B has the third best

coverage, but the second best χ2-value. For n = 8, 10 Banks-B has lower χ2-value than

Hutson-B, but Hutson-B has coverage that is slightly closer to ideal coverage. As both

Hutson-B and Banks-B have only small over-coverage, this does not affect the conclusions.

Overall, Banks-B and Hutson-B perform consistently well in the estimation of mean for

Normally distributed data with small sample sizes (n = 10 and smaller).

Estimation of variance

Hutson-B is the best performing bootstrap in the estimation of variance for Normally

distributed data for small sample sizes (part of Figure 2.3). Hutson-B has consistently

small over-coverage at 90% CI and it has the lowest χ2-value. Banks-B has the second

lowest χ2-value and the third best coverage at 90% CI (small under-coverage). NPI-B has

the second best coverage at 90% CI and the third lowest χ2-value. Given that Banks-B

has only small under-coverage, this thesis concludes that it is the second best bootstrap

method in the estimation of variance for Normally distributed data for small sample sizes.

Estimation of quantiles and IQR

The bootstrap performance in the estimation of sample quantiles and IQR will be dis-

cussed henceforth. There are more ways to calculate sample quantiles and IQR [114].

The default type in R, Type 7, is used. Investigation into how the choice of quantile

types affects the performance in the estimation of quantiles for Normally distributed data
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has been carried out and initial remarks, alongside definitions of different quantiles types,

can be found in Appendix A.1. Using a different type of quantile calculation can make a

difference on the value of the sample statistic for small samples and the performance of

the bootstrap method is slightly affected by the choice of the quantile types. The most

affected bootstrap method is Efron-B. The findings about the bootstrap method per-

formance in the estimation of median are consistent across different ways of calculating

quantiles. When estimating Q1 and Q3, the choice of quantile type can affect whether

Hutson-B or Banks-B performs better. However, given that both bootstrap methods

perform well in such cases, this is not a big concern.

Clearly, Efron-B is the worst performing bootstrap in the estimation of quantiles for

Normally distributed data for small sample sizes, as it has under-coverage for n = 4, 6, 8, 10

when quantiles (Q1, median, Q3) are estimated, except for n = 10 in the estimation of

Q3.

When estimating Q1, at n = 4, NPI-B has the best coverage at 90% CI (close to the

ideal coverage), Banks-B has under-coverage (but still the second best coverage) and it

has the lowest χ2-value. At n = 4, Hutson-B has under-coverage and the second lowest

χ2-value. At n = 6, 8, Banks-B is the best performing bootstrap method in the estimation

of Q1 for Normally distributed data from the perspective of both metrics of assessment

and at n = 10, Banks-B and Hutson-B both perform equally well (almost ideal coverage

at 90% CI and low χ2-values).

In the estimation of median, Banks-B has small under-coverage at n = 4 but its

coverage is close to the ideal coverage. NPI-B has over-coverage, which is preferable to

under-coverage at n = 4, but it has higher χ2-value compared to Banks-B and Hutson-B.

From n = 6, both Banks-B and Hutson-B have good coverage at 90% CI and low χ2-value,

Hutson-B has slightly lower χ2-value. This work concludes that for n = 4, Banks-B is the

best performing bootstrap method in the estimation of median for Normally distributed

small samples, and for n = 6, 8, 10, Hutson-B performs the best.

In the estimation of Q3, for n = 4, NPI-B has coverage at 90% CI that is the closest

to the ideal coverage (there is still small under-coverage), but Banks-B has the lowest χ2-

value. For n = 6, Banks-B has the best coverage at 90% CI (small under-coverage, close

to the ideal coverage) and the smallest χ2-value. At n = 8, 10, Banks-B and Hutson-B
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Figure 2.4: Coverage at 90% CI and χ2-values, estimation of Q1, median and Q3, N(1,1),

n = 4, 6, 8, 10, finite (Approach I) NPI and Banks-B, 20 simulations
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Figure 2.5: Coverage at 90% CI and chi square values, estimation of IQR, N(1,1), n =

4, 6, 8, 10, finite (Approach I) NPI and Banks-B, 20 simulations

perform similarly well. At n = 10, Efron-B has the best coverage at 90% CI but it has

large χ2-value, so it does not perform better than Banks-B or Hutson-B. To summarise,

simulations for the estimation of Q1, median and Q3 (Figure 2.4) indicate that Banks-B

and Hutson-B are suitable choices of the bootstrap method for the estimation of quantiles

for Normally distributed small samples (n = 4, 6, 8, 10).

Whilst simulations have shown that the smooth bootstrap methods (Banks-B and

Hutson-B) perform notably better in the estimation of mean, variance and quantiles for

small samples for Normally distributed data, the conclusions for the estimation of IQR

(Figure 2.5) are less clear and they differ per size. Both χ2-value and the coverage at

90% CI increase for Banks-B, NPI-B and Hutson-B as the sample size increases. For

n = 4, NPI-B has the lowest χ2-value and similar under-coverage at 90% CI as Banks-B;

Hutson-B has the best coverage at 90% CI, only small under-coverage; and Efron-B has

large under-coverage. For n = 6, Banks-B and Hutson-B have the best coverage (slight

over-coverage) and Hutson-B has the second best χ2-value, and Efron-B has the lowest

χ2-value. From n = 8, Efron-B has the lowest χ2-value and it has the best coverage at

90% CI. Thus, the conclusions about the bootstrap performance in the estimation of IQR

for n = 4, 6 are unclear, and from n = 8, Efron-B would be the preferred choice. Overall,

the conclusions regarding the bootstrap methods’ performance in the estimation for IQR



46

85

90

95

100

4 6 8 10 20 50 100
Sample size

C
ov

er
ag

e 
at

 9
0%

 C
I

Bootstrap NPI Banks

Estimation of mean, N(1,1), finite bootstrap

(a)

85

90

95

100

4 6 8 10 20 50 100
Sample size

C
ov

er
ag

e 
at

 9
0%

 C
I

Bootstrap NPI Banks

Estimation of mean, N(1,1), infinite bootstrap

(b)

0

100

200

4 6 8 10 20 50 100
Sample size

χ2 −
 v

al
ue

Bootstrap NPI Banks

Estimation of mean, N(1,1), finite bootstrap

(c)

0

100

200

4 6 8 10 20 50 100
Sample size

χ2 −
 v

al
ue

Bootstrap NPI Banks

Estimation of mean, N(1,1), infinite bootstrap

(d)

Figure 2.6: Coverage at 90% CI and χ2-values for NPI-B and Banks-B, estimation of

mean, N(1,1), n = 4, 6, 8, 10, 20, 50, 100, finite versus infinite range, 20 simulations

for Normally distributed data do not follow a clear pattern, hence a recommendation

cannot be given to the researcher.

Choice of range

The performance of NPI-B and Banks-B in the estimation of population characteristics

is affected by the choice of range, introduced in Section 2.3.3, for these two bootstrap

methods. This effect has been explored for data from Normal distribution. Figures

2.6 and 2.7 display the comparison between using finite (Approach I, Section 2.3.3) and

infinite (Approach IV, Section 2.3.3) range for the estimation of mean and variance,
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Figure 2.7: Coverage at 90% CI and χ2-values for NPI-B and Banks-B, estimation of

variance, N(1,1), n = 4, 6, 8, 10, 20, 50, 100, finite versus infinite range, 20 simulations

respectively. This thesis concludes that for the estimation of mean, median and Q1, the

Algorithm 1 outcomes (both coverage at 90% and χ2-value) are similar for the finite range

(Approach I, Section 2.3.3) and for the infinite range (Approach IV, Section 2.3.3). For the

estimation of variance, the coverage at 90% CI is better for infinite Banks-B compared

to finite Banks-B. For NPI-B, this observation only applies to n = 4. An alternative

to finite Approach I would be finite Approach III (with v = 0.1, Section 2.3.3), the

latter approach creates smaller first and last intervals. However, the simulation for the

estimation of mean, displayed in Figure 2.8, shows that the use of a smaller first and

last interval increases under-coverage at 90% CI (for Banks-B when n = 4, 6, 8, 10 and
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Figure 2.8: Coverage at 90% CI and χ2-values for NPI-B and Banks-B, estimation of

mean, N(1,1), n = 4, 6, 8, 10, finite Approach I vs. finite Approach III (with v = 0.1), 20

simulations

for NPI-B when n = 4, 6) and it leads to higher χ2-value for Banks-B (when n = 4, 6).

Given that using finite intervals is computationally simpler, for the estimation of mean

and quantiles, this thesis recommends the use of finite range (Approach I, Section 2.3.3)

and the use of infinite range (Approach IV, Section 2.3.3) for the estimation of variance.

The range is further discussed in Appendix A.4.
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Figure 2.9: Coverage at 90% CI and χ2-values, estimation of mean, N(1,1), n = 4, 6, 8, 10,

finite NPI and Banks-B, percentile versus BCa confidence intervals, 20 simulations

BCa confidence intervals for Normally distributed data

So far, percentile confidence intervals were used. This investigation also explored how

would the use of (1 − 2α)% BCa confidence intervals instead of (1 − 2α)% percentile

confidence interval affect the performance of the four bootstrap methods. In Algorithm 1,

BCa confidence intervals were calculated. The method for calculating BCa confidence

intervals can be found in Section 2.3.5. The comparisons between percentile versus BCa

confidence intervals in the estimation of mean, variance, median, Q1, Q3 and IQR are

illustrated in Figures 2.8-2.13. The observations will be discussed separately for each

population characteristic.

In the estimation of mean (Figure 2.9), the simulation outputs for BCa confidence
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Figure 2.10: Coverage at 90% CI and χ2-values, estimation of variance, N(1,1), n =

4, 6, 8, 10, finite NPI and Banks-B, percentile versus BCa confidence intervals, 20 simula-

tions

intervals are similar to outputs for percentile confidence intervals for NPI-B, Banks-B

and Efron-B. The biggest difference is apparent for Hutson-B. For the estimation of mean,

Hutson-B with BCa confidence intervals has lower χ2-value for n = 4, 6, 8 than Hutson-B

with percentile confidence intervals, and, as a consequence, Hutson-B slightly outperforms

Banks-B for these sample sizes.

By contrast, in the estimation of variance, Hutson-B with BCa confidence intervals

performs worse than with percentile confidence intervals, as the use of BCa confidence

intervals leads to lower χ2-value for all n. Similarly, Banks-B performs worse in the esti-

mation of variance when BCa confidence intervals are used instead of percentile confidence
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Figure 2.11: Coverage at 90% CI and χ2-values, estimation of median, N(1,1), n =

4, 6, 8, 10, finite NPI and Banks-B, percentile versus BCa confidence intervals, 20 simula-

tions
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Figure 2.12: Coverage at 90% CI and χ2-values, estimation of Q1, N(1,1), n = 4, 6, 8, 10,

finite NPI and Banks-B, percentile versus BCa confidence intervals, 20 simulations
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Figure 2.13: Coverage at 90% CI and χ2-values, estimation of Q3, N(1,1), n = 4, 6, 8, 10,

finite NPI and Banks-B, percentile versus BCa confidence intervals, 20 simulations
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Figure 2.14: Coverage at 90% CI and χ2-values, estimation of IQR, N(1,1), n = 4, 6, 8, 10,

finite NPI and Banks-B, percentile versus BCa confidence intervals, 20 simulations

intervals. Efron-B with BCa confidence intervals performs slightly better for n = 4, 10, but

it still remains the worst performing bootstrap method in the estimation of variance for

Normally distributed data with sample size n ≤ 10. NPI-B is the least affected bootstrap

method by the choice of confidence intervals.

In the estimation of median (Figure 2.11), Efron-B with BCa confidence intervals does

not perform better than Banks-B or Hutson-B for small samples, but it outperforms NPI-B

for n = 8, 10. Both Banks-B and NPI-B with BCa confidence intervals have lower χ2-

values for all studied sample sizes than the respective bootstrap methods with percentile

confidence intervals. Hutson-B with BCa confidence intervals has slightly lower χ2-value

for n = 4, 6, 8 than Hutson-B with percentile confidence intervals.
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In the estimation of Q1 (Figure 2.12), Efron-B with BCa confidence intervals performs

worse than Efron-B with percentile confidence intervals: it has worse χ2-values for n =

4, 6, 8 and it has worse coverage at 90% CI. NPI-B and Banks-B with BCa confidence

intervals have lower χ2-values for n = 4, 6, 8 than those bootstrap methods with percentile

confidence intervals and Hutson-B performs better with BCa confidence intervals than

with percentile confidence intervals for n = 4, 6 (by assessing the χ2-value).

In the estimation of Q3 (Figure 2.13), Banks-B and Hutson-B have lower χ2-value

for n = 4, 6, 8 when BCa confidence intervals are used and NPI-B with BCa confidence

intervals has lower χ2-value than NPI-B with percentile confidence intervals for all sample

sizes. Efron-B with BCa confidence intervals has worse coverage at 90% CI than Efron-B

with percentile confidence intervals for n = 6, 8, 10.

Lastly, we do not recommend using BCa confidence intervals for the estimation of IQR

for Banks-B and Hutson-B, as it makes the coverage worse (see Figure 2.14). On the other

hand, NPI-B with BCa confidence intervals performs notably better in the estimation of

IQR than NPI-B with percentile confidence intervals for all n, considering both metrics

of assessment. Efron-B with BCa confidence intervals performs better than Efron-B with

percentile confidence intervals at n = 4 from the perspective of both metrics and it has

lower χ2-value for n = 6, 8, 10. Thus, we conclude that BCa confidence intervals have

biggest effect on the estimation of IQR for small sample sizes and their use could be

considered for Efron-B and NPI-B in the estimation of IQR. It can be concluded that

NPI-B with BCa confidence intervals performs the best in the estimation of IQR for

n = 4, 6, and Efron-B with BCa confidence intervals performs the best in the estimation

of IQR for n = 8, 10.

In summary, using BCa confidence intervals instead of percentile confidence intervals

does not make Efron-B a better performing bootstrap method, in the estimation of mean,

variance and quantiles for small samples, than the other three bootstrap methods (Banks-

B, Hutson-B and NPI-B) from the perspective of either of the two metrics of assessment.

We would recommend the use of BCa confidence for Efron-B only for the estimation

of IQR. For further application of BCa CI with Banks-B, Hutson-B and NPI-B for the

estimation of population characteristics of Normally distributed data of small sample

size, it is essential to carry out further research into the performance of BCa confidence
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intervals for Hutson-B for the estimation of mean and quantiles (Q1, median and Q3) and

for Banks-B and NPI-B for the estimation of quantiles (Q1, median and Q3).

Further investigation topics

This section has shown that adjusting variables, such as the type of confidence intervals

or the type of range for NPI-B or Banks-B, has an effect on the bootstrap method’s

performance in estimation. Some initial results of two further topics are discussed in

Appendices A.2 and A.3. A brief investigation into how the bootstrap methods perform

in estimation when the sample size is as small as n = 3, or even smaller, n = 2, has

been carried out and it can be concluded that Banks-B, Hutson-B and NPI-B can be still

considered for the use for the estimation of mean, variance and quantiles for Normally

distributed data, however, the outcomes of analysis should be considered with great care,

given that there is no guarantee that such small sample is an accurate representation of the

population. Further details are reported in Appendix A.2. Moreover, initial investigation

into the variability of the bootstrap methods outcomes for Normally distributed data is

discussed Appendix A.3.

2.4.3 Lognormally and Exponentially distributed data

This section presents findings on the bootstrap performance in the estimation of popu-

lation characteristics for data from Lognormal and Exponential distribution. Lognormal

distribution is an example of a skewed distribution, with a heavy tail. Lognormal distri-

bution has probability density function f(x) = 1
xsLN

√
2π
e
− (ln x−mLN )2

2s2
LN for x > 0, sLN > 0,

mLN ∈ (−∞,∞). The distribution parameters of the Lognormal distribution, mLN

and sLN , are calculated from the mean µ and variance σ2 of the Normal distribution

using the following formulas: mLN = ln(µ2/
√
µ2 + σ2) and sLN =

√
ln(σ2/(µ2 + 1)).

For Lognormal distribution, the chosen mean and standard deviation are µ = 1 and

σ = 1, respectively, which leads to Lognormal distribution LN(mLN = −0.3465736,s2
LN =

0.83255462). When we refer to Lognormal distribution later, we round these distribu-

tion parameters to three decimal places. For Lognormal distribution, the true population

characteristics calculations are: median for LN(mLN , s
2
LN) is equal to emLN+sLN∗φ−1(0.5),

Q1 for LN(mLN , s
2
LN) equals to emLN+sLN∗φ−1(0.25) and Q3 for LN(mLN , s

2
LN) is equal
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to emLN+sLN∗φ−1(0.75). φ stands for the cumulative distribution function of the stan-

dard Normal distribution. Thus, true Q1 for LN(mLN = −0.347,s2
LN = 0.8332) is

0.40328, true median for LN(mLN = −0.347,s2
LN = 0.8332) is 0.70711 and true Q3 for

LN(mLN = −0.347,s2
LN = 0.8332) is 1.23983.

Exponential distribution has probability density function f(x;λ) = λeλx for x ≥ 0.

The data are generated from Exponential distribution with rate λ = 1. For Exponential

distribution, the true parameter calculations are: mean for Exp(λ) is equal to 1/λ, median

for Exp(λ) is equal to ln(2)/λ, variance for Exp(λ) is equal to 1/λ2, Q1 for Exp(λ) is

equal to ln(4/3)/λ, Q3 for Exp(λ) is equal to ln(4)/λ and IQR for Exp(λ) is equal to

ln(4)/λ− ln(4/3)/λ. Thus, true mean for Exp(1) is 1, true median for Exp(1) is 0.69315,

true variance for Exp(1) is 1, true Q1 for Exp(1) is 0.28768, true Q3 for Exp(1) is 1.38629

and true IQR for Exp(1) is 1.09861.

Estimation of mean

Both Exponential and Lognormal distributions are only defined on [0,∞). Thus, for

Banks-B, NPI-B and Hutson-B, the half-infinite range, [0,∞), is first assumed: for

Banks-B and NPI-B, Approach V (see Section 2.3.3) is employed and for Hutson-B Equa-

tion (2.3) from Section 2.3.4 is used. Comments on the effect of the choice of tails will

be provided later. The discussion begins with the bootstrap methods performance in the

estimation of mean for data from Exponential and Lognormal distribution (Figure 2.15),

when percentile confidence intervals are calculated. The performance of Efron-B in the

estimation of mean for data from Lognormal distribution and Exponential distribution is

very poor (high χ2-value and large under-coverage at 90% CI). Banks-B, Hutson-B and

NPI-B perform better in the estimation of mean. Coverage at 90% CI for Banks-B is close

to 900 (the ideal coverage), there is a small under-coverage for Exponentially distributed

data for all sample sizes and for Lognormally distributed data for n = 4, 6. For NPI-B,

there is over-coverage for all sample sizes. Hutson-B has under-coverage at 90% CI for

both distributions and for all sample sizes. Considering the second metric, χ2-value, it

can be concluded that half-infinite Banks-B has the lowest χ2-value for all the presented

sample sizes for both Exponential and Lognormal distribution, therefore, it is the best

performing bootstrap method in the estimation of mean. Hutson-B performs worse in
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Figure 2.15: Coverage at 90% CI and χ2-values, estimation of mean,

LN(mLN = −0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, half-infinite NPI and

Banks-B, 20 simulations
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the estimation of mean for data that are not Normally distributed than for Normally

distributed data.

Estimation of variance

Conclusions for the estimation of variance (Figure 2.16) are different for data from Expo-

nential and Lognormal distributions. For Exponentially distributed data, Banks-B is the

best performing bootstrap in the estimation of variance as it has the lowest χ2-value for

n = 4, 6, 8, 10. On the other hand, for Lognormally distributed data, NPI-B is the best

performing bootstrap in the estimation of variance as it has the best coverage at 90%

CI and the lowest χ2-value for small sample sizes, n = 4, 6, 8, 10. The latter observations

could be linked to the fact that Lognormal distribution is a skewed distribution. Arguably,

NPI-B is better at capturing the non-symmetric shape of the distribution. Efron-B per-

forms poorly in the estimation of variance for Exponentially and Lognormally distributed

data (large under-coverage at 90% CI and high χ2-value). Hutson-B is the third best

performing bootstrap method, but it still performs poorly from the perspective of both

metrics of assessment. In Section 2.4.2 it was shown that Hutson-B performs well in the

estimation of variance for small samples with Normal underlying distribution. However,

this conclusion does not extend to Exponentially and Lognormally distributed data. Thus,

the reader should be careful about using Hutson-B for the estimation of variance, given

that one cannot ascertain Normal distribution for small samples.

Estimation of quantiles and IQR

The bootstrap performance in the estimation of quantiles and IQR has been explored

for Exponentially and Lognormally distributed data (Figures 2.17, 2.18, 2.19 and 2.20).

Banks-B is a suitable bootstrap method for the estimation of quantiles (Q1, median and

Q3) for both Exponentially and Lognormally distributed data as it has good coverage

and low χ2-value. NPI performs well in the estimation of Q3 for n = 4 for Exponentially

distributed data. For Lognormally distributed data, NPI-B also performs well at n = 4

but Banks-B is clearly still the best performing bootstrap method here. Hutson-B also

performs well, in some cases better than Banks-B. Observations for different quantiles

will be discussed separately.
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Figure 2.16: Coverage at 90% CI and χ2-values, estimation of variance,

LN(mLN = −0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, half-infinite NPI and

Banks-B, 20 simulations
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Figure 2.17: Coverage at 90% CI and χ2-values, estimation of Q1, LN (mLN = −0.347,

s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, half-infinite NPI and Banks-B, 20 simulations
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Figure 2.18: Coverage at 90% CI and χ2-values, estimation of median, LN(mLN = −0.347,

s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, half-infinite NPI and Banks-B, 20 simulations
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Figure 2.19: Coverage at 90% CI and χ2-values, estimation of Q3, LN(mLN = −0.347,

s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, half-infinite bootstrap NPI and Banks-B, 20

simulations



64

In the estimation of Q1 (Figure 2.17), Banks-B is the best performing bootstrap

(lowest χ2-value for n = 4, 6, 8 and small over-coverage – close to the ideal coverage) for

Exponentially distributed data. For Lognormally distributed data, Banks-B and Hutson-

B both perform well in the estimation of Q1: they have similar coverage at 90% CI

(smaller over-coverage than NPI-B, close to the ideal coverage), but Hutson-B has the

lowest χ2-value.

In the estimation of median (Figure 2.18) for both Exponentially and Lognormally

distributed data, Banks-B performs the best in the estimation of median for n = 4. For

Lognormally distributed data, Hutson-B performs slightly better than Banks-B (lower χ2-

value) for n = 6, 8, 10 and for Exponentially distributed data, Hutson-B performs better

for n = 6, 10 and Banks-B is the best performing bootstrap method for n = 8. Overall

conclusion is that both Banks-B and Hutson-B are good in the estimation of median for

both Exponentially and Lognormally distributed data.

In the estimation of Q3 (Figure 2.19) for Exponentially distributed data, for n = 4,

NPI-B performs well (small over-coverage as opposed to other bootstrap methods that

have under-coverage, and second lowest χ2-value), and Banks-B has under-coverage, but

it has the lowest χ2-value. For n = 6, Banks-B has only small under-coverage and it has

the lowest χ2-value. For n = 8, Hutson-B has better coverage at 90% CI and slightly lower

χ2-value. For n = 10, Banks-B has coverage closest to the ideal coverage and it has the

lowest χ2-value. Thus, for Exponentially distributed data, Banks-B is a suitable recom-

mended bootstrap method. For n = 8, 10, Hutson-B also performs well. For Lognormally

distributed data, Banks-B is the best performing bootstrap method in the estimation of

Q3, as it has good coverage at 90% CI and the lowest χ2-value. Hutson-B performs worse

for Lognormally distributed data, this could be caused by the influence of heavy tails,

for which Hutson-B is not an ideal method, as discussed in Section 2.3.4. Overall, for

both Exponential and Lognormal distribution, the recommendation stemming out of the

simulation study is to use Banks-B for the estimation of quantiles (Q1, median, and Q3)

and for some cases also Hutson-B.

It is less clear which bootstrap method performs the best in the estimation of IQR

(Figure 2.20). For Exponentially distributed data, at n = 4, NPI-B has the best coverage

at 90% CI and the lowest χ2-value, and at n = 6, Banks-B has good coverage at 90%
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Figure 2.20: Coverage at 90% CI and χ2-values, estimation of IQR, LN (mLN = −0.347,

s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, half-infinite NPI and Banks-B, 20 simulations

CI and the lowest χ2-value. However, at n = 8, Efron-B has the lowest χ2-values whilst

Banks-B has the best coverage at 90% CI, so it is not clear which bootstrap method is

the best. Arguably, Banks-B performs the best at n = 8 because under-coverage is bad.

For n = 10, Banks-B has the lowest χ2-value and there is only small over-coverage, so

arguably it is the best performing bootstrap method at this sample size. For Lognormally

distributed data, Banks-B is the best performing bootstrap method for n = 4, 6 (best

coverage and smallest χ2-value). At n = 8, Efron-B has the lowest χ2-value, but it

has a slight under-coverage, so arguable Banks-B and Hutson-B still perform better as

they both have over-coverage, rather than under-coverage. At n = 10, Efron-B has the

best coverage, but Hutson-B has the lowest χ2-value, therefore, conclusions are not clear.
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Before giving more guidance on what bootstrap method to choose for the estimation of

IQR for Exponentially and Lognormally distributed data, more exploration needs to be

carried out.

Choice of range

So far, half-infinite range (Approach V, Section 2.3.3) was assumed for NPI-B and Banks-

B in the simulation study for Exponential and Lognormal distributions. The same sim-

ulations were carried out using finite range (Approach I, Section 2.3.3). The coverage

at 90% CI is better and the χ2-value is lower for Banks-B and NPI-B with half-infinite

range than for the finite range for small n. For more detail, see Appendix A.4.2. Thus,

half-infinite range is recommended for Exponentially and Lognormally distributed data

defined on [0,∞). In practice, it is not always clear whether the data comes from distri-

bution defined on real-line or on on [0,∞). A researcher could use biological knowledge

and use half-infinite range if the data has to be equal or greater than 0.

BCa confidence intervals for Lognormally distributed data

Similarly to the simulation study for Normally distributed data, the effect of using BCa

instead of percentile confidence intervals in Algorithm 1 for data from Lognormal distri-

bution has been studied. Using BCa confidence intervals does not affect the previously

described findings: Banks-B still performs the best in the estimation of mean and quan-

tiles, and NPI-B performs the best in the estimation of variance for data with Lognormal

underlying distribution.

Further detailed observations follow: In the estimation of mean for data from Log-

normal distribution (Figure 2.21), using BCa confidence intervals slightly worsens the

Banks-B and Hutson-B performance in estimation, NPI-B is the least affected bootstrap

method and Efron-B is not notably better performing, it is still the worst performing

bootstrap method in the estimation of mean for small samples. In the estimation of vari-

ance for data from Lognormal distribution (Figure 2.22), using BCa confidence intervals

worsens the performance of NPI-B, Banks-B and Hutson-B (from the perspective of both

metrics of assessment) and it does not improve the Efron-B performance in the estimation

of variance for small samples.
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Figure 2.21: Coverage at 90% CI and χ2-values, estimation of mean,

LN(mLN = −0.347,s2
LN = 0.8332), n = 4, 6, 8, 10, half-infinite NPI and Banks-B,

percentile versus BCa confidence intervals, 20 simulations

Efron-B with BCa confidence intervals does not perform better in the estimation of

quantiles (Q1, median, Q3) and NPI-B is not notably affected by the change of confidence

intervals (see Figures 2.23, 2.24 and 2.25). The performance of Banks-B and Hutson-B in

the estimation of quantiles is affected by the choice of confidence intervals, in some cases

using BCa confidence intervals improves the performance of these bootstrap methods, in

other cases it worsens it. In the estimation of Q1 for data from Lognormal distribution

(Figure 2.23), Banks-B and Hutson-B have better coverage at 90% CI and lower χ2-

value with BCa confidence intervals for n = 4, 8. By contrast, for n = 6, 10 these two

bootstrap methods have slightly higher χ2-values. In the estimation of median for data
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Figure 2.22: Coverage at 90% CI and χ2-values, estimation of variance,

LN(mLN = −0.347,s2
LN = 0.8332), n = 4, 6, 8, 10, half-infinite NPI and Banks-B, per-

centile versus BCa confidence intervals, 20 simulations

from Lognormal distribution (Figure 2.24), using BCa confidence intervals worsens the

Banks-B’s performance for n = 4 and the Hutson-B’s performance for n = 4, 10. Although

there is lower χ2-value for n = 6 for both bootstrap methods and for n = 8 for Banks-B,

this thesis does not recommend the use of BCa confidence intervals in the estimation of

median for either of the four bootstrap methods. In the estimation of Q3 for data from

Lognormal distribution (Figure 2.25), using BCa confidence intervals improves χ2-value

for Banks-B for all n and for Hutson-B for n = 6, 8. However, using BCa CI also worsens

coverage at 90% confidence interval for n = 4 for these two bootstrap methods and it
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Figure 2.23: Coverage at 90% CI and χ2-values, estimation of Q1,

LN(mLN = −0.347,s2
LN = 0.8332), n = 4, 6, 8, 10, half-infinite NPI and Banks-B,

percentile versus BCa confidence intervals, 20 simulations
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Figure 2.24: Coverage at 90% CI and χ2-values, estimation of median,

LN(mLN = −0.347,s2
LN = 0.8332), n = 4, 6, 8, 10, half-infinite NPI and Banks-B, per-

centile versus BCa confidence intervals, 20 simulations
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Figure 2.25: Coverage at 90% CI and χ2-values, estimation of Q3,

LN(mLN = −0.347,s2
LN = 0.8332), n = 4, 6, 8, 10, half-infinite NPI and Banks-B,

percentile versus BCa confidence intervals, 20 simulations
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Figure 2.26: Coverage at 90% CI and χ2-values, estimation of IQR,

LN(mLN = −0.347,s2
LN = 0.8332), n = 4, 6, 8, 10, half-infinite NPI and Banks-B,

percentile versus BCa confidence intervals, 20 simulations
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does not improve coverage for n = 6, 8, 10.

In the estimation of IQR for data from Lognormal distribution (Figure 2.26), NPI-B

performs better with BCa confidence intervals (lower χ2-value for all n, better coverage

at 90% confidence interval for n = 6, 8, 10, yet for n = 4, there is worse coverage – slight

under-coverage). Banks-B and Hutson-B have worse coverage at 90% confidence interval

for all n with BCa confidence intervals. Although the χ2-value is improved for n = 6, 8, 10

for Banks-B and for n = 8, 10 for Hutson-B, this work does not recommend using BCa

confidence intervals for Banks-B and Hutson-B in the estimation of IQR for Lognormally

distributed data. For Efron-B, coverage at 90% confidence interval is not improved by

using BCa confidence intervals but χ2-value is lower for all n. Thus, the pattern in the

estimation of IQR is changed when BCa confidence intervals are used instead of percentile

confidence intervals, however, there are still no clear conclusions about the bootstrap

method performance in the estimation of IQR.

Overall, the findings of this thesis dictate a recommendation of not using BCa con-

fidence intervals in the estimation of mean, variance and median for Lognormally dis-

tributed data for either of the four bootstrap methods. Further research into using BCa

confidence intervals with NPI-B and Efron-B in the estimation of IQR, and with Hutson-B

and Banks-B in the estimation of Q1 and Q3 for Lognormally distributed data, is encour-

aged. Caution is advised to practitioners regarding the usage of BCa confidence intervals

in the estimation of quantiles and IQR before more research has been carried out.

2.4.4 Mixed-Normally distributed data

In practical applications, scientific community sometimes assumes Normal distribution in

cases where sample size is low. But this is not always a fair assumption. The data can also

form more than one Normal distribution. To account for this scenario, the performance

in estimation is explored for data from Mixed-Normal distributions.

Determining the parameters of the Mixed-Normal distribution in a way that reflects

the real life test scenarios is complicated. For example, in oncology clinical research, a

meaningful response is 30% tumour reduction and at 20% tumour increase the patient

is considered to be clinically not responding to the treatment. One option would be to

use the clinical research circumstances as a starting point when creating Mixed-Normal



74

distributions. However, the problem is that in clinical research, humans already have a

tumour, whereas in animal study there are healthy animals without tumour, which get

inserted the tumour and are subsequently treated. In preclinical research when a group

of animals is given a drug, some animals respond whilst others do not. In many cases

this will be in the ratio 50 : 50. An example of this is the Mixed-Normal distribution

A, 0.5N(0, 1) + 0.5N(3, 1). This Mixed-Normal distribution is formed from two Normal

distributions with equal probability, the two distributions have different means but same

standard deviations. Of course, this is only an attempt to reflect the real life scenario.

Other Normal mixed ratio, 90:10, has been considered for two different Mixed-Normal

distributions. In practical scenarios, Mixed-Normal distribution composed of two distri-

butions with same means but different variances can occur when two different measuring

tools with different inaccuracies are used. An example of this case is Mixed-Normal distri-

bution B, 0.9N(0, 1)+0.1N(0, 16). In theory, Mixed-Normal distribution can also consist

of two Normal distributions with different means and different variances. An example of

this is Mixed-Normal distribution C, 0.9N(0, 1)+0.1N(4, 9). There is no particular reason

for choosing those exact parameters for the Mixed-Normal distribution C, the important

part is that the means and variances are sufficiently different. Plot of density functions

for the Mixed-Normal distributions A, B and C is displayed in Figure 2.27.

N(µ1, σ
2
1) and N(µ2, σ

2
2) are two independent Normal distributions. The distribution

parameters for the Mixed-Normal distributions are: mean for p1N(µ1, σ
2
1) + p2N(µ2, σ

2
2)

is equal to p1µ1 +p2µ2 and variance for p1N(µ1, σ
2
1)+p2N(µ2, σ

2
2) is equal to p1σ

2
1 +p2σ

2
2 +

p1µ
2
1 + p2µ

2
2− µ2, where µ is the mean of p1N(µ1, σ

2
1) + p2N(µ2, σ

2
2). Thus, true mean for

Mixed-Normal A (0.5N(0, 1) + 0.5N(3, 1)) is 1.5 and true variance for Mixed-Normal A

is 3.25; true mean for Mixed-Normal B (0.9N(0,1)+0.1N(0,16)) is 0 and true variance for

Mixed-Normal B is 2.5; true mean for Mixed-Normal C (0.9N(0,1)+0.1N(4,9)) is 0.4 and

true variance for Mixed-Normal C is 3.24.

Clearly, there are limitations to estimation analysis for mixtures of Normal distribu-

tions when the sample sizes are small, especially when the sample size n = 4, because of

the known identifiability issues with mixtures of Normal distributions. Unless, there is

some biological or other knowledge that would suggest that the data could come from a

Mixed-Normal distribution, the practitioner might not realise that a very small sample
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Figure 2.27: Plot of density functions for the Mixed-Normal distributions A, B and C

comes from such distribution. However, the point of the simulation study presented in this

section is to observe how in such cases the bootstrap methods perform when estimating

a particular population characteristics.

In the simulation study, finite range is assumed for Banks-B and NPI-B, and Hutson-B

is applied on (−∞,∞). In Appendix A.4.3, the choice of finite versus infinite range is

briefly studied. Plots for Mixed-Normal distributions A, B and C for the estimation of

mean and variance are displayed in Figures 2.28 and 2.29, respectively.

For the Mixed-Normal distribution A, it can be concluded that for both the estimation

of mean and variance, Banks-B is a good choice of the bootstrap method as it has low χ2-

value and from n=6 onwards it also has small over-coverage at 90% CI. Banks-B has small

under-coverage at n = 4. Hutson-B has better coverage at 90% CI and lower χ2-values

in the estimation of mean for n = 4 and better coverage at 90% CI in the estimation of

variance for n = 4.

For the Mixed-Normal distribution B, it can be concluded that Banks-B performs

well in the estimation of mean as there is good coverage at 90% CI and the lowest χ2-

value but not so well in the estimation of variance. For the estimation of variance for the
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Figure 2.28: Coverage at 90% CI and χ2-values, estimation of mean, Mixed-Normal

A,B,C, n = 4, 6, 8, 10, finite (Approach I) Banks-B and NPI-B, 20 simulations
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Figure 2.29: Coverage at 90% CI and χ2-values, estimation of variance, Mixed-Normal

A,B,C, n = 4, 6, 8, 10, finite (Approach I) Banks-B and NPI-B, 20 simulations
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Mixed-Normal distribution B, all the bootstrap methods have under-coverage, Efron-B

has the largest under-coverage and Hutson-B has the smallest under-coverage. Hutson-B

performs the best, and NPI-B the second best, out of the four bootstrap methods in

the estimation of variance, but it is arguable whether this bootstrap method should be

recommended as a tool for outlier situations, as there is still large under-coverage.

For the Mixed-Normal distribution C, it can be concluded that NPI-B has the best

coverage in the estimation of mean and on average little bit larger χ2-value than Banks-B.

Thus, it is arguable whether NPI-B or Banks-B perform better. Hutson-B is the third best

performing bootstrap method in the estimation of mean for Mixed-Normal distribution

C. In the estimation of variance for Mixed-Normal distribution C, Hutson-B is the best

performing bootstrap method, as it has the lowest χ2-value, but it still has under-coverage

at 90% CI. Therefore, the decision-maker should still be careful about making choices

based on estimation in this case. Efron-B performs the worst for both the estimation of

mean, and variance for all three Mixed-Normal distributions.

Overall, Banks-B is the best bootstrap method choice for the estimation of mean

and variance for Mixed-Normal distribution consisting of two distributions of different

means, but same variance; Hutson-B performs the best in the estimation of variance for

two Mixed-Normal distributions consisting of two different distributions with different

variances; Efron-B is the worst choice for the estimation of mean and variance for data

from Mixed-Normal distribution for small samples. However, making conclusions and

decisions based on these estimations should be done with care. Appendix A.4.3 briefly

compares the use of infinite range and finite range and concludes that infinite range is

preferable.

2.4.5 Summary

This section summarises findings of the bootstrap methods’ performance in the quantifi-

cation of uncertainty for small samples in the estimation of mean, variance and quantiles

for Normally, Lognormally, Exponentially and Mixed-Normally distributed data. The

simulation study has shown that Efron-B performs poorly in the estimation of mean,

variance and quantiles for small samples. Across different distributions, there is large

under-coverage at 90% confidence interval and large χ2-value when estimating mean,
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variance and quantiles for small sample sizes (n ≤ 10). This conclusion is in line with the

reasoning of the asymptotic argument introduced in Section 2.1.

Moreover, the study has shown that Banks-B performs better than Efron-B in the

quantification of uncertainty for small samples in the estimation of mean, variance and

quantiles for Normally, Lognormally, Exponentially and Mixed-Normally distributed data,

when sample sizes are small. Even using BCa confidence intervals did not make Efron-B

better performing than Banks-B in estimation for small samples for both Normally and

Lognormally distributed data.

Hutson-B performs well in the estimation of variance of Normally distributed data and

Mixed-Normally distributed data consisting of two distributions with different variances,

but not so well in the estimation of variance of Lognormally and Exponentially distributed

data. Even though Hutson-B performs well in the estimation of variance for Normally

distributed data, this thesis would not recommend it for the estimation of variance of

small samples because in such cases the underlying distribution cannot be ascertained.

Hutson-B also performs well in the estimation of quantiles for Normally distributed data

and in some cases even for the estimation of quantiles for Lognormally and Exponentially

distributed data.

NPI-B is aimed at prediction, not estimation, nevertheless, this investigation has

shown that there are cases where NPI-B performs well in estimation. Generally, NPI-

B performs the best in the estimation of population characteristics for n = 4 and in the

estimation of variance for skewed data.

Table 2.1 summarises recommendations for the bootstrap method choice when esti-

mating various population characteristics for small sample size (n ≤ 10) for different

choices of distributions. When estimating population characteristics for small samples,

researchers often have limited knowledge about the underlying distribution of the data.

On balance, despite this limited knowledge, the investigation has shown that in most

cases, across different cases, Banks-B is a good choice of the bootstrap method for the

estimation of population characteristics for data with small sample size (n ≤ 10).
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Distribution Metric Best performing bootstrap

Normal mean finite Banks-B or Hutson-B

Normal variance Hutson-B

Normal quantiles finite Banks-B or Hutson-B

Normal IQR no clear conclusion

Lognormal or

Exponential
mean half-infinite Banks-B

Exponential variance half-infinite Banks-B

Lognormal variance half-infinite NPI-B

Lognormal or

Exponential
quantiles half-infinite Banks-B

Lognormal or

Exponential
IQR no clear conclusion

Mixed-Normal

different means, same variances
mean infinite Banks-B

Mixed-Normal

same means, different variances
mean infinite Banks-B

Mixed-Normal

different means, different variances
mean infinite Banks-B or NPI-B

Mixed-Normal

different means, same variances
variance infinite Banks-B

Mixed-Normal

same means, different variance
variance Hutson-B

Mixed-Normal

different means, different variances
variance Hutson-B

Table 2.1: Summary table of the comparison cases considered for the bootstrap perfor-

mance in estimation for small sample size (n ≤ 10)
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The simulation study for Normally distributed data showed that both finite and infinite

range may be employed for Banks-B and NPI-B in the estimation of mean and quantiles,

however finite bootstrap is computationally easier. In the estimation of variance for

Normally distributed data, the infinite bootstrap is the recommended range. When the

data come from Exponential or Lognormal distribution, the choice of half-infinite Banks-B

is recommended for the estimation of mean and quantiles (Q1, median and Q3) when

the sample size is n = 10 or smaller. This work would recommend half-infinite NPI-B

for the estimation of variance for Lognormally distributed data, or data from another

skewed distribution, and half-infinite Banks-B for the estimation of variance for data

with underlying Exponential distribution.

This investigation did not provide explicit conclusions about the bootstrap perfor-

mance in the estimation of IQR. The performance of the bootstrap methods in the esti-

mation of IQR differed per sample size and per distribution. Thus, this remains an open

topic for future research.

Furthermore, this study explored the effect of using BCa confidence intervals instead

of percentile confidence interval for Normally and Lognormally distributed data. BCa

CI did not make Efron-B a better performing bootstrap method than the other three

bootstrap methods (Banks-B, Hutson-B and NPI-B) from the perspective of either of

the two metrics of assessment for both Normally and Lognormally distributed data. On

the other hand, for Normally distributed data of small sample size, further research into

BCa confidence for Hutson-B for the estimation of mean and quantiles (Q1, median and

Q3) and for Banks-B and NPI-B for the estimation of quantiles, is recommended. This

work would not recommend BCa confidence intervals for the estimation of mean, variance

and median for Lognormally distributed data for either of the four bootstrap methods.

But further research into using BCa confidence intervals with NPI-B and Efron-B for the

estimation of IQR, and with Hutson-B and Banks-B for the estimation of Q1 and Q3 for

Lognormally distributed data, is encouraged. Caution is advised to practitioners about

using BCa confidence intervals instead of percentile confidence for the estimation of any

population characteristics for small samples, before more research has been carried out.

Some further work regarding the bootstrap method performance in estimation for

small samples has not been included in the main investigation, but it is reported in
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Appendix. The bootstrap method was briefly studied for smaller sample sizes, n = 2, 3,

for Normally distributed data and the findings showed that Banks-B, Hutson-B and NPI-

B performed much better than Efron-B for these sample sizes. However, this thesis would

not recommend the bootstrap method for such small sample sizes. The initial remarks

for Normally distributed data can be found in Appendix A.2.

Moreover, a brief investigation into smoothed bootstrap using kernel (Kernel-B), pre-

sented in Appendix A.5.2, showed that Kernel-B performs decently well in the estimation

of quantiles (Q1, median and Q3). However, further research into the use of smoothing

parameter is recommended before employing Kernel-B in practice for small samples.

2.5 Bootstrap coverage performance in prediction

This section assesses the performance in making prediction inference for small sample sizes

for four bootstrap methods (NPI-B, Banks-B, Hutson-B and Efron-B) for data simulated

from Normal, Lognormal, Exponential and Mixed-Normal distributions. The prediction

coverage at 90% percentile prediction intervals, when estimating mean, variance, median,

Q1, Q3 and IQR of small sample sizes (n = 4, 6, 8, 10, 20), is considered. Initial investi-

gation of the bootstrap methods’ performance in prediction can be found in Coolen and

BinHimd [53] and in BinHimd’s thesis [31]. BinHimd compared the performance in the

prediction of mean, variance and Q3 for NPI-B and Efron-B, focusing on larger samples

(n = 20, 50, 100, 200, 500). She considered 0.90% and 0.95% prediction interval and Nor-

mal, Gamma and Uniform distribution. This study extends the previous exploration,

focusing on small samples and including two additional bootstrap methods, Banks-B and

Hutson-B.

The simulation study used to assess the bootstrap performance in prediction is outlined

in Section 2.5.1 and the findings about the bootstrap methods’ performance in making

prediction inference are presented for Normal, Lognormal, Exponential and Mixed-Normal

distributions in Sections 2.5.2, 2.5.3 and 2.5.4, respectively.



83

Algorithm 2 Calculating the prediction coverage of the 100(1− 2α)% percentile predic-

tion interval

1: Draw 2N samples of size n from a specific distribution. Consider X1, X2, . . . , XN as

the actual samples and XN+1, . . . , X2N as the future samples.

2: For each future sample calculate a chosen sample statistic θ̂i, i ∈ {1, . . . , N}.

3: From each actual sample i, create B bootstrap samples of size n, construct 100(1 −

2α)% prediction interval for θ̂i, and record whether θ̂i is in the percentile prediction

interval.

4: Report the proportion (in %) of intervals which contain θ̂i out of the N prediction

intervals.

5: In total carry out Steps 1-4 M times.

2.5.1 Methodology

The simulation for assessing the bootstrap performance in prediction is described in Algo-

rithm 2. The algorithm for assessing the prediction performance of bootstrap methods is

based on BinHimd’s algorithm presented in [31]. Let X = (X1, X2, . . . , Xn) be the actual

random samples and X∗ = (Xn+1, . . . , X2n) be the future random samples, both X and X∗

are iid from the same probability distribution. Percentile prediction intervals are used to

predict the statistic θ̂, e.g. mean. From each actual sample i, i ∈ {1, . . . , N}, B bootstrap

samples are created: y∗i1, y∗i2, . . . , y∗iB. For each bootstrap sample b, b ∈ {1, . . . , B}, the

bootstrapped sample statistic, θ̂∗ib, is calculated. The 100(1 − 2α)% prediction interval

for the population parameters is constructed by defining the lower bound to be the αBth

value in the ordered list of the θ̂∗ib values and the upper bound to be the (1−α)Bth value

in this list. For each future sample, θ̂i is calculated and it is assessed whether this value

lies in the percentile prediction interval of the actual sample.

In this investigation, B = 1000, N = 1000, M = 20, α = 0.05. The study focuses

on the coverage at 90% percentile prediction interval. In the figures, PPI stands for

percentile prediction interval. The best performing bootstrap has coverage of 90% at 90%

PPI. Over-coverage is better than under-coverage and the explanation for that is similar

to the one for the bootstrap performance in estimation outlined in Section 2.4.1.
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Figure 2.30: Prediction performance of bootstrap methods for data from N(1,1), for

prediction of mean, variance, quantiles and IQR, finite NPI-B and Banks-B, 20 simulations
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2.5.2 Normally distributed data

The prediction performances for mean, median, Q1, Q3, variance and IQR for Normally

distributed data are visualised in Figure 2.30. Finite range for NPI-B and Banks-B

(Approach I, Section 2.3.3) is used. From the simulations it can be concluded that for

the performance of mean, variance and the quantiles (Q1, Q2 and Q3), NPI-B performs

the best in prediction, as for other bootstrap methods, there is under-coverage, and for

NPI-B there is mostly over-coverage and good coverage in some cases. Hutson-B performs

better in the prediction of variance at n = 4. This could be linked to the large variance

of Hutson-B variance outputs (see Figure A.8, Appendix A.3).

In the prediction of IQR, all bootstrap methods perform well for n = 8, 10, 20. For

n = 4, NPI-B performs the best in the prediction of IQR and at n = 6, NPI-B, Banks-

B and Hutson-B perform well. The good performance in the prediction of IQR of all

bootstrap methods is a consequence of the Normal distribution. NPI-B assumes more

variability, as the data are usually not perfectly Normally distributed. The large over-

coverage of NPI-B can be a result of NPI accounting for larger variability of data.

2.5.3 Exponential and Lognormal distributions

The prediction performances for mean, median, Q1, Q3, variance and IQR for Expo-

nentially and Lognormally distributed data are displayed in Figures 2.31 and 2.32, re-

spectively. Half-infinite range (Approach V, Section 2.3.3), has been used for NPI-B and

Banks-B for Exponentially and Lognormally distributed data. The simulation study shows

that NPI-B performs well in prediction for Exponentially and Lognormally distributed

data. Moreover, the prediction coverage of NPI-B for Exponentially and Lognormally

distributed data is better than for Normally distributed data. This could be explained by

the fact that NPI-B has bigger variance than other bootstrap methods, because it aims

to embrace uncertainty and there is more uncertainty (unpredictability) in Exponentially

and Lognormally distributed datasets than in Normally distributed ones. There are some

cases where Banks-B or Hutson-B perform well. Namely, for n = 4 in the prediction

of variance for Exp(1), Banks-B has better coverage than NPI-B, and for n = 4, 6 for

the prediction of Q1 for Exp(1), Banks-B and Hutson-B have the best coverage. For
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Figure 2.31: Bootstrap methods performance in prediction of mean, variance, quantiles

and IQR for data from Exp(1), 20 simulations
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Figure 2.32: Bootstrap methods performance in prediction of mean, variance, quantiles

and IQR for data from Lognormal (mLN = −0.347, s2
LN = 0.8332), 20 simulations
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Lognormally distributed data, Banks-B and Hutson-B perform well in the prediction of

Q1 for n = 4, 6 and Banks-B in the prediction of median for n = 4, 6. Efron-B is the

worst performing bootstrap method in the prediction of mean, variance and quantiles.

Banks-B performs well in the prediction of IQR for Exponentially distributed data for all

studied sample sizes, Hutson-B and Efron-B for n = 6, 8, 10. In the prediction of IQR

for Lognormally distributed data, Efron-B performs well for n = 10, 20, and Banks-B and

Hutson-B for n = 20. Overall, this thesis recommends the use of NPI-B for prediction,

especially in the case where it is not clear what the underlying distribution is.

2.5.4 Mixed-Normally distributed data

The prediction performance has also been explored for the four bootstrap methods for data

generated from Mixed-Normal distribution A (0.5N(0, 1) + 0.5N(3, 1)), B (0.9N(0, 1) +

0.1N(0, 16)) and C (0.9N(0, 1) + 0.1N(4, 9)) for the prediction of mean and variance

and the outputs of the simulation are displayed in Figure 2.33. The conclusion of this

simulation is that NPI-B is the best performing bootstrap method and Efron-B is the worst

performing bootstrap method in the prediction of both mean and variance for all three

Mixed-Normal distributions, given that NPI-B has the best coverage and Efron-B has the

largest under-coverage. NPI-B performs the best for Mixed-Normal distribution A, which

consists of two Normal distributions with different means, but same variance. NPI-B is

still the best performing bootstrap method in the prediction of mean and variance for

Mixed-Normal distributions B and C, which consist of two different Normal distributions

of different variances. It is possible that it is harder for NPI-B (and other bootstrap

methods) to capture this aspect of the Mixed-Normally distributed data.

There are cases where even NPI-B has under-coverage. This is the case for only small

samples for Mixed-Normal A (n = 4, 6 for the prediction of mean and n = 4 for prediction

of variance). However, for the estimation of variance for Mixed-Normal distribution B

and C, there is under-coverage for all sample sizes. In the estimation of mean for these

two mixed distributions, NPI-B has good coverage only for sample sizes n = 8, 10, for the

rest of the sample sizes, NPI-B has under-coverage. Nevertheless, NPI-B has coverage

closest to 90% at 90% PPI, thus, it still performs the best.

Banks-B and Hutson-B perform better than Efron-B but worse than NPI-B in the
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Figure 2.33: bootstrap methods performance in prediction of mean and variance for data

from Mixed-Normal A, B and C, finite (Approach I) NPI-B and Banks-B, 20 simulations
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prediction of mean and variance of Mixed-Normal data. Hutson-B is slightly better than

Banks-B in the prediction of variance for all three Mixed-Normally distributed data and for

the prediction of mean for Mixed-Normal distribution A. Banks-B and Hutson-B perform

similarly for the prediction of mean for Mixed-Normal C and Banks-B performs better

than Hutson-B in the prediction of mean for Mixed-Normal B. For more observations,

further simulations are needed. It would be beneficial to explore more parameters for

Mixed-Normal distribution.

2.5.5 Summary

The study concludes that NPI-B is superior to Banks-B, Hutson-B and Efron-B regarding

the performance in the prediction of mean, variance and quantiles (Q1, median and Q3)

for both Normally, Exponentially, and Mixed-Normally distributed data of small sample

sizes (n = 4, 6, 8, 10, 20). However, NPI-B is not the best performing bootstrap in the

prediction of IQR, especially for Normally distributed data for sample sizes n = 8, 10, 20,

where Banks-B and Hutson-B perform better. A possible explanation for that is that

their outputs are less varied than the outputs of NPI-B but more varied than outputs

for Efron-B. Overall, Banks-B and Hutson-B perform better in prediction than Efron-B.

Further research could explore the bootstrap method performance for data from a larger

variety of distributions.

2.6 Bootstrap hypothesis testing

Sections 2.4 and 2.5 compared the bootstrap methods’ performance in the estimation and

prediction of population characteristics for small sample sizes. Section 2.2 introduced the

use of Efron-B in bootstrap hypothesis testing for small samples. This section extends

the exploration of bootstrap hypothesis testing via a simulation study that also employs

Banks-B and NPI-B. Even though NPI-B is not meant for estimation, it is included in this

study to investigate how the hypothesis testing outcomes would differ for this bootstrap

method for small sample sizes, compared to Efron-B and Banks-B. The main question of

interest is whether Banks-B performs well in bootstrap hypothesis testing. Hutson-B is

not included in this example of an application because Banks-B is better in the estimation
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of mean, especially for data that do not follow Normal distribution, as shown in Section

2.4.3, and in this example of hypothesis testing scenario the focus is on means.

Both bootstrap hypothesis test and permutation test can be used instead of con-

ventional comparison tests. Both methods rely on the randomisations of the observed

data [166]. The difference between the two methods is that bootstrap method quantifies

the sampling distribution of some statistic computed from the data, whereas permuta-

tion test seeks to quantify the null distribution [166]. For a comparison of two samples,

the limitation of a permutations test is that it requires that both groups both groups in

the comparison have equal variance [210], whereas bootstrap methods do not have this

requirement.

The algorithm for calculating the approximate p-value via the bootstrap hypothesis

test, presented by Algorithm 3, is based on the algorithm presented by Dwivedi et al. [73].

This algorithm only works for two-sided comparison test, as explained in Section 2.2. In

the algorithm, the unpooled variance is calculated, meaning that the Welsch t-test is used.

The R code provided by the authors [73] is inconsistent with Algorithm 3 in one detail: in

the R code, Student’s t-test, which uses pooled variance, is used in Step 5 of Algorithm 3

instead of Welsch t-test (when comparing the two bootstrap samples). This thesis follows

Algorithm 3 and the R code provided by Dwivedi et al. [73] was adjusted, in a way that

unpooled variance is used for both the original and bootstrap samples. In Algorithm 3,

B is set to B = 1000.

Original samples were generated from Normal, Lognormal and Skewed-Normal (using

R package: fGarch, function: rsnorm) distributions. The study of Skewed-Normal dis-

tribution was limited to skewing parameter 0.8. Lognormal distributions employed were:

LNA = LN(1,0.36), LNB = LN(2,1) and LNC = LN(3,16). The focus is on sample sizes

n = 5 and n = 10 and on two original samples of unequal sample sizes (n = 5 vs. n = 10

and n = 3 vs. n = 7). Both finite (Approach I, Section 2.3.3) and infinite (Approach IV,

Section 2.3.3) approaches are used for determining the first and the last interval for Banks-

B and NPI-B. Type I error and estimated power are calculated for NPI-B bootstrap t-test

(finite and infinite range), Banks-B bootstrap t-test (finite and infinite range), Efron-B

bootstrap t-test, Student’s t-test and Welsch t-test. The description of the methodology

for calculating type I error and the estimated power will follow.
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Algorithm 3 Calculating approximate p-value for bootstrap hypothesis test

1: Let x = x1, x2 . . . , xnx be the observations from sample X with mean x and sample

standard deviation sx and y = y1, y2 . . . , yny be the observations from sample Y with

mean y and sample standard deviation sy;

2: Evaluate test statistic: tobs = x−y√
s2x
nx

+
s2y
ny

;

3: Combine samples x and y;

4: Draw two bootstrap samples from the combined sample: one of size nx observations

(x∗) and another of size ny observations (y∗);

5: Compute mean and variance of each bootstrap sample as (x∗, s∗2x ) and (y∗, s∗2y ), re-

spectively;

6: Evaluate test statistic: t∗ = x∗−y∗√
s2∗x
nx

+
s2∗y
ny

;

7: Repeat Steps 4-6 B times and obtain B values of the test statistic (t∗),

i.e. t∗1, t∗2, . . . , t∗B;

8: Approximate p-value= 1
B

∑B
j=1 1(t∗j≥tobs)

Type I error is the probability that the test will incorrectly reject a null hypothesis

when the null hypothesis is actually true and it can be estimated by following Dwivedi

et al.’s [73] simulation study (Algorithm 4). The two original samples come from the

same distribution (with the same mean) and they are generated under the assumption

that H0 is true. For this simulation, the same choice of distribution parameters as in

Dwivedi et al. [73] were adopted. The outcomes of the initial study for estimated type I

error probability are presented in Table 2.2 (with nominal level α = 0.05). Type I error

above 5% is too permissive, whereas below 5% is too conservative. Permissive is generally

considered more problematic than conservative.

Statistical power is the probability that the test correctly rejects the null hypothesis

and it can be estimated by choosing two distributions with different means in Step 1 of

Algorithm 4 and by replacing Type I error with estimated power in Step 6, otherwise

the other steps of the simulation remain the same. The two original samples come from

distributions with different means and they are generated under the assumption that H1

is true. It is unclear from the article what parameters of the distributions were used for

Normal and Skewed-Normal distribution, thus, those distribution parameters were chosen,
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Algorithm 4 Estimating type I error for pairwise tests

1: Choose two distributions with the same mean;

2: Generate a sample from each distribution;

3: Perform the chosen pairwise test on those two distributions and record the p-value

denoted by p;

4: In total, perform Steps 2 and 3 10,000 times to get p1, p2, . . . , p10,000;

5: Estimated type I error = 1
10,000

∑10,000
k=1 1(pk≤α),

in a way that the difference between means is large. For Lognormal distribution, these

parameters are provided by Dwivedi et al. [73]. The outcomes of the initial study for the

estimated power are presented in Table 2.3. Higher estimated power is desirable.

The outcomes of this study are evaluated in relation to the two calculated metrics:

estimated type I error and estimated power. As already stated, higher estimated power

and estimated type I error close to the α = 0.05 are desirable and conservative type I

error (α < 0.05) is more desirable than permissive type I error (α > 0.05). This study

concludes that in bootstrap hypothesis testing, Efron-B performs similarly to Banks-B

finite, considering both the estimated power and type I error. Across most simulation

cases, Banks-B finite yields slightly higher power than Efron-B, but also slightly higher

type I error.

Using infinite range for Banks-B slightly decreases the type I error, but it also slightly

decreases the estimated power. Similar pattern is found for NPI-B. For example, for

sample size n = 10, for Normally distributed data from distributions with the same

variance, Banks-B finite gives type I error 0.0521 whereas Banks-B infinite gives type I

error 0.0492, the latter type I error (below α = 0.05) is more desirable. On the other

hand, for this case, the estimated power for Banks-B finite is 0.9908 whereas for Banks-B

infinite it is 0.9899 and the former estimated power is more desirable. Therefore, it is

up to decision maker to decide whether it is more important to reduce type I error or to

increase power.

For most cases where the two original samples have unequal sample size, Banks-B

yields higher estimated power than Efron-B, the Welsch t-test and the Students t-test.

For Normally distributed data, the difference is even clearer for sample sizes 3 vs. 7 than
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Distributions
Sample

size
Efron-B

Banks-B

finite

Banks-B

infinite

NPI-B

finite

NPI-B

infinite

Student’s

t-test

Welsch

t-test

N(5,1) v. N(5,1) 5 0.0505 0.0559 0.0524 0.0216 0.0203 0.0497 0.0436

N(5,1) v. N(5,1) 10 0.0468 0.0521 0.0492 0.0204 0.0175 0.0491 0.0475

N(5,1) v. N(5,1) 5 v. 10 0.0480 0.0578 0.0510 0.0252 0.0216 0.0493 0.0513

N(5,1) v. N(5,1) 3 v. 7 0.0422 0.0572 0.0485 0.0224 0.0198 0.0469 0.0555

N(5,1) v. N(5,9) 5 0.0701 0.0748 0.0723 0.0361 0.0348 0.0676 0.0543

N(5,1) v. N(5,9) 10 0.0580 0.0630 0.0586 0.0286 0.0257 0.0565 0.0473

LNA v. LNA 5 0.0425 0.0470 0.0439 0.0176 0.0167 0.0408 0.0303

LNA v. LNA 10 0.0449 0.0497 0.0455 0.0181 0.0153 0.0426 0.0365

LNA v. LNA 5 v. 10 0.0452 0.0548 0.0476 0.0223 0.0182 0.0435 0.0461

LNA v. LNA 3 v. 7 0.0370 0.0510 0.0414 0.0192 0.0154 0.0412 0.0492

SN(5,1) v. SN(5,1) 5 0.0500 0.0539 0.0515 0.0231 0.0201 0.0496 0.0438

SN(5,1) v. SN(5,1) 10 0.0471 0.0527 0.0496 0.0200 0.0188 0.0483 0.0467

SN(5,1) v. SN(5,1) 5 v. 10 0.0465 0.0563 0.0500 0.0253 0.0210 0.0490 0.0498

SN(5,1) v. SN(5,1) 3. v. 7 0.0425 0.0569 0.0552 0.0236 0.0204 0.0492 0.0552

SN(5,1) v. SN(5,9) 5 0.0734 0.0785 0.0734 0.0350 0.0334 0.0697 0.0556

SN(5,1) v. SN(5,9) 10 0.0606 0.0668 0.0619 0.0288 0.0256 0.0591 0.0512

Table 2.2: Type I error probability (nominal level = 0.05) for Efron-B t-test, NPI-B t-test

(finite and infinite range), Banks-B t-test (finite and infinite range), Student’s t-test and

Welsch t-test
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Distributions
Sample

size
Efron-B

Banks-B

finite

Banks-B

infinite

NPI-B

finite

NPI-B

infinite

Student’s

t-test

Welsch

t-test

N(5,1) v. N(7,1) 5 0.7913 0.8060 0.7943 0.6369 0.6161 0.7906 0.7679

N(5,1) v. N(7,1) 10 0.9899 0.9908 0.9899 0.9670 0.9621 0.9903 0.9897

N(5,1) v. N(7,1) 5 v. 10 0.8947 0.9125 0.9029 0.8182 0.7958 0.9220 0.8806

N(5,1) v. N(7,1) 3 v. 7 0.6396 0.7008 0.7943 0.5152 0.4801 0.1100 0.5878

N(5,1) v. N(7,9) 5 0.2733 0.2830 0.2735 0.1679 0.1588 0.2611 0.2090

N(5,1) v. N(7,9) 10 0.4887 0.5015 0.4900 0.3510 0.3346 0.4820 0.4466

N(5,1) v. N(7,9) 5 v. 10 0.3718 0.4134 0.3861 0.2666 0.2346 0.2208 0.4100

N(5,1) v. N(7,9) 3 v. 7 0.1818 0.2434 0.2062 0.1171 0.0939 0.1100 0.2648

N(5,1) v. N(6,1) 5 0.2863 0.3052 0.2926 0.1738 0.1617 0.2856 0.2652

N(5,1) v. N(6,1) 10 0.5624 0.5761 0.5636 0.4072 0.3858 0.5659 0.5595

LNA v. LNB 5 0.2909 0.2918 0.2755 0.1287 0.1176 0.2295 0.1377

LNA v. LNB 10 0.7010 0.6989 0.6873 0.4619 0.4349 0.6041 0.5240

LNA v. LNB 5 v. 10 0.5450 0.6015 0.5437 0.3494 0.2966 0.1737 0.5076

LNA v. LNB 3 v. 7 0.2231 0.3135 0.2493 0.1029 0.0717 0.0501 0.0133

LNA v. LNC 5 0.0452 0.0461 0.0421 0.0090 0.0079 0.0247 0.0072

LNA v. LNC 10 0.1301 0.1124 0.1085 0.0298 0.0243 0.0580 0.0328

LNA v. LNC 5 v. 10 0.0474 0.0666 0.0448 0.0123 0.0076 0.0018 0.0327

LNA v. LNC 3 v. 7 0.0070 0.0176 0.0082 0.0015 0.0008 0.0004 0.0133

SN(5,1) v. SN(7,1) 5 0.7873 0.8020 0.7914 0.6369 0.6145 0.7874 0.7655

SN(5,1) v. SN(7,1) 10 0.9867 0.9885 0.9630 0.9598 0.9871 0.9871 0.9863

SN(5,1) v. SN(7,1) 5 v. 10 0.9065 0.9262 0.9148 0.8307 0.8077 0.9242 0.8980

SN(5,1) v. SN(7,1) 3 v. 7 0.6194 0.6906 0.6512 0.4896 0.4462 0.7111 0.5738

SN(5,1) v. SN(7,9) 5 0.2937 0.3072 0.2963 0.1950 0.1853 0.2846 0.2390

SN(5,1) v. SN(7,9) 10 0.4931 0.5083 0.4952 0.3657 0.3480 0.4918 0.4587

Table 2.3: Empirical power for Efron-B t-test, NPI-B t-test (finite and infinite range),

Banks-B t-test (finite and infinite range), Student’s t-test and Welsch t-test
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for 5 vs. 10. For sample sizes 5 vs. 10, for Normally distributed data where the two

distributions only differ in means but not in variance, Banks-B finite gives estimated

power of 0.9125, as opposed to Efron-B (0.8947), Banks-B infinite (0.9029), NPI-B finite

(0.8182), NPI-B infinite (0.7958) and the Welsch t-test (0.8806). The Student’s t-test still

gives the highest power 0.9220. However if the original samples are of sample sizes 3 and

7, Banks-B infinite gives the highest power (0.7943), the second best power is given by

Banks-B finite (0.7008). Efron-B performs worse (0.6396) and the Student’s t-test gives

the worst estimated power (0.1100). For Lognormally distributed data, for sample sizes

5 vs. 10, Banks-B finite gives the highest power (0.6015) compared to Efron-B (0.5450),

Banks-B infinite (0.543), the Student’s t-test (0.1737) and the Welsch t-test (0.5076). For

Skewed-Normal distribution (with Sk = 0.8, two distributions of the same variance), the

Student’s t-test yields similar estimated power as Banks-B finite for sample sizes 5 vs. 10

and even better for 3 vs. 7. It would be of future interest to investigate Skewed-Normal

distribution with larger skewing parameter.

For cases, where the two original samples come from two very different Lognormal

distributions, such as LN(1,0.62) vs. LN(3,42), all tests have very low power, but boot-

strap hypothesis test (Efron-B and Banks-B) perform better than traditional tests: the

Student’s t-test and the Welsch t-test. For example, for n = 5, Efron-B yields estimated

power of 0.0452, Banks-B finite of 0.0461, Banks-B infinite of 0.0421, which is higher than

for the Student’s t-test (0.0247) and the Welsch t-test (0.0072).

Across all cases, NPI-B yields lower type I error than both Efron-B and Banks-B,

and also lower estimated power. Neither very small type I error or low estimated power

are desirable. For example, for sample size n = 5, for Normally distributed data from

distributions with the same variance, NPI-B finite gives type I error 0.0216, NPI-B infinite

gives type I error 0.0203, as opposed to Efron-B (0.0505), Banks-B finite (0.0559), Banks-

B infinite (0.0524), the Student’s t-test (0.0497) and the Welsch t-test (0.0436). But the

estimated power for NPI-B finite is 0.6369 and for NPI-B infinite is 0.6161, as opposed to

Efron-B (0.7913), Banks-B finite (0.8060), Banks-B infinite (0.7943), the Student’s t-test

(0.7906) and the Welsch t-test (0.7679). This can be explained by the fact that NPI-B

creates more variability in both mean and variance of the t-statistic. Given the low power,

NPI-B is not a suitable replacement for Efron-B.
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As has been discussed throughout this chapter, the underlying distribution for small

samples cannot be determined with certainty in real-life test scenarios, and, thus, a test

comparing two samples should account for this. Bootstrap hypothesis testing is a plausible

option for a two-sided test comparing two samples. The aim of this study was not to

provide concrete guidance for practitioners, but to explore whether Banks-B could be

used instead of Efron-B in bootstrap hypothesis testing. The initial findings show that

Banks-B performs well, especially in cases of unequal sample size and variance of the

two original samples that are being compared. However, NPI-B is not a recommended

substitution for Efron-B in bootstrap hypothesis testing, as when it is applied, the method

performs worse than it did with Banks-B or Efron-B, especially because NPI-B hypothesis

testing leads to very low type I error probability, which is not desirable.

2.7 Concluding remarks

The aim of this chapter was to explore whether a bootstrap method can provide useful

inference with small samples and to give initial recommendations on small-sample boot-

strap to practitioners. Smoothened bootstrap methods, Banks-B and Hutson-B, showed

a potential in the estimation of population characteristics for small samples in previous

small-scale studies, however, these bootstrap methods are not as well known as Efron-B.

NPI-B, Banks-B, Hutson-B and Efron-B were compared, focusing on their performance

in the estimation and prediction of population characteristics for small samples. NPI-B,

Banks-B, Hutson-B create bootstrap samples that contain observations that are differ-

ent from the actual data, whereas Efron bootstrap samples with replacement from the

original observations. NPI-B has been developed for prediction, but it was included in

the comparison study of the bootstrap methods’ performance in estimation to investigate

how well it performs in estimation. For a similar reason, Efron-B, Banks-B and Hutson-B

were included in the study of the bootstrap coverage performance in making prediction

inference.
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Summary of main findings

Findings of the simulation study encourage further exploration in the potential use of the

bootstrap method for small samples. Banks-B performed well in the estimation of mean,

variance and quantiles (Q1, median and Q3), regardless of the underlying distribution.

Hutson-B showed good performance in the estimation of quantiles for a variety of un-

derlying distributions. NPI-B proved to be the best performing bootstrap method in the

prediction of mean, variance and quantiles. These conclusions are particularly promising

in preclinical research, where sample sizes are small and the underlying distributions are

not always known. Most real-life applications of the bootstrap method are from clinical

research with large sample sizes, as opposed to preclinical research with small sample

sizes, as discussed in Section 2.2. The main reason is that the most commonly known

bootstrap method, Efron-B, is not regarded as a reliable method for very small sample

sizes [42, 201] due to the method being based on the asymptotic argument, as described

in Section 2.1.

Summary for each bootstrap method

NPI-B is the best performing method in the prediction of mean, variance and quantiles

for Normally, Lognormally, Exponentially and Mixed-Normally distributed data for small

sample sizes. Previous study by BinHimd [31] showed that NPI-B performs well in pre-

diction for Normal, Uniform and Gamma distribution for sample sizes n = 20 and larger.

Therefore, this study extends the findings of BinHimd to smaller samples sizes. The

conclusion that NPI-B is good in the prediction for small sample sizes is beneficial to

the second topic addressed in this thesis: statistical reproducibility. This topic is not

limited to small samples but this thesis focuses on test scenarios with small samples in

Chapter 4. The simulation study found out that NPI-B is not the best performing boot-

strap in the prediction of IQR. More research needs to be done in order to explain the

later phenomenon. Furthermore, NPI-B performs well in the estimation of population

characteristics for sample size n = 4 and in the estimation of variance for Lognormally

distributed data, although NPI-B was not created for estimation. In most cases, where

NPI-B is used for estimation, there is over-coverage at 90% CI and this over-coverage
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increases as n increases. This is due to the large variability of NPI-B samples.

Banks-B showed good performance in the estimation of mean, variance, median, Q1

and Q3 for small sample sizes (n = 10 and smaller) for a variety of distributions and this

thesis recommends this bootstrap method for these scenarios. For data on the real-line,

the recommendation is to use finite range (Approach I, Section 2.3.3) for Banks-B for

the estimation of mean and quantiles and infinite range (Section 2.3.3) for the estimation

of variance. For data which are equal or larger than 0, such as data with underlying

Exponential or Lognormal distribution, half-infinite range (Approach V, Section 2.3.3)

is recommended. Furthermore, Banks-B performs better than Efron-B in the prediction

of mean, variance and quantiles for small sample sizes. However, this thesis would not

recommend to substitute NPI-B by Banks-B for prediction. This chapter explored using

Banks-B instead of Efron-B in bootstrap hypothesis testing (see Section 2.6) and the initial

study showed that Banks-B performs well, in some cases even better, than Efron-B.

Efron-B showed good performance in estimation for large sample sizes (for the estima-

tion of mean for Normal distribution from n = 20 and for the estimation of variance for

Normal distribution from n = 50). Further exploration of Efron-B for large sample sizes

is beyond the scope of this thesis. However, Efron-B performs poorly in the estimation

of mean, variance, and quantiles for small sample sizes for data from both the Normal

distribution and other distributions. It performs well in the prediction of IQR in some

cases for small sample sizes, possibly due to the smaller variability of Efron-B bootstrap

samples compared to the other studied bootstrap methods.

Hutson-B showed good performance in the estimation of variance for Normally dis-

tributed data and for Mixed-Normally distributed data (where the two distributions have

different variances). However, Hutson-B performed poorly in the estimation of variance

for Exponentially and Lognormally distributed data. Similarly, it performed poorly in

the estimation of mean for Exponentially and Lognormally distributed data. Given that

the underlying distribution cannot be ascertained for small samples, the work in this

chapter would not lead to the recommendation of the use of Hutson-B for the estimation

of mean and variance. Hutson-B showed good performance in estimating quantiles for

both Normally, Exponentially and Lognormally distributed data, thus, further research

into Hutson-B for the estimation of quantiles is encouraged. Hutson-B also showed good
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performance in prediction for some cases, such as the prediction of Q1 for Lognormally

distributed data of sample sizes n = 4, 6, the prediction of variance for Exponentially

distributed data of size n = 4 and the prediction of variance of Normally distributed

data of size n = 4. However, Hutson-B is not recommended for prediction as NPI-B is

a more suitable and a better performing bootstrap method. Hutson-B has been defined

only on the full infinite line (−∞,∞) and on [0,∞). It would be of interest to consider

developing Hutson-B for finite range, so that it can be applied to distributions defined on

finite intervals.

Summary of the confidence interval choice

The simulation study briefly assessed whether using BCa confidence intervals instead of

percentile confidence interval would have an impact on small-sample bootstrap meth-

ods. It concluded that, from the perspective of either of the two metrics of assessment,

for both Normally and Lognormally distributed data, Efron-B does not perform better

than the other three bootstrap methods (Banks-B, Hutson-B and NPI-B) even when BCa

confidence intervals are used. There were cases where NPI-B, Banks-B (the estimation

of quantiles for Normally distributed data) and Hutson-B (the estimation of mean and

quantiles for Normally distributed data) performed better with BCa confidence intervals.

However, the findings of this study do not lead to the recommendation of using BCa

confidence intervals for the estimation of mean, variance and median for Lognormally

distributed data for either of the four bootstrap methods. Given that the underlying dis-

tribution of the data cannot be ascertained, using percentile confidence intervals remains

a safer choice. Practitioners should be careful about using BCa confidence intervals in-

stead of percentile confidence for the estimation of any population characteristics, before

more research has been carried out. Nevertheless, this chapter encourages further research

into the use of BCa confidence intervals with NPI-B and Efron-B for the estimation of

IQR, and with Hutson-B and Banks-B for the estimation of Q1 and Q3 for Lognormally

distributed data.
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Further research suggestions

The simulation study has opened up many questions and ideas for further research. It

would be of practical interest to investigate further bootstrap method use with small

sample sizes, possibly considering Banks-B as an alternative bootstrap method to Efron-

B, especially where the population characteristics of interest are mean or variance. This

investigation has been experimental, not theoretical, and the findings relate to the studied

distributions. For applications beyond this study, it would be wise to run more comparison

studies, relevant to the practical application circumstances. Future simulation study could

extend this chapter’s circumstances, by considering more cases for data from a variety

of distributions, e.g. Laplace, Weibull, Beta, Uniform, Gamma distributions. Also, more

cases of Mixed-Normal distributions could be investigated. Further investigation could

consider the following properties: outliers, extreme skewness, a variety of mixtures, and

kurtosis. The choice of distribution should reflect these relevant properties.

Section 2.4.3 pointed out that Hutson-B performs better in the estimation of Q1 than

of Q3 for Lognormally distributed data. This could possible be caused by the influence of

a heavy tail. Beta distribution could be used to study further the influence of the heavy

tail on the performance of Hutson-B. Moreover, this exploration could also extend to

other bootstrap methods and explore whether some bootstrap methods are affected more

and some less by heavy tails. Moreover, Hutson [112] developed a sigmoidal quantile

function estimator and a hybrid quantile function estimator, which was not enclosed in

the study. It would be of interest of future research to study a variation of Hutson-B for

small samples, using different quantile function estimator.

The choice of range for NPI-B and Banks-B has an effect on the bootstrap performance.

Further exploration could extensively study the range choice. The findings regarding the

bootstrap method performance in the estimation and prediction of IQR are inconclusive

and a future study could carry out further investigation. Only percentile and BCa confi-

dence intervals were applied in the simulation study. Bootstrap-t confidence intervals are

not recommended for small samples and in nonparametric situations [69]. However, both

Banks [18] and Polansky [167] considered bootstrap-t confidence intervals in their com-

parisons studies, which involved small samples and Banks-B and Kernel-B, respectively.

Thus, future study could include bootstrap-t confidence intervals.
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The initial study of using Banks-B instead of Efron-B in bootstrap hypothesis testing

(Section 2.6) showed that Banks-B performs well, in some cases even better, than Efron-

B. It might be of interest to explore further whether Banks-B would perform better than

Efron-B in cases where sample sizes of the original samples are unequal, and where data

come from a variety of distributions. Two-sided t-test is commonly used in preclinical

research, as a biomarker or a safety outcome variable could change in either direction.

Thus, a future study could explore bootstrap hypothesis testing for real-life test scenarios

where two-sided t-test is used.

Future research could also explore whether bootstrap hypothesis testing could be

carried out under circumstances where the two samples are not combined, but rather

bootstrap samples are generated from each original sample separately. This is not rec-

ommended for Efron-B, but it would be of interest to explore whether Banks-B could be

employed instead of Efron-B.

Peng et al. [164] discussed the use of the bootstrap method in power and sample size

calculations and provided examples from clinical research. These examples focused on

large sample sizes (n = 75 and larger). This method could be further explored for small

samples. A future study could also investigate how well would Banks-B perform if used

instead of Efron-B for small samples. For in vivo studies with small sample sizes, power

and sample size calculations are required to ensure that the experiment is appropriately

designed to justify the use of animals and bootstrap method is a potential tool.

This chapter also touched upon some more distant research topics. In Appendix A.1,

the issue of different types of quantile calculations leading to different sample statistics is

addressed. The bootstrap methods’ performance has been slightly affected by the type of

quantile calculation. However, this thesis recommendations are not affected by the choice

of the type of quantiles calculation. However, it would be of interest to explore what type is

the most suitable for calculating sample quantiles for small samples. Similarly, bootstrap

method requires that the data is representative of the population. Population stands for

a complete set of individuals with a common characteristic and sufficiently representative

means that meaningful analysis can be made for this sample. Linked to small-sample

bootstrap, the following questions arise: Can small samples satisfy this criteria and, if so,

how small can the sample size be to be sufficiently representative of the population?



Chapter 3

Reproducibility

3.1 Introduction

Reproducibility [12] is a complex issue, gaining importance and attention in scientific re-

search. Nature published a special edition Challenges in irreproducible research, dedicated

to the problem of researchers not being able to verify results presented in published papers

of other scientists [151]. Ioannidis [118,119] drew attention to the high proportion of false

research findings in the literature and he listed reproducibility practices, without defining

them further, as research practices that can make more published research true [119]. In

the existing literature on the topic of reproducibility there has been a lot of confusion

about what the term reproducibility means [92], which will be addressed in this chapter.

A better understanding of reproducibility of tests is crucial for pharmaceutical re-

search and development, as a lack of reproducibility contributes to failure rates in drug

discovery and development processes, increasing costs, and decreasing efficiency. Begley

and Ellis [23] highlighted a systematic problem in preclinical cancer research: the majority

of publications in this research area cannot be validated. Scientists at the biotechnology

firm Amgen tried to confirm findings of 53 published papers in haematology and oncology

by performing replicate experiments. These did not reproduce conclusions in 47 out of

53 studies, even with the attempts to contact the original authors of the articles and to

discuss the details of the experiments with them [23]. Errington et al. [81, 82] attempted

to carry out replicate experiments based on high-impact papers published in 2010-2012 in

the field of preclinical research in cancer biology. A replicate study is a new study, trying

103
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to closely imitate the original study. Out of the chosen 193 experiments from 53 papers,

they managed to conduct a replicate study for only 50 experiments from 23 original pa-

pers. 40% of replications of positive effects and 80% of replications of null effects were

successful, according to three or more of five methods of replication assessment, defined

by Errington et al. [82].

It is evident that scientists show considerable interest in the topic of reproducibility (or

a lack thereof). The number of publications considering reproducibility is large. There

is a rich body of literature on reproducibility in pharmaceutical research, particularly

in preclinical research [34, 124, 130, 131, 175, 203], which will be discussed in Section 3.5.

In psychology [133, 136, 157, 158, 195, 211], the focus is on the discussion of replicating

the outcomes of the original study in a new replicate study and the concern about low

reproducibility rate (or rather replicability rate, as this is commonly used in psychology).

Computer sciences, machine learning and artificial intelligence [44, 94, 162] mainly focus

on transparency and sharing of data, code and clear documentation of the whole study.

Ioannidis [119] argued that sharing protocols, materials, software, and data provides a

sound basis for reproducible data practices. This aspect is also important in chemistry

[29, 90], nevertheless, there is also practical advice on how to maximise reproducibility

through good laboratory practice and minimising human error.

The purpose of this chapter is to provide a review of the literature on reproducibility

and highlight important debates on the topic. It is intended for a broad audience, includ-

ing not only statisticians, but also anyone interested in the subject. By shedding light

on the issue of reproducibility, this paper aims to contribute to the continuing discussion

in this field. The aim of scientific research - to establish information about the nature

of the world - is largely linked to reproducibility. Although reproducibility is part of the

discussion on doing quality research, it does not equate to it. Thus, this chapter does not

aim to address all aspects of quality research.

This chapter presents a literature review on the topic of reproducibility, which sum-

marises several important debates. It is aimed at, but not restricted to, statisticians.

Given that there are no standardised definitions for reproducibility and related terms

(such as replicability), and that some definitions of reproducibility from the existing lit-

erature lack clarity themselves, this review begins by discussing various possible inter-
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pretations and definitions of the concept of reproducibility in Section 3.2. Terms that

are related to, or used interchangeably with, reproducibility are also discussed. With the

aim to describe the subtleties encountered in the literature, the available definitions are

classified into five categories, which we refer to as Type A to Type E. Section 3.3 briefly

discusses goals of reproducibility provided in the literature, Section 3.4 outlines reasons

for low reproducibility and suggestions for improvement of reproducibility presented in

the literature, while Section 3.5 introduces some reproducibility issues related to preclini-

cal research. Then Section 3.6 focuses on statistical reproducibility, classifying definitions

of statistical reproducibility, and summarising important questions that have been raised.

We also briefly comment on one of the debates in the reproducibility crisis discussion:

whether p-values should be used.

This thesis focuses on statistical reproducibility. A majority of the literature is con-

cerned with the validation of test conclusions, where both the original and the new (repli-

cate) experiment have been carried out, this is addressed in Section 3.7. However, from

the perspective of statistics, it is interesting to also study reproducibility in cases where

only the original experiment has been carried out. Available methods for this approach

to reproducibility will be introduced in Section 3.8. Section 3.9 defines and elaborates

on the approach to statistical reproducibility adopted in this thesis: nonparametric pre-

dictive inference (NPI) reproducibility, placing the work in this thesis within the existing

literature. Finally, Section 3.10 concludes and presents further research questions.

3.2 Definitions of reproducibility

There is no universally agreed definition for the concept of reproducibility and there are

many related terms to reproducibility, such as repeatability, replicability, generalisability,

robustness, reliability, open science, transparency, truth [152, p.36] and precision [116].

These related concepts are often also not clearly or appropriately defined, some of them

are used interchangeably and they are all important for the reproducibility debate. This

section presents a summary of definitions for reproducibility used in the existing literature.

Recent overviews of definitions of reproducibility and related terms have been pre-

sented by Goodman et al. [92], Barba [19] and Gundersen [94]. Goodman et al. [92]
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identified that the term research reproducibility is not settled both linguistically and con-

ceptually. Barba [19] raised the problem of different groups of researchers using different

terminology for the same definition. The terms reproducibility and replication are of-

ten used interchangeably by researchers, which creates confusion and leads to conceptual

ambiguity in the literature [19].

Rather than adhering to precise definitions, this work will classify the definitions

that we encountered while reading the literature on reproducibility into five categories

of reproducibility, Type A to Type E. The nuances are captured in the ‘Reproducibility

types tree’ in Figure 3.1. This figure outlines possible considerations that are important

for defining reproducibility and related terminology. In the descriptions of different types

of reproducibility, three key terms, data, method and conclusion, are used. Data are

information, especially facts or numbers, collected to be examined and considered and

used to help decision-making [61]. The term method refers to the way the experiment

is run. Method encompasses experimental design, data collection method, statistical

analysis, software used to analyse the data and programming code. The range of features

the method contains differs across different research areas. Conclusion is a reasoned

deduction or inference [70], conclusion is reached after applying statistical analysis to the

data. Next, the five Reproducibility types will be introduced.

Reproducibility Type A: Reproducibility is the ability to follow the analysis of an

experiment based on the same data and a clear description of the data and the method.

Stronger version of Reproducibility Type A: Experimental conclusions are reproduced

if another researcher applied the same analysis to the same data and reached the same

conclusions, using the description of the data and the method provided by the original

researcher.

Reproducibility Type B: Experimental conclusions are reproducible if same data but

a different method of statistical analysis lead to the same conclusion.

Reproducibility Type C: Experimental conclusions are reproducible if new data from

a new study carried out by the same team of scientists in the same laboratory, using the

same method of experiment design and analysis, lead to the same conclusion.
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Reproducibility Type D: Experimental conclusions are reproducible if new data from

a new study carried out by a different team of scientists in a different laboratory, using

the same method of experiment design and analysis, lead to the same conclusion.

Reproducibility Type E: Experimental conclusions are reproducible if new data from

a new study, using a different method of experiment design or analysis, lead to the same

conclusion.

All the types of reproducibility, rely on a common underlying principle: namely, that

the same conclusions ‘would be’ or have been reached in a reproducible experiment. Re-

producibility Type A and Type B do not require new data, and Reproducibility Type C

to Type E assume either the existence or the possibility of existence of new data. The

term ‘new study’ is used in the Reproducibility Types instead of ‘replicate study’ because

it is more general and it does not imply that the follow-up study exactly mimics the

original study. This linguistic choice was made, as the term replicate study does not fit

well Reproducibility Type E. Throughout this chapter, the terms new study and replicate

study are used interchangeably.

There is a different debate, distinct from the Reproducibility Types classification,

about whether there is a necessity to ‘reproduce’ (validate) the results by doing the

experiment again. This debate deals with the question of whether the same conclusion

‘would be’ reached if the experiment was carried out again or whether the same conclusion

has been reached after the new experiment has been carried out. Reproducibility Type C

to Type E do not distinguish between these two options. Reproducibility has been assessed

under both scenarios: First, when the new replicate experiment has been performed,

which is addressed in Section 3.7. Secondly, when only the original experiment has been

performed and probabilistic assessment is made about reproducibility based on the current

data and analysis. Section 3.8 will focus on the latter scenario.

In the literature [11, 116, 125, 126, 133, 147], reproducibility has also been defined in

terms of precision - the closeness of agreement between multiple (two or more) test re-

sults obtained under specific conditions, such as same method and same or different test

operator. Blackman [32, 33] and Pryseley et al. [11] considered the quantification of this

closeness of agreement between test results. In the above mentioned references, related
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terms employed instead of precision are reproducibility, repeatability, measurement pre-

cision, measurement repeatability and measurement reproducibility. However, in these

references there is no distinction between the original and the new test. The focus of

these studies is on the variability in repeated measurements when one or more elements

of the study, such as time, the observer, environment or instruments, are different [147].

We do not believe that precision should be considered equivalent to reproducibility. The

concept of the original study is crucial to any discussion about reproducibility. Therefore,

the assessment of the closeness of agreement is not within the scope of this overview. Note

that the term precision used within this context is unrelated to the statistical concept of

imprecision which was discussed in Chapter 1 and will be further discussed in Chapter 4.

Sections 3.2.1, 3.2.2 and 3.2.3 will elaborate on the variety of definitions for repro-

ducibility and related terms available in the existing literature, and classify these terms

into five different types of reproducibility. This classification into types aims to clarify

different terminologies. It also aims to show inconsistency in terminology used across

different publications and unclarity of some definitions. Each reproducibility type will be

discussed separately, with the exception of Reproducibility Type C, Type D and Type

E, which are discussed in the same section. The reason for this is that there are some

definitions that either refer to multiple reproducibility types or it is unclear which of these

three types they refer to. For each type, a list of terms used in the literature is presented.
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3.2.1 Reproducibility Type A

Reproducibility Type A: Reproducibility is the ability to follow the analysis of

an experiment based on the same data and a clear description of the data and the

method.

Different terms, which classify as Type A:

• Reproducibility (National Science Foundation [155], Nosek et al. [154], Patit

et al. [158], Nosek et al. [154])

• Repeatability (Proceedings of the National Academies of Sciences, Engineer-

ing, and Medicine [152])

• Methods reproducibility (Goodman et al. [92])

• Computational reproducibility (Donoho [72], Stodden [196])

• Empirical reproducibility (Stodden [196])

• Ethical reproducibility (Anderson et al. [7])

Stronger version of Reproducibility Type A: Experimental conclusions are

reproduced if another researcher applied the same analysis to the same data and

reached the same conclusions, using the description of the data and the method

provided by the original researcher.

Different terms, which classify as the stronger version of Type A:

• Reproducibility (Benjamini, in the proceedings of NASEM [152, p.46], Stevens

[195], Errington et al. [81])

• Computational reproducibility (National Academies of Sciences [153])

• Reproducible (Peng [161])

• Analytical reproducibility (Botvinik-Nezer and Wager [36])

In alignment to Reproducibility Type A, the requirement for reproducible research is

that the documentation, data and code used for the analysis are available to others, so that

they can verify the published results or carry out alternative analyses [161]. Goodman et

al. [92] called methods reproducibility the ability, rather than necessity, to reach the same
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conclusion by using the same data and method. Here ability refers to the availability of the

data and a clear description of the data and the method, which would allow the researcher

to re-enact the analysis. National Science Foundation’s [155] definition of reproducibility

can also be classified as Reproducibility Type A. Similarly, a workshop organised by

the National Academies of Sciences, Engineering, and Medicine (NASEM) [152] used

the term repeatability (also called empirical reproducibility), which can be classified as

Reproducibility Type A. Donoho [72] used the term computational reproducibility without

explicitly defining it, nevertheless its use is in alignment to Reproducibility Type A.

Peng [162] argued that there is a spectrum of reproducibility. On the lower end of the

spectrum is limited code sharing, in the middle section of the spectrum is sharing code and

data, and on the upper end of the spectrum is sharing a single file containing both data

and code that can execute the full analysis of the data. According to Peng [162], this upper

end of the spectrum means full replication, which is the gold standard for reproducibility,

as it allows the researcher to carry out the full analyses again [162]. Peng’s spectrum of

reproducibility does not encompass the term method, however, it is possible that this is

because Peng discussed reproducibility in computational science, where code represents

the method. Peng et al. [163] defined criteria for reproducible epidemiologic research as

the availability of data, method, documentation and accessibility to the software, data,

and documentation, which classifies as Reproducibility Type A. Gentleman and Lang [89]

define reproducible research as research articles which are accompanied with software tools

allowing readers to reproduce the paper results and further use the computational methods

presented in the paper. Their definition can also classify as Reproducibility Type A.

Stodden [196] divided Reproducibility Type A into empirical reproducibility, which

requires appropriate reporting standards and documentation of the physical experiment,

and computational reproducibility, which requires accommodating the use of computation

technology in the reporting and scientific practice. Ethical reproducibility [7], for which it

is imperative to transparently report ethical challenges and methods of resolution of them

in studies in biomedical research, also falls into the category of Reproducibility Type A.

Thus there is a reasonable body of work that adopts definitions, which can be classified

as Reproducibility Type A.

Reproducibility Type A leads to better transparency in research. We agree that care-
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ful documentation of an experiment should be part of creating a reproducible research.

We expect all research to have data, method, and code available upon request, but given

the amount of the literature on definitions which classify as Reproducibility Type A, this

is likely not the case. In computer sciences, Collberg et al. [44] conducted a study to

determine whether 613 papers (from eight Association for Computing Machinery confer-

ences and five computer science journals) presented reproducible research. Only papers,

for which Collberg et al. [44] were able to obtain code and execute it, were labeled as

reproducible research - reproducible in accordance with Reproducibility Type A. These

were 102 out of 613. Collberg et al. [44] did not verify the accuracy of the published

results. They provided an elaborate list of reasons why researchers did not provide code

after email correspondence, examples of these reasons were: bad backup practices, the

student who programmed the code left the research institution, and the code being an

intellectual or commercial property.

A stronger version of Reproducibility Type A is presented by Benjamini in the proceed-

ings of NASEM [152, p.46]. He defined reproducibility of the study as reaching the same

conclusions after performing the same analysis on the study’s raw data. Reproducibility

in Errington et al. [81], Stevens [195] and Nosek et al. [154], and a consensus study report

by the National Academies of Sciences [153] can also be classified as the stronger version

of Reproducibility Type A. Botvinik-Nezer and Wager [36] called the stronger version of

Reproducibility Type A analytical reproducibility. An article in Biostatistics is defined as

reproducible if the Associate Editor for Reproducibility executed the code on the provided

data and reproduced the results given in the article [161], which is also an example of the

stronger version of Reproducibility Type A.
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3.2.2 Reproducibility Type B

Reproducibility Type B: Experimental conclusions are reproducible if same data

but a different statistical method of analysis lead to the same conclusion.

Different terms, which classify as Type B:

• Conceptual replication (Stahel [194])

• Robustness (Errington et al. [81])

• Robustness to analytical variability (Botvinik-Nezer and Wager [36])

• Arguably: Inferential reproducibility (Goodman et al. [92])

The core feature of Reproducibility Type B is that experimental conclusions are re-

producible if the same data but a different method of data analysis were used to reach the

same conclusion. While Reproducibility Type B is not a widely discussed kind of repro-

ducibility, a reference to it can be found in Stahel [194], Goodman et al. [92], Errington et

al. [81] and Botvinik-Nezer and Wager [36]. Stahel [194] discussed conceptual replication:

where different analytical methods are used on the same data to re-examine conclusions

of a study, which can be categorised as Reproducibility Type B. Errington et al. [81] used

the term robustness for using alternative strategies on the same data, which also classi-

fies as Reproducibility Type B. Similarly, Botvinik-Nezer and Wager’s [36] terminology

robustness to analytical variability fits with Reproducibility Type B.

Goodman et al. [92] presented inferential reproducibility which leads to similar conclu-

sions from “an independent replication of a study or a re-analysis of the original study.”

The latter part of their definition could either refer to Reproducibility Type B or stronger

version of Reproducibility Type A, depending on whether the re-analysis uses the same

method as the original one did. The former part requires new data and new analysis,

which is in alignment with Reproducibility Types C, D and E, which are discussed in

Section 3.2.3.

It has not been clearly specified in the literature what is meant by ‘different method

of statistical analysis’ in Reproducibility Type B, it is not clear how different this method

can be and more thought should be given to this. Making sure that the statistical analysis

is appropriate and suitable may be desirable. It is important to highlight that the negative
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version of Reproducibility Type B, i.e. experimental conclusions being irreproducible due

to different statistical reproducibility not leading to the same conclusion as the original

statistical reproducibility, has not been considered in the literature. This negative version

of Reproducibility Type B would be absurd, given that in many cases there is some

statistical analysis that can lead to a different conclusion than the original statistical

analysis. The reason behind the lack of exploration of these two mentioned aspects of

Reproducibility Type B may be that reproducibility has been widely discussed by non-

mathematicians and the discussion is lacking mathematical rigour.

3.2.3 Reproducibility Type C, Type D and Type E

Reproducibility Type C: Experimental conclusions are reproducible if new

data from a new study carried out by the same team of scientists in the same

laboratory, using the same method of experiment design and analysis, lead to the

same conclusion.

Different terms, which classify as Type C:

• Repetition (Atmanspacher and Maasen [12])

• Replicability (National Science Foundation [155], National Academies of Sci-

ences, Engineering and Medicine (NASEM) [153])

• Repeatability (Barba [19], Gundersen [94])
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Reproducibility Type D: Experimental conclusions are reproducible if new data

from a new study carried out by a different team of scientists in a different labora-

tory, using the same method of experiment design and analysis, lead to the same

conclusion.

Different terms, which classify as Type D:

• Reproducibility (Voelkl et al. [202])

• Outcome reproducible (Gundersen [94])

• Analysis reproducible (Gundersen [94])

• Replicability (National Science Foundation [155], NASEM [153], Barba [19])

• Replication (Atmanspacher and Maasen [12])

• Direct replication (Zwaan et al. [211])

Reproducibility Type E: Experimental conclusions are reproducible if new data

from a new study, using a different method of experiment design or analysis, lead

to the same conclusion.

Different terms, which classify as Type E:

• Replicability (NASEM [153])

• Conceptual replication (Zwaan et al. [211])

• Reproducibility (Jarvis and Williams [124], Barba [19])

• Generalisability (National Science Foundation [155], Stahel [194])

• Interpretation reproducible (Gundersen [94]) – different analysis, same exper-

imental design

• Corroboration (Gundersen [94]) – different experimental design
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Definitions that encompass multiple Reproducibility Types:

• Replicable (National Science Foundation [155]) - encompasses Reproducibility

Type C and D

• Replicability (NASEM [153], Errington et al. [81], Patil et al. [159], Stevens

[195], Nosek et al. [154]) - encompasses Reproducibility Type C, D and E

• Reproducibility (Voelkl et al. [202], Richter [174]) - encompasses Reproducibil-

ity Type C and D

• Confirmation of conclusions (Stahel [194]) - encompasses Reproducibility

Type C and D

Definitions for which it is unclear into which Reproducibility Type they

fit:

• Inferential reproducibility (Goodman et al. [92]) – could be Reproducibility

Type A, B, C, D or E

• Results reproducibility (Goodman et al. [92]) – could be Type C and D or

just Type D

• Replication (Jarvis and Williams [124]) – definition compatible with Type C,

possibly also Type D

A combination of Reproducibility Type C, Type D and Type E often fits to a particular

definition. For example, a consensus study report by the National Academies of Sciences

(NASEM) [153] defined replicability as “obtaining consistent results across studies aimed

at answering the same scientific question, each of which has obtained its own data.” This

rather broad definition of replicability includes Reproducibility Types C, D and E. The

same definition of replicability was adopted by Errington et al. [81], Patil et al. [159] and

Stevens [195]. Similary, Nosek et al. [154] refered to replication as using different data to

test the reliability of prior finding.

In fact, it can be hard to distinguish under which type or types of reproducibility a

particular definition can be categorised. Unclarity of definitions is a problem in the re-

producibility debate. An example of an ambiguous and vague definition of reproducibility

is Goodman’s definition of reproducing the results of investigators in the proceedings of

NASEM [152, p.41]. This is defined as “finding the same evidence or data, with the same
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strength.” It is unclear how to assess whether the requirement of this definition has been

met.

Another example of unclear definitions has already been discussed in Section 3.2.2:

inferential reproducibility. It is unclear what Goodman et al. [92] meant by the former part

of the definition for inferential reproducibility: similar conclusions from “an independent

replication of a study.” It is unclear whether or not the circumstances of the original

and the replicate study were identical or may have varied. If so, then it would classify as

Reproducibility Type E. However, this is just a possible interpretation of the definition

of inferential reproducibility. The definition could also fit with Reproducibility Type C or

D. Moreover, this vague definition of reproducibility allows for the possibility of replicate

study leading to considerably different data. In [152, p.42], Goodman defined inferential

reproducibility as “reaching the same conclusions or inferences based on the results,”

however, this new definition does not yield more clarity.

Furthermore, Goodman et al. [92] defined results reproducibility as “obtaining the same

results from the conduct of an independent study whose procedures are as closely matched

to the original experiment as possible.” It is unclear whether the definition categorises as

both Reproducibility Types C and D or just the latter. The reason for this unclarity is

that the term independent study has no clear definition and it is often used by researchers,

including Goodman et al. [92], without being defined. It is unclear whether in Goodman

et al.’s [92] definition of reproducibility, the same team of scientists or a different one has

to carry out the experiment. On the other hand, Voelkl et al. [202] provided more clarity;

they defined reproducibility as “the ability to produce similar results by an independent

replicate experiment using the same methodology in the same or a different laboratory,”

which encompasses both Reproducibility Types C and D. A similar definition was used

by Richter [174].

The National Science Foundation [155] distinguished three terms: reproducibility, repli-

cability and generalisability, and they saw these as a foundation for robust scientific find-

ings. Reproducibility can be categorised as the Reproducibility Type A definition, as

stated in Section 3.2.1; replicability is the ability to validate the results of a prior study by

collecting new data via the same procedure [155], which fits both Reproducibility Types

C and D. Generalisability is attained when “the results of a study apply in other contexts
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or populations that differ from the original one” [155]. Their definition of generalisability

is most relevant to Reproducibility Type E.

Jarvis and Williams [124] defined replication as obtaining an identical result in an ex-

periment conducted under identical conditions, which is compatible with Reproducibility

Type C and possibly also with Reproducibility Type D, as it is unspecified whether the

same team of scientists or the same laboratory is necessary. Jarvis and Williams [124]

defined reproducibility as obtaining a similar result in an experiment conducted “under

similar yet different conditions, the latter having the necessary degrees of latitude that

reflect a real-world situation,” which is most compatible with Reproducibility Type E. It

is unclear what the terms ‘similar results’ and ‘similar yet different conditions’ exactly

mean.

Barba [19] presented another division of terminology: repeatability, requiring the same

team and the same experimental design, which can be categorised as Reproducibility

Type C; replicability, requiring a different team and the same experimental setup and

fitting in Reproducibility Type D; and reproducibility, requiring a different team and

a different experimental design, which can be classified as Reproducibility Type E. It is

consistent with definitions of repetition and replication by Atmanspacher and Maasen [12]:

repetition refers to doing the same experiment by the same team whereas replication refers

to situations where different teams carry out the same experiment. However, according

to Atmanspacher and Maasen [12], reproducibility covers both terms. Gundersen’s [94]

use of the term repeatability also fits with Reproducibility Type C.

Zwaan et al. [211] defined direct replication as “studies intended to evaluate the ability

of a particular method to produce the same results upon repetition.” In this replication,

critical elements of the study, such as procedures, samples and measures, are recreated

[211]. But only “those elements that are believed necessary for producing the original

effect” must be present in the replicate study. This definition is closest to Reproducibility

Type D. Furthermore, Zwaan et al. [211] defined conceptual replication, which assesses

whether an effect extends to a different population. Conceptual replication falls under

Reproducibility Type E.

Gundersen [94] viewed reproducibility in the light of the scientific method. Gunder-

sen’s definition of reproducibility requires that a new experiment, mimicking the original
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experiment by following the documentations from the original researcher, is carried out

by another team of investigators [94]. Gundersen’s categorisation of reproducibility differs

from ours classification of reproducibility definitions. Gundersen [94] categorised repro-

ducibility into four types of reproducibility, which define what type of documentation on

the original study was available to the investigators carrying out the new study. Gunder-

sen’s four types are: description, code, data, and experiment. The last type encompasses

all of the previously named three types. In our view, all details of the original study

should be shared in order to replicate the study.

Furthermore, Gundersen [94] categorised reproducibility into three degrees of repro-

ducibility, which he called outcome reproducible, analysis reproducible and interpretation

reproducible. The degrees of reproducibility are based on what factors are similar in the

original and the replicate experiment. Outcome reproducible means that the outcomes in

the original and the replicate experiment are the same, thus applying the same analysis

leads to the same conclusion. It is vague what outcome means in this context, never-

theless, Gundersen [94] stated that outcomes of some experiments are data. Analysis

reproducible means that when the same analysis is applied to the new data in the repli-

cate study, the same conclusion is reached. Arguably, both outcome reproducible and

analysis reproducible fall under Reproducibility Type D. Interpretation of the analysis

denotes the conclusion made about the study. Interpretation reproducible means that

neither the outcome nor the analysis have to be the same in the replicate experiment, but

the interpretation (conclusion) drawn from the original and the replicate study are the

same. Thus, interpretation reproducible allows for different statistical analysis and it can

be categorised as Reproducibility Type E.

Gundersen [94] argued that using different methodology no longer falls under repro-

ducibility, but it is called corroboration, as in such cases hypotheses are supported by

new evidence. Corroboration fits the best within Reproducibility Type E. Gundersen [94]

also stated that corroboration refers to theories and hypotheses rather than to experi-

ments. This underlines that there is a considerable disagreement on what constitutes

reproducibility.

According to Stahel [194], there are two aspects of a successful replication. One of the

two aspects is the confirmation of conclusions, which means that a replication study leads
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to the same conclusion as the original one. This is compatible with Reproducibility Types

C and D. Stahel [194] also noted that the concept of reproducibility can be extended to

exploring different circumstances and if the new study leads to the same conclusion as the

original study, then this is called generalisability, which could be interpreted as using a

different method from the original study, and can be classified as Reproducibility Type E.

Another aspect of a successful replication, according to Stahel [194], is statistical compat-

ibility, which addresses the question “Is the data obtained in the replication compatible

with the data from the original study in the light of the model used to draw inference?”

This approach to reproducibility is not discussed elsewhere in the existing literature and

this thesis does not classify this as any of the Reproducibility Types because it is not

clear what does ‘data from a new study are compatible with the data from the original

study’ exactly mean.

3.2.4 Summary

There is no universally accepted definition of the term reproducibility. There are many

related terms, such as repeatability, replicability, and generalisability, which are also not

clearly defined. Sometimes the same terms with different definitions are used across the

literature. Moreover, researchers at times use the word reproducibility without defining

the term, and even if they do so, the definitions are not always clear. Terms used in some

of the definitions of reproducibility are not clearly defined. In order to have meaningful

debates on reproducibility, it is important to clarify terminology relating to reproducibil-

ity. In this section, five types of reproducibility were identified and definitions from the

literature, which can be classified as these types of reproducibility, were mentioned. Fig-

ure 3.1 outlined various considerations that are important in defining reproducibility and

how these relate to the five types of reproducibility. There are some overlaps between the

presented five types of reproducibility. It is not the purpose of this thesis to study which

of these types of reproducibility is the ‘correct’ one. Arguably, all of the considerations

presented in the five types are relevant to reproducibility of scientific findings.
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3.3 Goals of reproducibility

In the discussion of reproducibility, it is important to consider what the goals of repro-

ducibility (or of reproducibility assessment) are. A clear goal is confirmation of conclu-

sions. But researchers do not have to limit themselves to this goal. According to Bayarri

and Mayoral [22], other goals of reproducibility include: reduction of random error, bias

detection and extension of conclusions. The latter goal relates to Reproducibility Type E.

Goodman [152, p.42] extended the list by adding two additional goals: learning about the

robustness (“resistance to minor or moderate changes in the experimental or analytic pro-

cedures and assumptions” [152, p.42]) and the generalisability of results (“true findings

outside the experimental frame or in a not-yet-tested situation” [152, p.42]). Arguably,

the robustness and generalisability are not additional goals, but rather clarifications of

the fourth goal, extension of conclusions. Zwaan et al. [211] introduced another role of

reproducibility, which they called replication, to provide more accurate estimates of effect

sizes. This goal is of a different nature than the rest of the goals and it is questionable

whether reproducibility should focus on estimation of effect sizes or whether effect sizes

should be part of the general statistical analysis discussion. Further consideration of this

is outside the scope of this thesis.

3.4 Reasons for low reproducibility and suggestions

for improvement

This section provides an overview of reasons for low reproducibility and suggestions for

improvement, based on the literature. Section 3.4.1 considers the topic from a statistical

perspective, and Section 3.4.2 provides more general insights. Note that this chapter refers

to a variety of literature, where authors often assume different definitions of reproducibil-

ity, as discussed in Section 3.2. Sometimes, a definition of reproducibility is assumed and

not explicitly stated.

There is no universally accepted notion of what low or poor reproducibility means,

which is likely linked to the lack of a universal definition for the term reproducibility.

There are two main approaches to defining low or poor reproducibility: First, it can refer
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to a poorly described and documented experiment, which prevents another researcher

from reproducing the original experiment. This could be done either by using the same

data, in alignment to Reproducibility Type A or Type B, or by redoing the experiment

and acquiring new data, in alignment to Reproducibility Types C to E. Secondly, low

reproducibility can refer to a well described and documented experiment, where a new

experiment does not lead to the same findings that were reached in the original experiment.

Poor reproducibility can also refer to a combination of these two approaches.

The solutions for improving reproducibility often require adhering to good scientific

practice and using appropriate statistical, experimental and documentation methods. The

majority of these solutions are not limited to a particular type of reproducibility. Finding

solutions to the reproducibility crisis calls for many stakeholders: researchers; institutions,

both public, such as universities, and private, such as companies; funding bodies; and

journals. All these stakeholders can play a vital role in improving reproducibility [152,

p.21]. Poor reproducibility may not be in the interest of any company.

3.4.1 From the perspective of statistics

Poor statistical choices

The discussion of statistical reasons for poor reproducibility begins by highlighting the

problem of researchers making poor statistical choices. Wrong or unsuitable statistical

analysis [16, 28, 86, 153, 171, 196] and poor experimental design [16, 153] are commonly

named. This includes the incorrect use of p-values [28], overrelying on p-values [99],

inadequate sample sizes [86,171], low power [196], using inappropriate sampling techniques

[196], insufficient knowledge of data-generation mechanisms caused by the use of big data

[196], experimental biases [28], statistical biases such as confouding [28], and programming

errors [28]. The discussion of the reasons for low reproducibility in the quoted papers is

mostly theoretical and it does not include real world examples.

More specific reasons for low reproducibility, which only apply to certain experiments,

are: examination of weak and complex interactions for data with low signal-to-noise

ratio [161], and miscalculation of effect sizes in meta-analyses [3]. Moreover, greater

availability of data and more complicated analytical methods lead to a greater risk of
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false or misleading findings [161], as this increases the risk of an error.

Statistical solutions to problems offered in the literature are: using suitable statistical

methods [16, 28, 153], which may include reporting confidence intervals rather than just

p-values [99]; using robust designs [16]; acknowledging uncertainties [153] and taking into

consideration the sensitivity of estimates for both deviations in the underlying data and

model choice [196]. To ensure the appropriate use of statistics, it is important to involve

statisticians at all the stages of the experiments or to provide good statistical training to

the researchers carrying out the experiments [136,173]. It is important to teach researchers

that statistics is a tool to assess the strength of evidence, rather than to reveal the truth.

Even, with this priority, occasional human error is still inevitable.

Berger [28] suggested using Bayesian analysis and he argued that this statistical frame-

work provides a systematic way of dealing with multiple statistical analyses. Researchers

not limiting themselves to either frequentist or Bayesian statistics, is desirable, however,

this again requires proper statistical training. Stahel [194] encouraged cross validation;

in cross validation, the dataset is split many times into a small training set and model

parameters are estimated for each of these training sets, then the average performance of

all splits is calculated. Using appropriate statistical analysis has the potential to reduce

the incidence of wrong conclusions, which are often caused by technical errors.

Undesired correlations

Apart from the incorrect use of statistical methods, unwanted or unknown correlations

could negatively affect reproducibility. Stahel [194] named the within laboratory or within

group correlation, which is about measurements from the same laboratory being more

similar. Stahel [194] suggested that there may be a correlation between results obtained

with short time lags. Carrying out the same experiment in a different laboratory and

by a different team of scientists, in line with Reproducibility Type D, can ensure that

the conclusions of the experiment are not linked to some of the unknown correlations,

such as the within laboratory correlation, which can occur with Reproducibility Type C.

One way to reduce the undesired consequences of unwanted correlations is accounting for

reproducibility in the design of the experiment. This solution has already been addressed

in preclinical research, and this topic will be further discussed in Section 3.5. Repro-
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ducibility Type E avoids some of the pitfalls of unwanted correlations, namely, it tests

the findings of the experiment under changed circumstances, which makes the conclusions

more robust with respect to the varying conditions. According to Ehm [79], meta-analysis

is needed because of the issues of heterogeneity and selection bias [79]. Meta-analysis is

a statistical method that combines results of several independent studies [95]. It should

not replace replication studies, but it is useful as it can stop researchers from prematurely

accepting conclusions, and from performing ineffective or harmful treatments.

Within-study selection bias

Related to the undesired correlation is the within-study selection bias. Hutton and

Williamson [113] showed, via a meta-analysis on a treatment for incontinence and an-

thelminth therapy, that selective reporting of outcomes - when less outcomes are reported

than are measured - has an effect on the conclusions and recommendations made about

treatment. This within-study selection bias is often based on the significance level and the

estimates of effect size. However, this selective reporting becomes problematic when meta-

analysis is carried out or someone else tries to replicate the experiment. To avoid these

problems, all outcomes should be reported, even those that were statistically insignificant.

Missing data

In research, missing data and the lack of documentation of missing data [189] can lead

to poor reproducibility. Thus, it is important to report information about missing data,

which includes the degree of and statistical assumptions related to missing data, and the

practical information on reasons behind missing data. Moreover, it is vital to perform

sensitivity analysis to assess robustness of these assumptions in order to increase repro-

ducibility [189]. This solution seems feasible as the treatment of missing values is a part of

the statistical analysis, and reporting them is in alignment with Reproducibility Type A.

Multiplicity

Multiplicity [92] or failure to adjust for multiplicities [28] can also lead to lower repro-

ducibility. Multiplicity occurs when several statistical inferences are considered simul-

taneously, this often involves using multiple statistical tests. According to Bretz and
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Westfall [37], ignoring multiplicity in any stage of drug development may cause a lack

of reproducibility, which they call replicability, at a later stage or after market approval.

Bretz and Westfall [37] carried out a simulation of pairs of independent studies, SI and

SII , which only differ in the sample size: nSI = 100, nSII = 1000, where SI represents the

original test study, and SII represents the replicate study. Everything else remains the

same. This relates to Reproducibility Type E, with only one change of circumstances:

the sample size. Bretz and Westfall [37] recorded the observed effect sizes of the selected

populations for each study and they compared them. They concluded that the effect sizes

of SI are not ‘reproduced’ in SII : on average they are larger than effect sizes of SII . This

confirms that changing one aspect of the test, such as the effect size, can have an effect

on the test conclusion.

Deliberate statistical malpractices

Intentional statistical malpractices are another cause of poor reproducibility. These in-

clude: removing ‘outliers’ and unfavourable data [28], trying out multiple models un-

til one gets favourable results [28] (also called p-hacking [92, 153] or selective report-

ing [16, 92]), statistical overfitting [14], data dredging (analysing data in order to find

any possible relationships between the data) [92] and hypothesizing after the results are

known [92, 153]. Such malpractices often stem from the pressure to publish [16]. Clear

documentation of all statistical processes, which links to Reproducibility Type A, al-

lows an external scientist to check the analysis carried out and it increases the chance

of spotting statistical malpractices. Moreover, pre-registration of studies is conducive to

transparency [36,81,150,153,193] and it prevents many malpractices. In pre-registration

of studies, experimental designs and analytical plans are written down in a database be-

fore the experiment is performed. In clinical studies, pre-registration is mandatory and

can be done through registries such as the International Standard Randomized Controlled

Trial Number registry [117] and the International Clinical Trials Registry Platform [115].
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3.4.2 More general insights

The majority of reasons for low reproducibility do not stem from wrong statistical analysis.

Preference of publishing positive results, a lack of documentation of experiments, focus

on exploratory studies rather than replication studies, and other non-statistical issues

can lead to low reproducibility. This section will summarise these problems and outline

suggestions for improvement offered in the literature.

Preference of publishing positive results

One of the reasons for low reproducibility is the pressure to publish [16]. This is exacer-

bated by the publication bias [28,153,194,211], which refers to the preference of journals

to publish positive results and reject negative results [86]. Similarly, negative or null

results are also often not written up for publication. This leads to a high proportion of

‘false positive’ results.

Journals should strive to accept for publication articles with negative or null results

[23, 28, 45]. Removing stigma associated with negative results, i.e. negative perception of

negative results, has potential to increase reproducibility [198]. However, even if journals

allow the publication of negative results, it is questionable whether researchers will start

writing up negative results, simply because they are focused on positive results and they

face many pressures, which prevent them from writing the negative results for journal

publication. It is also questionable whether scientists would worry about reproducibility

of negative results. If not, false negatives would be more problematic for science than false

positives because they would receive less attention and scrutiny. An investigation carried

out in this PhD project, that lead to null findings, is briefly described in Appendix B.3.

Other problems in the publication system

Allison [3] emphasised that there is a lack of formal guidance for post-publication correc-

tions. He pointed out that in science a degree of self-correction is crucial, however, it is

hard to be achieved via publications. Once an article gets published, it is hard to address

any errors. The US National Institute of Health (NIH) promoted that journals should

be motivated to allocate more space for papers that point out errors in earlier work [45],
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which seems a feasible and forward-looking solution. This policy is being adopted by

many journals.

Other problems in the publication system, that lead to lower reproducibility, are fraud-

ulent research [16, 153, 161], insufficient peer review, oversight and mentoring [16] and

competition between laboratories leading to hastily written papers [86].

Documentation

Incomplete or bad reporting [86,92,196] or a lack of ‘instruction material’ for scientists who

want to produce such reproducible research [81,161] can also lead to low reproducibility.

The raw data, method description or code are not always available [16]. One of the reasons

why scientists may not share their data and code is that it takes a lot of time to document

the work and to clean up the data and code [138]. Alternatively, the researchers may not

want to share documentation which includes work beyond the published results.

Iqbal et al. [122] carried out a systematic assessment of the biomedical literature, as-

sessing transparency and reproducibility in a random sample of 441 articles in biomedical

journals published in 2000-2014. They concluded that the biomedical literature lacks

transparency; it is missing protocols, data, statements of conflict, funding information,

and statements of novelty or replication. Similarly, Errington et al. [81] highlighted prob-

lems for replication of experiments: incomplete documentation, not enough information

to repeat an experiment, descriptive or inferential statistics not provided, insufficient de-

tail about the experiments. In their reproducibility project in cancer biology, the team of

scientists sought to repeat 193 experiments from 53 papers [81]. In order to do so, they

had to modify 67% of the protocols, which were already peer-reviewed, and they were only

able to implement 41% of those modifications [81]. Only 4 out of 193 experiments included

data which were necessary for computing the effect size and for conducting power anal-

ysis [81]. Following difficulties faced during the design and conduct of the experiments,

Errington et al. [81] were only able to carry out new experiments based on the original

experiments for 50 experiments from 23 papers.

Many sources agree that careful documentation of all steps in an experiment is im-

portant for reproducible research [14, 17, 28, 87, 89, 153]. From the perspective of the five

reproducibility types, clear documentation is important. This includes code, data and
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clear description of the data and the analysis [38, 180]. Moreover, public access to all

these documents is necessary, so that other researchers can validate the analysis [179].

Berger [28] suggested establishing protocols for scientific investigations. Donoho [72] ad-

vised to create a single R script that generates all the results, figures and tables, for a

particular paper. Solutions in terms of user-friendly software are not new; in 2000, Schwab

et al. [180] described ReDoc, a simple software system where authors deposit all the doc-

umentation, data, and code, that allows readers to reproduce computational results from

the articles. A more recent tool for a clear documentation of the statistical analysis is

the R package knitr which creates a single document containing both the code and the

documentation of the experiment, including visualisations [209]. Another solution is the

use of a Jupyter notebook. This is a web-based computational environment that shows

the code for data analysis alongside text and visualisations [179]. All these solutions are

compatible with the approach to reproducibility described in Reproducibility Type A,

making it possible for another researcher to go through the data, code, and the method,

and reanalyse the experiment. However, these solutions are not limited to Reproducibility

Type A; they are useful for researchers who want to analyse the same data using a dif-

ferent analytical method (Reproducibility Type B), or for researchers who want to repeat

the experiment (in line with Reproducibility Type C, D or E). A difficulty is that these

solutions are time-consuming and require training. Nevertheless, the long-term benefits

of these solutions are apparent and they have already been implemented, for example, in

computer sciences. A related question is what to do when irreproducibility is reported, in

line with Reproducibility Type A or its stronger version. However, this question remains

outside the scope of this thesis.

The recommendations on documentation should not be limited to technical aspects,

such as what software to use, but they also should include a discussion of what informa-

tion should be included and in what depth. A detailed manual about journal reporting

in quantitative research in psychology can be found in Appelbaum et al. [9]. The rec-

ommendations presented in this article can also be applied to other research fields. An

earlier work includes Wilkinson et al. [207] who give a detailed and useful guide for prac-

titioners in psychology on how to carry out appropriate statistical methods, devise a good

experimental design, document the work well. This article does not limit itself to the field
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of psychology. Reporting guidelines for a broad spectrum of health research studies are

given by the Enhancing the Quality and Transparency Of health Research (EQUATOR)

network [80].

Tiwari et al. [199] proposed a ‘reproducibility scorecard’ for publications to improve

reproducibility. This scorecard asks 8 questions, two examples of these questions are:

“Are the model codes deposited in a relevant open model database?” and “Are the

mathematical expressions described in the manuscript or supplementary material?” [199].

Tiwari et al. suggested a 4 out of 8 cut-off in the reproducibility scorecard. This means

that ‘yes’ needs to be answered to at least four questions for there being a chance of

reproducing the same results. Tiwari et al. [199] limited the scope of their paper to systems

biology modelling but this idea could also be used in other scientific areas. However, rather

than using a cut-off-point, it might be better to report which ‘reproducibility criteria’ the

publication satisfies. These reproducibility criteria could encompass all five reproducibility

types.

In big data settings, keeping track of all steps in an experiment and data manage-

ment becomes a challenge. There are many tools that make it possible for researchers

to document their work, such as an open-source programming language, a cloud-based

data repository, a programming interface and the previously mentioned Jupyter Note-

book [183]. Moreover, following the FAIR (Findable, Accessible, Interoperable and Re-

producible) principles [208] for data management can lead to higher reproducibility [179].

FAIR principles are guidelines that guide researchers on how to organise, describe, store

and operate data in order to improve the reusability of data. See Wilkinson et al. [208]

for a more elaborate description of these principles.

Cooperation

Within an organisation, better reproducibility, in alignment with all reproducibility types,

can be achieved through collaboration of a team [150] and the inclusion of statisticians in

research teams [28]. This is linked to the need for interdisciplinary teams on large scale

projects [179] and for initiative to share common vocabulary. This would allow for more

informed conclusions. Moreover, better mentoring and supervision, better teaching, more

within-lab validation, incentives for diligent work, and more external-lab validation can
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improve reproducibility [16].

Focus on replication studies

Funding bodies also have a role to play as they can have an impact on reproducibility

through grant distribution. There should be distinguishment between exploratory versus

confirmatory studies [202]. Pusztai et al. [172] proposed that some of the existing funding

from new-discovery oriented grants gets allocated to confirmatory and validation grants

that could be used for verification of important published results. For example, Iorns et

al. [121] presented a successful replication study in biology. The details of the experiment

are omitted as these include biology related terminology. Iorns et al. [121] communicated

with the original authors to receive further details of the study and they also performed

additional analysis to collect more detailed data, including data for more doses than the

original test scenario. This replicate study confirmed the conclusions of the original test

scenario. However, the effects seen in the replicate study were lower than in the original

study. To improve reproducibility, such efforts should receive recognition in the scientific

community. However, such recognition might be hard to establish, as more emphasis is

given to the discovery research and to the publication of novel findings. The Science

Exchange network [181] established a support network for researchers who want to carry

out replication studies in order to validate key experimental findings.

3.5 Reproducibility in preclinical research

As this thesis focuses on reproducibility in preclinical research, this section will address

some of the issues regarding reproducibility of studies that specifically relate to this field.

The motivating test scenarios in this thesis come from preclinical in-vivo research, i.e.

research carried out on animals, typically rodents. Preclinical research mostly focuses

on the actual replication of an experiment in accordance to Reproducibility Type E, as

due to the inevitable variations between experiments, it is impossible to have exactly the

same conditions in two separate experiments. Arguably, this is impossible in any area.

Quantifying reproducibility, in situations when only the original experiment has been

carried out, has not received much attention in preclinical research.
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Section 3.5.1 considers ethical issues that limit preclinical research and result in the

use of small samples. Section 3.5.2 presents other reproducibility challenges for preclinical

research. Section 3.5.3 presents some recommendations for improving reproducibility in

preclinical research. Section 3.5.4 is dedicated to the topic of embracing variability.

3.5.1 Ethical issues

Animals are a fundamental part of preclinical research and the majority of the discus-

sion on reproducibility in preclinical research is linked to them. Due to ethical issues,

sample sizes in animal studies are small. Thus, poor reproducibility may be to some

extent unavoidable. On the other hand, a follow-up study, which assesses reproducibility,

increases the number of animals needed [174]. The 3Rs principles [84] provide guidance

for researchers on how to responsibly conduct experiments in animal research. The 3Rs

stand for replace - animals by non-sentient animals whenever possible; reduce - the num-

ber of animals; and refine - improve animal well-being. The ‘reduce’ principle is the most

relevant one in the discussion on reproducibility and there is, arguably, a need for a move

from the traditional focus on reducing the number of animals per experiment solely to

a more integrated approach which considers validity, robustness and reproducibility of

experiments. The ‘replace’ and ‘refine’ principles are indirectly linked to the reproducibil-

ity debate: the more a researcher adheres to these principles, the more ethical ground

there will be to repeat the experiment or to use a larger sample size. For the ‘reduce’

principle, an important question arises: Is it possible to improve reproducibility using

smaller sample sizes, thus reducing the number of animal, assuming the experiment is set

up optimally? This question is outside the scope of this thesis, however, it is important

for future research.

3.5.2 Challenges using animal in research

Small sample size, linked to the ethical concerns, as well as to financial and practical

reasons, is only one of the challenges a researcher faces when working with animals in

preclinical research. The involvement of animals adds additional uncontrollable variability.

Animals are very perceptive to small environmental changes, such as light and noise
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coming out of a computer, and this can have an impact on the experiment.

Apart from the variations related to animal use, experiments may face the problem of

inevitable variations, such as time lag, variation of apparatus and material [194]. Simi-

larly, variability of standard reagents [16] can affect the experimental outcomes. Slightly

changing the experimental procedure or using different laboratories, or different animal

strains are some of the reasons for low reproducibility of experiment [45]. Here strain

stands for a group of animals that are genetically the same.

Stevens [195] named other reasons, with focus on animal use in comparative psy-

chology: There is often repeated testing on more animals that are more expensive than

rodents, such as parrots or primates. Also people may have more objections to testing

on more intelligent animals. Therefore, as much data as possible are collected during one

experiment. This exploratory data analysis may lead to data fishing. Furthermore, there

is often limited species coverage and species are often substituted in a replicate study.

3.5.3 Recommendations offered in literature

This section will discuss the advice offered in the literature on how to improve statistical

training, planing and experimental design, and documentation of experiments in order to

improve reproducibility in preclinical research. Embracing variability, a highly discussed

recommendation, will be addressed in Section 3.5.4.

Reynolds [173] pointed out the lack of adequate statistical training in preclinical re-

search and he advocated training in statistics for researchers, specific to preclinical re-

search. According to Reynolds [173], researchers should be taught to create the statistical

design and carry out data sampling, before analysing the data and making inferences. The

importance of statistical training has already been discussed in Section 3.4. However, not

much attention has been paid to the details of such statistical training, possibly because a

lot of the literature has been written by non-statisticians. It would be desirable to discuss

in greater depth the methods that should be taught, the level of understanding of the

methods that researchers should acquire, and the guidance on when a non-statistician

should consult a statistician.

It is important to note that an institution needs a license to carry out experiments

on animals, and, in order to obtain this licence, the institution needs to show that it
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provides good training. The UK home office provides the license but it takes an input

from the Animal Welfare and Ethical Review Bodies (AWERBs). The AWERBs focus

on high standard of animal welfare, improving scientific quality, promoting a culture of

care and ensuring the 3Rs principles are followed [178]. One of the factors of maintaining

a high quality of the above mentioned is training and this includes training in statistics

and experimental design. “The AWERB needs to be confident that the establishment has

in place a good system of education and training and assessment of competence for all

staff [178].” However, there are no universal requirements on the specifics of the training

in statistics.

Spanagel [193] recommended a variety of measures that can be incorporated into the

planning and design of an experiment in order to improve reproducibility: Prior to a

new study, researchers could consider conducting a systematic review or potential meta-

analyses of existing related studies, conduct a power analysis, pre-register experimental

study protocols, as discussed in Section 3.4, and consider carrying out multi-centre pre-

clinical studies. In the context of research on psychiatric disorders, Spanagel [193] advised

researchers to consider using animal models that satisfy two psychiatric diagnostic clas-

sification systems which are based on observations from clinical research [193], and it is

important that the preclinical study reflects those. It is also advisable not to overcompli-

cate statistical analysis and to use only the methodology that the researcher has a good

understanding of [193]. Richter [174] argued that the risk of bias could be prevented by

random treatment allocation, blind administration of the treatment, and blind assess-

ment of outcome. According to him, this could eliminate aspects of the experiment which

lead to misleading results. However, it is arguable whether randomisation is preferable to

careful balancing an experiment with known factors.

Regarding the documentation of an experiment, diligently following ARRIVE (Animal

Research: Reporting of In Vivo Experiments) guidelines [10] improves reporting standards

in animal testing [174] and thus makes replication of the experiments easier. ARRIVE

guidelines provide directions on reporting of ten essential items: study design, sample

size, inclusion and exclusion criteria, randomisation, blinding, outcome measure, statis-

tical methods, experimental animals, experimental procedures, and results. Moreover,

reproducibility can be improved by making raw data available in accordance to FAIR
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principles [208] and by publishing negative findings [193], both recommendations have

already been discussed in Section 3.4.

3.5.4 Heterogenisation – embracing variability

In alignment with Reproducibility Type E, there is a body of literature suggesting that

systematic heterogenisation rather than standardisation improves reproducibility in pre-

clinical research [34,130,131,174,175,202]. This literature focuses on experiments carried

out on mice. Richter [174] argued that perfect homogenisation decreases inter-individual

variation within a study population to zero, which leads to statistically significant re-

sults that cannot be generalised to slightly different conditions. This is also called the

standardisation fallacy. Standardisation does not account for animals being responsive

to the environment, also known as phenotypic plasticity [130]. This biological variation

caused by phenotypic plasticity differs from random noise [202]. In preclinical research,

it has been suggested to embrace variability through systematic heterogenisation in order

to improve reproducibility [130].

Examples of heterogenisation named in the literature are using mice of diverse charac-

teristics, such as mice of different age, sex and body weight, [176]; using different inbred

strains of mice [202]; co-housing individuals of different strains of mice [174]; varying the

housing conditions of mice [202]; varying husbandry and test procedures [176]; and carry-

ing out the experiment on mice at different times [34] or in multiple laboratories [203]. For

example, Bodden et al. [34] presented a study where systematic heterogenisation, adding

variability, via carrying the experiment on mice at different times of the day improves

reproducibility (Type E).

A possible tool for heterogenisation is the use of randomised block designs for the

experiments. This can include using time or a batch as blocking factors [85, 131]. The

latter is called the multi-batch design where the experiments are split into small batches

of animals which are tested at different times. These ‘mini-experiments’ are then brought

together in the statistical analysis. Karp et al. [131] showed how multi-batch design

improves reproducibility in a syngeneic tumour case study. For the multi-batch design,

they explored the following statistical analyses: meta-analysis, a fixed effect regression

approach, a random effect regression approach and a pooled approach [131]. A pooled
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approach was not recommended for the statistical analysis as it ignores batch information.

Meta-analysis and random effect regression were recommended by the authors for the

analyses of multi-batch design experiments [131].

Embracing variability also addresses a problem that is interlinked with reproducibil-

ity: there is a high failure rate in translating research from preclinical to clinical stud-

ies [174]. Translating research means that conclusions about a new treatment reached

in the preclinical stage of the drug development are validated in clinical research [174].

In a pharmaceutical context, it is desirable that the conclusions of a study remain the

same even if the circumstances change, in order to increase the chance of a successful

translation of the findings from preclinical to clinical studies, as the end goal of phar-

maceutical research is to provide a new treatment. Thus, in the long-term, the focus on

improving and quantifying reproducibility can also positively impact translating research

from preclinical to clinical studies and, consequently, improve the efficiency of the drug

development process.

3.6 Statistical reproducibility

Up to this point, this chapter has categorised definitions of reproducibility, presented

reasons for low reproducibility and suggestions on how to improve reproducibility, and

discussed reproducibility within the context of preclinical research. This section considers

reproducibility from the perspective of statistics. This section aims to provide a con-

cise summary of the debates on the topic of statistical reproducibility addressed in the

literature. For example, statistical reproducibility has been discussed in depth in ‘Sta-

tistical Challenges in Assessing and Fostering the Reproducibility of Scientific Results:

Summary of a Workshop’ [152]. These proceedings of the workshop considered important

questions in the research area but it did not give a summary of the existing metrics that

are aimed at validating reproducibility and quantifying statistical reproducibility. This

task will be pursued in Sections 3.7, 3.8 and 3.9. Section 3.6.1 discusses different defini-

tions of statistical reproducibility and questions that have been raised regarding statistical

reproducibility and Section 3.6.2 considers the debate on whether or not to use p-values.
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3.6.1 What is statistical reproducibility?

Similar to the term reproducibility, the term statistical reproducibility, reproducibility

probability or replication probability, is not clearly defined. The first insights related

to statistical reproducibility were provided by Goodman [91], who highlighted a miscon-

ception regarding the p-value. Goodman [91] questioned the claim that a small p-value

improves the credibility of the test result and argued that the replication probability may

be smaller than expected. Although Goodman used the term replication probability rather

than reproducibility probability, his definition is similar to the definition of reproducibility

adopted in this thesis. Goodman [91] defined it as the probability of observing another

statistically significant result in the same direction as the first one, if an experiment was

repeated under identical conditions and with the same sample size, which is consistent

with Reproducibility Type C. Senn [182] agreed with Goodman that the p-value and repli-

cation probability are different measures and that inconsistency between test results from

individual studies may be expected. However, he disagreed with Goodman’s claim that

the p-value may overstate the evidence against the null hypothesis [91], both under the

Frequentist and the Bayesian framework. According to Senn [182], under the Frequentist

framework, p-value is the most rigorous possible type I error rate that could be considered

and still lead to the rejection of the null hypothesis. Under the Bayesian framework, it

could be argued that the p-value corresponds to a particular Bayesian posterior probabil-

ities. Nevertheless, Senn [182] recognised that a link between the p-values and replication

probability should be recognised. This thesis uses the term reproducibility probability

(RP) instead of replication probability and it will return to this topic in Chapter 4.

Miller [149] argued that there are two interpretations of the replication probability and

that in both cases the probability is unknown. Miller called them the aggregate and the

individual replication probability [149, p.618]. According to Miller, the former term refers

to experiments being performed by different teams of researchers with varying conditions,

which corresponds to Reproducibility Type E, whereas the latter term refers to exper-

iments being carried out by a particular individual under exactly the same conditions,

which corresponds to Reproducibility Type C and to Goodman’s definition of statistical

reproducibility. Miller discouraged researchers from attempting to estimate both types of

replication probabilities, as, according to him, the initial data provide very little informa-
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tion about the RP in the follow-up experiment [149, p.629]. This is something we disagree

with; a statistician uses data for inference, hence, it contains further information.

Stodden [196] had a different approach to the use of the term statistical reproducibil-

ity. She described it as conception about how statistics affect the likelihood of a scientific

result being reproducible and how they contribute to the study and the quantification

of reproducibility [152, p.4]. Stodden also used this term to refer to the situation when

flawed statistical analysis or experimental design leads to the failure to replicate the ex-

periment [196]. The positive side of this definition is that it emphasises the importance of

appropriate use of statistics in experiments. However, this definition generalises statistical

reproducibility to any discussion regarding statistics and reproducibility, and it cannot be

classified as any of the Reproducibility Types introduced in Section 3.2.

The debate on statistical reproducibility raises a variety of questions. In the pro-

ceedings of the workshop on ‘Statistical Challenges in Assessing and Fostering the Re-

producibility of Scientific Results’ by National Academies of Sciences, Engineering, and

Medicine (NASEM) [152], one of the questions focused on what study designs and ap-

propriate metrics can be used to quantify reproducibility of scientific findings. The pro-

ceedings of NASEM [152] mainly concentrated on the variability across studies, on how

to assess this variability and on what degree of variability leads to worries about the lack

of reproducibility. Indisputably, variability is an important factor in the statistical repro-

ducibility debate. Lomax [152, p.15] explained that it is important to recognise which

aspects of variation can and which cannot be controlled.

Exchangeability of random variables forms part of the variability discussion. De

Finetti’s Theorem [107] states that exchangeable observations are conditionally indepen-

dent. It means that variables can be swapped around in the sequence, and following

this their joint distribution does not change. Exchangeability can never be verified, but

statisticians still make the assumption of exchangeability under the guidance of practition-

ers. In the reproducibility debate, it is important to ask whether or not one can assume

exchangeability. This thesis proposes that exchangeability could be assumed when the

replicate experiment is carried out under the same conditions. This work assumes ex-

changeability in the nonparametric predictive inference (NPI) framework, which is used

to quantify NPI reproducibility in Chapter 4. Thus, exchangeability can only be assumed
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for Reproducibility Type C. It is arguable whether exchangeability, or some extent of

exchangeability, can also be assumed for Reproducibility Type D. Exchangeability can

no longer be assumed for Reproducibility Type E, where the experiments are carried out

under different conditions. These scenarios are outside the scope of this thesis, as this

work focuses on the quantification of Reproducibility Type C. Nevertheless, a question

of how to address variability in scenarios where exchangeability cannot be assumed is of

further research interest.

The proceedings of NASEM also discussed how statistics, in particular the choice of

study design and analysis, can affect reproducibility of scientific results, and how repro-

ducibility can be enhanced via structural and analytical approaches [152, p.3]. These

questions address statistical causes of poor reproducibility and suggestions for improve-

ments, both of these have been addressed in Section 3.4.

Lastly, there is an important question: Within what framework should statistical re-

producibility be assessed? BinHimd and Coolen [31, 53] considered reproducibility as a

predictive problem and provided a frequentist approach, nonparametric predictive infer-

ence, to solve it. This thesis adapts their approach to statistical reproducibility. Within

the Bayesian framework, predictive inference has been discussed by Billheimer [30]. With

a view to improve reproducibility, Billheimer [30] proposed predictive inference to predict

observables. According to Billheimer [30], statistical modelling should predict observ-

able quantities and events, based on the current data and other applicable information,

rather than form inferential conclusions through hypothesis tests or estimation of parame-

ters. Billheimer promoted that instead of focusing on unobservable parameters, attention

should be centred on observable events. This view is in alignment with the approach

to statistical reproducibility presented in this thesis, however, this work suggests using

NPI framework instead of Bayesian framework, as NPI does not make many assumptions

about the data whereas Bayesian framework does.

3.6.2 The p-value and the statistical significance

Concerns regarding reproducibility of research results is interlinked with the ongoing

debate about whether or not to use p-values [30]. In hypothesis testing, which is a method

of statistical inference, p-values are used to make dichotomous decision about whether



139

the data support a particular hypothesis. Depending on the p-value, test outcomes are

labelled statistically significant or non-significant. The most commonly used threshold

value for the p-value is 0.05. The p-value is the probability of obtaining the same or a

more extreme value for the test statistic, under the assumption that the null hypothesis

is correct. The American Statistician (TAS) [206] suggested abandoning the concept of

statistical significance in scientific research. The grounds for this suggestions are that the

concept of statistical significance is misinterpreted by many, that it can cause erroneous

beliefs and poor decision making, and that it stops statistically insignificant results from

being published. Furthermore, statistical significance does not imply truth, yet many

researchers and bodies equate it with truth [206]. The editorial [206] stated that it is not

enough to have directions, such as “Don’t believe that an association or effect exists just

because it was statistically significant”, but that the p-values should not be dichotomised,

i.e. test outcomes should not be labelled as statistically significant or non-significant, and

the word statistically significant should not be used. TAS [206] suggested that rather

than stating the p-value, its meaning should be described in words.

Fisher introduced p-values for the use at the exploratory stage to see if the experiment

findings should be further investigated [156, 206]. They were not meant to lead to a di-

chotomous decision making rule, reject or not reject the null hypothesis. The dichotomous

nature of significance testing often leads to p-hacking, the misreporting of true effect sizes

by researchers who want to publish and need significant results, as discussed in Section

3.4. Similarly to TAS, Amrhein et al. [6] argued that dependence on statistical signifi-

cance threshold can be misleading, and they suggested not using statistical significance

thresholds and reporting only precise p-values.

Amrhein et al. [6] argued that conclusions should not be based solely on whether the

p-values are significant or non-significant. Other metrics, such as the effect size and power,

are equally important in the statistical analysis of tests. Amrhein et al. [6] also addressed

the problem of making over-confident claims based exclusively on p-value. Nuzzo [156]

also highlighted that effect sizes are often ignored and the research focus is on whether

there is an effect rather than on how big the effect is, while the latter question is often

more important. Nuzzo [156] discussed the problem of overrelying on p-values in decision

making. Halsey et al. [99] discouraged analysis based mostly on p-values because of
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“the wide sample-to-sample variability in the p-value” [99]. They proposed that the

dichotomous yes-or-no decision should be reached using a variety of measures, in particular

the effect size estimates and their 95% confidence intervals [99]. Colquhoun [46] raised

the problem of high false discovery rate for p-value around 0.05 in significance testing. He

illustrated this on tree diagrams for simple testing procedures and he explores it further

via simulations; the false discovery rate is the ratio of the number of false positive results

to the total number of positive test results. The false discovery rate is also high for tests

with low statistical power. Chapter 4 will show that statistical reproducibility is low for

test decisions with a p-value close to the threshold. There is a possible link between this

and Colquhoun work.

Halsey [98] offered four alternative analysis approaches to augment or replace the p-

value. First, he discussed the augmented p-value - augmented with information about

its variability. He suggested the p-value prediction interval as a possible tool to do so.

The prediction interval characterises the uncertainty of the p-value of a future replicate

study [60]. It is questionable whether augmented p-values will not create more confusion as

their interpretation is not straightforward and their calculation is based on p-values. Sec-

ondly, Halsey suggested estimating effect sizes and their confidence intervals [98]. Thirdly,

Halsey suggested the use of Bayes factors instead of p-values as more intuitive metrics

for interpretation. Fourthly, Halsey suggested using the Akaike information criterion for

model assessment, which is outside the scope of this chapter’s discussion. Being aware

and using alternative methods for statistical analysis gives decision-makers more flexibil-

ity and more tools to make decisions. However, these tools do not replace p-values as they

are different measures and communicate different messages.

Macnaughton [140] disagreed with the claims made by TAS [206], in particular, that

abandoning statistical significance will lead to fewer false-positive errors in scientific re-

search, and that it will enable easier replication of scientific research results [140]. Ac-

cording to Macnaughton [140], science and statistics aim at separating signal from noise

in data and the p-value is a useful tool for determining whether the studied effect exists

in the population [140]. Unfortunately, false-positives still persist in published research,

i.e. a p-value which implies that there is evidence for the alternative hypothesis, but in

fact the null hypothesis is true. Macnaughton [140] argued that the critical threshold
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value provides a balance between the rates of false-negative errors, false-positive errors,

and costs. Macnaughton acknowledged that some people may manipulate p-values (either

because of a lack of knowledge or on purpose so that they can publish) and this is harmful

to science. Macnaughton also pointed out that if researchers obtain a p-value above the

critical value of a relevant journal and if they believe that the studied effect exists and

it is important, then the researchers should create a more powerful research design and

repeat the study to see if they can get convincing evidence for the existence of the effect.

Ioannidis [120] also argued that significance is essential for activity in both science and

non-science and that some filtering process is helpful to avoid drowning in noise.

Benjamin et al. [25] proposed to change the default p-value threshold for statistical

significance from 0.05 to 0.005 for new discovery claims, to improve reproducibility and

to label novel findings with p-values between 0.005 and 0.05 as suggestive evidence. Re-

producibility was not explicitly defined by Benjamin et al. [25], it could be assumed that

they referred to Reproducibility Types C, D or E, or a combination of these. Benjamin et

al. [25] did not propose that this new threshold is used for decisions on whether to publish

or not. Similarly, the proceedings of the workshop by NASEM [152, p.48–55] discussed the

benefits of increasing the threshold for demonstrating statistical significance, through p-

values or Bayes factors. It is doubtful whether this would increase reproducibility because

p-values and reproducibility probability are different measures and there is inconsistency

between test results from different studies, as has been discussed by Senn [182] and Good-

man [91].

Leek and Peng [136] identified that there are more important discussions than the

question of whether or not to use p-values. It is more important to focus on the improve-

ment of researchers’ education in statistics and evidence-based data analysis, teaching

them to use statistical analysis correctly. We agree with their point of view; the p-value

forms only a small part of the experiment, which follows experimental design, collection

and handling of data, and summary statistics, and the problem of a lack of reproducibility

in science cannot be solely blamed on the p-value.
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3.7 Replicate studies

Following all the documentation of the study, carefully checking the study design, code,

data analysis and other aspects of the study, making sure that there is no error in align-

ment with Reproducibility Type A. Reproducibility Type B necessitates the use of the

data of the original study but to apply a different analytical method and see whether the

same conclusions were reached through this process.

As discussed in Section 3.2, for Reproducibility Types C, D and E, there are two

scenarios: First, both the original and the replicate experiments have been performed

and a need to assess whether the conclusions of the original study are reproduced in the

replicate study arises. Secondly, only the original experiment has been performed and

the reproducibility of the experiment is assessed, based on the data and the statistical

analysis. The first scenario has received more attention in the literature and several ap-

proaches have been developed for assessing whether replication of an experiment has been

successful. This section gives an outline of some of those methods. Different metrics are

used across different fields and for different data. There is no agreement on the use of

one metric. This section will outline some approaches from the literature aimed at as-

sessing reproducibility via validating outcomes of replicate studies. The second approach,

in particular in combination with Reproducibility Type C, is the main focus of this the-

sis. Some available metrics for the quantification of reproducibility from the perspective

of the second approach will be discussed in Section 3.8, following presentation of NPI

reproducibility in Section 3.9.

3.7.1 Reproducibility Projects: Psychology and Cancer biology

As has been stated in the beginning of this chapter, Errington et al. [81,82] carried out the

Reproducibility Project: Cancer Biology, in which the replicate studies were conducted

for 50 experiments from 23 original papers. Open Science Collaboration [157] replicated

100 experimental and correlational studies published in three psychological journals. This

section discusses the assessment of reproducibility in both Reproducibility Projects.

Errington et al. [82] described seven methods for the assessment of replication:

(i) statistical significance: whether the p-value is less than 0.05 for the original positive
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results or whether the p-value is greater than 0.05 for the original null results; (ii) original

effect size in the replication 95% confidence interval; (iii) replication effect size in the

original 95% confidence interval; (iv) replication effect size in the original 95% predic-

tion interval; (v) meta-analysis combining original and replication effect sizes, leading to

p-value less than 0.05 for the original positive results or to p-value greater than 0.05 for

the original null results; (vi) comparing whether the results had the same direction - in the

evaluation of representative images the original and replicate outcome can have the same

direction but a different statistical significance; (vii) comparing whether the replication

effect size is less than or equal to the original effect size. A replicated study was assessed as

successful if majority of the criteria (i) - (v) were satisfied (3 or more out of 5). The other

two criteria, (vi) and (vii), were not included in this assessment of a successful replication,

as they do not work for null effects, i.e. cases when the null hypothesis is not rejected.

The comparison of effect sizes showed that the median of effect sizes in the replication

studies was 85% smaller than the median of effect sizes in the original experiments, and

92% of the replication effect sizes were smaller than the original effect sizes. Moreover,

the original null effects were replicated for 80% of the original tests, whereas the positive

findings were replicated for only 40% of the original tests.

Open Science Collaboration [157] evaluated reproducibility via the following criteria:

significance and the same p-value cut-off point, effect sizes, subjective assessment of repli-

cation teams, and meta-analyses of the effect sizes. They concluded that while 97% of

the original studies had a p-value below 0.05, only 36% of the replication studies had a

p-value below 0.05.

Patil et al. [158] highlighted the problem that the p-value cut-off points do not account

for variation [158]. Patil et al. [158] instead suggested the consideration of the effect

expected in the replication study, examining the original effect. Patil et al. [158] defined

the 95% prediction interval, which can be calculated via Equation (3.1).

r̂original ± z0.975

√
1

norig − 3
+

1

nrep − 3
(3.1)

where r̂original is the correlation estimate in the original study, norig and nrep are the sample

sizes in the original and the replication study, respectively; and z0.975 is the 97.5% quantile

of the Normal distribution [158].
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Patil et al. [158] warned that a small sample size leads to a wide prediction interval; and

thus the assessment about the replication study could be non-informative for small sample

sizes. Patil et al. [158] pointed out that in the Reproducibility Project: Psychology [157]

by Open Science Collaboration, the replication study effect sizes were smaller than the

original study effect sizes due to publication bias. This observation is in line with the

observation made in Reproducibility Project: Cancer Biology [82].

3.7.2 High throughput experimentation

In high throughput experimentation (HTE) automated equipment is used to run a large

number of tests simultaneously. Parallelisation is the key principle of HTE. High through-

put experimentation is, for example, used in biological science laboratories to rapidly

screen millions of samples. Assessment of reproducibility is a highly discussed topic in

high throughput experimentation, where the replicate study often has a different sample

size to the original study. In the replicate studies, only signals, that were positive, inter-

esting or significant in the original study, are studied, thus, the sample size and design

in the replicate study differs from the original study. Moreover, scientists sometimes in-

troduce test compounds in the replicate study that have similar characteristics to those

selected as significant in the primary screen.

The metrics used to quantify reproducibility in HTE are the r-value [102], irrepro-

ducible discovery rate (IDR) [139] and maximum rank reproducibility (MaRR) [165].

The r-value is briefly described, a detailed discussion of these metrics is outside the scope

of this thesis. This short survey of available metrics aims to illustrate that this type of

assessment has received considerable attention in the literature. Both Li et al. [139] and

Philtron et al. [165] named Spearman’s pairwise rank correlation as a commonly used

method for assessing reproducibility in HTE, however, both sources agreed that it is not

the most suitable method as Spearman’s pairwise rank correlation’s properties depend on

how stringent the requirements for inclusion of genes are.

In the field of genomics, assessing whether findings from a primary study are replicated

in a follow-up study has been explored [35, 103]. The terminology used is replicability,

findings being replicated in another study. The studies conduct large-scale searches for

rare true positives; one study is simultaneously examining many features. In the context
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of genome-wide association studies, the follow-up studies often examine only features that

were identified as significant in the primary study.

For the test scenarios described above, Heller et al. [102] introduced the r-value as a

metric to quantify the strength of replication [102], i.e. evidence against findings from a

primary study being replicated in a follow-up study. A smaller r-value means stronger

evidence in favour of replicability [187]. The Benjamini-Hochberg procedure can be used

on the reported r-values to control the false-discovery rate (FDR). Heller et al. [102]

defined the FDR r-value for feature i as the lowest FDR level at which the finding is

among the replicated ones. Heller, Bogomolov and Benjamini offered an online calculator

of the r-value at http://www.math.tau.ac.il/~ruheller/App.html. Meta-analysis is

often used in genome-wide association studies, however, Heller et al. [102] argued that

meta-analysis, pooling results across studies, is not an assessment of replicability and they

suggested to add the r-value to the statistical analysis. Further discussion of the r-value

is outside the scope of this thesis.

3.7.3 Agreement indices

Assessment of whether a replicate study reached the same conclusions as the original

study, in accordance to Reproducibility Type C and Type D, has also been assessed via

agreement indices. Barnhart et al. [21] compared various agreement indices: the Pearson

correlation coefficient, the mean-squared deviation, the intraclass correlation coefficient,

kappa statistic, the concordance correlation, the within-subject coefficient of variation,

coefficient of individual agreement, limits of agreement, coverage probability, and total

deviation index. They identified the coverage probability as the preferred index for as-

sessing agreement, because it can be applied to both continuous and categorical data, it

is intuitive and easy to compute. These metrics are not described separately as they are

not relevant to the rest of this thesis.
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3.7.4 Reproducibility from a Bayesian perspective

Reproducibility has been assessed from a Bayesian perspective [22,101,188]. For example,

Held [101] introduced the sceptical p-value (pS), a quantitative measure for replication

success. The term replication success is not explicitly defined by Held [101], we assume

that it means that the findings of the original experiment are validated in the replicate

experiment. The technique is suitable for tests which employ frequentist analysis. It

considers p-values, sample and effect sizes of both the original and replication study. The

method determines the largest confidence level 1− pS for the original confidence interval,

at which replication success can be declared at level pS [101]. The author preferred

this method to meta-analysis because, according to him, exchangeability assumptions are

not appropriate [101]. Held’s argument is that, via the conduct of a replication study,

researchers challenge the findings of the original study, which is an asymmetric task. The

problem we encounter with this method is that the term replication success is not clearly

defined and the definition of the sceptical p-value involves this term.

3.8 The quantification of statistical reproducibility

Section 3.7 discussed metrics assessing reproducibility in situations where both the original

and the replicate experiments have been carried out. This section focuses on metrics

which are calculated after only the original study has been carried out. These metrics

relate to the probability of getting the same decision in a follow-up study. This view of

reproducibility is in alignment with Goodman’s [91] definition of statistical reproducibility

and Billheimer’s [30] approach to predictive analysis. In the literature, less attention is

paid to this approach to statistical reproducibility. This thesis focuses on such assessment.

3.8.1 Confusing reproducibility with other statistics

We have noticed that some researchers interpret p-values, effect sizes or confidence inter-

vals as measures of reproducibility. For example, Soderberg [152, p.58] stated that p-values

or effect sizes are examples of different ways of measuring reproducibility. Boos [152, p.49]

matched p-values with reproducibility probability, e.g. p = 0.01 equals to R̂P ≈ 0.73 and

p = 0.0001 equals to R̂P ≈ 0.97. It is unclear how these R̂P values are defined or
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calculated. Cumming [60] argued that confidence intervals contain information about

replication. We disagree that p-values, effect sizes or confidence intervals are measures of

reproducibility as they have a clear definition in statistics, and reproducibility or related

terms are not part of those definitions; these are different concepts.

3.8.2 Peculiar metrics

In the literature, there are peculiar measures of reproducibility, such as Posavac’s trep

and Kileen’s prep. Both metrics are linked to significance testing. According to Posavac

[169], the probability of statistically significant exact replication, trep, can be calculated

by subtracting the minimum difference for a statistically significant t-statistic from the

difference in means observed in the initial study. Posavac presented a graphical method

for calculating the probability of an exact replication being less than 0.05 for a two-

tailed test [169]. However, it is not clear from the article how this would quantify the

probability of the next experiment yielding the same conclusion. Because of the vagueness

of the approach, it is unclear how to apply it in practice.

Killeen [132] argued that the probability of replicating an experiment can be estimated

using the statistic prep. He defined prep as the replicate effect which is of the same sign as

the effect found in an original experiment [132]. Killeen was motivated by the fact that

the p-value is commonly misinterpreted. According to Killeen [135], prep can be estimated

by viewing it as a function of the p-value (denoted by p), using the following formula:

prep ≈ [1 + (
p

1− p
)2/3]−1 (3.2)

Maraun and Gabriel [143] pointed out that Killeen’s calculation and interpretation of

prep and of the concept of reproducibility probability contain errors. Nevertheless, they

credit Killeen’s claim that replicability should play a key role in the assessment of empirical

results [143]. Lecoutre et al. [135] also recognised that prep is incorrectly defined, because

of the confusion between 1-tailed and 2-tailed p-values. Another problem with Posavac’s

and Kileen’s calculations of reproducibility is that both of these metrics are dependent

on p-values, which are not measures of reproducibility, as explained in Section 3.8.1.
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3.8.3 Estimated power approach

De Capitani and De Martini [66–68] adopted Goodman’s definition of reproducibility

probability, i.e. the probability of obtaining the same test result in a second, identical

experiment. This corresponds to Reproducibility Type C, but they considered it as an

estimation problem instead of a prediction problem.

De Capitani and De Martini [66–68] equated reproducibility probability to the true

power of a statistical test. Their method is called the estimated power approach [184] and

has been presented for the t-test, Wilcoxon rank-sum test [66] and they also developed

reproducibility probability estimation for other nonparametric tests [67]. Shao and Chow

[184] also advocated the estimated power approach. De Capitani and De Martini [67]

argued that their methods provides useful information for evaluation of the stability of

statistical test results. It is unclear what is the precise definition of the stability of test

results and what is the benefit of the estimated power approach.

De Capitani and De Martini argued that many clinical trials cannot be done more than

once or twice, mainly because of their budgets and time constraints [65, p.1]. However,

for an experiment to be scientifically valid, it is often required that it is reproducible. De

Capitani [65] argued that in such cases reproducibility of the experimental conclusions

should be addressed as reproducibility of statistical significance [65] and this should be

evaluated using reproducibility probability. We disagree with their statement as we believe

the interest should be in reproducibility of conclusions rather than reproducibility of

statistical significance and the two cannot be equated.

Furthermore, De Capitani and De Martini only considered reproducibility in the case

of the null hypothesis being rejected, while this thesis provides predictive inference for

reproducibility for both cases: when null hypothesis is rejected and when it is not rejected.

3.8.4 G × L adjusted p-value

It is hard to achieve standardisation in preclinical research and there has been a shift to

embracing variability, as discussed in Section 3.5. In line with Reproducibility Type E, all

conditions cannot be the same in the replicate experiment. Kafkafi et al. [128] described

genotype-by-laboratory interaction (G × L) adjusted p-value, a metric that is aimed at
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accounting for variability in genotype influenced by environment. G × L adjusted p-value

indicates the probability of replicating the result in additional laboratories [128].

The sensitivity of strains of mice - animals with identical genetics - to the environment

is assessed by collecting results about different strains from different laboratories and de-

termining how consistent is the phenotype, i.e. the set of observable characteristics. The

G × L adjusted p-value is derived by estimating the interaction noise σ2
G×L from studies

of a number of strains of mice in different laboratories. This provides information on the

extent to which the p-value needs to be adjusted. For example, if the strain is very sus-

ceptible to the environment, the p-value adjustment is greater. The International Mouse

Phenotyping Consortium (IMPC) strived to promote a public database of mutant lines

of mice that could be available to all laboratories. The random lab model (RLM) adds

the interaction noise σG×L to the animal noise to create a base for determining phenotype

differences [128]. The power is subsequently lowered and confidence interval of the esti-

mated effect size is widened, accordingly, to ensure replicability. In theory, scientists could

calculate G × L-adjusted p-values and confidence intervals. However, the method does

not appear to be developed for a wider-use application. The authors [128] of the article

claim that reporting G × L-adjusted p-values and confidence intervals alongside the usual

p-values and confidence intervals would increase replicability in preclinical research but

they do not present reasons.

This approach seems, at first sight, appealing, as the calculation of the G × L adjusted

p-value takes into account results from a variety of laboratories. However, even the G × L

adjusted p-value is susceptible to errors. The feasibility of this method is related to the

question whether it is possible to accurately estimate the G × L variability and if it is

reasonable to trust this estimate. The variability in animal testing is complex, it does not

only depend on the mouse batch and a particular laboratory, but also on the person who

runs the experiment, the time of the day or the year, and the environment conditions, as

discussed in Section 3.5. However, this question is outside the scope of this thesis, as it

is not a statistical question.
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3.9 NPI reproducibility in the context of the litera-

ture

Statistical reproducibility has received attention in the literature. The main focus has been

on the variance between the original and the replicate experiments, discussed in Section

3.7, and the debate on the p-values, discussed in Section 3.6.2. Most available metrics

validate conclusions in a replicate experiment in scenarios where both the original and the

replicate experiments have been performed, and the question of interest is whether the

conclusions of the original experiment have been reproduced in the replicate experiment,

and some of these metrics were discussed in Section 3.7.

However, the quantification of statistical reproducibility in the case where only the

original test scenario has been carried out, has received notably less attention. Metrics

relating to this scenario were discussed in Section 3.8. However, none of those metrics

focused on data. They either paid attention to the metrics of the current data analysis or

to the variability caused by environmental factors. The data aspect is important because

data of the original experiment can reveal information about the variability.

This thesis interprets statistical reproducibility as a prediction problem. The data

driven, predictive approach shows resemblance to Billheimer’s approach, although NPI is

a frequentist framework, while Billheimer was advocating a Bayesian approach. Repro-

ducibility probability is defined as the probability of the event that, if a test was repeated

under identical circumstances and with the same sample size, the same test outcome

would be reached, which resembles Goodman’s definition of statistical reproducibility

and reflects Reproducibility Type C. NPI reproducibility has been introduced in Section

1.5. As noted in Section 1.4, Hill’s assumption, on which the NPI is based, requires that

random quantities are exchangeable. Although exchangeability assumption may not be

realistic in practical scenarios, it is possible because under the NPI analysis, as the actual

experiments are not redone in practice.

Section 3.4, inter alia, considered what does the term low reproducibility mean. In line

with this thesis approach to statistical reproducibility, low reproducibility can refer to a

low probability of the event that, if a test was repeated under identical circumstances and

with the same sample size, the same test outcome would be reached [52]. This interpre-
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tation of low reproducibility has not received much attention in the literature. However,

it can be quantified under the nonparametric predictive inference (NPI) framework, and

this thesis will concentrate on this interpretation of reproducibility in Chapter 4.

3.10 Concluding remarks

This chapter introduced the main debates in the area of reproducibility. There is no

universally accepted definition of the term reproducibility. Various definitions of repro-

ducibility and related terms available in the existing literature were discussed and classified

into five types of reproducibility in Section 3.2. It was shown that sometimes different def-

initions are used for the same term and sometimes the same definition is used for different

terms; some definitions are not clear; and often the term reproducibility is used without

being explicitly defined. Reasons for low reproducibility and suggestions for improving

reproducibility offered in the literature were outlined in Section 3.4. A lot of the solutions

simply entail adhering to good scientific practice and using appropriate statistical, exper-

imental and documentation methods, and collaboration of different stakeholders. This

chapter briefly discussed reproducibility in relation to preclinical research in Section 3.5,

presenting ethical issues and other reproducibility challenges in preclinical research, listing

possible solutions to low reproducibility in preclinical research, offered in the literature,

focusing on the shift from striving for homogeneity to embracing variability.

Then, Section 3.6 focused on the debates relating to the statistical reproducibility.

Similarly to the concept of reproducibility, statistical reproducibility is not a clearly de-

fined term. Goodman [91] defined reproducibility as the probability of observing another

statistically significant result in the same direction as the first one, if an experiment was

repeated under identical conditions and with the same sample size. This definition of

statistical reproducibility is adopted in this thesis.

Statistical discussion of reproducibility has focused on the variability across studies

and ways of controlling this variability. This section raised further important questions,

such as whether the assumption of exchangeability is important for the quantification of

reproducibility and within what framework should reproducibility be assessed. Linked

to the reproducibility debate has been the ongoing discourse on whether to use p-values.
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This chapter presented arguments for and against the use of p-values and concluded that

although there are many issues and problems associated with p-values, there is no clear

and straightforward alternative to p-values that could be widely adopted by researchers.

Section 3.7 outlined some of the metrics determining whether reproducibility (often

called replication) has been successful in scenarios where both the original and the repli-

cate experiments have been carried out. This thesis focuses on quantifying statistical

reproducibility in the case where only the original experiment had been carried out. This

topic has received less attention in the literature. Section 3.8 presented a summary of

metrics for quantifying reproducibility that are available in the literature. Estimated

power relates to current statistics. G × L adjusted p-value also falls into this category,

however, it tries to incorporate into the p-value the variability caused by the interaction

with environment; it assumes the conditions cannot be the same in a replicate experiment.

Section 3.9 identified a gap in the current debate, i.e. the consideration about what

can data from the original study reveal about statistical reproducibility. This chapter

proposed addressing reproducibility as a predictive problem and using NPI framework,

introduced in Section 1.5, to quantify it. Chapter 4 will further develop on NPI repro-

ducibility, presenting practical implementation of NPI reproducibility for the Wilcoxon

Mann-Whitney test and the t-test.

NPI can quantify statistical reproducibility, which opens up additional questions. An

important question is what should a decision-maker do when reproducibility is low? A

statistician would most likely advise that in such cases an experiment should be re-run,

preferably with larger sample sizes. However, as shown in Section 3.5, there are often

ethical and financial constraints that make the replication of the experiment hard. It is

of future research interest to present an action plan for cases where NPI reproducibility

is low.

In line with Reproducibility Type C, it is assumed that the replicate experiment would

be carried out under the same conditions. However, if the sample size of the future sample

increased or decreased, and everything else stayed the same, could exchangeability still

be assumed and how would this affect NPI reproducibility? In theory, NPI framework

allows to make predictions based on the assumption of future sample being of a different

sample sizes than the original sample, however, the approach to exchangeability in such
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scenario is a topic for future research.

Moreover, the method for quantifying reproducibility would allow a practitioner to

calculate NPI reproducibility of an experiment, then carry out a replicate of that exper-

iment and then calculate NPI reproducibility for this replicate experiment. This leads

to the question: If the experiment was repeated, what conclusions could be made about

reproducibility of a second repeat of the experiment, based on the calculated NPI repro-

ducibility for the original and the replicate experiment? Application of this in practice

would present more directions for further research action.



Chapter 4

Statistical reproducibility for

pairwise tests in preclinical research

4.1 Introduction

Sections 1.5 and 3.9 introduced NPI reproducibility. NPI reproducibility probability is

the probability of the event that, if a test was repeated under identical circumstances and

with the same sample size, the same test outcome would be reached. This chapter presents

advances on the topic of statistical test reproducibility with relevance to the t-test and

the Wilcoxon Mann-Whitney test (WMT), two statistical tests commonly used in pre-

clinical research. As explained in Sections 1.4 and 1.6, NPI analysis traditionally involves

calculating lower and upper probabilities by considering all the orderings. BinHimd [31]

encountered a problem when calculating precise lower and upper reproducibility probabil-

ities for the WMT: it is computationally hard to derive such lower and upper probabilities

for practical data sets since the number of orderings to consider grows exponentially as

the number of the original data points increases. She dealt with the problem by employing

NPI bootstrap, presented in Section 2.3.3, to calculate approximate NPI bootstrapped

reproducibility probability (NPI-B-RP). This thesis develops further on BinHimd’s work.

This work calculates NPI reproducibility for a parametric test, the t-test, which intro-

duces further complications: computing the minimum and maximum values of the t-test

statistic for m future observations with given ordering Oi is difficult, because this statistic

depends both on the sample mean and variance. Therefore, in this thesis, estimates for

154
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reproducibility probabilities are calculated instead of the precise lower and upper repro-

ducibility probabilities.

Two implementations of NPI for reproducibility are available for estimating repro-

ducibility probability for the WMT and the t-test: NPI bootstrap, presented in Section

2.3.3, and the sampling of orderings method, introduced in Section 1.6. NPI bootstrap

provides a point estimate whereas the sampling of orderings method calculates estimates

of lower and upper reproducibility probabilities.

For both approaches, NPI reproducibility is applied to a real-life scenario of a pre-

clinical experiment, which involves multiple pairwise comparisons of test groups, where

different groups are given a different concentration of a drug. The aim of the experiment

is to decide the concentration of the drug which is most effective. This test scenario is

introduced in Section 4.2.

Implementation of NPI bootstrap is more straightforward and the focus of this chap-

ter is on this implementation. Section 4.3 introduces the NPI bootstrap implementation

for the t-test. NPI-bootstrap is employed to quantify a bootstrapped estimate for the

statistical reproducibility of the pairwise t-test. To explore NPI reproducibility for the

t-test, simulations both under the null and alternative hypotheses are carried out and

then reproducibility for the test scenario is calculated. In both simulations and the ap-

plication scenario, the relationships between reproducibility and two test statistics, the

Cohen’s d and the p-value, are studied. Reproducibility of the t-test is also compared

with reproducibility of the WMT.

Then, Section 4.4 examines reproducibility for the final decision of choosing a partic-

ular dose in the multiple pairwise comparisons scenario. This topic has not yet received

much attention in the literature but provides interesting insights regarding statistical re-

producibility. This chapter will show that statistical reproducibility for the final decision

is notably lower than reproducibility for separate pairwise comparisons.

The sampling of orderings for the likelihood test was presented by Marques et al.

[55,144,145]. Estimates of lower and upper reproducibility probabilities can be calculated

via sampling of a particular number of these orderings and carrying out the reproducibility

analysis on these orderings. Section 4.5 presents the methodology for the WMT. It is more

challenging to do so for the t-test than for the WMT. Nevertheless, Section 4.6 presents
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heuristics for calculating NPI-RP estimates for the t-test.

Section 4.7 explores NPI reproducibility for the rate of growth measure, a metric com-

monly used in preclinical research. This measure is calculated from measurements at var-

ious time points, rather than just at the end point. Three different studies are presented.

In these studies the data sets cannot be assumed to come from a Normal distribution,

thus, the WMT is applied, alongside the growth rate (GR) inhibition significance analysis.

The chapter concludes with a summary of the findings and with the formulation of

future research questions in Section 4.8.

4.2 Motivating preclinical test scenario

This section introduces the motivation test scenario, which uses real data. The experiment

assesses 6 concentrations of a drug; A is the control group and B-F are groups given

increasing concentrations of the drug. For each group, there is one measurement available

for each individual. The measurement is such that the lower the recorded value is, the

better the drug performs at that concentration. The data have been log transformed to

meet the t-test assumption of Normality; they are presented in Table 4.1 and Figure 4.1.

Dose

A B C D E F D’

0.7450 0.5148 0.1088 0.0133 -0.1221 -0.1946 0.4033

0.7513 0.5280 0.1732 0.0265 -0.1010 -0.0520 0.4087

0.8484 0.5546 0.1896 0.0302 -0.0519 -0.0417 0.4103

0.8584 0.5553 0.2202 0.0444 -0.0436 -0.0039 0.4163

0.8728 0.6265 0.2352 0.0882 -0.0200 0.0076 0.4354

0.8964 0.6315 0.2697 0.1461 -0.0182 0.0196 0.4624

0.9053 0.6890 0.3298 0.1545 -0.0104 0.0512 0.4665

1.0981 0.7605 0.4150 0.1585 0.0879 0.1540 0.4684

0.7843 0.4234 0.2638 0.1390 0.2247 0.5232

0.8173 0.4401 0.1945

Table 4.1: Log transformed data for each dose (D’ replaces D in Section 4.4.2)
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Modified dose D, 
see Section 4.3.2
Modified dose D, see 

Section 4.4.2

Figure 4.1: Log transformed data for each dose and outcomes of pairwise comparisons

(D’ only used in Section 4.4.2)

Five pairwise comparisons are carried out between adjacent concentrations of the drug

(A vs. B, B vs. C, C vs. D, D vs. E, E vs. F). For each pairwise comparison, the question

of interest is if the dose with a higher concentration is performing better than the dose

with a lower concentration. In each pairwise comparison, the upper-sided t-test with the

equal variance assumption is applied. Let µH denote the population mean for the dose

with the higher concentration and µL the population mean for the dose with the lower

concentration. The null hypothesis is H0 : µL = µH and the alternative hypothesis is

H1 : µL > µH . The significance level α is equal to 0.05. For each pairwise comparison,

the test outcome is either to reject (Y) or to not reject (N) the null hypothesis.

The results of multiple pairwise comparisons for the data presented in Table 4.1 are

YYYYN, indicating that the null hypotheses are rejected for all pairwise comparisons

except for last one, E vs. F. As seen in Figure 4.1, as the dose increases, the measurements

tend to decrease until dose E.

Note that the nonparametric counterpart to t-test, the Wilcoxon Mann-Whitney test
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(WMT), leads to the same test outcomes for all the pairwise comparisons. This observa-

tion matters for the reproducibility comparison study between the t-test and the WMT

as the result is near enough the same.

4.3 NPI-B-RP for pairwise t-test

This section studies reproducibility for the Student’s t-test for comparison of two groups

from the NPI perspective, with the NPI bootstrap implementation. First, Section 4.3.1

introduces an algorithm for calculating NPI bootstrapped reproducibility (NPI-B-RP)

for the t-test for comparison of two groups of data, i.e. Algorithm 5. Secondly, Section

4.3.2 presents the results of simulation studies to investigate reproducibility of the t-test

both under H0 and H1. Following the simulation study, Algorithm 5 is applied to a pre-

existing preclinical test scenario, which was introduced in Section 4.2 and reproducibility

of pairwise comparisons tests for this scenario is studied in Section 4.3.3. This test scenario

investigates the optimal dose of a drug. Different doses of the treatment are given to

members of different groups and pairwise comparisons are carried out on a recorded

variable between adjacent doses. Sections 4.3.2 and 4.3.3 explore the relationship between

two test statistics, namely Cohen’s d and the p-value, and NPI reproducibility. This

section explores the assumption that, if the original test statistic is close to the threshold

value between rejection of the null hypothesis and non-rejection, then the test can be

expected to be less reproducible than when the test statistic is further away from the

threshold. Reproducibility of the t-test and the WMT is also briefly compared.

4.3.1 Algorithm

Algorithm 5 uses NPI bootstrap, introduced in Section 2.3.3, to derive reproducibility

probability for the t-test, indicated by NPI-B-RP. As these values result from the use of

the NPI bootstrap method, they are effectively estimates. The inputs into Algorithm 5

are the two original samples, x and y, their corresponding sample sizes nx and ny, the

number of runs h and the number of bootstrapped samples per run N . Algorithm 5 is

applied with N = 1000 and h = 100.

BinHimd [31] briefly investigated NPI-B-RP for the WMT. The goal of it in BinHimd’s
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Algorithm 5 Calculating NPI-B-RP for the t-test for comparison of two groups

1: Apply the t-test on the two original samples, x and y, and record the test outcome:

t∗ = 1 if H0 is rejected and t∗ = 0 if H0 is not rejected.

2: Draw an NPI-B sample of size nx from sample x and an NPI-B sample of size ny from

sample y. Apply the t-test to these two bootstrapped samples.

3: In total perform Step 2 N times for j = 1, . . . , N and each time record the test

outcome: tBj = 1 if H0 is rejected and tBj = 0 if H0 is not rejected.

4: Calculate rp, where rp = (
∑N

j=1 1(tBj=t∗))/N

5: Perform Steps 2-4 h times, denote the resulting values rp by rp1, rp2, . . . , rph.

work [31,53] was to show that NPI-B-RP provides results in line with the theoretical val-

ues for lower and upper values of NPI-RP which can be computed for relatively small

sample sizes. It is not possible to calculate precise values of lower and upper reproducibil-

ity probabilities for the t-test as the t-test statistic does not monotonically increase as

a function of its input data. The algorithm for calculating NPI-B-RP for the t-test has

been adopted from the NPI-B-RP for the Wilcoxon Mann-Whitney test (WMT), which

was presented in BinHimd’s thesis [31]. The differences between this algorithm and Bin-

Himd’s are that BinHimd presented this for the WMT only and she used h=60 whereas

this thesis uses h = 100. Another difference between Algorithm 5 and BinHimd’s algo-

rithm [31] is that Algorithm 5 defines how to report NPI-B-RP, i.e. via different statistics

(min, mean, max). Moreover, different range choices are explored and the conclusions for

those are presented in Section 4.3.3. This has not been addressed by BinHimd [31]. Fur-

thermore, BinHimd did not consider further aspects of reproducibility probability, such

as its relationship to other test statistics, and the application of the algorithm in real-life

settings.

The reasoning behind the choices of the presentation of the algorithm outputs and

the selection of values of N and h deserve an elaboration. Various summary statistics

were explored via simple simulations: min, mean, median, max, the 5th and the 95th

percentile, i.e. the bootstrapped 90% confidence interval, of rp1, rp2, . . . , rph. There was

no added value of using the 90% confidence interval together with the max and min value

as there was not a big difference between the min value and the 5th percentile, or between

the 95th percentile and the max value. Similarly, there was no added value of reporting
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median as the mean and median for rp1, rp2, . . . , rph are very similar. The mean value

of the outputs is considered to be the best indication of NPI reproducibility, this thesis

also refers to this mean as the NPI-B-RP value. Min and max value of rp1, rp2, . . . , rph

is reported alongside the NPI-B-RP value.

This chapter applied Algorithm 5 with N = 1000 and h = 100, but different values

for h and N have been explored as well. The key goal was to achieve a balance between

the computation time and accuracy. The h is set to 100 because this work sought to

use a relatively large number. Increasing h from 100 to 200 or to 500 slightly widens

the range between min and max of rp1, rp2, . . . , rph, however, the change is very minor

and the mean value differs only in the third decimal place. Using larger h leads to

larger computational time by about the same amount, without noticeably increasing the

accuracy. The option of increasing the value of N was considered. When N was increased

from 1,000 to 10,000, the means of rp1, rp2, . . . , rph were similar; they differed only in the

third decimal, meaning that the algorithm performs well at N = 1000. Increasing the N

decreases the difference between the minimal and maximal value of the rpi values. This

is because rpi calculation is based on N , the number of simulations, i.e. the number of

bootstrap samples generated per group per run. However, the difference is very small and

increasing N also proportionally increases the computation time to calculate NPI-B-RP.

Given that bootstrap samples from one group are exchangeable, and the same applies

for the other group, this should lead to rpi being Binomially distributed. Further explo-

ration of this is outside the scope of this thesis. Arguably, repeating Step 5 of Algorithm

5 h times provides more insight. However, it would be worth looking into how would the

min and max values of h values differ from using a Binomial estimate with confidence

interval instead.

4.3.2 Simulation study

This section studies reproducibility probability (NPI-B-RP) for the t-test via simulations,

where reproducibility is calculated using Algorithm 5. The null hypothesis is H0 : µx = µy

and the alternative hypothesis is H1 : µx > µy, the level of significance is α = 0.05. Data

were simulated both under H0 and under H1. Under H0 original data were generated from

the Normal distribution with mean 0 and standard deviation 1 for both groups. Under
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H1 data were generated from two Normal distributions with different means, µx = 1 and

µy = 0, but both with standard deviation 1. Further simulations were performed for

different values of the means and standard deviations under H1, these all led to similar

results as for the case presented here.

The inputs for the simulation study are as follows: the sample size n = 6, 10, 20; means

µx, µy and standard deviations σx and σy are as given in the previous paragraph; and the

number of runs per simulation N = 200. For each run, one sample of size n is generated

from each of these Normal distributions, the t-test is performed on these two samples and

the p-value is computed, and NPI-B-RP for the t-test is calculated using Algorithm 5.

Cohen’s d, introduced in Section 1.3, has also been considered for the tests.

First, the relationship between NPI-B-RP and the p-value for the t-test is examined in

the simulations. Figure 4.2, simulations under H0, and Figure 4.3, simulations under H1,

display plots of these metrics for the three different sample sizes, with separate plots for the

rejection cases only, i.e. p-value less than 0.05. It is clear that, as expected, reproducibility

is the lowest close to the test threshold, so if the p-value is close to α = 0.05. In such

cases, NPI-B-RP tends to be lower in the case of rejection (red cases in the figures) than

for non-rejection (blue cases). Low values of NPI-B-RP are worrying from a practical

perspective, in particular in the case H0 is rejected with the p-value only just below the

level of significance, because many experiments are explicitly designed with the aim to find

evidence supporting H1. NPI-B-RP tends to increase when the p-value moves away from

α = 0.05, which is also as expected. Similar patterns have been observed in applications

of NPI reproducibility for several other test scenarios [52,144]. For the simulations under

H1, increasing n leads to fewer cases with larger p-values, which simply results from the

test becoming more powerful for larger n. As a consequence, reproducibility for most

non-rejection cases for larger n becomes relatively lower compared to non-rejection cases

for small n, when data are sampled under H1.

Secondly, the relationship between NPI-B-RP and Cohen’s d is explored. Figure 4.4

shows the plots of these two metrics for simulations under H0 and H1. In Figure 4.4 there

is a V-shaped pattern: both for the rejection cases (right side of the V-shape, in red)

and the non-rejection cases (left side of the V-shape, in blue), NPI reproducibility of the

t-test tends to increase when Cohen’s d moves away from the area where the V-shape has
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Figure 4.2: Simulations under H0: values of NPI-B-RP (minimal, mean and maximal) for

the t-test vs p-value



163

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
t−

te
st

Hypothesis

Not rejected
Rejected

(a) n = 6

0.4

0.6

0.8

1.0

0.00 0.01 0.02 0.03 0.04 0.05
p−value

N
P

I−
B

−
R

P
 fo

r 
t−

te
st

Hypothesis

Not rejected
Rejected

(b) n = 6, rejections

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
t−

te
st

Hypothesis

Not rejected
Rejected

(c) n = 10

0.4

0.6

0.8

1.0

0.00 0.01 0.02 0.03 0.04 0.05
p−value

N
P

I−
B

−
R

P
 fo

r 
t−

te
st

Hypothesis

Not rejected
Rejected

(d) n = 10, rejections

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00
p−value

N
P

I−
B

−
R

P
 fo

r 
t−

te
st

Hypothesis

Not rejected
Rejected

(e) n = 20

0.4

0.6

0.8

1.0

0.00 0.01 0.02 0.03 0.04 0.05
p−value

N
P

I−
B

−
R

P
 fo

r 
t−

te
st

Hypothesis

Not rejected
Rejected

(f) n = 20, rejections

Figure 4.3: Simulations under H1: values of NPI-B-RP (minimal, mean and maximal) for

the t-test vs p-value
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Figure 4.4: Simulations under H0 and H1: values of NPI-B-RP (minimal, mean and

maximal) for the t-test vs Cohen’s d
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Figure 4.5: Simulations under H1: values of NPI-B-RP (minimal, mean and maximal) for

the WMT vs p-value
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the lowest point. The patterns are similar across the different distribution parameters

and sample sizes, where the range of the values of Cohen’s d becomes a bit smaller for

larger sample sizes due to the reduced variability of the sample means. The bottom of the

V-shape shifts to the left, as the sample size n increases. Also, the steepness of the two

legs (rejection and non-rejection upward facing lines) increases as n increases. This can

be due to the fact that for large sample sizes, the range of Cohen’s d tends to be smaller,

possibly because bigger sample size is more representative of the population.

We ran the simulations under H0 again, this time with N = 1000. The conclusions

about NPI-B-RP remain the same. One thing becomes more apparent: for smaller sample

size, there is bigger variety of NPI-B-RP, i.e. for the same p-value or the same Cohen’s

d value, NPI-B-RP differs one data set to another data set. As n gets bigger, n=20, the

imaginary reproducibility probability curve gets smoother.

Finally, the variability of NPI-B-RP is studied by repeating Algorithm 5 several times

for the same two data sets. Considering the mean statistics of NPI-B-RP, the repeated

results differ only in the third decimal. This shows that there is low variability in the

results, which means high accuracy.

It is of interest to compare NPI-B-RP for the t-test with NPI-B-RP for the Wilcoxon

Mann-Whitney test [108], a frequently used nonparametric counterpart to the t-test. This

is straightforward by replacing the t-test by the WMT in Algorithm 5. Figure 4.5 presents

plots displaying NPI-B-RP versus the p-values for the WMT for simulations under H1.

These show a similar relationship between reproducibility probability and the p-value as

for the t-test, with however fewer different p-values being possible due to the WMT, by

the non-parametric nature of this test, utilising rank positions, which leads to a limited

number of possible outcomes. Comparison of reproducibility of these two tests with

simulated data under H0 also led to very similar results, these are not reported here.

4.3.3 Application example

This section presents the application of NPI-B-RP for pairwise t-tests, as presented in

Section 4.3.1, to a pre-existing data set from an internal preclinical study assessing the

optimal dose of a drug, introduced in Section 4.2. No new experiments were carried out

and the original statistical analysis framework for the experiment was adopted.
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Statistics of the original data NPI-B-RP

Pairwise Reject p-value Effect Cohen’s t-test WMT

? Size d min mean max min mean max

A vs. B Yes 0.0003 0.226 2.041 0.917 0.937 0.954 0.882 0.902 0.927

B vs. C Yes 0.0000 0.366 3.213 0.999 1.000 1.000 0.999 1.000 1.000

C vs. D Yes 0.0007 0.178 1.753 0.841 0.880 0.904 0.821 0.862 0.890

D vs. E Yes 0.0191 0.097 1.038 0.552 0.586 0.622 0.566 0.606 0.642

E vs. F No 0.5977 -0.013 -0.115 0.885 0.911 0.928 0.917 0.935 0.958

Table 4.2: Statistical and reproducibility analysis for pairwise comparisons

In this section, the Algorithm 5, from Section 4.3.1, is applied to the test scenario

described in Section 4.2 and conclusions regarding reproducibility are drawn. The Algo-

rithm 5 outputs and the statistics of the original test for all pairwise comparisons (A vs. B,

B vs. C, C vs. D and E vs. F) are presented in Table 4.2 for finite bootstrap (Approach I,

Section 2.3.3).

First, this work considers what conclusions about NPI-B-RP can be directly made

from the preclinical test scenario. The pairwise comparison E vs. F has high NPI-B-RP

value, 0.911. This means that if the test was repeated under identical circumstances and

with same sample sizes, then the same test outcome would be reached with estimated

probability 0.911. By comparison, the NPI-B-RP value for the pairwise comparison D

vs. E is 0.586. It is up to the decision makers to consider the NPI-B-RP values alongside

other statistical information and inferences, such as the effect size and power, in order to

decide on the trustworthiness of the test results.

Secondly, this section explores how NPI-B-RP relates to the statistics of the t-test

applied to the original data, these statistics are also displayed in Table 4.2. Note that

these tests are pairwise comparisons where it is not yet taken into account that multiple

tests are performed simultaneously. The Effect Size is the difference between the respective

sample means; as Cohen’s d is closely related to it, and the relationships between NPI-B-

RP for the t-test and either the Effect Size or Cohen’s d are very similar; therefore, only

Cohen’s d is considered in the following discussion. Figure 4.6 illustrates the relationship

between NPI-B-RP for the t-test, indicating the minimum, mean and maximum values
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Figure 4.6: Comparing values of NPI-B-RP (minimal, mean and maximal) for the t-test

to the statistics of the original test

of the NPI-B-RP output of Algorithm 5, for each of pairwise comparisons, and the p-

values and Cohen’s d. There are some clear patterns: For example, NPI-B-RP is smallest

for the pairwise comparison D vs. E, where the p-value is closest to the threshold value

0.05 and Cohen’s d is small. A further observation is that high NPI-B-RP values are

obtained for several of the pairwise comparisons, both for some cases where the null

hypothesis is rejected, in particular for the comparison B vs. C, and for the comparison

E vs. F where the null hypothesis is not rejected. For B vs. C, the p-value is very small

compared to α = 0.05 and Cohen’s d is very large, as Cohen’s d greater than 0.8 is

typically considered to be large [43]. For E vs. F, the p-value is very large compared to

α = 0.05 and Cohen’s d is negative. This thesis concludes that the observations about

NPI-B-RP for the preclinical test scenario are consistent with the observations made in
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Section 4.3.2. The key observations are: NPI-B-RP is low when the p-value is close to

the level of significance α. For non-rejection cases, even when the p-value is much greater

than α, NPI-B-RP stays a bit below 1.

Thirdly, NPI-B-RP for the t-test and for the WMT are compared (Figure 4.7). It can

be inferred that there is a pattern between NPI-B-RP for the WMT and the t-test from

Table 4.2. NPI-B-RP for both tests for this case study are quite similar. This may be

due to the log transformed data being an approximately Normally distributed data set.

This conclusion agrees with the conclusions made in the simulation study.

Lastly, we examine how the impact of the range choice in the algorithm implementation

upon reproducibility is examined. To this point, Approach I (Section 2.3.3) has been

used when calculating NPI-B-RP for the t-test and the WMT. The range can be chosen

as described in Section 2.3.3. NPI-B-RP for the t-test for all the approaches to the

choice of range (Approach I, II, III and IV, Section 2.3.3) is illustrated in Figure 4.8. The

reproducibility outcome does not change notably when using different ranges for NPI-B in

Algorithm 5. There is, however, an observed pattern: If the range of the finite bootstrap
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Figure 4.8: NPI-B-RP for the t-test for different range selection



171

is widened, reproducibility decreases. This is because there is more overlap between doses

that are being compared. The largest difference between the reproducibility outcomes

with different range choices can be observed in pairwise comparison between dose C and

D; the cause of this difference is a topic for future exploration. As can be observed in

Figure 4.8, the smallest difference between reproducibility with different range choices can

be observed in the pairwise comparison between doses B and C, when there is no overlap

between the data, and between doses E and F, the only pairwise comparison where the

null hypothesis was not rejected. Therefore, whether the null hypothesis in the original

test is rejected or not affects to what extent do NPI reproducibilities calculated through

different ranges vary. The numeric results for NPI-B-RP for the studied approaches to

NPI-B range choice, displayed in tables, can be found in Appendix B.1. It is outside

the scope of this thesis to determine what approach of range is the best for calculating

NPI-B-RP for the t-test.

4.4 Reproducibility of the final decision for the mul-

tiple pairwise comparisons

Section 4.3 introduced NPI-B-RP for the t-test for the comparison of two groups, studying

the methodology via a simulation study on a preclinical test scenario introduced in Section

4.3.3. However, in this test scenario, the final choice of a particular dose is based on the

multiple pairwise comparisons. This section explores NPI-B-RP of this final decision and

presents a general algorithm for calculating such reproducibility. This final decision is of

interest as in practice decisions are often based on more than one single statistical test;

hence studying its reproducibility is important and to date has received little attention

in the literature.

In a case involving multiple pairwise comparison tests, it is important to consider

how the final decision is made, and which dose is finally selected pairwise. This chapter

considers the scenario that the decision maker selects the smallest dose for which, in the

pairwise comparisons above, the null hypothesis of no difference between the results for

this dose and the next larger dose, is not rejected. In the presented test scenario, this

leads to dose E being chosen, and only the actual outcomes of the five pairwise tests,
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Algorithm 6 Calculating NPI reproducibility of the final decision

1: For each group Gi, i = 1, . . . , g, generate an NPI-B sample.

2: Apply the multiple pairwise analysis to the bootstrapped g data sets. This includes

the p-value adjustment using the Benjamini and Hochberg method.

3: Record the (g − 1) test outcomes. For example, test outcomes YYYYN mean do not

reject H0 only for the last pairwise comparison.

4: In total perform Steps 1-3 N times.

5: Create a frequency table of all the possible combinations of test outcomes recorded

in Step 4.

6: Calculate RPD, the proportion of combinations in Step 5 that lead to the same final

decision as the original tests.

which can be presented as YYYYN, leads to this final decision. Section 4.4.1 presents the

general algorithm for calculating reproducibility of the final decision, and this algorithm

is applied to the test scenario from Section 4.2. In Section 4.4.2 the data from the test

scenario is modified in order to illustrate and explore reproducibility of the final decision.

4.4.1 Algorithm and its application

Algorithm 6 presents a general step-by-step method for calculating NPI-B-RP of the final

decision. The number of groups in the multiple pairwise comparison is denoted by g.

Similarly to Algorithm 5, Algorithm 6 uses NPI bootstrap with finite intervals (Approach

I., Section 1.4). So for each group, Gi, i = 1, . . . , g, finite end points for the range

of the possible values need to be selected. The sample sizes of the bootstrap samples

are the same as of the original data. Reproducibility for the final decision, denoted by

RPD, is defined as the proportion of all the combined g − 1 test outcomes leading to

the same final decision as the original tests. In order to account for the fact that the

five tests are run simultaneously, the p-values are adjusted for multiple testing using

the Benjamini and Hochberg (BH) procedure [26] to control the false discovery rate.

The Benjamini-Hochberg procedure takes a set of p-values and returns a set of H0s to

reject. For simplicity, we call the output of the BH procedure the adjusted p-values, even

though these values are technically no longer p-values as explained in Storey [197]. The
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Combination of test outcomes Occurrence

YYYYY 18

YYYYN 400

YYYNY 39

YYYNN 319

YYNYY 4

YYNYN 93

YYNNY 8

YYNNN 29

NYYYN 35

NYYNY 4

NYYNN 30

NYNNN 8

NYNYN 13

Table 4.3: Frequency table (Step 5 of Algorithm 6)

adjusted p-values for each pairwise comparison for the original data are A vs. B: 0.0007;

B vs. C: 2.7 × 10−6; C vs. D: 0.0012; D vs. E: 0.0239; E vs. F: 0.5977. This procedure

strives to decrease the proportion of false positives. In the test scenario, after the p-value

adjustment, the test decision outcomes are still YYYYN.

Algorithm 6 is applied to the preclinical test scenario from Section 4.2 with g = 6

groups. N is set to N = 1000 and the final decision is based on the test results YYYYN,

and so dose E is chosen because there is no significant indication that dose F is better than

dose E. Algorithm 6 leads to two different types of outcome: A frequency table (Step 5)

which provides all the combinations of test outcomes reached in N runs of Step 1-3, and

the value of RPD (Step 6), which is the proportion of all combinations of test outcomes

that lead to the original test decision.

For this particular data set and final decision rule, the RPD for an identical final

decision, Step 6 of Algorithm 6, is 0.400, which is a relatively low value compared to the

NPI-B-RP values for the pairwise comparisons as derived in Section 4.3.3. A more nuanced

way of exploring the Algorithm 6 outputs is obtained by considering a reproducibility tree,

which shows all possible combinations of the g−1 test outcomes occurring in the frequency



174

table. For the data set given in Table 4.1, there are 32 possible combinations of the five

test outcomes. Not all combinations of test outcomes are generated by Algorithm 6 on this

data set. Table 4.3 presents all the combinations of test outcomes and their frequencies.

Figure 4.9 shows the reproducibility tree for the test scenario. The top node represents the

1000 runs of Steps 1-3 in Algorithm 6. This node splits into two nodes: Y· · · ·, all possible

test outcomes where in the first pairwise comparison the null hypothesis was rejected,

each dot represents a following pairwise comparison with any possible test outcome; and

N· · · ·, all combinations of tests outcomes where in the first pairwise comparison the null

hypothesis was not rejected. These branches again split, each into two, depending on the

conclusion of the second pairwise comparison. For example, YY· · · means that the first

and second pairwise comparisons lead to rejection of the respective null hypothesis. The

same pattern is followed up to the last pairwise comparison.

The most frequent output is YYYYN, which is the same as the original test results

and leads to dose E being chosen. The branch leading to this final decision is highlighted.

The second most frequent output is YYYNN, leading to dose D. The fact that YYYNN

is the second most frequent output can be explained by the relatively small NPI-B-RP

value for the pairwise comparison between doses D and E.

Algorithm 6 is repeated, with N = 1000, ten times for this scenario. The resulting

reproducibility trees were the same, only the numbers differed slightly, the RPD values,

so the proportion of runs leading to the same output YYYYN, were: 0.370, 0.376, 0.388,

0.400, 0.402, 0.403, 0.410, 0.412, 0.415, 0.424. By comparison, the NPI-B-RP values

calculated on different separate runs of Algorithm 5 differ in the third decimal. Although

small, the variability in these reproducibility probabilities is larger than for the individual

pairwise comparisons, this is due to the use of multiple pairwise comparisons to determine

reproducibility of the final decision.
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The impact of altering the N simulations was also studied. Increasing N = 1000

to N = 10, 000, increases the computing time proportionally. When N is increased to

N = 10, 000, RPDs calculated on 10 different separate runs of Algorithm 6 were: 0.4086,

0.3944, 0.3968, 0.4038, 0.3980, 0.3851, 0.3960 and 0.3964. Reproducibility is less varied

when N = 10000 but the improvement is not 10 times better. Moreover, the three

most common combinations of test outcomes were the same when both N = 1000 and

N = 10, 000 were used, this means that the outcomes are consistent and the accuracy of

the results is good at N = 1000.

Further the effect of the choice of range upon reproducibility of the final decision is

studied. Apart from the Approach I, Approach II (c = 1 and c = 0.5), and the infinite

approach were explored. As the analysis showed, the wider the range, the smaller the

reproducibility of the final decision. Widening the range had the same and even larger

effect on the results of Algorithm 6 as it did on the results of Algorithm 5. The explanation

here is the same as before: a wider range creates a larger overlap between doses. The tree

diagrams for different ranges are presented in Appendix B.2.

Reproducibility for the final decision can be also studied for the WMT, by slightly

adjusting Algorithm 6, i.e. using the WMT instead of the t-test. The adjusted Algo-

rithm 6 was applied and the three most frequently occurring combinations were the same

(YYYYN, YYYNN and YYNYN). Thus, reproducibility for the final decision is similar

for the WMT for this particular test scenario.

4.4.2 Further illustration

If the final decision rule is followed for the test scenario data, only one combination of the

pairwise test results, namely YYYYN, leads to the choice of dose E. To better illustrate

the concept of reproducibility of the final decision, the data are changed for dose D by

adding 1.5 to all the data points before they are log transformed, the resulting values

are denoted by D’ in Table 4.1 and Figure 4.1. This leads to the pairwise test outcomes

YYNYN, and the final decision would be to choose dose C, since dose D does not do

better than dose C. To determine reproducibility of the final decision, Algorithm 6 is

again applied to the test scenario with these modified data, as is shown in Figure 4.10.

Now there are 4 combinations of test outcomes that lead to the same final decision to
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Figure 4.10: Illustration of the final decision rule: Tree diagram for reproducibility of

the final decision for the modified data (Outputs of Step 5 of Algorithm 6), finite range

(Approach I)

choose dose C: YYNYN (the original test outcome), YYNYY, YYNNY and YYNNN.

Reproducibility of the final decision is derived as the proportion of all simulation runs in

which one of these 4 combinations of test outcomes occurs. As the combinations YYNNY

and YYNNN did not occur, reproducibility of the final decision for the modified data is

derived by summing the proportions of runs with outcomes YYNYY and YYNYN, leading

to 0.910, as highlighted in Figure 4.10. This simulation was also repeated ten times, and

the results were very similar, with RPD values 0.894, 0.910, 0.911, 0.917, 0.917, 0.917,

0.919, 0.919, 0.919, 0.922. In all these simulations, the resulting reproducibility trees were

the same, with only small differences in the numbers.

4.5 Reproducibility of the WMT via the sampling of

orderings

This section presents an algorithm for estimating lower and upper reproducibility prob-

abilities for the WMT. As shown in Section 4.3, the NPI-B method provides a point

estimate, whereas classical NPI uses the more general concept of imprecise probability to

quantify uncertainty, hence leading to lower and upper reproducibility probabilities. Bin-

Himd [31] presented an algorithm for analytically deriving lower and upper NPI-RP for
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the WMT. This algorithm considers all the possible orderings of future observations based

on the observed data. The concept of an ordering has been introduced in Section 1.4.

The number of all orderings to consider increases rapidly as the sample size increases.

In order to calculate NPI-RP for a test comparing a group X of sample size m with a group

Y of sample size n,
(

2m
m

)(
2n
n

)
orderings need to be considered. For example, when m = n =

10, there are
(

20
10

)(
20
10

)
= 670442572800×670442572800 = 4.494932×1023 possible orderings

and the calculation of reproducibility probability becomes computationally expensive, and

with larger sample sizes, it becomes unfeasible for a standard computer.

Coolen and Marques [55] carried out a research on determining estimates for NPI-

RP through the sampling of orderings for the likelihood test. This section presents an

algorithm for calculating estimates of lower and upper NPI reproducibility probability

(NPI-RP) for the Wilcoxon Mann-Whitney test (WMT), using the sampling or order-

ings. Section 4.5.1 outlines how to analytically derive lower and upper NPI-RP for the

WMT and how to estimate those, by considering a chosen number of orderings. Section

4.5.2 estimates lower and upper reproducibility probabilities for the WMT for pairwise

comparisons presented in Section 4.2.

4.5.1 NPI-RP estimates for the Wilcoxon Mann-Whitney test

The upper-tailed two-sample Wilcoxon Mann-Whitney test (WMT) applied to the ob-

served ordered data x(1) < x(2) < . . . < x(nx) and y(1) < y(2) < . . . < y(ny) leads to the

rank sum test statistic Z, which was defined in Equation (1.5) in Section 1.3. H0 is rejected

if Z ≥ Zα and H0 is not rejected if Z < Zα. As explained in Section 1.4, NPI can be used

to make prediction inference for nx future observations of X, i.e. X(nx+1) < . . . < X(2nx),

based on x(1) < x(2) < . . . < x(nx) and there are
(

2nx
nx

)
possible orderings of nx future

observations of X, all equally likely. Similarly, there are
(

2ny
ny

)
possible orderings of ny

future observations of Y , Y(ny+1) < . . . < Y(2ny), all equally likely. In total, there are(
2nx
nx

)(
2ny
ny

)
possible orderings of nx future observations of X and ny future observations

of Y , all are equally likely. No assumptions are made about where exactly within each

interval the future observation will be located.

For each X ordering and Y ordering, let Zf be the corresponding rank sum test

statistic, which is a random variable associated with the WMT statistic for a randomly-
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chosen ordering. Zf cannot be expressed in precise numbers, therefore, a lower and

an upper bound is specified [31]. Lets assume the H0 was rejected when the WMT was

applied to the original data. This test results is certainly reproduced for each combination

of orderings for which Zf must be larger or equal to the critical value Zα. The test result

could be possible reproduced for all combinations of orderings for which Zf could be

greater or equal to Zf . If the original data lead to non-rejection of H0, then the focus

would be on the event Zf < Z. In the case of the original test rejecting H0, to calculate

the NPI lower reproducibility probability, the number of orderings of future observations

for which Zf ≥ Zα must certainly hold are counted, while to calculate the corresponding

NPI upper reproducibility probability, the number of orderings for which this event can

hold [31] are counted. As noted in Section 1.3, the critical value Zα can be read from

tables. The calculation can be performed similarly for Zf < Zα in the case of the original

test rejecting H0.

Let (SX1 , . . . , S
X
nx+1) be the specific ordering of the nx future X observations among

the observed data and let (SY1 , . . . , S
Y
ny+1) be the specific ordering of the ny future Y

observations. More explicitly, SXj is the number of the future observations in the interval

(x(j−1), x(j)) created by the observed data for j = 1, . . . , nx + 1, where the following

conditions are satisfied: SXj ≥ 0 and
∑nx+1

j=1 SXj = nx. According to assumption A(n), all

the different orderings of such values SXj , for j = 1, . . . , nx + 1, are equally likely. Similar

rules apply to SYj . The left (x(0), y(0)) and the right (x(nx+1), y(ny+1)) bounds of support

for X and Y , respectively, can be determined in the similar way as it was described for

the NPI-B-RP approach (see Section 2.3.3).

Let j(l) = max{j : xj < yl} for l = 1, . . . , ny + 1 and j = 0, 1, . . . ,m, so xj(l) < y(l) <

xj(l)+1. The rank of yl is l + j(l). Then the equations for calculating lower and upper

probabilities for Zf are [31]:

Zf =

ny+1∑
l=1

SYl

{
l−1∑
k=1

SYk +

j(l−1)−1∑
t=1

SXt +
SYl + 1

2

}
(4.1)

Z
f

=

ny+1∑
l=1

SYl

{
l−1∑
k=1

SYk +

j(l)∑
t=1

SXt +
SYl + 1

2

}
(4.2)

Proof of Equations (4.1) and (4.1) can be found in BinHimd’s thesis [31]. To calculate
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Algorithm 7 Calculating NPI-RP for the WMT estimates for the rejection case through

the sampling of orderings

1: Generate an ordering for X and for Y .

2: Calculate the corresponding rank sum test statistic, Zf and Z
f
, for those orderings

through Equations (4.1) and (4.2).

3: Repeat Steps 1 and 2 n∗ times in total.

4: Divide the total sum of orderings where Zf ≥ Zα by n∗ to calculate estimates for

lower and upper probabilities.

lower and upper probabilities, the total sum of orderings where Zf ≥ Zα is divided

by
(

2nx
nx

)(
2ny
ny

)
. Similarly, this can be done for the lower-tailed test. This has not been

presented in BinHimd’s thesis [31], but the calculation is straightforward.

The above method of calculating reproducibility probability considers all the orderings.

To reduce the computer time, the orderings are sampled and Zf and Z
f

are calculated for

those and their sum is divided by the number of orderings sampled. The procedure for

the upper-tailed one-sided WMT for the rejection case is outlined in Algorithm 7. Note,

in Step 4, for the non-rejection case, the total sum of orderings where Zf ≤ Zα would

be divided. For the lower-tailed WMT for the rejection case, the total sum of orderings

where Zf ≤ ny(nx + ny + 1)− Zα would be divided by the number of orderings.

Confidence intervals (CI) come from the binomial properties; they are calculated using

the standard result based on the Normal approximation, as shown in Equation (4.3) where

p̂ is the estimated value of the RP and RP and zα/2 is the 1−α/2 quantile of the standard

Normal distribution.

p̂± zα/2
√
p̂(1− p̂)/n∗ (4.3)

4.5.2 Application example

Estimates of NPI-R-RP for the WMT can be calculated for data from the study described

in Section 4.2. Algorithm 7 (with finite intervals, Approach I., Section 2.3.3) and its

alteration for non-rejection cases was applied to each pairwise comparison with n∗ =

1000, 2000, 3000, 5000. The outputs of the sampling of orderings for the WMT, estimates
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Pairwise NPI- n∗ = 1000 n∗ = 2000

B-RP RP CI RP CI RP CI RP CI

A vs B 0.902 0.710 (0.682, 0.738) 0.975 (0.965, 0.985) 0.706 (0.686, 0.725) 0.979 (0.972, 0.985)

B vs C 1.000 0.999 (0.997, 1.000) 1.000 (1.000, 1.000) 0.999 (0.997, 1.000) 1.000 (1.000, 1.000)

C vs D 0.862 0.856 (0.834, 0.878) 0.992 (0.986, 0.998) 0.851 (0.835, 0.866) 0.995 (0.991, 0.998)

D vs E 0.606 0.446 (0.415, 0.477) 0.841 (0.818, 0.864) 0.444 (0.422, 0.466) 0.849 (0.833, 0.864)

E vs F 0.935 0.669 (0.640, 0.698) 0.939 (0.924, 0.954) 0.703 (0.682, 0.723) 0.942 (0.931, 0.952)

Table 4.4: NPI-RP estimates for the WMT using Algorithm 7 (independent samples,

Approach I), n∗ = 1000, 2000

of NPI-RP, together with CIs, alongside the outputs of Algorithm 5, NPI-B-RP, are

displayed in Tables 4.4 and 4.5.

First, it is investigated how increasing n∗ affects the Algorithm 7 outputs. For the

given test scenario, the difference between NPI-RP estimates for different n∗ is in the

second decimal place, which is not very notable. Therefore, it can be concluded that at

n∗ = 1000 estimates of NPI-RP are very good.

Secondly, the outputs of Algorithm 7 were compared with the means of NPI-B-RP,

i.e. the outputs from Algorithm 5. From Tables 4.4 and 4.5, it can be inferred that for

all n∗, i.e. 1000, 2000, 3000 and 5000, and for all pairwise comparisons, the mean NPI-B-

RP value lies between lower and upper reproducibility probabilities, RP and RP . This

consistency was expected from the theoretical perspective. NPI-B-RP was calculated for

the lower-tail one-sided WMT, whereas NPI-RP estimates were calculated through the

sampling of orderings for the upper-tail one-sided WMT. This study compared NPI-RP

for the upper-tail one-sided WMT and the lower-tailed one-sided WMT. As expected,

NPI-RP estimates for the upper-tailed one-sided WMT were consistent with NPI-RP

estimates for the lower-tailed one-sided WMT.

Thirdly, the range of the imprecise probabilities for different pairwise comparisons can

be assessed. Imprecision of NPI-RP is equal to RP minus RP . The largest imprecision is

for the fourth pairwise comparison, where the mean of NPI-B-RPs is the lowest. On the

other hand, for the second pairwise comparison, the imprecision is the smallest. Here the

mean value of NPI-B-RP for the pairwise comparison is 1.000. Therefore, the pattern is

that for reproducibility close to 1, the imprecision is close 0, whereas for low reproducibil-

ity, the imprecision is larger than for high reproducibility. However, there is a need for
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Pairwise NPI- n∗ = 3000 n∗ = 5000

B-RP RP CI RP CI RP CI RP CI

A vs B 0.902 0.709 (0.692, 0.725) 0.973 (0.967, 0.979) 0.719 (0.707, 0.732) 0.980 (0.976, 0.984)

B vs C 1.000 1.000 (0.998, 1.000) 1.000 (1.000, 1.000) 0.999 (0.999, 1.000) 1.000 (1.000, 1.000)

C vs D 0.862 0.857 (0.844, 0.869) 0.993 (0.990, 0.996) 0.854 (0.845, 0.864) 0.992 (0.989, 0.994)

D vs E 0.606 0.434 (0.417, 0.452) 0.842 (0.829, 0.855) 0.433 (0.419, 0.447) 0.838 (0.827, 0.848)

E vs F 0.935 0.685 (0.667, 0.702) 0.935 (0.926, 0.944) 0.685 (0.672, 0.698) 0.935 (0.928, 0.942)

Table 4.5: NPI-RP estimates for the WMT using Algorithm 7 (independent samples,

Approach I), n∗ = 3000, 5000

a further exploration of this hypothesis, as NPI-B-RP for the first and the last pairwise

comparison is larger then for the third one, but the imprecisions for those are larger than

for the third pairwise comparison.

4.6 Reproducibility of the t-test via the sampling of

orderings

There are two reasons why lower and upper reproducibility cannot be analytically derived

for the pairwise t-test. First, for larger samples it becomes computationally challenging to

consider all the orderings in order to calculate NPI-RP. Secondly, computing the minimum

and maximum values of the t-test statistic for m future observations with given ordering

Oi is difficult, because this statistic depends both on the sample mean and variance. The

aim of this section is to present possible heuristics for approximating NPI-RP lower and

upper reproducibility probability for the t-test.

This thesis focuses on the one-sided two-sample t-test. For equal variance t-test,

the t-value is calculated via Equation (1.1). In order to approximate lower and upper

reproducibility probability, the approximation of lower and the upper bounds of the t-value

need to be obtained. From Equation (1.1) it is apparent that there are two variables for

which to account: the means (in the numerator) and the variances (in the denominator).

Here the optimisation process for the upper-sided t-test, where we have two groups, X

and Y , H0 : µx = µy vs H1 : µx > µy, are introduced.

To get the lower bound of the t-value, tl, the procedure needs to minimise the numer-

ator, i.e. minimise the difference between the means, and maximise the denominator, i.e.
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maximise the standard deviations. Small x, large y and large variances are needed. To get

the upper bound of t, tu, the procedure needs to do the opposite: maximise the numerator

and minimise the denominator. Large x, small y and small variances are needed.

Ideally, both of these two processes should be done simultaneously. This is an im-

possible task and, therefore, the approximation of NPI-RP for the t-test is split into two

explorations: First one focuses on maximising and minimising the numerator (i.e. means)

and this thesis refers to this approach as the numerator approach. The second one focuses

on maximising and minimising the denominator (i.e. variances) and this thesis refers to

it as the denominator approach.

The heuristics for calculating approximations of lower and upper RP, for both the

numerator and denominator approach, are introduced in Section 4.6.1. Section 4.6.2

applies the algorithm to both approaches on the case scenario of the preclinical test study

from Section 4.2. Section 4.6.3 summarises the initial findings and outlines a possible

further work on the topic.

4.6.1 Heuristics for the methodology

The numerator approach

The objective of the first approach (the numerator approach) is to minimise the numerator

to get the lower bound for the t-value, tl, and to maximise the numerator to get the upper

bound for the t-value, tu. To calculate tl for a given ordering of X and a given ordering of

Y , all x’s are put to the left bound of the interval and all y’s are put to the right bound

of the interval; and to calculate tu, all x’s are put to the right bound of the interval and

all y’s are put to the left bound of the interval. The denominator is also affected by this

process, as the variance of the data for groups X and Y changes, but this change cannot

be controlled.

The denominator approach

The objective of the second approach (the denominator approach) is to maximise the

denominator to get the lower bound of the t-value, tl, and minimise the denominator to

get the upper bound of the t-value, tu. To achieve this, the data points are split into half
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Algorithm 8 Calculating NPI-RP approximations for the t-test

1: Apply the t-test on the two original samples, x and y, and record the test outcome:

R∗ = 1 if H0 is rejected and R∗ = 0 if H0 is not rejected.

2: Sample a specific ordering of the nx future X observations among the corresponding

nx data observations, (SX1 , . . . , S
X
nx+1), and a specific ordering of the ny future Y

observations among the corresponding ny data observations, (SY1 , . . . , S
Y
ny+1).

3: Calculate tl and tu for these orderings following the rules for either the numerator or

the denominator approach.

4: In total perform Steps 2 and 3 n∗ times for j = 1, . . . , n∗ to get n∗ tl’s and tu’s and

each time record the test outcome for the lower and upper bound: Rlj = 1 / Ruj = 1

if H0 is rejected and Rlj = 0 / Ruj = 0 if H0 is not rejected.

5: Calculate the mean of tl’s, tl, and the mean of tu’s, tu.

6: Calculate lower and upper bounds for reproducibility probability:

rplj = (
∑N

j=1 1(Rlj=R∗))/N and rpuj = (
∑N

j=1 1(Rlu=R∗))/N .

(and the median divides these two groups). To obtain tl, large variance is needed. The

variance can be maximised by minimising the points in the left group and maximising the

points in the right group. This makes the data points more spread. To obtain tu, small

variance is needed. The variance can be minimised by maximising the points in the left

group and minimising the points in the right group. This makes the points less spread.

Algorithm

Algorithm 8 presents the methodology for calculating the reproducibility measure (ap-

proximates for NPI-RP) through the sampling of orderings for the upper-sided equal

variance t-test, comparing two groups, X and Y , H0 : µx = µy vs H1 : µx > µy. The

algorithm can be applied for both the numerator and denominator approach. In this al-

gorithm, n∗ stands for the number of sampled orderings and x(0), x(nx+1), y(0) and y(ny+1)

are determined using the finite Approach I (Section 2.3.3).
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Algorithm 9 Calculating bootstrapped t-value through NPI-B

1: Generate an NPI bootstrap for X of sample size nx and for Y of sample size ny (using

finite Approach I, Section 2.3.3).

2: Calculate tB for the bootstrapped samples for X and Y .

3: Do this n∗ times in total to get n∗ tB values.

4: Calculate the average of the n∗ tB values, tB.

4.6.2 Application example

Estimates of the test statistic

Before considering estimates for lower and upper reproducibility probability, estimates of

the lower and upper bounds for the t-values for each set of orderings, i.e. tl and tu, are

considered for pairwise comparisons from the test scenario presented in Section 4.2. To

study tl and tu, the average bootstrapped t-value, tB, is calculated via Algorithm 9, which

is then compared to tl and tu, calculated in Step 5 of Algorithm 8. For both procedures

(Algorithm 8 and Algorithm 9), n∗ is set to be 10, 000. The lower and upper t-values are

calculated through the sampling of orderings for both the numerator and denominator

approach and the bootstrapped t-value is calculated through the NPI-B method for the

data set from Section 4.2. For both the NPI-B and sampling of orderings methods, x(0)

and x(nx+1) are defined for group X, and y(0) and y(ny+1) are defined for group Y , by using

finite intervals (Approach I, Section 2.3.3). Tables 4.6 and 4.7 display tB, tl and tu for

different pairwise comparisons for the numerator and denominator approach, respectively.

For all pairwise comparisons, the tB lies in between the tl and tu. This means esti-

mates of the t-value calculated through the sampling of orderings are consistent with the

bootstrapped t-values. The range between the tl and tu is quite wide. However, the range

between the tl and tu is smaller for the denominator approach than for the numerator

approach. It can be inferred from the visualisation of tl’s and tu’s that the data are not

skewed, therefore, the evaluation can be made based on the means of tl’s and tu’s. Similar

conclusions extend to the denominator approach.
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Statistics of the real data NPI reproducibility analysis

Pairwise Reject? original t threshold t Sampling of orderings NPI-B

tl tu tB

A vs. B Yes 4.298 2.120 3.149 4.943 4.065

B vs. C Yes 7.184 2.101 6.514 7.941 7.249

C vs. D Yes 3.781 2.110 2.674 4.650 3.641

D vs. E Yes 2.246 2.110 1.265 3.102 2.200

E vs. F No -0.251 2.110 -1.215 0.700 -0.205

Table 4.6: Lower and upper t-value calculated through the sampling of orderings (for the

numerator approach) and the bootstrapped t-value

Statistics of the real data NPI reproducibility analysis

Pairwise Reject? original t threshold t Sampling of orderings NPI-B

tl tu tB

A vs. B Yes 4.298 2.120 3.251 5.422 4.065

B vs. C Yes 7.184 2.101 6.112 8.745 7.249

C vs. D Yes 3.781 2.110 3.010 4.530 3.641

D vs. E Yes 2.246 2.110 1.727 2.888 2.200

E vs. F No -0.251 2.110 -0.426 -0.131 -0.205

Table 4.7: Lower and upper t-value calculated through the sampling of orderings (for the

denominator approach) and the bootstrapped t-value

Approximation of NPI-RP

So far, only the tu’s and tl’s have been considered. Step 6 of Algorithm 8 calculates

estimates for lower and upper reproducibility probability. The algorithm is applied to

the data set visualised in Figure 4.1 for both the numerator and denominator approach.

The NPI-RP approximations are presented in Table 4.8 together with the outcomes for

NPI-RP for the WMT through the sampling of orderings and NPI-B-RP for the t-test.

The imprecision, defined in Section 4.5.2, for the numerator approach is wider than for

the denominator approach. The mean of NPI-B-RP lies between the RP and RP for all

the pairwise comparisons for the numerator approach. For the denominator approach,
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t-test WMT

Pairwise mean numerator approach denominator approach sampling of orderings

NPI-B-RP RP RP RP RP RP RP

A vs. B 0.937 0.706 0.992 0.773 0.989 0.710 0.975

B vs. C 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C vs. D 0.880 0.595 0.964 0.679 0.945 0.856 0.992

D vs. E 0.586 0.270 0.735 0.386 0.654 0.446 0.841

E vs. F 0.911 0.840 0.986 0.934 0.960 0.669 0.939

Table 4.8: Approximation of NPI-RP for the t-test calculated via the sampling of orderings

for both the numerator and denominator approach t-test compared to the mean NPI-B-RP

for the t-test and estimates of NPI-RP for the WMT

the mean of NPI-B-RP lies between the RP and RP for all comparisons, except for the

E vs. F pairwise comparison (the only case when H0 is not rejected). The imprecision is

larger for NPI-RP estimates calculated through the sampling of orderings for the t-test,

especially for the numerator approach, than for the WMT.

4.6.3 Summary

To conclude, this section presented a heuristic and some initial findings on estimates of

reproducibility probability for the t-test, calculated through the sampling of orderings for

the t-test. Two approaches were presented: the numerator and the denominator approach.

This work has shown, on limited data, that the methodology is consistent with NPI-B-

RP. It might be of future research interest to try a cyclical methodology: in stage 1 use

the given variance of the data and only change means, and in stage 2 also adjust the

variance. However, it is not clear how to carry this out. Also, it would be of interest to

calculate reproducibility for the unequal variance (Welsh) t-test. This section only dealt

will calculating estimates for RP for the one-sided t-test. For the two-sided t-test, the

threshold value would change from α to α/2. Here a possible route to implementation of

the sampling of orderings for the two-sided t-test is suggested: One would minimise the

t-value (make t-value close to 0, i.e. as small as possible), by pushing the means of the

two groups as close together as possible. To maximise the t-value, one would apply twice
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the one-sided t-test and consider the absolute value and then one would work with the

maximal value of the two absolute values. However, further discussion of the practicalities

related to calculating NPI-RP estimates for the two-sided t-test are outside the scope of

this thesis.

Future research could also explore the following questions: How many orderings should

be sampled? What approach (the numerator or the denominator one) is better for the

one-sided t-test? Is there any relationship between NPI-RP estimates and the p-value

and Cohen’s d? Does the NPI-RP estimate change as sample sizes, nx and ny, and the

number of orderings, n∗, increase? What is the relationship between NPI-RP estimates

and NPI-B-RP?

4.7 Reproducibility for the rate of growth measure

data

This section explores NPI reproducibility for the rate of growth measure data, a metric

commonly used in preclinical research. The focus is on reproducibility for data sets that

cannot be assumed to come from a Normal distribution. For such data sets, both the

WMT and the Growth rate inhibition significance analysis is applied. Growth rate (GR)

inhibition is a metric which assesses effect size. It is calculated as follows:

GR inhibition = (1− µT/µC) ∗ 100 (4.1)

where C stands for the control group and T stands for the treatment group. The means

of C and T , µC and µT , respectively, are calculated from the rate of growth summary

measure, which will be introduced in Section 4.7.1. In the GR inhibition significance

analysis, the interest is in GR inhibition greater than 30%. To be GR inhibition significant,

both the GR inhibition needs to be greater than 30% and the p-value needs to be less

than 0.05.

The reason behind the threshold of 30% is linked to the fact that preclinical studies

aim to reflect the clinical study. In oncology the interest is in how a drug will affect

tumour growth. Response Evaluation Criteria in Solid Tumours (RECIST) is used for

the quantitative assessment of tumour burden [24]. Tumour burden refers to the size of
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a tumour. In RECIST, the diameter of the lesions can be measured before the treatment

and then repeatably during the treatment period. Measuring volumes is an alternative to

diameter length [24]. In a clinical study, 30% reduction in the tumour burden is classified

as a partial response (PR), whereas no tumour means full response [24]. Therefore, in the

GR inhibition, 0% would indicate no effect, i.e. µT = µC , 100% would indicate stasis, i.e.

µT close to zero, and value greater than 100% would indicate tumour regression, i.e. µT

is negative.

This section explores reproducibility of the WMT and the GR inhibition significance

on three data sets. The motivation behind this section is to show that reproducibility

does not have to involve only tests where solely the p-values are used to make decisions.

Moreover, this section investigates how statistical reproducibility behaves for tests carried

out on data that cannot be assumed to follow the Normal distribution.

First, Section 4.7.1 explains what is the rate of growth measure. Secondly, Section

4.7.2 presents an algorithm for calculating reproducibility for the rate of growth inhibi-

tion significance analysis. Thirdly, Section 4.7.3 explores reproducibility for the rate of

growth data on three different not Normally distributed data sets. Lastly, Section 4.7.4

summarises the conclusions.

4.7.1 Rate of growth measure

The rate of growth measure [100] is a simple, robust and quite general model. It is

usually applied to data that are not Normally distributed. This measure is calculated from

measurements at various time points, rather than just at the time end points. This avoids

missing values and accounts for time series data, i.e. it takes into account measurements

at different time points. This rate of growth approach contrasts with the traditional T/C

(the ratio of tumour volume in control versus treated animals at a given time), which uses

only one single measurement, i.e. the approach used to acquire data in the test scenario

from Section 4.2. The rate of growth method is commonly used on real growth data

whereas the T/C is used for relative tumour growth data.

The calculation of the rate of growth measure data is not relevant for the reproducibil-

ity analysis, what matters are the rate of growth measure data values. Nevertheless, to set

this work within the context of preclinical research, the process of obtaining this values
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will be briefly described in what follows. In the growth rate method, values are truncated

because log10(0) is undefined and log10 of values around 0 changes dramatically with little

change of the number. From time series data, the rate of growth summary measure is

calculated as follows:

1. Tumour volume is moved from cm3 to mm3 space by multiplying it by 1000 as the

method works with measurements in mm.

2. Tumour volumes less than 50 mm3 are replaced with a minimum value of 50 mm3.

3. Data are truncated, log transformed, cleaned and data points till certain day (e.g. 31)

for each animal are considered.

4. Estimated growth rate measurement for each animal is calculated. It is calculated

using the generalised linear model (R function: glm, with NA values excluded).

4.7.2 NPI reproducibility for the growth rate inhibition signifi-

cance

The calculation of growth rate (GR) inhibition has been defined in Equation (4.1). To

be GR inhibition significant, two criteria need to be met: the GR inhibition is greater

than 30% and the p-value is less than 0.05. Let C and T denote the control and the

treatment groups, respectively. Let N denote the number of simulations and let h denote

the number of runs. Algorithm 10 presents a methodology for calculating NPI-B-RP for

the GR inhibition significance. This work considers N in Algorithm 10 to be 1000 and h

to be 100.

4.7.3 Application example

A study monitoring tumour volume over time can be classed as select or non-select de-

pending on how the randomisation step is implemented. Which method is used depends

on how fast the tumour grows. In a select study, the animals are randomised to the

treatment group based on the tumour volume. In a non-select study, the animals are ran-

domised to the treatment group based on their body weight. Section 4.2 presented a test
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Algorithm 10 Calculating NPI-B-RP for the GR inhibition significance

1: Take the two original observations for C and T , calculate the GR inhibition and apply

the WMT. Record whether both the p-value is less than 0.05 and the GR inhibition

is greater than 30%.

2: From the original data for each group (C and T ), draw an NPI-B sample (of the same

sample size as the original data for that group) and calculate the GR inhibition for the

bootstrap samples and also apply the WMT to the two bootstrap samples. Record

whether both the GR inhibition is greater than 30% and the p-value is less than 0.05

for these bootstrap samples.

3: In total perform Step 2 N times and calculate the proportion of getting the same test

decision as was reached in Step 1.

4: Perform Steps 2-3 h times.

5: Report the summary statistics (e.g. min, mean and max) of the h outcomes. The

mean is the NPI-B-RP value.

scenario, which was an example of a select study where data are Normally distributed.

This section explores reproducibility for three tumour non-select preclinical studies, in

which the rate of growth measure data are employed. In these studies, data sets are not

Normally distributed. The rate of growth data are displayed in Table 4.9 and visualised

in Figure 4.11.

In Data set 1, some measurements in dose C and E are repeated. In particular, the

value 1.228730e−17 appears twice in dose C and 4 times in dose E. In Table 4.9, this value

is displayed as 0.00000 due to rounding. Those were the cases where the tumour regressed

and because all values are truncated, the values of the rate of growth measure are the

same. For those, jitter, a function in R, is used in order to carry out the WMT and the

NPI reproducibility analysis. In Data sets 2 and 3, there are not any repeated values.

Statistical analysis

In these studies, the main question is whether there is a treatment impact on the growth

rate, which is answered by comparing the treatment group to the control group. The

effect size measure is the GR inhibition. If the GR inhibition threshold is satisfied, the

treatment group is taken into further studies. In all three data sets, group A presents the
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Dose A B C D E

0.06115 0.00218 -0.00187 -0.00057 0.00266

0.06168 0.00838 -0.00180 0.04491 -0.00124

0.06359 0.03550 -0.00072 0.05119 -0.00066

0.06815 0.03708 -0.00049 0.05139 0.00000
D
a
ta

se
t
1 0.06836 0.04579 -0.00033 0.06336 0.00000

0.06886 0.04601 0.00000 0.06502 0.00000

0.07521 0.05962 0.00000 0.07234 0.00000

0.08097 0.06028 0.01863 0.08593 0.00212

0.08118 0.06477 0.05313 0.09065 0.01663

0.08234 0.06517 0.05533 0.09407 0.07281

0.08418 0.06586

0.08755 0.06796

0.08807 0.07084

0.08960 0.07895

0.09731 0.08062

Dose A B C D E F G

0.04830 0.05619 0.03704 0.03826 -0.02015 -0.00768 -0.01644

0.05694 0.05631 0.04599 0.04169 -0.01436 0.00107 -0.01349

0.06074 0.06072 0.04631 0.05812 -0.01247 0.01555 -0.01197

0.06583 0.06942 0.04692 0.06272 0.00000 0.02754 -0.01049

D
a
ta

se
t
2 0.06600 0.07003 0.04715 0.06826 0.01893 0.02805 -0.00037

0.06996 0.07757 0.04985 0.06922 0.02283 0.03494 0.01648

0.07040 0.08424 0.05161 0.08759 0.02766 0.03569 0.02167

0.07069 0.08503 0.06293 0.08795 0.03205 0.03763 0.02591

0.07071 0.06577 0.09466 0.03552 0.04749 0.02923

0.07119 0.07037 0.05456 0.05163 0.02998

0.07316 0.07234 0.06092 0.06265 0.03840

0.07611 0.07365 0.07359 0.07819 0.04381

0.07915

0.07928

0.08173

0.09530

0.10313

Dose A B C D E F

0.00000 0.05291 0.03459 -0.00324 0.04540 -0.01001

0.05248 0.06247 0.04183 0.00024 0.05036 -0.00431

0.05842 0.06319 0.04726 0.02107 0.05517 0.03777

0.06869 0.06540 0.06018 0.02131 0.05725 0.04258

D
a
ta

se
t
3 0.08017 0.06617 0.07081 0.03998 0.06181 0.05980

0.08092 0.06676 0.07422 0.04858 0.07741 0.07566

0.09237 0.06710 0.07614 0.05398 0.07842 0.08397

0.09438 0.07158 0.07783 0.05428 0.08303 0.08570

0.09774 0.07189 0.07785 0.06546 0.09101 0.09522

0.09965 0.07906 0.08200 0.11677 0.10290 0.09736

0.09988 0.08045

0.10311 0.08165

0.10574 0.08264

0.11570 0.09225

0.11796 0.09536

Table 4.9: Rate of growth measure data for the three data sets
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(b) Data set 2
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(c) Data set 3

Figure 4.11: Rate of growth measure for the three data sets

control group. In Data sets 2 and 3, group B denotes a carrier with an inactive antibody,

this is an example of a group with no effect. The rest of the groups receive treatment. For

each group, there is a time series data, where the tumour volume is recorded at particular

days. The rate of growth approach is applied to the data, so for each group member

there is one recorded value: the rate of growth measure. Each test group is compared

to the control group, i.e. group A, using the WMT. The test groups are independent

compounds. So within this experiment there are multiple independent studies happening,

in effect, simultaneously. Significance is assessed using a mixture of the p-value and the

GR inhibition significance. To be of significant interest, the p-value needs to be below

0.05 and the GR inhibition above 30%.

Table 4.10 displays the statistical analysis for the three data sets. The aim of the tests

is to determine whether the treatments work or not and if so then study them further.



194

Data set Pairwise p-value Reject? GR inhibition significant GR inhibition?

1 A vs. B 0.00048 Y 32.3 Y

1 A vs. C 0.00004 Y 84.2 Y

1 A vs. D 0.17750 N 19.9 N

1 A vs. E 0.00014 Y 88.7 Y

2 A vs. B 0.54861 N 4.0 N

2 A vs. C 0.00223 Y 23.4 N

2 A vs. D 0.39581 N 7.2 N

2 A vs. E 0.00003 Y 68.1 Y

2 A vs. F 0.00003 Y 52.8 Y

2 A vs. G 0.00000 Y 82.5 Y

3 A vs. B 0.04084 Y 13.3 N

3 A vs. C 0.01628 Y 23.9 N

3 A vs. D 0.00543 Y 50.5 Y

3 A vs. E 0.05451 N 16.8 N

3 A vs. F 0.03572 Y 33.3 Y

Table 4.10: Statistical analysis of the three data sets (WMT is carried out)

For Data set 1, treatments B, D and E are GR inhibition significant, for Data set 2,

treatments E, F and G are GR inhibition significant and for Data set 3, doses D and F

are GR inhibition significant.

NPI reproducibility

NPI reproducibility of the statistical tests is calculated, using various methods, such as the

NPI bootstrap and the NPI sampling of orderings. NPI reproducibility is calculated for the

WMT and for the GR inhibition significance. The results are displayed in Tables 4.11 and

4.12, respectively. NPI-B-RP is calculated for the WMT using Algorithm 5 (through NPI-

B, using finite Approach I and infinite Approach V, Section 2.3.3) and estimates of NPI-RP

for the WMT are calculated using Algorithm 7 (through the sampling of orderings, using

finite Approach I and n∗=1000). It can be concluded that the mean NPI-B-RP values lie

between the lower and upper estimate of NPI-RP for all the pairwise comparisons (see

Table 4.11), which shows consistency between estimates of NPI reproducibility. Figure

4.12 illustrates the relationship between the p-values and NPI-B-RP and estimates of NPI-

RP for the WMT, respectively. The red dotted line in these figures shows the threshold

value (p-value equal to 0.05). On both sides of the red line, NPI-B-RP increases the

further the p-value is away from the threshold value. However, NPI-B-RP goes up more
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Data- Pairwise p-value Reject Algorithm 5 (Approach I) Algorithm 5 (Approach V) Algorithm 7

set H0? min mean max min mean max RP RP

1 A vs. B 0.00048 Y 0.863 0.885 0.913 0.864 0.888 0.909 0.807 0.968

1 A vs. C 0.00004 Y 0.987 0.993 0.999 0.990 0.996 0.999 0.952 1.000

1 A vs. D 0.17750 N 0.537 0.580 0.623 0.541 0.580 0.614 0.416 0.697

1 A vs. E 0.00014 Y 0.921 0.943 0.959 0.950 0.968 0.982 0.915 0.996

2 A vs. B 0.54861 N 0.769 0.797 0.826 0.762 0.797 0.831 0.613 0.878

2 A vs. C 0.00223 Y 0.710 0.732 0.763 0.762 0.802 0.838 0.680 0.934

2 A vs. D 0.39581 N 0.767 0.804 0.842 0.706 0.734 0.767 0.542 0.839

2 A vs. E 0.00003 Y 0.954 0.968 0.981 0.938 0.962 0.974 0.916 0.998

2 A vs. F 0.00003 Y 0.932 0.950 0.966 0.927 0.945 0.960 0.887 0.986

2 A vs. G 0.00000 Y 1.000 1.000 1.000 0.996 0.999 1.000 1.000 1.000

3 A vs. B 0.04084 Y 0.537 0.579 0.622 0.539 0.576 0.610 0.436 0.712

3 A vs. C 0.01628 Y 0.664 0.700 0.736 0.651 0.688 0.717 0.550 0.814

3 A vs. D 0.00543 Y 0.686 0.725 0.757 0.693 0.726 0.766 0.535 0.875

3 A vs. E 0.05451 N 0.444 0.487 0.521 0.457 0.488 0.513 0.275 0.659

3 A vs. F 0.03572 Y 0.509 0.546 0.586 0.529 0.559 0.600 0.394 0.781

Table 4.11: Reproducibility of the WMT for the three data sets

Data set Pairwise Original Significant Reproducibility for the GR significance

comparison GR GR? min mean max

1 A vs. B 32.3 Y 0.413 0.444 0.480

1 A vs. C 84.2 Y 0.975 0.983 0.992

1 A vs. D 19.9 N 1.000 1.000 1.000

1 A vs. E 88.7 Y 0.965 0.976 0.989

2 A vs. B 4.0 N 1.000 1.000 1.000

2 A vs. C 23.4 N 0.781 0.813 0.845

2 A vs. D 7.2 N 1.000 1.000 1.000

2 A vs. E 68.1 Y 0.937 0.951 0.964

2 A vs. F 52.8 Y 0.852 0.876 0.902

2 A vs. G 82.5 Y 0.981 0.992 0.998

3 A vs. B 13.3 N 0.885 0.902 0.925

3 A vs. C 23.9 N 0.624 0.661 0.708

3 A vs. D 50.5 Y 0.737 0.771 0.809

3 A vs. E 16.8 N 0.746 0.784 0.806

3 A vs. F 33.3 Y 0.470 0.519 0.557

Table 4.12: Reproducibility for the GR

steeply on the left side than on the right side. On the left side the increase is more gradual.

Similar patterns were drawn for NPI-RP estimates for the WMT versus the p-value for

the WMT.
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(b) NPI-RP through the sampling of orderings for the WMT versus p-value

Figure 4.12: NPI reproducibility for the WMT versus p-value for all three data sets
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Figure 4.13: NPI-B-RP for the GR inhibition versus GR inhibition for the three data sets

Reproducibility for the GR inhibition significance is calculated using Algorithm 10. In

this algorithm, NPI-B is applied on finite range (Approach I, Section 2.3.3). Similarly to

the observations for NPI-B-RP for the WMT, a visible pattern between GR inhibition and

NPI-B-RP can be observed in Figure 4.13. The red dotted line in this figure shows the

threshold value (30%). On both sides of the red line, NPI-B-RP increases the further the

GR inhibition is away from the threshold value. However, NPI-B-RP for the GR inhibition

significance test goes up more steeply on the left side than it does on the right side. On

the left side the increase is more gradual. Similar patterns about NPI reproducibility and

the threshold test value were drawn in Section 4.3.

4.7.4 Summary

In Section 4.7.3, three data sets from preclinical studies were analysed. The goal of this in-

vestigation was to examine how reproducibility of statistical tests behaves for tests carried

on data that does not follow Normal distribution and also to show that reproducibility
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of statistical tests does not necessarily always need to involve solely p-values – it depends

on the original statistical analysis. There is a similar prevailing pattern for both repro-

ducibility of the GR inhibition and the p-value. A key observation was that for pairwise

comparisons where the measure is close to the threshold value, NPI reproducibility goes

steeply down, especially on the left side of the threshold. So for p-values close to the

threshold or for GR inhibition close to the threshold, reproducibility is about 0.5.

4.8 Concluding remarks

NPI reproducibility provides an inference method for the probability of the event that,

if a test was repeated under identical circumstances and with the same sample size, the

same test outcome would be reached. This chapter contributed to the development of NPI

reproducibility by exploring the estimation of reproducibility for the two-sample Student’s

t-test and for the WMT via two implementations of NPI: the NPI bootstrap the and NPI

sampling of orderings.

First, in Section 4.3, NPI-B-RP for the pairwise t-test has been studied via simulations

and on the application to such tests in a preclinical scenario. We explored reproducibility

of the pairwise t-test and investigated the relationships between NPI reproducibility and

two common test statistics, the p-value and the Cohen’s d. As the p-value approaches

the significance level α, NPI reproducibility decreases, and for p-values close to α NPI

reproducibility is typically lower in the case of rejection of the null-hypothesis than for

non-rejection. A similar pattern was seen when reproducibility and Cohen’s d were com-

pared, and further simulations, beyond the cases presented in this thesis and with other

input parameters, led to similar results. Reproducibility of the t-test and the Wilcoxon-

Mann-Whitney test were also compared in the simulations and for the preclinical test

scenario, and the results were quite similar. This might be due to the fact that the con-

sidered data could, after transformation, reasonably be assumed to come from a Normally

distributed population, and the data in the simulation study were generated from Normal

distributions. A more detailed investigation of differences in reproducibilities of these two

tests, for example for data from skewed distributions, is a topic for future research.

NPI reproducibility for the pairwise t-tests can provide useful insights for practical
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applications. For example, in the preclinical test scenario, one of the pairwise comparisons

had low reproducibility, so it might be advisable to explore the comparison of those two

groups in more detail, possibly by additional experiments. NPI reproducibility can be

used in conjunction with other test statistics, such as the p-value and the Cohen’s d, to

support the decision process based on the data and tests.

Secondly, in Section 4.4, reproducibility for a final decision based on multiple pair-

wise t-tests has been investigated. In the preclinical scenario considered in this chapter,

multiple comparisons are performed and their test results lead to a final decision on an

appropriate dose. It is, therefore, also important to consider reproducibility of this final

decision; and one could say that this is the most important outcome of the combined

hypothesis tests. An algorithm for deriving NPI reproducibility of this final decision was

introduced, this has not been previously considered in the literature. For the presented

preclinical test scenario, reproducibility of the final decision is smaller than the repro-

ducibilities for all the pairwise comparisons on which the final decision is based. This is

a logical consequence of using multiple pairwise comparisons to reach the final decision.

Low reproducibility of the final decision should be taken into account by decision mak-

ers, investigating possible further actions to improve this situation is also left for future

research.

Thirdly, in Section 4.5 an algorithm for calculating NPI-RP estimates for the WMT,

using the sampling of orderings, is introduced and illustrated on the test scenario from

Section 4.2. The methodology has been inspired by the sampling of orderings for the

likelihood test [55]. A consistency between NPI-B-RP and NPI-RP estimates was shown.

Fourthly, in Section 4.6 a route to calculating NPI-RP estimates for the t-test via the

sampling of orderings has been outlined. Two different approaches were introduced: one

of them focuses on the numerator of the t-statistic, the other focuses on the denominator

of the t-statistic. Both approaches work for the test scenario from Section 4.2: NPI-B-RP

lies in between lower and upper NPI-RP estimates. However, further exploration of this

methodology is left for future research.

Lastly, Section 4.7.1 studied NPI reproducibility for the WMT and GR inhibition sig-

nificance test for three data sets containing the rate of growth measure data. This sections

highlighted that reproducibility can also be calculated when the statistical analysis is not
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solely based on the p-values. It also showed that test statistic close to the threshold value

is linked to low NPI reproducibility.

This chapter concludes by highlighting ideas for future research. The main challenge

is to apply NPI reproducibility to many real-world test scenarios and to use it as input

into actual decision processes. Follow-up actions in the case of low reproducibility are

also important and research into this has not yet been reported in the literature. Further

study could investigate the sensitivity of the reproducibility calculations to the choice of

the left and the right bound of the support of the bootstrap and of sampling of orderings.

Moreover, it is of future research interest to study the effect of jitter on the WMT

outputs.

Further work entails exploring the calculation of NPI-RP estimates via the sampling

of orderings for the t-test via a simulation study and determining whether the numerator

or the denominator approach leads to more accurate estimates of imprecise probabilities.

Alternatively, the two approaches could be combined via a cyclical methodology: splitting

the analysis into two stages, in Stage 1 changing only the numerator and in Stage 2,

adjusting the denominator. The algorithm could also be extended to the two-sided t-test.



Chapter 5

Concluding remarks and further

research topics

This thesis has made three contributions to the literature: It has shown that apply-

ing bootstrap methods provides useful inference for small samples, it has presented an

overview of reproducibility and it has made advances on the topic of test reproducibility.

These contributions were motivated by statistical practice in preclinical research.

This chapter aims to highlight this thesis’ novel contributions to the literature and

their importance in preclinical research in Section 5.1; and to outline further research

topics related to small-sample bootstrap and statistical reproducibility in Section 5.2.

5.1 Summary of the findings

This section summarises the thesis contributions to small-sample bootstrap, to overview

of reproducibility and to NPI reproducibility. The three topics are discussed separately

in Sections 5.1.1, 5.1.2 and 5.1.3, in order to highlight the novelties of this research.

5.1.1 Contributions to small-sample bootstrap

The bootstrap method is not commonly used with small samples, as the most commonly

known bootstrap method, the Efron bootstrap, is not suitable for small samples. This is

because the Efron bootstrap is based on the asymptotic argument – empirical distribution,

from which a sample is taken in Efron-B, converges to the real underlying population

201
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distribution, if the number of data increases to infinity [27]. Many practitioners are

not aware of the existence of other bootstrap methods or their performance with small

samples. Although individual simulation or application examples of the use of the small-

bootstrap method exist, these have not led to the implementation of bootstrap methods

for small-sample analysis. The Banks-B method [18] has been hidden; it was introduced

in the 1980s and only picked up by BinHimd [31]. This thesis has shown that Banks-B for

small samples deserves further research attention. More follow-up work has been carried

out for Hutson-B, as shown in Chapter 2. Nevertheless, both of these bootstrap methods

are still not in the tool kit for most practitioners, due to notable insufficiency of work

carried out on small-sample bootstrap.

This research therefore set out to explore via a simulation study whether a bootstrap

method can provide useful inference with small samples, and to present initial recommen-

dations on small-sample bootstrap for practitioners, as well as to identify possible areas

of implementation of small-sample bootstrap. The motivation for the simulation study

was driven by the common existence of small samples in preclinical research, and by the

lack of the use of bootstrap methods with small samples. The main issue with small

samples is that they are limited in their ability to justify model assumptions underlying

most classic statistical techniques, which can increase the risk of making decisions based

on wrong assumptions. The advantage of the bootstrap method is that it does not re-

quire the assumption of any underlying distribution: therefore it overcomes the problem

of insecurity about the underlying distribution of small samples.

Chapter 2 compared four bootstrap methods: NPI bootstrap (NPI-B), Banks boot-

strap (Banks-B), Hutson bootstrap (Hutson-B) and Efron bootstrap (Efron-B), when

applied with small samples. The study provided new insights into the performance in

the estimation of population characteristics (mean, variance, quantiles – Q1, median and

Q3 – and IQR), and at making prediction inference for small sample sizes for these four

bootstrap methods for data simulated from Normal, Lognormal, Exponential and Mixed-

Normal distributions. The performance of smoothened bootstrap using Gaussian kernel

(Kernel-B) is briefly addressed in Appendix A.5.

Chapter 2 concluded that Banks-B performs very well in the estimation of mean,

variance and quantiles (Q1, median and Q3) with small samples (n = 4, 6, 8, 10), regardless
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of the underlying distribution. This thesis recommends this bootstrap method for the

estimation of these population characteristics for small samples. For data on the real-line,

the recommendation is of a finite range (Approach I, Section 2.3.3) for Banks-B for the

estimation of mean and quantiles and infinite range (Approach IV, Section 2.3.3) for the

estimation of variance. For data defined on [0,∞), the half-infinite range (Approach V,

Section 2.3.3) is recommended. Moreover, Hutson-B showed good performance in the

estimation of quantiles for a variety of underlying distributions, and NPI-B performed well

in the estimation of population characteristics for sample size n = 4 and in the estimation

of variance for Lognormally distributed data. The study confirmed that Efron-B does

not perform well in the estimation of mean, variance and quantiles for small samples.

The findings of this thesis dictate a recommendation of caution to practitioners regarding

the use of BCa confidence intervals, instead of percentile confidence intervals, for the

estimation of any population characteristics, before more research has been carried out.

Similarly, NPI-B performed very well at making prediction inference when predicting

mean, variance and quantiles for small samples (n = 4, 6, 8, 10, 20). Thus, the study of the

bootstrap method performance in prediction extends the conclusions of BinHimd [31] to

smaller sample sizes. This means that NPI-B is a suitable method for prediction, and it

can be used as a tool to calculate NPI reproducibility. This thesis would not recommend

Efron-B, Banks-B or Hutson-B for prediction inference.

5.1.2 Overview on reproducibility

Chapter 3 presented an elaborate literature review on reproducibility. The issue iden-

tified in this research field was the lack of consistency in defining reproducibility and

related terms. Thus, Chapter 3 began by classifying the reproducibility definitions and

concepts from the literature into five Reproducibility Types: Type A to Type E. Rea-

sons for low reproducibility and suggestions for improving reproducibility were discussed.

Reproducibility in relation to preclinical research was covered, focusing on the shift from

striving for homogeneity to embracing variability. The main focus of Chapter 3 was on

the debates relating to statistical reproducibility. Chapter 3 highlighted the discussion

of variability across studies. The focus was on how to control and quantify reproducibil-

ity and the ongoing discourse on whether to use p-values. In the latter discussion, the
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conclusion reached in this thesis was that although there are many issues and problems

associated with p-values, there is no clear and straightforward alternative to p-values that

could be widely adopted by researchers.

Moreover, Chapter 3 outlined some of the metrics relating to scenarios where both the

original and the replicate experiments have been carried out, determining whether the

reproducibility has been successful. This thesis focused on quantifying statistical repro-

ducibility in cases where only the original experiment has been carried out. A summary

of available metrics for quantifying statistical reproducibility was given. Finally, a gap in

the current debate was identified, i.e. the consideration about what can be inferred about

reproducibility from data from the original study; and NPI reproducibility was discussed:

a framework that was further developed in Chapter 4.

5.1.3 Contributions to statistical reproducibility

NPI reproducibility provides an inference method for the probability of the event that, if a

test was repeated under identical circumstances with the same sample size, the same test

outcome would be reached. NPI reproducibility is aimed at quantifying statistical repro-

ducibility, it does not serve the function of recognising that an incorrect statistical method

has been used, as confirmed in Appendix B.3. Chapter 4 contributed to the development

of NPI reproducibility by employing two implementations of NPI (NPI bootstrap and NPI

sampling of orderings) in order to estimate NPI reproducibility probability. An algorithm

for calculating NPI-B-RP for the pairwise t-test was presented and studied via simulations

and on an application in a preclinical scenario. This thesis showed that, for pairwise com-

parisons with p-value close to the significance level α, the NPI reproducibility is low, and,

for p-values close to α, the NPI reproducibility is typically lower in the case of rejection of

the null-hypothesis than in the case of non-rejection. The same pattern could be seen for

the relationship between between NPI reproducibility and Cohen’s d. The findings of this

thesis thus suggest using the NPI reproducibility measure, alongside other test statistics,

such as the p-value and the Cohen’s d, to support the decision process based on data and

tests.

This work extended the reproducibility study of pairwise comparisons to reproducibil-

ity for a final decision based on multiple pairwise t-tests, and considered a preclinical
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scenario, where multiple comparisons are performed, with their test results leading to a

final decision on an appropriate dose. Reproducibility of the final decision has not been

extensively studied in the literature. This thesis pointed out that this reproducibility is

notably lower than reproducibility for pairwise comparisons. Decision makers should take

into account the low reproducibility of the final decision.

An algorithm for calculating NPI-RP estimates for the WMT, using the sampling

of orderings, was presented. On a preclinical test scenario dataset, NPI-RP estimates

for the WMT were studied alongside NPI-B-RP for the WMT and it was concluded

that there is consistency between the two measures: NPI-B-RP lies between estimates

of lower and upper reproducibility probability. Estimating NPI-RP for the t-test via the

sampling of orderings is more challenging than for the WMT. This thesis outlined two

different approaches to such calculation: either the focus can be on the numerator or

on the denominator in the calculation of the t-value. Both approaches were explored

using a preclinical test scenario: NPI-B-RP was in between the lower and upper NPI-RP

estimates for both approaches.

Lastly, NPI reproducibility was studied for the rate of growth measure data. Repro-

ducibility was calculated for three different studies. In all of these studies, the following

reproducibility probabilities were calculated for the original test analysis: NPI-B-RP and

NPI-RP estimates were calculated for the WMT and NPI-B-RP were calculated for the

growth rate inhibition significance analysis. This section showed that reproducibility can

also be calculated when the statistical analysis is not solely based on the p-values. It

confirmed the previous observations: that test statistic close to the threshold value is

linked to low reproducibility.
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5.2 Further research suggestions

This research suggests many opportunities for further research. Section 5.2.1 focuses on

further research related to small-sample bootstrap and Section 5.2.2 presents ideas for

further work related to NPI reproducibility.

5.2.1 Further research related to small-sample bootstrap

The findings and methodology of this thesis could be further explored through a simulation

study, which would provide more insight into small-sample bootstrap. One of the poten-

tial additional aspects could be the consideration of further distributions, e.g. Laplace,

Weibull, Beta, Uniform, Gamma distributions, and more Mixed-Normal distributions.

The simulation study of small-sample bootstrap has pointed out a potential effect of

heavy tails upon Hutson-B’s performance in the estimation of Q3 for Lognormally and

Exponentially distributed data. However, this has not been studied further. This thesis

recommends a further study of the effect of a heavy tail on the performance of Hutson-B,

as well as on other bootstrap methods (Banks-B and NPI-B). Such a study could be, for

example, carried out on two Beta distributions. We would expect that NPI-B would be

the least affected bootstrap method, given its large variability of bootstrap samples.

This thesis has explored the effect of the choice of the left and right bounds of support

on the estimation performance of Banks-B and NPI-B in the small-sample bootstrap study,

and on NPI-B-RP and NPI-RP estimates in the NPI reproducibility analysis. Both finite

and infinite ranges were explored, concluding that the choice of range for NPI-B and

Banks-B has an effect on the bootstrap method performance. This work would encourage

further study into the effect of the range choice. Hutson-B has been defined only on a

full infinite line (−∞,∞) and on [0,∞). It would be of interest to consider developing

Hutson-B for finite interval.

Moreover, Hutson [112] developed a sigmoidal quantile function estimator and a hybrid

quantile function estimator, which were not considered in this research. It would be of

interest for future research to study a variation of Hutson-B, using a different quantile

function estimator, for small samples.

This thesis briefly studied the BCa confidence intervals in the bootstrap comparison
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study at bootstrap performance in estimation. The study excluded bootstrap-t confidence

intervals. Further research into using BCa confidence intervals with NPI-B and Efron-B

for the estimation of IQR, and with Hutson-B and Banks-B for the estimation of Q1 and

Q3 for Lognormally distributed data would be meaningful, as would a study of bootstrap-t

confidence intervals.

The findings relating to the estimation and prediction of IQR are inconclusive and a

future study could carry out further investigation. IQR is usually not commonly calculated

for small samples. Thus, this study would be more for theoretical interest rather than for

practical purposes.

In Appendix A.1, the issue of different types of quantile calculations leading to different

sample statistics is briefly addressed. The type of quantile calculation has not notably

affected the conclusions regarding the bootstrap methods’ performance in the estimation

of population characteristics. However, it would be meaningful to explore which type is

the most suitable for calculating sample quantiles for small samples.

It would be of practical interest to look further into the use of bootstrap hypothesis

testing with smaller sample sizes, possibly considering Banks-B as an alternative bootstrap

method to Efron-B, especially where the relevant population characteristics are mean or

variance. This thesis has carried out a small-scale study of using Banks-B instead of Efron-

B in a bootstrap hypothesis study. The two-sided t-test is commonly used in preclinical

research, as a biomarker or a safety outcome variable could change in either direction.

Future study could explore bootstrap hypothesis testing for real-life test scenarios where

the two-sided t-test is used. It might be of interest to explore further whether Banks-B

would perform better than Efron-B in cases where the sample sizes of the original samples

are unequal, and where the data comes from a variety of distributions. Examples of other

applications for which Banks-B could be explored were presented in Section 2.2. These

include: the power and sample size calculation, the estimation of standard errors and

confidence intervals, the estimation of immune parameters, and the safety assessment in

preclinical pharmacokinetics and toxicokinetics.

Lastly, although the bootstrap method does not assume a particular underlying distri-

bution, it does assume that the data is representative of its population. With small sample

sizes, there is no guarantee that this is the case. Linked to small-sample bootstrap, the
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following questions arise: can small samples satisfy this criterion and - if so - how small

can the sample size be to be sufficiently representative of the population? Answering

these questions is beyond the scope of this thesis. This problem does not only arise for

the bootstrap method, but also for any other statistical analysis of small samples. The

logical recommendation would be to increase sample sizes, but in preclinical research it is

often not possible, due to financial and ethical restrictions. Sometimes a smaller sample

size can be a result of missing data, which is common in preclinical research. Thus a

practitioner can only influence the choice of the statistical analysis. The availability of

more tools can help the decision-maker to make a more informed choice. Both bootstrap

and statistical reproducibility are additional measures that can aid the decision-maker.

This thesis concludes that small-sample bootstrap is a topic that has potential and it

deserves more research attention. For further application of bootstrap methods on small

samples, it would be beneficial to have tools to guide decision-makers in how to choose

which bootstrap method is suitable for their purposes.

5.2.2 Further research related to NPI reproducibility

The main challenge is to apply NPI reproducibility to many real-world test scenarios,

and to use it as an input into actual decision processes. This thesis focused on the

WMT and the t-test. At the moment, NPI reproducibility can be calculated for a limited

number of tests; apart from the WMT and the t-test, this includes the quantile test and

the precedence test [5], likelihood ratio tests [144], the one-sample Sign Test, and the

two-sample Kolmogorov-Smirnov Test [31].

In preclinical research, time progression is often recorded. In such experiments, an

increase of a particular measure, such as a tumour or weight, is being recorded over time.

Linear regression is often used to analyse such data. In order to be able to apply NPI

reproducibility to linear regression, more research work needs to be carried out on NPI

application in more dimensions. Moreover, in order to enable the calculation of NPI repro-

ducibility for a wider spectrum of tests, more research is required on the reproducibility

for data, which are integers, categorical or right-censored.

Hill’s assumption A(n), on which NPI is based, does not allow for ties, i.e. repeated

values. This problem was solved in this thesis by using the jitter function in R which
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adds a small amount of noise to a numeric vector. Further research could explore other

ways of solving this problem. For example, in the case of repeated values, a value could be

sampled from an interval [x, x], i.e. if this interval was chosen, the value x would always be

generated. This alternative solution could be explored in more depth in future research.

This thesis only considered scenarios where the original test scenario was carried out.

The NPI methodology could be used in cases where both the original and the replicate

experiment are carried out. Further study could investigate the potential conclusions to

be drawn from the NPI reproducibility of both: the original and the replicate experiment,

on the reproducibility of a second repeat of the experiment. The starting point of such

exploration would be a practical application example.

Follow-up actions in case of low reproducibility are also important. Research into this

has not yet been reported in the literature. The current definition of NPI reproducibility

requires that the sample sizes of the original and the future samples are assumed to be

equal. It would be of interest to study reproducibility with an adjusted definition, which

would enable the future sample to be smaller or larger than the original sample, while

all the other circumstances of the experiment would stay the same. This thesis has not

addressed this, however, mathematically, this should not be a problem. The assumption

of exchangeability might have to be rethought in such circumstances.

In conclusion, both the quantification of statistical reproducibility, and the use of the

bootstrap method with small samples have potential to become more commonly used com-

putational tools in preclinical research, helping decision-makers to make more informed

choices. Given that translating preclinical to clinical research is a problem in pharmaceu-

tical research, having more measures and tools available could improve efficiency in the

field.



Appendix A

Additional material relevant to

Chapter 2

A.1 The influence of using different quantile types

upon the bootstrap performance in estimation

This is an extension to Section 2.4.2, where the performance in estimation of population

characteristics was explored for the Normal distribution. The simulation study presented

in Section 2.4.2 employed Type 7, Q̂7(p), to calculate sample quantile and IQR, which is

the default type in R. Hyndman and Fan [114] defined and compared different types of

quantiles. Quantile types 4 through 9 can be used for continuous samples and this section

briefly explores these.

For a distribution function, F (x), quantile of a distribution is defined as follows [114]:

F−1(p) = inf{x : F (x) ≥ p}, 0 < p < 1 (A.1.1)

Based on an ordered sample of independent observations X(1), . . . , X(nx), sample quantiles

provide estimation of their population counterparts [114]. Sample quantiles of type i can

be written as [114]:

Q̂i(p) = (1− γ)X(j) + γX(j+1),where
j −m
nx

≤ p <
j −m+ 1

nx
, 1 ≤ i ≤ 9 (A.1.2)

for some m ∈ R and 0 ≤ γ ≤ 1. Constant m is fixed for each sample quantile type. The

value of γ is a function of j = bpnx +mc and g = pnx +m− j. bpnx +mc stands for the
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largest integer not less than (pnx +m) [114].

For types 4-9, Qi(p) is a continuous function of p, γ = g. The choice of pk and m

depends on the type i of quantile, Q̂i(p).

Q̂4(p) : m = 0, pk =
k

nx
(A.1.3)

Q̂5(p) : m =
1

2
, pk =

k − 1
2

nx
(A.1.4)

Q̂6(p) : m = p, pk =
k

nx + 1
(A.1.5)

Q̂7(p) : m = 1− p, pk = (k − 1)/(nx − 1) (A.1.6)

Q̂8(p) : m =
(p+ 1)

3
, pk =

k − 1
3

nx + 1
3

(A.1.7)

Q̂9(p) : m =
p

4
+

3

8
, pk =

k − 3
8

nx + 1
4

(A.1.8)

For small sample sizes, using different type of quantile seems to be making a difference

on the calculation of the sample statistic. Figure A.1 displays Algorithm 1 outputs for the

estimation of Q1 for n = 4, 10 for different quantile types. The biggest discrepancy is seen

for Efron-B. For n = 4, the study conclusions remain the same, except that for Q̂4(p) and

Q̂6(p), for n = 4, NPI-B is the best performing bootstrap method from the perspective

of both metrics of assessment, whereas for the other quantile types, Banks-B has the

lowest χ2-value and NPI-B has the best coverage at 90% CI. For n = 10, the choice of the

quantile type makes an impact on whether Banks-B or Hutson-B is the better performing

bootstrap method. Thus, results vary when different types are used. Nevertheless, for

most types, the actual recommendation of this thesis to use either Hutson-B or Banks-B

for the estimation of median for Normally data remains. Similar conclusion is made for

the estimation of Q3 for both n = 4 and n = 10. These considerations deserve further

research attention.

The simulation outputs for the estimation of median for n = 4, 10 using different

quantile types are presented in Figure A.2. From the figure, it can be inferred that the

choice of the quantile type does not influence the conclusions regarding the bootstrap per-

formance in the estimation of median for Normally distributed data: Banks-B is the best

performing bootstrap method for n = 4, both Banks-B and Hutson-B perform similarly
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Figure A.1: Coverage at 90% CI and χ2-values, estimation of Q1, N(1,1), n = 4, 10, finite

(Approach I) NPI-B and Banks-B, different types of sample quantiles, 20 simulations
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Figure A.2: Coverage at 90% CI and χ2-values, estimation of median, N(1,1), n = 4, 10,

finite (Approach I) NPI-B and Banks-B, different types of sample quantiles, 20 simulations

well for n = 10 and Efron-B is the worst performing bootstrap method. Efron-B performs

particularly badly for Q̂4(p). The Efron-B’s performance in estimation, from the evalua-

tion of both metrics of assessment, differs the most depending on what quantile type is

used. Figure A.2 shows that in the estimation of median for n = 4, 10, using Type 4 makes

Efron-B perform notably worse, from the perspective of both metrics of assessment. It is

not a problem that Efron-B is the most affected bootstrap method as this work does not

recommend the use of Efron-B for small samples anyway. The question of what type is

the most suitable for calculating sample quantiles for small sample sizes remains outside

the scope of this thesis. Further research could investigate this topic further.
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Figure A.3: Coverage at 90% CI and χ2-values, estimation of Q3, N(1,1), n = 4, 10, finite

(Approach I) NPI-B and Banks-B, different types of sample quantiles, 20 simulations

The choice of pk has the biggest impact the performance in the estimation of IQR,

especially on the χ2-values and the coverage at 90% CI. For example, for n = 4, χ2-value

is the lowest for Banks-B for Type 7, for Banks-B for Types 4 and 5, and for Hutson-B for

Types 6 and 8, as can be seen in Figure A.4. Given that this thesis does not recommend

the use of small-sample bootstrap for the estimation of IQR, this discrepancy is not of a

major concern.
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Figure A.4: Coverage at 90% CI and χ2-values, estimation of IQR, N(1,1), n = 4, 10, finite

(Approach I) NPI-B and Banks-B, different types of sample quantiles, 20 simulations

A.2 Bootstrap method performance for very small

samples

A brief discussion regarding whether bootstrap methods can be used when the sample

size is as small as n = 3, or even smaller, n = 2, follows. A simulation has been carried

out to find out, using finite Approach I for Banks-B and NPI-B. The plots for simulation

outcomes for sample sizes n = 2, 3, 4 are displayed in Figures A.5, A.6 and A.7, sample

size n = 4 is included to show a pattern. As expected, Efron-B performs very poorly

in the estimation of all the studied statistics for n = 2, 3 (very low coverage at 90% CI
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Figure A.5: Coverage at 90% CI and χ2-values, estimation of mean and variance, N(1,1),

n = 2, 3, 4, finite NPI-B and Banks-B, 20 simulations
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Figure A.6: Coverage at 90% CI and χ2-values, estimation of Q1 and Q3, N(1,1), n =

2, 3, 4, finite NPI-B and Banks-B, 20 simulations



218

50

60

70

80

90

2 3 4
Sample size

C
ov

er
ag

e 
at

 9
0%

 C
I

Bootstrap NPI Banks Hutson Efron

Estimation of median, N(1,1), finite bootstrap

(a)

25

50

75

2 3 4
Sample size

C
ov

er
ag

e 
at

 9
0%

 C
I

Bootstrap NPI Banks Hutson Efron

Estimation of IQR, N(1,1), finite bootstrap

(b)

0

1000

2000

3000

4000

5000

2 3 4
Sample size

χ2 −
 v

al
ue

Bootstrap NPI Banks Hutson Efron

Estimation of median, N(1,1), finite bootstrap

(c)

0

2000

4000

6000

8000

2 3 4
Sample size

χ2 −
 v

al
ue

Bootstrap NPI Banks Hutson Efron

Estimation of IQR, N(1,1), finite bootstrap

(d)

0

50

100

150

200

2 3 4
Sample size

χ2 −
 v

al
ue

Bootstrap NPI Banks Hutson

Estimation of median, N(1,1), finite bootstrap (zoomed)

(e)

0

50

100

150

200

2 3 4
Sample size

χ2 −
 v

al
ue

Bootstrap NPI Banks Hutson

Estimation of IQR, N(1,1), finite bootstrap (zoomed)

(f)

Figure A.7: Coverage at 90% CI and χ2-values, estimation of median and IQR, N(1,1),

n = 2, 3, 4, finite NPI-B and Banks-B, 20 simulations
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and high χ2-value). When the simulations are run for n = 3 for the estimation of mean

(Figure A.5), there is under-coverage for all four bootstrap methods, however NPI-B

has the lowest under-coverage at 90% CI and Hutson-B has the lowest χ2-value, closely

followed by Banks-B and NPI-B. Thus, Hutson-B and NPI-B perform relatively well in

the estimation of mean for n = 3. For the estimation of mean for n = 2, Hutson-B is the

best performing bootstrap, by considering both metrics of assessment. For the estimation

of variance, for both sample sizes, n = 2, 3 (Figure A.5), Hutson-B is the best performing

bootstrap, considering both metrics of assessment. At n = 3, Hutson-B has almost ideal

coverage at 90% CI. In the estimation of Q1 and Q3 (Figure A.6), for n = 3, Banks-B is

the best performing bootstrap, considering both metrics, but for n = 2, Hutson-B is the

best performing bootstrap method. In the estimation of median (Figure A.7), Hutson-B

is the best performing bootstrap method for n = 2 and for n = 3, NPI-B has the best

coverage at 90% CI and Banks-B has the lowest χ2-value, thus, it is unclear what is

the best performing bootstrap method for n = 3 for the estimation of median. For the

estimation of IQR (Figure A.7), Hutson-B is the best performing bootstrap method for

both n = 2, 3. Overall, χ2-values are still quite large for sample sizes n = 2, 3 for Banks-B,

Hutson-B and NPI-B. It can be concluded that Banks-B, Hutson-B and NPI-B can be

still considered for the use for the estimation of mean, variance and quantiles for Normally

distributed data, however, the outcomes of such analysis should be considered with great

care, given that there is no guarantee that such small sample is an accurate representation

of the population. The bootstrap method should not be used for the estimation of IQR

for n = 3 and lower.

A follow-up question is how the bootstrap method behaves when estimating mean

for n = 1. This investigation has been done only out of theoretical interest, in practice

bootstrap methods are not carried out for one observation. This topic is explored only for

finite (Approach III) Banks-B and NPI-B because for those bootstrap methods a value

is sampled from an intervals between observations, not from the sample observations.

One datapoint is too small to estimate parameters required for finite (Approach I or II)

and infinite NPI-B or Banks-B, or for Hutson-B. We created an interval around the one

observation by subtracting and adding a value v to the one observation for v = 0.1, 0.5, 1

(finite Approach III, Section 2.3.3). The performance of NPI-B and Banks-B is very
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Algorithm 11 Bootstrap variability in the estimation of statistics

1: Generate N datasets from a chosen distribution

2: For each dataset, generate B bootstrap samples;

3: Calculate the statistics for each of the bootstrap samples, θ̂∗(b), for b ∈ {1, . . . , B};

4: Calculate the average bootstrapped statistics θ∗ =
∑B

b=1 θ̂
∗(b)/B;

5: Calculate s2
θ̂∗

=
∑B

b=1(θ̂∗(b)− θ∗)2)/(B − 1);

6: In total carry out Steps 2-5 N times, for all the generated datasets in Step 1.

similar for all v values. This is because for n = 1, Banks-B and NPI-B sample a value in

exactly the same way (only from the second bootstrapped value, their algorithms differ).

There is large under-coverage at 90% CI and large χ2-value, but the performance in both

metrics improves as v increases. For example, for v = 0.5, the average coverage at 90%

CI is 34.5 % for both bootstrap methods and χ2 = 3599 for NPI-B and χ2 = 3423 for

Banks-B.

A.3 Variability of bootstrap methods outcomes for

Normally distributed data

This section reports the initial study of the variability of bootstrap methods outcomes.

The variability is assessed via Algorithm 11. This algorithm is applied to each bootstrap

method for mean, variance and median (Figure A.8) for small sample size (n = 4, 6, 8, 10).

For mean and median, we study NPI-B and Banks-B with finite range (Approach I, Section

2.3.3) and for variance we study both finite range (Approach I, Section 2.3.3) and infinite

range. N is set to 1000 and B is set to 1000. The conclusions for NPI-B, Banks-B

and Efron-B samples are more consistent than for Hutson-B. Of these three bootstrap

methods: NPI-B has the largest variance, Banks-B has the second largest variance and

Efron-B has the smallest variance. Moreover, as n decreases, the variance of bootstrap

outcomes decreases for all four bootstrap methods. BinHimd [31] explored this for three

bootstrap methods (Efron-B, NPI-B and Banks-B) on finite range for sample sizes n =

20, 50, 100, 200, 500, 1000 and the conclusion for small samples are consistent with the

conclusions for large samples. Choosing infinite range for the estimation of variance for
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Figure A.8: Variability of bootstrap methods, estimation of mean, variance and variance,

N(1,1), n = 4, 6, 8, 10

NPI-B and Banks-B leads to large variance of bootstrap samples. The difference is visible

more for NPI-B and for Banks-B. The contrast between the finite and infinite range is

the clearest for n = 4 out of all studied sample sizes.

Variance of Hutson-B outputs depends on the chosen population characteristic that is

being estimated. In the estimation of mean, Hutson-B has larger variance than NPI-B for

n = 4, similar variance to NPI-B for n = 6 and smaller variance than NPI-B for n = 8, 10,

where it has larger variance than Banks-B and Efron-B. In the estimation of median,

Hutson-B has the second largest variance (after NPI-B) for n = 4 and similar variance as

Banks-B for n = 6, 8, 10. In the estimation of variance, Hutson-B has the largest variance
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out of the four bootstrap methods. There might be a link between Hutson-B having the

largest variance for the estimation of variance and being the best performing bootstrap

method for the estimation of variance for Normally distributed data. Larger variance is

typically not good for the estimation, as it may lead to over-coverage. However, this topic

is left as a topic for future research.

A.4 The effect of the choice of range on the bootstrap

method performance

A.4.1 Normally distributed data

Finite range (Approach I. and Approach III. with v = 0.1) and infinite range have been

briefly discussed in Chapter 2. Figure A.9 also includes Approach II, which has been only

introduced, but not used throughout Chapter 2. This figure illustrates that the choice of

range makes an impact on the performance of both NPI-B and Banks-B in the estimation

of mean for Normally distributed data. For different sample sizes, different range selection

leads to the best bootstrap method performance. Finite Approach II is to a large extent

influenced by the choice of c. For example, for the studied case, for both Banks-B and

NPI-B, setting c to a large value, i.e. c = 3, leads to large χ2-values and to over-coverage

at 90% CI, this over-coverage increases as n increases. On the other hand, setting c to a

very small value, i.e. c = 0.2, leads large under-coverage, especially for n = 4, 6. Further

study into range choices for these two bootstrap methods is left as a topic for future

research.
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Figure A.9: Coverage at 90% CI and χ2-values, estimation of mean, N(1,1), n = 4, 6, 8, 10,

various ranges for NPI and Banks-B, 20 simulations

A.4.2 Exponentially and Lognormally distributed data

Section 2.4.3 used half-infinite range for data defined on [0,∞). The justification for this

choice is provided here. From Figures A.10 and A.11, it can be inferred that Banks-B

and NPI-B are better performing in estimation of variance of data from Exponential and

Lognormal distribution when half-infinite range is used rather than when finite range is

used. Thus, this work does not recommend the use of finite range for data defined on

[0,∞) instead of half-infinite range.
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Figure A.10: Coverage at 90% CI and χ2-values, estimation of variance, Exp(1), n =

4, 6, 8, 10, finite (Approach I) versus half-infinite NPI and Banks-B, 20 simulations

A.4.3 Mixed-Normally distributed data

In Section 2.4.4, finite range was assumed for Banks-B and NPI-B when estimating pop-

ulation characteristic for data from the Mixed-Normal distribution. Further simulations

were carried out for Mixed-Normal A using infinite range for the estimation of mean

(Figure A.12) and variance (Figure A.13). The conclusion of the additional simulation is

that using infinite range does make a difference, especially for n = 4 where it improves

coverage at 90% CI for both estimation of mean and variance. It also improves χ2-values

for all the studies sample sizes. The study of range for Mixed-Normal distribution could

undergo more scrutiny, especially if a more complex simulation study is carried out in
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Figure A.11: Coverage at 90% CI and χ2-values, estimation of variance, LN (m=1, sd=1),

n = 4, 6, 8, 10, finite (Approach I) versus half-infinite NPI and Banks-B, 20 simulations

the future. Finite bootstrap is less computationally demanding, whereas infinite range

improves coverage at n = 4 and reduces χ2-values. If the reduction in χ2-value is more

important to the practitioner, than infinite range would be a reasonable choice.
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Figure A.12: Coverage at 90% CI and χ2-values, estimation of mean, Mixed-Normal A,

n = 4, 6, 8, 10, finite versus infinite bootstraps, 20 simulations

A.5 Performance in estimation of smoothed Efron-B

by kernel (Kernel-B)

Chapter 2 focused on the bootstrap method performance of four bootstrap methods:

Efron bootstrap, Banks bootstrap, NPI bootstrap and Hutson bootstrap. There is another

bootstrap method that could be used with small sample sizes: smoothed Efron-B by kernel

(Kernel-B). This bootstrap method was not included in the main investigation because

its performance depends on the choice of smoothing parameter. However, this bootstrap

method seems promising and, thus, some initial finding are reported here. Section A.5.1
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Figure A.13: Coverage at 90% CI and χ2-values, estimation of variance, Mixed-Normal

A, n = 4, 6, 8, 10, finite versus infinite bootstraps, 20 simulations

will introduce Kernel-B and Section A.5.2 will compare the performance of Kernel-B and

Banks-B in the estimation of population characteristics for Normally, Exponentially and

Lognormally distributed data.

A.5.1 Kernel-B

An alternative smoothened bootstrap method to Banks-B and Hutson-B is smoothened

bootstrap using kernels (Kernel-B) [8, 76, 83, 168, 191], where the repeated resampling is

performed from the smoothed version F̂ of the empirical distribution of the observed data

Fn. Kernel-B has received more attention than Banks-B and Hutson-B in the literature.
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Polansky [167] explored the empirical coverage of Kernel-B, using bootstrap-t confi-

dence intervals, for small samples (n = 5, 10, 20) for the mean, variance and correlation.

Polansky [167] called this smoothed bootstrap-t and in the simulation study he compared

it to Efron-B, using BCa confidence intervals, and bootstrap-t confidence intervals, and

additive corrected bootstrap-t. He considered 90% and 95% coverage for the two-sided

interval. Polansky [167] concluded that for mean and variance, Kernel-B can decrease

coverage error.

Silverman [190] defined univariate kernel density estimator as follows:

f̂h(x) =
1

nh

n∑
i=1

K
(x−Xi

h

)
(A.5.9)

where h is the bandwidth, x is a vector of data points used for estimating the kernel

density and K is the kernel. There is a variety of kernel types to choose from, such as

Epanechnikov, Biweight, Triangular, Gaussian and Rectangular [190]. This thesis only

explores Gaussian kernel, see Equation (A.5.10), as the shape of this kernel does not

change regardless of the bandwidth [62].

K(u) =
1√
2π
e−u

2/2, u ∈ R (A.5.10)

Kernel-B draws m data points with replacement from the initial dataset of size n, as

with Efron-B. Then random noise from kernel density K is added to each of the drawn

values. Repeating this procedure, in total B bootstrap samples are created. An estimate

θ̂ of statistic θ is evaluated for each bootstrap sample. In more detail, the procedure to

draw samples from univariate kernel density is as follows (Silverman [190]):

1. Calculate h using the original dataset.

2. Sample m data observations with replacement from n original data observations to

create x∗1, x
∗
2, . . . , x

∗
m.

3. Generate m random values ε1, ε2, . . . , εm from the kernel probability density K.

4. Create a bootstrap sample y1, y2, . . . , ym by setting yi = x∗i + hεi for i = 1, . . . ,m.

5. Repeat Steps 2 - 4 in total N times to create N Kernel-B samples.
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Bandwidth h is also called window width or smoothing parameter in the literature.

However, this thesis adopts the word bandwidth. The bandwidth determines the extent

of smoothing. Larger bandwidth increases the variance proportionally. The choice of h in

Silverman [190] is discussed with focus on h which minimises the approximate mean inte-

grated square error. Note that Silverman’s calculation of h was not created for smoothing

the bootstrap, it was created for univariate density estimation. Wand and Jones [205]

discussed methods for selecting the bandwidth: the plug-in bandwidth selection, the least

squares cross-validation, the bias cross-validation, the estimation of density functionals

and the smoothed cross-validation bandwidth selection. Similarly to the bandwidth se-

lection discussed in Silverman [190], these are not specifically designed for the smoothed

bootstrap method but for kernel smoothing in general. Kernel smoothing is a technique

used for nonparametric estimation of functions [205]. This thesis limits the scope to

the study of plug-in bandwidth selection and three different types of plug-in bandwidth

selection are considered [190].

• Type 1: h = 1.06σxn
− 1

5 ;

• Type 2: h = 0.79IQR(x)n−
1
5 ;

• Type 3: h = min(σx, 0.90( IQR(x)
1.34

)n−
1
5 ).

The outputs of Kernel-B are affected by the choice of the kernel type and the band-

width. This research does not focus on Kernel-B because the outputs of bootstrap meth-

ods are affected by these choices and also by the underlying distribution of the data. As

already discussed, for small sample sizes it is not possible to ascertain the exact under-

lying distribution of the data. Nevertheless, Section A.5.2 briefly compares Banks-B and

Kernel-B. The performance of Kernel-B in the estimation of mean, median, and variance

for samples n ≤ 10 is considered. Comparison of these two smoothed bootstrap method

has not been explored in the literature yet. For Kernel-B implementation, the kernelboot

R package can be used, however, this function has limited choice of the smoothing pa-

rameter for univariate one-dimensional samples. Thus, a new function was written in

R.
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A.5.2 Kernel-B vs. Banks-B

A small simulation study was run to explore the performance of Kernel-B in estimation.

Three different ways of calculating the plug-in estimate of bandwidth, defined in Section

A.5.1, were explored. Kernel-B with some types of bandwidth selection performed well

in estimation, especially in the estimation of median. The simulation outputs of Kernel-

B alongside outputs for Banks-B in the estimation of mean, variance, Q1, median, Q3

and IQR for Normally, Lognormally and Exponentially distributed data are displayed in

Figures A.14, A.15, A.16 A.17, A.18 and A.19, respectively.

This initial study concluded that Kernel-B with different types of bandwidth per-

formed differently in the estimation of different population characteristics, for different

sample sizes and for data with different underlying distributions. Table A.1 sums up what

bootstrap methods, a choice from Banks-B and Kernel-B Type 1 to Type 3, performed

the best at various circumstances (different sample sizes, different population character-

istics of interest, different underlying distributions). For Exponentially and Lognormally

distributed data, for all sample sizes, Banks-B performs better than all types of Kernel-B

in the estimation of mean and variance. Another inference made from the figures is that

Kernel-B performs better for the Normal distribution than it does for the Exponential

or Lognormal distribution. Even though there are cases where Kernel-B performs better

than Banks-B, for example when estimating median at n for all three studied distribu-

tions, there is not one type of Kernel-B which would perform consistently well in the

estimation of one particular population characteristic across different sample sizes.

Given that for small sample sizes Kernel-B does not perform well in the estimation of

mean and variance for some of the studied distributions (i.e. Exponential and Lognormal),

this thesis would not recommend the use of Kernel-B for the estimation of mean or

variance. This study did not provide clear recommendations on Kernel-B use for the

estimation of quantiles and IQR. Further research into the performance of Kernel-B in

the estimation of quantiles (Q1, median, and Q3) would be meaningful. Moreover, further

study could investigate the use of other bandwidths for Kernel-B when making inference

for small samples.
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Figure A.14: Coverage at 90% CI and χ2-values, estimation of mean, N(1,1), LN(mLN =

−0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, Banks-B vs. Kernel-B (T1, T2, T3),

20 simulations
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Figure A.15: Coverage at 90% CI and χ2-values, estimation of variance, N(1,1),

LN(mLN = −0.347, s2
LN = 0.8332) and Exp(1) , n = 4, 6, 8, 10, Banks-B vs. Kernel-B

(T1, T2, T3), 20 simulations
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Figure A.16: Coverage at 90% CI and χ2-values, estimation of Q1, N(1,1), LN(mLN =

−0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, Banks-B vs. Kernel-B (T1, T2, T3),

20 simulations
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Figure A.17: Coverage at 90% CI and χ2-values, estimation of median, N(1,1), LN(mLN =

−0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, Banks-B vs. Kernel-B (T1, T2, T3),

20 simulations
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Figure A.18: Coverage at 90% CI and χ2-values, estimation of Q3, N(1,1), LN(mLN =

−0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, Banks-B vs. Kernel-B (T1, T2, T3),

20 simulations
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Figure A.19: Coverage at 90% CI and χ2-values, estimation of IQR, N(1,1), LN(mLN =

−0.347, s2
LN = 0.8332) and Exp(1), n = 4, 6, 8, 10, Banks-B vs. Kernel-B (T1, T2, T3),

20 simulations
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Estimated Sample Distribution

characteristic size Normal Lognormal Exponential

Mean

4 Banks-B Banks-B Banks-B

6 Banks-B Banks-B Banks-B

8 Kernel-B-T2 Banks-B Banks-B

10 Kernel-B-T2 Banks-B Banks-B

Variance

4 Banks-B Banks-B Banks-B

6 Kernel-B-T1 Banks-B Banks-B

8 Banks-B Banks-B Banks-B

10 Banks-B Banks-B Banks-B

Q1

4 Banks-B Banks-B Banks-B

6 Kernel-B-T1 Kernel-B-T3 Banks-B

8 Kernel-B-T3 Banks-B Banks-B

10 Kernel-B-T3 Banks-B Banks-B

Median

4 Banks-B Banks-B Banks-B

6 Kernel-B-T1 Banks-B Banks-B

8 Kernel-B-T2 Banks-B Kernel-B-T2

10 Kernel-B-T3 Kernel-B-T3 Kernel-B-T3

Q3

4 Banks-B Banks-B Banks-B

6 Banks-B Banks-B Banks-B

8 Kernel-B-T3 Banks-B Banks-B

10 Kernel-B-T3 Banks-B Banks-B

IQR

4 Banks-B Banks-B Banks-B

6 Kernel-B-T1 Banks-B Banks-B

8 Kernel-B-T3 Kernel-B-T2 Banks-B

10 Kernel-B-T3 Kernel-B-T2 Kernel-B-T1

Table A.1: Table summarising whether the Banks-B or Kernel-B method performs the

best in the estimation of various population characteristics for various small sample sizes

(n = 4, 6, 8, 10) and for various distributions (Normal, Lognormal, Exponential)



Appendix B

Additional material relevant to

Chapter 4

B.1 Reproducibility for the pairwise t-test

This section provides additional Tables to Section 4.3. NPI-B-RP for Approach II (with

c = 2) is presented in Table B.1. These outputs were displayed in Section 4.3 in the form

of a plot. The values of finite NPI-B (Approach I) and 2 ∗ IQR (Approach II, c = 2) for

each dose are presented in Table B.2. Table B.3 shows NPI-B-RP outputs for Approach II

(with c = 1.5, 3), Tables B.4 and B.5 display NPI-B-RP for t-test and WMT, respectively,

and Table B.6 shows NPI-B-RP for the infinite approach. The p-values in Tables B.1 and

B.6 are for t-test, without BH adjustment.
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Statistics of the real data Algorithm 1 output

Pairwise Reject p-value ES Cohen’s t-test WMT

? d min mean max min mean max

A vs. B Yes 0.0003 0.226 2.041 0.831 0.856 0.883 0.822 0.850 0.881

B vs. C Yes 0.0000 0.366 3.213 0.963 0.976 0.989 0.941 0.959 0.969

C vs. D Yes 0.0007 0.178 1.778 0.680 0.718 0.755 0.724 0.762 0.789

D vs. E Yes 0.0191 0.097 1.038 0.455 0.497 0.532 0.514 0.553 0.581

E vs. F No 0.5977 -0.013 -0.115 0.883 0.913 0.935 0.918 0.936 0.952

Table B.1: Statistical and reproducibility analysis for all test scenario’s pairwise compar-

isons - Approach II (with c = 2)

Dose Maxium distance 2*IQR

A 0.193 0.149

B 0.071 0.376

C 0.085 0.393

D 0.105 0.112

E 0.098 0.226

F 0.143 0.186

Table B.2: Maximal distance and 2*IQR for each dose used in finite bootstrap

Algorithm 1 output

t-test WMT

Pairwise 1.5*IQR 3*IQR 1.5*IQR 3*IQR

min mean max min mean max min mean max min mean max

A vs. B 0.871 0.895 0.913 0.747 0.774 0.804 0.852 0.874 0.897 0.775 0.807 0.837

B vs. C 0.984 0.992 0.997 0.898 0.924 0.941 0.972 0.984 0.994 0.899 0.920 0.946

C vs D 0.740 0.772 0.807 0.590 0.631 0.664 0.757 0.785 0.811 0.705 0.740 0.777

D vs E 0.497 0.536 0.595 0.552 0.586 0.622 0.532 0.566 0.601 0.505 0.534 0.574

E vs F 0.888 0.913 0.934 0.894 0.912 0.940 0.916 0.935 0.953 0.915 0.935 0.955

Table B.3: Reproducibility analysis for all test scenario’s pairwise comparisons - Approach

II (with c = 1.5 and c = 3)



240

Pairwise v=0.1 v=0.05 v=0.01

min mean max min mean max min mean max

A vs. B 0.939 0.956 0.970 0.964 0.977 0.987 0.975 0.988 0.996

B vs. C 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

C vs. D 0.836 0.876 0.906 0.890 0.911 0.928 0.918 0.937 0.957

D vs. E 0.550 0.589 0.619 0.587 0.627 0.662 0.625 0.657 0.707

E vs. F 0.891 0.912 0.929 0.889 0.912 0.931 0.878 0.911 0.932

Table B.4: NPI-B-RP for the t-test, all test scenario’s pairwise comparisons - Approach

III

Pairwise v=0.1 v=0.05 v=0.01

min mean max min mean max min mean max

A vs. B 0.885 0.912 0.944 0.917 0.940 0.954 0.931 0.953 0.971

B vs. C 0.998 1.000 1.000 0.999 1.000 1.000 1.000 1.000 1.000

C vs. D 0.830 0.854 0.879 0.853 0.882 0.904 0.870 0.897 0.924

D vs. E 0.568 0.610 0.645 0.612 0.651 0.682 0.645 0.682 0.740

E vs. F 0.916 0.933 0.952 0.909 0.932 0.949 0.913 0.935 0.960

Table B.5: NPI-B-RP for WMT, all test scenario’s pairwise comparisons - Approach III

Statistics of the real data NPI-B-RP

Pairwise Reject? p-value ES Cohen’s d t-test WMT

min mean max min mean max

A vs. B Yes 0.0003 0.226 2.041 0.914 0.931 0.949 0.869 0.895 0.919

B vs. C Yes 0.0000 0.366 3.213 0.994 0.998 1.000 0.992 0.997 1.000

C vs. D Yes 0.0007 0.178 1.753 0.838 0.865 0.898 0.815 0.844 0.869

D vs. E Yes 0.0191 0.097 1.038 0.548 0.588 0.620 0.581 0.617 0.672

E vs. F No 0.5977 -0.013 -0.115 0.886 0.909 0.932 0.914 0.934 0.953

Table B.6: Statistical and reproducibility analysis for all test scenario’s pairwise compar-

isons - Infinite range
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B.2 Reproducibility for the final decision

B.2.1 Original data

Similarly to Algorithm 1, Algorithm 2 can be applied with NPI-B with both finite and

infinite intervals. This section explores how the choice of range affects reproducibility of

the final decision. For finite NPI-B, the left (L) and the right (R) bounds of the support

for each dose are determined similarly as for the calculation of reproducibility for separate

pairwise comparisons. Approach II, introduced in Section 2.3.3, with c = 1 and c = 0.5, is

presented in Figures B.1 and B.2, respectively, and the infinite range approach is presented

in Figure B.3. Again, the same process has been repeated 5 times and only the first trial

is displayed. Nevertheless, the outputs were similar each time and the same pattern of

outcomes was shown throughout. As these illustrations show, the wider the range, the

smaller the reproducibility of the final decision. Widening the range had the same and

even larger effect on the results of Algorithm 2 as it did on the results of Algorithm 1. The

explanation here is the same as before: a wider range creates a larger overlap between

doses. The effect of this overlap is greater when more pairwise comparisons are carried

out.
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Figure B.4: Illustration of the final decision rule: Tree diagram for reproducibility of the

final decision for the modified data (Outputs of Step 5 of Algorithm 6), t-test, adjusted

p-value, finite range - Approach II, c = 0.5

B.2.2 Modified data

Reproducibility of the final decision of the modified dataset, studied in Section 4.4.2, has

been explored for various selections of tails. Reproducibility trees for the Approach II (for

c = 0.5, 1, 2) are displayed in Figures B.4, B.5 and B.6, respectively, and reproducibility

trees for the infinite approach in Figure B.7. Similarly to reproducibility of the final

decision of the original data, widening the range leads to a lower reproducibility of the

final decision for the modified data.

B.3 Outline of work leading to null findings

This section will briefly describe work carried out as part of this PhD project, which lead

to null findings. The importance of presenting null and negative findings has been already

highlighted in Section 3.4.2. In preclinical studies, data is not always well-behaved and

Normally distributed and the right statistical analysis is not always applied to the data.

This PhD work carried out a simulation study to investigate whether the reproducibility

measure can detect that a wrong statistical analysis was used. An example of a wrong

statistical analysis is the incorrect use of the t-test, i.e. when the t-test is applied to data
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Figure B.5: Illustration of the final decision rule: Tree diagram for reproducibility of the

final decision for the modified data (Outputs of Step 5 of Algorithm 6), t-test, adjusted

p-value, finite range - Approach II, c = 1
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Figure B.7: Illustration of the final decision rule: Tree diagram for reproducibility of the

final decision for the modified data (Outputs of Step 5 of Algorithm 6), t-test, adjusted

p-value, infinite range

that do not follow Normal distribution. NPI reproducibility was not aimed at detecting

the use of wrong statistical analysis, nevertheless, it has been briefly studied, as this

question was of interest to practitioners.

NPI-B-RP for the t-test were calculated via Algorithm 5 for three different distribu-

tions: Normal, Lognormal and Mixed-Normal. For each distribution, for several runs,

datasets were generated both under H0 and H1. The following details were recorded:

sample size n, whether data were generated under H0 or H1, parameters of the underly-

ing distribution/s, whether hypothesis was rejected or not-rejected for the t-test, Cohen’s

d, p-value for the t-test and NPI-B-RP for the t-test. In particular, the simulation study

focused on the relationship between p-values and NPI-B-RPs for t-test and whether this

is influenced by the underlying distribution of the data. The following conclusion was

drawn: NPI-B-RP did not detect the use of incorrect statistical test.



Appendix C

Selected R code

C.1 R code relating to Chapter 2

R code for all bootstrap methods and an example of the R code for the comparison of

bootstrap methods in their performance in both the estimation and prediction is provided

here.

Efron bootstrap

boots t rap e f r on <− function (x ,m,B) {

boots t rap f i n i t e i n t e r v a l <− matrix (nrow = B, ncol = m)

x <− sort ( x )

l l <− length ( x )

for ( i in 1 :B) { # This c y c l e c r ea t e s B boo t s t raps , each conta in ing m va lue s

for ( j in 1 :m) { # This c y c l e c r ea t e s m new va lue s from the o r i g i n a l i n t e r v a l s

j j<−sample ( 1 : l l , 1 , prob=rep (1/ l l , l l ) )

new value <− x [ j j ]

boots t rap f i n i t e i n t e r v a l [ i , j ] <− new value

}

}

return ( boots t rap f i n i t e i n t e r v a l )

}

Banks bootstrap

### Approach I

function banks <− function (x , m, B) {

x <− sort ( x )

n <− length ( x )

248
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## Firs t , c a l c u l a t e Le f t ( so ) and Right bound of support ( sn )

distance <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

d1 <− x [ ( k+1) ] − x [ k ]

distance <− c (distance , d1 )

}

max distance <− max(distance )

so <− min( x ) − max distance # Defines x 0 fo r x

sn <− max( x ) + max distance # Defines x {n+1} f o r x

x <− append(x , c ( so , sn ) , a f t e r = length ( x ) ) # Add s t a r t i n g and ending po in t

x <− sort ( x )

i n t 1 <− length ( x )−1

boots t rap f i n i t e i n t e r v a l <− matrix (nrow = B, ncol = m)

for ( i in 1 :B) { # This c y c l e c r ea t e s B boo t s t rap samples , each conta in ing m va lue s

for ( j in 1 :m) { # This c y c l e c r ea t e s m new va lue s from the o r i g i n a l i n t e r v a l s

j j <−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

new value <− runif (1 , min = x [ j j ] , max = x [ j j +1]) # Sample a va lue in t ha t i n t e r v a l

boots t rap f i n i t e i n t e r v a l [ i , j ] <− new value

}

}

return ( boots t rap f i n i t e i n t e r v a l )

}

### Approach IV

h a l f i n f i n i t e banks <− function (x , m, B) {

x <− sort ( x )

boots t rap h a l f i n f i n i t e <− matrix (nrow = B, ncol = m)

n <−length ( x ) # Count how many va lue s

i n t 1 <− n+1 # Count how many i n t e r v a l s

for ( i in 1 :B) {

for ( j in 1 :m) {

j j<−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

i f ( j j == 1) {

new value <− runif (1 , min = 0 , max = x [ j j ] ) # Generate a va lue from the i n t e r v a l

( j j −1, j j )

boots t rap h a l f i n f i n i t e [ i , j ] <− new value

}

else i f ( j j == i n t 1) {

repeat {

y0 <−rexp (1 , r a t e=log (n+1)/x [ n ] )

i f ( y0 > x [ n ] ) break

}

new value <− y0

boots t rap h a l f i n f i n i t e [ i , j ] <− new value

}

else {new value <− runif (1 , min = x [ j j −1] , max = x [ j j ] ) # Generate a va lue from the

i n t e r v a l ( j j −1, j j )
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boots t rap h a l f i n f i n i t e [ i , j ] <− new value

}

}

}

return ( boots t rap h a l f i n f i n i t e )

}

### Approach V

in s ta l l . packages ( ”msm” )

l ibrary (msm)

i n f i n i t e banks <− function (x , m, B) {

x <− sort ( x )

boots t rap i n f i n i t e <− matrix (nrow = B, ncol = m)

n <−length ( x ) # Count how many va lue s

i n t 1 <− n+1 # Count how many i n t e r v a l s

for ( i in 1 :B) {

for ( j in 1 :m) {

j j <−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

i f ( j j == 1) {

mmean <− ( x [ 1 ] + x [ n ] ) /2

vvar iance <− ( x [ n]−mmean)/qnorm(n/ ( i n t 1) )

new value <− rtnorm (1 , mean = mmean, sd = vvar iance , lower = −In f , upper = min( x )

) # Generate a va lue from the t a i l f o r (− in f , x1 )

boots t rap i n f i n i t e [ i , j ] <− new value

} else i f ( j j == i n t 1) {

mmean <− ( x [ 1 ] + x [ n ] ) /2

vvar iance <− ( x [ n]−mmean)/qnorm(n/ ( i n t 1) )

new value <− rtnorm (1 ,mean = mmean, sd = vvar iance , lower=max( x ) , upper=I n f ) #

Generate a va lue from the t a i l f o r ( xn , i n f )

boots t rap i n f i n i t e [ i , j ] <− new value

} else {new value <− runif (1 , min = x [ j j −1] , max = x [ j j ] ) # generate a va lue from

the i n t e r v a l ( j j −1, j j )

boots t rap i n f i n i t e [ i , j ] <− new value

}

}

}

return ( boots t rap i n f i n i t e )

}

NPI bootstrap

### Approach I

NPI f i n i t e I <− function (x ,m,B) {

x <−sort ( x )

n <− length ( x )

## Firs t , c a l c u l a t e Le f t ( so ) and Right bound of support ( sn )

distance <− vector ( )
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for ( k in ( 1 : ( n−1) ) ) {

d1 <− x [ ( k+1) ] − x [ k ]

distance <− c (distance , d1 )

}

max distance <− max(distance )

so <− min( x ) − max distance # Defines x 0 fo r x

sn <− max( x ) + max distance # Defines x {n+1} f o r x

xx <− sort (c ( so , x , sn ) ) # Add s t a r t i n g and ending po in t

n <− length ( xx )

lb <− matrix (c ( xx [ 1 : ( n−1) ] , rep (NA,m) ) ,B, n−1+m, byrow=TRUE) # In t e r v a l lower bound

w <− matrix (c ( xx [ 2 : n]−xx [ 1 : ( n−1) ] , rep (NA,m) ) ,B, n−1+m, byrow=TRUE) # In t e r v a l width

i i <− matrix ( 1 :B,B, 2 )

for ( j in 1 :m) {# This c y c l e at one go genera te s s t ep by s t ep a l l B boo t s t rap va lue s

i i [ , 2 ] <− sample (n−2+j ,B, replace=TRUE) # Sample an i n t e r v a l B times ( i . e . the s t a r t

o f the i n t e r v a l )

z <− runif (B) # Sample uni formly B va lue s from 0 to 1

lb [ , n−1+j ] <− lb [ i i ]+z∗w[ i i ] # Calcu la t e the va lue : the s t a r t o f the i n t e r v a l + the

width o f the i n t e r v a l ∗z \ in (0 ,1)

w[ , n−1+j ] <− (1−z )∗w[ i i ] # New i n t e r v a l added in

w[ i i ] <− z∗w[ i i ] # New width added in

}

return ( lb [ , n : ncol ( lb ) ] )

}

### Approach IV

h a l f i n f i n i t e npi <− function (x ,m,B) {

boots t rap h a l f i n f i n i t e <− matrix (nrow = B, ncol = m)

x <− sort ( x )

for ( i in 1 :B) { # This c y c l e c r ea t e s B boo t s t raps , each conta in ing m va lue s

data <− sort ( x )

for ( j in 1 :m) {

n <− length (data )

i n t 1 <− n+1 # Count how many i n t e r v a l s

j j<−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

i f ( j j == 1) {

new value <− runif (1 , min = 0 , max = data [ j j ] ) # Generate a va lue from the

i n t e r v a l ( j j −1, j j )

data <− append(data , new value , a f t e r = j j −1)

boots t rap h a l f i n f i n i t e [ i , j ] <− new value

} else i f ( j j == i n t 1) {

repeat {

y0 <−rexp (1 , r a t e=log (n+1)/data [ n ] )

i f ( y0 > data [ n ] ) break

}

new value <− y0

data <− append(data , new value , a f t e r = n)

boots t rap h a l f i n f i n i t e [ i , j ] <− new value
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} else {new value <− runif (1 , min = data [ j j −1] , max = data [ j j ] ) # Generate a va lue

from the i n t e r v a l ( j j −1, j j )

data <− append(data , new value , a f t e r = j j −1)

boots t rap h a l f i n f i n i t e [ i , j ] <− new value

}

}

}

return ( boots t rap h a l f i n f i n i t e )

}

### Approach V

l ibrary (msm)

i n f i n i t e npi <− function (x ,m,B) {

boots t rap i n f i n i t e <− matrix (nrow = B, ncol = m)

x <− sort ( x )

for ( i in 1 :B) { # This c y c l e c r ea t e s B boo t s t rap samples , each conta in ing m va lue s

data <− sort ( x )

for ( j in 1 :m) {

n <− length (data )

i n t 1 <− n+1 # Count how many i n t e r v a l s

j j <−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

i f ( j j == 1) {

mmean <− (data [ 1 ] + data [ n ] ) /2

vvar iance <− (data [ n]−mmean)/qnorm(n/ ( i n t 1) )

new value <− rtnorm (1 , mean = mmean, sd = vvar iance , lower = −In f , upper = min(

data ) ) # generate a va lue from the t a i l f o r (− in f , x1 )

data <− append(data , new value , a f t e r = 0)

boots t rap i n f i n i t e [ i , j ] <− new value

} else i f ( j j == i n t 1) {

mmean <− (data [ 1 ] + data [ n ] ) /2

vvar iance <− (data [ n]−mmean)/qnorm(n/ ( i n t 1) )

new value <− rtnorm (1 ,mean = mmean, sd = vvar iance , lower=max(data ) , upper=I n f ) #

generate a va lue from the t a i l f o r ( xn , i n f )

data <− append(data , new value , a f t e r = n)

boots t rap i n f i n i t e [ i , j ] <− new value

} else {new value <− runif (1 , min = data [ j j −1] , max = data [ j j ] ) # Generate a va lue

from the i n t e r v a l ( j j −1, j j )

data <− append(data , new value , a f t e r = j j −1)

boots t rap i n f i n i t e [ i , j ] <− new value

}

}

}

return ( boots t rap i n f i n i t e )

}
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Hutson bootstrap

### ($−\ i n f t y , \ i n f t y $)

hutson boots t rap <− function (x , m, B) {

x <− sort ( x )

boots t rap i n f i n i t e <− matrix (nrow = B, ncol = m)

n <−length ( x ) # Count how many va lue s

i n t 1 <− n+1 # Count how many i n t e r v a l s

for ( i in 1 :B) {

for ( j in 1 :m) {

j j <− runif (1 )

i f ( j j <= (1/ i n t 1) ) {

new value <− x [1 ]+( x [2]−x [ 1 ] ) ∗log ( i n t 1∗ j j )

boots t rap i n f i n i t e [ i , j ] <− new value

}

else i f ( j j >= (n/ i n t 1) ) {

new value <− x [ n]−(x [ n]−x [ ( n−1) ] ) ∗log ( i n t 1∗(1− j j ) )

boots t rap i n f i n i t e [ i , j ] <− new value

}

else {

xx <− i n t 1∗ j j

f loor xx <− f loor ( xx )

eps <− xx − f loor xx

new value <− (1−eps )∗x [ f loor xx]+ eps∗x [ ( f loor xx+1) ]

boots t rap i n f i n i t e [ i , j ] <− new value

}

}

}

return ( boots t rap i n f i n i t e )

}

### [$0 , \ i n f t y $)

hutson boots t rap from0 <− function (x , m, B) {

x <− sort ( x )

boots t rap i n f i n i t e <− matrix (nrow = B, ncol = m)

n <−length ( x ) # Count how many va lue s

i n t 1 <− n+1 # Count how many i n t e r v a l s

for ( i in 1 :B) {

for ( j in 1 :m) {

j j <− runif (1 )

i f ( j j <= (1/ i n t 1) ) {

xx <− i n t 1∗ j j

f loor xx <− f loor ( xx )

eps <− xx − f loor xx

new value <− x [ 1 ] ∗eps

boots t rap i n f i n i t e [ i , j ] <− new value

}
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else i f ( j j >= (n/ i n t 1) ) {

new value <− x [ n]−(x [ n]−x [ ( n−1) ] ) ∗log ( i n t 1∗(1− j j ) )

boots t rap i n f i n i t e [ i , j ] <− new value

}

else {

xx <− i n t 1∗ j j

f loor xx <− f loor ( xx )

eps <− xx − f loor xx

new value <− (1−eps )∗x [ f loor xx]+ eps∗x [ ( f loor xx+1) ]

boots t rap i n f i n i t e [ i , j ] <− new value

}

}

}

return ( boots t rap i n f i n i t e )

}

Kernel bootstrap

### Bandwidth f o r ke rne l d ens i t y es t imate

h .window <−function (x , n , window=1){

i f (window==1) {

wind . weight<−( 1 . 0 6 )∗sd ( x )∗nˆ(−1/5)

} else i f (window==2) {

wind . weight<−( . 7 9 )∗IQR( x )∗nˆ(−1/5)

} else i f (window==3) {

wind . weight <− min( sd ( x ) , ( . 9 0 )∗ (IQR( x )/ 1 . 3 4 )∗nˆ(−1/5) )

}

return ( wind . weight )

}

ke rne l b<−function (x , n , B, window=1){

# x i s the o r i g i n a l o r i g i n a l datase t , n i s the boo t s t rap sample s i z e ,

# B i s the number o f boo t s t rap samples generated , window i s the s e l e c t e d bandwidth

x . length <−n∗B

x . u n i f <−matrix (sample (x , s i z e=x . length , replace=T) ,

nrow=B)

x . h <−h .window(x , n ,window)

e p s i l o n <−matrix (rnorm( x . length ) , nrow=B)

y <−x . u n i f+x . h∗ e p s i l o n

return ( y ) }
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Illustration of Algorithm 1

The following R code runs Algorithm 1 for Normally distributed data, percentile confi-

dence intervals are applied; finite Approach I is applied to Banks-B and NPI-B.

ch i square coverage normal f i n i t e I manyseeds <− function ( seed =20,m=1, s =1,sample s i z e s=c

( 4 , 6 , 8 , 10 ) , s t a t i s t=”median” ,B=1000 ,N=1000){

### true s t a t i s t i c

i f ( s t a t i s t==”q1” ) {

t rue q1 <− m−0.67448∗s

} else i f ( s t a t i s t==”q3” ) {

t rue q3 <− m+0.67448∗s

} else i f ( s t a t i s t==” var iance ” ) {

t rue var iance <− s ˆ2

} else i f ( s t a t i s t==” i q r ” ) {

t rue i q r <− 1.34896∗s

}

function single boot <− function ( boot = ”NPI” ,m, s , seeds , S1=S1 , n , s t a t i s t=”median” ,B,N) {

## Now we need 1000 s imula ted data ,

con f idence r e g i o n s <− data . frame (CR10=log ica l ( ) ,

CR20=log ica l ( ) ,

CR30=log ica l ( ) ,

CR40=log ica l ( ) ,

CR50=log ica l ( ) ,

CR60=log ica l ( ) ,

CR70=log ica l ( ) ,

CR80=log ica l ( ) ,

CR90=log ica l ( ) ,

s t r i ng sAsFac to r s=FALSE)

# for s imula ted data , c rea t e 1000 boo t s t raps , and c a l c u l a t e 1000 $\ hat {\ t h e t a }$

for ( i in 1 :N) {

s s <− S1 [ , i ]

i f ( boot==”NPI” ) {

set . seed ( seeds )

SS <− NPI f i n i t e I ( ss , n ,B)

} else i f ( boot==” Efron ” ) {

set . seed ( seeds )

SS <− boots t rap e f r on ( ss , n ,B)

} else i f ( boot==”Banks” ) {

set . seed ( seeds )

SS <− function banks ( ss , n ,B)

} else i f ( boot==”Hutson” ) {

set . seed ( seeds )

SS <− hutson boots t rap ( ss , n ,B)

} else {print ( ”ERROR: no such boots t rap programmed” )

}

## Compute s t a t i s t i c s o f the boo t s t rapped samples
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i f ( s t a t i s t==”median” ) {

boot stat <− apply (SS , 1 , median)

} else i f ( s t a t i s t==”q1” ) {

quant i l e 1 <− function ( x ) {

return ( quantile (x , c ( 0 . 2 5 ) ) )

}

boot stat <− apply (SS , 1 , quant i l e 1 )

} else i f ( s t a t i s t==”q3” ) {

quant i l e 3 <− function ( x ) {

return ( quantile (x , c ( 0 . 7 5 ) ) )

}

boot stat <− apply (SS , 1 , quant i l e 3 )

} else i f ( s t a t i s t==”mean” ) {

boot stat <− apply (SS , 1 , mean)

} else i f ( s t a t i s t==” var iance ” ) {

boot stat <− apply (SS , 1 , var )

} else i f ( s t a t i s t==” i q r ” ) {

boot stat <− apply (SS , 1 , IQR)

} else {

print ( ”ERROR: no such s t a t i s t i c programmed” )

}

boot stat <− sort ( boot stat )

## Compute (1−2alpha )\% in t e r v a l s ( q alpha , q (1−alpha ) )

# for t rue $\ t h e t a$

# at d i f f e r e n t convidence l e v e l s (10\%, 20\%, . . . , 100\%)

# 10\% − alpha =0.45 , CI=(0.45 ,0.55)

CI10 <− c ( boot stat [ (B∗ 0 . 4 5 ) ] , boot stat [ (B∗ 0 . 5 5 ) ] )

# 20\% − alpha =0.40 , CI=(0.40 ,0.60)

CI20 <− c ( boot stat [ (B∗ 0 . 4 ) ] , boot stat [ (B∗ 0 . 6 ) ] )

# 30\% − alpha =0.35 , CI=(0.35 ,0.65)

CI30 <− c ( boot stat [ (B∗ 0 . 3 5 ) ] , boot stat [ (B∗ 0 . 6 5 ) ] )

# 40\% − alpha =0.30 , CI=(0.30 ,0.70)

CI40 <− c ( boot stat [ (B∗ 0 . 3 ) ] , boot stat [ (B∗ 0 . 7 ) ] )

# 50\% − alpha =0.25 , CI=(0.25 ,0.75)

CI50 <− c ( boot stat [ (B∗ 0 . 2 5 ) ] , boot stat [ (B∗ 0 . 7 5 ) ] )

# 60\% − alpha =0.20 , CI=(0.20 ,0.80)

CI60 <− c ( boot stat [ (B∗ 0 . 2 ) ] , boot stat [ (B∗ 0 . 8 ) ] )

# 70\% − alpha =0.15 , CI=(0.15 ,0.85)

CI70 <− c ( boot stat [ (B∗ 0 . 1 5 ) ] , boot stat [ (B∗ 0 . 8 5 ) ] )

# 80\% − alpha =0.10 , CI=(0.10 ,0.90)

CI80 <− c ( boot stat [ (B∗ 0 . 1 ) ] , boot stat [ (B∗ 0 . 9 ) ] )

# 90\% − alpha =0.05 , CI=(0.05 ,0.95)

CI90 <− c ( boot stat [ (B∗ 0 . 0 5 ) ] , boot stat [ (B∗ 0 . 9 5 ) ] )

#CI95 <− c ( boot s t a t [ 2 5 ] , boot s t a t [ 9 75 ] )

### Which CI inc lude the t rue $\ t h e t a$?

i f ( s t a t i s t==”median” ) {
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new <− c ( CI10 [ 1 ] <= m & CI10 [ 2 ] >= m, CI20 [ 1 ] <= m & CI20 [ 2 ] >= m, CI30 [ 1 ] <= m &

CI30 [ 2 ] >= m, CI40 [ 1 ] <= m & CI40 [ 2 ] >= m, CI50 [ 1 ] <= m & CI50 [ 2 ] >= m, CI60 [ 1 ] <= m &

CI60 [ 2 ] >= m, CI70 [ 1 ] <= m & CI70 [ 2 ] >= m, CI80 [ 1 ] <= m & CI80 [ 2 ] >= m, CI90 [ 1 ] <= m &

CI90 [ 2 ] >= m)

} else i f ( s t a t i s t==”q1” ) {

new <− c ( CI10 [ 1 ] <= true q1 & CI10 [ 2 ] >= true q1 , CI20 [ 1 ] <= true q1 & CI20 [ 2 ] >=

true q1 , CI30 [ 1 ] <= true q1 & CI30 [ 2 ] >= true q1 , CI40 [ 1 ] <= true q1 & CI40 [ 2 ] >=

true q1 , CI50 [ 1 ] <= true q1 & CI50 [ 2 ] >= true q1 , CI60 [ 1 ] <= true q1 & CI60 [ 2 ] >= true

q1 , CI70 [ 1 ] <= true q1 & CI70 [ 2 ] >= true q1 , CI80 [ 1 ] <= true q1 & CI80 [ 2 ] >= true q1 ,

CI90 [ 1 ] <= true q1 & CI90 [ 2 ] >= true q1 )

} else i f ( s t a t i s t==”q3” ) {

new <− c ( CI10 [ 1 ] <= true q3 & CI10 [ 2 ] >= true q3 , CI20 [ 1 ] <= true q3 & CI20 [ 2 ] >=

true q3 , CI30 [ 1 ] <= true q3 & CI30 [ 2 ] >= true q3 , CI40 [ 1 ] <= true q3 & CI40 [ 2 ] >=

true q3 , CI50 [ 1 ] <= true q3 & CI50 [ 2 ] >= true q3 , CI60 [ 1 ] <= true q3 & CI60 [ 2 ] >= true

q3 , CI70 [ 1 ] <= true q3 & CI70 [ 2 ] >= true q3 , CI80 [ 1 ] <= true q3 & CI80 [ 2 ] >= true q3 ,

CI90 [ 1 ] <= true q3 & CI90 [ 2 ] >= true q3 )

} else i f ( s t a t i s t==”mean” ) {

new <− c ( CI10 [ 1 ] <= (m) & CI10 [ 2 ] >= (m) , CI20 [ 1 ] <= (m) & CI20 [ 2 ] >= (m) , CI30

[ 1 ] <= (m) & CI30 [ 2 ] >= (m) , CI40 [ 1 ] <= (m) & CI40 [ 2 ] >= (m) , CI50 [ 1 ] <= (m) & CI50 [ 2 ]

>= (m) , CI60 [ 1 ] <= (m) & CI60 [ 2 ] >= (m) , CI70 [ 1 ] <= (m) & CI70 [ 2 ] >= (m) , CI80 [ 1 ] <= (m)

& CI80 [ 2 ] >= (m) , CI90 [ 1 ] <= (m) & CI90 [ 2 ] >= (m) )

} else i f ( s t a t i s t==” var iance ” ) {

new <− c ( CI10 [ 1 ] <= true var iance & CI10 [ 2 ] >= true var iance , CI20 [ 1 ] <= true

var iance & CI20 [ 2 ] >= true var iance , CI30 [ 1 ] <= true var iance & CI30 [ 2 ] >= true

var iance , CI40 [ 1 ] <= true var iance & CI40 [ 2 ] >= true var iance , CI50 [ 1 ] <= true var iance

& CI50 [ 2 ] >= true var iance , CI60 [ 1 ] <= true var iance & CI60 [ 2 ] >= true var iance , CI70

[ 1 ] <= true var iance & CI70 [ 2 ] >= true var iance , CI80 [ 1 ] <= true var iance & CI80 [ 2 ] >=

true var iance , CI90 [ 1 ] <= true var iance & CI90 [ 2 ] >= true var iance )

} else i f ( s t a t i s t==” i q r ” ) {

new <− c ( CI10 [ 1 ] <= true i q r & CI10 [ 2 ] >= true iqr , CI20 [ 1 ] <= true i q r & CI20 [ 2 ]

>= true iqr , CI30 [ 1 ] <= true i q r & CI30 [ 2 ] >= true iqr , CI40 [ 1 ] <= true i q r & CI40 [ 2 ]

>= true iqr , CI50 [ 1 ] <= true i q r & CI50 [ 2 ] >= true iqr , CI60 [ 1 ] <= true i q r & CI60 [ 2 ]

>= true iqr , CI70 [ 1 ] <= true i q r & CI70 [ 2 ] >= true iqr , CI80 [ 1 ] <= true i q r & CI80 [ 2 ]

>= true iqr , CI90 [ 1 ] <= true i q r & CI90 [ 2 ] >= true i q r )

} else {

print ( ” Error : no such s t a t i s t i c de f ined ” )

}

con f idence r e g i o n s <−rbind ( con f id ence reg ions ,do . ca l l (data . frame , setNames (as . l i s t (

new) , names( con f id ence r e g i o n s ) ) ) )

}

## What i s the propor t ion o f CI with t rue $\ t h e t a$?

## This g i v e s the t rue ac tua l p r o b a b i l i t i e s f o r the t rue $\ t h e t a$

prop sumCR10 <− sum( con f id ence r e g i o n s$CR10)/N

prop sumCR20 <− sum( con f id ence r e g i o n s$CR20)/N

prop sumCR30 <−sum( con f id ence r e g i o n s$CR30)/N

prop sumCR40 <−sum( con f id ence r e g i o n s$CR40)/N

prop sumCR50 <−sum( con f id ence r e g i o n s$CR50)/N
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prop sumCR60 <−sum( con f id ence r e g i o n s$CR60)/N

prop sumCR70 <−sum( con f id ence r e g i o n s$CR70)/N

prop sumCR80 <−sum( con f id ence r e g i o n s$CR80)/N

prop sumCR90 <−sum( con f id ence r e g i o n s$CR90)/N

## This g i v e s the ac tua l coverage f o r the t rue $\ t h e t a$

coverageCR10 <−prop sumCR10

coverageCR20 <−prop sumCR20 − prop sumCR10

coverageCR30 <−prop sumCR30 − prop sumCR20

coverageCR40 <−prop sumCR40 − prop sumCR30

coverageCR50 <−prop sumCR50 − prop sumCR40

coverageCR60 <−prop sumCR60 − prop sumCR50

coverageCR70 <−prop sumCR70 − prop sumCR60

coverageCR80 <−prop sumCR80 − prop sumCR70

coverageCR90 <−prop sumCR90 − prop sumCR80

cr1 9 <− sum(c ( coverageCR10 , coverageCR20 , coverageCR30 , coverageCR40 , coverageCR50 ,

coverageCR60 , coverageCR70 , coverageCR80 , coverageCR90 ) )

coverageCR100 <− 1 − cr1 9

coverage <− N∗c ( coverageCR10 , coverageCR20 , coverageCR30 , coverageCR40 , coverageCR50 ,

coverageCR60 , coverageCR70 , coverageCR80 , coverageCR90 , coverageCR100 )

## Apply the chi−square t e s t o f goodness o f f i t

ch i square <− as .numeric ( ch i sq . t e s t ( coverage , p = rep (1/10 ,10) )$ s t a t i s t i c )

return (as . vector (c (n , seeds , boot , ( prop sumCR90∗100) , ch i square ) ) )

}

table <− data . frame (sample s i z e=integer ( ) ,

seed=integer ( ) ,

boot=factor ( ) ,

cov90p=numeric ( ) ,

ch i2=numeric ( ) ,

s t r i ng sAsFac to r s=FALSE)

for ( k in 1 : length (sample s i z e s ) ) {

n <− sample s i z e s [ k ]

set . seed (1 )

S1 <− r e p l i c a t e (N,rnorm(n ,m, s ) )

for ( j in 1 : seed ) {

npi b <− function single boot ( boot = ”NPI” ,m, s , s e eds=j , S1=S1 , n , s t a t i s t=

s t a t i s t ,B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( npi b) , names(

table ) ) ) )

banks b <− function single boot ( boot = ”Banks” ,m, s , s e eds=j , S1=S1 , n ,

s t a t i s t=s t a t i s t ,B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( banks b) , names(

table ) ) ) )

e f r on b <− function single boot ( boot = ” Efron ” ,m, s , s e eds=j , S1=S1 , n ,

s t a t i s t=s t a t i s t ,B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( e f r on b) , names(

table ) ) ) )



259

hutson b <− function single boot ( boot = ”Hutson” ,m, s , s e eds=j , S1=S1 , n ,

s t a t i s t=s t a t i s t ,B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( hutson b) , names(

table ) ) ) )

}

}

return ( table )

}

The following R code runs Algorithm 1 for Lognormally distributed data, BCa confi-

dence intervals are applied; half-finite Approach V is applied to Banks-B and NPI-B.

ch i square coverage lognormal h a l f i n f i n i t e manyseeds bca <− function ( seed =20,m=1, s =1,

sample s i z e s=c ( 4 , 6 , 8 , 10 ) , s t a t i s t=”median” ,B=1000 ,N=1000){

# Lognormal parameters :

meanlog=log (mˆ2/sqrt (mˆ2+s ˆ2) )

sd log=sqrt ( log ( s ˆ2/mˆ2+1) )

### True s t a t i s t i c s :

i f ( s t a t i s t==”q1” ) {

t rue q1 <− exp( meanlog+sd log∗qnorm( 0 . 2 5 ) )

} else i f ( s t a t i s t==”q3” ) {

t rue q3 <− exp( meanlog+sd log∗qnorm( 0 . 7 5 ) )

} else i f ( s t a t i s t==” var iance ” ) {

t rue var iance <− s ˆ2

} else i f ( s t a t i s t==” i q r ” ) {

t rue i q r <− exp( meanlog+sd log∗qnorm( 0 . 7 5 ) )−exp( meanlog+sd log∗qnorm( 0 . 2 5 ) )

} else i f ( s t a t i s t==”median” ) {

t rue median <− exp( meanlog+sd log∗qnorm( 0 . 5 0 ) )

}

function single boot <− function ( boot = ”NPI” ,m, s , seeds , S1=S1 , n , s t a t i s t=”median” ,B,N) {

## Now we need 1000 s imula ted data ,

con f idence r e g i o n s <− data . frame (CR10=log ica l ( ) ,

CR20=log ica l ( ) ,

CR30=log ica l ( ) ,

CR40=log ica l ( ) ,

CR50=log ica l ( ) ,

CR60=log ica l ( ) ,

CR70=log ica l ( ) ,

CR80=log ica l ( ) ,

CR90=log ica l ( ) ,

s t r i ng sAsFac to r s=FALSE)

# For s imula ted data , c rea t e 1000 boo t s t raps , and from those c a l c u l a t e 1000 $\ hat {\

t h e t a }$

for ( i in 1 :N) {

s s <− S1 [ , i ]

i f ( boot==”NPI” ) {

set . seed ( seeds )

SS <− h a l f i n f i n i t e npi ( ss , n ,B=1000)
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} else i f ( boot==” Efron ” ) {

set . seed ( seeds )

SS <− boots t rap e f r on ( ss , n , 1000 )

} else i f ( boot==”Banks” ) {

set . seed ( seeds )

SS <− h a l f i n f i n i t e banks ( ss , n , 1000 )

} else i f ( boot==”Hutson” ) {

set . seed ( seeds )

SS <− hutson boots t rap from0 ( ss , n , 1000 )

} else {

print ( ”ERROR: no such boots t rap programmed” )

}

## Compute s t a t i s t i c s o f the boo t s t rapped samples

i f ( s t a t i s t==”median” ) {

boot stat <− apply (SS , 1 , median)

T n <−median( s s ) # or i g i n a l e s t imate o f T n

} else i f ( s t a t i s t==”q1” ) {

quant i l e 1 <− function ( x ) {

return ( quantile (x , c ( 0 . 2 5 ) ) )

}

boot stat <− apply (SS , 1 , quant i l e 1 )

T n <−quant i l e 1 ( s s ) # or i g i n a l e s t imate o f T n

} else i f ( s t a t i s t==”q3” ) {

quant i l e 3 <− function ( x ) {

return ( quantile (x , c ( 0 . 7 5 ) ) )

}

boot stat <− apply (SS , 1 , quant i l e 3 )

T n <−quant i l e 3 ( s s ) # or i g i n a l e s t imate o f T n

} else i f ( s t a t i s t==”mean” ) {

boot stat <− apply (SS , 1 , mean)

T n <−mean( s s ) # or i g i n a l e s t imate o f T n

} else i f ( s t a t i s t==” var iance ” ) {

boot stat <− apply (SS , 1 , var )

T n <−var ( s s ) # or i g i n a l e s t imate o f T n

} else i f ( s t a t i s t==” i q r ” ) {

boot stat <− apply (SS , 1 , IQR)

T n <−IQR( s s ) # or i g i n a l e s t imate o f T n

}

boot stat <− sort ( boot stat )

# Now ca l c u l a t e b i a s co r r ec i t on z 0 :

z 0 <− qnorm( (sum( boot stat<T n)/B) )

# Find j a c kn i f e va lue s o f a s t a t i s t i c T n . Let x i =(x 1 , x 2 , . . . , x ( i−1) , x ( i+1)

, . . . x n)

# be the j a c kn i f e smaple which i s the o r i g i n a l sample with the i t h ob se rva t i on x i

d e l e t e d .

j a c k n i f e <− vector ( )

for ( k in 1 : ( length ( s s ) ) ) {
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j a c k i <− s s [−k ]

i f ( s t a t i s t==”median” ) {

T n i <−median( j a c k i ) # or i g i n a l e s t imate o f T n i

} else i f ( s t a t i s t==”q1” ) {

T n i <−quant i l e 1 ( j a c k i ) # or i g i n a l e s t imate o f T n i

} else i f ( s t a t i s t==”q3” ) {

T n i <−quant i l e 3 ( j a c k i ) # or i g i n a l e s t imate o f T n i

} else i f ( s t a t i s t==”mean” ) {

T n i <−mean( j a c k i ) # or i g i n a l e s t imate o f T n i

} else i f ( s t a t i s t==” var iance ” ) {

T n i <−var ( j a c k i ) # or i g i n a l e s t imate o f T n i

} else i f ( s t a t i s t==” i q r ” ) {

T n i <−IQR( j a c k i ) # or i g i n a l e s t imate o f T n i

} else {

print ( ”ERROR: no such s t a t i s t i c programmed” )

}

j a c k n i f e <− c ( j a c k n i f e ,T n i )

}

T n . <− sum( j a c k n i f e )/length ( s s )

## To ca l c u l a t e a c c e l e r a t i on alpha

a hat <− sum( (T n.− j a c k n i f e ) ˆ3)/(6∗ (sum( (T n.− j a c k n i f e ) ˆ2) ) ˆ(3/2) )

## Compute (1−2alpha )\% in t e r v a l s ( q alpha , q (1−alpha ) )

# for t rue s t a t i s t i c

# at d i f f e r e n t conf idence l e v e l s (10\%, 20\%, . . . , 100\%)

# 10\% − alpha =0.45 , CI=(0.45 ,0.55)

alpha 1 10 <− pnorm( ( z 0+(z 0+qnorm( 0 . 4 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 4 5 ) ) ) ) )

i f ( alpha 1 10<0.001) { alpha 1 10=0.001}

alpha 2 10 <− pnorm( ( z 0+(z 0+qnorm( 0 . 5 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 5 5 ) ) ) ) )

CI10 <− c ( boot stat [ a lpha 1 10 ∗1000 ] , boot stat [ a lpha 2 10∗1000 ] )

# 20\% − alpha =0.40 , CI=(0.40 ,0.60)

alpha 1 20 <− pnorm( ( z 0+(z 0+qnorm( 0 . 4 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 4 0 ) ) ) ) )

i f ( alpha 1 20<0.001) { alpha 1 20=0.001}

alpha 2 20 <− pnorm( ( z 0+(z 0+qnorm( 0 . 6 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 6 0 ) ) ) ) )

CI20 <− c ( boot stat [ a lpha 1 20 ∗1000 ] , boot stat [ a lpha 2 20∗1000 ] )

# 30\% − alpha =0.35 , CI=(0.35 ,0.65)

alpha 1 30 <− pnorm( ( z 0+(z 0+qnorm( 0 . 3 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 3 5 ) ) ) ) )

i f ( alpha 1 30<0.001) { alpha 1 30=0.001}

alpha 2 30 <− pnorm( ( z 0+(z 0+qnorm( 0 . 6 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 6 5 ) ) ) ) )

CI30 <− c ( boot stat [ a lpha 1 30 ∗1000 ] , boot stat [ a lpha 2 30∗1000 ] )

# 40\% − alpha =0.30 , CI=(0.30 ,0.70)

alpha 1 40 <− pnorm( ( z 0+(z 0+qnorm( 0 . 3 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 3 0 ) ) ) ) )

i f ( alpha 1 40<0.001) { alpha 1 40=0.001}

alpha 2 40 <− pnorm( ( z 0+(z 0+qnorm( 0 . 7 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 7 0 ) ) ) ) )

CI40 <− c ( boot stat [ a lpha 1 40 ∗1000 ] , boot stat [ a lpha 2 40∗1000 ] )

# 50\% − alpha =0.25 , CI=(0.25 ,0.75)

alpha 1 50 <− pnorm( ( z 0+(z 0+qnorm( 0 . 2 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 2 5 ) ) ) ) )

i f ( alpha 1 50<0.001) { alpha 1 50=0.001}
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alpha 2 50 <− pnorm( ( z 0+(z 0+qnorm( 0 . 7 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 7 5 ) ) ) ) )

CI50 <− c ( boot stat [ a lpha 1 50 ∗1000 ] , boot stat [ a lpha 2 50∗1000 ] )

# 60\% − alpha =0.20 , CI=(0.20 ,0.80)

alpha 1 60 <− pnorm( ( z 0+(z 0+qnorm( 0 . 2 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 2 0 ) ) ) ) )

i f ( alpha 1 60<0.001) { alpha 1 60=0.001}

alpha 2 60 <− pnorm( ( z 0+(z 0+qnorm( 0 . 8 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 8 0 ) ) ) ) )

CI60 <− c ( boot stat [ a lpha 1 60 ∗1000 ] , boot stat [ a lpha 2 60∗1000 ] )

# 70\% − alpha =0.15 , CI=(0.15 ,0.85)

alpha 1 70 <− pnorm( ( z 0+(z 0+qnorm( 0 . 1 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 1 5 ) ) ) ) )

i f ( alpha 1 70<0.001) { alpha 1 70=0.001}

alpha 2 70 <− pnorm( ( z 0+(z 0+qnorm( 0 . 8 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 8 5 ) ) ) ) )

CI70 <− c ( boot stat [ a lpha 1 70 ∗1000 ] , boot stat [ a lpha 2 70∗1000 ] )

# 80\% − alpha =0.10 , CI=(0.10 ,0.90)

alpha 1 80 <− pnorm( ( z 0+(z 0+qnorm( 0 . 1 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 1 0 ) ) ) ) )

i f ( alpha 1 80<0.001) { alpha 1 80=0.001}

alpha 2 80 <− pnorm( ( z 0+(z 0+qnorm( 0 . 9 0 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 9 0 ) ) ) ) )

CI80 <− c ( boot stat [ a lpha 1 80 ∗1000 ] , boot stat [ a lpha 2 80∗1000 ] )

# 90\% − alpha =0.05 , CI=(0.05 ,0.95)

alpha 1 90 <− pnorm( ( z 0+(z 0+qnorm( 0 . 0 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 0 5 ) ) ) ) )

i f ( alpha 1 90<0.001) { alpha 1 90=0.001}

alpha 2 90 <− pnorm( ( z 0+(z 0+qnorm( 0 . 9 5 ) )/(1−a hat∗ ( z 0+qnorm( 0 . 9 5 ) ) ) ) )

CI90 <− c ( boot stat [ a lpha 1 90 ∗1000 ] , boot stat [ a lpha 2 90∗1000 ] )

### Which CI inc lude the t rue $\ hat {\ t h e t a }$?

i f ( s t a t i s t==”median” ) {

new <− c ( CI10 [ 1 ] <= true median & CI10 [ 2 ] >= true median , CI20 [ 1 ] <= true median

& CI20 [ 2 ] >= true median , CI30 [ 1 ] <= true median & CI30 [ 2 ] >= true median , CI40 [ 1 ]

<= true median & CI40 [ 2 ] >= true median , CI50 [ 1 ] <= true median & CI50 [ 2 ] >= true

median , CI60 [ 1 ] <= true median & CI60 [ 2 ] >= true median , CI70 [ 1 ] <= true median &

CI70 [ 2 ] >= true median , CI80 [ 1 ] <= true median & CI80 [ 2 ] >= true median , CI90 [ 1 ] <=

true median & CI90 [ 2 ] >= true median )

} else i f ( s t a t i s t==”q1” ) {

new <− c ( CI10 [ 1 ] <= true q1 & CI10 [ 2 ] >= true q1 , CI20 [ 1 ] <= true q1 & CI20 [ 2 ] >=

true q1 , CI30 [ 1 ] <= true q1 & CI30 [ 2 ] >= true q1 , CI40 [ 1 ] <= true q1 & CI40 [ 2 ] >=

true q1 , CI50 [ 1 ] <= true q1 & CI50 [ 2 ] >= true q1 , CI60 [ 1 ] <= true q1 & CI60 [ 2 ] >= true

q1 , CI70 [ 1 ] <= true q1 & CI70 [ 2 ] >= true q1 , CI80 [ 1 ] <= true q1 & CI80 [ 2 ] >= true q1 ,

CI90 [ 1 ] <= true q1 & CI90 [ 2 ] >= true q1 )

} else i f ( s t a t i s t==”q3” ) {

new <− c ( CI10 [ 1 ] <= true q3 & CI10 [ 2 ] >= true q3 , CI20 [ 1 ] <= true q3 & CI20 [ 2 ] >=

true q3 , CI30 [ 1 ] <= true q3 & CI30 [ 2 ] >= true q3 , CI40 [ 1 ] <= true q3 & CI40 [ 2 ] >=

true q3 , CI50 [ 1 ] <= true q3 & CI50 [ 2 ] >= true q3 , CI60 [ 1 ] <= true q3 & CI60 [ 2 ] >= true

q3 , CI70 [ 1 ] <= true q3 & CI70 [ 2 ] >= true q3 , CI80 [ 1 ] <= true q3 & CI80 [ 2 ] >= true q3 ,

CI90 [ 1 ] <= true q3 & CI90 [ 2 ] >= true q3 )

} else i f ( s t a t i s t==”mean” ) {

new <− c ( CI10 [ 1 ] <= (m) & CI10 [ 2 ] >= (m) , CI20 [ 1 ] <= (m) & CI20 [ 2 ] >= (m) , CI30

[ 1 ] <= (m) & CI30 [ 2 ] >= (m) , CI40 [ 1 ] <= (m) & CI40 [ 2 ] >= (m) , CI50 [ 1 ] <= (m) & CI50 [ 2 ]

>= (m) , CI60 [ 1 ] <= (m) & CI60 [ 2 ] >= (m) , CI70 [ 1 ] <= (m) & CI70 [ 2 ] >= (m) , CI80 [ 1 ] <= (m)

& CI80 [ 2 ] >= (m) , CI90 [ 1 ] <= (m) & CI90 [ 2 ] >= (m) )
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} else i f ( s t a t i s t==” var iance ” ) {

new <− c ( CI10 [ 1 ] <= true var iance & CI10 [ 2 ] >= true var iance , CI20 [ 1 ] <= true

var iance & CI20 [ 2 ] >= true var iance , CI30 [ 1 ] <= true var iance & CI30 [ 2 ] >= true

var iance , CI40 [ 1 ] <= true var iance & CI40 [ 2 ] >= true var iance , CI50 [ 1 ] <= true var iance

& CI50 [ 2 ] >= true var iance , CI60 [ 1 ] <= true var iance & CI60 [ 2 ] >= true var iance , CI70

[ 1 ] <= true var iance & CI70 [ 2 ] >= true var iance , CI80 [ 1 ] <= true var iance & CI80 [ 2 ] >=

true var iance , CI90 [ 1 ] <= true var iance & CI90 [ 2 ] >= true var iance )

} else i f ( s t a t i s t==” i q r ” ) {

new <− c ( CI10 [ 1 ] <= true i q r & CI10 [ 2 ] >= true iqr , CI20 [ 1 ] <= true i q r & CI20 [ 2 ]

>= true iqr , CI30 [ 1 ] <= true i q r & CI30 [ 2 ] >= true iqr , CI40 [ 1 ] <= true i q r & CI40 [ 2 ]

>= true iqr , CI50 [ 1 ] <= true i q r & CI50 [ 2 ] >= true iqr , CI60 [ 1 ] <= true i q r & CI60 [ 2 ]

>= true iqr , CI70 [ 1 ] <= true i q r & CI70 [ 2 ] >= true iqr , CI80 [ 1 ] <= true i q r & CI80 [ 2 ]

>= true iqr , CI90 [ 1 ] <= true i q r & CI90 [ 2 ] >= true i q r )

} else {

print ( ” Error : no such s t a t i s t i c de f ined ” )

}

con f idence r e g i o n s <−rbind ( con f id ence reg ions ,do . ca l l (data . frame , setNames (as . l i s t (

new) , names( con f id ence r e g i o n s ) ) ) )

}

## What i s the propor t ion o f CI with t rue $\ t h e t a$?

## This g i v e s the t rue ac tua l p r o b a b i l i t i e s f o r the t rue $\ t h e t a$

prop sumCR10 <− sum( con f id ence r e g i o n s$CR10)/N

prop sumCR20 <− sum( con f id ence r e g i o n s$CR20)/N

prop sumCR30 <−sum( con f id ence r e g i o n s$CR30)/N

prop sumCR40 <−sum( con f id ence r e g i o n s$CR40)/N

prop sumCR50 <−sum( con f id ence r e g i o n s$CR50)/N

prop sumCR60 <−sum( con f id ence r e g i o n s$CR60)/N

prop sumCR70 <−sum( con f id ence r e g i o n s$CR70)/N

prop sumCR80 <−sum( con f id ence r e g i o n s$CR80)/N

prop sumCR90 <−sum( con f id ence r e g i o n s$CR90)/N

## This g i v e s the ac tua l coverage f o r the t rue $\ t h e t a$

coverageCR10 <−prop sumCR10

coverageCR20 <−prop sumCR20 − prop sumCR10

coverageCR30 <−prop sumCR30 − prop sumCR20

coverageCR40 <−prop sumCR40 − prop sumCR30

coverageCR50 <−prop sumCR50 − prop sumCR40

coverageCR60 <−prop sumCR60 − prop sumCR50

coverageCR70 <−prop sumCR70 − prop sumCR60

coverageCR80 <−prop sumCR80 − prop sumCR70

coverageCR90 <−prop sumCR90 − prop sumCR80

cr1 9 <− sum(c ( coverageCR10 , coverageCR20 , coverageCR30 , coverageCR40 , coverageCR50 ,

coverageCR60 , coverageCR70 , coverageCR80 , coverageCR90 ) )

coverageCR100 <− 1 − cr1 9

coverage <− N∗c ( coverageCR10 , coverageCR20 , coverageCR30 , coverageCR40 , coverageCR50 ,

coverageCR60 , coverageCR70 , coverageCR80 , coverageCR90 , coverageCR100 )

## Apply the chi−square t e s t o f goodness o f f i t

ch i square <− as .numeric ( ch i sq . t e s t ( coverage , p = rep (1/10 ,10) )$ s t a t i s t i c )
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return (as . vector (c (n , seeds , boot , ( prop sumCR90∗100) , ch i square ) ) )

}

table <− data . frame (sample s i z e=numeric ( ) ,

seed=integer ( ) ,

boot=factor ( ) ,

cov90p=numeric ( ) ,

ch i2=numeric ( ) ,

s t r i ng sAsFac to r s=FALSE)

for ( k in 1 : length (sample s i z e s ) ) {

n <− sample s i z e s [ k ]

set . seed (1 )

S1 <− r e p l i c a t e (N, rlnorm (n , meanlog=meanlog , sd log=sd log ) )

for ( j in 1 : seed ) {

npi b <− function single boot ( boot = ”NPI” ,m, s , s e eds=j , S1=S1 , n , s t a t i s t=s t a t i s t ,B=B,

N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( npi b) , names( table ) ) ) )

banks b <− function single boot ( boot = ”Banks” ,m, s , s e eds=j , S1=S1 , n , s t a t i s t=s t a t i s t ,

B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( banks b) , names( table ) ) ) )

e f r on b <− function single boot ( boot = ” Efron ” ,m, s , s e eds=j , S1=S1 , n , s t a t i s t=s t a t i s t ,

B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( e f r on b) , names( table ) ) ) )

hutson b <− function single boot ( boot = ”Hutson” ,m, s , s e eds=j , S1=S1 , n , s t a t i s t=

s t a t i s t ,B=B,N=N)

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t ( hutson b) , names( table ) ) ) )

}

}

return ( table )

}

Illustration of Algorithm 2

quant i l e 3 <− function ( x ) {

return ( quantile (x , c ( 0 . 7 5 ) ) )

}

quant i l e 1 <− function ( x ) {

return ( quantile (x , c ( 0 . 2 5 ) ) )

}

p r e d i c t i o n performance normal f i n i t e <− function (m=1, s =1,sample s i z e options=c

( 4 , 6 , 8 , 10 , 20 ) ,N=1000 ,B=1000 , s eeds =20, a lp =0.05 , s t a t i s t i c=”mean” ) {

### Table where we record outputs :

table <− data . frame (sample s i z e=integer ( ) ,

run=integer ( ) ,

boot=factor ( ) ,
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sum l i e s=integer ( ) ,

s t r i ng sAsFac to r s=FALSE)

boot s t raps <−c ( ”NPI” , ”Banks” , ” Efron ” , ”Hutson” )

l en<−length (sample s i z e options )

for ( k in 1 : s eeds ) { # For each run

for ( i in 1 : l en ) { # For each sample s i z e

n <− sample s i z e options [ i ]

set . seed ( k )

# For each run , we draw $2N$ samples and l e t $X 1 , X 2 , . . . Y N$

# be the ac tua l samples and $X {N+1} , X {N+2} , . . . Y {2N}$ be the f u tu r e samples .

S <− r e p l i c a t e ( (2∗N) ,rnorm(n ,m, s ) )

# current samples

Sx <− S [ , 1 :N]

# fu tu r e samples

Sy <− S [ , (N+1) : ( 2∗N) ]

i f ( s t a t i s t i c==”mean” ) {

stat y <− apply (Sy ,MARGIN=2,FUN=mean)

} else i f ( s t a t i s t i c==”median” ) {

stat y <− apply (Sy ,MARGIN=2,FUN=median)

} else i f ( s t a t i s t i c==” var iance ” ) {

stat y <− apply (Sy ,MARGIN=2,FUN=var )

} else i f ( s t a t i s t i c==”q1” ) {

stat y <− apply (Sy ,MARGIN=2,FUN=quant i l e 1 )

} else i f ( s t a t i s t i c==”q3” ) {

stat y <− apply (Sy ,MARGIN=2,FUN=quant i l e 3 )

} else i f ( s t a t i s t i c==” i q r ” ) {

stat y <− apply (Sy ,MARGIN=2,FUN=IQR)

}

for ( j in 1 : 4 ) {

boot=boot s t raps [ j ]

does l i e <− vector ( )

for ( l in 1 :N) {

s s = Sx [ , l ]

i f ( boot==”NPI” ) {

set . seed ( k )

SS <− NPI f i n i t e I ( ss , n ,B)

} else i f ( boot==” Efron ” ) {

set . seed ( k )

SS <− boots t rap e f r on ( ss , n ,B)

} else i f ( boot==”Banks” ) {

set . seed ( k )

SS <− function banks ( ss , n ,B)

} else i f ( boot==”Hutson” ) {

set . seed ( k )

SS <− hutson boots t rap ( ss , n ,B)

} else {

print ( ”ERROR: no such boots t rap programmed” )
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}

i f ( s t a t i s t i c==”mean” ) {

stat boot <− sort (apply (SS ,MARGIN=1,FUN=mean) )

} else i f ( s t a t i s t i c==” var iance ” ) {

stat boot <− sort (apply (SS ,MARGIN=1,FUN=var ) )

} else i f ( s t a t i s t i c==”q1” ) {

stat boot <− sort (apply (SS , 1 , quant i l e 1 ) )

} else i f ( s t a t i s t i c==”q3” ) {

stat boot <− sort (apply (SS , 1 , quant i l e 3 ) )

} else i f ( s t a t i s t i c==”median” ) {

stat boot <− sort (apply (SS ,MARGIN=1,FUN=median) )

} else i f ( s t a t i s t i c==” i q r ” ) {

stat boot <− sort (apply (SS ,MARGIN=1,FUN=IQR) )

}

lower PI <− stat boot [ ( a lp∗B) ]

upper PI <− stat boot [((1− a lp )∗B) ]

l i e s <− lower PI <= stat y [ i ] & upper PI >= stat y [ i ]

does l i e <− append( does l i e , l i e s )

}

sum l i e s <− sum( does l i e )

new <− c (n , k , boot ,sum l i e s )

table <−rbind ( table ,do . ca l l (data . frame , setNames (as . l i s t (new) , names( table ) ) ) )

}

}

}

return ( table )

}

C.2 R code relating to Chapter 4

R code for calculation of NPI-B-RP for the t-test and the growth rate inhibition signif-

icance test, and of estimates of NPI-RP for the WMT and the t-test is provided in this

section.

NPI-B-RP for the t-test (Algorithm 5)

#### NPI−B−RP for the $ t$−t e s t , f i n i t e Approach I

# NPI−B−RP i s c a l c u l a t e d f o r the Students one−s ided t−t e s t ( equa l var iance t−t e s t ) which

compares whether the mean fo r dose 1 i s b i g g e r than fo r dose 2

## The below code can be ad jus t ed f o r the WMT and fo r d i f f e r e n t ranges

r e p r o d u c i b i l i t y t t e s t f i n i t e I <− function ( dose1 , dose2 ) {

dose1 <− sort ( dose1 ) # Sort data in inc rea s ing order f o r dose 1

n <− length ( dose1 ) # Calcu la t e sample s i z e o f dose 1

# Record a l l d i s t ance s between adjacent po in t s f o r dose 1
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max <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

max1 <− dose1 [ ( k+1) ] − dose1 [ k ]

max <− c (max, max1)

}

max max <− max(max) # Record maximal d i s t ance between adjacent po in t s f o r dose 1

dose2<− sort ( dose2 ) # Sort data in inc rea s ing order f o r dose 2

n2 <− length ( dose2 ) # Calcu la t e sample s i z e o f dose 2

# Record a l l d i s t ance s between adjacent po in t s f o r dose 2

max2 <− vector ( )

for ( k in ( 1 : ( n2−1) ) ) {

max 2 <− dose2 [ ( k+1) ] − dose2 [ k ]

max2 <− c (max2 ,max 2)

}

max max2 <− max(max2) # Record maximal d i s t ance between adjacent po in t s f o r dose 2

so1 <− min( dose1 ) − max max # Defines x 0 fo r dose 1

sn1 <− max( dose1 ) + max max # Defines x {n+1} f o r dose 1

so2 <− min( dose2 ) − max max2 # Defines x 0 fo r dose 2

sn2 <− max( dose2 ) + max max2 # Defines x {n+1} f o r dose 2

one t imes step NPI f i n i t e I <− function ( dose1 , dose2 , so1 , sn1 , so2 , sn2 ) {

function comparison NPI f i n i t e I <− function ( dose1 , dose2 , so1 , sn1 , so2 , sn2 ) {

# This func t i on c a l c u l a t e s p−va lue between 2 boo t s t rapped samples

NPI f i n i t e <− function (x , so , sn ) { # This func t i on c r ea t e s one boo t s t rap sample

m <− length ( x )

x <− append(x , c ( so , sn ) , a f t e r = length ( x ) ) # Add s t a r t i n g and ending po in t

x <− sort ( x ) # Sort data in inc rea s ing order f o r the sample

boot <− vector ( )

for ( j in 1 :m) { # This c y c l e c r ea t e s m new va lue s from the o r i g i n a l i n t e r v a l s

i n t 1 <− length ( x ) − 1

j j <−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

new value <− runif (1 , min = x [ j j ] , max = x [ j j +1]) # Sample a va lue in t ha t

i n t e r v a l

x <− append(x , new value , a f t e r = j j ) # Add t h i s sampled va lue to the s e t o f

va lue s

boot <− c ( boot , new value )

}

return ( t ( boot ) )

}

x1 <− NPI f i n i t e ( dose1 , so1 , sn1 ) # Create boo t s t rap sample f o r dose 1

y1 <− NPI f i n i t e ( dose2 , so2 , sn2 ) # Create boo t s t rap sample f o r dose 2

return ( t . t e s t ( x1 , y1 , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var . equal = TRUE)$p .

va lue )

# Calcu la t e p−va lue between 2 boo t s t rapped samples

}

t o t a l <− sum( r e p l i c a t e (1000 , function comparison NPI f i n i t e I ( dose1 , dose2 , so1 , sn1 , so2 ,

sn2 ) ) <=0.05) # Repeat 1000 (N) times Step 2 o f the Algorithm

# Calcu la t e how many times we got the same dec i s i on as was the o r i g i n a l d ec i s i on :
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i f ( t . t e s t ( dose1 , dose2 , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var . equal = TRUE)$p .

va lue < 0 . 0 5 ) {

rp <− t o t a l/1000}

else { rp <− 1 − t o t a l/1000}

return ( rp )

}

# The below l i n e performs Steps 2−4 o f the a lgor i thm h (100) t imes

output <−r e p l i c a t e (100 , one t imes step NPI f i n i t e I ( dose1 , dose2 , so1 , sn1 , so2 , sn2 ) )

return (c (min( output ) ,mean( output ) ,max( output ) ) )

}

Reproducibility of the final decision (Algorithm 6)

function f i n a l d e c i s i o n a l l combinations t t e s t f i n i t e I <− function ( dose1 , dose2 , dose3 ,

dose4 , dose5 , dose6 ) {

n <− length ( dose1 ) # Calcu la t e sample s i z e o f dose 1

dose1 <− sort ( dose1 ) # Sort data in inc rea s ing order f o r dose 1

# Record a l l d i s t ance s between adjacent po in t s f o r dose 1

av l <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

av l1 <− dose1 [ ( k+1) ] − dose1 [ k ]

av l <− c ( avl , av l1 )

}

max1 <− max( av l ) # Record maximal d i s t ance between adjacent po in t s f o r dose 1

n2 <− length ( dose2 ) # Calcu la t e sample s i z e o f dose 2

dose2 <− sort ( dose2 ) # Sort data in inc rea s ing order f o r dose 2

# Record a l l d i s t ance s between adjacent po in t s f o r dose 2

av l2 <− vector ( )

for ( k in ( 1 : ( n2−1) ) ) {

av l 2 <− dose2 [ ( k+1) ] − dose2 [ k ]

av l2 <− c ( avl2 , av l 2)

}

max2 <− max( av l2 ) # Record maximal d i s t ance between adjacent po in t s f o r dose 2

n3 <− length ( dose3 ) # Calcu la t e sample s i z e o f dose 3

dose3 <− sort ( dose3 ) # Sort data in inc rea s ing order f o r dose 3

# Record a l l d i s t ance s between adjacent po in t s f o r dose 3

av l3 <− vector ( )

for ( k in ( 1 : ( n3−1) ) ) {

av l 3 <− dose3 [ ( k+1) ] − dose3 [ k ]

av l3 <− c ( avl3 , av l 3)

}

max3 <− max( av l3 ) # Record maximal d i s t ance between adjacent po in t s f o r dose 3

n4 <− length ( dose4 ) # Calcu la t e sample s i z e o f dose 4

dose4 <− sort ( dose4 ) # Sort data in inc rea s ing order f o r dose 4

# Record a l l d i s t ance s between adjacent po in t s f o r dose 4

av l4 <− vector ( )

for ( k in ( 1 : ( n4−1) ) ) {
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av l 4 <− dose4 [ ( k+1) ] − dose4 [ k ]

av l4 <− c ( avl4 , av l 4)

}

max4 <− max( av l4 ) # Record maximal d i s t ance between adjacent po in t s f o r dose 4

n5 <− length ( dose5 ) # Calcu la t e sample s i z e o f dose 5

dose5 <− sort ( dose5 ) # Sort data in inc rea s ing order f o r dose 5

# Record a l l d i s t ance s between adjacent po in t s f o r dose 5

av l5 <− vector ( )

for ( k in ( 1 : ( n5−1) ) ) {

av l 5 <− dose5 [ ( k+1) ] − dose5 [ k ]

av l5 <− c ( avl5 , av l 5)

}

max5 <− max( av l5 ) # Record maximal d i s t ance between adjacent po in t s f o r dose 5

n6 <− length ( dose6 ) # Calcu la t e sample s i z e o f dose 6

dose6 <− sort ( dose6 ) # Sort data in inc rea s ing order f o r dose 6

# Record a l l d i s t ance s between adjacent po in t s f o r dose

av l6 <− vector ( )

for ( k in ( 1 : ( n6−1) ) ) {

av l 6 <− dose6 [ ( k+1) ] − dose6 [ k ]

av l6 <− c ( avl6 , av l 6)

}

max6 <− max( av l6 ) # Record maximal d i s t ance between adjacent po in t s f o r dose 6

so1 = min( dose1 )−max1 # Defines x 0 f o r dose 1

sn1 = max( dose1 )+max1 # Defines x {n+1} f o r dose 1

so2 = min( dose2 )−max2 # Defines x 0 f o r dose 2

sn2 = max( dose2 )+max2 # Defines x {n+1} f o r dose 2

so3 = min( dose3 )−max3 # Defines x 0 f o r dose 3

sn3 = max( dose3 )+max3 # Defines x {n+1} f o r dose 3

so4 = min( dose4 )−max4 # Defines x 0 f o r dose 4

sn4 = max( dose4 )+max4 # Defines x {n+1} f o r dose 4

so5 = min( dose5 )−max5 # Defines x 0 f o r dose 5

sn5 = max( dose5 )+max5 # Defines x {n+1} f o r dose 5

so6 = min( dose6 )−max6 # Defines x 0 f o r dose 6

sn6 = max( dose6 )+max6 # Defines x {n+1} f o r dose 6

f i r s t <− matrix (NA, nrow=1,ncol=10)

for ( i in 1 : 10 ) { # Note : 10 can be changed in to a d i f f e r e n t number , depending on how

many outputs we wants

NPI f i n i t e I <− function (x , s0=−In f , sn=Inf ,m,B) { # This func t i on c r ea t e s B boo t s t rap

sample

xx <− sort (c ( s0 , x , sn ) ) # Now i t conta ins min and max po in t

n <− length ( xx )

lb <− matrix (c ( xx [ 1 : ( n−1) ] , rep (NA,m) ) ,B, n−1+m, byrow=TRUE) # In t e r v a l lower bound

w <− matrix (c ( xx [ 2 : n]−xx [ 1 : ( n−1) ] , rep (NA,m) ) ,B, n−1+m, byrow=TRUE) # In t e r v a l width

i i <− matrix ( 1 :B,B, 2 )

for ( j in 1 :m) {# This c y c l e at one go genera te s s t ep by s t ep a l l B boo t s t rap

va lue s

i i [ , 2 ] <− sample (n−2+j ,B, replace=TRUE) # Sample an i n t e r v a l B times ( i . e . the
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s t a r t o f the i n t e r v a l )

z <− runif (B) # Sample uni formly B va lue s from 0 to 1

lb [ , n−1+j ] <− lb [ i i ]+z∗w[ i i ] # Calcu la t e the va lue : the s t a r t o f the i n t e r v a l +

the width o f the i n t e r v a l ∗z \ in (0 ,1)

w[ , n−1+j ] <− (1−z )∗w[ i i ] # New i n t e r v a l added in

w[ i i ] <− z∗w[ i i ] # New width added in

}

return ( lb [ , n : ncol ( lb ) ] )

}

# Calcu la t e how many new po in t s shou ld be crea ted f o r each dose

m1 <− length ( dose1 ) # Calcu la t e sample s i z e o f dose 1

m2 <− length ( dose2 ) # Calcu la t e sample s i z e o f dose 2

m3 <− length ( dose3 ) # Calcu la t e sample s i z e o f dose 3

m4 <− length ( dose4 ) # Calcu la t e sample s i z e o f dose 4

m5 <− length ( dose5 ) # Calcu la t e sample s i z e o f dose 5

m6 <− length ( dose6 ) # Calcu la t e sample s i z e o f dose 6

# Create new s e t o f data po in t s f o r each dose N (1000) t imes

new d1 <− NPI f i n i t e I ( dose1 , so1 , sn1 ,m1,1000 )

new d2 <− NPI f i n i t e I ( dose2 , so2 , sn2 ,m2,1000 )

new d3 <− NPI f i n i t e I ( dose3 , so3 , sn3 ,m3,1000 )

new d4 <− NPI f i n i t e I ( dose4 , so4 , sn4 ,m4,1000 )

new d5 <− NPI f i n i t e I ( dose5 , so5 , sn5 ,m5,1000 )

new d6 <− NPI f i n i t e I ( dose6 , so6 , sn6 ,m6,1000 )

# Create an empty matrix in which you w i l l record the f i n d i g s each time

t o t a l conc lu s i on <− matrix (NA, 1 , 5 )

for ( i in 1 :1000) {

# each time do the pa i rw i se comparisons f o r the boo t s t rapped samples

p1 <− t . t e s t (new d1 [ i , ] , new d2 [ i , ] , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var .

equal = TRUE)$p . va lue

p2 <− t . t e s t (new d2 [ i , ] ,new d3 [ i , ] , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var .

equal = TRUE)$p . va lue

p3 <− t . t e s t (new d3 [ i , ] ,new d4 [ i , ] , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var .

equal = TRUE)$p . va lue

p4 <− t . t e s t (new d4 [ i , ] ,new d5 [ i , ] , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var .

equal = TRUE)$p . va lue

p5 <− t . t e s t (new d5 [ i , ] ,new d6 [ i , ] , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE, var .

equal = TRUE)$p . va lue

# c o l l e c t the p va lue s in a vec tor p . raw

p . raw t t e s t <− c ( p1 , p2 , p3 , p4 , p5 )

# Since we run 5 t e s t s s imul taneous ly , we ad ju s t the p−va lue s f o r mu l t i p l e t e s t i n g

# using the Benjamini & Hochberg (1995) procedure

# and see whether i t i s below 0.05 or not

conc lu s i on <− p . ad jus t (p . raw t t e s t , method = ”BH” , n = length (p . raw t t e s t ) ) < 0 .05

conc lu s i on <− matrix ( conc lus ion , 1 , 5 ) # c o l l e c t in a vec tor ( in a matrix form )

t o t a l conc lu s i on <−rbind ( t o t a l conc lus ion , conc lu s i on ) # Each time , add a l i n e to

our matrix , record ing r e s u l t s from each attempt

}
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t o t a l conc lu s i on <− t o t a l conc lu s i on [−1 , ] # remove the f i r s t l i n e ( which i s not

needed )

# Create a frequency t a b l e o f a l l the p o s s i b l e combinations o f t e s t outcomes recorded

in Step 3 o f the a lgor i thm

t o t a l <− apply ( t o t a l conc lus ion , 1 , function ( x ) paste (x , c o l l a p s e=” . ” ) )

kk <− sort ( table ( t o t a l ) )

print ( kk )

}

}

Sampling of orderings for the WMT (Algorithm 7)

### For upper t a i l one−s ided WMT, i . e . t e s t i n g whether data f o r dose1 i s s h i f t e d to the

l e f t o f data f o r dose2

### The below func t ion i s used f o r t e s t scenar io from Sect ion 4.2

npi rp function s r s independent max <− function ( dose1 , dose2 , ntt , za , r e j e c t = T) { # Here

the t e s t i s whether dose1 i s sma l l e r than dose2

# nt t s tands f o r number o f order ings chosen

# za i s the rank sum t e s t s t a t i s t i c Z , read from Tables ( see Hol lander and Wolfe )

# This va lue i s s p e c i f i c f o r p a r t i c u l a r n and m

# Values a v a i l a b l e only f o r m>=0 and n>=10

# 1) Find Le f t and Right bound of support f o r each dose − using f i n i t e I

m <− length ( dose1 )

distance <− vector ( )

dose1<−sort ( dose1 )

for ( k in ( 1 : (m−1) ) ) {

d1 <− dose1 [ ( k+1) ] − dose1 [ k ]

distance <− c (distance , d1 )

}

max value <− max(distance ) # Max d i s t ance f o r dose1

n <− length ( dose2 )

dose2 <−sort ( dose2 )

d i s t ance2 <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

d2 <− dose2 [ ( k+1) ] − dose2 [ k ]

d i s t ance2 <− c ( d i s tance2 , d2 )

}

max value2 <− max( d i s t ance2 ) # Max d i s t ance f o r dose2

L <− dose1 [1]−max value

R <− dose1 [m]+max value

dose1 <− sort (c (L , dose1 ,R) )

L2 <− dose2 [1]−max value2

R2 <− dose2 [ n]+max value2

dose2 <− sort (c (L2 , dose2 , R2) )

## 2) Get n∗ p o s s i b l e order ings o f the f u tu r e ob s e r va t i on s f o r both doses

s r s <− function (n) { # n stands f o r number o f o r i g i n a l points , n t t s tands f o r number o f

order ings sampled
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x . index <− sample ( 1 : ( 2∗n) , n) # Draw n va lue s from 1: (2∗n) ( wi thouth replacement )

x . index <− sort ( x . index )

x . index1<− c (0 , x . index , 2∗n+1) # We add to t h i s two more va lue : 0 and m+n+1 (0 and

the number o f i n t e r v a l s at the end )

s s<−d i f f ( x . index1 )−1 # to ge t the d i f f between the order ings

print ( s s )

}

XX <− r e p l i c a t e ( ntt , s r s ( ( length ( dose1 )−2) ) )

YY <− r e p l i c a t e ( ntt , s r s ( ( length ( dose2 )−2) ) )

# From the proof page 95 (Bin t h e s i s ) , put the f u tu r e at x ( j ) or y ( j−1) f o r the lower

and the other way around fo r the upper

XL<− as . data . frame (apply (XX, 2 , FUN= function (X) rep ( dose1 [− length ( dose1 ) ] ,X) ) ) # − the

l a s t va lue ( g e t s r i d o f i t )

XU<− as . data . frame (apply (XX, 2 , FUN= function (X) rep ( dose1 [−1] ,X) ) ) # − the f i r s t va lue

( g e t s r i d o f i t )

YL<− as . data . frame (apply (YY, 2 , FUN= function (Y) rep ( dose2 [− length ( dose2 ) ] ,Y) ) )

YU<− as . data . frame (apply (YY, 2 , FUN= function (Y) rep ( dose2 [−1] ,Y) ) )

# ca l c u l a t e minimum va lue o f the rank sum

l r p sapply <− vector ( )

for ( i in 1 : ntt ) {

a <− wi lcox . t e s t (as . vector ( t (YL[ i ] ) ) , as . vector ( t (XU[ i ] ) ) , exact=F)$ s t a t i s t i c + (n∗ (n

+1)/2) # This c a l c u l a t e d W s t a t i s t i c f o r dose2 ( f o r lower repr . )

l r p sapply <− c ( l r p sapply , a )

}

# Calcu la t e maximum va lue o f the rank sum

urp sapply <− vector ( )

for ( j in 1 : ntt ) {

b <− wi lcox . t e s t (as . vector ( t (YU[ j ] ) ) , as . vector ( t (XL[ j ] ) ) , exact=F)$ s t a t i s t i c + (n∗ (n

+1)/2) # This g i v e s out the rank sum s t a t i s t i c ( i . e . Sum of ranks o f Y) . # This

c a l c u l a t e d W s t a t i s t i c f o r dose2 ( f o r lower repr . )

urp sapply <− c ( urp sapply , b )

}

i f ( r e j e c t == T) {

lower <− sum( l r p sapply>=za )/length ( l r p sapply ) # Lower RP for H 0 r e j e c t i o n

upper <− sum( urp sapply>=za )/length ( urp sapply ) # Upper RP for H 0 r e j e c t i o n

} else {

lower = 1 − sum( urp sapply>=za )/length ( urp sapply ) # Lower RP for H 0 non−r e j e c t i o n

upper = 1 − sum( l r p sapply>=za )/length ( l r p sapply ) # Upper RP for H 0 non−r e j e c t i o n

}

output rp <− c ( lower ,upper )

## Calcu la t e conf idence i n t e r v a l s f o r both the lower and upper RP es t imate

con f idence i n t e r v a l s <− function ( output rp , ntt ) {

con f idence <− vector ( )

for ( i in 1 : 2 ) {

x <− output rp [ i ]

x l <− x−1.960∗sqrt ( ( x∗(1−x ) )/ntt )

x u <− x+1.960∗sqrt ( ( x∗(1−x ) )/ntt )
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con f idence <− c ( con f idence , x l , x u)

}

return ( con f id ence )

}

c o n f i d e n c e s <− con f idence i n t e r v a l s ( output rp , ntt )

output <− c ( output rp , c o n f i d e n c e s )

print ( output )

}## The output o f the func t i on i s : lower RP est imate , b i g g e r RP est imate , CI f o r lower RP

est imate , CI f o r upper RP es t imate

#### The func t ion needs to be ad jus t ed f o r l a r g e sample s i z e s ( over m=10 x n=10)

#### Used fo r t e s t s cenar io s in Sect ion 4.7

npi rp function s r s independent max l a r g e <− function ( dose1 , dose2 , ntt , za =1.645 , r e j e c t = T

) { # Here the t e s t i s whether dose1 i s sma l l e r than dose2 # za 0.05=1.645

# nt t s tands f o r number o f order ings chosen

# Dose 1 i s the Y va r i a b l e and Dose 2 i s the X va r i a b l e

# 1) Find Le f t and Right bound of support f o r each dose − using f i n i t e max approach

m <− length ( dose1 )

distance <− vector ( )

dose1<−sort ( dose1 )

for ( k in ( 1 : (m−1) ) ) {

d1 <− dose1 [ ( k+1) ] − dose1 [ k ]

distance <− c (distance , d1 )

}

max value <− max(distance ) # Max d i s t ance f o r dose1

n <− length ( dose2 )

dose2<−sort ( dose2 )

d i s t ance2 <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

d2 <− dose2 [ ( k+1) ] − dose2 [ k ]

d i s t ance2 <− c ( d i s tance2 , d2 )

}

max value2 <− max( d i s t ance2 ) # Max d i s t ance f o r dose2

L <− dose1 [1]−max value

R <− dose1 [m]+max value

dose1 <− sort (c (L , dose1 ,R) )

L2 <− dose2 [1]−max value2

R2 <− dose2 [ n]+max value2

dose2 <− sort (c (L2 , dose2 , R2) )

## 2) Get n∗ p o s s i b l e order ings o f the f u tu r e ob s e r va t i on s f o r both doses

s r s <− function (n) { # n stands f o r number o f o r i g i n a l points , n t t s tands f o r number o f

order ings sampled

x . index <− sample ( 1 : ( 2∗n) , n) # Draw n va lue s from 1: (2∗n) ( wi thout replacement )

x . index <− sort ( x . index )

x . index1<− c (0 , x . index , 2∗n+1) # We add to t h i s two more va lue : 0 and m+n+1 (0 and

the number o f i n t e r v a l s at the end )

s s<−d i f f ( x . index1 )−1 # to ge t the d i f f between the order ings
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print ( s s )

}

XX <− r e p l i c a t e ( ntt , s r s ( ( length ( dose1 )−2) ) )

YY <− r e p l i c a t e ( ntt , s r s ( ( length ( dose2 )−2) ) )

# From the proof page 95 (BinHimd ’ s t h e s i s ) , put the f u tu r e at x j or yj−1 fo r the lower

and the other way around fo r the upper

XL<− as . data . frame (apply (XX, 2 , FUN= function (X) rep ( dose1 [− length ( dose1 ) ] ,X) ) ) # − the

l a s t va lue ( g e t s r i d o f i t )

XU<− as . data . frame (apply (XX, 2 , FUN= function (X) rep ( dose1 [−1] ,X) ) ) # − the f i r s t va lue

( g e t s r i d o f i t )

YL<− as . data . frame (apply (YY, 2 , FUN= function (Y) rep ( dose2 [− length ( dose2 ) ] ,Y) ) )

YU<− as . data . frame (apply (YY, 2 , FUN= function (Y) rep ( dose2 [−1] ,Y) ) )

# Calcu la t e minimum va lue o f the rank sum

l r p sapply <− vector ( )

for ( i in 1 : ntt ) {

a <− wi lcox . t e s t (as . vector ( t (YL[ i ] ) ) , as . vector ( t (XU[ i ] ) ) , exact=FALSE)$ s t a t i s t i c + (n∗

(n+1)/2) # Function with column from x and column from y as inpu t s

l r p sapply <− c ( l r p sapply , a )

}

# Calcu la t e maximum va lue o f the rank sum

urp sapply <− vector ( )

for ( j in 1 : ntt ) {

b <− wi lcox . t e s t (as . vector ( t (YU[ j ] ) ) , as . vector ( t (XL[ j ] ) ) , exact=FALSE)$ s t a t i s t i c + (n∗

(n+1)/2) # This g i v e s out the rank sum s t a t i s t i c ( i . e . Sum of ranks o f Y) . Function

with column from x and column from y as inpu t s

urp sapply <− c ( urp sapply , b )

}

# For the Normal approximation :

E 0 <− n∗ (m+n+1)/2

var 0 <− m∗n∗ (m+n+1)/12

# Look at each s e t o f order ings and app ly l a r g e sample approximation to ge t W 0 , then

see i f t h i s va lue

# i s b i g g e r than z a lpha

i f ( r e j e c t == T) {

lower <− sum( ( ( l r p sapply−E 0)/sqrt (var 0) )>=za )/length ( l r p sapply ) # Lower RP for H

0 r e j e c t i o n

upper <− sum( ( ( urp sapply−E 0)/sqrt (var 0) )>=za )/length ( urp sapply ) # Upper RP for H

0 r e j e c t i o n

} else {

lower = 1 − sum( ( ( urp sapply−E 0)/sqrt (var 0) )>=za )/length ( urp sapply )

upper = 1 − sum( ( ( l r p sapply−E 0)/sqrt (var 0) )>=za )/length ( l r p sapply )

}

output rp <− c ( lower ,upper )

# ca l c u l a t e CI f o r both the lower and upper es t imate o f RP

con f idence i n t e r v a l s <− function ( output rp , ntt ) {

con f idence <− vector ( )

for ( i in 1 : 2 ) {
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x <− output rp [ i ]

x l <− x−1.960∗sqrt ( ( x∗(1−x ) )/ntt )

x u <− x+1.960∗sqrt ( ( x∗(1−x ) )/ntt )

con f idence <− c ( con f idence , x l , x u)

}

return ( con f id ence )

}

c o n f i d e n c e s <− con f idence i n t e r v a l s ( output rp , ntt )

output <− c ( output rp , c o n f i d e n c e s ) ## The output o f the func t i on i s : lower RP est imate ,

b i g g e r RP est imate , CI f o r lower RP est imate , CI f o r upper RP es t imate

print ( output )

}

Sampling of orderings for the t-test (Algorithm 8)

#### NUMERATOR APPROACH

### Upper s ided t−t e s t − equa l variance , assume \ alpha=0.05

### For lower bound : we put a l l xs to the l e f t and a l l ys to the r i g h t

### For upper bound : we put a l l xs to the r i g h t adn a l l ys to the l e f t

sampling t t e s t numerator <− function ( dose1 , dose2 , ntt , t , r e j e c t = T) { # Here the t e s t i s

whether dose1 i s b i g g e r than dose2

# nt t s tands f o r number o f order ings chosen

# t s tands f o r the c r i t i c a l t−va lue # This va lue i s s p e c i f i c f o r p a r t i c u l a r n and m

# 1) Find Le f t and Right bound of support f o r each dose − using f i n i t e I approach

m <− length ( dose1 )

dose1 <− sort ( dose1 )

distance <− vector ( )

for ( k in ( 1 : (m−1) ) ) {

d i s t 1 <− dose1 [ ( k+1) ] − dose1 [ k ]

distance <− c (distance , d i s t 1 )

}

max value <− max(distance ) # Max d i s t ance f o r dose1

dose2 <− sort ( dose2 )

n <− length ( dose2 )

d i s t ance2 <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

d i s t 2 <− dose2 [ ( k+1) ] − dose2 [ k ]

d i s t ance2 <− c ( d i s tance2 , d i s t 2 )

}

max value2 <− max( d i s t ance2 ) # Max d i s t ance f o r dose2

L <− dose1 [1]−max value

R <− dose1 [m]+max value

dose1 <− sort (c (L , dose1 ,R) )

L2 <− dose2 [1]−max value2

R2 <− dose2 [ n]+max value2

dose2 <− sort (c (L2 , dose2 , R2) )

## 2) Sample n∗ p o s s i b l e order ings o f the f u tu r e ob s e r va t i on s f o r both doses
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# Function s r s samples on order ing

s r s <− function (n) { # n stands f o r number o f o r i g i n a l points , n t t s tands f o r number o f

order ings sampled

x . index <− sample ( 1 : ( 2∗n) , n) # Draw n va lue s from 1: (2∗n) ( wi thout replacement )

x . index <− sort ( x . index )

x . index1<− c (0 , x . index , 2∗n+1) # We add to t h i s two more va lue : 0 and m+n+1 (0 and

the number o f i n t e r v a l s at the end )

s s<−d i f f ( x . index1 )−1 # to ge t the d i f f between the order ings

print ( s s )

}

# Sample n∗ f o r each dose

XX <− r e p l i c a t e ( ntt , s r s ( ( length ( dose1 )−2) ) )

YY <− r e p l i c a t e ( ntt , s r s ( ( length ( dose2 )−2) ) )

# put both dose1 and dose2 to both l e f t and r i g h t

XL<− as . data . frame (apply (XX, 2 , FUN= function (X) rep ( dose1 [− length ( dose1 ) ] ,X) ) ) # − the

l a s t va lue ( g e t s r i d o f i t )

XU<− as . data . frame (apply (XX, 2 , FUN= function (X) rep ( dose1 [−1] ,X) ) ) # − the f i r s t va lue

( g e t s r i d o f i t )

YL<− as . data . frame (apply (YY, 2 , FUN= function (Y) rep ( dose2 [− length ( dose2 ) ] ,Y) ) )

YU<− as . data . frame (apply (YY, 2 , FUN= function (Y) rep ( dose2 [−1] ,Y) ) )

### ca l c u l a t e minimum va lue o f the rank sum for each pa i r o f order ings

l r p sapply <− vector ( )

for ( i in 1 : ntt ) {

a <− t . t e s t (as . vector ( t (XL[ i ] ) ) , as . vector ( t (YU[ i ] ) ) , a l t e r n a t i v e = ( ” g r e a t e r ” ) ,

pa i r ed = FALSE, var . equal = TRUE)$ s t a t i s t i c

l r p sapply <− c ( l r p sapply , a )

}

### Calcu la t e the maximum va lue o f the rank sum for each pa i r o f order ings

urp sapply <− vector ( )

for ( j in 1 : ntt ) {

b <− t . t e s t (as . vector ( t (XU[ j ] ) ) , as . vector ( t (YL[ j ] ) ) , a l t e r n a t i v e = ( ” g r e a t e r ” ) ,

pa i r ed = FALSE, var . equal = TRUE)$ s t a t i s t i c

urp sapply <− c ( urp sapply , b )

}

### Calcu la t e the mean of t l ’ s and t u ’ s

mean l <− mean( l r p sapply )

mean u <− mean( urp sapply )

i f ( r e j e c t == T) {

lower <− sum( l r p sapply>=t )/length ( l r p sapply ) # Lower RP for H0 r e j e c t i o n

upper <− sum( urp sapply>=t )/length ( urp sapply ) # Upper RP for H0 r e j e c t i o n # same

r e s u l t s as we got above

} else {

lower = 1 − sum( urp sapply>=t )/length ( urp sapply ) # Lower RP for H0 non−r e j e c t i o n

upper = 1 − sum( l r p sapply>=t )/length ( l r p sapply ) # Upper RP for H0 non−r e j e c t i o n

}

output rp <− c ( lower ,upper )

output <− c ( output rp ,mean l ,mean u) ## The outputs o f the func t i on are : lower RP
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est imate , b i g g e r RP es t imate mean of t l ’ s , mean of t u ’ s

print ( output )

}

#### DENOMINATOR APPROACH

### For lower bound : l a r g e var iance : f i r s t h a l f to l e f t , second h a l f to r i g h t

### For upper bound : smal l var iance : f i r s t h a l f to r i gh t , second h a l f to l e f t

sampling t t e s t denominator <− function ( dose1 , dose2 , ntt =1000 ,t , r e j e c t=T) {

# The below func t ion samples one order ing f o r a g iven o r i g i n a l sample

s r s <− function (n) { # n stands f o r number o f o r i g i n a l points , n t t s tands f o r number o f

order ings sampled

x . index <− sample ( 1 : ( 2∗n) , n) # Draw n va lue s from 1: (2∗n) ( wi thouth replacement )

x . index <− sort ( x . index )

x . index1<− c (0 , x . index , 2∗n+1) # We add to t h i s two more va lue : 0 and m+n+1 (0 and

the number o f i n t e r v a l s at the end )

s s<−d i f f ( x . index1 )−1 # to ge t the d i f f between the order ings

print ( s s )

}

dose1 <−sort ( dose1 )

m <− length ( dose1 )

distance <− vector ( )

for ( k in ( 1 : (m−1) ) ) {

d i s t 1 <− dose1 [ ( k+1) ] − dose1 [ k ]

distance <− c (distance , d i s t 1 )

}

max value <− max(distance ) # max d i s t ance f o r dose1

dose2 <−sort ( dose2 )

n <− length ( dose2 )

d i s t ance2 <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

d i s t 2 <− dose2 [ ( k+1) ] − dose2 [ k ]

d i s t ance2 <− c ( d i s tance2 , d i s t 2 )

}

max value2 <− max(max2) # max d i s t ance f o r dose2

L <− dose1 [1]−max value

R <− dose1 [m]+max value

dose1 <− sort (c (L , dose1 ,R) )

L2 <− dose2 [1]−max value2

R2 <− dose2 [ n]+max value2

dose2 <− sort (c (L2 , dose2 , R2) )

### This func t i on c a l c u l a t e s lower and upper t−va lue f o r one sampling o f order ings

one cycle <− function ( dose1 , dose2 , t=2.120) {

XX <− r e p l i c a t e (1 , s r s ( ( length ( dose1 )−2) ) )

YY <− r e p l i c a t e (1 , s r s ( ( length ( dose2 )−2) ) )

XX smal l<− XX[ 1 : ( length (XX)/2) ]

XX big <− XX[ − (1 : ( length (XX)/2) ) ]

XX smal l b <− c (XX small , rep (0 , t imes=length (XX big ) ) )
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XX big b <− c ( rep (0 , t imes=length (XX smal l ) ) ,XX big )

YY smal l<− YY[ 1 : ( length (YY)/2) ]

YY big <− YY[ − (1 : ( length (YY)/2) ) ]

YY smal l b <− c (YY small , rep (0 , t imes=length (YY big ) ) )

YY big b <− c ( rep (0 , t imes=length (YY smal l ) ) ,YY big )

XL smal l <− rep ( dose1 [− length ( dose1 ) ] ,XX smal l b )

XU smal l <− rep ( dose1 [−1] ,XX smal l b )

XL big <− rep ( dose1 [− length ( dose1 ) ] ,XX big b)

XU big <− rep ( dose1 [−1] ,XX big b)

XL <− c (XL small , XU big )

XU <− c (XU small , XL big )

YY smal l<− YY[ 1 : ( length (YY)/2) ]

YY big <− YY[ − (1 : ( length (YY)/2) ) ]

YY smal l b <− c (YY small , rep (0 , t imes=length (YY big ) ) )

YY big b <− c ( rep (0 , t imes=length (YY smal l ) ) ,YY big )

YY smal l<− YY[ 1 : ( length (YY)/2) ]

YY big <− YY[ − (1 : ( length (YY)/2) ) ]

YY smal l b <− c (YY small , rep (0 , t imes=length (YY big ) ) )

YY big b <− c ( rep (0 , t imes=length (YY smal l ) ) ,YY big )

YL smal l <− rep ( dose2 [− length ( dose2 ) ] ,YY smal l b )

YU smal l <− rep ( dose2 [−1] ,YY smal l b )

YL big <− rep ( dose2 [− length ( dose2 ) ] ,YY big b)

YU big <− rep ( dose2 [−1] ,YY big b)

YL <− c (YL small , YU big ) # more spread −> l a r g e r var iance

YU <− c (YU small , YL big ) # l e s s spread −> sma l l e r

# Ca lcu la t e minimum va lue o f the rank sum

a <− t . t e s t (XL,YL, a l t e r n a t i v e = ( ” g r e a t e r ” ) , pa i r ed = FALSE, var . equal = TRUE)$

s t a t i s t i c

# Calcu la t e maximum va lue o f the rank sum

b <− t . t e s t (XU,YU, a l t e r n a t i v e = ( ” g r e a t e r ” ) , pa i r ed = FALSE, var . equal = TRUE)$

s t a t i s t i c

i f ( r e j e c t == T) {

aa <− a >= t

bb <− b >= t

} else {

aa <− a < t

bb <− b < t

}

return ( l i s t ( ” lower ”=aa , ”upper”=bb , ” t l ”=a , ” tu”=b) )

}

low <− vector ( )

high <− vector ( )

t low <− vector ( )

t high <− vector ( )

for ( i in 1 : ntt ) {

a l <− one cycle ( dose1 , dose2 )

low <− c ( low , a l$lower )
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high <−c ( high , a l$upper )

t low <− c ( t low , a l$ t l )

t high <− c ( t high , a l$tu )

}

lower prob <− sum( low , na .rm = TRUE)/ntt

upper prob <− sum( high ,na .rm=TRUE)/ntt

mean t l <− mean( t low )

mean up <− mean( t high )

return (c ( lower prob ,upper prob ,mean t l ,mean up) ) ## The outputs o f the func t i on are :

lower RP est imate , b i g g e r RP es t imate mean of t l ’ s , mean of t u ’ s

}

NPI-B-RP for the GR inhibition significance (Algorithm 10)

r e p r o d u c i b i l i t y GR i n h i b i t i o n f i n i t e I <− function ( dose1 , dose2 ) {

n <− length ( dose1 )

av l <− vector ( )

for ( k in ( 1 : ( n−1) ) ) {

av l1 <− dose1 [ ( k+1) ] − dose1 [ k ]

av l <− c ( avl , av l1 )

}

av l mean <− max( av l )

n2 <− length ( dose2 )

av l2 <− vector ( )

for ( k in ( 1 : ( n2−1) ) ) {

av l 2 <− dose2 [ ( k+1) ] − dose2 [ k ]

av l2 <− c ( avl2 , av l 2)

}

av l mean2 <− max( av l2 )

so1 <− min( dose1 ) − av l mean # min fo r dose1

sn1 <− max( dose1 ) + av l mean # max fo r dose1

so2 <− min( dose1 ) − av l mean2 # min fo r dose2

sn2 <− max( dose1 ) + av l mean2 # max fo r dose2

one t imes step f i n i t e npi <− function ( dose1 , dose2 , so1 , sn1 , so2 , sn2 ) {

function comparison f i n i t e npi <− function ( dose1 , dose2 , so , sn , so2 , sn2 ) { # This

func t i on c a l c u l a t e s $p$−va lue between two new boo t s t rap samples

f i n i t e npi <− function (x , so , sn ) {

m <− length ( x )

x <− append(x , c ( so , sn ) , a f t e r = length ( x ) ) # Add s t a r t i n g and ending po in t

x <− sort ( x )

boot <− vector ( )

for ( j in 1 :m) { # This c y c l e c r ea t e s m new va lue s from the o r i g i n a l i n t e r v a l s

i n t 1 <− length ( x ) − 1

j j<−sample ( 1 : i n t 1 ,1 , prob=rep (1/ i n t 1 , i n t 1) ) # Sample an i n t e r v a l

new value <− runif (1 , min = x [ j j ] , max = x [ j j +1]) # Sample a va lue in t ha t

i n t e r v a l

x <− append(x , new value , a f t e r = j j ) # Add t h i s to the s e t o f va lue s
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boot <− c ( boot , new value )

}

return ( t ( boot ) )

}

x1 <− f i n i t e npi ( dose1 , so1 , sn1 )

y1 <− f i n i t e npi ( dose2 , so2 , sn2 )

# GR in h i b i t i o n = $(1 − \mu T/ \mu C)∗100$ and of i n t e r e s t i s 30\% in h i b i t i o n

GR=(1−mean( y1 )/mean( x1 ) )∗100 >30

w i l c = wi lcox . t e s t ( dose1 , dose2 , a l t e r n a t i v e = ” g r e a t e r ” , pa i r ed = FALSE)$p . va lue <

0 .05

s i g n i f i c a n t r e s u l t = GR == T & wi l c == T

return ( s i g n i f i c a n t r e s u l t )

}

t o t a l <− sum( r e p l i c a t e (1000 , function comparison f i n i t e npi ( dose1 , dose2 , so1 , sn1 , so2 ,

sn2 ) ) == T)

i f ((1−mean( dose2 )/mean( dose1 ) )∗100 > 30) {

rp <− t o t a l/1000}

else { rp <− 1 − t o t a l/1000}

return ( rp )

}

output <− r e p l i c a t e (100 , one t imes step f i n i t e npi ( dose1 , dose2 , so1 , sn1 , so2 , sn2 ) )

return (c (min( output ) ,mean( output ) ,max( output ) ) )

}
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