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Abstract: This thesis studies primarily the local properties the unipotent con-

nected component of the moduli space of Langlands parameters, the local rings of

which give us Galois deformation rings, a crucial ingredient in the Taylor-Wiles-Kisin

patching method that is used to prove global Langlands correspondences. We study

first the simpler ‘considerate’ case to give a criterion for smoothness of the connected

components when G “ GLn. We also study the local rings of various unions of con-

nected components to show that the Galois deformation rings are Cohen-Macaulay.

We study further the Steinberg component in the case of ‘extreme inconsiderate-

ness’ to show that the Steinberg component has at most rational singularities, so

in particular is normal and Cohen-Macaulay. Finally, we give an application of the

smoothness result, to give a freeness result of the module of certain Hida families

of automorphic forms over its Hecke algebra, which in turn will give a multiplicity

result for the Galois representations of these Hida families.
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Chapter 1

Introduction

In the late 1960’s Robert Langlands first proposed the remarkable idea that there

are certain similarities between two completely different areas of mathematics; auto-

morphic forms from harmonic analysis, and Galois theory. The proposed idea, that

there should be some ‘correspondence’ between the Hecke eigenforms for a connected

reductive group G, and the continuous representations of Galois groups into its

so-called ‘Langlands dual group’ Ĝ, while to this day still largely unproven, has still

inspired mathematicians to develop many fascinating ideas, from the earlier Galois

deformation rings, complete local rings that parameterise ‘deformations’ of modl

Galois representations which played such a crucial role in the proof of the modularity

theorem by Andrew Wiles and Richard Taylor in 1995 [Wil95] and [TW95]; to the

development of shtukas, the categorical Langlands programme and condensed maths

in more recent years.

Since 1970, the above correspondence has taken on the name of the ‘global Langlands

conjecture’ emphasising, that this correspondence occurs over a global number field

(that is, a finite extension of Q, or the function field of a smooth curve over a finite

field); or (even better) over the adèles. But one can also formulate a ‘local Langlands

correspondence’ over ‘local’ fields; that is, finite extensions of Ql and of the field

of Laurent series Flpptqq. In fact, this local correspondence is an important area to

study before one can even hope to understand the global correspondence.
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Let F be a local p-adic field. and let G be a connected reductive algebraic group

over F . The local Langlands conjectures (proven for GLn by Harris and Taylor in

[HT01]) stipulate the existence of a natural map, with finite fibres

tsmooth irreducible representations of GpF qu

tisomorphismu
Ñ

tL-parameters of LGu

tĜ ´ conjugacyu
.

Let l be a prime, different to p. Let L Ă Q̄l be an l-adic field, and O its ring of

integers, with residue field F. In recent years, by work of [BG19], [Hel21], [DHKM23],

[Zhu21] and [FS21], there has been great interest in studying the properties of a

moduli space of L-parameters LocĜ,O and a closely related space, the moduli space

of framed L-parameters, Loc˝

Ĝ,O. That is, an algebraic stack over O, which is the

the stackification of the prestack whose R-points (R an O-algebra) are naturally

identified with the Ĝ-conjugacy classes of L-parameters, and a scheme whose R-

points are the set of L-parameters respectively.

LocĜ,OpRq “ tL-parameters of Ĝ, with R-coefficientsu{–

Loc˝

Ĝ,OpRq “ tL-parameters of Ĝ, with R-coefficientsu

These spaces were created to have two properties. Firstly, they give the set of L-

parameters on the right hand side of the local Langlands correspondence, a natural

geometric structure, so that one may hope to better understand the correspondence

by ‘geometrising’ it (see for example [FS21] or [Zhu21]). Secondly, (the completions

of) the local rings of Loc˝

Ĝ,O are the (framed) local Galois deformation rings from

before, that play such an important role in the Taylor-Wiles method, as well as

the later Taylor-Wiles-Kisin and Calegari-Geraghty methods. By studying such a

moduli space, it is hoped to better understand Galois deformation rings.

To define an L-parameter, one needs the notion of an L-homomorphism. Let WF be

the Weil group of the field F , and for G a connected reductive group let Ĝ be the

Langlands dual group. An L-homomorphism with R-coefficients is a homomorphism

ρ : WF Ñ LGpRq :“ ĜpRq ¸ WF , such that the projection onto the second factor
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gives the identity map on WF . In this thesis, we reduce to the case where the action

of WF on Ĝ is trivial (this occurs, for example, when G is split), and so we may view

L-homomorphisms as plain homomorphisms WF Ñ ĜpRq. Historically, there are

multiple definitions of L-parameters, with varying degrees of usefulness. We interest

ourselves in the moduli space of Bellovin and Gee [BG19] and make the following

definition.

Definition 1.0.1. A Langlands parameter is a Weil-Deligne representation pr,Nq,

where r : WF Ñ LG is an L-homomorphism with open kernel, and N is an element

of LiepĜq such that for any g P WF , AdpgqN “ |g|N , where |.| : WF Ñ Fˆ Ñ Rě0

is the valuation on WF coming from local class field theory.

It is known, as in Proposition 2.6 of [DHKM23], that this definition gives a good

moduli space for Langlands parameters in characteristic 0, but in general the moduli

spaces won’t give deformation rings, because the way one relates Weil-Deligne rep-

resentations to Galois representations utilises the exponential and logarithm maps,

which may not exist in positive characteristic or be continuous in mixed charac-

teristic, so in general one will need the moduli space Z1pW 0
F , ĜpRqq constructed

in [DHKM23]. In Proposition 2.0.5, we show that when studying the unipotent

component of Loc˝

Ĝ,O, it is equivalent to study either moduli space whenever l is
LG-banal (we remark that this implies l is necessarily greater than the Coxeter

number hG), as then the exponential and logarithm maps present an isomorphism

between our moduli space and the unipotent connected component of the moduli

space of tame parameters seen in [DHKM23].

By Lemma 2.1.3 of [BG19], this moduli problem can be represented by an algebraic

stack over Ql, LocBG
G,Ql

, which is a disjoint union of quotient stacks, indexed by the

inertial type of the Weil Deligne representation. The moduli problem of framed

L-parameters, Loc˝
G,Ql

, can further be represented by an infinite disjoint union of

affine varieties, indexed similarly by the inertial type.

In chapters 2, 3 and 4, we will denote by O a regular local ring of residue characteristic
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l or 0. In these we seek to understand the geometry of the scheme studied in [Hel21],

whose special fibre is precisely the scheme YL{L,φ,N of [BG19]. This is a reduced

affine scheme of finite type SG,O, over the ring O, whose R-points (R an O-algebra)

are given by

SG,OpRq “ tpΦ, Nq P GpRq ˆ gpRq|AdpΦqN “ qNu.

This is naturally the space of framed unipotent Weil-Deligne representations over O,

with values in G (following Definition 2.1.2 of [BG19]). We remark that ‘unipotent’

here means that the Weil-Deligne representation pr,Nq has r : WF Ñ LGpRq factor

through WF {IF where IF is the inertia subgroup. We will in particular be interested

in the case when O is the ring of integers in a finite extension of Ql, because the

mR-adic completion of the local rings, R, of the closed points of this scheme can

be interpreted as local Galois deformation rings, for sufficiently large l (In fact,

whenever the exponential and logarithm maps exist, which occurs as we shall see,

whenever l is LG-banal). We also note, that via Theorem 4.5 of [DHKM23], it is

essentially sufficient to study SG,Q̄l
for various groups G to understand the geometry

of any connected component of Loc˝

G,Q̄l
, so by restricting to this unipotent case, we

do not lose generality in characteristic 0, or whenever l is LG-banal.

In chapters 2 and 3, we describe a way of decomposing SG that gives the irreducible

components when G “ GLn that can be found in Proposition 2.1 of [Hel21]. (For

the irreducible components of SG more general G, see [Sho23]). Let N Ď g be the

nilpotent cone inside the Lie algebra g. Let

p : SG,O Ñ N

be the projection map onto the second factor. Let C Ă NL be a G-conjugacy

class inside NL. (We note that, in the case of GLn, these can be characterised by

partitions of n and in this situation we will denote the conjugacy class corresponding

to λ by Cλ.) We remark, that because SG,O is flat over O, the irreducible components

biject naturally with those of SG,L. Then p´1pCq Ď SG,O is a union of irreducible
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components of SG,O (and in the case of G “ GLn, is itself irreducible and all

irreducible components arise in this way). In chapter 3, I expand on and generalise

the results of Bellovin [Bel16] section 7.2 and Proposition 7.10 we prove theorems

3.0.1 and 3.0.3 which state:

Theorem 1.0.2. 1. Let Cr Ď N be the regular adjoint orbit, and C0 “ t0u Ď N

be the zero conjugacy class, and let X0 “ p´1pC0q and Xr “ p´1pCrq be the

respective irreducible components of SG,O. Let Z is the centre of G, and assume

it is smooth.

Then X0 is smooth over O, and Xr is a disjoint union of π0pZq smooth con-

nected components.

2. Further, in the case G “ GLn, these are the only smooth irreducible components

of SG,O

In chapter 4, we turn our interest to certain unions of the components of Sn,O “

SGLn,O. We will, for each partition p of n, define Xďp :“ p´1pC̄pq. These varieties

arise naturally as the support of certain patched modules. In this chapter, we

conjecture that such varieties are Cohen-Macaulay, and prove it for the following

dense subset of points, noted in the following theorem.

Theorem 1.0.3. Let XΦ-reg
ďp be the open subscheme of Xďp whose points pΦ, Nq have

Φ regular semisimple. Then XΦ-reg
ďp is Cohen-Macaulay. Further, the local ring at

P “ pΦ, Nq P XΦ-reg
ďp is Gorenstein if and only if either:

• p “ 1 ` 1 ` .... ` 1, and so Xďp is the unramified component of Sn,O, or

• the inclusion Xďp ãÑ Sn,O defines an isomorphism on stalks at P .

In addition, we also prove some partial results towards removing the condition of

Φ-regular semisimplicity.

In chapters 5 and 6 of this thesis, I apply the smoothness result of chapter 3 via

the patching method, in a situation very similar to that studied in [Ger19]. Let



6 Chapter 1. Introduction

l be a prime and K a finite extension of Ql with ring of integers O. Let F` be

a totally real global number field, and consider an imaginary quadratic extension

F of F`. The Galois representations considered will correspond to certain Hida

families of ordinary automorphic forms on a unitary algebraic group GD{F`, which

is a unitary form of a unit group of a division algebra, D{F`. We will define a

certain space of Hida families of ordinary automorphic forms SordpUpl8q, L{Oqm for

GD with Hecke algebra Tm, and a corresponding deformation ring Runiv
S . We will

then use the Taylor-Wiles patching method to deduce the following theorem:

Theorem 1.0.4. The module SordpUpl8q, L{Oq_
mr1{ls is a finite locally free Runiv

S r1{ls

module.

As a consequence, we can deduce that Runiv
S r1{ls – Tmr1{ls, and that the multipli-

city of automorphic forms with a given characteristic zero Galois representation is

constant along connected components of Runiv
S r1{ls. In particular, one can extend

any such multiplicity results from the classical case to the case of non-classical Hida

families.

In Chapter 8, which is based on joint work with Jack Shotton, we return to the

geometric properties of Loc˝
G,O. In Chapters 3 and 4, we showed which irreducible

components of SG are smooth over O, and studied the algebraic properties of various

unions of irreducible components. However, these results all relied on the important

condition that q is considerate towards G{O. Complications arise when studying

Loc˝
G,O when ‘q is inconsiderate’.

First, the isomorphism of Proposition 2.0.5 breaks down over the special fibre, so

the model of Langlands parameters via Weil-Deligne representations is no longer the

correct model, and we must instead study the moduli of tame Langlands parameters

seen in [DHKM23] whose R-points are:

Loc˝,tame
Ĝ,O pRq “ Z1

pW 0
F {IF , ĜpRqq “ tΦ,Σ P ĜpRq ˆ ĜpRq : ΦΣΦ´1

“ Σq
u.

The second problem is best demonstrated when Σ is regular unipotent (this is the
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analogous situation to when the nilpotent matrix N of SG,O is regular nilpotent).

Here, the matrix Φ, which forced to have eigenvalues in the ratio qn´1 : qn´2 : ... :

q2 : q : 1, is no longer regular semisimple along the special fibre. This leads to the

special fibre containing singularities and complicates the behaviour of Loc˝
G,O.

Thus, we restrict ourselves to the following special case. We define the Steinberg

component to be the scheme theoretic closure in Loc˝,tame
G,O of the open subset of the

generic fibre

tpΦ,Σq P Loc˝,tame
G,L : Σ is regular unipotentu.

This space is precisely the inconsiderate companion to the space of Chapter 3 The-

orem 3.0.1. In this chapter, we study the geometry of this space in the ‘extremely

inconsiderate’ case, when q ” 1 mod l. (We note that this is the same as the

condition of ‘quasi-banality’ of [CHT08] Definition 5.1.1 when l is not-banal).

In this case, the reduction mod l of Φ is central in G and the pmod lq-reduction of

the Steinberg component XSt,F is closely related to the scheme over F whose R-points

are:

XpRq “ tpM,Nq P N pRq ˆ N pRq : rM,N s “ 0u

This scheme is very non-singular, in contrast with Theorem 3.0.1 of Chapter 3.

Consequently, we no longer expect the patched modules that arise on this space to

be locally free coherent sheaves. This would, in general, lead to distinct mod l

Hecke-eigenforms with the same Hecke eigenvalues, (and consequently, the same

Galois representation).

In Chapter 8, we use methods of Snowden, Vilonen and Xue, and Ngo ([Sno18],[VX16]

and [Ngo18] resp.) to study the Steinberg irreducible component XSt,O in the ex-

tremely inconsiderate setting. We will use the cohomological calculations of section

3 alongside a Lemma of Snowden (Lemma 2.1.4 of [Sno18]) to prove the theorem:

Theorem 1.0.5. Suppose that l is sufficiently large (as defined in remark 8.4). Let

G “ GL3 and let XSt,O be the Steinberg component for G. There is a scheme YO
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smooth over O and a proper birational map

p : YO Ñ XSt,O

so that XSt,O has resolution-rational singularities (in the terminology of [Kov22]).

Further, XSt,O is Cohen-Macaulay and the special fibre XSt,F is reduced and normal.

We remark that Conjecture 8.4.4 suggests that l ‘sufficiently large’ means l ě 11 in

this context.

We also use these methods to both give equations for XSt,O (see section 8.5) and to

calculate the Weil-class group of XSt,O (see section 8.6).



Chapter 2

Considerateness and the relation

to the stack of L-parameters

Let O be a regular local ring, with residue field F of characteristic l or 0 and fraction

field L. Let G be a split connected reductive algebraic group over O (note that for

most of Chapters 2-4, we will consider G “ GLn) and g its Lie algebra. Throughout

the paper, whenever l is in play, we will necessarily assume that l ą hG, where hG

is the Coxeter number of G.

Definition 2.0.1. Let hG be the Coxeter number of G. Let q P Oˆ be an element

of O such that qk ´ 1 is invertible in O for all k ď hG. When this occurs, we say

that q is considerate towards G over O.

In applications, O will either be a field, or will be the ring of integers in some field

extension of Ql. Notice that in this case, q being considerate towards G is equivalent

to all 1, q, q2, ..., qhG being distinct in the residue field k (in a sense, q is ‘careful’

where it treads around G).

We wish now to point out that this definition of ‘considerateness’ is very closely

related to two other conditions.

Definition 2.0.2. Let G be a split reductive group over a field L of characteristic l.

We say:
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• l is G-banal, if l divides the order of the finite group GpFqq.

• l is LG-banal, if for any algebraically closed field E of characteristic l, then

any ϕ P Loc˝

Ĝ,E
can be ‘Frobenius twisted’ by some g P CĜpϕpIF qq (that is, the

centraliser of the inertia subgroup) so that ϕg is a smooth point of Loc˝

Ĝ,E
.

The ‘Frobenius twist’ of a representation ϕ : WF Ñ ĜpLq by g P CĜpϕpIF qq

is the representation ϕg : WF Ñ ĜpLq which is equal when restricted to the

inertia subgroup, and for which ϕgpFrobq “ ϕpFrobqg.

Proposition 2.0.3. Suppose that F is a field of positive characteristic l ą hG and

that G is a split reductive group. Then we have the following implications.

• If q is considerate towards G{F, then l is LG-banal.

• If l is LG-banal, then l is G-banal.

• if G “ GLn or SLn, then all concepts are equivalent.

Proof. By definition, q is considerate towards G{F when the order of q inside F is

greater than the Coxeter number h. This is equivalent to
ś

nďh Φnpqq “ 0 inside

F where Φn is the nth cyclotomic polynomial. This is the polynomial χ˚
G,1pqq of

Theorem 5.7 of [DHKM23] (see definition B.3). Hence, by Theorems 5.6 and 5.7 of

[DHKM23], it follows that this condition implies that l is LG-banal.

That l is LG-banal implies l is G-banal is a consequence of the Chevalley-Steinberg

formula of Theorem 25a) [Ste16];

|GpFqq| “ qN
ź

d

pqd
´ 1q

where d ranges over the fundamental degrees of the Weyl group of G. If l divides
ś

dpqd ´1q, then l certainly divides
ś

nďh Φnpqq as the Coxeter number is the highest

fundamental degree. This shows the second statement by virtue of Theorem 5.7 of

[DHKM23].
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In the case G “ GLn or SLn, we get |SLnpFqq| “ qN
śn

i“2pqi ´ 1q. Hence, if l is

G-banal, it follows that the order of q in F is at least n. Thus, q is considerate

towards G{F. GLn is similar.

Remark. It is worth noting that Corollary 5.27 of [DHKM23] gives the criterion that

G-banal and LG-banal are equivalent concepts whenever G is unramified and has

no exceptional factors (here, triality forms of type D4 are also considered excep-

tional.), but this property does not hold in general (see, for example Remark 5.22

of [DHKM23]).

We make the following definition.

Definition 2.0.4. We define the affine scheme SG,O over O as the scheme whose

R-points (R, an O algebra) are tpΦ, Nq P GpRq ˆ gpRq : AdpΦqN “ qNu

Corollary 5.4 of [Bel16] shows that this is a reduced scheme in characteristic zero,

and hence is a variety when O is a field of characteristic zero. As discussed in the

introduction, we may picture SG,O as the moduli space of unipotent Weil-Deligne

representations, pr,Nq over GpOq. The unipotent condition is equivalent to that of

rpIF q “ 1.

Proposition 2.0.5. 1. Suppose q is considerate towards G{O. Then the natural

map p : SG Ñ g factors through the nilpotent cone NG.

2. When G is split, and l ą hG then SĜ,O is isomorphic to a closed subscheme

of the moduli space of tame parameters Z1pW 0
F {PF , ĜqO (See section 1.2 of

[DHKM23] for a definition of this space).

3. Along with the conditions of part 2, assume l is LG-banal. Then the closed

subscheme that is the image of SĜ,O inside Z1pW 0
F {PF , ĜqO is a connected

component.

Proof. Notice, that since l ą hG, in the notation of section 2.4 of [Cot22] l is very
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good. Hence, by Theorem 4.13 of [Cot22], we have an isomorphism of O-algebras

Orgs
G

Ñ OrtsW

given by the restriction of functions on g to t where t is a Cartan subalgebra of g,

and W is the Weyl group.

By chapter 3 of [Hum90] (see table 1 of section 3.7, and table 2 of section 3.18)

the generators of RrtsW are homogeneous of degree at most the Coxeter number hG,

and hence the same is true for RrgsG. We note that while this reference restricts

to the case of a field of characteristic zero, the results extend to O, because |W | is

invertible inside O, and OrtsW is a free O-module.

Let s be a generator of OrgsG, and pΦ, Nq P SGOpRq be an R-point. Then as s

is G-invariant and homogeneous of degree at most the Coxeter number hG, have

spAdpΦqNq “ spqNq implies spNq “ qispNq, for some i ď hG. As q is considerate

towards G{O, we have that qi ´1 is a non-zero divisor in O, and hence that spNq “ 0.

We then see that the image of N inside the GIT quotient g{{G is zero. Since l is very

good, Theorem 4.12 of [Cot22] shows that N lies in the R-points of the nilpotent

cone. Part 1 of the proposition follows.

When G is a split group, Z1 “ Z1pW 0
F {PF , ĜqO has a model as an affine scheme, flat

over O (since l ‰ p) with R-points equal to

Z1
pW 0

F {PF , ĜqOpRq “ tpϕ, σq P ĜpRq
2 : ϕσϕ´1

“ σq
u.

Since l ą hG, and we can invert by all primes ď hG, the exponential and logarithm

maps of section 6 of [BDP17] are well defined polynomials, and thus we have an

isomorphism between the nilpotent cone in NG and unipotent cone UG. Hence, we

have a map

SĜ,O Ñ Z1
pW 0

F {PF ĜqO

pϕ,Nq ÞÑ pϕ, expNq

which is an isomorphism onto the closed subscheme of Z1pW 0
F {PF ĜqO given by those
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elements pϕ, σq with σ P U Ď Ĝ, where U is the unipotent cone.

For part 3, suppose l is LG-banal. Let U` be the scheme-theoretic image of

Z1pW 0
F {PF ĜqO through the second projection onto Ĝ. We note, that σ P U` ne-

cessarily has σ conjugate to σq. Let T Ă Ĝ and W “ WĜ be a maximal split

torus and the Weyl group of Ĝ respectively. Consider the map Ĝ Ñ Ĝ{{Ĝ – T {W .

The image of U` through this map has image given by the scheme-theoretic union

S :“
Ť

wPW tσ P T : σq “ wσu, which is a finite flat scheme over O. Thus, since

the fibres of this map are conjugacy classes, they are connected, and hence, the

connected components of U` are in bijection with those of S. If l is LG-banal, then

Z1
F is reduced, and thus, so is SF. Hence, since S is finite flat over O, we see that the

connected components of the generic fibre are in natural bijection with those of the

special fibre, and thus the same is true for Z1. Hence, as SĜ,O defines a connected

component over the generic fibre, it is a connected component of Z1.

We will also need the following results.

Proposition 2.0.6. 1. The algebraic group G acts on SG via the simultaneous

conjugation

g.pΦ, Nq “ pgΦg´1,AdpgqNq.

Assume now that q is considerate towards G{O.

2. The scheme SG,O is a complete intersection of relative dimension dimG over

O.

3. The scheme SG,O is flat over O.

4. Define the second projection map p : SG Ñ NG as earlier. If C is a GpLq

conjugacy class inside NG,L Ď NG, then the closed subscheme XC :“ p´1pCq Ă

SG is a union of irreducible components, and we have SG “
Ť

C XC.

5. If in addition G “ GLn, the XC are irreducible components of Sn,O :“ SGLn,O,

and these can be naturally identified with partitions of n. We call the component

corresponding to the partition p, Xp.
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6. The scheme SG,O is reduced.

Proof. 1. This is clear.

2. As SG,O is isomorphic to the fibre over 0 of the map G ˆ g Ñ g given by

pg,Nq ÞÑ AdpgqN´qN , we see that each irreducible component is of dimension

at least dimpGq ` dimpOq. To show equality, suppose Y is some irreducible

component with larger dimension. Then there is some prime v P SpecpOq with

residue field kpvq for which the fibre Yv of Y over v has dimension strictly

greater than dimpGq. But since q is considerate over the residue field, it is

considerate over kpvq, and thus, the morphism p : SG,kpvq Ñ gkpvq factors

through the nilpotent cone Nkpvq. For each G-conjugacy class C inside Nkpvq,

choose a closed point J P C. Then the fibres of the map p´1pCq Ñ C over any

closed point x are a Torsor over the centraliser CGpJq, which is a smooth group

scheme, because l ą hG. We remark that the map p´1pCq Ñ C is flat with

smooth fibres, and thus is smooth, and open. One calculates via orbit-stabiliser

that the dimension of p´1pCq is

dimpp´1
pCqq “ dimpCq ` dimpCGpJqq

“ dimpOrbGpJqq ` dimpStabGpJqq

“ dimpGq

and thus that SG,kpvq is the set theoretic union of dimension dimpGq locally

closed subschemes. It follows that every irreducible component of SG,O is at

most dimension dimpGq`dimpOq, and thus that SG,O is a complete intersection.

3. Let R “ OSG,O pSG,Oq. From the previous part, all irreducible components have

the same dimension dimpGq`dimpOq. As SG,O “ SpecpRq is Cohen-Macaulay,

for any prime ideal P Ĳ O, the unmixedness theorem tells us that all associated

primes of R{P have the same height as P. Since no irreducible component

is contained inside the fibre over any prime v P SpecpOq, this shows that any

such associated prime Pa has Pa XO “ P . It follows that any element mOzP is
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a non-zero divisor in R{P . Via induction, we can then show that any regular

sequence in O is regular in R.

Let w be a maximal ideal of R, and Rw the localisation. Take any regular

sequence of O, extend it to a regular sequence of Rw, and let A be the subring

of R generated by this regular sequence. Then Rw is finitely generated as

an Aw-module and since Rw is Cohen-Macaulay, it follows from the miracle

flatness theorem that Rw is flat over Aw, and hence is flat over O. As every

closed point localisation of R is flat over O, it follows that R is flat over O.

4. As SG,O is flat over O, the irreducible components of SG,O are exactly those

of the open subscheme SG,L. This then follows from the proof of part 2, after

noticing that as sets, NL “
Ť

C CL.

5. For G “ GLn, recall that the centraliser CGLnpJq is irreducible. Then the map

p´1pCq Ñ C is flat with irreducible smooth fibres, and thus is smooth, and

open. Since centralisers inside GLn are irreducible, C is irreducible, and p is

open, by [Sta23, Lemma 004Z], it follows that p´1pCq is irreducible, and thus

so is XC . The final claim follows from the theory of Jordan normal forms.

6. By the previous part, SG,O is a complete intersection, so it satisfies Serre’s

condition S1. It remains to show that it has Serre’s condition R0; that is, every

irreducible component has a regular point on it. This follows because the map

p´1pCq Ñ C is smooth whenever C is a conjugacy class inside NL.

We note here that this directly generalises the results of Hartl, Hellman and Helm

categorised in Proposition 2.1 of [Hel21], which proves the above in the case G “ GLn

over a field of characteristic 0.

https://stacks.math.columbia.edu/tag/004Z
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2.1 Lemmas in commutative algebra and

algebraic geometry

In the remaining part of this chapter we prove some lemmas from algebraic geometry

and commutative algebra that we will need later

Lemma 2.1.1. Let G be a smooth algebraic group over a scheme S, and let X be an

S scheme. Suppose we have a morphism m : G ˆS X Ñ X defining a group action

of G on X. Then m is a smooth morphism.

Proof. First, since G is smooth, we have that G Ñ S is smooth. Hence the projection

pX : G ˆS X Ñ X obtained by the base change of this map to X, is a smooth

morphism. Now, consider the automorphism, ϕ of GˆS X given by pg, xq ÞÑ pg, g.xq.

as this is an isomorphism, it is a smooth morphism.

Now, observe that m “ pX ˝ ϕ is a composite of smooth morphisms, and is hence

smooth.

Lemma 2.1.2. Let P be one of the properties of local Noetherian rings: regular,

local complete intersection, Gorenstein or Cohen Macaulay. Then for pA,mq a local

Noetherian ring with maximal ideal m, A is P if and only if the m-adic completion

Â is P .

Proof. For the properties Cohen Macaulay and regular, this is [Sta23, Lemma 07NX]

and [Sta23, Lemma 07NY] respectively. For a local complete intersection, let A “

R{xx1, ..., xky, with R local regular. Since R̂{x1, ..., xn – Â, and by [Sta23, Lemma

07NV], it follows easily that A is a local complete intersection ring if and only if Â is.

To prove the statement for the Gorenstein property, notice that A is Cohen-Macaulay

if and only if Â is. Hence, after quotienting by a maximal length regular sequence

pxq in A, we see that it is sufficient to prove that A{pxq is Gorenstein if and only

if Â{pxq – ˆpA{pxqq is. But since these rings are zero dimensional (and are hence,

Artinian), the natural inclusion A{pxq ãÑ ˆpA{pxqq is an isomorphism. This proves

the Lemma.

https://stacks.math.columbia.edu/tag/07NX
https://stacks.math.columbia.edu/tag/07NY
https://stacks.math.columbia.edu/tag/07NV
https://stacks.math.columbia.edu/tag/07NV
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Lemma 2.1.3. Let P be one of the local properties: regular, local complete inter-

section, Gorenstein or Cohen-Macaulay. Let f : X Ñ Y be a smooth morphism of

schemes. Let p P X. Then Y is P at fppq if and only if X is P at p.

Proof. Suppose f has relative dimension n. Then by [Sta23, Lemma 054L] the map

f factors locally through
X An

Y

Y

g

f

with g étale. Thus, it suffices to prove the lemma in the case f étale, and in the

case An
Y Ñ Y . In the étale case, since étale morphisms induce isomorphisms on the

completions of stalks, and by the previous lemma, for a Noetherian local ring, R is

P if and only if the completion R̂ is P , the result of the lemma follows in the étale

case. In the affine case, it suffices to note that a local ring R is P if and only if

Rrxsx is P .

Lemma 2.1.4. Suppose pO, p,Fq is a regular local ring and R is a Noetherian local

flat O-algebra, with R̄ “ R{p. Then R is Cohen Macaulay if and only if R̄ is Cohen

Macaulay.

Proof. Suppose O has dimension d, and R has dimension n. Suppose R is Cohen

Macaulay. Let x1, ..., xd be a regular sequence for O. Then this can be extended to

a maximal regular sequence for R, x1, ..., xd, xd`1, ..., xn. We see immediately that

since O is regular, that xd`1, ..., xn is a regular sequence for R̄ of length n ´ d, and

since the dimension of this is also n ´ d, we see R̄ is Cohen Macaulay.

Suppose conversely, that R̄ is Cohen Macaulay. Then a maximal regular sequence

ȳ1, ..., ȳn´d for R̄ can be lifted to a sequence y1, ..., yn´d in R, such that x1, ..., xd,

y1, ..., yn´d is a regular sequence for R. The ring R is then Cohen Macaulay.

Lemma 2.1.5. Let R be a finite local O-algebra, and let x, x̄ be prime ideals of R

that give rise to the following commutative diagram.

https://stacks.math.columbia.edu/tag/054L
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R O L “ Or1
l
s

F

x

x̄

Then

R^
x̄

„

1
l

ȷ^

x

– R^
x

Proof. Notice that since Rzx Ě Rzx̄ Y t1
l
u, that Rx̄

“1
l

‰

x
– Rx. Further, since R is

of finite type over O, we have
Ş

n x̄
n “ 0, and thus we have an injection Rx̄ ãÑ R^

x̄ .

This gives us a local homomorphism inclusion

Rx “ Rx̄

„

1
l

ȷ

x

ãÑ R^
x̄

„

1
l

ȷ

x

We notice that Rx{x – L, and that
„

R^
x̄

„

1
l

ȷ

x

ȷ

{x –

„

lim
ÐÝ

n

pR{x̄n
q{x

ȷ

r1{ls – lim
ÐÝ

n

pR{px, lnqqr1{ls – plim
ÐÝ

O{lnqr1{ls “ L.

Thus, by [Sta23, Lemma 0394], we have that R^
x̄

“1
l

‰^

x
is generated by the same

topology as R^
x , and is a finite R^

x - module. It is now easy to see from looking at

the residue field that the natural map

R^
x Ñ R^

x̄

„

1
l

ȷ^

x

is a surjection. It is also an injection, because the two rings have the same topology.

In particular, if a sequence inside Rx converges to zero inside R^
x̄

“1
l

‰^

x
, then it must

converge to zero inside R^
x . This shows that the kernel is zero, and thus that the

map is an isomorphism.

Corollary 2.1.6. Let Λ be a finite type O-algebra, and let R1, R2 be finite type

Λ-algebras, and let R “ R1 pbΛR2. let x P SpecpRr1{lsq be a maximal ideal. Then

pR1 bΛ R2q^
x – Rr1{ls^

x . In particular, if Rir1{ls is regular for each i, then Rr1{ls is

regular.

Proof. Set x̄ as the maximal ideal of R1 bΛ R2. Then for any x as above, we get a

commutative diagram as in the statement of Lemma 2.1.5. Hence, by Lemma 2.1.5,

https://stacks.math.columbia.edu/tag/0394
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we see that

pR1 bΛ R2qr1{ls^
x – ppR1 bΛ R2qx̄^

qr1{ls^
x – Rr1{ls^

x .

To show the last part, it is sufficient to notice that since R1r1{lsbΛr1{lsR2r1{ls, Rr1{ls

are finite type over L, they are x-adically separated, and thus are regular at x if and

only if R1r1{ls bΛr1{ls R2r1{ls^
x , Rr1{ls^

x are. Since R1r1{ls bΛr1{ls R2r1{ls is regular if

and only if both Rir1{ls are, this completes the corollary.





Chapter 3

Smoothness results for Xp

In section 7.2 in [Bel16], Bellovin proves in the case where O is a field of characteristic

0, that the component Xn of SGLn,O corresponding to the regular nilpotent orbit is

smooth. The following theorem generalises this result to general connected reductive

groups G, and more general regular local rings. Let O be a regular local ring with

residue characteristic l or 0 as before. For general connected reductive groups G, we

can generalise the decomposition of Proposition 2.0.6, to give SG,O “
Ť

C XC where

for an adjoint orbit, C, of the nilpotent cone NG Ă g, XC is the closure p´1pCq with

p : SG,O Ñ NG the natural G-equivariant projection. Note, that for more general

groups G, these may not be irreducible. Indeed, if C is the regular nilpotent adjoint

orbit of SL2, then XC is the union of two connected components. The following

theorem shows that in C is a regular nilpotent conjugacy class, then XC is smooth,

and thus the connected components are the same as the irreducible components.

Theorem 3.0.1. Let G{O be a smooth reductive group with smooth centre, Z, and

let g be the Lie algebra of G, and suppose q P O is considerate towards G over O.

Suppose that C Ă NL is either the 0 or the regular nilpotent adjoint orbit. Then

XC is smooth over O, and when C is the regular nilpotent orbit, XC has the same

number of connected components as Z.

Proof. Consider first the case C “ 0. Then XC “ tpΦ, 0q P SG,Ou – G via the map
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projecting to the Φ-coordinate. Since G{O is smooth, this proves the theorem.

For the regular nilpotent case, note that XC is flat and finitely generated over O,

so by [Sta23, Lemma 01V8] we have that XO is smooth over O if and only if it

is smooth over every localisation. It is therefore sufficient to prove the theorem

after a localisation to a field. Without loss of generality, let k “ kppq be a field for

p P SpecpOq, and assume all subsequent schemes are schemes over k. Consider now,

the case C Ď N is regular nilpotent adjoint orbit. Since qJ and J are conjugate,

there is an element ΦJ P G such that AdpΦJq.J “ qJ . We claim that ΦJ is regular

semisimple.

Since J is regular nilpotent, there is a unique Borel subgroup, B, such that J P LiepBq.

Let Π “ tα1, ..., αhu be the corresponding set of simple roots of G, and let teαu P g

be the set of eigenvectors of g corresponding to the roots of G. We can write

J “
ř

αPΠ cαeα P g for cα ‰ 0. Hence, we see

ÿ

αPΠ
qcαeα “ qJ “ AdpΦJqJ “

ÿ

αPΠ
cααpΦJqeα

and so αpΦJq “ q for every simple root α. If β is a positive root of G, we see that

β is some positive combination of the αi. Suppose β “
ř

i miαi. Then βpΦJq “

qm1`...`mh . As q is considerate towards G over O (and hence is considerate towards

G over k), we see that no βpΦJq “ 1. Hence ΦJ is regular semisimple by Lemma

12.2 of [Bor91].

Since ΦJ is regular semisimple, it is contained in a unique torus T Ă G. Consider

the k-scheme

Y “ ZΦJ ˆ T.J.

We first claim that this is a subscheme of XC . Let psΦJ ,Adptq.Jq P ZΦJ ˆ T.J .

Then

AdpsΦJqpAdptqJq “ AdpsΦJtqJ

“ AdptΦJsqJ because T is abelian

“ AdptqAdpΦJqJ

https://stacks.math.columbia.edu/tag/01V8
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“ AdptqpqJq

“ qAdptqJ.

Hence, ZΦJ ˆ T.N Ă XC . Since XC is closed, we then see that the closure

ZΦJ ˆ T.J “ ZΦJ ˆ T.N “ Y Ă XC .

We now claim that Y is smooth over k. This is clear, because Z{O is smooth by

hypothesis and T.J “ Spanpeα1 , ..., eαh
q is isomorphic to affine space, Ah

k . Define the

morphism

f : G ˆ Y Ñ XC

pg, pΦ, Nqq ÞÑ pgΦg´1,AdpgqNq.

Consider the following commutative diagram

G ˆ Y XC

G ˆ ZΦJ Z.GΦJ

where GΦJ
denotes the conjugacy class of ΦJ in G, the vertical maps come from the

“forget N" projections pg, sΦJ , Nq P GˆY ÞÑ pg, sΦJq P GˆZΦJ and pΦ, Nq P XC ÞÑ

Φ P ZGΦJ
respectively and the horizontal maps are defined via the conjugation action

of g P G on Y so that the diagram commutes, and is a pullback square. The bottom

map, m, is flat with fibres isomorphic to StabGpΦJq, which is simply the Torus T , as

ΦJ is regular semisimple. This shows that m is smooth. Hence, since the map f is

the base change of m to XC , by Proposition 10.1 of [Har77] we see that f is smooth.

Then by Lemma 2.1.3, since every point on G ˆ Y is regular, this implies that its

image in XC is a smooth variety. To finish the proof, it is enough to show that

this map is surjective. This is the same as saying that every pair pΦ, Nq P XC is

conjugate to something in Y .

Let pΦ1, Nq P |XC |. Then there exists a regular nilpotent J 1 such that AdpΦ1qJ 1 “ qJ 1.

Then J 1 is conjugate to J by some element g P G{O (i.e. AdpgqJ 1 “ J). Then if

Φ “ gΦ1g´1, we see AdpΦqJ “ qJ . By conjugating by an element of StabGpJq,
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we can assume without loss of generality that Φ lies in T . Hence, s “ ΦΦ´1
J is

an element of StabT pJq. We claim that StabT pJq “ Z. It is clear that there is a

closed immersion Z Ď StabT pJq, so we need only show this is surjective (as Z is

smooth). Since s P StabT pJq commutes with J , we see that AdpsqJ “ J , and thus
ř

αPΠ cααpsqeα “
ř

αPΠ cαeα. Since eα form a basis of g, we see that αpsq “ 1 for

each α P Π. Since this is a base, we see that βpsq “ 1 for all roots β of G. Hence,

s acts as the identity on the adjoint representation, and so lies in the centre s P Z.

Since AdpgqN conjugates with Φ in the correct way, we see that N is a span of

simple roots of G, and thus lies in T.J . This shows that pΦ1, Nq is the image of

pg´1, pAΦJ ,AdpgqNqq P G ˆ Y . This proves the smoothness statement.

For the statement about the connected components, it suffices to notice that since

G is connected, that the connected components of G ˆ Y biject with those of Y ,

which in turn biject with the connected components of Z. Hence it suffices to show

that there is a bijection between the connected components of G ˆ Y and XC . It

is sufficient to show that the fibres of the G equivariant map f : G ˆ Y Ñ XC are

connected. Since the action of G gives an isomorphism on fibres, it is sufficient to

show that the fibres of Y Ď XC are connected. Let P “ pΦ, Nq P Y . Then f´1pP q “

tpg,Φ1, N 1q P G ˆ Y : gΦ1g´1 “ Φ and AdpgqpN 1q “ Nu. Since Φ,Φ1 P ZΦJ Ă T are

regular semisimple, any g P G such that gΦg´1 “ Φ1 lies in the normaliser NGpT q.

Notice that for any simple root α of G, αpgΦg´1q “ αpΦ1q “ q “ αpΦq. This implies

that g must actually lie in ZGpT q “ T , and thus we get a well defined isomorphism

f´1
pP q Ø T

pg,Φ1, N 1
q ÞÑ g

pg,Φ,Adpgq
´1

pNqq ÞÑg

Thus, since T is connected, so is f´1pP q. This proves the final part of the theorem.

The conditions that G has smooth centre and that q P O is considerate towards G{O



25

are quite mild conditions. For example, if O is a field of characteristic 0 and q isn’t

a root of unity, q is automatically considerate. Further, when q P Z is a prime power,

if the residue characteristic, l, of O is larger than qtpGq, then q is considerate. Since

the centre of a reductive group G is smooth in large enough characteristic, this also

shows that XC is smooth over O with sufficiently large residue characteristic.

One may hope that the previous result holds for all components of SG. i.e. that

all components of SG are smooth. When G “ GL2, this is true since the only two

components are those arising from the nilpotent conjugacy classes of N “ 0, and

N “ p 0 1
0 0 q, and both cases studied in the previous theorem, (see also proposition

4.8.1 of [Pil08]). In [Bel16], Bellovin proves that this fails for GL3, demonstrating

that the component X21 is not smooth, and gives a description of all the points

where singularities exist. Theorem 3.0.3 generalises these results, and shows us that,

for G “ GLn and any partition p ‰ 1n, n, the component Xp is always singular.

We define some notation. For a an element of an O-algebra R, and k a positive

integer, define the k ˆ k matrix,

Mkpaq “

¨

˝

aqk´1 ... 0 0
... ... ... ...
0 ... aq 0
0 ... 0 a

˛

‚.

If k is a positive integer, and b “ pb1, ..., bk´1q P Rk´1 are a k ´ 1-tuple of elements

of R, then set the k ˆ k matrix

Jkpbq “

¨

˚

˝

0 b1
0 b2

0
...
...

˛

‹

‚

.

Lemma 3.0.2. Let R be a finitely generated O-algebra. Let p “ k1 ` k2 ` ... ` km

be a partition of n. For ai P Rˆ, and bi P Rki´1 the pair
¨

˚

˝

¨

˝

Mk1 pa1q ... 0 0
... ... ... ...
0 ... Mkm´1 pam´1q 0
0 ... 0 Mkm pamq

˛

‚,

¨

˚

˝

Jk1 pb1q ... 0 0
... ... ... ...
0 ... Jkm´1 pbm´1q 0
0 ... 0 Jkm pbmq

˛

‹

‚

˛

‹

‚

P XppRq.

Proof. When each of the vectors bi lie in Rˆ, the pair
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pΦ, Nλq “

˜˜

Mpk1,a1q ... 0
... ... ...
0 ... Mpkm,amq

¸

,

˜

λJk1 ... 0
... ... ...
0 ... λJkm

¸¸

P p´1
pCpqpRq

is inside XppRq. Hence, we obtain a morphism of schemes over R:

π1 : Gn´m
m,R Ñ p´1

pCpqR

pb1, ..., bmq ÞÑ

˜˜

Mpk1,a1q ... 0
... ... ...
0 ... Mpkm,amq

¸

,

˜

Jk1 pb1q ... 0
... ... ...
0 ... Jkm pbmq

¸¸

which is an isomorphism onto it’s scheme theoretic image and which extends naturally

to a map π : An´m
R Ñ Sn,R. Since the Zariski closure of Gn´m

m,R inside An´m
R is An´m

R ,

we see that the Zariski closure of the image of π1 inside Sn,R is the image of π. Since

Xp,R is the Zariski closure of p´1pCpqR, it follows that Xp,R contains the image of π.

The lemma then follows by looking at the R points of the image of π and Sn,R.

Theorem 3.0.3. Let G “ GLn, and let p be a partition of n with p ‰ 1n, n. Then

Xp is singular.

Proof. Let F be the residue field of O. Consider the following Cartesian diagram

Xp,F SpecpFq

Xp,O SpecpOq

If the map Xp,O Ñ SpecpOq were smooth, then by Proposition 10.1b) of [Har77] the

map Xp,F Ñ SpecpFq would also be smooth. Hence, without loss of generality, it

suffices to show that Xp,O is singular when O “ F a field.

Choose any point P “ pΦ0, 0q P Xp, with Φ0 semisimple. Define three subvarieties

of Sn that contain P as follows.

1. Let C “ GLn.P , be the GLn-orbit of P .

2. Let D be the variety of diagonal matrices inside GLn, seen as a subvariety of

Sn via the inclusion Φ ÞÑ pΦ, 0q.
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3. Let N0 “ tN P gln : Φ0NΦ´1
0 “ qNu viewed as a closed subvariety of Sn via

the inclusion N ÞÑ pΦ0, Nq.

Let Frϵs be the ring of dual numbers. The first claim we make, is that the tangent

space TPC can be identified with the elements of Xppkrϵsq that are GLnpFrϵsq-

conjugate to P , and have image P under the base change of the natural map

SpecpFq Ñ SpecpFrϵsq which sends ϵ ÞÑ 0. Note that we have a smooth surjective

morphism GLn Ñ C, given by the conjugation action g ÞÑ g.P , and so we have a

surjection on the level of tangent spaces and a surjection GLnpFrϵsq Ñ CpFrϵsq. This

shows that any element of CpFrϵsq is conjugate to P via some element of GLnpFq.

The rest of the claim is obvious.

Consider the tangent spaces of these varieties at P , TPC,TPD and TP N0. We claim

that they form a direct sum inside TPSn. Let P 1 “ pΦ1, 0q P TPC X TPD. Then Φ1

is a diagonal matrix in GLnpFrϵsq, and is conjugate to Φ0. Since diagonal matrices

are only conjugate to each other if they share the same entries, this means that

Φ1 lies inside GLnpFq, and thus, P 1 “ P . To show that TP N0 intersects at the

origin with TPC or TPD, it suffices to notice that in either case, an element of TPC

or TPD takes the form P 1 “ pΦ1, 0q, while an element P 1 P TP N0 takes the form

P 1 “ pΦ0, Nq P SnpFrϵsq. For these to be equal, we must have Φ1 “ Φ0 and N “ 0,

so P 1 “ P . This proves the claim.

We split the proof of this theorem into two cases: the case where the parts of p

are not all the same and the case where p “ km for integers k,m ą 1 such that

km “ n. In both cases, the following strategy will be to count the number of linearly

independent deformations in each of the subspaces of TPXp, TPC, TPDX TPXp and

TP N0 XTPXp and combine to give a lower bound on the dimension of TPXp, showing

that dimF TP ą n2 “ dimXp. This will prove the theorem.

Consider the case p “ pk1, ..., kmq with k1 ě k2 ě ... ě km, not all equal. Consider

the n ˆ n diagonal matrix, Φ0 “ Diagpqn´1, ..., q, 1q. Notice that Φ0 has distinct

eigenvalues, so that the stabiliser of P “ pΦ0, 0q is the n dimensional torus Tn.
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By orbit-stabiliser, we then note that the orbit space must be n2 ´ n dimensional,

and thus dimFpTPCq ě n2 ´ n. Consider now the deformations in TP N0. Let

pΦ0,Mϵq P XppFrϵsq Ď SnpFrϵsq. The defining equation of Sn,F shows that all non-

zero entries of M must lie on the off-diagonal. Further, to ensure pΦ0,Mϵq lies on

the component defined by p, one may choose, in accordance with Lemma 2.1.2, M

as a block diagonal matrix, with blocks of size k1, k2, ..., km, each of the form
¨

˝

0 ˚
0 ˚

...
0 ˚

0

˛

‚

This leaves us with
ř

ipki ´1q “ n´m different non-zero entries of M , each of which

defines a deformation, all of which are linearly independent, because they are inside

TP pGLn ˆ glnq “ gl2n. Finally, consider the blocks of Φ defined by the partition p.

For each 1 ď i ď m, consider the matrix

Ei “

¨

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˚

˝

Ik1

Ik2

. . .

p1 ` ϵqIki

. . .

Ikm

˛

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‹

‚

P MnpFrϵsq

where Ik denotes the k ˆ k identity matrix.

We consider the deformation pΦEi, 0q and note that this is contained in XppFrϵsq via

Lemma 2.1.2, because we can split ΦEi into block diagonal parts of sizes k1, ..., km.

This gives us m further deformations, which are similarly linearly independent

because they are linearly independent inside TP pGLn ˆ glnq. Finally, we note that

we may reorder the blocks of the partition p, to give us the deformation pΦEm`1, 0q

where

Em`1 “

¨

˚

˝

p1 ` ϵqIkm

In´km

˛

‹

‚

P MnpRrϵsq

By the same reasoning, this deformation also lies on XppFrϵsq, and since km ă k1,
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we see this adds a genuinely new deformation inside TPD, because the deformations

tpΦEiq : 1 ď i ď m ` 1u are all linearly independent in TP pGLn ˆ glnq.

Piecing everything together, we have at least pn2 ´nq ` pn´mq `m` 1 “ n2 ` 1 ą

dimpXpq linearly independent deformations, which exceeds the dimension of the

variety Xp. We conclude that dimF TPXp ě dimXp and that P is a singular point.

Now, in the case p “ km, we instead choose a point

pΦ, 0q “

¨

˝

¨

˝

Mpk,qkpm´1q´1q ... 0 0
... ... ... ...
0 ... Mpk,qk´1q 0
0 ... 0 Mpk,1q

˛

‚, 0

˛

‚P XppRq.

so that Φ is a diagonal matrix, with increasing powers of q going up the diagonal,

with a single power of q repeated, that being qk´1. Then the conjugation orbit is

n2 ´ pn ´ 2 ` 4q “ n2 ´ n ´ 2 dimensional. The TP N0-space deformations give

us again, pk ´ 1qm deformations on the off-diagonal, and an additional two in the

entries marked with a ˝ below, appearing because of the repeated power of q in Φ
¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

... ... ... ... ...
... qk ...

... qk´1 ...

... qk´1 ...

... qk´2 ...

... ... ... ... ...

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˝

... ... ... ... ...
... 0 ˚ ˝ ...
... 0 0 ˝ ...
... 0 ˚ ...
... 0 ...

... ... ... ... ...

˛

‹

‹

‚

˛

‹

‹

‹

‹

‚

P XppRq.

Each of these deformations lie inside TPXp because they are conjugate inside GLn,Frϵs

to pairs in the form of Lemma 2.1.2.

Now if we define Ei as before, for i ď m, we see by the lemma that pΦEi, 0q P XppRq

for each i, and this gives us another m deformations. Finally, let Em`1 be as follows:

Em`1 “

¨

˚

˚

˚

˚

˚

˚

˚

˝

Ikpm´1q

1 ` ϵ

1

p1 ` ϵqIk´1

˛

‹

‹

‹

‹

‹

‹

‹

‚

P MnpFrϵsq.

Then, because ΦEm`1 is conjugate to something of the form in Lemma 2.1.2, it lies

inside XppFrϵsq. Notice that the deformations ΦEi for i “ 1, ...,m ` 1 are linearly

independent, because they are linearly independent inside TP pGLnq Ě TPD. This
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gives a total of pn2 ´n´ 2q ` ppk´ 1qm` 2q ` pm` 1q “ n2 ´n`mk` 1 “ n2 ` 1 ą

n2 “ dimpXpq deformations, and shows that Xp is singular at pΦ, 0q.



Chapter 4

Φ-Regular points of Xďp are

Cohen-Macaulay

In this chapter, we take a closer study of certain unions of irreducible components

of Sn,O which appear as the support of certain maximal Cohen-Macaulay sheaves

that appear as the outputs of patching functors.

4.1 Motivation

Let F {Ql be a finite field extension as before. Let WF be the Weil group of F and

let IF be the inertia subgroup.

Recall the dominance partial order on the set of partitions of n, which can be defined

as follows: For p and q two partitions of n, we say q ď p if their corresponding

nilpotent conjugacy classes Cq and Cp inside the nilpotent cone, N , satisfy Cq Ď C̄p.

Equivalently, if p “ pp1, ..., pkq and q “ pq1, ..., qmq and we adopt the conventions

that qi “ 0 if i ą m and pi “ 0 if i ą k, then q ď p if and only if for every j P N,
řj

i“1 qi ď
řj

i“1 pi.We can make the following definition.

Definition 4.1.1. For a given partition p of n, let Xďp :“
Ť

qďp Xq Ď Sn.

We present a little motivation why these varieties are interesting to study.
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Definition 4.1.2. An inertial type is an isomorphism class of continuous repres-

entations τ : IF Ñ GLpV q where V is a finite dimensional E “ Q̄l-vector space,

that extends to a representation of WF . A basic inertial type is an inertial type, that

extends to an irreducible representation of WF . Let I0 be the set of all basic inertial

types.

Let Partn be the set of all partitions of n, and Part “
Ť

n Partn. In [Sho18] it is

shown that there is a bijection between inertial types and the set I of all functions

P : I0 Ñ Part

of finite support, where and Part is the set of all partitions. We will denote the

partition corresponding to τ P I0 by Pτ . For a partition p P Part, we say that the

degree degppq is the number n that p partitions. We can extend deg to the set I by

degpPqpτ0q “ degpPpτ0qq

and we can extend the dominance ordering on Part by saying that two inertial types

P and Q have P ě Q if and only if they have the same degree, and if Ppτ0q ě Qpτ0q

for each τ0 P I0.

Let ρ̄ : GF Ñ GLnpF̄q be a representation with inertial type τ . Let R˝pρ̄q be

its framed deformation ring. and let R˝pρ̄, τq be the framed fixed inertial type

deformation ring.

In chapter 6 of [EGS15] (see section 6.1 for full details), the notion of a patching

functor (at least in the GL2 case, though this notion can be generalised to more

general connected reductive groups) is defined as an exact covariant functor M8 from

the category of K “ GLnpOq representations on finite free O-modules to the category

of coherent sheaves on a certain spaceX8 “ Specpx

Â

vR
˝
vrrx1, ..., xhssq a finite product

of local deformation rings, with certain properties. One of the properties we expect

is that a certain K-representation σpτq (arising naturally from an inertial type τ) has

the coherent sheaf M8pσpτqq supported on the closed subscheme X8pτq, of points
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in X8 with inertial type ď τ . Further, M8pσpτqq is maximal Cohen-Macaulay over

X8pτq. We may hope then, since spaces arise as the supports of these patching

functors, that the spaces X8pτq may be Cohen-Macaulay. This would happen if we

can prove that each Xďp is Cohen-Macaulay.

4.2 The main theorem

Let L be the fraction field of O as before. Let Nn Ď gln be the nilpotent cone. Recall

there is a GLn-equivariant morphism, given by the second projection, p2 : SGLn Ñ Nn.

For each partition p, we can find the locally closed subspace Cp Ď Nn given by the

preimage of the conjugacy class given by p inside pNnqL through the flat morphism

Nn ãÑ pNnqL. Then C̄p is a union of conjugacy classes in Nn, and C̄p “
Ť

qďp Cq.

We may henceforth view Xďp “ p´1
2 pC̄pq as the preimage of C̄p under the projection

p2. This is advantageous, as it shows us that any additional equations specifying

Xďp as a subspace of Sn need only have equations in the variables of N (namely,

those equations that define the subvariety C̄p).

Definition 4.2.1. We define XΦ-reg
ďp Ď Xďp to be the open subscheme over O defined

as the complement of the equation DiscpχΦpXqq “ 0.

Remark. Let P P |Xďp| lie in the fibre of a prime p P Spec O with residue field

K “ kppq and separable closure Ksep, and suppose P corresponds to a (GalK-

equivalence class of) pair of matrices pΦ, Nq P XďppKsepq. We notice that P P |XΦ-reg
ďp |

if and only if DiscpχΦpXqq R p, which occurs if and only if DiscpχΦpXqq ‰ 0 inside

the field kpP q, which is equivalent to the eigenvalues of Φ being distinct inside a

separable closure kpP qsep, by virtue of charpkpP qq “ 0 or l ą n.

Theorem 4.2.2. Suppose that q is considerate towards GLn over O. Let p be a

partition of n. Then XΦ-reg
ďp is Cohen-Macaulay.

To approach this problem, we start by reducing the question to a ring RP (to be

defined) with which we can make explicit calculations.
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Let p P Spec O, and let K “ kppq. Choose a separable closure Ksep as before, and

let P P |pXďpq| lie above p correspond to a pair of matrices pΦ, Nq P XΦ-reg
ďp pKsepq.

We may assume without loss of generality that P “ pΦ, 0q with Φ semisimple. This

is because the set of non-Cohen-Macaulay points is a closed subspace of Xďp. If

P “ pΦ, Nq P Xďp is a non-Cohen-Macaulay point, then the action of GLn on Xďp

provides an isomorphism of local rings of any two points in the orbit of P . Thus,

any point in the orbit of P is non-Cohen-Macaulay. Further, the semisimplification

pΦs.s., 0q is contained inside the closure of the orbit of P , and thus, pΦs.s., 0q is also

a non-Cohen-Macaulay point. As a consequence, if we show that every point pΦ, 0q

with Φ semisimple is Cohen-Macaulay, we can deduce that Xďp is Cohen-Macaulay,

and thus we can reduce our attention to points of this form.

Let M be the stabiliser of Φ (necessarily M is of the form M “
śm

i“1 GLki
). We

may assume that Φ has the form of a block diagonal matrix

Φ “ Diagpa1Ik1 , a2Ik2 , ..., amIkmq where Ik are k ˆ k identity matrices, and all the

ai are distinct with an ordering chosen such that ai{aj “ q inside Ksep implies that

j “ i ` 1.

We set VM to be the subscheme of Xďp, flat over O defined as tpΦ, Nq P M ˆ gln :

ΦNΦ´1 “ qN and N has conjugacy class ď pu. We now set RP :“ OVM ,P to be the

local ring at P of this space.

Lemma 4.2.3. Let P be one of the properties of local rings: smooth/ a local complete

intersection/ Gorenstein/ Cohen-Macaulay. The scheme Xďp is P at P if and only

if RP is P at P .

Proof. We have a pullback diagram of O-schemes

GLn ˆ VM Xďp

GLn ˆ M GLn

where the map horizontal maps are given by conjugation pg, xq ÞÑ gxg´1, and the

vertical maps are ‘forget the second coordinate’. Localising and completing along
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maximal ideals gives us a pushout diagram of complete local rings as follows:

krGLns^
I

pbR^
P R^

krGLns^
I

pbkrM s^
P krGLns^

P

with R the local ring of P on Xďp Since this is a pushout diagram, the top map is

smooth if the bottom map is smooth. We claim that the bottom map is smooth.

Let CO be the category of complete Noetherian local O-algebras with residue field

k. We have T :“ krGLns^
P – OrrX1, ..., Xn2ss represents the functor on CO given

by A P CO maps to those elements of GLnpAq which map to P in GLnpkq. This is

the same as the set P ` glnpmAq, where mA is the maximal ideal of A. likewise,

krM s^
P – OrrY1, ..., Ydim M ss represents the functor A ÞÑ P ` LiepMqpmAq.

Consider A “ krts{t2 P CO, then the map of Zariski tangent spaces

rI ` glnpmAqs ˆ rP ` LiepMqpmAqs ÑP ` glnpmAq

pI ` m,P ` xq ÞÑpI ` xqpP ` mqpI ` xq
´1

“ P ` rx, P s ` mq

is a surjection because M “ StabpP q.

This provides us with an injection mT {m2
T Ñ m{m2 where mR is the maximal ideal

of T “ krGLns^
P and m is the maximal ideal of krGLns^

I
pbkrM s^

P . Let T1, ..., Tr be a

set of elements of m such that they form a basis of pm{m2q{pmR{m2
Rq. Then, since

T and krGLns^
I

pbkrM s^
P are both power series rings, we see that krGLns^

I
pbkrM s^

P “

RrrT1, ..., Trss. This shows that the bottom map is smooth, and hence that the top

map is smooth.

As a result,

R^
P rrX1, ..., Xn2ss – krGLns

^
I

pbR^
P

is a power series ring in R^. Thus, if P is one of the properties in the lemma, we see

that R is P if and only if R^ is P via Lemma 2.1.2, if and only if R^
P rrX1, ..., Xn2ss

is P if and only if RP is P . This completes the lemma.
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Thus, to show that XΦ-reg
ďp is Cohen Macaulay at P P XΦ-reg

ďp it suffices to show that

RP is Cohen-Macaulay. We now give an explicit description of RP .

Consider the universal coordinates of VM which (in block matrix form blocks of size

k1, ..., km:

¨

˝

¨

˝

a1pIk1 `M1q 0 ... 0
0 a2pIk2 `M2q ... 0
... ... ... ...
0 0 ... ampIkm `Mmq

˛

‚,

¨

˝

b1,1 b1,2 ... b1,n

b2,1 b2,2 ... b2,n

... ... ... ...
bn,1 bn,2 ... bn,n

˛

‚

˛

‚

Where each Mi is a ki ˆ ki matrix, and each bi,j is a ki ˆ kj matrix.

The equation ΦN “ qNΦ gives us the following for each pi, jq

aipIki
` Miqbi,j “ qajbi,jpIkj

` Mjq “ 0

which in turn give us

pai ´ qajqbi,j ` aiMibi,j ´ qajbi,jMj “ 0

when ai ´ qaj is non-zero in Ksep, it is invertible inside Op, Hence

bi,j “ ´pai ´ qajq
´1aiMibi,j ` pai ´ qajq

´1qajbi,jMj.

Let I be the ideal of RP generated by the coordinates of bi,j. Then we see from the

above equation that I “ mI where m is the maximal ideal of RP . Consequently by

Nakayama’s lemma, we see that I “ 0.

Thus, bi,j “ 0 unless j “ i ` 1 and ai “ qai`1 in Ksep. When ai ´ qai`1 P p, set

π “ a´1
i pai ´ qai`1q P p, then we get that the equations given by ΦN “ qNΦ give

us exactly

pMibi,i`1 ´ bi,i`1Mi`1q ` πbi,jpI ` Mi`1q “ 0

inside VM . We will, from now on, write Ni :“ bi,i`1

As a result, we get the following expression for RP :
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OprM1, ...,Mm, N1, ..., Nm´1s

xtMibi,i`1 ´ bi,i`1Mi`1 ` πNipI ` Mi`1q : i ă mu Y tsome equations only in Niuy

Where the equations in the coordinates of Ni are those that describe the conjugacy

classes inside C̄p. As Op is regular, and RP is a Noetherian flat local Op-algebra, by

Lemma 2.1.4 we see that RP is Cohen Macaulay if and only if the ring

R̄P “
KrM1, ...,Mm, N1, ..., Nm´1s

xtMibi,i`1 ´ bi,i`1Mi`1 : i ă mu Y tsome equations only in Niuy

is Cohen Macaulay. Hence we reduce the problem to showing that R̄P is Cohen

Macaulay.

When P “ pΦ, 0q is Φ -regular, the Mi and Ni are 1 ˆ 1-matrices and thus commute,

and so we can simplify even further. By setting λi “ Mi ´ Mi`1, we see that that

λiNi “ 0. We hence have reduced the problem to proving that this explicit R̄P is

Cohen-Macaulay, and have proven most of the following lemma:

Lemma 4.2.4. For S Ď t1, ..., n ´ 1u, define NS :“
ś

iPS Ni. Let P be Φ-regular,

and let R̄P be as above. Then there exists a family F of subsets of t1, ..., n´ 1u such

that the local ring R̄P has the following form:

R̄P “

ˆ

Krλ1, ..., λn, N1, ..., Nn´1s

IP

˙

m

,

where

IP :“ xtλiNi|1 ď i ă nu Y tNi|ai{ai`1 ‰ qu Y tNS|S P Fuy,

and m is the maximal ideal xλ1, ..., λn, N1, ..., Nn´1y. Furthermore, every set S P F

has empty intersection with the set ti|bi ‰ 0u.

Proof. We note that the only part left to prove is the statement about the remaining

equations in the Ni that describe the conjugacy class of nilpotent matrix
¨

˝

0 N1 0 ... 0
0 0 N2 ... 0
... ... ... ...
0 0 0 ... Nn´1
0 0 0 ... 0

˛

‚P C̄p
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in Nn. By Lemma 4.3.1 in the next section, the equations that cut out Wp, defined

as the closed subscheme of Cp with all non-zero entries on the off-diagonal, are given

by products of the form

0 “
ź

iPS

Ni

for some set S Ď t1, ..., n ´ 1u. The Lemma follows.

4.3 Calculations of the families F that appear for

a given partition p

In this section, we study and calculate the equations that specify the union Xďp.

We start off with a lemma.

Lemma 4.3.1. Let W` – An´1
O be the subscheme of the scheme Mn of nˆn matrices

over O, consisting of matrices with entries only on the off-diagonal, so that

W “ t

¨

˚

˝

0 N1
... ...

... Nn´1
0

˛

‹

‚

: pN1, ..., Nn´1q P An´1
u

Let Wp be the subscheme Wp “ pCp X W`qred. Then Wp is cut out by squarefree

products of the Ni.

Proof. Let f “ fpN1, ..., Nn´1q be a polynomial in the Ni such that f “ 0. Since

Wp is invariant under conjugation by the maximal torus T of GLn, This action

defines an action on f via λ.fpN1, ..., Nn´1q “ fpλ1λ
´1
2 N1, ..., λn´1λ

´1
n Nn´1q, where

λ “ pλ1, ..., λnq P T , and we must have that fpNq “ 0 implies λ.fpNq “ 0. View f as

a polynomial in Ni, and coefficients in the ring of polynomials krN1, ..., Ñi, ..., Nn´1s

(where Ñi means ‘omit Ni’). Consider the action of λ “ pλ1, ..., λnq where λj “ α P

kˆ for all j ď i and λj “ 1 for all j ą i. Then this action preserves the coefficients of

f , and multiplies the Nk
i term by αk. We hence see that all the Ni-graded parts of f

lie in the ideal. Since this is true for each i, we see that there are generating equations,

tfs : s P Iu such that each fs is a product of Ni’s, up to a constant coefficient, which
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we may forget without loss of generality. To prove that the generators are squarefree,

it is sufficient to note that Wp is a reduced scheme.

We now give a complete description of the families F that occur. They depend only

on the partition p. We will denote the family obtained from RP by Fp, as this only

depends on p.

Remark. Notice that as written in Lemma 4.2.4, F has no dependence on paiq.

If we wanted to we could change this, and include tiu P F for each i such that

ti|ai{ai`1 ‰ qu.

Let T Ď S Ď t1, ..., n ´ 1u. Then NT |NS, so that we can enlarge Fp to make it an

order ideal of Ppt1, .., n ´ 1uq. With this, we can observe that we have an order

reversal, in that if q, p are partitions of n, and q ď p, then Fq Ě Fp (this happens,

precisely because Cq Ď C̄p).

Proposition 4.3.2. There is an algorithm to calculate Fp given a partition p of n.

Proof. The algorithm consists of the following steps.

Step 1 Form the set Q of all ‘minimal breaking’ partitions q “ pq1, ..., qrq defined to

be partitions of n such that there exists some integer s such that:

a) for every j ă s,
řj

i“1 qi ď
řj

i“1 pi.

b)
řs

i“1 qi “
řs

i“1 pi ` 1

c) for each i P ps, rs, qi “ 1.

Note that the minimal referred to here does not mean that q is minimal in the

dominance order.

Step 2 For each minimal breaking partition q “ pq1, ..., qrq, form the family Sq of all

subsets of t1, ..., n´ 1u that are a union of runs of length q1 ´ 1, q2 ´ 1, ..., qs ´ 1

of the following form. To clarify, let |a, q| be the set ta, a`1, a`2, ..., a`q´1u

(we call this a run of length q). The sets inside Sq are exactly those of the
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form |a1, qσp1q ´ 1| Y |a2, qσp2q ´ 1| Y ...Y |as, qσpsq ´ 1| with ai`1 ě ai ` qσpiq for

every i, and some permutation σ P Syms.

Step 3 Take Fp to be the order ideal generated by the set
Ť

qPQ Sq.

It can be seen that this produces Fp, since the equations Sq exclude, on the level of

points, any nilpotent matrix in the conjugacy class defined by q. Since any partition

q1 “ pq1
1, ..., q

1
r1q such that q1 is not dominated by p has some minimal breaking

partition q such that q ď q1, namely, if q1 has s the smallest integer such that
řs

i“1 q
1
i ą

řs
i“1 pi, then q “ pq1

1, ..., q
1
s´1,

řs
i“1 pi ` 1 ´

řs´1
i“1 q

1
i, 1, ..., 1q does the job,

we also see that any nilpotent matrix in the conjugacy class defined by q1 is also

excluded. Since each q is not dominated by p, this shows that any matrix in the

conjugacy class defined by p is not excluded, and nor is any partition dominated by

p. This shows that, at the level of points, these equations determine Wp.

We now present an example of this calculation in the case of n “ 6 and p “ p4, 1, 1q,

and a diagram that shows Fp for each partition p of n “ 6. On the left of the

diagram are the partitions of 6, ordered according to the dominance order and on

the right are the families Fp, that correspond to p.

A brief remark about notation For clarity’s sake, instead of usual set notation,

I will denote the set containing the numbers 1, 3 and 5 by the triple 135. Further,

given sets 12,134,234, I will denote the order ideal F Ď Pp1, ..., 4q generated by

12, 134 and 234 by angled bracket notation x12, 134, 234y. We note that xHy “ H.

Example 1. Let n “ 6, and p “ p4, 1, 1q. Then the minimal breaking partitions of

p are p5, 1q, p4, 2q and p3, 3q. Form Sp5,1q “ t1234, 2345u, the set of all runs of length

4. The set Sp4,2q “ t1235, 1345u is the set of all sets containing a run of length 3

and a run of length 1, and the set Sp3,3q “ t1245u is the only set that contains two

runs of length 2. Thus, we see that Fp “ x1234, 2345, 1235, 1345, 1245y.
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4

31

22

212

14

xHy

x123y

x12, 23y

x12, 13, 23y

x1, 2, 3y

xall triplesy

xall pairsy

Figure 4.1: A depiction of the families Fp that appear for each
partition p of 4. On the left is the partitions of 4,
ordered with respect to the dominance partial order,
and on the right are the generators of the family Fp.

6

51

42

41232

321

23313

2212

214

16

xHy

x12345y

x1234, 2345y

xall quadruplesyx123, 234, 345y

x123, 234, 345, 1245y

x12, 23, 34, 45yxall triplesy

x12, 23, 34, 45, 135y

xall pairsy

x1, 2, 3, 4, 5y

Figure 4.2: A depiction of the family Fp that corresponds to each
partition p of 6 as with Figure 4.1
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7

61

52

512 43

421

413

321

322

3212

231314

2213

215

17

xHy

x123456y

x12345, 23456y

xall quintuplesy x1234, 2345, 3456y

B

1234, 2345, 3456,
12356, 12456

F

xall quadruplesy

x123, 234, 345, 456y

B

123, 234, 345, 456,
1245, 1256, 2356

F

B

123, 234, 345, 456,
1245, 1246, 1256, 1346, 1356, 2356

F

x12, 23, 34, 45, 56y

xall triplesy

B

12, 23, 34, 45, 56,
135, 136, 146, 246

F

xall pairsy

x1, 2, 3, 4, 5, 6y

Figure 4.3: A depiction of the families Fp that appear for each
partition p of 7.
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4.4 Proof of Theorem 4.2.2

We prove a slight generalisation of Theorem 4.2.2:

Theorem 4.4.1. Suppose K is a field, let n P N and let F Ď Pp1, ...., nq. Let

R :“ Krλ1, ..., λn, N1, ..., Nns{I

where I is the ideal generated by the set

tλiNi|1 ď i ď nu Y tNS|S P Fu

where NS “
ś

iPS Ni as before. Suppose m Ĳ R is the maximal homogeneous ideal.

Then depthpm,Rq ě n.

Lemma 4.4.2. Suppose R is a ring and x P R is a non-unit, such that for any

a P R, we have

x2b “ 0 ùñ xb “ 0.

Define

T :“ Rrys

xxyy

Then y ´ x is a non-unit and not a zero divisor of T .

Proof. There is a grading on T defined by Tn “ Ryn for each n P N. Let f P T .

Since x is not a unit, the degree 0 part of py ´ xqf cannot be 1. Thus, y ´ x is not

a unit.

To show that it is a non-zero divisor, let f P T be such that py ´ xqf “ 0. Write

f “
řn

i“0 aiy
i for some n P N, and ai P R. Then:

0 “ py ´ xqf “ any
n`1

`

n´1
ÿ

i“0
pai ´ xai`1qyi`1

´ xa0 (4.4.1)

“ any
n`1

`

n´1
ÿ

i“0
aiy

i`1
´ xa0 (4.4.2)

“ fy ´ xa0. (4.4.3)
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Hence, fy “ xa0 P T0, and so fy P p
Àn`1

i“1 Tiq X T0 “ 0 and so fy “ 0. So each of

the constituents of the sum are zero too. Hence a0y “ 0.

So we have an element a0 P R such that ya0 “ xa0 “ 0 As ya0 “ 0 in T , we

must have that ya0 P xxyy Ĳ Rrys. So ya0 “ xyb for some b P Rrys, and since

degpya0q “ 1, have degpxbq “ 0, so we can choose b P R. Hence, pa0 ´ xbqy “ 0 in

Rrys, and so a0 “ xb in R. Hence 0 “ xa0 “ x2b. So by hypothesis, a0 “ xb “ 0.

and so f “
řn

i“1 aiy
i.

Recall that fy “ 0. So fy “
řn

i“1 aiy
i`1 “ 0. Then each of the terms ai “ 0 in

S, so ai P xxyy in Rrys. So f “
řn

i“1 aiy
i “ 0. This shows that y ´ x is not a zero

divisor.

Lemma 4.4.3. Let R be a ring, and J some finite indexing set, and aj P R for

j P J . Let T “ Rrxs{I where I “ xtxaj|j P Juy. Then x has the property that, for

any a P T

x2a “ 0 ùñ xa “ 0

Proof. First, we see that Rrxs is a graded ring, and I is a homogeneous ideal of

degree 1, so T is also graded. Suppose a P T is such that x2a “ 0. in S. We may

lift a to a1 P Rrxs, so that x2a1 P I. Then, for some bj P Rrxs,

x2a1
“

ÿ

jPJ

xajbj,

and so

xa1
“

ÿ

jPJ

ajbj.

Consider the degree zero part of xa1. Then

0 “
ÿ

jPJ

ajbjp0q,
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where bjpdq denotes the degree d part of bj. Therefore

xa1
“

ÿ

dě1

ÿ

jPJ

ajbjpdqxd

“
ÿ

jPJ

xajcj P I

with cj :“
ř

dě1 bjx
d´1 P Rrxs. Hence, xa “ 0 in S.

Proof of Theorem 4.4.1. We show explicitly that the sequence tλi ´Ni : i “ 1, ..., nu

is a regular sequence. Let Ji “ xλ1 ´ N1, ..., λi´1 ´ Ni´1y, and let

Ri :“ R{Ji

–
Krλ1, ..., λn, N1, ..., Nns

xtNS|S P Fu Y tλ1 ´ N1, ..., λi´1 ´ Ni´1uy

–
Arλi, Nis

xtNS|S P F and i P Su, λiNiy

–
p

ArNis

xNiat|tPT y
qrλis

xλiNiy

where T is some finite indexing set, at P A are some explicit elements of A, and

A “
Krλ1, N1, ..., λi´1, Ni´1, λi`1, Ni`1, ..., λn, Nns

xtλjNj|j ‰ iu Y tλ1 ´ N1, ..., λi´1 ´ Ni´1u Y tNS|S P F and i R Suy
.

Now, since B :“ ArNis

xNiat|tPT y
is of the form in Lemma 4.4.3, we know Ni is an element

of B such that N2
i a “ 0 ùñ Nia “ 0, for a P B. Hence, by Lemma 4.4.2, λi ´ Ni

is a non-unit, non-zero divisor in Ri. It then follows that λ1 ´ N1, ..., λn ´ Nn is a

regular sequence of length n.

We now prove Theorem 4.2.2.

Proof. Proof of Theorem 4.2.2 Recall from Lemma 4.2.4 that the local ring of a

P P XΦ-reg
ďp is of the following form:

R̄P “
Krλ1, ..., λn, N1, ..., Nn´1s

xtλiNi|1 ď i ă nu Y tNi|ai{ai`1 ‰ qu Y tλi|bi ‰ 0u Y tNS|S P Fuym
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with F a family of subsets of t1, ..., n ´ 1u.

We first can make a simplification. Notice that, by expanding F to include the sets

ttiu|ai{ai`1 ‰ qu, we may assume without loss of generality that the second set of

generators is empty. Reorder the i, so that ti|bi ‰ 0u “ tk ` 1, k ` 2, ..., n ´ 1u for

some k. Now, since for any S P F , S X ti|bi ‰ 0u “ H, we can view F as a family

of subsets of t1, ..., ku.Hence we see that

R̄P –
Krλ1, ..., λk, N1, ..., Nks

xtλiNi|1 ď i ď ku Y tNS|S P F Ď Ppt1, ..., kuquy
rNk`1, ..., Nn´1, λns.

By Theorem 4.4.1, Krλ1,...,λk,N1,...,Nks

xtλiNi|1ďiďkuYtNS |SPFĎPpt1,...,kuquy
has a regular sequence of length

k given by λ1 ´ N1, ..., λk ´ Nk. We can now extend this regular sequence by

Nk`1, ..., Nn´1, λn to get a regular sequence of length n in mP Ĳ R̄P . This shows

that depthpmP , R̄P q ě n. Further, since R̄P is a local ring of a subvariety V of the

affine variety Spec
´

Krλ1,...,λn,N1,...,Nn´1s

xλiNi|1ďiăny

¯

which has dimension n, we see

n ď depthpR̄P q ď dimpR̄P q ď n

which implies equality throughout, Therefore R̄P is Cohen-Macaulay of dimension

n.

By the previous reductions, it follows that XΦ-reg
ďp is Cohen Macaulay.

4.5 The Gorenstein condition

Once we know that our rings are Cohen-Macaulay, and we have a regular sequence

for each of the rings, we can answer the question about when exactly the ring RP is

Gorenstein.

Theorem 4.5.1. Suppose P P XΦ-reg
ďp . Then the local ring RP is Gorenstein if and

only if either:

1. p “ 1n; or
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2. Every component Xq that contains P , has q ď p.

Proof. We prove that the rings in these two cases are Gorenstein first. In case 1,

Xďp – GLn is smooth, therefore is Gorenstein. In case 2, we notice that the natural

inclusion map Xďp ãÑ Sn induces an isomorphism of local rings at P . Because Sn is

a complete intersection, this implies that the local ring RP is a complete intersection

too, and thus is Gorenstein.

For the converse, suppose RP is Gorenstein. Then RP has type 1, ie, that

dimpExtdim RP pRP {m,RP qq “ 1.

Consider the maximal regular sequence

px1
q “ pλ1 ´ N1, ...., λk ´ Nk, Nk`1, ..., Nn´1, λnq

of R̄P given in the previous section. Extend it by a regular sequence of O to a

maximal regular sequence of RP ,

pxq “ py1, ..., ydim O, λ1 ´ N1, ...., λk ´ Nk, Nk`1, ..., Nn´1, λnq.

Consider the Artinian ring R0 :“ RP {pxq –
KrN1,...,Nn´1s

xtN2
i :1ďiănuYtNS |SPFuy

with F as before.

Let m̃ be the maximal ideal of R0. By Lemma 3.1.16 of [BH93], we note that

Extdim RP pRP {m,RP q – HompR0{m̃, R0q – SocpR0q. We can describe the socle of

R0 as the span of those monomials corresponding to the maximal sets in the partially

ordered set T “ tS Ď t1, ..., n´ 1u|NS ‰ 0u (ordered by inclusion). So since R0 has

one-dimensional socle, we see that T has a unique maximal element.

Assume we are not in the case p “ 1n. Then each singleton tiu P T . And thus, since

T has a unique maximal element, the union t1, 2, ..., n ´ 1u P T . This shows that

the family F “ Pp1, ..., n ´ 1qzT is empty, and thus, that RP is isomorphic to the

local ring of P in Sn. This shows the second condition.
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4.6 The Cohen Macaulay-ness of non-Φ-regular

points

When P “ pΦ, Nq is a non-Φ-regular point, we make the following conjecture.

Conjecture 4.6.1. Let p be a partition of n. Then Xďp is Cohen-Macaulay.

In other words, we conjecture that Theorem 4.2.2 should be true, without the extra

condition of Φ-regularity. One can prove this in a special case strong enough to

prove the conjecture in the case n “ 3.

Definition 4.6.2. Let Φ P GLn be an n ˆ n matrix, Let λ “ pλ1, ..., λkq be a list of

non-negative integers that add up to n. We say that Φ has signature λ, if Φ has k

distinct eigenvalues a1, ..., ak where we require without loss of generality that these

eigenvalues are ordered in such a way, that whenever ai{aj “ q, then j “ i` 1, and

the generalised ai-eigenspace is λi-dimensional.

Note that Φ may not have a unique signature, because we only specify one property

the ordering of the ai should satisfy, which is not strong enough to specify uniqueness.

It should also be noted that Φ has signature p1, 1, ..., 1q if and only if it is regular.

Thus we have shown already that points P “ pΦ, Nq such that Φ has signature

p1, 1, ..., 1q are Cohen-Macaulay.

For the following result, we need a tool from commutative algebra called ‘graded

Hodge algebras’. We recall the definition and main result of these objects, and I

refer the interested reader to [BH93].

Let H be a finite set. Set NH as the set of monomials in the variables H. Notice

that NH naturally has a partial order on it defined by divisibility in the R-algebra

RrNHs. An ideal of monomials is an order ideal Σ Ď NH of the set of monomials,

as ordered by divisibility. A generator of Σ is a minimal element, in the divisibility

partial order. We call the set of monomials outside Σ the standard monomials.
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Definition 4.6.3. Let R be a ring and A an R-algebra. Let H be a partially ordered

finite set, with an inclusion into A.

We call A a graded Hodge algebra governed by Σ if the following axioms hold:

1. A is a free R-module, which admits the set of standard monomials NHzΣ as a

basis.

2. For any generator of t P Σ, we can write t as a finite R-linear combination of

standard monomials

t “
ÿ

sPNH zΣ

rss,

such that for any divisor y P H of t, and for any s that appears in the above

sum, there is a divisor z P H of s for which z ă y in the partial order of H.

The equations found in axiom 2 are called the straightening laws. When all straight-

ening laws are trivial (ie, the right hand side is 0) we call this a discrete graded

Hodge algebra.

Let IndpAq Ď H be the subset of H consisting of elements that appear on the right

hand side in one of the straightening law equations. Let h P IndpAq be a minimal

element under the ordering of H. Give A the filtration defined by Filn “ xhny, and

form the graded algebra

GrhA :“
à

n

pFiln{Filn`1q.

This is a new graded Hodge algebra, governed by the same data as A, but with every

instance of h removed from the straightening laws (so IndpGrhAq Ď IndpAqzthu).

Theorem 4.6.4. Let H be a partial order, and Σ an order ideal in NH . Let A be a

graded Hodge algebra with data pH,Σq.

If GrhA is Cohen-Macaulay, then so is A.

Proof. See the proof of Corollary 7.1.6 of [BH93].
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Corollary 4.6.5. If the discrete Hodge algebra with data pH,Σq is Cohen Macaulay,

then so is any graded Hodge algebra with data pH,Σq.

We can now continue with the following theorem.

Theorem 4.6.6. Suppose that k1, k2,m are all non-negative integers, and that m ą 0.

Suppose that Φ is of signature pk2, 1m, k1q. Then the local ring at a point pΦ, Nq P Xďp

is Cohen-Macaulay.

Proof. Let Ni, λi, νi,j and ϵi,j all be formal variables with appropriate indices. The

local deformations at pΦ, Nq take the form

¨

˚

˚

˝

¨

˚

˚

˝

qm`1pIk2 `M2q

qmp1`λk1`mq

...
qp1`λk1`1q

pIk1 `M1q

˛

‹

‹

‚

,

¨

˚

˝

0k2 v2
0 Nk1`m´1

... ...
0 v1

0k1

˛

‹

‚

˛

‹

‹

‚

where

M1 “

¨

˚

˚

˝

λk1 ϵk1,k1´1 ... ϵk1,2 ϵk1,1
ϵk1´1,k1 λk1´1 ... ϵk1´1,2 ϵk1´1,1

... ... ... ... ...
ϵ2,k1 ϵ2,k1´1 ... λ2 ϵ2,1
ϵ1,k1 ϵ1,k1´1 ... ϵ1,2 λ1

˛

‹

‹

‚

is a k1 ˆ k1 matrix,

M2 “

¨

˚

˚

˝

λk1`m`k2 νk2,k2´1 ... νk2,2 νk2,1
νk2´1,k2 λk1`m`k2´1 ... νk2´1,2 νk2´1,1

... ... ... ... ...
ν2,k2 ν2,k2´1 ... λk1`m`2 ν2,1
ν1,k2 ν1,k2´1 ... ν1,2 λk1`m`1

˛

‹

‹

‚

is a k2 ˆ k2 matrix, v2 “

˜

Nn´1
...

Nk1`m

¸

is a k2-dimensional column vector and v1 “

p Nk1 ... N1 q is a k1-dimensional row vector.

Notice that because the Ni’s are located on the block off-diagonal, there are k1 `

pm ´ 1q ` k2 “ n ´ 1 in total.

In this case, the equations take the form:

1. M2v2 “ v2λk1`m
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2. λk1`1v1 “ v1M1

3. λi`1Nk1`i “ Nk1`iλi for 1 ă i ă m

4. Some other equations in the variables Ni, N1 and Nm which depend only on

the equations defining Cp, the closure of the nilpotent conjugacy class of p.

From section 4 of [Wey89], these equations are polynomials which are simply

sums of square-free monomials.

We give our ring the structure of a graded Hodge algebra. Consider the generator

set H “ tλi, νi,j, ϵi,j, Niu and give H any partial order such that

• for any i, j, a, b, Ni ą ϕj ą ϵa ą νb

• ϕn ą ϕn´1 ą ... ą ϕk1`m`1 ą ... ą ϕk1`2 ą ϕ1 ą ϕ2 ą ... ą ϕk1 ą ϕk1`1

Now take Σ Ă NH to be the order ideal generated by tλi ` 1Ni : i ą k1u Y tλiNi :

i ď k1u and finally, we consider the straightening laws, for each generator in the

above generating set:

for i ď k1; Niλi “ Niλk1`1 ´

k1
ÿ

j“1,j‰i

Njνj,i

for k1 ă i ă k1 ` m; Niλi`1 “ Niλi

for i ě k1 ` m; Niλi`1 “ Niλk1`m ´

n
ÿ

j“k1`m`1,j‰i

ϵi,jNj

It is readily checked that these equations do form a straightening law, due to our

choice of order on the generating set, H.

Utilising Corollary 4.6.5, it can be seen that this ring is Cohen-Macaulay if the

corresponding discrete graded Hodge algebra (with the same data) is. However,

since the discrete graded Hodge algebra R0 “ Orλ1, ..., λn, N1, ..., Nns{I with I “

xtλiNi : i ď k1u Y tλi ` 1Ni : i ą k1uy ` J with J an ideal generated by squarefree
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monomials in the Ni is of the form in Theorem 4.4.1, it follows that R is Cohen-

Macaulay.

Corollary 4.6.7. Let p be a partition of 3. Then Xďp is a Cohen Macaulay variety.

Proof. The cases p “ 3 and p “ 13 are a complete intersection and a smooth variety

respectively. This leaves only p “ 21. Let P “ pΦ, Nq P Xď21. Then Φ can have

signature p1, 1, 1q, p2, 1q, p1, 2q or 3. The case p1, 1, 1q is the Φ-regular case, so is

CM by Corollary 12. The signature p3q case also follows because P is only on the

component X13 , which is smooth, ergo Cohen-Macaulay. The cases p2, 1q and p1, 2q

are covered by Theorem 4.6.6.



Chapter 5

Automorphic forms for unitary

groups

We now turn to an application of the smoothness result found in chapter 3. In this

chapter, we define the space of ordinary automorphic forms, and the Hecke algebra

attached to it. We then state a freeness result, and prove it in the Chapter 6 of this

thesis.

Let l be a prime. Suppose F` is a totally real number field with an imaginary

quadratic extension F , such that for any prime v of F` that lies above l, then v

splits in F . We will also make the rather strong assumption that F : F` is an

unramified extension. Let Sl be the set of all primes of F` that lie above l. Let

GF ` and GF be the absolute Galois groups of F` and F respectively. Let L be a

finite extension of Ql with ring of integers O, and residue field k. Let L̄ be a choice

of algebraic closure. We will assume that L is large enough that it contains all of

the embeddings F ãÑ L̄ lie inside L. Let c P GalpF : F`q “ GF `{GF be the unique

non-trivial element, given by complex conjugation. For a P F , we will denote cpaq

by ā when convenient.
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5.1 Unitary groups

Consider D{F a central simple algebra of F -dimension n2, and let SD be a finite set

of primes of F` that split in F . Suppose that

• D splits at places w of F that do not lie above some place in SD;

• There is an isomorphism Dop – D bF,c F of F -algebras;

• The intersection SD X Sl “ H;

• For all places w of F above some place in SD, Dw is a division algebra;

• Either n is odd, or n is even and n
2 rF` : Qs ` #SD ” 0 pmod 2q.

By [HT01] section 3.3 we can find an involution of the second kind on D, that is,

because of the condition that either n is odd, or n is even with n
2 rF` : Qs ` #SD ”

0 (mod 2q, we may construct a map

˚ : D Ñ D

such that:

• ˚ is an F` linear anti-automorphism of D;

• pa˚q˚ “ a for all a P D;

• When restricted to F , ˚ coincides with complex conjugation.

In addition, we assume that this involution of the second kind is positive, that is,

for any γ P Dzt0u,

trF :QrtrD{F pγγ˚
qs ą 0.

Such an involution gives rise to a Hermitian form x, y : D ˆ D Ñ D given by

xx, yy “ x˚y, and by [HT01] we may find such an involution such that the Hermitian
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form is non-degenerate. We make the assumption that the involution has this

property.

Let OD be an order in D, such that O˚
D “ OD, and such that for any split prime

v of F`, OD,v is a maximal order of Dv. Such an order exists by section 3.3 of

[CHT08]. Define the unitary group over OF ` , whose R-points (R an OF `-algebra)

are given by GD “ tg P pOD bOF `
Rqˆ : g˚g “ 1u. Then GD is an algebraic group

over OF ` . By the positivity condition, we have that at each infinite place v of F`,

that GD,v – Upnq.

For each prime v of F` that splits in F , choose a prime ṽ of F lying above v. This

choice allows us to give an isomorphism iṽ : GDpF`
v q ÝÑ DbFFṽ, which restricts to an

isomorphism GDpOF `,vq – OD,ṽ as in section 3.3 of [CHT08]. Note that when v R SD

is split in F with w lying above v, GD is split, so that GDpF`
v q – pD bF Fṽqˆ –

GLnpFwq. If T is a set of primes of F` that splits in F , set T̃ “ tṽ|v P T u.

5.2 Automorphic forms of GD

We define the automorphic forms for GD as in [Gro99] and [CHT08].

Recall from the classification of representations of algebraic groups that finite di-

mensional simple modules for a reductive group G over a field L are uniquely de-

termined by the highest weight in the character group of a maximal torus TG Ď G

XpTGq :“ HompTG,Gmq. Recall further, that there is a unique simple module with

highest weight λ if and only if λ is dominant.

In the case of GLn, the weights are naturally in correspondence with Zn, and the

dominant weights are Zn
` :“ tλ “ pλ1, ..., λnq P Zn : λi ě λi`1@iu. We set the

L-vector space Wλ to be the irreducible representation of weight λ. We will need

to choose a O lattice of Wλ. For λ a dominant weight, we do this as in [Ger19] by

setting ξλ the representation IndGLn
Bn

pw0λq{O, for Bn a choice of Borel with maximal

torus Tn Ă GLn, and w0 the longest element of the Weyl group. We denote by Mλ

the representation given by the O-points of ξλ, so that Wλ – Mλ bO L.
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Let L : Ql be the finite field extension defined before, with ring of integers O. The

finite dimensional algebraic representations in L vector spaces of ResF `

Q GD b Ql –

ś

wPS̃l
ResFṽ

Ql
pGLnq are characterised by the sequence of dominant weights, one for

each embedding corresponding to w P S̃l. We define the set as W “ pZn
`qHompF `,Lq.

For each µ P W , we can now define the algebraic representation of GD{OF ` with

highest weight µ by Mµ “
Â

τPHompF `,Lq,O Mλτ , and Wµ “ Mµ bO L.

For each v P SD, choose a finite-free O-module representation ρv : GDpOF `,vq Ñ

GLpMvq. Set Mtρvu “
Â

vPSD
Mv. We set Mµ,tρvu “ Mλ b Mtρvu.

Definition 5.2.1. Let λ “ pµ, tρvuq be as above. We define the space of automorphic

forms for GD of weight λ with A-coefficients SλpAq, where A is an O-algebra or

O-module, as the space of functions

f : GDpF`
qzGDpA8q

F ` Ñ Mλ bO A

such that there is an open compact subgroup

U Ă GDpA8,Sl

F ` q ˆ GDpOF `,lq

with

u ¨ fpguq “ fpgq

for all g P GDpA8q

F ` and u P U where u¨ denotes the action of u on Mλ factoring

through
ś

vPS GDpF`
v q.

Notice that SλpAq is a smooth representation of GDpA8q

F ` , under the action phfqpgq “

h ¨ fpgh´1q (again, the ¨ action acting through the representation of GDpF`
l q ˆ

ś

vPSD
GDpF`

v q on Mλ). We denote by SλpU,Aq “ SλpAqU the invariants under this

action.
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5.3 Hecke Operators

For much of the next two chapters, the argument will be a slight adaptation on

that in [Ger19]. As such, the details can be found in sections 2 and 4 of [Ger19],

so this will just highlight the definitions and results needed, and refer to [Ger19]

for the proofs, which we will adapt into this case. Let T be a finite set of places of

F` containing SD Y Sl such that every place in T splits in F , and let T̃ be a set

of primes of F above those in T as defined before. Fix an open compact subgroup

U “
ś

v Uv of GDpA8q

F ` , such that for any split place v outside T , Uv – GLnpOF,ṽq

via the map iv, and such that for any place of F`, v, inert in F , suppose Uv is

hyperspecial. Suppose further that U is sufficiently small, that is, there is a place v

such that Uv contains no non-identity roots of unity. We define the Hecke operators

on the subspace SλpU,Aq.

Hecke operators at unramified places Let v be a place of F` split in F and

w “ ṽ be a place in F . Let ϖw be a uniformiser. We can define the Hecke operators

as the double coset operators:

T piq
p “

»

—

–

i´1
v

¨

˚

˝

GLnpOF,wq

¨

˚

˝

ϖwIi 0

0 In´i

˛

‹

‚

GLnpOF,wq

˛

‹

‚

ˆ U v

fi

ffi

fl

Hecke operators at places dividing l At places dividing the residual charac-

teristic of O, we set αpiq
ṽ “

¨

˚

˝

ϖṽIi 0

0 In´i

˛

‹

‚

, and define

U
piq
µ,ṽ “ pw0µvqpα

piq
ṽ q

´1
rUα

piq
ṽ U s

where w0 is the longest element of the Weyl group of GLn, and µ P W , with µv the

dominant weight for the embedding F` ãÑ L.

We make the following adjustment to the group U .
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Definition 5.3.1. For v a place of F` above l, and b a positive integer, let Ibpṽq be

the set of matrices in GLnpF ṽq which are upper triangular unipotent mod ṽb. Define

Uplbq “
ś

vPSl
Ib,cpṽq ˆ U l.

In the case with the group Uplbq, further define the following diamond operators:

Definition 5.3.2. Let Tn be the maximal torus inside GLn as before. For v P Sl,

and u P TnpOFṽ q, define xuy as the operator

rUplbquUplbqs

on SλpUplbq, Aq. For u P TnpOF `,lq “
ś

vPSl
TnpOFv q –

ś

vPSl
TnpOFṽ q, define xuy “

ś

vPSl
xuṽy.

Define the Hecke algebra TT “ TT pUplbq, Aq as theA-subalgebra of EndpSλpUplbq, Aqq

generated by all the operators

tT
piq
ṽ , pT

pnq

ṽ q
´1

q|v split in F outside of T u Y tU
piq
µ,ṽ|v P Slu Y txuy|u P TnpOF `,lqu.

Notice that the map u ÞÑ xuy defines a group homomorphism

TnpOF `,lq Ñ TT
pUplbq, Aq

ˆ

which factors through TnpOF `,l{l
bq “

ś

vPSl
TnpOF `,v{vbq.

5.4 Big ordinary Hecke algebras and the action

of Λ

From this point on, we wish to focus on the cases where A “ O, L{O, or is a finite

module O{πnO.

Recall from Hida theory, as explained fully in section 2.4 of [Ger19], that for any

place v P Sl, and any i, the operator epiq
v :“ limnÑ8pU

piq
µ,ṽqn! is a projection on
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SλpU,Aq. We can further define the projection e “
ś

v,i e
piq
v . We define the ordinary

submodule Sord
λ pU,Aq :“ e.SλpU,Aq as the image of this projection. Notice, since

all the Hecke operators commute, that this is a Hecke invariant submodule. We also

define TT,ordpUplbq, Aq “ eTT pUplbq, Aq.

Definition 5.4.1. Let Tn be the maximal torus of GLn as before. For b ě 1, let

Tnplbq be the kernel of TnpOF `,lq Ñ TnpO{lbq.

We define the following algebras,

Λb “ OrrTnplbqss “ lim
ÐÝ
b1ěb

OrTnplbq{Tnplb
1

qs

Λ “ OrrTnplqss “ OrrTnpl1qss

Λ`
“ OrrTnpOF `,lqss “ lim

ÐÝ
b1ěb

OrTnpOF `,lq{Tnplb
1

qs.

We denote by aN the kernel of the map Λ Ñ OrTnplq{TnplN qs. Notice that, since

U is sufficiently small, Sord
λ pUplb,cq, Aq is a free Λ{ab-module, through the action of

TnpOF `,lq, and hence we have an inclusion Λ{ab ãÑ TpUplbq, L{Oq by Proposition

2.5.3 of [Ger19].

Infinite level

We need to consider the big ordinary Hecke algebra. Set

TT,ord
pUpl8q, Aq “ lim

ÐÝ
bą0

TT,ord
pUplb,b

q, Aq

and

Sord
pUpl8q, Aq “ lim

ÝÑ
bą0

Sord
pUplb,b

q, Aq.
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Notice that because of the inclusions Λ{ab ãÑ TT,ordpUplb,cq, L{Oq, we get an inclusion

Λ ãÑ TT,ordpUpl8q, L{Oq, and we see that SordpUpl8q, L{Oq is a discrete Λ-module, so

its Pontryagin dual is a compact Λ-module. (and in fact is finite free, by Proposition

2.5.3 of [Ger19] since we assume Uplq is sufficiently small.)

We can now give a statement of a theorem that can be proved by the application

Theorem 3.0.1. Under certain hypotheses (to be determined in chapter 6) we have

Theorem 6.4.3, which states: The TT,ordpUpl8q, L{Oq-module SordpUpl8q, L{Oq_ is

locally free over the generic fibre TT,ordpUpl8q, L{Oqr1{ls.

As a consequence, the multiplicity of SordpUpl8q, L{Oq_ is the same at every char-

acteristic zero point of TT,ordpUpl8q, L{Oq, and thus, we expect the multiplicity of

non-classical points (those corresponding to Hida families of ordinary automorphic

forms) is the same as at classical modular forms.



Chapter 6

Galois representations and

deformation rings

6.1 Local deformation rings

We now define a deformation problem. Let v P SD with residue field of size qv. We

say that an n-dimensional representation ρ : GF `
v

Ñ GLnpAq is Steinberg if the map

R˝
ρ̄ Ñ A determined by ρ factors through O^

Xn
.

We note that this is equivalent to the statement, that the representation ρ lies

on the irreducible component XnpAq of SGLn , which in the case when A “ L is a

characteristic 0 field, the Weil-Deligne representation obtained from ρ, WDpρq “

pr,Nq, then r is unramified and the eigenvalues of rpFrobqv q are in the ratio qn´1
v :

qn´2
v : ... : qv : 1. Note that this definition puts ρ on the irreducible component Xn

of Sn.

Let CO be the category of Artinian local O-algebras with residue field F, as in Mazur.

For each v P SD, and Steinberg representation ρ̄v : GF,ṽ Ñ GLnpFq define a functor

Dn,˝
ρ̄v

: CO Ñ Set

A ÞÑ tSteinberg liftings of ρ̄v to Au
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This functor is pro-representable by the complete Noetherian local ring R˝,st
v :“ OXn,ρ̄.

We notice that when we view Xn as a scheme over L, Theorem 3.0.1 tells us, since q

is not a root of unity in L, that any localisation of R˝,st
v r1{ls is a regular ring. This

shows us that R˝,st
v r1{ls is regular.

For ρ a deformation of ρ̄v to A, we say that ρ is of type Xn if the map R˝
ρ̄ Ñ A

defined by ρ factors through R˝,st
v .

We recall the definition of r̃-discrete series found in section 2.4.5 in [CHT08].

Let r̃v : GF,ṽ Ñ GLdpOq be a representation such that:

1. r̃v b k is absolutely irreducible (k the residue field of O;

2. Every irreducible subquotient of r̃v|Iṽ is absolutely irreducible;

3. For each i “ 0, ...,m, r̃ b k fl r̃ b kpiq.

For R an O algebra, we say a representation ρ : GF,ṽ Ñ GLmdpRq is r̃-discrete series

if there is an decreasing filtration tFiliu of ρ by R-direct summands such that

1. griρ – gr0ρpiq for i “ 0, ...,m ´ 1

2. gr0ρ|I,ṽ – r̃|I,ṽ bO R.

Proposition 6.1.1. Suppose l ą hG. Let r̃ be a rank d representation as above, and

let n be an integer with d|n. Let Xr̃,n be the moduli space, defined over O, of framed

r̃-discrete series representations of rank n. Then the base change, pXr̃,nqL, to L is

smooth over L.

Proof. Let Sr̃ be the moduli prestack over O of n-dimensional r̃-discrete repres-

entations, so that the stackification Sst
r̃ – rXr̃{GLns and let S1 be the prestack of

m :“ n{d-dimensional 1-discrete series representations. Let SWD
r̃ be the prestack

over L whose groupoid over R consists of objects pρ1, Nq where ρ1 is a rank n “ dm

r̃-discrete series representation with open kernel, and N is an element of EndRpRnq
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such that ρ1Nρ1´1 “ qνN . Define SWD
1 analogously. Recall that there is a morph-

ism SWD
r̃ Ñ Sr̃ given by pρ1, Nq is sent to the unique representation ρ given by

g ÞÑ ρpgq expptlpgqq for g P I and ρpFrobq “ ρ1pFrobq. Recall that this is an iso-

morphism on the base change to L.

Then we have an morphism of prestacks SWD
1 Ñ SWD

r̃ given by the morphism

pρ1, Nq ÞÑ pρ1, Nq b r̃. We claim that this is an isomorphism. By an exercise in

Clifford theory and by assumptions on r̃, r̃|I can be written as a direct sum of pairwise

non-isomorphic absolutely irreducible I-representations τ ‘ τFrob‘, ...,‘τFrobk´1 for

some k P N. As ρ1 is r̃-discrete series in characteristic zero, we see that ρ1|I – mpτ ‘

τFrob‘, ...,‘τFrobk´1
q. Let Vr̃pRq “ EndRrIspr̃

mq be the the space of I-equivariant

maps of any representation in SWDr̃ pRq, and define V1pRq “ EndRrIsp1
mq similarly.

Note that the map

V1pRq Ñ Vr̃pRq (6.1.1)

N ÞÑ N b idr̃ (6.1.2)

is injective, and hence is isomorphic onto its image. We claim that if pρ1, Nq P

SWD
r̃ pRq, then N is in the image of this map.

First, note that N is I-equivariant. We calculate using Schur’s lemma that Vr̃pRq –

kMmpRqk, since each τFrobi is absolutely irreducible, and we see the above map

corresponds to the diagonal map ∆ : MmpRq Ñ MmpRqk.

The space Vr̃pRq has a natural action of Frobenius on it, and under this action

N “ pN1, ..., Nkq P MmpRqk has Frob.pN1, ..., Nkq “ qpN1, ..., Nkq. Notice that Frob

induces an isomorphism of the underlying spaces τm Ñ pτFrobqm, which gives us a

commutative diagram

τm pτFrobqm

τm pτFrobqm

Frob

N1 qN2

Frob

Hence, we see pqN2, ..., qNk, qN1q “ qpN1, ..., Nk´1, Nkq, and thus N lies in the image

of the diagonal map. This proves the claim.
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Let χr̃ “ homIpτ, r̃q. Notice that this is an unramified character. We claim that

pHomIpτ,_q b χ´1
r̃ ,∆´1q : SWD

r̃ Ñ SWD
1 is an inverse defining the equivalence.

For pΘ, Nq P SWD
r̃ pRq, the previous claim gives us an isomorphism on the N -part of

the stacks SWD
r̃ pRq, so we focus on the representation part. Since θ|I acts through a

finite quotient, and R is an algebra over a characteristic 0-field, we have that Θ is

semisimple and hence we get a decomposition of I-representations:

M –

k´1
à

i“0
HomIpτFrobi

,Θq b χ´1
r̃ b τFrobi

for some positive integer k. Since each τFrobi occurs in Θ with equal multiplicity, we

see that each HomIpτFrobi
,Θq – HomIpτ,Θq, and thus,

Θ – HomIpτ,Θq b χ´1
r̃ b

m´1
à

i“0
τFrobi

– HomIpτ,Θq b χ´1
r̃ b r̃

As I representations. To see an isomorphism on the level of WF -representations,

notice that we have an unramified character χ defined over an algebraic closure L̄

such that for each i griΘ – r̃ b χpiq. Then

HomL̄rIspτ, grm
pΘqq – HomL̄rIspτ, r̃ b χq – χr̃ b χpiq.

Since r̃piq fl r̃ for each 1 ď i ď m, Θ “
À

i gripr̃q,so we get a L̄rWF s isomorphism

Θ b L̄ – pHomIpτ,Θq b χ´1
r̃ b r̃q bL L̄

Finally, since r̃ is absolutely irreducible, this can be upgraded to an isomorphism L-

vector spaces. Hence, the composite SWD
r̃ pRq Ñ SWD

1 pRq Ñ SWD
r̃ pRq is the identity.

To show SWD
1 pRq Ñ SWD

r̃ pRq Ñ SWD
1 pRq is the identity, let ρ P S1pRq. Then the

natural map

ρ Ñ HomIpτ, ρ b r̃q (6.1.3)

v ÞÑ tw ÞÑ v b wu (6.1.4)

defines an I isomorphism. So we need only check that ρ b χr̃ and HomIpτ, ρ b r̃q

have the same action of Frobenius. This can be checked again, by looking at the
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character gripρq. Hence, we have exhibited an equivalence of categories S1 Ø Sr̃.

Given a choice of Frobenius, Frob, and a topological generator of the tame inertia

group, s, we can explicitly write an isomorphism of stacks

Sst
1 – rXm{GLms

ρ ÞÑ pρpFrobq, logpρpsqqq

ρΦpFrobnxq “ Φn exppNtlpxqq ÞÑpΦ, Nq

As pXmqL is a smooth scheme, it shows that Sst
1 r1{ls is a smooth stack, and because

the isomorphism of prestacks gives an isomorphism through the stackification, it

gives us that Sst
r̃ r1{ls and Xr̃,n are smooth.

In light of this proposition, if ρ̄ : GF,ṽ Ñ GLnpFq is r̃-discrete series, we let R˝,r̃
v

be the universal lifting ring of r̃-discrete series representations. By the proposition,

R˝,r̃
v r1{ls is regular at every maximal ideal.

For v P Sl, Let Īṽ be the inertia subgroup of Gab
F,ṽ, and let Īṽplq be the pro-l part.

As in chapter 3 of [Ger19] we can define a lifting Λṽ : OrrĪṽplqss-algebra R△
v . This is

the quotient of the universal lifting ring R˝
v of pairs pρ, tχiuq, such that a morphism

r : R˝
v Ñ A corresponding to representation ρ : Gv Ñ GLnpAq and a sequence of

characters χi : Iṽ factors through R△
v if and only if ρ is GLnpOq-conjugate to an

upper triangular representation with diagonal characters equal to χ1, ..., χn when

restricted to inertia.

Lemma 6.1.2. Suppose that ρ̄v : GF,ṽ Ñ GLnpFq is an ordinary Galois representa-

tion with diagonal characters χ̄1, χ̄2, ..., χ̄n, such that for no pair i ă j is χi “ εχj,

with ε the cyclotomic character, then R△
v r1{ls is formally smooth.

Proof. We see that the dimension of R△
v r1{ls is n2 `rFv : Qls

npn`1q

2 . For any choice of

closed point x of SpecR△
v r1{ls, part 1 of Lemma 3.2.3 of [Ger19] tells us that the di-

mension of the tangent space of R△,ar
w r1{ls is n2`rFw : Qls`dimH2pGFw ,Fil0adpVxqq.

From part 3 of Lemma 3.2.3, we also see that if the diagonal characters of ρ̄, pχ̄iq
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have χi{χj ‰ ϵ for every pair i ă j, then dimH2pGFw ,Fil0adpVxqq “ 0. Hence, the

ring R△
v r1{ls is regular.

6.2 Local-Global compatibility

We start by introducing the group Gn from [CHT08], defined as the group scheme

that is the semi-direct product of GLn ˆ GL1 with C2 “ t1, ju where j acts as

jpg, µqj´1
“ pµpg´1

q
T, µq.

By Lemma 2.1.1 of [CHT08], we have that representations r : GF ` Ñ GnpRq such

that r´1pGLnpRq ˆ GL1pRqq “ GF correspond with pairs pρ, χq, where ρ is an n-

dimensional representation of GF , and χ is a character of GF ` , such that ρc – χρ_,

and c P GF ` is sent to j.

For brevity, whenever we have a homomorphism r : GF ` Ñ GnpRq, and a subgroup

H Ă GF ` , we use r|GF
to mean the restriction, followed by the projection to GLn.

Typically, H will be the subgroup GF or its localisations GFw .

Proposition 6.2.1. Suppose that m Ĳ TT,ordpUpl8q,Oq is a maximal ideal, with

residue field F. Then there is a unique continuous semisimple representation

r̄m : GF Ñ GLnpFq

such that:

1.

r̄c
– r̄_

mp1 ´ nq;

2. For any place v of F`, outside T , r̄m|w is unramified;

3. If further, v splits as v “ wwc in F , then the characteristic polynomial of

r̄mpFrobwq is

Xn
´ T p1q

w Xn´1
` ... ` p´1q

jNpwq
jpj´1q

2 T pjq
w Xn´j

` ... ` p´1q
nNpwq

npn´1q

2 T pnq
w
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modulo m;

4. Let r̃ṽ : GF Ñ GLmv pOq be as in section 3.2 of [CHT08] (note: this is

constructed from the smooth representation ρv : GDpF`
v q Ñ GLpMvq via

the Jacquet-Langlands and local Langlands correspondences). If v P SD and

Uv “ GDpOF `,vq, then r̄m|GF,v
is r̃ṽ-discrete series.

Proof. Apart from statement 4, this is Propositions 2.7.3 in [Ger19], so we prove only

this part. By the argument of Proposition 2.7.3 in [Ger19], the maximal ideals of

T are in bijection with those of T{mΛ. Hence, this proposition follows immediately

from the classical situation. The proof of this can be found in Proposition 3.4.2 of

[CHT08], which proves the proposition.

Proposition 6.2.2. If m is non-Eisenstein, that is, r̄m is irreducible, then r̄m can

be extended to a representation r̄m : GF ` Ñ GnpFq, and this representation can be

lifted to a representation

rm : GF ` Ñ GnpTT,ord
pUpl8q,Oqmq

1. For ν : Gn Ñ GL1, the second projection, ν ˝ rm “ ϵ1´nδµm

F {F `. where ϵ is

the cyclotomic character, δF {F ` is the non-trivial character of GF `{GF , and

µm P Z{2;

2. For any place v R T of F`, r̄m|ṽ is unramified;

3. If further, v splits as v “ wwc in F , then the characteristic polynomial of

r̄mpFrobwq is

Xn
´ T p1q

w Xn´1
` ... ` p´1q

jNpwq
jpj´1q

2 T pjq
w Xn´j

` ... ` p´1q
nNpwq

npn´1q

2 T pnq
w ;

4. If v P SD, then rm|GF,ṽ
is r̃ṽ-discrete series.

Proof. As the previous proposition, apart from statement 4, this is Proposition 2.7.4

in [Ger19], so we prove only this final statement. By the proof of Proposition 2.7.4
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of [Ger19], we may find a sequence of maximal ideals mb Ă TT,ordpUplb,bq,Oq such

that Tm “ lim
ÐÝb

TT,ordpUplb,bq,Oqmb
, and we define rm “ lim

ÐÝb
rmb

. By Lemma 3.4.4 of

[CHT08], each rmb
|GF,ṽ

is r̃ṽ-discrete series, and so now it remains to show that rm|GF,ṽ

is too. Since for each b ą c each rmb
b TT,ordpUplc,cq,Oqmc “ rmc , if follows that the

filtration, Filib on rmb
descends to a filtration FilibbTT,ordpUplc,cq,Oqmc on rmc , and that

the graded parts have rgriprmb
qsbTT,ordpUplc,cq,Oqmc – grirrmb

qbTT,ordpUplc,cq,Oqmcs.

It follows that Filib bTT,ordpUplc,cq,Oqmc is a defining filtration on rmc . From Lemma

2.4.25 of [CHT08], such a filtration is unique, so we have a compatible system of

filtrations on the rmb
which lift to a filtration on rm|GF,ṽ

. We see from compatibility

that griprmq “ lim
ÐÝb

griprmb
q, and so it is easy to check that rm|GF,ṽ

is r̃ṽ-discrete

series.

6.3 Global deformation rings

Let F : F`, T “ Sl

š

SD

š

R, T̃ all be as before. Let ρ̄ : GF Ñ GLpFq be

a representation with local representations ρw “ ρ̄|GF,w
, where w is a place of F .

Assume that:

• the representation ρ̄ is a irreducible automorphic representation, I.E., there is

a non-Eisenstein maximal ideal m Ĳ TT,ordpUpl8,Oqq so that ρ̄ – r̄m;

• the subgroup ρpGF `pζlqqq Ă GnpFq is adequate in the sense of Definition 2.3 of

[Tho12];

• the Level structure is minimal for ρ̄;

• the representation ρ̄ is unramified outside T̃ ;

• For each v P Sl, have HomGF,ṽ
pρ̄ṽ, ρ̄ṽεq “ 0 for ε the cyclotomic character.

As ρ̄ – r̄m is irreducible, via Proposition 6.2.2, ρ can be extended to a representation

ρ̄ : GF ` Ñ GnpFq such that ν ˝ ρ̄ “ ϵ1´nδµm

F :F ` , and we fix such an extension.
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For each v P T , define R˝
v as the framed deformation ring for ρ̄ṽ. Set

Rloc :“ p
x

â

O,vPSl
R△

v qpbOp
x

â

O,vPSD
R˝,r̃ṽ

v qpbOp
x

â

O,vPR
R˝

vq

to be the local deformation ring for ρ̄. Our first observation, is that since each R△
v

is a Λṽ-module, we notice that Rloc inherits the structure of a x

Â

vPSl
Λṽ – Λ-module.

The isomorphism x

Â

vPSl
Λṽ – Λ is inherited from the group isomorphisms

Tnplq –
ź

vPSl

TnOF `,vplq –
ź

vPSl

TnOF,ṽplq –
ź

vPSl

Īṽplqn

where the final isomorphism is given by local class field theory.

Notice, that by assumption on ρ̄ and Lemma 6.1.2, that R△
v r1{ls is smooth. We

remark thatR˝,r̃
v is the completion of a local ring on the moduli space of rank n framed

r̃-discrete series representations, Xr̃. Since the map Xr̃ Ñ Sr̃ given by ‘forgetting

the framing’ is smooth, and the stack Sr̃r1{ls is smooth over L by Proposition 6.1.1,

we see that OXr̃,ρ̄r1{ls is regular, and hence, by an application of Lemma 2.1.5, we

see that R˝,r̃
v r1{ls is regular.

Since the Level U is minimal, for ρ we have further, that R˝
v is regular for each v P R.

Hence, by Corollary 2.1.6, Rlocr1{ls is regular.

Let S be the following tuple

S “ pF : F`, T, T̃ , ϵ1´nδµm

F {F ` , tR
△,ar
v : v P Slu, tR

˝,st
v : v P SDu, tR˝

v : v P Ruq

and say that ρ : GF ` Ñ GpAq is a lifting of ρ̄ to A P CΛ of type S if:

1. ρ|GF
lifts r̄m;

2. ρ is unramified outside T ;

3. For v P SD, ρv is r̃-discrete series and gives rise to the morphism R˝
v Ñ A

which factors through R˝,r̃
v ;

4. For v P Sl, the restriction ρv and the Λ-structure on A give a morphism

R˝
v b Λ Ñ A which factors through R△

v ;
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5. ν ˝ ρ “ ϵ1´nδµm

F {F ` .

By Proposition 2.2.9 of [CHT08], we can construct the universal deformation ring,

Runiv
S , and the universal lifting ring R˝

S .

Let h0 “ rF` : Qs
npn´1q

2 ` rF` : Qs
np1´p´1q

µm´1 q

2 , and let h be an integer larger than

both h0 and dimrH1
LKpGF `,T , adρ̄p1qqs. (Here, H1

LKpGF `,T , adρ̄p1qq is a particular

subspace of the cohomology group H1pGF `,T , adρ̄p1qq of the Galois group GF `,T of

the maximal extension of F` unramified outside of T , defined in Proposition 4.4 of

[Tho12].)

After Thorne [Tho12], we will call a triple, pQ, Q̃, tψ̄vuvPQ a Taylor-Wiles triple if:

1. Q is a set of primes of F` which split in F ;

2. for each v P Q, l|NmF `pvq ´ 1

3. |Q| “ h;

4. Q̃ is the set tṽ|v P Qu;

5. for each v P Q, ρ̄|Gv splits as a direct sum into s̄v ‘ ψ̄v, with ψ̄ the generalised

eigenspace with eigenvalue ᾱ P F of dimension dv.

For any Taylor-Wiles set, Q, we can define a deformation problem SpQq, which is

the same as S, but in addition, we now allow ρṽ for v P Q to ramify in the following

way: ρṽ splits as a direct sum s ‘ ψ, which lift s̄ and ψ̄ respectively, such that s is

unramified, and ψ|Iv : Iv Ñ GLdv factors through the scalar action on the underlying

representation space. Using Proposition 2.2.9 in [CHT08] again, we can now take the

universal deformation ring Runiv
SpQq. Because stipulating that the local deformations

at Taylor-Wiles primes are unramified is a closed condition, this presents us with a

surjection Runiv
SpQq ↠ Runiv

S . Further, we also have a natural map Rloc Ñ Runiv
SpQq given

by restrictions to the local subgroups at the level of functors.
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Proposition 6.3.1. For N P N, we can find a Taylor-Wiles triple pQN , Q̃N , tψ̄vuvPQq

such that for all v P QN , lN ||NmF pvq ´ 1, and the global deformation ring Runiv
SpQq can

be topologically generated over Rloc by h ´ h0 generators.

Proof. This follows from Lemma 4.4 of [Tho12] applied in the case of Theorem

8.6.

In light of this proposition, set R8 “ RlocrrX1, ..., Xhss, RN “ Runiv
SpQN q and R0 “ Runiv

S

so that we have surjections R8 ↠ RN .

We now define some important subgroups of GDpA8q

F `

Definition 6.3.2. For v P QN , suppose that r̄|v “ s̄ ‘ ψ̄, as before, with ψ̄ a

dv dimensional semisimple unramified representation with all Frobenius eigenvalues

equal. We take the group Uipṽq to be the subgroup of Uv of elements that take the

form

¨

˚

˝

ϖṽ˚ ˚

0 aIdv

˛

‹

‚

pmodṽq

with a “ 1 when i “ 1, and arbitrary when i “ 0. Set UipQq “ U v ˆ
ś

vPQ Uipṽq

Set ∆N be the maximal l-power quotient of U0pQN q{U1pQN q –
ś

vPQN
kpṽqˆ. We

may view ∆N as the maximal l-quotient of
ś

vPQN
kpṽqˆ – pZ{lN qq. We claim there

is an action of ∆N on the ring Runiv
SpQq. The map, det ˝runiv

N : IF,ṽ Ñ pRuniv
SpQqq

ˆ, given

by the determinant of the universal deformation runiv
N :“ runiv

SpQN q,ρ̄, factors through

the kernel of pRuniv
SpQqq

ˆ Ñ Fˆ, which is an abelian l-power group. By local class field

theory, there is an isomorphism Iab
F,ṽ Ñ Oˆ

F,ṽ, and the l-power quotient of this group is

the l-power quotient of kpṽqˆ. We hence see that there is a map ∆N Ñ pRuniv
SpQN qq

ˆ and

thus a ring map Λr∆N s Ñ Runiv
SpQq, so that Runiv

SpQN q inherits the structure of a finitely

generated Λr∆N s-algebra. Notice that if aN is the augmentation ideal of Λr∆N s,

then Runiv
SpQN q{aN is the ring of the universal deformation ring which parametrises
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Galois deformations of type S. (These deformations are required to be unramified

at places above QN .) Note, that by choice of QN , that ∆N – pZ{lnZqh.

As in Chapter 5, we can construct the Hecke algebra TN,1 :“ TT YQN ,ordpU1pQN qpl8q,Oq

and through a map TT YQN ,ordpU1pQN qpl8q,Oq Ñ TT,ordpUpl8q,Oq we can lift our

choice of maximal ideal m to a maximal ideal mN Ă TN,1. As in Proposition 6.2.2,

we can construct a representation rmN
: GF ` Ñ GnpTN,1q which by the proof of

Theorem 6.8 of [Tho12] gives us an SpQN q-lifting of ρ̄. Hence, we get a surjection

Runiv
SpQq ↠ TN,1 for each N .

6.4 Patching

We now define a module HN over TT YQN ,ordpU1pQN qpl8q,Oqm for each set QN .

Define the space of automorphic forms SordpUipQN qpl8q, L{Oqm as before, and set

H0 “ SordpUpl8q, L{Oq_
m. In Proposition 5.9 of [Tho12], Thorne describes a projec-

tion Prv on SordpUipQN qpl8q, L{Oqm, and in Theorem 6.8, modules

Hi,N :“
ź

vPQN

Pr
v

rSord
pUipQN qpl8q, L{Oqms

_

with the following properties:

Proposition 6.4.1. [Tho12]

1. H1,QN
is a free Λr∆QN

s-module, and restriction to SordpU0pQN qpl8q, L{Oqm

gives an isomorphism H1,QN
{aN – H0,QN

.

2. The map

p
ź

vPQN

Pr
ṽ

q
_ : H0,QN

Ñ H0

is an isomorphism.

Theorem 6.4.2 (Patching). Let R ↠ T be a surjective Λ-algebra homomorphism,

with T a finite Λ-algebra. Suppose we have the following data:
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1. Integers t, h ě 1;

2. a finite T-module H;

3. SN “ ΛrpZ{lnZqhs – Λr∆QN
s with augmentation ideal aN , with inverse limit

S 1
8 :“ lim

ÐÝ
Λr∆QN

s – ΛrrY1, ..., Yhss ;

4. a ring S8 “ S 1
8

pbOT , where T “ OrrX1, ..., X|T |n2ss

5. For each N ě 1 have

(a) RN ↠ TN are SN -algebra homomorphisms, such that reduction modulo

aN reduces the map to R ↠ T.

(b) a finite TN -module HN , which is finite and free over SN , whose rank is

independent of N ;

6. An S8-algebra R8 such that R8 ↠ RN with kernel kerpS8 Ñ SN qR8.

Then there is an R8 b S8-module H8, such that

1. H8{aH8 – H,

2. H8 is a finite free S8-module.

3. The action of S8 on H8 factors through that of R8.

Proof. The details of the Taylor-Wiles-Kisin patching method used here is essentially

no different to chapter 4.3 of [Ger19]. One can also find details in chapter 8 of [Tho12],

under the heading ‘another patching argument’.

However, I would also like to include a particularly neat explanation, via the notion

of the ultrapatching functor developed by Scholze in [Sch18] and described in chapter

7.2. Define In “ kerpS8 Ñ Snq, and note that each In Ă a for every n, and because

In form a chain with
Ş

n In “ 0, for any open ideal J , they also satisfy the property

that In Ă J for all but finitely many n. We can hence form the category of weak

patching systems wP as in chapter 7.2. We claim that R “ pRnq P wP ´ Ring is a
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patching algebra over R0, and that H˝ “ pH˝
nq is a patching R-module over H. As

we have a map R8 ↠ Rn for each n, we get an S8-algebra surjection R8 ↠ PpRq,

and an R8-module H˝
8 :“ PpHq. By part 4 of Proposition 7.2.4, we have that

H˝
8{a – H. Because each Hn is a free Λr∆ns-module, part 2 of Proposition 7.2.4

tells us that H8 is a free S8 module, and the fact that the action of S8 acts through

R8 comes from the fact that it acts through PpRq, and that the diagram

S8

R8 PpRq

commutes.

Theorem 6.4.3. The module H0r1{ls is a finite locally free Runiv
S r1{ls-module.

Proof. We calculate that dimpS8q “ dimpΛq ` h ` |T |n2 “ nrF` : Qsn ` h ` |T |n2,

and that

dimpR8q “ 1 `
ÿ

vPSl

prFṽ : Qls
npn ` 1q

2 ` n2
q ` n2

|SD Y R| ` h ´ h0

“ rF` : Qs
npn ` 1q

2 ` |T |n2
` h ´ h0

“ rF` : Qsn ` |T |n2
` h ´ rF` : Qs

np1 ´ p´1qµm´nq

2

Consider the module H˝
8. Since H˝

8 is a finite free S8 module, and that the action

of S8 factors through R8 we see that

dimpS8q “ depthS8
pH˝

8q ď depthR8
pH˝

8q ď dimpR8q

and thus, the only possible way for this inequality to hold is if equality holds

throughout, and µm ” n mod 2, and H˝
8 is a maximal Cohen-Macaulay R8 module.

(We remark that in the terminology of chapter 7.2, that R8 is a covering of the

patching algebra R, and then that this argument becomes the same as that of

Theorem 7.2.7.)
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Now, consider the generic fibre. Let m Ď R8r1{ls be a maximal ideal. Since

localisation commutes with tensor products, we see that

˜

â

O,vPT

Rv

¸

r1{ls –
â

L,vPT

pRvr1{lsq.

By Lemma 2.1.5, we see that

R8r1{ls^
m “

´

x

â

O,vPT
Rv

¯

r1{ls^
m –

˜

â

O,vPT

Rv

¸

r1{ls^
m

and so we see that R8r1{ls^
m is a power series ring tensor product of formally smooth

rings. Since it is formally smooth, any finitely generated R8r1{lsm-module has

finite projective dimension, and by the Auslander-Buchsbaum formula, is projective.

This shows that H˝
8r1{lsm is a free R8r1{lsm-module, this shows that H˝

8r1{ls is

a locally finite free R8r1{ls-module. It follows that H0r1{ls is a locally finite free

Runiv
S r1{ls-module.

Corollary 6.4.4. Runiv
S r1{ls “ Tr1{ls.

Proof. Let I be the kernel of the surjection Runiv
S r1{ls Ñ Tr1{ls. Choose any maximal

ideal m of Runiv
S r1{ls. Since localisation is an exact functor, we get a short exact

sequence

0 Ñ Im Ñ Runiv
S r1{lsm Ñ Tr1{lsm Ñ 0.

Note that the action of Runiv
S r1{lsm on H0r1{lsm factors through Tr1{lsm, so that Im

annihilates all of H0r1{lsm. Since this is a free module, this shows that Im is trivial.

Since this is true for every m, this shows that SupppIq “ H and hence I “ 0. Hence

the surjection above is an isomorphism Runiv
S r1{ls – Tr1{ls.

Remark. We finally want to remark on an application of Theorem 6.4.3. Whenever

M is a locally free coherent sheaf on a connected space X, the rank function

X Ñ N Y t0u
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x ÞÑ RankxpMq

is locally constant. Therefore, the rank of a geometrically connected component can

be calculated by calculating the rank at any special point x P X. In our special

case, the rank of the module H0r1{ls can be interpreted as the number of distinct

automorphic forms with a given set of Hecke eigenvalues. Which can again, be

interpreted as the multiplicity of the Galois representation determined by said Hecke

eigenvalues inside the space of automorphic forms. We have shown that for these

automorphic forms, the multiplicity is determined only by the connected component

that the representation ρm lies on. By Lemma 4.2 of [Ger19], we see that the minimal

primes of R8r1{ls biject with the minimal primes of Λ, and thus we have a bijection

with those of Runiv
S r1{ls. Thus, if one could show that for each component of Spec Λ,

there is an automorphic form of some classical weight had multiplicity 1, then all

the Hida families of forms would also have multiplicity 1. Thus these results have

an application to ’multiplicity problems’.



Chapter 7

Ultrapatching

The aim of this chapter is to explain the concept of Ultrapatching, an idea first

introduced by Scholze in [Sch18] which we utilised in Chapter 6 of this Thesis.

The ideas are explained beautifully in a greater completion, though in slightly less

generality (I.E. In the case Λ “ Zl), than here by Manning in [Man].

7.1 Ultraproducts

We recall the following definitions.

Definition 7.1.1. Let S be a set. A family F Ď PpSq of subsets of S is called a

filter if:

1. whenever I P F and I Ď J , then J P F ;

2. whenever I, J P F , then I X J P F .

A filter F is called an ultrafilter if it is a maximal proper filter F Ĺ PpSq, or

equivalently, if for any I Ď S, exactly one of I and SzI is a member of F .

Lemma 7.1.2. If F is an ultrafilter on a set S and we have a finite partition

S “
šn

i“1 Si, then exactly one of the Si lies inside F .
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Proof. For each i, exactly one of Si and SzSi “
š

j‰i Sj lies in F . We cannot have

SzSi P F for every i, as otherwise the finite intersection H “
Ş

i SzSi P F , which is

impossible. So there is some Si P F . Further, this Si is unique because otherwise,

there are Si, Sj P F distinct with the intersection H “ Si X Sj P F , which is again

impossible.

For any s P S, we can write down an ultrafilter Fs defined by the property that

I P Fs if and only if s P I. If F is such an ultrafilter, we call it a principal ultrafilter.

When S is a finite set, all ultrafilters are principal as corollary of 7.1.2. When S

is infinite, one can define the cofinite filter Fcf , where I P Fcf if and only if SzI is

finite. When S is infinite, it is a routine application of Zorn’s Lemma to show that

non-principal ultrafilters exist.

From now on, we will wish to fix a non-principal ultrafilter of the infinite set N.

Definition 7.1.3. Let pAnqnPN be a sequence of sets. We define the ultraproduct

F
ź

An :“ tpanqnPN : an P Anu{

where two sequences panq, pbnq are equivalent if and only if tn P N : an “ bnu P F .

Remarks. 1. When An “ R for all n, the ultraproduct provides a model for the

set of hyperreal numbers.

2. If the An lie inside a category, C “ Ab,Ring ,Mod R, then the ultraproduct A

will also be an object of the category C .

3. For f “ pfnq : pSnq Ñ pTnq a sequence of maps, we obtain a map of ul-

traproducts
śF fn :

śF Sn Ñ
śF Tn given by psnq ÞÑ pfnpsnqq on a repres-

entative. When pfnq is a sequence of C -morphisms, then
śF fn also inherits

the structure of an C -morphism.

Lemma 7.1.4. If An is a non-empty finite set for all n, and |An| ď M for some

M P N, then the ultraproduct A is a finite set.
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Proof. We can give a finite partition of N “
šM

n“1 Sn where Sn “ ti P N : |Ai| “ nu.

Then, by Lemma 7.1.2, there is a unique Sn P F . For each i P Sn, label the elements

txj
i : 1 ď j ď nu and for i R Sn, fix some choice (not necessarily distinct) of xj

i . Set

yj “ pxj
i qi P

śF Ai. We claim that every sequence pziq is F -equivalent to one of the

yj. Let Bj “ i P Sn : zi “ xj
i . Then we have the partition N “ NzSi Y

šn
j“1 Bj, and

so by Lemma 7.1.2, exactly one of the Bj or NzSn is in F . As it is clearly not NzSn,

we have Bj P F for some j and thus z “ pziq “ yj P
śF Ai. We can hence conclude

that A is finite.

Remark. We can actually conclude that |
śF Ai| “ n, in the notation of the above

proof. This is because each of the yj are necessarily distinct, due to the fact that

ti P N : xj
i “ xk

i u Ă NzSn R F for j, k distinct. In the case of the constant

sequence M “ pMqnPN, we get a natural isomorphism
śF

pMq – M by choosing

the representatives in the above proposition as constant sequences in the elements

of M .

We will be especially interested in taking the ultraproduct of finite modules of a finite

ring R. In this situation, the ultraproduct operation can be seen as a localisation

functor.

Let R be a finite local ring with maximal ideal m, and let R “ RN. We have an

injection from the set of filters F on N to the set of ideals of R given by

IF “ SpanRr1S|S P Fs

where the symbol 1S is an N-sequence of 1’s and 0’s, equal to 1 at each n R S, and 0

for each n P S. Whose image is exactly those ideals of R whose quotients are R-flat

modules (R acts on R{I through the diagonal map ∆ : R Ñ Rq. That the ideal

relations imply the filter relations follows from the calculations:

• For S 1 Ą S and 1S P IF , have 1S1 “ 1S11S;

• For S, T P F , 1SXT “ 1S ` 1T ´ 1S1T .
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Now, it follows that the set of ultrafilters F of N correspond exactly to those ideals

I of R whose quotient R{I – R.

Proposition 7.1.5. Let R be a finite local ring. Suppose that for F-many n, we

have an exact sequence 0 Ñ An Ñ Bn Ñ Cn Ñ 0 inside Mod R. Then we obtain an

exact sequence in the ultraproduct

0 Ñ

F
ź

An Ñ

F
ź

Bn Ñ

F
ź

Cn Ñ 0

Proof. Since
śF Mn “ pMnqIF is the localisation by the ideal IF , it follows that the

ultraproduct is an exact functor.

7.2 Ultrapatching

Let Λ be a (regular) local finite type Zl-algebra with maximal ideal l complete

with respect to the l-adic topology. Let F “ Λ{l. Let S8 “ ΛrrY1, ..., Yhss with

augmentation ideal a “ xY1, ..., Yhy.

We wish to fix a sequence of ideals pInq of S8 such that:

• In Ă a for each n;

• for any given open ideal J Ă S8, we require that In Ă J for all but finitely

many n.

Definition 7.2.1. Let pMnq be a sequence of finite type S8-modules.

1. We say that pMnq is a weak patching system if for each n, In Ă AnnpMnq, and

if there is some N P N such that each Mn is finitely generated as an S8-module

by fewer than N elements.

2. If, in addition, for each n, there is a finite rank Λ-module M0 and a Λ-module

isomorphism αn : Mn{a Ñ M0, we will call ppMnq,M0, αnq (and by abuse of

notation, pMnq) a patching system.
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3. Let pRnq be a sequence of finite S8-algebras. We say that pRnq is a weak

patching algebra if it is a weak patching system viewed as a sequence of S8-

modules. We further call it a patching algebra if there is a finite Λ-algebra R0

and αn : Rn{a Ñ R0 making ppRnq, R0, αnq into a patching system.

4. If R “ pRnq is a weak patching algebra, we call a weak patching system M “

pMnq a weak patching R-module if each Mn is an Rn-module.

We can now define the category of weak patching systems, wP as the full subcategory

of Mod N
S8

whose objects are weak patching systems. We define similarly the category

of weak patching algebras wP ´ Ring , and for a weak patching algebra, R, denote

by wP R the category of weak patching R-modules. When J is an ideal of S8, and

M “ pMnq P wP , denote M{J “ pMn{Jq “ pMn bS8
S8{Jq. This is also a weak

patching system.

Definition 7.2.2. We define the ultrapatching functor:

P : wP Ñ Mod S8
(7.2.1)

M ÞÑ lim
ÐÝ

J

F
ź

M{J (7.2.2)

where the limit is taken over all open ideals J of S8.

We now want to include some properties of the patching functor.

Lemma 7.2.3. There is a functor

i : Mod f.g.
S8

Ñ wP

M ÞÑ pM{InqnPN

that acts as a right inverse to P. I.e. P ˝ i “ idMod S8

Proof. That i is a functor is clear. For the result that it is a right inverse to P,

note that for any open ideal J Ĳ S8, I Ă J for all but finitely many n, and thus,

rM{Ins{J – M{J for those n. As M is finitely generated, M{J is a finite module.
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Thus, When we take the ultraproduct,
śF ipMq{J “ M{J . As every S8-module is

complete it follows that M “ lim
ÐÝJ

M{J .

From now, we will refer to the patching system ipMq by M .

Proposition 7.2.4. 1. If M “ pMnq P wP has each Mn a free S8{In-module,

then PpMq is a finite rank free S8-module.

2. The functor P is a right exact additive functor.

3. For M a weak patching system, PpMq is a finitely generated S8-module.

4. When M is a patching system, then we have an isomorphism of Λ-modules

α8 : PpMq{a Ñ M0.

Proof. 1. Let J be any open ideal of S8. Because In Ă J for all but finitely

many n, we see that Mn{J is a free S8{J-module for F -many n. As there

are only finitely many possible ranks, we can partition N into sets Sk “

tn : Mn{J is free of rank ku and exactly one the Sk P F . It then follows,

because S8{Jk is a finite set, that
śF Mn{J – S8{Jk. As this isomorphism

is compatible with varying J , after taking the inverse limit we get PpMq –

lim
ÐÝ

S8{Jk – Sk
8 is a free S8-module.

2. That P is additive is obvious. For right exactness, note that tensor product

is a right exact functor, and since all but finitely many of the Mn{J are finite

modules (because all but finitely many , the ultraproduct of Λ{mk-modules is

an exact functor by Proposition 7.1.5. Finally, the direct limit functor is also

exact, and hence the composition P is right exact.

3. If M “ pMnq P wP , then there is some N P N such that SN
8 surjects onto Mn

for every n. Thus, we get a surjection in wP SN
8 ↠ M. By right-exactness of

P, we hence see that there is a surjection SN
8 “ PpSN

8 q ↠ PpMq, and thus,

PpMq is a finitely generated S8-module.
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4. For a patching system pM,M0, pαnqq we have an isomorphism pαnq : M{a Ñ

M0 and thus a short exact sequence

0 Ñ aM Ñ M Ñ M0 Ñ 0

Thus, after applying the patching functor, we get a short exact sequence

PpaMq Ñ PpMq Ñ M0 Ñ 0

As PpaMq “ aPpMq, the result follows.

Remark. I wish to remark that although P is a right exact functor, it does not

arise as the left adjoint of any functor Mod S8
Ñ wP . Indeed, let f : N Ñ N be

any arithmetic function that diverges to infinity. Then consider the weak patching

system M “ pS8{mf pnqq. It follows easily that PpMq – S8, for any sequence fpnq

as above. Letting N P Mod S8
and F be the supposed right adjoint of P , we see that

N – HomS8
pPpMq, Nq – HomwP pM, F pNqq.

Let Kn be the n-th entry of F pS8q P wP , and let In “ AnnpKnq. Let an be the

smallest positive integer such that man Ă In, if this exists. otherwise, let an “ 8,

and set mn “ minpn, an ´ 1q. There are now two cases:

1. For some N P N, the set AN :“ tn P N : mn ď Nu P F .

2. For every N P N, NzAN P F .

In the first case, the natural map S8 Ñ Kn factors through S8{mN , for F -many

n P N, and thus, we exhibit non-zero maps HomwP pS8{mN , F pS8qq, where S8{mN

denotes the constant sequence. However, since PpS8{mN q “ S8{mN , we see that

HomS8
pPpS8{mN

q, S8q “ 0,

and thus, F pS8q cannot satisfy the first condition.
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In the second case, the sequence mn diverges to infinity on a subsequence in F ,

and thus, setting fpnq “ mn in the definition M “ pS8{mmnq from before gives

us PpMq “ S8, so HompPpMq, S8q “ S8. However, each Kn does not annihilate

mmn , so the only possible S8-homomorphism S8{mmn Ñ Kn is the zero map. Thus,

HomwP pM, F pS8qq “ 0, and so F pS8q cannot satisfy the second condition. It thus

follows that There is no functor F that can be a right adjoint for P .

Definition 7.2.5. Let R “ pRnq be a weak patching algebra. We say a covering of

R is a pair pR8, pϕnqq consisting of a complete local S8-algebra R8, of dimension

dimpS8q and continuous surjective S8-algebra homomorphisms ϕn : R8 Ñ Rn.

Lemma 7.2.6. Let pR8, pϕnqq be a cover of a weak patching algebra R. Then there

is a surjection R8 ↠ PpRq of S8-algebras.

Proof. As each ϕn is surjective, it follows, for any open ideal J Ĳ S8 that the

composition R8 Ñ Rn Ñ Rn{J is surjective, and thus, because the cardinalities

pRn{Jq are finite and uniformly bounded, the map R8 Ñ
śF Rn{J is surjective.

Hence, after we take the inverse limit, we get a surjection R8 Ñ PpRq.

Theorem 7.2.7. Suppose we have the following data:

• A patching algebra R over R0,

• A patching system M, which is a patching module of R.

• A cover R8 of R.

Suppose further that each Mn is free over S8{In with rank bounded above by N P N.

Then M8 :“ PpMq is a maximal Cohen Macaulay module over R8, and PpMq{a “

M0.

Proof. As each Mn is free, Proposition 7.2.4 tells us that PpMq is a free S8-module.

Further, since M is a patching module of R, it follows that the action of S8 Ñ

EndpPpMqq factors through PpRq. Hence, As R8 is a cover of R it follows from the
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previous lemma that the action also factors through the S8-algebra homomorphism

R8 Ñ PpRq.

Hence, we get the following inequalities:

dimpS8q “ depthS8
pM8q ď depthR8

ď dimpR8q

but since dimpR8q “ dimpS8q by hypothesis, it follows we have equality throughout

and thus that M8 is a maximal Cohen-Macaulay module of R8. The last part

follows from part 4 of Proposition 7.2.4.





Chapter 8

The extremely inconsiderate

Steinberg moduli space for GL3

8.1 Introduction

The following chapter is the result of joint work with Jack Shotton.

Let F be a local field, with residue field Fq of order q “ pr and let G be a reductive

group defined over Z, all as before.

Recall we have the moduli space of tame parameters of [DHKM23], Z1rW ˝
F {PF , GsO.

In the split case we have the model over Zp1
q
q:

Loc˝,t
G,F pRq “ tpΦ,Σq P GpRq ˆ GpRq : ΦΣΦ´1

“ Σq
u

In Chapters 2-4 of this thesis, we studied the geometry of the unipotent component

of this space over the local ring Zl, for l a prime distinct from p. In particular,

it was shown in Theorem 3.0.1 that when q is considerate towards G{Zl, (that is,

when the order of q in Fl is greater than the Coxeter number hG of G) then the

Steinberg component, XSt Ď Loc˝,t
G,F is smooth. In this case, the smoothness of

this variety gives rise to regular deformation rings, which consequently as shown in
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Chapter 5, through the Taylor-Wiles-Kisin patching method, forces the maximal

Cohen-Macaulay patched module M8 to be a free module. When this module is

of rank one (which we expect), we gain access to a multiplicity 1 result for mod l

automorphic forms.

This smoothness result only arises because along the Steinberg component, the

Frobenius matrix Φ is regular semisimple, whose eigenvalues (in the case of G “ GLn)

lie in the ratio 1 : q : q2 : ... : qhG´1. Consequently, when q is inconsiderate (that

is, unsurprisingly, not considerate), we no longer get this regular semisimplicity

property of Φ and so this smoothness result actually fails over Zl in this case. As we

will see in section 8.2, when G “ GL3 and q ” 1 mod l, (one can say that in this

situation that q is extremely inconsiderate towards G{Zl
, though in the terminology

of Definition 5.1.1 of [CHT08] it is called quasi-banal), then XSt,F is closely related

to the scheme over F:

XpRq “ tpM,Nq P N pRq ˆ N pRq : rM,N s “ 0u

where N is the nilpotent cone inside gl3. This space is very singular and so the

patched modules M8 are usually not free. Consequently, this ought to lead to larger

multiplicities of mod l Hecke eigenforms with a given Galois representation than we

see in the characteristic zero case.

In this chapter, we study (using methods of Snowden, Vilonen and Xue, and Ngo;

[Sno18], [VX16] and [Ngo18] respectively) the Steinberg irreducible component XSt

in the extremely inconsiderate setting and show that X “ XSt,F and as a consequence

XSt is reduced, normal, and has resolution-rational singularities (in the terminology

of [Kov22]). We then use this to both give equations for X (see section 8.5) and to

calculate the Weil-class group of X (see section 8.6).
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8.2 Steinberg deformation rings; resolution

Let l and p be distinct primes and let q be a power of p. Let n ě 1 be an integer.

Let O be the ring of integers in a finite extension E of Ql, with residue field F.

Let G “ GLn,O. Then we have the affine scheme M whose R-points, for an O-algebra

R, are given by

MpRq “ tpΦ,Σq P GpRq ˆ GpRq : ΦΣΦ´1
“ Σq

u.

From Corollary 2.4 and Proposition 2.7 of [DHKM23], this is an affine complete

intersection over O of relative dimension dimG, is flat over O, and is reduced.

The irreducible components of M are in bijection with the q-stable conjugacy classes

of Σ. Our aim is to study the component corresponding to the regular unipotent

conjugacy class:

XSt “ tpΦ,Σq P MpĒq : Σ regular unipotentu.

As XSt is defined as the closure of an open subset of MpĒq, it is affine, reduced, and

flat over O; a priori, however, we do not have explicit equations for it.

Theorem 8.2.1. Let n “ 2 or 3. Suppose that l ą 2 if n “ 2, l is sufficiently large

(as defined in remark 8.4, see also Conjecture 8.4.4) if n “ 3, and that q “ 1 mod l.

Then XSt is Cohen-Macaulay and XSt bO F is reduced, normal and has resolution-

rational singularities (see [Kov22]).

Remark. For n “ 2 this is proved in [Sho16] by explicit calculation. We will include

a different proof here, as an illustration of our methods for GL3.

From now on, we assume:

Assumption 8.2.2. We have l ą n and q ” 1 mod l.

On XSt, the eigenvalues of Φ are in the ratio 1 : q : . . . : qn´1. Since q ” 1 mod l

and l ∤ n, there is then an isomorphism Gm ˆ X „
ÝÑ XSt where

X “ tpΦ, Nq P XSt : trpΦq “ 1 ` q ` . . . ` qn´1.u
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It will be technically more convenient to work with X .

As l ą n, the logarithm map Σ ÞÑ logpΣ ´ 1q is well defined for strongly unipotent

Σ (that is, its characteristic polynomial is px ´ 1qn). Hence, on X we may write

Σ “ exppNq for a strongly nilpotent matrix N . On the special fibre XF, Φ is strongly

unipotent , so we may write Φ “ exppMq for a strongly nilpotent matrix M .

We let X “ X red
F . Then the map

X Ñ gF ˆ gF

pΦ,Σq ÞÑ plogpΦq, logpΣq

maps the open subset U of X of those pΦ,Σq where Σ is regular unipotent iso-

morphically onto the locally closed subscheme of gF ˆ gF of those pairs pM,Nq of

commuting strongly nilpotent matrices with N regular nilpotent. Hence, we see X

is the Zariski closure in gF ˆ gF of the set of pairs M,N of nilpotent matrices in gpF̄q

such that MN “ NM and N is regular. because the above isomorphism extends to

the closure.

8.2.1 Resolution of X

Let F be the flag variety for G “ GLn over O. We can write a flag F P FpRq as

0 Ă Fn´1 Ă . . . Ă F0 “ Rn with the Fi projective R-modules such that gripF‚q are

all projective. We define

Y “ tpΦ, N, F q P G ˆ g ˆ F : pΦ ´ qi
qFi Ă Fi`1, NFi Ă Fi`1, adΦpNq “ qNu.

Lemma 8.2.3. The morphism f : Y Ñ X given by forgetting F is a projective

morphism that is an isomorphism over the open subset of X on which N is regular

or l is invertible.

Proof. The scheme Y is a closed subscheme of X ˆ F and F is projective, thus Y is

projective. Let U denote the open subset of X where l is invertible, or N is regular.
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If l is invertible, it follows that q is not a root of unity and thus, that Φ is regular

semisimple. If either Φ or N are regular, it follows that the flag defined above is

unique and can be chosen algebraically as follows:

• When N is regular;

N ÞÑ 0 Ă kerpNq Ă kerpN2
q Ă ... Ă kerpNn

q “ Rn.

• When l is invertible; Φ ÞÑ FΦ, where FΦ is the flag with FΦ,i “
Àn

j“i kerpΦ ´

qiInq.

Further, because AdpΦqpNq “ qN , these flags agree when l is invertible and N is

regular. This gives rise to a well defined inverse morphism pf |U q´1 : U Ñ Y on the

open subset U .

We will also require the scheme Z defined exactly as Y but without the closed

condition adΦpNq “ qN . We thus have a closed embedding Y ãÑ Z fitting into the

diagram below:

Z Y X

F

πZ πY

f

We note the following facts.

Lemma 8.2.4. 1. The scheme Z is reduced and O-flat.

2. If n ď 3, Y is O-flat and is reduced along the special fibre.

Proof. 1. Let b P F be a point. Then there is an open affine subscheme U

of F , with U “ SpecpAq, such that the projection GLn Ñ F has a section

γ : U Ñ GLn. Notice that γ P GpAq, so the universal pair pΦ, Nq takes the

form

pγpΦ0 ` Mqγ´1, γNγ´1
q
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with Φ0 “ Diagpqn´1, ..., q, 1q and M,N P n. It is now easy to see that

Z ˆF U – U ˆ n2. Thus Z is a vector bundle over F and hence is reduced and

O-flat.

2. When n “ 2, Y “ Z, so it follows from part 1. For n “ 3, the argument of

part 1 gives similarly that Y ˆF U – U ˆ Cpnq, where

Cpnq “ tpM,Nq P n2
|pΦ0 ` MqN ´ qNpΦ0 ` Mq “ 0u

Let M “

¨

˚

˚

˚

˚

˝

0 a b

0 0 c

0 0 0

˛

‹

‹

‹

‹

‚

and N “

¨

˚

˚

˚

˚

˝

0 d e

0 0 f

0 0 0

˛

‹

‹

‹

‹

‚

. Then the equation defining Cpnq

reduces to pq2 ´ 1qe ` af ´ dc “ 0. This equation is not divisible by a

uniformiser of O, so Cpnq and hence Y is O-flat. To get the reducedness result,

set Y “ YF and Cpnq “ CpnqF “ Vpad ´ dcq. As af ´ dc P Fra, b, c, d, e, f s is

homogeneous of degree 2 and has no linear factors (it would otherwise be the

union of hyperplanes), we see Cpnq is reduced and irreducible. Thus, as Y has

Y ˆF U – U ˆ Cpnq for some open cover tUu of F , we see that Y is reduced.

Remark. For n ě 4, it should be noted that the space Cpn2q of commuting strictly

upper triangular matrices becomes significantly more complicated. For example,

when n ě 4, Cpn2q is not irreducible (see Example A of [Bas08], and for n ě 18, it

doesn’t even have pure dimension (see Example D [Bas08]). Instead, we would need

to take the irreducible component of Cpn2q arising from the open subset of pairs

pM,Nq with at least one M,N regular nilpotent. Unfortunately, this space may

also not behave very well. One can show that for n ď 5 this irreducible component

is Cohen-Macaulay, but as of yet we don’t have results here in general (though

this is a work in progress). One should also note, that there are other additional

complications that arise for n ě 3, which is that the cohomological calculations

necessary for this method become increasingly complicated. Even with computer

programmes, it is difficult to go much further beyond n “ 6, and in addition, the
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best programmes utilise the BGG resolution, which works only in characteristic 0,

so don’t give effective lower bounds for the valid characteristics as in Theorem 8.2.1.

Recall that X “ X red
F . Since Y is reduced, the morphism Y Ñ XF factors through

X. This map we will now denote by f̄ . This gives us the following diagram on the

reduced fibres:

Z Y X

F

π πY

f̄

The proof of the next theorem occupies most of the rest of the paper.

Theorem 8.2.5. Suppose that n “ 2 and l ą 2 or n “ 3 and l ą 5. Then

1. The morphism f : Y Ñ X is a rational resolution of singularities (see Definition

8.2.6);

2. The variety X is Cohen-Macaulay, with X “ Spec ΓpY,OY q;

3. There is an isomorphism of canonical sheaves ωX – f˚ωY .

It is worth noting that the property of rational singularities is well understood only in

zero characteristic, whereas we work purely in the positive and mixed characteristic

case. So we recall a definition of Kovàcs (Definition 1.3 of [Kov22])

Definition 8.2.6. We say an arbitrary X has resolution-rational singularities if:

• X is an excellent scheme that admits a dualising complex;

• There is an excellent scheme Y and a proper birational morphism f : Y Ñ X

which induces a isomorphisms

OX
„
ÝÑ Rf˚OY
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and

Rf˚ωY
„
ÝÑ ωX

in the derived category DcohpXq.

Remark. 1. A definition of excellent scheme can be found here: [Sta23, Definition

07QT]. By Proposition [Sta23, Proposition 07QW], it follows that all of the

schemes we consider (which are finite type schemes over either a finite field or

a complete discrete valuation ring) are excellent. This is thus a property that

will not feature much in what follows.

2. For a more detailed discussion of the multiple definitions for a scheme to have

‘rational singularities’ in positive/mixed characteristic and the various logical

implications and equivalences, one can read [Kov22], of which Theorem 9.12 is

particularly enlightening.

8.2.2 Proof of Theorem 8.2.1

In this section, we explain how to prove Theorem 8.2.1 from Theorem 8.2.5. As

XSt “ X ˆ Gm, we need only prove the theorem for X . Let B “ ΓpY ,OYq and

A “ ΓpX ,OX q. Thus we have a morphism A Ñ B that we would like to show is an

isomorphism.

By flat base change, B bO E “ ΓpYE,OYE
q “ ΓpXE,OXE

q “ A bO E. Moreover, as

Y Ñ X is proper, B is a finite A-algebra.

Lemma 8.2.7. We have B bO F “ ΓpY,OY q.

Proof. Using the short exact sequence 0 Ñ OY
ˆϖ
ÝÝÑ OY Ñ OY Ñ 0 it suffices to

show that H1pY ,OYq “ 0. Using that X is affine, this is equivalent to showing

that R1f˚pOYq “ 0. By Theorem 8.2.5, Rif˚pOY q “ 0 for i ě 1 and, in particular,

pR1f˚OYqbF “ 0 (using the short exact sequence again). But we also have R1f˚OY b

E “ 0 by flat base change and the fact that Y b Qp Ñ X b Qp is an isomorphism.

https://stacks.math.columbia.edu/tag/07QT
https://stacks.math.columbia.edu/tag/07QT
https://stacks.math.columbia.edu/tag/07QW
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Now R1f˚OY is a finitely-generated A-module (as f is proper) M such that MbOF “

M bO E “ 0, from which it follows that M “ 0.

Proposition 8.2.8. The map A Ñ B is an isomorphism.

Proof. We know the proposition after inverting l. We claim that A Ñ B is surjective.

After bF, this follows as, by the previous lemma, B b F “ ΓpY,OY q “ pAb Fpqred.

But then the cokernel, a finite A-module, vanishes after bE and bF and so must be

zero, as at the end of the previous proof.

Now, if A Ñ B is a surjective map of flat O-algebras that is an isomorphism after

inverting l, the kernel must have ϖ-torsion; but as A is ϖ-torsion free the kernel

must vanish, whence the proposition.

Proof of Theorem 8.2.1. We have X “ SpecpAq with A ϖ-torsion free, so that ϖ is

a regular element of A. By Proposition 8.2.8, A bO F “ B bO F “ ΓpY,OY q. Since

Y is reduced, so is AbO F. By Theorem 8.2.5, X “ SpecpAbFq is Cohen–Macaulay,

with resolution-rational singularities. Finally, in Lemma 8.6.1 we will show that the

singular locus of X has codimension 2 which will show X to be normal by Serre’s

criterion.

Notice, that a priori, we did not assume that XF was reduced and instead worked

with the reduction X “ pXFqred. As a consequence of the isomorphism H0pX ,OX q
„
ÝÑ

H0pY ,OYq, we deduce above the isomorphism along the special fibres, which gives

H0
pXF,OXFq

„
ÝÑ H0

pX ,OX q b F „
ÝÑ H0

pY ,OYq b F „
ÝÑ H0

pY,OY q

As Y is reduced, we can thus deduce as a result the corollary:

Corollary 8.2.9. The scheme XF – X is reduced.

8.3 Vector bundles on the flag variety

Our starting point is the following Theorem of Snowden ([Sno18]).
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Lemma 8.3.1. Let f : Y Ñ X be a proper birational map of schemes over F, with

Y Cohen–Macaulay and X affine. Suppose that:

• the cohomology groups H ipY,OY q “ H ipY, ωY q “ 0 for each i ą 0,

• the pullback map f˚ : H0pX,OXq ãÑ H0pY,OY q is an isomorphism.

Then X is Cohen-Macaulay, with ωX – f˚pωY q.

Proof. This is Lemma 2.1.4 of [Sno18].

We will apply this with X and Y the varieties over F introduced in section 8.2.1.

The proof of the following theorem will occupy the next section.

Theorem 8.3.2. Let Y “ YF, X “ pXFqred be as above and f : Y Ñ X be the proper

birational map from before. Suppose either n “ 2 and l ą 2 or n “ 3 and l ą 5, then

the hypotheses of 8.3.1 hold. In particular, Theorem 8.2.5 holds.

Let π : Y Ñ F be the natural map to the flag variety F (over F). We also write Z

for the fibre over F of Z from above, so that Z is a vector bundle over F and

Y ãÑ Z

is a closed immersion of varieties over F (if n “ 2 then it is an isomorphism!). Since

π is affine, for any coherent sheaf V on Z we have H ipZ,Vq “ H ipF, π˚Vq (and

similarly for sheaves on Y ). This is the starting point of our analysis.

We now follow [VX16] closely. Working always over the field F, we let G “ SLn and

take B to be the Borel subgroup of lower triangular matrices, with T the standard

torus and U the unipotent radical. Let g, b, t and n be their Lie algebras. We

choose the system of positive and simple roots in G corresponding to the upper

triangular Borel subgroup; thus the roots in n are negative roots. The representation

g is self-dual via the trace pairing and under this pairing b “ nK; thus n˚ – g{b as

B-representations. We write ρ for half the sum of the positive roots.
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As F “ G{B, there is an equivalence of abelian categories between G-equivariant

vector bundles on F and representations of B on finite-dimensional F-vector spaces.

We will abuse notation and conflate representations of B with the corresponding

equivariant sheaves. From the adjoint action of B on g we obtain sheaves g, b, g{b,

n. If χ P XpT q then we denote by Opχq the corresponding equivariant line bundle

on F ; for V a G-equivariant vector bundle on F we write V pχq “ V bOF
OF pχq. If

F is a sheaf on Z, we will denote Fpχq :“ F bOZ
π˚OF pχq.

Lemma 8.3.3. For F an OZ-module and χ a character of g, we have the isomorph-

ism

π˚rFpχqs – pπ˚Fqpχq.

Proof. Using the fact that π˚ preserves tensor product and for any OF -module G,

π˚π
˚G – Symppg{bq2q bOF

G, we can make the following isomorphisms;

π˚rFpχqs – π˚rF bOZ
π˚

pOF pχqqs

– π˚F bπ˚OZ
pπ˚π

˚
rOF pχqsq

– π˚F bSympg{b2q Sympg{b2
qpχq

– π˚F bOF
OF pχq – rπ˚Fspχq

Proposition 8.3.4. Let π : Z Ñ F be as in the previous section. Note that

π : Z Ñ F is G-equivariant and so is its restriction to Y . We have the following

isomorphisms of G-equivariant vector bundles on F :

π˚OZ – Symppg{bq
2
q (8.3.1)

π˚ωZ – Symppg{bq
2
qp2ρq (8.3.2)

and, if n “ 3, then

π˚IY – Symppg{bq
2
qpρq (8.3.3)

π˚ωY – pπ˚OY qpρq. (8.3.4)
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Proof. 1. The fibres of π : Z Ñ F over a Borel β are equal to pairs of matrices

x, y P g with x, y inside the derived subalgebra rβ, βs of β P F . Thus, we can

view Z as the total space of the equivariant G-bundle n2. Therefore

Z “ Spec
F

pSymppg{bq
2
qq,

as g{b is the dual of n. Therefore, π˚OZ – Symppg{bq2q.

2. Recall that ωZ – ωZ{F bOZ
π˚ωF because π is smooth and F is regular. We

also recall from [Jan03] II. §4.2 that ωF – Op´2ρq. It remains to calculate

ωZ{F . Notice that the relative tangent bundle has TZ{F “ π˚ppnq2q, so ωZ{F –

π˚ detppg{bq2q “ π˚pOp4ρqq. We hence see

ωZ – π˚
pOp´2ρq b Op4ρqq “ π˚

pOp2ρqq.

As the functors π˚π
˚p¨q and ¨ bOF

Symppg{bq2q are isomorphic, we see that

π˚pωZq – Symppg{bq
2
qp2ρq.

3. We note that this lemma can also be found as Proposition 5.1 of [Ngo18] when

the characteristic is zero. As we are working in characteristic l, we include the

following proof.

Let U be any appropriate open subset of F for which π´1pUq – U ˆ n2, under

the coordinates of n2 defined by px, yq “ prxijs, ryijsq for 1 ď i ă j ď 3, the ideal

IY pπ´1pUqq is generated by the single element x1,2y2,3 ´ y1,2x2,3, an element

of weight ρ. Hence, we see that is a locally principal G-equivariant quasi-

coherent sheaf on F . Hence, we see that in the category Rep
B

it is generated

as a Symprg{bs2q-module (viewed as a ring with a B-representation structure)

by a single element of weight ρ, and hence is isomorphic to Symprg{bs2qpρq.

Returning to OF ´mod and upgrading to OZ-modules, we get the isomorphism

of OZ-modules IY – Opρq.

4. Finally, Y Ď Z is a closed subset of codimension 1 and since Y Ñ F is a
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complete intersection morphism, Y is Cohen-Macaulay. Hence we get

ωY – Ext1ZpOZ{IY , ωZq

From the short exact sequence,

0 Ñ IY Ñ OZ Ñ OY Ñ 0

we get a long exact sequence

0 HomZpOY , ωZq HomZpOZ , ωZq HomZpIY , ωZq

Ext1ZpOY , ωZq Ext1ZpOZ , ωZq . . .

As OZ is the structure sheaf, we automatically get HomZpOZ , ωZq “ ωZ and

Ext1ZpOZ , ωZq “ 0 by Proposition III.6.3 of [Har77]. As π is an affine morphism,

the functor π˚ is exact, hence we get an exact sequence

0 Ñ π˚ HomZpOY , ωZq Ñ π˚ωZ Ñ π˚ HomZpIY , ωZq Ñ π˚ωY Ñ 0

We calculate for U Ď F open

π˚ HomZpIY , ωZqpUq – HomOZ |π´1pUq
pπ˚

pOpρqq|π´1pUq, ωZ |π´1pUqq

– HomOF |U pOpρq|U , π˚ωZ |U q

– π˚ωZp´ρqpUq

hence π˚ HomZpIY , ωZq – π˚ωZp´ρq and

π˚ωY – coker
“

Symppg{bq
2
qp2ρq Ñ Symppg{bq

2
qpρq

‰

– coker
“

Symppg{bq
2
qpρq Ñ Symppg{bq

2
q
‰

pρq

– coker rIY Ñ OZs pρq

– OY pρq

This completes the proof.
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In the following example, we will give a demonstration of how we wish to utilise

Lemma 8.3.1, in a concrete example when n “ 2. In this case, the idea of the proof

is the same as that found in section 3.3 of [Sno18], but we include the proof here, to

clearly demonstrate how the idea generalises for other connected reductive groups.

Proof of Theorem 8.3.2 when n “ 2. Suppose that G “ GL2, so that F “ P1 and

Y “ Z is the total space of the vector bundle n2. As an ordinary line bundles on P1,

we see that g{b – n˚ – Op2q and Opρq – Op1q so that H1pP1, Symr
rpg{bq2sq “

H1pP1, Symr
rpg{bq2sp2ρqq “ 0 for every r ě 0. Thus, the cohomology groups

H ipY,OY q “ H ipF, Symrpg{bq2sq “ 0 and H ipY, ωY q “ H ipF, Symrpg{bq2sp2ρqq “ 0

for each i ą 0. To show the theorem, it suffices now to show that f˚ : H0pX,OXq Ñ

H0pY,OY q is an isomorphism.

For convenience, we set R “ H0pX,OXq and R̃ “ H0pY,OY q. We note that there is

a surjection

H0
pF, Symrg2

sq “ Frg2
s Ñ R

because X is defined as a closed subscheme of g2. Let I be the kernel of this

surjection. The composite

H0
pF, Symrg2

sq Ñ R
f˚

ÝÑ R̃ “ H0
pF, Symrpg{bq

2
sq

is the morphism induced from the natural epimorphism of coherent sheaves g2 Ñ

pg{bq2.

Letting S “ Frgs and S` be the irrelevant ideal of S, Proposition 2.1.5 of [Sno18]

gives us that Tor0
pR,Fq “ R̃{S`R̃ – H0pOF q ‘ H1pb2q and Tor1

pR,Fq “ I{S`I –

H0pb2q ‘H1pΛ2rb2sq. Because b – Op´1q2, this shows that R̃{S`R̃ is 1-dimensional

and further that I{S`I is 6-dimensional. Hence, Frg2s Ñ H0pY,OY q is surjective

and has kernel generated by 6 elements in degree 2. It thus follows that the map

H0pX,OXq Ñ H0pY,OY q is an isomorphism. Thus X “ SpecpΓpY,OY qq is Cohen-

Macaulay with dualising module f˚ωY .
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Remark. It is possible to modify the above proof to work in the case l “ 2 as well.

Proof of Theorem 8.3.2 when n “ 3. For this proof, we will a priori assume that

H ipY,OY q “ H ipY, ωY q “ 0 for all i ą 0 and defer the proof of these calculations

to section 3.4 (See Proposition 8.4.9). Thus, to prove the theorem, the only thing

that remains to check is that the natural morphism H0pX,OXq Ñ H0pY,OY q is

an isomorphism. As the map f : Y Ñ X is dominant, the above homomorphism

is injective provided X is reduced. To show that f˚ : H0pX,OXq Ñ H0pY,OY q is

surjective, define S “ Frg2s “ Symrg2s, with irrelevant ideal S`. Let T “ H0pZ,OZq

for Z the total space of the vector bundle rg{bs2 on G{B. Recall from Proposition

2.1.5 of [Sno18] that

T {S`T “ TorS
0 pT,Fq “

à

H i
pF,Λi

rb2
sqris

By our calculations, we know thatH ipF,Λirb2sq “ 0 unless i “ 0, whenH0pF,Λ0rb2sq “

H0pF,Fq “ F. Thus, the map S Ñ T is surjective and as Y is a closed subvariety of

Z, that the composition map S Ñ H0pY,OY q is surjective. Since it factors through

H0pX,OXq, we see that the map f˚ : H0pX,OXq Ñ H0pY,OY q is surjective. This

proves the isomorphism.

8.4 Cohomological calculations for sheaves on

the flag variety GL3{B

Let k be an arbitrary field. Let G, B and T be GL3, the Borel of negative roots

and torus of diagonal matrices defined over k. Let XpT q be the character lattice,

X_pT q the cocharacter lattice and x, y : XpT q ˆ X_pT q Ñ Z the natural pairing.

For a cocharacter λ P XpT q, let kλ “ kpλq be the corresponding B-representation

and recalling the equivalence of categories CohGpG{Bq » Rep
B

, let Lλ be the corres-

ponding G-equivariant line bundle on G{B. Let Φ` be the set of positive roots and

W be the Weyl group of G. Recall the ‘dot’ action of W on XpT q is defined through
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w.λ :“ wpλq ´ λ where wp¨q denotes the natural action of W on XpT q. We recall

below the Borel-Weil-Bott Theorem.

Theorem 8.4.1 (The Borel-Weil-Bott Theorem). Consider G{k an algebraic group

over a field k. Denote

CZ “ tλ P XpT q : 0 ď xλ ` ρ, β_
y for all β P Φ`

u

when charpkq “ 0 and

CZ “ tλ P XpT q : 0 ď xλ ` ρ, β_
y ď l for all β P Φ`

u

when charpkq “ l. Then for λ P C̄Z and w P W , the Weyl group, H ipG{B,Lw¨λq “ 0

unless i “ lpwq, in which case

H lpwq
pG{B,Lw¨λq – H0

pG{B,Lλq – indG
Bpkλq

Proof. See section II, Corollary 5.5 of [Jan03].

We make the following calculations. We notice that by choosing l large enough,

that all the potential supports of the B´representations lie within the region
Ť

wPW w¨ pC̄Zq where the Borel-Weil-Bott theorem applies. We will call this re-

gion the BWB locus. The content of the Borel-Weil-Bott theorem is that within

the BWB-locus of XpT q (shown inside the dashed blue line in figure 8.1 below), Ci
Z

is the support of the functor H i. The subset of the BWB-locus not contained in

any Ci
Z (denoted by the solid black lines in figure 8.1) does not contribute to the

cohomology groups at all.

It will also be useful to note that since G{B Ñ Specpkq is a proper map, that we

have an induced homomorphism of G-equivariant Grothendieck groups:

KGpG{Bq Ñ KGp˚q

F ÞÑ

dimpG{Bq
ÿ

i“0
p´1q

i
rH i

pG{B,Fqs
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We will denote this map by χ, the Euler characteristic. Notice that KGp˚q “ KpRep
G

q

and when G “ GL3 this is isomorphic to Zrx1, x2s generated by x1 “ rV s, the

standard representation, and x2 “ rV ˚s, the dual of V .

For E a B-representation, let

PSupppEq “ tλ P XpT q : kλ appears as a subquotient of Eu

be the support of a B-representation, viewed as a multiset with multiplicity. Let

C0
Z “ C̄ZXX`pT q and for i ą 0 let Ci

Z “
š

lpwq“i w¨C0
Z. Let P ipEq be the intersection

of PSupppEq with Ci
Z We define PSuppi

pEq to be the multiset image ΘpP ipEqq of

the cardinality-preserving morphism of multisets

Θ : PSuppi
pEq ÑNC0

Z

λ ÞÑH i
pkλq

We also let

Suppi
pEq “ tλ P C0

Z : H i
pEq contains V pλq :“ H0

pkλq as a subrepresentationu

be the support of the G-representation H ipEq, also considered as a multiset with

multiplicity. Since we can take a composition series of a B-representation E;

from which it follows that the cohomology group H ipEq is a subrepresentation of
À

λPPSuppipEq
H0pkλq provided that PSupppEq is inside the BWB locus. It then fol-

lows, that Suppi
pEq Ď PSuppi

pEq and hence, as a corollary, whenever PSuppi
pEq “

H, then Suppi
pEq “ H and H ipEq “ 0.

We will also need the fact that whenever E is a B-representation and V a G-

representation, then H ipV b Eq – V b H ipEq for all i. We further record the fact

that PSupppbq “ t0, 0,´ρ,´α,´βu.

Figure 8.1 (found below) shows the BWB-locus when p “ 7 inside the blue dashed

region and shows the different regions Ci
Z inside the regions bounded by the red lines,

as well as the weights, L1, L2, L3, α, β, ρ,´ρ and ´2ρ.
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Figure 8.1: A depiction of the root space of sl3. Equivalently,
each vertex in the lattice corresponds to a unique SL3-
equivariant line bundle of the flag variety F “ GL3{B.
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Calculating H ipΛjrb ‘ bsq

Calculations for H ipbq, H ipb b bq and H ipb b b b bq, from which some of our results

below can be deduced, can be found in [VX16] in the case of k “ C. We include the

proofs of these calculations anyway, because we are in particular interested in which

finite characteristics l these calculations occur within the BWB locus, to show that

they are valid in characteristic l.

Remark. During the proofs of each calculation, we will proceed with the calculation

as though the characteristic were not important and only thereafter will we discuss

how large the characteristic l “ charpkq needs to be to make the BWB locus large

enough to contain all the representations inside.

Calculation 8.4.2. Let n “ 3 and suppose that the characteristic l “ charpkq ě 7.

Then the G-representations H ipΛjbq are tabulated as follows:

i 0 1 2 3
j
0 k ¨ ¨ ¨

1 ¨ ¨ ¨ ¨

2 ¨ k ¨ ¨

3 ¨ ¨ k ¨

4 ¨ ¨ ¨ ¨

5 ¨ ¨ ¨ k

Table 8.1: The cohomology of H ipΛjbq

Proof. We now calculate the cohomology groups of Λjb.

0. When j “ 0, Λjb “ k and H ipkq “ 0 unless i “ 0, in which case H0pΛ0bq “ F.

1. When j “ 1, we note that PSupppbq has PSupp2
pbq “ PSupp3

pbq “ H, so

H2pbq “ H3pbq “ 0.

Further, there is a short exact sequence

0 Ñ b Ñ g Ñ g{b Ñ 0

which gives a long exact sequence in cohomology
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0 H0pbq H0pgq H0pg{bq

H1pbq H1pgq . . .

As g is a G-representation, we see that H0pgq “ g and H1pgq “ 0. The module

g{b is unsupported outside PSupp0
pg{bq “ tρu, thus H0pg{bq “ g. Since the

support of b is PSupppbq “ t0, 0,´ρ, α,´βu, we see that H0pbq and H1pbq are

both subrepresentations of a trivial module, we see that they are both zero.

2. When j “ 2, consider the exact sequence

0 Ñ b b b Ñ g b b Ñ g{b b b Ñ 0

which gets a long exact sequence with parts

H i
pg b bq Ñ H i

pg{b b bq Ñ H i`1
pb b bq Ñ H i`1

pg b bq.

As H ipbq “ 0 for all i, we get isomorphisms H ipb b g{bq – H i`1pb b bq

for all i. Thus, H0pb b bq “ 0 and H3pb b bq “ H2pg{b b bq “ 0, since

PSupp2
pg{b b bq “ H.

For H2pb b bq, consider first the exact sequence

0 Ñ b b g{b Ñ g b g{b Ñ g{b b g{b Ñ 0

giving rise to the long exact sequence

0 Ñ H0
pbbg{bq Ñ H0

pgbg{bq Ñ H0
pg{bbg{bq Ñ H1

pbbg{bq Ñ H1
pgbg{bq.

Notice that H1pgb g{bq – gbH1pg{bq “ 0 and H0pgb g{bq – gbH0pg{bq “

g b g so that H1pb b g{bq “ cokerpg b g Ñ H0pg{b b g{bqq.

One can calculate that PSupp0
pg{bbg{bq “ t2ρ, ρ`α, ρ`α, ρ`β, ρ`βu which

implies H1pg{bb bq is a quotient of a non-trivial representation, which implies

that 0 R Supp2
pb b bq. But since we can directly check that PSupp2

pb b bq “
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t0, 0u, we see that H2pb b bq “ 0.

To get H1pb b bq, it now suffices to consider the additive function χpb b bq “

4r0s ´ 4r0s ´ 4r0s ` 2r0s ` 2r0s ´ r0s “ ´r0s. Hence,
ř

jp´1qjrHjpbbbqs “ ´r0s

implies that H1pb b bq “ k. As Λ2b is a direct summand of b b b, it follows

that H ipΛ2bq “ 0 when i ‰ 1. Again, as

χpΛ2bq “ r0s ´ 4r0s ` 2r0s “ ´r0s

We see that H1pΛ2bq “ k.

3. When j “ 3, Notice that there is a B-equivariant pairing Λ3b b Λ2b Ñ Λ5b –

kp´2ρq which gives rise to the isomorphism Λ3b – rΛ2bs_ b kp´2ρq. Hence,

by Serre duality, (identifying ωF – kp´2ρq) we see

H i
pΛ3bq – H i

prΛ2bs
_

b ωF q – H3´i
pΛ2bq

_

. The result then follows from the result for part 2.

4. When j “ 4, we see from the same pairing Λ4b b b Ñ ωF that H ipΛ4bq –

H3´ipbq_ “ 0.

5. Finally, when j “ 5, we see that Λ5b – kp´2ρq. So H ipΛ5bq “ 0 unless i “ 3,

in which case H3pΛ5bq “ k.

In calculations 0 ´ 2, all representations are subquotients of g b g, and in 3 ´ 5, we

used the pairings Λib b Λ5´ib Ñ kp´2ρq to calculate these cohomologies. Notice,

that all of these representations are in the BWB locus when the characteristic

l “ charpkq ě 7. This proves the claim on the characteristic.

Calculation 8.4.3. 1. Suppose l “ charpkq ě 11. Then the B-representation

b b Λ2b has cohomology H ipb b Λ2bq “ g2 ‘ k when i “ 2 and vanishes

otherwise.

2. Suppose l “ charpkq ě 11. Then the cohomology group H3pb b Λ3bq “ 0.
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3. Suppose l “ charpkq ě 11. Then the cohomology group H3pΛ2b b Λ2bq ď g2.

Proof. 1. The short exact sequence

0 Ñ Λ2b b b Ñ Λ2b b g Ñ Λ2b b g{b Ñ 0

along with the fact H ipg b Λ2bq “ g b H ipΛ2bq gives rise to exact sequences

in cohomology,

0 Ñ H0
pΛ2bbg{bq Ñ H1

pΛ2bbbq Ñ g Ñ H1
pΛ2bbg{bq Ñ H2

pΛ2bbbq Ñ 0,

H2pΛ2bbg{bq – H3pΛ2bbbq, and H0pΛ2bbbq “ 0. As PSupp2
pΛ2bbg{bq “

H, we see that H3pΛ2b b bq “ 0.

It follows from looking at the supports of Λ2bbb and Λ2bbg{b that: H0pΛ2bb

g{bq “ H1pΛ2b b bq – kn, H1pΛ2b b g{bq “ g3 b kn`1 and H2pΛ2b b bq “

g2 ‘ kn`1 with n some integer 0 ď n ď 7.

The B-representation Λ2bb g{b is a direct summand of bb bb g{b, which fits

into the short exact sequence

0 Ñ b b b b g{b Ñ g b b b g{b Ñ g{b b b b g{b Ñ 0

which after taking cohomology gives an exact sequence

0 Ñ H0
pb b b b g{bq Ñ g b H0

pb b g{bq “ g

which implies that H1pb b b b bq “ H0pb b b b g{bq is at most the non-trivial

G-representation g. Hence, as H0pΛ2b b g{bq “ kn is a direct summand of g,

it follows that H0pΛ2b b g{bq “ H1pΛ2b b bq “ 0, giving the result.

To get the bound on the characteristic for which this calculation is valid, we

note that the modules required for this calculation are subquotients (in Rep
B

)

of: k, g, g b g, and g b g b g; which all have their potential supports contained

inside the BWB locus when l ě 11. Hence l ě 11 is sufficient.

2. Using that H ipΛ3bq “ k only when i “ 2 and vanishes otherwise, we can gain
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from the short exact sequence 0 Ñ Λ3b b b Ñ Λ3b b g Ñ Λ3b b g{b Ñ 0 an

exact sequence

g Ñ H2
pΛ3b b g{bq Ñ H3

pΛ3b b bq Ñ 0

The potential support PSupp2
pΛ3b b g{bq Ď t0, 0u This allows us to see that

H2pΛ3b b g{bq “ kn for some 0 ď n ď 2. We thus see that H3pΛ3b b bq “ kn.

There is an exact sequence given by

0 Ñ Λ3b Ñ Λ3g Ñ Λ2g b g{b Ñ g b Sym2
pg{bq Ñ Sym3

pg{bq Ñ 0

Let W “ Λ3g{Λ3b, and let K “ kerpg b Sym2
pg{bq Ñ Sym3

pg{bqq. Then we

have an exact sequence

0 Ñ Λ3b b b Ñ Λ3g b b Ñ W b b Ñ 0

which, since H ipbq “ 0 for all i, induces isomorphisms H ipWbbq – H ipΛ3bbbq

for all i. The complex induces a S.E.S

0 Ñ W b b Ñ Λ2g b g{b b b Ñ K b b Ñ 0

from which we get, because H ipg{b b bq “ 0 for i ‰ 0, an isomorphism

H1pb b Cq Ñ H2pW b bq. Finally. considering the S.E.S

0 Ñ K b b Ñ g b Sym2
pg{bq b b Ñ Sym3

pg{bq b b Ñ 0

gives as part of the long exact sequence in cohomology

H0
pSym3

pg{bq b bq Ñ H1
pK b bq Ñ g b H1

pSym2
pg{bq b bq

Recall that there is a surjection H0pg{b b Sym2
pg{bq ↠ H1pb b Sym2

pg{bqq,

and that we can calculate H0pg{b b Sym2
pg{bqq “ r3ρs ‘ r2ρ ` αs ` r2ρ `

βs ` 3r2ρs ‘ 2rρ ` αs ` 2rρ ` βs. Hence, (as all morphisms split in Rep
G

)

H1pb b Sym2
pg{bqq is a subrepresentation of H0pg{b b Sym2

pg{bq. It thus
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follows that g b H1pb b Sym2
pg{bqq is a subrepresentation of

H0
pg b Sym2

pg{bq b g{bq

Notice, that any λ P PSupppg b Sym2
pg{bq b g{bq satisfies

xλ, ρy ě xλ, αy ` xλ, ρy ` xλ,´ρy “ 1

from which it follows that 0 is not in Supppxλ, αyq, and thus that H0pg b

Sym2
pg{bq bg{bq contains no trivial factor. Similarly, when we look at H0pbb

Sym3
pg{bqq, we see that any λ P PSupppb b Sym3

pg{bq satisfies

xλ, ρy ě 3 ` xλ,´ρy “ 1.

and thus, that H0pb b Sym3
pg{bqq contains no trivial factors. It thus follows

that H1pKbbq, and hence H3pΛ3bbbq, contains no trivial factors. This shows

that H3pΛ3b b bq “ 0.

To get the bound on the characteristic for which this calculation is valid, we

note that the modules required for this calculation are subquotients (in Rep
B

)

of: k, g, gbg, gbgbg and gbgbgbg; which all have their potential supports

contained inside the BWB locus when l ě 11.

3. Observe that PSupp3
pΛ2b b Λ2bq “ tpρ, 2q, p0, 17qu and PSupp2

pΛ2b b Λ2bq “

tρ ` α, ρ ` β, pρ, 8q, p0, 28qu. We have a Koszul complex given by

0 Ñ Λ2b Ñ Λ2g Ñ g b g{b Ñ Sym2
pg{bq Ñ 0

Let C “ Λ2g{Λ2b so that we have two short exact sequences

0 Ñ Λ2b Ñ Λ2g Ñ C Ñ 0

and

0 Ñ C Ñ g b g{b Ñ Sym2
pg{bq Ñ 0.

The first S.E.S gives us H0pW q “ Λ2g ‘ k and H ipW q “ 0, for i ą 0, and the
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second gives us H0pSym2
pg{bqq “ Lp2ρq ‘ g and H ipSym2

pg{bqq “ 0 for i ą 0.

Let C “ Λ2g{Λ2b b Λ2b “ W b Λ2b. Then the S.E.S

0 Ñ Λ2b b Λ2b Ñ Λ2g b Λ2b Ñ C Ñ 0

gives us an isomorphism H2pCq – H3pΛ2b b Λ2bq. We can calculate

PSupp2
pCq “ t2rρs, 14r0su.

From the short exact sequence

0 Ñ C Ñ Λ2g b W Ñ W b W Ñ 0

We get

0 Ñ H0
pCq Ñ Λ2g b Λ2g ‘ Λ2g Ñ H0

pW b W q Ñ H1
pCq Ñ 0

and the isomorphism H1pW b W q – H2pCq.

The short exact sequence

0 Ñ b b W Ñ g b W Ñ g{b b W Ñ 0

give us exact sequences

0 Ñ H0
pb b W q Ñ g b H0

pW q Ñ H0
pg{b b W q Ñ H1

pb b W q Ñ 0

and H1pW b g{bq – H2pW b bq. Notice that PSupp2
pW b bq “ t0, 0u, so that

H1pW b g{bq “ ki is a trivial representation. On the other hand, the S.E.S

0 Ñ W b g{b Ñ g b g{b b g{b Ñ Sym2
pg{bq b g{b Ñ 0

gives us

0 Ñ H0
pWbg{bq Ñ gbH0

pg{bbg{bq Ñ H0
pSym2

pg{bqbg{bq Ñ H1
pWbg{bq Ñ 0

and because W b g{b has no potential support in C2 or C3, and H ipg{b b

g{bq “ 0 for all i ą 0, it follows that H ipSym2
pg{bq b g{bq “ 0 whenever
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i ą 0, and hence we deduce H0pSym2
pg{bq b g{bq “ χpSym2

pg{bq b g{bq “

r3ρs ` r2ρ ` αs ` r2ρ ` βs ` 3r2ρs ` 2rρ ` αs ` 2rρ ` βs has no trivial part.

Therefore, we see that H1pW b g{bq “ 0

Then, we can look at the S.E.S

0 Ñ W b W Ñ W b g{b b g Ñ W b Sym2
pg{bq b W Ñ 0

which gives us an exact sequence

0 H0pW b W q g b H0pW b g{bq H0pSym2
pg{bq b W q

H1pW b W q 0

It is easily seen that 0 R PSupp0
pSym2

pg{bq b W q, so that H3pΛ2b b Λ2bq –

H1pW b W q has no trivial component.

Thus, H3pΛ2b b Λ2bq ď g2.

To get the bound on the characteristic for which this calculation is valid, we

note that the modules required for this calculation are subquotients (in Rep
B

)

of: k, g, gbg, gbgbg and gbgbgbg; which all have their potential supports

contained inside the BWB locus when l ě 11.

Remark. The last part of this proof only proves a weaker statement than that we

wish to prove.

Using the programs of Hemelsoet and Voorhaar [HV21], available at https://

github.com/RikVoorhaar/bgg-cohomology, it is easy to verify that H3pΛ4pb ‘

bqq “ 0 over a field of characteristic zero. In particular, as Λ2b b Λ2b is a direct

summand of Λ4pb ‘ bq, it shows that H3pΛ2b b Λ2bq “ 0 vanishes in characteristic

zero.

This implies that these cohomology groups vanish in sufficiently large positive char-

acteristic; however, this bound is not effective since their algorithm relies on the

BGG resolution, which only exists in characteristic zero.

https://github.com/RikVoorhaar/bgg-cohomology
https://github.com/RikVoorhaar/bgg-cohomology
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We however, can make the following conjecture for an effective bound:

Conjecture 8.4.4. When l “ charpkq ě 11, the cohomology H3pΛ2b b Λ2bq “ 0.

We believe this ought to be sufficient, as any argument as in Calculation 8.4.3 needs

only to consider subquotients of gbn up to n “ 4, which is contains in the BWB

locus for characteristic larger than 10.

We now wish to calculate the cohomology groups H ipΛjrb ‘ bsq.

Calculation 8.4.5. Suppose that l “ char k is sufficiently large so that H3pΛ2b b

Λ2bq “ 0 (l ě 11 is conjectured large enough).

The G-module H ipΛjrb ‘ bsq is calculated as in the following table:

i 0 1 2 3
j

0 k ¨ ¨ ¨

1 ¨ ¨ ¨ ¨

2 ¨ k3 ¨ ¨

3 ¨ ¨ g4 ‘ k4 ¨

4 ? ? ? 0

Table 8.2: The cohomology of H ipΛjrb ‘ bsq. Dots indicate trivial
modules

Proof. 1. When j “ 0, we see that Λjpb ‘ bq “ k. Thus, H ipkq is trivial unless

i “ 0.

2. When j “ 1, we see Λ1pb ‘ bq “ b ‘ b. Hence the result follows from the

vanishing H ipbq “ 0.

3. From the isomorphism Λ2pb ‘ bq – pΛ2bq‘2 ‘ b b b and Calculation 8.4.2,

H ipΛ2pb ‘ bqq “ H ipΛ2bq‘2 ‘ H ipb b bq “ k3 when i “ 1 and is trivial for all

other i.

4. Notice Λ3pb ‘ bq “ rΛ3b ‘ Λ2b b bs‘2. From Calculation 8.4.2, H ipΛ3bq “ k

when i “ 2 and is trivial otherwise. From Calculation 8.4.3 H ipΛ2bbbq “ g2‘k

when i “ 2 and 0 otherwise, thus H ipΛ3rb ‘ bsq “ g4 ‘ k4 when i “ 2 and is

zero for all other i.
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5. We also need to calculate H3pΛ4rb‘bsq “ H3pΛ4bq2 ‘H3pΛ3bbbq2 ‘H3pΛ2bb

Λ2bq. From Calculation 8.4.2 we know that H3pΛ4bq “ H0pbq_ “ 0. From

Calculation 8.4.3 we know that H3pΛ2b b Λ2bq “ H3pΛ3b b bq “ 0. Thus, we

get H3pΛ4rb ‘ bsq “ 0

We simply remark that the conditions on the lower bound for the characteristic is

simply that bound given by combining those of Calculations 8.4.2 and 8.4.3.

Calculating H ipΛjrb ‘ bspρqq and H ipΛjrb ‘ bsp2ρqq

Later, to give the result Y Ñ X is a rational resolution of singularities, we will also

need cohomology groups of IY – OZpρq (see for example Theorem 3.1 of [Ngo18],

and corollary 4.3 where Ngo proves the vanishing of these groups in characteristic

0). Further, as ωY – OY pρq, and we wish to calculate this sheaf, we will need also

the cohomologies of OZpρq and OZp2ρq. For these, we must calculate Hk`ipΛibpρqq,

Hk`ipΛibp2ρqq, Hk`ipΛirb ‘ bspρqq, and Hk`ipΛirb ‘ bsp2ρqq for i ě 0 and k ą 0.

Calculation 8.4.6. Suppose l “ charpkq ě 7. Then we have the following:

H ipΛkbp2ρqq “ 0 whenever i ą 0 and H ipΛkbpρqq “ 0 whenever i ą 1.

Further,

H0
pkp2ρqq “ V p2ρq

H0
pbp2ρqq “ V p2ρq

2
‘ V pρ ` αq ‘ V pρ ` βq

H0
pΛ2bp2ρqq “ V p2ρq ‘ V pρ ` αq ‘ V pρ ` βq ‘ g3

H0
pΛ3bp2ρqq “ V pρ ` αq ‘ V pρ ` βq ‘ g3

‘ k

H0
pΛ4bp2ρqq “ g ‘ k2

H0
pΛ5bp2ρqq “ k

We also have

H0
pkpρqq “ g

H0
pbpρqq “ g2

‘ k
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H1
pbpρqq “ 0

H0
pΛ2bpρqq “ g ‘ k

H1
pΛ2bpρqq “ 0

Proof. First, note that Λkbp2ρq has potential support contained in t0, α, β, ρ, ρ `

α, ρ ` β, 2ρu, which has empty intersection with the regions Ci
Z for i ą 0 and

Λkbpρq has potential support contained in t´ρ,´β,´α, 0, α, β, ρu which has empty

intersection with the regions Ci
Z when i “ 2, 3. This gives us the first part of

the calculation. For H0pΛkbp2ρqq, we simply notice that this is equal to the Euler

characteristic χpΛkbp2ρqq, which gives us the next part of the result.

It is readily seen that bpρq has potential support only in C0
Z, so the Euler characteristic

gives us H0pbpρqq “ g2 ‘ k.

To get H1pΛ2pbqpρqq, notice that PSupp1
pΛ2pbqpρqq “ t0, 0u has only trivial potential

support. Additionally, we have a short exact sequence:

0 Ñ b b bpρq Ñ g b bpρq Ñ g{b b bpρq Ñ 0

from which we obtain an exact sequence

H0
pg{b b bpρqq Ñ H1

pb b bq Ñ g b H1
pbpρqq “ 0

As Supp0
pg{bpρqq Ă tpρ, 3q, pρ`α, 3q, pρ` β, 3q, p2ρ, 2qu it follows that H1pbb bpρqq

has no trivial factors and as Λ2bpρq is a direct summand thereof, it follows that

H1pΛ2bpρqq “ 0. The Euler characteristic then gets us H0pΛ2bpρqq “ g ‘ k.

To get the bound on the characteristic for which this calculation is valid, we note

that the only modules required for this calculation (other than Λipbqpρq,Λipbqp2ρq

which as already discussed lie in the BWB locus for l ě 7) are bb bpρq, gb bpρq and

g{b b bpρq. which all have their potential supports contained inside the BWB locus

when l ě 7. Therefore l ě 7 is sufficient for all the above calculations.
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Calculation 8.4.7. Suppose that l “ charpkq ě 7. Then the cohomology groups

Hk`ipΛkrb ‘ bspλqq vanish for λ “ ρ, 2ρ whenever i ą 0, or when i “ 0 and k ą 0.

Proof. We start with the assumption i ą 0.

0. When k “ 0, Λ0pb‘bqpλq “ kpλq, so H ipkλq “ 0, because λ is in the dominant

Weyl chamber.

1. When k “ 1, H iprb‘ bspλqq “ H ipbpλqq2 “ 0 for all i ą 0 by Calculation 8.4.6.

2. When k “ 2, if µ is a weight of Λ2rb ‘ bspλq, then the inner product xρ, µy ě

xρ,´2ρ ` λy “ ´4 ` xρ, λy ě ´2, because λ “ ρ or 2ρ. Hence, the support of

Λ2rb ‘ bspλq does not intersect C2
Z or C3

Z, so HkpΛ2rb ‘ bspλqq “ 0 for k “ 2, 3.

3. When k “ 3, we see that Λ3rb ‘ bspλq “ Λ3bpλq2 ‘ Λ2b b bpλq2. As every

weight, µ of b satisfies xρ, µy ě ´2, every weight µ of Λ2b satisfies xρ, µy ě ´3,

and every weight µ of Λ3b satisfies xρ, µy ě ´4, we see that every weight µ of

Λ3rb ‘ bspλq “ Λ3bpλq2 ‘ Λ2b b bpλq2 has

xρ, µy ě minp´2 ´ 3,´4q ` xρ, λy ě ´5 ` xρ, λy.

As λ “ ρ or 2ρ, we get that xρ, λy “ 2 or 4. Thus, every weight µ of Λ3rb‘bspλq

has xρ, µy ě ´3. On the other hand, if µ is a weight inside C3
Z, we see that

xρ, µy ď xρ,´2ρy “ ´4. Thus, we see that there can be no intersection of the

potential support PSupppΛ3rb ‘ bspλqq with C3
Z, so H3pΛ3rb ‘ bspλqq “ 0.

Now assume i “ 0. Then:

4. When k “ 1, H1pΛ1rb ‘ bspλqq “ H1pbpλqq2 “ 0 by Calculation 8.4.6.

5. When k “ 2, H2pΛ2rb ‘ bspλqq “ H2pΛ2pbqpλqq2 ‘ H2pb b bpλqq. Calculation

8.4.6 tells us that H2pΛ2pbqpλqq “ 0. If µ is a weight of bb bpλq, then we have

xρ, µy ě xρ,´ρ ´ ρ ` λy ě ´2 ´ 2 ` 2 “ ´2

Which leaves b b bpλq unsupported in C2
Z and thus, H2pb b bpλqq “ 0.
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6. When k “ 3, we note thatH3pΛ3rb‘bspλqq “ H3ppΛ3pbqpλqq2‘H3pΛ2bbbpλqq2.

Calculation 8.4.6 tells us H3ppΛ3pbqpλqq “ 0, so we turn our attention to

H3pΛ2b b bpλqq. Again, if µ is a weight of Λ2b b bpλq, we see

xρ, µy ě xρ,´ρ ´ α ´ ρ ` λy ě ´3 ´ 2 ` 2 “ ´3

Which shows that since any µ P C3
Z has xρ, µy ď ´4, that Λ2b b bpλq is

unsupported in C3
Z. This gives H3pΛ2b b bpλqq “ 0 and the result.

We now discuss the characteristic l “ charpkq. Because Calculation 8.4.6 is valid for

l ě 7, so are the subcalculations 0, 1 and 4. As Λ2pb ‘ bq and Λ3pb ‘ bq lie in the

BWB for l ě 7, subcalculations 2, 3, 5, and 6 are valid here too.

8.4.1 Results for the cohomology of sheaves on Z and Y .

Now, set the field k “ F, assume that the characteristic l ě 11 is large enough so

that H3pΛ2bb Λ2bq “ 0 and return to the previous situation of Section 8.3. We now

use the above results to calculate cohomology groups of particular sheaves on Z and

Y .

Lemma 8.4.8. Let λ “ 0, ρ or 2ρ. Then the cohomology groups H ipZ,OZpλqq “ 0

whenever i ą 0.

Proof. Because the map π : Z Ñ F is affine, from Lemma 8.3.3 we have the following

isomorphisms of cohomology groups:

H i
pZ,OZpλqq “ H i

pF, πZ,˚rOZpλqsq “ H i
pF, Symprg{bs

2
qpλqq

So the question reduces to the calculation of the cohomology groupsH ipF, Symn
rg{b2sq.

As in section 4 of [VX16], one can consider the Koszul complex of 0 Ñ b2 Ñ g2 Ñ

g{b2 Ñ 0 giving us:

... Ñ Λi
rb2

s b Symn´i
rg2

s Ñ ... Ñ Symn
rg2

s Ñ Symn
rg{b2

s Ñ 0
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Since bOf pλq defines an equivalence of categories, we thus also have an exact se-

quence

... Ñ Λi
rb2

s b Symn´i
rg2

spλq Ñ ... Ñ Symn
rg2

spλq Ñ Symn
rg{b2

spλq Ñ 0.

From this complex, we can produce an injective resolution for each module to give a

double complex, from which we get a spectral sequence, Er
p,q. Since the rows of the

double complex are exact (coming from exactness of the above complex) this shows

us E8
p,q “ 0 for all p, q. Hence, the spectral sequence gives us the structure of an

increasing filtration F p on HkpSymn
rg{b2spλqq and surjective maps

Hk`i
pΛi

rb2
spλqq b Symn´i

rg2
s Ñ gri

rHk
pSymn

rg{b2
spλqqs

onto the graded parts.

By Calculation 8.4.5 in section 3.3 in the case of λ “ 0 and Calculation 8.4.7 in the

cases λ “ ρ or 2ρ, we see that Hk`ipΛirb2sq “ 0 for any k ą 0 and thus each graded

part gri is also 0, so we get HkpSymrg{b2spλqq “ 0 for all k ą 0.

Note from Proposition 8.3.4 that IY – OZpρq and ωZ – OZp2ρq. Hence, we also

immediately get H ipωZq “ H ipIY pρqq “ H ipIY q “ 0 whenever i ą 0.

Proposition 8.4.9. The cohomology groups H ipY,OY q “ H ipY, ωY q “ 0 for all

i ą 0.

Proof. From the short exact sequences of coherent sheaves on Z:

0 Ñ IY Ñ OZ Ñ OY Ñ 0

and

0 Ñ IY pρq Ñ OZpρq Ñ ωY Ñ 0,

we get long exact sequences in cohomology which, along with the previous lemma

show that H ipZ,OY q “ H ipY,OY q “ H ipY, ωY q “ 0 for all i ą 0.
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Proposition 8.4.10. We have the following isomorphisms in degree 0 cohomology:

H0pZ,OZq “ Sympg2q and H0pZ,OZpλqq “ Sympg2q b H0pkpλqq when λ “ ρ or 2ρ.

Proof. To calculate H0pZ,OZpλqq, recall that Calculations 8.4.5 and 8.4.7 give

HkpΛkrb ‘ bspλqq “ 0 unless k “ 0 in the cases λ “ 0 and λ “ ρ or 2ρ respect-

ively. Hence, the prior spectral sequence in the proof of Lemma 8.4.8 induces an

isomorphism for each n,

H0
pΛ0

rb ‘ bspλqq b Symn
rg2

s
„
ÝÑ H0

pSymn
rpg{bq

2
spλqq

Which shows H0pSymn
rpg{bq2spλqq “ Symn

rg2s b H0pkpλqq.

Thus, H0pZ,OZq is the graded ring Sympg2q andH0pZ,OZpλqq the gradedH0pZ,OZq

module Sympg2q b H0pFpλqq.

8.4.2 Summary

We summarise the results of Calculations 8.4.2, 8.4.3, 8.4.5, 8.4.6 and 8.4.7 in

characteristic charpkq “ l ě 11 or charpkq “ 0 below:
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i 0 1 2 3
H ipΛ0bq k ¨ ¨ ¨

H ipΛ1bq ¨ ¨ ¨ ¨

H ipΛ2bq ¨ k ¨ ¨

H ipΛ3bq ¨ ¨ k ¨

H ipΛ4bq ¨ ¨ ¨ ¨

H ipΛ5bq ¨ ¨ ¨ k
H ipΛ0rb ‘ bsq k ¨ ¨ ¨

H ipΛ1rb ‘ bsq ¨ ¨ ¨ ¨

H ipΛ2rb ‘ bsq ¨ k3 ¨ ¨

H ipΛ3rb ‘ bsq ¨ ¨ g4 ‘ k4 ¨

H ipΛ4rb ‘ bsq ? ? ? ď g2

H ipΛ0bpρqq g ¨ ¨ ¨

H ipΛ1bpρqq g2 ‘ k 0 ¨ ¨

H ipΛ2bpρqq g ‘ k 0 ¨ ¨

H ipΛ0bp2ρqq V p2ρq ¨ ¨ ¨

H ipΛ1bp2ρqq V p2ρq2 ‘ V pρ ` αq ‘ V pρ ` βq ¨ ¨ ¨

H ipΛ2bp2ρqq V p2ρq ‘ V pρ ` αq ‘ V pρ ` βq ‘ g3 ¨ ¨ ¨

H ipΛ3bp2ρqq V pρ ` αq ‘ V pρ ` βq ‘ g3 ‘ k ¨ ¨ ¨

H ipΛ4bp2ρqq g ‘ k2 ¨ ¨ ¨

H ipΛ5bp2ρqq k ¨ ¨ ¨

Table 8.3: Cohomology G representations of vector bundles on the
flag variety F .

8.5 Equations for X

Assume from now on that l “ charpFq is sufficiently large (in accordance with Remark

8.4).

Proposition 8.5.1 (Proposition 2.1.5 of [Sno18]). Let F be a scheme over F and

0 Ñ A Ñ E Ñ B Ñ 0

be a short exact sequence of vector bundles on F , with E a free bundle. Notice that

TotalSpacepEq “ F ˆV for some vector space V . Let S “ SympV ˚q be a graded ring.

Assume that H ipF , SympBqq “ 0 for each i ą 0. Let T be the graded ring

H0pF , SympBqq “ H0pZ,OZq with grading given by the grading on SympBq. Then

we have an isomorphism of graded F-vector spaces

TorS
npT,Fq –

à

H i´n
pF ,ΛiAqris
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where the suffix ´ris indicates the grading.

Remark. We remark that there is a map S Ñ T . We define I as the kernel and the

T 1 as the image of this map. Set S` as the irrelevant ideal of S. Then it follows

that TorS
1 pT 1,Fq “ I{S`I and TorS

0 pT 1,Fq “ T 1{S`T 1. If T {S`T “ F, then S Ñ T

is surjective and T “ T 1, so we get TorS
1 pT,Fq “ I{S`I.

Thus, from the calculations in section 3, we see the following

Theorem 8.5.2. Suppose the characteristic l of F is large enough that H3pΛ4pb ‘

bqq “ 0 (by Conjecture 8.4.4 l ě 11 is good enough). The homogeneous ideal I Ĳ S

is generated by 3 polynomials in degree 2 and 36 polynomials in degree 3.

Further, we can list these polynomials as:

• In degree 2:

trpM2
q, trpN2

q, trpMNq;

• In degree 3: trpM3q, trpN3q, and all the entries of

M2N,N2M,NM2,MN2,

noting that we have the relations trpM2Nq “ trpNM2q and similarly with

trpN2Mq “ trpMN2q.

Proof. Recall that Z is the total space of the vector bundle rg{bs2 on F and there is a

trivial (viewed only as an OF -module) vector bundle g2 with a short exact sequence;

0 Ñ b2
Ñ g2

Ñ rg{bs
2

Ñ 0

as in Proposition 8.5.1. We may hence take V ˚ as g2 (viewed as a finite dimensional F-

representation). We set T “ H0pZ,OZq “ H0pF, Symprg{bs2qq and S “ Frg2s. First,

we note from Proposition 8.5.1 that TorS
0 pT,Fq “ T {S`T “

À

i H
ipF,Λib2qris and

by Calculation 8.4.5 this is simply F. Thus, from the remark following Proposition
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8.5.1 and Calculation 8.4.5 we get the isomorphisms:

I{S`I –
à

i

H i´1
pF,Λi

rb ‘ bsqris

“ 0r1s ‘ F3
r2s ‘ rg4

‘ F4
sr3s ‘ H3

pΛ4
rb ‘ bsqr4s

Hence we see that there are 3 degree 2 equations, 36 in degree 3, and no equa-

tions in degree 4. Because S “ Symppg˚q2q and g “ gl3, we see that S “

FrM,N s{xtrpMq, trpNqy. Since trpM2q, trpMNq and trpN2q are all linearly inde-

pendent, we see that they span the degree 2 equations. We have the following

‘obvious’ equations in degree 3, given by trpM3q; trpN3q; M2N ,MNM ,NM2; and

MN2, NMN,N2M .

It can be shown via computer calculations, that any 2 of the matrices M2N , MNM

and NM2 span a 17-dimensional vector space. Thus, we see that

M2M , N2M , N2M , MN2, trpM3q and trpN3q all span a 36 dimensional F-subspace

of S{xtrpM2q, trpMNq, trpN2qy.

It then follows that these polynomials generate the ideal I.

Theorem 8.5.3. Let the characteristic l “ charpFq be as in Theorem 8.5.2. The

scheme X is a closed subspace of A18
F , which we view as pairs of 3 ˆ 3-matrices

pM,Nq; and is cut out by the ideal generated by:

• trpMq, trpNq in degree 1;

• trpM2q, trpMNq, trpN2q,MN ´ NM in degree 2;

• and trpM3q, trpN3q,M2N,MN2 in degree 3

Proof. The morphism Y Ñ Z is a closed immersion, given by a sheaf of ideals IY ,

so we have a surjection H0pZ,OZq ↠ H0pY,OY q whose kernel is generated by the

polynomial entries of MN ´NM . From the previous theorem, it now follows that
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X, which is equal to SpecpH0pY,OY qq is the closed subspace of A18 given by

V

»

—

–

trpMq, trpNq, trpM2q, trpMNq, trpN2q,MN ´ NM,

trpM3q, trpN3q,M2N,N2M,NM2,MN2

fi

ffi

fl

.

From the commutation relation we can simplify the generators down to

V

»

—

–

trpMq, trpNq, trpM2q, trpMNq, trpN2q,MN ´ NM,

trpM3q, trpN3q,M2N,N2M

fi

ffi

fl

which proves the theorem.

We can now present equations for the affine scheme XSt,O.

Theorem 8.5.4. Let O, and l be sufficiently large as before. The affine scheme

XSt,O is isomorphic to the Zariski-closed subset of pΦ, N, dq P GL3 ˆ gl3 ˆ Gm given

by:

• ΦNΦ´1 “ qN ,

• N is strongly nilpotent, (I.E. the characteristic polynomial χN pxq “ x3),

• the characteristic polynomial of Φ is χΦpxq “ px ´ q2qpx ´ qqpx ´ 1q,

• trpΦNq “ 0,

• NpΦ ´ qIqpΦ ´ Iq “ 0,

• N2pΦ ´ Iq “ 0.

Proof. First, we note that the copy of Gm comes from the isomorphism, XSt –

X ˆGm. We henceforth consider the equations in X , the Steinberg component with

fixed trace.

That ΦN “ qNΦ on X is clear. Because we have the proper, surjective birational

map Y Ñ X , it follows that for any R-point, pΦ, Nq P X pRq, there is a decreasing

flag Fi (not necessarily unique) such that pΦ´qiqFi Ď Fi`1 and NFi Ď Fi`1. by these
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relations, we see N3F0 Ď F3 “ 0 N2pΦ ´ IqF0 Ď F3 “ 0 and NpΦ ´ qIqpΦ ´ IqF0 Ď

F3 “ 0 and pΦ ´ q2IqpΦ ´ qIqpΦ ´ IqF0 Ď F3 “ 0, so pΦ ´ q2IqpΦ ´ qIqpΦ ´ Iq “

NpΦ ´ qIqpΦ ´ Iq “ N2pΦ ´ Iq “ N3 “ 0. Further, by the existence of such a

flag, we can see that NΦ is strictly upper-triangular inside the corresponding Borel

subalgebra. Hence trpNΦq “ 0, and all the above equations are satisfied on XO.

Along the special fibre, we can equate q “ 1, to get the equations:

• ΦN “ NΦ,

• N is strongly nilpotent, (I.E. the characteristic polynomial χN pxq “ x3),

• the characteristic polynomial of Φ is χΦpxq “ px´ 1q3 (so Φ is strongly unipo-

tent),

• trpΦNq “ 0,

• NpΦ ´ Iq2 “ 0,

• N2pΦ ´ Iq.

As Φ is strongly unipotent along the special fibre, there is a matrix M such that Φ “

exppMq, and M “ logpΦq is strongly nilpotent. Note that logpΦq “ pΦ´Iq´ 1
2pΦ´Iq2

because all higher terms identically vanish. The statements M,N are strongly

nilpotent are equivalent to trpMq “ trpM2q “ trpM3q “ 0 and trpNq “ trpN2q “

trpN3q “ 0 respectively, because 2 and 3 are invertible in characteristic l. That Φ

and N commute is equivalent to MN “ NM . We also have

MN2
“ logpΦqN2

“ plogpΦq “ ppΦ ´ Iq ´
1
2pΦ ´ Iq

2
qN2

“ pI ´
1
2pΦ ´ IqqpΦ ´ IqN2

and

pΦ ´ IqN2
“ pI `

1
2MqMN2

which shows that pΦ ´ IqN2 “ 0 if and only if MN2 “ 0. Similarly, one can show

that pΦ ´ Iq2N “ 0 if and only if M2N “ 0. The equalities

trpMNq “ trplogpΦqNq



8.6. The Picard group 125

“ trrppΦ ´ Iq ´
1
2pΦ ´ Iq

2
qN s

“ trpΦNq ` trpNq `
1
2trppΦ ´ Iq

2Nq

show that trpMNq “ 0 is equivalent to trpΦNq “ 0 when trpNq “ 0 and pΦ´Iq2N “

0. We can then conclude that the equations along the special fibre above equivalent

to the equations in Theorem 8.5.3. Hence, this equations cut out the special fibre

X. It follows that these equations cut out the affine scheme XSt,O as claimed.

8.6 The Picard group

In this section, we compute the Picard group of X and the class of the canonical

divisor. For n “ 2 this gives another perspective on the calculations of [Man21]. We

might hope for similar automorphic applications for n “ 3, but there appear to be

issues with finding a Hecke-equivariant pairing on the spaces of automorphic forms

(we thank Jeff Manning for explaining this point to us).

Recall the diagram

Y X

F

π

p

where the map p is proper. Let U be the open subscheme of X defined as the locus of

points pM,Nq P XpF̄q such that either M or N is regular nilpotent. If V “ p´1pUq

then p|V : V Ñ U is an isomorphism. This is because a regular nilpotent M (or N)

is contained in a unique Borel subalgebra. Thus p is a birational equivalence.

Lemma 8.6.1. The map π : Y Ñ F is a fibre bundle with fibres isomorphic to

Cpnq “ tpM,Nq P n ˆ n : rx, ys “ 0u

The complement Y zV has codimension 1 in Y and the codimension of XzU inside

X is ě 2. When n “ 3, the open subscheme of pM,Nq P Cpnq given by those points
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with one of M,N regular nilpotent has

Cpnq
reg

– A2
ztp0, 0qu ˆ Gm ˆ A2.

Proof. We note that the fibres of Y Ñ F are all isomorphic to the closed subscheme

Cpnq “ tpM,Nq P n ˆ n : rx, ys “ 0u. We also notice that Y Ñ F is locally

isomorphic to Cpnq ˆ F Ñ F . We write

Cpnq “

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

¨

˚

˚

˚

˚

˝

0 a b

0 c

0

˛

‹

‹

‹

‹

‚

,

¨

˚

˚

˚

˚

˝

0 d e

0 f

0

˛

‹

‹

‹

‹

‚

˛

‹

‹

‹

‹

‚

: af “ cd

,

/

/

/

/

.

/

/

/

/

-

.

Notice that M is regular if and only if ac ‰ 0, and N is regular if and only if df ‰ 0.

We then have that the fibres of p|V are isomorphic to the scheme

tpa, b, c, d, e, fq P A6 : af “ dcuzVpacq X Vpdfq.

We see that Vpac, dfq is codimension 1 inside Y . To show that U is codimension 2

inside X, let Z “ XzU . Consider Z˝ as the dense open subset of Z with M ‰ 0 and

let pM,Nq P Z˝. Then the matrix M is necessarily conjugate to M0 “

¨

˚

˚

˚

˚

˝

0 0 1

0 0 0

0 0 0

˛

‹

‹

‹

‹

‚

and has stabiliser

StabpM0q “

$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

a b c

0 d e

0 0 a

˛

‹

‹

‹

‹

‚

P GL3pFq

,

/

/

/

/

.

/

/

/

/

-

which is 5 dimensional. By the orbit-stabiliser theorem, the conjugacy class of M is

4-dimensional and the space of non-regular nilpotent matrices that commute with

M0 is
$

’

’

’

’

&

’

’

’

’

%

¨

˚

˚

˚

˚

˝

0 b c

0 0 e

0 0 0

˛

‹

‹

‹

‹

‚

P GL3pFq : be “ 0

,

/

/

/

/

.

/

/

/

/

-

is 2 dimensional. All fibres of Z˝ are isomorphic to this space, hence we see that Z˝

and thus Z has dimension 6. As the dimension of X is the same as that of Y , which
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is 8, the claim follows.

To prove the final claim, we take the map

A2
ztp0, 0qu ˆ Gm ˆ A2

Ñ Cpnq
reg

pa, d, λ, b, eq ÞÑ pa, b, λa, d, e, λdq

with inverse defined by f
d

ÞÑ λ when d ‰ 0, and c
a

ÞÑ λ when a ‰ 0. This is well

defined since c
a

“
f
d

when da ‰ 0, (so the definitions are compatible) and because

we must always have at least one of a, d non-zero because one of M,N is regular

nilpotent.

Theorem 8.6.2. Let E Ñ F be a Zariski-locally trivial fibration of varieties over a

field F with connected fibre C. Assume that F and C are smooth over the base field.

Then there is an exact sequence

ΓpC,Oˆ
C q Ñ PicpFq Ñ PicpEq Ñ PicpCq Ñ 0.

Proof. As F and C are smooth, this theorem follows from Theorem 5 of [Mag75]

along with the remark that follows.

Corollary 8.6.3. The Weil divisor class group ClpXq – PicpUq – Z ˆ Z{3Z.

Proof. As the codimension of XzU in X is at least 2 and U is a regular integral

scheme, we have isomorphisms ClpXq Ñ ClpUq Ñ PicpUq – PicpV q. Since V is a

fibre bundle over F with fibres Cpnqreg is as in Theorem 8.6.2, we see that

ΓpCpnq
reg,Oˆ

Cpnqregq Ñ PicpF q Ñ PicpV q Ñ PicpCpnq
reg

q Ñ 0.

Because the equivalence of categories between CohG
pG{Bq and B ´ rep is rank

preserving, we see PicpF q – X˚pT q – Z2 is generated by the weights L1 and L2 and

since Cpnqreg is an open subscheme of A5, we get PicpCpnqregq “ 0. We have that

ΓpCpnq
reg,Oˆ

Cpnqregq{Fˆ
– Frλ˘1

s
ˆ

{Fˆ
– Z,
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is generated by λ “ c
a

“
f
d
, which is mapped to the weight of c

a
(note that the weight

of c
a

is equal to that of f
d
), which is pL2 ´ L3q ´ pL1 ´ L2q “ 2L2 ´ L1 ´ L3 “ 3L2.

(Strictly, we haven’t checked that this is precisely where λ gets sent, or whether

it gets sent to ´ c
a
. This map arises from a boundary map in cohomology, so is

necessarily not explicit.) It follows that PicpV q – Z ˆ Z{3Z, with Z generated by

L1 and Z{3Z generated by L2.

Corollary 8.6.4. The canonical sheaf has rωXs “ ρ “ 2L1 ` L2 P ClpXq.

Proof. By Theorem 8.2.5, we see that ωX “ f˚ωY . From restriction on V , we see that

ωU “ ωX |U “ ωY “ OY pρq “ L1 ´ L2 ` L2 ´ L3 “ 2L1 ` L2 P PicpUq “ ClpXq.
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