
Durham E-Theses

On deep generative modelling methods for

protein-protein interaction

LEACH, ADAM

How to cite:

LEACH, ADAM (2023) On deep generative modelling methods for protein-protein interaction, Durham
theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/15280/

Use policy

This work is licensed under a Creative Commons Attribution Non-commercial Share
Alike 3.0 (CC BY-NC-SA)

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15280/
https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
http://etheses.dur.ac.uk


On deep generative modelling

methods for protein-protein

interaction

Adam Leach

A Thesis presented for the degree of

Doctor of Philosophy

Department of Computer Science
Durham University
United Kingdom

March 2023



Abstract

Proteins form the basis for almost all biological processes, identifying the inter-
actions that proteins have with themselves, the environment, and each other are
critical to understanding their biological function in an organism, and thus the im-
pact of drugs designed to affect them. Consequently a significant body of research
and development focuses on methods to analyse and predict protein structure and
interactions. Due to the breadth of possible interactions and the complexity of struc-
tures, in sillico methods are used to propose models of both interaction and structure
that can then be verified experimentally. However the computational complexity of
protein interaction means that full physical simulation of these processes requires
exceptional computational resources and is often infeasible. Recent advances in deep
generative modelling have shown promise in correctly capturing complex conditional
distributions. These models derive their basic principles from statistical mechanics
and thermodynamic modelling. While the learned functions of these methods are
not guaranteed to be physically accurate, they result in a similar sampling process
to that suggested by the thermodynamic principles of protein folding and interac-
tion. However, limited research has been applied to extending these models to work
over the space of 3D rotation, limiting their applicability to protein models. In this
thesis we develop an accelerated sampling strategy for faster sampling of potential
docking locations, we then address the rotational diffusion limitation by extending
diffusion models to the space of SO(3) and finally present a framework for the use
of this rotational diffusion model to rigid docking of proteins.
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CHAPTER 1

Introduction

Proteins play a key part in almost all biological interactions. Structural proteins

such as keratin [1] and collagen [2] are essential in forming materials such as nail,

hair, cartilage, tendons and skin; Other proteins such as those found in blood,

haemoglobin [3] and fibrin [4] are fundamentally required for a functioning circula-

tory system, carrying oxygen around the body and preventing blood loss through

clotting respectively. Energy and nutrient extraction require proteins to function,

digestive enzymes [5], and photosynthetic reaction centre proteins [6] are essential

for all forms of cellular life to exist. Fundamentally, virtually all processes inside of

living organisms are executed and mediated by proteins.

Experimental results on how proteins fold and interact suffer from the complex-

ity, cost and time required to run experiments. Computational modelling allows for

rapid advancements in the structural knowledge of proteins [7], leading to the ability

to reason about likely protein interactions, to propose mechanisms of action, and

to design drugs that interact with proteins before experimental results can confirm

the computational suggestions. Therefore, accurately predicting protein properties

can significantly speed up many pharmaceutical developments. Accurate predictions

of protein behaviour are typically done using computationally intensive techniques
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such as molecular dynamics simulations. However, as these proteins have developed

through evolution, we can assume that small changes in sequence will result in small

changes in structure and function. If this assumption did not hold, small mutations

would result in drastic changes to these properties, making gradual evolution and

therefore functional optimisation over generations impossible. Thus, we can apply

the core assumption of deep learning methods; that the mapping between input

and output can be well approximated and generalised by smooth functions. There-

fore, these simulations may be accurately approximated by strategies such as deep

generative modelling.

This thesis aims to contribute to this area of research by exploring methods to en-

hance existing protein modelling workflows and to apply state-of-the-art generative

models to protein interaction. The first part of this thesis focuses on extending tradi-

tional rigid protein docking methods by providing better “seed” positions (Chapter

3). The rest of the thesis focuses on extending and applying diffusion models to

rigid protein docking by modifying them to work on 3D rotations (Chapters 4 and

5).

1.1 Motivation

Recent advances in deep generative modelling have led to many new applications

in modelling complex datasets across a variety of tasks. Domains such as natural

images, audio and text have seen rapid advancements in the quality of generated

samples. In particular, diffusion models [8] have shown high quality results in a vari-

ety of fields. While previous forms of high quality generative models such as Gener-

ative Adversarial Networks (GANs) [9] and Variational Auto-Encoders (VAEs) [10]

are able to learn distributions, issues such as mode collapse during training and

blurry samples limit their practical applications. Diffusion models use a stochastic

process to sample from a learned data distribution in an iterative fashion. Iterative

sampling allows for diffusion models to address the shortcomings of VAEs without

resorting to the adversarial techniques used in GANs that introduce biases such as

mode collapse.

2



However, several shortcomings exist when attempting to apply diffusion models

to protein data. Foremost is the choice of representation of protein structure. While

audio and image data (respectively) are typically represented as dense Rl×c and

Rh×w×c arrays for 1D and 2D convolutions, structural protein data exists in 3D

space. A volumetric representation - i.e. Rh×w×d×c, scales with the cube of the

resolution, and quickly takes up large amounts of storage (Table 1.1).

Type Dense Representation Memory Required (32-bit floating point)
Audio 1024 × 16 64kB
Image 10242 × 16 64MB
Volumetric 10243 × 16 64GB

Table 1.1: Memory usage of typical dense data representations. An early layer in
a neural network can easily consist of 16 feature channels. Memory usage quickly
becomes untenable.

Typical diffusion models act upon data in Rn space, Rn×n×3 for images and

Rn×1 for audio. However, protein structures are heavily constrained by physical

properties such as molecular bond length. While a naive diffusion process can learn

these physical properties, the learned data distribution is only an approximation of

the true distribution. Enforcing these physical constraints through informed network

design allows for a closer approximation to the true data distribution. This requires

defining a form of diffusion model that can act upon a compound space of SO(2),

SO(3) and R3.

The inherent structure of protein data poses an interesting challenge. Whereas

dense representations of image and audio data can be reasonably represented given

current computational constraints, three dimensional data such as proteins cannot.

Application of alternative data representations such as pointcloud, rigid gas and

graph based networks are increasingly common and leverage results from a wide

range of deep learning areas.

Stochastic generative models such as denoising diffusion [8] and score matching

networks [11] derive their basic principles from statistical mechanics and thermo-

dynamic modelling [12]. While the learned functions of these methods are not

guaranteed to be physically accurate, they result in a similar sampling process to

that suggested by the thermodynamic principles of protein folding. Therefore inves-
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tigating this class of models is motivated by strong parallels with the actual physical

processes of protein folding. While outside the scope of this thesis, diffusion models

also have the potential to solve a wide range of problems regarding the calculation

of transitional states between known protein conformations [13], leading to a better

understanding of many biological processes.

1.2 Thesis Contributions

The main contributions of this thesis are as follows:

• A broad literature review of research and concepts pertinent to diffusion based

protein models, covering classical protein docking computational methods, ex-

isting machine learning driven enhancements, and the building blocks of state-

of-the-art models (Chapter 2).

• A extension to classical rigid-body protein docking methods to quickly gener-

ate candidate docking poses for further evaluation (Chapter 3).

• A novel form of diffusion process, enabling their use on the space of 3D rota-

tions (Chapter 4).

• A framework for the application of SO(3) diffusion processes to rigid pro-

tein docking, including details on combining rotational and translational dif-

fusion, multiple target prediction methods, and discussion on issues involved

with modelling diffusion across a wide variety of protein scales, including true

docking position leakage, and correct scaling of the noising process.

1.3 Publications

Work contained in this thesis has been previously published in the following peer-

reviewed publications by the author, and is used in the chapters as indicated below.

• Shape tracing: An extension of sphere tracing for 3D non-convex

collision in protein docking, Adam Leach, Lucas S.P. Rudden, Sam Bond-
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Taylor, John C. Brigham, Matteo T. Degiacomi, Chris G. Willcocks, In Pro-

ceedings of the 20th International Conference on Bioinformatics and Bioengi-

neering (BIBE), IEEE 2020 (Contributing to Chapter 3).

• Denoising diffusion probabilistic models on SO(3) for rotational align-

ment, A. Leach, S.M. Schmon, M.T. Degiacomi, C.G. Willcocks, In Workshop

on Geometrical and Topological Representation Learning, ICLR 2022 (Con-

tributing to Chapter 4).

Furthermore, the following peer-reviewed publications have been co-authored

but have not been included as part of the narrative of this thesis:

• Deep Generative Modelling: A Comparative Review of VAEs, GANs,

Normalizing Flows, Energy-Based and Autoregressive Models Sam

Bond-Taylor, A. Leach, Y. Long, C.G. Willcocks, In PAMI 2022.

• AnoDDPM: Anomaly Detection with Denoising Diffusion Proba-

bilistic Models using Simplex Noise, Julian Wyatt, A. Leach, S.M. Schmon,

C.G. Willcocks, In NTIRE workshop, CVPR 2022.

1.4 Thesis Scope and Structure

This thesis presents a number of topics spanning protein kinematics, generative

modelling, probabilistic modelling and statistics on manifolds. In particular, gener-

ative modelling applied to protein interactions can be used to reframe the problem

of predicting the correct interaction into generating potential interactions to further

evaluate and score. Chapter 2 thoroughly reviews a broad array of topics crucial to

the application of generative modelling to the protein domain. In this chapter, this

broad array of topics is divided into proteins, transformers, geometric deep learning

and energy based models.

Chapter 3 explores the use of an enhancement to traditional computational pro-

tein docking seed points by fast generation of potential docking poses. Employ-

ing GPU-accelerated parallelised raycasting across the entire protein surface, large

speedups in initial docking position generation are achieved. These docking positions
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can then be fed into existing docking optimisers for faster evaluation of potential

docking candidates.

Chapter 4 explores the usage of denoising diffusion probabilistic models for mod-

elling the distribution of candidate solutions for 3D rotation alignment problems.

Systemic modifications to the vanilla DDPM model to include information relevant

to the underlying SO(3) manifold are applied. This includes replacing the gaussian

distribution in the diffusion process with a carefully chosen gaussian alternative dis-

tribution on SO(3), called the Isotropic Gaussian on SO(3). With this distribution,

along with appropriate replacements of euclidean operations like addition with the

geodesic flow, this chapter successfully redefines the Denoising Diffusion Probabilis-

tic Model (DDPM) equations to learn distributions defined on SO(3). Finally, the

chapter benchmarks this novel SO(3) DDPM with regular euclidean DDPM (ap-

plied on quaternion rotations) to learn the distribution of candidate solutions in

rotation alignment.

Chapter 5 explores the application of deep generative modelling and the SO(3)

diffusion model in Chapter 4 to rigid protein docking. Several issues such as the

correct choice of model scaling, method of SE(3) gradient prediction, and network

architecture are discussed.

Chapter 6, the final chapter, draws together the key findings presented within

the previous chapters, provides a discussion on the strengths and weaknesses of

diffusion models for protein docking, and presents a brief overview of derivative

works in which techniques developed in Chapter 4 have been applied to protein

interaction and other areas.
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CHAPTER 2

Literature Review

This chapter forms a review of relevant literature to this thesis. Firstly, an overview

of proteins, their synthesis, sequence and structure is provided, along with cur-

rent approaches to protein docking and how machine learning algorithms have been

adapted and applied to protein docking. The second section is an overview of Trans-

former models, and how they are applied to protein sequence data. Transformer-

derived attention mechanisms are used in many of the methods discussed in Section

2.3. These methods can be applied to 3D structures such as proteins. In the final

section, Energy Based Models, an overview of these models and geometric learning

approaches used on similar tasks are discussed.

2.1 Proteins

Proteins are a vital part of living organisms, performing a vast array of functions,

including catalysing metabolic reactions, providing structure for cells and connec-

tive tissue, replicating DNA, responses to external stimuli (light, sound, pressure,

smell and taste), cell-to-cell communication via hormones, and transportation of

molecules. Virtually all reactions inside an organism are the result of the interac-
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tions between proteins, either through short-term interactions such as enzymatic

catalysis and signal transduction, or long term construction of protein complexes

that function as macromolecular machines. Analysis of proteins and how they in-

teract is critical in understanding how the human body works, and how infectious

diseases can spread.

2.1.1 Protein Biosynthesis

N

HH

Cα

HR

C

O

O

H mRNA
translation

N

H

Cα

HR

C

O

n

+ nH2O

Figure 2.1: Generic amino acid structure, the “R” atom corresponds to the sidechain
that differs between each type of amino acid. The two carbon atoms are typically
distinguished by labelling the one attached to the sidechain as “carbon alpha” Trans-
lation of messenger RNA (mRNA) results in a protein backbone consisting of many
residues linked together.

Initially a section of DNA encoding a protein (a gene), is transcribed into mRNA.

Premature form mRNA is produced through the action of RNA polymerase enzymes

on a DNA strand, “unzipping” the strand and “copying” it onto a section of mRNA.

This then goes through a post-transcription modification phase, where caps are

added to each end, and sections of the sequence that don’t need to be encoded into

the protein (introns) are removed. After the transcription phase, the mature mRNA

is then translated into a sequence of amino acids (residues) chemically bonded by

covalent bonds known as “peptide bonds” (Figure 2.1). Amino acids are the or-

ganic compounds that form the building blocks of proteins. Each 3-base sequence

of mRNA encodes a particular amino acid into the protein’s backbone. Each amino

acid has a unique side chain, the different side chains result in different behaviours,

some have electrostatic charges, while others are hydrophobic. The interaction be-

tween side chains, each other and the water around them determines the shape of

the folded protein. This is known as the “Sequence Hypothesis” [14] and can be

summarised as “sequence determines structure”.
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2.1.2 Protein Structure

Protein interaction is determined by many factors, including electrostatic forces,

hydrogen bonding and hydrophobic effects. The atomic composition and overall

structure of a protein also affects how and what a protein interacts with. Direct

imaging of protein structure is difficult, and while methods such as cryo-EM and

X-ray crystallography exist and can produce images of the protein’s overall shape,

determining the corresponding residues present is difficult and requires computa-

tional and statistical approaches in order to predict the complete structure of a

protein.

Protein structure is typically defined into four hierarchical categories: primary,

the linear sequence of amino acids; secondary, the three dimensional form of local

segments of a chain; tertiary, the three dimensional shape of a single chain; and

quaternary, the three dimensional shape formed by multiple protein chains.

Primary Structure

The primary structure of a protein (the residue sequence) can be determined directly

through protein sequencing, or indirectly by DNA sequencing of the corresponding

gene. By convention, the primary protein structure is listed starting from the un-

bonded nitrogen atom (N-terminal group).

N (1)

ϕ(1)

C
(1)
α

ψ(1)

C(1)

ω(1)

N (2)
ϕ(2)

C
(2)
α

ψ(2)

C(2)
ω(2)

N (3)

Figure 2.2: Protein backbone shape, each triangle corresponds to a residue.

Secondary Structure

Secondary protein structures are formed out of local residue sequences (Figure 2.2).

The formation of secondary structure is the first step in the folding process that

a protein takes. Dihedral (torsion) angles, specified by the ϕ, ψ and ω in Figure

2.2 are used to describe the twisting of the protein backbone. Dihedral angles are
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defined as the angle between the two planes formed by adjacent atoms (Figure 2.3a).

The peptide bond (C − N) linking two consecutive residues corresponds to the ω

dihedral angle and almost always exists in the trans orientation [15], corresponding

to an angle of 180°. In contrast, the ϕ and ψ angles can take on a wide range

of values. The distribution of ϕ and ψ angles can be evaluated through the use

of a Ramachandran plot [16]. Plotting ϕ and ψ angles taken from a variety of

proteins shows that these angle pairs fall into regions of high and low density (Figure

2.3b). The distribution of angle-pairs is strongly influenced by the local residue

sequence - i.e. the orientations that are energetically favourable are dependent on

the electrostatic influence of nearby sidechains.

ψ(1)

N (1)

C
(1)
α

C(1)

N (2)

(a)

180

-180
-180

1800

0

Right-twisted
β sheets

Left-handed
α helix

Right-handed
α helix

Collagen
triple helix

Parallel
β sheets

β sheets

ψ

ϕ

(b)

Figure 2.3: (a) Calculation of dihedral angles. The angle ψ(1) is calculated between

the two planes defined by (N (1), C
(1)
α , C(1)) and (C

(1)
α , C(1), N (2)). (b) A Ramachan-

dran plot. Allowed regions (blue) correspond to ϕ−ψ angle pairs that are commonly
seen in protein structures. Labels indicate the approximate positions of major sec-
ondary structures. Reproduced from [17]

There are two main secondary structures that are commonly found within pro-

teins: alpha helices and beta sheets (Figure 2.4). These configurations are partic-

ularly energetically favourable, as their structure is reinforced by the formation of

intramolecular hydrogen bonds between residues (Figure 2.5).

Tertiary Structure

Alpha helices and Beta sheets typically contain hydrophobic and hydrophilic sections

(they are amphipathic). These repulsions and attractions to water influence which
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(a) α-helices in the “Leucine Zipper”, a
common structural motif.

(b) Extended β-sheet in a mutated form
of OspA, highlighted in orange.

Figure 2.4: Protein secondary structures, such as α-helices and β-sheets are the two
main secondary structures present in naturally occurring proteins.

parts of the secondary structures end up exposed to the environment surrounding the

protein, and which parts are more likely to end up embedded deep within the folded

protein. The attraction to water of a section of secondary structure is dependent on

the residue sidechains.

Quaternary Structure

Proteins such as Haemoglobin consist of multiple peptide chains. In these proteins,

the assembly of pre-folded single-chain subunits gives rise to quaternary structure.

Subunits must be correctly arranged and each one correctly encoded in order for the

entire protein to function properly. Misalignment of the subunits can cause a severe

loss of ability for a protein to interact. In Aldehyde Dehydrogenase 2 (ALDH2)

a tetrameric protein, one of several proteins used during the metabolic process for

ethanol, a mutation of a single nucleotide results in Lysine instead of Glutamine

being encoded as the 487th residue. This section of the folded structure is responsible

for the binding of four subunits to form a stable protein. Unfortunately the mutation

results in the subunits being incapable of binding correctly, resulting in a vastly
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Figure 2.5: Hydrogen bonding in an antiparallel beta sheet. Adjacent chains of
residues form intramolecular hydrogen bonds (. . .), forming a stable, flexible, struc-
ture.

reduced ability to process aldehyde, with versions of ALDH2 containing four mutated

subunits being completely incapable of processing aldehyde [18]. This results in

significant reduction in the human body’s ability to process alcohol, resulting in the

alcohol flush reaction, and highlights the importance of structural protein modelling.

Protein Rigidity and Intrisic Disorder

While the previous sections have discussed protein structure as a hierarchical folding

process culminating in a single, solid structure, it’s important to note that protein

structure is not fixed, that the intramolecular forces holding the protein conforma-

tion are not static, and that proteins exist on a sliding scale of rigidity. A significant

proportion of protein interaction and behaviour is driven by the flexibility of proteins

as they interact with their environment. Fundamental biological processes such as

cellular cargo transport (via kinesin proteins) require flexibility in the motor domain

in order to function [19]. Similarly, various environmental factors such as pH and

dissolved carbon dioxide level affect the shape of haemoglobin, switching it between

two states - taut (T) and relaxed (R) which influence its oxygen affinity, causing

the release of oxygen in high CO2 environments. Additionally, the initial binding
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Figure 2.6: Intrinsic disorder in SUMO-1 protein. Ten alternative conformations
derived from protein NMR are overlaid. These structures show an orderly central
structure consisting of α-helices (orange) and β-sheets (teal). The N- and C- termi-
nal regions show intrinsic disorder and do not assume a fixed shape. Images derived
from PDB: 1A5R

of an oxygen atom induces a slight conformal shift, further increasing the oxygen

affinity [20].

Intrinsically Disordered Proteins (IDPs) lack a fixed three-dimensional structure.

These proteins have been found to be important in DeoxyriboNucleic Acid (DNA)

regulation [21] and cell signalling [22]. The existence of IDPs disproves the idea

that a protein must form a fixed three-dimensional structure in order to accomplish

their biological functions, and also refutes the utility of rigid-body protein docking

analysis as a catch-all method of reasoning about protein interaction.

2.1.3 Protein Folding, a Thermodynamic Perspective

Protein folding is a complex process, for which the space of possible protein shapes

in extremely large. Nevertheless, proteins tend to follow specific folding pathways.

In order to understand this apparent contradiction, the space of all possible protein

configurations can be treated as a statistical energy landscape [23]. From this view-

point, the folding of a protein can be seen as a form of stochastic gradient descent

of the protein’s configuration towards the minimum energy state. This process is

driven by intramolecular forces such as van der Waals forces and hydrogen bonds.

As a protein’s natural environment consists of being surrounded by water and other

molecules, the buffeting effects of brownian motion add a form of stochasticity to

this gradient descent process, helping to overcome potential local minima in protein
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configuration. The tendency of proteins to follow specific folding pathways can be

ascribed to a “valley” effect. Much like how the shape of valley directs water from

a large area into a single stream, a large swathe of protein configurational space

can be captured by a single folding pathway that the protein will then follow. The

principle of minimal frustration [23] states that it is evolutionarily favourable for

folding landscapes to minimise the number of local minima and to increase the speed

of protein folding, and therefore naturally occurring proteins and their landscapes

should show these properties.

2.1.4 Protein-Protein Docking and Interaction

Protein-protein docking is a focal point of activity in computational biophysics and

structural biology. In general, the structure of a protein complex is far more diffi-

cult to determine through experimentation than the structure of an individual pro-

tein [24]. Thus, computational techniques to model these interactions are paramount

to biological understanding.

Classical Pipeline

Protein docking methods typically run over several steps. Firstly, a population of

protein complexes is generated, on the order of thousands to millions of candidates,

treating the individual proteins as rigid bodies. Secondly a scoring function is used

to rank candidates until finally, a refinement process is used to optimise top ranked

candidates with energy or geometric models.

Random sampling of the potential docking space is unlikely to produce high

quality samples. Many different methods exist that seek to produce a higher qual-

ity initial population. Many methods rely on matching coarse resolution shapes of

ligand and receptor against each other, achieved through a variety of strategies. An

early breakthrough in searching for these matches by Katchalski-Katzie et al. [25]

relied upon Fast Fourier Transform (FFT) methods to convolve the shapes of the

two proteins, extensions to this technique such as FTDock [26], DOT [27], HEX [28],

GRAMM [29] and ZDOCK [30] introduce electrostatic information of the two pro-

teins to further filter the generated potential candidates. An alternate approach
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is geometric hashing [31], in which each point in the target proteins is assigned

an invariant representation before comparing them for similarity. Agreements be-

tween representations indicates a match between regions in the two proteins, and

hence a potential docking site. Other geometric hashing methods such as LZerD [32]

rely upon different geometric hashing strategies for better discrimination, and the

method can be extended with templating methods such as PatchDock and Symm-

Dock [33], and SnapDock [34] - querying a database of known dockings and associ-

ated geometric hashes of other proteins to infer potential candidates.

After (or during) potential candidate generation, scoring functions are used to

rank the top candidates, before a refinement process is applied. This refinement

process is typically approached as a black-box optimisation problem while trying

to maximise a scoring function (or minimise an energy function). A variety of

optimisation algorithms are used. In 2001, Gardiner et al. [35] proposed the use of

genetic algorithms, with each chromosome representing a different degree of freedom

in the ligand’s movement. Other black-box optimisation algorithms proposed for

refinement include: FPDock [36], applying Flower Pollination Algorithm (FPA) [37],

where the ligand position is represented by a quaternion, scored by electrostatic

and van der Waals potential. SwarmDock [38] and PSO@AUTODOCK [39] both

use Particle Swarm Optimisation (PSO) [40] as an approach. This is extended

by JabberDock [41, 42] by a ”kick reseed“ strategy initially proposed in [43] to

randomly reinitialise the particle positions. LightDock [44] uses Glowworm Swarm

Optimization (GSO), whose main benefit is the ability to optimise multiple minima

simultaneously, helping to avoid being trapped in local minima.

Machine Learning Approaches

Machine learning approaches to Protein-Protein interaction fit into two main cat-

egories. The more mature approach, utilising a variety of techniques and not just

neural networks, is to augment or replace parts of the classical pipeline with learned

procedures. Alternatively, the entire pipeline can be replaced with deep learning

methods. The standard textbook view holds that the residue sequence of a protein

determines its structure. Based upon this view, an ideal neural network would be
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capable of generating a full protein structure given a sequence of amino acids. In

general, structure prediction is mainly concerned with the position of the protein’s

backbone atoms, determined by a repeating sequence of Nitrogen (N), Carbon-alpha

(Cα) and Carbon (C) atoms. i.e.

N (1), C(1)
α , C(1)︸ ︷︷ ︸, N (2), C(2)

α , C(2)︸ ︷︷ ︸, ..., N (L), C(L)
α , C(L)︸ ︷︷ ︸,

for a protein of length L. As shown in Figure 2.1, a (N,Cα, C) grouping corresponds

to a particular residue, of which many are chained together by covalent bonds to

form the protein backbone. (Figure 2.2).

Pipeline Augmentation

The classical pipeline can be augmented in one of two ways. Either the population of

candidates can be improved through the use of data driven approaches, or the scoring

mechanism can be replaced with a data driven model that prioritises candidates with

interface sites similar to known protein interactions. PAIRPred [45] uses sequential

and structural features as input to a pairwise Support Vector Machine (SVM) to

predict the residue pairs that are likely to be bound together. This helps select

potential candidates. Similarly, EL SMURF [46] uses random forests to predict the

binding sites. Due to class imbalance (most residues in a protein are not part of

the binding site), Wang et al. also developed SMOTE as a data augmentation tool.

Wei. et al. [47] approach class imbalance differently, an SVM classifier is used to

determine the weights of training samples, before using those estimated weights in a

random forest for binding site prediction. BIPSPI [48] uses XGBoost [49] for binding

site prediction. This approach takes into account both receptor and ligand residues

during prediction to produce partner-specific binding sites.

Neural network based approaches have also been considered, Fout et al. [50] uses

Graph Convolutional Networks (GCNs) to generate local residue features before

pairwise concatenation between receptor and ligand residues is classified as being a

binding site. Other deep learning based approaches such as DLPred [51] use an Long

Short Term Memory (LSTM), operating on sequence data only to predict binding
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sites. As with most deep learning problems, large datasets significantly improve

the quality of learned functions. In 2019, SASNet [52] introduced a significantly

larger dataset - the Database of Interacting Protein Structures (DIPS), two orders

of magnitude larger than datasets previously used. The SASNet model consists of

voxelisation of residue sidechains, a small convolutional network, and pairwise com-

parison of residue features. While this method lacks contextual information about

the residue neighbourhood, the model produced state of the art results. Other ap-

proaches use convolutional layers to produce per-residue feature descriptors that can

then be compared against known binding site ”hotspots”. Xie et al. [53] introduces a

Convolution-only binding site prediction method that relies on pre-calculated spatial

features to improve performance. Zhu et al. [54] also introduce a convolution-only

binding site prediction model, with improved performance due to the use of model

ensembles. A database of known residue sequences and bindings is used to im-

prove performance at runtime. Liu et al. [55] uses both graph neural networks and

convolutional layers to produce high quality predictions of binding site.

It is also possible to use machine learning models to estimate the scores of a given

docking candidate rather than relying on full score calculation. Classical machine

learning approaches to this problem such as SVMs [56–58] have been attempted.

While deep learning approaches such as DOVE [59], based on 3D convolutional net-

works, and EGCN [60] using graph convolutional networks and spatial relationships

between residues have also attempted to approximate score.

In Hadarovich et al. [61], the contact map (a 2D representation of which residues

are close together in 3D space) between two protein chains is predicted with a

convolutional architecture applied to the distance map. The contact map is then

used to predict the alignment via gradient descent. The distance and contact maps

are invariant to rotation and translations.

2.1.5 Protein Representation in Neural Networks

The best way of representing protein structure in a neural network is highly de-

pendent on task. Protein structures have strong constraints on atomic positions.

Distances between covalently bonded atoms and angles formed by adjacent bonds
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are typically treated as fixed. For tasks where protein structure is known, such as

classification, representation of the protein structure is free to include more degrees

of freedom than are present in the molecule. For tasks that involve the prediction of

protein structure, these constraints need to be enforced. Many different approaches

to this exist. In some, the network is free to predict any representation, then con-

straints are forced upon the prediction. In others, the constraints are intrinsic to

the model, such that impossible configurations cannot be predicted.

XYZ Coordinates of Atoms

Each residue in a backbone consists of N (i), C
(i)
α , C(i) atoms. We can represent the

position in 3D space of each atom with a set of X,Y,Z coordinates (R3). By stacking

these coordinates together, a residue can be represented as a 3 by 3 matrix - R3×3.

We can then further stack the residues of a whole backbone of length L together to

arrive at an array X:

X ∈ R3×3×L. (2.1)

Applications of this approach need to enforce bond lengths and angles between

adjacent atoms. Ramaswamy et al. [62] unravel their initial protein representa-

tion into R3×3L, as to leverage existing 1D convolution operations present in pop-

ular libraries. Their physical loss term, LPhys (an implementation of the amber

force-field [63]) contains parameters that enforce the bond length and bond angle

constraints.

XYZ Coordinates of Cα and Orientation

Noting that covalent bond lengths and angles show minimal variation across protein

structures [64], each residue can be approximated by keeping track of its orientation

and the coordinates of the Cα atom. Constraints on distance and angle between

adjacent residues still need to be satisfied, however this does reduce the amount of

constraints that need to be learned or externally enforced. This approach is used in

Alphafold 2 [65].
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Dihedral Angles

Noting that bond length and angles are almost entirely fixed [64], the protein back-

bone’s 3D structure can be almost entirely described through dihedral angles alone.

Alphafold 1 [66] initially predicts a combination of dihedral angles and distance as

an initial solution before optimising the relative distance potentials. However, the

prediction of dihedral angles alone also introduces a “lever arm” effect, as small

changes in a dihedral angle’s value can greatly influence protein shape.

Distance Maps

Instead of representing atomic positions, we can instead represent the distances

between pairs of atoms. True atomic positions (modulo rigid transformation) can be

recovered through multidimensional scaling [67]. This approach has the advantage of

learned features being invariant to rotation and translation of the protein complex,

reducing the need for data augmentation. Distance maps allow for easy modelling of

both long and short range interaction, as presenting pairwise information in an L2

map means that standard Convolutional Neural Networks (CNNs) can be leveraged.

Alphafold 1 [66] initially predicts distances between atoms in the form of a distance

map.

2.2 Transformers

Transformers are a form of neural network that rely on an attention mechanism [68]

in order to weight the contributions of a set of input tokens to the output. While

transformers were initially used to great success as a language model [68], and con-

tinue to be the dominant form of model in Natural Language Processing (NLP) [69–

71], the use of attention mechanisms has become widespread in computer vision [72–

74] and machine learning models for proteins [75].
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2.2.1 Attention Mechanisms

The core of any transformer model is the attention mechanism [68]. The attention

mechanism can be seen as a way of mapping a query and a set of key-value pairs

to an output. An attention mechanism defines an interaction between them such

that the output for each query token is a sum of the values weighted by dot-product

similarity between the query and keys. In Self-attention, the query, key and value

vectors are derived from the same set of input vectors. Self attention takes in a set

of values X, of length L for which each element (the vector x⃗i) is multiplied by three

different matrices.

• WQ - the Query weight matrix to produce q⃗i, a query vector

• WK - the Key weight matrix, to produce k⃗i, a key vector

• W V - the Values weight matrix, to produce v⃗i, a value vector

For each query vector q⃗i, we take the dot product with every key vector [k⃗1, ..., k⃗L],

producing a vector of scores

[si,1, ..., si,L] = q⃗i · [k⃗1, ..., k⃗L]

We then divide the score values by
√
dk, where dk is the dimension of the key

vectors in order to normalise the selectivity of the dot product and stabilize gradi-

ents. Softmax is then applied in order to normalise the attention to sum to 1. This

results in a vector a⃗i of length L for which each value is the weighted contribution

of each v⃗i to the final output z⃗i:

a⃗i = softmax

(
[s(i,1), ..., s(i,L)]√

dk

)
, (2.2)

z⃗i =
L∑

j=0

aij v⃗j. (2.3)

We can also write this in matrix notation for the whole sequence, where:
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WQX = Q, (2.4)

WKX = K, (2.5)

W VX = V, (2.6)

which gives us the original notation:

Z = softmax

(
QK⊤
√
dk

)
V. (2.7)

2.2.2 Cross Attention

While many attention-based architectures consider a single set of inputs, Sequence-

to-Sequence tasks such as machine translation and certain protein-protein docking

algorithms such as EquiDock [75] rely upon two separate input sets. In these cases,

a Cross-Attention mechanism relies upon queries from the second set of inputs. For

an element in the encoding e⃗i and a decoder input x⃗i, a decoder head produces the

following values:

q⃗i = WQx⃗i, (2.8)

k⃗i = WK e⃗i, (2.9)

v⃗i = W V e⃗i, (2.10)

these are then used as in the standard self-attention mechanism.

2.2.3 Multi-head Attention

In multi-head attention, we have multiple attention “heads”. These are identical in

structure, but have different weight matrices. The outputs from these - Z0, Z1, ...Zm

are concatenated together and multiplied by a final weight matrix.

21



2.2.4 Kernelisable Attention

While powerful and achieving state of the art accuracy in a wide variety of tasks,

transformers are limited by large memory usage during training. This is due to

the attention matrix consisting of n2 entries for a sequence of length n. Given an

attention matrix

A = softmax

(
QK⊤
√
dk

)
,

kernelisable attention methods assume that the matrix A can be rewritten such that

each element Ai,j can be defined in terms of a kernel K(·, ·) and per-query scaling

factor ci:

Ai,j = ciK(q⃗i, k⃗j).

Kernel functions rely upon the property that they can be expressed as an inner

product over vectors transformed by a function ϕ.

Ai,j = ϕ(qi) · ϕ(kj),

with qi and kj standing for the ith and jth query and key row-vector respectively.

Kernel methods are able to extend this by a process known as the ”kernel trick” [76].

This allows for defining functions between qi and kj that cannot be defined in terms

of a dot product. For example, the Radial Basis Function (RBF) kernel K(q,k) is

defined in terms of an exponential transform of the euclidean distance between the

two values:

K(q,k) = exp

(
−∥q − k∥2

2σ2

)
,

where σ is a parameter determining how quickly the value of K(q,k) tends to zero as

∥q − k∥2 increases. However, as is important in kernelisable attention mechanisms,

kernels without an explicit ϕ can be approximated [77] with a finite-dimensional

embedding. Defining Q′ and K ′ as query/key matrices with ϕ : Rdk → Rr as a

non-linear mapping to a higher dimensional space performed on each row-vector,

the full softmax attention mechanism can be approximated:
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softmax
(
QK⊤

)
V ≃ (Q′K ′⊤)V = Q′(K ′⊤V ).

In this approximation, Q′, K ′⊤ and V have dimensions n× r, r × n and n× dk

respectively. Due to the associativity of matrix multiplication, the approximation

of the attention matrix A does not have to be explicitly calculated. The size of

the matrix product (K ′⊤V ) is then independent of the length of the sequence, with

size r × dk. The memory requirements of the full attention approximation are then

linear with the sequence length. This allows for significantly longer sequences to

be modelled without the memory constraints associated with standard attention

mechanisms.

As part of showing that autoregressive transformers can be approximated by Re-

current Neural Networkss (RNNs), Katharopoulos et al. [78] implement the feature

map ϕ(·) as a linear projection to a high-dimensional space followed by a smooth, un-

bounded non-linearity such as ELU or GELU [79,80]. Furthermore, Katharopoulos

et al. go on to show that by linearising the attention mechanism, any autoregressive

transformer can be expressed as an RNN with the following update equations, where

xi denotes the i-th input, yi the i-th output, and si, zi the hidden state at timestep

i:

s0 = 0,

z0 = 0,

si = si−1 + ϕ (xiWK) (xiWV )T ,

zi = zi−1 + ϕ (xiWK) ,

yi = fl

ϕ (xiWQ

)T
si

ϕ
(
xiWQ

)T
zi

+ xi

 .

(2.11)

This allows for for real-time symbol-by-symbol evaluation, with constant mem-

ory usage with respect to sequence length, and linear inference time. However,

Katharopoulos’ choice of ϕ(·) is somewhat limiting, and does not perform as well as

standard attention. In Rethinking Attention with Performers [81], Choromanski et

al. investigate functions to approximate standard softmax attention. Issues with ap-
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proximation using trigonometric functions are identified, with the potential for neg-

ative valued approximations resulting in an inability to train. Instead, Choroman-

ski proposes Fast Attention Via positive Orthogonal Random features (FAVOR+)

a modification of the commonly used random fourier feature method [77, 82–84]

of kernel approximation. FAVOR+ avoids negative valued approximations by us-

ing exponential functions (exp(x), exp(−x)) instead of the trigonometric functions

(sin(x), cos(x)) used to approximate kernels in Rahimi et al. [77]. As these expo-

nential functions are always positive, the approximation made using them will also

be positive. To further improve the approximation by reducing variance, the ran-

dom feature projections are forced to be orthogonal to each other. In the case of

more requested features than dimensions in the projection, a second set of random

orthogonal features are considered. Performer models are typically implemented

by fine-tuning existing language models, which can then be extended with longer

context windows given the savings in memory. When training, it’s suggested to

resample the random feature vectors every so often to prevent overfitting.

2.2.5 Protein Language Models

Transformer based models are commonly applied to NLP tasks. However, protein

sequences can also be considered as a series of tokens, similar to natural text. This

has lead to much research into Protein Language Models (PLMs). The basics of a

PLM are very similar to those of an NLP model. The protein sequence is tokenized

by splitting it up into its individual residues. PLMs are typically trained in an unsu-

pervised manner on protein sequences, both autoregressively through next token pre-

diction and through masked token prediction i.e. BERT [85]. While autoregressive

token prediction can be used for the generation of novel protein sequences [86, 87],

a key use of unsupervised PLMs is in learning embeddings of protein sequences

that can be used for other downstream tasks. Rao et al. [88] shows that unsuper-

vised PLMs are capable of learning structural information through sequence alone.

Rives et al. [89] expands on this by training a larger model on more data, showing

that features such as secondary and tertiary structure can be predicted from PLM

embeddings. Furthermore Elnaggar et al. [90], train a large collection of different
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unsupervised autoregressive (Transformer-XL [91], XLNet [92]) and autoencoding

(BERT [85], Albert [93], Electra [94], T5 [95]) language models on protein sequences.

These showed the ability of learned protein embeddings to capture biophysical fea-

tures and to perform better on downstream tasks. Following the introduction of new

adversarial masking techniques in NLP [94,96], McDermott et al. [97] apply the same

techniques to protein sequences, showing stronger performance of these models on

the same benchmarks. While not directly concerned with protein structural mod-

elling, there is a strong history of NLP advances being repurposed to improve the

state of the art in protein sequence modelling.

2.3 Geometric Deep Learning

Proteins occupy an interesting space in machine learning, where many techniques

from more theoretical areas such as geometric and topological learning can be ap-

plied. The basic sequence of a neural network can be expressed as a Graph Neural

Network (GNN) over the individual atoms that make up each residue, with edges

representing covalent bonds. From a manifold and group theory perspective, pro-

tein structure is also interesting as it follows the symmetries of SE(3) - the group

of rotations and translations of 3D space. Proteins do not follow the symmetries

of E(3) the group of rotations, translations and reflections of 3D space, as protein

structure is chiral. Invariance to reflection is undesirable in these problems as the

chirality of molecular structures has a significant effect on biological interactions

(notably thalidomide). A protein’s overall structure and behaviour is not affected

by its position or orientation in 3D space and thus shows invariance in SE(3), how-

ever interactions between residues and between proteins are heavily driven by their

relative orientations and positions.

Capturing graph and SE(3) structure and symmetries as part of the network

architecture leads to reductions in parameter count and better generalisation for

the same reasons that lead to CNN architectures excelling at image and volumetric

tasks. This section serves as an introduction to the terminology and concepts needed

for an understanding of deep learning protein models. This section will rely upon
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the categorisations proposed by Bronstein et al. [98]

2.3.1 Graph Neural Networks

Graphs consist of a set of vertices vi ∈ V and a set of (potentially directed) edges

(vi, vj) = eij ∈ E . Each vertex vi has associated with it a set of features: inputs,

referred to as xi and hidden/output layers referred to as hl
i where l is the layer index.

Some networks also include edge information. GNNs are a form of neural network

that operate on graphs by applying learned functions to edges and vertices. Most

importantly, the ordering that is used when vertices are processed by the neural

network does not affect how they are processed. Any GNN layer will produce a set

of values that are influenced by both vertex values and the connectivity structure

of the graph.

For ease of distinction, network layers presented in this section will use xi to

denote the input features for a vertex and hi to denote the output features for a

vertex of a layer. This does not lose generality as layers can be stacked to produce

networks of greater capacity.

GNNs update vertex features xu → hu by applying a permutation invariant func-

tion to the features of each vertex and its neighbours – ϕ (xu,XNu). This function

can take one of three forms; convolutional, attentional, or message-passing. Each of

these methods follows the same basic structure: Firstly, calculate features for each of

the adjacent vertices, then aggregate them with a permutation invariant operation⊕
e.g. sum, mean, max, min, etc.

Convolutional GNNs

In Convolutional GNNs, also known as GCNs, the basic structure of a network [99–

101] relies on applying a non-linear function ϕ to every vertex u and an aggregation

of its neighbours such that each of its transformed neighbours ϕ(xv) has an equal

contribution. Each contribution is scaled by the same fixed term cuv that is non-zero

when the edge euv exists. The final output can be viewed as a learned function ϕ of
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the input vertex data and the aggregated, transformed neighbours:

hu = ϕ

xu,
⊕
v∈Nu

cuvψ(xv)

 .

Attentional GNNs

Attentional GNNs replace the fixed weight cuv with a scalar value derived from the

vertex and its neighbour a(xu,xv), this learned function is derived from a modifi-

cation of the attention mechanism present in transformers [102–104]. This value is

often softmax-normalised across all neighbours and
⊕

taken as summation. This

allows the weights to be feature dependent, updating xu by learning what features

are potentially relevant:

hu = ϕ

xu,
⊕
v∈Nu

a(xu,xv)ψ(xv)

 .

Message Passing GNNs

Message-passing GNNs compute arbitrary vectors for each ϕ(xu,xv) pair. The key

difference between message-passing and attentional GNNs is the magnitude and

direction of the update vector (ϕ(xu,xv)) is dependent on the value xu in message-

passing networks, whereas only the magnitude of the update vector is dependent on

xu in attentional GNNs.

hu = ϕ

xu,
⊕
v∈Nu

ψ(xu,xv)


The increased flexibility of message-passing models is particularly useful when

looking at graphs over points in 3D space. The messages passed between nodes

can be made dependent on the relative positions between them, allowing for richer

feature updates; especially when node features encode non-scalar information. It

should also be noted that each of the stated GNN mechanisms is a strict subset of

the following one. Attentional GNNs can approximate Convolutional GNNs with a

”flat” attention, and Message Passing GNNs can approximate Attentional GNNs by
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making the direction of the update vector invariant to xu.

There are two main motivations for the use of GNNs in modelling protein-protein

interaction. Firstly, molecular structure consists of many covalent bonded atoms,

which can be easily interpreted as a graph structure with each atom representing

a node, and each bond an edge. Secondly, computational limits mean that fully

modelling the interaction of every atom with every other atom in a problem can be

intractable due to O(N2) time and memory complexity. Therefore the assumption

is made that atomic interactions can be modelled locally and that many layers of

local interactions can capture the long-range interactions of each atom.

In E(n) (n-dimensional euclidean translations, rotations and reflections) equiv-

ariant GNNs, we first need to note that the nodes/vertices exist within a vector

space Rn. Every node i has an associated position xi .

Early research in GNNs applied them directly to molecular structures. The work

of Duvenaud et al. [105] introduces the basic structure of modern GNNs models,

a standard feed-forward convolutional network in which nodes are updated with

weighted sums of neighbour features.

One of the limiting factors in molecular analysis operating purely on graph topol-

ogy, is that the physical position of atoms greatly influences how the molecule inter-

acts. This can be seen in various forms of stereoisomerism. Stereoisomers preserve

the molecular formula and bonds of a molecule, but differ in the 3D positions of

the constituent atoms. However, embedding 3D positions as graph features brings

with it the issue of learning to generalise over rigid rotations and translations of

a molecule. As distance is preserved under rigid transformation, one common ap-

proach is to augment the problem with a distance matrix.

Shi et al. [106]. proposes an energy-based model for learning molecular conforma-

tion. In this paper, equivariance is preserved by augmenting a Graph Isomorphism

Network (GIN) [107] - a form of message passing neural network, with edge length

information. However, several forms of isomerism can preserve bond length, e.g. E-

Z and conformational isomers. The paper acknowledges limitations with relying on

covalent bonds as the only edges in the network and augments the graph representa-

tion with “virtual” 2-hop and 3-hop edges. Alternatively, the paper E(n) equivariant
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Graph Neural Networks (E(n)-GNNs) [108] overcomes the same limitation in a differ-

ent way. The paper introduces an Equivariant Graph Convolutional Layer (EGCL),

a message passing network where the message is dependent on the distances between

a node and its neighbours. The model also updates the 3D positions of nodes based

on the passed messages after each layer. This update is equivariant under rigid

transformation and also serves to distinguish steroisomerisms that preserve bond

length.

An Equivariant Graph Convolutional Layer (EGCL) takes in (hl,xl) and gen-

erates (hl+1,xl+1) - i.e. it generates a **new set of coordinates** on every layer.

These new coordinates don’t change graph connectivity, but they are used to infer

Rn features.

An EGCL takes the following from:

mij = ϕe

(
hl
i,h

l
j, ||xl

i − xl
j||2 , aij

)
(2.12)

mi =
∑

j∈N (i)

mij (2.13)

hl+1 = ϕh

(
hl,mi

)
. (2.14)

Also generate xl+1 :

xl+1
i = xl + C

∑
j ̸=i

(
xl
i − xl

j

)
ϕx

(
mij

)
(2.15)

Effectively speaking, mij becomes dependent on the distance between nodes i, j,

and xl+1 is updated with a weighted sum of the vectors to neighbouring nodes. C

is chosen as 1/(M − 1) to normalise this sum.

GeoDiff [109] applies a denoising diffusion model to the problem of molecular

conformation using a form of EGCL, however this requires manipulation of the

diffusion chain to maintain equivariance.

Equidock [75] extends E(n)-GNNs with Graph Matching Networkss (GMNs) [110],

using both self-attention and cross-attention between two protein graphs in order to

determine a potential alignment between the two for protein-protein docking. Given

29



two graphs G1 and G2, we have corresponding vertex sets V1 and V2. Consider vertex

vi ∈ V1 and vj ∈ V2. Each of these vertices will have a corresponding hidden vector

hi,hj created through some sort of graph neural network.

The attention between vi and vj is not symmetric. The new hidden vector ht+1
i is

modified by an attention mechanism that sums over the hidden vectors for vertices

in V2. The attention weighting aj→i is calculated by:

aj→i =
exp

(
sh
(
hi,hj

))
∑

j′ exp
(
sh
(
hi,hj′

))
where sh is a similarity function and the denominator is summed over all j′ in V2.

Both of these approaches are limited in that only scalar information can be passed

though the network, which makes it difficult to predict vector valued information

such as the velocity or acceleration vectors of atoms in a molecule. Polarisable

atom interaction Neural Network (PaiNN) [111] overcomes this by calculating both

scalar (RF ) and vector (RF×3) features, passing updates through the network while

keeping the atom positions constant (in contrast to Satorras et al. [108]). TorchMD-

NET [112] extends PaiNN through the use of an attention mechanism to evaluate

molecular potentials.

A further extension of the type of data passed through GNNs was proposed

in Tensor Field Networks [113]. Thomas et al. define operations on point-clouds,

where every point has a set of features representing a geometric tensor expressed as

terms in a spherical harmonic series. This approach has been adapted to GNNs for

molecular and protein prediction in several papers. SE(3)-Transformers [114] uses a

modification of a Graph Transformer Network (GTN) [115], where the tensor prod-

uct between an edge direction’s spherical harmonic representation and a neighbour’s

are used to derive query and value vectors. Frank et al. [116] introduce So3karates,

an attention based model whose basic architecture is derived from PaiNN. However,

spherical harmonic information is now present, and a novel attention mechanism al-

lows for message passing between spatially distant atoms by considering atoms with

similar spherical harmonic features to be “neighbours”.

30



2.3.2 Equivariance

In machine learning, Universal Approximation Theorems (UATs) have shown that

networks of arbitrary width [117] or arbitrary depth [118] with a variety of non-linear

activation functions [117, 119, 120] are capable of approximating a broad range of

functions. While this result guarantees that the target function can be learned, it

does not guarantee that the target function will be learned. The core limitation in

applying UATs to real-world applications is that for any particular problem only

finite training data exists. The true value of the target function is only known at a

finite set of points and there exist many incorrect functions that fit the training data

perfectly. Thus, models can fail to generalise, and give rise to the phenomenon of

over-fitting. There are two main approaches to overcoming this limitation if certain

symmetries of the target function are known, augmenting the data to force the

network to learn them [121] through random transformations, or limiting the possible

functions the network can learn by embedding the symmetries in the network. These

symmetries result in invariance or equivariance of the target function.

For example, consider classifying an image of a digit into its numerical value. It

is safe to assume that the position of the glyph in the image does not change the

class that the glyph is from (i.e. a two is still a two even if it has been shifted 5

pixels across). The target function in this case has a property known as translation

invariance. Given data I, a translation g from the group of translations G, we have

that the classification function f behaves identically if the image has been translated

or not (Figure 2.7a)

f(g(I)) = f(I).

Similarly, if we consider an image segmentation or object detection problem, it is

clear that our target function is not invariant to translation. We expect the shift

in our input to correspond to an equivalent shift in our output. This is known as

translation equivariance (Figure 2.7b).

f(g(I)) = g′(f(I)).

There is a distinction to be made here. The representation of the translation acting
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on the image g(I), does not have to necessarily be the same as the representation of

the translation acting upon the output of the function f . The output may not be

in the same domain as the image. For example, an object detection function may

output a pair of coordinates (x, y), (x′, y′) defining the bounding box of the object.

In this case, a shift of the object within the input image I by a pixels rightward,

would result in the output (x + a, y), (x′ + a, y′). The translation g acting on I

(shifting the pixels of an image) and the translation g′ acting on f(I) (adding a

to the x coordinates), correspond to the same translation, but are not the same

function as they operate on different domains.

I GI

FI

g

f
f

(a) Invariant function f

I GI

FI FGI

g

f f

g′

(b) Equivariant Function f

Figure 2.7: Invariance and Equivariance: invariant functions (a) map a transformed
representation to the same value, equivariant functions (b) map a transformed rep-
resentation to a value transformed equivalently in the new domain.

Knowledge of invariance or equivariance of a target function can be exploited

by data augmentation — applying the known transformations to the data during

training. While this strategy is easily implemented, it requires training a network

with many examples of transformed data in order to successfully learn function

symmetries. Alternatively, symmetries can be enforced by building these properties

into the network layers. The most well known cases of invariant and equivariant

layers are pooling and CNN layers respectively. Translation of image data (within

the pooling window) does not affect the output of a pooling layer, and translation

of image data changes the output of a CNN layer in the same way (in this case,

g = g′ if applied separately to each channel). While image classification tasks are

a form of invariant target function, the very nature of the task requires inferring

information from spatial features. Thus, classification networks are commonly built

of multiple equivariant CNN layers and small-window pooling operations to produce

information about localised image features, followed a global pooling operation to
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make the classification invariant to image translation. In contrast, segmentation

algorithms such as U-Net introduced by Ronneberger et al. [122] use invariant

pooling operations as a way of introducing long-range contextual information to

CNN layers. A key advantage of building symmetries into the network’s layers is a

large reduction in the number of parameters needed to train, and a large reduction

in the space of learnable functions, reducing the risk of over-fitting and increasing

generalisability. It is important to note that translation is not the only form of

symmetry, and that rotational and mirror symmetries also exist.

One of the key problems in computer vision and object recognition is the vari-

ability of objects due to pose, position and rotation. Early research into equivariant

models focused on building image recognition models that were unaffected by these

factors, as they formed natural extensions to the translation equivariance of CNNs.

Deep Symmetry Networks [123] were one of the earliest examples of an attempt to

apply equivariant techniques to the space of 2D affine transformations by embed-

ding them in a 6D space. Instead of using a feed-forward network on a fixed grid,

a symnet layer consists of several feature maps that each define a continuous Gaus-

sian kernel that convolves a set of points over a set of different points in the same

symmetry space. Classification of an image is achieved by applying gradient ascent

on the feature map for each class to find the orientation with the maximum value,

then comparing between them to determine which orientation and class is most

likely. Henriques et al. [124] attempt to generalise convolutions to a large space of

natural images by applying spatial transformations (such as log-polar) to the input

image such that the translational equivariance of standard CNNs can be applied to

the resultant image. Equivariance in the full breadth of spatial transformations is

beyond the scope of most papers in the field, and research is typically focused on

2D and 3D rigid transformations (SO(2) and SO(3) respectively). TI-Pooling [125]

approaches 2D rotation invariance by effectively making data augmentation part of

the network. Each input image undergoes 24 uniformly spaced transformations that

are then fed through the same convolutional network separately before non-linear

invariant aggregation via max() function is used. A simple feed-forward network

then serves to classify the image in an equivariant fashion.

33



A competing approach is to embed equivariant features into the network itself,

with several similar but distinct approaches. Group Equivariant Convolutional Net-

works (GECNs) [126] focuses on making 2D convolutions equivariant to 90 degree

rotations. This is achieved by augmenting each convolutional filter with rotated

versions of itself and permuting the input features as to maintain symmetry over

all translations and rotations by 90 degrees (p4 symmetry). Similarly, Dieleman et

al. [127] attempts to exploit the same p4 symmetry. However, instead of augmenting

convolutional filters, they augment the images themselves by feeding rotated ver-

sions of them through each layer in the network before applying pooling operations.

While this has similarities to the TI-Pooling approach, it’s important to note that

features for each rotation are recombined between every convolutional layer rather

after. Cohen et al. introduce Steerable CNNs [128], this extends the augmented fil-

ter bank by noting that there exists an orthogonal basis of 3x3 convolutional filters

such that each element of the basis has a known behaviour under roto-reflection.

By decomposing the filters in such a way, equivariant filters can be learned as linear

combinations (with some constraints) of the responses an image generates to the

basis filters. Oriented Response Networks (ORNs) [129] can be seen as a different

exploration of the augmented filter-bank idea found in GECNs. However, instead

of operating on the discrete rotational symmetry group p4, an ORN is able to op-

erate with any number of orientations (typically 8). Each point in a feature map

effectively becomes a representation of a scalar value in each of the 8 directions.

By examining the intensity of each feature, and the aggregate average direction,

class and orientation of an object in an image can be predicted. Harmonic Net-

works [130] address shortcomings in the previous two extensions to the filter bank

network. While Steerable CNNs untangle filters in order to produce a basis from

which equivariant filters can be learned, they lack full rotational invariance and are

limited to 90-degree rotational and reflection symmetries. ORNs are capable of re-

solving more precise rotational information, however full rotational invariance is not

possible, and can only be approximated by increasing the number of orientations

and thus computational cost. Harmonic Networks take a different approach and

consider a basis of convolutions defined by complex circular harmonics. A filter is
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parametrised in terms of radius, phase offset and order. Each filter is made discrete

on a grid so that the convolution operation can be applied using standard CNN

library functions. Using circular harmonic features allows for arbitrary precision in

feature angle, and results in a smooth representation of the feature intensity in each

direction. Using higher order harmonics increases the effective angular resolution of

the feature intensity, potentially needed in intermediate layers, but is not required

for final prediction of class or orientation.

2.3.3 Spherical Harmonics

Spherical Harmonics are used to great extent throughout the 3D equivariance litera-

ture, a working knowledge of their properties and the basic methods of manipulating

them is essential for an understanding of how many models operate. This section

serves as a brief overview of the relevant areas in order to facilitate that understand-

ing.

Spherical Harmonics are a set of orthogonal functions defined on the surface of

the 3D sphere. Spherical harmonics can be derived as solutions to Laplace’s equation

in spherical coordinates:

∇2f =
1

r2
∂

∂r

(
r2
∂f

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

r2 sin2 θ

∂2f

∂φ2
= 0,

where f : R3 → C, i.e. a complex scalar field over 3D space. f is defined such that

it can be decomposed into a radial and angular component f(r, θ, φ) = R(r)Y (θ, φ).

In spherical coordinates, harmonics are commonly written in the form Y m
l (θ, φ),

a function describing the mth harmonic (m ∈ [−l, l]) of order l. Commonly used

for solving Partial Differential Equations (PDEs), spherical harmonics form an or-

thonormal basis for scalar functions defined on the sphere. This basis relies on a

inner product ⟨·, ·⟩ defined for functions on the sphere as:

⟨f, g⟩ =

∫
S

f(θ, φ) g(θ, φ)dS,

where dS = sin θ dθ dφ. In particular, the spherical harmonics are orthonormal,
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such that:

⟨Y m1
l1
, Y m2

l2
⟩ = δl1l2δm1m2 ,

where δij is the Kroneker delta. Analogously to Fourier series, well behaved func-

tions can be decomposed into a set of spherical harmonic coefficients, a function

f(θ, φ) can be written as an (in)finite sum:

f(θ, ϕ) =

L1∑
l1=0

l1∑
m1=−l1

fl1m1Y
l1
m1

(θ, ϕ),

where the coefficients can be derived from the inner product:

flm = ⟨f, Y m
l ⟩ =

∫
S

f(θ, φ)Y m
l (θ, φ)dS.

The coefficients flm can then be used as a compact approximation of the scalar field

f . Importantly, the behaviour of these coefficients when applying operations to the

scalar fields such as rotation or multiplication is key to using them in neural net-

works. Equations for real spherical harmonics (given Cartesian coordinates x, y, z)

can be derived from the Herglotz generating function [131]:

Y m
l (x, y, z) =

√
2l + 1

2π
Π

|m|
l (z)



∑|m|
p=0

(|m|
p

)
xpy|m|−p sin

(
(|m| − p)π

2

)
m < 0

1√
2

m = 0∑m
p=0

(
m
p

)
xpym−p cos

(
(m− p)π

2

)
m > 0

(2.16)

Where:

Πm
l (z) =

√
(l −m)!

(l +m)!

⌊(l−m)/2⌋∑
k=0

(−1)k2−l

(
l

k

)(
2l − 2k

l

)
(l − 2k)!

(l − 2k −m)!
r2k−lzl−2k−m

(2.17)

Tensor Product of Spherical Harmonics

If we have two functions, defined on the sphere, f(θ, ϕ) and g(θ, ϕ), we can de-

compose them and their product h(θ, ϕ) = f(θ, ϕ)g(θ, ϕ) - the tensor product, into
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spherical harmonics.

f(θ, ϕ) =
L∑
l=0

l∑
m=−l

flmY
l
m(θ, ϕ)

g(θ, ϕ) =
L∑
l=0

l∑
m=−l

glmY
l
m(θ, ϕ)

h(θ, ϕ) =
L∑
l=0

l∑
m=−l

hlmY
l
m(θ, ϕ)

(2.18)

This is analogous to the multiplication of two time domain signals, we can view

spherical harmonics as the decomposition of a signal over a sphere into orthogonal

components, the same way we decompose a time-domain signal using a Fourier

transform.

Basic Fourier theory shows that multiplication in the time domain of two sig-

nals is the same as convolution in the frequency domain (and vice versa). Given

two functions f, g : R → R defined as λf cos(ωf t) and λg cos(ωgt) respectively, the

product in the time domain will result in a function defined in terms of two fre-

quencies: f(t)g(t) =
λfλg

2
cos((ωf − ωg)t) +

λfλg

2
cos((ωf + ωg)t). Note here how

the coefficients of the two frequencies have interacted, with the intensity of the re-

sulting frequencies being a linear combination of the product of the intensities of

f(t) and g(t), i.e. 1
2
× λfλg. This mapping coefficient, 1

2
, henceforth referred to as

P is constant. For time domain signals this linear mapping is easy to realise, and

signals decomposed into their constituent frequencies can be multiplied together.

For the purposes of analogy with spherical harmonic definitions, we can define this

mapping coefficient in terms of input frequencies and output frequencies, resulting

in the following general equation for the product of two cosine functions:

cos(ω1t) cos(ω2t) =
∑
ω3

P ω1,ω2,ω3 cos(ω3t)

P ω1,ω2,ω3 =


1
2

if ω1 + ω2 = ω3,

1
2

if |ω1 − ω2| = ω3,

0 otherwise.

(2.19)
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That is, the coefficient of the cos(ω3t) term is only non-zero at frequencies ω1 + ω2

and |ω1−ω2|, matching the original trigonometric identity. We note here that cos is

an even function, so the sign of ω1 −ω2 does not matter. This toy example is useful

in demonstrating the behaviour of how angular frequencies interact.

In spherical harmonic analysis, a signal is defined on a sphere in terms of its

component harmonics/frequencies. These component frequencies go up to order L

and consist of (2l + 1) harmonics per order. As with time series analysis, the mul-

tiplication of two harmonics results in components spread across multiple different

harmonics. The tensor product describes how the coefficients h are related to f and

g. The basic definition consists of nested summations over both l and m terms.

Given known spherical harmonics Y l1
m1

and Y l2
m2

, the tensor product can be written

as follows [132]:

Y l1
m1

(θ, ϕ)Y l2
m2

(θ, ϕ) =

l1+l2∑
l=|l1−l2|

l∑
m=−l

Ql1,l2,l
m1,m2,m

Y l
m(θ, ϕ) (2.20)

Ql1,l2,l
m1,m2,m

=

√
(2l1 + 1) (2l2 + 1)

4π (2l + 1)
C l1,l2,l

0,0,0 C
l1,l2,l
m1,m2,m

. (2.21)

The term Ql1,l2,l
m1,m2,m

here is analogous to the P ω1,ω2,ω3 term from Equation 2.19.

Instead of the piecewise function defined before, we are left with a complex equa-

tion involving the term C l1,l2,l
m1,m2,m

. These are the Clebsch-Gordan coefficients. The

Clebsch–Gordan coefficients arise from angular momentum coupling in quantum

mechanics [133], however a full understanding of their derivation is unnecessary for

their application in equivariant networks.

Now that we have a relationship between harmonics, we can consider how the

coefficients of our terms from Equation 2.18 are related. Thankfully, this can easily

be decomposed into a product-sum over the coefficients and Q terms.

hlm =
∑
l1m1

∑
l2m2

Ql1,l2,l
m1,m2,m

fl1m1gl2m2

Parts of Q are dependent only on l, these parts are invariant to rotation of the
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underlying functions f and g. Many equivariant networks [113,114,134] replace this

part with learnable parameters kl1,l2,l2 such that:

Ql1,l2,l
m1,m2,m

= kl1l2lC
l1,l2,l
m1,m2,m

.

This is particularly useful as a set of spherical harmonic coefficients glm can be

learned as a “filter” to pick up on features defined on the sphere, analogous to the

weights of a CNN layer.

Wigner D-matrix

Applying equivariance principles to spherical harmonics relies on being able to reason

about how spherical harmonics and their products behave under rotation. The

behaviour of a set of spherical harmonics of order l under rotation is defined in

terms of a matrix D
(l)
mm′ known as a Wigner D-matrix of order l. The Wigner D-

matrix describes the rotation of a set of spherical harmonics as a linear combination

of their coefficients [135], and is both orthonormal and unique for a given rotation.

Thomas et al. [113] show that for any given pair of spherical harmonic coefficients,

transforming both by the same Wigner D-matrix and taking the tensor product is

equivalent to applying the same Wigner D-matrix to the result of non-transformed

coefficients. It is this property that is key to building 3D rotationally equivariant

networks.

2.3.4 Equivariance in 3D

Data science in 2D is dominated by image analysis, and the use of 2D arrays for

representing data. In 3D, data suffers from the curse of dimensionality and the mem-

ory requirements of volumetric information increase dramatically. Hence, research

into equivariance in 3D spans a wider range of data representations and overlaps

significantly with GNN research on point-clouds. Due to network complexity and

the higher dimensionality of 3D space (3 translation and 3 rotation dimensions) vs

2D space (2 translation, 1 rotation dimension), group symmetry principles inform

a large amount of contemporary network architectures for protein and molecular
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problems. Layers are typically E(3) equivariant, and SE(3) invariant.

On volumetric data, 3D G-CNNs [136] extends GECNs to 3D by augmenting

convolutional filters with rotated and reflected versions. However, due to the nature

of rotations in 3D, even when constrained to 90 degrees, this filter bank becomes

unworkably large, with 24 augmentations needed per filter to capture orientation

preserving rotations of the cube, taking up large quantities of the parameter budget

for fewer features. CubeNet [137] functions similarly, but pays specific attention to

ensuring that the composition of rotated filters are mapped to the correct channel of

a particular feature, while also exploring subgroups of the 24 orientations to reduce

filter bank complexity. Weiler et al. [138] extend Harmonic Networks [130] into

3 dimensions. Instead of using circular harmonics to derive equivariant features

in SO(2), spherical harmonics are used to derive equivariant features in SO(3).

Spherical harmonics are used to define an equivariant basis, as each harmonic can

be represented by a continuous function. Rotational transformations of features

can be expressed as transformations of the spherical harmonic decomposition by

applying a Wigner D-matrix. Each feature is represented by a 2nd order tensor,

a 3x3 matrix, which is decomposed into 0th (scalar), 1st (vector) and 2nd order

terms as these three terms behave differently under rotation. 0th, 1st and 2nd order

basis kernels are derived from spherical harmonics weighted with a radial Gaussian

function in order to limit their size. These kernels are discretised into standard

3D convolutions, and learned linear combinations of them used as with Harmonic

Networks to convolve equivariantly. It is important to note that with point-cloud

data, the sample positions are irregular, therefore the discretisation step of Weiler

et al. [138] cannot be applied.

Kondor [139] introduces N-body Networks, in which the point-cloud is recursively

partitioned into overlapping subtrees. Each layer of the subtree, starting with the

layer corresponding to individual points applies two forms of operations, a pairwise

operation between each pair of points in a given leaf, and an aggregation operation

to pass information up the tree to the next layer. These operations are all equiv-

ariant to rotation or translation, such that the final, global, aggregated values can

be used to predict scalar and vector properties. The seminal paper in equivariance

40



on point-clouds is Thomas et al.’s 2018 work Tensor Field Networks [113]. Tensor

Field Networks (TFNs) function as GCNs over point-clouds, with graph connectiv-

ity derived from k-nearest-neighbour relationships. As with other 3D equivariant

approaches, each point has an associated set of spherical harmonic features. Stan-

dard neural networks represent scalar features through a series of channels, however

sometimes we wish to predict properties like translation, view direction etc. In these

cases we can use a more complex set of features. Tensor field networks treat ev-

ery point in space as having an associated tensor. This tensor is described by F

spherical harmonics representing separate features. Given n points in R3 and F

channels, a TFN consists of an array of n × 3 real valued coordinates describing

each point’s position, and an array of n×F × l real valued feature values, where l is

the highest spherical harmonic order. Tensor Field Networks builds on results from

Harmonic Networks [130] - 2D rotational equivariance with circular harmonics; and

SchNet [140] a 3D invariant network that uses pairwise distances between atoms.

The convolutions differ from previous approaches by defining rotationally equiv-

ariant filters that depend on the relative positions between two points. Given two

points a, b with locations r⃗a, r⃗b a filter is dependent on r⃗ab := r⃗a − r⃗b. A filter is

defined as a set of spherical harmonics, one for each order of the input. Filters

consist of angular and distance components, such that a filter F
lf ,li
cm is of the form:

F
(lf ,li)
cm (r⃗) = R

(lf ,li)
c (r)Y

(lf )
m (ˆ⃗r) (2.22)

where r = |r⃗|, ˆ⃗r = r⃗/r. Y
(lf )
m (ˆ⃗r) is the coefficients of order lf given by decomposing

a unit impulse in the direction of r into its spherical harmonics, Y
(0)
m (ˆ⃗r) = c, the

scalar term is equal to a constant, and Y
(1)
m (ˆ⃗r) ∝ ˆ⃗r, the vector term is proportional

to the direction of the vector. R
(lf ,li)
c (r) are a set of learned functions from R≥0 → R

such that a filter responds with different strengths to different orders of harmonics.

For each channel/feature c, and each pair of harmonic orders(lf , li) (filter and in-

put respectively), the (learned) function R
(lf ,li)
c (r) takes in a scalar distance/vector

length and returns a scalar R≥0 → R. We then multiply the spherical harmonics

of order lf generated by the normalised vector r̂ by this scalar term to arrive at

a spherical harmonic representation of r⃗ which is equivariant to rotation. This is
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because the Y
(lf )
m (r̂) term rotates with the associated Wigner D-matrix, and the

R
(lf ,li)
c (r) term is invariant to rotation. Typically the radial function R

(lf ,li)
c (r) uses

a weighted Gaussian to limit the impact of long-range dependencies and allow for

optimisations by only considering the point interactions within a certain range.

A TFN layer consists of aggregating the tensor product of each filter with a points

neighbours. Given vectors r⃗a with differences r⃗ab = r⃗a − r⃗b, a convolutional layer is

defined by taking tensor products of the spherical harmonic features of nearby points

b ∈ S with filter features generated by the vector towards each point r⃗ab. This allows

for the spherical harmonics to interact in a way where both the direction towards

the nearby point and the spherical harmonics of that point contribute to the update.

L(l0)
acm0

(
r⃗a, V

(li)
acm0

)
=
∑

mf ,mi

C
(lo,mo)
(lf ,mf )(li,mi)

∑
b∈S

F
(lf ,li)
cmf (r⃗ab)V

(li)
bcmi

(2.23)

Where the subscripts i, f and o denote representations of the input, filter and out-

put respectively, C
(lo,mo)
(lf ,mf )(li,mi)

denotes Clebsch-Gordan coefficients. This spherical-

harmonic filter, message-passing based paradigm for operating on point-clouds is

re-used extensively throughout later literature.

Cormorant [134], uses a similar Clebsch-Gordan approach, but also introduces

non-linearities on the spherical-harmonic vertex representations by taking the ten-

sor product of each vertex with itself. Unfortunately, as noted in the paper, this

quadratic, unbounded, non-linearity is the likely cause of large training instabilities,

and poor weight initialisation or poor choice of optimisation algorithm frequently

results in exploding losses or convergence to a poor fit.

Fuchs et al. [114] introduce SE(3)-Transformers, in which the TFN equation

(2.23) is modified to use an attention mechanism rather than an unweighted summa-

tion over neighbouring nodes. This allows for greater specificity in message passing

updates.

Townshend et al. [141] notes that TFN networks can also be used to predict

geometric values such as force field vectors. This is applied to molecular structure

refinement in order to optimise molecular predictions. Batzner et al. [142] address a

similar problem to Townshend et al. but note that directly predicted force fields are
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not guaranteed to be conservative. A conservative vector field is the gradient of some

potentially unknown scalar function. Without this property, a force field would be

unsuitable for use in simulations. Instead, Batzner et al. uses a global pooling op-

eration is used in order to predict global molecular system energy. Backpropagating

through the network can be used to recover gradients on atomic positions, resulting

in a gradient field that is conservative, thus the model can be used in molecular

dynamics simulations.

2.3.5 Learning on Manifolds

One of the core hypotheses of machine learning is that data in a high-dimensional

space exists either on, or near to a low-dimensional manifold embedded in that

space [143]. This assumption is used in a wide variety of unsupervised learning

approaches [144]. While significant effort has been put into this area of research, it

is important to note that there are many datasets for which the manifold is known.

Data distributions defined on space such as the sphere, and the space of 2D and

3D rotations are commonly found in a broad range of machine learning applications

from pose prediction in augmented reality and special effects [145] to protein dock-

ing and structural biology problems. However, as neural networks apply linear and

non-linear transformations to data defined on Rn, expressing manifold inputs and

outputs in ways that can be smoothly embedded in Rn is an active area of research,

and improper embedding can lead tp suboptimal performance. Zhou et al. [146] show

how this is the case for several different embeddings of 3D rotations. Neural network

models are typically trained through Maximum Likelihood Estimation (MLE), that

is, network losses are a form of Negative Log-Likelihood (NLL) given an assumption

of the underlying distribution of the data. For example, a regression problem is typ-

ically optimised by minimising the Mean Squared Error (MSE) between prediction

and target. In this case, MSE is proportional to the NLL of target data when pre-

dicting the mean of a Gaussian distribution of unknown (but fixed) variance [147].

Classification losses, such as (binary) cross entropy loss, calculate the NLL for the

parameters of Bernoulli and categorical distributions respectively. However, these

distributions cannot be used for the optimisation of distributions defined on man-
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ifolds. Of greatest importance to protein docking are distributions defined on the

3D sphere and on the space of 3D rotations - SO(3). Instead models can be trained

by predicting parameters of a known distribution on these manifolds (in particular,

predicting the mean) and minimising the NLL of sampling the true value from the

predicted distribution.

Probability Distributions on the Sphere

The von Mises-Fisher distribution is a continuous distribution over the unit sphere

Sp−1 ⊂ Rp [148], where the probability of sampling the unit length vector x is

defined as

p(x|µ, κ) = Cp(κ) exp
(
κµTx

)
, (2.24)

where µ a unit-vector mean direction parameter, and κ a scalar concentration pa-

rameter. The normalising constant Cp(κ) is equal to κp/2−1

(2π)p/2Ip/2−1(κ)
[149], where Iv

denotes the modified Bessel function of the first kind of order v. If we assume a fixed

or unknown κ, then optimising the NLL can be done by predicting µ and minimising

the function −µ⊤x. This reflects typical assumptions when doing regression on Rn

data, i.e. the use of MSE as a NLL loss, assuming data is normally distributed. This

is a common pattern in many distributions over the sphere, defining an expression

over the parameters that computes a real number, exponentiating that value so that

it is always positive, then normalising that value by a parameter-dependent constant

so that the distribution integrates to 1. Similarly, the Bingham distribution is an

antipodally symmetric probability distribution on the n-sphere [150]. The Bingham

distribution can be viewed as a distribution over lines that pass through the origin

in Rp. The Bingham distribution, defined as:

p(x) =
1

1F1

(
1
2
, n
2
, Z
) exp

(
x⊤MZM⊤x

)
, (2.25)

is parameterised in terms of an orthonormal matrix M (a matrix in which columns

are orthogonal vectors, each of length one) that controls orientation, and a diagonal

shape and concentration matrix Z whose elements control how spread out the dis-
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tribution is. This distribution is commonly used to represent uncertainty in axial

data, e.g. preferred crystal orientations in minerals [151], geological magnetic anal-

ysis [152], and scene reconstruction [153]. The normalising constant 1F1

(
1
2
, n
2
, Z
)

is

a confluent hypergeometric function of matrix argument [154], equal to the integral

over the sphere of
∫
SO(3)

exp
(
x⊤Zx

)
dx, and has the form of an infinite sum [154].

Calculation of this term is therefore computationally expensive.

Probability Distributions on SO(3)

The manifold SO(3) is typically represented as orthogonal 3 × 3 matrices of deter-

minant 1 as this can be used to easily rotate vectors through matrix multiplication.

However, unit length quaternions are also commonly used in computer graphics to

represent 3D rotations. A rotation of angle θ around the unit-length axis u can be

represented by the quaternion:

cos
θ

2
+ (uxi + uyj + uzk) sin

θ

2
, (2.26)

where (1, i, j,k) form the basis vectors a quaternion system. Notably, the coefficients

of these basis vectors (cos θ
2
, ux sin θ

2
, uy sin θ

2
, uz sin θ

2
) lie on the surface of S3 – the

unit sphere in R4. Thus any distribution defined on S3 may be used to represent a

distribution over SO(3).

Since the unit quaternions q and −q represent the same 3D rotation, the Bing-

ham distribution’s antipodal symmetry correctly captures the space of quaternion

rotations. Gilitschenski et al. [155] fully parametrise a Bingham distribution with

the output from a neural network, and are able to quantify uncertainty over 3D rota-

tions in their predictions of 3D object orientation. The heavy computational burden

of calculating the normalising constant 1F1

(
1
2
, n
2
, Z
)

is alleviated by pre-computing

a range of values (this is feasible as the diagonal matrix Z only has three degrees

of freedom) and interpolating between them. However, the 4 × 4 rotation matrix

M is not unique, leading to discontinuity issues introduced by predicting alternate

(but still correct) M values for two nearby orientations [146]. This issue applies to

any rotational model using quaternions, thus distributions defined directly on SO(3)

should be considered instead.

45



The Matrix-Fisher distribution MF(F ) on SO(3) parametrises the space of ro-

tations with a Probability Density Function (PDF) of the form

p(x) =
1

c(F )
exp

(
tr
(
F⊤x

))
,

where F ∈ R3×3 parameterises this family of distributions, and x is a rotation

matrix. The normalising factor c(F ) is calculated such that p(x) integrates to 1.

Notably, the matrix F has no constraints on its values. Outputs from a neural

network are free to take any values they wish, and do not need to be modified to lie

on SO(3). Singular Value Decomposition (SVD) of the matrix parameter F , i.e.:

F = UΣV ⊤ (2.27)

where U and V are orthonormal matrices and Σ is diagonal, is used to extract

interpretable information about the distribution [156]. Following a normalisation

procedure to ensure U, V ∈ SO(3), the mean of the distribution can be calculated

from UV ⊤.

The normalising constant c(F ) would typically require evaluation of the integral∫
SO(3)

exp
(

tr
(
F⊤Q

))
dQ. However, calculation of the normalising constant c(F )

can be simplified to a line integral as it is invariant to rotation of the distribution,

and is thus only dependent on the values in the singular matrix S. The normalising

factor, c(F ) = c(S), with singular values s1, s2, s3 can be defined for any ordering of

i, j, k to 1, 2, 3 as:

1

2

∫ 1

−1

I0

[
1

2
(si − sj)(1 − u)

]
× I0

[
1

2
(si + sj)(1 + u)

]
eskudu, (2.28)

where I0 is the 0th order modified B essel function. However, this is still quite com-

putationally intensive to evaluate. Nevertheless, for the purposes of Energy Based

Models (EBMs) (see Section 2.4), the Matrix-Fisher distribution does have one key

advantage, the gradient of the log-probability is tractable and easily calculated, and

thus can be used for Langevin dynamics with ease. Langevin dynamics uses the

gradient of the log-probability of a distribution to produce samples from it. The

46



Matrix-Fisher’s gradient of log-probability can be derived as follows:

p(R) =
1

c(F )
etr(F

⊤R) (2.29)

log(p(R)) = − log(c(F )) + tr(F⊤R) (2.30)

∆R log(p(R)) = ∆Rtr(F⊤R) (2.31)

The isotropic Gaussian on SO(3) is defined by a mean rotation g and standard

deviation ϵ. Unlike the Matrix-Fisher distribution, the convolution of two isotropic

Gaussian distributions is also a isotropic Gaussian distribution. It also has the

property of being a fundamental solution to the diffusion equation on SO(3):

∂ϕ(r, t)

∂t
= ∇2ϕ(r, t), (2.32)

where ϕ(r, t) is the density of the diffusing system at location r ∈ SO(3) at time t.

Given two isotropic Gaussian distributions, parametrised as I(µ1, ϵ
2
1), I(µ2, ϵ

2
2), the

distribution of the rotation taken from composing rotations from these distributions

is I(µ2µ1, ϵ
2
1 + ϵ22). The linearity in the variance makes this distribution especially

useful for diffusion models.

An isotropic Gaussian distribution I(µ, ϵ2) can be decomposed into two separate

distributions I(µ, 0), I(I, ϵ2). As the first distribution has a variance of 0, it can be

viewed as multiplying from the left the identity-mean distribution by a fixed rotation

matrix µ. For the identity-mean distribution, the isotropic Gaussian is defined in

axis-angle form. We can decompose our rotation into axis-angle form and define an

angular PDF f(θ):

f(θ) =
1 − cos θ

π

∞∑
l=0

(2l + 1) exp(−l(l + 1)ϵ2)
sin((l + 1

2
)θ)

sin(θ/2)
, (2.33)

where the axis of rotation is sampled uniformly. This equation converges due

to the negative exponential term, but small values of ϵ, can result in finite ap-

proximations requiring high numbers of evaluations of the inner equation before

approximating the true distribution sufficiently.
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While the group SO(3) is non-commutative, the isotropic nature of the distribu-

tion means that the order of multiplication of these matrices does not matter. This

is provable by considering the same rotation constructed from the same distribution

in two ways, only differing in order of application of their rotations. Given post-

multiplication by the mean (R) and pre-multiplication, we know that Z1R = RZ2,

where Z1 and Z2 are samples from the identity-mean distribution. Pre-multiplying

both sides by R−1 shows that R−1Z1R = Z2. Thus Z1 and Z2 are similar matrices

and have the same trace. As the trace of a rotation matrix is a function of angle of

rotation, then the angle of rotation is equal and the two matrices Z1 and Z2 differ

only in axis of rotation, which is sampled uniformly. As this is true for any chosen

rotation, the two distributions must be equal. The infinite summation converges

quickly for ϵ > 1, however for small ϵ this sum can take thousands of terms to

converge. This is an issue during diffusion process sampling as the diffusion pro-

cess requires the application of many small steps. Matthies et al. [157] propose an

approximation of high accuracy for small ϵ.

f (θ) =

(
1 − cos (θ)

)
π

√
πϵ−

3
2 e

ϵ
4 e−

( θ
2)

2

ϵ ·

[
θ − e−

π2

ϵ

(
(θ − 2π) e

πθ
ϵ + (θ + 2π) e−

πθ
ϵ

)]
2 sin

(
θ
2

)
Sampling from the isotropic Gaussian distribution can be achieved through numer-

ical integration of the PDF to generate an approximate Cumulative Distribution

Function (CDF), then using inverse transform sampling to turn a sample from the

uniform distribution u ∼ U(0, 1) into a sample from the angular component of the

isotropic Gaussian distribution. For small ϵ, the approximation defined above may

be used. The axis of rotation can easily be chosen through any form of uniform

sampling from the sphere.

2.4 Energy Based Models

Energy Based Models (EBMs) [158] are a class of generative models that are based

on the Boltzmann distribution. Given a system consisting of states yi for which each

has an associated energy ϵ(yi), the Boltzmann distribution describes the probability
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that the system can be found in state yi as a function of the state’s energy, ϵ(yi)

and the system’s temperature T :

p(yi) ∝ e−ϵ(yi)/kBT ,

where kB is the Boltzmann constant. As temperature increases, the probability of

each state evens out until all states are equally probable. With finite states, the

Boltzmann distribution can be normalized by dividing by the sum of the exponen-

tials. The equation can be further reduced with a change of sign, and by simplifying

the constants involved, i.e. β = − 1
kBT

:

p(xi) =
e−ϵ(yi)/kBT∑
j e

−ϵ(yj)/kBT
=

eβϵ(yi)∑
j e

βϵ(yj)

Note that the final form of this equation is the same as softmax normalisation used in

classification networks - i.e ϵ(xi) is the ith output of a classification network fθ(x)[i]

prior to softmax normalisation. Without the softmax normalisation, a classification

network is effectively computing the energy associated with each possible state for a

given system. Training a classification network can be construed as a limited form of

EBM, and adaptations to the training mechanism allow for classification networks

to be used as generative models [159].

EBMs further extend this idea by considering probability distributions of data

on continuous spaces, i.e.

p(x) =
e−ϵ(x)/kT∫

x̄∈X e
−ϵ(x)/kT

(2.34)

Given a data distribution pd, and an EBM distribution pθ parametrised by θ, we

seek to minimise the NLL loss: L(θ) = Ex⃗∼pd

[
− ln pθ (x⃗)

]
. In general, the integral in

the denominator of Equation 2.34 makes this intractable. Thus, training of EBMs

must rely upon proxy objectives rather than optimising the equation itself. Con-

trastive Divergence (CD) is a popular proxy objective, in which the gradient of loss

is constructed such that on each optimisation step the energy values of data samples
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are decreased and the energy of values sampled from the model are increased:

∇θL = Ex⃗+∼pd

[
∇θEθ

(
x⃗+
)]

− Ex⃗−∼pθ

[
∇θEθ

(
x⃗−
)]
, (2.35)

where x⃗− ∼ pθ is a sample from the EBM, typically found through Markov Chain

Monte Carlo (MCMC) sampling. This equation approximates the gradient of the

NLL loss [160,161].

Training larger architectures through CD requires efficient sampling from pθ.

MCMC methods such as random walk and Gibbs sampling [162] suffer from long

mixing times when applied to high dimensional data. More recently, stochastic

gradient Langevin dynamics [163,164] have been proposed [165,166] to sample from

pθ, using the following iterative process:

x⃗0 ∼ p0(x⃗) x⃗i+1 = x⃗i −
α

2

∂Eθ (x⃗i)

∂x⃗i
+ ϵ⃗, (2.36)

where p0 is typically a uniform distribution over the input domain, α is the step

size, and ϵ⃗ is sampled from an isotropic multivariate normal distribution i.e. ϵ⃗ ∼

N
(

0⃗, αI
)

. As the number of updates N → ∞ and step-size α → 0, the distribu-

tion of samples converges to pθ [164]. While more practical, Langevin MCMC still

requires a large number of steps to converge. Several solutions to this problem have

been proposed.

Persistent CD [165, 167] relies on maintaining a replay buffer of previously gen-

erated samples while randomly resetting some to noise. At each step, as the pa-

rameters θ are updated, samples are refined to fit the updated distribution pθ. This

relies on the assumption that the learned distribution pθ only ever changes gradu-

ally, such that Langevin MCMC samples from a previous iteration already form a

good approximation to samples from the current distribution, and thus only a short

Langevin MCMC chain is needed to update them. As pθ is typically implemented

as a neural network optimised through gradient descent, this assumption holds.
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2.4.1 Score Matching and Denoising Diffusion

While Langevin MCMC has allowed for EBMs to scale to high dimensional data,

training times are still slow due to needing to sample from the model distribu-

tion. Unfortunately this is also exacerbated by the finite-length sampling process.

Langevin MCMC only guarantees convergence to the distribution in the limit, at in-

finite steps, and a finite-length sampling process can still result in samples far away

from the model’s distribution [168]. An alternative approach is score matching [11].

Score matching relies on minimising the difference between the derivatives of the

data (pd) and model’s (pθ) log-density functions. The score - s(x) = ∆x log p(x) is

independent of any normalising constants needed to define a distribution, i.e. the

intractable denominator of a Boltzmann distribution. This allows for EBMs to be

built using the learned score function [169] by minimising the Fisher divergence

between pθ and pd,

L =
1

2
Epd(x)

[∥∥sθ (x) − sd (x)
∥∥2
2

]
, (2.37)

however, the score function of data is not typically known, only samples of data taken

from an unknown distribution. While various methods such as spectral approxima-

tion [170], sliced score matching [171], and finite difference score matching [172]

exist to estimate the score function, the most notable of these is denoising score

matching [173]. Denoising score matching allows the score to be approximated us-

ing partially-noised data samples. In particular, when this noise is sampled from a

normal distribution, i.e. q = N
(
x̃|x, σ2I

)
, Equation 2.37 simplifies to:

L =
1

2
Epd(x)Ex̃∼N(x,σ2I)

[∥∥∥∥sθ (x̃) +
x̃− x

σ2

∥∥∥∥2
2

]
. (2.38)

This allows for sθ to estimate the noise, thereby allowing it to be used as a generative

model [174, 175]. Since the Langevin update step uses ∆x log p(x), it is possible to

sample from a score matching model using only Langevin dynamics [176]. This is

only possible, however, when trained over a large variety of noise levels so that x̃

covers the whole space.

Closely related to denoising score matching approaches are diffusion models [8,
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12,177,178]. Diffusion models define a forward process aka a diffusion process q() as

a discrete Markov chain that gradually adds Gaussian noise to data sampled from

the data distribution x0 ∼ q(x0), and a second, learned reverse process pθ() that

attempts to remove noise from data. The forward diffusion process is conditional

on an initial sample x0. q for t ∈ 1 : T is defined as,

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1). (2.39)

At each timestep t the conditional distribution q(xt|xt−1) is modelled as being a

normal distribution with variance βt, and mean
√

1 − βtxt−1,

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI). (2.40)

The sequence β1, ..., βT is known as the variance schedule and determines how

much noise to add at each step. Most importantly, the forward process (a sequence

of conditional probabilities) can be reduced into a closed form for the distribution

q(xt|x0). For brevity, two new schedule terms are derived from βt values,

αt = 1 − βt, (2.41)

ᾱt =
t∏

s=0

αs. (2.42)

Note that 1− ᾱt is equal to the cumulative variance of the diffusion process. The

probability distribution at time t is then derived as,

q(xt|x0) = N (xt;
√
ᾱtx0, (1 − ᾱt)I).

This closed form allows for fast sampling of the forward process. The forward process

allows for the gradual diffusion of data into random noise. The reverse model pθ is

defined at time T as a fully diffused random Gaussian noise variable:

p(xT ) = N (xT ;0, I)
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We define our final result pθ(x0) as the product of a series of conditional probabilities,

pθ(x0) := pθ(xT )
T∏
t=1

pθ(xt−1|xt).

The conditional probability pθ(xt−1 | xt) is defined as:

pθ(xt−1 | xt) := N (µθ(xt, t),Σθ(xt, t))

Note that µθ and Σθ have learned parameters θ, and are typically implemented as

a neural network. The network is trained by optimising the negative log likelihood

of sampling true data from the reverse process.

L = E

[
− log

pθ(x0:T )

q(x1:T |x0)

]
, (2.43)

L = E

− log p(xT ) −
∑
t≥1

log
pθ(xt−1|xt)

q(xt|xt−1)

 . (2.44)

As we are able to sample q(xt|x0) at arbitrary timesteps, we can generate random

terms form this summation and optimise pθ(xt−1|xt) through Stochastic Gradient

Descent (SGD). We can also reduce the variance by re-writing the above equation

for L as the sum of Kullback–Leibler (KL) divergence [179] terms,

LT := DKL(q(xT |x0) || p(xT)), (2.45)

Lt−1 := DKL(q(xt−1|xt,x0) || pθ(xt−1|xt)), (2.46)

L0 := − log pθ(x0|x1). (2.47)

LT is a comparison between the distribution of xT of the forward process q given

a sample x0, and the distribution of the starting point xT of the reverse process p.

Note that p(xT ) = N (xT ;0, I). Therefore LT is only dependent on the choice of

β1, ...βT , the variance schedule. Minimising this term constrains the end state of the

forward process to be a standard normal distribution. The equation q(xt−1|xt,x0) is

the distribution of the *previous step* in the forward process, given a known sample
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from the data distribution x0 and a known current step xt. This is compared with

the distribution the reverse process predicts from xt, i.e. pθ(xt−1|xt); Lt is a measure

of how similar the predicted distribution p of xt−1 is to the possible previous values

q of xt−1 The equation for q(xt−1|xt,x0) is derived from conditional probabilities,

q(xt−1|xt,x0) = N (xt−1; µ̃(xt,x0), β̃tI). (2.48)

The mean µ̃ is calculated by “blending” between xt and x0.

µ̃(xt,x0) =

√
ᾱt−1βt

1 − ᾱt

x0 +

√
αt−1(1 − ᾱt−1)

1 − ᾱt

xt (2.49)

The variance β̃t is the ideal variance of the reverse process if there existed only one

sample from q((x)), i.e. x0 is fixed. It is defined as:

β̃t :=
1 − ᾱt−1

1 − ᾱt

βt.

By minimising Lt−1 the reverse distribution is better at predicting the previous

timestep. This can be minimised by making the parameters θ predict xt−1 better,

or by reducing βt. Note that the values for β1:T are constrained by the first term LT

to have a cumulative variance of 1. While many different variance schedules fit this

property, and later papers have investigated optimising the variance schedule [180],

a fixed, known variance schedule is often used for more stable training. Therefore,

we try and minimise the value of the combined equation:

Eq

LT +
∑
t>1

Lt−1 + L0

 ,
where the terms LT , Lt−1 and L0 are the three losses defined in Equations 2.45,

2.46 and 2.47 respectively. Note that the KL divergences are between Gaussian

distributions, thus there exist well known closed form expressions to calculate each

of the terms. By fixing the forward process βt values, LT becomes constant, so can

be removed from any optimisation strategy. The choice of βt values is constrained,

but multiple schedules have been proposed throughout the literatures [8, 180]. In-
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stead of using a neural network to estimate the variance for the reverse process, the

covariance matrix is fixed to σ2
t I. Ho et al. [8] evaluate both βt and β̃t as σ2

t and

observe similar performance. These are the two extreme choices corresponding to

upper and lower bounds on reverse process entropy for data with coordinate-wise

unit variance. As mentioned before, the KL divergence between two normal dis-

tributions has a closed form. Given two distributions in Rk, q ∼ N (µq,Σq) and

p ∼ N (µp,Σp), the KL divergence DKL(q||p) is given by:

DKL(q||p) :=
1

2

[
log

det(Σp)

det(Σq)
− k + (µq − µp)

TΣ−1
p (µq − µp) + tr(Σ−1

q Σp)

]

While this equation is complex; fixed, isotropic standard deviation terms means that

the loss, is only dependent on the terms involving the predicted mean µp, the rest

of the terms can be discarded as constants C.

Lt−1 = Eq

[
1

2
(µq − µp)

TΣ−1
p (µq − µp)

]
+ C

Note that Σp is equal to σ2
t I, due to choosing a fixed covariance matrix. Thus, Lt−1

simplifies further to

Lt−1 = Eq

[
1

2σ2
t

||(µq − µp)||2
]

+ C,

where µq is the “blending” we defined earlier to determine the mean at time t − 1

from the forward process

µq = µ̃(xt,x0)

and µp is the predicted mean at time t− 1 from the neural network/reverse process

µp = µθ(xt, t).

In practice, the loss term does not use the 1
2σ2

t
scaling and instead models are

defined as predictors of the noise ϵ used to generate noised samples. The L0 term

used in the original Denoising Diffusion Probabilistic Model (DDPM) paper takes
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advantage of the fact that samples are being generated in the image domain. A small

tweak to the direct analysis of a Gaussian present in the original L0 term is applied.

Effectively, this is a “binning” process, looking at each coordinate in the predicted

distribution of x0 and integrating over the range of acceptable values. In the case

of image generation, pixel intensities are in the range 0, 1, ..., 255. For purposes of

prediction, and to reduce any biases introduced by the diffusion process, images are

scaled to the range [−1, 1]. The “acceptable” range for a true value x0 is x0 ± 1
255

.

If x0 = −1 or x0 = 1, the the accepted ranges are extended to x0 ∈ (−∞,−254
255

)

or x0 ∈ (−254
255
,∞) respectively. This modification to the L0 term is necessary as

a Gaussian distribution has a infinite support over all real numbers, whereas the

target domain of images limits values to [−1, 1].

2.4.2 Energy Based Molecular Models

Several applications of EBMs to molecular and protein modelling have been at-

tempted, however as many molecular models also attempt to implement equivariance

in 3D, a disconnection between translation invariance, and the zero-mean approach

of DDPMs arises.

ConfGF

Shi et al. [106] propose a model ConfGF that learns gradient fields for molecular

conformation generation. Annealed Langevin dynamics sampling is used to sample

values from a learned score function. To avoid equivariance issues, the log-density

of atomic coordinates C given by ∆C log p(C|G), where G, the molecular graph, is

decomposed via chain rule,

∆C log p(C|G) = fG ◦ gG(C) = fG(d),

where gG(C) denotes a function mapping atomic coordinates to a set of interatomic

distances and fG(d) is a GNN that estimates the negative energy of a molecule

based on the interatomic distances d. This interatomic distance matrix is invariant

to rotation and translation of the underlying atomic coordinates C. The prediction
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of the negative energy of the molecule can then be backpropagated through the

network fG and the interatomic generation function gG to create per-atom gradients

for Langevin dynamics.

GeoDiff

In the GeoDiff model, by Xu et al. [109], diffusion models are applied to the problem

of molecular conformation generation. Given a known molecular graph, GeoDiff gen-

erates possible molecular conformations through a diffusion model over the atomic

coordinates. This approach uses an equivariant SE(3) GNN to preserve network

symmetries. GeoDiff functions by defining invariant probability densities, such that

for any g ∈ SE(3), the transform Tg has the property,

∀g ∈ SE(3) : p(xt) = p(Tg(xt)).

The probability of a data sample at time t is invariant to any roto-translation g ∈

SE(3). The initial density p(CT ) must also be invariant too. This is achieved by

building on ideas from Equivariant flows by Kohler et al. [181], by moving the Center

of Mass (CoM), the mean atomic coordinate, to the origin of the coordinate system.

Secondly, the Markov transition kernels need to be equivariant. For any timestep,

given a set of atomic coordinates Ct at time t, the following equation needs to hold:

p(Ct−1|G, Ct) = p(Tg(Ct−1)|Tg(G), Tg(Ct)).

Using the same technique as before, the CoM is set to 0 at every time step to achieve

translational invariance. Rotational equivariance of the Markov transition kernels

is achieved through two factors, the reset CoM results in the scaling factor applied

to the mean being applied equivariantly, and the covariance matrix of the diffusion

process is isotropic, so the noise introduced at each step is invariant to rotation. As

with DDPMs, the reverse process is defined through a network predicting the mean

µθ(Ct, t) and a fixed isotropic variance schedule.

µθ(Ct, t) =
1

√
αt

(
Ct − βt√

1 − ᾱt

ϵθ
(
G, Ct, t

))
,
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Where G represents the known graph structure of the atomic system. Thus, to

achieve equivariance, ϵθ
(
G, Ct, t

)
must be an SE(3) equivariant model. The model

builds off work by Thomas et al. [113] and Satorras et al. [108] and defines a Graph

Field Network (GFN). A GFN consists of equivariant GCN layers. In the l-th layer,

GFN takes node embeddings hl ∈ Rn×b a combination of atom and timestep infor-

mation, and coordinate embeddings xl ∈ Rn×3; and outputs hl+1,xl+1 as follows:

mij = Φm

(
hl
i,h

l
j, ||xl

i − xl
j||2, eij; θm

)
, (2.50)

hl+1
i = Φh

hl,
∑

j∈N (i)

mij; θh

 , (2.51)

xl+1
i =

∑
j∈N (i)

1

dij

(
ci − cj

)
Φx(mij; θx). (2.52)

Note that ci is the untransformed co-ordinates, i.e. x0
i . Unlike Thomas et

al. [113] and other equivariant networks, this model does not learn any higher order

features and is focused entirely on scalar and vector features. While the network

architecture and Markov transition kernels are equivariant, the standard DDPM

training objective is not. In a typical DDPM model, the prediction target is the

noise vector ϵ [182]. However, ϵ in the forward diffusion process isn’t constrained by

equivariance. The term ϵ is typically calculated with:

ϵ =
Ct −

√
ᾱtC0

√
1 − ᾱt

.

GeoDiff proposes two solutions to this issue, firstly rotationally aligning C0 via

the Kabsh algorithm [183] to Ct. Instead of using ϵ, we align C0 to Ct to produce

the aligned conformation Ĉ0. Since this is aligned with Ct, the noise vector ϵ̂ will

also be equivariant.

ϵ̂ =
Ct −

√
ᾱtĈ0

√
1 − ᾱt

The second approach suggested relies upon the same strategy as ConfGF, but as-

sumes that the noise applied to the distance matrix d is also normally distributed [184].

This approach results in higher quality samples.
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2.5 Conclusion

An overview of proteins was presented along with existing classical and machine

learning methods of predicting protein docking. Sections 2.2 and 2.3 presented

an overview of the neural network architectures and distributions that could be

potentially applied to the task of predicting protein dockings. In the final section,

Energy Based Models were introduced. Generative modelling through Energy Based

Models shares similarities with the thermodynamic perspective of protein folding,

as both follow similar equations to arrive in low-energy (high probability) states.

A trained protein Energy Based Model would ideally learn the physics of protein

interactions, resulting in high-quality predictions.
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CHAPTER 3

Shape Tracing

3.1 Introduction

Proteins are biopolymers directly responsible for the vast majority of essential cellu-

lar functions. Any organism, from a single bacterium to the human body, contains

millions of proteins with roles as diverse as sensing, transportation, catalysis, de-

fence or structural support. These biological tasks are often carried out via the

formation of specific complexes of minimal energy. One of the hardest challenges in

computational structural biology is predicting how individual proteins with a known

atomic structure arrange into such assemblies.

Despite the advent of increasingly sophisticated methods over the last 20 years [185],

the problem is far from solved. A yearly community-led assessment of current dock-

ing algorithms, CAPRI, reveals that at present, no algorithm exists that is capable

of consistently yielding accurate results [186]. Existing approaches to this problem

can be generally divided into two categories. In the first, proteins are represented

explicitly as a collection of atoms. The objective here is to identify a protein ar-

rangement that minimizes a scoring function composed of a sum of physical terms

such as electrostatics, van der Waals, desolvation energy and other empirical quan-
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tities. In the second, proteins are represented as a geometrical shape derived from

the known atomic structure, and the associated scoring function typically maximizes

shape complementarity. Independently from the chosen representation and scoring

function, protein docking is a hard optimization problem. Indeed, protein-protein

interactions feature a multitude of potential binding sites associated with a local

energy minimum. The exploration of this complex search space, with high Lips-

chitz constants, is traditionally tackled either by brute force [30], or via derivative-

free optimization algorithms such as Particle Swarm Optimization [187] or Monte

Carlo [188]. Many candidate solutions generated during the docking process will

feature either intersecting or contactless protein pairs, and optimization will often

converge to local minima.

We present a method for the rapid exploration of the search space associated

with the matching of two three-dimensional surfaces of arbitrary roughness and

demonstrate its usage for protein docking. Instead of taking the traditional route of

explicitly representing a protein surface [41, 189], we represent the receptor surface

(i.e. the largest protein) implicitly, allowing for easy intersection and distance query.

The ligand (i.e. the smaller protein) can then be marched by the lower bound of the

boundary distance, as with traditional sphere tracing, but with a modification to the

bound that allows tracing of arbitrary non-convex shapes. Our method features two

key contributions. First, it leverages on a novel extension of sphere tracing [190],

derived without heuristic, for detecting collisions between approaching non-convex

shapes. Second, it adopts an implicit approach for finding where surface contact

area is maximized, shown to be effective in a foundational outer-loop Monte Carlo

method.

3.2 Related work

Protein docking algorithms can be broadly classified according to their sampling

strategies [191]. These are Fast-Fourier Transform (FFT) grid-based searches [30,

192–194], Monte Carlo (MC) [188, 195, 196], Genetic Algorithms [197, 198] and

Particle Swarm Optimisation (PSO) [39,41,199]. An additional strategy, Geometric
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Figure 3.1: Docking with shape tracing: the source shape (ligand) is initialised on
random points on a sphere around the target shape (receptor) with inward facing
cones (1). The source shape is then analytically moved to be just inside the target’s
bounding box (2). The shape tracing algorithm iteratively (3-5) samples the target’s
signed distance function ϕ at surface positions. The shape is marched by the bound
from the closest point (dashed circle, the minimum of this sample).

Hashing [33,200], can only be adopted in conjunction with protein shape representa-

tions. Since proteins are inherently flexible molecules, conformational changes, from

interfacial side-chain repacking to large-scale domain level rearrangements, should

be accounted for by these algorithms. The majority of approaches use atomistic

representations, which require computationally expensive additional minimization

steps to promote side chains packing upon binding. Such considerations are needed

as minor alterations in atomic positions may have profound consequences on the

score of a pose. This step can be bypassed by modelling the protein as a shape, ac-

counting for the uncertainty of side chains positions from the outset [201]. A method

developed by Rudden and Degiacomi proposes a molecular surface representation,

‘Spatial and Temporal Influence Density’ (STID) [41], which maps points in space

to a surface probability ϕ : Rn → R based on a Molecular Dynamics simulation.

This surface probability corresponds to the frequency in which a particular location

was occupied during the Molecular Dynamics simulation. The map and subsequent

surface complementarity scoring function [41] led to a success rate of 56% across

a benchmark of 224 proteins, which is competitive with the current best atomic

based methods [188,196], and contrastingly performed remarkably well with flexible

proteins. However, the time required to complete a full docking run using PSO was

significant, often > 1 day for larger complexes. Aside from computational time,

there are still significant desirable improvements for protein docking algorithms.

These include a scoring function which is exact and does not rely on heuristics, and

an optimizer which can rapidly and reliably find correct solutions.
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3.3 Methodology

The task of identifying the best arrangement of two non-convex protein shapes

involves: (1) A shape tracing algorithm which efficiently marches the shape through

space converging in a few steps and (2) A high-level optimizer to find solutions where

contact between two proteins’ surface area is maximised.

Shape tracing algorithm

The shape tracing algorithm updates points x ∈ Rn×3 on the boundary of the source

shape (the ligand), moving them in a specified direction v⃗ until they collide:

S(x, ϕ, b, v⃗) = x′, (3.1)

where ϕ is an input signed distance function (SDF) defined on a volumetric grid for

the target shape (the receptor), and b ∈ N3 is the side length (in voxels) of each axis

of this volume. The SDF ϕ can be calculated efficiently from the STID map [41]

with the fast marching method as an approximate solution to the Eikonal equation.

Any values sampled outside of the bounds of the SDF volume ϕ are set to ∞. The

shape tracing method is outlined in Algorithm 3.1:

1. Compute the analytical intersections from rays cast on the source shape (lig-

and) at points x in direction v⃗ to the target (receptor) bounding box (lines 1-2)

as in [202].

2. If any rays hit (line 4), advance all points x′ by the closest distance (line 5).

For glancing rays, push x′ just inside box by the sign of v⃗ (line 6) as in [203].

3. Now we know one of the points in x′ is inside the bounds of ϕ, find the closest

distance to the receptor (line 7).

4. While the shapes are not touching δ > ϵ and while the shape is still inside the

bounds of ϕ (line 8), keep moving the whole shape x′ by the closest distance

(lines 9-10).
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Input: x, ϕ, b, v⃗
Output: x′

1 tnears = max
(
min

(
(1/v⃗) · (−x

)
, (1/v⃗) · (b− x

))
2 tfars = min

(
max

(
(1/v⃗) · (−x

)
, (1/v⃗) · (b− x

))
3 intersects = {tnears > tfars}
4 if intersects ̸= {} then
5 δ = min(tnears[intersects])
6 x′ = x + δv⃗ + sign(v⃗)
7 δ = min(ϕ(x′))
8 while δ > ϵ and δ ̸= ∞ do
9 x′ = x′ + (δ/2)v⃗

10 δ = min(ϕ(x′))

11 end

12 end
Algorithm 3.1: Shape Tracing

The value for ϵ, 0 by default, can be increased for faster convergence if certain

tolerances are acceptable, such as within 1 Å in docking. The δ/2 in line 9 reduces

the step (by a value proportional to the maximum derivative of ϕ), a common

strategy in ray marching. While in theory we do not need to reduce this step as

|∇ϕ| = 1, in practice |∇ϕ| ≈ 1 due to the discretization of ϕ.

Outer-loop Monte Carlo docking

The shape tracing algorithm can be used to quickly move a shape through space

without intersection. This is demonstrated in an outer-loop Monte Carlo docking

method, which randomly rotates and moves the ligand to points on a sphere around

the receptor, then fires the ligand towards the receptor at a random inward angle in

a cone (Figure 3.1 left). This method is outlined in Algorithm 3.2:

1. Initialise a product manifold of two random points on a unit sphere (initial

translation around the receptor and for the cone), and a random rotation

(lines 3-5).

2. Rotate the ligand and translate it to the surface of the receptor’s bounding

sphere (lines 6-7).

3. Set the ray direction towards the receptor’s centre, with some random variation

γ to form a cone (lines 8-9).

64



4. Fire the ligand at the receptor (shape tracing), updating the positions x′

(line 10).

5. Sum the contact surface area at the solution x′ (Equation 3.2), and save the

solution parameters if there is more contact than the previous best (lines 11-

14).

Input: xorig, ϕ, b, γ
1 αbest = 0 ▷ surface area to maximize
2 while true do

3 t⃗ = random point on unit sphere ▷ init translation
4 c⃗ = random point on unit sphere ▷ for cone
5 R = random rotation matrix ▷ for ligand
6 s = max(b) ▷ max receptor side length

7 x = Rxorig + t⃗s ▷ rotate & translate points

8 v⃗ = (1 − γ)(−t⃗) + γc⃗ ▷ construct cone
9 v⃗ = v⃗/∥v⃗∥

10 x′ = ShapeTracing(x, ϕ, b, v⃗)
11 αcur = L(ϕ,x′) ▷ contact area
12 if αcur > αbest then
13 αbest = αcur

14 save parameters

15 end

16 end
Algorithm 3.2: Outer-loop Monte Carlo Docking

The final score we maximize is the contact surface area between the receptor and

the ligand: shape tracing, which prevents intersections, can also support symmetric

profiles demonstrated by a C∞ smooth delta, regularized by β = 1 (for 1 Å), with

the loss L:

L(ϕ,x′) =

∫
Ω

β/π

β2 + ϕ(x′)2
dx′ (3.2)

This increases as the ligand approaches the receptor boundary, and is not influenced

by points away from the surface (such as the back of the ligand).

3.4 Results & Discussion

We compared the performance of Monte Carlo with and without Shape Tracing in

docking surfaces generated by STID maps. We took the average values of the best
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dock over 10 runs and, for each run, sampling was terminated after 5000 iterations as

further iteration yielded little improvement. Docking using shape tracing produced

better solutions than naive sampling of ligand positions within the unit sphere (see

Figure 3.2).
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Figure 3.2: Combining Shape Tracing (ST) to a Monte Carlo (MC) search improves
the performance of shape-based protein docking. MC+ST finds poses with both
lower loss (top) and smaller RMSD with respect of the known docked pose (bottom).
Example results from CAPRI unbound case 1AKJ are shown (ligand 2CLR, receptor
1CD8).

We investigated the relationship between cone width and solutions quality by

varying the cone parameter γ. Best solutions after 5,000 iterations were averaged

over 10 runs. A successful dock was defined as a ligand position within ϵ = 0.0001

Å. We found that in general larger values of γ led to worse solutions (see Table
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3.1) while a value of γ = 0.05 produced the best results. Slower tracing for higher

values of γ is due to near-misses and oblique collisions requiring more steps of the

marching algorithm than collisions perpendicular to the receptor’s surface. While

MC sampling without ST is significantly faster, it fails to produce many successful

docks. In general, shape tracing produces more viable solutions to the docking

problem.

Table 3.1: Wide cone angles have more misses and find worse solutions

Baseline MC Cone parameter γ

– .00 0.05 0.10 0.15 0.20

Iterations/s 1040 83.8 83.5 82.4 79.5 75.9
Docks/s 0.001 83.8 83.5 82.4 79.5 75.6
Misses/s – 0.00 0.00 0.012 0.04 0.351

Best RMSD at 5k 17.07 9.94 9.33 9.58 11.0 10.3
Std dev. at 5k 1.89 0.63 1.10 0.90 0.81 1.35

3.5 Limitations and future work

The current profile must be initialised away from the receptor, rather than also

inside it, and therefore it can not find occluded solutions without modification.

While in theory the current profile is sensible for finding exact solutions where

contact is maximised without intersection, in practice successful docking poses often

feature some intersection [41] due to the STID map not being able to consider inter-

protein interactions that affect shape. Handling such cases can be achieved with

an asymmetric energy profile that is negative for x < 0 instead of Equation 3.2,

such that some degree of overlap is acceptable. This approach can be extended by

replacing Equation 3.2 for a 1D function allowing intersections while minimising

RMSD and other metrics (e.g. predicted interfacial residues) across a validation

dataset.
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3.6 Availability & Acknowledgements

The algorithm has been implemented using PyTorch on the GPU and is available at

https://github.com/cwkx/ShapeTracing along with data for 14 additional test

cases. The work was supported by the Engineering and Physical Sciences Research

Council (EP/P016499/1).

3.7 Conclusion

We have found that shape marching with the updated bound significantly improves

the convergence of finding non-intersecting solutions. The analytical ray-box in-

tersection allows for quick evaluation of far-away solutions, and the shape tracing

algorithm is able to march arbitrary non-convex shapes with a few inexpensive oper-

ations that can be calculated in parallel on a GPU. These collisions can then be used

to seed other, more computationally intensive docking algorithms like PSO. In the

future, work may aim at identifying an asymmetric energy profile which allows for

some intersection to occur, to facilitate the discovery of biologically relevant docking

poses.
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CHAPTER 4

Diffusion Models on SO(3)

4.1 Introduction

Denoising diffusion probabilistic models are capable of generating high quality sam-

ples from complex distributions and have delivered encouraging results in audio

synthesis and image applications. However, there are many problems such as pose

estimation and protein docking for which the domain Rn is unsuitable. As many

of these problems are roto-translational in nature, sampling rotations from a con-

ditional diffusion model allows for a probabilistic model of possible poses. In this

work, we introduce denoising diffusion models on the Lie group of 3D rotations,

SO(3).

DDPMs [8, 12] are a set of generative models inspired by non-equilibrium ther-

modynamics. The underlying idea consists of simulating a diffusion process that

takes some form of observed data (e.g. images), denoted x0, with unknown distri-

bution q(x0) and transforms (diffuses) it into pure noise. A generative model can

thus be found by learning the reverse process, turning noise back into the structure

of the underlying data.

In practice, the diffusion is replaced by a non-homogenous discrete time Markov
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chain with one-step transition density. The distribution at step t of the forward

process Markov chain q(xt) is conditional on only the step before it, q(xt|xt−1)

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI), (4.1)

where βt, t = 1, . . . , T denotes a variance schedule and N (y;µ,Σ) a Gaussian den-

sity with argument y, mean µ and covariance matrix Σ. Under appropriate condi-

tions, the final value xT will approximately follow a Gaussian distribution q(xT ) ≈

N (xT ;0, I).

Denoising models learn an approximation of the reverse process p(xt−1|xt) where

p(xT ) = N (0, I). The transition kernel p(xt−1|xt) hence learns to predict the previ-

ous time step of the forward process and is parameterized by a normal distribution

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (4.2)

The functions µθ and Σθ are implemented as outputs of a neural network with learned

parameters θ. More recent work [8] suggests that taking the covariance matrix Σt

in (4.2) fixed can result in better performance. Further reparameterization of the

forward process xt ∼ q(xt|x0) =
√
ᾱtx0 + (1 − ᾱt)ϵ. where ϵ ∼ N (0, I), αt = 1 − βt

and ᾱt =
∏t

s=0 αs results in

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1 − ᾱt

ϵθ(xt, t)

)
. (4.3)

The loss equation then can be simplified to a function of added noise,

Lt(θ) = Eτ,ϵ,x0

[∥∥ϵ− ϵθ(xτ , τ)
∥∥2] . (4.4)

4.2 Defining a diffusion on the rotation group SO(3)

A key component of training diffusion models is the ability to sample from the

diffusion distribution at time t without having to calculate intermediate values. For

the normal distribution in Rn (Euclidean diffusion), this can be accomplished easily

through the previously derived closed form equations. However, this is not easily
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generalised to the space of rotations SO(3) due to several factors.

A näıve approach to diffusion on SO(3) would be to use Euler angles, treating the

rotations (ψ, ϑ, ϕ) as diffusion over an R3 space. However, the nature of diffusions

over Euler angles means that they cannot correctly capture symmetries present in

rotational systems. Alternatively, rotations may be represented as unit quaternions.

However, a diffusion process treating the quaternion representation as R4 would

require mapping the diffused position to the unit sphere at every step. The fast

sampling scheme previously defined [8] would not be usable due to this nonlinear

mapping. Similarly, a Gaussian distribution on R4 conditioned to lie on the 3-sphere

is described by the Bingham distribution [150]. Additionally, while quaternions are

a continuous representation of rotations, they form a double cover of SO(3). This

results in each rotation being represented by two equally valid quaternions, causing

difficulties for neural networks [146].

Instead of attempting to use an Rn normal distribution on the space of rota-

tions, we instead look for an analogous distribution defined on SO(3). Before we

proceed we outline some of the desirable properties of Gaussian distributions that

are required for the distribution on SO(3). For example, if pX(x), pY (y) are (in-

dependent) normal distributions defined as N (µx, σ
2
x),N (µy, σ

2
y) respectively, then

the distribution of their sum pZ(z) can be written as Z ∼ N(µx + µy, σ
2
x + σ2

y). For

this reason, the normal distribution is said to be closed under convolution as the

convolution of two normal densities (corresponding to the density of the sum) is also

a normal distribution. This property is key in allowing us to derive the equation for

the distribution of q(xt|x0) and sample a diffusion model efficiently. A distribution

for a diffusion on SO(3) must also have this property in order to derive equations

for efficient sampling of the forward process.

The Fisher matrix and Bingham distributions have previously been used in deep

learning as probabilistic rotation estimators [155, 204] for ortho-normal matrix and

quaternion representations of SO(3) respectively. However, neither of these distri-

butions are closed under convolution [205, 206], making quantifying the rotational

distribution at arbitrary timesteps difficult.

Instead, we consider the Isotropic Gaussian distribution on SO(3) (IG) [207]
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g ∼ IGSO(3)(µ, ϵ
2), parameterized by a mean rotation µ and scalar variance ϵ. The

IG distribution can be parameterized in an axis-angle form, with uniformly sampled

axes and rotation angle ω ∈ [0, π] with density

f(ω) =
1 − cosω

π

∞∑
l=0

(2l + 1)e−l(l+1)ϵ2 sin((l + 1
2
)ω)

sin(ω/2)
. (4.5)

Note that the uniform distribution on SO(3), denoted USO(3), is parameterized

with uniform-axis and f(ω) = 1−cosω
π

and needs to be included as a scaling factor

when sampling from the distribution.

The IG distribution is both a natural extension of the central Limit Theorem

(CLT) and the expected distribution of Brownian motion [208] on SO(3), providing

a strong motivation to use it for denoising diffusion models. While the variance of

the IG distribution is defined as a scalar value, and thus has less flexibility than

the Matrix-Fisher or Bingham distributions, Euclidean denoising diffusion models

assume no correlation between dimensions, and are thus also parameterized with a

scalar variance. Most importantly, the IG distribution is closed under convolution.

We can use this relationship to derive similar equations to the Euclidean diffusion

process, allowing us to define the distribution at arbitrary timesteps for efficient

sampling. Initially, data x0 ∈ SO(3) is sampled from the distribution q(x0) and

diffused. As before, at t = T we consider the data to be fully diffused.

To derive the distribution q(xt|x0), note that the analogous Euclidean distribu-

tion (Equation 4.1) requires a scaling term to be applied to the x0 term. A scaling

term applied directly to a rotation matrix is nonsensical, as the resulting value does

not lie on the SO(3) manifold. If x0 ∼ q(x0) is viewed as a translation away from

the origin, it implies that x0 ∼ s(x0) can be viewed as a rotation away from the

identity rotation I, and we can scale our rotations by interpolating the angle of rota-

tion along the geodesic from the identity. For this, we rely upon the exponential and

logarithmic maps between the Lie algebra so(3), the set of skew-symmetric matrices

and SO(3). The Lie algebra is defined such that for any element etX ∈ SO(3), t ∈ R,

X ∈ so(3). Intuitively, a rotation matrix R has an associated angle of rotation θ,

and a rotation matrix P = RR = R2 has an angle of rotation of 2θ. We follow
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standard definitions [209] of the logarithm of a rotation matrix and define it as

logR =
θ

2 sin θ

(
R⊤ −R

)
where θ satisfies 1 + 2 cos θ = trace(R). Matrices in so(3) are skew-symmetric of

form S(v) with

S(v) =


0 z −y

−z 0 x

y −x 0

 , v = [x, y, z] ,

where ∥v∥2 = θ. From this definition of the rotation matrix logarithm, we are able

to scale rotation matrices by converting them to values in the Lie algebra so(3),

element-wise multiplying by a scalar value and converting back to rotation matrices

through matrix exponentiation. The composition of rotations is done through matrix

multiplication in SO(3), analogous to addition in Euclidean diffusion models:

λ(γ,x) = exp
(
γ log (x)

)
. (4.6)

Thus the function λ(γ,x) is the geodesic flow from I to x by the amount γ. Ap-

plying these to equations from the original DDPM model we arrive at the following

definitions:

q(xt|x0) = IGSO(3)(λ(
√
ᾱt,x0)), (1 − ᾱt)); (4.7)

p(xt−1|xt,x0) = IGSO(3)(µ̃(xt,x0), β̃t), (4.8)

and

µ̃(xt,x0) = λ

(√
ᾱt−1βt

1 − ᾱt

,x0

)
λ

(√
αt−1(1 − ᾱt−1)

1 − ᾱt

,xt

)
. (4.9)
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4.3 Experiments

4.3.1 Learning Data Distributions on SO(3)

To evaluate the validity of the proposed SO(3) diffusion process, a synthetic data

distribution was created. This distribution consists of rotations about the z-axis

of ±90◦, with equal chance of either rotation. While simple, this model serves as

a baseline to verify if multi-modal distributions can be successfully learned using

the proposed SO(3) diffusion process. A fully connected feed-forward network was

trained using Algorithm 4.1. Inputs to the network consisted of raw rotation matri-

ces and sine-cosine encoded t values.
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Figure 4.1: Decomposition of the learned SO(3) reverse diffusion process into Euler
angles shows rθ has successfully learned the synthetic data distribution

Rotations generated from the reverse diffusion process closely approximate the

initial data distribution. After generating 512 samples from the reverse process,

the mean angular error between a sample and the closest rotation in the synthetic

dataset was 0.0239 radians. The 512 samples were then categorised into z+90 (261

successes) and z−90 groups and modeled as a binomal distribution with probability

of success p. Using a Beta(α = 1, β = 1) distribution as the conjugate prior,

P(0.45 < p < 0.55 | z1:512) = 0.963, showing that the reverse process has also

modeled the split of the data correctly.

While this shows that the denoising diffusion on SO(3) is capable of learning a

data distribution, it does not show whether it is any more capable than Euclidean
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diffusion. To test this, we consider an idiomatic approach to diffusion of rotations:

Euclidean diffusion of Euler angles; and show that this approach breaks down when

the data distribution passes through singularities in the Euler representation.

We construct a data distribution of uniformly sampled rotations about the y-axis

between π
3

and 2π
3

radians (Figure 4.2a) and train two diffusion processes with equal

network capacity until convergence. Figure 4.2b shows samples from the trained

Euclidean–Euler process, revealing an inability to correctly capture the distribution,

whereas the SO(3) diffusion process (Figure 4.2c) provides a significantly better way

of approximating the distribution and sampling.

(a) Target Distribution (b) Euler Angle Diffusion (c) IGSO(3) Diffusion

Figure 4.2: Visualisation of the columns of sampled rotation matrices, corresponding
to the transformation of basis vectors. Euler angle diffusion is unable to reconstruct
the distribution correctly due to passing through the singularity at θ = π

2
. This

failure on a simple distribution containing a singularity serves to show the limitations
of Euler based diffusion.

To quantify the differences between the target distribution and samples generated

from the diffusion process, we repeat this experiment with Quaternions sampled from

Bingham distributions over S3 , using the maximum mean discrepancy [210], with

k(x, y) = exp(−|| log(x−1y)||F ), a kernel over the SO(3) geodesic distance.

Distribution M̂MDb p < 0.05
Small Uncorrelated Rotations 0.0433 Yes
Large Uncorrelated Rotations 0.0027 Yes
Large Correlated Rotations 0.0317 Yes

Table 4.1: MMD estimates between generated samples and samples taken from
Quaternion-Bingham distributions (See Appendix 4.7). Significance testing shows
that the diffusion model correctly captures various distributions.
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4.3.2 Rotational Alignment with SO(3) Diffusion Processes

By using an SO(3) diffusion process to represent the rotation of a pointcloud, we

can use denoising diffusion models to generate solutions for a rotational alignment

problem. In order to test this, an alignment problem using point-clouds of aircraft

from ShapeNet [211] was designed. This dataset consists of pre-aligned point-clouds

of various real and fictional aircraft. As the shape and style of these aircraft differ

greatly, the task of rotating them to the correct orientation, in effect detecting the

forward direction of the aircraft, relies on being able to generalize over common

features. At each training iteration, rotations at arbitrary timesteps were generated

and used to rotate samples from the dataset. The network architecture uses a non-

causal transformer, with each token consisting of SIREN [212] encoded coordinates

concatenated with a sinusoidal positional embedding of the timestep. We compare

angular errors from Euler and IGSO(3) diffusion models. After generating a single

sample for each aircraft from both diffusion models, angular error compared to the

known true orientation was calculated. We compare angular errors across the entire

test set, and calculate the error of the test set at different percentiles.

Percentile
Method 1% 5% 10% 50% 90% 95%
Euler 0.64 1.09 1.37 2.26 2.97 3.05
IGSO(3) 0.01 0.02 0.03 0.16 2.94 3.03

Table 4.2: Distribution of angular error (radians) in an aircraft alignment task. Our
method outperforms the Euler angle diffusion method across all percentiles. While
both models failed to predict the aircraft orientation correctly for the worst 10%
of aircraft, the IGSO(3) model performs significantly better at predicting aircraft
orientation across over half the test set.

4.4 Parameterization of Reverse Process

When training or sampling from a euclidean diffusion model, the stochastic part of

the forward and reverse processes can be calculated by scaling a standard normal

distribution. In DDPMs [8], the reverse process mean is given by Equation 4.3.

As DDPMs resemble Langevin dynamics, with ϵθ predicting a learned gradient of
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the data density, we run into the issue of what to predict in our SO(3) model.

We cannot directly predict values in SO(3) as the gradient of a rotation matrix

is not a rotation matrix. Instead, the gradient of a rotation matrix R lies on the

tangent space TRSO(3) and takes the form S(v)R, where S(v) is a skew symmetric

matrix. Predicting the value S(v)R directly involves predicting a point lying on a 3D

hyperplane in a 9D space, and requires network knowledge of the rotation R = xt.

We simplify the job of the network by predicting v instead, noting that S(v) can also

be interpreted as an angular velocity tensor. Secondly, sampling from IGSO(3)(I, λ)

cannot be done by scaling samples taken from IGSO(3)(I, 1). Instead, during training

(Algorithm 4.1), we sample our diffusion rotation matrix R ∼ IGSO(3)(I,
√

1 − ᾱt),

convert into skew-symmetric form through taking the matrix-logarithm and scale

the target by 1√
1−ᾱt

in order to have a target analogous to the standard normal

distribution used when training a Euclidean diffusion model. This parameterisation

allows us to follow a similar scheme to euclidean diffusion models when sampling

(Section 4.6).

4.5 Sampling from the Isotropic Gaussian on SO(3)

distribution

First we note that a rotation sampled from IGSO(3)(µ, ϵ
2) can be decomposed by

sampling a pair of rotations from (IGSO(3)(µ, 0) = µ, IGSO(3)(I, ϵ
2)) where I is

the identity rotation. This corresponds to rotating samples taken from an identity-

mean distribution by a constant µ. We further decompose IGSO(3)(I, ϵ
2) into an

axis-angle form. The axis of rotation is uniformly distributed over S2, allowing for

easy sampling, whereas the PDF of the angle of rotation f(ω) : ω ∈ [0, π] is given

by Equation 4.5.

Due to the e−l(l+1)ϵ2 term in this equation, convergence of this equation is poor

for small values of ϵ. We adapt the approximation derived in [157], suitable for
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ϵ ≤ 1.

f (ω) =

(
1 − cos (ω)

)
π

√
πϵ−

3
2 e

ϵ
4 e−

(ω
2 )

2

ϵ ·

[
ω − e−

π2

ϵ

(
(ω − 2π) e

πω
ϵ + (ω + 2π) e−

πω
ϵ

)]
2 sin

(
ω
2

)
(4.10)

We sample from an approximation of f(t) using an inverse-transform sampling pro-

cess, a numerical approximation of the CDF is taken through trapezoidal integration

of the PDF, with a bias of more samples near 0 as to more accurately capture the

distribution for small ϵ. Linear interpolation of uniform samples [0, 1] are then used

to approximate sampling from f(t).

Once an angle has been sampled, an arbitrary axis is chosen from the uni-

form distribution, and the rotation composed with the mean rotation of the ini-

tial distribution. While in general the order of operations matters in SO(3), the

isotropic nature of an identity-mean IG distribution means the order of matrix-

multiplication does not affect the final distribution. Consider a sample from the

distribution IGSO(3)(µ, ϵ), which can be decomposed as µz1 or z2µ. As µz1 = z2µ,

and µz1µ
−1 = z2, the matrices z1 and z2 are similar. Note that this implies

tr(z1) = tr(z2) = 1 + 2 cos θ, where θ is the angle of rotation. As z1 and z2 share

the same angle of rotation and differ only in axis, which is uniformly sampled, the

distributions of µz1 and z2µ are the same.

4.6 Training and Sampling algorithms for SO(3)

Diffusion

The neural network ϵθ learns an approximation of the gradient of the data density

at each timestep t. In order to train this network we need to sample from q(xt)

efficiently. Once trained, the network is then used to generate samples matching the

distribution q(x0).
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1: repeat

2: t ∼ Uniform({1, ..., T})

3: x0 ∼ q(x0)

4: R ∼ IGSO(3)(I,
√

1 − ᾱt)

5: S(v) = log(R)√
1−ᾱt

6: xscale = exp
(√

ᾱt log x0

)
7: Take gradient descent step on:

∇θ||v − ϵθ(Rxscale, t)||2
8: until converged

Algorithm 4.1: Training

1: xT ∼ USO(3)

2: for t = T, ..., 1 do

3: if t > 1 then

4: R ∼ IGSO(3)(I, β̃t)

5: else

6: R = I

7: end if

8: v = ϵθ(xt, t)

9: a1 = exp( 1√
ᾱt

log(xt))

10: a2 = exp(S( 1√
1−ᾱt

v))

11: x̃0 = a1a
−1
2

12: xt−1 = ν̃(xt, x̃0)R

13: end for
Algorithm 4.2: Sampling, lines 9-11 reconstruct an estimate of x0, before using

it to predict the mean of the previous timestep.

4.7 Visualisation of Quaternion-Bingham Distri-

butions

The distributions chosen in Table 4.1 were chosen to cover a range of possible dis-

tributions. A Bingham distribution is defined over Sn by an (n + 1) × (n + 1)

covariance matrix. It can be thought of as samples from the Gaussian distribution
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in Rn+1 normalised to unit length. As unit vectors in R4 can be interpreted as

quaternion rotations of the form (x0 + x1i + x2j + x3k), we use this distribution to

generate samples in SO(3)


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0 0 1 0
0 0 0 1
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(a) Small Uncorrelated Ro-
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tions

Figure 4.3: Visualisation of the basis vectors of 512 samples of the each Quaternion-
Bingham distribution and their respective co-variance matrices.

4.8 Conclusion

In conclusion, we have introduced a denoising diffusion probabilistic model over

SO(3) and shown that it is capable of correctly learning distributions over the

space of rotations. Furthermore, we used this model as a framework for a synthetic

alignment task, showing significantly lower errors than a näıve approach. This paper

acts as an introduction to probabilistic sampling methods for alignment tasks. In

the future, we aim to extend this method to SE(3) and perform roto-translational

alignment. In particular, we believe diffusion models are a suitable model for protein

receptor-ligand interactions and can be used to probabilistically model the solution

space to protein docking problems.
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CHAPTER 5

Diffusion Models for Protein Docking

5.1 Introduction

Denoising diffusion probabilistic models are capable of generating high quality sam-

ples from complex distributions and have delivered encouraging results in audio

synthesis and image applications. We consider alignment tasks, such as protein

docking, for which traditional approaches consist of generating potential docking

candidates as a form of sampling from an unknown distribution. We show that

diffusion models can be reframed to generate candidate docks for alignment tasks.

However, the domain Rn is unsuitable. As many of these problems are roto-

translational in nature, sampling rotations from a conditional diffusion model allows

for a probabilistic model of possible poses. In this work, we introduce denoising

diffusion models on the Lie group of 3D rotations, SO(3).

DDPMs [8, 12] are a set of generative models inspired by non-equilibrium ther-

modynamics. The underlying idea consists of simulating a diffusion process that

takes some form of observed data (e.g. images), denoted x0, with unknown distri-

bution q(x0) and transforms (diffuses) it into pure noise. A generative model can

thus be found by learning the reverse process, turning noise back into the structure
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of the underlying data.

In practice, the diffusion is replaced by a non-homogenous discrete time Markov

chain with one-step transition density. The distribution at step t of the forward

process Markov chain q(xt) is conditional on only the step before it, q(xt|xt−1)

q(xt|xt−1) = N (xt;
√

1 − βtxt−1, βtI), (5.1)

where βt, t = 1, . . . , T denotes a variance schedule and N (y;µ,Σ) a Gaussian den-

sity with argument y, mean µ and covariance matrix Σ. Under appropriate condi-

tions, the final value xT will approximately follow an Gaussian distribution q(xT ) ≈

N (xT ;0, I).

Denoising models learn an approximation of the reverse process p(xt−1|xt) where

p(xT ) = N (0, I). The transition kernel p(xt−1|xt) hence learns to predict the previ-

ous time step of the forward process and is parameterized by a normal distribution

pθ(xt−1 | xt) := N (xt−1;µθ(xt, t),Σθ(xt, t)). (5.2)

The functions µθ and Σθ are implemented as outputs of a neural network with

learned parameters θ. More recent work [8] suggests that taking the covariance

matrix Σt in 5.2 fixed can result in better performance. Further reparameterisation

of the forward process xt ∼ q(xt|x0) =
√
ᾱtx0 + (1− ᾱt)ϵ. where ϵ ∼ N (0, I) results

in

µθ(xt, t) =
1

√
αt

(
xt −

βt√
1 − ᾱt

ϵθ(xt, t)

)
. (5.3)

The loss equation then can be simplified to a function of added noise.

Lt(θ) = Eτ,ϵ,x0

[∥∥ϵ− ϵθ(xτ , τ)
∥∥2] . (5.4)

5.2 Sampling Alignments with Diffusion Models

Typically, reverse processes are used to generate high dimensional data from an

unknown distribution that real-world data is sampled from. In typical tasks, this

distribution’s domain is a high dimensional euclidean space Rn where n is the dimen-
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sion of the problem e.g. n = 512×512×3 for 2D colour images, n = 128×128×128

for greyscale volumetric data. However, in alignment tasks, those alignments lie on

low dimensional manifolds such as R2, SO(3), SE(3), etc.. An alignment task can

be thought of as determining the correct point on a known manifold by evaluating

a transformation of the data (e.g. image, pointcloud, voxel data). The low dimen-

sionality is not an issue for diffusion models, as early examples [12] performed well

on low-dimensional datasets.

For example, consider a dataset D corresponding to a set of alignment problems.

Each sample from the dataset di is a single docking problem. We wish to learn a

diffusion process that given an alignment problem di, is able to generate samples of

potential candidate alignments.

For all t ∈ (0, T ), xt is a point on the low-dimensional manifold corresponding

to the alignment task. By definition, xi
0 is the correct dock for an alignment prob-

lem di. We also define a domain-specific projection function ϕ(di,xt), that given

an alignment problem di and data xt, produces a representation of the alignment

problem transformed by xt. In the case of a alignment task on a euclidean manifold,

the reverse process is then defined as

pθ(xt−1 | xt) := N (xt−1;µθ(ϕ(di,xt), t)). (5.5)

5.3 Pointcloud Gradient Prediction in SE(3)

In standard diffusion models, normal distribution samples for each dimension are

independent of all other ones, thus a diffusion process in Rn+m with an identity

covariance matrix, as typically used can be separated into Rn × Rm. Similarly,

we can decompose our diffusion process in SE(3) into separate translational and

rotational diffusion parts, i.e. SE(3) = SO(3) × R3. To fully capture alignment

in 3D space, the predicted data gradients must must lie on the tangent space of a

point in SE(3). As with SO(3) tangent space prediction, predicting these values

directly requires knowledge of the exact position of xt, which is untenable as in this

framework x0 is the identity transformation of the “docked” configuration during
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Figure 5.1: Comparison of (a) The traditional diffusion model sampling loop and
(b) Diffusion models adapted for alignment.

training, and thus knowledge of xt results in “leakage” of information that can be

used to directly reconstruct the true gradient rather than deriving it from the data.

Three approaches to predicting the rigid-body transform are proposed. The

simplest method, direct prediction (Figure 5.2a) involves decomposing the gradient

into two separate vectors (v⃗, r⃗). The vector v⃗ corresponds to the parametrisation of

the SO(3) reverse process in Section 4.2. The vector r⃗ is then treated as a standard

euclidean diffusion model in R3 representing translational diffusion.

The second method, affine inversion (Figure 5.2b) effectively reduces the problem

into predicting a per-point translational gradient, before reconstructing the so(3)×

R3 gradient. A rotation matrix R and a translation vector b can be used to construct

an affine transformation matrix,yi

1

 =

 R b

0 0 0 1


xi

1

 (5.6)

in order to apply rotation and translation to a known set of points (xi). Given a

known rotational S(v) ∈ so(3) and translational r ∈ R3 gradient, it is also possible
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to calculate the per-point translational gradient ∆xi with a similar affine matrix,∆xi

1

 =

 S(v) r

0 0 0 1


xi

1

 . (5.7)

If X is the matrix of augmented xi, and X∆ the matrix of augmented ∆xi then

affine gradient matrix A describes the relationship between the two as

X∆ = AX (5.8)

If we predict ∆xi with out network, then reconstructing the matrix A can be done

by solving the linear least squares problem

min
A

∥X⊤A⊤ −X∆∥F (5.9)

before projecting the found solution onto the space so(3)×R3. Calculating solutions

to linear least squares problems is a thoroughly explored, highly optimised and well
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supported operation in many numerical computing libraries.

The third proposed method, backpropagation (Figure 5.2c) relies on predicting

a “score” - ϵ similar to score matching methods found in EBMs [175]. This value

is then backpropagated through the neural network to calculate the gradient of xt

with respect to ϵ. Given an x defined as rotation R and translation b, the calculated

rotational gradient differs from the other two approaches in being defined in terms

of the tangent space TRSO(3). The gradient should take the form S(v)R, but may

lie off of the tangent space as it is not enforced by this backpropagation operation.

Thus, S(v) must be calculated by applying the inverse rotation matrix then (as with

the affine inversion method) projecting the result onto skew-symmetric form.

Of the three methods, backpropagation faces potential issues with memory us-

age during inference, as the values of the hidden layer activations must be kept in

memory until the forward and backward passes are complete, instead of immediately

discarded as with the other two approaches. Affine inversion may have difficulties

training, as without regularisation, the R3×N gradients are not guaranteed to point

in similar directions, and may result in poor solutions to the linear least squares

problem (Equation 5.9). Overall direct prediction may be the best approach.

5.4 Protein Docking with Diffusion

Rigid protein docking can be viewed as a conditional diffusion model on the space

x0 ∈ SE(3). The distribution of docking poses q(x0) is conditional on the sequences

and structures of the receptor and ligand in question. Given a receptor R and ligand

L we wish to sample from the conditional data distribution x0 ∼ q(x0|R,L) where

x0 represents the position of the ligand in the docked position. A forward diffusion

process, q(xt|xt−1) steadily noises the position, such that at time t = T ,

q(xT ) = IGSO(3)(I, 1) ×N (0, 1). (5.10)

That is, when fully diffused, the ligand’s position is independent of the the distri-

bution of the docked position q(x0|R,L). We train a model pθ that learns a reverse

diffusion process, allowing us to iteratively sample each step pθ(xt−1|xt, R, L).
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5.4.1 Network Architecture

Network architecture choice remains an open question. EquiDock [213] use GNNs to

predict docks, however the network architecture is invariant to the relative positions

of the two proteins in space. This prevents the use of EquiDock-derived architectures

for diffusion models. In general, GNN based protein-prediction architectures rely on

nearest-neighbour graphs of the protein complex. For a diffusion model, this would

require re-calculation at every step, with enforced inter-protein connections, as a

naive nearest neighbour graph may result in separate subgraphs for each protein

when the the receptor and ligand are far apart.

5.4.2 Diffusion Scaling

Euclidean diffusion processes sample xT from the standard normal distribution

N (0,1). However, protein structural data is typically defined in terms of Ångstroms

(0.1 nm). There are some issues here, firstly that the scale of proteins means that

a diffusion process using Ångstroms as the base unit would produce xT positions

still strongly clustered about the correct docking position (Figure 5.3b). This can

be resolved by scaling the protein down so that that the distribution of xT does

not imply any particular position of the receptor to be the correct docking location

(Figure 5.3c). However, the correct choice of “scale” is strongly influenced by the

size of the proteins, a “universal” diffusion docker has to contend with a wide range

of protein sizes. Thus, any form of diffusion scaling has to be presented to the model

in a scale-agnostic way such that the model can correctly learn the scales of inter-

molecular forces. This can also be achieved by diffusing the positions and rotations

of both the receptor and ligand so that the docking location is randomly rotated

from the ligand’s position (Figure 5.3d).

5.5 Conclusion

In this chapter we have outlined approaches and potential challenges involved with

extending SO(3) diffusion to the modelling of SE(3) alignment tasks. This would

allow for diffusion models to predict protein receptor-ligand interactions. Further-
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(a) (b) (c) (d)

Figure 5.3: A rigid docking problem with known solution (a) can have issues during
training. Poorly scaled xT translation distributions (b) allow the model to cheat
by leaking information about the location of the binding site. Two options are
proposed, either scaling the diffusion process (c) to prevent data leakage, or roto-
translational diffusion over both receptor and ligand (d).

more, they may be used as a way of suggesting candidate docking positions from a

learned probability distribution.
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CHAPTER 6

Conclusions

Recent developments in the field of deep generative modelling has lead to increased

interest in their application to models of protein kinematics. The primary scope of

the prior work is extending and applying these recent developments to the space

of protein kinematics. This thesis initially gives a detailed overview of the various

topics and methods used in state-of-the-art algorithms within protein modelling,

generative modelling, graph based and equivariant tasks. The thesis then shows a

method of improving sample generation for classical docking pipelines, leveraging

modern GPU parallelism to accelerate the production of higher quality intial docks.

The thesis then continues by deriving a complete diffusion model over the space

of 3D rotations - SO(3) through careful choice of distribution and modification

of a standard diffusion process. Finally, the thesis proposes a framework for the

application of the SO(3) diffusion model to conditional generative modelling of

rigid protein-protein docking. The following section outlines the contributions and

derivative work of the content present in this thesis.
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6.1 Contributions

Work presented in Chapter 4 has been used successfully in a variety of generative

protein modelling tasks. Luo et al. [214] successfully apply a joint sequence and

structure diffusion model for the design of antibodies. Their method uses the pro-

posed SO(3) diffusion model to characterise the rotations of residues. Similarly, Yim

et al. [215] present FrameDiff, where novel protein structures are generated through

a derived equivariant diffusion process on SE(3). Going further, Watson et al. [216]

also use the results of Chapter 4 to describe the Brownian motion on the manifold

of 3D rotation matrices, but extend their diffusion model to not only generate novel

monomers, but symmetric multimers as well.

Drug discovery and modelling is typically interested in the interaction between

protein binding sites and small molecules. Corso et al. [217] rely upon Chapter 4’s

SO(3) diffusion to describe the global orientation of a small molecule, presenting

an equivariant diffusion model capable of learning distributions of small-molecule

protein binding sites. This is particularly useful for the investigation of symmetric

protein complexes, as the model successfully learns the multi-modal distribution

intrinsic to structures with multiple binding sites.

While primarily aimed at protein diffusion models, the methods presented have

further applications elsewhere. In robotics, Ryu et al. [218] construct an EBM using

results from the proposed IGSO(3) diffusion model in order to produce a sample-

efficient approach to visually learned robot manipulation of 3D objects.

Jagvaral et al. [219] notes a failure mode of the parametrisation of the reverse

process from Chapter 4, and provides an alternative form. Jagvaral et al. then

continue to use this method to generate synthetic datasets of galaxy and dark mat-

ter halo orientations that match the distributions of synthetic datasets produced

by high-resolution hydrodynamic simulations [220]. This mirrors how SO(3) diffu-

sion models have been applied to protein modelling as an alternative to extremely

computationally expensive molecular dynamics simulations.
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6.1.1 Code Availability

Code for Chapters 3 and 4 is available at https://github.com/cwkx/ShapeTracing

and https://github.com/qazwsxal/diffusion-extensions respectively.

6.2 Limitations and Future Work

Despite the promising performance and adoption of the proposed approaches, there

are still some identifiable limitations, this section discusses the challenges and fu-

ture directions of the current approaches presented in this thesis and the broader

literature, including concurrent work to that presented here.

6.2.1 Necessity of IGSO(3) Distribution

In Chapter 4, the isotropic gaussian on SO(3) [157, 207] is proposed as a distri-

bution suitable to create an analogous SO(3) diffusion model. However, recent

applications of diffusion models, using non-gaussian distributions [221] have shown

that high quality samples can still be generated without the theoretical guarantees

that gaussian diffusion processes possess. This is also true of protein based diffusion

models, Anand et. al [222] use a diffusion model in which rotations are linearly

interpolated between the true value and a uniform distribution, while still produc-

ing high quality results. As the calculation of isotropic gaussian terms is somewhat

computationally intensive in comparison to linear interpolation, it may be prudent

for newer models to use this simpler model.

6.2.2 Cryo-EM and X-ray Conditional Protein Generation

Given a known protein sequence, Cryogenic Electron Microscopy (Cryo-EM) and

X-ray crystallography can be used to generate spatial occupancy maps [223, 224],

effectively a low-resolution 3D model of the general shape of a protein. These maps

can then be interpreted in order to construct an atomic model of the protein, which is

then typically verified through molecular force field calculations [225,226]. However,

as the residue sequence of this model is known, a diffusion model may be trained
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to perform protein folding conditioned on the known spatial occupancy map. This

would allow for generation of probable structural configurations of the residues that

both fit the known 3D shape of the protein as well as being trained on structural

motifs common among proteins.

6.2.3 Residue Prediction

Diffusion models have been applied to categorical predictive models [227] and are

capable of describing multinomial distributions. In protein modelling, the repre-

sentation of protein residues is typically done using a categorical distribution. By

diffusing over residue type as well as position, a diffusion model would be capable

of generating novel protein sequences as well as their structure. A diffusion model

conditioned on binding partners; i.e. trained with a fixed receptor protein a diffused

ligand protein; would be capable of generating novel protein sequences and struc-

tures that are capable of binding with a known protein, this would have immediate

applications to drug discovery.

6.2.4 Residue Inpainting

One of the key advantages of diffusion models and score based generative modelling

over other techniques is that the iterative nature allows for parts of the input sam-

ples to be fixed. Image inpainting - filling in or replacing sections of an image while

maintaining the contents of a rest of the picture is easily achievable with diffusion

models. Lugmayr et al. [228] achieve this by sampling masked sections of the input

from the true image and unmasked sections from the reverse process. This produces

images that are identical to the true image in masked regions and generate possible

in-fills of the unmasked sections that are conditioned on the true values of the rest of

the image. This can be applied to sequence and/or structure prediction of sections

of an unknown protein. As each residue’s position is independent, known sections

of the backbone can be masked so that potential candidate residue sequences can

be generated. Furthermore, as the binding sites of a protein are necessary for its

interactions, the rest of the molecular structure acts only to influence their shape,
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and potentially has sections with no effect at all. These sections can be unmasked

and both position and type of amino acid can be generated from a residue inpainting

diffusion process as a way to produce functionally similar yet unique synthetic pro-

teins. The key application of this is in the avoidance of existing synthetic protein

sequence patents, allowing for innovative drug design unencumbered by licensing

issues.

6.2.5 Diffusion Bridges for Conformational Switching

Diffusion bridges are diffusion processes conditioned to initialise and terminate at

two fixed states. These are typically sampled using Langevin MCMC methods [229].

Recent work in score matching and diffusion models [13,230,231] has resulted in the

application of these diffusion bridges to synthetic datasets, and has shown techniques

for stochastic interpolation between two samples using a learned diffusion process.

Some proteins undergo conformational switches between two or more known states

upon receiving an input signal such as photon reception, drug binding, or recognis-

ing molecules [232]. These protein switches are of particular interest as a change in

protein structure influences the activity a protein has, regulating cellular signalling

pathways. Given known conformations of a protein structure, a well trained gen-

erative diffusion model could be repurposed to generate diffusion bridges between

these known states. As diffusion bridges are probabilistically favourable pathways

between known states, diffusion bridges applied to protein conformation can be to

generate physically realistic pathways that a folded protein may take between two

known conformations.
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of protein-protein interaction sites by simplified long short-term memory net-
work,” Neurocomputing, vol. 357, pp. 86–100, Sept. 2019. 2.1.4

[52] R. J. L. Townshend, R. Bedi, P. A. Suriana, and R. O. Dror, “End-to-end
learning on 3D protein structure for interface prediction,” in Proceedings of
the 33rd International Conference on Neural Information Processing Systems,
no. 1401, pp. 15642–15651, Red Hook, NY, USA: Curran Associates Inc., Dec.
2019. 2.1.4

[53] Z. Xie, X. Deng, and K. Shu, “Prediction of Protein–Protein Interaction Sites
Using Convolutional Neural Network and Improved Data Sets,” International
Journal of Molecular Sciences, vol. 21, p. 467, Jan. 2020. 2.1.4

[54] H. Zhu, X. Du, and Y. Yao, “ConvsPPIS: Identifying Protein-protein Interac-
tion Sites by an Ensemble Convolutional Neural Network with Feature Graph,”
Current Bioinformatics, vol. 15, pp. 368–378, June 2020. 2.1.4

[55] Y. Liu, H. Yuan, L. Cai, and S. Ji, “Deep Learning of High-Order Interactions
for Protein Interface Prediction,” in Proceedings of the 26th ACM SIGKDD
International Conference on Knowledge Discovery & Data Mining, KDD ’20,
(New York, NY, USA), pp. 679–687, Association for Computing Machinery,
Aug. 2020. 2.1.4

[56] O. Martin and D. Schomburg, “Efficient comprehensive scoring of docked pro-
tein complexes using probabilistic support vector machines,” Proteins: Struc-
ture, Function, and Bioinformatics, vol. 70, no. 4, pp. 1367–1378, 2008. 2.1.4

[57] P. Heuser and D. Schomburg, “Combination of scoring schemes for protein
docking,” BMC Bioinformatics, vol. 8, p. 279, Aug. 2007. 2.1.4

[58] S. Das and S. Chakrabarti, “Classification and prediction of protein–protein
interaction interface using machine learning algorithm,” Scientific Reports,
vol. 11, p. 1761, Jan. 2021. 2.1.4

98



[59] X. Wang, G. Terashi, C. W. Christoffer, M. Zhu, and D. Kihara, “Protein
docking model evaluation by 3D deep convolutional neural networks,” Bioin-
formatics, vol. 36, pp. 2113–2118, Apr. 2020. 2.1.4

[60] Y. Cao and Y. Shen, “Energy-based graph convolutional networks for scoring
protein docking models,” Proteins: Structure, Function, and Bioinformatics,
vol. 88, no. 8, pp. 1091–1099, 2020. 2.1.4

[61] A. Hadarovich, A. Kalinouski, and A. V. Tuzikov, “Deep Learning Ap-
proach with Rotate-Shift Invariant Input to Predict Protein Homodimer Struc-
ture,” in Bioinformatics Research and Applications (Z. Cai, I. Mandoiu,
G. Narasimhan, P. Skums, and X. Guo, eds.), Lecture Notes in Computer
Science, (Cham), pp. 296–303, Springer International Publishing, 2020. 2.1.4

[62] V. K. Ramaswamy, S. C. Musson, C. G. Willcocks, and M. T. Degiacomi,
“Deep Learning Protein Conformational Space with Convolutions and Latent
Interpolations,” Physical Review X, vol. 11, p. 011052, Mar. 2021. 2.1.5

[63] J. A. Maier, C. Martinez, K. Kasavajhala, L. Wickstrom, K. E. Hauser, and
C. Simmerling, “ff14SB: Improving the Accuracy of Protein Side Chain and
Backbone Parameters from ff99SB,” Journal of Chemical Theory and Compu-
tation, vol. 11, pp. 3696–3713, Aug. 2015. 2.1.5

[64] R. A. Engh and R. Huber, “Structure quality and target parameters,” in
International Tables for Crystallography, ch. 18.3, pp. 474–484, John Wiley &
Sons, Ltd, 2012. 2.1.5, 2.1.5

[65] J. Jumper, R. Evans, A. Pritzel, T. Green, M. Figurnov, O. Ronneberger,
K. Tunyasuvunakool, R. Bates, A. Ž́ıdek, A. Potapenko, A. Bridgland,
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