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Abstract

Artificial Intelligence (AI) has advanced significantly in recent years, transforming
various industries and domains. Its ability to extract patterns and insights from large
volumes of data has revolutionised areas such as image recognition, natural language
processing, and autonomous systems. As AI systems become increasingly integrated
into daily human life, there is a growing need for meaningful collaboration and
mutual engagement between humans and AI, known as Human-AI Collaboration.
This collaboration involves combining AI with human workflows to achieve shared
objectives.

In the current educational landscape, the integration of AI methods in Technol-
ogy Enhanced Learning (TEL) has become crucial for providing high-quality edu-
cation and facilitating lifelong learning. Human-AI Collaboration also plays a vital
role in the field of Technology Enhanced Learning (TEL), particularly in Intelligent
Tutoring Systems (ITS). The COVID-19 pandemic has further emphasised the need
for effective educational technologies to support remote learning and bridge the gap
between traditional classrooms and online platforms. To maximise the performance
of ITS while minimising the input and interaction required from students, it is es-
sential to design collaborative systems that effectively leverage the capabilities of AI
and foster effective collaboration between students and ITS.

However, there are several challenges that need to be addressed in this context.
One challenge is the lack of clear guidance on designing and building user-friendly
systems that facilitate collaboration between humans and AI. This challenge is rel-
evant not only to education researchers but also to Human-Computer Interaction
(HCI) researchers and developers. Another challenge is the scarcity of interaction
data in the early stages of ITS development, which hampers the accurate modelling
of students’ knowledge states and learning trajectories, known as the cold start prob-
lem. Moreover, the effectiveness of Intelligent Tutoring Systems (ITS) in delivering
personalised instruction is hindered by the limitations of existing Knowledge Tracing
(KT) models, which often struggle to provide accurate predictions. Therefore, ad-
dressing these challenges is crucial for enhancing the collaborative process between
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humans and AI in the development of ITS.
This thesis aims to address these challenges and improve the collaborative process

between students and ITS in TEL. It proposes innovative approaches to generate
simulated student behavioural data and enhance the performance of KT models.
The thesis starts with a comprehensive survey of human-AI collaborative systems,
identifying key challenges and opportunities. It then presents a structured frame-
work for the student-ITS collaborative process, providing insights into designing
user-friendly and efficient systems.

To overcome the challenge of data scarcity in ITS development, the thesis pro-
poses two student modelling approaches: Sim-GAIL and SimStu. SimStu leverages
a deep learning method, the Decision Transformer, to simulate student interactions
and enhance ITS training. Sim-GAIL utilises a reinforcement learning method,
Generative Adversarial Imitation Learning (GAIL), to generate high-fidelity and di-
verse simulated student behavioural data, addressing the cold start problem in ITS
training.

Furthermore, the thesis focuses on improving the performance of KT models. It
introduces the MLFBKT model, which integrates multiple features and mines latent
relations in student interaction data, aiming to improve the accuracy and efficiency
of KT models. Additionally, the thesis proposes the LBKT model, which combines
the strengths of the BERT model and LSTM to process long sequence data in KT
models effectively.

Overall, this thesis contributes to the field of Human-AI collaboration in TEL
by addressing key challenges and proposing innovative approaches to enhance ITS
training and KT model performance. The findings have the potential to improve
the learning experiences and outcomes of students in educational settings.

Keywords: Human-AI Collaboration, Technology Enhanced Learning, Intelli-
gent Tutoring Systems, Knowledge Tracing, Decision Transformer, Generative Ad-
versarial Imitation Learning, MLFBKT, LBKT.
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CHAPTER 1

Introduction

1.1 Background and Motivation

1.1.1 Background

Artificial Intelligence (AI) has made remarkable advancements in recent years, rev-

olutionising various industries and domains. Its ability to extract patterns and

insights from vast amounts of data has propelled advancements in areas such as

image recognition, natural language processing, and autonomous systems [1]. As AI

systems continue to permeate various aspects of human daily life, there is an increas-

ing interaction between Humans and AI. Researchers are actively seeking to foster

collaboration between humans and AI, moving beyond simple interaction to develop

advanced systems that enable meaningful collaboration and mutual engagement,

which involves Human-AI Collaboration [2]. Human-AI Collaboration entails com-

bining Artificial Intelligence (AI) with human workflows to achieve shared objectives.

This collaborative approach involves understanding mutual goals, coordinating tasks

proactively, and tracking progress together [3].

In the current educational landscape, an increasing number of AI methods are

being applied in Technology Enhanced Learning (TEL) [4]. TEL has become in-
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creasingly important in providing high-quality education and facilitating lifelong

learning [5]. The recent COVID-19 pandemic has further highlighted the need for

effective educational technologies, including Intelligent Tutoring Systems (ITS) [6]

to support remote learning and bridge the gap between traditional classroom set-

tings and online platforms. Presently, designing TEL systems that foster effective

collaboration between humans and AI is of utmost importance. The integration of

AI technologies into educational systems has the potential to enhance learning ex-

periences, promote individualised instruction, and provide personalised and timely

feedback to learners. A key aspect of this system is the collaboration between the

student (human) and the Intelligent Tutoring System (ITS) (AI) to achieve a com-

mon educational aim — Maximise the performance of Intelligent Tutoring

Systems (ITS) whilst minimising the input and interaction required from

students [7]. However, despite the potential benefits of integrating AI into edu-

cational systems, there are several challenges that need to be addressed. The first

challenge, not only for education researchers but also for HCI researchers and devel-

opers, is the lack of clear guidance on designing and building user-friendly systems

that effectively facilitate collaboration between humans and AI.

The collaboration between humans and AI is a partnership to accomplish shared

objectives [8]. AI systems are designed with specific functions, and their role is to

assist humans in achieving these goals. This collaboration between humans and

AI involves two perspectives: the first is humans-to-AI, humans enhancing the AI

system’s training through specific interactive behaviours, addressing challenges such

as cold starts or limited training data [9].

AI-to-human collaboration, on the other hand, refers to AI systems aiding hu-

mans in accomplishing specific tasks. Consider ITS as an example: ITS is designed

to assist students in achieving better academic outcomes. Students’ objectives in-

clude obtaining improved grades through the use of AI systems. In this context,

collaboration involves students actively engaging with AI systems, enabling the AI

to understand the students’ challenges better and enhance the efficiency of their

learning process.

In order to develop a successful human-AI collaborative system, it is essential to
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understand the dynamics of this interaction and optimise it for improved learning

outcomes. To address this problem, Chapter 3 provides a comprehensive survey

of human-AI collaborative systems, examining the current state of the field and

identifying key challenges and opportunities. In this Chapter, different human-AI

collaborative frameworks were proposed. We use one of the frameworks (shown in

3.1) to structure subsequent research, providing insights into designing and devel-

oping user-friendly and efficient Student-ITS collaborative systems.

We conceptualise the interaction between the student and ITS as a “human-AI

collaborative process,” where the student represents the “human” component and

the ITS represents the “AI” component (shown in figure 1.1). The aim of this

collaborative process is to leverage the capabilities of AI to optimise the learning

experience for students while also considering enhancing the ITS training process

by adapting student modelling methods.

Human-AI collaboration to Student-ITS collaboration 

Human
ITS

Chapter 4:SimStu
Chapter 5:SimGAIL

Chapter 6: MLFBK
Chapter 7: LBKT AI

Student

Cold Start and Lack of data

Improve the prediction accuracy

Chapter 3: Design Map

Figure 1.1: Human-AI collaboration to Student-ITS collaboration.

Within this collaborative process, there were two key challenges. The first chal-

lenge faced by the Student-to-ITS process (Human-to-AI process) is the lack of

interaction data in the early stages of ITS development [10]. As new ITS is designed

and deployed, there is limited availability of labelled data to train the algorithms
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that drive algorithms in ITS. This scarcity of interaction data hampers the system’s

ability to model students’ knowledge states accurately and predict their learning

trajectories at the early stage of ITS training, which is also called the cold start

problem [11]. Moreover, ITS needs a substantial amount of student interaction data

to train the algorithms effectively. ITS relies on a large volume of data to capture

the complexity of student learning behaviours and make accurate predictions. How-

ever, collecting and labelling such a vast amount of data can be time-consuming,

expensive, and logistically challenging [12]. Therefore, it is crucial to develop meth-

ods that could address this challenge of data scarcity and enable efficient training

of ITS models.

To address this challenge, we proposed two innovative student modelling ap-

proaches in Chapters 4 and 5 to generate simulation data to enhance the human-

to-AI process in the development of ITS. These approaches focus on simulating

student behaviour data to augment the limited real interaction data available dur-

ing the ITS development. The proposed student modelling methods, namely SimStu

and Sim-GAIL, leverage advanced deep learning and reinforcement learning tech-

niques, including the Decision Transformer [13] and Generative Adversarial Imita-

tion Learning (GAIL) [14], to generate high-fidelity and diverse simulated student

behavioural data for ITS training. By incorporating these simulated data into the

training process, the ITS could overcome the scarcity of labelled data and enhance

its performance, leading to more accurate predictions and personalised instruction.

Another challenge is from the ITS-to-Students process (AI-to-Human process).

The aim of the ITS is to help the student to achieve higher learning performance,

which requires a deep understanding of the learning process and knowledge mastery

level. Therefore, efficient and accurate modelling of students’ knowledge states and

learning trajectories is essential. Knowledge Tracing (KT) plays a crucial role in

ITS by modelling students’ learning progress and predicting their future actions

based on their past behaviour data [15]. KT enables ITS to estimate students’

knowledge states, identify areas of weakness, and provide tailored feedback, hints,

and additional learning resources [16]. However, current KT models often struggle

to provide accurate predictions, hindering the ability of ITS to deliver effective
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personalised instruction [17].

One main problem is that previous KT models have often been limited by their

reliance on a single or few features, which could fail to capture the complexity of

student learning behaviour data [18, 19]. To address this gap, Chapter 5 proposed

MLFBK, which introduces a novel approach that incorporates multiple features and

mines latent relations. By considering a broader range of features and exploring

the latent relationships between them, MLFBK aims to capture the complexity of

student learning behaviour data more effectively. This approach has the potential

to improve the accuracy and performance of KT models.

Another problem is that traditional probabilistic and logistic KT models struggle

with processing efficiency and memory usage when dealing with growing amounts of

longer sequence data [20–22]. To address this challenge, Chapter 7 proposed LBKT,

which is a knowledge tracing approach that combines the strengths of the Bidi-

rectional Encoder Representations from the Transformers (BERT) model and the

Long Short-Term Memory (LSTM) model. BERT captures complex data relations,

while LSTM handles long sequential data. The model leverages a Rasch model-

based embedding method to incorporate difficulty-level information from students’

historical behaviour data. This embedding improves the model’s performance and

interpretability.

By integrating the insights and methodologies from Chapters 4 to 7, this thesis

aims to develop innovative approaches to enhance the collaborative process between

students and Intelligent Tutoring Systems (ITS). The collaborative process consists

of two main parts: the Student-to-ITS (human-to-AI) process, which focuses on gen-

erating simulated student behaviour data, and the ITS-to-Student (AI-to-human)

process, which emphasises the development of advanced KT models. The integra-

tion of these components enables the design of more effective and personalised ITS,

enhancing the learning experiences and outcomes of students.

1.1.2 Personal Motivation

My journey into the field of Artificial Intelligence and Technology Enhanced Learn-

ing has been driven by a deep personal motivation. From an early age, I was
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fascinated by the potential of technology to transform education, making it more

accessible and personalised.

Growing up, I experienced the strengths and limitations of traditional education

systems firsthand. This fuelled my passion to bridge the gap between human poten-

tial and educational technology, particularly in the context of Intelligent Tutoring

Systems (ITS).

The challenges addressed in this thesis are not just academic pursuits for me;

they are part of my commitment to revolutionise education. My personal motivation

is to make learning more adaptive and effective for learners of all backgrounds.

As I embarked on this research journey, my personal motivation has guided me

to explore innovative solutions and contribute to the advancement of Technology

Enhanced Learning. I am excited to share the outcomes of this research, hoping to

inspire further progress in human-AI collaboration and educational technology.

1.2 Research Questions & Objectives

The main research questions in this thesis can be summarised as follows:

Research Theme 1: Exploring the design map and trajectories of the

Human-AI Collaborative Systems.

The first research theme of this thesis pertains to exploring how to design a

user-friendly and high-efficiency human-AI collaborative system. With the increas-

ing integration of AI technologies into various domains, it is essential to develop

collaborative systems that effectively leverage the strengths of both humans and AI

to achieve optimal performance and user satisfaction. This research theme addresses

the following research question:

Research Question 1: What trajectory could we follow to develop a

user-friendly Student-ITS collaboration system?

The following objectives address this research question:

RO 1.1: Investigate existing human-AI collaboration theories and frameworks

to identify key principles and best practices for designing a user-friendly and high-

efficiency human-AI collaboration system.
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RO 1.2: To create a new Human-AI System design guidance Map.

RO 1.3: To conceptualise the existing frameworks from the perspectives of dif-

ferent perspectives.

RO 1.4: To elaborate generic Human-AI CRL challenges, providing the research

community with a guide towards novel research directions.

Research Theme 2: Proposing efficient approaches to solve the cold-

start problems and scarcity of data for ITS training

The second research theme focuses on addressing the challenges of the Student-

to-ITS (Human-to-AI) process, the cold-start problems and data scarcity problems

in the development of Intelligent Tutoring Systems (ITS). These challenges hinder

the effective training of ITS models, which heavily rely on large amounts of labelled

data. This research theme aims to propose efficient approaches to generate high-

fidelity and diverse simulated student behaviour data for ITS training. The following

research question is investigated:

Research Question 2: How can we generate high-fidelity and diverse

simulated student behaviour data to train Intelligent Tutoring Systems

(ITS) using deep learning methods?

This research question is addressed by the following objectives:

RO 2.1: Investigate designing a deep learning-based model to generate simulated

student behavioural data.

RO 2.2: To evaluate the performance of the proposed model and compare the

proposed model with other existing methods.

RO 2.3: Applying the proposed model’s generated data to the emerging ITS

technology to test the performance.

Research Question 3: How can we generate realistic and diverse simu-

lated student behaviour data for training Intelligent Tutoring Systems

(ITS) through reinforcement learning techniques?

The following objectives address this research question:

RO 3.1: To propose a student modelling method based on a reinforcement learn-

ing approach.

RO 3.2: To compare the performance of the proposed method with other student
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modelling methods.

RO 3.3: To evaluate the effectiveness of the proposed method in improving the

KT model’s prediction accuracy.

Research Theme 3: Improving the performance of Knowledge Tracing

models.

The third research theme focuses on enhancing the performance of the ITS-

to-Student (AI to Human) process. More specifically, improving the performance

of Knowledge Tracing models is an essential task for Intelligent Tutoring Systems.

KT models aim to estimate students’ knowledge states accurately and predict their

future learning behaviours based on their interaction data. This research theme

investigates methods to improve the accuracy and efficiency of KT models. The

following research questions are addressed:

Research Question 4: How can multiple features and latent relations

in student interaction data be integrated to improve the accuracy and

efficiency of Knowledge Tracing (KT) models for Intelligent Tutoring

Systems (ITS)?

This research question is addressed by the following objectives:

RO 4.1:Identify relevant features and latent relations in student interaction data

that can contribute to improving the accuracy and efficiency of Knowledge Tracing

(KT) models.

RO 4.2: Develop novel methods to integrate multiple features and latent re-

lations into KT models, leveraging techniques such as feature engineering, latent

variable modelling, and deep learning architectures.

RO 4.3: Evaluate the performance of the proposed KT models in terms of ac-

curacy, efficiency, and interpretability, comparing them with baseline models using

benchmark datasets and real-world ITS data.

Research Question 5: How to effectively deal with large-scale datasets,

process long-sequence data, and improve the performance of KT models

for ITS?

This research question is addressed by the following objectives:

RO 5.1: To propose a novel Knowledge Tracing model for processing long se-
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quence data in Intelligent Tutoring Systems.

RO 5.2: Evaluate the performance and scalability of the proposed approaches

in processing large-scale datasets and long sequence data, comparing them with

existing methods using benchmark datasets and real-world ITS data.

RO 5.3: To conduct an ablation study to analyse the impact of each component

of the method’s overall performance and use the visualisation tool to demonstrate

the interpretability.

1.3 Main Contributions

This thesis contributes to the field of Human-AI collaborative systems, Intelligent

Tutoring Systems, and Knowledge Tracing. The main contributions of this thesis

can be summarised as follows:

1. The thesis provides a systematic framework for the design of efficient and

’natural’ human-AI collaborative methods systems in Chapter 3, which offers

an extensive survey of CRL methods, conceptualises existing frameworks, and

creates a new Human-AI CRL Design Trajectory Map as a systematic mod-

elling tool for the selection of existing CRL frameworks, as well as a method of

designing new CRL systems. Chapter 3 also elaborates on generic Human-AI

CRL challenges, providing the research community with a guide towards novel

research directions.

2. Proposed a Transformer-based approach to generate simulated student be-

havioural data for training Intelligence Tutoring Systems (ITS). Chapter 3

addresses the challenge of the scarcity of data sets providing interactions be-

tween students and ITS, which is necessary for training personalised ITS. Sim-

Stu generates simulated interactions between sim students and ITS, which can

be used to train ITS to provide customised learning strategies and trajectories

to real students. Chapter 3 presents an upgraded version of SimStu, which im-

proves the model’s performance by modifying the input and hyperparameters.

The experimental results showed that SimStu could model the real student
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well in terms of action frequency Sim-Stu distribution and elapsed time dis-

tribution. Moreover, the evaluation of SimStu in an emerging ITS technology,

Knowledge Tracing, indicated that SimStu could improve the efficiency of ITS

training.

3. Proposed a student modelling method called Sim-GAIL, which is based on

Generative Adversarial Imitation Learning (GAIL) approach. This method

can be used to train Intelligent Tutoring Systems (ITS) by replacing hu-

man students with sim-students (simulated students via student modelling).

Chapter 5 compares the performance of Sim-GAIL with two traditional Rein-

forcement Learning-based and Imitation Learning-based methods using ac-

tion distribution evaluation, Sim-GAIL cumulative reward evaluation, and

offline-policy evaluation. The experimental results suggest that Sim-GAIL

outperforms traditional student modelling methods on most metrics. More-

over, Chapter 5 applies Sim-GAIL to a domain plagued by the cold start

problem, Knowledge Tracing (KT), and the experimental results show that

Sim-GAIL could effectively improve the KT model’s prediction accuracy in a

cold-start scenario.

4. This thesis proposed a Multi-Features with Latent Relations BERT Knowl-

edge Tracing model (MLFBK) that utilises multiple features and mines latent

relations between features to improve the performance of the Knowledge Trac-

ing (KT) model. The model incorporates four data features (student id, skill

id, item id, and response id) and three meaningful latent relations among fea-

tures to improve the performance: individual skill mastery, ability profile of

students (learning transfer across skills), and problem difficulty. Chapter 6 also

presents experimental results that demonstrate that the proposed algorithm

outperforms baseline methods and demonstrates good interpretability.

5. Propsed a novel LSTM BERT-based Knowledge Tracing model, LBKT, for

processing long sequence data in Intelligent Tutoring Systems. LBKT uses

a BERT-based architecture with a Rasch model-based embeddings block to

deal with different difficulty levels information and an LSTM block to process
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the sequential characteristic in students’ actions. The model achieves better

performance on most benchmark datasets on the metrics of ACC and AUC.

Additionally, an ablation study is conducted to analyse the impact of each

component of LBKT’s overall performance.

By addressing these research challenges and making these contributions, this

thesis aims to advance the field of Human-AI collaboration in educational settings,

enhance the capabilities of Intelligent Tutoring Systems, and improve the accuracy

and interpretability of Knowledge Tracing models. These contributions have the

potential to significantly impact the field of Technology Enhanced Learning and

pave the way for more personalised and effective educational experiences.

1.4 Thesis Structure

This thesis is organised into the following chapters:

• Chapter 1 provides an overview of the research background, motivation, re-

search questions, the corresponding objectives, and the main contributions of

this thesis. It also outlines the structure of the thesis.

• Chapter 2 presents a comprehensive review of relevant literature in the fields

of Human-AI Collaborative Systems, Deep Learning Methods, Reinforcement

Learning, and Knowledge Tracing Methods. This Chapter aligns the contribu-

tions of this thesis with the existing literature, highlighting the research gaps

addressed by the proposed models.

• Chapter 3 focuses on the design principles and methodologies for developing

a user-friendly and high-efficiency human-AI collaborative system. Drawing

on the insights from this Chapter, we present a structured framework for the

student-ITS collaborative process (RQ1).

• Chapter 4 addresses the Student-to-AI collaborative process, which delves

into another simulation method, the SimStu, which utilizes a decision trans-

former to simulate student learning trajectories. We investigate its impact on
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training powerful ITS models using limited human actions. We compare the

results with existing approaches and analyse the efficiency and effectiveness of

the proposed method (RQ2).

• Chapter 5 presents the Sim-GAIL model, which utilises generative adversar-

ial imitation learning to simulate student learning trajectories. This chapter

covers the model’s design, implementation, and evaluation, highlighting its ef-

fectiveness in addressing the cold start problem in Intelligent Tutoring Systems

(RQ3).

• Chapter 6 addresses the challenge of improving the accuracy and efficiency

of Knowledge Tracing models in intelligent tutoring systems. This Chapter

proposed the MLFBKT, which integrates multiple features and latent relations

in student interaction data to improve the performance of the KT model. We

analyse the performance of the proposed model and compare it with existing

state-of-the-art KT models in real word dataset(RQ4).

• Chapter 7 focuses on the improvement of knowledge tracing models by ef-

fectively dealing with large-scale datasets and processing long sequence data.

We proposed the LSTM BERT knowledge tracing model (LBKT) and its ef-

fectiveness in processing long sequence data. We evaluate the performance of

the model on benchmark datasets and analyze its interpretability (RQ5).

• Chapter 8 summarises the main findings, contributions, and implications of

the thesis. It provides a concise recapitulation of the research objectives and

addresses the research questions outlined in the introduction. This chapter

concludes by highlighting the impact and potential future developments in the

field.
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CHAPTER 2

Background

This chapter starts by reviewing the general background of Human-AI collaborative

systems. Subsequently, the chapter proceeds to introduce the technologies employed

in this thesis, focusing on Deep Learning (DL) and Reinforcement Learning (RL)

methods. Within the realm of DL, we have explored the LSTM, Transformer, and

BERT models, renowned for their capabilities in handling sequential and contextual

data. Furthermore, the chapter explores reinforcement learning methods, including

Imitation learning and Generative Adversarial Imitation Learning (GAIL). Next,

this chapter introduces the DL and RL methods applied in educational scenarios, with

a specific focus on student modelling techniques and Knowledge Tracing methods.

2.1 Human-AI Collaborative Systems

In recent years, the rapid development of Artificial Intelligence (AI) has sparked

both optimism and concern in various domains. While AI is often depicted in

extremes as either a saviour or a threat to humanity, the reality lies somewhere

in between [23, 24]. To navigate this complex landscape, exploring how humans

and AI can collaborate effectively and complement each other’s shortcomings is
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crucial. This collaboration has the potential to leverage the strengths of AI in well-

defined tasks and human intuition, creativity, and ethical considerations in complex

decision-making scenarios.

The field of human-computer interaction (HCI) has a long history of studying the

interaction between humans and computers, offering valuable insights into effective

collaboration patterns. Various models and paradigms have been proposed to guide

human-computer collaboration, such as Cognitive Systems Engineering (CES) [25],

Schmidt collaboration patterns [26], and co-active design patterns [27]. These mod-

els provide frameworks for understanding the roles, responsibilities, and interaction

dynamics between humans and computers.

As an emerging research direction in Human-Computer Interaction (HCI), Human-

AI collaborative systems have gained significant attention within the machine learn-

ing field [3]. Despite the growing interest and research efforts in this field, there

remains a lack of surveys or literature reviews specifically exploring the collabora-

tion between humans and AI agents, particularly in the context of reinforcement

learning. Only a limited number of surveys have been published, with a focus on

topics such as reinforcement learning based on human advice [28], human-centred

reinforcement learning [29], explainable reinforcement learning [30], and the design

principles and open challenges of interactive reinforcement learning [9]. The col-

laboration between humans and AI agents in reinforcement learning remains an

underexplored area, with a scarcity of literature addressing this specific research

direction.

In this context, the aim of this thesis is to investigate and design a structured

approach for constructing human-AI collaborative systems. By examining existing

collaboration approaches, design patterns, and algorithmic models, we seek to pro-

vide insights into effective collaboration strategies and potential directions for future

research in this field.
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2.2 Deep Learning

Deep Learning (DL) [31]is a branch of machine learning which is primarily based

on neural networks and representation learning. Deep Learning has emerged as a

powerful approach in the field of artificial intelligence and has made significant con-

tributions to various domains, including natural language processing [32], computer

vision [33], and speech recognition [34]. This section provides an overview of deep

learning techniques, focusing on two prominent models: Transformer and BERT.

2.2.1 Recurrent Neural Networks (RNNs)

Recurrent Neural Networks (RNNs) are a class of deep learning models widely used

for processing sequential data, making them well-suited for tasks involving time se-

ries or sequential information [35]. RNNs incorporate feedback connections, allow-

ing them to retain and utilize information from previous time steps. This capability

makes RNNs effective in language modelling, speech recognition, and sequence pre-

diction tasks. In the context of education, RNNs have been applied to tasks such as

automatic essay grading, student performance prediction, and language modelling

for educational dialogue systems. The architecture of the RNN is shown in the figure

2.1. It consists of an input layer for receiving sequential data, a hidden layer with

recurrent connections allowing information to flow across time steps, and an output

layer for producing predictions or classifications. The recurrent connections allow

RNNs to capture temporal dependencies in data, making them suitable for tasks

like natural language processing and time series analysis.

An RNN consists of an input layer (x), a hidden layer (s), and an output layer

(y). It can be seen as a set of short-term memory units that process sequential data.

Figure 1(b) illustrates the unfolded diagram of an RNN for an input sequence. In

this context, deep RNNs have been proposed to leverage the advantages of deeper

networks and address the challenges of training deep architectures.

One major challenge of RNNs is the issue of vanishing and exploding gradients,

where the gradients either decay or explode exponentially during training. This

sensitivity to gradient scaling can result in the network forgetting initial inputs or
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Figure 2.1: The architecture of the RNN.

experiencing unstable learning. To tackle this problem, Long Short-Term Memory

(LSTM) networks have been introduced [36]. LSTM networks incorporate memory

blocks with memory cells and gated units to control information flow, enabling them

to capture long-term dependencies more effectively. Furthermore, the use of residual

connections [37] in very deep networks can mitigate the vanishing gradient problem.

Residual connections allow the gradients to propagate more directly through the

network, facilitating the training of deeper architectures.

2.2.2 Long Short-Term Memory (LSTM)

Long Short-Term Memory (LSTM) is a type of recurrent neural network architecture

that overcomes the vanishing gradient problem and enables the modelling of long-

term dependencies in sequential data [36]. LSTMs utilize memory cells with input,

forget, and output gates to selectively store and retrieve information over multiple

time steps. The equations governing the behaviour of an LSTM cell are as follows:
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ft = σ(Wf · [ht−1, xt] + bf )

it = σ(Wi · [ht−1, xt] + bi)

ot = σ(Wo · [ht−1, xt] + bo)

ct = ft ⊙ ct−1 + it ⊙ tanh(Wc · [ht−1, xt] + bc)

ht = ot ⊙ tanh(ct)

(2.1)

Where xt is the input at time step t, ht is the hidden state at time step t, ct is

the cell state at time step t, ft, it, and ot are the forget, input, and output gates

respectively, and σ represents the sigmoid activation function. LSTMs have been

effective in tasks that require capturing long-term dependencies, such as language

translation, speech recognition, and sentiment analysis [38]. The architecture of the

LSTM is shown in the figure 2.2. LSTMs have a unique structure with memory cells

that can store and retrieve information over long sequences. They consist of three

gates (input, forget, and output) and a cell state. The input gate controls the flow

of new information into the cell state, the forget gate regulates what information

should be discarded, and the output gate determines what information should be

used to make predictions.

Figure 2.2: The architecture of the LSTM.
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2.2.3 Generative Adversarial Networks (GANs)

Generative Adversarial Networks (GANs) are a class of deep learning models con-

sisting of a generator network and a discriminator network, trained together in a

competitive manner [39]. GANs have gained significant attention for their ability to

generate realistic synthetic data that resembles the training data distribution. The

objective of the generator is to produce data samples that fool the discriminator,

while the discriminator aims to distinguish between real and generated samples. The

training process can be formulated as a minimax game with the following objective

function:

min
G

max
D

V (D,G) = Ex ∼ pdata[log(D(x))] + Ez∼pz [log(1 −D(G(z)))] (2.2)

where D represents the discriminator, G represents the generator, x represents

real data samples, z represents random noise vectors, pdata represents the real data

distribution, and pz represents the noise distribution. The architecture of the LSTM

is shown in the figure 2.3. It consists of two neural networks, a generator and a

discriminator, engaged in a competitive training process. The generator generates

fake data samples from random noise while the discriminator tries to distinguish

real data from fake ones. They are trained iteratively in a minimax game, where

the generator aims to produce data that can’t be distinguished from real data, and

the discriminator aims to improve its ability to tell real from fake.

2.2.4 Transformer

The Transformer model, proposed by Vaswani et al., is a neural network architecture

that has gained widespread popularity in the field of deep learning, particularly

in natural language processing (NLP) tasks [40]. The Transformer utilises a self-

attention mechanism to extract inherent features and effectively model long-range

dependencies in sequential data. It consists of stacked self-attention layers, as shown

in Equation 2.3, allowing the model to attend to different positions in the input

sequence and capture complex patterns and relationships.
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Figure 2.3: The architecture of the GAN.

zi =
n∑

j=1

softmax
(
⟨qi, kj′⟩ j′ = 1

n)
j · vj (2.3)

In the above equation, zi represents the i-th output embedding, qi denotes the

query of the i-th token, kj′ represents the key of the j′-th token, and vj represents the

value of the j-th token. The self-attention mechanism computes attention weights

between query and key pairs, which are then used to weigh the corresponding values

and generate the output embeddings.

The Transformer architecture revolutionized the field of NLP, allowing for more

efficient and effective processing of natural language text. Its ability to capture

bidirectional contextual information by considering dependencies between preced-

ing and succeeding tokens in a sequence is one of its key strengths. Additionally, the

self-attention mechanism enables the model to dynamically weigh the importance

of different tokens, improving its ability to capture complex patterns and relation-
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ships in the data. The architecture of the transformer is shown in the figure 2.4. It

relies on a multi-head self-attention mechanism to efficiently capture relationships

between elements in input sequences. Transformers enable effective modelling of

complex data dependencies with layers of position-wise feed-forward networks, layer

normalization, and residual connections. They are highly modular and scalable,

with stacked layers for capturing hierarchical features. Transformers are used in

encoder and decoder configurations, making them versatile for various tasks, in-

cluding machine translation and language generation. Their innovation has led to

state-of-the-art models like BERT and GPT, setting new language understanding

and generation standards.

Figure 2.4: The architecture of the Transformer.

2.2.5 BERT

BERT (Bidirectional Encoder Representations from Transformers), introduced by

Devlin et al., is a pre-trained Transformer-based language model that has achieved

remarkable performance across various NLP tasks [41]. At its core, BERT retains the

key components of the Transformer architecture, including multi-head self-attention,

positional encodings, and feed-forward neural networks. What sets BERT apart is

its bidirectional pre-training approach, where it learns to predict missing words from

both left and right contexts simultaneously, capturing rich semantic information and
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context in natural language. This bidirectional context understanding is crucial for

its remarkable performance in various NLP tasks.

One of the key features of BERT is its bidirectional context, which allows it

to capture dependencies between preceding and succeeding tokens in a sequence.

This bidirectional modelling significantly improves the understanding of context

and semantics. BERT’s training process involves masking some tokens in the in-

put sequence and training the model to predict those masked tokens based on the

surrounding context. This approach enables BERT to learn a robust language repre-

sentation that can be fine-tuned for downstream tasks with relatively small amounts

of labelled data.

The success of BERT can be attributed to several factors. The large-scale pre-

training corpus used in its training allows it to capture a wide range of linguistic

patterns and general knowledge. BERT’s transformer architecture, with its self-

attention mechanism, effectively captures global dependencies between tokens, en-

abling it to model complex relationships in the data. Additionally, BERT is known

for generating high-quality embeddings, which are crucial for various natural lan-

guage processing tasks.

BERT has achieved remarkable performance in NLP tasks and has been adapted

and applied to other domains with excellent results. For example, ConvBERT ap-

plies the original BERT architecture in image processing tasks [42], BERT4Rec [43]

enhances the performance of recommendation systems [43], and LakhNES [44] in-

corporates BERT to improve the quality of music generation. However, in the

Knowledge Tracing field, although some BERT-based models, such as BEKT [45]

and BiDKT [46], have been proposed to improve performance.

2.3 Reinforcement Learning

Sequential decision-making problems are commonly modelled using Markov Decision

Process (MDP), which serves as the foundation for reinforcement learning (RL) [47].

RL is a machine learning paradigm that enables an agent to learn optimal decision-

making policies through interactions with an environment, aiming to maximize cu-
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mulative rewards [48]. In this section, we delve into MDP and RL, providing a

comprehensive understanding of these concepts.

2.3.1 Markov Decision Process

Markov Decision Process (MDP) [49] is a mathematical framework used to model

decision-making problems in a stochastic environment that exhibits Markov proper-

ties [50]. It comprises interacting components, namely agents and environments and

encompasses states, actions, policies, and rewards. In an MDP, the agent observes

the current state of the environment and selects actions based on a policy, which dic-

tates its behaviour. These actions impact the state transition of the environment,

and the agent receives rewards based on the chosen actions and resulting states.

The primary objective of an agent in an MDP is to find a policy that maximizes the

cumulative reward over time. The MDP can be represented as follows:

M = (S,A, T ,R) (2.4)

where S represents the set of possible states, A denotes the set of possible ac-

tions, T represents the state transition probabilities, and R denotes the reward

function. The agent’s goal is to find an optimal policy π∗ that maximizes the ex-

pected cumulative reward:

π∗ = arg max
π

E

[
∞∑
t=0

γtRt

]
(2.5)

where γ is the discount factor, and Rt is the reward received at time step t.

2.3.2 Reinforcement Learning

Reinforcement Learning (RL) is a machine learning approach that tackles the prob-

lem of learning optimal decision-making policies through interactions with an envi-

ronment [48]. RL can be defined as a tuple (S,A, T ,R, γ), where S represents the

set of possible states, A denotes the set of possible actions, T represents the state

transition probabilities, R denotes the reward function, and γ is the discount factor.
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The objective of an RL agent is to learn an optimal policy π that maximizes the

expected cumulative reward. The agent’s policy is typically represented by a value

function or an action-value function, which estimates the expected return from a

given state or state-action pair. The value function is defined as:

V π(s) = E

[
∞∑
t=0

γtRt|s0 = s, π

]
(2.6)

where V π(s) represents the expected cumulative reward starting from state s

and following policy π. The action-value function is defined as:

Qπ(s, a) = E

[
∞∑
t=0

γtRt|s0 = s, a0 = a, π

]
(2.7)

where Qπ(s, a) represents the expected cumulative reward starting from state s,

taking action a, and following policy π. RL algorithms aim to estimate these value

functions and utilize them to guide the agent’s decision-making process.

2.3.3 Imitation Learning

While RL involves learning policies by interacting with the environment to maximize

rewards, Imitation Learning (IL) focuses on emulating expert behaviour by learning

from expert demonstrations [51]. Unlike RL, which relies on an explicit reward

function, IL aims to learn a policy that imitates the behaviour demonstrated by

experts.

Behavioral Cloning

Behavioral Cloning (BC) is a type of IL that approaches policy learning as a super-

vised learning problem, using expert state-action pairs [52,53]. BC can be effective

but heavily relies on a large volume of data. Without sufficient data, distributional

mismatch, also known as covariate shift, can occur during test time due to errors

and stochasticity in the environment.

BC directly maps the states/contexts to actions/trajectories by leveraging the

demonstration provided by an expert/oracle. After generating the control input or
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trajectories, the loss function L is designed according to the problem formulation

and optimized in a supervised learning fashion. The state-of-the-art BC uses the

negative log-likelihood loss to update the policy, i.e.,

arg min
π
L(π) = − 1

N

N∑
k=1

log π(ak|sk) (2.8)

The above equation outlines the state-of-the-art BC process. While traditional

BC has less connection to MDP compared to other prevalent methods, its efficiency

is guaranteed. However, it suffers when the agent visits an unseen state. The loss

function L can be customized for a specific problem formulation, and various existing

loss functions are available to measure differences, such as the L1 loss, L2 loss, KL

divergence, and Hinge Loss. For example, when using KL divergence as the loss

function, the objective policy can be obtained by minimizing the deviation between

the expert distribution qπE
and the induced distribution qπ, i.e.,

π∗ = arg min
π

DKL(qπE
∥qπ) (2.9)

BC can be subdivided into model-free BC and model-based BC methods. The

main difference lies in whether the method learns a forward model to estimate the

system dynamics. Model-free BC methods perform well in industrial applications

where accurate controllers are available, but they struggle to predict future states in

“imperfect” environments. On the other hand, model-based BC methods leverage

environment information to produce feasible outputs but have greater time com-

plexity due to iterative learning involvement [54].

One significant BC method is DAgger, a model-free BC method proposed by Ross

et al. [55]. The idea is to use dataset aggregation to improve generalization on unseen

scenarios. DAgger adopts an iterative learning process and mixes a new policy π̂n+1

with probability β to construct the next policy. The mixing parameter β satisfies

1
N

∑N
i=1 βi → 0. The startup policy is learned by BC and records the trajectory

into the dataset. Unseen trajectories are recorded by combining expert corrections

to alleviate the problem of traditional BC methods performing poorly in unseen

scenarios. Subsequent research has proposed improvements on DAgger to enhance
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data efficiency. However, DAgger involves frequent interaction with the expert,

which may not be available or could be expensive. Later research has addressed this

issue by actively learning to ask the demonstrator for help and minimizing context

switches. Other recent methods have also alleviated this problem.

Apprenticeship Learning

Apprenticeship Learning (AL) seeks to identify generalizable features from expert

demonstrations and find a policy that matches the expert’s feature expectations [56].

AL aims to outperform the expert across a range of cost functions. However, AL

may struggle to effectively imitate the expert trajectory when the true cost function

lies outside the restricted class of cost functions, and there is no guarantee that the

agent will surpass the expert’s performance.

2.3.4 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) addresses the limitations of RL

and AL by incorporating the principles of Generative Adversarial Networks (GANs)

into imitation learning [14]. GAIL is derived from a specific type of imitation

learning called Maximum Causal Entropy Inverse Reinforcement Learning (Max-

EntIRL) [57].

GAIL combines the benefits of constant regularizers and indicator regularizers

in large environments. It introduces a novel cost regularizer, denoted as ψGA, which

strikes a balance between the exact matching of occupancy measures and computa-

tional tractability. The formulation of ψGA is defined as follows:

ψGA(c) =

EπE
[g(c(s, a))] if c < 0

+∞ otherwise

(2.10)

where the function g(x) is defined as:

g(x) =

−x− log(1 − ex) if x < 0

+∞ otherwise

(2.11)
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This cost regularizer penalizes cost functions that assign positive costs to expert

state-action pairs while allowing any cost function that is negative everywhere. One

key advantage of ψGA is its adaptability to arbitrary expert datasets, as it is an

average over expert data. In contrast, the indicator regularizers δC , used in linear

apprenticeship learning algorithms, are fixed and cannot adjust to data like ψGA.

The choice of ψGA is motivated by the fact that it approximates the optimal neg-

ative log loss of a binary classification problem. More specifically, it is proportional

to the Jensen-Shannon divergence between the normalized occupancy distributions

of the learner and the expert. By treating causal entropy H as a policy regularizer

controlled by λ ≥ 0, an imitation learning algorithm based on GAIL is formulated

as:

min
π
ψ∗
GA(ρπ − ρπE

) − λH(π) = DJS(ρπ, ρπE
) − λH(π) (2.12)

This algorithm aims to find a policy π that minimizes the Jensen-Shannon di-

vergence between the learner’s and expert’s occupancy measures, while taking into

account the policy regularizer. Unlike linear apprenticeship learning algorithms,

GAIL can imitate expert policies exactly because it minimizes a true metric be-

tween occupancy measures.

To implement GAIL, a saddle point (π,D) of the expression is sought,

Eπ[log(D(s, a))] + EπE
[log(1 −D(s, a))] − λH(π) (2.13)

where both π and D are represented using function approximators. Specifically,

GAIL employs a parameterized policy πθ with weights θ and a discriminator network

Dw : S × A → (0, 1) with weights w. The algorithm alternates between a gradi-

ent step on w to increase the expression and a Trust Region Policy Optimization

(TRPO) step on θ to decrease it. The discriminator network acts as a local cost

function that provides a learning signal to the policy, enabling policy updates that

move toward expert-like regions of state-action space.

In summary, GAIL leverages generative adversarial networks (GANs) to enable

imitation learning by finding a policy that minimizes the Jensen-Shannon divergence
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between the learner’s and expert’s occupancy measures. The algorithm employs a

parameterized policy and a discriminator network, alternating between updating the

discriminator and optimizing the policy using TRPO. This approach allows for the

exact imitation of expert policies and is designed to work well in large environments.

2.4 Knowledge Tracing

Knowledge Tracing (KT) plays a crucial role in Intelligent Tutoring Systems (ITS)

by modelling and predicting students’ learning trajectories based on their historical

interaction data with the system [58]. KT models could be broadly classified into

three categories: probabilistic KT models, logistic KT models, and deep learning-

based KT methods [17].

2.4.1 Probabilistic KT models

Probabilistic KT models use probabilistic graphical models to track students’ chang-

ing learning states based on observed learning performance [59]. There are two

kinds of Probabilistic KT models: Bayesian Knowledge Tracing (BKT) and Dy-

namic Bayesian Knowledge Tracing (DBKT).

Bayesian Knowledge Tracing (BKT)

To the best of our knowledge, Bayesian Knowledge Tracing (BKT) is the first pro-

posed Knowledge Tracing (KT) model [59]. BKT utilizes a Hidden Markov Model

(HMM) framework, where unshaded nodes represent unobservable latent knowledge

states, and shaded nodes represent observable student answers. BKT assumes a

two-state student modelling framework: knowledge is either learned or unlearned,

with no forgetting once learned. The transition probabilities in BKT are determined

by the learning parameter P (T ) (transition from unlearned to learned state) and

the forgetting parameter P (F ) (probability of forgetting previously mastered knowl-

edge). Emission probabilities are determined by the performance parameters P (G)

(probability of correct answer despite non-mastery) and P (S) (probability of mis-

take despite mastery). The initial probability of mastery is represented by P (L0).
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BKT estimates the knowledge state and probability of correct answers using the

following equations:

P (Ln) = P (Ln|Answer) + (1 − P (Ln|Answer))P (T ) (2.14)

P (Cn+1) = P (Ln)(1 − P (S)) + (1 − P (Ln))P (G) (2.15)

P (Ln) represents the probability that a knowledge component (KC) is mastered

at the n-th learning interaction, while P (Cn+1) represents the probability of cor-

rect answers at the next interaction. P (Ln) is the sum of two probabilities: the

probability that the KC is already mastered and the probability that the knowledge

state will convert to the mastered state. The posterior probability P (Ln|Answer)

is estimated as follows:

P (Ln|correct) =
P (Ln−1)(1 − P (S))

P (Ln−1)(1 − P (S)) + (1 − P (Ln−1))P (G)
(2.16)

P (Ln|incorrect) =
P (Ln−1)P (S)

P (Ln−1)P (S) + (1 − P (Ln−1))(1 − P (G))
(2.17)

Dynamic Bayesian Knowledge Tracing (DBKT)

While BKT models each KC independently, it does not consider their dependen-

cies [60]. To address this, Käser et al. [61] proposed Dynamic Bayesian Knowledge

Tracing (DBKT), which incorporates prerequisite hierarchies and inter-KC relation-

ships using dynamic Bayesian networks. DBKT jointly models multiple skills within

one model, enhancing the representational power of BKT. DBKT represents a stu-

dent’s knowledge mastery with binary latent variables and estimates it based on

learning interactions. It models the dependencies between KCs, such as prerequi-

sites. For example, if KC1 and KC2 are prerequisites for mastering KC3, a student’s

mastery of KC3 depends on their mastery of KC1 and KC2. The objective of DBKT

is to find the parameters θ that maximize the joint probability p(am, hm|θ). The

log-likelihood can be formulated using a log-linear model:
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L(w) =
∑
m

ln

(∑
hm

exp
(
wTΦ(am, hm) − ln(Z)

))
(2.18)

Here, Φ : A × H → RF maps the observed space A and the latent space H to

an F -dimensional feature vector. Z is a normalizing constant, and w represents the

weights.

2.4.2 Logistic Models

Logistic models encompass a wide range of models based on logistic functions, which

represent the probability of answering exercises correctly as a function of student

and knowledge component (KC) parameters. These models estimate the parame-

ters based on various factors in students’ learning interactions and utilize logistic

functions to predict the probability of mastery [62]. In this section, we introduce

three logistic models: Learning Factor Analysis (LFA), Performance Factor Analysis

(PFA), and Knowledge Tracing Machines (KTM).

Learning Factor Analysis (LFA)

The LFA model [63] considers the following learning factors:

• Initial knowledge state: Parameter α estimates the initial knowledge state of

each student.

• Easiness of KCs: Parameter β captures the easiness of different KCs.

• Learning rate of KCs: Parameter γ represents the learning rate of KCs.

The standard LFA model can be expressed as follows:

p(θ) = σ

(∑
i∈N

αiSi +
∑

j∈KCs

(βj + γjTj)Kj

)
, (2.19)

where σ is the sigmoid function, Si is the covariate for student i, Tj represents

the covariate for the number of interactions on KC j, Kj is the covariate for KC j,

and p(θ) is the estimated probability of a correct answer.
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Performance Factor Analysis (PFA)

The PFA model [64] extends the LFA model by considering additional factors related

to student performance:

• Previous failures: Parameter f represents the prior failures for the KC of the

student.

• Previous successes: Parameter s denotes the prior successes for the KC of the

student.

• Easiness of KCs: Parameter β captures the easiness of different KCs, as in the

LFA model.

The standard PFA model can be expressed as follows:

p(θ) = σ

( ∑
j∈KCs

(βj + µjsij + νjfij)

)
, (2.20)

Where µ and ν are the coefficients for s and f , respectively, representing the

learning rates for successes and failures.

Knowledge Tracing Machines (KTM)

The KTM model [65] employs factorisation machines (FMs) to extend previous lo-

gistic models to higher dimensions. FMs are general predictors that work with any

real-valued feature vector and can model interactions between variables using fac-

torised parameters. KTM incorporates side information about exercises, students,

KCs, or other related factors into the model. The knowledge mastery of the student

is modelled based on a sparse set of weights for all features involved in the learning

process. Let L be the number of features related to students, exercises, KCs, or

other factors.

2.4.3 Deep learning-based KT models

The complexity of the cognitive process poses challenges for probabilistic or lo-

gistic models to capture its intricacies accurately. Deep learning, with its ability
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to achieve non-linearity and extract features, is well-suited for modelling complex

learning processes, especially when abundant learning interaction data is available.

In recent years, several deep learning-based models for knowledge tracing (KT) have

been proposed and achieved impressive performance. However, these models often

lack interpretability due to their end-to-end learning strategy, limiting their appli-

cability. In this section, we introduce deep learning-based KT models from five

perspectives: deep knowledge tracing, memory-aware knowledge tracing, exercise-

aware knowledge tracing, attentive knowledge tracing, and graph-based knowledge

tracing.

Deep Knowledge Tracing (DKT)

Deep knowledge tracing (DKT) [66] was the first approach to incorporate deep learn-

ing into KT. It utilises recurrent neural networks (RNNs) to model the learning

process of students. DKT employs RNNs to process the input sequence of learning

interactions over time, maintaining a hidden state that implicitly encodes the history

of past elements. The hidden state evolves based on the previous knowledge state

and the current input-learning interaction. DKT provides a high-dimensional and

continuous representation of the knowledge state, enabling it to capture the com-

plexity of the learning process better. Long short-term memory (LSTM) networks,

a variant of RNNs, are commonly used in DKT implementations due to their abil-

ity to handle long-term dependencies. DKT has demonstrated superior performance

compared to probabilistic and logistic models. However, it lacks interpretability and

faces challenges in explicitly determining a student’s level of knowledge mastery from

the hidden state.

Memory-aware Knowledge Tracing

To enhance the interpretability of DKT, memory-aware knowledge tracing models

[67]introduce an external memory module to store and update the knowledge and

mastery of students. The most notable model in this category is Dynamic Key-Value

Memory Networks (DKVMN) for knowledge tracing. DKVMN utilises a static key

matrix to store latent knowledge components (KCs) and a dynamic value matrix
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to store and update the mastery of corresponding KCs over time. By reading and

writing to the memory module, DKVMN effectively captures the temporal dynamics

of knowledge acquisition. It addresses the limitations of DKT by considering the

long-term dependencies in the learning process. A modified LSTM called Hop-LSTM

is also proposed to improve the modelling of long-term dependencies in DKVMN.

Exercise-aware Knowledge Tracing

The text content of exercises plays a crucial role in understanding and answering

them. Exercise-aware knowledge tracing (EKT) [16] leverages exercise text contents

to mine their potential value for KT. EKT automatically learns the semantic rep-

resentation of each exercise from its text contents using pre-training models like

Word2Vec. It utilises bidirectional LSTM to capture the semantic word represen-

tation and constructs exercise embeddings. EKT also considers the KCs associated

with each exercise and uses a memory module to represent the knowledge impact.

The student’s knowledge state is updated based on both the exercise embeddings and

the knowledge impact. EKT demonstrates the importance of exercise text contents

in the KT task and achieves improved performance.

Attentive Knowledge Tracing

Attentive knowledge tracing models [68] utilise the self-attention mechanism, popu-

larised by the Transformer model, to capture global dependencies within a sequence

of learning interactions. Self-Attentive Knowledge Tracing (SAKT) [69] directly ap-

plies the Transformer to capture long-term dependencies between students’ learning

interactions. Adaptive sparse self-attention networks and attention-based KT mod-

els further improve the self-attentive computation for KT. Separated self-attentive

neural knowledge tracing (SAINT) incorporates two temporal features, namely an-

swering time and interval time, to enhance self-attention computation. Context-

aware attentive knowledge tracing (AKT) [68] combines the self-attention mech-

anism with psychometric models to achieve better interpretability. These models

leverage the attention mechanism to capture relationships and dependencies between

learning interactions and improve prediction performance.
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Graph-based Knowledge Tracing

Graph-based knowledge tracing (GKT) [70] utilises graph neural networks (GNNs)

to incorporate the graph structure of KCs into KT. It conceptualizes the KCs as

nodes in a graph, where edges represent relationships between KCs. GKT aggregates

and updates the temporal knowledge state based on the aggregated features and

the knowledge graph structure. Structure-based knowledge tracing (SKT) extends

this approach by capturing multiple relations in the knowledge structure to model

influence propagation among concepts. These models leverage the graph structure

to capture spatial effects and improve the modelling of knowledge dependencies.

2.5 Theoretical Framework for Learning and Knowl-

edge Construction

his thesis is grounded in key learning and knowledge construction theories that

inform the design and development of Intelligent Tutoring Systems (ITS). Under-

standing these theories is crucial for developing effective TEL systems that align

with the cognitive and social aspects of learning.

One foundational paper that informs this work is Sfard’s (1998) discussion on

the metaphors of learning: the acquisition metaphor and the participation metaphor

[71]. The acquisition metaphor conceptualises learning as the process of acquiring

knowledge, where knowledge is a commodity that learners obtain and accumulate

[72]. This metaphor underpins traditional educational models and is reflected in the

way ITS are designed to deliver content and assess learner’s knowledge acquisition

[73].

In contrast, the participation metaphor views learning as a process of becoming

a member of a certain community, emphasising the social and communal aspects of

learning [74]. This approach focuses on the learner’s engagement and interaction

within a learning community, rather than just the accumulation of knowledge [75].

Both metaphors offer valuable insights for the design of ITS and Human-AI

collaborative systems. The acquisition metaphor guides the development of systems
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that effectively deliver personalised content and assess learners’ knowledge state,

which is crucial for the intelligent adaptation of ITS [76]. On the other hand, the

participation metaphor inspires the design of systems that foster active engagement,

collaboration, and community-building among learners [77].

Incorporating both metaphors, this thesis aims to develop ITS that not only per-

sonalises learning experiences (acquisition) but also promotes active engagement and

interaction between students and AI systems (participation) [78].This dual approach

ensures that the ITS designed in this research are not only effective in delivering

content and assessing learning but also in engaging learners in a meaningful and

collaborative learning process.

The adoption of these learning theories has several implications for the design

and development of ITS:

• Personalisation and Adaptation: Following the acquisition metaphor, ITS

should be designed to adaptively present content based on individual learner’s

knowledge state, learning style, and preferences [79].

• Engagement and Interaction: In line with the participation metaphor, ITS

should facilitate interactive and collaborative learning experiences, allowing

learners to engage not only with the content but also with peers and the

learning community [80].

• Balanced Approach: An effective ITS should balance both acquisition and

participation aspects, ensuring that learners are not only gaining knowledge

but are also actively participating in the learning process [81].

This theoretical grounding provides a comprehensive framework for the develop-

ment of ITS and Human-AI collaborative systems, ensuring that they are not only

technologically advanced but also pedagogically sound and aligned with contempo-

rary learning theories.
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CHAPTER 3

A Design Trajectory Map of Human-AI Collaborative Systems:

Survey and Taxonomy

Prologue

In Chapter 2, we have provided a basic background of the development of the

Human-AI collaborative system. Driven by the algorithmic advancements in rein-

forcement learning and the increasing number of implementations of human-AI col-

laboration, Collaborative Reinforcement Learning (CRL) has been receiving growing

attention. Despite this recent upsurge, this area is still rarely systematically studied.

In this Chapter, we provide an extensive survey, investigating CRL methods

based on both interactive reinforcement learning algorithms and human-AI collabo-

rative frameworks that were proposed in the past decade. We elucidate and discuss

via synergistic analysis methods both the growth of the field and the state-of-the-art;

we conceptualise the existing frameworks from the perspectives of design patterns,

collaborative levels, parties and capabilities, and review interactive methods and al-

gorithmic models. Specifically, we create a new Human-AI CRL Design Trajectory

Map, as a systematic modelling tool for the selection of existing CRL frameworks,

as well as a method of designing new CRL systems, and finally of improving future
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CRL designs. Furthermore, we elaborate generic Human-AI CRL challenges, pro-

viding the research community with a guide towards novel research directions. The

aim of this Chapter is to empower researchers with a systematic framework for the

design of efficient and ‘natural’ human-AI collaborative methods, making it possible

to work on the maximised realisation of humans’ and AI’s potentials.

Declaration: This chapter is based on the following publication:

Li, Z., Shi, L., Cristea, A. I., and Zhou, Y. (2021, June). A survey of

collaborative reinforcement learning: interactive methods and design

patterns. In Designing Interactive Systems Conference 2021 (pp. 1579-1590).

Li, Z., Shi, L., and Zhou, Y. (2021, June). A Design Trajectory Map

of Human-AI Collaborative Reinforcement Learning Systems: Survey

and Taxonomy ACM Transactions on Computer-Human Interaction. Under

Review.

This chapter is presented largely as accepted, although referencing and notation

have been altered and cross-referencing added for consistency across this thesis.

Some stylistic changes have been made for consistency. The majority of the text is

verbatim, with some minor wording and formatting changes.

3.1 Introduction

With the rapid development of Artificial Intelligence (AI) in recent years, the main-

stream media holds two opposing views: AI will ‘save the world’ [23] or ’destroy’

it [24]. AI is described as the ‘saviour’, to free humans from labour, while it is also

described as the ‘devil’ who takes away workers’ jobs [82]. Regardless of one’s point

of view, AI is playing an increasingly significant part in the future world. Weak

AI, strong AI, and super AI are three stages of AI development, as proposed by

John Searle [83]. Due to the limitations of current technology, Searle believes that

we are supposed to have been and still be in the ‘weak AI’ stage for a long time.

That is, at the current stage, AI often performs much worse than humans in highly
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complex decision-making tasks that require consideration of morality and risk, but

much better in tasks with well-specified feedback and large-scale data. Therefore,

the two extreme situations described by the media are still far from the current stage

that we’ve achieved [23, 24]. Exploring thus the way for humans and AI to better

cooperate, with the goal of complementing each other’s shortcomings, may provide

the best way forward for the immediate future.

A common classification of Artificial Intelligence algorithms is supervised learn-

ing, unsupervised learning, and reinforcement learning [84]. Problems involving

decision-making generally lie in the field of reinforcement learning [48], and how

humans and AI agents can cooperate and complement each other’s shortcomings

are particularly important. While the interaction between humans and AI agents

is an emerging research direction, research on the interaction between humans and

computers has a long history. The community has proposed several patterns of

human-computer interaction. For example, in 1983, Hollnagel and Woods proposed

the Cognitive Systems Engineering (CES) model [25]. In 1991, Schmidt et al. cre-

ated a conceptual paradigm classifying human-computer collaboration into three

levels: augmentative, integrative, and debative [26]. In 2009, Johnson et al. pro-

posed a co-active design pattern in human-AI joint activity [27].

Over the last few years, collaborative or interactive reinforcement learning has

become a new field within the machine learning regime. Especially, at the end

of 2022, the birth of ChatGPT 1 brought great shock to the field of AI research.

ChatGPT is a large language model developed by OpenAI 2. It can understand

and respond to various types of natural language input, including text and voice,

and achieve human-like text output. The reinforcement Learning method is used

to fine-tune the ChatGPT model and adapt it to specific tasks, which achieves

significant progress. The success of ChatGPT brings a lot of attention to collabora-

tive reinforcement learning. Some excellent recent survey studies on Collaborative

Reinforcement Learning (Collaborative RL, or CRL) have emerged, demonstrating

this new field’s importance. They cover a wide range of issues, including CRL in

1https://openai.com/blog/chatgpt/
2https://openai.com/
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general, such as [85], and CRL applied in specific domains, such as safe RL [86], in-

verse RL [87], and explainable RL [30]. Other studies concentrate on specific design

methodologies such as user feedback and testbeds of the environment [88]. When

performing a brief search on Google Scholar with the keywords ‘interactive AI’, ‘col-

laboration’, ‘reinforcement learning’, and ‘HCI’ (Human-Computer Interaction) for

the period from 2011 to 2022, we found that there are few surveys or literature

reviews published. For example, between January 2020 and December 2022, only

five surveys or literature reviews were published. Najar and Anis reviewed reinforce-

ment learning based on human advice [28]. Gomez and Randy’s work focused on

human-centred reinforcement learning [29]. Puiutta and Erick presented a review of

explainable reinforcement learning [30]. Arzate and Christian presented a survey on

the design principles and open challenges of interactive reinforcement learning [9].

Suran and Shweta consecrated on collective intelligence [89]. It can be observed that

this research direction is gaining increasing attention from the community. However,

we posit that while these approaches do involve elements of collaboration, there is

still room for deeper, more nuanced collaboration where the roles, contributions, and

mutual adaptations of both humans and AI agents are more prominently featured.

Our definition of collaboration encompasses not only the integration of human in-

puts but also the co-evolution and reciprocal shaping of human and AI capabilities

within these systems. Surveying collaboration between humans and AI agents is be-

ing overlooked, let alone identifying the probable future direction of growth in this

field. To bridge this gap, we thus aim to address the following research question:

How may designers approach the construction process of human-AI

collaborative reinforcement learning systems in a structured manner?

To answer this research question, we summarise existing collaboration approaches

and offer our own perspectives and proposals. We look at classic human-machine in-

teraction strategies that have had a significant effect on the evolution of the Human-

Computer Interaction (HCI) field. We intend to give academics and practitioners

with a design toolkit that combines archetypes and specific tools in a micro-view [90]

(see Fig. 3.2). Furthermore, our study introduces Human-AI Collaborative

Reinforcement Learning Design Trajectory Map (see Fig. 3.5), a new cat-
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egorisation approach and systematic modelling tool that seeks to suggest research

objectives for the next generation of Human-AI Collaborative Design. Sim-

ilar to how builders require the blueprint design as well as instructions on how to

plan different functional parts and choose various types of materials for the house,

the Design Trajectory Map provides readers with a comprehensive review regarding

the design patterns for Human-AI Collaborative Reinforcement Learning systems

(see Section 3.4) and guidance on how to customise the characteristics of different

components to meet their specific requirements (see Sections 3.5 and 3.6), as well

as how to customise the algorithmic models (see Sections 3.8) and the interactive

methods (see Section 3.7).

This study builds on our previous work [91] published at DIS ’21: Designing

Interactive Systems Conference 2021. In that work, we proposed a Human-AI De-

sign Model that designs a CRL model from three different perspectives: Human,

AI agent, and Design pattern, which is a straightforward and effective method (see

Fig. 3.1). In subsequent research, we found that in order to build a CRL system

from macro to micro, we lacked the considerations of collaborative levels, parties,

and capabilities, which are crucial for designing the functions and details of each

functional party. Therefore, in this work, we add a new component: Capabilities

(see Section 3.6). In addition, based on the original study, we improved the depth

and topics covered. We created a more comprehensive framework and taxonomy,

covering design patterns through algorithms, and expanded the review with 63 pub-

lications, accounting for 43 percent of the new literature. As a result, the primary

contributions of this survey are as follows:

1. First, we summarise the most significant Human-AI Collaborative Design

Patterns, which might help academics and practitioners in the HCI field.

2. Second, we present the Collaborative Reinforcement Learning (CRL)

Design Trajectory Map, a novel CRL Classification and Taxonomy, as a

systematic modelling tool to assist researchers in selecting and improving new

CRL designs.

3. Third, we take stock and summarise the most recent Collaborative Reinforce-
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ment Learning algorithms, analysing the state-of-the-art at the start of this

new decade.

4. Fourth, as a roadmap to good Human-AI Collaboration, we identify several

general CRL problems for future study in this field.

Figure 3.1: Human-AI collaboration Design Model: From a human perspective,
we focus on how humans interact with AI agents; from an AI agent’s perspective,
we focus on how AI agents accept human instructions or suggestions in algorithm
implementation; and from a collaboration pattern perspective, we focus on what
kind of way that humans and AI collaborate.

3.2 Background

Reinforcement Learning (RL) is derived from theories of animal learning and pa-

rameter disturbance adaptive control [9]. The intuition is that if an agent’s actions

results in positive rewards (reinforcing signals), this type of behaviour will be re-

inforced, increasing the agent’s inclination to repeat the behaviour in future acts.

RL aims to train the agent to find the optimal strategy for each discrete state while

maximising the expected discount rewards [48]. Mathematically, a reinforcement

learning process can be described as a Markov Decision Process (MDP), defined by

the tuple M =< S,A, T ,R, γ >, which is a cyclical process, where an agent takes

action A to change its state S to obtain a reward R from the process of interacting
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with the environment; γ is the discount factor; T : S × A 7→ Pr[S] is the transi-

tion function; the expected long-term reward follows policy π, represented as the

Q-function Qπ(s, a), which is computed as:

Qπ(s, a) = R(s, a) + γ
∑
s′

T (s, a, s′)
∑
a′

π (s′, a′)Qπ (s′, a′) (3.1)

Q∗(s, a) = maxπQ
π(s, a) is an optimal value function. Any optimal policy π∗

that maximises the expected reward for each state is the solution to the MDP.

Reinforcement Learning differs from the other two types of machine learning

(Supervised Learning and Unsupervised Learning). In Supervised Learning, a

model learns the mapping relationship between input X and label y through a set

of paired and labelled data to solve Regression and Classification problems. In Un-

supervised Learning, a model learns unlabelled data without any guidance, to

solve Association and Clustering problems, for discovering underlying patterns of

the data. In Reinforcement Learning, a model learns the mapping relationship

between states and actions (non-predefined data), to solve Exploitation or Explo-

ration problems. The mapping directs the model, or the agent, to make optimal

decisions based on these states towards maximising cumulative rewards [48]. The

learning process emphasises the interactions between the agent and the environment

that gives ‘reward signals’ during the agent’s continual or exhaustive attempts of all

the possible strategies to be adopted in a particular ‘state’, rather than directing the

agent how to create the ‘correct’ action [92]. A ‘reward signal’ is usually a scalar sig-

nal and an assessment of the quality of the generated action by the agent. This way,

the agent learns knowledge from the environment through discrete feedback of ac-

tions, which it uses to optimise the parameters that might lead to an optimal result.

With minimal information given by the external environment, the agent must learn

by its own interactions with the environment, frequently from the ground up. If the

’reward signal’ r and the ‘action’ A were known, these corresponding representation-

label data might be utilised to train a model using supervised learning. However, it

is often impracticable to exhaust all conceivable actions in an environment and cre-
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ate the corresponding ‘reward signals ’. This is where Reinforcement Learning may

help. Reinforcement Learning often beats Supervised Learning in scenarios where

the discrete action space is small, such as the game of Go or Atari [93].

Bellman proposed the mathematical theory of dynamic programming in 1955

[94]. The ‘Bellman condition’ was considered to be the crucial theoretical foundation

for reinforcement learning. Then, in 1957, Bellman proposed Markov Decision Pro-

cesses (MDPs) [95], which are now used in most reinforcement learning algorithms.

After the 1960s, the concepts of reinforcement and reinforcement learning gradually

appeared in the literature. In 1963, a system called STeLLA was developed, which

allows trial and error learning through interactions with the environment [96]. In

1975, Holland proposed an adaptive system based on the selection principle in his

book ‘Adaptation in Natural and Artificial Systems’ [97]. Michie proposed an early

reinforcement learning system called MENACE in 1995 [98]. This is regarded as one

of the most significant events in the evolution of reinforcement learning. The book

also included genetic algorithms, which aided in the development of optimisation

algorithms.

Rummery and Niranjan suggested SARSA, a.k.a. state-action-reward-state-

action, in 1994 on the basis of Q-learning. In terms of decision-making, SARSA is

similar to Q-learning. However, it differs in terms of the updating method. SARSA

employs an on-policy method, whereas Q-learning employs an off-policy one [99].

Thrun et al. introduced the Monte Carlo positioning method in 1999, which uses

probability to solve the robot positioning problem [100]. Compared to traditional

grid methods, it is more efficient and saves memory [99].

With the advancement of computing power and the advancement of deep learn-

ing, numerous approaches combining deep learning with reinforcement learning have

lately been presented. In 2013, Mnih et al., from the Deep Mind team, proposed

Deep Q-Learning (DQL) [101]. This approach employs Q-learning to discover the

appropriate control rules after transferring data from high-dimensional sensory input

to a convolutional neural network to extract features. This team’s AlphaGo defeated

the world Go champion with a score of 3:0 in 2017. In December of the same year,

the more advanced Alpha Zero achieved AlphaGo master by self-learning without
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the assistance of human knowledge in only 21 days, and exceeded all versions after

40 days [102]. Since then, Reinforcement Learning has made great progress [84].

In 2021, Chen et al. proposed a method that transforms reinforcement learning

into a sequence modelling problem called the decision transformer model [13]. This

has gradually been applied in fields such as games [103], robotics [104], computer vi-

sion [105], natural language processing (NLP) [106], and recommender systems [107].

For example, the Open AI3 team created an interactive reinforcement learning

method that used human feedback, to learn summarisation [108]. Another recent

project proposed by this team, GPT-3, has also made revolutionary achievements

in the field of NLP [106]. At the end of 2022, ChaGPT, powered by the GPT-3

engine, drew lots of attention for its amazing performance in various natural lan-

guage processing tasks, such as text completion, language translation, and question

answering.

Due to its strong potential and firm theoretical foundation, Reinforcement Learn-

ing has recently been one of the most attractive research areas in AI technologies [48].

However, it faces many challenges. Currently, on the one hand, Reinforcement

Learning only works well when the environment is definite, i.e., the state of the

environment is fully observable. In particular, there are defined rules in games like

Go, and the action space is discrete and constrained. In other words, the agent

needs a great degree of prior knowledge, to understand its state in a complex envi-

ronment [109]. On the other hand, even if the agent has been given well-specified

feedback, the inexplicability and incomprehensibility caused by the agent’s uncon-

scious are still inadequate for the agent to decide on the precise next action [9].

Furthermore, most applications of Reinforcement Learning to date have only been

for playing games, such as chess and Atari.

3OpenAI website: www.openai.com
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3.3 Methodology and Scope

3.3.1 Literature Collection

This review focuses on hitherto undiscovered research areas on collaborations be-

tween humans and AI agents. We further refine our data pool, specifically narrowing

the selection to the following selected target areas: HCI, Human-AI Collaboration,

Reinforcement Learning, and Explainable AI, published in the recent decade, the

time period between 2011 and 2022, from Google Scholar. In total, our search yielded

257 articles using keywords including collaborative reinforcement learning, interac-

tive reinforcement learning, human-computer interaction, and design patterns. They

were published in journals and conferences, including top venues such as TOCHI4,

IJHCS5, AAAI6, CHI7, UbiComp8, UIST9, and IEEE10. Following a manual review

of the title and abstract of each article, we eliminated 112 as irrelevant, leaving 145

as the source of this survey.

3.3.2 Human-AI Collaborative Reinforcement Learning Clas-

sification

We used an inductive method to organise the literature we collected and proposed

a new classification method inspired by traditional human-machine interaction re-

search. Previous work by Najar and Anis mainly targeted physical interaction be-

tween humans and machines from a human perspective [28]. In the early stages

of computer science and engineering, no concept of AI was involved. So far, this

is the only research on human-machine interaction. Cruz et al. proposed that the

human-AI interaction is a kind of human-machine interaction, in general, [110]. In

this Chapter, we have collected paradigms of human-machine interaction in the early

4The website of TOCHI: https://dl.acm.org/journal/tochi
5The website of IJHCS: http://dblp.uni-trier.de/db/journals/ijmms/
6The website of AAAI: www.aaai.org/
7The website of CHI: chi2021.acm.org/
8The website of UbiComp: www.ubicomp.org/
9The website of UIST: uist.acm.org/

10The website of IEEE:www.ieee.org/
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Table 3.1: CRL Classification applied to the Pool of Papers about Collaborative
RL, published between 2011-2022

Collaborative RL References
Cognitive Systems Engineering Patterns [25]

Design Bosch and Bronkhorst’s Patterns [111]
Patterns Coactive Design Patterns [112]

Schmidt’s Patterns [113]
Collaborative Augmentative Level collaboration [114], [93], [115], [116], [117], [118], ChatGPT 11

Levels Integrative Level collaboration [112], [113], [119], [120], [121], [122], [26]
and Debative Level collaboration [26], [123], [124], [86], [125], [9], [126]

Parties Collaborative types [127], [128], [129], [130]
Understanding [131], [132], [57], [133], [134], [135], [136], [137]

Collaborative Communication [128], [138], [139], [140], [141], [109], [142]
Capabilities Commitments [143], [144] [145], [143], [146], [147], [148], [149], [150]

Institutions [151], [152], [153], [154], [155], [156], [157], [158], [159]
Interactive Explicit Methods [160], [161], [162], [163], [164], [160], [165], [110], [166]
Methods Implicit Methods [167], [114], [168], [169], [170], [171], [172], [173], [174], [175], [176], [177], [178]

Multi-model Methods [179], [180], [181], [182], [183], [184], [185], [186], [187]
Reward-based methods [188], [160], [189], [170], [171], [172], [173]

Algorithmic Policy-based Methods [190], [162], [126], [171], [172]
Models Value Function based methods [191], [192], [101], [102], [114]

Exploration-process methods [164], [193], [173], [174], [175], [112], [26]

stage, which also could apply to human-AI interaction. Therefore, in the following

section, we will use the concept of human-AI interaction in a unified manner. In

the work of Arzate and Chirstian, more attention was paid to the algorithmic model

of the AI agent [9]. After reviewing the literature on human-machine interaction

in traditional engineering, we found that the interaction between humans and AI

corresponds to these design patterns. In particular, Schmidt’s model [26] not only

combines interactive methods and algorithmic models but also provides different

design ideas, according to different human-AI collaborative levels. Based on the

common characteristics of the classification in this literature, we derive the new

Human-AI Collaborative Reinforcement Learning (CRL) Classification (see Table

3.1).

3.3.3 Human-AI Collaborative Reinforcement Learning Tax-

onomy

We incorporate past work in a novel way to create a new taxonomy. We draw on

Schmidt’s Machine Interaction Pattern [26], Dafoe’s Collaboration Parties Classi-

fication Model [128], and Arzate’s Algorithmic Classification Model Collaboration

Method [9], to generate a novel taxonomy method from coarse to fine granularity.

Based on this approach and populating them with representative works from the

literature, for a structured approach (see Table 3.1), we define five axes: Design
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Patterns, Collaborative Levels and Parties, Collaborative Capabilities, Interactive

Methods, and Algorithmic Models. These five axes are then used to create a taxon-

omy, as shown in Fig. 3.2, which might be used as a systematic modelling tool for

HCI researchers and practitioners to select and improve their new CRL designs.

Figure 3.2: A new CRL taxonomy for interactive methods and design patterns.

3.4 Human-AI Collaborative Design Patterns

Human-AI collaborative design patterns may be used to provide an efficient and

repeatable approach for building human-AI collaborative systems [194]. Reliable

design patterns might increase these systems’ quality, reusability, and maintainabil-

ity. In this article, we collect the most recognised design patterns in the literature of
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human-machine collaboration for academics and practitioners to populate the CRL

Taxonomy as shown in Fig. 3.2.

In comparison to human-AI collaboration, human-machine collaboration has long

been a source of concern for researchers. In the early stages of the development of

human-machine interactions, domain experts believed that the collaboration be-

tween humans and machines was a physical, lower-level type of collaboration [26].

Specifically, machines were used by humans exclusively through physical contact,

in the lack of feedback between machines and humans, which might be viewed as

a kind of unidirectional interaction. After decades of development, several recog-

nised human-machine collaboration design patterns have been created, which we

summarise below.

3.4.1 CSE Pattern

Cognitive Systems Engineering (CSE), coined by Hollnagel and Woods, acts at the

level of cognitive functions [25]. CSE is the first framework proposed to analyse the

human-machine information exchange interaction. CSE is a framework for human-

machine collaboration where machines ‘plan and explore’ using the knowledge or

information provided by humans. This engineering method suggests that human-

machine collaboration occurs at a conscious level of communication. It is a percep-

tual mode in which the machine is employed as a sensory extension to assist with

human activities.

The major challenge at this level is identifying appropriate interactive methods

to optimise human information processing. However, CSE has been constrained

because it has only explored basic and low-level communications, leaving out more

complicated problems and environments.

3.4.2 Bosch and Bronkhorst’s Pattern

Bosch and Bronkhorst defined three levels of Human-AI collaboration: 1) unidirec-

tional interaction, in which humans assist machines or machines explain themselves

to humans; 2) bi-directional interaction, and 3) collaboration between humans and
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machines [111]. The vast majority of the currently existing methods have only

addressed the first level.

This framework’s contribution provides a viewpoint on the directions of collab-

oration between humans and machines. Furthermore, it constructs the direction

based on the roles that humans and machines play in a task, with one being the

subject of a task and the other aiding the opposing side. It is believed to help in

the development of more efficient communication methods. For example, if it is a

human-centred framework, more consideration should be given to how to transform

a ‘machine language’ into interpretable information such that humans can better un-

derstand, whereas if it is a machine-centred framework, more consideration should

be given to how human knowledge could improve machine efficiency.

3.4.3 Coactive Design Pattern

Johnson et al. proposed a Coactive design pattern in human-AI joint activities.

They experimented with a collaboration system from the perspective of observability,

predictability, and directability [112]. Observability concerns the ability of both

robots (or AI agents) and humans to observe each other’s pertinent aspects of status

and knowledge of the team, tasks, and environment. Predictability refers to the state

that the actions of both robots (or AI agents) and humans can be predicted such

that they may rely on each other’s actions to perform their own actions. Directability

refers to the ability of both robots (or AI agents) and humans to direct each other’s

behaviour in a complimentary manner.

This framework is similar to Bosch and Bronkhorst’s framework in that it con-

siders the direction of interactions and divides it into different levels. However, it is

limited due to a lack of robustness and security considerations.

3.4.4 Schmidt’s Pattern

Schmidt believes that collaboration should be tailored to diverse needs, fulfil differ-

ent functions, and be carried out in various ways depending on the circumstances.

Collaboration may be summarised as follows: 1) the augmentative level, in which
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one role in the partnership (human or AI agent) assists the other in performing

tasks; 2) the integrative level, in which both sides of the team share information

and assist each other in completing tasks together; and 3) the debative level, in

which tasks are completed through debate and negotiation between humans and AI

agents, especially when dealing with complex issues [113].

This framework considers not only the information exchange direction but also

different levels of collaboration, as well as robustness, security, and potential ethical

considerations.

3.5 Collaborative Levels and Parties

The patterns described above frame the modes of human-AI collaboration from dif-

ferent perspectives. They are also very comparable in terms of compartmentalising

collaboration modes or methods, i.e., into single-direction assistance, bi-directional

collaboration, and higher-stage fused collaboration. In this survey, we utilise a fu-

sion viewpoint that combines interactive methods and design patterns based on

Schmidt’s collaboration pattern to classify the current collaborative reinforcement

learning techniques. Schmidt’s model is divided into three levels: augmentative,

integrative, and debative. We drew a pyramid model based on Schmidt’s model (see

Fig. 3.4). We highlight significant research that has emerged at each level and the

issues that should be examined in the first three subsections that follow. We also

discuss the characteristics, advantages, and disadvantages of these different methods

and how to develop new ones in the future.

Apart from the classification of collaborative levels where humans and AI agents

are both viewed as a whole, we also discuss collaboration from a micro perspective

based on the framework proposed by Dafoe et al., where diverse constellations of

humans and AI agents are discussed, which we refer to as “collaborative parties” in

the final sub-section.
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Figure 3.3: Triangle of different collaborative levels: the first level is Augmentative
Level collaboration; the second level is Integrative Level collaboration; and the third
level is Debative Level collaboration.

3.5.1 Augmentative Level collaboration

collaboration at the Augmentative Level entails one partner compensating for the

shortcomings of the other [26]. AI has shown considerable promise in large-scale

data processing with well-defined rules, as well as in natural-perception fields such

as digital image recognition [105], natural language processing [195], among others.

Nevertheless, in a complex, ambiguous environment, AI performance lags consid-

erably below that of humans. The Augmentative Level approaches offered by the

community are mostly divided into two types. First, AI takes the lead in decision-

making, while humans assist AI in enhancing processing efficiency. In this case,

humans use prior knowledge to help the agents specify the state space and effi-

ciently obtain rewards from the complex environment. The RL methods used in

ChatGPT belong to this kind of collaboration. In the case of ChatGPT, it uses

human feedback to improve the model’s performance over time. For example, a hu-

man could evaluate the responses generated by the model and provide feedback on

their quality. This feedback could then be used to update the model’s parameters,

allowing it to learn from its mistakes and generate better responses in the future
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12. Second, humans play the primary role in decision-making, with AI assisting in

the process. In this case, the AI agents explain the tactics used to help humans

make faster decisions in a simple environment. At the sub-level of humans helping

AI agents improve efficiency, we will categorise how they communicate based on

which parts of the algorithm humans’ help can be injected into. At the sub-level of

AI agents helping humans, we mainly focus on how AI agents may inform humans

about why they make particular decisions.

Human-AI

The essential aspect of the role of humans supporting AI agents in decision-making

has been how to efficiently deliver information to AI agents while reducing human

fatigue to a minimum. Up to this point, many human-AI collaborative reinforcement

learning algorithms have been proposed, which may be categorised into explicit

interaction modal, implicit interaction modal, and multi-modal methods based on

different forms of interactions (detailed in Section 3.4). Finding a better way for

humans to interact directly with AI agents is still an essential research priority.

AI-Human

In the task of AI agents assisting humans in decision-making, the most challenging

problem lies in interpretability. Interpretability refers to the degree to which humans

can understand the rationale underpinning machines’ decision-making [196]. The

interpretability of AI models refers to the clarification of the internal mechanism and

the understanding of the results. The more interpretable the model is, the easier it

is for people to trust it [30]. Its significance may be seen in the following aspects.

In the modelling phase, interpretability may assist developers in understanding the

learning process, comparing alternative algorithms, optimising the procedure, and

fine-tuning the models; in the operation phase, AI agents can explain the internal

mechanisms and interpret the model outcomes to the decision-maker (i.e., humans).

Consider a decision-making recommendation model: before the model runs, multiple

12https://openai.com/blog/chatgpt/
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interpretable algorithms with their respective advantages can be provided to the

decision-maker to choose from, and after the model is trained, the model must

explain to the decision-maker why it recommended a specific solution given a specific

context.

Patterns underlying the above problems lie under the umbrella of eXplainable

AI (XAI), which is commonly regarded as critical for the practical deployment of

AI models. DARPA launched XAI in 2016 [93]. The basic objective of XAI is to

create machine learning models that, when combined with proper explanation tech-

niques, will allow humans to comprehend better and eventually accept and trust the

model’s predictions. The literature generally proposes two types of explainability: 1)

transparent models, which are embedded inside the operation of the AI algorithms,

leading to explainability by design, and are applied to simpler AI algorithms with

less accurate results; and 2) post-hoc models, which are performed after initial mod-

els have been trained. This type of method is usually more efficient, but it is less

reliable than transparent models [115].

At present, there are a few intrinsic interpretability Reinforcement Learning

methods. Verma et al. introduced a Programmatically Interpretable Reinforcement

Learning method (PIRL) [116]. This method is an upgrade of traditional Deep Re-

inforcement Learning (DRL). In DRL, it is difficult to represent policies due to the

nature of ‘black-box’ neural networks. To tackle this challenge, PIRL introduces

an advanced human-readable programming language to define neural network poli-

cies. Shu et al. introduced a hierarchical and interpretable multi-task reinforcement

learning framework where a complex task is broken into several sub-tasks, and then

a hierarchical strategy is used to complete learning with ‘weak supervision’ from

humans. By breaking a task into sub-tasks and thus making a learned strategy

traceable to them and explaining the relationship between different hierarchies of

the sub-tasks, this method builds intrinsic interpretability.

Compared with intrinsically interpretable Reinforcement Learning methods, post-

hoc methods are simpler in algorithm structure and more efficient in the computing

process. At present, many post-hoc methods have been proposed. For example, Liu

et al. proposed an explainable DRL method based on linear model U-trees [117].
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This is a stochastic gradient descent framework for explaining complex models by us-

ing linear model U-trees to fit Q-functions. There is also a Soft Decision Tree (SDT)

method, which provides post-hoc explanations by extracting policies. Madumal et

al. introduced an explainable method through a causal lens. In this framework,

an AI agent learns to play StarCraft II, a large dynamic space strategy game [118].

To generate an explanation, they simplify the entire game to four basic actions and

nine basic states and then use these basic causal factors to construct an explanation

for why the AI agent chooses action A over action B.

3.5.2 Integrative Level collaboration

Integrative collaboration entails using the various advantages of both parties to

complete a task. At this level, humans and AI agents are regarded as interdependent.

The main task is broken into several sub-tasks, and humans and AI agents can

perform just those they are skilled at [26]. At the integrative level, humans and AI

agents play equal roles in the system. Information exchange at this level is generally

referred to as ‘communication’ in the literature [26].

In the following sub-sections, first, we summarise the communication methods

in this collaborative pattern. Then, we discuss how to make the communicating

parties trust each other. On this basis, the system needs resilience to enhance its

robustness in order to better deal with the complex conditions in the real world.

Communication

A grand challenge of collaborative reinforcement learning is how humans and AI

agents communicate with each other. Only when communication is seamless can

they decide on the next actions following each other’s feedback. Liang et al. pro-

posed an implicit human-AI collaboration framework based on Gricean conversa-

tional theory [197] to play the game Hanabi. The AI agent must cooperate with the

human to win the game. In this framework, the AI agent tries to understand the

implied meaning of human’s natural language suggestions in a dialogue box [122].

Cordona-Rivera and Young proposed an AI Planning-based Gameplay Discourse

Generation framework to achieve communication between human players and the
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game [121]. Pablo and Markus proposed an approach to Human-AI collaboration

by planning and recognising the plan [120]. Johnson et al. proposed a testbed for

joint activities. The unique feature of this testbed is that it can be applied not only

in interactive experiments for multiple agents but also in interactive experiments

between humans and agents [27]. A series of studies were carried out on this testbed

to investigate the collaboration of humans and agents in a team. For example,

Matthew et al. introduced the relationship between interdependence and autonomy

in a human-AI collaboration system [119].

Trust

Based on the established communications, figuring out how to make the partners

trust each other to complete the task is also crucial. Although the community

has not yet proposed a clear definition of trust between humans and AI agents,

it is generally regarded as a psychological state [26]. Johnson et al. proposed a

Coactive Design framework for human-AI joint activities. In their framework, the

authors proposed a collaboration system following the perspectives of observability,

predictability, and directability [112]. These components are critical for humans and

AI agents to collaborate in a trustworthy manner.

Resilience

Resilience is another essential feature in human-AI collaboration. In complex prob-

lems, with possible delays and information noise, establishing a resilient mechanism

to make the system more robust is crucial for communication and mutual trust.

An effective human-machine collaboration mechanism should be able to diagnose a

problem quickly and provide remedial explanations after the problem occurs so that

the system can get back on course [112]. Zieba et al. proposed a mechanism to

measure the resilience of human-machine systems, that is, the ability to anticipate,

avoid, and recover from accidents to a normal state [113]. This is instructive for

designing a collaborative system, as it is necessary to consider how it responds to

emergencies and thus recovers quickly.
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3.5.3 Debative Level collaboration

Debative models come into play when humans and AI agents hold different opinions

on decision-making in a task and debate to find the optimum solution based on

their differing knowledge and understandings. Models are often required to meet

the following requirements. First, humans and AI agents share a unified goal, and

achieving that goal is the primary task. A debate without a unified goal is mean-

ingless for both parties. Second, both parties have strong justifications for their

decisions and have insights into a problem based on their respective cognitive mod-

els. Third, both parties can effectively communicate and explain their decisions

to each other. Communication and interpretability are the premises of the debate.

Fourth, there are clear evaluation criteria to measure the outcome from a debate

to ensure an optimal result. Fifth, both parties can learn and adjust their own

knowledge after a debate to achieve better results in the future [26].

As knowledge-based decisions are fragile and controversial, it is necessary to de-

bate the results [123]. In a complex and uncertain environment, a full debate will

better demonstrate the advantages and disadvantages of different decisions. Col-

laboration at the level of debate requires that both humans and AI agents have

sufficiently high levels of professionalism in a specific complex domain. Reinforce-

ment learning algorithms based on this level are scarcely studied in the literature,

but we expect that as the field progresses, this form of collaboration will attract

more attention.

Geoffrey et al. introduced a framework that enables two agents to debate with

each other, with a human judge deciding who to trust in the end [124]. Although it

has not yet been applied to the debate between humans and agents, this framework

meets the above requirements. In their experiment, the two agents attempted to

persuade human judges to believe their judgments on the MNIST data [198]. First,

the goals of the two agents were unified. Second, the two agents have different

judgments based on their own algorithmic perceptions. Third, both agents are

able to generate simple explanations to persuade human judges. Fourth, human

judges have the intuitive knowledge to make accurate judgments. This experiment is

enlightening for future research, especially in human-agent and multi-agent debating
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collaboration.

3.5.4 Collaborative Parties

The different levels of human-AI collaboration take a macro view of humans and AI,

looking at them as a whole. The collaboration of humans with AI, on the other hand,

can be split down into different combinations of parties from a micro perspective or

in consideration of practical scenarios. For example, future scenarios could include

interactions between a human and several AI agents, interactions between human

groups and AI-agent groups, or a more diversified fusion of the two. Therefore, in

this section, we will discuss the types of interactions between humans and AI agents

from the micro perspective (AI agents-agents, human-AI agents, human-human, and

more complex constellations). Dafoe et al. categorises collaborative roles into three

categories: AI-agent, Human and Organisations. Collaborative types based on the

number of roles involved in the collaboration into six types [128] (see Fig. 3.4):

1. Human-Human collaboration: the classic human-to-human collaborative model;

2. Collaborative Tools: the AI agent is used to enhance collaboration, such as

language translation.

3. Alignment and Safety: the AI agent acts like an assistant to help humans solve

problems, such as the relationship between vehicles and humans in autonomous

driving.

4. Human-AI-Human-AI collaboration: With the development of 5G technology

and AI technology, large-scale human groups and AI groups may cooperate in

the foreseeable future, such as in level 5 autonomous driving [127].

5. The Planner Perspective: This approach aims to strengthen the collaboration

and infrastructure of the entire society from the planner perspective of social

construction rather than the collaboration between an individual and a single

AI, e.g., social media and network communications.
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6. Organisations and Society: Collaboration could have a more complicated

structure, with multiple types of hierarchical collaboration or a complex inter-

nal structure.

Figure 3.4: Different parties in the process of collaboration.

3.6 Collaborative Capabilities

In the previous section, we discussed the different levels of human-AI collaboration

from a macro perspective, where both human and AI agents are viewed as integral

parts. However, in real scenarios or from a micro perspective, there may be interac-

tions between a human and several AI agents or interactions between human groups

and AI groups. Therefore, in this section, we will discuss the types of human-AI

interactions from the micro perspective (i.e., AI agents-AI agents, human-AI agents,

human-human, and more complex constellations), as well as what kinds of collabo-

ration capabilities the agent requires for group interactions.

Dafoe et al. divides the collaboration capabilities of agents into four types:

Understanding, Communication, Commitments, and Institutions [128].

57



3.6.1 Understanding

In human-AI Collaboration, an AI agent’s ability to understand the environment

and predict the consequences of its actions is crucial for reaching mutually beneficial

results. In game theory, there are many discussions about how important it is to un-

derstand multi-role collaboration. For example, in Nash equilibrium, each strategy is

required to be the best response after fully understanding the other’s strategies [131].

Moreover, under the constraint of partial information, Bayesian Nash Equilibrium

and Perfect Bayesian Equilibrium provide a solution for how multi-role collaboration

should enable other participants to understand better each other’s strategies [199].

In collaborative reinforcement learning, the most important type of understand-

ing is learning the preferences of the other AI agents, namely their values, goals, and

reward functions. Humans understand how to better provide feedback or rewards to

the AI agent in order to help it converge faster and function more efficiently. Some

AI researchers attempted to learn the AI agent’s behaviour directly. For example,

Albrecht’s study [132] summarised how humans observe the AI agent’s behaviour in

order to understand the agent. Inverse Reinforcement Learning, or IRL, is a type

of research in which AI agents are oblivious to or indifferent to humans [57]. This

type of method requires humans to inject their prior knowledge [133] or control the

AI agent to make a few first steps [134,135].

Besides, in a more complex decision-making environment, humans may con-

sciously or unconsciously hide their opinions or ideas, causing significant challenges

for AI agents. There have been some studies on the application of human recursive

mind-reading methods in negotiations to overcome this challenge [136], and some

studies have applied this method to the game Hanabi to improve the collaboration

between humans and AI agents [137].

3.6.2 Communication

Understanding and collaboration could be difficult to achieve without effective com-

munication. AI agents may often better understand others’ behaviour, intentions,

and preferences by communicating directly with them rather than just observing and
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interacting with them regularly. The finding of Pareto-optimal equilibrium may be

made easier as a result of information exchange [128].

Common Ground Common ground is necessary for collaboration. The message

sender and receiver should use the same communication protocol so that each may

understand the meaning of the other’s message.

Many studies have been conducted on machine-to-machine communication prob-

lems, which are usually referred to as emergency communication [138–141]. However,

there are few studies on establishing common ground and effective communication

between humans and AI agents. The establishment of common ground is arguably

the most difficult challenge [128].

Bandwidth and Latency The bandwidth of communication refers to the volume

of data that may be transferred in a given duration of time [128]. Latency refers to

the time it takes for a message to be transmitted and received [128]. How to enhance

bandwidth and minimise latency in human-AI collaboration has long been studied,

and some promising techniques have been proposed, including brain-computer in-

terface technologies, which are designed to connect the human brain directly via

hardware to achieve maximum bandwidth with the shortest possible latency [109].

3.6.3 Commitments

The aforementioned capabilities of Understanding and Communication strive to

overcome the difficulties in collaboration caused by inaccurate or inadequate in-

formation. Collaboration, even with abundant information, may still fail. Social

scientists have identified “commitment issues”, or the inability to make credible

threats or promises, as a primary cause of collaboration failure. Prominent research

even claims that the problem of commitment is the most significant impediment to

rational AI agent collaboration [143]. A substantial volume of research has explored

the commitment issues that affect collaboration [143–147].

Many different studies have tried to build commitments between humans and AI.

Some studies have attempted to develop a commitment contract method between
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humans and AI agents based on semantics [148–150].

3.6.4 Institutions

Obtaining the requisite understanding, communication, and commitment for collab-

oration often necessitates the use of a social framework. In economics and politics,

this social framework is typically referred to abstractly as institutions [128].

Decentralised Institutions In decentralised institutions, there is no single insti-

tutions centre, and each individual is connected to the other, continuously encour-

aging the construction of the structure through interaction with each other. Addi-

tionally, many multi-agent system construction methods have been proposed to aid

in multi-agent systems communication, planning, and decision-making [151–155].

Centralised Institutions Centralised institutions involve a centralised authority

that can define the rules and limit other participants [128]. The multi-agent systems

research community attempts to build a collaborative mechanism amongst agents

using approaches based on centralised institutions [200]. Several studies investigated

the use of centralised multi-agent systems in automatic auction systems [156–158].

The method of centralised multi-agent path-finding technique could be utilised in

autonomous vehicle obstacle detection in the future [159].

3.6.5 Distributed Cognition

In the process of collaboration between multiple parties, Distributed Cognition is

a very important concept. Distributed Cognition, a theory developed by Edwin

Hutchins, extends the concept of cognition beyond the individual to encompass the

environment, artefacts, and social interactions. In the context of Human-AI Col-

laborative Reinforcement Learning (CRL), this theory sheds light on the shared

cognitive landscape between humans and AI agents. It encourages exploring how

tasks such as problem-solving and decision-making are collaboratively managed,

focusing on the synergistic flow of information and the role of digital tools in facili-

tating cognitive processes. Particularly pertinent is the allocation of cognitive tasks,
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where a balance is struck between human intuition and AI’s computational prowess.

This perspective not only augments our understanding of collaborative dynamics

but also informs the design of CRL systems. It underscores the need for systems

that optimise cognitive task distribution, ensuring efficiency and user satisfaction

while maintaining transparency to foster trust and informed decision-making [201].

3.6.6 Activity Theories

Activity Theory, rooted in the works of Soviet psychologists such as Lev Vygotsky,

provides a perspective through which to view human-AI interactions within their

socio-cultural context. In Human-AI CRL, the theory emphasises the roles and

responsibilities of both human and AI agents, their shared and individual objectives,

and the influence of the broader social and organisational environment. It advocates

reflecting on how AI systems are integrated into human activities, shaping and being

shaped by social norms, regulations, and cultural aspects. This theory underlines

the importance of user-centred design, advocating for AI systems that are intuitive

and augment human capabilities while also considering the broader social and ethical

ramifications. This approach is vital in addressing challenges like job displacement,

privacy, and fairness, ensuring that AI systems contribute positively to the human

social and work environment [201].

3.7 Interactive Methods

Traditional reinforcement learning methods require excessive training time in com-

plex environments, and their applications are often confined to scenarios with clear

rules. An effective way to mitigate these limits is by using the different strengths

of humans and AI and complementing each other’s inadequacies. This approach

is known as Collaborative Reinforcement Learning (CRL). CRL employs human-

in-the-loop training to improve the performance of algorithms or to help humans

improve decision-making efficiency [9]. Recent CRL research has focused on devel-

oping AI that can communicate with humans in a more natural way [9]. There are

two types of interactive methods: explicit and implicit. In the explicit method, hu-
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mans explicitly provide the AI agents with clear numerical feedback. This method

is preferable for AI agents since it allows them to process the feedback more easily,

but it is likely to cause human fatigue due to the ambiguity of numerical repre-

sentations, resulting in inefficiency in a long-term training process. In an implicit

method, humans give feedback to AI agents through natural interactions such as

posture and gaze, as opposed to explicit methods, which provide clear numerical

feedback. This method places more demands on the AI agent, but it may improve

the fatigue resistance of human trainers, allowing for long-term and stable collabora-

tion [181]. Based on these unsolved problems, in this section, we present human-AI

interactions from the perspective of interactive methods.

3.7.1 Explicit Interactive Methods

Currently, most AI agents learn from human feedback via explicit interactive meth-

ods. Humans provide feedback directly to the AI agent via keyboard, slider bar, or

mouse to provide clear alpha-numerical feedback [160–163]. For example, Thomaz

and Breazeal proposed a method of sending feedback to the AI agent by using the

mouse to click on the sliding bar [164]. Knox and Stone proposed the TAMER

framework, which allows an AI agent to learn from MDP and human advice by

having a human trainer click the mouse to indicate the desired actions [160]. These

methods are more efficient than traditional reinforcement learning and can achieve

specific goals in complex environments with the assistance of humans.

However, the reaction time of human trainers may cause delayed feedback, leav-

ing the AI agent unsure of which actions the human feedback was aimed at, especially

for AI agents with frequent actions. A standard solution is to set a delay param-

eter to express past time steps. For example, Warnell et al. proposed a method

to obtain the delay distributions of the human trainers to improve algorithm effi-

ciency [165]. Knox and Stone provided another way for estimating the delay: using

a probability density function [202]. Moreover, these methods may be unfavourable

to non-professional human trainers, who need to spend a significant amount of time

learning the user interface and the meaning of the feedback represented by each

operation. Simultaneously, this kind of interaction can easily make human trainers
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impatient.

Human trainers can also provide explicit feedback to AI agents using hardware

delivery methods [110], where feedback is generally converted into a numeric value

directly via the hardware devices, such as keyboards. However, a more user-friendly

method allows the AI agent to learn implicit feedback from natural interactions with

trainers.

3.7.2 Implicit Interactive Methods

Aside from receiving feedback directly from human trainers via explicit interactive

methods, AI agents can also learn via implicit interactive methods.

Implicit interaction methods reduce the learning cost of human trainers, as they

can directly participate in training the AI agents without specific learning. At

the same time, a more natural way of interaction may reduce the fatigue of human

trainers. Many implicit interactive methods have lately been proposed. For example,

feedback can be based on natural language, facial expressions, emotions, gestures,

and actions, as well as incorporating multiple natural interactive methods. In an

ideal scenario, humans could train the AI agent in the same way they interact with

humans in the real world. Below, we summarise some of the most prominent implicit

interactive methods.

Gestural Feedback. Gestures are sometimes considered a form of unconscious

human communication. It is also considered an effective way to complement other

communication forms, and it is even more helpful than other communication meth-

ods for speech- or hearing-impaired users. For example, Voyles and Khosla proposed

a framework which can train robots by imitating human gestures [167]. Moon et al.

introduced a method of using gestures to command the AI agent to learn to control

a wheelchair [114]. These methods are very friendly to human trainers and do not

require any particular training on their part.

Facial Feedback. Li et al. trained a mapping model to map implicit emotions to

various types of explicit feedback data. Facial expressions were marked with different
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types of feedback in advance, such as 1 for “happy” and 0 or -1 for “sadness” [168].

Based on this work, Gadanho introduced a facial feedback reinforcement learning

method based on an emotion recognition system. The system can learn to decide

when to change or reinforce its behaviour with Q-learning by identifying human

emotions [169]. Arakawa et al. introduced the DQN-TAMER model, where an AI

agent may obtain facial expressions via a camera, and then use the facial expression

data to map different emotions as implicit rewards to improve learning efficiency

[170]. Veeriah et al. proposed a method where the agent may analyse human facial

features from camera images to gain additional rewards. As a result, the AI agent

can quickly adapt to the user’s facial changes in order to complete the task [171].

One of the limitations of this method is that human emotions cannot be identified

merely based on facial expressions, and there may be a delay in converting machine

recognition expressions into feedback.

Natural Language Feedback. When compared to facial expression and gesture-

tracking feedback methods, natural language feedback makes it easier to convert the

token vector of the sentence into quantitative feedback. Natural language feedback

can be transformed and applied to several aspects of reinforcement learning, such

as rewards, values, and policies. Goyal et al. introduced the LEARN (LanguagE-

Action Reward Network) method, which is a reward shaping method [172]. In the

state-action space of the task, if most of the reward signals are 0s, we call it the

sparsity of rewards. Sparse rewards may cause the algorithm to converge slowly. AI

agents need to interact with the environment several times and learn from a large

number of samples to reach an optimal solution. One solution to this problem is

to provide the AI agent with a bonus reward in addition to the reward function

whenever the AI agent takes the right step toward the goal. This process is called

reward shaping. Maclin and Shavlik proposed RATLE (Reinforcement and Advice,

Consulting Learning Environment) [173], where the AI agent can translate human

natural language suggestions into feedback for the Q-value function to accelerate

the learning process. Kuhlmann proposed a method that transforms natural lan-

guage suggestions into an algorithm-understandable formal language to optimise the
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learning policy [174]. In addition to the methods described above for transforming

into different parts of the algorithm, natural language can be used to directly guide

the AI agent’s learning policy. For example, Williams et al. proposed an object-

oriented Markov Decision Process (MDP) framework that can map natural language

to reward feedback [175].

3.7.3 Multi-modal Feedback

The research above is focused on a single input interaction method. On the other

hand, multi-modal interactions are more prevalent and efficient in day-to-day human-

human interactions. Multi-mode communication has the following benefits. First,

when a single-mode piece of information is disrupted by noise or occlusion, other

modes can be used as information supplements. Second, when multi-modal inter-

action is available, it has the potential to improve the robustness and reliability

of communication. Quek et al. introduced a framework for analysing language’s

mutual support and accompanying gestures [179]. Cruz et al. proposed a dynamic

multi-modal audiovisual interaction framework that would allow humans to provide

feedback using their voices and gestures [180]. Griffith et al. [190] introduced a

multi-modal interaction method based on hand gestures and a speech recognition

system, which was restricted to operating geometric objects on maps. Weber et

al. [180] developed a dynamic audiovisual integration method that allows humans

to input information via natural language and gestures. In the above experiments,

multi-mode interactions generally outperformed single-mode interactions. Most of

the current multi-mode interactions are merely a combination of two modes, such

as any two of voice, gesture, sound, and vision. One of the problems with the above

multi-modal methods is their inability to combine various forms of human feedback.

The ability of humans to interact directly with AI agents using multiple methods

at the same time remains unexplored. In the future, these multi-mode interactive

methods can be combined in more forms to develop effective human-AI collaboration

for a broader range of scenarios.

Some studies take into account the effect of human fatigue caused by increasing

training time on the quantity and quality of feedback. As training duration increases,
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human trainers become exhausted, reducing the amount of feedback while simulta-

neously lowering the quality of the feedback [181, 183]. Methods for encouraging

human trainers to raise interaction excitement through gamification were proposed;

such methods have been found to decrease weariness and effectively improve human

trainers’ efficiency [182].

3.8 Algorithmic Models

In the previous section, we analysed how humans provide feedback to AI agents.

This section categorises algorithmic models based on how agents receive and process

human feedback.

3.8.1 Reward-based Methods

Reward-based methods accelerate the learning process by adjusting the reward that

the AI agent receives from the environment. Concretely, after the AI agent re-

ceives feedback from the environment, humans can scale up or down the rewards

based on their knowledge, potentially accelerating the learning process [189]. Com-

putationally, the reward from human H (s, a, s′), is added to the reward from the

environmental reward R (s, a, s′) to get the new reward R̄ (s, a, s′).

R̄ (s, a, s′) = R (s, a, s′) +H (s, a, s′) , (3.2)

Thomaz and Breazeal proposed a method for non-expert human trainers to in-

fluence the AI agent’s next action by providing a positive or negative numerical

reward. If the agent received negative feedback, it would attempt to reverse the

previous action in order to get a higher score [188].

Knox and Stone introduced the TAMER algorithm, which uses human demon-

stration as input to guide the AI to perform better [160]. Based on the TAMER

method, Riku et al. introduced a framework that combines the deep learning method

and TAMER, named DQN-TAMER, where rewards are shaped by the human’s nu-
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merical binary feedback and environment [189]. Additionally, Arakawa et al. inves-

tigated a facial expression function based on the reward-shaped method, which is

applied in a maze-like environment game [203]. The human trainers’ facial expres-

sions could provide feedback to the AI agents. The major shortcoming is that the

recognition of human facial expressions is imprecise and intermittent.

Rosenfeld et al. developed a heuristic function method where the AI agent re-

ceives feedback generated by hand-engineered data from the human trainer [204].

The experiment’s findings [205] indicate that heuristic functions may be a natural

method for AI agents to learn from human trainers. The primary disadvantage of

this approach is that it requires human trainers with extensive professional back-

grounds and programming skills. It will be extremely hostile to non-professional

users.

Reward-based methods can efficiently expedite the learning process in an en-

vironment with sparse rewards, but certain drawbacks are listed below. The first

problem is “credit allocation”, which is especially problematic in a rapidly changing

environment where humans may be too slow to provide timely feedback. Therefore,

the method’s limitation remains how to map human rewards to corresponding ac-

tions. The second problem is “reward hacking”, where the AI agent may achieve

the greatest rewards by using ways humans would not expect [9].

3.8.2 Inverse Reward Design Methods

The agent is constantly attempting to optimise the human-designed reward function.

When designing the AI agent, human developers always set the reward function

based on the experimental environment, but the AI agent always encounters a new

environment. Using the original reward function designed by humans in a new

environment may lead to poor convergence. Mindermann et al. presented an inverse

reward function in response to this issue [206]. To obtain the true target, this

method is based on the designed reward function and the trained MDP. This allows

agents to adapt effectively to the new environment, eliminating the issue of reward

hacking. More specifically, this method takes the designed reward function, the

test environment model, and the MDP in the new environment as input. Then a
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Bayesian function maps the proxy rewards to the real rewards. The experiment

in [207] demonstrates that the inverse reward method could successfully boost the

AI agent’s learning efficiency.

3.8.3 Policy-based Methods

Policy-based methods modify the learning policy of the AI agent action process to

encourage the action to fit what the human trainers expect [9]. Human trainers

may be aware of a large number of potential optimal actions A in a given state S;

the probability of humans providing feedback to the AI agent can be denoted as C,

where 0 < C < 1. The difference between positive and negative human feedback

can be expressed as ∆s,a. The probability that humans give policy feedback Prc(a)

in a given state S can be expressed as

Prc(a) =
C∆s,a

C∆s,a + (1 − C)∆s,a
(3.3)

Currently, the method that uses human critique for state and action pairs as

input to shape agent policy is widely accepted. Griffith et al. proposed an optimal

policy method based on human feedback, a Bayesian method that takes as input

critiques for each state and action pair [190]. The experiments in [161] suggest that

this policy-based method outperforms other reward-based methods.

Krening and Feigh conducted an experiment in which they compared two dif-

ferent policy-based methods that could bring a better user experience [208]. The

first one is the critique feedback method proposed by Griffith [190], and the second

is their Newtonian action advice method [208]. The result is that the method of

action advice is better and the time required is reduced.

MacGlashan et al. proposed a Convergent Actor-Critic method, COACH (Cor-

rective Advice Communicated by Humans). This framework allows non-experts

to use numerical binary feedback to formulate policies through corrective sugges-

tions [162]. Dilip et al. proposed a deep COACH method based on the original

COACH, which uses raw pixels as input to train the AI agent’s policy. The authors
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argued that the use of highly representative inputs facilitates the application of the

algorithm in more complex environments [126].

When compared to reward-based methods, the advantage of policy-based meth-

ods is that they do not require specific feedback from humans to AI agents. Nev-

ertheless, humans must determine which strategy is most effective in assisting the

AI agent. This may have higher requirements for the prior knowledge of human

trainers.

3.8.4 Value Function based Methods

Value function-based methods estimate future rewards to obtain the highest poten-

tial reward at the end of the task, by using human knowledge [9]. They combine

the value representing human preference with the value obtained by the AI agent

from the environment to promote the learning process. Matthew et al. proposed

a method that combines human preference, and agent value called Human-Agent

Transfer (HAT) [191]. The algorithm generates a strategy based on recorded hu-

man trainer preferences, which it then applies to shape the Q-value function. This

shaping process provides a stable reward for the state-action pair, in the Q-learning

process. Brys et al. proposed a method that uses human demonstrations as input

for a value named RLfD. This method generates a Gaussian function by human

demonstration to guide the exploration process of the Q(λ) algorithm [192].

Despite the fact that value function based methods are likely to be an effective

way of minimising human feedback, there are now just a few studies based on it.

3.8.5 Exploration Process-based Methods

Reinforcement learning is a method in which an AI agent needs to interact continu-

ously with the environment and complete tasks based on rewards. This means that

the AI agent must perform actions it has never tried before. This process is referred

to as the exploration process. In exploration process-based methods, humans can

increase efficiency by reducing AI agent errors, and unnecessary attempts [189]. Ex-

ploration process-based methods aim to minimise the action space by injecting prior
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human knowledge to guide the AI agent’s exploration in order to increase learning

efficiency.

Thomaz and Breazeal conducted an experiment in the game Sophie’s Kitchen

to evaluate human guidance that helps the AI agent minimise its action space in

order to enhance learning efficiency [164]. The results suggest that employing human

prior knowledge to limit low utility efforts is more efficient than using scalar reward

functions [193]. Suay et al. developed an upgrading approach in which the user

may help exploration by highlighting goal states in the environment [209]. Yu et

al. proposed an action-biasing approach that leverages user feedback to stimulate

the AI agent’s exploration process. The sum of the agent and user value functions

is employed as a value function, to incorporate human feedback into the AI agent’s

learning process [210]. These methods are considered effective, but they generally

need to be trained by humans, and this training process requires a lot of professional

knowledge and participation.

In general, collaborative reinforcement learning has shown great potential for im-

proving the efficiency of decision-making tasks. However, further research is needed

to determine how to build environment models in which humans interact with AI

agents. These models should consider not only the effectiveness and efficiency of

interactive methods but also their interpretability, accountability, and possible eth-

ical issues in decision-making. Therefore, in the following sections, we refer to the

literature on the pattern of human-machine relations in the engineering field and

propose guidelines for the future development of collaborative reinforcement learning

methods.

3.9 Design Trajectory Map

Based on the previous CRL taxonomy, we propose a novel CRL Trajectory Design

Map to guide researchers in designing CRL systems. When researchers start design-

ing a human-AI collaborative reinforcement learning system, they could follow our

CRL Trajectory Design Map (Fig. 3.5) step by step. First, they start with selecting

a collaborative pattern from a macro perspective in the Design Patterns (Section
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3.4) category. Next, they choose different collaborative levels and a number of the

participants in the Collaborative Levels and Parties (Section 3.5). After that, they

choose the collaborative capabilities that every party should have in the Collabo-

ration Capabilities (Section 3.6). Finally, they select suitable interactive methods

and algorithmic models for the specific task requirement categories of Interactive

Methods (Section 3.7) and Algorithmic Models (Section 3.8).

Fig. 3.2 presents our newly proposed CRL taxonomy, which contains the most

commonly used and highly cited methods and design patterns in the CRL research

area, and which can also be used as a Trajectory Map (see Fig. 3.5) of designing

collaborative reinforcement learning systems, as follows. Researchers may utilise our

Trajectory Map to develop their architecture as they go from the top Design Pat-

terns to the next, until the most detailed Algorithmic Model is selected. In the Map,

the first part suggests Design Patterns, which are the most popular structure of

human-AI collaborative frameworks in the CRL domain. These include cognitive

systems engineering (CSE) [25], Bosch’s framework [111], the Coactive design pat-

tern [112] and Schmidt’s framework [113]. The second part is the Collaborative

Levels and Parties, while the Third part covers Collaborative Capabilities,

which include understanding, communication, commitments, and institutions. The

fourth part is Interactive Methods, including explicit and implicit interaction

methods as well as multi-module interaction modes [9]. The last part reflects Algo-

rithmic Models, which contains reward-based methods [189], value-based meth-

ods [191], policy-based methods [190], and exploration-process-based methods [164].

This taxonomy could be used as a systematic modelling tool for researchers and

practitioners to select and improve their new CRL designs. They could choose an

archetype in Design Patterns for the overall architecture at the start. Then, they

could select a Collaborative Level and the numbers of the Parties in the collabora-

tion. After that, they could select the Collaborative Capabilities that the AI agents

should have, and select suitable Interactive Methods and Algorithmic Models that

can meet the requirements of specific tasks. If researchers wish to learn about the

most advanced technology developed in the last decade, they could check the clas-

sification we provide in Table 3.1.
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In the following sections, we first revisit the theories and techniques of Reinforce-

ment Learning in Section 3.2. We then review the classic Human-AI Collaborative

Design in Section 3.4. Section 3.5 summarises patterns of human-computer interac-

tion that have had significant impacts. Sections 3.6 to 3.8 summarise collaborative

reinforcement learning algorithms using Schmidt’s human-computer collaboration

view as a taxonomy.

Figure 3.5: A Design Trajectory Map of Collaborative Reinforcement Learning Sys-
tems.

3.10 Summary

In this Chapter, we have presented a survey of Collaborative Reinforcement Learn-

ing (Collaborative RL, or CRL) to empower research into human-AI interactions

and collaborative designs. This analysis resulted in us proposing a new CRL clas-

sification method (see Table 3.1), called CRL Design Trajectory Map (see Fig. 3.5)

and a new CRL taxonomy (see Fig. 3.2) as a systematic modelling tool for selecting

and improving new CRL designs. Researchers could use our Trajectory Map to de-

sign a CRL system from scratch or use parts of it according to their needs to refine

their system. For example, they could select their desired system structure in the
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Human-AI Collaborative Design Pattern, identify and satisfy the requirements of

different components in Collaborative Levels & Parties and Collaborative Capabili-

ties, and select different design components in Algorithmic Models and Interactive

Methods. This comprehensive design approach is from top to bottom and macro to

micro. In summary, through this survey, we provide researchers and practitioners

with the tools to start improving and creating new designs for CRL methods.

Epilogue

In conclusion, the study presented in this chapter has addressed RO 1.1 and RO

1.2 to develop a comprehensive Human-AI CRL Design Trajectory Map that serves

as a systematic modelling tool for selecting existing collaboration theories and CRL

frameworks. We conceptualise existing frameworks by considering design patterns,

collaborative levels, parties and capabilities, as well as reviewing interactive methods

and algorithmic models to address the RO 1.3. Moreover, we have thoroughly

examined the generic challenges associated with Human-AI Collaborative System to

address the RO 1.4. By identifying these challenges, we aim to provide the research

community with valuable insights and guidance for exploring new and innovative

research directions in this field. This chapter addresses these research objectives to

answer the Research Question 1: “What trajectory could we follow to develop a

user-friendly Student-ITS collaboration system?”
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CHAPTER 4

SimStu: A Transformer-based Approach to Generate Student

Behavioural Data for Training ITS

Prologue

In Chapter 3, we have introduced a Human-AI collaborative system design trajec-

tories map, which could be applied in guiding the design process of the Human-AI

process. We utilise a Human-AI collaborative structure in the Student-ITS collab-

orative process. From the Student-to-AI process, we focus on developing student

simulation methods to generate student behaviour data. This approach has the po-

tential to improve the student-to-ITS process by minimizing the reliance on student

interaction while maximizing the performance of the ITS.

ITS has made significant advancements using these technologies. Developing dif-

ferent teaching strategies automatically, according to mined student characteristics

and learning styles, could significantly enhance students’ learning efficiency and per-

formance [7]. This requires the ITS to recommend different learning strategies and

trajectories for different individual students. However, one of the greatest challenges

is the scarcity of data sets providing interactions between students and ITS for the

ITS training [211]. One promising solution to this challenge is to train ”sim stu-
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dents”, which imitate real students’ behaviour while using the ITS. The simulated

interactions between these sim students and the ITS can then be generated and used

to train the ITS to provide personalised learning strategies and trajectories to real

students.

In this Chapter, we propose SimStu, built upon a Decision Transformer, to

generate learning behavioural data to improve the training efficiency of ITS. The

experimental results showed our Simtu could model real students well in terms of

action frequency distribution and elapsed time distribution. Moreover, we evaluate

SimStu in an emerging ITS technology, Knowledge Tracing. The results indicated

that SimStu could improve the training efficiency of ITS.

Declaration: This chapter is based on the following publications:

Li, Z., Shi, L., Cristea, A., Zhou, Y., Xiao, C., & Pan, Z. (2022, July).

SimStu-Transformer: A Transformer-Based Approach to Simulating

Student Behaviour. In Artificial Intelligence in Education. AIED 2022, Durham,

UK, July 27–31, 2022, Proceedings, Part II (pp. 348-351). Cham: Springer Inter-

national Publishing.

Li, Z., Shi, L., Zhou, Y., & Wang, J. Towards Student Behaviour Sim-

ulation: A Decision Transformer based Approach. In Augmented Intelli-

gence and Intelligent Tutoring Systems: 19th International Conference, ITS 2023,

Corfu, Greece, June 2–5, 2023, Proceedings (pp. 553-562). Cham: Springer Nature

Switzerland.

This chapter is presented largely as accepted, although referencing and notation

have been altered, and cross-referencing has been added for consistency across this

thesis. Some stylistic changes have been made for consistency. The majority of the

text is verbatim, with some minor wording and formatting changes.
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4.1 Introduction

In the previous chapter, we introduced the trajectory map for designing user-friendly

and efficient human-AI collaborative systems. As we navigate the landscape of

Human-AI Collaboration for Intelligent Tutoring Systems (ITS), this chapter em-

barks on a journey guided by the trajectory map’s principles. Our destination: the

development of innovative solutions to address a critical challenge in the realm of

ITS - the scarcity of interaction data, often referred to as the ’cold start’ problem.

The recent COVID-19 has significantly impacted people’s educational activities,

which promoted the Intelligent Tutoring System (ITS) to achieve significant de-

velopment. Data-intensive approaches have been proposed for ITS to improve the

quality of education service [212]. However, these need to be powered by data-

hungry machine learning models, whose performance relies heavily on the size of

training data available [213]. However, similar to the scarcity of labelled data in

many AI fields, the shortage of student behavioural data has become one of the

greatest challenges for ITS advancements [214]. Our work thus aims to tackle this

challenge by answering the following research question:

How to create adequate high-fidelity and diverse simulated student

behavioural data for training ITS?

The intuition of SimStu (shown in Figure 4.1) is that after ITS collects a small

amount of real student behavioural data in the early stage development. It feeds

the data into a generator, which produces a large amount of simulated student

behavioural data. These simulated data can then be used, together with the real

student behavioural data, to train the ITS. Therefore, the ITS could be enhanced

to improve most users’ experience. The generator, which we call “SimStu”, is built

upon the Decision Transformer [13].

In the subsequent research, to train and evaluate our SimStu model, we used

the EdNet dataset1, which is the largest student-ITS interaction benchmark dataset

so far. Moreover, we improve the model’s performance by modifying the input and

hyperparameters. In this work, we propose an upgrade version of the SimStu, which

1http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com
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Figure 4.1: The intuition for the proposed SimStu pipeline in ITS.

get better performance. The results suggest that our method could simulate the real

student well on the metrics of action distribution and elapsed time distribution. In

addition, we apply our method in real educational scenarios, the Knowledge Tracing

models. Knowledge Tracing (KT) is a kind of method that predicts the student’s

next action based on their historical behaviour data. There are many ITS utilising

the KT models’ prediction results to improve the student learning experience and

be effective, i.e. giving recommendations and learning trajectories. Therefore, we

apply our method’s generated data in the state-of-the-art KT models, i.e., SAINT,

SSAKT and LTMTL, to evaluate the performance of our model. The experimental

results show that our method could improve the KT model’s performance.

The main contributions of this Chapter lie in the following two aspects:

1. We propose a student learning behaviour simulation approach based on the

Decision Transformer to provide adequate training data for ITS.

2. Our experiments demonstrate that a trained SimStu model can simulate real

student behaviour well and outperform imitation learning-based models.

3. We apply the generated data by SimStu to real ITS technology, three Knowl-

edge Tracing Model. The results show that our method could improve the

efficiency of ITS training.
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4.2 Related Work

4.2.1 Student Modelling

With increased attention to personalised learning, the traditional one-size-fits-all

method can no longer satisfy user needs [215]. In offline scenarios, personalised

learning can be supported by teachers in various ways. For example, a teacher can

gain valuable information about their students, by observing their learning process

and interactions, and then design the most suitable and beneficial learning strategy

for them [216]. However, the lack of teacher-student interactions in online learning

environments makes the personalisation process extremely difficult [217]. In such

online scenarios, student modelling can and has been applied, as a powerful tool

to combat this issue [218]. By doing so, individual student models can be built

for students, thus enabling the system to adapt to their needs. According to [219],

student modelling has been used to model a variety of characteristics, such as student

abilities and knowledge [220], learning style [221], and reasoning [222]. Various

techniques have been applied for student modelling, including data mining [223],

machine learning [224], and overlay modelling [225].

Besides individual-level modelling discussed above, the other line of this research

is group-level modelling [226], which is useful to model because 1) not all learning

takes place in ’solo situations’, and 2) especially in online learning settings, learning

often occurs in a collaborative way, as students interact with not only the sys-

tem, but also the teacher, and their peers. This additional information, on top of

the individual student’s own characteristics and behavioural data, can undoubtedly

contribute to enhancing the efficiency of the system’s capabilities of personalisation

and adaptation.

Thereby, in the current study, we take advantage of the benefits of group-level

student modelling and train our system using the learning data from a large number

of individual students, in order to learn the patterns of student learning in the

system. This can then enable the system to recognise “optimal” learning behavioural

patterns, which lead to better student experience, performance, and learning results,

as well as “poor” learning behavioural patterns, which may result in failure, thus
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recommending not only personalised but also optimal learning trajectories to the

students, or providing a reminder of progressing to potential failure. To achieve this

objective, it is crucial to have a decent quality and quantity of training data to feed

to ’data-hungry’ machine learning models.

4.2.2 Knowledge Tracing

Knowledge Tracing (KT) is a common method of personalising learning strategies

for individual students. It predicts whether a student has the capability to master

a new piece of knowledge, by tracing the student’s current knowledge state, which

depends on past learning behaviour. The two major KT approaches are Bayesian

Knowledge Tracing (BKT) [227] and Deep Knowledge Tracing (DKT) [66].

BKT is a probabilistic method for student model generalisation [228]. It uses

the Hidden Markov Model (HMM), to model their knowledge state as a set of bi-

nary parameters, each of which indicates whether a single Knowledge Concept (KC)

has been understood or not [59]. DKT considers knowledge tracing as a sequence

prediction problem. It uses Recurrent Neural Network (RNN) to model a student’s

knowledge state in one summarised hidden vector [66]. DKT is powerful for cap-

turing a complicated depiction of human learning. However, the parameters of the

DKT model are non-interpretable [229], which may result in students distrusting the

system and teachers being unable to understand student behaviour. Additionally,

when dealing with sparse data, DKT may encounter the problem of not general-

ising well [230]. The main limitation of BKT and DKT is that they both rely on

a huge amount of students’ historical learning data [69]. Different from BKT and

DKT, our approach generates simulated student learning data, thus not relying on

a huge amount of historical data, and more importantly, the simulated data can be

visualised in statistical charts, showing student’s learning behavioural patterns and

thus being able to mitigate the KT model’s limitation of non-interpretability.
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4.2.3 Transformers

Transformers have risen to prominence in the field of deep learning in recent years,

particularly in natural language processing and image generation tasks [40, 231].

A Transformer is an encoder-decoder Sequence2Sequence architecture to model se-

quential data, which consists of stacked self-attention layers, as shown below.

zi =
n∑

j=1

softmax
(
{⟨qi, kj′⟩}nj′=1

)
j
· vj (4.1)

where, {zi}ni=1 denotes the n output embeddings. the i-th token is mapped via

a transformer linear layer to a key kj query qi, vi, and values vj. The i-th output of

the transformer is given by weighting the values vj.

Before self-attention was introduced, the best-in-class architecture was the seq2seq

model [232], with an attention component from the decoder to align weights to input

positions in the encoder, deciding how much information to retrieve from each posi-

tion of inputs. The purpose of the self-attention layer is to deprecate the traditional

RNNs wrapped in the architecture completely, and instead to adjust each sequence

of inputs based on its contexts, yielding contextualised embedding within each of

the data instances, as opposed to fixed embedding, in previous model architectures.

Based on the Transformer architecture, Chen et al. [13] proposed the Decision

Transformer, which abstracts the reinforcement learning problem, as a sequence

modelling objective. The key in this algorithm is to generate actions based on

desired returns in the future, rather than rewards in the past, and they proposed

feeding a sequence of returns-to-go (sum of future rewards) R̂t =
∑T

t′=t rt′ into the

model. The equation below represents the trajectory denoted by τ , which consists

of states s, actions a, and rewards R̂ at timestamp t ∈ 1, ..., T .

τ =
(
R̂1, s1, a1, R̂2, s2, a2, . . . , R̂T , sT , aT

)
(4.2)

This model first learns a linear layer for each in returns-to-go, state, and action,

to project them to the embedding dimension, followed by a layer normalisation. A

time-step embedding is also learned and added to the tokens, which are then fed into

a GPT [233] architecture, with the goal of generating future actions. Our proposed
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Sim is built upon this model. We feed the sequence of interactive data between

students and the ITS into the Decision Transformer, to generate simulated student

behaviour data.

4.2.4 Generative Pretrained Transformer (GPT)

The Generative Pretrained Transformer (GPT) model represents a class of state-of-

the-art language models developed by OpenAI [233]. These models are founded on

the transformer architecture, which has proven to be highly effective for sequence-

to-sequence tasks due to its self-attention mechanism, allowing the model to weigh

parts of the input data based on their relevance [40]. One of the distinguishing

features of GPT is its unsupervised training approach. The model undergoes an

initial pre-training phase on vast text corpora where it learns to predict the next

word in a sequence. Following this, it can be fine-tuned on specific tasks, from

machine translation to question answering, allowing it to achieve remarkable results

even with smaller labelled datasets [234]. Moreover, subsequent versions of GPT,

such as GPT-3, have demonstrated the capability to generalize across tasks without

task-specific training, pushing the boundaries of few-shot and zero-shot learning

[234].

4.3 Method

4.3.1 Architecture

The proposed SimStu is built upon the Decision Transformer [13] originally pro-

posed by Chen et al. It consists of an encoder and a decoder and models the joint

distribution of the sequence of student returns-to-go, states, and actions. Figure

4.2 illustrates the architecture. It separates student interactive trajectory sequences

into two parts: one is used as the input embedding of the encoder, and the other is

used as the output embedding of the decoder [40]. Then, the encoder takes the first

part of the trajectory sequence embeddings as input and passes an output trajec-

tory to the decoder. The decoder accepts a shifted embedding trajectory as input
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Figure 4.2: SimStu architecture.

Number of Interaction 131,441,538
Number of students 297,915
Number of exercises 13,169

Table 4.1: Statistics of the EdNet-KT4.

to produce the final output trajectory.

4.3.2 Dataset

The dataset used in our experiment is EdNet [235] - the largest student-ITS inter-

action benchmark dataset in the field of AIED/ITS. It contains more than 780K

students’ data extracted in South Korea over 2 years by a multi-platform ITS called

SANTA2. EdNet consists of four hierarchical datasets, classified according to the

number of interactions. We conduct our experiments based on EdNet-KT4, which

includes problem-solving logs. Compared to KT-1 to KT-3, KT-4 provides the finest

detailed interaction data, allowing access to specific features and tasks. Table 7.3

shows the statistical details of EdNet-KT4.

EdNet-KT4 contains 297,915 students’ data. As this project aims to simulate

2https://www.riiid.co/kr
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student data using a small amount of real student data, we randomly selected 1,000

students (a total of 861,247 action logs) for our experiments. We selected data from

200 students as the training data (a total of 139,835 action logs) to train the SimStu

model, and another 200 students (with a total of 143,286 action logs) as the test

data, to simulate student data. The remaining 600 are used as real data (a total of

578,626 action logs) to be compared with the simulated data.

Considering that learning behaviour may vary amongst students with different

learning performances, we divided them into five groups, according to their scores.

From Group 1 to Group 5, student performance ranged from “very good” to “very

poor”. Using this grouping strategy, we partitioned the training and test data using

stratified sampling.

4.3.3 Trajectory Representation

The key desiderata of selecting the model features are to provide the algorithm

with meaningful information to generate the most likely trajectories. We replace the

timestamps with the difference between the individual timestamps, i.e., the time

between switching actions. The single timestamp could contain little information,

and the time values in the UNIX system that generated them are large. We thus

reduce the large UNIX time integers to small values, which also are more suitable for

training. Furthermore, we removed from the modelling data types with very sparse

data, where it is difficult for the Decision Transformer model to learn anything

from the small number of values actually presented in the data. For instance, as

cursor time is sparse, with a usual value of NaN, we removed cursor time from

the data. action type is used to imitate students’ behaviour, which is denoted by

a in the Decision Transformer Trajectory τ . user answer, denoted by R, is used

for evaluating student performance, thus partitioning them into groups. We check

whether the student’s answers (options of a, b, c, and d) match with the correct

answers: if yes, they get a positive reward of 1; and if no, they get a reward of 0.

item id is used for evaluating the feasibility of the learning paths, which takes as

the state of the student and is denoted by s. Due to the fact that user id does not

affect or represent student behaviour, we choose to generate it randomly, after the
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SimStu generation procedure ends.

4.3.4 Experiments

The SimStu was implemented using the Pytorch framework and trained on an Nvidia

RTX 3090 GPU. We used the Adam optimiser with a batch size of 64. We set Adam

betas as (0.9, 0.95). The initial learning rate was 0.0006, and the dropout rate was

0.1. To evaluate the proposed SimStu, we conducted two experiments.

In the first experiment, we compared the simulated data generated by the Sim-

Stu model with the real data. More specifically, we examined the average number

of actions for the simulated and real data amongst the five student groups. Further-

more, we compared the similarity of the generated data and the real data using the

Pearson product-moment correlation coefficient (PPMCC).

In the second experiment, we compared our SimStu with the Behaviour Cloning

method proposed by Torabi [54], which is based on imitation learning. We used

RELU as the nonlinearity function, with a standard batch size of 64. We set the

initial learning rate as 0.0001 and the dropout rate as 0.1. More specifically, we in-

vestigated the distribution of ’elapsed time’ between the Behaviour Cloning method

and the SimStu with real student data by PPMCC. ’Elapsed time’ is the amount

of time a student works on a specific exercise. Students with different performances

vary in the time spent practising, due to the differences in their knowledge and

skills. Therefore, the ’elapsed time’ can be used as a good metric to measure the

performance of different groups of students [236].

In the third experiment, we evaluated SimStu using three top-performance KT

models selected from the Riiid Answer Correctness Prediction Competition on Kag-

gle3. The top three models are SAINT, SSAKT, and LTMTI 4. In the competition,

Kaggle provides a dataset size is 2,500. We assume that 2,500 student record is suf-

ficient for KT model training. Therefore, We selected five datasets that contained

500, 1,500, 2,000, and 2,500 student records, respectively. We fed these five datasets

into the SimStu models, and then, generated another five simulated datasets (the

3https://www.kaggle.com/code/datakite/riiid-answer-correctness
4http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com
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generated data size is equal to the original data size, for example, we input 500

student records data to SimStu, and generated another 500 student records). After

that, we mixed the generated and original data to build a new dataset (in the case

of the 500 data, we got a new dataset containing 1,000 student records). Lately,

we fed these five mixed datasets into the three KT models respectively to compare

whether our method could improve the training efficiency of KT models. The metric

we used here is AUC (Area Under Curve).

4.4 Result and Discussions

Figure 4.3 shows the results from the first experiment: the average number of actions

performed by the real students (on the left) and by the simulated students (on the

right), across all those five groups. This suggests that the distributions between

the real student data and the simulated student data share some similar statistical

characteristics, i.e., in both real and simulated scenarios: 1) the “very good student”

group (Group 1) is the largest group, whilst the “very poor student” group (Group

5) is the smallest group; 2) the “good student” group (Group 2) and the “average

student” group (Group 3) have similar sizes; and 3) both the “good student” group

and the “average student” group are much smaller than the largest “very good

student” group (Group 1), and 4) both the “good student” group (Group 2) and

the “average student” group (Group 3) are much larger than the smallest “very poor

student” group (Group 5). However, the only difference is that in the Real Students

scenario (on the left), the “poor student” group (Group 4) is the second smallest

group and smaller than both the “good student” group (Group 2) and the “average

student” group (Group 3), whilst in the Simulated Students scenario (on the right),

the “poor student” group (Group 4) is the second largest group and larger than

the “good student” group (Group 2) and the “average student” group (Group 3).

Nevertheless, this result suggests that our SimStu model can generate student data

which is similar to real student data.

As Figure 4.3 shows, the SimStu performed better in simulating the behaviour

of students with higher grades (i.e. groups 1 ( “very good”) to 3 ( “average”)) than
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Figure 4.3: Action statistics of real student data (left), and simulated student data
(right).

for lower grades students (i.e. groups 4 “poor” and 5 ( “very poor”)). This is in line

with the difference in the amount and the frequency of actions. The abnormality

of Group 4 may stem from the fact that students with lower learning performance

tend to interact less frequently with the Intelligent Tutoring System (ITS). This

sparsity in data results in weak causal relationships between actions, making it

challenging for the model to understand and predict student behaviours accurately.

Students who study better generally spend a longer time interacting with the ITS

compared to students with relatively poor learning performance. This pattern makes

many actions sparse and the causal relationship between actions weak, so the model

cannot understand students’ behaviours well. To paraphrase Tolstoy’s words, “All

good students may behave alike, but all poor performance students have their own

reasons” [237].

Figure 4.4 and Table 4.2 show the action frequency distribution of the real stu-

dent data (on the left) and the simulated student data (on the right). This result

shows that the simulated data generated by our Sim-Transformer is similar to the

real data in major action frequencies. For example, the main actions of the gener-

ated data, such as respond, enter, play audio, and submit, have similar frequencies

in each group. However, there are some differences in the actions that occur less

frequently, such as pay and undo erase choice. The resulting PPMCC value of all

actions is equal to 0.714, which suggests that the simulated student data and the

real student data are 71.4% similar in the average distribution of actions. The result
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suggests that simulated data is statistically similar to real data.

Group 1 Group 2 Group 3 Group 4 Group 5
Action R S R S R S R S R S

E 0.203 0.128 0.245 0.099 0.313 0.222 0.314 0.260 0.306 0.338
RE 0.068 0.095 0.190 0.074 0.185 0.230 0.231 0.166 0.224 0.261
S 0.065 0.066 0.114 0.030 0.155 0.108 0.181 0.129 0.224 0.132
Q 0.138 0.062 0.131 0.007 0.158 0.114 0.064 0.131 0.082 0.205

EC 0.000 0.000 0.024 0.000 0.007 0.059 0.004 0.001 0.000 0.000
UEC 0.000 0.000 0.001 0.000 0.000 0.006 0.000 0.000 0.000 0.000
PLA 0.254 0.298 0.102 0.041 0.069 0.119 0.099 0.150 0.061 0.030
PAA 0.256 0.302 0.102 0.041 0.071 0.119 0.040 0.153 0.061 0.034
PLV 0.008 0.011 0.045 0.002 0.024 0.014 0.021 0.005 0.020 0.051
PAV 0.008 0.011 0.044 0.002 0.024 0.010 0.044 0.005 0.020 0.047

P 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
REF 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
EC 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Table 4.2: Comparison of the frequency of actions between simulated student data
and real student data (R: real student, S: simulated student, E: enter, RE: respond,
S: submit, Q: quit, EC: erase choice, UEC: undo erase choice, PLA: play audio,
PAA: pause audio, PLV: play video, PAV: pause audio, P: pay, REF: refund, EC:
enroll coupon).

In the second experiment, we fed the same training data and test data to the

Behaviour Cloning model, which generated 600 student trajectories data (a total of

4,413,561 actions). Figure 4.5 shows the distributions of elapsed time of the real

student, Figure 4.6 shows the distributions of elapsed time of the SimStu simulated

student, and Figure 4.7 shows the distributions of elapsed time of the Behaviour

Cloning model simulated student. The PPMCC value of the SimStu simulated data

versus the real data is 0.762; while the PPMCC value of the Behaviour Cloning

model simulated data versus the real data is 0.683. This shows that the SimStu

simulated data is more similar to the real data, which suggests that our SimStu

model outperforms the Behaviour Cloning model. This result may be due to the

fact that when processing sequential student behavioural data, the student actions

sequence context allows the SimStu to identify which policy can result in an action

that promotes better learning states and improves training dynamics.

In the third experiment, We evaluate the SimStu using the three state-of-the-

art KT models. Figure 5.12 shows the pairwise AUC comparisons of the three KT
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Figure 4.4: Action frequency distribution of real student data (left), and simulated
student data (right).

Figure 4.5: Elapsed time of Real Student Data
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Figure 4.6: Elapsed time of SimStu

Figure 4.7: Elapsed time of Behaviour Cloning method Data
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models trained on original datasets (SAINT, SSAKT and LTMTL, in blue) and

the trained on the mixed dataset (SAINT*, SSAKT* and LTMT*L, in orange). In

particular, The curves of SSAKT* and LTMTL* are constantly higher than the

SSAKT and LTMTL. The curve of SAINT* is higher than the SAINT in every

dataset, except in the case of the dataset size of 3,000. The results suggested that

our method could improve the training efficiency of KT models, which have the

potential to apply in real ITS.

4.5 Summary

In this Chapter, we have proposed SimStu, a Transformer-based approach to simu-

lating student behaviour, aiming to tackle the challenge of the scarcity of datasets for

training ITS. We used the EdNet data to train the SimStu model, which generated

learning behaviour data that could simulate the learning trajectories of different

students. This method could be implemented in an ITS, such that it starts with

collecting a small amount of student data, then uses our method to generate a large

amount of simulated student data, and finally uses these data to train the ITS and

improve its performance. The experimental results showed that SimStu could sim-

ulate the students’ behaviour data well in terms of action distribution and elapsed

time. Moreover, we evaluated SimStu by using three KT models. The results indi-

cated that our method could improve the efficiency of ITS training.

Epilogue

This chapter has accomplished the following objectives: we designed the SimStu,

which is a Transformer-based model to generate simulated student behavioural data

to address RO 2.1. The aim was to develop a model capable of producing realistic

and diverse student behaviours to train the ITS. Moreover, we evaluated the perfor-

mance of the proposed model and compared it with existing methods to address RO

2.2. We explored the application of the generated data from the proposed model to

an emerging ITS technology known as Knowledge Tracing to address RO 2.2. This
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Figure 4.8: Pairwise AUC comparisons of the three KT models trained on only
original students’ data (SAINT, SSAKT, LTMTL, in blue) and trained on the mixed
dataset (SAINT*, SSAKT*, LTMTL*, in orange).
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application aimed to assess the performance of the proposed model in improving

the accuracy of Knowledge Tracing. By addressing these objectives, this chapter

addressed the Research Question 2: “How to generate high-fidelity and diverse

simulated student behavioural data for training Intelligent Tutoring Systems (ITS)

by using deep learning methods?”
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CHAPTER 5

Sim-GAIL: A Generative Adversarial Imitation Learning

Approach of Student Modelling for Intelligent Tutoring

Systems

Prologue

In Chapter4, we have presented SimStu, a student behaviour data simulation method

based on a deep learning method, the decision transformer, which could generate

high-fidelity and diverse simulated student behavioural data to train the ITS.

In this chapter, we still focus on the Student-to-ITS process and further ex-

plore another student modelling method based on Generative Adversarial Imitation

Learning (GAIL), which could be used to train the ITS by replacing human stu-

dents with sim students (simulated students via student modelling). We analyse

and compare the performance of our student modelling method with two traditional

Reinforcement Learning-based and Imitation Learning-based methods using action

distribution evaluation, cumulative reward evaluation, and offline-policy evaluation.

The experimental results suggest that our method outperforms traditional student

modelling methods on most metrics. Moreover, we apply our method to a domain
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plagued by the cold start problem, Knowledge Tracing (KT). The experimental re-

sults show that our method could effectively improve the KT model’s prediction

accuracy in a cold-start scenario.

Declaration: This chapter is based on the following publications:

Li, Z., Shi, L., Zhou, Y., & Wang, J. (2023, August) Sim-GAIL: A Genera-

tive Adversarial Imitation Learning Approach of Student Modelling for

Intelligent Tutoring Systems. Journal Neural Computing and Applications.

This chapter is presented largely as the manuscript submitted, although referenc-

ing and notation have been altered, and cross-referencing has been added for consis-

tency across this thesis. Some stylistic changes have been made for consistency. The

majority of the text is verbatim, with some minor wording and formatting changes.

5.1 Introduction

Research in cognitive science has shown that there is a strong relationship between

the sequence of learning materials and learning outcomes [238]. In a traditional

online learning platform, there is only one single static linear learning trajectory

provided to students. In this one-size-fits-all approach, students may lose their mo-

tivation and even drop out of the course, due to anxiety or boredom encountered in

the learning process [239]. Research on customised learning trajectories for students

has been emerging in the ITS field. However, developing an ITS that can provide

students with customised learning trajectories requires a large amount of data for

training the system, which is time-consuming and costly [10]. Although many ma-

ture ITSs have sufficient data to train algorithms, a large number of emerging ITSs

are still suffering from the lack of training data in the early stages of development,

also known as the cold start problem [240].

To tackle these challenges, previous studies have proposed various methods for

simulating student learning trajectories (i.e., generating massive student learning

behavioural data) that can be used to train an ITS. For example, Jarboui et al. at-

tempted to model student trajectory sequences into a Markov Decision Process [241],
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but in real educational scenarios, only a few ITS can provide all the feature data con-

sistent with Markov Decision Process (e.g., the reward function of the ITS agent).

Zimmer et al. defined reward functions to build reinforcement learning agents [242]

to generate student trajectories, but this method requires building different reward

functions for different datasets, which makes it difficult to generalise. Besides, hu-

mans’ psychological responses to learning trajectories and reward mechanisms are

difficult to simulate. This leads to circumstances where student simulation methods

may not be able to simulate student learning trajectories sufficiently. Anderson et al.

proposed a student simulation method based on Behavioural Cloning (BC) [243],

the simplest form of Imitation Learning which aims to solve the abovementioned

problems where the reward is sparse and hard to define [244]. Whilst promising,

BC-based methods only learn from the few features collected in student data, and

the actions that algorithms are able to model can be very limited.

Motivated by the discussions above, the research question of this chapter is:

How to build an efficient student simulation method that can generate

massive student learning data, which can be used for ITS training?

In this chapter, we propose Sim-GAIL, a Generative Adversarial Imitation Learn-

ing (GAIL) approach to student modelling. This Sim-GAIL method can be used

to generate simulated student data to solve the data lacking and cold start prob-

lems in ITS training. In the ITS field, there are two types of student modelling

methods. The first is based on expert knowledge [245], e.g., building a reward

function based on domain criteria [241, 242]. However, the reward function of the

Reinforcement Learning based method appears challenging to define. The second

is data-driven [47], e.g., Behavioural Cloning (BC) [246] based methods. However,

BC-based methods suffer from low simulation accuracy [14]. We compare our Sim-

GAIL with RL-based and BC-based student modelling approaches using data from

EdNet [235]. We extract action and state features to train the models. We analyse

and compare performance using action distribution evaluation, cumulative reward

evaluation (CRE), and two offline-policy evaluation (OPE) methods, which include

Importance Sampling (IS) and Fitted Q Evaluation (FQE). Moreover, we apply our

method’s generated data in an ITS cold-start scenario. The experimental results
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show that our method outperforms the two traditional RL-based and BC-based

baseline methods and could improve the training efficiency of the ITS in a cold-start

scenario.

The main contributions of this chapter lie in the following three aspects:

1. We propose Sim-GAIL, a student modelling approach, to generate simulation

data for ITS training.

2. It is the first method, to the best of our knowledge, that uses Generative

Adversarial Imitation Learning (GAIL) to implement student modelling to

address the challenge of lacking training data and the cold start problem.

3. The experiments demonstrate that a trained Sim-GAIL could simulate real

student learning trajectories well. Our method outperforms traditional RL-

based and BC-based methods on most metrics and could improve the training

efficiency in cold start scenarios.

This chapter is structured as follows. Section 5.2 introduces the background

of reinforcement learning, imitation learning (including behavioural cloning), and

student modelling. Section 5.3 demonstrates the dataset, data pre-processing, and

model architecture. Section 5.4 outlines the experiments and baseline models. Sec-

tion 5.5 discusses the evaluation methods and the experimental results based on

action distribution, Offline Policy (OP) evaluation, Expected Cumulative Rewards

(ECR) evaluation, and Knowledge Tracing (KT). Section 5.6 discusses our findings

and future works. Section 5.7 draws conclusions.

5.2 Background

5.2.1 Markov Decision Process & Reinforcement Learning

Markov Decision Process (MDP) is the standard method for sequential decision-

making (SDM) [47]. The models in sequential decision-making could generally be

seen as an instance of Markov decision process. Reinforcement learning is also

96



typically regarded as an MDP [48]. Therefore, in this section, we introduce MDP

and then reinforcement learning.

Markov Decision Process

Markov Decision Process (MDP) is a mathematical model of sequential decision used

to generate stochastic policies and rewards, achievable by an agent in an environ-

ment where the system state exhibits Markov properties [50]. MDPs are represented

as a set of interacting objects, namely agents and environments, with components

including states, actions, policies, and rewards. In an MDP model, the agent ob-

serves the present state of the environment and takes actions on the environment

in accordance with the policy, thereby changing the state of the environment and

getting rewards. The ultimate goal of the agent is to reach the maximum cumula-

tive reward, which is achieved using a reward function [91]. Figure 5.1 shows the

structure of the MDP.

Figure 5.1: Framework of the Markov Decision Process.

Reinforcement Learning

Reinforcement Learning (RL) is a type of machine learning method that enables

an agent to learn a policy by taking different actions in an interactive environ-

ment, in order to maximise cumulative rewards. It could be defined as the tuple

of (S,A,P ,R), where S is defined as the state of the environment, A represents

actions of the agent, P : S × A × S → [0, 1] represents the transition probabilities
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of action from the current state to the next state and R : S ×A× S → R denotes

the reward function. The goal of an RL agent is to achieve maximum cumulative

rewards. However, the drawback of traditional RL methods lies in its computational

overhead brought by repeated interactions between the agent and the environment.

5.2.2 Imitation Learning

Different from RL, where the agent learns by interacting with the environment

to obtain the maximum rewards, Imitation Learning (IL) is a method of learning

policy that involves emulating the behaviour of experts’ trajectories [51], instead of

leveraging an explicit reward function as in RL.

Behavioural Cloning

Behavioural Cloning (BC) considers the learning of policy under supervised learning

settings, leveraging state-action pairs [52,53]. Albeit simple and effective, BC suffers

from the heavy reliance on extremely large amounts of data [14,247], without which

a distributional mismatch, often referred to as covariate shift [55,248], would occur

due to compounding errors and stochasticity in the environment during test time.

Apprenticeship Learning

Different from BC, Apprenticeship Learning (AL) instead tries to identify features

of the expert’s trajectories that are more generalisable, and to find a policy that

matches the same feature expectations with respect to the expert [56]. Its goal is to

find a policy that performs no worse than the expert across a class of cost functions.

The main limitation of AL is that it cannot imitate the expert trajectory well, due

to the restricted class of cost functions. Specifically, when the true cost function

does not lie within the cost function classes, the agent cannot be guaranteed to

outperform the expert.
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5.2.3 Generative Adversarial Imitation Learning

Generative Adversarial Imitation Learning (GAIL) addresses the drawbacks of RL

and AL effectively [14] by borrowing the idea of Generative Adversarial Networks

(GANs) [249]. It is derived from a type of Imitation Learning, called Maximum

Causal Entropy Inverse Reinforcement Learning (MaxEntIRL) [57].

Integrating GANs into imitation learning allows for the Generator never to be

exposed to real-world examples, enabling agents to learn only from experts’ demon-

strations. In GAIL, the Discriminator is trained with the objective of distinguishing

the generated trajectories from real trajectories, while the Generator, on the other

hand, attempts to imitate the real trajectories to fool the Discriminator into thinking

it is actually one of them.

5.2.4 Student Modelling

As the traditional one-size-fits-all approach can no longer satisfy student learning

needs, it leads to increased demands for customised learning [215, 250]. Various

student modelling methods have been proposed, which are generally classified as

integrating expert knowledge-based or data-driven methods [251, 252]. Knowledge-

based methods refer to utilising human knowledge to address issues that would

normally require human intelligence [17]. Data-driven methods simulate students’

learning trajectories through massive student learning records data.

The majority of the studies in this field involve building different forms of student

models to train a reinforcement learning (RL) agent [253]. Glesias et al. proposed a

Markov Decision Process based on expert knowledge to train student models [245].

Doroud et al. suggested an RL-based agent method rooted in cognitive theory to

optimise the sequencing of the knowledge components (KCs) [253]. The reward

function of this method is based on pre- and post-test scores, taken as a metric, and

termed Normalised Learning Gain (NLG). However, this metric needs evaluation

from human participants, which is excessively human resource-intensive. Yudelson

et al. proposed a ‘Student Simulation’ method based on Bayesian Knowledge Trac-

ing (BKT), which could train a ‘sim student’ to imitate real students’ mastery of
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different knowledge [227]. Segal et al. suggested a student simulation method based

on Item Response Theory (IRT) [254], which could respond to different reactions to

courses at different difficulty levels [255].

Compared with integrating expert knowledge-based methods, data-driven meth-

ods could better simulate real students’ learning trajectories and more effectively

reduce biases [47]. There have been some studies [256–258] aiming to build student

simulation methods based on data-driven MDP approaches. For example, Beck et

al. proposed a Population Student Model (PSM) based on a linear regression model

that could simulate the probability of the student’s correct response [259]. However,

this method requires a high-quality dataset from real ITS platforms. Limited by

the quantity of high-quality datasets, the previous data-driven model struggled to

keep up with the expanding requirements of ITS development. With the further

development of ITS research, more and more high-quality datasets, such as Ed-

Net [235], have been published in recent years, which makes it possible to achieve a

high-quality data-driven student simulation method. However, collecting data like

the EdNet dataset is extremely time-consuming and labour-intensive. How to im-

prove the effectiveness of ITS with small data volumes or in a cold-start scenario is

still a problem that needs to be addressed.

5.3 Method

In this section, we introduce the methodology of our experiments. First, we describe

the EdNet dataset we use in Section 5.3.1. In Section 5.3.2, we describe how we

preprocess the data in EdNet to obtain the features we need. We then articulate

the framework of our method in Section 5.3.3.

5.3.1 Dataset

We adopt EdNet [235], the largest dataset in the ITS field, for our experiments.

This dataset comprises of students’ interaction log data with an ITS, which can

be used to extract the state and action representation. EdNet is a massive bench-

mark dataset of interactions between students and a MOOC learning platform called
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Number of Interactions 131,417,236
Number of Students 784,309
Number of Exercises 13,169

Table 5.1: Statistics of the EdNet

SANTA1. SANTA is a TOEIC (Test of English for International Communication)

learning platform in South Korea, and the EdNet dataset was collected by Riiid! AI

Research2. There are 131,417,236 interaction logs collected from 784,309 students

in 13,169 exercises over two years, as shown in Table 7.3. The interaction logs for

each student are recorded in an independent CSV (Comma-Separated Values) file.

EdNet is a four-layer hierarchical dataset divided from KT1 to KT4, according to

the granularity of interactive actions. KT1 only contains simple information, such

as question and answer pairs information and elapsed time. Based on the infor-

mation in KT1, to provide correlation information between student behaviour and

question-and-answer sequences, EdNet adds detailed action records to KT2, such

as watching video lectures and reading articles. In KT3, actions such as choosing

response options and reviewing explanations are added to KT2, which can be used

to infer the influence of different learning activities on students’ knowledge states.

KT4 includes the finest detailed action information, such as purchasing courses, and

pausing and playing video lectures, which could be used to investigate the impact

of sparse key actions on overall learning outcomes.

5.3.2 Data Preprocess

The problems involving decision-making processes are transformed into MDPs in

general [241]. In this experiment, we take the students’ sequential decision-making

trajectories as a Markov Decision Process. Extracting the action space and state

space of the real students’ data is essential for building an effective student simula-

tion method using MDP. In this section, we explore the data and extract the action

space and state space.

1https://www.aitutorsanta.com
2https://www.riiid.co
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Action Space

There are 13,169 questions, 1,021 lectures, and 293 kinds of skills in EdNet [235].

However, there are no criteria for separating these courses into different parts.

Bassen et al. [10] proposed a method to group knowledge concepts based on the

assumption that each part was grouped by domain expert’s experience. Inspired by

this method, we divide the lectures and questions space of the agent into 7 groups.

However, as the division into 7 groups is too granular for the action space, we also

use the method proposed in [255], and divide the difficulty of the questions from 1

to 4 by the answer correctness rate obtained by comparing the students answer logs

and the correct answers. Some lectures have no difficulty ranking and thus being

allocated a default difficulty of 0. Therefore, all action spaces are divided into 5

difficulty levels with 7 groups and 35 action types in total. Figure 5.3 shows the

distribution of the 35 types of actions in EdNet. In each group, the action types

include 4 questions from difficulty levels 1 to 4, and 1 lecture. Taking Group 1 for

example, actions 1 to 4 correspond to questions with different difficulty levels, action

5 corresponds to lectures where the difficulty level cannot be defined, which is set

as 0. As shown in Figure 5.3, there are 7 groups in total that follow this pattern.

Figure 5.2: The Sim-GAIL Pipeline

State Space

EdNet records the interaction data of each student with the system by UNIX times-

tamps in separate CSV files. Therefore, most of the state features obtained from
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Figure 5.3: Action distribution of EdNet dataset.

EdNet are longitudinal and temporal. Previous works have shown that different

state feature choices could make a large difference in the performance of the algo-

rithms [256, 260]. We select the state features which are widely chosen in similar

simulated student works [10, 245, 256, 258]. These selected states could well repre-

sent a student’s learning trajectories. Table 5.3.2 shows the features we select from

EdNet: ‘av time’ is the cumulative average of the elapsed time spent on each ac-

tion; ‘av fam’ denotes the average familiarity of the 7 groups; ‘topic fam’ denotes

the familiarity with the current group; ’prev correct’ indicates the student’s accu-

racy rate before answering a specific question, while ’correct so far’ represents the

cumulative accuracy rate up to and including the current question. These metrics

effectively capture the student’s overall accuracy rate fluctuations as they progress

through the questions. And ‘steps in part’ counts student learning steps in the cur-

rent group. ’lecture consumed’ refers to the lectures that students have studied.

Table 5.3.2 shows the state features constructed from EdNet. Compared to previous

works [10, 256], we select more state features, which could potentially simulate the

students’ trajectories in real situations more effectively.
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State Feature Description
‘correct so far’ The ratio of correct responses

‘av time’ The cumulative average of the elapsed time
‘av fam’ Average familiarity of all parts

‘topic fam’ Familiarity with the current part
‘prev correct’ Numbers of correct answers in previous responses
‘steps in part’ Counts of student learning steps

‘lects consumed’ Numbers of lectures a student has learnt

Table 5.2: State feature representation

5.3.3 Model Architecture

Our Sim-GAIL is built upon Generative Adversarial Imitation Learning (GAIL) [14],

which aims to solve the problem where Imitation Learning has difficulty in dealing

with constant regularisation and cannot match occupancy measures in large envi-

ronments. Equation 5.1 demonstrates the optimal negative log loss distinguishing

between the state π and action πE pairs.

ψ∗
GA (ρπ − ρπE

) = max
D∈(0,1)S×A

Eπ[log(D(s, a))] + EπE
[log(1 −D(s, a))], (5.1)

where ψGA∗ is the average of the real trajectories’ data, and D is the discriminative

classifier. Using causal entropy H as the policy regulariser, the following procedure

could be derived:

minimize
π

ψ∗
GA (ρπ − ρπE

) − λH(π) = DJS (ρπ, ρπE
) − λH(π). (5.2)

This equation combines Imitation Learning (IL) and Generative Adversarial Net-

works (GAN) [249]. Generator S generates trajectories that are passed to Discrim-

inator D. The Generator’s goal is to make it less likely for the Discriminator to

differentiate the real trajectories and those generated by the Generator, whilst the

Discriminator’s goal is to distinguish between them. The Generator achieves the best

learning effect when the Discriminator fails to recognise the generated trajectories.

Lastly, ρπE
in equation 5.1 is the occupancy measure of the real trajectories.
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Eπ[log(D(s, a))] + EπE
[log(1 −D(s, a))] − λH(π) (5.3)

There is a function approximation of π and D. TRPO [261] is used to find

a saddle point (π,D), which decreases the value of Expression 5.3. To decrease

the expected cost, we use the cost function c(s, a) = logD(s, a). As classified by

Discriminator, the cost function will move toward real trajectories-like regions of

the state-action space to achieve the training goal of Discriminator.

Figure 5.2 shows the pipeline of Sim-GAIL. Real student data from EdNet is

processed by the methods introduced in Section 5.3.2 and fed into the GAIL module

(middle part) to create a simulation policy that could be used for training the ‘sim

student’ (right part). The middle part is described in Algorithm 1. We start by

initialising the policy θ and Discriminator D. At each iteration, we sample real

student trajectories from the dataset and update the Discriminator parameters using

Adam gradient [262]. Then, we take a policy update step using the TRPO rule to

decrease the expected cost [261]. At last, we take a KL-constrained natural gradient

step to train the Discriminator.

Algorithm 1 Algorithm of Sim-GAIL.

Require: Real students’ trajectories, τE ∼ πE; Initializing the policy θ and Dis-
criminator D

1: for each i = 0, 1, 2, ... do
2: Sample student trajectories τi ∼ πθi
3: Update the parameters wi to wi+1 in Discriminator
4: Êτi [∇w log (Dw(s, a))] + ÊτE [∇w log (1 −Dw(s, a))]
5: Take a policy step from θi to θi+1 with cost function log

(
Dwi+1

(s, a)
)

6: Êτi [∇θ log πθ(a | s)Q(s, a)] − λ∇θH (πθ)
7: where Q(s̄, ā) = Êτi

[
log
(
Dwi+1

(s, a)
)
| s0 = s̄, a0 = ā

]
8: end for

5.4 Experiments

In this section, we introduce the experimental setup in our Sim-GAIL method and

two baseline methods.
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5.4.1 Sim-GAIL

In order to simulate the real student learning behaviour policy in a real platform,

we build a simulator to playback the real student learning trajectories from EdNet

selected using a stochastic policy. Specifically, we first sample the real student

trajectories from Ednet. The state includes ‘correct so far’, ‘ave time’, ‘av fam’,

‘topic fam’, ‘pre correct’, ‘step in part’, and ‘lects consumed’. Then, a subset of the

trajectories is randomly picked and controlled with the policy. After that, for each

student’s trajectory, a set of action-state pairs are extracted from the observation

policy. The policy outputs a student action responding to the state feature at each

timestamp. At last, we finished the simulation and obtained the trained policy.

For the experimental setup, we use an auto-encoder to process the data. Sim-

GAIL is implemented using the PyTorch framework. We train the model on the

seven features mentioned before using the 1,000 students’ interaction logs.

5.4.2 Baseline Models

Among the few studies that could be selected as baseline methods, the top perform-

ers so far are the Behavioural Cloning based method proposed by Torabi [54] and

the Reinforcement Learning-based method proposed by Kumar [263]. Therefore, we

use these two methods as the baselines for the experiments.

Behavioural Cloning (BC)

The first baseline is the Behavioural Cloning (BC) based method proposed by Torabi

[54]. This model has shown good performance in the task of simulating users’

behaviour from observations. Similarly, we employ a Mixture Regression (MR)

approach [264], which is a Gaussian mixture of the actions and states, to process

the data features. We use the same action-state pair data to train the Sim-GAIL

and BC-methods, and the data is extracted from EdNet. The supervised learning

method is applied to train the policy and Adam optimisation [262] with a batch size

of 128.
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Reinforcement Learning (RL)

The second baseline is the Reinforcement Learning (RL) based method proposed by

Kumar [263], which uses the Conservative Q-learning (CQL) approach. EdNet does

not contain any students’ prior- or post-test scores. We use the method proposed by

Azharet al. [265] to build a reward function based on the historical logs of students’

scores. More specifically, we use the correctness of the student’s responses as the

reward function. If the student’s response is correct, a positive reward will be given;

otherwise, a negative reward will be provided. Moreover, we integrate the difficulty

levels of the questions. We set the rewards from 1 to 4 based on the difficulty level

of the activity. Check whether the student’s responses match the correct answers;

if yes, they get a positive reward of 1 to 4, and if no, they get a negative reward of

-1 to -4. The Dynamic Programming (DP) [266] method is used to train the model.

More specifically, we utilise a Policy Iteration (PI) method to train the agent. This

process could be separated into two repeated stages: the first is evaluating the value

of every state in the finite MDP according to the current policy. The second is using

the Bellman Optimality equation [267] to make the policy iteration based on the

current policy.

5.5 Evaluation

Our evaluation includes two parts: The first part compares the Sim-GAIL with two

baseline models, and the second part uses the Knowledge Tracing models to evaluate

the effect of the Sim-GAIL.

In the first part evaluation, as shown in Figure 5.1, since the most critical el-

ements for a Markov Decision Process are action, reward, and policy, we evaluate

the modelling effect of Sim-GAIL and two baseline models from these three aspects,

respectively. In particular, we identify action distribution to evaluate the action,

expected cumulative rewards to evaluate the reward, and offline policy to evaluate

the policy. The first metric, the action distribution, is the similarity of distributions

between the generated actions and the real actions from the historical data. We

compare this metric amongst Sim-GAIL, the BC-based method, and the RL-based
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method with the original data by using the Kullback–Leibler divergence method,

which generally is used to measure the difference between two distributions [268].

Second, we compare the Expected Cumulative Rewards (ECR) of these three meth-

ods. Third, we use two Off-line Policy Evaluation (OPE) methods, including Im-

portance Sampling (IS) and Fitted Q Evaluation (FQE), to compare the policy of

these three methods.

In the second part evaluation, we use three state-of-the-art Knowledge Tracing

models to evaluate the Sim-GAIL to test whether our method could be efficaciously

applied in a real-world cold-start scenario. We apply the generated data to a widely

used ITS technique called knowledge tracing (KT) to verify the effectiveness of our

model. KT could be used to predict students’ next actions through their historical

behavioural trajectories [240]. We apply the generated data in three state-of-the-art

KT models, i.e., SSAKT, SAINT, and LTMTL, to test if the generated data mixed

with the original data could improve their accuracy when training on only a small

set of student data.

5.5.1 Action Distribution Evaluation

As mentioned in Section 5.3.2, we obtain the action distribution of EdNet by allo-

cating 35 actions into seven groups, resulting in five actions per group, as shown in

Figure 5.3. We can observe that actions 21, 22, 23, and 24 have higher frequencies

than other actions. This pattern also appears in the action distribution generated

by Sim-GAIL. The major difference in action distributions between the real data

from EdNet and those generated by Sim-GAIL is that action 25 (i.e., one of the

lecture actions) in the latter is not close to the average value of 0. In addition,

action 26 in Sim-GAIL also exhibits a higher frequency. Figure 5.5 shows the ac-

tion distribution of the simulated students generated by the RL-based method. The

highest frequencies fall into groups 5 and 6, while group 6 contains most of the

high-frequency actions. Unlike the action distribution of real data, the clustering of

each group can not be clearly identified in the action distribution of the RL-based

method. Figure 5.6 shows the action distribution of the simulated students gen-

erated by the Behavioural Cloning (BC) based method. Within this distribution,
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Table 5.3: Kullback–Leibler divergence of action distribution.
Model Sim-GAIL RL BC

KL value 0.297 0.408 0.391

actions in group 6 illustrate the highest frequencies, indicating that actions in group

6 are the most frequent ones. Figure 5.7 compares the action distribution amongst

the data generated by these three different student simulation methods. We can

see that the BC-based method outperforms the RL-based method in this metric,

and the action distribution of Sim-GAIL generated data is closest to the real data’s

distribution.

Moreover, we use the Kullback–Leibler divergence (KL) method to measure

whether the action distribution generated by these three methods conforms to the

real action distribution from EdNet. KL is a measure from information theory that

quantifies the difference between two probability distributions. It provides an asym-

metric measure of the information lost when one distribution is used to approximate

another [268]. The KL divergence, denoted DKL(P ∥ Q), between two probability

distributions P and Q over the same discrete event space is defined as:

DKL(P ∥ Q) =
∑
x∈X

P (x) log

(
P (x)

Q(x)

)
(5.4)

where X is the set of possible events, and P (x) and Q(x) are the probabilities of

event x according to distributions P and Q, respectively. Note that the KL diver-

gence is non-negative and is zero if and only if P and Q are the same distribution.

Table 5.3 shows the KL values of the distribution of the actions generated by

these three methods and that of the real actions, respectively. The KL value between

Sim-GAIL generating data’s action distribution and real data’s action distribution

is the lowest (0.297), which suggests that the action distribution generated by Sim-

GAIL is the closest to the real action distribution. Thus, it performs the best in this

metric. The result also shows that the BC-based method (0.391) performs worse

than Sim-GAIL but better than the RL-based method (0.408) in this metric.

The state ‘topic fam’ represents a student’s familiarity with the current topic.

It is an important indicator that can reflect a student’s mastery of knowledge. We

109



Figure 5.4: Action distribution of the Sim-GAIL model.

compare the action distribution of the state value ‘topic fam’ from simulated stu-

dents generated by three different methods, which is shown in Figure 5.8. From left

to right is the distribution of simulated student actions in the state of ‘topic-fam’

generated by Sim-GAIL, RL-based method, and BC-based method. It can be seen

that data generated by the RL-based method is the most distributed in the most

difficulty-level actions (the darkest bar in each figure). Within this policy generated

by RL, the method could obtain the highest rewards in the short term. However,

the distribution of actions in the lecture (the orange bar) is minimal. Such a distri-

bution does not match the real learning trajectories of students, because students

need to learn new knowledge through attending lectures. The BC-based method

has a more average distribution of actions on all difficulty-level actions. However,

the distributions of lecture actions are unstable, which is also inconsistent with the

real students’ learning trajectories. The action distribution of the simulated student

method based on Sim-GAIL is the most in line with the real students’ trajecto-

ries action distribution, and the counts of students’ actions between lectures and

questions are relatively stable. This indicates that the simulated students generated
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Figure 5.5: Action distribution of the Reinforcement Learning-based model.

by the Sim-GAIL method can balance the data distribution and optimal policy to

achieve a better simulation effect.

The assignment of a 0 reward to lectures is based on the specific learning sce-

nario we are modelling. In many educational contexts, attending lectures is often

considered a passive activity, and students do not directly take action during lec-

tures. Instead, they are expected to acquire knowledge passively by listening and

observing. In the context of reinforcement learning, assigning a reward of 0 to lec-

tures encourages the simulated students to focus on active learning actions, such as

answering questions or engaging in interactive activities, rather than simply attend-

ing lectures. This is consistent with the idea that students’ active participation and

engagement tend to be more indicative of their learning progress.

5.5.2 Expected Cumulative Rewards Evaluation

Expected Cumulative Rewards (ECR) represent the average of the expected cumula-

tive rewards under a given policy [269]. ECR could effectively reflect the cumulative
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Figure 5.6: Action distribution of the Behavioural Cloning-based model.

reward obtained by the method, which is a crucial indicator of the effect of the

method. The equation for computing ECR is:

ECR = Es0∼D,π∗Q (s0, π
∗ (s0)) , (5.5)

where the Q(s0, a) function is the ‘action value’ of the action a selected by policy π

in the initial state s0. In this experimental setting, we set ECR to be simply equal to

the unique initial state value ECR = Vπ∗ (s0). We calculate the cumulative rewards

for 100 rounds over 1,000 steps starting from the initial state. The results of the

expected cumulative rewards evaluation are shown in Figure 5.9. It is clear that

Sim-GAIL outperforms other baseline methods. The RL-based method performs

better than the BC-based method.

5.5.3 Offline Policy Evaluation

As a robust policy evaluation method that does not require human participation,

Offline Policy Evaluation (OPE) is often used to evaluate Reinforcement Learning
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Figure 5.7: Comparison of different models’ actions distribution.

(RL), which has shown great potential in decision-making tasks, such as robotics

[270] and games [271]. In these tasks, RL optimal strategies could be evaluated in

either the environment or the simulator. There are various ways of evaluation, such

as maximum cumulative reward, optimal policy, and evaluating the score in games,

and the score could be high or low, and a high score indicates a better performance.

[272]. However, in human-participating tasks, evaluation becomes very difficult.

First, human subjectivity may lead to bias in the results. Second, the simulator

cannot consider every feature in a complex environment. Finally, experiments, where

humans are involved, may make the evaluation process expensive, time-consuming,

and resource-intensive. The OPE methods [273] were proposed to address these

problems, where the evaluation of the policy is only based on the collected historical

offline log data. It is mainly applied in scenarios where online interactions involve

high-risk and expensive settings, such as stock trading, medical recommendation,

and educational systems [274]. In this chapter, we employed a combination of two

OPE methods: the Importance Sampling (including three variants, OIS, WIS, and

113



Figure 5.8: Action distribution of the state feature ‘topic fam’ from simulated stu-
dents generated by three different methods. The horizontal axis is the value of
‘topic fam’ 1 to 4, the vertical axis is the normalised counts of the actions, the or-
ange bar represents the lecture consumption, and the blue bar represents questions,
from easy to difficult. The difficulty is represented by hue strength.
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Figure 5.9: Expected Cumulative Rewards evaluation.

PIS) [275] and the Fitted Q Evaluation method [276], which could effectively test

the policy performance of three models.

Importance Sampling

As one of the OPE methods, Importance Sampling (IS) is used in situations where

the original distribution data is difficult to sample directly. It is a method that uses

simple and collectable distribution to calculate the expected value of the desired

distribution [275]. There are many works using IS to evaluate the target policy

(the policy derived from the RL algorithms) and the behaviour policy (the policy

used to gather the data) when dealing with MDPs [277,278]. However, the basic IS

method may result in high variance due to the huge difference between those two

policies. In our experiment, we used three IS methods: the general IS (i.e., Ordinary

Importance Sampling (OIS)) and two variants of the general IS, including Weighted

Importance Sampling (WIS) and Per-Decision Importance Sampling (PDIS). WIS
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Model OIS PDIS WIS
Behavioural Cloning 6.59E+01 3.96E+01 0.970

Reinforcement Learning 3.86E-02 3.25E+05 3.841
Sim-GAIL 7.35E-02 8.07E+03 4.753

Table 5.4: Importance Sampling Evaluation results.

employs a weighted average to mitigate the variance [279]. The Per-Decision Impor-

tance Sampling modifies the sampling ratio and makes the reward dependent only

upon the previous action in each timestamp [276]. The combination of the three

methods can better observe the policy distribution of the generated data.

Table 5.5.3 shows the results of the Importance Sampling evaluation. On the

OIS criteria, the BC-based method outperforms the RL-based method but is worsen

than Sim-GAIL. On the PDIS criteria, the Sim-GAIL method outperforms both RL-

based and BC-based methods and the BC-based method performs better than the

RL-based method. Sim-GAIL outperforms the other two baseline models, and the

RL-based method performs better than the BC-based method on the WIS criteria.

In summary, Sim-GAIL outperforms the other baseline models on every criterion.

Fitted Q Evaluation

The FQE algorithm regards the MDP as a supervised learning problem. This

method uses a function approximator to fit the Q function under a specified policy

based on the observation of the dataset [276].

Figure 5.10 shows the Fitted Q Evaluation results on the initial state. The Sim-

GAIL policy is superior to that of the other baseline models. Figure 5.11 shows

the FQE loss of the three methods. Although Sim-GAIL generates the highest

Q(s0, π(s0)), the validation loss is also higher and more unstable than the RL and

BC-based methods. Although Sim-GAIL outperforms the two baseline methods,

the parameters still need to be tuned to reduce the loss.

5.5.4 Evaluation using Knowledge Tracing (KT) Models

Knowledge Tracing (KT) is an emerging research direction and has been widely

applied in intelligent educational applications, where students’ historical trajectories
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Figure 5.10: Initial State Value Estimate of the FQE.

are used to model and predict their knowledge states [17]. However, the lack of

student interaction data in the early stage of using a system, known as the cold-start

problem, limits the performance of KT models. It has been one massive obstacle to

the development and application of KT. In this experiment, we applied the original

data and the data generated from the Sim-GAIL method to the state-of-the-art KT

models to test whether our model could improve the performance of KT models in

a cold start scenario. This in turn proves the efficiency of our proposed Sim-GAIL

method’s ability to simulate and generate students’ historical trajectory data.

In the KT research area, there is a Riiid Answer Correctness Prediction Compe-

tition on Kaggle3, which compares the state-of-the-art KT models using the EdNet

dataset. The current top three models in this competition are SAINT, SSAKT, and

LTMTI 4. The prediction competition provides a dataset of 2,500 students to train

the KT model. Therefore, we assume that the volume of 2,500 students is sufficient

for KT models to get good prediction performances. Thus, in our experiments, we

considered the case of a data size of no more than 2,500. Therefore, we selected

3https://www.kaggle.com/code/datakite/riiid-answer-correctness
4http://ednet-leaderboard.s3-website-ap-northeast-1.amazonaws.com
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Figure 5.11: The FQE-loss.

datasets of sizes 500, 1,000, 1,500, 2,000, and 2,500 student records. Each student

record contains the student’s sequence of discrete learning actions. In our experi-

ment, we first used Sim-GAIL to generate simulated data whose size is equal to the

original data size, and then we mixed it with the original real data to build a new

dataset. After that, we fed this mixed dataset into the 3 KT models, respectively.

For example, in the case of the original data size being equal to 500, we input the

500 student records to Sim-GAIL, which generated equally-sized (i.e., 500) simu-

lated student records. Then, we mixed these 500 generated student records with the

original 500 student records to build a new dataset of size 1,000. This new mixed

dataset was finally used to train the KT models. We compared the performance of

the KT models between using this mixed dataset and using only the original data.

The metric we used here is AUC.

Figure 5.12 shows the pairwise AUC comparisons of the three KT models trained

on only the original students’ data (SAINT, SSAKT, and LTMTL; in grey) and

trained on the mixed dataset (SAINT*, SSAKT*, and LTMTL*; in red). The

curves of SSAKT* and LTMTL* are constantly higher than the curves of SSAKT
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and LTMTL, in all the cases, i.e., 1,000, 2,000, 3,000, 4,000, and 5,000 sizes of the

mixed dataset. The curve of SAINT* is higher than the curve of SAINT in the

cases of 1,000, 2,000, and 3,000 sizes of data; Although the curve of SAINT* is very

close to SAINT in the cases of 5,000 sizes of data, the former still outperforms the

latter. In all those three pairwise comparisons, especially in the cases of smaller data

sizes (1,000, 2,000, and 3,000), obviously, training on mixed data (a combination of

the original and generated data) could improve the KT models. This suggests that

the data generated by our Sim-GAIL method can help improve the KT models,

especially in cold-start scenarios where the size of the available data is small.

5.6 Discussion

From the results of the experiment, we observe that Sim-GAIL outperforms the base-

line methods on the metrics of Action Distribution Evaluation, Expected Cumulative

Rewards Evaluation, and Offline Policy Evaluation. The satisfying fit simulation

results may come from the fact that there is no need to define a reward function for

Sim-GAIL compared with other baseline models. Defining reward functions man-

ually may be too complex to fit the real student trajectories’ policy, thus that a

simple reward function built by algorithms instead of humans might result in a

more optimal policy [14]. The results of the evaluation using the KT models show

that Sim-GAIL could be applied in real-world educational scenarios and improve the

efficiency of current educational technologies. More specifically, our method could

effectively alleviate the cold-start problem of KT models.

Our Sim-GAIL method outperforms the baseline models on every metric. The

RL-based method outperforms the BC-based method in terms of offline policy eval-

uation. This indicates that a suitable setting of the reward function could generate

better policies. This result is also reflected in the distribution of ‘topic fam’ ac-

tions. The policy generated by the RL-based method places more emphasis on

high-difficulty and high-reward actions. Such a policy works well for obtaining

higher cumulative rewards, but it doesn’t match the action distribution of real stu-

dents’ trajectories. Besides, the distribution of ‘lecture’ actions whose default reward
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Figure 5.12: Pairwise AUC comparisons of the three KT models trained on only
original students’ data (SAINT, SSAKT, LTMTL, in grey) and trained on the
mixed dataset (SAINT*, SSAKT*, LTMTL*, in red). On the horizontal axis, 500,
1,000,...,2,500 indicate that the grey curve model uses the original dataset, and
(1,000),(2,000),...,(5,000) indicate that the red curve model uses the mixed dataset.
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value is 0 is very small and unstable. Thus, the action distribution generated by

the RL-based method is inconsistent with the action distribution of real students’

trajectories. The BC-based method outperforms the RL-based method in action

distribution but is worse in offline policy evaluation. This suggests that, although

the BC-based method can make the action distribution more aligned with the real

action distribution, it is difficult to obtain a better learning policy. Therefore, Sim-

GAIL is a more advanced student simulation method than those two traditional

ones. Besides, as Sim-GAIL does not require a dedicated reward function to fit dif-

ferent datasets, compared with traditional student simulation methods, our method

could be easily transferred and applied to another ITS.

In the evaluation using KT models, we apply our method to three different

state-of-the-art KT models. The results indicate that our method could improve

training efficiency in cold-start scenarios. In Figure 5.12, every KT model trained

on the mixed data (a combination of the original data and the data generated by

our Sim-GAIL method) performs better in each group. The results suggest that it

could improve training efficiency in small-sized data scenarios, proving that it could

alleviate the cold-start problem in the early stages of ITS development. For instance,

in the above experiments, every KT* model performs better when the original data

size is smaller than 2,000. After the data size is larger than 2,000, the performance

of using the original dataset (KT) is close to that of using a mixed dataset (KT*),

but the KT* still outperforms the KT.

5.6.1 Comparison with SimStu

In the previous Chapter, I proposed the SimStu, a method used for simulating

student behaviour, but it may exhibit suboptimal performance when dealing with

reward sparsity. This means that when students have relatively few opportunities to

receive rewards during the learning process, SimStu’s performance might be affected

because it relies on reward signals to guide simulation and prediction. In such cases,

the predictive accuracy of SimStu may decrease.

In contrast, Sim-GAIL employs the Generative Adversarial Imitation Learning

(GAIL) approach, which excels at addressing the issue of reward sparsity. Through
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Sim-GAIL, we can generate more accurate and realistic simulated data from ob-

served behaviours of actual students without being constrained by the scarcity of

rewards. This means that Sim-GAIL is capable of better capturing reward distribu-

tions and strategies from real data, providing more reliable simulation results.

In conclusion, SimStu and Sim-GAIL each have their own strengths and lim-

itations, with Sim-GAIL performing better in handling reward sparsity and being

suitable for scenarios where more accurate student behaviour simulation is required.

5.7 Summary

This chapter has proposed Sim-GAIL, the first (to the best of our knowledge) stu-

dent simulation method built upon the Generative Adversarial Imitation Learning

algorithm. This method could train ITS using simulated student behaviour data to

potentially alleviate the high-cost, resource-intensive, and time-consuming issues of

collecting real student data and the cold start problem in early-stage ITS training.

Our student simulation method, Sim-GAIL, is constructed in the form of Gen-

erative Adversarial Imitation Learning, leveraging the EdNet dataset. The experi-

ments show that Sim-GAIL obtains performance gains over the baseline methods:

a Reinforcement Learning method based on Conservative Q-learning and an Imi-

tation Learning method based on Behavioural Cloning. We evaluated our method

from four aspects. We started with evaluating the action distribution discrepancy

based on the Kullback–Leibler divergence. Then, we evaluated the reward function

using the Expected Cumulative Rewards (ECR). After that, we used two Offline

Policy Evaluation (OPE) methods to compare the performances of the three meth-

ods. The first OPE method was Importance Sampling and included two variants,

WIS and PIS. The second OPE method was Fitted Q Evaluation, a low-variance

alternative method of Importance Sampling. Compared with the baseline models,

Sim-GAIL performed the best. Furthermore, we applied our method to state-of-the-

art knowledge tracing models. The results indicate that our method could improve

the knowledge tracing models’ performance, especially in cold-start scenarios. This

in turn proves the efficiency of our proposed Sim-GAIL method’s ability to simulate
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and generate students’ historical trajectory data.

Epilogue

The study presented in this chapter has addressed RO 3.1: To propose a student

modelling method based on Generative Adversarial Imitation Learning (GAIL) ap-

proach. The performance of the Sim-GAIL method, a novel approach, was assessed

by comparing it with traditional methods that relied on Reinforcement Learning and

Imitation Learning, which is addressed in the RO 3.2. Moreover, the effectiveness of

the Sim-GAIL method in improving the prediction accuracy of the Knowledge Trac-

ing (KT) model was investigated, which has addressed the RO 3.3. These research

objectives aimed to contribute to the advancement of Student Modelling techniques

and provided valuable insights for future research in this field. The process of ad-

dressing this research objective has answered the Research Question 3: How

can we generate realistic and diverse simulated student behaviour data for training

Intelligent Tutoring Systems (ITS) through reinforcement learning techniques?

By accomplishing these research objectives, this chapter successfully addressed

the research question and provided valuable contributions to the field of ITS. The

proposed Sim-GAIL method offers a promising approach to generating realistic and

diverse simulated student behaviour data, thereby enhancing the accuracy and ef-

fectiveness of ITS applications.
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CHAPTER 6

Broader and Deeper: A Multi-Features with Latent Relations

BERT Knowledge Tracing Model

Prologue

In Chapters 5 and 6, we have focused on the Student-to-ITS process and presented

two student simulation methods, SimStu and SimGAIL. By leveraging these two

methods, it is possible to maximise the performance of ITS while minimising the

input and interaction required from students. In this and the next chapters, we

move to focus on the ITS-to-student process. The aim of this process is to assist

students in achieving higher levels of learning performance. This necessitates a

thorough comprehension of the learning process and the student’s level of mastery

of the subject matter. Therefore, developing efficient Knowledge Tracing (KT) is

crucial in ITS by modelling students’ learning progress and predicting their future

actions based on their past behaviour data. However, traditional knowledge tracing

algorithms generally use one or a few features to predict students’ behaviour and

do not consider the latent relations between these features, which could be limiting

and disregarding important information in the features.

In this chapter, we propose MLFBK: a multi-features with latent relations BERT
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knowledge tracing model, which is a novel BERT-based knowledge tracing approach

that utilises multiple features and mines latent relations between features to improve

the performance of the KT model. Specifically, our algorithm leverages four data

features (student id, skill id, item id, and response id, as well as three meaningful

latent relations among features to improve the performance: individual skill mastery,

ability profile of students (learning transfer across skills), and problem difficulty. By

incorporating these explicit features, latent relations, and the strength of the BERT

model, we achieve higher accuracy and efficiency in knowledge tracing tasks. We use

t-SNE as a visualisation tool to analyse different embedding strategies. Moreover, we

conduct ablation studies and activation function evaluation to evaluate our model.

Experimental results demonstrate that our algorithm outperforms baseline methods

and demonstrates good interpretability.

Declaration: This chapter is based on the following publication:

Li, Z., Shi, L., Zhou, Y., & Wang, J. (2023, September) Broader and Deeper:

A Multi-Features with Latent Relations BERT Knowledge Tracing Model.

18th European Conference on Technology Enhanced Learning, EC-TEL 2023, Aveiro,

Portugal, September 4–8, 2023, Proceedings. Cham: Springer International Pub-

lishing, 2023.

This chapter is presented largely as accepted, although referencing and notation

have been altered and cross-referencing added for consistency across this thesis.

Some stylistic changes have been made for consistency. The majority of the text is

verbatim, with some minor wording and formatting changes.

6.1 Introduction

In the preceding chapters, we introduced two student behaviour simulation meth-

ods from the student-to-AI perspective. Such approaches effectively minimize the

interaction required from users to assist in the ITS training process. In the current

chapter and the following one, our focus shifts to enhancing the prediction accu-

racy of the existing ITS system from the ITS-to-student perspective in order to
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deliver more personalised and effective learning experiences for students. To achieve

personalisation for student learning, ITS requires a reliable method for estimating

students’ knowledge state and learning progress. This method is known as Knowl-

edge Tracing (KT). KT estimates students’ knowledge state or skill mastering level

based on the student’s interaction data collected from ITS [15]. Accurate and effi-

cient KT models are essential for ITS and educators to provide personalised learning

experiences and support to students, such as tailored feedback, targeted hints, and

relevant additional learning resources.

Generally, there are three kinds of KT models. Bayesian Knowledge Tracing

(BKT), Logistic KT models, and Deep learning based Knowledge Tracing (DKT)

[58]. BKT is one of the earliest and most influential KT models. It uses a prob-

abilistic framework to model student knowledge and learning state over time [59].

Logistic KT models are developed based on the concept of logistic regression, a sta-

tistical technique utilized to model the probability of a binary outcome by utilizing

one or more predictor variables. While BKT and Logistic models have achieved

significant success in predicting student performance, they have also been criticized

for their inability to capture the complex relationships between different skills and

concepts [17]. To address this limitation, the more recent DKT models have utilised

deep learning techniques to capture the complex interactions between student re-

sponses, skills, and questions [66]. DKT models have achieved state-of-the-art per-

formance on benchmark datasets but require a large amount of training data to

achieve good results.

Previous KT models have often been limited by their reliance on a single or few

features, which could fail to capture the complexity of student learning behaviour

data. Numerous studies have demonstrated that incorporating one or two additional

features could enhance the performance of KT models [18,19]. Additionally, Minn et

al. suggested that identifying latent features could further improve the performance

of KT [280]. However, to date, there has been no research that has investigated

the effectiveness of combining multiple features and latent relations to improve the

performance of KT models.

Therefore, the research question of this Chapter is: Whether incorporating mul-
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tiple features and mining the latent relations between features together could improve

the accuracy and efficiency of KT models?.

In this chapter, we present the Multi-Latent Feature BERT Knowledge Tracing

model that is both “broader” and “deeper” than the previous models to address the

abovementioned limitation by incorporating multiple features with mined latent re-

lations that provide richer and more diverse contextual information. By “broader”,

we incorporate four different types of features into our model: student id, skill id,

question id, and response id. These features provide additional contextual informa-

tion to help the model better capture individual differences in learning and problem-

solving strategies. By “deeper”, we employ a feature engineering method to extract

three meaningful latent relations important for representing student’s behaviour:

skill mastery, ability profile of students (learning transfer across skills), and problem

difficulty. We utilise a monotonic convolutional multi-head self-attention mechanism

to combine the above explicit features and latent relations. By incorporating these

explicit features and latent relations, our model could better account for the nuances

and complexities of student learning and achieve superior performance compared to

existing KT models. The experimental results show that MLFBK outperforms the

four baseline models on five benchmark datasets. Furthermore, the t-SNE as the

visualisation tool was used to analyse the interpretability of MLFBK and the em-

bedding strategies. The experimental results show that MLFBK outperforms the

baseline models and could effectively enhance the interpretability of deep learning

based KT models.

The main contributions of our Chapter lie in the following three aspects:

1. We propose MLFBK, a novel Multi- Features with Latent relations BERT

Knowledge Tracing model, which not only considers the multiple explicit fea-

tures but also deeply mines the latent relations between the features by using

a feature engineering method. 1

2. Our model achieves state-of-the-art performance, outperforming four existing

state-of-the-art models on five benchmark datasets. Moreover, we conduct

1Source code and datasets are available at https://github.com/Zhaoxing-Li/MLFBK.
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ablation experiments and demonstrate different embedding strategies with a

visualisation tool to investigate the contribution of different latent relations.

3. MLFBK exhibits good interpretability as a deep learning based KT method

and has advantages in training efficiency.

6.2 Related Work

This Chapter aims to present a novel BERT-based KT model that incorporates

multi-features and latent relations. Therefore, we first review the cornerstone of

the BERT model – the Transformer based models and their applications. Then we

review the development of KT methods in general. At last, we review existing KT

methods from the perspective of the number of integrated features.

6.2.1 Transformer-based Models and Application

The Transformer architecture, proposed by Vaswani et al. [40], is a type of neu-

ral network that has gained widespread popularity in natural language processing

(NLP), and other domains due to its ability to effectively model long-range depen-

dencies and capture complex patterns in sequential data. Transformers have been

used in various NLP tasks, including language translation, question answering, and

text classification, and have achieved state-of-the-art performance on many bench-

marks [281].

In addition to NLP, Transformers have also been applied in other domains, such

as computer vision [282], speech recognition [231], and recommendation systems

[283]. For example, the Vision Transformer (ViT) has recently been proposed as an

alternative to convolutional neural networks (CNNs) for image classification tasks,

achieving competitive performance on several benchmark datasets.

Besides the basic Transformer models, many powerful evolutions of Transformer-

based methods were proposed, such as the GPT [130] and BERT [41]. The well-

known ChatGPT originated from GPT [284]. BERT (Bidirectional Encoder Rep-

resentations from Transformers ), introduced by Devlin et al. [41], is a pre-trained

Transformer-based language model that has achieved state-of-the-art performance
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on various NLP tasks. BERT utilises self-attention and masked language modelling

(MLM) techniques to train the Transformer bidirectionally. Its remarkable ability

to process natural language text effectively and generate high-quality embeddings

has made it a popular choice and a superior performer in many Deep Learning

tasks [281]. BERT has also been adapted to various other fields with excellent re-

sults. For instance, ConvBERT utilises the original BERT architecture in image

processing task [42], BERT4Rec enhances the performance recommendation sys-

tems [43], and LakhNES improves the quality of music generation by incorporating

BERT [44].

6.2.2 Knowledge Tracing

Knowledge Tracing is a technique utilised in educational data mining that aims to

model students’ knowledge state and mastering level of the learning concepts or

subjects [227]. Generally, the KT models could be classified into three categories

based on the different structures of the modelling approach that the model used:

probabilistic models, logistic regression KT models, and deep learning-based models

[17].

Probabilistic KT models assume a student’s learning process follows a Markov

process. They use a probabilistic graphical model such as Hidden Markov Model

(HMM) or Bayesian Belief Network to track their changing learning states [285].

Bayesian Knowledge Tracing (BKT) is a classic probabilistic model that has been

used for this purpose, but it has several limitations: BKT does not account for the

complexity or difficulty of concepts and skills and assumes that each question re-

quires only one skill. This makes it difficult to process complex problems involving

multiple skills and complex relationships between concepts, questions, and skills.

To address these limitations, researchers have proposed models including Dynamic

BKT (DBKT), which uses Dynamic Bayesian Network (DBN) to model prerequisite

hierarchies and dependencies of multiple skills [286]. The logistic KT models are

based on the principle of logistic regression, which is a statistical method used to es-

timate the probability of a binary outcome by using one or more predictor variables.

However, both BKT and logistic KT models struggle to process multiple topics or
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skills and fail to account for other features that may impact student learning.

To overcome these limitations, researchers have turned to deep learning technolo-

gies to develop Deep Knowledge Tracing (DKT) [285]. DKT models a knowledge

tracing task as a sequence prediction problem and has shown promise in achieving

better performance than BKT and logistic KT models. The self-attention mech-

anisms were widely used in deep learning architectures, which have also been ap-

plied to KT models, resulting in models such as SAKT [69] and SAINT+ [236].

These methods have achieved higher performance than traditional DL-based meth-

ods. More recently, several BERT-based methods were proposed that achieved state-

of-the-art performance. BEKT [45] is a deep knowledge tracing with bidirectional

encoder representations from transformers. MonaconBERT [287] utilised the mono-

tonic attention based ConvBERT to improve the knowledge tracing.

6.2.3 KT models with different feature numbers

Single feature KT models Single-feature KT models use only one feature, usu-

ally exercise or skill, to predict a student’s knowledge or mastery of a particular

skill or concept. Deep Knowledge Tracing (DKT) [46] and Self-Attentive Knowledge

Tracing (SAKT) [69] are examples of single-feature models that have been proposed

to improve performance by using different techniques, such as LSTM networks and

attention mechanisms to deal with the sparsity of exercise data.

Double-feature KT models Double-feature KT models use both exercise and

skill features, resulting in significant performance gains compared to single-feature

models. Deep Hierarchical Knowledge Tracing (DHKT) [288], Bi-Interaction Deep

Knowledge Tracing (BIDKT) [289], and Attentive Knowledge Tracing (AKT) [68]

are examples of double-feature models that have been proposed to improve per-

formance by modelling the hierarchical relations between skills and exercises and

proposing new attention mechanisms and embedding methods.

Multi-feature KT models Multi-factor KT models integrate multiple learning-

related factors into the model to improve performance. Exercise-aware Knowledge
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Tracing (EKT) [16] and Relation-aware self-attention Knowledge Tracing (RKT)

[290] are examples of multi-feature models that have been proposed to integrate

information such as the exercise-making sequence, the relations between skills and

time delay since the last interaction, and the text information of the exercise content.

6.3 Methodology

6.3.1 Problem Statement

The goal of knowledge tracing is to use a series of interaction data from Online

Learning Systems (OLS) or Intelligent Tutoring Systems (ITS) to predict the cor-

rectness of a student’s next answers. The student’s interactions are represented by

a data sequence, denoted as x1, ..., xt, where t − th is represented as xt = (qt, at).

Here, qt refers to the t− th question and indicates whether the student’s answer is

correct (1) or not (0).

6.3.2 Proposed Model Architecture

We propose a novel Knowledge Tracing model, Multi Features with Latent Relations

BERT Knowledge Tracing (MLFBK), to improve the traditional KT models by

incorporating multi-features and mining latent relations between different features

in the student historical interaction data. Fig. 7.1 shows the architecture of MLFBK,

which consists of three parts: embedding on the left; BERT-based architecture in

the middle; the correctness sequence output on the right. The embedding part on

the left further contains two components: the Multi-Features embedding on the top,

and the Latent-Relations embedding at the bottom.

Multi-Features Embedding

In a general ITS system, student characteristics such as student id, skill id, ques-

tion id, and response id are recorded in the dataset. However, the hidden informa-

tion behind these features is also valuable to be mined. By mining the hidden latent

relations, the prediction efficiency of the KT model could be greatly improved. In
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Figure 6.1: The architecture of MLFBK. MLFBK consists of three parts: 1) the
multi-features process (on the left), 2) the BERT-based architecture (in the middle),
and 3) the correctness sequence output part(on the right).

this Chapter, we utilise three meaningful latent relations: individual skill mastery,

ability profile of students (learning transfer across skills), and problem difficulty.

We utilise conventional machine learning techniques, such as hidden Markov models

and K-means clustering, to extract meaningful features.

Therefore, in the Multi-Features Embedding part, we incorporate four different

types of features into our model: student id, skill id, question id, and response id.

Particularly, student id is utilised to generate the interaction sequences. It is also

used in the Latent Relation Embedding component for calculating the skill mastery

embedding and the ability profile embedding. These features need student id to

keep track of a single student.

Latent Relations Embedding

In the Latent Relations Embedding component, we use a feature engineering method

proposed by work [280]. Using this method, we mine three different meaningful

latent relations among the behaviour data of individual students: skill mastery,

ability profile (learning transfer across skills), and problem difficulty.
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Figure 6.2: Estimated the probability of skill mastery at each timestamp.

Skill Mastery. The formulation of skill mastery is based on the Bayesian

Knowledge Tracing (BKT) model, which uses four parameters to represent proba-

bilities related to a student’s mastery of a skill. These parameters include P (Lo),

the probability that a student masters the skill before attempting the first problem

associated with it; P (T ), the probability that a student will master the skill after the

next practice opportunity; P (G), the probability that a student guesses the correct

answer to a question despite not knowing the skill; and P (S), the probability that

a student answers a question incorrectly despite knowing the skill. Skill mastery is

the probability of learning a skill rather than the probability that a student applies

the skill correctly. A BKT model is trained for each skill, and the inputs to each

skill model are the binary responses of a student on that single skill. Fig. 6.2 shows

the Skill Mastery mining process.

Ability Profile. Students’ interactions are divided into multiple time intervals,

and past performance is encoded to estimate their ability profile. The ability profile

is encoded as a cluster ID and updated after each time interval using all previous

attempts on each skill. The K-means algorithm is used to evaluate the temporal

long-term learning ability of students in both training and testing at each time
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Figure 6.3: Estimated the probability of skill mastery at each timestamp.

interval. Fig. 6.3 shows the ability profile extraction process.

Problem Difficulty. This is calculated on a scale between 1 and 10, with 1

being the easiest and 10 being the most difficult. We use function 6.1 to map the

average success rate of a problem onto the 10-level scale. The problem difficulty (pj)

could be calculated as:

δ (pj) =

⌊∑|Nj |
i Oi (pj)

|Nj|
· 10

⌋
(6.1)

where Pj is the jth problem. Nj is the set of the students who tried to solve

problem pj. Oi (pj) is the first attempt of student i to solve problem pj. Problems

with a higher success rate are considered easier, while problems with a lower success

rate are considered more difficult.

Overall, in the first part of our model, we incorporate question embedding Eq,

items embedding Ei, response embedding Er, learnable positional embedding Epos,

skill mastery embedding ESK , ability profile embedding EAP , and problem difficulty

embedding EPD. The final input embedding is denoted as:

Einput = Eq + Ei + Er + Epos + ESK + EAP + EPD. (6.2)
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BERT based Architecture

The second part of our proposed architecture is a BERT-based method (shown

in Fig. 7.1). Earlier studies [291] have indicated that training the Transformer

model can be challenging unless a specific training strategy, like a warm-up start,

is employed. In contrast, the pre-LN Transformer doesn’t require a warm-up start

and converges to a solution much more rapidly than the original Transformer [292].

Additionally, our approach involved a distinct strategy for both training and testing.

During training, our proposed model predicted the positions to be masked. The

masking proportions used in training were identical to those used in the original

BERT model, with 15% of the embeddings masked, of which 80% were genuinely

masked, 10% were reversed, and 10% remained unchanged.

The encoder blocks use the pre-LN Transformer architecture with 12 layers to

normalise the input vectors Einput . The pre-LN can be formulated as follows:

z = LNpre (Einput ) (6.3)

The normalized value z is then transformed into the query, key, and value of

monotonic convolutional multi-head attention. This result is passed through a

dropout layer and added to the embedding vectors as a residual connection.

a = x+D(MonoConvMulAttn(z, z, z)) (6.4)

The output is normalized and passed through fully connected layers with a

LeakyReLU activation function. The results are again normalized through a dropout

layer, and the second result is added as a residual connection.

fc = Wfc2 ( LeakyReLU (Wfc1)) (6.5)

Moreover, we utilise a monotonic convolutional multi-head attention proposed

by [287], which is combined with mixed-attention and monotonic attention, to repre-

sent forgetting in sequence data. Monotonic multi-head attention uses an exponen-

tial decay mechanism to measure the distance between sequences, while span-based
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dynamic convolution uses a lightweight convolution to combine query and key vec-

tors.

6.3.3 Experiment Setting

Datasets

We adopted four benchmark datasets to validate the performance of the MLFBK

model, including EdNet [235] 2, assist093, assist124, algebra06 5.

Baseline Models

In this study, we evaluated the performance of our MLFBK model by comparing it

with three state-of-the-art models: MonaCoBERT [287], BEKT [45], and AKT [68],

as well as the top two baseline models (SSAKT and LTMTI) in the Riiid Answer

Correctness Prediction Competition hosted on Kaggle6.

Evaluation Metrics and Validation

We used the area under the curve (AUC) as the evaluation metric to compare the

model’s performance on four benchmark datasets. After that, we conducted an

activation function evaluation to compare the different activation functions. We

also conducted an ablation study to identify the contribution of different latent

relations. Furthermore, we applied t-SNE as the visualisation tool to evaluate our

method’s embedding strategies and interpretability.

Hyperparameters for Experiments

For a fair comparison, all baseline models were trained using the same set of param-

eters. Specifically, training was conducted with a batch size of 64 and a train/test

2https://github.com/riiid/ednet
3https://sites.google.com/site/assistmentsdata/home
4https://sites.google.com/site/assistmentsdata/home
5https://pslcdatashop.web.cmu.edu/KDDCup
6https://www.kaggle.com/code/datakite/riiid-answer-correctness
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split ratio of 0.8/0.2. The model was trained for 100 epochs with the Adam opti-

mizer and a learning rate of 0.001. The loss function used was binary cross-entropy,

and the model utilized a total of 12 encoder layers with a hidden size of 512 and

8 attention heads. The data was preprocessed by splitting it into interaction se-

quences with a maximum length of 100. In cases where a student had less than 100

interactions, the remaining sequence was padded with zeros. For students with more

than 100 interactions, the sequence was split into multiple subsequences of length

100.

6.4 Results and Discussion

6.4.1 Overall Performance

Table 7.3 presents the comparison results of MLFBK with five other KT models,

including MonaCoBERT, BEKT, AKT, SSAKT, and LTMTL, on four benchmark

datasets, including EdNet, assist09, algebra06, and assist12. It is clear from Table

7.3 that MLFBK outperforms the other five KT models on all four datasets in

terms of AUC, indicating that MLFBK is a promising method for KT. Take the

algebra06 dataset as an example: MLFBK achieves an AUC of 0.8327, which is

1.4%, 2.9%, 3.9%, 5.2%, and 2.2% higher than the AUC values of MonaCoBERT,

BEKT, SSAKT, LTMTI, and AKT, respectively. The average improvement on this

dataset is 3.12%. MonaCoBERT and BEKT also perform relatively well, with AUC

values close to those of MLFBK on some datasets. SSAKT and LTMTI, on the other

hand, have lower AUC values, indicating weaker performance. The results suggest

that MLFBK is a competitive method for knowledge tracing and could potentially

improve the accuracy of student modelling by incorporating more student action

features and mining latent relations.

6.4.2 Ablation Study

In order to identify the contribution of each latent relation in the MLFBK model

to the overall performance, we conducted an ablation study. The results are sum-
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Table 6.1: Comparison of different KT models on five benchmark datasets. The
best performance is denoted in bold.

Dataset Metrics MLFBK Monaco BEKT SSAKT LTMTI AKT
EdNet AUC 0.8278 0.7336 0.8204 0.7981 0.8023 0.7982
assist09 AUC 0.8524 0.8059 0.8227 0.6754 0.8132 0.7691

algebra06 AUC 0.8412 0.8201 0.8165 0.7937 0.7915 0.8143
assist12 AUC 0.8350 0.8132 0.7167 0.7356 0.6834 0.8034

marised in Table 6.2. MLFBK* in the table indicates the basic model structure with

explicit features. ap represents ability profile, sm represents skill mastery, and pd

represents problem difficulty. Table 6.2 also shows the AUC values for different ver-

sions of MLFBK* that were trained with different combinations of latent relations.

It is clear that the performance of the MLFBK model is influenced by the differ-

ent embedding strategies used for different relations. The models incorporating all

three latent relations achieved the highest AUC values on three of the four datasets,

except the assist09. Nevertheless, it also achieved the second highest score in the

assist09.

The problem difficulty contributed significantly to the model’s performance, with

the models that used only the problem difficulty embedding achieving the highest

AUC values on four datasets compared to other single latent relation embeddings.

The combination of problem difficulty and ability profile achieved the best perfor-

mance on the assist09 dataset and the second-highest performance on EdNet, indi-

cating that the combination of these two latent relations has more weight in the pre-

dictions. The skill mastery feature had a comparatively lower impact on the model’s

performance, with the models that used only the skill mastery feature achieving the

lowest AUC values on four datasets. It may be caused by skill mastery levels across

students being relatively uniform or lacking a solid correlation with our target vari-

able, student performance. In such cases, including the skill mastery feature may

not have significantly improved our model’s predictions. Moreover, there is the

possibility of redundancy or high correlation between the skill mastery feature and

other features in our dataset, such as ability profiles or problem difficulty. If these

features capture similar information, the skill mastery feature’s inclusion might not

have provided substantial additional value to our model. However, the models that
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used a combination of features achieved higher AUC values than the models that

used a single feature, indicating that the three latent relations are complementary

to each other.

Overall, the ablation study results suggest that the MLFBK model’s performance

could be effectively improved by incorporating multi-features and multiple latent

relations. The more features and/or latent relations embeddings were incorporated,

the higher AUC scores could be achieved.

Table 6.2: Ablation Study of MLFBK. The abbreviations used in there are as follows:
ap for ability profile, sm for skill mastery and pd for problem difficulty. The best
performance is denoted in bold.

Model EdNet assist09 algebra06 assist12
MLFBK* 0.7221 0.8002 0.7997 0.8065

MLFBK* + ap 0.7503 0.7922 0.8139 0.7713
MLFBK* +sm 0.7454 0.7891 0.7983 0.7611
MLFBK* +pd 0.8194 0.8411 0.8256 0.8304

MLFBK* +ap + sm 0.7429 0.8078 0.8201 0.7989
MLFBK* +ap + pd 0.8270 0.8560 0.8344 0.8287
MLFBK* +sm + pd 0.8233 0.8445 0.8362 0.8216

MLFBK* +ap + sm + pd 0.8278 0.8524 0.8412 0.8350

Activation Function evaluation

To investigate the impact of activation functions on the performance of our MLFBK

model, we conducted a study where we tested our model with three different acti-

vation functions: Leaky ReLU, Sigmoid, and Linear. Fig. 6.7 shows the results of

activation function evaluation. We trained and validated the models for 50 epochs

with early stopping. Upon analysing the results, we found that all three activa-

tion functions produced similar results in terms of both training and validation

behaviour. However, the Linear activation function performed slightly better than

the other two. Specifically, it had the highest accuracy and AUC score on the vali-

dation set, which indicates that it may be the most suitable activation function for

our MLFBK model. It is worth noting that the Leaky ReLU activation function

stopped early during the training process, which may be due to its high learning

rate. Overall, our findings suggest that the choice of an activation function has a
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Figure 6.4: The general embedding strategy, utilizing t-SNE as the visualization
method.

relatively minor impact on the performance of our MLFBK model, but using the

Linear activation function may lead to slightly better results.

Analysis of Embedding Strategy

We conducted a t-SNE analysis to visualize the entire embedding vector created

in our MLFBK model. The results show the good interpretability of our meth-

ods’ embedding strategies. Fig. 6.4 and Fig. 6.5 show the comparison of general

embedding and MLFBK embedding strategies, utilizing t-SNE as the visualization

method. Here, we take the embedding strategy of AKT as an example (shown in

Fig.6.4) and our MLFBK embedding strategy Fig.6.5 on the assistments09 dataset.

Each data point in the plot represents a learning interaction associated with a stu-

dent, question, response, correctness, item, ability profile, skill mastery, and problem

difficulty. The data points were coloured based on the ability profile value associated

with them, specifically the transfer across skills value for the relevant student at the

relevant time.

The Fig. 6.4 shows the general embedding could not distinguish different features

as all the features mixed together. In contrast, Fig. 6.5 shows that the MLFBK

embedding strategy could distinguish different embedding with different colours well.
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Figure 6.5: The MLFBK embedding strategies, utilizing t-SNE as the visualization
method.

The t-SNE plot shows that the students with small ability profile values at the

current interaction were grouped together by the embedding, as were students with

large values. This grouping could be used by the model to differentiate between

interactions with correct responses and incorrect responses. The ability profile values

provide additional information about students’ performance, which could be useful

for predicting their future performance. Overall, the t-SNE analysis demonstrated

the effectiveness of the MLFBK model in capturing and utilizing complex student

interaction data.

Fig. 6.6 shows the different embedding strategies of different single latent rela-

tions. The top is the embedding for the ability profile. It is the embedding without

the additional features and then coloured according to the problem difficulty. It is

easy to see that the problem difficulty feature is heavily considered in the feature

embedding. The middle is embedding for problem difficulty. It only colours the

learning interactions based on the problem difficulty of the relevant question. In

this figure, the embedding doesn’t seem to generate groupings, but more of a con-

stant gradient, where the more difficult problems are in the top left and the easier

problems are in the bottom right. The bottom image is the embedding for skill

mastery. Here the skill mastery of the student on the relevant item is highlighted.
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This feature is multiplied by 100 and rounded to convert it to a categorical feature

instead of a continuous one. The embedding also seems to be a gradient instead of

groupings.

Analysis of Estimating Problem Difficulty

We compared our model with MonaCoBERT regarding estimating problem difficulty

for specific questions in the assistments2009 dataset. While MonaCoBERT uses a

classical test theory (CTT) approach to estimate difficulties, our model calculates

problem difficulty as a feature to use as input for the BERT model. The compari-

son was visually represented in Fig.6.8, with difficulty levels on the x-axis and the

number of students answering correctly (green) or incorrectly (red) on the y-axis.

Common sense dictates that harder questions should have more incorrect answers,

although there may be exceptions. Surprisingly, the MonaCoBERT method showed

that many students answered easy questions incorrectly but answered more difficult

questions correctly, which seemed unlikely given the number of students evaluated.

In contrast, our model revealed that as question difficulty increased, fewer students

answered correctly, aligning with expectations. The results show that our method

of estimating problem difficulty is far superior to the CTT difficulty estimation used

by MonaCoBERT. Our method provides much more predictive value in estimating

problem difficulty. This highlights the effectiveness of using our MLFBK model in

predicting student performance in educational settings.

6.5 Summary

In this chapter, we have proposed MLFBK, which employs a BERT-based architec-

ture incorporating multi-features and latent relations to improve the performance

of Knowledge Tracing models. Experimental results show that MLFBK outper-

forms the five baseline models in every benchmark dataset on the metric of AUC.

Moreover, we conducted an ablation study for different embedding strategies. The

results indicate that combining different features and latent relations could improve

performance effectively. Incorporating additional embeddings resulted in increased
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Figure 6.6: Different Embedding Strategies.
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Figure 6.7: Activation Function evaluation.

AUC scores. Moreover, we utilise the t-SNE as the visualisation tool to compare

different embedding strategies. The results show that our method not only improves

the performance of the models but also improves the model’s interpretability.

Epilogue

The approach presented in this chapter succeeds in including identifying relevant

features and latent relations in student interaction data that have the potential

to contribute to the improvement of KT models RO 3.1. We developed a novel

BERT-based method to integrate these multiple features and latent relations into

KT models to address RO 3.2. We have conducted an extensive evaluation to assess

the effectiveness of the Sim-GAIL method in enhancing the prediction accuracy of

the Knowledge Tracing (KT) model as outlined in RO 3.3.

By accomplishing these research objectives, this chapter successfully addressed

Research Question 4: “How can multiple features and latent relations in the student

interaction data be integrated to improve the accuracy and efficiency of Knowledge

Tracing (KT) models to improve the efficiency of ITS?” The proposed methods offer
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Figure 6.8: Estimating Problem Difficulty.
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promising approaches to improving the accuracy, efficiency, and interpretability of

KT models, thereby facilitating more effective and personalised learning experiences

in ITS.
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CHAPTER 7

LBKT: A LSTM BERT-based Knowledge Tracing for

Long-Sequence Data

Prologue

In Chapter6, we have presented MLFBKT, which is a novel Knowledge Tracing

method based on BERT. It leverages multiple features and explores latent relation-

ships between these features to enhance the performance of the KT model. Another

challenge faced by the development of KT is that, with the development of ITS,

large-scale datasets containing long-sequence data began to emerge. Recent deep

learning based KT models face obstacles such as low efficiency, low accuracy, and

low interpretability when dealing with large-scale datasets containing long-sequence

data.

To address these issues and promote the sustainable development of ITS This

chapter proposed a LSTM BERT-based Knowledge Tracing model for long se-

quence data processing, namely LBKT, which uses a BERT-based architecture

with a Rasch model-based embeddings block to deal with different difficulty levels

information and an LSTM block to process the sequential characteristic in students’

actions. LBKT achieves the best performance on most benchmark datasets on the
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metrics of ACC and AUC. Additionally, an ablation study is conducted to analyse

the impact of each component of LBKT’s overall performance. Moreover, we used

t-SNE as the visualisation tool to demonstrate the model’s embedding strategy. The

results indicate that LBKT is faster, more interpretable, and has a lower memory

cost than the traditional deep learning based KT methods.

Declaration: This chapter is based on the following publications:

Li, Z., Shi, L., Zhou, Y., & Wang, J. (2023, November) LBKT: A LSTM

BERT-based Knowledge Tracing for Long-Sequence Data . The 30th Inter-

national Conference on Neural Information Processing (ICONIP2023). Submitted

and Under Review

This chapter is presented largely as the manuscript submitted, although referenc-

ing and notation have been altered, and cross-referencing has been added for consis-

tency across this thesis. Some stylistic changes have been made for consistency. The

majority of the text is verbatim, with some minor wording and formatting changes.

7.1 Introduction

The development of online learning systems has made it possible to use Intelligent

Tutoring Systems (ITS) to store and analyse a sizable amount of student behaviour

data to improve intelligent educational services. As one of the widely applied TEL

technologies, Knowledge Tracing (KT) has drawn a lot of attention. KT is the field

of modelling students’ learning trajectories and predicting their sequential actions

based on historical interaction data between students and ITS [15].

With the development of ITS, large-scale datasets such as EdNet [235] and Junyi

Academy [293] began to emerge. In these datasets, long-sequence student interac-

tion data were gathered as an increasing number of students used the ITS for an

extended period. The long- and short-sequence data in these datasets are unbal-

anced, which satisfies the long-tail distribution [21]. For instance, within the EdNet

dataset, a substantial amount of student action sequences are included, ranging from

the shortest sequence that may comprise just a single action to the longest sequence
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that encompasses 40,157 actions. Notably, the average action sequence length of

the EdNet dataset is 121.5, indicating a moderate length of data sequences over-

all. However, it is important to note that the distribution of sequence lengths is

highly skewed, and this unbalanced distribution has an impact on the overall per-

formance of the KT models [20]. Although the quantity of short-sequence data is

larger than the long-sequence data, the latter is of more weight than the former in

prediction tasks [21]. Studies have demonstrated that the precision of conventional

deep learning-based knowledge tracing models diminishes when handling sequences

exceeding 400 actions. Yet, as ITS gains wider adoption, longer sequence data be-

comes increasingly prevalent, thereby presenting significant challenges for knowledge

tracing model predictions [285].

In general, KT models could be divided into three categories: probabilistic KT

models, logistic KT models, and deep learning based KT methods (DKT) [17].

Traditional probabilistic KT models and logistic KT models are forced to confront

difficulties such as decreased processing efficiency and increased memory usage as

growing amounts of longer sequence data are released. Deep learning based KT

models are known to suffer from inefficiencies when processing long-sequence action

data problems, including issues related to the accuracy, speed, and memory usage

[20–22]. Therefore, allowing the processing of very long sequence data is key to

achieving high performance for next-generation KT models [20]. Moreover, due to

the black-box nature of traditional deep learning methods, the current deep learning

based KT models also struggle with the lack of interpretability [68].

To address the above issues, in this Chapter, we propose LBKT, a novel LSTM

BERT Knowledge Tracing model, for processing long sequence data. The model

combines the strength of the Bidirectional Encoder Representations from Transform-

ers (BERT) model in capturing the relations of complex data [41] with the strength

of the LSTM model in handling long sequential data to improve its performance

on large-scale datasets containing long-sequence data (here, the long-sequence data

indicates a length longer than 400 interactions). Moreover, we utilise a Rasch model-

based embedding method to process the difficulty level information in the historical

behaviour data of students. The Rasch model is a classic yet powerful model in
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psychometrics [294], which could be utilised to construct raw questions and knowl-

edge embeddings for KT tasks [68]. Rasch model based embedding could improve

the model’s performance and interpretability. The experimental results show that

our proposed LBKT outperforms the baseline models in five datasets on metrics

ACC and AUC. Moreover, it is faster at processing long-sequence data at two long-

sequence datasets we extract from the two large-scale datasets. Furthermore, we use

t-SNE as the visualisation tool to demonstrate the interpretability of the embedding

strategy.

The main contributions of this chapter lie in the following two aspects:

1. We propose LBKT 1, a novel LSTM BERT Knowledge Tracing model for

long sequence data processing. The LBKT leverages the power of BERT,

Rasch-based embedding strategies, and LSTM.

2. The experimental results show that LBKT outperforms the baseline models on

five ITS datasets on the metric of AUC(assist12, assist17, algebra06, EdNet,

and Junyi Academy). Another comparative experiments show the effective-

ness of LBKT when processing long-sequence datasets. LBKT model exhibits

better interpretability than traditional deep learning based KT models and

has advantages in training efficiency.

7.2 Related Work

7.2.1 Knowledge Tracing

Knowledge Tracing (KT) is used in Intelligent Tutoring Systems (ITS) to model

and predict a student’s mastery level of a specific skill or concept over time [285].

It is based on the assumption that a student’s knowledge state is a hidden variable

that can be inferred from their observable behaviour, such as their responses to

questions or tasks related to the skill or concept being measured [59]. Its goal is

to provide personalised feedback and support to students by tracking their progress

1Source code and datasets are available at https://github.com/Zhaoxing-Li/LBKT
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and adapting instruction to meet their individual needs. This can help to improve

student learning outcomes and enhance educational effectiveness. Broadly, there are

three categories of KT methods: probabilistic KT models, logistic KT models, and

deep learning-based KT models [17].

Probabilistic KT models assume that the student’s learning process follows a

Markov Process, where students’ knowledge mastery could be measured by their

observed learning performance [59]. Bayesian KT, or BKT, is the earliest and

most classic probabilistic model, which was inspired by cognitive mastery learn-

ing [295]. BKT models generally use a probabilistic graphical model, such as the

Hidden Markov Model (HMM) [59] and Bayesian Belief Network [296], to track stu-

dents’ changing learning states. The major shortcoming of BKT is that it assumes a

simplistic two-state student modelling framework, where a student’s knowledge is ei-

ther learned or unlearned, and there is no concept of forgetting or decay in the model.

However, in reality, a student’s knowledge could be complex and multi-faceted and

could change over time due to various factors such as decay and interference. There-

fore, BKT may not be able to capture the nuances of student learning and may not

provide an accurate representation of their knowledge state over time. For example,

BKT assumes that each question only required one skill and that the various skills

were irrelevant to each other [59, 227, 297, 298]. Therefore, in general, BKT models

cannot process complicated problems, including the multiple skills and the complex

relationship among the concepts, questions, and skills. To address this limitation,

Käser et al. proposed Dynamic BKT, or DBKT, based on Dynamic Bayesian Net-

work (DBN), to model the prerequisite hierarchies and dependencies of multiple

skills [61]. However, both BKT and DBKT still struggle with processing multiple

topics or skills, failing to account for contextual factors that may impact student

learning.

The logistic KT models are built on the principle of logistic regression, which

is a statistical method used to model the probability of a binary outcome based

on one or more predictor variables [17]. In the context of educational data, the

predictor variables could include a student’s prior performance on a set of related

skills or concepts, their response time, and their correctness or incorrectness in
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answering assessment questions. The output of the logistic regression KT model is

a probability estimate of a student’s mastery level on a particular skill or concept,

which can be used to inform personalised learning interventions and improve student

outcomes. There are three logistic models. The Learning Factor Analysis model

(LFA) incorporates the initial knowledge state, easiness of knowledge components

(KCs), and learning rate of KCs to estimate the student’s initial knowledge state,

the easiness of different KCs, and the learning rate of KCs [63]. The Performance

Factor Analysis (PFA) model is an extension of the LFA model and takes into

account the student’s performance. PFA considers parameters for previous failures

(f) and successes (s) for the KC, in addition to the easiness of KCs [64]. The

Knowledge Tracing Machines (KTM) model uses factorization machines (FMs) to

extend logistic models to higher dimensions [61].

Inspired by the recent success of deep learning (DL) [31], researchers have ap-

plied deep learning technologies into the KT field to develop DL-based Knowledge

Tracing [66]. DL-based KT typically models a knowledge tracing task as a sequence

prediction problem. With the self-attention architectures applied in the deep learn-

ing field, KT models based on the self-attention mechanism began to emerge. For

example, SAKT [69] and SAINT+ [236] apply the self-attention mechanism to KT

models and achieve higher performance than the traditional DL-based methods.

With the development of the self-attention mechanism, Transformer based knowl-

edge tracing models also have been proposed. Ghosh [68] proposes context-aware

attentive knowledge tracing (AKT), which introduces a novel monotonic attention

mechanism that accounts for the temporal nature of the learning process and the

decay of students’ knowledge. Nakagawa et al. proposed the Graph-based Knowl-

edge Tracing (GKT) model, which incorporates the potential graph structure of

KCs into a graph [70]. There were also KT methods based on BERT that had been

proposed. MonacoBERT [287] is a BERT-based KT model that incorporates the

monotonic convolutional multi-head attention and classical test-theory-based (CTT-

based) embedding strategy to improve performance. BEKT [45] is a Bidirectional

Encoder representation from the Transformers-based model that predicts student

knowledge state by combining historical learning performance.
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7.2.2 Transformer-based Model and Application

Transformer is a prominent neural network model proposed by Vaswani et al., which

utilises the self-attention mechanism to extract inherent features [40]. Transformer-

based models have achieved significant success in the Deep Learning field, especially

in Nature Language Processing (NLP) and image generation tasks [231,282].

The evolution of Transformer-based models, such as BERT [41] and GPT [130],

has achieved outstanding performance in the above tasks. BERT, first proposed

by Devlin et al., is a successful application of Transformer [41]. BERT utilises the

self-attention mechanism and the masked language model (MLM) to train the Trans-

former bidirectionally in the NLP fields [41]. BERT is renowned for its exceptional

ability to process and comprehend natural language text efficiently. It has consis-

tently outperformed other deep learning models in a broad range of tasks, extending

beyond the field of NLP. BERT’s success can be attributed to several key features,

including its bidirectional context, which allows it to capture the dependencies be-

tween both preceding and succeeding tokens in a sequence. Additionally, BERT’s

large pre-training corpus enables it to learn a robust language representation that

can be fine-tuned for downstream tasks with relatively small amounts of labelled

data. BERT’s transformer architecture, which uses self-attention mechanisms to

capture global dependencies between tokens in a sequence, is also a significant fac-

tor contributing to its performance. The self-attention mechanism allows BERT to

weigh the importance of different tokens in a sequence dynamically, which improves

its ability to capture complex patterns and relationships in the data [41]. BERT

is also known for its ability to generate high-quality embeddings, which are crucial

for many natural language processing tasks [41]. There have been a lot of BERT

variants applied in other deep learning fields, demonstrating their outstanding per-

formances. For example, ConvBERT [42] applies the original BERT architecture in

the image processing field; BERT4Rec uses BERT model to improve recommenda-

tion systems [43]; LakhNES uses BERT model to enhance Music Generation [44].

However, in the Knowledge Tracing field, although some BERT-based models, such

as BEKT [299] and BiDKT [46], are proposed to improve performance, they are un-

able to outperform state-of-the-art KT methods in large-scale datasets containing
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long-sequence data.

7.3 Methodology

7.3.1 Problem Statement

The key to knowledge tracing is to predict the correctness of a student’s next answer

in a sequence. Let x1, . . . , xt denote the student’s actions, and let the t-th action

be represented as xt = (qt, at), where qt is the question presented to the student

and at is the student’s response. The goal is to estimate the correctness P (at =

1|x1, . . . , xt−1), that is, the correctness of student’s response to the current question,

given their previous actions in the sequence.

7.3.2 Proposed Model Architecture

We propose a novel model, LBKT, for the task of knowledge tracing on large-scale

datasets containing long-sequence data. While previous BERT-based KT models

have shown remarkable success in capturing the relations of complex data, they also

have inefficiencies when dealing with long sequence student action data [45]. On the

other hand, LSTM models have been proven to excel in handling long sequential

data. In response to these challenges, we propose a novel KT model that combines

the strengths of both the BERT and LSTM models to improve performance on large-

scale datasets containing long-sequence data (where long-sequence data indicates a

length longer than 400 interactions). The Rasch embedding (also known as the 1PL

IRT model) is a method to represent questions and concepts in a mathematical space

[294]. The embeddings are created using a vector that summarizes the variation in

questions covering a concept and a scalar difficulty parameter that controls how

far a question deviates from the concept it covers. The embeddings are used as

raw embeddings for questions and responses, which is a way to track a learner’s

knowledge state. By leveraging the strengths of a BERT-based model, Rasch model-

based embeddings, and long short-term memory (LSTM) unit, our proposed model

architecture has the potential to effectively process and understand relationships
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Figure 7.1: The architecture of LBKT. LBKT consists of three components: 1) the
Rasch model-based embeddings (on the left), 2) the BERT-based architecture (in
the middle), and 3) the LSTM block (on the right).

among different features in long-sequence data, as illustrated in Fig. 7.1.

The first component of LBKT is the Rasch model-based embeddings proposed

by Ghosh [68]. The Rasch model-based embeddings consist of difficulty level em-

beddings Ed and question embeddings Eq. These embeddings are multiplied and

added to the BERT token embeddings and the sin and cos positional embeddings

to build the final embeddings, as shown in the following equation:

E = ERasch + EBert Token + EPosition (7.1)

where the Rasch model-based embeddings ERasch are defined as:

ERasch = Ed + Ed × Eq (7.2)

The segment embeddings, which are typically used to represent information

about the segment in the BERT model, are replaced by the Rasch embeddings

mentioned above in our model’s architecture. Rasch model-based embeddings are

able to more accurately estimate students’ knowledge states, as explained earlier,
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making them a key contributor to the effectiveness of LBKT for knowledge tracing

tasks.

The second component of LBKT is a BERT-based block, which consists of 12

Transformer blocks. Each includes a multi-head attention mechanism, a feedforward

network (FFN), and sublayer connections. The multi-head attention mechanism uses

the “Scaled Dot Product Attention” method as implemented in BERT, along with

queries Q, keys K, values V , and an attention mask for padded tokens. The FFN

has a feedforward hidden layer with a size of four times that of the model’s hidden

layer and uses the GELU activation function rather than RELU.

The sublayer connections in the Transformer block include a residual connection

followed by layer normalization. The formulas for the attention mechanism and the

FFN are as follows:

Attention(Q,K, V ) = softmax

(
QKT

√
dk

)
V (7.3)

FFN(x) = GELU(W1x+ b1)W2 + b2 (7.4)

In the third component of LBKT, we use a neural network (NN) linear trans-

formation instead of the attention projection typically used in conjunction with the

LSTM unit. This is based on our observed improved performance with the NN

linear transformation in our experiments. It should be noted that this choice is not

necessarily related to the length or complexity of the sequence but rather to the

specific characteristics of the data and the task at hand.

Overall, LBKT is a model that is tailored specifically for use in the field of

knowledge tracing. It combines the natural language processing capabilities of the

BERT model with the ability to accurately estimate knowledge states using Rasch

model-based embeddings and the ability to effectively handle long sequences of data

using the LSTM unit and the NN linear transformation. This makes it an ideal choice

for the task of knowledge tracing in large-scale datasets containing long-sequence

data with unbalanced data distribution.
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7.3.3 Experiment Setting

Datasets

We used five benchmark datasets to validate the effectiveness of the LBKT model,

including assist122, assist173, algebra06 4, EdNet [235] 5, and Junyi Academy [293]6.

Table 7.1 shows the sizes of the above datasets. In general datasets, such as assist

12 and assist 17, it could be challenging to identify and extract large amounts of

long-sequence data. Therefore, we validated the speed performance of every model

on two datasets with long-sequence student action data extracted from EdNet and

Junyi Academy. The mean action sequence length of EdNet is 121.5. The mean

interaction length of Junyi Academic is 104.7. Table 7.2 shows the action sequence

length statistics of EdNet and Junyi Academy. Here, we define the longer action

sequence as longer than 100 records. We extract 200 students’ action sequences that

include interactions longer than 100 actions from each dataset as the long-sequence

dataset to validate the performance of different KT models. Lastly, we selected

different lengths of action sequences from Ednet to test the speed performance of

each model. We selected four groups with average records lengths of 100, 200, 300,

and 400, respectively. Each of these groups included 50 students.

Table 7.1: Benchmark dataset data statistics
Dataset Students Concepts Questions Interactions
assist12 24,429 264 51,632 1,968,737
assist17 1,708 411 3,162 934,638

algebra06 1,318 1,575 549,821 1,808,533
EdNet 784,309 1,472 11,957 641,712

Junyi Academy 247,606 13,169 722 25,925,922

2https://sites.google.com/site/assistmentsdata/home
3https://sites.google.com/site/assistmentsdata/home
4https://pslcdatashop.web.cmu.edu/KDDCup
5https://github.com/riiid/ednet
6https://pslcdatashop.web.cmu.edu/Files?datasetId=1275
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Table 7.2: Action Length Statistics of EdNet and Junyi Academy
Features Junyi Academy EdNet
Students 247606 784309

Max action length 22067 40157
Mean action length 104.7 121.5

Baseline Models

We compared our LBKT to three state-of-the-art models, BEKT [45], AKT [68],

DKVMN [300], as well as the two top baseline models in the Riiid Answer Cor-

rectness Prediction Competition provided by Kaggle7, including SSAKT [301], and

LTMTI [235].

Evaluation Metrics and Validation

We used the accuracy (ACC) and the area under the curve (AUC) as performance

metrics to compare the models’ performance in five datasets. We also used the

training speed, speed ratio, and memory usage as metrics to compare the perfor-

mance in the large-scale datasets containing long-sequence data (i.e., EdNet and

Junyi Academy). Moreover, we used five-fold cross-validation for the evaluation.

Hyperparameters for Experiments

To compare with each model, the same parameters were used for model training.

The batch size was set to 64, and the train/test split was 0.8/0.2. The model used an

embedding size of 128 and the Adam optimizer with a learning rate of 0.001. The loss

function used was the Binary Cross Entropy with Logits Loss (BCEWithLogitsLoss).

The scheduler was set to OneCycleLR with a maximum learning rate of 0.002.

Dropout was also being used at a rate of 0.2. The training ran for a total of 100

epochs, with early stopping set to 10 epochs. If the validation loss does not decrease

for the first three epochs, the training stops, in order to prevent overfitting and save

resources. The maximum sequence length was 200, with an eight-attention head.

Hidden sizes were 128 for BERT, 512 for FFN, and 128 for LSTM. The Transformer

7https://www.kaggle.com/code/datakite/riiid-answer-correctness
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block/encoder layer was set to 12.

7.4 Results and Discussion

7.4.1 Overall Performance

LBKT outperforms four baseline models on most metrics in the experiments on five

benchmark datasets. Tabel 7.3 shows the overall performance of each model. We

used five-fold cross-validation to estimate their performances. LBKT performed the

best on EdNet and Junyi Academy datasets on both ACC and AUC metrics. It also

achieved the best performance on the ACC metric on assist12 and AUC on assist17.

On algebra06, AKT achieved the best performance on the ACC metric, BEKT

achieved the best performance on the AUC metric, and LBKT achieved the second-

best performance on both metrics. This result indicates that LBKT is an efficient

KT model on most datasets, especially large-scale datasets containing long-sequence

interaction data. This was affected by our LBKT model’s unique architecture. The

LSTM block enables the model to learn the sequential features of the long sequence

and gives more importance to the recent actions of the students, which prevents the

model from giving too much weight to the long-ago and low-relevance actions and

thus improving the training efficiency.

Table 7.3: Comparison of different KT models on five benchmark datasets. The
best performance is denoted in bold.

Dataset Metrics LBKT BEKT SSAKT LTMTI AKT DKVMN
assist12 ACC 0.814 0.786 0.675 0.813 0.769 0.756

AUC 0.768 0.813 0.741 0.785 0.753 0.701
assist17 ACC 0.792 0.795 0.771 0.796 0.733 0.797

AUC 0.814 0.801 0.735 0.683 0.803 0.709
algebra06 ACC 0.801 0.797 0.795 0.811 0.831 0.800

AUC 0.799 0.815 0.774 0.791 0.814 0.793
EdNet ACC 0.803 0.781 0.761 0.799 0.756 0.800

AUC 0.815 0.795 0.798 0.802 0.798 0.796
Junyi ACC 0.832 0.807 0.777 0.797 0.791 0.790

Academy AUC 0.851 0.831 0.845 0.812 0.799 0.769

Tabel 7.6 shows the performance comparison on the two large-scale datasets. On

both datasets, LBKT achieved the best training efficiency. It was 4.29x faster than
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BEKT on EdNet and 4.77x faster than BEKT on Junyi Academy. Compared with

the second-best model, AKT, LBKT was 1.32x faster on EdNet and 1.42x faster on

Junyi Academy. For the memory cost, LBKT was about one-third of BEKT and

lower than LTMTL on both datasets. Although the memory cost of LBKT was not

the smallest, LBKT has achieved the best results in both ACC and AUC metrics

running on the same GPU. This allows LBKT to run on middle-range GPUs. To

improve the training efficiency, we used a last input as the query method [20] in the

Transformer block instead of the whole sequence, which decreased the complexity

of the encoder to improve training speed and reduce memory cost.

Table 7.4: Performance comparison on the two large-scale datasets, EdNet and Junyi
Academy. The best performance is denoted in bold.

Model EdNet Junyi Academy
speed ↑ speed ratio ↑ memory ↓ speed↑ speed ratio ↑ memory ↓

BEKT 4.93 1.00x 16.7 GB 4.85 1.00x 16.6 GB
SSAKT 7.13 1.44x 3.4 GB 6.22 1.28x 3.2 GB
LTMTI 13.8 1.32x 7.69 GB 12.1 1.19x 8.82 GB
AKT 17.1 3.25x 4.32 GB 16.4 3.35x 4.37 GB

DKNMN 5.97 2.34x 7.68 GB 4.67 3.75x 8.53 GB
LBKT 21.3 4.29x 6.09 GB 22.2 4.77x 6.08 GB

To estimate the model performance on different lengths of data sequences, we

sorted the data in the two datasets by length and divided them into four sub-datasets

according to the average length. The average lengths of the four sub-datasets were

set as 100, 200, 300, and 400, respectively. Sequences shorter than the mean were

padded with 0s, and sequences longer than the mean were pruned.

Fig. 7.2 shows the results of the speed performance comparison of each model

processing different lengths of data sequences. LBKT has a relatively high-speed

performance compared to other KT models when processing data sequences with

varying lengths. LBKT is the fastest model in all four groups of data lengths.

AKT and DKMN also have relatively high speeds, with AKT being the second-

fastest model in all groups and DKMN being the third-fastest model. Overall, the

results suggest that LBKT is the fastest model, and that it is particularly efficient

at dealing with long sequences of data. The fact that LBKT maintains its high

speed even when processing longer sequences of data indicates that it is well-suited
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Figure 7.2: Speed performance comparison of each model when processing data
sequences with varying lengths. The vertical axis is the speed (104 samples per sec).

for tasks that require the analysis of large amounts of data over extended periods of

time.

7.4.2 Ablation Study

In this section, we explore why LBKT performed better than other methods and

which components affected the overall performance. Table 7.5 shows the results of

the ablation study. We compared LBKT, LBKT without Rasch model-based em-

beddings block (denoted as LBKT-Rasch), LBKT without LSTM block (denoted

as LBKT-LSTM), and LBKT without both Rasch model-based embeddings LSTM

(denoted as BERT). The results show that LBKT achieved the best performance

on EdNet and Junyi Academy on both ACC and AUC metrics. It also achieved

the best performance on one metric in every dataset. BERT-only achieved the best

performance on assist17 on ACC, which shows that the combination with Rasch

embeddings and LSTM could improve the performance of a single BERT model.
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Table 7.5: Results of the ablation study. LBKT-Rasch denotes LBKT without Rasch
embedding; LBKT-LTSM denotes LBKT without LSTM block; and BERT denotes
only the transformer structure-based blocks are included. The best performance is
denoted in bold.

Dataset Metrics LBKT LBKT-Rasch LBKT-LSTM BERT
assist12 ACC 0.804 0.785 0.799 0.793

AUC 0.768 0.768 0.783 0.750
assist17 ACC 0.784 0.792 0.782 0.792

AUC 0.814 0.709 0.779 0.799
algebra06 ACC 0.801 0.796 0.792 0.798

AUC 0.799 0.756 0.809 0.765
EdNet ACC 0.803 0.729 0.722 0.801

AUC 0.815 0.758 0.794 0.809
Junyi Academy ACC 0.882 0.856 0.874 0.879

AUC 0.907 0.893 0.877 0.901

Furthermore, we conducted additional paired t-tests to verify the significance of

the observed differences in performance metrics. These tests confirm that the im-

provements, while numerically small, are statistically significant (p <0.05). In the

context of educational data mining, even small improvements in predictive accuracy

can have meaningful implications for student support systems.

Table 7.6 shows the ablation study of speed performance comparison on the two

large-scale datasets. The results show that LBKT has the highest speed perfor-

mance among all models on both datasets, with a speed of 21.3 samples per second

on EdNet and 22.2 samples per second on Junyi Academy. This suggests that LBKT

is a highly efficient model for processing large amounts of data in real-time. Inter-

estingly, LBKT-LSTM, which removes the LSTM layer from the proposed model,

has a significantly lower speed performance compared to LBKT, with a speed ra-

tio of only 1.29x on EdNet and 1.19x on Junyi Academy. This suggests that the

LSTM layer is an important component in the proposed model and contributes sig-

nificantly to its speed performance. This is likely due to the ability of LSTM to

capture long-term dependencies and sequential patterns in the data, which can be

crucial in educational applications.
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Table 7.6: Speed performance comparison ablation study on the two large-scale
datasets, EdNet and Junyi Academy. The best performance is denoted in bold.

Model EdNet Junyi Academy
speed speed ratio memory speed speed ratio memory

LBKT 21.3 4.29x 6.09GB 22.2 4.77x 6.08GB
LBKT-Rash 19.1 3.51x 5.6GB 20.31 3.67x 3.1 GB

LBKT-LSTM 13.8 1.29x 7.87GB 12.1 1.09x 8.37GB
BERT 12.1 3.27x 4.32GB 11.4 3.52x 4.34GB

7.4.3 Analysis of Embedding Strategy

In this section, We used t-SNE as the visualisation tool to show the interpretability

of LBKT’s embedding strategy. Fig. 7.3 shows the results of No-Rasch-embedding,

and Fig.7.4 shows the Rasch embedding strategy. We can see that, in the No-

Rasch-embedding scenario, the difficult questions’ embeddings (dark blue vectors)

mixed with the easy questions’ embeddings (yellow to light blue vectors). In figure

7.4, the difficult level embeddings were separated to avoid mixing with easy level

embeddings.

Questions at a higher difficulty level are typically associated with longer sequence

data, as students spend more time and steps on difficult exercises, which results in

longer interaction sequences. Rasch model-based embeddings could divide different

difficulty-level parts before the start of the model training and not mix them with

other difficulty-level embeddings. As a result, it might increase training efficiency

to converge faster.

7.4.4 Comparison with MLFBK

Chapter 6 introduced the MLFBK Model, a novel BERT-based Knowledge Tracing

(KT) model that accentuates the utilisation of multiple features and the exploration

of latent relations amongst them. This model is particularly focused on harnessing

a diverse set of features, such as individual skill mastery and problem difficulty, to

augment the accuracy and efficiency of knowledge tracing.

When it comes to selecting between these models, several factors need consider-

ation. For scenarios involving long-sequence student interaction data, particularly

in large-scale datasets, the LBKT model presented in Chapter 7 is the preferred
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Figure 7.3: Visualisation of the embedding vector using t-SNE: without Rasch em-
beddings. The colour bar is the predicted probability of the outputs.

Figure 7.4: Visualisation of the embedding vector using t-SNE: with Rasch embed-
dings. The colour bar is the predicted probability of the outputs.
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choice. In contrast, the MLFBK model from Chapter 6 is more suitable for situa-

tions where a rich feature set and the exploration of latent relations are imperative

for a comprehensive understanding of student learning patterns.

Regarding computational resources, it is noteworthy that both models, owing

to their deep learning nature, are resource-intensive. The choice between them

may, therefore, hinge on the available computational capabilities and the size of the

dataset being handled.

In different educational contexts, the models have their distinct advantages. The

MLFBK model is preferable in contexts where a nuanced understanding of student

learning, facilitated by multiple features and latent relationships, is essential. On

the other hand, the LBKT model is more apt for environments characterised by

extensive sequential interaction data that require efficient processing.

Integrating the MLFBK and LBKT models offers a promising route to enhance

accuracy and efficiency in large-scale educational settings, combining in-depth fea-

ture analysis with extensive sequence management. However, this endeavour is

not without substantial challenges. Merging the two models significantly increases

complexity, demanding more resources and advanced expertise and potentially ex-

acerbating issues such as overfitting and data processing complexities.

7.5 Summary

In this Chapter, we have developed LBKT, which employs a BERT-based archi-

tecture with an LSTM block for processing long-sequence data, and Rasch model-

based embeddings for different difficulty levels of questions. Experiments show that

LBKT outperforms baseline models on most benchmark datasets. We also con-

ducted the speed performance experiment on the two large-scale datasets contain-

ing long-sequence data. The results suggest that LBKT could process long-sequence

data faster and is more resource-efficient. Moreover, we conducted an ablation study

for different components of LBKT. The results indicate that the LSTM component

aided in improving the performance of dealing with long-sequence data. Further-

more, we conducted an analysis of the embedding strategy using t-SNE. The result

165



shows that Rasch embedding could process the difficulty-level features effectively.

Epilogue

This chapter addressed research question 5: “How to effectively deal with large-scale

datasets and process long sequence data to improve the performance of Knowledge

Tracing (KT)?” This research question was approached through the following re-

search objectives:

RO 5.1 involved proposing a novel LSTM BERT-based Knowledge Tracing

model, LBKT, specifically designed to handle long sequence data in ITS. By lever-

aging the power of LSTM and BERT, LBKT aimed to capture the temporal de-

pendencies and semantic representations in the data, enabling more accurate and

reliable knowledge tracing.

RO5.2 focused on evaluating the performance and scalability of the proposed

LBKT model in processing large-scale datasets and long-sequence data. Benchmark

datasets were utilized to compare the performance of LBKT with existing methods.

RO 5.3 aimed to conduct an ablation study to analyze the impact of each com-

ponent of LBKT on its overall performance. By systematically evaluating and re-

moving specific components of LBKT, the study sought to identify the contributions

of individual elements and highlight their importance in enhancing the model’s ef-

fectiveness. Furthermore, the t-SNE visualization tool was utilized to demonstrate

the interpretability of the embedding strategy employed in LBKT.
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CHAPTER 8

Conclusions and Future Work

8.1 Summary and Contributions

This thesis aims to explore and enhance the collaboration between humans and

Artificial Intelligence (AI) in the context of Intelligent Tutoring Systems (ITS) by

addressing key challenges and proposing innovative approaches. The main contri-

butions and findings are summarised as follows:

We have presented a comprehensive survey on Collaborative Systems to enhance

research into human-AI interactions and collaborative designs in Chapter 3. The

study has led us to propose a novel classification method for Collaborative Reinforce-

ment Learning (CRL), called the “CRL Design Trajectory Map”. Additionally, we

have introduced a new CRL taxonomy as a systematic modelling tool to aid in the

selection and enhancement of new collaborative systems designs. Researchers can

utilise our Trajectory Map to develop a Human-AI collaborative system from scratch

or adapt specific aspects of it to refine their existing systems. For instance, they

can select the desired system structure from the Human-AI Collaborative Design

Pattern, identify and address the requirements of various components in Collabora-

tive Levels and Parties and Collaborative Capabilities, and choose different design
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components in Algorithmic Models and Interactive Methods. This comprehensive

design approach encompasses both top-to-bottom and macro-to-micro perspectives.

This framework offered valuable insights into the collaborative process between

students and Intelligent Tutoring Systems (ITS), thereby facilitating effective and

personalised ITS design and development. Drawing upon the theories discussed in

Chapter 3, we modelled the Student-ITS collaborative process as a bidirectional

interaction. In the Student-to-ITS process, we proposed two student modelling

methods: SimStu and SimGAIL. These methods were designed to optimise the per-

formance of ITS while minimising the input and interaction necessary from students.

The SimStu model was introduced in Chapter 4, which utilised a Transformer-

based approach to generate simulated student behavioural data. SimStu addressed

the data scarcity problem in ITS training by simulating interactions between sim stu-

dents and ITS. The experimental results showed that SimStu successfully modelled

real student behaviour and improved the efficiency of ITS training. The Sim-GAIL

presented in Chapter 5 model leverages Generative Adversarial Imitation Learning

(GAIL) to generate high-fidelity and diverse simulated student behavioural data.

Sim-GAIL addressed the lacking training data problem in ITS by providing simu-

lated data for training ITS models when labelled interaction data is limited. The

experimental results demonstrated the effectiveness of Sim-GAIL in improving the

prediction accuracy of knowledge tracing models in a cold-start scenario.

Comparing SimStu and SimGAIL, SimStu is more suitable for continuous and

dense data conditions. Sim-GAIL, on the other hand, generates more accurate

and realistic simulations of student behaviour, even with sparse rewards, by better-

capturing reward distributions and strategies from real data. Thus, Sim-GAIL is

more suitable for situations requiring precise simulations of student behaviour, es-

pecially where reward signals are scarce.

In the ITS-to-Student process, we proposed two knowledge tracing methods:

MLFBK and LBKT. MLFBK focuses on capturing complex interactions and indi-

vidual differences by incorporating multiple features and latent relations. LBKT,

on the other hand, addresses the efficient processing of long sequence data while

maintaining interpretability. Each method tackles different challenges in Knowledge
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Tracing. These methods were designed to enhance the accuracy and efficiency of

the ITS. Their purpose was to enable ITS to operate autonomously and deliver per-

sonalised support, empowering students to learn at their own pace with minimal

effort. MLFBKT model was presented in Chapter 6, which integrated multiple fea-

tures and mined latent relations in student interaction data to enhance the accuracy

and efficiency of Knowledge Tracing (KT) models. The experiments demonstrated

that MLFBKT outperformed baseline models and improved the performance of KT

in estimating students’ knowledge states and predicting their learning behaviours.

Chapter 7 presented the LBKT model, a novel LSTM BERT-based Knowledge Trac-

ing model. LBKT effectively processed long sequence data and improved the perfor-

mance of KT models by combining the strengths of the BERT model and the LSTM

model. The experimental results showcased the superiority of LBKT in terms of ac-

curacy and scalability.

Comparing MLFBK and LBKT, LBKT is favoured for long-sequence, large-scale

datasets, while MLFBK is more appropriate for contexts that demand a rich set

of features and the exploration of latent relationships. Both models are resource-

intensive due to their deep learning nature, and available computational resources

and the size of the dataset may also influence the decision. In educational envi-

ronments, MLFBK is fitting where a nuanced understanding of student learning

is required, while LBKT is optimal for efficiently processing extensive sequential

interaction data.

To sum up, the contributions of this thesis have advanced the field of Human-AI

collaboration in educational settings, enhanced the capabilities of Intelligent Tutor-

ing Systems, and improved the accuracy and interpretability of Knowledge Tracing

models. These findings provide valuable insights and methodologies for designing

and developing collaborative systems between humans and AI in the context of

education.

8.2 Answers to Research Questions

In this thesis, I introduced a trajectory map as a foundational framework for de-
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signing human-AI collaboration systems (Chapter 3). This map allows researchers

to select collaboration models ranging from macro to micro perspectives. For this

thesis’s specific case, I employ a two-directional collaboration pattern to guide the

development of a student-ITS collaboration system. I proposed two student be-

haviour simulation methods, Sim-Stu (Chapter 4) and Sim-GAIL (Chapter 5), to

enhance ITS training efficiency by minimising student actions. Additionally, we de-

velop two knowledge tracking models, MLFBK (Chapter 6) and LBKT (Chapter

7),to improve ITS accuracy in predicting student behaviour and providing better

recommendations to students. By implementing these four methods, our approach

enhances the overall collaboration efficiency between students and ITS.

Concretely, this thesis presents the first research theme in exploring the design

trajectories map of Human-AI Collaborative Systems, with a comprehensive survey

in Chapter 3 to answer RQ1:“What trajectory could we follow to develop a user-

friendly Student-ITS collaboration system?”

• A comprehensive Human-AI Collaborative Design Trajectory Map was devel-

oped, serving as a systematic modelling tool for selecting collaboration theories

and collaborative frameworks RO 1.1, RO 1.2.

• Conceptualised a framework by considering design patterns, collaborative lev-

els, parties and capabilities and reviewing interactive methods and algorithmic

models to address RO 1.3.

• Thorough examination of the generic challenges associated with Human-AI

Collaborative Systems addresses RO 1.4.

We addressed the second research theme in proposing efficient approaches to

solve the cold-start problems and scarcity of data for ITS training, with two student

modelling methods proposed in Chapter 4 and 5 to answer RQ2 and RQ3:

RQ2: “How to generate high-fidelity and diverse simulated student behavioural

data for training Intelligent Tutoring Systems (ITS) using deep learning methods?”

Chapter 4 addressed this research question by proposing SimStu, a student be-

haviour data simulation method based on an emerging deep learning method, the

Transformer.
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• We have presented SimStu, a Transformer-based model to generate simulated

student behavioural data. The aim was to develop a model capable of produc-

ing realistic and diverse student behaviours RO 2.1.

• We have evaluated the performance of the proposed model and compared it

with the real student behaviour data RO 2.2.

• We have explored the application of the generated data from the proposed

model to Knowledge Tracing, which aimed to assess the performance of the

proposed model in improving the accuracy of Knowledge Tracing RO 2.3.

RQ3: “How can we generate realistic and diverse simulated student behavioural

data for training Intelligent Tutoring Systems (ITS) through reinforcement learning

techniques?”

Chapter 5 addressed this research question by proposing the SimGAIL method,

a student behaviour data simulation method based on an emerging reinforcement

learning method, Generative Adversarial Imitation Learning (GAIL) approach.

• We have proposed SimGAIL, a student modelling method based on the Gen-

erative Adversarial Imitation Learning (GAIL) approach RO 3.1.

• We have compared the performance of the proposed Sim-GAIL method with

two traditional methods based on Reinforcement Learning and Imitation Learn-

ing RO 3.2.

• We have evaluated the effectiveness of the proposed Sim-GAIL method in

improving the prediction accuracy of the Knowledge Tracing (KT) model,

particularly in a cold-start scenario RO 3.3.

Moreover, This Thesis addresses research theme 3 in improving the performance

of Knowledge Tracing models, with two novel Knowledge tracing methods proposed

in Chapter 6 and Chapter7 to answer Research Questions 4 and 5:

RQ4: How can multiple features and latent relations in student interaction data

be integrated to improve the accuracy and efficiency of Knowledge Tracing (KT)

models for Intelligent Tutoring Systems (ITS)?
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Chapter 6 addressed this research question by proposing the MLFBKT model,

which integrated multiple features and mined latent relations in student interaction

data to enhance the accuracy and efficiency of KT models. The experimental re-

sults demonstrated the improved performance of MLFBKT in estimating students’

knowledge states and predicting their learning behaviours.

• We have developed MLFBKT, a novel method to integrate multiple features

and latent relations into KT models RO 4.1 and RO 4.2.

• Benchmark datasets were utilised to compare the performance of MLFBKT

with existing state-of-the-art methods RO 4.3.

• An ablation study was conducted to analyse the impact of each latent relation

of MLFBKT on its overall performance. The t-SNE visualisation tool was also

used to showcase the interpretability of the embedding strategy RO 4.3.

RQ5: How to effectively deal with large-scale datasets, process long-sequence

data, and improve the performance of KT models for ITS?

Chapter 7 addressed this research question by proposing the LBKT model, an

LSTM BERT-based Knowledge Tracing model designed to process long sequence

data. The experiments confirmed the effectiveness of LBKT in handling large-scale

datasets, processing long sequences, and improving the performance of KT models.

• We have presented a novel LSTM BERT-based Knowledge Tracing model,

LBKT, specifically designed to handle long sequence data in ITS. By lever-

aging the power of LSTM and BERT, LBKT aimed to capture the temporal

dependencies and semantic representations in the data, enabling more accurate

and reliable knowledge tracing RO 5.1.

• Benchmark datasets were utilised to compare the performance of LBKT with

existing state-of-the-art methods RO 5.2.

• An ablation study was conducted to analyse the impact of each component of

LBKT on its overall performance. Furthermore, the t-SNE visualisation tool

was utilised to demonstrate the interpretability of the embedding strategy

employed in LBKT RO 5.3.
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8.3 Limitations

While this thesis has made contributions to the field of Human-AI collaboration,

Intelligent Tutoring Systems, and Knowledge Tracing, there are some research lim-

itations due to time, cost, research equipment, and other unforeseen reasons. We

will present these points from three perspectives:

From a Human-AI collaboration system perspective. We have presented a com-

prehensive Human-AI Collaborative Design Trajectory Map. However, there are

still some limitations. One limitation lies in its focus on reinforcement learning

in the context of human-AI collaboration. Chapter 3 primarily concentrates on

reinforcement learning due to the limited availability of studies investigating the

collaboration between humans and deep learning algorithms. However, with the

development of large language models such as ChatGPT or other pre-trained lan-

guage models (LLMs), the collaboration between Human and Deep Learning meth-

ods draws increasing attention, and in the fine-tuning stage of ChatGPT, human

trainers review and rate different model-generated responses, providing feedback on

their quality and appropriateness. This iterative process helps refine the model’s

behaviour and ensures that it generates more contextually relevant and coherent

responses. Although our survey did not encompass methods specifically focusing

on human interaction with deep learning, our work has covered this collaborative

model in human-AI collaboration patterns. However, there is still room for further

exploration and investigation of methods specifically tailored to collaboration with

deep learning algorithms. Moreover, the thesis primarily focused on the technical

aspects of Human-AI collaboration in the context of ITS. Future research could con-

sider the human factors, social aspects, and ethical considerations of deploying such

collaborative systems in educational settings.

From the student modelling perspective, the simulated student behavioural data

generated by Sim-GAIL and SimStu were evaluated based on their impact on ITS

training. However, the limitation is that we relied solely on published datasets,

which may not encompass all the relevant and valuable student action features. As

a result, the student data generated through simulation may contain inherent biases.

Furthermore, due to the unavailability of an Intelligent Tutoring System (ITS) with
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an open API that is widely used, we were unable to measure the real impact of

our methods on ITS during the validation process. These constraints hindered our

ability to fully explore the practical implications and real-world effectiveness of our

approach.

From the knowledge tracing perspective, the MLFBKT and LBKT models demon-

strated improved performance in predicting accuracy. One limitation of our study is

that we focused on improving the accuracy of the Knowledge Tracing (KT) model by

combining multiple features and latent relations in the MLFBKT approach. How-

ever, we did not explore the integration of MLFBKT with LBKT, which could

potentially enhance the accuracy of the KT model when processing long sequences.

Future research should aim to develop general high-efficiency models that combine

both MLFBKT and LBKT approaches. Another limitation is the lack of an Intelli-

gent Tutoring System (ITS) model with an open API that could be used on a large

scale. As a result, our KT model could not be directly applied to students’ actual

learning experiences, nor could it measure the real impact on student performance.

In future work, it would be valuable to apply our model to the actual teaching pro-

cess, allowing for a more comprehensive evaluation of its effectiveness and impact

on student learning outcomes.

8.4 Lessons Learned and Future Directions

Throughout the research journey, several lessons have been learned, and new direc-

tions for future research have emerged:

Integration of human factors and user-centric design: While the proposed

models and frameworks provide valuable insights into Human-AI collaboration, it

is crucial to consider the perspectives and needs of end-users, such as students

and teachers, during the design and development process. The current student

modelling and knowledge tracing methods are hard to apply in real-world ITS. It is

challenging to collect users’ advice. Therefore, future research should prioritize user-

centric design methodologies and involve stakeholders from educational institutions

to ensure the practicality and acceptance of collaborative systems.
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Interdisciplinary collaboration: Human-AI collaboration in education re-

quires collaboration between researchers and practitioners from various disciplines,

including education, computer science, human-computer interaction, and psychol-

ogy. Future research could foster interdisciplinary collaboration to leverage diverse

perspectives and expertise to address the complex challenges of designing effective,

user-friendly collaborative systems.

Ethical considerations and responsible AI: As AI technologies continue to

evolve and impact educational settings, it is essential to address ethical considera-

tions and ensure responsible AI practices. Future research should explore the eth-

ical implications of Human-AI collaboration in education, including issues related

to privacy, data security, algorithmic bias, and fairness. Additionally, guidelines

and frameworks should be developed to ensure the ethical deployment and use of

Intelligent Tutoring Systems.

Long-term evaluation and impact assessment: To assess the long-term ef-

fectiveness and impact of collaborative systems in education, future research should

conduct longitudinal studies and evaluate students’ learning outcomes and educa-

tional experiences over an extended period. This will provide insights into the sus-

tained benefits and challenges of Human-AI collaboration in educational settings.

Real-time feedback and interaction: The knowledge tracing method pro-

posed in this thesis builds on the students’ historical dataset. It is hard to model the

real-time student knowledge mastery state. Therefore, exploring real-time feedback

and interaction between students and Intelligent Tutoring Systems is a promising di-

rection for future research. Collaborative systems can foster deeper engagement and

more effective learning experiences by enabling dynamic and interactive exchanges.

Large-scale deployment and practical implementation: Future research

should address the challenges of large-scale deployment and practical implementa-

tion of collaborative systems in real educational settings.

By addressing these lessons learned and future directions, we could further ad-

vance the field of Human-AI collaboration in education and contribute to developing

innovative and effective educational technologies.

In conclusion, this thesis has contributed to the field of Human-AI collabora-
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tion in the context of the student and ITS collaborative process. This research

has advanced the effectiveness and performance of collaborative systems between

Students and ITS by addressing key challenges and proposing innovative student

modelling and knowledge tracing approaches. The proposed frameworks, models,

and methodologies have demonstrated improved performance and effectiveness in

enhancing students’ learning experiences and outcomes. However, further research

is needed to address the limitations, consider human factors, ensure ethical practices,

and evaluate the long-term impact of collaborative systems. The lessons learned and

future directions outlined in this thesis provide a foundation for future research and

development in the field of Human-AI collaboration in education.
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gamification?” analyzing the impact of choice in a gamified image tagging
task,” in Proceedings of the 2019 CHI Conference on Human Factors in Com-
puting Systems, pp. 1–12, 2019. 3.1, 3.7.3

[183] M. K. Ho, M. L. Littman, F. Cushman, and J. L. Austerweil, “Teaching with
rewards and punishments: Reinforcement or communication?,” in CogSci,
2015. 3.1, 3.7.3

[184] S. Lee, R. Yu, J. Xie, S. M. Billah, and J. M. Carroll, “Opportunities for
human-ai collaboration in remote sighted assistance,” in 27th International
Conference on Intelligent User Interfaces, pp. 63–78, 2022. 3.1

[185] J. Hitsuwari, Y. Ueda, W. Yun, and M. Nomura, “Does human–ai collabo-
ration lead to more creative art? aesthetic evaluation of human-made and
ai-generated haiku poetry,” Computers in Human Behavior, p. 107502, 2022.
3.1

[186] J. Wu, Z. Huang, Z. Hu, and C. Lv, “Toward human-in-the-loop ai: Enhancing
deep reinforcement learning via real-time human guidance for autonomous
driving,” Engineering, 2022. 3.1

191



[187] S. Chen, J. Gao, S. Reddy, G. Berseth, A. D. Dragan, and S. Levine, “Asha:
Assistive teleoperation via human-in-the-loop reinforcement learning,” arXiv
preprint arXiv:2202.02465, 2022. 3.1

[188] A. L. Thomaz, G. Hoffman, and C. Breazeal, “Reinforcement learning with
human teachers: Understanding how people want to teach robots,” in RO-
MAN 2006-The 15th IEEE International Symposium on Robot and Human
Interactive Communication, pp. 352–357, IEEE, 2006. 3.1, 3.8.1

[189] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey of robot
learning from demonstration,” Robotics and autonomous systems, vol. 57,
no. 5, pp. 469–483, 2009. 3.1, 3.8.1, 3.8.1, 3.8.5, 3.9

[190] S. Griffith, K. Subramanian, J. Scholz, C. L. Isbell, and A. L. Thomaz, “Pol-
icy shaping: Integrating human feedback with reinforcement learning,” in Ad-
vances in neural information processing systems, pp. 2625–2633, 2013. 3.1,
3.7.3, 3.8.3, 3.9

[191] M. E. Taylor, H. B. Suay, and S. Chernova, “Integrating reinforcement learning
with human demonstrations of varying ability,” in The 10th International Con-
ference on Autonomous Agents and Multiagent Systems-Volume 2, pp. 617–
624, 2011. 3.1, 3.8.4, 3.9

[192] M. Li, T. Brys, and D. Kudenko, “Introspective reinforcement learning and
learning from demonstration.,” in AAMAS, pp. 1992–1994, 2018. 3.1, 3.8.4

[193] A. L. Thomaz and C. Breazeal, “Adding guidance to interactive reinforcement
learning,” in Proceedings of the Twentieth Conference on Artificial Intelligence
(AAAI), 2006. 3.1, 3.8.5

[194] R. Ferenc, A. Beszedes, L. Fulop, and J. Lele, “Design pattern mining en-
hanced by machine learning,” in 21st IEEE International Conference on Soft-
ware Maintenance (ICSM’05), pp. 295–304, IEEE, 2005. 3.4

[195] W. Y. Wang, J. Li, and X. He, “Deep reinforcement learning for nlp,” in
Proceedings of the 56th Annual Meeting of the Association for Computational
Linguistics: Tutorial Abstracts, pp. 19–21, 2018. 3.5.1

[196] A. Holzinger, “From machine learning to explainable ai,” in 2018 world sym-
posium on digital intelligence for systems and machines (DISA), pp. 55–66,
IEEE, 2018. 3.5.1

[197] D. Wilson and D. Sperber, “On grice’s theory of conversation,” Conversation
and discourse, pp. 155–78, 1981. 3.5.2

[198] L. Deng, “The mnist database of handwritten digit images for machine learn-
ing research [best of the web],” IEEE Signal Processing Magazine, vol. 29,
no. 6, pp. 141–142, 2012. 3.5.3

192



[199] H. C. Barrett, “Deciding what to observe: Thoughts for a post-weird gen-
eration,” Evolution and Human Behavior, vol. 41, no. 5, pp. 445–453, 2020.
3.6.1

[200] J. S. Rosenschein and G. Zlotkin, Rules of encounter: designing conventions
for automated negotiation among computers. MIT press, 1994. 3.6.4

[201] E. Hutchins, Cognition in the Wild. Cambridge, MA, USA: MIT Press, 1995.
3.6.5, 3.6.6

[202] W. B. Knox, “Learning from human-generated reward,” 2012. 3.7.1

[203] C. Arzate Cruz and T. Igarashi, “Interactive reinforcement learning for au-
tonomous behavior design,” in Artificial Intelligence for Human Computer
Interaction: A Modern Approach, pp. 345–375, Springer, 2021. 3.8.1

[204] A. Rosenfeld, M. Cohen, M. E. Taylor, and S. Kraus, “Leveraging human
knowledge in tabular reinforcement learning: A study of human subjects,”
The Knowledge Engineering Review, vol. 33, 2018. 3.8.1

[205] R. A. Bianchi, M. F. Martins, C. H. Ribeiro, and A. H. Costa, “Heuristically-
accelerated multiagent reinforcement learning,” IEEE transactions on cyber-
netics, vol. 44, no. 2, pp. 252–265, 2013. 3.8.1

[206] S. Mindermann, R. Shah, A. Gleave, and D. Hadfield-Menell, “Active inverse
reward design,” arXiv preprint arXiv:1809.03060, 2018. 3.8.2

[207] D. Hadfield-Menell, S. Milli, P. Abbeel, S. Russell, and A. Dragan, “Inverse
reward design,” arXiv preprint arXiv:1711.02827, 2017. 3.8.2

[208] S. Krening and K. M. Feigh, “Interaction algorithm effect on human experience
with reinforcement learning,” ACM Transactions on Human-Robot Interaction
(THRI), vol. 7, no. 2, pp. 1–22, 2018. 3.8.3

[209] H. B. Suay and S. Chernova, “Effect of human guidance and state space size
on interactive reinforcement learning,” in 2011 Ro-Man, pp. 1–6, IEEE, 2011.
3.8.5

[210] C. Yu, T. Yang, W. Zhu, G. Li, et al., “Learning shaping strategies
in human-in-the-loop interactive reinforcement learning,” arXiv preprint
arXiv:1811.04272, 2018. 3.8.5

[211] K. VanLehn, “The relative effectiveness of human tutoring, intelligent tutoring
systems, and other tutoring systems,” Educational psychologist, vol. 46, no. 4,
pp. 197–221, 2011. 4

[212] D. Weitekamp, E. Harpstead, and K. R. Koedinger, “An interaction design
for machine teaching to develop ai tutors,” in Proceedings of the 2020 CHI
conference on human factors in computing systems, pp. 1–11, 2020. 4.1

[213] S. Vincent-Lancrin and R. Van der Vlies, “Trustworthy artificial intelligence
(ai) in education: Promises and challenges,” 2020. 4.1

193



[214] S. J. Yang, “Guest editorial: Precision education-a new challenge for ai in
education.,” Journal of Educational Technology & Society, vol. 24, no. 1, 2021.
4.1

[215] P. Brusilovsky, “Adaptive hypermedia for education and training,” Adaptive
technologies for training and education, vol. 46, pp. 46–68, 2012. 4.2.1, 5.2.4

[216] M.-E. T. Horntvedt, A. Nordsteien, T. Fermann, and E. Severinsson, “Strate-
gies for teaching evidence-based practice in nursing education: a thematic
literature review,” BMC medical education, vol. 18, no. 1, pp. 1–11, 2018.
4.2.1

[217] D. Bouhnik and T. Marcus, “Interaction in distance-learning courses,” Journal
of the American Society for Information Science and Technology, vol. 57, no. 3,
pp. 299–305, 2006. 4.2.1

[218] K. Chrysafiadi and M. Virvou, “Student modeling approaches: A literature
review for the last decade,” Expert Systems with Applications, vol. 40, no. 11,
pp. 4715–4729, 2013. 4.2.1

[219] A. Abyaa, M. K. Idrissi, and S. Bennani, “Learner modelling: systematic
review of the literature from the last 5 years,” Educational Technology Research
and Development, vol. 67, no. 5, pp. 1105–1143, 2019. 4.2.1

[220] T. Jackson, E. Mathews, K.-I. Lin, A. Olney, and A. Graesser, “Modeling
student performance to enhance the pedagogy of autotutor,” in International
Conference on user modeling, pp. 368–372, Springer, 2003. 4.2.1

[221] S. Ouf, M. Abd Ellatif, S. E. Salama, and Y. Helmy, “A proposed paradigm
for smart learning environment based on semantic web,” Computers in Human
Behavior, vol. 72, pp. 796–818, 2017. 4.2.1

[222] M. Makatchev, P. W. Jordan, and K. VanLehn, “Modeling students’ reasoning
about qualitative physics: Heuristics for abductive proof search,” in Interna-
tional Conference on intelligent tutoring systems, pp. 699–709, Springer, 2004.
4.2.1
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