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Abstract: The main theme of this thesis is the study of special values of L-
functions through integral representations. We present an integral representation
of the standard L-functions for classical groups via the doubling method. Our
computations, comparing with the well known result for partial L-functions in [PR87],
include all ramified local integrals with the explicit choice of local sections for
Eisenstein series. When the classical group admits a Shimura variety, we have a well
defined notion of algebraic modular forms. In this case, we calculate the Fourier
expansion of Eisenstein series from which the properties of their special values can be
easily read off. Utilizing our integral representations, we then prove the algebraicity
of certain special L-values for modular forms on some classical groups. Furthermore,
by our proper choice of the local sections for Eisenstein series, we construct the

p-adic L-functions interpolating these special L-values.

Generalizing the classical doubling method, [CFGK19] presents an integral repres-
entation for Sp,,, X GLj by the twisted doubling method. In the final chapter of the
thesis, we present another integral representation for the L-functions of Sp,,, x GLy

via a non-unique model and obtain some analytic results.
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Chapter 1

Introduction

One of the central problems in number theory is the study of special values of
L-functions. The main object studied in this thesis is the standard L-function
for automorphic forms on classical groups. In Chapter 2 and 3, we present an
integral representation for these L-functions using the doubling method. Utilizing
the integral representation, we prove the algebraicity of certain special L-values and
construct p-adic L-functions interpolating these values in Chapter 4. These three
chapters are mainly taken from [Jin23] improving some results obtained in [BJar]
(joint with Thanasis Bouganis) and [Jin22]. Recently, [CFGK19] generalized the
(classical) doubling method to obtain an integral representation for Sp,,, x GLg. The
algebraicity result for such L-functions is far away from being proved due to the
complicated Speh representations used as the inducing data for Eisenstein series.
However, following [GS20], we derive a new integral representation for Sp,,, X GLy
and obtain the analytic result in Chapter 5. This part is taken from [JY23] and is

joint with Pan Yan.

We introduce our results and compare with works in the literature in the following

three sections.
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1.1 Integral representations

Let G be a classical group over a number field F' defined as in (2.1.6) or (2.1.8). The
first main theme of this thesis is an integral representation for standard L-functions
of classical groups. One way to obtain such an integral representation is the doubling
method originated in [Gar84b; PR87]. We briefly recall the setup for the doubling
method in the following. More detailed expository on the doubling method will be

given in Section 2.2.2.

Take a cuspidal representation 7 of G(A) and a cusp form ¢ € 7, where A is the
adele ring of F'. We consider a doubling embedding G x G — H (2.1.11) into a bigger
classical group H defined as in (2.1.10). We have a Siegel Eisenstein series E(h; fs)
(2.2.9) defined on H(A) associated to a section f; € Indg((ﬁ))(x|y(-)|s) (2.2.5) of the
parabolic induction from a Siegel parabolic subgroup P C H. Here, the inducing
data is a Hecke character x (viewed as a character on P(A)) and a reduced norm v.
The main strategy of the doubling method is to pullback such an Eisenstein series

E(h; fs) on H(A) along the doubling embedding and pair with the cusp forms on

G(A). That is, we consider the global integral of the form

Z(s;9, fs)

— . _1
o (GXG)(F)\(GxG)(A) E((gl7 92)7 f3)¢1(91)¢2<92)><(y(g2)) dgldgz7

(1.1.1)

where (g1, g2) is the image of g1 X go € (G x G)(A) in H(A) and ¢1 := 7(g1)¢, P2 :=

7(g2)¢ are certain translates of ¢ by some gy, g2 € G(A).

It is shown in [PR&7] that this global integral has an Euler product expression
(2.2.15) and thus reduces the study of (1.1.1) to the study of local integrals place
by place. It is also well known that one can make a proper choice of the section f
such that Z(s; ¢, fs) represents the partial L-function of ¢, i.e. all the ramified local
L-factors are set to 1. For the study of arithmetic problems of special L-values and
especially the construction of p-adic L-functions, the information at ramified places

is indispensable.
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The definition of local L-factors is indeed a fundamental problem in the study
of automorphic representations (see also Remark 2.3.5). In [Lan70], Langlands
conjectured that one can associate to any cuspidal representation m = ®m, a local L-
factor L,(s,m,) and an epsilon factor €,(s, 7,) such that the global L-function L(s, )
satisfies a functional equation. In [Yam14], Yamana defined these local factors and
proved the functional equation using the doubling method. His approach works for
all irreducible automorphic representations of classical groups and is used in proving
some analytic properties of L-functions. However, he did not construct the local
sections of Eisenstein series and did not compute the local integrals explicitly so it
is not clear how his computations can be used to study the algebraicity of special

L-values or to construct p-adic L-functions.

We study the ramified local integrals in a different way which is inspired by [Shi95].
Fix an integral ideal n of F. Assume ¢ is fixed by some open compact subgroup
K(n) (2.3.23) and is an eigenform for a certain Hecke algebra H (K (n),X) (defined
in Section 2.3.4). For a Hecke character y whose conductor divides n, we define the
L-function L(s,¢ x x) to be a Dirichlet series of the Hecke eigenvalues of ¢. This
extends the definition of the L-function for symplectic groups in [Shi95] and is an
analogue of the L-functions for classical modular forms defined by Dirichlet series
of Fourier coefficients. In particular, the L-function L(s,¢ x x) has all bad Euler
factors outside the conductor of x. In [Shi95], Shimura constructs local sections of
Eisenstein series explicitly at all places such that Z(s; ¢, fs) represents L(s, ¢ X x).
Our main theorem on the integral representation, which extends his result to all

classical groups, is stated as follows.

Theorem 1.1.1. (Theorem 2.2.4, 3.4.2) There is a choice of fs such that

Z(S; ¢7 fs) =C-L (S + ;;(b X X) : Zoo(£7¢oo;fsoo) ’ <¢/7¢>7 (112>

where C' is some nonzero constant depending on s, ¢' := 7(g')¢ is a translate of ¢
by some g € G(A) and Z(8; oo, [°) a nonzero constant depending on the choice

of the archimedean section [ = Ilyjo0 fsw aNd Poo = Ilyjoo Pu- When the underlying
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symmetric space of G is hermitian, and ¢ is a holomorphic cusp form as in Definition
3.2.3, we can further make a choice of f&° such that Z.(s; oo, f$°) is the constant

given in Proposition 3.4.1.

If G is a unitary group, we assume all places v|n are nonsplit in the quadratic
extension defining the group . This is only for simplicity and also because the split
case is well studied in [HLS06] and [EHLS20]. The main difficulty for extending the
result of [Shi95] is to deal with the classical groups which are not totally isotropic
(i.e. 7> 0in (2.1.7)). In this case, the doubling map and the image of the doubling
embedding (2.1.13) are much more involved which complicates the computations. For
the purpose of constructing p-adic L-functions, our local sections are also properly
chosen such that the Eisenstein series has a nice Fourier expansion. This is indeed
the core technical issue of this work. We do not study the archimedean integral
in general in this work. For the special cases we are considering, the archimedean
computations follow from [Shi97; Shi00] and [BJar]. For completeness, we will also
present an integral representation for L-functions of Maass forms on general linear

groups using the doubling method in the appendix.

Recently, Cai, Friedberg, Ginzburg and Kaplan [CFGK19] presented an integral
representation for Sp,, X GLj by the twisted doubling method generalizing the
classical doubling method introduced above. In [Cai2l], the unfolding of the global
integral are also worked out for G x GLj; with G any classical group. It will also be
important to study the ramified integrals derived from the twisted doubling method.
For example, one should expect that one can define the local L-factors and prove the
functional equations for standard L-functions of G x GLj as in [Yam14]. In Chapter
5, we also derive a new integral representation for Sp,, x GLj; via a non-unique
model (an independent introduction to this work will be given in Section 5.1). It is
also an interesting question whether one can construct local sections and compute

the ramified integral for G x GL; explicitly as we have done here for G x GL;.
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1.2 The algebraic result

The celebrated Deligne Conjecture [Del79] claims that the critical values of motivic
L-functions, up to certain periods, are algebraic numbers. In this work, we study the
automorphic counterpart of this conjecture. As the approach here relies heavily on
the theory of Shimura varieties, we restrict ourselves to the classical group GG whose
underlying symmetric space is hermitian. Such groups (except some orthogonal
groups) are listed at the beginning of Chapter 3. In all these cases, the notion of
the algebraic modular forms is well defined. We refer the reader to the beginning of
Section 3.3 for a summary of various characterizations of algebraic modular forms
in the literature. All of them rely on the fact that the symmetric space of G is

hermitian so that one can associate G to a Shimura variety.

We fix the following setup. Assume F' is a totally real number field of degree d(F)

over Q. Let I = (1,...,1) € Z4¥) be a parallel tuple satisfying

m+1 Case II,
> when F' # Q,
n+1 CaseIll, IV, V.
(1.2.1)
m+1 Case 11,
> when F' = Q,

n+r—+1 Caselll, IV, V,

with m,n,r as in (2.1.7). Fix a specific prime ideal p of F' above an odd prime
number p and an integral ideal n = nyny =[], p;v of F' with ny, ny, p coprime. We
make the following assumptions:

(1) 2 € OF and 6 € GL,.(O,) for all v|np. Here, 0 is the anisotropic part of G.

(2) f € Si(K(np),Q) is an algebraic eigenform for the Hecke algebra H (K (np), X)
as in Section 2.3.4.

(3) f is an eigenform for the U(p) operator defined in (2.3.13) with eigenvalue
a(p) # 0.

(4) x = x1x where y; has conductor ny and x has conductor p¢ for some integer
¢ > 0. We assume y has infinity type I. That is, x,(z) = 2'|z|~ for all v|occ.

(5) In the case when G is a unitary group, we further assume all places v|np are
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nonsplit in the imaginary quadratic field £ defining the unitary group G.

We are interested in the special value of the L-function L (5 + %, [ x X) at

l—rx Casell, IIIL, 1V,
§=50 = : (1.2.2)

é — K Case V.
with k a constant depending on n given in (2.2.8).

Our main theorem on algebraicity is stated as follows.
Theorem 1.2.1. (Theorem 4.2.1) Forl, sy as above,

L(80+laf><x> — .

WdF)dﬂ); T, f>€(@, ifc >0,

L $0+77.f><X $0+ 7f><X — .
( 2ﬂ-d(Fd(7r))Q E >2 )EQ, if c=0.

where d(F) = [F : Q], d(m) is the constant given in (4.2.4), (-,-) is the Petersson

(1.2.3)

inner product and M (so + %, fx X) is the modification factor listed in Proposition
2.4.6. Here Q = 1 in Case II, III, IV and in Case V, Q is the CM period (4.2.5)

depending only on the group G.

When the group is totally isotropic (i.e. 7 = 0 in (2.1.7)), we also obtain a refined
version of the above theorem. That is, we describe the action of Gal(Q/F) on
special L-values in Theorem 4.2.2. The proof of this theorem uses the standard
strategy in [BS00] and [Shi00]. That is, we derive the algebraicity from the integral
representation (3.4.22), (3.4.23) reformulated from Theorem 1.1.1, 2.2.4, 3.4.2 and
the algebraic properties of the Fourier coefficients of Eisenstein series in Corollary

4.1.11.

This kind of result is also obtained in [BS00; Shi95; Shi00] for symplectic and unitary
groups and in [BJar| for quaternionic unitary groups. We explain what is new in
our work. First of all, all these works, except [Shi95] for symplectic groups, only
consider partial L-functions while the L-function considered here includes those
ramified L-factors. Of course, there are only finitely many missing L-factors in the

partial L-function and if these ramified L-factors are known to be algebraic one may
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manually add these factors to the algebraicity result of partial L-functions. But this
only make sense at the special values beyond the absolutely convergence bound, i.e.
s =8¢ > Kk with k given in (2.2.11). Secondly, inspired by [BS00], our local sections
of the Eisenstein series are chosen such that we only need information about the
Fourier coefficients of rank greater or equal to 2m (where m is the Witt index of G).
This allows us to get a better bound on [ and discuss the special values below the

absolutely convergence bound.

The orthogonal groups are not studied here for at least two reasons. Firstly, when the
symmetric space of G is hermitian (i.e. G(F,) has Witt index 2 for any archimedean
places v), the symmetric space of H is no longer hermitian so that one need to
carefully define the meaning of algebraic modular forms on H(A). Secondly, the
archimedean computations for the Fourier coefficients of Eisenstein series will involve
certain generalized Bessel functions studied in [Shi99a]. The analytic properties are
studied there but there are no explicit formulas as for the confluent hypergeometric
function in [Shi82] so that we do not know the algebraic properties of these functions

so far.

1.3 The p-adic L-function

We keep the setup as in the previous section. In particular, we fix a prime ideal
p of F' above an odd prime number p. Once the algebraicity of special L-values
is known, one can ask about the p-adic interpolation of these values. Our main
theorems on p-adic L-functions (Theorem 4.2.5, Theorem 4.2.6, (4.2.17), (4.2.18),
(4.2.20), (4.2.24)) are stated as follows.

Theorem 1.3.1. Assume f is p-ordinary in the sense that a(p) € O¢, . Fix xi1 to
be a Hecke character of conductor ny and infinity type 1. That is x1,(7) = z'|z|™
for any places v|oo.

(1) For unitary and quaternionic unitary groups, there exists a p-adic measure p(f)
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on ClE(p™) such that for any finite order Hecke character x of conductor p¢,

n—1 d(F)
m(m 1)
s oy XF) = =500 () T - )
5P

=0
L(So—F%,fXX)
Q-(f. f)

(2) For symplectic groups we assume the Witt index m has the same parity with the

(1.3.1)

x GP ()™M (50 + -, f X X)

weight I of f, i.e. | =m mod 2. For quaternionic orthogonal groups, we assume p
splits in the quaternion algebra D if the group is not totally isotropic (i.e. v >0 in
(5.2.6)). Then in these two cases, there exists a p-adic measure u(f) on CIL(p™)

such that for any finite order Hecke character x of conductor p©,

/Cﬁ(pw) Xdu(f)

ed

=|o| NF/Q( )¢ (50_%)GD(X)*mGF(X)flﬂ.d(F)d(w)

(( F(sa+ 3) T e (i ))d(F). Lo+dn) (132

Ly (% — S0 X_l)

L(so+%,f X X)
(£, 1)

1
><M<50+2,f><x)-

Here:

(a) In the case of unitary groups, E is the imaginary quadratic extension of F
defining the unitary group. In other cases E = F.

(b) Q=1 in the case of quaternionic unitary groups and € is the CM period (4.2.5)
in the case of unitary groups.

(c) CIL(p™) is the p-adic analytic group defined in (4.2.12).

(d) d(F) = [F : Q], d; = 2 for two quaternionic cases and dy = 1 for symplectic and
unitary groups.

(e) For a division algebra D, GP(x) is the Gauss sum of x defined on D.

(f) ci(so) is given by Proposition 3.4.1 and d(w) is given in (4.1.30).

(9) M(so+ %, f X x) is given in Proposition 2.4.6 if ¢ = 0 and is understood as 1 if
c>0.

—1 1
(h) L, (so + %>X> =1— x(w)|w|**"2 if c = 0 and is understood as 1 if ¢ > 0.
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The assumption for quaternionic orthogonal groups is technical and is necessary in
our proof of Theorem 4.2.6. Again, the construction of p-adic L-functions relies on
properly choosing the local sections of the Eisenstein series such that its Fourier
coefficients have p-adic interpolations. We refer the reader to [Liu20] where it is

carefully explained how these local sections should be chosen.
We compare our results with other works in the following.

For symplectic groups, p-adic L-functions have been constructed in [BS00] using
the doubling method and in [CP04] using the Rankin-Selberg method. The p-adic
L-functions for ordinary families are constructed in [Liu20]. We admit that the
approach in our work is highly inspired by [BS00] and [Liu20]. Although all these
works are concerning the base field F' = Q, there is no difficulty to generalize their

work to any totally real field F' as we have done here.

For unitary groups, p-adic L-functions are studied in [Eis21; EHLS20; HLS06; SU14;
Wan15] for ordinary families. All these works assume that p is split in the imaginary
quadratic extension E/F so that the local group G(F},) at p is a general linear group.
Their local sections are always chosen as certain Godement-Jacquet sections, and
we do not discuss this case in our work. When p is inert, the p-adic L-function is
constructed in [Boul6] for totally isotropic groups (i.e. =0 in (2.1.7)). Our result

for the general unitary group with p nonsplit is new.

The L-functions for the two quaternionic cases are less studied than symplectic
and unitary groups. In our previous work [Jin22], we have constructed p-adic L-
functions for these totally isotropic groups and restricted to the case when p splits
in the quaternion algebra. This case is much simpler as the local group G(F}) will
be either an orthogonal group or symplectic group and both are totally isotropic.

We have removed these restrictions here.

We admit that the construction of p-adic L-functions for ordinary families is beyond
the scope of this work. For p-adic families, one also needs to understand more

about the geometry of Shimura varieties and p-adic modular forms. For example,
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in [Fis21; EHLS20; HLS06] the split assumption on p is also used to guarantee the
nonvanishing of a certain ordinary locus in defining the p-adic modular forms (see
also [Eis21, 5.3(2)]). In the two quaternionic cases, the geometry of Shimura varieties

becomes more challenging as these Shimura varieties are not of PEL type.



Chapter 2

The Integral Representation of the

Standard L-functions

In this chapter, we present an integral representation of the standard L-functions for
classical groups. We use the doubling method originating from [Gar84b; PR87]. An
integral representation for the partial L-functions is well known. Here we calculate
all ramified local integrals to obtain integral representations for complete L-functions
including ramified L-factors. The local sections of Eisenstein series are explicitly
constructed and properly chosen for our later purpose of constructing p-adic L-

functions.

This chapter is essentially taken from [Jin23, Section 2-4] and is organized as follows.
In Section 2.1 we fix our setup for classical groups. We review the global integral
from the doubling method and state our main results on integral representations
in Section 2.2. The definition of the local L-factors and computation of the local

integrals will be carried out in Section 2.3 and Section 2.4.
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2.1 Classical groups

We review basics of hermitian forms and classical groups. The setup for classical
groups is the following [Yam14, Section 2] and for generalities of hermitian forms
the reader can refer to [Shi97, Chapter I]. We also give several examples regarding

the quaternion algebra for which a comprehensive reference is [Voi21].

2.1.1 Algebras with involution

We start by fixing some general notations. For an associative ring R with identity,
denote by Mat,, ,(R) the R-module of all m x n matrices with entries in R. Set
Mat, (R) = Mat,, ,(R) and GL,(R) = Mat, (R)*. For € Mat,, ,(R), denote ‘= for
its transpose. Denote by 1, and 0, or even simply 1 and 0 if its size is clear from

the context, for the identity matrix and zero matrix in Mat, (R), respectively.

Let F be a local or global field and D an F-algebra with involution p whose center E
contains F'. The couple (D, p) considered in this thesis will belong to the following
five types:

(a) D = E = F and p is the identity map,

(b) D is a division quaternion algebra over £ = F' and p is the main involution of D,
(c) D is a division algebra central over a quadratic extension E of F' and p generates
Gal(E/F),

(d) D = Maty(FE), E = F and p is given by o = o ,

c d —c a
() D=D@D E = F@F and p is given by (z,y)” = (y,x), where D is a division

algebra central over F' and D°P is its opposite algebra.

For © = (z;;) € Maty,,(D), set 2# = (zf;) and 2* = 4, & = (z*)”'. For z €
Mat, (D), v(z) € E,7(x) € E stand for its reduced norm and reduced trace to the

center F.

Example 2.1.1. (Quaternion algebras over Q) Recall that a quaternion algebra

over Q is a central simple algebra of dimension four. Picking up a basis, we can
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write it in the form
D=Q®Q¢®QE®QC,
where

CZ = Q, 52 = Ba Cg = _gga

with «, 8 nonzero squarefree integers. We make the convention that D # Mats(Q)

which is equivalent to a # 1, 3 # 1. The involution of D is given by
p:D—D:a+ b+ cf+dC§ — a— bl — c& — dCE.

Then (D, p) is an algebra with involution over Q of type (b) above.
Identify ¢, & with \/a, /B € Q and let K = Q(¢) with involution ¢ the generator of

Gal(K/Q). We can define an embedding

b—d
i:D— Maty(K), a+b(+cE+dCE— a+c§ ab—d)

b+d§ a—c€
One easily checks that for z € D,
—a 0
H(z) = I ("), I= ,
0 1
0 —1
H(x) = J ti(a™)J, J = :
1 0

and i induces the isomorphism
i:D = {x € Maty(K) : a'lJ = [Jz}.

We extend this map to the embedding i : Mat,, (D) — Mats, (K') by sending x = (z)
to (i(xi;)). Denote I, = diag[/, ..., I| and J;, = diag[J, ..., J| with n copies. Then for
x € Mat, (D),
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and i induces the isomorphism
i:Mat, (D) — {z € Maty,(K) : z'I, J, = I J x}.
The reduced norm and reduced trace are defined as

v(z) = det(i(x)), 7(x) = tr(i(x)),

where det and tr are the usual determinant and trace of matrices. This definition is

independent of the choice of K.

Example 2.1.2. (Quaternion algebras over R) Let D be the quaternion algebra

over Q as in Example 2.1.1. There are two possibilities for D ®q R.

On one hand, if both «, 8 are negative then
D®oR=H:=R®R:® Ry ® Rey,
with
1T =7"=—1, 1] = —J1.
Here H is the Hamilton quaternion algebra with involution
t:a+bt+cj+dig—a—br—cy—dig,
and we can embed it into Maty(C) by the map i defined as in Example 2.1.1. In this

case (H, () is again an algebra with involution over R of type (b).

On the other hand, if one of «, 3 is positive (without loss of generality we can assume
f = 1) then the map i similarly defined as in Example 2.1.1 gives an isomorphism

between (D ®g R, p) and (Maty(R), ¢) where ¢ is the involution of Maty(R) given by

L

In this case (Maty(R), ) is an algebra with involution over R of type (d).

Example 2.1.3. (Quaternion algebras over Q,) Let D be the quaternion algebra

as in Example 2.1.1. There are two possibilities for D ®q Q, depending on whether
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the equation
ar? + By? =1
has a solution (x,y) over Q,.

If it does not have a solution, we say that p ramifies and in this case (D ®q Q,, p) is

again an algebra with involution over Q, of type (b).

If it has a solution, we say that p splits and by changing basis we have

D ®@ Qp =D = Qp S¥ QpC/ > prl S¥ QpC/£/>

with

CIQ — Oél EIQ _ ﬁ/ — 1 C/é—/ — _flg/.
In this case, by the map i similarly defined as in Example 2.1.1, we can show that
D ®¢ Q, is isomorphic to an algebra with involution over Q, of type (d). Note
that, up to conjugation, Mats(Q,) has a unique maximal order Mato(Z,). If we

fix a maximal order O of D, then we can and we shall always fix an isomorphism

D ®q Q, = Maty(Q,) such that the image of O ®z Z, is Maty(Z,,).

2.1.2 Hermitian forms and classical groups

Let F be a local field or global field. Fix a triple (D, p,€) with (D, p) an algebra
D with involution p over F' and € = +1. Let W be a free left D-module of rank
n. By an e-hermitian space we mean a structure W = (W, (-, -)) where (-,-) is an

e-hermitian form on W, that is, an F-bilinear map (-,-) : W x W — D such that
(r,y) = ey, x), (az,by) = alz,y)t’, (a,b€ D, z,y € W). (2.1.1)

We always assume such a form to be non-degenerate, i.e. (z, W) = 0 implies x = 0.
We call W isotropic if (z,x) = 0 for some 0 # = € W and call W anisotropic if
(x,z) = 0 only for x = 0. The following is the fundamental theorem of the study of

hermitian forms.
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Proposition 2.1.4. (Witt’s Theorem) Let W be an e-hermitian space of rank n.

There exists 2m elements e;, f; with 1 < ¢ <m < 3 such that

W = Z De;+ Df;) + Z,
=1

(eivey) ={fi, fi) =0, (ew fj) = “ for every i, j, (2.1.2)
0 i#j

Z={xeW:{e,x)=(fi,z) =0 forall i} .

If (Z,(-,-)z), with (-,-)z the restriction to Z, is anisotropic then we call m the Witt
index of W.

We record some facts about the anisotropic e-hermitian spaces in the following

lemma.

Lemma 2.1.5. (1) Let F' be a non-archimedean local field and W an anisotropic

e-hermitian space of dimension r. Then

r=20 if (D, p) of type (a) and e = —1,
r<4  if(D,p) of type (a) and e =1,
r<3 if (D, p) of type (b) and € = —1, (2.1.3)
r<1  if(D,p) of type (b) and € =1,
r<2 if (D, p) of type (c) and e = —1.
(2) Let F be an archimedean local field and W be an anisotropic hermitian space of

dimension r. Then
r=0  if(D,p) of type (a) and e = —1,
r<1  if(D,p) of type (b) and e = —1, (2:14)
r=0  if(D,p) of type (b) and e = 1,

In other cases, r can be arbitrary non-negative integers.

(3) Let F' be a number field and W an anisotropic e-hermitian space of dimension r.
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Then
r=20 if (D, p) of type (a) and e = —1,

r<3 if (D, p) of type (b) and e = —1, (2.1.5)

r<I1 if (D, p) of type (b) and € = 1,

In other cases, r can be arbitrary non-negative integers.

Proof. For (1), the assertion for (D, p) of type (a), (c) is well known and recorded
in [Shi97, Proposition 5.2]. The case (D, p) of type (b) with € = 1 can be proved
similarly as there. The case (D, p) of type (b) with ¢ = —1 is proved in [Tsu61].
The second part of the lemma can be checked directly and the third part follows by
the Hasse principle. For the case (D, p) of type (b) with € = 1, one uses the well
known Hasse principle for quadratic forms, and for the case (D, p) of type (b) with
¢ = —1 one needs the Hasse principle for quaternionic skew-hermitian forms proved

in [Hij63)]. O

Denote the ring of all D-linear endomorphisms of W by Endp (W) and GLp(W) =
Endp(W)*. If we view elements of W as row vectors, then GLp(W) acts on W

from the right. The classical group of W is defined as
G:=GW) :={g9 € GLp(W) : (zg,yg) = (z,y) for all x,y € W}, (2.1.6)

which is a (possibly disconnected) reductive algebraic group over F. By fixing a
basis of W, we can identify Endp (W) with Mat, (D) and GLp (W) with GL, (D).

Then (-, -) can be expressed as a matrix of the form

0 0 1,
o = 0 6 0 | withn=2m+r 0"=e¢c GL.(D) (2.1.7)
e-1,, 0 O

and thus the classical group G can be realized as

G :=G(W,®) ={g € GL,(D) : ¢®g" = ®}. (2.1.8)
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We assume m > 1 throughout the thesis to avoid the discussion of definite classical

groups.

Example 2.1.6. (Classical groups of type (d)) Let W = (W, (-, -)) be an e-hermitian
space associated to (D, p) of type (d) with e = 1 and G = G(W, ®) the associated
classical group defined as in (2.1.8). Identifying GL, (D) with GLy, (F'), the group
G is isomorphic to

G :={geGL,(D): ¢gdlg = 3},

with
0 0 1y,
o = 0 0 0 with n = 2m + r, (— GLa - (F).
—€ - 12m 0 0

By the above example, the study of classical groups of type (d) is indeed covered
by the study of classical groups of type (a). One can also show that in case (e) the

classical group is the general linear group.

2.1.3 The doubling embedding

We keep the notation G := G(W) = G(W,®) in (2.1.6) or (2.1.7). Doubling the

underlying e-hermitian space W we consider V = (W & W, ((-,-))) where

({(@1,22), (41, 92))) 7= (21, 91) = (@2, 49) for (1, 22), (y1,92) €W O W, (2.1.9)

By fixing a basis of V, the classical group G(V) is isomorphic to

H ={h € GLy(D) : gJng" = Jn}, Jn= . (2.1.10)

Note that
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with i
0 $-1, 0 0 35-1, 0
0 0 0 0 0 —e-1,
1, O 0 0 0 0
R =
o 66t o0 o0 0! 0
0 0 0 1, O 0
0 0 1, O 0 0
Then we define a doubling map
GxG— H,
2.1.11)
g1 0 _ (
(91, gg) — R R 1.

0 g0

We thus view G x G as a subgroup of H and identify (g, go) with its image in H.

More explicitly, if we write

aq fl bl as f2
g1= 1| h; e jl ) g2= 1| hy ey
C1 kl dl Co k’g

with aq, as, dq, dy of size m X m, ey, e of size r X r, then

e(e1—e2)l

by
J2
da

eh

ena
2
—€Cy

0

Q2

™
m‘w
—

)

by

0

e1tes _I2 ehy

2 2 2 4
—k ds 0 kot
€f1 0 ap %

(91, 92) =
6671(61—62) 6971]‘2 Hilhl 071%0 —Hilhg 671]‘1

€f2 —Ebg 0 —%
Ek'l 0 C1 %

2.2 The global integral and the main result

0

d

(2.1.12)

(2.1.13)

We review the doubling method and summarize our main results on the integral

representation of the standard L-functions for classical groups. The definition of the
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local L-factors and computation of the local integrals will be carried out in the next

two sections.

2.2.1 The global groups

Let F' be a number field with adele ring A. We consider tuples (D, p, €) of following

five cases:
(Case I, Orthogonal) ,p) of type (a) with e =1,
(Case II, Symplectic) ,p) of type (a) with e = —1,
( ) with € = 1,
(

(D, p) (
(D, p) (

Case III, Quaternionic Orthogonal) (D, p) of type (b
Case IV, Quaternionic Unitary) (D, p) (
(D, p) (

(Case V, Unitary)

2,
z.
-+
=
T
I
&y
®
=
2.
™
Il

|
=

The global groups we consider are

0 0 1,,
G:=G(F):={g € GL,(D) : g¢bg* = ®}, & = 0 o o |, (2.2.1)
e-1,, 0 O

with n = 2m + r and 6* = €0 € GL,(D) anisotropic (so the global Witt index of ®

is m) and

0 1,
H :=H(F):={h€GLy(D):gJog" = Jpn}, Jn= , (2.2.2)

e-1, O
together with a doubling embedding G x G — H defined by (2.1.11).

We denote Ap = D ®p A for the adelization and D, = D ®f F,, for the localization
at a place v of F. For global groups, we will write G(A), H(A), G(F,), H(F,) for its
adelization and localization but simply write G = G(F'), H = H(F') for the rational

points if its meaning is clear from the context.

Remark 2.2.1. In this thesis, we label our group as Case I-V for simplicity but
we may also call the name of the group (i.e. orthogonal, symplectic, ...) so that

one can easily compare the group here with the one in other papers. The notion of
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orthogonal, symplectic and unitary groups are well known and appear frequently in
the literature while the groups of Case III, IV do not have a standard name. Here
we call them quaternionic orthogonal or unitary depending on whether the form
defining the group is hermitian (like the orthogonal group) or skew-hermitian (like
the unitary). But indeed, both groups have been called ‘quaternionic unitary’ in the
literature so the reader should be careful about its meaning. For example, the group

studied in [Gar77] and [Shi99b] are the quaternionic orthogonal group here.

Remark 2.2.2. In this thesis, we shall use the term ‘totally isotropic group’ to
indicate the group whose associated e-hermitian form is totally isotropic (i.e. r =0
in (2.1.7)) instead of using the term split group or quasi-split group. In the sequel,
when discussing the local groups G(F,), we will distinguish the ‘split” and ‘nonsplit’

case according to whether D, is split or not.

2.2.2 The doubling method

Let P C H be the Siegel parabolic subgroup whose Levi component is GL, (D).

More explicitly, P = M x N with

a 0 1 b
M = ca€GL, (D), N= cbe Su(F) . (2.2.3)

0 a 01
Here S,,(F) is an additive algebraic group with
Sn(F) ={b€ Mat,(D) : eb+b* =0}. (2.24)

Let x : EX\AJ — C* be a Hecke character and extend it to a character on GL, (Ap)
(still denoted by x) by taking the composite with the reduced norm v : GL,(Ap) —

Aj. Consider the induced representation

Indpgs) (I (-)]°) (2:2.5)



22 Chapter 2. The Integral Representation of the Standard L-functions

consisting of functions fs : H(A) — C such that

fs(pg) = x(v(a)) N/ (v(a)]"™" fi(9), (2.2.6)
for }
o= " " cpw),  acaL.p) (2.2.7)
0 a
where _
n_l Case I,

D)
ntl  Case 11,

k=4 22 Case IlI, (2.2.8)
2”—2_1 Case 1V,
5 Case V.

We then form the Eisenstein series

E(hif)= Y fGh.  heH(A), (2:2.9)

YEP(F)\H(F)

on H(A) associated to a standard section f.

Let 7 be a cuspidal automorphic representation of G(A) with trivial central character

and ¢1, ¢2 € ™ be two cusp forms. The global integral we consider is

2(37 ¢17¢2; fs)

= e E((g1,92); f5)1(g1)2(92)x(v(g2)) " dgrdgs.

(2.2.10)

Here we must take ¢1, ¢ € 7 in the same representation space, otherwise the integral

will be identically zero. The following basic identity is pivotal in the doubling method.

Proposition 2.2.3. (Basic identity) Let ™ be a cuspidal automorphic representation

of G(A) with trivial central character and ¢1,¢o € m be two cusp forms. Then

Z(si0100 1) = [ 009, ))(x(9)61, 02}y (22.11)
where
00 = [ Gila)alo)ds, (22.12)
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is the standard inner product on G(A) and

1, 0 0 0 0 0
0 1, 0 0 0 0
0 0 1, 0 0 0

§ = (2.2.13)
0 0 0 1, 0 0

0 0 -1, 0 1, O

0 1, 0 0 0 1,

Proof. The proof is well known (see for example [PR87]). We sketch the idea here.

Unfolding the Eisenstein series, we obtain

Z<8;¢1a ¢27 fs)

2 2

/G (F)XGENGA)XG(A) | e p(p)\ H(F)/G(F)x G(F) neStab, \G(F)x G(F)

Fs(vm(91,92))01(91)B2(g2) x (v(92)) ' dgrdgs.

Here Stab, =y 'P(F)y N G(F) x G(F) is the stabilizer of the orbit represented by
7. The representatives of P(F)\H(F)/G(F) x G(F) can be chosen as

(@]
—
3
(@]
(@] @) (@)
(@]
(@]

0 €-€; 0 0 0 1m

and the stabilizer Stabs, can be easily calculated. We can thus write

Z(s;¢1, 02, fs) = Z Zi(s; 01, 02, f5),

0<i<m

Zi(s;01, 02, f5) = Fs(6i(g1, 92))01(91)d2(92) x ((g2)) ' dgrdgs.

/Stab(;i \G(A)xG(A)

All the orbits represented by d; for 0 < i < m are negligible in the sense that they

contain the unipotent radical of a proper parabolic subgroup of G x G as a normal
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subgroup. Then using the cuspidality of 7, we can show that
Zi(s;¢1, 02, fs) =0 for all 0 < i < m.

It remains to calculate the contribution of the main orbit § := ¢,,. Note that

5(g,9)0~t € P for all g € G, we calculate

Bulsion oo b = [ [l F(6(0201,020)91(02600)62(92)((92) dgndgy

= /G(A) fs<6(91; 1)) /G(F)\G(A) ¢1(9291)¢2(92)d92d91.

Write 7 = ®/ 7, and assume ¢1 = ®,014, P2 = Qu2, With @1, ¢a, € m,. Also
choose the section f; such that f; = I, fs,. is factorizable with local sections f;, €

Indg((g’)) (x|v(-)]*). Due to the uniqueness of the pairing, (-,-) is factorizable in the

sense that (¢1, ¢2) = [1,(P1., P2.), Where

(G100020) = [ G10(9)20(0)dg (2.2.14)
G(Fy)
is the local pairing. Then Z(s; ¢1, @2, f5) has an Euler product expression

Z(g?; ¢17 ¢27 fs) = H Zv(s; ¢1,va ¢2,v7 fs,v)a
v (2.2.15)

Zv(s; ¢1,v7 ¢2,v7 fs,v) = /

G(F) fs0(6(g: 1)) (m(9) D10, P2,0)dg.

Hence, the global integral Z(s; ¢y, ¢9, fs) can be studied locally place by place.

In some works of the doubling method (e.g. [BS00; Gar84b; Shi97; Shi00]), for

g2 € G(A), the integral of the following form is considered

Z'(g2; 61, fs) = E((91,92); fs)b1(g1)dg:- (2.2.16)

/G(F)\G(A)
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The computation of (2.2.16) is same as the one for (2.2.10). In particular, we have

Z/<92;¢17f5> = X(V(QQ))/G(A) fs(0(g1,1))#1(9291)dgr
= X(V(QQ))HZ{)(QQ;QSwas,v)u (2217>

2092010 fu) = [ Fusl8(0,1)610(0200) gy

2.2.3 Main results on integral representations

The first main result of this thesis is an integral representation of standard L-
functions. That is, we make the choice of f; such that the global integral Z in
(2.2.10) represents the L-function defined in Section 2.3. We summarize our result

here.

Let 0 be the ring of integers of F' and O a maximal order of D. Denote by o,, O,
their localizations and assume D, = O, ®,, F,. For a finite place v corresponds to
a prime ideal p, of o, denote w, for the uniformizer of p, and set ¢, = |w,|; . Fix
an o-ideal n = nyny with ny, ny coprime and write n = [, pi*. Define the following

open compact subgroup of G(o):

Mat,,(O) Mat,, . (O) Mat,,(O)
K(n) = G(0) N | Mat,n(nO) 1+ Mat,(WO) Mat,,(O) | (2.2.18)
Mat,,(nO)  Mat,,,(nO)  Mat,,(O)

where n’ = [, ., >1 Py is the support of n.

Let ¢ € m be a factorizable cusp form with ¢ = ®!¢,. Set Sy be the set of all
archimedean places of F. Denote S; be the set consisting of places dividing n; and
S5 the set consisting of places dividing ny. We make the following assumptions:

(1) 2 € OF and 0 € GL,.(O,) for all v € S; U Sy,

(2) ¢ is fixed by K(n) and is unramified outside S, S5, i.e. fixed by G(o,) for
v ¢ S USU Sy,

(3) ¢ is an eigenfunction for the Hecke algebra H(K (n), X) as in Section 2.3.4,

(4) x has conductor ny,
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(5) In Case V, all places v € S; U Sy are nonsplit in O.

The standard L-function L(s, ¢ X x) of ¢ twisted by y is defined in Section 2.3.4.
There is an Euler product expression

L(Sa¢ X X) = HLU(S7 (bv X Xv)' (2219)

When v ¢ S1U Sy, Ly(s, ¢y X xo) is the unramified local L-factors defined with m in
Section 2.3.1 replaced by the Witt index of G(F,). When v € S; U Sy, Ly(s, ¢y X Xov)
are the ramified local L-factors and in particular L,(s, ¢, X x,) = 1 if v € Sy. The
integral representation for the partial L-function
L2 (s,0 x x) == ] Lu(s,¢ % x) (2.2.20)
vES1US>
is well known. We make the choice of local sections fs, properly for v € S; U Sy

such that the global integral Z represents the complete L-function. Let

0 0 1,
w = 0 1, 0 (2.2.21)
e-1,, 0 O

be a Weyl element. Define 17, € G(A) to be an element such that (1), = w for
v e Sy and (), =1 for v ¢ S;. Similarly set 7o € G(A) to be an element such that

(n2)y = w for v € Sy and (17), =1 for v & Ss.
Take ¢1 = 7(n1)¢, ¢2 = 7(n2)¢ and write
Z(S;d)a fs) = Z(S;¢17¢27fs>‘ (2222)

Theorem 2.2.4. Keep the assumptions of ¢, x as above. Take the section fs to be

fo=  I1 £ T1 e I0 e T1 £ (2.2.23)

v¢S1US2USo vEST vES? V€S0

Then

2050, 0) = O L (5 3,0 % x) - Zuals5 0, 12 [T (1), 00). (2:2.24)

vfoo
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Here:
(a) O, fh5, fE are local sections defined by (2.4.6), (2.4.11), (2.4.15) and f3 can

be chosen such that
( ¢007 HZv\oo gbm sv) 7é ) (2225>
(b) U'(n1) = [y, U'(p5y) is the Hecke operator defined by (2.3.14) and

0 0 w,“ 1,

=11 0o 1, 0 , (2.2.26)
vES2
oD 0
(c) C is a constant given by
C' = x(ny)™4 0y 4259 y0] (GL,, (O) /G Ly (1,0)), (2.2.27)
with
1 Casel, II, 'V, 1 Case I, II,
d, = d, = (2.2.28)
2 Case Ill, IV, 2 Caselll, IV, V.

Remark 2.2.5. This is proved by combining the local computations of Proposition
24.1, 242 2.4.4. In Case III, 1V, if D, splits then the local computations follow
from the one for Case I, IT as the local group G(F,) is a symplectic group in Case
III or an orthogonal group in Case IV (see also Section 2.3.3). For Case V, we do
not cover the split case in this work for simplicity and also because this case is well
studied in [HLS06] and [EHLS20]. Hence throughout the thesis we will assume all

v|n are nonsplit in O for Case V.

2.3 Hecke operators and local L-factors

In this and the next section, we fix the following local setup. Let F' be a non-
archimedean local field and o its ring of integers with the maximal ideal p. Fix a

uniformizer w and the absolute value |- | on F normalized so that |&| = ¢~ with
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q the cardinality of the residue field. We consider tuples (D, p, €) of following eight
cases:

Case I, Orthogonal)

Case II, Symplectic)

Case III, Quaternionic Orthogonal Nonsplit)

(D, p

(D, p

(D, p

Case III’, Quaternionic Orthogonal Split) (D,p
(D, p

Case IV’, Quaternionic Unitary Split) (D,p
(D, p

(
(
(
(
(Case IV, Quaternionic Unitary Nonsplit)
(
(Case V, Unitary Nonsplit)

(

Case V', Unitary Split) (D, p) of type with D =FE, ¢ =

We fix a maximal order O of D such that D = O ®, F'. Let q be a prime ideal in O

above p and fix @ a uniformizer of .

2.3.1 Unramified local L-factors

In this and the next subsection, we do not consider three split cases (i.e Case 11T,

IV, V). Let
0 0 1,
G:=G(F) :={ge€ GL,(D):gPg" =}, = 0o 6 0 |, (2.3.1)
€1, 0 O

with n = 2m + r and 0* = ¢ € GL,(D) is anisotropic. Assume 7 is an unramified
admissible representation of G(F') and ¢ € 7 a spherical vector. Also assume Y is

an unramified character of E*.

Recall the Cartan decomposition

G(F> = H Ke1 ----- em>
02 e, (2.3.2)
Koo = G(o)diagE®, ...z, 1,,5°, ..., °"]G(0).

The local spherical Hecke algebra H is generated by all such double cosets K, .

-1,

—1.
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en] O @ is given by

.....

v = [ mlg)ody. (2:3.3)

Here, the measure dg is normalized such that G(0) has volume 1. Since the space of
spherical vectors has dimension one, ¢ is an eigenvector under the action of Hecke

operators, that is

¢|[Ke1 ----- em]:>‘e1 ----- 67n(¢)¢’ (2-3-4>

for some scalar A,

L <$ + ;7 gb X X)
“b(5) Y Aesen(8) (X@)INgsp(p(@))) "

€1,y em€L
0<ei<..<em

(2.3.5)

Here b(s, x) is the normalizing factor given in the following list (taken from [Yam14,
p.667] but Case III, IV should be calculated from [Shi99b, Proposition 3.5]).
(Case I, Orthogonal)
L5)
b(s,x) = [[ L2s +n+1—2i,x%),
i=1

(Case II, Symplectic)

n

1 3
b(s,x)=L(8+ ;r ,X)HL(28—1+22',X2),
=1

(Case III, Quaternionic Orthogonal Nonsplit)

2n+1 n

b(s,x) :L(s—i— 5 ,x) ITL2s+2n+1—4i,x%),
i=1

(Case IV, Quaternionic Unitary Nonsplit)

n

b(s,x) =[] L(2s + 2n + 3 — 44, %),

i=1
(Case V, Unitary) Set x° = x|px and let xg,r be the quadratic character associated
to E/F, then

n

b(s,x) = [T L(2s + i, X" X5/i)-

i=1
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Here L(s, x) means the local L-factor of Hecke L-functions.

Proposition 2.3.1. Let a; € C,1 <7 < m be the Satake parameters of ¢. Then
L(s, ¢ x x) has an Euler product expansion with L(s,¢ x x)~! given by the following
list.

(Case I, Orthogonal)

J m

(1= x(@)?e ) < T (1~ x@)asg™57) (1= x(@)oy ' 577),

1 i=1

,7
NI

(2

(Case II, Symplectic)

(1= x(@)~) ﬁ (1= x@aig™) (1= x(@)a'a™).

(Case III, Quaternionic Orthogonal Nonsplit)

m-+r

( —rs)XH(l_ 24z2r2s>
lin[ (1 _ 1+r—s) (1 _ X(w)aflq*“s) :

(Case IV, Quaternionic Unitary Nonsplit)

m-+r

H (1 . X(w)2q4i7272“23)

i=1

% f[ (1 _ X(W)Oéiqfﬂrfs) (1 _ X(w)aflqk“s) :

(Case 'V, Unitary Inert) E/F is inert,

m

[T (1= x(@)asg %) (1 = x(@)a; ¢ "),

i=1
(Case 'V, Unitary Ramified) E/F is ramified,

m

[1(1-x@ig™ ) (1= x(@)a; g ),

=1

Proof. The symplectic and unitary cases are given in [Shi00, Theorem 19.8]. The
orthogonal case are given by [Shi04, Proposition 17.14] and the quaternionic ortho-
gonal group are studied in [Shi99b, Theorem 3.12]. All can be computed using the

method in [Shi97, Section 16]. For the quaternionic unitary groups, by the same
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manner, we calculate the following Dirichlet series,

Yo e (@) = a(5)B(25 = 2m A+ 1)A(s —n A1 —1,5),

(ST em€Z
0<e1 <...<em

where s
m 1 — ghi—4-2s
Oé(S) - 1:[1 1 — q2m+2i—3—25’
m 1— q2i—2—s
B(s) = 1:[1 ==
m 1— q2i72fsfs’
A(s',s) = .
() g (1 =g a;)(1 - ¢*ma;")
Then
m 1 — q4i7472s
>\e ..... o (q—3)61+~~-+6m — —
.31,...%@2 1 z:l_Il (1= gm=3=2ay) (1 — ¢*=*a;")

0<ei<...<em

Multiplying the normalizing factor b(s, y) we obtain the result in the above list. [J

2.3.2 Ramified local L-factors

Let
0 0 1,
G:=G(F) :={g9 € GL,(D): gPg" =}, &= 0o 6 0 |, (2.3.6)
e-1,, 0 O

with n = 2m + r and 0* = € € GL,(D) not necessarily anisotropic. In the ramified
cases, we will always assume that 2 and 0 are unramified, i.e. 2 € O*, 6 € GL,(O).

For an integer ¢ > 1, we consider the following two open compact subgroups of G(o0):

Mat,,(O) Mat,,.(O)  Mat,,(O)
K(p) = G(o) N | Mat,,,(p‘O) 1+ Mat,(pO) Mat,,(O) |,

Mat,,(pO)  Mat,,,.(p°O) Mat,,(O)
- - (2.3.7)

Mat,,(O) Mat,,,.(p°O) Mat,,(pcO)
K'(p?) = G(0) N | Mat,,,(O) 1+ Mat,(pO) Mat,,,(pO)
Mat,,(O)  Mat,,(O) Mat,, (O)
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Clearly, they are related by K(p®) = wK'(p°)w with w the Weyl element as (2.2.21).
Let

M = GL,,(D) N Mat,,(0),Q = {diag[u, 1, 4],u € M}, X = K(p°)QK (p*). (2.3.8)

For ¢ = diagu, 1,, 7] € Q, we define 9(¢) be the integer such that v(u) = ¢, The
local Hecke algebra H (K (p), X) associated to K (p°) and X is generated by double
cosets [K(p*)EK (p°)] with £ € Q. This kind of Hecke algebra generalizes the one in
[Shi00, Section 19]. Let 7 be an admissible representation of G(F'). Assume ¢ € 7

is a vector fixed by K (p®), the Hecke operator [K (p°)K (p©)] acts on ¢ by

PIK (p)EK (p°)] = m(g)¢dg. (2.3.9)

/LWKK@ﬁ

If we assume the measure dg is normalized such that K (p) has volume 1, then the

action can be written as a sum

PI[K (p)EK (p°)] = > 7(9)¢. (2.3.10)
K (p)EK (pe)/ K (p°)

The coset in the sum is characterized in the following lemma.

Lemma 2.3.2. Let £ = diag[u, 1,, 4] with u € M then

d —b0" o
Ke)E®p)=1110 1 bd | K, (2.3.11)

d,b,c R

0o 0 d

where d € GL,,(D)uGL,,(D)/GL,,,(D), b € Mat,, .(O)/Mat,,,(O)d* and
¢ € Mat,,(0)/dMat,,(O)d* satisfying ec + b*0b + ¢* = 0.

Proof. This is an analogue of [Shi00, Lemma 19.2] and can be verified in a straight-

forward way. m

Assume ¢ € 7 is an eigenvector for all [K(p®)EK (p€)], that is there exists a scalar A¢

such that

PIE (P)EK (p°)] = Ac(@)0- (2.3.12)
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For an integer n > 1, we consider a special Hecke operator
U(p") = [K(p*)EK (p°)] with £ = diag[@" - 1, 1, @ " - 1. (2.3.13)

Denote the Hecke eigenvalue for operator U(p") as a(p"). Clearly by Lemma 2.3.2,
one has U(p") = U(p)" and a(p") = a(p)". In later computations, we will also use

another kind of Hecke operator

U'(p") = [K(p*)EK (p°)] with & = 0 1, 0 : (2.3.14)

ew"-1, 0 0

Its action on ¢ is defined similarly as above.

Assume y is an unramified character, define the ramified local L-factors as
1 . BIANI(3)
Listg0xx)= > x0) (xv@)Nerm@)P*) . (23.15)
EEK (p9)\X/K (p°)

If x is ramified then we simply set
1
L(3+2,¢xx> =1. (2.3.16)

Proposition 2.3.3. Let §; € C,1 < i < m be the Satake parameters of ¢ and
assume x is unramified. Then L(s,¢ X x) has an Euler product expansion with
L(s,¢ x x)~! given by the following list.

(Case I, Orthogonal)

m

(1= x(=)Big 5 77),

i=1

(Case II, Symplectic)
I1(1—x(@)Biq ),
i=1

(Case 111, Quaternionic Orthogonal Nonsplit)

m

(1 i X(w)ﬁiq71+r78> ’

i=1
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(Case IV, Quaternionic Unitary Nonsplit)
[T (1 —x(@)8g7>77),

=1

(Case V, Unitary Inert) E/F is inert,

i1 (o),

(Case V, Unitary Ramified) E/F is ramified,

m

(1-x@)Ba™ ),

=1

Proof. This is an analogue of [Shi00, Theorem 19.8] for symplectic and unitary cases.
The proof for all the cases are the same so we only compute the orthogonal case as

an example and omit the other cases.

The Satake map w : T(K (p®), X) — Qlt1, ..., L] is defined as follows. Given a coset
dGL,,(0) for d € GL,,(F'), we can find a lower triangular matrix g € GL,,(F') such
that dGL,,(0) = gGL,,(0). Assume the diagonal elements of g are of the form
@, ..., with e; € Z and set wy(dGL,,(0)) = [T, (¢7t;)%. For K(p*)EK (p*) =

1, yK(p¢) with y as in Lemma 2.3.2, we then define

w([K (p)SK (p°)]) = > wo(yGLn(0)).

Set T'= x(w)q~*. By [Shi00, Lemma 19.9] we calculate the Dirichlet series

> Al = S vol(b, €)wo(dGLy, (0)) TV
EEK (po)\X/K(p) d€GLm (F)/GLm (o)

Here vol(b, ¢) is the volume of K (p*){K (p°)/K (p¢) with fixed d. Clearly

vol (Mat,, . (p°O)/Mat,, . (pO)d*) = |v(d)| ™",
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and ¢ :=cJ + %b*éb satisfies ¢ + e’ = 0. Then by [Shi97, Lemma 13.2] we have

S o)
EEK(NT/K ()
= > ()| o (dGLy (0)) T

d€GLuy (F)/GLym (0)
=10 = x(@)Big™ )"
i=1

1

Changing s +— s + "7_1 — 5 we obtain the result in above list. O]

2.3.3 The split case

Let
0 0 1,
G:=G(F):={g € GL,(D) : g®g* = ®}, & = o 6 0 |, (2.3.17)
e-1,, 0 O

with n = 2m + r and 0* = ¢ € GL,(D) not necessarily anisotropic. In Case III’,

IV’, this group is isomorphic to

0 0 1y,
G :=G(F):={g € GLo,(F) : gd'g = d}, d = 0 6 o |, (2318)
—¢-1gm 0 0

with 9 = —ef € GLo.(F). In Case V', G = GL,(F) is simply the general linear
group. We omit the discussion of Case V' for simplicity as it is well studied in [Shi97;

Shi00].

Unramified local L-factors

The group G is further isomorphic to
0 0 1
G = G'(F):={g € GLg,(F),g® %y = &'}, & = 0 o o |, (23.19)

—€-1,y 0 O
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with 2n = 2m/ + 1" and ' = —ef € GL,.(F) anisotropic. This is a group of Case I
or II discussed in Section 2.3.1. Assume Y is an unramified character of F'*, m an
unramified admissible representation of G(F') and ¢ € 7w a spherical vector. Let 7’
be an unramified admissible representation of G'(F) and ¢/ € 7’ a spherical vector
obtained from 7, ¢ under the isomorphism G = G’. We thus define the local L-factor
L(s,¢ x x) := L(s,¢' x x) as in Section 2.3.1. In particular, the normalizing factors
are

(Case I, Quaternionic Orthogonal Split)

Mm+1 N\
n ,x) ITL(2s —1+2i,x%),

=1

b(s,x) =L <s +

(Case IV’, Quaternionic Unitary Split)
b(s,x) = [] L(2s +2n + 1 — 2, x%).
i=1
Let a; be the Satake parameters of ¢ then L(s, ¢ x x)~! are given by
(Case I1I’, Quaternionic Orthogonal Split)

n

(1 - X(w)q*3> x I (1 - X(w)aiqfs) (1 — X(w)&;lq"") ,

i=1

(Case IV’, Quaternionic Unitary Split)

~

5]

H (1 _ X(w>2q2i7w723> y ﬁ (1 _ X(W)OéqugS) (1 _ X<w>ailqlg’8) .

=1

Ramified local L-factors

For an integer ¢ > 1, we consider the open compact subgroup K (p¢) of G(o0) as in
Section 2.3.2. The isomorphism between G and G can be chosen such that the image
of G(0) is G(0). We will fix such an isomorphism throughout this thesis. In this

case, the image of K (p) is

Matgm(ﬂ) Matgmgr(ﬁ) Matgm(ﬂ)

K(p) = G(0) N | Matgom(p0) 1+ Maty,(po) Maty, 2 (o) (2.3.20)

Maton, (pf0)  Matop - (‘0)  Mat,,(0)
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We can define the Hecke algebras H (K (p°), X) and H (K (p), X) similarly as Section
2.3.2. Let 7 be an admissible representation of G(F'). Assume ¢ € 7 is a vector
fixed by K (p°) and is an eigenvector for the Hecke algebra H (K (p), X). Let 7’ be an
admissible representation of G (F') and ¢’ € 7 a vector obtained from 7, ¢ under the
isomorphism G = G. We thus define the local L-factor L(s,¢ x x) := L(s, ¢’ x x)
as in (2.3.15), (2.3.16). In particular, L(s, ¢ x x)~! are given by

(Case III’, Quaternionic Orthogonal Split)

(Case IV’, Quaternionic Unitary Split)

2m

H (1 . X(w)ﬁiq_1+r_s) ‘

i=1
The operator U’(p") is defined as in (2.3.14) for orthogonal and symplectic groups.
In Case IV’, the U(p") is also the one defined for Case I in (2.3.13). In Case III’, we

define U(p") as
U(p") := [K(p*)EK (p°)] with € = diag[ew" - 1,0 " - 1,]. (2.3.21)

Remark 2.3.4. Note that when defining local L-factors, we always assume the group
is chosen such that m is the Witt index in unramified cases which is not applied
for ramified cases. In other words, in ramified cases our open compact subgroup
K (p®) is not chosen to be maximal. For example in above Case III", clearly the local
group G can be further isomorphic to G with m’ = n,7’ = 0 as in the unramified
computations. But we are still considering the open compact subgroup K (p¢) rather

than the bigger one
~ Mat,, (o Mat,, (o
&'(0) (0) (0) |
Mat,(p‘0) Mat,(0)
which causes our local L-factors to be of degree 2m rather than the expected n as

in Case II. We make those restrictions because only these L-factors show up in our

integral representations.
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2.3.4 The global L-function

We summarize our definition for the standard L-function. Let F be a number field

and
0 0 1,
G:=G(F):={g9 € GL,(D) : g®g* = o}, & = 0o 6 0 |, (2.3.22)
e-1,, 0 O

be the global group as in Section 2.2.1. Let o be the ring of integers of F and O a
fixed maximal order of D such that D = F ®, O. Let n = nyny be an integral ideal
of o with ny,ny coprime and x : EX\Aj — C* a Hecke character of conductor ns.

Consider the open compact subgroup

Mat,,(O) Mat,,.(O)  Mat,,(O)
K(n) = G(0) N | Mat,,,(n®) 1+ Mat,(n'O) Mat,,(O) |- (2.3.23)
Mat,,(nO)  Mat,,,(nO)  Mat,,(O)

with n’ the support of n. For v a finite place corresponds to a prime ideal p denote

Mm, = GL,,(D,) N Mat,,(O,) and set

G(O’U) pj(nv
Q, =q diag[u, 1,, 4] with u € 9, pn, (2.3.24)
1 pln,.

Let 9 = J[,Q, and X = K(n)QK(n). Define the global Hecke algebra H :=
H(K(n),X) associated to K(n) and X be the one generated by double cosets
[K(n){K (n)] with £ € Q. Tts action on a cusp form ¢ € 7 can be similarly defined
as in the local case treated above. Assume ¢ € 7 is fixed by K(n) and is an

eigenfunction for ‘H. That is

PKM)EK ()] = Ae(9). (2.3.25)
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The standard L-function of ¢ twisted by x is defined as

L (S - ;, ¢ X X) =b(s,x) > Ae(@)x(v(w))Ng/p(v(u) [ (2.3.26)
ol

Clearly, see for example [Shi00, Section 19], it has an Euler product expression
1 1
L(s+2,q§><x) ~T] L. (3+2,¢vav>, (2.3.27)

with L, (s + %, Dy X Xv) the local L-factors defined in the previous two subsections.
Note that when v t n is unramified, G(o0,) may have Witt index m’ > m and the

unramified local L-factors is defined by replacing m with m’ in Section 2.3.1.

Remark 2.3.5. We give several remarks on our L-functions.

(1) Here we define the L-function by a Dirichlet series associated to certain Hecke
eigenvalues which can be viewed as an analogue of the L-function for classical (GL3)
modular forms. This kind of L-function is also studied in [Shi97; Shi00] for symplectic
and unitary groups.

(2) As the reader may notice, we are writing L(s, ¢ X x) to indicate its dependence
on the cusp form ¢. Unlike the GLs case, we do not have a clear correspondence
between eigenforms and cuspidal representations. This is because, the subspace of
7 fixed by K(n) (take n to be the conductor of 7) may not be of dimension one.
(3) The unramified local L-factors defined here are really the Langlands L-function
associated to the natural embedding of the L-group “G into a general linear group.
(4) We make no claim that our definition of ramified L-factors is ‘correct’. Indeed, it
is a conjecture of Langlands [L.an70] that for any cuspidal representation 7 one can
associate to any place a local L-factor L,(s,m,) and a local root number €,(s,m,)

such that the global L-function satisfies a functional equation of the form
L(s,7) =¢€(s,m)L(1 — s,m).

Using the doubling method, Yamana [Yam14] gives a definition of local L-factors

and proves the functional equation for classical groups. However, he does not define
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these factors explicitly as in our Proposition 2.3.1, 2.3.3 and it is not clear how his
approach can be used to study algebraicity or p-adic properties which is of interest
in this work. We have not compared our L-factors with his and we also do not know

whether the L-function defined here can be proved to satisfy a functional equation.

2.4 The non-archimedean local integrals

We carry out the computations of the non-archimedean local integrals in this section.
We keep the setting for non-archimedean local fields and tuples (D, p,€) as in the
beginning of Section 2.3. The unramified local integrals are well known but we will
also review the computations for completeness. For ramified local integrals, it is also
well known that one can choose a local section f;,, such that Z,(s; 1.4, $2.4, fsu) 7# 0.
For our purpose, we explicitly construct certain local sections fI, f¥, f? such that Z
represents the local L-factors defined in the last section or the p-adic modifications.
These local sections will also be chosen such that the Eisenstein series has a nice
Fourier expansion. To make our notations and computations consistent, we do not
consider the split case (i.e. Case I, IV’, V’). For Case III’, IV’, the local groups are
isomorphic to the groups in Case I, I and our arguments can be directly extended
to these two cases. The Case V’ should be treated separately and we omit it for
simplicity. We will assume in this thesis that Case V' does not occur in the ramified

setting.

2.4.1 Setup for non-archimedean local integrals

Let

0 1,
o 0 |, (2.4.1)

e-1, 0 O

o O

G:=G(F):={g € GL,(D) : g®g* = o}, & =
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with n = 2m + r and 6* = €0 € GL,(D) not necessarily anisotropic. Let
0o 1,
H := H(F) :={h € GLy,(D) : hJ,h* = J,}, J, = , (2.4.2)
e-1, O
and define an embedding
GxG— H,
2.4.3)
g 0 _ (
(917 92) = R R 17
0 g
with _ -
0 51, 0 0 £-1, 0

1., O 0 0 0 0
R =
0o 66t o0 o0 0! 0
0 0 0 1, O 0
0 0 1, O 0 0
We identify (g1, go) with its image in H. Let P C H be the Siegel parabolic subgroup
* %
consisting elements of the form , with Levi decomposition P = M x N for
0, =
a 0 1, b
M = ra€eGL,y, N= :b" = —eb € Mat,, (2.4.4)
0 a 0 1,

Consider the induced representation Indg((g)) (x|v(+)|?) for a character y : E* — C*.

Let m be an admissible representation of G(F) and ¢1,¢2 € w. For a section

fs € Indg((g)) (x|v(+)|*) we consider the local integral

Z(si01,00 1) = [ 1000, 1)) {r(0)6n, o),

(2.4.5)



42 Chapter 2. The Integral Representation of the Standard L-functions

where _ i
1, 0 0 0O 0 O
0 1,, 0 0O 0 0
0 0 1, 0 0 0
5=
0 0 0 1, 0 O
0 0 -1, 0 1,, O
0 e¢-1,, O 0o 0 1,

2.4.2 The unramified local integrals

Assume y is an unramified character of £*. Let m be an unramified admissible

representation of G(F') and ¢ = ¢o = ¢ € 7 a spherical vector.

Take the local section fY € Indg((ﬁ)) (x|v - |*) to be the spherical section normalized

such that

a b
£ (0k) = x(v(a))INg/r(v(a))|"™"b(s, x) with p = . k€ H(o). (24.6)

Here b(s, x) is the normalizing factor given in Section 2.3.1. Note that in (2.4.1), 6 is
not necessarily anisotropic. Let m’ be the Witt index of G. That is GG is isomorphic

to the following F-group

G :=G"(P):={g € GL,(D): g9'g* = d'} (2.4.7)
with
0 0 L
P = 0 ¢ 0 |,n=2m"+1r",0"=el € GL.(D) anisotropic .
Elm/ 0 0

Then there exists a matrix S € GL,(D) with S®'S* = & and the isomorphism
between G and G’ are given by
G — G,

(2.4.8)
g SgS™L.
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Denote by 7', ¢’ for the admissible representation and cusp form of G'(F') obtained
from 7, ¢ under isomorphism (2.4.8). Then the local L-factor L(s, px x) = L(s, ¢’ X x)

is defined in Section 2.3.1 with m replaced by m/.

Proposition 2.4.1. Let x be an unramified character of E* and w an unramified
admissible representation of G(F). For fY chosen as above and ¢1 = ¢y = ¢ € 7 a

spherical vector, we have

1
2(5:6,6,49) = L (s+ 5.0 1) (6,0). (2.49)
Proof. We have another doubling embedding
G'xG — H,

0 S 0
(.90 = R | R\ R=R

0 gs 0 S

which is compatible with (2.4.3),(2.4.8). Then the integral (2.4.5) is equivalent to

the integral
250, f)= [ (600, D) (0)0' ¢)do.

By Cartan decomposition, we have

Z 0(5 . (diag[?ﬂel, ey %em/, 1y, %7@7 e ,?\ﬂ/iem/], 1))

s

(<5 em/EZ
0<e1<...<e,,/
< [ (7o) ¢)dg
Kel ..... €m/!
. ~\\ 54K e1t+...+e, s / ’ ’
= Y (xw@)Ngw@)F) b5, ) At () )
o s,

=L (s 5.0 % x) (6,9)

2.4.3 The local section f[*

In this and the next two subsections, we consider the ramified local integrals. We

will always assume 2 € O and 6§ € GL,.(O) in the ramified cases. For an integer
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¢ > 1 let N'(p°) be the subgroup of N(F') consisting the elements of the form

, ¢ € S.(pO),y € Mat, 0, (p°O), 2z € So(p°O).  (2.4.10)

Define fI* € Indg((g)) (x|v(+)|*) to be a local section supported on P(F').J,N'(p*) with

a b
fiwJan) = x(v(a)Ngyr(v(a))[*" for p = € P(F),n € N'(p*).
0 a
(2.4.11)
Note that when pulling back along G x G — H, we have
FE g1k, g2k2)) = x (v (di)x (v (@) f1* (91, 92) (24.12)

ag,  fr bry aky  fro bk,

for kl = hk1 €k, jkl < K/(pc> and k’g = hkg €k ij S K(pc)

Cky kk1 dkl Chy kk? de

The following proposition is an analogue of the computations in [Shi95, Section 4] for
symplectic groups. We extend the arguments there to all classical groups. Especially,

the main difficulty in the computations is to deal with the group with r # 0.

Proposition 2.4.2. Assume ¢ € 7 is fized by K(p°) and is an eigenvector of the
Hecke algebra H(K (p©),X). Set ¢1 = m(w)o, o = ¢. Assume x is an unramified

character and 2 € O*,0 € GL,.(O), then
Z(s;m(w)e, ¢, f1)

. (2.4.13)

:X<w)cmd1q7cmd2(s+n)L (8 + 57 b x X) . <¢’U/(pc)’ ¢> )

Here

1 Casel II, V, 1 Case I, 11,
d, = d;, = (2.4.14)

2 Case Ill, IV, 2 Caselll, IV, V,
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Proof. Denote
M(p) = GLyn(D) N Mat,, (p°O), Q(p) = {diag|a, —1,,u], a € M(p)}.
We claim that

f1(6(g,1)) # 0 if and only if g € K (p)Q(p*) K’ (p°).

a f b
Write g = | b e j | with a,d of size m x m, e of size r X r and compute
c k d
[ e € e(e—1)0 €]
I
0 1, O 0 0 0
ef 0 a 1o 0 b
d(g,1) = ’
e te—1) 0 6'h 0719 0 671y
0
—ef 0 —-a - 1, -b
ek € c k6 0 d

2

The elements in P(F')J,N'(p®) can be written as

- k ok k% _ _ I, 0 =z y |
x % k% 7 0 1o, ey =z
0 0 Dy Do o o0 1, 0
0 0 Ds Dy 0 0 0 19y

- * * * * -

* * * *
N eD1 €Dy eDix+ Doy* €Dy +eDsoz ’

eDs €Dy eDsx + Dyy* €Dsy+ eDyz

with x € S,(pO),y € Mat, 2., (p°O), z € So,(p°O). Assume 7(g, 1) is of above form,

then comparing two expressions we need
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= —f 0 —ea
Dlze <6_1)7D2:|:0 69”1};133: 7D4: 9
k 1 e
and .
x e+t [
eDyz + Doy* =607 5 0, Diy+Daz= |0 e0'j |,
—% e —eb
eDsx + Dy = . D3y+ Dyz =
%9 0 ed
First of all, write y = { U Yo }, then
—1 —efx — eay;
> | =eDyz + Dy = / b2
ko ekx + yi + ecy;
implies
ayy = —€f(ex — 5), Yy +ecy; = —k(ex — 5).

Since by our assumption g € GL,(O) and the condition on z, the first equation

forces a to be invertible and thus

0 0

ys = —ea” ' flex — 5)7 yi = —(k —ca™" f)(ex — §)~

The condition on y then forces a™ ' f, k — ca™' f € Mat,, .(p°O). Secondly, from

9*16—#1

0 = eDix + Doy* = € (e — 1) + €0 hys,

we obtain
e+1— ha*1f6

cle—1+ha'f)r = 5

The condition on x then forces e — ha™'f + 1 € Mat,.(pO). Finally, comparing D,

and D3y + D,z, the condition on z forces

1
0 —ea € —eb eca”l  ed

= EMatgm(pc(’))
1 ec 0 ed —a~ ! a7 'h

and hence a™!, ca™ a='b € Mat,, (p°©O). Since a is invertible, we can write
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1,, 0 0 a 0 0 l,, a'f a'b
9= | ha! 1, 0 0 e—ha'f 0O 0 1, —elif*a
ca”' —eah*0~' 1, 0 0 a 0 0 1,,

and our claim clearly follows.

By straightforward computations and the fact that (see also the proof of [Shi95,

Lemma 6.2])
K(p)Q(p*)K'(p°) = K(p)QK (p) - K(p*)diagw™ - 1pn, 1,, @ - L] K'(p°),

we have

Z(s;m(w)p, ¢, f1)

=x () g ot > Ae(8) (x(v(@))|Ngyp(v(3)) 7))
EEK (p)\X/K(p°)

(m(gw)o, ¢) dg

<,
K(p©)diag[ow = 1m,—1r,@" 1m] K’ (p°)

:X(w)cmd1q7cmdz(s+n)[] <5 + ;, b X X) <¢‘U/<pc)’ ¢> .

2.4.4 The local section fsi’c

If x is a ramified character then Z(s; ¢y, ¢, fI°) will be identically zero. In this
subsection, we define a section f+¢ as a twist of fI'° such that Z(s; ¢1, ¢, f5°) is a

non-zero constant. Assume x has conductor p¢, we define
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fi<(h) = > X~ (v (u))
uEGLm (0)/w GLy, (O)
I, 0 0 0 0 0
01, 0 0 0 =
. 2.4.1
0 0 1, 0 —= g (24.15)
x fI01h
o 0 0 1, O 0
o o0 o o0 1, O
0 0 0 0 0 1,

The following lemma shows the reason for the twist.

Lemma 2.4.3. When pulling back along G x G — H, we have

FE((grka, g2ka)) = x(v(k2)) [ ((91, 92)) (2.4.16)

fO’f’ ki € K(pzc), ko € K’(pzc).

Proof. For the notations of ky, ks as before, we have

FE g1k, g2k2)) = X (v(diy ) x(v(ax,)) > X (v(u)

uEGLm (0)/w*GLn (0)

. 0 0 0 0 O
o 1, 0 0 0 =

" 0 0 1, 0 —<= 0
X Js7 | (91, 92)
00 0 1L 0 0

with v/ = d;@.ud,;l. Then changing variables u — d,;ludkl gives the desired result. []

The following proposition is an analogue of the computations in [BS00] and [SU14,
Proposition 11.16]. Again the main difficulty is to deal with the group with r # 0

and the arguments is similar to the proof of Proposition 2.4.2.
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Proposition 2.4.4. Assume ¢ € 7 is fized by K(p®), x is a character of conductor
p-and 2 € O*,0 € GL,.(0). Set ¢1 = ¢, = w(w)d and denote

1+ Matgm(pc(’)) Matgm,r(p‘(’)) Matgm(O)
Ki(p) =G(0)N | Matyon(pO) 1+ Mat,(pO)  Mat, o, (p°O) |- (2.4.17)
Matgm(p2c(9) Matgmyr(pcO) 1+ Mat2m(pc(9)

Then

Z(s; 0, m(w)g, f5°)

(2.4.18)
SO(GL(O)/=CLuO) (7| | 0 1 0 [[es).

L, 0 0 0 0 0
0 1, 0 0 0 &
0 0 1, 0 —= 0

(w, w) td,od;, (w, w) =

ew ‘u 0 0
Changing variables g — w™lg 0 I, 0 w, we need to calculate
0 0 ew'd
Z(s; ¢, m(w)e, f3)
ew ‘v 0 0

:/G(F) > x N (u)) <7T g 0 I, 0 w | @, ¢>

u€EGLm (0)/w GLy, (O)

x f10 (89, 7d, " (w,w)) dg.
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a f b
Write g = | b e j | with a,d of size m x m, e of size r x r and compute that

c k d

[ et 0 S e(e—1)0 i = ]
0 0 0 0 —1,, 0
B ef 0 wbil g —eb ew ‘au
- e —1) 0 w @ tja 07ty —ef7ly ew 0 hu
—ef —€-1,, —wbi L €b —ew ‘(a+1)u
ek 0 w'dil K —e(d+1) ew ‘cu

Suppose it is an element in P(F).J, N’(p°), then as in the proof of Proposition 2.4.2

it can be written in the form

* * * X
* * * *
€D1 €D2 EDlﬂj + Dgy* EDly -+ EDQZ

eDs €Dy eDsx+ Dyy* e€Dsy+eDyz

with z € S,.(pO),y € Mat, 9,(0), 2z € S2,,(O). We need

» —f —1,, —ewbu
Di=0"(e—1),D2=1|0 ew9'ja |, Ds= y Dy = )
k 0 ewdi
and
e+1 [
eDix + Doy* =671 5 0, Diy+Dez=1| -7 0'w hu |,
L b —w (a+1)u
eDsx + Dyy* = , D3y+ Dyz =
%‘9 —(d+1) w ‘cu

By the same arguments as in the proof of Proposition 2.4.2, the conditions on z, vy, z
force

(1) d is invertible and 1+ d~! € Mat,,(p‘O),
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(2) d~'c have entries in p*, d~'k, jd~! has entries in p¢ and bd~! has entries in O,
(3) ¢ — jd'k € —1+ Mat, (pO).

These implies —g € K (p¢) and we have

Z(s; ¢, m(w)g, fF)

:/K Z x Hv(u)) <7r g 0 1, 0 w | ¢, ¢> dg

1(P) 4eGL M (0) /¢ GLm (0)

oG (OGN (7| | 0 1, 0 [[eo).

2.4.5 The p-adic section f?

Assume Yy is unramified, ¢ € 7 is fixed by K(q?) and is an eigenvector for the Hecke
algebra H (K (q?),X). We construct yet another section f? as a twist of £ which
represent the p-adic modification factor in the construction of the p-adic L-functions.

Again, here we are inspired by the idea of [BS00, p.1392 and p.1400].
For each 0 < i < m, denote T} for the Hecke operator given by the double coset

Suppose there is a double coset decomposition

GL,,(0)u;GL,,(0) = HaijGLm(O). (2.4.20)
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We define a local section fP by

OEDY >

7 uewMatm (0)5;;! /@Matm (O)

. 0 0 O 0 0
0 1, 0 0 0 &
. (2.4.21)
0 0 1, O < 0
fT:O h w
0o 0 0 1, O 0
o 0o o o0 1, O
0 0 0 0 0 1,

Lemma 2.4.5. Let \; be the eigenvalues of ¢ under T;, i.e. ¢|T; = Np. Set

01 = ¢, g = w(w)p. Then for each 0 < i < m,

Z(s;0,m(w)o, )

I P 1
:X(w)ds(m z)q (m z)d4(s+ﬂ))\m_iL (S + 5, gb X X)

0 0 =1, (2.4.22)
X <7T 0 17“ 0 ¢a ¢> )
w-1, 0 0
with
1 Case I, II, V Ramified, 2 Case V Inert,
d; = , d, = (2.4.23)
2 Case Ill, IV, V Inert. 1 otherwise,

Proof. Denote d= = diag[ly+y, €7, Lnyr, @] and

. 0 0 0 0 O

o 1, 0 0 0 O

o o0 1, 0 0 O
Oy =

o o0 o0 1, 0 O




2.4. The non-archimedean local integrals 53

Then _ .
. 0 0 O 0 0
0 1, 0 0 0 =
0 0 L, 0 —% 0

(w, w) ' dzb,d=" (w, w) = “
o 0 o0 1. 0 0
o 0o o o0 1, O
0O 0 0 0 0o 1,
ew -1, O 0
Changing variables g — w™lg 0 1, 0 w, we need to calculate

Z<Sa ¢17¢27f£)

:/G(F)Z 3 <7r g 0 1, 0 w ¢,¢>

I uewmMatm (0)5;;! /@Maty (O)

x f10 (5(9, 1)7'906%1(“’7 w)) dg.

a f b
Write g=| h e 4 | and compute that

c k d
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0 0 1, 0
0 0 0 @- 1y
[ e we e(e—1)0 j = 1h |
%1 0 2] ( 4 : _% 2
0 0 0 0 —1n 0
B ef 0 wb % —eb cw la
e (e—1) 0 0 'wj 071 —ehl ew 07 h
—ef —€-1,, —wb —L eb —ew '(a+u)
ek 0 wd ko —e(du* +1) ew e

By the same arguments as in the proof of Proposition 2.4.2, 2.4.4, this is an element
in P(F)J,N'(p®) if and only if

(1) d is invertible and d~! + u* € Mat,,(q0),

(2) d'c have entries in q%, d 'k, jd~! has entries in q and bd~! has entries in O,

(3) e — jd'k € —1 4+ Mat,(qO).

Since d is invertible, we can write

L, —dj*07' bd' || d 0 0 Lo 0 0
g=1 0 1, jd'||0 e—jd'% 0| —0k'd 1, 0
0 0 1 0 0 d dlc d'k 1n

Note that there is a permutation j — j’ such that d runs through GL.(D) N

5Matm((9)5i}1 for fixed j. Hence, when d;; running through the right coset
GL,,(0O)u;GL,,(0)/GL,,(0),

all such d run through
GL,,(D) N @Mat,,(O)u; .

(2
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Therefore,

Z(s;0,m(w)o, f)
= 2 2.

d€GLm (D)N@wMaty, (O)u; * ge K (q2)diagld,1,,d| K (q2)

X((@d)) Ny (v(@d))|""

ew -1, 0 0

><<7T g 0 1, 0

0 0 ew-1,

w ¢,¢>-

Note that when d runs through GL,,(D) N wMat,,(O)u; ", we are taking a sum over

K(¢*)QK(q%) - K(q*)diag[@ us, 1,, wu; 1K (9%).

We thus obtain
Z(s; ¢, m(w)o, f2)

N N 1
:X(w)d3(m z)q (m z)d4(s+f€))\m_iL (s + 5, ¢ X X>

><<7T o 1L 0 ¢,¢>.

as desired.

Gluing all these 0 <17 < m together, we define the local section f? by
(2.4.24)

ff(h) _ %(_1)iqd3(i(i;1)_im)fsz’),i(h).

i=0
Proposition 2.4.6. Assume x is unramified, ¢ € 7 is fized by K(q°?) and is an
eigenvector for the Hecke algebra H(K(q*),X). Assume 2 € 0,0 € GL,.(O). Set
O1 = ¢, p2 = m(w)¢ and denote B; for the Satake parameters of ¢p. Then

m7d3m2+m ]_ 1
1)"q 2 Ls—i—§,¢><st+§,¢><X

0 0@ (2.4.25)

Z(s; ¢, m(w)o, f7) =(=
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where M (s, ¢ X x) is the modification factor given in the following list.
(Case I, Orthogonal)

m

(1—x(@)Big7 ™),

i=1

(Case 11, Symplectic)

m

[T (1 = X))

=1

(Case I1I, Quaternionic Orthogonal Nonsplit)

m

[T(1-x=)84").

i=1

(Case 1V, Quaternionic Unitary Nonsplit)

(Case 'V, Unitary Inert) E/F is inert,

1 (1 - x(@)8a").

@
Il
—_

(Case 'V, Unitary Ramified) E/F is ramified,

—

ﬁ
Il
—

(1-x@)Bia™ ).

Proof. By the above lemma, we have

- ] LGt S Y —~\d3(m—1i) ,—(m—1i)(s+kK
Z(3; 61, o, f7) = Z(_1)@qd3( : )y () dsm=ig=m=idstm)y

=1
XL<S+;,(Z§XX><7T 0 1, 0 ¢,¢>-

It suffices to compute

Z(_1)z‘qd3(@fim)X(@;j)dg(m—z’)q—(m—z’)(s—‘rn))\m_i
=1
(1) Y (1) Ty () g ey,

i=1

This equals to M (s+ 3, ¢ x x) in the above lists. Indeed, using [Shi00, Lemma 19.13]
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and the explicit description of the Satake map in the proof of Proposition 2.3.3, one

can show that

S ( LGt ~ i —i(s+r—2%
Y (—1)igh T Ny (@) g
i=0

is the Euler factor in Proposition 2.3.3 and the proposition easily follows. O






Chapter 3

The Archimedean Theory and

Algebraic Modular Forms

In this and the next chapter, we restrict ourselves to the following global setting.
Let F be a totally real field of degree [F' : Q] = d and consider tuples (D, p,€) of
following four cases:
(Case II, Symplectic) (D, p) of type (a) with e = —1,
(Case 111, Quaternionic Orthogonal) (D, p) of type (b) with e = 1 and
D, = Maty(R) for any archimedean place v,
(Case IV, Quaternionic Unitary) (D, p) of type (b) with € = —1,
D, = H for any archimedean place v,
(Case V, Unitary) (D, p) of type (c) with e = —1,
D = F is an imaginary quadratic field.
Here H is the Hamilton quaternion algebra for which we fix an embedding into

Maty(R). The global group G is defined as

0 0 1,
G:=G(F):={g € GL,(D) : gbg* =P}, o= 0o 6 0 |, (3.0.1)
e-1, 0 O

with n = 2m + r and 0* = €f € GL,(D) is anisotropic (over F'). We may also write
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it as G, to emphasize the index. In Case V, we assume 76, > 0 for all archimedean

place v for simplicity.

This chapter is expanded from [Jin23, Section 5, 6] and is organized as follow. We
review the definition of symmetric spaces in Section 3.1. Both classical and adelic
definition of modular forms are given in Section 3.2. In Section 3.3, we study the
algebraic modular forms which will be used later. The algebraic modular forms
for symplectic and unitary groups are already well studied in [Shi97; Shi00] and
most discussions concerning quaternionic unitary groups in this chapter are taken
from [BJar] which is joint with Thanasis Bouganis. In Section 3.4, we calculate the

archimedean local integrals and summarize the integral representations.

3.1 Symmetric spaces

Let v be an archimedean place of F' and G, = G(F})) the localization of G at v. Fix a
maximal compact subgroup K of G,. Then by our assumption, G, /K is a hermitian
symmetric space. For a comprehensive study of hermitian symmetric spaces, the
reader can refer to [HelO1; Sat80; Pya69] (see also [Hua63] and [Lanar, Section 3]).
The symmetric spaces are well studied in [Shi97, Section 6, 7] and [Shi00, Section 3,
5] for symplectic and unitary groups. In this section, we discuss the realizations of
symmetric spaces for Case III, IV. The Case IV is studied in [BJar] and the Case III
is similar. We will start with a rather general and abstract setting in Section 3.1.1

to explain the idea and then give explicit realizations in the following subsections.

We remind the reader that the notation for our group
G={geGL,(D):g"d 'g=0""} (3.1.1)

coincides with the notation in [BJar].
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3.1.1 Abstract symmetric spaces

We only discuss Case IV in this subsection but the idea is the same for all cases.
Let i be any embedding Mat,(H) — Mat,,(C). Then by the Skolem-Noether
theorem ([Mil20, Theorem 2.10]) there exists o € Maty, (C) with aa® = 1 such
that fi(z) = ai(z*)a~!. Let ¥ € GL,(D) be a skew-hermitian form similar to ®~*
above, that is U = v*® 1~ for some v € GL,(D). Then the group G, is isomorphic
to

G={9g€GLy,(C):g*Hg=H, 'gKg = K}, (3.1.2)

with H = i(V),K = o 'i(¥). We call it a realization of G,. Suppose we are
given two such data (iy, ¥y, Hy, K1,G1) and (ig, Vo, Ho, K5, Gs) with ¥y = S*W,S.
Again by Skolem-Noether there exists 3 with 58* = 1 such that i,(z) = 87y (z)3.
Put R = iy(S)S then Hy = R*HyR, K, = 'RK;R. Therefore g — RgR™! gives

isomorphism G; = G,.

Following [Pya69], we will define the associated symmetric space via its Borel em-
bedding into its compact dual symmetric space. In Case IV, the semisimple compact
dual of our group is the group SO(2n) (with notations in [HelO1, page 330]), and the
corresponding dual symmetric space is SO(2n)/U(n). This space may be identified

(see for example [Shi87, page 6]) with the space V = L/GL,(C) where
L ={U € Mat,, ,(C): WKU = 0}. (3.1.3)
We set
Q = {U € Maty,,(C) : —iU*HU > 0, UKU =0} C L, (3.1.4)

with the action of GL,,(C) by right multiplication and G by left multiplication. The

symmetric space H is defined as

Hom My = {2 € Matn(C): U(z) €}, Ux)=| |, (3.15)

for some fixed suitable ug, which we make explicit later. The following lemma is a
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direct consequence of our definition for H.

Lemma 3.1.1. There is a bijection H x GL,(C) — Q given by z x A = U(2)\.

By this lemma, it follows that for any element a € G, we can find a 2/ € H and

A a, z) € GL,(C) such that
al(z) = U(Z)M\a, 2). (3.1.6)

We then define the action of G on H by a.z := az := 2’ and A(«, z) satisfies the

cocycle relation
Majag, 2) = Mag, aez)Mag, 2) for ag,ay € G,z € H. (3.1.7)

We set j(a, z) == v(Aa, 2)) € C*. We call AN, 2) or j(a,z) automorphy factors.

a b
More explicitly, write o = with a,d € Mat,,(C), we have
c d
az + bu az + bug)(cz + dug) tu
alU(z) = “l = ( o) o)™ o ug t(cz + dug).  (3.1.8)
cz + dug Ug
That is,
az = (az + bug)(cz + dug) ™ ug, Mo, 2) = ug* (cz + dug). (3.1.9)
For 21, 20 € 'H, we set
n(z1, z9) :=iU(21) " HU (22), d(z1, 22) == v(n(z1, 22))
(3.1.10)
1(z) = (2 2), 5(2) = (2, 2).

We note that

U(z1)"HU(z2) = Mo, 21)"U(az)"HU (azo) M, 22), (3.1.11)
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and _
azy,aze) *
iU(az)"HU (azq) = oz, ) ;
* *
. (3.1.12)
21, 29) %
V(o) HU () = | 07
* *
We thus obtain that
Mo, z1) " n(azy, azo) Mo, z2) = 1(21, 22), (3.1.13)
and after taking the determinant, we have
Jlay z1)d(azr, azg)j(a, 29) = 6(21, 22). (3.1.14)
In particular,
Ma, z) n(az)Me, 2) = n(2),  d(az) = |j(a, 2)|7%6(2). (3.1.15)

We now discuss the relation between different realizations of the symmetric space H.
Given Hy, Ky and H,, K, as above, we have seen at the beginning of this subsection
that we can find an R such that H, = R*H,R, K, = 'RK;R. We then have an
isomorphism €2; = )y given by U +— RU which induces an isomorphism p : H; = Ho.

Indeed, for z; € H;, there exists some zy € Ha, pi(21) € GL,(C) such that

21 )

R = w(z1), (3.1.16)

Uo1 Up2

for some ugy, uge € Mat,,(C) and the isomorphism can be given by p(z1) = z».

In the following lemma we write p also for the isomorphism G; — G, given by

p(g1) == R R7".

Lemma 3.1.2. Let p: Gy — Gy, p: H1 — Ho given as above. Then
(1) p(az) = p(a)p(z) with o € Gy, z € Hy;
(2) Mp(a), p(2)) = plaz)Ma, 2)pu(z)~";

—

(3) n(p(21), p(22)) = p(z1)n(21, 22)p(22) " for 21, 20 € Ha.
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Proof. (1) It suffices to prove that

plaz) pla)p(z)

plaz) | _ | az (az) !
_Ra ; Ma, 2)p(az) ™!
—p(a) ’;” | u(2)A (@ 2) alaz)
- "“;)’; @) A(p(@), p(=)) (=) A, 2) " afaz)

We must have A(p(a), p(2))u(2) A (e, 2) "t u(az)™! =1 and our desired result follows

which we also obtain (2). (3) can be computed similarly by definition of 7. O

3.1.2 Symmetric spaces for Case IV

We now apply the above discussions to some explicit realizations of G,,. Note that

the map i defined in Example 2.1.1 induces the following isomorphism

i:G, 5 Goo = {9 € GLgy(C) : " Prog = Do, gViog = Voo }, (3.1.17)
with
0 0 0 —1s, 0 o o J
0 0o -1, 0 0 1, 0 O
O, = R . (3.1.18)
0O 1, O 0 0 0 1, O
1y, O 0 0 —J;n 0O 0 O
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As in the last subsection
Q = {U € Maty, ,(C) : —iU* P, U > 0, v U = 0}, (3.1.19)

and define the symmetric space by

3:=3,:=3m, = {2z € Mat,(C) : U(z) € Q},

s 0 1 (3.1.20)
U(Z) = s Uy = .
Uo 12m 0
Explicitly,
u € Maty,,(C), v € Matg, ,(C),
u v uJ, +vhv—J =0,
Bmr =18 2= ; . (3.1.21)
whJ, w w € Mat,.(C), ww +1 =0,
i(z* —2z)>0.
a b
For g = € Gy, the action of G, on 3 and the automorphy factor are given
c d
by
gz = (az + bug)(cz + dug)  uo, Mg, 2) = ug*(cz + duy). (3.1.22)
For z1, 29 € 3, we set
(21, 22) = i(2] — 22), 6(21,22) = v(n(21, 22))
(3.1.23)
n(z) = n(z, 2), 6(z) = 0(z, 2).

We will take zy =i - 1,, to be the origin of 3 and K, the subgroup of G, fixing zj.
Then g — A(g, 20) gives an isomorphism K., = U(n) = {g € GL,(C) : ¢*g = 1,,}

and our symmetric space 3 = G/ K.

We give another two useful realizations to compare with the symmetric spaces in

other works. The group G, is further isomorphic to

G' =19 € GLon(C) : g*Jpg = Jp, 99 = 1o, }. (3.1.24)
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Take uy = 1, the realization associated to this group is

H=9,={z€Mat,(C): 2z+1=0,i(z* —2) >0} (3.1.25)

This is an unbounded realization of type D domain in [Lanar]. For g = €

G/, the action of G/ on $ and the automorphy factor are given by

gz = (az + b)(cz +d) ™, Mg, z) =cz+d. (3.1.26)

For z1, z9 € $), we set 1(z1, 22) = i(z] — 22). We take 2y = i, :=i-1,, to be the origin
of $§ and K the subgroup of G fixing zy. Since 1(gz9) = n(z0) = 2 for g € K,

g — Mg, 20) gives an isomorphism K/ = U(n) and thus $ = G/ /K...

T =1
Let T" = % and sending g — T"~'¢T" we have an isomorphism
1 1
Gl 2 Gl = {g € GLy,(C) : "0 g = O, g W g = UL}, (3.1.27)
with
in O 0 —i,
o = R - . (3.1.28)
0 —i, —i, 0

Take ug = 1 the realization associated to this group is defined as

B =B, ={z€Mat,(C): 2 =—2,22" < 1,}. (3.1.29)

a b
This is a bounded domain of type SRy in [Hua63]. For g = € G, the

c d
action of G7, on B and the automorphy factor is given by

gz = (az +b)(cz +d)~ !, Mg, 2) =cz+d. (3.1.30)

For z1,29 € $, we set n(z1,22) = (2722 — 1). We take z5 = 0 to be the origin of
B and K the subgroup of G7, fixing zo. Since n(gzo) = n(z9) = —i for g € K,

g — Mg, 20) gives an isomorphism K” = U(n) and thus $ = G /K . The relation
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between $) and B can be given explicitly by Cayley transform

H Bz (2 —i)(z+9)h (3.1.31)

Let 21,22 € B, € G, as above and dz = (dzy;) be a matrix of the same shape as

z € C! whose entries are 1-forms dzy;. Note that, on one hand,

21 1 1n 0 Z9 1
1 -z 0 -1, || 1 -z
- (3.1.32)
2iza—1 27 +7% 2ize —1 27 — 25
29 + tzl 1-— tzﬁg 29 — 21 1-— tzlfg
and on the other hand,
az 1 1, O azy 1
1 —oz 0 -1, 1 —az
- (3.1.33)
B (az)*(azg) — 1 (azp)* — (az)*
aze — a2y 1 — {az,)(az,)
Using the fact (which can be obtained from the property of U(z))
z 1 az 1 Aoy, 2) 0
a - , (3.1.34)
1 —z 1 —az 0 AMa, z)
we have
azy —az = Mo, z1) (2 — 21) Mo, 25) 7t (3.1.35)
Therefore,
d(az) = NMa, 2)" - dz- Ma, 2)7L (3.1.36)
Since the jacobian of the map z — «az is j(«, 2) """, the differential form
dz = 6(2) " [ 1(i/2)dzne A dZni), (3.1.37)

h<k
is an invariant measure. If we have another realization H (e.g. 3,$) with identifica-

tion p : H — B, we then define dz := d(p(z)) with z € H to be the differential form
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on H. Clearly, this is also an invariant measure.

3.1.3 Symmetric spaces for Case III

We can simply extend the above discussions to Case III. The map i in Example 2.1.1

induces the following isomorphism

i:G, — Goo == {g € GLy,(R) : 'gPrg = Do} (3.1.38)
with ) )
0 0 0 -1y,
o 0 -1, 0
o, = ) (3.1.39)
0O 1, O 0
1, O 0 0
Put

Q = {U € Maty, ,(C) : —iU*¢p U > 0, U o,U = 0}, (3.1.40)

and define the symmetric space by

3:=3,:=3,,={z € Mat,(C) : U(z) € Q},

5 0 1, (3.1.41)
U(z) = : uy = :
Uog 12m 0
Explicitly,
u v u € Maty,,,(C),v € Maty,, ,(C),
By =2 = : 2n(C) anr(©): | (3.1.42)

v w w € Mat,.(C), z = z,i(z* — 2) > 0.

Define the action and (g, 2), j(g, 2),n(21, 22), (21, 22) in a same fashion as in Case

a b
IV. Explicitly, for g = € Gy and z, 21, 29 € 3 we have
c d
gz = (az + bug)(cz + dug) ug, Mg, 2) = ugy H(cz + dug),
n(z1, 22) = i(2] — 22), 3(21,20) = det(n(z1,25)),  (3.1.43)

n(z) = n(z,2), 0(2) = 6(z, 2).
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We also set j(g,2) = v(A(g, 2)). They satisfies

Mg, 21) (921, 922) Mg, 22) = 1(21, 22),

7(9,21)0(g21, 922)§ (g, z2) = 0(21, 22),
(3.1.44)

Mg, 2)™n(g2)A(g, 2) = n(z1, 22),

0(g2) = 15(g,2)|7*0(2).

Take zp = i -1, to be the origin of 3 and K, the subgroup of G, fixing 2.
Then g — A(g, 20) gives an isomorphism K, = U(n) and our symmetric space

32 Go/Kwo.
Obviously, G is further isomorphic to the symplectic group
Sp(2n,R) := {g € GL2,(R) : 'gJ,.g = J,.}, (3.1.45)
which acts on the usual Siegel upper half space
H=9,={z€Mat,(C): 2 ==zi(z*—z) > 0}. (3.1.46)
Furthermore, by the Caylay transform §) can be identified with a bounded domain
B =B, ={ze€Mat,(C): 2 =2,22"<1,}. (3.1.47)
An invariant differential form on 8 can be given by

dz = 5(2)_n_1 H [(2/2)dzhk VAN dfhk] (3148)

For other realizations H (e.g. 3,$) with identification p : H — 3 we then define

dz :=d(p(z)) with z € H to be the invariant differential form on .

3.1.4 Symmetric spaces for the case r =0

We end this section by considering the special case » = 0. In this special case, we
can give a simpler and unified definition of symmetric spaces for groups in all four

cases (see also [Jin22, Section 2.2]).
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Let S,, be the additive algebraic group defined by
Sm(F) ={p € GL,,(D) : 5" = —¢f}. (3.1.49)

For an archimedean place v, denote S%U for the subgroup of S, ,, containing positive

definite matrices. We define the symmetric space
Hp ={2=0+iy € Spno®C:2 € Spov,y €S} (3.1.50)

The central point is chosen as zp =7 - 1,,,. The action of G, o on H,, is defined as

a b
g.z=(az+b)(cz+d)" for 2 € Hp,g = € Gmyo (3.1.51)

c d

and j(g, z) = v(cz+d). Recall that for archimedean places v, D, = Maty(R) in Case
IIT and D, = H can be embedded into Mats(R) in Case IV. Then above space H,,
can be embedded into Mats,, (C) and one can show that H,, = 3., is the symmetric
spaces defined in above two subsections. In particular, the space H,, in Case III is

same as the one for Case II with index 2m.

3.2 Definition of modular forms

We review the definition of modular forms in this section. Both classical and adelic

definitions are given and their relations are well known.

3.2.1 Modular forms on symmetric spaces

For v € G(F), we naturally view it as an element of G(A) and its action on 3%, .
is given by 7.2 := (Vy.20)ujoc fOr 2 = (20)v]0 € 3%, ,. Fix a weight I = (Iy)jec with
l, € N and denote

j(’)/vz)l = Hj(’%nzv)lv- (321)

v|oo
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Definition 3.2.1. A holomorphic function ¢ : 3¢, . — C is called a modular form

for a congruence subgroup I' C G(F') and weight [ if for all v € T,

p(r.2) =j(v,2)'0(2), 2= (20)ulec- (3.2.2)

Remark 3.2.2.

(1) In this work, we use the term ‘modular form’ as an analogue for the modular
forms of GLs so in particular we only consider the holomorphic functions.

(2) When m = 1 we need further assume ¢ satisfies the cusp condition which is not
necessary for m > 2 due the the Koecher principle [Kri85, Lemma 1.5] and [Shi00,
Proposition 5.7].

(3) We are restrict ourselves to certain scalar weight modular forms. Also in unitary

case, with notations in [Shi00, Section 5|, there are indeed two automorphy factors

Mg, 2), u(g, z) and
(g, 2)" = vp(g, 2))" v(A(g, 2))?, with I = (I1, ).

Here for simplicity we only consider | = [1,l; = 0 to make our discussions consistent
in all cases.

(4) Here we are using the realization (G, 3m,) for our symmetric space. In fact,
the definition is independent of the choice of realizations in following sense. If we
choose another realization H (e.g. 9,,%,) with identification p : H — 3,,,. Then
with notation as in Equation (3.1.16), to a function ¢ : 3% . — C we associate a
function g on H? by setting ¢'(z) = [Tyje0 ¥(1(20)) "0 (p(2)). Then ¢ : 3¢ — Cis

a modular form if and only if ¢’ : H? — C is a modular form.

Denote F,, = F®gR = R?. We rephrase above definitions for functions ¢ : G(F.) —
C. Set

¢(g) = j(gva ZO)_I@((QU'ZO)MOO)' (323)

Then clearly ¢(gk) = 1,00 J(kv, 20) " @(g) for k € K. We call ¢ a cusp form if

/U(R) d(ug)du =0 (3.2.4)
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for every unipotent radical U of all proper parabolic subgroup of G.

We denote M;""(T') and S;""(T") for the space of modular forms and space of cusp
forms. We use the superscript m, r to indicate their dependence on the group G, ,

and omit the superscript for simplicity if the group G is clear from the context.

Let dz be the invariant differential form on 3,,,. For two modular forms ¢y, @5 €

M;(T"), we define the Petersson inner product by

or o) = [ o110z ds, (3.25)

whenever the integral converges. For example, this is well defined when one of ¢1, ¢

is a cusp form.

3.2.2 Adelic modular forms

Denote K, be the maximal compact subgroup of G(Fy) = [I,jec G(R) and K be

v]oo
any open compact subgroup of [, G(F}). Fix a weight I = (I, )yjec With [, € N as

before.

Recall the following weak approximation of G
GA) =[[G(F)tKG(Fy). (3.2.6)

For a function f: G(A) — C, we can associate a series of functions ¢; on G(Fy,) for

each 7 defined by

9i(goo) = f(tigos) G0 € G(Fv). (3.2.7)

Definition 3.2.3. The space of weight I and level K (adelic) modular forms M;(K)
contain functions f : G(A) — C satisfying:

(1) f is left invariant under G(F) and right invariant under K, i.e.
f(vgk) = f(g) for v € G(F),k € K, (3.2.8)

(2) The functions ¢; associated to f defined as above are weight 1 defined as in
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Section 3.2.1. Especially,
F(gkoo) = T] (Ko, 20)" £(g) for koo = (Ku)vjoo € Koo (3.2.9)
v]oo
Furthermore, the subspace §;(K) of cusp forms consisting functions f € M;(K)
satisfying

/ F(ug)du = 0, (3.2.10)
UENU(A)

for all unipotent radicals U of all proper parabolic subgroups of G. Equivalently, f
is a cusp form if and only if all ¢; are cusp forms defined in Section 3.2.1. We may

write M;""(K) and §;""(K) if we want to emphasize the index m,r.

The classical definition of modular forms in Section 3.2.1 and the above adelic

definition are related by bijections
Mi(K) = P M(Ty), SI(K) =P Si(Ty), (3.2.11)

given by the correspondence f <> {¢;} and I'; = t;Kt; ' N G(F).

For two modular forms f,, f, € M,(K), we define the Petersson inner product

(frofo) = [ F1(9)Fa(9)dg. (3:2.12)

(F)\G(A)/K Koo
whenever the integral converges. For example, this is well defined when one of f;, f5
is a cusp form. Here dg = [], dg, is an invariant differential form of G(A) given
such that:
(1) for each nonarchimedean place v, dg, is normalized such that the volume K, is
L,
(2) for each archimedean place v, dg, = d(g,2¢) with d(g,2) an invariant differential

form of 3,,,.

3.2.3 The special case r =0

It is well known that the modular forms defined in previous two subsections have a

Fourier-Jacobi expansion (see for example [Shi97, Appendix 4]). When r = 0, it has
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a Fourier expansion of easier form which we are going to recall now.

Let ¢ : H%¢ — C be a modular form in M;(T") with H,, defined in (3.1.50). Then for
any v € GG, ¢ has a Fourier expansion of the form
i) e(r2) = >0 elBie) [T T (3.2.13)
BES(F) v]oo
We call ¢(f3; ¢, ) the Fourier coefficients of ¢ and denote ¢(8;¢) := ¢(8;¢,1) for
simplicity. We always have ¢(3;¢,7) = 0 unless 3 is non-negative. In addition, ¢ is

a cusp form if and only if for all 7, ¢(8;¢,7) = 0 unless [ is positive definite.

We can also reformulate above Fourier expansion in adelic language (see for example
[Bou2l, Proposition 2.4]). Let ey =[], e, be the standard additive character of A.
That is e,(z) = €*™* for archimedean places v and €,(py) = [Tyjo0 €o(—q, ) With @,
the uniformizer of F, and |p,|, = ¢, . Also set e, = [Tyjoo €0- Let f: G(A) — C be
an (adelic) modular form in M;(K). Then for all y € GL,(Ap) and = € S,,(A) we

have a Fourier expansion of the form

f =[Ivw)™ > eB:if yex(r(iy By))ea(r(Br)). (3.2.14)

y g
0 9 v|oo BESM(F)

We call ¢(B; f,y) the Fourier coefficients of f and they have following properties:
(1) e(B; f,y) = 0 unless 3 is non-negative and [[, u(7(y*Byr)) = 1 for any
z € Sp(0),

(2) c(B; f,y) = c(Bs F Topoo Y0,

(3) (b*Bb; f,y) = Ilojoo ¥(b)" (85 f, by) for any b € GL,(D),

(4) c(B; f,yk) = c(B; f,y) for any k € [lyec GLn(Oy),

()

5) f is a cusp form if and only if for all y, c¢(8; f,y) = 0 unless [ is positive definite.

3.3 Algebraic modular forms

In order to move from the analytic considerations discussed so far to algebraic ques-

tions, we need to discuss the notion of algebraic modular forms in our setting. For
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holomorphic modular forms on hermitian symmetric spaces, the notion of algebraic
modular forms is well understood. There are mainly four characterizations of algeb-
raic modular forms:

(1) In [Har85; Har86; Mil90], automorphic forms are interpreted as sections of certain
automorphic vector bundles on Shimura varieties. The canonical model of Shimura
varieties and automorphic vector bundles then define a subspace of algebraic auto-
morphic forms.

(2) In [BJar; Gar77; Gar84a; Shi00], algebraic modular forms are defined via CM
points.

(3) In [Gar81; Gar83; Gar84al, a characterization using Fourier-Jacobi expansion
is given. In particular, in the special case r = 0, the modular forms have Fourier
expansions and the algebraic modular forms are defined to be the one have algebraic
Fourier coefficients. This generalizes the classical definition of algebraic modular
forms of GLs.

(4) In [Gar84al, there is yet another characterization using the pullback to classical
modular forms over GLy. Moreover, three definitions (2,3,4) are also proved to be

equivalent there.

3.3.1 CM points

We will mainly define the algebraic modular forms via CM points. The symplectic and
unitary groups are well studied in [Shi00]. The quaternionic orthogonal groups are
considered in [Gar77]. In the following, we reviewed the CM points for quaternionic
unitary groups discussed in [BJar]. Our approach for defining CM points and the
underlying periods follows the idea of [Gar77; Shi67], where one “tensors” a given
embedding h : K; x ... X K,, — G, of CM fields K;, with another CM field K,
disjoint to the K;’s to obtain a fixed point whose associated abelian variety is of CM
type (see also [Del71, proof of Theorem 6.4]). In this way we will be able to define
and study the CM points in our case by considering an embedding of our group into

a unitary group, after a choice of an imaginary quadratic field. However we show
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that our definition of CM points and the attached periods are independent of the

choice of the auxiliary imaginary quadratic field.

Let (D, p) of type (b) with D, = H for any archimedean place v. Consider the
algebraic group

G(T) := {g € GL,(D) : ¢Tg* = T}, (3.3.1)

with 7% = =T € GL, (D) a skew-hermitian matrix. We assume 7' = diag[ay, ..., a,]
is diagonal for simplicity. Diagonalizing ® in (3.0.1), the group G(®) considered

before is isomorphic to some G(7T').

We introduce the notion of CM points as [Shi00, Section 4.11]. Take a CM algebra
Y = K| x ... x K,, with each K; are totally imaginary quadratic extension of F'. Set
Y!={y €Y :yy* =1} with ¢ induced by the nontrivial involution (i.e. complex
conjugations) on each K;. Suppose there is an embedding h : Y! — G(T), then
clearly h(Y') € G(T,R) and (Y! @ R)* is a compact subgroup of G(T,R) and
hence h(Y?') has a common fixed point in the hermitian symmetric space (with
realization associated to G(T,R)). We call a point obtained as such fixed points
a CM point. The existence of CM points can be easily shown by constructing an
embedding h : Y — G(T) as follows. Take totally imaginary quadratic extension
K; := F(a;) for i =1, ...,n and consider the CM algebra Y = K; X ... x K,;. We can

define the embedding

h:Y'— G(T), (Y1, ooy Yn) —> diaglys, ..., Yn). (3.3.2)

We then choose an imaginary quadratic field K which is different from the K;’s
above, and splits D, i.e. D ®@p K = Maty(K). It is easy to see such a field K
always exists. Fix an embedding Mat,, (D) — Mats, (K). Denote the image of 7" in

Maty, (K) by T and define the unitary group

U(T) ={g € GLon(K) : gTg* =T}. (3.3.3)
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We note that

i1, 0 i1, 0
U(T,R) =g e GLy(C):g g = . (3.3.4)
0 —i- 1, 0 —1-1,

Its action on the bounded domain (see for example [Shi00])

B={z¢e€ M,(C):1—2z2"2> 0}, (3.3.5)
a b

is defined by gz = (az+b)(cz+d) ™! for g = . The two factors of automorphy
c d

are given by \(g,2) = ¢% + d, and u(g,2) = cz + d. The embedding Mat,, (D) —
Mats, (K) induces an embedding i : G(T") — U(T) which is compatible with natural
inclusion ¢ : B — B. Here recall that 8 is the bounded realization given in (3.1.29).
We will view G(T) (resp. B) as a subgroup (resp. subspace) of U(T) (resp. B)

under this embedding.

Lemma 3.3.1.
(1) Y is spanned by Y* over F. In particular there exists an element 3 € Y such
that Y = F[5] and By, ..., Bn, B1, ..., B are pairwise distinct.

(2) There is a unique w € B which is a common fized point for h(Y1).

Proof. The first part can be shown exactly as [Shi00, Lemma 4.12], and for the
second part we adapt an idea of the proof of that lemma. Without loss of generality
we can assume that the origin 0 of B is a fixed point for 2(Y!) and our task is to
show that it is the unique fixed point. We note that the maximal compact subgroup
in G(®,R) fixing the origin is isomorphic to U(n) := {g € GL,(C) : g¢* = 1,,}, and
hence with respect to the embedding G(T,R) < U(T,R) we have that U(n) —
U(n) x U(n) embeds diagonally, i.e. a — (a,a). In particular we have an embedding
h(Y') < U(n) = U(n) x U(n). Assume now there is another point z € B which
is a fixed point of A(Y!). Then we must have that z = aza ! for every element
diagla,a] € (U(n) x U(n)) Nh(Y!). But for such a point we have that a*a = 1 and

hence a~! = ‘. That is z = az’a. Diagnolize a and assume a has eigenvalues \;,
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i = 1,...,2n then we must have z;; = 0 for every \; # );. Taking a to be the

element obtained from ( above we have that z has to be the origin. O]

We are going to attach CM periods to our CM points. Here we employ the idea of
[Shi67] (see also [Shi79, Section 7]) to relate our CM points to the CM points of

unitary groups.

Let w € B C B be a CM point fixed by h(Y?') € G(T) Cc U(T). Then for such a

point we have that
Ao, w)p(x, w) = p(ra,w), o€ h(Y'), z€C™ (3.3.6)

where A(a,w) € GLy,(C) and p(x,z) : C*" x B — C?" are the maps defined in
[Shi00, Section 4.7]. In this way we can obtain an embedding Y — End¢(C?") by
sending o — A(a, w) where we have used the fact that Y is spanned by Y over F.
We now extend this to an injection h of K @Y &£ S :=8; x ... x S, into End(C*")

where S; = K K;. Indeed we set

h(5 ® a)p(z,w) = p(fra,w) = p(xfa,w) = p(rxaf,w). (3.3.7)

That is, the point w can be seen as a fixed point of S ®r R where S' = {s €
S | ss* = 1} with ¢ the involution on S induced by the complex conjugation on
K K;. Hence w is a CM point in B defined in [Shi00, Section 4.11] for unitary groups.

In particular, w has entries in F' by [Shi00, Lemma 4.13].

Remark 3.3.2. Following [Shi00, Section 4], let Q = {K, U, L, T,{u;};_,} be a
PEL-type and F () family of polarised abelian varieties of PEL-type. The abelian

varieties in F(2) are parameterised by B. More precisely, there is a bijection
MNB—=F ), I'={yeU(T): Ly=L,uy—u; € L}.

As in [Shi63], we can define ' = {B, V' L, T, {u;}; ,} for quaternions and F ()
are parameterized by 8. The natural inclusion F (') — F(2) is compatible with

B — B. Moreover, similar to [Gar84a; Shi67] we actually have an embedding of
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canonical models between I'\'B and I'"\ B for certain congruence subgroups I', I'.

As we have remarked, CM points for unitary groups have been extensively studied in
[Shi00, Chapter II]. We recall some of their properties. For a € 8! we put ¥(a) :=
Alh(a), w) € GL,(C), ¢(@) := p(h(a), w) € GL,(C), and ®(a) = diag[y(a), p(a)] €
GLy,(C). We can then find B,C € GL,(Q) (see [Shi00, page 78]) such that for all
aes

By() B~ = diag[th(a), ..., dn(a)],
Co(a)C" = diag[d1(a),- .., da(@)],

for some ring homomorphism ¢;,1; : & — C, where we have F-linearly extended 1)

(3.3.8)

and ¢ from S! to S. We set

poo(w) = O_ldiag[p8(¢la q))v ce 7p5(¢n7 q))]c € GLH(C)v

pOOL(w) = B_ldiag[pS(wla (I)), ce 7p5(wn> (D)]B S GLn<(C)7

(3.3.9)

where the CM-periods ps(1;, @) € C* and ps(¢;, P) € C* are defined as in [Shi00,
page 78]. Actually we should remark here that the periods ps(¢;, ), ps(¢;, @) are

uniquely determined up to elements in Q”, but this is sufficient for our applications.

We now use the fact that w € 8 C B is a CM point for both (Y, h) and also for (S, h).

Note that ¢(a) = ¢(a) for « € Y C S'. Indeed, for a € G(T,R) we have (see
b d -¢

a

[Shi67, (2.18.9)]), = and hence especially we have A(«, z) = p(a, 2)
c d b a

since % = —2z. In particular the values (o) = ¢(a) = Mo, w) = p(a, w) for a € Y,

that is the restrictions of ¢ and v to Y'! are independent of the choice of the field K.
Furthermore we note that ¢(a) = ¢(«a) for all & € K with aa@ = 1 seen as elements

of U(T) i.e. aly, € U(T).

In the following lemma we use the notation Iy, Jy, Js; as defined in [Shi00, page 77].

Lemma 3.3.3. With notation as above, for all 1 <1 < n, we have that

ps(¥i, ®) = py (Ressyy (1), @) = py(Ressyy (¢i), @) = ps(¢i, ®),

where ® = Ress)y¢ = Ress/y € Iy.
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Proof. Let us write ® = 7, &; with &; € Is; and &' = 37, @), with &) €
Ig;. Then we have that ®; = Infs g, (®7). Indeed first we observe that U =
> j—1 Ress, /e ®; € I (see [Shi00, page 85]), where ¥ as in the Remark 3.3.2 above.
Moreover we know that ® = ¢ + ¢ with ¢, € Is as above and we have seen that
1 = ¢ when restricted to K via K — Y ®r K = S. But on the other hand we have
seen that 1) = ¢ when restricted to Y, from which we obtain that ®; = &/ ®7+®.®T,
where 7 a fixed embedding of K — C (i.e. a CM type for K). Since S; = K; ®p K

the claim that ®; = Infs, /() now follows.

The statement of the Lemma is now obtained from the inflation-restriction properties

of the periods (see [Shi00, page 84]):

n

¢za H ¢zga i) —

Jj=1 J

.,:1:

k;(Ress, /i, (Vij), ®;) = py (Ress,y (¢i), @),

1

where 9;; € Js, induced by ¢; € Js =U}_; Js;- Other equality follow similarly. [

The above lemma shows that we have p.(w) = poo,(w) for w € B and they are
independent of the choice of the imaginary quadratic field K we chose above (and
hence of the embedding to the unitary group). We then simply define p(w) =
Poo (W) = Poo,(w) for the period attached to CM point w € B. By [Shi00, Proposition
11.5] and the definition of periods we immediately have

(1) The coset p(w)GL,(Q) is determined by the point w € B independently of the

embedding (Y, h) chosen above,
(2) p(10)GL (@) = Ay, w)p(w)CL(Q) for all 5 € G(T).

3.3.2 Definition and properties of algebraic modular forms

Let B be the bounded realization of the symmetric space associated to G(R) and
denote W be a set of CM points which is dense in 8. For a fixed integer [, set
Bi(w) be the CM period associated to w € W. It depends only on w and I. The

definition of ;(w) can be found in [Gar77; Shi00] for Case II, III, V. For Case IV,
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with the CM period p(w) defined in Section 3.3.1, we define ;(w) = v(p(w))’. Set
Pi(w) = Tyjeo Bi, (wy) for w = (wy)yjeo € W and I = (1,), the fixed weight.

Definition 3.3.4. The subspace
M(T,Q) C My(T),  resp. Si(T', Q) C Sy(T), (3.3.10)

of algebraic modular forms (resp. algebraic cusp forms) consisting functions ¢ :

B — C such that ¢(w) € Pi(w)Q for any CM points w € W1

Remark 3.3.5. Note that here we are defining the algebraicity of modular forms
using the bounded realization 8. This definition is indeed independent of the choice
of realizations. Suppose we are given another realization H (e.g. 9y, 3, in Section
3.1) with identification p : H — B. A point z € H is called a CM point if p(z) € B is
a CM point and we also set 3;(2) = Pi(p(2)). A modular form ¢’ : H? — C is called
algebraic if ¢'(2) € Py (2)Q for all z € p~'(W?). Asin (4) of Remark 3.2.2, there are
one to one correspondence between modular form ¢ : B¢ — C and modular form

@' : H? — C. Then clearly ¢ is algebraic if and only if ¢ is algebraic.

The important properties of algebraic modular forms are collected in the following

proposition.

Proposition 3.3.6.

(1) There is a basis of My(T") consisting of algebraic modular forms. That is M;(T') =
M;(T,Q) ®g C. In particular, there is a well defined action of o € Aut(C/Q) on
M,(T") by acting on C.

(2) We have Si(I',Q)” = Si(I", Q) and Si(T') = Sy(I", Q) @5 C.
(8) Assume r =0 and p € My(I') has Fourier expansion
p(z) = > (B (3.3.11)
BESH (F)
as in (3.2.13). Then the action of o € Aut(C) on ¢ given by

p(z) = D c(B;p)erm ) (3.3.12)
BESm(F)
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is well defined. In particular, we have p € M(T, Q) if and only if ¢(B3;¢) € Q.

Proof. This is proved for symplectic groups and unitary groups in [Shi00]. Other
cases can be proved similarly. See also [Gar77; Gar84a; Mil90]. The proof for

quaternionic unitary groups is also sketched in [BJar, Proposition 5.6]. O]

We now reformulate above definition of algebraic modular forms in adelic language.
An element g € G(A) is called a CM point if g, - 0 € B is a CM point for any
archimedean place v of F' with 0 the central point of B. Set Pi(g) = [1,/00 B, (90 - 0)

to be the associated CM period.

Definition 3.3.7. The subspace
M(K,Q) c My(K), resp. §(K,Q)C Si(K), (3.3.13)

of algebraic modular forms (resp. algebraic cusp forms) consisting functions f :

G(A) — C such that f(g) € P;(9)Q for any CM points g.

By the relation between classical and adelic definition of modular forms in (3.2.11)

we have
M(K,Q) = @ M;(T;,Q), SiI(K,Q) = @ STy, Q). (3.3.14)

The properties we need for algebraic modular forms are collected in the following

proposition.

Proposition 3.3.8.

(1) There is a basis of My(K) consisting of algebraic modular forms. That is
M(K) = Mi(K,Q) ®g C. In particular, there is a well defined action of o €
Aut(C/Q) on M(K) by acting on C.

(2) We have §i(K,Q)” = Si(K,Q) and §;(K) = Si(K,Q) @5 C.

(3) Assume r =0 and f € M;(K) has Fourier expansion

f =TLv)™ > B f y)ex(r(iy By)ea(r(Bz)) (3.3.15)

Yy xy
0 9 vloo BESm(F)
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as in (3.2.14). Then the action of o € Aut(C) on ¢ characterized by

b S =TI X a8 f o) (T iy By)ea((Bx)) (3.3.16)

Yy xy
0 Yy v|oo BESm (F)

is well defined. In particular, we have f € My(K,Q) if and only if c(B; f,y) € Q

for all y.

3.4 Reformulating the integral representations

We keep the assumption of our global group as the beginning of this chapter. With
the archimedean local integrals calculated in Section 3.4.1, we conclude the integral
representation from Theorem 2.2.4 in Section 3.4.2. For later study of algebraic and

p-adic properties, we reformulate our integral representations in Section 3.4.3.

3.4.1 The archimedean local integrals

Recall that

H = H(F) :={h € GLan(D) : hJ,h* = J, }, (3.4.1)

with a doubling embedding G x G — H defined in (2.1.11). For an archimedean
place v of F, denote H, = H(F),) for the localization at v and H,, := 3, the
symmetric space associated to H,. We also write J(h, z) for the automorphy factor
of H to distinguish the one for G. There is a doubling embedding (see for example
[Shi97, Section 6, 7] and [BJar, Section 2.3])

3m,7" X 3m,r — Hna
(3.4.2)

21,20 > [2172’2],

compatible with the action, i.e. (g1, ¢2) - [20, 20] = [9120, g220]. In particular, we can
fix the suitable zy and the embedding such that [z, 20| =7 - 1,, € H,,. We simply
write ¢ := i - 1, if it is clear from the context. This map is constructed in [Shi97;

Shi00] for symplectic and unitary groups and in [BJar, Section 2.3] for quaternionic
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unitary groups. The doubling map for the quaternionic orthogonal groups can be

similarly constructed as in [BJar].

Let ¢ be a cusp form of weight I and set ¢; = ¢ = ¢. Identifying ¢ = ®/ ¢, and
simply write ¢oo 1= [I,)o0 ¢v In this subsection for simplicity. Assume x : E*\Ag —
C* is a Hecke character of infinity type I. That is x,(z) = z'|z|™" for any v|oo.

Define a section [ € Indg((gz))(ﬂ %) by £ = [yjeo fo5 With

ly—s—kK Case ]:[, III7 Iv7

foo(h) = J(hy, i)~ I (hy, i)

(3.4.3)
> (h) = J(hy, )| (he, )72 Case V.
and consider the archimedean integral
where _ -
1, 0 0O 0 0 0
0 1 0o 0 0 0
0 0 l, 0 0 O
0= (3.4.5)
0 0 0 1, 0 0
0 o -1, 0 1, O
0 €1, 0 0 0 1,
Proposition 3.4.1. Assume Re(s) + 1, > « for all v. We have
Z(s10,0,£°) = C(s) - [T a(s) - (¢oc, T(w) ). (3.4.6)

v]oo
Here w is the Weyl element as in (2.2.21), C(s) is a power of 2 depending on s and
a, (s) is given by the following list:
(Case II)

(Case 11I)
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(Case IV)
B T (540, + 1 - 20)
n('n 1) v 3
g) T (s+1+ 251 —2i)

(Case V)
m—1 F(s+l—”—i)

m(m—H") H

ZoF(S—Flv—F )

Proof. This is well known (see [Shi00] for symplectic and unitary case, [BJar| for

quaternionic unitary case). Indeed, it suffices to calculate

[, 70, )Yt

Note that J(d(g, 1), [20,20]) = 7(0,[920, 20])7 (g, 20) and rewrite above integral (for
Case II, III, IV) as

Lo 3 Tz, 20 16 gz, 2Dl i(g, 20 el g9}
(Foo)

This kind of integral is calculated in [Shi97, Appendix A.2] for symplectic and unitary
case. The symmetric space for quaternionic orthogonal group is isomorphic to the
one for symplectic group. All these cases including the quaternionic unitary group

are treated in [Hua63, Theorem 2.2.1, 2.3.1, 2.4.1]. O

3.4.2 Summary of the integral representations

Let I = (l,)u)o0 be a tuple of positive integers indexed by archimedean places of F.
Fix a specific prime p of o and an integral ideal n = nyny = [], p;* with ny,ny, p
coprime. Denote zo for the uniformizer of p. Let g be the prime ideal of O above p
and zo the uniformizer of g. We make the following assumptions:

(1) 2 € O and 0 € GL,(0O,) for all v|np.

(2) f € Si(K(np)) is an eigenform for the Hecke algebra H(K (np), X) as in Section
2.3.4.

(3) f is an eigenform for the U(p) operator with eigenvalue a(p) # 0.

(4) x = x1x with x; has conductor ny and x has conductor p¢ for some integer
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lv

c > 0. We assume x has infinity type I. That is, y,(x) = z'|z|~" for all v|co.

(5) In Case V, all places v|np are nonsplit in O.

Denote 71,12 € G(A) such that

w vlny w v[nop
(M) = ;o () = : (3.4.7)
1 otherwise, 1 otherwise,
where
0 0 1,
w = 0 1, 0
e-1,, 0 O

is an Weyl element.

Denote E(h; fs) be the Eisenstein series on H(A) associated to fs. Our global

integral (2.2.10) can be written as

Z(s; f, fs)
(3.4.8)
-1
= s dg1dgs.
) PN\ () E((g1,92); f5) F(g1m) F (g2112) X (v (92)) ™ dgrdgo
The integral representation is summarized in the following theorem.
Theorem 3.4.2. Take the section fs to be
TR R | AR | (S | c >0,
vinpoo v|ny ving v|oo (349)
A U IR0 | A | WA/ | B A )
vinpoo v|ny ving v]oo

with fQ.,, fIsv, fhe, f7 are local sections defined in (2.4.6), (2.4.11), (2.4.15), (2.4.24)

and f$ the archimedean local section defined in (3.4.3). Then

25800 = O TLals) L (s+ 5.8 < x) - G FIU (). ), €0,

v]oo
Z(s; f, f)=C"- 1l a,(s <s+; F x x) (w(n) FIU' (ny), f) (3.4.10)
v|oo
xM(er;,fxx), c=0.

Here:
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(a) M(s, f x x) is the modification factor given in Proposition 2.4.0,
(b) U'(ny) is the Hecke operator defined by (2.3.13),

(c)
0 0 =w=<-1, 0 0 w;®- 1,
n= 0 1, 0 11 0 1, 0 , >0,
v|ng
w1, 0 0 w1, 0 0
(3.4.11)
0 0 = ' 1, 0 0 w, -1,
n= 0o 1, 0 11 0 1, 0 , ¢=0,
v\ng
w1, 0 0 @1y, 0 0

(d) The constants c;,(s) are given in (3.4.6). Up to a power of 2 depending on s,

' :X(nl)mdl Iny |md2(S+H)V01(GLm(O)/GLm(nngO))’ (3.4.12)

and

m2 +m

C" =(=1)"wlp’ 2 x(ny)™ g "2 y0l(GL, (0)/GLy (n,0)),  (3.4.13)

with

1 Casel II, 'V, 1 Case I, 11,
dl - d2

2 Case IlIl, 1V, 2 Caselll, IV, V,

(3.4.14)
1 Case I, II, V Ramified,

\V)

Case III, IV, V Inert.

3.4.3 Level lowering and the reformulation

For any integer n > 0, let IC(p™) (resp. K'(p™)) be an open compact subgroup of
G(A) defined by K(p™) = K'(n) K(n2) K(p™) (resp. K'(p™) = K(n) K’ (ng) K'(p™)).
Denote wo, € G(A) be an element such that w, = w for any archimedean place v

and w, = 1 for all non-archimedean places. Then for f, as above, we have

E(g1, 92 f5) = x(v(92)) " E((91, 95); f5) € Mu(K(p™)) @ Mu(K'(p™)),  (3.4.15)
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with
—1, 0 O ~1, 0 0
g=1 0 1, 0 g1 0 =1, 0 : (3.4.16)
0 0 1, 0o 0 1,

where the matrix with subscript oo means an element in G(F,,). Here, in this
section only, we abuse the notation by writing M;(K(p®™®)) for the space of functions
transforming as a modular form (i.e. satisfying (3.2.9) but may not necessary
holomorphic). That is, £(gi, g; fs) transforms as a modular form in M, (K(p*™)) for
the first variable and M;(K'(p*®)) for the second variable. Indeed, later in Section
4.1 and 4.2, we will specialize to the special points s = s¢ (as in (4.2.2)) in which case
E(g1, g2; fs) is holomorphic in both variables (follows from the Fourier expansion).
Note that n can be took as any integer such that n > cif ¢ > 0 and n > 1 if
c = (0. We also remark that the involution ¢ is included in the second variable since
our doubling embedding of the symmetric space (3.4.2) is holomorphic in the first
variable and antiholomorphic in the second variable. To compare all these integral
representations when varying the character x of different conductors, we further
descend the level of Eisenstein series such that it is independent of ¢. Our approach

is an analogue of [BS00, Section 4].

Remark 3.4.3. In the following we actually assume p is nonsplit in D. As our
argument is local, it directly extended to the split cases of Case III and IV by
identifying the local group G(F},) with the group in Case I or Case II as in Section
2.3.3.

We will use the following general lemma to descend the level.

Lemma 3.4.4. The Hecke operator U(p™~ ') defined by (2.3.13) maps M;(K(p*"))
to My(K(p?)).

Proof. We define a map M,;(K(p*)) — M,;(K(p?)) in following steps. Let f €
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M (K(p*™)) and first set

w1, 0 0
filg)=flg 0 1, 0
0 0 ww™-1,,

Then f; is fixed by
Mat,,(Op)  Mat,,,(p"O,) Mat,,(p*"Op)
K"(p") := G(op) N Mat, . (p"Opy 1+ Mat,(pOp) Mat, ., (p"Op) | >
Mat,,(Op)  Mat,,,(p"O,)  Mat,,(Op)

Secondly we define

falg) = > f1(g7),

YEK" (p)/K" (p™)

where the representatives of K”(p)/K"”(p™) can be taken as

1,, —wb0~!' w?c
0 17‘ b )

0 0 1,

with b € Mat,,(0,/p" ' O,) and ¢ € Mat,, (0, /p**~20,) satisfying ec+b*Gb+¢* =

0. Then f; € M(K"(p)). Finally we put

0 0 =-1,
to obtain f3 € M;(K(p?)). Combining these three steps together, f + f3 defines a

map

Tr : My(K(p™)) — M (K(p?))
= fTe(g) =" f(g7)

~
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where v runs through elements of the form

wn—l 1m _b*e—l sz.1—nc>k
0 1, wl b
0 0 w1,

with b € Mat,, (O,/p™ ' Op) and ¢ € Mat,, (O, /p**20,) satisfying ec+b*0b+¢* =
0. Comparing above matrix with the one in (2.3.11) for U(p™') operator we obtain

the lemma. O

We apply above process for both variables and define

E(h; fs) = E(h; f)|[U ") =D E(h; fo), (3.4.17)
v
where v runs through elements of the form
[ ]-'r 0 0 0 ew12_"bg o ew12_"b1 |
byt w1, 0 s 0
—ebj0? 0 w1, —% 0 w! "¢
(3.4.18)
0 0 0 17~ —wl_ng_lbg wl_"e_lbl
0 0 0 0 w1, 0
0 0 0 0 0 w1,

with by, by € Mat,, .(O,/p"0,) and c1,ca € Mat,,(O,/p*" 20, satisfying ec; +

b“{ébl +c] =0,eco + b;éb +c;=0.

Take E(g1, g2; fs) as with f; as in (3.4.9). Then

E(g1, 95 f5) == x(v(92)) "E((g1,95); fs) € Mi(K(p*)) @ My(K'(p?)).

(3.4.19)

We may also denote E(h; fs, x,n) and E(g1, go; fs, X, n) to emphasize their depend-

ence on Y, n. Consider the global integral

Z(s; f, fs)

/(GxG)(F)\(GxG)(A)

E((91,95); fs) F(g1mnp) f (92m2)dg1dgs.

(3.4.20)
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with 7,72 as (3.4.7) and
mw=] 0 1, 0 € G(F,). (3.4.21)

Again we may also denote Z(s; f, fs, x, ) to emphasize its dependence on y,n. By
simply changing variables, we reformulate Theorem 3.4.2 in the following corollary.
We remark that it is essential to assume that the eigenvalue a(p) # 0 otherwise the

integral will be identically zero.

Corollary 3.4.5. For ¢ > 0 we have
2n—2 v/ 1 !
Z(5i £ 1) = apf 20 TLa(s) L (54 508 x ) - (k)10 (), £), (3.4:22)
v]oo
and for ¢ = 0 we have

Z(s: £, ) = alpC" TLe () L (s+ 3. % x) - G0 FIU (), )
uloo (3.4.23)

1
><M<3+2,f><x>,
Here the notations are same as Theorem 3.4.2 except

0 0 w,“- 1,
n=1I 0o 1 0 . (3.4.24)

Remark 3.4.6. If we denote f'(g) := f(gmnp), £*(9) := F(gn2) and let V be the
operator defined by 2|V := 7(n)f*|U’(n1), then our computations in Section 2.4

also show that

! Z(s; fofs) w0
(Blon 00 £, £'(00) = G et - PV (3.4.25)

where the left hand side is the Petersson inner product respect to g;. The integral
(3.4.25) is the adelic version of the integral representation obtained in [BS00] and
[Shi97; Shi00]. One can also further reformulate the integral in a classical setting as

there (see also [Jin22, Section 4]). Indeed, recall that by the weak approximation
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(3.2.6) of G there is finite number A such that
GA) = [ G(F)LKG(F).
1<i<h

For 1 <i,j <hand 2z = goo20 € 3y W = G520 € 3m.r, We set
fi(z) = fitigse),  fi(w) = FIV(tigk), Eij(z,w) = E(tige, tjg5: fs).

Then the integral (3.4.20) can be written as
Z <<Eij(z7 _w)a le(z)> ) ]Z(w)> (3426)
17]

and (3.4.25) can be rewritten as

¥ (B, 1) = Tt T (3427

which is the pullback formula obtained in [Shi97; Shi00].



Chapter 4

The Eisenstein Series and Special

Values of L-functions

In this chapter, we study the special values of L-functions utilizing our integral
representations obtained in previous two chapters. Indeed, via the integral repres-
entation, the properties of the special L-values can be obtained from the properties
of special values of Eisenstein series. We therefore calculate the Fourier expansion
of the Eisenstein series explicitly in Section 4.1 and the properties of the special
values of Eisenstein series can be simply read off from these Fourier coefficients. We
conclude our main theorems on algebraicity of special L-values and construct the

p-adic L-functions in Section 4.2.

This chapter is taken from [Jin23, Section 7-8]. In [BJar| and [Jin22], we also
obtain some partial results for quaternionic unitary groups. However, the differential
operators are applied in [BJar; Jin22] so that more critical values are studied. We
omit these discussions and restrict to the study of a particular critical point here

(see also Remark 4.2.7).
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4.1 Fourier expansion of the Eisenstein series

We calculate the Fourier expansion of the Eisenstein series in this section. Then
the properties of Eisenstein series can be directly obtained from the properties of

Fourier coefficients.

4.1.1 Generalities

Let ey, =[], e, be the standard additive character of A. That is, e,(x) = e2mir for
an archimedean place v and e,(w,) = [I,jo €o(—@) With @, the uniformizer of F,

and |w,|, = ¢, !. Denote S,, be the additive algebraic group such that
Sn(F) ={6 € Mat, (D) : f* = —€S}. (4.1.1)
The Eisenstein series E(h; fs) (2.2.9) on H(A) has a Fourier expansion of the form

E(hif)= > Es(hf),

BESK(F)
(4.1.2)
E(h-f):/ gl 2 ny en(—7(3S))dS
PET) fsmnsna) o 1| " ‘

By the Iwasawa decomposition, the Eisenstein series is determined by its value at
the parabolic element ¢ € P(A). In particular, we can take ¢, = diagly, g] for

non-archimedean places v and for finitely many v we can assume g, = 1. For an

archimedean place v, we can take g, = with 2z, = z, + 1,y € H,. We
0

shall also denote such ¢ as ¢ to indicate its dependence on z = (2, )u|oo-

Since our fy is chosen such that, for at least one place v, the support of f;, is in the
big cell P(F).J,P(F'), the Fourier coefficient E3(g; fs) at parabolic element ¢ € P(A)

is factorizable. That is

Eﬁ(q; fs) = HEB,v<q; fs)a

(4.1.3)

Ban(if = [ oo | In| T ) eor(a8)as
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For local sections f, = fO, fI<, fhbe fP f> defined in Section 2.4, we calculate the

local Fourier coefficients Fjg,(q; fs) place by place in next two subsections.

4.1.2 Non-archimedean computations

Let F' be a non-archimedean local field and o its ring of integers with the maximal
ideal p. Fix uniformizer @w and the absolute value | - | on F' normalized so that

1

|ow| = ¢! with ¢ the cardinality of the residue field. We also fix a maximal order O

of D such that D = O ®, F. Let q be a prime in O above p and fix @ a uniformizer
of q.

We are going to calculate local Fourier coefficients

_ 1, S
Eﬂ(qyfs):/Sn(F)fs In 0 q | e(—=7(39))ds, (4.1.4)

for various local sections f0, fI¢, f5¢, fP defined in (2.4.6), (2.4.11), (2.4.15), (2.4.24).

The unramified case

We first consider the local section f2. Denote
Sp(0)" ={p € Su(F):7(BS) € o for any S € S,(0)}. (4.1.5)

Proposition 4.1.1. Set t = rank(3) and Bpb = diag[d’,0] with b € GL,(O) and
B € S)(F). Let q = diagla,a], then Eg(q; f2) is nonzero only if a*Ba € Sy(0)*. In
this case, up to the term x(v(a))|Ng/r(v(a))|*** and a power of the discriminant of
D, Es(q; f?) is given by the following list.

(Case I, Orthogonal) This case occurs as quaternionic unitary split case.

2]
[T L(25—n+t+20ix%) - Pepalx(@)a™ "),
=1

(Case 11, Symplectic Even) Assume t is even. Let \g be the quadratic character
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associated to the quadratic field F((—1)2v(283)) over F.

;o L

n—1 . s
L(s— 5 +2>X)‘/3>' [T L(2s—n+t+2i,x%) Parga(x(@)g "),
=1

(Case 11, Symplectic Odd) Assume t is odd. This case only occurs as quaternionic

orthogonal split case.

=52
[T L@s—n+t=1+2i) Popalx(ala™ ")
1=1

(Case III, Quaternionic Orthogonal Nonsplit Even) Assume t is even. Let Az be the

quadratic character associated to the quadratic field F((—1)21(28)) over F.

2n — 1 n—t
L (s _ n2 +t, X)\[a) . H L (25 — 2n + 2t + 21, Xz)  Prsn(x(@) "),

i=1
(Case III, Quaternionic Orthogonal Nonsplit Odd) Assume t is odd.

n—t
[T L (25— 2n+2t+2i,x*) - Paspa(x(@)g "),
i=1

(Case IV, Quaternionic Unitary Nonsplit)

n—t
IT L (25 = 20+ 2 +2i,x°) - Pregalx(a)a™ ™),
i=1

(Case V, Unitary)

n—t
[T L(2s =i+ 1,xX°X50%) - Parga(X°(@)q™272%).
=1

Here L(s, x) means the local L-factor of Hecke L-functions and Papo(X) € Z[X] is

a polynomial with coefficients in Z whose constant term is 1.

Proof. Conjugate ¢ to the left, we obtain

1, a'Sa
B £ = X)Wl [ g " elrtasyas

The above integral is the Siegel series a studied in [Shi97, Chapter III] (see also
[Fei89; Fei94]). The orthogonal, symplectic and unitary case are listed in [Shi97,

Theorem 13.6]. (We remind the reader that we have already normalized the local
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section f2 by b(s, x)). Two quaternionic cases can also be calculated in the same way

as [Shi97, Section 13, 14, 15] (see also [Shi99b, Proposition 3.5] and [Yam17]). [

The ramified case

We now assume ¢ = 1 and consider the local section fI*, f5¢ fP. Denote
Mat,(pO)  Mat,. 2, (p°O)
Matgm,r(p‘O) Matgm(p‘O) (416)
Sp(0)"={B € S,(F): 7(8S) € o for any S € S5,,(0)}.

Proposition 4.1.2. Assume v(3) # 0, then

Eg(1; 1) = bPE Sl (4.1.7)

0  otherwise.

Proof. Consider

. S
FE ] I e(—7(BS))dS.
P)

Es(1; f1) :/
Sn( 0 1,

n

By the definition of I, the integrand vanishes unless S € S, (o) and the proposition

easily follows. O]

For a character x of F' with conductor p¢, the local Gauss sum of yx is defined as

= 3 e (1), (4.15)

ue0/pcO

Lemma 4.1.3. Consider

GO Bm) = g™ S X(w(w)e (TW) (4.1.9)
)

C
UEG Ly, (O/pO w

for a matriz f € Mat,,(O). Then

G B.m) = X (B)GX)™ B € GLn(0), ‘ (4.1.10)

0 otherwise.
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Proof. This is an analogue of the computations in [BS00, Section 6]. Multiply by
some matrix of GL,,(O,) on the left and right of (3, it suffices to prove the lemma

for diagonal 5 = diag[fs, ..., Bm]- In this case, we calculate that

Gl fom) = vl ™5 [ ( > x(w(u)e <</3u>>) .

=1 \ueO/pcO wt
By the property of Gauss sums, the sum in the bracket is nonzero if and only if

pi € O* and in this case it equals x(v(5;))G(x)- O

We write 5 € S,(F) as
b —eB; —eb
B=1|By Py —€B (4.1.11)
Bs  Bs Do
with 81 € S,.(F), B4, 86 € Sm(F). Here recall that n = 2m +r with m,r as in (3.0.1).

Proposition 4.1.4. E5(1; f+) = 0 unless 85 € GL,,,(O). In this case, if we further

assume v(f) # 0, then

ed; 2=l m %,0
By i = 1 X (3:))GO)™ B € Sal0)™?, (4.1.12)

0 otherwise.

Proof. We need to compute

Es(1; fi) = [ > X w)e(-r(3S))

5n(F) 4eQLm (0)/w¢GLum (0)
I, 0 0 0 0 0
0 1, 0 0 0 =
1, S 0 0 1, 0 -« 0
x f1O 7, “ ds.
0 1, 0O 0 0 1, 0 0
o 0 0 0 1, O
0 0 0 0 0 1,
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Changing variables

0 0 0
Se=S—=10 0 X% |,
0 -2 0
we obtain
1, S
e e(=7(39))d$
SalF) 0 1,

<y xr*<u<u>ﬁz(27<ﬁ5“>).

UEGLn (O) /2t GLon (O) w

The second line implies 5 € GL,,(O) by Lemma 4.1.3. In this case and v(3) # 0

the integral in the first line can be calculated as in Proposition 4.1.2. O]

Proposition 4.1.5. E3(1; fP) = 0 unless 85 € GL,,,(O). In this case, if we further
assume v(B) # 0, then

*,0
=] eSO (1113

0 otherwise.

Proof. This is same as Proposition 4.1.5 except, rather than a Gauss sum, we obtain

a term
m . iG=1)
3 (—1)igh (T 3 e(27(B5u)),
i=0 7 uemMatyn (0)5; /@Matm (O)

which is nonzero unless 5 € GL,,(O). This can be shown by the property of

exponential sums as in [BS00, page 1412]. O

4.1.3 Archimedean computations

We now turn to the archimedean setting. We fix an archimedean place v and omit it

from the notation where we also abuse the notation by simply denoting f° := 29

Fix a positive integer [ be our weight. Let z = x + 1yy* € H,, and consider the local

Fourier coeflicients

en(—T(BS))dS.  (4.1.14)

1, S Yy xi
By f2) = [ A
" 0

0 1,

<>
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For y, 8 € S,(R) and s1, s2 € C we define a function &, by

&y, B s1,82) = / v(s +iy) (s —iy) S2es(1(8S))dS. (4.1.15)

Sn(R)

By definition of f2°, we have (for Case II, III, IV)

Es(z, )

=/ ® v(yi +x9 + S9) Hv(yi + 29 + S9)|75 e (—7(BS))dS

e (B [ (S +yyi)

n

s+r+1 s+r—1

> (S —yyi) 2 ew(—7(89))dS

=coo(T(B) )0 (y) &, <yy*,5; il g : l, i ; — l) :

(4.1.16)

Similarly, for Case V we have

Es(z, £°)
l , (4.1.17)
:wmvwwwwww@w%ﬁﬂg<wﬁ@s+ﬁ+ﬁ+ﬂ_>

2 2
Recall that in Case III, the symmetric space is same as the one for Case II. Denote

I el t6 indicate above functions &, in two cases. After identify 3, yy* with their

image /', (yy*) in {8’ € GLs,(R) : /5 = 3} we have

§m< *6_s+m+l s+r—1

n g )Z;L((yy*)’,ﬁ’;s+/<+l,s+/<—l). (4.1.18)

The function &, is the confluent hypergeometric function studied in [Shi82]. We

record some of its property in the following lemma.

Lemma 4.1.6. Let t = rank(3) be the rank of B and ty (resp. t_) the number of

positive (resp. negative) eigenvalues of 3. Then

£(y, Bs s1,52) = T'(s1, 82) x w(y, B 51, 52) (4.1.19)

where w(y, B; s1, $2) is a holomorphic function in s1, sy and T'(s1, s2) is given by the

following list.
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(Case II, Symplectic)
H?:—(;t—l r (51 45y — n+21+i)
o ' (s = 3) I (sa— §)
(Case IV, Quaternionic Unitary)
[1f T (281 + 289 — 2n + 1 — 24)
[y "0 (281 — 20) [ T (285 — 20)
(Case V, Unitary)
[y T (s1+ 80 —n — )
M ' Tsi =) Il (52— i)
In particular, if § > 0, then
w(y, B51,0) = 25 0 (28) e (i (By)), (4.1.20)
with
1 Case II,
t=19 4 CaselV,
2 Case V.
We are interested in the special value
| —k Casell, III, 1V,
PR , (4.1.21)
é —K Case V.
with
m—+1 Case 11,
> (4.1.22)

n+1 Caselll, IV, V.

and k is defined as in (2.2.8). In this case we need to consider the special value of

E(y, B; 51, 52) at s = 1,55 = 0.

Lemma 4.1.7. The function £(y, 3; 1, 82) does not have a zero at s; = 1,85 = 0

only if > 0.

Proof. We prove for Case IV and omit the same proof for Case II, V. Consider

[T (20 — 2n + 1 — 2i)
T T (20— 20) TTiSg ™ T (—2i)
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and calculate the contributions of poles for each terms. By our assumption on [,
| - ['(21 — 27) does not have poles. The numerator at most contributes n — t

poles while the denominator always has n — ¢, poles thus we must have t =¢,. [

We summarize the archimedean Fourier coefficients in the following proposition.

Proposition 4.1.8. As a function of s, Ez(z; f°) does not have a zero at sy only
if B> 0. In this case, its value at s = sq is given by the following list.

(Case II, Symplectic)

n(n—1)
4

2njnigni= PR
(1 -3) V(287 vy)e(7(52)),

(Case I1I, Quaternionic Orthogonal)

_ _n2n-1)
22n(_1) nlﬂ.in 5 | 2ni1

25T (- 3)

(Case 1V, Quaternionic Unitary)

Qni—nlﬂ.nl—n(n—l)

[T T2 — 2i)

v(28)77% v(y)ex(7(82)),

(Case V, Unitary)

Qni—nl,]rnlf Ln;l)

gy V@) el (82).

4.1.4 The global Fourier expansion

We now study the global Fourier expansion of E(h; fs, x, n) defined in (3.4.17). From
now on, we assume the weight I = (I,),|~ is parallel. That is [, = [ for all v|co. We

also assume

m+1 Case 11,
[ > when F' # Q,
n+1 Caselll, IV, V.
(4.1.23)
m—+1 Case 11,
> when F' = Q.

n+r+1 Caselll, IV, V,
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For such [, we are interested in the special value at

l—r Case Il III, IV,
- (4.1.24)

é — K Case V.

Let ¢. € G(A) be an element such that

diagla,, @] v {npoo,
1 v|np,
(=)0 = (4.1.25)
Yo Tyl
v|oo,
0 4

for any z = (2y)vjee With 2, = z, + yy5i € H,. Denote
S =S.(F)N H aS,(0,)*a" - H Sy (0,)*0 H Sn(0,)" (4.1.26)
vnoo v[nap vlny

and

B —ef; —eb
SP=98=|0B B —€f;
Bz Bs  DBe

S ) 527 53 S Matm,r(pnilop%
Bu, Bs € Mat,, (p*20,).

(4.1.27)

For a Hecke character x = [, x», we define the Gauss sum G(x) = [1, G(x») with
G(x.) the local Gauss sum defined in (4.1.8). We may write GP(x) to indicate that
the Gauss sum is defined for D. In Case II, IV, V, we always omit the superscript
‘D’ for simplicity as no confusion will occur. In Case ITI, we will need both G (x)

and G*'(x) and we make the convention G(x) := G ().

Combining with the local computations in previous subsections, we summarize the

Fourier expansion of E(h; fs, x,n) in the following proposition.

Proposition 4.1.9. At s = sg, the Eisenstein series E(h; f, x,n) has a Fourier
expansion of the form

E(g:; fs, x,m) = DC(q-)v(y™) > CB,x) - E(B; X)ew(T(82)). (4.1.28)

0<BeSP

Here:
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(1) ® is a power of the discriminant of D,
(2) C(4z) = Iopmoo X(¥(a0)) [N/ (v(an)) [T,

1-n

(3) 2" = x + iy'y™ with y = diag[l,, @™ 1,,, =™ 1,,]y.

(4) The constant C'(B,x) is given by

m(m—1)

m(m—1)
2

o]

= [ e~ GOO)"™x(v(Bs))r(28) ™" (4.1.29)

v\ng
with dy as in (2.4.14) and x(v(Bs)) is understood as zero if v(Bs) & O,

(5) E(5; x) is given by the following list with d(F') = [F' : Q]
(Case II, Symplectic)

gnj=nlgnt2\ 4
(H”&F(Z—i)) E[LU<SO+2’X)\5) [T Pao. (x(40)2, "),
i= 2 v

vin

(Case I1I, Quaternionic Orthogonal with r =0)

(22n(1)nlﬂ.2nln(zgl)>d(F)
' (- 3)
(Case III, Quaternionic Orthogonal with r = 1)
n(2n—1 d(F)
22n -1 fnlﬂ.in—% 1 B
( iy IT 2 (s0+ 4200 TT Pr (0,

H?Z(?l r (l - %) vfn vin

vsplit

HLv (30+ aX)\6> HPa ﬁav qv qu )7

vin vin

(Case IV, Quaternionic Unitary)

2nZ—nl7Tnl—n( 1)>d(
n— . P*,Bav qU qU )7
(Hi:& (20 — 2i) 1}

(Case 'V, Unitary)

HP*BG,U Qv Q'u )

vin

Qni—nl,irnlfin(";l) d(F)
( [T T —4) )

Proof. We first show that only 5 € SP can contribute a nonzero Fourier coefficient.

Recall that the Eisenstein series E(h; fs) is defined as

E(h; fo) == E(h; f)IU(p") - ZE (hy; fs)

with v running through elements of the form in (3.4.18). To ease the notation, we
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write
€ 17nb € 17'n.b
1, 0 0 0 Z 2 =
A=| ezt w1, 0 B=] % @', 0 :
—ebih ! 0 w1, - 0 w! e
A B
so that v = |- In the following, we write 7,, Ay, By to indicate they are
0 A

matrices with entries in F},. By straightforward computations,

1, S
E yJs) = E 2Vpy Js - d
)= [ s | feaor(asnas
/ g1 7 gih | eat-r(as)as > ea(r(BA, ' By))
= 2y Js | €al—T . ealT .
(F\Sn(A) 0 1. q A ~ A p P

Here g, € G(A) is defined as in (4.1.25) for 2’ = x + iy/y"* with 3/ = diag[l,, '™ -
L, @™ - 1,,]y. The integral is the Fourier coefficients of E(h; f,) calculated in
previous subsection. Hence, by Proposition 4.1.1, Proposition 4.1.2, Proposition
4.1.4, Proposition 4.1.5, this integral is nonzero unless 3 € S. The exponential sum

is nonzero unless further g € SP.

Secondly, we show that only # > 0 can contribute a nonzero Fourier coefficient.
Note that the condition § € SP and Proposition 4.1.4, Proposition 4.1.5 imply
that only such § with rank(8) > 2m can contribute a nonzero term. Under our
assumptions on [, the L-functions occurring form Proposition 4.1.1 does not provide
any poles. Therefore, the Fourier coefficients are nonvanishing if and only if the
confluent hypergeometric function in archimedean computations does not have zeros.

Then by Lemma 4.1.7, when specializing to s = sg, Es(q.; fs) 7# 0 unless 5 > 0.

The proposition then follows from the explicit formulas in Proposition 4.1.1, Propos-

ition 4.1.2, Proposition 4.1.4, Proposition 4.1.5 and Proposition 4.1.8. O]

Remark 4.1.10. We emphasize that we indeed obtain a better bound on [ due the

action of U(p) operator. Without such process, we have to consider 5 of all rank
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so that one need to assume [ > 2m + 1 in Case II and 2n + 1 in Case III, IV, V
to avoid the occurrence of the poles in L-functions from unramified computations.
When r = 0 or when p splits in Case 111, we always have v(() is a square mod p.
This property is essential in the construction of p-adic L-functions for Case II, III

(see also [Liu20, Section 3.5]).

From these explicit formulas of the Fourier coefficients, we immediately have

Corollary 4.1.11. Up to a power of w, E(h; fs, x,n) is an algebraic modular form

on H(A) at s = syg. More precisely, we have

nl—M—H—@ Case 11,
E _ 2nl — (2" Doy— Case 111,
d((f)’jf)) cQ  withd(r) = (4.1.30)
s ™
nl—n(n—1) Case 1V,
nl — @ Case V.

Furthermore, for any o € Aut(C/F), we have
(Case 11, Symplectic)

(8;x) T B(5;x")
7Tcz(F)(nlJ“";”)(m)d(F)(l*%)G(X) (P (nl—20 1>)(m) (=G (ye)

(Case III, Quaternionic Orthognoal) In this case we denote G¥(x) to indicate that

the Gauss sum is defined for F.

E(8;x) _ (8:x7)
A (F) (2n1— 5= ) (7)Y = GF () d(F) (2n1— 5= ) () AN =M GF (x ) ’

(Case IV, Quaternionic Unitary)

( (E(ﬁ;x) ))U: E(3;x%)

F)(nl-n(n—1) 7d(F)(nl—n(n-1))’

(Case V, Unitary)

E(ﬁvX) 7 . ]E(57XU)
Wd(F)("l_@) B Wd(F)(nl—w) :
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4.2 Properties of the special L-values

In this section, we apply our computations to study the properties of special L-values.

Let I = (I, ...,1) be a parallel weight satisfying

m+ 1 Case I,
> when F' # Q,
n+1 Caselll, IV, V.
(4.2.1)
m+1 Case 11,
[ > when F' = Q.

n+r+1 Caselll, IV, V,

Fix a specific prime p of o above an odd prime number p and an integral ideal
n =mny = [[, pS» with ny, ny, p coprime. Denote zo for the uniformizer of p. We
make the following assumptions:

(1) 2 € O and 0 € GL,(0O,) for all v|np.

(2) f € SI(K(np),Q) is an algebraic eigenform for the Hecke algebra H (K (np), X)
as in Section 2.3.4.

(3) f is an eigenform for the U(p) operator with eigenvalue a(p) # 0.

(4) x = x1x with x; has conductor ny and x has conductor p¢ for some integer
c > 0. We assume x has infinity type I. That is, y,(x) = z!|z| ™ for all v|co.

(5) In Case V, all places v|np are nonsplit in O.
We study the special values of L-functions L(s, f X x) at

l—r Casell, IIIL, 1V,
§ =850 := (4.2.2)

é - K Case V.

4.2.1 The algebraicity of special L-values

The following algebraic result is also studied in [BS00; Shi00] for symplectic and
unitary groups and in [BJar| for quaternionic unitary groups. Comparing with our
previous work in [BJar|, here we obtain a better bound [ > n + r 4+ 1 rather than

I >2n+1.
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Theorem 4.2.1. Let [ and sy as in (4.2.1), (4.2.2). Then

L(So—i‘%,fo)

gdE)ADQ - (f, f) €Q ife>0, (4.2.3)
L(SO+%,fxx)M(so+%,f><X) B . 2.
A0 - (f ) €Q, if e = 0.
with
nl—%—i—l—% Case 11,
2nl — % +1l—n Case 111,
d(m) = (4.2.4)
nl —3n(n—1) Case IV,
nl — @ —m(m+r) Case V.

Here Q) =1 in Case II, III, IV and in Case V, Q € C* is the following CM period
Q=pg(rrr), (4.2.5)

where (E, 1) is a fired CM type and pg is the period notation given in [Shi00, Section
11.9].

Proof. The proof is similar to [BS00, Appendix| and [BJar; Shi00]. We remark that
in [BJar; Shi00], one needs to use the fact that the space of algebraic modular forms
is a direct sum of space of algebraic cusp forms and algebraic Eisenstein series. This
result is proved in [Har84] when the Eisenstein series is absolutely convergent at
s = sg which forces [ > n in Case I and [ > 2n + 1 in Case II, III, IV. This result
is not necessary and not used in [BS00, Appendix] so that the special value below
the absolutely convergence bound can be considered. However, the proof there need
the assumption that the eigenvalue a(p) of the U(p) operator for f is nonzero as

we made here. We sketch the proof following [BS00, Appendix].

Let {f;} be an orthogonal basis of S;(K (np)) consisting of eigenforms of the Hecke
algebra ‘H(K (np), X), which without lossing generality we assume f, = f. Take
{h;} be a basis of the orthogonal complement of S;(K (np)) in M;(K (np)). Denote
i, fi (vesp. hi, hi) such that fi(g) = fi(gmnp) (resp. hi(g) = hi(gmnp)) and
Fi(g) = fi(gn2) (vesp. hi(g) = hi(gna)) with ny, 79 in (3.4.7) and 7, in (3.4.21). Let
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V be the operator defined by f|V := n(n)f|U’(n;) and we use the superscript ¢ to
mean f(g) := f(g")-

We can write the Fisenstein series E(g1, g2; fs) as

E(g1,92; [5) P
7(rth)d27r) Zalﬂf (90)£5 £V (g2) )+ bijhy 91)h2 (92)
" (4.2.6)
+ > i Fi(g)h(g2) + Y dishi(91) 51V (92)-
ij ij

We take the Petersson inner product on both sides of (4.2.6) with f! for the first

variable. Then the integral representation (3.4.25) shows that

Z(s:fif)
d117)!1(;)(]“?|‘/"f?)f2 [V (g2)

=2 ai (£ £) 75V (92) + 3 cii(F1, )5 (02)-

Clearly, we have a;; = 0 if j # i and ¢;; = 0 for all j. Similarly taking the
Petersson inner product on both sides of (4.2.6) with 7|V for the second variable,

we conclude that ¢;; = d;; = 0 for all 7, j and a;; # 0 unless ¢ = j in which case

o Z(sif1. 1)
mdEAE (f o FFEV, 7
Hence we can write
E(g1,92; s c
Buoiife) _ = Yo eV ) + S bshla)hi (o), (427

d(F
(e i

Applying o € Aut(C/Q) on both sides of (4.2.7), we have

E(g1, 923 fs s -
(;@2) Za “(g1)( “(92 +meh3 g R (g2).  (4.2.8)

We now take the Petersson inner product on both sides of (4.2.8) with £} for the

first variable g;. For the left hand side, by Corollary 4.1.11, we have

d(F)d(m) T gdE)d(m)

<E(917925fs))0 _ E(q1,92 f5)
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and the integral representation (3.4.25) shows that

E(q1, g2 fs - Z(s, f7, fs o1v s\ ¢

For the right hand side, we obtain

( Z(s; . fs)
W (£ FONFTTIV, FE°

be’ hy, £YhI7 (g).

>> 77 (F1V) (92)
(4.2.10)

Our assumption on the algebraicity of f implies
( %") = 2 and (Q 7 ) =Q. fr°
Comparing (4.2.9) and (4.2.10) we conclude that

(S £ fs) ( Z(s, [ fs) )U
Q- A F)FIV,F) QDI ) (FIV, )

We finally conclude the theorem by the integral representation in Corollary 3.4.5.
Assume ¢ > 0 (the case ¢ = 0 is similar), the term a(p)?"~2 and the constant C” are

algebraic so that

()L (s + 1, f X) B (cl(s)d(F)L (3 + 3, f X))U

Q- nd B (f ) Q- dEdm (f, f)

The theorem then follows by the easy calculation of the power of 7. O

When r = 0, we can define the action of 0 € Gal(Q/F) on f € §(K (np),Q) on the
Fourier coefficients of f. In this case we have the following refined version of above

theorem.

Theorem 4.2.2. Assume r = 0. Let | and s¢ as in (4.2.1), (4.2.2). For ¢ >0 and
o € Gal(Q/F)we have
(Case II, Symplectic)

(X(m)mdlL (s0+3.F x x))g X)L (50 + 5, F7 % x)

OO GO)m(F F) ) PG F )
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(Case III, Quaternionic Orthogonal)

x(ny)" 4 L (80 +3.f % X) 7 X)L (80 + 3. f7 % x")
Wd(F)d(“)GF(X)G(X)m<f, f) 7 F)d(ﬂ)GF(XJ)G(XU)m<fU’ fcac>7

(Case IV, Quaternionic Unitary)

7Td(F)d(w)G(X)m<f, f) Wd(F)d(ﬂ)G(Xo'>m<f0" £ )

(Case V, Unitary)

(x(m)m‘hﬂ (s0+3.F x x))g X7 ()™ L (s0+ 3, 7 % X°)

X)L (so+ 3, F x %)\ X7()™ L (s0+ 5, £ x X°)
Wd(F)d(ﬂ')G(X>mQ . <‘f’ f> 7-[—d(F)d(7r)G<Xo)mQ . <f0'7 fcoc> :

Here we use the superscript ¢ to mean f°(g) = f(g*). When ¢ = 0, one replace

L (so + %,f X X) by L (50 + %,f X X) M (50 + %, fx X) in above formulas.

Proof. We omit as it can be proved by the similar argument as in Theorem 4.2.1

(see also [BS00, Appendix]). O

Remark 4.2.3. We do not obtain above theorem in general for any r because we
do not have a well defined action of ¢ € Gal(Q/F). If for a field ¥ C Q, one
can define the meaning of M;(K,¥) C M,;(K,Q) properly such that M;(K,Q) =
M (K, V) ®y Q, then one can further define the action Gal(Q/¥) on M,;(K,Q) by
acting on Q. If this action preserves the subspace S;(K,¥), then one can refine

Theorem 4.2.1 to obtain similar formulas as in Theorem 4.2.2 for o € Gal(Q/¥).

4.2.2 Preliminary on p-adic L-functions

We now turn to the p-adic interpolation of the special value L(sq+ %, f xx). For our
specified prime p, let p be the prime number under p and C, = @p the completion
of @p. Fix an embedding Q — C,. The p-adic absolute value | - |, naturally extends
to C, and we denote

Oc, = {z €C,: |z], < 1}. (4.2.11)
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Consider the p-adic analytic group
Clp(p™) = EX\AL/U(P™)EL (4.2.12)

where U(p™) is the group of elements of 6* that are congruent to 1 mod p" for
all integers n with 6 the completion of 0 and EX the connected component of the
identity in Eo, = F ®g R. We refer the reader to [BW19, Section 10.2] for more
details on the geometry of this space and the locally analytic functions on this space.
We denote by A(Cl5(p™),C,) the space of locally analytic functions on Cl}(p™)
and the space of p-adic distributions D(Cl}(p™),C,) are defined as the topological

dual of A(Cl}(p™®),C,). Clearly there is a natural pairing
A(Clg(poo)a (Cp) X D<Clg(poo>7 Cp) - (CZU

(4.2.13)
(Fomyo p(f) = [ fdu

A p-adic distribution is called a p-adic measure if it is bounded.

The Hecke character x of conductor p¢ defines a locally analytic function on Cl}(p™)
as in [BW19, Section 2.2.2]. Since they forms a dense subspace of A(Cl}(p*),C,), a
p-adic distribution is uniquely determined by its value at all these Hecke characters.
In following two subsections, we define the p-adic distribution interpolating the
special value L(sg + %, f X x) for p-ordinary f and prove that the distribution we
constructed is indeed a p-adic measure. Note that Case II, III and Case IV, V are
treated separately because of the occurrence of the Hecke L-function for the Fourier

expansion in Proposition 4.1.9 for Case II, III.

We end up this subsection by the following important preliminary lemma.

Lemma 4.2.4. Let F'(h) be a modular form on H(A) with a Fourier expansion of

the form
F(g:) = v(y")' > C(B)es(T(B2)) (4.2.14)

Bes
with q, as in 4.1.25. We further assume that F(g1, g2) € Mi(K(p?)) @ M;(K'(p?))

with notation as in Section 3./.
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(1) Let {f,} be a basis of My(K(np?),Q) and denote f; (resp. f;) such that

Fi(g) = Filgmnp) (resp. f£3(9) = fi(gm)) with ni, s in (3.4.7) and n, in (3.4.21).

Then there exists some constants a;; such that

F(g1,90) = Zaijle(gl)fi(gﬂ- (4.2.15)

(2) There exist a constant 0, € Q" independent of F such that if C(B) € Oc, then
aij € Q-Qp - Oc, where Q =1 in Case I, III, IV and Q) is the CM period (4.2.5) in
Case V.

Proof. This lemma is a p-adic analogue of [Shi00, Lemma 24.11, Lemma 26.12].
The first part is already proved there and it is also shown that if C'(3) € Q then

a;; € §)- Q. We descent the argument there to Oc,.

Let {h;} be a basis of MH(K,Q) (i.e. space of algebraic modular forms over H)

where K is the image of K(p?) x K'(p?) under doubling map. We can write
and note that each h; has a Fourier expansion of the form

hi(q.) = v(y")' D ci(B)es(T(82)).
Bes
There exist a system {f3;} such that the matrix [¢;(8x)]ix is of full rank. For each i, k,
ci(Bx) € Q by the algebraicity of h; and we can pick a constant €; depending on

{B:} and {h;} such that ¢;(8;) € 21 O¢,. Then C(B) € O, implies 4; € Q7' Oc,.

Choose a system of CM points {g;} of G such that the matrix X = [f,;(gx)]i is of
full rank. Note that for any k, (gx, gx) is a CM point of H so that h;((gk, gx)) €
P((gr, g1))Q where P((gx, gx)) is the period of CM points over H. There exist a

constant 2y depending on {gx} and {h;} such that

hi((gx, ) € QP((gx, 91))Oc,
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Then C(3) € Oc, further implies

F((gx: 9x)) € 0 %P ((gr, 91))Oc, -

By the algebraicity of f;, we have f,(gr) € P(gx)Q where P(gx) is the period of CM

points over G. We can choose a constant 23 depending on {gx} and {f,} such that

fi(gr) € P(gx)Oc,.

Now write F as in (4.2.15) and compare the period P(gk, gr), P(gx) as in the proof

of [Shi00, Lemma 26.12], we conclude that C'(3) € Oc, implies
Q45 e Q- 91—1929;1 : O([jp.

Take Q, = Q71005 which is clearly independent of F' by our above constructions

and the lemma follows. O]

4.2.3 p-adic L-functions for unitary and quaternionic

unitary groups

Denote Q2 = 1 for quaternionic unitary groups and € is the CM period (4.2.5) for
unitary groups. Fix y; be a Hecke character of conductor ny and infinity type . We
define a p-adic distribution p(f) such that for any Hecke character x of conductor
P’

m(m—1)

Jo oy X)) 200 e G ) )
E

. O . (4.2.16)
x(H)F(d1(l—i))> Z((;;szf; ).

Here we are again denoting x = x 1 when x varying. The right hand side in above

formula is indeed independent of n and u(f) is a well-defined p-adic distribution.

Assume x is of finite order and y has infinity type I. By (3.4.22), (3.4.23) we have
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for ¢ > 0,

edy Mm—1) —m T
LX) = ool 5 G ) )
E

- an (SO L1 X) (4.2.17)
F d l_ ; . ?
(ot T raa-) 252t
and for ¢ = 0,
. —m__d(F)d(r) }
/CIE(P‘”) xdp(f) = G(x)™"n M (SO tplx X> (4.2.18)

n—1 d(F) L So %’
x (cl(so) gr(dl(z_i))> - (Q?f’j; )

Theorem 4.2.5. Assume f is p-ordinary in the sense that a(p) € OF . Then pu(f)

defined above is a p-adic measure.

Proof. The proof is similar to [BS00, Section 9]. Indeed, by Lemma 4.2.4, the
boundness of the distribution u(f) defined above follows from the boundness of
the Fourier coefficients of Eisenstein series which can be checked straightforwardly
from explicit formulas in Proposition 4.1.1. One can also verify p(f) is a p-adic
measure by checking the Kummer congruences following [CP04]. For more details
see also [Jin22, Theorem 6.4], in which we prove the Kummer congruences for totally

isotropic quaternionic unitary groups when F' = Q. ]

4.2.4 p-adic L-functions for symplectic and quaternionic

orthogonal groups

As we have mentioned before, the Case II, III are different to Case IV, V because
of the occurrence of the Hecke L-function for the Fourier expansion in Proposition
4.1.9. Therefore, we treat these two cases by the known p-adic interpolation of Hecke

L-functions as in [BS00, Section 8] and [Liu20].

We first recall some fact about Hecke L-functions. Let ¢ : F*\Aj; — C* be any
Hecke character trivial at infinity with conductor ¢(¢)). We assume for simplicity

that [, m has the same parity, i.e. [ =m mod 2 in Case II so that sy + % is always
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even. In this case, there is a functional equation ([Shi00, Theorem 18.12])

1 d(F)
(2mi)*t DLGTW) L
Horpe) - <2F(80+;)) e A CRE S B

We denote

Ly <so+ ,¢> ! . Ple(), (4.2.20)
(1= d(@)lwl**2) " ptew),

for the local L-factor at p.

When ¢(1)) is coprime to p, there is a p-adic measure p(v)) (see for example [Bar78;

Cas79; DR&0]) such that for all Hecke character x of conductor p®,

/Cllt(poo) xp(v) = Ly (; - SOWZFIX) L (; - 30,@/)_1)() - (4.2.21)

The existence of such measure is equivalent to the existence of Kummer congruences
([CP04, Proposition 1.7]). In particular, for some constant C' € C, with C'- x(z) €

Oc, for all z € Clj(p™), we have

1 1
C- Ly <2 - 307¢_1X> L (2 - So,¢_lx> € Oc, (4.2.22)

Fix x1 be a Hecke character of conductor ny and infinity type . We define a p-adic

distribution p(f) such that for any Hecke character x of conductor p€,

/01+(poo) xdu(f) == a(p)> 20" e |0 ™5 NF/Q( yel(s0=3) pdF)d(m)
F

ndi—1

xG(X)mGF(X)1< (80+ ) H F( ))dw) (4.2.23)

(50+27X) .Z(So;fvme?n)
T~ FH

i

Assume x is of finite order and y has infinity type I. By (3.4.22), (3.4.23) we have
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for ¢ > 0,

/(jl*(p“) xdp(f) = ‘W‘Cdl NF/@( ) (SO_%)G(X)_mGF(X)_lwd(F)d(“)

nd;—1 d(F) — v Yo |20
(( (tg) e (- >) e

L(so+ 3 fxx)

X

F.H
(4.2.24)
and for ¢ = 0,
/Cﬁ(pm) xdp(f)
=[5 Ny (p) 08 G (x) G ()~
(4.2.25)

X (CZ(S())F <So + ;) mzh)lf <l — ;‘))d(F)
L (50 + %7 I x X)
(£, 1)

Theorem 4.2.6. Assume | = m mod 2 in Case Il and p splits in Case III when

1
XM<SO+27fXX>

r = 1. Assume f is p-ordinary in the sense that a(p) € Of . Then u(f) defined

above is a p-adic measure.

Proof. The argument for checking p( f) is again similar to [BS00, Section 9] or [CP04].
We have also proved the Kummer congruences for isotropic quaternionic orthogonal
groups when F' = Q in [Jin22, Theorem 6.5]. The main difference between Case II,
[T and Case IV, V is the occurrence of following term

1
H Lv <SO + =, X)\/J’)

2
vin
for the Fourier expansion in Proposition 4.1.9. We now explain how to p-adically
interpolate this term. When r = 1 in Case III, we take the product only for those v
splits in D, but this does not change our argument. Comparing (4.2.16) and (4.2.23),

notice that we have multiply a term

NF%) Q)GF( ) (So-i-
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By the functional equation (4.2.19), after multiplying above term and cancel out the

power of 7 it remains to consider

G (x\s) ( 1 S Le(sot3y) g1 iy
——== || L, s+,X)\> . L(—S,X D) 1).
criy ot g o) Ty e e

Under our assumption (p splits in Case III when r = 1), v(f3) is always a square
mod p (Remark 4.1.10) so that Ag(ww) = 1. Using the p-adic interpolation of above
Hecke L-function, especially (4.2.22), one checks that above term is in O¢, up to a
bounded constant. Then our theorem follows from the explicit formulas for Fourier

expansion of Eisenstein series in Proposition 4.1.1 and Lemma 4.2.4. O

We give a remark on what we have not done in this thesis.

Remark 4.2.7.

(1) In this thesis we have only consider one critical point at so. Of course one may
also discuss other critical points by the standard process of applying differential
operators. There are two approaches for applying the differential operators. One is
following [CP04; Liu20; Shi00], in which the differential operator studied in [Shi94]
is applied. This kind of differential operators are defined for all classical groups
discussed here but one need to consider the nearly holomorphic Eisenstein series and
apply the holomorphic projection. Another approach is following [BS00], in which
the holomorphic differential operator constructed in [B6c85] is used and the holo-
morphic projection is avoided. The differential operator constructed there can also
generalized to other groups with r = 0 (see for example [Jin22] for the quaternionic
unitary case). However, we do not know whether one can construct such differential
operators for general groups with r > 0.

(2) For the p-adic L-functions, we have only computed the interpolation at y as
assumed at the beginning of Section 4.2. In particular, we have only considered x
of infinity type I coincided with the weight of modular forms f. This is because in
our integral representation, we need the weight of Eisenstein series (which equals

the infinity type of x) coincide with the weight of modular forms. To consider Hecke
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characters of other infinity type, we will need applying the differential operators on
the Eisenstein series to shift the weight.

(3) We have only considered the parallel weight in this chapter. Especially, our
archimedean computations have only done for scalar weight. For the general weight,
[EL20] and [Liu21] have computed the archimedean integrals for unitary and sym-
plectic groups. Also in [PSS21; HPSS22] the archimedean integrals are calculated

for sympletic group in a different way.






Chapter 5

Integral Representations for

Spoy, X GLg

In this chapter, we study the (standard) tensor product L-functions for Sp,, x GLj.
In [CFGK19], Cai-Friedberg-Ginzburg-Kaplan present an integral representation for
Spa, X GLj using the generalized doubling method. Comparing with the (classical)
doubling method applied in previous chapters, they use the generalized Speh rep-
resentations as inducing data for the Eisenstein series. Following the strategy and
extending a previous result of [GS20], we derive new integrals of Sp,,, x GLj for any
positive even integer n and any positive integer k. We show that these new integrals
unfold to non-unique models on Sp,,,. We carry out the unramified computation and
show that these integrals represent the tensor product L-function for Sp,, x GLj

via the New Way method, generalizing a previous result on Sp, x GLy [Yan23].

This chapter is independent of previous chapter and is taken from [JY23] which is

joint with Pan Yan.
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5.1 Introduction

The Rankin-Selberg method is a fruitful way to study L-functions of automorphic
forms or automorphic representations. In [PR87], Piatetski-Shapiro and Rallis dis-
covered a family of Rankin-Selberg integrals that represent the standard L-functions
for split classical groups. Their construction, known as the doubling method, un-
folds to a global matrix coefficient on the classical group. This construction does
not depend on a model, and hence opens the door to the possibility of a wide range
of applications. Around the same time, in [PR88], they also discovered another
family of global integrals, known as the “New Way” integrals (named after the title
of [PR88]), which represent the standard L-function for any cuspidal automorphic
representation of Sp,,,(A), where A is the ring of adeles of a number field F'. In con-
trast to the usual constructions of Rankin-Selberg integrals where certain uniqueness
result (such as a unique model or a unique global matrix coefficient) is involved (see
[Pia97; Fur93; Fill3; GRS98; GJRS11] for more examples), the global integrals in

[PR&8] unfold to a non-unique model.

In [CFGK19], the method of [PR87] was generalized by Cai, Friedberg, Ginzburg
and Kaplan. This construction, known as the generalized doubling method, gives a
family of global integrals which represent the tensor product L-function L(s+%, TXT)
where 7 and 7 are irreducible automorphic cuspidal representations of G(A) and

GLk(A) respectively, and G is a split classical group defined over F.

Recently, in [GS20], Ginzburg and Soudry revisited the integrals considered in
[PR88], and showed that one can derive these New Way integrals in [PR88], from
the doubling integrals for Sp,,, considered in [PR87] by a relatively simple global
argument. Moreover, they applied the same idea to the global generalized doubling
integral (after unfolding) in [CFGK19] for Sp, x GLs, and used the process of

(1) global root exchange,

(2) identities between Eisenstein series, proved in [GS21],

to derive and obtain a “simpler” integral. Furthermore, they conjectured that this
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new integral represents the standard L-function for Sp, x GLs via the New Way

method. This conjecture is proved to hold in [Yan23].

The purpose of this chapter is to generalize these results of Ginzburg and Soudry
[GS20] and Yan [Yan23]. The first main result is that we derive new integrals for
Sp,y,, X GLj for any positive even integer n and any positive integer k, extending
a result in [GS20] where the case n = k = 2 was considered. Throughout this
chapter, we assume n is even. This assumption is made in order to avoid the use
of the Eisenstein series on metaplectic groups (the same assumption also appeared
n [PR88]). Let m and 7 be irreducible automorphic cuspidal representations of
Span(A) and GLj(A) respectively. Starting from the generalized doubling integral
for Sp,, x GLj in [CFGK19], we apply the same procedure as in [GS20] to derive

the following new integral:

Z(¢a 61{;7”2, fn,k,s) = ¢<h)

/SPQn(F)\SPQn(A) /]Vnklykn(F)\Nnklykn(A)

0% (b (w)ir(1, b)) E(ut(L, h); g o) tbx(u)dudh.

(5.1.1)

Here:

(1) ¢ € V; is a non-zero cusp form;

(2) Nyk-14, is a certain unipotent subgroup of Sp,,, and ¢ is a character on
N1 g (A) which is trivial on Npx-1 g, (F);

(3) 9:1;,”2 is a theta series associated to the dual pair (SOg,, Spy,,) inside Sp,,,2, where
Ty € GL,(F) N Sym,,(F);

(4) FE is an Eisenstein series on Sp,y,(A) associated to a smooth section
Faks € IdE? S (A (7T @ xp,n)| det ), (5.1.2)

where T' € GL,,(F') depends on Tp, xr is the character xr(x) = (x,det(T")) given by
the global Hilbert symbol, and A(7 ® x7,n) is the generalized Speh representation

of GLg,(A) associated to 7 ® xr.

We refer the reader to Section 5.2 for the precise definitions of the notations. See

Theorem 5.3.6 for the precise statement of this result.
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We remark that when k& = n, the global integral Z(¢, 9:1;7n2, fnks) also appeared in
[Yan23, Section 7]. Based on the work in [PR88; GS20; Yan23|, we expect that, for
any positive even integer n and any positive integer k, the integral Z(¢, 9?;7”2, fok.s)
unfolds to a non-unique model of 7 and represents L°(s -+ %, 7 X 7) via the New Way

method; this is Conjecture 5.3.7.

Our next goal of this chapter is to provide more evidence for Conjecture 5.3.7
in addition to [PR88; GS20; Yan23]. We will prove that Conjecture 5.3.7 holds
for any Sp,,, X GLj. Let S be a finite set of places (defined in Section 5.4) and
let fo.ps(9) = P20 fonns(g) if v ¢ S, where dZ s given by (5.2.29) or

(5.2.30) depending on the parity of k. For v € S, we let f; ; (9) = funks(g). Put
fn*:lf,s - Hv f:,n,k,s<g) and
E(g, fs) = > Fis(v9). (5.1.3)
YEPrn (F)\Spapn (F)
This is the partially normalized (outside S) Eisenstein series. Our second main result

is the following.

Theorem 5.1.1. There exists a choice of a nonzero cusp form ¢ € Vi, a matrixz Ty,

a theta series 0:1;7”2, and a section fn ks € Ind?}zi’“&()A)(A(T ® x7,n)|det -|*) such that

. 1
Z(6,05 2, frn) = L(s + 50T X T) - Z(0.00 2, Fus), (5.1.4)

where Zg(¢, 0:1;’”2, Jnks) is meromorphic in s. Moreover, for any sy € C, the data

can be chosen such that Zg(¢, 9:1;,”2, fnks) is nonzero at sg.

As applications, we reprove the meromorphic continuation of the partial L-function
L%(s,m x 1) see [CFK18, Theorem 60]. We also deduce the result on the largest
poles of L%(s,m x 7), and the relation between the existence of the poles and the
non-vanishing of certain period integrals in Theorem 5.4.8 from the poles of fully
normalized Eisenstein series [JL.Z13, Theorem 5.2]. This generalizes the proposition
in [PR88, p.120] where a necessary and sufficient condition for the existence of the

poles is given in terms of the theta correspondence.
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Now we give a summary of our proof. The first step is to unfold the integral
Z(o, 9;‘;,”2, Jnk.s). We show that Z(¢, 9:1;7“2, fnk.s) unfolds to the Fourier coefficient
of ¢ given by

/Nn(F)\Nn(A) ¢ (nh) Yr(n)dn, (5.1.5)

where N, is the unipotent radical of the Siegel parabolic subgroup of Sp,,,, and ¥y
is the character on N,(F)\N,(A) given by

Uy b2 = (tr(Tz)). (5.1.6)
0 1,

See Proposition 5.4.1. We point out that the existence of T such that the integral
(5.1.5) is non-zero is due to [Li92]. In general, the model of 7 corresponding to (5.1.5)
is not unique (see [PR88]), that is the integral in (5.1.5) do not factor into local
integrals, thus the New Way method is required to analyze the global integral. For
more examples of New Way integrals, we refer the reader to [BFG95; PS17; PS18;
GS15].

The next step is to carry out the local unramified computation. We show that
at a finite place v € S (hence all data are unramified), for any local functional
corresponding to (5.1.5), the local integral produces the local L-function. This result
is the heart of the New Way method. See Theorem 5.4.2. The main idea is to

compare the unramified integral with the one from the generalized doubling method.

We can also control the local zeta integral at a place v € S. This is done in Proposi-
tion 5.4.4 and Proposition 5.4.5. Then Theorem 5.1.1 follows from Theorem 5.4.3,

Proposition 5.4.4 and Proposition 5.4.5.

Finally, we give an overview of the structure of the rest of this chapter. In Section 5.2,
after fixing some notations we recall the definitions of theta series, Eisenstein series,
and (k, c)-representations. In Section 5.4, we review the global and local integrals
from the generalized doubling method and derive new Rankin-Selberg integrals
following a strategy of [GS20]. The main new result in this section is Theorem 5.3.6.

In Section 5.4, we state our main results on the new integrals we study in this chapter,
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while delaying the proofs to later sections, to give a more streamlined presentation.
In Section 5.5, we give the global unfolding computation and in Section 5.6, we carry

out the local unramified computation.

5.2 Preliminaries

5.2.1 Notations

Let ' be a number field and A = Ap the ring of adeles. Denote Mat,,, for
the additive algebraic group of all matrices of size m x n and Mat, = Mat,,,.
Let 1, be the n x n identity matrix. Set J, for the n x n matrix with ones on
the antidiagonal and zeros everywhere else. We denote oz for the transpose and
v = J, v, &= (z*)"' = J, %" J, (if x is invertible). The symplectic group Sp,,

is realized as

0 Jn 0 Jn
Spy, =49 € GLa, : g g= : (5.2.1)

—J, 0 —J, 0

Let r = (r1,...,7m) € Z%, be a m-tuple with 0 < 7, + ... + 7, < n and denote
lr| =r; + ... + rm. Let Pp, be the standard parabolic subgroup of Sp,, with Levi
decomposition P, = M, X Ny, where M, , = GL,, x ... x GL,, x sz(n—\rn- If
N = ..=T"y, =71 € Z>, we also denote the tuple r by ™. If m = 1 we omit it
from the notation and simply write r. In particular, for m = 1,7 = n we obtain the
Siegel parabolic subgroup P, := P, ,. Let M, := M, ,, N, := N,,. Then we have
P, = M, x N, where

z 0
M, =<m(z) = cx € GL, ¢,
0 2
(5.2.2)
1, =
N, =n(z) = . 2 € Mat?
0o 1,
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Here

Mat? = {A € Mat,, : A*J, = J,A}. (5.2.3)

For an integer k > 2, we will frequently use the following two unipotent subgroups

Nnk_l,k’n and Nnk,ka.

The unipotent subgroup Ns-1 y, contains elements of the form

— 1, wgo = * * % * * * * ]
0 * X ok ok * * *
0 0 1, up—gr—1 * * * * * *
0O 0 O 1, r oy oz * * *
0O 0 O 0 1, 0 vy * * *
€ Spop,- (5.2.4)

0O 0 O 0 0o 1, —z* * * *
0 0 O 0 0 0 1, —uj o, * *

0 0 0 0 0 0 *

0 0 0 0 0 0 0 1, —uj,
0 0 O 0 0 0 0 0 0 1,

By sending elements of the above form to its central 2n x 2n block we have a map

1, = y z
0 1, 0 y*
Nyt jon, = Npon = u(®,y,2) = . (5.2.5)
o o0 1, —z
0O 0 0 1,

For u(z,y,2) € N,2, we may also use the same notation for all its pre-images in
N,i-1 oy, and denote u®(z,y, z) to emphasize the one in N,x-1 4, obtained by natural

embedding N, 2, — N1 g
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The unipotent subgroup N, o5, contains elements of the form

_ 1, wia % * * * * * * ]
0o . * x % * * *
0 0 1, w1 * * * * *
0 0 O 1, y oz * * *
0 0 O 0 logn ¥/ * * * € SPupn- (5.2.6)
0 O 0 0 0 1, —upqp * *
0 0 0 0 *
0 0 0 0 0 1, —uj,
0 0 O 0 0 0 0 0 1,

5.2.2 Theta series

We fix a nontrivial additive character ¢ : F\A — C*. Let Ty = diag[ty,...,t,] €
GL,(F) be a diagonal matrix and set T = J,T;. We define a character xr :
F\A* — C* by xr(z) = (x,det(T)) where (-,-) is the global Hilbert symbol.
Denote H,, = Mat,, x Mat,, x Mat; for the Heisenberg group (of 2n? + 1 elements)

with multiplication

(X17}/17zl)(X27}/2722)
(5.2.7)
=(X1 4 Xo, Y1+ Yo, 21 + 20 + to(T(X1Y5 = V1X3))),

for Xi,Y1, Xs, Yo € Mat,, and 2, 20 € Maty. We identify N, 2, with H,, by the map
ot Nuon = Hoy u(2,9,2) 1> (2,9, 0(T2)), (5.2.8)

where u(z,y, z) is of the form in (5.2.5). For an integer k£ > 2, we extend ar to a
map

ot Nyt g = Non — M (5.2.9)

by taking the composite with the map in (5.2.5).
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Consider the dual pair (SOg,, Sp,,,) inside Spy,2 with
SOz, = {g € SL,, : 'gTog = To}. (5.2.10)

We embed SOg, x Sp,,, inside Sp,, via (m,h) — diag|m, h,m] and further embed
t : Spy, — SPor, by t(g) = diag[lx—2)n, g, Lik—2)n]. We also denote (m,h) for its
image in Sp,,, and t(m, h) its image in Sp,,. We always assume n is even so that
SOz, (A) X Sp,, (A) splits in the metaplectic double cover Sp,,2(A). We fix such a
splitting ¢ and consider the restriction of the Weil representation wy := wy 2 of
Sp,,2(A), corresponding to the character 1, to SOg, (A) X Sp,, (A) under ir. For a
Schwartz function ® € S(Mat,,(A)), we have following formulas for wy, (see [GRS11;

Kud96)):
wy(ar(u(z,y, 2)))2(§) = Y(tr(Tay")) (2tr(Tey")v (tr(T2)) D (€ + ),
wp(ir(1,m(9))) (&) = xr(det(g))| det g| 2 @(g), (5.2.11)
wy(ir(1, b(w)))(§) = P (tr(T Cws)) (E).
Here, u(,y, 2) € Npr-14n(A), g € GL,(A), w € Mat) (A).

Given ® € S(Mat,(A)), we form the theta series

05 (ap(v)ir(m, b)) == 63 2 (o (v)ir(m, b))

= Y wplab()irtm, b)),

¢€Mat, (F)

(5.2.12)

with v € Npr-1 4, (A),m € SOq,(A), h € Spy,(A).

We also need another kind of theta series. Let Hjy, = Mat, o, x Mat; be the
Heisenberg group of 2kn? + 1 variables. Then N, o1, has a structure of Heisenberg
group Hy, via the map

19.(u) = (y,tr(T%2)) (5.2.13)

for u of the form in (5.2.6). Consider the dual pair (SOz,, Spyy,) inside Spyy,2 and
fix a splitting 1% : SOg, X Spyy, — gf)anz inside the metaplectic double cover. We
may realize the Weil representation wy yn2 in S(Mat, k,(A)) and define the theta

series 93})’]{:”2 for & € S(Mat,, s, (A)) similarly as above.
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5.2.3 Representations of (k,c) type

We recall the definition and properties of (k, ¢) representations in [CFGK19; Cai2l;
CFGKar; CFKar], both locally and globally. See also the summary in [Yan23,

Section 2.3].

Let k and ¢ be positive integers. Let P, be the standard parabolic subgroup of
GLj. whose Levi component is isomorphic to GL, x ... x GL, with k copies so that

its unipotent radical U, consists of elements of the form

1o wo = *

o . . *
U= € GLj,. (5.2.14)

Define a character

wck : Uck(F)\Uck(A) — (CX,

k—1
U +— w (Z tr(umﬂ)) .
i=1

(5.2.15)

For an automorphic function ¢ on GLg.(F)\GLg.(A), we consider the following
Fourier coefficient

A(9) = O (w)du. (5.2.16)

/Uck (F)\Uk (A)

Definition 5.2.1. ([CFGK19, Definition 3]) An irreducible automorphic represent-
ation p of GLg.(A) is called a (k, ¢) representation if the following holds.

(1) The Fourier coefficient A(¢) does not vanish identically on the space of p, and
moreover, for all unipotent orbits greater than or noncomparable with (£¢), all cor-
responding Fourier coefficients are zero for all choices of data.

(2) Let p, denote the irreducible constituent of p at a place v. Then for all unipotent
orbits greater than or noncomparable with (k¢), the corresponding twisted Jacquet
module of p, vanishes. Moreover, Homy , (r,)(pv; Yer ) (continuous morphisms if v

is archimedean) is one-dimensional.
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Let (p,V,) be a (k,c) representation. Then the space W(p,1) of functions on
GLc(A),
g—=Ap(g)e), o€V, (5.2.17)

is a unique model of p. If we write p = ®! p, as a restricted tensor product with
respect to a system of spherical vectors {£) },gs, then the space Homy , (7,)(py, Yot )
is one-dimensional. We fix a nonzero functional A, € Homy , (5,)(Pv, Yer ) and
denote by W(p,,¥) the local unique model consisting of functions on GLy.(F})
given by

9= No(po(9)&), & € Ve (5.2.18)

Proposition 5.2.2. Let ¢ = ®,§, € V, be a decomposable vector. For each place v
of F, there exists a functional A, € Homy , (r,)(pv, Yer ) such that A (&) =1 for
all v ¢ S and for all g € GLi(A), we have

= [T (r(90)60). (5.2.19)

Proof. [Bum97, Theorem 3.5.2], [Sha74, §4], and [Cai2l, Lemma 2.15]. H

Let 7 be an irreducible unitary cuspidal automorphic representation of GLj(A). De-
note A(r, ¢) for the generalized Speh representation of GLy.(A) associated to 7 whose
definition will be recalled in the following example. This is a (k, ¢) representation

and we only consider such (k, ¢) representation in this chapter.

Example 5.2.3. Let 7 be an irreducible unitary cuspidal automorphic representation
of GL(A), s = (s1,...,5.) € C° and E(g;&, s) denote the Eisenstein series associated

with the induced representation
Indp 50 (| det |7 @ ... @ | det |*7) |

where ¢ is a standard section. Let

<c—1 c—3 1—c>
Sy = .
20 9 ) 9 ) y 9
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Then the Eisenstein series F(g; &, s) has a simple multi-residue at s,

E, (9;€) = lim H — siy1 — 1)M(wo, 5)§(g; 8),

8—>S

where M (wy, s) is the intertwining operator defined by

M (wo, 8)§(g;8) = / §(woug, s)du, wy =

Uge (A)

L

The generalized Speh representation A(7,c¢) associated to 7 is the automorphic

representation of GLy.(A) generated by all the residue functions Ej,(g;¢&).

Write 7 = ®/ 7, and A(T,¢) = ®! A(7,,¢). Let v be a place such that 7, is unramified

and thus can be written in the form

= Ind2* ") (v @ @ ). (5.2.20)

Bar,, (Fy)

Here Bgi, is the standard Borel subgroup of GL; consisting of upper triangular
matrices and i, ..., xx are unramified quasi-characters of F*. Then by [CFGK19,
Claim 9],

Alry, 0) = Indg 5 (x1 0 det @... @ . o det). (5.2.21)

We simply denote the model of A(r,¢) and A(r,,¢) by

WI(T, c,v) := W(A(T,¢),v), W(Ty, ¢, ) := W(A(Ty,€), ). (5.2.22)

We have the following global (resp. local) invariance property for the unique func-

tional A (resp. A,).

Proposition 5.2.4. For g € GL,, denote g™ = diaglg, ..., g] for its diagonal embed-
ding in GLg.. Then for any g € SL.(A) and ¢ in the space of A(T,c), we have

A(A(T,¢)(9%)¢) = A(). (5.2.23)
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For any g € GL.(F,) and any &, in the space of A(T,,c), we have

Ao(A(70,0)(9%)60) = To(det(9) 1) Au (&) (5.2.24)

Proof. [CFGK19, Claim 8 and Proposition 24] and [CFK18, Lemma 14]. O

5.2.4 Eisenstein series

Let 7 be an irreducible unitary cuspidal automorphic representation of GLj(A)
and A(7,c) the generalized Speh representation of GLj.(A) associated to 7 and c.

Consider the induced representation
SPoe(A s
Ind P2 (A (7, ¢)| det -[). (5.2.25)
Its space consists of functions qu,s : Spore(A) — V satisfying

a 1kc

fers g| =1det(a)"" AT, ) () forslg),  (5.2.26)

a 1l~cc

where V' is the space of automorphic forms of A(7,c). We identify it with the space
of functions f. s : Spore(A) = C by setting furo(9) = fers(9)(1xe). For a smooth

section f.js, we define an Eisenstein series on Spy.(A) by

E(g; fc,k,s) = Z fc,k,s(/yg)' (5227)

YE Prc(F)\Spagc(F)

In this chapter we will only consider the cases where ¢ = 2n and ¢ = n. When
choosing the sections f, j s we will need the following normalizing factors (see [GS21,

(1.47)(1.48))):

1 k
dSPan (s) = L(s + k + 57 IT L(2s + 24, 7, A*)L(2s + 25 — 1,7, Sym?), (5.2.28)

1=

[y

and

k
k1 2

din(s) = L(s + 5 + 5, 70) [T L(2s + 25,70, A*) L(25 + 2j — 1,7, Sym?), (5.2.29)
1

<
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if k£ is even and

k+1
ko1 2
d?_ka'L(S) = L(S + 5 + 5, Tv) H L(25 + 2] - 177—1;7 /\2)-[/(25 + 2]7 Ty, Sym2)7 (5230)
j=1

if £ is odd.

5.3 New integrals derived from the generalized

doubling method

In this section, we recall the generalized doubling construction in [CFGK19] and
explain how to derive new Rankin-Selberg integrals from the generalized doubling
method following a strategy of [GS20]. The main new result of this section is
Theorem 5.3.6. We will also review the local unramified integrals from the generalized

doubling method, which will be used in Section 5.6.

5.3.1 The generalized doubling construction

We first recall the generalized doubling construction in [CFGK19]. Let G = Sp,,,

and H = Spyy,,- Define an embedding

GxG— H,
0
91,1 g1,2 (5'3'1)
(91,92) = g1 X g2 = diaglgr, ..,91, | 0 g5 0 |91, 01
913 0 g1a
gi11 912 .
where g1 = , g1 € Mat,, and g; appears k — 1 times. Let P := Py, be
92,1 922

the Siegel parabolic subgroup of H with Levi decomposition P = Mp x Up and @) :=
Panyk—1 21y, be the parabolic subgroup with @@ = M x U such that U := N,y 9k,

contains elements of the form
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_ lop w1 * * * * * * * ]

0 * * * * * *

0 0 lop Up—2k—1 * * * * *

0 0 0 15, Uy X * * *

0O 0 O 0 lon  ug * * * € Spypn-  (5.3.2)
0 0 0 0 0 lop —Uj_o9pq * *

0 0 0 0 0 0 *

0 0 0 0 0 0 0 lop —ujy

0 0 0 0 0 0 0 0 Lop,

Fix a nontrivial additive character ¢ : F\A — C*. For v € U(A) as in (5.3.2) with

aq b1 C1
Uy = ,a;,¢; € Mat,(A) and b; € Mat,, 2,(A), we define a character
as by c

Yy U(F)\U(A) — C* by

k—2
Yu(u) =14 <Z tr(ui 1) + tr(a + @)) : (5.3.3)

=1

Let (m,V;) be an irreducible cuspidal representation of G(A) and (7,V;) be an
irreducible unitary cuspidal automorphic representation of GLj(A). Consider the
generalized Speh representation A(7, 2n) of GLay, (A) associated to 7 and the induced
representation

Indp () (A(r, 2n)| det -|*). (5.3.4)

For a standard section fs, s of above induced representation, we form an Eisenstein

series on H(A) by
E(h; fonrs) = Do fonms(Vh). (5.3.5)

YEP(F)\H(F)

For cusp forms ¢1, ¢y € 7, the global zeta integral considered in [CFGK19] is

Z(s,01, 02, fonk,s) :/ / $1(91)P2(*g2)
G(F)xG(F)\G(A)xG(A) JUFN\U(A) (5.3.6)

X E(u(g1 X 92); fonks)Vu(w)dudg,dgs.
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0 1,
Here ‘g := 1gt ™! with =
1, O
Set U, =UNUp, and
Lope-1y O 0 0
0 Lokn 0 lop 1o, 0
5o = 2 oo . (5.3.7)
—lopn, O 0 0 1y, 0
0 0 0 lopg-n
Let
o) = d 5.3.8
(.00 = [ 61000 (53.8)

be the standard inner product on G(A).

The basic properties of the global integral Z(s, ¢1, ¢2, fank.s) are summarized below.

Theorem 5.3.1. [CFGK19, Theorem 1] The integral Z(s, 1, ¢, fonk.s) 1S absolutely
convergent for Re(s) > 0 and admits meromorphic continuation to the plane. For

Re(s) > 0, it unfolds to

/G(A) /U(,)(A)Wl,W(9)¢2>fW(T,2n,w(2n)k),5(50U0(1 X 'g)) Yy (ug)duodyg, (5.3.9)
where
Tn (h :/ (R () d. 5.3.10

Moreover, the integral (5.3.9) is Eulerian.

Remark 5.3.2. The Eulerian of the integral follows from the fact that W(7, 2n, ¥5,,)x)
is a unique model and Proposition 5.2.2. In [CFGK19, Section 3], one only obtain
the ‘almost Euler product’ due to the lack of Proposition 5.2.2 (see also [Yan23,

Remark 2.3] for more explanation).
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5.3.2 The unramified computation of the generalized

doubling integrals

In this subsection, we state the unramified computation from [CFGIK19].

Theorem 5.3.3. [CFGK19, Theorem 29] Let v be a finite place such that m, and

0

7, are unramified. Assume the character v is unramified. Let w; be the unramified

matriz coefficient of mw, normalized such that w (12n) =1. Let
SPagn (Fv s
f1(/)\/(7—v,2n,1/)(2n)k),s € IndPS:k 1(7 ))(W(Tva 2”7 w(Qn)k” det | ) (5311)
be the unramified section normalized such that

fg\/(ﬂ'v,2n,w(2n)k),s(]-4kn) = d3Pn(s). (5.3.12)
Then

douo(1 duod
/G(Fv)/Ué(Fv)wm( 9) e, 2 Qotio(1 X “9))u (uo)duiodg (5.3.13)

1
:L(S + 5,71'1) X Tv)-

We will use a slightly different version of the above unramified integrals, which will

be more convenient for our local unramified computation in Section 5.6. Denote

0 1o, 0O 0

0 0 0 long
5= = (5.3.14)

—lopk-1y O O 0

0 12n 12n 0

Then we can rewrite (5.3.13) as (see [GS21, Proposition 4.8])

dug(l x ug)dugd
/G(Fv /UO(FU fWTﬂmp“k (ool tuopduody (5.3.15)

=L(s + 5 o X Ty)-

Here U, := N((’Qn)k_l okn 18 the subgroup of Ng,yk-1 95, consisting of elements of the
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form

€ SPun- (5.3.16)

0 0 0 lopg-n

5.3.3 New integrals derived from the generalized doubling

method

In this subsection, we follow an argument of Ginzburg and Soudry in [GS20, Section
4.2] and explain how to derive new integrals for Sp,, x GL;. We assume that n is

even. Let

§(D, fonp,s)(9) = /

M E(ulg x 1); fonpsWu(w)dudh, (5.3.17
G(F)\G(A) /U(F)\U(A) O(h)E(u(g X h); fon ks )bu (w)du ( )

and consider the integral

1, =z
£ fanks) = [ €0, fanks) P(te(T2))dz (5.3.18)
Mat, (F)\Mat,, (A) 0 1n
Clearly, L£(¢, fonrs) equals
h
/G<F>\G<A> /Mat%(m\Mat%(A) ?h)
L (5.3.19)
></ Elu " X h|5 fonks | Yu(uw)(tr(Tz))dudz.
U(FN\U(A) 0 1,

Performing the root exchanging process for the integral along U(F)\U(A) and con-
jugate by certain Weyl elements as in the proof of [GS20, Theorem 4], we can find a

suitable section fy,, ; . such that

£<¢> on,k,s)

v)o(h
/G(F)\G(A) /Nnklykn(F)\Nnkl,kn(A) vi(v)o(h) (5.3.20)

~ o
x NO (F)\Ng (4) E(uv(l% X h): an’k’S)¢N2k,gkn (u)dudvdh.

nk,an k,an
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Here NY, . is the subgroup of N,k 5, containing elements of the form in (5.2.6)

with y = | Onx(hityn Yo Y ], %0 € Mat,,, y € Mat, 2y, and ¥ = diag[lin, v, 1iy).

The characters ¢, and No__ are given by
ni 2kn

k—2
Yp(v) = (Z tr(Uz’,Hl)) ;
o (5.3.21)
bro (v) = v (Z tr(vninn) — tr(yo) + tr(z)) ,

k
n® 2kn .
=1

for v of the form in (5.2.4) or (5.2.6). We omit the lengthy computations but give

an example of the case k = 3 to illustrate how the process is carried out.

Example 5.3.4. (The case k = 3) We view 12n X 12n matrices as 12 x 12 block
matrices where each block is of size n X n. Let e; ; be the elementary matrix which

has one at the (i,7) entry. Let

€ = €ij — €13—4,13—i, 1<1,5 <6,
€ ;= ¢€ijtejizi, 1<i<6,j>6.

Define

Xy ={l+mzpe),: 210 € Mat,}, Xo={1+234€5,: 234 € Mat,},

Y1 ={l+mzy3eh3: 103 € Mat,}, Yy={l+mzyseys: a5 € Mat,}.
Take By = U and ' the subgroup of B; generated by root subgroups in U that do
not lie in Y] so that B; = C1Y;. Set D; = C7X; and perform the root exchanging
process for (By,Cy, Dy, X1,Y)) as in [GS20, Section 2.4]. Then let By = D; and
similarly define Cy so that By = C3Y;. Set Dy = (5X5 and perform the root

exchanging process for (Bsy, Cy, Dy, X3, Ys) again. Conjugating by the Weyl element
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I, 0 0 0 O O
o 0 1, 0 0 O
wy 0 0 1, 0 0 0 O
w = , with wy = ;
0 o o 0 0 0 1, O

the inner integral over U(F)\U(A) in (5.3.19) is of the form

1, =z
/ E | uw X h | w™hs fon s | Yoy (u)du,
Dy (F)\Dy(A) 0 1, ”

where D), consists of elements of the form

_ 1, w2 * * * * ok * * * * |
0 1, 0 wugyq * Xk * * * *
0 0 1, * wugs *x * * * *
o o o0 1, O 0 w O * * *
o 0 0 0 1, = x —y * * *
0O 0 0 0 0 1, x O * * *
0O 0 0 O 0 0 1, O us 5 * *
o 0 0 0 0 0 0 1, = Upg %
0O 0 0 O 0 0 0 O 1, 0 *
0 0 0 O 0 0 0 O 0 1, —uj,
0 0 0 O 0 0 0 O 0 0 1,

and
wDé (u) = @b (tr(ulg + U2 .4 + U35 — yO)) :

We then take By = D), X3 = Y1,Y5 = X, and define C3 so that By = C3Y3. Set

D3 = (C3X3 and perform the root exchange process for (Bs, Cs, D3, X3,Y3). Then
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wy 0
we conjugate by the Weyl element w' = 0 where
0 i
I, 0 0 0 O O
0 1, 0 0 0 O
. o 0 0 1, 0 O
wy = ,
o 0 1, 0 0 O
o 0 0 0 1, O
0O 0 0 0 0 1,

we see that the integral over U(F)\U(A) becomes the form

1, =z
/ E | uw'w x h | w w5 | W (u)du,
Dy(F)\Dj(4) 0 1, 3 | VD

where D} consists of elements of the form

1, w2 * * * * ok * * * *

0 1, w3 * x * ok * * * *

o o 1, 0 0 0 * 0 * *

0 0 0 1, wuss * % * * * *

0 O o o0 1, = = * = * *

0 O 0 0 0 1y, = * 0 * *

000 0 0 0 0 1, —uj; 0 =+ =

0 0 0 0 O 0 0 1, 0 0 *

0 0 0 0 O 0 0 0 1, U3 4 *

000 0 0 0 0 0 0 0 1, —u,

0 0 0 0 O 0 0 0 0 0 1,
and

Ypy(u) = (tr(urs + u23 + uss — Yo)) -

Computing w'w b2 X h | w™w'™! one easily obtain the integral in (5.3.20).

0 1,
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Now we continue with a general k. Write Ngk okn = UoYp such that Uy contains
elements with yo = 0,y = 0 and Y{ contains elements such that all entries above
diagonal are zero except yo, y,. Also denote ¥y, and 1y, for the restriction of ¢ NO,

nt 2kn

to Uy and Y. Then the integral in the second line of (5.3.20) can be factorized as

E(uyt(la, X h); for 1 s u dudy. 5.3.22
L ronces ooy P X B): P o (oo (). (5.8.22)

Applying a theorem of Tkeda [Tke94] as in the proof of [GS20, Theorem 4|, we can

find certain section f}, , . and @1, Py € S(Mat,, 1, (A)) such that the integral over

n,k,s

Uo(F)\Up(A) equals

9@1 lO Y ’io 17@% / QCDQ 19-(u)i9 17UiL
w,an(T( Jir( ) Nk g (FO\NN, ke, (A) WM(T( Vil ) (5.3.23)

X E(ud(Lan X h); fon ko), (w)du.

Here we also denote h = diag(1(z—1)n, s L(k—1)s) for its embedding in Spyy,,.

Lemma 5.3.5. Let fo, s € Indiii:’@(ﬁ)(A(T, 2n)|det -|*) be a smooth holomorphic
section and ® € S(Mat, ;,(A)). There exists a smooth, meromorphic section

M fanes: ®) € Ind 2 (A(r @ xp, )| det [*) such that

E(g; M fon,k,s: @)

- O3 son2 (I (0)i7(1, 9)) E(F5 fon )0 u)du
Nnk,2kn(F)\Nnk,2kn(A) wk 2( T< ) T( )) ( 2n.k, ) Nnk,an( )

(5.3.24)

for g € Spyy,. Here we denote g = diag[ly,, g, 1kn|. The character ¢, is given
by
k-1
W, (0) = (z tr(ui,z-+1>> (53.25)
i=1

for w of the form in (5.2.6).

Proof. The proof is similar to the one for [GS20, Lemma 2]. We sketch the proof

and give the section A(fa, ks, ) explicitly in (5.3.29).

We start by unfolding the Eisenstein series on the right hand side of (5.3.24). That
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is, we need to compute

Z Z an,k,s (UV@)

7€ Paten (EN\SPain () /N, k g (F)SPoin (F) €S \N i g, (F)SPsn (F) (5.3.26)

X/ eq)n I7(u)iz(1, 9))¢ w)du,
Nk opn FNN, ko, (A) vk Q(T( )T( g>) Nnk,an( )

where @z is its image in Spyy, under the embedding g — g and S, = 7™ Pag,n N
Nk o (F )SPasn (F) is the stabilizer of 7. One shows that only the orbit represented
by

Wy =
1y, O 0 0

0 0 1pm O

is nonzero. In this case S, = Uy Py, with Uy the subgroup of Nk 9, consisting of

elements of the form

_ 1, * *x 0 * 0 0 0 _
0O . x 0 * 0 0 0
o o0 1, 0 b 0 0 O
0 0 0 1g O b0 % =«
€ SPyin-
0 0 0 0 1 O 0 O
0O 0 0 0 0 1, =* =«
0 0 0 0 O *
o 0 0 0 0 0 0 1,

We further factor Uy = U,U, such that U; contains elements of the above form with
b= 0 and Uy = {u,} contains elements of the above form such that all %’s are zero.

Denote NP ., = Uo\ Ny g Then our expression (5.3.26) becomes

3 / 02 1o (13- (upu)i(1,v9))
Y, kn2 \"T T\
€ P (EN\Span (F) Vo g ) U2\ U2(4) (5.3.27)

X / Jon ks (Wourupuyg) Y (ur )b (u)dus dupdu,
Ur(F)\U1(A)

where 19,11 are the restriction of UN . tO Ngk okn, and Uy, respectively.
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Let Uy be the group containing elements of the form

lgn % * *
0 1, upz * *
o o . . * € GLogn,

and
k-1
) = (D))
i=1
Let U] be the subgroup of U] containing elements of above form with z = 0 and

” the restriction of ¢} to U”. Changing variables u; + wy ‘ujwo, the integral over

Ui (F)\U1(A) can be written as

/U”(F)\U”(A) Fon ks (diag[u, @ wou(b)vrg)dy (uy)duy.
1 1

Using the following identity (for details see the proof of [GS21, Proposition 2.4]):

frzl s\g ::/ f2n,k,s dlag u/,ﬁ, g ”(b, u))du,
onk.s(9) U1 NI (A) ( [uy, 4] g) (uy)du

~ Jurenopa fon ge.s(diaguf, @7]g)¥ (uf)duf,
1 1

the expression (5.3.27) becomes
> e
Y€ Pin (N8P (F) N 2en ) (5.3.28)

8 O ez (I (wyw) i (1, U (wousug)duydu.
/UQ(F)\UQ(A) w2 (7 (up)iz (1,79)) for i (Woupuyg)duy

Changing variables u(b) — wg 'upwy and the variables = in Uj, the integral in the

second line of (5.3.28) equals

O ez (U ()i (1, Y (woug)dus.
/U2(F)\U2(A) 1/1,kn2(T( b )T( 79))f2n,k,s( 0 ")/g) b

Unfolding the theta series, this becomes

Wy 2 (13(u)i3(1,79)) B (0) farl ., (woug).
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Define

Mt ®(0) = [, s (550, )OO, (wougho(udu. (5.329)

One checks that this is a section of the induced representation Ind%; i}“(K()A)(A<T ®
x1,n)| det -|*) and hence the expression (5.3.28) equals

> A fonk,s, @) (79),

which is an Eisenstein series as desired. O

By Lemma 5.3.5, the second line in (5.3.23) is an Eisenstein series. Choosing fon k. s
similar to [GS20, (4.35), (4.36)], we see that there exists a section f, s such that

the integral (5.3.22) becomes

/ 00 ()3 (L OB E(0(Tan X 1); fao)ovs )y, (5.3.30)
Yo(F)\Yo(A)

Unfolding the theta series we have

> W (W)L 0h)R(E) B(0(120 X h); fugs)ys (y)dy. (5.3.31)

§€Matn7kn

/Yo (F)\Yo(A)

Recall that y is of the form { Onkn On Yo b with 3o € Mat,,, y, € Mat,, (z—2)n-
Write § = [ ¢ & & ] with & € Maty, (x—2)n, &2 € Mat,,, &3 € Mat,,. Note that

wy kn2 ((3(y)) provides a character

(2T (&G + Sw0)))- (5.3.32)

Thus the above integral is nonvanishing unless & = 0,&, = (27)~! and one obtains
a theta series 93112 with () = ®,([ 0 (27)~! ¢ |). We summarize our results in

the following theorem.
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Theorem 5.3.6. Let n be a positive even integer. Given ® € S(Mat,(A)), there

are nontrivial choices of sections

S n A S
fons € Ind 75 (A(7, 2n)| det -|°),

(5.3.33)
S A s
Foks € AP (A(T @ xp,n)| det |°),
such that the integral (5.3.18) is equal to
£¢7fn,,s :/ / ¢u¢h
( 2k ) Sp2n(F)\Sp2n(A) Nnk—17kn(F)\Nnk—1’kn(A) k< ) ( ) (5334)

X Gg,ng(ozT(u)iT(l, R)E(ut(1,h); for.s)dudh.
Motivated by the Theorem 5.3.6, we propose the following.

Conjecture 5.3.7. Let n be a positive even integer. The integral in (5.3.34) is
FEulerian in the sense of the New Way method, and represents the tensor product

L-function L®(s + 1,7 X 7).

The rest of this chapter is devoted to providing evidence for Conjecture 5.3.7. When
k = 1, Conjecture 5.3.7 is proven to hold by Piatetski-Shapiro and Rallis [PR88]
(see also [GS20, Section 4.1]). From now on we may assume k > 2. We remark
that when n = k = 2, Theorem 5.3.6 recovers [GS20, Theorem 4], and in this case,
Conjecture 5.3.7 reduces to the conjecture in [GS20], which is proven to hold in
[Yan23]. When n is even and k = n, Conjecture 5.3.7 also appeared in [Yan23,
Conjecture 7.1]. We will show that Conjecture 5.3.7 holds for any pair of positive

integers n, k where n is even.

5.4 The global zeta integral and statement of

theorems

Let F' be a number field with the ring of adeles A. We assume n, k > 2 are integers

with n even. We fix a nontrivial additive character ¢ : F\A — C* and let T, T, xr
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be as before. Let (m, V) be an irreducible cuspidal automorphic representation of

Sps,(A) and ¢ € V. be a cusp form. Define the (T-)Fourier coefficient of ¢ by

n

¢¢,T(h)=/ ¢ " Y(tr(Tz))dz. (5.4.1)

Mat? (F)\Mat0 (4) 0 1,

We always assume 7' is chosen such that ¢, 7 # 0 which is possible by [Li92]. In

general, the models on 7 corresponding to (5.4.1) are not unique.

Let 95 = 0?; 2 be the theta series associated with the Weil representation wy, ,> and

the Schwartz function ® € S(Mat,,(A)) defined in (5.2.12). Let
fo = Juks € IAF2V(A(T @ Xz, m)| det-|), (5.4.2)

be a section obtained as in Lemma 5.3.5 and we form the Eisenstein series E(g; fs).

For w € Nyk-1, of the form in (5.2.4) we define a character

wk : Nnk—l’kn(F)\Nnkflkn(A) — CX,

b2 (5.4.3)
u P (Z tr(QTui,iH)) :

=1

Recall that the global integral in (5.3.34) is

2(6,08 0 1) = | o(h)

SP2s (F)\Span (4) /Nnk—l,kn(F)\Nnk—l,kn(A) (5.4.4)

X0y n2(ar(uw)ip(1, h))E(ut(1, h); fs)r(uw)dudh.

Now we state the basic properties of the integral Z(¢, 91‘1;7”2, fs)- Let N%_, . be the

subgroup of N,k-1 4, containing elements of the form

1(k:—1)n * 0 *
0 1, O 0
: (5.4.5)
0 0 1, *

0 0 0 g i
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and let

n= . (5.4.6)

We have the following.

Proposition 5.4.1. The integral Z(¢, 0y, f) converges absolutely when Re(s) > 0

and can be meromorphically continued to all s € C. For Re(s) > 0, it unfolds to

Oy (h)wy (o (w)ip(1, h))®(1,
/. R /. o Por (i )R an
X fW(T®XT7n»w2T)75 (UUt(lv h))dUdh'

Here,

f )= AT (548)
T n,%2T )8 - s wau, o

W( ®XT N, T) g Unk(F)\Unk(A) O @ g 2T

and

VYor(u) =9 (Z tr(2TUi,i+1)> , (5.4.9)

i=1
with u of the form in (5.2.14).
Proposition 5.4.1 will be proved in Section 5.5.

We will take both ® and f, to be factorizable so that we can write

fW(T®XT7n7¢2T)7S(g> = H fW(TU®XT7n7¢2T)7S(gU> (5'4'10)

where fwir,@xrmnasr)s € Ind%;i’“(’é?)(W(Ty ® X1,M, Yor)| det -|*). However, the in-
tegral Z(¢, 0%, fs) is still not factorizable in the usual sense since ¢, 7 corresponds
to a non-unique model in general (i.e. it does not factor into an Euler product).
This requires us to use the New Way method of Piatetski-Shapiro and Rallis, first

appeared in [PR88], to analyze the integral Z(¢, 0y, fs).

For a finite place v, we denote by Op, the ring of integers of F,. We take S to
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be a finite set of of places such that v ¢ S if and only if v { 2,3, 00; m,, Ty, 1, are

unramified and all the diagonal coordinates of Tj are in O .

For a place v ¢ S, let ®0 = Iat, (0g,) be the characteristic function of Mat,(OF, ).
Let

SQn’U S
Fvtraennmary s € ARSI W (7, @ xp,n, hor)| det -[*) (5.4.11)

be the unramified section normalized such that

Prsxraspar)s(Lain) = d5Pien (s). (5.4.12)

Theorem 5.4.2. For a place v ¢ S, take CDB,fSV(TU®XT7n7w2T) as above and fix a

,S

non-zero unramified vector vg € V. . Let lp : V. — C be a linear functional on V.,

such that

0 o I I T S (5.4.13)

for all € € Vy,, 2 € Mat2(F,). Denote

Zallr ) = /Nn(Fu)\szn(Fw /Ngk_lm(Fv) br(ms{R)to) (5.4.14)
X W (@ (W)ir (1, 1) 80 (Ln) (e i) s (Mt (1, B) ) dudh.
Then for Re(s) > 0 we have
zm%@:L@+;mxnyb@@ (5.4.15)

The unramified computations and the proof of the above theorem will be carried out

in Section 5.6.

Globally, we choose the global section £ such that its local unramified counterpart
is f0 chosen above. By applying the strategy of [PR88] (see also the proofs of [PS17,

Corollary 3.4], [Yan23, Theorem 3.4]) we obtain the following result.

Theorem 5.4.3. Fiz an isomorphism m = Q! m, and identify ¢ € Vi with ®.&,,&, €

Vi, - For Re(s) > 0, we have

20,08, £25) = L¥(s + 3,7 x 1) Z5(0,61. £.), (5416)
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where

ZS(¢a 01(/137.}(‘8) :/

Nu(A5)\Spgy, (A )/NO wy,s(cdp(u)ir(1,h))Ps(1,)
n S 2n S

nk_l,kn(AS)

(5.4.17)
X Gy 17(h) fswirsoxrmanr),s(Mut(1, k))dudh.

The local zeta integral at finite ramified places and archimedean places can be
controlled by the following two propositions. We omit their proof as they are the
same as the proof of [Yan23, Proposition 3.5, Proposition 3.6] (see also the proof of

[GRS98, Proposition 6.6, Proposition 6.7]).

Proposition 5.4.4. Let v be a finite place and K, be an open compact subgroup
of Sps, (Fy). There is a choice of &y € S(Mat,(F,)) and fos € Indi,ii’“(}ﬂsf;”)(l/\/(n ®
X1, M, Yar)| det -|*) such that for any irreducible admissible representation m, of
SPa, (Fy), any vector & € Vy, stabled under Ko and any linear functional lp : Vy, —

C satisfying (5.4.5) we have

Ip(my(h
/Nn(Fv)\szn(Fu) /Nﬁ £) 7(mo(h)&)

kil,kn(

s (0 (w)ir (1, h))Bo(Ln) fo.s (mut(L, b)) dudh (5.4.18)

=l7(&o)-
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Proposition 5.4.5. For any complex number sq € C, there is a choice of data

(05, D;, fis) such that the finite sum

Z Zoo(¢j? (I)jv fj,s)

= ok (5.4.19)
zj:/ (oo )\Spa (o) /Ng (roy P97 )

X0 (0 ()i (1, 1)), (1,) s rut (1, ) dudh

admits meromorphic continuation to the whole complex plane and its meromorphic

continuation 1s nonzero at Sy.

As applications to above theorems, we now study the analytic properties of the
partial L-function L®(s,m x 7). By the meromorphic continuation of Eisenstein

series, we reprove the following theorem in [CFK18, Theorem 60].

Corollary 5.4.6. With S a finite set of places picked as above, the partial L-function

L3(s,m x 7) admits meromorphic continuation to the whole complex plane.

With the section f° € Indsz’“” A)(A(T ® xr,n)| det -|*) chosen as above, we further

define a section f by

fo= T a2, () £7°. (5.4.20)

vES

The location of possible poles of the fully normalized Eisenstein series E(g; f¥) is

determined in [JLZ13, Theorem 5.2]. We recall their result as follow.
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Theorem 5.4.7. Assume 7 is a self-dual irreducible unitary automorphic cuspidal

representation of GLg(A). The Eisenstein series E(g; f¥) is holomorphic for Re(s) >

s

0 except possibly at most simple poles in following cases:

(1) If L(s, T @ xr,A?) has a pole at s =1, and L(%,T ® xr) # 0, then E(g; f¥) has
a simple pole at s = 1,2, ..., 3,

(2) If L(s,7 @ xr,A?) has a pole at s =1, and L(%,T ® xr) =0, then E(g; ) has

a simple pole at s = 1,2, ..., "7’2 (if n =2 then E(g; f¥) is holomorphic),

s

(8) If both L(s, T ® xr,Sym?) and L(s, T ® xr) have a pole at s = 1 (this case occurs

only if k =1 and T ® xr is the trivial character of GLy(A)), then E(g; f¥) has a

simple pole at s = 1,3, ..

(4) If L(s,7 ® xr,Sym?) has a poles at s = 1, then E(g; f*) has a simple pole at

n—1

_ 1
8= 5y 5 e g

N

If E(g; fZ) has a simple pole at s = s¢, denote by R(so, A(T ® x1,n)) the space
generated by the residues of E(g; fF) at s = so as the section f? varies in s. The
elements R € R(sg, A(T ® xr,n)) are automorphic forms on Sp,,,,(A). We have the
following theorem on the poles of L (s, 7 x 7), and the relation between the existence
of the poles and the non-vanishing of certain period integrals. This theorem is a

generalization of [PR88, p.120 Proposition] (see also [Yan22, Section 3.3]).

Theorem 5.4.8. Assume 7 is a self-dual irreducible unitary automorphic cuspidal

representation of GLy(A). Then L%(s,m X T) is holomorphic for Re(s) > "2, and

3

admits at most a simple pole at so = 1,35, ..

o ”T“ Moreover, for such sq, if
Res,_,, L7 (s,m x T) # 0, (5.4.21)

then there ezist a Schwartz function ® € S(Mat,(A)), and a residue R € R(so, A(T®
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Xrt,1)), such that the period integral

/Spgnw)\s]pgn(m /Nnm,knm\Nnm,kn(A) (5.4.22)

d(h)Oy (o (v)ir (1, h))R(vt(1, h))dvdh

is not identically zero.

Proof. The proof is same as the proof of [Yan22, Theorem 1.4]. By Theorem 5.4.3,
we have

1
Z(6,07. 17) = L (s + 5om x 7) - Z5(6,00, f7) - TT d2iaien (s)

veS

By Proposition 5.4.4 and 5.4.5, the section f can be chosen such that Zg(¢, 95, )
is non-vanishing for any s. One can also show that difé’%(s) # 0 for any v € S
and any s. Then the theorem follows from our integral representation and Theorem

5.4.7. =

5.5 Unfolding

In this section, we unfold the global zeta integral Z(¢, 93)’7”2, fs) and prove Proposition

5.4.1. We start by unfolding the Eisenstein series. For Re(s) > 0, we have

Z(¢, ei,n%fs) = Z 1(7)7 (551)

YEPion (F)\SPogp (F)/ P k-1 4, (F)

where

I :/ / h 9<I> Oék w)i 1,h
<7) SPan (F)\Sp2n (A) N k-1 po, (FINN k-1 1, (A) ¢( ) ¢( T( )T( ))

X > fs(vgut (1, b)) (u)dudh,

9EH(F)\P 1 ., (F)

(5.5.2)

with H, = 4! Py, yN Py, the stabilizer of the orbit represented by ~. The orbits
of Pin(F)\SPopp (F)/ P11, (F') and their stabilizers are described in the following

lemma.
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Lemma 5.5.1. The representatives of Pin(F)\SDay, (F)/Pur—1 4 (F) are given by

0 0 1y 0 0 0 |, (5.5.3)

where [, €, [, €, are n X n matrices

1, 0 0 0
Hi = ) € = )
0 O Ly, O
- - - (5.5.4)
) 0 0 / 0 —1,_,
My = ) € = g
0 1, 0 0

with 0 < r; <n. Denote H,, . .., for the stabilizer of vy, ... Then H,, _,, , =

.....

M.y X N,

k-1 Ty, Tp—1s WIETC IVlpy k-1
m(h07 g1, .-, gk*l) = dia‘g[gkfla <3 91, hOJ 917 () gk*l} (555>
with hg € P, and for 1 <1<k —1,

* O(n—n)xri

gi € B, , = e GL, ;. (5.5.6)

* *

Proof. Let (V,(-,-)) be the underlying skew-symmetric space of the group Sp,,, with
Witt decomposition V = I @ I’ into two maximal isotropic subspace so that Py, is
the parabolic subgroup of Sp,,,, fixing I. The parabolic subgroup P,s-1 , is the one

fixing some flag of isotropic subspaces
OchLclhc..clh,CV

with I; C I of rank ni. Then the double coset Py, \Spoy,/Pk-1 p is parameterized by



5.5. Unfolding 155

tuple (K1, ..., kk—1) where r; = dim(Iy N ;). One can easily pick the representatives
as in the lemma and their stabilizers can be obtained by straightforward matrix

computations. ]

Denote Iy, vy = IV, ). Then by Lemma 5.5.1,

7777 k—1

= D

/Sp2n(F)\Sp2n(A) 1<i<k—1 /Nnkl,kn(F)\Nnklykn(A)

Gi€B;, n(F)\GLn (F)
ho€ P (F)\Spy, (F) (5.5.7)

Z fs(/yrl ..... rk_1u0m(h07glv---agk—l)Ut(lah))

uoEer ,,,,, rk_l(F)\Nnk_l,kn(F)

X ()0 (0l ()i (1, b)) () dudh.

Now we change variables u +— m(ho, 1,..., 1) tum(hg,1,...,1). Clearly, 1, is pre-

served under this change, and note that

m(ho, 1, ..., 1) tu(z, y, 2)m(ho, 1, ..., 1) = u([z, y]ho, 2),

(5.5.8)
03(0&’%(’&([1}7 y]h07 z))iT(L h)) = 93:(0(’%(’1],(1’7 Y, Z))iT(17 hoh))
Then we obtain
—[7"1 ,,,,, Tk—1
B ‘/F)”l(F)\San(A) 1§i§Z]€_1 /Nnk—l’kn(F)\Nnk—Lkn(A)
6:€Br, 1 (F)\GLn (F) (5.5.9)
Z fs(’}/rl ..... Tk_luom(lvgla"'agk—l)Ut(Lh))

uOEer ..... Tk:—l(F)\Nnkfl,kn(F)
x ¢ (h)05 (cdy(u)ir (1, h))vw(u)dudh.

,,,,, .y = 0 unless r = 0.

Proof. Let N¢._,,, be a normal subgroup of N,-1,, containing elements of the
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form

)
)
—_
3
)
@)
o e} =} e} S

0o 0 0 0 1,
0 0 0 0 0 Il g,

Using the formulas of the Weil representation, we have

0 (o (u(2)) o (u)ir (1, b)) = o (t(T2))0y (o (' )ir (1, ),

for U<Z) € Nﬁk—lﬁn(A); (TS Nnkfl,kn(A)u h e San(A)

Therefore,
ITl ..... Tk—1
B /Pn(F)\szn(A) 1921 /Nik_l,kn(A)Nnk1,kn(F)\Nnk17kn(A)

9i€ By, 1 (F)\GLn (F)

% /Mat%(F)\MatQ(A) ¢(h)¢<tr(Tz))0w (ar(u)ir (1, 7)) (u)

X > Fs(Vr ey tom (L, g1, ..y g—1)u(2)ut(1, h))dzdudh.

UOENTI ,,,,, Tk—l(F)\Nnk'_l,kn(F)
Note that
m<17 g1y -+ gk*l)ilqj’(z)m(l? g1, -"7gk71) = u(gflzg)

Changing variables z — g7 '2§; we obtain

Irl ..... T

k-1

>

1<i<k-1 ‘/]V:Lk17kn(A)Nnk_l,kn(F)\Nnk_1,kn(A)
Gi€By, 1 (F)\GLn (F)

S(h)(tr(Tgr 291))0y (ar (w)ir (1, 7)) (u)

/Pn(F)\szn(A)

<.
Mat? (F)\Mat? (A)

X Z Fs(Vry e uou(2)m(1, gu, ...y ge—1)ut(1, h))dzdudh.

'LLOGer ,,,,, rkil(F)\Nnkfl,kn(F)
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21 22
Write z = with 2, € Mat,_,, ,, 22 € Mat,,_, , z3 € Mat, , z4 € Mat,, ,_,,
23 24
. 0 0
and note that ~,, ,, , commutes with u
z3 0
Then
]T17"‘1rk—1

>

/Pn(F>\Sp2n<A> < T Ny o (ANt (NN, (A)
0 €85, n(F)\GLn (F)

@ . T B2 % 2 N
<o)L (ar(w)ir(1,h) [ v || Tg; i | | vslw)
21,22,%4 0 Z4
Z1 k2
X s | Yrvvrn uom(1, g1, ., gr—1)ut(1, h)
uo€Nr,..., rk,l(F)\Nnkfy,m(F) 0 2z
100
X / o |t | Tgr i | | desdzrdzadzadudn.
Mat,, (F)\Mat; (A) 23 0
The lemma follows as the integral in the last line vanishes if r; > 0. [

We now assume r; = 0 and omit it from our notation. We need to consider the

integral

I,

e Th—1

>

/n(F)\szn(A) 9<i<h—1 /Nnk_l,kn(F)\Nnk_l,kn(A)
9i€Br; n (F)\GLn (F) (5.5.10)

X fs(’}/r27.,,’7«k71160m(1, 17 927 RS gkfl)Ut(L h))

Lemma 5.5.3. [, , _, =0 unlessry = ... =151 = 0.

Proof. Changing variables u +— u' = m(1,1,92, ..., gx1) ‘um(1,1, 9o, ..., gp_1) we
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obtain

17"2 ..... T

k—1

JPa(F)\Spa, (8) 2<;1 /N ,,,,, rey (NN 1y (A)
Gi€By, n(F)\GLn (F)

X fs(Vrgowr o um(1, 1, go, ooy gr—1)t(1, b)) hg (u') dudh.

o(h)0y (o (u)ir (1, h))

contains a subgroup N, consisting of elements of the form

..... ko1
— Lg—3ym O 0 0 0o 0 0 0 0 0 0 _

0 ln—ry, O 0 0o 0 0 0 0 0 0

0 0O 1., O x 0 0 0 0 0 0

0 0 0 1,., 0 0 O 0 0 0 0

0 0 0 o 1, 0 O 0 0 0 0

0 0 0 0 0 1y, O 0 0 0 0

0 0 0 0 o o0 1, 0 —2* 0 0

0 0 0 0 o 0 0 1,,, O 0 0

0 0 0 0 0O 0 0 0 1, 0 0

0 0 0 0 0o 0 0 0 0 1oy, 0

0 0 0 0 0O 0 0 0 0 0 lk-3m
Thus

Loy s

= > ¢(h)r(u')

Pr(F)\Spy, (A) 2<i<k—1 /N2(A)NT2 ,,,,, Th—1 (F)\Nnkflykn(‘&)
gieB:i,n(F)\GLn(F)
Xé’,‘f(aé‘l(u)iT(l, h) fs(Yrgmn_yum(1, 1, goy ooy gr—1)t(1, b))

X / i () dusdudh.
N2 (F)\N2(A)

Since Yy (u2) is a nontrivial character on Ny(F')\N2(A) the integral in the last line
is zero unless 7o = 0. The lemma then follows by induction on r3, ..., 7x_; using the

same argument. OJ

We then assume ry = ... = r;_; = 0 and omit it from our notation (so vy = 7o

.....
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0). Our integral becomes

.....

T= foensonior
Pa(F)\Spon (8) IN(ENN, -1 4, ()

B(h)O2 (h (w)ir (1, 1)) fo(yut (1, h))n () dudh.

(5.5.11)

We next unfold the theta series. The general linear group GL,, acts on Mat,, by right

multiplication. For & € Mat,, (F') denote G¢ = {g € GL,, : {g = &} for its stabilizer.

Then
I= 3 I, (5.5.12)
£eMat, (F)/GLy (F)
where
I = / / h
T P N\Span () INGENN 1 (8) ?(h)

(5.5.13)
x> wylag(w)ir(l,h)®(&a) fo(yut(L, b))y (u)dudh.
a€G\GLy, (F)

Lemma 5.5.4. I = 0 unless §{ = 1,,.
0 =z % %

Proof. We can pick £ of the form £ = so that G¢ = € GL,(F)
0 1, 0 1,

Recall that GL, is embedded in Sp,, via a — m(a) = diag[a,a]. Denote G for its
image in Sp,,. Clearly the representatives of G¢\GL,,(F) can be taken in SL,(F') so

that
wy (ap(w)ir(1, h))®(Ea) = wy(af(w)ir(1,m(a)h))P(E)

for a € G¢\GL,(F). Changing variables u — t(1,m(a)) *ut(1,m(a)) we obtain

Ie= [ / o(h)
GeNu(PN\Span (8) INGFNN, 1 (8)

xwy(ap(w)ir (L, h)®(€) fs(yut(L, h))vx(u)dudh.

Let N] be a normal subgroup of égNn consisting of elements of the form

1o o y z
0o 1, 0
0 o 1, —z*
0 0 0 1,
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and write

Ie= . / / o(nh)
GeNn(F)NG (A)\Spoy, (A) SN(F)N\N, k-1 3, (A) JNE(F)\N7; (A)

xwy (o (w)ir (1, nh))®(E) fo(yut(1, nh))y(u)dndudh.

Changing variables u — #(1,n)ut(1,n)~! and noting that v¢(1,n)y~' € N, (F), we

have
Ie= [ / / b(nh)
GeNn(F)NJ (A)\Spgy, (A) JN(FN\N, k-1 4, (A) J NE(F)\Ny (A)

x wy (i (1, n)ad(w)ir (1, h))®(E) fo(yut (1, h))x(u)dndudh.

Using formulas of the Weil representation, we have

wy(ir (1, n)orp(uw)ir(1, h))®(€)

(o | . 0 0
=wy | o | 0,0 | | ir(L,n)ag(uw)ir(1,h) | @
0 0 0 1,
c oo 0 x 0 N 0 0
=Wy iT(l’n>aT u ) 70 aT(u)iT(17h) P
0 0 0 0 0 1,
k 0 0 o k .
=Wy [ Qp | U 07 70 aT<u)lT(17h) (I)(é-)
0 0
- —1
0 0
Changing variables u + u° | 0, ,0| w and since u° | 0, 0] €
0 0 0 0

N(A) the integral becomes

]:/~ / wy (X (v)ir(1, h))P s(yut(1, h u
S N E AP A) SN EAN s ) (g (v)ir(1, h))®(E) fs(yut (L, h))e(u)

X / é(nh)dndudh.
N3 (F)\N;(4)

The lemma follows as the integral in the last line vanishes by the cuspidality of

P O

We then assume £ = 1,, and omit it from our notation. It remains to consider the

integral
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I'= ¢(h)

N (F)\Spa, (A) /N(F>\Nnk1,,m<m
sy (i (u)ir(L, 1) (L) fs(yut(L, b))ty (u)dudh

¢(nh)

(5.5.14)
N ()\Spn (8) ‘A‘V(F)\Nnklykn(A) /n(F)\Nn(A)
xwy (o (w)ir (1, nh))®(1,) fs(yut (1, nh))dnyy(u)dudh.

Changing variables u + t(1,n)ut(1,n)~! and noting that

wilir(1, (=) (wir(1,h)) = G(Er(T2) g (b (w)ir(1, b)), (5.5.15)
we have

I'= ¢y, (h)

N (4)\Spa, (4) /N<F)\Nnk1,knm> /an)\zvnm)
sy (afp (w)ir (1, 7)) D (1) f(yut (1, b)) (w) dudh

(5.5.16)
Gy (h) X /N

Nn(A)\Spa, (A) /]V(A)\Nnkl’kn(A)

wy (o (ug) e (w)ir (1, ) (1,,) fo (yuout (1, b))y (ug)dugdudh.

(F)\N(A)

By straightforward computation, N = N,

.....

I, vip = * 0 * 0 0 0 0
0o . . * 0 = 0 0 0 0
0 0 1, vp—2k1 0 * O 0 0 0
0 0 0 1, 0 v O 0 0 0
0 0 0 0 1, 0 y* * * *
(5.5.17)
0O 0 0 0 0 1, O 0 0 0
0 0 O 0 0 0 1, —vpopq * *
0O 0 0 0 0 0 O 1, *
0O 0 O 0 0 0 O 0 vl o
I 0 0 0 0 0 0 O 0 0 1, |

Denote elements of the above form by wuy(y). The integral of ug over N(F)\N(A)
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can be written as

k .
/Nm\m) wy (i (uo(y)u)ip(1, h))®(1,)

X fs(yuo(y)vt(1, b)) i (uo(y)) duo(y)

(5.5.18)
=wy (ap(v)ir(1,h)) (L)
o £ 0L )0 (9) (2T ) o).
Let
_ o o0 1, 0 0 0 _
0 0O 0 0 O _ 0 1, 0 0 |
1, 0 0 O 0 O 0 0 0 —Ig—1m
o = = . (5.5.19)
00 0 0 0 1, Ly 0 0 0
0O 0 0 O 0 I 0 0 1, 0 |
o 0 o0 1, 0 O
For uy € N as in (5.5.17), note that nyyuy can be written as
_ 1, —vy* * * * 0O 0 O 0 0 |
0 1n —Up o * * 0 0 0 0 0
0 0 * 0O 0 O 0 0
0 0 0 l, =i, 0 0 0 0 0
0 0 0 1, 0 0 0 0 0
n. (5.5.20)
0 0 0 0 I, vig * * *
0 0 0 0 0 0 * *
0 0 0 0 0 0 0 1, vp_gp1 *
0 0 0 0 0 0O 0 O 1, Y
0 0 0 0 0 0O 0 O 0 1,

Denote above matrix as u; so that nyyug = wuyn. Therefore, the integral over
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N(F)\N(A) becomes

s (uy t(1,h tr(27y))d
Loy T (L )02 ) o )
v 0 (5.5.21)
= Js nut(1, h) | o (v)do.
Uk (FNU, e (A) 0
Here v is of the form .
Ly, vig * *
0 * *
0 0 1n Vk—2,k—1 0 (5522)
0O 0 0 1, Yy
0 0 O 0 1,
and
k—2
i=1

This completes the proof of Proposition 5.4.1.

5.6 The unramified computation

In the rest of this chapter, we study the local zeta integral corresponding to the
integral Z(¢, eimz, fs) at v ¢ S. For simplicity, we omit the symbol v. Therefore,
let ' be a non-archimedean local field with the ring of integers O. Fix a nontrivial
additive unramified character v of F' and fix Tq, T, xr as before where yr is a

quadratic character on F*. Let ®° = Inat, (0,) be the characteristic function of

Mat,,(OF) and

S s
Fv(rsormabar).s € Indpzikg;ff“ YOW(7, @ Y1, n, o) | det -|*) (5.6.1)

the unramified section normalized such that
Feroxemasar).s(L2tn) = A2k (s). (5.6.2)

Let (m, V) be an irreducible admissible unramified representation of Sp,,(F') with
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a fixed non-zero unramified vector vy € V.. Let (7, V,) be an irreducible unramified

principle series representation
GLy(F
T = Inngii(f)'“)<X1 ® ... @ Xk) (5.6.3)

where Y1, ..., X% are unramified quasi-characters of F'*. Hence for any positive integer
C7

A(T® xr,¢) = Iﬂdg;c(kF(vf)(Xle odet ®... ® xpxr o det). (5.6.4)

The aim of this section is to prove Theorem 5.4.2 utilizing the unramified local
integrals (5.3.15) from the generalized doubling method. The idea of the computation
is similar to the one in [Yan23] except when k& > 2 we need to deal with bigger

matrices.

5.6.1 Relation between unramified sections

Recall that for any character ¢ : U,x(F) — C*, the model W(r ® xr,n,1) consists
of functions We : GLy,,(F) — C of the form

Welg) = AMA(T © x7,n)(9)€) (5.6.5)

where ¢ is in the space of A(T ® xr,n) and A can be realized as

o o o 1,
O 0 1, O
& £(wk,nu)w’l(u)du, Wi = € GL,. (5.6.6)
U,k (F) 0O .- 0 0
1, 0 0 O

By abusing the notation we denote the extension of our fixed character ¢ : F' — C*
to U,k (F) — C* (see (5.2.15)) also as 1. Recall that we have also defined a character
Yor on Uk (F). Given gy, ..., gr € GL,(F'), we define another character v, 4 on
U, (F) by

i=1

k—1
gy, () =V (Z tr<2giTgi+11ui,i+1)> ; (5.6.7)
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.....

Wf (dlag[gh sy gk]g)

det g, (5.6.8)

n ok
(k—2i+1)n .
LT xixr(det gera—i)| det grras| 2 W% (g).

=1

det g

Proof. By the definition of W¢, we have

We(diaglgy, -, 9k]9)

=/, " A(T @ x7,n)(9)€ (Wi pudiag(gy, ..., gr]) Yap (v)du.

Changing variables u — diag[gi, .., gxJudiag[gi, ..., gx] 7!, we note that u; ;1 is changed

to git; it g;ll and the above integral equals

n

det g4 / . B
A d . . d
det gr| Ju ) (7 @ x,n)(9)¢ (diag|gk, ..., gilwrnu) ¥y, (u)du
detgi|" 1 (k=2it1)n
= i det _;)| det i 2

,,,,,

% /Unk (F) A(T @ x7,1)(9)§ (Wi n) wg_ll o (W)du

as desired. O

Corollary 5.6.2. For g1, ..., gr € GL,(F), there exists an unramified section

SPrn s
fl(/)V(T®XT,n,1/ng 9 )58 S Indpz:n(F)(W(T & X1, N, wgl ..... 9k)| det | ) (5‘6‘9>

,,,,,

determined by [y eyp nap).s SUCh that

f](/)v(7'®XT,n,1/12T),S (m(dlag {glu cery gk])g)
det g1

n ok
s —i)n4 2t
T xixr(det grs1—s)| det gri1—] Hk—i)nt 5 (5.6.10)
i=1

det g

.....
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In particular, if we take g; = (—2T)""" then 1y, =~ ! and we have

.....

fl(/)V(T®XT,nﬂZJ2T)7S<m(diag[gh X gk‘])g) - f&(r@xT,n,wfl),s(g)' (5611)

5.6.2 Reformulating the unramified integral from the

generalized doubling method

Let vy € V; be an unramified vector and Iy any linear functional on V, satisfying
(5.4.13). It follows from the unramified local zeta integral (5.3.15) ([GS21, Proposi-

tion 4.8]) of the generalized doubling method that we have

Fonior

(2n)k—1 an
lT(W(h)UO)fSV(T,Qn,¢ s(Oup(1 % h))y'

1
=L(s+ 5% T) + lr(vp).

(uo)duodh (5.6.12)

(2n)k—1 2kn

Our strategy of proving Theorem 5.4.2 is to compare our unramified local integral
with the integral in above equation. The aim of this subsection is to reformulate

above integral in the following simpler form

! det a| "IN (fy o d 5.6.13
/GLn(mMm(oF) r(m(m(a))vo)| det al (Foyranp-tys) (ma))da, — (5.6.13)

where A(f&(772n7¢_1)78) defined in (5.6.23) is a function on Sp,, (F'). In particular, we
showed that A(f)y(; 9, 4-1).,) is an unramified section of IndSPQ%f)(Xl(det(.))’ det |5+ 1)")

whose value at 1y, is d>Parn (s).

By the Iwasawa decomposition of Sp,, (F'), we consider

Lo o o g (@) (T2 detal

<[ Pyt angs-.Bu0(1 x n(2)m(@))¥s — (uo)duodzda.

(2n)k71,2kn(F) (Qn)k 1 2kn

(5.6.14)
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The integral over N?Qn)k*1,2kn(F) is

N1 2kn(F) (5.6.15)
Wi znp1),s(0uod " - 3('n(—2) x m(a))d~ )30 (o) dug.

(2n)k—1 2kn

Recall that NV (0277,)’9*1 ok, contains elements of the form

_ lonk—2y 0 0 —a; —az 0 0 by by c —
0 1, 0 —x1 —29 0 0 21 2 b3
0 0 1, —x3 —x4 0 0 =23 27 b}
0 0 0 1, 0 0 0 0 0 0
0 0 0 0 I, 0 0 0 0 0
(5.6.16)
0 0 0 0 0 1, 0 =x; x3 as
0 0 0 O 0 0 1, 3 27 aj
0 0 0 0 0O 0 0 1, O 0
0 0 0 0 0O 0 0 0 1, 0
0 0 0 0 0 0 0 0 0 Iy
and the character zﬁj_vin)k_ly%n is defined by
w&in)kil’%n(uo) = (tr(xy)), (5.6.17)

for ug as in (5.6.16). Conjugate it by § and denote N(Oz’fl) = 5N(02n)k_172,m5_1. It

k=1 2kn

contains elements of the form
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_1n 0 0 O 0 0 0O 0 0 O |
0 1, 0 O 0 0 0O 0 0 O
0 0 1, O 0 0 0O 0 0 O
0o 0 0 1, 0 0 0O 0 0 O
0 0 0 0 lyw—o 0 0O 0 0 O
(5.6.18)
ar az by by c Lonk—2y 0 0 0 O
Ty To 21 29 b3 0 1, 0 0 0
T3 T4 23 2 b} 0 0 1, 0 O
0 0 =% 2 a 0 0 0 1, 0
0 0 x5 x] aj 0 0O 0 0 1,
and for u aé in (5.6.18) we define _
YNy () = P(tr(z0)). (5.6.19)
We rewrite integral (5.6.15) as
N1 zin ) Qz}l;%ﬁi)k*l,%n(UO)
_ 1, O 0 0 0 [l 1, 0O 0 0 O -
0 a 0 0 0 0 I, 0 0 O
X frong—tys |40 | 0 0 Lyg_y 0 0 0 0 2 0 0 |]du
0 O 0 a 0 a*—1 0 01, O
0 O 0 0o 1, -z a—1 0 0 1,
(5.6.20)

Here we denote zZ = diag['n(z),.... ' n(2),' n(—z), ..., ' n(—=2)] with ‘n(z) and ‘n(—=z)

appearing k — 1 times respectively.
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Lemma 5.6.3. The integral (5.6.20) vanishes unless a € GL,(F) N Mat,,(OF).

Proof. We translate fy), o, -1, on the right by

I, 0 0 O 0 0 0 0 O
0 1, 0 r 0 0O 0 0 0
0 1, 0 0 0 0 0 O
0 0 1, 0 0 0 0 0
0 0 0 Ige-n O 0 0 O
0
0
0

(@]
o
o
[a)
(e
o
—
3

for r € Mat,,(Op).

Then we conjugate the above matrix to the left and change variables in uy to obtain

the matrix
1, 0 0 0 0 0 0 0 0 |
0 1, —arz ar 0 0 O 0 0
0 0 1, 0 0 0 0 0 0
0 0 0 1, 0 0 0 0 0
0 0 0 0 Igypp-ny O O 0 0
0 0 0 0 0 1, 0 —r* 0
0 0 0 0 0 0 1, (arz)* 0
0 0 0 0 0 0 0 1n 0
0 0 0 0 0 0 0 0 1,

This contributes 1)~ (tr(ar)) and the changing of variables in ug contributes ¢~ (tr(ar)).
Hence the integral vanishes unless ¢~ (tr(2ar)) = 1 for all » € Mat,,(Or), which

implies a € Mat,,(Op). O
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The integral (5.6.14) then equals

/GLn(F)mMatn(oF) /Matg (F) /N<0,6 (F)

2n)k—1 2kn
, 0O 0 001, 000 0
0a 0 00 0 1, 0 0 0
X Prang-1ys 40| 0 0 g1y 0 0 0 0 2 0 0 (5.6.21)
00 0 a0 0 0 01, 0
00 0 01,||-2 000 1,
X9~ (tr(T2) )i 0. (up)duodzda.
(2n)k—1,2kn

Lemma 5.6.4. The integral (5.6.21) vanishes unless z € Mat(Op).

Proof. We translate fSV(T,Qn,wfl),s on the right by

(L, 00 0 000 0|
01, 0 0 0 0 0 0 0
0 01, 0 0 0 0 0 0
00 01, 0O 0 0 0 0
00 0 0 0 gy O 0O 0 0
o000 0 1, 0 0 —
0000 0 01, 0 0
0000 0 0 01, 0
0000 0O 0 0 0 I,

for r € Mat,,(OF).
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Conjugating it to the left and changing variables we obtain

1, 0 —rz r 0 0O 0 0 0
0o 1, 0 O 0 0 0 O 0
o 0 1, O 0 0 0 O 0
0o 0 0 1, 0 o 0 0 0
000 0 0 lygny O 0 0 0
0 0 0 0 0 1, 0 0 —r*
00 0 0 0 0 1, 0 (rz)
0o 0 0 0 0 0o 0 1, O
0o 0 0 0 0 o 0 0 1,
which contributes a character ¥ (tr(rz)). O

Then (5.6.21) becomes

l det a| ™!
/GLn(F)ﬂMatn(Op) /Matg(F) /N?Q’i)k_l G r(m(m(a))vo)| det al
1, 0 0 0 0
0 e 0 00 (5.6.22)
X Frang—tys |40 | 0 0 Lyg_y 0 O 1/{V(%,5>k_1 k (uo)duodzda.
00 0 a0
00 0 01,

Now we write ug as the form (5.6.18) in variables aq, as, by, be, ¢, T1, T2, T3, T4, 22, 22, Z3.

Lemma 5.6.5. The inner integral in (5.6.22) vanishes unless xoa € Mat,(OF).

Proof. We translate fyy, 5, -1, on the left by

—

diag [n'(ar), ...,n'(ar),n'(ar),...,n/(ar)

1, O
for r € Mat,(Op) with n/(ar) = appearing k times. This is invariant
ar 1,

by Proposition 5.2.4. Conjugating it to the right and making a change of variables
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we obtain a matrix in Sp,,,(Or) and the change of variables produces a factor

WY (tr(xear)). O

g1 92
By changing variables, we can take z5 out of the integrand. For g = S

g3 9a
Spa, (F'), we define

M rznpn.)(9) = [ tr(a))

uo

1, 0 0 0 0

g0 g2 0 (5.6.23)

X fWirama-1y.s | U0 0 lumg-n 0 0 ||duo

g3 0 gs O
0 0 0o 1,

0
0
0
0

where the integral is taking over uy € N(2n)k | 2k with 9 = 0. Then (5.6.22) can be

written as

l det a| 2" I\( /O _1 da. 5.6.24
Lo i o (@) detal A o ) (). (5:6:24)

Lemma 5.6.6. Write

7 = Indpt 0 O @ 1 @ ),

for unramified quasi-characters x1, ..., xx of F*, so that
GLon (F
A(r,2n) = Indp ™ (1) (1 0 det ... @ x o det).

Then )\(f,(}\,(T on-1),s) 08 an unramified section of
(2k— 1)n

Ind 278" (x1 (det ()| det [+ 7).

Proof. Clearly A( f{,)v(ﬂ?n y-1y,5) 18 left invariant under N, () and right invariant under
Sp,,(Or). Take g = m(a) and conjugate it to the left. We obtain | det a|™"®*~1)

from the changing of variables in ug and

54 2kntl 2kn+1

x1(det a)| det a|*~1"| det af
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from the section f{/)v(Tgn’,d}—l)’S- Indeed, for any h € Spyy, (F),

0
fW(ﬂ?n,w*l),s 0 0 lapg-1)

o o o O
>

1, O 0
s 2kn+1
=|detal* "= A(r,2n) 0 a 0 fu(/)v(T,zn,wfl),s(h)
0 0 lopp-y

2kn+1

=[deta** 7= | det(a)| """ x1(det @) fy(rznp-1). ().

Lemma 5.6.7. We have
/\<f1(/)\/(7,2n,w*1),s)<12n) - d§p4kn(s)' (5625)

Proof. We calculate

Ay an-) (d2a) = [ (tr(a))

uo

_ 1, 0 0 O 0 0 0 0 0 O -
0 1, 0 O 0 0 0 0 0 O
0 0 1, O 0 0 0 0 0 O
0 0 0 1, 0 0 0 0 0 O
y f)?\;(7.72n7w—1)75 0 0 0 0 Ippm-2 0 0 0 0 O du,
a; as by be c Lopk—2y O 0 0 O
1 0 21 2 b3 0 1, 0 0 O
T3 T4 23 2] b3 0 0 1, 0 O
0 0 a3 O as 0 0 0 1, O
0 0 a5 27 aj 0 0 0 0 1,

in the following five steps. The first three steps of computations are similar to the
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ones in [Yan23] for k = 2, and the last two steps are needed for k > 2.

(1) We translate fl(/)V(T,Qn,w_l),s on the right by

L, » 00 0 0 0 0 0
01, 0 0 0 0 0 0 0
001, » 0 0 0 0 0
00 01, 0 0 0 0 0
00 0 0 lypgy O 0 0 0
00 0 0 0 1, 0 0
00 0 0 0 01, 0 0
00 0 0 0 0 0 1, r
00 0 0 0 0 0 01,

and conjugate it to the left. We get that z3 is supported in Mat,,(OF).
(2) Let

90

with r has entries in Op. Write

T11 Ti12
xr1 = ,x11 € Mat;, x14 € Mat,,_;.

T13 T4

We translate ]”8\,(77271@_1)7S on the left by diag[go, -.-, 90, Jo, ---, Go] With k copies of go
and conjugate it to the right. We obtain that entries of x5 are supported in Op.

Similarly, translating fy), 5, 41y, on the right by

go =
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and take 1 < i <n — 1, we obtain that z; is supported in Mat,,(Op).

(3) We translate f)),(, o,.,-1), on the right by

(@) (@]

=) o
—_
N
3

=R
z

—_

3

@)

for r € Mat, (Op) and conjugate it to the left. This shows that x4 is supported in
Matn((?p).

We conclude that in this stage we have

)\(fSV(T,Qn,’l/)_l),S) (12’fl)

_ 1, 0 0 O 0 0 0O 0 0 O _
0 1, 0 O 0 0 0O 0 0 O
o 0 1, O 0 0 0 0 0 O
0o 0 0 1, 0 0 0O 0 0 O
:/ fSV(T,Qn,Wl),S 0 0 0 0 lyugy 0 0O 0 0 O due,
“o a; as by by c Lopk—2y 0 0 0 O
0 0 2 2 b3 0 1, 0 0 O
0 0 =23 27 b; 0 0 1, 0 O
0O 0 0 0 al 0 0o 0 1, O
0 0 0 O a; 0 0O 0 0 1,



176 Chapter 5. Integral Representations for Sp,, x GLg

We re-denote the unipotent elements in the integrand in the following form

0 15, 0 0 0 0
ag—2 bi—2
0 0 lgugo O 0 0
) a’ - b b -
a b C 12n(k72) 0 0
ai by
0 z v 0 1o, O
0 0 a 0 0 1o,

The following two additional steps are used to show that in the case & > 2 the

integral vanishes unless all these entries are in Op.

(4) For each i = 0,1, ...,k — 2, we denote a matrix

_ 1o, O 0 0 0 r 0 0 |

0 low O 0 0 0O 0 0

0 0 19, 0 0 0 0o
000 Tank-2-i) 0 0O 0 0
Lo 0 o 0 logosy 0 0 0
0 0 0 0 0 1o, O 0

0 0 0 0 0 0 1oy O

0 0 0 0 0 0 0 1o,

with r € Maty, (Op). Translating fSV(T,zn,zp*l),s on the right by gy and conjugating
it to the left show that a; and z are supported in Mats,(OFp). Then translating
f\(/)V(T,zn,w—l),s on the right by g; for i = 1,...,k — 3 (in this order) and conjugating it
to the left show that a;;1 and b; are supported in Matsy,(OF). Finally translating

fBV(T,2n,w*1),s on the right by gx_o shows that by_ is supported in Mats, (OF).
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(5) We finally use the same process as in Step (4) to show that ¢ € Maty,(x—2)(OF).

Foreach j =1,2,...k—2and i =0,1,....k — 2 — j, we use the matrix

(L, 00 0 0 0 0 0 0 o0
0 1, 0 0 0 0 r 0 0 0
0 0 1y O 0 0 0 0 0 0
0 0 0 1y 0 0 0 0 0
0 0 0 0 logroiy 0 0 0 0 0
Tl 0 0 o 0 lonh2aiyy O 0O 0 0
0 0 0 0 0 0 l,, 0 0 0
0 0 0 0 0 0 0 Ty 0 0
0 0 0 0 0 0 0 0 Iy O
0 0 0 0 0 0 0 0 0 1y,

with 7 € Maty, (Or). For each fixed j = 1,2,...,k — 2 (in this order) we translate
fSV(T,Zn,w_l),s on the right by g;; for i =0, ..., k—2—j (in this order) and we conjugate
it to the left. This shows that the entries of the j-th column (viewed in 2n x 2n

blocks) of ¢ are supported in O and thus c is supported in Mata,,—2)(OF).

Therefore, we conclude that

)\<f‘9v(772”7w_1)75)(12”) - fSV(T,2n,w_1),s(14kn) = d§p4kn (5>

as desired. O
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5.6.3 Proof of Theorem 5.4.2

Recall that

2y, s) = /

[ h
Ni(F)\Spa,, (F) /NZ (m(h)vo)

1 on () (5.6.26)
(O ()i (1, 1) (1) s mapeny o (1t (1, 1)) dudh.

To finish the proof of Theorem 5.4.2, it suffices to show that
Z* (lT, S)

= l det —2n—1)\ 0 B da.
L () Mat (Or) r(m(m(a))vo)| det al (Swirznp1),s)(m(a))da

(5.6.27)

We will show that our integral (5.6.26) can be written in the simpler form

Iy (m(m(a))vo)xr(det a)| det a| =" A fyran 1)) (m(a) da,
(5.6.28)

/GLn(F)ﬁMatn(Op)

where A( fw (roxrm-1),s) defined in (5.6.37) is a function on Sp, (F'). In particular, we
show that )‘(fW(r®xT,n,w*1), ) is an unramified section of Ind pQ*};) )(Xle(det )| det -|**™)
whose value at 1, is d>Ps#n (s). Then two equations (5.6.26) and (5.6.27) can be com-

pared by comparing two unramified sections A( f,?v(ﬂ%w_l%s) and A( fBV(T®XT7n7¢_1)7S).

By the Iwasawa decomposition decomposition of Sp,,, (F'), we have

zrs) =[], w(m(a) o)

klkn

x wy (ap (w)iz(1,m(a))) 2" (1,)

X fSV(T®XT’n,w2T)7S(77ut(1, m(a)))|det a| ™" *duda.

(5.6.29)

Changing variables u +— t(1,m(a))ut(1,m(a)) and using the formulas of the Weil
representation, we obtain that Z*(ly, s) is equal to

lp(m(m(a))v deta)|deta|~ 2!
/GLn(F) /J\fﬁ“,kn(F> r{n(mia)ju)xr( ) | (5.6.30)

xwy (@ () P(@) Py e e, (7L, m () Ju) duda.

We write u = u(x,0,z) as in (5.2.4) and (5.2.5). Then the inner integral over
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N0y o (F) in (5.6.30) is

Fi -y PTGt e 0, )
= / V(Er(T2))2%(2) fyrenmar.s (1L m(@))u(e = a,0,2))du - (5.6.31)
nk—1 kn
= / tI‘ TZ))fW T®XT,TL,1/)2T),S(77t(17 m(a))u(_aa 0, Z))du

Thus integral (5.6.30) becomes

/GL /Noa (m(a))vo)xr(det )| det a| =%~
B (5.6.32)

xfBV(@XT,n,%T),s(nt(Lm(a))u(—a,o, 2))(tx(T2))duda.

Here, N'i*, . (F) is the subgroup of N, , (F) containing elements of the form

1(k—2)n 0 b 0 —c d
0 1, —a 0 2z c*

o o0 1, 0 0 O

(5.6.33)
0 0o 0 1, a° b
0 o 0 o0 1, O
0 o 0 0 0 1,
With u € N}, en(F7) of the above form, we write (5.6.32) as
/ / . (m(a))ve)xr(det a)| det a|~ % 1~ (tr(T'2))
GLa(F) IN%
1, 0 0 0 0 0
0o 1, 0 0 0 0
a 0 0
0 0 lgpaw O 0 0
X fweaxrmpar)s | | 0 Lang—n) 0 duda.
b Cc d 1(k—2)n 0 0
0 0 a
—a z c* 0 1, O
0 —a* b* 0 0 1,

~(5.6.34)
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Applying Corollary 5.6.2 we see that the above integral is equal to

/GLn(F) /No,a " Ir(m(m(a))ve)xr(det a)| det a| 2~ (tr(4T%2))

nkil,kn
1, O 0 0 0 0
0o 1, 0 0 0 0
a 0 0
Xfl(/)V(T®XT,n7w*1),s 0 lopk-1y O duda.
b C d ]_(k,z)n O 0
0 0 a
—a z c* 0 1, O
0 —a* b 0 0 1,
_ "(5.6.35)

Lemma 5.6.8. The above inner integral vanishes unless a € Mat,,(OF).

Proof. Translate f9 1y, by ¥°(r,0,0) for r € Mat,,(OFp) on the right and
W(T®XT77%¢ )7‘9

conjugate it to the left. m

Using the above lemma, the integral (5.6.32) becomes

/ / L (m(m(a) o) xr(det a)| det a|~ %~ 1oL (tr(4T22))
GL, (F)NMaty, (Op) Jb,c,d,z

X fSV(T®XT7n»/¢)_1)73 0 1277/(]671) 0 dUdCL.
b & d ]-(k—Z)n 0 0
0 0 a
0 =z c* 0 1, O
0 0 b* 0 0 1,

(5.6.36)



5.6. The unramified computation 181

g1 g2

For g = € Spy,, (F'), we define
g3 94
)‘(fg\/(‘r@xpn,w—l),s)(g) = bood s wil(tr(élTZZ)) X
1, 0 0 0 0 0
0 1, 0 0 0 0
0 0 1 0 0 0 . ! o
(k—2)n
fSV(T®XT7n7w_1),S 0 lopk-1y O du.
b C d ]-(k—2)n 0 0
93 0 94
0 =z c* 0 1, O
0o 0 b 0o 0 1,
) ) (5.6.37)
We can further write (5.6.32) as
3
lp(m(m(a))v deta)|detal 2"
»/GLn(F)ﬂMatn((’)F) T( ( ( )) O)XT( )| | (5638)

XA FWrasrmp-1),s)(m(a))da.

Lemma 5.6.9. Write

GLy(F
T = IndBGii(l)w)(Xl ® ... ® Xk)s

for unramified quasi-characters x1, ..., xx of F*, so that
GLgn
AT ® xr,n) = Indpfk"(;f)(xlxgp odet ®... ® xpxr o det).
Then /\(fSV(T®XT7n7w_1)7S) is an unramified section of

Indjr3” (aer(det ()] det -[*+7).
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Proof. The proof is similar to the one of Lemma 5.6.6. Clearly )‘(fgv(T@aXT,n,w*l),s) is

left invariant under N, (F') and right invariant under Sp,, (Or). Take g = m(a) and

conjugate it to the left. We obtain |det a|™*~2) from the change of variables in u

and

(k—1)n

x1xr(deta)|det a] 2

| det a|**

kn-+1

2

from the section f\(/)V(T®XT,n,w*1),s' Indeed, for any h € Spy,(F')

0
fW(‘r®xT,n7w‘1),S

a

0

=| det a|s+%A(T ® xT1,n)

n+1

s kn+1 (k—1)n
:|deta| M |deta| 2 XlXT(deta)f)(/)V(T®XT,n,w*1),s(h)'

Moreover, we have the following.

Lemma 5.6.10.

)‘(fl(/)V(TGKJXT,n,’L/;*l),s) (1271) - d7S_D4/m (S) .

Proof. We need to calculate

/\(f{/)V(T®XT,n,w*1),s)(g) -

0
fW(T®XT ,’ﬂ7¢71 ) ;S

0

bye,d,z
0 0
1, 0
0 ITr—2m
c d
z c*
0 b*

0
0 lopg—1y O [P
a
a 0
0 Tng-1)

o o o o O

L

0
fW(T@XT,n,¢71),S (h)

du.

(5.6.39)

By the same argument as Steps (4-5) in the proof of Lemma 5.6.7 we can show

that the integral vanishes unless all entries of b, ¢, d, z are in Op. Indeed, for each
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17=0,1,2,...k—2and +=0,1, ...,k — 2 — 7, consider the matrix

Ly, 0 0 0 0 0 0 0 0 0

0 1, 0 0 0 0 r 0 0 0

0 0 1, 0 0 0 0 0 0 0

0 0 0 1, 0 0 0 0 ™ 0
0000 Ty 0 0 0 0 0
T 0 0 o 0 Luhaiyy O 0 0 0
0 0 0 0 0 0 1, 0 0 0

0 0 0 0 0 0 0 1, 0 0O

0 0 0 0 0 0 0 0 1, 0

0 0 0 0 0 0 0 0 0 1,

with r € Mat,,(Op). For each fixed j = 0,1,2,...,k — 2 (in this order) we translate
fi(/)V(T®XT,n,w*1),s on the right by g;; for i =0, ..., k—2—j (in this order) and conjugate

it to the left. This gives the desired result and hence

)\(fSV(T®XT,n,¢*1),s)(12n) = f1(/)V(T®XT,n,1/F1),s(12kn) = dEPszn(S).
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We now conclude our computations as follows. Comparing Lemma (5.6.6) with

Lemma (5.6.9) we have

M Pveoxrmu-.0)(m(a) = |det al™2 xr(det )A(fyiran-).0) (m(a)).  (5.6.40)
Comparing (5.6.22) with (5.6.38) we have

Z* (lT, S)

Ir(r(m(a))ve) xr(det a)| det a| =27~

/GLn(F)ﬂMatn(OF)

A 0 -1)s d
X AP mp—).s) (m(a))da (5.6.41)

[ mla))v det a —2n—1
/GLn(F)ﬂMatn(op) r(m(m(a))vo)l \

X M fWirans1),s) (m(a))da
=L(s+ ;,7? X 7))+ lr(vp).

This completes the proof of Theorem 5.4.2.



Appendix A

L-function for Maass Forms on

General Linear Groups

In this appendix, we study the L-function for general linear groups which is not
covered in previous chapters. For a cuspidal automorphic representation of GL,,, its
L-function can be defined via an integral representation constructed by Godement
and Jacquet in [GJ72; Jac79]. See also [GH11; GJ21] for a summary. A Rankin-

Selberg type integral representation for GL,, x GL,, is also provided in [Cog04].

We restrict ourselves to Maass forms (defined in Definition A.1.1 and Definition
A.1.3 following [Goll5; GH11]) and we define the L-function more classically as a
Dirichlet series of Hecke eigenvalues (1.1.17). The aim of this appendix (Theorem
A.2.2) is to present an integral representation of a certain L-function via the doubling
method following [Haz22] and [PR87]. The unfolding of the global integral (1.2.9)
and the unramified computations are already done in [Haz22]. Our contribution
in this appendix is to make the choice of each local section of the Eisenstein series
and calculate the local integrals explicitly at all places (including ramified and
archimedean cases). In particular, our choice of local sections is related to the

Godement-Jacquet construction as in [PR87, Proposition 3.2] and is also inspired

by [Hum21; Lin18].
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A.1 Maass forms on general linear groups

We fix the following general notations throughout the appendix. For an associative
ring R with identity, denote by Mat,,,(R) the R-module of all m x n matrices
with entries in R. Set Mat,(R) = Mat, ,(R) and GL,(R) = Mat,(R)*. For
x € Mat,, ,(R), denote 'z for its transpose. Denote by 1,, and 0,,, or even 1 and 0 if

their sizes are clear from the context, for the identity and zero matrix in Mat,,(R).

We fix our base field to be Q and denote A to be the adele ring. For a place v,
either corresponding to a prime p or the archimedean place oo, denote QQ, to be
the localization and write Z, for the ring of integers of Q,. Write A = A; - R
with A¢ the ring of finite adeles. For a general linear group GL,, we mean a Q-
algebraic group whose R-points is GL,(R) for any Q-algebra R. We also write SL,
for the special linear group containing elements of GL, of determinant one and
PGL,, is the projective linear group defined by GL,, modulo its center Z,. Denote

O, :={g9 € GL, : 'gg = 1,,} for the orthogonal group.

A.1.1 Definition of Maass forms

We start by reviewing the definition of Maass forms on GL,, both classically and
adelically, following [Gol15] and [GH11]. In [Goll5], the Fourier expansions, Hecke
operators and L-functions are studied for Maass forms of full level. We will consider
the Maass forms with any level. For more general automorphic forms of GL,, the

reader can refer to [GH11].

We shall always assume n > 2. The generalized upper half plane is defined to be

h" ={z==x-y € Mat,(R)}, (1.1.1)
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where x,y are of the form

1 212 713 -  T1p Y1Y2--Yn_1 0 0 0 O

0 1 @3 -+ T2, 0 Y1Y2--Yno 0 0 0O
r=10 0 ; Y= 0 0 .0 0|

0 0 0 1 zpin 0 0 0 w1 O

0 0 0 0 1 0 0 0 0 1

with z;; e Rfor 1 <7< j<mnand 0 <y € Rfor 1 <i<n—1. The left invariant
measure on h" is given by
dz = dz - dy,

et (1.1.2)
de= [ duiy, dy:Hyi_z(n_l)_ldyi-

1<i<j<n i=1

By the Iwasawa decomposition, every element g € GL,(R) can be written as g =
g-d-kwith g€ ™ k € O,(R) and d € Z,(R). Take g € GL,(R) and z € h”, we
have gz = gz - k(g, 2) - d for uniquely determined gz and k(g, 2) € O,(R),d € Z,(R).

We then define the action of g € GL,(R) on z € h” by setting g.z := gz.

Denote g, = gl,,(C) and U(g,) the universal enveloping algebra of g, which is
identified with the space of invariant differential operators as in [Goll5, Chapter
2]. Denote Z(U(g,)) for the center of the universal enveloping algebra. For v =

(V1 .oy Vp_1) € C" 1 we define a function I, : h” — C by

Inl o, ] 47 <n,
H yf” ! bij = (1.1.3)
1j=1 (n—i)(n—73) i+j>n.

I,(2) = 1

7

These are eigenfunctions for all invariant differential operators D € Z(U(g,,)) ([Gol15,

Section 2.4]). The type v Harish-Chandra character
Ao Z(U(g)) — C (1.1.4)

is defined such that DI, = A\, (D)1,.
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For a fixed positive integer n, we define a congruence subgroup

A B A S Matn_l(Z) B e Matn_l,l (Z)
To(n) = € SL.(Z) : . (1.1.5)
C d Ce Mat17n,1(nZ) deZ

Definition A.1.1. Fix a positive integer n and v = (v, ..., v,_1) € C""!. A Maass
form of level n, type v, is a smooth function f : h” — C satisfying:
1) f(vz) = f(2) for all v € T'y(n) and z € h™,

3

(

(2) Df =\, f for all D € Z(U(g,)),

( is of moderate growth in the sense of [GH11, Definition 12.3.10],
(

)
)
) ]
) fryune |27z < oo,

We further call f a (Maass) cusp form if

/ f(uz)du = 0, for any z € h" (1.1.6)
To(mNU(R)\U(R)

for any unipotent radical U of any proper parabolic subgroup P of GL,. We denote

the space of Maass forms as M, (n) and the subspace of cusp forms by S, (n).

Remark A.1.2. We note that in most works, including [Goll5], the term ‘Maass

form’ actually means the Maass cusp form defined above.

We now rephrase the definition of Maass forms in the adelic language. For a fixed
positive integer n = [, p"», we define an open compact subgroup Ky(n) C GL,,(A)

as an adelic analogue of I'g(n) as follows.

n) = HKp(p )

1.1.7)
Mat,,_1(Z Mat,,_1 1(Z (
Kp(pnp) — GLn(Zp) N 1( p) 171( p)
Math_l <pnp Zp) Z;;
Recall that by the strong approximation of GL,, we have
GL,(A) = GL,(Q) - Ko(n) - GL,(R). (1.1.8)

Definition A.1.3. Fix a positive integer n and v = (vq,...,1,1) € C*1. An

(adelic) Maass form of level n, type v is a smooth function f : GL,(A) — C
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such that f(2) := f(ge) € M,(n) is a Maass form defined in Definition A.1.1 for
Z = goo-1 € h". Here, for g € GL,,(A), we write g = g - goo With g5 € GL,,(A¢) and

Joo € GL,(R). In particular,

F(vgkks) = £(9) (1.1.9)

for any g € GL,(A) and v € GL,,(Q),k € Ko(n), ks € O,(R). We further call f a
(Maass) cusp form if

ug)du = 0 1.1.10
A@wMﬂg) (1.1.10)

for any unipotent radical U of any proper parabolic subgroup P of GL,. We denote
the space of such automorphic forms as M, (n) and the subspace of cusp forms by

S, (n).

From the above definition, we have a map M, (n) — M, (n), f — f. Conversely, for

f € M,(n) we define its adelic lift

f(9) = f(9-1) (1.1.11)

for g = vgsok with v € GL,(Q), g € GL,(R),k € Ky(n). One checks that there

are bijections

M,(n) = M,®n), S, =S,m), fof (1.1.12)

A.1.2 Hecke operators and L-functions

We are now going to define the action of Hecke operators on Maass forms and the
L-function for Maass forms. For positive integers e; > ... > e, > 0, we consider the

double coset

K2 o0 = K (0™) ) 5, (p™). (1.1.13)




190Appendix A. L-function for Maass Forms on General Linear Groups

7777 (1.1.14)
= > £(gk).

KEKZ, .. e /Kp(p"P)
where the measure dk is normalized such that K,(p") has volume 1. We call f
an eigenform if it is an eigenfunction under the action of all these Hecke operators
[K? . That is

..... en]

FIKE e )=AFKE . )f (1.1.15)

----------

.....

77777

Tm)=1] > [K? .l (1.1.16)

plm e12...2en>0
e1+...+ep=mp
en=0 if p[n

and denote the eigenvalue of f associated to T'(m) by A(m). We define the L-function
as the Dirichlet series of these eigenvalues, generalizing the classical definition of
L-function for modular forms on GLy. That is, for an eigenform f, we define

L(s, f) =Y AM(m)m™, (1.1.17)

m>0
which has an Euler product expression
L(Sa f) = HLP<S7 f)a
p

(1118
LP(Sa f) = Z )\(f, Kfl 7777 en)p*(€1+‘..+en)s'
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A.2 The doubling method and the integral

representation

In this section, we review the doubling method for GL,, following [Haz22] (see also
[PR87, Section 3]). We choose the local sections of the Eisenstein series and calculate

the local integrals explicitly at all places.

A.2.1 The global integral and the main theorem

We closely follow the notations in [Haz22]. For two positive integers m,n, write

P, C GL;, 4y, be the parabolic subgroup containing elements of the form

B
q= " | with A, € GL,,, D, € GL,. (1.2.1)
0 D,

Denote U, ,, be the unipotent radical of P, ,. Let dp, , be the modulus character

of Py, (A) defined by
Oy, (q) = | det Ag|"| det Dy[™™ (1.2.2)

for ¢ € Py, (A) written in the form (1.2.1).

We define a doubling embedding
7 : GL, x GL,, = GL,2, (91,92) — ¢1 ® ga, (1.2.3)

where for A = (a;;) € Mat,, and B = (b;;) € Mat,,, we write A® B for the Kronecker

product defined by
CLHB s alnB
AB=1| ... ... ... € Mat,,,. (1.2.4)

amB - apnB

Fix a positive integer n = [, p™ and let f € S,(n) be an eigenform on GL,,. Let

pn
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fs be a smooth section of the normalized parabolic induction

GL,2(A) os—3
Indpn271,1(A)5Pn2271Y1' (125)
In particular,
fs(qh) = (| det q||Dq|—n2> fs(h), (1.2.6)

for ¢ € Py2_1(A) written as in (1.2.1) and h € GL,2(A). We form the Eisenstein

series on GL,2(A) associated to fs by

E(h f) = fs(vh). (1.2.7)
YEP2 11 (Q\CL,2(Q)
Let
0 0 1
w,=10 . 0| €GL,(Q), (1.2.8)
1 0 0

be a Weyl element. For an element g € GL,,, we denote ¢* = w,, ‘g~ *w,. The global

integral considered in this appendix is

Z(gi: f. fs) = F(g2)E(7(g7, gown); fs)dgsa, (1.2.9)

/(Zn (A)GLn (Q)\GLn(A)

for any ¢g; € GL,(A).

The following proposition follows from the main theorem of [Haz22] (see also [PR87,

Section 9]).

Proposition A.2.1. The global integral (1.2.9) unfolds to

Z(gif f)= [ Florg)fu(6 (1 grw,))dgs, (1.2.10)

PGLy(A)

which converges absolutely for Re(s) sufficiently large and has a meromorphic con-

tinuation to C. Here

0= 0 0 1(n_1)71 ! C=|en1 €n2 -+ €1 | (1211)
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where, for 1 < j < n —1, e; are row vectors with 1 in the j-th entry and zero

elsewhere.

The aim of this section is to calculate the integral (1.2.10) explicitly for a specific
section fs; which we are going to describe. We call this section the Godement-
Jacquet section, due to its relation with the Godement-Jacquet L-function as in

[PR87, Proposition 3.2].

We identify Mat,, as a free module of rank n?. A basis of Mat,, can be chosen as

{ejx}1<j<n where e;;, is the n x n matrix with 1 on the (j, k)-entry and 0 elsewhere.
1<k<n

We label this basis as {¢;} for 1 < i < n? such that €,(;_1)1x = €j;. Then the (right)

action of GL,2 on Mat,, can be described via this basis. In particular, for x € Mat,,

and g1, g2 € GL,,, the action of 7(gy, g2) on z is given by x.7(g1, 92) = g1 - = - ga.

On—l,n—l 0
Let zy = so that the parabolic subgroup P,2_;; C GL,2 is the

0 1
subgroup fixing the one-dimensional submodule generated by x. Also note that, for

dasin (1.2.11), we have 2.0 = w,,. For a Bruhat-Schwartz function ® € S(Mat, (A))

and h € GL,2(A), we define a section

P GL,2(A) s
e IndPHQi,I(AﬁPQ : (1.2.12)

n<—1,1

by setting
ff(h):|deth\s/ ®(a - zo.h)|a|"da. (1.2.13)
AX

One checks that for ¢ € P,2_;1(A) written as the form in (1.2.1), we have
£2(gh) = | det ghl® /A ®(aD, - wo.h)|a|"*da
— | det gh|? /A (a- xo.h)|aD; " da
= | detql*|Dy| £ (s 9).
The global integral is related to the Godement-Jacquet construction in [PR87, Propos-

ition 3.2] when one takes the section of the Eisenstein series as f&. Our contribution

in this appendix is to make an explicit choice of the Bruhat-Schwartz ® and to
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calculate the local integrals at all places. In particular, our computations cover the

ramified and archimedean cases.

We take the Bruhat-Schwartz function ® to be
o=][2 [[2 P, (1.2.14)
pin pln
with @9 &I &, defined in (1.2.17), (1.2.21) and (1.2.26). Combining the local
computations in Proposition A.2.3, A.2.4 and A.2.5, we state our main theorem of

the appendix in the following.

Theorem A.2.2. Let f € S,(n) be an eigenform on GL,,. Take the section

SFE=T1r - T1 AL, - foso (1.2.15)
pin pn

. . . . O
be the Godement-Jacquet section associated to ® as in (1.2.14) with f, vp,f;p,fs,oo

S

defined in (1.2.18), (1.2.23), (1.2.27). Then, for any g € GL,(A),

nol T (net
Z(gi £, 1) = 2‘1n(n_<1)<i_2) - L(ns, £)f(q1). (1.2.16)
on—lp—35

A.2.2 Unramified nonarchimedean local integrals

Let p be a prime number such that p { n. Define

1 z € Mat,(Z,),
) (z) = (1.2.17)
0 x ¢ Mat,(Z,),

and denote
0 s 0 n2s Onfl’nfl 0
0 (h) = |det h| /@ ®(a- mo.h)|a|"da, o = o (1.2.18)
P 0 1

for the associated local section. Note that

n?s - —in?s
%) = [ azo)lal™da =3 p " = G n’s),

p =0
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where (,(s) = (1 — p~*)~! is the local Euler factor of the Riemann zeta function.

That is, fgp is the local section such that
0 -n2\* 2
0, (qk) = (] det gl det Dy| )" G, (n?s),

for ¢ € P,2_11(Q,) written in the form (1.2.1) and k € GL,(Z,).

(1.2.19)

Proposition A.2.3. Let p be a prime number such that p  n and fgp the local

section defined as in (1.2.18). Then, for any go € GL,(A), we have

/PGLH(QP) f(gog)fgp(é -7(1,9))dg = Ly(ns, f)f(g0)-

Proof. By the Cartan decomposition, we can write

PGL,(Q,)= I K% . . .o

e12>...2en—120

where K? is the double coset in (1.1.13).

----- €n

Then
/PGLTL(QP) F(909) 1,0 - 7(1, 9))dg

- > | F(909) 2,0 7(1, 9))dg

KP
e1>...2en—1>0" ey en_1,0

_ Z / f(gog)p—n(el+...+en_1)s<«p<n28)dg'

KP
e1>...2en—1>0 €1,--€pn_1,0

Note that by (1.1.18) and the definition of Hecke operators,

Ls, )= Y Mfi Koy, e )p o1 Ttens
e12>...2en>0

- Z )\(f7 Kel_e" ----- en71_6n70)p_(61+---+6n)s
e1>...2en>0

- Z pet Z S K61,---,enfl,0)p_(61+m+en71)s-

en>0 e12...2en—120

The proposition then follows by comparing above two expressions.

(1.2.20)
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A.2.3 Ramified nonarchimedean local integrals

Let p be a prime number such that p|n. Define

1z € Mat,(Zy,), 111 € L), X1, ..., 1 € Py,

ol (z) = (1.2.21)
0 otherwise ,
where we write
T11 - Tin
=] .. . .| eMat,(Q) (1.2.22)
Tn,1 Tnn
Denote
F1(h) = | det h|5/ i (a- o.h)|a|"™**da. (1.2.23)
) Q;
for the associated local section. Denote the last row of h € GL,2(Qp) be | Ay --- h,2
Then fI () # 0 unless
hi € Q;, and
hi'hy,...,hi h, € p™Z,, and
hi'hosts oy hy thye € Z,,.
Hence, f;f’p is the local section supported on P,2_11(Qp)w,2N,_; with
T — —n?\*®
[l (quyau) = (\ det ¢|| det D,| ) : (1.2.24)

forqg € P,211(Q,) and u € N,,_;. Here, N,,_; C Uy ,2_1(Z,) is a subgroup consisting

of elements of the form

1 wp oo upe g
n
1 ULy ooy Up—1 € P prv
Upyy ooy Up2_1 € L

1

Proposition A.2.4. Let p be a prime number such that p|n and fjjp the local section
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defined as in (1.2.23). Then, for any go € GL,(A), we have
/PGL,L(QP) £(909)£1,(0 - 7(1, gwn))dg = Ly(ns. £)f (90)- (1.2.25)

Proof. For g € PGL,,(Q,), we write

gii1 - Gin

gn1 " Gnn

Then the last row of § - 7(1, gw,,) is

dnmn " 9n1l Yn-1m " Yn-11 " Gim " G171

As g is an element in PGL,(Q,), we may take g, , = 1. Then fj,p(é -7(1, gw,)) # 0

unless
gij €%, forl<i<n-—1,1<j<n,

Gn,j € P Ly for1<j<n-—1.

These conditions are equivalent to g € K., ., ,0 and for such g we have
T . _ . —ns(er+...+en—1)
fs,p((S T(lvgwn)) =P ! .

((@ ) n 9

= Z / f(gog)dg . p_ns(el+"'+en—1)
Ke,

e12>..2en—120

= Z A F; Ke1,...,enq,0)p_ns(el+m+en71)f(gO)

e12>...2en—120

=Ly(ns, £)f(90)-

A.2.4 Archimedean local integrals

Define
Do () = e i), (1.2.26)
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and

fsoo(h |deth|/ (a - zo.h)|a|”*da, (1.2.27)

for the associated local section. Note that

n2s (s
0= [ e — e ().
)= [ oot =T (%)

Thus f; . is the local section such that

7’L28

fsoolqk) =7~ En F ( 5 ) . (|det q|| det Dq|_"2)s (1.2.28)

for ¢ € P,—11(R) written as the form of (1.2.1) and k € O,2(R).

Proposition A.2.5. Let f;  be the local section defined as in (1.2.27). Then for

any go € GL,,(A), we have

/PGLn(R) f(QOQ)fs,OO(5 : T(l, g))dg = (1.2.29)

Proof. Using the Iwasawa decomposition and the definition of f, o, we have

/ F(909) fso0(3 - 7(1, 9))dg

PGLy (R)

= Flgog)ldet g | (aw,z) ] dad>
PGLy, (R) RX

= / f(g09)| det g|"*e ™99 g,

y [Shi00, Theorem A2.2], above integral equals

[ etz - f ().

Write z =z -y as in (1.1.1), we need to calculate

o S (I (ot )™ dedy,
bn

Note that
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The integrals over all z; ; contribute

n—1 ) n—1  (1—nti)(n—d)

H (yl'-'yn—j)l_J - H Y; :

j=1 i=1
It remains to calculate

Z n—1 (n— z)(?ns n—i+1) 1
/ e Jon T ryn—) Hyz dy;.
yi€R>0
Note that for 1 <7 <n —1and ¢; € C,
o0 1 C;
/ _ﬂ(yl A ZyCZdyZ cit1 1F <2 + 1) '
0 272 (Yo yio1 )T
Our integral equals
1 ¢ +1
on—1 M H F( 2 )’
s
where ¢,,_; = ns —n and
n—i)(2ns—n—1+1
C;i = ( >( 9 ) —1—(Ci+1+1)—...—(0n_1+1).

It is not difficult to calculate that ¢; = ns — 7 — 1 and the proposition follows. [
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