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Improving Magneto-Optical Filter Performance:
Cascading and Oblique B-fields

Fraser D. Logue

Abstract

Magneto-optical filters are ultra-narrow frequency selection de-

vices that use atoms as the active medium. Frequency dependent

dispersion, scattering and absorption make alkali atoms ideal for

polarisation sensitive filtering, traditionally with equivalent noise

bandwidths of several GHz and little control over the lineshape

profile. Our investigations focus on two major improvements to

magneto-optical filter performance: a) cascading two vapour cells

with independent parameters and b) exerting magnetic fields at

oblique angles to the light propagation direction. Optimised two-

cell cascaded setups have a polarisation ‘transformation’ cell and

a cell which ‘extinguishes’ unwanted features. Oblique magnetic

fields result in frequency dependent non-orthogonal propagation

eigenmodes which are directly responsible for narrower birefrin-

gent regions and better extinction of light outside these regions.

We find very good agreement with theory and realise filters with

equivalent noise bandwidths as low as ∼ 100 MHz with greater

control of lineshape features. We consider theoretically further

performance improvements which utilise exceptional points where

the propagation eigenmodes coalesce completely.
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Chapter 1

Introduction

All text written without the use of AI.

1.1 A Brief Review of Magneto-Optical Filters

The history of magneto-optical filters starts with the Faraday effect [6]. In the

mid-19th century, Michael Faraday [7] discovered that a magnetic field applied to

certain crystals along the direction of the light’s passage would cause the plane of

polarisation to rotate - a revolutionary phenomenon only to be fully understood

if light were an electromagnetic wave. For the next half century, a variety of new

optical phenomena were observed and given names including Kerr (1875, 1877)

[8, 9], Christiansen (1884) [10, 11], Cotton (1895) [12], Zeeman (1896) [13], Righi

[14, 15], Macaluso-Corbino (1898) [16], Voigt (1898) [17, 18], Pockels (1898) [19]

and Cotton-Mouton (1905) [20]. In a sea of names, questions remained: were any of

these effects related, and if so, how? When light passed through an atomic vapour,

the Macaluso-Corbino effect2 showed a large polarisation change in the light output

near an atomic resonance. Could atoms exhibit a Faraday-like effect? The full pic-

ture could not be fully understood without the aid of quantum mechanics. Having
2Macaluso-Corbino always refers to an effect where polarisation rotation is observed in the

vicinity of a resonance [21, 6, 22]. However, [21] offers a more specific definition: an effect which
causes anomalous dispersion. Anomalous dispersion generally occurs in a much smaller region
near the resonance. Readers should be careful to note how each writer is using the term.
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confirmed the existence of spin as a quantum number alongside orbital angular mo-

mentum in the Stern-Gerlach experiment [23, 24], the Zeeman effect explained how

these atomic resonances were split by magnetic sub-level and became frequency sep-

arated with an applied magnetic field. Righi observed that these split resonances

preferentially absorbed different polarisations. With this knowledge, one need only

place a polariser after the vapour and create an ultra-narrow frequency bandpass

device. The magnetic field could be applied parallel to the propagation direction

of the light, as in the original Faraday experiment, or perpendicular, as Voigt1

observed. Other effects, listed above or otherwise unmentioned, were found to be

more distant cousins to the Faraday effect. Though many have been employed in

the creation of polarisation selection devices (Pockels cells [25, 26, 27, 28, 29], Kerr

Shutters [30, 31, 32, 33], Christiansen filters [34, 35, 36, 37] and others predicted

[38]), magneto-optical filters are the best performing frequency filtering devices by

far having typical bandwidths 10,000 times narrower than Christiansen filters [39].

The development of magneto-optical filters begins as a tale of two continents. In

1950s Stockholm, the Swedish astrophysicist Yngve Öhman [40] proposed and re-

alised a sodium magneto-optical filter for astronomical imaging. This joined the

French Lyot (sometimes Lyot-Öhman) [41, 42, 43, 44, 45] and Czech Šolc filters

[46, 47, 48, 49] as feasible devices to be incorporated in telescopes. For a history

of early astronomical filters, see [50]. Lyot and Šolc filters are constructed from

alternating stacks of birefringent material and polarisers as opposed to an atomic

source. As such, they are the only reliable options currently available for certain

wavelengths, e.g. the hydrogen lines [51] given the difficulties encountered working

with monatomic hydrogen [52]. However, as a consequence, they are not absolutely

tied to the spectral line of interest which can lead to drifting [53, 54, 55]. Lyot

and Šolc filters are highly tunable when liquid crystal retarders or crystal defects

are incorporated [56, 57, 58, 59, 60, 61, 62, 63]. Magneto-optical filters show com-
1The Voigt effect is sometimes called the Cotton-Mouton effect. In condensed matter contexts,

both terms are often used to describe quadratic effects. In this thesis, we use Voigt to refer to a
linear response to a magnetic field applied perpendicular to the propagation direction of the light.
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parable tunability (as a fraction of bandwidth) however their central frequency is

fixed by the atoms [64]. Each filter type has a different platform. Lyot and Šolc

elements can be made out of quartz [65, 66, 67] or liquid crystal and integrated

in optical fibres [68, 69, 70]. For magneto-optical filters, the atoms can be heated

in glass cells [71, 72, 73] or held at room temperature in a hollow cathode lamp

[74, 75, 76]. Nevertheless, in this competitive field, the absolute frequency stan-

dard provided by magneto-optical filters [77] gave them a permanent position in

solar weather analysis. Through the latter half of the 20th century, the Osserva-

torio di Roma [78, 79, 80] developed magneto-optical designs which were used to

create detailed solar magnetograms and take velocity measurements of solar wind.

Magneto-optical filters are now being used in two major international collabora-

tions, SAMNet [81] and SAMM [82], to study solar weather in an effort to protect

Earth’s infrastructure from solar storms [83].

Meanwhile, across the pond in mid-century America, there was great interest in

mercury [84, 85, 86, 87] as a possible metrological standard for length [88, 89].

In 1960, the 11th General Conference on Weights and Measures decided that the

orange 606 nm transition in 86Kr would define the metre [90, 91, 92, 93]. However,

The National Bureau of Standards in Washington D.C. turned their attention to

the ultraviolet 254 nm transition in 198Hg. In a series of experiments, a linewidth

2.5 times narrower than the Krypton transition was realised using a ‘Zeeman filter’

[94, 95, 96]. The Zeeman filter was used as a second atomic medium which would

extinguish transmission from a prior atomic medium thus narrowing it and refining

its profile. Unlike Öhman’s filter which rejected all light outside a transmission

region, the Zeeman filter allowed light outside the vicinity of the resonance to

transmit completely. In true cold war fashion, the first paper dedicated to the

details of the Zeeman filter [97] was published in 1965, the same year a cadmium

‘Filtration’ device [98] was announced in St. Petersburg. This cadmium device

was based on similar sodium [99] and mercury [100] filtration setups used to realise

fast amplitude modulation of light. In fact, all three of these devices were not
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dissimilar to that built by Hanle back in Europe [101] who is perhaps responsible

for the earliest bandpass magneto-optical filter in 1933.

As the decade closed, the proliferation of lasers [102, 103, 104, 105, 106] brought

significant changes to atomic physics labs. Nevertheless, magneto-optical filters

remained at the forefront. In 1969, the first Faraday filter for laser frequency sta-

bilisation was built at IBM [107] transmitting away from the resonance on either

side (the ‘wings’). This technique was improved in the late 1970s at the University

of Kyoto [108, 109] which also achieved transmission at line centre. The ‘Faraday

laser’ [110, 111, 112, 113, 114, 115, 116, 117, 118, 119] as it has come to be known

competes directly with cavity lens devices [120, 121, 122] amongst other techniques.

Typically, cavity lenses have bandwidths 100 times narrower than magneto-optical

filters though optical pumping [123] and Doppler cooling techniques [124] can re-

duce this disparity by at least an order of magnitude. Nevertheless, cavity lenses

have less tunability than magneto-optical filters and are also subject to frequency

drift [64]. Most recently, Peking University has incorporated Faraday lasers in

atomic clock setups [125, 126, 127, 128] and Shanxi University has demonstrated

frequency comb mode selection [129, 130] continuing the legacy of magneto-optical

filters in metrology.

It is a testament to the value of the magneto-optical filter that it has been consid-

ered and developed independently in wildly different spectral filtering applications.

It is clear that each field lacked knowledge of the other until fairly recently. The first

American astronomy paper to cite the work at the Osservatorio di Roma [131] ap-

peared unaware of the amplitude modulation and Zeeman experiments on the East

Coast. In the 1990s, the Osservatorio di Roma collaborated with astronomers from

several West Coast universities [132, 133, 134] and yet were unaware of filters cre-

ated at the University of California [135]. Geography appeared not to be the issue.

Additionally, the application-driven focus of filter research has often left investiga-

tions into the working principles far behind. As late as the 2010s, it was shown

that several magneto-optical filters had been incorrectly categorised. The Faraday
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anomalous dispersion optical filter (FADOF) was an inappropriate, though popu-

lar, name for many published magneto-optical filters where anomalous dispersion

accounted for very little of their performance [21]. Vastly improved performance

on filter setups [136, 137] almost identical to those used fifty years previously show

how little was understood about the parameter dependencies. Yeh’s 1980s review

papers which addressed the astronomical Lyot and Šolc [138], magneto-optical [139]

and other filters [140, 141] played a large role in recognising the common work in

different fields and the need to dedicate more resources to building robust the-

oretical models. This led to a renaissance of modelling, parameter studies and

experimental filters in various alkali metals including potassium [142, 143, 144],

caesium [145, 146, 147, 148, 149], sodium [150, 151] and rubidium [152, 153, 154].

Filter research in the 2020s is in a strong position. Experimental work is under-

pinned by some excellent theory models including ElecSus [155, 156], Atomic Den-

sity Matrix [157, 158] and a Mathematica demonstrations project [159, 160, 161],

all of which are open source software packages that can calculate and fit spectra in

seconds. Many packages have graphical user interfaces (GUI) allowing those with

less coding experience to access the theory needed. Development of theory is still

needed for systems involving more than two-levels [162, 163, 123, 143, 164, 165, 166,

167, 168], intense light fields [169, 166, 170, 171, 172], and for transitions beyond

the alkali metals [173, 174, 175]. Encouragingly, current literature demonstrates

an interest in analysing these specific cases and slowly building theory alongside

experiment. Nevertheless, the author believes the ease of access to theory as it

stands is responsible for an explosion of new applications areas. The most exciting

of these include:

• Quantum hybrid systems [176, 177, 178, 179]: the frequency of single photons

from a quantum dot source are anchored to an absolute atomic reference via

a magneto-optical filter.

• Ghost Imaging [180]: an imaging technique that relies upon corrleations be-
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tween photons rather than viewing the light reflected from the object of in-

terest.

• Detecting rocket plumes [181, 182]: The concentration of potassium can be

used to detect security threats as part of an early warning system.

• Real time visualisation of gases [183, 184, 185]: The motion of nitric oxide

(NO) gas can be viewed in real time by passing the images though a magneto-

optical filter with molecular NO as the active medium.

• Free Space Communication [186]: including underwater [187, 188, 189, 190]

and for quantum key distribution [191].

• Cold Atom Filters [124, 192, 193]: Very narrow line centre filters using cold

atoms.1

• Light Detection and Ranging (LIDAR) [195, 196, 197, 198, 199]: A more

established application dating back to the 1990s [200, 201, 202]. Laser light

is emitted into the atmosphere or towards terrestial objects and reflected

back to form a 3D relief map. Magneto-optical filters are vital as weak-signal

detection devices permitting studies of the mesophere during solar eclipses

[203] and in light polluted cities [204]. There is also interest in measuring

ocean temperature profiles [205, 206].

1.2 The Aim of This Thesis

We hold to the belief that a great deal is yet to be understood about simple

magneto-optical filters. We also believe that additional insight will inevitably lead

to improved performance. In this thesis, we choose to study two aspects that can

be readily modelled with current theory:

• a) vapour cell cascading
1Of interest, the same group has also proposed a solid state magneto-optical filter [194].
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• b) exerting magnetic fields at oblique angles to the propagation direction of

the light.

Vapour cell cascading has been performed at the Osservatorio di Roma where it was

used to select for wing features far away from resonance and rejecting transmission

everywhere else [77]. It was also performed at the National Bureau of Standards

as a notch filter permitting transmission everywhere except for two finite regions

either side of line centre [96]. A general treatise on how cascading cells improves

performance has not been presented nor has any cascaded line center filter ever

been published.

Most filters cited above are in the Faraday geometry; the magnetic field is parallel

with the propagation direction of the light. A few are in the Voigt geometry with

magnetic field perpendicular to the propagation direction [148, 182, 164]. From our

understanding, only four papers have experimentally realised filters with oblique

magnetic fields [148, 207, 208, 64]. Once again, no general treatise on how oblique

magnetic fields affect performance has been presented. Additionally, oblique cells

have never been used in cascading investigations before.

In the following chapters, we give treatises on these two subjects. Using our new

knowledge, we realise filters with competitive performance that are better quanti-

tatively using several metrics (e.g. Figure of Merit, Equivalent Noise Bandwidth

and Peak Full Width Half Maximum) and whose profiles are qualitatively more

suited to various applications. We also predict several high performing filters not

realised in this thesis.

Beyond this thesis, we hope magneto-optical filters will continue to be investigated

from a foundational point of view. We commend our verified filter designs to be

tested in suitable applications. We invite others to study the predicted filters in

this thesis that they may be constructed in the near future.
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1.3 Overview of Thesis

We present a quick summary of the chapters in this thesis:

Chapter 2 outlines an approach to studying magneto-optical filters. The theory of

light propagating through a naturally abundant Rb vapour cell is presented. We

construct susceptibility lineshapes, refractive indices and eigenmodes which fully

characterise the birefringent and dichroic qualities of the vapour. From this, we

model various kinds of filters including wing and line centre types and discuss

desirable features for different applications. We introduce quantitative and quali-

tative performance metrics to compare filters. To gain additional insight into the

magneto-optical rotation, we introduce measurable observables including invariant

polarisations and the Stokes parameters which describe polarisation evolution.

Chapter 3 investigates the effect of cascading two vapour cells on magneto-filter

performance where light passes through one cell before passing through the other.

We consider two independent cells of the same atomic species with each cell in

either the Faraday or Voigt geometry. When parameters are optimised, the two

cells perform different roles; one cell rotates the light while the other predominately

absorbs. Additionally, the combination of cell geometries permits the selection of

wing or line centre features with high suppression of other features in the spectrum.

We theoretically characterise and realise a Faraday-Faraday wing type and Faraday-

Voigt line centre type filter with one-peak profiles.

Chapter 4 investigates the effect of oblique magnetic field angles, neither parallel

or perpendicular to the propagation direction of the light, on magneto-optical filter

performance. In this geometry, the magneto-optical rotation is unique given that

the propagation eigenmodes are non-orthogonal and frequency dependent. These

properties are responsible for narrower line centre filters with better suppression

of features near the peak. We theoretically characterise and realise two line centre

filters approaching ∼ 100 MHz full width half maximum, an order of magnitude
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smaller than the Doppler width. This geometry also permits the selection of line

centre or wing features without the need to reconstruct the setup.

Chapter 5 uses non-Hermitian analysis to justify why the oblique geometry exhibits

non-orthogonal eigenmodes. We go further and predict the existence of exceptional

points of degeneracy in the oblique parameter space where the propagation eigen-

modes completely coalesce and become parallel. We present line centre filters rely-

ing on exceptional points with full width half maximums of < 50 MHz. We study

the parameter space and find that the filter profiles are ultra-sensitive to small devi-

ations from optimal parameters. As a result, we were unable to realise these filters

experimentally. We identify inhomogeneous fields, computational uncertainty and

model assumptions as factors likely to have hindered the experiment.

Chapter 6 summarises the thesis and gives an outlook. We argue with experimen-

tal evidence that cascading vapour cells and applying oblique magnetic fields leads

to better filter performance quantitatively with lower equivalent noise bandwidths

and higher figures of merit. We also see qualitative improvement with the ability

to select for desirable lineshape features dependent on application requirements.

Exceptional points of degeneracy show promise for future improvements in per-

formance. Such improvement hinges upon the development of more homogeneous

oblique magnetic fields at ∼ cm scales and a thorough investigation of the oblique

refractive index and eigenmode solutions.
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Chapter 2

Theory of Single Cell

Magneto-Optical Filters

Author completed all theoretical computations, and created all figures pre-

sented in this chapter. All text written without the use of AI. Work is related

to the published article:

D. Pizzey, J. D. Briscoe, F. D. Logue, F. S. Ponciano-Ojeda, S. A. Wrathmall,

and I. G. Hughes, ‘Laser spectroscopy of hot atomic vapours: from ’scope to

theoretical fit.’, New Journal of Physics, 24:125001, (2022). https://doi.

org/10.1088/1367-2630/ac9cfe [3].

2.1 Background

To aid our discussions going forward, it is important that we have a solid grounding

in the workings of the simplest magneto optical filter: light directed at a single cell

filled with an alkali atomic vapour. Atom light interactions with alkali metals

are well understood [209, 210, 211], so much so, that data has been presented

that agrees with theory to 99.5% [212]. Typically, the atomic vapour is heated, a

magnetic field is applied and other optical elements are added to the setup. As

such, we require additional tools to help us understand the parameter space and
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analyse the function of every optical component. More philosophically, we need to

be able to answer: what is a good filter? How can we measure this quantitatively?

How can we more holistically measure how well a filter meets the requirements of

its intended application.

In this chapter, we give a comprehensive review of the theory and tools needed to

study single cell magneto-optical filters. Using natural abundance rubidium as our

atomic vapour of choice, we begin with the atomic transitions between the hyperfine

ground and excited states. By considering natural and Doppler broadening, we

calculate the susceptibilities due to the three electric dipole allowed transitions,

σ+/− and π.

By defining the cell geometry, i.e. the angle the magnetic field makes with the

k-vector of the fully polarised light beam, we calculate the two refractive indices of

the birefringent vapour and their associated eigenmodes and invariant polarisations.

With this, we are able to calculate our first spectrum.

We describe three formalisms to help us approach magneto-optical filter studies

throughout this thesis: Jones Calculus which calculates the output electric field,

projection operators which give an explicit relationship between input polarisation

and induced transitions, and the Stokes parameters, which uniquely describe the

polarisation state of light.

We then model the vapour cell placed between two crossed polarisers which is

known as a bandpass filter. We study how the filter rejects all light far away

from the transition resonances, transmitting light only in birefringent and dichroic

regions where magneto-optical rotation occurs.

We introduce metrics to study filter performance quantitatively including Figure

of Merit (FOM), Equivalent Noise Bandwith (ENBW) and Peak Full Width Half

Maximum (FWHM). We also discuss qualitative metrics by considering case studies

of filters in the literature with beneficial lineshapes for their applications.

In our outlook, we consider how we will build on the single cell case in the following

11
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chapters by adding a second cell (cascading) and applying oblique magnetic fields.

We briefly discuss modification routes that we have chosen not to take including

incorporating a pump laser or laser cooling our atoms. We detail our reasons.

2.2 From Atomic Transitions to Susceptibilities

While today there exist several platforms for ultra-narrow band filtering of light,

we are interested in using alkali thermal vapours, in particular Rubidium, confined

in glass cells. Vapour cells are compact and resilient [213, 214, 71, 3]. Moreover,

vapours can readily be modelled using programs like ElecSus [155, 156], Atomic

Density Matrix [157, 158] and Antoine Weiss’ Mathematica demonstrations pro-

gram [159, 160, 161].

We consider the 780 nm D2 transition driven by a laser from 52Sj=1/2 → 52Pj=3/2

in natural abundance Rb with 72% 85Rb (I = 5/2) and 28% 87Rb (I = 3/2). In

addition to the Rubidium fine structure, a hyperfine structure arises due to the

interaction of the nuclear spin I with the total electronic angular momentum J .

In the absence of any magnetic field, a good quantum number F̂ = Î + Ĵ can be

constructed representing the total atomic angular momentum.

From this we can write down the selection rules. Our transition is electric dipole

with the orbital angular momentum increasing by 1 (S → P ⇔ L = 0 → L = 1).

The transition does not change electronic spin, S, or I. Given Ĵ = L̂ + Ŝ, the Ĵ

and F̂ operators have analogous selection rules:

J ′ = J − 1, J, J + 1,

F ′ = F − 1, F, F + 1,
(2.1)

with any transition of the form 0 → 0 forbidden. Fig. 2.1 shows energy level dia-

grams for 85Rb and 87Rb showing all allowed F → F ′ transitions in zero field. The

plotted relative linestrengths C2 are derived from the Clebsch-Gordon coefficients,
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more information on which can be found in [3]. The transition strength for a given

F → F ′ transition is proportional to C2d2 where d is the reduced matrix element

for the D2 transition.

87Rb D2 Line

2S1/25
2S1/25

52P3/2
52P3/2

F = 0

F = 1

F = 2

F = 2

F = 1

F = 3

85Rb D2 Line

F = 1

F = 2

F = 3

F = 3

F = 2

F = 4

C
 2

Figure 2.1: Energy level diagrams for 85Rb and 87Rb showing the transitions al-
lowed by eq. 2.1 in zero field. The transition frequencies are plotted on a detuning
axis where 0 GHz represents the weighted transition line centre of the two iso-
topes. The colour of the transition indicates the ground state F number with 87Rb
F = 1 → F ′ (purple), 87Rb F = 2 → F ′ (red),85Rb F = 2 → F ′ (black), 85Rb
F = 3 → F ′ (blue). The relative linestrengths C2 are calculated from the Clebsch-
Gordon coefficients.
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87Rb D2 Line - Weak 50 G Magnetic Field

2S1/25

52P3/2

mF = 1

mF = -1
mF = 0

mF = 1

mF = -1
mF = 0

,  F = 1

,  F = 1

, , 

,

Figure 2.2: An energy level diagram for one of the hyperfine transitions (87Rb
F = 1 → F ′ = 1) with a degeneracy lifted due to a weak 50 G magnetic field
being applied across the vapour. The original transition resolves into 6 mF → m′F
transitions obeying the selection rules in eq. 2.2. The plot shows the frequency
shift of the 6 transitions away from the zero field 4.099 GHz transition which for
sufficiently small magnetic fields changes linearly.

By exerting a weak magnetic field across the vapour, a degeneracy is lifted and

transitions take place between magnetic sublevels mF → m′F :

m′I = mI ,

m′J = mJ−1,mJ ,mJ+1,

m′F = mF−1,mF ,mF +1,

(2.2)

with 0 → 0 transitions once again forbidden. Fig. 2.2 shows how the 87Rb F =

1 → F ′ = 1 splits into 6 transitions which become frequency separated due to the

Zeeman effect [13]. We note in weak fields up to ∼ 50 G the frequency shift ∆ν in
87Rb transitions is linear with field, B:

h · ∆ν = µBB(g′Fm′F − gFmF ), (2.3)

where h is Planck’s constant, µB is the Bohr magneton and gF and g′F are the

gyromagnetic ratios of the F and F ′ states [215, 216]. On the other hand, for very

large magnetic fields (∼ 1 T in 87Rb), the nuclear and electronic angular momenta

decouple and F and mF are no longer good quantum numbers. This is called
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2.2. From Atomic Transitions to Susceptibilities

the hyperfine Paschen-Back regime [217, 218, 219] where transitions are labelled

|mJ ,mI⟩ → |m′J ,m′I⟩ and follow the appropriate selection rules in eq. 2.2.

In this thesis, we consider weak fields where F and mF are good quantum numbers

and fields in an intermediate regime where transitions take place between superpo-

sitions of |mJ ,mI⟩ ground states and strongly decoupled excited states |mJ ,mI⟩.

Our largest field measured is ∼ 4000 G which approaches the hyperfine Paschen-

Back regime in the ground state [220]. For all magnetic field magnitudes, it is

useful to classify the mJ → m′J transitions:

π : mJ = m′J ,

σ+/− : mJ = m′J ± 1.
(2.4)

While the resonances are localised at the transition frequencies, they are broadened

by several processes. Firstly, there is natural Lorentzian broadening due to the 26 ns

lifetime of the excited state [221] before the rubidium atom spontaneously decays

back to the ground state. This corresponds in frequency to a Γ = 2π · 6 MHz

broadening distributed as a function of linear detuning ∆/2π:

L(∆) = i
Γ
2 − i∆

. (2.5)

Self broadening [222] due to atomic collisions at high temperatures and interactions

with buffer gases [223] introduced to the vapour cell are responsible for additional

Lorentzian broadening. These broadening mechanisms will not be considered in

this thesis. Additionally, there is a Gaussian broadening mechanism. This is due

to atoms experiencing a Doppler shift in the laser frequency as atoms move towards

and away from the propagation direction, or k-vector, of the light. The Doppler

shift is dependent on the atomic velocity v and is modelled as a Maxwell-Boltzmann

distribution [155]:
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2.2. From Atomic Transitions to Susceptibilities

D(v) = 1
U

√
π

exp
(−v2

U2

)
, (2.6)

U =
√

2kBT

m
, (2.7)

with U being a function of the mass of the atom, m, the temperature T and

the Boltzmann constant, kB. To find the resultant lineshape, we convolve the

Lorentzian and Gaussian lineshapes to arrive at a Voigt lineshape, V(∆). Fig. 2.3

shows example real and imaginary lineshapes associated with the Lorentzian and

Voigt distributions. Detuning is measured from an arbitrary transition frequency.

a) b)

c) d)

Figure 2.3: Real and imaginary lineshapes of the Lorentzian and Voigt distributions
centred at a single zero field hyperfine transition. Detuning is measured with
respect to the transition frequency. a) and b) show the real and imaginary parts of
the 6 MHz naturally broadened Lorentzian distribution calculated using eq. 2.5. c)
and d) show the real and imaginary parts of the Voigt distribution respectively, a
convolution of the Lorentzian lineshapes in a) and b) with Doppler broadening due
to thermal motion at 86◦ C. The Voigt width at half the maximum value (FWHM)
is approximately 500 MHz.
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2.2. From Atomic Transitions to Susceptibilities

Of interest, we note that the Voigt width is approximately 500 MHz, i.e. much

greater than the Lorentzian width. We shall discover that the Doppler width

has often been the limiting factor in creating narrow magneto-optical filters. The

Voigt linewidth shows characteristic features of both lineshapes. It approximates

a Gaussian close to resonance but decays slowly like a Lorentzian for far detuned

frequencies [224].

We are now in a position to calculate the electric susceptibilities which describe the

response of the vapour to the electric field. The susceptibility, χi due to transition

i is:

χi = C2
i d

2Na

ϵ0h
· V(∆),

Na = FaN
2(2I + 1) ,

(2.8)

where Fa is the isotopic fraction and N is the number density of atoms in the

vapour state with which the light can interact. It is interesting to note that the

temperature, T , of the vapour has two contributions to the susceptibility. Firstly,

the Doppler width has a
√
T dependence. Secondly T is proportional to the number

density with higher T increasing the number of atom-light interactions. In words,

the susceptibility is the transition strength (C2
i d

2) multiplied by the number of

vapourised atoms in each magnetic sublevel (Na) modified by the Voigt lineshape,

V(∆). By adding the susceptibilities from each transition together 1, we can arrive

at the complex susceptibilities for the σ+, σ− and π transitions as shown in Fig.

2.4.
1ElecSus calculates the lineshape over a detuning range by adding together the susceptibility

contributions due to each transition [155]. This has been found to give very good agreement
(>99%) in experiments [212]. We have not explored whether it is possible that the susceptibility
due to a particular transition is modified by its neighbouring transitions.
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2.3. From Cell Geometry to Propagation Matrix

x 10-4

x 10-4

a)

b)

σ

+σ

+σ

-

σ-

π

π

Figure 2.4: The a) real and b) imaginary parts of the susceptibility curves calculated
for a temperature of 86 ◦C and magnetic field of 49 G. There are three curves
corresponding to the susceptibilities due to each of the three electric dipole allowed
transitions, π (mJ = m′J) and σ+/− (mJ = m′J ± 1).

This has been a very brief overview of the theory up to this point. We encourage

interested readers to refer to [225, 212, 226, 221, 155]. Susceptibility calculations

follow the same process for all filters in this thesis and are completed using our

model ElecSus [155, 156].

2.3 From Cell Geometry to Propagation Matrix

So far we have considered the impact of temperature and magnetic field magnitude

on the three σ+/− and π susceptibilities. In doing so, we were careful to consider

that angular momentum was always conserved e.g. when light with one unit of

angular momentum is absorbed resulting in an atom moving from an S to a P state.
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2.3. From Cell Geometry to Propagation Matrix

How are the projected angular momenta, mJ , conserved when inducing σ+/− and

π transitions? Projecting the angular momenta of light is equivalent to considering

its polarisation. For simplicity, we consider the light to be fully polarised upon

entering and exiting the cell. In practice this is practically achievable in the lab by

adding a high grade polariser to purify the laser light. The magnetic field direction

acts as a quantisation axis for the angular momentum projections since it aligns the

individual atomic magnetic dipoles. Fig. 2.5 shows electric field polarisations with

angular momentum projections mJ = −1, 0, 1 which induce σ−, π, σ+ transitions

respectively.

B k k

kmJ = -1

B

mJ = +1

B

mJ = 0

Figure 2.5: Pictorial representations of polarisations that have angular momentum
projections mJ = −1, 0, 1 along the magnetic field (B) quantisation axis. The k-
vector points in the propagation direction of the light. We can say that mJ = ±1 is
anti-clockwise/clockwise or left/right hand circular. mJ = 0 is linearly horizontal.
The k-vector is parallel with the magnetic field for mJ = ±1 and perpendicular for
mJ = 0.

While the magnetic field is a quantisation axis for angular momentum projections,

the k-vector is also a quantisation axis defining the polarisation state. As such,

the angle between the k-vector and the magnetic field, θ, defines the relationship

between input polarisation and vapour response. A dispersion relation can be posed

with the susceptibilities χi and θ as arguments [207]:


( ϵx

ϵ0
− n2) cos θ ϵxy

ϵ0
ϵx
ϵ0

sin θ

− ϵxy

ϵ0
cos θ ϵx

ϵ0
− n2 − ϵxy

ϵ0
sin θ

(n2 − ϵz
ϵ0

) sin θ 0 ϵz
ϵ0

cos θ

 ·


Ex

Ey

0

 = 0, (2.9)

with:
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2.3. From Cell Geometry to Propagation Matrix

ϵx = ϵ0
2 (2 + χσ+ + χσ−),

ϵxy = iϵ0
2 (χσ− − χσ+),

ϵz = ϵ0(1 + χπ).

(2.10)

For θ = 0, i.e. the k-vector and magnetic field parallel, there are two refractive

index solutions, n, which are plotted in Fig. 2.6:

na =
√

1 + χ+
σ ,

nb =
√

1 + χ−σ .

(2.11)

x 10-4 +1

x 10-4

Figure 2.6: The a) real part and b) imaginary part of the refractive indices na and
nb for a vapour cell at 86◦ C and magnetic field of 49 G parallel with the k-vector
(Faraday geometry). The blue and red lines are the refractive indices associated
with the right hand/left hand circular propagation eigenmodes respectively.
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2.3. From Cell Geometry to Propagation Matrix

The refractive indices n describe how two distinct polarisations of light exhibit

a dispersive response (real part) and attenuating response (imaginary part) to

the vapour. The fact that there are two solutions demonstrates that the vapour

is in general birefringent with different input polarisations resulting in different

responses. To find these two polarisations, we substitute the two refractive indices

back into eq. 2.9:

1
2


±(χσ+ − χσ−) −i(χσ+ − χσ−) 0

i(χσ+ − χσ−) ±(χσ+ − χσ−) 0

0 0 2 · (1 + χπ)

 ·


Ex

Ey

0

 = 0,

=⇒ a⃗ =

1

i

 , b⃗ =

 1

−i

 .
(2.12)

For θ = 0, the two polarisations a⃗ and b⃗, called eigenmodes, are left hand and

right hand circular light (not normalised). With this information the propagation

matrix, P can be constructed:

a∗1 a∗2

b∗1 b∗2


−1 f(na) 0

0 f(nb)


a∗1 a∗2

b∗1 b∗2

 , (2.13)

f(na) = exp
(2πinaL

λ

)
. (2.14)

where ai and bi are the vectors entries of a⃗ and b⃗, * denotes the complex conjugate,

L is the cell length and λ is the wavelength. In words, the input electric field

is transformed into the eigenmode basis, its components are acted upon by the

refractive indices over a cell length L before being transformed back into the original

basis as an output electric field. Note that due to the nature of the calculation we

do not need to normalise the eigenmodes and can avoid unnecessary factor terms.

Fig. 2.7 shows two possible cell geometries with different values of θ alongside

pictures of their eigenmodes. If the magnetic field is parallel to the k-vector, i.e.
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2.3. From Cell Geometry to Propagation Matrix

θ = 0 we say the cell is in the Faraday geometry. Its eigenmodes are left and right

hand circular light. Likewise, if the magnetic field is perpendicular to the k-vector,

i.e. θ = 90◦ we say it is in the Voigt geometry with linearly horizontal and vertical

light as eigenmodes. Oblique filters can also be created with the field at neither 0

or 90◦ but we delay discussion on this until Chapter 4.

Faraday

   Cell

B

Voigt

 Cell

B

Eigenmodes:

Geometry:

Figure 2.7: A schematic showing a Faraday and Voigt cell alongside their respective
eigenmodes derived from the dispersion relation. The Faraday cell has a magnetic
field exerted across it which is parallel with the k-vector of the light. Its eigenmodes
are left/right hand circular light. On the other hand, a Voigt cell has a magnetic
field exerted across it which is perpendicular to the k-vector of the light. Its
eigenmodes are linearly horizontal and vertical light.

A final polarisation concept of note are the invariant polarisations, p⃗ and q⃗ which

are orthogonal to the eigenmodes a⃗ and b⃗ respectively:

p⃗ = c1

−a2

a1


∗

, q⃗ = c2

−b2

b1


∗

, (2.15)

a⃗ =

a1

a2

 , b⃗ =

b1

b2

 , (2.16)

where c1 and c2 are suitable normalisation factors. Since each polarisation is or-

thogonal to one eigenmode, they are only acted upon by a function, f , of one

refractive index in the propagation matrix. This means that while they may be
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2.4. First Filter Spectra

attenuated in the vapour, their polarisation state will not change. We will ex-

plore this further in 2.6. In the Faraday case, the invariant polarisations are also

left and right hand circular light since the eigenmodes are mutually orthogonal.

However the eigenmodes and invariant polarisations are distinct in general (See

2.8). The eigenmodes form a calculation basis for electric field propagation in the

vapour, while the invariant polarisations form a polarisation transformation basis

for understanding how polarisations evolve through the vapour.

2.4 First Filter Spectra

Having constructed the propagation matrix, P, we are now in a position to calculate

our first filter spectra. The simplest such filter is a single cell notch filter depicted in

Fig. 2.8. Fully polarised linear light passes through the cell and the intensity across

a given detuning range where the refractive indices differ from one is detected.

For our parameters the notch filter extinguishes the light entirely in three regions

while transmitting partially or fully elsewhere. For reference, the zero transmission

regions are on the order of ∼ 1 GHz wide corresponding to ∼ 0.002 nm. As

such, our notch filter has highly selective attenuating regions when compared with

commercially available solid state notch filters (typically 10s nm).
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2.4. First Filter Spectra

Cell 

Notch

Filter

P. D.

B1
 Laser

L (mm) T (◦C) B (G)
75 85.6 48.9

Figure 2.8: Schematic and theory curve for a notch filter setup. Fully polarised
linear laser light passes through a 75 mm Rb vapour cell with magnetic field, B1,
parallel to the light k-vector. The output light is detected by a photodetector
(P.D). The detected light intensity (Transmission) across a 20 GHz detuning range
is shown with 0 GHz corresponding to the weighted line centre of the two Rb
isotopes’ D2 transitions. We note three major absorption regions. From left to the
right, the first absorption region is due to 87Rb F = 2 → F ′ and 85Rb F = 3 → F ′

transitions. The second is due to 85Rb F = 2 → F ′ and the third is due to 87Rb
F = 1 → F ′.

Using the same cell, one can create a bandpass filter which unlike the notch filter

rejects all light far away from transition resonances which we depict in Fig. 2.9.

To do this, we make use of polarisers. A perfect polariser transmits one linear

polarisation while rejecting the orthogonal linear state. For instance, a polariser
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2.4. First Filter Spectra

can be rotated to transmit linearly horizontal light while rejecting vertically linear

light. In practice, polarisers are not perfect and also erroneously transmit partially

for the orthogonal polarisation. As such, in an experiment we would use Glan-

Taylor polarisers for their high extinction ratio of 100,000:1 [227], i.e. the polariser

only erroneously transmits other polarisations with a power 100,000 less than that

of the correct polarisation.

In the bandpass filter setup, we cross the two polarisers. That is to say the first

polariser is rotated to transmit one linear polarisation state and the other is rotated

accordingly to transmit an orthogonal linear polarisation. For example, one po-

lariser could transmit linearly horizontal light and the other linearly vertical light.

In the absence of the cell, there is no transmission since the light transmitted by

the first polariser would then be completely rejected by the second polariser since

the light polarisation does not change upon propagation. However, by adding the

cell between the crossed polarisers, it is possible for the polarisation of light to be

transformed in the region of the transition resonances. In fact, we see multiple

transmission features corresponding to light whose polarisation has been trans-

formed from the cell to be partially selected by the second polariser.

This polarisation transformation facilitated by the vapour is called magneto-optical

rotation and we can study this mechanism after equipping ourselves with a number

of analytical tools in the next section. Once again, we can see the transmission

regions are on the order of GHz or 100s MHz wide (0.0002-0.002 nm) making them

much narrower than those offered by commercial solid state bandpass filters (1 -

10 nm). Many of these features can be studied easier with names. Features a) and

d) are called wing features due to their long tails which decay slowly as we move

further from line centre. (approximately decaying as one over the fourth power of

linear detuning [228]) We call feature b), centred at ∼ 270 MHz, a line centre peak.
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Cell 

GTP GTP Bandpass

Filter

P. D.

B1
Laser

a) c)

d)

b)

L (mm) T (◦C) B (G)
75 85.6 48.9

Figure 2.9: Schematic and theory curve for a bandpass filter setup. Fully polarised
linear laser light passes through a 75 mm Rb vapour cell with magnetic field, B1,
parallel to the light k-vector. The cell is placed between two crossed Glan-Taylor
polarisers (GTP) with the second polariser selecting for polarisations orthogonal
to those selected by the first. The output light is detected by a photodetector
(P.D). The detected light intensity (Transmission) across a 20 GHz detuning range
is shown with 0 GHz corresponding to the weighted line centre of the two Rb
isotopes’ D2 transitions. Features labelled a) and d) are called wing features while
b) is a line centre feature. The red x marks 270 MHz where the line centre feature
has peak transmission.
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2.5. Formalisms

2.5 Formalisms

Having generated our first filter spectra, we require some additional tools to gen-

eralise the spectral calculation process and provide analysis of filter function. In

this thesis, we rely on three main formalisms: Jones Calculus, Stokes Parameters

and Projection Operators.

2.5.1 Jones Calculus

Cell 

GTP GTP 
Bandpass

Filter

P. D.

B1  Laser

Eout Ein= ...

Figure 2.10: A schematic of the same bandpass filter as in Fig. 2.9. Underneath
each component is its associated Jones matrix. The Glan-Taylor polarisers (GTP)
are rotated such that the first and second select for linearly horizontal and vertical
light respectively. The Jones matrix for the vapour cell is the Propagation matrix,
P, and is a function of the two eigenmodes a⃗ and b⃗ and their associated refractive
indices na and nb. P is additionally a function of cell length and the wavelength.

Defining an electric field vector:

Ein =

Ex

Ey

 , (2.17)

with horizontal Ex and vertical Ey components, the output electric field Eout

through an arbitrary filter setup composed of vapour cells and other optical com-

ponents can be derived through Jones Calculus [229]. As shown in Fig. 2.10, each

component in our bandpass filter has an associated 2 x 2 matrix. Pre-multiplying

the electric field by a Jones matrix results in an intermediary electric field which
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2.5.2. Stokes Parameters

is the output electric field after that component. By pre-multiplying Ein by the

matrix associated with any electric field altering component in turn, one arrives

at Eout. Jones matrices for common optical components such as polarisers and

waveplates are shown in the Figure A.2. The Jones matrix for a vapour cell, is

the propagation matrix P, calculated in 2.3. P is a function of the cell length,

wavelength, eigenmodes and refractive indices. All spectra calculations, including

Fig. 2.8 and 2.9 in this thesis are completed using Jones Calculus. We dedicate

Appendix A to a complete discussion on the subject.

2.5.2 Stokes Parameters

The function of a filter is determined by the polarisation input, not the electric

field. By calculating the output electric field, the polarisation state of the light

can be extracted and uniquely defined in terms of three variables, called the Stokes

parameters:

S1 =
(I↔ − I↕)

N
, S2 = (I↗↙ − I↖↘)

N
, S3 = (I⟳ − I⟲)

N
, (2.18)

where the animations represent the output intensities for various polarisation states.

↔ and ↕ represent linearly horizontal and vertical light respectively ↗↙ and ↖↘ rep-

resent linearly diagonal light at +45◦ and −45◦ respectively, and ⟳ and ⟲ represent

circular right and left handed light respectively. N is a normalisation factor. S̃i

denotes the Stokes parameters normalised by the output intensity, N = Iout which

gives information about polarisation state but not loss. S̃′i denotes the Stokes pa-

rameters normalised by the input intensity N = Iin which gives information about

polarisation state and loss. Note since we assume fully polarised input and output

beams neither set of Stokes parameters measures decoherence or dephasing. We

also denote a zeroth Stokes parameter as:

S′0 = Iout
Iin

, (2.19)
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which is the total normalised intensity detected. When plotting spectra, we may

label some y-axes, ‘Transmission’ to denote the output from a filter and ‘S′0’ to de-

note the output from a vapour cell as a component in a wider filter setup. However,

note, for example, Fig. 2.8 is both a ‘Transmission’ and a ‘S′0’ profile.

The Stokes parameters can give us insight into filter performance. Fig. 2.11 shows

how S̃i plotted as a function of distance through the cell can depict the polarisation

evolution of one frequency of light as it passes through vapour. In this case we

choose a frequency of 270 MHz i.e. the detuning marked with a red x in Fig. 2.9.

a)

b)

Horizontal Linear Input:

Invariant Polarization Input: 

S1

~

S1
~ S2

~

S3
~

S3

~

S2

~
,

Figure 2.11: Plots of S̃i as a function of length propagated through the cell for
the bandpass filter in Fig. 2.9. The frequency of light is 270 MHz indicated by
a red x in the original figure. Panel a) and b) respectively show the case where
linearly horizontal and left hand circular light are input. Left hand circular light is
an invariant polarisation in the Faraday geometry. Pictorial representations of the
polarisations at 0 and 75 mm are shown. Note in panel a), the output polarisation
is not quite diagonal.
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Panel b) shows one of the invariant polarisations of the bandpass filter in Fig.

2.9, left hand circular light. S̃1 and S̃2 are zero since left hand circular light

can be broken into an equal combination of linearly horizontal and vertical light

(similarly for linearly diagonal light). S̃3 = −1 since there is no right hand circular

component. The values of S̃i do not change as the light passes through the cell

proving the polarisation is invariant. On the other hand, panel a) shows that

linearly horizontal light evolves to become neither horizontal or vertical. In this

case, S̃3 = 0 initially since horizontal and diagonal light can be broken into an equal

combination of left and right handed circular light. Additionally S̃3 remaining zero

throughout tells us that the polarisation transformation always remains linear i.e.

the Faraday effect. In fact, the S̃1 and S̃2 curves show that the horizontal light

rotates its plane of polarisation to become diagonal light.

For the same bandpass filter we can also plot S′i against linear detuning for all

frequencies of interest which describes the frequency dependence of the polarisation

evolution.

S'0

S'1

S'2

S'3

Figure 2.12: S′i plotted against linear detuning for the vapour cell in the bandpass
filter in Fig. 2.9. We note that S′0 by definition is the intensity recorded after the
vapour cell and as such shares the same profile with the notch filter in Fig. 2.8.
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S′0 returns the same spectrum as the transmission of the notch filter in Fig. 2.8. S′0
is the total normalised intensity recorded after the vapour cell which is by definition

a notch filter transmission. From S′1 and S′2 we can make out the (sometimes

inverted) bandpass filter features including the wings and centre line. The filter

features are those with S′1 and S′2 values which are selected by the second polariser.

The S′3 shows light output at frequencies with small handed components, typically

either side of the larger transmitted filter features.

Stokes parameters will be the main analysis tool used in later chapters.

2.5.3 Projection Operators

A final analytical tool can be found in the projection operators. The projection

operators give an explicit relationship between input polarisations and dipole tran-

sitions induced and are determined by the cell geometry. A state orthogonal to a

projection operator for transitions Xi will not induce transitions Xi. For example,

for a plane wave in the Faraday cell, left/right hand circular light are the projection

operators for the σ+/− transitions while π transitions cannot be induced.

We can plot S′0 against linear detuning for the projection operators as input po-

larisations. By doing so, we can show the effect different transitions have on the

spectrum as well as the detuning spread of the transition frequencies. In Fig. 4.5,

we note the S′0 curves corresponding to σ+/− transitions are positively/negatively

detuned slightly. This is expected since the bandpass filter has a small magnetic

field of ∼ 50 G leading to a small Zeeman effect. We dedicate Appendix C to a

complete discussion on projection operators.
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σ- σ+

π

S'0

Figure 2.13: S′0 outputs when projection operators are input polarisations to the
vapour cell in Fig. 2.8 and 2.9. These include σ+ : left hand circular (purple) and
σ− : right hand circular (blue). For a plane wave in the Faraday geometry, the π
projection operator (red) is the zero vector.

2.6 Magneto-Optical Rotation

We now have all the necessary tools to explain the magneto-optical rotation of the

vapour which accounts for the performance of the bandpass filter. As discussed in

2.3, the invariant polarisations form a good basis to study magneto-optical rotation.

In Fig. 2.14, we plot the four features of the bandpass filter from Fig. 2.9 in purple

for linear light input. The red and yellow S′0 profiles are plotted for the two invariant

polarisations, left and right hand circular light, respectively. Their overlap is shown

in orange.

We can identify two regions: the birefringent region where there is some trans-

mission of both of the invariant polarisations and the dichroic region where there

is transmission of mainly one invariant polarisation. Note that the birefringent

regions are not strictly contained within the orange overlaps as there is non-zero

transmission of both invariant polarisations outside of these overlaps. If linear light
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2.6. Magneto-Optical Rotation

is input at a frequency in the dichroic region, there will be no transmission due

to one of the invariant polarisations i.e. the polarisation after passing through the

vapour can be described as:

Eout = (Ein · p⃗) · p⃗ef(na), (2.20)

with f defined in 2.3 and p⃗, an invariant polarisation. Ein will be refracted and at-

tenuated. However, the refraction only changes the speed of propagation having no

noticeable effect on the output polarisation state. This leaves only the attenuating

effects. The component of Ein along the invariant polarisation p⃗ will continue to

be attenuated as it moves through the vapour. Since the invariant polarisation is

circular light, after sufficient vapour, the circular handed component of Ein will be

attenuated such that the resulting output polarisation will be the opposite circular

hand. This is the case since linear light can be broken into equal parts left and

right circular light. This polarisation transformation results in transmission by the

second crossed polariser.

We can see this effect at play in the S′3 plot in Fig. 2.12 where either side of the

main features, the output light is handed. In Fig. 2.14, we note small features not

exceeding 50% in the dichroic regions due to the attenuation required to transform

the polarisation.

However, in the birefringent region, we can write the output electric field as:

Eout = (Ein · p⃗) · p⃗ef(na) + (Ein · q⃗) · q⃗ef(nb). (2.21)

In this case, we have refraction and attenuation due to both invariant polarisations.

This time given that in general both polarisations will be refracted by different

values, differential refraction takes place which has a noticeable effect on polarisa-

tion. A local phase arising between the two components can result in polarisation

transformation without relying on attenuation. We can see the highly transmitted

features a), c) and d) reside mostly in the birefringent region.
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2.6. Magneto-Optical Rotation

We note that the wing features appear to slowly decay in transmission while still

remaining in the birefringent region. The reason for this is that the two refractive

indices far away from resonance are slowly tending towards the same value of 1.

This means that differential refraction effects tend to become negligible. Neverthe-

less the slow decays are a result of the refractive index lineshapes approaching 1

relatively slowly despite being far detuned from the transition frequencies.

Feature b) Feature c)

Feature d)Feature a)

Figure 2.14: The four features of the bandpass filter in Fig. 2.9 plotted in purple.
The S′0 outputs are shown in red and yellow corresponding to input polarisations
of left hand and right hand circular light respectively. These are the invariant
polarisations. Their overlap is shown in orange. Note that the birefringent regions
are not entirely contained in the orange overlaps as there exists transmission of both
invariant polarisations outside of these overlaps. The regions beyond birefringence
are called the dichroic regions.

We can use the projection operators to explain the magneto-optical rotation in

terms of the underlying transitions. In the Faraday case, it happens that the pro-
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jection operators for the σ+/− transitions are the same polarisation states as the

invariant polarisations, i.e. left/right hand circular light. Therefore, our filter oper-

ates in dichroic regions as a σ+ or σ− driven attenuator. In the birefringent regions,

differential refraction between σ+ and σ− transitions results in high transmission

polarisation transformation.

2.7 Filter Performance Metrics

Having understood the basics of filter performance, we still do not have a notion of

what makes a good filter. Comparing the notch filter in Fig. 2.8 to the bandpass

filter in Fig. 2.9, we might intuitively favour the performance of the bandpass

filter for its ability to reject all light away from the resonances. Having said this,

filter performance will be highly application specific and notch filters have been

used in single molecule detection in DNA [230]. In this section, we introduce some

quantitative and qualitative metrics we will use to determine filter performance

going forwards.

We are interested in bandpass filters. In an ideal world, a bandpass filter could

transmit one frequency at 100% transmission and reject all other frequencies. Of

course, for many reasons this is impossible but we can build quantitative metrics

which score filters relative to this ideal case. The Equivalent Noise Bandwidth

(ENBW) is defined as:

ENBW =
∫ T (ν)dν

T (νs)
, (2.22)

where T (ν) is the transmission at frequency, ν, and νs is the signal frequency,

generally chosen to be the frequency with maximum transmission. In words, the

ENBW is the area subtended between the transmission curve and the horizontal

axis. We seek to minimise ENBW everywhere except at νs. However, a computer

struggles to optimise with this metric given that a flatline filter with no transmission
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has an ENBW of 0. Therefore, we want to consider a metric that gives equal parity

to minimising ENBW as it does to maximising the transmission at νs. We call this

metric, the Figure of Merit (FOM) [228],

FOM = T (νs)
ENBW , (2.23)

which we seek to maximise. For our bandpass filter, the ENBW and FOM are

2540 MHz and 0.38 GHz−1 respectively. On the other hand, our notch filter has an

infinite ENBW as transmission continues as we detune away from the resonances

leading to a FOM of 0. Another useful metric is the Full Width Half Maximum

(FWHM) of the filter peak of interest:

FWHM = νR − νL, (2.24)

where νR and νL are two frequencies positively and negatively detuned from the sig-

nal frequency νs, where maximum transmission occurs. νR and νL are transmitted

at half the intensity of νs,

T (νL) = T (νR) = 0.5 · T (νs),

νL < νs < νR.

(2.25)

The FWHM is a useful metric if there is one dominant peak in the transmission

spectrum with other features having low transmission. It can also be used with

care to consider the FWHM of spectra with multiple peaks. In general we seek to

minimise FWHM to have narrow peaks.

However, beyond quantitative metrics, the application determines the qualitative

features that are beneficial. Fig. 2.15 shows four published filter profiles generated

from single cell bandpass filters. The spectra and their quantitative metrics vary

considerably and yet each filter is well designed for its application.
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2.7. Filter Performance Metrics

a) b)

c) d)

Filter Element
& D-line

Cell
Length T (◦C) B (G) ENBW

(MHz)
FOM

(GHz−1)
a) [198] Na-D2 20 182 3000 9560 0.10
b) [118] Cs-D2 30 30 330 2510 0.16
c) [182] K-D1 71.8 81 1200 4780 0.05
d) [137] Cs-D1 75 68 45.3 960 0.80

Figure 2.15: Theoretical filter profiles from various published papers with their
parameters alongside ENBW and FOM in table. a), b) and d) are Faraday filters
with the magnetic field parallel with the k-vector. c) represents a Voigt filter with
magnetic field perpendicular to the k-vector. Linear light at +45◦ to the horizontal
is input to the cell in c) while any linear polarisation can be input into a), b) and
d). The yellow and black curves represent the output light polarised linearly at
−45◦ and +45◦ to the horizontal respectively.

Filter a) [198] is used in the sodium LIDAR apparatus at the Wuhan Institute

of Physics and Mathematics to take long term measurements of the mesosphere.

For this, they require a broadband laser with bandwidth 1.2 GHz. Given that the

spectrum can change greatly over the interval of a GHz and their laser experiences

frequency drifts, they require a profile with flat transmission for several GHz. The

inset shows the transmission remains high and uniform for > 3 GHz.

Filter b) [118] from Peking University is double peaked with one peak correspond-

ing to transitions from the 85Rb F = 4 ground state and the other from F = 3.
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This was designed in response to a new sub-Doppler spectroscopy scheme for laser

frequency stabilisation [231]. A dual frequency laser centred on two Cs hyperfine

transitions can result in inverted sub-Doppler features with much larger transmis-

sion dips than the conventional scheme offering improved stabilisation. For more

information on sub-Doppler spectroscopy, see Appendix D.

Filter c) [182] is a Voigt filter with magnetic field perpendicular to the k-vector.

Linear light at 45◦ is input and the system outputs both the bandpass filter light

linearly polarised at −45◦ (yellow) and the light that is rejected by the bandpass

(black) linearly polarised at 45◦. Here the aim of capturing both signals is to

construct a calibration scheme to account for imperfect polarisers. With this,

North Carolina State University hopes to improve imaging of rocket plumes.

Filter d) [137], found in the lab in Durham, is the largest FOM single cell filter in

the Faraday geometry owing to its very narrow peaks. In this thesis, we will judge

our filter designs by both quantitative and qualitative metrics.

2.8 A Word of Warning

In this introductory chapter, we have introduced several concepts that for the band-

pass filter plotted in Fig. 2.9 appear to be related or equivalent. These include

polarisation concepts such as the eigenmodes, invariant polarisations and projec-

tion operators. These also include atom-light concepts such as the susceptibilities

and refractive indices. These are all in general distinct concepts. Applying these

concepts in their correct context will be essential in analysing filters considered in

later chapters. We provide a concise summary:

• The eigenmodes are the two vector solutions of the dispersion relation and

are essential for constructing the propagation matrix, P for Jones Calculus

computations. (See 2.3, 2.5.1 and Appendix A).
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• The invariant polarisations are the two polarisations for which S̃i remains

constant upon propagation. In short, while an invariant polarisation might

be attenuated upon propagation, the polarisation state does not change. See

2.3.

• A state orthogonal to a projection operator for transitions Xi will not induce

transitions Xi. (See 4.5 and Appendix C).

• An electric susceptibility is associated with either the σ+, σ− or π transi-

tions. Their real and imaginary parts describe the dispersive and attenuating

properties respectively of the vapour due to the associated transition. The

electric susceptibilities are independent of cell geometry (See 2.2).

• A refractive index is associated with an eigenmode and is also essential for

constructing the propagation matrix P. Their real and imaginary parts de-

scribe how the eigenmode as an input polarisation is refracted and attenuated

respectively. The refractive indices are dependent on cell geometry (See 2.3,

2.5.1 and Appendix A).

2.9 Outlook

In this chapter, we have introduced the theory and tools needs to study single cell

filters. We generated atomic spectra in two parts. Firstly, we calculated the elec-

tric susceptibilities from the Zeeman shifted atomic transitions and line strengths

and accounted for natural and Doppler broadening. In the second part, we cal-

culated the refractive indices, eigenmodes and invariant polarisations which relied

on the cell geometry. This thesis has a specific focus on cell geometry and we

will frequently refer back to this part of the calculation. From this, we created a

notch filter that relied on attenuation and a bandpass filter which relied predom-

inantly on magneto-optical rotation. We introduced three formalisms that gave

us the calculation and analytical tools needed to study filters. In particular, the
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Stokes parameters will form the basis of much of our filter analysis. We studied

the transmission profile of the bandpass filter noting the birefringent and dichroic

regions where the polarisation was transformed to be selected by the second po-

lariser. Finally, we measured important metrics like FOM, FWHM and ENBW

which allowed us to compare the bandpass filter profile with others. We made

clear that filter performance is highly application specific and we studied various

qualitative lineshape features.

Through the rest of this thesis, we will consider the implications of two modifica-

tions to the single cell case: adding a second vapour cell (cascading) and applying

an oblique magnetic field (at an angle neither 0 or 90◦ to the k-vector). We note

that these modifications maintain a passive filter design. That is to say, we do not

make use of additional pumping lasers and could theoretically replace our probe

laser with a broadband source. This is essential in astronomical applications where

celestial light enters the filter, not laser light. These designs are the most flexible

in their purpose as they can theoretically filter any light source.

Other filter designs are considered active. For instance, excited state transitions

and multi level schemes [162, 163, 123, 143, 164, 165, 166, 167] incorporate an

additional laser for optical pumping. As such, they offer new operating wavelengths

for magneto-optical filters and can even generate filters with sub-natural linewidths

at ∼ 70 % transmission [168]. More recently, laser cooled atomic designs [124, 192,

193] have also been considered which typically incorporate additional pump, cooling

and repump lasers. In doing so, these designs are able to reduce the Doppler widths

to sub-natural linewidths at < 20% transmission. However, adding lasers increases

the complexity of the setup considerably and may make it difficult to take outside

a lab setup. Moreover, many of these designs use a frequency locked probe laser

and therefore cannot be replaced by an arbitrary light source. Nevertheless, we

would like to note that these are exciting directions which are not only producing

great experimental results but provide much needed theoretical insight.

Our compact robust passive designs will...:
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2.9. Outlook

1. ...justify our thesis in Chapter 1 that huge performance improvements can be

achieved via small modifications to the single cell case combined with more

theoretical study.

2. ...include some of the best passive designs recorded in the literature by quan-

titative metrics.

3. ...include designs which are competitive with active designs with all the ad-

vantages of passive designs.
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Chapter 3

A Study of Cascading Vapour

Cells

Author completed all theoretical computations, collected and processed all

data and created all figures presented in this chapter. Figures 3.5 and 3.6

were created using code by Jack D. Briscoe. Figures 3.10, 3.11 and 3.12 were

created using code by Thomas Robertson-Browne. All text written without

the use of AI. Work is related to the published article:

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes, ‘Bet-

ter magneto-optical filters with cascaded vapor cells.’, Optics Letters, 47(12):2975-

2978, (2022). https://doi.org/10.1364/OL.459291 [2].

3.1 Background

In the previous chapter, we introduced single cell magneto-optical filters. Decades

after their invention, these filters remain competitive devices delivering high FOM

and low ENBW values alongside their compact setups [3]. The table in [137] gives

predicted optimized parameters for all alkali metals in the weak probe regime [169]

with best FOM and ENBW at 0.8 GHz−1 and 960 MHz (plotted in Fig. 2.15).

These metrics act as a baseline for further improving filter performance. However,
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3.1. Background

quantitative metrics do not tell the full story. Qualitative metrics such as tailored

lineshape features [198], flexibility of operation [129] and robustness to the elements

[190] are desirable and often essential in various applications.

Perhaps the most intuitively simple way to modify the single cell case is to add

another cell such that the light passes through each in turn in a cascade. This is

the basic principle behind the work at the Osservatorio di Roma and later at the

Sapienza Università where two cells, both in the Faraday geometry, are cascaded

[77, 78, 79, 80, 132, 133, 134, 232]. When parameters are tuned appropriately,

one or both of the filter’s transmitted wing features can be selected with all other

features suppressed. This setup continues to be of use in two international solar

weather monitoring networks [81, 82]. Additionally, the same setup with minor

modifications was realised [154] for filtering background optical noise in free space

laser communications. However, none of these works explain the working principle

behind these filters. Such knowledge would not only be important when exporting

these ideas outside their original applications but in considering other feature-

selection mechanisms.

For instance, is it possible for a line centre filter to be constructed which suppresses

all features other than the central peak? While the early Zeeman filter [94, 97]

selected for a central peak, it was a notch filter, and a bandpass line centre filter

has yet to be constructed. Such a filter would be very useful in laser frequency

stabilisation [110, 111, 112, 113, 114, 115, 116, 117, 118, 119] where laser drift

could be limited to a central region around the transition frequency.

In this chapter, we present the theory behind two cascaded filters: a wing filter

and the first line centre filter. We analyse the function of each filter by studying

the output polarisation through each component using the Stokes parameters [233,

234, 235]. The Faraday-Faraday wing filter is composed of two cells in the Faraday

geometry while the Faraday-Voigt line centre filter is composed of a cell in the

Faraday geometry and a cell in the Voigt geometry. We find that for both filters,

both cells address different roles: one transforms the polarisation to create the
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feature of interest while the other extinguishes unwanted features. We show that

the geometry of the cell, Faraday or Voigt, determines the relationship between

input polarisation and transitions induced. As such, different geometries can be

used to extinguish different detuning regions.

We then describe the setup for realising these two filters. We use solenoids and

permanent NdFeB magnets to create the axial and transverse fields necessary which

are verified using the python package Magpylib [236].

We present fitted data which show excellent agreement with theory. We show that

by turning a waveplate, the wing filter can select for both wings or either wing. In

our outlook, we show that our analysis is not an exhaustive treatment of cascading’s

many benefits. We present two theoretical two-cell cascaded filters engineered for

applications in cavity lens stabilisation [64] and cryptography [237] respectively.

3.2 Theory

3.2.1 The Role of the Second Cell

To begin our discussion, let’s assume we have fixed first cell parameters. For

instance, let’s consider the single cell natural abundance Rb filter plotted in Fig.

2.9. How can we use a second cell to substantially improve performance? By

inspecting the transmission profile, we see four peaks. If the second cell had an

extinguishing role and suppressed the transmission of undesired features, we could

create a single peak filter. This would undoubtedly decrease ENBW and hence

increase FOM and qualitatively would give better control over the lineshape.

To do this, we require the cell to extinguish over certain detuning regions while

still transmitting highly in others. For this, we can make use of the Zeeman shift

of transitions [13, 238, 217, 218, 239]. As a progressively larger magnetic field is

exerted across an alkali metal, the π (mJ = m′J) and σ+/− (mJ = m′J ± 1) electric

dipole allowed transitions shift in frequency. For a large field, σ+/− transitions
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3.2.1. The Role of the Second Cell

are shifted positively/negatively from line centre. π transitions are also shifted

positively and negatively from line centre but the shift is substantially less than

the σ+/− transitions. This shifting can be studied using ground (Breit-Rabi) and

excited state manifold diagrams [226, 221]. Note that for low fields, i.e. outside

the Hyperfine Paschen-Back regime [219, 1, 220], the shift is non-linear. Therefore

with a large enough field and an ability to exclusively select for certain transitions,

we can extinguish specific detuning regions of interest.

Projection operators (derived in Appendix C) give an explicit relationship between

polarisation input and transitions induced for a particular cell geometry. In the

Faraday geometry, the projection operators are:

σ+ : x̂+ iŷ√
2

σ− : x̂− iŷ√
2

(3.1)

i.e. left/right hand circular light exclusively induces σ+ or σ− transitions respec-

tively. Panel a) of Fig 3.1 shows how a Faraday cell can be used to create extin-

guishing wells whose centres are positively/negatively detuned. We note that the

wells extinguish almost completely with only very small transmission regions. To

realise this, we need a combined temperature and magnetic field high enough to

increase the Doppler widths and increase the frequency spacing between transitions

respectively. A Faraday extinguishing cell would be very useful at selecting peaks

on the extremities of spectra i.e. wings.

In the Voigt geometry, the projection operators are:

σ+/− : ŷ

π : x̂
(3.2)

i.e. horizontally linear light induces π transitions and vertically linear light induces

a linear combination of σ+/− transitions. Panel b) of Fig. 3.1 shows two wells

realised with a Voigt extinguishing cell. The π well has a smaller extent than the

σ+/− well and we note that the σ+/− well has a small transmission region at centre.

As such the σ+/− well would function as a line centre peak selector extinguishing
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3.2.1. The Role of the Second Cell

all features apart from the central peak. We note that for a higher magnetic field

it is also possible to create the same transmission window with the π well which

was shown in [4].

a)

b)

S'0 σ+

σ+/σ-

π

σ-

S'0

Figure 3.1: a) The theoretical S′0 outputs for a 5 mm natural abundance Rb Fara-
day cell with T = 110 ◦C and B = 747 G. By inputting the Faraday projection
operators for σ+/− transitions (i.e. left/right hand circular light), the extinguishing
well is positively/negatively detuned. b) The theoretical S′0 outputs for a 5 mm
natural abundance Rb Voigt cell with T = 121 ◦C and B = 2528 G. Similarly, by
inputting the Voigt projection operators for σ+/− and π transitions (i.e. vertically
and horizontally linear light.), the extinguishing well has a larger/smaller frequency
extent. In particular, the extent of the σ+/− well is so large that a transmission
region is created at centre where the Doppler widths of the σ+ and σ− transitions
no longer overlap.

Our approach so far has assumed a separation of cell roles. One cell transforms

the polarisation state of the light to create filter transmission regions and the other

extinguishes the unwanted regions. Such an approach is beneficial since it makes

it easier to understand the function of each cell. It turns out that this is not a

naïve approach. Computer optimisations show that FOM can be maximised when

we assume separation of roles. A.3.3 and A.4.2 give justification for this fact.
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3.2.2 Stokes Parameter Description

Having understood the two cells’ roles, we are in a position to start designing filters.

As discussed, polarisation plays a large role in filter operation. The polarisation

transformation from cell(s) between crossed polarisers determines the output after

passing the second polariser. Likewise the lineshapes of our wells in Fig. 3.1 are

also polarisation dependent. To fully understand the working principles of our

filters, we need to make use of the Stokes parameters defined in 2.5.2.

Faraday ‐

Faraday

Filter 

P.D.
Cell 1 Cell 2

B1 B2
GTP

λ/4

GTP

Faraday ‐

Voigt Filter 

P.D.Cell 3 Cell 4

B3 B4
GTPGTP

a)

b)

Figure 3.2: Two proposed filter designs. GTP - Glan Taylor Polariser. More details
can be found in Fig. 3.7.

Our first design, shown in Fig. 3.2 a), is a Faraday-Faraday wing filter composed

of two Faraday cells. It is based on the wing filter design in [154] and is similar

to the wing filters realised at the Osservatorio di Roma. Fig. 3.3 plots S′i at each

stage of the filter. When horizontal light is input to the first cell, certain regions

are transformed in polarisation resulting in bandpass filter peaks after the crossed

polariser. This light is then transmitted through a quarter waveplate set at 45◦

to convert the linear vertical light to left hand circular light. In doing so, the

light is in the correct polarisation state to be extinguished at centre and at positive

detunings. The light at far negative detunings is transmitted through and we select

for one wing. We note that rotating the waveplate axis allows us to select for the

other wing or both wings which we show in 3.4.1.1.

The second design b) is a Faraday-Voigt line centre filter composed of a Faraday cell
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3.2.2. Stokes Parameter Description

followed by a Voigt cell. To our knowledge, no similar design has yet been theorised.

As before, horizontal light from the first cell is transformed in polarisation before

being input into the second cell. Light that is linear vertical induces a σ+/− well

which has a small transmission region at centre. The light is then transmitted

through a crossed polariser to select for one central narrow peak. We note that the

peak is narrower than the central feature created by the first cell alone since the

small transmission region in the Voigt cell ‘carves out’ a smaller peak which can

be seen in panel c) in Fig. 3.5.

The reader may not be convinced that the Voigt cell’s role is purely extinguishing

here given it is placed within the crossed polarizers. We prove that its contribution

to the final output is only extinguishing in A.3.3. While we have called cells ‘First’

and ‘Second’ by their sequence position, the order of the cells can be rearranged

along with other optical components to arrive at the same filter transmission (see

A.3 and A.4). We note that in both diagrams where the intensity (S′0) approaches

zero, stray light and noise from the cables linking the photodetector and oscilloscope

will dominate. This will result in changes to the Stokes parameter profiles.

48



3.2.2.
Stokes

Param
eter

D
escription

After First Cell

S'0

S'1

S'2

S'3

After Crossed Polarizer After Quarter Waveplate After Second Cell

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G)
75/75 85.6 ± 0.3 48.9 ± 0.5 110.1 ± 0.3 747 ± 7

Figure 3.3: The Stokes Parameters S′i plotted at various stages of the Faraday-Faraday Wing Filter. Description in main text.49
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Param
eter

D
escription

After First Cell

S'0

S'1

S'2

S'3

After Crossed PolarizerAfter Second Cell

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G)
75/5 100.29 ± 0.07 162.2 ± 0.3 120.79 ± 0.08 2527.6 ± 0.3

Figure 3.4: The Stokes Parameters S′i plotted at various stages of the Faraday-Voigt Line Centre Filter. Description in main text.50
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3.2.3 Optimising Parameters

At this point, all that remains is finding appropriate parameters. As mentioned,

computer optimisations have been used to find parameters which optimise FOM.

However, understanding why these parameters give such good performance is equally

important.

Figs. 3.5 and 3.6 show the variation of filter performance with second cell magnetic

field. The insets to 3.13 and 3.21 show the variation of filter performance with

second cell temperature. In Fig. 3.5, we see that the well experiences positive

shifts in detuning with increasing magnetic field. We expect the opposite to be

the case when the quarter waveplate is set at −45◦ such that right hand circular

light is input. At low magnetic fields, the wells have gaps where there is high

transmission. This is since the transition frequencies at low field are close together

and their Doppler regions have high overlap. With increased magnetic field, the

transitions increase in separation and their Doppler widths span a wider area. FOM

remains constant after ∼ 700 G where the well sufficiently extinguishes all features

without detriment to the selected wing. This leads us to choose the parameters in

the table.

In Fig. 3.6, the key magnetic field to consider is the value at which the central

transmission region appears. This is where the σ+ and σ− Doppler widths no

longer overlap. We want a filter where the transmission of this central region is

high and the FWHM is narrow. The width and transmission of the region increase

with larger magnetic field and so we must find a field value which balances the two.

The parameters in the table optimise FOM.

3.2.4 Summary of Theory

We give a summary of the theory we have presented. We discovered via computer

optimisation that performance can be maximised in a two cell arrangement if both

cells take on different roles. One cell transforms the polarisation state to create
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the filter peaks and the other extinguishes the unwanted peaks leaving the desired

feature(s). A cell extinguishes in a certain region dependent on the transitions

induced and the Zeeman shift from the applied magnetic field. The geometry of the

cell, Faraday or Voigt, determines the transitions induced for a given polarisation

and as such different geometries can be used to select for different features.

We theorised two designs, a Faraday-Faraday wing filter and a Faraday-Voigt line

centre filter which we studied using Stokes parameters. The magnetic field and

temperature must be chosen to create extinguishing wells that span the appropri-

ate frequency range without causing detriment to the transmission of the desired

feature.

3.3 Setup

Having established the performance benefits of the Faraday-Faraday and Faraday-

Voigt cascades, we set out to experimentally realise these designs. Fig. 3.7 shows

the experimental setup.

We use a Toptica DL100 laser [240], an external cavity diode laser scanning over an

approximate range of 20 GHz. We send part of the light towards reference optics

(See Appendix D for more details) and the rest to our two filter designs. A neutral

density filter lowers the power to approximately 100 nW with a 1/e2 width of 100

µm before each experiment. This ensures we stay within the weak probe regime

[169] which can be readily modelled using ElecSus [155, 156]. We use Thorlabs

PDA36A2 amplifying photodetectors [241] setting the gain at the highest setting

available ‘70 dB’ (See Fig. 3.9). We did not verify the actual gain achieved.
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B2=     G B2=373 G B2=747 G B2=2000 G0  (a) (c) (d)(b)

B2
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t
       Filter Output
With Cell 2 Removed

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G)
75/75 86 49 110 747

Figure 3.5: The evolution of the filter profile (purple) and the second cell output (red) for various second cell B-fields, B2. The filter
transmission with second cell removed in underlayed in blue. The variation in FOM is shown in olive. To the right, a heatmap showing
the maximum transmission of Cell 2 for varying B-field. The four B-fields are marked on the FOM diagram and heatmap. We notice
that the extinguishing well has a positive shift in detuning as B-field increases. FOM does not increase substantially after ∼ 700 G since
the well is wide enough and positioned to extinguish all other features without reducing the transmission of the selected peak.
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L3/L4 (mm) T3 (◦C) B3 (G) T4 (◦C) B4 (G)
75/5 100 162 121 2528

Figure 3.6: The evolution of the filter profile (purple) and the second cell output (red) for various second cell B-fields, B4. The filter
transmission with second cell removed in underlayed in blue. The variation in FOM is shown in olive. To the right, a heatmap showing
the maximum transmission of Cell 4 for varying B-field. The four B-fields are marked on the FOM diagram and heatmap. We notice
that a transmission region opens up in Cell 4 after ∼ 2400 G leading to a FOM maximum. Beyond this, the transmission region widens
and the filter FWHM increases resulting in a FOM fall.
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Cell 1 and Cell 3 are 75 and 5 mm natural abundance cylindrical Rb cells respec-

tively. Both are heated by the same solenoid, shown in a) of Fig. 3.8. The solenoid

also provides the required 10s-100s axial magnetic field. This arrangement is flawed

in that our temperature and magnetic field control are not independent. As such,

we heat the atoms to the required temperature (which is a slow process) and lower

the current to achieve the required magnetic field (which is fast). We must take

results immediately as the temperature falls by several degrees within a minute.

An improvement was made to this arrangement in the next investigation (See 4.3)

using flexible heaters. We would recommend these heaters be used if this experi-

ment is performed again. The solenoid design is based on [242] but has a different

number of coils and layers resulting in different current requirements. An example

solenoid magnetic field plot calculated using the python package magpylib [236]

is shown in Fig. 3.10. For light passing through the centre of the solenoid, the

magnetic field varies by ∼ 20 G across the 75 mm cell for a desired field value of

49 G. We note that the magnetic field required for Cell 3 is approximately 100 G

larger than that plotted in Fig. 3.10. Nevertheless, the field variation across 5 mm

is substantially smaller (∼ 5%).

Cells 2 and 4 are the same 5 mm cuboidal natural abundance Rb cell constructed

by Dr. Danielle Pizzey and Durham Chemistry Department (see Fig. 3.9). They

are placed inside a homemade copper heater with PTFE sheath which is heated by

3D printer cartridge heaters. The cell with copper heater is placed between two top

hat NdFeB magnets [243, 239]. Fig. 3.11 and 3.12 show the field variation along the

direction of the k-vector (z) and along the straight line connecting the centres of

the two magnets (x). The magnetic field varies by less than 5% and 1% across the

length of the cell and the width of the beam respectively. The cell length choices

made are a compromise between minimising collisional broadening which can be

achieved at lower temperatures (and hence we want longer cells to compensate

for the number of atoms with which we interact) and generating homogeneous

magnetic fields which is more challenging for longer cells [222].
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Figure 3.7: The experimental setup for the two cascaded filter experiments. 780 nm
light (Rb-D2) from an external cavity diode (ECD) laser is directed towards refer-
ence optics and the experiments. The reference optics includes an etalon setup for
relative frequency calibration and a zero field room temperature natural abundance
Rb setup for absolute frequency calibration [3] (See Appendix D for more details).
A neutral density (ND) filter is incorporated to reduce the power so as to remain
in the weak probe regime [169]. The red arrows and their associated hat operators
depict the polarisation state after each Glan-Taylor Polariser (GTP). Hat opera-
tors are also added to the blue magnetic field vectors for clarity in their direction.
See Appendix C for a rigorous definition of the axes used throughout. The first
experiment is a Faraday-Faraday filter composed of a Faraday cell between two
crossed GTP followed by a quarter wave plate and an additional Faraday cell.. As
such, the k-vector of the light is parallel with the magnetic fields of Cell 1, B1, and
Cell 2, B2. The quarter waveplate can be adjusted to transform the linear light
to left hand or right hand circular light by setting the fast axis at ±45◦ respec-
tively. The second experiment is a Faraday-Voigt filter which involves a Faraday
and Voigt cell between crossed polarisers. Light passes through the system with
k-vector parallel to the magnetic field, B3, and perpendicular to the magnetic field,
B4. M — Mirror, (P)BS — (Polarising) Beamsplitter, OI — Optical Isolator, P.D.
— Photodetector.
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a)

b)

Figure 3.8: a) A photo of the solenoid used to heat and provide axial magnetic
fields to Cells 1 and Cells 3. b) The annular NdFeB magnets used to apply a
transverse magnetic field to Cells 2 and 4.
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a) b)

c)

Figure 3.9: a) A photo of the photodetector used. Working in the weak probe
regime and needing a high signal-to-noise ratio, we set the photodetectors at the
maximum ‘70 dB’ amplification setting for all experiments. b) A photo of the 5 mm
cuboidal natural abundance Rb cell inside the copper heater. Not included in this
photo is the PTFE sheath that thermally insulates the copper vessel. c) A photo
of 3D printer cartridge heaters. We find they heat the copper block quickly and to
high temperatures and at time of writing cost less than £5.
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Figure 3.10: Plots of the solenoid magnetic field used to provide Cell 1 and Cell
3’s axial fields calculated using magpylib. Panel a) shows the magnetic vector field
diagram where z points in the direction of the k-vector. The purple and blue boxes
mark the extent of the 75 and 5 mm cells respectively. Panel b) shows the field
variation along z for x = 0. The purple and blue shading mark the extent of the
75 and 5 mm cells respectively. The model assumes the solenoid is broken into two
parts with 12 mm separation each containing 8 layers of 53 coils with wire thickness
0.8 mm. The length of each solenoid is 43 mm. The current is 0.6 A which was
used to obtain B1, the magnetic field for Cell 1. The current for Cell 3 is ∼ 2 A.
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Figure 3.11: Magnetic field profiles calculated using magpylib for two top hat Nd-
FeB magnets separated by 32.5 mm with remanence 1.42 T. b) defines the co-
ordinate axes. x points from one top hat to the other and z is parallel with the
k-vector. a) shows the field variation as the light moves in the z-direction through
the 5 mm cell. c) shows the field along the x-direction. The dashed line marks the
extent of the cell and the purple region is the width of the beam ( ≈ 100µm).
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Figure 3.12: Magnetic field vector diagram for two top hat NdFeB magnets seper-
ated by 32.5 mm with remanence 1.42 T. x points from one top hat to the other
and z is parallel with the k-vector. The blue box marks the extent of the 5 x 5 mm2

cuboidal cell. The field is perpendicular to the k-vector along the cell length.

3.4 Results

3.4.1 Faraday-Faraday Wing Filter

We first present results for the Faraday-Faraday wing filter shown in Fig. 3.13.

Five sets of data were taken in quick succession via an oscilloscope capture. These

datasets were fitted separately and fit parameters were obtained. We calculate

mean values and standard errors from the five sets of fits which are stated in the

table. Data show excellent agreement with theory [244]. The filter realised has a

ENBW, FWHM and FOM of 920 ± 10 MHz, 599 ± 1 MHz and 0.86 ± 0.01 GHz−1

respectively. In addition we show data to verify various stages of the filter. Fig.

3.14 shows the S′0 output after the first cell. Fig. 3.15 shows the transmission after

the second polariser. Fig. 3.16 shows the S′0 output of the second cell set at 45◦ to
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3.4.1. Faraday-Faraday Wing Filter

select the negatively detuned wing. By setting the quarter waveplate at this angle,

the light is transformed to be left hand circular. The light is then absorbed due to

σ+ transitions which are positively detuned.
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/4

Cell 1 Cell 2

B1 B2

T2 (°C) T2 (°C)

S

E

m
ax

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G)
75/75 85.6 ± 0.3 48.9 ± 0.5 110.1 ± 0.3 747 ± 7

Figure 3.13: Experiment (gold) with theory fit (purple) of the Faraday-Faraday
wing filter using natural abundance Rb cells probed on the Rb-D2 line. Mean
values and standard errors of the parameters obtained from fits of five spectra
are presented in the table. Residuals are shown to show goodness of fit of the
smaller features. Data and theory show excellent agreement [244]. An ENBW,
FWHM and FOM of 920 ± 10 MHz, 599 ± 10 MHz and 0.86 ± 0.01 GHz−1

were obtained for one fit. Standard errors for these values were calculated from
systematics. The quarter waveplate is set at 45◦ to input left hand circular light into
the second cell. This results in high suppression of features positively detuned from
centre and transmits the negatively detuned wing. The insets show the variation of
ENBW, FWHM and the transmission values of the selected (S) and extinguished
(E) peaks with second cell temperature. All other parameters are kept fixed. We
note that the temperature realised is close to an ENBW minimum. Additionally
the extinguished peak is almost maximally suppressed. A room temperature zero
field rubidium notch spectrum is shown in grey for reference.
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Cell 1

B1

Figure 3.14: Experiment (gold) with theory (purple) for the S′0 output after the
first cell of the wing filter.

Cell 1

B1

GTP

GTP ŷx̂

Figure 3.15: Experiment (gold) with theory fit (purple) of the S′0 output after the
second polariser of the wing filter. We can see that both wings are present with
additional sets of features closer to line centre.
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GTP
@45°
/4

B2ŷ

Figure 3.16: Experiment (gold) with theory fit (purple) of the S′0 output after
vertical light is input to the quarter waveplate set at 45◦ and passes through the
second cell.

3.4.1.1 Rotating the Quarter Waveplate

By rotating the quarter waveplate, we can select for the positively or negatively

detuned peaks or both. Figs. 3.17 and 3.18 have the quarter waveplate set at 0◦

where the light remains linear and equal parts σ+ and σ− transitions are induced.

From Figure 3.17, we see that in the central region, both transitions are induced

and there is no transmission. Outside of this region there are 50% pedestals where

only one of the σ transitions is induced. Since linear light can be decomposed into

equal parts left and right hand circular, this means 50% of the light is extinguished

and the other handed part is transmitted. Figs. 3.19 and 3.20 have the quarter

waveplate set at −45◦. In this case, the light is transformed to be right hand

circular resulting in σ− absorption. Therefore the negatively detuned region is

extinguished while the positively detuned region is transmitted.
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GTP
@ 0°

/4

B2ŷ

Figure 3.17: Experiment (gold) with theory fit (purple) of the S′0 output after
vertical light is input to the quarter waveplate set at 0◦ and passes through the
second cell. Note the pedestals at 50% transmission. This represents light in
a mainly dichroic region where the left or right hand circular component of the
linear light is extinguished leaving only the other hand.

Cell 1 Cell 2
@ 0° 

B1 B2

GTP

GTP

/4

ŷx̂

Figure 3.18: Theoretical S′0 output after vertical light is input to the quarter wave-
plate set at 0◦ and passes through the second cell. A separate smaller feature is
also selected which we could reject by changing the temperature and magnetic field
parameters of the second cell.
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@ -45°

GTP /4

B2ŷ

Figure 3.19: Experiment (gold) with theory fit (purple) of the S′0 output after
vertical light is input to the quarter waveplate set at −45◦ and passes through the
second cell.

Cell 1 Cell 2
@ ‐45° 

B1 B2
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/4

ŷx̂

Figure 3.20: Experiment (gold) with theory fit (purple) of the Faraday-Faraday
Wing filter with quarter waveplate set at −45◦ to select the positively detuned
wing.
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3.4.2. Faraday-Voigt Line Centre Filter

3.4.2 Faraday-Voigt Line Centre Filter

m
ax

T4 (°C) T4 (°C)

Cell 3 Cell 4

B1
B2 ŷx̂ x̂

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G)
75/5 100.29 ± 0.07 162.2 ± 0.3 120.79 ± 0.08 2527.6 ± 0.3

Figure 3.21: Experiment (gold) with theory fit (purple) of the Faraday-Voigt filter
using natural abundance Rb cells probed on the Rb-D2 line. Mean values and
standard errors of the parameters obtained from fits of five spectra are presented
in the table. Data and theory show excellent agreement [244]. Residuals are shown
to show goodness of fit of the smaller features. An ENBW, FWHM and FOM of
420 ± 1 MHz, 389 ± 1 MHz and 1.63 ± 0.01 GHz−1 respectively were obtained for
one fit with standard errors being calculated from systematics. The insets show the
variation of ENBW, FWHM and maximum transmission with temperature. We
note that FWHM and ENBW can be improved by increasing temperature but at
the detriment of maximum transmission. A room temperature zero field natural
abundance rubidium notch spectrum is shown in grey for reference.

We present results for the Faraday-Voigt line centre filter in Fig. 3.21. This was the

highest FOM passive filter recorded in the literature at time of publication and has
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3.5. Outlook

since been superseded by the filter presented in Fig. 4.11. Nevertheless, it remains

a competitive single peak filter given that the next biggest peaks have less than 2%

peak transmission. The second cell temperature has an approximate exponential

relationship with temperature with transmission falling drastically after 120◦ C.

This is similarly the case with the ENBW which we could minimise further at the

expense of peak transmission.

3.5 Outlook

In this chapter, we have studied the effect of cascading vapour cells on filter perfor-

mance. We considered two setups: the Faraday-Faraday setup adapted from [154]

and a Faraday-Voigt setup that had not previously been studied. Computer opti-

misations show that FOM is maximised when each cell has a different role; either

the cell is responsible for polarisation evolution (the ‘transformation’ cell) or for

suppressing unwanted light (the ‘extinguishing’ cell). The first Faraday cell in each

of the filters we realised is responsible for creating a highly transmitted filter peak

centred at the desired frequency. The geometry of the second cell is critical for de-

termining the relationship between polarisation and transitions induced and hence

the light that is extinguished. The Faraday wing selecting cell extinguishes light at

centre and at positively/negatively detuned values depending on the orientation of

the waveplate. The Voigt line centre selector extinguishes light everywhere except

at centre. We experimentally realised both filters and found excellent agreement

between data and theory. The Faraday-Voigt filter was the highest FOM pas-

sive filter at the time of publication. Qualitatively, the single peak lineshapes of

both filters would be highly desirable in laser frequency stabilisation applications

[125, 126, 127, 128] and quantum hybrid systems [176, 177, 178, 179].

This study shows that atomic media offer many filtering functions which are hard to

optimise simultaneously when one cell is required to fulfil all these roles. However,

we have not given a general treatise on cascaded setups or even a complete overview
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3.5. Outlook

of two-cell cascades. As evidence for this, we briefly introduce some prototype filters

involving two-cell cascades with quite different filter performance.

Firstly, the Faraday-Voigt setup could be cascaded with a Fabry-Pérot etalon to

form an ‘Atomic-Etalon’ filter. As discussed in Chapter 1, Fabry-Pérot etalons

can generate narrower filter peaks than magneto-optical filters but are susceptible

to frequency drift over time due to mechanical and thermal vibrations [120, 121,

122, 64]. Additionally etalon peaks occur periodically with spacing given by the

free spectral range, νFSR. This means etalons practically have an infinite ENBW

and FOM ≈ 0 when evaluated over all frequencies. Fig. 3.22 theoretically models

the output of an Atomic-Etalon filter which combines the benefits of both filter

types. The Faraday-Voigt setup with the same parameters as realised in 3.21 is

followed by a free space etalon. The etalon is composed of two curved confocal

mirrors with νFSR = 745 MHz, and finesse, F = 10 (These are the approximate

specifications used in Appendix D). This results in a filter with a single peak

FWHM ≈ 70 MHz with other peaks completely suppressed leading to favourable

ENBW and FOM. Additionally as shown in panel (c), the filter is calibrated to

reject frequency drifted signals. One can see visually that the filter peak shows

assymetry after significant frequency drift (the gold and black dashed lines). After

300 MHz drift the single peak is entirely suppressed. The system could even become

frequency stable if a computer was incorporated to evaluate the peak symmetry

live before microadjusting the cavity mirrors using stepper motors [245, 246]. We

envision metrological applications (see 4.5) as well as uses in absolute frequency

calibration.
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Figure 3.22: a) The experimental setup utilising the Faraday-Voigt filter with same
parameters as realised in Fig. 3.21 followed by a set of confocal mirrors. The
etalon has free spectral range = 745 MHz and finesse, F = 10. Panel b) shows the
etalon transmisson without the cascaded cells preceding it (blue), the cascaded filter
output without the etalon following it (red) and the resultant filter transmission
from the Atomic-Etalon filter (purple shading). c) shows the use of the Atomic-
Etalon as a frequency drift diagnostic tool. When the etalon shows frequency drift,
the resultant spectral profile is assymetric and reduced in transmission. After a
certain tolerance ∼ 300 MHz, the peak is completely suppresed.

Secondly, we consider a prototype ‘periodic’ filter modelled in Fig. 3.23. The first

cell is placed between two polarisers rotated at 45◦ and 135◦ respectively such
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that diagonal linear light at +45◦ is input and diagonal linear light at −45◦ is

selected by the crossed polariser. The light then enters a second cell in the Voigt

geometry before being selected by a right hand circular polariser composed of a

quarter waveplate and GTP. Our theory curves are calculated using two natural

abundance potassium cells on the D2 line. We choose potassium cells since the

equivalent realisation in Rubidium would require impractical magnetic fields and

number densities. For more information on the potassium hyperfine structure,

see [247].

The operation of the filter will not be considered in detail here but in short, both

cells are involved in polarisation transformation. This results in a very different

kind of filter profile which may be desirable for different applications. The first cell

transforms the light to realise a central peak (blue line in panel b)). The second cell

extinguishes light outside the central peak and somewhat inside the peak. Crucially,

the second cell also transforms the polarisation creating the ‘grooves’. Such a filter

not only selects for transmission in a small region but bins the signal into smaller

frequency intervals. While this may not be optimal if the user desired a smooth

peak feature, such a filter may be useful in applications where additional info about

the spectral data filtered is utilised, for instance, in quantum key distribution where

the filter could act as a cipher [237, 191].

The predicted parameters can be practically realised. 20 mm K cells (albeit iso-

topically pure) have been manufactured alongside 1 mm cells in other alkali met-

als [81, 1]. 4000 G in the Voigt geometry over 1 mm has been realised [220] and

fields slightly larger than 800 G have been realised for 20mm length scales in the

Faraday geometry [248]. Heating vapour cells over 200◦ C [208] has also been

achieved.
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Cell L (mm) Geometry Element D-line T (◦C) B (G)
K Cell 1 20 Faraday Nat. Abund. K D2 90 800
K Cell 2 1 Voigt Nat. Abund. K D2 200 4000

Figure 3.23: a) Experimental setup of the periodic filter. The first two GTPs are
rotated at 45◦ and 135◦ respectively. After passing through the second cell, light
passes through a quarter wave plate with fast axis at 90◦ before passing through an
unrotated GTP. Parameters are shown in the table. b) The filter profile showing
five grooves at centre (purple) along with the transmission after the second GTP
(blue).
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Chapter 4

A Study of Oblique Magnetic

Fields and Filter Performance

Author completed all theoretical computations, collected and processed all

data and created all figures presented in this chapter. Figures 4.9 and 4.19 were

created using code by Thomas Robertson-Brown. All text written without the

use of AI. Work is related to the article:

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes,

‘Exploiting non-orthogonal eigenmodes in a non-Hermitian optical system to

realize sub-100 MHz magneto-optical filters’, arXiv Preprint, 2303.00081, 2023.

https://doi.org/10.48550/arXiv.2303.00081 [5]

4.1 Background

In the previous chapter, we constructed magnetic fields in two specific geometries:

Faraday (parallel with the k-vector) and Voigt (perpendicular with the k-vector).

While these specific cases have been well studied, we believe there have only been

four filters realised with a field applied obliquely (neither parallel or perpendicu-

lar to the k-vector) [148, 207, 208, 64]. There are both theoretical and experi-

mental reasons for this gap in the literature. From a theoretical perspective, the
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4.1. Background

refractive index and eigenmode solutions have a more complex form. Analytic

[249, 250, 251, 252] and numerical solutions [156] have been presented. However,

disagreements with experiment, slow computation times, and difficulties interpret-

ing the solutions have inhibited further research (See Appendix B for more details).

Experimentally, it is challenging to design homogeneous oblique magnetic fields

within the volume of the beam. Permanent magnets have achieved less than 5%

inhomogeneity in 10s G [253] and less than 1% in 100s G [208, 64] for centime-

tre length scales. However, tuning the system to the correct field angle requires

rotating the magnets which can be awkward for low tolerance field parameters.

Additionally, for large enough angles, the magnets will block the path of the light.

Electromagnets can be tuned by altering the current but alone are not feasible

setups in oblique geometries; comparable homogeneity at 10s G has been attained

but with > 10◦ divergence in field orientation over the same length scales [254].

Notwithstanding these obstacles, in this chapter we are able to overcome some

of these issues and show improved performance of Rb filters with applied oblique

fields. These include a realisation of the best FOM passive filter and the narrowest

FWHM passive filter recorded to date. Beyond numerical comparisons, we incor-

porate cascading into our setups to suppress all but one peak as demonstrated in

the last chapter. We are also able to select which peaks to transmit without inter-

changing magnets or rebuilding the experiment by varying input polarisation and

the magnetic field vector

In this chapter, we begin by giving a theoretical background to magneto-optical

rotation in the oblique geometry. We compare the polarisation evolution of light

as it moves through the vapour cell in the Faraday, Voigt and oblique geometries.

We visualise these polarisation evolutions by plotting Stokes parameter ‘paths’ on

the Poincaré sphere [255, 256, 235, 257]. We discover that the oblique geometry

exhibits elliptical birefringence which most notably does not guarantee orthogonal
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propagation eigenmodes. We find that elliptical birefringence offers advantages

over the circular and linear birefringences associated with the Faraday and Voigt

geometries respectively and explain the origins of these benefits. We then describe

the setup for two experiments: an Oblique-Voigt filter composed of an oblique cell

and a Voigt cell and an Oblique Double Pass filter composed of one oblique cell

with light passed through twice. We introduce a tunable magnetic field configura-

tion composed of an axial field from an electromagnet (solenoid) and a transverse

field from two plate magnets. The resultant oblique magnetic field is verified using

the python package Magpylib [236]. This configuration allows us to alter the angle

of the resultant field by varying the contribution from the two magnetic sources.

As in the previous chapter, we discuss the roles of each cell in the cascade (or in

the case of the Double Pass filter, each pass).

We present fitted data for the two filters showing excellent agreement. For the

Double Pass filter, we show a different parameter set which switches the operation

of the filter from line centre to both wings. We also predict input polarisations to

select for either wing. In our outlook, we reflect on the competitive performance of

these filters alongside their compactness and tunability. We ponder emerging ap-

plications in designing frequency comb mode selectors for use outside a laboratory

[130, 258, 259].

4.2 Theory

4.2.1 Revisiting Stokes Parameters and the Poincaré Sphere

When studying cascading, we used Stokes parameters [233, 234] to describe the out-

put polarisation of light after each optical component in our setup. When plotted

as a function of detuning, we were able to gain insight into why certain frequen-

cies were rejected, transmitted or partially transmitted in our filters. We could

then tailor our filter to output desired polarisation states by choosing appropriate
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4.2.2. Circular, Linear and Elliptical Birefringence

geometries and parameters. However, this formalism treats the continuous polar-

isation change that occurs as light moves through the vapour as a black box. To

gain insight into polarisation evolution, we can plot Stokes parameters (defined in

2.5.2) against distance propagated through the cell.

ElecSus can calculate the intermediate evolution of the electric field as it moves

through the cell. By assuming the cell parameters are constant throughout, re-

fractive indices are found. Then ElecSus can calculate the effect of these refractive

indices on light travelling progressive distances through the cell. Additionally, we

make use of the Poincaré Sphere as a visualisation tool. Whilst in the last chap-

ter, we plotted 2D diagrams of each Stokes parameter, the Poincaré diagram is a

3D diagram where a single point is plotted as a function of all three Stokes pa-

rameters. Assuming that the Stokes parameters are continuous functions of the

distance propagated, we can then plot paths on the Poincaré Sphere and iden-

tify patterns. Note that the Poincaré sphere representation has analogies with

the Bloch [260, 261], Riemann [262, 263], Majorana [264, 265] and the Coherence

Poincaré sphere [266, 267] in other disciplines. However, each representation is

slightly different and therefore care is needed when drawing parallels.

4.2.2 Circular, Linear and Elliptical Birefringence

In Fig. 4.1, we demonstrate the Poincaré Sphere representation for a Faraday and

Voigt cell. We plot frequencies with near 100% filter transmission for the setups

shown in a) and b). We note that the Faraday cell shows polarisation evolution on

the equator while the Voigt cell evolves through the prime meridian. In words, the

linearly horizontal input light (↔) is rotated in a plane transforming to diagonal

light at −45◦ (↖↘), vertically linear light (↕), the opposite diagonal (↗↙) before

becoming horizontal once again restarting the cycle. On the other hand in the

Voigt cell, the left hand circular light (⟲) cycles in handedness through diagonal

at −45◦ (↖↘), right hand circular light (⟳), the opposite diagonal (↖↘) and back to

left hand circular light.
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Faraday 0 D2 63 160 Lin. Hor. ↔

Voigt 90 D1 100 3500 L.H. Circ. ⟲

Figure 4.1: Faraday and Voigt polarisation evolutions on the Poincaré Sphere. a)
and b) show the experimental setups to produce the filter profiles in c) and d) after
75 mm in natural abundance Rb cells. Parameters are in the table. Polarisation
animations of the frequency dependent output polarisations are shown. e) shows
curves on the Poincaré sphere for the dashed line frequencies in c) and d) as their
polarisation evolves through the cell. ‘x’ marks the polarisation state after 75 mm
propagation. f) and g) are projections on to the S′3 and S′1 planes.

78



4.2.2. Circular, Linear and Elliptical Birefringence

As a reminder, thermal vapours in the presence of a magnetic field are dichroic (ex-

hibit polarisation dependent absorption) [72] and birefringent (exhibit polarisation

dependent refraction) [268]. In these examples, the attenuation is minimal so we

can explain these paths solely in terms of birefringence. In the Faraday geometry,

the invariant polarisations are left/right hand circular light (See A.2). From 2, this

implies circular light does not evolve through new polarisation states as it moves

through the cell but remains circular. Additionally, this means that circular light

is differentially refracted, which we call circular birefringence. With these facts, we

can justify the equatorial path of Faraday rotation. Linearly horizontal light, |↔⟩,

can be decomposed into the form (See A.2),

|↔⟩ = 1√
2

(|⟲⟩ + |⟳⟩), (4.1)

where |⟲⟩/|⟳⟩ are the left/right circular components of |↔⟩. After moving through

some length of the material, the left/right handed components do not evolve. How-

ever, the refractive phases γ and ζ are applied to the components1,

|Lin.⟩ = 1√
2

(|⟲⟩ + ei(ζ−γ)|⟳⟩), (4.2)

,

resulting in a new linear polarisation, |Lin.⟩, which is diagonal at ζ − γ = ±π/2,

vertical at ζ−γ = π and horizontal again at ζ−γ = 2π. Since the refractive indices

are continually applied, ζ−γ continually increases as the light moves through more

vapour resulting in a polarisation cycle. Note that the output polarisation must be

linear since it is a combination of equal magnitudes left hand circular (S̃3 = −1)

and right hand circular (S̃3 = 1) light. Hence we observe a polarisation cycle on

the S′1 − S′2 (equatorial) plane where S′3 is always zero.
1Throughout this discussion we drop all global phases that do not have an impact on polari-

sation state

79
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In the Voigt case, the invariant polarisations are linearly horizontal and vertical

light (see A.2). Analogously, this implies horizontal/vertical light does not evolve

through new polarisation states as it moves through the cell. This means linearly

horizontal and vertical light are differentially refracted which we call linear bire-

fringence. A left hand circular state, |⟲⟩, can be written as (see A.2),

|⟲⟩ = 1√
2

(|↔⟩ + ei π
2 |↕⟩), (4.3)

where | ↔⟩/| ↕⟩ are the linearly horizontal and vertical components of |⟲⟩. After

moving through some length of the vapour, the phases γ and ζ are applied,

|Pol.⟩ = 1√
2

(|↔⟩ + ei π
2 (ζ−γ)|↕⟩), (4.4)

resulting in a new polarisation, |Pol.⟩, which is linear diagonal at ζ − γ = ±π/2

and right hand circular at ζ − γ = π. The S1 component is preserved since it is a

combination of equal parts horizontal (S̃1 = 1) and vertical (S̃1 = −1) light. Hence

we observe a polarisation cycle on the S′2 − S′3 plane where S′1 is always zero.
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Figure 4.2: Caption Overleaf81



4.2.2. Circular, Linear and Elliptical Birefringence

Figure 4.2: A comparison of light rejection outside the dominantly birefringent
region in different geometries. a), b) and c) show filter profiles in the Faraday,
Voigt and oblique geometries respectively using 75 mm natural abundance Rb cells.
Parameters shown in the table. S′0 is also plotted in blue. Animations of the output
polarisations for three frequencies indicated by a dotted vertical line are shown. The
signal frequency (purple) is the maximum transmitted frequency. The gold and red
frequencies are outside the dominantly birefringent region (an exception is made
for the Voigt red frequency where it is close to the boundary of the birefringent
region). The Faraday and oblique filters are on the D2 line for direct comparison.
The D1 line is chosen for the Voigt filter since natural abundance Rb-D2 Voigt
filters with a central peak profile are not competitive in their performance. d), e),
f) show the polarisation evolution of the three frequencies on the Poincaré sphere.
The input polarisation state propagates to a new polarisation state after 75 mm
marked by ‘x’. g), h) and i) are 2D projections of the same paths. The oblique
filter rejects light outside the dominantly birefringent region at > 90% while other
geometries reject at ∼ 50%.

In Fig. 4.2, we have three filter profiles incorporating a Faraday, Voigt and oblique

cell (θ = 86◦). For each filter, we plot S′i curves for three frequencies on the

Poincaré sphere as a function of distance propagated through the cell. In this case,

the signal frequencies (in purple on each filter profile) are transmitted at less than

100 % and therefore the curves do not remain on the surface of the Poincaré sphere.

We choose θ = 86◦ for the oblique filter since it gives a desirable line centre profile

with high FOM.

By eye, the oblique signal frequency appears to take a similar path to the Faraday

signal frequency. However, the oblique signal is absorbed more and is not quite

vertical in its output leading to lower maximum transmission. In fact the oblique

rotation at this frequency approximates to circular birefringence (See Fig. 4.3).

A complete picture of the oblique magneto-optical rotation at θ = 86◦ can be

found by addressing other frequencies. The red and gold frequencies represent

detunings outside the region where differential refraction occurs i.e the birefringent

region. From 2, these frequencies lie in a region where only the dichroic features

of the thermal vapour are exhibited and either one of the invariant polarisations is

absorbed.
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4.2.2. Circular, Linear and Elliptical Birefringence

In the Faraday/Voigt cases, either one of the circular/linear invariant polarisations

is absorbed. In Fig. 4.2, this is most clear in the Faraday case where absorption of

one circular hand leaves left hand circular light (gold) and right hand circular light

(red). In the Voigt example, vertical light is absorbed for both the red and gold

frequencies leaving horizontal light. This is since the vertical transmission region

is completely enclosed in the horizontal transmission region (see Fig. 4.5). In the

oblique case, horizontal input light is absorbed leaving horizontal elliptical states.

Unlike at the signal frequency, this is clearly not circular birefringence but evidence

of elliptical dichroism. In fact, the oblique geometry in general exhibits elliptical

birefringence and dichroism which is frequency dependent.

It is with this knowledge that we see the first advantage of this oblique filter over the

Faraday and Voigt cases. An ideal line centre filter would reject all light outside of a

selected peak i.e. high rejection of light outside the dominantly birefringent region.

This would require the output polarisations at the signal and at the red and gold

frequencies to be orthogonal allowing a polariser to discriminate between them. In

the Faraday and Voigt cases, the red and gold frequencies are not orthogonal to

the purple signal frequency. Given that the signal frequencies can be decomposed

into approximately equal contributions of both invariant polarisations, the red and

gold frequencies are only rejected by the crossed polariser at ∼ 50%.

However, in the oblique filter, the invariant polarisations are frequency dependent.

Therefore it is possible for the output polarisations of the signal and red and gold

frequencies to be almost orthogonal. As a result, in this example more than 90% of

the light at the red and gold frequencies is rejected after passing through the crossed

polariser. This results in filters with much smaller ENBWs without significant

detriment to the signal frequency transmission.
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4.2.3 Non-Orthogonal Eigenmodes & Invariant Polarisations

z

Imaginary

Eigenvectors:

Invariant Polarizations:

Real

b)

a)

Figure 4.3: a) An oblique filter profile (Parameters shown in Fig.4.2) with anima-
tions of the frequency dependent eigenmodes and invariant polarisations for five
selected frequencies above. The signal frequency eigenmodes (purple) are approxi-
mately circular. Eigenmodes are calculated using analytic solutions [252]. b) Plots
of the real and imaginary parts of the normalised dot product of the eigenmodes
a⃗ and b⃗: Σia⃗

∗
i ·⃗bi

|⃗a||⃗b|
. Here a⃗ ∗ denotes the complex conjugate of a⃗. Note that nei-

ther part is ever zero confirming the eigenmodes are non-orthogonal. The value of
the dot product changes with frequency confirming the eigenmodes are frequency
dependent and non-orthogonal.
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Figure 4.4: S̃i plotted for the purple frequency in Fig. 4.3 for an eigenmode and
invariant polarisation input. The invariant polarisation as expected has constant
S̃i since its polarisation does not evolve. However,the S̃i for the eigenmode are not
constant proving the eigenmode is not invariant.

In the last subsection, we saw initial evidence for frequency dependent eigenmodes

and invariant polarisations in the oblique geometry. Fig. 4.3 shows the oblique

filter with animations of the eigenmodes shown for five frequencies. Below panel b)

shows the normalised dot product of the eigenmodes which varies with frequency.

However, it also reveals another property of the eigenmodes: given the normalised

dot product is never zero, the oblique eigenmodes are non-orthogonal.

To take a step backwards, Faraday and Voigt eigenmodes are orthogonal. In Chap-

ter 2, we discussed the difference in roles between the eigenmodes and invariant

polarisations; one forms the rotation matrix used in Jones Calculus propagation

and the other is a polarisation that undergoes no evolution as it moves through

the cell. Up until now, this distinction has appeared overly fastidious since in the

Faraday and Voigt geometry, the eigenmodes and invariant polarisations are one
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4.2.4. Birefringent Regions

and the same. In general, the invariant polarisation is orthogonal to an eigenmode.

If the eigenmodes are already orthogonal then, given polarisation is defined in 2D,

the invariant polarisations are just the eigenmodes. However, given the oblique

eigenmodes are non-orthogonal, they are not the same state as the oblique invari-

ant polarisations (More details can be found in A.2). In fact, as Fig. 4.4 shows, an

eigenmode will not in general undergo invariant polarisation. We therefore need to

be careful to use the right vector in the right context.

4.2.4 Birefringent Regions

With a better understanding of invariant polarisations, we can now calculate the

dominantly birefringent regions for the Faraday, Voigt and oblique filters explictly.

Fig. 4.5 shows the filter profiles alongside the transmission regions for each in-

variant polarisation in red and yellow. The dominantly birefringent region, where

differential refraction can occur between the invariant polarisations, stretches only

slightly beyond the orange overlap of the red and yellow profiles. As such the

orange overlap provides a good estimate of the frequency range over which bire-

fringence dominates. To calculate the invariant polarisations in the oblique case,

we use ElecSus [155, 156] to output the eigenmodes for each frequency. We then

find the two unique normalised vectors orthogonal to the eigenmodes lying in the

x − y plane in which the light is polarised. A table of the invariant polarisations

used to create each region is found in Fig. 4.6.
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Geometry θ(◦) D-line T (◦C) B (G) Inp. Pol. Birefringent Region FWHM (MHz) Filter FWHM (MHz)
Faraday 0 D2 63 160 Lin. Hor.↔ 850 790

Voigt 90 D1 107 514 L.H. Circ. ⟲ 320 310
Oblique 86 D2 97 227 Lin Hor.↔ 200 150

Figure 4.5: a), b), c) depict the overlap between the S′0 regions (yellow and red) after inputting invariant polarisations, Pi (see Fig. 4.6).
The orange overlaps provide a good estimate of the extent of the birefringent regions. S′0 for the input polarisation in blue. Parameters
in table, 75 mm natural abundance Rb cells used. d), e), f) show the S̃1 (black) and S̃3 (gold) curves with animations of the output
polarisations for the three chosen frequencies in Fig. 4.2. The narrower oblique birefrigent region poses an upper limit on the FWHM.87



4.2.4. Birefringent Regions

We note that, as expected, the main peaks of each filter lie broadly within the

birefringent region. An exception is the Voigt filter whose peak on the negatively

detuned side has significant dichroic contribution. The oblique filter shows a much

narrower birefringent region which results in the narrowest FWHM.

Transmission Region Invariant Pol. Transitions Ind.
P1 (Faraday) L.H.C ⟲ σ+

P2 (Faraday) R.H.C. ⟳ σ−

P3 (Voigt) Lin. Hor. ↔ π
P4 (Voigt) Ver. Hor. ↕ σ−/σ+

P5 (Oblique) Freq. Dep. σ−/σ+/π
P6 (Oblique) Freq. Dep σ−/σ+/π

Figure 4.6: A table of the invariant polarisation transmission regions plotted in
Fig. 4.5. We note the polarisation state associated with the transmission region
as well as the transitions induced by the polarisation state. The oblique invariant
polarisations unlike the Faraday and Voigt cases are frequency dependent and may
induce at least two of the three σ+/σ−/π transitions.

This relationship between polarisation and transitions induced can be gained from

the angular part of the dipole transition matrix which we discuss in Appendix C.

We quote the oblique projection operators for our discussion which are:

σ+ : x̂ cos θ + iŷ√
cos2 θ + 1

,

σ− : x̂ cos θ − iŷ√
cos2 θ + 1

,

π : x̂.

(4.5)

i.e. left and right elliptical polarisations induce σ+/− transitions and linearly hori-

zontal light induces π transitions. Note that it is imposible for any input polarisa-

tion to induce just one of these transitions and must induce at least two (provided

the linestrengths for the two transitions are non-zero). Therefore the oblique bire-

frigent region has even stricter criteria then the Faraday and Voigt equivalents.

The region represents the overlap between a region where at least two transitions

are not induced (maybe three), and another region where at least two transitions

(maybe three) are not induced.
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4.2.5 Summary of Oblique Filter Advantages

To summarise, oblique filters (tuned with appropriate parameters) offer two advan-

tages. Firstly, oblique filters reject light outside the dominantly birefringent region

much more effectively. Given that the invariant polarisations are frequency depen-

dent, the output polarisations at the signal frequency and outside the dominantly

birefringent region are almost orthogonal. This allows for much larger discrep-

ancy between the frequencies in transmission by a polariser and results in smaller

ENBWs.

Secondly, the oblique birefringent regions can be narrower. This is because the

overlap in the invariant polarisation transmission regions is smaller. This is since

all three σ+/−, π transitions can be induced by both the non-orthogonal invariant

polarisations which leads to narrower birefringent regions and narrower FWHMs.

Together, smaller ENBWs, narrower FWHMs, all without too much detriment to

the signal transmission frequency lead to better performing line centre filters.

4.3 Setup

Having shown two advantages of the oblique filter over the Faraday and Voigt cases,

we propose two filter designs: an Oblique-Voigt filter and an Oblique Double Pass

filter which are both shown in Fig. 4.7.

We use the same Toptica DL100 laser [240] as used in the previous chapter’s inves-

tigation scanning over an approximate range of 20 GHz. We send part of the light

towards reference optics (See Appendix D for more details) and the rest to our two

filter designs. A neutral density filter lowers the power to approximately 100 nW

with a 1/e2 width of 100 µm before each experiment. This ensures we stay within

the weak probe regime [169] which can be readily modelled using ElecSus. We use

Thorlabs PDA36A2 amplifying photodetectors [241] setting the gain at the highest

setting available ‘70 dB’. We did not verify the actual gain achieved.
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4.3. Setup

Cell 1 and Cell 3 are the same 75 mm natural abundance Rb cell which is heated via

two Omega Polyimide flexible heaters [269] glued down the length of the cell. The

cell is then placed inside a solenoid which provides on the order of 10 G of axial field

to the cell. The cell and solenoid are placed between two plate cuboidal magnets

of dimensions 150 × 50 × 10 mm which provide a transverse field of 100s G. This

gives a resultant field which makes an angle θ with the k-vector. Fig. 4.9 shows a

magnetic field plot of the field along the propagation direction simulated using the

python package magpylib [236]. The magnetic field strength variation is less than

10% of the mean value and the value of θ varies by less than 2◦ over the length of the

cell. This setup is an improvement on the previous chapter’s investigation where

the solenoid contributed both to the heating and magnetic field. In this experiment,

since the solenoid field needed is so low, the heating it offers is minimal compared

to that provided by the flexible heaters. In practical terms we have independent

heating and magnetic field variation within the parameter space of interest.

In the Oblique-Voigt filter, the oblique cell and the Voigt cell are placed between

two crossed polarisers with linearly horizontal light emerging after the first polariser

and linearly vertical light emerging after the second. The Voigt cell is the same as

that in the Faraday-Voigt setup: a cuboidal 5 mm natural abundance Rb cell placed

in a copper heater between two top hat NdFeB magnets [243]. More details can be

found in the previous chapter. The cell choices made are a compromise between

minimising collisional broadening which can be achieved at lower temperatures

(and hence we want longer cells to compensate for the number of atoms with which

we interact) and generating homogeneous magnetic fields which is more challenging

for longer cells [222].
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Figure 4.7: The experimental setup for the two oblique filter experiments. 780 nm
light (Rb-D2) from an external cavity diode (ECD) laser is directed towards ref-
erence optics and the experiments. The reference optics includes an etalon setup
for relative frequency calibration and a zero field room temperature natural abun-
dance Rb setup for absolute frequency calibration [3] (See Appendix D for more
details). A neutral density (ND) filter is incorporated to reduce the power so as
to remain in the weak probe regime. The red arrows and their associated hat
operators depict the polarisation state after each Glan-Taylor Polariser (GTP).
Hat operators are also added to the blue magnetic field vectors for clarity in their
direction. See Appendix C for a rigorous definition of the axes used throughout.
The first experiment is an Oblique-Voigt filter composed of an oblique cell followed
by a Voigt cell between two crossed Glan-Taylor polarisers. The k-vector of the
light makes an angle θ with the the magnetic field exerted on Cell 1, B1, and is
perpendicular to the magnetic field exerted on Cell 2, B2,. The second experiment
is a Double Pass filter which involves one oblique cell between crossed polarisers.
Light passes through the system with k-vector at an angle α to the magnetic field,
B3, before being reflected back through the system and making the supplementary
angle, α∗ = (180 − α)◦, with the same magnetic field, B3. M – Mirror, (P)BS –
(Polarising) Beamsplitter, OI – Optical Isolator, P.D. – Photodetector.
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4.3. Setup

a) b)

c)

Figure 4.8: Photos from the Lab. a) One of the 150 x 50 x 10 mm cuboidal
magnets. The exact material and remanence field of the magnet is estimated to
be 1350 G. It has also been used in this investigation [270]. b) A 75 mm natural
abundance vapour cell (which we use as Cell 1 and 3) with flexible heaters adhered
along the sides. c) The setup to generate the field and temperature needed for Cell
1 and 3. The cell from panel b) is heated by adjusting the current flowing to the
flexible heaters. The transverse magnetic field is generated by two magnets of the
type pictured in panel a). The axial field is generated by a solenoid. Note that the
required current to generate the solenoid field is low and contributes very little to
heating.
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Figure 4.9: Theory plots showing the variation of the resultant magnetic field
exerted upon Cell 1 and Cell 3. The vertical lines indicate the extent of the 75 mm
cell. a) shows the variation of θ or α depending on whether we are considering
Cell 1 or Cell 3. b) shows the variation of B1 or B3. The intercept of the green
line on each graph is the mean value of the variable averaged over the length of
the cell. Modelling was generated using magpylib from code developed by Thomas
Robertson-Brown. It assumes the plate magnets have a remanence field of 1350 G
seperated by 175 mm. The solenoid is broken into two parts with 12 mm separation
each containing 8 layers of 53 coils with wire thickness 0.8 mm. The length of each
solenoid is 43 mm. The current is 0.14 A.
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a)

b)

Figure 4.10: Theory curves plotted using ElecSus of the two filter experiments
with setups described in Fig. 4.7 and similar parameters as noted in Figs. 4.11
and 4.16. a) depicts the filter transmission (purple shading) of the Oblique-Voigt
filter alongside the filter transmission if the Voigt cell (Cell 2) is removed (purple
line). S′0 of the Voigt cell is shown shaded in gold. b) shows the filter transmission
for the Double Pass filter (purple shading). Note that the first pass of the Double
Pass filter is the purple line of panel a). A high temperature zero field natural
abundance Rb cell is plotted (grey dotted line) to give a sense of the detuning
range.

Analogous to the Faraday-Voigt filter, the role of the oblique cell is to transform the

polarisation state of the light to form the filter peaks while the Voigt cell’s role is

to extinguish. Linearly horizontal light is input into the oblique cell and the light is

rotated to be approximately vertical at the central peak but is output as elliptical

at the three other peaks. The Voigt cell absorbs vertically linear input light in

the wings beyond ∼ ±2 GHz (see Fig. 4.10) since the vertically polarised light is

an invariant polarisation associated with σ+/− transitions. The high temperature

and magnetic field leads to high absorption and this absorption is positively and

negatively detuned from centre due to Zeeman shifts of the transition frequencies.

In addition, the Voigt cell also highly absorbs invariant horizontal light associated
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with π transitions between ∼ –5 and 6 GHz (See Fig. 4.12). As such everything

between –5 and 2 GHz and, 2 and 6 GHz, where the other three peaks lie, is highly

absorbed.

We note that the Voigt cell has a higher magnetic field than in the Faraday-Voigt

filter leading to a much larger central window. As such the Voigt cell does not select

for a narrower peak from the first cell’s transmitted peak like in the Faraday-Voigt

filter. It was found through optimisation that a window that was narrower than

the oblique FWHM would result in significant transmission reduction. This is the

first Oblique-Voigt filter recorded in the literature.

The Double Pass filter consists of only the oblique cell between two crossed polariz-

ers. Horizontally linear light is input, passes through the vapour making an angle α

with the magnetic field. Rotated vertically linear light is selected by the crossed po-

lariser. The light is then reflected back as vertically polarised light, passes through

the vapour making an angle α∗ = (180 − α)◦ with the magnetic field before being

post-selected as horizontally polarised light. Both passes individually would give

identical filter transmissions. This is due to the fact that any filter composed of a

cell between two crossed polarisers has equivalent output if the crossed polarisers

switched positions. In addition, the two different angles of the passes amount to

a change in handed convention which results in no change to linear polarisations.

(See Appendix A.5). This means the second pass has an intensity squared effect

reducing the transmission of each peak by its transmission value squared after the

first pass. This is advantageous in our case since the three unwanted peaks have

10% or less transmission after the first pass, resulting in less than 1% transmission

after the second pass. On the other hand, the central peak at 40% transmission

after the first pass is transmitted at 20% after the second pass. Panel b) of Fig.

4.10 gives the filter output of the Double Pass filter. While Double Pass filters have

been realised before [271, 272, 123, 273], this is the first Oblique Double Pass filter

recorded in the literature.
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4.4 Results

4.4.1 Oblique-Voigt filter

We first present results for the Oblique-Voigt filter. Fig. 4.11 shows the output

of the Oblique Voigt-filter. Mean values of parameters obtained from five fits are

shown in the table. Data show excellent agreement with theory [244]. The filter

realised has a ENBW, FWHM and FOM of 181 ± 1 MHz, 145 ± 1 MHz and 2.38

± 0.01 GHz−1. This is the highest FOM passive filter recorded in the literature

as of time of writing. The two peaks either side of the main peak are somewhat

detrimental to the profile shape but are both less than 10% transmission. As

discussed in Fig. 4.2, these small side peaks are the result of light being rejected

outside the birefrigent region at more than 90%. The residuals show some structure

which we attribute to magnetic field inhomogeneity. In particular, the theory curves

in panel b) of Fig. 4.13 show the extreme sensitivity of the filter profile to θ with

no profile at all at θ = 90◦, an increase of less than 4◦ to the mean fit θ value.

Given we found that θ can vary by as much as 2◦ in Fig. 4.9, this will have an

effect on our fits. On the other hand, variation of magnetic field and temperature,

as seen in panels a) and c), gives a similar profile with higher/lower transmission

with wider/narrower FWHMs.
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Cell 1 Cell 2

B1 B2
GTPGTP

θ

L1/L2 (mm) T1 (◦C) B1 (G) θ (◦) T2 (◦C) B2 (G)
75/5 96.8 ± 0.1 226.8 ± 0.7 86.3 ± 0.3 123.6 ± 0.2 3897 ± 3

Figure 4.11: Experiment (gold) with theory fit (purple) of the Oblique-Voigt filter
using natural abundance Rb cells probed on the Rb-D2 line. Mean values and
standard errors of the parameters obtained from fits of five spectra are presented
in the table. Data and theory show excellent agreement [244]. An ENBW, FWHM
and FOM of 181 ± 1 MHz, 145 ± 1 MHz and 2.38 ± 0.01 GHz−1 were obtained for
one fit with standard errors being calculated from systematics.

In order to decrease uncertainty in the second cell parameter fits, we decided to fit

a S′0 data curve for light passing through the second cell input linearly horizontal.

Fig. 4.12 shows a fit. We plot heatmaps for the first and second cell parameter

spaces (Fig. 4.14 and 4.15) which show the mean parameters obtained are near

optimum, at least locally, in parameter space. Theory predicts FOMs of up to

2.7 GHz−1 for θ values closer to 87◦.
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4.4.1. Oblique-Voigt filter

S'
0

Figure 4.12: A S′0 fit (purple) of data (gold) when linearly horizontal light was
input into Cell 2. Fits of five spectra give the mean values and standard errors for
Cell 2 parameters presented in Fig. 4.11. The fit is calculated over a smaller range
of the spectrum as indicated by the beige area in the theory inset. Our 20 GHz
scanning range is not able to capture the full spectrum. For normalisation we need
to reduce the area of interest further so that the extremes of the spectrum return
to approximately 100% transmission (See D).
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4.4.1. Oblique-Voigt filter

B1 = 237 G

B1 = 217 G

B1 = 247 G

B1 = 227 G

a)

θ = 90°
θ = 89°

θ = 86°

θ = 87°b)

T1 = 97°C

T1 = 99°C

T1 = 101°C

T1 = 95°Cc)

Figure 4.13: Theory curves showing the dependence of the Oblique-Voigt filter
profile on a) B1, b) θ and c) T1. All other parameters are kept constant and are
listed in Fig. 4.11. Note that in panel b) setting θ = 90◦ gives no filter transmission
since the geometry is now Voigt and linear horizontal input light is an invariant
polarisation.
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Figure 4.14: Heatmaps showing Figure of Merit values for the Oblique-Voigt filter
varying B1 against T1 and B1 against θ. All other parameters remain constant and
are those listed in Fig. 4.11. The quoted standard errors in the table are plotted as
error bars. Only the error on θ is large enough to be visible. The filter realised is
at near optimum performance with respect to these parameters although θ, being
so sensitive, could be enlarged to ∼ 87◦. We note the catastrophic drop off of
FOM at θ = 90◦. The cell at 90◦ is in the Voigt geometry where the input linearly
horizontal light is not transformed as it is an invariant polarisation.
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Figure 4.15: Heatmaps showing Figure of Merit values for the Oblique-Voigt filter
varying B2 against T2 and B2 against φ, the angle the magnetic field makes with
the k-vector as it passes through the second cell. All other parameters remain
constant and are those listed in Fig. 4.11. The quoted standard errors in the table
are too small to be seen on the plot. The second cell parameters are much less
sensitive than the first cell parameters owing to having a much simpler function.
We need only a high temperature and magnetic field for large absorption. We also
need the magnetic field to be tuned somewhat to give the correct Zeeman shifts.
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4.4.2. Double Pass Filter

4.4.2 Double Pass Filter

We present fitted data for the Double Pass filter in Fig. 4.16. The data show excel-

lent agreement everywhere [244] apart from a shoulder. The ENBW, FWHM and

FOM obtained from one fit are 140 ± 1 MHz, 93 ± 1 MHz and 1.20 ± 0.01 GHz−1

However, the FWHM increases to approximately 100 MHz given the shoulder.

Nonetheless, this is the narrowest FWHM passive filter recorded to date and demon-

strates that doppler broadened vapours could be manipulated to produce sub-100

MHz single peak filters.

We note a slightly lower maximum transmission than theoretically predicted. As

explained in D, we normalise transmission against the 100% transmission line of an

Ix curve taken using the same setup. This can be achieved by rotating the second

polariser so that the two polarisers are no longer crossed.1 Therefore, we do not

take losses at each optical component into account. As a result, we believe the loss

of transmission is due to lack of polarisation preservation which probably occurs

as the light is reflected back by the mirrors for the second pass.

It is unclear the cause of the shoulder particularly since the Double Pass filter

relies on an intensity squared effect of the Oblique Voigt profile which is largely

symmetric. We therefore believe that the Oblique-Voigt filter is proof that a filter

profile without a shoulder could have been realised with more time. The two sets of

data where taken months apart and the setup was taken apart and rebuilt within

that time period. We believe that magnetic field inhomogeneity, especially of angle,

played a significant role. The cuboidal magnets providing the transverse field are

much more suited for 50 mm cells leading to inhomogeneity at the edges of the

cell. In short, more work is needed to theoretically analyse and design more robust

magnetic fields for vapour cell designs. This is particularly true where the magnetic

field requirements have stricter tolerances, for example in vapour magnetometry

schemes [274, 275, 276, 225, 277].
1It should be noted that other methods including intensity stabilisation [22] alongside taking

other intensity measurements would give a much more reliable measure of 100% transmission.
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4.4.2. Double Pass Filter

B3

GTP M

M

GTP

α
α*

Cell 3

L3 (mm) T3 (◦C) B3 (G) α (◦)
75 99.4 ± 0.4 226.3 ± 1.2 87.4 ± 0.3

Figure 4.16: Experiment (gold) with theory fit (purple) of the Double Pass filter
using natural abundance Rb cells probed on the Rb-D2 line. Mean parameters
and standard errors obtained from from fits of five spectra are shown in the table.
Data and theory show excellent agreement [244] apart from a shoulder. An ENBW,
FWHM and FOM of 140 ± 1 MHz, 93 ± 1 MHz and 1.20 ± 0.01 GHz were
obtained for one fit with standard errors being calculated from systematics. The
actual FWHM of the data with the shoulder is 102 MHz.

We plot heatmaps for the cell parameters in Fig. 4.17 and show we are some-

what near local optimum parameters. It is informative to compare these with the

heatmaps of the first cell parameters of the Oblique Voigt filter in Fig. 4.14 which

show similar shape but are less sensitive. FOMs up to 2 GHz−1 are achievable for

a slightly lower temperature and field.
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Figure 4.17: Heatmaps showing Figure of Merit values for the Double Pass filter
varying B3 against T3 and B3 against α. All other parameters remain constant and
are those listed in Fig. 4.16. The quoted standard errors in the table are plotted
as error bars. Only the error on θ is large enough to be visible. Note that the
location of the mean parameters on the heatmaps has a FOM much higher than
that recorded for one fit in the table. However note that the mean parameters are
only statistical values and are not realised simultaneously in one set of data.

4.4.2.1 Reconfigurability

An additional property of the Double Pass filter is that it can be tuned to select

for the wings rather than line centre without rebuilding the experiment (as was

required in the investigation in Chapter 3). Fig. 4.18 shows data for a Double Pass

filter in both wing operation which show excellent agreement with theory [244].

Parameters are shown in the table and were realised practically by decreasing the

separation of the cuboidal magnets by ∼ 2 cm and increasing the current through

the solenoid. The change to the resultant magnetic field is shown in the plots in

Fig. 4.19 with α decreasing to 69◦. It is also possible to select for one wing either

positively or negatively detuned from line centre by inputting elliptical light into

the system as shown theoretically in 4.18.
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4.4.2.1. Reconfigurability

L (mm) T (◦C) B (G) α (◦)
75 92 310 69

L (mm) T (◦C) B (G) α (◦)
75 320 100 80

Figure 4.18: (Top) Data (gold) and theory (purple) of the Double Pass filter recon-
figured to select both wings. Fit parameters shown in the table. (Bottom) Theory
curves for the Double Pass filter setup reconfigured to output single wings. Pa-
rameters shown in the table. Selecting for the negatively/positively detuned wing
requires left/right hand elliptically polarised light input. In this case the input
light has a vertical major axis that is twice as long as the minor horizontal axis

(see animations) with Jones vector representations of
(

1
±2i

)
.
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4.4.2.1. Reconfigurability
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Figure 4.19: Vector field plots of the Double Pass magentic field in the x − z plane with
light moving in the z-direction. The purple boxes mark the extent of the 75 mm cell. a)
shows the vector field for line centre operation with same field properties as discussed in
Fig. 4.9. b) shows the same magnetic setup reconfigured to select for both wings. The
cuboidal magnets are separated by 155 mm and the current in the solenoids is increased
to 1.12 A. The mean field strength and angle with the k-vector are now 310 G and 69◦.
Plots realised using code developed by Thomas Robertson-Brown with magypylib.
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4.4.2.1. Reconfigurability

B = 227 G, α =70°

B = 227 G,  α =75°

B = 227 G, α =80°
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Figure 4.20: Plots showing how the Double Pass filter changes operation by decreasing the
value of α while keeping the magnetic field strength constant.
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4.5. Outlook

Flexible operation of filters is becoming more important in different applications.

Filters have been published that work on both D-lines [129] with greater tolerance

[198] designed to be used in harsh environments such as shallow water [190] and

in unmonitored settings year round [81]. On demand remote tuning of profiles will

be an essential feature in many future out-of-the-lab filter setups.

4.5 Outlook

In this chapter, we have given an introduction to light moving through a cell in the

oblique geometry. We have shown that the oblique geometry exhibits elliptical bire-

fringence with frequency dependent non-orthogonal eigenmodes. This means that

the eigenmodes and invariant polarisations are in general different vectors. With

this background, we gave theoretical justification to two advantages of oblique fil-

ters. Firstly, they reject light outside of the dominantly birefringent region beyond

the 50% barrier of the Faraday and Voigt filters. Secondly, the oblique birefringent

region can be made narrower leading to FWHMs approaching 100 MHz. With this

knowledge we designed two filters, an Oblique-Voigt cascaded filter and a single

oblique cell Double Pass filter. We realised these filters experimentally and found

excellent agreement with theory. The Oblique-Voigt filter is the highest FOM pas-

sive filter recorded as of time of writing while the Oblique Double Pass filter is

the narrowest FWHM passive filter. We demonstrated experimentally the recon-

figurability of the Double Pass filter to select for the two wings. We also discussed

theoretically the ability to select one wing by inputting elliptically polarised light.

A paper has recently been published [130] which made use of a natural abundance

Rb Faraday cell as a mode selector for an optical frequency comb. The filter profiles

used had multiple peaks with FWHMs > 400 MHz. With this setup, the authors

were able to select for three teeth of a commercial comb with 250 MHz repetition

frequency. The two filters realised in this chapter could feasibly select for one

tooth (See Fig. 4.21). Combining this proposition with the reconfigurability of the
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4.5. Outlook

Double Pass filter, it may also be possible to switch selection to teeth either side

(albeit the wings, having larger FWHM, would select at least three teeth).

This method of mode selection is a recent contribution to the field and competes

with other methods including optical injection which incorporates additional lasers

as active filters [278, 279, 280], optical phase locking with 150 MHz tunability

[281, 282] and Brillouin scattering methods [283] which present noise challenges

[284]. Magneto-optical filters could stand as a highly tunable and compact option

in this emerging landscape. This is to be borne in mind particularly as white papers

are being written for NASA’s Decadal Survey on Life and Physical Sciences Re-

search in Space which include three papers on frequency combs [258, 259, 285]. All

three comment optimistically on the future of frequency combs to be flight tested

and eventually deployed on satelites. However, size, weight and power constraints

(SWaP) are still an issue. Tailoring frequency comb pulses is an important part of

being able to exploit the comb for its intended application. We can envision our

filters being scaled down, thermally insulated and shielded magnetically to provide

a compact and robust single mode selector for use outside the lab.
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4.5. Outlook

250
MHz

250
MHz

Filter Geometry L (mm) T (◦C) B (G)
Red [130] Faraday 7 (Extrapolated) 720 80

Figure 4.21: Three filter profiles including the Oblique-Voigt (blue) and Double Pass
oblique filter (purple) and the profile used as a frequency comb mode selector in a re-
cent publication (red), parameters for which can be found in the table. All three profiles
are calculated using ElecSus. The black vertical lines mark two sets of teeth in a frequency
comb with 250 MHz separation centred at the red filter peak and the purple filter peak.
We note that in [130], the optical power of the teeth either side of the red central peak are
very weak. As such, the red filter profile is effectively narrower than is presented here and
selects for three teeth. The Oblique Voigt filter selects for one tooth at high transmission
with two others at less than 10% transmission. The Oblique Double Pass filter selects for
one tooth at roughly half the transmission of the red filter. We believe these oblique filters
are well suited for optical frequency mode selection.
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Chapter 5

An Investigation of

Non-Hermitian Physics and

Filter Performance

Author completed all theoretical computations, collected and processed all

data and created all figures presented in this chapter. Figure 5.16 was created

using code by Thomas Robertson-Browne. We discuss filter predictions first

presented by masters student Alex Webber. All text written without the use

of AI. Work is related to the article:

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes,

‘Exploiting non-orthogonal eigenmodes in a non-Hermitian optical system to

realize sub-100 MHz magneto-optical filters’, arXiv Preprint, 2303.00081, 2023.

https://doi.org/10.48550/arXiv.2303.00081 [5]

5.1 Background

In the last two chapters, we introduced two modifications to the single cell fil-

ter case: cascading and oblique magnetic fields. With these changes, we have

shown improved filter performance and better understanding of filter mechanisms.
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5.1. Background

However, much of the theory introduced in the context of oblique fields appeared

counter-intuitive and raised some important questions. Why do oblique cells have

non-orthogonal eigenmodes? Do Faraday and Voigt cells have special symmetries?

What is the best framework for understanding the physics at play?

In the 1990s, a landmark paper was published by Bender and Boettcher [286]

birthing the field of non-Hermitian quantum mechanics [287, 288, 289]. Previ-

ously, it was demanded that Hamiltonians representing physical observables were

Hermitian to guarantee real eigenvalues. Bender and Boettcher demonstrated that

non-Hermitian Hamiltonians obeying the weaker condition of PT-symmetry also

had real eigenvalues [290, 291, 292].

This began a tendency in multiple areas of physics to expand the set of matrices

that could represent physical situations including anti-PT symmetric matrices [293,

294, 295] and even matrices with no symmetries [296, 297] that had imaginary

and complex eigenvalues respectively. In optics, it had long been the case for

measurable gain and loss to be represented by an imaginary value. Therefore, optics

too became a natural platform for non-Hermitian physics [298, 299, 300, 301, 291]

finding applications in omnipolarisers [302, 303, 304], sensing [305, 306, 307] and

tailored laser output [308, 309, 310]. Typically Hamiltonians tend to be the most

studied matrices [311], but non-Hermitian Linblad equations [312, 313] scattering

matrices [314, 315] and density-of-state models [316, 317] are also studied. In short,

any physical system described by a matrix can benefit from non-Hermitian analysis.

The consequence of lost matrix symmetries is that many basic assumptions of

Hermitian physics do not hold including the orthogonality of eigenvectors. We

assert that non-Hermitian physics gives the explanation for the oblique geometry’s

unusual properties.

In this chapter, we will show the non-Hermitian properties of the oblique cell case

showing that the dispersion relation matrix used to calculate the eigenmodes lacks

Hermitian symmetries found in the Faraday and Voigt cases. We explain how
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5.1. Background

oblique cells in general have non-orthogonal eigenvectors and introduce the fact

that oblique refractive indices exhibit avoided crossings.

With this formalism, we discuss the concept of an exceptional point of degeneracy,

a theoretical point in parameter space where the eigenmodes become parallel and

the difference between the refractive indices goes to zero. In the vicinity of these

points, the coalescence can change rapidly corresponding to changes in magneto-

optical rotation over small frequency ranges. We suggest such a mechanism could

lead to even narrower filters.

We propose two filter designs which exploit the magneto-optical rotation associated

with exceptional points. Both filters are cascades of a Faraday and an oblique Rb

cell. The first Rb filter is based on predictions presented by masters student Alex

Webber [252] and has a peak FWHM of 11 MHz while the second revised filter has

a peak FWHM of 40 MHz. We study the parameter space of the two filters and

find the parameters of the Webber filter too intolerant to construct in our lab. We

investigate the second revised 40 MHz filter but are unable to observe the expected

feature.

We dedicate the rest of the chapter to analysing why the filter was unable to be

realised. We believe the most important factors to consider are magnetic field

inhomogeneity and uncertainty in calculated susceptibility values.

We conclude by considering Faraday-Oblique filters as active frequency standards

in atomic clocks. The quantum limited linewidths that would be achievable are

competitive with the narrowest laser lineshapes achieved whilst being compact and

robust setups. As such, we make the case that although these filters have posed

experimental problems, the benefits they could bring are worth the time and energy

to investigate further.
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5.2. Theory

5.2 Theory

5.2.1 Non-Hermitian Dispersion Relation Matrix

As introduced in Chapter 2, the calculation of atomic spectra can be split into

two parts. The first calculates the susceptibilities: χσ+/−,π due to the σ+/− and

π electric dipole allowed transitions. The second part uses these susceptibilities

to calculate the refractive indices and eigenmodes. As we are interested in the

symmetries leading to orthogonal or non-orthogonal eigenmodes, we consider the

latter part.

From [207], the eigenvectors and refractive indices are calculated by solving the

dispersion relation:


ϵx
ϵ0

− n2 cos2 θ ϵxy

ϵ0
n2 cos θ sin θ

− ϵxy

ϵ0
ϵx
ϵ0

− n2 0

n2 cos θ sin θ 0 ϵz
ϵ0

− n2 sin2 θ




Ex

Ey

Ez

 = 0, (5.1)

where there are two possible refractive index values, n, and the permittivities ϵi

are defined in terms of the susceptibilities:

ϵx = ϵ0
2 (2 + χσ+ + χσ−),

ϵxy = i · ϵ0
2 (χσ− − χσ+),

ϵz = ϵ0(1 + χπ).

(5.2)

The polarisation of a plane wave of light has components along x, y and z given

by Ex, Ey and Ez. Note the matrix in this form assumes the magnetic field, not

the k-vector points along z. In our calculations and discussions in the rest of this

thesis, we always assume the k-vector points along z allowing us to set Ez = 0.

However, the current co-ordinate system allows us to reveal the symmetries of the
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5.2.1. Non-Hermitian Dispersion Relation Matrix

system more readily. For more details on the solutions above, see Appendix B.

Solving eq. 5.1 for n, we have

n2
a,b = A±

√
B

C
, (5.3)

A = 2 · ϵxϵz + (ϵ2x − ϵxϵz + e2
xy) sin2 θ,

B = (ϵ2x − ϵxϵz + ϵ2xy)2 sin4 θ − 4 · ϵ2xyϵ
2
z cos2 θ,

C = 2 · (ϵx sin2 θ + ϵz cos2 θ).

(5.4)

We refer to the 3 x 3 matrix in eq. 5.1 as the dispersion relation matrix and we

now want to show its symmetries for the Faraday, Voigt and oblique cases which

justify their respective orthogonal and non-orthogonal eigenmodes. In the Faraday

(θ = 0) case, the dispersion relation matrix simplifies to:

DF = 1
2


±(χσ+ − χσ−) −i(χσ+ − χσ−) 0

i(χσ+ − χσ−) ±(χσ+ − χσ−) 0

0 0 2 · (1 + χπ)


,

(5.5)

where the refractive index being considered determines whether the diagonal terms

are ±. Given that the susceptibilities χi are in general complex, DF is non-

Hermitian since DF ̸= D†F where † represents the conjugate transpose. However,

DF does possess a symmetry. By inspecting the matrix, if the susceptibilities were

real, then the diagonal elements are real. Additionally the off diagonal elements

have the same magnitude with opposite sign. If the susceptibilities are real, the

conjugate transpose gives the same off diagonal terms. As a result we can say that

if the susceptibilities are real, then the resulting matrix is Hermitian i.e.:

DF (Re[χi]) = D†F (Re[χi]) (5.6)
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5.2.1. Non-Hermitian Dispersion Relation Matrix

In the Voigt (θ = 90◦) case, the dispersion relation matrix with na or nb substituted

reduces to DVa or DVb
:

DVa = 1
2


(2 + χσ+ + χσ−) −i(χσ+ − χσ−) 0

i(χσ+ − χσ−) (χσ+ + χσ− − 2 · χπ) 0

0 0 0


,

(5.7)

DVb
= 1

2


(2 + χσ+ + χσ−) −i(χσ+ − χσ−) 0

i(χσ+ − χσ−) ζ 0

0 0 τ


,

(5.8)

ζ =
(

− i(χσ+ − χσ−)
)2

2 + χσ+ + χσ−
,

τ = 2 · (1 + χπ) − (2 + χσ+ + χσ−) − ζ

(5.9)

Similarly we note that the same symmetry as the Faraday case holds since ζ is real

for real susceptibilities:

DV(Re[χi]) = D†V(Re[χi]) (5.10)

Now let’s consider the general oblique case. We note that B defined in eq. 5.4 has

a square root term which is removable in the Faraday and Voigt case. This is not

in general true in the oblique case. Given that the square root of a real input can

in general be complex, the diagonal entries of 5.1 will in general be complex. As

such DO(Re[χi]) is in general non-Hermitian. Without the additional symmetries

in eq. 5.6 and 5.10, orthogonal eigenvectors are not guaranteed and we ought to

expect non-orthogonal eigenmodes.
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5.2.1.1 Frequency Dependence

Note however, that the frequency dependence of the oblique eigenmodes is not

dictated by the non-Hermitian property. In general the eigenmodes depend on

the susceptibilities which themselves are frequency dependent. In fact the Voigt

eigenmodes are in general frequency dependent provided the light is polarised along

the propagation direction i.e. there is a polarisation component along ẑ. Given that

in our discussions we assume plane waves, only oblique eigenmodes are frequency

dependent.

5.2.2 Coalescence

Having understood the non-Hermitian origin of non-orthogonal eigenmodes, we

now ask how we can use them to build better filters. The literature records a

phenomenon known as an exceptional point of degeneracy [318, 319, 320, 321, 322,

323, 306, 307, 324, 325]. This is a point in parameter space when the eigenmodes

are not only non-orthogonal but are completely parallel. While there is doubt over

whether the eigenmodes of a magneto-optical device can ever completely coalesce

(see A.7), we can optimise our filter to find points where the normalised eigenmode

dot product is high. Fig. 5.1 shows such an optimisation. The S′0 output from

the oblique cell records a high dot product of more than 80% at an approximate

frequency of 0.2 GHz. At this frequency we observe a narrow transmission feature of

40 MHz FWHM. We also must note that the refractive indices, unlike the Faraday

refractive indices in Chapter 2, exhibit avoided crossings. This is predicted in non-

Hermitian systems in [326, 319] where the degeneracy of the refractive indices is

lifted as a result of a symmetry not present in the oblique geometry.
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Figure 5.1: Caption Overleaf
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5.2.2. Coalescence

Figure 5.1: (Top) A setup to observe a S′
0 output with a coalescent feature. Linearly

vertical light from an external cavity diode (ECD) laser is directed into an oblique cell
before being detected by a photodetector (P.D.). The S′

0 output shows a narrow feature
at centre occuring at an avoided crossing in the refractive indices. The real part of the
normalised eigenvector dot product between eigenmodes, a⃗ and b⃗: Σia⃗ ∗

i ·⃗bi

|⃗a||⃗b|
. is plotted. a⃗ ∗

denotes the complex conjugate of a⃗. At the frequency position of the narrow feature, there
is a large increase in the dot product to over 80%. This implies that at this frequency, the
eigenmodes are close to an exceptional point of degeneracy where the eigenmodes coalesce.

The relationship between this narrow feature and the coalescene of the eigenmodes

is shown in Fig. 5.2. The coalescene of the eigenmodes in such a small frequency

range results in a change in the invariant polarisations over the same interval.

This results in magneto-optical rotation schemes that vary for each of the input

frequencies as can be seen for the three frequencies plotted in the a), b) and c).

In essence, the behaviour is no different from a standard transmission resonance.

However, while the standard transmission resonances are largely dictated by the

positions of transition frequencies, the coalescence emulates the same behaviour in

a smaller frequency range. This shows great promise for further improving filter

performance and we provide some concrete predictions in the next chapter.

118



5.2.2.
C

oalescence

c)

a) b) c)
a)

b)

Invariant 
Polarisations:

O
u

tp
u

t 
N

or
m

al
is

ed
 S

to
ke

s 
V

ec
to

rs S1

S1

S1

S2

S2

S3

S3
~

~

~

S3

S2
~

~

~

~

~

~

Figure 5.2: A plot of the central transmission feature of the S′
0 output in Fig. 5.1 alongside the normalised eigenmode dot product. Animations of

the invariant polarisations are shown for three frequencies a), b) and c). The output normalised Stokes vectors are plotted as a function of distance
propagated through the cell for these three frequencies. Animations of the input and output polarisations are shown above each diagram.
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5.3. Predictions

5.3 Predictions

Having understood the rapid dispersion associated with a coalescent feature, we

endeavour to find even narrower filters. Fig. 5.3 shows our proposed setup. Our

design is a Faraday-Oblique filter composed of a Faraday and an oblique cell be-

tween crossed polarisers. Both cells have axial fields generated by solenoids. A

transverse field from a pair of plate magnets is also applied to the oblique cell

giving a resultant oblique field to the k-vector of the light.

OI

ECD Laser

  780 nm /2

Rb Ref. Cell

Etalon

P.D.

Faraday‐

Oblique 

Filter P.D.

Ref.

P.D.

/2 Cell 1 Cell 2

B1 B2

Reference Optics

ND Filter 

GTPGTP

PBS

M
M

M

MMBS
50:50

θ

Figure 5.3: A schematic of the setup used to realise filters relying on coalescent features.
Light on the Rb-D2 line passes through an optical isolator (OI) and is split into reference
(see Appendix D) and experiment optics. The power in the experiment is lowered using a
neutral density (ND) filter and the λ/2 waveplate. The Faraday-Oblique filter is composed
of two cells between two crossed Glan-Taylor polarisers (GTP). The first cell is in the
Faraday geometry and has magnetic field provided by a solenoid. The second cell is in the
oblique geometry and has magnetic field provided by a combination of solenoid and plate
magnets. Light is detected by photodetectors (P. D.). P(BS) - Polarising Beamsplitter, M
- Mirror.

5.3.1 Webber Faraday-Oblique Filter

A masters student, Alex Webber, originally discovered the narrow lineshapes that

could be obtained by relying on coalescent features. Webber achieved this by

developing analytic solutions (see Appendix B) permitting faster optimisations with
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5.3.1. Webber Faraday-Oblique Filter

finer detuning grids. A computer optimisation of two oblique cells between crossed

polarisers led to a peak with sub-natural linewidth FWHM and FOM over 4 GHz−1.

Angles between the k-vector and magnetic field were 83.56◦ and 92.77◦ respectively.

We have simplified this design to a Faraday-Oblique filter with linearly horizontal

light input. This design, which we designate as the Webber filter, maintains a

narrow profile widened only to 11 MHz FWHM. The other features towards the

wings are less than 5% in transmission. However, one could also extinguish them

by adding an additional Voigt cell to the cascade with ∼ 4000 G exerted upon it

(see 4.3). The Stokes parameter plots (Fig. 5.5) and their zoom ins (Fig. 5.6) show

the operation of the filter.

a) b)

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G) θ(◦)
5/5 91.5 269 126.47 292.60 92.40

Figure 5.4: The transmission profile of a Faraday-Oblique filter based on Alex Webber’s
original predictions. The main plot shows the transmission from -6 GHz to 8 GHz after
linearly horizontal light is input while the insets a) and b) show zoom-ins at relevant
frequencies. The FWHM, ENBW and FOM are 11 MHz, 133 MHz and 3.98 GHz−1. Note
the precision of the values given in the table. The filter is sensitive to some parameters to
two decimal places.
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Figure 5.5: Plots of the Stokes Parameters after each component in the Webber filter. The Si are input normalised and show polarisation transfor-
mation and loss.122
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Figure 5.6: The same Stokes parameters after each component of the Webber filter as plotted in Fig. 5.5. We have zoomed in on the central detuning
region where the narrow lineshape emerges.123



5.3.1. Webber Faraday-Oblique Filter

The first Faraday cell’s role is to transform the linearly horizontal light at resonant

frequencies to linearly vertical light. The second oblique cell’s role is to extinguish

unwanted regions away from centre line. The second cell has a key additional role

of transforming the polarisation in a very small region between ∼ 0.15 and 0.30

GHz. In this region, the S′3 value is dispersive remaining positive and growing up

until 0.23 GHz. After which S′3 rapidly becomes negative before growing steadily

once again. As such the light in this region leads to a resonance peak in the filter

transmission which is so narrow due to the small frequency range over which this

dispersive behaviour occurs.

As much as the Webber filter has high performance, its parameter sensitivity makes

practical realisation in our lab currently impossible. The parameter sensitivity

was somewhat mitigated by replacing Webber’s original Oblique first cell with a

Faraday cell since Faraday fields are much easier to generate. In fact, the first cell

is largely invariant to field angle, ψ (See Fig. 5.7). The variation of B1 and T1

also poses few problems since a value too large/small in one can be mitigated by

decreasing/increasing the other.

Nevertheless, it is the parameter sensitivity of the second cell responsible for gen-

erating the 11 MHz FWHM feature that presents issues. The FOM remains high

in a very small parameter region of temperature, magnetic field and angle, θ as

shown in Fig. 5.8. Beyond this region, the FOM rapidly falls to less than 1 GHz−1.

These FOM contours are not conducive to finding parameters in a lab setting where

parameters are tuned by monitoring the small changes in performance for small ad-

justements in the setup. While approaching the correct values from one side of the

contour shows steady improvement, from the other, the performance remains low

before rapidly increasing in performance.
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Figure 5.7: Heat maps showing the sensitivity of FOM to variation of Cell 1’s three pa-
rameters: the magnetic field, B1, the temperature, T1 and angle between the magnetic
field and k-vector which is ψ for the first Faraday cell. Red crosses mark the parameters
plotted in Fig. 5.4. The FOM of the first cell is largely invariant with changing ψ while
a small increase/decrease in the magnetic field can be mitigated by decreasing/increasing
the temperature.
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Figure 5.8: Heat maps showing the sensitivity of FOM to variation of Cell 2’s three pa-
rameters: the magnetic field, B2, the temperature, T2 and angle between the magnetic
field and k-vector which is θ for the second oblique cell. Red crosses mark the parameters
plotted in Fig. 5.4. The FOM is ultra-sensitive to Cell 2’s parameters remaining high
along a small region. By increasing the field or decreasing θ beyond this region, the filter
performance rapidly drops to less than 1 GHz−1.
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5.3.1. Webber Faraday-Oblique Filter

This ultra-sensitivity is also seen in the dependence of filter lineshape on second

cell parameters. Fig. 5.9 shows the effect of varying θ on lineshape. By decreasing

θ by 0.2◦, the filter peak becomes a trough and by increasing θ by 0.2◦, the narrow

11 MHz feature disappears. We can see that while variation in θ is small, changes

in the refractive index profiles and coalescence of the eigenmodes are responsible

for this behaviour. The crossing and avoided crossing shape exhibited for 92.2◦

and 92.4◦ dissapears for 92.6◦ despite only very small differences in the refractive

index values between the three cases. The eigenmode coalescence remains high for

all three cases but for 92.4◦, we observe a cusp like peak behaviour, not observed

in the other two cases.

θ = 92.2° θ = 92.4° θ = 92.6°

Figure 5.9: Plots showing the extreme sensitivity of the Webber filter to variation in θ.
Decreasing θ by 0.2◦ results in the peak becoming a trough and increasing θ by 0.2◦ results
in the 11 MHz FWHM feature being lost. This makes the Webber filter impratical to
implement in our current setup. The real refractive indices and real part of the normalised
eigenmode dot product show the small but significant changes that result in this ultra-
sensitive behaviour.

As such, we have found that the additional magneto-optical rotation provided by

coalescent features has the downside of creating ultra-sensitive filters. Of course,

we might think more positively and realise that we have created a high quality mag-

netometer. Indeed, there has already been much work in utilising non-Hermitian

126



5.3.2. 40 MHz FWHM Revised Filter

physics in sensing [307, 306, 305].

5.3.2 40 MHz FWHM Revised Filter

We note that the profile of the 92.4◦ case in Fig. 5.9 is still high performance given

its 40 MHz FWHM. Once could reoptimise the filter for this lineshape and find a

less sensitive yet competitive filter. We call this new set of parameters, the Revised

Filter. Computer optimisations find that such a lineshape can be obtained for a

higher maximum transmission than the Webber filter compensating somewhat for

its wider FWHM. Nevertheless the wing features of the Revised filter have larger

transmission and a Voigt cell at ∼ 4000 G would be required for the Revised FOM

to be comparable with the Webber FOM. Once again we plot the Stokes parameters

and find the function of the filter to be analogous to the Webber filter with the S′3
dispersive feature occuring over a larger detuning range leading to a larger FWHM.

L1/L2 (mm) T1 (◦C) B1 (G) T2 (◦C) B2 (G) θ(◦)
75/75 60 176 80 295 88

Figure 5.10: The transmission profile of a Faraday-Oblique filter based on revised parame-
ters. The main plot shows the transmission from –7 GHz to 8 GHz after linearly horizontal
light is input while the inset shows a zoom-in of the central feature. The FWHM, ENBW
and FOM are 41 MHz, 313 MHz and 2.48 GHz−1.

127



5.3.2.
40

M
H

z
FW

H
M

Revised
Filter

After First Cell

S'0

S'1

S'2

S'3

After Crossed PolarizerAfter Second Cell

Figure 5.11: Plots of the Stokes Parameters after each component in the Revised filter. The Si are input normalised and show polarisation
transformation and loss.
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Figure 5.12: The same Stokes parameters after each component of the Revised filter as plotted in Fig. 5.5. We have zoomed in on the central
detuning region where the narrow lineshape is located.129
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The sensitivity of the second cell Revised filter parameters to FOM shows similar

contours to that of the Webber filter (compare Fig. 5.8 and 5.13). However, the

region close in value to maximum FOM (albeit lower for the Revised filter) is

larger shown by a larger yellow region. Fig. 5.14 further confirms the practical

realisability of the Revised filter. By varying the magnetic field and temperature

of the second cell alongside θ, we find that although the lineshapes are sensitive to

small changes in each parameter, the narrow feature remains either as a peak or a

trough. This is in contrast to the Webber filter where the narrow 11 MHz feature

disappears altogether. This lineshape dependence lends itself to easier optimisation

in a lab setting. The feature can initially be realised by coarse parameter variation

and fine tuned to optimise.
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Figure 5.13: Heatmaps showing the sensitivity of FOM in the Revised filter to variation of
Cell 2’s three parameters: the magnetic field, B2, the temperature, T2 and angle between
the magnetic field and k-vector which is θ for the second oblique cell. Red crosses mark
the parameters plotted in Fig. 5.10. The FOM remains sensitive to Cell 2’s parameters.
However, one can compare the yellow regions with Fig. 5.8 and see that FOM remains
close to maximum value for a larger region before plummeting to less than 1 GHz−1
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θ = 87°

θ = 87.5°

θ = 88°

θ = 88.5°
θ = 89°

T2 = 78° C

B2= 285 G
B2= 290 G

B2= 295 G

B2= 300 G

B2= 305 G

T2 = 80° C
T2 = 82° C

T2 = 84° C

T2 = 76° C

Figure 5.14: Lineshapes of the revised filter central peak for variation in B2, θ and T1.
Lineshape remains a peak after varying the field by ± 5 G, and reducing θ by 1◦. Varying
temperature alters FWHM but maintains the peak lineshape.

131



5.4. Analysis

5.4 Analysis

ECD Laser

 P.D.

Cell 2

B2

θ

Figure 5.15: An experimental scheme used in an attempt to realise narrow transmission
features resulting from coalescent eigenvectors. An external cavity diode (ECD) laser
directs light through a cell with oblique magnetic field provided by a solenoid and plate
magnet configuration discussed in 4.3. Light is detected by a photodetector (P.D.).

Having predicted the Revised filter with parameter sensitivities that could reason-

ably be realised, we conducted initial tests on a single oblique cell (see Fig. 5.15).

Light from a Toptica DL100 laser in the weak probe regime was directed through

Cell 2 of the Revised filter before being detected by a photodetector. The magnetic

field was provided axially by a solenoid and transversely by a pair of plate mag-

nets, more details can be found in 4.3. The aim was to detect any sub-100 MHz

transmission features either peaks or troughs. For this we also considered other

parameter sets, predicted by ElecSus, that may not have generated good filter pro-

files but may nevertheless exhibit these sharp features. We were unable to find any

evidence of these features with our current setup. Therefore in this section, we con-

sider some possible factors to explore in understanding why experiment currently

does not match theory.

5.4.1 Inhomogeneities and Other Field Problems

Fig. 5.16 shows how the magnetic field magnitude and angle θ varied over the

75 mm cell. The field magnitude and angle are inhomogeneous to 7 % and < 1 % of

their respective mean values. As demonstrated in the previous section, parameter
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5.4.1. Inhomogeneities and Other Field Problems

variation of this magnitude can cause coalescent peaks at high transmission to

deteriorate to low transmission troughs.

z (mm)

θ 
(°
)

B
2 
(G
)

z (mm)

Figure 5.16: Theoretical magnetic field profile of the Revised filter oblique cell. The red
dotted line marks the mean value over 75 mm which are 88.0◦ and 295 G. Plots calculated
using the python package magpylib using code developed by Thomas Robertson-Browne.

L (mm) T (◦C) B (G) θ (◦)
75 60 295 88

Figure 5.17: Theory curves of the Revised Filter transmission for a perfectly homogeneous
field (purple) and for the predicted field profile shown in Fig. 5.16 (goldenrod). Parameters
for the perfectly homogeonous filter are shown in the table. All other parameters remain
the same for both filters. We note that the predicted field filter has a lower transmission
and higher FWHM of ∼ 100 MHz.

Fig. 5.17 shows the effect that an inhomogeonous field can have on filter transmis-
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5.4.2. Computational Uncertainty and Model Assumptions

sion. The central peak is far reduced in transmission and has a higher FWHM of

∼ 100 MHz. It is therefore possible that our field generation limited our ability to

view these narrow features. However, we note that even features of ∼ 100 MHz

width were not seen in single pass experiments. This may be due to further com-

pounding issues in our field generation. In particular, we struggled to calibrate our

plate magnets such that we would not exert an axial field. It is believed that the

magnet dimensions used were too short along the cell length to provide a zero axial

field. Additionally, changing the separation of the magnets to scan over different

field magnitudes was achieved by moving the magnets by hand as space did not

permit a more sophisticated approach. This was a clunky method and made it

difficult to scan the parameter space in small increments.

One might ask why we do not optimise with a realistic magnetic field involving

inhomogeneities. In theory, this is possible. Considering only the plate magnets

as an example, we could calculate the magnetic field using magpylib and define

the magnet separation as a parameter which can be varied in an optimisation.

However, in its current form, the optimisation would run very slowly. We would

need to find a way to shortcut magpylib such that it only runs the necessary code

on each iteration as the separation is varied.

Additionally, inhomogeneity may not be the only problem posed by our magnetic

fields. Stray fields could disturb our atoms [327]. Indeed our own generated fields

could be noisy [328] resulting in unpredicted magnetic behaviour that varies with

environmental conditions. Sizaeble magnetic field gradients could be present across

the beam waist as the beam diverges upon propagation. In short, it is imperative

we fully understand the action of our magnetic fields in the lab.

5.4.2 Computational Uncertainty and Model Assumptions

The sensitivity of the parameters may not merely pose experimental difficulties but

computational ones. Appendix B addresses further the implications of computa-
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tional error. The general conclusion of the Appendix is that we ought to investigate

the numerical stability of our solutions though most calculations have been found

to be reliable.

5.4.3 Non-Hermitian Reasoning

One might be tempted to suggest that having never seen coalescent features, there

is little proof for non-Hermitian physics having a role in this domain. Particularly

given that magneto-optical rotation has been studied extensively and this has never

been addressed before. Firstly, we note that exceptional points of degeneracy have

been explored on multi-level thermal vapour platforms [329, 293, 330] albeit not

in ground state filters. Most recently, theoretical studies were conducted [331]

into non-Hermitian Faraday rotation. Moreover, the work in Chapter 4 relies on

eigenmode non-orthogonality (<20% real eigenmode dot product value) where we

showed excellent agreement between data and theory.

Though the results are not yet convincing, there is not a reasonable alternative

explanation. One can force ElecSus to have crossing refractive index solutions

in the oblique geometry by swapping labels and similarly force orthogonal eigen-

modes. However, these lead to wildly different results which are not experimentally

supported and have little theoretical justification behind them. It would appear

that non-Hermitian physics has unintentionally been built into our model. In this

chapter, we have shown that non-Hermitian physics has a natural place in magneto-

optical rotation and we ought to explore its implications further.

5.5 Outlook

In this chapter, we introduced non-Hermitian physics as an explanation as to why

oblique cells exhibit non-orthogonal eigenmodes. Having studied the dispersion re-

lation matrix, we found that the oblique matrix lacks a symmetry found in Faraday
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and Voigt matrices which are Hermitian for real susceptibilities. With this knowl-

edge, we expected to see narrower filter peaks by identifying exceptional point of

degeneracy: points where the eigenvectors are almost parallel and the refractive in-

dices approach an avoided crossing. We presented two filter predictions. The first

was a 11 MHz FWHM filter which required parameters too sensitive to feasibly

construct. The second prediction maintained a sub-50 MHz FWHM for reasonable

parameters and tolerances. However, we were unable to realise this in a lab after

much effort. We gave initial analysis into what may have limited us and we describe

the way forward in more detail in our conclusions in Chapter 6.

For the time being, we suspend disbelief and consider a possible application for

such narrow filters. Optical clocks are set to replace atomic clocks as the new time

standard at a future meeting of the International Bureau of Weights and Measures

[332, 333]. While most realised clocks are passive relying on atomic spontaneous

emission as a frequency standard [334, 335], recently there has been interest in

active optical clocks where the atomic medium is built into the lasing device and

its stimulated emission becomes the frequency standard [336, 337].

Active clocks are being readily pursued to reach mHz clock laser linewidths [338]

and overcome cavity noise instability by utilising so called ‘bad cavities’ where

the cavity decay rate is much greater than the gain bandwidth [339, 340]. The

group at Peking University [125] presented the first Faraday active optical clock

incorporating a single cell Cs filter as the atomic medium. Their predicted quantum

limited linewidth of 0.3 Hz is much smaller than the spontaneous case owing to an

additional term is the Shawlow-Townes formula [337]:

νLaser = hν0 · Γ2
c

4π · P
·
(

1
1 + Γc

κ

)2

(5.11)

where νLaser is the quantum limited laser linewidth, h, is Planck’s constant, P and

ν0, are the power and frequency input to the first cell. Γc is the cavity decay rate

and κ is the output bandwidth of light after passing through the gain medium and

cells. Note there is a correction for detuned light that we do not consider here.
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Fig. 5.18 shows the setup needed to create a magneto-optical active frequency

standard where a gain medium and a bandpass filter are placed in a cavity. The

table shows quantum limited linewidths of the Peking group Faraday filter alongside

various filters presented in this thesis. In particular the Webber filter linewidth

limit is ten times smaller than the best laser linewidths achieved to date using the

Pound-Drever Hall technique [341, 294, 342]. There is therefore huge incentive to

explore how we can realise these new filters especially since they do not require

a pump laser which was a cited as a major source of instability in [125] and the

atoms do not have to be cooled [124, 192, 193].

Of course we are unable to estimate the systematics or expected frequency uncer-

tainties currently but it it possible that the simplicity of the vapour cell setup could

translate into more manageable error mitigation. We note that systematics have

a large effect on linewidths in reported results. The Peking group demonstrated a

laser linewidth of ∼ 100 Hz, a factor of 300 greater than the minimum. A group

from the University of Copenhagen recently produced a laser linewidth of ∼ 800 Hz

in 88Sr [343], a factor of 1600 greater than minimum linewidth.
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MM

Cell 1 Cell 2 GTPGTP

Gain Magneto‐

Optical

Frequency 

Standard

B1 B2

θ

Active Frequency
Standard

Quantum Limited
Linewidth (Hz)

Line Centre Filter (Fig. 3.21) 8
Oblique-Voigt Filter (Fig. 4.11) 3
Double Pass Filter (Fig. 4.16) 2

Strontium Gas 689 nm Laser [336] 0.5
Cs Excited State 852 nm Filter [125] 0.3

40 MHz Faraday-Oblique FWHM Filter 0.35
Webber Faraday-Oblique Filter 0.03

Figure 5.18: A schematic of a magneto optical active frequency standard which could be
used as an optical clock. Two vapour cells with magnetic fields, B1 andB2, exerted at angles
θ and ψ to the k-vector, are placed between crossed Glan-Taylor polarisers (GTP) forming
a bandpass filter. The filter is placed with a gain medium (Gain) inside a cavity formed of
two mirrors (M). The cavity satisfies the bad cavity condition where κ << Γc. Light from
an initial laser transmits into the cavity and photons produced via stimulated emission
leave the cavity to further experiments. The table shows theoretical quantum limited
linewidths of various active frequency standards using Γc = 300 MHz and P = 75 µW
from [125]. If the active frequency standard is a filter, we substitute FWHM for κ. The
filters experimentally realised in this thesis remain above > 1 Hz while the theoretical
filters predicted in this chapter are sub-Hz.
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Chapter 6

Conclusions

At the beginning of this thesis, we showed that magneto-optical filters had played

integral roles in various applications and continue to do so today. Nevertheless,

decades after their invention, basic principles of filter operation were still unknown.

In order for filters to reach their true potential, more theoretical and proof of

principle work was needed.

We ambitiously suggested that two simple modifications to the single cell filter case

could improve quantitative metrics such as ENBW tenfold and increase lineshape

tailoring abilities considerably. Through Chapters 3 and 4, we set out the theory

behind adding a second cell (cascading) and exerting oblique magnetic fields. The

experimental results met these high expectations. We can now realise filters with

100 MHz FWHMs, ENBWs not far behind, and FOMs approaching three times

greater than those in the single cell case. We can select for wing or line centre

features and change between operation via solenoid current variation. Additionally

our chapter outlooks have highlighted several new applications where these filters

may find utility including cryptography, cavity lens stabilisation and frequency

comb mode selection. While we first considered oblique fields to be a small mod-

ification, the theory behind them became increasingly complicated. In Chapter 5,

we argued that non-Hermitian analysis, which has become of increasing interest

since the late 1990s, would benefit the study of oblique magneto-optical filters. We
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predicted that with better understanding of the non-orthogonal propagation eigen-

modes and their coalescence, filters could even approach FWHMs less than the

natural linewidth. This represents a paradigm shift in our understanding of filter

capabilities. We list the specific and general achievements of this thesis below:

Specific Achievements

• Realised the first line centre filter (Fig. 3.21).

• Realised the best passive filter design by FOM (Fig. 4.11).

• Realised the narrowest passive filter design by FWHM. (Fig. 4.16)

General Achievements

• Provided insight into the working principles of cascaded and oblique filters

(Chapters 3 and 4).

• Introduced non-Hermitian analysis into magneto-optical filter studies (Chap-

ters 4 and 5).

Having said this, we were unable to realise the filters relying on eigenvector coa-

lescence predicted in Chapter 5. We proposed several reasons why this may be the

case including inhomogeneous magnetic fields, our model assumptions and compu-

tational uncertainty. We dedicate the rest of this conclusion to outline a possible

plan moving forwards.

Field homogeneity ought to be the first item to investigate. Many of our field

plots throughout this thesis show inhomogeneities of > 5% over the length of the

cell. Indeed, we believe the disagreement between data and theory for the Double

pass oblique filter in Chapter 4 (See Fig. 4.16) was due to the short length of our

plate magnets relative to the cell. Computer optimisations have shown that longer

cells exhibit higher transmission coalescent features. Though we are unsure why,

this is one reason why we want to consider improved field generation rather than
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swapping longer cells for shorter ones. A manuscript in preparation by Sharaa

Alqarni et al. demonstrates improved homogeneity for the combined solenoid and

permanent magnet setup. Alqarni et al. have achieved this by replacing the plate

magnets with a row of smaller bar magnets held in place by a custom built holder.

The advantage is that now we can feasibly build more homogeneous magnetic fields

over longer cell lengths for low cost and short build times. However, the remanence

field can vary from bar magnet to bar magnet. As such each one must be analysed

before constructing the setup. Indeed, more generally, recent progress in our lab has

shown that manufacturing more homogeneous fields is very possible. It is merely

the case that our niche requirements have rarely been considered in the literature.

The work at the Université de Toulouse has been extremely valuable to us in the

past. They have manufactured permanent magnets with ∼ 1 T fields suitable

for 1 mm cells [344] which have been shipped and used in our lab resulting in a

publication [1]. We note that a group in Nizhny Novgorod [345, 346] have also built

similar competitive permanent magnets. While the magnetic field requirements

are different to our previous work, there may be value in collaborating with these

groups. Nevertheless, we have not yet established how homogeneous our field must

be and this needs to be quantified before going forwards.

Our model makes certain assumptions that may not accurately describe the exper-

imental situation. For instance, we have not considered the role of even a small

quantity of buffer gases in our cells. Buffer gases can cause additional Lorentzian

broadening and shifts in transition frequencies [223]. Indeed, it is possible that the

role buffer gases play is more complicated than adding an additional Lorentzian

broadening term to the susceptibility calculation (See Appendix A in [225]). There

is scope for a project at Durham to consider the total effect buffer gases have on

the susceptibility curves and whether this could account for our missing coalescent

features. These investigations should not be confused with the effects of higher

order susceptibilities that have been considered in harmonic generation and non-

linear optics. Such discussions are not relevant here as we still remain in the weak
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probe regime. We should also not confuse these discussions with computational

error which may also play a part. We consider the numerical stability of our solu-

tions in Appendix B but further understanding in this area lies within the arena

of computer science.

Finally, this thesis has only been an introduction to non-Hermitian physics in two

level atomic vapours. Is it possible that there are obvious reasons arising from

non-Hermitian physics as to why we are not observing these effects? We hope that

the results of Chapter 4 encourage researchers with non-Hermitian backgrounds to

consider exploring this question. As always, Durham is open to collaboration.

The future for magneto-optical filters looks bright. We believe that the filters

predicted, while unfeasible now, hint at a very real filter mechanism evidenced by

robust non-Hermitian analysis. We think the implications of an exceptional point

filter are exciting enough for researchers to dedicate time and energy towards. The

writer of this thesis looks forward to seeing progress in this area.
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Appendix A

Jones Calculus

Author completed all theoretical computations, derived all proofs, created all

figures presented in this appendix. All text written without use of AI. Work

is related to the articles:

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes, ‘Bet-

ter magneto-optical filters with cascaded vapor cells’, Optics Letters, 47(12):2975–

2978, 2022. https://doi.org/10.1364/OL.459291 [2]

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes,

‘Exploiting non-orthogonal eigenmodes in a non-Hermitian optical system to

realize sub-100 MHz magneto-optical filters’, arXiv Preprint, 2303.00081, 2023.

https://doi.org/10.48550/arXiv.2303.00081 [5]

In this appendix, we use Jones Calculus [229] to mathematically justify various

statements made in this thesis. As we have done throughout, we define z as the

propagation direction of the light and assume the light is a plane wave. As such,

since a plane wave can only be polarised transversely, the wave is polarised in the 2D

x−y plane. This completely polarised wave is represented by a 2 x 1 Jones column

vector and propagated through optical elements represented by 2 x 2 matrices that

transform the input electric field to its output. If the beam is partially polarised

or unpolarised, a generalised Mueller calculus [347, 348] can be used involving 4 x
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A. Jones Calculus

4 matrices, however, this is outside the scope of this thesis. Tables A.1 and A.2

define some standard Jones vectors and matrices used in this appendix.

When discussing polarisation, we have often used the language of Stokes parameters

rather than Jones vectors and it is important to note the differences in the two

representations. The three real Stokes parameters uniquely define each polarisation

state. On the other hand, a Jones vector contains two complex entries, or four

independent values, that uniquely determine the 2D electric field:

J =

x
y

 =

|x|eiγ

|y|eiζ

 , S = (S1, S2, S3).

The global phases, γ and ζ, defined by the imaginary part of the electric field en-

tries, are required for propagation calculations. Post-calculation, since we are in-

terested in the polarization state and not the electric field vector, we can eliminate

(or indeed add) global phases leaving only the relative phase, ζ − γ, which deter-

mines handedness. Hence, Stokes parameters are the best representation scheme

for polarisation. However, an extra degree of freedom is required to calculate the

output electric field making Jones Calculus indispensable in polarisation studies

[349, 350, 351, 352, 353, 354, 355].
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A. Jones Calculus

Unnormalised Jones Vector Polarisation(
1
0

)
Horizontally Linear ↔

(
0
1

)
Vertically Linear ↕

(
1
1

)
Diagonally Linear at 45◦ ↖↘

(
−1
1

)
Diagonally Linear at −45◦ ↗↙

(
1
i

)
Left Hand Circular ⟲

(
1
−i

)
Right Hand Circular ⟳

Figure A.1: Definitions of standard unnormalised Jones vectors. Polarisation animations
drawn as viewed looking towards the source. Sign conventions taken from [356].

Jones Matrix Function(
1 0
0 0

)
Horizontal Linear Polariser

(
0 0
0 1

)
Vertical Linear Polariser

1
2

(
1 −i
i 1

)
Left Circular Polariser

1
2

(
1 i
−i 1

)
Right Circular Polariser

1
2

(
1 + i 1 − i
1 − i 1 + i

)
Quarter Waveplate, Fast Axis at 45◦

1
2

(
1 + i i − 1
i − 1 1 + i

)
Quarter Waveplate, Fast Axis at −45◦

Figure A.2: Definitions of standard Jones matrices.
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A.1. Propagating an Electromagnetic Wave through a Birefringent Vapour

A.1 Propagating an Electromagnetic Wave through a

Birefringent Vapour

Rubidium vapour in the presence of a magnetic field is characterised as having two

propagation eigenmodes1, a⃗ and b⃗ [207]:

a⃗ =

a1

a2


,

b⃗ =

b1

b2


.

(A.1)

These vectors together form the hermitian conjugated (†) change-of-basis matrix,

R =

a1 b1

a2 b2


†

.
(A.2)

Associated with these eigenmodes are refractive index eigenvalues na and nb. Defin-

ing a function f , we can construct a diagonal matrix T,

T =

f(na) 0

0 f(nb)


,

(A.3)

such that the input electric field Ein is propagated to the output electric field Eout

as,

Eout =
P︷ ︸︸ ︷

R−1 · T · R· Ein. (A.4)

We label the resultant propagation matrix, P. In the sections that follow, we will

use eq. A.4 to prove facts about filter outputs discussed in this thesis. Fig. A.3

gives a sequential visual explanation of how P acts on Ein to output Eout.
1For the reader interested as to why there are not three propagation eigenmodes, see § 12,

(The allowance for spatial dispersion in an anisotropic medium) of [357].
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A.2. Comparison of Propagation in the Faraday, Voigt and Oblique Geometries

x

x

x

y

y

y

inE

inE

outE

x

a) b)

y

inE.

inE
.

d)

x

c)

inE..

.

f (na)

f (nb) yinE
.

Figure A.3: A visualisation of the matrix propagation from input to output electric fields in
a birefringent vapour. We choose the Voigt geometry as an example. a) The eigenmodes of
the system (purple) which are linearly horizontal (x⃗) and vertical (y⃗) light, the eigenmodes
in the Voigt geometry. The input electric field, Ein, in red. b) The input electric field is
decomposed on to the two eigenvectors. c) The two decomposed vectors are acted upon
by either the function f(na) or f(nb). This results in absorption as shown by the output
vectors (blue) having smaller amplitude than the original decomposed vectors (red). The
decomposed vectors also gain a phase. In this case, one gains a positive and the other a
negative phase. d) The transformed vectors in c) are added resulting in an output electric
field Eout that is smaller in amplitude, rotated in the linear plane and right handed.

A.2 Comparison of Propagation in the Faraday, Voigt

and Oblique Geometries

In this section, we construct propagation matrices, P, in the Faraday, Voigt and

oblique geometries. Using these matrices, we find the invariant polarisations that
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A.2.1. Faraday Propagation

when input to the cell are output in the same polarisation state. We show that

the invariant polarisations are the orthogonal states to the eigenmodes. We also

demonstrate that in the Faraday and Voigt geometries, this means the eigenmodes

are the invariant polarisations since they are mutually orthogonal. In the oblique

geometry, the eigenmodes are not invariant since the eigenmodes are not in general

mutually orthogonal.

A.2.1 Faraday Propagation

Faraday

   Cell

B

Figure A.4: A thermal vapour cell in the Faraday geometry with the k-vector of the light
parallel with the applied magnetic field (B).

Fig. A.4 depicts a cell in the Faraday geometry. Solving the wave equation, one

finds that the Faraday geometry has left and right hand circular light as eigenmodes

[356]. From eq. A.4 and using the Jones vector expressions in Table A.1, the

Faraday propagation matrix, PF, is

PF = 1
2

1 1

i −i

 ·

f(na) 0

0 f(nb)

 ·

⟲,⟳︷ ︸︸ ︷1 −i

1 i



= 1
2

 f(na) + f(nb) −i(f(na) − f(nb))

i(f(na) − f(nb)) f(na) + f(nb)


.

(A.5)
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A.2.1. Faraday Propagation

Note that the eigenmodes in R do not need to be normalised since the inverse

reverses any scaling by R at the end of the calculation. Similarly, the positions of a⃗

and b⃗ can be interchanged in R if the positions of f(na) and f(nb) are interchanged

in T. Suppose we input left hand circular light into this Faraday system:

Eout = 1
2

 f(na) + f(nb) −i(f(na) − f(nb))

i(f(na) − f(nb)) f(na) + f(nb)

 ·

⟲︷︸︸︷1

i



=

 f(na)

i · f(na)



= f(na) ·

1

i


.

(A.6)

The output electric field, Eout, has the same direction as the input, therefore

the polarisation has not changed. In fact, it has been acted upon by a factor

dependent on the refractive index, na. In magneto-optical rotation terms, this

results in a phase added and some absorption. The phase added is global and so

has no physical impact on the polarisation state and the absorption ensures the

output is of a lower intensity than its input. For completeness, we input right

handed circular light,

Eout = 1
2

 f(na) + f(nb) −i(f(na) − f(nb))

i(f(na) − f(nb)) f(na) + f(nb)

 ·

⟳︷ ︸︸ ︷ 1

−i



=

 f(nb)

−i · f(nb)



= f(nb) ·

 1

−i


,

(A.7)
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A.2.2. Voigt Propagation

and find the case to be analogous but with a factor dependent on nb. In short, the

eigenmodes of a Faraday cell are invariant polarisations.

A.2.2 Voigt Propagation

Voigt

 Cell

B

Figure A.5: A thermal vapour cell in the Voigt geometry with the k-vector of the light
perpendicular to the applied magnetic field (B).

Fig. A.5 depicts a cell in the Voigt geometry. A Voigt cell has linearly horizontal

and vertical light as eigenmodes [207]. Once again from eq. A.4 and using Jones

vectors from Table A.1, we have the Voigt propagation matrix, PV:

PV =

1 0

0 1

 ·

f(na) 0

0 f(nb)

 ·

←→, ↕︷ ︸︸ ︷1 0

0 1



=

f(na) 0)

0 f(nb)


.

(A.8)

We input an eigenmode, linearly horizontal light, into the Voigt system and find:
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A.2.3. Oblique Propagation

Eout =

f(na) 0)

0 f(nb)

 ·

←→︷︸︸︷1

0



=

f(na)

0



= f(na) ·

1

0


.

(A.9)

Like the Faraday case, inputting an eigenmode results in invariant polarisation.

Showing this is the case when inputting the other eigenmode, linearly vertical

light, follows trivially.

A.2.3 Oblique Propagation

Oblique

   Cell

B

θ

Figure A.6: A thermal vapour cell in the oblique geometry with the applied magnetic field
(B) making an angle θ, neither 0◦ or 90◦, to the k-vector of the light.

Fig. A.6 depicts a cell in the oblique geometry. As discussed in Chapter 4, eigen-

mode solutions to the wave equation are non-orthogonal and frequency dependent

in the oblique geometry. We construct a toy system with non-orthogonal eigen-

modes: horizontally linear and diagonally linear at 45◦ light. Fig. A.7 shows all
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A.2.3. Oblique Propagation

the polarisation vectors involved in this example. The propagation matrix, PO, is

given as:

PO =

 1 0

−1 1

 ·

f(na) 0

0 f(nb)

 ·

←→, ↗↙︷ ︸︸ ︷1 0

1 1



=

 f(na) 0

f(nb) − f(na) f(nb)


.

(A.10)

We input the eigenmodes linearly horizontal light, in eq. A.11 and diagonal light

at 45◦, in eq. A.12:

Eout =

 f(na) 0

f(nb) − f(na) f(nb)

 ·

←→︷︸︸︷1

0



=

 f(na)

f(nb) − f(na)



= f(nb) ·

↕︷︸︸︷0

1

−f(na) ·

↖↘︷ ︸︸ ︷−1

1


,

(A.11)

Eout =

 f(na) 0

f(nb) − f(na) f(nb)

 ·

↗↙︷︸︸︷1

1



=

 f(na)

2 · f(nb) − f(na)



= 2 · f(nb) ·

↕︷︸︸︷0

1

−f(na) ·

↖↘︷ ︸︸ ︷−1

1


.

(A.12)
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A.2.3. Oblique Propagation

a

p

q

b

inE

45°

Figure A.7: A diagram of the vectors used in the toy example. An arbitrary input electric
field, Ein, is shown in red. a⃗ and b⃗ (purple) are the non-orthogonal eigenmodes, linearly
horizontal and linear diagonal light at 45◦ respectively. p⃗ and q⃗ (blue) are the invariant
polarisations, linearly vertical and linear diagonal light at −45◦ respectively. Note that
each invariant polarisation is orthogonal to one eigenmode which eq. A.16 shows is a
general principle across Faraday, Voigt and oblique systems.

While we have input eigenmodes in both cases, neither case is an example of an

invariant propagation. The two entries, x and y of the input Jones vector have

been modified in the output by different factors and as such the output polarization

state is different to the input. In both cases, we are able to decompose the output

polarization into a linear combination of the same polarizations, linearly vertical

and linear diagonal light at −45◦. These are in fact the invariant polarisations of

the system. We input linearly vertical light (eq. A.13) and linear diagonal light at

−45◦ (eq. A.14) into the system,
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A.2.4. General Expression for Invariant Polarisations

 f(na) 0

f(nb) − f(na) f(nb)

 ·

0

1



=

 0

f(nb)



= f(nb) ·

0

1


,

(A.13)

 f(na) 0

f(nb) − f(na) f(nb)

 ·

−1

1



=

−f(na)

f(na)



= f(na) ·

−1

1


,

(A.14)

and prove they are indeed invariant polarisations. While the non-orthogonal eigen-

mode system constructed is a toy example, the general principle that the invariant

polarisations and the eigenmodes are not one and the same holds in the oblique

geometry. For more information on the constraints on eigenmodes in the oblique

geometry, see Section A.6.

A.2.4 General Expression for Invariant Polarisations

An invariant polarisation when propagated cannot be acted upon by functions of

both refractive indices otherwise a relative phase may be applied to the electric

field leading to polarisation transformation. Hence, a polarisation is invariant if

it is orthogonal to one of the eigenmodes. This leads to the general expression to

find the invariant polarisations, p⃗ and q⃗, in terms of the entries in the eigenmodes,

a⃗ and b⃗,
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A.2.4. General Expression for Invariant Polarisations

p⃗ =

−a ∗2

a ∗1


,

q⃗ =

−b ∗2

b ∗1


,

(A.15)

a⃗ =

a1

a2


,

b⃗ =

b1

b2


,

(A.16)

where ∗ incidates the complex conjugate. This is a general expression applicable

to the Faraday, Voigt and oblique geometries. In the Faraday and Voigt cases,

since the eigenmodes are mutually orthogonal, each eigenmode is the invariant

polarisation of the other eigenmode. The reader can verify that the invariant po-

larisations in the toy example (Section A.2.3) are indeed those described in eq A.16.

This fact can also be seen visually in Fig. A.7. We say that the invariant polar-

isations and the eigenmodes, if normalised, together form a biorthogonal system

[358, 359, 360, 361].
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A.3. Faraday-Voigt and Voigt-Faraday Filters Have Equivalent Outputs

A.3 Faraday-Voigt and Voigt-Faraday Filters Have

Equivalent Outputs

Faraday‐

Voigt 

Filter P.D./2

/2

Cell 1 Cell 2

B1 B2

GTPGTP
BS

M

50:50

Voigt‐

Faraday 

Filter P.D.Cell 1Cell 2

B1B2

GTPGTP

@ T1

@ T1@ T2

@ T2

β°

β°

(β+90)°

(β+90)°

Figure A.8: A diagram of a Faraday-Voigt filter and a Voigt-Faraday filter with equivalent
outputs. In the blue box, the Faraday-Voigt filter is composed of two cells with cell lengths
L1 and L2 at temperatures and magnetic fields Ti and Bi. The first cell is in the Faraday
geometry and the second is in the Voigt with both cells between two crossed polarisers.
The first polariser is rotated out of the page by angle β◦. In the yellow box, the Voigt-
Faraday filter is composed of cells with the same parameters as in the Faraday-Voigt filter
but with their positions interchanged. As such the first cell is in the Voigt geometry and
the second is in the Faraday. Once again, the cells are between crossed polarisers which
are both rotated 90◦ out of the page relative to the orientation of the polarisers in the
Faraday-Voigt filter. Alternatively, one can interchange the positions of the polarisers. M
— Mirror, BS — Beamsplitter, GTP — Glan-Taylor Polariser, P.D. — Photodetector.

In Chapter 3, it is stated that a Faraday-Voigt filter has the same output as a

Voigt-Faraday filter where the positions of cells are interchanged as well as the

positions of the polarisers. In this section, we prove this statement for the specific

case where linearly horizontal/vertical light is input into the Faraday-Voigt/Voigt-

Faraday cell, and more generally. We plot the theory intensity curves of the two

filter setups and comment on the role of the Voigt cell in each filter and its effect

on the filter profile.

Fig. A.8 shows an example experimental setup for the two filters. Note for clarity,

when the cell positions are interchanged, the parameters of each cell are unchanged

such that the first cell in sequence now has a temperature of T2 and the second,

T1.
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A.3.1. Specific Case

In a two-cell cascade, the output electric field is given by applying two propagation

matrices, Pi, one for each cell,

Eout =
P1,2︷ ︸︸ ︷

P2 · P1 ·Ein, (A.17)

where P1 and P2 are the propagation matrices of the first and second cells respec-

tively (defined in eq. A.4) and P1,2 is the resultant propagation matrix from both

cells. For a Faraday cell followed by a Voigt cell and a Voigt cell followed by a

Faraday cell, PF,V and PV,F respectively are,

PF,V =

g(na) 0)

0 g(nb)

 · 1
2

 f(na) + f(nb) −i(f(na) − f(nb))

i(f(na) − f(nb)) f(na) + f(nb)



= 1
2

 g(na) · (f(na) + f(nb)) −i · g(na) · (f(na) − f(nb))

i · g(nb) · (f(na) − f(nb)) g(nb) · (f(na) + f(nb))


,

(A.18)

PV,F = 1
2

 f(na) + f(nb) −i(f(na) − f(nb))

i(f(na) − f(nb)) f(na) + f(nb)

 ·

g(na) 0

0 g(nb)



= 1
2

 g(na) · (f(na) + f(nb)) −i · g(nb) · (f(na) − f(nb))

i · g(na) · (f(na) − f(nb)) g(nb) · (f(na) + f(nb))


.

(A.19)

PF,V ̸= PV,F (A.20)

A.3.1 Specific Case

We start with a specific case where horizontal linear light is input into a Faraday-

Voigt filter and we post-select for vertical light using a vertical polarizer (as defined

in Table A.2):
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A.3.1. Specific Case

Eout =

0 0

0 1

 · 1
2

 g(na) · (f(na) + f(nb)) −i · g(na) · (f(na) − f(nb))

i · g(nb) · (f(na) − f(nb)) g(nb) · (f(na) + f(nb))

 ·

↔︷︸︸︷1

0



=

0 0

0 1

 · 1
2 ·

 g(na) · (f(na) + f(nb))

i · g(nb) · (f(na) − f(nb))



= 1
2 · i · g(nb)((f(na) − f(nb)) ·

↕︷︸︸︷0

1


.

(A.21)

We similarly model a Voigt-Faraday filter where vertically linear light is input and

we post-select for linear horizontal light using a horizontal polarizer (see Table

A.2):

Eout =

1 0

0 0

 · 1
2

 g(na) · (f(na) + f(nb)) −i · g(nb) · (f(na) − f(nb))

i · g(na) · (f(na) − f(nb)) g(nb) · (f(na) + f(nb))

 ·

↕︷︸︸︷0

1



=

1 0

0 0

 · 1
2 ·

−i · g(nb) · (f(na) − f(nb))

g(nb) · (f(na) + f(nb))



= −1
2 · i · g(nb)((f(na) − f(nb)) ·

↔︷︸︸︷1

0


.

(A.22)

Given we are interested in filter transmission, we calculate the intensity I ∝ |Eout|2

and find that both filters have the same intensity value proving the equivalent filter

outputs in this case,
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A.3.2. General Proof

A.3.2 General Proof

We now generalise this equivalence and prove that the output from a Faraday-Voigt

filter with first polariser set at β◦ rotating out of the page, (see Fig. A.8), is the

same as the output from a Voigt-Faraday filter with first polariser set at (β+ 90)◦.

In our Faraday-Voigt filter, we input linear light, Erot, at an angle β to the hori-

zontal axis and we define a crossed polariser at (β + 90)◦, Vrot. We create these

objects by applying appropriate rotation matrices to linearly horizontal light and

a vertical polarising matrix respectively:

Erot =

cosβ − sin β

sin β cosβ

 ·

1

0

 =

cosβ

sin β


,

(A.23)

Vrot =

cosβ − sin β

sin β cosβ

 ·

0 0

0 1

 ·

cosβ − sin β

sin β cosβ


−1

=

 sin2 β − cosβ · sin β

− cosβ · sin β cos2 β


.

(A.24)

Substituting these rotated values into A.17 we obtain,

Eout =

 sin2 β − cosβ · sin β

− cosβ · sin β cos2 β

 · PF,V ·

cosβ

sin β


= 1

2[f(nb)(cosβ + i sin β)(g(na) sin β + ig(nb) cosβ)

−f(na)(i sin β − cosβ)(g(na) sin β − ig(nb) cosβ)]

− sin β

cosβ


.

(A.25)

For the generalised Voigt-Faraday filter, we input linear light at (90 + β)◦ to the

horizontal axis and set the second polariser at β. To obtain these expressions, we

apply rotation matrices in the same way as in A.23 and A.24 to linearly vertical

light and a horizontal polarising matrix respectively. Substituting into A.17 again,

we derive a similar result,
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A.3.3. Comparing the Role of the Voigt Cell in Both Filters

Eout =

 cos2 β − cosβ · sin β

− cosβ · sin β sin2 β

 · PV,F ·

− sin β

cosβ


= 1

2[f(nb)(cosβ + i sin β)(g(na) sin β + ig(nb) cosβ)

−f(na)(i sin β − cosβ)(g(na) sin β − ig(nb) cosβ)]

cosβ

sin β


.

(A.26)

The prefactors in the output electric field for both A.25 and A.26 are the same. As

such squaring the output electric field to find the intensity yields the same value

for both cases since sin2 β + cos2 β = 1 ■

A.3.3 Comparing the Role of the Voigt Cell in Both Filters

Fig. A.9 shows theoretical intensity curves for the two filters as described in eqs.

A.21 and A.22 showing the outputs after each cell and the final polariser. A key

conclusion in Chapter 3 was that in the Faraday-Voigt filter, the Faraday cell

rotates the plane of polarisation while the Voigt cell absorbs away from line-centre.

Fig. [Ref Chapter 3] showed that while the Voigt cell also had a dispersive effect on

the propagating light, it did not contribute to the final filter output. In the Voigt-

Faraday filter, linearly vertical light — which is a Voigt eigenmode — is input

into the Voigt cell and therefore the Voigt cell only absorbs in this case. Fig. A.9

shows the difference in the transmission profiles after the second cell highlighting

the all-absorbing role vs absorbing with some dispersion role the Voigt cell plays.

However, given the filter outputs are equivalent, we have shown again that the

dispersive role of the Voigt cell does not contribute to the final filter.
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A.4. Faraday-Faraday Wing Filter with Equivalent Filter Outputs

D-line T1 (◦C) B1 (G) T2 (◦C) B2 (G) L1 (mm) L2 (mm)
D2 100 162 121 2528 5 5

Figure A.9: Theoretical intensity curves for outputs at different stages of the Faraday-Voigt
and Voigt-Faraday natural abundance Rb filters modelled using ElecSus. Parameters are
given in the table. The columns depict the transmission seen if a photodetector is placed
after the first (red) and second (blue) cells and if it is placed after the crossed polariser
(purple). Residuals are shown for the final two columns. After the second cell, both filter
outputs have similar shapes but are not the same due to the additional dispersive properties
of the Voigt cell in the Faraday-Voigt case. However, both setups lead to equivalent filter
output demonstrating that the dispersive properties of the Voigt cell do not contribute to
the filter profile. The disagreement between the two final filter curves is very small and
can most likely be attributed to computational floating point arithmetic error [362, 363].

A.4 Faraday-Faraday Wing Filter with Equivalent

Filter Outputs

In Chapter 3, it is stated that the described Faraday-Faraday filter has the same

output as a Faraday-Faraday filter with optics and cells rearranged as shown in Fig.

A.10. In other words, one can Zeeman select for positively/negatively detuned light
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A.4. Faraday-Faraday Wing Filter with Equivalent Filter Outputs

and rotate the plane of polarisation of the light in either order and arrive at the

same filter profile. In this section, we prove this statement and plot theory intensity

curves comparing the two filter setups.

Zeeman

Selector

Second

Filter P.D.
/2 /4

/4/4/2

Cell 1 Cell 2

B1 B2

GTPGTP

GTP

BS

M

50:50

Zeeman

Selector

First

Filter P.D.
Cell 1Cell 2 GTP

@ T1

@ T1@ T2

@ T2

β°

β°

(β+90)° (β+45)°

B2 B1
(β+90)°(β+45)°(β-45)°

Figure A.10: A diagram of two Faraday-Faraday filters with equivalent outputs, one where
the Zeeman selector follows rotation of the plane of polarisation and the other when the
Zeeman selector precedes it. In the blue box, the Faraday-Faraday filter is composed of
two cells with cell lengths L1 and L2 at temperatures and magnetic fields Ti and Bi with
both cells in the Faraday geometry. The light passes through the first cell between crossed
polarisers with first polariser rotated β◦ out of the page. The light then passes through a
quarter waveplate set at (β + 45)◦ before passing through the second cell. In the yellow
box, the cells with the same parameters are used but with their order swapped. The light
passes through a quarter waveplate at (β − 45)◦ before being directed into Cell 2. The
light passes through a second waveplate at (β + 45)◦ before passing through Cell 1. M —
Mirror, BS — Beamsplitter, GTP — Glan-Taylor Polariser, P.D. — Photodetector.

In Fig. A.10, light of an arbitrary polarisation is directed into each experiment. In

the Zeeman Selector Second filter, the light is first polarised to be linear by passing

through a Glan-Taylor polariser (GTP). Having exited the second GTP, the light is

directed through a quarter waveplate where it becomes left handed before entering

the second cell. In the Zeeman Selector First experiment, light passing through

the GTP and the quarter waveplate ensures the light entering Cell 2 is also left

handed before it is converted back to linear light by the second quarter waveplate.

Note that if we want to select for the other wing and direct right handed light into

the Zeeman selector, two equivalent filters can be acheived by swapping quarter

waveplates at (β + 45)◦ for (β − 45)◦ and vice versa.
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A.4.1 General Proof

Noting that the he rotation angle experienced for linear input in a Faraday cell is

independent of β, we can choose to prove this statement for a specific value and

it will hold in general. We set β = 0 and therefore after the first polariser in each

filter have linearly horizontal light. From eq. A.5, we define PF1 and PF2 , the

Faraday cell propagation matrices for Cell 1 and 2 respectively,

PF1 = 1
2

 f(na) + f(nb) −i(f(na) − f(nb))

i(f(na) − f(nb)) f(na) + f(nb)


,

(A.27)

PF2 = 1
2

 g(na) + g(nb) −i(g(na) − g(nb))

i(g(na) − g(nb)) g(na) + g(nb)


.

(A.28)

Using Jones vectors and matrices defined in Tables A.1 and A.2, we calculate the

filter output from the Zeeman Selector Second filter,

Eout = PF2 · 1
2

1 + i 1 − i

1 − i 1 + i

 ·

0 0

0 1

 · PF1 ·

1

0



= 1
4 · g(na) · (f(na) − f(nb))

1 + i

i − 1


,

(A.29)

and from the Zeeman Selector First filter,

Eout =

0 0

0 1

 · PF1 · 1
2

1 + i 1 − i

1 − i 1 + i

 · PF2 · 1
2

1 + i i − 1

i − 1 i + 1

 ·

1

0



= −1
2 · g(na) · (f(na) − f(nb))

0

1


,

(A.30)

Noting that,
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∥∥∥∥∥∥∥
 0

−1


∥∥∥∥∥∥∥ = 1,

∥∥∥∥∥∥∥
1 + i

i − 1


∥∥∥∥∥∥∥ = 2. (A.31)

We find the intensity squared values of the two configurations are the same proving

the statement,

IF1,F2 = IF2,F1 = 1
2 · g(na)2(f(na − f(nb))2. ■ (A.32)

A.4.2 Comparing the Two Filter Setups

Fig. A.11 shows theoretical intensity curves for the two filters as described in eqs.

A.29 and A.30 showing the outputs after each cell and the final polariser. The roles

of Zeeman selector and rotator are independent and commute.
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D-line T1 (◦C) B1 (G) T2 (◦C) B2 (G) L1 (mm) L2 (mm)
D2 86 49 110 747 75 5

Figure A.11: Theoretical intensity curves for outputs at different stages of the Zeeman
Selector Second (blue box in Fig. A.10) and the Zeeman Selector First (yellow box in Fig.
A.10) natural abundance Rb filters modelled using ElecSus. Parameters are given in the
table below. The columns depict the transmission seen if a photodetector is placed after
the first (red) and second (blue) cells and if placed after the crossed polariser (purple).
The difference between the two filters’ intensity curves are shown for the final filter output.
The disagreement between the two final filter curves is very small and can most likely be
attributed to computational floating point arithmetic error [362, 363].

A.5 Propagation with Magnetic Field at a

Supplementary Angle to the k-vector

In Chapter 4, a Double Pass filter design is proposed and realised. Two passes

through the vapour cell are made, the first at an arbitrary angle α to the magnetic

field and the second at an angle α∗ = (180 − α)◦, the supplementary angle to α

[364]. It is claimed that the two passes between crossed polarisers have the same
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Figure A.12: A visualisation to aid in understanding how a pass at angle α differs from
its supplementary angle α∗ = (180 − α)◦. Panel a) shows the cell in the Double Pass filter
realised in Chapter 4. The propagation direction of the light on each pass is indicated by
the k-vector. b) re-frames the situation by depicting the second pass as making an angle α
with −k⃗. Panels c) and d) demonstrate the effect of viewing polarisations in the opposite
direction to the k-vector using a clockface. With k pointing towards us, we view the clock
hand moving clockwise but looking at the clock from behind, and with k⃗ pointing away
from us, the clock hand appears to be moving anti-clockwise.

filter output. In this section, we prove the smaller claim that the two passes have

the same S0 value if either linearly horizontal or vertical light is input on both

passes. With this claim, we prove the full statement in the next section (Section

A.6).

We consider the Double Pass filter to offer intuition on the problem. Panel a) in

Fig. A.12 shows a ray trace of the Double Pass setup. Panel b) shows an alternative

way of viewing the situation with the second pass having the same magnetic field

angle α as the first pass between the magnetic field and a vector pointing opposite

to the k-vector, −k⃗.

With regards to −k⃗, the relevant point to observe polarisation is not towards the
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source but from the source which means that left/right handed light (relative to

k) is observed as right/left handed light (relative to -k). Similarly, diagonal light

at 45◦ is observed at −45◦ relative to −k⃗. Given that the passes are otherwise

identical, assuming the parameters do not change across the volume of the cell, the

two passes are equivalent upon interchanging the hand of the input light. Since

linearly horizontal and vertical light do not depend on whether the observer looks

from or towards the source, we have proved the claim.

Note that this claim can also be applied generally to the Faraday and Voigt geome-

tries where the supplementary magnetic field angles to the k-vector are 180◦ and

90◦. Note in the Voigt case, the supplementary angle is the same as the original

angle.

A.6 Linearly Horizontal and Vertical Filters are

Equivalent

Horizontal

Linear Input

Filter P.D.

Vertical 

Linear Input

Filter P.D.

/2 Cell 1

B1

GTPGTP
BS

M

50:50 θ
0° 90°

/2 Cell 1

B1

GTPGTP

θ
90° 0°

Figure A.13: A diagram of two filters constructed from a cell in any geometry between
two crossed polarisers. The parameters for the cell in both filters are the same. In the
blue box, the first polariser is set to 0◦ rotation out of the page ensuring light input into
the cell is linearly horizontal. In the yellow box, the first polariser is set to 90◦ outputting
vertical linear light. M- Mirror, BS - Beamsplitter, GTP -Glan-Taylor Polariser, P.D. -
Photodetector.
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A.6.1. Unitary Matrix Lemma

In the previous section, we proved the claim that if linearly horizontal light is

input into both passes of the Double Pass cell, the S0 values will be the same.

In this section, we upgrade this claim, by showing that the two passes in the

Double Pass filter give the same output. In doing so, we derive a constraint on the

eigenmodes valid for all geometries. We plot theory curves to show the effect of

input polarisation on filter output in different geometries.

In the Double Pass filter, the input into the first pass is polarised linearly hori-

zontal before passing through a crossed polariser, it returns for a second pass in a

linearly vertical state before passing through another crossed polariser. To prove

the statement, we need to show the two filters depicted in Fig. A.13 are equivalent.

A.6.1 Unitary Matrix Lemma

In this proof, we will need to make use of the fact that the normalised matrix,

R/|det(R)| (defined in eq. A.2), is unitary since it is a change-of-basis matrix

[365],

R · R† = R† · R = |det(R)| · I, (A.33)

where I is the 2 x 2 identity matrix. Consider the Faraday and Voigt change of

basis matrices as examples:

1 −i

1 i

 ·

1 1

i −i

 =

1 1

i −i

 ·

1 −i

1 i

 = 2 ·

1 0

0 1


,

(A.34)

1 0

0 1

 ·

1 0

0 1

 =

1 0

0 1


.

(A.35)

This implies a constraint on the values of R:
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R−1 = R†

|det(R)| ,

=⇒ 1
a∗1b
∗
2 − a∗2b

∗
1

 b∗2 −a∗2

−b∗1 a∗1

 = 1
|a1b2 − a2b1|

a1 b1

a2 b2


,

=⇒ a1b1 = a2b2,

(A.36)

where we have assumed, without loss of generality, that a1 and b1 are real and a2

and b2 are complex since any polarisation state can be written as a Jones vector

with a real x-entry and a complex y-entry. We can do this since different R can

lead to to the same propagation matrix, P, as we act again with R−1. We will use

this constraint in the general proof.

A.6.2 General Proof

We want to prove the following statement:

||P↕ · P · E↔|| = ||P↔ · P · E↕||, (A.37)

where P↕ and P are vertical and horizontal linear polarisers, P is the propagation

matrix defined in A.4 and E↕ and E↔ are horizontal and vertical linear inputs

respectively. Note in this equivalence the two filters have the same cell in the

same geometry with the same parameters. All we are changing between the two

situations is the input electric field and the orientation of the polariser to cross the

initial polarisation.

The propagation matrix, P, is general as we have not defined a geometry. The left

and right hand side of A.37 are:
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Eout =

0 0

0 1

 ·

A B

C D

 ·

↔︷︸︸︷1

0



=

↕︷ ︸︸ ︷0

C


,

(A.38)

Eout =

1 0

0 0

 ·

A B

C D

 ·

↕︷︸︸︷0

1



=

↔︷ ︸︸ ︷B
0


.

(A.39)

In order for the two intensities (∝ |Eout|2) to be equal we require |B| = |C|. We

expand the general propagation matrix in terms of its definition in eq. A.4,

A B

C D

 = R−1 · T · R

= 1
a∗1b
∗
2 − a∗2b

∗
1

 b∗2 −a∗2

−b∗1 a∗1


f(na) 0

0 f(nb)

 ·

a∗1 a∗2

b∗1 b∗2



= 1
a∗1b
∗
2 − a∗2b

∗
1

a∗1b∗2f(na) − a∗2b
∗
1f(nb) a∗2b

∗
2(f(na) − f(nb))

−a∗1b∗1(f(na) − f(nb)) a∗1b
∗
2f(nb) − a∗2b

∗
1f(na)


.

(A.40)

We can read off that for |B| = |C| we need,

|a2b2| = |a1b1|. (A.41)

This is satisfied using the unitary constraint developed in the last subsection. ■
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A.6.3 Brief Comments on Unitary Constraint

Asserting that R is unitary is a deeper statement since it determines a constraint

as to what eigenmodes are physically possible. In section A.2, we presented a toy

model of a non-orthogonal propagation but did not call it an oblique propagation.

This is because the eigenmodes did not form a unitary matrix and as such the

eigenmodes cannot represent an oblique cell propagation.

Note also that unitarity also implies that an analogous set of filters, one with left

hand circular input and one with a right hand input, also have equivalent outputs.

Using the definitions for circular polarisers in Table A.2,

Eout = 1
2

 1 i

−i 1

 ·

A B

C D

 ·

⟲︷︸︸︷1

i



= 1
2[A−D + i(B + C)] ·

⟳︷ ︸︸ ︷ 1

−i


,

(A.42)

Eout = 1
2

1 −i

i 1

 ·

A B

C D

 ·

⟳︷ ︸︸ ︷ 1

−i



= 1
2[A−D − i(B + C)] ·

⟲︷︸︸︷1

i


.

(A.43)

The two intensity outputs (∝ |Eout|2) are equivalent if B = −C which from eq.

A.40 requires the stronger condition:

a∗2b
∗
2 = a∗1b

∗
1 =⇒ a2b2 = a1b1. (A.44)
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The implication arises from the assumption we make again that a1 and a2 are real

and b1 and b2 are complex and we arrive at the unitary constraint. ■

A.6.4 Effect of Input Polarisation on Filter Profiles in Different

Geometries

Any Linear

,

,
, , ,
, ,
,,,

D-line T (◦C) B (G) L (mm)
D2 64 162 75

Figure A.14: Theory curves modelled in ElecSus of filter profiles for a natural abundance
Rb Faraday cell. Parameters stated in table. Note that all linear inputs give the same
filter ouput. Any handed polarisations give the same filter profile but with lower intensity.
The invariant polarisations, left and right hand circular light, give zero filter profile since
they are invariant and maintain their polarisation state through the propagation.

We plot theory curves of filter profiles in various geometries inputting different

polarisations. The curves are calculated using ElecSus [155, 156]. Note that in all

geometries linearly horizontal and vertical light give the same profile. The situation

is analogous for left hand and right hand circular light.
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, , ,
, , ,

,

,
*

*

*

, ,
,,,

* + Specific Linear Pol.

D-line T (◦C) B (G) L (mm)
D1 107 514 75

Figure A.15: Theory curves modelled in ElecSus of filter profiles for a natural abundance
Rb Voigt cell. Parameters stated in table below. Note that circular and diagonal light
give the highest filter output while linearly horizontal and vertical light give zero output
since they are invariant polarisations. Other polarisations give the same filter profile but
at different intensities. The yellow, red and blue curves could also be realised by four other
linear polarisations; two largely diagonal and two largely anti-diagonal polarisations. One
diagonal and anti-diagonal are evolving towards a horizontal state and the other diagonal
and anti-diagonal are evolving towards a vertical state.
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,

D-line T (◦C) B (G) θ (◦) L (mm)
D2 99 226 87 75

Figure A.16: Theory curves modelled in ElecSus of filter profiles for a natural abundance
Rb Oblique cell. Parameters stated in table. Note that unlike the Faraday and Voigt cases,
the different polarisations result in different filter profiles.
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,

,

,

D-line T (◦C) B (G) θ (◦) L (mm)
D2 99 226 87 75

Figure A.17: Theory curves modelled in ElecSus of filter profiles for a natural abundance
Rb oblique cell. Parameters stated in table. Note that unlike the Faraday and Voigt cases,
the different polarisations result in different filter profiles.

A.7 Open Question: Propagation at an Exceptional

Point

In Chapter 5, we introduced the concept of an exceptional point, a point in pa-

rameter space where the refractive indices become degenerate and the propagation

eigenmodes coallesce. In this section, we present good practice when computing

propagation near an exceptional point. We also pose an open problem with regards

to propagation of light at an exceptional point.
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inE
inE

b a, ba, b

a) b)

inE.a ,inE

?

.

Figure A.18: A visualisation of the paradox of propagation using Jones Calculus at an
exceptional point. Panel a) depicts an arbitrary input electric field, Ein, in red alongside
two coallescent eigenmodes, a⃗ and b⃗. Panel b) decomposes the vector in the same way as
shown in panel b) of Fig. A.3. In this case, the input electric field is decomposed twice
on to the same vector, once with respect to a⃗ and once with respect to b⃗. However, there
exists a vector component orthogonal to the eigenmodes labelled with a question mark
that is not used in the propagation calculation. This is a seemingly non-physical or at best
counter-intuitive result.

Eigenmode coallescence can only occur in oblique geometries where the eigenmodes

are permitted to be non-orthogonal. Near an exceptional point in parameter space,

the normalised dot product of the propagation eigenmodes increases towards one.

From a theoretical Jones Calculus perspective, whether near or far away from an

exceptional point, propagation can be calculated as described in section A.1. Even

very nearly coallescent eigenmodes remain linearly independent and as such span

the 2D polarisation space [366, 367].

From a more practical computational perspective, as exploited in Chapter 6, small

changes in parameter can result in large changes to spectral features near an ex-

ceptional point. Numerical stability of solutions can be understood and mitigated

using numerical analysis [368, 369]. A new Python package, PyTracer [370], has

recently been developed to analyse common Python tools such as SciPy [371] for

numerical noise. Robust implementations of these tools in ElecSus or other theo-

retical models is beyond the scope of this thesis.
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However, at an exceptional point, where the normalised dot product of the propaga-

tion eigenmodes is 1, the propagation method breaks down. For example, consider

a system where the eigenmodes coallesce on to left hand circular light. Following

section A.1, we construct the matrix RE.P.:

RE.P. =

⟲,⟲︷ ︸︸ ︷1 −i

1 −i


.

(A.45)

This matrix now fails to be a change-of-basis matrix as it is no longer unitary when

normalised:

RE.P. · R†E.P. =

1 −i

1 −i

 ·

1 1

i i

 = 2

1 1

1 1


.

(A.46)

If we input an orthogonal polarisation, right hand circular light, we arrive at a

counter intuitive answer,

RE.P. =

1 −i

1 −i

 ·

⟳︷ ︸︸ ︷ 1

−i

 = 0,
(A.47)

implying that the light is extinguished/scattered on contact with the medium. Fig.

A.18 visualises this paradox using the same framework as the earlier Fig. A.3. This

is an open question not tackled in this thesis.

There are some candidate solutions to this problem. Perhaps exceptional points can

never be reached in our systems thus suggesting A.47 is non-physical. Appendix B

presents the oblique eigenvalue solutions alongside the condition for an exceptional

point. In this research, we have not yet found a physical criterion that would

exclude this condition from holding. Rejecting these solutions on the basis of lack
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A.7. Open Question: Propagation at an Exceptional Point

of unitarity is compelling. However, given that the dimensionality of the problem

decreases from 2D to 1D, we ought to expect the physics to fail to be linear at this

point.

Perhaps eq. A.47 has a more intuitive consequence. It may merely imply the

polarisation is not refracted and its propagation must be calculated through other

means. Potentially the framework of Jones Calculus breaks down at an exceptional

point. We leave this as an area for others to explore.
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Appendix B

Wave Equation Solutions

Author completed all theoretical computations, collected and processed all

data and created all figures presented in this appendix. We make use of Alex

Webber’s wave equation solutions [252] as well as other published solutions

[156, 249]. All text written without the use of AI. Work is related to the

published articles:

F. S. Ponciano-Ojeda, F. D. Logue, and I. G. Hughes, ‘Absorption spectroscopy

and Stokes polarimetry in a 87Rb vapour in the Voigt geometry with a 1.5 T

external magnetic field’, Journal of Physics B: Atomic, Molecular and Optical

Physics, 54(1):015401, 2020. https://doi.org/10.1088/1361-6455/abc7ff

[1]

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes,

‘Exploiting non-orthogonal eigenmodes in a non-Hermitian optical system to

realize sub-100 MHz magneto-optical filters’, arXiv Preprint, 2303.00081, 2023.

https://doi.org/10.48550/arXiv.2303.00081 [5]

In 4.1, we stated that general eigenmode and refractive index solutions had been

derived on multiple occasions [372, 373, 374, 375, 376, 377, 357, 250, 249, 207, 156].

Despite this, only four oblique magneto-optical filters had ever been realised ex-

perimentally [148, 207, 208, 64]. We proposed that the difficulty interpreting the
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B.1. Webber’s Analytic Solutions

birefringent and dichroic qualities of the vapour from these solutions alongside ex-

perimental challenges were a hindrance to further work. Chapter 4 served as a step

towards overcoming these issues. However, upon exploring more exotic features of

the oblique geometry, including propagation near a exceptional point of degener-

acy in 5, we found disagreement between theory and experiment. Having seemingly

also found a paradox in A.7 when calculating output electric fields at exceptional

points, we might want to call the validity of these solutions into question.

In this appendix, we state the analytic solutions, derived by masters student Alex

Webber, that have been used to calculate oblique theory curves throughout this

thesis. We compare these solutions against the numerical method built into Elec-

Sus and a previous set of analytic solutions from [249]. Most key, all three solu-

tions show excellent agreement for the Oblique-Voigt filter profile realised in 4.4.1

suggesting our theoretical framework is reliable for the oblique field experiments

conducted in this thesis. In addition, all three show avoided crossings and adia-

batic swaps in the refractive index solutions. We show that Webber’s solutions are

competitive in terms of computation time and numerical stability. We commend

Webber’s solutions as the best candidates currently available to be used, extended

or modified in continued oblique field studies.

B.1 Webber’s Analytic Solutions

We define the permittivity tensor elements, ϵi, in terms of the susceptibilities due

to σ+/− and π transitions, χσ+/− and χπ respectively [378],

ϵx = ϵ0
2 (2 + χσ+ + χσ−),

ϵxy = iϵ0
2 (χσ− − χσ+),

ϵz = ϵ0(1 + χπ),

(B.1)
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B.1. Webber’s Analytic Solutions

with the permittivity of free space represented by ϵ0. We want to solve this matrix

equation posed in [207]:


( ϵx

ϵ0
− n2) cos θ ϵxy

ϵ0
ϵx
ϵ0

sin θ

− ϵxy

ϵ0
cos θ ϵx

ϵ0
− n2 − ϵxy

ϵ0
sin θ

(n2 − ϵz
ϵ0

) sin θ 0 ϵz
ϵ0

cos θ

 ·


Ex

Ey

0

 = 0. (B.2)

Ex and Ey are the components along x- and y- for some electric field vector.

For more details, consult the original paper. Webber’s solutions for the refractive

indices, na and nb are:

n2
a,b = A±

√
B

C
, (B.3)

A = 2 · ϵxϵz + (ϵ2x − ϵxϵz + e2
xy) sin2 θ,

B = (ϵ2x − ϵxϵz + ϵ2xy)2 sin4 θ − 4 · ϵ2xyϵ
2
z cos2 θ,

C = 2 · (ϵx sin2 θ + ϵz cos2 θ).

(B.4)

The eigenmodes associated with na and nb, a⃗ =

a1

a2

 and b⃗ =

b1

b2

 respectively

are:

a1 = D

(B − 2 · ϵxϵz) csc2 θ − E
, (B.5)

b1 = −D
(B + 2 · ϵxϵz) csc2 θ + E

, (B.6)

a2 = F (G−2·ez(ex+ez) cot2 θ−2·e2
z cot4 θ−(B−2·exez) csc2 θ) sin θ

(e2
x+e2

xy−3·exez−2·e2
z cot2 θ−(B−2·exez) csc2 θ)(H+2·exez cot2 θ+(B−2·exez) csc2 θ) , (B.7)

b2 = F sin3 θ(B+2·exez+ez(−ex−2·ez+ex cos 2θ) cot2 θ+G sin2 θ)
(B+2·exez−2·e2

z cos2 θ+G sin2 θ)(−B−2·exez+2·exez cos2 θ+H sin2 θ) , (B.8)
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D = 2 · ϵz cot θ(ϵx + ϵz cot2 θ),

E = ϵ2x − ϵ2xy + 3 · ϵxϵz + 2 · ϵ2z cot2 θ,

F = 2 · exy(ex + ez cot2 θ),

G = e2
x + e2

xy − 3 · exez,

H = e2
x − e2

xy + exez.

(B.9)

These solutions were obtained using Mathematica’s NullSpace function [159].

B.2 Comparison with ElecSus numerical solutions

The python numerical solver imported by the extended version of ElecSus [156]

can also calculate oblique eigenmodes and refractive indices. Using the linsolve

function in SymPy [379], ElecSus finds refractive index solutions to eq. B.2 before

calculating the eigenvectors using the linalg.eig function from NumPy [380].

The ElecSus solutions amongst other numerical solvers have offered advantages

given that oblique calculations can be carried out without any prior knowledge of

the solutions. However, it has its shortcomings. Firstly, the numerical solutions

have long computation times. Tests on a Lenovo IdeaPad 5 with 2.4 GHz processor

and 8 GB RAM determined that Webber’s solutions [252] took on average 4.5±0.1

seconds to compute 100 oblique spectra. On the other hand, the ElecSus numerical

solver took 575±5 seconds to do the same. Full computation test results are plotted

in Fig. B.7.

Of more concern, the numerical solutions can predict obviously unphysical be-

haviour. We first realised this while studying 1 mm 99% isotopically pure 87Rb

cells in high magnetic fields (up to 1.5 T) [1]. These experiments were conducted

in the Voigt geometry (θ = 90◦) but we were interested as to whether error in θ

might cause significant change to the spectra. We consider some of these examples

in Figs. B.1 and B.2. Fig. B.2 shows numerically calculated theory curves with

transmission higher than 100% for detunings far from resonance. Alongside this,
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the curves becomes noisy with the extent of the error and noise profile dependent

on variables outside of the ElecSus package. The two panels in Fig. B.2 were

computed on different machines with different specifications and python packages.

Similarly, Fig. B.1 predicts smaller features, with some noise, that are not physi-

cal. In this case, some of the predicted features are less than 100% in transmission

which made it difficult to gauge if these were glitches or genuine physics. As such,

numerically generated results could not be used to explore tolerance on θ away from

the Voigt geometry due to doubts over reliability. For the same reason, numeri-

cally generated results should not be used to explore the sharp spectral features

associated with exceptional points.

S'0

Geometry θ (◦) D-line T (◦C) B (G) Inp. Pol.
Oblique 87 D2 70 15000 Diagonal at 45◦ ↗↙

Figure B.1: A theory S′
0 spectrum calculated using the numerical method in ElecSus for

light passing through a 1 mm 99% 87Rb cell with 600 MHz broadening. Parameters are in
table. The curve predicts small erroneous features at the points circled in red. Zoom-ins
of the features are shown in the insets which exhibit numerical noise.
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B.2. Comparison with ElecSus numerical solutions

1.001

S'0

S'0

a)

b)

Geometry θ (◦) D-line T (◦C) B (G) Inp. Pol.
Oblique 89.5 D2 70 800 Diagonal at 45◦ ↗↙

Figure B.2: Theory S′
0 curves calculated using the numerical method in ElecSus (green

and blue) and Webber’s analytic solutions (yellow and red) for light passing through a
1 mm 99% 87Rb cell with 600 MHz broadening. Parameters are in table. a) and b) were
calculated on two different computers with different python packages and versions installed.
The numerical solutions incorrectly predict more than 100% light output. The error is more
profound in a) showing the error is machine dependent. Both numerical curves show noise.

As discussed in A.7, exceptional points are highly sensitive to parameter changes
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B.2. Comparison with ElecSus numerical solutions

and hence our solutions need to be numerically stable [381, 382] i.e. small errors

in input shouldn’t propagate to large computational errors in output. One way

of measuring the stability of matrix calculations is by condition number [383, 384]

which is the maximum factor by which the relative error of the input to a calculation

(i.e. input electric field) will be multiplied to the relative error of the output (i.e.

output electric field) for a given calculation. It can be shown that the condition

number, C, of a matrix A, involved in a matrix calculation Ax = b is [385]:

C = ∥A∥ · ∥A−1∥ (B.10)

where A−1 is the inverse matrix of A. The norm ∥A∥ of the matrix in our studies

is defined as the maximum singular value of the matrix A. As a rule of thumb

a condition number of 10k will result in a loss of k decimal digits of precision.

Fig. B.3 plots the condition number for the propagation matrix P (see A.1), at

each frequency numerically and using Webber’s analytic solutions. Given that the

condition number must be a minimum of one, both computations appear to be

numerically stable by this metric with maximums of 1.18 and 1.07 computational

error to be expected for the spectra in panels a) and b) respectively.

Where the numerical solutions are reliable, we can us them to audit the predictions

of Webber’s solutions. Fig. B.4 shows that the numerical solutions predict the same

eigenvalues to 1 part in 1010 which also exhibit avoided crossings and adiabatic

swaps. Fig. B.5 shows predictions for light output from the 1st cell in the Oblique-

Voigt cascade realised in 4.4.1. While there are differences, the shapes are similar

and there is excellent agreement for the filter profile itself in panel c).
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B.2. Comparison with ElecSus numerical solutions

-5 

0 

5 x 10-4

a)

b)

Figure B.3: Plots of the Condition Number for the Propagation matrices, P, calculated
using the numerical method (blue) and Webber’s analytic solutions (red). a) corresponds
to the propagation matrices resulting in the profile in Fig. B.2 and b) with the profile in
Fig. B.1 which are shown as insets in purple. Parameters can be found in their respective
figures. The difference in the condition numbers is plotted below.
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B.2. Comparison with ElecSus numerical solutions

x 10-10

1

1

0.9998

0.9998

Geometry θ(◦) D-line T (◦C) B (G) Inp. Pol.
Oblique 86 D2 97 227 Lin Hor.↔

Figure B.4: The refractive indices for the 75 mm natural abundance Rb Oblique cell in the
Oblique-Voigt filter realised in 4.4.1 calculated numerically using ElecSus and analytically.
Parameters in the table. The difference between the two calculations of na and nb is
shown below. Both diagrams show an inset of an adiabatic swap at approximately +
3 GHz. All refractive index solutions are practically identical exhibiting avoided crossings
and adiabatic swaps.
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B.3. Comparison with Palik and Furdyna Analytic Solutions

Figure B.5: Theoretical curves computed using Webber’s analytic solutions (red) and nu-
merically using ElecSus (blue) for light entering the first 75 mm natural abundance Rb
cell of the Oblique-Voigt filter realised in 4.4.1. Parameters are in Fig. B.4. a), b) and
c) are plots of S′

0, Ix and Iy respectively with diagrams showing how these values can be
measured experimentally. c) is the filter profile of the Oblique-Voigt filter with the second
cell removed. Insets of the whole spectra are shown in purple with beige shading indicating
the regions considered in the main plots. The differences between the two solutions are
shown below.

B.3 Comparison with Palik and Furdyna Analytic

Solutions

We can find other complete sets of analytic solutions in the literature including

those by Palik and Furdyna [249]. Their refractive index solutions are exactly the

same as the Webber solutions. However, their eigenmode solutions are seemingly

much simpler. Once again, they start with eq. B.2. Rather than calculating the

null space explicitly, they read off the ratio relationships between the polarisation

components along the x- and y-direction. Therefore the eigenmodes, a⃗ =

a1

a2

 and

b⃗ =

b1

b2

 are represented by:

a1 = 1, (B.11)

a2 = ϵz(ϵx − n2
a) cos θ

ϵxy(ϵz − n2
a sin2 θ) , (B.12)

b1 = 1, (B.13)

b2 = ϵz(ϵx − n2
b) cos θ

ϵxy(ϵz − n2
b sin2 θ) , (B.14)

i.e. one polarisation component is set to be fixed while the other varies to generate

the correct polarisation state. 1

1We note that the authors incorrectly refer to these solutions as the waves ‘whose polarisation
does not change in the course of propagation’. These eigenmode solutions may not in general be
invariant (see 4.2.3).
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B.3. Comparison with Palik and Furdyna Analytic Solutions

Geometry θ(◦) D-line T (◦C) B (G) Inp. Pol.
Oblique 86 D2 97 227 Lin Hor.↔

Figure B.6: Plots of the Condition Number for propagation matrices computed using Palik
and Furdyna’s solutions (blue) and Webber’s solutions (red) for light moving through the
first 75 mm natural abundance Rb cell of the Oblique-Voigt filter. Parameters in table.
Vertical scale shown on the left. The filter profile is shown in purple with its vertical scale
on the right. Differences in the condition number plotted below. The values are similar for
the two solutions and are near one when there is filter transmission. Palik and Furdyna’s
condition number spikes at ∼ −2.5 GHz. This is due to the value of the eigenvector rapidly
growing in magnitude in this frequency range.

While this leads to a simpler expression, this could have implications for numerical

stability. Fig. B.6 plots the condition number for the propagation matrices P

at each frequency for the light moving through the first cell of the Oblique-Voigt

cascade as realised in 4.4.1. We note that both solutions have very similar condition

numbers and most importantly low condition numbers in the transmission regions.

However, the Palik and Furdyna solutions show a sharp spike in the condition

number at ∼ −2.5 GHz. Upon investigation, this was due to a large change in

magnitude of the eigenmode in that small frequency range. It would appear that
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B.3. Comparison with Palik and Furdyna Analytic Solutions

while setting one polarisation component to be fixed may be simple, it requires the

second component to rapidly change in response. While we have not investigated

any situations where the spikes in condition number result in parasitic effects, this

should be borne in mind with these solutions.

Figure B.7: A comparison of computation times for Webber analytic (red), Palik and
Furdyna analytic (blue) and the ElecSus numerical (gold) solutions. The vertical axis
measures time taken to perform 100 oblique field spectra. Mean values are plotted and error
bars are too small to be visible. Note the log10 scale. The numerical solution performed
so slowly for 100 detuning points, that we did not continue to measure its time scaling.
The two analytic solutions show very similar time scaling. The two fits lie on top of each
other and are largely linear with small quadratic and cubic contributions. The insets show
a zoom in of the first three analytic points. Computations were carried out on a Lenovo
IdeaPad 5 with i5 Gen Intel processor @ 2.4 GHz with 8 GB of RAM. Laptop was connected
to mains power throughout.
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B.4. Future Solutions

Figure B.8: Theoretical curves computed using Webber’s analytic solutions (red) and Palik
and Furdyna’s analytic solutions (blue) for light entering the 1st 75 mm natural abundance
Rb cell of the Oblique-Voigt filter realised in 4.4.1. Parameters are in Fig. B.6. a), b)
and c) are plots of S′

0, Ix and Iy respectively with diagrams showing how these values
can be measured experimentally. c) is the filter profile of the Oblique-Voigt filter with
the second cell removed. Insets of the whole spectrum are shown in purple with beige
shading indicating the region considered in the main plot. The differences between the two
solutions are shown below.

Besides this, in terms of computational speed, the two analytic solutions are on

par as shown in Fig. B.7. In addition, these solutions also confirm the oblique

refractive index properties (since the refractive indices are exactly the same). Fig.

B.8 shows plots of spectra computed using the two analytical methods for the first

cell in the Oblique-Voigt cascade. The agreement once again for the realised filter

profile is excellent.

B.4 Future Solutions

To summarise, we have good reason for using Webber’s solutions throughout. Its

key predictions are confirmed by two other sets of solutions. This includes concrete

predictions that led to excellent agreement between data and theory for the two

filters in Chapter 4, as well as the more speculative, with regards to exceptional

points of degeneracy. Webber’s solutions have competitive runtimes and have not

yet shown issues with regards to numerical stability for any filter that has been

experimentally realised. All this being said, there are still some points that need to

be considered. Firstly, we have only studied the condition number of the matrix P.

As this matrix includes both the transformation in and out of the eigenmode basis,

it would perhaps be more illuminating to also consider the condition numbers of

the change of basis matrices.

Additionally for the highly cusp like peak filters studied in Chapter 5, we do see

computational uncertainty resulting in large differences in prediction. Fig. B.9

shows evidence that standard computers may struggle to reliably predict filter
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B.4. Future Solutions

transmission at these highly coalescent features. The two spectra are both the

supposed filter output of the Webber filter yet one has a peak and the other has a

trough. Both are calculated using the same code but on different platforms. Nev-

ertheless, the feature predicted in both cases has a FWHM on the order of 10 MHz.

We have found computations across different platforms to be consistent in predict-

ing the existence of coalescent features even if they predict different behaviour.

a) b)

Figure B.9: Two spectra calculated using the Webber filter parameters. Both were com-
puted using the same code but the code in a) was called as an import package and in b)
was written directly in a jupyter notebook.

Fig. B.9 suggests there is some flaw in our computational process for coalescent

features. Perhaps the paradox in A.7 would suggest that the very nature of our

calculations may be flawed or needs amending in some way. Indeed, perhaps the col-

lapse of the cusp feature in b) is indicative of the instability of the physics involved.

This may encourage researchers to consider other formalisms such as perturbation

theory [386] or master equations [387] to continue investigations. Nevertheless, we

see Webber’s solutions as the best candidates presently to be used, modified or

extended in further research.
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Appendix C

Transition Projection Operators

Author derived all proofs presented in this appendix starting from the general

dipole matrix element expression [388]. All text written without the use of AI.

Work is related to the article:

F. D. Logue, J. D. Briscoe, D. Pizzey, S. A. Wrathmall, and I. G. Hughes,

‘Exploiting non-orthogonal eigenmodes in a non-Hermitian optical system to

realize sub-100 MHz magneto-optical filters’, arXiv Preprint, 2303.00081, 2023.

https://doi.org/10.48550/arXiv.2303.00081 [5]

Throughout this thesis we have emphasised that the direction of the applied mag-

netic field relative to the k-vector, or the geometry, of the system determines the

relationship between input polarisation and induced transitions. One such relation-

ship is given by the propagation eigenmodes. From Appendix A, the eigenmodes

form the change-of-basis matrix that transforms input polarisations to be acted on

by the appropriate refractive indices. This relationship implicitly relates polarisa-

tion input with transitions given that the refractive indices are calculated from the

individual transition susceptibilities (see B.1).

It is useful to have an implicit relationship since the electric dipole approxima-

tion [389, 390] assumes three polarisation sensitive transitions: σ+ (mJ = m′J + 1),

σ− (mJ = m′J − 1) and π (mJ = m′J) [215] whereas the vapours we have been
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C.1. Angular Part of Dipole Matrix Element

considering are birefringent i.e. described by two eigenmodes. In this appendix, we

derive the transition projection operators which give an explicit mapping between

polarisation state and transition(s).

C.1 Angular Part of Dipole Matrix Element

A non-zero dipole matrix element between initial state i and final state f deter-

mines the transition stength when electromagnetic radiation is incident [391, 392,

393, 238, 394, 395]. The angular part of the dipole matrix element dictates the

polarisation selection rules for each transition [388]. To begin, we exert a magnetic

field parallel to the k-vector of the light. Defining z as the direction of the k-vector,

the angular part of the dipole matrix element is,

M =
√

4π
3 ⟨l′m′l|

x̂+ iŷ√
2
Y1,1 + x̂− iŷ√

2
Y1,−1 + ẑ Y1,0|lml⟩. (C.1)

Yl,ml
(θ, ϕ) are spherical harmonic functions dependent on the orbital angular mo-

mentum l which is +1 for an electric dipole transition and the magnetic quantum

number ml [396, 397]. Given that electric dipole transitions do not alter spin (ms =

m′s), the spherical harmonic functions equate to changes in J = +1,mJ = 0,±1

or π and σ+/− transitions respectively. The prefactors composed of x̂, ŷ and ẑ

cartesian operators are the polarisation projections that will induce each transi-

tion. Figures. C.1, C.2 and C.3 define the co-ordinate axes in terms of the cell

orientation. Throughout these derivations, we will always rotate the cell (and the

co-ordinate axes) to change the geometry and keep the magnetic field direction

constant.
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C.2. Faraday Projection Operators

Faraday Cell

B

x

z

y

Figure C.1: A diagram defining the co-ordinate axes and relevant vectors for the Faraday
geometry. The k-vector (red) and the magnetic field (blue) points in the z-direction. x
points towards the top of the page while y points out of the page.

C.2 Faraday Projection Operators

Fig. C.1 defines the co-ordinate axes. We input plane waves in all our experiments.

Since a plane wave is polarised transversely, the waves are not polarised along z

and we can discard ẑ operators. Removing this term in C.1 gives the angular part

of the dipole matrix element for the Faraday geometry:

MF =
√

4π
3 ⟨l′m′l|

⟲︷ ︸︸ ︷
x̂+ iŷ√

2
Y1,1 +

⟳︷ ︸︸ ︷
x̂− iŷ√

2
Y1,−1|lml⟩. (C.2)

Using the conventions in Table A.1 and rewriting the operators as Jones vectors,

σ+/− transitions are induced by left/right hand circular light whilst π transitions

cannot be induced by a plane wave in the Faraday geometry. As highlighted in

Table 4.6, the Faraday eigenmodes/invariant polarisations and the projection op-

erators are the same polarisation states. Hence, each Faraday eigenmode when

inputted to a thermal vapour induces one transition.
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C.3. Voigt Projection Operators

Voigt Cell

   
B

x

z

y

Figure C.2: A diagram defining the co-ordinate axes and relevant vectors for the Voigt
geometry. The k-vector (red) points in the z-direction as it did for the Faraday cell in Fig.
C.1. The magnetic field (blue) points in the −x direction. y still points out of the page.

C.3 Voigt Projection Operators

To derive the Voigt projection operators, we rotate the k-vector by 90◦ while keep-

ing the magnetic field direction constant1. We can choose to rotate in one of two

planes and without loss of generality, we choose to rotate in the x− z plane. The

relevant co-ordinate transformations are:

ẑ → x̂,

x̂ → −ẑ.
(C.3)

Fig. C.2 defines the co-ordinate axes after these transformations. Applying the

co-ordinate transformations to eq. C.1 and removing ẑ operators we obtain the

angular part of the dipole matrix element for the Voigt geometry:

MV =
√

4π
3 ⟨l′m′l|

↔︷︸︸︷
x̂ Y1,0 +

↕︷︸︸︷
ŷ (Y1,1 − Y1,−1)|lml⟩. (C.4)

1In these derivations, we are not concerned with experimental practicalities of rotating the
setup which in most cases would involve changing the magnetic field source to maintain homo-
geneity in the new geometry.
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C.4. Projection Operators at Arbitrary Field Angle

Using the conventions in Table A.1, normalising and rewriting the operators as

Jones vectors, horizontally linear light induces π transitions and vertically linear

light induces a linear combination of σ+/− transitions. Similarly as highlighted in

Table 4.6, the Voigt eigenmodes/invariant polarisations and the projection opera-

tors are the same polarisation states. As such, the two Voigt eigenmodes induce π

transitions and σ+/− transitions respectively.

For the reader’s interest rotating in the y-z plane would result in vertically linear

light inducing π transitions and horizontally linear light inducing a linear combi-

nation of σ+/− transitions.

C.4 Projection Operators at Arbitrary Field Angle

Oblique Cell

   
B

x
z

y
θ

Figure C.3: A diagram defining the co-ordinate axes and relevant vectors for arbitrary
angle θ between the k-vector and the magnetic field. The k-vector (red) once again points
in the z-direction. The magnetic field (blue) points in the −x sin θ direction. y still points
out of the page.

For a general geometry, we rotate the cell by angle θ while keeping the magnetic

field direction constant. Once again, without loss of generality we rotate in the

x− z plane and leave the reader to derive a similar expression for rotation in y− z.

The co-ordinate transformations are:
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C.5. Example Oblique Projection Operators at θ = 86◦

x̂ → x̂ cos θ − ẑ sin θ,

ẑ → ẑ cos θ + x̂ sin θ.
(C.5)

Fig. C.3 defines the co-ordinate axes after these transformations. Applying these

transformations to C.1 and removing ẑ operators gives the arbitrary angular part

of the dipole matrix element:

MA =
√

4π
3 ⟨l′m′l|

x̂ cos θ + iŷ√
2

Y1,1 + x̂ cos θ − iŷ√
2

Y1,−1

+ x̂ sin θY1,0|lml⟩.
(C.6)

Applying normalisation, we gain the normalised arbitrary angular part of the dipole

matrix element:

MA =
√

4π
3 ⟨l′m′l|

x̂ cos θ + iŷ√
cos2 θ + 1

Y1,1 + x̂ cos θ − iŷ√
cos2 θ + 1

Y1,−1

+ x̂Y1,0|lml⟩.
(C.7)

As this is a general expression, by substituting θ = 0 or 90◦ we can obtain the

same Faraday and Voigt results as above. Outside of these special cases, in the

oblique geometry, left/right handed elliptical states induce σ+/− states and hori-

zontally linear light induces π transitions. In this case, there are three non-zero

projection operators. Consequently, a single polarisation state always induces at

least two transitions provided the relevant transition linestrengths are all non-zero.

As highlighted in Table 4.6, the relationship between eigenmodes and projection

operators is more complicated than in the Faraday and Voigt cases.

C.5 Example Oblique Projection Operators at θ = 86◦

As an example, setting θ = 86◦ in eq. C.8 gives to two decimal places:
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C.5. Example Oblique Projection Operators at θ = 86◦

M86◦ =
√

4π
3 ⟨l′m′l|

0.07 · x̂+ iŷ√
0.072 + 1

Y1,1 + 0.07 · x̂− iŷ√
0.072 + 1

Y1,−1

+ x̂ Y1,0|lml⟩.
(C.8)

Depictions of the three normalised projection operator polarisations are shown in

Fig. C.4.

σ+ σ- π

Figure C.4: The three projection operators for θ = 86◦. Written in normalised Jones vector
form, the elliptical polarisations

(
0.07
±i

)
induce σ+/− transitions and horizontally linear

light
(

1
0

)
induces π transitions.
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Appendix D

Data Processing

Author completed all theoretical computations, collected and processed all

data and created all figures presented in this appendix. All text written with-

out the use of AI. Work is related to the published article:

D. Pizzey, J. D. Briscoe, F. D. Logue, F. S. Ponciano-Ojeda, S. A. Wrathmall,

and I. G. Hughes, ‘Laser spectroscopy of hot atomic vapours: from ’scope to

theoretical fit.’, New Journal of Physics, 24:125001, (2022). https://doi.

org/10.1088/1367-2630/ac9cfe [3].

Data throughout this thesis was collected using an oscilloscope which displays volt-

age readings directly from a photodetector as time passes. While the main features

of spectra can be seen by eye (see Fig. D.1), the data is in an inconvenient form to

make more precise conclusions. The voltage readings include information about the

photodetector responsivity [398] and laser power variation [399, 400] while the time

readings are dependent on the laser frequency scanning waveform [401]. We are

interested in how the atoms interact with light as a function of frequency which is

independent of these variables. As such the data needs to be processed into a new

form. Once processed, we can evaluate performance metrics like FOM, FWHM

and ENBW. Additionally, we can compare the data and theory predictions by

plotting them on the same graph. The is vital in making a case for the theory’s

validity (e.g. verifying optimised filters in Figs. 4.11) and for noting experimental
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D. Data Processing

Figure D.1: Bandpass (blue) and notch (green) traces taken directly from an oscilloscope
screen plotting voltage against time. Note the lines of 100 and 0% transmission are not
horizontal and need to be normalised. More difficult to see, the spectra are non-linearly
related to the frequency of the input light. If we were to compare these traces with theory,
we would find some features appear more ‘stretched’ compared with others.

errors (e.g field inhomogeneity in Fig. 4.16). While one could compare the data on

the oscilloscope screen the with that of the theory on the computer screen, as we

have seen in Chapter 5, it is often the smallest of features that indicate theoretical

paradigm shifts.

In this appendix, we will outline the three main procedures used to process our

data: linearisation, absolute frequency calibration and normalisation which we

consider for a Doppler broadened notch spectrum. Linearisation is the process

by which the time axis is transformed into an axis in frequency units. Absolute

frequency calibration finds the offset to convert the axis in frequency units to a

linear detuning scale. Finally, normalisation converts the voltage readings to a

percentage transmission between 0 (no transmission) and 1 (total transmission).
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D.1. Experimental Setup

D.1 Experimental Setup

M M
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Figure D.2: a) The calibration setup for a notch spectrum alongside b) example signal
outputs from the photodetectors of each arm. Light from a Toptica DL 100 external
cavity (ECD) laser on the Rb-D2 line is directed towards three arms. ii) is the Doppler
broadened notch spectrum we are interested in processing. A neutral density (ND) filter is
placed before the cell to lower the power to ∼ 300 nW with 1/e2 width of 100 µm as theory
is readily available to model in the weak probe regime [169, 155]. i) is a Fabry-Pérot etalon
setup composed of two confocal mirrors (M). The etalon signal will be used in linearisation.
iii) is a sub-Doppler setup. The beam passes through a polarising beam splitter (PBS).
The intensity of the light on each path is determined by the λ/2 waveplate and neutral
density (ND) filter. The ‘probe’ beam is transmitted and is weaker in power than the
reflected ‘pump’ beam. The ‘probe’ and ‘pump’ beams are optimised to have maximum
overlap in the cell leading to spectra with sub-Doppler features. This signal will be used
in absolute frequency calibration. Note that the setup in ii) should be interchanged for
the setup requirements of the experiment. The setups in i) and iii) remain the same for all
experiments. OI — Optical Isolator, P.D. — Photodetector.

In order to process a spectrum, we need to take additional data exclusively for the

purposes of calibration. Fig. D.2 shows the setup and raw data needed to process

a Doppler broadened notch spectrum (ii). The Fabry-Pérot etalon (i), or cavity

lens [120, 121, 122], is built from two confocal curved mirrors with the radii of

curvature of the two mirrors, r, equalling the distance, L, between their surfaces.

The etalon transmits highly for frequencies that are multiples of the free spectral

range, νFSR [402],
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D.1. Experimental Setup

νFSR = c

4L. (D.1)

Mirrors of high reflectivity, R1 and R2, should be chosen for the etalon to have

high finesse, F [403],

F = π 4√R1 ·R2
2(1 −

√
R1 ·R2

) = νFSR
FWHM , (D.2)

thus ensuring the FWHMs of the transmitted peaks are narrower minimising the

uncertainty in the peak position. From eq. D.2, we also gather that increasing

the free spectral range, or equivalently decreasing the mirrors’ radii of curvature

(curvier mirrors), also narrows the FWHM. The raw signal in i) shows these peri-

odic narrow transmitted peaks.

Note that aligning an etalon can be fine work as the smallest mirror adjustments

can have drastic changes on performance dependent on the mirror geometry [404,

405, 406]. Once completed the instrument should be mechanically and thermally

stabilised [407, 408, 409].

The sub-Doppler setup (iii) involves a natural abundance Rb cell with optics send-

ing two counter propagating beams through the cell aligned to have maximum

spatial overlap with each other [410]. The beam transmitted through the first po-

larising beam splitter is known as the ‘probe’ and is detected. The reflected ‘pump’

beam is much stronger and is not detected. This scheme results in enhanced trans-

missions and absorptions as compared to the Doppler broadened notch spectrum

(compare the raw signals in ii) and iii)). The exact profile of these sub-Doppler

features can be varied by changing the power of both beams. For our purposes,

the setup should be optimised so as to maximise the number of these features that

can be discerned from noise.

Note that to calibrate other experiments, we replace the setup in ii) while main-

taining i) and iii). The etalon signal is used for linearisation while the sub-Doppler
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notch spectrum is used for absolute frequency calibration. All three of these sig-

nals should be taken simultaneously and cropped to the region of interest before

processing.

D.2 Linearisation

The Toptica DL 100 [240] is an external cavity diode (ECD) laser in the Littrow

configuration [411] which has a diffraction grating whose angle is micro-adjusted

rapidly by a piezo [412, 413]. This small change in angle causes the varying fre-

quency output of the laser. We want to continually scan in a small range around a

central frequency. As such, it follows that the angular frequency will change as the

grating comes to rest at its maximum and minimum angles and speeds up again to

approach its minimum and maximum angles respectively. When we also consider

piezo hysteresis and creep effects [414] amongst others [415], we have a non-linear

relationship between the time recorded on our oscilloscope and the frequency of

the laser light. The aim of linearisation is to transform the time data into data in

frequency units given this non-linear relationship.

As discussed, in the previous section, the periodicity of the peaks in Fig. D.2 and

D.3 is the free spectral range. In our particular case, νFSR = 745 MHz. With

this information, we can find a linear fit between time passed and successive etalon

peaks. The deviation from the linear fit is the difference between data and theory.

By fitting the difference with a high order polynomial, we can subtract this fit from

the time values as a correction. After scaling the data appropriately such that the

distance between successive peaks is the free spectral range, we have transformed

the axis to frequency units. Note that there is an arbitrary offset since the etalon

peaks only give information about relative frequency differences and not absolute

frequency differences. Fig. D.3 gives the details of this procedure visually.
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(a)

Δt1

Δt1

Δt13Δt7

Δt7 Δt13 (b)

(c) (d)

Δν1
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Δν13Δν7

Δν7 Δν13 ΔνFSR= = =

<<

Figure D.3: Linearising the etalon signal. a) The etalon signal from i) in Fig. D.2 which has
been normalised. The signal has different valued time intervals ∆ti between neighbouring
peaks. This indicates that the frequency scanned by the laser varies with time. b) We plot
the time each peak is recorded against its order in sequence. A straight line is fitted to it. d)
The differences between the fit and data in b) are plotted against time. In this case, we fit
a 7th order polynomial to the difference. c) shows the linearised etalon signal achieved by
subtracting the fit in d) from the time-values and scaling the data appropriately. Note the
x-axis is now in units of frequency and the frequency intervals, ∆νi, between neighbouring
peaks are the same. The frequencies have an arbitrary offset which we find by completing
absolute frequency calibration.

D.3 Absolute Frequency Calibration

While the free spectral range of the etalon gives us a reliable measure of frequency

intervals, drift effects [64] make it unreliable for absolute frequency measurements.

Our x-axis in frequency units, which we obtained from linearisation, is equivalent

to an absolute frequency axis plus some offset. To find this offset, we need an

atomic frequency reference which is provided by our sub-Doppler setup.

As discussed in Chapter 2, an atom moving at speed vz in the opposite direction

to the light’s propagation observes the frequency of the probe beam νatom as [410],
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νatom = ν0(1 + vz

c
), (D.3)

where c is the speed of light and ν0 is the frequency observed in the lab frame.

This Doppler shifting gives rise to Doppler widths [416] which prevent resolution

of the individual hyperfine transitions. However, we can resolve these transitions

with two counter-propagating beams as in our sub-Doppler setup. The same atom

travelling at vz observes the frequency of the pump beam ν ′atom as:

ν ′atom = ν0(1 − vz

c
), (D.4)

since the atom is moving towards it. The frequency observed at rest is still ν0 as

the two beams are at the same rest frequency. It is only possible to see spectral

features due to atoms that have interacted with the detected probe beam. Hence,

new features will arise for atoms excited by both the probe and pump beams. This

is satisfied at hyperfine transition resonances when vz = 0 (or within a natural

linewidth) [417]. We also observe features halfway between two resonances where

the atoms observe the pump and probe resonant with two separate resonances.

These are known as crossover features [418].

These enhanced transmission and absorption features arise from two mechanisms

which change the ground state atomic populations: saturation and hyperfine pump-

ing.1 Saturation leads to more atoms in the excited state to a maximum of half

the ground population [169]. Hyperfine pumping refers to atoms being excited and

decaying via a different pathway to another ground state [419].

As we can see in Fig. D.4, we have 6 hyperfine transitions each for 85Rb and
87Rb on the D2 line alongside 6 crossover features each. In total, we have 24

features. The transitions and crossover resonance frequencies for these 24 features

are well known [212, 226, 221]. Therefore, we can use a sub-Doppler spectrum with
1This technique is often called saturated absorption spectroscopy. Given that hyperfine pump-

ing plays an important role alongside saturation, we believe this term is misleading.
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linearised x-axis in frequency units to calculate a linear fit between the positions

of these features in frequency units with arbitrary offset and their known detuning

values.

(a)

(b)

87Rb 85Rb 85Rb
87Rb

(iv)

(iii)(ii)(i)

Figure D.4: Absolute frequency calibration using a sub-Doppler Spectrum generated from
the setup (iii) in Fig. D.2. a) The main plot shows enhanced absorption and features
located at the frequencies of the twelve F → F ′ = F, F ± 1 transitions alongside twelve
crossover features whose detunings are well known [212, 226, 221]. Zero detuning is calcu-
lated as the weighted line centre of the Rb-D2 line. b) shows the i) 87Rb, F = 2 → 1, 2, 3,
ii) 85Rb, F = 3 → 2, 3, 4 iii) 85Rb, F = 2 → 1, 2, 3 iv) 87Rb, F = 1 → 0, 1, 2 transitions
along with their crossovers in more detail. Note some of the data for these insets were
taken separately from the main plot and a triangular moving average has been applied
to make features clearer. b) shows a plot of the identified features with their linearised
frequency values on the x-axis alongside their known detuning values on the y-axis. The
offset of the straight line fit gives the shift value needed to convert to absolute detuning.
Note this spectrum has not been normalised. While 100% transmission has been set to 1
for ease of selecting features, it has not been scaled vertically.
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The y-intercept of this fit gives the offset which when subtracted completes the

transformation of the time axis to a frequency aixs. In the case of Fig. D.4, the

offset is 4.2 GHz.

It can be difficult to resolve all 24 features in one spectrum. However, successful

calibration can be completed with less than the total number of predicted features.

Using our linearisation and absolute frequency calibration procedure, we find errors

are less than 1%.

D.4 Normalisation

D.4.1 Doppler Broadened Notch Spectrum

(a) (b)

Figure D.5: Normalising a Doppler Broadened Notch Spectrum. a) A hot spectrum gen-
erated using the setup in ii) in Fig. D.2. The spectrum is heated such that the absorption
reaches zero in three regions. We fit a straight line to these zero regions. We subtract this
fit from all spectra so that zero signal corresponds with zero transmission. b) A Doppler
broadened spectrum which we wish to normalise. Having subtracted the fit from a), we fit
the four regions where the light is completely transmitted. The results of which are shown
in the purple trace in Fig. D.6.

Unlike the process to calibrate the x-axis which remains the same for all data we

want to process, the calibration of the y-axis depends on the spectral profile of the

raw data in (ii) of Fig D.2. In this appendix we consider only the case of a Doppler

broadened notch spectrum at room temperature and at zero field.

Normalisation is the process by which we convert the voltage y-axis to a percent-

age transmission axis with ‘1’ indicating 100% transmission and ‘0’ indicating 0%
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D.4.1. Doppler Broadened Notch Spectrum

transmission. Light is lost at many stages of the experiment and we could define

100%/0% transmission in many different ways. In this thesis, 100%/0% transmis-

sion is light that is transmitted/rejected entirely through all the vapours in the

setup. This definition does not take into account losses through each of the optical

components before or after the vapours including the vapour cell windows or laser

power variations.

We begin by considering the ‘0’ line. For many reasons, we do not observe zero

voltage output when transmission is 0%. These include stray light incident on the

photodetector, photodetector noise [420] and incoherent light from amplified stim-

ulated emission of the laser [421, 422]. Therefore before beginning the experiment,

the setup in (ii) should be heated such that a spectrum is obtained with regions of

0% transmission. These can then be fitted by some polynomial (see a in Fig. D.5)

and the offset subtracted from voltage readings in any future data using the same

photodetector and laser. Note however that conditions of the setup can change and

one may want to calibrate the zero reading immediately before any experiment.

Having subtracted this zero offset, we want to define 100% transmission as ‘1’. In

b) of Fig. D.5, we see a fit has been applied to the regions of 100% tranmission.

By dividing the data by this fit, the voltage axis has now been transformed into a

transmission axis and normalisation is complete. The data is now in a state ready

to by fit with theory which can be seen in the purple trace in Fig. D.6.

As demonstrated in [22], one could incorporate intensity stabilisation optics such

that maximum and minimum transmission values maintain a constant voltage read-

ing. One would then simply remove the zero offset as before and scale the data

appropriately to normalise.
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(a)

(b)

(c)

(d)

Figure D.6: Fits of three zero field notch spectra in natural abundance Rb. The tem-
perature fits are 19.67 ± 0.01◦ C (RMS = 0.40%), 40.12 ± 0.01◦ C (RMS = 0.68%) and
72.77 ± 0.02◦ C (RMS = 0.68%) for the purple, blue and red traces respectively. The
residuals x 100 are shown for the purple, blue and red traces in b), c) and d) respectively.
The data shows excellent agreement with theory [244].

D.5 Links to Additional Info

A jupyter notebook which follows the procedure described can be found at [423,

424]. Note it is not set up to process bandpass filter data but can be easily be

modified to do so.
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Analogous procedures to those discussed can be found in [425, 426, 427].

Etaloning can be present in spectral data which can be isolated and removed, see

[3, 225] for more details.
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