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Abstract

Measurement of soil moisture content is a key challenge across a variety of

fields, ranging from civil engineering through to defence and agriculture. While

dedicated satellite platforms like SMAP and SMOS provide high spatial cov-

erage, their low spatial resolution limits their application to larger regional

studies. The advent of compact, high lift capacity UAVs has enabled small

scale surveys of specific farmland cites.

This thesis presents work on the development of a compact, high spatial and

spectral resolution hyperspectral imager, designed for remote measurement of

soil moisture content. The optical design of the system incorporates a bespoke

freeform blazed diffraction grating, providing higher optical performance at a

similar aperture to conventional Offner-Chrisp designs.

The key challenges of UAV-borne hyperspectral imaging relate to using only

solar illumination, with both intermittent cloud cover and atmospheric water

absorption creating challenges in obtaining accurate reflectance measurements.

A hardware based calibration channel for mitigating cloud cover effects is intro-

duced, along with a comparison of methods for recovering soil moisture content

from reflectance data under varying illumination conditions. The data pro-

cessing pipeline required to process the raw pushbroom data into georectified

images is also discussed.

Finally, preliminary work on applying soil moisture techniques to leaf imaging

are presented.

Supervisors: Cyril Bourgenot and John Girkin
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Glossary

Ground spatial distance The distance between the centres of two adjacent spa-

tial pixels as would be measured on the ground.

Hyperspectral Relating to instruments or data sets that provide continuous spec-

tral coverage with high spectral resolution within a set wavelength range.

Typically features hundreds of spectral bands.

Imaging Spectrometer Another name for a hyperspectral imager, commonly

used by NASA.

Internet of Things A system of interconnected devices including computers, ma-

chinery and sensor networks, able to communicate autonomously.

LOWTRAN Low resolution computer model for simulating atmospheric trans-

mission and background radiance, developed by the US Air Force in the

1970s.

MARMIT Multilayer radiative transfer model of soil reflectance, a radiative

transfer based full spectrum model for predicting soil moisture content from

reflectance data.

Multispectral Relating to instruments or data that provide information in several

(often 4-6) individual spectral bands.
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Near Infra-Red Infrared light spectrum that sits close to visible wavelengths,

typically defined as 700-1000 nm.

Precision Agriculture Agricultural practices involving the use of sensors and

precision interventions to more accurately apply the correct amounts of water,

fertiliser, pesticides etc.

Pushbroom Aquisition technique where images are captured one single row of

spatial pixels at a time. Flatbed scanners are a common every day example.

Radiative Transfer Model A physically based model simulating the transmis-

sion of light through materials and across material boundaries. .

Short Wave Infra-Red A region of the infra-red spectrum that at wavelengths

longer than NIR, typically defined as 1000-2500 nm.

Spectral Index A comparison of the measured intensity of 2 or more spectral

bands, usually a ratio or normalised difference.

Unmanned Aerial System Total system including the vehicle, instrumentation,

and the command and control station.
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Chapter 1

Introduction

1.1 Remote Sensing and Hyperspectral Imaging

Remote sensing can be defined as the process of acquiring information about a sub-

ject without making physical contact. The process involves measuring the emitted

or reflected electromagnetic and sound radiation from a target. Remote sensing

has become an integral part of our everyday lives, from the satellite photography

used in popular mapping applications to the radar systems involved in air traffic

control and meteorological forecasting.

1.1.1 Early Remote Sensing

The history of remote sensing began with the invention of photography. Soon after

the first permanent images were recorded in the early 19th century, photographers

such as Nadar began to produce airborne photography using hot air balloons. [1]

With the rapid development of photographic technology, by the turn of the 20th

century cameras had become compact enough to be regularly flown on kites. It was

also around this time that the first "unmanned" aerial photography started taking

off, with the German apothecary and photographer Julius Neubronner demonstrat-

ing the first pigeon mounted cameras in 1908. [2] Example photographs of both a

camera pigeon and an airborne picture are shown in Figure 1.1. These pigeon
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photographers saw limited work through both world wars, with the newly invented

aeroplanes producing the bulk of aerial photography by the end of World War 1.

Figure 1.1: Early "unmanned" aerial photography, using camera equipped carrier
pigeons. From https://publicdomainreview.org/collection/dr-julius-neubronner-s-
miniature-pigeon-camera

Technology development during WW1 was not limited to developing more compact

and lighter weight cameras. Shortly before WW2, Kodak released the 3 colour Ko-

dachrome film, enabling the practical use of colour photography. During the war,

Kodak went on to release Kodacolor Aero-Reversal-Film (later Aerochrome), com-

bining an infrared sensitive layer with visible colour film for the first time. [3] This

film was used heavily in aerial photography for its ability to distinguish camouflage

from vegetation, due to the higher infrared reflectance of live vegetation. This

provided an early example of the powerful utility of multispectral imaging. An

example photograph taken with Aerochrome film is shown in Figure 1.2.

The modern era of satellite remote sensing began with the launch of Sputnik 1

in 1957, igniting the "Space Race". By the late sixties, an increasing number

of civilian meteorology satellites were being launched, providing a platform for

the first civilian Earth observation program in 1972. [4] These Landsat satellites

became the first civilian satellites equipped with multi spectral imagers. Landsats

1 through 5 carried the Multispectral Scanner (MSS), operating in 4 x 100 nm

bands, covering green and red visible wavelengths, and two near infrared (NIR)

bands. [5] The ground resolution of the scanner was re-sampled to 60 meters.

While the data from these early Landsat satellites proved to be sufficient in early

land use and inventory experiments, the 100 nm spectral resolution was found

2
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Figure 1.2: Example photograph taken using Aerochrome film. The film maps
infrared, red and green light to a red, green and blue respectively as a false colour
image. Note the red colour of vegetation due to its high infrared reflectance. Photo
courtesy of Rob Walwyn: https://www.robwalwyn.com/aerochrome

to be too low for other applications. Later Landsat satellites would carry the

Thematic Mapper (TM) instruments, providing up to 11 spectral bands with the

currently operational Landsat 8. [6] Multispectral imagers still form the basis of

the largest Earth observation programs, with the Sentinel-2 satellites also focusing

on multispectral instruments. [7]

1.1.2 Hyperspectral Imagers

The development of analytical spectroscopy techniques in relation to remote sensing

was a driving force in the increasing number of spectral bands, with the enhanced

spectral resolution being used to better identify mineral and crop types. [8] The

next step in this path was the development of the imaging spectrometer. Where

multispectral imagers record images in a number of pre-selected, non-contiguous

bands, hyperspectral imagers record images in 100 or more contiguous spectral

bands. This enables laboratory like reflectance spectra to be recorded for each pixel
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in an image, providing large amounts of spectral information for data processing.

The first imaging spectrometer for Earth observation was the Airborne Imaging

Spectrometer (AIS), first flown in 1982. [9] Initially built to test infrared area ar-

ray detectors, AIS featured a 32x32 element area array. This provided a spectral

coverage from 1.2 to 2.4 µm, with a spectral bandwidth of 9.3 nm, achieved using

a 4 position diffraction grating to record 128 bands using the 32 spectral pixels on

the detector.

While AIS successfully demonstrated the usefulness of hyperspectral data in Earth

observation, its use as an engineering test bed with experimental detectors made

it unsuitable for regular, long duration scientific use. [10] As a result, the Airborne

Visible/Infrared Imaging Spectrometer (AVIRIS) was proposed and developed,

with the purpose of providing well calibrated and stable instrument for the Earth

science community. [11]

As 2D area array IR detectors were still a highly experimental technology in 1983,

AVIRIS was designed around the use of linear array detectors. With many fewer

detector elements than area detectors, the use of linear detectors reduced difficulties

in manufacturing, calibration, and data readout. This led to the AVIRIS design

using scanning foreoptics to capture cross track data in a whisk-broom mode. An

explanation of whisk-broom, and other common acquisition modes, is given in

Chapter 2.

The light from the scanning foreoptics was fed by optical fibres into 4 spectrometers,

giving AVIRIS a spectral coverage of 0.4-2.5 µm, with an average spectral band-

width of 10 nm. AVIRIS was designed to be flown on multiple aircraft platforms,

including both the Twin Otter and the ER-2, providing a large range in working

altitudes. When operating onboard an ER-2 at 20 km altitude, AVIRIS covered a

ground swath of 11 km with a 17 m ground sampling distance. At this altitude, the

aircraft is flying above 99% of the Earth’s atmosphere, providing similar viewing

conditions to satellite observations. This made the data collected by AVIRIS valu-
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Figure 1.3: AVIRIS "Advertising" image, courtesy NASA/JPL-Caltech.

able for prototyping data processing pipelines to be used by later satellite based

hyperspectral imagers. Due to the high standard of calibration, along with regular

hardware updates, and a range of external factors, AVIRIS has had a long lifetime,

still being flown for science missions as of 2021. An example image of AVIRIS is

shown in Figure 1.3.

Following AVIRIS, there would be a long time period before the next generation

facility level hyperspectral imagers would be in use. The large data volumes created

by hyperspectral imagery limited the widespread access of high quality datasets,

resulting in a low level of familiarity and advocacy for hyperspectral instruments.

After the Challenger shuttle disaster, the planned Shuttle Imaging Spectrometer

Experiment (SISEX) was cancelled, and the High Resolution Imaging Spectrometer

(HIRIS) was removed from the Earth Observing System (EOS) plans, while the

unplanned re-entry of the Lewis Spacecraft Mission destroyed the hyperspectral

imager onboard. [12, 13] It would not be until Hyperion launched onboard the EO-

1 satellite in late 2000 that a hyperspectral imager would enter and remain in Earth

orbit. [14]

At present, agency level hyperspectral imagers remain fairly uncommon, both in

airborne and satellite contexts. AVIRIS (Now called AVIRIS Classic) has now
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been supplemented by AVIRIS-NG, using an Offner Relay pushbroom design offer-

ing a spectral resolution increase to 5 nm sampling. [15] For satellites, the highest

profile current mission is the PRecursore IperSpettrale della Missione Applicativa

(PRISMA) technology demonstrator operated by the Italian Space Agency. [16]

Satellite hyperspectral instruments do look to have a strong future however, with

both ESA and NASA having plans to launch more EO satellites, including Coper-

nicus Hyperspectral Imaging Mission for the Environment (CHIME) and Hyper-

spectral Infrared Imager (HyspIRI). [17, 18]

1.1.3 Commercial Market

While publicly funded hyperspectral imagers were slow to take off, private sector

companies began producing the first commercial hyperspectral imagers in the late

1980’s. [12] Designed to be flown on small airplanes, and marketed towards both the

research community and commercial mineral mapping. One particularly successful

design was the Compact Airborne Spectrographic Imager (CASI) by the ITRES

Corporation. Using 2D silicon detectors, CASI covered the VIS-NIR range up to

900 nm in over 200 spectral bands. [19]

Development of this style of hyperspectral imager continued, resulting in increasing

spatial and spectral resolution, with several now established brands starting up.

As InGaAs and MCT sensors developed and became more affordable, imaging

spectrometers with extended spectral ranges were made practically available to the

consumer market. This was aided by advancements in computing hardware and

software development, enabling the large hyperspectral datasets to be processed

more quickly.

The next revolution came in the late 2000s, when multi rotor unmanned aerial

vehicles (UAVs) became commercially available. While small UAVs had been used

by research groups before this, most of these UAVs were of fixed wing type, of-

ten with 2m wingspans and requiring catapults for launching. The expertise and
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equipment required to operate these drones limited their use to specialist groups.

Multirotor UAVs combined the in flight stability of fixed wing aircraft, with the

compact size and vertical take-off and landing capabilities of earlier helicopter style

rotary airframes, while being easier to pilot than either.

Figure 1.4: Trend showing the number of research papers per year containing the
keywords "UAV" and "Hyperspectral" since 1990, as collated from Google Scholar

With the reducing cost and rising lift capacity of new UAV models, combined

with the improving compactness of hyperspectral imagers, airborne hyperspectral

imagery became increasingly available to the wider research community. While

flights for high level facility instruments like AVIRIS are planned many months in

advance, the reduced logistics of small drone flights enables much greater flexibility

in both flight locations and pre-planning lead time. This has resulted in a boom

in research in the area, evidenced by the keyword trend shown in Figure 1.4.
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1.1.4 Modern Instrumentation

The surge in use of drone instrumentation, both in research and commercially,

has driven a diverse market for off the shelf hyperspectral imagers from a variety

of companies. Established companies like ITRES have developed compact UAV

sized versions of their full sized instruments (e.g. MicroCASI), while many newer

companies such as Headwall and HySpex have emerged.

Across many companies, the design concept of the imaging optics has converged,

with most using all reflective concentric optical systems. See Section 3.2 for more

detail on why these designs are so widely used. Most instruments are offered with

a choice of silicon or InGaAs detectors, covering spectral ranges of 400-1000 nm

and 900-1700 nm respectively, with some manufacturers offering MCT detectors

to extend spectral range further into the short wave infrared (SWIR). The masses

for these dispersive instruments range between 1 and 4 kg depending on detector

types, suitable for the professional UAVs available from drone manufacturers, such

as the DJI Matrice 600.

With recent innovations in miniaturised fabrication and sensor technologies, elec-

tronics manufacturers like IMEC have started producing hyperspectral sensors,

with the spectral filtering built directly onto the detectors at a silicon level. The

development of these extremely compact systems enables the use of hyperspectral

imaging in more fields of remote sensing, including under water applications.

The main downsides of consumer off-the-shelf (COTS) hyperspectral imagers are

the high costs, and the software and hardware lock-ins than can exist within manu-

facturer ecosystems. This has left room for research groups to continue developing

hyperspectral instrumentation, focusing either on reduced cost to improve avail-

ability of instruments, or novel designs and manufacturing techniques to further

optimise high end instruments towards specific applications.
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1.2 Hyperspectral Remote Sensing in Precision

Agriculture

1.2.1 Environmental Impacts of Agriculture

Agriculture has changed significantly over the last century, with increasing mech-

anization resulting in farm and field sizes growing immensely. While enlarged

farms benefit from advantages of economies of scale, the larger field sizes raise the

challenges of crop management, especially with respect to irrigation, fertiliser and

pesticide use. [20] Without detailed information on crop conditions, farmers often

over apply interventions such as fertilisers to ensure sufficient levels of plant nutri-

tion throughout a field. [21] This has resulted in nearly a 700% global increase in

the use of fertiliser over the last 40 years. The surplus of fertiliser is often washed

away during heavy rainfall, running off the fields into local water ways. [22] This

has led to major impacts on water quality even in the UK, resulting in blooms of

harmful algae, fish deaths, and dead zones of limited biodiversity in UK coastal

areas. [23, 24]

A similar pattern is seen with the use of artificial irrigation, which has seen a

70% increase in area coverage globally over the same timescale. The use of ir-

rigation in some UK regions like Kent has been linked to soil erosion hot-spots in

those areas. [25] Furthermore, irrigated UK farmlands tend to be concentrated, with

the majority of irrigated farmlands situated in water catchments that are already

overdrawn. [26] This is compounded by the fact that irrigation is often used as a

supplement to rainfall, with the greatest demand coinciding with the driest periods.

While irrigation only accounts for 1% water usage in England, globally agriculture

accounts for 70% of all fresh water usage. [22] By the early 2000s, the 17% of the

world’s farmland that was irrigated accounted for nearly 40% of the global crop

output, with staple foods such as wheat and rice benefiting the most. [27]
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Although irrigation provides the greatest benefit to arid regions, it also represents a

large danger to farmland in these areas. When water evaporates from the soil, salts

are deposited in the upper soil layers, resulting in soil salinisation. As irrigation

increases the water supply to the soil, the rate of salinisation increases. Most

crops are not tolerant to saline conditions, resulting in reduced yields, and even

abandonment of farmland. In total, close to 10 million hectares of farmland are

destroyed by salinisation each year world wide. [28]

With world population projections expecting to reach almost 10 billion by 2050,

and with growth centred on developing countries, the pressure to increase world

wide food production will continue to mount. Climate change is also expected to

add to the difficulty of achieving sufficient food production, with serious examples

even happening in the UK. In 2020, UK wheat yields dropped by 40% compared

to the previous year, caused by both heavy rainfall and droughts happening during

inopportune times during the growing season. This is an indicator of the sort

of effect unpredictable climate patterns can have on future harvests. Satellite

imagery from MODIS clearly shows the drought conditions experienced during the

UK heatwave in August 2022, illustrated in Figure 1.5.

Due to these pressures, the area of land used for arable farming, and specifically

irrigation supported land, has been increasing steadily. [29] As irrigated farmland

offers such high efficiency for food production, this trend is expected to continue

into the following decades. In order to ensure the sustainability of this practice,

both in terms of water and soil conservation, improved management methods will

need to be introduced.

1.2.2 Precision Agriculture

Precision agriculture (PA) is the umbrella term for the management methods aim-

ing to help improve the sustainability of the agricultural sector. The idea of

precision agriculture is to bring the technologies and concepts of the Internet of
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Figure 1.5: Terra/MODIS image of the UK on 10th August 2022 dur-
ing heatwave, courtesy of NASA Worldview. Worldview is part of the
NASA Earth Observing System Data and Information System (EOSDIS) (ht-
tps://worldview.earthdata.nasa.gov/)

Things (IoT) and Big Data analysis to agriculture, enabling advanced monitoring of

plant and soil health, providing farmers with better decision support tools. These

tools can be used by farmers to either aid decisions on manual interventions, or set

up fully automated systems based on articial intelligence (AI) models. [30, 31]

In order for PA to be effective, the monitoring system needs to collect relevant data

that is resolved to a suitable spatial and temporal resolution. Due to variations

in topology, underlying geology, or boundary conditions, individual fields can have

local biases that can cause low spatial resolution measurements to be unrepresent-

ative of conditions over the whole field. Sampling at too high a resolution, however,

requires more expensive sensor networks, larger data storage solutions and longer

processing times, without additional benefit. Although a plant by plant based

management system would be the ideal end point for precision agriculture, such

a set up is not practical in the real world. More realistically, a field can be split

up into management zones, within each the field can be considered homogeneous.

11



1.2.3. Soil Moisture Measurement Methods

Often, the limit on the size of these management zones depends on the irrigation,

spraying or harvesting equipment used to manage the field. [20]

While implementations of precision agriculture can cover a wide range of activities

including weed control, fertilisation and harvesting, this thesis will focus mostly on

soil moisture management and irrigation. Soil moisture measurement is one of the

keystones of precision agriculture. Practical studies have shown that variable rate

irrigation can result in significant water savings, over 25% at some sites. [32] Aside

from precision irrigation, measurement of soil moisture variability can also help to

provide better understanding of (i) soil water retention capacity and erosion [33]

(ii) drought forecasting and monitoring [34] (iii) as well as crop yield estimation and

evapotranspiration rates. [35, 36] Correct deficit irrigation of crops may increase or

maintain yields with a reduced volume of water consumption. [37] With regards to

climate change, soil moisture content may also have a significant effect on both

land carbon uptake and surface air temperatures. [38, 39]

1.2.3 Soil Moisture Measurement Methods

As precision agriculture has developed, and wide ranging variety of techniques

for measuring soil moisture content have evolved. The most direct and accurate

method of measuring soil moisture is through gravimetric measurements. Soil

samples are collected, sealed and weighed. The samples are then gently oven dried,

before being weighed again. The change in mass can then be used to calculate the

percentage water content of the original sample. While this method is extremely

accurate, it is extremely time consuming, requiring significant human involvement,

making it difficult to implement and not financially sustainable in a competitive

commercial environment.

In situ soil probes have developed into being one of the most commonly used form

of soil sensors. The permittivity and resistivity of soil are sensitively dependant

on soil moisture, enabling detection using either capacitance or resistance based
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sensors. [40] The simplicity of the sensors, combined with volumes of scale, has

resulted in them being commercially available for very low cost. These sensors are

even available for home use, with sensors available to suit low cost single board

computers like the Raspberry Pi.

These low cost sensors are also suited to creating larger sensor networks in the

commercial market. [41] One of the greatest advantages of these sensors have is the

ability to measure soil humidity at different depths, allowing for moisture content

at the root level to be determined. However, in situ sensors do have practical

drawbacks. As each sensor only records the soil moisture at a single point in space,

requiring large numbers of sensors to gain spatial resolution. These large networks

can be time consuming and labour intensive to set up. These sensors require power

or communications wiring, often leaving some trailing cable on the soil surface.

The trailing wires would be damaged by vehicles driving in the field, requiring

the removal and subsequent replanting of the sensors each time this occurs. An

example of industrial sensors from Spen Farm is shown in Figure 1.6.

Figure 1.6: Example soil sensors at Spen Farm. (a) Shows an unplanted soil sensor,
(b) shows the main hub, with cables running outwards towards planted soil sensors.
Photo Credit: Murilo Vianna
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Due to these limitations of in situ sensors, the remote sensing community has seen

a range of developments aiming at remote measurement of soil moisture content.

These techniques span from microwave radar measurements, through to thermal

infrared and optical measurements, discussed in descending wavelength order be-

low.

Radar systems have long been used for soil moisture analysis. [42] Radar return from

terrain is strongly dependent on the dielectric properties of the terrain, making

the radar backscatter sensitive to moisture content. Early experiments involved

stationary crane mounted radar systems, with the technology developing towards

the satellite based synthetic aperture radars used today. These systems, operated

by NASA in the form of Soil Moisture Active Passive (SMAP) and ESA with the

Soil Moisture and Ocean Salinity (SMOS) satellites, are still in operation today. [43,

44] These microwave radar based systems have some advantages over other systems.

Due to their longer operating wavelengths, these instruments have the ability to

observe through cloud cover. They also cover very large swath widths, with both

SMAP and SMOS covering a swath of 1000 km. This enables these satellites to

rapidly cover large areas of land, with SMAP making global moisture maps every

2 to 3 days. The trade-off of the high swath width is a relatively low spatial

resolution. While SMAP was designed to have a ground spatial distance of 9 km,

an electrical failure in its active radar system limits its resolution to 36 km, similar

to SMOS’s 35 km. [45] This resolution is suited to measuring regional variations of

moisture content, but is much too coarse to be useful for precision agriculture.

In order to improve the spatial resolution of soil moisture measurements, shorter

wavelengths in the thermal infrared, and the SWIR and NIR ranges have been

investigated. [46] While development of thermal infrared techniques has been more

focused on upscaling lower resolution surveys, Vis/NIR/SWIR multi- and hyper-

spectral imagers have seen significant usage in soil monitoring. [47] Further details

on the working principles of these instruments and how they are used to measure

soil moisture content are given in Chapter 2. Spectral soil sensing techniques have
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some unique advantages over other measurement methods. The broad spectral

coverage of hyperspectral imagers enables a high level of versatility to be extrac-

ted from datasets. This means that along with soil moisture, hyperspectral data

can be used to track other soil and plant health factors, along with weed tracking.

Hyperspectral imagers have also been in deployment in various forms for almost 40

years, providing a long back catalogue of data which can be used to extract long

term trends.

Hyperspectral imaging methods do have some drawbacks. Although airborne and

satellite hyperspectral imagery has been available for decades, the high expense

and complex logistics, along with the moderate spatial and temporal resolution,

has limited its use in commercial settings. While developments in compact and

reduced cost instruments and UAVs have seen expanded deployment, high costs

and complex workflow procedures have still limited their use to larger farms and

research groups. [48] More development in automated data processing pipelines

and simplified user interfaces is needed before these instruments can be deployed

without expert personnel. Compared to microwaves, the short wavelength infrared

light used by these instruments has little penetrating power, and is strongly affected

by both vegetation coverage and cloud cover. This prevents the use of hyperspectral

imagery for soil moisture measurement during certain crop cycles and weather

conditions.

Aside from the electromagnetic spectrum, some novel techniques use other "messen-

gers" to remotely sense soil moisture. One example is the COsmic-ray Soil Moisture

Observing System (COSMOS), which measures neutron densities generated by cos-

mic rays interacting with air and soil. [49] The rate of production of fast neutrons,

and the strength of the material’s moderation, both depend on the atomic mass

number of the material. As hydrogen nuclei are the strongest moderating nuclei,

water content of a material strongly affects its fast neutron stopping power, and

thus allowing detection of moisture content. These sensors effectively calculate the

average soil moisture within a circular detection area, typically with a diameter of
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approximately 670 m. [50] This area averaging is an advantage over sparsely placed

capacitance probes, as point measurements can be affected by the strong hetero-

geneity of soil moisture content. This enables a single COSMOS sensor to provide

a representative average soil moisture over a large area, at the expense of spatial

resolution.

Each of these methods for measuring soil moisture content have their own strengths

and trade-offs. As a result, no one method will be perfect for all working conditions.

Going forwards, the most robust sensor networks will be a fusion of complementary

sensor types.

1.3 Thesis Outline

The work presented in this thesis towards developing a compact, pushbroom hy-

perspectral imager followed several parallel paths, presented in this order:

• Chapter 2 provides the technical background to understand the many differing

types of hyperspectral imagers, along with their associated benefits and trade-

offs. The theory behind 3 common methods of soil moisture retrieval from

soil reflectance data is presented.

• Chapter 3 presents the optical and mechanical design of the FYMOS hyper-

spectral imager, the instrument used throughout this work.

• Chapter 4 describes the fibre optic downwelling irradiance calibration channel

integrated into the FYMOS design, enabling the use of the instrument under

changeable cloud cover.

• Chapter 5 introduces the data collection and processing methods used for

transforming raw sensor readings into corrected reflectance datacubes ready

for use. Methods for extracting soil moisture content from this data are also

demonstrated.
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• Chapter 6 discusses the changes in hardware and data processing required to

use the hyperspectral imager onboard a UAV platform.

• Chapter 7 discusses some of the other agricultural uses of hyperspectral data,

demonstrating its use in measuring moisture content in plant leaves.

• Finally Chapter 8 presents the conclusions of this thesis.

Supplementary material, including animations and videos relating to figures in this

thesis, can be found at https://sites.google.com/view/hyperspec-imager/thesis-animations.
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Chapter 2

Technical Background and Theory

The aim of this chapter is to provide the reader with an understanding of the range

of technologies available in the hyperspectral imaging world, and how they may be

used to remotely measure moisture content. The chapter is split into two sections,

with the first covering a range of the most common hyperspectral imaging system

designs, while the second describes methods used to derive moisture content from

reflectance data.

2.1 Fundamentals of hyperspectral imagery

Hyperspectral imaging is a field which is experiencing rapid development. Ad-

vancements in optical design, sensor technologies and computing power combine

to enable large inter-generational developments in spatial, spectral and temporal

resolutions, along with improvements to stability and signal to noise ratio. The

wide ranging applications of hyperspectral imagery, from medical imaging to food

quality inspection and from art conservation to airborne remote sensing, have res-

ulted in a diverse range of hyperspectral imaging cameras. These can be split into

3 main groups depending on their acquisition modes: spatial scanners, spectral

scanners, and snapshot imagers. The main differentiator between these groups is

how each sensor reading corresponds to the final completed data set, often called a

data cube. These cubes are usually three dimensional, having two spatial dimen-
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sions and one spectral dimension. A summary diagram showing an example sensor

reading from each type is shown in Figure 2.1.

Figure 2.1: The main hyperspectral acquisition methods: (A) whiskbroom scan-
ning; (B) pushbroom scanning; (C) spectral scanning; (D) snapshot imager. Ad-
apted from 10.1016/j.ifset.2013.04.014.

2.1.1 Spatial Scanners

Spatial scanners use dispersing optics to split incident light into a continuous spec-

trum, which is then imaged onto a camera sensor. The key difference to a spectral

scanner is that all wavelengths in the spectral range of the camera sensor are im-

aged simultaneously. Depending on the type of sensor used, these instruments can

be split into 2 groups, whiskbroom and pushbroom.

Instruments using one dimensional detector arrays operate in the whiskbroom ac-

quisition mode. Using a single row of pixels, the detector records a contiguous

spectrum that corresponds to an area on the target of interest. This single sensor

reading corresponds to a single spatial pixel in the final datacube. Scanning mirrors

can be used to record a series of spectra across the desired track width, before the

scanner is moved forward to record another line of spatial pixels, illustrated in figure

2.2(a). This type of hyperspectral imager was common in the early days of imaging

spectrometry, as the smaller number of detector elements made manufacturing and

calibration easier when electronic detectors were an immature technology. The

disadvantage is that the design exchanges sensor/electronics complexity for mech-

anical complexity, requiring the use of tightly controlled, fast moving scanning

mirrors to capture across track data. Errors in control of these mirrors will cause
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Figure 2.2: (a) Illustration of whiskbroom scanning method, with the scan area
part way across full track width. With this design, the linear sensor array images
each pixel on the ground sequentially, scanning across the full track width before
the platform moves forwards one pixel. (b) Illustration of pushbroom scanning
method. While each ground spatial pixel imaged on the ground is maintained at
the same size, the 2D detector array enables imaging of the entire cross track width
simultaneously.
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image "jitter", which results in warped or incomplete images that can be difficult

to correct with post processing.

Pushbroom instruments, on the other hand, use two dimensional detector arrays

to capture spectral data along the entire cross track width simultaneously without

moving parts, as shown in Figure 2.2(b). In the final image, this corresponds

to an entire row of spatial pixels being recorded at once. This reduces the size

and complexity required of the instrument fore-optics, enabling the development

of compact systems suitable for use on UAVs. Pushbroom instruments can be

categorised into two groups, based on their use of dispersive or dichroic optics.

Compact hyperspectral imagers for the NIR/SWIR range mostly use diffraction

gratings as the primary dispersing component. Reflective gratings are most com-

monly used for the high end instruments due to their greater efficiency and wider

operating wavelength range. Transmissive diffraction gratings are still used in

a variety of instruments, with the reduced cost and lower alignment sensitivity

compared to reflective gratings making them ideal for use in low cost 3D printed

prototypes. [51]

Figure 2.3: Pushbroom design using dichromatic filters. These integrated filter
sensors enable extremely compact designs, requiring only imaging optics in front
of the sensor.

Other systems use dichromatic filters to create very compact pushbroom instru-

ments. Linear strips of interferometric Fabry-Perrot filters are placed onto the
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detector at the wafer level, integrated into the CMOS pixels, to create hyperspec-

tral sensors, as shown in Figure 2.3. [52] This greatly simplifies the optics required

in front of the sensor, enabling this style of instrument to be extremely small and

lightweight. As the filters are chosen during manufacturing, setting the spectral

bandwidth and resolution of each channel, this style of hyperspectral imager lacks

some of the adaptability of dispersive optical systems with adjustable slit widths.

2.1.2 Spectral Scanners

Spectral scanning hyperspectral imagers also use two dimensional detector arrays,

with both dimensions recording spatial information. Instead of using dispersive op-

tics, tunable filters such as an acousto-optic tunable filter (AOTF) or an adjustable

Fabry-Perot etalon are used to sequentially sweep through a selected wavelength

range. As each wavelength is imaged with independent camera exposures, different

exposure times can be used for different wavelengths, which can be useful if a sub-

ject exhibits vastly different reflectance across its measured spectrum. AOTFs in

particular can be compact, light weight, and can have extended wavelength cover-

age, resulting in their widespread use. Their main downside is their relatively low

( 30%) overall transmission and complex transmission curve. [53, 54]

As a sequential scanner can only record a set number of bands per second, recording

a full spectrum datacube can be a relatively lengthy process. The Senop HSC-2

hyperspectral imager can scan its 1000 spectral bands at a maximum rate of 149

bands per second, requiring around 7 seconds to build a complete datacube, limiting

full range measurements to static imaging. However, not all applications require

the full spectral range of a hyperspectral imager, reducing the required scan time.

In addition, the 2D spatial information recorded by each frame enables the use of

orthomosaic stitching techniques for geo-registration of sets of datacubes.
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2.1.3 Snapshot Imagers

Snapshot hyperspectral imagers record all spectral bands and 2D spatial informa-

tion simultaneously in a single exposure. This gives snapshot imagers the advantage

of having the highest temporal resolution of any hyperspectral imager design, with

some models achieving video frame rates of up to 8 Hz. Snapshot instruments can

be divided into two classes, depending on whether they use lossy filter designs, or

more complex throughput division optics. [55]

The most compact snapshot imager designs for UAVs are based on the use of filter

arrays. These can be split into division of aperture, or division of focal plane types,

depending on the position of the filter array. Both styles are illustrated in Figure

2.4. Division of aperture systems made up some of the first snapshot systems, being

a natural evolution from similar multispectral designs. These designs consistent of

an array of band-pass filters, with each filter focused onto a portion of the camera

detector by a small lens, illustrated in Figure 2.4(b). [56] Simpler designs function

similarly to an array of individual colour cameras, while others use designs similar to

traditional light field/plenoptic cameras to extract limited depth information. [57]

Alternative placements for the filter array have also been developed. Division of

focal plane array style imagers use filters placed directly onto the detector during

manufacture, similar to the method described for the pushbroom instruments. [58]

Instead of placing filters in linear rows, the filters are placed in mosaic patterns,

analogous to the Bayer pattern in an RGB camera, shown in Figure 2.4(a). This

creates very lightweight imaging systems, requiring only an objective lens for light

collection and imaging. The technology was pioneered by Imec, and can be applied

to both visible silicon sensors, and SWIR InGaAs detectors.

While these filter style systems offer significant advantages in size and weight com-

pared to scanning systems, these come with some trade-offs. As the sensor is being

used to encode both 3D data (2 spatial dimensions and 1 spectral dimension) onto

a 2D surface, both spatial and spectral resolution are reduced in comparison to
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Figure 2.4: Snapshot imager comparison, adapted from [55]. Figure (a) is an
example of a "division of focal plane" design, where filters are placed directly onto
the detector pixels at the focal plane, resembling a Bayer style pattern. Figure (b)
shows an example "division of aperture" design, where macro sized colour filters
are used in conjunction with a micro lens array, in a configuration similar to a
plenoptic camera. Depending on the design, imaging optics may be placed in front
of the spectral filters.

other types of hyperspectral imager.

Filter based systems also fail to make full use of the additional light collection avail-

able to snapshot systems. To capture a scene made up of, for example, 100 spatial

rows, a push broom instrument would need to capture 100 individual exposures. A

snap shot imager capable of imaging the entire scene could use approximately 100

times the exposure time of the scanning system and maintain the same time res-

olution. However, narrow band filters reject all but the central transmission band

of light they’re designed for, reducing the throughput of the system by 1/N for a

system with N spectral bands. This results in a majority of the incident light being

rejected by the system. For the IMEC sensors, the full width half max bandwidth

of each filter varies from 10-15 nm depending on the exact model.

In order to improve upon these lossy systems, many differing optical designs have

been developed that can make full use of the incoming light. [55] One of the most

commonly used designs is the integral field unit (IFU) spectrograph. IFUs work

by dividing the focal plane into a set of sub apertures, either individual pixels

or small slits, depending on the type of IFU. Each one of these sub apertures is

then fed into a spectrograph, enabling the spectrum from each pixel to be recorded

simultaneously. There are three main methods of dividing the focal plane, using
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pure lenslet arrays, lenslets coupled into a fibre array, or image slicing mirrors. [59,

60, 61] A diagram visually explaining these different IFU types is shown in Figure

2.5. Each design comes with its own benefits and drawbacks. Lenslet IFUs can have

simple, lightweight optics, but are inefficient in their use of detector pixels. Fibre

IFUs leave much less unused area on the sensor, but can susceptible to transmission

losses and cross talk. Image slicer based IFUs provide higher spatial resolution than

fibre systems, as the sampling pitch along each sub slit is effectively the pixel pitch

of the sensor. However, image slicers are complex shapes, with a high number of

facets that must be precisely machined. To manufacture these parts, ultra precise

machining methods like ultra precise raster fly cutting (UPRFC) and single point

diamond turning (SPDT) are commonly used. [62, 63] These production methods

produce surfaces suitable for use in infrared optics directly after machining, but the

resulting surface roughness limits their use in the visible/UV range without further

precision polishing. Overall IFUs can achieve high optical throughputs along with

high spectral resolution.

The main disadvantages of IFUs are their complex optics, and their requirement

for large format detector arrays. The optics required to split the focal plane can

be both large and relatively heavy, making incorporating these designs into small

UAV compatible instruments challenging. Image slicer based systems may offer a

compact solution, but the challenges in machining the large number of facets makes

this technology expensive. The large format detectors have increased size, weight,

power and cooling requirements compared to the more common smaller detectors

used in current instruments, further increasing the difficulty of miniaturising these

systems. While IFUs have been in use for earth observation on satellite platforms,

to the author’s knowledge there are no IFU based snapshot imagers currently in

use onboard small commercial UAVs.
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Figure 2.5: The three main types of integral field unit (IFU). These systems use
(a) lenslet coupling, (b) lenslet-fibre coupling, or (c) image slicing mirrors.
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2.2. Remote Soil Moisture Measurement

2.2 Remote Soil Moisture Measurement

Given the importance of measuring soil moisture content to multiple industries,

numerous experiments and methods have been developed to measure soil moisture

content through remote spectroscopic measurements. These methods generally fall

into two camps, either using spectral index measurements or more general spectral

shape fitting methods

2.2.1 Spectral Indices

Spectral index methods are based on the absorption spectrum of water, the main

features of which stem from the three fundamental vibrations of water molecules,

O-H bending, symmetric O-H stretching and asymmetric O-H stretching. The

combinations of various overtones of these fundamental vibrations result in the

complex water absorption spectrum.

Figure 2.6: Liquid water absorption spectrum [64]
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Index Spectral Bands Formula
NSMI 1.8 µm; 2.119 µm R1.8−R2.119

R1.8+R2.119

WISOIL 1.3 µm; 1.45 µm R1.45
R1.30

NINSOL 2.076 µm; 2.23 µm R2.076−R2.23
R2.076+R2.23

NINSON 2.122 µm; 2.23 µm R2.122−R2.23
R2.122+R2.23

Table 2.1: Examples of modern soil moisture indices [65, 66]

Table 2.1 shows examples of modern soil moisture indices focused on the shortwave

infrared (SWIR) observing band. In this band, often defined at 1-2.4µm, spectral

water absorption peaks at 1.2µm, 1.4µm and 1.9µm. While these bands are sens-

itive to moisture content under controlled lab illumination, they are also sensitive

to absorption due to atmospheric water vapour. This makes indices using these

wavelengths difficult to utilise without precise measurement and calibration of these

atmospheric effects at the time of data recording. Water Index SOIL (WISOIL)

is an example of such an index, centred on the strong 1.45 µm water absorption

band. [65, 66]

Some published spectral indices, such as NINSOL and NINSON, have been de-

veloped with a focus on avoiding peak water absorption wavelengths, with the aim

of increasing the usability of these indices under solar lighting conditions. [67] Us-

ing statistical correlation methods, the correlation between wavelength pairings and

soil moisture content can be compared, enabling selection of optimal wavelengths

for reflectance indices. Several statistical methods exist, with a more detailed dis-

cussion found in later chapters. While NINSOL and NINSON have been shown to

be robust under solar conditions, they were developed using ASD Fieldspec Pro

point spectrometers, using wavelengths above the 2.2µm cut-off wavelength com-

mon to most commercially available InGaAs focal plane arrays. In order to use soil

moisture spectral indices with compact hyperspectral imagers, new indices using

appropriate wavelengths will have to be derived.

28



2.2.2. Index Space Methods

Figure 2.7: Example OPTRAM Model, adapted from [70]

2.2.2 Index Space Methods

Other groups have developed models that make use of more than one index. Mod-

els such as the LST-VI triangle and TOTRAM use the relationship between soil

moisture, land surface temperature (LST) and normalised difference vegetation

index (NDVI) to estimate soil moisture content. [68] The use of LST introduces

difficulties in data processing, as the surface temperature is related to atmospheric

properties such as air temperature, wind speed and humidity, which must be cal-

ibrated for each observation. To avoid the use of thermal infrared, the optical

trapezoid model (OPTRAM) was developed. [69] The trapezoid name comes from

the shape of the data bounding box, shown in Figure 2.7.

Instead of LST, a new parameter called the SWIR transformed reflectance (STR)

is used:

STR = (1 −RSWIR)2

2RSWIR
(2.1)
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2.2.2. Index Space Methods

where RSWIR is the reflectance in a SWIR wavelength band, chosen as 1650 nm

or 2210 nm to correspond with Landsat 8 bands. The normalized soil moisture

content, W , is then calculated as:

W = θ − θd
θw − θd

= STR− STRd
STRw − STRd

(2.2)

where θ is the soil moisture content, with θw and θd being the local soil’s maximum

and minimum water content, with STRw and STRd being the corresponding STR

values. These bounding STR values are calculated from the wet and dry edges of

the trapezoid shown in Figure 2.7:

STRw = iw + swNDV I (2.3)

STRd = id + sdNDV I (2.4)

where iw, sw, id and sd, are the intercepts and slopes of the wet and dry edges

plotted in NDVI-STR space. To calculate NDVI, bands 4 and 5 of Landsat 8 were

used, with band 4 covering 0.64-0.67 µm and band 5 covering 0.85-0.88 µm. NDVI

values were then calculated as:

NDV I = band 5 − band 4
band 5 + band 4 (2.5)

Combining equations 2.2, 2.3 and 2.4, the normalised moisture content can be

estimated as:

W = STR− id − sdNDV I

iw − id + (sw − sd)NDV I
(2.6)

The advantage of these methods that include NDVI is that they attempt to estimate

soil moisture content for both bare and vegetated soils. This is done by assuming

30



2.2.3. Spectral Shape Fitting

that vegetation moisture content linearly relates to root zone soil moisture content.

By making use of spectral bands already in use by multispectral satellites, the

models can be applied to a large back catalogue of data to investigate trends over

longer time scales.

The downside of these models is in their sensitivity to calibration, with the best res-

ults found when the wet and dry edges are determined manually from the graph. [69]

This makes generalising the model to a wide variety of soils difficult. When cal-

culating the edge slopes using numerical regression methods, the authors note "...

its accuracy in predicting the absolute value of soil moisture needs to be viewed

with caution". This difficulty in retrieving accurate soil moisture content has been

shown using other instruments and locations. [70]

Still, the idea of developing spectral indices models capable of being used on both

bare and fully vegetated soil is extremely important, especially for use in agri-

culture. During a growing season, both extremes of vegetation coverage will be

seen, with accurate moisture content measurement required throughout. The ex-

tended wavelength coverage of hyperspectral imagers may enable more robust tri-

angle/trapezoid methods to be developed.

2.2.3 Spectral Shape Fitting

As an alternative to more simple spectral indices, spectral shape fitting methods

have been developed. They can take several forms, ranging from spectral envelope

fitting to full radiative transfer models. The main advantage of these models is that

they work outside of the strongest water absorption bands, potentially increasing

their robustness under solar illumination.

In fact, the idea of using physically based radiative transfer models is not new.

In 1925, Anders Ångström proposed the idea that wet surfaces can be modeled as

dry surfaces covered by a thin layer of water. [71] In this model, the reduction in

albedo of wet surfaces can then be attributed to internal reflections at the boundary
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Figure 2.8: MARMIT model diagram adapted from [72]. Wet soil is modeled as dry
soil covered in a thin liquid layer. Tw is the transmittance through the water, RD
the reflectance of dry soil, rxy and txy are the Fresnel reflection and transmission
coefficients at the water/air boundaries. nw is the wavelength dependant refractive
index of water.

between the water layer and the air based on Snell’s law. Later iterations of this

model by Lekner and Dorf in 1988 and Bach and Mauser in 1994 improved upon

this concept by using Fresnel coefficients to calculate boundary reflections and

introducing Beer’s law to include light absorption in the water layer respectively.

Most recently, Bablet et al further developed this model into the MARMIT model

in 2020. [72] Here, the transmittance along the entire path of the light ray across

multiple internal reflections is considered.

As a majority of soil radiative transfer models make use of the thin water film

model, it is useful to understand the approach. A derivation of the MARMIT

radiative transfer model is described here, with the accompanying diagram shown

in Figure 2.8. The internal water/air boundary reflectance, r21 is calculated by

considering diffuse reflectance integrated over a hemisphere: [73]

r12 = 1 − 1
n2 (1 − r′12) (2.7)
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where

r′12 = 3n2 + 2n+ 1
3(n+ 1)2 − 2n3(n2 + 2n− 1)

(n2 + 1)2(n2 − 1)+n2(n2 + 1)
(n2 − 1)2 logn−n2(n2 − 1)2

(n2 + 1)3 log n(n+ 1)
n− 1
(2.8)

The transmission of light Tw through the absorbing water is given by the Beer-

Lambert law Tw = exp(−αBL), where αB is the aborption coefficient per unit

length, and L is the thickness of the water layer.

As the soil surface may not be completely covered in water under low moisture

content conditions, an efficiency term ε that marks the fraction of the total surface

covered by water is introduced. The overall modelled reflectance is then given by:

Rmod = ε×Rws + (1 − ε) ×Rd (2.9)

where Rws and Rd are the reflectances of the wet and dry soil respectively. An ε

value of 0 results from completely dry soil, while an ε value of 1 indicates "totally

wetted" soil, where there is no completely dry surface soil remaining. This is distinct

from saturated soil, which will have an ε at or close to 1, along with a high value

of L.

As shown in Figure 2.8, Rws is given by the sum of reflectances and transmissions

at the air/water boundary:

Rws = r12 + t12T
2
wRdt21 + t12T

4
wR

2
dt21r21 + ... (2.10)

Equation 2.10 can be factorised to give:

Rws = r12 + t12T
2
wRdt21(1 + T 2

wRdr21 + T 4
wR

2
dr

2
21 + ...) (2.11)

This is a geometric series (a+ ar+ ar2 + ...), where r = T 2
wRdr21, which converges

to 1
1−r for mod r < 1.
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This reduces equation 2.11 to:

Rws = r12 + t12t21RdT
2
w

1 − r21RdT 2
w

(2.12)

To recover soil moisture content, the model is then inverted as follows. The reflect-

ance of the target wet soil is recorded, and then fitted to the spectrum of a similar

dry soil sample using the two free parameters L and ε. The calculated values of

L and ε are then multiplied together to produced a new variable ϕ = L × ε, the

mean water depth. This ϕ value can then be compared to a calibration curve of

mean water depth against soil moisture content values to retrieve the soil moisture

content.

One of the major downsides to these methods is their reliance on prior soil reflect-

ance measurements. Soil spectral reflectance is sensitive to sampling conditions

such as temperature, humidity, source-sample-instrument geometry. [74, 75, 76] The

recorded spectra can also be affected by how the samples were prepared, such as

if differing sieving, grinding or pulverization methods are followed. [77] This can

make close fitting of spectra acquired through remote sensing to lab calibration

data difficult.

In order to work around the difficulties of comparing spectra recorded in different

environments over a broad spectral range, it is possible to invert and fit these

radiative transfer models using only a single wavelength band. [78] When using this

method, care must be taken to fully characterise the noise of the camera sensor

under measurement conditions, as small fluctuations can have a significant impact

on the model inversion. Additionally the complexity of the models can result in

many local minima being found during the inversion process, necessitating the

use of more robust and computationally expensive optimisers compared to index

methods.

In practice, all of these methods can be difficult to apply with varying environ-

mental conditions. Differing soil types, vegetation coverage, and land uses may all
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suit different soil moisture recovery methods. A summary table is shown in Table

2.2. This highlights an advantage of hyperspectral imagery, as the high resolution

and broad spectral coverage of hyperspectral data enables any of these methods to

be applied. Further details on the use of the these methods will be discussed in

Chapter 5.
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Method For Against Use Case
Spectral In-
dex • Simple to apply

• Can be less af-
fected by sample
preparation

• Requires few
spectral channels

• Can use back
catalogue of data
from multispec-
tral satellites

• Can be sensitive
to atmospheric
water vapour

• Some indices re-
quire wavelengths
beyond stand-
ard 2D InGaAs
sensor range

• Soil dependant

• Soil moisture
measurement
under varying
weather condi-
tions

• Using back cata-
logue of satellite
data to invest-
igate long term
trends

Index Space

• Aims to meas-
ure soil moisture
under vegetation
cover

• Data processing
requires manual
intervention

• Accuracy of cur-
rent solutions can
be poor

• Soil moisture
measurement
in areas with
patchy or com-
plete vegetation
coverage

Spectral
Shape
Fitting

• Often use physic-
ally based models

• Use wide
wavelength
range, so less
affected by nar-
row atmospheric
absorption bands

• May incorporate
several radiative
transfer models,
including vegeta-
tion models

• Affected by
sample prepara-
tion methods

• Require complex
data processing
techniques

• Soil dependant

• Requires data
from modern
high resolution
hyperspectral
imagers

• Soil moisture
measurement
in clear sky
conditions

• May be used to
retrieve vegeta-
tion properties

Table 2.2: Table comparing soil moisture reflectance measurements
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Chapter 3

Instrument Design

This chapter describes the design of the Freeform based hYperspectral imager for

MOisture Sensing (FYMOS), the instrument which the majority of the following

work is based on. This section is an expanded version of the Optics Express pa-

per published in 2021, and supported by a UKRI- EPSRC Innovation fellowship

“A compact novel hyperspectral imager for more reliable and precise agriculture”.

UKRI- EPSRC Grant Reference : EP/S001727/1. [79]

3.1 Freeform Optics

FYMOS is a hyperspectral imager designed for remote sensing of soil moisture con-

tent. The key design element in the FYMOS instrument is the freeform diffraction

grating, with part of this project aiming to develop the technology and meth-

ods to machine these gratings in house. Freeform optics are optics with highly

non-spherical shapes, and in principle can be defined has having no rotational or

translational axis of symmetry. These complex shapes open up new degrees of free-

dom in optical designs for correcting distortions, especially important in compact

systems utilising off-axis configurations.

Commercial development of freeform optics has been ongoing for 50 over years, with

the first commercial product being the Polaroid SX-70 Land camera. [80] The fold-
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ing design of the camera necessitated a very tilted view finder. The use of spherical

optics would have resulted in significant keystone distortion and field tilt. Instead,

an aspheric mirror, freeform eye lens and freeform corrector plate were used, each of

which had no rotational symmetry. While expensive and difficult to manufacture,

this design demonstrated the benefit of using freeform surface to correct distortions

inherently resulting from folded and compact optical configuration.

With the advancement of computer controlled design and fabrication processes,

the manufacturing cost of freeform optics is no longer so prohibitive, with freeform

optics becoming an increasing important option in optical design. [81] Freeforms are

now found in all fields of optics, in the most advanced optical transmission devices

[82, 83], unobscured telescope designs for astronomical applications [84], free space

communication using orbital angular momentum [85] and adjustable focus lenses

based on Alvarez surfaces [86]. Their added value and high potential have also

been demonstrated in mobile camera technologies [87].

In optical systems designed for airborne and space applications, aluminium mirrors

have become the more ubiquitous choice over glass optics. Aluminium optics are

lightweight, robust and easy to machine. One major advantage of aluminium optics

is the ability to make both the mirrors and mirror mounts out of the same mater-

ial, ensuring matching rates of thermal expansion. [88] The much higher thermal

conductivity of aluminium also enables a metal optical system to return to thermal

equilibrium faster than an equivalent glass system.

While conventional aluminium alloys such as 6061 have been used to produce

mirrors for infrared systems, the granular crystal structure of these alloys lim-

its the achievable surface finish. [89] The recent development of rapidly solidified

aluminium alloys has provided new opportunities for metal optics. While these

rapidly solidified aluminium (RSA) alloys were initially created for their increased

strength, fatigue resistance and low thermal expansion, the ultrafine grain struc-

ture of these allows also enables significant reductions in surface roughness after

diamond turning. [90, 91] These alloys, combined with progress in the field of dir-
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Figure 3.1: Classic symmetrical all spherical Offner Relay

ectly machined freeform surfaces, have enabled the development of cost-effective

diamond machined freeform reflective diffraction gratings. These freeform grat-

ings can be potentially used in compacting optical designs, making them promising

components for space and UAV based hyperspectral imagers. Freeform gratings

have so far been used in systems with low to medium spectral resolution. (R <

200) [92, 93]

3.2 Design Overview

One of the most common designs of spectrometer for hyperspectral imaging is the

Offner type spectrograph. This design is based on the Offner unit magnification

relay, which was patented by Offner in 1973. The relay comprises of three spherical

mirrors with a common centre of curvature, with the object and image lying in the

same plane as the centre of curvature. An example of an all spherical relay is shown

in Figure 3.1.

The main advantage of the Offner relay system is the excellent third order Gauss

Seidel aberration correction due to the symmetry of the design. These aberrations

are shown in Figure 3.2. As the design is symmetrical about the aperture stop on

the secondary mirror, the odd aberrations of distortion and coma are cancelled. The

Petzval sum of the system is zero, as the primary and tertiary mirrors have double

the radius and opposite sign to the secondary, resulting in zero field curvature. As

the object and image are located at the centre of curvature of the mirrors, the angle
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Figure 3.2: Seidel third order aberrations

of incidence of the marginal rays onto the mirrors i = 0. This results in spherical

aberration, defined as:

W040 = −
∑

all surfaces

1
8

(
−(ni)2h

(
α′

n′
− α

n

))
(3.1)

and coma, defined as:

W131 = −
∑

all surfaces

1
2

(
−(ni)(nj)h

(
α′

n′
− α

n

))
(3.2)
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both being equal to 0, where n = 1 and n′ = −1, α and α′ are the marginal ray

angle at each mirror, and h is the height of the chief ray at each mirror. As listed,

these equations are for an all spherical system. [94]

Astigmatism, defined as:

W222 = −
∑

all surfaces

1
2

(
−(nj)2h

(
α′

n′
− α

n

))
+ (n′ − n)

4 ε
h2k2

R3 (3.3)

is corrected in a similar manner to field curvature, where the contributions from

the M1 and M3 mirror combined are equal and opposite to the contribution from

the M2 mirror. Again considering an all spherical system, Equation 3.3 becomes:

W222 = −1
2
(
−(nj1)2h1 (2α1)

)
− 1

2
(
−(nj2)2h2 (2α2)

)
− 1

2
(
−(nj3)2h3 (2α3)

)
(3.4)

With j1 = j3 = −α1, j2 = −2α2, α1 = α2 and h1 = h3 = −2h2, and n = 1 this

becomes:

W222 = 1
2
(
−α2

12h2 (2α1)
)

− 1
2
(
−4α2

1h2 (2α1)
)

+ 1
2
(
−α2

12h2 (2α1)
)

(3.5)

Multiplying out the brackets, this simplifies to:

W222 = −α2
1h2 (2α1) + 2α2

1h2 (2α1) − α2
12h2 (2α1) = 0 (3.6)

This means the design is free from all 5 primary third order optical aberrations. In

reality, as the secondary mirror obscures fields close to the optical axis, the relay

must be used with off axis fields, introducing higher order astigmatism.

Soon after the introduction of the Offner relay, Thevenon suggested replacing the

convex secondary mirror with a diffraction grating, creating the Offner spectro-

meter. Since then, Offner spectrograph designs have been studied in detail, and can

be classified in three main configurations: All spherical systems, with identical M1
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3.2. Design Overview

Figure 3.3: (a) Optical Diagram of the FYMOS spectrograph, (b) render of mech-
anical design inset

and M3 spherical mirrors concentric with the spherical grating, Spherical Offner-

Chrisp designs, where the primary and tertiary mirrors have different radii of

curvature but remain spherical and near concentric to the grating, and Freeform

Offner-Chrisp designs, introducing freeform surfaces to the mirrors and grating.

By adding a grating to the Offner relay, the symmetry of the system is broken, lead-

ing to the introduction of optical aberrations. In the standard Offner spectrometer

design, field aberrations are controlled by increasing the size of the spectrometer

until the aberrations are reduced to an acceptable level. For a given slit size,

increasing the spectrometer size will decrease the field angle through the spectro-

meter, reducing aberrations such as astigmatism. The change in geometry in the

Offner-Chrisp system was developed with the idea of countering the broken sym-

metry caused by the diffraction grating. Correcting the resulting astigmatism by

tilting the diffraction grating results in the introduction of coma into the image.

By splitting the primary and tertiary mirrors and individually optimising their

curvature and placement, field aberrations can be reduced without increasing the

volume of the instrument.

The FYMOS design (shown in Figure 3.3) is a variant of the Offner spectrograph,

with the primary and tertiary mirrors using the same spherical surface, but with

the grating being optimised as a freeform. This design simplifies the manufacturing

of the primary and tertiary mirrors, while enabling aberration correction through
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optimisation of the grating’s freeform surface. The design was driven by two con-

straints: (i) the grating period that can be comfortably machined by 4 axis ruling

using a diamond V-shape tool (10 microns), (ii) the requirement to cover at least a

6 x 4 mm sensor area of an InGaAs sensor. The initial InGaAs sensor chosen for the

instrument was a sensor from Raptor Photonics, featuring a thinned InP substrate

to increase spectral sensitivity in the 700 - 1000 nm spectral range. To cover the

full spectral range of the sensor within it’s physical dimensions, the spectral linear

dispersion at the image plane, ζ, was set at 250 nm/mm. The grating density l was

set at 100 mm−1 by the manufacturing constraints mentioned above. The radius

of curvature Rg of the convex grating is given by: [95]

Rg = 1
mlζ

and calculated to be 40 mm for diffraction order m =1.

Figure 3.4: Comparison of 4 optimization cases. (a) is an all-spherical design, which
is, in essence, an Offner relay with a spherical grating. (b) is similar to (a) but with
a tilted spherical grating. (c) is an Offner-Chrisp design the primary and Tertiary
mirrors have different radii of curvature. (d) is the design use for FYMOS, which
is similar to (b) but with a X0Y1 X2Y1 term polynomial added to the spherical
grating. The grating lines are along the Y axis.

The optimisation of the freeform grating was done by adding two XY polynomial

terms to the base 40mm radius spherical shape. The first was X0Y1, a tilt term

about the axis normal to figure 3.4. The second was X2Y1, an astigmatic term

with a quadratic profile along the axis normal to the plane of figure 3.4. In Zemax,

only the XY polynomial terms are available for grating optimization. The two

chosen polynomials are not orthogonal, so their contributions cannot be summed
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3.2. Design Overview

independently. The optimisation was performed using 9 spatial field points (-3, 0,

3 mm) in XY, and 3 spectral points (700, 1200, 1700 nm) at equal optimization

weights, with the optimization function set to minimize RMS wavefront error. To

highlight the performance gains of the FYMOS design compared to other types of

Offner Spectrometers, 4 different cases were modeled, as shown in Figure 3.4.

a). An all-spherical design, where the primary/tertiary have the same radius of

curvature and are concentric with secondary (spherical grating).

b). A similar design to item (a), but whose RMS spot sizes were optimized by

tilting the grating around the x axis.

c). An all spherical Offner-Chrisp design, with a primary and tertiary mirror

with different radii of curvature but which remain concentric.

d). A similar design to items a and b but optimized with a freeform grating.

A comparison of the performance of these designs is shown in Figure 3.5. The

RMS wavefront error is averaged over the spatial and spectral fields, with the all-

spherical conventional design being used as a baseline to compare the other three

configurations. For this design, astigmatism is the largest contributor to wavefront

error. By tilting the grating during the optimisation, a transfer in aberration from

astigmatism to Trefoil is noticed, leading to an improvement of about 30% in the

wavefront error. Moving to an all spherical Offner-Chrisp system offers the same

level of reduction is astigmatism, but with 1/3rd the level of Trefoil, resulting in

a further 30% reduction in WFE. In comparison to the Offner-Chrisp design, the

freeform FYMOS design balances a further reduction in astigmatism with a slight

increase in Trefoil and spehrical aberration, resulting in a threefold improvement

in wavefront error over the conventional all spherical Offner spectrograph.

The theoretical RMS spot size across the full spatial and spectral fields was then

assessed and is shown in Figure 3.6-a. Figure 3.6-b shows the modeled keystone

and smile of the instrument, two very important imaging distortions present in
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Figure 3.5: Bar chart showing the average wavefront RMS figure in the spatial and
spectral fields (grey bars), with a breakdown of the first 11 standard Zernike terms,
plus the higher orders (magenta). The Zernike terms add up in RMS to produce
the average wavefront RMS.

imaging spectrometers. Keystone distortion results in an image which has vary-

ing magnification with wavelength, while smile results in curved lines of constant

wavelength. The computed smile distortion for this design is under 10 microns,

less than the 15 micron pixel pitch of the chosen detector. The mapped freeform

shape with the best fit sphere removed is shown in Figure 3.6-c.

The groove profile of the grating was optimised for a blaze wavelength of 1 mi-

cron, (corresponding to a blaze angle of 2.8°), diffraction order 1, a line density

of 100 lines/mm and an incidence angle of 25.5°. The grating delivers maximal

optical performance in the 0.7-1.7 microns range. The diffraction efficiency, shown

in Figure 4-d, was computed and optimized using NIST Rigorous Coupled Wave

Analysis python package (pySCATMECH∗) based on an aluminum substrate with

refractive index and extinction coefficient† taken from McPeak et al. 2015.
∗https://pages.nist.gov/pySCATMECH/
†https://refractiveindex.info/
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3.3. Spectral Calibration and Throughput Testing

Figure 3.6: (a) Spot size RMS in the field. The square is of size 10 x 10 microns
for comparison. (b), the distortion (Smile and Keystone) is computed to be re-
spectively less than 10 microns and 1 micron (c) surface Sag at the best fit sphere
(40mm) showing the amplitude of the freeform correction needed. The colorbar
is in microns. (d) diffraction efficiency computed with the NIST pySCATMECH,
computed for the S polarization in blue, the P polarization in Orange, and an
unpolarized incident beam (green dashed line).

3.3 Spectral Calibration and Throughput Testing

The spectral calibration of the instrument was carried out using a computer-

controlled Omni- lambda 300 monochromator, using a temperature regulated tung-

sten halogen lamp (Thorlabs SLS201/M) as the illumination source. The mono-
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chromator was scanned from 1000 nm to 1700 nm, with the location of the center

of the peak recorded every 20 nm. These values were used to generate a look up

table of sensor pixel number to wavelength. From this, the mean dispersion per

spectral pixel was found to be 4 nm. A set of infrared bandpass filters were then

used to verify the calibration, with the measured peaks of the filters matching the

expected wavelength value within 4nm, or 1 spectral pixel.

A simple computer model was created to calculate the effective sensitivity of the

system across the usable wavelength range. This model includes (i) the wavelength

dependent effects of lens transmission, (ii) the diffraction grating efficiency as shown

in Figure 3.6(d), (iii) the detector quantum efficiency as per the sensor manufac-

turer’s data-sheet and (iiii), the spectral power distribution of the tungsten halogen

lamp as provided by the manufacturer. A comparison between the model and the

real instrument is shown in Figure 3.7. The data for the model has been interpol-

ated from mean manufacturer’s data for each component. The error fill area for

the model and the error bars on the filters were calculated by considering the er-

rors introduced by the stated manufacturing tolerances of the lens, optical filters,

lamp and sensor quantum efficiency, and propagating them through the model.

The overall shape of the modelled spectrum matches well with the measured lamp

spectrum, providing confidence that the system is functioning as intended.

3.4 Camera Selection

Selecting a camera system for use in UAV instrumentation involves balancing a

variety of factors. Sensor type, size, resolution, read out speed, sensitivity, connec-

tion type and more are all details that must be considered. Silicon camera sensors

used in standard VIS/NIR applications become transparent at 1.1 µm, and so al-

ternative detector materials must be used. For use in the SWIR wavelength range,

indium galium arsenide (InGaAs) and mercury cadmium telluride (MCT) are the

two most common detector materials. Of the two, MCT sensors provide the largest
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Figure 3.7: Modeled optical throughput of the system, compared against exper-
imental measurements. The model is based on manufacturer’s data for the lens
transmission, quantum efficiency of the InGaAs sensor, the diffraction grating ef-
ficiency modelled with scalar diffraction theory, and the tungsten filament lamp
irradiance at 2796 K. The errors were calculated using the manufacturer’s stated
uncertainties.

spectral range, able to cover 380 to 2510 nm on a single focal plane array, while

most InGaAs sensors cover a spectral range of 900 to 1700 µm. This has led to

MCT being the sensor of choice for large instruments such as AVIRIS-NG. [96, 15]

However, MCT sensors require much lower operating temperatures, with the Tele-

dyne CHROMA sensor in AVIRIS-NG being kept at -40 °C. These lower operating

temperatures require larger, heavier cooling systems, restricting the use of these

sensors to larger aircraft. Cooled InGaAs detectors often have a target temperature

of 20 °C, achievable using small thermoelectric coolers.

Initially, this system was designed for the Raptor Photonics Owl 640 Mini InGaAs,

as mentioned in section 3.3. This camera has a number of selling points, with the

main advantage being the special InGaAs sensor with a thinned InP substrate,

which extends the lower end of the spectral range of the camera down from 900 nm

to around 550 nm. This would enable SWIR moisture sensing and red-edge plant
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Camera For Against Use Case
Silicon

• Compact

• Lightweight

• Low pixel pitch,
enabling high res-
olution and wide
FOV

• Maximum
wavelength
cut-off of 1000
nm

• Imaging in visible
wavelengths

InGaAs

• Operating tem-
perature of 20
°C

• Require less cool-
ing than MCT

• New back-
thinned sensors
extend lower
wavelength
cut-off towards
visible

• Useful for SWIR
wavelengths (900-
1700 nm)

• Cooling systems
larger and heavier
than Silicon cam-
eras

• Reduced
wavelength
range compared
to MCT

• Suited for
NIR/SWIR
imaging onboard
small UAVs

MCT

• High spectral
range (380-2500
nm)

• Require low op-
erating temperat-
ures

• Need large,
heavy, powerful
coolers

• Used in satellite
and larger air-
borne platforms,
such as AVIRIS-
NG

Table 3.1: Table comparing sensor technologies for hyperspectral imaging cameras
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imaging on a single sensor. The camera itself is very compact and lightweight,

partly due to the lack of an in built thermoelectric cooler. However, this lack

of cooler severely limits the signal to noise ratio of the camera, and introduces

instabilities in measured intensities when used over long time periods.

The camera also uses a Camera Link connector, requiring a bulky Camera Link to

USB3 capture card in order to be used with laptops or other compact computers.

While this could be used on larger UAVs, the added bulk of the external capture

card and its subsequent power supply made this camera impractical for use onboard

a small UAV.

The final InGaAs camera chosen for the FYMOS instrument was the Photonic

Science PSEL VGA. While this camera is much bulkier than the Raptor Photonics

camera, the in built thermoelectric cooler provides a significantly better signal to

noise ratio and thermal stability. The camera features a GigE connection, meaning

no external capture cards are needed to interface with most laptops or compact

PCs. The main disadvantage of this camera is the reduced spectral range, with the

quantum efficiency rapidly dropping off below 1000 nm. This resulted in the dual

channel VIS/SWIR design described in section 3.5. More recently Photonic Science

have released an extended range InGaAs sensor, similar to the Raptor Photonics

camera. In future, more manufacturers will be offering these sensors in a variety

of hardware packages.

3.5 Dual Channel Variant (to be finalised)

While FYMOS was designed primarily for soil moisture sensing, one of the primary

advantages of a hyperspectral imager is the versatility of the data. The SWIR

wavelength range of the main InGaAs camera is ideal for investigating spectral

features due to water, but for other agricultural related processes extending the

spectral range into the visible could provide useful information. For example,

many crop yield estimation and vegetation cover indices use comparisons between
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Camera For Against Use Case
Raptor
Photonics • Compact

• Lightweight

• Extended Spec-
tral Range

• Uncooled

• Low signal to
noise ratio under
low flux

• Poor thermal sta-
bility

• Requires bulky
external capture
card, or spe-
cialised PCIe
card

• Imaging using
wide bandpass
filters

Photonic
Science • Cooled sensor in

compact package

• Uses GigE con-
nection, wide
compatibility

• Larger and heav-
ier than uncooled
camera

• Reduced
wavelength
range

• Well suited to hy-
perspectral ima-
ging

FLIR Black-
fly • High resolution

sensors

• Extremely com-
pact

• High sensitivity

• Not sensitive to
SWIR

• Well suited to hy-
perspectral ima-
ging

Table 3.2: Table comparing camera models used in this project
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3.5. Dual Channel Variant (to be finalised)

reflectance in the visible and near-infrared regions to determine plant coverage and

health. [97]

Figure 3.8: Grating diffraction efficiency for first and second order

As shown in Figure 3.6(d), the grating blaze angle was chosen to maximise the

first order diffraction efficiency of the grating over the InGaAs sensor wavelength

range. This limits the first order diffraction efficiency in the visible wavelength

range. However, the second order diffraction efficiency is maximised at 500 nm, as

shown in the full grating efficiency plot shown in Figure 3.8.

To take advantage of this, a compact visible camera was added, positioned so the

sensor was centred on the second diffraction order, shown in Figure 3.9. A 1000 nm

long pass dichroic mirror was used to separate the VIS and SWIR cameras, with

custom camera and mirror mounts machined to accommodate the tight packing

requirements. A rendering of this configuration is shown in Figure 3.10. The

visible camera, combined with the dichroic fold mirror and attachment hardware,

adds approximately 80 grams to the weight of the instrument. With a low profile

right-angle USB connector attached, the secondary channel adds 30 mm in height

to the profile of the camera system.

Although the silicon camera sensor was positioned to capture the second diffraction

order, the large size of the sensor enables imaging of the entirety of the first and
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3.5. Dual Channel Variant (to be finalised)

Figure 3.9: Optical layout of dual channel camera system

second orders simultaneously. Due to this, an overlap occurs between the 800-1000

nm range of the first order and the 400-500 nm range of the second order. The

resulting spectral mixing prevents the use of either of these spectral ranges without

the use of a cut-off filter. To solve the problem, either a 500 nm long pass or 800

nm short pass filter can be used. A 500 nm long pass filter results in the first order

being used, with a spectral range of 500-1000 nm and a dispersion of 4.4 nm per

spectral pixel. An 800 nm short pass filter can also be used, this time targeting

the second diffraction order, resulting in a spectral coverage of 400-800 nm and a

dispersion per pixel of 2.2 nm.
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3.6. Enclosure

Figure 3.10: Rendering of the dual camera instrument

3.6 Enclosure

The enclosure of FYMOS was also a key design component, acting both as a light

proof cover and as structural support for the instrument. With the Photonic Sci-

ence AK104 camera comprising almost half the weight of the instrument, the case

acts as a support to hold the camera rigidly in alignment with the rest of the op-

tical system. The case also provides the mounting point necessary to attach the

instrument to motion platforms.

While the initial case prototypes were produced by fused deposition modelling

(FDM) 3D printing, it was found that enclosures made with both PLA and ABS

filaments were not totally opaque in SWIR wavelengths, leading to poor S/N ratios

as stray light bled through the enclosure. As many parts of the casing are under

3mm thick, the 3D printed parts were mostly solid, resulting in a relatively heavy

case weight of 370g. Due to the layering process by which FDM parts are manu-

factured, they inherently have one direction of reduced strength. When operating

on very hot summer days, some layers can start to peel away, weakening the part.

An example of a 3D printed casing is shown in Figure 3.11(a).

To overcome these problems, other methods of case manufacturing were investig-

ated. One of the most promising candidates for a suitable material was carbon
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Figure 3.11: (a) 3D printed casing in PLA, (b) Prototype single piece carbon fibre
case

fibre. By hand laminating sheets of carbon fibre into a 3D printed mould, a very

thin, lightweight, and strong casing could be formed. The main challenge with

using carbon fibre is the lay-up process, with right angle corners in particular cre-

ating opportunities for kinks and folds to form in the carbon fabric. To test what

was possible to manufacture, a prototype case featuring a range of curvature radii

was created, shown in Figure 3.11(b). From this, it was found that a 17 mm radius

could be reliably produced.

The main advantage of the carbon fibre part over the 3D printed one is the weight.

The current weight of the single channel FYMOS imager,including the fibre optic

system described in Chapter 4, is 1349 grams. The prototype carbon fibre casing

is approximately one third the weight of the 3D printed variant. Even including

the additional mounting brackets, the carbon fibre case offsets as much weight as

the small visible channel camera and dichroic, enabling the extended range dual

camera system to be made without a weight penalty.

Due to the time constraints placed by COVID-19 on the project, the final carbon

fibre case has not yet been manufactured.
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Chapter 4

Fibre Optic Downwelling

Irradiance Sensor

This section is based on a paper published in Optics Express[98]. It covers one of the

main challenges found when first setting up the system for use outdoors, namely

dealing with fast moving intermittent cloud cover and its effects on accurately

recovering remote sensing reflectance data. A review of common techniques from

literature is provided, followed by details on the optical design and results from

from a solution which is presented in this thesis. The solution is based on a Fibre

Optic Downwelling Irradiance Sensor and is called FODIS in the following sections.

The results section features slices of datacubes recorded by the instrument. For

more details on how these are created, see Chapter 5.

4.1 Fibre Calibration Channel

One of the key challenges to achieve true and accurate reflectance data in pass-

ive aerial remote sensing is the solar irradiance calibration. The accuracy of the

data is affected by illumination variation during the acquisition particularly dur-

ing cloud cover, with observations ranging annual cloud cover between 66-70%. [99]

This heavily impacts traditional high altitude or satellite SWIR instruments, as
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these wavelengths do not penetrate cloud cover. Using small UAV platforms that

can fly at altitudes far below the cloud ceiling, compact hyperspectral imagers can

be guaranteed direct line of sight with the ground even on heavily overcast days.

Operating beneath the cloud ceiling presents its own set of challenges. If the cloud

layer is thin or patchy, the downwelling irradiation incident on the ground surface

can significantly vary over short timescales. These variations are spectrally depend-

ant, as the water in the clouds strongly absorb light in the same wavelength bands

used to measure soil moisture. Accurate measurements of the ground’s reflectance

are key to measuring accurate soil moisture levels, meaning these variations in

incident light level must be measured and accounted for. [100]

This can be done in several ways. The simplest method is to place reflectance

standards at set ground control points, which are then overflown by the drone. [101]

If several identical panels are placed down and measured, changes in incident light

intensity can be calculated and interpolated between the panels. This method

can work if lighting conditions in the field are relatively stable, but will struggle

to completely account for conditions with fast moving cloud cover, often seen in

temperate regions. These panels also need to be physically placed in suitable

locations in the field before the start of each measurement campaign, and removed

again at the end. For large areas, this can result in impractical set-up and tear

down times.

Another commonly used method for small area UAS surveys is to set up a dedic-

ated ground based spectrometer to continuously measure downwelling irradiance

data. [102] This solution provides much higher temporal resolution than reflectance

panels, but can be difficult to apply for large survey areas. In sparse cloud cover

conditions, the area on the ground affected by a passing cloud can be smaller than

the survey area, leading to the UAS and the ground system receiving different il-

lumination levels. This is demonstrated in Figure 4.1, which shows the shadows of

a passing cloud moving over a field.
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Figure 4.1: Example of the non-uniform lighting conditions caused by intermittent
cloud cover. Two images recorded 6 seconds apart, using a DJI Mavic Mini.

This problem can be solved by moving the downwelling irradiance sensor from the

ground onto the drone. [103] Generally this is done using a second compact USB

spectrometer mounted to the top of the UAS, fitted with a skyward facing optical

diffuser to couple in light from a wide acceptance angle. This enables measurement

of downwelling irradiance at the drone position to be monitored continuously. This

method does have some trade-offs compared to ground based incident light sensors.

Adding a secondary spectrometer to the UAS adds weight, power, and packaging

complexity. Increasing the weight and power requirements of the sensor payload

decreases the possible flight time of the aerial platform, and places a lower limit

on the size of the platform necessary to fly with the instrument. The additional

spectrometer also increases the computational load on the low power single board

computer used to run and log data from the instruments and the UAS flight com-

puter.

One possible solution to this problem is to use a passive fibre optic system to sample

incident light onto the main camera sensor, removing the need for an additional

spectrometer. While this method has been used with some full size instruments

like the original AISA Eagle, the compact optics necessary for small UAV based in-

struments have made this more challenging to implement. The following describes

an energy budget estimate to determine the requirements for the collection and

throughput of solar irradiance to enable simultaneous measurement of both down-

welling irradiance and science data on the science camera, with a single common

exposure time.
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4.2 Throughput Analysis

The choice to use a single camera sensor to record both the science and calibration

data introduces a challenge in optimising correct exposure between the two signals.

As the sensor has a set exposure time across the entire array, this requires the energy

throughput of the calibration channel to be similar to that of the main objective

lens. This requirement is complicated by the two optical paths being very different

in terms of both optical elements and incident light intensities.

To simplify the estimation for the energy throughput of the lens, the soil target is

assumed to behave as a Lambertian surface. The energy collected by one spatial

channel on the sensor will depend on three factors: the solar irradiance incident

on the soil, the area on the ground "seen" by one spatial pixel, and the ratio of the

solid angle subtended by the lens from the ground to the hemisphere over which it

is dispersed.

Figure 4.2: Geometry used for calculating the instantaneous field of view (IFOV)
of a single pixel in a focal plane array.

To calculate the spatial coverage of each pixel, the instrument’s field of view (FOV)

must be calculated. The FOV of an optical system describes the solid angle over

which the detector sensitive area can be projected onto the observed scene. When

a detector array is placed at the focal plane of the optical system, the solid angle

subtended by each pixel on the detector through the optical system is called the
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instantaneous field of view (IFOV). Figure 4.2 shows a diagram for calculating this

IFOV. Using the IFOV, the spatial resolution of the instrument can be calculated

for known distances. Considering an optical system with focal length f with a pixel

size of P , the IFOV θ can be calculated as:

tan(θ2) = P

2f

θ = 2 tan−1( P2f )

Figure 4.3: Calculating area observed on ground at an operating altitude of 30 m
above ground level (AGL) using a 25 mm focal length lens and a 15 µm pixel size.

The IFOV was calculated to be 0.0344°, based on the 25 mm focal length of the

lens and the 15 µm pixel pitch on the sensor of the FYMOS instrument.

tan(θ2) = x

2 ∗ 30

x = 60tan(θ2)

x = 0.018m

Assuming the pixels are square, the area on the ground observed by one spatial

pixel will be 3.24 ∗ 10−4 m2.
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The solid angle of a small object at a distance can be approximated as the ratio of

its area to the square of its distance:

Ω = A

r2

Estimating the operating altitude for the drone as 30 m above ground level, and

using the lens front element aperture half diameter of 10.6 mm:

Ωlens = π ∗ (10.6 ∗ 10−3)2

302

Ωlens = 1.25 ∗ 10−7π sr

Figure 4.4: Calculating reflected energy from the ground collected by the lens using
solid angles.

Assuming the irradiance at the Earth’s surface to be E (W/m2), the energy flux

F collected by the lens will be:

F = E ∗R ∗Apixel ∗ Ωlens

2π

F = E ∗R ∗ (3.24 ∗ 10−4) ∗ 1.25 ∗ 10−7π

2π

F = 2.02 ∗ 10−11E ∗R

Where R is the surface reflectance. If the soil has a reflectance of 0.2, then the

rough estimate of reflected power to the lens will be 4 ∗ 10−12E [W ].
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The energy into the cosine corrector is simpler to estimate. The corrector is made

up of an optical diffuser to collect incident light with a 180° acceptance angle, with

an attached SMA connector to attach a fibre. While the incident light intensity

into the diffuser will be affected by the angle between the sun and the surface

normal of the cosine corrector, for this estimate the cosine corrector is assumed

to be pointing directly at the sun. The energy incident on the cosine corrector is

the product of solar irradiance and the area of the cosine corrector. The cosine

corrector used in this instrument has an active area with a diameter of 8 mm.

F = E ∗ T ∗ π(r)2

F = E ∗ T ∗ π(4 ∗ 10−3)2

F = 5 ∗ 10−5ET

This is the total energy flux incident onto the cosine corrector, with T being the

transmission of the cosine corrector and fibre optic assembly, and r being the radius

of the cosine corrector’s active area. This energy will be carried by a fibre of core

size 100 µm, dividing the total flux across 7 spatial pixels on the sensor. This would

result in an energy per channel of 7 ∗ 10−6ET .

Comparing the two energies, a rough estimate of the combined transmission of

cosine corrector and fibre system required to match the objective lens can be found.

Eground = ECosineCorrector

4 ∗ 10−12E = 7 ∗ 10−6ET

T = 4 ∗ 10−12E

7 ∗ 10−6E

T = 5.7 ∗ 10−7

This is much lower than the transmission that Thor Labs states for their small

cosine correctors, which are listed at around 0.1-0.4%. This suggests that the

transmitted beam from the cosine corrector will be much higher than the trans-

mitted intensity from the lens. This means it should be possible to attenuate the
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Figure 4.5: Schematic overview of the fibre calibration system. The output end of
the fibre is positioned at the top edge of the slit, minimising occlusion of the slit.

cosine corrector channel to match the intensity of the science data. This is the

ideal configuration, enabling full un-attenuated use of the science channel while

operating the correction channel.

4.3 Optical Design

The optical path for this system begins with a cosine corrector, an optical diffuser

designed to couple light into a fibre optic cable from an almost 180° hemisphere.

This is used to ease coupling of light into the fibre, especially when the angle

between the surface normal of the fibre and the Sun is high. The light is then

coupled into an ultra low -OH fibre manufactured by Polymicro, chosen for its low

absorption in the short wave infrared (SWIR) wavelength range. The fibre used

has a core diameter of 100 µm, and a numerical aperture of 0.22. The other end

of the fibre is positioned at the upper edge of the spectrometer entrance slit. The

positioning is set so as to replace the very outermost spatial channels of the camera

sensor, which would otherwise image the target through the objective lens, with

the light transmitted by the fibre optic. The slit end of the fibre was just simply
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cleaved, and a small diameter fibre was chosen to limit the number of spatial

channels blocked. The field of view loss is approximately 3%, although this could

be reduced by further revisions of mounting hardware. A schematic view of the

optical system is shown in Figure 4.5.

FYMOS uses transmissive imaging fore-optics for compactness, with the two main

lenses having focal lengths of 16 mm and 25 mm. The use of these compact lenses

results in there being very limited space between the back of the lens assembly and

the front of the entrance slit. To secure the fibre into position, a 26 gauge hypo-

dermic needle was cut and shaped, then positioned using a small 3D printed guide.

This assembly fits inside the small adapter plate necessary to attach the C-Mount

lenses to the slit. The fibre was threaded through the needle, and secured using a

UV cure glue. In total, the entire assembly weighs under 10 grams. Renderings of

the system are shown in Figure 4.6.

Figure 4.6: Rendering of fibre system, showing (a) a wide angle view of the system,
(b), a close up of the fibre/needle assembly, and (c), a close up of the needle and
mounting plate.

To increase the physical robustness of the setup, crucial for field use with UAVs, a
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quick disconnect fitting was added. An SMA to SMA mating sleeve was inserted

into the instrument casing, providing a way to quickly connect to SMA 905 ter-

minated fibres together with minimal coupling loss. The addition of the fibre port

means that any stresses or strains caused by snagging of the external fibre do not

damage or affect the precise positioning of the internal fibre. The port also enables

the external patch cable to be changed out for different lengths depending on the

instrument platform being used.

4.4 Calibration Method

In order to use the hyperspectral imager and calibration channel to record calib-

rated reflectance measurements, the digital number (D#) recorded at the camera

must be correlated to the real reflectance value on the ground. This was done using

a two step calibration method. Firstly the an image of the calibration panel is re-

corded, with the mean reflectance spectrum of the panel being calculated, measured

in digital number units (D#Panel). The ratio between the recorded spectrum of

the calibration channel (D#CC) and the mean panel reflectance is then calculated,

enabling measurements of the calibration channel to be correlated to a true calib-

rated reflectance. This flow is summarised in equation 4.1. A scaling factor (SF ) is

added to account for the reflectance of the panel, which may be changed depending

on illumination conditions and test soil sample reflectance. A 50% reflectance panel

was found to have a close match to the reflectance of dry soils, enabling both the

panel and the soil to be correctly exposed at one exposure setting.

Before each measurement campaign, a series of dark frames are recorded and aver-

aged, and subtracted from each science image before reflectance processing. White

flat frames were recorded in the laboratory for each F-stop of the objective lens,

enabling flat field correction to be applied.

Reflectance = D#sample

D#CC
× D#CC

SF ×D#Panel
(4.1)
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The main sources of uncertainty in the reflectance calculation are the spectral

reflectance of the calibration panel, and the read noise of the camera sensor. Across

the wavelengths used, the 50% reflectance panel had a reflectance of 50.9±0.8 %.

The signal to noise ratio (SNR) of the Photonic Science camera can vary with gain

settings and exposure time, corresponding to changes in available illumination.

In laboratory conditions, a typical SNR value of 100 was common, with digital

number noise contributing around a 1% error for single pixels reflectance values.

This results in reflectance values generated from single pixels having uncertainties

of the order ±1.8 %. By averaging over a small number of spatial pixels (such

as a moving 5x5 pixel square), the SNR can be increased to 360, reducing the

uncertainty contribution of the camera digital noise to 0.27%. This can decrease

the overal uncertainty of reflectance measurements to 1.07%, at the cost of a slight

reduction to spatial resolution.

4.5 Demonstration

To demonstrate the use of the fibre calibration channel, the system was set up

outside on a tripod, using a computer controlled rotation stage to provide scanning

movement for the hyperspectral imager. This set-up can be used with the camera

in two orientations, either facing horizontally outwards or vertically downwards,

depending on the desired scene.

With the camera placed in the horizontal position, a scene was recorded looking

out over the field behind the NETPark Orbit building workshop. The image was

recorded on a day with patchy cloud, as evidenced by the resulting raw image data

shown in Figure 4.7(a). The image was recorded with the scan drive moving from

right to left, with the image being captured over approximately 10 seconds. The

bright and dark stripes on the image are due to the effects of a cloud moving past

during the exposure. The recorded spectral signal from two patches of identical

grass is shown in Figure 4.7(c), with a five fold peak decrease in signal occurring
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at some wavelengths. Without measurement of the incident illumination levels,

determining whether this effect was due to "darker" grass or reduced incident light

intensity would be difficult, and estimating the magnitude of any correction harder

still. For reference, an RGB image taken from a Google Pixel 4a is shown in Figure

4.7(e).

Using the data collected by the calibration channel, much of the error in measured

reflectance can be corrected for, as demonstrated in Figures 4.7(b) and 4.7(d).

While the overall correction quality of the scene is good, these figures highlight

some of the limitations of this technique. Firstly, both figures show more noise in

the areas captured while shadowed by cloud. As the raw signal goes down due to

the overcasting, the signal to noise ratio of the camera drops. When these regions

are boosted back up during correction post-processing, the result is noisier images

and spectra. This could be corrected for using an auto exposure algorithm, using

the measured intensity from the calibration channel as a light meter.

The other main factor limiting the technique is the viewing geometry. In the

horizontal configuration, the camera is looking over a relatively large distance,

meaning that the cloud cover is not uniform over the whole scene. This results

in some of the curved banding shown in Figure 4.7(a), with the motion of the

cloud into the plane of the picture combining with the line scan capture method

to create this effect with depth. This curved banding would be difficult to correct

for without estimating cloud velocities. The effect is reduced by decreasing the

horizontal coverage of the camera, such as when it is facing downwards in the

vertical position.

With the camera positioned in the vertical orientation, hyperspectral images of a

tray of dry soil were recorded. The soil was prepared by oven drying a local soil

sample to ensure uniformity in its moisture content. The tray was imaged under

both blue sky and cloudy conditions. A hyperspectral image of a 50% reflectance

reference panel was also captured. This can be used to correlate the signal from

the fibre channel to a reference standard, enabling the data to be used to calculate
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Figure 4.7: (a) Raw camera image at 1100 nm as cloud passes overhead,(b)
Corrected for decrease in downwelling irradiance using cosine corrector chan-
nel,(c) Raw spectral signal measured under clear and overcast skies ,(d) Cor-
rected reflectance calculated using integrated calibration channel, (e) RGB im-
age of scene taken from a Pixel 4a. See Visualisations for demonstration
https://sites.google.com/view/hyperspec-imager/fibre-calibration-system
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reflectance. It also enables the fibre correction method to be compared to the

standard panel measurement method.

Figure 4.8: (a) Uncorrected reflectance measurement of uniform dry soil as cloud
passes by. Note the measured reflectance values for the left of the image vary
significantly from the right. (b) Reflectance measurements corrected for changing
illumination using FODIS. With this setup, each pixel covers a square of side 0.4
mm

Measurements of the dry soil under cloudy conditions are shown in Figure 4.8.

Figure 4.8(a) shows the measured reflectance map at 1220 nm, calculated using an

earlier measurement of a reflectance standard panel as a reference. As the image of

the dry soil was taken under changing illumination conditions, the soil at the right

of the image is calculated as having significantly lower reflectance than the soil at

the left of the image, despite the soil being of uniform moisture content. Without

knowledge of incident light intensity, it is impossible to distinguish between reduced

incident light levels and a truly darker material. Figure 4.8(b) shows a reflectance

map of the same soil sample, this time corrected for varying illumination using the

fibre optic calibration channel. Note that the resulting reflectance map is much

more uniform in appearance. Subtracting the corrected reflectance map from the

reflectance map recorded without clouds, the root mean square error was found to

be 10%, with an example residual map plotted in Figure 4.9. The highest residuals

were found in the areas covered by the darkest areas of cloud.

The dynamic range and signal to noise of the camera system limit the range of light

intensities that can be corrected for. If the incident light intensity drops too low for
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Figure 4.9: Residuals in measured reflectance after correction. Calculated by com-
paring measurements of the same sample taken under cloudy and blue sky condi-
tions.

the camera’s settings, noise will dominate the measured signal from both the main

lens and the fibre channel. Under these conditions, better results could be obtained

by using the FODIS as a light meter to guide an auto-exposure system, increasing or

decreasing exposure to compensate for changing levels of illumination. At present,

this functionality is limited by the eBUS SDK used to control the cameras, which

only allows the exposure time to be updated once every 15 seconds. Due to the

pushbroom scanning method used by this instrument, exposure time and scanning

speed are linked in producing correctly shaped pixels on the ground. Significantly

increasing the exposure time would require a decrease in scanning speed to prevent

spatial pixels from becoming elongated in the scanning direction. While this is

easy to implement using rotation and translation stages, constantly adjusting the

speed of the UAV in real time during scans may be more challenging.

The data from the calibration fibre also demonstrates the need for spectrally re-
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Figure 4.10: Normalised incident light intensity as measured using the FODIS for
two wavelengths as cloud passes through.

solved calibration methods. Figure 4.10 shows the normalised intensity from two

spectral bands plotted with time as a cloud passes. Light at 1040 nm wavelength is

further from a water absorption band than that at 1540 nm wavelength, and so is

less absorbed by passing cloud cover. Light metering methods based on averaging

over larger wavelength ranges could under estimate reflectance at some wavelengths

by 10%.

4.6 Conclusion

In summary, this chapter has presented the design and demonstration of an in-

tegrated fibre optic downwelling irradiance calibration channel for compact pushb-

room hyperspectral imagers. The system uses an optical fibre assembly to directly

measure incident illumination levels using the main camera sensor, enabling simul-

taneous measurement of downwelling and upwelling irradiance. This can be used
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to calculate true target reflectance factors under solar illumination, even under

changeable cloud cover. With the spatially inhomogeneous nature of cloud cover,

this system can provide more accurate corrections over large areas in comparison

to stationary ground station downwelling spectrometers. By making use of the

main camera sensor, rather than an additional standalone spectrometer affixed to

the top of the drone, the weight of the calibration system can be kept to approx-

imate 10 grams. The performance of the system was demonstrated using a local

soil sample, with reflectance measurements taken under both clear sky and inter-

mittent cloud cover. Without correction, reflectance measurements of soil samples

produced moisture content estimates 60% above the true gravimetric value. By

correcting the reflectance data using the calibration channel, this can be brought

down to an over estimate of around 10%. This could be improved further by adding

an auto-exposure system guided by the calibration data, improving signal to noise

ratio under changing cloud cover.
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Chapter 5

Data Collection & Data

Processing

This chapter provides an overview of the data collection methods employed during

lab and ground based use of the FYMOS hyperspectral imager. The process of

forming 3D data cubes from raw sensor output is described, along with the con-

version of these raw datacubes into more useful reflectance measurements. This

process differs depending on the illumination conditions used during measurement.

Two of the main methods for converting reflectance measurements into soil mois-

ture contents are also detailed.

5.1 Overview

As the FYMOS hyperspectral imager is a pushbroom type imager, the methods

for both capturing and displaying an image differ significantly from a standard

2D camera. The sensor captures information in 1 spectral dimension and 1 spatial

dimension, meaning the system must be physically scanned along the second spatial

direction perpendicular to that captured on the sensor. Each frame captured by

the scan can then be "stacked" up into a 3D datacube. This datacube can then be

sliced in different directions depending on the required data. Taking a slice in the
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spectral direction will result in a 2D image at the chosen wavelength, while taking

a "core sample" at any spatial location will return the full recorded spectrum at

that pixel. A visualisation of the stacking process is shown in Figure 5.1. The

process for capturing and processing datacubes is different depending on whether

the instrument is being used in a laboratory under controlled illumination or used

outdoors with passive solar illumination. The two methods are described in the

following sections.

Figure 5.1: Illustration of data cube formation from individual sensor readings of
a pushbroom hyperspectral imager.

5.2 Lab & Ground Based Processing

Pushbroom hyperspectral imagers rely on physical motion to build up 2D images.

In the lab, this can be achieved by using linear translation stages, rotation stages,

or by using scanning mirrors. Scanning mirrors were discounted due to their com-

plexity and limited field of view, while linear stages proved impractical due to the

long travel distances required to image large areas. To enable scanning over large
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Figure 5.2: Example of the Python GUI used to control the camera and motor
assembly on the ground. The GUI provides a live view of the sensor readout,
enabling exposure controls and focus to be set quickly.

areas using a compact set-up, a rotation stage (Standa Ltd) was used. This com-

puter controlled stage can be programmed to move at constant speeds. For ease of

use, a Python graphical user interface (GUI) was created to control the camera and

motor controller. The GUI, shown in Figure 5.2, provides a live view of the sensor

readout, enabling accurate focus and exposure to be set easily. As none of the

cameras used in the project have pre-built Python libraries, a Python wrapper for

the C++ functions in the Pleora eBUS SDK was written. A major strength of the

Pleora SDK is its support for GigE Vision, USB3 Vision and GenICam standards,

across both Windows and Linux. This allows one SDK to be used to control mul-

tiple cameras across different manufacturers, significantly reducing incompatibility

issues caused by running multiple sets of camera drivers.

The system has a working focal number of 2.87, and exhibits strong vignetting

when the front lens aperture is set above this focal number. To calibrate for this,

a series of hyperspectral images were taken of a uniformly lit spectralon panel at

each aperture setting. These images are then averaged and normalised, creating a
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calibration map for each full f-stop of the lens. Further images taken at a matching

aperture setting can then be divided by these reference images to correct these

vignetting effects, a process known as flat field correction.

Following flat-field correction, the process for completing the data calibration varies

depending on the illumination source used. For indoor "table-top" experiments,

small halogen sources such as the ASD Illuminator (Malvern Panalytical) and the

ThorLabs SLS201L/M are used. These sources have narrow beam angles, 12° in

the case of the ASD Illuminator, resulting in a noticeable fall-off in intensity over

extended samples. A datacube of a Lambertian reference panel is recorded, so when

dividing the flat field corrected datacube by this reference cube, a true reflectance

datacube is obtained. When using this method, it is important the illumination

source is not moved or changed between recording the reference panel and the

science data. This requires the use of thermally stabilised light sources to prevent

spectral changes in illumination due to warming of the bulb.

For outdoor experiments, it is not possible to control the illumination conditions.

Clouds passing by during a scan can cause variations in incident light intensity,

generating a banding effect orientated along the spatial scanning direction. This

banding induces errors in the recovery of spectral reflectance, increasing the un-

certainty in moisture measurements. The hardware required to correct for this is

discussed in Chapter 4. Once the camera settings are decided upon, a datacube of

a reference panel is recorded. This data is used to later correlate the calibration

signal recorded from the fibre optic downwelling irradiance sensor (Chapter 4) to

the reflectance panel used in the lab. Taking the flat-field corrected datacube, each

row of spatial pixels is then divided by the corresponding irradiance measured with

the fibre optic system, before being multiplied by a correction factor accounting for

the intensity difference between the two paths - one going through the fibre optic

downwelling irradiance sensor and the other through hyperspectral camera optics.

While raw hyperspectral datacubes tend to be very large in terms of data size,

the operations required to process ground based recordings into true reflectance
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Figure 5.3: Example screenshot of the Python data analysis GUI, used to quickly
check data quality in the field

datacubes are very simple, mostly straight multiplication or division between ar-

rays. Using the Numpy Python package gives acceptable speeds when performing

these calculations, enabling Python to be used for all of the processing pipeline.

A second Python GUI was written to extract the raw data and interactively display

the datacube, shown in Figure 5.3. This GUI supports basic features, such as

converting data cubes from camera noise to reflectance, and parsing 4 dimensional

time-lapse datacubes into a series of images. The idea behind this GUI is to enable

checking of data quality at the time of acquisition, ensuring correct exposure time,

rotation speed, scan movement range, etc. are set correctly before large amounts

of data are recorded.

5.3 Index Selection Method

Once the corrected datacube has been formed, it must be processed in order to ex-

tract information about the target sample. One of the simpler methods of working

with hyperspectral data is to use spectral indices, as mentioned in Chapter 2. The

idea is to select a ratio of wavelengths that, when applied to a datacube containing

both wet and dry soil, the resulting histogram would be clearly bimodal.
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This is demonstrated in Figure 5.4. Figure 5.4(a) shows the per pixel ratio of the

measured reflectance at 1602/1516 nm of a local soil sample, prepared with specific

wet and dry areas. A histogram comparing the per pixel ratios between the wet

soil in the cross and dry soil in the shield of the Durham University logo is shown in

Figure 5.4(b), with a clear separation shown between the different moisture levels.

Figure 5.4: (a) Ratio map of a local soil, wetted in the shape of the Durham Uni-
versity Shield, with the central cross and exterior (red end of the colour bar) being
saturated. Regions of interest (ROI) for wet and dry soil used in the histogram
are shown, marked in green and white respectively (b) Histogram of per pixel ratio
values within the marked ROIs

The problem of selecting suitable wavelengths and ratios has been tackled using

many different methods. This section describes the hyperspectral image analysis

method (HIAM) published in [98], itself inspired by [104]. The main goal of this

work was to create a method for automatically searching for suitable wavelengths

to use in calculating soil moisture content from soil reflectance data, with the aim

to find the ratio with the strongest contrast between dry and wet soils. To do

this, an automated method based on histogram and contrast space analysis was

devised to search through a user selectable wavelength range to find a suitable ratio

providing high contrast between wet and dry soils.

In order to determine the best wavelengths and ratio type (see Table 5.1) to pro-

duce the highest contrast between wet and dry soil, the metrics describing a high

contrast histogram had to be identified. The two main criteria chosen were the

78



5.3. Index Selection Method

Contrast Ratio Formula

Simple Reflectanceλ1

Reflectanceλ2

Weber Reflectanceλ1 −Reflectanceλ2

Reflectanceλ2

Michelson Reflectanceλ1 −Reflectanceλ2

Reflectanceλ1 +Reflectanceλ2

Table 5.1: Contrast ratios considered in this analysis

separation of the histogram means, and the standard deviations of the histograms.

If the separation between the wet and dry histograms is too low, differentiation

between soils at different humidity levels becomes less accurate. Similarly, ratios

that produce histograms with high standard deviations could mask small changes

in moisture content. This method offers a different and simpler approach to more

commonly used statistical distance methods with the view to reduce the post pro-

cessing required after the selection analysis. As statistical distance methods, such

as the Bhattacharyya distance, could potentially output the same distance for a

variety of histograms, some groups have resorted to manual sorting of results post-

selection. [104]

Figure 5.5: (a) Surface plot of the difference between reflectance ratios calculated
for wet and dry soil (metric 1) (b) Standard deviation of per pixel reflectance ratio
calculated for wet soil sample (metric 2) (c) Overall ranking surface, with darker
blue colours best suited for differentiating wet and dry soil. The ratio picked for
this analysis is marked with a white cross, chosen after atmospheric absorption
bands were discarded (shown as greyed out).

To automate the process of choosing a suitable wavelength ratio, surface plots of

the mean separation and standard deviation over a wavelength space were cre-

ated. The mean contrast ratio separation is obtained by calculating the Euclidean
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distance between the mean contrast ratio of the dry soil and the mean contrast

ratio of the wet soil, with the result plotted as a surface plot in Figure 5.5(a). For

each wavelength combination covering the InGaAs sensitivity range of the FYMOS

instrument used for this experiment, the following processing was performed:

metric1 =

∣∣∣∣∣∣
∣∣∣∣∣∣
N1=ROIWet pixels∑

i=1

(
ReflectanceWet(i,λ1)
ReflectanceWet(i,λ2)

)
N1

−
N2=ROIDry pixels∑

i=1

(
ReflectanceDry(i,λ1)
ReflectanceDry(i,λ2)

)
N2

∣∣∣∣∣∣
∣∣∣∣∣∣

(5.1)

To visualise how the standard deviation of the contrast ratio varies across the

wavelength range, the standard deviation of the contrast ratio for each wavelength

combination in the wet soil image was calculated and plotted in a similar way,

shown in Figure 5.5(b). The following processing was performed:

metric2 =

√√√√√√√∑N1=ROI pixels
i=1

ReflectanceWet(i,λ1)
ReflectanceWet(i,λ2) −

∑N1=ROI pixels
i=1

(
ReflectanceWet(i,λ1)
ReflectanceWet(i,λ2)

)
N1

2

N1
(5.2)

Each wavelength pairing was then sorted and ranked based on these two surfaces,

with each wavelength paring being ranked highest to lowest based on the subtrac-

tion surface, and lowest to highest based on the standard deviation surface. The

rankings for each test were summed, and then plotted to form the ranking surface

shown in Figure 5.5(c), with the idea being that the pairing with the lowest overall

rank would have the best combination of high separation and low standard devi-

ation. A flow chart summarising the method is shown in Figure 5.6. The same

method was applied using the simple ratio mentioned above, and using the Weber

and Michelson contrast ratios, shown in Table 5.1. The final ranking surface for

these ratios is shown in Figure 5.7. All 3 contrast ratios converged towards to

the same pair of wavelengths. For this application the Michelson ratio produced

the lowest contrast, while the simple and Weber ratios produced similar contrast

values. For simplicity, the simple ratio was chosen for further investigation.
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Figure 5.6: Flow chart describing the hyperspectral image analysis method (HIAM)
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Figure 5.7: Ranking surface plots for (a) Weber contrast ratio and (b) Michelson
contrast ratio

The wavelengths chosen for analysis were limited by the operating wavelength

range of the FYMOS hyperspectral imager. As this instrument is using a high

specification compact InGaAs camera, this wavelength range is applicable to many

of the current generation of compact hyperspectral imagers. For the soil used

in this experiment, the ratio of 1524/1480nm was found to be best. However,

these wavelengths are close to the 1400nm atmospheric water absorption band,

limiting the use of the ratio under certain lighting conditions, such as under variable

cloud cover. Restricting the wavelength range to wavelengths available under solar

illumination, a reflectance ratio of 1602/1516nm was chosen. A comparison of these

chosen wavelengths against WISOIL and NSMI is shown in Figure 5.8.

Experimental Data

To test the use of this reflectance ratio in remote soil moisture measurement, an

initial experiment was performed in the lab under controlled illumination. Soil

samples were prepared by placing oven dried, sieved soil into 9 cm diameter petri

dishes. The dishes were then hydrated to saturation, and oven dried at 60 °C until

reaching the desired weight. The samples were then sealed and allowed to cool to

room temperature over 24 hours to aid in uniform distribution of water content.

A hyperspectral image of each soil sample was then taken using the FYMOS hy-
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Figure 5.8: Wavelengths comprising existing indices WISOIL and NSMI, along with
the index proposed in this work, imposed on atmospheric transmission spectrum
computed using LOWTRAN. [105]

perspectral imager, set up normal to the soil surface and scanned using a rotation

stage. [106] The light source was an ASD Illuminator halogen lamp placed at a 15°

angle to the soil surface. From the hyperspectral datacubes, a mean reflectance

ratio for each sample was calculated to create a calibration curve. Two more sets

of soil samples from the same area were then prepared in an identical way, with

their ratios plotted against the calibration curve shown in Figure 5.9(a).

A similar set of soil samples were then measured outdoors under varying lighting

conditions. The hyperspectral imager was set up on a tripod, orientated to prevent

shadowing on the soil samples. One set of measurements was taken under a clear

sky with a low winter sun (solar elevation angle of 22.5°), shown in Figure 5.9(b).

A hyperspectral image of a 50% reflectance Lambertian panel was used to measure

the incident solar illumination, and to calibrate the measured soil data to true

reflectance factors. The ratios calculated for these samples agree strongly with the

measurements taken in the lab.

Using datasets provided by Dupiau et. al. [107], the wavelength ratio was tested
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Figure 5.9: (a) Soil ratios from two sets of samples plotted against a mean cal-
ibration curve. These samples were measured under controlled illumination. The
predicted and measured SMCg values agree within a 3% error. (b) Soil samples
measured under solar illumination, plotted against the same calibration curve.

against a range of various soil samples. As the spectra from these datasets have

been captured using point spectrometers, the spatial imaging data required for the

histogram analysis is not present. Instead, the best fit wavelengths found for the

local soil were used for every database.

The datasets chosen for validation were Les08, Lob02, Bab16 and Dup20, described

in [72, 107]. These datasets were chosen as their soil sample preparation methods

and measurement geometry closely matched the experiments used in deriving the

ratio. As each dataset contains a large number of soil samples, for brevity a set of

6 samples covering a range of soil texture characteristics was chosen for illustration

here. Figure 5.10 shows the calculated reflectance ratio plotted against gravimetric

soil moisture content for a variety of hydration levels and soil compositions. In-

dividual soil samples have been removed where there was a suspicion of specular

reflectance marked in the database. In Figure 5.10(c-f), a calibration curve for has

been calculated for each individual data set, with the fit being good for most soil

types. Where multiple sets of soil samples from the same region were available,

they were plotted together, with a calculated mean best fit curve. The fit between

these soil samples is still good, with examples of this are shown in Figure 5.10(a)

and (b).
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Figure 5.10: Calibration curves created for datasets provided by [107].

Feeding the calibration curves from Figure 5.10 back into the same datasets, the

predicted and measured soil moisture contents can be compared, shown in Figure

5.11. The predicted values for Figures 5.11(a) and (b) were based off the mean

best fit curves for each region. The datasets are best described by linear best fit

curves, of the type y = mx+c, with m being the gradient and c being the y (Ratio)

intercept. The predicted soil moisture content can then be found for a given soil

moisture sample by using equation 5.3, where Ratioobs is the measured spectral
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index.

SMCPredicted = Ratioobs − c

m
(5.3)

Generally, there is good agreement between the predicted and measured soil mois-

ture contents, with an RMSE under 5% for all datasets. The fit of the model tends

to struggle at low soil moisture contents (<5%), but tends to hold well from 10%

SMC up until soil saturation. Sensitivity at lower moisture contents may be better

in sandy soils, shown in Figures 5.11(e) and (f). While simple linear fits work for

the majority of the soil datasets, some soils such as those shown in Fig 5.11(c)

would benefit from non linear modelling. This suggests that the best performance

could be found by calibrating the model independently for different soil types.

The estimated error in soil moisture retrieval can be calculated by taking into

account a variety of factors. The three largest contributors to uncertainty in this

model are the reflectance deviations of reflectance calibration panel, the digital

number noise from reading out the camera’s sensor, and the uncertainties in the

intercept and gradient of the calibration curve during fitting. As discussed in

Chapter 4, the expected reflectance error, which derives from reflectance panel

deviations and camera noise, is estimated at approximately 1.1%.

The errors in gradient and intercept of the model best-fits depend on the soil sample

under test. Across the soil samples plotted in Figure 5.11, the mean gradient uncer-

tainty was 6.5%, while the mean intercept uncertainty was much lower at 0.7%. As

expected, the datasets exhibiting the highest fitting uncertainties were those with

the lowest R2 values. These upper and lower uncertainty bounds were propagated

numerically through the model, with the assumption that the uncertainty in the

model (σmodel) is equal to

fmodel(params+ uncertainties) − fmodel(params− uncertainties)
2

Using this method, the mean uncertainty of the HIAM model across the tested data

sets was 4.2%. This uncertainty is around 1% than that of well developed direct
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contact soil moisture sensors, such as the METER TEROS 11/12, while enabling

much higher spatial coverage.

Figure 5.11: Predicted vs measured soil moisture content from calibration curves
created in Figure 5.10.

Method Discussion

For this analysis, the two images chosen were of soil samples at the extreme ends

of their soil moisture range, with one being oven dried and the other being brought

close to saturation. As this method is purely image analysis based, with no under-
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lying soil reflectance model, the method should be material agnostic. Besides soil,

lab experiments have shown this method to work with other biological samples such

as detached leaves, along with man made materials like fabric and paper. More

details on the other uses of this method, mostly focused on plant health, will be

given in later chapters.

From analysis on publicly available data sets, this index performs best at medium to

high soil moisture contents for the loamy soils typical of farmland. Performance at

low moisture contents is better in sandy soils, suggesting a link between the optimal

soil moisture content range and the maximum soil moisture content supported by

the soil before saturation. The performance is similar across a variety of soil classes,

with marginally lower RMSE values found for clay loam/silty clay loam soils, where

soil class data is available. However, only around half of the data sets contained

textural information, making conclusions on the effects of soil texture difficult to

draw.

5.4 Radiative Transfer Models

As discussed in Chapter 2, radiative transfer models represent an alternative spec-

tral reflectance based method for measuring soil moisture content. For this work,

the model tested was the recently developed MARMIT model, as the original

development of the model was based on NIR/SWIR measurements in a similar

wavelength range to the FYMOS instrument. [72]

Experimental Data

The main practical difference between radiative transfer models and spectral indices

is that radiative transfer models attempt to model a sample’s continuous spectrum,

rather than set narrow wavebands. For more details on the parameters used in the

MARMIT model, see Section 2.2.3. In order to test the use of the MARMIT model,
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a series of soil samples taken from Spen Farm (managed by Leeds University) were

used. The samples were prepared in a similar way to those used in Section 5.3.

Using controlled illumination in a laboratory dark room, the spectral reflectance of

the soil samples was recorded, plotted as the crossed lines on Figure 5.12. Looking

at this plot, the two key spectral features of wet soil can be seen. Firstly, as the

moisture content of the soil increases, the overall reflectance of the soil decreases at

every wavelength. Secondly, it should be noted this decrease is not uniform, with

a higher decrease in reflectance inside the water absorption bands like the 1400 nm

band seen here. It is these features that are used to estimate water content in the

soil.

Taking the dry soil reflectance as the base, the MARMIT model was then used

to fit the dry reflectance to each hydrated soil sample, outputting a corresponding

"mean water depth" value for each moisture content. The fitting was calculated

using a least squares method, with the best fit for each soil shown as a solid line

on Figure 5.12.

To enable the use of the model to remotely estimate moisture content, a calibration

curve linking the "mean water depth" to the gravimetric soil moisture content must

be calculated. From the data, the best fit line is an S-shape, following a sigmoid

function:

SMC = K

1 + ae−ψϕ
(5.4)

where K is the maximum value of the sigmoid curve, a is a translational scaling

factor along the ϕ axis, ϕ is the "mean water thickness", and ψ the gradient of

the curve. The K, a and ψ parameters are all specific to each soil, and so for

best results a calibration curve must be measured for each different type of soil.

The calibration curve for the farm soil from Leeds is shown in Figure 5.13. As

can be seen from the curves, the best fit between the model and measurements

was when the soil moisture content was in the middle of the possible range for the
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Figure 5.12: Plotting the mean reflectance spectrum of loose soil from Spen Farm in
Leeds at a range of moisture levels. The lines marked with "+"s are the measured
reflectance, while the solid lines are the calculated best fit using the MARMIT
model. Measurements carried out under controlled illumination in a lab.

test soil samples. Particularly at high moisture contents, reflectance in the water

absorption band is underestimated, causing errors in the moisture estimation when

the model is used for prediction. This is in line with what was reported in the

original MARMIT paper. [72]

Two more test samples were prepared, taken from another area of the same field.

The data from these samples was not used in producing the calibration set. A

similar pattern is seen here as with the other measurements, where the soil moisture

prediction for mid level water content is more accurate than for more saturated

soils. These test points were plotted against the calibration curve, shown in Figure

5.14.

A sample for testing contrast of the model was prepared in a similar manner to

Section 5.3. The soil was heated using a hot plate to increase rate of evaporation,

enabling a time-lapse of the soil drying to be recorded. The model showed very

sharp contrast between the dry and wet soil regions, with an example image shown
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Figure 5.13: Calibration curve linking the mean water thickness estimated by the
MARMIT model with the gravimetrically measured soil moisture content of the
test samples. The best fit curve is plotted as a sigmoid function.

Figure 5.14: Estimated vs gravimetric soil moisture contents calculated for two test
samples taken from another part of the field.
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Figure 5.15: (a) Reflectance map of mixed wet and dry soil sample taken at 1440
nm.(b) Map of mean water depth (in micron), calculated excluding 1400 nm at-
mospheric absorption band. (c) Image of damp soil taken with a Pixel 4a. The
petri dish has a diameter of 90 mm. (d) Mean water depth value calculated from
MARMIT model decreasing monotonically with time. This was calculated as a
mean of 100 spatial pixels in a 10x10 pixel square.

in Figure 5.15.

To test the use of the model under solar illumination, additional test samples

were prepared. In order to use the model under natural illumination, data in the

1100-1180 nm and 1300-1500 nm bands was excluded from the fitting process, as

atmospheric absorption at these wavelengths is strong. Under a clear sky, with

strong summer mid-day sun, good results were obtained, with soil moisture es-

timates agreeing with lab results within 2% of absolute soil moisture content at

a moisture level of 0.3 SMCg. At higher moisture contents, over 0.4 SMCg, the

model consistently over estimates absolute soil water contents by 5%.

Under overcast conditions, an even smaller portion of the SWIR range is usable

due to attenuation by the cloud cover. This is especially a problem for compact,
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Figure 5.16: (a) Two lines with the same ϕ value, which don’t overlap at any point.
(b) Two lines with very different ϕ values, which do overlap and remain close in
the 1200-1300 nm region. Both plots used a flat line at y=1 as a starting point.

low power hyperspectral imagers, which have less powerful sensor cooling leading

to lower signal-to-noise ratios. The result is that the model fitting is restricted

to an even smaller spectral bandwidth, with some groups fitting using a single

wavelength. [78] Using the MARMIT model, two samples with the same mean wa-

ter thickness can have very different spectra, and likewise two samples with widely

differing mean water thickness can have their spectra overlap in some wavelength

bands. This multi-valued nature of the model does not show up when fitting

over large wavelength bands, but when using these small bandwidths the inversion

method becomes very sensitive to initial conditions. To prevent the least squares

fitting from getting trapped in local minima careful choice of the initial condi-

tions and optimisation method is needed, which results in a method that requires

significant manual input.

5.4.1 Method Discussion

For the analysis of the MARMIT model, a collection of different local soil samples

were used, ranging from garden soil to farmland soil. Under laboratory conditions,

the method was found to work well, especially with soils at low to mid levels of

saturation. At high levels of saturation, the fit between the modelled and measured

spectra would reduce, resulting in larger estimation errors during the inversion
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process.

One quirk found was that for soils that have a very flat reflectance spectrum when

dry, the model would have a hard time fitting the spectrum to a wet sample with a

large water absorption feature. This could often be resolved by using the reflectance

of a very slightly dampened sample as the "dry" spectrum, but indicates that the

model’s performance may vary significantly depending on soil type.

Atmospheric conditions restricting the spectral range for available for model fitting

can also increase the error in soil moisture recovery. While this does not present

so much of a problem in sunnier climates, or with cloudless satellite data, it does

present an issue for use in cloudier temperate climates.

5.5 Conclusion

In this chapter, the data processing methods for creating corrected hyperspectral

reflectance data sets are described, along with a demonstration of how this data

can be used to remotely measure soil moisture content. In particular, application

of both the HIAM model [98] and MARMIT model [72] are discussed in detail.

The process for recording and transforming the raw camera data into useful in-

formation is broadly similar for both lab and outdoor measurements. The main

difference comes in correcting for variations in incident intensity due to intermittent

cloud cover during solar illumination.

Two methods of measuring soil moisture content using this reflectance data have

been investigated. MARMIT represents a radiative transfer model approach to

soil moisture content measurements. In a lab setting, the MARMIT model was

found to perform well. However, the effectiveness of the model was found to be

dependant on soil type and sample preparation. This made the model difficult to

apply to some local soil samples, and when comparing measurements made under

solar illumination to those taken in the lab.
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The HIAM spectral index model is also discussed. Initially developed using local

soil samples, this model has been applied to a variety of soil samples under both

laboratory and outdoor conditions. The RMSE for predicted soil moisture content

was under 5% for all data sets. The method was more consistent across local soil

samples, producing the expected linear fits from soil data sets where MARMIT

struggled. From this comparison, it was decided that the HIAM model would be

used going forward for other experiments.
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Chapter 6

Drone Integration

This chapter presents an overview of the use of the FYMOS hyperspectral imager

onboard a custom UAV. The hardware changes required when moving to a UAV

based system are detailed, along with a description of the changes in data processing

required compared to ground based acquisitions. In particular, the process of

generating geo-rectified hyperspectral data sets from GPS data is described, along

with the methods for correcting distortions due to changes in the UAV platform’s

attitude.

6.1 Hardware Changes

When moving from a stationary laboratory based set up to one flying on a UAV,

several hardware changes were necessary. Firstly, the large laptop running the

system had to be replaced with a compact, low power single board computer (SBC).

To minimise power requirements, a Linux based operating system was chosen.

Initially, an Intel Atom based board (UP Board, x5-z8350 processor) was chosen to

minimise power draw. However, the extremely low power processor was found to

be too slow to continuously stream data to an attached USB 3.0 flash drive. This

resulted in large time gaps during which no data was recorded, leading to large

holes in data sets when flying over even a small area. Moving to a more powerful,
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but still compact, Latte Panda Alpha 864 (Intel Core m3-8100y processor) solved

this problem.

Issues were also found when using the USB flash drive to continuously save data

during flight. While the USB drive would work at full speed on the ground with

the rotors stopped, while flying the speed of the drive would dramatically decrease,

and more errors in saved data could be seen. This was put down to the large

amount of electromagnetic interference emitted by the four powerful drone motors.

Switching to an PCIe Gen 4 NVMe drive attached directly the the SBC’s M.2 slot

has proved to be a more reliable configuration, while also significantly improving

the performance of the drive.

Instead of carrying a separate power supply for the camera and computer systems,

a 12 volt tap is taken from the main UAV power supply. An image of the system

connected to a drone is shown in Figure 6.1. To prevent the camera from running

constantly, consuming power and data storage, the system can be switched on and

off using the flight controller. This can be manually toggled by the pilot using a

remote controller, or be automatically toggled by the flight controller when flying

along a series of way-points on autopilot.

6.2 UAV Data Collection

Compared to the process of collecting data in the lab, setting up a drone based aerial

survey is more involved. To reduce battery capacity requirements, the shortest

flight path required to cover the survey area should be calculated. This flight path

should include some degree of overlap between contiguous scan lines, to ensure no

areas of the field are missed during the scan. Planning and flying this precise flight

path would be very challenging for a human pilot, especially in weather conditions

with gusting or moderate winds.

Instead, flight planning and control software such as QGroundControl (see qground-

control.com) can be used. This software can be used to plan aerial surveys, with a
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Figure 6.1: Picture of FYMOS system attached to UAV in early testing.

screen shot shown in Figure 6.2. To plan a mission, the survey area is marked out,

shown as the green rectangle. Options for altitude, degree of overlap, and survey

direction can then be set, generating a flight plan shown in white. In areas with

flight restrictions, such as nearby roads or buildings, geofences can be set up to

prevent the aircraft from flying into these zones. Once the flight plan is created, it

can be sent to a drone using a supported autopilot using the MAVLink protocol,

ensuring the flight plan is followed precisely.

Before take off, the lens focus and aperture controls are set, along with the camera

exposure time. The lens focus is generally set at infinity, which provides acceptable

focus at the standard operating altitude of 30-50 metres. The lens aperture and

exposure time are set using a 50% reflectance grey Spectralon panel. This should

represent the most reflective natural object found on farmland, setting a level of

exposure that should not get over-saturated under normal conditions.

Along with the hyperspectral data, it can be useful to collect standard RGB im-
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Figure 6.2: Example capture of QGroundControl, software used to generate flight
paths

agery of the target area, which can aid in reconstructing the full hyperspectral

data cube. In order to do this, smaller drones such as the DJI Mavic Mini can be

used, along with software such as Drone Harmony. The 2D images capture using

this system can then be stitched into an orthomosiac using conventional image

processing software.

6.3 UAV Data Processing

While the autopilot functions can keep the drone following a set path within a

margin of error, it cannot keep the drone perfectly stable. In fact, the drone must

roll and tilt to be able to move or turn at all! This motion affects the pointing of the

camera system, making data post processing more complicated than just stacking

up the recorded frames into a datacube. The attitude data from the drone’s inertial

measurement unit (IMU) and GPS loggers is recorded and timestamped alongside

each frame, with the data used to calculate the angle that the camera lens was

at relative to the ground being determined for each frame. The frames are then

projected onto the location of the ground, and overlapped to create a georeferenced
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Figure 6.3: Flowchart detailing the processing pipeline for converting raw images
taken with a UAV to geo-rectified images

image. A summary flow chart over viewing this method is shown in Figure 6.3.

In order to do this, firstly the area imaged by the UAV is split into an array of tiles,

sized to reduce the volumes of data to process into smaller chunks. Once the tiles

have been set, all image files relating to each tile are collected. To catch instances

where the drone is positioned outside of the tile, but angled in such a way as to
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Figure 6.4: Generalised 2D Homographic transformation diagram placeholder

point the camera into the tile, images taken at a distance of up to 1.5 times the

tile width from the centre of the tile are considered.

Following this, each image is projected onto the tile. Note that each image repres-

ents a line of spatial pixels, the combination of which forms the final two dimen-

sional image tile. Each row of pixels represents a rectangular area on the ground.

To calculate the correct transformation, the positions of the vertices of this rect-

angle are calculated using the latitude, longitude, pitch, roll and yaw data from

the IMU. From these two sets of points, a homography transform matrix can be

calculated. This matrix can then be used to map the rest of the pixels from the un-

distorted slit to the final image projection. The method of calculating this matrix

follows.

Taking the point P1 = (x1, y1, 1) from Figure 6.4 as an example, a homography

matrix H can be defined so that P ′1 = HP1:


x′1

y′1

1

 =


h11 h12 h13

h21 h22 h23

h31 h32 h33




x1

y1

1

 (6.1)

This can be rewritten as P ′1 ×HP1 = 0, as the cross product of two identical vectors

101



6.3. UAV Data Processing

is 0. By writing each row of the H matrix as hjT , HP can be written as:

HP =


h1TP

h2TP

h3TP

 (6.2)

P ′ can be noted in a similar way, P ′ = (x′, y′, z′), giving

P ′XHP =


y′h3TP − z′h2TP

z′h1TP − x′h3TP

x′h2TP − y′h1TP

 (6.3)

As hjTP = P Thj for these matrices, this can be factored out into the form Ah = 0:


0T −z′iP Ti y′iP

T
i

z′iP
T
i 0T −x′iP Ti

−y′iP Ti x′iP
T
i 0T




h1

h2

h3

 = 0 (6.4)

where x′i is the x coordinate in point P ′i , represented in Figure 6.4. The last row of

A is not linearly independent from the first two rows, and so can be omitted while

solving for h. Filling in the rows for all 4 points gives



0 0 0 −x1 −y1 1 x1y′1 y1y′1 y′1

x1 y1 1 0 0 0 −x1x′1 −y1x′1 −x′1
...

0 0 0 −x4 −y4 1 x4y′4 y4y′4 y′4

x4 y4 1 0 0 0 −x4x′4 −y4x′4 −x′4





h11

h12
...

h32

h33


= 0 (6.5)

As it is the relative values of elements in the H matrix that are important, rather

than their absolute values, H can also be scaled so as one element (usually chosen

as h33) is equal to 1. This leaves a set of 8 linear equations and 8 unknowns,

which can be solved. Homography perspective transforms can be calculated using
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Figure 6.5: Example of an OpenCV perspective transform. Figure (a) shows an
image of a poster taken at an angle with a smartphone. Figure (b) shows the
transformed image to show the poster "square on".

functions in the Open CV library for Python. For more information on perspective

transforms, see [108, 109].

To illustrate what this transform looks like in practice, Figure 6.5 shows an example

made using a simple smartphone image. Figure (a) shows the original image of a

poster, taken from an angle. Figure (b) shows the transformed image, warped

and zoomed so as to give a "head-on" view of the poster, created using the same

functions used for the UAV data processing pipeline.

Calculating the coordinates of the 4 corners required for the homography transform

is more straightforward, using simple trigonometry. The geometry to do this is

shown in Figure 6.6. To calculate the position of the point P ′2, the positional offset

ux from in both x and y direction must be calculated. In the x direction, this is

given by:

ux = alt ∗ tan(FOV2 +Roll) (6.6)

A similar equation is used for the y direction, using UAV pitch instead of roll. Once
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Figure 6.6: Geometry for calculating the coordinates of the vertices of the slit
projection onto the ground in the x direction. The same geometry is used in the y
direction, substituting roll for pitch.

Figure 6.7: Calculating rotation around a point

these offsets have been calculated, they are then added to the centre coordinates

of the rectangle (Cx, Cy) to find the corner coordinates. Finally, these corner

coordinates are rotated around the centre point of the rectangle by the UAV’s yaw

value, again using simple trigonometry. Considering the example shown in Figure

6.7, the co-ordinates for point Q can be calculated as:

Qx = Ox + (Px −Ox)cos(θ) − (Py −Oy)sin(θ) (6.7)

Qy = Oy + (Px −Ox)sin(θ) + (Py −Oy)cos(θ) (6.8)
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Figure 6.8: Figure demonstrating the change in shape of the entrance slit projection
based on angle. (a) and (c) Illustrate the geometry and resultant slit projection
for the slit positioned normal to the surface, while (b) and (d) show the same for
an angled slit.

As the initial rectangular shape of the image will be different from the shape of the

warped projection, the shape and area represented by each spatial pixel in a given

image can vary. For the purposes of simplifying the data processing, the varying

pixel shapes are not taken into account, with the assumption made that all pixels

in initial and final images are square. This results in interpolation effects when the

initial image from the camera is warped into the final ground image. Pixels affected

by the interpolation are removed prior to final stacking. This change in shape is

illustrated in Figure 6.8. When placing these projected images onto the final tile,

there is a possibility of overlaps between neighbouring projections. Where pixels

from two or more images overlap, the mean is taken.

The main simplification in this workflow is the assumption that the ground being

imaged is flat. If the drone was flying above an angled surface, this would change

the projection of the imaging slit onto the ground. Agricultural farmland generally

does not feature steep gradients due to the impracticality of using large machinery

on slopes, but this could be an issue in other applications. This could be addressed

by projecting the images onto a digital terrain model, which can be created using
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LiDAR measurements from a UAV. Provided there is no major soil erosion, grading,

or land use change, these digital models may be used for several growing seasons

before requiring updates.

Related to the above troubles with image distortions, the continuously varying

attitude of the platform also causes issues with the fibre optic correction chan-

nel (Chapter 4), presenting the second major challenge for data processing. The

diffuser on the end of the fibre, called the cosine corrector, accepts light from a

180° hemisphere, but its collection efficiency is angularly dependent. As the name

suggests, the transmitted intensity is directly proportional to the cosine of the angle

between the surface normal of the diffuser and the light source. In clear conditions,

or in weather with scattered or broken cloud cover, this light source is the Sun,

and so the angle between the Sun and the top of the drone must be recorded and

accounted for at all times. During a measurement, this angle will have random

variation due to wind gusting, and periodic variation due to changes in direction

of the drone. Depending on the size of the UAV chassis, the UAV can angle by as

much as 30 degrees in high wind conditions.

Using the Astropy Python module, the solar altitude and azimuthal angles can be

calculated for a given time and location. As each image is tagged with the attitude

data of the drone, the angle (θ) between the drone and the Sun can be calculated.

The geometry for doing so is shown in Figure 6.9. Converting the polar coordinates

into Cartesian vectors, the vectors for points P1 and P2 can be written as:

P1 =


cos(A1)cos(α1)

sin(A1)cos(α1)

sin(α1)

 , P2 =


cos(A2)cos(α2)

sin(A2)cos(α2)

sin(α2)


Considering a new "primed" coordinate system, rotated so that the angle A′1 = 0,

and A′2 = A2 −A1, these vectors can be redefined as:
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Figure 6.9: Geometry for calculating the scaling factor needed to account for the
angle between the normal of the cosine corrector and the Sun.

P1 =


cos(α1)

0

sin(α1)

 , P2 =


cos(α2)cos(A2 −A1)

cos(α2)sin(A2 −A1)

sin(α2)


To calculate the angle between these two, the dot product of these vectors can

be calculated. As the magnitudes of the two vectors are both 1, the dot product

P1.P2 = cos(θ), which is exactly the scaling factor necessary for tilt correction.

Computing this dot product gives:

cos(θ) = sin(a1)sin(a2) + cos(a1)cos(a2)cos(A2 −A1) (6.9)

where a1 and a2 are the altitude angles of the points P1 and P2, and A1 and A2

are the respective azimuthal coordinates.

The main limitation to this method is when flying at times of lower solar elevation,

when it is possible the face of the diffuser can be obscured from direct sunlight by

its own shadow. In practice, this limitation is not severe, as low solar angles also
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result in ground objects casting long shadows. In the example of ploughed land,

this can result in most of the target field being obscured in shadow.

6.4 Conclusion

The work represented in this chapter was the most heavily affected by the COVID-

19 pandemic. The organisation of drone flights over relevant targets requires the

coordination of a large number of people, often across different research institutions

and Universities. UAV flights are also very weather dependant, with the UAV un-

able to fly in rain or high winds. Coupling suitable conditions in the unpredictable

British weather with the busy schedules of multiple research staff proved to be

difficult, limiting the number of test flights that could be made.

This has limited the ability to trouble shoot some of the issues detailed in the

chapter. Problems such as drive interference caused by the UAV’s motors could not

be spotted in the lab, where the drone’s rotors are not switched on. Likewise, the

data buffering issues with the slow processor on the original SBC were not obvious

until extended flights were made with the full data logging system recording both

camera and vehicle positioning data.

The result is that much of the immediate future work relating to this project stems

from this chapter. With two prototypes of the instrument having been built, one

instrument is available for flight testing while the other can be used for lab work.

This should provide the ability to quickly deploy the UAV when suitable conditions

come up.
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Chapter 7

Other agricultural uses

This section introduces the use of hyperspectral imagery in other areas of agricul-

tural monitoring, specifically in direct leaf monitoring. The methods developed in

Chapter 5 are applied to preliminary measurements of detached leaves, in order to

develop methods for remote measurement of leaf moisture content.

7.1 Importance of Measuring Crop Stress

Outside of soil moisture, hyperspectral imagers have a wide variety of uses in ag-

riculture. The main goal is to be able to remotely measure chemical and physical

changes in plants which correlate to environmental stress with a high degree of

accuracy. One of the more practical stress factors to control as a grower is water

stress, which is associated with a wide range of effects on plant produce, especially

in fleshy fruits. [110] Water stress has been linked to increased firmness in apples

and pears, making the fruit more robust. [111] This decreases the risk of damage to

the fruit in transit in modern supply chains, and increases shelf life. Water stress

has also been linked to increased nutrition value of some fruit and vegetables, in-

creasing the concentration of antioxidant compounds in broccoli. Understanding

and controlling the benefits of controlled drought periods could be useful to re-

gions most affected by climate change, where these techniques could help mitigate

reduced access to irrigation water. [112]
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However, precisely controlling the amount of stress a plant is subjected to can

be difficult, with some staple crops like potatoes being very sensitive to small

increases in water stress. [113] The use of standard point spectrometers in plant

monitoring has been well documented, but has some drawbacks. Leaf clips allow for

spectral measurements to be taken for precise locations on plants, but large surveys

using these are slow and labour intensive. Using different optics to sample larger

areas with these point spectrometers greatly reduces spatial resolution. The high

spatial, high spectral resolution data provided by hyperspectral imaging provides

an opportunity to remotely measure variations in reflectance across the leaves of

one or more plants simultaneously.

7.1.1 Leaf Water Content Experiment

As an initial experiment to test the use of the FYMOS system a simple detached

leaf water loss assay was performed using leaves taken from a bush near to Ogden

Centre West. The freshly picked leaves were placed onto a lab balance connected

to a computer, allowing for the mass of the leaf to be recorded automatically over

time. The halogen lamp used for these measurements was placed 60 cm away from

the leaves to reduce thermal infrared heating of the leaves. A time-lapse of the leaf

drying out was then recorded, with the mass and reflectance of the leaf measured

every 4 minutes for approximately 90 minutes. These measurements were taken

with the uncooled Raptor Photonics SWIR camera, so 40 minutes prior to the

start of the timelapse the camera was switched on to enable it to reach thermal

equilibrium.

7.1.2 Results

This section is based on the same index selection analysis used in Section 5.3.

Ideally, a ratio index would be found so that, when applied to a data-cube contain-

ing both a moist and a dry leaf, the resulting image histogram would be clearly
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bi-modal. A demonstration of this is shown in Figure 7.1. Figure 7.1(a), shows the

ratio of reflectance at 1564/1524 nm for a fresh leaf, while Figure 7.1(b) shows the

same ratio but for a dry leaf. Figure 7.1(c) shows the histogram of ratio values for

a 100x100 square pixel box at the centre of the leaf. The green peak corresponds

to the fresh leaf, while the blue peak corresponds to the dry leaf.

Figure 7.1: (a) Freshly picked leaf, (b) leaf after 90 minutes of drying, (c) histogram
of ratios in a 100x100 pixel AOI in the centre of the leaf. The colour map represents
the ratio of reflectance at 1564/1524 nm. The scales on the side indicates pixel
numbers. For scale, the diameter of the plate under the leaf is 100 mm

The same process of generating contrast and standard deviation surface plots

was followed, with Figure 7.2(a) showing the surface plot for a simple ratio of

Wavelength 1/Wavelength 2, with lighter colours indicating higher separations.

Figure 7.2(b) shows the standard deviation map for the leaves, with Figure 7.2(c)

showing the overall ranking map, with darker colours indicating lower standard de-
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Figure 7.2: (a) Surface plot of 2 wavelength ratios between fresh and dry leaf, with
brighter colours showing a larger difference between the leaves, (b) surface plot
of standard deviation of wavelength ratios of the fresh leaf, with darker colours
meaning a lower standard deviation, (c) overall ranking surface, with darker colours
indicating the wavelength parings best suited to differentiating fresh and dry leaves.

viations and better ranking respectively. For the leaves chosen for this experiment,

a ratio of 1564/1524 nm was found to give good contrast.

Figure 7.3: (a) Image of leaf, with areas of interest labeled, (b) Mean Ratio of leaf
plotted against mass loss, (c) Comparing change in reflectance between leaf vein
and lamina, (d) Comparing reflectance gradients of the lamina at the centre of the
leaf and near the edge.
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Figure 7.3(a) shows an example image of a fresh leaf at the chosen reflectance

ratio. Focusing on an area of 10,000 pixels around the centre of the leaf, the mean

reflectance ratio of the leaf was calculated for each step in the drying time-lapse.

Plotted in Figure 7.3(b), the change in reflectance ratio correlates well with the

fractional mass loss of the leaf in a linear fashion, with an R-Squared coefficient of

0.98. Using the high spatial resolution of a hyperspectral imager, it is possible to

investigate how the change in reflectance differs between various areas on the leaf.

Figure 7.3(c) shows a comparison between a leaf vein and lamina area close to the

centre of the leaf, with the two showing a very similar gradient with an offset in

reflectance ratio values. This offset may be due to the higher moisture level inside

the veins. Meanwhile, comparing lamina areas at the centre of the leaf to the edge

of the leaf, a difference in gradient is observed, shown in Figure 7.3(d). This could

be explained by the varying cross sectional profile of the leaf, with the leaf being

thickest in the centre and tapering towards the edges.

7.2 Conclusions

This section has introduced and discussed the application of remote soil sensing

techniques to plant imaging. Using the method described in Chapter 5.3, the

moisture content of detached leaves was measured, with the system able to capture

the differing drying rates across the leaf lamina and vein structure.

This section was also affected by Covid, as a knock-on from delays in other areas.

An ideal experiment would be to take a long time-lapse measurement of a plant

being put under water stress, and then being watered correctly.
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Chapter 8

Conclusions

8.1 Summary

The main focus of this thesis was on the development of hyperspectral imaging

technology, particularly aimed at compact instruments for use on UAVs in support

of precision agriculture. The first objective was the optimisation of the geometrical

aberrations and distortion (keystone and smile) of the spectrometer, by allowing

the grating to take a freeform shape. The grating parameters were also optimised

to deliver maximum efficiency over the InGaAs sensor’s spectral range.

The second objective was to develop solutions for the challenges of using hyperspec-

tral imagery in the temperate climate weather conditions found in the North-East

of the UK. While the main body of work in this thesis is aimed at remote soil mois-

ture content measurement, the broad spectral coverage of a hyperspectral imager

enables the techniques discussed to be applied to other areas.

Chapter 3

Chapter 3 discusses the design of the FYMOS freeform Offner spectrograph, and

compare its optical performances to other Offner type spectrographs utilising all

spherical surfaces. By using of a freeform diffraction grating, a 30% decrease

in RMS wavefront error in both the spatial and spectral fields was achieved in
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comparison to an all spherical Offner Chrisp design. This work led to a publication

in Optics Express:

"Christopher Graham, John M. Girkin, and Cyril Bourgenot, "Freeform

based hYperspectral imager for MOisture Sensing (FYMOS)," Optics

Express 29, 16007-16018 (2021)"

Chapter 4

Chapter 4 introduces the concept of an integrated fibre optic downwelling irradiance

sensor, used for correcting reflectance measurements for the effects of changeable

cloud cover. This technique is compared to other existing techniques in literature.

The approach taken here is novel, using a fibre optic cable to feed light from a

zenith facing diffuser directly into the entrance slit, creating a calibration channel

for recording incident light levels without an additional spectrometer. This work

resulted in a publication in Optics Express:

"Christopher Graham, John M. Girkin, and Cyril Bourgenot, "Integ-

rated fiber optic spectrally resolved downwelling irradiance sensor for

pushbroom spectrometers," Optics Express 30, 45592-45598 (2022)"

Chapter 5

Chapter 5 discusses the data collection and processing methods used to create

and parse hyperspectral datasets under laboratory and outdoor ground testing

conditions. Multiple methods of extracting soil moisture content from reflectance

measurements have been tested, including both existing methods from literature

and more novel techniques. The novelty in this approach comes from the focus

of working under outdoor solar illumination. From this work, spectral index ratio

methods were found to work the most consistently across different operating con-

ditions. A method to determine the most suitable ratios, named HIAM, has been

developed. This method has shown to offer a high dynamic range and contrast,
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while being resilient to atmospheric absorption effects. Results from this chapter

are published in Scientific Reports:

"Graham, C., Girkin, J. & Bourgenot, C. Spectral index selection method

for remote moisture sensing under challenging illumination conditions.

Scientific Reports 12, 14555 (2022)"

Chapter 6

Chapter 6 describes the mounting of the hyperspectral system to a UAV, along

with the hardware and software requirements for running the system autonomously.

The concepts behind geometrically correcting pushbroom images collected from an

unstable platform are explained.

Chapter 7

Chapter 7 discusses the use of the FYMOS instrument for remote measurement of

leaf moisture content. Applying a similar methods to those discussed in Chapter

5, the moisture content of detached leaves was estimated using spectral reflectance

measurements. The use of the extended range dual channel setup for red edge

imaging is also explored.

8.2 Future Work

The development path for for compact, UAV based hyperspectral imagers is ex-

tremely wide, leaving a large scope for further work on this topic.

Chapter 3

Regarding the optical design of the instrument, there is room for development,

especially regarding optical throughput. In the FYMOS design, the primary and
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tertiary mirrors are both spherical in design, sharing a common centre of curvature

so as to be machined as a single monolithic piece to ease manufacturing. By

combining the freeform diffraction grating with an Offner Chrisp style split mirror

design, further improvements in the optical speed of the system could be found.

This would reduce the camera exposure time required to image scenes in low light

conditions, increasing the signal to noise ratio of the system.

Further improvements could be made to the optimisation of the diffraction grating.

For the FYMOS design, the blaze angle of the grating was chosen to balance the

grating efficiency at both ends of the camera’s quantum efficiency curve. Now

knowing that the most efficient wavelengths for determining soil moisture content

lie in the 1500-1600 nm region, the blaze angle of the grating could be increased

slightly to maximise the throughput in this range.

Away from pushbroom spectrometers, there is scope for research into other forms

of hyperspectral imagers. The ease of use snapshot imagers provides strong mo-

tivation for developing these instruments. While current snapshot instruments are

limited in both spatial and spectral resolution, much of this limitation derives from

the small sensors available to compact camera manufacturers. Medium format

sensors with global shutters are becoming available, which could enable compact

IFU designs to be developed. The very high pixel counts of these sensors (with

many over 100 megapixels) would also enable the production of filter array based

snapshot imagers with high spatial and spectral resolutions. These systems could

enable high resolution hyperspectral imagery to be recorded at video frame rates,

which could used in monitoring quickly changing scenes or processes.

Chapter 4

The fibre optic calibration channel is a fairly finalised concept. The biggest re-

maining issue with the design is that the manufacturing of the fibre guide is a very

manual process, with both the bending of the needle fibre guide and the sanding
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of the 3d printed bracket done by hand. The fibre positioning system could be

improved and made simpler to manufacture, which would ease adoption if this

integrated calibration unit becomes a critical component in future hyperspectral

imagers.

Chapter 5

On the data analysis side, there is still plenty of work to be done on converting

hyperspectral imagery into soil moisture maps. While the methods discussed in

this paper have been demonstrated to work well in the lab, and have had limited

testing in outdoor ground based experiments, they still need to be verified with

data sampled from a drone. In particular, soil moisture retrieval over a large area

involving pushbroom reconstruction, corrections for changing illumination condi-

tions, soil heterogeneities, etc, all at once remains to be demonstrated.

All the of the data in this thesis relating to soil moisture has been captured on

bare soils. While maintaining the correct soil moisture content is crucial during

the germination and seedling stages of plant growth, it is also important during

the ripening stages. This requires estimation of soil moisture content while the soil

itself is not directly visible. There is an open question about whether soil moisture

content may be accurately predicted using hyperspectral imagery of crop coverage.

Investigating the link between crop reflectance and soil properties could be useful

in monitoring soil moisture underneath perennial crops, such as in orchards or

vineyards.

Chapter 6

The work relating to Chapter 6 was the most heavily impacted by the Covid-

19 pandemic, with drone flights requiring physical collaboration by multiple people

across research institutions. With the differing Covid safety regulations across these
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organisations, this limited the opportunities for launching test flights in suitable

locations.

With both the UAV and the data collection systems being new for the project,

trouble shooting issues were expected. While most of these issues appear to now

be solved, there is still a lack of usable flight data over an appropriate target. The

main high impact work left to do related to this thesis is to fly the instrument of an

area currently being sampled by other methods. This would enable the results from

remotely sensed soil moisture to be compared directly to in-situ measurements in

a field environment, which is the next important step in validating this approach

for soil moisture measurement.

Chapter 7

Chapter 7 was also a casualty of the COVID-19 pandemic, with experiments in this

chapter being squeezed in whenever time was found and access to the laboratory

made possible. While hyperspectral imagery of plant leaves is well established,

especially in visible wavelengths, SWIR hyperspectral imaging for the purpose of

qualitative moisture content recovery is still an open research topic. Published

literature has focused on detached leaf assays, with most live plant experiments

being limited to clip-on point spectrometers. Time lapse recordings of plants being

subjected to controlled water stresses could provide information on how hyperspec-

tral data can be used to manage irrigation for plants. In the long term, larger field

scale experiments combining hyperspectral imaging with precision irrigation and

spraying techniques are needed to compare yield sizes and resource use against con-

ventional farming practices. This would enable an accurate cost-benefit analysis of

hyperspectral sensing and advanced precision agriculture techniques, and help to

encourage farmers to take up these practices.
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Route to operational model

Looking further ahead, the work from this thesis can be used to lay some of the

ground work for larger scale deployments of the FYMOS system. The use of FY-

MOS in a commercial market could be split into two categories, based on the size

and revenue of the target farms.

For the largest farms, many of which are already experimenting with automation

and crop monitoring technologies, the still high barrier costs of full hyperspectral

imaging systems may be affordable. These systems provide the most versatility,

being capable of providing a range of data products such as soil and plant health

metrics alongside soil moisture measurements. This widens their range of use from

just being soil moisture measurement devices, and enables their use further into the

growing season when soil may be obscured by vegetation. This is exemplified by the

two channel FYMOS system, which has an expanded spectral range enabling both

red-edge based plant health indicators and soil moisture metrics to be measured on

a single <2 kg system. The additional versatility of these instruments compared to

prior multispectral and hyperspectral systems means that fewer instrument changes

will be needed during operations, reducing the system’s down time.

For targeting smaller farms, FYMOS flights could be sold as a service. By looking

at soil moisture variation across a field, issues such as slow or blocked drainage

ditches can be highlighted quickly. FYMOS surveys could also be used in support

of direct contact electrical sensors, such as by picking optimal positioning of soil

sensors so as to get a more representative measurement of the whole field.

The disadvantage of the high spectral coverage of FYMOS is the high data volume

associated with hyperspectral imaging. While some of the very largest and most

automated farms may be equipped to store and process large data sets, for mass

market appeal this needs to be mitigated. One option may be to develop and

use more spectral index models such as HIAM, which are computationally easy to

calculate. As small, single board computers become faster, it may be possible to
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use the computer on board the UAV to process the data, and output simple data

product maps, ready for interpretation by farmers. While storing only the prepro-

cessed data maps removes the ability of retrospectively creating new products from

the raw data, the file sizes for simple heatmaps are far smaller.

The second potential hurdle for commercialisation of the FYMOS instrument is the

requirement for soil calibration samples to be collected and measured. To create

the soil moisture-reflectance calibration curves, several samples of varying mois-

ture contents need to be prepared, a process that can take 2-3 days. This issue

is not unique to hyperspectral soil moisture measurement, as electrical soil probes

also require calibration for optimal performance. Barring changes in land use,

these calibrations should hold for several years, spreading the cost of these meas-

urements. As government interest in soil health increases, projects like Northern

Ireland’s Soil Nutrient Health Scheme may also become more prevalent, enabling

more robust models to be produced from much larger data sets. Post calibration,

FYMOS/HIAM soil moisture estimates were found to have an uncertainty of 4.2%,

which is on par with existing capacitance and resistance sensors. While impedance

based sensors are still the gold standard of soil moisture measurement accuracy,

the much larger area coverage of FYMOS measurements would give it a place in

the market.
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