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Abstract: The main theme of this thesis is the study of special values of L-

functions through integral representations. We present an integral representation

of the standard L-functions for classical groups via the doubling method. Our

computations, comparing with the well known result for partial L-functions in [PR87],

include all ramified local integrals with the explicit choice of local sections for

Eisenstein series. When the classical group admits a Shimura variety, we have a well

defined notion of algebraic modular forms. In this case, we calculate the Fourier

expansion of Eisenstein series from which the properties of their special values can be

easily read off. Utilizing our integral representations, we then prove the algebraicity

of certain special L-values for modular forms on some classical groups. Furthermore,

by our proper choice of the local sections for Eisenstein series, we construct the

p-adic L-functions interpolating these special L-values.

Generalizing the classical doubling method, [CFGK19] presents an integral repres-

entation for Sp2n × GLk by the twisted doubling method. In the final chapter of the

thesis, we present another integral representation for the L-functions of Sp2n × GLk

via a non-unique model and obtain some analytic results.
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Chapter 1

Introduction

One of the central problems in number theory is the study of special values of

L-functions. The main object studied in this thesis is the standard L-function

for automorphic forms on classical groups. In Chapter 2 and 3, we present an

integral representation for these L-functions using the doubling method. Utilizing

the integral representation, we prove the algebraicity of certain special L-values and

construct p-adic L-functions interpolating these values in Chapter 4. These three

chapters are mainly taken from [Jin23] improving some results obtained in [BJar]

(joint with Thanasis Bouganis) and [Jin22]. Recently, [CFGK19] generalized the

(classical) doubling method to obtain an integral representation for Sp2n×GLk. The

algebraicity result for such L-functions is far away from being proved due to the

complicated Speh representations used as the inducing data for Eisenstein series.

However, following [GS20], we derive a new integral representation for Sp2n × GLk

and obtain the analytic result in Chapter 5. This part is taken from [JY23] and is

joint with Pan Yan.

We introduce our results and compare with works in the literature in the following

three sections.
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1.1 Integral representations

Let G be a classical group over a number field F defined as in (2.1.6) or (2.1.8). The

first main theme of this thesis is an integral representation for standard L-functions

of classical groups. One way to obtain such an integral representation is the doubling

method originated in [Gar84b; PR87]. We briefly recall the setup for the doubling

method in the following. More detailed expository on the doubling method will be

given in Section 2.2.2.

Take a cuspidal representation π of G(A) and a cusp form ϕ ∈ π, where A is the

adele ring of F . We consider a doubling embedding G×G → H (2.1.11) into a bigger

classical group H defined as in (2.1.10). We have a Siegel Eisenstein series E(h; fs)

(2.2.9) defined on H(A) associated to a section fs ∈ IndH(A)
P (A) (χ|ν(·)|s) (2.2.5) of the

parabolic induction from a Siegel parabolic subgroup P ⊂ H. Here, the inducing

data is a Hecke character χ (viewed as a character on P (A)) and a reduced norm ν.

The main strategy of the doubling method is to pullback such an Eisenstein series

E(h; fs) on H(A) along the doubling embedding and pair with the cusp forms on

G(A). That is, we consider the global integral of the form

Z(s;ϕ, fs)

=
∫

(G×G)(F )\(G×G)(A)
E((g1, g2); fs)ϕ1(g1)ϕ2(g2)χ(ν(g2))−1dg1dg2,

(1.1.1)

where (g1, g2) is the image of g1 × g2 ∈ (G×G)(A) in H(A) and ϕ1 := π(g1)ϕ, ϕ2 :=

π(g2)ϕ are certain translates of ϕ by some g1, g2 ∈ G(A).

It is shown in [PR87] that this global integral has an Euler product expression

(2.2.15) and thus reduces the study of (1.1.1) to the study of local integrals place

by place. It is also well known that one can make a proper choice of the section fs

such that Z(s;ϕ, fs) represents the partial L-function of ϕ, i.e. all the ramified local

L-factors are set to 1. For the study of arithmetic problems of special L-values and

especially the construction of p-adic L-functions, the information at ramified places

is indispensable.
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The definition of local L-factors is indeed a fundamental problem in the study

of automorphic representations (see also Remark 2.3.5). In [Lan70], Langlands

conjectured that one can associate to any cuspidal representation π = ⊗πv a local L-

factor Lv(s, πv) and an epsilon factor ϵv(s, πv) such that the global L-function L(s, π)

satisfies a functional equation. In [Yam14], Yamana defined these local factors and

proved the functional equation using the doubling method. His approach works for

all irreducible automorphic representations of classical groups and is used in proving

some analytic properties of L-functions. However, he did not construct the local

sections of Eisenstein series and did not compute the local integrals explicitly so it

is not clear how his computations can be used to study the algebraicity of special

L-values or to construct p-adic L-functions.

We study the ramified local integrals in a different way which is inspired by [Shi95].

Fix an integral ideal n of F . Assume ϕ is fixed by some open compact subgroup

K(n) (2.3.23) and is an eigenform for a certain Hecke algebra H(K(n),X) (defined

in Section 2.3.4). For a Hecke character χ whose conductor divides n, we define the

L-function L(s, ϕ × χ) to be a Dirichlet series of the Hecke eigenvalues of ϕ. This

extends the definition of the L-function for symplectic groups in [Shi95] and is an

analogue of the L-functions for classical modular forms defined by Dirichlet series

of Fourier coefficients. In particular, the L-function L(s, ϕ × χ) has all bad Euler

factors outside the conductor of χ. In [Shi95], Shimura constructs local sections of

Eisenstein series explicitly at all places such that Z(s;ϕ, fs) represents L(s, ϕ× χ).

Our main theorem on the integral representation, which extends his result to all

classical groups, is stated as follows.

Theorem 1.1.1. (Theorem 2.2.4, 3.4.2) There is a choice of fs such that

Z(s;ϕ, fs) = C · L
(
s+ 1

2 , ϕ× χ
)

· Z∞(s;ϕ∞, f
∞
s ) · ⟨ϕ′, ϕ⟩, (1.1.2)

where C is some nonzero constant depending on s, ϕ′ := π(g′)ϕ is a translate of ϕ

by some g′ ∈ G(A) and Z∞(s;ϕ∞, f
∞
s ) a nonzero constant depending on the choice

of the archimedean section f∞
s := ∏

v|∞ fs,v and ϕ∞ = ∏
v|∞ ϕv. When the underlying
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symmetric space of G is hermitian, and ϕ is a holomorphic cusp form as in Definition

3.2.3, we can further make a choice of f∞
s such that Z∞(s;ϕ∞, f

∞
s ) is the constant

given in Proposition 3.4.1.

If G is a unitary group, we assume all places v|n are nonsplit in the quadratic

extension defining the group G. This is only for simplicity and also because the split

case is well studied in [HLS06] and [EHLS20]. The main difficulty for extending the

result of [Shi95] is to deal with the classical groups which are not totally isotropic

(i.e. r > 0 in (2.1.7)). In this case, the doubling map and the image of the doubling

embedding (2.1.13) are much more involved which complicates the computations. For

the purpose of constructing p-adic L-functions, our local sections are also properly

chosen such that the Eisenstein series has a nice Fourier expansion. This is indeed

the core technical issue of this work. We do not study the archimedean integral

in general in this work. For the special cases we are considering, the archimedean

computations follow from [Shi97; Shi00] and [BJar]. For completeness, we will also

present an integral representation for L-functions of Maass forms on general linear

groups using the doubling method in the appendix.

Recently, Cai, Friedberg, Ginzburg and Kaplan [CFGK19] presented an integral

representation for Sp2n × GLk by the twisted doubling method generalizing the

classical doubling method introduced above. In [Cai21], the unfolding of the global

integral are also worked out for G× GLk with G any classical group. It will also be

important to study the ramified integrals derived from the twisted doubling method.

For example, one should expect that one can define the local L-factors and prove the

functional equations for standard L-functions of G× GLk as in [Yam14]. In Chapter

5, we also derive a new integral representation for Sp2n × GLk via a non-unique

model (an independent introduction to this work will be given in Section 5.1). It is

also an interesting question whether one can construct local sections and compute

the ramified integral for G× GLk explicitly as we have done here for G× GL1.
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1.2 The algebraic result

The celebrated Deligne Conjecture [Del79] claims that the critical values of motivic

L-functions, up to certain periods, are algebraic numbers. In this work, we study the

automorphic counterpart of this conjecture. As the approach here relies heavily on

the theory of Shimura varieties, we restrict ourselves to the classical group G whose

underlying symmetric space is hermitian. Such groups (except some orthogonal

groups) are listed at the beginning of Chapter 3. In all these cases, the notion of

the algebraic modular forms is well defined. We refer the reader to the beginning of

Section 3.3 for a summary of various characterizations of algebraic modular forms

in the literature. All of them rely on the fact that the symmetric space of G is

hermitian so that one can associate G to a Shimura variety.

We fix the following setup. Assume F is a totally real number field of degree d(F )

over Q. Let l = (l, ..., l) ∈ Zd(F ) be a parallel tuple satisfying

l ≥


m+ 1 Case II,

n+ 1 Case III, IV, V.
when F ̸= Q,

l ≥


m+ 1 Case II,

n+ r + 1 Case III, IV, V,
when F = Q,

(1.2.1)

with m,n, r as in (2.1.7). Fix a specific prime ideal p of F above an odd prime

number p and an integral ideal n = n1n2 = ∏
v p

cv
v of F with n1, n2,p coprime. We

make the following assumptions:

(1) 2 ∈ O×
v and θ ∈ GLr(Ov) for all v|np. Here, θ is the anisotropic part of G.

(2) f ∈ Sl(K(np),Q) is an algebraic eigenform for the Hecke algebra H(K(np),X)

as in Section 2.3.4.

(3) f is an eigenform for the U(p) operator defined in (2.3.13) with eigenvalue

α(p) ̸= 0.

(4) χ = χ1χ where χ1 has conductor n2 and χ has conductor pc for some integer

c ≥ 0. We assume χ has infinity type l. That is, χv(x) = xl|x|−l for all v|∞.

(5) In the case when G is a unitary group, we further assume all places v|np are
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nonsplit in the imaginary quadratic field E defining the unitary group G.

We are interested in the special value of the L-function L
(
s+ 1

2 ,f × χ
)

at

s = s0 :=


l − κ Case II, III, IV,
l
2 − κ Case V.

, (1.2.2)

with κ a constant depending on n given in (2.2.8).

Our main theorem on algebraicity is stated as follows.

Theorem 1.2.1. (Theorem 4.2.1) For l, s0 as above,

L
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)Ω · ⟨f ,f⟩
∈ Q, if c > 0,

L
(
s0 + 1

2 ,f × χ
)
M
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)Ω · ⟨f ,f⟩
∈ Q, if c = 0.

(1.2.3)

where d(F ) = [F : Q], d(π) is the constant given in (4.2.4), ⟨·, ·⟩ is the Petersson

inner product and M
(
s0 + 1

2 ,f × χ
)

is the modification factor listed in Proposition

2.4.6. Here Ω = 1 in Case II, III, IV and in Case V, Ω is the CM period (4.2.5)

depending only on the group G.

When the group is totally isotropic (i.e. r = 0 in (2.1.7)), we also obtain a refined

version of the above theorem. That is, we describe the action of Gal(Q/F ) on

special L-values in Theorem 4.2.2. The proof of this theorem uses the standard

strategy in [BS00] and [Shi00]. That is, we derive the algebraicity from the integral

representation (3.4.22), (3.4.23) reformulated from Theorem 1.1.1, 2.2.4, 3.4.2 and

the algebraic properties of the Fourier coefficients of Eisenstein series in Corollary

4.1.11.

This kind of result is also obtained in [BS00; Shi95; Shi00] for symplectic and unitary

groups and in [BJar] for quaternionic unitary groups. We explain what is new in

our work. First of all, all these works, except [Shi95] for symplectic groups, only

consider partial L-functions while the L-function considered here includes those

ramified L-factors. Of course, there are only finitely many missing L-factors in the

partial L-function and if these ramified L-factors are known to be algebraic one may
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manually add these factors to the algebraicity result of partial L-functions. But this

only make sense at the special values beyond the absolutely convergence bound, i.e.

s = s0 > κ with κ given in (2.2.11). Secondly, inspired by [BS00], our local sections

of the Eisenstein series are chosen such that we only need information about the

Fourier coefficients of rank greater or equal to 2m (where m is the Witt index of G).

This allows us to get a better bound on l and discuss the special values below the

absolutely convergence bound.

The orthogonal groups are not studied here for at least two reasons. Firstly, when the

symmetric space of G is hermitian (i.e. G(Fv) has Witt index 2 for any archimedean

places v), the symmetric space of H is no longer hermitian so that one need to

carefully define the meaning of algebraic modular forms on H(A). Secondly, the

archimedean computations for the Fourier coefficients of Eisenstein series will involve

certain generalized Bessel functions studied in [Shi99a]. The analytic properties are

studied there but there are no explicit formulas as for the confluent hypergeometric

function in [Shi82] so that we do not know the algebraic properties of these functions

so far.

1.3 The p-adic L-function

We keep the setup as in the previous section. In particular, we fix a prime ideal

p of F above an odd prime number p. Once the algebraicity of special L-values

is known, one can ask about the p-adic interpolation of these values. Our main

theorems on p-adic L-functions (Theorem 4.2.5, Theorem 4.2.6, (4.2.17), (4.2.18),

(4.2.20), (4.2.24)) are stated as follows.

Theorem 1.3.1. Assume f is p-ordinary in the sense that α(p) ∈ O×
Cp

. Fix χ1 to

be a Hecke character of conductor n2 and infinity type l. That is χ1,v(x) = xl|x|−l

for any places v|∞.

(1) For unitary and quaternionic unitary groups, there exists a p-adic measure µ(f)
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on Cl+E(p∞) such that for any finite order Hecke character χ of conductor pc,

∫
Cl+E(p∞)

χdµ(f) = |ϖ|cd1
m(m−1)

2 πd(F )d(π)
(
cl(s0)

n−1∏
i=0

Γ(d1(l − i))
)d(F )

×GD(χ)−mM
(
s0 + 1

2 ,f × χ
)

·
L
(
s0 + 1

2 ,f × χ
)

Ω · ⟨f ,f⟩
.

(1.3.1)

(2) For symplectic groups we assume the Witt index m has the same parity with the

weight l of f , i.e. l ≡ m mod 2. For quaternionic orthogonal groups, we assume p

splits in the quaternion algebra D if the group is not totally isotropic (i.e. r > 0 in

(5.2.6)). Then in these two cases, there exists a p-adic measure µ(f) on Cl+F (p∞)

such that for any finite order Hecke character χ of conductor pc,∫
Cl+F (p∞)

χdµ(f)

=|ϖ|cd1
m(m−1)

2 NF/Q(p)c(s0− 1
2)GD(χ)−mGF (χ)−1πd(F )d(π)

×

cl(s0)Γ
(
s0 + 1

2

) nd1−1∏
i=0

Γ
(
l − i

2

)d(F )

·
Lp

(
s0 + 1

2 , χ
)

Lp

(
1
2 − s0, χ−1

)
×M

(
s0 + 1

2 ,f × χ
)

·
L
(
s0 + 1

2 ,f × χ
)

⟨f ,f⟩
.

(1.3.2)

Here:

(a) In the case of unitary groups, E is the imaginary quadratic extension of F

defining the unitary group. In other cases E = F .

(b) Ω = 1 in the case of quaternionic unitary groups and Ω is the CM period (4.2.5)

in the case of unitary groups.

(c) Cl+E(p∞) is the p-adic analytic group defined in (4.2.12).

(d) d(F ) = [F : Q], d1 = 2 for two quaternionic cases and d1 = 1 for symplectic and

unitary groups.

(e) For a division algebra D, GD(χ) is the Gauss sum of χ defined on D.

(f) cl(s0) is given by Proposition 3.4.1 and d(π) is given in (4.1.30).

(g) M(s0 + 1
2 ,f × χ) is given in Proposition 2.4.6 if c = 0 and is understood as 1 if

c > 0.

(h) Lp

(
s0 + 1

2 , χ
)−1

= 1 − χ(ϖ)|ϖ|s0+ 1
2 if c = 0 and is understood as 1 if c > 0.
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The assumption for quaternionic orthogonal groups is technical and is necessary in

our proof of Theorem 4.2.6. Again, the construction of p-adic L-functions relies on

properly choosing the local sections of the Eisenstein series such that its Fourier

coefficients have p-adic interpolations. We refer the reader to [Liu20] where it is

carefully explained how these local sections should be chosen.

We compare our results with other works in the following.

For symplectic groups, p-adic L-functions have been constructed in [BS00] using

the doubling method and in [CP04] using the Rankin-Selberg method. The p-adic

L-functions for ordinary families are constructed in [Liu20]. We admit that the

approach in our work is highly inspired by [BS00] and [Liu20]. Although all these

works are concerning the base field F = Q, there is no difficulty to generalize their

work to any totally real field F as we have done here.

For unitary groups, p-adic L-functions are studied in [Eis21; EHLS20; HLS06; SU14;

Wan15] for ordinary families. All these works assume that p is split in the imaginary

quadratic extension E/F so that the local group G(Fp) at p is a general linear group.

Their local sections are always chosen as certain Godement-Jacquet sections, and

we do not discuss this case in our work. When p is inert, the p-adic L-function is

constructed in [Bou16] for totally isotropic groups (i.e. r = 0 in (2.1.7)). Our result

for the general unitary group with p nonsplit is new.

The L-functions for the two quaternionic cases are less studied than symplectic

and unitary groups. In our previous work [Jin22], we have constructed p-adic L-

functions for these totally isotropic groups and restricted to the case when p splits

in the quaternion algebra. This case is much simpler as the local group G(Fp) will

be either an orthogonal group or symplectic group and both are totally isotropic.

We have removed these restrictions here.

We admit that the construction of p-adic L-functions for ordinary families is beyond

the scope of this work. For p-adic families, one also needs to understand more

about the geometry of Shimura varieties and p-adic modular forms. For example,
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in [Eis21; EHLS20; HLS06] the split assumption on p is also used to guarantee the

nonvanishing of a certain ordinary locus in defining the p-adic modular forms (see

also [Eis21, 5.3(2)]). In the two quaternionic cases, the geometry of Shimura varieties

becomes more challenging as these Shimura varieties are not of PEL type.



Chapter 2

The Integral Representation of the

Standard L-functions

In this chapter, we present an integral representation of the standard L-functions for

classical groups. We use the doubling method originating from [Gar84b; PR87]. An

integral representation for the partial L-functions is well known. Here we calculate

all ramified local integrals to obtain integral representations for complete L-functions

including ramified L-factors. The local sections of Eisenstein series are explicitly

constructed and properly chosen for our later purpose of constructing p-adic L-

functions.

This chapter is essentially taken from [Jin23, Section 2-4] and is organized as follows.

In Section 2.1 we fix our setup for classical groups. We review the global integral

from the doubling method and state our main results on integral representations

in Section 2.2. The definition of the local L-factors and computation of the local

integrals will be carried out in Section 2.3 and Section 2.4.



12 Chapter 2. The Integral Representation of the Standard L-functions

2.1 Classical groups

We review basics of hermitian forms and classical groups. The setup for classical

groups is the following [Yam14, Section 2] and for generalities of hermitian forms

the reader can refer to [Shi97, Chapter I]. We also give several examples regarding

the quaternion algebra for which a comprehensive reference is [Voi21].

2.1.1 Algebras with involution

We start by fixing some general notations. For an associative ring R with identity,

denote by Matm,n(R) the R-module of all m × n matrices with entries in R. Set

Matn(R) = Matn,n(R) and GLn(R) = Matn(R)×. For x ∈ Matm,n(R), denote tx for

its transpose. Denote by 1n and 0n, or even simply 1 and 0 if its size is clear from

the context, for the identity matrix and zero matrix in Matn(R), respectively.

Let F be a local or global field and D an F -algebra with involution ρ whose center E

contains F . The couple (D, ρ) considered in this thesis will belong to the following

five types:

(a) D = E = F and ρ is the identity map,

(b) D is a division quaternion algebra over E = F and ρ is the main involution of D,

(c) D is a division algebra central over a quadratic extension E of F and ρ generates

Gal(E/F ),

(d) D = Mat2(E), E = F and ρ is given by

 a b

c d


ρ

=

 d −b

−c a

,

(e) D = D ⊕ Dop, E = F ⊕F and ρ is given by (x, y)ρ = (y, x), where D is a division

algebra central over F and Dop is its opposite algebra.

For x = (xij) ∈ Matmn(D), set xρ = (xρij) and x∗ = txρ, x̂ = (x∗)−1. For x ∈

Matn(D), ν(x) ∈ E, τ(x) ∈ E stand for its reduced norm and reduced trace to the

center E.

Example 2.1.1. (Quaternion algebras over Q) Recall that a quaternion algebra

over Q is a central simple algebra of dimension four. Picking up a basis, we can
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write it in the form

D = Q ⊕ Qζ ⊕ Qξ ⊕ Qζξ,

where

ζ2 = α, ξ2 = β, ζξ = −ξζ,

with α, β nonzero squarefree integers. We make the convention that D ̸= Mat2(Q)

which is equivalent to α ̸= 1, β ̸= 1. The involution of D is given by

ρ : D → D : a+ bζ + cξ + dζξ 7→ a− bζ − cξ − dζξ.

Then (D, ρ) is an algebra with involution over Q of type (b) above.

Identify ζ, ξ with
√
α,

√
β ∈ Q and let K = Q(ξ) with involution ι the generator of

Gal(K/Q). We can define an embedding

i : D → Mat2(K), a+ bζ + cξ + dζξ 7→

 a+ cξ α(b− dξ)

b+ dξ a− cξ

 .
One easily checks that for x ∈ D,

ti(x)ι = I−1i(x∗)I, I =

 −α 0

0 1

 ,

ti(x) = J−1i(x∗)J, J =

 0 −1

1 0

 ,
and i induces the isomorphism

i : D ∼−→ {x ∈ Mat2(K) : xιIJ = IJx}.

We extend this map to the embedding i : Matn(D) → Mat2n(K) by sending x = (xij)

to (i(xij)). Denote I ′
n = diag[I, ..., I] and J ′

n = diag[J, ..., J ] with n copies. Then for

x ∈ Matn(D),
ti(x)ι = I ′−1

n i(x∗)I ′
n,

ti(x) = J ′−1
n i(x∗)J ′

n,
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and i induces the isomorphism

i : Matn(D) ∼−→ {x ∈ Mat2n(K) : xιI ′
nJ

′
n = I ′

nJ
′
nx}.

The reduced norm and reduced trace are defined as

ν(x) = det(i(x)), τ(x) = tr(i(x)),

where det and tr are the usual determinant and trace of matrices. This definition is

independent of the choice of K.

Example 2.1.2. (Quaternion algebras over R) Let D be the quaternion algebra

over Q as in Example 2.1.1. There are two possibilities for D ⊗Q R.

On one hand, if both α, β are negative then

D ⊗Q R ∼= H := R ⊕ Ri ⊕ Rj ⊕ Rij,

with

i2 = j2 = −1, ij = −ji.

Here H is the Hamilton quaternion algebra with involution

ι : a+ bi + cj + dij 7→ a− bi − cj − dij,

and we can embed it into Mat2(C) by the map i defined as in Example 2.1.1. In this

case (H, ι) is again an algebra with involution over R of type (b).

On the other hand, if one of α, β is positive (without loss of generality we can assume

β = 1) then the map i similarly defined as in Example 2.1.1 gives an isomorphism

between (D⊗Q R, ρ) and (Mat2(R), ι) where ι is the involution of Mat2(R) given by a b

c d


ι

=

 d −b

−c a

 .
In this case (Mat2(R), ι) is an algebra with involution over R of type (d).

Example 2.1.3. (Quaternion algebras over Qp) Let D be the quaternion algebra

as in Example 2.1.1. There are two possibilities for D ⊗Q Qp depending on whether



2.1. Classical groups 15

the equation

αx2 + βy2 = 1

has a solution (x, y) over Qp.

If it does not have a solution, we say that p ramifies and in this case (D⊗Q Qp, ρ) is

again an algebra with involution over Qp of type (b).

If it has a solution, we say that p splits and by changing basis we have

D ⊗Q Qp
∼= D′ := Qp ⊕ Qpζ

′ ⊕ Qpξ
′ ⊕ Qpζ

′ξ′,

with

ζ ′2 = α′, ξ′2 = β′ = 1, ζ ′ξ′ = −ξ′ζ ′.

In this case, by the map i similarly defined as in Example 2.1.1, we can show that

D ⊗Q Qp is isomorphic to an algebra with involution over Qp of type (d). Note

that, up to conjugation, Mat2(Qp) has a unique maximal order Mat2(Zp). If we

fix a maximal order O of D, then we can and we shall always fix an isomorphism

D ⊗Q Qp
∼= Mat2(Qp) such that the image of O ⊗Z Zp is Mat2(Zp).

2.1.2 Hermitian forms and classical groups

Let F be a local field or global field. Fix a triple (D, ρ, ϵ) with (D, ρ) an algebra

D with involution ρ over F and ϵ = ±1. Let W be a free left D-module of rank

n. By an ϵ-hermitian space we mean a structure W = (W, ⟨·, ·⟩) where ⟨·, ·⟩ is an

ϵ-hermitian form on W , that is, an F -bilinear map ⟨·, ·⟩ : W ×W → D such that

⟨x, y⟩ρ = ϵ⟨y, x⟩, ⟨ax, by⟩ = a⟨x, y⟩bρ, (a, b ∈ D, x, y ∈ W ). (2.1.1)

We always assume such a form to be non-degenerate, i.e. ⟨x,W ⟩ = 0 implies x = 0.

We call W isotropic if ⟨x, x⟩ = 0 for some 0 ̸= x ∈ W and call W anisotropic if

⟨x, x⟩ = 0 only for x = 0. The following is the fundamental theorem of the study of

hermitian forms.
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Proposition 2.1.4. (Witt’s Theorem) Let W be an ϵ-hermitian space of rank n.

There exists 2m elements ei, fi with 1 ≤ i ≤ m ≤ n
2 such that

W =
m∑
i=1

(Dei +Dfi) + Z,

⟨ei, ej⟩ = ⟨fi, fj⟩ = 0, ⟨ei, fj⟩ =


ϵ i = j,

0 i ̸= j
for every i, j,

Z = {x ∈ W : ⟨ei, x⟩ = ⟨fi, x⟩ = 0 for all i} .

(2.1.2)

If (Z, ⟨·, ·⟩Z), with ⟨·, ·⟩Z the restriction to Z, is anisotropic then we call m the Witt

index of W.

We record some facts about the anisotropic ϵ-hermitian spaces in the following

lemma.

Lemma 2.1.5. (1) Let F be a non-archimedean local field and W an anisotropic

ϵ-hermitian space of dimension r. Then

r = 0 if (D, ρ) of type (a) and ϵ = −1,

r ≤ 4 if (D, ρ) of type (a) and ϵ = 1,

r ≤ 3 if (D, ρ) of type (b) and ϵ = −1,

r ≤ 1 if (D, ρ) of type (b) and ϵ = 1,

r ≤ 2 if (D, ρ) of type (c) and ϵ = −1.

(2.1.3)

(2) Let F be an archimedean local field and W be an anisotropic hermitian space of

dimension r. Then

r = 0 if (D, ρ) of type (a) and ϵ = −1,

r ≤ 1 if (D, ρ) of type (b) and ϵ = −1,

r = 0 if (D, ρ) of type (b) and ϵ = 1,

(2.1.4)

In other cases, r can be arbitrary non-negative integers.

(3) Let F be a number field and W an anisotropic ϵ-hermitian space of dimension r.
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Then
r = 0 if (D, ρ) of type (a) and ϵ = −1,

r ≤ 3 if (D, ρ) of type (b) and ϵ = −1,

r ≤ 1 if (D, ρ) of type (b) and ϵ = 1,

(2.1.5)

In other cases, r can be arbitrary non-negative integers.

Proof. For (1), the assertion for (D, ρ) of type (a), (c) is well known and recorded

in [Shi97, Proposition 5.2]. The case (D, ρ) of type (b) with ϵ = 1 can be proved

similarly as there. The case (D, ρ) of type (b) with ϵ = −1 is proved in [Tsu61].

The second part of the lemma can be checked directly and the third part follows by

the Hasse principle. For the case (D, ρ) of type (b) with ϵ = 1, one uses the well

known Hasse principle for quadratic forms, and for the case (D, ρ) of type (b) with

ϵ = −1 one needs the Hasse principle for quaternionic skew-hermitian forms proved

in [Hij63].

Denote the ring of all D-linear endomorphisms of W by EndD(W ) and GLD(W ) =

EndD(W )×. If we view elements of W as row vectors, then GLD(W ) acts on W

from the right. The classical group of W is defined as

G := G(W) := {g ∈ GLD(W ) : ⟨xg, yg⟩ = ⟨x, y⟩ for all x, y ∈ W}, (2.1.6)

which is a (possibly disconnected) reductive algebraic group over F . By fixing a

basis of W , we can identify EndD(W ) with Matn(D) and GLD(W ) with GLn(D).

Then ⟨·, ·⟩ can be expressed as a matrix of the form

Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 with n = 2m+ r, θ∗ = ϵθ ∈ GLr(D) (2.1.7)

and thus the classical group G can be realized as

G := G(W,Φ) = {g ∈ GLn(D) : gΦg∗ = Φ}. (2.1.8)
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We assume m ≥ 1 throughout the thesis to avoid the discussion of definite classical

groups.

Example 2.1.6. (Classical groups of type (d)) Let W = (W, ⟨·, ·⟩) be an ϵ-hermitian

space associated to (D, ρ) of type (d) with ϵ = ±1 and G = G(W,Φ) the associated

classical group defined as in (2.1.8). Identifying GLn(D) with GL2n(F ), the group

G is isomorphic to

G̃ := {g ∈ GLn(D) : gΦ̃ tg = Φ̃},

with

Φ̃ =


0 0 12m

0 θ̃ 0

−ϵ · 12m 0 0

 with n = 2m+ r, tθ̃ = −ϵθ̃ ∈ GL2r(F ).

By the above example, the study of classical groups of type (d) is indeed covered

by the study of classical groups of type (a). One can also show that in case (e) the

classical group is the general linear group.

2.1.3 The doubling embedding

We keep the notation G := G(W) = G(W,Φ) in (2.1.6) or (2.1.7). Doubling the

underlying ϵ-hermitian space W we consider V = (W ⊕W, ⟨⟨·, ·⟩⟩) where

⟨⟨(x1, x2), (y1, y2)⟩⟩ := ⟨x1, y1⟩ − ⟨x2, y2⟩ for (x1, x2), (y1, y2) ∈ W ⊕W. (2.1.9)

By fixing a basis of V , the classical group G(V) is isomorphic to

H = {h ∈ GL2n(D) : gJng∗ = Jn}, Jn =

 0 1n

ϵ · 1n 0

 . (2.1.10)

Note that

R

 Φ 0

0 −Φ

R∗ = Jn,
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with

R =



0 ϵ
2 · 1r 0 0 ϵ

2 · 1r 0

0 0 0 0 0 −ϵ · 1m

1m 0 0 0 0 0

0 θ−1 0 0 θ−1 0

0 0 0 1m 0 0

0 0 1m 0 0 0



.

Then we define a doubling map

G×G → H,

(g1, g2) 7→ R

 g1 0

0 g2

R−1.
(2.1.11)

We thus view G × G as a subgroup of H and identify (g1, g2) with its image in H.

More explicitly, if we write

g1 =


a1 f1 b1

h1 e1 j1

c1 k1 d1

 , g2 =


a2 f2 b2

h2 e2 j2

c2 k2 d2

 , (2.1.12)

with a1, a2, d1, d2 of size m×m, e1, e2 of size r × r, then

(g1, g2) =



e1+e2
2 − j2

2
ϵh1
2

ϵ(e1−e2)θ
4

ϵh2
2

ϵj1
2

−k2 d2 0 ϵk2θ
2 −ϵc2 0

ϵf1 0 a1
f1θ
2 0 b1

ϵθ−1(e1 − e2) ϵθ−1j2 θ−1h1 θ−1 e1+e2
2 θ −θ−1h2 θ−1j1

ϵf2 −ϵb2 0 −f2θ
2 a2 0

ϵk1 0 c1
k1θ
2 0 d1



. (2.1.13)

2.2 The global integral and the main result

We review the doubling method and summarize our main results on the integral

representation of the standard L-functions for classical groups. The definition of the
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local L-factors and computation of the local integrals will be carried out in the next

two sections.

2.2.1 The global groups

Let F be a number field with adele ring A. We consider tuples (D, ρ, ϵ) of following

five cases:

(Case I, Orthogonal) (D, ρ) of type (a) with ϵ = 1,

(Case II, Symplectic) (D, ρ) of type (a) with ϵ = −1,

(Case III, Quaternionic Orthogonal) (D, ρ) of type (b) with ϵ = 1,

(Case IV, Quaternionic Unitary) (D, ρ) of type (b) with ϵ = −1,

(Case V, Unitary) (D, ρ) of type (c) with D = E and ϵ = −1.

The global groups we consider are

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (2.2.1)

with n = 2m+ r and θ∗ = ϵθ ∈ GLr(D) anisotropic (so the global Witt index of Φ

is m) and

H := H(F ) := {h ∈ GL2n(D) : gJng∗ = Jn}, Jn =

 0 1n

ϵ · 1n 0

 , (2.2.2)

together with a doubling embedding G×G → H defined by (2.1.11).

We denote AD = D ⊗F A for the adelization and Dv = D ⊗F Fv for the localization

at a place v of F . For global groups, we will write G(A), H(A), G(Fv), H(Fv) for its

adelization and localization but simply write G = G(F ), H = H(F ) for the rational

points if its meaning is clear from the context.

Remark 2.2.1. In this thesis, we label our group as Case I-V for simplicity but

we may also call the name of the group (i.e. orthogonal, symplectic, ...) so that

one can easily compare the group here with the one in other papers. The notion of
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orthogonal, symplectic and unitary groups are well known and appear frequently in

the literature while the groups of Case III, IV do not have a standard name. Here

we call them quaternionic orthogonal or unitary depending on whether the form

defining the group is hermitian (like the orthogonal group) or skew-hermitian (like

the unitary). But indeed, both groups have been called ‘quaternionic unitary’ in the

literature so the reader should be careful about its meaning. For example, the group

studied in [Gar77] and [Shi99b] are the quaternionic orthogonal group here.

Remark 2.2.2. In this thesis, we shall use the term ‘totally isotropic group’ to

indicate the group whose associated ϵ-hermitian form is totally isotropic (i.e. r = 0

in (2.1.7)) instead of using the term split group or quasi-split group. In the sequel,

when discussing the local groups G(Fv), we will distinguish the ‘split’ and ‘nonsplit’

case according to whether Dv is split or not.

2.2.2 The doubling method

Let P ⊂ H be the Siegel parabolic subgroup whose Levi component is GLn(D).

More explicitly, P = M ⋉N with

M =


 a 0

0 â

 : a ∈ GLn(D)

 , N =


 1 b

0 1

 : b ∈ Sn(F )

 . (2.2.3)

Here Sn(F ) is an additive algebraic group with

Sn(F ) = {b ∈ Matn(D) : ϵb+ b∗ = 0} . (2.2.4)

Let χ : E×\A×
E → C× be a Hecke character and extend it to a character on GLn(AD)

(still denoted by χ) by taking the composite with the reduced norm ν : GLn(AD) →

A×
E. Consider the induced representation

IndH(A)
P (A) (χ|ν(·)|s) (2.2.5)
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consisting of functions fs : H(A) → C such that

fs(pg) = χ(ν(a))|NE/F (ν(a))|s+κfs(g), (2.2.6)

for

p =

 a b

0 â

 ∈ P (A), a ∈ GLn(D), (2.2.7)

where

κ =



n−1
2 Case I,

n+1
2 Case II,

2n+1
2 Case III,

2n−1
2 Case IV,
n
2 Case V.

(2.2.8)

We then form the Eisenstein series

E(h; fs) =
∑

γ∈P (F )\H(F )
fs(γh), h ∈ H(A), (2.2.9)

on H(A) associated to a standard section fs.

Let π be a cuspidal automorphic representation of G(A) with trivial central character

and ϕ1, ϕ2 ∈ π be two cusp forms. The global integral we consider is

Z(s;ϕ1, ϕ2, fs)

=
∫

(G×G)(F )\(G×G)(A)
E((g1, g2); fs)ϕ1(g1)ϕ2(g2)χ(ν(g2))−1dg1dg2.

(2.2.10)

Here we must take ϕ1, ϕ2 ∈ π in the same representation space, otherwise the integral

will be identically zero. The following basic identity is pivotal in the doubling method.

Proposition 2.2.3. (Basic identity) Let π be a cuspidal automorphic representation

of G(A) with trivial central character and ϕ1, ϕ2 ∈ π be two cusp forms. Then

Z(s;ϕ1, ϕ2, fs) =
∫
G(A)

fs(δ(g, 1))⟨π(g)ϕ1, ϕ2⟩dg, (2.2.11)

where

⟨ϕ1, ϕ2⟩ =
∫
G(F )\G(A)

ϕ1(g)ϕ2(g)dg, (2.2.12)
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is the standard inner product on G(A) and

δ =



1r 0 0 0 0 0

0 1m 0 0 0 0

0 0 1m 0 0 0

0 0 0 1r 0 0

0 0 −1m 0 1m 0

0 ϵ · 1m 0 0 0 1m



. (2.2.13)

Proof. The proof is well known (see for example [PR87]). We sketch the idea here.

Unfolding the Eisenstein series, we obtain

Z(s;ϕ1, ϕ2, fs)

=
∫
G(F )×G(F )\G(A)×G(A)

∑
γ∈P (F )\H(F )/G(F )×G(F )

∑
η∈Stabγ\G(F )×G(F )

fs(γη(g1, g2))ϕ1(g1)ϕ2(g2)χ(ν(g2))−1dg1dg2.

Here Stabγ = γ−1P (F )γ ∩G(F ) ×G(F ) is the stabilizer of the orbit represented by

γ. The representatives of P (F )\H(F )/G(F ) ×G(F ) can be chosen as

δi =



1r 0 0 0 0 0

0 1m 0 0 0 0

0 0 1m 0 0 0

0 0 0 1r 0 0

0 0 −ei 0 1m 0

0 ϵ · ei 0 0 0 1m



with ei =

 1i 0

0 0

 , 0 ≤ i ≤ m,

and the stabilizer Stabδi
can be easily calculated. We can thus write

Z(s;ϕ1, ϕ2, fs) =
∑

0≤i≤m
Zi(s;ϕ1, ϕ2, fs),

Zi(s;ϕ1, ϕ2, fs) =
∫

Stabδi
\G(A)×G(A)

fs(δi(g1, g2))ϕ1(g1)ϕ2(g2)χ(ν(g2))−1dg1dg2.

All the orbits represented by δi for 0 ≤ i < m are negligible in the sense that they

contain the unipotent radical of a proper parabolic subgroup of G×G as a normal
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subgroup. Then using the cuspidality of π, we can show that

Zi(s;ϕ1, ϕ2, fs) = 0 for all 0 ≤ i < m.

It remains to calculate the contribution of the main orbit δ := δm. Note that

δ(g, g)δ−1 ∈ P for all g ∈ G, we calculate

Zm(s;ϕ1, ϕ2, fs) =
∫
G(A)

∫
G(F )\G(A)

fs(δ(g2g1, g2))ϕ1(g2g1)ϕ2(g2)χ(ν(g2))−1dg2dg1

=
∫
G(A)

fs(δ(g1, 1))
∫
G(F )\G(A)

ϕ1(g2g1)ϕ2(g2)dg2dg1.

Write π = ⊗′
vπv and assume ϕ1 = ⊗vϕ1,v, ϕ2 = ⊗vϕ2,v with ϕ1,v, ϕ2,v ∈ πv. Also

choose the section fs such that fs = ∏
v fs,v is factorizable with local sections fs,v ∈

IndH(Fv)
P (Fv) (χ|ν(·)|s). Due to the uniqueness of the pairing, ⟨·, ·⟩ is factorizable in the

sense that ⟨ϕ1, ϕ2⟩ = ∏
v⟨ϕ1,v, ϕ2,v⟩, where

⟨ϕ1,v, ϕ2,v⟩ =
∫
G(Fv)

ϕ1,v(g)ϕ2,v(g)dg (2.2.14)

is the local pairing. Then Z(s;ϕ1, ϕ2, fs) has an Euler product expression

Z(g2;ϕ1, ϕ2, fs) =
∏
v

Zv(s;ϕ1,v, ϕ2,v, fs,v),

Zv(s;ϕ1,v, ϕ2,v, fs,v) =
∫
G(Fv)

fs,v(δ(g, 1))⟨π(g)ϕ1,v, ϕ2,v⟩dg.
(2.2.15)

Hence, the global integral Z(s;ϕ1, ϕ2, fs) can be studied locally place by place.

In some works of the doubling method (e.g. [BS00; Gar84b; Shi97; Shi00]), for

g2 ∈ G(A), the integral of the following form is considered

Z ′(g2;ϕ1, fs) =
∫
G(F )\G(A)

E((g1, g2); fs)ϕ1(g1)dg1. (2.2.16)
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The computation of (2.2.16) is same as the one for (2.2.10). In particular, we have

Z ′(g2;ϕ1, fs) = χ(ν(g2))
∫
G(A)

fs(δ(g1, 1))ϕ1(g2g1)dg1

= χ(ν(g2))
∏
v

Z ′
v(g2;ϕ1,v, fs,v),

Z ′
v(g2;ϕ1,v, fs,v) =

∫
G(Fv)

fs,v(δ(g1, 1))ϕ1,v(g2g1)dg1

(2.2.17)

2.2.3 Main results on integral representations

The first main result of this thesis is an integral representation of standard L-

functions. That is, we make the choice of fs such that the global integral Z in

(2.2.10) represents the L-function defined in Section 2.3. We summarize our result

here.

Let o be the ring of integers of F and O a maximal order of D. Denote by ov,Ov

their localizations and assume Dv = Ov ⊗ov Fv. For a finite place v corresponds to

a prime ideal pv of o, denote ϖv for the uniformizer of pv and set qv = |ϖv|−1
v . Fix

an o-ideal n = n1n2 with n1, n2 coprime and write n = ∏
v p

cv
v . Define the following

open compact subgroup of G(o):

K(n) = G(o) ∩


Matm(O) Matm,r(O) Matm(O)

Matr,m(nO) 1 + Matr(n′O) Matr,m(O)

Matm(nO) Matm,r(nO) Matm(O)

 , (2.2.18)

where n′ = ∏
v,cv≥1 pv is the support of n.

Let ϕ ∈ π be a factorizable cusp form with ϕ = ⊗′
vϕv. Set S∞ be the set of all

archimedean places of F . Denote S1 be the set consisting of places dividing n1 and

S2 the set consisting of places dividing n2. We make the following assumptions:

(1) 2 ∈ O×
v and θ ∈ GLr(Ov) for all v ∈ S1 ∪ S2,

(2) ϕ is fixed by K(n) and is unramified outside S1, S2, i.e. fixed by G(ov) for

v /∈ S1 ∪ S2 ∪ S∞,

(3) ϕ is an eigenfunction for the Hecke algebra H(K(n),X) as in Section 2.3.4,

(4) χ has conductor n2,
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(5) In Case V, all places v ∈ S1 ∪ S2 are nonsplit in O.

The standard L-function L(s, ϕ × χ) of ϕ twisted by χ is defined in Section 2.3.4.

There is an Euler product expression

L(s, ϕ× χ) =
∏
v

Lv(s, ϕv × χv). (2.2.19)

When v /∈ S1 ∪S2, Lv(s, ϕv ×χv) is the unramified local L-factors defined with m in

Section 2.3.1 replaced by the Witt index of G(Fv). When v ∈ S1 ∪S2, Lv(s, ϕv ×χv)

are the ramified local L-factors and in particular Lv(s, ϕv × χv) = 1 if v ∈ S2. The

integral representation for the partial L-function

LS1∪S2(s, ϕ× χ) :=
∏

v/∈S1∪S2

Lv(s, ϕ× χ) (2.2.20)

is well known. We make the choice of local sections fs,v properly for v ∈ S1 ∪ S2

such that the global integral Z represents the complete L-function. Let

w =


0 0 1m

0 1r 0

ϵ · 1m 0 0

 (2.2.21)

be a Weyl element. Define η1 ∈ G(A) to be an element such that (η1)v = w for

v ∈ S1 and (η1)v = 1 for v /∈ S1. Similarly set η2 ∈ G(A) to be an element such that

(η2)v = w for v ∈ S2 and (η2)v = 1 for v /∈ S2.

Take ϕ1 = π(η1)ϕ, ϕ2 = π(η2)ϕ and write

Z(s;ϕ, fs) := Z(s;ϕ1, ϕ2, fs). (2.2.22)

Theorem 2.2.4. Keep the assumptions of ϕ, χ as above. Take the section fs to be

fs =
∏

v/∈S1∪S2∪S∞

f 0
s,v ·

∏
v∈S1

f †,cv
s,v ·

∏
v∈S2

f ‡,cv
s,v ·

∏
v∈S∞

f∞
s,v. (2.2.23)

Then

Z(s;ϕ, fs) = C · L
(
s+ 1

2 , ϕ× χ
)

· Z∞(s;ϕ∞, f
∞
s ) ·

∏
v∤∞

⟨π(η)ϕv|U ′(n1), ϕv⟩. (2.2.24)
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Here:

(a) f 0
s,v, f

†,cv
s,v , f

‡,cv
s,v are local sections defined by (2.4.6), (2.4.11), (2.4.15) and f∞

s,v can

be chosen such that

Z∞(s;ϕ∞, f
∞
s ) :=

∏
v

Zv|∞(s;ϕv, f∞
s,v) ̸= 0, (2.2.25)

(b) U ′(n1) = ∏
v|n1 U

′(pcv
v ) is the Hecke operator defined by (2.3.14) and

η =
∏
v∈S2


0 0 ϖ−cv

v · 1m

0 1r 0

ϖcv
v · 1m 0 0

 , (2.2.26)

(c) C is a constant given by

C = χ(n1)md1|n1|md2(s+κ)vol(GLm(O)/GLm(n2O)), (2.2.27)

with

d1 =


1 Case I, II, V,

2 Case III, IV,
d2 =


1 Case I, II,

2 Case III, IV, V.
(2.2.28)

Remark 2.2.5. This is proved by combining the local computations of Proposition

2.4.1, 2.4.2, 2.4.4. In Case III, IV, if Dv splits then the local computations follow

from the one for Case I, II as the local group G(Fv) is a symplectic group in Case

III or an orthogonal group in Case IV (see also Section 2.3.3). For Case V, we do

not cover the split case in this work for simplicity and also because this case is well

studied in [HLS06] and [EHLS20]. Hence throughout the thesis we will assume all

v|n are nonsplit in O for Case V.

2.3 Hecke operators and local L-factors

In this and the next section, we fix the following local setup. Let F be a non-

archimedean local field and o its ring of integers with the maximal ideal p. Fix a

uniformizer ϖ and the absolute value | · | on F normalized so that |ϖ| = q−1 with
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q the cardinality of the residue field. We consider tuples (D, ρ, ϵ) of following eight

cases:

(Case I, Orthogonal) (D, ρ) of type (a) with ϵ = 1,

(Case II, Symplectic) (D, ρ) of type (a) with ϵ = −1,

(Case III, Quaternionic Orthogonal Nonsplit) (D, ρ) of type (b) with ϵ = 1,

(Case III’, Quaternionic Orthogonal Split) (D, ρ) of type (d) with ϵ = 1,

(Case IV, Quaternionic Unitary Nonsplit) (D, ρ) of type (b) with ϵ = −1,

(Case IV’, Quaternionic Unitary Split) (D, ρ) of type (d) with ϵ = −1,

(Case V, Unitary Nonsplit) (D, ρ) of type (c) with D = E, ϵ = −1,

(Case V’, Unitary Split) (D, ρ) of type (e) with D = E, ϵ = −1.

We fix a maximal order O of D such that D = O ⊗o F . Let q be a prime ideal in O

above p and fix ϖ̃ a uniformizer of q.

2.3.1 Unramified local L-factors

In this and the next subsection, we do not consider three split cases (i.e Case III’,

IV’, V’). Let

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (2.3.1)

with n = 2m+ r and θ∗ = ϵθ ∈ GLr(D) is anisotropic. Assume π is an unramified

admissible representation of G(F ) and ϕ ∈ π a spherical vector. Also assume χ is

an unramified character of E×.

Recall the Cartan decomposition

G(F ) =
∐

e1,...,em∈Z
0≤e1≤...≤em

Ke1,...,em ,

Ke1,...,em = G(o)diag[ϖ̃e1 , ..., ϖ̃em , 1r, ϖ̃−e1 , ..., ϖ̃−em ]G(o).

(2.3.2)

The local spherical Hecke algebra H is generated by all such double cosets Ke1,...em .
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The action of the Hecke operator associated to [Ke1,...,em ] on ϕ is given by

ϕ|[Ke1,...,em ] =
∫
Ke1,...,em

π(g)ϕdg. (2.3.3)

Here, the measure dg is normalized such that G(o) has volume 1. Since the space of

spherical vectors has dimension one, ϕ is an eigenvector under the action of Hecke

operators, that is

ϕ|[Ke1,...,em ] = λe1,...,em(ϕ)ϕ, (2.3.4)

for some scalar λe1,...,em(ϕ). We define the unramified local L-factors as

L
(
s+ 1

2 , ϕ× χ
)

=b(s, χ)
∑

e1,...,em∈Z
0≤e1≤...≤em

λe1,...,em(ϕ)
(
χ(ν(ϖ̃))|NE/F (ν(ϖ̃))|s+κ

)e1+...+em

.
(2.3.5)

Here b(s, χ) is the normalizing factor given in the following list (taken from [Yam14,

p.667] but Case III, IV should be calculated from [Shi99b, Proposition 3.5]).

(Case I, Orthogonal)

b(s, χ) =
⌊ n

2 ⌋∏
i=1

L(2s+ n+ 1 − 2i, χ2),

(Case II, Symplectic)

b(s, χ) = L
(
s+ n+ 1

2 , χ
) n

2∏
i=1

L(2s− 1 + 2i, χ2),

(Case III, Quaternionic Orthogonal Nonsplit)

b(s, χ) = L
(
s+ 2n+ 1

2 , χ
) n∏
i=1

L(2s+ 2n+ 1 − 4i, χ2),

(Case IV, Quaternionic Unitary Nonsplit)

b(s, χ) =
n∏
i=1

L(2s+ 2n+ 3 − 4i, χ2),

(Case V, Unitary) Set χ0 = χ|F× and let χE/F be the quadratic character associated

to E/F , then

b(s, χ) =
n∏
i=1

L(2s+ i, χ0χn+i
E/F ).
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Here L(s, χ) means the local L-factor of Hecke L-functions.

Proposition 2.3.1. Let αi ∈ C, 1 ≤ i ≤ m be the Satake parameters of ϕ. Then

L(s, ϕ×χ) has an Euler product expansion with L(s, ϕ×χ)−1 given by the following

list.

(Case I, Orthogonal)

⌊ r
2 ⌋∏
i=1

(
1 − χ(ϖ)2q2i−r−2s

)
×

m∏
i=1

(
1 − χ(ϖ)αiq−1+ r

2 −s
) (

1 − χ(ϖ)α−1
i q1− r

2 −s
)
,

(Case II, Symplectic)

(
1 − χ(ϖ)q−s

)
×

m∏
i=1

(
1 − χ(ϖ)αiq−s

) (
1 − χ(ϖ)α−1

i q−s
)
,

(Case III, Quaternionic Orthogonal Nonsplit)

(
1 − χ(ϖ)q−r−s

)
×

m+r∏
i=1

(
1 − χ(ϖ)2q4i−2r−2s

)
×

m∏
i=1

(
1 − χ(ϖ)αiq−1+r−s

) (
1 − χ(ϖ)α−1

i q−r−s
)
,

(Case IV, Quaternionic Unitary Nonsplit)

m+r∏
i=1

(
1 − χ(ϖ)2q4i−2−2r−2s

)
×

m∏
i=1

(
1 − χ(ϖ)αiq−2+r−s

) (
1 − χ(ϖ)α−1

i q1−r−s
)
,

(Case V, Unitary Inert) E/F is inert,

m∏
i=1

(
1 − χ(ϖ)αiq−1+r−s

) (
1 − χ(ϖ)α−1

i q1−r−s
)
,

(Case V, Unitary Ramified) E/F is ramified,

m∏
i=1

(
1 − χ(ϖ̃)αiq

r−1
2 −s

) (
1 − χ(ϖ̃)α−1

i q− r−1
2 −s

)
,

Proof. The symplectic and unitary cases are given in [Shi00, Theorem 19.8]. The

orthogonal case are given by [Shi04, Proposition 17.14] and the quaternionic ortho-

gonal group are studied in [Shi99b, Theorem 3.12]. All can be computed using the

method in [Shi97, Section 16]. For the quaternionic unitary groups, by the same
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manner, we calculate the following Dirichlet series,

∑
e1,...,em∈Z

0≤e1≤...≤em

λe1,...,em(q−s)e1+...+em = α(s)β(2s− 2m+ 1)A(s− n+ 1 − r, s),

where
α(s) =

m∏
i=1

1 − q4i−4−2s

1 − q2m+2i−3−2s ,

β(s) =
m∏
i=1

1 − q2i−2−s

1 − q2r+2i−2−s ,

A(s′, s) =
m∏
i=1

1 − q2i−2−s−s′

(1 − q−2−s′αi)(1 − q2m−sα−1
i )

.

Then
∑

e1,...,em∈Z
0≤e1≤...≤em

λe1,...,em(q−s)e1+...+em =
m∏
i=1

1 − q4i−4−2s

(1 − qn+r−3−sαi)(1 − q2m−sα−1
i )

.

Multiplying the normalizing factor b(s, χ) we obtain the result in the above list.

2.3.2 Ramified local L-factors

Let

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (2.3.6)

with n = 2m+ r and θ∗ = ϵθ ∈ GLr(D) not necessarily anisotropic. In the ramified

cases, we will always assume that 2 and θ are unramified, i.e. 2 ∈ O×, θ ∈ GLr(O).

For an integer c ≥ 1, we consider the following two open compact subgroups of G(o):

K(pc) = G(o) ∩


Matm(O) Matm,r(O) Matm(O)

Matr,m(pcO) 1 + Matr(pO) Matr,m(O)

Matm(pcO) Matm,r(pcO) Matm(O)

 ,

K ′(pc) = G(o) ∩


Matm(O) Matm,r(pcO) Matm(pcO)

Matr,m(O) 1 + Matr(pO) Matr,m(pcO)

Matm(O) Matm,r(O) Matm(O)

 .
(2.3.7)
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Clearly, they are related by K(pc) = wK ′(pc)w with w the Weyl element as (2.2.21).

Let

M = GLm(D) ∩ Matm(O),Q = {diag[u, 1r, û], u ∈ M},X = K(pc)QK(pc). (2.3.8)

For ξ = diag[u, 1r, û] ∈ Q, we define d(ξ) be the integer such that ν(u) = ϖ̃d(ξ). The

local Hecke algebra H(K(pc),X) associated to K(pc) and X is generated by double

cosets [K(pc)ξK(pc)] with ξ ∈ Q. This kind of Hecke algebra generalizes the one in

[Shi00, Section 19]. Let π be an admissible representation of G(F ). Assume ϕ ∈ π

is a vector fixed by K(pc), the Hecke operator [K(pc)ξK(pc)] acts on ϕ by

ϕ|[K(pc)ξK(pc)] =
∫
K(pc)ξK(pc)

π(g)ϕdg. (2.3.9)

If we assume the measure dg is normalized such that K(pc) has volume 1, then the

action can be written as a sum

ϕ|[K(pc)ξK(pc)] =
∑

K(pc)ξK(pc)/K(pc)
π(g)ϕ. (2.3.10)

The coset in the sum is characterized in the following lemma.

Lemma 2.3.2. Let ξ = diag[u, 1r, û] with u ∈ M then

K(pc)ξK(pc) =
∐
d,b,c


d −b∗θ−1 cd̂

0 1 bd̂

0 0 d̂

K(pc), (2.3.11)

where d ∈ GLm(D)uGLm(D)/GLm(D), b ∈ Matm,r(O)/Matm,r(O)d∗ and

c ∈ Matm(O)/dMatm(O)d∗ satisfying ϵc+ b∗θ̂b+ c∗ = 0.

Proof. This is an analogue of [Shi00, Lemma 19.2] and can be verified in a straight-

forward way.

Assume ϕ ∈ π is an eigenvector for all [K(pc)ξK(pc)], that is there exists a scalar λξ

such that

ϕ|[K(pc)ξK(pc)] = λξ(ϕ)ϕ. (2.3.12)
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For an integer n ≥ 1, we consider a special Hecke operator

U(pn) := [K(pc)ξK(pc)] with ξ = diag[ϖn · 1m, 1r, ϖ−n · 1m]. (2.3.13)

Denote the Hecke eigenvalue for operator U(pn) as α(pn). Clearly by Lemma 2.3.2,

one has U(pn) = U(p)n and α(pn) = α(p)n. In later computations, we will also use

another kind of Hecke operator

U ′(pn) := [K(pc)ξK(pc)] with ξ =


0 0 ϖ−n · 1m

0 1r 0

ϵϖn · 1m 0 0

 . (2.3.14)

Its action on ϕ is defined similarly as above.

Assume χ is an unramified character, define the ramified local L-factors as

L
(
s+ 1

2 , ϕ× χ
)

=
∑

ξ∈K(pc)\X/K(pc)
λξ(ϕ)

(
χ(ν(ϖ̃))|NE/F (ν(ϖ̃))|s+κ

)d(ξ)
. (2.3.15)

If χ is ramified then we simply set

L
(
s+ 1

2 , ϕ× χ
)

= 1. (2.3.16)

Proposition 2.3.3. Let βi ∈ C, 1 ≤ i ≤ m be the Satake parameters of ϕ and

assume χ is unramified. Then L(s, ϕ × χ) has an Euler product expansion with

L(s, ϕ× χ)−1 given by the following list.

(Case I, Orthogonal)
m∏
i=1

(
1 − χ(ϖ)βiq−1+ r

2 −s
)
,

(Case II, Symplectic)
m∏
i=1

(
1 − χ(ϖ)βiq−s

)
,

(Case III, Quaternionic Orthogonal Nonsplit)

m∏
i=1

(
1 − χ(ϖ)βiq−1+r−s

)
,
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(Case IV, Quaternionic Unitary Nonsplit)

m∏
i=1

(
1 − χ(ϖ)βiq−2+r−s

)
,

(Case V, Unitary Inert) E/F is inert,

m∏
i=1

(
1 − χ(ϖ)βiq−1+r−s

)
,

(Case V, Unitary Ramified) E/F is ramified,

m∏
i=1

(
1 − χ(ϖ̃)βiq

r−1
2 −s

)
,

Proof. This is an analogue of [Shi00, Theorem 19.8] for symplectic and unitary cases.

The proof for all the cases are the same so we only compute the orthogonal case as

an example and omit the other cases.

The Satake map ω : T(K(pc),X) → Q[t1, ..., tm] is defined as follows. Given a coset

dGLm(o) for d ∈ GLm(F ), we can find a lower triangular matrix g ∈ GLm(F ) such

that dGLm(o) = gGLm(o). Assume the diagonal elements of g are of the form

ϖe1 , ..., ϖem with ei ∈ Z and set ω0(dGLm(o)) = ∏m
i=1(q−iti)ei . For K(pc)ξK(pc) =∐

y yK(pc) with y as in Lemma 2.3.2, we then define

ω([K(pc)ξK(pc)]) =
∑
y

ω0(yGLm(o)).

Set T = χ(ϖ)q−s. By [Shi00, Lemma 19.9] we calculate the Dirichlet series

∑
ξ∈K(pc)\X/K(pc)

λξ(ϕ)T ν(d) =
∑

d∈GLm(F )/GLm(o)
vol(b, c)ω0(dGLm(o))T ν(d).

Here vol(b, c) is the volume of K(pc)ξK(pc)/K(pc) with fixed d. Clearly

vol (Matm,r(pcO)/Matm,r(pcO)d∗) = |ν(d)|−r,
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and c′ := cJ + 1
2b

∗θ̂b satisfies c+ ϵc′∗ = 0. Then by [Shi97, Lemma 13.2] we have

∑
ξ∈K(pc)\X/K(pc)

λξ(ϕ)T ν(d)

=
∑

d∈GLm(F )/GLm(o)
|ν(d)|−r−m+1ω0(dGLm(o))T ν(d)

=
m∏
i=1

(1 − χ(ϖ)βiqm+r−2−s)−1

Changing s 7→ s+ n−1
2 − 1

2 we obtain the result in above list.

2.3.3 The split case

Let

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (2.3.17)

with n = 2m + r and θ∗ = ϵθ ∈ GLr(D) not necessarily anisotropic. In Case III’,

IV’, this group is isomorphic to

G̃ := G̃(F ) := {g ∈ GL2n(F ) : gΦ̃ tg = Φ̃}, Φ̃ =


0 0 12m

0 θ̃ 0

−ϵ · 12m 0 0

 , (2.3.18)

with tθ̃ = −ϵθ̃ ∈ GL2r(F ). In Case V’, G ∼= GLn(F ) is simply the general linear

group. We omit the discussion of Case V’ for simplicity as it is well studied in [Shi97;

Shi00].

Unramified local L-factors

The group G̃ is further isomorphic to

G̃′ := G̃′(F ) := {g ∈ GL2n(F ), gΦ̃′ tg = Φ̃′}, Φ̃′ =


0 0 1m′

0 θ′ 0

−ϵ · 1m′ 0 0

 , (2.3.19)
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with 2n = 2m′ + r′ and tθ′ = −ϵθ′ ∈ GLr′(F ) anisotropic. This is a group of Case I

or II discussed in Section 2.3.1. Assume χ is an unramified character of F×, π an

unramified admissible representation of G(F ) and ϕ ∈ π a spherical vector. Let π′

be an unramified admissible representation of G̃′(F ) and ϕ′ ∈ π′ a spherical vector

obtained from π, ϕ under the isomorphism G ∼= G̃′. We thus define the local L-factor

L(s, ϕ× χ) := L(s, ϕ′ × χ) as in Section 2.3.1. In particular, the normalizing factors

are

(Case III’, Quaternionic Orthogonal Split)

b(s, χ) = L
(
s+ 2n+ 1

2 , χ
) n∏
i=1

L(2s− 1 + 2i, χ2),

(Case IV’, Quaternionic Unitary Split)

b(s, χ) =
n∏
i=1

L(2s+ 2n+ 1 − 2i, χ2).

Let αi be the Satake parameters of ϕ then L(s, ϕ× χ)−1 are given by

(Case III’, Quaternionic Orthogonal Split)

(
1 − χ(ϖ)q−s

)
×

n∏
i=1

(
1 − χ(ϖ)αiq−s

) (
1 − χ(ϖ)α−1

i q−s
)
,

(Case IV’, Quaternionic Unitary Split)

⌊ r′
2 ⌋∏
i=1

(
1 − χ(ϖ)2q2i−r′−2s

)
×

m′∏
i=1

(
1 − χ(ϖ)αiq−1+ r′

2 −s
)(

1 − χ(ϖ)α−1
i q1− r′

2 −s
)
.

Ramified local L-factors

For an integer c ≥ 1, we consider the open compact subgroup K(pc) of G(o) as in

Section 2.3.2. The isomorphism between G and G̃ can be chosen such that the image

of G(o) is G̃(o). We will fix such an isomorphism throughout this thesis. In this

case, the image of K(pc) is

K̃(pc) = G̃(o) ∩


Mat2m(o) Mat2m,2r(o) Mat2m(o)

Mat2r,2m(pco) 1 + Mat2r(po) Mat2r,2m(o)

Mat2m(pco) Mat2m,2r(pco) Mat2m(o)

 (2.3.20)



2.3. Hecke operators and local L-factors 37

We can define the Hecke algebras H(K(pc),X) and H(K̃(pc),X) similarly as Section

2.3.2. Let π be an admissible representation of G(F ). Assume ϕ ∈ π is a vector

fixed by K(pc) and is an eigenvector for the Hecke algebra H(K(pc),X). Let π′ be an

admissible representation of G̃(F ) and ϕ′ ∈ π a vector obtained from π, ϕ under the

isomorphism G ∼= G̃. We thus define the local L-factor L(s, ϕ × χ) := L(s, ϕ′ × χ)

as in (2.3.15), (2.3.16). In particular, L(s, ϕ× χ)−1 are given by

(Case III’, Quaternionic Orthogonal Split)

2m∏
i=1

(
1 − χ(ϖ)βiq−s

)
,

(Case IV’, Quaternionic Unitary Split)

2m∏
i=1

(
1 − χ(ϖ)βiq−1+r−s

)
.

The operator U ′(pn) is defined as in (2.3.14) for orthogonal and symplectic groups.

In Case IV’, the U(pn) is also the one defined for Case I in (2.3.13). In Case III’, we

define U(pn) as

U(pn) := [K̃(pc)ξK̃(pc)] with ξ = diag[ϖn · 1n, ϖ−n · 1n]. (2.3.21)

Remark 2.3.4. Note that when defining local L-factors, we always assume the group

is chosen such that m is the Witt index in unramified cases which is not applied

for ramified cases. In other words, in ramified cases our open compact subgroup

K(pc) is not chosen to be maximal. For example in above Case III’, clearly the local

group G̃ can be further isomorphic to G̃′ with m′ = n, r′ = 0 as in the unramified

computations. But we are still considering the open compact subgroup K̃(pc) rather

than the bigger one

G̃′(o) ∩

 Matn(o) Matn(o)

Matn(pco) Matn(o)

 ,
which causes our local L-factors to be of degree 2m rather than the expected n as

in Case II. We make those restrictions because only these L-factors show up in our

integral representations.
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2.3.4 The global L-function

We summarize our definition for the standard L-function. Let F be a number field

and

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (2.3.22)

be the global group as in Section 2.2.1. Let o be the ring of integers of F and O a

fixed maximal order of D such that D = F ⊗o O. Let n = n1n2 be an integral ideal

of o with n1, n2 coprime and χ : E×\A×
E → C× a Hecke character of conductor n2.

Consider the open compact subgroup

K(n) = G(o) ∩


Matm(O) Matm,r(O) Matm(O)

Matr,m(nO) 1 + Matr(n′O) Matr,m(O)

Matm(nO) Matm,r(nO) Matm(O)

 , (2.3.23)

with n′ the support of n. For v a finite place corresponds to a prime ideal p denote

Mv = GLm(Dv) ∩ Matm(Ov) and set

Qv =


G(ov) p ∤ n,

diag[u, 1r, û] with u ∈ Mv p|n1

1 p|n2.

(2.3.24)

Let Q = ∏
vQv and X = K(n)QK(n). Define the global Hecke algebra H :=

H(K(n),X) associated to K(n) and X be the one generated by double cosets

[K(n)ξK(n)] with ξ ∈ Q. Its action on a cusp form ϕ ∈ π can be similarly defined

as in the local case treated above. Assume ϕ ∈ π is fixed by K(n) and is an

eigenfunction for H. That is

ϕ|[K(n)ξK(n)] = λξ(ϕ)ϕ. (2.3.25)
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The standard L-function of ϕ twisted by χ is defined as

L
(
s+ 1

2 , ϕ× χ
)

= b(s, χ)
∑

ξ∈K(n)\X/K(n)
ξ=diag[u,1,û]

λξ(ϕ)χ(ν(u))|NE/F (ν(u))|s+κ. (2.3.26)

Clearly, see for example [Shi00, Section 19], it has an Euler product expression

L
(
s+ 1

2 , ϕ× χ
)

=
∏
v

Lv

(
s+ 1

2 , ϕv × χv

)
, (2.3.27)

with Lv
(
s+ 1

2 , ϕv × χv
)

the local L-factors defined in the previous two subsections.

Note that when v ∤ n is unramified, G(ov) may have Witt index m′ ≥ m and the

unramified local L-factors is defined by replacing m with m′ in Section 2.3.1.

Remark 2.3.5. We give several remarks on our L-functions.

(1) Here we define the L-function by a Dirichlet series associated to certain Hecke

eigenvalues which can be viewed as an analogue of the L-function for classical (GL2)

modular forms. This kind of L-function is also studied in [Shi97; Shi00] for symplectic

and unitary groups.

(2) As the reader may notice, we are writing L(s, ϕ× χ) to indicate its dependence

on the cusp form ϕ. Unlike the GL2 case, we do not have a clear correspondence

between eigenforms and cuspidal representations. This is because, the subspace of

π fixed by K(n) (take n to be the conductor of π) may not be of dimension one.

(3) The unramified local L-factors defined here are really the Langlands L-function

associated to the natural embedding of the L-group LG into a general linear group.

(4) We make no claim that our definition of ramified L-factors is ‘correct’. Indeed, it

is a conjecture of Langlands [Lan70] that for any cuspidal representation π one can

associate to any place a local L-factor Lv(s, πv) and a local root number ϵv(s, πv)

such that the global L-function satisfies a functional equation of the form

L(s, π) = ϵ(s, π)L(1 − s, π).

Using the doubling method, Yamana [Yam14] gives a definition of local L-factors

and proves the functional equation for classical groups. However, he does not define



40 Chapter 2. The Integral Representation of the Standard L-functions

these factors explicitly as in our Proposition 2.3.1, 2.3.3 and it is not clear how his

approach can be used to study algebraicity or p-adic properties which is of interest

in this work. We have not compared our L-factors with his and we also do not know

whether the L-function defined here can be proved to satisfy a functional equation.

2.4 The non-archimedean local integrals

We carry out the computations of the non-archimedean local integrals in this section.

We keep the setting for non-archimedean local fields and tuples (D, ρ, ϵ) as in the

beginning of Section 2.3. The unramified local integrals are well known but we will

also review the computations for completeness. For ramified local integrals, it is also

well known that one can choose a local section fs,v such that Zv(s;ϕ1,v, ϕ2,v, fs,v) ̸= 0.

For our purpose, we explicitly construct certain local sections f †
s , f

‡
s , f

p
s such that Z

represents the local L-factors defined in the last section or the p-adic modifications.

These local sections will also be chosen such that the Eisenstein series has a nice

Fourier expansion. To make our notations and computations consistent, we do not

consider the split case (i.e. Case III’, IV’, V’). For Case III’, IV’, the local groups are

isomorphic to the groups in Case I, II and our arguments can be directly extended

to these two cases. The Case V’ should be treated separately and we omit it for

simplicity. We will assume in this thesis that Case V’ does not occur in the ramified

setting.

2.4.1 Setup for non-archimedean local integrals

Let

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (2.4.1)
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with n = 2m+ r and θ∗ = ϵθ ∈ GLr(D) not necessarily anisotropic. Let

H := H(F ) := {h ∈ GL2n(D) : hJnh∗ = Jn}, Jn =

 0 1n

ϵ · 1n 0

 , (2.4.2)

and define an embedding

G×G → H,

(g1, g2) 7→ R

 g1 0

0 g2

R−1,
(2.4.3)

with

R =



0 ϵ
2 · 1r 0 0 ϵ

2 · 1r 0

0 0 0 0 0 −ϵ · 1m

1m 0 0 0 0 0

0 θ−1 0 0 θ−1 0

0 0 0 1m 0 0

0 0 1m 0 0 0



.

We identify (g1, g2) with its image in H. Let P ⊂ H be the Siegel parabolic subgroup

consisting elements of the form

 ∗ ∗

0n ∗

, with Levi decomposition P = M ⋉N for

M =


 a 0

0 â

 : a ∈ GLn

 , N =


 1n b

0 1n

 : b∗ = −ϵb ∈ Matn

 . (2.4.4)

Consider the induced representation IndH(F )
P (F ) (χ|ν(·)|s) for a character χ : E× → C×.

Let π be an admissible representation of G(F ) and ϕ1, ϕ2 ∈ π. For a section

fs ∈ IndH(F )
P (F ) (χ|ν(·)|s) we consider the local integral

Z(s;ϕ1, ϕ2, fs) =
∫
G(F )

fs(δ(g, 1))⟨π(g)ϕ1, ϕ2⟩dg, (2.4.5)
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where

δ =



1r 0 0 0 0 0

0 1m 0 0 0 0

0 0 1m 0 0 0

0 0 0 1r 0 0

0 0 −1m 0 1m 0

0 ϵ · 1m 0 0 0 1m



.

2.4.2 The unramified local integrals

Assume χ is an unramified character of E×. Let π be an unramified admissible

representation of G(F ) and ϕ1 = ϕ2 = ϕ ∈ π a spherical vector.

Take the local section f 0
s ∈ IndH(F )

P (F ) (χ|ν · |s) to be the spherical section normalized

such that

f 0
s (pk) = χ(ν(a))|NE/F (ν(a))|s+κb(s, χ) with p =

 a b

0 â

 , k ∈ H(o). (2.4.6)

Here b(s, χ) is the normalizing factor given in Section 2.3.1. Note that in (2.4.1), θ is

not necessarily anisotropic. Let m′ be the Witt index of G. That is G is isomorphic

to the following F -group

G′ := G′(Φ′) := {g ∈ GLn(D) : gΦ′g∗ = Φ′} (2.4.7)

with

Φ′ =


0 0 1m′

0 θ′ 0

ϵ1m′ 0 0

 , n = 2m′ + r′, θ′∗ = ϵθ′ ∈ GLr′(D) anisotropic .

Then there exists a matrix S ∈ GLr(D) with SΦ′S∗ = Φ and the isomorphism

between G and G′ are given by

G′ ∼−→ G,

g 7→ SgS−1.

(2.4.8)
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Denote by π′, ϕ′ for the admissible representation and cusp form of G′(F ) obtained

from π, ϕ under isomorphism (2.4.8). Then the local L-factor L(s, ϕ×χ) = L(s, ϕ′×χ)

is defined in Section 2.3.1 with m replaced by m′.

Proposition 2.4.1. Let χ be an unramified character of E× and π an unramified

admissible representation of G(F ). For f 0
s chosen as above and ϕ1 = ϕ2 = ϕ ∈ π a

spherical vector, we have

Z(s;ϕ, ϕ, f 0
s ) = L

(
s+ 1

2 , ϕ× χ
)

⟨ϕ, ϕ⟩. (2.4.9)

Proof. We have another doubling embedding

G′ ×G′ → H,

(g1, g2) 7→ R′

 g1 0

0 g2

R′−1, R′ = R

 S 0

0 S


which is compatible with (2.4.3),(2.4.8). Then the integral (2.4.5) is equivalent to

the integral

Z(s;ϕ′, ϕ′, fs) =
∫
G′(F )

fs(δ(g, 1))⟨π′(g)ϕ′, ϕ′⟩dg.

By Cartan decomposition, we have

∑
e1,...,em′ ∈Z

0≤e1≤...≤em′

f 0
s (δ · (diag[ϖ̃e1 , ..., ϖ̃em′ , 1r′ , ϖ̃−e1 , ..., ϖ̃−em′ ], 1))

×
∫
Ke1,...,em′

⟨π′(g)ϕ′, ϕ′⟩dg

=
∑

e1,...,em′ ∈Z
0≤e1≤...≤em′

(
χ(ν(ϖ̃))|NE/F (ν(ϖ̃))|s+κ

)e1+...+em′
b(s, χ)λe1,...,em′ (ϕ′)⟨ϕ′, ϕ′⟩

=L
(
s+ 1

2 , ϕ
′ × χ

)
⟨ϕ′, ϕ′⟩.

2.4.3 The local section f †,c
s

In this and the next two subsections, we consider the ramified local integrals. We

will always assume 2 ∈ O× and θ ∈ GLr(O) in the ramified cases. For an integer
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c ≥ 1 let N ′(pc) be the subgroup of N(F ) consisting the elements of the form

1r 0 x y

0 12m ϵy∗ z

0 0 1r 0

0 0 0 12m


, x ∈ Sr(pO), y ∈ Matr,2m(pcO), z ∈ S2m(pcO). (2.4.10)

Define f †,c
s ∈ IndH(F )

P (F ) (χ|ν(·)|s) to be a local section supported on P (F )JnN ′(pc) with

f †,c
s (pJnn) = χ(ν(a))|NE/F (ν(a))|s+κ for p =

 a b

0 â

 ∈ P (F ), n ∈ N ′(pc).

(2.4.11)

Note that when pulling back along G×G → H, we have

f †,c
s ((g1k1, g2k2)) = χ(ν(dk1))χ(ν(ak2))f †,c

s ((g1, g2)) (2.4.12)

for k1 =


ak1 fk1 bk1

hk1 ek1 jk1

ck1 kk1 dk1

 ∈ K ′(pc) and k2 =


ak2 fk2 bk2

hk2 ek2 jk2

ck2 kk2 dk2

 ∈ K(pc).

The following proposition is an analogue of the computations in [Shi95, Section 4] for

symplectic groups. We extend the arguments there to all classical groups. Especially,

the main difficulty in the computations is to deal with the group with r ̸= 0.

Proposition 2.4.2. Assume ϕ ∈ π is fixed by K(pc) and is an eigenvector of the

Hecke algebra H(K(pc),X). Set ϕ1 = π(w)ϕ, ϕ2 = ϕ. Assume χ is an unramified

character and 2 ∈ O×, θ ∈ GLr(O), then

Z(s; π(w)ϕ, ϕ, f †,c
s )

=χ(ϖ)cmd1q−cmd2(s+κ)L
(
s+ 1

2 , ϕ× χ
)

· ⟨ϕ|U ′(pc), ϕ⟩ .
(2.4.13)

Here

d1 =


1 Case I, II, V,

2 Case III, IV,
d2 =


1 Case I, II,

2 Case III, IV, V,
(2.4.14)
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Proof. Denote

M(pc) = GLm(D) ∩ Matm(pcO), Q(pc) = {diag[û,−1r, u], a ∈ M(pc)}.

We claim that

f †
s (δ(g, 1)) ̸= 0 if and only if g ∈ K(pc)Q(pc)K ′(pc).

Write g =


a f b

h e j

c k d

 with a, d of size m×m, e of size r × r and compute

δ(g, 1) =



e+1
2 0 ϵh

2
ϵ(e−1)θ

4 0 ϵj
2

0 1m 0 0 0 0

ϵf 0 a fθ
2 0 b

ϵθ−1(e− 1) 0 θ−1h θ−1 e+1
2 θ 0 θ−1j

−ϵf 0 −a −fθ
2 1m −b

ϵk ϵ c kθ
2 0 d



.

The elements in P (F )JnN ′(pc) can be written as

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

0 0 D1 D2

0 0 D3 D4


Jn



1r 0 x y

0 12m ϵy∗ z

0 0 1r 0

0 0 0 12m



=



∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

ϵD1 ϵD2 ϵD1x+D2y
∗ ϵD1y + ϵD2z

ϵD3 ϵD4 ϵD3x+D4y
∗ ϵD3y + ϵD4z


,

with x ∈ Sr(pO), y ∈ Matr,2m(pcO), z ∈ S2m(pcO). Assume τ(g, 1) is of above form,

then comparing two expressions we need
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D1 = θ−1(e− 1), D2 =
[

0 ϵθ−1h

]
, D3 =

 −f

k

 , D4 =

 0 −ϵa

1 ϵc

 ,
and

ϵD1x+D2y
∗ = θ−1 e+ 1

2 θ, D1y +D2z =
[

0 ϵθ−1j

]
,

ϵD3x+D4y
∗ =

 −fθ
2

kθ
2

 , D3y +D4z =

 ϵ −ϵb

0 ϵd

 .
First of all, write y =

[
y1 y2

]
, then

 −fθ
2

kθ
2

 = ϵD3x+D4y
∗ =

 −ϵfx− ϵay∗
2

ϵkx+ y∗
1 + ϵcy∗

2


implies

ay∗
2 = −ϵf(ϵx− θ

2), y∗
1 + ϵcy∗

2 = −k(ϵx− θ

2).

Since by our assumption θ
2 ∈ GLr(O) and the condition on x, the first equation

forces a to be invertible and thus

y∗
2 = −ϵa−1f(ϵx− θ

2), y∗
1 = −(k − ca−1f)(ϵx− θ

2).

The condition on y then forces a−1f, k − ca−1f ∈ Matm,r(pcO). Secondly, from

θ−1 e+ 1
2 θ = ϵD1x+D2y

∗ = ϵθ−1(e− 1)x+ ϵθ−1hy∗
2,

we obtain

ϵ(e− 1 + ha−1f)x = e+ 1 − ha−1f

2 θ.

The condition on x then forces e − ha−1f + 1 ∈ Matr(pO). Finally, comparing D4

and D3y +D4z, the condition on z forces 0 −ϵa

1 ϵc


−1  ϵ −ϵb

0 ϵd

 =

 ϵca−1 ϵd

−a−1 a−1b

 ∈ Mat2m(pcO)

and hence a−1, ca−1, a−1b ∈ Matm(pcO). Since a is invertible, we can write
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g =


1m 0 0

ha−1 1r 0

ca−1 −ϵâh∗θ−1 1m




a 0 0

0 e− ha−1f 0

0 0 â




1m a−1f a−1b

0 1r −ϵθf ∗â

0 0 1m


and our claim clearly follows.

By straightforward computations and the fact that (see also the proof of [Shi95,

Lemma 6.2])

K(pc)Q(pc)K ′(pc) = K(pc)QK(pc) ·K(pc)diag[ϖ−c · 1m, 1r, ϖc · 1m]K ′(pc),

we have

Z(s; π(w)ϕ, ϕ, f †,c
s )

=χ(ϖ)cmd1q−cmd2(s+κ) ∑
ξ∈K(pc)\X/K(pc)

λξ(ϕ)(χ(ν(ϖ̃))|NE/F (ν(ϖ̃))|s+κ)d(ξ)

×
∫
K(pc)diag[ϖ−c·1m,−1r,ϖc·1m]K′(pc)

⟨π(gw)ϕ, ϕ⟩ dg

=χ(ϖ)cmd1q−cmd2(s+κ)L
(
s+ 1

2 , ϕ× χ
)

⟨ϕ|U ′(pc), ϕ⟩ .

2.4.4 The local section f ‡,c
s

If χ is a ramified character then Z(s;ϕ1, ϕ2, f
†,c
s ) will be identically zero. In this

subsection, we define a section f ‡,c
s as a twist of f †,0

s such that Z(s;ϕ1, ϕ2, f
‡,c
s ) is a

non-zero constant. Assume χ has conductor pc, we define
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f ‡,c
s (h) =

∑
u∈GLm(O)/ϖcGLm(O)

χ−1(ν(u))

× f †,0
s



h



1r 0 0 0 0 0

0 1m 0 0 0 u
ϖc

0 0 1m 0 − ϵu∗

ϖc 0

0 0 0 1r 0 0

0 0 0 0 1m 0

0 0 0 0 0 1m





.

(2.4.15)

The following lemma shows the reason for the twist.

Lemma 2.4.3. When pulling back along G×G → H, we have

f ‡,c
s ((g1k1, g2k2)) = χ(ν(k2))f ‡,c

s ((g1, g2)) (2.4.16)

for k1 ∈ K(p2c), k2 ∈ K ′(p2c).

Proof. For the notations of k1, k2 as before, we have

f ‡,c
s ((g1k1, g2k2)) = χ(ν(dk1))χ(ν(ak2))

∑
u∈GLm(O)/ϖcGLm(O)

χ−1(ν(u))

× f †,0
s



(g1, g2)



1r 0 0 0 0 0

0 1m 0 0 0 u′

ϖc

0 0 1m 0 − ϵu′∗

ϖc 0

0 0 0 1r 0 0

0 0 0 0 1m 0

0 0 0 0 0 1m




with u′ = dk2ud

−1
k1 . Then changing variables u → d−1

k2 udk1 gives the desired result.

The following proposition is an analogue of the computations in [BS00] and [SU14,

Proposition 11.16]. Again the main difficulty is to deal with the group with r ≠ 0

and the arguments is similar to the proof of Proposition 2.4.2.
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Proposition 2.4.4. Assume ϕ ∈ π is fixed by K(pc), χ is a character of conductor

pc and 2 ∈ O×, θ ∈ GLr(O). Set ϕ1 = ϕ, ϕ2 = π(w)ϕ and denote

K1(pc) = G(o) ∩


1 + Mat2m(pcO) Mat2m,r(pcO) Mat2m(O)

Matr,2m(pcO) 1 + Matr(pO) Matr,2m(pcO)

Mat2m(p2cO) Mat2m,r(pcO) 1 + Mat2m(pcO)

 . (2.4.17)

Then

Z(s;ϕ, π(w)ϕ, f ‡,c
s )

=vol(GLm(O)/ϖcGLm(O))
〈
π




0 0 ϖ−c · 1m

0 1r 0

ϖc · 1m 0 0



ϕ, ϕ
〉
.

(2.4.18)

Proof. Denote du = diag[1m+r, ϵϖ
cu−1, 1m+r, ϵϖ

−cu∗], then

(w,w)−1duδd
−1
u (w,w) =



1r 0 0 0 0 0

0 1m 0 0 0 u
ϖc

0 0 1m 0 − ϵu∗

ϖc 0

0 0 0 1r 0 0

0 0 0 0 1m 0

0 0 0 0 0 1m



.

Changing variables g 7→ w−1g


ϵϖ−cu 0 0

0 1r 0

0 0 ϵϖcû

w, we need to calculate

Z(s;ϕ, π(w)ϕ, f ‡,c
s )

=
∫
G(F )

∑
u∈GLm(O)/ϖcGLm(O)

χ−1(ν(u))
〈
π

g

ϵϖ−cu 0 0

0 1r 0

0 0 ϵϖcû

w
ϕ, ϕ

〉

×f †,0
s

(
δ(g, 1)τd−1

u (w,w)
)
dg.
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Write g =


a f b

h e j

c k d

 with a, d of size m×m, e of size r × r and compute that

δ(g, 1)δd−1
u (w,w)

=



e+1
2 0 ϵϖcjû

2
ϵ(e−1)θ

4 − j
2

ϖ−chu
2

0 0 0 0 −1m 0

ϵf 0 ϖcbû f
2 −ϵb ϵϖ−cau

ϵθ−1(e− 1) 0 ϖcθ−1jû θ−1 e+1
2 θ −ϵθ−1j ϵϖ−cθ−1hu

−ϵf −ϵ · 1m −ϖcbû −fθ
2 ϵb −ϵϖ−c(a+ 1)u

ϵk 0 ϖcdû kθ
2 −ϵ(d+ 1) ϵϖ−ccu



.

Suppose it is an element in P (F )JnN ′(p0), then as in the proof of Proposition 2.4.2

it can be written in the form

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗

ϵD1 ϵD2 ϵD1x+D2y
∗ ϵD1y + ϵD2z

ϵD3 ϵD4 ϵD3x+D4y
∗ ϵD3y + ϵD4z


with x ∈ Sr(pO), y ∈ Matr,2m(O), z ∈ S2m(O). We need

D1 = θ−1(e− 1), D2 =
[

0 ϵϖcθ−1jû

]
, D3 =

 −f

k

 , D4 =

 −1m −ϵϖcbû

0 ϵϖcdû

 ,
and

ϵD1x+D2y
∗ = θ−1 e+ 1

2 θ, D1y +D2z =
[

−θ−1j θ−1ϖ−chu

]
,

ϵD3x+D4y
∗ =

 −fθ
2

kθ
2

 , D3y +D4z =

 b −ϖ−c(a+ 1)u

−(d+ 1) ϖ−ccu

 .
By the same arguments as in the proof of Proposition 2.4.2, the conditions on x, y, z

force

(1) d is invertible and 1 + d−1 ∈ Matm(pcO),
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(2) d−1c have entries in p2c, d−1k, jd−1 has entries in pc and bd−1 has entries in O,

(3) e− jd−1k ∈ −1 + Matr(pO).

These implies −g ∈ K1(pc) and we have

Z(s;ϕ, π(w)ϕ, f ‡,c
s )

=
∫
K1(pc)

∑
u∈GLm(O)/ϖcGLm(O)

χ−1(ν(u))
〈
π

g

ϵϖ−cu 0 0

0 1r 0

0 0 ϵϖcû

w
ϕ, ϕ

〉
dg

=vol(GLm(O)/ϖcGLm(O))
〈
π




0 0 ϖ−c · 1m

0 1r 0

ϖc · 1m 0 0



ϕ, ϕ
〉
.

2.4.5 The p-adic section f p
s

Assume χ is unramified, ϕ ∈ π is fixed by K(q2) and is an eigenvector for the Hecke

algebra H(K(q2),X). We construct yet another section fps as a twist of f †,0
s which

represent the p-adic modification factor in the construction of the p-adic L-functions.

Again, here we are inspired by the idea of [BS00, p.1392 and p.1400].

For each 0 ≤ i ≤ m, denote Ti for the Hecke operator given by the double coset

[K(p)ξiK(p)], ξi = diag[ui, 1r, ûi], ui =

 1m−i 0

0 ϖ̃ · 1i

 . (2.4.19)

Suppose there is a double coset decomposition

GLm(O)uiGLm(O) =
∐
j

δijGLm(O). (2.4.20)
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We define a local section fp,is by

fp,is (h) =
∑
j

∑
u∈ϖ̃Matm(O)δ−1

ij /ϖ̃Matm(O)

f †,0
s



h



1r 0 0 0 0 0

0 1m 0 0 0 u
ϖ̃

0 0 1m 0 − ϵu∗

ϖ̃
0

0 0 0 1r 0 0

0 0 0 0 1m 0

0 0 0 0 0 1m





.

(2.4.21)

Lemma 2.4.5. Let λi be the eigenvalues of ϕ under Ti, i.e. ϕ|Ti = λiϕ. Set

ϕ1 = ϕ, ϕ2 = π(w)ϕ. Then for each 0 ≤ i ≤ m,

Z(s;ϕ, π(w)ϕ, fp,is )

=χ(ϖ̃)d3(m−i)q−(m−i)d4(s+κ)λm−iL
(
s+ 1

2 , ϕ× χ
)

×
〈
π




0 0 ϖ̃−1 · 1m

0 1r 0

ϖ̃ · 1m 0 0



ϕ, ϕ
〉
,

(2.4.22)

with

d3 =


1 Case I, II, V Ramified,

2 Case III, IV, V Inert.
, d4 =


2 Case V Inert,

1 otherwise,
(2.4.23)

Proof. Denote dϖ̃ = diag[1m+r, ϵϖ̃, 1m+r, ϖ̃
−1] and

δu =



1r 0 0 0 0 0

0 1m 0 0 0 0

0 0 1m 0 0 0

0 0 0 1r 0 0

0 0 −u 0 1m 0

0 ϵu∗ 0 0 0 1m



.
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Then

(w,w)−1dϖ̃δud
−1
ϖ̃

(w,w) =



1r 0 0 0 0 0

0 1m 0 0 0 u
ϖ̃

0 0 1m 0 − ϵu∗

ϖ̃
0

0 0 0 1r 0 0

0 0 0 0 1m 0

0 0 0 0 0 1m



.

Changing variables g 7→ w−1g


ϵϖ̃−1 · 1m 0 0

0 1r 0

0 0 ϵϖ̃ · 1m

w, we need to calculate

Z(s;ϕ1, ϕ2, f
p
s )

=
∫
G(F )

∑
j

∑
u∈ϖ̃Matm(O)δ−1

ij /ϖ̃Matm(O)

〈
π

g

ϵϖ̃−1 · 1m 0 0

0 1r 0

0 0 ϵϖ̃ · 1m

w
ϕ, ϕ

〉

×f †,0
s

(
δ(g, 1)τxd−1

ϖ̃
(w,w)

)
dg.

Write g =


a f b

h e j

c k d

 and compute that
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δ(g, 1)δud−1
ϖ̃

(w,w)



1r 0 0 0

0 ϖ̃−1 · 12m 0 0

0 0 1r 0

0 0 0 ϖ̃ · 12m



=



e+1
2 0 ϖ̃ϵj

2
ϵ(e−1)θ

4 − j
2

ϖ̃−1h
2

0 0 0 0 −1m 0

ϵf 0 ϖ̃b f
2 −ϵb ϵϖ̃−1a

ϵθ−1(e− 1) 0 θ−1ϖ̃j θ−1 e+1
2 θ −ϵθ−1j ϵϖ̃−1θ−1h

−ϵf −ϵ · 1m −ϖ̃b −fθ
2 ϵb −ϵϖ̃−1(a+ u)

ϵk 0 ϖ̃d kθ
2 −ϵ(du∗ + 1) ϵϖ̃−1c



.

By the same arguments as in the proof of Proposition 2.4.2, 2.4.4, this is an element

in P (F )JnN ′(p0) if and only if

(1) d is invertible and d−1 + u∗ ∈ Matm(qO),

(2) d−1c have entries in q2, d−1k, jd−1 has entries in q and bd−1 has entries in O,

(3) e− jd−1k ∈ −1 + Matr(qO).

Since d is invertible, we can write

g =


1m −d̂j∗θ−1 bd−1

0 1r jd−1

0 0 1m




d̂ 0 0

0 e− jd−1k 0

0 0 d




1m 0 0

−θk∗d̂ 1r 0

d−1c d−1k 1m

 .

Note that there is a permutation j 7→ j′ such that d̂ runs through GLm(D) ∩

ϖ̃Matm(O)δ−1
ij′ for fixed j. Hence, when δij running through the right coset

GLm(O)uiGLm(O)/GLm(O),

all such d run through

GLm(D) ∩ ϖ̃Matm(O)u−1
i .
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Therefore,

Z(s;ϕ, π(w)ϕ, fp,is )

=
∑

d̂∈GLm(D)∩ϖ̃Matm(O)u−1
i

∑
g∈K(q2)diag[d̂,1r,d]K(q2)

χ(ν(ϖ̃d))|NE/F (ν(ϖ̃d))|s+κ

×
〈
π

g

ϵϖ̃−1 · 1m 0 0

0 1r 0

0 0 ϵϖ̃ · 1m

w
ϕ, ϕ

〉
.

Note that when d̂ runs through GLm(D) ∩ϖMatm(O)u−1
i , we are taking a sum over

K(q2)QK(q2) ·K(q2)diag[ϖ̃−1ui, 1r, ϖ̃u−1
i ]K(q2).

We thus obtain

Z(s;ϕ, π(w)ϕ, fp,is )

=χ(ϖ̃)d3(m−i)q−(m−i)d4(s+κ)λm−iL
(
s+ 1

2 , ϕ× χ
)

×
〈
π




0 0 ϖ̃−1 · 1m

0 1r 0

ϖ̃ · 1m 0 0



ϕ, ϕ
〉
.

as desired.

Gluing all these 0 ≤ i ≤ m together, we define the local section fps by

fps (h) =
m∑
i=0

(−1)iqd3( i(i−1)
2 −im)fp,is (h). (2.4.24)

Proposition 2.4.6. Assume χ is unramified, ϕ ∈ π is fixed by K(q2) and is an

eigenvector for the Hecke algebra H(K(q2),X). Assume 2 ∈ O×, θ ∈ GLr(O). Set

ϕ1 = ϕ, ϕ2 = π(w)ϕ and denote βi for the Satake parameters of ϕ. Then

Z(s;ϕ, π(w)ϕ, fps ) =(−1)mq−d3
m2+m

2 L
(
s+ 1

2 , ϕ× χ
)
M
(
s+ 1

2 , ϕ× χ
)

×
〈
π




0 0 ϖ̃−1 · 1m

0 1r 0

ϖ̃ · 1m 0 0



ϕ, ϕ
〉
,

(2.4.25)
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where M(s, ϕ× χ) is the modification factor given in the following list.

(Case I, Orthogonal)
m∏
i=1

(
1 − χ(ϖ)βiq

r
2 −s

)
,

(Case II, Symplectic)
m∏
i=1

(
1 − χ(ϖ)βiq−s+1

)
,

(Case III, Quaternionic Orthogonal Nonsplit)

m∏
i=1

(
1 − χ(ϖ)βiq1+r−s

)
,

(Case IV, Quaternionic Unitary Nonsplit)

m∏
i=1

(
1 − χ(ϖ)βiqr−s

)
,

(Case V, Unitary Inert) E/F is inert,

m∏
i=1

(
1 − χ(ϖ)βiq1+r−s

)
,

(Case V, Unitary Ramified) E/F is ramified,

m∏
i=1

(
1 − χ(ϖ̃)βiq

r+1
2 −s

)
.

Proof. By the above lemma, we have

Z(s;ϕ1, ϕ2, f
p
s ) =

m∑
i=1

(−1)iqd3( i(i−1)
2 −im)χ(ϖ̃)d3(m−i)q−(m−i)(s+κ)λm−i

× L
(
s+ 1

2 , ϕ× χ
)〈

π




0 0 ϖ̃−1 · 1m

0 1r 0

ϖ̃ · 1m 0 0



ϕ, ϕ
〉
.

It suffices to compute
m∑
i=1

(−1)iqd3( i(i−1)
2 −im)χ(ϖ̃)d3(m−i)q−(m−i)(s+κ)λm−i

=(−1)mq−d3
m2+m

2

m∑
i=1

(−1)iqd3
i(i−1)

2 χ(ϖ̃)d3iq−i(s+κ−d3)λi.

This equals to M(s+ 1
2 , ϕ×χ) in the above lists. Indeed, using [Shi00, Lemma 19.13]
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and the explicit description of the Satake map in the proof of Proposition 2.3.3, one

can show that
m∑
i=0

(−1)iqd3
i(i−1)

2 λiχ(ϖ̃)d3iq−i(s+κ− 1
2 )

is the Euler factor in Proposition 2.3.3 and the proposition easily follows.





Chapter 3

The Archimedean Theory and

Algebraic Modular Forms

In this and the next chapter, we restrict ourselves to the following global setting.

Let F be a totally real field of degree [F : Q] = d and consider tuples (D, ρ, ϵ) of

following four cases:

(Case II, Symplectic) (D, ρ) of type (a) with ϵ = −1,

(Case III, Quaternionic Orthogonal) (D, ρ) of type (b) with ϵ = 1 and

Dv = Mat2(R) for any archimedean place v,

(Case IV, Quaternionic Unitary) (D, ρ) of type (b) with ϵ = −1,

Dv = H for any archimedean place v,

(Case V, Unitary) (D, ρ) of type (c) with ϵ = −1,

D = E is an imaginary quadratic field.

Here H is the Hamilton quaternion algebra for which we fix an embedding into

Mat2(R). The global group G is defined as

G := G(F ) := {g ∈ GLn(D) : gΦg∗ = Φ}, Φ =


0 0 1m

0 θ 0

ϵ · 1m 0 0

 , (3.0.1)

with n = 2m+ r and θ∗ = ϵθ ∈ GLr(D) is anisotropic (over F ). We may also write
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it as Gm,r to emphasize the index. In Case V, we assume iθv > 0 for all archimedean

place v for simplicity.

This chapter is expanded from [Jin23, Section 5, 6] and is organized as follow. We

review the definition of symmetric spaces in Section 3.1. Both classical and adelic

definition of modular forms are given in Section 3.2. In Section 3.3, we study the

algebraic modular forms which will be used later. The algebraic modular forms

for symplectic and unitary groups are already well studied in [Shi97; Shi00] and

most discussions concerning quaternionic unitary groups in this chapter are taken

from [BJar] which is joint with Thanasis Bouganis. In Section 3.4, we calculate the

archimedean local integrals and summarize the integral representations.

3.1 Symmetric spaces

Let v be an archimedean place of F and Gv = G(Fv) the localization of G at v. Fix a

maximal compact subgroup K of Gv. Then by our assumption, Gv/K is a hermitian

symmetric space. For a comprehensive study of hermitian symmetric spaces, the

reader can refer to [Hel01; Sat80; Pya69] (see also [Hua63] and [Lanar, Section 3]).

The symmetric spaces are well studied in [Shi97, Section 6, 7] and [Shi00, Section 3,

5] for symplectic and unitary groups. In this section, we discuss the realizations of

symmetric spaces for Case III, IV. The Case IV is studied in [BJar] and the Case III

is similar. We will start with a rather general and abstract setting in Section 3.1.1

to explain the idea and then give explicit realizations in the following subsections.

We remind the reader that the notation for our group

G ∼= {g ∈ GLn(D) : g∗Φ−1g = Φ−1} (3.1.1)

coincides with the notation in [BJar].
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3.1.1 Abstract symmetric spaces

We only discuss Case IV in this subsection but the idea is the same for all cases.

Let i be any embedding Matn(H) → Mat2n(C). Then by the Skolem-Noether

theorem ([Mil20, Theorem 2.10]) there exists α ∈ Mat2n(C) with αα∗ = 1 such

that ti(x) = αi(x∗)α−1. Let Ψ ∈ GLn(D) be a skew-hermitian form similar to Φ−1

above, that is Ψ = γ∗Φ−1γ for some γ ∈ GLn(D). Then the group Gv is isomorphic

to

G = {g ∈ GL2n(C) : g∗Hg = H, tgKg = K}, (3.1.2)

with H = i(Ψ), K = α−1i(Ψ). We call it a realization of Gv. Suppose we are

given two such data (i1,Ψ1, H1, K1,G1) and (i2,Ψ2, H2, K2,G2) with Ψ1 = S∗Ψ2S.

Again by Skolem-Noether there exists β with ββ∗ = 1 such that i1(x) = β−1i2(x)β.

Put R = i2(S)β then H1 = R∗H2R,K1 = tRK2R. Therefore g 7→ RgR−1 gives

isomorphism G1 ∼= G2.

Following [Pya69], we will define the associated symmetric space via its Borel em-

bedding into its compact dual symmetric space. In Case IV, the semisimple compact

dual of our group is the group SO(2n) (with notations in [Hel01, page 330]), and the

corresponding dual symmetric space is SO(2n)/U(n). This space may be identified

(see for example [Shi87, page 6]) with the space V = L/GLn(C) where

L = {U ∈ Mat2n,n(C) : tUKU = 0}. (3.1.3)

We set

Ω = {U ∈ Mat2n,n(C) : −iU∗HU > 0, tUKU = 0} ⊂ L, (3.1.4)

with the action of GLn(C) by right multiplication and G by left multiplication. The

symmetric space H is defined as

H := Hu0 = {z ∈ Matn(C) : U(z) ∈ Ω}, U(z) :=

 z

u0

 , (3.1.5)

for some fixed suitable u0, which we make explicit later. The following lemma is a
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direct consequence of our definition for H.

Lemma 3.1.1. There is a bijection H × GLn(C) → Ω given by z × λ = U(z)λ.

By this lemma, it follows that for any element α ∈ G, we can find a z′ ∈ H and

λ(α, z) ∈ GLn(C) such that

αU(z) = U(z′)λ(α, z). (3.1.6)

We then define the action of G on H by α.z := αz := z′ and λ(α, z) satisfies the

cocycle relation

λ(α1α2, z) = λ(α1, α2z)λ(α2, z) for α1, α2 ∈ G, z ∈ H. (3.1.7)

We set j(α, z) := ν(λ(α, z)) ∈ C×. We call λ(α, z) or j(α, z) automorphy factors.

More explicitly, write α =

 a b

c d

 with a, d ∈ Matn(C), we have

αU(z) =

 az + bu0

cz + du0

 =

 (az + bu0)(cz + du0)−1u0

u0

u−1
0 (cz + du0). (3.1.8)

That is,

αz = (az + bu0)(cz + du0)−1u0, λ(α, z) = u−1
0 (cz + du0). (3.1.9)

For z1, z2 ∈ H, we set

η(z1, z2) := iU(z1)∗HU(z2), δ(z1, z2) := ν(η(z1, z2))

η(z) := η(z, z), δ(z) := δ(z, z).
(3.1.10)

We note that

U(z1)∗HU(z2) = λ(α, z1)∗U(αz1)∗HU(αz2)λ(α, z2), (3.1.11)
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and

iU(αz1)∗HU(αz2) =

 η(αz1, αz2) ∗

∗ ∗

 ,

iU(z1)∗HU(z2) =

 η(z1, z2) ∗

∗ ∗

 .
(3.1.12)

We thus obtain that

λ(α, z1)∗η(αz1, αz2)λ(α, z2) = η(z1, z2), (3.1.13)

and after taking the determinant, we have

j(α, z1)δ(αz1, αz2)j(α, z2) = δ(z1, z2). (3.1.14)

In particular,

λ(α, z)∗η(αz)λ(α, z) = η(z), δ(αz) = |j(α, z)|−2δ(z). (3.1.15)

We now discuss the relation between different realizations of the symmetric space H.

Given H1, K1 and H2, K2 as above, we have seen at the beginning of this subsection

that we can find an R such that H1 = R∗H2R,K1 = tRK2R. We then have an

isomorphism Ω1 ∼= Ω2 given by U 7→ RU which induces an isomorphism ρ : H1 ∼= H2.

Indeed, for z1 ∈ H1, there exists some z2 ∈ H2, µ(z1) ∈ GLn(C) such that

R

 z1

u01

 =

 z2

u02

µ(z1), (3.1.16)

for some u01, u02 ∈ Matn(C) and the isomorphism can be given by ρ(z1) = z2.

In the following lemma we write ρ also for the isomorphism G1 → G2 given by

ρ(g1) := Rg1R
−1.

Lemma 3.1.2. Let ρ : G1 → G2, ρ : H1 → H2 given as above. Then

(1) ρ(αz) = ρ(α)ρ(z) with α ∈ G1, z ∈ H1;

(2) λ(ρ(α), ρ(z)) = µ(αz)λ(α, z)µ(z)−1;

(3) η(ρ(z1), ρ(z2)) = µ̂(z1)η(z1, z2)µ(z2)−1 for z1, z2 ∈ H1.
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Proof. (1) It suffices to prove that ρ(αz)

u02

 =

 ρ(α)ρ(z)

u02

 .
By definition of the isomorphism and action, ρ(αz)

u02

 =R

 αz

u01

µ(αz)−1

=Rα

 z

u01

λ(α, z)−1µ(αz)−1

=ρ(α)

 ρ(z)

u02

µ(z)λ(α, z)−1µ(αz)−1

=

 ρ(α)ρ(z)

u02

λ(ρ(α), ρ(z))µ(z)λ(α, z)−1µ(αz)−1.

We must have λ(ρ(α), ρ(z))µ(z)λ(α, z)−1µ(αz)−1 = 1 and our desired result follows

which we also obtain (2). (3) can be computed similarly by definition of η.

3.1.2 Symmetric spaces for Case IV

We now apply the above discussions to some explicit realizations of Gv. Note that

the map i defined in Example 2.1.1 induces the following isomorphism

i : Gv
∼−→ G∞ := {g ∈ GL2n(C) : g∗Φ∞g = Φ∞,

tgΨ∞g = Ψ∞}, (3.1.17)

with

Φ∞ =



0 0 0 −12m

0 0 −1r 0

0 1r 0 0

12m 0 0 0


, Ψ∞ =



0 0 0 J ′
m

0 1r 0 0

0 0 1r 0

−J ′
m 0 0 0


. (3.1.18)
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As in the last subsection

Ω = {U ∈ Mat2n,n(C) : −iU∗Φ∞U > 0, tUΨ∞U = 0}, (3.1.19)

and define the symmetric space by

Z := Zn := Zm,r = {z ∈ Matn(C) : U(z) ∈ Ω},

U(z) =

 z

u0

 , u0 =

 0 1r

12m 0

 . (3.1.20)

Explicitly,

Zm,r =


z :=

 u v

w tvJ ′
m w

 :

u ∈ Mat2m(C), v ∈ Mat2m,r(C),

uJ ′
m + v tv − J ′

m
tu = 0,

w ∈ Matr(C), tww + 1 = 0,

i(z∗ − z) > 0.


. (3.1.21)

For g =

 a b

c d

 ∈ G∞, the action of G∞ on Z and the automorphy factor are given

by

gz = (az + bu0)(cz + du0)−1u0, λ(g, z) = u−1
0 (cz + du0). (3.1.22)

For z1, z2 ∈ Z, we set

η(z1, z2) = i(z∗
1 − z2), δ(z1, z2) = ν(η(z1, z2))

η(z) = η(z, z), δ(z) = δ(z, z).
(3.1.23)

We will take z0 = i · 1n to be the origin of Z and K∞ the subgroup of G∞ fixing z0.

Then g 7→ λ(g, z0) gives an isomorphism K∞ ∼= U(n) = {g ∈ GLn(C) : g∗g = 1n}

and our symmetric space Z ∼= G∞/K∞.

We give another two useful realizations to compare with the symmetric spaces in

other works. The group G∞ is further isomorphic to

G′
∞ := {g ∈ GL2n(C) : g∗Jng = Jn,

tgg = 12n}. (3.1.24)
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Take u0 = 1, the realization associated to this group is

H = Hn = {z ∈ Matn(C) : tzz + 1 = 0, i(z∗ − z) > 0}. (3.1.25)

This is an unbounded realization of type D domain in [Lanar]. For g =

 a b

c d

 ∈

G′
∞, the action of G′

∞ on H and the automorphy factor are given by

gz = (az + b)(cz + d)−1, λ(g, z) = cz + d. (3.1.26)

For z1, z2 ∈ H, we set η(z1, z2) = i(z∗
1 − z2). We take z0 = in := i · 1n to be the origin

of H and K ′
∞ the subgroup of G′

∞ fixing z0. Since η(gz0) = η(z0) = 2 for g ∈ K∞,

g 7→ λ(g, z0) gives an isomorphism K ′
∞

∼= U(n) and thus H ∼= G′
∞/K

′
∞.

Let T ′ = 1√
2

 i −i

1 1

 and sending g 7→ T ′−1gT ′ we have an isomorphism

G′
∞

∼= G′′
∞ := {g ∈ GL2n(C) : g∗Φ′′

∞g = Φ′′
∞,

tgΨ′′
∞g = Ψ′′

∞}, (3.1.27)

with

Φ′′
∞ =

 in 0

0 −in

 , Ψ′′
∞ =

 0 −in

−in 0

 . (3.1.28)

Take u0 = 1 the realization associated to this group is defined as

B = Bn = {z ∈ Matn(C) : tz = −z, zz∗ < 1n}. (3.1.29)

This is a bounded domain of type RIII in [Hua63]. For g =

 a b

c d

 ∈ G′′
∞, the

action of G′′
∞ on B and the automorphy factor is given by

gz = (az + b)(cz + d)−1, λ(g, z) = cz + d. (3.1.30)

For z1, z2 ∈ H, we set η(z1, z2) = i(z∗
1z2 − 1). We take z0 = 0 to be the origin of

B and K ′′
∞ the subgroup of G′′

∞ fixing z0. Since η(gz0) = η(z0) = −i for g ∈ K∞,

g 7→ λ(g, z0) gives an isomorphism K ′′
∞

∼= U(n) and thus H ∼= G′′
∞/K

′′
∞. The relation
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between H and B can be given explicitly by Cayley transform

H
∼−→ B : z 7→ (z − i)(z + i)−1. (3.1.31)

Let z1, z2 ∈ Bn, α ∈ Gv as above and dz = (dzhk) be a matrix of the same shape as

z ∈ Cn
n whose entries are 1-forms dzhk. Note that, on one hand, z1 1

1 −z1


∗  1n 0

0 −1n


 z2 1

1 −z2



=

 z∗
1z2 − 1 z∗

1 + z2

z2 + tz1 1 − tz1z2

 =

 z∗
1z2 − 1 z∗

1 − z∗
2

z2 − z1 1 − tz1z2

 ,
(3.1.32)

and on the other hand, αz1 1

1 −αz1


∗  1n 0

0 −1n


 αz2 1

1 −αz2



=

 (αz1)∗(αz2) − 1 (αz1)∗ − (αz2)∗

αz2 − αz1 1 − t(αz1)(αz2)

 .
(3.1.33)

Using the fact (which can be obtained from the property of U(z))

α

 z 1

1 −z

 =

 αz 1

1 −αz


 λ(α, z) 0

0 λ(α, z)

 , (3.1.34)

we have

αz2 − αz1 = tλ(α, z1)−1(z2 − z1)λ(α, z2)−1. (3.1.35)

Therefore,

d(αz) = tλ(α, z)−1 · dz · λ(α, z)−1. (3.1.36)

Since the jacobian of the map z 7→ αz is j(α, z)−n+1, the differential form

dz = δ(z)−n+1 ∏
h≤k

[(i/2)dzhk ∧ dzhk], (3.1.37)

is an invariant measure. If we have another realization H (e.g. Z,H) with identifica-

tion ρ : H → B, we then define dz := d(ρ(z)) with z ∈ H to be the differential form
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on H. Clearly, this is also an invariant measure.

3.1.3 Symmetric spaces for Case III

We can simply extend the above discussions to Case III. The map i in Example 2.1.1

induces the following isomorphism

i : Gv
∼−→ G∞ := {g ∈ GL2n(R) : tgΦ∞g = Φ∞} (3.1.38)

with

Φ∞ =



0 0 0 −12m

0 0 −1r 0

0 1r 0 0

12m 0 0 0


. (3.1.39)

Put

Ω = {U ∈ Mat2n,n(C) : −iU∗ϕ∞U > 0, tUϕ∞U = 0}, (3.1.40)

and define the symmetric space by

Z := Zn := Zm,r = {z ∈ Matn(C) : U(z) ∈ Ω},

U(z) =

 z

u0

 , u0 =

 0 1r

12m 0

 . (3.1.41)

Explicitly,

Zm,r =

z =

 u v

tv w

 :
u ∈ Mat2m(C), v ∈ Mat2m,r(C),

w ∈ Matr(C), tz = z, i(z∗ − z) > 0.

 . (3.1.42)

Define the action and λ(g, z), j(g, z), η(z1, z2), δ(z1, z2) in a same fashion as in Case

IV. Explicitly, for g =

 a b

c d

 ∈ G∞ and z, z1, z2 ∈ Z we have

gz = (az + bu0)(cz + du0)−1u0, λ(g, z) = u−1
0 (cz + du0),

η(z1, z2) = i(z∗
1 − z2), δ(z1, z2) = det(η(z1, z2)),

η(z) = η(z, z), δ(z) = δ(z, z).

(3.1.43)
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We also set j(g, z) = ν(λ(g, z)). They satisfies

λ(g, z1)∗η(gz1, gz2)λ(g, z2) = η(z1, z2),

j(g, z1)δ(gz1, gz2)j(g, z2) = δ(z1, z2),

λ(g, z)∗η(gz)λ(g, z) = η(z1, z2),

δ(gz) = |j(g, z)|−2δ(z).

(3.1.44)

Take z0 = i · 1n to be the origin of Z and K∞ the subgroup of G∞ fixing z0.

Then g 7→ λ(g, z0) gives an isomorphism K∞ ∼= U(n) and our symmetric space

Z ∼= G∞/K∞.

Obviously, G∞ is further isomorphic to the symplectic group

Sp(2n,R) := {g ∈ GL2n(R) : tgJng = Jn}, (3.1.45)

which acts on the usual Siegel upper half space

H = Hn = {z ∈ Matn(C) : tz = z, i(z∗ − z) > 0}. (3.1.46)

Furthermore, by the Caylay transform H can be identified with a bounded domain

B = Bn = {z ∈ Matn(C) : tz = z, zz∗ < 1n}. (3.1.47)

An invariant differential form on B can be given by

dz = δ(z)−n−1 ∏
h≤k

[(i/2)dzhk ∧ dzhk]. (3.1.48)

For other realizations H (e.g. Z,H) with identification ρ : H → Z we then define

dz := d(ρ(z)) with z ∈ H to be the invariant differential form on H.

3.1.4 Symmetric spaces for the case r = 0

We end this section by considering the special case r = 0. In this special case, we

can give a simpler and unified definition of symmetric spaces for groups in all four

cases (see also [Jin22, Section 2.2]).
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Let Sm be the additive algebraic group defined by

Sm(F ) = {β ∈ GLm(D) : β∗ = −ϵβ}. (3.1.49)

For an archimedean place v, denote S+
m,v for the subgroup of Sm,v containing positive

definite matrices. We define the symmetric space

Hm := {z = x+ iy ∈ Sm,v ⊗ C : x ∈ Sm,v, y ∈ S+
m,v}. (3.1.50)

The central point is chosen as z0 = i · 1m. The action of Gm,0 on Hm is defined as

g.z = (az + b)(cz + d)−1 for z ∈ Hm, g =

 a b

c d

 ∈ Gm,0 (3.1.51)

and j(g, z) = ν(cz+d). Recall that for archimedean places v, Dv = Mat2(R) in Case

III and Dv = H can be embedded into Mat2(R) in Case IV. Then above space Hm

can be embedded into Mat2m(C) and one can show that Hm
∼= Zm,0 is the symmetric

spaces defined in above two subsections. In particular, the space Hm in Case III is

same as the one for Case II with index 2m.

3.2 Definition of modular forms

We review the definition of modular forms in this section. Both classical and adelic

definitions are given and their relations are well known.

3.2.1 Modular forms on symmetric spaces

For γ ∈ G(F ), we naturally view it as an element of G(A) and its action on Zdm,r

is given by γ.z := (γv.zv)v|∞ for z = (zv)v|∞ ∈ Zdm,r. Fix a weight l = (lv)v|∞ with

lv ∈ N and denote

j(γ, z)l =
∏
v|∞

j(γv, zv)lv . (3.2.1)



3.2. Definition of modular forms 71

Definition 3.2.1. A holomorphic function φ : Zdm,r → C is called a modular form

for a congruence subgroup Γ ⊂ G(F ) and weight l if for all γ ∈ Γ,

φ(γ.z) = j(γ, z)lφ(z), z = (zv)v|∞. (3.2.2)

Remark 3.2.2.

(1) In this work, we use the term ‘modular form’ as an analogue for the modular

forms of GL2 so in particular we only consider the holomorphic functions.

(2) When m = 1 we need further assume φ satisfies the cusp condition which is not

necessary for m ≥ 2 due the the Koecher principle [Kri85, Lemma 1.5] and [Shi00,

Proposition 5.7].

(3) We are restrict ourselves to certain scalar weight modular forms. Also in unitary

case, with notations in [Shi00, Section 5], there are indeed two automorphy factors

λ(g, z), µ(g, z) and

j(g, z)l = ν(µ(g, z))l1ν(λ(g, z))l2 , with l = (l1, l2).

Here for simplicity we only consider l = l1, l2 = 0 to make our discussions consistent

in all cases.

(4) Here we are using the realization (G∞,Zm,r) for our symmetric space. In fact,

the definition is independent of the choice of realizations in following sense. If we

choose another realization H (e.g. Hn,Bn) with identification ρ : H → Zm,r. Then

with notation as in Equation (3.1.16), to a function φ : Zdm,r → C we associate a

function g on Hd by setting φ′(z) = ∏
v|∞ ν(µ(zv))−lvφ(ρ(z)). Then φ : Zdm,r → C is

a modular form if and only if φ′ : Hd → C is a modular form.

Denote F∞ = F⊗QR ∼= Rd. We rephrase above definitions for functions ϕ : G(F∞) →

C. Set

ϕ(g) = j(gv, z0)−lφ((gv.z0)v|∞). (3.2.3)

Then clearly ϕ(gk) = ∏
v|∞ j(kv, z0)−lvϕ(g) for k ∈ K. We call ϕ a cusp form if

∫
U(R)

ϕ(ug)du = 0 (3.2.4)
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for every unipotent radical U of all proper parabolic subgroup of G.

We denote Mm,r
l (Γ) and Sm,rl (Γ) for the space of modular forms and space of cusp

forms. We use the superscript m, r to indicate their dependence on the group Gm,r

and omit the superscript for simplicity if the group G is clear from the context.

Let dz be the invariant differential form on Zm,r. For two modular forms φ1, φ2 ∈

Ml(Γ), we define the Petersson inner product by

⟨φ1, φ2⟩ =
∫

Γ\Z
φ1(z)φ2(z)δ(z)ldz, (3.2.5)

whenever the integral converges. For example, this is well defined when one of φ1, φ2

is a cusp form.

3.2.2 Adelic modular forms

Denote K∞ be the maximal compact subgroup of G(F∞) = ∏
v|∞ G(R) and K be

any open compact subgroup of ∏v∤∞ G(Fv). Fix a weight l = (lv)v|∞ with lv ∈ N as

before.

Recall the following weak approximation of G

G(A) =
∐
i

G(F )tiKG(F∞). (3.2.6)

For a function f : G(A) → C, we can associate a series of functions ϕi on G(F∞) for

each i defined by

ϕi(g∞) = f(tig∞) g∞ ∈ G(F∞). (3.2.7)

Definition 3.2.3. The space of weight l and level K (adelic) modular forms Ml(K)

contain functions f : G(A) → C satisfying:

(1) f is left invariant under G(F ) and right invariant under K, i.e.

f(γgk) = f(g) for γ ∈ G(F ), k ∈ K, (3.2.8)

(2) The functions ϕi associated to f defined as above are weight l defined as in
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Section 3.2.1. Especially,

f(gk∞) =
∏
v|∞

j(kv, z0)lvf(g) for k∞ = (kv)v|∞ ∈ K∞. (3.2.9)

Furthermore, the subspace Sl(K) of cusp forms consisting functions f ∈ Ml(K)

satisfying ∫
U(F )\U(A)

f(ug)du = 0, (3.2.10)

for all unipotent radicals U of all proper parabolic subgroups of G. Equivalently, f

is a cusp form if and only if all ϕi are cusp forms defined in Section 3.2.1. We may

write Mm,r
l (K) and Sm,r

l (K) if we want to emphasize the index m, r.

The classical definition of modular forms in Section 3.2.1 and the above adelic

definition are related by bijections

Ml(K) ∼=
⊕
i

Ml(Γi), Sl(K) ∼=
⊕
i

Sl(Γi), (3.2.11)

given by the correspondence f ↔ {ϕi} and Γi = tiKt
−1
i ∩G(F ).

For two modular forms f 1,f 2 ∈ Ml(K), we define the Petersson inner product

⟨f 1,f 2⟩ =
∫
G(F )\G(A)/KK∞

f 1(g)f 2(g)dg, (3.2.12)

whenever the integral converges. For example, this is well defined when one of f 1,f 2

is a cusp form. Here dg = ∏
v dgv is an invariant differential form of G(A) given

such that:

(1) for each nonarchimedean place v, dgv is normalized such that the volume Kv is

1,

(2) for each archimedean place v, dgv = d(gvz0) with d(gvz0) an invariant differential

form of Zm,r.

3.2.3 The special case r = 0

It is well known that the modular forms defined in previous two subsections have a

Fourier-Jacobi expansion (see for example [Shi97, Appendix 4]). When r = 0, it has
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a Fourier expansion of easier form which we are going to recall now.

Let φ : Hd
m → C be a modular form in Ml(Γ) with Hm defined in (3.1.50). Then for

any γ ∈ G, φ has a Fourier expansion of the form

j(γ, z)−lφ(γ.z) =
∑

β∈Sm(F )
c(β;φ, γ)

∏
v|∞

e2πiτ(βzv). (3.2.13)

We call c(β;φ, γ) the Fourier coefficients of φ and denote c(β;φ) := c(β;φ, 1) for

simplicity. We always have c(β;φ, γ) = 0 unless β is non-negative. In addition, φ is

a cusp form if and only if for all γ, c(β;φ, γ) = 0 unless β is positive definite.

We can also reformulate above Fourier expansion in adelic language (see for example

[Bou21, Proposition 2.4]). Let eA = ∏
v ev be the standard additive character of A.

That is ev(x) = e2πix for archimedean places v and ev(φv) = ∏
v|∞ ev(−q−1

v ) with φv

the uniformizer of Fv and |φv|v = q−1
v . Also set e∞ = ∏

v|∞ ev. Let f : G(A) → C be

an (adelic) modular form in Ml(K). Then for all y ∈ GLn(AD) and x ∈ Sm(A) we

have a Fourier expansion of the form

f


 y xŷ

0 ŷ


 =

∏
v|∞

ν(y∗
v)lv ·

∑
β∈Sm(F )

c(β; f , y)e∞(τ(iy∗βy))eA(τ(βx)). (3.2.14)

We call c(β; f , y) the Fourier coefficients of f and they have following properties:

(1) c(β; f , y) = 0 unless β is non-negative and ∏
v∤∞ ev(τ(y∗βyx)) = 1 for any

x ∈ Sm(O),

(2) c(β; f , y) = c(β; f ,
∏
v∤∞ yv),

(3) c(b∗βb; f , y) = ∏
v|∞ ν(b∗)lvc(β; f , by) for any b ∈ GLn(D),

(4) c(β; f , yk) = c(β; f , y) for any k ∈ ∏
v∤∞ GLn(Ov),

(5) f is a cusp form if and only if for all y, c(β; f , y) = 0 unless β is positive definite.

3.3 Algebraic modular forms

In order to move from the analytic considerations discussed so far to algebraic ques-

tions, we need to discuss the notion of algebraic modular forms in our setting. For
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holomorphic modular forms on hermitian symmetric spaces, the notion of algebraic

modular forms is well understood. There are mainly four characterizations of algeb-

raic modular forms:

(1) In [Har85; Har86; Mil90], automorphic forms are interpreted as sections of certain

automorphic vector bundles on Shimura varieties. The canonical model of Shimura

varieties and automorphic vector bundles then define a subspace of algebraic auto-

morphic forms.

(2) In [BJar; Gar77; Gar84a; Shi00], algebraic modular forms are defined via CM

points.

(3) In [Gar81; Gar83; Gar84a], a characterization using Fourier-Jacobi expansion

is given. In particular, in the special case r = 0, the modular forms have Fourier

expansions and the algebraic modular forms are defined to be the one have algebraic

Fourier coefficients. This generalizes the classical definition of algebraic modular

forms of GL2.

(4) In [Gar84a], there is yet another characterization using the pullback to classical

modular forms over GL2. Moreover, three definitions (2,3,4) are also proved to be

equivalent there.

3.3.1 CM points

We will mainly define the algebraic modular forms via CM points. The symplectic and

unitary groups are well studied in [Shi00]. The quaternionic orthogonal groups are

considered in [Gar77]. In the following, we reviewed the CM points for quaternionic

unitary groups discussed in [BJar]. Our approach for defining CM points and the

underlying periods follows the idea of [Gar77; Shi67], where one “tensors” a given

embedding h : K1 × . . . × Kn ↪→ G, of CM fields Ki, with another CM field K,

disjoint to the Ki’s to obtain a fixed point whose associated abelian variety is of CM

type (see also [Del71, proof of Theorem 6.4]). In this way we will be able to define

and study the CM points in our case by considering an embedding of our group into

a unitary group, after a choice of an imaginary quadratic field. However we show
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that our definition of CM points and the attached periods are independent of the

choice of the auxiliary imaginary quadratic field.

Let (D, ρ) of type (b) with Dv = H for any archimedean place v. Consider the

algebraic group

G(T ) := {g ∈ GLn(D) : gTg∗ = T}, (3.3.1)

with T ∗ = −T ∈ GLn(D) a skew-hermitian matrix. We assume T = diag[a1, ..., an]

is diagonal for simplicity. Diagonalizing Φ in (3.0.1), the group G(Φ) considered

before is isomorphic to some G(T ).

We introduce the notion of CM points as [Shi00, Section 4.11]. Take a CM algebra

Y = K1 × ...×Kn with each Ki are totally imaginary quadratic extension of F . Set

Y 1 = {y ∈ Y : yyι = 1} with ι induced by the nontrivial involution (i.e. complex

conjugations) on each Ki. Suppose there is an embedding h : Y 1 → G(T ), then

clearly h(Y 1) ⊂ G(T,R) and (Y 1 ⊗F R)× is a compact subgroup of G(T,R) and

hence h(Y 1) has a common fixed point in the hermitian symmetric space (with

realization associated to G(T,R)). We call a point obtained as such fixed points

a CM point. The existence of CM points can be easily shown by constructing an

embedding h : Y 1 → G(T ) as follows. Take totally imaginary quadratic extension

Ki := F (ai) for i = 1, ..., n and consider the CM algebra Y = K1 × ...×Kn. We can

define the embedding

h : Y 1 → G(T ), (y1, ..., yn) 7→ diag[y1, ..., yn]. (3.3.2)

We then choose an imaginary quadratic field K which is different from the Ki’s

above, and splits D, i.e. D ⊗F K ∼= Mat2(K). It is easy to see such a field K

always exists. Fix an embedding Matn(D) → Mat2n(K). Denote the image of T in

Mat2n(K) by T and define the unitary group

U(T ) := {g ∈ GL2n(K) : gT g∗ = T }. (3.3.3)
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We note that

U(T ,R) ∼=

g ∈ GL2n(C) : g

 i · 1n 0

0 −i · 1n

 g∗ =

 i · 1n 0

0 −i · 1n


 . (3.3.4)

Its action on the bounded domain (see for example [Shi00])

B = {z ∈ Mn(C) : 1 − z∗z > 0}, (3.3.5)

is defined by gz = (az+b)(cz+d)−1 for g =

 a b

c d

. The two factors of automorphy

are given by λ(g, z) = c tz + d, and µ(g, z) = cz + d. The embedding Matn(D) →

Mat2n(K) induces an embedding i : G(T ) → U(T ) which is compatible with natural

inclusion ι : B → B. Here recall that B is the bounded realization given in (3.1.29).

We will view G(T ) (resp. B) as a subgroup (resp. subspace) of U(T ) (resp. B)

under this embedding.

Lemma 3.3.1.

(1) Y is spanned by Y 1 over F . In particular there exists an element β ∈ Y 1 such

that Y = F [β] and β1, . . . , βn, β
ι
1, . . . , β

ι
n are pairwise distinct.

(2) There is a unique w ∈ B which is a common fixed point for h(Y 1).

Proof. The first part can be shown exactly as [Shi00, Lemma 4.12], and for the

second part we adapt an idea of the proof of that lemma. Without loss of generality

we can assume that the origin 0 of B is a fixed point for h(Y 1) and our task is to

show that it is the unique fixed point. We note that the maximal compact subgroup

in G(Φ,R) fixing the origin is isomorphic to U(n) := {g ∈ GLn(C) : gg∗ = 1n}, and

hence with respect to the embedding G(T,R) ↪→ U(T ,R) we have that U(n) ↪→

U(n) × U(n) embeds diagonally, i.e. a 7→ (a, a). In particular we have an embedding

h(Y 1) ↪→ U(n) ↪→ U(n) × U(n). Assume now there is another point z ∈ B which

is a fixed point of h(Y 1). Then we must have that z = aza−1 for every element

diag[a, ā] ∈ (U(n) × U(n)) ∩ h(Y 1). But for such a point we have that a∗a = 1 and

hence a−1 = ta. That is z = az ta. Diagnolize a and assume a has eigenvalues λi,
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i = 1, . . . , 2n then we must have zij = 0 for every λi ≠ λj. Taking a to be the

element obtained from β above we have that z has to be the origin.

We are going to attach CM periods to our CM points. Here we employ the idea of

[Shi67] (see also [Shi79, Section 7]) to relate our CM points to the CM points of

unitary groups.

Let w ∈ B ⊂ B be a CM point fixed by h(Y 1) ⊂ G(T ) ⊂ U(T ). Then for such a

point we have that

Λ(α,w)p(x,w) = p(xα,w), α ∈ h(Y 1), x ∈ C2n (3.3.6)

where Λ(α,w) ∈ GL2n(C) and p(x, z) : C2n × B → C2n are the maps defined in

[Shi00, Section 4.7]. In this way we can obtain an embedding Y → EndC(C2n) by

sending α 7→ Λ(α,w) where we have used the fact that Y is spanned by Y 1 over F .

We now extend this to an injection h of K ⊗F Y ∼= S := S1 × . . .× Sn into End(C2n)

where Si = KKi. Indeed we set

h(β ⊗ α)p(x,w) = p(βxα,w) = p(xβα,w) = p(xαβ,w). (3.3.7)

That is, the point w can be seen as a fixed point of S1 ⊗F R where S1 = {s ∈

S | ssι = 1} with ι the involution on S induced by the complex conjugation on

KKi. Hence w is a CM point in B defined in [Shi00, Section 4.11] for unitary groups.

In particular, w has entries in F by [Shi00, Lemma 4.13].

Remark 3.3.2. Following [Shi00, Section 4], let Ω = {K,Ψ, L, T , {ui}si=1} be a

PEL-type and F(Ω) family of polarised abelian varieties of PEL-type. The abelian

varieties in F(Ω) are parameterised by B. More precisely, there is a bijection

Γ\B ∼−→ F(Ω), Γ = {γ ∈ U(T ) : Lγ = L, uiγ − ui ∈ L}.

As in [Shi63], we can define Ω′ = {B,Ψ′, L, T, {ui}si=1} for quaternions and F(Ω′)

are parameterized by B. The natural inclusion F(Ω′) → F(Ω) is compatible with

B → B. Moreover, similar to [Gar84a; Shi67] we actually have an embedding of
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canonical models between Γ\B and Γ′\B for certain congruence subgroups Γ,Γ′.

As we have remarked, CM points for unitary groups have been extensively studied in

[Shi00, Chapter II]. We recall some of their properties. For α ∈ S1 we put ψ(α) :=

λ(h(α), w) ∈ GLn(C), ϕ(α) := µ(h(α), w) ∈ GLn(C), and Φ(α) = diag[ψ(α), ϕ(α)] ∈

GL2n(C). We can then find B,C ∈ GLn(Q) (see [Shi00, page 78]) such that for all

α ∈ S
Bψ(α)B−1 = diag[ψ1(α), . . . , ψn(α)],

Cϕ(α)C−1 = diag[ϕ1(α), . . . , ϕn(α)],
(3.3.8)

for some ring homomorphism ϕi, ψi : S → C, where we have F -linearly extended ψ

and ϕ from S1 to S. We set

p∞(w) := C−1diag[pS(ϕ1,Φ), . . . , pS(ϕn,Φ)]C ∈ GLn(C),

p∞ι(w) := B−1diag[pS(ψ1,Φ), . . . , pS(ψn,Φ)]B ∈ GLn(C),
(3.3.9)

where the CM-periods pS(ψi,Φ) ∈ C× and pS(ϕi,Φ) ∈ C× are defined as in [Shi00,

page 78]. Actually we should remark here that the periods pS(ψi,Φ), pS(ϕi,Φ) are

uniquely determined up to elements in Q×, but this is sufficient for our applications.

We now use the fact that w ∈ B ⊂ B is a CM point for both (Y, h) and also for (S, h).

Note that ψ(α) = ϕ(α) for α ∈ Y 1 ⊂ S1. Indeed, for α ∈ G(T,R) we have (see

[Shi67, (2.18.9)]),

a b

c d

 =

 d −c

−b a

 and hence especially we have λ(α, z) = µ(α, z)

since tz = −z. In particular the values ψ(α) = ϕ(α) = λ(α,w) = µ(α,w) for α ∈ Y 1,

that is the restrictions of ϕ and ψ to Y 1 are independent of the choice of the field K.

Furthermore we note that ψ(α) = ϕ(α) for all α ∈ K with αα = 1 seen as elements

of U(T ) i.e. α12n ∈ U(T ).

In the following lemma we use the notation IY , JY , JSj
as defined in [Shi00, page 77].

Lemma 3.3.3. With notation as above, for all 1 ≤ i ≤ n, we have that

pS(ψi,Φ) = pY (ResS/Y (ψi),Φ′) = pY (ResS/Y (ϕi),Φ′) = pS(ϕi,Φ),

where Φ′ = ResS/Y ϕ = ResS/Y ψ ∈ IY .
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Proof. Let us write Φ = ∑n
j=1 Φj with Φj ∈ ISj

and Φ′ = ∑n
j=1 Φ′

j, with Φ′
j ∈

IKj
. Then we have that Φj = InfSj/Kj

(Φ′
j). Indeed first we observe that Ψ =∑n

j=1 ResSj/KΦj ∈ IK (see [Shi00, page 85]), where Ψ as in the Remark 3.3.2 above.

Moreover we know that Φ = ϕ+ ψ with ϕ, ψ ∈ IS as above and we have seen that

ψ = ϕ when restricted to K via K ↪→ Y ⊗F K = S. But on the other hand we have

seen that ψ = ϕ when restricted to Y , from which we obtain that Φj = Φ′
j⊗τ+Φ′

j⊗τ ,

where τ a fixed embedding of K ↪→ C ( i.e. a CM type for K). Since Sj = Kj ⊗F K

the claim that Φj = InfSj/Kj
(Φ′

j) now follows.

The statement of the Lemma is now obtained from the inflation-restriction properties

of the periods (see [Shi00, page 84]):

pS(ψi,Φ) =
n∏
j=1

pSj
(ψij,Φj) =

n∏
j=1

pKj
(ResSj/Kj

(ψij),Φ′
j) = pY (ResS/Y (ψi),Φ′),

where ψij ∈ JSj
induced by ψi ∈ JS = ⋃n

j=1 JSj
. Other equality follow similarly.

The above lemma shows that we have p∞(w) = p∞ι(w) for w ∈ B and they are

independent of the choice of the imaginary quadratic field K we chose above (and

hence of the embedding to the unitary group). We then simply define p(w) =

p∞(w) = p∞ι(w) for the period attached to CM point w ∈ B. By [Shi00, Proposition

11.5] and the definition of periods we immediately have

(1) The coset p(w)GLn(Q) is determined by the point w ∈ B independently of the

embedding (Y, h) chosen above,

(2) p(γw)GLn(Q) = λ(γ, w)p(w)GLn(Q) for all γ ∈ G(T ).

3.3.2 Definition and properties of algebraic modular forms

Let B be the bounded realization of the symmetric space associated to G(R) and

denote W be a set of CM points which is dense in B. For a fixed integer l, set

Pl(w) be the CM period associated to w ∈ W. It depends only on w and l. The

definition of Pl(w) can be found in [Gar77; Shi00] for Case II, III, V. For Case IV,
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with the CM period p(w) defined in Section 3.3.1, we define Pl(w) = ν(p(w))l. Set

Pl(w) = ∏
v|∞ Plv(wv) for w = (wv)v|∞ ∈ Wd and l = (lv)v|∞ the fixed weight.

Definition 3.3.4. The subspace

Ml(Γ,Q) ⊂ Ml(Γ), resp. Sl(Γ,Q) ⊂ Sl(Γ), (3.3.10)

of algebraic modular forms (resp. algebraic cusp forms) consisting functions φ :

Bd → C such that φ(w) ∈ Pl(w)Q for any CM points w ∈ Wd.

Remark 3.3.5. Note that here we are defining the algebraicity of modular forms

using the bounded realization B. This definition is indeed independent of the choice

of realizations. Suppose we are given another realization H (e.g. Hn,Zm,r in Section

3.1) with identification ρ : H → B. A point z ∈ H is called a CM point if ρ(z) ∈ B is

a CM point and we also set Pl(z) = Pl(ρ(z)). A modular form φ′ : Hd → C is called

algebraic if φ′(z) ∈ Pl(z)Q for all z ∈ ρ−1(Wd). As in (4) of Remark 3.2.2, there are

one to one correspondence between modular form φ : Bd → C and modular form

φ′ : Hd → C. Then clearly φ is algebraic if and only if φ′ is algebraic.

The important properties of algebraic modular forms are collected in the following

proposition.

Proposition 3.3.6.

(1) There is a basis of Ml(Γ) consisting of algebraic modular forms. That is Ml(Γ) =

Ml(Γ,Q) ⊗Q C. In particular, there is a well defined action of σ ∈ Aut(C/Q) on

Ml(Γ) by acting on C.

(2) We have Sl(Γ,Q)σ = Sl(Γ,Q) and Sl(Γ) = Sl(Γ,Q) ⊗Q C.

(3) Assume r = 0 and φ ∈ Ml(Γ) has Fourier expansion

φ(z) =
∑

β∈Sm(F )
c(β;φ)e2πiτ(βx) (3.3.11)

as in (3.2.13). Then the action of σ ∈ Aut(C) on φ given by

φσ(z) =
∑

β∈Sm(F )
c(β;φ)σe2πiτ(βz) (3.3.12)
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is well defined. In particular, we have φ ∈ Ml(Γ,Q) if and only if c(β;φ) ∈ Q.

Proof. This is proved for symplectic groups and unitary groups in [Shi00]. Other

cases can be proved similarly. See also [Gar77; Gar84a; Mil90]. The proof for

quaternionic unitary groups is also sketched in [BJar, Proposition 5.6].

We now reformulate above definition of algebraic modular forms in adelic language.

An element g ∈ G(A) is called a CM point if gv · 0 ∈ B is a CM point for any

archimedean place v of F with 0 the central point of B. Set Pl(g) = ∏
v|∞ Plv(gv · 0)

to be the associated CM period.

Definition 3.3.7. The subspace

Ml(K,Q) ⊂ Ml(K), resp. Sl(K,Q) ⊂ Sl(K), (3.3.13)

of algebraic modular forms (resp. algebraic cusp forms) consisting functions f :

G(A) → C such that f(g) ∈ Pl(g)Q for any CM points g.

By the relation between classical and adelic definition of modular forms in (3.2.11)

we have

Ml(K,Q) ∼=
⊕
i

Ml(Γi,Q), Sl(K,Q) ∼=
⊕
i

Sl(Γi,Q). (3.3.14)

The properties we need for algebraic modular forms are collected in the following

proposition.

Proposition 3.3.8.

(1) There is a basis of Ml(K) consisting of algebraic modular forms. That is

Ml(K) = Ml(K,Q) ⊗Q C. In particular, there is a well defined action of σ ∈

Aut(C/Q) on Ml(K) by acting on C.

(2) We have Sl(K,Q)σ = Sl(K,Q) and Sl(K) = Sl(K,Q) ⊗Q C.

(3) Assume r = 0 and f ∈ Ml(K) has Fourier expansion

f


 y xŷ

0 ŷ


 =

∏
v|∞

ν(y∗
v)lv ·

∑
β∈Sm(F )

c(β; f , y)e∞(τ(iy∗βy))eA(τ(βx)) (3.3.15)
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as in (3.2.14). Then the action of σ ∈ Aut(C) on ϕ characterized by

fσ


 y xŷ

0 ŷ


 =

∏
v|∞

ν(y∗
v)lv ·

∑
β∈Sm(F )

c(β; f , y)σe∞(τ(iy∗βy))eA(τ(βx)) (3.3.16)

is well defined. In particular, we have f ∈ Ml(K,Q) if and only if c(β; f , y) ∈ Q

for all y.

3.4 Reformulating the integral representations

We keep the assumption of our global group as the beginning of this chapter. With

the archimedean local integrals calculated in Section 3.4.1, we conclude the integral

representation from Theorem 2.2.4 in Section 3.4.2. For later study of algebraic and

p-adic properties, we reformulate our integral representations in Section 3.4.3.

3.4.1 The archimedean local integrals

Recall that

H := H(F ) := {h ∈ GL2n(D) : hJnh∗ = Jn}, (3.4.1)

with a doubling embedding G × G → H defined in (2.1.11). For an archimedean

place v of F , denote Hv = H(Fv) for the localization at v and Hn := Zn,0 the

symmetric space associated to Hv. We also write J(h, z) for the automorphy factor

of H to distinguish the one for G. There is a doubling embedding (see for example

[Shi97, Section 6, 7] and [BJar, Section 2.3])

Zm,r × Zm,r → Hn,

z1, z2 7→ [z1, z2],
(3.4.2)

compatible with the action, i.e. (g1, g2) · [z0, z0] = [g1z0, g2z0]. In particular, we can

fix the suitable z0 and the embedding such that [z0, z0] = i · 1n ∈ Hn. We simply

write i := i · 1n if it is clear from the context. This map is constructed in [Shi97;

Shi00] for symplectic and unitary groups and in [BJar, Section 2.3] for quaternionic
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unitary groups. The doubling map for the quaternionic orthogonal groups can be

similarly constructed as in [BJar].

Let ϕ be a cusp form of weight l and set ϕ1 = ϕ2 = ϕ. Identifying ϕ = ⊗′
vϕv and

simply write ϕ∞ := ∏
v|∞ ϕv in this subsection for simplicity. Assume χ : E×\A×

E →

C× is a Hecke character of infinity type l. That is χv(x) = xlv |x|−lv for any v|∞.

Define a section f∞
s ∈ IndH(F∞)

P (F∞) (χ| · |s) by f∞
s = ∏

v|∞ f∞
s,v with

f∞
s,v(h) = J(hv, i)−lv |J(hv, i)|lv−s−κ Case II, III, IV,

f∞
s,v(h) = J(hv, i)−lv |J(hv, i)|lv−2s−2κ Case V.

(3.4.3)

and consider the archimedean integral

Z(s;ϕ1, ϕ2, f
∞
s ) =

∫
G(F∞)

f∞
s (δ(g, 1))⟨π(g)ϕ∞, ϕ∞⟩dg, (3.4.4)

where

δ =



1r 0 0 0 0 0

0 1m 0 0 0 0

0 0 1m 0 0 0

0 0 0 1r 0 0

0 0 −1m 0 1m 0

0 ϵ · 1m 0 0 0 1m



. (3.4.5)

Proposition 3.4.1. Assume Re(s) + lv > κ for all v. We have

Z(s;ϕ, ϕ, f∞
s ) = C(s) ·

∏
v|∞

clv(s) · ⟨ϕ∞, π(w)ϕ∞⟩. (3.4.6)

Here w is the Weyl element as in (2.2.21), C(s) is a power of 2 depending on s and

clv(s) is given by the following list:

(Case II)

π
m(m+1)

2

m−1∏
i=0

Γ
(

1
2

(
s+ lv − 1

2

)
− i

2

)
Γ
(

1
2

(
s+ lv + 2m+1

2

)
− i

2

) ,
(Case III)

π
n(n+1)

2

n−1∏
i=0

Γ
(

1
2

(
s+ lv − 1

2

)
− i

2

)
Γ
(

1
2

(
s+ lv + 2n+1

2

)
− i

2

) ,
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(Case IV)

π
n(n−1)

2

⌊n
2 ⌋−1∏
i=0

Γ
(
s+ lv + 1

2 − 2i
)

Γ
(
s+ lv + 2n−1

2 − 2i
) ,

(Case V)

πm(m+r)
m−1∏
i=0

Γ
(
s+ lv

2 − i
)

Γ
(
s+ lv

2 + n
2 − i

)

Proof. This is well known (see [Shi00] for symplectic and unitary case, [BJar] for

quaternionic unitary case). Indeed, it suffices to calculate

∫
G(F∞)

f∞
s (δ(g, 1))ϕ∞(g′g)dg.

Note that J(δ(g, 1), [z0, z0]) = j(δ, [gz0, z0])j(g, z0) and rewrite above integral (for

Case II, III, IV) as

∫
G(F∞)

j(δ, [gz0, z0])−l|j(δ, [gz0, z0])|l−s−κ|j(g, z0)|−l−s−κϕ∞(g′g)dg.

This kind of integral is calculated in [Shi97, Appendix A.2] for symplectic and unitary

case. The symmetric space for quaternionic orthogonal group is isomorphic to the

one for symplectic group. All these cases including the quaternionic unitary group

are treated in [Hua63, Theorem 2.2.1, 2.3.1, 2.4.1].

3.4.2 Summary of the integral representations

Let l = (lv)v|∞ be a tuple of positive integers indexed by archimedean places of F .

Fix a specific prime p of o and an integral ideal n = n1n2 = ∏
v p

cv
v with n1, n2,p

coprime. Denote ϖ for the uniformizer of p. Let q be the prime ideal of O above p

and ϖ̃ the uniformizer of q. We make the following assumptions:

(1) 2 ∈ O×
v and θ ∈ GLr(Ov) for all v|np.

(2) f ∈ Sl(K(np)) is an eigenform for the Hecke algebra H(K(np),X) as in Section

2.3.4.

(3) f is an eigenform for the U(p) operator with eigenvalue α(p) ̸= 0.

(4) χ = χ1χ with χ1 has conductor n2 and χ has conductor pc for some integer
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c ≥ 0. We assume χ has infinity type l. That is, χv(x) = xlv |x|−lv for all v|∞.

(5) In Case V, all places v|np are nonsplit in O.

Denote η1, η2 ∈ G(A) such that

(η1)v =


w v|n1

1 otherwise,
, (η2)v =


w v|n2p

1 otherwise,
, (3.4.7)

where

w =


0 0 1m

0 1r 0

ϵ · 1m 0 0


is an Weyl element.

Denote E(h; fs) be the Eisenstein series on H(A) associated to fs. Our global

integral (2.2.10) can be written as

Z(s; f , fs)

=
∫

(G×G)(F )\(G×G)(A)
E((g1, g2); fs)f(g1η1)f(g2η2)χ(ν(g2))−1dg1dg2.

(3.4.8)

The integral representation is summarized in the following theorem.

Theorem 3.4.2. Take the section fs to be

fs =
∏

v∤np∞
f 0
s,v ·

∏
v|n1

f †,cv
s,v ·

∏
v|n2

f ‡,cv
s,v · f ‡,c

s,p ·
∏
v|∞

f∞
s,v, c > 0,

fs =
∏

v∤np∞
f 0
s,v ·

∏
v|n1

f †,cv
s,v ·

∏
v|n2

f ‡,cv
s,v · fps,p ·

∏
v|∞

f∞
s,v, c = 0.

(3.4.9)

with f 0
s,v, f

†,cv
s,v , f

‡,cv
s,v , f

p
s,v are local sections defined in (2.4.6), (2.4.11), (2.4.15), (2.4.24)

and f∞
s,v the archimedean local section defined in (3.4.3). Then

Z(s; f , fs) = C ′ ·
∏
v|∞

clv(s) · L
(
s+ 1

2 ,f × χ
)

· ⟨π(η)f |U ′(n1),f⟩, c > 0,

Z(s; f , fs) = C ′′ ·
∏
v|∞

clv(s) · L
(
s+ 1

2 ,f × χ
)

· ⟨π(η)f |U ′(n1),f⟩

×M
(
s+ 1

2 ,f × χ
)
, c = 0.

(3.4.10)

Here:
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(a) M(s,f × χ) is the modification factor given in Proposition 2.4.6,

(b) U ′(n1) is the Hecke operator defined by (2.3.13),

(c)

η =


0 0 ϖ−c · 1m

0 1r 0

ϖc · 1m 0 0

 ·
∏
v|n2


0 0 ϖ−cv

v · 1m

0 1r 0

ϖcv
v · 1m 0 0

 , c > 0,

η =


0 0 ϖ̃−1 · 1m

0 1r 0

ϖ̃ · 1m 0 0

 ·
∏
v|n2


0 0 ϖ−cv

v · 1m

0 1r 0

ϖcv
v · 1m 0 0

 , c = 0,

(3.4.11)

(d) The constants clv(s) are given in (3.4.6). Up to a power of 2 depending on s,

C ′ =χ(n1)md1 |n1|md2(s+κ)vol(GLm(O)/GLm(n2p
cO)), (3.4.12)

and

C ′′ =(−1)m|ϖ|d3
m2+m

2
p χ(n1)md1|n1|md2(s+κ)vol(GLm(O)/GLm(n2O)), (3.4.13)

with

d1 =


1 Case I, II, V,

2 Case III, IV,
d2 =


1 Case I, II,

2 Case III, IV, V,

d3 =


1 Case I, II, V Ramified,

2 Case III, IV, V Inert.
.

(3.4.14)

3.4.3 Level lowering and the reformulation

For any integer n ≥ 0, let K(pn) (resp. K′(pn)) be an open compact subgroup of

G(A) defined by K(pn) = K ′(n1)K(n2)K(pn) (resp. K′(pn) = K(n1)K ′(n2)K ′(pn)).

Denote w∞ ∈ G(A) be an element such that wv = w for any archimedean place v

and wv = 1 for all non-archimedean places. Then for fs as above, we have

E(g1, g2; fs) := χ(ν(g2))−1E((g1, g
ι
2); fs) ∈ Ml(K(p2n)) ⊗ Ml(K′(p2n)), (3.4.15)
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with

gι =


−1m 0 0

0 1r 0

0 0 1m


∞

· g ·


−1m 0 0

0 −1r 0

0 0 1m


∞

, (3.4.16)

where the matrix with subscript ∞ means an element in G(F∞). Here, in this

section only, we abuse the notation by writing Ml(K(p2n)) for the space of functions

transforming as a modular form (i.e. satisfying (3.2.9) but may not necessary

holomorphic). That is, E(g1, g2; fs) transforms as a modular form in Ml(K(p2n)) for

the first variable and Ml(K′(p2n)) for the second variable. Indeed, later in Section

4.1 and 4.2, we will specialize to the special points s = s0 (as in (4.2.2)) in which case

E(g1, g2; fs) is holomorphic in both variables (follows from the Fourier expansion).

Note that n can be took as any integer such that n ≥ c if c > 0 and n ≥ 1 if

c = 0. We also remark that the involution ι is included in the second variable since

our doubling embedding of the symmetric space (3.4.2) is holomorphic in the first

variable and antiholomorphic in the second variable. To compare all these integral

representations when varying the character χ of different conductors, we further

descend the level of Eisenstein series such that it is independent of c. Our approach

is an analogue of [BS00, Section 4].

Remark 3.4.3. In the following we actually assume p is nonsplit in D. As our

argument is local, it directly extended to the split cases of Case III and IV by

identifying the local group G(Fp) with the group in Case I or Case II as in Section

2.3.3.

We will use the following general lemma to descend the level.

Lemma 3.4.4. The Hecke operator U(pn−1) defined by (2.3.13) maps Ml(K(p2n))

to Ml(K(p2)).

Proof. We define a map Ml(K(p2n)) → Ml(K(p2)) in following steps. Let f ∈
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Ml(K(p2n)) and first set

f1(g) := f

g


ϖn · 1m 0 0

0 1r 0

0 0 ϖ−n · 1m



 .

Then f1 is fixed by

K ′′(pn) := G(op) ∩


Matm(Op) Matm,r(pnOp) Matm(p2nOp)

Matr,m(pnOp) 1 + Matr(pOp) Matr,m(pnOp)

Matm(Op) Matm,r(pnOp) Matm(Op)

 ,

Secondly we define

f2(g) :=
∑

γ∈K′′(p)/K′′(pn)
f1(gγ),

where the representatives of K ′′(p)/K ′′(pn) can be taken as
1m −ϖb∗θ−1 ϖ2c

0 1r ϖb

0 0 1r

 ,

with b ∈ Matm,r(Op/p
n−1Op) and c ∈ Matm(Op/p

2n−2Op) satisfying ϵc+b∗θ̂b+c∗ =

0. Then f2 ∈ Ml(K ′′(p)). Finally we put

f3(g) := f2

g


ϖ−1 · 1m 0 0

0 1r 0

0 0 ϖ · 1m



 .

to obtain f3 ∈ Ml(K(p2)). Combining these three steps together, f 7→ f3 defines a

map
Tr : Ml(K(p2n)) → Ml(K(p2))

f 7→ f |Tr(g) :=
∑
γ

f(gγ)
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where γ runs through elements of the form
ϖn−1 · 1m −b∗θ−1 ϵϖ1−nc∗

0 1r ϖ1−nb

0 0 ϖ1−n · 1m


with b ∈ Matm,r(Op/p

n−1Op) and c ∈ Matm(Op/p
2n−2Op) satisfying ϵc+b∗θ̂b+c∗ =

0. Comparing above matrix with the one in (2.3.11) for U(pn−1) operator we obtain

the lemma.

We apply above process for both variables and define

E(h; fs) := E(h; fs)|U(pn−1) :=
∑
γ

E(hγ; fs), (3.4.17)

where γ runs through elements of the form

1r 0 0 0 ϵϖ1−nb2
2 − ϵϖ1−nb1

2

ϵb∗
2θ

−1 ϖn−1 · 1m 0 − b∗
2
2 −ϖ1−nc2 0

−ϵb∗
1θ

−1 0 ϖn−1 · 1m − b∗
1
2 0 ϖ1−nc1

0 0 0 1r −ϖ1−nθ−1b2 ϖ1−nθ−1b1

0 0 0 0 ϖ1−n · 1m 0

0 0 0 0 0 ϖ1−n · 1m



(3.4.18)

with b1, b2 ∈ Matm,r(Op/p
n−1Op) and c1, c2 ∈ Matm(Op/p

2n−2Op) satisfying ϵc1 +

b∗
1θ̂b1 + c∗

1 = 0, ϵc2 + b∗
2θ̂b+ c∗

2 = 0.

Take E(g1, g2; fs) as with fs as in (3.4.9). Then

E(g1, g2; fs) := χ(ν(g2))−1E((g1, g
ι
2); fs) ∈ Ml(K(p2)) ⊗ Ml(K′(p2)). (3.4.19)

We may also denote E(h; fs, χ,n) and E(g1, g2; fs, χ,n) to emphasize their depend-

ence on χ,n. Consider the global integral

Z(s; f , fs)

:=
∫

(G×G)(F )\(G×G)(A)
E((g1, g

ι
2); fs)f(g1η1ηp)f(g2η2)dg1dg2.

(3.4.20)
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with η1, η2 as (3.4.7) and

ηp =


0 0 ϖ−1 · 1m

0 1r 0

ϖ · 1m 0 0

 ∈ G(Fp). (3.4.21)

Again we may also denote Z(s; f , fs, χ,n) to emphasize its dependence on χ,n. By

simply changing variables, we reformulate Theorem 3.4.2 in the following corollary.

We remark that it is essential to assume that the eigenvalue α(p) ̸= 0 otherwise the

integral will be identically zero.

Corollary 3.4.5. For c > 0 we have

Z(s; f , fs) = α(p)2n−2C ′ ∏
v|∞

clv(s) · L
(
s+ 1

2 ,f × χ
)

· ⟨π(η)f |U ′(n1),f⟩, (3.4.22)

and for c = 0 we have

Z(s; f , fs) = α(p)2n−2C ′′ ∏
v|∞

clv(s) · L
(
s+ 1

2 ,f × χ
)

· ⟨π(η)f |U ′(n1),f⟩

×M
(
s+ 1

2 ,f × χ
)
,

(3.4.23)

Here the notations are same as Theorem 3.4.2 except

η =
∏
v|n2


0 0 ϖ−cv

v · 1m

0 1r 0

ϖcv
v · 1m 0 0

 . (3.4.24)

Remark 3.4.6. If we denote f 1(g) := f(gη1ηp),f 2(g) := f(gη2) and let V be the

operator defined by f 2|V := π(η)f 2|U ′(n1), then our computations in Section 2.4

also show that

〈
E(g1, g2; fs),f 1(g1)

〉
= Z(s; f , fs)

⟨f 2|V ,f 2⟩
· f 2|V (gι2), (3.4.25)

where the left hand side is the Petersson inner product respect to g1. The integral

(3.4.25) is the adelic version of the integral representation obtained in [BS00] and

[Shi97; Shi00]. One can also further reformulate the integral in a classical setting as

there (see also [Jin22, Section 4]). Indeed, recall that by the weak approximation
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(3.2.6) of G there is finite number h such that

G(A) =
∐

1≤i≤h
G(F )tiKG(F∞).

For 1 ≤ i, j ≤ h and z = g∞z0 ∈ Zm,r, w = g′
∞z0 ∈ Zm,r, we set

f 1
i (z) = f 1(tig∞), f 2

j (w) = f 2|V (tjg′
∞), Eij(z, w) = E(tig∞, tjg

′
∞; fs).

Then the integral (3.4.20) can be written as

∑
i,j

〈〈
Eij(z,−w), f 1

i (z)
〉
, f 2
j (w)

〉
(3.4.26)

and (3.4.25) can be rewritten as

∑
i

〈
Eij(z, w), f 1

i (z)
〉

= Z(s; f , fs)
⟨f 2|V ,f 2⟩

· f 2
j (−w), (3.4.27)

which is the pullback formula obtained in [Shi97; Shi00].



Chapter 4

The Eisenstein Series and Special

Values of L-functions

In this chapter, we study the special values of L-functions utilizing our integral

representations obtained in previous two chapters. Indeed, via the integral repres-

entation, the properties of the special L-values can be obtained from the properties

of special values of Eisenstein series. We therefore calculate the Fourier expansion

of the Eisenstein series explicitly in Section 4.1 and the properties of the special

values of Eisenstein series can be simply read off from these Fourier coefficients. We

conclude our main theorems on algebraicity of special L-values and construct the

p-adic L-functions in Section 4.2.

This chapter is taken from [Jin23, Section 7-8]. In [BJar] and [Jin22], we also

obtain some partial results for quaternionic unitary groups. However, the differential

operators are applied in [BJar; Jin22] so that more critical values are studied. We

omit these discussions and restrict to the study of a particular critical point here

(see also Remark 4.2.7).
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4.1 Fourier expansion of the Eisenstein series

We calculate the Fourier expansion of the Eisenstein series in this section. Then

the properties of Eisenstein series can be directly obtained from the properties of

Fourier coefficients.

4.1.1 Generalities

Let eA = ∏
v ev be the standard additive character of A. That is, ev(x) = e2πix for

an archimedean place v and ev(ϖv) = ∏
v|∞ ev(−qv) with ϖv the uniformizer of Fv

and |ϖv|v = q−1
v . Denote Sn be the additive algebraic group such that

Sn(F ) = {β ∈ Matn(D) : β∗ = −ϵβ}. (4.1.1)

The Eisenstein series E(h; fs) (2.2.9) on H(A) has a Fourier expansion of the form

E(h; fs) =
∑

β∈Sn(F )
Eβ(h; fs),

Eβ(h; fs) =
∫
Sn(F )\Sn(A)

E


 1n S

0 1n

h; fs

 eA(−τ(βS))dS.
(4.1.2)

By the Iwasawa decomposition, the Eisenstein series is determined by its value at

the parabolic element q ∈ P (A). In particular, we can take qv = diag[y, ŷ] for

non-archimedean places v and for finitely many v we can assume qv = 1. For an

archimedean place v, we can take qv =

 yv xvŷv

0 ŷv

 with zv = xv + iyvy
∗
v ∈ Hn. We

shall also denote such q as qz to indicate its dependence on z = (zv)v|∞.

Since our fs is chosen such that, for at least one place v, the support of fs,v is in the

big cell P (F )JnP (F ), the Fourier coefficient Eβ(q; fs) at parabolic element q ∈ P (A)

is factorizable. That is

Eβ(q; fs) =
∏
v

Eβ,v(q; fs),

Eβ,v(q; fs) =
∫
Sn(Fv)

fs,v

Jn
 1n S

0 1n

 q
 ev(−τ(βS))dS.

(4.1.3)
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For local sections fs = f 0
s , f

†,c
s , f ‡,c

s , fps , f
∞
s defined in Section 2.4, we calculate the

local Fourier coefficients Eβ,v(q; fs) place by place in next two subsections.

4.1.2 Non-archimedean computations

Let F be a non-archimedean local field and o its ring of integers with the maximal

ideal p. Fix uniformizer ϖ and the absolute value | · | on F normalized so that

|ϖ| = q−1 with q the cardinality of the residue field. We also fix a maximal order O

of D such that D = O ⊗o F . Let q be a prime in O above p and fix ϖ̃ a uniformizer

of q.

We are going to calculate local Fourier coefficients

Eβ(q; fs) =
∫
Sn(F )

fs

Jn
 1n S

0 1n

 q
 e(−τ(βS))dS, (4.1.4)

for various local sections f 0
s , f

†,c
s , f ‡,c

s , fps defined in (2.4.6), (2.4.11), (2.4.15), (2.4.24).

The unramified case

We first consider the local section f 0
s . Denote

Sn(o)∗ = {β ∈ Sn(F ) : τ(βS) ∈ o for any S ∈ Sn(o)}. (4.1.5)

Proposition 4.1.1. Set t = rank(β) and tbβb = diag[β′, 0] with b ∈ GLn(O) and

β′ ∈ St(F ). Let q = diag[a, â], then Eβ(q; f 0
s ) is nonzero only if a∗βa ∈ St(o)∗. In

this case, up to the term χ(ν(a))|NE/F (ν(a))|s+κ and a power of the discriminant of

D, Eβ(q; f 0
s ) is given by the following list.

(Case I, Orthogonal) This case occurs as quaternionic unitary split case.

⌊n−t
2 ⌋∏
i=1

L
(
2s− n+ t+ 2i, χ2

)
· Pa∗βa(χ(q)q−s−κ),

(Case II, Symplectic Even) Assume t is even. Let λβ be the quadratic character
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associated to the quadratic field F ((−1) t
2ν(2β)) over F .

L
(
s− n− 1

2 + t

2 , χλβ
)

·
⌊n−t

2 ⌋∏
i=1

L(2s− n+ t+ 2i, χ2) · Pa∗βa(χ(q)q−s−κ),

(Case II, Symplectic Odd) Assume t is odd. This case only occurs as quaternionic

orthogonal split case.

⌊n−t+1
2 ⌋∏
i=1

L(2s− n+ t− 1 + 2i, χ2) · Pa∗βa(χ(q)q−s−κ),

(Case III, Quaternionic Orthogonal Nonsplit Even) Assume t is even. Let λβ be the

quadratic character associated to the quadratic field F ((−1) t
2ν(2β)) over F .

L
(
s− 2n− 1

2 + t, χλβ

)
·
n−t∏
i=1

L
(
2s− 2n+ 2t+ 2i, χ2

)
· Pa∗βa(χ(q)q−s−κ),

(Case III, Quaternionic Orthogonal Nonsplit Odd) Assume t is odd.

n−t∏
i=1

L
(
2s− 2n+ 2t+ 2i, χ2

)
· Pa∗βa(χ(q)q−s−κ),

(Case IV, Quaternionic Unitary Nonsplit)

n−t∏
i=1

L
(
2s− 2n+ 2t+ 2i, χ2

)
· Pa∗βa(χ(q)q−s−κ),

(Case V, Unitary)

n−t∏
i=1

L(2s− i+ 1, χ0χn+i
E/F ) · Pa∗βa(χ0(q)q−2s−2κ).

Here L(s, χ) means the local L-factor of Hecke L-functions and Pα∗βα(X) ∈ Z[X] is

a polynomial with coefficients in Z whose constant term is 1.

Proof. Conjugate q to the left, we obtain

Eβ(q; f 0
s ) = χ(ν(a))|NE/F (ν(a))|s+κ

∫
Sn(F )

fs

Jn
 1n a−1Sâ

0 1n

 q
 e(−τ(βS))dS.

The above integral is the Siegel series α studied in [Shi97, Chapter III] (see also

[Fei89; Fei94]). The orthogonal, symplectic and unitary case are listed in [Shi97,

Theorem 13.6]. (We remind the reader that we have already normalized the local
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section f 0
s by b(s, χ)). Two quaternionic cases can also be calculated in the same way

as [Shi97, Section 13, 14, 15] (see also [Shi99b, Proposition 3.5] and [Yam17]).

The ramified case

We now assume q = 1 and consider the local section f †,c
s , f ‡,c

s , fps . Denote

Sn(o)c = Sn(o) ∩

 Matr(pO) Matr,2m(pcO)

Mat2m,r(pcO) Mat2m(pcO)

 ,
Sn(o)∗,c = {β ∈ Sn(F ) : τ(βS) ∈ o for any S ∈ Sn(o)c}.

(4.1.6)

Proposition 4.1.2. Assume ν(β) ̸= 0, then

Eβ(1; f †,c
s ) =


1 β ∈ Sn(o)∗,c,

0 otherwise.
(4.1.7)

Proof. Consider

Eβ(1; f †,c
s ) =

∫
Sn(F )

f †,c
s

Jn
 1n S

0 1n


 e(−τ(βS))dS.

By the definition of f †,c
s , the integrand vanishes unless S ∈ Sn(o)c and the proposition

easily follows.

For a character χ of F with conductor pc, the local Gauss sum of χ is defined as

G(χ) =
∑

u∈O/pcO
χ(ν(u))e

(
τ(u)
ϖc

)
. (4.1.8)

Lemma 4.1.3. Consider

G(χ; β,m) = qcd1
m(m−1)

2
∑

u∈GLm(O/pcO)
χ(ν(u))e

(
τ(βu)
ϖc

)
(4.1.9)

for a matrix β ∈ Matm(O). Then

G(χ; β,m) =


χ(ν(β))G(χ)m β ∈ GLm(O),

0 otherwise.
. (4.1.10)
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Proof. This is an analogue of the computations in [BS00, Section 6]. Multiply by

some matrix of GLm(Ov) on the left and right of β, it suffices to prove the lemma

for diagonal β = diag[β1, ..., βm]. In this case, we calculate that

G(χ; β,m) = ν(ϖc)
m(m−1)

2

m∏
i=1

 ∑
u∈O/pcO

χ(ν(u))e
(
τ(βiu)
ϖc

) .
By the property of Gauss sums, the sum in the bracket is nonzero if and only if

βi ∈ O× and in this case it equals χ(ν(βi))G(χ).

We write β ∈ Sn(F ) as

β =


β1 −ϵβ∗

2 −ϵβ∗
3

β2 β4 −ϵβ∗
5

β3 β5 β6

 (4.1.11)

with β1 ∈ Sr(F ), β4, β6 ∈ Sm(F ). Here recall that n = 2m+ r with m, r as in (3.0.1).

Proposition 4.1.4. Eβ(1; f ‡,c
s ) = 0 unless β5 ∈ GLm(O). In this case, if we further

assume ν(β) ̸= 0, then

Eβ(1; f ‡,c
s ) =


qcd1

m(m−1)
2 χ(ν(β5))G(χ)m β ∈ Sn(o)∗,0,

0 otherwise.
(4.1.12)

Proof. We need to compute

Eβ(1; f ‡,c
s ) =

∫
Sn(F )

∑
u∈GLm(O)/ϖcGLm(O)

χ−1(ν(u))e(−τ(βS))

×f †,0
s



Jn

 1n S

0 1n





1r 0 0 0 0 0

0 1m 0 0 0 u
ϖc

0 0 1m 0 − ϵu∗

ϖc 0

0 0 0 1r 0 0

0 0 0 0 1m 0

0 0 0 0 0 1m





dS.
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Changing variables

S 7→ S −


0 0 0

0 0 u
ϖc

0 − ϵu∗

ϖc 0

 ,

we obtain ∫
Sn(F )

f †,0
s

Jn
 1n S

0 1n


 e(−τ(βS))dS

×
∑

u∈GLm(O)/ϖcGLm(O)
χ−1(ν(u))e

(
2τ(β5u)
ϖc

)
.

The second line implies β5 ∈ GLm(O) by Lemma 4.1.3. In this case and ν(β) ̸= 0

the integral in the first line can be calculated as in Proposition 4.1.2.

Proposition 4.1.5. Eβ(1; fps ) = 0 unless β5 ∈ GLm(O). In this case, if we further

assume ν(β) ̸= 0, then

Eβ(1; fps ) =


1 β ∈ Sn(o)∗,0,

0 otherwise.
(4.1.13)

Proof. This is same as Proposition 4.1.5 except, rather than a Gauss sum, we obtain

a term
m∑
i=0

(−1)iqd3( i(i−1)
2 −im)∑

j

∑
u∈ϖ̃Matm(O)δ−1

ij /ϖ̃Matm(O)

e(2τ(β5u)),

which is nonzero unless β5 ∈ GLm(O). This can be shown by the property of

exponential sums as in [BS00, page 1412].

4.1.3 Archimedean computations

We now turn to the archimedean setting. We fix an archimedean place v and omit it

from the notation where we also abuse the notation by simply denoting f∞
s := f∞

s,v.

Fix a positive integer l be our weight. Let z = x+ iyy∗ ∈ Hn and consider the local

Fourier coefficients

Eβ(z; f∞
s ) =

∫
Sn(R)

f∞
s

Jn
 1n S

0 1n


 y xŷ

0 ŷ


 e∞(−τ(βS))dS. (4.1.14)
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For y, β ∈ Sn(R) and s1, s2 ∈ C we define a function ξn by

ξn(y, β; s1, s2) =
∫
Sn(R)

ν(s+ iy)−s1ν(s− iy)−s2e∞(τ(βS))dS. (4.1.15)

By definition of f∞
s , we have (for Case II, III, IV)

Eβ(z, f∞
s )

=
∫
Sn(R)

ν(yi+ xŷ + Sŷ)−l|ν(yi+ xŷ + Sŷ)|l−s−κe∞(−τ(βS))dS

=e∞(τ(βx))ν(y)s+κ
∫
Sn(R)

ν(S + yy∗i)− s+κ+l
2 ν(S − yy∗i)− s+κ−l

2 e∞(−τ(βS))dS

=e∞(τ(βx))ν(y)s+κξn
(
yy∗, β; s+ κ+ l

2 ,
s+ κ− l

2

)
.

(4.1.16)

Similarly, for Case V we have

Eβ(z, f∞
s )

=e∞(τ(βx))ν(y∗)l|ν(y∗)|2s+2κ−lξn

(
yy∗, β; s+ κ+ l

2 , s+ κ− l

2

)
.

(4.1.17)

Recall that in Case III, the symmetric space is same as the one for Case II. Denote

ξII
n , ξ

III
n to indicate above functions ξn in two cases. After identify β, yy∗ with their

image β′, (yy∗)′ in {β′ ∈ GL2n(R) : tβ = β} we have

ξIII
n

(
yy∗, β; s+ κ+ l

2 ,
s+ κ− l

2

)
= ξII

2n ((yy∗)′, β′; s+ κ+ l, s+ κ− l) . (4.1.18)

The function ξn is the confluent hypergeometric function studied in [Shi82]. We

record some of its property in the following lemma.

Lemma 4.1.6. Let t = rank(β) be the rank of β and t+ (resp. t−) the number of

positive (resp. negative) eigenvalues of β. Then

ξ(y, β; s1, s2) = Γ(s1, s2) × ω(y, β; s1, s2) (4.1.19)

where ω(y, β; s1, s2) is a holomorphic function in s1, s2 and Γ(s1, s2) is given by the

following list.
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(Case II, Symplectic)
∏n−t−1
i=0 Γ

(
s1 + s2 − n+1+i

2

)
∏n−t−−1
i=0 Γ

(
s1 − i

2

)∏n−t+−1
i=0

(
s2 − i

2

) ,
(Case IV, Quaternionic Unitary)

∏n−t−1
i=0 Γ (2s1 + 2s2 − 2n+ 1 − 2i)∏n−t−−1

i=0 Γ (2s1 − 2i)∏n−t+−1
i=0 Γ (2s2 − 2i)

,

(Case V, Unitary) ∏n−t−1
i=0 Γ (s1 + s2 − n− i)∏n−t−−1

i=0 Γ (s1 − i)∏n−t+−1
i=0 (s2 − i)

.

In particular, if β > 0, then

ω(y, β; l, 0) = 2ni−nlπnl−
ιn(n−1)

4 ν(2β)l−κe∞(iτ(βy)), (4.1.20)

with

ι =


1 Case II,

4 Case IV,

2 Case V.

We are interested in the special value

s = s0 :=


l − κ Case II, III, IV,
l
2 − κ Case V.

, (4.1.21)

with

l ≥


m+ 1 Case II,

n+ 1 Case III, IV, V.
(4.1.22)

and κ is defined as in (2.2.8). In this case we need to consider the special value of

ξ(y, β; s1, s2) at s1 = l, s2 = 0.

Lemma 4.1.7. The function ξ(y, β; s1, s2) does not have a zero at s1 = l, s2 = 0

only if β > 0.

Proof. We prove for Case IV and omit the same proof for Case II, V. Consider
∏n−t−1
i=0 Γ (2l − 2n+ 1 − 2i)∏n−t−−1

i=0 Γ (2l − 2i)∏n−t+−1
i=0 Γ (−2i)

.
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and calculate the contributions of poles for each terms. By our assumption on l,∏n−t−−1
i=0 Γ(2l − 2i) does not have poles. The numerator at most contributes n − t

poles while the denominator always has n− t+ poles thus we must have t = t+.

We summarize the archimedean Fourier coefficients in the following proposition.

Proposition 4.1.8. As a function of s, Eβ(z; f∞
s ) does not have a zero at s0 only

if β > 0. In this case, its value at s = s0 is given by the following list.

(Case II, Symplectic)

2ni−nlπnl−
n(n−1)

4∏n−1
i=0 Γ

(
l − i

2

) ν(2β)l− n+1
2 ν(y)le∞(τ(βz)),

(Case III, Quaternionic Orthogonal)

22n(−1)−nlπ2nl− n(2n−1)
2∏2n−1

i=0 Γ
(
l − i

2

) ν(2β)l− 2n+1
2 ν(y)le∞(τ(βz)),

(Case IV, Quaternionic Unitary)

2ni−nlπnl−n(n−1)∏n−1
i=0 Γ(2l − 2i) ν(2β)l− 2n−1

2 ν(y)le∞(τ(βz)),

(Case V, Unitary)

2ni−nlπnl−
n(n−1)

2∏n−1
i=0 Γ(l − i) ν(2β)l− n

2 ν(y∗)le∞(τ(βz)).

4.1.4 The global Fourier expansion

We now study the global Fourier expansion of E(h; fs, χ,n) defined in (3.4.17). From

now on, we assume the weight l = (lv)v|∞ is parallel. That is lv = l for all v|∞. We

also assume

l ≥


m+ 1 Case II,

n+ 1 Case III, IV, V.
when F ̸= Q,

l ≥


m+ 1 Case II,

n+ r + 1 Case III, IV, V,
when F = Q.

(4.1.23)
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For such l, we are interested in the special value at

s = s0 :=


l − κ Case II, III, IV,
l
2 − κ Case V.

(4.1.24)

Let qz ∈ G(A) be an element such that

(qz)v =



diag[av, âv] v ∤ np∞,

1 v|np, yv xvŷv

0 ŷv

 v|∞,

(4.1.25)

for any z = (zv)v|∞ with zv = xv + yvy
∗
vi ∈ Hn. Denote

S = Sn(F ) ∩
∏
v∤n∞

âSn(ov)∗a−1 ·
∏
v|n2p

Sn(ov)∗,0 ·
∏
v|n1

Sn(ov)∗,cv (4.1.26)

and

Sp =


β =


β1 −ϵβ∗

2 −ϵβ∗
3

β2 β4 −ϵβ∗
5

β3 β5 β6

 ∈ S :
β2, β3 ∈ Matm,r(pn−1Op),

β4, β6 ∈ Matm(p2n−2Op).


. (4.1.27)

For a Hecke character χ = ∏
v χv, we define the Gauss sum G(χ) = ∏

v G(χv) with

G(χv) the local Gauss sum defined in (4.1.8). We may write GD(χ) to indicate that

the Gauss sum is defined for D. In Case II, IV, V, we always omit the superscript

‘D’ for simplicity as no confusion will occur. In Case III, we will need both GD(χ)

and GF (χ) and we make the convention G(χ) := GD(χ).

Combining with the local computations in previous subsections, we summarize the

Fourier expansion of E(h; fs, χ,n) in the following proposition.

Proposition 4.1.9. At s = s0, the Eisenstein series E(h; fs, χ,n) has a Fourier

expansion of the form

E(qz; fs, χ,n) = DC(qz)ν(y′∗)l
∑

0<β∈Sp

C(β, χ) · E(β;χ)e∞(τ(βz′)). (4.1.28)

Here:
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(1) D is a power of the discriminant of D,

(2) C(qz) = ∏
v∤n∞ χ(ν(av))|NE/F (ν(av))|s0+κ,

(3) z′ = x+ iy′y′∗ with y′ = diag[1r,ϖ1−n · 1m,ϖ1−n · 1m]y.

(4) The constant C(β, χ) is given by

C(β, χ) =
∏
v|n2

|ϖv|−cd1
m(m−1)

2 · |ϖ|−cd1
m(m−1)

2 G(χ)mχ(ν(β5))ν(2β)l−κ (4.1.29)

with d1 as in (2.4.14) and χ(ν(β5)) is understood as zero if ν(β5) /∈ O×
n2p,

(5) E(β;χ) is given by the following list with d(F ) = [F : Q]

(Case II, Symplectic)
2ni−nlπnl−

n(n−1)
4∏n−1

i=0 Γ
(
l − i

2

)
d(F )∏

v∤n
Lv

(
s0 + 1

2 , χλβ
)

·
∏
v∤n
Pa∗

vβav(χ(qv)q−l
v ),

(Case III, Quaternionic Orthogonal with r = 0)
22n(−1)−nlπ2nl− n(2n−1)

2∏2n−1
i=0 Γ

(
l − i

2

)
d(F )∏

v∤n
Lv

(
s0 + 1

2 , χλβ
)

·
∏
v∤n
Pa∗

vβav(χ(qv)q−l
v ),

(Case III, Quaternionic Orthogonal with r = 1)
22n(−1)−nlπ2nl− n(2n−1)

2∏2n−1
i=0 Γ

(
l − i

2

)
d(F ) ∏

v∤n
vsplit

Lv

(
s0 + 1

2 , χλβ
)∏
v∤n
Pa∗

vβav(χ(qv)q−l
v ),

(Case IV, Quaternionic Unitary)
(

2ni−nlπnl−n(n−1)∏n−1
i=0 Γ(2l − 2i)

)d(F )∏
v∤n
Pa∗

vβav(χ(qv)q−l
v ),

(Case V, Unitary)
2ni−nlπnl−

n(n−1)
2∏n−1

i=0 Γ(l − i)

d(F )∏
v∤n
Pa∗

vβav(χ0(qv)q−l
v ).

Proof. We first show that only β ∈ Sp can contribute a nonzero Fourier coefficient.

Recall that the Eisenstein series E(h; fs) is defined as

E(h; fs) := E(h; fs)|U (pn−1) :=
∑
γ

E(hγ; fs)

with γ running through elements of the form in (3.4.18). To ease the notation, we
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write

A =


1r 0 0

ϵb∗
2θ

−1 ϖn−1 · 1m 0

−ϵb∗
1θ

−1 0 ϖn−1 · 1m

 , B =


0 ϵϖ1−nb2

2 − ϵϖ1−nb1
2

− b∗
2
2 −ϖ1−nc2 0

− b∗
1
2 0 ϖ1−nc1

 ,

so that γ =

 A B

0 Â

. In the following, we write γp, Ap, Bp to indicate they are

matrices with entries in Fp. By straightforward computations,

Eβ(qz; fs) =
∫
Sn(F )\Sn(A)

∑
γp

E


 1n S

0 1n

 qzγp; fs

 eA(−τ(βS))dS

=
∫
Sn(F )\Sn(A)

E


 1n S

0 1n

 qz′ ; fs

 eA(−τ(βS))dS ·
∑
γp

eA(τ(βA−1
p Bp)).

Here qz′ ∈ G(A) is defined as in (4.1.25) for z′ = x+ iy′y′∗ with y′ = diag[1r,ϖ1−n ·

1m,ϖ1−n · 1m]y. The integral is the Fourier coefficients of E(h; fs) calculated in

previous subsection. Hence, by Proposition 4.1.1, Proposition 4.1.2, Proposition

4.1.4, Proposition 4.1.5, this integral is nonzero unless β ∈ S. The exponential sum

is nonzero unless further β ∈ Sp.

Secondly, we show that only β > 0 can contribute a nonzero Fourier coefficient.

Note that the condition β ∈ Sp and Proposition 4.1.4, Proposition 4.1.5 imply

that only such β with rank(β) ≥ 2m can contribute a nonzero term. Under our

assumptions on l, the L-functions occurring form Proposition 4.1.1 does not provide

any poles. Therefore, the Fourier coefficients are nonvanishing if and only if the

confluent hypergeometric function in archimedean computations does not have zeros.

Then by Lemma 4.1.7, when specializing to s = s0, Eβ(qz; fs) ̸= 0 unless β > 0.

The proposition then follows from the explicit formulas in Proposition 4.1.1, Propos-

ition 4.1.2, Proposition 4.1.4, Proposition 4.1.5 and Proposition 4.1.8.

Remark 4.1.10. We emphasize that we indeed obtain a better bound on l due the

action of U(p) operator. Without such process, we have to consider β of all rank
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so that one need to assume l ≥ 2m + 1 in Case II and 2n + 1 in Case III, IV, V

to avoid the occurrence of the poles in L-functions from unramified computations.

When r = 0 or when p splits in Case III, we always have ν(β) is a square mod p.

This property is essential in the construction of p-adic L-functions for Case II, III

(see also [Liu20, Section 3.5]).

From these explicit formulas of the Fourier coefficients, we immediately have

Corollary 4.1.11. Up to a power of π, E(h; fs, χ,n) is an algebraic modular form

on H(A) at s = s0. More precisely, we have

E(β, χ)
πd(F )d(π) ∈ Q with d(π) =



nl − n(n−1)
4 + l − n

2 Case II,

2nl − n(2n−1)
2 + l − n Case III,

nl − n(n− 1) Case IV,

nl − n(n−1)
2 Case V.

(4.1.30)

Furthermore, for any σ ∈ Aut(C/F ), we have

(Case II, Symplectic) E(β;χ)
πd(F )(nl− n(n−1)

4 )(πi)d(F )(l− n
2 )G(χ)

σ = E(β;χσ)
πd(F )(nl− n(n−1)

4 )(πi)d(F )(l− n
2 )G(χσ)

,

(Case III, Quaternionic Orthognoal) In this case we denote GF (χ) to indicate that

the Gauss sum is defined for F . E(β;χ)
πd(F )(2nl− n(2n−1)

2 )(πi)d(F )(l−n)GF (χ)

σ = E(β;χσ)
πd(F )(2nl− n(2n−1)

2 )(πi)d(F )(l−n)GF (χσ)
,

(Case IV, Quaternionic Unitary)(
E(β;χ)

πd(F )(nl−n(n−1))

)σ
= E(β;χσ)
πd(F )(nl−n(n−1)) ,

(Case V, Unitary) (
E(β;χ)

πd(F )(nl− n(n−1)
2 )

)σ
= E(β;χσ)
πd(F )(nl− n(n−1)

2 ) .
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4.2 Properties of the special L-values

In this section, we apply our computations to study the properties of special L-values.

Let l = (l, ..., l) be a parallel weight satisfying

l ≥


m+ 1 Case II,

n+ 1 Case III, IV, V.
when F ̸= Q,

l ≥


m+ 1 Case II,

n+ r + 1 Case III, IV, V,
when F = Q.

(4.2.1)

Fix a specific prime p of o above an odd prime number p and an integral ideal

n = n1n2 = ∏
v p

cv
v with n1, n2,p coprime. Denote ϖ for the uniformizer of p. We

make the following assumptions:

(1) 2 ∈ O×
v and θ ∈ GLr(Ov) for all v|np.

(2) f ∈ Sl(K(np),Q) is an algebraic eigenform for the Hecke algebra H(K(np),X)

as in Section 2.3.4.

(3) f is an eigenform for the U(p) operator with eigenvalue α(p) ̸= 0.

(4) χ = χ1χ with χ1 has conductor n2 and χ has conductor pc for some integer

c ≥ 0. We assume χ has infinity type l. That is, χv(x) = xl|x|−l for all v|∞.

(5) In Case V, all places v|np are nonsplit in O.

We study the special values of L-functions L(s,f × χ) at

s = s0 :=


l − κ Case II, III, IV,
l
2 − κ Case V.

(4.2.2)

4.2.1 The algebraicity of special L-values

The following algebraic result is also studied in [BS00; Shi00] for symplectic and

unitary groups and in [BJar] for quaternionic unitary groups. Comparing with our

previous work in [BJar], here we obtain a better bound l ≥ n + r + 1 rather than

l ≥ 2n+ 1.
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Theorem 4.2.1. Let l and s0 as in (4.2.1), (4.2.2). Then

L
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)Ω · ⟨f ,f⟩
∈ Q, if c > 0,

L
(
s0 + 1

2 ,f × χ
)
M
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)Ω · ⟨f ,f⟩
∈ Q, if c = 0.

(4.2.3)

with

d(π) =



nl − 3m2

2 + l − n
2 Case II,

2nl − 3n2

2 + l − n Case III,

nl − 3
2n(n− 1) Case IV,

nl − n(n−1)
2 −m(m+ r) Case V.

(4.2.4)

Here Ω = 1 in Case II, III, IV and in Case V, Ω ∈ C× is the following CM period

Ω = pE (lτ, rτ) , (4.2.5)

where (E, τ) is a fixed CM type and pE is the period notation given in [Shi00, Section

11.3].

Proof. The proof is similar to [BS00, Appendix] and [BJar; Shi00]. We remark that

in [BJar; Shi00], one needs to use the fact that the space of algebraic modular forms

is a direct sum of space of algebraic cusp forms and algebraic Eisenstein series. This

result is proved in [Har84] when the Eisenstein series is absolutely convergent at

s = s0 which forces l ≥ n in Case I and l ≥ 2n + 1 in Case II, III, IV. This result

is not necessary and not used in [BS00, Appendix] so that the special value below

the absolutely convergence bound can be considered. However, the proof there need

the assumption that the eigenvalue α(p) of the U(p) operator for f is nonzero as

we made here. We sketch the proof following [BS00, Appendix].

Let {f i} be an orthogonal basis of Sl(K(np)) consisting of eigenforms of the Hecke

algebra H(K(np),X), which without lossing generality we assume f 1 = f . Take

{hi} be a basis of the orthogonal complement of Sl(K(np)) in Ml(K(np)). Denote

f 1
i ,f

2
i (resp. h1

i ,h
2
i ) such that f 1

i (g) = f i(gη1ηp) (resp. h1
i (g) = hi(gη1ηp)) and

f 2
i (g) = f i(gη2) (resp. h2

i (g) = hi(gη2)) with η1, η2 in (3.4.7) and ηp in (3.4.21). Let
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V be the operator defined by f |V := π(η)f |U ′(n1) and we use the superscript c to

mean f c(g) := f(gι).

We can write the Eisenstein series E(g1, g2; fs) as

E(g1, g2; fs)
πd(F )d(π) =

∑
i,j

aijf
1
i (g1)f 2,c

j |V (g2) +
∑
i,j

bijh
1
i (g1)h2,c

j (g2)

+
∑
i,j

cijf
1
i (g1)h2,c

j (g2) +
∑
i,j

dijh
1
i (g1)f 2,c

j |V (g2).
(4.2.6)

We take the Petersson inner product on both sides of (4.2.6) with f 1
i for the first

variable. Then the integral representation (3.4.25) shows that

Z(s; f i, fs)
πd(F )d(π)⟨f 2

i |V ,f 2
i ⟩

f 2,c
i |V (g2)

=
∑
j

aij⟨f i,f i⟩f
2,c
j |V (g2) +

∑
j

cij⟨f i,f i⟩h
2,c
j (g2).

Clearly, we have aij = 0 if j ̸= i and cij = 0 for all j. Similarly taking the

Petersson inner product on both sides of (4.2.6) with f 2,c
j |V for the second variable,

we conclude that cij = dij = 0 for all i, j and aij ̸= 0 unless i = j in which case

aii = Z(s; f i, fs)
πd(F )d(π)⟨f i,f i⟩⟨f 2

i |V ,f 2
i ⟩
.

Hence we can write

E(g1, g2; fs)
πd(F )d(π) =

∑
i

aiif
1
i (g1)f 2,c

i |V (g2) +
∑
i,j

bijh
1
i (g1)h2,c

j (g2). (4.2.7)

Applying σ ∈ Aut(C/Q) on both sides of (4.2.7), we have(
E(g1, g2; fs)
πd(F )d(π)

)σ
=
∑
i

aσiif
1,σ
i (g1)(f 2,c

i |V )σ(g2) +
∑
i,j

bσijh
1,σ
i (g1)h2,c,σ

i (g2). (4.2.8)

We now take the Petersson inner product on both sides of (4.2.8) with f 1,σ
1 for the

first variable g1. For the left hand side, by Corollary 4.1.11, we have(
E(g1, g2; fs)
πd(F )d(π)

)σ
= E(g1, g2; fs)

πd(F )d(π) ,
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and the integral representation (3.4.25) shows that〈
E(g1, g2; fs)
πd(F )d(π) ,f 1,σ

1 (g1)
〉

= Z(s,fσ, fs)
πd(F )d(π)⟨f 2,σ

1 |V ,f 2,σ
1 ⟩

·
(
f 2,σ

1 |V
)c

(g2). (4.2.9)

For the right hand side, we obtain(
Z(s; f , fs)

πd(F )d(π)⟨fσ,fσ⟩⟨f 2,σ
1 |V ,f 2,σ

1 ⟩

)σ
⟨fσ,fσ⟩

(
f 2,c

1 |V
)σ

(g2)

+
∑
i,j

bσij⟨hσ
i ,f

σ
1⟩h2,c,σ

i (g2).
(4.2.10)

Our assumption on the algebraicity of f implies

(
f 2,σ

1

)c
= f 2,c

1 and
(
Ω · f 2,c

1

)σ
= Ω · f 2,c

1 .

Comparing (4.2.9) and (4.2.10) we conclude that

Z(s,f , fs)
Ω · πd(F )d(π)⟨f ,f⟩⟨f 2

1|V ,f 2
1⟩

=
(

Z(s,f , fs)
Ω · πd(F )d(π)⟨f ,f⟩⟨f 2

1|V ,f 2
1⟩

)σ
.

We finally conclude the theorem by the integral representation in Corollary 3.4.5.

Assume c > 0 (the case c = 0 is similar), the term α(p)2n−2 and the constant C ′ are

algebraic so that

cl(s)d(F )L
(
s+ 1

2 ,f × χ
)

Ω · πd(F )d(π)⟨f ,f⟩
=
cl(s)d(F )L

(
s+ 1

2 ,f × χ
)

Ω · πd(F )d(π)⟨f ,f⟩

σ .
The theorem then follows by the easy calculation of the power of π.

When r = 0, we can define the action of σ ∈ Gal(Q/F ) on f ∈ Sl(K(np),Q) on the

Fourier coefficients of f . In this case we have the following refined version of above

theorem.

Theorem 4.2.2. Assume r = 0. Let l and s0 as in (4.2.1), (4.2.2). For c > 0 and

σ ∈ Gal(Q/F )we have

(Case II, Symplectic)χ(n1)md1L
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)imG(χ)m+1⟨f ,f⟩

σ =
χσ(n1)md1L

(
s0 + 1

2 ,f
σ × χσ

)
πd(F )d(π)imG(χσ)m+1⟨fσ,f cσc⟩

,
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(Case III, Quaternionic Orthogonal) χ(n1)md1L
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)GF (χ)G(χ)m⟨f ,f⟩

σ =
χσ(n1)md1L

(
s0 + 1

2 ,f
σ × χσ

)
πd(F )d(π)GF (χσ)G(χσ)m⟨fσ,f cσc⟩

,

(Case IV, Quaternionic Unitary)χ(n1)md1L
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)G(χ)m⟨f ,f⟩

σ =
χσ(n1)md1L

(
s0 + 1

2 ,f
σ × χσ

)
πd(F )d(π)G(χσ)m⟨fσ,f cσc⟩

,

(Case V, Unitary)χ(n1)md1L
(
s0 + 1

2 ,f × χ
)

πd(F )d(π)G(χ)mΩ · ⟨f ,f⟩

σ =
χσ(n1)md1L

(
s0 + 1

2 ,f
σ × χσ

)
πd(F )d(π)G(χσ)mΩ · ⟨fσ,f cσc⟩

.

Here we use the superscript c to mean f c(g) = f(gι). When c = 0, one replace

L
(
s0 + 1

2 ,f × χ
)

by L
(
s0 + 1

2 ,f × χ
)
M
(
s0 + 1

2 ,f × χ
)

in above formulas.

Proof. We omit as it can be proved by the similar argument as in Theorem 4.2.1

(see also [BS00, Appendix]).

Remark 4.2.3. We do not obtain above theorem in general for any r because we

do not have a well defined action of σ ∈ Gal(Q/F ). If for a field Ψ ⊂ Q, one

can define the meaning of Ml(K,Ψ) ⊂ Ml(K,Q) properly such that Ml(K,Q) =

Ml(K,Ψ) ⊗Ψ Q, then one can further define the action Gal(Q/Ψ) on Ml(K,Q) by

acting on Q. If this action preserves the subspace Sl(K,Ψ), then one can refine

Theorem 4.2.1 to obtain similar formulas as in Theorem 4.2.2 for σ ∈ Gal(Q/Ψ).

4.2.2 Preliminary on p-adic L-functions

We now turn to the p-adic interpolation of the special value L(s0 + 1
2 ,f ×χ). For our

specified prime p, let p be the prime number under p and Cp = Q̂p the completion

of Qp. Fix an embedding Q → Cp. The p-adic absolute value | · |p naturally extends

to Cp and we denote

OCp = {x ∈ Cp : |x|p ≤ 1}. (4.2.11)
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Consider the p-adic analytic group

Cl+E(p∞) = E×\A×
E/U(p∞)E+

∞ (4.2.12)

where U(p∞) is the group of elements of ô× that are congruent to 1 mod pn for

all integers n with ô the completion of o and E+
∞ the connected component of the

identity in E∞ = E ⊗Q R. We refer the reader to [BW19, Section 10.2] for more

details on the geometry of this space and the locally analytic functions on this space.

We denote by A(Cl+E(p∞),Cp) the space of locally analytic functions on Cl+E(p∞)

and the space of p-adic distributions D(Cl+E(p∞),Cp) are defined as the topological

dual of A(Cl+E(p∞),Cp). Clearly there is a natural pairing

A(Cl+E(p∞),Cp) × D(Cl+E(p∞),Cp) → Cp,

(f, µ) 7→ µ(f) =:
∫

Cl+E(p∞)
fdµ.

(4.2.13)

A p-adic distribution is called a p-adic measure if it is bounded.

The Hecke character χ of conductor pc defines a locally analytic function on Cl+E(p∞)

as in [BW19, Section 2.2.2]. Since they forms a dense subspace of A(Cl+E(p∞),Cp), a

p-adic distribution is uniquely determined by its value at all these Hecke characters.

In following two subsections, we define the p-adic distribution interpolating the

special value L(s0 + 1
2 ,f × χ) for p-ordinary f and prove that the distribution we

constructed is indeed a p-adic measure. Note that Case II, III and Case IV, V are

treated separately because of the occurrence of the Hecke L-function for the Fourier

expansion in Proposition 4.1.9 for Case II, III.

We end up this subsection by the following important preliminary lemma.

Lemma 4.2.4. Let F (h) be a modular form on H(A) with a Fourier expansion of

the form

F (qz) = ν(y∗)l
∑
β∈S

C(β)e∞(τ(βz)) (4.2.14)

with qz as in 4.1.25. We further assume that F (g1, g2) ∈ Ml(K(p2)) ⊗ Ml(K′(p2))

with notation as in Section 3.4.
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(1) Let {f i} be a basis of Ml(K(np2),Q) and denote f 1
i (resp. f 2

i ) such that

f 1
i (g) = f i(gη1ηp) (resp. f 2

i (g) = f i(gη2)) with η1, η2 in (3.4.7) and ηp in (3.4.21).

Then there exists some constants aij such that

F (g1, g2) =
∑
i,j

aijf
1
i (g1)f 2

j(g2). (4.2.15)

(2) There exist a constant Ωp ∈ Q× independent of F such that if C(β) ∈ OCp then

aij ∈ Ω · Ωp · OCp where Ω = 1 in Case II, III, IV and Ω is the CM period (4.2.5) in

Case V.

Proof. This lemma is a p-adic analogue of [Shi00, Lemma 24.11, Lemma 26.12].

The first part is already proved there and it is also shown that if C(β) ∈ Q then

aij ∈ Ω · Q. We descent the argument there to OCp .

Let {hi} be a basis of MH
l (K,Q) (i.e. space of algebraic modular forms over H)

where K is the image of K(p2) × K′(p2) under doubling map. We can write

F (h) =
∑
i

Ai · hi(h) for Ai ∈ C

and note that each hi has a Fourier expansion of the form

hi(qz) = ν(y∗)l
∑
β∈S

ci(β)e∞(τ(βz)).

There exist a system {βi} such that the matrix [ci(βk)]ik is of full rank. For each i, k,

ci(βk) ∈ Q by the algebraicity of hi and we can pick a constant Ω1 depending on

{βi} and {hi} such that ci(βk) ∈ Ω1OCp . Then C(β) ∈ OCp implies Ai ∈ Ω−1
1 OCp .

Choose a system of CM points {gi} of G such that the matrix X = [f i(gk)]ik is of

full rank. Note that for any k, (gk, gk) is a CM point of H so that hi((gk, gk)) ∈

P((gk, gk))Q where P((gk, gk)) is the period of CM points over H. There exist a

constant Ω2 depending on {gk} and {hi} such that

hi((gk, gk)) ∈ Ω2P((gk, gk))OCp .
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Then C(β) ∈ OCp further implies

F ((gk, gk)) ∈ Ω−1
1 Ω2P((gk, gk))OCp .

By the algebraicity of f i, we have f i(gk) ∈ P(gk)Q where P(gk) is the period of CM

points over G. We can choose a constant Ω3 depending on {gk} and {f i} such that

f i(gk) ∈ Ω3P(gk)OCp .

Now write F as in (4.2.15) and compare the period P(gk, gk),P(gk) as in the proof

of [Shi00, Lemma 26.12], we conclude that C(β) ∈ OCp implies

aij ∈ Ω · Ω−1
1 Ω2Ω−1

3 · OCp .

Take Ωp = Ω−1
1 Ω2Ω−1

3 which is clearly independent of F by our above constructions

and the lemma follows.

4.2.3 p-adic L-functions for unitary and quaternionic

unitary groups

Denote Ω = 1 for quaternionic unitary groups and Ω is the CM period (4.2.5) for

unitary groups. Fix χ1 be a Hecke character of conductor n2 and infinity type l. We

define a p-adic distribution µ(f) such that for any Hecke character χ of conductor

pc, ∫
Cl+E(p∞)

χdµ(f) := α(p)2−2nC ′−1|ϖ|cd1
m(m−1)

2 G(χ)−mπd(F )d(π)

×
(
n−1∏
i=0

Γ(d1(l − i))
)d(F )

· Z(s0; f , fs, χ,n)
Ω · ⟨f ,f⟩2 .

(4.2.16)

Here we are again denoting χ = χχ1 when χ varying. The right hand side in above

formula is indeed independent of n and µ(f) is a well-defined p-adic distribution.

Assume χ is of finite order and χ has infinity type l. By (3.4.22), (3.4.23) we have
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for c > 0,∫
Cl+E(p∞)

χdµ(f) = |ϖ|cd1
m(m−1)

2 G(χ)−mπd(F )d(π)

×
(
cl(s0)

n−1∏
i=0

Γ(d1(l − i))
)d(F )

·
L
(
s0 + 1

2 ,f × χ
)

Ω · ⟨f ,f⟩
,

(4.2.17)

and for c = 0,∫
Cl+E(p∞)

χdµ(f) = G(χ)−mπd(F )d(π)M
(
s0 + 1

2 ,f × χ
)

×
(
cl(s0)

n−1∏
i=0

Γ(d1(l − i))
)d(F )

·
L
(
s0 + 1

2 ,f × χ
)

Ω · ⟨f ,f⟩
.

(4.2.18)

Theorem 4.2.5. Assume f is p-ordinary in the sense that α(p) ∈ O×
Cp

. Then µ(f)

defined above is a p-adic measure.

Proof. The proof is similar to [BS00, Section 9]. Indeed, by Lemma 4.2.4, the

boundness of the distribution µ(f) defined above follows from the boundness of

the Fourier coefficients of Eisenstein series which can be checked straightforwardly

from explicit formulas in Proposition 4.1.1. One can also verify µ(f) is a p-adic

measure by checking the Kummer congruences following [CP04]. For more details

see also [Jin22, Theorem 6.4], in which we prove the Kummer congruences for totally

isotropic quaternionic unitary groups when F = Q.

4.2.4 p-adic L-functions for symplectic and quaternionic

orthogonal groups

As we have mentioned before, the Case II, III are different to Case IV, V because

of the occurrence of the Hecke L-function for the Fourier expansion in Proposition

4.1.9. Therefore, we treat these two cases by the known p-adic interpolation of Hecke

L-functions as in [BS00, Section 8] and [Liu20].

We first recall some fact about Hecke L-functions. Let ψ : F×\A×
F → C× be any

Hecke character trivial at infinity with conductor c(ψ). We assume for simplicity

that l,m has the same parity, i.e. l ≡ m mod 2 in Case II so that s0 + 1
2 is always
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even. In this case, there is a functional equation ([Shi00, Theorem 18.12])

L
(
s0 + 1

2 , ψ
)

=
 (2πi)s0+ 1

2

2Γ
(
s0 + 1

2

)
d(F )

D
1/2
F GF (ψ)

NF/Q(c(ψ))s0− 1
2

· L
(1

2 − s0, ψ
−1
)

(4.2.19)

We denote

Lp

(
s0 + 1

2 , ψ
)

=


1 p|c(ψ),(

1 − ψ(ϖ)|ϖ|s0+ 1
2
)−1

p ∤ c(ψ),
(4.2.20)

for the local L-factor at p.

When c(ψ) is coprime to p, there is a p-adic measure µ(ψ) (see for example [Bar78;

Cas79; DR80]) such that for all Hecke character χ of conductor pc,

∫
Cl+F (p∞)

χµ(ψ) = Lp

(1
2 − s0, ψ

−1χ
)

· L
(1

2 − s0, ψ
−1χ

)
. (4.2.21)

The existence of such measure is equivalent to the existence of Kummer congruences

([CP04, Proposition 1.7]). In particular, for some constant C ∈ Cp with C · χ(x) ∈

OCp for all x ∈ Cl+F (p∞), we have

C · Lp

(1
2 − s0, ψ

−1χ
)

· L
(1

2 − s0, ψ
−1χ

)
∈ OCp (4.2.22)

Fix χ1 be a Hecke character of conductor n2 and infinity type l. We define a p-adic

distribution µ(f) such that for any Hecke character χ of conductor pc,
∫

Cl+F (p∞)
χdµ(f) := α(p)2−2nC ′−1|ϖ|cd1

m(m−1)
2 NF/Q(p)c(s0− 1

2)πd(F )d(π)

×G(χ)−mGF (χ)−1

Γ
(
s0 + 1

2

) nd1−1∏
i=0

Γ
(
l − i

2

)d(F )

×
Lp

(
s0 + 1

2 , χ
)

Lp

(
1
2 − s0, χ−1

) · Z(s0; f , fs, χ,n)
⟨f ,f⟩

.

(4.2.23)

Assume χ is of finite order and χ has infinity type l. By (3.4.22), (3.4.23) we have
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for c > 0,∫
Cl+F (p∞)

χdµ(f) = |ϖ|cd1
m(m−1)

2 NF/Q(p)c(s0− 1
2)G(χ)−mGF (χ)−1πd(F )d(π)

×

cl(s0)Γ
(
s0 + 1

2

) nd1−1∏
i=0

Γ
(
l − i

2

)d(F )

· 1 − χ−1(ϖ)|ϖ| 1
2 −s0

1 − χ(ϖ)|ϖ|s0+ 1
2

×
L
(
s0 + 1

2 ,f × χ
)

⟨f ,f⟩
,

(4.2.24)

and for c = 0, ∫
Cl+F (p∞)

χdµ(f)

=|ϖ|cd1
m(m−1)

2 NF/Q(p)c(s0− 1
2)G(χ)−mGF (χ)−1πd(F )d(π)

×

cl(s0)Γ
(
s0 + 1

2

) nd1−1∏
i=0

Γ
(
l − i

2

)d(F )

×M
(
s0 + 1

2 ,f × χ
)

·
L
(
s0 + 1

2 ,f × χ
)

⟨f ,f⟩
.

(4.2.25)

Theorem 4.2.6. Assume l ≡ m mod 2 in Case II and p splits in Case III when

r = 1. Assume f is p-ordinary in the sense that α(p) ∈ O×
Cp

. Then µ(f) defined

above is a p-adic measure.

Proof. The argument for checking µ(f) is again similar to [BS00, Section 9] or [CP04].

We have also proved the Kummer congruences for isotropic quaternionic orthogonal

groups when F = Q in [Jin22, Theorem 6.5]. The main difference between Case II,

III and Case IV, V is the occurrence of following term

∏
v∤n
Lv

(
s0 + 1

2 , χλβ
)

for the Fourier expansion in Proposition 4.1.9. We now explain how to p-adically

interpolate this term. When r = 1 in Case III, we take the product only for those v

splits in D, but this does not change our argument. Comparing (4.2.16) and (4.2.23),

notice that we have multiply a term

N
c(s0− 1

2)
F/Q GF (χ)−1Γ

(
s0 + 1

2

)d(F ) Lp

(
s0 + 1

2 , χ
)

Lp

(
1
2 − s0, χ−1

) .
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By the functional equation (4.2.19), after multiplying above term and cancel out the

power of π it remains to consider

GF (χλβ)
GF (χ) ·

∏
v|n
Lv

(
s0 + 1

2 , χλβ
)−1

·
Lp

(
s0 + 1

2 , χ
)

Lp

(
1
2 − s0, χ−1

)L(1
2 − s0, χ

−1λ−1
β

)
.

Under our assumption (p splits in Case III when r = 1), ν(β) is always a square

mod p (Remark 4.1.10) so that λβ(ϖ) = 1. Using the p-adic interpolation of above

Hecke L-function, especially (4.2.22), one checks that above term is in OCp up to a

bounded constant. Then our theorem follows from the explicit formulas for Fourier

expansion of Eisenstein series in Proposition 4.1.1 and Lemma 4.2.4.

We give a remark on what we have not done in this thesis.

Remark 4.2.7.

(1) In this thesis we have only consider one critical point at s0. Of course one may

also discuss other critical points by the standard process of applying differential

operators. There are two approaches for applying the differential operators. One is

following [CP04; Liu20; Shi00], in which the differential operator studied in [Shi94]

is applied. This kind of differential operators are defined for all classical groups

discussed here but one need to consider the nearly holomorphic Eisenstein series and

apply the holomorphic projection. Another approach is following [BS00], in which

the holomorphic differential operator constructed in [Böc85] is used and the holo-

morphic projection is avoided. The differential operator constructed there can also

generalized to other groups with r = 0 (see for example [Jin22] for the quaternionic

unitary case). However, we do not know whether one can construct such differential

operators for general groups with r > 0.

(2) For the p-adic L-functions, we have only computed the interpolation at χ as

assumed at the beginning of Section 4.2. In particular, we have only considered χ

of infinity type l coincided with the weight of modular forms f . This is because in

our integral representation, we need the weight of Eisenstein series (which equals

the infinity type of χ) coincide with the weight of modular forms. To consider Hecke
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characters of other infinity type, we will need applying the differential operators on

the Eisenstein series to shift the weight.

(3) We have only considered the parallel weight in this chapter. Especially, our

archimedean computations have only done for scalar weight. For the general weight,

[EL20] and [Liu21] have computed the archimedean integrals for unitary and sym-

plectic groups. Also in [PSS21; HPSS22] the archimedean integrals are calculated

for sympletic group in a different way.





Chapter 5

Integral Representations for

Sp2n × GLk

In this chapter, we study the (standard) tensor product L-functions for Sp2n × GLk.

In [CFGK19], Cai-Friedberg-Ginzburg-Kaplan present an integral representation for

Sp2n × GLk using the generalized doubling method. Comparing with the (classical)

doubling method applied in previous chapters, they use the generalized Speh rep-

resentations as inducing data for the Eisenstein series. Following the strategy and

extending a previous result of [GS20], we derive new integrals of Sp2n × GLk for any

positive even integer n and any positive integer k. We show that these new integrals

unfold to non-unique models on Sp2n. We carry out the unramified computation and

show that these integrals represent the tensor product L-function for Sp2n × GLk

via the New Way method, generalizing a previous result on Sp4 × GL2 [Yan23].

This chapter is independent of previous chapter and is taken from [JY23] which is

joint with Pan Yan.
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5.1 Introduction

The Rankin-Selberg method is a fruitful way to study L-functions of automorphic

forms or automorphic representations. In [PR87], Piatetski-Shapiro and Rallis dis-

covered a family of Rankin-Selberg integrals that represent the standard L-functions

for split classical groups. Their construction, known as the doubling method, un-

folds to a global matrix coefficient on the classical group. This construction does

not depend on a model, and hence opens the door to the possibility of a wide range

of applications. Around the same time, in [PR88], they also discovered another

family of global integrals, known as the “New Way” integrals (named after the title

of [PR88]), which represent the standard L-function for any cuspidal automorphic

representation of Sp4n(A), where A is the ring of adeles of a number field F . In con-

trast to the usual constructions of Rankin-Selberg integrals where certain uniqueness

result (such as a unique model or a unique global matrix coefficient) is involved (see

[Pia97; Fur93; Fil13; GRS98; GJRS11] for more examples), the global integrals in

[PR88] unfold to a non-unique model.

In [CFGK19], the method of [PR87] was generalized by Cai, Friedberg, Ginzburg

and Kaplan. This construction, known as the generalized doubling method, gives a

family of global integrals which represent the tensor product L-function L(s+ 1
2 , π×τ)

where π and τ are irreducible automorphic cuspidal representations of G(A) and

GLk(A) respectively, and G is a split classical group defined over F .

Recently, in [GS20], Ginzburg and Soudry revisited the integrals considered in

[PR88], and showed that one can derive these New Way integrals in [PR88], from

the doubling integrals for Sp4n considered in [PR87] by a relatively simple global

argument. Moreover, they applied the same idea to the global generalized doubling

integral (after unfolding) in [CFGK19] for Sp4 × GL2, and used the process of

(1) global root exchange,

(2) identities between Eisenstein series, proved in [GS21],

to derive and obtain a “simpler” integral. Furthermore, they conjectured that this
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new integral represents the standard L-function for Sp4 × GL2 via the New Way

method. This conjecture is proved to hold in [Yan23].

The purpose of this chapter is to generalize these results of Ginzburg and Soudry

[GS20] and Yan [Yan23]. The first main result is that we derive new integrals for

Sp2n × GLk for any positive even integer n and any positive integer k, extending

a result in [GS20] where the case n = k = 2 was considered. Throughout this

chapter, we assume n is even. This assumption is made in order to avoid the use

of the Eisenstein series on metaplectic groups (the same assumption also appeared

in [PR88]). Let π and τ be irreducible automorphic cuspidal representations of

Sp2n(A) and GLk(A) respectively. Starting from the generalized doubling integral

for Sp2n × GLk in [CFGK19], we apply the same procedure as in [GS20] to derive

the following new integral:

Z(ϕ, θΦ
ψ,n2 , fn,k,s) =

∫
Sp2n(F )\Sp2n(A)

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)
ϕ(h)

×θΦ
ψ,n2(αkT (u)iT (1, h))E(ut(1, h); fn,k,s)ψk(u)dudh.

(5.1.1)

Here:

(1) ϕ ∈ Vπ is a non-zero cusp form;

(2) Nnk−1,kn is a certain unipotent subgroup of Sp2kn and ψk is a character on

Nnk−1,kn(A) which is trivial on Nnk−1,kn(F );

(3) θΦ
ψ,n2 is a theta series associated to the dual pair (SOT0 , Sp2n) inside Sp2n2 , where

T0 ∈ GLn(F ) ∩ Symn(F );

(4) E is an Eisenstein series on Sp2kn(A) associated to a smooth section

fn,k,s ∈ IndSp2kn(A)
Pkn(A) (∆(τ ⊗ χT , n)| det ·|s), (5.1.2)

where T ∈ GLn(F ) depends on T0, χT is the character χT (x) = (x, det(T )) given by

the global Hilbert symbol, and ∆(τ ⊗ χT , n) is the generalized Speh representation

of GLkn(A) associated to τ ⊗ χT .

We refer the reader to Section 5.2 for the precise definitions of the notations. See

Theorem 5.3.6 for the precise statement of this result.
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We remark that when k = n, the global integral Z(ϕ, θΦ
ψ,n2 , fn,k,s) also appeared in

[Yan23, Section 7]. Based on the work in [PR88; GS20; Yan23], we expect that, for

any positive even integer n and any positive integer k, the integral Z(ϕ, θΦ
ψ,n2 , fn,k,s)

unfolds to a non-unique model of π and represents LS(s+ 1
2 , π× τ) via the New Way

method; this is Conjecture 5.3.7.

Our next goal of this chapter is to provide more evidence for Conjecture 5.3.7

in addition to [PR88; GS20; Yan23]. We will prove that Conjecture 5.3.7 holds

for any Sp2n × GLk. Let S be a finite set of places (defined in Section 5.4) and

let f ∗
v,n,k,s(g) = d

Sp2kn
τv⊗χT

· fv,n,k,s(g) if v ̸∈ S, where d
Sp2kn
τv⊗χT

is given by (5.2.29) or

(5.2.30) depending on the parity of k. For v ∈ S, we let f ∗
v,n,k,s(g) = fv,n,k,s(g). Put

f ∗,S
n,k,s = ∏

v f
∗
v,n,k,s(g) and

E(g, f ∗,S
n,k,s) =

∑
γ∈Pkn(F )\Sp2kn(F )

f ∗,S
n,k,s(γg). (5.1.3)

This is the partially normalized (outside S) Eisenstein series. Our second main result

is the following.

Theorem 5.1.1. There exists a choice of a nonzero cusp form ϕ ∈ Vπ, a matrix T0,

a theta series θΦ
ψ,n2, and a section fn,k,s ∈ IndSp2kn(A)

Pkn(A) (∆(τ ⊗ χT , n)| det ·|s) such that

Z(ϕ, θΦ
ψ,n2 , f

∗,S
n,k,s) = LS(s+ 1

2 , π × τ) · ZS(ϕ, θΦ
ψ,n2 , fn,k,s), (5.1.4)

where ZS(ϕ, θΦ
ψ,n2 , fn,k,s) is meromorphic in s. Moreover, for any s0 ∈ C, the data

can be chosen such that ZS(ϕ, θΦ
ψ,n2 , fn,k,s) is nonzero at s0.

As applications, we reprove the meromorphic continuation of the partial L-function

LS(s, π × τ) see [CFK18, Theorem 60]. We also deduce the result on the largest

poles of LS(s, π × τ), and the relation between the existence of the poles and the

non-vanishing of certain period integrals in Theorem 5.4.8 from the poles of fully

normalized Eisenstein series [JLZ13, Theorem 5.2]. This generalizes the proposition

in [PR88, p.120] where a necessary and sufficient condition for the existence of the

poles is given in terms of the theta correspondence.
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Now we give a summary of our proof. The first step is to unfold the integral

Z(ϕ, θΦ
ψ,n2 , fn,k,s). We show that Z(ϕ, θΦ

ψ,n2 , fn,k,s) unfolds to the Fourier coefficient

of ϕ given by ∫
Nn(F )\Nn(A)

ϕ (nh)ψT (n)dn, (5.1.5)

where Nn is the unipotent radical of the Siegel parabolic subgroup of Sp2n, and ψT

is the character on Nn(F )\Nn(A) given by

ψT


 1n z

0 1n


 = ψ(tr(Tz)). (5.1.6)

See Proposition 5.4.1. We point out that the existence of T such that the integral

(5.1.5) is non-zero is due to [Li92]. In general, the model of π corresponding to (5.1.5)

is not unique (see [PR88]), that is the integral in (5.1.5) do not factor into local

integrals, thus the New Way method is required to analyze the global integral. For

more examples of New Way integrals, we refer the reader to [BFG95; PS17; PS18;

GS15].

The next step is to carry out the local unramified computation. We show that

at a finite place v ̸∈ S (hence all data are unramified), for any local functional

corresponding to (5.1.5), the local integral produces the local L-function. This result

is the heart of the New Way method. See Theorem 5.4.2. The main idea is to

compare the unramified integral with the one from the generalized doubling method.

We can also control the local zeta integral at a place v ∈ S. This is done in Proposi-

tion 5.4.4 and Proposition 5.4.5. Then Theorem 5.1.1 follows from Theorem 5.4.3,

Proposition 5.4.4 and Proposition 5.4.5.

Finally, we give an overview of the structure of the rest of this chapter. In Section 5.2,

after fixing some notations we recall the definitions of theta series, Eisenstein series,

and (k, c)-representations. In Section 5.4, we review the global and local integrals

from the generalized doubling method and derive new Rankin-Selberg integrals

following a strategy of [GS20]. The main new result in this section is Theorem 5.3.6.

In Section 5.4, we state our main results on the new integrals we study in this chapter,
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while delaying the proofs to later sections, to give a more streamlined presentation.

In Section 5.5, we give the global unfolding computation and in Section 5.6, we carry

out the local unramified computation.

5.2 Preliminaries

5.2.1 Notations

Let F be a number field and A = AF the ring of adeles. Denote Matm,n for

the additive algebraic group of all matrices of size m × n and Matn = Matn,n.

Let 1n be the n × n identity matrix. Set Jn for the n × n matrix with ones on

the antidiagonal and zeros everywhere else. We denote tx for the transpose and

x∗ = Jn
txJn, x̂ = (x∗)−1 = Jn

tx−1Jn (if x is invertible). The symplectic group Sp2n

is realized as

Sp2n =

g ∈ GL2n : tg

 0 Jn

−Jn 0

 g =

 0 Jn

−Jn 0


 . (5.2.1)

Let r = (r1, ..., rm) ∈ Zm≥0 be a m-tuple with 0 ≤ r1 + ... + rm ≤ n and denote

|r| = r1 + ... + rm. Let Pr,n be the standard parabolic subgroup of Sp2n with Levi

decomposition Pr,n = Mr,n ⋉ Nr,n, where Mr,n ∼= GLr1 × ... × GLrm × Sp2(n−|r|). If

r1 = ... = rm = r ∈ Z≥0 we also denote the tuple r by rm. If m = 1 we omit it

from the notation and simply write r. In particular, for m = 1, r = n we obtain the

Siegel parabolic subgroup Pn := Pn,n. Let Mn := Mn,n, Nn := Nn,n. Then we have

Pn = Mn ⋉Nn where

Mn =

m(x) =

 x 0

0 x̂

 : x ∈ GLn

 ,

Nn =

n(z) =

 1n z

0 1n

 : z ∈ Mat0
n

 .
(5.2.2)
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Here

Mat0
n = {A ∈ Matn : A∗Jn = JnA}. (5.2.3)

For an integer k ≥ 2, we will frequently use the following two unipotent subgroups

Nnk−1,kn and Nnk,2kn.

The unipotent subgroup Nnk−1,kn contains elements of the form

1n u1,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 . . .
. . . ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1n uk−2,k−1 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1n x y z ∗ ∗ ∗

0 0 0 0 1n 0 y∗ ∗ ∗ ∗

0 0 0 0 0 1n −x∗ ∗ ∗ ∗

0 0 0 0 0 0 1n −u∗
k−2,k−1 ∗ ∗

0 0 0 0 0 0 0 . . .
. . . ∗

0 0 0 0 0 0 0 0 1n −u∗
1,2

0 0 0 0 0 0 0 0 0 1n



∈ Sp2kn. (5.2.4)

By sending elements of the above form to its central 2n× 2n block we have a map

Nnk−1,kn → Nn,2n =


u(x, y, z) =



1n x y z

0 1n 0 y∗

0 0 1n −x∗

0 0 0 1n




. (5.2.5)

For u(x, y, z) ∈ Nn,2n we may also use the same notation for all its pre-images in

Nnk−1,kn and denote u0(x, y, z) to emphasize the one in Nnk−1,kn obtained by natural

embedding Nn,2n → Nnk−1,kn.
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The unipotent subgroup Nnk,2kn contains elements of the form

1n u1,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 . . .
. . . ∗ ∗ ∗ ∗ ∗ ∗

0 0 1n uk−1,k ∗ ∗ ∗ ∗ ∗

0 0 0 1n y z ∗ ∗ ∗

0 0 0 0 12kn y′ ∗ ∗ ∗

0 0 0 0 0 1n −u∗
k−1,k ∗ ∗

0 0 0 0 0 0 . . .
. . . ∗

0 0 0 0 0 0 0 1n −u∗
1,2

0 0 0 0 0 0 0 0 1n



∈ Sp4kn. (5.2.6)

5.2.2 Theta series

We fix a nontrivial additive character ψ : F\A → C×. Let T0 = diag[t1, ..., tn] ∈

GLn(F ) be a diagonal matrix and set T = JnT0. We define a character χT :

F×\A× → C× by χT (x) = (x, det(T )) where (·, ·) is the global Hilbert symbol.

Denote Hn = Matn × Matn × Mat1 for the Heisenberg group (of 2n2 + 1 elements)

with multiplication

(X1, Y1, z1)(X2, Y2, z2)

:=(X1 +X2, Y1 + Y2, z1 + z2 + tr(T (X1Y
∗

2 − Y1X
∗
2 ))),

(5.2.7)

for X1, Y1, X2, Y2 ∈ Matn and z1, z2 ∈ Mat1. We identify Nn,2n with Hn by the map

αT : Nn,2n → Hn, u(x, y, z) 7→ (x, y, tr(Tz)), (5.2.8)

where u(x, y, z) is of the form in (5.2.5). For an integer k ≥ 2, we extend αT to a

map

αkT : Nnk−1,kn → Nn,2n → Hn (5.2.9)

by taking the composite with the map in (5.2.5).



5.2. Preliminaries 129

Consider the dual pair (SOT0 , Sp2n) inside Sp2n2 with

SOT0 = {g ∈ SLn : tgT0g = T0}. (5.2.10)

We embed SOT0 × Sp2n inside Sp4n via (m,h) 7→ diag[m,h, m̂] and further embed

t : Sp4n → Sp2kn by t(g) = diag[1(k−2)n, g, 1(k−2)n]. We also denote (m,h) for its

image in Sp4n and t(m,h) its image in Sp2kn. We always assume n is even so that

SOT0(A) × Sp2n(A) splits in the metaplectic double cover S̃p2n2(A). We fix such a

splitting iT and consider the restriction of the Weil representation ωψ := ωψ,n2 of

S̃p2n2(A), corresponding to the character ψ, to SOT0(A) × Sp2n(A) under iT . For a

Schwartz function Φ ∈ S(Matn(A)), we have following formulas for ωψ (see [GRS11;

Kud96]):

ωψ(αkT (u(x, y, z)))Φ(ξ) = ψ(tr(Txy∗))ψ(2tr(Tξy∗))ψ(tr(Tz))Φ(ξ + x),

ωψ(iT (1,m(g)))Φ(ξ) = χT (det(g))| det g|n
2 Φ(ξg),

ωψ(iT (1, b(w)))Φ(ξ) = ψ(tr(T tξwξ))Φ(ξ).

(5.2.11)

Here, u(x, y, z) ∈ Nnk−1,kn(A), g ∈ GLn(A), w ∈ Mat0
n(A).

Given Φ ∈ S(Matn(A)), we form the theta series

θΦ
ψ (αkT (v)iT (m,h)) := θΦ

ψ,n2(αkT (v)iT (m,h))

:=
∑

ξ∈Matn(F )
ωψ(αkT (v)iT (m,h))Φ(ξ),

(5.2.12)

with v ∈ Nnk−1,kn(A),m ∈ SOT0(A), h ∈ Sp2n(A).

We also need another kind of theta series. Let Hk,n = Matn,2kn × Mat1 be the

Heisenberg group of 2kn2 + 1 variables. Then Nnk,2kn has a structure of Heisenberg

group Hk,n via the map

l0T (u) = (y, tr(Tz)) (5.2.13)

for u of the form in (5.2.6). Consider the dual pair (SOT0 , Sp2kn) inside Sp2kn2 and

fix a splitting i0T : SOT0 × Sp2kn → S̃p2kn2 inside the metaplectic double cover. We

may realize the Weil representation ωψ,kn2 in S(Matn,kn(A)) and define the theta

series θΦ
ψ,kn2 for Φ ∈ S(Matn,kn(A)) similarly as above.
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5.2.3 Representations of (k, c) type

We recall the definition and properties of (k, c) representations in [CFGK19; Cai21;

CFGKar; CFKar], both locally and globally. See also the summary in [Yan23,

Section 2.3].

Let k and c be positive integers. Let Pck be the standard parabolic subgroup of

GLkc whose Levi component is isomorphic to GLc × ...× GLc with k copies so that

its unipotent radical Uck consists of elements of the form

u =



1c u1,2 ∗ ∗

0 . . .
. . . ∗

0 0 1c uk−1,k

0 0 0 1c


∈ GLkc. (5.2.14)

Define a character

ψck : Uck(F )\Uck(A) → C×,

u 7→ ψ

(
k−1∑
i=1

tr(ui,i+1)
)
.

(5.2.15)

For an automorphic function ϕ on GLkc(F )\GLkc(A), we consider the following

Fourier coefficient

Λ(ϕ) =
∫
U

ck (F )\U
ck (A)

ϕ(u)ψ−1
ck (u)du. (5.2.16)

Definition 5.2.1. ([CFGK19, Definition 3]) An irreducible automorphic represent-

ation ρ of GLkc(A) is called a (k, c) representation if the following holds.

(1) The Fourier coefficient Λ(ϕ) does not vanish identically on the space of ρ, and

moreover, for all unipotent orbits greater than or noncomparable with (kc), all cor-

responding Fourier coefficients are zero for all choices of data.

(2) Let ρv denote the irreducible constituent of ρ at a place v. Then for all unipotent

orbits greater than or noncomparable with (kc), the corresponding twisted Jacquet

module of ρv vanishes. Moreover, HomU
ck (Fv)(ρv, ψck,v) (continuous morphisms if v

is archimedean) is one-dimensional.
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Let (ρ, Vρ) be a (k, c) representation. Then the space W(ρ, ψ) of functions on

GLkc(A),

g 7→ Λ(ρ(g)ϕ), ϕ ∈ Vρ (5.2.17)

is a unique model of ρ. If we write ρ ∼= ⊗′
vρv as a restricted tensor product with

respect to a system of spherical vectors {ξ0
v}v/∈S, then the space HomU

ck (Fv)(ρv, ψck,v)

is one-dimensional. We fix a nonzero functional Λv ∈ HomU
ck (Fv)(ρv, ψck,v) and

denote by W(ρv, ψ) the local unique model consisting of functions on GLkc(Fv)

given by

g 7→ Λv(ρv(g)ξv), ξv ∈ Vρ,v. (5.2.18)

Proposition 5.2.2. Let ϕ = ⊗′
vξv ∈ Vρ be a decomposable vector. For each place v

of F , there exists a functional Λv ∈ HomU
ck (Fv)(ρv, ψck,v) such that Λv(ξ0

v) = 1 for

all v /∈ S and for all g ∈ GLkc(A), we have

Λ(ρ(g)ϕ) =
∏
v

Λv(ρ(gv)ξv). (5.2.19)

Proof. [Bum97, Theorem 3.5.2], [Sha74, §4], and [Cai21, Lemma 2.15].

Let τ be an irreducible unitary cuspidal automorphic representation of GLk(A). De-

note ∆(τ, c) for the generalized Speh representation of GLkc(A) associated to τ whose

definition will be recalled in the following example. This is a (k, c) representation

and we only consider such (k, c) representation in this chapter.

Example 5.2.3. Let τ be an irreducible unitary cuspidal automorphic representation

of GLk(A), s = (s1, ..., sc) ∈ Cc and E(g; ξ, s) denote the Eisenstein series associated

with the induced representation

IndGLkc(A)
Pkc (A) (| det ·|s1τ ⊗ ...⊗ | det ·|scτ) ,

where ξ is a standard section. Let

s0 =
(
c− 1

2 ,
c− 3

2 , ...,
1 − c

2

)
.
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Then the Eisenstein series E(g; ξ, s) has a simple multi-residue at s0,

Es0
(g; ξ) = lim

s→s0

c−1∏
i=1

(si − si+1 − 1)M(w0, s)ξ(g; s),

where M(w0, s) is the intertwining operator defined by

M(w0, s)ξ(g; s) =
∫
Ukc (A)

ξ(w0ug, s)du, w0 =



1c

1c

. .
.

1c


.

The generalized Speh representation ∆(τ, c) associated to τ is the automorphic

representation of GLkc(A) generated by all the residue functions Es0(g; ξ).

Write τ ∼= ⊗′
vτv and ∆(τ, c) ∼= ⊗′

v∆(τv, c). Let v be a place such that τv is unramified

and thus can be written in the form

τv = IndGLk(Fv)
BGLk(Fv)

(χ1 ⊗ ...⊗ χk). (5.2.20)

Here BGLk
is the standard Borel subgroup of GLk consisting of upper triangular

matrices and χ1, ..., χk are unramified quasi-characters of F×
v . Then by [CFGK19,

Claim 9],

∆(τv, c) = IndGLkc(Fv)
P

ck (Fv) (χ1 ◦ det ⊗...⊗ χk ◦ det). (5.2.21)

We simply denote the model of ∆(τ, c) and ∆(τv, c) by

W(τ, c, ψ) := W(∆(τ, c), ψ), W(τv, c, ψ) := W(∆(τv, c), ψ). (5.2.22)

We have the following global (resp. local) invariance property for the unique func-

tional Λ (resp. Λv).

Proposition 5.2.4. For g ∈ GLc, denote g∆ = diag[g, ..., g] for its diagonal embed-

ding in GLkc. Then for any g ∈ SLc(A) and ϕ in the space of ∆(τ, c), we have

Λ(∆(τ, c)(g∆)ϕ) = Λ(ϕ). (5.2.23)
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For any g ∈ GLc(Fv) and any ξv in the space of ∆(τv, c), we have

Λv(∆(τv, c)(g∆)ξv) = τv(det(g)1k)Λv(ξv). (5.2.24)

Proof. [CFGK19, Claim 8 and Proposition 24] and [CFK18, Lemma 14].

5.2.4 Eisenstein series

Let τ be an irreducible unitary cuspidal automorphic representation of GLk(A)

and ∆(τ, c) the generalized Speh representation of GLkc(A) associated to τ and c.

Consider the induced representation

IndSp2kc(A)
Pkc(A) (∆(τ, c)| det ·|s). (5.2.25)

Its space consists of functions f̃c,k,s : Sp2kc(A) → V satisfying

f̃c,k,s


 a

â


 1kc b

1kc

 g
 = | det(a)|s+ kc+1

2 ∆(τ, c)(a)f̃c,k,s(g), (5.2.26)

where V is the space of automorphic forms of ∆(τ, c). We identify it with the space

of functions fc,k,s : Sp2kc(A) → C by setting fc,k,s(g) = f̃c,k,s(g)(1kc). For a smooth

section fc,k,s, we define an Eisenstein series on Sp2kc(A) by

E(g; fc,k,s) =
∑

γ∈Pkc(F )\Sp2kc(F )
fc,k,s(γg). (5.2.27)

In this chapter we will only consider the cases where c = 2n and c = n. When

choosing the sections fc,k,s we will need the following normalizing factors (see [GS21,

(1.47)(1.48)]):

dSp4kn
τv

(s) = L(s+ k + 1
2 , τv)

k∏
j=1

L(2s+ 2j, τv,∧2)L(2s+ 2j − 1, τv, Sym2), (5.2.28)

and

dSp2kn
τv

(s) = L(s+ k

2 + 1
2 , τv)

k
2∏
j=1

L(2s+ 2j, τv,∧2)L(2s+ 2j − 1, τv, Sym2), (5.2.29)
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if k is even and

dSp2kn
τv

(s) = L(s+ k

2 + 1
2 , τv)

k+1
2∏
j=1

L(2s+ 2j − 1, τv,∧2)L(2s+ 2j, τv, Sym2), (5.2.30)

if k is odd.

5.3 New integrals derived from the generalized

doubling method

In this section, we recall the generalized doubling construction in [CFGK19] and

explain how to derive new Rankin-Selberg integrals from the generalized doubling

method following a strategy of [GS20]. The main new result of this section is

Theorem 5.3.6. We will also review the local unramified integrals from the generalized

doubling method, which will be used in Section 5.6.

5.3.1 The generalized doubling construction

We first recall the generalized doubling construction in [CFGK19]. Let G = Sp2n

and H = Sp4kn. Define an embedding

G×G → H,

(g1, g2) 7→ g1 × g2 = diag[g1, ..., g1,


g1,1 0 g1,2

0 g2 0

g1,3 0 g1,4

 , ĝ1, ..., ĝ1]
(5.3.1)

where g1 =

 g1,1 g1,2

g2,1 g2,2

 , g1,i ∈ Matn and g1 appears k − 1 times. Let P := P2kn be

the Siegel parabolic subgroup of H with Levi decomposition P = MP ⋉UP and Q :=

P(2n)k−1,2kn be the parabolic subgroup with Q = M ⋉ U such that U := N(2n)k−1,2kn

contains elements of the form
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12n u1,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 . . .
. . . ∗ ∗ ∗ ∗ ∗ ∗

0 0 12n uk−2,k−1 ∗ ∗ ∗ ∗ ∗

0 0 0 12n u0 ∗ ∗ ∗ ∗

0 0 0 0 14n u′
0 ∗ ∗ ∗

0 0 0 0 0 12n −u∗
k−2,k−1 ∗ ∗

0 0 0 0 0 0 . . .
. . . ∗

0 0 0 0 0 0 0 12n −u∗
1,2

0 0 0 0 0 0 0 0 12n



∈ Sp4kn. (5.3.2)

Fix a nontrivial additive character ψ : F\A → C×. For u ∈ U(A) as in (5.3.2) with

u0 =

 a1 b1 c1

a2 b2 c2

 , ai, ci ∈ Matn(A) and bi ∈ Matn,2n(A), we define a character

ψU : U(F )\U(A) → C× by

ψU(u) = ψ

(
k−2∑
i=1

tr(ui,i+1) + tr(a1 + c2)
)
. (5.3.3)

Let (π, Vπ) be an irreducible cuspidal representation of G(A) and (τ, Vτ ) be an

irreducible unitary cuspidal automorphic representation of GLk(A). Consider the

generalized Speh representation ∆(τ, 2n) of GL2kn(A) associated to τ and the induced

representation

IndH(A)
P (A) (∆(τ, 2n)| det ·|s). (5.3.4)

For a standard section f2n,k,s of above induced representation, we form an Eisenstein

series on H(A) by

E(h; f2n,k,s) =
∑

γ∈P (F )\H(F )
f2n,k,s(γh). (5.3.5)

For cusp forms ϕ1, ϕ2 ∈ π, the global zeta integral considered in [CFGK19] is

Z(s, ϕ1, ϕ2, f2n,k,s) =
∫
G(F )×G(F )\G(A)×G(A)

∫
U(F )\U(A)

ϕ1(g1)ϕ2(ιg2)

× E(u(g1 × g2); f2n,k,s)ψU(u)dudg1dg2.

(5.3.6)
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Here ιg := ιgι−1 with ι =

 0 1n

1n 0

.

Set U ′
0 = U ∩ UP , and

δ0 =

 0 12kn

−12kn 0





12n(k−1) 0 0 0

0 12n 12n 0

0 0 12n 0

0 0 0 12n(k−1)


. (5.3.7)

Let

⟨ϕ1, ϕ2⟩ =
∫
G(F )\G(A)

ϕ1(g)ϕ2(g)dg (5.3.8)

be the standard inner product on G(A).

The basic properties of the global integral Z(s, ϕ1, ϕ2, f2n,k,s) are summarized below.

Theorem 5.3.1. [CFGK19, Theorem 1] The integral Z(s, ϕ1, ϕ2, f2n,k,s) is absolutely

convergent for Re(s) ≫ 0 and admits meromorphic continuation to the plane. For

Re(s) ≫ 0, it unfolds to

∫
G(A)

∫
U ′

0(A)
⟨ϕ1, π(g)ϕ2⟩fW(τ,2n,ψ(2n)k ),s(δ0u0(1 × ιg))ψU(u0)du0dg, (5.3.9)

where

fW(τ,2n,ψ(2n)k ),s(h) =
∫
U(2n)k (F )\U(2n)k (A)

f2n,k,s(vh)ψ−1
U (v)dv. (5.3.10)

Moreover, the integral (5.3.9) is Eulerian.

Remark 5.3.2. The Eulerian of the integral follows from the fact that W(τ, 2n, ψ(2n)k)

is a unique model and Proposition 5.2.2. In [CFGK19, Section 3], one only obtain

the ‘almost Euler product’ due to the lack of Proposition 5.2.2 (see also [Yan23,

Remark 2.3] for more explanation).
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5.3.2 The unramified computation of the generalized

doubling integrals

In this subsection, we state the unramified computation from [CFGK19].

Theorem 5.3.3. [CFGK19, Theorem 29] Let v be a finite place such that πv and

τv are unramified. Assume the character ψ is unramified. Let ω0
πv

be the unramified

matrix coefficient of πv normalized such that ω0
πv

(12n) = 1. Let

f 0
W(τv ,2n,ψ(2n)k ),s ∈ IndSp4kn(Fv)

P2kn(Fv) (W(τv, 2n, ψ(2n)k)| det ·|s) (5.3.11)

be the unramified section normalized such that

f 0
W(τv ,2n,ψ(2n)k ),s(14kn) = dSp4kn

τv
(s). (5.3.12)

Then ∫
G(Fv)

∫
U ′

0(Fv)
ω0
πv

(g)f 0
W(τv ,2n,ψ(2n)k ),s(δ0u0(1 × ιg))ψU(u0)du0dg

=L(s+ 1
2 , πv × τv).

(5.3.13)

We will use a slightly different version of the above unramified integrals, which will

be more convenient for our local unramified computation in Section 5.6. Denote

δ =



0 12n 0 0

0 0 0 12n(k−1)

−12n(k−1) 0 0 0

0 12n 12n 0


. (5.3.14)

Then we can rewrite (5.3.13) as (see [GS21, Proposition 4.8])
∫
G(Fv)

∫
U0(Fv)

ω0
πv

(g)f 0
W(τv ,2n,ψ(2n)k ),s(δu0(1 × g))ψU(u0)du0dg

=L(s+ 1
2 , πv × τv).

(5.3.15)

Here U0 := N0
(2n)k−1,2kn is the subgroup of N(2n)k−1,2kn consisting of elements of the
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form 

12n(k−1) ∗ 0 ∗

0 12n 0 0

0 0 12n ∗

0 0 0 12n(k−1)


∈ Sp4kn. (5.3.16)

5.3.3 New integrals derived from the generalized doubling

method

In this subsection, we follow an argument of Ginzburg and Soudry in [GS20, Section

4.2] and explain how to derive new integrals for Sp2n × GLk. We assume that n is

even. Let

ξ(ϕ, f2n,k,s)(g) =
∫
G(F )\G(A)

∫
U(F )\U(A)

ϕ(h)E(u(g × h); f2n,k,s)ψU(u)dudh, (5.3.17)

and consider the integral

L(ϕ, f2n,k,s) =
∫

Mat0
n(F )\Mat0

n(A)
ξ(ϕ, f2n,k,s)


 1n z

0 1n


ψ(tr(Tz))dz. (5.3.18)

Clearly, L(ϕ, f2n,k,s) equals
∫
G(F )\G(A)

∫
Mat0

n(F )\Mat0
n(A)

ϕ(h)

×
∫
U(F )\U(A)

E

u

 1n z

0 1n

× h

 ; f2n,k,s

ψU(u)ψ(tr(Tz))dudz.
(5.3.19)

Performing the root exchanging process for the integral along U(F )\U(A) and con-

jugate by certain Weyl elements as in the proof of [GS20, Theorem 4], we can find a

suitable section f ′
2n,k,s such that

L(ϕ, f2n,k,s)

=
∫
G(F )\G(A)

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)
ψk(v)ϕ(h)

×
∫
N0

nk,2kn
(F )\N0

nk,2kn
(A)
E(uṽ(12n × h); f ′

2n,k,s)ψN0
nk,2kn

(u)dudvdh.

(5.3.20)
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Here N0
nk,2kn is the subgroup of Nnk,2kn containing elements of the form in (5.2.6)

with y = [ 0n×(k+1)n y0 y′
0 ], y0 ∈ Matn, y′

0 ∈ Matn,(k−2)n and ṽ = diag[1kn, v, 1kn].

The characters ψk and ψN0
nk,2kn

are given by

ψk(v) = ψ

(
k−2∑
i=1

tr(vi,i+1)
)
,

ψN0
nk,2kn

(v) = ψ

(
k−1∑
i=1

tr(vi,i+1) − tr(y0) + tr(z)
)
,

(5.3.21)

for v of the form in (5.2.4) or (5.2.6). We omit the lengthy computations but give

an example of the case k = 3 to illustrate how the process is carried out.

Example 5.3.4. (The case k = 3) We view 12n × 12n matrices as 12 × 12 block

matrices where each block is of size n× n. Let ei,j be the elementary matrix which

has one at the (i, j) entry. Let

e′
i,j = ei,j − e13−j,13−i, 1 ≤ i, j ≤ 6,

e′
i,j = ei,j + e13−j,13−i, 1 ≤ i ≤ 6, j > 6.

Define

X1 = {1 + x1,2e
′
1,2 : x1,2 ∈ Matn}, X2 = {1 + x3,4e

′
3,4 : x3,4 ∈ Matn},

Y1 = {1 + x2,3e
′
2,3 : y2,3 ∈ Matn}, Y2 = {1 + x4,5e

′
4,5 : y4,5 ∈ Matn}.

Take B1 = U and C1 the subgroup of B1 generated by root subgroups in U that do

not lie in Y1 so that B1 = C1Y1. Set D1 = C1X1 and perform the root exchanging

process for (B1, C1, D1, X1, Y1) as in [GS20, Section 2.4]. Then let B2 = D1 and

similarly define C2 so that B2 = C2Y2. Set D2 = C2X2 and perform the root

exchanging process for (B2, C2, D2, X2, Y2) again. Conjugating by the Weyl element
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w =

 w0 0

0 ŵ0

 , with w0 =



1n 0 0 0 0 0

0 0 1n 0 0 0

0 1n 0 0 0 0

0 0 0 0 1n 0

0 0 0 1n 0 0

0 0 0 0 0 1n



,

the inner integral over U(F )\U(A) in (5.3.19) is of the form

∫
D′

2(F )\D′
2(A)

E

uw

 1n z

0 1n

× h

w−1; f ′′
2n,3,s

ψD′
2
(u)du,

where D′
2 consists of elements of the form

1n u1,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1n 0 u2,4 ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1n ∗ u3,5 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 1n 0 0 y0 0 ∗ ∗ ∗

0 0 0 0 1n ∗ ∗ −y∗
0 ∗ ∗ ∗

0 0 0 0 0 12n ∗ 0 ∗ ∗ ∗

0 0 0 0 0 0 1n 0 −u∗
3,5 ∗ ∗

0 0 0 0 0 0 0 1n ∗ −u∗
2,4 ∗

0 0 0 0 0 0 0 0 1n 0 ∗

0 0 0 0 0 0 0 0 0 1n −u∗
1,2

0 0 0 0 0 0 0 0 0 0 1n


and

ψD′
2
(u) = ψ (tr(u1,2 + u2,4 + u3,5 − y0)) .

We then take B3 = D′
2, X3 = Y1, Y3 = X2 and define C3 so that B3 = C3Y3. Set

D3 = C3X3 and perform the root exchange process for (B3, C3, D3, X3, Y3). Then
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we conjugate by the Weyl element w′ =

 w′
0 0

0 ŵ′
0

 where

w′
0 =



1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 0 1n 0 0

0 0 1n 0 0 0

0 0 0 0 1n 0

0 0 0 0 0 1n



,

we see that the integral over U(F )\U(A) becomes the form

∫
D′

3(F )\D′
3(A)

E

uw′w


 1n z

0 1n

× h

w−1w′−1; f ′′′
2n,3,s

ψD′
3
(u)du,

where D′
3 consists of elements of the form

1n u1,2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 1n u2,3 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

0 0 1n 0 0 0 y0 ∗ 0 ∗ ∗

0 0 0 1n u4,5 ∗ ∗ ∗ ∗ ∗ ∗

0 0 0 0 1n ∗ ∗ ∗ −y∗
0 ∗ ∗

0 0 0 0 0 12n ∗ ∗ 0 ∗ ∗

0 0 0 0 0 0 1n −u∗
4,5 0 ∗ ∗

0 0 0 0 0 0 0 1n 0 0 ∗

0 0 0 0 0 0 0 0 1n −u∗
2,3 ∗

0 0 0 0 0 0 0 0 0 1n −u∗
1,2

0 0 0 0 0 0 0 0 0 0 1n


and

ψD′
3
(u) = ψ (tr(u1,2 + u2,3 + u4,5 − y0)) .

Computing w′w


 1n z

0 1n

× h

w−1w′−1 one easily obtain the integral in (5.3.20).
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Now we continue with a general k. Write N0
nk,2kn = U0Y0 such that U0 contains

elements with y0 = 0, y′
0 = 0 and Y0 contains elements such that all entries above

diagonal are zero except y0, y
′
0. Also denote ψU0 and ψY0 for the restriction of ψN0

nk,2kn

to U0 and Y0. Then the integral in the second line of (5.3.20) can be factorized as

∫
Y0(F )\Y0(A)

∫
U0(F )\U0(A)

E(uyṽ(12n × h); f ′
2n,k,s)ψU0(u)ψY0(y)dudy. (5.3.22)

Applying a theorem of Ikeda [Ike94] as in the proof of [GS20, Theorem 4], we can

find certain section f ′′
2n,k,s and Φ1,Φ2 ∈ S(Matn,kn(A)) such that the integral over

U0(F )\U0(A) equals

θΦ1
ψ,kn2(l0T (y)i0T (1, vh̃))

∫
N

nk,2kn
(F )\N

nk,2kn
(A)
θΦ2
ψ,kn2(l0T (u)i0T (1, vh̃))

×E(uṽ(12n × h); f ′′
2n,k,s)ψU0(u)du.

(5.3.23)

Here we also denote h̃ = diag[1(k−1)n, h, 1(k−1)n] for its embedding in Sp2kn.

Lemma 5.3.5. Let f2n,k,s ∈ IndSp4kn(A)
P2kn(A) (∆(τ, 2n)| det ·|s) be a smooth holomorphic

section and Φ ∈ S(Matn,kn(A)). There exists a smooth, meromorphic section

λ(f2n,k,s,Φ) ∈ IndSp2kn(A)
Pkn(A) (∆(τ ⊗ χT , n)| det ·|s) such that

E(g;λ(f2n,k,s,Φ))

=
∫
N

nk,2kn
(F )\N

nk,2kn
(A)
θΦ
ψ,kn2(l0T (u)i0T (1, g))E(g̃; f2n,k,s)ψN

nk,2kn
(u)du

(5.3.24)

for g ∈ Sp2kn. Here we denote g̃ = diag[1kn, g, 1kn]. The character ψN
nk,2kn

is given

by

ψN
nk,2kn

(u) = ψ

(
k−1∑
i=1

tr(ui,i+1)
)

(5.3.25)

for u of the form in (5.2.6).

Proof. The proof is similar to the one for [GS20, Lemma 2]. We sketch the proof

and give the section λ(f2n,k,s,Φ) explicitly in (5.3.29).

We start by unfolding the Eisenstein series on the right hand side of (5.3.24). That
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is, we need to compute

∑
η∈P2kn(F )\Sp4kn(F )/N

nk,2kn
(F )Ŝp2kn(F )

∑
γ∈Sη\N

nk,2kn
(F )Ŝp2kn(F )

f2n,k,s(ηγĝ)

×
∫
N

nk,2kn
(F )\N

nk,2kn
(A)
θΦ
ψ,kn2(l0T (u)i0T (1, g))ψN

nk,2kn
(u)du,

(5.3.26)

where Ŝp2kn is its image in Sp4kn under the embedding g 7→ g̃ and Sη = η−1P2knη ∩

Nnk,2kn(F )Ŝp2kn(F ) is the stabilizer of η. One shows that only the orbit represented

by

w0 =



0 1kn 0 0

0 0 0 1kn

−1kn 0 0 0

0 0 1kn 0


is nonzero. In this case Sw0 = U0P̂kn with U0 the subgroup of Nnk,2kn consisting of

elements of the form

1n ∗ ∗ 0 ∗ 0 0 0

0 . . . ∗ 0 ∗ 0 0 0

0 0 1n 0 b 0 0 0

0 0 0 1kn 0 b′ ∗ ∗

0 0 0 0 1kn 0 0 0

0 0 0 0 0 1n ∗ ∗

0 0 0 0 0 0 . . . ∗

0 0 0 0 0 0 0 1n



∈ Sp4kn.

We further factor U0 = U1U2 such that U1 contains elements of the above form with

b = 0 and U2 = {ub} contains elements of the above form such that all ∗’s are zero.

Denote N0
nk,2kn = U0\Nnk,2kn. Then our expression (5.3.26) becomes

∑
γ∈Pkn(F )\Sp2kn(F )

∫
N0

nk,2kn
(A)

∫
U2(F )\U2(A)

θΦ
ψ,kn2(l0T (ubu)i0T (1, γg))

×
∫
U1(F )\U1(A)

f2n,k,s(w0u1ubuγ̃g)ψ1(u1)ψ0(u)du1dubdu,

(5.3.27)

where ψ0, ψ1 are the restriction of ψN
nk,2kn

to N0
nk,2kn and U1, respectively.
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Let U ′
1 be the group containing elements of the form

1kn x ∗ ∗ ∗

0 1n u′
2,3 ∗ ∗

0 0 . . .
. . . ∗

0 0 0 1n u′
k,k+1

0 0 0 0 1n


∈ GL2kn,

and

ψ′
1(u′

1) = ψ

(
k−1∑
i=1

tr(u′
i+1,i+2)

)
.

Let U ′′
1 be the subgroup of U ′

1 containing elements of above form with x = 0 and

ψ′′
1 the restriction of ψ′

1 to U ′′
1 . Changing variables u1 7→ w−1

0 u1w0, the integral over

U1(F )\U1(A) can be written as

∫
U ′′

1 (F )\U ′′
1 (A)

f2n,k,s(diag[u′′
1, û

′′
1]w0u(b)vγ̃g)ψ′′

1(u′′
1)du′′

1.

Using the following identity (for details see the proof of [GS21, Proposition 2.4]):

f
ψ′

1
2n,k,s(g) :=

∫
U ′

1(F )\U ′
1(A)

f2n,k,s(diag[u′
1, û

′
1]g)ψ′

1(u′
1)du′

1

=
∫
U ′′

1 (F )\U ′′
1 (A)

f2n,k,s(diag[u′′
1, û

′′
1]g)ψ′′

1(u′′
1)du′′

1,

the expression (5.3.27) becomes

∑
γ∈Pkn(F )\Sp2kn(F )

∫
N0

nk,2kn
(A)
ψ0(u)

×
∫
U2(F )\U2(A)

θΦ
ψ,kn2(l0T (ubu)i0T (1, γg))fψ

′
1

2n,k,s(w0ubuγ̃g)dubdu.
(5.3.28)

Changing variables u(b) 7→ w−1
0 ubw0 and the variables x in U ′

1, the integral in the

second line of (5.3.28) equals

∫
U2(F )\U2(A)

θΦ
ψ,kn2(l0T (ubu)i0T (1, γg))fψ

′
1

2n,k,s(w0uγ̃g)dub.

Unfolding the theta series, this becomes

ωψ,kn2(l0T (u)i0T (1, γg))Φ(0)fψ
′
1

2n,k,s(w0uγ̃g).
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Define

λ(f2n,k,s,Φ)(g) =
∫
N0

nk,2kn
(A)
ωψ,kn2(l0T (u)i0T (1, g))Φ(0)fψ

′
1

2n,k,s(w0ug̃)ψ0(u)du. (5.3.29)

One checks that this is a section of the induced representation IndSp2kn(A)
Pkn(A) (∆(τ ⊗

χT , n)| det ·|s) and hence the expression (5.3.28) equals

∑
γ∈Pkn(F )\Sp2kn(F )

λ(f2n,k,s,Φ)(γg),

which is an Eisenstein series as desired.

By Lemma 5.3.5, the second line in (5.3.23) is an Eisenstein series. Choosing f2n,k,s

similar to [GS20, (4.35), (4.36)], we see that there exists a section fn,k,s such that

the integral (5.3.22) becomes

∫
Y0(F )\Y0(A)

θΦ1
ψ,kn2(l0T (y)i0T (1, vh̃))E(ṽ(12n × h); fn,k,s)ψY0(y)dy. (5.3.30)

Unfolding the theta series we have

∫
Y0(F )\Y0(A)

∑
ξ∈Matn,kn

ωΦ1
ψ,kn2(l0T (y)i0T (1, vh̃))Φ(ξ)E(ṽ(12n ×h); fn,k,s)ψY0(y)dy. (5.3.31)

Recall that y is of the form
[

0n,kn 0n y0 y′
0

]
with y0 ∈ Matn, y′

0 ∈ Matn,(k−2)n.

Write ξ = [ ξ1 ξ2 ξ3 ] with ξ1 ∈ Matn,(k−2)n, ξ2 ∈ Matn, ξ3 ∈ Matn. Note that

ωψ,kn2(l0T (y)) provides a character

ψ(tr(2T (ξ1y
′∗
0 + ξ2y

∗
0))). (5.3.32)

Thus the above integral is nonvanishing unless ξ1 = 0, ξ2 = (2T )−1 and one obtains

a theta series θΦ
ψ,n2 with Φ(ξ) = Φ1([ 0 (2T )−1 ξ ]). We summarize our results in

the following theorem.
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Theorem 5.3.6. Let n be a positive even integer. Given Φ ∈ S(Matn(A)), there

are nontrivial choices of sections

f2n,k,s ∈ IndSp4kn(A)
P2kn(A) (∆(τ, 2n)| det ·|s),

fn,k,s ∈ IndSp2kn(A)
Pkn(A) (∆(τ ⊗ χT , n)| det ·|s),

(5.3.33)

such that the integral (5.3.18) is equal to

L(ϕ, f2n,k,s) =
∫

Sp2n(F )\Sp2n(A)

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)
ψk(u)ϕ(h)

× θΦ
ψ,n2(αT (u)iT (1, h))E(ut(1, h); fn,k,s)dudh.

(5.3.34)

Motivated by the Theorem 5.3.6, we propose the following.

Conjecture 5.3.7. Let n be a positive even integer. The integral in (5.3.34) is

Eulerian in the sense of the New Way method, and represents the tensor product

L-function LS(s+ 1
2 , π × τ).

The rest of this chapter is devoted to providing evidence for Conjecture 5.3.7. When

k = 1, Conjecture 5.3.7 is proven to hold by Piatetski-Shapiro and Rallis [PR88]

(see also [GS20, Section 4.1]). From now on we may assume k ≥ 2. We remark

that when n = k = 2, Theorem 5.3.6 recovers [GS20, Theorem 4], and in this case,

Conjecture 5.3.7 reduces to the conjecture in [GS20], which is proven to hold in

[Yan23]. When n is even and k = n, Conjecture 5.3.7 also appeared in [Yan23,

Conjecture 7.1]. We will show that Conjecture 5.3.7 holds for any pair of positive

integers n, k where n is even.

5.4 The global zeta integral and statement of

theorems

Let F be a number field with the ring of adeles A. We assume n, k ≥ 2 are integers

with n even. We fix a nontrivial additive character ψ : F\A → C× and let T0, T, χT
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be as before. Let (π, Vπ) be an irreducible cuspidal automorphic representation of

Sp2n(A) and ϕ ∈ Vπ be a cusp form. Define the (T -)Fourier coefficient of ϕ by

ϕψ,T (h) =
∫

Mat0
n(F )\Mat0

n(A)
ϕ


 1n z

0 1n

h
ψ(tr(Tz))dz. (5.4.1)

We always assume T is chosen such that ϕψ,T ̸= 0 which is possible by [Li92]. In

general, the models on π corresponding to (5.4.1) are not unique.

Let θΦ
ψ := θΦ

ψ,n2 be the theta series associated with the Weil representation ωψ,n2 and

the Schwartz function Φ ∈ S(Matn(A)) defined in (5.2.12). Let

fs := fn,k,s ∈ IndSp2kn(A)
Pkn(A) (∆(τ ⊗ χT , n)| det ·|s), (5.4.2)

be a section obtained as in Lemma 5.3.5 and we form the Eisenstein series E(g; fs).

For u ∈ Nnk−1,kn of the form in (5.2.4) we define a character

ψk : Nnk−1,kn(F )\Nnk−1,kn(A) → C×,

u 7→ ψ

(
k−2∑
i=1

tr(2Tui,i+1)
)
.

(5.4.3)

Recall that the global integral in (5.3.34) is

Z(ϕ, θΦ
ψ,n2 , fs) :=

∫
Sp2n(F )\Sp2n(A)

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)
ϕ(h)

×θψ,n2(αT (u)iT (1, h))E(ut(1, h); fs)ψk(u)dudh.
(5.4.4)

Now we state the basic properties of the integral Z(ϕ, θΦ
ψ,n2 , fs). Let N0

nk−1,kn be the

subgroup of Nnk−1,kn containing elements of the form

1(k−1)n ∗ 0 ∗

0 1n 0 0

0 0 1n ∗

0 0 0 1(k−1)n


, (5.4.5)
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and let

η =



0 1n 0 0

0 0 0 −1(k−1)n

1(k−1)n 0 0 0

0 0 1n 0


. (5.4.6)

We have the following.

Proposition 5.4.1. The integral Z(ϕ, θΦ
ψ , fs) converges absolutely when Re(s) ≫ 0

and can be meromorphically continued to all s ∈ C. For Re(s) ≫ 0, it unfolds to
∫
Nn(A)\Sp2n(A)

∫
N0

nk−1,kn
(A)
ϕψ,T (h)ωψ(αkT (u)iT (1, h))Φ(1n)

×fW(τ⊗χT ,n,ψ2T ),s(ηut(1, h))dudh.
(5.4.7)

Here,

fW(τ⊗χT ,n,ψ2T ),s(g) =
∫
U

nk (F )\U
nk (A)

fs


 v 0

0 v̂

 g
ψ−1

2T (u)du, (5.4.8)

and

ψ2T (u) = ψ

(
k−1∑
i=1

tr(2Tui,i+1)
)
, (5.4.9)

with u of the form in (5.2.14).

Proposition 5.4.1 will be proved in Section 5.5.

We will take both Φ and fs to be factorizable so that we can write

fW(τ⊗χT ,n,ψ2T ),s(g) =
∏
v

fW(τv⊗χT ,n,ψ2T ),s(gv) (5.4.10)

where fW(τv⊗χT ,n,ψ2T ),s ∈ IndSp2kn(Fv)
Pkn(Fv) (W(τv ⊗ χT , n, ψ2T )| det ·|s). However, the in-

tegral Z(ϕ, θΦ
ψ , fs) is still not factorizable in the usual sense since ϕψ,T corresponds

to a non-unique model in general (i.e. it does not factor into an Euler product).

This requires us to use the New Way method of Piatetski-Shapiro and Rallis, first

appeared in [PR88], to analyze the integral Z(ϕ, θΦ
ψ , fs).

For a finite place v, we denote by OFv the ring of integers of Fv. We take S to
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be a finite set of of places such that v /∈ S if and only if v ∤ 2, 3,∞; πv, τv, ψv are

unramified and all the diagonal coordinates of T0 are in O×
Fv

.

For a place v /∈ S, let Φ0
v = 1Matn(OFv ) be the characteristic function of Matn(OFv).

Let

f 0
W(τv⊗χT ,n,ψ2T ),s ∈ IndSp2kn(Fv)

Pkn(Fv) (W(τv ⊗ χT , n, ψ2T )| det ·|s) (5.4.11)

be the unramified section normalized such that

f 0
W(τv⊗χT ,n,ψ2T ),s(12kn) = dSp4kn

τv
(s). (5.4.12)

Theorem 5.4.2. For a place v /∈ S, take Φ0
v, f

0
W(τv⊗χT ,n,ψ2T ),s as above and fix a

non-zero unramified vector v0 ∈ Vπv . Let lT : Vπv → C be a linear functional on Vπv

such that

lT

πv
 1n z

0 1n

 ξ
 = ψ−1(tr(Tz))lT (ξ) (5.4.13)

for all ξ ∈ Vπv , z ∈ Mat0
n(Fv). Denote

Z∗
v (lT , s) =

∫
Nn(Fv)\Sp2n(Fv)

∫
N0

nk−1,kn
(Fv)

lT (πv(h)v0)

× ωψ,v(αkT (u)iT (1, h))Φ0
v(1n)f 0

W(τ⊗χT ,n,ψ2T ),s(ηut(1, h))dudh.
(5.4.14)

Then for Re(s) ≫ 0 we have

Z∗
v (lT , s) = L(s+ 1

2 , πv × τv) · lT (v0). (5.4.15)

The unramified computations and the proof of the above theorem will be carried out

in Section 5.6.

Globally, we choose the global section f ∗,S
s such that its local unramified counterpart

is f 0
s chosen above. By applying the strategy of [PR88] (see also the proofs of [PS17,

Corollary 3.4], [Yan23, Theorem 3.4]) we obtain the following result.

Theorem 5.4.3. Fix an isomorphism π ∼= ⊗′
vπv and identify ϕ ∈ Vπ with ⊗′

vξv, ξv ∈

Vπv . For Re(s) ≫ 0, we have

Z(ϕ, θΦ
ψ , f

∗,S
s ) = LS(s+ 1

2 , π × τ) · ZS(ϕ, θΦ
ψ , fs), (5.4.16)
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where

ZS(ϕ, θΦ
ψ , fs) =

∫
Nn(AS)\Sp2n(AS)

∫
N0

nk−1,kn
(AS)

ωψ,S(αkT (u)iT (1, h))ΦS(1n)

× ϕψ,T (h)fS,W(τS⊗χT ,n,ψ2T ),s(ηut(1, h))dudh.
(5.4.17)

The local zeta integral at finite ramified places and archimedean places can be

controlled by the following two propositions. We omit their proof as they are the

same as the proof of [Yan23, Proposition 3.5, Proposition 3.6] (see also the proof of

[GRS98, Proposition 6.6, Proposition 6.7]).

Proposition 5.4.4. Let v be a finite place and K0 be an open compact subgroup

of Sp2n(Fv). There is a choice of Φ0 ∈ S(Matn(Fv)) and f0,s ∈ IndSp2kn(Fv)
Pkn(Fv) (W(τv ⊗

χT , n, ψ2T )| det ·|s) such that for any irreducible admissible representation πv of

Sp2n(Fv), any vector ξ0 ∈ Vπv stabled under K0 and any linear functional lT : Vπv →

C satisfying (5.4.5) we have
∫
Nn(Fv)\Sp2n(Fv)

∫
N0

nk−1,kn
(Fv)

lT (πv(h)ξ0)

×ωψ,v(αkT (u)iT (1, h))Φ0(1n)f0,s(ηut(1, h))dudh

=lT (ξ0).

(5.4.18)
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Proposition 5.4.5. For any complex number s0 ∈ C, there is a choice of data

(ϕj,Φj, fj,s) such that the finite sum

∑
j

Z∞(ϕj,Φj, fj,s)

=
∑
j

∫
Nn(A∞)\Sp2n(A∞)

∫
N0

nk−1,kn
(A∞)

ϕj,ψ,T (h)

×ωψ,∞(αkT (u)iT (1, h))Φj(1n)fj,s(ηut(1, h))dudh

(5.4.19)

admits meromorphic continuation to the whole complex plane and its meromorphic

continuation is nonzero at s0.

As applications to above theorems, we now study the analytic properties of the

partial L-function LS(s, π × τ). By the meromorphic continuation of Eisenstein

series, we reprove the following theorem in [CFK18, Theorem 60].

Corollary 5.4.6. With S a finite set of places picked as above, the partial L-function

LS(s, π × τ) admits meromorphic continuation to the whole complex plane.

With the section f ∗,S
s ∈ IndSp2kn(A)

Pkn(A) (∆(τ ⊗ χT , n)| det ·|s) chosen as above, we further

define a section f ∗
s by

f ∗
s =

∏
v∈S

d
Sp2kn
τv⊗χT

(s) · f ∗,S
s . (5.4.20)

The location of possible poles of the fully normalized Eisenstein series E(g; f ∗
s ) is

determined in [JLZ13, Theorem 5.2]. We recall their result as follow.
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Theorem 5.4.7. Assume τ is a self-dual irreducible unitary automorphic cuspidal

representation of GLk(A). The Eisenstein series E(g; f ∗
s ) is holomorphic for Re(s) ≥

0 except possibly at most simple poles in following cases:

(1) If L(s, τ ⊗ χT ,∧2) has a pole at s = 1, and L(1
2 , τ ⊗ χT ) ̸= 0, then E(g; f ∗

s ) has

a simple pole at s = 1, 2, ..., n2 ,

(2) If L(s, τ ⊗ χT ,∧2) has a pole at s = 1, and L(1
2 , τ ⊗ χT ) = 0, then E(g; f ∗

s ) has

a simple pole at s = 1, 2, ..., n−2
2 (if n = 2 then E(g; f ∗

s ) is holomorphic),

(3) If both L(s, τ ⊗χT , Sym2) and L(s, τ ⊗χT ) have a pole at s = 1 (this case occurs

only if k = 1 and τ ⊗ χT is the trivial character of GL1(A)), then E(g; f ∗
s ) has a

simple pole at s = 1
2 ,

3
2 , ...,

n+1
2 ,

(4) If L(s, τ ⊗ χT , Sym2) has a poles at s = 1, then E(g; f ∗
s ) has a simple pole at

s = 1
2 ,

3
2 , ...,

n−1
2 .

If E(g; f ∗
s ) has a simple pole at s = s0, denote by R(s0,∆(τ ⊗ χT , n)) the space

generated by the residues of E(g; f ∗
s ) at s = s0 as the section f ∗

s varies in s. The

elements R ∈ R(s0,∆(τ ⊗ χT , n)) are automorphic forms on Sp2kn(A). We have the

following theorem on the poles of LS(s, π×τ), and the relation between the existence

of the poles and the non-vanishing of certain period integrals. This theorem is a

generalization of [PR88, p.120 Proposition] (see also [Yan22, Section 3.3]).

Theorem 5.4.8. Assume τ is a self-dual irreducible unitary automorphic cuspidal

representation of GLk(A). Then LS(s, π × τ) is holomorphic for Re(s) > n+2
2 , and

admits at most a simple pole at s0 = 1, 3
2 , ...,

n+2
2 . Moreover, for such s0, if

Ress=s0L
S(s, π × τ) ̸= 0, (5.4.21)

then there exist a Schwartz function Φ ∈ S(Matn(A)), and a residue R ∈ R(s0,∆(τ⊗
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χT , n)), such that the period integral
∫

Sp2n(F )\Sp2n(A)

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)

ϕ(h)θΦ
ψ (αkT (v)iT (1, h))R(vt(1, h))dvdh

(5.4.22)

is not identically zero.

Proof. The proof is same as the proof of [Yan22, Theorem 1.4]. By Theorem 5.4.3,

we have

Z(ϕ, θΦ
ψ , f

∗
s ) = LS(s+ 1

2 , π × τ) · ZS(ϕ, θΦ
ψ , f

∗
s ) ·

∏
v∈S

d
Sp2kn
τv⊗χT

(s).

By Proposition 5.4.4 and 5.4.5, the section f ∗
s can be chosen such that ZS(ϕ, θΦ

ψ , f
∗
s )

is non-vanishing for any s. One can also show that dSp2kn
τv⊗χT

(s) ̸= 0 for any v ∈ S

and any s. Then the theorem follows from our integral representation and Theorem

5.4.7.

5.5 Unfolding

In this section, we unfold the global zeta integral Z(ϕ, θΦ
ψ,n2 , fs) and prove Proposition

5.4.1. We start by unfolding the Eisenstein series. For Re(s) ≫ 0, we have

Z(ϕ, θΦ
ψ,n2 , fs) =

∑
γ∈Pkn(F )\Sp2kn(F )/P

nk−1,kn
(F )
I(γ), (5.5.1)

where

I(γ) =
∫

Sp2n(F )\Sp2n(A)

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)
ϕ(h)θΦ

ψ (αkT (u)iT (1, h))

×
∑

g∈Hγ(F )\P
nk−1,kn

(F )
fs(γgut(1, h))ψk(u)dudh,

(5.5.2)

with Hγ = γ−1Pknγ∩Pnk−1,kn the stabilizer of the orbit represented by γ. The orbits

of Pkn(F )\Sp2kn(F )/Pnk−1,kn(F ) and their stabilizers are described in the following

lemma.
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Lemma 5.5.1. The representatives of Pkn(F )\Sp2kn(F )/Pnk−1,kn(F ) are given by

γr1,...,rk−1 =



µ′
k−1 0 0 0 0 0 ϵ′

k−1

0 . . . 0 0 0 . .
. 0

0 0 µ′
1 0 ϵ′

1 0

0 0 0 12n 0 0 0

0 0 ϵ1 0 µ1 0 0

0 . .
. 0 0 0 . . . 0

ϵk−1 0 0 0 0 0 µl−1



, (5.5.3)

where µi, ϵi, µ′
i, ϵ

′
i are n× n matrices

µi =

 1ri
0

0 0

 , ϵi =

 0 0

1n−ri
0

 ,

µ′
i =

 0 0

0 1ri

 , ϵ′
i =

 0 −1n−ri

0 0

 ,
(5.5.4)

with 0 ≤ ri ≤ n. Denote Hr1,...,rk−1 for the stabilizer of γr1,...,rk−1. Then Hr1,...,rk−1 =

Mr1,...,rk−1 ⋉Nr1,...,rk−1, where Mr1,...,rk−1 consists of elements

m(h0, g1, ..., gk−1) = diag[gk−1, ..., g1, h0, ĝ1, ..., ĝk−1] (5.5.5)

with h0 ∈ Pn and for 1 ≤ i ≤ k − 1,

gi ∈ B−
ri,n

=


 ∗ 0(n−ri)×ri

∗ ∗

 ∈ GLn

 . (5.5.6)

Proof. Let (V, ⟨·, ·⟩) be the underlying skew-symmetric space of the group Sp2kn with

Witt decomposition V = I ⊕ I ′ into two maximal isotropic subspace so that Pkn is

the parabolic subgroup of Sp2kn fixing I. The parabolic subgroup Pnk−1,kn is the one

fixing some flag of isotropic subspaces

0 ⊂ I1 ⊂ I2 ⊂ ... ⊂ Ik−1 ⊂ V

with Ii ⊂ I of rank ni. Then the double coset Pkn\Sp2kn/Pnk−1,kn is parameterized by
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tuple (κ1, ..., κk−1) where κi = dim(Iγ ∩ Ii). One can easily pick the representatives

as in the lemma and their stabilizers can be obtained by straightforward matrix

computations.

Denote Ir1,...,rk−1 = I(γr1,...,rk−1). Then by Lemma 5.5.1,

Ir1,...,rk−1

=
∫

Sp2n(F )\Sp2n(A)

∑
1≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

h0∈Pn(F )\Sp2n(F )

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)

∑
u0∈Nr1,...,rk−1 (F )\N

nk−1,kn
(F )
fs(γr1,...,rk−1u0m(h0, g1, ..., gk−1)ut(1, h))

×ϕ(h)θΦ
ψ (αkT (u)iT (1, h))ψk(u)dudh.

(5.5.7)

Now we change variables u 7→ m(h0, 1, ..., 1)−1um(h0, 1, ..., 1). Clearly, ψk is pre-

served under this change, and note that

m(h0, 1, ..., 1)−1u(x, y, z)m(h0, 1, ..., 1) = u([x, y]h0, z),

θΦ
ψ (αkT (u([x, y]h0, z))iT (1, h)) = θΦ

ψ (αkT (u(x, y, z))iT (1, h0h)).
(5.5.8)

Then we obtain

Ir1,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
1≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)

∑
u0∈Nr1,...,rk−1 (F )\N

nk−1,kn
(F )
fs(γr1,...,rk−1u0m(1, g1, ..., gk−1)ut(1, h))

×ϕ(h)θΦ
ψ (αkT (u)iT (1, h))ψk(u)dudh.

(5.5.9)

Lemma 5.5.2. Ir1,...,rk−1 = 0 unless r1 = 0.

Proof. Let N c
nk−1,kn be a normal subgroup of Nnk−1,kn containing elements of the
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form

u(z) =



1(k−2)n 0 0 0 0 0

0 1n 0 0 z 0

0 0 1n 0 0 0

0 0 0 1n 0 0

0 0 0 0 1n 0

0 0 0 0 0 1(k−2)n



.

Using the formulas of the Weil representation, we have

θΦ
ψ (αkT (u(z))αkT (u′)iT (1, h)) = ψ(tr(Tz))θΦ

ψ (αkT (u′)iT (1, h)),

for u(z) ∈ N c
nk−1,kn(A), u′ ∈ Nnk−1,kn(A), h ∈ Sp2n(A).

Therefore,

Ir1,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
1≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
Nc

nk−1,kn
(A)N

nk−1,kn
(F )\N

nk−1,kn
(A)

×
∫

Mat0
n(F )\Mat0

n(A)
ϕ(h)ψ(tr(Tz))θΦ

ψ (αT (u)iT (1, h))ψk(u)

×
∑

u0∈Nr1,...,rk−1 (F )\N
nk−1,kn

(F )
fs(γr1,...,rk−1u0m(1, g1, ..., gk−1)u(z)ut(1, h))dzdudh.

Note that

m(1, g1, ..., gk−1)−1u(z)m(1, g1, ..., gk−1) = u(g−1
1 zĝ).

Changing variables z 7→ g−1
1 zĝ1 we obtain

Ir1,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
1≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
Nc

nk−1,kn
(A)N

nk−1,kn
(F )\N

nk−1,kn
(A)

×
∫

Mat0
n(F )\Mat0

n(A)
ϕ(h)ψ(tr(Tg−1

1 zĝ1))θΦ
ψ (αT (u)iT (1, h))ψk(u)

×
∑

u0∈Nr1,...,rk−1 (F )\N
nk−1,kn

(F )
fs(γr1,...,rk−1u0u(z)m(1, g1, ..., gk−1)ut(1, h))dzdudh.
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Write z =

 z1 z2

z3 z4

 with z1 ∈ Matn−r1,r1 , z2 ∈ Matn−r1 , z3 ∈ Matr1 , z4 ∈ Matr1,n−r1

and note that γr1,...,rk−1 commutes with u


 0 0

z3 0


.

Then

Ir1,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
1≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
Nc

nk−1,kn
(A)N

nk−1,kn
(F )\N

nk−1,kn
(A)

×ϕ(h)θΦ
ψ (αT (u)iT (1, h))

∫
z1,z2,z4

ψ

tr

Tg−1
1

 z1 z2

0 z4

 ĝ1


ψk(u)

×
∑

u0∈Nr1,...,rk−1 (F )\N
nk−1,kn

(F )
fs

γr1,...,rk−1u


 z1 z2

0 z4


u0m(1, g1, ..., gk−1)ut(1, h)



×
∫

Matr1 (F )\Matr1 (A)
ψ

tr

Tg−1
1

 0 0

z3 0

 ĝ1


 dz3dz1dz2dz4dudh.

The lemma follows as the integral in the last line vanishes if r1 > 0.

We now assume r1 = 0 and omit it from our notation. We need to consider the

integral

Ir2,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
2≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
N

nk−1,kn
(F )\N

nk−1,kn
(A)

×
∑

u0∈Nr2,...,rk−1 (F )\N
nk−1,kn

(F )
fs(γr2,...,rk−1u0m(1, 1, g2, ..., gk−1)ut(1, h))

×ϕ(h)θΦ
ψ (αkT (u)iT (1, h))ψk(u)dudh.

(5.5.10)

Lemma 5.5.3. Ir2,...,rk−1 = 0 unless r2 = ... = rk−1 = 0.

Proof. Changing variables u 7→ u′ = m(1, 1, g2, ..., gk−1)−1um(1, 1, g2, ..., gk−1) we
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obtain

Ir2,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
2≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
Nr2,...,rk−1 (F )\N

nk−1,kn
(A)
ϕ(h)θΦ

ψ (αkT (u)iT (1, h))

×fs(γr2,...,rk−1um(1, 1, g2, ..., gk−1)t(1, h))ψk(u′)dudh.

Note that Nr2,...,rk−1 contains a subgroup N2 consisting of elements of the form

1(k−3)n 0 0 0 0 0 0 0 0 0 0

0 1n−r2 0 0 0 0 0 0 0 0 0

0 0 1r2 0 x 0 0 0 0 0 0

0 0 0 1n−r2 0 0 0 0 0 0 0

0 0 0 0 1r2 0 0 0 0 0 0

0 0 0 0 0 12n 0 0 0 0 0

0 0 0 0 0 0 1r2 0 −x∗ 0 0

0 0 0 0 0 0 0 1n−r2 0 0 0

0 0 0 0 0 0 0 0 1r2 0 0

0 0 0 0 0 0 0 0 0 1n−r2 0

0 0 0 0 0 0 0 0 0 0 1(k−3)n



.

Thus

Ir2,...,rk−1

=
∫
Pn(F )\Sp2n(A)

∑
2≤i≤k−1

gi∈B−
ri,n(F )\GLn(F )

∫
N2(A)Nr2,...,rk−1 (F )\N

nk−1,kn
(A)
ϕ(h)ψk(u′)

×θΦ
ψ (αkT (u)iT (1, h))fs(γr2,...,rk−1um(1, 1, g2, ..., gk−1)t(1, h))

×
∫
N2(F )\N2(A)

ψk(u2)du2dudh.

Since ψk(u2) is a nontrivial character on N2(F )\N2(A) the integral in the last line

is zero unless r2 = 0. The lemma then follows by induction on r3, ..., rk−1 using the

same argument.

We then assume r2 = ... = rk−1 = 0 and omit it from our notation (so γ = γ0,...,0, N =
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N0,...,0). Our integral becomes

I =
∫
Pn(F )\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)

ϕ(h)θΦ
ψ (αkT (u)iT (1, h))fs(γut(1, h))ψk(u)dudh.

(5.5.11)

We next unfold the theta series. The general linear group GLn acts on Matn by right

multiplication. For ξ ∈ Matn(F ) denote Gξ = {g ∈ GLn : ξg = ξ} for its stabilizer.

Then

I =
∑

ξ∈Matn(F )/GLn(F )
Iξ, (5.5.12)

where

Iξ =
∫
Pn(F )\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)
ϕ(h)

×
∑

a∈Gξ\GLn(F )
ωψ(αkT (u)iT (1, h))Φ(ξa)fs(γut(1, h))ψk(u)dudh.

(5.5.13)

Lemma 5.5.4. Iξ = 0 unless ξ = 1n.

Proof. We can pick ξ of the form ξ =

 0 x

0 1r

 so thatGξ =


 ∗ ∗

0 1r

 ∈ GLn(F )

.

Recall that GLn is embedded in Sp2n via a 7→ m(a) = diag[a, â]. Denote G̃ξ for its

image in Sp2n. Clearly the representatives of Gξ\GLn(F ) can be taken in SLn(F ) so

that

ωψ(αkT (u)iT (1, h))Φ(ξa) = ωψ(αkT (u)iT (1,m(a)h))Φ(ξ)

for a ∈ Gξ\GLn(F ). Changing variables u 7→ t(1,m(a))−1ut(1,m(a)) we obtain

Iξ =
∫
G̃ξNn(F )\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)
ϕ(h)

×ωψ(αkT (u)iT (1, h))Φ(ξ)fs(γut(1, h))ψk(u)dudh.

Let N r
n be a normal subgroup of G̃ξNn consisting of elements of the form

1n−r x y z

0 1r 0 y∗

0 0 1r −x∗

0 0 0 1n−r
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and write

Iξ =
∫
G̃ξNn(F )Nr

n(A)\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)

∫
Nr

n(F )\Nr
n(A)

ϕ(nh)

×ωψ(αkT (u)iT (1, nh))Φ(ξ)fs(γut(1, nh))ψk(u)dndudh.

Changing variables u 7→ t(1, n)ut(1, n)−1 and noting that γt(1, n)γ−1 ∈ Nn(F ), we

have
Iξ =

∫
G̃ξNn(F )Nr

n(A)\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)

∫
Nr

n(F )\Nr
n(A)

ϕ(nh)

× ωψ(iT (1, n)αkT (u)iT (1, h))Φ(ξ)fs(γut(1, h))ψk(u)dndudh.

Using formulas of the Weil representation, we have

ωψ(iT (1, n)αkT (u)iT (1, h))Φ(ξ)

=ωψ

αTk
u0


 0 x

0 0

 , 0, 0

 iT (1, n)αkT (u)iT (1, h)

Φ


 0 0

0 1r




=ωψ

iT (1, n)αkT

u0


 0 x

0 0

 ,
 0 x′

0 0

 , 0

αkT (u)iT (1, h)

Φ


 0 0

0 1r




=ωψ

αkT
u0

0,

 0 x′

0 0

 , 0

αkT (u)iT (1, h)

Φ(ξ).

Changing variables u 7→ u0

0,

 0 x′

0 0

 , 0


−1

u and since u0

0,

 0 x′

0 0

 , 0
 ∈

N(A) the integral becomes

Iξ =
∫
G̃ξNn(F )Nr

n(A)\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)
ωψ(αkT (v)iT (1, h))Φ(ξ)fs(γut(1, h))ψk(u)

×
∫
Nr

n(F )\Nr
n(A)

ϕ(nh)dndudh.

The lemma follows as the integral in the last line vanishes by the cuspidality of

ϕ.

We then assume ξ = 1n and omit it from our notation. It remains to consider the

integral
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I =
∫
Nn(F )\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)
ϕ(h)

×ωψ(αkT (u)iT (1, h))Φ(1n)fs(γut(1, h))ψk(u)dudh

=
∫
Nn(A)\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)

∫
Nn(F )\Nn(A)

ϕ(nh)

×ωψ(αkT (u)iT (1, nh))Φ(1n)fs(γut(1, nh))dnψk(u)dudh.

(5.5.14)

Changing variables u 7→ t(1, n)ut(1, n)−1 and noting that

ωψ(iT (1, n(z))αkT (u)iT (1, h)) = ψ(tr(Tz))ωψ(αkT (u)iT (1, h)), (5.5.15)

we have

I =
∫
Nn(A)\Sp2n(A)

∫
N(F )\N

nk−1,kn
(A)

∫
Nn(F )\Nn(A)

ϕψ,T (h)

×ωψ(αkT (u)iT (1, h))Φ(1n)fs(γut(1, h))ψk(u)dudh

=
∫
Nn(A)\Sp2n(A)

∫
N(A)\N

nk−1,kn
(A)
ϕψ,T (h) ×

∫
N(F )\N(A)

ωψ(αkT (u0)αkT (u)iT (1, h))Φ(1n)fs(γu0ut(1, h))ψk(u0)du0dudh.

(5.5.16)

By straightforward computation, N = N0,...,0 consists of elements of the form

1n v1,2 ∗ ∗ 0 ∗ 0 0 0 0

0 . . .
. . . ∗ 0 ∗ 0 0 0 0

0 0 1n vk−2,k−1 0 ∗ 0 0 0 0

0 0 0 1n 0 y 0 0 0 0

0 0 0 0 1n 0 y∗ ∗ ∗ ∗

0 0 0 0 0 1n 0 0 0 0

0 0 0 0 0 0 1n −v∗
k−2,k−1 ∗ ∗

0 0 0 0 0 0 0 1n
. . . ∗

0 0 0 0 0 0 0 0 . . . −v∗
1,2

0 0 0 0 0 0 0 0 0 1n



. (5.5.17)

Denote elements of the above form by u0(y). The integral of u0 over N(F )\N(A)
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can be written as∫
N(F )\N(A)

ωψ(αkT (u0(y)u)iT (1, h))Φ(1n)

× fs(γu0(y)vt(1, h))ψk(u0(y))du0(y)

=ωψ(αkT (v)iT (1, h))Φ(1n)

×
∫
N(F )\N(A)

fs(γu0(y)ut(1, h))ψk(u0(y))ψ(tr(2Ty))du0(y).

(5.5.18)

Let

η0 =



0 0 1n 0 0 0

0 . .
. 0 0 0 0

1n 0 0 0 0 0

0 0 0 0 0 1n

0 0 0 0 . .
. 0

0 0 0 1n 0 0



, η =



0 1n 0 0

0 0 0 −1(k−1)n

1(k−1)n 0 0 0

0 0 1n 0


. (5.5.19)

For u0 ∈ N as in (5.5.17), note that η0γu0 can be written as

1n −y∗ ∗ ∗ ∗ 0 0 0 0 0

0 1n −v∗
k−2,k−1 ∗ ∗ 0 0 0 0 0

0 0 . . .
. . . ∗ 0 0 0 0 0

0 0 0 1n −v∗
1,2 0 0 0 0 0

0 0 0 0 1n 0 0 0 0 0

0 0 0 0 0 1n v1,2 ∗ ∗ ∗

0 0 0 0 0 0 . . .
. . . ∗ ∗

0 0 0 0 0 0 0 1n vk−2,k−1 ∗

0 0 0 0 0 0 0 0 1n y

0 0 0 0 0 0 0 0 0 1n



η. (5.5.20)

Denote above matrix as u′
0 so that η0γu0 = u′

0η. Therefore, the integral over
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N(F )\N(A) becomes
∫
N(F )\N(A)

fs(u′
0(y)ηut(1, h))ψk(u0(y))ψ(tr(2Ty))du0(y)

=
∫
U

nk (F )\U
nk (A)

fs


 v 0

0 v̂

 ηut(1, h)

ψ−1
2T (v)dv.

(5.5.21)

Here v is of the form 

1n v1,2 ∗ ∗ ∗

0 . . .
. . . ∗ ∗

0 0 1n vk−2,k−1 0

0 0 0 1n y

0 0 0 0 1n


(5.5.22)

and

ψ−1
2T (v) = ψ

(
tr(2Ty) +

k−2∑
i=1

tr(2Tvi,i+1)
)
. (5.5.23)

This completes the proof of Proposition 5.4.1.

5.6 The unramified computation

In the rest of this chapter, we study the local zeta integral corresponding to the

integral Z(ϕ, θΦ
ψ,n2 , fs) at v /∈ S. For simplicity, we omit the symbol v. Therefore,

let F be a non-archimedean local field with the ring of integers O. Fix a nontrivial

additive unramified character ψ of F and fix T0, T, χT as before where χT is a

quadratic character on F×. Let Φ0 = 1Matn(OF ) be the characteristic function of

Matn(OF ) and

f 0
W(τ⊗χT ,n,ψ2T ),s ∈ IndSp2kn(F )

Pkn(F ) (W(τv ⊗ χT , n, ψ2T )| det ·|s) (5.6.1)

the unramified section normalized such that

f 0
W(τ⊗χT ,n,ψ2T ),s(12kn) = dSp4kn

τ (s). (5.6.2)

Let (π, Vπ) be an irreducible admissible unramified representation of Sp2n(F ) with
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a fixed non-zero unramified vector v0 ∈ Vπ. Let (τ, Vτ ) be an irreducible unramified

principle series representation

τ = IndGLk(F )
BGLk

(F )(χ1 ⊗ ...⊗ χk) (5.6.3)

where χ1, ..., χk are unramified quasi-characters of F×. Hence for any positive integer

c,

∆(τ ⊗ χT , c) = IndGLck(F )
P

ck (F ) (χ1χT ◦ det ⊗...⊗ χkχT ◦ det). (5.6.4)

The aim of this section is to prove Theorem 5.4.2 utilizing the unramified local

integrals (5.3.15) from the generalized doubling method. The idea of the computation

is similar to the one in [Yan23] except when k > 2 we need to deal with bigger

matrices.

5.6.1 Relation between unramified sections

Recall that for any character ψ : Unk(F ) → C×, the model W(τ ⊗ χT , n, ψ) consists

of functions Wξ : GLkn(F ) → C of the form

Wξ(g) = Λ(∆(τ ⊗ χT , n)(g)ξ) (5.6.5)

where ξ is in the space of ∆(τ ⊗ χT , n) and Λ can be realized as

ξ 7→
∫
U

nk (F )
ξ(wk,nu)ψ−1(u)du, wk,n =



0 0 0 1n

0 0 1n 0

0 . .
. 0 0

1n 0 0 0


∈ GLkn. (5.6.6)

By abusing the notation we denote the extension of our fixed character ψ : F → C×

to Unk(F ) → C× (see (5.2.15)) also as ψ. Recall that we have also defined a character

ψ2T on Unk(F ). Given g1, ..., gk ∈ GLn(F ), we define another character ψg1,...,gk
on

Unk(F ) by

ψg1,...,gk
(u) = ψ

(
k−1∑
i=1

tr(2giTg−1
i+1ui,i+1)

)
, (5.6.7)



5.6. The unramified computation 165

with u of the form in (5.2.14). Let W g1,...,gk
ξ be the function in W(τ ⊗χT , n, ψg1,...,gk

)

corresponding to ξ ∈ ∆(τ⊗χT , n), the linear functional Λ, and the character ψg1,...,gk

as above. Then ψ2T = ψ1,...,1 and we simply denote Wξ = W 1,...,1
ξ .

Lemma 5.6.1. If Wξ is unramified then so is W g1,...,gk
ξ . More precisely,

Wξ (diag[g1, ..., gk]g)

=
∣∣∣∣∣det g1

det gk

∣∣∣∣∣
n k∏
i=1

χiχT (det gk+1−i)| det gk+1−i|
(k−2i+1)n

2 W g1,...,gk
ξ (g).

(5.6.8)

Proof. By the definition of Wξ, we have

Wξ(diag[g1, ..., gk]g)

=
∫
U

nk (F )
∆(τ ⊗ χT , n)(g)ξ (wk,nudiag[g1, ..., gk])ψ−1

2T (u)du.

Changing variables u 7→ diag[g1, .., gk]udiag[g1, ..., gk]−1, we note that ui,i+1 is changed

to giui,i+1g
−1
i+1 and the above integral equals∣∣∣∣∣det g1

det gk

∣∣∣∣∣
n ∫

U
nk (F )

∆(τ ⊗ χT , n)(g)ξ (diag[gk, ..., g1]wk,nu)ψ−1
g1,...,gk

(u)du

=
∣∣∣∣∣det g1

det gk

∣∣∣∣∣
n k∏
i=1

χiχT (det gk+1−i)| det gk+1−i|
(k−2i+1)n

2

×
∫
U

nk (F )
∆(τ ⊗ χT , n)(g)ξ (wk,nu)ψ−1

g1,...,gk
(u)du

as desired.

Corollary 5.6.2. For g1, ..., gk ∈ GLn(F ), there exists an unramified section

f 0
W(τ⊗χT ,n,ψg1,...,gk

),s ∈ IndSpkn

P2kn(F )(W(τ ⊗ χT , n, ψg1,...,gk
)| det ·|s) (5.6.9)

determined by f 0
W(τ⊗χT ,n,ψ2T ),s such that

f 0
W(τ⊗χT ,n,ψ2T ),s(m(diag[g1, ..., gk])g)

=
∣∣∣∣∣det g1

det gk

∣∣∣∣∣
n k∏
i=1

χiχT (det gk+1−i)| det gk+1−i|s+(k−i)n+ n+1
2

×f 0
W(τ⊗χT ,n,ψg1,...,gk

),s(g).

(5.6.10)
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In particular, if we take gi = (−2T )i−1 then ψg1,...,gk
= ψ−1 and we have

f 0
W(τ⊗χT ,n,ψ2T ),s(m(diag[g1, ..., gk])g) = f 0

W(τ⊗χT ,n,ψ−1),s(g). (5.6.11)

5.6.2 Reformulating the unramified integral from the

generalized doubling method

Let v0 ∈ Vπ be an unramified vector and lT any linear functional on Vπ satisfying

(5.4.13). It follows from the unramified local zeta integral (5.3.15) ([GS21, Proposi-

tion 4.8]) of the generalized doubling method that we have
∫

Sp2n(F )

∫
N0

(2n)k−1,2kn
(F )

lT (π(h)v0)f 0
W(τ,2n,ψ−1),s(δu0(1 × h))ψ−1

N(2n)k−1,2kn
(u0)du0dh

=L(s+ 1
2 , π × τ) · lT (v0).

(5.6.12)

Our strategy of proving Theorem 5.4.2 is to compare our unramified local integral

with the integral in above equation. The aim of this subsection is to reformulate

above integral in the following simpler form

∫
GLn(F )∩Matn(OF )

lT (π(m(a))v0)| det a|−2n−1λ(f 0
W(τ,2n,ψ−1),s)(m(a))da, (5.6.13)

where λ(f 0
W(τ,2n,ψ−1),s) defined in (5.6.23) is a function on Sp2n(F ). In particular, we

showed that λ(f 0
W(τ,2n,ψ−1),s) is an unramified section of IndSp2n(F )

Pn(F ) (χ1(det(·))| det ·|s+
(2k−1)n

2 )

whose value at 12n is dSp4kn
τ (s).

By the Iwasawa decomposition of Sp2n(F ), we consider
∫

GLn(F )

∫
Mat0

n(F )
lT (π(m(a))v0)ψ−1(tr(Tz))| det a|−n−1

×
∫
N0

(2n)k−1,2kn
(F )

f 0
W(τ,2n,ψ−1),s(δu0(1 × n(z)m(a)))ψ−1

N0
(2n)k−1,2kn

(u0)du0dzda.
(5.6.14)
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The integral over N0
(2n)k−1,2kn(F ) is

∫
N0

(2n)k−1,2kn
(F )

f 0
W(τ,2n,ψ−1),s(δu0δ

−1 · δ(ιn(−z) ×m(a))δ−1)ψ−1
N0

(2n)k−1,2kn

(u0)du0.

(5.6.15)

Recall that N0
(2n)k−1,2kn contains elements of the form



12n(k−2) 0 0 −a1 −a2 0 0 b1 b2 c

0 1n 0 −x1 −x2 0 0 z1 z2 b∗
2

0 0 1n −x3 −x4 0 0 z3 z∗
1 b∗

1

0 0 0 1n 0 0 0 0 0 0

0 0 0 0 1n 0 0 0 0 0

0 0 0 0 0 1n 0 x∗
4 x∗

2 a∗
2

0 0 0 0 0 0 1n x∗
3 x∗

1 a∗
1

0 0 0 0 0 0 0 1n 0 0

0 0 0 0 0 0 0 0 1n 0

0 0 0 0 0 0 0 0 0 12n(k−2)



(5.6.16)

and the character ψ−1
N0

(2n)k−1,2kn

is defined by

ψ−1
N0

(2n)k−1,2kn

(u0) = ψ(tr(x1)), (5.6.17)

for u0 as in (5.6.16). Conjugate it by δ and denote N0,δ
(2n)k−1,2kn = δN0

(2n)k−1,2knδ
−1. It

contains elements of the form
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1n 0 0 0 0 0 0 0 0 0

0 1n 0 0 0 0 0 0 0 0

0 0 1n 0 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0 0

0 0 0 0 12n(k−2) 0 0 0 0 0

a1 a2 b1 b2 c 12n(k−2) 0 0 0 0

x1 x2 z1 z2 b∗
2 0 1n 0 0 0

x3 x4 z3 z∗
1 b∗

1 0 0 1n 0 0

0 0 x∗
4 x∗

2 a∗
2 0 0 0 1n 0

0 0 x∗
3 x∗

1 a∗
1 0 0 0 0 1n



(5.6.18)

and for u as in (5.6.18) we define

ψN0,δ

(2n)k−1,2kn

(u) = ψ(tr(x1)). (5.6.19)

We rewrite integral (5.6.15) as
∫
N0,δ

(2n)k−1,2kn
(F )

ψ−1
N0,δ

(2n)k−1,2kn

(u0)

× f 0
W(τ,2n,ψ−1),s


u0



1n 0 0 0 0

0 a 0 0 0

0 0 14n(k−1) 0 0

0 0 0 â 0

0 0 0 0 1n





1n 0 0 0 0

0 1n 0 0 0

0 0 z̃ 0 0

a∗ − 1 0 0 1n 0

−z a− 1 0 0 1n




du0.

(5.6.20)

Here we denote z̃ = diag[ιn(z), ...,ι n(z),ι n(−z), ...,ι n(−z)] with ιn(z) and ιn(−z)

appearing k − 1 times respectively.
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Lemma 5.6.3. The integral (5.6.20) vanishes unless a ∈ GLn(F ) ∩ Matn(OF ).

Proof. We translate f 0
W(τ,2n,ψ−1),s on the right by



1n 0 0 0 0 0 0 0 0

0 1n 0 r 0 0 0 0 0

0 0 1n 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0

0 0 0 0 14n(k−1) 0 0 0 0

0 0 0 0 0 1n 0 −r∗ 0

0 0 0 0 0 0 1n 0 0

0 0 0 0 0 0 0 1n 0

0 0 0 0 0 0 0 0 1n


for r ∈ Matn(OF ).

Then we conjugate the above matrix to the left and change variables in u0 to obtain

the matrix 

1n 0 0 0 0 0 0 0 0

0 1n −arz ar 0 0 0 0 0

0 0 1n 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0

0 0 0 0 14n(k−1) 0 0 0 0

0 0 0 0 0 1n 0 −r∗ 0

0 0 0 0 0 0 1n (arz)∗ 0

0 0 0 0 0 0 0 1n 0

0 0 0 0 0 0 0 0 1n



.

This contributes ψ−1(tr(ar)) and the changing of variables in u0 contributes ψ−1(tr(ar)).

Hence the integral vanishes unless ψ−1(tr(2ar)) = 1 for all r ∈ Matn(OF ), which

implies a ∈ Matn(OF ).



170 Chapter 5. Integral Representations for Sp2n × GLk

The integral (5.6.14) then equals
∫

GLn(F )∩Matn(OF )

∫
Mat0

n(F )

∫
N0,δ

(2n)k−1,2kn
(F )

lT (π(m(a))v0)| det a|−n−1

×f 0
W(τ,2n,ψ−1),s


u0



1n 0 0 0 0

0 a 0 0 0

0 0 14n(k−1) 0 0

0 0 0 â 0

0 0 0 0 1n





1n 0 0 0 0

0 1n 0 0 0

0 0 z̃ 0 0

0 0 0 1n 0

−z 0 0 0 1n




×ψ−1(tr(Tz))ψ−1

N0,δ

(2n)k−1,2kn

(u0)du0dzda.

(5.6.21)

Lemma 5.6.4. The integral (5.6.21) vanishes unless z ∈ Mat0
n(OF ).

Proof. We translate f 0
W(τ,2n,ψ−1),s on the right by



1n 0 0 r 0 0 0 0 0

0 1n 0 0 0 0 0 0 0

0 0 1n 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0

0 0 0 0 14n(k−1) 0 0 0 0

0 0 0 0 0 1n 0 0 −r∗

0 0 0 0 0 0 1n 0 0

0 0 0 0 0 0 0 1n 0

0 0 0 0 0 0 0 0 1n


for r ∈ Matn(OF ).
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Conjugating it to the left and changing variables we obtain

1n 0 −rz r 0 0 0 0 0

0 1n 0 0 0 0 0 0 0

0 0 1n 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0

0 0 0 0 14n(k−1) 0 0 0 0

0 0 0 0 0 1n 0 0 −r∗

0 0 0 0 0 0 1n 0 (rz)∗

0 0 0 0 0 0 0 1n 0

0 0 0 0 0 0 0 0 1n



.

which contributes a character ψ(tr(rz)).

Then (5.6.21) becomes
∫

GLn(F )∩Matn(OF )

∫
Mat0

n(F )

∫
N0,δ

(2n)k−1,2kn
(F )

lT (π(m(a))v0)| det a|−n−1

×f 0
W(τ,2n,ψ−1),s


u0



1n 0 0 0 0

0 a 0 0 0

0 0 14n(k−1) 0 0

0 0 0 â 0

0 0 0 0 1n




ψ−1
N0,δ

(2n)k−1,2kn

(u0)du0dzda.

(5.6.22)

Now we write u0 as the form (5.6.18) in variables a1, a2, b1, b2, c, x1, x2, x3, x4, z2, z2, z3.

Lemma 5.6.5. The inner integral in (5.6.22) vanishes unless x2a ∈ Matn(OF ).

Proof. We translate f 0
W(τ,2n,ψ−1),s on the left by

diag
[
n′(ar), ..., n′(ar), n̂′(ar), ..., n̂′(ar)

]

for r ∈ Matn(OF ) with n′(ar) =

 1n 0

ar 1n

 appearing k times. This is invariant

by Proposition 5.2.4. Conjugating it to the right and making a change of variables
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we obtain a matrix in Sp2kn(OF ) and the change of variables produces a factor

ψ(tr(x2ar)).

By changing variables, we can take x2 out of the integrand. For g =

 g1 g2

g3 g4

 ∈

Sp2n(F ), we define

λ(f 0
W(τ,2n,ψ−1),s)(g) =

∫
u0
ψ(tr(x1))

× f 0
W(τ,2n,ψ−1),s


u0



1n 0 0 0 0

0 g1 0 g2 0

0 0 14n(k−1) 0 0

0 g3 0 g4 0

0 0 0 0 1n




du0

(5.6.23)

where the integral is taking over u0 ∈ N0,δ
(2n)k−1,2kn with x2 = 0. Then (5.6.22) can be

written as

∫
GLn(F )∩Matn(OF )

lT (π(m(a))v0)| det a|−2n−1λ(f 0
W(τ,2n,ψ−1),s)(m(a))da. (5.6.24)

Lemma 5.6.6. Write

τ = IndGLk(F )
BGLk

(F )(χ1 ⊗ ...⊗ χk),

for unramified quasi-characters χ1, ..., χk of F×, so that

∆(τ, 2n) = IndGL2kn(F )
P(2n)k (F )(χ1 ◦ det ⊗...⊗ χk ◦ det).

Then λ(f 0
W(τ,2n,ψ−1),s) is an unramified section of

IndSp2n(F )
Pn(F ) (χ1(det(·))| det ·|s+

(2k−1)n
2 ).

Proof. Clearly λ(f 0
W(τ,2n,ψ−1),s) is left invariant underNn(F ) and right invariant under

Sp2n(OF ). Take g = m(a) and conjugate it to the left. We obtain | det a|−n(k−1)

from the changing of variables in u0 and

χ1(det a)| det a|(k−1)n| det a|s+
2kn+1

2
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from the section f 0
W(τ,2n,ψ−1),s. Indeed, for any h ∈ Sp2kn(F ),

f 0
W(τ,2n,ψ−1),s





1n 0 0 0 0

0 a 0 0 0

0 0 14n(k−1) 0 0

0 0 0 â 0

0 0 0 0 1n


h



=| det a|s+
2kn+1

2 ∆(τ, 2n)




1n 0 0

0 a 0

0 0 12n(k−1)



 f
0
W(τ,2n,ψ−1),s(h)

=| det a|s+
2kn+1

2 | det(a)|(k−1)nχ1(det a)f 0
W(τ,2n,ψ−1),s(h).

Lemma 5.6.7. We have

λ(f 0
W(τ,2n,ψ−1),s)(12n) = dSp4kn

τ (s). (5.6.25)

Proof. We calculate

λ(f 0
W(τ,2n,ψ−1),s)(12n) =

∫
u0
ψ(tr(x1))

× f 0
W(τ,2n,ψ−1),s





1n 0 0 0 0 0 0 0 0 0

0 1n 0 0 0 0 0 0 0 0

0 0 1n 0 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0 0

0 0 0 0 12n(k−2) 0 0 0 0 0

a1 a2 b1 b2 c 12n(k−2) 0 0 0 0

x1 0 z1 z2 b∗
2 0 1n 0 0 0

x3 x4 z3 z∗
1 b∗

1 0 0 1n 0 0

0 0 x∗
4 0 a∗

2 0 0 0 1n 0

0 0 x∗
3 x∗

1 a∗
1 0 0 0 0 1n





du0

in the following five steps. The first three steps of computations are similar to the
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ones in [Yan23] for k = 2, and the last two steps are needed for k > 2.

(1) We translate f 0
W(τ,2n,ψ−1),s on the right by


1n r 0 0 0 0 0 0 0

0 1n 0 0 0 0 0 0 0

0 0 1n r 0 0 0 0 0

0 0 0 1n 0 0 0 0 0

0 0 0 0 14n(k−1) 0 0 0 0

0 0 0 0 0 1n r∗ 0 0

0 0 0 0 0 0 1n 0 0

0 0 0 0 0 0 0 1n r∗

0 0 0 0 0 0 0 0 1n


and conjugate it to the left. We get that x3 is supported in Matn(OF ).

(2) Let

g0 =



1i 0 0 0

r 1n−i 0 0

0 0 1n−i 0

0 0 −r∗ 1i


with r has entries in OF . Write

x1 =

 x11 x12

x13 x14

 , x11 ∈ Mati, x14 ∈ Matn−i.

We translate f 0
W(τ,2n,ψ−1),s on the left by diag[g0, ..., g0, ĝ0, ..., ĝ0] with k copies of g0

and conjugate it to the right. We obtain that entries of x12 are supported in OF .

Similarly, translating f 0
W(τ,2n,ψ−1),s on the right by

g0 =



1i r 0 0

0 1n−i 0 0

0 0 1n−i −r∗

0 0 0 1i
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and take 1 ≤ i ≤ n− 1, we obtain that x1 is supported in Matn(OF ).

(3) We translate f 0
W(τ,2n,ψ−1),s on the right by



1n 0 0 r 0

0 1n 0 0 r∗

0 0 14n(k−1) 0 0

0 0 0 1n 0

0 0 0 0 1n


for r ∈ Matn(OF ) and conjugate it to the left. This shows that x4 is supported in

Matn(OF ).

We conclude that in this stage we have

λ(f 0
W(τ,2n,ψ−1),s)(12n)

=
∫
u0
f 0

W(τ,2n,ψ−1),s





1n 0 0 0 0 0 0 0 0 0

0 1n 0 0 0 0 0 0 0 0

0 0 1n 0 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 0 0

0 0 0 0 12n(k−2) 0 0 0 0 0

a1 a2 b1 b2 c 12n(k−2) 0 0 0 0

0 0 z1 z2 b∗
2 0 1n 0 0 0

0 0 z3 z∗
1 b∗

1 0 0 1n 0 0

0 0 0 0 a∗
2 0 0 0 1n 0

0 0 0 0 a∗
1 0 0 0 0 1n





du0.
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We re-denote the unipotent elements in the integrand in the following form

12n 0 0 0 0 0

0 12n 0 0 0 0

0 0 12n(k−2) 0 0 0

a b c 12n(k−2) 0 0

0 z b′ 0 12n 0

0 0 a′ 0 0 12n



, a =


ak−2
...

a1

 , b =


bk−2
...

b1

 .

The following two additional steps are used to show that in the case k > 2 the

integral vanishes unless all these entries are in OF .

(4) For each i = 0, 1, ..., k − 2, we denote a matrix

gi =



12n 0 0 0 0 r 0 0

0 12ni 0 0 0 0 0 0

0 0 12n 0 0 0 0 r∗

0 0 0 12n(k−2−i) 0 0 0 0

0 0 0 0 12n(k−2−i) 0 0 0

0 0 0 0 0 12n 0 0

0 0 0 0 0 0 12ni 0

0 0 0 0 0 0 0 12n


with r ∈ Mat2n(OF ). Translating f 0

W(τ,2n,ψ−1),s on the right by g0 and conjugating

it to the left show that a1 and z are supported in Mat2n(OF ). Then translating

f 0
W(τ,2n,ψ−1),s on the right by gi for i = 1, ..., k − 3 (in this order) and conjugating it

to the left show that ai+1 and bi are supported in Mat2n(OF ). Finally translating

f 0
W(τ,2n,ψ−1),s on the right by gk−2 shows that bk−2 is supported in Mat2n(OF ).
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(5) We finally use the same process as in Step (4) to show that c ∈ Mat2n(k−2)(OF ).

For each j = 1, 2, ..., k − 2 and i = 0, 1, ..., k − 2 − j, we use the matrix

gji =



12nj 0 0 0 0 0 0 0 0 0

0 12n 0 0 0 0 r 0 0 0

0 0 12ni 0 0 0 0 0 0 0

0 0 0 12n 0 0 0 0 r∗ 0

0 0 0 0 12n(k−2−i−j) 0 0 0 0 0

0 0 0 0 0 12n(k−2−i−j) 0 0 0 0

0 0 0 0 0 0 12n 0 0 0

0 0 0 0 0 0 0 12ni 0 0

0 0 0 0 0 0 0 0 12n 0

0 0 0 0 0 0 0 0 0 12nj


with r ∈ Mat2n(OF ). For each fixed j = 1, 2, ..., k − 2 (in this order) we translate

f 0
W(τ,2n,ψ−1),s on the right by gji for i = 0, ..., k−2−j (in this order) and we conjugate

it to the left. This shows that the entries of the j-th column (viewed in 2n × 2n

blocks) of c are supported in OF and thus c is supported in Mat2n(k−2)(OF ).

Therefore, we conclude that

λ(f 0
W(τ,2n,ψ−1),s)(12n) = f 0

W(τ,2n,ψ−1),s(14kn) = dSp4kn
τ (s)

as desired.
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5.6.3 Proof of Theorem 5.4.2

Recall that

Z∗(lT , s) =
∫
Nn(F )\Sp2n(F )

∫
N0

nk−1,kn
(F )

lT (π(h)v0)

× ωψ(αkT (u)iT (1, h))Φ0(1n)f 0
W(τ⊗χT ,n,ψ2T ),s(ηut(1, h))dudh.

(5.6.26)

To finish the proof of Theorem 5.4.2, it suffices to show that

Z∗(lT , s)

=
∫

GLn(F )∩Matn(OF )
lT (π(m(a))v0)| det a|−2n−1λ(f 0

W(τ,2n,ψ−1),s)(m(a))da.
(5.6.27)

We will show that our integral (5.6.26) can be written in the simpler form

∫
GLn(F )∩Matn(OF )

lT (π(m(a))v0)χT (det a)| det a|−
3
2n−1λ(f 0

W(τ⊗χT ,n,ψ−1),s)(m(a))da,

(5.6.28)

where λ(f 0
W(τ⊗χT ,n,ψ−1),s) defined in (5.6.37) is a function on Spn(F ). In particular, we

show that λ(f 0
W(τ⊗χT ,n,ψ−1),s) is an unramified section of IndSp2n(F )

Pn(F ) (χ1χT (det ·)| det ·|s+n)

whose value at 12n is dSp4kn
τ (s). Then two equations (5.6.26) and (5.6.27) can be com-

pared by comparing two unramified sections λ(f 0
W(τ,2n,ψ−1),s) and λ(f 0

W(τ⊗χT ,n,ψ−1),s).

By the Iwasawa decomposition decomposition of Sp2n(F ), we have

Z∗(lT , s) =
∫

GLn(F )

∫
N0

nk−1,kn
(F )

lT (π(m(a))v0)

× ωψ(αkT (u)iT (1,m(a)))Φ0(1n)

× f 0
W(τ⊗χT ,n,ψ2T ),s(ηut(1,m(a)))| det a|−n−1duda.

(5.6.29)

Changing variables u 7→ t(1,m(a))ut(1,m(a)) and using the formulas of the Weil

representation, we obtain that Z∗(lT , s) is equal to
∫

GLn(F )

∫
N0

nk−1,kn
(F )

lT (π(m(a))v0)χT (det a)| det a|−
3n
2 −1

×ωψ(αkT (u))Φ0(a)f 0
W(τ⊗χT ,n,ψ2T ),s(ηt(1,m(a))u)duda.

(5.6.30)

We write u = u(x, 0, z) as in (5.2.4) and (5.2.5). Then the inner integral over
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N0
nk−1,kn(F ) in (5.6.30) is
∫
N0

nk−1,kn
(F )

ψ(tr(Tz))Φ0(a+ x)f 0
W(τ⊗χT ,n,ψ2T ),s(ηt(1,m(a))u(x, 0, z))du

=
∫
N0

nk−1,kn
(F )

ψ(tr(Tz))Φ0(x)f 0
W(τ⊗χT ,n,ψ2T ),s(ηt(1,m(a))u(x− a, 0, z))du

=
∫
N0

nk−1,kn
(F )

ψ(tr(Tz))f 0
W(τ⊗χT ,n,ψ2T ),s(ηt(1,m(a))u(−a, 0, z))du.

(5.6.31)

Thus integral (5.6.30) becomes
∫

GLn(F )

∫
N0,a

nk−1,kn
(F )

lT (π(m(a))v0)χT (det a)| det a|−
3n
2 −1

×f 0
W(τ⊗χT ,n,ψ2T ),s(ηt(1,m(a))u(−a, 0, z))ψ(tr(Tz))duda.

(5.6.32)

Here, N0,a
nk−1,kn(F ) is the subgroup of N0

nk−1,kn(F ) containing elements of the form


1(k−2)n 0 −b 0 −c d

0 1n −a 0 z c∗

0 0 1n 0 0 0

0 0 0 1n a∗ b∗

0 0 0 0 1n 0

0 0 0 0 0 1n



. (5.6.33)

With u ∈ N0,a
nk−1,kn(F ) of the above form, we write (5.6.32) as

∫
GLn(F )

∫
N0,a

nk−1,kn
(F )

lT (π(m(a))v0)χT (det a)| det a|−
3n
2 −1ψ−1(tr(Tz))

×f 0
W(τ⊗χT ,n,ψ2T ),s




a 0 0

0 12n(k−1) 0

0 0 â





1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 1(k−2)n 0 0 0

b c d 1(k−2)n 0 0

−a z c∗ 0 1n 0

0 −a∗ b∗ 0 0 1n





duda.

(5.6.34)
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Applying Corollary 5.6.2 we see that the above integral is equal to∫
GLn(F )

∫
N0,a

nk−1,kn
(F )

lT (π(m(a))v0)χT (det a)| det a|−
3n
2 −1ψ−1(tr(4T 2z))

×f 0
W(τ⊗χT ,n,ψ−1),s




a 0 0

0 12n(k−1) 0

0 0 â





1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 1(k−2)n 0 0 0

b c d 1(k−2)n 0 0

−a z c∗ 0 1n 0

0 −a∗ b∗ 0 0 1n





duda.

(5.6.35)

Lemma 5.6.8. The above inner integral vanishes unless a ∈ Matn(OF ).

Proof. Translate f 0
W(τ⊗χT ,n,ψ−1),s by u0(r, 0, 0) for r ∈ Matn(OF ) on the right and

conjugate it to the left.

Using the above lemma, the integral (5.6.32) becomes
∫

GLn(F )∩Matn(OF )

∫
b,c,d,z

lT (π(m(a))v0)χT (det a)| det a|−
3n
2 −1ψ−1(tr(4T 2z))

×f 0
W(τ⊗χT ,n,ψ−1),s





1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 1(k−2)n 0 0 0

b c d 1(k−2)n 0 0

0 z c∗ 0 1n 0

0 0 b∗ 0 0 1n




a 0 0

0 12n(k−1) 0

0 0 â





duda.

(5.6.36)
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For g =

 g1 g2

g3 g4

 ∈ Sp2n(F ), we define

λ(f 0
W(τ⊗χT ,n,ψ−1),s)(g) =

∫
b,c,d,z

ψ−1(tr(4T 2z))×

f 0
W(τ⊗χT ,n,ψ−1),s





1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 1(k−2)n 0 0 0

b c d 1(k−2)n 0 0

0 z c∗ 0 1n 0

0 0 b∗ 0 0 1n




g1 0 g2

0 12n(k−1) 0

g3 0 g4





du.

(5.6.37)

We can further write (5.6.32) as
∫

GLn(F )∩Matn(OF )
lT (π(m(a))v0)χT (det a)| det a|−

3
2n−1

×λ(f 0
W(τ⊗χT ,n,ψ−1),s)(m(a))da.

(5.6.38)

Lemma 5.6.9. Write

τ = IndGLk(F )
BGLk

(F )(χ1 ⊗ ...⊗ χk),

for unramified quasi-characters χ1, ..., χk of F×, so that

∆(τ ⊗ χT , n) = IndGLkn(F )
P

nk (F ) (χ1χT ◦ det ⊗...⊗ χkχT ◦ det).

Then λ(f 0
W(τ⊗χT ,n,ψ−1),s) is an unramified section of

IndSp2n(F )
Pn(F ) (χ1χT (det(·))| det ·|s+n).
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Proof. The proof is similar to the one of Lemma 5.6.6. Clearly λ(f 0
W(τ⊗χT ,n,ψ−1),s) is

left invariant under Nn(F ) and right invariant under Sp2n(OF ). Take g = m(a) and

conjugate it to the left. We obtain | det a|−n(k−2) from the change of variables in u

and

χ1χT (det a)| det a|
(k−1)n

2 | det a|s+
kn+1

2

from the section f 0
W(τ⊗χT ,n,ψ−1),s. Indeed, for any h ∈ Spkn(F )

f 0
W(τ⊗χT ,n,ψ−1),s




a 0 0

0 12n(k−1) 0

0 0 â

h


=| det a|s+
kn+1

2 ∆(τ ⊗ χT , n)


 a 0

0 1n(k−1)


 f 0

W(τ⊗χT ,n,ψ−1),s(h)

=| det a|s+
kn+1

2 | det a|
(k−1)n

2 χ1χT (det a)f 0
W(τ⊗χT ,n,ψ−1),s(h).

Moreover, we have the following.

Lemma 5.6.10.

λ(f 0
W(τ⊗χT ,n,ψ−1),s)(12n) = dSp4kn

τ (s). (5.6.39)

Proof. We need to calculate

λ(f 0
W(τ⊗χT ,n,ψ−1),s)(g) =

∫
b,c,d,z

ψ−1(tr(4T 2z))×

f 0
W(τ⊗χT ,n,ψ−1),s





1n 0 0 0 0 0

0 1n 0 0 0 0

0 0 1(k−2)n 0 0 0

b c d 1(k−2)n 0 0

0 z c∗ 0 1n 0

0 0 b∗ 0 0 1n





du.

By the same argument as Steps (4-5) in the proof of Lemma 5.6.7 we can show

that the integral vanishes unless all entries of b, c, d, z are in OF . Indeed, for each
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j = 0, 1, 2, ..., k − 2 and i = 0, 1, ..., k − 2 − j, consider the matrix

gji =



1nj 0 0 0 0 0 0 0 0 0

0 1n 0 0 0 0 r 0 0 0

0 0 1ni 0 0 0 0 0 0 0

0 0 0 1n 0 0 0 0 r∗ 0

0 0 0 0 1n(k−2−i−j) 0 0 0 0 0

0 0 0 0 0 1n(k−2−i−j) 0 0 0 0

0 0 0 0 0 0 1n 0 0 0

0 0 0 0 0 0 0 1ni 0 0

0 0 0 0 0 0 0 0 1n 0

0 0 0 0 0 0 0 0 0 1nj


with r ∈ Matn(OF ). For each fixed j = 0, 1, 2, ..., k − 2 (in this order) we translate

f 0
W(τ⊗χT ,n,ψ−1),s on the right by gji for i = 0, ..., k−2−j (in this order) and conjugate

it to the left. This gives the desired result and hence

λ(f 0
W(τ⊗χT ,n,ψ−1),s)(12n) = f 0

W(τ⊗χT ,n,ψ−1),s(12kn) = dSp4kn
τ (s).
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We now conclude our computations as follows. Comparing Lemma (5.6.6) with

Lemma (5.6.9) we have

λ(f 0
W(τ⊗χT ,n,ψ−1),s)(m(a)) = | det a|−

n
2χT (det a)λ(f 0

W(τ,2n,ψ−1),s)(m(a)). (5.6.40)

Comparing (5.6.22) with (5.6.38) we have

Z∗(lT , s)

=
∫

GLn(F )∩Matn(OF )
lT (π(m(a))v0)χT (det a)| det a|−

3
2n−1

× λ(f 0
W(τ⊗χT ,n,ψ−1),s)(m(a))da

=
∫

GLn(F )∩Matn(OF )
lT (π(m(a))v0)| det a|−2n−1

× λ(f 0
W(τ,2n,ψ−1),s)(m(a))da

=L(s+ 1
2 , π × τ) · lT (v0).

(5.6.41)

This completes the proof of Theorem 5.4.2.



Appendix A

L-function for Maass Forms on

General Linear Groups

In this appendix, we study the L-function for general linear groups which is not

covered in previous chapters. For a cuspidal automorphic representation of GLn, its

L-function can be defined via an integral representation constructed by Godement

and Jacquet in [GJ72; Jac79]. See also [GH11; GJ21] for a summary. A Rankin-

Selberg type integral representation for GLn × GLm is also provided in [Cog04].

We restrict ourselves to Maass forms (defined in Definition A.1.1 and Definition

A.1.3 following [Gol15; GH11]) and we define the L-function more classically as a

Dirichlet series of Hecke eigenvalues (1.1.17). The aim of this appendix (Theorem

A.2.2) is to present an integral representation of a certain L-function via the doubling

method following [Haz22] and [PR87]. The unfolding of the global integral (1.2.9)

and the unramified computations are already done in [Haz22]. Our contribution

in this appendix is to make the choice of each local section of the Eisenstein series

and calculate the local integrals explicitly at all places (including ramified and

archimedean cases). In particular, our choice of local sections is related to the

Godement-Jacquet construction as in [PR87, Proposition 3.2] and is also inspired

by [Hum21; Lin18].
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A.1 Maass forms on general linear groups

We fix the following general notations throughout the appendix. For an associative

ring R with identity, denote by Matm,n(R) the R-module of all m × n matrices

with entries in R. Set Matn(R) = Matn,n(R) and GLn(R) = Matn(R)×. For

x ∈ Matm,n(R), denote tx for its transpose. Denote by 1n and 0n, or even 1 and 0 if

their sizes are clear from the context, for the identity and zero matrix in Matn(R).

We fix our base field to be Q and denote A to be the adele ring. For a place v,

either corresponding to a prime p or the archimedean place ∞, denote Qv to be

the localization and write Zp for the ring of integers of Qp. Write A = Af · R

with Af the ring of finite adeles. For a general linear group GLn, we mean a Q-

algebraic group whose R-points is GLn(R) for any Q-algebra R. We also write SLn

for the special linear group containing elements of GLn of determinant one and

PGLn is the projective linear group defined by GLn modulo its center Zn. Denote

On := {g ∈ GLn : tgg = 1n} for the orthogonal group.

A.1.1 Definition of Maass forms

We start by reviewing the definition of Maass forms on GLn, both classically and

adelically, following [Gol15] and [GH11]. In [Gol15], the Fourier expansions, Hecke

operators and L-functions are studied for Maass forms of full level. We will consider

the Maass forms with any level. For more general automorphic forms of GLn, the

reader can refer to [GH11].

We shall always assume n ≥ 2. The generalized upper half plane is defined to be

hn = {z = x · y ∈ Matn(R)}, (1.1.1)
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where x, y are of the form

x =



1 x1,2 x1,3 · · · x1,n

0 1 x2,3 · · · x2,n

0 0 . . .
...

0 0 0 1 xn−1,n

0 0 0 0 1


, y =



y1y2...yn−1 0 0 0 0

0 y1y2...yn−2 0 0 0

0 0 . . . 0 0

0 0 0 y1 0

0 0 0 0 1


,

with xi,j ∈ R for 1 ≤ i < j ≤ n and 0 < yi ∈ R for 1 ≤ i ≤ n− 1. The left invariant

measure on hn is given by

dz = dx · dy,

dx =
∏

1≤i<j≤n
dxi,j, dy =

n−1∏
i=1

y
−i(n−i)−1
i dyi.

(1.1.2)

By the Iwasawa decomposition, every element g ∈ GLn(R) can be written as g =

g̃ · d · k with g̃ ∈ hn, k ∈ On(R) and d ∈ Zn(R). Take g ∈ GLn(R) and z ∈ hn, we

have gz = g̃z · κ(g, z) · d for uniquely determined g̃z and κ(g, z) ∈ On(R), d ∈ Zn(R).

We then define the action of g ∈ GLn(R) on z ∈ hn by setting g.z := g̃z.

Denote gn = gln(C) and U(gn) the universal enveloping algebra of gn which is

identified with the space of invariant differential operators as in [Gol15, Chapter

2]. Denote Z(U(gn)) for the center of the universal enveloping algebra. For ν =

(ν1, ..., νn−1) ∈ Cn−1, we define a function Iν : hn → C by

Iν(z) =
n−1∏
i=1

n−1∏
j=1

y
bijνj

i , bij =


ij i+ j ≤ n,

(n− i)(n− j) i+ j > n.
(1.1.3)

These are eigenfunctions for all invariant differential operators D ∈ Z(U(gn)) ([Gol15,

Section 2.4]). The type ν Harish-Chandra character

λν : Z(U(g)) → C (1.1.4)

is defined such that DIν = λν(D)Iν .
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For a fixed positive integer n, we define a congruence subgroup

Γ0(n) =


 A B

C d

 ∈ SLn(Z) :
A ∈ Matn−1(Z) B ∈ Matn−1,1(Z)

C ∈ Mat1,n−1(nZ) d ∈ Z

 . (1.1.5)

Definition A.1.1. Fix a positive integer n and ν = (ν1, ..., νn−1) ∈ Cn−1. A Maass

form of level n, type ν, is a smooth function f : hn → C satisfying:

(1) f(γz) = f(z) for all γ ∈ Γ0(n) and z ∈ hn,

(2) Df = λνf for all D ∈ Z(U(gn)),

(3) f is of moderate growth in the sense of [GH11, Definition 12.3.10],

(4)
∫

Γ0(n)\hn |f(z)|2dz < ∞.

We further call f a (Maass) cusp form if

∫
(Γ0(n)∩U(R))\U(R)

f(uz)du = 0, for any z ∈ hn (1.1.6)

for any unipotent radical U of any proper parabolic subgroup P of GLn. We denote

the space of Maass forms as Mν(n) and the subspace of cusp forms by Sν(n).

Remark A.1.2. We note that in most works, including [Gol15], the term ‘Maass

form’ actually means the Maass cusp form defined above.

We now rephrase the definition of Maass forms in the adelic language. For a fixed

positive integer n = ∏
p p

np , we define an open compact subgroup K0(n) ⊂ GLn(Af)

as an adelic analogue of Γ0(n) as follows.

K0(n) =
∏
p

Kp(pnp),

Kp(pnp) = GLn(Zp) ∩

 Matn−1(Zp) Matn−1,1(Zp)

Mat1,n−1(pnpZp) Z×
p

 .
(1.1.7)

Recall that by the strong approximation of GLn, we have

GLn(A) = GLn(Q) ·K0(n) · GLn(R). (1.1.8)

Definition A.1.3. Fix a positive integer n and ν = (ν1, ..., νn−1) ∈ Cn−1. An

(adelic) Maass form of level n, type ν is a smooth function f : GLn(A) → C
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such that f(z) := f(g∞) ∈ Mν(n) is a Maass form defined in Definition A.1.1 for

z = g∞.1 ∈ hn. Here, for g ∈ GLn(A), we write g = gf · g∞ with gf ∈ GLn(Af) and

g∞ ∈ GLn(R). In particular,

f(γgkk∞) = f(g) (1.1.9)

for any g ∈ GLn(A) and γ ∈ GLn(Q), k ∈ K0(n), k∞ ∈ On(R). We further call f a

(Maass) cusp form if ∫
U(Q)\U(A)

f(ug)du = 0 (1.1.10)

for any unipotent radical U of any proper parabolic subgroup P of GLn. We denote

the space of such automorphic forms as Mν(n) and the subspace of cusp forms by

Sν(n).

From the above definition, we have a map Mν(n) → Mν(n),f 7→ f . Conversely, for

f ∈ Mν(n) we define its adelic lift

f(g) := f(g∞.1) (1.1.11)

for g = γg∞k with γ ∈ GLn(Q), g∞ ∈ GLn(R), k ∈ K0(n). One checks that there

are bijections

Mν(n) ∼= Mν(n), Sν(n) ∼= Sν(n), f ↔ f. (1.1.12)

A.1.2 Hecke operators and L-functions

We are now going to define the action of Hecke operators on Maass forms and the

L-function for Maass forms. For positive integers e1 ≥ ... ≥ en ≥ 0, we consider the

double coset

Kp
e1,...,en

= Kp(pnp)



pe1

pe2

. . .

pen


Kp(pnp). (1.1.13)
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We always take en = 0 if p|n. We denote [Kp
e1,...,en

] to be the Hecke operator associated

to the double coset Kp
e1,...,en

whose action on f ∈ Mν(n) is given by

f |[Kp
e1,...,en

](g) :=
∫
Kp

e1,...,en

f(gk)dk

=
∑

k∈Kp
e1,...,en/Kp(pnp )

f(gk).
(1.1.14)

where the measure dk is normalized such that Kp(pnp) has volume 1. We call f

an eigenform if it is an eigenfunction under the action of all these Hecke operators

[Kp
e1,...,en

]. That is

f |[Kp
e1,...,en

] = λ(f ;Kp
e1,...,en

)f (1.1.15)

for some λ(f ;Kp
e1,...,en

) ∈ C×.

Let 0 ̸= f ∈ Sν(n) be an eigenform. We always assume f is normalized such that

λ(f ;Kp
0,...,0) = 1. For a positive integer m = ∏

p p
mp , define the Hecke operator

T (m) =
∏
p|m

∑
e1≥...≥en≥0
e1+...+en=mp

en=0 if p|n

[Kp
e1,...,en

], (1.1.16)

and denote the eigenvalue of f associated to T (m) by λ(m). We define the L-function

as the Dirichlet series of these eigenvalues, generalizing the classical definition of

L-function for modular forms on GL2. That is, for an eigenform f , we define

L(s,f) =
∑
m≥0

λ(m)m−s, (1.1.17)

which has an Euler product expression

L(s,f) =
∏
p

Lp(s,f),

Lp(s,f) =
∑

e1≥...≥en≥0
λ(f ;Kp

e1,...,en
)p−(e1+...+en)s.

(1.1.18)
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A.2 The doubling method and the integral

representation

In this section, we review the doubling method for GLn following [Haz22] (see also

[PR87, Section 3]). We choose the local sections of the Eisenstein series and calculate

the local integrals explicitly at all places.

A.2.1 The global integral and the main theorem

We closely follow the notations in [Haz22]. For two positive integers m,n, write

Pm,n ⊂ GLm+n be the parabolic subgroup containing elements of the form

q =

 Aq Bq

0 Dq

 with Aq ∈ GLm, Dq ∈ GLn. (1.2.1)

Denote Um,n be the unipotent radical of Pm,n. Let δPm,n be the modulus character

of Pm,n(A) defined by

δPm,n (q) = | detAq|n| detDq|−m (1.2.2)

for q ∈ Pm,n(A) written in the form (1.2.1).

We define a doubling embedding

τ : GLn × GLn → GLn2 , (g1, g2) 7→ g1 ⊗ g2, (1.2.3)

where for A = (aij) ∈ Matn and B = (bij) ∈ Matn, we write A⊗B for the Kronecker

product defined by

A⊗B =


a11B · · · a1nB

· · · · · · · · ·

an1B · · · annB

 ∈ Matnn. (1.2.4)

Fix a positive integer n = ∏
p|n p

np and let f ∈ Sν(n) be an eigenform on GLn. Let
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fs be a smooth section of the normalized parabolic induction

IndGLn2 (A)
Pn2−1,1(A)δ

s− 1
2

Pn2−1,1
. (1.2.5)

In particular,

fs(qh) =
(
| det q||Dq|−n

2)s
fs(h), (1.2.6)

for q ∈ Pn2−1,1(A) written as in (1.2.1) and h ∈ GLn2(A). We form the Eisenstein

series on GLn2(A) associated to fs by

E(h; fs) =
∑

γ∈Pn2−1,1(Q)\GLn2 (Q)
fs(γh). (1.2.7)

Let

wn =


0 0 1

0 . .
. 0

1 0 0

 ∈ GLn(Q), (1.2.8)

be a Weyl element. For an element g ∈ GLn, we denote g∗ = wn
tg−1wn. The global

integral considered in this appendix is

Z(g1; f , fs) =
∫

(Zn(A)GLn(Q))\GLn(A)
f(g2)E(τ(g∗

1, g2wn); fs)dg2, (1.2.9)

for any g1 ∈ GLn(A).

The following proposition follows from the main theorem of [Haz22] (see also [PR87,

Section 9]).

Proposition A.2.1. The global integral (1.2.9) unfolds to

Z(g1; f , fs) =
∫

PGLn(A)
f(g1g2)fs(δ · τ(1, g2wn))dg2, (1.2.10)

which converges absolutely for Re(s) sufficiently large and has a meromorphic con-

tinuation to C. Here

δ =


1n−1 0 0

0 0 1(n−1)n

0 1 e

 , e =
[
en−1 en−2 · · · e1

]
, (1.2.11)
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where, for 1 ≤ j ≤ n − 1, ej are row vectors with 1 in the j-th entry and zero

elsewhere.

The aim of this section is to calculate the integral (1.2.10) explicitly for a specific

section fs which we are going to describe. We call this section the Godement-

Jacquet section, due to its relation with the Godement-Jacquet L-function as in

[PR87, Proposition 3.2].

We identify Matn as a free module of rank n2. A basis of Matn can be chosen as

{ejk}1≤j≤n
1≤k≤n

where ejk is the n× n matrix with 1 on the (j, k)-entry and 0 elsewhere.

We label this basis as {ϵi} for 1 ≤ i ≤ n2 such that ϵn(j−1)+k = ejk. Then the (right)

action of GLn2 on Matn can be described via this basis. In particular, for x ∈ Matn

and g1, g2 ∈ GLn, the action of τ(g1, g2) on x is given by x.τ(g1, g2) = tg1 · x · g2.

Let x0 =

 0n−1,n−1 0

0 1

 so that the parabolic subgroup Pn2−1,1 ⊂ GLn2 is the

subgroup fixing the one-dimensional submodule generated by x0. Also note that, for

δ as in (1.2.11), we have x0.δ = wn. For a Bruhat-Schwartz function Φ ∈ S(Matn(A))

and h ∈ GLn2(A), we define a section

fΦ
s ∈ IndGLn2 (A)

Pn2−1,1(A)δ
s
Pn2−1,1

, (1.2.12)

by setting

fΦ
s (h) = | deth|s

∫
A×

Φ(a · x0.h)|a|n2sda. (1.2.13)

One checks that for q ∈ Pn2−1,1(A) written as the form in (1.2.1), we have

fΦ
s (qh) = | det qh|s

∫
A×

Φ(aDq · x0.h)|a|n2sda

= | det qh|s
∫
A×

Φ(a · x0.h)|aD−1
q |n2sda

= | det q|s|Dq|−n
2sfΦ

s (h; s).

The global integral is related to the Godement-Jacquet construction in [PR87, Propos-

ition 3.2] when one takes the section of the Eisenstein series as fΦ
s . Our contribution

in this appendix is to make an explicit choice of the Bruhat-Schwartz Φ and to
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calculate the local integrals at all places. In particular, our computations cover the

ramified and archimedean cases.

We take the Bruhat-Schwartz function Φ to be

Φ =
∏
p∤n

Φ0
p ·
∏
p|n

Φ†
p · Φ∞, (1.2.14)

with Φ0
p,Φ†

p,Φ∞ defined in (1.2.17), (1.2.21) and (1.2.26). Combining the local

computations in Proposition A.2.3, A.2.4 and A.2.5, we state our main theorem of

the appendix in the following.

Theorem A.2.2. Let f ∈ Sν(n) be an eigenform on GLn. Take the section

fΦ
s =

∏
p∤n
f 0
s,p ·

∏
p|n
f †
s,p · fs,∞ (1.2.15)

be the Godement-Jacquet section associated to Φ as in (1.2.14) with f 0
s,p, f

†
s,p, fs,∞

defined in (1.2.18), (1.2.23), (1.2.27). Then, for any g1 ∈ GLn(A),

Z(g1; f , fΦ
s ) =

∏n−1
i=1 Γ

(
ns−i

2

)
2n−1π

n(n−1)(s− 1
2)

2

· L(ns,f)f(g1). (1.2.16)

A.2.2 Unramified nonarchimedean local integrals

Let p be a prime number such that p ∤ n. Define

Φ0
p(x) =


1 x ∈ Matn(Zp),

0 x /∈ Matn(Zp),
(1.2.17)

and denote

f 0
s,p(h) = | deth|s

∫
Q×

p

Φ0
p(a · x0.h)|a|n2sda, x0 =

 0n−1,n−1 0

0 1

 , (1.2.18)

for the associated local section. Note that

f 0
s,p(1) =

∫
Q×

p

Φ0
p(ax0)|a|n2sda =

∞∑
i=0

p−in2s = ζp(n2s),
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where ζp(s) = (1 − p−s)−1 is the local Euler factor of the Riemann zeta function.

That is, f 0
s,p is the local section such that

f 0
s,p(qk) =

(
| det q|| detDq|−n

2)s
ζp(n2s), (1.2.19)

for q ∈ Pn2−1,1(Qp) written in the form (1.2.1) and k ∈ GLn(Zp).

Proposition A.2.3. Let p be a prime number such that p ∤ n and f 0
s,p the local

section defined as in (1.2.18). Then, for any g0 ∈ GLn(A), we have

∫
PGLn(Qp)

f(g0g)f 0
s,p(δ · τ(1, g))dg = Lp(ns,f)f(g0). (1.2.20)

Proof. By the Cartan decomposition, we can write

PGLn(Qp) =
∐

e1≥...≥en−1≥0
Kp
e1,...,en−1,0,

where Kp
e1,...,en

is the double coset in (1.1.13).

Then ∫
PGLn(Qp)

f(g0g)f 0
s,p(δ · τ(1, g))dg

=
∑

e1≥...≥en−1≥0

∫
Kp

e1,...,en−1,0

f(g0g)f 0
s,p(δ · τ(1, g))dg

=
∑

e1≥...≥en−1≥0

∫
Kp

e1,...,en−1,0

f(g0g)p−n(e1+...+en−1)sζp(n2s)dg.

Note that by (1.1.18) and the definition of Hecke operators,

Lp(s,f) =
∑

e1≥...≥en≥0
λ(f ;Ke1,...,en)p−(e1+...+en)s

=
∑

e1≥...≥en≥0
λ(f ;Ke1−en,...,en−1−en,0)p−(e1+...+en)s

=
∑
en≥0

p−nens ·
∑

e1≥...≥en−1≥0
λ(f ;Ke1,...,en−1,0)p−(e1+...+en−1)s.

The proposition then follows by comparing above two expressions.
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A.2.3 Ramified nonarchimedean local integrals

Let p be a prime number such that p|n. Define

Φ†
p(x) =


1 x ∈ Matn(Zp), x1,1 ∈ Z×

p , x1,2, ..., x1,n ∈ pnpZp,

0 otherwise ,
(1.2.21)

where we write

x =


x1,1 · · · x1,n

· · · · · · · · ·

xn,1 · · · xn,n

 ∈ Matn(Qp). (1.2.22)

Denote

f †
s,p(h) = | deth|s

∫
Q×

p

Φ†
p(a · x0.h)|a|n2sda. (1.2.23)

for the associated local section. Denote the last row of h ∈ GLn2(Qp) be
[
h1 · · · hn2

]
.

Then f †
s,p(h) ̸= 0 unless

h1 ∈ Q×
p , and

h−1
1 h2, ..., h

−1
1 hn ∈ pnpZp, and

h−1
1 hn+1, ..., h

−1
1 hn2 ∈ Zp.

Hence, f †
s,p is the local section supported on Pn2−1,1(Qp)wn2Nn−1 with

f †
s,p(qwn2u) =

(
| det q|| detDq|−n

2)s
, (1.2.24)

for q ∈ Pn2−1,1(Qp) and u ∈ Nn−1. Here, Nn−1 ⊂ U1,n2−1(Zp) is a subgroup consisting

of elements of the form

1 u1 · · · un2−1

1
. . .

1


,

u1, ..., un−1 ∈ pnpZp,

un, ..., un2−1 ∈ Zp
.

Proposition A.2.4. Let p be a prime number such that p|n and f †
s,p the local section
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defined as in (1.2.23). Then, for any g0 ∈ GLn(A), we have

∫
PGLn(Qp)

f(g0g)f †
s,p(δ · τ(1, gwn))dg = Lp(ns,f)f(g0). (1.2.25)

Proof. For g ∈ PGLn(Qp), we write

g =


g1,1 · · · g1,n

· · · · · · · · ·

gn,1 · · · gn,n

 .

Then the last row of δ · τ(1, gwn) is

[
gn,n · · · gn,1 gn−1,n · · · gn−1,1 · · · g1,n · · · g1,1

]
.

As g is an element in PGLn(Qp), we may take gn,n = 1. Then f †
s,p(δ · τ(1, gwn)) ̸= 0

unless
gi,j ∈ Zp for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n,

gn,j ∈ pnpZp for 1 ≤ j ≤ n− 1.

These conditions are equivalent to g ∈ Ke1,...,en−1,0 and for such g we have

f †
s,p(δ · τ(1, gwn)) = p−ns(e1+...+en−1).

Therefore, ∫
PGLn(Qp)

f(g0g)f †
s,p(δ · τ(1, gwn))dg

=
∑

e1≥...≥en−1≥0

∫
Ke1,...,en−1,0

f(g0g)dg · p−ns(e1+...+en−1)

=
∑

e1≥...≥en−1≥0
λ(f ;Ke1,...,en−1,0)p−ns(e1+...+en−1)f(g0)

=Lp(ns,f)f(g0).

A.2.4 Archimedean local integrals

Define

Φ∞(x) = e−πtr( txx), (1.2.26)
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and

fs,∞(h) = | deth|s
∫
R×

Φ∞(a · x0.h)|a|n2sda, (1.2.27)

for the associated local section. Note that

fs,∞(1) =
∫
R×
e−πa2|a|n2sda = π− n2s

2 Γ
(
n2s

2

)
.

Thus fs,∞ is the local section such that

fs,∞(qk) = π− n2s
2 Γ

(
n2s

2

)
·
(
| det q|| detDq|−n

2)s (1.2.28)

for q ∈ Pn−1,1(R) written as the form of (1.2.1) and k ∈ On2(R).

Proposition A.2.5. Let fs,∞ be the local section defined as in (1.2.27). Then for

any g0 ∈ GLn(A), we have

∫
PGLn(R)

f(g0g)fs,∞(δ · τ(1, g))dg =
∏n−1
i=1 Γ

(
ns−i

2

)
2n−1π

n(n−1)(s− 1
2)

2

· f(g0). (1.2.29)

Proof. Using the Iwasawa decomposition and the definition of fs,∞, we have
∫

PGLn(R)
f(g0g)fs,∞(δ · τ(1, g))dg

=
∫

PGLn(R)
f(g0g)| det g|ns

∫
R×

Φ∞(awnz)|a|n2sdadz

=
∫

GLn(R)
f(g0g)| det g|nse−πtr( tgg)dg.

By [Shi00, Theorem A2.2], above integral equals

∫
hn

| det z|nse−πtr( tzz)dz · f(g0).

Write z = x · y as in (1.1.1), we need to calculate

∫
hn
e−
∑n−1

j=1 π(y1...yn−j)2(1+
∑j−1

i=1 x
2
i,j) (yn−1

1 yn−2
2 ...yn−1

)ns
dxdy.

Note that ∫ ∞

−∞
e−π(y1...yn−j)2x2

i,jdxi,j = (y1...yn−j)−1.
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The integrals over all xi,j contribute

n−1∏
j=1

(y1...yn−j)1−j =
n−1∏
i=1

y
(1−n+i)(n−i)

2
i .

It remains to calculate

∫
yi∈R>0

e−
∑n−1

j=1 π(y1...yn−j)2
n−1∏
i=1

y
(n−i)(2ns−n−i+1)

2 −1
i dyi.

Note that for 1 ≤ i ≤ n− 1 and ci ∈ C,

∫ ∞

0
e−π(y1...yi−1)2y2

i yci
i dyi = 1

2π
ci+1

2 (y1...yi−1)ci+1
Γ
(
ci
2 + 1

)
.

Our integral equals
1

2n−1π
c1+...+cn−1+n−1

2

n−1∏
i=1

Γ
(
ci + 1

2

)
,

where cn−1 = ns− n and

ci = (n− i)(2ns− n− i+ 1)
2 − 1 − (ci+1 + 1) − ...− (cn−1 + 1).

It is not difficult to calculate that ci = ns− i− 1 and the proposition follows.
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