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Abstract

Computational resources represent a significant bottleneck across all current deep learning computer vision

approaches. Image and video data storage requirements for training deep neural networks have led to the

widespread use of image and video compression, the use of which naturally impacts the performance of

neural network architectures during both training and inference. The prevalence of deep neural networks

deployed on edge devices necessitates efficient network architecture design, while training neural networks

requires significant time and computational resources, despite the acceleration of both hardware and software

developments within the field of artificial intelligence (AI). This thesis addresses these challenges in order

to minimize computational resource requirements across the entire end-to-end deep learning pipeline. We

determine the extent to which data compression impacts neural network architecture performance, and by

how much this performance can be recovered by retraining neural networks with compressed data. The thesis

then focuses on the accessibility of the deployment of neural architecture search (NAS) to facilitate automatic

network architecture generation for image classification suited to resource-constrained environments. A

combined hard example mining and curriculum learning strategy is developed to minimize the image data

processed during a given training epoch within the NAS search phase, without diminishing performance. We

demonstrate the capability of the proposed framework across all gradient-based, reinforcement learning, and

evolutionary NAS approaches, and a simple but effective method to extend the approach to the prediction-

based NAS paradigm. The hard example mining approach within the proposed NAS framework depends upon

the effectiveness of an autoencoder to regulate the latent space such that similar images have similar feature

embeddings. This thesis conducts a thorough investigation to satisfy this constraint within the context of

image classification. Based upon the success of the overall proposed NAS framework, we subsequently extend

the approach towards object detection. Despite the resultant multi-label domain presenting a more difficult

challenge for hard example mining, we propose an extension to the autoencoder to capture the additional

object location information encoded within the training labels. The generation of an implicit attention layer

within the autoencoder network sufficiently improves its capability to enforce similar images to have similar

embeddings, thus successfully transferring the proposed NAS approach to object detection. Finally, the

thesis demonstrates the resilience to compression of the general two-stage NAS approach upon which our

proposed NAS framework is based.
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1

Introduction

Computer vision plays a considerable role within our society, upon which a wide array of public infastructure

relies. As such, the development of computer vision applications in a time and resource efficient manner is

paramount. Over the past decade, it is commonplace to approach such challenges with the use of neural

networks [19]. Indeed, with the resurgence of deep learning [20, 21, 22], high performance can and has

been achieved across a multitude of challenge domains, not limited to computer vision. Generally, these

networks require time in the order of hours or even days to train, for instance state of the art image

classification networks (ResNet [18, 23], ConvNeXt [24]), general adversarial networks (GAN [25], StyleGAN

[26]), and transformers (ViT [27], DETR [28]). Furthermore, large datasets, upwards of thousands of images,

are required for training to achieve convergence [29, 30]. To this end, we dedicate this thesis towards

determining the best methods available to minimize deployment challenges associated with training such

applications. The first part of the thesis approaches this challenge by levying image compression to reduce

data storage requirements such that perfomance of neural networks are uninhibited, without introducing

additional complications (Chapter 3). We then focus on processes by which lightweight models can be

generated, trained, and deployed within resource constrained environments (Chapter 4 and 5). Specifically,

we consider Neural Architecture Search and its accessibility and feasibility given time constraints. Finally, we

consider both the union of compression and the two-stage NAS paradigm, drawing parallels to the findings

in Chapter 3 where possible (Chapter 6).

1.1 Motivation

With the rise of Convolutional Neural Networks (CNN [31, 32]), the world of machine learning for computer

vision has been transformed over the past few decades. Indeed, automated deep learning approaches are

rapidly approaching human performance across a multitude of application domains, not limited to image

classification, object detection and tracking, pixel-wise image segmentation, and human action recognition

[33]. Nevertheless, the data-driven training approach of such systems necessitates several orders of magnitude
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of data. For supervised computer vision, this involves images labeled with respect to the vision task at hand.

Consequent to the evolution of big data [34], collection of or immediate access to public data has never

been easier. However, the data storage requirements that follow such data acquisition is a constant battle.

Commonplace image or video collections, for instance CCTV operations, UAV footage, facial recognition

databases, and video sharing websites, depend upon tens of thousands of images or videos. One of the most

wide-spread solutions to address this problem is to utilize image and video compression algorithms such as

JPEG [35] or MPEG / H.264 [36, 37]. By minimizing the imperceptible information within an image, its

storage requirements can be reduced. Fig. 1 illustrates the perceptible effect of heavy JPEG compression,

introducing ‘blocky’ compression artifacts when quantized pixel information is decoded. While the differences

between compressed and uncompressed data is often imperceptible to the human eye, especially at low

compression rates, the neural networks employed within deep learning approaches operate at pixel level

granularity and are thus negatively impacted by image compression. Network performance deterioration

manifests not only directly in terms of accuracy, but also in certain application domains by introducing

racial bias [38, 39, 40, 41]. As such, methods to circumvent this performance degredation are necessary.

Furthermore, modern deep-learning approaches for computer vision tasks are becoming increasingly com-

plex to deal with the challenge at hand for two reasons. Firstly, the environment within which they are

employed is becoming increasingly difficult; occlusion is more prevalent as scenes become more cluttered;

lighting is more challenging, and thus the architectures required to effectively process a given image are more

complex. Secondly, the task itself is more difficult. The question being asked has evolved from what is in the

image (Image Classification) to where is it in the image (Object Detection), to even what will it do (Human

Action Recognition / Tracking). Furthermore, we must ask these same questions while solving additional

problems such as multi-view correspondence or scene reconstruction. Unsurpisingly, the complexity of de-

ployed architectures have evolved to address these issues, whether that is the depth of the network or the

mathematical operations in a given network layer, etc. In turn, power and storage requirements to run the

model, and the instability during training, and subsequently the training duration, have also increased.

Consequently, we might seek to generate relatively simple networks compared to existing state of the

art methods without loss in performance. This is especially important within public infrastructure, where

it is infeasible to replace existing hardware, and thus constraints on resource requirements are prevalent.

Considerable attention has been paid to this notion, for instance hand-crafting efficient networks (SqueezeNet

[42] and the MobileNet family [43, 44, 45]). Similarly, pruning [46, 47], network quantisation [48, 49], and

knowledge distillation from large teacher networks to smaller networks [50, 51, 52] are well researched fields

that serve to reduce the size of a given network (usually) after it has been trained.

With the generation of networks that adhere to specific constraints in mind, we turn to neural archi-
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(a) before (b) after

(c) before (d) after

Figure 1: Example of images before and after heavy JPEG compression (10% of original size), taken from
the UCF101 [1] dataset

tecture search (NAS) to generate network architectures in an automated fashion. Imposing an architecture

complexity constraint for instance is a natural addition to the NAS search procedure, yielding network

architectures that are optimal with respect to both the task (classification/detection), as well as resource

limitations. However, NAS approaches themselves are notoriously expensive in terms of time and memory

resource complexity. Moreover, existing NAS literature has a predominant focus (not unreasonably) on the

architectures that are generated. The work presented in this thesis addresses the aforementioned resource

complexity whilst simultaneously identifying a promising new direction for NAS research. We formulate an

overall understanding of deep learning approaches through both compression and NAS accessibility within

the context of resource minimization.
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1.2 Thesis Contributions

The main contributions of the thesis are as follows:

• An up-to-date and systematic collation of contemporary Neural Architecture Search approaches within

their respective challenge domains, adopting consistent and accessible terminology (Chapter 2)

• A comprehensive evaluation of different CNN architecture performance (in terms of both overall accu-

racy and racial bias) with respect to JPEG/H.264 compression algorithms (Chapter 3).

• A novel efficient train/test cycle pipeline incorporating curriculum learning and hard example mining,

through feature similarity representation in latent space as proxy for image hardness, optimized for

CNN NAS evolutionary / reinforcement learning / gradient-based frameworks for image classification

(Chapter 4).

• A novel hard example mining approach for data selection within prediction-based image classification

NAS frameworks (Chapter 4).

• A gradient-based NAS framework extending prior work towards multi-label image classification and

object detection challenges, capitalizing on object detection labels to improve our hard example mining

approach via an implicit attention layer (Chapter 5).

• The union of the commonplace NAS (DARTS [53]) and Faster-RCNN [11] Object Detection approaches

yielding efficient networks that illustrate a promising direction for future research (Chapter 5).

• An extensive evaluation of our proposed NAS approach under compression (Chapter 6).

1.3 Publications

The work contained within this thesis has been previously published in the following peer-review publications

by the author, and is used in the chapters as indicated below:

• On the impact of lossy image and video compression on the performance of deep convolu-

tional neural network architectures, M. Poyser, A. Atapour-Abarghouei, and T. Breckon, in 25th

International Conference on Pattern Recognition (ICPR2020). IEEE, September 2020. (Contributing

to Chapter 3)

• Does lossy image compression affect racial bias within face recognition?, Seyma Yucer, Matt

Poyser, Noura Al Moubayed, and Toby P. Breckon in International Joint Conference on Biometrics,

October 2022. (Contributing to Chapter 3)
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1.4 Scope and Structure

With deployment challenges divided into two key approaches, it follows to divide this thesis similarly. Chapter

2 firstly reviews the existing literature for the impacts of image compression on neural networks and racial

bias, and secondly identifies and evaluates existing NAS strategies, which is split into the dominant scene-

understanding challenges within the field (image classification, object detection, and image segmentation).

Further, a review on curriculum learning and hard example mining techniques is conducted to identify

potential solutions for deployment within a NAS framework.

Chapter 3 explores the image compression domain. The chapter details the extent of impacts of im-

age compression upon several neural network architectures, and hypothesises the cause of their respective

differences in performance. By retraining networks with compressed imagery, it is evident by how much

the problem can be circumvented across each architecture type. Additional racial bias introduced within

compression is then discussed, and how retraining networks is insufficient to ameliorate it. Instead, omission

of chroma subsampling within compression is proposed and evaluated.

Chapter 4 conducts a primary investigation into the use of NAS for image classification problems, and

proposes a novel training pipeline for evolutionary, reinforcement learning, and gradient-based NAS ap-

proaches that incorporates curriculum learning and hard example mining to minimize training costs in terms

of both time and power consumption. Further, it is shown that a similar hard example mining approach is

sufficient to streamline prediction-based NAS.

Chapter 5 extends the algorithm presented in chapter 4 to multi-label and object detection challenges.

It is evident that the clustering techniques adopted by the previous method are well suited to extension

towards object detection through additional encoding techniques that act as an efficient attention layer. A

further object detection architecture generation strategy is then introduced that is best able to harnass the

benefits of NAS and our existing curriculum learning and hard example mining training algorithm.

Chapter 6 investigates the impact of compression upon the NAS methodology illustrated in the previous

chapters, drawing parallels with the findings from Chapter 3 where possible.
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2

Literature Review

This section introduces prior literature related to either (i) compression, (ii) Neural Architecture Search,

or (iii) curriculum learning and hard example mining with respect to application of CNN towards efficient

real-world deployment.

2.1 Compression

While the impact of compression algorithms within deployed infrastructure is well-considered, we constrain

our study to its impacts on the application of CNN. In this respect, prior work is limited in scope and

diversity [54, 55, 56, 57]. Dodge et al. [54] analyze the performance of now seminal CNN image classification

architectures (AlexNet [58], VGG [59] and InceptionV1 [60]) performance under JPEG [35] compression

and other distortion methods. They find that these architectures are resilient to compression artifacts

(performance drops only for JPEG quality < 10) and contrast changes, but under-perform when noise and

blur are introduced.

Similarly, Zanjani et al. [61] consider the impact of JPEG 2000 compression [62] on CNN, and whether

retraining the network on lossy compressed imagery would afford better resultant model performance. They

identify similar performance from the retrained model on higher quality images but are able to achieve up

to as much as 59% performance increase on low quality images.

Rather than image compression, Yeo et al. [55] compare different block sizes and group-of-pictures (GOP)

sizes within MPEG [36] compression against Human Action Recognition (HAR). They determine that both

smaller blocks and smaller groups increase performance. Furthermore, B frames introduce propagation

errors in computing block texture, and should be avoided within the compression process. Tom et al. [63]

add that there is a near-linear relationship between HAR performance and the number of motion vectors

(MV) corrupted within H.264[37] video data, with performance levelling off when 75% of MV are corrupted.

Klare and Burge [56], however, demonstrate that there is a non-linear relationship between face recognition

performance and bit rate within H.264 video data, with sudden performance degradation around 128kbps
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(CRF). These contrasting results therefore demonstrate the need to investigate compression quality across

multiple challenge domains, whose respective model architectures might have different resilience to lossy

compression artifacts.

Multiple authors have developed impressive architectures trained on compressed data, indicating both

the potential and need for in-depth investigation within the compressed domain. Zhuang and Lai [57]

demonstrate that acceptable face detection performance can be obtained from H.264 video data, while Wang

and Chang [64] use the DCT coefficients from MPEG compression [36] to directly locate face regions. The

same authors even achieve accurate face tracking results in [65], still within the compressed video domain.

Prior research additionally examines the impact of image quality on overall facial recognition performance

[38, 39, 40], but there is little invesigation into either its effect on racial bias (a known factor to consider) or

specifically the impact of compression. Hernandez-Ortega et al. propose FaceQnet [66], optimized for face

biometrics, to analyse the impact of compression and other quality factors present within an image, and

thus evaluate image quality. Majumdar et al. [41] identify bias towards specific racial and gender subgroups

stemming from image distortion, that influences network attention towards non-discriminative image regions.

However, they overlook the impact of compression on racial bias.

2.1.1 Information Theory

When reformulating compression within the context of information theory, it is prudent to consider the

seminal work of Shannon et al. [67, 68], which presents the communication of a message between two sources.

The amount of information within that message can be measured in isolation from the semantic value of

the message. Using this measurement of information, a theoretical minimum bound can be established

concerning how many bits (code rate) are required to encode the message such that it can be perfectly

reconstructed with negliglible loss in information (source coding theorem) and in the presence of noise (noisy

channel coding theorem). Arithmetic coding is a form of entropy coding, which approaches the lower bound

declared by Shannon’s source coding theorem [69]. Huffman coding, used within JPEG and MPEG image

compression algorithms approximates arithmetic coding with an efficient algorithmic formulation [70].

Formally, let us consider a message as a stream of independent and identically distributed (i.i.d) random

variables. The entropy H(X) of a variable X which takes values in the alphabet X is:

H(X) = −
∑
x∈X

p(x) log p(x). (1)

This result is commonly interpreted as the number of bits required to encode X, and the coding portion

of image compression algorithms directly follows on from it. This result can be extended to two random
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variables X and Y . Conditional entropy H(Y |X) can be interpreted as the amount of information needed

to describe Y if X is known:

H(Y |X) = −
∑
x∈X

p(x)
∑
y∈Y

p(y|x) log p(y|x). (2)

We may use the mutual information

I(X;Y ) = H(Y )−H(Y |X) (3)

to consider how far knowledge of X may reduce the uncertainty (information) about Y.

These findings have many practical use cases within contemporary deep machine learning tasks. For

instance, VAE [15, 71] objective function uses kullbeck-leibler divergence, upon which mutual information

I(X;Y ) is formulated, to minimize information loss within feature representations. Alternatively, plagiarism

detection can be considered a reformulation of shared information [72], and classification networks in general

can be considered optimising towards features with high information gain (i.e. mutual information) [73, 74].

Statistical dependencies and mutual information between variables or images can inform image matching

and registration [75], and information theoretic approaches to optimal segregation and minimum description

length can drive image segmentation [75, 76].

Building upon this, the nervous system is comprised of biological neurons, which act as an information

channel between different parts of the body. During this communication, input signals may be lost due to

noise interference, and it is therefore biologically efficient to send information in spikes rather than as a

continuous signal [77], as the amplitude of a spiked signal does not decay as quickly. The two parts of the

body are connected by a series of neurons, and in this context, the target alphabet for the neuron channel

can still be represented as a 0 or a 1. The message must cross gaps between neurons (synapses), and if

enough voltage is received by the postsynaptic neuron, the neuron will ‘fire’ and the resulting 1 signal will be

propogated to the next information channel. Calculating the amount of information conveyed by a neuron

(neural coding capacity) — the maximum output entropy — reveals the reliability of stimulus-response

functions [78].

Delving deeper into biological models, an understanding of the human retina may be used to inform

information theory within compression algorithms. The human eye signficantly adapts to luminance in

order to function well at both high and low light levels. Photoreceptor cells (rods and cones) directly receive

sensory image information, while ganglion cells communicate this information from these photoreceptor cells

onwards to the rest of the body1. The functionality of a ganglion cell can be reformulated as a convolution

1For simplicity we ignore the intermediary bipolar cells that transmit information between the photoreceptor and ganglion
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layer. Let us consider the convolution operator ~. The convolutional layer (photoreceptor cell) z is simply:

z = w ~ x, (4)

where x is the weights (connection strength between photorceptors and the ganglion cell [77]) and

x = s+ ξ, (5)

where ξ is the photoreceptor cell noise, encapsulating variations in luminance.

Stone [77] shows that a ganglion cell maximises the information in its output and emphasises that ganglion

cells are an efficient communication channel. A ganglion cell receptive field is an image filter; some spatial

frequencies affect it more than others (controlled by the weights, i.e. a convolution layer). Under high

luminance conditions, the receptive field acts as a band-pass filter, while under low luminance conditions

the receptive field acts as low-pass filter. When we apply the implications of this adaptation to information

theory and its practical uses, we may inform the impact of luminance within the JPEG algorithm on deep

learning based models2. It is possible that the work of Stone [77] and others informed the design of the

JPEG algorithm to keep luminance information.

Informed by this information theoretic perspective, a given deep learning based model can learn to

maximise information, searching for features with high information gain such that it is invariant to luminance,

and can retain high performance rates despite extreme lighting conditions. At first glance, this appears to

be an interesting result, as the JPEG compression algorithm explicitly transforms an image to the YUV

space, based on human perceptions of light and colour. As is explained in more detail in Chapter 3 however,

luminance information is not explicitly subsampled within the compression algorithm. Correlating the well-

established findings of Stone with our work does not present an immediate advantage, as Stone offers no

explicit insight into the capacity of a given machine learning based model to learn in the presence of discarded

chroma information, nor in fact how reduced chroma information impacts human perception.

Examining the literature together, there are two key questions that must be answered before we deploy

compression strategies. We must firstly consider by how much can data be compressed? Secondly, how can

we incorporate compression without introducing racial bias?

cells.
2Noting that “information-theoretic models are not designed to mimic physiological receptive fields; their only objective is

to maximise information throughput.” [77]
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2.2 Curriculum Learning and Hard Example Mining

Here we consider various curriculum learning and hard example mining strategies levied for data selection

within neural network optimization. The process by which we present data to the deep learning model is

paramount; it is not uncommon for models to be trained for thousands of epochs, and thus any superfluous

data within the dataset will have a magnified negative impact on training speed. To address this, hard

example mining [79], attempts to identify hard images within the global dataset. By only considering images

that make a significant contribution to training (i.e. model optimisation), usually those that considerably

reduce loss in any given epoch, we can not only (a) sample from a minimal dataset and therefore minimize

duration of a training epoch, but (b) reduce the number of iterations required for model convergence, as the

contribution of each image sample is maximised in every iteration.

Similarly, the images sampled by the model in any given training iteration can be controlled via curriculum

learning [80] and self-paced learning. Contrary to hard example mining, where commonly only a subset of

the global dataset will be considered during the entire training process, curriculum learning or self-paced

learning enforces the initial iterations to sample one fraction of the global dataset, and subsequent iterations

to sample from different fractions, until the entire global dataset is considered. Generally, curriculum learning

introduces harder images (pre-defined by prior knowledge) as training progresses, while self-paced learning

determines the current model performance as feedback to the controller, to determine which images to sample

next.

Graves et al. [81] posit the need for a surrogate measure of learning progress to inform the curriculum

of when to swap data, rather than model accuracy. They suggest two measures; loss, which they further

differentiate into prediction gain (instantaneous loss for a sample), and gradient prediction gain (which

measures the magnitude of the gradient descent vector) among many others; and complexity gain, also

further split into various measures that consider how the model complexity increases over time, such as

gradient variational complexity (derived from the direction of gradient descent). They identify prediction

gain to present the most efficient method of informing learning progress when the model is learning to

maximise log likelihood, and gradient variational complexity for variational inference training.

Hachoen and Weinshall [82] suggest instead to use a transfer scoring function to generate the curriculum.

The scoring function ranks images within the dataset by difficulty through testing either the same model

(pre-trained without curriculum learning), or a different model. Harder images are introduced to the model

over time. Weinshall et al. [83] further evolve this process, to consider image difficulty in relation to task

difficulty (e.g. fine detail differentiation is harder than coarse detail differentiation, which can for instance

be trivially approximated with hierarchical datasets). Shrivastava et al. [84] on the other hand in their
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hard example mining paper, rank the images in order of difficulty at train time, to dynamically generate a

mini-curriculum at each iteration.

Kumar et al. [85], in their work on self paced learning, instead monitor image difficulty as either the

negative log-likelihood for expectation-maximisation [86] or the upper bound on risk for latent structural

support vector machines. Jiang et al. [87] incorporate both self paced learning and curriculum learning into a

single framework. That is, the curriculum is pre-defined by some expert, but takes into account the feedback

from the model (the learner) when selecting which images to propose to the network during training.

Finally, Matiisen et al. [88] introduce “mastery” into the curriculum learning framework. Mastery can

simply be reaching an accuracy threshold, identified by prior expert knowledge. The model is presented with

images from a global dataset, but with more probability of sampling images from the current curriculum

fragment. As the model masters said fragment, the probability of sampling these images decreases, while

probability of sampling the next curriculum fragment increases.

If we consider these studies altogether, it is evident that curriculum learning and hard example mining

both greatly benefit the deep learning optimisation process, and the combination of the two more-so. We

therefore uniquely propose to employ such methods within NAS, specifically, levying mastery from [88] in

tandem with our own hard example mining approach reminiscent of the ‘instructor-student collaborative’

learning paradigm [87]. Moreover, the work of Cazenavette et al. [50] build upon well explored dataset

distillation techniques [89, 51, 90, 91]. By optimizing the l2 loss of the parameters of a network trained

on only 50 images per class, compared to optimal network parameters (i.e. parameters induced by training

with 5000 images per class), they are able to achieve reasonable performance (71.5% on CIFAR-10). On this

basis, we can deduce that training on a fraction of images yields a promising direction of research, to which

our method pertains without such loss in performance.

2.3 Neural Architecture Search

Recent acceleration within the deep learning domain [22] naturally follows the increased availability of public

datasets that stems from the emergence of big data. Unsurprisingly, the complexity of the proposed network

architectures is also increasing. As such, manually searching through this architecture space is less and less

feasible, and we must rely on domain expertise to identify suitable networks for a given application. With

this, Neural Architecture Search (NAS) has emerged, which automatically traverses the architecture search

space for a given task, and generates models that are competitive alongside hand-crafted state-of-the-art

architectures.

Recent NAS capability within the image classification domain is demonstrably powerful [92], with gener-
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ated convolutional neural network (CNN) models achieving accuracies of 97.57% (CIFAR-10 [93]) and 76.2%

(ImageNet [29]), comparable to leading image classification performance [24]. However, there is relatively

little development in the way of NAS outside of pure CNN generation (e.g. transformer [94] and generative

adversarial networks [25]), for which hand-crafted network architectures perform so well. Similarly, within

the computer vision domain, consideration of NAS beyond image classification is under-developed; NAS for

object detection and image segmentation architectures for example, receive less interest than their hand-

crafted counterparts. To this end, we present a comprehensive review over recent NAS advancements, to

best facilitate further insight and research in this area. We build upon existing, although now dated surveys

[95, 96, 97], that fail to consider NAS for computer vision outside of CNN image classification.

Furthermore, as NAS rapidly evolves within several distinct domains, ambiguities and inconsistencies

have arisen in several methodological descriptions. Consequently, it is increasingly difficult for incoming

researchers to the NAS domain to meaningfully engage with the field, and clearly explain any proposed

methodology with reasonable reproducibility. With this shortcoming in mind, we adopt a common terminol-

ogy (following that of TuNAS [98]), to improve understanding and reproducibility of future NAS research.

On this basis, our comprehensive review presents the following aspects:

– a systematic review, that to our knowledge is the first comprehensive NAS survey, of image classifica-

tion, object detection, and image segmentation domains to date.

– a novel overview and taxonomy that for the first time uses consistent terminology over all contemporary

NAS literature, resolving previous ambiguities and inconsistencies emanating from the original NAS

works.

– analysis upon the NAS literature offering insights into promising future research directions.

2.3.1 Review Organization

We first divide this NAS review by computer vision task into image classification, object detection and

image segmentation NAS methodologies. Subsequently, image classification is subdivided by NAS strategy

into three key sub-areas: weight-sharing, gradient-based, and prediction-based, each of which correspond to

a NAS search speed-up strategy. In all cases, we prioritize explaining how a given NAS method fits into the

evolution of the NAS domain, while maintaining consistent terminology, to the best advantage of incoming

researchers.
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2.4 Neural Architecture Search: A Quick Overview

Rather than conventional hand-crafting of a neural network architecture, wherein layer operations are hand-

selected and defined at each layer, NAS seeks to automatically generate the network architecture best suited

to a given task, given a set of available operations. An overview of the general NAS process is illustrated in

Fig. 2, which can be split into two key stages. First, the search phase involves traversing all architectures

within the search space. Once the top performing architecture (or top-k architectures) is identified (termed

final searched architecture(s)), it is retrained from scratch (evaluation phase).

With the rise of NAS, a multitude of recent literature has addressed the scalability challenge which

occurs due to the resultant large search space of all potential neural network architectures and their respective

training costs. The seminal work of Zoph et al. [99] demonstrates the capability of recurrent neural networks

(RNN) with reinforcement learning to generate network architectures automatically, with their network

architecture outperforming existing hand-crafted state-of-the-art network architectures both in accuracy

and speed for both image classification and language modelling tasks.

Since this influential paper [99], interest and research in NAS has accelerated [95]. Reinforcement learning

[100, 101, 102, 103] methods, as well as evolutionary [104, 105, 106, 107] approaches have since been developed.

Notably, MnasNet [102] adopts a reinforcement learning search strategy for both image classification and

object detection, incentivised towards minimizing inference latency. Unmistakeably however, the training

cost incurred by NAS techniques remains their foremost problem. More recently, and with more success in this

regard, gradient and predictor based approaches have been developed [53, 108, 109, 110], often in conjunction

with weight-sharing techniques to improve convergence rate [111, 112, 113], notably by eliminating the need

to train each architecture in the search space separately.

As such, we limit the literature covered by this survey to more recent NAS solutions for image scene

analysis, where the training cost falls within a reasonable computational time limit. Moreover, several

NAS architecture datasets exist that facilitate validation of the NAS framework performance, rather than

their generated networks. Among these, NAS-Bench-101 [114] is notable, containing 5 million trained and

evaluated models. NAS-Bench-201 [115] and NATS-Bench [116] are also available for evaluating architectures

size and topology, with fixed architecture search space but more diagnostic information compared to NAS-

Bench-101. Tables 1/2 provide a fair comparison where possible across common NAS application domains.

In all cases, however, it is important to adhere to best practices when producing a NAS pipeline [117].

Radosavovic et al. [118] demonstrate that the manner in which the search space is constructed is critical.
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Figure 2: An overview visualization of the NAS process consistent across reinforcement learning, gradient-
based and prediction-based approaches
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2.5 Image Classification

Image classification is the primary challenge domain in which NAS operates within the computer vision field

and for which existing literature is most comprehensive. To provide an overview of these approaches, we first

introduce the general weight-sharing concept [111], and subsequently the gradient-based paradigm which

employs weight-sharing in a highly efficient manner [53]. Finally, we introduce the prediction NAS paradigm

[119], which to some extent circumvents training iterations (and by extension, the need for weight-sharing)

entirely.

2.5.1 Weight-Sharing

Weight-sharing approaches, first proposed in ENAS [111], reduce training time through transfer learning

of weights learnt for previously sampled architectures. In general, via the use of this technique, only a

single network needs to be trained to convergence. Commonly, across all weight-sharing NAS approaches,

this single network represents the entire architecture search space, and is referred to as a “super-network.”

Subsequent sampled network architectures during NAS search phase thereafter inherit initialisation weights

from this super-network. They require few or zero training epochs before their performance is sufficiently

evaluated and ranked. As such, the total search phase cost of NAS is drastically minimized. Due to the

fact that only the super-network is trained to convergence during the NAS search phase, we refer to this

approach as a one-shot method 3. In general, one-shot methods aim to rank architecture performance using

their shared weights [120] relative to each other rather than their absolute performance. Once the highest-

ranked architecture is determined during the search phase, it is retrained and then fully optimised for the

given task.

Here it is helpful to interpret a neural network as a directed acyclic graph (DAG). Each layer of the

network can be considered a node, and the possible operations within a layer (convolution, max-pooling,

etc.) are edges between nodes (Fig. 3a).

In their influential paper [111], ENAS first contructs a single DAG to represent the entire search space.

First they fix the weights of the NAS controller (which determines which nodes and operations are sam-

pled from the architecture search space). Sampling individual cells (child architectures) from the DAG

(super-network), they update the weights of a given child network architecture, and thus the super-network

after processing one minibatch, until one entire pass of the dataset has been completed. Next, they again

sample child network architectures, but this time their weights are fixed (using transfer learning from the

3“Weight-sharing” is a broad term to denote how different architectures considered by a given NAS methodology do not use
independent weights. “One-shot” (equivalently “super-network” under our terminology) methods necessarily employ weight-
sharing but not vice-versa.
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previously learned weights) and instead train the controller using reinforcement learning. They proceed to

alternate training the child network architectures and controller for several iterations, at which point the

best-performing model is sampled, initalised with random weights, and retrained from scratch without the

use of transfer learning weights.

The subsequent development of SNAS [112] replaces the Markov Decision Process assumption implicitly

adopted by ENAS with a differentiable reward function, positing that this change ameliorates delayed re-

ward. Consequently, structural decisions to the architecture that arise from reinforcement learning are more

appropriately rewarded, and thus architecture search hence becomes more efficient.

Following the success of weight-sharing in [111], CAS [121] develops a NAS learning paradigm whereby the

cell structure evolves when trained on new datasets and domains, without loss in performance on the previous

dataset. They introduce constraints on the learned weights such that the ‘knowledge’ is projected in an

orthogonal direction, and thus does not affect prior knowledge related to that of the previous dataset/domain.

They further extend their work to generate a network architecture better generalizable for multi-task learning.

CNAS [113] employs curriculum learning within the NAS search phase. The search space is divided

into a series of smaller architecture spaces, where the number of searched operations are gradually increased.

Rather than being immediately difficult and unwieldy, as with conventional one-shot methods [111], satisfying

the objective function within reinforcement learning becomes progressively more difficult as the search space

widens. Overall difficulty is thus more tractable.

ProxylessNAS [122] demonstrates that subsampling only a single path through the DAG at each iteration

is effective. Binary gates are introduced (in a differentiable manner) to simulate a mask for a given activation

path during a given training iteration. Consequently, training is more stable and can be performed directly

on large datasets such as ImageNet. Previous methods were only able to achieve meaningful performance on

such datasets by first training on a smaller, proxy dataset. Two variants, ProxylessNAS-R and ProxylessNas-

G are presented, which use reinforcement learning and gradient-based methods to traverse the architecture

search space respectively. Similarly, NASP [123] use an approach derived from the proximal algorithm [124]

to enforce that only one operation is updated with each iteration, drastically improving convergence rate.

TuNAS [98] acknowledges that only if the weights are sufficiently trained will the promising sections of

the search space be accurately identified. To help ensure this, the authors build upon [111, 122] and propose

two methods, firstly: ‘filter warm-up’, whereby smaller filter sizes can be simulated by randomly masking out

tensors from a bigger filter size output, thus reducing the need to train architectures that only differ in filter

size. Secondly, ‘operation warm-up’, that can improve performance when we must choose a single operation

from our operation search space. Here, we instead sample p possible operations where p is linearly decreased

from 100% (all operations) to 0 (our controller is unaffected by warm-up) during the first 25% of epochs in
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the search phase. Further, the authors propose a novel reward function, as well as more aggressive weight

sharing. These, in-tandem with the warm-up methods above, enable i) larger search space and ii) more

accurate network evaluation while still avoiding the need to train each sampled child network architecture

from scratch as per other weight-sharing methods.

BigNAS [125] further considers the two-stage NAS process, focusing on training the super-network in

such as manner that the accuracy of a given sampled sub-network architecture with inherited shared weights

performs well with respect to its absolute performance were it retrained from scratch. To achieve this, five

key methods are introduced to the conventional super-network training process, not limited to regularization

and novel initialization strategy. Throughout this review we refer to this potential difference in inherited

and absolute performance as the optimization-gap (see Section 2.5.2.1). With a sufficiently trained super-

network, BigNAS demonstrates that a simple grid-search strategy is then enough to traverse the architecture

search space efficiently, where network architectures can be sampled under memory or latency constraints.

AttentiveNas [126] improves upon BigNAS search strategy in a Pareto-aware fashion, where the best

Pareto architectures are those that achieve better accuracy than every other architecture in the search space

with the same or less computational consumption (and the worst Pareto architectures are dominated in

performance by all other architectures with the same computational cost). Sampled candidate network

architectures are only trained if they lie on the best or worst Pareto front. With this strategy, it is trivial to

impose a computational limit on the generated network architectures.

Stage-Wise NAS [127] acknowledges that architectures can be divided into different ‘stages.’ The impor-

tance of a stage can then be determined, with fewer layers attributed to stages of lower importance. During

the search phase, the depth of the network architecture is progressively increased. Weights are transferred

from a pre-trained ResNet architecture that is necessarily of larger depth than the network architecture in

a given training iteration. As such, the authors were able to reduce the volume of architectures searched by

one order of magnitude, while retaining state-of-the-art performance on CIFAR-10.

ANASOD [128] reduces the architecture search space without loss in performance via approximate oper-

ation distribution encoding. On the basis that there is little difference in performance between architectures

with only slight differences, the architectures sharing a distribution of operations map to the same encoding.

Adopting conventional NAS methods (indeed ANASOD can be deployed upon most existing NAS strate-

gies) that search over these distribution encodings rather than the entire operation search space makes NAS

optimisation more tractable.

Converse to existing NAS solutions, GLiT [129] employs a one-shot NAS approach to optimize transformer

architecture for image classification. Building upon a Multi-Head Attention (MHA) block as the basis for

the search space, a locality module is further introduced such that each searched MHA cell has a varying
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distribution of convolution-based locality modules (capturing local information within an image) and self-

attention modules (capturing global information within an image). Adopting SPOS [130], GLiT divides

the search space into disjointly searching for a) optimal distribution of local and global sub-modules and

b) detailed architecture of modules given optimal distribution in (a). Resultantly, the vast search space

encompassing transformer network architectures can be efficiently searched without compromising memory

requirements.

NEAS [131] adopts a similar strategy whereby a super-network is trained and sampled by an evolutionary

algorithm. Where GLiT adopts SPOS to divide the search space, NEAS instead shrinks the search space by

first computing architecture similarity and operator quality (in practice approximated by the mean output

of the ensemble architectures). Contrastingly with GLiT, NEAS does not consider transformer architectures

within its search space. The worst performing ensemble architectures with respect to diversity and quality

are then dropped. In tandem with sharing weights between the lowest layers of the ensemble networks, the

best ensemble of classifiers can then be searched for under reasonable time complexity.

PAD-NAS [132] also adopts one-shot training in conjunction with evolutionary search based upon NSGA-

II [133]. Here however, the pareto-optimal architectures (and the next best, according to nondomination

rank [133]) with respect to accuracy and latency are identified. Operations that are not prevalent within

these best architectures are pruned, thus reducing the architecture space during the search phase.

It should be noted that weight sharing techniques do not necessitate one-shot methodology. Indeed,

BONAS [134] identifies the sensitivity to network initizialization of one-shot approaches, as well as high

memory requirements. To this end, a Graph Convolutional Network is employed for Bayesian Optimization

to identify similar network architectures. Weights are shared amongst these similar network architectures so

that they can be trained simultaneously.

2.5.2 Gradient-Based

Until now, we have considered weight sharing techniques that optimize the architecture topology without

updating the weights inherited from the super-network. Differentiable approaches [53, 135, 108] build upon

the weight-sharing technique through application of stochastic gradient descent and other well-used deep

learning techniques by relaxing the search space such that it is continuous. Consequently, convergence rate

of the architecture is drastically improved. In general, this approach proffers the fastest architecture search

without significant performance impact, but at the expense of a high GPU-memory intensity.

DARTS [53] constructs a shallow super-network in which each layer is in fact a softmax over all possible

operations within the architecture search space (Fig. 3a), to allow traversal of the search space with gradient

descent (Fig. 3b). Once the super-network is trained (Fig. 3c), they extract the top-k best-performing
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Figure 3: DARTS search phase pipeline. (a) The architecture search space can be realized as a Directed
Acyclic Graph (DAG): edges between nodes represent possible operations (e.g. convolution, max-pooling,
etc.). (b) A layer is a softmax over all possible operations within the search space. (c) Using SGD, this super-
network is trained with respect to both which operations perform best, and the weights of the operations
themselves. (d) A final searched network is selected from the top performing operations at each layer.

operations at each layer, and ‘evaluate’ a deep neural network under the resultant restricted architecture

search space to produce a final optimized model (Fig. 3d).

2.5.2.1 DARTS-Like NAS approaches

P-DARTS [108] further capitalizes on the DARTS method, and minimizes the gap in performance be-

tween search results and their respective ‘evaluation’ scenarios (denoted optimization-gap [134, 136]), by

progressively growing the NAS network depth during the search phase. The authors further propose two

approximation techniques to alleviate the prevalence of skip-connections that occur due to instability and

difficulty of training a deep network [137], operation-level dropout after skip connections, as well as a cap on

the number of skip connections that can occur in the final architecture. They achieve over 1% lower error

rate while affording an order of magnitude lower search time than DARTS, and two orders of magnitude

lower than its predecessors.

PC-DARTS [138] corroborates that the weight-free operations (skip-connections, max-pooling) are preva-

lent within NAS-generated architectures since they increase training stability in early NAS iterations. To

alleviate this, the authors suggest an alternative approach, whereby only a few of the available operations

are considered at each epoch. However, this in turn introduces further instability into the training process,

which they demonstrate can be ameliorated by applying edge normalization (with negligible computational
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Figure 4: Different NAS architecture configurations as presented by Wu et al. [2]. (a) A NAS super-network
where each coloured edge denotes a single operation, and all possible operations are considered between
nodes through continuous relaxation (softmax layer). (b) Single-Path architecture; exactly one operation is
selected in the final searched architecture. (c) Multi-Path architecture; exactly n operations are considered
and aggregated between each and every node (for some pre-defined n). (d) Mixed-Path architecture; no
limitations on operation number between given nodes in the final searched architecture.

overhead).

I-DARTS [139] builds upon DARTS by instead considering a softmax operation before operations rather

than after. This removes the restriction upon the final model to consider at most one operation between

each layer, thereby widening the search space, without reducing convergence rate. We can perceive such

an approach as Mixed-Path in that it does not require a single operation between each node (Single-Path,

[53, 122]), or multiple (but consistent number of) operations between each node (Multi-Path, [140, 141]),

see Fig. 4. Wu et al. [2] adopt an alternative Mixed-Path approach. Rather than use softmax to relax the

super-network graph into a continuous DAG, each intermediate node output is computed as a scaled linear

combination of the feature maps of the previous nodes. By using Sparse Group Lasso regularization [142],

there is implicit node and operation selection, in that the sparse regularizer may conclude that as many

or as little of the nodes and operations contribute to performance, and thus there is no rigid constraint on

the node or path structure. E-DNAS [143] further introduces flexibility within the proposed architecture by

explicitly searching for the optimal kernel size as well as the weights of convolutional layers.

ISTA-NAS [136] adopts an alternative strategy compared to [2] towards fulfilling the sparsity constraint.

By projecting the continuous relaxation of operations onto the sparse constraint, its LASSO formulation

[144] can be solved with the ISTA [145] algorithm. Consquently, ISTA-NAS enables the same size (width,

depth, batch-size) super-network to be used in both the NAS search and evaluation phase, due to the sparse
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and more efficiently encoded super-network. In turn, the optimization-gap problem is minimized.

2.5.2.2 Addressing DARTS-Like Strategy Drawbacks

Despite the multitude of developments directly upon DARTS, it is not without its drawbacks [134, 146],

and has received heavy criticism. To some extent, such problems can be minimized by careful super-

network training schemes, including additional batch normalization, prevention of over-regularization, and

reduced dropout [120]. FairNAS [147] formally identifies weaknesses in training a one-shot model in general,

and proposes strict fairness (all single paths through the super-network are attributed equal optimization).

Their work is deployable atop all two-stage NAS strategies, which they choose to demonstrate within an

evolutionary search strategy based on NSGA-II [133].

The predominant problem with DARTS however, is perhaps the optimization-gap problem, in which

searched architecture performance does not necessarily correlate with its performance after being re-trained

during the NAS evaluation phase. One obvious reason for this is one-shot methods are ranking networks

relative to each other rather than their absolute performance [120]. Further, and as previously discussed in

[108, 136], the super-network architecture in the NAS search phase generally differs considerably to a derived

sub-network architecture in the NAS evaluation phase. In fact, many NAS approaches only search for a cell

structure during the search phase (owing to available computational resources), which is then stacked before

being retrained during the NAS evaluation phase.

Yu et al. [146] identify the importance of random seed during the search phase. Indeed some search

strategies, especially DARTS, perform worse than random with respect to some seeds. The authors’ findings

align with [120] in that the ranking of architectures yields a poor reflection of their performance after the

evaluation phase. Further, weight sharing is detrimental to the NAS search phase. Finally, good performance

from architectures can be attributed to the heavy search space restrictions, such that even random search

over the space yields high performing architectures.

DOTS [148] shows with rank correlation analysis that a given searched cell within DARTS can be sub-

optimal, as the joint search for operation and topology does not necessarily lead to the most suitable outcome.

Indeed, DARTS derives topology from the best performing operation, but there is no guarantee that this

operation should be retained in the toplogy at all. To this end, operation search and topology search are

decoupled, yielding more optimal final searched topology.

Pi-NAS [149] addresses the optimization-gap prevalent within gradient-based NAS methods in an al-

ternative fashion, considering the image inputs to the NAS solution rather than directly addressing NAS

operation and topology selection strategies. By introducing negative samples to a training iteration, thereby

drawing from the benefits of the thoroughly researched contrastive learning domain, correct loss descent
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can be ensured and better guarantee accurate architecture ranking. Further, a given input image is aug-

mented four times to be passed through separate super-network paths to yield better architecture ranking.

As such, the optimization-gap is minimized as final searched architectures better resemble their standalone

performance.

EnTranNAS-DST [150] further addresses the optimization-gap by representing non-derived connections

in the final searched model as zero-weighted connections. As such, propogation of the super-network in the

NAS search phase is the same as propogation of the final searched architecture in the NAS evaluation phase,

eliminating the gap between the two.

Landmark Regularization [151] adopts an alternative approach to ameliorating the optimization-gap.

Prior to super-network training, randomly sampled standalone architectures (landmarks) are trained to

convergence. During training of the super-network, the performance of the sub-network architectures are

preserved through an additional regularization term within the loss function wherein performance divergence

from known landmark performance is minimized. To minimize harmful impact of the regularizer during early

training iterations, the regularizer is only introduced after a sufficient warm-up period.

Shapley-NAS [92] reconsiders the derivation of the final searched architecture given a super-network

trained by DARTS. Given that there is often a complex relationship between operations, simply selecting

the strongest operation at each edge is flawed. Instead, with a single forward pass of the architecture, a

Shapley score [152, 153] can be approximated with the Monte-Carlo algorithm for each operation to better

quantify its contribution. Moreover, employing Shapley score in place of gradient descent better trains the

super-network during the search phase.

2.5.2.3 Further Gradient-Based NAS developments

TAS [154] adopts a gradient-based search strategy to search for optimal size (network width and depth)

instead of topology. Superfluous channel inputs (determining network width) and layers (network depth) are

pruned. By designing a novel loss function, complex architectures are penalized, and the best performing

network with respect to both accuracy and complexity is identified. Using knowledge transfer with a KD

algorithm [155], the searched pruned network architecture inherits weights from the trained super-network.

DNA [156] posits that weight sharing may lead to a poor evaluation of an architecture (a potentially

powerful architecture could be attributed a weak evaluation since it inherits inappropriate weights). There-

fore, they divide the architecture search space into blocks with similar architectures, and weights are shared

only within the blocks. Distribution Consistent NAS [157] adopts a comparable strategy, whereby archi-

tectures sharing at least one operator are iteratively sampled and their weights updated. The (layer-wise)

architecture space is divided into clusters of architectures sharing operators at a given layer, via K-means
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clustering. The super-network can thus be jointly optimized not only with respect to its parameters but also

topological structure (i.e. between which architectures the weights can be shared [157]).

BossNAS [158] employs block-wise NAS similar to [156] within a CNN-transformer hybrid network. By

constructing a searchable cell that can simulate both convolution and transformer network architectures, and

a fabric [159] consisting of several such cells that optionally can halve the spatial resolution, the searched

architecture resembles either conventional CNN, transformer, or a mixture of the two.

SETN [160] also adopts the super-network weight sharing method, but only one path through the super-

network is considered and optimized during a given training iteration. The method by which the path is

sampled is paramount here. Random sampling [161, 120] can lead to unnecessary consideration of poorly

performing network architectures. Alternatively, sampling may expose the “Matthew effect.” Quickly con-

verging architectures appear as better sampling candidates: they consist of fewer convolution layers, and

thus perform poorly overall after retraining from scratch [162, 163] (for instance a surplus of skip-connections

at the expense of convolution layers). Consequently, the best performing network architectures when fully

trained may be ignored. SETN adopts a stochastic operation and input selection strategy that avoids the

Matthew effect (again inheriting weights optimized from a super-network), while simultaneously adopting

an evaluator to minimize the selection of poorly performing architectures.

Zela et al. [162] similarly identify the prevalence of skip connections within DARTS-generated archi-

tectures, which they attribute to exploding eigenvalues during the NAS search phase. By increasing l2

regularization when the dominant eigenvalue exceeds a threshold, DARTS performance was increased across

the board.

GDAS [164] samples one architecture of the super-network at each training iteration in an attempt to

i) reduce the memory requirement during training and ii) increase efficiency, and by extension, convergence

rate of the network. Furthermore, the authors suggest that searching for the best reduction cell can be

ignored during the NAS process, since they can be effectively hand-crafted and contribute less to overall

network architecture performance. They claim to be able to produce state-of-the-art results in a fraction

of the time, but acknowledge that without re-implementing existing methods and evaluating them on the

same experimental setup, the results are not necessarily fair. NSAS [165] adopts an alternative approach to

CAS (Section 2.5.1) to prevent ‘forgetting’ prior knowledge (the previous network architecture performance

reduces under weights learned by a new architecture), through introducing a novel loss function that penalizes

such an occurrence. The NSAS solution is interleaved within the existing GDAS framework, denoted GDAS-

NSAS.

Yan et al. [166] employ a variational graph isomorphism autoencoder before traversing the architecture

search space. They conclude that this autoencoder out-performs state-of-the-art autoencoders [15, 167] and
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best captures the local structure information of neural network architectures such that similar structures

cluster better in the latent space. Traversing the search space such that the next most similar, unevaluated

network architecture is evaluated in the next iteration, they are able to smooth the NAS search phase,

leading to better overall performance.

NetAdaptV2 [168] introduces channel-level bypass connections (CBC) to simulate removal of filters for

a given layer. In this way, all output channels of a given layer can be bypassed to simulate removal of the

entire layer, and thus equate searching network width and depth. Levying CBC in conjunction with ordered

dropout, whereby several sub-network architectures can be trained in a single forward-backward pass, a

super-network can be efficiently trained. Final architectures are then efficiently derived from the trained

super-network with respect to their latency constraints (or other search metrics).

BMTAS [169] employs a NAS pipeline within a differentiable search space best adapted for multi-task

learning. Through masking (to simulate training one sub-network architecture at a time) and a novel

resource-aware objective function, their pipeline formulates and traverses the search space in such a manner

that promotes general purpose features (operations) within the final NAS-generated architecture.

SMASH [161] uses an auxiliary HyperNetwork [170] network to generate the weights of the network

architecture itself. A super-network is generated to encompass the architecture search space. Much like

conventional gradient-based NAS solutions, an architecture is sampled from the super-network. However,

where its weights would normally be inherited directly, instead they are generated by a HyperNetwork trained

a-priori.

FBNet [171] employs a differentiable NAS strategy wherein cells at different network architecture depths

are searched from different architecture spaces, across expansion rate, kernel size, and group number (for

group convolution). Further, they demonstrate that optimizing network latency is a superior measurement

towards generating small and fast networks than optimizing FLOPs. Indeed, their generated network archi-

tectures outperform MobileNetV2 [44] with respect to size and speed, and achieve better accuracy and lower

latency than even MnasNet [102], a leading efficient convolutional neural network.

Simon et al. [172] adapt DARTS such that convolutional layers have an additional noise injection module.

Weights associated with this module learn how much noise to inject into a given input such that DARTS

succesfully trains in the presence of label noise. Indeed, the results indicate that in the presence of noise,

the modified DARTS method achieves superior performance, without performance degredation when input

data is clean.

SVD-NAS [173] propose an algorithm to optimize the search for low latency network architectures via

substitution of architecture layers with those optimized for FLOPs (low-rank approximation). The results are

presented for gradient-based NAS frameworks, but can be deployed alongside any two-stage NAS approach.
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2.5.3 Performance Prediction

An alternative method to reduce NAS training speed is to forgo training to completion entirely and instead

predict how well a given network architecture will perform from its behaviour after minimal training. PNAS

[119] first trains all network architectures in the search space composed of one block B1 (where a block is

itself a shallow network), and trains a surrogate predictor network based on the performance of said network

architectures. Progressively more complex network architectures are constructed by expanding each block in

B1 with each block in B2 (for a total of |B1|×|B2| network architectures). Rather than train this latter, large

set of network architectures, the surrogate predictor is employed to evaluate their performance. The K-best

evaluated network architectures are then trained, and the process is repeated until network architectures

of sufficient complexity are generated. In this regard, the predictor network guides the search through the

architecture space.

NAO [174] employs an encoder to map a given neural network architecture into a continuous embedded

space. Using an auxiliary predictor network to predict network architecture accuracy from its continuous rep-

resentation, gradient ascent can be applied to determine the best (embedded) network architecture. Finally,

a decoder network is used to extract a generated network architecture from its continuous representation.

Despite employing a gradient-based search strategy, we include NAO within this section as an architecture

sampled during the search phase is not evaluated in a conventional manner (i.e. network propogation with

images), but by an auxiliary predictor network.

Wen et al. [175] train their own (graph convolutional based) predictor regression model, wherein N ar-

chitectures from the NAS-Bench-101 search space are sampled, along with their valiation accuracies. Indeed,

their network converges faster and more accurately than Regularized Evolution [176], the best identified

predictor adopted by NAS-Bench-101 [114]. The regression model is further trained on the ProxlessNAS

[122] search space, yielding competitive models for ImageNet.

MdeNAS [109] posits that network architectures that perform well after minimal iterations perform well

after convergence. As such, there is no benefit in training each network architecture to completion for

evaluation purposes during the search phase. Indeed, they demonstrate this hypothesis, while presenting

their NAS pipeline within a multinomial distribution framework, achieving state-of-the-art results 6.0x faster

than concurrent (non-performance-prediction-based) NAS methodology.

Baker et al. [177] formulates architecture performance prediction within a Bayesian framework. They

train the predictor network upon both features (architecture parameters and hyperparameters) and time-

series validation accuracy data (i.e. validation accuracy of a given network at several different epochs, for

many networks), as well as first and second order validation accuracy differences. They train an ensemble of
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sequential regression models where each successive model uses an additional point from the time-series data.

They demonstrate that their final predictor network is well suited to determine whether a given partially

trained network architecture is worth terminating or continuing training, and therefore sufficient for fast

hyperparameter optimization algorithms such as Hyperband [178].

GBDT-NAS [179] employs a gradient boosting decision tree (GBDT) in order to predict the performance

of the neural network architecture during the search phase. They further corroborate that pruning the search

space into a smaller, but well performing space allows the NAS controller to sample the best architectures

with higher probability [118]. Levying the ability of GBDT to identify the importance and contribution

of a feature (i.e. an operation), they are able to prune architectures that employ operations with poor

performance contribution.

NASWOT (NAS Without Training) [110] predicts the performance of network architectures without

any auxiliary models. By examining the network architecture performance after being trained on a single

minibatch, they are able to accurately predict its performance after full training. The local linear maps

of network archcitectures that perform best will be independent across data point samples. Equivalently,

a well performing model must be able to distinguish between the local linear operators associated with

each data point in order to model a complex target function; a poor performing network architecture’s

operators will ‘activate’ similarly for different images in a minibatch, and thus the image inputs are difficult

to disentangle (their respective activation matrix will appear denser - Fig. 39). Their pipeline is able to

achieve near-state-of-the-art accuracy in seconds (rather than hours).

ReNAS [180] encodes a given architecture into a feature tensor representing an adjacency matrix of the

operations between given nodes. A predictor is trained to map feature tensors to architecture performance,

preserving ranking of different architectures rather than MSE loss between a given architecture and its

performance, since the relative performance between two architectures is more important during the search

phase than their absolute performance.

RMI [3] reformulates the NAS search phase as an operation selection challenge for a given edge in

an architecture. In turn, this edge can be represented as a one-hot vector, enabling representation of an

architecture as a matrix, for input to a random forest. Architectures are derived by the forest, through an

iterative selection-update process using a novel RMI score based off mutual information and approximated

by Hilbert-Schmidt Independence Criterion (HSIC) [181]. Once a sufficient number of architectures have

been generated, the average (mode) operation for each edge is chosen for the final architecture (Fig. 6).

Of course, performance prediction strategies are not without their limitations. Mok et al. [182] suggest

that several prediction-based strategies are inherently flawed. Estimating network performance at initializa-

tion often employs the neural tangent kernel (NTK), for which Frobenius Norm (utilized by RMI [3]) and
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(a) (b)

Figure 5: Visualization of the ability of a generated network to distinguish between given image inputs.
Row i, column j corresponds to the hamming distance between the binary codes representing the activation
pattern of the ReLU operations of the given neural network architecture, induced by image i and image
j. The matrix is normalized such that the distance between the codes induced by identical images (the
diagonal) is 1. High performing network architectures (a) therefore have fewer off-diagonal elements.

Figure 6: Three step NAS process from RMI [3] paper. (a) RMI score is used to classify good and bad
architectures from the search space, additionally warming-up the random forest. (b) Architectures are
selected according to random forest confidence. The architecture performance is estimated via RMI score,
both classifying the architecture as good or bad, and for training the forest. (c) The most common operation
at each edge from the best architectures is selected to generate the final architecture.

other common techniques are based. They demonstrate that modern DNN violate assumptions necessary to

adopt NTK, which evolve non-linearly during training.

FreeRea [183] also acknowledge the limitations that NTK methods yield, and build upon the earlier

genetic REA [184] algorithm by independently mutating parent cells and then uniformly sampling the resul-
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tant cell genes from one parent. Such mutation and crossover operation strategy better explores the network

architecture space. By adopting a modified Synflow [185] approach to evaluate the summed contribution of

network architecture weights, wherein the weights are scaled down logarithmically (termed ‘LogSynflow’),

FreeRea assigns a more appropriate fitness score to a given network architecture cell. Additionally, architec-

tures with skip connections are in fact encouraged to yield practical deep network architecture training.

2.5.3.1 Bayesian Optimization

In general, bayesian optimization (BO) considers a function f(x) that is complex or unknown (thus behaving

as a “black box”). In the context of NAS, we can denote f as the performance of a given architecture x. To

optimize f , we require some kernel k that considers the distance between two inputs (x, x1). Furthermore,

we require an acquisition function a(f, k, x), a measure of an expected loss of evaluating f at x, given a

kernel function k. For clarity, let us consider the architectures x, x1, where k(x, x1) is very small (i.e. the

architectures are similar). If f(x) is high (i.e. architecture x performs well), we would be wise to compute

f(x1), as architecture x1 is likely to perform well. Had f(x) been low (i.e architecture x performs poorly),

we should instead compute f(x2), for some alternative architecture x2. There is litte benefit in computing

f(x1) as it will be similar to f(x), while computing f(x2) enables better exploration of the entire search

space. Provided a is more easily computable than f , a BO approach to architecture selection via maximising

a should be efficient.

Indeed, NASBOT [186] first adopted BO strategy for NAS, utilizing expected improvement as the acqui-

sition function. Further, they define k as the OTMANN distance, a measure of the structural similarities

between two architectures, weighted by their computational contribution to the network as a whole. This

distance is shown to be computed efficiently via optimal transport algorithm [187].

Auto-Keras [188] adopts an alternative BO configuration, using upper-confidence bound acquisition func-

tion, with edit-distance as kernel definition, solved by an approximate dynamic programming algorithm that

can be minimized under an equivalent bipartite graph matching problem. BayesNAS [189] adopt entropy-

based acquisition function with incorporated hierarchical ARD prior [190].

BANANAS [191] identifies the drawbacks with rudimentary BO strategy, given the resouce intensive

distance function computation. Instead they propose use of a predictor network to negate use of a distance

function entirely. Consider an architecture encoding as a binary mask of the entire search space, where

there is a 1 if that path (series of operations from input to output) exists in the architecture. Given such

a path-encoding representation of an architecture, a neural network can predict its performance. Taking an

ensemble of m predictors, the mean and standard deviation of the m predictions for an input architecture can

be computed, and utilized within BO as a relatively reliable uncertainty measurement compared to previous
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BO strategies, improving subsequent uncertainty callibration. The authors evaluated the performance of

the framework across a range of configurations, and determined upper-confidence bound to be the highest

performing acquisition function, in conjunction with a mutation optimization strategy.

2.6 Object Detection

In general, NAS towards more complex tasks than image classification, such as detection and segmentation

is less studied. Further still, investigation of NAS within such complex task domains is generally restricted

to searching for backbone architectures, rather than the end-to-end detection or segmentation architecture.

DetNAS [192] identify the unsuitability of older NAS strategies (notably non-gradient-based) towards search-

ing for detection backbone architectures due to the level of granularity required, and thus the necessity to

pretrain architectures on ImageNet. As such they propose DetNAS which, much like gradient-based NAS

strategies, generates a super-network which only requires pretraining on ImageNet once [130]. Converse to

gradient-based strategies however, only one path is sampled during each iteration, and thus proposed archi-

tectures have entirely independent weights. Furthermore, super-network training and search space traversal

is decoupled, allowing convergence to be achieved by an evolutionary algorithm rather than gradient-based.

SpineNet [4] employs a reinforcement learning (RL) NAS strategy to determine backbone architectures

for object detectors. They posit however, that common leading scale-decreased backbones (e.g. ResNet [18])

may be unsuitable for detection architectures due to the loss of spatial information within down-sampling.

This information may not be fully recovered by subsequent decoder networks, including FPN [193]. As such,

generated architectures contain a (fixed, scale-decreased) stem followed by a learned scale-permuted network

consisting of several blocks. Each block need not necessarily connect to a subsequent block corresponding

to the next lowest resolution (scale-decreasing). Instead, blocks can connect to blocks of varying resolution,

using nearest neighbour interpolation (upsampling) or stride 2 × 2 convolutions (downsampling) between

blocks, as necessary (see Fig. 7).

NATS [194] considers a gradient-based NAS approach for object detection backbone architectures. In

order to achieve the level of granularity required, lest found backbone architectures generate too coarse

features [192], NATS further decomposes the search space beyond path-level strategies to the channel-level.

Each channel at each operation is assigned its own parameter, allowing the channel search space to be

continuous for gradient search.

Conversely to backbone search, [195, 196] consider the FPN network architecture as the search space

within their NAS frameworks. NAS-FPN [195] employs reinforcement learning to iterate over the FPN search

space in their framework. They propose a ‘general’ FPN-block, whereby two feature layers are sampled, and
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Figure 7: Scale-decreasing vs Scale-permuted network from SpineNet [4] paper. The width of the block
indicates feature resolution and the height indicates feature dimension

then combined (with either sum or global pooling) to generate a new feature layer. The input layers, binary

combination operation, and output layer resolution are determined by the NAS RNN RL controller. The

output layer is inserted back into the initial stack to be sampled itself by the controller. The authors further

propose a simple but effective strategy to realise the accuracy-speed tradeoff, whereby the FPN architecture

can be stacked since its input and output are feature layers of identical scales.

Auto-FPN [196] opts for a gradient-based NAS framework to generate detector architectures. Similar to

NAS-FPN [195], FPN network architecture is generalized within the search space, but the generalization is

further extendable to PANet [197] and SSD [198] style pyramidal network architectures. Furthermore, the

authors consider a head cell within the search space, to optimize classification and bounding box regression.

Their Auto-FPN network architecture yields less accurate results than the concurrent work [195], but with

a fraction of the resources required during training.

Drawing from both object detection NAS paradigms, NAS-FCOS [199] benefits from searching for both a

competitive FPN as well as bounding box regressor head. Generating network architectures based upon the

FCOS [200] anchor-free network architecture, they are able to achieve state-of-the-art performance. They

construct the FPN search space as a sequence of blocks, where each block is constructed as an aggregated

selection of operations performed upon two sampled feature layers. The highest most pyramid feature layers

are obtained via 3 × 3 stride-2 convolutions on the preceding pyramid layers, consistent with FCOS. The

regressor head search space is defined as a sequence of six operations, drawing from the same pool as the

FPN search space, as well as the standard convolutions incorporated within FCOS and RetinaNet [201]. In
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keeping with FCOS design and general NAS procedure, Group Normalization [202] is also used in place of

Batch Normalization. First, the FPN search space is traversed while the regressor head is frozen. Following

the discovery of a high performance searched FPN architecture, the regressor head is generated. The top

10 searched head architectures are then selected for full training to determine the best single FCOS-based

network architecture.

OPANAS [203] applies the NAS strategy to searching for optimal FPN architecture within visual object

detection. Representing a node as a feature map, and edges between nodes as possible information paths

(top-down, bottom-up, scale-equalizing, fusing-splitting, skip-connect and none), an FPN super-network

can be constructed as a DAG akin to commonplace NAS solutions. As such, the optimal aggregation of

information paths can be derived from a trained super-network through an evolutionary algorithm.

2.7 Image Segmentation

The image segmentation domain poses a new style of problem compared to previous vision-based challenges,

namely capturing long-range dependencies between features for dense (pixel-wise) prediction [204, 205].

Common solutions include scale image pyramids [206, 207, 208], encoder-decoder networks [209, 210, 211]

and atrous convolution resampling [212, 213, 214].

DPC [204] constructs a novel search space for dense prediction, encapsulating both spatial pyramid

pooling and atrous seperable convolutions, thereby capturing the aforementioned multi-scale contexts. With

a random sampling search strategy, they are among the first to adapt NAS towards image segmentation,

outperforming hand-crafted architectures for scene parsing, person part segmentation and semantic image

segmentation.

Auto-DeepLab employs a different strategy wherein gradient-based search is adopted to find cells opti-

mized for dense prediction. In addition to searching for optimal convolutional fabric [215] cells, the hierar-

chical network level search space is also traversed. High level spatial resolutions are thereby preserved as the

inter-connectedness of a searched cell is not pre-defined, but explicitly searched for (Fig. 8).

DCNAS [205] builds upon the trellis search space [5], constructing a densely connected search space. By

using a fusion module that efficiently aggregates semantic information between layers, the resource-intensity

during search is minimized such that a given architecture can be searched for in a proxyless fashion; the

dataset the final architecture is trained on is used during the search phase, ameliorating any contradiction

between final and searched architecture performance (i.e. bridging the optimization-gap).

EDNAS [143] present a multi-task scene understanding (image segmentation, depth prediction, and

surface normal estimation) NAS algorithm that focuses on the generation of network architectures optimal
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Figure 8: Examples from Auto-DeepLab [5] paper of the different network architectures that can be captured
by their search space. Spatial resolution only ever doubles, halves, or remains unchanged in a given layer.
Maximum downsample rate is 32. (a) DeepLabv3 [6]. (b) Encoder-decoder architecture, successfully deployed
within semantic segmentation by Conv-Deconv [7]. (c) Stacked hourglass [8] architecture.
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with respect to latency for given hardware. By designing a search space best suited to the placement of

Inverted Bottleneck [44] blocks within an EfficientNet [216] backbone, an evolutionary search algorithm [184]

can find architectures optimized for edge platforms.

2.8 Discussion

Clearly, and has been previously mentioned, there is a definitive bias towards NAS for image classification

over object detection and image segmentation. This can be attributed to the complexity of image classi-

fication architecture, which until recently, could be more easily trained end-to-end. As such, these CNN

architectures are well suited for architecture search within the NAS pipeline. While extending CNN ar-

chitecture search to backbones to object detection and image segmentation is possible, the result is not as

impressive. Indeed, suitable backbone architecture for these problems is only half the challenge. However,

with the rise of object detection transformer architecture, which achieves very high performance on common

datasets, and whose modularity is well suited towards NAS, one can expect this phenomenon to disappear.

It is unsurprising therefore, that neural architecture search for transformers is receiving increased popularity

in recent literature [129, 158]. We further note that implementing the architecture space for NAS in line

with the modifications implemented within ConvNeXt architecture [24], capable of state-of-the-art results

in both image classification and object detection, is a strong candidate for future research within the NAS

domain.

The focus on architecture space traversal is evident. Conversely, even in the case of image classification,

generation of resource-efficient architecture is limited, for which NAS is so well-suited. Moreover, where such

strategies do exist [126, 129, 154, 168, 119], only [129] considers architecture beyond pure CNN or domains

other than image classification. Since NAS can ultimately be reduced to a ranking of architectures, and thus

introducing resource constraints into the ranking is both sufficient and efficient, this pattern is unfounded

and there is much benefit to be gained here.

Finally, we note that dataset optimization is hardly considered within NAS frameworks, with the excep-

tion of Pi-NAS [149]. Hard example mining and curriculum learning, prevalent within conventional network

training , receive no attention within NAS (excluding CNAS [113] which utilizes a curriculum for preparing

the architecture space rather than the dataset). Considering a given dataset is often iterated over more times

within NAS than manual training, there is no justification for this.
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Reference
Technique Top-1 Acc

(CIFAR-10)
(%)

Params
(CIFAR-10)

Top-1 Acc
(ImageNet)

(%)

Params
(ImageNet)Evolutionary

Algorithms
Reinforcement

Learning
Gradient

Based
Prediction

Weight
Sharing

Sample
Based

One
Shot

Zoph & Le[99] X X 96.35 37.4M n/a n/a
MnasNet [102] X X n/a n/a 76.7M 5.2M

ENAS [111] X X X 97.11 4.6M n/a n/a
SNAS [112] X X X 97.02 2.9M 72.7 4.3M
CAS [121] X X X n/a n/a n/a n/a

CNAS [113] X X X 97.40 3.7M 75.40 5.3M
ProxylessNAS-R [122] X X X 97.70 5.8M 74.6 n/a
ProxylessNAS-G [122] X X X 97.92 5.7M 74.2 n/a

NASP [123] X X X 97.56 7.4M 73.7 9.5M
TuNAS [98] X X X n/a n/a 75.0 n/a

BigNAS-S [125] X X n/a n/a 76.5 4.5M
BigNAS-M [125] X X n/a n/a 78.9 5.5M
BigNAS-L [125] X X n/a n/a 79.5 6.4M

BigNAS-XL [125] X X n/a n/a 80.9 9.5M
AttentiveNAS (largest) [126] X X n/a n/a 80.7 n/a

Stage-Wise NAS [127] X X 95.68 7.27M n/a n/a
GLiT-Tiny [129] X X X n/a n/a 76.3 7.2M
GLiT-Small [129] X X X n/a n/a 80.5 24.6M
GLiT-Base [129] X X X n/a n/a 82.3 96.1M

NEAS [131] X X X n/a n/a 80.0 n/a
PAD-NAS [132] X X X n/a n/a 76.1 4.7M
BONAS [134] X X 97.57 3.3M 74.6 4.8M
DARTS [53] X X X 97.24 3.3M 73.3 4.7M

P-DARTS [108] X X X 97.50 3.5M 75.9 5.4
PC-DARTS [138] X X X 97.43 3.6M 75.8 5.3M
I-DARTS [139] X X X 97.63 3.8M 75.7 n/a
Wu et al. [2] X X X 97.50 3.5M 75.33 5.7M

E-DNAS [143] X X X n/a n/a 76.9 5.9M
ISTA-NAS [136] X X X 97.64 3.37M 76.0 5.65M
FairNAS [147] X X X 98.2 n/a 77.5 5.9M
DOTS [148] X X X 97.51 3.5M 76.0 5.3M
Pi-NAS [149] X X X n/a n/a 81.60 27.1M

EnTranNAS [150] X X X 97.78 7.68M 75.70 7.2M
EnTranNAS-DST [150] X X X 97.52 3.20M 76.20 7.0M

Landmark Regularization:SPOS [151] X X X n/a n/a 67.38 4.77M
Landmark Regularization:GDAS [151] X X X n/a n/a 68.82 5.07M
Landmark Regularization:NAO [151] X X X n/a n/a 68.89 4.49M

Shapley-NAS [92] X X 97.57 3.6 76.1 5.4
TAS [154] X X X 94.00 n/a 76.20 n/a
DNA [156] X X X 98.30 n/a 78.40 6.4M

Distribution Consistent [157] X X X n/a n/a 79.50 n/a
BossNAS [158] X X X n/a n/a 82.5 n/a

SETN [160] X X X 97.31 4.6M 74.3 5.4
R-DARTS(l2) [162] X X X 97.49 n/a n/a n/a

GDAS [164] X X X 97.07 3.4M 74 5.3
GDAS-NSAS [165] X X X 97.27 3.54M n/a n/a

unsupervised: DARTS [166] X X X 97.44 3.6M n/a n/a
NetAdaptV2 [168] X X X n/a n/a 77.0 n/a

BMTAS [169] X X X n/a n/a n/a n/a
SMASH [161] X X X 94.47 4.6M 61.38 16.2M
FBNet-C [171] X X X n/a n/a 74.9 5.5M

PNAS [119] X 96.59 3.2M 74.2 5.1M
PNAS-Large [119] X n/a n/a 82.9 86.1M

NAO [174] X X 96.82 10.6M 74.3 11.35M
MdeNAS [109] X 97.45 3.61M 74.5 6.1M

GBDT-NAS [179] X n/a n/a 76.6 5.7M
NASWOT [110] X n/a n/a n/a n/a

ReNAS [180] X n/a n/a n/a n/a
NASBOT [186] X 91.31 n/a n/a n/a

Auto-Keras [188] X 96.40 n/a n/a n/a
BayesNAS [189] X 97.59 3.4M 73.5 3.9M
BANANAS [191] X n/a n/a n/a n/a

COCO
AP Params

MnasNet [102] † X 23.0 4.9M
DetNAS [192] † X X X 42.0 n/a

SpineNET-49S [4] † X X 41.5 12M
SpineNET-190 [4] † X X 52.1 163.6M

NATS [194] † X X X 38.4 n/a
NAS-FPN (AmoebaNet Backbone) [195] † X X 48.4 166.5M

Auto-FPN [196] † X X X 44.3 n/a
NAS-FCOS [199] † X X 46.1 89.4M
OPANAS [203] † X X X 41.6 29.8M

mIOU (cityscapes)
DPC [204] ‡ 82.7

Auto-DeepLab [5] ‡ X X X 82.1
DCNAS [205] ‡ X X X 84.3
EDNAS [143] X n/a

Table 1: Overview of NAS approaches, their performance, and the general methodology employed: Evolu-
tionary Algorithms (EA), Reinforcement Learning (RL), Gradient-Based (GB), Weight-Sharing (WS) and
Prediction (Pred). † entails object detection. ‡ entails instance segmentation. Otherwise, reported re-
sults are for Image Classification. Results correspond to the results reported in their respective original
paper, even when subsequent papers report higher performance or results generated using more comparable
computational resources.
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NAS search algorithm CIFAR-10 ImageNet-16-120
I-DARTS [139] 93.76 41.44
FairNAS [147] 93.23 ± 0.18 42.19 ± 0.31
Pi-NAS [149] 93.83 ± 0.00 n/a

Landmark Regularization:SPOS [151] 93.41 ± 0.43 n/a
Landmark Regularization:GDAS [151] 94.32 ± 0.28 n/a
Landmark Regularization:NAO [151] 93.53 ± 0.43 n/a

Shapley-NAS [92] 94.37 ± 0.00 46.85 ± 0.12
Distribution Constrained [157] 94.29 ± 0.07 46.41 ± 0.14

BossNAS [158] † 93.29 n/a
unsupervised: DARTS [166] 94.18 ± 0.24 46.27 ± 0.37

NASWOT [110] 92.96 ± 0.81 44.44 ± 2.10
ReNAS [180] 93.99 ± 0.25 45.97 ± 0.49

RMI [3] 94.28 ± 0.10 46.34 ± 0.00
FreeRea [183] 94.36 ± 0.00 46.34 ± 0.00

Table 2: Some literature report the NAS search phase prediction performance in place of or as well as final
searched architecture performance. In these cases we present the findings on NAS-Bench-201 on CIFAR-10
and ImageNet-16-120. † denotes experiments conducted on NATS-Bench, the successor to NAS-Bench-201.

2.9 Conclusion

Within the compression domain, the limited studies open the door only slightly on the very question - what

is the generalized impact of compression on varying deep neural network architectures? Here we consider

multiple CNN variants spanning region-based, encoder-decoder and GAN architectures in addition to a wide

range of target tasks spanning both discrete and regressive outputs. From our observations, we aim to form

generalized conclusions on the hitherto unknown relationship between (lossy) image input to target function

outputs within the domain of contemporary CNN approaches.

It is similarly important to determine suitable NAS approaches within the same train-test development

cycle. There has been clear advancement of NAS towards faster generation and training of networks, but

relatively little with respect to generation of small, efficient architectures. More notably however, there is

little research towards NAS speed-up approaches within the context of data minimisation. Minimizing the

data processed within NAS search phase algorithms would allow NAS to be deployed within constrained

development environments. Furthermore, such a solution would be framework-agnostic, and could utilize

NAS improvements proposed within existing and future literature in conjunction with its own strategy.

Finally, it is evident that curriculum learning and hard example mining are both valid methods of
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improving the neural network training process. In fact, combining the two methods yields superior results.

We propose therefore to deploy such methods within NAS, specifically, levying mastery from [24] in tandem

with our own hard example mining approach reminiscent of the instructor-student collaborative learning

paradigm [14]. Moreover, it is necessary to constrain our approach to efficient methods sufficient for training

within online environments.
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3

Compression

3.1 Introduction

Image compression is in de facto use within environments relying upon efficient image and video transmission

and storage such as security surveillance systems within our transportation infrastructure and our daily use

of mobile devices. However, the use of the commonplace lossy compression techniques, such as JPEG [35]

and MPEG [36] to lower the storage/transmission overheads for such smart cameras leads to reduced image

quality that is either noticeable or commonly undetectable to the human observer.

Indeed psychosomatic considerations form the basis for the image compression domain. In short, the

human eye is able to see due to photoreceptor cells in the retina. These cells can be divided into approximately

120 million rods best adapated to scotopic vision (dim-light conditions), but only 6 million cones that are

sensitive to colour [217]. This imbalance of cells leads to a signficantly greater sensitivity to high frequency

information and movement compared to colour information.

We define the JPEG [35] algorithm following the ISO/IEC 10918 still image compression standard. Images

are converted to the Y CrCb colour space to distinguish between chrominance and luminance. Chroma

components are subsampled given their relative imperceptibility over luma components, and can be safely

reduced. The primary component of JPEG then uses the DCT algorithm [218] to transform both chrominance

and luminance components from the spatial domain to the frequency domain. High frequency components,

which the human eye is less able to perceive, can be discarded at relatively high rates such that a decoded

JPEG image is imperceptibly different, and from which the term ‘lossy’ compression is derived. This process

is termed quantization, where the frequency components are translated to a set of integers (and information

is discarded by rounding to zero). The resultant information can be efficiently entropy encoded since most

information is in the upper left corner of the frequency space (thus maximizing the impact of run-length

encoding and Huffman coding [70] during entropy encoding).

We define the H.264 [37] algorithm following the H.264/MPEG-4 AVC video compression standard. The

algorithm uses an integer approximation for the DCT transformation for a given video frame (operating on
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Figure 9: Image taken from [9]. A single change to the pixel values can have a significant impact on the
output of the kernel.

4x4 patches compared to the 8x8 employed by JPEG), followed by entropy encoding, much like the JPEG

standard. In addition however, H.264 applies motion estimation to remove temporal redundacies between

given frames. Objects within an image frame are isolated so that their motion vectors compared to reference

frames (usually the previous or successive frame) can be captured, whilst the rest of the frame remains

unchanged and can be trivially encoded. Compared to previous iterations of the algorithm (MPEG [36],

H.262 [219], H.263 [220]), H.264 employs several reference frames, not just those immediately adjacent, to

better capture motion vectors. This allows identification and efficient encoding of periodic motion, alternating

scenes within a video, and motion under occlusion.

Considering both algorithms remove pixel information during the quantization process, it follows that

CNN performance will be impacted, and this forms the basis of the well-established domain of adversarial

attacks [221]. Whilst the images may be imperceptibly different to human observation, the convolution

kernels are necessarily fine-grained to discern any distinction [222, 223]. It is easy to show that a single

pixel value change can have significant output on kernel output (see Fig. 9). It follows that learning kernel

weights can be impacted by using training images with different compression levels.

With the recent rise of deep CNN [31, 32] for video analytics across a broad range of image-based detection

applications, a primary consideration for classification and prediction tasks is the empirical trade-off between

the performance of these approaches and the level of lossy compression that can be afforded within such

practical system deployments (for storage/transmission). This is of particular interest as CNN are themselves
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known to contain lossy compression architectures - removing redundant image information to facilitate both

effective feature extraction [31, 32] and retaining an ability for full or partial image reconstruction from their

internals [15, 224, 225].

Prior work on this topic [54, 55, 56, 57] largely focuses on the use of compressed imagery within the

train and test cycle of deep neural network development for specific tasks. However, relatively few studies

investigate the impact upon CNN task performance with respect to differing levels of compression applied

to the input imagery at inference (deployment) time. Moreover, while racial bias within facial recognition is

a prominent area of research within computer vision [38, 39, 40, 41], minimal consideration has been given

to racial bias introduced during the image acquisition stage, within which compression resides.

This chapter investigates whether (a) existing pre-trained CNN models exhibit linear degradation in

performance as image quality is impacted by the use of lossy compression and (b) whether training CNN

models on such compressed imagery thus improves performance under such conditions. In contrast to prior

work, we investigate these aspects across multiple CNN architectures and domains spanning segmentation

(SegNet, [10]), human pose estimation (OpenPose, [12]), object recognition (R-CNN, [11]), human action

recognition (dual-stream, [13]), and depth estimation (GAN, [226]). Furthermore, we determine within which

domains compression is most impactful to performance and thus where image quality is most pertinent to

deployable CNN model performance. Finally, we discuss the additional racial bias deployment challenge that

compression introduces, and measures that can be taken to reduce it.

3.2 Architecture Representation

To determine how much lossy image compression is viable within CNN architectures before performance is

significantly impacted we must study a range of second generation tasks, beyond simple and holistic image

classification, requiring more complex CNN output granularity. We examine five CNN architectural variants

across five different challenge domains, emulating the dataset and evaluation metrics characterized in their

respective originating study in each case as closely as possible. Inference models processing images were tested

six times, with a JPEG quality parameter in the set {5, 10, 15, 50, 75, 95}, whilst video-based models were

tested with H.264 CRF compression parameters in the set {23, 25, 30, 40, 50}. Each model is then retrained

with imagery compressed at each of the five higher levels of lossy compression to determine whether resilience

to compression could be improved, and how much compression we can afford before a significant impact on

performance is observed. Our methodology for each of our representative challenge domains is outlined in

the following sections: semantic segmentation (Section: 3.2.1), depth estimation (Section: 3.2.2), object

detection (Section: 3.2.3), human pose estimation (Section: 3.2.4), and human action recognition (Section:
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3.2.5). Finally, we consider facial recognition and the additional respective racial bias challenge (Section:

3.5). In all cases it is experimentally analysed that the change in loss is lower than some small δ between

two epochs and thus the stated number of epochs is sufficient for the model to have converged. In all cases,

performance is evaluated using the standard benchmarks [1, 30, 227, 228, 229] such that it is comparable

with the literature. During retraining of the networks, training images are equally sampled from the lowest

compression rate (JPEG Paramter 95 / CRF 23) and the compression level in question. All train/validation

splits are as presented in the respective literature [1, 30, 227, 228, 229]. We assume that train/test sets are

identically distributed, but in some cases drawn from the same global distribution as the training data. This

is standard practice in computer vision [230, 231], such as in the autonomous driving domain [232, 233].

3.2.1 Semantic Segmentation

Pixel-wise Segmantic segmentation involves assigning each pixel in an image (Fig. 10a, above) its respective

class label (Fig. 10a, below). SegNet [10] uses an encoder-decoder neural network architecture followed by

a pixel-wise classification layer to approach this challenge.

Implementing SegNet from [234], we evaluate global accuracy (percentage of pixels correctly classified),

mean class accuracy (mean prediction accuracy over each class), and mean intersection over union (mIoU)

against compressed imagery from the Cityscapes dataset [229]. When retraining the network, we use 33000

epochs, with hyperparameters from [10]: a batch size of 12, fixed learning rate (η) of 0.1, and momentum

(β) of 0.9.

3.2.2 Depth Estimation

In order to evaluate GAN architecture performance under compression, we need a task decoupled from

reconstructing high quality output, to which compression would be clearly detrimental. One such example is

computing the depth map of a scene (Fig. 11a, below) from monocular image sequences (Fig. 11a, above).

Using a simplified network from [226], we evaluate RMSE performance of the GAN against the Synthia

dataset presented in [228]. We employ η = 0.0001 and batch size 10 over 10 epochs (long enough for the

simplified network to converge).
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(a) JPEG compression level: 95 (b) JPEG compression level: 15

(c) JPEG compression level: 10

Figure 10: Results of pre-trained SegNet model [10] on a JPEG image under different compression levels
(original RGB image above, computed segmentation map below)
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(a) JPEG compression level: 95

(b) JPEG compression level: 15

(c) JPEG compression level: 10

Figure 11: Results of pre-trained GAN model on a JPEG image under different compression levels (RGB
image above, computed depth map below)
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(a) JPEG compression level: 95 (b) JPEG compression level: 15

(c) JPEG compression level: 10

Figure 12: Results of pre-trained FasterRCNN model [11] on a JPEG image under different compression
levels

3.2.3 Object Detection

In object detection, we must locate and classify foreground objects within a scene (as opposed to semantic

segmentation, which classifies each pixel), and compute the confidence of each classification (Fig. 12a). We

evaluate mAP of the Detectron FasterRCNN [11] implementation [235] against the Pascal VOC 2007 dataset

[227], over mIoU with threshold 0.5:0.95. When training the network, we use η = 0.001 and weight decay of

0.0005 over 60000 epochs as specified in [11].
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(a) JPEG compression level: 95 (b) JPEG compression level: 15

(c) JPEG compression level: 10

Figure 13: Results of pre-trained OpenPose model [12] on a JPEG image under different compression levels

3.2.4 Human Pose Estimation

Human Pose Estimation involves computing (and overlaying) the skeletal position of people detected within

a scene (Fig. 13a). Recent work uses part affinity fields to map body parts to individuals, thus distinguishing

between visually similar features.

Using OpenPose [12] we compute the skeletal overlay of detected people in images from the COCO dataset

[30]. We evaluate with mean average precision (mAP), over 10 object key-point similarity (OKS) thresholds,

where OKS represents IoU scaled over person size. When retraining the network, we use η = 0.001, and a

batch size of 8 over 40 epochs, with hyperparameters from [236].
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(a) H.264 CRF value 23 (b) H.264 CRF value 30

(c) H.264 CRF value 40

Figure 14: One frame taken from a video input to the Two-Stream CNN model [13] under different H.264
compression rates

3.2.5 Human Action Recognition

To classify a single human action - from a handstand to knitting - with a reasonable level of accuracy, we

must inspect spatial information from each frame, and temporal information across the entire video sequence.

We implement the dual-stream model from [13]; recognising human activity by fusing spatial and tempo-

ral predictions from the UCF101 video dataset presented in [1] (see Fig. 14 for example frames, dramatically

deteriorating in quality as H.264 CRF value is increased). To train the temporal stream, we pass 20 frames

randomly sampled from the pre-computed stack of optical flow images. Across both streams, we use hyper-

parameters presented in [13], apart from fixed learning rate as per the chosen implementation [237].
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Compression Rate global ACC mean ACC mIoU
100% (JPEG Parameter 95) 0.910 ± 0.001 0.525 ± 0.012 0.446 ± 0.008
40% (JPEG Parameter 75) 0.908 ± 0.001 0.522 ± 0.011 0.442 ± 0.007
25% (JPEG Parameter 50) 0.904 ± 0.0005 0.516 ± 0.009 0.435 ± 0.005
15% (JPEG Parameter 15) 0.814 ± 0.004 0.459 ± 0.0008 0.338 ± 0.0016
10% (JPEG Parameter 10) 0.775 ± 0.017 0.423 ± 0.002 0.299 ± 0.003
7% (JPEG Parameter 5) 0.758 ± 0.024 0.358 ± 0.007 0.258 ± 0.008

(a) after testing a pre-trained SegNet model [10] on compressed imagery

Compression Rate global ACC mean ACC mIoU
100% (JPEG Parameter 95) 0.910 ± 0.0010 0.525 ± 0.012 0.446 ± 0.008
40% (JPEG Parameter 75) 0.909 ± 0.0009 0.514 ± 0.008 0.440 ± 0.006
25% (JPEG Parameter 50) 0.908 ± 0.0005 0.511 ± 0.007 0.436 ± 0.005
15% (JPEG Parameter 15) 0.902 ± 0.0005 0.493 ± 0.002 0.419 ± 0.001
10% (JPEG Parameter 10) 0.896 ± 0.0005 0.493 ± 0.011 0.414 ± 0.007
7% (JPEG Parameter 5) 0.880 ± 0.0008 0.457 ± 0.009 0.382 ± 0.006

(b) after retraining a SegNet model [10] with compressed imagery

Table 3: Segmentation: Global accuracy, mean class accuracy and mIoU at varying compression rates.
Compression rate indicates the approximate final file size compared to using JPEG Parameter 95.

Compression Rate Abs. Rel. Sq. Rel. RMSE
100% (JPEG Parameter 95) 0.0120 ± 0.0010 0.0047 ± 0.0007 0.0646 ± 0.005
40% (JPEG Parameter 75) 0.0130 ± 0.0010 0.0048 ± 0.0008 0.0649 ± 0.005
25% (JPEG Parameter 50) 0.0135 ± 0.0010 0.0048 ± 0.0008 0.0652 ± 0.005
15% (JPEG Parameter 15) 0.0159 ± 0.0010 0.0050 ± 0.0009 0.0669 ± 0.006
10% (JPEG Parameter 10) 0.0204 ± 0.0009 0.0051 ± 0.0008 0.0679 ± 0.005
7% (JPEG Parameter 5) 0.0292 ± 0.0008 0.0067 ± 0.0006 0.0786 ± 0.003

(a) after testing a pre-trained GAN model for monocular depth estimation [226] on compressed
imagery

Compression Rate Abs. Rel. Sq. Rel. RMSE
100% (JPEG Parameter 95) 0.0120 ± 0.0010 0.0047 ± 0.00070 0.0646 ± 0.0050
40% (JPEG Parameter 75) 0.0111 ± 0.0002 0.0036 ± 0.00009 0.0564 ± 0.0006
25% (JPEG Parameter 50) 0.0107 ± 0.0003 0.0030 ± 0.00010 0.0514 ± 0.0010
15% (JPEG Parameter 15) 0.0121 ± 0.0002 0.0032 ± 0.00010 0.0540 ± 0.0010
10% (JPEG Parameter 10) 0.0149 ± 0.0004 0.0031 ± 0.00004 0.0525 ± 0.0005
7% (JPEG Parameter 5) 0.0156 ± 0.0004 0.0037 ± 0.00040 0.0581 ± 0.0030

(b) retraining a GAN model for monocular depth estimation [226] with compressed imagery

Table 4: Depth Estimation: Absolute Relative, Squared Relative, and Root Mean Squared Error at
varying compression rates (lower, better)

Compression Rate mAP
100% (JPEG Parameter 95) 0.704 ± 0.0005
40% (JPEG Parameter 75) 0.688 ± 0.0010
25% (JPEG Parameter 50) 0.669 ± 0.0020
15% (JPEG Parameter 15) 0.537 ± 0.0050
10% (JPEG Parameter 10) 0.434 ± 0.0060
7% (JPEG Parameter 5) 0.185 ± 0.0030

(a) after testing a pre-trained FasterRCNN model [11]
on compressed imagery

Compression Rate mAP
100% (JPEG Parameter 95) 0.704 ± 0.0005
40% (JPEG Parameter 75) 0.694 ± 0.0010
25% (JPEG Parameter 50) 0.696 ± 0.0030
15% (JPEG Parameter 15) 0.647 ± 0.0005
10% (JPEG Parameter 10) 0.627 ± 0.0005
7% (JPEG Parameter 5) 0.559 ± 0.0010

(b) retraining a FasterRCNN model [11] with
compressed imagery

Table 5: Object Detection: Mean average precision at varying compression rates
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3.3 Evaluation

In this section, we contrast the performance of the considered CNN architectures under their respective

evaluation metrics before and after retraining. From this, we can determine how much we can safely compress

the imagery while maintaining acceptable performance. We then propose possible explanations for the

variations in resilience of the network architectures to image compression.

3.4 Semantic Segmentation

From results presented in Table 3 we can observe that the impact of lossy compression (Table 3a) is minimal,

indicating high resilience to compression within the network. At the highest (most compressed) compression

level, we see global accuracy reduce by 17%, down to 75.8%, while affording almost as little as 95% less

storage cost on average per input image. However, at these heaviest compression rates, the compression

artifacts introduced can lead to false labelling. This is particularly prominent where there are varying levels

of lighting, affecting even plain roads (Fig. 10c). Subsequently, from Table 3b we can see that retraining

the network further minimizes performance loss, especially minimizing false labelling of regions. At a JPEG

compression level of 5, performance loss is reduced to 3.3%, resulting in global accuracy narrowly dropping

below 0.9. Such resilience may stem from the up-sampling by the pooling layers within the decoder pipeline,

which are innately capable of recovering information that has been lost during compression, but further

investigation is left to future work.

3.4.1 Depth Estimation

Analyzing the results in Table 4, it is evident that lossy compression markedly diminishes root mean squared

error (RMSE) performance of depth estimation when heavy compression rates are employed (Table 4a). At

a JPEG compression level of 15, RMSE has not increased by more than 3.6%, but at a JPEG compression

level of 10 and lower, performance begins to dramatically decline (in keeping with that of [54]). However, by

retraining the network at the same compression level that is employed during testing (Table 4b), performance

loss can be thoroughly constrained. Even at a JPEG compression level of 5, RMSE can be constrained to

under 0.0600, improving performance by as much as 26% over the pre-trained network. Other performance

measures demonstrate the same trend.

This performance is surprising: we might expect that RMSE would increase (thus lowering performance)

after training on compressed imagery, since the GAN generates low quality imagery as the textures and

features used to calculate depth estimation are lost, and is therefore unable to improve depth estimation

performance. It is possible that it exceeds our expectation due to the encoder-decoder pipeline within the
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Compression Rate mAP
100% (JPEG Parameter 95) 0.730 ± 0.020
40% (JPEG Parameter 75) 0.707 ± 0.020
25% (JPEG Parameter 50) 0.670 ± 0.020
15% (JPEG Parameter 15) 0.419 ± 0.006
10% (JPEG Parameter 10) 0.332 ± 0.010
7% (JPEG Parameter 5) 0.100 ± 0.001

(a) after testing a pre-trained OpenPose model [12] on
compressed imagery

Compression Rate mAP
100% (JPEG Parameter 95) 0.730 ± 0.02
40% (JPEG Parameter 75) 0.734 ± 0.03
25% (JPEG Parameter 50) 0.707 ± 0.03
15% (JPEG Parameter 15) 0.681 ± 0.03
10% (JPEG Parameter 10) 0.621 ± 0.03
7% (JPEG Parameter 5) 0.428 ± 0.03

(b) after retraining an OpenPose model [12] with
compressed imagery

Table 6: Human Pose Estimation: Mean average precision at varying compression rates

estimation process, which is also employed in the SegNet architecture, and thereby shares its compression

resilience.

3.4.2 Object Detection

From Table 5, we can again discern that performance degrades rapidly at high lossy compression levels (JPEG

compression level of 15 or less, see Table 5a). Applying a JPEG compression level of 15 leads to a 23.6%

drop, down to mAP of 0.537, whilst a JPEG compression level of 5 causes mAP to drop by as much as 73.7%.

Furthermore, with higher compression rates, fewer objects are detected, and their classification confidence

also falls (Fig. 12c). Their classification accuracy remains unhindered, however. When the network is

retrained on imagery lossily compressed at the same level, performance is noticeably improved (Table 5b).

A significant performance drop only occurs at JPEG compression level of 5 to a JPEG compression level

of 15. In fact, the retrained network is able to maintain an mAP above 0.6 even at a JPEG compression

level of 10; reducing performance degradation to only 10.8%, while affording a lossy compression rate almost

10-fold higher in terms of reduced image storage requirements.

3.4.3 Human Pose Estimation

Results in Table 6 once again illustrate that lossy image compression (Table 6a) dramatically impacts per-

formance at high rates. Similar to object detection, performance considerably lowers at 15% compression

rate, in this case with performance falling by 42.6% to 0.419 mAP. Qualitatively, the network computes

precisely located skeletal positions at higher compression rates, but detects and locates fewer joints (Fig.

13b). With high levels of compression (Fig. 13c), the false positive rate increases, and limbs are falsely

detected and located. It is likely that optimizing the detection confidence threshold required of joints before

computing their location, and thereby maximizing limb detection while minimizing false positives increases

performance, especially during high compression. With a retrained network (Table 6b), a compression rate

of 15% can be safely achieved before performance degradation exceeds 10%.
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Compression Rate Top-1 Spatial Top-1 Motion Top-1 Fusion
100% (H.264 CRF 23) 79.3022 ± 0.43 70.4898 ± 0.37 83.9585 ± 0.41
75% (H.264 CRF 25) 78.0768 ± 0.72 44.1825 ± 0.74 72.8730 ± 0.73
40% (H.264 CRF 30) 78.4779 ± 0.02 37.5198 ± 0.16 72.3729 ± 0.14
10% (H.264 CRF 40) 73.2753 ± 1.30 37.8465 ± 1.11 69.6203 ± 1.26
5% (H.264 CRF 50) 42.8359 ± 1.36 14.0867 ± 1.24 40.1377 ± 1.34

(a) after testing a pre-trained HAR model [13] on video data with varying H.264 CRF
encoding values

Compression Rate Top-1 Spatial Top-1 Motion Top-1 Fusion
100% (H.264 CRF 23) 79.3022 ± 0.43 70.4898 ± 0.37 83.9585 ± 0.41
75% (H.264 CRF 25) 79.1175 ± 0.56 39.2092 ± 0.51 72.2916 ± 0.53
40% (H.264 CRF 30) 78.6978 ± 0.21 33.9061 ± 0.41 70.9565 ± 0.38
10% (H.264 CRF 40) 75.1371 ± 0.81 10.2450 ± 0.99 66.2427 ± 0.88
5% (H.264 CRF 50) 61.9860 ± 0.53 7.7500 ± 1.02 55.5079 ± 0.72

(b) after retraining a HAR model [13] with on video data with varying H.264 CRF encoding
values

Table 7: Human Action Recognition: Top-1 accuracy for each stream at varying compression rates

While impressive, the results are relatively insubstantial compared to those of other architectures, such

as SegNet (Section 3.4, Table 3). The difference can perhaps be attributed to the double prediction task

within the pose estimation network. Inaccuracies stemming from the lower quality images are not just prop-

agated but multiplied through the network, as the architecture must simultaneously predict both detection

confidence maps and the affinity fields for association encodings.

3.4.4 Human Action Recognition

From results presented in Table 7, it is evident that the impact of lossy compression (Table 7a) dramatically

increases when we apply CRF factor 50. Conversely to all other examined architectures, we can see from

Table 7b that retraining the network in fact decreases performance.

At first glance, we might expect similar performance to pose detection as with the two stream network

for human action recognition, as the errors introduced by compression artifacts propagate through both

streams in the network. However, the spatial and motion streams are not trained in tandem. Whilst the

spatial stream remains resilient, once again due to the up-sampling within the architecture (Section 3.4), the

motion stream is almost entirely unable to learn from compressed imagery. As such, retraining the network

on compressed imagery in fact reduces overall performance (aside from when using CRF 50, as the spatial

stream improvement outweighs the motion stream degradation). Future work may reveal whether better

performance might be achieved by retraining just the spatial stream network on compressed imagery, and

fusing its predictions with a motion stream trained only on uncompressed imagery.
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3.4.5 Cross task analysis

Up until now, we have compared the impact of compression on the performance of models trained with

and without compressed images. To form a better understanding of how different models perform we must

investigate how different data and task spaces are affected by compression. For instance, it is easy for humans

to estimate the pose for many of the images in the COCO training set, especially if there are only one or two

people, even when highly compressed (Figure 15 (top)). More cluttered scenes present a more difficult task

however, where people in the background are difficult to distinguish from each other, let alone their limbs.

Facial details for the figure sitting down with a hat in the back in Figure 15 (bottom) are lost, and the bent

right arm is very difficult to locate without access to the less compressed image for assistance. However,

several examples also exist where it is easy for humans to estimate the human pose given contextual clues of

the behaviour of the person, such as the people sitting in Figure 15 (middle). However, the discontinuities

introduced by JPEG break the topology of the skeleton in this instance and the left arm of the person

sitting on the right of the image can be missed by a keypoint detection model. The human skeleton prior

encoded into the end to end OpenPose algorithm pipeline encourages correct association of limbs to people

in cluttered scenes, but does not help the model detect partially hidden limbs. Predicting the bounding box

of such a person however remains very possible for a detection model.

That does not mean to say that bounding box information can be easily recovered in the majority of

situations however. In many cluttered images, the JPEG artifacts produce unclear boundaries within images,

such as the height of the chair in the left of Figure 16 and its legs. The important features to succesfully

classify and locate objects are removed due to JPEG artifacts. This effect can be demonstrated via the use

of AblationCAM [238] to visualise what image regions are most paid attention to during inference. At low

compression rates, the model attends to the relevant regions to locate the chair and table in the image, but

is unable to extract relevant features from the image at high compression (Figure 17). In the same regard,

optical flow is adversely affected by loss of such object boundary information. In contrast, segmentation and

depth estimation is less sensitive to the aforementioned discontinuities that can affect pose estimation, or the

lost boundary information. Even under high compression rates, instance boundaries are more disinguishable

(Figure 18). JPEG disproportionately affects high frequency fidelity information. Object detection, pose

estimation, and human action recognition are more affected than scene segmentation and depth estimation,

which are less reliant on high frequency information. As compression increases, the discriminability between

objects, actions and limbs reduces as images are represented with a smaller set of quantized vectors as a

proxy for local image representation. Therefore, discriminability of localized information is reduced and

tasks that rely on those details, such as position of joints or detail on objects, begin to fail first.
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(a) JPEG compression level: 95 (b) JPEG compression level: 5

(c) JPEG compression level: 95 (d) JPEG compression level: 5

(e) JPEG compression level: 95 (f) JPEG compression level: 5

Figure 15: Qualitative examples of images in the OpenPose validation set under low (left) and high (right)
compression. 51



(a) JPEG compression level: 95 (b) JPEG compression level: 5

Figure 16: Qualitative examples of images in the VOC dataset under low (left) and high (right) compression.

(a) JPEG compression level: 95 (b) JPEG compression level: 5

Figure 17: Visualisation of regions attended by a pretrained model in the VOC dataset under low (left) and
high (right) compression.

(a) JPEG compression level: 95 (b) JPEG compression level: 5

Figure 18: Qualitative examples of images in the Cityscape validation set under low (left) and high (right)
compression.
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3.5 Racial Bias within Compression

In this section, we move away from considering overall network performance, but instead towards non-uniform

performance across the network, and corresponding racial bias. 4

During lossy compression, a given image colour space assumes Y CrCb format. Considering the relative

insensitivity of the human eye to colour changes compared to brightness, information can be more heavily

discarded from Cr and Cb channels than Y (luminance) channels. The most common chroma subsampling

methods are presented in Fig. 19. Indeed, the JPEG algorithm by default applies 4:2:0 chroma subsampling

alongside additional information removal steps. Given this colour space reduction, it is unsurprising that

racial bias is introduced within compression given differences in skin tone.

Let us consider the uncompressed training data distribution x ∼ pu and compressed training data dis-

tribution x ∼ pc. Assuming independence between channels, we can compute the entropy of an image from

the sum of the entropy of its channels:

H(x) = H(xY ) +H(xCr) +H(xCb), (6)

where H(x) corresponds to the entropy or information in a given image, and H(xY ), H(xCr) and H(xCb)

correspond to the entropy of the Y , Cr, and Cb channels respectively. Further, we can define pc = Ψ(pu),

where Ψ denotes all compression functions. Indeed, for lossless compression functions, we have that H(x) =

H(Ψlossless(x)).

However, chroma subsampling reduces the number of samples in the spatial dimension by a factor of

either 2 (4:2:2) or 4 (4:2:0) such that the entropy of the Cr and Cb channels is thus reduced under chroma

subsampling (Equation 7 and 8):

H(ΨJPEG(xCr)) < H(xCr), (7)

H(ΨJPEG(xCb)) < H(xCb), (8)

where ΨJPEG denotes the JPEG compression function utilizing chroma subsampling. Therefore, from Equa-

tion 6, overall information in an image is reduced when that image is compressed with chroma subsampling

within JPEG (Equation 9)

H(ΨJPEG(x)) < H(x). (9)

We can reformulate this behaviour under the Nyquist theorem [239, 240] which states in general that a

4This section was produced in collaboration with Seyma Yucer
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continuous signal of frequency B can be perfectly reconstructed with a discrete sampling rate greater than or

equal to 2B. In the context of images as 2D signals, for a line of pixels of length 2b pixels the highest spatial

frequency that can be recovered is a spatial frequency of b. By halving the number of pixels in the spatial

dimension, we halve the spatial frequency that can be reconstructed and hence the Nyquist rate in either the

x or y dimension (4:2:2), or both (4:2:0), is reduced by a factor of 2 in the x ∼ pCrc and x ∼ pCbc
distributions

under subsampling conditions. If we assume a uniform distribution of relevant face recognition features, it

is clear that the reconstructable frequencies that relate to racial phenotypes is similarly halved under the

subsampling conditions. Of course, whilst we cannot calculate which spatial frequencies are relevant to face

recognition performance, it has been shown that progressively reducing the high spatial frequencies in an

image via blurring increases the prevalence of racial bias on such tasks [41]. From this, we can conclude that

chroma subsampling reduces the high spatial frequency information across two subdistributions of the image

(x ∼ pCrc and x ∼ pCbc). As a result, JPEG compression negatively impacts fairness in face recognition

tasks.

To evaluate the impact of compression on racial bias, we deploy ArcFace [241] with a ResNet50 [18]

embedding network. We train the network with the BUPT-Balanced benchmark dataset [242] that consists

of 28000 faces distributed evenly between African, Asian, Indian, and Caucasian ethnic groups. Using RFW

[243] test dataset, we consider both network accuracy and false matching rate between selected phenotype

pairings [16] (see Fig. 20 axes). A high false matching rate between a given phenotype pairing suggests

the facial recognition network is more likely to mismatch a given face from one of the phenotypes in the

pair with the other. We once again compare the performance of ArcFace on images compressed with JPEG

quality parameter in the set {5,10,15,50,75,95}, trained with and without data from the same compression

levels. In addition, we compare performance on data with and without chroma subsampling.

3.5.1 Racial Bias Results and Discussion

In general, ArcFace performance deteriorates significantly only with high compression (JPEG compression

levels of 15 and below), aligning with earlier findings (Section 3.3). However, ArcFace performance across

different racial groups increases non-uniformly with the introduction of chroma subsampling within JPEG

compression.

From Table 8, it is clear to what extent the ArcFace network face recognition accuracy deteriorates during

inference stage using compressed data. Without lossy compression, ArcFace achieves 94.76% accuracy.

Minimal performance degredataion is observed with compression levels higher than 15 (not shown). By

compression level 15, accuracy drops by 7.9% down to 87.31%. At compression level 5, accuracy is only

66.47%. However, by retraining the network on compressed image data, ArcFace displays significantly
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Figure 19: Chroma subsampling operation on different rates (4:2:0, 4:2:2, 4:4:4). Subsampling rate deter-
mines how many pixel values will be shared within a block. We display 4:2:2 with horizontal sampling but
vertical sampling is sometimes used.
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Attribute Name
Non-Compressed Training Set Compressed Training Set

OriginalJPEG Compression Level JPEG Compression Level
15 10 5 15 10 5

Curly Hair 82.37 75.80 59.53 87.20 82.90 73.27 93.15
Full Lips 83.55 77.03 61.37 87.97 83.62 75.30 93.38

Monolid Eye 83.43 77.28 63.18 87.62 85.10 76.95 93.30
Type 5 85.98 80.17 60.32 90.22 87.03 76.97 94.85
Type 6 86.55 79.35 61.75 90.02 86.20 77.72 94.82

Black Hair 85.13 79.97 65.83 89.55 86.87 77.92 93.73
Wide Nose 85.53 79.97 63.15 89.57 86.78 78.33 93.98
Other Eye 86.65 81.10 65.28 89.57 87.43 78.55 94.38

Type 4 87.72 83.47 67.28 89.67 87.45 79.23 94.07
Type 1 86.88 84.72 72.43 89.87 88.21 79.57 92.86

Straight Hair 86.70 81.98 66.15 89.43 86.28 79.65 94.12
Narrow Nose 86.30 80.07 66.73 89.63 87.20 79.77 94.43

Type 3 86.07 81.03 67.05 89.48 86.80 79.93 93.98
Small Lips 87.28 82.03 67.53 90.63 87.97 81.22 94.37
Wavy Hair 89.05 84.63 69.53 92.17 89.33 82.73 95.83
Brown Hair 88.40 83.33 67.32 91.85 89.03 82.80 95.15
Bald Hair 90.43 85.93 67.62 93.07 90.37 83.13 96.55
Red Hair 90.57 84.97 71.20 92.49 89.98 84.89 96.91
Type 2 89.98 85.98 68.45 94.27 91.58 85.93 96.33

Gray Hair 92.47 88.83 72.60 94.35 91.93 86.75 96.55
Blonde Hair 92.50 88.52 71.55 94.83 93.40 87.85 97.15

Mean Accuracy 87.31 82.20 66.47 90.64 87.88 80.40 94.76
STD 2.76 3.58 3.85 2.18 2.61 3.81 1.31

Table 8: ArcFace accuracy on RFW benchmark test dataset using uncompressed (left) and compressed
(right) training image data. Attribute-based pairings are selected as per [16].

higher resilience to compression. Performance only drops by 4.3% at compression level 15, and by 15.2% at

compression level 5 compared to 29.9% without retraining.

More interestingly however, standard deviation (as a measure of non-uniform performance and hence

bias) significantly increases with both compressed and non-compressed training data. Indeed, performance

degradation is most apparent at heavy compression for Type 5 and Type 6 (darker skin tone), Full Lip, and

Monolid Eye phenotype categories. For instance, with JPEG compression level 5, ArcFace performance on

Type 5 skin tone decreases by just over 36% to only 60.32%. In contrast, for lighter skin tones, performance

degradation is comparatively smaller (the lowest performance drop across skin tone types 1-3 can be observed

for type 2 at 28.9%, down to 68.45% accuracy). Training on compressed data has minimal impact on standard

deviation and thus ameliorating racial bias.

The same pattern can be observed by directly comparing JPEG compression with and without chroma

subsampling (Fig. 20, 21). Values represent FMRoriginal − FMR5, i.e. the FMR difference between

original images and those compressed with JPEG quality parameter 5. Values closer to 0 indicate better

performance (fewer mismatches). Equivalently, dark red cells indicate poorest performance while darkest
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Figure 20: ArcFace performance tested with compressed (JPEG compression level 5) images in RFW test
dataset, trained with uncompressed images from BUPT (balanced) dataset

blue cells indicate strongest performance. Training ArcFace with non-compressed data yields distinctly

non-uniform performance with respect to FMR of cross-attribute based pairings (Fig. 20). Under chroma

subsampling 4:2:0, the worst performance can be observed for mismatches between Type 6 skin tones (−22.84

FMR). By removing chroma subsampling however, ArcFace generally achieves superior FMR. Type 5 ↔

Type 6 pair increases from −21.27 to −20.02 FMR, while Curly Hair ↔ Type 5 pair increases from −20.53

to −19.43 FMR, for instance. Training ArcFace with compressed data once again partially recovers FMR

performance, evident in that there are more blue / dark blue cells and fewer dark red cells (Fig. 21). However,

retraining the network does little by way of minimizing the non-uniformity between phenotypes. There is

still a disproportionately higher FMR for racial phenotypes with dark skin tones compared to lighter tones.

FMR for Type 5 ↔ Type 6 decreases to -6.15 FMR, over 6 × worse than FMR for Type 3 ↔ Type 6 (Fig.

21).

3.6 Conclusion

This chapter investigates the impact of lossy image compression with respect to both racial bias and a

multitude of existing deep CNN architectures. We consider how much compression can be achieved while

maintaining acceptable CNN model performance, and to what extent performance degradation and racial

bias can be ameliorated by retraining the networks with compressed imagery.

57



Ty
pe

6
Sk

in

Ty
pe

5
Sk

in

Ty
pe

4
Sk

in

Ty
pe

3
Sk

in

Ty
pe

2
Sk

in

M
on

ol
id

E
ye

O
th

er
E

ye

N
ar

ro
w

N
os

e

W
id

e
N

os
e

Sm
al

lL
ip

s

Fu
ll

L
ip

s

W
av

y
H

ai
r

St
ra

ig
ht

H
ai

r

G
ra

y
H

ai
r

C
ur

ly
H

ai
r

B
ro

w
n

H
ai

r

B
lo

nd
e

H
ai

r

B
la

ck
H

ai
r

B
al

d

-5.
32

-2.
96

-3.
13

-5.
05

-1.
80

-2.
12

-3.
67

-3.
45

-2.
70

-3.
28

-6.
22

-3.
87

-4.
09

-6.
43

-4.
32

-4.
08

-3.
26

-2.
80

-2.
07

-2.
07

-4.
03

-2.
92

-2.
24

-1.
13

-3.
46

-2.
34

-1.
88

-2.
01

-4.
51

-3.
30

-2.
79

-1.
57

-4.
08

-3.
48

-2.
50

-2.
33

-3.
54

-2.
30

-1.
62

-1.
52

-6.
43

-1.
96

-1.
55

-2.
91

-3.
43

-2.
51

-2.
39

-2.
94

-2.
35

-2.
76

-4.
40

-2.
85

-2.
15

-2.
93

-3.
65

-3.
03

-2.
17

-3.
34

-2.
34

-2.
21

-2.
11

-6.
58

-2.
44

-1.
85

-3.
00

-3.
85

-3.
28

-3.
04

-2.
97

-3.
45

-3.
41

-2.
99

-2.
54

-5.
33

-3.
29

-2.
92

-3.
17

-3.
30

-2.
39

-2.
91

-2.
71

-1.
97

-3.
08

-2.
43

-1.
92

-2.
27

-5.
79

-2.
48

-1.
99

-2.
63

-3.
29

-4.
83

-1.
93

-2.
88

-2.
07

-4.
50

-4.
71

-5.
45

-4.
48

-3.
80

-5.
90

-5.
18

-4.
09

-4.
60

-4.
46

-4.
07

-5.
03

-2.
35

-3.
23

-2.
57

-3.
25

-2.
17

-3.
62

-2.
89

-2.
89

-1.
28

-3.
53

-4.
08

-1.
93

-2.
17

-3.
22

-3.
20

-4.
84

-2.
10

-2.
86

-2.
24

-2.
78

-1.
80

-2.
97

-2.
79

-1.
98

-1.
00

-3.
03

-2.
21

-1.
95

-1.
62

-4.
14

-3.
28

-2.
39

-4.
16

-2.
17

-2.
99

-2.
51

-2.
85

-2.
13

-3.
69

-3.
54

-2.
93

-1.
23

-3.
23

-2.
05

-2.
45

-2.
18

-5.
49

-1.
42

-1.
18

-1.
49

-4.
99

-5.
54

-5.
08

-6.
17

-4.
92

-5.
93

-3.
38

-3.
04

-3.
72

-5.
87

-3.
95

-4.
13

-5.
93

-6.
70

-9.
46

-7.
36

-0.
90

-0.
90

-1.
61

-9.
10

-7.
74

-6.
55

-8.
57

-7.
04

-7.
78

-4.
01

-4.
18

-4.
76

-8.
52

-5.
80

-8.
08

-8.
64

-8.
55

Compression Level: 5
(sampling rate: 4:2:0)

Ty
pe

6
Sk

in

Ty
pe

5
Sk

in

Ty
pe

4
Sk

in

Ty
pe

3
Sk

in

Ty
pe

2
Sk

in

M
on

ol
id

E
ye

O
th

er
E

ye

N
ar

ro
w

N
os

e

W
id

e
N

os
e

Sm
al

lL
ip

s

Fu
ll

L
ip

s

W
av

y
H

ai
r

St
ra

ig
ht

H
ai

r

G
ra

y
H

ai
r

C
ur

ly
H

ai
r

B
ro

w
n

H
ai

r

B
lo

nd
e

H
ai

r

B
la

ck
H

ai
r

B
al

d

Bald

Black Hair

Blonde Hair

Brown Hair

Curly Hair

Gray Hair

Straight Hair

Wavy Hair

Full Lips

Small Lips

Wide Nose

Narrow Nose

Other Eye

Monolid Eye

Type 2 Skin

Type 3 Skin

Type 4 Skin

Type 5 Skin

Type 6 Skin

-4.
11

-2.
57

-2.
78

-4.
35

-1.
58

-1.
93

-4.
58

-3.
12

-2.
68

-2.
97

-6.
33

-4.
07

-4.
16

-6.
66

-3.
78

-4.
24

-3.
26

-2.
54

-1.
85

-1.
82

-3.
25

-3.
34

-2.
46

-1.
14

-3.
71

-2.
10

-1.
95

-2.
09

-4.
54

-3.
55

-2.
84

-1.
80

-4.
53

-3.
39

-2.
38

-2.
19

-3.
62

-2.
43

-2.
09

-1.
52

-6.
94

-2.
36

-1.
59

-2.
60

-3.
04

-2.
88

-2.
26

-3.
63

-2.
91

-3.
32

-5.
18

-3.
31

-2.
25

-2.
65

-3.
40

-3.
01

-2.
25

-3.
72

-2.
58

-2.
35

-2.
15

-6.
81

-2.
43

-1.
89

-2.
88

-3.
48

-3.
39

-2.
92

-3.
15

-3.
46

-3.
60

-3.
29

-2.
48

-5.
71

-3.
82

-2.
61

-3.
05

-2.
90

-2.
59

-3.
10

-3.
08

-2.
31

-3.
29

-2.
73

-2.
09

-2.
21

-6.
38

-2.
90

-2.
05

-2.
69

-3.
16

-4.
26

-1.
69

-2.
63

-1.
59

-4.
29

-4.
00

-5.
27

-4.
32

-3.
20

-5.
34

-4.
64

-3.
49

-3.
72

-3.
52

-3.
59

-4.
25

-1.
82

-2.
84

-1.
95

-2.
91

-1.
73

-3.
22

-2.
73

-2.
31

-1.
21

-3.
31

-3.
31

-1.
61

-1.
55

-3.
94

-2.
99

-4.
58

-2.
51

-3.
44

-2.
41

-3.
20

-2.
19

-3.
48

-3.
29

-2.
19

-1.
34

-3.
70

-2.
27

-2.
31

-1.
78

-3.
24

-2.
83

-1.
73

-3.
69

-2.
19

-2.
80

-2.
20

-2.
86

-1.
85

-3.
75

-3.
45

-2.
69

-1.
13

-3.
01

-1.
85

-1.
89

-1.
65

-5.
68

-1.
39

-1.
31

-1.
20

-4.
34

-6.
22

-5.
46

-6.
45

-5.
99

-6.
83

-3.
48

-3.
17

-3.
78

-6.
00

-4.
54

-4.
52

-6.
05

-6.
19

-6.
40

-6.
15

-0.
72

-0.
99

-1.
03

-7.
09

-7.
70

-6.
58

-7.
85

-6.
67

-7.
50

-4.
13

-4.
03

-4.
23

-7.
44

-6.
21

-7.
42

-7.
37

-7.
03

Compression Level: 5
(sampling rate: 4:4:4)

Figure 21: ArcFace performance tested with compressed (JPEG compression level 5) images in RFW test
dataset, retrained with compressed (JPEG compression level 5) images from BUPT (balanced) dataset

Across all challenges, retraining the network on compressed imagery recovers overall performance to a

certain degree. This chapter brings to attention in particular, however, that in very prevalent and so far

unexamined network architectures, we can afford to compress imagery at extremely high rates. Segmentation

and depth estimation in particular demonstrate resilience against even very significant compression, both by

employing an encoder-decoder pipeline. By using retrained models, compression can safely reach as high as

85% across all domains. In doing so, current storage costs can be markedly diminished before performance is

noticeably impacted. Hyper parameter optimization of the retrained model can assumedly capitalize on this

even further, and in certain domains, such as segmentation, we can already afford to reduce to a twentieth

of the original storage cost. It should be noted however, that even a 1 or 2% performance loss may be

unacceptable in safety critical operations, such as depth estimation for vehicular visual odometry.

However, compression is not without its drawbacks, and introduces non-uniform performance degradation,

negatively impacting racial groups in the context of facial recognition. Retraining the network only partially

limits this behaviour, and does little to reduce any performance degredation that is exacerbated for darker

skin tone, monolid eye, wide nose, full lips, and curly hair phenotypes. Increasing retention of colour

information via removal of chroma subsampling during compression ameliorates this behaviour up to a

point.

Nevertheless, we can suggest that lossy image compression is potentially viable as a data augmentation
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technique within RCNN [11] and pose estimation [12] architectures, which receive only mild performance

degradation. Networks employing an encoder-decoder architecture (SegNet [10], GAN [226]) would only

notably benefit from very significant levels of image compression for data augmentation. However, human

action recognition networks, or sub-networks in the case of the two stream approach [13], that consider

motion input will not readily benefit from image compression as a data augmentation technique, since they

appear unable to learn under such training conditions.

Future work will investigate whether performance is improved by retraining the network with more

heavily or lightly compressed imagery than at testing, or even a variety of compression levels. Furthermore,

evaluating performance of compressed networks such as MobileNet[43] against compressed imagery would be

pertinent, as such light network architectures are prevalent amidst compressed imagery application domains.
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4

Dynamic Data Selection: Minimizing

Training Costs for Neural Architecture

Search within Image Classification

4.1 Introduction

Following the emergence of big data and the ever-increasing public availability of datasets, each with tens of

thousands of data points each, research within the deep learning domain is accelerating [22]. Consequently,

there are two key factors that need to be addressed. Firstly, the process by which we present data to the

deep learning model is paramount; it is not uncommon for models to be trained for thousands of epochs,

and thus any superfluous data within the dataset will have a magnified negative impact on training speed.

To address this, we propose to utilize a combination of hard example mining [79], curriculum learning [80]

and self-paced learning [82] described in Chapter 2.

The second challenge arising from data accessibility is the evolution of the architecture search space. As

research within the domain continues, newer, and often more complex network architectures are presented.

To overcome this notion, Neural Architecture Search (NAS) has emerged, which automatically traverses

the architecture search space for a given task, and generates models that are competitive alongside hand-

crafted state-of-the-art models. In many cases, NAS offers several key advantages over conventional hand

crafted neural networks, including generating smaller models [154] with lower latency [168, 171, 173]. We

can divide the NAS domain into evolutionary, reinforcement-learning, prediction-based and gradient-based

NAS frameworks, of which this chapter primarily considers the latter.

As such, we propose a strategy that incorporates a novel combined hard example mining and curriculum

learning approach to enable Dynamic Data Selection (DDS) within a generalised NAS framework, denoted

DDS-NAS. DDS-NAS can thus be used in conjunction with existing NAS frameworks to generate small or

low latency models, retaining the key advantages that NAS possesses over conventional hand crafting of
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Figure 22: Overview of the DDS-NAS search phase. After a given training iteration, we determine whether
a sufficient percentage of the data in the current subset was correctly classified, according to some a priori
mastery threshold. If the subset has been mastered, we reformulate it dynamically. Hard images in the cur-
rent subset are retained, according to some a priori hardness threshold, while easy images are replaced with
the most different image from the same class. To determine the most different image, we employ an (approx-
imate) furthest-neighbour kd -tree whereby each image is represented by the auto-encoded representation of
its features within the latent space.
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neural network architectures. By using image similarity as a proxy metric for image difficulty (on an easy

to hard performance axis), we can select hard images for processing within a given NAS training iteration

in logarithmic time, without compromising image diversity (Fig. 22). This process allows us to significantly

improve the NAS search phase speed. Whilst this thesis specifically addresses image datasets, there is no

reason not to apply identical techniques to other application domains such natural language processing

(NLP).

Furthermore, we identify a new perspective to address and ameliorate the ‘optimization gap’ [134, 136]

prevalent within gradient-based NAS literature, wherein the performance difference between the NAS model

(super-network) and searched network architectures results in a performance drop.

4.2 Proposed Approach

In this section, we detail the process by which our proposed DDS-NAS training strategy dynamically samples

the dataset in an online fashion within the NAS cycle (Figure 22). DDS-NAS is subsequently deployed across

three leading contemporary NAS frameworks (DARTS [53], P-DARTS [108], TAS [154]).

Firstly, we define some key terms that we subsequently refer to throughout our discussion:

• hard: a given example within the dataset at the current NAS training cycle iteration is defined as being

hard if the output of the current model correlates poorly with the ground truth label for this example

and hence contributes significantly to the current loss value for the model (i.e. it is either mis-classified

or classified with a low confidence score in the context of image classification).

• easy: as the converse of hard where for a given example the output of the current model correlates

strongly with the ground truth label for this example and hence contributes less significantly to the

current loss value for the model (i.e. correctly classified with a high confidence score in the context of

image classification).

• mastery: a measure of when a given a priori performance threshold is reached on the current data

subset such that the number of easy examples in the dataset is high with regard to the current model.

4.2.1 Curriculum Learning within NAS

To formulate an unbiased subset of the global dataset, we use a Hard Example Mining process detailed in

Section 4.2.2. At every training iteration within the NAS search phase, we present such a subset to the NAS

model. Following the success of [88], we in fact present the same subset until it has been mastered, according

to some a priori mastery threshold (see Section 4.3.1). Only when the NAS model masters a subset do we

sample a new set of examples from the global dataset. If the mastery threshold is very low, this subset
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of data will change often. If the mastery threshold is very high, a given subset is presented to the NAS

model for several successive iterations, and a smaller portion of the global dataset is sampled throughout

the entire training process. Akin to the restriction with P-DARTS [108] whereby only network parameters

(i.e. weights) are updated and not architectural parameters within the first 10 training epochs, we similarly

restrict DDS-NAS from resampling the dataset in this way for the first 10 epochs of NAS training.

4.2.2 Dynamic Data Selection

In order to both improve convergence rate (and as a byproduct minimize the data subset used in each NAS

iteration), without performance degradation, and facilitate efficient inter-iteration dataset re-sampling we

require a low-overhead process by which we can dynamically select new data examples.

From the initial NAS training iteration, and the immediate subsequent iterations thereafter, model per-

formance can be considered near-random5. As such, we necessarily depend upon a re-sampling process

independent of model performance, and hence propose the use of dataset example similarity as an alterna-

tive measure to relative hard-ness between samples. The intuition is that a model will perform poorly on

examples with greater dissimilarity to those upon which it has already been trained.

Given the need to perform efficient one-to-many feature distance comparisons via an online approach, we

construct a series of efficient furthest-neighbour kd -tree structures from the chosen N -dimensional feature

representations of each example in our global dataset. In order to maintain a balanced data subset in the

presence of dynamic re-selection we construct one such kd -tree structure per class label in the dataset,

resulting in m trees for m dataset classes. In this way we can facilitate like-for-like class-aware resampling

and hence maintain dataset balance throughout the NAS training cycle.

In order to enable efficient look-up within our kd -tree structure, we require a sufficiently low dimension

N of our feature representation such that the approximate furthest neighbour algorithm does not collapse

[245]. As the dimensionality of image data is high (i.e. N = 28× 28 in case of MNIST, and larger for more

complex datasets), we instead propose using an additional autoencoder architecture to construct an image

similarity embedding with a much lower dimension (N = 8 for easier MNIST and Fashion-MNIST datasets,

N = 32 for CIFAR-10).

In general, we find that contemporary state-of-the-art autoencoder architectures [246, 247, 248] employ

skip-connections between the encoder and decoder sub-networks to facilitate improved image reconstruction.

However, in this instance, such skip connections are detrimental to the performance of the encoder network

in terms of constructing an encoding at the bottle-neck of the encoder-decoder architecture (our embedding)

that maximally captures the highest level of feature detail within itself. On this basis, we employ the

5noting that Deep Image Priors [244] indicate that untrained model performance in fact correlates to architecture design.
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proven autoencoder architecture from GANomaly [224] on the basis it is one of the most successful encoder-

decoder architectures employed for encoded image discrimination, predating the wider move to the use of

skip-connections in the field [247].

We require that the use of this encoder architecture results in a compact feature embedding that retains

the property of spatial similarity such that similar images have similar embeddings within the latent space

and vice versa. Of course, this property must not come at the expense of image reconstructability. Otherwise,

we cannot be confident that a given embedding represents a given image. In other words, there would be no

correlation between embedding space dissimilarity and image space dissimilarity. Given reconstructability

but without similar images clustering within the embedding space, we cannot guarantee that the correlation

is strong. 6

To enforce these properties, we discovered that contractive loss [14] is sufficient for easier datasets, while

harder datasets require a combined triplet margin ranking loss with MSE reconstruction loss, weighted

via Kendall Loss [252]. Subsequently, we can thus order images by their dissimilarity within our furthest

neighbour kd -tree structures. We provide a comprehensive overview of the impact of autoencoder training

strategies in Section 4.2.2.1.

During a given NAS training iteration, we measure the hard-ness of a each example image in the current

data subset based on cross-entropy loss following our earlier definition of hard and easy examples. To

subsequently update our data subset in a dynamic manner, we first retain the images that are hard when

averaged across the most recent epochs, according to some a priori hard-ness threshold (see Section 4.3.1).

Secondly, by selecting the kd -tree from our set that is associated to the class label of each image in the

current data subset that is below the hard-ness threshold (i.e. the easy images), we can then identify the

most dissimilar image of the same class in the global training set in O(log(n)) time and use this to replace

the easy image within the data subset. This dynamically updated training data subset will then be used for

the next NAS training iteration.

Our overall pipeline is presented as follows: once the previous data subset of data has been mastered

by iterative NAS training, we dynamically formulate a new balanced subset of the global training dataset

based on (a) the retention of images that are considered hard, and (b) the replacement of images that are

considered easy with dissimilar images of the same class to retain dataset balance (Fig. 22).

6We use the commonly accepted terminology ‘cluster’ to refer to the grouping and separation of points, as can be found in
the literature [249, 250, 241], and according to the dictionary of computer vision [251].
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Figure 23: TSNE visualization of clustering of autoencoded image feature representation within latent
space using contractive loss [14]. Our autoencoder preserves the property that similar images have similar
encodings for MNIST (a) and Fashion-MNIST (b). Our autoencoder is unable to achieve the required
clustering capability for CIFAR-10. Moreover, our compact embedding is unsuitable for fine-grained image
classification such as FGVC-Aircraft (d), which is a known limitation of autoencoders.
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Table 9: Clustering capability of a Variational Autoencoder with various image datasets.
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Table 10: Clustering capability of tripet, cosine, and circle ranking loss, with various image datasets.
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Table 11: Clustering capability of tripet, cosine, and circle ranking loss, combined with MSE loss, with various image datasets.
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Table 12: Clustering capability of tripet, cosine, and circle ranking loss, combined with MSE loss, within Kendall loss, with various image datasets.
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Figure 24: (Alternating) reconstructed MNIST, Fashion-MNIST and CIFAR-10 images with contractive
autoencoder

Figure 25: Reconstructed images with Variational autoencoder [15]

Figure 26: Reconstructed images with combined triplet ranking loss and MSE reconstruction loss

Figure 27: Reconstructed images with combined cosine embedding ranking loss and MSE reconstruction loss

Figure 28: Reconstructed images with combined circle ranking loss and MSE reconstruction loss

Combined contractive loss and MSE reconstruction loss

Combined triplet ranking loss and MSE reconstruction loss

Combined cosine embedding loss and MSE reconstruction loss

Combined circle loss and MSE reconstruction loss

Figure 29: Reconstructed CIFAR-10 images with various loss functions, with autoencoder latent space
dimension size nz = 32

Figure 31: Reconstructed images with combined triplet ranking loss and MSE reconstruction loss, within
Kendall Loss
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Combined contractive loss and MSE reconstruction loss

Combined triplet ranking loss and MSE reconstruction loss

Combined cosine embedding loss and MSE reconstruction loss

Combined circle loss and MSE reconstruction loss

Figure 30: Reconstructed CIFAR-10 images with various loss functions, with autoencoder latent space
dimension size nz = 16

Figure 32: Reconstructed images with combined cosine embedding loss and MSE reconstruction loss, within
Kendall Loss

Figure 33: Reconstructed images with combined circle loss and MSE reconstruction loss, within Kendall
Loss
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Triplet ranking loss

Cosine embedded ranking loss

Circle ranking loss

Figure 34: Reconstructed CIFAR-10 images with combined ranking loss and MSE reconstruction loss, within
Kendall Loss; nz = 32

(a) Triplet ranking loss (b) Cosine embedding loss

(c) Circle loss

Figure 35: TSNE visualization of clustering with combined ranking loss and MSE reconstruction loss, within
Kendall Loss; nz = 32
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Figure 36: Additional reconstructed CIFAR-10 images with combined triplet ranking loss and MSE recon-
struction loss, within Kendall Loss; nz = 32. The last tanh activation layer can introduce artifacts during
reconstruction with GANomaly when a low embedding dimension is used. For visualisation purposes we
simply employ min-max normalization to prevent this.

73



4.2.2.1 Enforcing Similarity within Latent Space

Our approach necessitates the high-dimensional feature representation of images to be encoded within the

lower dimensional latent space. Consequently, we require that similar images also have similar encodings. To

enforce this property, we qualitatively evalute the loss function adopted by state of the art autoencoder and

generative adversarial networks whose primary task is image reconstruction. Using TSNE [249], we visualize

the proximity of encoded images within the latent space, where each class is assigned a different colour,

across several challenge datasets. To generate each displayed visualization, we adopt TSNE perplexity 30,

with 1000 iterations, for a subset (2000 images) of a given dataset.

Auto-encoder training seeks to minimize the reconstruction error on a training set, typically through use

of MSE or cross-entropy loss [15, 253, 246, 254, 255]. Contractive Autoencoders [14] propose an additional

requirement during training, where autoencoder sensitivity to an input is penalized to encourage encoding

of robust features within the latent space. Sensitivity can be represented as the sum of the squares of all

partial derivatives of the extracted features with respect to input dimensions [14]. Penalizing this term

discourages sensitivity, and thus contracts neighbourhoods within the feature space. In other words, small

first derivatives correspond to flatness of the latent space and by extension, invariance. Contraction of this

input space of neighbourhoods when projected into the latent space, as opposed to simply a global scaling

(contraction of all samples uniformally) corresponds to an image similarity embedding, which is exactly what

we require.

VAE [15] autoencoders encode inputs as distributions over the latent space rather than single points.

VAE employs reconstruction loss along side (Kullback-Leibler) regularizer to measure divergence of a given

distribution (in Gaussian form) from a standard Gaussian. In addition to efficient lower-bound likelihood

estimation via this Kullback-Leibler Divergence, the latent space is contracted and regularized such that

i) a given embedding space distribution pertains to a meaningful decoded output, but more importantly

ii) similar image embeddings are sufficiently close, pertaining precisely to our requirements. Indeed there

is considerable precedence for the adoption of VAE autoencoders, given the recent success of VAE-GAN

generative networks [254, 71, 256, 257]. We do not consider the modifications such GAN architectures make

to the VAE loss function however, given their dependency on critic loss, unique to GAN architecture and

consequently unsuitable for training our autoencoder network.

VQ-VAE [253] instead utilize discrete encodings, rendering the regularization term from the continuous

VAE loss formulation obsolete as the encoded codes are limited in number (and additional regularization is

encapsulated within the autoencoder network itself). More recently, VQ-VAE-2 [246] adopts the VQ-VAE

model [253] with additional hierarchy of vector quantized codes, such that local and global information are
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encoded within separate hierarchical codes. The latent space representation of a given image is therefore

modelled by several distinct encodings, which are considered in tandem during image reconstruction. Owing

to our requirement that an encoding is as succint as possible for fast image lookup within a kd -tree, several

separate encodings, and thus the VQ-VAE-2 approach, is inappropriate.

Considering the deployment of the GANomaly [224] encoder-decoder architecture within our encoder

training regime comparison, it is natural to also consider use of the second encoder within the overall

original GANomaly pipeline. The decoded images are passed through an additional encoder (with different

parameterization) to generate an additional latent feature representation. By introducing an additional

loss term that minimizes differences between the two latent feature representations, the embedding space is

regularized in a manner reminiscent of Kullback-Leiber divergence within VAE. However, the results were

unsatisfactory without the presence of adversarial loss as per the original formulation.

Additonally, there exists an entire research domain dedicated to training networks with our criteria in

mind [258, 259]. Contrastive learning can generally be summarized as learning a similarity ranking between

given images, before even considering higher order tasks such as image classification, object detection, or

instance segmentation. In turn, this encourages learning the higher-level features within an image. Fur-

thermore, by ranking images with respect to their similarity, clustering within the latent space is directly

encouraged. We note that the formulation of the kd -tree (Section 4.2.2) within Euclidean space for image

dissimilarity comparison necessitates use of the Euclidean distance metric within these ranking losses.

Indeed, the seminal contrastive loss [258] work directly achieves input data ranking by minimizing the

embedding distance for within-class input pairs, while maximising the distance for between-class pairs.

Triplet loss [250] adopts a similar approach in which triplet inputs are considered, necessarily consisting of

an anchor input, a within-class (positive) input and a between-class (negative) input. Embedding distance

between the anchor input and positive input should be minimized, while distance to the negative input is

maximised.

Circle loss [260] demonstrate that attributing equal weighting to maximising within-class similarity and

minimizing between-class similarity is inappropriate within ranking losses. Further, it is similarly inefficient

to equally penalize similarity score regardless of how far it is from optimal. Therefore, within-class and

between-class scores are not only independently weighted, but implemented as linear functions so that more

optimal similarity scores are weighted less, and vice-versa (yielding a circular decision boundary). As well as

yielding better results for image reconstruction, this technique linearly distinguishes between-class similarity,

in turn encouraging latent space image representation clustering.
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4.2.2.2 Evaluating Autoencoder Training

The effectiveness of our learnt feature embedding is illustrated in Figure 23-34 for various example datasets.

To consider our autoencoder satisfactory, we require firstly that it learns an image embedding and a decoder

that can reconstruct the original image. While the reconstruction does not have to be perfect, the original

classes must at least be distinguishable, and somewhat recognisable by human observation. With this, we

can be confident that the learnt latent space in fact represents a given image. Secondly, we require that

images from the same class have similar encodings within the latent space. To reiterate, given the second

criteria but not the first, we cannot be confident that a given embedding represents a given image. As such,

using its embedding in place of the image itself does not correlate with its dissimilarity from other images.

In other words, there is no correlation between embedding space dissimilarity and image space dissimilarity.

Given the first criteria but not the second, we cannot guarantee that the correlation is strong. Provided

these two criteria are met, image dissimilarity can be efficiently computed within our kd -tree (Section 4.2.2).

For the simpler dataset tasks (MNIST, FashionMNIST), contractive loss is sufficient; clustering between

classes is distinct (Fig. 23a, 23b), while images are reconstructed satisfactorily (Fig. 24). However, for the

more complex CIFAR-10 class (likely owing to the move to RGB-space), the clustering is insufficient (Fig.

23c). Moreover, the autoencoder does not yield reasonable reconstruction (Fig. 24) in this case.

VAE is unable to improve upon the poor clustering of CIFAR-10 images, despite adopting Kullback-

Leibler divergence regularizer. While reconstruction shows relative promise to other methods (although

blurry), we opt for alternative measures that can be more easily modified to generate reasonably clustering

capability.

By adopting contrastive learning, more promising clustering results were achieved. Triplet loss achieves

sufficient clustering (Table 10), owing to the ranking of image inputs. Cosine embedding loss certainly

improves upon the clustering capability that contractive loss offers, but is inferior when compared to triplet

loss (Table 10). Similar images are close within embedded space, in that classes are clustered close to

each other. However, other classes reside in the same TSNE 2D embedding space. Although this is likely

attributable to the imperfect TSNE visualization approach, it is nontheless suggestive that dissimilar images

are also somewhat clustered closely. Adopting either ranking loss on its own does not enable reconstruction.

To this end, adopting a combined ranking and reconstruction loss is necessary. In many cases, adopting a

combined loss causes the clustering to deteriorate beyond satisfactory thresholds (Table 11). However, the

reconstruction is present (Fig. 26, 27). Although by no means of sufficient quality for CIFAR-10, the MNIST

and Fashion-MNIST class is adequately identifiable.

Circle ranking loss achieves near-perfect clustering for MNIST, and sufficient clustering for the other
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two datasets (Table 10). Combining MSE reconstruction loss with circle ranking loss certainly improves

reconstuction quality, in so far as MNIST and Fashion-MNIST classes are distinguishable (Fig. 28), but

lack clarity compared to triplet and contrastive ranking loss counterparts. CIFAR-10 reconstruction quality

is inferior with combined circle ranking and MSE compared to the other two ranking losses, and remains

insufficient. Clustering quality on the other hand does not deteriorate to the same degree with the additional

MSE loss term compared to alternative ranking metrics. This would suggest that under a combined ranking

and reconstruction loss approach, circle loss introduces an inherently higher weighting compared to either

triplet or cosine embedding loss, and one that MSE reconstruction is unable to surmount.

4.2.2.3 Evaluating Autoencoder Training Further

Up to this point, we have only considered a naive combination of at most two loss measures (ranking and

reconstruction losses). However, the suprising reduction in performance that circle loss achieves would

suggest a weighted combination of losses is appropriate. Furthermore, until now reconstruction quality for

CIFAR-10 has been very poor.

Owing to this lack of reconstruction quality for the harder CIFAR-10 dataset across all ranking loss

approaches, we increase the dimension of the embedding space to 32. These additional 24 dimensions are

sufficient for the latent representation to capture the features of the input images, such that the decoder

can reconstruct them to a reasonable degree (Fig. 29). The finer-grained details become more apparent as

the objects within a given image begin to have shape. Moreover, we deem 32 to be the optimal latent space

dimension; there is no need to attribute more memory to the latent space since we can already distinguish

between classes for the reconstructed images. However, dimensions between 8 and 32 do not yield sufficient

reconstruction quality (Fig. 30). The clustering ability across all reported configurations (nz ∈ 8, 16, 32)

remains unaffected and insufficient. As such, we still require an alternative training strategy that enhances

contrastive learning towards better reconstruction ability. Contractive loss may yield sufficient reconstruction

quality (with N = 32), but its respective clustering ability is impossibly far from the required quality. 7

The previous results for combined ranking and reconstruction loss indicated a promising direction. How-

ever, no such weighting exists where the clustering potential of ranking loss and reconstruction quality of MSE

loss can be realised. As such, we introduce Kendall Loss [252] to dynamically learn a weighting between the

two during training. The good TSNE visualization results (Table 12) illustrate that Kendall Loss generally

learns a weighting biased towards ranking loss. As such, reconstruction quality once again deteriorates for

lower embedding dimension sizes beyond satisfactory thresholds (N = 8: Fig. 31,32). For larger dimension

7Additionally, a combined ranking and MSE reconstruction loss term as well as a contractive loss term does not grant any
further performance improvement.
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sizes (N = 32) however, the quality remains suitable (Fig. 34). In fact, with this combined triplet ranking

loss and MSE reconstruction loss in tandem with Kendall loss, we achieve appropriate reconstruction and

clustering quality (Fig. 34,35).

Although reconstruction ability appears insufficient, we argue that it is infact enough. As will be illus-

trated within the ablation studies of this chapter (Sec. 4.4.2.2), reconstruction ability is inconsequential if

clustering ability is insufficient. Moreover, adopting an autoencoder within DDS-NAS with the reconstruc-

tion capability illustrated in Fig. 34 yields very good empirical results (Sec. 4.4.1). Further, additional

reconstructed images by our final proposed autoencoder better illustrate its capacity to produce identifiable

images (Fig 36).

Finally, a combined circle loss and MSE reconstruction loss under Kendall loss surpasses triplet and

contrastive ranking loss counterparts, with respect to both clustering abilty (Table 12) and reconstruction

quality (Fig. 33). However, our DDS-NAS approach requires only that performance is sufficient in these two

regards. Given training costs associated with circle loss implementations are higher than triplet loss, there

is no benefit in selecting it for MNIST, Fashion-MNIST, and CIFAR-10 datasets for use within DDS-NAS.

We additionally note the precedence for and importance of hard triplet mining during triplet learning

commonly employed within object detection tasks [250]. Considering we adopt triplet learning only to

facilitate clustering, rather than for triplet ranking within the loss term for an image classification or object

detection task itself, we can safely omit triplet mining. Consequently, we can avoid any drawbacks that hard

triplet mining introduces, for instance mislabelled data dominating hard positive or negative triplets [250].

4.3 Experimental Setup

We detail our experimental setup for DDS-NAS deployment across the Differentiable Architecture Search

(Darts [53]), Progressive DARTS (P-DARTS [108]) and Network Pruning via Transformable Architecture

Search (TAS [154]) NAS frameworks. This setup is used to demonstrate performance of our proposed

approach with several image classification datasets.

4.3.1 NAS Configuration

Unless otherwise stated, all employed NAS frameworks adopt the same common configuration using Adam

optimisation [261] with initial learning rate lr = 3e−4, weight decay wd = 1e−3, and momentums β1 = 0.5

and β2 = 0.999 (P-DARTS uses lr = 6e−4, wd = 1e−3, TAS uses lr = 1e−4). For weight optimization for the

NAS derived architectures themselves, we use an SGD optimizer with wd = 3e−4, and momentum β = 0.9

(P-DARTS uses wd = 5e−4). Additionally, for DARTS we employ a Cyclic Learning Rate Scheduler with
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base lr = 0.001, max lr = 0.01, and step size up = step size down = 10. We set lr = 0.01 when the previous

dynamically selected data subset is mastered, and an updated data subset is introduced. Therefore, the

updated data subset is learned quickly before being subsequently ‘fine-tuned’ as with the previous subset.

Such an approach finds precedence in SGDR [262], wherein learning rate is periodically reset to a higher

value before learning rate decay is reapplied. P-DARTS and TAS both adopt Cosine Annealing Learning

Rate Scheduler with lr = 2.5e−2 and lr = 0.1e−2 respectively. We select the ResNet-110 architecture for

the TAS kd-teacher training. The models are implemented using PyTorch [263] (v1.6.0, Python 3.6.9). For

fair comparison, the DDS-NAS framework always adopts the same training augmentations as the original

implementation, specified in the respective implementations ([53, 264], [108, 265], [154, 266]).

Performance of DDS-NAS deployed across each NAS framework is presented in terms of both Top-1

accuracy and parameter count (complexity) of the optimal NAS generated architecture, together with the

computational effort of the NAS search phase (in GPU days) across all three datasets.

Experimentation indicates that our NAS framework is generally insensitive to a priori thresholds that

do not need to be exhaustively searched. A subset-size of 100 is sufficient for the easier MNIST [267] and

Fashion-MNIST [268] tasks, and 1000 for CIFAR-10 [93]. Adopting a high hardness threshold (hard -ness

threshold > 0.8) across all datasets and all NAS strategies enables the searched network architecture to

formulate a thorough feature representation for image classification. The best network architectures are

discovered with a mastery threshold ≈ 0.5. P-DARTS and TAS learn deep representations for images more

slowly compared to DARTS. This can be attributed to the additional tasks alongside reducing classification

loss wherein P-DARTS progressively restricts the search space while increasing architecture depth, and TAS

minimizes for network architecture complexity. Conversely, DARTS can afford a lower mastery threshold

(≈ 0.15) for the easier MNIST and Fashion-MNIST tasks, but the performance gain is marginal. All presented

results use the same hardness (0.85) and mastery (0.5) thresholds to ensure fairness.

4.3.2 Hard Example Mining

The GANomaly autoencoder [224] used to encode the images into their latent space representation is trained

with Contractive Loss [14] for 30 epochs, with bs = 8, and Adam optimizer with momentums β1 = 0.9 and

β2 = 0.999, wd = 0, lr = 1e−3. For the more complex CIFAR-10 task, the autoencoder is instead trained

with combined triplet margin loss [250] and MSE reconstruction loss, weighted under Kendall Loss [252].
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Dataset NAS Approach
Top-1 Accuracy (%) ↑

DARTS /
P-DARTS / TAS

Params (M) ↓
DARTS /

P-DARTS / TAS

Search Cost (GPU Days) ↓
DARTS /

P-DARTS / TAS

M
N

IS
T Original 99.75 / 99.26 / 99.27† 0.66 / 3.68 / 1.00 0.51 / 1.89 / 0.28

DDS-NAS 99.78 / 99.17 / 99.30† 0.75 / 3.51 / 0.81 0.030 / 0.070 / 0.021

F
a
sh

io
n

M
N

IS
T Original 95.33 / 93.42 / 95.09† 3.27 / 4.04 / 0.94 0.63 / 1.98 / 0.27

DDS-NAS 95.48 / 93.04 / 95.08† 3.44 / 4.23 / 0.83 0.030 / 0.078 / 0.031

C
IF

A
R

-1
0

Original 97.17 / 96.50 / 93.89 3.16 / 3.43 / 0.85 1.78 / 0.65 / 0.26

DDS-NAS 96.57 / 95.07 / 93.12 3.72 / 4.13 / 1.06 0.36 / 0.095 / 0.040

Shapley-NAS [92] 96.96 3.60 0.36

SNAS [112] 97.15 2.85 1.83

DenseNet [17] 94.23 7.0 –

DenseNet+ [17] 95.90 7.0 –

Table 13: Accuracy, memory footprint and (search-phase) training cost of final generated model from DDS-
NAS deployed upon DARTS, P-DARTS, and TAS, compared to their original implementations and others. †
indicates results prior to kd-teacher training owing to lack of available teacher model for MNIST and Fashion-
MNIST datasets. DenseNet(+) [17] refers to training configurations with and without the widely-adopted
augmentation methods [18].

4.4 Evaluation

Having validated the feature representation embedding that underpins our dynamic data selection via hard

example mining (Section 4.2.2.2 / Figure 23-31), we present out evaluation in terms of DDS-NAS comparison

to contemporary state-of-the-art approaches (Section 4.4.1), supporting ablation studies (Section 4.4.2).

4.4.1 Neural Architecture Search

Table 13 presents the performance obtained by the final model generated by DDS-NAS with respect to

each dataset under consideration. Across all cases our generated models offer performance competitive with

the state of the art, with minimal to no impact on generated model size. Moreover, across all cases, we

substantially lower the computational efforts required for NAS (0.07 GPU days compared to 1.89 in the

case of P-DARTS for MNIST, 27× quicker)8. Since we can determine a replacement image for our dynamic

subset in average case O(log(n)) time, we are able to reduce the search phase training cost by one order of

magnitude over state of the art results.

8and still an order of magnitude faster even after factoring in the time taken to train the autoencoder
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Dataset NAS Approach
Top-1 Accuracy (%) ↑

DARTS /
P-DARTS / TAS

Params (M) ↓
DARTS /

P-DARTS / TAS

CIFAR-100

Original 81.33 / 80.58 / 71.72 2.75 / 3.49 / 1.15

DDS-NAS 82.64 / 75.45 / 70.47 3.80 / 4.24 / 1.15

Shapley-NAS [92] 83.42 3.66

DenseNet [17] 76.21 7.0

DenseNet+ [17] 79.80 7.0

ImageNet

Original 73.30 / 75.72 / - 4.51 / 4.94 / -

DDS-NAS 76.26 / 75.63 / - 10.06 / 5.68 / -

Shapley-NAS [92] 75.52 5.14

DenseNet [17] 74.98 7.0

Table 14: Accuracy (Top-1), and memory footprint of final searched models from CIFAR-10 transferred
to CIFAR-100 and ImageNet. DenseNet(+) [17] refers to training configurations with and without the
widely-adopted augmentation methods [18].

As ever, result reproduction remains an ongoing significant problem [269], one that is only magnified

within the complexity of the NAS domain [270]. As far as we can manage, the hyperparameters, dataset,

and development environment we have used to train on ImageNet [29] remain consistent with the original

papers. In the case of TAS [154] however, the evaluation results achieved by the network architecture

searched by their respective original algorithm are considerably lower than those reported in the original

literature. While using fewer, hard, mined data images selected by our DDS-NAS approach yields an

architecture that transfers better to ImageNet, few conclusions can be drawn and we omit the results for

clarity. Nevertheless, without loss in performance, our hard example mining method yields discriminative

architectures that can be transferred to CIFAR-100 [93] and ImageNet [29] (Table 14). Evidently, using hard

mined data yields architectures at least as transferable to more complex classifiation tasks. Furthermore, it

is possible that by using only select, hard mined data during the NAS search phase (via DDS-NAS), we can

better discriminate between the best performing architectures in the architecture search space, thus yielding

architectures even more generalizable to complex tasks. Further work is required to confirm this behaviour,

however. Furthermore, whilst our technique is demonstrated upon commonplace NAS approaches (DARTS,

P-DARTS, TAS) it could equally be deployed on top of more recent advancements [92, 151, 112], further

minimizing any difference in performance.
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Dataset NAS Approach

Top-1 Accuracy
(Search Phase) (%) ↑

DARTS /
P-DARTS / TAS

Top-1 Accuracy
(Final) (%) ↑

DARTS /
P-DARTS / TAS

Params (M) ↓
DARTS /

P-DARTS / TAS

M
N

IS
T

DDS-NAS 94.00 / 78.89 / 44.89 99.78 / 99.17 / 99.30 0.75 / 3.51 / 0.81

Original framework with dataset size 100 78.28 / 70.81 / 39.24 94.43 / 98.69 / 99.18 0.70 / 4.54 / 0.53

DDS-NAS with untrained autoencoder 92.28 / 78.76 / 51.96 95.28 / 98.78 / 99.21 0.75 / 3.11 / 1.05

F
a
sh

io
n
-M

N
IS

T

DDS-NAS 72.92 / 65.71 / 32.71 95.48 / 93.04 / 95.08 3.44 / 4.23 / 0.83

Original framework with dataset size 100 56.27 / 58.16 / 35.66 91.69 / 90.03 / 94.61 3.47 / 4.69 / 0.46

DDS-NAS with untrained autoencoder 69.49 / 64.47 / 39.12 92.04 / 91.52 / 94.87 3.48 / 3.92 / 0.93

C
IF

A
R

-1
0 DDS-NAS 56.00 / 22.14 / 29.88 96.57 / 95.07 / 93.12 3.72 / 4.13 / 1.06

Original framework with dataset size 1000 51.02 / 41.70 / 23.81 88.58 / 85.74 / 90.83 3.55 / 4.04 / 0.32

DDS-NAS with untrained autoencoder 51.10 / 46.59 / 28.21 88.90 / 88.96 / 91.72 3.64 / 4.25 / 0.83

Table 15: Ablation Studies: accuracy and memory footprint of models generated by DDS-NAS; models
generated by the original framework with limited data (equivalent to removing hard example mining and
curriculum learning); and models generated by DDS-NAS with untrained autoencoder (equivalent to remov-
ing hard example mining).

4.4.2 Ablation Studies

To validate our proposed approach we compare the performance of DDS-NAS to selected NAS frameworks

both: (a) without dynamic data selection in order to ablate the contribution of our combined hard example

mining and curriculum learning strategy; and (b) with an untrained autoencoder in order to ablate the

contribution of the image dissimilarity based hard example mining strategy.

4.4.2.1 Without Dynamic Data Selection

For each dataset, we employ all three original implementations (DARTS [53], P-DARTS [108], TAS [154]),

but with a subset of the data at each training iteration. This is equivalent to omitting both hard example

mining and curriculum learning. We use the same volume of data as adopted by DDS-NAS: 100 randomly

selected images for MNIST and Fashion-MNIST, and 1000 for CIFAR-10. Subsequently, we can determine

the impact of our curriculum learning and hard example mining pipeline. Comparing the first and second

row of the results for each dataset presented in Table 15, it is evident that DDS-NAS achieves substantially

improved accuracy while yielding fractionally larger architectures in some cases. This behaviour is exhibited

in MNIST, where the original DARTS framework achieves only 78.28% accuracy after the search phase, and

94.43% accuracy after fine-tuning the stacked searched cell (compared to 94.00% and 99.78% respectively

82



Reconstruction X X × ×

Clustering X × X ×

Top-1 Accuracy (%) ↑ 96.57 95.29 94.94 88.90

Table 16: Accuracy of DDS-NAS-DARTS employing autoencoders with different capabilities on CIFAR-10.

for DDS-NAS-DARTS). This performance difference is further highlighted with both the other datasets,

and other frameworks; the final performance of the original P-DARTS implementation falls behind DDS-

NAS across all datasets (85.74% compared to 95.07% for CIFAR-10, for instance). Interestingly, with hard

example mining and curriculum learning omitted in this manner, TAS generates smaller models (0.32M

compared to 1.06M for CIFAR-10), but often at the expense of accuracy.

4.4.2.2 Untrained Autoencoder

We ablate the autoencoder derived feature embedding within our hard example mining method by replacing

the DDS-NAS autoencoder with one that is untrained, and thus unable to determine the most dissimilar

images from our current data subset used for training. This can be considered as a process equivalent to

curriculum learning without hard example mining, as the images are effectively randomly sampled. This time,

we compare the first and third row for each dataset in Table 15. Evidently, the models generated by DDS-

NAS with an untrained autoencoder are significantly worse (for instance 92.04% compared to 95.48% upon

Fashion-MNIST by DDS-NAS-DARTS). On this basis, we can therefore conclude that DDS-NAS necessarily

requires a suitable hard example mining approach, for which our image similarity strategy is sufficient.

Furthermore, an autoencoder that achieves good reconstruction but mediocre clustering of embedded

features is inadequate for DDS-NAS (Fig. 37, Table 16). Bad clustering and thus ineffective hard example

mining directly yields inferior classification accuracy (95.29%) compared to hard example mining with good

clustering (96.57%). Similarly, sufficient clustering but poor reconstruction is detrimental to DDS-NAS

(94.94%). Lack of both properties yields significantly worse performance (88.90%), wherein there is no

correlation between embedding space dissimilarity and image space dissimilarity at all.

By comparing row two (neither hard example mining nor curriculum learning) and row three (curriculum

learning but not hard example mining) for each dataset in Table 15, it is clear that our curriculum learning

methodology is somewhat effective even without incorporated hard example mining. DDS-NAS performance

with an untrained autoencoder exceeds that of the original framework with limited data in all cases (88.58%

compared to 88.90% for CIFAR-10 with DARTS, 90.03% compared to 91.52% for Fashion-MNIST with

P-DARTS).
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Figure 37: TSNE visualization of clustering of autoencoded CIFAR-10 image feature representation within
the latent space. Training with triplet margin loss with Kendall loss achieves good clustering (above).
Training with contractive loss achieves poor clustering (below).
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4.4.3 Investigating Dynamic Dataset Sampling and Convergence

The impact of generating a representative subset of the dataset can be formulated in terms of gradient

noisiness. Let us consider the DDS-NAS representative subset of data at a given epoch x ∼ prep, compared

to a NAS approach which has no such dataset sampling x ∼ pdata. During gradient-descent in NAS search, if

the gradients are more aligned with the direction towards the minimum of the loss function in the parameter

space, then the super-network model will converge more quickly. Conversely, noisier gradients are not in the

direction of the minimum, and convergence is slower. We expect that subsampling the dataset via DDS-

NAS yields less noisy gradients, and thus the NAS super-network loss converges more quickly. Formally, at

batch update n, we expect the loss L for a super-network model parameterized by θ for the two different

distributions to be given by Equations 10 and 11:

Ex∼prep [∆L(n, x)] > Ex∼pdata
[∆L(n, x)], (10)

Ex∼prep
[L(θn−1, x)− L(θn, x)] > Ex∼pdata

[L(θn−1, x)− L(θn, x)]. (11)

Let us consider the standard deviation of the loss of the model across a given batch as a measurement

for the noisiness of the gradient update. It is clear from Figure 38 that the standard deviation of the loss

across the batch decreases more quickly for DDS-NAS-DARTS than the original DARTS implementation.

Representative subsampling of the data introduces fewer noisy gradients during NAS search, enabling the

NAS super-network to converge more quickly without loss in performance.

The standard deviation in the earlier iterations during DDS-NAS-DARTS does not decrease, as there are

no dataset-updates during the first 10 epochs (see Section 4.2.1). After this point, the standard deviation can

be seen to fluctuate with each dataset update (rising during the first few iterations after each dataset update),

but decreasing overall. The standard deviation has not decreased for the original DARTS implementation

before DDS-NAS-DARTS search has completed in its entirety.

4.5 Extending to Prediction-Based NAS

The majority of NAS strategy for image classification can be considered iterative, by which we mean NAS

training at each epoch considers all or part of a given dataset. The NAS framework trains for successive

epochs until the model converges. Prediction-based NAS often breaks this paradigm, for instance not training

until convergence [109], or even training for a single mini-batch [110]. In this section, we demonstrate that

our hard example mining approximation is useful even under extreme prediction-based NAS strategies [110].
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Figure 38: Comparison of the standard deviation across the batch for DDS-NAS-DARTS (above) and the
original DARTS method (below) during NAS search on CIFAR-10. Standard deviation decreases for DDS-
NAS-DARTS with each dataset update. The black line represents a third degree polynomial curve of best
fit.

4.5.1 Scoring Network Architectures after a training mini-batch

Following the methodology to display ‘entanglement’ of images [110], the benefits of DDS-NAS are apparent

(Figure 39). For a given input image, a binary code can be formulated that encompasses which ReLU

operation layers are active during the forward pass of the network. The hamming distance between the two

binary codes (row i, column j) induced by two input images (image i, image j) will be smaller for poorly

performing network architectures. The intuition is that poorly performing network architectures are less

able to distinguish between two different images. As such, there are fewer off-diagonal elements for better

performing network architectures; network architectures generated by DDS-NAS (Fig. 39, left) show lower

(i.e. more blue/purple off-diagonal coloured) off-diagonal entanglement matrices than network architectures

generated with an untrained autoencoder (i.e. trained with random images - Fig. 39, middle). This is

suggestive that our hard exampling mining approach encourages a deeper feature representation learning, as

we are enforcing the network to train from a wide variety of only hard images. In turn this would suggest

that DDS-NAS encourages the generation of architectures that are best able to distinguish between different

inputs.
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Furthermore, the DDS-NAS-DARTS entanglement matrix for a given searched model (Fig. 39, left) shows

lower (i.e. more blue/purple) off-diagonal entanglement than those for the original DARTS implementation

(Fig. 39, right). On the other hand, network architecture entanglement performance from images used

during training by both NASWOT [110] and the original DARTS implementation are sampled randomly

and exhibit patterns with a similar hue. This indicates that the searched model by the original DARTS

implementation has less potential to achieve high final performance. DARTS suffers from the optimization

gap problem, and fine-tuning the stacked searched cell architecture yields poorer performance than expected.

DDS-NAS however enforces deeper representation learning; the stacked searched cells perform best when

trained to convergence, ameliorating the optimization gap problem. Indeed these findings form the basis for

Neural Architecture Search without Training [110] whose intermediary results we hence corroborate.

4.5.2 Evaluating Predictive Strength

Let us now consider the NASWOT [110] prediction strategy as a means to propose network architectures.

Using the score described in Section 4.5.1, we can rank a given architecture in an insignificant time frame.

We consider a random mini-batch of images, and assign a score to the network architecture given the image

entanglement. We repeat this process 50 times for each architecture in a given architecture space (NasBench-

101, NasBench-201, NDS-ResNet). We use the images obtained after the final dynamic dataset update of

our DDS-NAS framework to formulate an alternative mined dataset.

Across a multitude of architecture spaces, and mini-batch sizes, it is clear that instead adopting hard

mined images yields better architectures (Table 17) than a random data mini-batch. Unsurprisingly, larger

architecture spaces yield a larger difference between random and mined images. NASWOT performance

gains with mined images is thus most apparent with the NASBench-101 dataset with a mini-batch size of

32, in which searching with mined images yields an architecture with 93.30% accuracy, while random images

yields only 90.71% accuracy. Moreover, mined images consistently yield tighter bounds on the searched

network architecture performance when we calculate average searched network architecture accuracy across

several runs, as well as higher average score. We finally note that using a small mini-batch size marginally

deteriorates architecture search performance when using random images, but using mined images ameliorates

this behaviour entirely, offering an even faster NAS search speed.

These results call into question the findings from NASWOT that the selected images for a mini-batch

have minimal impact on architecture ranking. The authors posit that NASWOT score “captures a property

of the network architecture, rather than something data-specific.” We propose a more nuanced conclusion,

that hard images in a mini-batch better enable NASWOT score to capture network architecture properties.

Using hard mined images better distinguishes the best performing networks. At a cost, overall correlation
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Mini-batch Size Sampler NASBench-101 NASBench-201 NDS-ResNet

32
Mined 93.30± 0.03% 92.50± 0.21% 93.12± 0.41%

Random 90.71± 1.18% 91.84± 2.47% 93.02± 0.30%

64
Mined 93.43± 0.00% 92.50± 0.21% 93.05± 0.48%

Random 91.88± 0.00% 91.91± 2.54% 93.04± 0.49%

128
Mined 93.23± 0.06% 92.50± 0.21% 93.00± 0.29%

Random 90.89± 2.73% 91.93± 2.56% 93.01± 0.39%

Table 17: mean±std searched architecture accuracy (%) with NASWOT using mined and randomly selected
images, across a multitude of architecture search spaces and mini-batch sizes. Mined images yield a better
performing architecture.

(a) Network architecture generated by
DDS-NAS-DARTS

(b) Network architecture generated
with random images

(c) Network architecture generated by
original DARTS implementation

Figure 39: Visualization of the ability of a generated network architecture to distinguish between given image
inputs. Row i, column j corresponds to the hamming distance between the binary codes representing the
activation pattern of the ReLU operations of the given neural network architecture, induced by image i and
image j. The matrix is normalized such that the similarity between the codes induced by identical images
(the diagonal) is 1. High performing network architectures (left) therefore have fewer off-diagonal elements
appearing more blue/purple off-diagonal in our visualisation.

between attributed entanglement score drops (for instance τ = 0.596 using random CIFAR-10 images,

compared to τ = 0.592 with mined CIFAR-10 images), as the majority of the search space consists of weaker

architectures that are less able to distinguish hard images. However, in most cases we want to find the

best overall architecture, and mined images are well suited to this task. If however, high correlation for

all architectures was preferred (for instance to identify the top n architectures for some high value of n, or

because only a subset of weak architectures are sampled due to a threshold on the size of the model), using

images mined from an earlier DDS-NAS iteration would likely achieve even better results. This is left as a

direction for future work, however.
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4.6 Conclusion

To conclude, we propose DDS-NAS: a novel NAS framework capable of reducing the time required for the

NAS search phase by one order of magnitude. By employing image similarity as a basis for hard example

mining, and thus (online) dynamic data sub-selection, DDS-NAS yields models that remain competitive

towards accuracy and memory costs upon common image datasets. Further, DDS-NAS is demonstrated to be

deployable upon several NAS approaches, and similarly extendable to all existing evolutionary, reinforcement-

learning or gradient-based NAS approaches. DDS-NAS can even incorporate NAS search phase techniques

that are deployed alongside rather than in place of existing NAS approaches [151, 128].

Following the success of our approach, we posit that only a fraction of commonly used image datasets

contribute to learning. As such, additional analysis of these datasets is necessary. Moreover, a more compre-

hensive investigation into the autoencoder architecture employed within our hard example mining method

may yield better results (and thus reduce the volume of contributing images within a dataset further still).

Specifically, we require an autoencoder that can generate similar embeddings for similar images even within

the fine-grain classification domain. Alternative measures of image similarity such as hashing, may yield

similar improvements. In the same vein, deep metric learning [259, 271, 272] literature largely pertains to

our requirements, although existing approaches utilize too high a feature representation dimension to be

incorporated into the DDS-NAS approach. Nevertheless, even a glimpse of image similarity as a metric

within hard example mining has proven extremely effective. We thus introduce several new avenues for

improvement, particularly alongside NAS frameworks, and demonstrate that network architecture topology

design should not necessarily be the sole consideration for future NAS solutions.

89



5

Extending DDS-NAS to Multi-label

Classification and Object Detection

5.1 Introduction

With the plethora of object detection challenges arising within the computer vision domain, efficient and/or

real-time performance is paramount. Additionally, the complexity of modern architectures increases in

correlation with the task. Indeed, state-of-the-art object detection necessitates deep convolutional neural

networks [24] or transformer networks [94], with parameters several orders of magnitude larger than state of

the art classification models. Following the emergence of big data and subsequent public availability of object

detection datasets, each consisting of tens of thousands of images [30, 29], models are commonly trained for

thousands of epochs to form a sufficient understanding across the entire dataset. This is in addition to the

thousands of epochs the backbone feature extraction (image classification) networks are trained on, upon

which convolutional object detection architectures are constructed.

Moreover, more and more devices of limited capability, not least mobile phones, UAV and embedded sys-

tems, receive and process real-time images under a range of qualities. As such, compressed image processing

and generation of lightweight deep learning architectures is a primary focus. With this in mind, we revisit

Neural Architecture Search (NAS) to overcome these two notions in tandem, which automatically traverses

a given architecture search space, and generates models that are competitive alongside hand crafted state-

of-the-art models. Considering the automated manner in which NAS considers architectures, it is trivial to

impose constraints within the NAS pipeline such that only lightweight models are generated.

On this basis, we deploy our DDS-NAS framework (Chapter 4) within object detection, under a two-stage

(Faster-RCNN [11]) object detection network. The main contributions of this chapter are as follows:

– a novel framework, DDS-NAS-MULTI, that reformulates the DDS-NAS-DARTS framework (Chapter

4) in order to minimize the training duration of a given epoch within NAS for multi-label image

classification and object detection, demonstrated to be effective for the commonplace NAS DARTS
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([53]) approach.

– an efficient and novel approach for hard example mining within the multi-label image domain, that

considers image dissimilarity as an alternative metric to hardness, and employs an autoencoder archi-

tecture that enforces an image similarity embedding in latent space, yielding efficient dissimilar image

look-up from a kd -tree structure.

– generation of models that are intrinsically robust to biased datasets, whilst retaining competitive, near

state of the art accuracy over common object detection benchmarks.

5.2 Proposed Approach

In this section we detail the necessary modifications to our DDS-NAS approach for deployment within multi-

label domains. Defining our architecture space within neural architecture search (Section 5.2.1) for multi-

label image classification and object detection represents the most significant alteration from the previous

proposed DDS-NAS solution. Secondly, our hard example mining approach must retain efficiency within

the multi-label object detection domain (Section 5.2.2). Finally, we require our autoencoder to be suitably

trained upon multi-label datasets such that our kd -tree lookup within hard example mining yields suitable

images (Section 5.2.3).

5.2.1 Neural Architecture Searcch

We deploy our DDS-NAS framework upon the commonplace convolutional object detection Faster-RCNN

[11] architecture. We replace the feature extractor backbone with a searchable image classification network

architecture akin to the DARTS [53] search space. Prior literature within NAS for object detection indicates

an overwhelming research into the architecture space. We propose however that efficient training under a

relatively simple backbone architecture search space can yield equally promising results. In fact, our results

directly contradict previous work that suggest altering the backbone architecture is insufficient for generating

optimal models [196]. Reconsidering the NAS search phase from a data perspective rather than architecture

perspective is a worthwhile and relevant challenge.

To appropriately reformulate DDS-NAS, we consider two strategies. The first approach replaces the final

DDS-NAS classification layer with the RPN head and ROI head from Faster-RCNN (DDS-NAS-Faster).

We update the weights corresponding to architecture optimization with the loss propagated through the

entire object detection network. Due to instability in joint training of the architecture and supernetwork

weights within DARTS, exacerbated by the relative complexity of training an object detection network

compared to image classification, we introduce Kendall Loss [252] to learn the optimal weighting between
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box regression loss, classification loss, and region proposal network loss. In practice however, searching on

a given object detection dataset within the context of an object detection task requires significant memory

resources. Instead, we find that searching on a given object detection dataset within the context of multi-

label classification is sufficient to generate an effective backbone network architecture that can be later used

for object detection during the NAS evaluation stage. Moreover, this strategy (DDS-NAS-MULTI) is enough

to demonstrate the effectiveness of our proposed hard example mining autoencoder modifications (Section

5.2.3).

5.2.2 Hard Example Mining

The primary consideration within multi-label domains is that we train our network architecture with multi-

class, multi-label images. Multiple (different) classes may exist in a given image. In Chapter 4, we adopted a

single kd -tree for each class to enable efficient class-aware image lookup. This approach is not possible within

object detection (or even multi-label image classification). Instead, we propose embedding class labels within

the latent space to have implicit class-balance approximation. The most dissimilar image in a dataset will

likely be that of a different class. By explicitly encoding class labels within the embedding, our kd -tree lookup

will yield an image with different classes to the input. We propose that if the class labels are sufficiently

embedded during autoencoder training, we will require only one kd -tree that sufficiently maintains class

balance during lookup. Section 5.2.3 explains this process in more detail.

The second consideration pertains to calculation of image hard -ness. The hard -ness of an image within

image classification can be recovered from its classification confidence. Indeed we keep this approach during

the search phase within DDS-NAS-MULTI.

Within DDS-NAS-Faster and object detection however, we are not just classifying the class of the images,

but also where the objects within the images lie. Rather than trivially extracting classification scores from the

final output of the network architecture, we must identify classification score on a per-image basis during the

box prediction step within the object detector (after matching between predictions and ground truth). Given

DDS-NAS-Faster is grounded within the two stage Faster-RCNN network, box prediction follows feature

extraction. As such, classification loss of the feature extractor is a reasonable estimation of the performance

of the searchable part of our network architecture, given the backbone feature extractor contains the only

searchable layers. Our rationale is that conventional object detection training first pretrains the (image

classification) feature extractor backbone on ImageNet [29], followed by joint training of the backbone and

object detection head. Similarly, our NAS framework searches for the best (backbone) architectures with

image classification loss as an estimator for our hard example mining approach. The final searched backbone

architecture and object detection head can then be jointly trained end-to-end during the NAS evaluation
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stage.

5.2.3 Training the Autoencoder

Following the work in Chapter 4, we still require our autoencoder to construct an embedding space wherein

images can suitably reconstructed. In the context of object detection, we informally define this such that

classes present within a given multi-label image must be reconstructed to a qualitatively comparable degree

to the single-label images in Chapter 4. Therefore, without prior knowledge of the multi-label classes,

sufficiently reconstructed objects in an image may in fact not be classifiable to the human eye. Further,

similar images must be relatively close in the embedding space. Moreover, the input image dimensionality

commonly employed within object detection is high (for instance, 300 × 300 [198], 640 × 640 [273], and

even higher with Faster-RCNN [11]). Consequently, compared to the autoencoder presented in Chapter

4 for image classification, the dimension size by which our autoencoder must reduce the input image is

proportionally much higher. Finally, it needs to encode class labels within the image embedding (Section

5.2.2).

With this final criterion in mind, we directly provide the object bounding boxes (in the form of an

instance segmentation label mask) to the encoder during training. Trivially extending the Kendall Loss

combination for an additional classification loss, the decoder is forced to recover object labels as well as

appearance from the latent image representation, satisfying this requirement. This behaviour is illustrated

in Tables 18 and 19. We first calculate the percentage of images a given class appears in the COCO [30]

dataset (Default Distribution). We then calculate the (absolute) difference in class distribution from an

initial, randomly sampled subset of images, and the Default Distribution. Finally, we calculate the absolute

difference between distributions across every epoch where a new data subset was generated (because the

mastery value on the previous subset exceeded the pre-defined mastery threshold).

The class-aware autoencoder trained with the additional fourth input channel (Table 18) yields an average

update closer to the overall distribution across the COCO dataset (14.32 absolute difference compared to

18.94 after random initialization). With each data subset update, the difference gets closer to 0, as the

class-aware autoencoder actively attempts to maintain a balance across the classes. Without the additional

channel, distribution in fact becomes less representative (Table 19) than random (19.46 compared to 18.49).

In this case, the hard example mining approach selects harder images without any effort to maintain dataset

balance.
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Class
Default

Distribution

Initial
Random
Sample

Average
Update

0 0 0 0

1 18.55 0.36 0.65

2 1.3 0.18 0.24

3 3.33 0.38 0.54

4 1.59 0.5 0.05

5 0.51 0.12 0.01

6 0.8 0.22 0.06

7 0.58 0.09 0.03

8 1.96 0.48 0.26

9 1.49 0.4 0.02

10 1.63 0.23 0.16

11 0.58 0.12 0.11

12 0 0 0

13 0.54 0.06 0.11

14 0.33 0.08 0.01

15 1.23 0.17 0.24

16 0.83 0.29 0.6

17 1.74 0.19 0.27

18 1.23 0.1 0.49

19 0.91 0.04 0.17

20 0.51 0.23 0.08

21 0.72 0.12 0.03

22 1.3 0.49 0.28

23 0.11 0.03 0.11

24 0.76 0.02 0.11

25 0.83 0.23 0.07

26 0 0 0

27 1.78 0.34 0.42

28 1.01 0.38 0.19

29 0 0 0

30 0 0 0

Class
Default

Distribution

Initial
Random
Sample

Average
Update

31 1.2 0.66 0.49

32 0.65 0.09 0.25

33 0.65 0.16 0.26

34 0.54 0.09 0.03

35 0.58 0.19 0.03

36 0.51 0.16 0.22

37 1.59 0.36 0.62

38 0.51 0.19 0.28

39 0.72 0.02 0.25

40 0.72 0.16 0.29

41 1.05 0.35 0.19

42 0.87 0.24 0.26

43 1.05 0.21 0.23

44 2.93 0.65 0.2

45 0 0 0

46 0.43 0.06 0

47 2.5 0.56 0.71

48 0.72 0.44 0.04

49 1.05 0.14 0.19

50 1.27 0.7 0.09

51 2.03 0.67 0.01

52 0.94 0.54 0.24

53 0.4 0.05 0.03

54 0.29 0.31 0.14

55 0.69 0.08 0.33

56 0.51 0.16 0.06

57 0.25 0.03 0.11

58 0.65 0.33 0.21

59 1.05 0.24 0.26

60 0.62 0.15 0.01

Class
Default

Distribution

Initial
Random
Sample

Average
Update

61 0.4 0.16 0.01

62 3.37 0.35 0.11

63 0.98 0.35 0.26

64 1.49 0.4 0.02

65 0.87 0.25 0.17

66 0 0 0

67 2.79 0.51 0.04

68 0 0 0

69 0 0 0

70 1.96 0.84 0.02

71 0 0 0

72 1.41 0.11 0.08

73 0.87 0.1 0.05

74 0.69 0.3 0.04

75 0.36 0.11 0.18

76 0.65 0.23 0.03

77 1.34 0.08 0.16

78 0.43 0.17 0.04

79 0.83 0.12 0.14

80 0 0 0

81 1.99 0.08 0.41

82 0.8 0.03 0.24

83 0 0 0

84 1.78 0.01 0.02

85 1.49 0.09 0.2

86 1.09 0.17 0.24

87 0.07 0.18 0.11

88 0.65 0.16 0.07

89 0.04 0 0.03

90 0.51 0.3 0.31

Total 100 18.94 14.32

Table 18: Class distribution from hard example mining employing an autoencoder trained with the fourth concatenated channel. Initial Random
Sample and Average Update illustrate the (absolute) difference to the default COCO distribution across the entire dataset.
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Class
Default

Distribution

Initial
Random
Sample

Average
Update

0 0 0 0

1 18.55 0.21 0.93

2 1.3 0.31 0.54

3 3.33 0.09 0.35

4 1.59 0.41 0.04

5 0.51 0.7 0.73

6 0.8 0.29 0.07

7 0.58 0.1 0.26

8 1.96 0.34 0.11

9 1.49 0.46 0.36

10 1.63 0.31 0

11 0.58 0.07 0.18

12 0 0 0

13 0.54 0.14 0.29

14 0.33 0.04 0

15 1.23 0.68 0.15

16 0.83 0.49 0.7

17 1.74 0.05 0.5

18 1.23 0.28 0.04

19 0.91 0.29 0.37

20 0.51 0.08 0

21 0.72 0.05 0.08

22 1.3 0.45 0.65

23 0.11 0.18 0.04

24 0.76 0.21 0.22

25 0.83 0.27 0.26

26 0 0 0

27 1.78 0.97 0.44

28 1.01 0.13 0.01

29 0 0 0

30 0 0 0

Class
Default

Distribution

Initial
Random
Sample

Average
Update

31 1.2 0.09 0.47

32 0.65 0.23 0.08

33 0.65 0.27 0.07

34 0.54 0.2 0.14

35 0.58 0.16 0.66

36 0.51 0.04 0.18

37 1.59 0.23 0.54

38 0.51 0.34 0.14

39 0.72 0.09 0.1

40 0.72 0.05 0.18

41 1.05 0.31 0.29

42 0.87 0.01 0.18

43 1.05 0.31 0.18

44 2.93 0.54 0.06

45 0 0 0

46 0.43 0.23 0.33

47 2.5 0.07 0.12

48 0.72 0.53 0.12

49 1.05 0.27 0.15

50 1.27 0.09 0.11

51 2.03 0.27 0.48

52 0.94 0.09 0.1

53 0.4 0.07 0.14

54 0.29 0.33 0.36

55 0.69 0.14 0.25

56 0.51 0.74 0.47

57 0.25 0.23 0.37

58 0.65 0.1 0.29

59 1.05 0.09 0.14

60 0.62 0.08 0.22

Class
Default

Distribution

Initial
Random
Sample

Average
Update

61 0.4 0.56 0.36

62 3.37 0.36 0.37

63 0.98 0.27 0.25

64 1.49 0.27 0.14

65 0.87 0.23 0.33

66 0 0 0

67 2.79 0.44 0.48

68 0 0 0

69 0 0 0

70 1.96 0.06 0.54

71 0 0 0

72 1.41 0.16 0.03

73 0.87 0.12 0.44

74 0.69 0.36 0.07

75 0.36 0.12 0.26

76 0.65 0.03 0.14

77 1.34 0.16 0.15

78 0.43 0.34 0.14

79 0.83 0.09 0.21

80 0 0 0

81 1.99 0.23 0.32

82 0.8 0.18 0.18

83 0 0 0

84 1.78 0.13 0.11

85 1.49 0.09 0.14

86 1.09 0.1 0.07

87 0.07 0.04 0.08

88 0.65 0.06 0.26

89 0.04 0 0

90 0.51 0.29 0.15

Total 100 18.49 19.46

Table 19: Class distribution from hard example mining employing an autoencoder trained without the fourth concatenated channel. Initial Random
Sample and Average Update illustrate the (absolute) difference to the default COCO distribution across the entire dataset.
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Additionally, embedding object position information within the latent image (since labels are provided

as an instance segmentation mask) acts as an attention map for autoencoder training (Fig. 40). The

autoencoder network focuses on regions of a given image that correlate with objects (Fig. 40 (d)). Without

this additional fourth channel during training, network attention is distributed more evenly throughout

an image, often on regions without any objects at all (Fig. 40 (b)). We argue that this property yields

relatively detailed reconstruction for objects within an image compared to the background, to which the first

criterion pertains precisely. Indeed, reconstruction quality of the objects is better with this configuration

(Fig. 43) compared to without (Fig. 42). Although background reconstruction quality is superior without the

implicit attention layer, the distinction between foreground and background is relatively blurred (particularly

apparent in the image of the bird). The image regions that enable class-aware encoding and image hard -ness

(i.e. the objects) are all that are required to be reconstructed.

Inspired by the success of RetinaNet [201] within object detection, we additionally try replacing our

classification loss term under Kendall Loss with Focal Loss [201]. By preventing easy negative examples

from dominating cross entropy calculation, RetinaNet is able to focus on hard samples during training. We

had hoped the same success would be attained within our reconstruction training. Easily classifiable objects

would be penalized during training, forcing the encoder to focus on smaller or more occluded objects within

an image. Instead however, reconstruction quality deteriorates (Fig 44). Neither foreground nor background

details are reconstructed. In fact, there is very little disinguishabilty between the two. We can attribute this

behaviour to the unsuitability of Focal Loss to image reconstruction. Larger objects within an image are

easier to classify, and more easily detectable during object detection. The same objects are not necessarily

more reconstructable however, as they have more pixels and fine-grained details that require encoding.

To achieve the necessary clustering capability to the same degree as Chapter 4, we once again exercise

contrastive learning, which achieved great succcess within image classification. We consider Circle Loss to

be most suitable. Where we previously discarded any superior performance it delivered in favour of speed

during training, the more difficult object detection datasets instead necessitate adopting any and all possible

performance improvements. However, conventional contrastive learning requires modifications before it can

be applied to multi-label image datasets. Positive and negative classes do not make sense when there is more

than one label per image. To this end, we propose two strategies to define positive and negative samples for

a given anchor image.

In both cases, we construct a similarity matrix for all images in the dataset prior to training. Under

our first system, we adopt Jaccard Index (size of intersection divided by union) of the labels within an

image (taking into consideration the common scenario wherein multiple objects of the same class exist

within a given image). For the second system, we levy the autoencoder described earlier within this section.
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(a) Activations prior to training, without the implicit
attention layer

(b) Activations during final epoch of training, without
the implicit attention layer

(c) Activations prior to training, with the implicit
attention layer

(d) Activations during final epoch of training, with the
implicit attention layer

Figure 40: Prior to training, the highest gradients within the encoder network are evenly distributed
throughout the input image (a,c). By adopting an implicit attention layer, our encoder acquires higher
gradients from the image regions which contain foreground objects (d) compared to training with input

images with three channels (b). This indicates that the network focuses on encoding these regions.
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Considering the contractive loss term and implicit attention layer weighted under Kendall Loss, it is already

somewhat able to identify similar images. Consequently, we are able to use the Euclidean distance between

the embeddings of two given encoded images to construct the similarity matrix.9 In both systems, we then

determine a suitable threshold such that a percentage of images are considered positive to a given anchor

image. Additionally, under both systems we pretrain the autoencoder in the same manner as defined earlier

(contractive loss with an additional implicit attention layer), before training with Circle Loss.

Indeed, appropriate selection of triplets is critical to the learning process [250, 274]. Unsurprisingly

therefore, different triplet selection strategies yield varied results. In fact, the second system (using an

auxiliary autoencoder) loses the majority of its reconstruction ability during training under Circle Loss

(Fig. 46), indicating that euclidean distance between images generates a very weak decision boundary

between images. The ineffective Circle Loss term thus dominates training under Kendall Loss, such that any

distinction between background and foreground objects is lost during training, and reconstructed images

appear excessively blurred.

Triplet generation under the first system (using Jaccard Index) on the other hand yields very promising

results. Foreground classes remain distinct after reconstruction (Fig. 45), suggesting more appropriate

weighting towards reconstruction (MSE) loss (we know from Sec. 4.2.2.2 that Circle Loss does not contribute

towards reconstruction ability). Fine grained details that are irrelevant with regards to image dissimilarity

(such as tie colour, Fig. 45, left), are discarded. Only the information critical for image dissimilarity are

retained within the small embedding space. We determine nz = 64 sufficiently large to be able to reconstruct

only the objects within an image, given their quality appears qualitatively similar to images reconstructed

by the final autoencoder in Chapter 4. Although this dimension is higher than within the DDS-NAS image

classification counterpart, this is a reasonable allowance considering the higher image input size for object

detection tasks compared to image classification.

Our final objective function for training the pretrained autoencoder is as follows:

L = K1Lrecon +K2Ltriplet +K3Lclassification, (12)

where Lrecon denotes MSE loss:

Lrecon =

D∑
i=1

(xi − yi)2, (13)

Ltriplet denotes triplet margin loss, with d representing the euclidean distance function, a, p and n representing

9Noting this second implementation yields significantly faster triplet generation, but this is a property we can safely disregard
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anchor, positive and negative samples respectively, and m representing the margin (1.0):

Ltriplet = max(d(a, p)− d(a, n) +m, 0), (14)

Lclassification denotes (multi-label) binary cross entropy classification loss

Lclassification = −(b log(q) + (1− b) log(1− q)), (15)

and where Ki denotes weighting of the ith loss term learned via Kendall Loss [252].

Figure 41: Ground truth images

Figure 42: Reconstructed images with a contractive autoencoder, ablating the use of the additional concate-
nated channel

Figure 43: Reconstructed images with a contractive autoencoder with the additional concatenated channel.
Performance is qualitatively superior to Fig. 42.

99



Figure 44: Reconstructed images with a contractive autoencoder with the additional concatenated channel
and focal loss. Focal loss offers no benefit (compare with Fig. 42).

Figure 45: Reconstructed images with combined triplet ranking loss (system 1) and MSE reconstruction
loss, within Kendall Loss. Performance is qualitatively superior to system 2 (Fig. 46).

Figure 46: Reconstructed images with combined triplet ranking loss (system 2) and MSE reconstruction
loss, within Kendall Loss. Performance is qualitatively inferior to system 1 (Fig. 45).

5.3 Experimental Setup

To train DDS-NAS-MULTI, we adopt the same configuration as that of DDS-NAS during the search phase,

with the exception of Cosine Annealing Learning Rate Scheduler in place of Cyclic Learning Rate Scheduler,

with lr = 0.025 in both cases. We use image input size of 224 × 224. During the NAS evaluation stage,

we use input images with a minimum size of 800 × 800, and maximum size of 1200 × 1200. Aspect ratio is

retained during augmentation. We use lr = 0.001 for the first 100 epochs and fine tune with lr = 0.0001 for

50 epochs. For the autoencoders, we use input sizes equivalent to the respective DDS-NAS input image size,

and latent space dimension nz = 64, epochs = 100.

5.4 Evaluation

Having validated the modifications to our Hard Example Mining approach necessitated by the move to object

detection (Section 5.2.2-5.2.3 / Fig. 40-45), we present the performance of the architectures searched with the
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DDS-NAS-MULTI framework (Table 20). For comparison, we present Faster-RCNN results (with a VGG-16

[59] backbone), in addition to the network architecture searched on CIFAR-10 in Chapter 4 transferred to

COCO during the NAS evaluation stage.

Performance of both NAS searched architectures are comparable with the baseline Faster-RCNN results

(within absolute 2%), indicating that NAS has potential within the object detection domain. Even archi-

tectures searched on the CIFAR-10 image classification dataset are generalized enough to be transferred

to the COCO detection challenge. These results are aligned with the findings of Chapter 4, in that our

DDS-NAS-DARTS framework is capable of distinguishing between high performance network architectures

with high granularity, yielding a final network architecture that is sufficient for the challenging ImageNet

and COCO tasks.

Searching for network architectures directly on the COCO dataset yields comparably performing architec-

tures. Indeed, our DDS-NAS-MULTI searched architecture resembles the performance of DDS-NAS-DARTS

transferred to COCO, indicating that our modifications to the autoencoder during the hard example mining

process are sufficient to regulate the feature embedding space for multi-label images, such that similar images

have similar encodings.

While we have compared to Faster-RCNN results as presented in the original literature, more recent re-

sults [18] improve upon this performance by introducing more effective backbone architectures. Our results

are comparatively lacking compared to results found in the literature, but this does not represent a fair

comparison. We expect that increasing computational resources to align the training batch size to common-

place training configurations (a batch size of at least 256) would signficantly improve this performance.10

More importantly, we recall that the object detection performance of NAS approaches from the literature

review in Chapter 2 is also higher. Future work utilizing these sophisticated backbone architecture search

approaches [192, 199] in tandem with our DDS-NAS-MULTI approach would almost certainly exhibit even

better performance. Indeed Chapter 4 illustrates the framework-agnostic characteristics of our NAS method-

ology that would allow such a combined approach. Nevertheless, our results are sufficient to demonstrate

the effectiveness of the modified autoencoder training approach that DDS-NAS-MULTI depends on.

Furthermore, our DDS-NAS-MULTI approach offers one key advantage, in that it can search for archi-

tectures on a given object detection dataset directly. For practical real world applications, this has two

benefits:

• The searched backbone architecture does not need to be trained on an auxiliary training dataset such

as ImageNet to offer comparable performance.

10Our results indicate that training a Faster-RCNN network under our constrained resources significantly degrades perfor-
mance compared to the original literature. Our results are better than the baseline in this regard.
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NAS Approach
Mean Average Precision (%) ↑

mAP0.5:0.95 mAP0.5

Faster-RCNN 21.2 41.5

DDS-NAS-DARTS 19.8 35.5

DDS-NAS-MULTI 19.6 35.0

Table 20: Mean Average Precision of DDS-NAS-DARTS and DDS-NAS-MULTI compared to the Faster-
RCNN baseline on MS-COCO val dataset.

• Overall end-to-end architecture search and training is considerably faster.

These two benefits represent a significant improvement aligned with the overall aims of our thesis to

minimize deployment challenges within real world applications.

5.5 Conclusion

To conclude, modifying DDS-NAS to a multi-label domain represents a significant challenge that has been

succesfully overcome, while retaining a class-aware hard example mining approach. In fact, the presence

of object location availability during training can be utilized to enable a better image feature embedding

representation for the hard example mining process, which we verify through illustrative visualizations.

As such, we have shown that the proposed DDS-NAS-MULTI framework can directly search for network

backbone feature extraction architectures without requiring an auxiliary training image dataset.

Moreover, access to additional training resources would likely yield even better network architectures

given the potential to move to the DDS-NAS-Faster framework. Furthermore, and as alluded to in Section

5.2.3, hard example mining is already a prevalent point of discussion within object detection. The use of

Focal Loss has seen widespread use within one-stage object detection networks [201, 273, 275], to prevent

easy classification samples from dominating training loss. It is possible our hard example mining approach

to some extent captures this same idea. In addition, recent work presents Commu [276] for metric learning

within multi-label domains, exactly pertaining to the requirements of our autoencoder training. We leave

these two research areas as possible directions for future research.
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6

DDS-NAS under Compression

6.1 Introduction

While our DDS-NAS framework has been extensively evaluated on common image classification and object

detection datasets, real-world applications offer unforeseen challenges. In practice, labelling datasets is not

perfect. Noisy labelling negatively impacts supervised and semi-supervised approaches within computer

vision, upon which our DDS-NAS approach is deployed. Class imbalance is more common, as data collection

techniques are not perfect or restricted in terms of time and money. Moreover, occlusion and clutter is often

more prevalent than in the datasets we have considered up until now. Additionally, compression artifacts

impact different network architectures to different extents (see Chapter 3). Real-world datasets often change

hands several times before reaching AI developers. Data collection is often outsourced to third parties

with better infrastructure to either run the necessary simulations or collect data in the wild. Owing to the

thousands of images that constitute computer vision data, it is not unusual to delegate labelling to third

parties. Furthermore, ethical considerations must be upheld during data collection, requiring the data to

be passed between multiple individuals or companies to ensure the proper regulations are adhered to. This

may even include additional data processing such as image blurring or modifying for sensitive information

retention, for instance. All these factors may introduce an unknown compression rate for a given image

either due to company regulations or the image processing algorithms deployed. As such, understanding

model performance with respect to varying compression rates is all the more important in order to guarantee

expected performance, and to this end, we consider the performance of the DDS-NAS approach within

compression.

6.2 Approach

To evaluate DDS-NAS with regards to compression, we utilize the same procedures employed in Chapter 3;

adopting compression rates from the set {5, 10, 15, 50, 75.95}. We consider the same datasets in Chapter 4;

MNIST [267], Fashion-MNIST [268], CIFAR-10 [93] and CIFAR-100 [93].
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We analyse the impact of compression under three different scenarios, framing DDS-NAS as the con-

catenation of three principal components: an autoencoder (for hard example mining), NAS search phase

(searching for the optimal network architecture), and NAS evaluation phase (training the searched network

architecture from scratch). We evaluate the impact of compression at each of these three stages, in reverse

order to best determine the most significantly effected DDS-NAS stage. We omit compression impact com-

parisons between DDS-NAS and regular two-stage NAS frameworks on the basis that the performance is

identical. Dynamic data selection does not improve or degrade compression resilience.

6.2.1 DDS-NAS Evaluation Stage

NAS evaluation stage immediately follows NAS search. A given searched cell is stacked to yield a final image

classification architecture. The NAS evaluation phase retrains this model from scratch. The image classifier

network architecture most closely resembles the object detection (Faster-RCNN [11]) network architecture

we evaluated in chapter 3, which demonstrated reasonable compression resilience especially after providing

compressed training data. Lacking either the two-stream network architecture employed within human

action recognition, or the dual-prediction task of human pose estimation, we expect a given image classifier,

retrained on compressed images, to deliver the same compression resilience.

We adopt the same configuration for NAS evaluation as employed in Chapter 4. We use an SGD optimizer

with lr = 0.01, momentum β = 0.9, and weight decay wd = 3e−4. We train the network architecture for 300

epochs with a batch size of 32. Finally, we use the cells discovered by DDS-NAS in Chapter 4, with 4 layers

for MNIST, 14 layers for Fashion-MNIST, and 12 layers for CIFAR-10. For CIFAR-100 we use the network

architecture discovered under CIFAR-10.

6.2.2 DDS-NAS Search and Evaluation stage

The NAS search phase under DARTS (and our corresponding proposed DDS-NAS-DARTS) searches for

the best classification cell architecture, in tandem with optimizing the super-network weights. Dual task

learning has already been hypothesised to contribute to the low resilience of human pose estimation under

compression (Section 3.4.3), suggestive of low compression resilience within NAS search as well.

We use the same hardness and mastery thresholds identified within Chapter 4 within our DDS-NAS

framework, incorporating the same autoencoder (i.e. trained on uncompressed data). The same configuration

for NAS search under DARTS as employed in Chapter 4 is used (Sec. 4.3.1). We search for the optimal cell

architecture on each compressed dataset (each yielding six different cell architectures), and perform NAS

evaluation stage on each final searched cell with the respective compressed data.
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6.2.3 Retraining the Autoencoder

In order to determine the impact of compression on overall DDS-NAS performance after retraining the

autoencoder, we consider two performance evaluation methods. We qualitatively evaluate autoencoder clus-

tering ability when trained with the compressed dataset. We do not provide qualitative evaluation of the

autoencoder with respect to reconstruction ability. In this regard, the autoencoder network is completely

resilient. This is a fairly meaningless result however, considering we are reconstructing images with compres-

sion artifacts from a small embedding space. Reconstruction with uncompressed data via an autoencoder

already yields pixelated images (as seen in Chapter 4).

For MNIST, Fashion-MNIST, and CIFAR-10 datasets, we adopt the same autoencoder as that employed

by our DDS-NAS framework. For the grayscale datasets, this requires a contractive autoencoder. For

CIFAR-10, we train the autoencoder with triplet ranking loss and MSE reconstruction loss, weighted via

Kendall Loss. We adopt the same autoencoder training hyperparameters described in Chapter 4 (Sec.

4.3.2). As DDS-NAS CIFAR-100 final performance is determined after NAS evaluation stage using a network

architecture searched with CIFAR-10, we do not evaluate the impact of compression on the autoencoder with

the CIFAR-100 dataset.

Our selected autoencoder most closely resembles the SegNet architecture used in depth estimation (Sec.

3.2.2), which has been shown to be resilient to compression artifacts. We might expect this behaviour to be

repeated in our autoencoder given the upsampling within the encoder-decoder architecture. However, the

additional clustering required of our encoder complicates this matter.

6.3 Evaluation

In this section, we display the performance of DDS-NAS under compression applied to each DDS-NAS com-

ponent (autoencoder, NAS search, and NAS evaluation, Table 21). We determine the impact of compression

on a given component on overall network architecture performance, but also in contrast to the successive

component, to better inform us of compression impact on the component in question. Finally, we propose

possible explanations for any compression impact, where possible correlating performance with network

architectures identified in Chapter 3.

6.3.1 DDS-NAS Evaluation Stage

In general, we can observe the expected trend that accuracy correlates with compression level. However,

compression has very little impact on training performance of searched architectures on the MNIST dataset

(red column). The lowest compression rate (95) achieves an accuracy of 99.65%, compared to 99.58% under
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Dataset
JPEG Parameter

Compression Level

Top-1 Accuracy (%)
NAS Search Phase ↑ Top-1 Accuracy (%) Top-1 Accuracy (%)

Search Phase Final Accuracy NAS Evaluation Phase ↑ No Retraining ↑

M
N

IS
T

95 93.09 99.67 99.65 99.81

75 89.68 99.69 99.66 99.79

50 90.86 99.72 99.70 99.68

15 91.50 99.70 99.62 99.57

10 91.60 99.62 99.59 99.28

5 90.90 99.60 99.58 77.93

F
a
sh

io
n

-M
N

IS
T

95 59.20 92.28 94.15 94.17

75 56.02 91.23 93.71 91.48

50 55.63 92.04 93.18 88.46

15 53.55 90.75 92.01 82.87

10 53.13 89.18 91.57 78.72

5 55.44 89.59 89.82 71.76

C
IF

A
R

-1
0

95 57.05 95.44 96.42 95.84

75 44.31 92.48 93.42 87.99

50 64.36 90.60 91.60 80.16

15 50.87 84.34 85.58 54.09

10 54.89 79.98 81.48 42.92

5 37.69 71.94 72.68 26.13

C
IF

A
R

-1
0
0

95 - 77.59 80.63 77.86

75 - 71.07 74.17 66.87

50 - 67.27 70.09 57.73

15 - 57.97 60.55 33.62

10 - 53.31 55.94 22.81

5 - 43.11 44.80 9.60

Table 21: The impacts of lossy image compression on the DDS-NAS search and evaluation phase

the highest compression rate (JPEG parameter 5). We can attribute this behaviour to the easiness of

the dataset itself; compression artifacts have very little impact on the classifiability of the numbers (Fig.
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Figure 47: MNIST images under increasingly heavy compression rates (left: 95, right: 5)

Compression Level
Top-1 Accuracy (%)
NAS Search Phase ↑

Top-1 Accuracy (%)
NAS Evaluation Phase↑

95 90.69 92.02
75 89.93 91.02
50 89.09 89.93
15 84.01 84.64
10 80.62 81.50
5 71.65 71.31

Table 22: The impacts of lossy image compression during the NAS search and evaluation phase when using
images with varying compression levels in the CIFAR-10 training set.

47). Any differences in DDS-NAS performance can be attributed to randomness within the NAS evaluation

stage. Indeed, by comparing the NAS evaluation stage with the searched architecture trained on compressed

data (red column) and uncompressed data (light blue column), we can observe a negligible performance

difference. In many cases, retraining the network architecture offers little benefit. A significant difference

can only be observed at the heaviest compression rate (JPEG parameter 5), where MNIST performance

drops surprisingly low (given the ease with which images can be classified by a human at this compression

level) down to 77.93%, and re-training the network architecture with data compressed at this level fully

recovers network architecture performance (99.58%).
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Figure 48: CIFAR-100 images under increasingly heavy compression rates (left: 95, right: 5). Examples
include a hedgehog, a willow tree, a mountain scene, and a tank. Visible artifacts at high JPEG parameters
are introduced during image resizing rather than compression (indeed JPEG parameter 95 introduces no
visible compression artifacts).

108



For the harder tasks, the expected trend is more obvious. Fashion-MNIST performance difference is

indiscernable until a JPEG compression level of 15, wherein accuracy drops by 2.27%. By JPEG compression

level 5, performance has dropped by 4.6%, down to 89.82% Top-1 Accuracy (red column).

For CIFAR-10, accuracy drop is more considerable still. Even low compression rates receive performance

degredation (3.1% drop at JPEG compression level 75 in the red column, for instance). At JPEG compression

level 15, performance drops by 11.2%, and by level 5, it has dropped by 24.6% down to only 72.68% accuracy.

The same rate of decline is observable for CIFAR-100, where there is a substantial drop in performance at

JPEG compression level 15. The perceptible differences between images from CIFAR-10 and CIFAR-100

are much more apparent (Fig. 48), and their respective performance degradation follows. Of course, the

performance is far higher than when we test without retraining the model on compressed images (light blue

column).

The right most column in Table 22 can be directly compared to the identically coloured column in

Table 21 (second from the right), which uses the same searched architecture. Each image in the training

set is compressed at one randomly selected compression rate from the same JPEG Parameter set as before

({5,10,15,50,75,95}). It is evident that such a training setup has a detrimental impact on performance,

especially when small amounts of compressions are used in the test dataset (a drop from 96.42% to 92.02%

when using compression level 95 for instance). However, it is not unrealistic in real world scenarios to only

have access to training data at a range of compression levels. If we compare the performance in Table 22

(red column) to the right most column in Table 21 (light blue), it is clear that performance is significantly

improved. Unsurprisingly, if it is possible to train at the same compression level as will be used during testing,

performance is recovered the most. Training with varying compression levels still recovers performance to

some degree.

In all cases beyond the trivial MNIST setting, retraining a searched network architecture with com-

pressed data (NAS evaluation phase) recovers network architecture performance, aligning with the findings

of Chapter 3.

6.3.2 DDS-NAS Search and Evaluation Stage

By searching with compressed image data, we can once again observe that overall network architecture

performance drops with higher compression rates. By comparing the dark blue and red columns (Table 21),

MNIST performance is evidently unaffected when applying the NAS search phase on compressed image data.

Meanwhile, Fashion-MNIST results marginally degrade compared to the easy MNIST task, where at high

compression levels introducing compressed data to the NAS search phase causes performance to drop from

94.15% down to 92.28% at compression level 95 (dark blue vs. red columns). This behaviour is less apparent
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at low compression levels (e.g. 89.82% down only to 89.59% at compression level 5).

CIFAR-10 results however indicate that performance drops considerably with compression levels of 15

or lower. The final accuracy is uniformly lower than performance obtained by DDS-NAS searched with

uncompressed data, but where the evaluation stage uses compressed data (dark blue vs. red). At compression

level 75, performance drops from 93.42% to 92.48%, and at compression level 5, there is a similarly marginal

drop (72.68% down to 71.94%). However, if we make the same comparisons (dark blue vs. red) with

CIFAR-100 data, a more interesting behaviour is observable. With low compression (JPEG quality level

95), performance drops by 3.9% (80.63% down to 77.59%). Similar degradation occurs at every other

compression level. This would suggest that searching on compressed data generates less generalizable cell

architectures; CIFAR-10 final performance is relatively unaffected but CIFAR-100 performance with the

same network architecture is worse. The same behaviour can be seen by comparing the two columns in

Table 22. Performing NAS search with varying compression levels in the dataset generates worse performing

architectures than architectures searched with uncompressed data.

At the very least, searching on compressed data is somewhat harmful. Network architecture performance

having searched on compressed data (dark blue column) is uniformly worse than searching on uncompressed

data (red column). Performance degredation at a given compression level on a given dataset is however no

worse than performance at a different compression level on the same dataset. CIFAR-10 performance is at

most 1.5% percentage points lower when searching with compressed data than searching with uncompressed

data. Given the dual learning task during NAS search (simultaneous architecture and network weight

optimization), inaccuracies in training introduced by compression artifacts are exacerbated. Once again,

these findings align with those of Chapter 3, where the dual prediction task within the human pose estimation

network architecture induced lower performance accuracy when training with compression compared to other

network architectures.

However, this behaviour is not an optimization gap problem. Stacking the network architecture cell

searched with compressed data does not yield inferior final network architecture performance after the NAS

evaluation stage (Table 23). NAS evaluation stage performance on uncompressed image data does not depend

on the compression level at which a network architecture cell was searched; all searched architectures achieve

roughly the same accuracy (between 95.39% and 95.60%). Performance differences between searched cells

are only noticable when used during the NAS evaluation stage with compressed data (dark blue column,

Table 21). Therefore, any differences in final network architecture performance between searching with and

without compressed image data (dark blue vs. red columns, Table 21) must stem from the NAS search phase

itself rather than the optimization gap problem induced from stacking a searched cell.
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Compression Level
During Search

Final Searched Performance

95 95.56 ± 0.10
75 95.54 ± 0.05
50 95.60 ± 0.12
15 95.59 ± 0.06
10 95.39 ± 0.18
5 95.57 ± 0.21

Table 23: The impacts of lossy image compression on the NAS optimization gap, with CIFAR-10 data. The
NAS search phase uses compressed image data but the stacked cell is evaluated with uncompressed data

6.3.3 Retraining the Autoencoder

Generally, autoencoder training with compressed data exhibits reasonable resilience to compression. Across

all compression levels, an autoencoder retrained with compressed data remains able to achieve sufficient

clustering for MNIST and Fashion-MNIST datasets (Fig. 49, 50). However, for CIFAR-10, clustering

ability deteriorates rapidly (Fig. 51). Compression introduces artifacts such that the autoencoder does not

embed discriminative features, reminiscent of prior literature [41]. As such, despite employing contrastive

learning, the autoencoder is unable to effectively rank the images. We therefore do not present results

with the autoencoder trained with compressed data as results are inline with the ablation studies with bad

autoencoders (Sec. 4.4.2.2), and yield no further insights.

Interestingly however, we have already observed that using an autoencoder trained on the uncompressed

images is sufficient for the DDS-NAS search phase (Sec. 6.2.3). Indeed, the autoencoder trained on the

original CIFAR-10 uncompressed images is able to cluster the corresponding compressed images (Fig. 52);

its ranking ability has not been hampered from re-training. Only at the heaviest compression rate (JPEG

quality parameter 5) does the clustering deteriorate. Even at this level however, clustering between classes

exists, albeit less distinctly than with lighter compression. The same behaviour can be expressed quantatively

(Table. 24), where using the autoencoder trained on the original CIFAR-10 uncompressed images exhibits

greater separation between the centroids of clusters, at all compression levels (higher minimum, maximum,

and mean distances between centroids).
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JPEG Compression Level 95 JPEG Compression Level 75

JPEG Compression Level 50 JPEG Compression Level 15

JPEG Compression Level 10 JPEG Compression Level 5

Figure 49: Autoencoder clustering trained with contractive loss on MNIST data compressed at six different
rates
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JPEG Compression Level 95 JPEG Compression Level 75

JPEG Compression Level 50 JPEG Compression Level 15

JPEG Compression Level 10 JPEG Compression Level 5

Figure 50: Autoencoder clustering trained with contractive loss on Fashion-MNIST data compressed at six
different rates
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JPEG Compression Level 95 JPEG Compression Level 75

JPEG Compression Level 50 JPEG Compression Level 15

JPEG Compression Level 10 JPEG Compression Level 5

Figure 51: Autoencoder clustering trained with triplet ranking loss and MSE reconstruction loss (weighted
via Kendall Loss) on CIFAR-10 data compressed at six different rates
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JPEG Compression Level 95 JPEG Compression Level 75

JPEG Compression Level 50 JPEG Compression Level 15

JPEG Compression Level 10 JPEG Compression Level 5

Figure 52: Autoencoder clustering trained with triplet ranking loss and MSE reconstruction loss (weighted
via Kendall Loss) on uncompressed CIFAR-10 data, evaluated on CIFAR-10 compressed at six different rates
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Centroids Calculated from Mean Centroids Calculated from Median
Compression Level Min Max Mean Min Max Mean
95 (uncompressed) 264.13 4511.85 1849.61 363.01 5840.70 2510.52

95 (compressed) 77.61 1406.52 530.24 78.06 2002.90 80.83
75 (uncompressed) 250.97 4257.21 1671.91 328.43 5847.24 2421.12

75 (compressed) 133.66 1986.87 785.99 162.19 2231.08 887.82
50 (uncompressed) 197.43 4189.13 1661.49 258.08 5843.39 2314.83

50 (compressed) 52.75 1600.03 597.80 115.83 2736.34 1096.60
15 (uncompressed) 194.03 3704.38 1588.54 207.03 4940.62 2069.28

15 (compressed) 87.34 1282.32 478.40 118.04 2022.57 801.19
10 (uncompressed) 178.33 2987.64 1281.75 238.04 4035.60 1795.25

10 (compressed) 53.27 1118.21 431.53 64.82 1644.25 713.18
5 (uncompressed) 157.51 2764.08 1129.16 226.20 3997.81 1732.60

5 (compressed) 40.67 1124.42 431.31 93.47 1785.21 736.49

Table 24: The squared minimum, maximum and mean distances between the centroids of each cluster for
the autoencoders trained with and without compressed images at each compression level. Centroids are
calculated both from the mean and median of each point in the cluster.

6.4 Conclusion

With the findings across all DDS-NAS stages in mind, we recommend training the autoencoder and conduct-

ing the NAS search stage with uncompressed data if possible. Given the dependency of DDS-NAS on the

autoencoder ability to cluster, for which training with compressed data is harmful, using compressed data

results in significant overall performance degredation. Using compressed data during the search phase is to

a lesser extent also harmful, likely owing to the multi-task training objective. Therefore, to obtain the best

performance within the compressed image domain, only using compressed data during the NAS evaluation

stage is recommended.

It is unfair to conclude that NAS is not resilient to compressed data however, despite the relative draw-

backs of using compressed images during the NAS search phase. In general, both the NAS search phase and

the overall two-stage gradient-based NAS approach exhibit considerable resilience to compression compared

to several of the network architectures identified in Chapter 3. Indeed incorporating compressed data into

the NAS search phase improves performance compared to using no compressed data at any stage (Table 21:

peach vs. light blue). Given gradient-based NAS (and there is no reason to believe the same conclusions

would not extend to evolutionary and reinforcement-learning approaches) can be divided into a search and

evaluation phase, we simply recommend a more nuanced approach for optimal results wherein compression is

only utilized during certain components of the overall training pipeline. We leave the investigation into the

impacts of compression on reinforcement learning, evolutionary approaches, and prediction-based approaches

to NAS to future research.
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7

Conclusion

Deployment within real world scenarios is an incredibly complex challenge that presents many issues to be

addressed. One primary consideration in contemporary computer vision AI approaches is data acquisition

and maintenace thereof. Image data compression is consequently ubiqituous to AI development pipelines.

Secondly, neural architecture search has received growing attention in recent years towards generating efficient

network architectures without compromising final network accuracy. However, its critical associated long

search phase is a major drawback within current NAS solutions. To this end, this thesis addresses these two

deployment challenges in tandem, providing answers to the following research questions:

• How much does compression impact neural network performance, and by how much can this be recov-

ered?

• Can we improve the NAS search phase speed purely from the perspective of input data?

By answering these questions, we can improve the AI / Machine Learning development pipeline at multiple

stages, with minimal overhead from modifying existing approaches. Chapter 3 addresses this first research

question, providing empirical evidence not only that compression impacts both accuracy and (where relevant)

racial bias of neural network architectures, but also by precisely how much the performance degradation can

be recovered.

The latter half of the thesis provides a solution to the second research question, demonstrated to be

agnostic to and deployable alongside existing NAS frameworks. Drawing inspiriation from hard exampling

mining [79, 84] and curriculum learning [80, 88, 82], we provide a novel dynamic dataset reformulation

strategy to minimize data processed by any gradient-based neural network training strategy, but best suited

to NAS. We identify the key contributions of this thesis in the following section.

7.1 Contributions

Chapter 3 conducts an extensive investigation into the impacts of compression across SegNet segmentation,

monocular depth estimation GAN, two-stream human action recognition, OpenPose pose estimation, and
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Faster-RCNN object detection network architecture, upon which some of the most well received recent

literature (e.g. Stable Diffusion [255], DALLE-2 [277], Yolov7 [273]) is based. The impact of compression on

these aforementioned architectures both before and after retraining the network with compressed image data

is determined. Empirical evidence indicates that retraining most network architectures on compressed data

largely recovers network performance even with compression rates as high as 15%. Furthermore, network

architectures with upsampling layers exhibit higher resilience to compression (performance of a retrained

SegNet network degrades by only 3.5% during inference at a compression rate of 5%).

Chapter 3 additionally identifies to what extent compression affects the ArcNet facial recognition network

architecture, not just in terms of overall accuracy but also with respect to racial bias. Again, network

performance on compressed images during inference is recovered if the network is retrained with compressed

data. However, there is a non-uniform degradation across racial phenotypes at high compression levels,

which can only be ameliorated to a limited extent by retraining with compressed images. Instead, we

demonstrate that chroma-subsampling during JPEG compression is the primary cause of this performance

loss and removing that component ameliorates the degradation.

Chapter 2, comprising the first literature review for contemporary NAS solutions under a unified and

consistent terminology, highlights the scarcity of framework-agnostic NAS solutions that do not consider

architecture generation methodology as a means to overcome the arduous NAS search phase. To this end,

Chapter 4 approaches the issues in NAS deployment from a data perspective, presenting an end-to-end NAS

solution (DDS-NAS) that achieves a NAS search phase speed up of one order of magnitude without loss in

searched network architecture performance, and can be deployed alongside any existing NAS framework. By

adopting a novel combined hard example mining and curriculum learning approach to dataset sampling, the

volume of images processed in a given NAS search epoch is minimized without introducing class imbalance.

To realise a fast dataset reformulation at a given epoch based on the curriculum, we are the first to consider

latent space image representation disimilarity to mine appropriately hard images. Chapter 4 thus presents

a thorough benchmark across autoencoder architectures that predate adopting skip-connections, in regards

to latent space clustering and reconstruction capabilities.

To demonstrate the effectiveness of a hard exampling mining approach across all NAS methodology (and

thus the suitability of a solution which only modifies the data presented to NAS), we incorporate hard mined

data into a prediction-based NAS framework. In doing so, we further validate our DDS-NAS approach, and

are able to consistently seek a network architecture with higher accuracy.

Chapter 5 extends our DDS-NAS approach to the multi-label image domain. Building upon the hard

example mining approached in the preceding chapter, we incorporate an additional fourth channel into the

autoencoder input layer. By training the autoencoder to encode the fourth channel image segmentation mask
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within the latent space, the latent image representation encodes class label. Our solution can consequently be

deployed within multi-label domains such as object detection. Moreover, the addition of the fourth channel

acts as an attention layer for the encoder, improving overall capacity to capture the distinguishable regions

of a given input image critical to our image-disimilarity-based hard mining objective.

We finally tie the two primary focuses of the thesis together in Chapter 6, in which we determine the

impacts of compression on the commonplace two-stage NAS framework, and draw parallels with the findings

of Chapter 3 where possible. Overall this thesis demonstrates the importance of data-driven approaches

to common real-world deployment challenges. We produce an entirely novel approach for this task termed

DDS-NAS, and comprehensively validate each of its components. With minimal modification to existing

network architecture, by only altering the data presented to a given neural network, we can substantially

reduce the impacts of compression on overall network performance, racial bias, and achieve a demonstrable

NAS search phase speed up. Of course these results cannot be obtained freely, and the limitations of our

work are addressed in Section 7.2.

7.2 Limitations and Future Work

While our thesis makes a substantial start to approaching current deployment issues via modification of

data, it is not without its limitations. This section identifies such cases and presents possible directions for

future research to expand on our approach.

7.2.1 Verifiability

We firstly acknowledge the complexity of our DDS-NAS solution, given the intertwining of several component

features. The delicate relationship between the curriculum learning and hard exampling mining approach

via latent space dissimilarity image representation, especially after extending to the multi-label domain,

necessitates considerable verification. We have already visualized how the GANomaly autoencoder draws its

attention to salient image regions after including an additional fourth instance segmentation input channel.

Further visualisation to explain how this behaviour leads to a class-aware latent image represention would

be particularly prudent, and could indicate potential architectural changes to better capture distinguishing

features within the latent space. Majumdar et al. [41] occlude different facial features for a given input image

for a facial recognition network to determine where the network architecture concentrates under varying levels

of augmentation. Adopting the same or similar explainable AI approach (e.g. Grad-CAM [278]) could inform

how the network encodes class labels.

Additionally, our image dissimilarity based hard example mining approach affords the generation of cell
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architectures capable of high accuracy when stacked even though less image data is processed during the

NAS search phase. The need to produce architectures that can disentangle hard images thus makes intuitive

sense why DDS-NAS helps bridge the optimization gap compared to random image sampling within DARTS

and other gradient-based NAS frameworks. However, additional verification beyond our current empirical

evidence would better explain why this happens. In general, our work only touches the domain of AI

explainability, which provides several techniques that our complex solution would benefit from greatly.

7.2.2 Scope

The proposed DDS-NAS solution utilizes a latent-representation based approach to hard example mining,

in turn providing the first step to a significant contribution to reducing the NAS search phase duration.

However, there already exists a considerable wealth of literature that calculates image similiarty. There exist

several measures that consider pixel-wise absolute difference between images, including MSE and PSNR.

These metrics are still prevalent within modern machine learning solutions, such as image reconstruction

[15, 225, 279]. However, these measures are unable to capture perceived difference. Compression artifacts

and noise for instance, introduce considerable changes at a pixel level but little perceptible difference to the

human visual system. To this end, SSIM [280] extracts structural information from an image, from which

perceived image differences are a reasonable approximation, rather than quantifying visibility of a given

difference.

Perceptual score [281] as a metric for image similarity adopts the same philosophy. By considering

Euclidean distance between the perceptual features (i.e. output of the penultimate layer of a pre-trained VGG

[59] network), we necessarily quantify the differences between structural information, as high-dimensional

deep features from the VGG network encode portions of the image with meaning (assuming the network is

sufficiently trained). As eloquently stated, “a good feature is a good feature” [282]: features that are effective

for image classification and detection are sufficient for perceptual image similarity judgements. While our

novel approach can be efficiently incorporated into a kd -tree structure to compute image dissimilarity, further

work can be done to compare it to existing methodology.
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