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Abstract: In this thesis a detailed discussion of resummation in QCD for high

energy perturbative effects (with High Energy Jets or HEJ) and in the soft-collinear

regime (with the Pythia parton shower) for processes involving the production of

jets at hadron collider experiments. We develop and validate a sophisticated novel

prescription (HEJ+Pythia) for merging high energy with soft-collinear resumma-

tion, which preserves the logarithmic accuracy of each resummation. Predictions

produced by merging the resummation schemes in this way are compared to experi-

mental data for inclusive pp → jj production at the Large Hadron Collider (LHC).

Future experimental analyses to disentangle high-energy and soft-collinear effects

are suggested.

We also extend the HEJ framework and present significant developments in the

description of Higgs production, particularly in describing inclusive pp → H + 1j

production at hadron colliders, and compare predictions within this framework to

LHC data. This presents the first leading-logarithmically accurate HEJ-resummed

prediction for an inclusive single-jet process, and represents a significant development

in precision descriptions of strong physics in the Higgs sector at large energies.
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Chapter 1

Introduction

The Standard Model (SM) of particle physics is one of the most rigorously tested

theories in physics, with high-precision measurements constraining physics beyond

the Standard Model (BSM) at energy scales observable at collider experiments such as

those undertaken at the LHC. Following the discovery of the Higgs boson in 2012 [18,

19], the full particle content of the Standard Model has now been experimentally

tested to high levels of accuracy with different experiments corroborating results2.

This theory includes a description of three of the four fundamental forces observed

in nature: the strong nuclear force, the weak force, and electromagnetism, which are

described by the (spontaneous breaking of the) composite gauge group:

SU(3)c × SU(2)L × U(1)Y , (1.0.1)

whose ingredients we explore in greater detail in Sec. 1.2. This model is far from a

complete theory of Nature, notably excluding a description of gravity, dark matter,

and of neutrino masses. Several theoretical problems remain unaddressed to con-

sensus, including the hierarchy problem arising from the discrepancy between the

bare and renormalised Higgs boson masses [21], and the strong CP problem where

experimental results constrain CP -violating extensions to the strong sector of the
2There have been measurements claiming to contradict those of other experiments, notably the

CDF measurement of the W boson mass [20] yielding a value in larger than 5σ tension with the
accepted value. At the time of writing this thesis, this result is still under discussion in the scientific
community.



26 Chapter 1. Introduction

SM to be very close to zero [22]. These and more may be explained by new physics

beyond the Standard Model. However, to adequately explore physics in this regime,

a solid and precise understanding of the Standard Model contribution to scattering

processes involving fundamental particles is required.

In this thesis we concern ourselves with developing the theoretical description of

the strong sector, the quarks and gluons transforming under the unbroken SU(3)c

symmetry in the gauge group. We propose, test, and display predictions from meth-

ods for resumming perturbative corrections to the production of jets — collimated

sprays of particles charged under the strong force — at hadron collider experiments.

We show that we are able to stably model higher-order perturbative corrections to

processes in high energy physics (HEP) mediated by the strong force — quantum

chromodynamics (QCD). We apply these methods to the description of Higgs pro-

duction for which the corrections to the strong-initiated process are large to all

orders in perturbation theory [23].

In Ch. 2 we examine methods for producing resummed predictions in QCD with the

High Energy Jets (HEJ) framework for high-energy effects, and with parton showers

for soft-collinear effects. In Ch. 3 we present a sophisticated procedure for merging

the high-energy resummation of High Energy Jets with the soft-collinear parton

shower resummation of Pythia. We present developments to the High Energy Jets

framework in describing the inclusive production of a Higgs boson with one jet at

the LHC in Ch. 4. Finally, we present our conclusions and reflect on the outlook in

Ch. 5.

Throughout this thesis we will use the natural system of units wherein ℏ = c = 1

and work with the mostly-minus metric of flat 3 + 1-dimensional space-time in

Special Relativity gµν = diag(1,−1,−1,−1) unless stated otherwise. The Einstein

summation convention, wherein repeated indices implies a sum over all values, is

used unless stated otherwise.
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1.1 The Quantum Chromodynamics Lagrangian

Quantum chromodynamics is the quantum field theory (QFT) describing the strong

force in the Standard Model, governed by the SU(3)c symmetry in the SM gauge

group of Eq. (1.0.1). The charge associated to QCD is colour, and in the SU(3)c

theory there are Nc = 3 colours. In our discussion, we discuss QCD with N colours

and show the Lagrangian for a SU(N) symmetry. This allows us to keep the depend-

ence on N arbitrary and use simplifying approximations in calculations (such as the

leading colour approximation which takes the large N limit).

The fundamental fermions (spin-1
2) charged under the strong interaction are the

quarks. The gauge bosons (spin-1) that mediate the strong interaction are the gluons.

Together, these particles are referred to as partons. The Lagrangian governing QCD

is invariant under local transformations in SU(N). The quarks (represented by Dirac

fields ψ) transform in the fundamental representation of SU(N), meaning we can

write:

ψj(x) → U jk(x)ψk(x), U(x) = exp(iλa(x)ta) ∈ SU(N), (1.1.1)

where ta are the generators of SU(N) in the fundamental representation, a ∈{
1, ..., N2 − 1

}
. The locality of the transformation is encoded in the dependence

on the four-position x. The functions λa(x) contain all of the x-dependence in the

matrices U(x). The generators ta are members of the Lie algebra su(N) of the group,

defined via: [
ta, tb

]
= ifabctc, (1.1.2)

where the Lie bracket associated to the Lie algebra su(N) is the regular commutator

[Â, B̂] = ÂB̂ − B̂Â of operator-valued arguments. The constants fabc are the

structure constants of SU(N). By convention, the fundamental generators satisfy

the normalisation [24]:

Tr[tatb] = TRδ
ab ≡ 1

2δ
ab. (1.1.3)

This relation allows us to derive the quadratic Casimir operators CR for any irredu-

cible representation R of SU(N). These are given by ta(R)t
a
(R) = CR1, where 1 is the
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identity operator. In SU(N), the quadratic Casimir operators for the fundamental

and adjoint1 representations are given respectively by:

CF = N2 − 1
2N , CA = N. (1.1.4)

These quantities, along with TR, appear frequently in QCD calculations and highlight

why working with the theory for general N can be useful. For N = 3, CF = 4
3 and

CA = 3.

The Lagrangian density (henceforth referred to just as the Lagrangian) for QCD

with N colours and nf distinct fermions (i.e. nf flavours of fermion) is given by:

LYM =
nf∑

n=1
ψ

j
n(iγµDjk

µ −mnδ
jk)ψk

n − 1
4F

a
µνF

a,µν . (1.1.5)

The YM subscript denotes that this is a Yang-Mills Lagrangian. The invariance of

the Lagrangian under local transformations in SU(N) is referred to as a SU(N) gauge

symmetry of the theory [25]. Various quantities in Eq. (1.1.5) require introduction.

The matrices γµ arise in the free Dirac Lagrangian for spin-1
2 particles, and satisfy

the Clifford algebra, given by the anticommutation relations:

{γµ, γν} ≡ γµγν + γνγµ = 2gµν1. (1.1.6)

The Dirac conjugate spinor is defined by ψn ≡ ψ†
nγ

0. Each fermion has mass mn and

the mass term −mnψnψn in the Lagrangian allows us to deduce this. The helicity

of a particle is defined as the projection of the spin onto the momentum of the

particle. As such fermions can have either positive or negative helicity. Fermions are

left-(right-)handed if they have negative (positive) helicity. In the Standard Model,

masses are not introduced in this way since left- and right-handed spinors are mixed

in a mass term of the form −mnψnψn. Instead, the Higgs mechanism assigns masses

to the massive SM particles. We discuss the Higgs mechanism in Sec. 1.2.

Free fermions would satisfy the Dirac equation, shown below for a single fermion
1For a matrix U in the fundamental representation, a matrix F transforms in the adjoint

representation if the change of gauge maps F → UFU†.
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flavour:

(iγµ∂µ −m)ψ = 0. (1.1.7)

This admits solutions for ψ and ψ of the form (with p the four-momentum):

ψ(x) = u(p) exp(−ipµxµ), ψ(x) = v(p) exp(ipµxµ). (1.1.8)

Here, u and v are Dirac spinors and anti-spinors. The solutions in Eq. (1.1.8) are two

wave-like modes, one which propagates forwards through time (i.e. in the direction

of increasing time), and the other backwards in time. We refer to the former as the

particle solution and to the latter as the antiparticle solution.

The remaining quantities in Eq. (1.1.5) are related to the gluons. The covariant

(understood to mean gauge-covariant) derivative Dµ is defined by:

Dµ ≡ ∂µ − igsA
a
µt

a, (1.1.9)

where Aa
µ are the gluon vector fields and gs is the strong coupling. The gluons are

massless and the remaining piece of the Lagrangian is given in terms of the gluon

field strength tensor F a
µν :

F a
µν = 2∂[µA

a
ν] + gsf

abcAb
µA

c
ν ≡ ∂µA

a
ν − ∂νA

a
µ + gsf

abcAb
µA

c
ν , (1.1.10)

where the square brackets around Lorentz indices denote antisymmetrisation as

shown explicitly by the identity in Eq. (1.1.10). The gauge bosons Aa
µ are the

particles responsible for mediating the interaction that arises from the local SU(N)

symmetry. The coupling gs parametrises the strength of this interaction. In the basic

Yang-Mills Lagrangian we note that there are terms present schematically of the

form (dropping the γ matrices and the generators ta, and not invoking the Einstein

summation convention):

gsψnAψn, gsAAA g2
sAAAA. (1.1.11)

This exposes the interactions introduced to our theory by requiring local SU(N)

invariance of the Lagrangian. The gluons couple fermions to their antiparticles with
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strength gs as showcased by the first term of Eq. (1.1.11). For the non-abelian theory,

the gauge bosons self-interact, with the possibility of three bosons coupling (with

strength gs) or four (with strength g2
s), shown by the latter two terms. We discuss a

diagrammatic interpretation of these interactions in Sec. 1.3.

Before continuing our discussion of QCD, we briefly discuss the abelian U(1) theory

governing quantum electrodynamics (QED), which is comparatively more simple.

The symmetry group of QED has one generator and thus one gauge boson — the

photon Aµ. The Lagrangian for QED is given by:

LQED =
nf∑

n=1
ψ

j
n(iγµDjk

µ −mnδ
jk)ψk

n − 1
4FµνF

µν . (1.1.12)

Here the QED field strength and covariant derivative are given by:

Fµν = 2∂[µA
a
ν] ≡ ∂µA

a
ν − ∂νA

a
µ,

Dµ = ∂µ − ieAµ,

(1.1.13)

where we have labelled the coupling e (which is equal to the absolute electron charge)

in QED. This is the same as the Lagrangian for the Yang-Mills theory, except that

the abelian nature of QED means the field strength and covariant derivative are

simpler as there is only one generator. There is only one coupling in QED, between

the photon and a fermion and anti-fermion of the same flavour.

Returning to QCD, the Lagrangian of the Yang-Mills theory is written in an unspe-

cified gauge, meaning that we are unable to derive correlation functions (including

propagators — see Sec. 1.3) for the non-abelian theory. The gauge is required to be

fixed as the additional degrees of freedom introduced by the gauge symmetry are

superfluous and unphysical1. A common method of fixing the gauge is by choosing

a covariant gauge. This involves adding a term:

Lξ = − 1
2ξ (∂µAa

µ)(∂νAa
ν), (1.1.14)

to the Lagrangian of Eq. (1.1.5). The parameter ξ ∈ R \ {0} controls the gauge

1The reasoning for this becomes clearer in the path integral formulation of QFT which we do
not discuss in this thesis.
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choice. Taking ξ → 0 gives the Landau gauge and ξ → 1 the Feynman gauge. Other

widely-used methods of fixing the gauge exist, including non-covariant gauges such

as the axial gauge. In some gauges, anti-commuting scalar (spin-0) ghost fields ca,

transforming in the adjoint representation of SU(N), must be introduced to cancel

the unphysical degrees of freedom [24]. This method of fixing the gauge is the

Faddeev-Popov procedure. For fully detailed discussion of this procedure, including

the treatment of ghosts, consult Ch. 71, 72 of ref. [24] and Sec. 16.2-16.4 of ref. [25].

The subject matter of this thesis focuses on developments in the formalism for

making calculations in QCD as formulated in this section. In the next section we

examine the theory in context, as part of the Standard Model.

1.2 The Standard Model and Spontaneous

Symmetry Breaking

As we have discussed earlier, the Standard Model is the quantum field theory de-

scribing three of the four observed fundamental forces of nature. Interactions under

the strong nuclear force, the weak force and the electromagnetic force are described

by a Lagrangian invariant under the gauge group of Eq. (1.0.1) after spontaneous

symmetry breaking (SSB), which we discuss in this chapter.

While we continue to chiefly concern ourselves with the sector of the theory gov-

erned by the SU(3)c symmetry of QCD in this thesis, we connect our study of

precision calculations in QCD to the other sectors of the SM, since one can not

explore each sector in isolation at hadron collider experiments. The Higgs sector in

particular is the least well-explored given relatively recent confirmation by experi-

ment. The experimental community anticipates that data from the high-luminosity

runs of the LHC (HL-LHC) will be able to constrain the Higgs self-couplings in

coming years [26]. To bolster this, strong theoretical understanding of the SM is ne-

cessary in all sectors, since the interactions occurring at hadron collider experiments

are not “chosen” to lie in a specific sector, i.e. if a Higgs boson is observed, one can
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not a priori determine the mechanism by which it was produced.

We use this chapter to outline the Standard Model and provide context to the

predictions we present later in the thesis. Notably this background is relevant for

our description of inclusive pp → H + 1j production in Ch. 4 — where we focus on

the QCD-initiated gluon-gluon fusion (GGF, also referred to as gluon fusion, GF)

production mechanism, rather than the weak boson fusion (WBF, also referred to

as vector boson fusion, VBF) mechanism in the electroweak sector.

In the SM, there are four vector bosons which mediate interactions. The gluons

and photon of QCD and QED respectively are massless, as required by the unbroken

gauge symmetries of the Lagrangian under each interaction. However, the W and

Z bosons mediating weak interactions are observed to be massive, meaning they

cannot arise from an unbroken gauge symmetry [25]. This implies that the Standard

Model symmetry must be broken.

The composite symmetry SU(2)L × U(1)Y is spontaneously broken by the Higgs

mechanism to leave only the abelian symmetry group of QED [24]:

SU(2)L × U(1)Y
Higgs Mechanism−−−−−−−−−→ U(1)e. (1.2.1)

This occurs due to the presence of a complex scalar field Φ transforming in the

doublet representation of SU(2) — the Higgs doublet. This doublet enters in the

Standard Model Lagrangian with the term:

(
DµΦ

)†
DµΦ + µ2Φ†Φ − λ

(
Φ†Φ

)2
=:
(
DµΦ

)†
DµΦ − VH(Φ), (1.2.2)

with the Higgs potential VH(Φ) and the covariant derivative for the (non-strong)

part of the Standard Model:

Dµ = ∂µ − igLτ
aW a

µ − 1
2gY Y Bµ. (1.2.3)

Here, W a are the three gauge bosons of SU(2)L, each attached to a generator τa of

the same group, and Bµ the one gauge boson associated to the abelian symmetry

U(1)Y with generator Y . We may notice immediately that the potential VH is
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symmetric under SU(2) transformations (for fixed parameters µ, λ) and the locus of

the vacua (i.e. the minima of the potential) is the curve defined by:

Φ†Φ = v2

2 ≡ 1
2
µ2

λ
. (1.2.4)

These vacua are infinitely degenerate. When the symmetry is spontaneously broken,

Nature assigns to the physical Higgs doublet a vacuum expectation value (VEV) v,

and a direction.

As a consequence of this symmetry breaking, the Hilbert spaces occupied by the

Higgs doublet are built around the chosen vacuum. This reduces the degrees of

freedom in the doublet from four to one, and only one real field manifests — the

Higgs boson H. The other degrees of freedom are the scalar Goldstone bosons,

however, a convenient choice of gauge can re-express these degrees of freedom as the

longitudinal polarisations of the massive W and Z bosons — this is referred to as

the unitary or sometimes the unitarity gauge [25]. Replacing Φ in Eq. (1.2.2) by the

doublet as composed in this unitary gauge gives:

Φ = 1√
2

 0

v +H

 . (1.2.5)

Substituting this into the Higgs Lagrangian of Eq. (1.2.2) gives rise to gauge-invariant

mass terms, dependent on the vacuum expectation value v, for the weak-mediating

gauge bosons:

W±
µ = 1√

2
(W 1

µ ∓iW 2
µ), Zµ = cos θWW

3
µ −sin θWBµ, Aµ = sin θWW

3
µ +cos θWBµ,

(1.2.6)

where we have defined the weak mixing angle or Weinberg angle by:

tan θW = gY

gL

. (1.2.7)

These are the W± bosons and the Z boson, respectively the first and second terms

of Eq. (1.2.6). The masses of these bosons after SSB can be derived from the

coefficient of the terms quadratic in W± and Z, from expanding the full expression
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for the covariant derivative of Eq. (1.2.3) in Eq. (1.2.2). These masses, mW (the two

W bosons have equal masses) and mZ , are related by mW = gLv/2 ≡ mZ cos θW .

Since these bosons manifest each with a mass following spontaneous symmetry

breaking, they acquire also longitudinal polarisations (that would previously have

been unphysical) which absorb the additional degrees of freedom that would have

formed the Goldstone bosons of the theory [25]. The Higgs boson itself gains a mass

of mH =
√

2µ.

The (massless) photon of QED is denoted by Aµ and represents the unbroken part

of the symmetry, invariant under local U(1)e transformations. Together with the

gluons (which we here denote by Ga
µ to further distinguish them from the photon)

of the unbroken SU(3)c symmetry we can write a fully covariant derivative:

Dµ = ∂µ − igLτ
aW a

µ − 1
2gY Y Bµ − igst

aGa
µ, (1.2.8)

for the Standard Model gauge group.

Pre-SSB, the fermions in the theory observe symmetry under SU(2)L, thus there

can be no terms in the Lagrangian that mix left- and right-handed fermion fields

such as mass terms. However, post-SSB we can see that mass terms arise for the

fermion fields in the theory via the Yukawa couplings:

LYukawa = ψiyijΦψj + h.c., (1.2.9)

where h.c. refers to the Hermitian conjugate. This means left- and right-handed

fermions can be mixed to yield gauge-invariant mass terms as required. These

couplings are proportional to the masses of the fermions meaning the Standard

Model Higgs couples more strongly to heavier fermions.

Before concluding, we explore the transformation properties of the particle content

of the Standard Model. In Fig. 1.1, we see the quarks and leptons of the theory

as well as the force-carrying vector bosons and the Higgs. Charged under all three

interactions of the Standard Model are the quarks of which there are the left-handed

and right-handed forms. SU(3)c does not differentiate between left- and right-handed
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Figure 1.1: Field content of the Standard Model with fermions arranged
in their generations. The masses, spins and electric charges of each (as
fractions of e) particle are also shown. Figure from ref. [1].

quarks, as such they transform in the fundamental representation of SU(3)c, and

antiquarks in the anti-fundamental. The left-handed quarks, however, form doublets

in SU(2)L which transform in the fundamental representation. In the Standard

Model there are three such doublets of quarks — each referred to as a generation.

In the fundamental representation of SU(2)L, we denote these by:

QL = (uL, dL), (1.2.10)

where uL is the up-type quark in each generation (i.e. the positively charged under

QED) and dL is the down-type (negatively charged under QED). The up-type quarks

are (in order of increasing mass) the up u, charm c, and top/truth t quarks while the

down-type quarks are the down d, the strange s, and the bottom/beauty b quarks

(similarly ordered). The generations are shown in columns in Fig. 1.1.

The right-handed quarks manifest as singlets in SU(2)L, and are generally denoted

by uR (for the up-type quarks) and dR (for the down-type). These transform trivially

(i.e. are uncharged) under SU(2)L. There are three right-handed singlets for each of

the up- and down-type quarks in the Standard Model.
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The leptons also form generations as shown vertically again in Fig. 1.1. The left-

handed leptons transform as doublets in the fundamental representation of SU(2)L

and are denoted by:

LL = (νl,L, lL), (1.2.11)

where νl is the neutrino corresponding to the lepton l. There are three leptons in

the Standard Model, the electron e, muon µ and tau/tauon τ and each forms a

generation with the corresponding neutrino. The left-handed leptons all transform

trivially (i.e. are uncharged) under SU(3)c and form doublets transforming in the

fundamental representation of SU(2)L. The neutrinos are neutral under QED while

the leptons all carry electric charge −e. In the Standard Model, no mechanisms

give rise to neutrino masses. Thus the observation of neutrino masses must be

explained by physics beyond the standard model, or by adding a Higgs-neutrino

Yukawa coupling term to the SM. Adding such a coupling term is undesirable since

the Higgs Yukawa couplings are proportional to the particle masses; for the neutrinos

this term would hence be vanishingly small and pose a “fine-tuning” style problem

similar to the hierarchy problem.

The right-handed leptons lR similarly form singlets under both SU(3)c and SU(2)L

and are necessary to give the leptons mass. There are three right-handed leptons,

corresponding to each massive lepton observed in the Standard Model.

We re-emphasise in this section that the Standard Model, while certainly one of

the most well-tested theories in physics, is incomplete. The Super-Kamiokande ex-

periment demonstrated, for example, that neutrinos exhibit oscillation [27] i.e. their

flavours change as they propagate. This effect is only possible if the neutrinos are

massive — though experiments have constrained the neutrino masses to very small

values. This means there must be three singlet right-handed neutrino νl,R fields in

an extension of the Standard Model with massive neutrinos.

Most visibly, the Standard Model excludes a description of gravity. It can be

shown that the quantum field-theoretic description of gravity would require a tensor

field to mediate the interaction [24] — the graviton. However this poses problems
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for the ultraviolet-renormalisability (we discuss renormalisation in Sec. 1.3.2) of the

theory [25].

The incompleteness of the SM is also readily apparent from cosmological obser-

vations. It has long-since been known that visible matter accounts for ∼ 5% of

the energy density of the observable universe, with the rest being comprised of

dark matter and dark energy. Accounting for this discrepancy with QFTs requires

introduction of new fields to the Standard Model Lagrangian [25].

For the remainder of this chapter, we draw the connection between this theoret-

ical formalism and experiments by constructing theoretical equivalents to physical

quantities and observables. We discuss perturbation theory in QCD in the larger

picture of QCD at hadron colliders in the next section.

1.3 QCD at Hadron Colliders

The research presented in this thesis is centred around developments in perturbation

theory, which is an indispensable framework that can be used to produce calculations

in QCD at hadron colliders. In this section we discuss amplitudes at perturbative

scales, where the quarks and gluons participate in hard interactions. Then we connect

this to the physical picture of QCD as it manifests in nature and discuss how hadron

collider experiments allow us to compare predictions to data.

1.3.1 Perturbative QCD

The fundamental quantity that can be directly extracted from particle collider ex-

periments is the cross section which relates the particle collision events N per unit

time to the luminosity L (the rate of change of the incoming particles over beam

area with respect to time) by:

σ = 1
L

dN
dt . (1.3.1)

One needs only connect this formula to the theory we have constructed in terms of

the fields participating in the process.
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In perturbation theory, particles are modelled as being free (i.e. not interacting)

for early and late times, and interacting for short periods of time. Perturbation

theory can be applied in the cases that the interaction terms of a theory (those

coupling multiple particles in the Lagrangian) are much smaller than the free terms

(the kinetic and mass terms of the Lagrangian). Thus, perturbative interactions

occur only when particles are at short distances to each other.

We define states in our theory to be configurations of multiple excitations of

our fields. The probability of scattering one configuration of particles (restricting

ourselves for simplicity of notation to one type of field) with momenta ki (i ∈

{1, ..., n}) at t = −∞ to another set of particles with momenta pj (j ∈ {1, ...,m})

at t = +∞ is the square of the (absolute value of the) overlap:

P =
∣∣∣t=+∞ ⟨{pj}| {ki}⟩t=−∞

∣∣∣2 . (1.3.2)

In the theories we presented in Sec. 1.1 there were interactions present that could

make these processes possible. Assuming that these interactions are not present

for very early or very late times we can reinterpret these states in the interaction

picture [25], and define an according time evolution operator S(t) which evolves the

incoming to the outgoing states:

t=+∞⟨{pj}| {ki}⟩t=−∞ = lim
t→∞

⟨{pj}|S(t) |{ki}⟩ . (1.3.3)

The operator S(t) is known as the S-matrix and is unitary to ensure conservation

of probability [24]. It may be further decomposed to:

S = 1 + iT, (1.3.4)

which separates the overlap Eq. (1.3.3) to the identity 1 which will describe the

no-scattering process, and the transfer operator T which describes the scattering

processes where changes to the number of particles, and their momenta, may occur.

From the unitarity of the S-matrix in Eq. (1.3.3), we may derive the following
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relation for the transfer matrix:

T †T = −i(T − T †). (1.3.5)

The matrix element (ME) or amplitude M for a process is a Lorentz-invariant

quantity defined via:

⟨{pj}| iT |{ki}⟩ = (2π)dδ(d)

 n∑
i=1

pj −
m∑

j=1
ki

 · iM({ki} → {pj}), (1.3.6)

in d-dimensional space-time.

QCD is not perturbative at macroscopic scales as we discuss in Sec. 1.3.3; the

quarks and gluons are not accessible at low energies. Only hadrons — bound states

of QCD — may be accessed at such scales. At high energy scales (or small distance

scales) QCD is a perturbative theory, and the cross section for a partonic 2 → n

particle scattering process is defined by:

σ̂ =
∫

dΦn · 1
F

· |M2→n(Φn)|2. (1.3.7)

Here, the (squared) matrix elements have been summed and averaged over final and

initial state (respectively) spins and colours and polarisations, as denoted by the

bar. The quantity F is the flux, and depends only on the incoming particles, while

Φn is the n-particle Lorentz-invariant phase space, and dΦn a differential element of

this phase space. The Lorentz-invariant phase space is dependent on the final state

particle momenta. If the incoming particles have momenta pa and pb and the final

state particles have momenta pf for f ∈ {1, . . . , n}, we may express the differential

Lorentz-invariant phase element as:

dΦn =
 n∏

f=1

d3pf

(2π)3
1

2Ef

 (2π)4δ(4)

pa + pb −
n∑

f=1
pf

 . (1.3.8)

In perturbation theory we assume the interacting theory is a small perturbation

around the free theory [25]. To expand our theory perturbatively, the coupling gs

must be small. We can then use the coupling as our expansion parameter to produce
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the power series expansion for the cross section:

σ̂ = αk
sK

LO + αk+1
s KNLO + αk+2

s KNNLO + . . .+ αk+n
s KNnLO + . . . , (1.3.9)

where αs ≡ g2
s/4π. One may then terminate the series at the required accuracy. LO

signifies an expansion to the leading order of perturbation theory (i.e. the lowest

order at which the process may occur), and the notation NnLO denotes the expansion

carried n powers above the leading order i.e. the (next-to-)nleading order term. Thus

the quantities KNnLO represent the NnLO correction (factorised of the appropriate

power of αs) to the cross section, with KLO the LO cross section (factorised of αk
s).

An expansion up to a finite order in perturbation theory is referred to as a fixed-

order (FO) expansion, where we expand to finite power n above the leading order. LO

and NLO predictions are readily available for most Standard Model processes with

the frontier at N3LO in, for example, low-multiplicity QCD processes [28]. Higher

orders are notoriously difficult to calculate, and we discuss these complications in

more detail in Sec. 1.3.2. Further, we have only thus far discussed partonic cross

sections, we expand on the connection to the non-perturbative theory in Sec. 1.3.3.

Feynman diagrams and kinematics

To calculate a cross section to a given perturbative accuracy, all amplitudes con-

tributing to the process up to that order must be calculated. A useful framework

for evaluating these amplitudes is with Feynman diagrams. These are constructed

from the Feynman rules for the theory, which can be derived from the terms in the

Lagrangian. We interpret each interaction as a vertex that connects the interacting

particles present. Initial and final state particles are referred to as external particles

(which are physical and on-shell1). For most processes at LO (and all at higher

orders) internal particles referred to as propagators (virtual, off-shell particles that

propagate internally and do not feature in initial/final states) are required to con-

1On-shell signifies a particle for which the square of the four-momentum is equal to the (square
of the) rest mass. For virtual/off-shell particles, the virtuality is the difference between the invariant
mass and the rest mass of the particle.
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nect the external particles corresponding to the initial and final states. For a FO

expansion, all diagrams contributing up to that order are required.

The Feynman rules allow us to derive a mathematical expression corresponding

to each diagram, these can then be summed to give the amplitudes at the required

order. These diagrams quickly become involved to calculate and can feature (at

higher orders) intricate and complex symmetries and structures such as internal

loops.

For 2 → 2 scatterings, we can define the Mandelstam variables in terms of the

momenta of the incoming and outgoing particles. For scatterings of the form pa, pb →

p1, p2 these are defined by:

ŝ = (pa + pb)2 = (p1 + p2)2 m→0−−−→ 2pa · pb = 2p1 · p2,

t̂ = (pa − p1)2 = (pb − p2)2 m→0−−−→ −2pa · p1 = −2pb · p2,

û = (pa − p2)2 = (pb − p1)2 m→0−−−→ −2pa · p2 = −2pb · p1.

(1.3.10)

The hat notation denotes — as for the partonic cross section in Eq. (1.3.7) — quant-

ities relating to partonic interactions. The Mandelstam variables represent the

invariant mass of the exchanged particle in the relevant channel. For example, we

refer to a diagram as an s-channel diagram if the exchanged gluon has (squared)

invariant mass ŝ and momentum q = pa + pb. The limits as the mass tends to zero

are shown in Eq. (1.3.10), which will become relevant for partonic processes that

typically occur at large energies compared to the on-shell quark masses in the SM

(excluding the top quark).

In Fig. 1.2, three LO diagrams contributing to gg → gg scattering at the parton

level are shown. Highlighted in each diagram is the momentum of each external

gluon, and the momentum (q) of the exchanged virtual gluon, as well as adjoint

colour indices (Latin letters), and Lorentz vector indices (Greek letters). We have

excluded an additional LO diagram (arising from the four-gluon vertex) which also

contributes, since we focus the discussion on Mandelstam variables.

Amplitudes can be expressed in terms of the Mandelstam variables, and their
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Figure 1.2: Three Feynman diagrams contributing at LO to gg → gg
scattering for momenta papb → p1p2. The top-left, top-right, and bottom
diagrams are mediated by gluon exchange in the s-, t-, and u-channels
respectively.

inclusion makes clearer the dependence of an amplitude on the kinematics. Further,

for interactions with more particles, one may define the invariant mass of any two

momenta by a generalised Mandelstam-ŝ variable:

ŝij = (pi + pj)2 m→0−−−→ 2pi · pj = 2pj · pi. (1.3.11)

This will become useful when we outline the High Energy Jets framework in Sec. 2.2,

where other kinematic variables are used.

Feynman diagrams impose momentum conservation at every vertex, meaning that

momentum is conserved across the diagram. Sec. 4.6-4.7 of ref. [25] contains in-

depth discussion of how the Feynman rules may be derived for a theory in full detail,

while a list of Feynman rules for the Standard Model may be found in Appendix

A.1 of ref. [25] and throughout ref. [24] as well as many other prominent QFT

textbooks including (and not limited to) ref. [21]. The rules for QCD specifically

are summarised in the Appendix of ref. [29] and Sec. 1.4 (p. 10) of ref. [30].
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Spinor-helicity formalism and amplitudes

Feynman diagrams are not the only framework within which perturbative calculations

can be made. We consider the spinor-helicity formalism and how it may be applied

to calculate amplitudes in this section.

Returning to the γ matrices of Dirac theory, we note that the Clifford algebra of

Eq. (1.1.6) does not define them uniquely, and they can be written in different bases.

In this thesis we use the Weyl basis in four-dimensional spinor space:

γµ =

 0 σµ

σµ 0

 , (1.3.12)

where σµ is the Lorentz four-vector extension of the Pauli matrices σi and is given

by σµ = (12, σ⃗)µ and σµ = (12,−σ⃗)µ. It can be verified that Eq. (1.3.12) satisfies

the Clifford algebra Eq. (1.1.6).

The left-right projection operators, respectively PL, PR, are defined by:

PL
R

= 1 ∓ γ5

2 , γ5 ≡ iγ0γ1γ2γ3. (1.3.13)

Here PL corresponds to the minus solution and PR to the plus solution. Writing a

Dirac spinor u = (u−, u+) where u± are the two-component Weyl spinors, we may

use the projection operators of Eq. (1.3.13) to arrive at:

PLu = (u−,0), PRu = (0, u+). (1.3.14)

Fermion spinors can be related directly to helicity states. In the limit of massless

fermions, we make the following definitions [31,32]:

u±(pi) = v∓(pi) ≡ |i±⟩ ≡ |p±
i ⟩ ,

u±(pi) = v∓(pi) ≡ ⟨i±| ≡ ⟨p±
i | .

(1.3.15)

We will use the notation:

|k+⟩ ≡ |k], |k−⟩ ≡ |k⟩ ,

⟨k+| ≡ ⟨k| , ⟨k−| ≡ ⟨k| ,
(1.3.16)
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throughout this thesis, and define the spinor products by:

⟨ij⟩ = u+(pi)u−(pj), [ij] = u−(pi)u+(pj),

⟨ij] = u+(pi)u+(pj), [ij⟩ = u−(pi)u−(pj).
(1.3.17)

Operators (such as the γµ matrices) can also be placed between helicity states in

spinor products. Products of helicity states are also related to momenta and the

Mandelstam variables e.g.:

(pi + pj)2 = ⟨ij⟩ [ji] ≡ ŝij. (1.3.18)

In this formalism, gluon polarisation vectors can be expressed as:

εµ
−(k) = ⟨q| γµ|k]√

2⟨qk⟩
, εµ

+(k) = − [q|γµ |k⟩√
2[qk]

, (1.3.19)

with q a massless reference vector not collinear with the gluon momentum k.

Amplitudes evaluated in the spinor-helicity formalism separate the kinematics of

a matrix element from the colour structure in QCD. For instance, the LO scattering

of n gluons with momenta {pi} and helicities {λi} takes a simple form [32]:

MLO
ng ∝

∑
σ∈Sn/Zn

Tr[taσ(1) · · · · · taσ(n) ]M(σ(1λ1), . . . , σ(nλn)), (1.3.20)

where ta are the generators of QCD in the fundamental representation of the gauge

group and σ is an arbitrary non-cyclical permutation of the indices. We recommend

the reader ref. [32] for a comprehensive overview of this formalism, indeed we will

make use of relations listed in this review and the references therein when deriving

the amplitudes of High Energy Jets in Sec. 2.2.

1.3.2 Higher Orders and Divergences

The majority of processes in the SM have relatively simple leading-order amplitudes,

with few diagrams contributing and no loops present in any of the Feynman dia-
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grams1, these are often referred to as tree-level or Born-level amplitudes. As noted

in the previous section, this picture swiftly gains in complexity above the leading

order. Truncating Eq. (1.3.9) at the NLO term, we obtain the NLO cross section:

σ̂NLO = αk
sK

LO + αk+1
s KNLO. (1.3.21)

In terms of amplitudes, those contributing to the NLO cross section include the

LO as well as amplitudes containing real and virtual emission corrections. Real

emission amplitudes (at NLO) contain one more external particle than the LO.

Virtual emission amplitudes contain one additional internal particle, forming a loop.

This makes the expression for the NLO cross section more complex as the virtual-

and real-emission amplitudes live in different phase spaces. The NLO partonic cross

section is given in terms of these amplitudes as:

σ̂NLO =
∫

dΦ0
1
F

(
|MLO|2 + 2 Re MLO

(
Mvirtual

)∗
+
∫

dΦ1|Mreal|2
)
, (1.3.22)

with Φ1 the Lorentz-invariant phase space2 over the additional real emission above

LO (Φ0), and the superscripts of the amplitudes indicate which parts of the process

they correspond to. For compactness, Eq. (1.3.22) can be summarised as:

σ̂NLO =
∫

dΦ0

(
B(Φ0) + αsV (Φ0) +

∫
dΦ1αsR(Φ1)

)
, (1.3.23)

where B is the LO term, V is the term for the virtual corrections (with identical

phase space to the LO), and R the real-correction term. This notation will become

useful when we discuss matching and merging to parton showers in Sec. 2.3.3, and

when we discuss NLO calculations in Monte Carlo event generation (Sec. 1.5.2).

1A notable exception is Higgs production through the gluon-gluon fusion mechanism, whose
interaction is mediated by a massive quark loop at leading order.

2The notation here differs slightly from Eq. (1.3.8) where the subscript indicates the multiplicity.
Here Φn denotes the additional phase space with n emissions above LO.
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Figure 1.3: The gluon-quark-antiquark (gqq) vertex in QCD at LO (a) and
an example of a virtual loop correction (b). The momentum p1 + p2 of the
gluon is incoming while p1 and p2 are both outgoing.

Loops and Renormalisation

Loops at higher orders induce corrections to the Feynman rules. The LO vertex

term between a gluon and a quark and antiquark is shown in Fig. 1.3(a) and has

Feynman rule igsγ
µta,ij, where the antiquark has colour index i and the quark has

colour j in the fundamental representation, and the gluon has colour index a in the

adjoint. Denoting the general vertex rule by igsΓµ,a,ij, we can evaluate the vertex at

different orders in perturbation theory. The virtual correction Fig. 1.3(b) contains

a loop, formed by connecting a gluon propagator to the outgoing quarks. There is

an unconstrained momentum k that runs through the loop which introduces a loop

integral. The NLO part of the vertex is given by the loop integral:

Γµ,a,ij
NLO (p1, p2,m) := 4παs · tb,ik · ta,kl · tb,lj

∫ d4k

(2π)4
γν(γ · p2 − γ · k +m) · γµ · (γ · p1 + γ · k +m)γν[

(p2 − k)2 −m2
]

· k2 ·
[
(p1 + k)2 −m2

] .

(1.3.24)

This integral over the loop momentum is logarithmically divergent since the limits

are unbounded from above. We refer to a divergence due to large loop momentum as

an ultraviolet (UV) divergence [25], since in QED this would correspond to photons

of large energy.

The integrals of this form arising in perturbation theory are regularisable i.e. we
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can decompose them into their finite and divergent parts. We summarise broadly

the procedure of dimensional regularisation most commonly used to regularise loop

integrals in perturbation theory. This method is often seen as most suitable as the

results it yields are both Lorentz- and gauge-invariant [25].

In dimensional regularisation (often abbreviated to dim. reg.) we work in d := 4−2ϵ

space-time dimensions for some small ϵ > 0 and analytically continue the integrals

such that we may obtain analytic expressions of their divergent (in d = 4) parts.

We can recover the original integral at any stage by taking ϵ → 0. To maintain

dimensionality we introduce a scale of mass dimension +1 called the renormalisation

scale µR, which transforms our integration measure:

d4k

(2π)4 → µ2ϵ
R

d4−2ϵk

(2π)4−2ϵ . (1.3.25)

We may then follow the stages in Ch. 7 of ref. [25] (which focuses on QED though

the discussion generalises) to work through the integration and obtain a Laurent

series expansion for the integrals. Referring to an arbitrary integral I we may write:

I = C−2

ϵ2 + C−1

ϵ
+ C0 + O(ϵ), (1.3.26)

where the divergent part is contained in the poles in ϵ, ϵ2 and the rest of the integral

is finite.

With regularisation we can calculate the finite parts of the integrals, however

all we have done so far is express the (UV-)divergent parts in terms of unphysical

poles. We know that the final result must be free of divergences as these are not

observed in nature, thus we include the poles in the definitions of the bare quantities

entering our theory (i.e. the fields, couplings and masses). This is the process of

renormalisation and elegantly ensures that calculable quantities from our theory are

free of UV divergences [25].

Instead of using the interaction term of the QCD Lagrangian at LO, we can

represent the term for the vertex as a perturbative expansion in the strong coupling:

Γµ = Γµ,a,ij
LO + Γµ,a,ij

NLO + ..., (1.3.27)
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where Γµ,a,ij
LO = γµta,ij. Each subsequent term contributes an additional power of

4παs. One can use the vertex term expanded to the relevant accuracy for the

perturbative expansion.

To ensure we can perform calculations this way we need to redefine the bare

parameters in the Lagrangian to physical quantities with divergences absorbed into

the normalisation [25]. We write:

L = Lrenormalised + Lcounter−terms, (1.3.28)

where the terms in Lrenormalised are formed from the physical renormalised quantities

of our theory. The fields, for example, are rescaled from their bare formulation to

the physical:
ψn,bare :=

√
Z2ψn,

Aa,µ
bare :=

√
Z3A

a,µ,

ca
bare :=

√
Z2c

a,

(1.3.29)

where we use the expansion of the vertex Γµ,a,ij (as well as the self-energies of the

particles and the other vertices) to absorb the poles in ϵ into their definition1. Since

this does not produce an identical Lagrangian to the bare Lagrangian we started

with, we need to add counter-terms containing just the unphysical, divergent parts.

We express the coefficients Zj as:

Zj = 1 + δj, (1.3.30)

with δj containing the divergence (as well as part of the finite expression as we will

see with renormalisation schemes). The coefficients of each field in the counter-term

Lagrangian is thus δj so that the bare field is reconstructed by the sum.

Thus when we calculate a diagram above LO, we use the Feynman rules obtained

at the order at which the diagram manifests, knowing that the UV divergences cancel

in all of our final expressions. This is because they have been absorbed into the
1We have shown the renormalisation factor for ghosts ca, however if we work in a gauge that

does not introduce ghosts to the theory, this term is not needed.
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definition of our physical fields, masses and couplings [25]. The UV divergences then

cancel exactly in the limit ϵ → 0 as required for calculations in our theory.

Running coupling

The renormalisation scale µR was introduced in Eq. (1.3.25) to retain dimensionality

of the integral measure and is not a physical feature of our theory, thus a physical

quantity observable in experiment must be independent of this scale. Denoting an

arbitrary observable quantity by R({pj}, αs, {mj}) where the outgoing momenta are

indexed by pj and the participating fields in the interaction have masses mj, we can

express this invariance requirement as [30]:

µR

d
dµR

R ≡

µR

∂

∂µR

+ µR

dαs

dµR

∂

∂αs

+ µR

∑
j

dmj

dµR

∂

∂mj

R = 0. (1.3.31)

Here we have removed the arguments of R for concision. We may define the β-

function for the coupling αs and the anomalous mass dimensions γ for the masses

mj as:

β(αs) := µR

dαs

dµR

,

γ(mj) := µR

mj

dmj

dµR

.

(1.3.32)

This allows us to rewrite Eq. (1.3.31) as:

µR

d
dµR

R ≡

µR

∂

∂µR

+ β(αs)
∂

∂αs

+
∑

j

mjγ(mj)
∂

∂mj

R = 0, (1.3.33)

which is the renormalisation group equation in QCD for the observable R. Similar

relations may be obtained by analysing the correlation functions or n-point Greens

functions of a theory. We point the reader to Ch. 12 of ref. [25] and Ch. 28 of ref. [24]

for detailed derivations from the correlation functions.

The implications of scale-independence of observables are that the renormalised

couplings and masses in the theory run, i.e. they depend on µR non-trivially. The

quantities defined in Eq. (1.3.32) have expansions in αs which means they can be

expanded to orders in αs not unlike the cross section and other observable quantities.

Renormalisation does not imply that we may only absorb infinities into the defini-



50 Chapter 1. Introduction

tions of fields and quantities entering our theory. Indeed, we may carry finite parts

of the loop integrals in our renormalisation. Different prescriptions for expressing

the renormalised quantities are referred to as renormalisation schemes. The minimal

subtraction (MS) scheme subtracts only the poles as they appear in Eq. (1.3.26)

while the MS (MS-bar) scheme absorbs also the constant term: −γE + log(4π) (with

γE = 0.57721... the Euler-Mascheroni constant) to the counter-terms, since this

generally appears with the poles in loop integrals as part of the finite C0 term in the

expansion [25]. Choosing a different renormalisation scheme will produce different

running of the coupling and of the masses i.e. αMS
s (µR) ̸= αMS

s (µR).

The QCD β functions are power series in αs:

β(αs) = −αs

∞∑
n=0

βn

(
αs

4π

)n+1
, (1.3.34)

where terms βn may be calculated by renormalising the theory to n+ 1 loops. The

one-loop correction coefficient β0 is given by [30]:

β0 = 11
3 CA − 4

3nfTR, (1.3.35)

For QCD with Nc = 3 and quarks transforming in the fundamental representation

(with TR = 1/2) we can express the one-loop β-function as β0 = 11 − 2
3nf . We often

assume the quarks in the theory are massless and thus the number of fermions we

choose to include in the theory can vary depending on the application. While there

are six distinct Standard Model quarks charged under the strong force, many often

work in schemes assuming a smaller number of massless quarks — at the scales of

hadron collider experiments, this is a solid approximation. Five flavour schemes

(excluding the top quark) are most often used since the top mass is so large that it

is only produced at extremely large centre-of-mass (CoM) energy.

The result up to three loops is quoted in Ch. 2 of ref. [30] while the most recent

calculations of the running of αs are five-loop accurate. We direct the reader to

ref. [33] for explicit expressions of the SU(3) QCD β-functions up to this accuracy

and note that the normalisation Baikov and collaborators use in this study differs
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Figure 1.4: The running of αs as compiled from several different experi-
mental results. The figure is from the proceedings of the 2015 workshop
High precision measurements of αs: From LHC to FCC-ee at CERN [2]

slightly from the convention used by Ellis and collaborators in ref. [30], though

the results are equivalent. The higher-order terms are naturally dependent on the

renormalisation scheme used.

QCD is an asymptotically free theory. This means that the strength of the coupling

diminishes with increasing energy scale as can be seen in Fig. 1.4 which displays this

running. As QCD approaches the non-perturbative limit, confinement is observed

and the free particles of the theory form hadrons. Thus to probe the perturbative

theory, we need to examine the structure of the hadrons we observe in nature at

significantly higher energy scales.

We may solve the equation for the running coupling by expanding the β-function

to the required order in αs, to one loop we arrive at:

αs(µ) = αs(µ0)
1 + αs(µ0)

4π
β0 log µ

2

µ
2
0

, (1.3.36)

where we have used the definition of ref. [30] for the βn coefficients. Plain in this

expression is the region for which the theory is perturbative. We may calculate the

scale for which αs(µ) diverges to see where perturbativity breaks down, given the
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Figure 1.5: A real emission correction to the QCD gluon-quark-antiquark
vertex of Fig. 1.3(a)

value of αs at a certain reference scale. Generally, the mass of the Standard Model

Z boson is used for this scale as experimental data gives robust constraints on this

value. Results from CMS in 2020 [34] give αs(mZ) = 0.1175+0.0025
−0.0028, which means we

can calculate the scale at which perturbative QCD breaks down ()ΛQCD) and find it

to be at the scale ΛQCD = O(200) MeV (dependent on the renormalisation scheme),

though this is only a LO-accurate statement since we used the one-loop running to

determine the scale.

Infrared divergences and the KLN theorem

Returning to the loop integral for the vertex correction Eq. (1.3.24) corresponding

to the vertex shown in Fig. 1.3(b), we can observe that the integrand diverges in

the limit of k2 → 0, i.e. when the internal gluon becomes on-shell. In this case,

the momentum of the gluon is small (or soft). We refer to this as an infrared

(IR) divergence (again naming the regime by analogy to QED — where this would

correspond to a soft photon). These are treated differently than UV divergences —

which we had to renormalise our theory to accommodate.

This is where the role of the real emission corrections, Mreal from Eq. (1.3.22),

enters. Referring to Fig. 1.5, we can see an example of the real emission corrections,

where an on-shell gluon is emitted from a final state quark.

If this configuration manifests in an amplitude (assuming the gluon with mo-



1.3. QCD at Hadron Colliders 53

mentum p1 + p2 + k is connected to some hard process), it contributes a factor:

ui(p2)ε∗
b,µ(k) · (igs)2 · ta,ik · tb,kj · γµ i (γ · p2 + γ · k −m)

(p2 + k)2 −m2 γν · vj(p1), (1.3.37)

to the amplitude for that diagram, where b is the adjoint colour index of the gluon

real emission with momentum k. This is divergent when the internal quark with

momentum p2 + k becomes on-shell. The divergence is associated to the limit of

k → 0 since the on-shell external leg has mass m and momentum p2 which implies

(p2)2 = m2. The amplitude contains an extra final state particle, the emitted gluon,

which means the contribution to the cross section has to be integrated over the larger

Lorentz-invariant phase space Φ1.

In the limit that the emitted gluon is soft, and the quark leg is massless, we may

make the eikonal approximation [35]:

i (γ · p2 + γ · k)
(p2 + k)2 → iγ · p2

2p2 · k
, (1.3.38)

by assuming that the the energy of p2 is much larger than that of k. This approxim-

ation is commonly taken and can simplify calculations greatly for matrix elements,

especially for higher-order virtual corrections [36].

Examining the denominator of Eq. (1.3.37) more closely we may simplify the

square of the momentum and express it as:

(p2 + k)2 −m2 = 2p2 · k = E2Ek

1 −

√√√√1 + m2

E2
2

cosϑ

 , (1.3.39)

where E2 (Ek) corresponds to the energy of p2 (k), and we have denoted by ϑ the

angle (in 3-dimensional Euclidean space) between p2 and k. We can see here that

there is a soft divergence when either k or p2 approach 0. Similarly, approximating

the fermion mass as zero1 introduces a collinear divergence when the angle between

the two momenta approaches 0 or 2π. All of these are part of the infrared-divergent

structure of the theory.
1This is a generally taken approximation at hadron collider experiments where the energies

probed are several orders of magnitude larger than the light quark and lepton masses.
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After integration over Φ1, these divergences manifest as poles with opposite signs

between the real and virtual corrections1, meaning they cancel exactly order-by-

order in perturbation theory. This is shown by the KLN (named for the study

of Kinoshita [37], and of Lee and Nauenberg [38] which explore independently the

divergent structure of Feynman amplitudes focusing on QED) theorem, which demon-

strates that loops with soft momenta and soft real emissions are degenerate, meaning

that the divergence cancels for any inclusive infrared-safe observable (we discuss

observables and infrared safety in Sec. 1.4).

The notion of inclusive and exclusive quantities is hugely relevant to the subject

matter of this thesis. A quantity is described as inclusive if part of the contribution

has been left unspecified and the associated degrees of freedom integrated over.

Inclusivity must always be referred to in relation to some quantity, e.g. for jet

production at hadron colliders, inclusive generally refers to the jet multiplicity since

jets are produced from many different sources that cannot all be taken into account in

a single calculation (see Sec. 1.4 for discussions of jets). When we discuss inclusivity

in the context of HEJ resummation when considering theHEJ+Pythia merging of

Ch. 3, the meaning is analogous, namely that there are regions of phase space not

targeted by the resummation, thus the resummed cross section must be inclusive in

those regions.

Exclusivity refers to the opposite situation, namely that the phase space configur-

ation under consideration is fully determined in terms of particles, their quantum

numbers, and their momenta. Differential observables (which we discuss in Sec. 1.4)

are exclusive quantities in this regard. Similarly, for theoretical predictions, the

exclusive regions of phase space are those where all degrees of freedom are explicitly

calculated.

In summary, we have a fully regularised, renormalised expression for the cross

section at NLO of Eq. (1.3.21). We may generalise this to higher orders, considering

1Dimensional regularisation can be used to show this, and is normally performed in d = 4 + 2ϵ
dimensions for ϵ > 0 to reflect that the integral diverges for d ≤ 4 in the IR regime.
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all combinations of real and virtual corrections that appear at required order in

perturbation theory. Since the theory is UV-renormalised, we know that the high

energy behaviour of our theory is accounted for. As a consequence of the KLN

theorem, the infrared behaviour cancels providing all contributions are appropriately

evaluated and integrated over their respective phase spaces. This becomes increas-

ingly difficult above NLO. For example, at NNLO one needs to consider diagrams

containing real-real, real-virtual and virtual-virtual corrections.

All-orders approaches

While fixed-order perturbation theory is a useful tool, expanding to low orders in the

coupling can be a limiting approximation. Often the couplings αi are not the parts

of the amplitude which lead to divergences or slow convergence in an amplitude, but

large logarithms L of widely differing scales can arise which make the product αm
i L

m

divergent or slowly convergent [30].

In some cases, these logarithms may be analytically resummed to all orders. Ex-

amples of these include resummation of large logarithms of ŝ/t̂ in QCD [39] which

gives rise the the BFKL formalism [40–44], and which inspires the approach of High

Energy Jets we expand on in Sec. 2.2. The soft-collinear regime discussed here also

gives rise to large logarithms in QCD [30, 39], and these are resummed by parton

showers, which we discuss in Sec. 2.3. Resummation is a central component of the

work presented in this thesis and we expand on it in greater detail, focusing on de-

velopments and applications of these formalisms, in Ch. 2. Ch. 3 presents a method

of merging High Energy Jets resummation with a parton shower, and Ch. 4 presents

resummed High Energy Jets predictions for inclusive pp → H + 1j at the LHC.

1.3.3 Factorisation in QCD

QCD, as it manifests in nature, is non-perturbative and only bound states are ob-

servable at macroscopic scales. To connect the perturbative theory probed at hadron

collider experiments to this reality, we need to account for the non-perturbative
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aspects of the theory. The cross section of Eq. (1.3.7) thus corresponds to the hard

interaction i.e. the interaction at perturbative scales.

An important result for the case of QCD is that the non-perturbative and perturb-

ative regimes factorise, i.e. we can consider them independently of each other. Thus

we need integrate the hard cross section over the momentum distribution of quarks

inside their parent hadrons and apply hadronisation corrections to the final states of

our hard predictions to account for the observation of bound states in the detector.

Parton distribution functions

The parton distribution functions (PDFs) fi/A(xi) in QCD express the probability

of observing a parton i from the parent hadron A carrying fraction xi of the parent

hadron energy [39, 45]. However, when calculating these objects perturbatively we

quickly encounter divergences in the infrared region as the PDF carries no scale

dependence.

We may resolve this issue in a manner analogous to our treatment of UV divergences

in the previous section, namely we define a non-physical bare PDF fi/A(xi) and

introduce a hardness scale µF — the factorisation scale which separates the soft

from the hard region [30]. We can then observe the physical PDFs fi/A(xi, µ
2
F ) which

carry a scale dependence and have the divergences absorbed into their definition.

The factorisation scheme is then the counterpart of the renormalisation scheme

and prescribes which finite parts to carry in the counter-terms added to cancel the

divergence.

The evolution of the PDFs is governed by the DGLAP equations [30]:

t
∂

∂t

 qi(x, t)

g(x, t)

 = αs(t)
2π

∑
qj ,q̄j

∫ 1

x

dξ
ξ

×

 Pqiqj

(
x
ξ
, αs(t)

)
Pqig

(
x
ξ
, αs(t)

)
Pgqj

(
x
ξ
, αs(t)

)
Pgg

(
x
ξ
, αs(t)

)

 qj(ξ, t)

g(ξ, t)

 ,
(1.3.40)

where we have defined t = µ2
F and denoted the PDF for the gluon by g(x, t) and for
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quark i by qi(x, t). This equation applies itself in the (2nf + 1)-dimensional space

spanned by the gluon, the quarks and antiquarks.

The functions Pab(z, αs(t)) are the DGLAP splitting functions1. These functions

have perturbative expansions e.g.:

P (z, αs) = P (0)(z) + αs

2πP
(1)(z) + ..., (1.3.41)

with each subsequent term a higher-order correction. The DGLAP evolution equation

resums (see Ch. 2) large logarithms of the factorisation scale and thus controls the

divergences similar to the running of the strong coupling [45].

These splitting functions may be calculated in perturbation theory and carry a

satisfying physical interpretation as they manifest. We consider a n-parton process

with matrix element Mn and split one of the external partons a to a collinear pair

b, c. The n+ 1 matrix element in the limit that the intermediate parton a has much

larger virtuality than the collinear partons b and c, is related to the lower multiplicity

matrix element by [30]:

dtdz
∫

dϕ 1
16π2

|Mn+1|2

|Mn|2
∼ dt

t
dz αs

2πPba(z). (1.3.42)

Here Pba(z) is the appropriate splitting function for the a → bc splitting [30] at

energy fraction z. The quantity t now is referred to as the evolution variable or

ordering variable. As an example, we illustrate the (leading order) splitting of q → qg

in Fig. 1.6 and display the corresponding splitting function below [30]:

|Mn+1|2 ∼ 4g2
s

t
|Mn|2Pqq(z), (1.3.43)

with

Pqq(z) = CF

1 + z2

1 − z
. (1.3.44)

This is the LO term in the expansion of Eq. (1.3.41). The leading-order splitting

functions are listed in Ch. 4 of ref. [30] (where they are shown with their divergences

1We have previously used the scale as the argument of αs rather than the square, the two
notations refer in either case to the same evolution and different sources use different conventions.
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g

q

Mn

q
ϑ

Figure 1.6: Schematic of the splitting q → gq with opening angle ϑ at LO
in QCD.

unregulated) as well as several higher order corrections. We explore the application

of these splitting functions in Sec. 2.3 and explore how they are used in resummation

of soft and collinear logarithms arising to all orders in perturbation theory with

parton showers [39].

QCD factorisation theorem

The final building block for the treatment of QCD we discuss is factorisation, where

we may schematically separate the perturbative and non-perturbative regions and

treat each independently. This is expressed most eloquently by the QCD factorisation

theorem for hadron collisions [45]:

σAB→Ω =
∑
a,b

∫
dxadxb · fa/A

(
xa, µ

2
F

)
· fb/B

(
xb, µ

2
F

)
· σ̂ab→Ω̂(xapA, xbpB, µ

2
R, µ

2
F ).

(1.3.45)

which expresses the hadronic cross section for a process involving a scattering between

parent hadrons A, B to the final state Ω (corresponding to a partonic final state

Ω̂) we wish to observe. Importantly, this is an inclusive quantity since we cannot

observe the states we require in isolation due to hadronisation that takes place at

lower energies/later times to the hard interaction. The non-perturbative nature of

the initial state is encoded in the convolution with the PDFs. The perturbative part

is described by the partonic cross section σ̂ which is calculated using the Feynman

rules of the theory (or with any other valid perturbative framework) as described in

Sec. 1.3. The form of this partonic cross section for the hard, perturbative process is
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given in Eq. (1.3.7). The energy fractions xa and xb relate the partonic centre-of-mass

energy of interaction ŝ to the hadronic centre-of-mass energy s by:

√
ŝ = xaxb

√
s, (1.3.46)

Just as we measure the total cross section, we may measure distributions of observable

quantities O. These are differential cross sections dσ/dO. We describe observables

and how these are constructed and calculated in Sec. 1.4.

The partonic cross section must also be supplemented with further non-perturbative

corrections to account for hadronisation, for which there are only phenomenological

descriptions (rather than descriptions one may derive explicitly from the theory).

As with the PDFs, we may factorise the non-perturbative hadronisation corrections

from the perturbative partonic cross section. When we discuss general purpose

Monte Carlo (GPMC) event generators in Sec. 1.5.2 we briefly discuss the compu-

tational implementation of hadronisation models, focusing on the method of string

hadronisation in Pythia [46, 47].

It is important to mention that other methods of working with QCD (or QFT

in general) have been developed that do not make use of the factorisation of the

theory into a perturbative and non-perturbative region. The most famous example

of such a method is lattice QCD which calculates correlation functions in a finite,

discretised space-time. This allows for calculations of non-perturbative quantities in

QCD from first principles of the theory, though perturbative scattering amplitudes

cannot be calculated with lattice QCD. The Particle Data Group (PDG) [48] review

of lattice QCD provides a robust overview of this formalism and lists several core

achievements of the theory.

Estimating theoretical uncertainty

The missing higher orders from theoretical predictions are the major source of

theoretical uncertainty. Since the cross sections carry dependence on the factorisation

and renormalisation scales, uncertainties can be estimated on predictions by varying
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these scales independently (often by factors of 2 and 0.5) to produce an envelope

around the central theoretical prediction. Since the difference between αs(µR) and

αs(µ′
R) is O(α2

s(µ′
R)), this procedure gives an estimate of how the missing higher

orders resummed in the running of the strong coupling would impact the matrix

elements. Similarly, altering the factorisation scale accounts for missing higher orders

in DGLAP evolution.

It is important to stress that the scale variation calculations can not account com-

prehensively for all missing higher-order effects since these are not treated completely

by the running of αs or by DGLAP evolution. Scales are chosen in perturbative cal-

culations to be characteristic of the events in consideration. No standard framework

is established to determine the meaning of “characteristic” in scale assignment and

as such different functional forms of the scale can yield differing results. The most

commonly accepted definition of “characteristic” is to choose a scale that minimises

the size of logarithms of ratios of scales that can arise in the calculation — most

typically the ratios are between process invariants and the chosen renormalisation

scale. for multi-scale processes this becomes increasingly difficult to define so the

scale-setting will aim to achieve a “middle-ground” between the logarithms that

emerge.

An example of a commonly used dynamic scale in jet1 studies is HT/2, where

HT is the scalar sum of observed jet transverse momenta. One can see from this

that events with high multiplicities and large transverse momenta will produce cross

sections evaluated with smaller αs if HT/2 is chosen as the renormalisation scale.

In the next section we lay the groundwork to connect the theoretical formalism

we have discussed to the practical considerations of constructing experiments and

observables at hadron collider experiments.
1We formally define jets in the next section, Sec. 1.4.
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1.4 Experimental Observables at Hadron

Colliders

The hadronic cross section in Eq. (1.3.45) is a fully inclusive quantity, meaning that

all degrees of freedom have been fully integrated over. This quantity is of limited use

for comparisons to theoretical predictions, so instead we construct observables from

the observed final states at detectors in hadron collider experiments. This allows

us to produce differential cross sections or distributions for these observables, since

they are dependent on the kinematical phase space. Given an observable quantity

which is a function of the observed final state O (Ω) we write:

σAB→Ω[O] =
∑
a,b

∫
dxadxb · fa/A

(
xa, µ

2
F

)
· fb/B

(
xb, µ

2
F

)

· O(Ω)

· σ̂ab→Ω̂(xapA, xbpB, µ
2
R, µ

2
F ).

(1.4.1)

Interpreting the squared amplitude as a probability, we see that this is similar

in structure to an expectation value for the observable. The observable itself must

depend on the final state kinematics as this is the information that would be detected

at experiments. Histograms are constructed for such observables by splitting them

into bins e.g.

O (Ω) =
∏
k

O(k)Θ
(
O − O(k)

low

)
Θ
(
O(k)

high − O
)
, (1.4.2)

with O in the arguments of the Heaviside Θ functions being the value of the observ-

able given the kinematic configuration. We may also apply cuts on the available

phase space depending on the geometric constraints of the detector, or the objectives

of a specific analysis.

With QCD final states, the unconfined products of the hard partonic process may

not be observed in the detector since only colour-confined states occur at observable

scales. Indeed detectors at the LHC such as ATLAS [49] and CMS [50] observe the

hadronised products of parton evolution as they enter and decay in the hadronic

calorimeters. Thus, if we restrict ourselves for the moment to the hard partonic
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region, we require observables to be infrared-safe if we are to meaningfully compare

predictions to experimental data [30]. This means that performing calculations for

observables with partonic final states should not change in the limit of soft and

collinear emissions. More precisely formulated:

On+1 (p1, ..., pi, ..., pn) pi→0−−−→ On (p1, ..., pi−1, pi+1, ..., pn) ,

On+1

(
p1, ..., pi, pj, ..., pn

) pi||pj−−−→ On

(
p1, ..., pi + pj, ..., pn

)
.

(1.4.3)

In the top line we require that our observable for n+ 1 final state particles tends to

the n-particle observable in the limit that one of the emissions is soft. The second

line requires that for pi and pj collinear, the observable for n+ 1 final state particles

tends to the n-particle observable with e.g. pj removed and pi replaced with the sum

pi + pj (or vice versa).

Four-momenta of particles incident on the calorimeters in a detector are not directly

measurable and must be deduced from the available information. The detectors at

the LHC are cylindrically symmetric and thus experimenters work in a coordinate

system with the z-axis running along the beam pipe. This means the polar angle θ

and the azimuthal angle ϕ with respect to the beam axis are readily available from

the location of energy deposits in the calorimeters1.

In Fig. 1.7 we display a transverse slice of the CMS detector, and discuss how

particles are observed in collider experiments. The silicon tracker tracks the paths

of particles produced in the interaction that are incident on the calorimeters which

record the presence of electrons and hadrons. The superconducting solenoid is used

to bend particle tracks in such a way that their momenta may be determined.

The calorimeters record the energy deposits of the particles produced in an interac-

tion and as such, one can directly measure the transverse momentum p⊥ (also often

written as pT , and in bold-face when we discuss it as a two-dimensional vector).

Since the LHC collides hadrons2 along the z axis, the centre of mass of the hard
1This is true given the polar angle is measured from an axis running vertically through the

interaction point
2We chiefly consider proton-proton collisions in this thesis, though make reference to heavy ion

collisions when we discuss general purpose Monte Carlo event generation in Sec. 1.5.2.
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Figure 1.7: Transverse slice of the CMS detector with the z-axis pointing
out of the page and the sequenced calorimeters in the plane of the page.
Figure from ref. [3].

collision is not known exactly (unlike at a lepton-lepton collider) since it is the

perturbative free quarks and gluons that interact rather than the hadrons.

Due to the azimuthal symmetry of the detector, we search for quantities Lorentz-

invariant under boosts along the z-axis to reconstruct the four-momenta of produced

particles in the lab frame. The azimuthal angle ϕ is by definition invariant for such

boosts, however differences in the polar angle θ are not and as such we define the

pseudorapidity η:

η = − log
[
tan

(
θ

2

)]
≡ 1

2 log |p| + pz

|p| − pz

≡ arctanh
(
pz

|p|

)
. (1.4.4)

This coincides with the beam rapidity (which we henceforth refer to just as the rapidity

unless explicitly stated otherwise) in the limit that the particle is massless [30]. The

rapidity y is given by:

y = 1
2 log E + pz

E − pz

. (1.4.5)

While rapidities are not Lorentz-invariant for z-boosts, differences between two

rapidities are (as are differences in η). From the azimuthal angle and the measured
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polar angle (which gives us the rapidity) we can reconstruct four-momenta of particles

incident on the detector as:

(E, px, py, pz) = (m⊥ cosh y, p⊥ cosϕ, p⊥ sinϕ,m⊥ sinh y),

m⊥ :=
√
m2 + p2

⊥.

(1.4.6)

Here m⊥ is referred to as the transverse mass.

With these quantities defined we may return to the question of infrared safety and

note again that partonic final states are not observable in the hadronic calorimet-

ers. Thus we define jets as the IR-safe generalisations of the products of the hard

interaction [30, 45, 51], following the observation that strong final state particles are

detected in the calorimeters strongly correlated in narrow collimated beams rather

than in isolation [25].

To formalise the definition of jets from this qualitative description we introduce

jet reconstruction algorithms (or just jet algorithms) which recombine the energy

deposits in the calorimeters as distributed in y−ϕ space [51]. The most widely used

of these are the k⊥-type (or kT -type) algorithms which cluster particles according to

the distance measure:

dij = ∆R2
ij

R2 min
{
pq

⊥i, p
q
⊥j

}
, diB = pq

⊥i, (1.4.7)

with R the jet radius parameter, diB the generalised beam distance, and q an integer

that defines the order of the clustering. We define the distance between particles i, j

in y − ϕ space as:

∆Rij =
√

(yi − yj)2 + (ϕi − ϕj)2. (1.4.8)

The jet reconstruction process can be summarised as follows:

1. Find the minimum across all {dij, diB}.

2. If dij is the minimum, combine the particles i and j into one particle and

return to step. 1.

3. If diB is the minimum, label particle i as a final state jet and remove particle
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i from the list, return to step 1.

4. Continue until either the required number of jets have been identified (exclus-

ive clustering) or until all particles have been clustered into jets (inclusive

clustering) depending on what is required.

Provided the perturbative description is sufficiently comprehensive, the jets in an

event should correspond to the jets resulting from clustering the final state partons

with the same algorithms.

The choice q = 2 yields the k⊥ algorithm, while q = 0 gives the Cambridge-Aachen

(CA) algorithm [51]. A more recent jet algorithm favoured by experimenters at the

LHC is the anti-k⊥ (or k⊥) algorithm [52] which takes q = −2. From Eq. (1.4.7) we

can see that this algorithm will cluster the harder partons first.

With the jets defined, forming infrared-safe observables from which to calculate

distributions becomes straightforward. Rather than constructing observables from

individual particles charged under QCD, we construct them for jet momenta and

can calculate quantities in the differential phase space of the system i.e. pertaining

to the momenta accessible from measurements of the final state. Using the phase

space of the jets thus means the observables will be infrared-safe.

Such quantities include the p⊥ of the jets in an event or the difference in y − ϕ

space (∆R) between any two jets (as well as myriad other quantities such as the

invariant mass between any two jets). Jets in events are often indexed according

to some order. The two most common forms of ordering are in hardness (i.e. jet 1

indexing the jet with the largest transverse momentum, 2 with the second largest,

etc.) or in rapidity. In the case of rapidity ordering we refer to the jet with the

smallest rapidity in an event as the most backward and that with the largest as the

most forward (respectively denoted b and f). These ordering schemes can be used

to define dijet systems, where two jets define much of the physics observed in the

final state. Often the most forward and backward jets are chosen, or the two hardest

jets, as the pair that forms the dijet.

Events containing electroweak boson decays e.g. Z → νν or W → lν may be iden-
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tified by missing transverse momentum. Since neutrinos are too weakly interacting

to be directly detected at hadron colliders, events which produce them are easily

identifiable since they appear to violate momentum conservation in the transverse

plane. Measurements of the missing transverse momentum (often written as p⊥,miss)

are invaluable for identifying neutrino-producing weak decays at hadron colliders

and constraining W and Z (and H) physics.

Next, we discuss how theoretical predictions can be obtained within perturbative

frameworks. We introduce the Monte Carlo method of numerical integration, and

discuss how it can be applied to produce theoretical predictions, including the

widespread use of general purpose Monte Carlo event generators.

1.5 Monte Carlo Event Generation

Our treatment of the background behind producing predictions in perturbative

QCD in the previous section has thus far been somewhat abstract with little explicit

connection to how such calculations are performed. With descriptions of matrix

elements evaluated in certain perturbative frameworks one still finds themselves far

removed from the differential cross sections that may be produced from experiments.

We have seen in Eq. (1.4.1) that differential cross sections are related to the matrix

elements by a phase space integral. These integrals quickly climb in dimensionality for

more complex on-shell final states and become (in the majority of cases) impossible

to analytically evaluate. Experimental analyses also apply constraints to collect data

which may complicate the phase space with cuts on certain observables and differing

requirements for the observed jets in an event. Our theoretical formalism contains

divergent quantities which cannot be evaluated numerically by their nature.

The most common methods for numerical integration in one dimension split the

integration region into bins and interpolate the integrand as a polynomial in each

bin [53]. Such methods include the trapezium rule (which interpolates linearly) and

Simpson’s rule (which interpolates to a quadratic polynomial). Such methods scale
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poorly in computational time cost in higher dimensions. If, in one dimension, M

function evaluations are required per bin, and we split the region into B bins, the

computational cost scales as O(MB). In d dimensions, this scales exponentially as

d increases, leading to costs of the order O((MB)d). These methods quickly become

infeasible for the high-dimensional phase spaces encountered in even the most simple

cross sections at low perturbative orders and final state multiplicities.

The Monte Carlo (MC) method [53] is a simpler method of producing such integrals

which randomly samples points in the region of integration. Thus the scaling of

the time complexity for convergence does not depend on the dimensions integrated

over. This means that Monte Carlo integration is the most suitable method of

numerically integrating the high-dimensional phase spaces we encounter in cross

section calculations. We summarise this method in this section, and examine how

different parts of the calculation of hadron-hadron collisions are implemented in

GPMC event generation frameworks.

1.5.1 The Monte Carlo Method

We address the generic problem of integrating a real-valued function f(x) over the

n-dimensional region Ω. We denote such an integral by:

I[f ] :=
∫

Ω
f(x)dx. (1.5.1)

The Monte Carlo method [53] selects N points xi in Ω at random and calculates the

average of the function evaluated at these points; this average is then related to the

integral by:

I[f ] = fNV ; V ≡
∫

Ω
dx, fN ≡ 1

N

n∑
i=1

f(xi). (1.5.2)

The weak law of large numbers [54] ensures that, as N approaches infinity, the

quantity IN ≡ fNV approaches I. The variance of the Monte Carlo approximation

to the integral with N points, IN is given by:

Var(IN) = V 2

N2

n∑
i=1

Var(f) = V 2

N
Var(f), (1.5.3)
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where we have denoted the limit of fN as f and used:

Var(f) = 1
N − 1

n∑
i=1

[
f(xi) − f

]2
. (1.5.4)

An estimate of the standard error on the Monte Carlo value (i.e. the expected

deviation from the true value of I) may be calculated via [55]:

δIN ≃ V√
N

√
Var(f). (1.5.5)

Thus for a sufficiently “well-behaved” function f with small variance, the error

associated to a Monte Carlo estimator for the integral decreases as 1/
√
N as N

increases. Despite scaling well with the number of dimensions, the fact that the

Monte Carlo error depends on the variance of f is crucial and cannot be neglected.

We know that matrix elements alone peak strongly and diverge in different regions

of the integration phase space and simply selecting points uniformly across Ω will

lead to slow convergence of the Monte Carlo estimator, with large variances even for

large values of N .

Importance sampling

We can address the inefficiency of sampling randomly in phase space by sampling

points selected according to a probability density g which captures the behaviour of

the integrand f . This procedure is referred to as importance sampling and transforms

the integral of Eq. (1.5.1) to [56]:

I[f ] =
∫

Ω

f(x)
g(x) g(x)dx ≡

∫
Ω′
h(y)dy, (1.5.6)

with h = f/g and y = G(x) for some transformation G satisfying:

J [G](x) ≡ det
(
∂y
∂x

)
= g(x). (1.5.7)

This formulation enables — for suitable choice of density g — us to calculate the

integral in a region Ω′ where the integrand varies more slowly than the uniform-

sampling case. However in MC calculations for HEP we are rarely interested just in
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the value of the integrated cross section but more often in distributed cross sections

with respect to observables in the differential phase space. Thus it becomes more

convenient to evaluate the integral in x and write:

I[f ] =
∫

Ω′
det

(
∂G−1

∂y

)
(y) f(G−1(y)) dy, (1.5.8)

for the inverse G−1 of our coordinate transformation y = G(x).

The corresponding Monte Carlo estimator for an importance-sampled integral thus

carries weights wi to ensure the proper convergence:

IN [f ] = V ′

N

n∑
i=1

wif(G−1(yi)), (1.5.9)

with:

wi = det
(
∂G−1

∂y

)
(y), (1.5.10)

which allows us to select points uniformly in the transformed phase space Ω′ with

volume V ′.

From our discussion of the cross section in Ch. 1, one may see immediately the

probability distribution to use in importance sampling must reflect the behaviour of

the integrand, namely the behaviour of the distribution must be similar to:

J (xi)f(x1(xi), µ2
F (xi))f(x2(xi), µ2

F (xi))|M|2(xi), (1.5.11)

to ensure that regions of phase space where the flux and matrix elements are peaked

are sampled more frequently [8, 51].

Many methods have been developed for importance sampling, one of the most

widely-used of which is the Vegas method [57] which calculates g(x1, x2, . . . ) by

assuming the density is separable i.e. g(x) = g1(x1)g2(x2) · · · . The algorithm popu-

lates histograms across the integration region Ω with values of the integrand f , and

calculates the separated distributions gi according to these.

We make note also that a bad choice of sampling density g can produce worse

convergence than not performing any importance sampling. This is clear from

considering h = f/g, it may be possible to introduce problematic behaviour in
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regions where both f and g were slowly varying with f large and g small. This

would artificially inflate the variance of h and lead to an oversampling in these

regions and an under-sampling (for fixed N) in other regions where convergence is

slow. One must take great care in producing such density functions to ensure the

density g shares much behaviour with f .

Pseudorandom number generation

In computational applications of the Monte Carlo method, pseudorandom number

generators (pRNGs) are used to produce sequences of numbers that appear stat-

istically random, and allow for the probabilistic sampling of the integration phase

space required. The sequences provided by pseudorandom number generators are

produced by a completely deterministic process, which takes in (normally) a single

integer parameter referred to as a seed. If the same seed is used with the same pRNG

then the same sequence of numbers is produced. While not truly random, pRNGs

are required to give sequences that are statistically indistinguishable from sequences

produced by sampling a uniform distribution [53]. These allow for the results of

any computational Monte Carlo integration to be reproduced, and for the statistical

independence of different Monte Carlo integrations to be guaranteed (by changing

the seed).

Existing pRNGs can differ greatly in their implementation. This means some

pRNGs can produce problematic sequences of (pseudo-)random numbers which pass

statistical tests in low dimensions but that produce correlated results for high dimen-

sions. The most famous example of such are the linear congruential generators such

as MIXMAX [58] which pass statistical independence tests in low dimensions, but

produce points in parallel hyperplanes in higher dimensions [59,60]. In High Energy

Jets — which we introduce in Sec. 2.2 — the option is provided to use MIXMAX

for random number generation, but by default the RANLUX [61] generator is used

which improves on MIXMAX in this regard. High dimensions are a particularly

important consideration for HEP as Monte Carlo integration phase spaces quickly
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become large with increasing multiplicity in the final state as discussed earlier, and

as such the statistical independence of individual runs must be assured with a robust

pRNG.

1.5.2 General Purpose Monte Carlo Event Generators

General purpose Monte Carlo event generators are some of the most versatile tools

in high energy physics, able to model all stages of a collider process in and beyond

the Standard Model. The main three in use in the HEP community are Sherpa [62],

Pythia [47,63] and HERWIG [64,65] as we discuss in Sec. 2.3. Focusing on the specific

implementation of processes at hadron colliders we may schematically extend the

inclusive cross section of Eq. (1.3.45) to include descriptions of the missing physical

effects:
σAB→Ω[O] =

∑
a,b

∫
dxadxb · fa/A

(
xa, µ

2
F

)
· fb/B

(
xb, µ

2
F

)

· O(Ω)

· σ̂ab→Ω̂(xapA, xbpB, µ
2
R, µ

2
F )

· d P.S. · d Had.

(1.5.12)

where d P.S. represents parton shower evolution (including multiple parton interac-

tions from the underlying event) and d Had. the hadronisation of partons at soft,

non-perturbative energy scales. We illustrate the different contributions in a schem-

atic from ref. [4] in Fig. 1.8. The dark green ellipses incoming along the horizontal

axes represent the incoming hadron beams, the dark blue radiation from these are

the incoming particles which enter the principal hard interaction indicated by the

red circle and the red outgoing particles. Parton shower evolution is shown at all

stages by the splitting partons e.g. leaving or entering the hard process. This con-

nects the hard process matrix element with the hadronisation stage, and resums the

soft-collinear logarithms arising in QCD. We review parton shower resummation in

detail in Sec. 2.3.

Secondary scatterings from the other partons in the incoming beams may take place
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Figure 1.8: Schematic of the evolution of a scattering event at a hadron-
hadron collider. See text for discussion. Figure from ref. [4].

(the purple interaction) and partons outside the hard process may interact with each

other in soft sub-collisions — the underlying event contributions. The remnants of

the incoming beams are in turquoise and the hadronisation of the outgoing partons is

shown in light green. Leptons and photons produced outside of the hard interaction

are shown in yellow.

To each of these parts of the process significant theoretical and computational

challenges impose themselves which we explore in this section. We summarise how

these are handled in modern GPMC frameworks.

Hard process generation

The construction of the hard process matrix elements and phase space in GPMC

frameworks, while seemingly straightforward given our introduction in Sec. 1.3.2,

imposes significant challenges on the calculation. In Fig. 1.8 the hard process is

indicated by the red circle and red outgoing particles.

We continue the discussion for a NLO calculation for which the theoretical ground-
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work was laid in Sec. 1.3.2. We noted that the UV divergence associated to the loop

corrections could be regularised and renormalised, however the treatment of the IR

divergences required invoking the KLN theorem to demonstrate the cancellation of

poles in the real and virtual components. Borrowing the notation of Catani and

Seymour [66] we may express the NLO cross section for a 2 → n process as:

dσNLO =
∫

Ωn

dσB +
∫

Ωn

dσV +
∫

Ωn+1

dσR, (1.5.13)

where dσB is the LO or Born-level cross section, dσV are the regularised NLO

virtual corrections, dσR are the NLO real emission corrections, and Ωn is the Lorentz-

invariant phase space for n particles. The quantities dσV and dσR are individually

divergent and the divergences only cancel after each has been integrated over its

phase space.

A commonly adopted solution is to modify Eq. (1.5.13) to include additional

subtraction terms, considering only the NLO parts we may write:

∫
Ωn

dσB +
∫

Ωn

dσV +
∫

Ωn+1

dσR =
∫

Ωn

dσB +
∫

Ωn

(dσV + dσI) +
∫

Ωn+1

(dσR − dσS) ,

(1.5.14)

where:

dσI =
∫

Ω1

dσS. (1.5.15)

This means we have introduced a subtraction term dσS and an integrated subtraction

term dσI equal to the integral of the former over the one particle emission phase space.

We choose a subtraction term to differ from the real emission term by a finite amount

but to carry the same point-wise divergent structure. Importantly, this means that

events can arise in the Monte Carlo generation with negative weights depending on

the subtraction scheme since the finite parts in the integrated subtraction term can

exceed the other positive-definite contributions [8].

There are many methods in use for construction of such counter-terms including

FKS subtraction [67], antenna subtraction [68], and Catani-Seymour dipole subtrac-

tion [66]. The default in Sherpa — the main generator we use in this thesis for
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producing fixed-order perturbative predictions — is the Catani-Seymour method.

GPMC event generators are well-equipped to produce matrix elements at tree-level

for many processes, with options to configure and import libraries to construct more

complex processes or consider higher perturbative orders. Sherpa uses two main

matrix element generators, Amegic++ [69] and Comix [70], between which many

experimental processes of interest at particle colliders are readily calculable. For

NLO processes, OpenLoops [71, 72] may be used in Sherpa on-the-fly to calculate

loop integrals, though other libraries are available. Pythia may be interfaced to

MADGRAPH5_aMC@NLO [5] to provide a larger set of hard process matrix elements

than it has natively available. These efforts and more have yielded that NLO is now

the standard for most processes and can be automated with reasonable efficiency,

leaving NNLO and further now the frontier for many processes [8]. For even higher

orders the calculations climb quickly in complexity and thus are generally treated

analytically or case-by-case with dedicated calculations per process.

Parton shower evolution

Parton shower evolution may be applied on matrix element states though this is

more complex than it may seem. Since the parton shower resums higher-order effects,

one needs to ensure that double-counting does not occur between the matrix element

(which could be evaluated to NLO or higher) and the shower evolution. Generally

parton showers are matched or merged (or both) to fixed-order predictions. We

dedicate Sec. 2.3 to discussing the parton shower formalism in detail, and Sec. 2.3.3

therein to matching and merging methods as these will be relevant to our discussion

of the novel prescription for merging High Energy Jets resummation with a parton

shower in Ch. 3.

In Fig. 1.8 the final state parton shower is shown by the red partons ‘splitting’ as

they enter the final state. The initial state shower is shown by the additional blue

radiation from the partons entering the hard interaction. The parton shower will

evolve states hard in the evolution scale t (see Sec. 2.3 for details) down to the scales
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Figure 1.9: Schematic of the evolution of a hard gg → gg scattering under
a parton shower with evolution variable t. As t decreases (to the right)
further radiation is added to the matrix element configuration. At each
stage the additional emissions enter the final state and thus can themselves
undergo splitting. Both initial state and final state splittings are shown.

at which the showered partons can hadronise. This is illustrated schematically in

Fig. 1.9, where we simplify the discussion by assuming we start with a LO pp → 2j

matrix element state.

This follows the same basic procedure that we outline in Sec. 2.3. Soft and collinear

radiation is applied to the process configuration, with emissions added according to

the prescription we present in Sec. 2.3 with the Sudakov veto algorithm at successively

lower scales, until hadronisation.

Underlying event and multiple parton interactions

An observed experimental result for the scaling of 2 → 2 differential cross section at

hadron colliders, shows that the cross sections fall as dp2
⊥/p

4
⊥. This means that the

inclusive dijet cross section would exceed the total proton-proton inelastic scattering

cross section (imposing some minimum transverse momentum cut p⊥,min) [73]. This

effect can be explained by including contributions from multiple hard scatterings

involving multiple partons from the incoming hadrons as displayed by the red and

purple hard interactions of Fig. 1.8. Collectively, such processes are referred to

as multiple parton interactions or MPI. Translating such effects to a Monte Carlo

framework poses much difficulty as MPI can occur at scales typically softer than the

principal hard interaction of interest meaning that they can coincide with ordering

of the parton shower. The approach of Pythia is to treat such interactions as
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interleaved with the parton shower [74]. Together, such contributions are referred to

as the underlying event [8].

MPI typically occur at much softer scales than hard starting scales for the shower,

and are governed by many phenomenological parameters that form part of tunes

for GPMC event generators [8]. These govern how MPI are produced and at which

scales they are observed as well as their internal kinematics. The Monash 2013

tune [10] in Pythia compared to data obtained by the TOTEM collaboration [75] of

the total proton-proton cross section at the LHC at
√
s = 8 TeV [76] to find that (at

this CoM energy of interaction) nMPI ∼ 1 at scales of roughly p⊥,min ∼ 5 GeV. The

full list of parameters used to obtain this tune is available in the same publication,

ref. [10].

Hadronisation

There remains the treatment of hadronisation, in green from Fig. 1.8, of all final

state partons for which several phenomenological models exist. Hadronisation occurs

at non-perturbative energy scales. The form of the parton shower evolution and the

multiple parton interactions that precede this stage can greatly alter the spectrum

of observed hadrons in non-trivial ways [8]. The empirical nature of hadronisation

models means that small differences in models can yield strongly differing theoretical

predictions, even for identical hard process and parton shower evolution.

There are two main methods in use for GPMC generators, cluster hadronisation [77]

and string hadronisation [78]. Sherpa and HERWIG use cluster hadronisation while

Pythia uses a string hadronisation method called Lund string hadronisation.

The Lund string model treats colour-connected quark pairs in the showered final

state as mesons connected by massless “strings” which fragment by radiating addi-

tional mesons (qq pairs) until the energy scales match those appropriate for hadrons.

The radiation of additional qq pairs would be mediated by gluons during the parton

showering stage but the gluons are treated as topological defects referred to as kinks

in the string potential [63].
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As with MPI, models of hadronisation are phenomenological and contain many

parameters which are also absorbed into GPMC tunes. Often, when one references a

parton-showered prediction, the presence of MPI and hadronisation can be implied.

As such, we will later be explicit as to when we do and do not consider these effects

in the HEJ+Pythia merging algorithm in Ch. 3.

Other Uses

GPMC event generators are not just tools for producing robust theoretical predictions

but are also used to describe experimental data. Experimental studies will often

precede the comparisons of event generators and theoretical predictions to data

with details on how event generators were used to calibrate the data selection by

comparing to known distributions [8].

A prominent example of where Monte Carlo predictions are useful for experiments

is in experiment design; detectors are built based partly on which regions of phase

space are likely to receive significant enough statistics to draw valid conclusions from.

This process is instructed in parts by detector-level GPMC predictions which can

inform on the size of the cross section across the available phase space. Detector-

level simulations are also often applied to calibration distributions from GPMC event

generators to better reflect the experimental data as observed.

For a review of these procedures in great detail, we recommend Chapters 16 and

17 of ref. [8] which provide a pedagogical overview of the many uses of GPMC event

generators beyond producing theoretical predictions.

Having drawn the connection between the theoretical and the physical, and

prescribed how theoretical predictions are produced in computational frameworks

throughout this section, we occupy ourselves in the subsequent chapters with delving

into the specifics of resummation in perturbation theory. We detail High Energy

Jets and parton shower resummation in Ch. 2. We present developments to these

resummation schemes that form the research basis of this thesis in Ch. 3-5.





Chapter 2

Frameworks for Perturbative

Calculations in QCD

As we have made reference to throughout Ch. 1, the perturbative formulation of QCD

requires a wide array of frameworks to calculate cross sections and distributions of

observable quantities within different approximations that work to varying accuracies

across phase space. We have discussed in Sec. 1.3.1 and Sec. 1.3.2 that cross sections

can be calculated to fixed orders in the coupling and dedicate this section to exploring

the behaviour of matrix elements in regions of phase space that receive logarithmic

enhancement when the ratio between kinematic scales becomes large. In many cases,

the logarithms are large enough to compensate for the smallness of the coupling in

these regions of phase space. This poses issues for a perturbative description in such

regions as the higher-order terms in the coupling would not produce successively

smaller contributions (or at least contributions that would converge more slowly).

As alluded to in Sec. 1.3.2, in many cases it is possible to demonstrate that the

the higher-order corrections in such regions of phase space are dominated by terms

that are logarithmically enhanced:

σ̂ = αk
s ·

∞∑
n=0

n∑
m=0

αn
sL

mcn,m = αk
s ·
[
c0,0 + αs

(
c1,1L+ c1,0

)
+ α2

s

(
c2,2L

2 + c2,1L+ c2,0

)
+ ...

]
.

(2.0.1)
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Here k is the minimum power of αs at which the process occurs (i.e. the LO),

and L is a logarithm of the scales1 that becomes divergent/slowly convergent in

the kinematic limit that populates the problematic region of phase space. The

coefficients cn,m may then be calculated exactly how FO cross sections are calculated,

except that the accuracy is determined not by which power of the coupling they are

attached to. Rather we work to logarithmic accuracies, where the leading-logarithmic

(LL) accuracy means the leading terms αn+k
s Ln are accounted for to all orders of

perturbation theory. Similarly, the (next-to)l-leading-logarithmic (NlLL) accuracies

signify that we account for all the subleading terms up to αn+k
s Ln−l. Instead of

including all amplitudes to a FO accuracy in the coupling, all amplitudes to the

required logarithmic accuracy are included.

The process of calculating terms to all orders is called resummation and forms

the basis of what we will explore in this chapter. Examples of such schemes include

the analytic Balitsky-Fadin-Kuraev-Lipatov (BFKL) resummation [40–44] of large

logarithms in ŝ/p2
⊥, which the resummation of High Energy Jets is inspired by. Parton

showers are also an example of widely-used resummation schemes, resumming the

soft-collinear logarithms of QCD [30].

In this chapter, we outline the theoretical framework behind resummation in

High Energy Jets which develops the ideas of the BFKL formalism and applies

them to produce perturbative hard process-level predictions with Monte Carlo event

generation (see Sec. 1.5). We conclude this chapter by exploring the resummation of

soft-collinear logarithms in QCD with parton showers and link this to the DGLAP

evolution of the PDFs discussed in Sec. 1.3.3.

2.1 Regge Scaling and the High Energy Limit

The study of processes with large centre-of-mass energies is of immense phenomen-

ological and experimental interest. An important consideration for the research
1Often this is a ratio of two scales, and the logarithm itself may be a double or triple logarithm

depending on the divergent structures that arise.
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presented in this thesis is the separation of the strong- and electroweak-initiated

production of a Higgs boson at hadron colliders, since we present developments to

the High Energy Jets framework for the strong-initiated production of a Higgs boson

with at least one jet in Ch. 4.

The distribution of the cross section for the production of a Higgs boson with

(at least) two jets has long been known to be dominated by the QCD-initiated

gluon fusion mechanism at small invariant masses of the two hardest (or the most

forward and the most backward) jets [79, 80] with multiple studies corroborating

these results theoretically following the discovery of the Higgs [81]. However, for

large dijet invariant mass and rapidity separation (mjj ≳ 400 GeV, ∆yjj ≳ 2.8),

the spectrum is dominated by the weak fusion of two Z or W bosons. Thus precise

modelling of the gluon-gluon fusion component in this region of phase space allows

for precision studies of the weak initiated vector boson fusion process, since the

QCD background will be readily removable in such studies of the Higgs-weak boson

couplings.

For large dijet invariant masses, the correlations between the dijets in azimuthal

angle ϕ are characteristic probes of the effective Higgs-gluon-gluon coupling (which

approximates the interaction between the Higgs and two gluons mediated by a

massive fermion loop in the Standard Model) [79, 82], for which precise descriptions

are crucial to determine the CP structure of this coupling.

2.1.1 Multi-Regge Kinematics

The high energy limit for a 2 → n scattering with momenta pa, pb → p1, . . . , pn is

defined by:

y1 ≪ y2 ≪ · · · ≪ yn−1 ≪ yn, p⊥i ≈ k⊥ ∀i ∈ {1, 2, · · · , n− 1, n}. (2.1.1)

Here, yi is the rapidity of momentum pi, and k⊥ is some momentum scale. This

means the high energy limit applies for phase space configurations with final state

particles widely separated in rapidity, with similar transverse momenta.
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This limit is also known as the limit of multi-Regge kinematics (the MRK limit),

and is equivalent to requiring [83]:

ŝ ≫ ŝij ≫ k⊥, p⊥i ≈ k⊥ ∀i, j ∈ {1, 2, · · · , n− 1, n}, i ̸= j. (2.1.2)

This expresses the limit in terms of the large invariant masses required between final

state particles, where ŝ = (pa +pb)2 is the partonic CoM energy of interaction. From

the parametrisation of the four-momentum in Eq. (1.4.6), we can obtain the scaling

of the Mandelstam variable ŝ and ŝij in the MRK limit, again where all particles are

massless:
ŝ = (pa + pb)2 → p⊥1 p⊥ne

yn−y1 ,

ŝij = 2pi · pj → p⊥i p⊥je
|yi−yj |.

(2.1.3)

We can define a generalised Mandelstam t̂:

t̂i ≡
(
pa −

i∑
l=1

pl

)2

→ −p2
⊥i. (2.1.4)

For the case of a 2 → 2, scattering pa, pb → p1, p2, the Mandelstam variables scale

as:
ŝ → k2

⊥e
∆y,

t̂ → −k2
⊥,

û → −k2
⊥e

∆y,

(2.1.5)

where p1⊥ = −p2⊥ = k⊥ (with k⊥ = |k⊥|), and we have chosen the origin of the

rapidity axis without loss of generality to be the midpoint of y1 and y2, denoting

y2 − y1 = ∆y. From this, we can clearly see that any observable depending on the

rapidity difference gives rise to large logarithms in ŝ/k2
⊥, in the MRK limit:

log
(
ŝ

−t̂

)
→ log

(
ŝ

k2
⊥

)
= ∆y. (2.1.6)

This generalises for the n-particle scattering, and we can see that large logarithms

in ŝij/p⊥ip⊥j arise wherever we have an observable depending on ∆yi,j ≡ |yi − yj|.
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2.1.2 Regge Scaling of Amplitudes

The study of amplitudes in the limit of large invariant masses between final state

particles pre-dates QCD. Regge theory, one of the original treatments of the SU(3)c

symmetry in nature from before QCD, predicts that amplitudes for 2 → n scatterings

scale in the MRK limit as [83]:

M2→n ∼ s
J12
12 · sJ23

23 · sJ34
34 · · · sJn−1,n

n−1,n , (2.1.7)

with Jij the spin of the t-channel exchanged particle between emissions i and j —

the reggeon. This inspires denoting the high energy limit by the MRK limit, as it

was originally known.

This amplitude also applies to QCD [84, 85], with reggeised gluons exchanged in

the t-channel. The consequence of reggeisation is that the exponents Jij now depend

on the (square of the) momentum exchanged in the t-channel, since their exchange

gives rise to an additional intrinsic angular momentum [29,84]. In the limit t̂i → 0,

the exponents tend to unity, indicating that the exchanges are spin-1 particles, as

required for gluons. The difference from unity is referred to as α(t̂i). We say that

the reggeised gluons exchanged follow the Regge trajectory J = 1 + α(t̂i).

If the outgoing momenta satisfy Eq. (2.1.1), with all outgoing partons emitted

between 1 and n being gluons — provided the flavour of parton a (b) is the same

as parton 1 (2) — the phase space configuration is referred to as a Fadin-Kuraev-

Lipatov (FKL) state. These are enhanced with leading logarithms in ŝ/p2
⊥ which

can be resummed by solving the BFKL equation with the LL evolution kernel and

impact factors [40–44].

This instructs our consideration of subleading logarithmic terms, as so far we have

considered only configurations that give rise to leading-logarithmic evolution in the

language of BFKL. We can also consider non-FKL states which tend to the same

limit of Eq. (2.1.7) in the limit of large ŝ/p2
⊥, though slower. The most obvious such

correction contributing a next-to-leading-logarithmic effect would be suppression

by removing exactly one factor of ŝij in the MRK limit. This may be achieved
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Figure 2.1: The form of the LO matrix elements for ud → ud (left) and
ug → uss (right) against half the rapidity separation between the forward
and backward parton, evaluated for the phase space slices described in the
text. LO matrix elements provided by MADGRAPH5_aMC@NLO [5].

by e.g. relaxing the requirement of strict rapidity ordering for exactly one pair of

partons in the rapidity interval bounded by the extremal partons. This is often

referred to as the quasi-MRK (qMRK) limit. The emission of one qq pair in lieu of a

gluon in between y1 and yn is also a subleading correction. These contribute to the

NLL evolution in the language of BFKL [86,87].

In Fig. 2.1 we plot the evolution of matrix elements at leading order along a specific

slice of phase space to highlight where the MRK limit provides a useful approximation

to the amplitude. In the left plot we show both the full partonic LO amplitude for

ud → ud with massless quarks, and the MRK-limit approximation of Eq. (2.1.7).

The transverse momenta in the final state are both set as p⊥u = p⊥d = 40 GeV with

the final state u (d) quark produced with ϕ = π (0) and rapidity ∆ (−∆), the latter

of which is varied in the plot. This configuration would be leading-logarithmic in

the MRK limit, yet we can see that for rapidity differences 2∆ ≲ 6 the MRK scaling

does not produce a good approximation of the amplitude even to LO.

Connecting the theoretical background to the physical configurations at experi-

ments highlights the problems of using the MRK limit for the full phase space. The

ATLAS detector can observe particles with rapidities of up to |η| ≲ 4.9 [49]. This

implies that the largest observable rapidity differences are ∼ 10 with the understand-

ing that statistics for collisions with jets observed at such wide separations will be
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low as their production is suppressed in the region between 2∆ ∼ 6 and 10. For this

LL configuration, the majority of the reliably sampled experimental phase space is

not well-described by approximating the MRK limit everywhere, though the forward

region is very well-described.

The subleading configurations enter into prominence for larger rapidity differences,

thus the MRK limit provides a much weaker description for a larger region of phase

space. This is best illustrated by the LO matrix element for ug → uss — which

contributes at NLL — plotted in the right of Fig. 2.1. The notation ab → f1f2 . . .

implies, when we discuss high-energy logarithms or the HEJ framework, that the

final state is listed in order of ascending rapidity. Final state partons were examined

again along a specific slice of phase space where they are equidistant in ϕ and y

with equal transverse momenta of 40 GeV. Again, ∆ signifies half the difference in

rapidity between the most forward and backward partons. It is only at ∆ ∼ 7 that

the MRK limit yields a solid approximation to the LO amplitude.

Dominant colour connections in the high energy limit

When considering amplitudes in QCD, the concept of colour flow is useful to consider

when stripping the kinematics of an amplitude from the colour structure. With the

products of QCD generator elements in amplitudes, one can trace the indices and

connect the partons in a diagram with lines signifying the flow of colour in the

diagram. A particular configuration of flow lines in colour space is referred to as a

colour connection. Since gluons carry two colour indices, they can be connected in

colour on either “side” in a diagram. Quarks, by contrast, may only be connected

on one “side”.

The study of ref. [88] found that in the limit of wide-angle hard radiation, gg →

g . . . g amplitudes in QCD were dominated in colour space by configurations that

resemble rapidity-ordered “ladders”. We show in Fig. 2.2 two examples of colour

configurations, one dominant in the high energy limit, and another sub-dominant,

for gg → gggg, with final state partons ordered in rapidity. In the left plot, a
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dominant high energy configuration is shown with the colour flow between gluons

able to be arranged in a “ladder” without compromising the rapidity ordering of the

final state. One can imagine “pinching” the colour vertex at gluon 2 in this leading

contribution, and unravelling it to the left to create a rapidity-ordered “ladder” with

the colour flow lines. These configurations (along with the planar configurations

where no unfolding is required) are leading in the MRK limit.

a

b

1 a

2

3

4 b

1

2

3

4

Figure 2.2: A colour flow contributing to the limit of widely-separated (in
rapidity) hard radiation (left) and one not contributing in the same limit
(right). The outgoing particles are ordered in rapidity. Reproduced from
ref. [6].

The connection displayed in Fig. 2.2 (right) is sub-dominant, since the colour flow

can not be rearranged into a non-crossing ladder without swapping the rapidity

ordering of gluons 2 and 3. For processes involving quarks, the colour connections

are analogous, with breaks in the colour flow line around the quarks. Introducing

corrections that contribute at NLL, such as central qq pairs, introduces more breaks

in the colour flow lines around additional quarks, or allows for the swapping of one

pair of particles in rapidity ordering (corresponding to the qMRK limit). At LL,

the reversed colour connection to a leading configuration (which can be found by

e.g. reversing the colour flow in the left diagram of Fig. 2.2) contributes equally to the

amplitude as the non-reversed configuration [88]. We use this result when considering

the colour configurations of events in merging the high energy resummation of High

Energy Jets with the Pythia parton shower in Ch. 3.

While the full framework of BFKL outlined in this section provides an invaluable

prescription for accounting for large logarithms in the MRK limit, the matrix ele-
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ments in Fig. 2.1 show that these effects are not sufficient to ensure an accurate

description across the phase space. Inspired by this, the High Energy Jets framework

builds on the BFKL formalism and implements LL and subleading corrections to all

orders in perturbation theory, while matching to LO to retain fixed-order accuracy

of matrix elements.

2.2 The High Energy Jets Framework

Following our brief overview of perturbative QCD in the high energy limit, we pause

to note again that amplitudes calculated in the pure MRK limit are not well-suited

to providing physical descriptions of matrix elements across phase space, though

the corrections in the high energy limit are essential to a stable description of the

large invariant mass region of phase space. Indeed, we have made note of studies for

which this forward region is of immense interest, notably for the precise modelling

of GF Higgs production in the region of VBF dominance where large dijet invariant

masses mjj ≳ 400 GeV are observed [81], though a precise modelling of such effects

should not come at the expense of the perturbative description across phase space.

This is precisely the motivation for the High Energy Jets (HEJ) formalism [23,89–91]

which builds on the amplitudes discussed in the previous section.

The HEJ framework is inspired by the BFKL formalism and the observation of

t-channel pole factorisation in partonic matrix elements for jets produced in the

MRK limit [92]. The HEJ framework combines the ideas we have introduced in the

previous section to produce fully regularised, high energy-resummed, LO-matched

Monte Carlo generated theoretical predictions in a fully differential phase space for

direct comparison to experimental studies.

2.2.1 Currents and 2 → 2 Amplitudes in HEJ

We start by considering the full 2 → 2 case, focusing on the hard scattering of

distinct quarks qQ → qQ, where the LO contribution is illustrated in Fig. 2.3. We



88 Chapter 2. Frameworks for Perturbative Calculations in QCD
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Figure 2.3: The LO scattering of distinct quarks qQ → qQ.

decompose momenta into lightcone coordinates, defining:

p± = E ± pz, (2.2.1)

and generalising the transverse momentum to a complex representation p⊥ ≡ px+ipy.

We denote by pa (pb) the initial state parton incoming along the positive (negative)

z-axis and denote the final state momenta by pj for j ∈ {1, . . . , n} — in this starting

case n = 2. The helicities are denoted in the same way i.e. ha, hb for the initial state

and hj for the final.

We revisit the spinor-helicity formalism outlined Sec. 1.3.1 to calculate this matrix

element and use results of ref. [32] throughout our derivation in this section. Config-

urations with either h1 ̸= ha or h2 ̸= hb are suppressed in the MRK limit, and we

only need evaluate the q±Q± → q±Q± and q±Q∓ → q±Q∓ amplitudes. The super-

scripts denote helicities. Using the definition of t̂ in Eq. (1.3.10), we can write for

the (colour- and coupling-stripped) amplitudes M with pairwise differing helicities:

M
q

+
Q

−→q
+

Q
− ≡ M∗

q
−

Q
+→q

−
Q

+

= 1
t̂
[1|γµ |a⟩ ⟨2| γµ|b] = 2

t̂
⟨a2⟩[b1],

(2.2.2)

and for the contribution with pairwise similar helicities:

M
q

−
Q

−→q
−

Q
− ≡ M∗

q
+

Q
+→q

+
Q

+

= 1
t̂

⟨1| γµ|a] ⟨2| γµ|b] = 2
t̂
⟨12⟩[ba].

(2.2.3)

In both cases we have used the Fierz identity ⟨i| γµ|j] ⟨r| γµ|s] ≡ 2⟨ir⟩[sj] to produce

the last equality [32].
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We may concisely summarise these contributions by defining the spinor string:

S
hahb→h1h2
qQ→qQ = ⟨1h1| γµ |aha⟩ gµν ⟨2h2 | γν |bhb⟩

= jh1
µ (pa, p1)jh2,µ(pb, p2).

(2.2.4)

Here we have defined the currents for the helicity-conserving impact factors on the

top and bottom legs of Fig. 2.3 by:

j−
µ (p, k) ≡ ⟨p| γµ|k] ≡ j+

µ (k, p). (2.2.5)

We can then write for the summed, averaged square matrix element:

|MqQ→qQ|2 = 1
4

1
N2

c − 1
||SqQ→qQ||2

(
g2

sCF

1
t̂1

)(
g2

sCF

1
t̂2

)
, (2.2.6)

by defining:

||SqQ→qQ||2 =
∑

ha,1,hb,2∈{+,−}
S

hahb→h1h2
qQ→qQ δhah1δhbh2 . (2.2.7)

In Eq. (2.2.6) we have — suggestively to our generalisation — absorbed a factor

of t̂ to each vertex and displayed them with their colour factors. Here we used

t̂1 = (pa − p1)2 and t̂2 = (pb − p2)2, which are equal to each other in the 2 → 2

scattering.

All helicity-conserving qg → qg amplitudes may be obtained exactly in their t-

channel factorised form by replacing the colour factor in the corresponding impact

factor with the colour acceleration multiplier [93]:

CF → Kg(p−
2 , p

−
b ) ≡ 1

2

(
CA − 1

CA

)(
p−

2

p−
b

+ p−
b

p−
2

)
+ 1
CA

, (2.2.8)

where we have assumed that the backward parton is the gluon, though the form is

the same for the case of the forward parton being the gluon instead. This displays

the correct behaviour in the MRK limit as p−
b → p−

2 gives the expected factor of CA

per gluon.

The helicity-violating amplitudes (for both qg → qg and gg → gg) receive con-

tributions from s- and u-channel mediated diagrams which are suppressed at high

energies. Despite this, we retain the exact form of the gluon currents, for which
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Figure 2.4: All possible LO qQ → qgQ diagrams with the emitted final
state gluon with momentum p2 highlighted in blue from each available
vertex.

complete expressions may be found in ref. [93]. Though we still make arguments

to suppress non-t-channel factorised contributions, the HEJ framework significantly

improves the description of the pure BFKL formalism. In HEJ, more of the LO

structure of the matrix elements is retained in the construction of the currents and

the spinor strings than in the MRK limit.

2.2.2 Effective Emission Vertices in HEJ

Emissions in the BFKL formalism and the HEJ framework are implemented with

effective vertices. Continuing from the qQ → qQ example, we derive the effective

vertex for gluon emission by considering a real emission correction, qQ → qgQ

i.e. the amplitude for a gluon emission inside the rapidity interval bounded by the

two quarks. We consider the contributions to the amplitude from a gluon emission

attached to each incoming and outgoing leg as well as the t-channel exchanged gluon.

This is displayed in Fig. 2.4 where the partons have momenta pa, pb → p1, p2, p3 with

p2 the momentum of the gluon.

In QCD, we can write for the t-channel contribution:

Mt-channel = − fabctc,i1iatb,i3ib
g3

s

t̂1t̂2
jµ(pha

a , p
h1
1 )jν(phb

b , p
h3
3 )ελ,∗

ρ (p2)

× [(q1 + q2)ρgµν + (p2 − q2)µgνρ − (q1 + p2)νgµρ] ,
(2.2.9)
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where ta,ij is the i, j element of the fundamental SU(3)c generator ta, qi := pa−∑j<i pj

such that q2
i = t̂i, and we have used the currents which retain more of the LO

structure of the amplitude. This simplifies in the MRK limit:

Mt−channel →fabctc,i1iatb,i3ib
−g3

s

t̂1t̂2
× S

ha,hb→h1,h2
qQ→qQ × ελ,∗

µ (p2)

×
[
2pµ

a

ŝ23

ŝ
− 2pµ

b

ŝ12

ŝ
− (q1 + q2)µ

]
.

(2.2.10)

For the other four diagrams, we may use the eikonal approximation of Eq. (1.3.38)

by assuming the gluon is soft and produce [92]:

Mq−leg =ig3
s × S

ha,hb→h1,h2
qQ→qQ × ελ,∗

µ (p2)

×
(
ta,i1ktb,kiatb,i3ib

pµ
1

p1 · p2

1
t̂b3

− tb,i1kta,kiatb,i3ib
pµ

a

pa · p2

1
t̂b3

+tb,i1iata,i3ktb,kib
pµ

3
p3 · p2

1
t̂b3

− tb,i1iatb,i3kta,kib
pµ

b

pb · p2

1
t̂a1

)
.

(2.2.11)

This exhibits again an apparent t-channel pole structure despite that the emission

was not mediated by a t-channel gluon. Retaining the full kinematic structure of

Eq. (2.2.11) rather than approximating in the MRK limit (which we had to do

for the t-channel contribution), we can combine this equation with Eq. (2.2.10) to

produce [92]: ∣∣∣MqQ→qgQ

∣∣∣2 = 1
4
(
N2

C − 1
) ∥∥∥SqQ→qQ

∥∥∥2

·
(
g2

sCF

1
t̂1

)
·
(
g2

sCF

1
t̂2

)

·
(

−g2
sCA

t̂1t̂2
V µ (q1, q2)Vµ (q1, q2)

)
.

(2.2.12)

Here V µ is the generalisation of the Lipatov effective vertex of the BFKL formalism

to the HEJ framework, retaining the MRK limit results but accounting for the

LO kinematics at greater accuracy. This is given by (generalising to momenta
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qi, qi+1, pi+1):

V µ (qi, qi+1) = − (qi + qi+1)µ

+ pµ
a

2

(
q2

i

pi+1 · pa

+ pi+1 · pb

pa · pb

+ pi+1 · pn

pa · pn

)
+ pa ↔ p1

− pµ
b

2

(
q2

i+1

pi+1 · pb

+ pi+1 · pa

pb · pa

+ pi+1 · p1

pb · p1

)
− pb ↔ pn.

(2.2.13)

The Lipatov vertex carries a full dependence of the form V µ(pa, pb, p1, pn, qi, qi+1),

however we often omit the momenta of the incoming partons (pa, pb) and the extremal

partons in the final state (p1, pn) for concision. The retention of the MRK limit of

this vertex can be demonstrated by showing:

|V (q1, q2) · V (q1, q2)| → 4q2
⊥1q

2
⊥2

p2
⊥2

, (2.2.14)

in the MRK limit. Gauge invariance can be shown again by checking the Ward

identity1, p2 · V (q1, q2) = 0. As is evident from Eq. (2.2.14), the squared matrix

element is divergent in the limit that the central gluon becomes soft, since |V ·V |/t̂1t̂2

behaves as 1/p2
⊥2. This divergence will cancel with the all-order virtual corrections

that we consider after generalising this to the full 2 → n amplitude. We express

here a 2 → n scattering f1f2 → f1, g, . . . , g, f2:∣∣∣MHEJ,tree−level
f1f2→f1g...gf2

∣∣∣2 = 1
4
(
N2

C − 1
) ∥∥∥Sf1f2→f1f2

∥∥∥2

·
(
g2

sKf1

1
t̂1

)
·
(
g2

sKf2

1
t̂n−1

)

·
n−2∏
i=1

(
−g2

sCA

t̂it̂i+1
V µ (qi, qi+1)Vµ (qi, qi+1)

)
,

(2.2.15)

with Kf1 and Kf2 the colour factors corresponding to respectively f1 and f2, recalling

the colour acceleration multiplier of Eq. (2.2.8) must be used for gluons. Manifest in

this expression is the IR divergence appearing in the soft limit for each gluon inside

the rapidity interval bounded by f1 and f2.
1For a process with one outgoing vector boson we define M = εµ(p)Mµ. The Ward-Takahashi,

or just Ward identity is then: pµMµ = 0 as a consequence of gauge invariance [25,39].
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2.2.3 All-Orders with HEJ — The Lipatov Ansatz

The HEJ treatment of all-order corrections is to apply the Lipatov ansatz of the

BFKL formalism, which is known to resum the corresponding leading logarithms

from the BFKL evolution [84]:

1
t̂i

→ 1
t̂i

(
ŝi−1,i

t̂i

)α(t̂i)

≈ 1
t̂i

exp
[
α(t̂i)(yi−1 − yi)

]
. (2.2.16)

The cancellation between the soft real and virtual divergences can be organised by

regularising the difference of the Regge trajectory α from unity. Regularising α in

4 + 2ϵ dimensions (and introducing a regularising scale µ of mass dimension +1)

gives [29,92]:

α(qi) = αsCAq
2
⊥iµ

−2ϵ
∫ q⊥i

0

d2+2ϵk⊥

(2π)2+2ϵ

1
k2

⊥(k⊥ − q⊥i)2 = −2CA

(4π)1+ϵ

Γ(1 − ϵ)
ϵ

αs

(
q2

⊥i

µ2

)ϵ

,

(2.2.17)

to leading-logarithmic accuracy. We have used the momentum qi in the t-channel

rather than the square t̂i as the argument.

From the divergent behaviour of the real corrections in the soft limit for pi, we can

show the following:

|Mn+1|2 →
(

4gsCA

p2
⊥i

)
|Mn|2, (2.2.18)

where the n amplitude corresponds to the n+ 1 with the external leg of momentum

pi removed. The diligent reader may have noticed a connection with our definition

of the QCD splitting functions in Eq. (1.3.43) and, for example, Eq. (1.3.42). These

limits are not only relevant for organising the cancellation of soft divergences in HEJ

amplitudes, but also when we consider matching HEJ with a parton shower in Ch. 3.

We can integrate the factor
(

4g
2
sCA

p
2
⊥i

)
beneath an IR cutoff λ and dimensionally

regularise the phase space integral, yielding:

µ−2ϵ
∫

|p⊥|<λ

d3+2ϵpi

(2π)3+2ϵ2Ei

4g2
sCA

p2
⊥i

=µ−2ϵ
∫ yi+1

yi−1

dyi

4π

∫ λ

0

d2+2ϵp⊥i

(2π)2+2ϵ

4g2
sCA

p2
⊥i

= 4CA

(4π)1+ϵ ∆yi−1,i+1
1

ϵΓ(1 + ϵ)αs

(
λ2

µ2

)ϵ

.

(2.2.19)

Here the difference ∆yi−1,i+1 arises since the rapidity sampling at LL for pi is flat in
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the interval between yi−1 and yi+1. Comparing Eq (2.2.17) to Eq. (2.2.19), we see

that, order by order, the soft divergences between the virtual and real corrections

cancel1, leaving behind only the finite remainder:

ω0(qi;λ2)∆yi−1,i+1 := −αsCA

π
log

(
q2

⊥i

λ2

)
∆yi−1,i+1. (2.2.20)

This a regularised analogue of the Regge trajectory. Noting that there is now a

term to be subtracted for the soft divergence with |p⊥i| < λ, we can write the

fully regularised HEJ matrix element with resummed high energy real and virtual

corrections to all orders as [7, 92]:
∣∣∣MHEJ,reg.

f1f2→f1g...gf2

∣∣∣2 = 1
4
(
N2

C − 1
) ∥∥∥Sf1f2→f1f2

∥∥∥2

·
(
g2

sKf1

1
t̂1

)
·
(
g2

sKf2

1
t̂n−1

)

·
n−2∏
i=1

(
g2

sCA

(
−1
t̂it̂i+1

V µ (qi, qi+1)Vµ (qi, qi+1) − 4
p2

⊥i

Θ
(
−p2

⊥i + λ2
)))

·
n−1∏
j=1

exp
[
ω0
(
qj;λ2

) (
yj+1 − yj

)]
,

ω0
(
qj;λ2

)
= − αsCA

π
log q

2
⊥j

λ2 .

(2.2.21)

This current-current scattering may be schematically represented in Fig. 2.5 where

the t-channel reggeised gluon exchanges are shown as zig-zagged lines and the Lipatov

effective emission vertices by the shaded boxes. The final state is ordered in rapidity.

Importantly, this is not a Feynman diagram and only represents the structure of a

HEJ amplitude calculation. These configurations are the FKL or LL configurations

we referred to in Sec. 2.1. They are characterised by the rapidity interval bound

by the partons with flavour f1 and f2 and that only gluons are emitted between

them. Configurations such as those contributing to the matrix element plotted in

the right of Fig. 2.1 are subleading — in particular the considered configuration is

an extremal (in rapidity) qq pair production.

The subleading configurations to which HEJ can apply the leading logarithmic all-
1To LL, there is no collinear divergence, since all particles are strongly ordered in rapidity.
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Figure 2.5: Schematic of a HEJ amplitude, showing the scattering of currents
as mediated by t-channel reggeised-gluon exchanges. Emissions from HEJ-
generalised effective vertices are ordered in rapidity on the right. From
ref. [7].

order resummed corrections include, at the time of writing this thesis, the unordered

emissions: those with a gluon or qq pair produced outside the rapidity interval

formed by y1 and yn [7] (these are extremal qq configurations). LL resummation

may be applied to configurations with a qq pair produced inside the rapidity interval;

these are referred to as central qq production [87]. The states which HEJ can apply

LL resummation to are referred to as (HEJ-)resummable, and the rest are classified

as non-resummable. If we produce a HEJ prediction to LL accuracy only, then we

imply that the subleading configurations have been treated as non-resummable for

that prediction. Otherwise, for a full HEJ prediction including the LL resummation

on LL and subleading configurations, the subleading configurations are treated as

resummable.

The subleading corrections are implemented by making modifications to the cur-

rents in Eq. (2.2.5) to accommodate these processes. We examine the role of sub-

leading corrections in greater detail in Ch. 3 when we discuss the classification of

HEJ-resummable states in the HEJ+Pythia scheme for merging HEJ resummation

with the parton shower of Pythia8 [47].

To draw from the resummed, regularised matrix elements in HEJ to cross sections,
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one needs only integrate Eq. (2.2.21) over the Lorentz-invariant phase space:

σresum
2j =

∑
f1,f2

∑
m

m∏
j=1

(∫ p⊥j=∞

p⊥j=0

d2p⊥j

(2π)3

∫ dyj

2

)
(2π)4 δ(2)

(
m∑

k=1
p⊥k

)

× xa fa/f1(xa, (µa)2) xb fb/f2(xb, (µb)2)

∣∣∣MHEJ,reg.
f1f2→f1g...gf2

∣∣∣2
ŝ2 O2j({pi}).

(2.2.22)

The xa, xb values are fixed by performing the integrals over these — as per the

QCD factorisation formula of Eq. (1.3.45) — and using two of the δ-functions from

the Lorentz-invariant phase space to use the final state to generate the required

values. This is why the Lorentz-invariant phase space in Eq. (2.2.22) carries only

two dimensions in the momentum-conserving δ-function. The inclusive two jet

measure O2j({pi}) returns 1 if at least two jets are observed in the final state with

momenta {pi} and 0 otherwise.

We have centred the discussion around inclusive dijet production in QCD however

the HEJ framework has been applied to calculate such matrix elements for dijet

production with W± [94], H [7], Z/γ∗ [95] and same-sign W±W± [96] bosons. For

these states, the currents of Eq. (2.2.5) are modified to accommodate the boson

emission. We detail the calculation for a Higgs boson current in Ch. 4 where we

explore the behaviour of HEJ amplitudes for the production of a Higgs boson with

at least one jet.

2.2.4 Event Generation in HEJ

High Energy Jets, while not a general purpose event generator, provides a Monte

Carlo framework for evaluating the fully differential cross sections from the resummed

matrix elements. Many of the considerations that feature in the general purpose

framework feature also in our discussion of HEJ event generation and their gener-

alisation is far from trivial, including LO matching. While the form of the purely

HEJ-resummed cross section in Eq. (2.2.22) is simple, including LO matching requires

much development.

We start by considering LL HEJ configurations (FKL configurations), i.e. events
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which are 2 → n scatterings of the form f1f2 → f1g · · · gf2 with the final state

ordered in rapidity and f1 (f2) entering the initial state along the positive (negative)

z axis. The HEJ cross section for the LL-resummed, LO-matched inclusive two jet

scattering is given by [97]:

σresum,match
2j =

∑
f1,f2

∑
m

m∏
j=1

(∫ p
B
⊥j=∞

p
B
⊥j=p

J,B
⊥,min

d2pB
⊥j

(2π)3

∫ dyB
j

2

)
(2π)4 δ(2)

(
m∑

k=1
pB

⊥k

)

× xB
a fa/f1(xB

a , (µB
a )2) xB

b fb/f2(xB
b , (µB

b )2)

∣∣∣Mf1f2→f1g···gf2
LO

({
pB

j

})∣∣∣2
(ŝB)2

× wm−jet∣∣∣MLO
f1f2→f1g···gf2

({
pB

j

})∣∣∣2 × (2π)−4+3m 2m

×
∞∑

n=2

∫ p⊥1=∞

p⊥1=p
J
⊥,min

d2p⊥1

(2π)3

∫ p⊥n=∞

p⊥n=p
J
⊥,min

d2p⊥n

(2π)3

n−1∏
i=2

∫ p⊥i=∞

p⊥i=λ

d2p⊥i

(2π)3 (2π)4 δ(2)
(

n∑
k=1

p⊥k

)

× Ty

n∏
i=1

(∫ dyi

2

)
Oe

mj

(
m−1∏
l=1

δ(2)(pB
Jl⊥ − jl⊥)

) (
m∏

l=1
δ(yB

Jl
− yJl

)
)

× xafa/f1(xa, µ
2
a) xbfb/f2(xb, µ

2
b)

|MHEJ,reg.
f1f2→f1g···gf2

({pi})|2

ŝ2 O2j({pi})

× (ŝB)2

xB
a fa/f1(xB

a , (µB
a )2) xB

b fb/f2(xB
b , (µB

b )2)
.

(2.2.23)

We have highlighted different parts of the formula to refer to different stages of the

calculation. Focusing first on the top two lines, highlighted in blue, we note that

these are just LO cross sections for m jets (with the phase space integral on the

first line and the flux and squared matrix element on the second line), summed over

multiplicity. If we terminate the sum on the first line at m = 2 then these two

lines are just the inclusive dijet cross section at LO. In each case LO quantities are

indicated with a B superscipt (or LO superscript to indicate the matrix elements).

The third line, highlighted in orange encodes the matching procedure to ensure

LO accuracy across phase space is guaranteed. The term wm−jet is given per LO

phase space point by:

wm−jet ≡

∣∣∣MLO
f1f2→f1g···gf2

({
pB

j

})∣∣∣2∣∣∣MLO, HEJ
f1f2→f1g···gf2

({
pB

j

})∣∣∣2 , (2.2.24)

which depends only on the corresponding HEJ LO approximation. Since the LO
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approximation is used for HEJ in the matching term, the emission phase space is

identical to the LO term and thus the same phase space point may be used to obtain

the matching term as was used in the LO generation.

The last four lines of Eq. (2.2.23) encode the HEJ resummation as described in

Sec. 2.2. The first line of this block (immediately following the matching term in

orange) is the phase space integration of the transverse momenta of the event after

emissions are added by HEJ. The sum at the start of this term simply ensures the

all possible n-particle states are produced. This includes soft emissions beneath the

minimum jet transverse momentum scale pJ
⊥,min (above which all fixed-order jets are

generated). The soft emissions generated by HEJ are produced above a minimum

soft transverse scale λ.

In the next line (line 5) we see the rest of the phase space integral measure and

δ-functionals which ensure that — for a given m-jet phase space point at LO —

the resummed HEJ event with additional soft radiation still contains m jets with

transverse momenta exceeding pJ
⊥,min. More specifically, a map is used to project an

n particle phase space point onto the m particle LO phase space (for n > m). This

map is given by:

pB
Jl⊥ = jl⊥ + q⊥

|pJl⊥|∑ |p⊥|
, (2.2.25)

where pJl⊥ is the transverse momentum of the jet after resummation, q⊥ is the

vector sum of non-jet transverse momenta in the event after resummation, jl⊥ is the

vector transverse momentum of the LO jets. The sum in the denominator of the

fraction on the right hand side is the scalar sum of all transverse momenta in the

final state. The initial state momenta need to be reassigned after the momentum

mapping is applied to the final state, this is done by summing the positive and

negative lightcone-momentum components p± = E±pz in the final state and setting

the momentum of the partons incoming along the z-axis to:

p′
a =

(
P+

2 , 0, 0, P
+

2

)
, p′

b =
(
P−

2 , 0, 0, −P−

2

)
, (2.2.26)

with P± = ∑
f p

±
f , where pf are the momenta of the final state particles.
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The exclusive jet observable measure:

Oe
mj

(
m−1∏
l=1

δ(2)(pB
Jl⊥ − jl⊥)

)
, (2.2.27)

ensures that the projection of the resummation phase space point onto the Born/LO

phase space produces the same jets as observed in the Born configuration. The jet

rapidities are also required to be unchanged by the resummation and the whole final

state is premultiplied by the rapidity-ordering operator Ty.

The bottom two lines of Eq. (2.2.23) compute the integrand of the resummed

expression, including the HEJ-resummed matrix elements of Eq. (2.2.21) and the

PDFs re-evaluated at the resummation scales and x values corresponding to the

resummation event. This requires reweighting the original Born integrand with the

new values as done in the bottommost line.

Making predictions with HEJ

As well as neatly packaging the HEJ framework into one formula, Eq. (2.2.23) il-

lustrates how this is implemented in HEJ (v2.0+) [98]. One requires a Born-level

event generator (in practice Sherpa is most-often used) to produce the blue LO

terms for each jet multiplicity until a maximum multiplicity, this corresponds to

setting an upper limit in the sum over m in Eq. (2.2.23). This is mostly due to the

computational cost of computing high multiplicity multi-leg matrix elements, which

increases rapidly for increasing multiplicities. In cases where higher multiplicities

are further required, HEJ (v2.0+) comes with a fixed-order generator that produces

multi-jet matrix element states for very high multiplicities at low computational

cost, but only using the HEJ approximation at LO.

The leading order sample is passed through HEJ which will then construct resum-

mation trials for each LO input event, reweighting those that are successful by the

phase space integral and resummation matrix element and flux in the four bottom

lines of the equation. The end result is that all m-jet LO input is supplemented with

HEJ resummation for the resummable configurations.
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We noted in Sec. 1.5.1 that the errors in Monte Carlo integration can be calculated

as per Eq. (1.5.5), thus one may naïvely conclude that the error in the Monte Carlo

implementation of Eq. (2.2.23) can be calculated by the total number of events

generated i.e. the total number of (successful) HEJ trials for each input LO event,

summed. This is not the case as the integral in the top two lines of Eq. (2.2.23) is

performed over a different phase space to the bottom four lines. This latter integral

is performed over the resummation phase space for the current input fixed-order

phase space point. The number of (successful) trials for an individual input LO

event can only be used to derive the error on the integration for that event. The true

Monte Carlo error in the HEJ prediction depends chiefly on how well-sampled the LO

phase space is by the generator used to produce the LO events. Only the uncertainty

on the resummation phase space is controlled by the number of resummation trials

in HEJ.

To retain full LO matching, the non-resummable cross section must be included

in the HEJ description. This takes a simpler form than the resummed:

σnon−resum
2j =

∑
f1,f2

∑
m

m∏
j=1

(∫ p
B
⊥j=∞

p
B
⊥j=0

d2pB
⊥j

(2π)3

∫ dyB
j

2

)
(2π)4 δ(2)

(
m∑

k=1
pB

⊥k

)

× xB
a fa/f1(xB

a , (µB
a )2) xB

b fb/f2(xB
b , (µB

b )2)

∣∣∣Mnon−resum
LO

({
pB

j

})∣∣∣2
(ŝB)2 ,

(2.2.28)

i.e. the topmost two lines of Eq. (2.2.23) without any additional corrections. Since

there is no probability of transitioning between resummable and non-resummable

phase space in HEJ (unlike in the parton shower where all LO states could be produced

by the shower, as we shall see in the next section), there is no risk of double-counting

contributions in formulating the cross section this way. This means that for each

phase space point read by HEJ, either the full LO matrix element is used, or the LO

accuracy is bolstered with HEJ resummation, ensuring at least LO accuracy across

phase space.

In addition to the FKL contributions explicitly formulated in Eq. (2.2.23), resum-

mable configurations in HEJ (>v2.0) now include contributions to the subleading
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processes in BFKL as mentioned in Sec. 2.2. The currents for these channels and

for all mentioned processes are implemented in HEJ, and we discuss in Ch. 4 the

development of HEJ matrix elements for the inclusive production of a Higgs boson

with at least one jet. Ref. [87] provides a robust review of the subleading corrections

to HEJ amplitudes for the inclusive production of a W boson with at least two jets,

including how the subleading currents are implemented and discussions of NLO

matching. We also discuss multiplicative NLO matching in Ch. 4 where we apply

this concept to both inclusive H + 1j production and H + 2j production.

To conclude this chapter in the next section we lay out in detail the necessary

theoretical groundwork behind the resummation of soft and collinear logarithms by

parton showers.

2.3 Parton Showers and Soft-Collinear

Logarithms

To illustrate the emergence of soft-collinear logarithms to all orders in perturbative

QCD, we revisit the discussion of Sec. 1.3.2 on parton splittings. We sketched the

derivation of the splitting functions in QCD and displayed an example for q → qg

splitting in Fig. 1.6. We show again the spin- and azimuthal angle-averaged splitting

function of Eq. (1.3.44) here:

Pqq(z) = CF

1 + z2

1 − z
.

We shall apply this for the moment to production of qq pairs from e−e+ scattering

such that we only have to consider the probabilities of QCD splittings in the final

state [45]. Assuming the quark q in the final state emits a gluon in much a similar

manner to Fig. 1.6 we may use Eq. (1.3.42) to write for the cross section in the

soft-collinear limit:

dσ̂(e−e+ → qgq) = σ̂(e−e+ → qq)dt
t

dzdϕαs

2πPqq(z). (2.3.1)
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Since z is the energy fraction of the daughter1 quark after it has emitted a gluon,

the bounds of the integral over z are 0 and 1 — the latter being where the splitting

function logarithmically diverges. We regulate this divergence by limiting the upper

bound to 1 − ϵ (0 < ϵ < 1) and calculate:
∫

dϕ
∫ 1−ϵ

0
dzCF

αs

2π
1 + z2

1 − z
= CFαs

∫ 1−ϵ

0
dz1 + z2

1 − z

≈ CFαs

∫ 1−ϵ

0
dz 2

1 − z
− CFαs

∫ 1

0
dz(1 + z)

= 2CFαs

[
log

(1
ϵ

)
− 3

4

]
,

(2.3.2)

neglecting the running of αs. Taking ϵ = t/t′, with t the ordering variable (or the

scale as it is often referred to), we can integrate over (the logarithmically divergent

part of) Eq. (2.3.1) to give:

2CF

∫ t
′

tmin

dt
t
αs log

(
t′

t

)
= CFαs log2

(
t′

tmin

)
∝ αsL

2. (2.3.3)

This is a leading-logarithmic correction to the LO process — a double logarithm

of the ratio of scales widely separated in the soft and collinear limit [8]. We have

introduced a resolution scale tmin , which is the minimum scale of a parton shower

emission (i.e. the scale beneath which emissions are no longer resolvable). The

quantity t′ represents the scale at which the Born process was produced, and there

is a notion of ordering of soft emissions down to the minimum scale tmin. Subleading

single logarithms also contribute in the individual soft and collinear limits, giving

rise to terms ∼ αsL rather than αsL
2.

Considering the nth real emission correction to the LO e−e+ → qq cross section,

the contribution from the splitting with the above kinematics is given by:

1
n! (−1)n+1

(
αsCFL

2

2π

)n

, (2.3.4)

to leading-logarithmic accuracy. We may thus resum these terms by multiplying the
1Typically, the parton pre-splitting is referred to as the mother and the splitting products the

daughters.
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LO cross section by [30,39,45]:

∆ab(t′, tmin ) := exp
{

−
∫ t

′

tmin

dt
t

(
αs(t)
2π

∫ zmax

zmin

dzPab(z)
)}

. (2.3.5)

This is the famous Sudakov form factor for a generic a → bc splitting, in the most

general form with the running of αs restored. We have left the limits on the z

integration arbitrary for full generality, since this Sudakov form factor produces

the no-emission probability for any two scales, i.e. ∆(tj, tk) gives the no-emission

probability between scales tj and tk, with tj > tk. We arrive at the no-emission

probability by imposing unitarity; the probability of observing n emissions is exactly

the difference from unity of the corresponding probability of no-emission. A Taylor

expansion of Eq. (2.3.5) verifies indeed that the all-orders double logarithms are

resummed. Further logarithmic accuracy may be obtained (in a manner analogous

to the treatment of subleading accuracies in the BFKL formalism of Sec. 2.1) by

including the subleading terms to the kernel:

Pab(t, z) := αs(t)
2π

1
t
Pab(z). (2.3.6)

If we consider QCD initial and final states (e.g. generalising from e−e+ scattering

to qq → qq), we note that there is a probability for initial state partons to emit

QCD radiation that enters the final state. Convolving the partonic cross section of

Eq. (2.3.1) with the PDFs to yield the hadronic cross-section of Eq. (1.3.45) will not

produce the correct DGLAP evolution. The initial state radiation (ISR) splitting

probabilities must be reweighted by a an additional factor compared to the final

state radiation (FSR) probabilities. This is done to reproduce the correct backward

evolution [30] for an initial state splitting with flavours i → jk:

Pij(t, z)
ISR−−→ xjfj(xj, µ

2
F )

xifi(xi, µ
2
F )
Pij(t, z). (2.3.7)

Interpreting the resummation beneath a more probabilistic lens, we note that the

Sudakov form factor of Eq. (2.3.5) is nothing more than a probability of no emission

between scales t′ and tmin. The review of ref. [39] draws an aesthetic parallel to the
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decay constant in radioactive decay for which the no-emission probability between

different times is also an exponentially distributed variable. Indeed, taking the

derivative with respect to the ordering variable t of Eq. (2.3.5) yields:

d∆ab(t, tmin )
dt = −∆ab(t, tmin )

∫
dzPab(t, z). (2.3.8)

We hence often refer to Pab(t, z) as displayed in Eq. (2.3.6) as the splitting probability.

The all-orders soft-collinear virtual corrections follow from unitarity; the addition

of soft-collinear radiation does not alter integrated cross sections for hard processes

since the probability for a resolvable emission and that for an unresolvable emission

(i.e. the Sudakov form factor) must sum to one [39]. More formally:

P (resolvable, real) = 1 − P (unresolvable, real + virtual), (2.3.9)

showing the separation of real and virtual corrections explicitly.

2.3.1 The Sudakov Veto Algorithm

The Monte Carlo tools used to numerically resum the soft-collinear logarithms arising

from parton splittings are called parton showers. They proceed at their most simple

by evolving a hard process (a 2 → 2 scattering for dijet production, for instance)

down in evolution scale from an initial scale t0, applying emissions down to the

lowest scale tmin according to the following algorithm [30]:

1. Generate a random number r uniformly distributed in [0, 1].

2. Solve ∆(ti, ti+1) = r for ti+1, this is the scale of the splitting.

3. If ti > tmin then set i → i + 1 and return to step 1, otherwise terminate the

evolution.

This dresses the 2 → 2 configuration with the appropriately constructed soft and

collinear radiation resulting from parton splittings. This formulation is severely

limited outside of the regions with soft-collinear enhancement — just as the MRK
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limit produces weaker descriptions of the full phase space outside of the MRK-

enhanced regions. Modern parton showers typically are packaged with fuller GPMC

event generators which we discuss in Sec. 1.5.2. GPMC event generators come

equipped with schemes for matching and merging high multiplicity fixed-order matrix

elements with parton shower resummation and present the natural generalisation of

these effects as HEJ was for the high-energy logarithms. We outline these procedures

in Sec. 2.3.3.

Solving ∆(t, t′) = r for generic r ∈ [0, 1] is complicated and computationally

expensive. Instead, the Sudakov veto algorithm is used [51,63]. Noting that ∆(t, t) =

1, our interpretation of the Sudakov factor as a no-emission probability allows us to

write for the probability of an emission at scale t′ < t:

∆(t, t′)
∆(t, t) =: F (t′)

F (t) , (2.3.10)

where we have defined F (t′) := ∆(t, t′). If the primitive of F , f , is known then

another monotonic positive-definite function G may be identified (with corresponding

primitive g) satisfying:
f(t′)
F (t′) <

g(t′)
G(t′) . (2.3.11)

If the function G is simpler to work with than F then one may use it to generate

the correct probability distribution by following the aforementioned Sudakov veto

algorithm:

1. Start downward evolution from scale ti (i = 0 from hard process).

2. Solve G(t′) = rG(ti) for random r uniformly distributed in [0, 1]

(a) If f(t′)
F (t′) > s g(t′)

G(t′) and t′ > tmin for random s uniformly distributed in [0, 1],

then keep the emission at scale t′ by setting i → i + 1, ti+1 = t′ and

returning to step 1.

(b) Otherwise, if f(t′)
F (t′) ≤ s g(t′)

G(t′) and t′ > tmin, then veto the emission and set

ti = t′, then return to step 2 to find a new t′ at a lower scale than the

current value.
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(c) Otherwise, if t′ < tmin then no emission occurs, the shower can be termin-

ated.

This procedure will produce and veto additional emissions in between each stage of

the shower. Intuitively, one can see that this replicates the necessary probability

distribution. A rigorous proof of this may be found in much of the supporting

literature to this thesis, we recommend Sec. 4.2 of ref. [63], the original physics

manual for the Pythia event generator (v6.4). We make use of this method of

showering when producing a subtracted shower for merging with HEJ in Ch. 3.

Ordering variable

Our discussion of the ordering variable t has been rather general, we now explore the

specifics. The factor 1/t arising in the splitting probability comes from the pole in

the propagator that precedes the splitting. Returning to Eq. (1.3.39) and recasting

in the limit of massless partons, we see that the divergence arises when partons are

collinear or soft after a splitting. The ordering variable parametrises the transition

to the infrared-divergent region of emission phase space such that, for large values of

t, the splittings are less divergent. There is a significant freedom in the specific form

of this ordering variable and there are implementations using the virtuality of the

mother parton q2, the transverse momentum of the emission p2
⊥, and the opening

angle ϑ as evolution variables [39]. To leading-logarithmic accuracy, these ordering

variables produce equivalent results [39, 99]:

dp2
⊥

p2
⊥

= dϑ

ϑ
= dq2

q2 . (2.3.12)

Angular ordering, available in HERWIG [64, 65] for example, uses the opening angle ϑ

between the daughter partons as this evolution variable1. Emissions are produced

initially at wide opening angles between the LO partons with these reducing until

the minimum scale is reached.
1Specifically, the angular ordered shower of ref. [65] uses ϑ2E2 as the evolution variable, with

E the energy of the mother parton.
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2.3.2 Modern Parton Showers

The parton showers of Pythia [47,63] and Sherpa [62] are transverse momentum-

ordered. Here, the transverse momentum is understood to signify the momentum

of the emission transverse to the mother parton. We focus on the implementation

of Pythia as this will lend itself pertinently to our discussion of the HEJ+Pythia

merging algorithm in Ch. 3. The Pythia evolution variable is given by:

p2
⊥ =


z(1 − z)q2 FSR

(1 − z)q2 ISR
, q2 =


(p2 −m2

0) FSR

(−p2 +m2
0) ISR

, (2.3.13)

where q2 is the (positive-definite) virtuality of the mother parton.

Some parton showers — including Ariadne [100] — resum these soft and collin-

ear logarithms with dipole showers. In this picture, one may approximate (in the

large-Nc limit [39]) colour-connected partons as colour-anticolour dipoles in an event

configuration. This arises from the factorisation of colour structure from the kin-

ematic parts of amplitudes [32], and allows us to draw these connections with the

colour flow corresponding to products of the relevant colour factors. The dipoles

formed by connecting partons in colour then produce splittings rather than the

individual partons themselves [39].

We illustrate examples of dipoles in Fig. 2.6 for a diagram in LO gg → gg scattering,

showing the two possible colour connections. There are four dipoles in each, since

each gluon carries colour and anticolour charge. In the left diagram there are four

FI/IF dipoles a1, 1b, b2 and 2a which connect the initial (I) state quarks to the final

(F) state. In the right, there is one FF dipole 12, an II dipole ba and two FI/IF

dipoles a1 and b2.

When a colour dipole splits, the emitted parton has access to the momentum

stored in the dipole and thus each splitting contains three particles — the emitter,

the emission and the recoiler. Dipole showers were first suggested in ref. [101] and

have since been implemented in the major GPMC event generators Pythia, Sherpa,

and HERWIG.
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1

2

a

b

1

2

a

b

Figure 2.6: The two possible colour flows (up to direction swaps) for scat-
tering of gluons at LO. The left colour flow can be summarised as (a1b2a)
and the right as (a12ba). The colour flow is highlighted in blue and orange
to not mix the pattern in the left diagram for a crossing.

In dipole showers, splittings are understood to occur between two connected par-

tons (ij), k and produce three connected particles i, j, k. We generalise the discussion

from the above splitting kernels to generic dipole splitting kernels K(DD)
ij;k (Φ1), where

D indexes the location of each dipole end (i.e. the initial state I or the final state F)

and Φ1 is the one-particle phase space measure for the emission [39]. The emitter

corresponds to i, the emission to j, and the recoiler to k. There are different forms of

these kernels as well as the ordering variable depending on the four dipole structures

FF, IF,FI, II. To highlight the connections with the splitting kernels of Eq. (2.3.6),

we list the FF dipole kernels K(F F ), as provided in ref. [39]:

K(F F )
qg,k = CF

 2
1 − zi

(
1 − yij;k

) − (1 + zi)
 ,

K(F F )
gg,k = 2CA

 1
1 − zi

(
1 − yij;k

) + 1
1 − (1 − zi)

(
1 + yij;k

) − 2 + zi (1 − zi)
 ,

K(F F )
qq̄,k = TR [1 − 2zi (1 − zi)] ,

(2.3.14)

where:
yij;k = pi · pj

pi · pj + pi · pk + pj · pk

,

zi = pi · pk

(pi + pj) · pk

= 1 − zj.

(2.3.15)

These kernels are produced by requiring that the behaviour in the soft-collinear

limit(s) reproduces that of the parton splitting kernels. More formally [39]:

Kij;k (Φ1) −→


1

pi·pj
P(ij)i (z (Φ1)) (collinear)

1
pi·pj

· pi·pk

(pi+pj)·pk
(soft) .

(2.3.16)
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The collinear limit applies away from z → 1 and the soft limit applies when z → 1,

since all IR limits arise in the limit of (pi + pj) · pk → 0 in the dipole picture.

For a full list of the dipole splitting kernels, the corresponding evolution variables,

and kinematics reconstruction, we refer the reader to Appendix C.2 of ref. [39].

The presence of the recoiler in the dipole formalism informs us of the conceptual

problem of splitting the momenta of partons such that they remain on-shell. To

overcome this, recoil strategies are used to reconstruct the kinematics of a splitting

such that all participating partons retain their on-shell masses. Recoil strategies can

be local — as is the case for dipole showers1 — where one spectator/recoiler parton

is used to reshuffle the momentum in a dipole such that masses are conserved for

individual particles.

Pythia8 uses local recoil strategies in the final state dipole shower though the

option is provided for global recoil strategies to be used [47]. These strategies

distribute the additional momentum from adding partons to on-shell, momentum-

balanced event configurations amongst all particles in the event.

In Pythia, where FSR is treated by the dipole shower, the (local) recoil strategy

for a splitting can be summarised by boosting the particles to the CoM frame of

the dipole and writing (ij), k0 → (ij)∗, k → i, j, k, where (ij)∗ is the intermediate

propagator of virtuality Q2, and k0 is the recoiler before the splitting. Firstly, the

intermediate momenta are assigned:

p(ij)∗ = p(ij) + Q2

m2
(ij),k0

p
k

0 ,

pk =
1 − Q2

m2
(ij),k0

 p
k

0 ,

(2.3.17)

with m2
(ij),k0 the invariant mass of the dipole before splitting (which is conserved)

[104]. This ensures that on-shell momenta pi, pj may be added in the dipole CoM

frame without violating momentum conservation. The momenta in the process CoM

frame can then be obtained by boosting back from the dipole CoM frame. Unlike the
1There are modern dipole showers wherein global recoil strategies are used, including PanG-

lobal [102] and Alaric [103].
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FSR shower, the kinematics reconstruction of the ISR shower in Pythia is handled

completely by global recoil strategies since the initial state partons must remain

collinear with the hadron beam axis.

Logarithmic accuracy of parton showers

Determining the logarithmic accuracy of parton showers beyond LL is a more in-

volved undertaking than analytic resummation schemes. The question of logarithmic

accuracy in the most simple form is simply the number of terms αn
sL

2n−m that are

resummed in the soft-collinear limit. However, parton showers provide fully dif-

ferential descriptions of phase space for many processes meaning some observables

may be well-described while others are less so. The resummation is not applied

in isolation; recoil strategies and kinematics reconstruction are imposed on the re-

summed configurations in ways that are not always guaranteed to preserve claimed

accuracies of the resummation [99]. Comparisons of early developments in showers

with dipole-local recoil schemes identified a shortfall when results were compared to

QCD matrix elements in the soft-collinear-enhanced regions of phase space [99].

The recent study of ref. [99] presents an analysis of the formal accuracy of two

transverse momentum-ordered showers with dipole-local recoil in FSR — the Pythia

shower [74], and the Dire shower [105] used in Sherpa. The criteria proposed by

the study for the accuracy of parton showers are:

1. The shower must reproduce the behaviour of matrix elements in the limit of

strong ordering between scales.

2. The shower must reproduce the results of analytic resummation of the soft-

collinear logarithms to the claimed accuracy where such predictions are avail-

able.

The study found that both showers accounted for the leading logarithms to a suitable

degree of accuracy by these criteria but that significant discrepancies arose for each

at the subleading level, meaning full NLL accuracy for either shower could not be
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claimed. Discrepancies were recorded especially when compared to two-emission

matrix elements, indicating that the other factors entering a shower calculation

(ordering, recoil, kinematics) aside from the resummation carry can alter the accuracy

non-trivially. The subsequent study ref. [106] highlighted that modifications to the

evolution variables and to the dipole partitions (retaining local, dipole-based recoil)

would allow showers to achieve full NLL accuracy consistently for a wide range

of observables. Considerations of shower accuracy will become important for this

thesis when we produce our own recoil strategy for use in the HEJ+Pythia merging

algorithm of Ch. 3.

2.3.3 Matching and Merging Hard Processes to Parton

Showers

Since parton shower evolution resums an infinite tower of logarithms, combining fixed-

order matrix elements with parton showers quickly becomes complex as the accuracy

of ME configurations increases. We display in Fig. 2.7 a graphical representation of

the terms present in a perturbative expansion (in αn
sL

m for shower logarithms L),

with shading to indicate the accuracy to which each term is described.

Solid filled terms represent a fully accurate accounting for the corresponding term

while half-coloured terms represent only a real emission-accurate description of the

term (i.e. excluding a description of the virtual corrections). It is assumed for the

purpose of the demonstration that the shower is NLL-accurate. Simple “hardest-

emission” LO matching is illustrated in Fig. 2.7(a) where LO ME configurations are

matched to the parton shower with only the real emission correction accounted for

in the O(αs) correction above LO. In Fig. 2.7(b) NLO matching is shown where full

NLO ME accuracy is retained (subtracting shower double-counting) and full parton

shower resummation is applied. Displayed in Fig. 2.7(c) is multi-jet merging, where

the real emission corrections are provided exactly up to a higher perturbative order

and systematically supplemented with shower resummation.

For a LO matrix element (where LO is understood to mean the lowest perturbative
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Figure 2.7: Schematic representation of terms featuring in the perturbative
expansion for fixed-order frameworks and for parton shower resummation.
The vertical axis plots orders in αs while the horizontal plots powers of the
shower logarithms L. Matrix element corrections are depicted in (a), full
NLO matching in (b), and CKKW-L-style multi-jet merging in (c). See
text for details. Figure reproduced from ref. [8].

order for the inclusive process), one needs not worry about ruining the convergence

when adding a parton shower since the logarithms appear from the first emission

above LO. This would be similar to the configuration in Fig. 2.7(a), except with the

half-filled circle at NLO unfilled, as the LO ME would account for the bottom-left

term and the shower would account for the rest.

To increase the formal accuracy of the LO+shower combination, the first devel-

opments of this procedure sought to map the LO phase space to the parton shower

phase space, after the first emission supplied by the shower. This means that, after

one emission, the parton shower phase space may be mapped directly onto the LO

phase space. Thus ME “corrections” may be applied to the shower for the first

emission, increasing the accuracy to include the real emission phase space for the

O(αs) correction to the LO [8, 107, 108]. This ensures that observables related to

the first emission of the shower (referred to often as the “hardest”, due to the hard-

ness interpretation of transverse momentum-based evolution variables) are correctly

described in shape though not in normalisation, since the LO matrix element has
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been used to construct the cross section [8]. These procedures are referred to as LO

matching, since a LO matrix element is used to complement to first emission and

since the full cross section retains LO accuracy.

The natural extension to LO matching is to match to NLO matrix elements. This

presents significant problems as, considering the terms shaded in Fig. 2.7(b), both

the shower and the matrix element provide descriptions in the top two terms in the

column corresponding to the O(αs) correction to the LO. Thus, the first emission

from the shower must be corrected to reflect the inclusion of those terms in the

matrix element. An example of such a method include the Positive Weight Hard(est)

Emission Generator (Powheg) method [109], which separates the singular and non-

singular parts of the real emission kernel of the NLO correction and produces events

with positive weights. The MC@NLO method [110, 111] is another example, which

adds shower emissions to NLO configurations without real emissions, and starts the

shower from an appropriate (lower) scale if the NLO configurations do contain real

emissions. For an in-depth comparison of these methods which casts both in the

same notation, we recommend the comprehensive study of ref. [112]. Other methods

and prescriptions exist for NLO matching and are widely used [8], though these are

not the focus of this thesis.

The next advancement logically following NLO matching is to account for the

real emission kernels for many multiplicities above the inclusive LO state. Such

procedures are referred to as multi-jet merging procedures, since the emissions

above the inclusive LO process are taken above some hardness scale — typically the

minimum transverse momentum of jets in an analysis. The higher-order multiplicities

are each calculated to LO (thus accounting only for the real emission corrections

exactly above the inclusive LO) and showered with the double-counted contributions

removed. This forms the basis of such algorithms as those developed independently

by Catani, Kuhn, Krauss, and Webber — CKKW [113] — and by Lönnblad [114].

These methods are referred to collectively as CKKW-L merging algorithms.

Adopting the notation of ref. [8], wherein B(Φ0) represents the Born term, αsR(Φ1)
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the real emission kernel of the NLO correction and Φn the phase space for n emissions

above LO, we may decompose the real emission kernel (stripped of αs) into a singular

and non-singular part:

R(Φ1) = Rs(Φ1) +Rns(Φ1), (2.3.18)

where Rs produces the divergences resummed by the shower and Rns is required for

full NLO accuracy of the kernel.

These multi-jet merging procedures start by introducing the merging scale cutoff

tMS for the Rs term in the expansion: Rs(Φ1) = R(Φ1) × Θ(tMS − t(Φ1)). This

means that the phase space can be split cleanly according to the scale t into a

region covered by the ME generator (i.e. jet production above the merging scale)

and one covered by the parton shower (jet evolution below the merging scale). Using

this scale, we can express the CKKW-L-merged cross-section for correcting the nth

emission recursively by:

dσCKKW−L
n+1 = dΦnαsRn(Φn)Θ(tn − tMS)∆(t, tn)[

∆(tn, t0)

+ dtn+1dzn+1αs(tn+1)P (tn+1, zn+1)Θ(tMS − tn+1)∆(tn, tn+1)

+ dΦn+1αs(tn+1)
Rn+1(Φn+1)
Rn(Φn) Θ(tn+1 − tMS)∆(tn, tn+1)

]
,

R0(Φ0) ≡B(Φ0).

(2.3.19)

with the understanding that appropriately reweighted splitting probabilities (and

the appropriate evolution variable) is used for ISR and FSR in the Sudakov factors.

The αs factors are highlighted in blue since we will discuss how coupling factors are

treated later, the splitting function shown here is hence stripped of αs as shown.

We use the shorthand tn ≡ t(Φn). In Fig. 2.7(c), this arrangement is shown with

the ME generator half-filling the perturbative series up to a maximum multiplicity

Nmax, with the shower describing exactly the resummed terms. This means summing

the contribution for each emission up to a multiplicity Nmax. Double-counting is

removed in Eq. (2.3.19) since the phase space split ensures the probability of ME and
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shower overlap is zero [8]. The form of Eq. (2.3.19) highlights how multi-jet merging

can be implemented. One may produce first LO events generated with LO matrix

elements up to a maximum multiplicity Nmax and start applying shower emissions

by sampling the phase space available at each stage.

In the CKKW approach [113], the Sudakov factors are calculated numerically at

each stage and then used to multiply the event weights; this is the approach used

in Sherpa. For Pythia, CKKW-L [114] is used wherein each intermediate state is

produced for a ME event configuration in a sequence referred to as a parton shower

history. These are ordered sequences of states Si which have each i emissions above

a Born-type configuration S0. We will use in this thesis the notation:

H = {S0,S1, . . . ,Sl−1,Sl}, (2.3.20)

to illustrate a history, with Sl the original event with l more emissions than the

Born configuration S0. At each stage of the history Si the shower adds emissions

and vetoes the event if an emission occurs at evolution scale t larger than the scale

ti of the state in the history from which it originates. This reproduces the analytical

form of Eq. (2.3.19) exactly due to the interpretation of the Sudakov form factor as

an exponentially-distributed no-emission probability.

We have highlighted αs in blue in Eq. (2.3.19) since the treatment of the running

coupling requires some discussion. Convergence of the shower merging is better

assured if the coupling is evaluated at the scales of the splittings [114]. Since the

higher-multiplicity multi-jet states are initially produced by LO ME generators, they

will be generated with couplings evaluated at some pre-determined renormalisation

scale µR (often constant, or a function of the kinematics of the system). This

means that at each stage of the shower the event weights will be multiplied by

αs(tm)/αs(µ2
R), where tm is the scale of the trial emission.

The generalisation to NLO multi-jet merging is again straightforward to consider.

One of the first extensions to CKKW-L merging was the MENLOPS method of

ref. [115] which formulates the merged cross section similarly to CKKW-L mer-
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ging except with local K-factor reweighting and corrected Sudakov form factors.

Matching and merging to parton showers remains an active field of study with many

methods released and in development. Other notable approaches include truncated

showers [116], Unitarised NLO+PS (UNLOPS) [117,118], and many more. We have

not mentioned all methods and formalisms here, intending only to give an overview of

the motivation and approaches for reinforcing the accuracy of resummed logarithms

with the accuracy of fixed-order matrix elements. The material in this section will

lend itself to much use when we discuss the HEJ+Pythia merging algorithm in the

next chapter.



Chapter 3

Merging High Energy and Soft

Collinear Resummation

The robustness of fixed-order calculations in describing data has been demonstrated

with numerous experimental studies. In particular, FO calculations provide solid

descriptions of event kinematics and inclusive effects as mentioned in Ch. 2. With the

frontier of FO calculations for most processes at NNLO (with some low-multiplicity

processes boasting descriptions available at even N3LO) [8], these predictions are

due only to improve in the near future.

However, in our discussion of higher-order effects in Ch. 2, we found that there

remains scope to account for missing higher orders in FO calculations perturbatively,

by resumming dominant corrections to all orders. All-order approaches have demon-

strated their strength in describing better the observables that receive significant

contribution from such higher order effects that would normally be excluded by the

truncation of the perturbative series in a fixed-order calculation. Parton showers

have been applied with such success that it is now almost standard procedure to

provide LO and NLO calculations merged with parton showers via the procedures

we have made reference to in Sec. 2.3.3 [8].

However, many difficulties manifest when attempting to combine all-order ap-

proaches, e.g. HEJ with a parton shower. To obtain a description of both that retains
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to each component the respective logarithmic accuracy across all of phase space,

a subtle approach is required that accounts for the probability that the additional

radiation supplied by the parton shower has not already been produced in HEJ.

The application of a parton shower to HEJ has been studied twice prior [6,119]. The

study of ref. [119] applied the parton shower of Ariadne [100] to HEJ, and was used

in studies of jet vetoes and azimuthal decorrelations [12], where the combination of

the two resummation schemes produced a robust prediction in the regions of phase

space targeted by the experimental study. However, the implementation provided

an incomplete description as it excluded multiple parton interactions [119]. In the

study, HEJ+Ariadne was compared to Pythia with and without MPI enabled. Both

HEJ+Ariadne and Pythia without MPI enabled produced poor descriptions of jet

profiles (which we define and expand on in Sec. 3.2). The MPI-enabled Pythia

run predicted jet profiles more consistent with data. This shows that the MPI

(along with models of hadronisation) are of immense importance in accounting for

soft-collinear behaviour in the jet cone.

The study of ref. [6] combined HEJ with Pythia 8 [46], and is the study on

which this chapter builds. In addition to including an intervleaved description of

MPI with the evolution of the shower, Pythia can merge FO predictions with

the CKKW-L merging algorithm discussed in Sec. 2.3.3, which was modified in

the study to merge HEJ input states. This merging significantly improved on the

description of HEJ+Ariadne for many observables, importantly providing highly

detailed descriptions of jet substructure that the latter description lacked.

However, the method of ref. [6] was limited, since the subtraction of double-counted

effects between HEJ and the parton shower was not applied for every emission from the

shower. We explore the problems of such an approach in Sec. 3.1, and demonstrate

how we are able to improve on these shortfalls significantly in the new HEJ+Pythia

merging method. We discuss our method throughout the next section, and present

results in Sec. 3.2, before concluding in Sec. 3.3.
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3.1 The HEJ+Pythia All-Orders Merging Scheme

We aim to produce a method of merging the resummation of HEJ with the parton

shower resummation of Pythia that retains the logarithmic accuracy of each pre-

diction. Cross sections for QCD processes receive significant corrections from both

resummations in regions of phase space that overlap in a non-trivial way. Remov-

ing the double-counted contributions with a merging scale, or with a phase space

partition, will not be adequate to ensure retaining the logarithmic accuracy of each

resummation. The overlap has to be calculated for every phase space point to ensure

it can be physically subtracted. The procedure we outline in this section builds

on the previous studies of adding a parton shower to HEJ [6, 119] and defines a

subtraction term between the two resummations that is evaluated for every emission

the shower adds.

HEJ and Pythia are both exclusive to their perturbative accuracy, meaning the

usual CKKW-L-inspired multi-jet merging procedures for FO input can not be used,

since FO calculations are inclusive. The approach of ref. [6] was to construct shower

histories for HEJ-resummed events and subtract the HEJ probability of producing

Pythia emissions in the intermediate stages by implementing a sophisticated veto on

the Pythia splittings. As mentioned earlier, this approach was significantly limited,

since it allowed at most one emission from Pythia to be accepted at an intermediate

state in the history. The accepted state with the Pythia emission would then be

showered freely in Pythia, without any more subtraction. This introduces double-

counting from merged low-multiplicity states from HEJ as the higher-multiplicity

emissions would not be subtracted despite that they could overlap with other HEJ

events.

The procedure we describe in this section develops these concepts. We implement a

merging procedure that navigates the complexities introduced in exclusive-exclusive

merging by allowing an unlimited number of emissions from Pythia in and beyond

the HEJ event history. We subtract the overlap probability for each emission with

an analogous veto procedure to the method of ref. [6]. If a Pythia emission is kept
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during the trial shower in the history, it is kept and added to the HEJ event input

and the momentum recoiled appropriately. The result of this is that the all HEJ

emissions are kept for every input phase space configuration, and dressed with the

shower emissions Pythia would have added at all stages of the history.

Further to this, the subtraction is extended after the construction of the subtrac-

ted shower in the history, and Pythia does not shower freely after merging the

event. This remedies the impact of double-counting from low-multiplicity HEJ events

showered freely in Pythia.

We discuss in detail the classification of states and how this impacts the merging

procedure. We take careful consideration of the regions of phase space in which HEJ

resummation is inclusive and exclusive, in a way not accounted for previously, and

use this to produce a robust and tailored procedure that ensures the logarithmic

accuracy is retained.

To retain the full LO-matched accuracy of HEJ and the multi-jet merged accuracy

of CKKW-L for inclusive LO states, we merge the non-resummable LO events

contributing to the inclusive dijet cross section with the CKKW-L merging algorithm,

and combine this with the HEJ-resummable states merged with our new all-orders

merging scheme. We refer to this component as the CKKW-L complement prediction

to the merged HEJ-resummed component in a full HEJ+Pythia prediction.

3.1.1 The All-Orders Subtracted Trial Shower

The core principle behind combining the high-energy resummation of HEJ with a

parton shower remains the same as in the previous studies [6,119] exploring merging

the two resummation schemes — that we can subtract the HEJ contribution from the

shower contribution for any point in phase space. We thus cover phase space twice,

once with each HEJ and Pythia, and subtract exactly the overcounted contributions.

We accomplish this by expressing the resummation of HEJ in the language of the

parton shower and define HEJ analogues for the QCD splitting kernels of Eq. (1.3.42).

We may calculate the analogue of the splitting kernel in HEJ by substituting the
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pure QCD matrix elements with the HEJ matrix elements discussed in Sec. 2.2:

P HEJ = 1
2

1
16π2

∣∣∣MHEJ
n+1

∣∣∣2∣∣∣MHEJ
n

∣∣∣2 , (3.1.1)

where P HEJ corresponds to the splitting kernel in Eq. (2.3.6). The extra factor of 1/2

in the HEJ splitting kernel arises when we consider the colour configurations discussed

in Sec. 2.1.2, each of the two leading contributions to the colour configurations is

weighted equally in our treatment.

From this, the HEJ cross section can be expressed in a form reminiscent of the

parton shower. The n-parton HEJ-resummed cross section is given by:

dσH
n = dσ∗

2

(
n−2∏
i=1

PH
i (ti)∆H

i−1(ti−1, ti)dtiΘ(ti−1 − ti)
)
. (3.1.2)

Here, we use the superscript H as a shorthand for the HEJ splitting kernels of

Eq. (3.1.1), and have suppressed the dependence on z in the splitting kernels and

the z integral measures. The Sudakov form factors ∆H denote the usual form factors

with the HEJ splitting kernel in the exponent, rather than the QCD splitting kernels

used in Pythia.

We centre this discussion around inclusive dijet production. We discuss the po-

tential challenges of using this framework to produce shower-merged predictions for

HEJ-resummable processes involving a W , Z/γ, or H boson when we conclude in

Sec. 3.3, and relegate exploration of these processes to future studies.

Manifest in Eq. (3.1.2) is the formulation of a parton shower history for a HEJ

event; this is no more than an ordered sequence of states separated by scales ti which

trace back the 2 → n parton event to a LO 2 → 2 configuration. We use the notation

of Eq. (2.3.20) to denote an event history, with S0 the most clustered state and Sl

the original event.

The merging algorithm of ref. [6] introduced a subtracted Sudakov form factor,
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given by:

∆S(ti−1, ti) = exp

−
∫ ti−1

ti

dt
∫

dzΘ(P P (t, z) − PH(t, z))
[
P P (t, z) − PH(t, z)

]
︸ ︷︷ ︸

Subtracted splitting probability: P
S(t,z)

 ,
(3.1.3)

which subtracts systematically the contribution of HEJ from that of Pythia across

phase space. The z-dependence is restored for full clarity in the integral, though the

arguments of PH are schematic, and no analytical dependence on t and z is needed.

We express the subtraction between HEJ and Pythia in exactly the same way and

implement it with the same veto procedure as ref. [6], i.e. vetoing each emission from

Pythia with probability:

Pveto = PH

P P · Θ(P P − PH) + 1 · Θ(−P P + PH). (3.1.4)

The difference with our implementation is that we apply this subtraction for every

emission from Pythia, regardless of whether or not a Pythia emission has been

accepted previously. This presents complications to the classification of events which

we discuss in Sec. 3.1.4. For now, we display the contribution to the HEJ+Pythia-

merged cross section with n partons due to HEJ-resummable input states with m < n

partons below:

dσHEJ+Pythia
m,n = dσ∗

2

m−2∏
i=1

PH
i ∆H

i−1,i︸ ︷︷ ︸
HEJ event history

·

 λi∏
λ=1

P S
iλ

∆S
iλ−1,iλ


︸ ︷︷ ︸
Trial shower in history

·
n−N −2∏
j=m−1

(
P S

j ∆S
j−1,j

)
︸ ︷︷ ︸

Shower after history

. (3.1.5)

Here we have adopted a more compact notation relative to Eq. (3.1.2), defining:

Pi ≡ P (ti) ≡ P (ti, zi), ∆i,j ≡ ∆(ti, tj), i0 ≡ i− 1. (3.1.6)

In Eq. (3.1.5), we have additionally suppressed the Heaviside Θ functions as well as

the z and ti integral measures. We have also implied that the scales ti are ordered. In

blue, the HEJ event history is shown explicitly, with the products of the HEJ splitting

kernels and Sudakov form factors that denote emission and no-emission between the

scales that separate the states.
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Between states Si−1, Si in the history, λi emissions are added from Pythia with

the subtracted splitting kernel and Sudakov factor of Eq. (3.1.3), shown in orange.

Within our method, this means that the emissions were not vetoed during the trial

shower; here we understand vetoing to mean that the emission generated by Pythia

at scale t is not added to the event record, and the shower continues evolving below

scale t without the added particle. Others trialled by Pythia could have been

vetoed. The end result is that the original HEJ event is kept, but the phase space in

between the states Si of the history is filled by the subtracted shower. The additional

emissions are appended to the HEJ event within a suitable scheme for recoiling the

additional momentum that we outline in Sec. 3.1.2. In total, N ≡ ∑
i λi emissions

from Pythia are added in this stage. We note that MPI are not counted and are

treated unaltered by the Pythia shower since there is no description of MPI in HEJ.

We have omitted a Sudakov form factor from the orange term, which is implied

since the phase space between scales tiλi
and ti is sampled by Pythia, but no

emissions are added (we detail the implementation of this in Sec. 3.1.2). This means

that the emissions from the subtracted trial shower in the event history should be

written with an additional Sudakov factor ∆S(tiλi
, ti) ≡ ∆S

iλi
,i, i.e.

 λi∏
λ=1

P S
iλ

∆S
iλ−1,iλ

 →

 λi∏
λ=1

P S
iλ

∆S
iλ−1,iλ

∆S
iλi

,i. (3.1.7)

We have suppressed the additional Sudakov to clearly isolate the contribution from

each emission, though it is important to emphasise the implicit presence of this

factor since it ensures the full phase space is covered by the subtracted shower.

Finally, the black term on the far-right of Eq. (3.1.5) encodes the Pythia shower

after progressing through the history. The subtracted splitting kernels and Sudakov

factors are used for the rest of the evolution until hadronisation. We have implied a

subtracted Sudakov form factor of ∆S
n,min between the state with scale tn and the

hadronisation scale tmin after this stage of the shower.

By summing over the contribution from m-parton HEJ-resummable events, and
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over all multiplicities n in the shower, we obtain the following:

dσHEJ+Pythia
resummable =

∞∑
n=2

dσ∗
2

n∑
m=2, m≤n

m−2∏
i=1

PH
i ∆H

i−1,i ·

 λi∏
λ=1

P S
iλ

∆S
iλ−1,iλ

 ·
n−N −2∏
j=m−1

(
P S

j ∆S
j−1,j

)
.

(3.1.8)

We account for the non-HEJ-resummable events that contribute to LO m-jet cross

sections, and merge these configurations with the CKKW-L merging algorithm.

This procedure removes the double-counting between FO and the parton shower,

and is all that needs to be considered for non-resummable events as there is no

HEJ description for such states. As mentioned earlier, this is referred to in this

thesis as the CKKW-L complement prediction. For LL-resummed HEJ merged with

HEJ+Pythia, the complement consists of the HEJ-subleading configurations, and

the non-HEJ-resummable configurations, merged at LO accuracy with CKKW-L. For

HEJ-resummed LL and subleading configurations, the complement consists only of

merging the non-resummable states at LO accuracy with CKKW-L.

This method has been implemented in the HEJ+Pythia C++ software, which is

based on the Pythia (v8.309) code [47], and uses Pythia-derived classes for the

merging and construction of histories. Combining Eq. (3.1.8) with the CKKW-

L merging for the non-HEJ-resummable states, we display the program flow for

HEJ+Pythia in Fig. 3.1. The colour coding for the generation of histories and

the subtracted trial shower in the event history is the same as in Eq. (3.1.5). The

algorithm is shown for one input event from HEJ, and is understood to be the same

for the ensemble.

In the next section we discuss in further detail how we are able to append Pythia

emissions to the HEJ event record when clustering back in the history. This is the

most significant development that allows us to incorporate the subtraction between

HEJ and Pythia on a systematic level to all orders.
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Figure 3.1: Schematic overview of the HEJ+Pythia merging algorithm
for each input HEJ configuration. The blocks are colour-coded for ease of
reference.



126 Chapter 3. Merging High Energy and Soft Collinear Resummation

3.1.2 Constructing Subtracted Trial Showers for HEJ Event

Histories

The native Pythia machinery is used to construct (and select from) all possible

event histories, with minimal modification to ensure that the chosen history is a

sequence of HEJ-resummable states (see Sec. 3.1.4) as required by Eq. (3.1.2). The

construction of histories corresponds to the blue block in Fig. 3.1, and likewise the

blue term (for an individual event) from Eq. (3.1.5). The construction of ordered

histories is handled completely as Pythia would normally construct such histories

for e.g. CKKW-L merging and are generated with Pythia splitting probabilities.

The one difference with the selection of histories is that the history is selected in

HEJ+Pythia by a weight given by the product of the HEJ splitting probabilities

of the intermediate state, rather than the regular product of the Pythia splitting

probabilities. The appending of non-vetoed Pythia emissions in the event histories

is encapsulated in the orange block from Fig. 3.1, and the additional emissions are

shown precisely in the orange term in Eq. (3.1.5).

We display in full these stages of the algorithm (the subtracted trial shower in the

HEJ event history) in Fig. 3.2. This flowchart makes clear that we progress through

the states (or nodes) Si ∈ H, and allow the Pythia shower to populate the phase

space in between each. The veto probability means that we can use the Pythia

shower unaltered and still produce results that have been produced with a subtracted

splitting kernel and Sudakov form factor.

To implement the veto we generate a random number, uniformly distributed in

the interval (0, 1), and compare it to the veto probability of Eq. (3.1.4) as evaluated

for the phase space configurations in consideration (i.e. the process event prior to

the splitting, and the trial event just after the splitting). The classification of states

again becomes relevant here as we consider that, as the shower progresses, the events

quickly become non-resummable as would be classified by HEJ. We discuss how the

interpretation of HEJ and parton shower exclusive and inclusive regions of phase
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space allows us to make the subtraction reflect the physical application of each

resummation in Sec. 3.1.4.

,

Figure 3.2: All stages of the subtracted trial shower in the HEJ event history.
For concision, we may refer to this also as the “merging” stage despite that
the full procedure in Fig. 3.1 is the all-orders merging procedure.

The end result of this stage of the algorithm is that the input HEJ event will have

the chosen history dressed fully with the emissions the shower would have added in

between, produced with a reduced probability having taken into account the HEJ

probability of generating them.
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Recoiling excess momentum

When appending emissions from a trial event in the history to all subsequent nodes,

a global prescription for recoiling the excess momentum is used to produce physical

states with additional emissions. Importantly, this is not a recoil strategy as would

be understood in the regular parton shower interpretation — rather this strategy

reinterprets later nodes in the history with the emission from a larger scale present.

Using local shower recoil strategies, such as the Pythia dipole-local recoil scheme

(for FSR), can produce sequences of states that violate the shower ordering for

this application. For example, splitting a dipole between two gluons in a trial

emission that occurs before the same dipole splits later in the history can reduce the

momentum available in that dipole and make the splitting in that node no longer

possible at the same scale. With high-multiplicity final states this effect worsens

rapidly due to the connections between dipoles. This means emissions can alter

the kinematics of the surrounding dipoles significantly if recoiled locally — later

nodes in the history could become kinematically viable only at larger scales which

may exceed the scale of the trial emission. The impact of using such a strategy in

this application is to violate the shower ordering in such a way that the logarithmic

accuracy of the shower resummation is no longer assured.

Before recoiling the excess momentum and appending the emission, we first have

to identify the parton in the later node which serves as the mother (see Sec. 2.3)

of the splitting. There is, in general, an ambiguity as to which parton we may

choose, since the kinematics and colour connections may differ significantly in the

subsequent nodes. To resolve this ambiguity (for final state emissions) we iterate

over the partons of eligible flavour in the final state1 to produce the splitting, and

choose from these candidate partons that which minimises the distance measure:

∆Rextended(pm, pc) =

√√√√(yc − ym)2 + (ϕc − ϕm)2 +
(
p⊥c − p⊥m

p⊥m

)2

, (3.1.9)

1For example, if the trial emission was a final state g → qq splitting, we would only consider
gluons when searching for the mother in a later node.
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with pm and pc the four-momentum of the mother (from the trial event) and the

candidate (from the node) respectively. Quantities related to the four-momenta are

indexed by m and c to indicate whether they belong to the mother or candidate

parton respectively.

For initial state radiation, the ambiguity no longer features as there are exactly

two partons to choose from, one incoming along the positive and the other along the

negative z-axis. Thus the same parton can be chosen as in the trial emission.

There is a possibility of flavour conflicts from the trial emissions relative to later

nodes in the history. The simplest example is for an initial state gluon that splits

into a qq pair in a trial emission, but which would have split in a later node to

a different quark-antiquark pair QQ. We thus check for each trial emission that

there are no flavour conflicts from the splitting before appending the emission to

any state in the history. If a conflict is found, then the emission is vetoed. Crucially,

this does not mean we effectively exclude flavour-changing splittings and therefore

restrict to gluon-gluon splittings. We allow flavour-changing shower splittings while

performing the trial shower between states in the history provided that there exists

in the subsequent states in the history a parton which can split in the same way.

This includes emissions which have already been recoiled and appended from the

trial shower to the later states meaning the incidence of such flavour conflicts is rare.

Testing on large samples of low- and high-multiplicity events, we find the occurrence

of such conflicts is vanishingly small.

The global strategy used in the HEJ+Pythia algorithm induces small modifications

to all particles present to ensure changes to the scales of nodes in the history, relative

to trial emissions at larger scales, are small. The strategy is as follows:

1. Reshuffle the excess transverse momentum across the final state partons, con-

serving the mass and rapidity of each.

2. Rescale all transverse momenta by a constant factor λ such that the invariant

mass of the initial state
√
ŝ is conserved. Then, reassign the E and pz com-

ponents of each final state particle such that the rapidities and masses of each
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are conserved.

3. Sum over positive and negative lightcone components of the final state momenta

to find physical analogues for the momenta of the initial state partons.

4. Boost along the z-axis such that that the initial state momenta are the same

as they were in the original state, using the momenta in step 3 to derive the

boost parameter ψ required.

We illustrate step 1, the reshuffling, by appending to state Sk in the history (with

m partons in the final state) a splitting with momentum pemi (for the emission) and

prad (for the mother post emission). When we identify the mother parton in the state

Sk — particle i for some i < m — we replace this parton momentum pi with prad

and append the parton with momentum pemi from the trial to the event. Referring

to the overall excess in momentum in the node as pm+1 ≡ pemi + prad − pi, we may

define:

norm ≡
m+1∑
j=1

|p⊥j|, yj = 1
2logEj + pz,j

Ej − pz,j

∀j ∈ {1, ...,m+ 1}, (3.1.10)

where yj is the rapidity of particle j. We reassign the momenta according to:

p⊥j → p⊥j − p⊥m+1 ·

∣∣∣p⊥j

∣∣∣
norm ≡ p′

⊥j,

Ej → m′
⊥j cosh

(
yj

)
≡ E ′

j,

pz,j → m′
⊥j sinh

(
yj

)
≡ p′

z,j,

(3.1.11)

where

m⊥j ≡
√
m2

j + p2
⊥j, (3.1.12)

is the transverse mass. Following through with these definitions, the reassignment of

the four-momenta after reshuffling the excess transverse momentum clearly conserves

the masses and rapidities of all the final state particles.

In step 2, we rescale all transverse momenta in the event to ensure that adding

many emissions does not lead to problematic excesses in energy. To calculate the
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scaling factor, we express the product of four-momenta pi, pj as:

pi · pj = m⊥im⊥j cosh
(
∆yi,j

)
− p⊥ip⊥j cos

(
∆ϕi,j

)
, (3.1.13)

which allows us to calculate the factor we require to preserve the centre-of-mass

energy of the interaction (and not lead to excesses in energy). The centre-of-mass

energy can be calculated from the final state momenta pi by:

ŝ =
(∑

i

pi

)2

=
∑
i ̸=j

pi · pj +
∑

i

p2
i =

∑
i ̸=j

pi · pj +
∑

i

m2
i . (3.1.14)

We can use Eq. (3.1.13) to simplify the sum over products of non-alike four-momenta.

If we define:

f(λ2; ŝ) =
∑
i ̸=j

[√
m2

i + λ2p⊥i

√
m2

j + λ2p⊥j cosh
(
∆yi,j

)
− λ2p⊥ip⊥j cos

(
∆ϕi,j

)]

+
∑

i

m2
i − ŝ,

(3.1.15)

then finding the roots of f will allow us to find the factor λ which would produce the

required centre-of-mass energy after rescaling the transverse momenta in the final

state. With massless particles, the roots of f are analytically calculable. However,

final state quarks in Pythia are required to be massive for physical treatment of

the beam remnants after the hadronisation stage [47]. Thus, we solve f(λ2; ŝ) = 0

numerically. Then, all final state transverse momenta are rescaled by a factor λ

(taking the positive root).

To account for the rescaling, we treat the initial state and produce physical mo-

menta as in step 3. We denote the sum of the lightcone momenta (as defined in

Eq. (2.2.1)) in the final state as P± for each the positive and negative components.

We then choose the physical configuration for the four-momenta in the initial state:

p′
a =

(
P+

2 , 0, 0, P
+

2

)
, p′

b =
(
P−

2 , 0, 0, −P−

2

)
, (3.1.16)

where a (b) is the initial state parton entering the hard interaction along the positive

(negative) z-axis. Importantly, these are the momenta for the initial state required
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to produce the final state after rescaling the final state transverse momenta.

In step 4 we use the physical configuration identified in step 3, and the conservation

of
√
ŝ to construct a boost to the reference frame in which the initial state momenta

are the same as they were before the reshuffling. Denoting the original momenta by:

pa = (Ea, 0, 0, Ea) , pb = (Eb, 0, 0,−Eb) , (3.1.17)

we may find a boost along the z-axis that takes the reference frame of Eq. (3.1.16)

to Eq. (3.1.17). The boost parameter ψ may be found by conserving e.g. pa,

Ea = P+

2 (cosh(ψ) − sinh(ψ)) = P+

2 exp(−ψ). (3.1.18)

Then we can maintain pa, pb in their original form by boosting the final state particles

(after having been recoiled) along the z-axis:

Ej → Ejcosh(ψ) − pz,jsinh(ψ),

pz,j → −Ejsinh(ψ) + pz,jcosh(ψ).
(3.1.19)

This step is required to maintain the dynamics of the initial state, while ensuring

that the momenta remain physical and are minimally modified. Boost parameters,

and the transverse momentum rescaling factors λ, were found to differ from 0 and 1

respectively by small amounts as would be expected. In the case of FSR, rescaling

factors λ are always slightly smaller than unity, while the rescaling is slightly larger

than unity for ISR1 which adds energy to the event. The method we show here

ensures that such a boost may always be performed, and that the same boost is

obtained by conserving either of pa or pb. The combined recoiled, boosted final

state momenta and the original initial state momenta produce a physical state that

corresponds to a global reinterpretation of a node in the history after the inclusion

of an earlier trial emission.
1This is because “original”, as to be understood for the momenta in Eq. (3.1.17), refers to the

momenta of the initial state in the trial event for ISR, as otherwise ISR would not be recoiled with
this strategy.
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3.1.3 Full Subtraction in the Pythia Shower

The final stage of the algorithm displayed in Fig. 3.1 is to continue the Pythia

shower after the HEJ event history has been fully dressed with parton shower emissions

produced with the subtracted splitting kernel and Sudakov form factor of Eq. (3.1.3).

Adding shower emissions in the HEJ event histories is a major development over

the previous HEJ+Pythia merging algorithm of ref. [6]. However, since there is no

limit1 on the parton multiplicity of HEJ-resummed final states, the dressing of HEJ

histories with subtracted shower emissions is not sufficient to account for all double

counting.

To this end, we restrict the Pythia shower to veto emissions with the same

probability of Eq. (3.1.4) until hadronisation, meaning that all HEJ-like emissions are

subtracted for the full parton-level evolution. This is represented by the magenta

stage at the bottom of Fig. 3.1, and is expanded on in Fig. 3.3.

Figure 3.3: Flow diagram charting the full subtraction in the shower evolu-
tion on the HEJ-resummed input states, after constructing the histories.

1Though there is no theoretical cap on the number of soft gluons that can be added by HEJ, the
software implementation does impose an upper limit of 1000 gluons. In practice, this limit is never
reached.
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In Fig. 3.3, the scale of hadronisation is denoted by tmin, and the implementation

of the veto procedure is simpler than in the history. Since there are no emissions

remaining from the original HEJ event in this part of the evolution, the native recoil

strategies of Pythia are used as normal when adding emisions.

This extension of the subtraction procedure ensures that there is no need to

introduce a merging scale or impose a maximum multiplicity of final states in HEJ

as was required previously [6]. The subtraction is encoded in the veto procedure

for every point in phase space, to all orders in perturbation theory, and for all

shower evolution scales until hadronisation in a way that cannot be accounted for

by introducing a merging scale.

3.1.4 Classification of HEJ-Resummable States

To extend the subtraction to all orders, a sophisticated development to the classifica-

tion of HEJ-resummable states is used compared to previous methods of merging HEJ

with a parton shower. The major complications with using the basic classification

procedures based on hard process (i.e. pre-shower) final states at parton-level are

that these quickly become non-resummable as interpreted by HEJ after few shower

emissions — even with the inclusion of subleading corrections in HEJ. For example,

a jet containing a single gluon splitting to a collinear qq pair would, in HEJ, render

the entire event non-resummable1.

Inclusive and exclusive regions of phase space

The classification of events used in the subtraction procedure builds on an under-

standing of the inclusive and exclusive regions of phase space in HEJ. From the

example we describe earlier, of the hard gluon splitting into a collinear qq pair,

the ordering of the shower means that this non-resummable emision could have

been added by the shower before several emissions that would have made for HEJ-
1There is ongoing work to attain full NLL accuracy in HEJ. When this is achieved, such a

splitting would no longer be necessarily non-resummable.
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resummable events had they occurred first. In HEJ, the ordering in shower evolution

scale is not part of the resummation, as such the other emissions should have a HEJ

contribution subtracted. However, the ratio of matrix elements required to produce

a HEJ splitting probability can not be calculated, as the presence of the non-HEJ

emission in the event means the event is classified as non-resummable.

We illustrate this point schematically in Fig. 3.4, where we show two possible

sequences of evolution for a 2 → 2 HEJ state showered with Pythia after several

emissions, with the shower emissions ordered in decreasing evolution scale. In

the leftmost diagram, the non-HEJ emission is added first, meaning the other HEJ-

like emissions receive no subtraction. In the rightmost diagram, the order of these

emissions is flipped. This means the same kinematic configuration could have evolved

under a subtracted splitting kernel only partially if the events are classified naïvely.

Figure 3.4: Schematic diagrams for the possible shower evolution for a
(e.g.) 2 → 2 HEJ state (indicated by the black lines) showered with Pythia.
Orange (solid, double-barred) lines represent shower emissions for which
HEJ could produce a splitting kernel, while blue (dotted, double-barred)
lines represent non-HEJ splittings. The shower emissions are ordered in
decreasing evolution scale t.

The non-HEJ emissions are inclusive corrections to the HEJ description, since there

is no description of them in HEJ. The classification procedure we use in HEJ+Pythia

thus examines the events by considering them stripped of the HEJ-inclusive cor-

rections of the parton shower. The procedure we use follows the stages outlined

below:

1. Cluster the event into hard jets using the parameters set in the HEJ configura-

tion.



136 Chapter 3. Merging High Energy and Soft Collinear Resummation

2. To each jet assign a flavour equal to the sum of the flavours of the parton

content of the jet, modulo the gluon particle ID.

3. Balance the momentum in the clustered event, assigning initial state momenta

according to the sum of lightcone-decomposed momentum in the clustered final

state.

This procedure removes the impact of collinear qq emissions inside the jet cone

from the classification, as well as other HEJ-inclusive corrections. This allows us

to connect the evolved event to a Born-like input configuration, and considers the

emission relative to this configuration. We refer to this as constructing the exclusive

configuration in HEJ for a showered event. This event can be examined by the

HEJ parton-level classifier and will be classified as resummable or non-resummable

appropriately, having stripped the impact of the inclusive shower corrections that

do not alter the underlying high-energy structure of the event.

Classification in the veto procedure

This classification allows us to separate the resummable and non-resummable phase

space in HEJ through the parton shower merging, and justifies our inclusion of

the CKKW-L-merged non-HEJ-resummable states. When we refer to vetoing with

probability Pveto as given in Eq. (3.1.4) earlier, the procedure for calculating the

probability involves application of the above jet clustering procedure for the trial

and process event. This ensures the treatment of emissions is consistent in both the

HEJ and Pythia/parton shower framework across all of phase space. We decide

whether a Pythia emission should be vetoed in the following way:

1. If the process event (the event before the trial emission) is an exclusive HEJ

event and the trial is also, then veto the emission with probability Pveto, and

go to step 4.

2. If the process event is an exclusive HEJ event and the trial is not, then keep

the emission, and go to step 4.
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3. If the process event is non-HEJ-exclusive, construct the exclusive configuration

for the process with the jet clustering procedure.

(a) If this clustered process is not HEJ-resummable then never veto, go to

step 4.

(b) If this clustered process is HEJ-resummable, identify the last splitting from

the trial event:

i. Construct the exclusive configuration for the trial event with the jet

clustering procedure.

ii. If this state is HEJ-resummable then veto the emission with probability

Pveto as calculated with the exclusive configuration for the process

and trial. Otherwise, never veto. Go to step 4.

4. If we vetoed, discard the emission but continue the evolution from the scale of

the vetoed emission. Otherwise, keep the emission and continue the evolution

from the scale of the trial event.

This ensures that the correct treatment is used when the events are still HEJ-

resummable at the parton level, early in shower evolution, and when the parton-

level configurations are not HEJ-resummable due to the addition of inclusive shower

emissions, later in the evolution.

When the classification of the event in terms of the corresponding HEJ-exclusive

configuration is non-resummable, we can safely conclude that the phase space config-

uration corresponding to the evolved HEJ input event has been sufficiently modified

by the shower that the overlap between HEJ and Pythia for subsequent emissions

is zero. Without this method, or a similar accounting of inclusive effects, one would

not be able to draw the same conclusion from a naïve classification based solely on

the parton content of events.

The procedures outlined throughout this section make clear that we systematically

account for all sources of double-counting in the all-orders combination of the HEJ

and Pythia resummation.
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Filling the HEJ-exclusive phase space

We have discussed that both the parton shower and HEJ resummation are each

exclusive to their respective logarithmic accuracies, and that the HEJ-exclusive region

is defined by the rapidities of the extremal jets in an event. Specifically, HEJ adds

soft gluons inside the rapidity interval bounded by the extremal jets, and can only

add soft emissions outside this region if they are within the jet cone of either external

jet. The exclusive resummation of Pythia is unrestricted in this way, and when

considered in the context of e.g. CKKW-L merging, the exclusive and inclusive phase

space is defined by the merging scale tMS.

Precise control over the inclusive and exclusive regions for the shower is required

for accurate predictions for differing analyses. Often this means altering the merging

scale (in CKKW-L merging) for different analyses such that the regions covered

by the hard matrix element generator (i.e. the shower-inclusive parts) and those

covered by the shower (the shower-exclusive parts) are altered to widen the inclusive

region [113]. There is no general prescription for choosing the optimal merging scale

for an analysis, though (p⊥-based) merging scales must be softer than or equal to

the hard jet scale of an analysis — since the inclusive hard jet cross sections are

produced initially by the matrix element generator. Often merging scales of half the

analysis jet p⊥ cutoff are used, dependent on the phase space in which the predictions

are analysed.

We encounter a similar subtlety in HEJ+Pythia, namely that the disparity in the

exclusive regions between the HEJ and shower resummation can lead to showered

configurations being treated as HEJ-inclusive when the dynamics of the event are

fully HEJ-exclusive. In Fig. 3.5, we show an example HEJ event with three jets, and

several soft gluons, using the same colour-coding as Fig. 3.4 for emissions to indicate

that they are HEJ-exclusive emissions for which HEJ splitting kernels can be derived.

The Born partons form hard jets, and the orange emisisons added from HEJ form

soft jets.

We consider the possible evolution of such an event in Pythia, inspecting the



3.1. The HEJ+Pythia All-Orders Merging Scheme 139

Figure 3.5: An example schematic three-jet event from HEJ, displayed in
the y − p⊥ plane with the hard Born jet transverse momentum cut p⊥j

indicated. The Born partons (forming the Born jets) are indicated by the
black lines. As in Fig. 3.4, orange (solid, double-barred) lines represent
emissions for which HEJ could produce a splitting kernel, in this case added
by HEJ.

evolution after several stages of showering. We present a possible configuration in

Fig. 3.6 for the event shown in Fig. 3.5 after showering under the subtracted splitting

kernel, with states classified as we discuss earlier in this section. Importantly, the

parton shower has added soft emissions outside the rapidity interval bounded by the

forward and backward hard jets, among other emissions that HEJ would not have

added for Born-level input generated with all jets above p⊥j.

Upon closer inspection, the event shown in Fig. 3.6 exhibits a widening of the

exclusive HEJ region if the cut for the jet transverse momentum is reduced slightly.

Indeed, if one allows the extremal jets to be counted above a lower transverse

momentum cut than the rest of the HEJ jets, more of the emissions that in Fig. 3.6

were HEJ-inclusive become HEJ-exclusive, and can be produced with a HEJ splitting

kernel. We display exactly the same configuration as Fig. 3.6 in Fig. 3.7, except

labelling a lower transverse momentum cut for the extremal jets pext
⊥ and relabelling

the emissions to show the widening of the exclusive HEJ phase space.

In practice, widening the HEJ exclusive region means producing LO input events
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Figure 3.6: A possible configuration for the shower evolution of the schem-
atic three-jet event from HEJ shown in Fig. 3.5. The partons at the centres
of the extremal jets are coloured black to draw the connection with the
Born partons. As in Fig. 3.4, orange (solid, double-barred) lines represent
emissions for which HEJ could produce a splitting kernel, and blue (dashed,
double-barred) lines indicate Pythia emissions for which HEJ can not pro-
duce a splitting kernel.

Figure 3.7: The evolution shown in Fig. 3.6 interpreted with a lower ex-
tremal transverse momentum cut for the jets, with the same colour/texture
coding of emissions. By allowing the extremal jets to be counted above a
softer transverse momentum cut, the HEJ-exclusive phase space is widened.



3.2. Predictions and Comparisons to Data 141

for HEJ at a lower transverse momentum cut, requiring that that at least two jets are

harder than than the desired analysis jet transverse momentum cut. This will extend

the region sampled by HEJ such that the configurations that can receive subtraction

from such sequences of evolution in HEJ+Pythia are provided as input. Importantly,

producing HEJ events this way will give suitable input to the HEJ+Pythia merging

scheme but will not produce a physical HEJ prediction for the required analysis. For

such a prediction (to which HEJ+Pythia can be compared), the generation must

follow the method outlined in Sec. 2.2.4. To claim LO accuracy to n-jets above p⊥j,

higher multiplicities must be generated with the lower transverse momentum cut

pext
⊥ in this prescription, since the resummation phase space integration in HEJ is

filled by soft emissions that can now be added at FO.

Following this intensive overview of the HEJ+Pythia all-orders method for merging

high energy and soft-collinear resummation, we proceed to show predictions obtained

with this method, including comparisons to experimental data, in the next section.

We conclude in Sec. 3.3, as well as discussing the future of the work.

3.2 Predictions and Comparisons to Data

We demonstrate the predictive capabilities of the merging algorithm outlined in

this section. Comparisons are made to LHC data for a variety of observables and

distributions, highlighting studies which are sensitive to higher-order effects in the

soft-collinear and high-energy limits, as well as more complex observables where

higher-order effects from both limits contribute in a non-straightforward manner.

Analyses in this section are implemented in Rivet [120]. All showered productions

include MPI and hadronisation unless otherwise stated.

3.2.1 Differential and Integrated Jet Profiles

To show that the HEJ+Pythia merging algorithm preserves the logarithmic accuracy

of the parton shower, we consider first an observable for which the contribution is
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dominated by soft-collinear corrections. The jet profiles (or jet shapes) are normalised

measures of the transverse momentum distribution inside the cone of a jet, as such

they are well-described by parton showers which are equipped to populate jet cones

with the soft-collinear emissions required [9]. The study of ref. [119] showed that

the parton shower alone was not sufficient to produce an accurate description of

jet profiles, and that MPI and hadron-level corrections were crucial for correctly

predicting the distribution of transverse momentum in a jet. We consider the

observables from the inclusive jets study of ref. [9] in this section.

The differential jet profile is defined by the normalised sum of transverse momenta

in an annulus (in y—ϕ space) of width ∆r inside a jet with cone radius parameter

R:

ρ(r) = 1
∆r

1
Njet

∑
jets

p⊥(r − ∆r/2, r + ∆r/2)
p⊥(0, R) , (3.2.1)

where:

p⊥(rA, rB) =
∑
i∈jet

p⊥iΘ(∆R(i, 0) − rA)Θ(rB − ∆R(i, 0)). (3.2.2)

The integrated jet profile is defined as the definite integral of ρ up to a radius r ≤ R:

Ψ(r) = 1
Njet

∑
jets

p⊥(0, r)
p⊥(0, R) , (3.2.3)

which thus measures the total transverse momentum in a disc of radius r < R. The

jet profiles are visualised in Fig. 3.8, where the left figure shows the annuli within

which the differential profiles are calculated, and the right figure shows the definite

integral from the centre of the jet to some radius r < R.

In Fig. 3.9, we compare HEJ+Pythia to experimental data from ATLAS at
√
s =

7 TeV [9]. Two parton-showered predictions are also shown: a CKKW-L-merged

LO prediction, and a prediction using just the shower of Pythia on LO pp → 2j

input states (i.e. with no matching or merging). For all three showered predictions,

the Monash 2013 tune [10] was used, and interleaved MPI were included as well

as hadron-level corrections. For the original LO input events entering the merged

predictions, the NLO QCD PDF set NNPDF31_nlo_as_0118 [121] was used, while
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Figure 3.8: Visualisation of the differential (left) and integrated (right) jet
profiles, showing the distribution of transverse momentum inside the jet
cone.

the LO (QCD+QED) PDF set NNPDF23_lo_as_0130_qed [122] was used for the

“pure” Pythia prediction, which is the default PDF of the Monash 2013 tune. Both

PDFs were interfaced to the MC predictions with LHAPDF [123]. LO events were

generated with Sherpa [62], using the Comix [70] ME generator.

For the HEJ+Pythia prediction, no difference was observed between using HEJ

LL-resummed events as input and HEJ LL- and subleading-resummed events (i.e. the

inclusion of subleading channels in the resummable part of the HEJ prediction has

no impact on the jet profiles). Thus, we show the HEJ+Pythia prediction for

LL+subleading-resummed HEJ (with the complement prediction included comprising

non-resummable LO events, merged with CKKW-L).

The experimental study of ref. [119] showed that MPI are crucial for for a robust

description of jet profiles. As such, theoretical predictions for the jet profiles are

more strongly dependent on tune parameters than “harder” multi-jet observables.

All three predictions shown in Fig. 3.9 describe well the differential distribution

of transverse momentum inside jets, with the Pythia prediction closest to data

throughout.

The differences between all three predictions are small and we motivate these as

tune effects rather than improvements in the perturbative description from each.

The HEJ+Pythia description in, for instance, the 160 ≤ p⊥j < 210 GeV bin exhibits

a smaller discrepancy with data than the CKKW-L-merged prediction, however
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Figure 3.9: HEJ+Pythia, CKKW-L-merged, and Pythia predictions for
the differential jet profile ρ(r), split into p⊥j bins, and the ratio of these
predictions to data from ATLAS [9]. All showered predictions use the
Monash 2013 tune [10]. Analysis cuts displayed on the figure.



3.2. Predictions and Comparisons to Data 145

HEJ+Pythia owes the description of thet jet profiles entirely to the Pythia shower,

thus this does not reflect an “improvement” over CKKW-L for this observable.

Since the tune parameters are phenomenologically determined, subleading differ-

ences can be incurred between different shower predictions (using e.g. different PDFs

and matching/merging schemes). The broad trend shown allows us to conclude that

HEJ+Pythia can be used to produce complete pictures of jet profiles.
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Figure 3.10: HEJ+Pythia, CKKW-L-merged, and Pythia predictions for
the integrated jet profile Ψ(r), split into p⊥j bins, and the ratio of these
predictions to data from ATLAS [9]. All showered predictions use the
Monash 2013 tune [10]. Analysis cuts displayed on the figure.

For completeness, we display also the integrated jet profiles in Fig. 3.10 for the

same jet transverse momentum bins. Consistently with the differential profiles,

these figures display solid agreement between HEJ+Pythia, the other showered

predictions, and the experimental data. Generally, HEJ+Pythia predicts narrower

jets — especially for softer jet transverse momenta — than the other showered

predictions, however we attribute these differences to tune effects as we motivated

for the differential profiles of Fig. 3.9.
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3.2.2 Multi-Jet Cross Sections

We demonstrate further the developments of our all-orders merged description by

examining differential distributions for inclusive dijet production. We compare to

experimental data from the ATLAS collaboration, and examine the sensitivity of

the merged prediction on the inclusion of subleading-logarithmic effects in HEJ.

The analysis we consider in this section is ref. [11], which considered inclusive

central dijet production. Jets were clustered with the anti-k⊥ algorithm using jet

radius R = 0.4, and requiring p⊥j > 60 GeV, |yj| < 2.8. The hardest jet in an event

was required to have transverse momentum p⊥j1 > 80 GeV.

In Sec. 3.1.4, we observe that HEJ+Pythia predictions should be produced with

the correct physical input to reflect the phase space probed in an analysis. While

this was not observed to pose issues for the jet profiles in Sec. 3.2.1, for multi-jet

differential observables the phase space sampled over has a significant impact on

the merged description. The HEJ+Pythia predictions we display in this section

were produced as the result of an in-depth analysis of how to construct this phase

space with appropriate generation cuts. LO input was generated for pp → 2 − 6j (to

claim LO accuracy for pp → 2 − 5j), with a minimum transverse momentum cut of

40 GeV on each jet (requiring, as per Sec. 3.1.4, two jets with transverse momentum

larger than the analysis cut of 60 GeV). The PDF set used was the NLO QCD set

NNPDF31_nlo_as_0118, as for the jet profiles. The CKKW-L-merged complement

prediction, forming part of the full HEJ+Pythia prediction, was produced with the

same PDF set, and with the the merging scale defined by the same jet transverse

momentum generation cut, tMS = (40 GeV)2.

The physical HEJ predictions we compare to were produced with the same PDF

as the HEJ+Pythia prediction, only with a minimum jet transverse momentum

of 60 GeV in line with the analysis jet cut. All jet multiplicities for pp → 2 − 5j

are generated and LO-matched. This is not the HEJ prediction used as input for

HEJ+Pythia, which is instead generated according to the prescription above.

We compare not only to HEJ and experimental data in this section, but also to a
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CKKW-L-merged LO prediction for pp → 2−5j. This prediction was produced with

several choices of PDF and merging scale, and a thorough analysis of the output from

this showed that the LO (QCD+QED) PDF set NNPDF23_lo_as_0130_qed, and a

merging scale tMS = (30 GeV)2, gave the most promising prediction. We did not use

the same PDF set for the CKKW-L complements to the HEJ+Pythia prediction

since this would produce erroneous DGLAP evolution for the PDFs when Pythia

adds initial state radiation. LO events were again generated with Sherpa, using

Comix as ME generator, for all predictions in this section. The renormalisation and

factorisation scales for all predictions were given dynamically by HT/2, with HT the

scalar sum of jet transverse momenta in an event. All showered predictions again

used the Monash 2013 tune.

Sensitivity of merged prediction on HEJ subleading logarithms

When introducing the subleading corrections for inclusive W + 2j production in

HEJ in ref. [87], the sensitivity of the high-energy resummed predictions on the new

subleading components was analysed to highlight the stability of the HEJ prediction,

and to demonstrate where the subleading corrections enter into prominence. Since we

consider inclusive dijet production in this chapter, the cross sections are dominated

by different partonic hard processes than for inclusive W + 2j. Particularly, the

gg → gg hard process dominates the inclusive dijet cross section at the LHC [45],

meaning a larger proportion of the cross section is HEJ-resummable for the fully

inclusive LO prediction than for W + 2j production.

We analyse in this section the impact of these subleading corrections on the

merged HEJ+Pythia prediction — specifically on the inclusion of the subleading

HEJ-resummable states in the resummed part of the cross section, and the CKKW-

L-merged complement. In other words, we show that our classification of states in

HEJ+Pythia, and the split of the cross section, are insensitive to which part of

the cross section the subleading states are chosen to belong. Thereby we show that

HEJ+Pythia is similarly stable to HEJ in the inclusion of subleading effects.
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In Fig. 3.11, the inclusive dijet cross sections are analysed for full LO-matched

HEJ predictions including and exclusing resummation for subleading states, and the

corresponding HEJ+Pythia predictions. Theoretical uncertainties are estimated

for HEJ by varying the renormalisation and factorisation scales independently as

described in Sec. 1.3.3. Theoretical uncertainties in shower-merged predictions are

more difficult to consider since the values of αs are reweighted for e.g. ISR emissions,

and in CKKW-L merging meaning there is no straightforward generalisation of the

scale variation estimator for HEJ+Pythia. We use “LL+subl.” to indicate LL

and subleading states resummed, with the rest of the cross section retained at LO

accuracy for HEJ and merged via CKKW-L in HEJ+Pythia. Similarly “LL” denotes

full LL resummation in HEJ with subleading and non-resummable states kept to LO,

and merged via CKKW-L in HEJ+Pythia.
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Figure 3.11: HEJ+Pythia and HEJ predictions for the inclusive jet cross
sections (left) and the distribution of the transverse momentum of the
hardest jet for inclusive dijet events (right). The analysis matches the
described cuts from ATLAS [11], which are displayed on the figures.

The inclusive dijet integrated cross sections show that the configuration we have

described earlier places the HEJ+Pythia predictions within the theoretical uncer-

tainty estimate of the corresponding HEJ predictions — which was not observed to

be the case if the same generation cuts are used on both. The inclusive dijet cross

section is lower for HEJ+Pythia than for HEJ, though this effect is mitigated by the
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generation prescription enough to ensure agreement within theoretical uncertainty.

The variation in the HEJ+Pythia predictions is not only within the uncertainty for

each prediction, but also resembles the variation in HEJ in magnitude throughout.

From the hardest jet transverse momentum spectrum we can infer that the re-

duction in the inclusive dijet rate between HEJ and HEJ+Pythia is dominated by

contributions at the peak of the distribution for low transverse momenta. The dis-

tributions are similarly insensitive between including and excluding the subleading

components from the HEJ-resummed component of the cross section.

In more detail, we inspect the difference in composition of the HEJ+Pythia-merged

prediction between the HEJ-resummed and CKKW-L-merged parts, and the impact

on the full prediction in Fig. 3.12. We plot the full HEJ+Pythia distribution of the

hardest jet transverse momentum (as shown in Fig. 3.11), for each the full “LL” and

“LL+subl.” predictions. We then calculate the relative difference in each component

by subtracting the “LL+subl.” component from the “LL” and dividing by the “LL”

component to gauge the variation of the component based on the classification.

We note the expected dominance of the HEJ+Pythia-merged resummed com-

ponent in both cases, with the subleading configurations contributing significantly

when included in this part of the cross section. For the HEJ predictions, two-jet

observables would observe smaller contributions from subleading processes, since

the LO 2 → 2 process is either a LL state (a FKL configuration as discussed in

Sec. 2.1.2), or non-resummable. However, since we allow jets with lower transverse

momentum to contribute in HEJ+Pythia — as deemed necessary in our genera-

tion framework — subleading 2 → 3, 4, 5j processes have a larger contribution once

showered in inclusive two-jet distributions. This motivates the ∼ 10% effect we note

between Figs. 3.12(a) and (b), exchanged between the resummed component and

the CKKW-L-merged complement.

The variation in the full prediction (i.e. HEJ+Pythia-merged resummed and

CKKW-L-merged complement) is remarkably stable to the split in classification.

The full HEJ+Pythia prediction does not vary by more than ∼ 10% throughout the
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Figure 3.12: The decomposition of HEJ+Pythia into the full prediction,
the resummable part merged with the algorithm we present in this chapter,
and the CKKW-L-merged complement, for the hardest-jet transverse mo-
mentum distribution. In (a) this decomposition is plotted for the “LL”
prediction, while (b) plots the decomposition for the “LL+subl.” predic-
tion. The relative difference — calculated as described in the text — is
plotted in (c). Analysis cuts from ATLAS [11] are displayed on the figures.
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distribution, despite the change in treatment. This is similar to the results observed

for HEJ subleading effects as displayed for W + 2j production in ref. [87] — wherein

the total HEJ prediction demonstrates similar stability in a similar decomposition.

To demonstrate that this stability generalises for higher jet multiplicities — where

the subleading HEJ logarithms become more important — we produce a similar

decomposition for the distribution of the scalar sum of transverse momenta HT in

inclusive pp → 4j events, shown in Fig. 3.13.

The same stability can be noted for this inclusive four-jet distribution, with the

full prediction varying throughout by between ∼ 5% and ∼ 15%. The importance

of the subleading corrections is again clearly demonstrated by the expected increase

in the “LL+subl. only” line relative to “LL only”. Furthermore, the relative dif-

ferences calculated are more flat than for the decomposition in Fig. 3.12(c), where

the importance of the subleading resummation in HEJ manifests through the shower

merging and increases uniformly with transverse momentum. For the four-jet inclus-

ive distribution in Fig. 3.13, the relative difference shows that the subleading effects

are important throught the distribution, but that our description is stable to their

inclusion as required.

Comparison to data

We compare the HEJ+Pythia prediction to experimental data from ATLAS [11]

and to the HEJ and CKKW-L-merged predictions we have described at the start

of this section. The analysis of ref. [11] focused on multi-jet cross sections and

transverse momentum-based distributions, providing a robust testing ground for

the HEJ+Pythia merging since both high-energy and soft-collinear effects overlap

in a non-straightforward way. Furthermore, the experimental analysis of ref. [11]

presented with the data Monte Carlo predictions from Sherpa, Pythia, Herwig, and

ALPGEN [124]. These included predictions obtained just with the parton shower,

and with matching and merging. In all cases, predictions were rescaled by a constant

factor that matched the predicted inclusive dijet cross section to the experimental
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Figure 3.13: The decomposition of HEJ+Pythia into the full prediction,
the resummable part merged with the algorithm we present in this chapter,
and the CKKW-L-merged complement, for the HT distribution for inclusive
pp → 4j events. In (a) this decomposition is plotted for the “LL” prediction,
while (b) plots the decomposition for the “LL+subl.” prediction. The
relative difference — calculated as described in the text — is plotted in (c).
Analysis cuts from ATLAS [11] are displayed on the figures.
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data. These factors ranged from 0.65-1.22, showing that a large variation in inclusive

dijet cross section was observed in the MC predictions.

We present our predictions in this section without rescaling the observed cross

sections, thus a larger discrepancy with data than for predictions presented in the

experimental study may be observed for inclusive dijet distributions.

In Fig. 3.14, we show the inclusive Nj cross sections and the differential inclusive

dijet cross section in the transverse momentum of the hardest jet. The HEJ and

HEJ+Pythia predictions shown are for the “LL+subl.” (including non-resummable

states kept at LO and merged with CKKW-L respectively) configuration. Just with

HEJ, a respectable description of both the integrated jet inclusive jet cross sections

and the hardest jet transverse momentum is readily obtained. CKKW-L merging

and the full HEJ+Pythia prediction produce similarly strong descriptions of these

observables, though the inclusive dijet cross section is ∼ 15% beneath data for

HEJ+Pythia and just outside the experimental uncertainty bars.

Examining the peak of the distribution in hardest jet transverse momentum in

Fig. 3.14 (right), we see that a significant contribution is missing for momenta

between 80-100 GeV for HEJ+Pythia. The rest of the distribution is described

similarly as well by HEJ+Pythia as by HEJ and with CKKW-L. This suggests that

the framework we have introduced to widen the HEJ-inclusive region in the input to

HEJ+Pythia may require a slight adjustment for the hardest jet in this analysis,

since the hardest jet is required to have p⊥j1 > 80 GeV. A more complex generation

framework may be required to adequately populate the region of phase space required

for this emission (e.g. requiring one jet harder than 80 GeV in p⊥ and another harder

than 60 GeV, rather than uniformly using 60 GeV), without increasing significantly

the tail of the distribution.

In Fig. 3.15, we compare the second- and third-hardest jet transverse momentum

distribution as predicted by the HEJ, HEJ+Pythia, and CKKW-L setup outlined

with experimental data. though we observe a similar reduction in the second-hardest

jet distribution, for low transverse momenta, HEJ+Pythia provides a strong descrip-
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Figure 3.14: HEJ, HEJ+Pythia, and CKKW-L predictions for the inclusive
jet cross sections (left) and the distribution of the transverse momentum
of the hardest jet for inclusive dijet events (right). Data and analysis cuts
from ATLAS [11], which are displayed on the figures.

tion of the spectrum. The deficit in the low-p⊥j2 bins is again due to the missing

configurations highlighed above, though this effect is smaller and similar to the

CKKW-L prediction in this region. The description of the full distribution makes

clear that HEJ+Pythia works as intended, improving the description over HEJ and

surpassing the CKKW-L merged description in the large-p⊥ tail.

The distribution of the inclusive three-jet cross section on the third-hardest

jet transverse momentum in Fig. 3.15 (right) demonstrates the strength of the

HEJ+Pythia prediction in clearer terms, where the discrepancy with data is small

throughout. The strength of the CKKW-L prediction in this distribution highlights

the importance of the LO accuracy on correctly describing jet multiplicities, and

showcases that this is translated through to HEJ+Pythia in our procedure.

In Fig. 3.16, we examine higher multiplicity cross sections as distributed in HT .

The left and right figures respectively show the inclusive three- and four-jet cross

section. All three theoretical predictions provide robust descriptions of the differential

cross sections when compared to data which makes evident that the HEJ+Pythia

framework correctly accounts for the overlap between HEJ and the parton shower,

and conserves the in-built LO accuracy of the cross sections.
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Figure 3.15: HEJ, HEJ+Pythia, and CKKW-L predictions for the dis-
tribution of the transverse momentum of the second-hardest (left) and
third-hardest jet (right) for inclusive dijet and three-jet events respectively.
Data and analysis cuts from ATLAS [11], which are displayed on the fig-
ures.
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Figure 3.16: HEJ, HEJ+Pythia, and CKKW-L predictions for the distri-
bution of the inclusive three-jet (left) and inclusive four-jet (right) cross
sections in HT . Data and analysis cuts from ATLAS [11], which are dis-
played on the figures.
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3.2.3 Predictions for the Average Number of Jets

We compare HEJ+Pythia in this section to an experimental analysis focusing on

the radiation in the rapidity interval spanned by dijet systems, and on the ensuing

azimuthal decorrelations of the jets. The observable we are chiefly concerned with

predicting is the average number of jets, as distributed in the rapidity difference

between the hardest jets.

The experimental analysis we compare to is the ATLAS analysis ref. [12], which

presents data for jets clustered with the anti-k⊥ algorithm, using R = 0.6, and

requiring p⊥j > 20 GeV, with rapidities for jets allowed in the region |yj| < 4.4.

The hardest two jets were required to satisfy p⊥j1 > 60 GeV, p⊥j2 > 50 GeV. Since

the rapidity interval sampled by the analysis phase space covers the full extent of

the ATLAS detector in rapidity, and since the events analysed observe a hierarchy

in transverse momentum, a multiplicity-sensitive observable in this region would

provide a significant opportunity to test the HEJ+Pythia method. The region

sampled is one where both high-energy and soft-collinear effects are essential for full,

precise description of the QCD process.

The HEJ and HEJ+Pythia predictions use Sherpa-generated LO input, with the

PDF set NNPDF31_nlo_as_0118 as used earlier, and the central scale choice of HT/2

for both the renormalisation and factorisation scales. LO input was generated

in line with the analysis cuts outlined, since the hierarchy imposed in transverse

momentum was found to provide the appropriate configurations for HEJ+Pythia to

account for the difference in interpretation of inclusive corrections between HEJ and

HEJ+Pythia. Events were generated for pp → 2 − 5j to claim five-jet LO accuracy1.

CKKW-L-merged LO predictions are also generated with the same jet multiplicities,

scale choice, and cuts as HEJ and HEJ+Pythia.

The dependence of the average number of jets in the rapidity interval formed by

the dijets on the magnitude of this rapidity difference is plotted in Fig. 3.17. For
1Since the analysis and generation cuts are aligned, there is no need to generate higher-

multiplicity input to claim five-jet LO accuracy.
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Figure 3.17: HEJ, HEJ+Pythia, and CKKW-L predictions for the average
number of jets in the rapidity interval between the two hardest jets, dis-
tributed in the size of this interval ∆yj1,j2 . Data and analysis cuts from
ATLAS [12], which are displayed on the figures.

HEJ and HEJ+Pythia, the full “LL” and “LL+subl.” predictions differed minimally,

and as such we display only the “LL+subl.” lines. The choice of analysis cuts

highlights that both the high-energy and the soft-collinear corrections are important

to consider, emphasised by the fact that the HEJ prediction alone does not describe

the data well. This is a feature consistent with the HEJ and HEJ+Ariadne predictions

presented in the original experimental study [12], where the shower corrections added

by Ariadne (limited though the implementation was) produced a better description

than HEJ alone. Statistical uncertainties are large for this distribution since the

average number of jets is formed by calculating ratios. The uncertainties for each

sample were propagated appropriately for the numerators and denominators, however

this can lead to amplifications as observed. The error bars shown should be treated

as an overestimate of the statistical uncertainty.

The prediction shown here with HEJ+Pythia surpasses all predictions from the

original study, differing from data by less than one standard deviation for much

of the distribution, and never (where statistics are reliable enough to draw valid

conclusions from) by more than ∼ 15%. The description obtained from CKKW-L

highlights the importance of both the LO accuracy of the jet rates and the shower
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corrections for this analysis, demonstrating that the HEJ+Pythia method accounts

for these effects, and incorporates the HEJ description of physics at large rapidity

differences.

Further exploratory analyses

To complement the discussion in this section, we display HEJ+Pythia predictions for

an analysis matching the cuts investigated in a joint theoretical study of high-energy

and soft-collinear effects, ref. [13]. We require jets to be clustered with the anti-k⊥

algorithm, using R = 0.5 and requiring p⊥j1 > 45 GeV, p⊥j > 35 GeV, |yj| < 4.7.

The process analysed is inclusive pp → jj at
√
s = 7 TeV. Comparisons in the study

were made between HEJ, NLO, and with several parton shower predictions including

Powheg+Pythia.

Compared to the experimental study of ref. [12], it was found that these cuts

sampled regions of phase space wherein both parton shower and high-energy effects

were important. We therefore produced HEJ and HEJ+Pythia predictions suitable

for the analysis. HEJ was generated from Sherpa LO input, with all jets above 35 GeV

in transverse momentum, and µR = µF = HT/2, with the NNPDF31_nlo_as_0118

PDF set for pp → 2 − 5j. All components of the HEJ+Pythia prediction were

generated with transverse momentum above 25 GeV (the square of this was used as

the merging scale in the complement prediction) for pp → 2 − 6j in the resummable

component, and pp → 2 − 5j in the non-resummable. Two jets, in the resummable

component, were required to be harder than the analysis jet cut of 35 GeV in

transverse momentum in order with our generation framework such that pp → 2−5j

accuracy can be claimed. The same PDF set and scale choice was used in the base

LO prediction as HEJ. For both predictions, the full “LL+subl.” configuration was

used in the resummation, with non-resummable states retained at LO for HEJ and

merged in the CKKW-L complement for HEJ+Pythia. CKKW-L and pure Pythia

predictions were not produced as the analysis in ref. [13] provided predictions from

parton showers which demonstrate the soft-collinear behaviour.
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Figure 3.18: HEJ and HEJ+Pythia predictions for average number of jets
against the rapidity difference of the forward and backward jets ∆yjf ,jb

(left), and against HT (right). Analysis cuts match those of ref. [13], and
are displayed on the figures.

In Fig. 3.18, we plot the average number of jets (including the dijet pair) against the

rapidity difference between the forward and backward jets ∆yjf ,jb
(left) and against

HT (right). The distribution in ∆yjf ,jb
is a direct probe of the HEJ corrections in the

limit this quantity becomes large, however for small values the shower corrections

were found to be important in the study ref. [13] (Fig. 6, top-left in the publication).

The distribution we show reflects this picture exactly, with HEJ+Pythia within or

close to HEJ theoretical uncertainty throughout. The excesses between roughly 2.5

and 4 units of rapidity reflect that the shower corrections are additionally important

in describing the jet spectrum for such a distribution, but the broad trend shows a

systematic agreement with HEJ within statistical uncertainty1. The HEJ prediction

here produces slightly different results than from the study ref. [13], this is due to

differing scale choices and that the subleading corrections were not included in the

prediction shown in ref. [13].

The HT distribution of the average number of jets in Fig. 3.18 (right) is similar in

form to the analogous distribution in ref. [13] (Fig. 6, bottom-left in the publication),

1As with the distribution in Fig. 3.17, error propagation in ratio predictions is prone to ampli-
fications in statistical error, thus staistical error bars here are to be seen as overestimates.
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showing that this distribution is not sensitive to subleading high-energy effects. While

the HEJ prediction is similar to that in the publication, the HEJ+Pythia prediction

no longer resembles the HEJ prediction for this observable which has already been

established in Sec. 3.2.2 as a characteristic indicator of parton shower logarithms.

For large HT , configurations with hierarchies in transverse momentum dominate the

cross section since the jet threshold cuts are far softer than the values of HT for

which the distributions plateau. This means that parton showers will provide the

most accurate description of the radiation spectrum as distributed in HT and similar

observables. The HEJ+Pythia prediction shown reaches a plateau at Nj ∼ 4.25

for large HT , which is similar to the plateau observed for Powheg+Pythia in the

study. This is, once again, a clear demonstration that the HEJ+Pythia description

produces the required distributions according to the logarithms resummed by each

component prediction without double counting.

3.3 Conclusions and Future Work

Througout this chapter we have introduced a sophisticated novel framework for

merging the exclusive high-energy resummation of HEJ with the soft-collinear par-

ton shower resummation of Pythia that has been demonstrated to systematically

account for the double counted contributions between each description to all orders.

The description we obtain has been shown to be precise and stable, rendering it an

invaluable tool to retain when considering the missing higher-order effects from FO

predictions in perturbative QCD.

This study has been a proof-of-concept and rigorous testing for the new framework.

We envisage that the tool we have developed will be invaluable for comparisons to

data from the high-luminosity era of the LHC, where analyses could obtain larger

datasets for regions receiving significant contributions from high-energy and soft-

collinear effects. In particular, harder dijet cuts may be imposed on HL-LHC data,

and larger transverse momentum hierarchies can be explored by extending the range
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of HT distributions to several TeV (and imposing stricter requirements on HT , as

well as the jet transverse momenta). HL-LHC [26] data will be more precise for

large rapidity differences between dijets than in the data we have compared to in

Fig. 3.17, meaning a reliable isolation of high-energy effects can be explored. Other

high-energy distributions of interest could be probed at larger scales, such as the

dijet invariant mass which may also be extended to several TeV in range.

Such analyses would demonstrate the predictive power of the HEJ+Pythia method,

showing that both high-energy and soft-collinear effects require precise understanding

and accounting for in a complete perturbative prediction. This is a core feature of

the future prospects of the work, that a precise and stable accounting for these higher

order effects can be used where needed for precise data sets in new experiments.

3.3.1 Future Work in HEJ and HEJ+Pythia

Here we outline several developments in HEJ and HEJ+Pythia that will impact the

description we obtain with this method. These developments are ongoing and are

relegated to future studies of merging HEJ resummation with a parton shower.

Developments in HEJ perturbative accuracy

There is an ongoing initiative in the HEJ collaboration to attain full NLL accuracy in

the HEJ description of high-energy logarithms log ŝ/p2
⊥, the inclusion of the subleading

corrections described in e.g. ref. [87] is a significant step forward in this direction. To

reach this milestone, the one-loop corrections to HEJ impact factors, as well as the

one-loop corrections to the HEJ Lipatov vertices and the two-loop corrections to the

Regge trajectory, will be required [125]. This means that the resummation in HEJ

will not only just be able to resum NLL configurations at LO (where all partons form

distinct, hard jets) to LL accuracy. The regularisation of collinear divergences at

NLL accuracy would allow HEJ to produce e.g. central qq pairs in LL configurations

without requiring that each quark forms a distinct hard jet.

The implications of such developments on HEJ+Pythia are significant. With
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greater HEJ accuracy the demand for a physical shower-merged prediction will grow

to ensure precision modelling of higher-order high-energy and soft-collinear effects

with a rigorous treatment of the overlap.

The classification procedure we have introduced in Sec. 3.1.4 does not translate

to the framework of fully NLL-accurate HEJ base predictions, and the definition

of inclusive and exclusive regions for HEJ resummation will change accordingly. In

particular, the collinear splitting of a (hard) gluon into a collinear qq pair is currently

treated as HEJ-inclusive evolution in HEJ+Pythia since the current accuracy of HEJ

is not equipped to calculate the necessary matrix elements to derive the corresponding

splitting probability. This aspect of the classification would need to be altered to

widen the HEJ-exclusive region in the shower to align with the HEJ accuracy. However,

the flexibility of the framework we have introduced ensures that such modifications

would be simple to implement when NLL accuracy in HEJ is achieved. The algorithm

for merging LO-matched, HEJ-resummed events will not need to be changed as it

has been in the past.

Processes with decaying W , Z/γ, H bosons

HEJ can produce resummed event output for jet production with decaying W , Z/γ,

and H bosons. The framework we have presented at the start of this section can not

be easily translated to such events since the inclusive Born-level prediction starts

at jet multiplicities for which HEJ can not produce resummable events. This means

that the construction of histories in Pythia presents significant complications to the

interpretation of HEJ-resummable events in the shower language for such processes.

Concentrating on the example of W production, a pp → W +2j event is treated as

a QCD 2 → 2 process, with the W emission an electroweak correction. This means

that the lowest possible jet multiplicity for a resummable state in HEJ with a W

boson is two, i.e. the event history starts from a Born configuration for pp → W +2j.

In the parton shower, a pp → W +2j scattering (indeed a pp → W +nj scattering)

is inclusive QCD evolution to Drell-Yan production of a W boson: pp → W . Thus
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the event history for a pp → W + 2j configuration starts from a Born configuration

with jet multiplicity zero. The original configuration is connected to the Born by

two QCD emissions.

This difference means that constructing histories for HEJ-resummable events is not

possible to the lowest-order Born-level process in the shower. When we produce

histories for HEJ events, we can only cluster back to the HEJ-resummable Born

configurations, i.e. the histories for HEJ events will start from states S0 corresponding

to W + 2j final states. Then, a W + 4j HEJ-resummed event (with no additional soft

gluons) would be separated from the Born configuration by two shower emissions,

rather than four. Yet, the CKKW-L complement to the resummable part is not

restricted in this way, and can be clustered back to the W + 0j state to retain full

LO accuracy.

To work around these restrictions, we could consider relaxing the requirement that

the history for a HEJ event must be a sequence of HEJ-resummable states for states

with e.g. a W boson, and fewer than two jets. Considering the trial shower in the

event history of Eq. (3.1.5), we may write:

dσW , HEJ+Pythia
m,n = dσ∗

0 · P P
1 ∆P

0,1 · P P
2 ∆P

1,2 ·
m∏

i=3
PH

i ∆H
i−1,i

·

 λi∏
λ=1

P S
iλ

∆S
iλ−1,iλ

 ·
n−N∏
j=m

(
P S

j ∆S
j−1,j

)
,

(3.3.1)

such that the HEJ-resummable part of the cross section is clustered back to a W +

0j configuration with Pythia splitting probabilities and Sudakov form factors.

When the evolution reaches the scales at which the event becomes HEJ-resummable,

emissions from Pythia are subject to the subtraction required for removal of double-

counted effects.

However, this method poses issues to our interpretation of the emission with

splitting kernel P P
2 , since this emission evolves a non-HEJ-resummable state to a HEJ-

resummable state. In the ensemble of events from HEJ used as input to HEJ+Pythia,

such a state will have been already provided meaning the probability of the state

having been produced in HEJ must be subtracted. The definition of the HEJ splitting
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kernel in Eq. (3.1.1) is calculated by a ratio of (square) HEJ matrix elements, for which

there would only exist an expression of the numerator and not the denominator.

This issue would also feature in the CKKW-L complement prediction since the

classification procedure for states (which we discuss in Sec. 3.1.4) respects that the

treatment is consistent between HEJ-resummable and non-resummable states for the

full evolution, since no subtraction is applied on the CKKW-L-merged complement.

However, for (e.g.) W + 0, 1j states merged via CKKW-L, HEJ-resummable config-

urations can arise early in the evolution and the subtraction for such emissions is

similarly ill-defined.

One may naïvely consider artificially imposing a limit on the clustering in the

history for all input events, only producing histories for inclusive dijet processes,

however this method does not respect the logarithmic accuracy of the parton shower

or the LO accuracy of the base prediction. This is due to the effect of low-parton-

multiplicity input evolving to a higher-multiplicity state in the shower i.e. the shower

may not only decrease the jet count in an event, but also increase it (e.g. by splitting

a hard jet at large scales into two softer jets still above the analysis jet transverse

momentum cut). Thus perturbative accuracy can not be retained to the accuracy

required since there will contributions from showered W + 0, 1j events that produce

W + 2j (and higher) final states.

This discussion shows that adapting the framework presented in this chapter to

consider different processes than inclusive dijet production is a complex and subtle

undertaking. A significant reorganisation of the classification procedure and on the

interpretation of double counting in events at large scales is required. However, we

are confident that a method can be developed for producing HEJ-resummed, parton-

showered predictions for such processes by applying the core principles that have

guided the development of the HEJ+Pythia method.
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3.3.2 Final Comments

The framework and results that we have presented in this chapter demonstrate that

the HEJ+Pythia method is a robust and potent method for producing precise, stable

predictions for perturbative QCD processes at hadron colliders. The retention of HEJ

and Pythia logarithmic accuracies has been shown for a diverse range of results and

observables including differential cross sections and jet profiles. The flexibility and

comprehensiveness of the framework ensure that minimal developments are required

to the classification to accommodate future accuracies in HEJ, and that the algorithm

itself is “future-proof” from the point of view of advances in HEJ.

Consistently with the previous studies refs. [6, 119], this work shows that compre-

hensive decomposition of the HEJ and the parton shower resummation is required

for physical results. The benefits of such considerations cannot be overstated, and

we are confident that HEJ+Pythia will assume a prominent role in the theoretical

and experimental analyses of the future.





Chapter 4

Inclusive Production of a Higgs

Boson with at Least One Jet in

High Energy Jets

We have discussed in Sec. 1 that detailed precision analysis of the Higgs sector is

among the forefront of the objectives of the LHC. Experiments aim for accurate

measurements of processes where Higgs bosons are produced, both inclusively or in

association with other identified particles. Given the phenomenological importance

of processes involving Higgs boson production, there are considerable efforts to

provide high-precision theory predictions. Perturbative corrections are typically large,

necessitating the inclusion of effects at higher orders. This endeavour faces a major

challenge: in large regions of phase space, Higgs boson production is dominated by

the gluon fusion mechanism, which is typically mediated by a virtual top quark loop.

Inclusive gluon fusion Higgs boson production with full finite top mass contributions

can currently be calculated at NNLO [126]. Including jets reduces the accuracy

available for fixed-order perturbative expansions with full top mass effects. Exclusive

Higgs boson plus jet production is only calculable at NLO [127, 128] with full top

mass effects, and Higgs boson production with dijets can only be calculated currently

to leading-order [79, 129] with finite top mass.
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To facilitate calculations, the top quark mass is often assumed to be much larger

than all other scales. Based on this approximation, the aforementioned processes

have been computed to one higher order in perturbation theory [130–139]. However,

one is often interested in observables where the assumption of a comparatively large

top quark mass is invalid and the full mass dependence has to be accounted for.

One example is the study of the high-energy tail in the Higgs boson transverse

momentum distribution. When the Higgs boson is produced at large transverse

momentum around and above p⊥H ∼ 100 GeV, the approximation that the top

quark mass mt is infinite becomes less accurate, since mt = 174 GeV in the SM [48].

To produce reliable calculations in such regions of phase space requires the inclusion

of finite quark mass effects. The inclusion of one jet allows for these effects to

manifest with larger contributions than for Higgs production without jets since the

recoil of a Higgs boson against a hard jet can allow it to attain large transverse

momentum.

Another avenue towards better theory predictions consists of the all-order resum-

mation of contributions that are enhanced in kinematic regions of interest. In our

exploration of the high energy limit in Sec. 2.1, and the High Energy Jets framework

in Sec. 2.2, we motivated the exploration of the high energy limit by considering the

VBF- and GF-dominated regions of phase space. In the VBF-dominated region, the

GF contribution for Higgs boson production with at least one jet is enhanced by

large logarithms in ŝ/|p⊥|2, where
√
ŝ is the square of the partonic CoM energy and

p⊥ a characteristic transverse momentum scale [140]. For the case of two or more

jets, the resummation of these high energy logarithms has been shown to lead to

significant corrections, especially after VBF cuts are applied [141]. This provides a

strong motivation to extend the study of logarithmic enhancement to the inclusive

production of a Higgs boson with a single jet.

We focus on the on-shell scattering involving two or more final state particles, which

receives logarithmically enhanced perturbative corrections in the MRK limit. This is

the limit we explored in Sec. 2.1, of large partonic CoM energy √
ŝ, with all particles
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produced with similar transverse momentum. As described, the BFKL formalism

can predict the logarithmic corrections (in ŝ/|p⊥|2) to the on-shell scattering matrix

elements [142], and has been used for inclusive calculations of Higgs boson production

with jets [143,144].

In contrast, our resummation of high-energy logarithms is based on the HEJ frame-

work that we have outlined in Sec. 2.2. The calculation presented here is the first

use of this approach for an inclusive single-jet process. As is necessary in the high-

energy region, the all-order resummation includes the full effects of finite quark

masses. We first review the formalism and derive the new building blocks required

for leading-logarithmic resummation for Higgs boson plus jet production in Sec. 4.1.

In Sec. 4.2, we compare our predictions to experimental measurements and pro-

pose observables tailored to the systematic analysis of high-energy corrections. We

conclude in Sec. 4.3.

4.1 Higgs Boson plus Jets Production in the

High Energy Limit

In the following, we discuss the general properties and structure of amplitudes in

the high energy limit. We briefly summarise LL resummation in the HEJ framework

and derive the new ingredients for the production of a Higgs boson together with a

single jet by starting with a review of inclusive H + 2j processes in HEJ.

4.1.1 H+ ≥ 2j Processes within HEJ

Generally, we are interested in the behaviour of amplitudes in the MRK limit, as

defined in Eq. (2.1.1). We have explored in Sec. 2.2 the scaling of amplitudes in

the MRK limit and plotted (squared) LO amplitudes for ud → ud and ug → uss

in Fig. 2.1 for specific phase space slices to explicitly demonstrate this scaling. The

HEJ formalism has been used to describe inclusive pp → H + 2j production, and the

construction of the LL calculation is well-documented [125,141]. Here we summarise
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the main points in order to frame the discussion of the new components calculated

in the research presented in this thesis.

The LL configurations in pure QCD have the form fafb → fa · · · fb, where fa, fb

indicate the incoming parton flavours and the ellipsis denotes an arbitrary number

of gluons. As in Sec. 2.2, the particles are written in order of increasing rapidity.

The production of an additional Higgs boson proceeds via an effective coupling to

two or more gluons. Since invariant masses are large in the high-energy region, it is

crucial that the exact dependence on the top quark mass is included in this effective

coupling.

A final state Higgs boson with momentum pH = pj at an intermediate rapidity yj

such that yj−1 ≪ yj ≪ yj+1 can then exchange t-channel gluons with the outgoing

partons j−1, j+1. It was shown in ref. [125] that the scaling behaviour in Eq. (2.1.7)

directly generalises when a Higgs boson is emitted in the middle of the quarks and

gluons. Therefore, all configurations fafb → fa · · ·H · · · fb contribute at LL accuracy.

In the MRK limit the amplitudes are found to factorise into a neat product of

simple functions. In the HEJ framework we cast these into the form:
∣∣∣Mfafb→fa···H···fb

HEJ

∣∣∣2 = Bfa,H,fb
(pa, pb, p1, pn, qj, qj+1)

·
n−2∏
i=1
i ̸=j

V(pa, pb, p1, pn, qi, qi+1)

·
n−1∏
i=1

W(qi, yi, yi+1),

(4.1.1)

for the modulus square of the matrix element, summed and averaged over helicities

and colours. In this expression, pa (pb) is the incoming momentum along the positive

(negative) z-direction and p1, . . . , pn are the outgoing momenta ordered in increasing

rapidity. We illustrate this calculation in the schematic of Fig. 4.1. The t-channel

momenta are given by:

q1 = pa − p1, qi = qi−1 − pi for i > 1. (4.1.2)

At Born level, the right-hand side of Eq. (4.1.1) reduces to the function Bfa,H,fb
,
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Figure 4.1: Structure of the matrix element for the process fafb →
fa · · ·H · · · fb, as obtained in the HEJ framework. This diagram is a repres-
entation of the calculation in Eq. (4.1.1).

described below. V comprises the real corrections due to the production of n − 3

gluons in addition to fa, fb, and the Higgs boson. It is given by the contraction of

two Lipatov vertices [125]:

V(pa, pb, p1, pn, qi, qi+1) = − CA

t̂it̂i+1
Vµ(pa, pb, p1, pn, qi, qi+1)V µ(pa, pb, p1, pn, qi, qi+1)

− 4CA

p2
⊥i

Θ
(
−p2

⊥i + λ2
)
,

(4.1.3)

where V µ(pa, pb, p1, pn, qi, qi+1) (with the full dependence restored) is given by

Eq. (2.2.13), and t̂i = q2
i . The second line of Eq. (4.1.3) includes the IR regular-

isation term that is added to the real corrections such that cancellation with IR

divergences in the virtual corrections occurs at all orders. These all-order virtual

corrections are encapsulated in the process-independent W functions, given by:

W(qi, yi, yi+1) = exp
[
ω0
(
qi;λ2

)
(yi+1 − yi)

]
,

ω0
(
qi;λ2

)
= −αsCA

π
log

(
q2

⊥i

λ2

)
,

(4.1.4)

as in the bottom two lines of the regularised, resummed HEJ amplitude of Eq. (2.2.21).

The process-dependent part of the amplitude is absorbed in the Born-level factor
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Figure 4.2: The GF interaction producing a Higgs boson as mediated by
a massive quark loop (a) at high energies. At low energies/large distances,
the assumption of infinite quark mass can be taken which produces the
simpler effective vertex in (b).

given by:

Bfa,H,fb
= (4παs)n−1

4(N2
c − 1)

Kfa
(p−

1 , p
−
a )

t̂1

Kfb
(p+

n , p
+
b )

t̂n−1

∥∥∥Sfafb→faHfb

∥∥∥2

t̂j t̂j+1
. (4.1.5)

Here, we use the colour acceleration multipliers Kf mentioned in Eq. (2.2.8), passing

the lightcone components of the relevant momenta as arguments. The difference

between incoming gluons and quarks/antiquarks is encoded completely in these

multipliers. In general, these are given by:

Kg(x, y) = 1
2

(
x

y
+ y

x

)(
CA − 1

CA

)
+ 1
CA

f = g, (4.1.6)

Kq(x, y) = CF f ∈ {q, q}. (4.1.7)

Where we defined the sum over helicities of the contracted currents for qQ → qQ

explicitly in Eq. (2.2.7), we now construct the analogous quantity for fafb → faHfb:

∥∥∥Sfafb→faHfb

∥∥∥2
=

∑
λa=+,−
λb=+,−

∣∣∣jλa
µ (p1, pa)V µν

H (qj, qj+1)jλb
ν (pn, pb)

∣∣∣2 . (4.1.8)

Here, the vertex V µν
H is the Feynman rule for the coupling of two gluons to a

single Higgs boson, mediated by a massive quark loop, as shown in Fig. 4.2. The

full expression for this Feynman rule is listed in Appendix A, which borrows from

the appendices of ref. [141]. The vertex rule can be evaluated with full quark

mass dependence, and the contributions from all massive quarks summed. The
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approximation that the top quark mass greatly exceeds all other scales gives rise

to the effective vertex in Fig. 4.2(b), this is the Higgs effective field theory (HEFT).

The inclusion of the full vertex in Eq. (4.1.1) then gives the correct finite quark mass

contributions at LL for any number of final state partons/jets. Finally, the current

j is given by:

jλ
µ(p, q) = ūλ(p)γµu

λ(q). (4.1.9)

In addition to the LL resummation discussed so far, gauge-invariant subsets of next-

to-leading-logarithmic corrections originating from non-FKL configurations have

also been included in HEJ. One source of NLL corrections are the configurations

qfb → Hq · · · fb and faq → fa · · · qH, which only permit n − 2 t-channel gluon

exchanges instead of the n− 1 exchanges found in LL configurations. In these cases,

we adapt the matrix element for the corresponding LL configurations to a flipped

rapidity order of outgoing quark/antiquark and Higgs boson. If the Higgs boson is

emitted first (in rapidity ordering), we use Eq. (4.1.1) with p2 = pH and exclude the

virtual correction factor W for i = 1. In the other case of the Higgs boson being

emitted last, we set pn−1 = pH and omit W for i = n− 1.

A second class of non-FKL configurations arises for three or more produced jets,

when the most backward or forward outgoing particle is a gluon, but the correspond-

ing incoming parton is a quark or antiquark. These “unordered gluon” configurations,

qfb → gq · · ·H · · · fb and faq → fa · · ·H · · · qg, allow one t-channel gluon exchange

fewer than the corresponding FKL configurations in which the unordered gluon is

swapped with the neighbouring quark/antiquark. Hence, they contribute at NLL

accuracy. Without loss of generality, we consider the case where the unordered gluon

is the most backward emitted particle. We denote the momentum of this gluon by

pg and the subsequent (in rapidity ordering) momenta by p1, . . . , pn. The modulus

square of the matrix element then has the same structure as in Eq. (4.1.1). The

only differences are that the first t-channel momentum is now q1 = pa − p1 − pg and

that a different Born-level function Bgq,H,fb
(depending also on pg) appears. For a

derivation, and explicit expressions, see ref. [125].
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4.1.2 Scaling of H+ ≥ 1j Amplitudes

To extend the formalism to the production of a Higgs boson with a single jet we

first need to identify the LL configurations, and demonstrate the MRK scaling of

amplitudes as in Fig. 2.1, and then derive the corresponding resummed matrix

elements.

So far, we have only considered LL configurations in which both the most backward

and the most forward outgoing particle is a parton. We can use Eq. (2.1.7) to explore

the MRK limit of the amplitudes. The amplitude for the process gq → Hq should

scale as M ∼ ŝHq, as there is a gluon exchange (i.e. a spin-1 exchange) in the

t-channel. Similarly, the process gg → Hg corresponds to M ∼ ŝHg. For Higgs

boson plus dijet production, the same argument allows us to establish that gq → Hgq

scales as M ∼ ŝHgŝgq. All of these configurations therefore contribute at LL accuracy.

This is no longer the case if, for example, outgoing parton flavours are rearranged:

gq → Hqg scales as M ∼ ŝHqŝ
1/2
qg .

Note that these scalings are valid whether we consider the full LO amplitude (with

the Higgs-gluon-gluon interaction mediated by massive quark loops) or in HEFT —

with an infinite top mass mt — as shown in Fig. 4.3. These plots were produced with

LO amplitudes from MADGRAPH5_aMC@NLO [5] evaluated in a one-dimensional

phase space slice. The remaining degree of freedom is the (equidistant) separation

between all neighbouring pairs of particles in rapidity. For consistency, the scaling of

the full LO result in the limit of large top mass is plotted against the HEFT result.

We compare to the LO truncation of the all-order HEJ amplitudes, anticipating their

derivation from the high energy scaling which we detail in Sec. 4.1.3.

The momentum configurations explored in Fig. 4.3 are summarised in Table 4.1.

We emphasise that the behaviour shown is not dependent on specific values of

azimuthal angle or transverse momentum, but only on the rapidity assignment of

the particles, due to the fact we only explore the amplitudes in single-dimensional

slices of phase space.
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Figure 4.3: Verifying the Regge scaling of the squared LO matrix elements, as
in Eq. (2.1.7), for four different processes, indicated in the subcaptions for each
figure. The MRK limit is approached as ∆y becomes large. Final states are
understood to be ordered in rapidity as listed. The phase space configurations
used in each plot are shown in Table 4.1.

4.1.3 New Components for H+ ≥ 1j and an Outer Higgs

Boson

In Sec. 4.1.2 we discussed the factorisation of LL amplitudes for fafb → fa · · ·H · · · fb

into a Born-level function B, a product over real emission vertices V , and a product

of virtual corrections W . The same type of factorisation holds for LL configurations

with the Higgs boson as the most forward or backward outgoing particle. The virtual

corrections are the same as given in Eq. (4.1.1) due to the process-independence of

the Lipatov ansatz. To derive the remaining factors, we first analyse the Born-level

process gfb → Hfb and then consider real corrections.



176
Chapter 4. Inclusive Production of a Higgs Boson with at Least One

Jet in High Energy Jets

Process Phase space slice configuration

gq → Hq


yq = −∆ and yH = ∆
ϕq = π

4
p⊥q = 40 GeV

gg → Hg


yg = −∆ and yH = ∆
ϕg = π

4
p⊥g = 40 GeV

gq → Hgq


yq = −∆, yg = 0 and yH = ∆
ϕg = π

2 and ϕq = −π
3

p⊥g = k⊥q = 40 GeV

gq → Hqg


yg = −∆, yq = 0 and yH = ∆
ϕg = −π

2 and ϕq = π
3

p⊥g = k⊥q = 40 GeV

Table 4.1: The momentum configurations used to generate the phase space
explorer plots in Fig. 4.3.

Higgs Current

The Born-level function BH,fb
for the process gfb → H · · · fb is obtained by deriving

a t-channel factorised form analogous to Eq. (4.1.5) from the modulus square of the

Born-level amplitude in the MRK limit. For gq → Hq, the tree-level amplitude is

determined by a single diagram, depicted in Fig. 4.4.

pa p1

pb pn

VH

Figure 4.4: The tree-level diagram for the process gq → Hq. The straight
solid line denotes an arbitrary light quark or antiquark.

Without requiring any approximations we obtain the factorised expression:

BH,fb
= (4παs)n−1

4(N2
c − 1)

1
t1

Kfb
(p+

n , p
+
b )

tn−1

∥∥∥Sgfb→Hfb

∥∥∥2
, (4.1.10)

∥∥∥Sgfb→Hfb

∥∥∥2
=

∑
λa=+,−
λb=+,−

∣∣∣ϵλa
µ (pa) V µν

H (pa, pa − p1) jλb
ν (pn, pb)

∣∣∣2 , (4.1.11)

for fb = q, where ϵλa(pa) is the polarisation vector of the incoming gluon. This
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is plotted along with the exact LO results from MADGRAPH5_aMC@NLO [5] in

Fig. 4.3(a), showing exact agreement between HEJ and LO for finite top quark mass

and in HEFT. In the MRK limit, this formula also holds for fb = g, which is shown

in Fig. 4.3(b). In this case there is some approximation away from the limit, but

very quickly the LO and HEJ lines converge as ∆y increases.

Lipatov Vertex for Additional Gluon Emission

In Sec. 4.1.1, we described the simple factorised structure of amplitudes within the

MRK limit and nearby limits. Not only are the different components independent of

momenta in different parts of the chain, they are independent of the particle content

of the rest of the chain. This should mean that the Lipatov vertex derived in pure

QCD processes for additional gluons still applies. However, the Lorentz and colour

structure of the “Higgs current” jν
H = ϵµV

µν
H differ compared to pure QCD processes,

therefore it is important to verify that this is indeed the case.

pa

pb

p1

p2

p3

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 4.5: The eight LO diagrams which contribute to the process in
Eq. (4.1.12).

We will consider the process:

g(pa)q(pb) → H(p1)g(p2)q(p3), (4.1.12)

in the MRK limit y1 ≪ y2 ≪ y3. There are eight LO diagrams, as shown in Fig. 4.5.

Compact expressions for tree-level Higgs plus four-parton colour-ordered amplitudes

appear in ref. [145,146]. Setting q1 = pa − p1 and q2 = p3 − pb, the HEJ amplitude is
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given by:

MHEJ = ig2
sf

2eate,3b ū(p3)γνu(pb)
q2

1q
2
2

V α(pa, pb, pa, p3, q1, q2)V µν
H (pa, q1) εµ(pa)εα(p2)∗.

(4.1.13)

As the outer particle is no longer colour-charged, the third argument of the Lipatov

vertex (with full dependence restored) entering in Eq. (4.1.3) is now pa instead of p1.

The colour factor of the HEJ amplitude may be rewritten:

if 2eate,3b = (tat2)3b − (t2ta)3b. (4.1.14)

We can then directly compare Eq. (4.1.13) with the MRK limit of Eq. (26) and

Eq. (27) in ref. [146], and we find agreement at LL up to an unphysical phase.

Specifically, the LL term in the MRK and infinite top quark mass limit of Eq. (4.1.13)

is given by:

g2
s

(
αs

3πv

)
if 2eate,3b ⟨3a⟩[ab]

|p⊥2||p⊥3|
→ g2

s

(
αs

3πv

)
if 2eate,3b ŝ

|p⊥2||p⊥3|
, (4.1.15)

where the angle and square brackets are Lorentz-invariant kinematic factors defined

by:

⟨ij⟩ = ū(pi)PRu(pj), [ij] = ū(pi)PLu(pj). (4.1.16)

This resembles the form introduced in Eq. (1.3.17) with the left and right projection

operators acting explicitly on the spinor states.

Matrix element including additional gluons

We can now use these results to form the analogue of Eq. (4.1.1) for the process

gfb → H · · · fb ∣∣∣Mgfb→H···fb
HEJ

∣∣∣2 = BH,fb
(pa, pb, p1, pn)

·
n−2∏
i=1

V(pa, pb, pa, pn, qi, qi+1)

·
n−1∏
i=1

W(qi, yi, yi+1),

(4.1.17)
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where the only differences to Eq. (4.1.1) are the Born-level function BH,fb
(pa, pb, p1, pn)

given in Eq. (4.1.10) and the third argument of the real correction function V. We

illustrate that this gives the correct behaviour in the MRK limit in Fig. 4.3(c) for the

processes gu → Hgu, and in Fig. 4.3(d) we show that we obtain the correct limiting

behaviour for the NLL configuration from a peripheral Higgs emission, gu → Hug.

4.2 Predictions and Comparison to Data

In this section we compare predictions for Higgs boson production in association

with one or more jets obtained with HEJ to those of fixed next-to-leading-order

perturbation theory and to experimental analyses. The analyses are implemented in

Rivet [120] and relate to data collected at the LHC operated at both 13 TeV [14,15]

and 8 TeV [16].

In our predictions, Sherpa [62] is used to generate leading-order events with the

Comix [70] matrix element generator and OpenLoops [71, 147] (for evaluation of

loop integrals) for H + n jets, where n = 1, . . . , 5. We include the exact dependence

on the top quark mass where available (i.e. for n = 1, 2), and for higher multiplicities

we use the simpler results valid for an infinite top mass. High energy resummation

is then applied using the method of HEJ, described in detail in Sec. 2.2.4 and in

ref. [97]. This takes the fixed-order events as input and then produces the all-order

corrections (real and virtual) corresponding to each Born phase space point. The

resulting resummation events are reweighted by:

|MHEJ(mt,mb)|2

|MLO, HEJ(mt, 0)|2
≤ 2 jets, (4.2.1)

|MHEJ(mt,mb)|2

|MLO, HEJ(∞, 0)|2
> 2 jets. (4.2.2)

MHEJ(mt,mb) is the HEJ all-order matrix element discussed in Eq. (4.1.17), where

we have indicated the dependence on the top quark mass mt and the bottom quark

mass mb. Where these are not set to zero or infinity, the quantities indicate their

Standard Model values, i.e. mt = 174 GeV and mb = 4.7 GeV. We denote the leading-
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order truncation of the HEJ matrix element by MLO, HEJ(mt,mb). The p⊥-sampling

for the LO events used for the matching extends slightly beyond the cuts used

in the analysis, as required by the mapping between the high-multiplicity m-body

resummation phase space point and the n-parton (n < m) phase space point of the

matching. This ensures the full resummation phase space is properly explored, since

the momentum reshuffling in HEJ (after soft gluon emissions are added) modifies the

momenta relative to the LO input, meaning that Born jets softer than the analysis

p⊥ cutoff can map to resummation events with all jets harder than the cutoff. We

discussed this effect in Sec. 2.2.4, when outlining the momentum reshuffling in

Eq. (2.2.25).

Sherpa and OpenLoops are used to provide NLO 1-jet and 2-jet predictions in

the infinite top quark mass limit without resummation, for comparisons with HEJ

and the experimental data. The cross sections presented from HEJ are further

matched to NLO by multiplying the inclusive 1-jet (2-jet) distributions by the ratio

of the inclusive 1-jet (2-jet) cross section at NLO and the inclusive 1-jet (2-jet) cross

section of HEJ expanded to NLO. Since the HEJ cross sections we discussed in Sec. 2.2

observe order-by-order cancellation of infrared divergences, we may truncate the HEJ

all-orders expression at arbitrary order to obtain an approximation for the HEJ cross

section at that order. Reweighting predictions in this way changes the normalisation

of distributions, and reduces the width of the theoretical uncertainty estimates

obtained by varying the renormalisation and factorisation scales. Differential cross

sections for inclusive one- and two-jet observables O are reweighted according to:

dσHEJ,nj

dO
→ σNLO,nj

σHEJ@NLO,nj

dσHEJ,nj

dO
, (4.2.3)

where σNLO,nj (n = 1, 2) denotes the inclusive n-jet cross section at NLO, and

σHEJ@NLO,nj the corresponding HEJ prediction (expanded to NLO) for the inclusive

n-jet cross section. Note that the exclusive components of the cross section with

three or more jets as predicted by HEJ are technically matched only at Born-level, but

since they form part of the inclusive one and two-jet observables, their contribution
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is scaled by the relevant ratio in Eq. (4.2.3).

For the analyses we consider in this section, the NLO matching factors used to

rescale the HEJ predictions are shown in Table. 4.2.

Analysis
√
s = 8 TeV

√
s = 13 TeV

Scale µF , µR (µF , µR)/2 2(µF , µR) µF , µR (µF , µR)/2 2(µF , µR)
1j factor 1.87 1.54 2.15 1.59 1.30 1.84
2j factor 1.98 1.48 2.40 1.62 1.19 2.00

Table 4.2: HEJ NLO Reweighting factors with µF = µR = max(m12,mH),
calculated as given by Eq. (4.2.3).

We use the NNPDF30@NNLO [148] PDF set provided from the LHAPDF collabora-

tion [123] for HEJ and NLO predictions, with the central scale choice µF = µR =

max(m12,mH) (where m12 is the invariant mass between the two hardest jets, and

set to m12 = 0 for 1-jet events). In order to gauge the scale dependence of the

predictions the scales are varied independently by a factor of two, excluding combin-

ations where µF and µR differ by a factor of more than two. This is the procedure

described in Sec. 1.3. The shaded regions in the figures below indicate the theoretical

uncertainty envelope formed by these scale variations.

We produced predictions with an alternative central scale choice µF = µR = HT/2

to investigate the stability of the predictions at different scales and of the estimate of

theoretical uncertainties. The predictions differ minimally with this scale compared

to the custom scale choice above and so are not presented here.

4.2.1 Predictions for
√

s = 13 TeV and Comparison to Data

In this section we present predictions for a CMS analysis [14, 15] at CoM energy
√
s = 13 TeV, and for additional distributions showcasing differences between HEJ

and fixed-order predictions at NLO. The CMS study explored distributions for

Higgs boson production (and decay in the diphoton channel) both inclusively and

in association with one jet.

The baseline cuts related to the photons and the jets are listed in Table 4.3 (see
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refs. [14, 15] for a full discussion). The pseudorapidity jet cuts are specific to the

observables studied and are listed in Table 4.4. Jets are reconstructed with the

anti-k⊥ [52] jet algorithm with R = 0.4.

Description Baseline cuts
Leading photon transverse momentum p⊥γ1 > 30 GeV
Subleading photon transverse momentum p⊥γ2 > 18 GeV
Diphoton invariant mass mγγ > 90 GeV
Pseudorapidity of the photons |ηγ| < 2.5

excluding 1.4442 < |ηγ| < 1.566
Ratio of harder photon p⊥ to diphoton invariant mass p⊥γ1/mγγ >

1
3

Ratio of softer photon p⊥ to diphoton invariant mass p⊥γ2/mγγ >
1
4

Photon isolation cut Isoγ
gen < 10 GeV

Jet transverse momentum p⊥j > 30 GeV

Table 4.3: Baseline photon and jet cuts of the 13 TeV analysis, following
the CMS analysis of [14,15]. Isoγ

gen denotes the sum of transverse energies
of stable particles in a cone of radius ∆R = 0.3 around each photon.

Observable Pseudorapidity jet cut
Number of jets Njets, Fig. 4.6, left |ηj| < 2.5 (all jets)
|p⊥j1|, Fig. 4.6, right |ηj1| < 2.5 (hardest jet) and |ηj| < 4.7 (other jets)
minmff , Fig. 4.7, left |ηj1| < 2.5 (hardest jet) and |ηj| < 4.7 (other jets)
maxmff , Fig. 4.7, right |ηj1| < 2.5 (hardest jet) and |ηj| < 4.7 (other jets)
max ∆yff , Fig. 4.8, left |ηj1| < 2.5 (hardest jet) and |ηj| < 4.7 (other jets)
max ∆y(H, j), Fig. 4.8, right |ηj1| < 2.5 (hardest jet) and |ηj| < 4.7 (other jets)

Table 4.4: Pseudorapidity jet cuts used for the 13 TeV analysis observables
presented in this section, following the CMS analysis of [14,15].

The HEJ and NLO QCD predictions only describe pp → H + n-jet processes via

gluon fusion where the jets consist of light quarks and gluons. The data includes

a non-GF contribution from electroweak VBF, V H and tt̄H processes, labelled

together as HX in the experimental papers. We have extracted the value of this

component from the experimental papers for the rest of this section, and added it

to both the HEJ and NLO QCD predictions, where possible. This is indicated with

“+HX” in the legend. Since HEJ does not include a description of these effects, there

is no double-counting in adding the contributions to our predictions.

The left plot of Fig. 4.6 shows the exclusive n-jet cross sections, with the 1-jet and



4.2. Predictions and Comparison to Data 183

2-jet HEJ predictions rescaled as described in Eq. (4.2.3). The fixed-order predictions

are limited to 2 jets at NLO and 3 jets at LO, whereas HEJ allows us to make

predictions for the ≥ 4-jet bin and reasonable agreement is achieved throughout.

In Fig. 4.6, the distribution of the cross section in the transverse momentum of the

hardest jet is displayed in the right plot. We have compared to data from ref. [15]

here rather than ref. [14] as the data in the former covers a wider range of transverse

momenta. The discrepancy between NLO and HEJ predictions as the transverse

momentum increases is due to high energy logarithms resummed by HEJ as well

as the inclusion of finite mass effects. Similar differences between NLO and HEJ

matched to NLO have also been observed for W+jets processes [87]. The effect is

more pronounced for larger values of p⊥, however the collected data does not probe

these regions of phase space. In harder transverse momentum spectra, for H+ ≥ 2j

processes in HEJ, a greater sensitivity to the effects of using finite top and bottom

quark masses can be observed. This is most clearly demonstrated in ref. [141] for

the transverse momentum distribution of the Higgs.
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Figure 4.6: The integrated cross section distributed against exclusive jet count
(left), compared to CMS data from ref. [14], and the distribution of leading jet
transverse momentum (right), compared to CMS data [15]. Both analyses apply
the cuts described in Table 4.3. The “HX” component is extracted from those
publications.

The distribution of the cross section in the minimum rapidity separation between

any two particles in the final state is shown in Fig. 4.7(a). As the Higgs boson forms



184
Chapter 4. Inclusive Production of a Higgs Boson with at Least One

Jet in High Energy Jets

part of the final states, this is an inclusive one-jet observable, and the NLO one-jet

predictions are shown for comparison and used to rescale the HEJ predictions. This

observable is very sensitive to high-energy logarithmic corrections. As was observed

in previous studies (see ref. [141]), the effect of the resummation is to reduce the HEJ

prediction compared to fixed-order, by as much as 50% at large values. Figure 4.7(b)

shows the distribution of the cross section in the maximum invariant mass between

any two particles in the final state. This is related to the high energy limit where all

pairwise invariant masses are taken to be large, but also includes configurations where

two or more particles have a small invariant mass. The impact of the logarithmic

corrections is not as strong here, and the fixed-order and resummed predictions agree

within uncertainties. In both distributions displayed in Fig. 4.7, no “HX” component

is added to the HEJ predictions or the NLO predictions.
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Figure 4.7: Distributions sensitive to high energy effects. In the left plot is
plotted the minimum rapidity separation between any two outgoing particles
(Higgs boson or jets) and in the right plot the maximum invariant mass between
any two outgoing particles (Higgs or jets). Since these are inclusive single-
jet observables, HEJ results are rescaled by the inclusive cross section ratio
σNLO,1j/σHEJ@NLO,1j .

We further display the QCD component of the 13 TeV prediction in distributions

that emphasise the high energy treatment of the Higgs boson analogously to a

parton in the scaling of matrix elements (as in Fig. 4.3). In Fig. 4.8 are plotted the

distribution of the cross section in the maximum rapidity difference between any

final state particles, and between the Higgs boson and any jet, with predictions from
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HEJ and NLO H + 1j. Only GF contributions are shown, with no “HX” component

added.
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Figure 4.8: Distributions sensitive to high energy effects. In the left plot is plot-
ted the maximum rapidity separation between any two outgoing particles (Higgs
boson or jets) and in the right plot the maximum rapidity difference between
the Higgs boson and any jet. Since these are inclusive single-jet observables, HEJ
results are rescaled by the inclusive cross section ratio σNLO,1j/σHEJ@NLO,1j .

For rapidity differences of up to ∼ 4.5, stellar agreement between the HEJ and

NLO descriptions is demonstrated for both max ∆yff and max ∆y(H, j). Similarly,

the distributions for both observables display similar forms across both theoretical

predictions, motivating the treatment of the Higgs boson analogously to a parton

in the high energy approach. For large max ∆y(H, j), the differential cross section

is reduced, compared to that at similar values of max ∆yff as predicted by HEJ.

This demonstrates that configurations with the Higgs boson extremal in rapidity

are subleading in the high energy logarithms in this regime, at the distribution

level. The treatment in HEJ produces a stable description of such observables and

demonstrates the required precision for predictions of the GF background with a

robust accounting of the high energy effects present.

4.2.2 Predictions for
√

s = 8 TeV and Comparison to Data

We now present predictions for the ATLAS analysis of inclusive Higgs production

at CoM energy
√
s = 8 TeV of ref. [16], as implemented in Rivet [120]. We list the
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relevant experimental cuts used in this analysis in Table 4.5, the complete list being

available in the experimental publication. As with the experimental analysis, the

jets are reconstructed with the anti-k⊥ algorithm with a radius parameter of R = 0.4.

The experimental study ref. [16] explored the inclusive and differential cross sections

for Higgs boson production in the diphoton decay channel. For our purposes, we

select the observables which correspond to Higgs boson production plus at least one

jet, where our predictions are applicable.

Description Baseline cuts
Photon transverse momentum p⊥γ > 25 GeV

Diphoton invariant mass 105 GeV < mγγ < 160 GeV
Pseudorapidity of the photons |ηγ| < 2.37 excluding 1.37 < |ηγ| < 1.56

Ratio of harder photon p⊥
to diphoton invariant mass p⊥γ1/mγγ > 0.35

Ratio of softer photon p⊥
to diphoton invariant mass p⊥γ2/mγγ > 0.25

Photon isolation cut Isoγ
gen < 14 GeV

Jet transverse momentum p⊥j > 30 GeV
Jet rapidity |yj| < 4.4

Table 4.5: Baseline cuts of the 8 TeV inclusive Higgs production analysis,
following the ATLAS cuts in ref. [16]. Isoγ

gen denotes the sum of transverse
energies of stable particles in a cone of radius ∆R = 0.4 around each photon.

We divide our results into 1-jet observables, i.e. containing at least one jet, where

the new components of HEJ as detailed in Sec. 4.1.2 can be tested, and 2-jet observ-

ables. As for the 13 TeV results previously shown, the experimental data include a

non-GF contribution. We have extracted this “HX” component from ref. [16] where

available and added it to our GF predictions.

H+ ≥ 1j observables

In Fig. 4.9(a), we show the integrated cross section against the exclusive number

of jets. As was evidenced from the 13 TeV analysis, the differences between fixed-

order and resummed predictions are limited after the inclusive cross sections are

rescaled. For the NLO and HEJ 1- and 2-jet rates the theoretical uncertainty estimate

bands overlap with the experimental error on the data. The higher jet multiplicity
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(≥ 3j) cross sections are lower as predicted both with HEJ and at NLO than for the

experimental data.

In Fig. 4.9(b), the distribution of the cross section in the rapidity of the leading jet

is displayed. The discrepancy between the fixed-order and the resummed predictions

increases as the rapidity of the jet increases. This is a high energy effect since the

corrections in ŝ/|p⊥|2 are sizeable in this region of phase-space, and previous studies

(e.g. ref [141]) showed little dependence on the inclusion of the finite quark mass

effects on this observable. However, this is not the case for the transverse momentum

of the Higgs boson, for which the distribution is plotted in Fig. 4.9(c). The finite

quark mass effects and the resummation lead to a hardening of the large-p⊥ tail of

the Higgs boson. The difference would be yet more pronounced for larger transverse

momentum. Since the phase space probed in the experimental analysis focuses

around softer transverse momenta (p⊥ < 140 GeV), HEJ and fixed-order predictions

for the hardest jet transverse momentum, whose distribution is plotted in Fig. 4.9(d),

are difficult to discern from each other.

The high energy-sensitive observables plotted in Fig. 4.10 are similarly distributed

to those at 13 TeV (Fig. 4.7) since the phase space explored in these regions includes

regions where high energy and finite quark mass effects become important as we

noted in Sec. 4.2.1. This is demonstrated by the wide discrepancy between HEJ and

NLO, of roughly 50%, for large values of min ∆yff .

H+ ≥ 2j observables

We produce predictions now for H+ ≥ 2j observables, including comparisons to ex-

perimental data and explorations of observables sensitive to high energy perturbative

effects. These are displayed in Figs. 4.11-4.12. The impact of the resummation on

high energy-sensitive observables is to reduce the observed rates compared to fixed-

order approaches, as can be seen for wide dijet rapidity separation in Fig. 4.11(a),

large rapidity values of the second-hardest jet in Fig. 4.11(b) and for large dijet

invariant mass in Fig. 4.11(c). As expected, the resummation has little impact on
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(a) Exclusive jet multiplicity.
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(c) p⊥ of the Higgs boson, Njets = 1
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Figure 4.9: Integrated and differential cross sections against single- and
multi-jet observables. The 1-jet HEJ predictions are rescaled by the inclusive
cross section ratio σNLO,1j/σHEJ@NLO,1j while the HEJ predictions of the 2-
and 3-jet bins of (a) are rescaled by σNLO,2j/σHEJ@NLO,2j. In (a) and (b), the
“HX” component is extracted from ref. [16]. The “HX” component was not
available for (c) and (d).
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Figure 4.10: High energy-sensitive 1-jet distributions. (a): minimum rapid-
ity separation between any two outgoing particles (Higgs boson or jets).
(b): maximum invariant mass between any two outgoing particles (Higgs
boson or jets). HEJ results are rescaled by the inclusive cross section ratio
σNLO,1j/σHEJ@NLO,1j.

the observables dependent on the azimuthal degrees of freedom; the azimuthal angle

difference between the leading two jets of Fig. 4.11(d) and the azimuthal angle dif-

ference between the diphoton system (produced by the Higgs decay) and the dijet

formed by the two leading jets, as plotted in Fig. 4.12(a), though small differences

manifest for small azimuthal decorrelations (i.e. ∆ϕ ∼ π).

As previously observed, the combination of the resummation of large logarithms

in ŝ/|p⊥|2 and the finite quark mass effects tend to increase the observed cross

sections in the tail of transverse momentum distributions compared to FO predictions.

This is apparent in the description of the third-leading jet transverse momentum

of Fig. 4.12(b), and in the transverse momentum of the diphoton-dijet system of

Fig. 4.12(c). Although the Higgs transverse momentum seems to be independent

of the effect of the resummation, previous results give reason to suggest that, for

pγγ
⊥ larger than 200 GeV, the disparity between the two approaches would become

more pronounced. Though the momentum range is small in Fig. 4.12(d), we begin

to note that the transverse momentum spectra of HEJ predictions is harder than

those predicted at NLO for the diphoton-dijet composite system, a consistent feature

arising from the inclusion of finite quark mass effects.
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(a) Dijet rapidity separation
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(b) Subleading jet rapidity
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(c) Invariant dijet mass
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(d) ∆ϕ between the leading 2 jets

Figure 4.11: Differential cross sections against inclusive H+ ≥ 2j observ-
ables. All 2-jet HEJ predictions are rescaled by the inclusive cross section
ratio σNLO,2J/σHEJ,2J. The “HX” component is extracted from ref. [16] and
added to the GF predictions.
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(a) ∆ϕ between dijet and diphoton systems
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(b) Third-leading jet p⊥
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(c) Higgs p⊥ with Njets = 2
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Figure 4.12: Differential cross sections against inclusive H+ ≥ 2j observ-
ables and inclusive H+ ≥ 3j observables. All 2- and 3-jet HEJ predictions
are rescaled by the inclusive cross section ratio σNLO,2j/σHEJ@NLO,2j. In (a)
and (d), the “HX” component was extracted from ref. [16]; this was not
available for (b) and (c).
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Similarly to our demonstration of the behaviour of high energy effects for the

13 TeV prediction in Fig. 4.8, we produce analogous distributions for 8 TeV and

display these in Fig. 4.13. Again, only GF contributions are shown, with no “HX”

component.
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Figure 4.13: Distributions sensitive to high energy effects. In the left plot is plot-
ted the maximum rapidity separation between any two outgoing particles (Higgs
boson or jets) and in the right plot the maximum rapidity difference between
the Higgs boson and any jet. Since these are inclusive single-jet observables, HEJ
results are rescaled by the inclusive cross section ratio σNLO,1j/σHEJ@NLO,1j .

The conclusions from the distributions based on maximal rapidity differences are

similar to those drawn from the 13 TeV plots in Fig. 4.8, namely that good agreement

between HEJ and NLO is shown throughout, until the tail of each distribution (where

the rapidity differences are large). Here the differential cross sections are small, but

precise descriptions are important as this is the very region in which the high energy

effects manifest with large logarithms, slowing the convergence of the perturbative

expansion. The difference in the HEJ leading and subleading logarithms is again

apparent from comparisons of the tail of each distribution, where the differential

cross sections at similar max ∆yff and max ∆y(H, j) are larger for the former than

for the latter.
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4.3 Conclusions

We have presented a method of resumming large logarithms in ŝ/|p⊥|2 for the in-

clusive production of pp → H+ ≥ 1j within the HEJ framework. The method we

have displayed is LL-accurate. The significant advantage of this approach is that full

dependence on the finite top and bottom quark masses in the couplings of the Higgs

boson to gluons is maintained for any number of jets, which quickly exceeds the

multiplicities currently calculable with finite quark mass at even leading-order. This

presents the LL resummation in ŝ/|p⊥|2 for an inclusive 1-jet process for the first

time in the HEJ framework, allowing for robust comparison to other perturbative

predictions and to a larger sample of experimental data.

Comparisons of these HEJ-resummed predictions to fixed-order predictions and to

LHC data in Sec. 4.2 found that the impact of the resummation is greatest for large

jet transverse momenta. The resummed results give a harder p⊥-spectrum compared

to NLO — for both the Higgs and jet transverse momenta. This demonstrates

the significance of including finite quark mass effects in the coupling between the

Higgs and two gluons. We also observe a large suppression of the cross section

compared to NLO at large values of rapidity separation between all pairs of final

state particles (i.e. jets or the Higgs boson). This suppression can be as high as 50%

for wide minimum rapidity separations, well outside the theoretical uncertainty bands

estimated by scale variations on both predictions. Other observables, e.g. azimuthal

decorrelations between jets, or between jets and the Higgs boson, are less sensitive

to these logarithmic corrections.

Looking forward to analyses of LHC Run 3 data, our results suggest that the inclu-

sion of finite quark masses for higher jet multiplicities and of logarithmic corrections

in ŝ/|p⊥|2 will be important when producing theoretical predictions for comparison.

The thorough and stable accounting for high energy effects for inclusive H + 1j final

states will be an invaluable component of the precise modelling of the GF component

of Higgs production in the era of the high-luminosity LHC.





Chapter 5

Conclusions and Outlook

We opened this thesis by motivating the necessity for comprehensive, precise, and

stable predictions in perturbative QCD at hadron colliders to ensure that a rigorous

understanding of Standard Model processes is achieved. Precision modelling is a

crucial tool in the HL-LHC era, not just for pure QCD processes but importantly to

model QCD background contributions to electroweak processes. The Higgs sector

in particular is the least well-explored sector of the SM in experiments, owing to

the relatively recent discovery in 2012, and requires increased theoretical precision

to compare to new experimental data. Fixed-order calculations in perturbative

QCD are described, and we note how such calculations predict inclusive quantities

well. However, fixed-order calculations become extremely difficult to calculate for

higher-order processes — especially for multi-scale processes — and the precision

required for modelling of SM effects in extreme regions of phase space is not satisfied

at fixed-orders.

In Ch. 2, we demonstrate that the omitted higher orders in a fixed-order calculation

incur significant corrections in regions of phase space where the amplitudes are

susceptible to logarithmic enhancement. These logarithms can spoil the convergence

of the perturbative series in such regions, and a systematic all-orders treatment is

required for comprehensive treatment of perturbative effects.

The framework of High Energy Jets is introduced and discussed in detail in Sec. 2.2,
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as a resummation of high-energy logarithms of the form log ŝ/p2
⊥ in the limit of hard,

wide-angle radiation at hadron collider experiments, motivating the necessity of such

corrections as assuming a critical role in the description of large invariant mass

regions where e.g. VBF Higgs production dominates in the SM. A QCD description

of Higgs processes in such regions of phase space is incomplete without accounting for

these corrections. HEJ builds on the BFKL formalism that preceded it by imposing

approximations only at the amplitude level, and not on the phase space, as well

as matching to the full LO cross section meaning a solid description of inclusive

cross-sections is assured.

We also explore the widely-used resummation of soft-collinear effects with parton

showers in Sec. 2.3, drawing the connection to our discussion of infrared divergences

in Sec. 1.3.3. Parton showers dress inclusive Born configurations with soft and

collinear radiation, resumming double logarithms of transverse scales that arise from

the required ordering of emissions. Parton showers evolve hard ME configurations

down in scale and set the stage for multi-parton interactions and hadronisation to

be introduced to the final states — drawing closer the theoretical picture to the

reality of experiments. The corrections applied in this regime are crucial for precise

descriptions of QCD processes, and it is standard procedure to present fixed-order

calculations in QCD matched and/or merged with parton showers. The field of

matching and merging with parton showers is well-explored and fastly developing.

This discussion lends itself to motivate the research presented in Ch. 3, where we

seek to combine the all-orders approaches of HEJ and of the Pythia parton shower.

Such studies have been performed before with promising results. The framework

we present in Ch. 3 builds significantly on the concepts explored in these earlier

studies and provides a robust and in-depth novel method of combining the all-orders

approaches of HEJ and Pythia that systematically removes double counting to all

orders in perturbation theory. The LO accuracy of the base prediction is retained

throughout, and the accuracy of the resummation of both HEJ and the shower are

demonstrated to be conserved. A description of where each resummation should
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be interpreted as inclusive and exclusive is found to be a crucial element of such a

procedure, allowing for flexible development in the future when greater accuracies are

achieved in HEJ and in the parton shower. The distributions analysed with the full

HEJ+Pythia prediction for inclusive dijet production, as well as the comparisons to

experimental data, show the predictive potential of HEJ+Pythia as a precision tool

for modelling perturbative QCD processes. Development of the formalism is ongoing

to ensure other HEJ-resummable processes can be predicted with the HEJ+Pythia

method.

Finally, we extend the HEJ framework in the Higgs sector to produce the first

predictions for inclusive pp → H + 1j processes at the LHC, presenting the theory

and predictions for distributions in Ch. 4. The description we obtain includes

full dependence on the top and bottom quark masses in the resummation, and

is multiplicatively matched to NLO. Comparisons of the resummed predictions to

experimental data from the LHC highlight that the HEJ resummation provides

essential detail for distributions of significant theoretical and experimental interest.

Precision modelling of the QCD-initiated process is demonstrated for inclusive H+1j

and H + 2j distributions in high-energy observables such as the maximum invariant

mass and rapidity difference between the Higgs boson and any jet (and others).

Inclusive H + 1j is another significant development in the HEJ framework that

admits for detailed study of Higgs processes.

Reflecting on the research presented in this thesis, we see that we have motivated

and demonstrated an in-depth exploration of higher-order high-energy and soft-

collinear effects. We hope that the research may be applied to studies of new

HL-LHC data, and that the precision modelling of QCD processes we have shown

will prove invaluable in accounting for the SM background to LHC processes. The

scope of the research presented is vast and rapidly evolving, and we anticipate that

developments in the near future will bolster the predictive potential we have shown

yet further to ensure stability and precision in perturbative QCD at hadron colliders.





Appendix A

The Higgs-Gluon-Gluon Coupling

We display in this section the coupling of a Higgs boson to two gluons via a massive

quark loop, borrowing throughout from Appendix A in ref. [141].

In Fig. 4.2(a), this coupling is displayed, with momenta assigned to each external

leg. The form factor V µν
H for this coupling, with one gluon incoming with momentum

q1 and Lorentz index µ, a gluon outgoing with momentum q2 and Lorentz index ν,

and a Higgs boson outgoing with momentum pH , is given by:

V µν
H (q1, q2) = αsm

2

πv

[
gµνT1(q1, q2) − qµ

2 q
ν
1T2(q1, q2)

]
. (A.0.1)

The outgoing momentum of the Higgs boson is pH = q1 − q2. The form factors T1

and T2 are given by [140]

T1(q1, q2) = − C0(q1, q2)
[
2m2 + 1

2
(
q2

1 + q2
2 − p2

H

)
+ 2q2

1q
2
2p

2
H
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2
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2
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T2(q1, q2) = C0(q1, q2)
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− 2
λ

(
q2

1 + q2
2 − p2

H

)
, (A.0.3)

where we have used the scalar bubble and triangle integrals

B0 (p) =
∫ ddl

iπ
d
2

1(
l2 −m2

) (
(l + p)2 −m2

) , (A.0.4)

C0 (p, q) =
∫ ddl

iπ
d
2

1(
l2 −m2

) (
(l + p)2 −m2

) (
(l + p− q)2 −m2

) , (A.0.5)

and the Källén function

λ = q4
1 + q4

2 + p4
H − 2q2

1q
2
2 − 2q2

1p
2
H − 2q2

2p
2
H . (A.0.6)

The relation to the form factors A1, A2 given in ref. [140] is

A1(q1, q2) = i

16π2T2(−q1, q2) , (A.0.7)

A2(q1, q2) = − i

16π2T1(−q1, q2) . (A.0.8)
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