

Durham E-Theses

Synthesis of biologically active isoindolones via N-acyliminium ion cyclisations

FREEBAIRN, MAXIMILIAN, TOBIAS

How to cite:

FREEBAIRN, MAXIMILIAN, TOBIAS (2023) Synthesis of biologically active isoindolones via *N*-acyliminium ion cyclisations, Durham theses, Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/15136/

Use policy

 $The full-text\ may\ be\ used\ and/or\ reproduced,\ and\ given\ to\ third\ parties\ in\ any\ format\ or\ medium,\ without\ prior\ permission\ or\ charge,\ for\ personal\ research\ or\ study,\ educational,\ or\ not-for-profit\ purposes\ provided\ that:$

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107 http://etheses.dur.ac.uk Supplementary information

Contents

Synthesis of benzalphthalide derivatives 35-35k	4
(<i>Z</i>)-3-(benzylidene)isobenzofuran-1(<i>H</i>)-one 35	5
(Z)-3-(4-methoxybenzylidene)isobenzofuran-1(H)-one 35b	
(<i>Z</i>)-3-(3-chlorobenzylidene)isobenzofuran-1(<i>H</i>)-one 35c	15
(<i>Z</i>)-3-(4-chlorobenzylidene)isobenzofuran-1(<i>H</i>)-one 35d	20
(<i>Z</i>)-3-(2-chlorobenzylidene)isobenzofuran-1(<i>H</i>)-one 35e	25
(Z)-3-(4-fluorobenzylidene)isobenzofuran-1(H)-one 35f	30
(<i>Z</i>)-3-(3,4-dimethoxybenzylidene)isobenzofuran-1(<i>H</i>)-one 35g	35
(<i>Z</i>)-3-(3-fluoroybenzylidene)isobenzofuran-1(<i>H</i>)-one 35h	40
(<i>Z</i>)-3-(2-fluoroybenzylidene)isobenzofuran-1(<i>H</i>)-one 35i	45
(Z)-3-(2-methoxybenzylidene)isobenzofuran-1(3H)-one 35j	50
(Z)-3-(3-methoxybenzylidene)isobenzofuran-1(3H)-one 35k	55
Synthesis of amine components 38 and 42	60
2-(1 <i>H</i> -pyrrol-1-yl)ethan-1-amine 38	61
3-(1 <i>H</i> -pyrrol-1-yl)propan-1-amine 42	65
Synthesis of isoindolone product and substituted derivatives 1-1k	69
12 <i>b</i> -benzyl-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one 1	70
12b-(4-methoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-a]isoindol-8(12bH)-o	ne 1b 80
12 <i>b</i> -(3-chlorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one	1c 91
12 <i>b</i> -(4-chlorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one	1d 101
12 <i>b</i> -(2-chlorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one	1e 111
12 <i>b</i> -(4-fluorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one	1f 121
12 <i>b</i> -(3,4-dimethoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>b</i>	/)-one 1g 131
12 <i>b</i> -(3-fluorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one	1h 142
12 <i>b</i> -(2-fluorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-one	1i 153
12 <i>b</i> -(2-methoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-o	ne 1j .163
12 <i>b</i> -(3-methoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1- <i>a</i>]isoindol-8(12 <i>bH</i>)-o	ne 1k 173
Synthesis of 80-96 through implementation of alternative amine components	
11 <i>b</i> -benzyl-4,11 <i>b</i> -dihydrothieno[3',2':3,4]pyrido[2,1- <i>a</i>]isoindol-7(5 <i>H</i>)-one 80	
13b-(4-methoxybenzyl)-7,8,13,13b-tetrahydro-5H-benzo[1,2]indolizino[8,7-b]indol-5-c	ne 83 198
12 <i>b</i> -benzyl-2,3-dimethoxy-5,12 <i>b</i> -dihydroisoindolo[1,2- <i>a</i>]isoquinolin-8(6 <i>H</i>)-one 86a	
12 <i>b</i> -benzyl-5,12 <i>b</i> -dihydroisoindolo[1,2- <i>a</i>]isoquinolin-8(6 <i>H</i>)-one 86b	
13 <i>b</i> -benzyl-6,7-dihydro-5 <i>H</i> -pyrrolo[2',1':3,4][1,4]diazepino[2,1- <i>a</i>]isoindol-9(13 <i>bH</i>)-one	9 0 230
13 <i>b</i> -benzyl-6,7-dihydro-5 <i>H</i> -imidazo[2',1':3,4][1,4]diazepino[2,1-a]isoindol-9(13 <i>bH</i>)-one	e 96 241

Synthesis of $\beta\text{-nitrostyrenes}$ 88c-88k via the Henry reaction	254
(<i>E</i>)-2,4-dimethoxy-1-(2-nitrovinyl)benzene 88c	255
(<i>E</i>)-5-(2-nitrovinyl)benzo[<i>d</i>][1,3]dioxole 88d	
(E)-2,3-dimethoxy-6-(2-nitrovinyl)phenol 88e	
(<i>E</i>)-1-methoxy-2-(2-nitrovinyl)benzene 88f	270
(<i>E</i>)-1-methoxy-3-(2-nitrovinyl)benzene 88g	275
(<i>E</i>)-1-methoxy-4-(2-nitrovinyl)benzene 88h	
(<i>E</i>)-1,4-dimethoxy-2-(2-nitrovinyl)benzene 88i	
(<i>E</i>)-1,2,3-trimethoxy-5-(2-nitrovinyl)benzene 88j	
(E)-N,N-dimethyl-4-(2-nitrovinyl)aniline 88k	
Miscellaneous	300
2-(2-(1 <i>H</i> -pyrrol-1-yl)ethyl)-3-benzyl-3-hydroxyisoindolin-1-one 25	
(E)-2-(2-(1H-pyrrol-1-yl)ethyl)-3-benzylideneisoindolin-1-one 43	
(<i>R</i>)-(–)-1,1'-Binaphthyl-2,2'-diyl hydrogen phosphate 150	323

Synthesis of benzalphthalide derivatives **35-35k**

(Z)-3-(benzylidene)isobenzofuran-1(H)-one **35** ¹H:

DEPT-135:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 252 formula(e) evaluated with 5 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-4 O: 0-4 CI: 0-2 I: 0-2

28-Aug-2018 IRB-Het-H 513	3 (4.313) Cm (512:51	3)						1: -	TOF MS ES+
100 2 % 222.0	223.0784 224.0844 467 353.0813	1311 483.1022 7	16.1863 9	06.3127,959.2	₃₉₃ 1123.1313				2.000 1004
0	200 400	600	800	1000	1200	1400	1600	1800	2000
Minimum: Maximum:		5.0	10.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
223.0784	223.0759 223.0831 223.0750 223.0737 223.0769	2.5 -4.7 3.4 4.7 1.5	11.2 -21.1 15.2 21.1 6.7	10.5 6.5 6.5 1.5 1.5	315.5 318.7 335.2 335.2 337.6	0.0 3.2 19.8 19.8 22.2	C15 H11 C9 H11 C10 H12 C9 H16 C9 H17	02 N4 03 N4 C 04 C1 N2 C1	1 2

PerkinElmer Spectrum Version 10.5.2 24 August 2018 13:32

(*Z*) -3-(4-methoxybenzylidene)isobenzofuran-1(*H*)-one **35b** ¹H:

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 f1 (ppm)

- 0

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 309 formula(e) evaluated with 4 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-4 O: 0-4 CI: 0-2 I: 0-2

28-Aug-2018 IRB-Het-4-OM	e 505 (4.246) Cm (50	00:517)						1: TOF	MS ES+
100 	253.0890 2.0823254.0934 01 255.0979 200 400	522.1929 	752 776.7	183 1031. 	3070 1280 	0. <u>8545</u> 			
Minimum: Maximum:		5.0	10.0	-1.5 100.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
253.0890	253.0865 253.0937 253.0856 253.0874	2.5 -4.7 3.4 1.6	9.9 -18.6 13.4 6.3	10.5 6.5 6.5 1.5	996.0 1005.6 1024.8 1026.6	0.0 9.6 28.7 30.5	C16 H13 C10 H13 C11 H14 C10 H19	03 N4 04 N4 0 C N2 0 C	;1 ;12

PerkinElmer Spectrum Version 10.5.2 24 August 2018 13:45

(*Z*)-3-(3-chlorobenzylidene)isobenzofuran-1(*H*)-one **35c** ¹H:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 321 formula(e) evaluated with 7 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-4 O: 0-4 CI: 0-2 I: 0-2

28-Aug-2018 IRB-Het-3-Cl 5	54 (4.661) Cm (546:	560)						1: TOF MS ES+
100	257.0396							4.386+004
%	259.0371							
- - 111.0183	260.0421	530.0917 583.0	490 818.567	0 1049.	1094			
0	200 400	600	800	1000	1200	1400	1600	1800 2000
Minimum: Maximum:		5.0	10.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
257.0396	257.0369 257.0441 257.0351 257.0361 257.0402 257.0391 257.0347	2.7 -4.5 4.5 3.5 -0.6 0.5 4.9	10.5 -17.5 17.5 13.6 -2.3 1.9 19.1	10.5 6.5 15.5 6.5 -0.5 19.5 1.5	557.9 562.9 572.6 573.0 573.1 573.3 573.4	0.0 5.0 14.7 15.2 15.3 15.4 15.6	C15 H10 C9 H10 C16 H5 C10 H11 C8 H18 C21 H5 C9 H15	02 Cl N4 03 Cl N2 02 N4 Cl2 O I 04 Cl2

(*Z*)-3-(4-chlorobenzylidene)isobenzofuran-1(*H*)-one **35d** ¹H:

DEPT-135:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 321 formula(e) evaluated with 7 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-4 O: 0-4 CI: 0-2 I: 0-2

28-Aug IRB-He	g-2018 et-4-C	3 1 500 (4	4.205)											1: TOF	MS ES+
100				257.	0397									1	1.13e+004
%	184	1.5222	220 04	53	259.0371 260.0423	289.0674	47.0000	07		105 0005 452	0505 469.	3162		537.289	99
0 1	ղւ նդր 80	200	220.04 1000000 220	240 2	260 280	300 320) 340	37. 1111111 360	3.0106 	425.2865.433. 420 440	460 48	0 500	520	540 5	ייייקי m/z 60
Minin Maxin	num: num:				5.0	10.0	- 1	1.5 00.0							
Mass		Ca	alc. M	ass	mDa	PPM	D	BE	i-FIT	i-FIT	(Norm)	Formula			
257.0)397	25 25 25 25 25 25 25	57.036 57.044 57.034 57.036 57.035 57.040	9 1 7 1 1 2 1	2.8 -4.4 5.0 3.6 4.6 -0.5 0.6	10.9 -17. 19.5 14.0 17.9 -1.9 2.3	1 1 6 1 6 1 -	0.5 .5 .5 5.5 0.5 9.5	247.7 254.7 265.9 265.9 271.0 271.5 271.7	0.0 7.1 18.2 18.2 23.3 23.9 24.0		C15 H10 C9 H10 C9 H15 C10 H12 C16 H5 C8 H18 C21 H5	0 02 N4 04 1 N4 N2 0	C1 03 C12 C12 02 I	21

PerkinElmer Spectrum Version 10.5.2 24 August 2018 14:02

(*Z*)-3-(2-chlorobenzylidene)isobenzofuran-1(*H*)-one **35e** ¹H:

13C:

Single Mass Analysis

28-Aug-2018

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 321 formula(e) evaluated with 7 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-4 O: 0-4 CI: 0-2 I: 0-2

564 (4.743) Cm (564:	571)						1: TOF M 7 66	S ES+ Se+003
257.0392								
259.0364								
.0163 260.0411	530.0930 614	2223 739.495	58 955.6489	1152.3038_121	5.8760			m/z
200 400	600	800	1000	1200	1400	1600	1800 2	000
	5.0	10.0	-1.5 100.0					
Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
257.0369 257.0441 257.0361 257.0347 257.0351 257.0402 257.0391	2.3 -4.9 3.1 4.5 4.1 -1.0 0.1	8.9 -19.1 12.1 17.5 16.0 -3.9 0.4	10.5 6.5 6.5 1.5 15.5 -0.5 19.5	314.0 320.6 332.5 332.7 338.3 338.8 339.1	0.0 6.5 18.5 18.7 24.3 24.8 25.1	C15 H10 C9 H10 C10 H11 C9 H15 C16 H5 C8 H18 C21 H5	02 Cl N4 03 Cl N4 Cl2 04 Cl2 N2 02 0 I	
	Calc. Mass 257.0364 0163 260.0411 260.0411 260.0411 260.0411 257.0369 257.0441 257.0361 257.0351 257.0351 257.0391	564 (4.743) Cm (564:571) 257.0392 259.0364 0163 260.0411 530.0930 614. 400 600 5.0 Calc. Mass mDa 257.0369 2.3 257.0441 -4.9 257.0361 3.1 257.0361 3.1 257.0351 4.1 257.0402 -1.0 257.0391 0.1	257.0392 259.0364 0163 260.0411 530.0930 600 800 200 400 600 800 5.0 10.0 Calc. Mass mDa PPM 257.0369 2.3 8.9 257.0441 -4.9 -19.1 257.0351 3.1 12.1 257.0347 4.1 16.0 257.0402 -1.0 -3.9 257.0391	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

Page 1

(Z)-3-(4-fluorobenzylidene)isobenzofuran-1(H)-one **35f**

¹³C:

¹⁹F:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 511 formula(e) evaluated with 10 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-6 O: 0-4 F: 0-3 I: 0-2

28-Aug-2018 IRB-Het-4-F 5	19 (4.370) Cm (515:51	9)						1: TOF MS ES+
100- %- 240	241.0692 242.0727 .0603 481.1256	.1518	770.1594 9	10.3060 ^{978.2}	668 1117.2758	1390.9604_1454.	9917	4.740+004
0	200 400	600	800	1000	1200	1400	1600 1800	2000
Minimum: Maximum:		5.0	10.0	-1.5 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
241.0692	241.0665 241.0726 241.0676 241.0653 241.0688 241.0701 241.0737 241.0649 241.0685 241.0661	2.7 -3.4 1.6 3.9 0.4 -0.9 -4.5 4.3 0.7 3.1	11.2 -14.1 6.6 16.2 1.7 -3.7 -18.7 17.8 2.9 12.9	$ \begin{array}{c} 10.5\\ 10.5\\ 6.5\\ 14.5\\ 2.5\\ 7.5\\ 6.5\\ 7.5\\ 6.5\\ 3.5\\ \end{array} $	464.2 465.5 465.9 466.2 467.8 467.9 468.9 470.7 470.7 473.6	0.5 1.7 2.2 2.5 4.1 4.2 5.2 7.0 7.0 9.9	C15 H10 O2 C12 H9 N4 C12 H11 O3 C18 H9 O C9 H12 O4 C10 H8 N4 C9 H10 N4 C8 H7 N6 C C7 H9 N6 C C5 H8 N6 C	F O2 F2 F3 F3 O3 F O3 F O F2 O4 O2 F3

Page 1

PerkinElmer Spectrum Version 10.5.2 24 August 2018 14:07

(*Z*)-3-(3,4-dimethoxybenzylidene)isobenzofuran-1(*H*)-one **35g** ¹H:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron lons 373 formula(e) evaluated with 6 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-4 O: 0-4 CI: 0-2 I: 0-2

28-Aug-2018 IRB-Het-34-O	Me 458 ((3.851) Cm (453	3:458)						1:	TOF MS ES+
100 %- 0 1111.0186 0	283. 282.0928	0995 284.1041 329.1413	565.1861 582.2 588.17	145 02 	764896.7479	1151.3396	64 1430.8917		1900	5.99e+004
Minimum: Maximum:	200	400	5.0	10.0	-1.5 100.0	1200	1400	1600	1800	2000
Mass	Calc	. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
283.0995	283. 283. 283. 283. 283. 283.	0970 0984 1002 0962 1020 0980	2.5 1.1 -0.7 3.3 -2.5 1.5	8.8 3.9 -2.5 11.7 -8.8 5.3	10.5 15.5 10.5 6.5 5.5 1.5	475.1 481.3 500.0 500.0 502.2 502.2	0.0 6.3 24.9 24.9 27.1 27.1	C17 H15 C18 H11 C17 H16 C12 H16 C16 H21 C11 H21	04 N4 N2 C N4 C C12 N2 C	2 C1 2 C1 2 C12

Page 1

PerkinElmer Spectrum Version 10.5.2 24 August 2018 13:57

(*Z*)-3-(3-fluoroybenzylidene)isobenzofuran-1(*H*)-one **35h** ¹H:

¹⁹F:

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 511 formula(e) evaluated with 10 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-6 O: 0-4 F: 0-3 I: 0-2

28-Aug-2018 IRB-Het-3-F 53	4 (4.490) Cm (534:5	547)							1: TOF MS ES	3+
100	241 38 240.0617	.0688 242.0736		284.9	153 291.0042				5.18e+0	03
22 0 	9.1460 	2 ++++++++++++++++++++++++++++++++++++	56.9189 273 	.1694 		310).0522 	327.0268 	333.1101 	ı/z
Minimum: Maximum:		5.0	10.0	-1.5 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formula		
241.0688	241.0653 241.0665 241.0726 241.0676 241.0676 241.0688 241.0688 241.0685 241.0649 241.0661	3.5 2.3 -3.8 1.2 -1.3 0.0 -4.9 0.3 3.9 2.7	14.5 9.5 -15.8 5.0 -5.4 0.0 -20.3 1.2 16.2 11.2	14.5 10.5 6.5 7.5 2.5 6.5 6.5 7.5 3.5	371.2 371.4 374.4 375.0 377.4 377.5 377.9 379.0 379.1 381.4	0.7 0.8 3.9 4.4 6.8 6.9 7.3 8.5 8.6 10.8		C18 H9 C15 H10 C12 H9 C12 H11 C10 H8 C9 H12 C9 H10 C7 H9 P C8 H7 P C5 H8 P	O O2 F N4 O2 O3 F2 N4 F3 O4 F3 N4 O3 F N6 O4 N6 O F2 N6 O2 F3	

PerkinElmer Spectrum Version 10.5.2 21 October 2022 08:19

(Z)-3-(2-fluoroybenzylidene)isobenzofuran-1(H)-one **35i** ¹H:

-112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 -120.5 f1 (ppm)

Single Mass Analysis

Tolerance = 5.0 mDa / DBE: min = -1.5, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 511 formula(e) evaluated with 10 results within limits (up to 500 best isotopic matches for each mass) Elements Used: C: 0-60 H: 0-100 N: 0-6 O: 0-4 F: 0-3 I: 0-2

28-Aug-2018 IRB-Het-2-F 53	34 (4.489) Cm (534:54	14)					1: TOF MS ES+
100 	241.0692 242.0755 243.0791 ⁴³⁰	0.1888 614.	2234 941	.6423 107	7.2649_1149.33 [;]	18	2.760+004
0	200 400	600	800	1000	1200	1400	1600 1800 2000
Minimum: Maximum:		5.0	10.0	-1.5 100.0			
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula
241.0692	241.0665 241.0676 241.0653 241.0737 241.0701 241.0688 241.0649 241.0685 241.0661	2.7 -3.4 1.6 3.9 -4.5 -0.9 0.4 4.3 0.7 3.1	11.2 -14.1 6.6 16.2 -18.7 -3.7 1.7 17.8 2.9 12.9	10.5 10.5 6.5 14.5 6.5 7.5 2.5 7.5 6.5 3.5	431.9 433.5 434.5 437.4 439.1 439.2 439.4 441.3 441.3 444.2	0.2 1.9 2.9 5.7 7.5 7.6 7.8 9.7 9.7 12.6	C15 H10 O2 F C12 H9 N4 O2 C12 H11 O3 F2 C18 H9 O C9 H10 N4 O3 F C10 H8 N4 F3 C9 H12 O4 F3 C8 H7 N6 O F2 C7 H9 N6 O4 C5 H8 N6 O2 F3

PerkinElmer Spectrum Version 10.5.2 24 August 2018 13:53

(Z)-3-(2-methoxybenzylidene)isobenzofuran-1(3H)-one **35j**

¹³C:

DEPT-135:

m/z (Da)

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 509 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-6 P: 0-2

21-Jul-2022 MTF_MTF2OMe_179358 517 (4.341) Cm (513:519) 21-Jul-2022 1: TOF MS ES+ 7.55e+003

100 <u>111</u> 01	1.0205 158.96) 125 150	654 184.9 175 20	9904 0 225	253.0878 28 	85.1151 ³⁰ 	07.0967 ₃₄₅ 	5.1656 385 	0.0380 00 425 450	475	500 525	550	591.2037 575
Minimum: Maximum:		3.0	5.0	-10.0 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
253.0878	253.0871 253.0865 253.0895 253.0854	0.7 1.3 -1.7 2.4	2.8 5.1 -6.7 9.5	1.5 10.5 10.5 6.5	179.6 164.4 171.5 177.2	15.215 0.001 7.119 12.816	0.00 99.92 0.08 0.00	C8 H19 N2 O3 C16 H13 O3 C15 H14 N2 P C10 H14 N4 O3	P2 2 P			

(Z)-3-(3-methoxybenzylidene)isobenzofuran-1(3H)-one **35k**

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 509 formula(e) evaluated with 4 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-6 P: 0-2

21-Jul-2022 MTF_MTF3OMe_179359 557 (4.679) Cm (557:561)

										2.100	;+000
100-	253.0886	436.1819	516.1484	713.0945	830.4780	1095	.7870 120)3.4446		1736.23971787.3062	- m/z
I	200	400	600	80	bo	1000	1200	1400	1600	1800	
Minimum: Maximum:		3.0	5.0	-10.0 100.0							
Mass	Calc. Mas	s mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
253.0886	253.0895 253.0871 253.0865 253.0911	-0.9 1.5 2.1 -2.5	-3.6 5.9 8.3 -9.9	10.5 1.5 10.5 5.5	167.0 174.5 164.3 169.9	2.766 10.304 0.068 5.761	6.29 0.00 93.39 0.31	C15 H14 N2 P C8 H19 N2 O3 C16 H13 O3 C13 H19 O P2	P2		

21-Jul-2022

1: TOF MS ES+ 2.18e+003

PerkinElmer Spectrum Version 10.5.2 22 July 2022 14:23

Page 1

Synthesis of amine components **38** and **42**

2-(1*H*-pyrrol-1-yl)ethan-1-amine **38** ¹H:

¹³C:

Page 1

3-(1*H*-pyrrol-1-yl)propan-1-amine **42** ¹H:

¹³C:

Page 1

Synthesis of isoindolone product and substituted derivatives 1-1k

12*b*-benzyl-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-*a*]isoindol-8(12*bH*)-one **1** ¹H:

- 28000 26000 24000 22000 - 20000 - 18000 - 16000 - 14000 - 12000 - 10000 - 8000 - 6000 4000 - 2000 - 0 - -2000 150 140 130 120 110 100 fl (ppm) 210 200 190 180 170 160 90 80 70 60 50 40 30 20 10 0 -10

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 1356 formula(e) evaluated with 11 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 CI: 0-2 21-Jul-2022 MTF_MTF5B_179340 498 (4.185) Cm (498)

100 312.2711 313.0089 313.9207 314.9116 315.1511 315.6906 316.1569 316.4662 317.1605 317.4066 318.3021 318.5807 312.00 313.00 314.00 315.00 316.00 317.00 318.00 319. 10 0

Minimum: Maximum:		3.0	5.0	-10.0 100.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula
315.1511	315.1507	0.4	1.3	-3.5	92.8	22.626	0.00	C4 H24 N8 O6 Cl
	315.1516	-0.5	-1.6	8.5	92.1	21.925	0.00	C20 H24 O Cl
	315.1516	-0.5	-1.6	0.5	78.6	8.493	0.02	C9 H23 N4 O8
	315.1497	1.4	4.4	13.5	70.1	0.001	99.94	C21 H19 N2 O
	315.1526	-1.5	-4.8	-8.5	94.3	24.139	0.00	C3 H29 N6 O6 C12
	315.1494	1.7	5.4	-8.5	92.9	22.801	0.00	C3 H28 N4 O10 Cl
	315.1494	1.7	5.4	-0.5	94.2	24.054	0.00	C14 H29 O3 C12
	315.1529	-1.8	-5.7	5.5	78.1	7.963	0.03	C10 H19 N8 O4
	315.1489	2.2	7.0	1.5	82.8	12.677	0.00	C5 H19 N10 O6
	315.1534	-2.3	-7.3	-4.5	92.0	21.848	0.00	C8 H28 N2 O8 Cl
	315.1539	-2.8	-8.9	-3.5	94.6	24.498	0.00	C4 H25 N10 O2 C12

21-Jul-2022

1: TOF MS ES+ 5.61e+002

319.00

Page 1

PerkinElmer Spectrum Version 10.5.2 28 June 2022 12:47

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv006.							
Identification code	22srv006						
Empirical formula	$C_{21}H_{18}N_2O$						
Formula weight	314.37						
Temperature/K	120.00						
Crystal system	monoclinic						
Space group	P21/c						
a/Å	14.0288(5)						
b/Å	7.4406(2)						
c/Å	15.8296(5)						
α/°	90						
β/°	100.0890(10)						
γ/°	90						
Volume/Å ³	1626.79(9)						
Z	4						
$\rho_{calc}g/cm^3$	1.284						
µ/mm⁻¹	0.080						

F(000)	664.0
Crystal size/mm ³	0.17 × 0.11 × 0.09
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.228 to 60
Index ranges	-19 ≤ h ≤ 19, -10 ≤ k ≤ 10, -22 ≤ l ≤ 22
Reflections collected	28536
Independent reflections	4725 [R _{int} = 0.0401, R _{sigma} = 0.0287]
Data/restraints/parameters	4725/0/289
Goodness-of-fit on F ²	1.034
Final R indexes [I>=2σ (I)]	R ₁ = 0.0473, wR ₂ = 0.1132
Final R indexes [all data]	R ₁ = 0.0550, wR ₂ = 0.1178
Largest diff. peak/hole / e Å ⁻³	0.37/-0.23

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv006. U_{eq} is defined as 1/3 of the trace of the orthogonalised

Uij tensor.									
Atom	x	у	Z	U(eq)					
01	7693.5(7)	1105.8(11)	3711.3(6)	25.1(2)					
N1	8340.1(7)	3736.0(12)	3290.9(6)	17.61(19)					
N2	10093.3(7)	5304.1(15)	3837.2(6)	21.2(2)					
C1	7757.0(8)	2748.1(15)	3719.7(7)	17.4(2)					
C2	9170.7(9)	2986.5(17)	2984.0(8)	23.2(2)					
C3	10068.4(9)	3385.2(18)	3642.1(9)	26.3(3)					
C4	10905.6(9)	6284(2)	4150.0(8)	26.2(3)					
C5	10631.0(9)	8006(2)	4286.8(8)	26.3(3)					
C6	9605.4(9)	8089.1(17)	4049.1(8)	22.0(2)					
C7	9292.6(8)	6392.2(15)	3784.0(7)	17.3(2)					
C8	8293.8(8)	5686.6(14)	3433.8(7)	15.0(2)					
C9	7588.6(7)	5772.7(14)	4059.8(7)	14.4(2)					
C10	7271.3(8)	7244.8(15)	4470.3(7)	17.7(2)					
C11	6628.1(8)	6929.0(16)	5033.8(8)	20.2(2)					
C12	6310.1(8)	5197.8(17)	5179.3(8)	21.3(2)					
C13	6620.5(8)	3732.0(16)	4757.1(8)	19.8(2)					
C14	7259.1(8)	4059.5(14)	4195.9(7)	15.3(2)					
C15	7893.0(8)	6660.2(16)	2575.4(7)	17.8(2)					
C16	6866.6(8)	6188.7(15)	2183.9(7)	17.0(2)					
C17	6640.2(9)	4580.8(16)	1737.1(7)	20.4(2)					
C18	5685.5(9)	4189.5(17)	1372.5(8)	23.6(2)					
C19	4951.6(9)	5398.5(19)	1443.8(8)	25.1(3)					

C20	5169.8(9)	6997.0(19)	1883.7(8)	25.7(3)
C21	6124.1(9)	7385.7(17)	2253.3(8)	21.8(2)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv006. The Anisotropic											
disp											
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂					
01	33.3(5)	13.3(4)	29.6(5)	-0.2(3)	7.9(4)	-0.2(3)					
N1	22.1(4)	13.9(4)	18.1(4)	0.9(3)	6.8(3)	3.4(3)					
N2	16.7(4)	29.0(5)	18.3(5)	4.2(4)	4.3(3)	5.5(4)					
C1	20.0(5)	15.8(5)	15.9(5)	1.2(4)	2.0(4)	1.1(4)					
C2	29.3(6)	21.3(5)	21.8(6)	-0.2(4)	12.3(5)	6.6(5)					
C3	24.6(6)	28.1(6)	28.2(6)	4.4(5)	10.2(5)	12.3(5)					
C4	15.2(5)	45.7(8)	17.0(5)	4.5(5)	0.9(4)	2.3(5)					
C5	20.1(5)	41.0(7)	17.1(5)	-0.3(5)	1.2(4)	-7.5(5)					
C6	19.7(5)	25.8(6)	20.4(5)	0.1(4)	3.0(4)	-3.1(4)					
C7	15.6(5)	21.6(5)	15.1(5)	3.2(4)	3.9(4)	2.3(4)					
C8	16.5(5)	13.0(4)	15.9(5)	1.6(4)	4.0(4)	1.3(4)					
С9	13.9(4)	15.6(5)	13.6(4)	2.1(4)	2.0(3)	1.1(4)					
C10	19.7(5)	14.4(5)	18.9(5)	0.6(4)	3.1(4)	1.3(4)					
C11	19.6(5)	21.4(5)	19.9(5)	-2.9(4)	4.6(4)	2.7(4)					
C12	17.5(5)	27.2(6)	20.4(5)	-1.0(4)	7.1(4)	-1.9(4)					
C13	18.5(5)	20.3(5)	20.8(5)	0.9(4)	4.1(4)	-4.6(4)					
C14	15.5(5)	14.5(5)	15.2(5)	0.6(4)	0.8(4)	-0.1(4)					
C15	19.4(5)	17.8(5)	15.9(5)	4.4(4)	2.7(4)	-1.3(4)					
C16	20.0(5)	17.8(5)	13.2(4)	3.8(4)	3.1(4)	0.1(4)					
C17	23.5(5)	19.5(5)	18.7(5)	1.0(4)	4.8(4)	0.5(4)					
C18	27.5(6)	21.7(6)	21.0(5)	-0.1(4)	2.4(4)	-5.2(5)					
C19	21.4(5)	32.8(7)	20.2(5)	2.7(5)	1.2(4)	-3.6(5)					
C20	21.6(5)	33.0(7)	21.8(6)	-0.5(5)	1.7(4)	6.8(5)					
C21	23.6(5)	22.9(6)	17.7(5)	-1.9(4)	0.7(4)	3.8(4)					

	Table 4 Bond Lengths for 22srv006.										
Atom	Atom	Length/Å		Atom	Atom	Length/Å					
01	C1	1.2251(14)		C8	C15	1.5555(15)					
N1	C1	1.3655(14)		C9	C10	1.3862(15)					
N1	C2	1.4503(14)		C9	C14	1.3856(14)					
N1	C8	1.4721(14)		C10	C11	1.3955(16)					
N2	C3	1.4600(17)		C11	C12	1.3954(17)					
N2	C4	1.3704(16)		C12	C13	1.3885(17)					
N2	C7	1.3752(14)		C13	C14	1.3892(15)					
C1	C14	1.4807(15)		C15	C16	1.5059(15)					
C2	C3	1.5164(19)		C16	C17	1.3978(16)					

C4	C5	1.366(2)	C1	5 C21	1.3894(16)
C5	C6	1.4233(17)	C1	7 C18	1.3932(17)
C6	C7	1.3777(17)	C18	8 C19	1.3867(19)
C7	C8	1.5081(15)	C19	9 C20	1.3851(19)
C8	C9	1.5193(14)	C20	C21	1.3942(17)

	Table 5 Bond Angles for 22srv006.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°			
C1	N1	C2	123.09(10)		C7	C8	C15	109.23(9)			
C1	N1	C8	114.08(9)		C9	C8	C15	111.91(9)			
C2	N1	C8	119.36(9)		C10	C9	C8	129.66(10)			
C4	N2	C3	125.76(10)		C14	C9	C8	109.61(9)			
C4	N2	C7	109.12(11)		C14	C9	C10	120.72(10)			
C7	N2	C3	125.02(10)		C9	C10	C11	117.60(10)			
01	C1	N1	125.47(11)		C10	C11	C12	121.47(11)			
01	C1	C14	128.53(11)		C13	C12	C11	120.63(11)			
N1	C1	C14	105.99(9)		C12	C13	C14	117.50(11)			
N1	C2	C3	108.30(10)		C9	C14	C1	109.10(9)			
N2	C3	C2	108.84(10)		C9	C14	C13	122.06(10)			
C5	C4	N2	108.46(11)		C13	C14	C1	128.65(10)			
C4	C5	C6	107.39(11)		C16	C15	C8	115.10(9)			
C7	C6	C5	107.10(11)		C17	C16	C15	121.58(10)			
N2	C7	C6	107.92(10)		C21	C16	C15	119.62(10)			
N2	C7	C8	120.93(10)		C21	C16	C17	118.80(11)			
C6	C7	C8	131.06(10)		C18	C17	C16	120.34(11)			
N1	C8	C7	109.67(9)		C19	C18	C17	120.29(12)			
N1	C8	C9	101.13(8)		C20	C19	C18	119.74(11)			
N1	C8	C15	110.11(9)		C19	C20	C21	120.04(12)			
C7	C8	C9	114.50(9)		C16	C21	C20	120.79(11)			

	Table 6 Torsion Angles for 22srv006.										
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°	
01	C1	C14	C9	176.36(11)		C7	N2	C3	C2	28.17(15)	
01	C1	C14	C13	1.5(2)		C7	N2	C4	C5	-0.84(13)	
N1	C1	C14	C9	-2.18(12)		C7	C8	C9	C10	59.25(15)	
N1	C1	C14	C13	-177.05(11)		C7	C8	C9	C14	-120.71(10)	
N1	C2	C3	N2	-51.65(13)		C7	C8	C15	C16	-175.61(9)	
N1	C8	C9	C10	177.07(11)		C8	N1	C1	01	-178.36(11)	
N1	C8	C9	C14	-2.89(11)		C8	N1	C1	C14	0.23(12)	
N1	C8	C15	C16	63.90(12)		C8	N1	C2	C3	61.20(13)	
N2	C4	C5	C6	0.08(14)		C8	C9	C10	C11	-178.69(10)	
N2	C7	C8	N1	7.12(14)		C8	C9	C14	C1	3.22(12)	

N2	C7	C8	C9	119.97(11)		C8	C9	C14	C13	178.50(10)
N2	C7	C8	C15	-113.64(11)		C8	C15	C16	C17	-77.77(13)
C1	N1	C2	C3	-96.51(13)		C8	C15	C16	C21	103.29(12)
C1	N1	C8	C7	122.84(10)		C9	C8	C15	C16	-47.74(13)
C1	N1	C8	C9	1.57(12)		C9	C10	C11	C12	-0.24(17)
C1	N1	C8	C15	-116.93(10)		C10	C9	C14	C1	-176.74(10)
C2	N1	C1	01	-19.59(18)		C10	C9	C14	C13	-1.47(16)
C2	N1	C1	C14	159.00(10)		C10	C11	C12	C13	-0.64(18)
C2	N1	C8	C7	-36.78(13)		C11	C12	C13	C14	0.48(17)
C2	N1	C8	C9	-158.06(9)		C12	C13	C14	C1	174.84(11)
C2	N1	C8	C15	83.44(12)		C12	C13	C14	C9	0.56(17)
C3	N2	C4	C5	-177.23(11)		C14	C9	C10	C11	1.26(16)
C3	N2	C7	C6	177.71(11)		C15	C8	C9	C10	-65.75(14)
C3	N2	C7	C8	-5.45(16)		C15	C8	C9	C14	114.29(10)
C4	N2	C3	C2	-156.00(11)		C15	C16	C17	C18	-179.21(10)
C4	N2	C7	C6	1.29(13)		C15	C16	C21	C20	178.84(11)
C4	N2	C7	C8	178.13(10)		C16	C17	C18	C19	0.50(18)
C4	C5	C6	C7	0.70(14)		C17	C16	C21	C20	-0.13(17)
C5	C6	C7	N2	-1.21(13)		C17	C18	C19	C20	-0.34(19)
C5	C6	C7	C8	-177.62(11)		C18	C19	C20	C21	-0.04(19)
C6	C7	C8	N1	-176.86(11)		C19	C20	C21	C16	0.28(19)
C6	C7	C8	C9	-64.02(15)		C21	C16	C17	C18	-0.26(17)
C6	C7	C8	C15	62.38(15)						

Table 7 Hydrogen Atom Coordinates ($Å \times 10^4$) and Isotropic Displacement Parameters $(Å^2 \times 10^3)$ for 22 sry006									
Atom	x	U(eq)							
H2A	9219(11)	3550(20)	2425(10)	25(4)					
H2B	9079(12)	1670(20)	2928(11)	34(4)					
H3A	10068(11)	2660(20)	4170(11)	29(4)					
H3B	10663(12)	3120(20)	3406(11)	32(4)					
H4	11529(12)	5730(20)	4226(11)	33(4)					
H5	11071(13)	8980(30)	4509(12)	40(5)					
H6	9183(12)	9140(20)	4071(11)	36(4)					
H10	7468(12)	8480(20)	4358(11)	28(4)					
H11	6402(11)	7930(20)	5343(10)	24(4)					
H12	5874(11)	5010(20)	5579(10)	26(4)					
H13	6416(11)	2510(20)	4855(10)	26(4)					
H15A	7952(10)	7950(20)	2690(10)	21(4)					
H15B	8343(11)	6360(20)	2178(10)	24(4)					
H17	7147(12)	3730(20)	1660(11)	30(4)					
H18	5517(12)	3080(20)	1070(11)	34(4)					
H19	4269(12)	5110(20)	1201(11)	33(4)					
H20	4649(13)	7840(20)	1942(11)	35(4)					
H21	6297(11)	8520(20)	2550(10)	23(4)					

12*b*-(4-methoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-*a*]isoindol-8(12*bH*)-one **1b** ¹H:

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 520 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 21-Jul-2022 MTF_MTF5A_179339 496 (4.170) Cm (496:497)

100 <u>3</u>	45.1620 346.167	⁷⁴ 348.16	23							367.1	427 268.1	1480 m/z
344.0	346.0 3	348.0	350.0	352.0	354.0	356.0 3	58.0 36	0.0 362.0	364.0	366.0	368.0	370.0
Minimum: Maximum:		3.0	5.0	-10.0 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
345.1620	345.1622 345.1635 345.1603 345.1643 345.1595	-0.2 -1.5 1.7 -2.3 2.5	-0.6 -4.3 4.9 -6.7 7.2	0.5 5.5 13.5 17.5 1.5	556.0 554.7 546.7 545.8 558.0	10.556 9.247 1.264 0.332 12.600	0.00 0.01 28.24 71.74 0.00	C10 H25 N4 C11 H21 N8 C22 H21 N2 C27 H21 C6 H21 N10	09 05 02 07			

Page 1

21-Jul-2022

1: TOF MS ES+ 7.95e+004

Page 1

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv059.						
Identification code	22srv059					
Empirical formula	C ₂₄ H ₂₃ N ₃ O ₂					
Formula weight	385.45					
Temperature/K	120.00					
Crystal system	monoclinic					
Space group	P2 ₁ /c					
a/Å	9.8742(4)					
b/Å	19.0273(8)					
c/Å	10.9252(5)					
α/°	90					
β/°	107.0305(15)					
γ/°	90					
Volume/Å ³	1962.61(15)					

Z	4
$\rho_{calc}g/cm^3$	1.305
µ/mm ⁻¹	0.084
F(000)	816.0
Crystal size/mm ³	0.26 × 0.17 × 0.15
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.314 to 59.988
Index ranges	-13 ≤ h ≤ 13, -26 ≤ k ≤ 26, -15 ≤ l ≤ 15
Reflections collected	41640
Independent reflections	5706 [R _{int} = 0.0381, R _{sigma} = 0.0252]
Data/restraints/parameters	5706/0/354
Goodness-of-fit on F ²	1.042
Final R indexes [I>=2σ (I)]	$R_1 = 0.0429, wR_2 = 0.1021$
Final R indexes [all data]	R ₁ = 0.0528, wR ₂ = 0.1075
Largest diff. peak/hole / e Å ⁻³	0.36/-0.23

Table 2	Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement							
Parameters (Å ² ×10 ³) for 22srv059. U _{eq} is defined as 1/3 of the trace of the orthogonalised								
	U _{IJ} tensor.							
Atom	X	у	Z	U(eq)				
01	3649.9(9)	4372.3(4)	6017.9(8)	26.81(19)				
02	324.8(9)	6661.9(5)	1545.9(8)	26.79(19)				
N1	4286.5(9)	5476.3(5)	6864.6(9)	18.36(18)				
N2	5787.4(10)	5751.2(5)	9322.9(9)	21.76(19)				
C1	3370.1(11)	4925.4(5)	6462.1(10)	18.3(2)				
C2	5812.0(11)	5404.3(6)	7182.0(12)	22.7(2)				
C3	6398.5(12)	5256.4(6)	8607.5(12)	25.7(2)				
C4	6356.4(13)	5920.3(7)	10592.3(12)	28.3(3)				
C5	5489.0(14)	6401.3(7)	10916.7(12)	29.2(3)				
C6	4347.8(13)	6534.8(6)	9803.1(11)	24.4(2)				
C7	4549.5(11)	6122.9(5)	8833.4(11)	19.0(2)				
C8	3705.7(10)	6056.4(5)	7444.1(10)	16.69(19)				
C9	2203.6(10)	5801.5(5)	7259.9(10)	16.20(19)				
C10	1084.0(11)	6132.8(6)	7554.8(10)	19.7(2)				
C11	-205.5(11)	5777.2(6)	7278.9(11)	22.9(2)				
C12	-367.7(12)	5108.3(6)	6738.0(11)	23.6(2)				
C13	750.0(12)	4780.5(6)	6434.7(10)	21.4(2)				

C14	2022.4(11)	5144.1(5)	6689.9(10)	16.84(19)
C15	3748.1(11)	6759.0(5)	6725.9(11)	19.0(2)
C16	2895.4(11)	6746.7(5)	5336.7(10)	17.9(2)
C17	1519.9(11)	7021.4(5)	4945.9(11)	20.0(2)
C18	702.3(12)	6992.7(6)	3678.9(11)	21.2(2)
C19	1240.9(12)	6682.5(5)	2763.5(10)	20.0(2)
C20	2621.9(12)	6425.9(6)	3119.2(11)	20.8(2)
C21	3432.2(11)	6459.2(5)	4398.9(11)	19.9(2)
C22	677.2(15)	6205.4(7)	655.4(12)	30.8(3)
N3	2464.0(12)	1979.7(6)	6648.1(11)	32.9(2)
C23	2511.2(12)	2345.1(6)	5831.1(11)	23.7(2)
C24	2535.7(17)	2818.4(7)	4796.6(14)	33.3(3)

Table 3	Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv059. The Anisotropic								
disp	placement fact	tor exponent t	takes the form	1: -2π²[h²a*²	U11+2hka*b*l	J ₁₂ +].			
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
01	29.1(4)	18.0(4)	34.7(5)	-7.6(3)	11.6(4)	0.0(3)			
02	28.6(4)	30.2(4)	21.7(4)	4.4(3)	7.6(3)	8.4(3)			
N1	16.2(4)	13.9(4)	26.2(5)	-2.9(3)	8.2(3)	0.5(3)			
N2	19.1(4)	18.8(4)	25.6(5)	2.9(4)	3.8(4)	-0.9(3)			
C1	19.9(5)	14.8(4)	20.1(5)	-0.4(4)	5.8(4)	-0.1(4)			
C2	16.0(5)	19.8(5)	33.9(6)	-1.6(4)	9.7(4)	1.8(4)			
C3	18.2(5)	20.6(5)	37.3(6)	1.9(5)	6.8(5)	2.6(4)			
C4	26.4(6)	28.6(6)	25.3(6)	6.5(5)	0.6(5)	-5.9(5)			
C5	33.8(6)	29.6(6)	22.7(6)	-1.3(5)	5.7(5)	-10.0(5)			
C6	26.0(5)	21.1(5)	26.0(6)	-4.1(4)	7.8(4)	-4.0(4)			
C7	16.9(5)	15.6(4)	24.3(5)	-0.6(4)	5.5(4)	-2.6(4)			
C8	15.4(4)	12.9(4)	22.9(5)	-2.8(4)	7.2(4)	-0.5(3)			
C9	16.0(4)	15.0(4)	17.7(5)	1.4(4)	5.1(4)	-1.0(3)			
C10	19.6(5)	19.9(5)	20.9(5)	-0.2(4)	8.0(4)	0.9(4)			
C11	17.8(5)	30.9(6)	21.4(5)	3.9(4)	8.2(4)	1.1(4)			
C12	17.8(5)	30.2(6)	22.0(5)	4.0(4)	4.6(4)	-6.1(4)			
C13	22.5(5)	20.4(5)	19.6(5)	1.2(4)	3.7(4)	-5.4(4)			
C14	18.1(5)	15.3(4)	16.9(4)	1.3(4)	4.9(4)	-0.4(4)			
C15	19.0(5)	13.6(4)	25.3(5)	-1.8(4)	8.0(4)	-1.6(4)			
C16	19.3(5)	11.7(4)	24.4(5)	1.5(4)	9.0(4)	-1.1(3)			
C17	22.4(5)	15.5(4)	25.6(5)	2.0(4)	12.5(4)	3.1(4)			
C18	19.7(5)	18.8(5)	27.6(6)	5.8(4)	10.9(4)	4.9(4)			
C19	23.0(5)	16.3(5)	22.2(5)	5.1(4)	9.3(4)	1.6(4)			
C20	23.4(5)	17.3(5)	25.6(5)	1.5(4)	13.5(4)	2.7(4)			
C21	17.1(5)	16.4(5)	28.2(5)	1.6(4)	10.1(4)	1.0(4)			
C22	36.3(7)	33.8(7)	23.0(6)	1.3(5)	9.6(5)	5.7(5)			
N3	31.1(6)	36.6(6)	33.6(6)	4.9(5)	13.4(5)	9.9(5)			
C23	19.0(5)	24.2(5)	28.1(6)	-3.9(4)	7.0(4)	3.2(4)			
C24	44.2(8)	23.7(6)	33.8(7)	-0.1(5)	14.3(6)	-2.9(5)			

	Table 4 Bond Lengths for 22srv059.								
Atom	Atom	Length/Å	Atom	Atom	Length/Å				
01	C1	1.2239(13)	C8	C15	1.5568(15)				
02	C19	1.3728(14)	C9	C10	1.3900(14)				
02	C22	1.4213(15)	C9	C14	1.3853(14)				
N1	C1	1.3703(13)	C10	C11	1.3948(15)				
N1	C2	1.4499(13)	C11	C12	1.3925(17)				
N1	C8	1.4700(13)	C12	C13	1.3896(17)				
N2	C3	1.4619(15)	C13	C14	1.3891(14)				
N2	C4	1.3734(15)	C15	C16	1.5049(15)				
N2	C7	1.3775(14)	C16	C17	1.4001(14)				
C1	C14	1.4833(14)	C16	C21	1.3958(15)				
C2	C3	1.5204(17)	C17	C18	1.3843(16)				
C4	C5	1.3691(19)	C18	C19	1.3939(15)				
C5	C6	1.4183(17)	C19	C20	1.3922(15)				
C6	C7	1.3783(16)	C20	C21	1.3941(16)				
C7	C8	1.5078(15)	N3	C23	1.1432(16)				
C8	C9	1.5169(14)	C23	C24	1.4508(18)				

	Table 5 Bond Angles for 22srv059.							
Atom	n Atom Atom Angle/° Atom Atom A		Atom	Angle/°				
C19	02	C22	117.18(9)		C9	C8	C15	112.17(8)
C1	N1	C2	123.14(9)		C10	C9	C8	129.59(9)
C1	N1	C8	114.10(8)		C14	C9	C8	109.93(9)
C2	N1	C8	118.49(8)		C14	C9	C10	120.47(9)
C4	N2	C3	125.45(10)		C9	C10	C11	117.87(10)
C4	N2	C7	109.01(10)		C12	C11	C10	121.29(10)
C7	N2	C3	125.54(10)		C13	C12	C11	120.72(10)
01	C1	N1	125.49(10)		C14	C13	C12	117.60(10)
01	C1	C14	128.72(10)		C9	C14	C1	108.94(9)
N1	C1	C14	105.79(8)		C9	C14	C13	122.01(10)
N1	C2	C3	108.65(9)		C13	C14	C1	129.03(10)
N2	C3	C2	109.60(9)		C16	C15	C8	113.91(8)
C5	C4	N2	108.43(11)		C17	C16	C15	120.53(9)
C4	C5	C6	107.32(11)		C21	C16	C15	121.73(9)
C7	C6	C5	107.47(11)		C21	C16	C17	117.74(10)
N2	C7	C6	107.76(10)		C18	C17	C16	121.32(10)
N2	C7	C8	120.91(9)		C17	C18	C19	120.05(10)
C6	C7	C8	131.29(10)		02	C19	C18	115.20(10)
N1	C8	C7	109.04(8)		02	C19	C20	125.03(10)
N1	C8	C9	101.09(8)		C20	C19	C18	119.78(10)
N1	C8	C15	110.88(8)		C19	C20	C21	119.44(10)

C7	C8	C9	113.01(8)	C20	C21	C16	121.61(10)
C7	C8	C15	110.29(8)	N3	C23	C24	178.42(13)

	Table 6 Torsion Angles for 22srv059.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C2	C3	N2	-47.52(12)		C8	C15	C16	C17	97.40(11)
N1	C8	C7	N2	9.57(13)		C8	C15	C16	C21	-82.04(12)
C1	C14	C9	C8	-0.07(11)		C9	C8	N1	C1	-3.72(11)
C1	C14	C9	C10	178.87(9)		C9	C8	N1	C2	-161.27(9)
C2	N1	C1	01	-19.42(17)		C9	C8	C7	N2	121.15(10)
C2	C3	N2	C4	-159.09(10)		C9	C8	C15	C16	-51.40(12)
C2	C3	N2	C7	20.89(15)		C9	C14	C1	01	177.36(11)
C3	C2	N1	C1	-92.16(12)		C9	C14	C1	N1	-2.22(11)
C3	C2	N1	C8	63.23(12)		C10	C9	C8	N1	-176.69(10)
C6	C7	N2	C3	-179.39(10)		C10	C9	C8	C15	-58.52(14)
C6	C7	N2	C4	0.60(12)		C10	C9	C14	C13	-2.42(16)
C6	C7	C8	N1	-173.07(11)		C13	C14	C1	01	-1.23(19)
C6	C7	C8	C9	-61.50(15)		C13	C14	C1	N1	179.20(11)
C6	C7	C8	C15	64.96(14)		C14	C1	N1	C2	160.17(10)
C7	C8	N1	C1	115.56(10)		C14	C1	N1	C8	3.81(12)
C7	C8	N1	C2	-41.98(12)		C14	C9	C8	N1	2.13(11)
C7	C8	C9	C10	66.92(14)		C14	C9	C8	C15	120.29(9)
C7	C8	C9	C14	-114.26(10)		C15	C8	N1	C1	-122.82(10)
C7	C8	C15	C16	-178.32(9)		C15	C8	N1	C2	79.63(11)
C8	N1	C1	01	-175.78(10)		C15	C8	C7	N2	-112.40(10)
C8	C7	N2	C3	-1.47(16)		C16	C15	C8	N1	60.79(11)
C8	C7	N2	C4	178.51(9)		C18	C19	02	C22	-164.78(10)
C8	C9	C14	C13	178.64(10)		C20	C19	02	C22	15.62(16)

Table 7 H	Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters							
	(Å ² ×10 ³) for 22srv059.							
Atom	x	У	Z	U(eq)				
H2A	6211(15)	5847(8)	6946(13)	25(3)				
H2B	6035(15)	5027(8)	6693(13)	24(3)				
НЗА	6145(16)	4778(8)	8793(14)	32(4)				
H3B	7434(17)	5313(8)	8904(15)	35(4)				
H4	7242(17)	5710(8)	11091(15)	37(4)				
H5	5651(17)	6607(9)	11764(16)	41(4)				
H6	3576(17)	6859(8)	9717(15)	34(4)				
H10	1198(15)	6603(8)	7951(14)	26(4)				
H11	-1011(16)	6003(8)	7487(14)	32(4)				
H12	-1281(16)	4874(8)	6549(14)	29(4)				

H13	660(15)	4308(8)	6074(14)	27(4)
H15A	3392(15)	7123(7)	7188(13)	23(3)
H15B	4743(16)	6865(8)	6829(13)	27(4)
H17	1127(15)	7231(7)	5556(13)	23(3)
H18	-240(16)	7181(7)	3410(13)	26(4)
H20	3029(15)	6221(8)	2469(14)	29(4)
H21	4396(16)	6277(8)	4631(14)	29(4)
H22A	791(17)	5722(9)	999(15)	36(4)
H22B	1534(18)	6352(9)	471(15)	37(4)
H22C	-117(18)	6235(8)	-150(16)	39(4)
H24A	2640(20)	3273(11)	5085(19)	57(5)
H24B	3420(30)	2735(13)	4570(20)	88(8)
H24C	1710(30)	2752(14)	4100(30)	101(9)

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 1468 formula(e) evaluated with 12 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 CI: 0-2 21-Jul-2022 MTF_MTF5C_179341 550 (4.621) Cm (550:552)

332.3357 ^{345.1634}^{349.1124} 352.1168 100 371.0988 381.0970 386.1758 402.3585 406.2072 415.1056 419.3484 315.1584 íriir m/z 11111 305 310 315 320 325 330 335 340 345 350 355 360 365 370 375 380 385 390 395 400 405 410 415 420 425 -10.0 Minimum: Maximum: 3.0 5.0 100.0 Mass Calc. Mass mDa PPM DBE i-FIT Norm Conf(%) Formula 186.7 349.1124 349.1108 1.6 4.6 5.5 19.248 0.00 C10 H17 N6 O8 349.1140 175.7 8.319 0.02 C10 H18 N8 O4 C1 -1.6 -4.6 5.5 0.3 0.9 10.5 186.4 18.963 0.00 349.1121 C11 H13 N10 O4 349.1135 -1.1 -3.2 4.5 187.2 19.748 0.00 C14 H21 O10 349.1148 -2.4 -6.9 9.5 187.5 20.081 0.00 C15 H17 N4 O6 349.1126 -0.2 -0.6 184.5 17.070 0.00 C20 H23 O C12 8.5 167.4 349.1108 1.6 4.6 13.5 0.000 99.97 C21 H18 N2 O C1 19.577 0.00 349.1104 2.0 5.7 -8.5 187.0 C3 H27 N4 O10 C12 -3.5 19.206 0.00 349.1118 0.6 1.7 186.6 C4 H23 N8 O6 C12 349.1099 180.3 12.914 0.00 C5 H18 N10 O6 C1 2.5 7.2 1.5 -5.7 -4.5 17.784 0.00 C8 H27 N2 O8 C12 349.1144 -2.0 185.2 176.6 C9 H22 N4 O8 Cl 349.1126 -0.2 -0.6 0.5 9.246 0.01

21-Jul-2022

1: TOF MS ES+ 1.24e+003

Page 1

X-ray crystallography data

Table 1 Crystal data and st	ructure refinement for 21srv468.
Identification code	21srv468
Empirical formula	C ₂₁ H ₁₇ CIN ₂ O
Formula weight	348.82
Temperature/K	120.0
Crystal system	monoclinic
Space group	P2 ₁ /c
a/Å	14.2495(4)
b/Å	9.5835(3)
c/Å	14.0702(4)
α/°	90
β/°	117.1379(9)
γ/°	90
Volume/Å ³	1709.90(9)
Z	4
$\rho_{calc}g/cm^3$	1.355
µ/mm⁻¹	0.234

F(000)	728.0
Crystal size/mm ³	0.25 × 0.18 × 0.15
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.426 to 59.982
Index ranges	-20 ≤ h ≤ 20, -13 ≤ k ≤ 13, -19 ≤ l ≤ 19
Reflections collected	28335
Independent reflections	4958 [R _{int} = 0.0303, R _{sigma} = 0.0222]
Data/restraints/parameters	4958/0/226
Goodness-of-fit on F ²	1.035
Final R indexes [I>=2σ (I)]	R ₁ = 0.0416, wR ₂ = 0.1047
Final R indexes [all data]	$R_1 = 0.0477$, $wR_2 = 0.1084$
Largest diff. peak/hole / e Å ⁻³	0.93/-0.36

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 21srv468. U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{ll} tensor.

Atom	x	У	Z	U(eq)							
Cl1	3953.4(3)	8074.9(5)	2667.7(3)	36.26(11)							
01	7934.9(8)	8692.4(10)	7832.6(7)	22.0(2)							
N1	8503.0(8)	8974.8(10)	6546.5(8)	14.14(19)							
N2	10453.2(8)	8418.7(11)	6746.3(8)	16.9(2)							
C1	7969.5(9)	8319.0(12)	7015.9(9)	14.5(2)							
C2	7472.8(9)	7074.4(12)	6352.9(9)	13.4(2)							
C3	6801.6(10)	6099.5(14)	6453.8(10)	18.3(2)							
C4	6463.6(10)	4994.0(14)	5736.3(10)	20.8(2)							
C5	6797.0(10)	4879.7(13)	4945.1(10)	19.8(2)							
C6	7469.6(9)	5860.8(12)	4848.5(9)	16.0(2)							
C7	7806.3(9)	6962.7(12)	5569.0(9)	12.4(2)							
C8	8492.1(9)	8206.4(11)	5635.2(9)	12.0(2)							
C9	9610.8(9)	7834.6(12)	5883.0(9)	13.7(2)							
C10	10001.8(10)	7036.3(13)	5329.1(10)	17.9(2)							
C11	11119.3(10)	7129.0(13)	5887.5(11)	20.9(2)							
C12	11372.7(10)	7979.2(13)	6751.3(11)	21.2(2)							
C13	10383.5(10)	9275.3(14)	7571.9(11)	21.9(3)							
C14	9319.6(10)	10008.2(13)	7095.1(10)	19.5(2)							
C15	7987.1(9)	9094.8(12)	4594.4(9)	15.1(2)							
C16	6880.9(9)	9575.4(13)	4300.6(9)	16.1(2)							
C17	6692.2(10)	10849.8(13)	4661.9(11)	22.2(3)							
C18	5665.9(12)	11281.0(15)	4387.9(14)	30.1(3)							

C19	4815.1(11)	10449.1(16)	3756.7(13)	29.6(3)
C20	5006.7(10)	9176.8(15)	3415.5(10)	23.3(3)
C21	6019.2(10)	8728.9(14)	3666.9(9)	18.7(2)

Table di	Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 21srv468. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.									
Atom	U ₁₁	U22	U ₃₃	U23	U13	U12				
Cl1	19.58(16)	51.1(2)	27.98(18)	6.85(16)	2.07(13)	-13.09(15)				
01	26.2(5)	27.2(5)	16.7(4)	-4.6(4)	13.3(4)	0.4(4)				
N1	14.3(4)	14.6(4)	14.0(4)	-3.1(3)	6.9(4)	-0.3(3)				
N2	12.4(4)	17.0(5)	20.1(5)	-2.3(4)	6.3(4)	-0.8(4)				
C1	12.7(5)	17.7(5)	12.5(5)	0.5(4)	5.4(4)	3.6(4)				
C2	12.6(5)	16.6(5)	11.3(5)	0.9(4)	5.7(4)	1.9(4)				
C3	17.7(5)	24.0(6)	16.5(5)	2.1(4)	10.7(4)	-1.1(4)				
C4	20.9(6)	21.7(6)	21.3(6)	1.0(5)	10.9(5)	-6.2(5)				
C5	23.6(6)	17.7(5)	18.0(5)	-2.1(4)	9.2(5)	-4.9(5)				
C6	19.2(5)	16.4(5)	14.0(5)	-1.3(4)	8.9(4)	-1.3(4)				
C7	11.8(5)	14.3(5)	10.9(5)	2.1(4)	5.1(4)	1.7(4)				
C8	12.4(5)	12.7(5)	11.7(5)	-0.2(4)	6.3(4)	0.4(4)				
C9	12.1(5)	14.0(5)	14.7(5)	1.2(4)	6.0(4)	0.6(4)				
C10	17.1(5)	19.3(5)	19.6(5)	-0.3(4)	10.4(5)	2.8(4)				
C11	17.2(5)	20.1(6)	30.0(7)	3.5(5)	14.6(5)	3.6(4)				
C12	12.4(5)	20.1(6)	30.7(7)	1.8(5)	9.3(5)	0.3(4)				
C13	16.4(5)	23.9(6)	21.6(6)	-8.8(5)	5.4(5)	-3.5(5)				
C14	19.7(5)	15.9(5)	23.0(6)	-6.3(4)	9.8(5)	-2.6(4)				
C15	14.3(5)	17.0(5)	15.4(5)	3.7(4)	7.9(4)	1.4(4)				
C16	15.2(5)	18.3(5)	15.3(5)	6.7(4)	7.5(4)	2.1(4)				
C17	19.7(6)	17.0(6)	30.9(7)	3.3(5)	12.4(5)	1.1(4)				
C18	27.4(7)	19.7(6)	48.7(9)	5.7(6)	22.3(7)	5.6(5)				
C19	19.2(6)	29.8(7)	42.2(8)	13.9(6)	15.9(6)	6.4(5)				
C20	16.0(5)	30.2(7)	20.7(6)	8.6(5)	5.8(5)	-3.9(5)				
C21	18.0(5)	22.7(6)	14.3(5)	4.3(4)	6.5(4)	-0.3(4)				

	Table 4 Bond Lengths for 21srv468.									
Atom	Atom	Length/Å		Atom	Atom	Length/Å				
Cl1	C20	1.7419(14)		C7	C8	1.5170(15)				
01	C1	1.2258(14)		C8	C9	1.5108(15)				
N1	C1	1.3666(15)		C8	C15	1.5575(16)				
N1	C8	1.4725(14)		C9	C10	1.3782(16)				
N1	C14	1.4530(15)		C10	C11	1.4212(17)				
N2	C9	1.3782(15)		C11	C12	1.3678(19)				
N2	C12	1.3733(15)		C13	C14	1.5211(18)				

N2	C13	1.4624(16)	C15	C16	1.5078(16)
C1	C2	1.4804(16)	C16	C17	1.3953(18)
C2	C3	1.3898(16)	C16	C21	1.4007(17)
C2	C7	1.3900(15)	C17	C18	1.3942(19)
C3	C4	1.3891(18)	C18	C19	1.383(2)
C4	C5	1.3998(18)	C19	C20	1.382(2)
C5	C6	1.3928(17)	C20	C21	1.3876(18)
C6	C7	1.3890(16)			

		Та	ble 5 Bond Ar	ngl	es for 21	Lsrv468.		
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C1	N1	C8	113.80(9)		C7	C8	C15	111.31(9)
C1	N1	C14	122.96(10)		C9	C8	C7	114.28(9)
C14	N1	C8	119.42(9)		C9	C8	C15	109.41(9)
C9	N2	C13	125.50(10)		N2	C9	C8	120.72(10)
C12	N2	C9	108.99(10)		C10	C9	N2	108.03(10)
C12	N2	C13	125.34(11)		C10	C9	C8	131.04(11)
01	C1	N1	126.01(11)		C9	C10	C11	107.02(11)
01	C1	C2	127.87(11)		C12	C11	C10	107.67(11)
N1	C1	C2	106.11(9)		C11	C12	N2	108.28(11)
C3	C2	C1	129.11(10)		N2	C13	C14	108.90(10)
C3	C2	C7	121.98(11)		N1	C14	C13	108.37(10)
C7	C2	C1	108.89(10)		C16	C15	C8	113.68(9)
C4	C3	C2	117.72(11)		C17	C16	C15	121.24(11)
C3	C4	C5	120.44(11)		C17	C16	C21	118.70(11)
C6	C5	C4	121.54(11)		C21	C16	C15	120.05(11)
C7	C6	C5	117.77(11)		C18	C17	C16	120.72(13)
C2	C7	C8	109.55(10)		C19	C18	C17	120.56(14)
C6	C7	C2	120.55(11)		C20	C19	C18	118.52(13)
C6	C7	C8	129.83(10)		C19	C20	Cl1	119.49(10)
N1	C8	C7	101.36(9)		C19	C20	C21	122.09(13)
N1	C8	C9	109.02(9)		C21	C20	Cl1	118.40(11)
N1	C8	C15	111.24(9)		C20	C21	C16	119.39(12)

	Table 6 Selected Torsion Angles for 21srv468.									
Α	A B C D Angle/°					Α	В	С	D	Angle/°
N1	C8	C9	N2	-11.64(14)		C9	C8	C15	C16	-177.50(10)
N1	C14	C13	N2	49.88(14)		C10	C9	N2	C12	-0.91(14)
C7	C8	N1	C1	2.60(12)		C10	C9	N2	C13	-176.33(12)
C7	C8	N1	C14	161.27(10)		C10	C9	C8	N1	174.33(12)
C7	C8	C9	N2	-124.24(11)		C10	C9	C8	C15	-63.82(16)
C7	C8	C9	C10	61.74(16)		C13	C14	N1	C1	94.70(13)

C7	C8	C15	C16	55.25(13)	C13	C14	N1	C8	-61.92(14)
C8	C9	N2	C12	-176.18(10)	C14	C13	N2	C9	-27.78(17)
C8	C9	N2	C13	8.40(18)	C14	C13	N2	C12	157.53(12)
C8	C15	C16	C17	90.79(14)	C15	C8	N1	C1	121.01(10)
C8	C15	C16	C21	-88.25(13)	C15	C8	N1	C14	-80.33(12)
C9	C8	N1	C1	-118.26(10)	C15	C8	C9	N2	110.20(12)
C9	C8	N1	C14	40.41(13)	C16	C15	C8	N1	-56.99(13)

Table 7 Hy	drogen Atom Coordin	ates (Å×10 ⁴) and Isotr	opic Displacement I	Parameters
	(/	Å ² ×10 ³) for 21srv468.		
Atom	x	У	Z	U(eq)
H3	6581.5	6186.09	6994.78	22
H4	6003.12	4311.07	5782.98	25
H5	6558.97	4115.15	4462.81	24
H6	7690.71	5779.04	4307.97	19
H10	9600.28	6521.49	4694.14	22
H11	11603.21	6681.13	5695.52	25
H12	12065.85	8223.66	7266.24	25
H13A	10958.28	9974.37	7841.78	26
H13B	10458.57	8679.96	8177.59	26
H14A	9206.64	10460.23	7667.28	23
H14B	9296.6	10737.05	6586.23	23
H15A	8435.36	9923.15	4685.26	18
H15B	7976	8535.05	3997.96	18
H17	7269.37	11429.88	5099.41	27
H18	5550.15	12153.9	4636.9	36
H19	4114.6	10745.28	3561.76	36
H21	6127.01	7856.18	3411.6	22

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

Fixed Uiso
 At 1.2 times of:
 All C(H) groups, All C(H,H) groups
 2.a Secondary CH2 refined with riding coordinates:
 C13(H13A,H13B), C14(H14A,H14B), C15(H15A,H15B)
 2.b Aromatic/amide H refined with riding coordinates:
 C3(H3), C4(H4), C5(H5), C6(H6), C10(H10), C11(H11), C12(H12), C17(H17),
 C18(H18), C19(H19), C21(H21)

12*b*-(4-chlorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-*a*]isoindol-8(12*bH*)-one **1d** ¹H:

¹³C:

DEPT-135:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 1468 formula(e) evaluated with 12 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 CI: 0-2 21-Jul-2022 MTF_MTF5D_179342 533 (4.475) Cm (531:533)

	349 1124												0.000.000	
100		351.1094	352.114	9 354.12	37							371.0	<u>)963 373.09</u> 49,	7
0 111	348.0 350	.0 35	2.0	354.0	356.0	358.0	360.0	362.0	364.0	366.0	368.0	370.0	372.0	2
Minimur Maximur	n: n:		3.0	5.0	-10.0 100.0									
Mass	Calc.	Mass r	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula					
349.112	24 349.11 349.11 349.11 349.11 349.11 349.11 349.11 349.11 349.11 349.11	26 - 26 - 21 () 18 () 35 - 40 - 08 2 08 2 44 - 24 2	-0.2 -0.2 0.3 0.6 -1.1 -1.6 1.6 1.6 -2.0	-0.6 -0.6 0.9 1.7 -3.2 -4.6 4.6 4.6 -5.7 5.7	0.5 8.5 10.5 -3.5 4.5 5.5 5.5 13.5 -4.5 -8.5	704.1 717.2 715.1 718.0 715.1 703.0 715.2 688.4 717.8 718.5	15.783 28.884 26.722 29.682 26.768 14.647 26.881 0.000 29.425 20.173	0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00	C9 H22 1 C20 H23 C11 H13 C4 H23 1 C14 H21 C10 H18 C10 H17 C21 H18 C8 H27 1	N4 08 0 0 Cl2 N10 0 N8 06 0 010 N8 04 N6 08 N2 0 0 N2 08 0 N2 08 0	C1 4 C12 C1 C1 C1 C12 C12 C12			
	349.11 349.11 349.10	48 -	-2.4 2.5	-6.9 7.2	9.5 1.5	715.2	26.822	0.00	C15 H17 C5 H18 1	N4 06 N10 06	Cl			

Page 1

21-Jul-2022 1: TOF MS ES+ 6.83e+004

PerkinElmer Spectrum Version 10.5.2 28 June 2022 12:50

Table 1 Crystal data and structure refinement for 22srv040.				
Identification code	22srv040			
Empirical formula	C ₂₁ H ₁₇ ClN ₂ O			
Formula weight	348.82			
Temperature/K	120.00			
Crystal system	monoclinic			
Space group	P21/c			
a/Å	7.4849(2)			
b/Å	27.8691(6)			
c/Å	7.8403(2)			
α/°	90			
β/°	93.0887(9)			
γ/°	90			
Volume/Å ³	1633.09(7)			
Z	4			
ρ _{calc} g/cm ³	1.419			
µ/mm⁻¹	0.245			

F(000)	728.0		
Crystal size/mm ³	0.25 × 0.2 × 0.03		
Radiation	Μο Κα (λ = 0.71073)		
20 range for data collection/°	5.404 to 60		
Index ranges	-10 ≤ h ≤ 10, -39 ≤ k ≤ 39, -11 ≤ l ≤ 11		
Reflections collected	28852		
Independent reflections	4751 [R _{int} = 0.0395, R _{sigma} = 0.0276]		
Data/restraints/parameters	4751/0/294		
Goodness-of-fit on F ²	1.085		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0440, wR ₂ = 0.0982		
Final R indexes [all data]	$R_1 = 0.0517$, $wR_2 = 0.1017$		
Largest diff. peak/hole / e Å ⁻³	0.38/-0.43		

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for 22srv040. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

Un tensor.						
Atom	X	У	Z	U(eq)		
Cl1	2760.1(6)	4908.2(2)	2213.5(5)	34.30(12)		
01	7459.1(13)	2322.5(3)	5868.3(13)	18.9(2)		
N1	8134.8(14)	3106.8(4)	5210.2(14)	13.6(2)		
N2	9100.5(15)	3816.8(4)	7458.6(14)	15.7(2)		
C1	8485.6(17)	2624.6(5)	5342.2(16)	14.0(2)		
C2	6708.3(17)	3336.6(5)	6091.5(17)	15.5(2)		
C3	7447.9(18)	3559.5(5)	7750.4(17)	17.3(3)		
C4	9901(2)	4143.5(5)	8569.5(18)	20.4(3)		
C5	11496(2)	4277.0(5)	7945.8(19)	23.5(3)		
C6	11693(2)	4021.9(5)	6403.6(18)	20.8(3)		
C7	10205.7(17)	3736.1(5)	6140.9(16)	14.7(2)		
C8	9676.9(16)	3392.1(4)	4717.2(16)	12.9(2)		
C9	11043.6(16)	3001.6(5)	4435.7(16)	13.3(2)		
C10	12740.4(17)	3039.4(5)	3819.9(17)	16.5(2)		
C11	13692.3(18)	2619.9(5)	3545.2(17)	18.4(3)		
C12	12956.8(18)	2172.9(5)	3869.9(17)	18.3(3)		
C13	11245.0(18)	2134.7(5)	4473.4(17)	16.1(2)		
C14	10309.9(16)	2555.5(5)	4739.4(16)	13.9(2)		
C15	9310.2(17)	3651.5(5)	2972.6(16)	14.9(2)		
C16	7689.4(17)	3970.8(5)	2819.0(16)	14.6(2)		
C17	7686.2(19)	4431.9(5)	3514.1(18)	19.1(3)		
C18	6168(2)	4718.9(5)	3345.2(19)	21.7(3)		
C19	4656(2)	4545.7(5)	2454.8(18)	21.1(3)		
-----	------------	-----------	------------	---------		
C20	4623.5(19)	4091.2(5)	1739.5(17)	19.2(3)		
C21	6139.3(18)	3804.7(5)	1932.9(17)	16.1(2)		

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv040. The Anisotropic									
displacement factor exponent takes the form: $-2\pi^2[h^2a^2U_{11}+2hka^bU_{12}+]$.									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
Cl1	35.3(2)	35.3(2)	31.7(2)	-3.16(16)	-4.05(16)	21.11(17)			
01	16.4(4)	17.6(4)	23.1(5)	2.7(4)	4.3(4)	-2.8(4)			
N1	12.3(5)	14.0(5)	14.7(5)	-0.1(4)	2.9(4)	-0.9(4)			
N2	19.5(5)	15.3(5)	12.3(5)	-0.9(4)	0.7(4)	1.0(4)			
C1	14.0(5)	15.4(6)	12.5(5)	-0.3(4)	0.3(4)	-0.4(4)			
C2	13.7(6)	16.9(6)	16.1(6)	0.9(5)	3.1(4)	1.3(5)			
C3	18.8(6)	20.3(6)	13.3(6)	0.4(5)	3.8(5)	2.0(5)			
C4	31.1(7)	15.0(6)	14.7(6)	-1.9(5)	-2.3(5)	1.2(5)			
C5	32.4(8)	18.4(6)	19.0(6)	-1.4(5)	-4.6(6)	-5.0(6)			
C6	22.8(7)	19.9(6)	19.3(6)	-1.2(5)	-1.0(5)	-5.8(5)			
C7	17.4(6)	14.1(5)	12.4(5)	0.0(4)	-0.7(4)	-0.1(4)			
C8	11.9(5)	13.8(5)	13.1(5)	0.6(4)	1.4(4)	-1.6(4)			
C9	13.0(5)	16.0(6)	10.7(5)	-0.1(4)	-1.0(4)	-0.6(4)			
C10	13.5(6)	19.4(6)	16.8(6)	1.1(5)	1.0(4)	-2.5(5)			
C11	12.7(6)	25.2(7)	17.4(6)	-1.0(5)	1.3(4)	1.1(5)			
C12	16.5(6)	20.8(6)	17.7(6)	-1.7(5)	1.4(5)	4.4(5)			
C13	16.5(6)	16.3(6)	15.3(6)	-0.6(5)	-0.2(5)	0.0(5)			
C14	13.2(5)	16.5(6)	12.0(5)	0.2(4)	0.4(4)	-0.4(4)			
C15	15.9(6)	15.7(6)	13.2(5)	0.7(5)	1.5(4)	0.8(4)			
C16	16.9(6)	14.8(6)	12.2(5)	2.2(4)	2.8(4)	0.5(4)			
C17	21.3(7)	16.6(6)	19.4(6)	-1.4(5)	1.4(5)	-1.9(5)			
C18	29.7(7)	14.3(6)	21.6(7)	-1.2(5)	4.5(5)	2.1(5)			
C19	24.1(7)	21.1(6)	18.2(6)	3.2(5)	2.3(5)	8.7(5)			
C20	20.0(6)	21.8(6)	15.6(6)	1.4(5)	-0.8(5)	2.3(5)			
C21	20.1(6)	15.5(6)	12.8(5)	0.3(5)	1.4(4)	0.2(5)			

Table 4 Bond Lengths for 22srv040.									
Atom	Atom Atom Le		gth/Å Atom		Atom	Length/Å			
Cl1	C19	1.7437(14)		C8	C15	1.5583(17)			
01	C1	1.2262(15)		C9	C10	1.3869(18)			
N1	C1	1.3719(16)		C9	C14	1.3850(17)			
N1	C2	1.4516(16)		C10	C11	1.3919(19)			
N1	C8	1.4705(16)		C11	C12	1.391(2)			
N2	C3	1.4584(17)		C12	C13	1.3937(19)			
N2	C4	1.3749(17)		C13	C14	1.3871(18)			

N2	C7	1.3763(17)	C15	C16	1.5042(18)
C1	C14	1.4814(17)	C16	C17	1.3959(18)
C2	C3	1.5187(19)	C16	C21	1.3986(18)
C4	C5	1.366(2)	C17	C18	1.390(2)
C5	C6	1.417(2)	C18	C19	1.385(2)
C6	C7	1.3753(18)	C19	C20	1.385(2)
C7	C8	1.5079(17)	C20	C21	1.3889(19)
C8	C9	1.5179(17)			

Table 5 Bond Angles for 22srv040.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°		
C1	N1	C2	122.61(10)		C9	C8	C15	107.04(10)		
C1	N1	C8	113.57(10)		C10	C9	C8	129.28(12)		
C2	N1	C8	119.63(10)		C14	C9	C8	110.01(11)		
C4	N2	C3	124.79(11)		C14	C9	C10	120.47(12)		
C4	N2	C7	108.95(11)		C9	C10	C11	118.42(12)		
C7	N2	C3	125.91(11)		C12	C11	C10	120.86(12)		
01	C1	N1	125.24(12)		C11	C12	C13	120.71(12)		
01	C1	C14	128.54(12)		C14	C13	C12	117.84(12)		
N1	C1	C14	106.22(10)		C9	C14	C1	108.60(11)		
N1	C2	C3	110.16(11)		C9	C14	C13	121.67(12)		
N2	C3	C2	109.87(10)		C13	C14	C1	129.73(12)		
C5	C4	N2	108.24(12)		C16	C15	C8	116.60(10)		
C4	C5	C6	107.58(13)		C17	C16	C15	122.12(12)		
C7	C6	C5	107.32(13)		C17	C16	C21	118.67(12)		
N2	C7	C8	121.01(11)		C21	C16	C15	119.20(12)		
C6	C7	N2	107.89(12)		C18	C17	C16	120.75(13)		
C6	C7	C8	131.08(12)		C19	C18	C17	119.30(13)		
N1	C8	C7	109.13(10)		C18	C19	Cl1	119.43(11)		
N1	C8	C9	101.25(10)		C18	C19	C20	121.26(13)		
N1	C8	C15	112.21(10)		C20	C19	Cl1	119.31(12)		
C7	C8	C9	114.29(10)		C19	C20	C21	119.03(13)		
C7	C8	C15	112.44(10)		C20	C21	C16	120.99(12)		

	Table 6 Selected Torsion Angles for 22srv040.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C2	C3	N2	44.78(14)		C9	C8	N1	C2	161.37(11)
N1	C8	C7	N2	-12.77(16)		C9	C8	C7	N2	-125.30(12)
C1	C14	C9	C10	-178.54(11)		C9	C8	C7	C6	56.47(19)
C2	N1	C1	01	16.8(2)		C9	C8	C15	C16	165.68(11)
C2	C3	N2	C4	164.92(12)		C9	C14	C1	01	-173.79(13)
C2	C3	N2	C7	-22.65(17)		C9	C14	C1	N1	5.93(14)

C3	C2	N1	C1	96.60(14)	C10	C9	C8	N1	174.46(13)
C3	C2	N1	C8	-58.89(15)	C10	C9	C14	C13	1.22(19)
C6	C7	N2	C3	-174.78(12)	C13	C14	C1	01	6.5(2)
C6	C7	N2	C4	-1.35(15)	C13	C14	C1	N1	-173.81(13)
C6	C7	C8	N1	168.99(14)	C14	C1	N1	C2	-162.88(11)
C6	C7	C8	C15	-65.83(18)	C14	C1	N1	C8	-6.05(14)
C7	C8	N1	C1	-117.08(11)	C14	C9	C8	N1	0.19(13)
C7	C8	N1	C2	40.51(15)	C14	C9	C8	C7	117.34(12)
C7	C8	C9	C10	-68.39(17)	C14	C9	C8	C15	-117.46(11)
C8	N1	C1	01	173.68(12)	C15	C8	N1	C1	117.61(12)
C8	C7	N2	C3	6.62(19)	C15	C8	N1	C2	-84.80(13)
C8	C7	N2	C4	-179.95(11)	C15	C8	C7	N2	112.40(13)
C8	C9	C14	C1	-3.69(14)	C15	C8	C9	C10	56.81(17)
C8	C9	C14	C13	176.07(11)	C16	C15	C8	N1	55.46(15)
C8	C15	C16	C17	78.58(16)	C16	C15	C8	C7	-68.01(14)
C9	C8	N1	C1	3.78(13)	C21	C16	C15	C8	-102.30(14)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters								
(Å ² ×10 ³) for 22srv040.								
Atom	X	У	Z	U(eq)				
H2A	5830(20)	3084(6)	6330(20)	17(4)				
H3A	6570(20)	3790(6)	8170(20)	18(4)				
H2B	6140(20)	3575(6)	5360(20)	14(4)				
H3B	7690(20)	3299(6)	8620(20)	19(4)				
H4	9300(20)	4237(7)	9620(20)	26(5)				
H5	12330(30)	4508(7)	8470(30)	32(5)				
H6	12710(30)	4046(7)	5640(30)	33(5)				
H15A	9180(20)	3398(7)	2110(20)	24(5)				
H10	13250(20)	3352(7)	3590(20)	23(4)				
H12	13630(20)	1878(7)	3660(20)	25(5)				
H11	14880(20)	2642(6)	3110(20)	23(4)				
H13	10760(20)	1827(7)	4700(20)	23(4)				
H15B	10400(20)	3842(6)	2760(20)	23(4)				
H17	8770(30)	4554(7)	4100(20)	29(5)				
H18	6180(20)	5034(7)	3850(20)	25(5)				
H21	6140(20)	3485(7)	1440(20)	21(4)				
H20	3560(20)	3973(6)	1120(20)	24(4)				

DEPT-135:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 1468 formula(e) evaluated with 12 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 CI: 0-2 21-Jul-2022 MTF_MTF5E_179343 538 (4.521) Cm (538:540)

100	224.0970 313.136	8 349.112	25 _371.0963	449.0421	551.1168		697.217	0719.1978	901.2159)	1069.2957
150	200 250 300) 350	400	450 500	550	600 6	50 700	750 800 85	50 900	950 1000	1050
Minimum: Maximum:		3.0	5.0	-10.0 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
349.1125	349.1126 349.1126 349.1121 349.1118 349.1135 349.1140 349.1108 349.1108 349.1104 349.1104 349.1104	-0.1 -0.1 0.4 0.7 -1.0 -1.5 1.7 1.7 -1.9 2.1 -2.3 2 6	-0.3 -0.3 1.1 2.0 -2.9 -4.3 4.9 4.9 -5.4 6.0 -6.6 7 4	$\begin{array}{c} 0.5\\ 8.5\\ 10.5\\ -3.5\\ 4.5\\ 5.5\\ 5.5\\ 13.5\\ -4.5\\ -8.5\\ 9.5\\ 1\\ 5\end{array}$	614.0 628.6 625.9 629.2 626.0 612.5 626.0 597.2 629.0 629.7 626.0 629.7	16.763 31.349 28.655 31.984 28.785 15.283 28.824 0.000 31.799 32.433 28.822 20.060	0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00	C9 H22 N4 08 0 C20 H23 0 C12 C11 H13 N10 0 C4 H23 N8 06 C14 H21 010 C10 H18 N8 04 C10 H17 N6 08 C21 H18 N2 0 0 C8 H27 N2 08 0 C3 H27 N4 010 C15 H17 N4 06 C5 H18 N10 06	Cl 4 Cl Cl Cl Cl Cl Cl Cl Cl Cl		

21-Jul-2022

1: TOF MS ES+ 7.03e+004

Page 1

PerkinElmer Spectrum Version 10.5.2 07 July 2022 08:10

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv041.					
Identification code	22srv041				
Empirical formula	C ₂₁ H ₁₇ CIN ₂ O				
Formula weight	348.82				
Temperature/K	120.00				
Crystal system	monoclinic				
Space group	P2 ₁ /n				
a/Å	13.6679(4)				
b/Å	10.0995(3)				
c/Å	13.8218(4)				
α/°	90				
β/°	118.0822(10)				
γ/°	90				
Volume/Å ³	1683.33(9)				
Z	4				

ρ _{calc} g/cm ³	1.376
µ/mm ⁻¹	0.238
F(000)	728.0
Crystal size/mm ³	0.21 × 0.12 × 0.05
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.262 to 59.988
Index ranges	$-19 \le h \le 19, -14 \le k \le 14, -19 \le l \le 19$
Reflections collected	39362
Independent reflections	4877 [R _{int} = 0.0388, R _{sigma} = 0.0227]
Data/restraints/parameters	4877/0/294
Goodness-of-fit on F ²	1.054
Final R indexes [I>=2σ (I)]	R ₁ = 0.0384, wR ₂ = 0.0942
Final R indexes [all data]	R ₁ = 0.0434, wR ₂ = 0.0972
Largest diff. peak/hole / e Å ⁻³	0.43/-0.36

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement									
Parameters (Å ² ×10 ³) for 22srv041. U _{eq} is defined as 1/3 of the trace of the orthogonalised									
U _{IJ} tensor.									
Atom	x	у	Z	U(eq)					
Cl1	8177.5(3)	-1382.9(3)	5109.5(3)	23.23(9)					
01	9911.9(7)	1504.0(9)	7735.4(7)	17.75(17)					
N1	8070.4(8)	1213.7(9)	6481.9(8)	13.06(17)					
N2	6304.8(8)	1711.4(10)	6829.6(8)	17.36(19)					
C1	9060.3(9)	1866.5(11)	6930.2(9)	13.0(2)					
C2	7798.3(10)	227.5(12)	7081.5(10)	17.5(2)					
C3	7211.0(10)	918.9(13)	7641.0(10)	20.5(2)					
C4	5372.1(11)	2101.1(13)	6891.4(11)	22.0(2)					
C5	4736.7(10)	2859.0(13)	5990.9(11)	21.6(2)					
C6	5295.5(10)	2942.5(12)	5351.3(10)	18.4(2)					
C7	6263.4(9)	2232.5(11)	5890.1(9)	13.9(2)					
C8	7165.1(9)	1941.3(10)	5582.1(8)	11.90(19)					
C9	7765.5(9)	3169.7(10)	5514.8(8)	11.81(19)					
C10	7364.5(9)	4242.0(11)	4806.5(9)	14.7(2)					
C11	8116.7(10)	5217.1(11)	4883.3(9)	16.3(2)					
C12	9237.7(10)	5136.2(12)	5654.4(9)	16.6(2)					
C13	9637.2(9)	4062.0(11)	6361.9(9)	15.4(2)					
C14	8882.4(9)	3086.2(11)	6274.0(9)	12.49(19)					
C15	6675.9(9)	1146.6(11)	4488.2(9)	14.3(2)					

C16	7464.5(9)	960.8(11)	4017.8(9)	14.6(2)
C17	8173.1(10)	-124.1(11)	4247.3(9)	17.1(2)
C18	8883.4(10)	-263.8(13)	3790.2(10)	21.0(2)
C19	8916.2(10)	704.0(14)	3100.3(10)	22.7(3)
C20	8225.9(11)	1799.8(13)	2856.2(10)	20.4(2)
C21	7505.0(10)	1912.2(12)	3299.5(9)	17.1(2)

Table	Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv041. The Anisotropic									
di	splacement fa	ctor exponent	takes the form	h: -2π²[h²a*²l	J ₁₁ +2hka*b*U ₂	12 +].				
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂				
Cl1	27.00(16)	13.50(13)	29.60(16)	1.43(10)	13.65(13)	2.89(10)				
01	13.1(4)	20.4(4)	14.4(4)	2.3(3)	2.0(3)	3.6(3)				
N1	11.5(4)	12.8(4)	12.7(4)	2.6(3)	4.0(3)	1.5(3)				
N2	16.4(4)	19.9(5)	18.5(5)	4.5(4)	10.4(4)	3.4(4)				
C1	13.0(5)	14.5(5)	11.7(4)	-1.0(4)	6.0(4)	1.9(4)				
C2	17.3(5)	16.2(5)	19.1(5)	6.5(4)	8.6(4)	2.5(4)				
C3	20.7(6)	23.8(6)	18.9(5)	8.7(4)	11.0(5)	5.4(5)				
C4	21.3(6)	24.8(6)	27.0(6)	3.4(5)	17.2(5)	2.9(5)				
C5	16.9(5)	24.4(6)	26.6(6)	1.1(5)	12.9(5)	3.7(4)				
C6	14.7(5)	22.5(6)	18.2(5)	2.7(4)	7.9(4)	4.1(4)				
C7	13.2(5)	15.0(5)	14.1(5)	0.3(4)	6.8(4)	0.3(4)				
C8	10.7(4)	12.2(4)	11.2(4)	1.3(3)	3.9(4)	1.7(3)				
C9	12.1(4)	12.4(4)	11.1(4)	-1.4(3)	5.6(4)	0.7(4)				
C10	14.9(5)	14.2(5)	12.4(5)	0.1(4)	4.3(4)	1.4(4)				
C11	21.1(5)	13.8(5)	14.7(5)	0.7(4)	9.1(4)	0.4(4)				
C12	18.1(5)	16.4(5)	18.0(5)	-1.6(4)	10.7(4)	-2.9(4)				
C13	12.7(5)	18.4(5)	15.2(5)	-1.6(4)	6.6(4)	-1.0(4)				
C14	12.6(5)	13.7(5)	11.3(4)	-0.5(4)	5.7(4)	1.4(4)				
C15	11.8(5)	14.9(5)	14.2(5)	-1.8(4)	4.5(4)	0.0(4)				
C16	12.5(5)	16.2(5)	12.4(5)	-4.5(4)	3.6(4)	-0.9(4)				
C17	16.7(5)	14.9(5)	16.8(5)	-3.5(4)	5.5(4)	-0.9(4)				
C18	17.7(5)	22.9(6)	20.8(5)	-5.2(4)	7.8(4)	3.9(4)				
C19	18.7(6)	31.9(7)	19.0(5)	-6.1(5)	10.1(5)	0.5(5)				
C20	21.7(6)	24.8(6)	15.3(5)	-1.6(4)	9.2(4)	-1.0(5)				
C21	17.2(5)	18.7(5)	12.8(5)	-2.7(4)	4.9(4)	0.9(4)				

	Table 4 Bond Lengths for 22srv041.										
Atom	Atom Atom Length/Å Atom Atom Length										
Cl1	C17	1.7405(12)		C8	C15	1.5574(15)					
01	C1	1.2279(13)		C9	C10	1.3880(15)					
N1	C1	1.3638(14)		C9	C14	1.3894(14)					
N1	C2	1.4517(14)		C10	C11	1.3912(16)					

N1	C8	1.4728(13)	C	211	C12	1.3974(16)
N2	C3	1.4576(15)	C	212	C13	1.3888(16)
N2	C4	1.3746(15)	C	213	C14	1.3901(15)
N2	C7	1.3776(14)	C	215	C16	1.5098(15)
C1	C14	1.4804(15)	C	216	C17	1.3965(16)
C2	C3	1.5213(17)	C	216	C21	1.4014(16)
C4	C5	1.3681(18)	C	217	C18	1.3925(17)
C5	C6	1.4170(17)	C	218	C19	1.3809(19)
C6	C7	1.3753(16)	C	219	C20	1.3889(18)
C7	C8	1.5100(15)	C	220	C21	1.3884(17)
C8	C9	1.5142(15)				

	Table 5 Bond Angles for 22srv041.											
Atom	Atom	Atom	Angle/°	Angle/°		Atom	Atom	Angle/°				
C1	N1	C2	122.56(9)		C9	C8	C15	111.10(9)				
C1	N1	C8	113.70(9)		C10	C9	C8	129.57(10)				
C2	N1	C8	119.03(9)		C10	C9	C14	120.58(10)				
C4	N2	C3	125.91(10)		C14	C9	C8	109.78(9)				
C4	N2	C7	108.75(10)		C9	C10	C11	117.79(10)				
C7	N2	C3	125.30(10)		C10	C11	C12	121.50(10)				
01	C1	N1	125.59(10)		C13	C12	C11	120.61(11)				
01	C1	C14	128.00(10)		C12	C13	C14	117.56(10)				
N1	C1	C14	106.39(9)		C9	C14	C1	108.57(9)				
N1	C2	C3	108.27(10)		C9	C14	C13	121.96(10)				
N2	C3	C2	108.76(10)		C13	C14	C1	129.44(10)				
C5	C4	N2	108.29(11)		C16	C15	C8	114.51(9)				
C4	C5	C6	107.65(11)		C17	C16	C15	124.00(10)				
C7	C6	C5	107.14(11)		C17	C16	C21	116.39(10)				
N2	C7	C8	120.97(10)		C21	C16	C15	119.62(10)				
C6	C7	N2	108.17(10)		C16	C17	Cl1	120.47(9)				
C6	C7	C8	130.81(10)		C18	C17	Cl1	117.27(9)				
N1	C8	C7	109.38(9)		C18	C17	C16	122.25(11)				
N1	C8	C9	101.33(8)		C19	C18	C17	119.85(11)				
N1	C8	C15	111.64(9)		C18	C19	C20	119.52(11)				
C7	C8	C9	113.30(9)		C21	C20	C19	120.00(12)				
C7	C8	C15	109.85(9)		C20	C21	C16	121.98(11)				

	Table 6 Torsion Angles for 22srv041.										
A B C D Angle/° A B C D Angle/										Angle/°	
N1	C2	C3	N2	51.19(13)		C8	C9	C14	C13	177.66(10)	
N1	C8	C7	N2	-6.99(14)		C8	C15	C16	C17	91.29(13)	
C1	C14	C9	C8	-4.20(12)		C8	C15	C16	C21	-89.08(12)	

C1	C14	C9	C10	178.51(9)	C9	C8	N1	C1	1.46(11)
C2	N1	C1	01	19.25(17)	C9	C8	N1	C2	157.79(9)
C2	C3	N2	C4	156.06(12)	C9	C8	C7	N2	-119.22(11)
C2	C3	N2	C7	-26.35(16)	C9	C8	C15	C16	45.84(12)
C3	C2	N1	C1	91.89(12)	C9	C14	C1	01	-173.53(11)
C3	C2	N1	C8	-62.25(13)	C9	C14	C1	N1	5.01(12)
C6	C7	N2	C3	-178.54(12)	C10	C9	C8	N1	178.80(11)
C6	C7	N2	C4	-0.60(14)	C10	C9	C8	C15	60.09(14)
C6	C7	C8	N1	175.93(12)	C10	C9	C14	C13	0.37(16)
C6	C7	C8	C9	63.71(16)	C13	C14	C1	01	4.43(19)
C6	C7	C8	C15	-61.20(16)	C13	C14	C1	N1	-177.04(11)
C7	C8	N1	C1	-118.42(10)	C14	C1	N1	C2	-159.33(10)
C7	C8	N1	C2	37.91(13)	C14	C1	N1	C8	-3.95(12)
C7	C8	C9	C10	-64.14(14)	C14	C9	C8	N1	1.83(11)
C7	C8	C9	C14	118.88(10)	C14	C9	C8	C15	-116.88(10)
C7	C8	C15	C16	172.01(9)	C15	C8	N1	C1	119.79(10)
C8	N1	C1	01	174.63(10)	C15	C8	N1	C2	-83.89(12)
C8	C7	N2	C3	3.79(18)	C15	C8	C7	N2	115.87(11)
C8	C7	N2	C4	-178.28(10)	C16	C15	C8	N1	-66.47(12)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters									
	(/	Å ² ×10 ³) for 22srv041.							
Atom	x	у	Z	U(eq)					
H2A	8463(14)	-188(17)	7617(14)	25(4)					
H2B	7334(13)	-469(17)	6582(13)	21(4)					
H3A	7731(14)	1500(16)	8225(13)	22(4)					
H3B	6906(14)	275(17)	7943(14)	26(4)					
H4	5280(15)	1839(18)	7496(15)	30(4)					
H5	4032(14)	3246(17)	5819(13)	23(4)					
H6	5069(14)	3368(17)	4677(14)	24(4)					
H15A	6429(13)	321(17)	4621(13)	20(4)					
H10	6628(14)	4311(16)	4296(13)	21(4)					
H11	7856(13)	5970(16)	4392(13)	17(4)					
H13	10414(14)	3983(16)	6896(14)	23(4)					
H12	9714(14)	5812(17)	5707(13)	24(4)					
H15B	6036(13)	1649(16)	3981(13)	17(4)					
H21	7001(13)	2655(16)	3111(12)	16(3)					
H18	9349(14)	-1018(18)	3976(14)	27(4)					
H20	8281(12)	2459(16)	2381(12)	16(3)					
H19	9397(14)	596(17)	2769(14)	27(4)					

12*b*-(4-fluorobenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-*a*]isoindol-8(12*bH*)-one **1f** ¹H:

¹³C:

-112.0 -112.5 -113.0 -113.5 -114.0 -114.5 -115.0 -115.5 -116.0 -116.5 -117.0 -117.5 -118.0 -118.5 -119.0 -119.5 -120.0 fl (ppm)

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 3006 formula(e) evaluated with 23 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 F: 0-6

21-Jul-2022

MTF_MTF5F_179344 517 (4.344) Cm (517)

																					1.500.000
100 281.1	754	286.9	111	296.84	62 3	04.3063	31	5.1504	3	329.00)79 ³³³	5.1414		345.16	16	355.12	266	365.13	45_368	.1619	381.1310
275	280	285	290	295	300	305	310	315	320	325	330	335	340	345	350	355	360	365	370	375	380
Minimum:							-10.	0													
Maximum:				3.0		5.0	100.	0													
Mass	С	alc.	Mass	mDa		PPM	DBE	i	-FIT	N	orm	Conf	(%)	Formu	la						
333.1414	3	33.14	42	-2.8	3	-8.4	-3.5	5 10	04.0	1	3.567	0.00		C H21	N10	010					
	3	33.14	35	-2.1	-	-6.3	5.5	98	8.6	8	.082	0.03		C10 H	18 N	8 04	F				
	3	33.13	86	2.8		8.4	1.5	99	9.7	9	.202	0.01		C10 H	20 N	4 05	FЗ				
	3	33.13	99	1.5		4.5	6.5	99	9.0	8	.541	0.02		С11 Н	16 N	801	F3				
	3	33.14	37	-2.3	3	-6.9	1.5	9'	7.8	7	.359	0.06		C12 H	21 N	2 04	F4				
	3	33.14	10	0.4		1.2	4.5	9'	7.1	6	.660	0.13		С12 Н	21 N	4 07					
	3	33.14	24	-1.0)	-3.0	9.5	96	6.5	5	.999	0.25		С13 Н	17 N	8 03					
	3	33.14	02	1.2		3.6	2.5	98	3.2	7	.730	0.04		С13 Н	19 N	201	F6				
	3	33.13	88	2.6		7.8	10.5	; 9'	7.3	6	.861	0.10		С14 Н	15 N	8 F2					
	3	33.14	26	-1.2	2	-3.6	5.5	95	5.8	5	.323	0.49		С15 Н	20 N	2 03	FЗ				
	3	33.13	90	2.4		7.2	6.5	90	6.6	6	.180	0.21		С16 Н	18 N	2 F5					
	3	33.14	15	-0.1	-	-0.3	9.5	93	3.7	3	.237	3.93		C18 H	19 N	2 02	F2				
	3	33.14	06	0.8		2.4	-2.5	i 10	03.9	1	3.447	0.00		C2 H1	9 N1	0 07	F2				
	3	33.14	33	-1.9)	-5.7	-5.5	i 1(04.1	1	3.667	0.00		C2 H1	9 N8	04 1	F6				
	3	33.14	03	1.1		3.3	13.5	5 92	1.9	1	.390	24.90	C	С21 Н	18 N	201	F				
	3	33.13	92	2.2		6.6	17.5	i 90	0 . 8	0	.360	69.80	C	С24 Н	17 N	2					
	3	33.14	09	0.5		1.5	-6.5	5 10	02.7	1	2.211	0.00		C4 H2	2 N4	07 1	F5				
	3	33.13	95	1.9		5.7	1.5	1(02.1	1	1.626	0.00		C5 H1	8 N1	0 06	F				
	3	33.14	22	-0.8	3	-2.4	-1.5	5 10	02.3	1	1.862	0.00		C5 H1	8 N8	03 1	F5				
	3	33.14	33	-1.9)	-5.7	-3.5	5 10	00.9	1	0.417	0.00		C6 H2	3 N4	09 1	F2				
	3	33.13	97	1.7		5.1	-2.5	5 10	01.2	1	0.717	0.00		С7 Н2	1 N4	06 1	F4				
	3	33.14	11	0.3		0.9	2.5	1(00.7	1	0.192	0.00		C8 H1	7 N8	02 1	F4				
	3	33.14	22	-0.8	3	-2.4	0.5	99	9.1	8	.605	0.02		С9 Н2	2 N4	08 1	F				

21-Jul-2022

1: TOF MS ES+ 1.58e+003

Page 1

X-ray crystallography data

Table 1 Crystal data and st	ructure refinement for 22srv128.
Identification code	22srv128
Empirical formula	C ₂₁ H ₁₇ FN ₂ O
Formula weight	332.36
Temperature/K	120.00
Crystal system	monoclinic
Space group	P21/c
a/Å	14.4336(4)
b/Å	7.3808(2)
c/Å	15.9267(5)
α/°	90
β/°	98.7023(12)
γ/°	90
Volume/Å ³	1677.16(8)
Z	4
$\rho_{calc}g/cm^3$	1.316
µ/mm⁻¹	0.090

F(000)	696.0
Crystal size/mm ³	0.34 × 0.21 × 0.08
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.174 to 59.988
Index ranges	-20 ≤ h ≤ 20, -10 ≤ k ≤ 10, -22 ≤ l ≤ 22
Reflections collected	38607
Independent reflections	4863 [R _{int} = 0.0372, R _{sigma} = 0.0217]
Data/restraints/parameters	4863/0/294
Goodness-of-fit on F ²	1.073
Final R indexes [I>=2σ (I)]	$R_1 = 0.0454$, $wR_2 = 0.1124$
Final R indexes [all data]	$R_1 = 0.0512, wR_2 = 0.1161$
Largest diff. peak/hole / e Å ⁻³	0.35/-0.23

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for 22srv128. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

	Uij tensor.										
Atom	x	У	z	U(eq)							
F1	-617.7(6)	-18.9(12)	1156.8(6)	38.1(2)							
01	2841.1(6)	-3858.0(11)	3647.9(6)	24.57(19)							
N1	3488.9(6)	-1160.3(12)	3300.7(6)	17.36(18)							
N2	5158.0(6)	465.4(14)	3894.2(6)	19.94(19)							
C1	2891.0(7)	-2204.2(14)	3684.4(7)	17.3(2)							
C2	4330.5(8)	-1883.9(16)	3029.5(7)	22.0(2)							
C3	5151.3(8)	-1472.4(17)	3720.1(8)	23.5(2)							
C4	5933.1(8)	1492.0(18)	4180.3(7)	23.8(2)							
C5	5646.4(8)	3232.5(18)	4291.7(7)	23.8(2)							
C6	4654.8(8)	3271.1(16)	4060.5(7)	20.7(2)							
C7	4373.0(7)	1537.3(14)	3824.4(6)	16.7(2)							
C8	3419.9(7)	790.7(13)	3468.8(6)	15.31(19)							
С9	2700.5(7)	810.1(14)	4070.8(6)	14.73(19)							
C10	2359.9(8)	2252.6(15)	4491.3(7)	18.4(2)							
C11	1686.7(8)	1877.1(16)	5009.3(7)	21.9(2)							
C12	1353.1(8)	124.1(17)	5091.4(8)	23.1(2)							
C13	1684.6(8)	-1315.7(15)	4658.2(7)	20.5(2)							
C14	2363.4(7)	-930.7(14)	4150.9(6)	15.85(19)							
C15	3049.1(8)	1815.7(15)	2629.4(7)	18.7(2)							
C16	2070.6(8)	1311.1(14)	2232.7(6)	17.7(2)							
C17	1891.3(8)	-302.6(16)	1782.6(7)	21.7(2)							
C18	982.0(9)	-764.2(17)	1423.5(7)	25.5(2)							

C19	268.1(8)	422.5(17)	1514.5(8)	25.1(2)
C20	413.4(9)	2032.8(18)	1948.8(8)	26.3(2)
C21	1325.7(8)	2464.9(16)	2312.3(7)	22.6(2)

Table 3	Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv128. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}]_{111}+2hka^*h^*]_{112}+1$								
Δtom									
F1	26.2(4)	41 4(5)	43 2(5)	5 6(4)	-6.4(3)	-11 0(3)			
01	28.9(4)	13 1(1)	$32 \Lambda(\Lambda)$	-0.7(3)	6.9(3)	0.1(3)			
N1	20.3(4)	13.1(4)	10.2(4)	0.7(3)	6.8(3)	2 2(3)			
N2	182(4)	24.0(5)	13.2(4) 18.0(4)	1 7(3)	4.0(3)	2.2(3) 1 5(3)			
1N2 C1	18.2(4)	24.0(3)	17.0(4)	1.7(3)	$\frac{1}{2}$ $0(3)$	-4.3(3)			
	26.9(5)	10.8(5)	21 6(5)	1.1(4)	2.0(4)	0.4(4)			
C2	20.8(5)	23 2(5)	25.8(5)	-1.2(4)	8 0(4)	4.1(4) 8 /(/)			
C1	17 7(5)	25.2(5)	17.6(5)	15(4)	3.0(4)	3.4(4)			
	17.7(3)	21 6(6)	12.0(5)	1.3(4)	1.7(4)	1.4(4)			
C5	21.3(5)	31.0(0)	10.0(3)	-0.8(4)	2.0(4)	-4.7(3)			
C0	20.1(3)	21.1(5)	21.1(5)	0.2(4)	3.9(4)	-1.4(4)			
	10.0(4)	18.3(5)	15.7(4)	2.0(4)	4.3(3)	2.2(4)			
18	18.0(4)	12.4(4)	16.1(4)	1.5(3)	4.5(3)	1.0(3)			
<u>C9</u>	14.8(4)	14./(4)	14.6(4)	1.9(3)	2.0(3)	1.0(3)			
C10	20.8(5)	15.2(5)	19.6(5)	0.7(4)	4.1(4)	1.2(4)			
C11	22.9(5)	21.3(5)	22.6(5)	-2.1(4)	7.5(4)	3.5(4)			
C12	20.7(5)	25.4(6)	25.1(5)	1.0(4)	9.6(4)	-0.6(4)			
C13	18.9(5)	18.9(5)	24.2(5)	1.8(4)	5.1(4)	-2.9(4)			
C14	16.3(4)	14.3(4)	16.7(4)	0.9(3)	1.6(3)	0.5(3)			
C15	21.1(5)	17.3(5)	17.7(5)	5.1(4)	2.9(4)	-1.4(4)			
C16	22.2(5)	16.7(5)	14.3(4)	3.0(4)	2.7(4)	-0.1(4)			
C17	27.5(5)	18.6(5)	19.1(5)	-0.2(4)	3.8(4)	1.5(4)			
C18	33.9(6)	20.1(5)	21.3(5)	-0.8(4)	0.6(4)	-4.9(5)			
C19	22.4(5)	29.3(6)	22.3(5)	5.1(4)	-0.5(4)	-5.9(4)			
C20	23.5(5)	29.1(6)	26.0(6)	0.1(5)	2.7(4)	4.2(5)			
C21	26.0(5)	20.6(5)	20.5(5)	-1.9(4)	1.5(4)	2.5(4)			

Table 4 Bond Lengths for 22srv128.									
Atom	Atom	Length/Å		Atom	Atom	Length/Å			
F1	C19	1.3583(14)		C8	C15	1.5588(14)			
01	C1	1.2236(13)		C9	C10	1.3868(14)			
N1	C1	1.3679(13)		C9	C14	1.3866(14)			
N1	C2	1.4513(14)		C10	C11	1.3944(15)			
N1	C8	1.4708(13)		C11	C12	1.3935(16)			
N2	C3	1.4566(15)		C12	C13	1.3908(16)			
N2	C4	1.3708(15)		C13	C14	1.3903(14)			

N2	C7	1.3726(13)	C15	C16	1.5042(15)
C1	C14	1.4788(14)	C16	C17	1.3941(15)
C2	C3	1.5203(17)	C16	C21	1.3922(15)
C4	C5	1.3693(18)	C17	C18	1.3923(17)
C5	C6	1.4231(16)	C18	C19	1.3767(18)
C6	C7	1.3777(15)	C19	C20	1.3752(18)
C7	C8	1.5103(14)	C20	C21	1.3929(17)
C8	C9	1.5163(14)			

Table 5 Bond Angles for 22srv128.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C1	N1	C2	122.60(9)		C9	C8	C15	111.02(8)
C1	N1	C8	113.92(8)		C10	C9	C8	129.74(9)
C2	N1	C8	119.82(9)		C14	C9	C8	109.44(9)
C4	N2	C3	125.99(10)		C14	C9	C10	120.80(9)
C4	N2	C7	109.29(10)		C9	C10	C11	117.57(10)
C7	N2	C3	124.68(10)		C12	C11	C10	121.44(10)
01	C1	N1	125.26(10)		C13	C12	C11	120.88(10)
01	C1	C14	128.81(10)		C14	C13	C12	117.24(10)
N1	C1	C14	105.91(9)		C9	C14	C1	109.16(9)
N1	C2	C3	107.87(9)		C9	C14	C13	122.06(10)
N2	C3	C2	108.41(9)		C13	C14	C1	128.60(10)
C5	C4	N2	108.32(10)		C16	C15	C8	114.76(9)
C4	C5	C6	107.28(11)		C17	C16	C15	121.13(10)
C7	C6	C5	107.21(10)		C21	C16	C15	119.95(10)
N2	C7	C6	107.89(9)		C21	C16	C17	118.92(10)
N2	C7	C8	120.92(9)		C18	C17	C16	120.69(11)
C6	C7	C8	130.98(9)		C19	C18	C17	118.37(11)
N1	C8	C7	110.04(8)		F1	C19	C18	118.38(11)
N1	C8	C9	101.31(8)		F1	C19	C20	118.72(11)
N1	C8	C15	110.06(8)		C20	C19	C18	122.90(11)
C7	C8	C9	115.56(8)		C19	C20	C21	118.01(11)
C7	C8	C15	108.64(8)		C16	C21	C20	121.10(11)

	Table 6 Selected Torsion Angles for 22srv128.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C2	C3	N2	-53.82(12)		C8	C7	N2	C3	-6.10(15)
N1	C8	C7	N2	4.49(13)		C8	C7	N2	C4	176.07(9)
C2	N1	C1	01	-20.05(17)		C8	C15	C16	C17	-76.82(13)
C2	C3	N2	C4	-151.20(10)		C8	C15	C16	C21	103.18(12)
C2	C3	N2	C7	31.33(14)		C9	C8	N1	C1	2.79(11)
C3	C2	N1	C1	-97.11(12)		C9	C8	N1	C2	-156.19(9)

C3	C2	N1	C8	59.99(12)	C9	C8	C7	N2	118.43(10)
C6	C7	N2	C3	178.49(10)	C9	C8	C15	C16	-47.60(12)
C6	C7	N2	C4	0.66(12)	C10	C9	C8	N1	176.86(10)
C6	C7	C8	N1	178.70(10)	C10	C9	C8	C15	-66.30(14)
C6	C7	C8	C9	-67.36(14)	C14	C1	N1	C2	158.47(10)
C6	C7	C8	C15	58.15(14)	C14	C1	N1	C8	0.15(12)
C7	C8	N1	C1	125.56(9)	C14	C9	C8	N1	-4.86(11)
C7	C8	N1	C2	-33.42(12)	C14	C9	C8	C15	111.98(10)
C7	C8	C9	C10	57.98(14)	C15	C8	N1	C1	-114.75(10)
C7	C8	C9	C14	-123.73(10)	C15	C8	N1	C2	86.27(11)
C7	C8	C15	C16	-175.72(9)	C15	C8	C7	N2	-116.06(10)
C8	N1	C1	01	-178.37(10)	C16	C15	C8	N1	63.74(12)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters								
(Å ² ×10 ³) for 22srv128.								
Atom	x	У	Z	U(eq)				
H2A	4421(11)	-1350(20)	2472(10)	26(4)				
H2B	4239(10)	-3220(20)	2947(10)	23(4)				
H3A	5102(11)	-2170(20)	4234(10)	26(4)				
H3B	5749(12)	-1790(20)	3535(10)	31(4)				
H4	6538(11)	920(20)	4256(10)	30(4)				
H5	6060(12)	4230(20)	4497(11)	38(4)				
H6	4242(11)	4320(20)	4056(10)	30(4)				
H10	2572(11)	3480(20)	4420(10)	29(4)				
H11	1446(11)	2850(20)	5307(10)	32(4)				
H12	880(11)	-100(20)	5446(11)	31(4)				
H13	1464(11)	-2540(20)	4725(10)	27(4)				
H15A	3494(10)	1510(20)	2229(10)	25(4)				
H15B	3080(11)	3100(20)	2757(10)	25(4)				
H17	2404(12)	-1100(20)	1716(10)	33(4)				
H18	838(12)	-1890(20)	1124(11)	36(4)				
H20	-120(13)	2800(20)	1993(11)	39(5)				
H21	1446(11)	3600(20)	2609(10)	27(4)				

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 3344 formula(e) evaluated with 27 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 F: 0-6

21-Jul-2022

MTF_MTF5G_179345 470 (3.951) Cm (468:470)

1705										2.000 001
377.1808			39	4.1425	397.1565	399.1621 40	2.1334	41	3.1316	420.2336 m/z
.0 380.0	38	35.0	390.0	395.) 4	400.0	405.0	410.0	415.0	420.0
	3.0	5.0	-10.0 100.0							
Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
375.1723 375.1750 375.1754 375.1727 375.1727 375.1741 375.1719 375.1719 375.1705 375.1705 375.1705 375.1707 375.1732 375.1745 375.1745 375.1696 375.1720 375.1720 375.1733 375.1736	0.2 -2.5 0.9 -2.9 -0.2 -1.6 0.6 -0.7 2.0 -1.8 1.8 -0.7 -2.0 2.9 0.5 -2.2 -0.8 -1.1	$\begin{array}{c} 0.5 \\ -6.7 \\ 2.4 \\ -7.7 \\ -0.5 \\ -4.3 \\ 1.6 \\ -1.9 \\ 5.3 \\ -4.8 \\ 4.8 \\ -1.9 \\ -5.3 \\ 7.7 \\ 1.3 \\ -5.9 \\ -2.1 \\ -2.2 \end{array}$	-6.5 -9.5 2.5 -2.5 5.5 -1.5 3.5 6.5 1.5 2.5 5.5 10.5 9.5 6.5 14.5 10	389.1 389.3 381.8 381.1 380.5 379.1 380.4 379.8 379.2 378.0 377.9 374.4 372.8 374.9 370.2 372.2 372.2 367.8 367.3	22.661 22.861 15.405 14.683 14.062 12.653 13.935 12.755 11.526 11.473 7.922 6.331 8.431 3.807 5.768 1.404 0.852	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	C H25 N10 C H25 N8 C10 H22 N C11 H27 N C11 H27 N C12 H23 N C12 H25 N C13 H21 N C13 H21 N C14 H26 N C15 H24 N C15 H24 N C17 H25 N C18 H21 N C18 H21 N C20 H24 O C21 H20 N C23 H23 F	010 F2 07 F6 8 04 F3 2 07 F4 4 010 8 06 2 04 F6 6 F6 8 03 F2 2 06 F3 2 05 F2 2 05 F2 2 02 F4 2 04 F F5 6 F 4		
375.1709 375.1749 375.1712 375.1739 375.1714 375.1700 375.1728 375.1752	1.6 -2.4 1.3 -1.4 1.1 2.5 -0.3 -2.7	4.3 -6.4 3.5 -3.7 2.9 6.7 -0.8 -7.2	13.5 17.5 -2.5 -5.5 -6.5 1.5 -1.5 1.5	367.7 371.3 386.4 386.5 384.8 384.2 384.2 384.2 382.1	1.231 4.848 19.998 20.084 18.409 17.769 17.808 15.675	29.21 0.78 0.00 0.00 0.00 0.00 0.00 0.00 0.00	C23 H23 N C28 H23 O C4 H24 N1 C4 H24 N8 C6 H27 N4 C7 H23 N1 C7 H23 N8 C9 H24 N8	2 03 0 09 F 06 F5 09 F4 0 08 05 F4 07 F		
	Calc. Mass Calc. Mass 375.1723 375.1750 375.1750 375.1750 375.1716 375.1754 375.1727 375.1741 375.1741 375.1741 375.1742 375.1743 375.1705 375.1743 375.1705 375.1743 375.1707 375.1743 375.1745 375.1745 375.1747 375.1736 375.1770 375.1749 375.1712 375.1712 375.1714 375.1710 375.1714 375.1700 375.1714 375.1700 375.1714	1725 377.1808 380.0 38 380.0 38 3.0 380.0 Calc. Mass mDa 375.1723 0.2 375.1750 -2.5 375.1750 -2.5 375.1754 -2.9 375.1754 -2.9 375.1727 -0.2 375.1741 -1.6 375.1742 -0.7 375.1743 -1.8 375.1743 -1.8 375.1745 -2.0 375.1745 -2.0 375.1745 -2.0 375.1745 -2.0 375.1745 -2.0 375.1747 -2.2 375.1747 -2.2 375.1747 -2.2 375.1747 -2.2 375.1747 -2.2 375.1747 -2.2 375.1749 -2.4 375.1749 -2.4 375.1749 -2.4 375.1749 -2.4 375.1728 -0.3 375.1728 -0.3 375.1728	1725 377.1808 380.0 385.0 3.0 5.0 Calc. Mass mDa PPM 375.1723 0.2 0.5 375.1750 -2.5 -6.7 375.1754 -2.9 -7.7 375.1754 -2.9 -7.7 375.1716 0.9 2.4 375.1727 -0.2 -0.5 375.1741 -1.6 -4.3 375.1742 -0.7 -1.9 375.1743 -1.8 -4.8 375.1743 -1.8 -4.8 375.1745 -2.0 -5.3 375.1745 -2.0 -5.3 375.1745 -2.0 -5.3 375.1745 -2.0 -5.3 375.1745 -2.0 -5.3 375.1745 -2.0 -5.3 375.1745 -2.0 -5.3 375.1746 -1.1 -2.9 375.1749 -2.4 -6.4 375.1749 -2.4 -6.4 375.1749 -2.4 -6.4 375.1749 <td>$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$</td> <td>$\begin{array}{rrrr} 1725 & 377.1808 & 394.1425 \\ \hline & &$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td> <td>$\begin{array}{cccccccccccccccccccccccccccccccccccc$</td>	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{rrrr} 1725 & 377.1808 & 394.1425 \\ \hline & & & & & & & & & & & & & & & & & &$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

21-Jul-2022

1: TOF MS ES+ 2.58e+004

PerkinElmer Spectrum Version 10.5.2 28 June 2022 12:53

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv182.						
Identification code	22srv182					
Empirical formula	$C_{30}H_{30}N_2O_3$					
Formula weight	466.56					
Temperature/K	120.00					
Crystal system	monoclinic					
Space group	P21/c					
a/Å	9.2621(5)					
b/Å	7.3267(4)					
c/Å	36.416(2)					
α/°	90					
β/°	94.354(2)					
γ/°	90					
Volume/Å ³	2464.1(2)					

Z	4
ρ _{calc} g/cm ³	1.258
µ/mm ⁻¹	0.081
F(000)	992.0
Crystal size/mm ³	0.21 × 0.03 × 0.02
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	4.41 to 60
Index ranges	-13 ≤ h ≤ 13, -10 ≤ k ≤ 10, -51 ≤ l ≤ 51
Reflections collected	86517
Independent reflections	7189 [R _{int} = 0.0837, R _{sigma} = 0.0445]
Data/restraints/parameters	7189/0/436
Goodness-of-fit on F ²	1.080
Final R indexes [I>=2σ (I)]	R ₁ = 0.0529, wR ₂ = 0.1212
Final R indexes [all data]	R ₁ = 0.0739, wR ₂ = 0.1294
Largest diff. peak/hole / e Å ⁻³	0.53/-0.31

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement								
Parameters	Parameters (Å ² ×10 ³) for 22srv182. U _{eq} is defined as 1/3 of the trace of the orthogonalised							
U _{IJ} tensor.								
Atom	x	у	Z	U(eq)				
01	2095.3(11)	14469.7(13)	3930.5(3)	20.1(2)				
02	3576.9(10)	6709.6(13)	2363.9(3)	18.1(2)				
03	1764.0(10)	8635.0(13)	1963.7(2)	18.3(2)				
N1	2494.0(12)	11735.6(14)	3641.7(3)	13.6(2)				
N2	5081.4(12)	10209.9(16)	3487.9(3)	17.0(2)				
C1	2184.4(13)	12800.8(18)	3935.1(3)	14.5(2)				
C2	3250.9(15)	12495.0(18)	3339.6(4)	16.4(3)				
C3	4862.7(15)	12154.5(19)	3414.4(4)	18.0(3)				
C4	6315.1(15)	9241(2)	3434.3(4)	22.2(3)				
C5	6164.0(15)	7529(2)	3577.6(4)	22.9(3)				
C6	4795.9(15)	7449.3(19)	3727.7(4)	18.8(3)				
C7	4153.4(13)	9128.2(18)	3668.4(3)	13.7(2)				
C8	2642.4(13)	9776.5(17)	3735.4(3)	12.5(2)				
C9	2327.5(13)	9785.5(17)	4138.5(3)	13.0(2)				
C10	2321.7(15)	8347.9(18)	4385.2(4)	17.0(3)				
C11	2011.2(15)	8746(2)	4745.1(4)	19.4(3)				
C12	1708.5(15)	10522(2)	4854.4(4)	20.3(3)				
C13	1697.8(14)	11953.1(19)	4605.4(4)	17.9(3)				

C14	2010.3(13)	11549.6(17)	4246.1(3)	14.2(2)
C15	1457.9(14)	8619.6(17)	3516.7(3)	13.8(2)
C16	1501.6(13)	8651.0(17)	3103.4(3)	13.3(2)
C17	2543.0(13)	7623.2(17)	2932.5(3)	13.5(2)
C18	2601.9(13)	7654.0(17)	2554.2(3)	13.2(2)
C19	1610.8(13)	8722.3(17)	2333.8(3)	13.9(2)
C20	581.8(14)	9733.7(19)	2500.2(4)	16.8(3)
C21	528.5(14)	9687.6(18)	2883.7(4)	16.5(3)
C22	4551.3(19)	5521(3)	2569.8(5)	31.0(4)
C23	718.4(16)	9599(2)	1731.2(4)	23.6(3)
C1S	7775.4(16)	4543(2)	4368.4(4)	23.9(3)
C2S	7945.3(17)	2756(2)	4250.6(4)	25.2(3)
C3S	6891.5(18)	1435(2)	4294.4(4)	28.1(3)
C4S	5638.1(18)	1899(2)	4458.6(5)	30.9(4)
C5S	5438.4(17)	3685(3)	4570.7(5)	31.9(4)
C6S	6488.2(17)	4991(2)	4526.9(5)	28.1(3)
C7S	8933.3(19)	5955(3)	4334.2(5)	31.7(4)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv182. The Anisotropic											
disp	aisplacement factor exponent takes the form: $-2\pi^2[n^2a^2U_{11}+2hka^bU_{12}+]$.										
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂					
01	26.6(5)	11.3(4)	22.6(5)	-0.5(4)	3.1(4)	1.7(4)					
02	19.3(5)	19.4(5)	16.1(4)	1.4(4)	4.2(3)	8.3(4)					
03	18.9(5)	23.4(5)	12.5(4)	1.6(4)	0.6(3)	4.0(4)					
N1	16.9(5)	10.6(5)	13.6(5)	1.3(4)	2.8(4)	0.3(4)					
N2	15.9(5)	18.7(5)	16.9(5)	1.1(4)	3.4(4)	0.3(4)					
C1	13.5(6)	13.3(6)	16.7(6)	-1.2(5)	0.6(4)	0.3(4)					
C2	20.7(6)	13.5(6)	15.5(6)	3.1(5)	3.9(5)	-1.1(5)					
C3	18.6(6)	16.8(6)	18.9(6)	2.4(5)	3.9(5)	-2.2(5)					
C4	15.7(6)	30.0(8)	21.3(7)	1.1(6)	5.4(5)	3.3(6)					
C5	18.9(7)	26.0(7)	23.8(7)	0.1(6)	2.3(5)	8.4(6)					
C6	18.4(6)	17.5(6)	20.1(6)	0.8(5)	-0.5(5)	2.8(5)					
C7	14.1(6)	14.7(6)	12.3(5)	-0.2(5)	0.8(4)	0.1(5)					
C8	15.0(6)	10.1(5)	12.7(5)	0.1(4)	1.8(4)	0.5(4)					
C9	12.7(5)	13.7(6)	12.6(5)	-0.7(4)	0.2(4)	-1.5(4)					
C10	20.5(6)	14.2(6)	16.1(6)	0.0(5)	0.9(5)	-1.5(5)					
C11	22.0(7)	21.2(7)	15.0(6)	2.9(5)	1.3(5)	-3.7(5)					
C12	21.4(6)	25.7(7)	13.9(6)	-2.4(5)	2.9(5)	-2.2(6)					
C13	17.7(6)	18.6(6)	17.5(6)	-4.3(5)	2.8(5)	0.0(5)					
C14	13.0(5)	14.3(6)	15.4(6)	-0.5(5)	0.7(4)	-1.4(5)					
C15	15.5(6)	12.7(6)	13.5(6)	-1.3(5)	1.8(4)	-1.1(5)					
C16	14.8(6)	12.2(5)	12.9(5)	-1.9(4)	1.4(4)	-2.0(4)					
C17	13.9(6)	11.5(5)	14.9(6)	0.5(5)	-0.2(4)	-0.3(5)					
C18	13.1(5)	11.0(5)	15.8(6)	-1.3(5)	2.5(4)	-0.2(4)					

C19	14.4(6)	15.0(6)	12.2(5)	0.3(5)	0.2(4)	-1.8(5)
C20	15.7(6)	17.6(6)	16.6(6)	0.4(5)	-1.3(5)	4.3(5)
C21	15.9(6)	16.3(6)	17.2(6)	-1.3(5)	1.5(5)	2.2(5)
C22	34.1(9)	35.8(9)	23.9(8)	7.1(7)	8.3(6)	22.3(7)
C23	21.0(7)	33.2(8)	16.2(6)	4.8(6)	-1.9(5)	5.7(6)
C1S	22.5(7)	29.2(8)	19.5(7)	1.1(6)	-1.7(5)	1.4(6)
C2S	25.7(7)	30.7(8)	18.7(7)	-1.5(6)	-1.8(5)	4.6(6)
C3S	32.8(8)	27.5(8)	22.1(7)	-1.7(6)	-9.8(6)	0.9(6)
C4S	24.0(8)	36.0(9)	31.1(8)	3.0(7)	-9.0(6)	-6.7(7)
C5S	18.9(7)	42.3(10)	34.1(9)	-2.3(7)	0.0(6)	-0.4(7)
C6S	22.5(7)	30.8(9)	30.8(8)	-2.0(7)	0.9(6)	2.4(6)
C7S	26.5(8)	33.3(9)	35.8(9)	-1.0(7)	5.1(7)	-3.5(7)

Table 4 Bond Lengths for 22srv182.									
Atom	Atom	Length/Å		Atom	Atom	Length/Å			
01	C1	1.2256(16)		C9	C14	1.3885(17)			
02	C18	1.3673(15)		C10	C11	1.3937(19)			
02	C22	1.4253(18)		C11	C12	1.396(2)			
03	C19	1.3676(15)		C12	C13	1.386(2)			
03	C23	1.4244(16)		C13	C14	1.3931(18)			
N1	C1	1.3710(16)		C15	C16	1.5089(17)			
N1	C2	1.4588(16)		C16	C17	1.4055(17)			
N1	C8	1.4794(16)		C16	C21	1.3854(18)			
N2	C3	1.4610(18)		C17	C18	1.3833(17)			
N2	C4	1.3718(17)		C18	C19	1.4097(17)			
N2	C7	1.3727(16)		C19	C20	1.3829(18)			
C1	C14	1.4753(18)		C20	C21	1.4016(18)			
C2	C3	1.5177(19)		C1S	C2S	1.391(2)			
C4	C5	1.369(2)		C1S	C6S	1.402(2)			
C5	C6	1.419(2)		C1S	C7S	1.502(2)			
C6	C7	1.3763(18)		C2S	C3S	1.392(2)			
C7	C8	1.5151(17)		C3S	C4S	1.388(2)			
C8	C9	1.5184(17)		C4S	C5S	1.387(3)			
C8	C15	1.5568(17)		C5S	C6S	1.382(2)			
C9	C10	1.3847(18)							

Table 5 Bond Angles for 22srv182.								
Atom Atom Atom Angle/° Atom Atom Atom Angle/°								
C18	02	C22	117.31(11)		C9	C10	C11	117.53(12)
C19	03	C23	116.48(10)		C10	C11	C12	121.56(13)
C1	N1	C2	120.76(11)		C13	C12	C11	120.71(12)
C1	N1	C8	113.19(10)		C12	C13	C14	117.53(13)

C2	N1	C8	120.16(10)	C9	C14	C1	108.90(11)
C4	N2	C3	125.73(12)	C9	C14	C13	121.74(12)
C4	N2	C7	109.15(11)	C13	C14	C1	129.18(12)
C7	N2	C3	124.59(11)	C16	C15	C8	115.51(10)
01	C1	N1	125.10(12)	C17	C16	C15	120.30(11)
01	C1	C14	128.27(12)	C21	C16	C15	121.24(11)
N1	C1	C14	106.63(11)	C21	C16	C17	118.45(11)
N1	C2	C3	108.93(11)	C18	C17	C16	120.83(12)
N2	C3	C2	108.30(11)	02	C18	C17	125.03(11)
C5	C4	N2	108.02(12)	02	C18	C19	114.78(11)
C4	C5	C6	107.75(13)	C17	C18	C19	120.18(11)
C7	C6	C5	106.89(13)	03	C19	C18	115.04(11)
N2	C7	C6	108.19(11)	03	C19	C20	125.69(11)
N2	C7	C8	121.04(11)	C20	C19	C18	119.26(11)
C6	C7	C8	130.43(12)	C19	C20	C21	120.09(12)
N1	C8	C7	109.74(10)	C16	C21	C20	121.19(12)
N1	C8	C9	101.39(9)	C2S	C1S	C6S	117.84(15)
N1	C8	C15	111.15(10)	C2S	C1S	C7S	121.65(14)
C7	C8	C9	113.87(10)	C6S	C1S	C7S	120.50(15)
C7	C8	C15	111.76(10)	C1S	C2S	C3S	121.49(15)
C9	C8	C15	108.50(10)	C4S	C3S	C2S	119.73(16)
C10	C9	C8	129.38(11)	C5S	C4S	C3S	119.49(16)
C10	C9	C14	120.91(12)	C6S	C5S	C4S	120.55(16)
C14	C9	C8	109.71(11)	C5S	C6S	C1S	120.87(16)

Table 6 Selected Torsion Angles for 22srv182.										
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C2	C3	N2	52.70(14)		C8	C15	C16	C17	76.66(15)
N1	C8	C7	N2	-9.99(16)		C8	C15	C16	C21	-103.17(14)
C2	C3	N2	C4	154.36(13)		C9	C8	N1	C1	1.57(13)
C2	C3	N2	C7	-34.97(17)		C9	C8	N1	C2	154.78(11)
C3	C2	N1	C1	93.45(14)		C9	C8	C7	N2	-122.84(12)
C3	C2	N1	C8	-57.72(15)		C9	C8	C15	C16	172.96(10)
C6	C7	N2	C3	-172.48(12)		C10	C9	C8	N1	-178.87(13)
C6	C7	N2	C4	-0.48(15)		C10	C9	C8	C15	64.03(16)
C6	C7	C8	N1	177.51(13)		C14	C9	C8	N1	1.33(13)
C6	C7	C8	C9	64.67(18)		C14	C9	C8	C15	-115.77(11)
C6	C7	C8	C15	-58.72(18)		C15	C8	N1	C1	116.73(11)
C7	C8	N1	C1	-119.14(11)		C15	C8	N1	C2	-90.07(13)
C7	C8	N1	C2	34.06(15)		C15	C8	C7	N2	113.78(13)
C7	C8	C9	C10	-61.10(17)		C16	C15	C8	N1	62.30(14)
C7	C8	C9	C14	119.10(12)		C17	C18	02	C22	3.8(2)
C7	C8	C15	C16	-60.68(14)		C18	C19	03	C23	175.86(12)
C8	C7	N2	C3	13.53(19)		C19	C18	02	C22	-176.38(13)
C8	C7	N2	C4	-174.48(11)		C20	C19	03	C23	-3.52(19)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters								
Atom	x	y	Z	U(eq)				
H2A	3050(17)	13810(20)	3331(4)	17(4)				
H2B	2860(17)	11900(20)	3108(4)	15(4)				
H3A	5239(18)	12860(20)	3633(4)	18(4)				
НЗВ	5415(19)	12510(20)	3200(5)	24(4)				
H4	7081(19)	9770(20)	3304(5)	23(4)				
H5	6820(20)	6540(30)	3565(5)	34(5)				
H6	4341(19)	6320(20)	3836(5)	27(5)				
H10	2500(17)	7130(20)	4309(4)	16(4)				
H11	2028(19)	7750(20)	4921(5)	26(4)				
H12	1498(19)	10770(20)	5106(5)	27(4)				
H13	1497(18)	13230(20)	4670(5)	22(4)				
H15A	1579(17)	7360(20)	3610(4)	18(4)				
H15B	499(17)	9080(20)	3588(4)	14(4)				
H17	3239(18)	6890(20)	3079(4)	20(4)				
H20	-101(19)	10480(30)	2354(5)	27(5)				
H21	-216(19)	10430(20)	2993(5)	27(5)				
H22A	5150(20)	4990(30)	2382(5)	39(5)				
H22B	3960(20)	4450(30)	2682(5)	38(5)				
H22C	5170(20)	6190(30)	2753(6)	37(5)				
H23A	754(19)	10900(30)	1789(5)	26(4)				
H23B	-250(20)	9120(30)	1771(5)	29(5)				
H23C	970(20)	9330(30)	1482(5)	32(5)				
H2S	8850(20)	2410(30)	4138(5)	37(5)				
H3S	7010(20)	170(30)	4215(5)	32(5)				
H4S	4890(20)	980(30)	4501(6)	45(6)				
H5S	4510(20)	4050(30)	4684(6)	52(6)				
H6S	6386(19)	6220(30)	4603(5)	25(4)				
H7SA	8560(30)	7080(30)	4214(6)	59(7)				
H7SB	9740(20)	5480(30)	4185(6)	42(6)				
H7SC	9350(20)	6310(30)	4593(6)	48(6)				

¹⁹F:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 3006 formula(e) evaluated with 24 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 F: 0-6

21-Jul-2022 MTF_MTF5H_179346 511 (4.295) Cm (511:513)

100-304.30	315.1537		329.169	333.14	20 335.1548	3	351.1379	355.1264 365.1346	371.1110	381.1238_
0-1-1-1-	310.0	320.0		330.0	340	0.0	350.0	360.0	370.0	380.0
Minimum: Maximum:		3.0	5.0	-10.0 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
333.1420	333.1422 333.1422 333.1424 333.1415 333.1426 333.1411 333.1410 333.1409 333.1433 333.1433 333.1433 333.1406 333.1435 333.1403 333.1402 333.1402 333.1402 333.1399 333.1442 333.1395	$\begin{array}{c} -0.2 \\ -0.2 \\ -0.4 \\ 0.5 \\ -0.6 \\ 0.9 \\ 1.0 \\ 1.1 \\ -1.3 \\ -1.3 \\ 1.4 \\ -1.5 \\ 1.7 \\ -1.7 \\ 1.8 \\ 2.1 \\ -2.2 \\ 2.3 \\ 2.5 \end{array}$	$\begin{array}{c} -0.6\\ -0.6\\ -1.2\\ 1.5\\ -1.8\\ 2.7\\ 3.0\\ 3.3\\ -3.9\\ -3.9\\ 4.2\\ -4.5\\ 5.1\\ -5.1\\ 5.4\\ 6.3\\ -6.6\\ 6.9\\ 7\end{array}$	-1.5 0.5 9.5 5.5 2.5 4.5 -5.5 -3.5 1.5 2.5 1.5 2.5 -3.5 1.5 2.5 -3.5	277.2 273.7 268.5 262.9 268.0 275.0 270.5 277.9 279.1 276.2 278.6 272.2 257.8 271.8 271.6 272.3 278.9 276.0 276.5	19.433 15.953 10.736 5.142 10.249 17.233 20.169 21.305 18.460 20.786 14.454 0.033 14.064 13.832 14.561 21.093 18.228	0.00 0.00 0.58 0.00	C5 H18 N8 O3 F5 C9 H22 N4 O8 F C13 H17 N8 O3 C18 H19 N2 O2 F2 C15 H20 N2 O3 F3 C8 H17 N8 O2 F4 C12 H21 N4 O7 C4 H22 N4 O7 F5 C2 H19 N8 O4 F6 C6 H23 N4 O9 F2 C2 H19 N10 O7 F2 C10 H18 N8 O4 F C21 H18 N2 O F C12 H21 N2 O4 F4 C13 H19 N2 O F6 C11 H16 N8 O F3 C H21 N10 O10 C7 H21 N4 O6 F4 C5 H18 N10 O6 F4		
	333.1445 333.1446 333.1392 333.1449 333.1449	2.5 -2.5 -2.6 2.8 -2.9 3.0	-7.5 -7.8 8.4 -8.7 9.0	1.5 -7.5 1.5 17.5 -2.5 6.5	278.2 278.2 275.1 261.4 274.8 268.4	10.676 20.468 17.334 3.643 17.049 10.615	0.00 0.00 2.62 0.00	C3 H10 N10 00 F C3 H24 N4 010 F3 C7 H19 N8 05 F2 C24 H17 N2 C9 H22 N2 05 F5 C16 H18 N2 F5		

21-Jul-2022

1: TOF MS ES+ 1.81e+004

Page 1

Table 1 Crystal data and structure refinement for 22srv124.							
Identification code	22srv124						
Empirical formula	$C_{21}H_{17}FN_2O$						
Formula weight	332.36						
Temperature/K	120.00						
Crystal system	monoclinic						
Space group	P2 ₁ /c						
a/Å	14.0341(3)						
b/Å	9.5589(2)						
c/Å	14.0998(4)						
α/°	90						
β/°	119.3469(9)						
γ/°	90						
Volume/Å ³	1648.76(7)						
Z	4						

ρ _{calc} g/cm ³	1.339
µ/mm ⁻¹	0.091
F(000)	696.0
Crystal size/mm ³	0.23 × 0.11 × 0.07
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.398 to 59.996
Index ranges	-19 ≤ h ≤ 19, -13 ≤ k ≤ 13, -19 ≤ l ≤ 19
Reflections collected	38671
Independent reflections	4778 [R _{int} = 0.0428, R _{sigma} = 0.0254]
Data/restraints/parameters	4778/1/287
Goodness-of-fit on F ²	1.065
Final R indexes [I>=2σ (I)]	R ₁ = 0.0485, wR ₂ = 0.1166
Final R indexes [all data]	R ₁ = 0.0569, wR ₂ = 0.1215
Largest diff. peak/hole / e Å ⁻³	0.35/-0.38

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement									
Paramete	Parameters (Å ² ×10 ³) for 22srv124. U _{eq} is defined as 1/3 of the trace of the orthogonalised								
		U _{IJ} tensor.							
Atom	x	у	Z	U(eq)					
F1	10983.1(11)	7788.2(18)	7496.9(12)	50.7(4)					
F1A	10022(2)	11845(3)	5706(2)	49.9(7)					
01	7133.9(7)	8563.2(10)	2280.8(7)	24.97(19)					
N1	6573.4(8)	8855.9(10)	3554.4(8)	19.11(19)					
N2	4534.7(8)	8355.3(11)	3247.8(8)	21.8(2)					
C1	7098.1(9)	8175.1(12)	3091.1(9)	18.7(2)					
C2	5743.2(11)	9913.1(13)	2979.4(11)	25.3(2)					
C3	4633.3(11)	9203.5(14)	2438.7(11)	27.5(3)					
C4	3574.6(10)	7972.6(13)	3209.8(11)	25.9(3)					
C5	3819.0(10)	7145.9(13)	4089.2(11)	25.7(3)					
C6	4972.4(10)	7008.3(13)	4691.6(10)	23.0(2)					
C7	5394.6(9)	7759.8(12)	4151.0(9)	18.5(2)					
C8	6562.2(9)	8074.3(11)	4448.6(8)	16.8(2)					
C9	7230.9(8)	6794.6(11)	4514.7(8)	16.4(2)					
C10	7545.9(9)	5669.6(12)	5224.8(9)	19.7(2)					
C11	8211.1(10)	4655.7(13)	5138.6(10)	22.8(2)					
C12	8558.0(9)	4762.6(14)	4365.6(10)	23.7(2)					
C13	8242.8(9)	5891.4(13)	3658.8(9)	21.9(2)					
C14	7578.5(9)	6899.1(12)	3747.6(8)	17.6(2)					

C15	7118.7(10)	8920.2(13)	5529.5(9)	20.9(2)
C16	8300.1(10)	9257.8(13)	5915.0(9)	24.0(2)
C17	9120.6(10)	8328.1(15)	6586.0(10)	27.9(3)
C18	10190.8(11)	8649.1(17)	6899.9(11)	38.8(4)
C19	10503.0(13)	9849(2)	6602.9(14)	48.3(5)
C20	9686.8(15)	10757(2)	5950.8(14)	48.4(4)
C21	8589.5(13)	10487.6(16)	5593.0(12)	35.0(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv124. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}]_{111}+2hka^*h^*]_{112}+1$									
Atom									
F1	24 5(6)	78 2(11)	39 5(8)	-9.8(8)	8 1(6)	-0.3(7)			
F1A	53 7(17)	37 8(14)	58 0(17)	22(12)	27 1(14)	-30 7(12)			
01	30.0(4)	30.8(5)	18.4(4)	0.9(3)	15.1(3)	-5.9(4)			
N1	23.2(5)	19.3(4)	17.6(4)	2.1(3)	12.1(4)	-3.0(3)			
N2	20.5(5)	21.5(5)	24.1(5)	5.1(4)	11.4(4)	2.4(4)			
C1	17.9(5)	22.8(5)	15.1(5)	-2.6(4)	7.9(4)	-7.5(4)			
C2	32.4(6)	20.5(5)	27.6(6)	6.3(5)	18.2(5)	1.9(5)			
C3	26.2(6)	29.7(6)	26.7(6)	11.7(5)	13.1(5)	6.3(5)			
C4	18.9(5)	24.6(6)	34.2(6)	1.7(5)	12.9(5)	2.0(4)			
C5	22.8(6)	24.2(6)	35.2(7)	0.4(5)	18.3(5)	-1.8(4)			
C6	22.6(5)	24.9(6)	24.5(6)	3.2(4)	13.8(5)	-1.3(4)			
C7	19.0(5)	18.6(5)	18.8(5)	0.9(4)	10.0(4)	-0.2(4)			
C8	19.5(5)	17.8(5)	15.3(5)	0.5(4)	10.4(4)	-2.5(4)			
С9	15.7(4)	19.4(5)	14.2(4)	-2.6(4)	7.4(4)	-3.6(4)			
C10	21.7(5)	22.3(5)	16.5(5)	-0.2(4)	10.2(4)	-1.8(4)			
C11	21.7(5)	24.5(6)	20.8(5)	1.1(4)	9.3(4)	0.5(4)			
C12	19.3(5)	28.5(6)	23.6(6)	-2.5(4)	10.7(4)	1.2(4)			
C13	18.1(5)	30.7(6)	19.3(5)	-3.5(4)	10.9(4)	-3.2(4)			
C14	16.1(5)	23.1(5)	13.5(4)	-2.1(4)	7.0(4)	-5.2(4)			
C15	24.3(5)	22.6(5)	18.6(5)	-4.4(4)	12.7(4)	-4.6(4)			
C16	27.5(6)	29.2(6)	18.7(5)	-10.5(4)	13.8(5)	-10.8(5)			
C17	25.4(6)	37.5(7)	21.1(5)	-9.1(5)	11.7(5)	-9.2(5)			
C18	25.0(6)	62.1(10)	27.6(7)	-18.2(7)	11.7(5)	-11.5(6)			
C19	32.6(8)	75.7(12)	40.2(8)	-24.1(8)	20.6(7)	-29.1(8)			
C20	50.9(10)	54.6(10)	45.3(9)	-16.7(8)	27.9(8)	-34.1(8)			
C21	40.9(8)	33.3(7)	32.3(7)	-9.3(6)	19.1(6)	-17.0(6)			

Table 4 Bond Lengths for 22srv124.										
Atom Atom Length/Å Atom Atom Length/A										
F1	C18	1.3057(15)		C8	C15	1.5556(15)				
O1 C1 1.2254(13) C9 C10 1.3858(15										

N1	C1	1.3653(14)	C9	C14	1.3910(14)
N1	C2	1.4526(15)	C10	C11	1.3916(16)
N1	C8	1.4723(13)	C11	C12	1.3985(17)
N2	C3	1.4604(15)	C12	C13	1.3860(18)
N2	C4	1.3716(15)	C13	C14	1.3882(16)
N2	C7	1.3769(15)	C15	C16	1.5051(16)
C1	C14	1.4789(16)	C16	C17	1.3939(19)
C2	C3	1.5178(19)	C16	C21	1.3906(18)
C4	C5	1.3648(18)	C17	C18	1.3764(18)
C5	C6	1.4183(17)	C18	C19	1.365(3)
C6	C7	1.3751(15)	C19	C20	1.371(3)
C7	C8	1.5091(15)	C20	C21	1.390(2)
C8	С9	1.5166(15)			

	Table 5 Bond Angles for 22srv124.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°			
C1	N1	C2	122.53(10)		C9	C8	C15	111.14(9)			
C1	N1	C8	113.73(9)		C10	C9	C8	129.72(10)			
C2	N1	C8	119.25(9)		C10	C9	C14	120.55(10)			
C4	N2	C3	125.79(10)		C14	C9	C8	109.66(9)			
C4	N2	C7	108.96(10)		C9	C10	C11	117.87(10)			
C7	N2	C3	125.19(10)		C10	C11	C12	121.46(11)			
01	C1	N1	125.44(11)		C13	C12	C11	120.46(11)			
01	C1	C14	128.24(11)		C12	C13	C14	117.85(10)			
N1	C1	C14	106.31(9)		C9	C14	C1	108.66(10)			
N1	C2	C3	108.33(10)		C13	C14	C1	129.50(10)			
N2	C3	C2	108.82(10)		C13	C14	C9	121.82(10)			
C5	C4	N2	108.32(11)		C16	C15	C8	113.61(9)			
C4	C5	C6	107.62(11)		C17	C16	C15	120.38(11)			
C7	C6	C5	107.16(11)		C21	C16	C15	120.64(13)			
N2	C7	C8	120.99(10)		C21	C16	C17	118.97(12)			
C6	C7	N2	107.95(10)		C18	C17	C16	118.97(13)			
C6	C7	C8	130.85(10)		F1	C18	C17	121.14(15)			
N1	C8	C7	109.20(9)		F1	C18	C19	115.31(15)			
N1	C8	C9	101.30(8)		C19	C18	C17	123.54(15)			
N1	C8	C15	111.36(9)		C18	C19	C20	116.73(14)			
C7	C8	C9	114.29(9)		C19	C20	C21	122.62(16)			
C7	C8	C15	109.35(9)		C20	C21	C16	119.16(16)			

	Table 6 Selected Torsion Angles for 22srv124.								
Α	A B C D Angle/° A B C D Angle/°								
N1	N1 C2 C3 N2 50.92(13) C8 C9 C14 C13 177.51(10)								

N1	C8	C7	N2	-9.37(14)	C8	C15	C16	C17	-88.70(13)
C1	C14	C9	C8	-4.15(12)	C8	C15	C16	C21	90.16(14)
C1	C14	C9	C10	178.62(10)	C9	C8	N1	C1	2.87(11)
C2	N1	C1	01	17.62(17)	C9	C8	N1	C2	159.74(10)
C2	C3	N2	C4	155.18(12)	C9	C8	C7	N2	-122.00(11)
C2	C3	N2	C7	-27.79(16)	C9	C8	C15	C16	51.44(13)
C3	C2	N1	C1	92.79(12)	C9	C14	C1	01	-173.14(11)
C3	C2	N1	C8	-61.96(13)	C9	C14	C1	N1	5.83(12)
C6	C7	N2	C3	-178.07(12)	C10	C9	C8	N1	177.90(11)
C6	C7	N2	C4	-0.62(14)	C10	C9	C8	C15	59.50(14)
C6	C7	C8	N1	176.58(12)	C10	C9	C14	C13	0.28(16)
C6	C7	C8	C9	63.95(16)	C13	C14	C1	01	5.03(19)
C6	C7	C8	C15	-61.34(16)	C13	C14	C1	N1	-176.00(11)
C7	C8	N1	C1	-118.04(10)	C14	C1	N1	C2	-161.39(10)
C7	C8	N1	C2	38.82(13)	C14	C1	N1	C8	-5.39(12)
C7	C8	C9	C10	-64.84(15)	C14	C9	C8	N1	1.00(11)
C7	C8	C9	C14	118.26(10)	C14	C9	C8	C15	-117.40(10)
C7	C8	C15	C16	178.53(10)	C15	C8	N1	C1	121.10(10)
C8	N1	C1	01	173.62(10)	C15	C8	N1	C2	-82.03(12)
C8	C7	N2	C3	6.65(17)	C15	C8	C7	N2	112.71(12)
C8	C7	N2	C4	-175.89(10)	 C16	C15	C8	N1	-60.69(13)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters											
	(Å ² ×10 ³) for 22srv124.										
Atom	x	Z	U(eq)								
H17	8943.8	7485.89	6822.99	33							
H19	11249.33	10045.09	6836.66	58							
H20	9878.94	11604.9	5734.78	58							
H21	8043.88	11135.27	5134.24	42							
H2A	5793(13)	10610(18)	3535(14)	32(4)							
H2B	5901(13)	10338(17)	2442(13)	28(4)							
H3A	4559(12)	8609(17)	1815(13)	28(4)							
H3B	4032(14)	9901(19)	2139(14)	39(5)							
H4	2870(15)	8296(19)	2593(15)	40(5)							
H5	3287(14)	6734(18)	4273(13)	32(4)							
H6	5402(13)	6512(18)	5349(14)	31(4)							
H10	7335(12)	5583(16)	5776(13)	24(4)							
H11	8445(13)	3854(18)	5648(13)	30(4)							
H12	9012(14)	4046(19)	4322(14)	36(4)							
H13	8502(13)	5997(16)	3117(13)	27(4)							
H15A	7045(11)	8349(16)	6075(12)	20(3)							
H15B	6685(13)	9784(18)	5405(13)	30(4)							

	Table 8 Atomic Occupancy for 22srv124.									
Atom Occupancy Atom Occupancy Atom Occupancy										
F1	0.65		F1A	0.35						

Refinement model description

Number of restraints - 1, number of constraints - unknown.

Details:

 Fixed Uiso
At 1.2 times of: All C(H) groups
Restrained distances
F1-C18 1.33 with sigma of 0.002
Others
Fixed Sof: F1(0.65) F1A(0.35)
A Aromatic/amide H refined with riding coordinates: C17(H17), C19(H19), C20(H20), C21(H21)

¹³C:

PerkinElmer Spectrum Version 10.5.2 28 June 2022 12:56

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 3006 formula(e) evaluated with 24 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 F: 0-6

21-Jul-2022

MTF_MTF5I_179347 571 (4.794) Cm (549:573)

21-Jul-2022 1: TOF MS ES+ 1.20e+004

													1.200.004
100	111.0204	143.0839	184.9892	315	333. 1532	1422355.12	46 426.200	08 474.1754	1 515.2274	565.2159	687.2517	713.1101	758.2204
0 111	100	150	200	250	300	350	400	450	500 550	600	650	700	750
Minimum:					-10.0								
Maximum:			3.0	5.0	100.0								
Mass	Calc	. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
333.1422	333.	1442	-2.0	-6.0	-3.5	332.6	10.219	0.00	C H21 N1	0 010			
	333.	1435	-1.3	-3.9	5.5	327.3	4.901	0.74	C10 H18	N8 O4 F			
	333.	1399	2.3	6.9	6.5	327.2	4.829	0.80	C11 H16	N8 O F3			
	333.	1437	-1.5	-4.5	1.5	327.7	5.360	0.47	C12 H21	N2 O4 F4			
	333.	1410	1.2	3.6	4.5	326.6	4.189	1.52	C12 H21	N4 07			
	333.	1451	-2.9	-8.7	6.5	327.1	4.700	0.91	C13 H17	N6 F4			
	333.	1424	-0.2	-0.6	9.5	325.4	3.067	4.66	C13 H17	N8 O3			
	333.	1402	2.0	6.0	2.5	328.1	5.722	0.33	C13 H19	N2 O F6			
	333.	1426	-0.4	-1.2	5.5	326.0	3.644	2.62	C15 H20	N2 O3 F3			
	333.	1450	-2.8	-8.4	8.5	324.2	1.854	15.66	C17 H21	N2 05			
	333.	1415	0.7	2.1	9.5	324.3	1.916	14.72	C18 H19	N2 O2 F2			
	333.	1406	1.6	4.8	-2.5	332.0	9.590	0.01	C2 H19 N	10 O7 F2			
	333.	1433	-1.1	-3.3	-5.5	332.2	9.864	0.01	C2 H19 N	8 O4 F6			
	333.	1403	1.9	5.7	13.5	322.9	0.568	56.65	C21 H18	N2 O F			
	333.	1445	-2.3	-6.9	-7.5	331.5	9.167	0.01	C3 H24 N	4 010 F3			
	333.	1409	1.3	3.9	-6.5	331.2	8.811	0.01	C4 H22 N	4 O7 F5			
	333.	1395	2.7	8.1	1.5	329.9	7.516	0.05	C5 H18 N	10 06 F			
	333.	1422	0.0	0.0	-1.5	330.3	7.892	0.04	C5 H18 N	8 O3 F5			
	333.	1433	-1.1	-3.3	-3.5	329.9	7.522	0.05	C6 H23 N	4 O9 F2			
	333.	1446	-2.4	-7.2	1.5	329.0	6.650	0.13	C7 H19 N	8 O5 F2			
	333.	1397	2.5	7.5	-2.5	329.7	7.363	0.06	C7 H21 N	4 06 F4			
	333.	1411	1.1	3.3	2.5	328.7	6.326	0.18	C8 H17 N	8 O2 F4			
	333.	1449	-2.7	-8.1	-2.5	329.3	6.921	0.10	C9 H22 N	2 O5 F5			
	333.	1422	0.0	0.0	0.5	328.3	5.908	0.27	C9 H22 N	4 08 F			

Table 1 Crystal data and structure refinement for 22srv130.								
Identification code	22srv130							
Empirical formula	C ₂₁ H ₁₇ FN ₂ O							
Formula weight	332.36							
Temperature/K	120.00							
Crystal system	monoclinic							
Space group	P2 ₁ /n							
a/Å	13.8025(3)							
b/Å	9.6560(2)							
c/Å	13.9900(3)							
α/°	90							
β/°	118.9275(8)							
γ/°	90							
Volume/Å ³	1631.91(6)							
Z	4							
$\rho_{calc}g/cm^3$	1.353							
µ/mm⁻¹	0.092							
F(000)	696.0							

Crystal size/mm ³	0.23 × 0.14 × 0.09
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.4 to 59.994
Index ranges	-19 ≤ h ≤ 19, -13 ≤ k ≤ 13, -19 ≤ l ≤ 19
Reflections collected	38242
Independent reflections	4736 [R _{int} = 0.0411, R _{sigma} = 0.0239]
Data/restraints/parameters	4736/0/294
Goodness-of-fit on F ²	1.048
Final R indexes [I>=2σ (I)]	R ₁ = 0.0457, wR ₂ = 0.1116
Final R indexes [all data]	R ₁ = 0.0530, wR ₂ = 0.1164
Largest diff. peak/hole / e Å ⁻³	0.40/-0.22

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv130. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

U _{IJ} tensor.										
Atom	x	у	Z	U(eq)						
F1	8080.0(7)	6149.0(8)	4831.6(7)	31.1(2)						
01	9889.5(7)	3559.2(9)	7650.9(7)	20.81(18)						
N1	8055.2(8)	3850.1(10)	6363.5(8)	15.71(18)						
N2	6298.3(8)	3436.3(11)	6705.8(8)	20.7(2)						
C1	9043.9(9)	3164.6(11)	6845.0(9)	15.1(2)						
C2	7791.5(10)	4948.1(12)	6911.1(10)	21.8(2)						
C3	7206.4(11)	4300.2(15)	7486.0(11)	26.2(3)						
C4	5364.2(11)	3090.9(14)	6765.6(11)	24.9(3)						
C5	4725.7(11)	2253.2(14)	5903.6(11)	24.8(3)						
C6	5284.6(10)	2068.8(13)	5288.0(10)	21.5(2)						
C7	6257.7(9)	2807.6(11)	5806.2(9)	16.4(2)						
C8	7147.7(9)	3055.0(11)	5494.6(9)	14.1(2)						
C9	7747.9(9)	1755.8(11)	5466.3(8)	13.50(19)						
C10	7345.2(9)	601.4(12)	4797.9(9)	17.0(2)						
C11	8098.1(10)	-429.8(12)	4906.1(9)	19.6(2)						
C12	9225.6(10)	-306.1(12)	5652.9(9)	19.8(2)						
C13	9624.4(9)	850.0(12)	6322.0(9)	17.6(2)						
C14	8865.9(9)	1866.7(11)	6216.2(8)	14.3(2)						
C15	6644.8(9)	3833.1(12)	4382.4(9)	17.3(2)						
C16	7444.0(9)	3998.6(12)	3943.4(9)	17.5(2)						
C17	8144.2(10)	5131.0(12)	4194.3(10)	21.5(2)						
C18	8896.6(11)	5289.1(14)	3815.1(11)	27.1(3)						
C19	8978.7(11)	4257.9(15)	3169.9(11)	27.9(3)						
C20	8293.5(11)	3110.5(14)	2896.2(10)	24.5(3)						

|--|

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv130. The Anisotropic									
disp	lacement fac	tor exponent i	takes the form	1: -2π²[n²a*²U	<u>11</u> +2пка*б*О1	2 +].			
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
F1	39.1(5)	17.0(4)	38.9(5)	-2.9(3)	20.1(4)	-5.5(3)			
01	15.5(4)	23.3(4)	17.5(4)	-2.0(3)	3.0(3)	-4.4(3)			
N1	13.5(4)	14.5(4)	16.7(4)	-3.2(3)	5.3(3)	-2.1(3)			
N2	19.8(5)	21.5(5)	23.5(5)	-6.6(4)	12.5(4)	-2.6(4)			
C1	14.3(5)	16.4(5)	14.2(4)	1.8(4)	6.6(4)	-2.4(4)			
C2	19.9(5)	17.2(5)	25.9(6)	-8.0(4)	9.3(5)	-2.9(4)			
C3	24.6(6)	29.9(6)	25.8(6)	-13.8(5)	13.7(5)	-5.9(5)			
C4	24.5(6)	25.6(6)	32.1(6)	-4.0(5)	19.7(5)	-0.9(5)			
C5	20.0(6)	24.3(6)	34.4(7)	-1.6(5)	16.7(5)	-2.8(4)			
C6	18.0(5)	22.6(6)	24.1(6)	-4.1(4)	10.3(4)	-4.0(4)			
C7	15.9(5)	16.5(5)	17.3(5)	-1.0(4)	8.4(4)	-0.1(4)			
C8	12.1(4)	13.3(4)	14.8(4)	-0.4(4)	4.8(4)	-1.1(3)			
C9	14.1(5)	13.5(4)	13.0(4)	1.4(3)	6.6(4)	0.0(3)			
C10	16.3(5)	15.8(5)	15.8(5)	-0.8(4)	5.5(4)	-1.3(4)			
C11	23.3(5)	16.4(5)	18.8(5)	-1.4(4)	10.1(4)	0.3(4)			
C12	21.1(5)	19.9(5)	21.2(5)	2.3(4)	12.3(4)	4.5(4)			
C13	14.5(5)	21.0(5)	16.8(5)	2.6(4)	7.2(4)	1.5(4)			
C14	14.4(5)	16.2(5)	12.6(4)	1.5(4)	6.8(4)	-1.4(4)			
C15	14.3(5)	17.5(5)	16.9(5)	3.0(4)	5.0(4)	1.1(4)			
C16	14.4(5)	18.4(5)	15.6(5)	5.3(4)	4.0(4)	0.0(4)			
C17	22.0(5)	17.3(5)	21.2(5)	3.9(4)	7.3(4)	-1.1(4)			
C18	24.7(6)	26.2(6)	27.6(6)	7.7(5)	10.6(5)	-6.0(5)			
C19	24.8(6)	36.5(7)	24.1(6)	8.2(5)	13.2(5)	-1.9(5)			
C20	25.3(6)	29.7(6)	18.9(5)	3.0(5)	11.0(5)	0.3(5)			
C21	19.2(5)	22.4(5)	15.6(5)	3.3(4)	5.6(4)	-1.2(4)			

	Table 4 Bond Lengths for 22srv130.										
Atom	Atom	Length/Å		Atom	Atom	Length/Å					
F1	C17	1.3586(15)		C8	C15	1.5564(15)					
01	C1	1.2270(13)		C9	C10	1.3868(15)					
N1	C1	1.3656(14)		C9	C14	1.3882(14)					
N1	C2	1.4537(15)		C10	C11	1.3936(16)					
N1	C8	1.4707(13)		C11	C12	1.3981(17)					
N2	C3	1.4610(16)		C12	C13	1.3881(17)					
N2	C4	1.3730(16)		C13	C14	1.3899(15)					
N2	C7	1.3738(14)		C15	C16	1.5083(16)					
C1	C14	1.4818(15)		C16	C17	1.3873(16)					

C2	C3	1.5229(18)	C16	C21	1.3965(17)
C4	C5	1.3628(19)	C17	C18	1.3842(18)
C5	C6	1.4182(17)	C18	C19	1.385(2)
C6	C7	1.3771(16)	C19	C20	1.3850(19)
C7	C8	1.5080(15)	C20	C21	1.3898(17)
C8	C9	1.5144(15)			

	Table 5 Bond Angles for 22srv130.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°			
C1	N1	C2	122.59(9)		C9	C8	C15	111.03(9)			
C1	N1	C8	113.77(9)		C10	C9	C8	129.61(10)			
C2	N1	C8	119.08(9)		C10	C9	C14	120.53(10)			
C4	N2	C3	125.78(10)		C14	C9	C8	109.79(9)			
C4	N2	C7	108.97(10)		C9	C10	C11	117.81(10)			
C7	N2	C3	125.23(10)		C10	C11	C12	121.47(11)			
01	C1	N1	125.60(10)		C13	C12	C11	120.50(11)			
01	C1	C14	128.24(10)		C12	C13	C14	117.62(10)			
N1	C1	C14	106.14(9)		C9	C14	C1	108.57(9)			
N1	C2	C3	108.10(10)		C9	C14	C13	122.05(10)			
N2	C3	C2	108.81(10)		C13	C14	C1	129.35(10)			
C5	C4	N2	108.34(11)		C16	C15	C8	113.45(9)			
C4	C5	C6	107.64(11)		C17	C16	C15	122.53(11)			
C7	C6	C5	107.09(11)		C17	C16	C21	116.25(11)			
N2	C7	C6	107.96(10)		C21	C16	C15	121.21(10)			
N2	C7	C8	121.12(10)		F1	C17	C16	118.53(11)			
C6	C7	C8	130.79(10)		F1	C17	C18	118.10(11)			
N1	C8	C7	109.33(9)		C18	C17	C16	123.36(12)			
N1	C8	C9	101.31(8)		C17	C18	C19	118.92(12)			
N1	C8	C15	111.34(9)		C18	C19	C20	119.68(12)			
C7	C8	C9	114.12(9)		C19	C20	C21	120.10(12)			
C7	C8	C15	109.49(9)		C20	C21	C16	121.65(11)			

	Table 6 Selected Torsion Angles for 22srv130.										
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°	
N1	C2	C3	N2	-50.91(13)		C8	C9	C14	C13	-176.55(10)	
N1	C8	C7	N2	8.02(14)		C8	C15	C16	C17	-89.58(13)	
C1	C14	C9	C8	5.30(11)		C8	C15	C16	C21	89.30(12)	
C1	C14	C9	C10	-177.40(9)		C9	C8	N1	C1	-2.71(11)	
C2	N1	C1	01	-17.02(17)		C9	C8	N1	C2	-159.41(9)	
C2	C3	N2	C4	-155.19(12)		C9	C8	C7	N2	120.65(11)	
C2	C3	N2	C7	26.62(17)		C9	C8	C15	C16	-47.12(12)	
C3	C2	N1	C1	-92.26(12)		C9	C14	C1	01	171.78(11)	

C3	C2	N1	C8	62.29(13)	C9	C14	C1	N1	-6.83(11)
C6	C7	N2	C3	178.98(12)	C10	C9	C8	N1	-178.80(11)
C6	C7	N2	C4	0.53(14)	C10	C9	C8	C15	-60.48(14)
C6	C7	C8	N1	-176.58(12)	C10	C9	C14	C13	0.75(16)
C6	C7	C8	C9	-63.96(16)	C13	C14	C1	01	-6.19(19)
C6	C7	C8	C15	61.19(15)	C13	C14	C1	N1	175.19(11)
C7	C8	N1	C1	118.08(10)	C14	C1	N1	C2	161.64(10)
C7	C8	N1	C2	-38.62(13)	C14	C1	N1	C8	5.86(12)
C7	C8	C9	C10	63.85(15)	C14	C9	C8	N1	-1.82(11)
C7	C8	C9	C14	-119.17(10)	C14	C9	C8	C15	116.50(10)
C7	C8	C15	C16	-174.04(9)	C15	C8	N1	C1	-120.80(10)
C8	N1	C1	01	-172.80(10)	C15	C8	N1	C2	82.49(12)
C8	C7	N2	C3	-4.68(18)	C15	C8	C7	N2	-114.21(11)
C8	C7	N2	C4	176.87(10)	C16	C15	C8	N1	64.95(12)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters										
(Å ² ×10 ³) for 22srv130.										
Atom	x	у	Z	U(eq)						
H2A	7314(13)	5625(17)	6355(13)	24(4)						
H2B	8468(14)	5372(18)	7433(14)	28(4)						
H3A	7778(14)	3699(18)	8133(14)	32(4)						
H3B	6894(16)	5030(20)	7754(15)	42(5)						
H4	5265(15)	3450(19)	7367(15)	35(5)						
H5	3999(15)	1856(19)	5727(14)	34(5)						
H6	5045(14)	1559(18)	4648(14)	29(4)						
H10	6597(13)	512(17)	4278(13)	23(4)						
H11	7833(13)	-1256(18)	4440(13)	27(4)						
H12	9742(14)	-1058(18)	5713(13)	28(4)						
H13	10392(14)	960(16)	6827(13)	23(4)						
H15A	6006(13)	3283(16)	3855(12)	19(4)						
H15B	6360(13)	4732(17)	4476(12)	22(4)						
H18	9341(15)	6079(19)	4029(15)	36(5)						
H19	9505(15)	4355(19)	2902(15)	36(5)						
H20	8347(14)	2374(19)	2416(14)	32(4)						
H21	7032(14)	2201(17)	3072(13)	25(4)						

12*b*-(2-methoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-*a*]isoindol-8(12*bH*)-one **1j** ¹H:

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 3124 formula(e) evaluated with 25 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 F: 0-6

21-Jul-2022 MTF_MTF5J_179348 531 (4.464) Cm (529:531) 345.1630 5 | ____347.1701 354.2859 367.145

100-	304.299	307.1974	315.1457	319.100	³ 326.1587	333.1469	343.154	345.1630 46) _347.1701	354.28	59	367.1	453_369.1	330 m/z
0 1	305.	.0 310.0	315.0	320.0	325.0 3	330.0 335.0	340.0	345.0	350.0	355.0	360.0	365.0	370.0	375.0
Minin	num:				-10.0)								
Maxin	num:		3.0	5.0	100.0)								
Mass		Calc. Mas	s mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula	L				
345.1	630	345.1649	-1.9	-5.5	-2.5	182.8	5.036	0.65	С10 Н25	N2 06	F4			
		345.1622	0.8	2.3	0.5	182.1	4.317	1.33	C10 H25	N4 09				
		345.1635	-0.5	-1.4	5.5	181.5	3.717	2.43	C11 H21	N8 05				
		345.1613	1.7	4.9	-1.5	182.7	4.993	0.68	C11 H23	N2 03	Fб			
		345.1637	-0.7	-2.0	1.5	181.7	3.997	1.84	C13 H24	N2 05	F3			
		345.1651	-2.1	-6.1	6.5	181.4	3.605	2.72	C14 H20	N6 0 1	F3			
		345.1601	2.9	8.4	2.5	181.8	4.066	1.71	C14 H22	N2 02	F5			
		345.1626	0.4	1.2	5.5	180.7	3.001	4.98	C16 H23	N2 04	F2			
		345.1653	-2.3	-6.7	2.5	181.8	4.097	1.66	C16 H23	0 F6				
		345.1639	-0.9	-2.6	5 10.5	180.5	2.796	6.10	C17 H19	N6 F2				
		345.1642	-1.2	-3.5	6.5	181.1	3.373	3.43	C19 H22	F5				
		345.1614	1.6	4.6	9.5	179.9	2.142	11.74	C19 H22	N2 03	F			
		345.1603	2.7	7.8	13.5	179.3	1.541	21.43	C22 H21	N2 02				
		345.1655	-2.5	-7.2	13.5	179.5	1.750	17.38	C24 H22	ΟF				
		345.1643	-1.3	-3.8	17.5	179.4	1.697	18.32	C27 H21					
		345.1606	2.4	7.0	-2.5	183.9	6.104	0.22	C3 H22	N10 08	F			
		345.1633	-0.3	-0.9	-5.5	184.4	6.605	0.14	C3 H22	N8 05 3	F5			
		345.1658	-2.8	-8.1	-2.5	183.6	5.846	0.29	C5 H23	N8 07 1	F2			
		345.1609	2.1	6.1	-6.5	184.0	6.254	0.19	C5 H25	N4 08 3	F4			
		345.1622	0.8	2.3	-1.5	183.4	5.602	0.37	C6 H21	N8 04 1	F4			
		345.1633	-0.3	-0.9	-3.5	183.2	5.410	0.45	C7 H26	N4 010	F			
		345.1646	-1.6	-4.6	5 1.5	182.5	4.775	0.84	C8 H22	N8 06 3	F			
		345.1610	2.0	5.8	2.5	182.4	4.627	0.98	C9 H20	N8 03 1	F3			
		345.1618	1.2	3.5	-6.5	185.0	7.234	0.07	H23 N10	09 F2				
		345.1645	-1.5	-4.3	-9.5	185.4	7.694	0.05	H23 N8	06 F6				

21-Jul-2022

1.81e+003

1: TOF MS ES+

Page 1

Table 1 Crystal data and st	Table 1 Crystal data and structure refinement for 22srv149.							
Identification code	22srv149							
Empirical formula	$C_{22}H_{20}N_2O_2$							
Formula weight	344.40							
Temperature/K	120.00							
Crystal system	monoclinic							
Space group	P21/c							
a/Å	11.0740(2)							
b/Å	7.5318(2)							
c/Å	20.9844(5)							
α/°	90							
β/°	92.9918(9)							
γ/°	90							
Volume/Å ³	1747.86(7)							
Z	4							

ρ _{calc} g/cm ³	1.309
µ/mm ⁻¹	0.085
F(000)	728.0
Crystal size/mm ³	0.22 × 0.12 × 0.05
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	6.546 to 59.996
Index ranges	-15 ≤ h ≤ 15, -10 ≤ k ≤ 10, -29 ≤ l ≤ 29
Reflections collected	51064
Independent reflections	5082 [R _{int} = 0.0467, R _{sigma} = 0.0239]
Data/restraints/parameters	5082/0/315
Goodness-of-fit on F ²	1.086
Final R indexes [I>=2σ (I)]	R ₁ = 0.0456, wR ₂ = 0.1080
Final R indexes [all data]	R ₁ = 0.0534, wR ₂ = 0.1121
Largest diff. peak/hole / e Å ⁻³	0.35/-0.20

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement									
Parameters (Å ² ×10 ³) for 22srv149. U _{eq} is defined as 1/3 of the trace of the orthogonalised									
U _{IJ} tensor.									
Atom	x	у	Z	U(eq)					
01	7317.1(8)	1103.6(11)	6178.5(4)	25.52(19)					
02	10262.3(8)	3395.0(12)	5796.6(4)	23.29(18)					
N1	7662.4(8)	3671.1(12)	5621.5(4)	17.63(19)					
N2	6543.7(9)	5298.2(14)	4604.1(5)	21.9(2)					
C1	7313.4(10)	2726.5(15)	6131.5(5)	17.7(2)					
C2	7870.3(11)	2923.8(16)	5001.8(6)	21.5(2)					
C3	6815.0(12)	3408.3(18)	4541.8(6)	25.3(2)					
C4	5884.7(11)	6291(2)	4161.9(6)	27.7(3)					
C5	5726.7(11)	7950.6(19)	4407.2(6)	28.2(3)					
C6	6309.7(10)	7983.8(17)	5027.6(6)	23.3(2)					
C7	6789.7(9)	6320.0(15)	5139.2(5)	18.4(2)					
C8	7569.8(9)	5598.9(14)	5691.3(5)	15.7(2)					
C9	7030.5(9)	5743.7(14)	6338.8(5)	15.8(2)					
C10	6707.0(10)	7236.3(15)	6674.8(6)	19.9(2)					
C11	6272.3(10)	6982.9(17)	7280.7(6)	22.6(2)					
C12	6157.7(11)	5287.8(18)	7538.7(6)	24.0(2)					
C13	6482.9(10)	3799.4(16)	7199.3(6)	21.4(2)					
C14	6928.5(9)	4059.0(15)	6598.9(5)	16.5(2)					
C15	8835.5(9)	6507.8(15)	5690.1(5)	17.3(2)					

C16	9715.9(9)	6123.6(15)	6246.9(5)	17.6(2)
C17	10431.6(10)	4586.0(15)	6284.2(5)	18.4(2)
C18	11277.2(10)	4330.6(17)	6793.9(6)	22.6(2)
C19	11405.9(11)	5605.0(18)	7269.5(6)	25.8(3)
C20	10711.3(11)	7128.8(19)	7243.1(6)	27.3(3)
C21	9875.4(10)	7374.4(16)	6732.2(6)	22.4(2)
C22	10829.2(13)	1700.0(17)	5871.2(7)	27.9(3)

Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv149. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}]_{11}+2hka^{*}h^{*1}]_{12}+1$									
Atom	U ₁₁	Um	U ₂₂		U12	U12			
01	34.3(5)	14.9(4)	27.0(4)	2.2(3)	-1.3(4)	-0.5(3)			
02	24.5(4)	24.3(4)	20.8(4)	-3.1(3)	-1.9(3)	6.3(3)			
N1	19.4(4)	15.6(4)	17.9(4)	-0.1(3)	1.7(3)	-1.0(3)			
N2	18.1(4)	28.2(5)	19.0(4)	1.7(4)	-2.7(3)	-2.2(4)			
C1	16.7(5)	16.5(5)	19.6(5)	1.5(4)	-2.3(4)	-1.2(4)			
C2	23.2(5)	21.7(5)	19.7(5)	-3.7(4)	2.2(4)	-0.8(4)			
C3	25.4(6)	28.2(6)	21.9(6)	-4.3(5)	-1.6(4)	-4.6(5)			
C4	17.7(5)	43.9(8)	21.0(6)	5.8(5)	-3.9(4)	-0.6(5)			
C5	18.9(5)	38.5(7)	27.1(6)	11.9(5)	-0.5(4)	4.7(5)			
C6	18.2(5)	26.7(6)	24.9(6)	6.2(5)	1.1(4)	1.8(4)			
C7	14.6(5)	22.6(5)	18.0(5)	3.0(4)	0.3(4)	-2.0(4)			
C8	15.3(4)	14.4(5)	17.3(5)	1.3(4)	1.0(4)	-0.9(4)			
C9	12.3(4)	17.5(5)	17.4(5)	1.3(4)	0.1(3)	-1.5(4)			
C10	17.7(5)	18.1(5)	24.0(5)	-0.3(4)	2.0(4)	-0.4(4)			
C11	19.0(5)	25.1(6)	24.2(6)	-3.8(4)	4.2(4)	1.4(4)			
C12	21.4(5)	31.3(6)	19.8(5)	0.7(5)	4.9(4)	-1.0(5)			
C13	18.8(5)	23.7(6)	21.6(5)	6.3(4)	1.1(4)	-0.6(4)			
C14	13.3(4)	17.4(5)	18.6(5)	1.7(4)	-1.2(4)	-0.7(4)			
C15	15.2(5)	18.4(5)	18.3(5)	2.8(4)	0.5(4)	-1.8(4)			
C16	14.1(4)	20.9(5)	17.8(5)	1.9(4)	1.6(4)	-2.3(4)			
C17	16.9(5)	21.9(5)	16.3(5)	0.8(4)	2.0(4)	-1.6(4)			
C18	18.8(5)	26.3(6)	22.4(5)	4.2(4)	-1.4(4)	-0.2(4)			
C19	20.9(5)	35.6(7)	20.5(5)	2.1(5)	-4.0(4)	-4.5(5)			
C20	22.5(6)	33.8(7)	25.1(6)	-7.9(5)	-1.9(4)	-4.9(5)			
C21	17.9(5)	23.2(5)	26.1(6)	-3.3(4)	0.7(4)	-2.2(4)			
C22	32.4(7)	21.1(6)	30.1(6)	0.2(5)	0.7(5)	5.5(5)			

Table 4 Bond Lengths for 22srv149.								
Atom Atom Length/Å Atom Atom Length/Å								
01	C1	1.2263(14)		C8	C9	1.5164(15)		
O2 C17 1.3663(14) C8 C15 1.5600(15)								

02	C22	1.4276(15)	C9	C10	1.3841(15)
N1	C1	1.3580(14)	C9	C14	1.3882(15)
N1	C2	1.4465(14)	C10	C11	1.3959(16)
N1	C8	1.4634(14)	C11	C12	1.3951(18)
N2	C3	1.4620(17)	C12	C13	1.3858(18)
N2	C4	1.3719(15)	C13	C14	1.3906(15)
N2	C7	1.3768(15)	C15	C16	1.5101(15)
C1	C14	1.4814(15)	C16	C17	1.4032(16)
C2	C3	1.5208(17)	C16	C21	1.3918(16)
C4	C5	1.367(2)	C17	C18	1.3976(15)
C5	C6	1.4229(17)	C18	C19	1.3866(18)
C6	C7	1.3766(16)	C19	C20	1.3811(19)
C7	C8	1.5097(15)	C20	C21	1.3916(17)

Table 5 Bond Angles for 22srv149.										
Atom	m Atom Atom Angle/°				Atom	Atom	Atom	Angle/°		
C17	02	C22	117.56(9)		C9	C8	C15	111.45(8)		
C1	N1	C2	124.74(10)		C10	C9	C8	129.75(10)		
C1	N1	C8	114.62(9)		C10	C9	C14	120.90(10)		
C2	N1	C8	119.43(9)		C14	C9	C8	109.30(9)		
C4	N2	C3	125.08(11)		C9	C10	C11	117.63(11)		
C4	N2	C7	108.82(11)		C12	C11	C10	121.41(11)		
C7	N2	C3	125.75(10)		C13	C12	C11	120.63(11)		
01	C1	N1	125.85(11)		C12	C13	C14	117.76(11)		
01	C1	C14	128.46(11)		C9	C14	C1	109.08(9)		
N1	C1	C14	105.69(9)		C9	C14	C13	121.65(10)		
N1	C2	C3	108.92(10)		C13	C14	C1	129.23(10)		
N2	C3	C2	109.36(10)		C16	C15	C8	117.29(9)		
C5	C4	N2	108.54(11)		C17	C16	C15	122.77(10)		
C4	C5	C6	107.45(11)		C21	C16	C15	119.25(10)		
C7	C6	C5	107.00(12)		C21	C16	C17	117.91(10)		
N2	C7	C8	120.38(10)		02	C17	C16	116.43(9)		
C6	C7	N2	108.17(10)		02	C17	C18	122.89(10)		
C6	C7	C8	131.19(11)		C18	C17	C16	120.68(10)		
N1	C8	C7	108.69(9)		C19	C18	C17	119.67(11)		
N1	C8	C9	101.19(8)		C20	C19	C18	120.68(11)		
N1	C8	C15	111.56(9)		C19	C20	C21	119.21(12)		
C7	C8	C9	115.18(9)		C20	C21	C16	121.84(12)		
C7	C8	C15	108.61(8)							

	Table 6 Selected Torsion Angles for 22srv149.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C2	C3	N2	46.90(13)		C8	C7	N2	C3	10.13(16)
N1	C8	C7	N2	-15.79(13)		C8	C7	N2	C4	-176.37(10)
C2	C3	N2	C4	161.83(11)		C8	C15	C16	C17	81.89(13)
C2	C3	N2	C7	-25.68(16)		C8	C15	C16	C21	-101.27(12)
C3	C2	N1	C1	104.93(12)		C9	C8	N1	C1	-2.61(11)
C3	C2	N1	C8	-61.80(13)		C9	C8	N1	C2	165.41(9)
C6	C7	N2	C3	-175.07(11)		C9	C8	C7	N2	-128.46(10)
C6	C7	N2	C4	-1.56(13)		C9	C8	C15	C16	45.60(13)
C6	C7	C8	N1	170.77(11)		C15	C8	N1	C1	116.01(10)
C6	C7	C8	C9	58.11(16)		C15	C8	N1	C2	-75.96(12)
C6	C7	C8	C15	-67.67(15)		C15	C8	C7	N2	105.76(11)
C7	C8	N1	C1	-124.26(10)		C16	C15	C8	N1	-66.70(12)
C7	C8	N1	C2	43.76(12)		C16	C17	02	C22	-170.10(10)
C7	C8	C15	C16	173.53(9)		C18	C17	02	C22	10.74(16)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters									
(A ×10°) 101 22510149.									
Atom	X	У	Z	U(eq)					
H2A	7929(14)	1600(20)	5044(7)	26(4)					
H2B	8673(14)	3400(20)	4836(7)	25(4)					
H3A	6079(14)	2680(20)	4647(7)	27(4)					
НЗВ	7029(15)	3150(20)	4079(8)	31(4)					
H4	5610(15)	5740(20)	3761(8)	33(4)					
H5	5267(16)	8910(20)	4200(9)	43(5)					
H6	6391(14)	8990(20)	5329(8)	31(4)					
H10	6792(14)	8460(20)	6507(7)	24(4)					
H11	6034(14)	8010(20)	7527(8)	30(4)					
H12	5835(15)	5150(20)	7961(8)	35(4)					
H13	6393(13)	2600(20)	7366(7)	21(4)					
H15A	9179(13)	6172(19)	5287(7)	21(3)					
H15B	8664(13)	7790(20)	5677(7)	21(3)					
H18	11762(14)	3270(20)	6819(7)	25(4)					
H19	12019(15)	5400(20)	7633(8)	31(4)					
H20	10805(15)	8030(20)	7572(8)	37(4)					
H21	9366(13)	8460(20)	6704(7)	23(4)					
H22A	11723(16)	1810(20)	5862(8)	35(4)					
H22B	10631(15)	1170(20)	6281(8)	33(4)					
H22C	10496(15)	970(20)	5507(8)	36(4)					

12*b*-(3-methoxybenzyl)-5,6-dihydropyrrolo[2',1':3,4]pyrazino[2,1-*a*]isoindol-8(12*bH*)-one **1k** ¹H:

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 3124 formula(e) evaluated with 25 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 F: 0-6

21-Jul-2022

MTF_MTF5K_179349 511 (4.296) Cm (510:517)

100	111.0209	143.085	⁵⁵ 223	.0905	304.30	345.1623 55	367.1450	445 0881	462 0647 523.2183		689 3186
Ű - ++++++++	100	150	200	250	300	350	400	450	500 550	600 650) 700
Minimum: Maximum:			3.0	5.0	-10.0 100.0						
Mass	Calc.	. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
345.1623	345.1	622	0.1	0.3	-1.5	199.6	12.611	0.00	C6 H21 N8 O4 F4		
	345.1	622	0.1	0.3	0.5	196.9	9.848	0.01	C10 H25 N4 O9		
	345.1	626	-0.3	-0.9	5.5	193.7	6.658	0.13	C16 H23 N2 O4 F2		
	345.1	618	0.5	1.4	-6.5	204.1	17.135	0.00	H23 N10 O9 F2		
	345.1	614	0.9	2.6	9.5	191.1	4.058	1.73	C19 H22 N2 O3 F		
	345.1	613	1.0	2.9	-1.5	197.9	10.881	0.00	C11 H23 N2 O3 F6	5	
	345.1	633	-1.0	-2.9	-3.5	198.7	11.727	0.00	C7 H26 N4 O10 F		
	345.1	633	-1.0	-2.9	-5.5	201.5	14.483	0.00	C3 H22 N8 O5 F5		
	345.1	635	-1.2	-3.5	5.5	195.9	8.898	0.01	C11 H21 N8 O5		
	345.1	610	1.3	3.8	2.5	198.0	10.947	0.00	C9 H20 N8 O3 F3		
	345.1	609	1.4	4.1	-6.5	200.4	13.352	0.00	C5 H25 N4 O8 F4		
	345.1	637	-1.4	-4.1	1.5	195.9	8.943	0.01	C13 H24 N2 O5 F3	}	
	345.1	639	-1.6	-4.6	10.5	193.2	6.178	0.21	C17 H19 N6 F2		
	345.1	606	1.7	4.9	-2.5	201.3	14.333	0.00	C3 H22 N10 O8 F		
	345.1	642	-1.9	-5.5	6.5	194.0	7.045	0.09	C19 H22 F5		
	345.1	643	-2.0	-5.8	17.5	187.3	0.345	70.80	C27 H21		
	345.1	603	2.0	5.8	13.5	188.3	1.311	26.97	C22 H21 N2 O2		
	345.1	601	2.2	6.4	2.5	196.3	9.335	0.01	C14 H22 N2 O2 F5	5	
	345.1	645	-2.2	-6.4	-9.5	204.5	17.508	0.00	H23 N8 O6 F6		
	345.1	646	-2.3	-6.7	1.5	198.1	11.049	0.00	C8 H22 N8 O6 F		
	345.1	599	2.4	7.0	6.5	196.2	9.208	0.01	C12 H19 N8 O2 F2	2	
	345.1	649	-2.6	-7.5	-2.5	198.0	10.977	0.00	C10 H25 N2 O6 F4	ł	
	345.1	597	2.6	7.5	-2.5	198.9	11.910	0.00	C8 H24 N4 O7 F3		
	345.1	651	-2.8	-8.1	6.5	195.4	8.397	0.02	C14 H20 N6 O F3		
	345.1	595	2.8	8.1	1.5	199.5	12.459	0.00	C6 H21 N10 O7		

21-Jul-2022

1: TOF MS ES+ 5.10e+003

PerkinElmer Spectrum Version 10.5.2 07 July 2022 08:09

Table 1 Crystal data and structure refinement for 22srv180.			
Identification code	22srv180		
Empirical formula	$C_{22}H_{20}N_2O_2$		
Formula weight	344.40		
Temperature/K	100.00		
Crystal system	monoclinic		
Space group	P21/c		
a/Å	32.325(3)		
b/Å	7.2919(6)		
c/Å	15.5017(14)		
α/°	90		
β/°	103.775(2)		
γ/°	90		
Volume/Å ³	3548.8(5)		
Z	8		
$\rho_{calc}g/cm^3$	1.289		
µ/mm⁻¹	0.078		

F(000)	1456.0
Crystal size/mm ³	0.06 × 0.02 × 0.001
Radiation	Synchrotron ($\lambda = 0.6889$)
20 range for data collection/°	1.258 to 49
Index ranges	-38 ≤ h ≤ 38, -8 ≤ k ≤ 8, -18 ≤ l ≤ 18
Reflections collected	33898
Independent reflections	6488 [R _{int} = 0.0851, R _{sigma} = 0.1109]
Data/restraints/parameters	6488/0/472
Goodness-of-fit on F ²	1.081
Final R indexes [I>=2σ (I)]	R ₁ = 0.0989, wR ₂ = 0.2600
Final R indexes [all data]	R ₁ = 0.1096, wR ₂ = 0.2739
Largest diff. peak/hole / e Å ⁻³	0.88/-0.36

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for 22srv180. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

U _{ll} tensor.							
Atom	X	У	Z	U(eq)			
01	3905.8(10)	9016(4)	5093(2)	41.0(8)			
02	2782.7(10)	7299(4)	6642(2)	39.9(8)			
N1	4119.7(11)	6287(4)	5807(2)	32.3(8)			
N2	4914.9(11)	4855(4)	6242(2)	33.2(8)			
C1	3936.0(13)	7358(5)	5098(3)	28.8(9)			
C2	4409.6(13)	7023(5)	6590(3)	35.5(10)			
C3	4862.9(15)	6761(5)	6506(3)	39.3(10)			
C4	5295.2(14)	3964(5)	6340(3)	35.4(9)			
C5	5215.3(14)	2267(6)	5993(3)	36.8(10)			
C6	4768.1(14)	2090(5)	5653(3)	35.0(10)			
C7	4591.8(14)	3714(5)	5800(2)	32.0(9)			
C8	4132.1(13)	4315(5)	5615(3)	31.0(9)			
С9	3904.3(12)	4293(5)	4632(2)	28.1(8)			
C10	3799.4(13)	2796(6)	4071(3)	32.7(9)			
C11	3585.4(14)	3184(5)	3191(3)	37.6(10)			
C12	3480.7(14)	4949(6)	2891(3)	36.9(10)			
C13	3582.1(13)	6426(6)	3468(3)	35.4(10)			
C14	3790.1(13)	6051(5)	4352(3)	29.3(9)			
C15	3890.2(13)	3163(5)	6186(3)	31.8(9)			
C16	3428.1(14)	3609(5)	6050(2)	33.2(9)			
C17	3292.0(13)	5243(5)	6383(2)	33.0(9)			
C18	2865.1(14)	5626(5)	6276(3)	34.2(9)			
C19	2555.0(13)	4405(6)	5853(3)	36.8(10)			
------	------------	----------	---------	----------			
C20	2685.7(14)	2777(6)	5528(3)	37.2(10)			
C21	3111.4(14)	2395(5)	5615(3)	32.8(10)			
C22	2351.8(15)	7900(8)	6409(4)	51.7(13)			
O1A	1090.7(10)	-4039(3)	1175(2)	40.0(8)			
O2A	2239.1(9)	-2215(4)	3824(2)	41.1(8)			
N1A	884.2(11)	-1303(4)	1683(2)	29.2(8)			
N2A	86.7(12)	130(4)	1329(2)	33.5(8)			
C1A	1065.2(13)	-2366(5)	1147(3)	28.4(9)			
C2A	592.5(13)	-2034(5)	2186(3)	34.7(10)			
C3A	138.8(15)	-1772(5)	1650(3)	38.8(10)			
C4A	-294.7(14)	1016(6)	1050(3)	36.4(10)			
C5A	-218.1(14)	2703(6)	766(3)	32.2(9)			
C6A	226.5(14)	2890(5)	873(3)	35.1(10)			
C7A	411.0(14)	1257(5)	1205(3)	33.1(9)			
C8A	865.9(13)	665(5)	1472(2)	28.7(9)			
C9A	1099.8(12)	680(5)	714(2)	29.1(9)			
C10A	1200.2(13)	2174(5)	240(3)	31.0(9)			
C11A	1411.8(14)	1786(5)	-423(3)	34.5(9)			
C12A	1515.1(14)	-23(6)	-612(3)	36.8(10)			
C13A	1418.4(14)	-1456(5)	-128(3)	35.3(10)			
C14A	1214.6(13)	-1076(5)	550(2)	29.1(9)			
C15A	1108.3(13)	1836(5)	2276(3)	30.4(9)			
C16A	1576.1(13)	1423(5)	2601(2)	31.3(9)			
C17A	1712.2(13)	-189(5)	3065(2)	30.1(9)			
C18A	2142.3(14)	-559(5)	3381(3)	35.5(9)			
C19A	2450.5(13)	687(6)	3242(3)	36.9(10)			
C20A	2308.4(15)	2330(6)	2782(3)	38.3(10)			
C21A	1882.4(14)	2639(5)	2463(3)	31.7(10)			
C22A	2666.6(14)	-2767(7)	4008(3)	42.5(11)			

Table	Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv180. The Anisotropic									
displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.										
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂				
01	64(2)	15.8(14)	43.2(18)	-0.8(12)	12.5(14)	2.8(12)				
02	47(2)	32.8(16)	38.2(16)	-7.2(13)	7.5(15)	6.4(13)				
N1	53(2)	14.1(16)	29.0(17)	-6.4(13)	7.8(15)	0.4(14)				
N2	47(2)	22.8(17)	28.6(17)	1.9(13)	7.0(15)	0.1(14)				
C1	46(3)	16.4(18)	26(2)	0.7(14)	10.9(18)	1.1(15)				
C2	55(3)	22(2)	26(2)	-6.1(16)	3.8(18)	0.1(18)				
C3	60(3)	21(2)	37(2)	-3.5(17)	11(2)	-3.4(19)				
C4	43(2)	30(2)	33(2)	6.2(17)	8.5(17)	1.6(17)				
C5	45(3)	33(2)	33(2)	5.3(18)	10(2)	8.4(19)				
C6	52(3)	27(2)	26(2)	3.8(17)	8.3(18)	4.7(19)				

C7	53(3)	19.1(18)	23.4(18)	4.0(15)	8.6(16)	-3.2(17)
C8	56(3)	12.4(18)	25.6(19)	-2.8(15)	10.6(17)	-0.7(16)
C9	43(2)	18.2(18)	24.6(19)	0.6(14)	10.7(16)	-2.3(16)
C10	44(3)	25(2)	31(2)	-1.2(16)	11.1(19)	0.4(17)
C11	56(3)	30(2)	29(2)	-6.9(18)	13.2(18)	-1.8(19)
C12	46(3)	37(2)	27(2)	1.5(17)	7.6(17)	4.8(19)
C13	49(3)	27(2)	32(2)	12.4(16)	12.3(18)	3.4(17)
C14	43(2)	18.5(18)	27.6(19)	2.5(15)	10.3(16)	3.9(16)
C15	56(3)	15.8(18)	25.2(19)	5.3(15)	12.2(17)	2.8(17)
C16	62(3)	19.5(18)	19.6(18)	4.4(14)	12.6(17)	1.1(17)
C17	52(3)	23.7(19)	22.9(18)	-2.4(15)	7.3(17)	-3.2(17)
C18	53(3)	23.5(19)	26.8(19)	-0.8(16)	10.9(17)	1.9(18)
C19	49(3)	29(2)	33(2)	2.8(17)	10.0(18)	-0.5(18)
C20	50(3)	31(2)	30(2)	-2.0(17)	8(2)	-7.6(19)
C21	50(3)	19.6(18)	29(2)	-0.4(15)	11(2)	-0.9(17)
C22	52(3)	49(3)	55(3)	-15(2)	13(2)	0(2)
01A	62(2)	11.9(13)	46.7(18)	-0.6(12)	14.5(15)	1.3(12)
02A	41.4(19)	38.0(18)	45.0(17)	19.4(14)	12.7(15)	4.3(14)
N1A	49(2)	13.1(15)	28.9(16)	3.3(12)	16.3(14)	0.0(13)
N2A	54(2)	20.4(16)	27.3(17)	-3.1(13)	12.6(15)	-5.0(14)
C1A	40(3)	18.5(18)	26(2)	-1.2(14)	5.2(18)	2.3(15)
C2A	54(3)	24(2)	29(2)	7.1(17)	15.5(19)	-2.3(19)
C3A	61(3)	22(2)	37(2)	1.3(17)	18(2)	-4.0(18)
C4A	45(3)	32(2)	32(2)	-7.2(17)	9.9(18)	5.4(18)
C5A	39(3)	30(2)	28(2)	-1.3(16)	7.7(18)	6.2(17)
C6A	50(3)	21(2)	34(2)	-0.7(17)	10.0(19)	3.1(18)
C7A	59(3)	18.3(18)	24.6(19)	-1.7(15)	15.0(17)	-3.6(18)
C8A	49(3)	10.8(17)	27.1(19)	1.6(14)	10.7(17)	1.0(15)
C9A	43(2)	20.0(19)	24.8(19)	-3.3(15)	9.0(16)	-1.0(16)
C10A	45(3)	22.2(19)	25(2)	1.2(16)	8.3(18)	2.7(17)
C11A	50(3)	27(2)	28(2)	4.1(16)	11.9(18)	-0.8(18)
C12A	46(2)	39(2)	27(2)	-4.3(17)	12.5(18)	3.1(19)
C13A	51(3)	27(2)	27(2)	-5.0(16)	8.1(18)	11.2(18)
C14A	45(2)	16.2(17)	23.9(18)	-2.9(14)	4.8(16)	0.7(16)
C15A	48(2)	15.9(18)	27.0(19)	-1.0(15)	9.1(16)	0.3(16)
C16A	54(3)	18.7(18)	23.6(19)	-2.3(14)	13.3(17)	1.6(17)
C17A	47(2)	19.5(18)	25.7(19)	-1.3(15)	12.8(16)	-1.4(16)
C18A	57(3)	19.5(18)	32(2)	1.8(15)	15.2(18)	3.0(18)
C19A	49(3)	28(2)	33(2)	3.1(17)	7.6(18)	-0.1(18)
C20A	52(3)	30(2)	33(2)	1.0(17)	11(2)	-5.0(19)
C21A	49(3)	17.9(18)	27(2)	0.6(15)	6.9(19)	-2.7(16)
C22A	44(3)	42(3)	43(3)	11(2)	13(2)	9(2)

Table 4 Bond Lengths for 22srv180.									
Atom	Atom	Length/Å		Atom	Atom	Length/Å			
01	C1	1.213(5)		01A	C1A	1.223(5)			
02	C18	1.398(5)		02A	C18A	1.388(5)			
02	C22	1.422(6)		02A	C22A	1.402(5)			
N1	C1	1.363(5)		N1A	C1A	1.365(5)			
N1	C2	1.449(5)		N1A	C2A	1.460(5)			
N1	C8	1.471(4)		N1A	C8A	1.470(4)			
N2	C3	1.469(5)		N2A	C3A	1.469(5)			
N2	C4	1.366(5)		N2A	C4A	1.368(6)			
N2	C7	1.383(5)		N2A	C7A	1.381(5)			
C1	C14	1.486(5)		C1A	C14A	1.480(6)			
C2	C3	1.514(6)		C2A	C3A	1.516(6)			
C4	C5	1.350(6)		C4A	C5A	1.349(6)			
C5	C6	1.422(6)		C5A	C6A	1.413(6)			
C6	C7	1.357(5)		C6A	C7A	1.376(5)			
C7	C8	1.510(6)		C7A	C8A	1.493(6)			
C8	C9	1.527(5)		C8A	C9A	1.541(5)			
C8	C15	1.558(5)		C8A	C15A	1.559(5)			
C9	C10	1.386(5)		C9A	C10A	1.395(5)			
C9	C14	1.375(5)		C9A	C14A	1.373(5)			
C10	C11	1.403(6)		C10A	C11A	1.392(6)			
C11	C12	1.383(5)		C11A	C12A	1.408(6)			
C12	C13	1.389(6)		C12A	C13A	1.365(6)			
C13	C14	1.401(5)		C13A	C14A	1.395(6)			
C15	C16	1.494(6)		C15A	C16A	1.506(6)			
C16	C17	1.410(5)		C16A	C17A	1.393(5)			
C16	C21	1.399(6)		C16A	C21A	1.383(6)			
C17	C18	1.379(6)		C17A	C18A	1.386(6)			
C18	C19	1.383(6)		C18A	C19A	1.402(6)			
C19	C20	1.395(6)		C19A	C20A	1.413(6)			
C20	C21	1.378(6)		C20A	C21A	1.366(5)			

	Table 5 Bond Angles for 22srv180.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°	
C18	02	C22	115.8(3)		C18A	O2A	C22A	116.5(3)	
C1	N1	C2	122.3(3)		C1A	N1A	C2A	122.9(3)	
C1	N1	C8	115.2(3)		C1A	N1A	C8A	114.8(3)	
C2	N1	C8	119.2(3)		C2A	N1A	C8A	118.5(3)	
C4	N2	C3	125.3(4)		C4A	N2A	C3A	125.1(4)	
C4	N2	C7	108.8(3)		C4A	N2A	C7A	109.4(3)	
C7	N2	C3	125.7(4)		C7A	N2A	C3A	125.4(4)	
01	C1	N1	126.5(4)		O1A	C1A	N1A	125.5(4)	
01	C1	C14	128.6(4)		O1A	C1A	C14A	128.8(4)	

N1	C1	C14	104.9(3)	N1A	C1A	C14A	105.7(3)
N1	C2	C3	109.0(3)	N1A	C2A	C3A	109.0(3)
N2	C3	C2	108.7(3)	N2A	C3A	C2A	108.8(3)
C5	C4	N2	108.0(4)	C5A	C4A	N2A	108.2(4)
C4	C5	C6	108.2(4)	C4A	C5A	C6A	108.1(4)
C7	C6	C5	106.8(4)	C7A	C6A	C5A	107.4(4)
N2	C7	C8	120.8(3)	N2A	C7A	C8A	121.3(3)
C6	C7	N2	108.1(4)	C6A	C7A	N2A	106.9(4)
C6	C7	C8	131.0(4)	C6A	C7A	C8A	131.6(4)
N1	C8	C7	108.6(3)	N1A	C8A	C7A	109.2(3)
N1	C8	C9	100.5(3)	N1A	C8A	C9A	100.1(3)
N1	C8	C15	111.8(3)	N1A	C8A	C15A	111.8(3)
C7	C8	C9	113.9(3)	C7A	C8A	C9A	114.6(3)
C7	C8	C15	109.9(3)	C7A	C8A	C15A	109.7(3)
C9	C8	C15	111.9(3)	C9A	C8A	C15A	111.1(3)
C10	C9	C8	128.5(3)	C10A	C9A	C8A	128.7(3)
C14	C9	C8	109.6(3)	C14A	C9A	C8A	109.8(3)
C14	C9	C10	121.9(4)	C14A	C9A	C10A	121.5(4)
C9	C10	C11	116.2(4)	C11A	C10A	C9A	116.6(4)
C12	C11	C10	122.6(4)	C10A	C11A	C12A	121.7(4)
C11	C12	C13	120.2(4)	C13A	C12A	C11A	120.4(4)
C12	C13	C14	117.6(4)	C12A	C13A	C14A	118.2(4)
C9	C14	C1	109.9(3)	C9A	C14A	C1A	109.5(3)
C9	C14	C13	121.4(4)	C9A	C14A	C13A	121.5(4)
C13	C14	C1	128.7(3)	C13A	C14A	C1A	128.9(3)
C16	C15	C8	115.0(3)	C16A	C15A	C8A	115.6(3)
C17	C16	C15	121.4(4)	C17A	C16A	C15A	120.7(4)
C21	C16	C15	121.5(4)	C21A	C16A	C15A	121.2(4)
C21	C16	C17	117.0(4)	C21A	C16A	C17A	118.1(4)
C18	C17	C16	121.2(4)	C18A	C17A	C16A	120.9(4)
C17	C18	02	114.2(4)	O2A	C18A	C19A	123.7(4)
C17	C18	C19	121.2(4)	C17A	C18A	O2A	115.7(4)
C19	C18	02	124.6(4)	C17A	C18A	C19A	120.6(4)
C18	C19	C20	118.1(4)	C18A	C19A	C20A	118.0(4)
C21	C20	C19	121.2(4)	C21A	C20A	C19A	120.1(4)
C20	C21	C16	121.2(4)	C20A	C21A	C16A	122.3(4)

	Table 6 Torsion Angles for 22srv180.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C2	C3	N2	-48.4(4)		C15	C8	N1	C2	79.6(4)
N1	C8	C7	N2	11.4(5)		C15	C8	C7	N2	-111.2(4)
C2	N1	C1	01	-17.8(7)		C16	C15	C8	N1	60.4(4)
C2	C3	N2	C4	-160.4(4)		N1A	C2A	C3A	N2A	-48.5(4)
C2	C3	N2	C7	24.2(5)		N1A	C8A	C7A	N2A	11.5(5)

C3	C2	N1	C1	-95.2(4)	C2A	N1A	C1A	01A	-17.9(6)
C3	C2	N1	C8	63.1(4)	C2A	C3A	N2A	C4A	-160.3(4)
C6	C7	N2	C3	178.2(4)	C2A	C3A	N2A	C7A	24.3(5)
C6	C7	N2	C4	2.3(4)	C3A	C2A	N1A	C1A	-94.4(4)
C6	C7	C8	N1	-173.4(4)	C3A	C2A	N1A	C8A	62.6(4)
C6	C7	C8	C9	-62.4(5)	C6A	C7A	N2A	C3A	178.1(3)
C6	C7	C8	C15	64.1(5)	C6A	C7A	N2A	C4A	2.1(4)
C7	C8	N1	C1	118.1(4)	C6A	C7A	C8A	N1A	-173.2(4)
C7	C8	N1	C2	-41.7(5)	C6A	C7A	C8A	C9A	-61.9(5)
C7	C8	C9	C10	67.0(5)	C6A	C7A	C8A	C15A	64.0(5)
C7	C8	C9	C14	-115.7(4)	C7A	C8A	N1A	C1A	117.4(4)
C7	C8	C15	C16	-179.0(3)	C7A	C8A	N1A	C2A	-41.4(4)
C8	N1	C1	01	-177.0(4)	C7A	C8A	C15A	C16A	-178.3(3)
C8	C7	N2	C3	-5.6(6)	C8A	N1A	C1A	O1A	-175.7(4)
C8	C7	N2	C4	178.5(3)	C8A	C7A	N2A	C3A	-5.5(6)
C8	C15	C16	C17	-73.0(4)	C8A	C7A	N2A	C4A	178.5(3)
C8	C15	C16	C21	109.3(4)	C8A	C15A	C16A	C17A	-72.5(5)
C9	C8	N1	C1	-1.7(4)	C8A	C15A	C16A	C21A	108.6(4)
C9	C8	N1	C2	-161.5(3)	C9A	C8A	N1A	C1A	-3.2(4)
C9	C8	C7	N2	122.4(4)	C9A	C8A	N1A	C2A	-162.0(3)
C9	C8	C15	C16	-51.4(4)	C9A	C8A	C7A	N2A	122.8(4)
C10	C9	C8	N1	-177.1(4)	C9A	C8A	C15A	C16A	-50.6(4)
C10	C9	C8	C15	-58.4(5)	C14A	C1A	N1A	C2A	161.8(3)
C14	C1	N1	C2	161.5(4)	C14A	C1A	N1A	C8A	4.0(5)
C14	C1	N1	C8	2.4(5)	C15A	C8A	N1A	C1A	-121.0(4)
C14	C9	C8	N1	0.2(4)	 C15A	C8A	N1A	C2A	80.2(4)
C14	C9	C8	C15	119.0(4)	C15A	C8A	C7A	N2A	-111.4(4)
C15	C8	N1	C1	-120.5(4)	C16A	C15A	C8A	N1A	60.3(4)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 22srv180								
Atom	x	y	z	U(eq)				
H2A	4368.34	6382.34	7126.76	43				
H2B	4351.55	8344.06	6650.4	43				
H3A	4923.66	7612.55	6053.93	47				
H3B	5064.74	7026.54	7080.39	47				
H4	5568.06	4453.3	6607.23	42				
H5	5422.16	1350.29	5977.65	44				
H6	4621.07	1036.34	5376.89	42				
H10	3868.61	1577.48	4270.53	39				
H11	3509.27	2194.9	2785.74	45				
H12	3339	5152.23	2287.65	44				
H13	3512.97	7646.15	3271.67	42				
H15A	3917.5	1848.94	6048.66	38				

H15B	4030.8	3346.68	6820.66	38
H17	3498.16	6094.95	6686.19	40
H19	2261.26	4668.88	5787.05	44
H20	2477.73	1914.62	5240.85	45
H21	3191.12	1288.06	5374.81	39
H22A	2254.73	7976.17	5760.68	78
H22B	2330.6	9111.92	6668.25	78
H22C	2173.13	7026.89	6636.16	78
H2AA	634.29	-1384.85	2761.43	42
H2AB	650.09	-3353.82	2307.69	42
НЗАА	77.84	-2629.55	1140.36	47
НЗАВ	-62.98	-2031.26	2025.22	47
H4A	-566.61	527.15	1054.79	44
H5A	-426.55	3607.5	535.53	39
H6A	371.14	3947.8	739.79	42
H10A	1127.91	3392.98	362.67	37
H11A	1488.55	2767.69	-756.56	41
H12A	1653	-246.47	-1078.54	44
H13A	1487.89	-2679.23	-250.76	42
H15C	1076.3	3146.6	2105.7	36
H15D	970.02	1653.1	2774.36	36
H17A	1507.53	-1044.86	3167.23	36
H19A	2745.79	434.29	3449.74	44
H20A	2509.19	3219.95	2695.78	46
H21A	1793.5	3727.2	2133.88	38
H22D	2766.15	-2759.8	3458.3	64
H22E	2692.54	-4008.62	4257.49	64
H22F	2839.91	-1919.84	4436.91	64

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

 Twinned data refinement Scales: 0.723(3) 0.277(3)
 Fixed Uiso
 At 1.2 times of: All C(H) groups, All C(H,H) groups
 At 1.5 times of: All C(H,H,H) groups
 Sa Secondary CH2 refined with riding coordinates: C2(H2A,H2B), C3(H3A,H3B), C15(H15A,H15B), C2A(H2AA,H2AB), C3A(H3AA,H3AB), C15A(H15C,H15D)
 b Aromatic/amide H refined with riding coordinates: C4(H4), C5(H5), C6(H6), C10(H10), C11(H11), C12(H12), C13(H13), C17(H17), C19(H19), C20(H20), C21(H21), C4A(H4A), C5A(H5A), C6A(H6A), C10A(H10A), C11A(H11A), C12A(H12A), C13A(H13A), C17A(H17A), C19A(H19A), C20A(H20A), C21A(H21A) 3.c Idealised Me refined as rotating group: C22(H22A,H22B,H22C), C22A(H22D,H22E,H22F) Synthesis of **80-96** through implementation of alternative amine components

¹³C:

DEPT-135:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 2127 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 S: 0-4 21-Jul-2022 MTF_MTF7A_179350 548 (4.604) Cm (547:558)

100	111.020	01_143.0859	332.1	1125 402.356	2 456.7	7716	614.4789685	5.2026 713.1	166 ^{792.5523}	9	84.4630_1()14.4736	1187.6395
0 1 1	100	200	300	400	5	00	600	700	800	900	1000	1100	1111111111
Minimu Maximu	1m: 1m:		3.0	5.0	-10.0 100.0								
Mass		Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
332.12	125	332.1121 332.1141 332.1136 332.1107 332.1103 332.1134 332.1147 332.1143 332.1130 332.1130 332.1109 332.1101 332.1101 332.1109	0.4 -1.6 -1.1 1.8 2.2 -0.9 -2.2 -1.8 -0.9 -0.5 1.6 -1.8 2.4 2.9	$1.2 \\ -4.8 \\ -3.3 \\ 5.4 \\ 6.6 \\ -2.7 \\ -6.6 \\ -5.4 \\ -2.7 \\ -1.5 \\ 4.8 \\ -5.4 \\ 7.2 \\ 8.7 \\ $	-8.5 5.5 -0.5 10.5 4.5 9.5 14.5 8.5 -3.5 -9.5 13.5 -4.5 -4.5 -4.5	255.6 249.2 252.9 252.6 248.1 250.9 250.8 246.0 254.2 257.9 237.5 257.0 252.9 252.9 254.8	18.088 11.653 15.381 15.067 10.566 13.370 13.285 8.471 16.678 20.344 0.000 19.489 15.345 17.302	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	C H26 N5 C10 H18 C10 H26 C13 H14 C13 H22 C17 H18 C18 H14 C18 H22 C2 H22 N C2 H30 N C2 H30 N C21 H18 C3 H26 N C5 H18 N	0 010 S2 N7 04 S N3 03 S3 N7 04 N3 03 S2 N 06 N5 02 N 0 S2 15 05 S4 N 0 S 19 06 S 19 06 S 19 06 S 19 06 S			
		332.1109 332.1128	1.6 -0.3	4.8 -0.9	0.5 0.5	253.4 250.8	15.903 13.271	0.00 0.00	C6 H22 N C9 H22 N	19 0 S3 13 08 S			

Page 1

21-Jul-2022 1: TOF MS ES+

4.17e+003

Page 1

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv070.							
Identification code	22srv070						
Empirical formula	C ₂₁ H ₁₇ NOS						
Formula weight	331.42						
Temperature/K	120.00						
Crystal system	monoclinic						
Space group	P2 ₁ /n						
a/Å	13.9177(3)						
b/Å	9.5917(2)						
c/Å	14.2503(3)						
α/°	90						
β/°	119.0699(8)						
γ/°	90						
Volume/Å ³	1662.69(6)						
Z	4						
ρ _{calc} g/cm ³	1.324						
µ/mm ⁻¹	0.201						

F(000)	696.0
Crystal size/mm ³	0.19 × 0.18 × 0.06
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.36 to 59.994
Index ranges	-19 ≤ h ≤ 19, -13 ≤ k ≤ 13, -20 ≤ l ≤ 20
Reflections collected	38796
Independent reflections	4818 [R _{int} = 0.0385, R _{sigma} = 0.0219]
Data/restraints/parameters	4818/0/285
Goodness-of-fit on F ²	1.068
Final R indexes [I>=2σ (I)]	R ₁ = 0.0404, wR ₂ = 0.0956
Final R indexes [all data]	$R_1 = 0.0451$, $wR_2 = 0.0981$
Largest diff. peak/hole / e Å ⁻³	0.38/-0.34

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv070. U_{eq} is defined as 1/3 of the trace of the orthogonalised

	U _{II} tensor.								
Atom	x	У	z	U(eq)					
S1	9833.3(2)	2116.8(3)	3122.8(2)	21.61(9)					
01	5139.9(7)	1538.0(10)	2242.0(7)	22.29(18)					
N1	6939.1(8)	1142.3(10)	3531.0(8)	17.37(19)					
C1	5976.7(9)	1868.1(12)	3068.2(9)	16.7(2)					
C2	7178.6(10)	88.8(13)	2940.8(11)	23.6(2)					
C3	7778.4(11)	768.8(14)	2401.8(11)	24.8(3)					
C4	8685.6(9)	1659.6(12)	3216.7(9)	18.1(2)					
C5	10373.7(10)	3022.4(13)	4310.3(10)	22.7(2)					
C6	9710.1(9)	2977.0(13)	4762.5(10)	19.7(2)					
C7	8730.7(9)	2192.6(11)	4126.8(9)	15.8(2)					
C8	7848.2(9)	1885.4(11)	4432.1(9)	15.2(2)					
C9	7260.1(9)	3164.7(11)	4520.3(8)	14.7(2)					
C10	7650.7(9)	4257.5(12)	5252.0(9)	17.9(2)					
C11	6913.8(10)	5301.1(13)	5157.8(10)	21.2(2)					
C12	5810.7(10)	5261.9(14)	4360.1(10)	22.5(2)					
C13	5418.9(9)	4157.4(13)	3640.2(9)	20.0(2)					
C14	6158.5(9)	3121.2(12)	3737.8(8)	16.0(2)					
C15	8356.6(9)	1000.4(13)	5478.5(9)	20.2(2)					
C16	7576.1(10)	697.8(14)	5902.6(10)	24.9(3)					
C17	6919.8(13)	-492.7(18)	5590.4(14)	39.0(4)					
C18	6185.9(16)	-729(2)	5983.0(17)	57.6(6)					
C19	6095.3(14)	208(3)	6665.6(15)	56.5(6)					

C20	6741.3(13)	1389(2)	6979.5(13)	42.3(4)
C21	7485.9(11)	1623.3(17)	6610.4(10)	28.8(3)

Table	Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv070. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}]_{14}+2hka^{*}h^{*}]_{14}+1$						
Atom	U 11	U ₂₂	U ₃₃	U23	U ₁₃	U12	
S1	20.94(15)	22.09(15)	25.91(16)	-0.05(11)	14.62(12)	1.80(11)	
01	15.3(4)	28.6(5)	16.2(4)	-0.6(3)	2.4(3)	-5.8(3)	
N1	14.5(4)	16.4(4)	16.7(4)	-0.9(3)	4.0(3)	-3.7(3)	
C1	14.0(5)	20.2(5)	14.5(5)	2.4(4)	6.0(4)	-4.2(4)	
C2	20.8(5)	17.0(5)	27.7(6)	-5.5(5)	7.5(5)	-3.7(4)	
C3	23.0(6)	25.8(6)	24.6(6)	-10.0(5)	10.7(5)	-3.0(5)	
C4	16.7(5)	16.9(5)	19.8(5)	-0.5(4)	8.2(4)	0.8(4)	
C5	17.9(5)	23.4(6)	26.8(6)	-1.3(5)	10.9(5)	-4.3(4)	
C6	16.5(5)	21.0(5)	19.9(5)	-1.7(4)	7.4(4)	-4.1(4)	
C7	14.2(5)	15.0(5)	16.6(5)	1.4(4)	6.2(4)	-0.7(4)	
C8	11.8(4)	16.4(5)	13.8(5)	0.8(4)	3.4(4)	-2.6(4)	
C9	13.6(5)	17.5(5)	12.7(4)	2.9(4)	6.1(4)	-1.6(4)	
C10	15.4(5)	21.6(5)	14.9(5)	0.5(4)	6.0(4)	-1.9(4)	
C11	22.4(5)	23.7(6)	18.1(5)	-2.3(4)	10.4(4)	-0.8(4)	
C12	20.2(5)	27.4(6)	22.7(6)	2.2(5)	12.6(5)	3.8(5)	
C13	14.0(5)	28.5(6)	17.4(5)	3.2(4)	7.5(4)	0.6(4)	
C14	13.1(5)	21.6(5)	12.6(4)	2.8(4)	5.7(4)	-2.5(4)	
C15	15.5(5)	21.7(5)	18.8(5)	6.7(4)	4.7(4)	0.0(4)	
C16	16.5(5)	31.2(6)	20.3(6)	14.3(5)	3.7(4)	-1.6(5)	
C17	35.0(8)	37.0(8)	36.8(8)	13.3(7)	10.9(7)	-12.6(6)	
C18	39.9(9)	69.7(13)	50.7(11)	25.0(10)	12.3(8)	-27.3(9)	
C19	33.1(8)	98.0(17)	39.2(9)	27.5(10)	18.3(7)	-12.9(9)	
C20	28.0(7)	74.5(13)	25.8(7)	19.9(8)	14.3(6)	3.2(7)	
C21	20.2(6)	43.8(8)	19.9(6)	12.5(5)	7.8(5)	-0.1(5)	

Table 4 Bond Lengths for 22srv070.							
Atom	Atom	Length/Å		Atom	Atom	Length/Å	
S1	C4	1.7232(12)		C8	C15	1.5555(15)	
S1	C5	1.7167(13)		C9	C10	1.3894(16)	
01	C1	1.2289(13)		C9	C14	1.3909(14)	
N1	C1	1.3620(14)		C10	C11	1.3922(17)	
N1	C2	1.4533(16)		C11	C12	1.3982(17)	
N1	C8	1.4761(14)		C12	C13	1.3886(18)	
C1	C14	1.4780(16)		C13	C14	1.3884(16)	
C2	C3	1.5282(19)		C15	C16	1.5057(17)	
C3	C4	1.4994(17)		C16	C17	1.393(2)	

C4	C7	1.3668(16)	C16	C21	1.394(2)
C5	C6	1.3596(17)	C17	C18	1.401(3)
C6	C7	1.4300(15)	C18	C19	1.374(4)
C7	C8	1.5177(15)	C19	C20	1.379(3)
C8	C9	1.5138(16)	C20	C21	1.3894(19)

Table 5 Bond Angles for 22srv070.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C5	S1	C4	91.77(6)		C9	C8	C7	114.33(9)
C1	N1	C2	121.55(10)		C9	C8	C15	112.03(9)
C1	N1	C8	113.59(9)		C10	C9	C8	130.06(10)
C2	N1	C8	119.89(9)		C10	C9	C14	120.08(10)
01	C1	N1	125.69(11)		C14	C9	C8	109.81(9)
01	C1	C14	127.83(11)		C9	C10	C11	117.96(10)
N1	C1	C14	106.46(9)		C10	C11	C12	121.70(11)
N1	C2	C3	109.21(10)		C13	C12	C11	120.20(11)
C4	C3	C2	108.30(10)		C14	C13	C12	117.79(11)
C3	C4	S1	123.26(9)		C9	C14	C1	108.56(10)
C7	C4	S1	111.20(8)		C13	C14	C1	129.16(10)
C7	C4	C3	125.53(11)		C13	C14	C9	122.25(11)
C6	C5	S1	112.20(9)		C16	C15	C8	114.15(9)
C5	C6	C7	112.00(11)		C17	C16	C15	121.25(14)
C4	C7	C6	112.83(10)		C17	C16	C21	118.50(14)
C4	C7	C8	121.93(10)		C21	C16	C15	120.24(12)
C6	C7	C8	125.14(10)		C16	C17	C18	119.81(19)
N1	C8	C7	108.39(9)		C19	C18	C17	120.80(18)
N1	C8	C9	101.19(8)		C18	C19	C20	119.83(16)
N1	C8	C15	111.64(9)		C19	C20	C21	119.89(19)
C7	C8	C15	109.04(9)		C20	C21	C16	121.13(15)

	Table 6 Torsion Angles for 22srv070.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
C1	C14	C9	C8	-2.77(12)		C8	N1	C1	01	172.01(10)
C1	C14	C9	C10	179.26(10)		C8	C7	C4	S1	-176.93(8)
C2	N1	C1	01	17.03(17)		C8	C9	C14	C13	179.19(10)
C2	C3	C4	S1	156.63(9)		C8	C15	C16	C17	90.48(15)
C2	C3	C4	C7	-22.20(17)		C8	C15	C16	C21	-88.63(14)
C3	C2	N1	C1	91.07(13)		C9	C8	N1	C1	4.79(12)
C3	C2	N1	C8	-62.38(14)		C9	C8	N1	C2	160.23(10)
C3	C4	C7	C6	178.63(11)		C9	C8	C15	C16	48.97(14)
C3	C4	C7	C8	2.03(18)		C9	C14	C1	01	-172.87(11)
C4	C3	C2	N1	47.64(13)		C9	C14	C1	N1	5.68(12)

-									
C4	C7	C8	N1	-8.00(14)	C10	C9	C8	N1	176.76(11)
C4	C7	C8	C9	-120.01(12)	C10	C9	C8	C15	57.71(15)
C4	C7	C8	C15	113.73(12)	C10	C9	C14	C13	1.22(16)
C6	C7	C4	S1	-0.32(13)	C13	C14	C1	01	4.99(19)
C6	C7	C8	N1	175.82(10)	C13	C14	C1	N1	-176.45(11)
C6	C7	C8	C9	63.82(14)	C14	C1	N1	C2	-161.57(10)
C6	C7	C8	C15	-62.45(14)	C14	C1	N1	C8	-6.58(12)
C7	C8	N1	C1	-115.77(10)	C14	C9	C8	N1	-0.94(11)
C7	C8	N1	C2	39.68(13)	C14	C9	C8	C15	-119.99(10)
C7	C8	C9	C10	-66.98(15)	C15	C8	N1	C1	124.11(10)
C7	C8	C9	C14	115.32(10)	C15	C8	N1	C2	-80.44(13)
C7	C8	C15	C16	176.55(10)	C16	C15	C8	N1	-63.72(14)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters							
(Å ² ×10 ³) for 22srv070.							
Atom	x	У	Z	U(eq)			
H2A	7642(14)	-633(19)	3456(14)	32(4)			
H2B	6484(15)	-324(19)	2403(14)	33(4)			
H3A	7244(13)	1354(18)	1780(14)	28(4)			
H3B	8063(14)	60(20)	2121(14)	34(4)			
H5	11061(14)	3461(18)	4556(14)	29(4)			
H6	9878(14)	3425(18)	5431(14)	29(4)			
H10	8392(13)	4281(16)	5813(13)	21(4)			
H11	7171(13)	6043(18)	5655(13)	27(4)			
H12	5316(14)	6005(19)	4314(14)	32(4)			
H13	4656(14)	4107(18)	3090(13)	30(4)			
H15A	8989(13)	1527(17)	6020(12)	22(4)			
H15B	8626(13)	164(19)	5338(13)	27(4)			
H17	6973(15)	-1110(20)	5116(15)	35(5)			
H18	5776(19)	-1500(30)	5759(18)	60(6)			
H19	5585(19)	70(30)	6945(18)	63(7)			
H20	6683(18)	2060(20)	7471(19)	57(6)			
H21	7940(14)	2469(19)	6836(14)	30(4)			

¹³C:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 5

Monoisotopic Mass, Even Electron Ions 131 formula(e) evaluated with 2 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-4 O: 0-4 IRB_Cycloadduct_Max 468 (4.020) Cm (463:481)

100-	395.1742								4.69e+004
-									
%	396.1787					789.3469	9).3481		
- - 336.1 0	147 417.1584 4 400 450	64.1614 	560.1683 550	640.7262 600 650	730.28	302 750 800	811.3251 813.3339 8 850	91.2711 ⁹³⁶	.2310
Minimum: Maximum:		3.0	5.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (1	Norm) Form	ula	
395.1742	395.1760 395.1719	-1.8 2.3	-4.6 5.8	16.5 12.5	815.3 821.2	0.0 5.9	C26 C21	H23 N2 H23 N4	02

1: TOF MS ES+

PerkinElmer Spectrum Version 10.5.2 21 October 2022 08:16

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv271.						
Identification code	22srv271					
Empirical formula	$C_{26}H_{22}N_2O_2$					
Formula weight	394.45					
Temperature/K	120.00					
Crystal system	monoclinic					
Space group	P2 ₁ /n					
a/Å	11.4584(4)					
b/Å	13.8652(5)					
c/Å	12.6042(4)					
α/°	90					
β/°	103.3267(11)					
γ/°	90					
Volume/Å ³	1948.54(12)					
Z	4					
$\rho_{calc}g/cm^3$	1.345					
µ/mm⁻¹	0.086					
F(000)	832.0					

Crystal size/mm ³	0.18 × 0.11 × 0.01
Radiation	ΜοΚα (λ = 0.71073)
20 range for data collection/°	4.334 to 59.992
Index ranges	-16 ≤ h ≤ 16, -19 ≤ k ≤ 19, -17 ≤ l ≤ 17
Reflections collected	41416
Independent reflections	5689 [R _{int} = 0.0632, R _{sigma} = 0.0482]
Data/restraints/parameters	5689/0/359
Goodness-of-fit on F ²	1.060
Final R indexes [I>=2σ (I)]	$R_1 = 0.0524$, $wR_2 = 0.1023$
Final R indexes [all data]	R ₁ = 0.0788, wR ₂ = 0.1127
Largest diff. peak/hole / e Å ⁻³	0.29/-0.26

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for 22srv271. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_U tensor.

		Uij tensor.		
Atom	X	У	Z	U(eq)
01	5608.1(9)	3186.6(8)	5477.1(8)	20.6(2)
02	7400.4(10)	4719.7(8)	604.4(10)	26.4(3)
N1	3988.8(10)	3684.7(9)	4136.7(10)	16.5(2)
N2	999.9(11)	2877.1(9)	2527.0(10)	18.2(3)
C1	4897.2(12)	3073.1(10)	4584.4(11)	16.0(3)
C2	3544.7(14)	4441.4(11)	4753.1(13)	19.7(3)
C3	2412.9(13)	4101.9(12)	5101.3(12)	19.5(3)
C4	1592.4(12)	3604.4(10)	4165.9(11)	15.8(3)
C5	318.6(13)	3453.7(10)	3951.2(12)	16.7(3)
C6	-568.1(14)	3658.6(11)	4521.7(13)	22.0(3)
C7	-1746.8(15)	3406.1(12)	4059.5(14)	25.9(4)
C8	-2060.9(15)	2960.3(12)	3038.3(14)	26.5(4)
C9	-1208.0(14)	2752.5(12)	2453.7(14)	23.6(3)
C10	-16.2(13)	2999.0(10)	2923.4(12)	18.1(3)
C11	1966.7(12)	3243.3(10)	3289.4(11)	15.4(3)
C12	3213.4(12)	3320.8(10)	3107.2(11)	14.8(3)
C13	3805.5(12)	2364.1(10)	2982.2(11)	14.9(3)
C14	3470.1(13)	1652.0(11)	2194.8(12)	18.1(3)
C15	4189.1(14)	834.0(11)	2275.2(13)	19.9(3)
C16	5229.7(14)	732.7(11)	3099.8(13)	21.5(3)
C17	5558.3(13)	1444.3(11)	3890.6(12)	19.4(3)
C18	4823.4(12)	2252.2(10)	3820.7(11)	15.6(3)
C19	3188.4(13)	4024.3(11)	2140.4(12)	18.5(3)
C20	4344.0(13)	4169.5(10)	1780.3(11)	16.5(3)

C21	5121.1(14)	4936.0(11)	2165.2(12)	20.4(3)
C22	6135.9(14)	5097.5(12)	1768.0(13)	22.7(3)
C23	6392.5(13)	4491.5(11)	970.4(12)	19.2(3)
C24	5644.1(14)	3722.4(11)	582.1(13)	20.7(3)
C25	4627.7(14)	3576.2(11)	987.1(12)	20.9(3)
C26	7701.5(16)	4098.9(13)	-189.8(15)	27.4(4)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv271. The Anisotropic										
disp	displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂				
01	17.4(5)	25.3(6)	16.4(5)	0.4(4)	-1.8(4)	-1.3(4)				
02	20.2(6)	29.5(6)	32.4(6)	-5.9(5)	11.7(5)	-4.9(5)				
N1	14.9(6)	17.5(6)	15.2(6)	-2.8(5)	-0.6(5)	0.8(5)				
N2	14.3(6)	23.4(7)	16.2(6)	-2.9(5)	2.3(5)	-1.0(5)				
C1	13.9(6)	18.8(7)	15.2(7)	2.5(5)	2.9(5)	-1.9(5)				
C2	19.4(7)	18.3(7)	19.1(7)	-5.3(6)	-0.1(6)	0.8(6)				
C3	20.1(7)	21.3(8)	16.1(7)	-3.1(6)	2.6(6)	3.1(6)				
C4	16.7(7)	14.6(7)	15.4(7)	3.3(5)	2.1(5)	2.3(5)				
C5	18.2(7)	14.1(7)	17.6(7)	3.4(5)	3.7(5)	2.6(5)				
C6	23.9(8)	21.6(8)	22.8(8)	4.7(6)	9.8(6)	5.0(6)				
C7	22.2(8)	24.9(8)	33.5(9)	8.6(7)	12.2(7)	3.5(6)				
C8	17.1(8)	27.0(9)	34.4(9)	8.2(7)	4.3(7)	-1.4(6)				
C9	20.3(8)	24.3(8)	24.7(8)	0.7(7)	1.8(6)	-3.5(6)				
C10	17.5(7)	17.2(7)	19.5(7)	2.9(6)	3.7(6)	0.7(5)				
C11	15.7(6)	14.2(6)	15.0(6)	1.6(5)	0.8(5)	1.3(5)				
C12	13.8(6)	17.0(7)	12.2(6)	-0.7(5)	0.3(5)	-0.4(5)				
C13	14.6(6)	16.1(7)	14.9(7)	1.4(5)	5.2(5)	-0.7(5)				
C14	16.3(7)	21.7(7)	15.9(7)	-0.9(6)	3.2(6)	-1.7(6)				
C15	21.6(7)	19.5(7)	20.1(7)	-2.5(6)	8.0(6)	-2.3(6)				
C16	21.6(7)	18.6(7)	25.5(8)	0.8(6)	7.6(6)	2.3(6)				
C17	15.6(7)	20.6(7)	21.5(7)	3.3(6)	3.2(6)	2.0(6)				
C18	14.6(6)	17.4(7)	14.9(7)	2.2(5)	3.5(5)	-0.7(5)				
C19	17.1(7)	21.0(8)	16.8(7)	3.3(6)	2.7(6)	2.2(6)				
C20	16.9(7)	17.3(7)	14.9(7)	3.0(5)	2.7(5)	1.5(5)				
C21	23.1(8)	19.0(7)	18.9(7)	-4.4(6)	4.7(6)	0.4(6)				
C22	20.5(8)	22.2(8)	24.8(8)	-6.0(6)	3.8(6)	-6.4(6)				
C23	15.6(7)	21.1(7)	21.3(7)	0.9(6)	5.1(6)	-0.4(6)				
C24	24.6(8)	19.0(7)	19.4(7)	-5.2(6)	7.0(6)	-1.9(6)				
C25	23.2(8)	19.0(7)	20.5(7)	-2.3(6)	5.1(6)	-5.8(6)				
C26	27.8(9)	27.5(9)	30.8(9)	0.7(7)	14.5(7)	3.7(7)				

Table 4 Bond Lengths for 22srv271.								
Atom	Atom	Length/Å		Atom	Atom	Length/Å		
01	C1	1.2376(16)		C9	C10	1.400(2)		
02	C23	1.3756(17)		C11	C12	1.5020(19)		
02	C26	1.422(2)		C12	C13	1.5145(19)		
N1	C1	1.3603(18)		C12	C19	1.556(2)		
N1	C2	1.4647(19)		C13	C14	1.390(2)		
N1	C12	1.4821(17)		C13	C18	1.3905(19)		
N2	C10	1.3791(19)		C14	C15	1.392(2)		
N2	C11	1.3848(18)		C15	C16	1.397(2)		
C1	C18	1.480(2)		C16	C17	1.391(2)		
C2	C3	1.536(2)		C17	C18	1.392(2)		
C3	C4	1.496(2)		C19	C20	1.509(2)		
C4	C5	1.4371(19)		C20	C21	1.399(2)		
C4	C11	1.369(2)		C20	C25	1.390(2)		
C5	C6	1.402(2)		C21	C22	1.386(2)		
C5	C10	1.412(2)		C22	C23	1.393(2)		
C6	C7	1.387(2)		C23	C24	1.385(2)		
C7	C8	1.398(2)		C24	C25	1.390(2)		
C8	C9	1.383(2)						

Table 5 Bond Angles for 22srv271.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C23	02	C26	117.11(12)		N1	C12	C13	101.35(11)
C1	N1	C2	123.56(12)		N1	C12	C19	111.80(12)
C1	N1	C12	113.45(12)		C11	C12	C13	114.70(11)
C2	N1	C12	119.79(11)		C11	C12	C19	108.55(11)
C10	N2	C11	108.11(12)		C13	C12	C19	113.29(11)
01	C1	N1	125.32(14)		C14	C13	C12	129.77(13)
01	C1	C18	128.02(13)		C14	C13	C18	120.60(13)
N1	C1	C18	106.63(12)		C18	C13	C12	109.64(12)
N1	C2	C3	110.59(12)		C13	C14	C15	117.73(14)
C4	C3	C2	109.56(12)		C14	C15	C16	121.71(14)
C5	C4	C3	129.94(13)		C17	C16	C15	120.37(14)
C11	C4	C3	123.21(13)		C16	C17	C18	117.74(14)
C11	C4	C5	106.76(12)		C13	C18	C1	108.70(12)
C6	C5	C4	134.30(14)		C13	C18	C17	121.82(13)
C6	C5	C10	119.02(14)		C17	C18	C1	129.39(13)
C10	C5	C4	106.68(12)		C20	C19	C12	117.40(12)
C7	C6	C5	118.94(15)		C21	C20	C19	121.96(13)
C6	C7	C8	121.17(15)		C25	C20	C19	120.28(13)
C9	C8	C7	121.26(15)		C25	C20	C21	117.60(13)
C8	C9	C10	117.65(15)		C22	C21	C20	121.14(14)
N2	C10	C5	108.28(13)		C21	C22	C23	119.84(14)

N2	C10	C9	129.76(14)	02	C23	C22	115.89(13)
C9	C10	C5	121.96(14)	02	C23	C24	123.90(14)
N2	C11	C12	123.85(12)	C24	C23	C22	120.20(14)
C4	C11	N2	110.17(13)	C23	C24	C25	119.04(14)
C4	C11	C12	125.68(13)	C20	C25	C24	122.18(14)
N1	C12	C11	106.85(11)				

Table 6 Hydrogen Bonds for 22srv271.							
D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/°							
N2	H2	01 ¹	0.913(19)	2.03(2)	2.9186(16)	164.0(17)	

¹-1/2+X,1/2-Y,-1/2+Z

	Table 7 Selected Torsion Angles for 22srv271.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C12	C11	N2	-176.34(12)		C12	C19	C20	C21	-95.00(17)
C1	C18	C13	C12	4.85(15)		C12	C19	C20	C25	89.63(17)
C1	C18	C13	C14	-174.99(12)		C13	C12	N1	C1	-0.30(15)
C2	N1	C1	01	-15.1(2)		C13	C12	N1	C2	-160.78(12)
C2	C3	C4	C5	-156.74(14)		C13	C12	C11	N2	-64.89(18)
C2	C3	C4	C11	19.26(19)		C13	C12	C19	C20	-48.39(17)
C3	C2	N1	C1	-98.24(16)		C13	C18	C1	01	172.82(14)
C3	C2	N1	C12	60.17(17)		C13	C18	C1	N1	-4.94(15)
C3	C4	C11	N2	-176.42(13)		C14	C13	C12	N1	176.94(14)
C3	C4	C11	C12	-2.6(2)		C14	C13	C12	C19	-63.15(19)
C4	C3	C2	N1	-44.07(16)		C14	C13	C18	C17	1.7(2)
C4	C11	C12	N1	10.62(19)		C17	C18	C1	01	-3.5(2)
C4	C11	C12	C13	122.07(15)		C17	C18	C1	N1	178.69(14)
C4	C11	C12	C19	-110.10(15)		C18	C1	N1	C2	162.76(13)
C5	C4	C11	N2	0.38(16)		C18	C1	N1	C12	3.13(16)
C5	C4	C11	C12	174.22(13)		C18	C13	C12	N1	-2.88(14)
C11	C12	N1	C1	120.11(13)		C18	C13	C12	C19	117.03(13)
C11	C12	N1	C2	-40.37(16)		C19	C12	N1	C1	-121.27(13)
C11	C12	C13	C14	62.25(19)		C19	C12	N1	C2	78.25(16)
C11	C12	C13	C18	-117.57(13)		C19	C12	C11	N2	62.94(17)
C11	C12	C19	C20	-177.02(12)		C20	C19	C12	N1	65.37(16)
C12	N1	C1	01	-174.71(13)		C22	C23	02	C26	178.42(14)
C12	C13	C18	C17	-178.46(13)		C24	C23	02	C26	-2.5(2)

Table 8 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 22srv271.							
Atom	x	y ,	Z	U(eq)			
H2	1014(17)	2596(14)	1875(16)	35(5)			
H2A	3346(15)	5035(13)	4276(14)	23(4)			
H2B	4164(15)	4590(12)	5387(14)	19(4)			
H3A	2008(16)	4684(14)	5352(15)	32(5)			
H3B	2645(16)	3670(13)	5739(14)	25(5)			
H6	-346(16)	3991(13)	5261(15)	28(5)			
H7	-2364(17)	3536(13)	4444(16)	34(5)			
H8	-2899(17)	2794(13)	2729(14)	31(5)			
Н9	-1396(15)	2452(12)	1733(14)	22(4)			
H14	2727(15)	1723(12)	1592(14)	21(4)			
H15	3988(15)	303(12)	1734(14)	23(4)			
H16	5735(16)	165(13)	3135(14)	29(5)			
H17	6274(17)	1397(13)	4492(15)	32(5)			
H19A	2559(16)	3773(12)	1516(14)	25(5)			
H19B	2885(14)	4648(13)	2350(13)	21(4)			
H21	4926(16)	5384(13)	2678(15)	30(5)			
H22	6673(15)	5644(13)	2013(14)	24(4)			
H24	5789(15)	3331(12)	1(14)	22(4)			
H25	4072(15)	3045(13)	694(14)	26(5)			
H26A	7040(17)	4077(13)	-870(15)	30(5)			
H26B	8494(18)	4377(15)	-339(16)	42(6)			
H26C	7863(16)	3425(14)	108(14)	28(5)			

12*b*-benzyl-2,3-dimethoxy-5,12*b*-dihydroisoindolo[1,2-*a*]isoquinolin-8(6*H*)-one **86a** ¹H:

¹³C:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 2425 formula(e) evaluated with 16 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 S: 0-4 21-Jul-2022 MTF_MTF7C_179352 487 (4.096) Cm (485:491)

100_294.1160	386.1774	1			7	771.342779	3.3212 ⁸⁷¹	.2701 ₉₈₃	.3956		1178.4894	1258.4280
300	400	500	60	00	700	800	9	00	1000	1100	1200	<u>-</u> 11//2
Minimum: Maximum:		3.0	5.0	-10.0 100.0								
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula				
386.1774	386.1757 386.1775 386.1775 386.1788 386.1783 386.1797 386.1792 386.1750 386.1750 386.1758 386.1758 386.1756 386.1756 386.1776 386.1777 386.1779 386.1748	1.7 2.2 -0.1 -1.4 -0.9 -2.3 -1.8 2.4 1.1 1.6 -1.6 1.8 -0.8 -0.3 -1.6 2.6	4.4 5.7 -0.3 -2.3 -6.0 -4.7 6.2 2.8 4.1 -4.1 4.7 -2.1 -0.8 -4.1 67	$ \begin{array}{r} 1.5 \\ -4.5 \\ 1.5 \\ 6.5 \\ 0.5 \\ 5.5 \\ -0.5 \\ 5.5 \\ 10.5 \\ 4.5 \\ 9.5 \\ 14.5 \\ -2.5 \\ -8.5 \\ -3.5 \\ 2.5 \\ \end{array} $	609.4 616.8 599.5 598.2 609.9 609.3 617.2 602.1 599.8 614.9 601.4 581.3 605.8 613.6 613.5 601.9	28.052 35.459 18.157 16.845 28.608 28.011 35.891 20.801 18.489 33.547 20.113 0.000 24.519 32.329 32.216	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0	C10 H28 C10 H36 C13 H28 C14 H24 C14 H32 C15 H28 C15 H36 C17 H28 C18 H24 C18 H32 C22 H28 C25 H24 C6 H28 H C6 H36 H C7 H32 H	N9 03 S2 N5 02 S4 N3 010 N7 06 N3 05 S2 N7 0 S2 N3 S4 N3 05 S N7 0 S N3 S3 N 03 S N 03 S N 03 S N 03 S S 03 S S 07 S3 J9 03 S3 J9 03 S3			

21-Jul-2022 1: TOF MS ES+ 2.58e+005

PerkinElmer Spectrum Version 10.5.2 28 June 2022 13:01

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv120.						
Identification code	22srv120					
Empirical formula	C ₂₅ H ₂₃ NO ₃					
Formula weight	385.44					
Temperature/K	120.00					
Crystal system	monoclinic					
Space group	P2 ₁ /n					
a/Å	8.5911(2)					
b/Å	16.9315(4)					
c/Å	13.5723(4)					
α/°	90					
β/°	97.5953(11)					
γ/°	90					
Volume/Å ³	1956.91(9)					
Z	4					
$\rho_{calc}g/cm^3$	1.308					
µ/mm ⁻¹	0.086					
F(000)	816.0					

Crystal size/mm ³	0.24 × 0.18 × 0.16		
Radiation	Μο Κα (λ = 0.71073)		
20 range for data collection/°	5.354 to 60		
Index ranges	-12 ≤ h ≤ 12, -23 ≤ k ≤ 23, -19 ≤ l ≤ 19		
Reflections collected	46441		
Independent reflections	5662 [R _{int} = 0.0434, R _{sigma} = 0.0248]		
Data/restraints/parameters	5662/0/354		
Goodness-of-fit on F ²	1.028		
Final R indexes [I>=2σ (I)]	R ₁ = 0.0458, wR ₂ = 0.1126		
Final R indexes [all data]	R ₁ = 0.0529, wR ₂ = 0.1172		
Largest diff. peak/hole / e Å ⁻³	0.40/-0.20		

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters ($Å^2$ ×10³) for 22srv120. U_{eq} is defined as 1/3 of the trace of the orthogonalised U_{II} tensor.

U _{IJ} tensor.					
Atom	x	У	Z	U(eq)	
01	5603.0(11)	2044.8(5)	2419.5(6)	25.80(19)	
02	6849.4(10)	6068.5(5)	5381.6(7)	24.23(18)	
03	8667.0(10)	5212.2(5)	6620.9(6)	23.17(18)	
N1	7645.2(11)	2749.4(5)	3266.3(6)	16.65(18)	
C1	6449.6(13)	2215.5(6)	3189.8(8)	18.0(2)	
C2	7663.0(14)	3360.3(7)	2517.5(8)	21.2(2)	
C3	6568.9(15)	4012.9(7)	2773.3(9)	22.7(2)	
C4	7041.7(12)	4269.5(6)	3840.7(8)	18.0(2)	
C5	6644.6(13)	5036.0(7)	4120.4(9)	20.5(2)	
C6	7159.5(13)	5332.7(6)	5052.7(9)	19.2(2)	
C7	8132.9(13)	4860.3(6)	5734.0(8)	17.8(2)	
C8	8484.3(12)	4095.6(6)	5477.1(8)	17.0(2)	
C9	7924.8(12)	3787.6(6)	4536.8(8)	15.75(19)	
C10	8313.6(12)	2931.4(6)	4297.1(7)	14.83(19)	
C11	7461.1(12)	2332.3(6)	4865.0(7)	14.98(19)	
C12	7637.5(13)	2162.3(6)	5876.4(8)	18.2(2)	
C13	6683.4(14)	1578.6(7)	6203.2(8)	22.0(2)	
C14	5564.7(15)	1182.7(7)	5540.1(9)	25.0(2)	
C15	5398.8(14)	1348.2(7)	4532.9(9)	22.7(2)	
C16	6382.8(12)	1916.0(6)	4209.4(8)	16.9(2)	
C17	6004.3(16)	6588.5(8)	4674.3(12)	31.1(3)	
C18	9872.0(15)	4792.8(7)	7226.3(9)	23.6(2)	
C19	10114.9(13)	2793.4(6)	4449.4(9)	18.9(2)	
C20	10610.3(12)	1990.7(6)	4124.8(8)	17.0(2)	
C21	10809.1(14)	1354.2(7)	4777.4(9)	23.5(2)	
-----	-------------	-----------	------------	---------	
C22	11275.8(15)	618.3(7)	4468.1(11)	29.6(3)	
C23	11534.7(14)	506.7(8)	3490.8(11)	30.4(3)	
C24	11342.6(15)	1131.5(8)	2836.0(10)	29.7(3)	
C25	10891.1(14)	1867.2(7)	3147.4(9)	24.1(2)	

Table 3 disp	Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv120. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^*b^*U_{12}+]$.							
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂		
01	31.5(5)	25.4(4)	17.9(4)	0.3(3)	-6.6(3)	-8.5(3)		
02	22.5(4)	14.8(4)	35.7(5)	-3.8(3)	4.9(3)	2.7(3)		
03	32.2(4)	16.8(4)	20.3(4)	-5.4(3)	2.6(3)	0.2(3)		
N1	20.9(4)	15.3(4)	13.3(4)	-0.1(3)	0.4(3)	-2.8(3)		
C1	21.1(5)	15.5(5)	16.6(5)	-0.5(4)	-0.3(4)	-1.2(4)		
C2	28.6(6)	19.0(5)	15.9(5)	2.2(4)	2.1(4)	-3.6(4)		
C3	26.6(6)	19.6(5)	20.2(5)	2.4(4)	-3.5(4)	-0.5(4)		
C4	17.1(5)	16.3(5)	20.1(5)	0.6(4)	0.8(4)	-1.2(4)		
C5	17.7(5)	16.5(5)	26.7(5)	2.4(4)	1.2(4)	1.1(4)		
C6	16.7(5)	14.1(5)	28.1(5)	-1.5(4)	7.4(4)	-0.5(4)		
C7	19.8(5)	15.5(5)	18.9(5)	-2.5(4)	5.2(4)	-2.2(4)		
C8	19.1(5)	14.4(4)	17.3(5)	-1.0(4)	2.2(4)	-0.6(4)		
C9	15.4(4)	13.8(4)	18.0(5)	-0.6(3)	2.0(4)	-0.9(3)		
C10	16.1(4)	13.9(4)	14.0(4)	-1.8(3)	0.0(3)	-1.2(3)		
C11	15.6(4)	13.3(4)	15.7(4)	-0.6(3)	0.7(3)	1.1(3)		
C12	20.9(5)	17.2(5)	15.7(5)	-1.2(4)	-0.5(4)	2.3(4)		
C13	29.9(6)	19.9(5)	16.7(5)	1.8(4)	4.8(4)	2.1(4)		
C14	30.4(6)	22.6(5)	23.1(5)	1.8(4)	7.2(4)	-7.0(4)		
C15	24.9(5)	21.8(5)	21.0(5)	-0.9(4)	2.3(4)	-7.7(4)		
C16	18.3(5)	16.2(5)	15.8(4)	-0.3(3)	0.8(4)	-1.5(4)		
C17	26.7(6)	18.6(6)	46.9(8)	-1.2(5)	0.7(5)	6.7(4)		
C18	32.1(6)	20.0(5)	18.1(5)	-4.0(4)	1.3(4)	-3.6(4)		
C19	16.0(5)	17.5(5)	22.6(5)	-4.5(4)	0.6(4)	-1.8(4)		
C20	13.5(4)	17.5(5)	19.9(5)	-2.6(4)	1.6(4)	-1.5(3)		
C21	20.9(5)	26.6(6)	23.5(5)	3.7(4)	5.4(4)	2.9(4)		
C22	21.9(5)	21.2(6)	47.3(8)	8.1(5)	9.9(5)	2.5(4)		
C23	19.3(5)	22.3(6)	49.4(8)	-11.7(5)	4.0(5)	0.6(4)		
C24	25.4(6)	37.8(7)	25.4(6)	-11.3(5)	1.4(5)	7.4(5)		
C25	24.3(5)	27.7(6)	20.9(5)	1.1(4)	5.4(4)	5.2(4)		

Table 4 Bond Lengths for 22srv120.							
Atom Atom Length/Å Atom Atom Length/Å							
O1 C1 1.2267(13) C9 C10 1.5322(14							

02	C6	1.3616(13)	C10	C11	1.5194(14)
02	C17	1.4281(16)	C10	C19	1.5516(15)
03	C7	1.3670(13)	C11	C12	1.3912(14)
03	C18	1.4234(15)	C11	C16	1.3887(14)
N1	C1	1.3619(14)	C12	C13	1.3932(16)
N1	C2	1.4516(14)	C13	C14	1.3980(17)
N1	C10	1.4730(13)	C14	C15	1.3842(16)
C1	C16	1.4820(15)	C15	C16	1.3892(15)
C2	C3	1.5203(17)	C19	C20	1.5074(15)
C3	C4	1.5156(15)	C20	C21	1.3912(16)
C4	C5	1.4068(15)	C20	C25	1.3950(15)
C4	C9	1.3945(14)	C21	C22	1.3906(17)
C5	C6	1.3789(16)	C22	C23	1.387(2)
C6	C7	1.4106(15)	C23	C24	1.377(2)
C7	C8	1.3844(14)	C24	C25	1.3871(17)
C8	C9	1.4034(14)			

	Table 5 Bond Angles for 22srv120.							
Atom	Atom	Atom	tom Angle/°		Atom	Atom	Atom	Angle/°
C6	02	C17	116.61(10)		N1	C10	C11	100.87(8)
C7	03	C18	115.14(8)		N1	C10	C19	110.60(8)
C1	N1	C2	119.82(9)		C9	C10	C19	110.84(8)
C1	N1	C10	113.99(8)		C11	C10	C9	113.00(8)
C2	N1	C10	118.49(8)		C11	C10	C19	111.78(8)
01	C1	N1	125.28(10)		C12	C11	C10	129.92(9)
01	C1	C16	128.57(10)		C16	C11	C10	109.83(9)
N1	C1	C16	106.13(9)		C16	C11	C12	120.24(10)
N1	C2	C3	107.10(9)		C11	C12	C13	117.96(10)
C4	C3	C2	109.33(9)		C12	C13	C14	121.24(10)
C5	C4	C3	118.58(10)		C15	C14	C13	120.73(11)
C9	C4	C3	122.21(10)		C14	C15	C16	117.69(10)
C9	C4	C5	119.12(10)		C11	C16	C1	108.65(9)
C6	C5	C4	121.59(10)		C11	C16	C15	122.07(10)
02	C6	C5	125.54(10)		C15	C16	C1	129.21(10)
02	C6	C7	115.39(10)		C20	C19	C10	114.33(8)
C5	C6	C7	119.04(10)		C21	C20	C19	121.87(10)
03	C7	C6	115.53(9)		C21	C20	C25	117.85(10)
03	C7	C8	124.78(10)		C25	C20	C19	120.27(10)
C8	C7	C6	119.69(10)		C22	C21	C20	121.19(11)
C7	C8	C9	121.11(10)		C23	C22	C21	120.00(12)
C4	C9	C8	119.27(9)		C24	C23	C22	119.46(12)
C4	C9	C10	121.61(9)		C23	C24	C25	120.50(12)
C8	C9	C10	119.12(9)		C24	C25	C20	120.99(11)
N1	C10	C9	109.34(8)					

	Table 6 Selected Torsion Angles for 22srv120.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
C1	C16	C11	C10	-0.47(12)		C9	C10	C11	C12	-67.85(14)
C1	C16	C11	C12	-179.74(9)		C9	C10	C11	C16	112.97(10)
C2	N1	C1	01	22.11(17)		C9	C10	C19	C20	-173.74(9)
C2	C3	C4	C5	155.35(10)		C10	N1	C1	01	171.09(11)
C2	C3	C4	C9	-21.20(15)		C10	C11	C16	C15	-177.69(10)
C3	C2	N1	C1	81.04(12)		C10	C19	C20	C21	-91.50(13)
C3	C2	N1	C10	-66.57(12)		C10	C19	C20	C25	88.76(13)
C3	C4	C9	C8	172.32(10)		C11	C10	N1	C1	7.04(11)
C3	C4	C9	C10	-7.07(16)		C11	C10	N1	C2	156.46(9)
C4	C3	C2	N1	53.54(12)		C11	C10	C19	C20	59.23(12)
C4	C9	C10	N1	1.01(13)		C11	C16	C1	01	-173.81(11)
C4	C9	C10	C11	-110.46(11)		C11	C16	C1	N1	4.80(12)
C4	C9	C10	C19	123.18(10)		C12	C11	C10	N1	175.55(10)
C5	C4	C9	C8	-4.21(15)		C12	C11	C10	C19	58.00(14)
C5	C4	C9	C10	176.39(9)		C12	C11	C16	C15	3.04(16)
C5	C6	02	C17	-4.26(16)		C15	C16	C1	01	3.1(2)
C6	C7	03	C18	-168.72(10)		C15	C16	C1	N1	-178.24(11)
C7	C6	02	C17	173.69(10)		C16	C1	N1	C2	-156.56(9)
C8	C7	03	C18	11.15(15)		C16	C1	N1	C10	-7.58(12)
C8	C9	C10	N1	-178.39(9)		C16	C11	C10	N1	-3.63(11)
C8	C9	C10	C11	70.14(12)		C16	C11	C10	C19	-121.18(9)
C8	C9	C10	C19	-56.21(12)		C19	C10	N1	C1	125.45(10)
C9	C10	N1	C1	-112.23(10)		C19	C10	N1	C2	-85.13(11)
C9	C10	N1	C2	37.19(12)		C20	C19	C10	N1	-52.31(12)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 22srv120							
Atom	x	<i>y</i>	Z	U(eq)			
H17A	5990(20)	7101(11)	5045(13)	37(4)			
H2A	8780(18)	3548(9)	2546(11)	25(4)			
H2B	7300(18)	3113(9)	1861(11)	22(4)			
H3A	5490(20)	3821(9)	2680(12)	29(4)			
H3B	6610(20)	4485(10)	2319(12)	34(4)			
H5	6000(19)	5364(9)	3622(12)	29(4)			
H8	9119(18)	3789(9)	5955(11)	23(4)			
H12	8389(18)	2440(9)	6334(11)	21(3)			
H13	6779(18)	1447(9)	6917(12)	27(4)			
H14	4910(20)	776(10)	5782(12)	34(4)			
H15	4580(19)	1082(9)	4053(12)	29(4)			
H17B	6598(19)	6643(10)	4058(12)	31(4)			

H17C	4920(20)	6385(11)	4504(13)	42(5)
H18A	9505(18)	4288(9)	7436(11)	24(4)
H18B	10779(19)	4700(9)	6864(12)	30(4)
H18C	10195(19)	5121(10)	7806(12)	31(4)
H19A	10572(19)	3208(9)	4075(12)	28(4)
H19B	10490(18)	2869(9)	5149(11)	23(4)
H21	10580(20)	1414(10)	5475(13)	35(4)
H22	11450(20)	177(11)	4946(13)	37(4)
H23	11860(20)	-12(11)	3250(13)	41(5)
H24	11590(20)	1048(11)	2154(14)	46(5)
H25	10750(20)	2309(11)	2662(14)	43(5)

12*b*-benzyl-5,12*b*-dihydroisoindolo[1,2-*a*]isoquinolin-8(6*H*)-one **86b** ¹H:

¹³C:

DEPT-135:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 2060 formula(e) evaluated with 13 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 S: 0-4 21-Jul-2022 MTF_MTF7E_179354 528 (4.434) Cm (526:529)

	326 14	562														
100-235.1017	, 020.10		1380					651.3009	673.2823	75	1.2266 833	3.3435			998.4290	1060.4 <u>05</u> 2
250	300	350	400	450	500	550	600	650	700	750	800	850	900	950	1000	1050
Minimum:					-10	0.0										
Maximum:			3.0	5.0	100	0.0										
Mass	Calc.	Mass	mDa	PPM	DBE	2	i-FIT	Norm	Conf(%	5) F	ormula					
326.1562	326.1	563	-0.1	-0.3	1.5	5	565.0	12.248	0.00	С	11 H24 1	N3 08				
	326.1	566	-0.4	-1.2	-8.	5	583.8	31.034	0.00	С	4 H32 N	5 05 S	3			
	326.1	557	0.5	1.5	-7.	5	576.7	23.938	0.00	С	3 H28 N	5 010 :	S			
	326.1	570	-0.8	-2.5	-2.	5	574.7	21.961	0.00	С	4 H24 N	9 06 S				
	326.1	572	-1.0	-3.1	0.5	5	581.6	28.803	0.00	С	12 H28	N3 03 3	s2			
	326.1	577	-1.5	-4.6	6.5	5	563.3	10.543	0.00	С	12 H20	N7 04				
	326.1	579	-1.7	-5.2	9.5	5	574.6	21.837	0.00	С	20 H24	NOS				
	326.1	579	-1.7	-5.2	-3.	5	583.7	30.923	0.00	С	5 H28 N	9 O S3				
	326.1	545	1.7	5.2	1.5	5	581.2	28.379	0.00	С	8 H24 N	9 O S2				
	326.1	545	1.7	5.2	14.	5	552.8	0.000	100.00) C	23 H20	NO				
	326.1	541	2.1	6.4	-4.	5	584.7	31.963	0.00	C	8 H32 N	5 S4				
	326.1	538	2.4	7.4	5.5	5	574.3	21.539	0.00	Ċ	15 H24	N3 03 3	S			
	326.1	537	2.5	7.7	2.5	5	567.1	14.297	0.00	Ċ	7 H20 N	9 06	-			

21-Jul-2022 1: TOF MS ES+ 1.70e+005

Page 1

PerkinElmer Spectrum Version 10.5.2 22 July 2022 14:28

X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv206.						
Identification code	22srv206					
Empirical formula	C ₂₃ H ₁₉ NO					
Formula weight	325.39					
Temperature/K	120.00					
Crystal system	monoclinic					
Space group	P2 ₁ /c					
a/Å	14.0084(5)					
b/Å	7.6983(3)					
c/Å	16.0076(6)					
α/°	90					
β/°	99.0852(13)					
γ/°	90					
Volume/ų	1704.62(11)					
Z	4					

ρ _{calc} g/cm ³	1.268
µ/mm ⁻¹	0.077
F(000)	688.0
Crystal size/mm ³	0.16 × 0.11 × 0.01
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.154 to 55.992
Index ranges	-18 ≤ h ≤ 18, -10 ≤ k ≤ 10, -21 ≤ l ≤ 21
Reflections collected	34352
Independent reflections	4112 [R _{int} = 0.0759, R _{sigma} = 0.0424]
Data/restraints/parameters	4112/0/303
Goodness-of-fit on F ²	1.022
Final R indexes [I>=2σ (I)]	R ₁ = 0.0479, wR ₂ = 0.1050
Final R indexes [all data]	R ₁ = 0.0832, wR ₂ = 0.1219
Largest diff. peak/hole / e Å ⁻³	0.32/-0.20

Table 2	Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement							
Parameters (Å ² ×10 ³) for 22srv206. U _{eq} is defined as 1/3 of the trace of the orthogonalised								
U _{IJ} tensor.								
Atom	x	у	Z	U(eq)				
01	2565.1(9)	1366.3(15)	3764.5(8)	28.0(3)				
N1	3254.3(10)	3819.7(18)	3291.9(9)	22.4(3)				
C1	2654.9(12)	2949(2)	3737.4(10)	21.7(4)				
C2	4068.2(14)	2991(2)	2991.5(12)	26.6(4)				
C3	4958.3(14)	3339(2)	3637.2(12)	27.8(4)				
C4	5075.6(13)	5248(2)	3826.7(10)	22.7(4)				
C5	5998.3(13)	5915(2)	4110.8(11)	26.2(4)				
C6	6139.9(13)	7650(3)	4296.5(11)	26.5(4)				
C7	5357.2(13)	8763(2)	4194.1(11)	25.2(4)				
C8	4433.2(13)	8136(2)	3906.0(11)	23.6(4)				
C9	4282.0(12)	6376(2)	3728.6(10)	21.7(4)				
C10	3257.1(12)	5719(2)	3404.4(10)	20.6(3)				
C11	2547.6(12)	5909(2)	4028.1(10)	20.9(4)				
C12	2241.9(13)	7380(2)	4413.2(11)	24.0(4)				
C13	1597.1(13)	7160(2)	4985.5(12)	26.4(4)				
C14	1250.0(13)	5520(3)	5154.4(12)	28.1(4)				
C15	1533.2(13)	4064(2)	4751.5(12)	26.5(4)				
C16	2181.8(12)	4291(2)	4193.0(10)	19.9(3)				
C17	2878.3(13)	6599(2)	2542.4(11)	24.7(4)				

C18	1847.3(13)	6152(2)	2171.5(10)	24.3(4)
C19	1108.2(14)	7327(3)	2237.1(11)	28.3(4)
C20	162.0(14)	6963(3)	1878.1(12)	32.5(4)
C21	-62.8(14)	5421(3)	1456.6(12)	32.5(5)
C22	661.9(15)	4228(3)	1395.9(12)	31.3(4)
C23	1612.9(14)	4591(2)	1746.5(11)	27.7(4)

Table 3	Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv206. The Anisotropic									
dis	displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.									
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂				
01	33.4(7)	17.9(6)	33.3(7)	0.0(5)	7.0(6)	-1.5(5)				
N1	28.8(8)	17.6(7)	22.3(7)	0.6(6)	8.4(6)	2.2(6)				
C1	23.6(8)	21.2(9)	19.5(8)	0.3(7)	1.0(7)	0.9(7)				
C2	33.5(10)	21.8(9)	26.7(9)	-2.4(7)	11.8(8)	3.2(8)				
C3	30.8(10)	22.6(9)	31.9(10)	1.4(8)	10.7(8)	7.0(8)				
C4	26.9(9)	22.9(9)	19.6(8)	3.2(7)	7.9(7)	4.4(7)				
C5	25.6(9)	30.6(10)	23.2(9)	5.1(7)	6.5(7)	6.0(8)				
C6	25.4(9)	34.2(10)	19.8(8)	3.8(7)	3.3(7)	-0.7(8)				
C7	30.4(9)	23.5(9)	22.1(9)	0.6(7)	5.7(7)	-1.2(7)				
C8	27.8(9)	21.4(9)	22.6(8)	2.8(7)	7.5(7)	2.4(7)				
C9	24.4(9)	22.5(8)	19.6(8)	1.8(7)	7.7(7)	1.3(7)				
C10	25.0(8)	15.9(8)	22.0(8)	0.7(6)	6.5(7)	1.9(7)				
C11	21.8(8)	21.6(8)	19.0(8)	3.5(6)	2.3(7)	2.8(7)				
C12	27.0(9)	21.3(9)	24.0(9)	0.3(7)	4.6(7)	3.0(7)				
C13	24.3(9)	27.6(10)	27.4(9)	-4.4(7)	4.2(7)	4.2(8)				
C14	24.4(9)	35.6(11)	26.0(9)	-3.1(8)	9.2(8)	-0.3(8)				
C15	24.4(9)	27.6(10)	27.9(9)	2.1(8)	5.7(7)	-2.3(7)				
C16	20.1(8)	21.2(8)	18.0(8)	-0.2(6)	2.0(6)	0.7(7)				
C17	26.7(9)	23.8(9)	24.2(9)	5.1(7)	6.0(7)	-2.1(8)				
C18	27.0(9)	28.7(9)	17.9(8)	6.4(7)	5.4(7)	2.3(7)				
C19	32.4(10)	30.1(10)	21.8(9)	0.1(8)	2.1(8)	5.0(8)				
C20	30.8(10)	39.0(11)	27.4(10)	1.6(8)	3.5(8)	9.1(9)				
C21	27.0(10)	42.3(12)	28.0(10)	4.4(9)	3.8(8)	-3.2(9)				
C22	36.8(11)	30.2(10)	27.2(9)	0.3(8)	5.8(8)	-6.3(9)				
C23	32.5(10)	28.1(10)	23.0(9)	2.5(7)	6.1(8)	1.6(8)				

Table 4 Bond Lengths for 22srv206.								
Atom	Atom	Length/Å		Atom	Atom	Length/Å		
01	C1	1.226(2)		C10	C17	1.554(2)		
N1	C1	1.361(2)		C11	C12	1.389(2)		
N1	C2	1.453(2)		C11	C16	1.388(2)		
N1	C10	1.473(2)		C12	C13	1.395(2)		

C1	C16	1.480(2)	C13	C14	1.394(3)
C2	C3	1.512(3)	C14	C15	1.382(3)
C3	C4	1.504(2)	C15	C16	1.383(2)
C4	C5	1.398(3)	C17	C18	1.512(2)
C4	C9	1.400(2)	C18	C19	1.391(2)
C5	C6	1.376(3)	C18	C23	1.394(3)
C6	C7	1.381(3)	C19	C20	1.387(3)
C7	C8	1.390(3)	C20	C21	1.377(3)
C8	C9	1.394(2)	C21	C22	1.384(3)
C9	C10	1.533(2)	C22	C23	1.390(3)
C10	C11	1.523(2)			

	Table 5 Bond Angles for 22srv206.									
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°		
C1	N1	C2	122.58(14)		C11	C10	C9	114.80(14)		
C1	N1	C10	114.51(13)		C11	C10	C17	111.94(14)		
C2	N1	C10	119.27(14)		C12	C11	C10	130.40(16)		
01	C1	N1	125.68(16)		C16	C11	C10	109.70(14)		
01	C1	C16	128.29(16)		C16	C11	C12	119.90(15)		
N1	C1	C16	105.99(14)		C11	C12	C13	117.99(17)		
N1	C2	C3	107.55(14)		C14	C13	C12	121.28(17)		
C4	C3	C2	111.27(15)		C15	C14	C13	120.60(17)		
C5	C4	C3	119.36(16)		C14	C15	C16	117.73(17)		
C5	C4	C9	119.06(16)		C11	C16	C1	108.99(14)		
C9	C4	C3	121.58(16)		C15	C16	C1	128.41(16)		
C6	C5	C4	121.39(17)		C15	C16	C11	122.44(16)		
C5	C6	C7	119.48(17)		C18	C17	C10	114.85(14)		
C6	C7	C8	120.28(17)		C19	C18	C17	119.88(17)		
C7	C8	C9	120.58(17)		C19	C18	C23	118.45(17)		
C4	C9	C10	121.21(15)		C23	C18	C17	121.66(16)		
C8	C9	C4	119.19(16)		C20	C19	C18	120.73(18)		
C8	C9	C10	119.58(15)		C21	C20	C19	120.45(19)		
N1	C10	C9	110.67(14)		C20	C21	C22	119.53(19)		
N1	C10	C11	100.73(13)		C21	C22	C23	120.34(19)		
N1	C10	C17	109.30(14)		C22	C23	C18	120.48(18)		
C9	C10	C17	109.08(13)							

	Table 6 Selected Torsion Angles for 22srv206.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
C2	C3	C4	C5	-153.88(16)		C8	C9	C10	C11	-64.5(2)
C2	C3	C4	C9	26.4(2)		C8	C9	C10	C17	62.06(19)
C3	C2	N1	C1	-95.50(19)		C9	C10	N1	C1	122.78(15)

-									
C3	C2	N1	C10	61.83(19)	C9	C10	N1	C2	-36.3(2)
C3	C4	C9	C8	-179.42(16)	C9	C10	C17	C18	-176.50(14)
C3	C4	C9	C10	-1.3(2)	C10	C17	C18	C19	101.82(19)
C4	C3	C2	N1	-52.70(19)	C10	C17	C18	C23	-79.4(2)
C4	C9	C10	N1	4.3(2)	C11	C10	N1	C1	0.92(18)
C4	C9	C10	C11	117.44(17)	C11	C10	N1	C2	-158.17(14)
C4	C9	C10	C17	-116.03(17)	C11	C10	C17	C18	-48.3(2)
C5	C4	C9	C8	0.8(2)	C17	C10	N1	C1	-117.07(15)
C5	C4	C9	C10	178.91(15)	C17	C10	N1	C2	83.84(18)
C8	C9	C10	N1	-177.65(14)	C18	C17	C10	N1	62.37(19)

Table 7 Hy	Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters							
(Å ² ×10 ³) for 22srv206.								
Atom	x	У	Z	U(eq)				
H2A	3912(14)	1680(30)	2955(13)	36(6)				
H2B	4121(14)	3550(30)	2407(13)	34(5)				
H3A	4895(14)	2690(30)	4172(14)	36(6)				
H3B	5589(17)	2910(30)	3418(15)	52(7)				
H5	6537(15)	5090(30)	4152(13)	37(6)				
H6	6809(14)	8110(30)	4496(12)	31(5)				
H7	5446(13)	10000(20)	4335(11)	20(5)				
H8	3873(14)	8970(30)	3843(12)	29(5)				
H12	2451(14)	8540(30)	4288(13)	32(5)				
H13	1371(14)	8190(30)	5287(12)	32(5)				
H14	802(15)	5390(30)	5557(13)	38(6)				
H15	1314(16)	2860(30)	4872(14)	45(6)				
H17A	3351(13)	6240(20)	2141(12)	25(5)				
H17B	2924(14)	7890(30)	2637(13)	36(6)				
H19	1262(14)	8430(30)	2512(12)	28(5)				
H20	-306(16)	7830(30)	1930(14)	43(6)				
H21	-721(16)	5200(30)	1204(14)	43(6)				
H22	497(15)	3140(30)	1109(13)	39(6)				
H23	2165(15)	3730(30)	1709(12)	33(5)				

13*b*-benzyl-6,7-dihydro-5*H*-pyrrolo[2',1':3,4][1,4]diazepino[2,1-*a*]isoindol-9(13*bH*)-one **90** ¹H:

¹³C:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 2134 formula(e) evaluated with 15 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 S: 0-4 21-Jul-2022 MTF_MTF7D_179353 513 (4.311) Cm (509:517)

										2.020 000
100-238.112	4 329.1674 4351.	1494		521.2001		657.3218	379.3044	757.2483 840.8685		1069.4310
250	300 350	400	450	500 550	600	650	700 750	0 800 850	900 950 1000	1050
Minimum: Maximum:		3.0	5.0	-10.0 100.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula		
329.1674	329.1672 329.1668 329.1686 329.1681 329.1676 329.1647 329.1666 329.1654 329.1654 329.1675 329.1675 329.1688 329.1646 329.1654	0.2 0.6 -1.2 -0.7 -0.2 2.7 -1.4 0.8 2.0 -0.5 -0.1 -1.4 2.8 2.0	0.6 1.8 -3.6 -2.1 -0.6 8.2 -4.3 2.4 6.1 -1.5 -0.3 -4.3 8.5 6.1	$\begin{array}{c} 0.5 \\ -5.5 \\ 5.5 \\ -0.5 \\ -6.5 \\ 4.5 \\ 8.5 \\ -8.5 \\ 13.5 \\ -3.5 \\ -9.5 \\ -4.5 \\ 1.5 \\ 0.5 \\ \end{array}$	653.5 674.8 652.1 674.5 677.4 667.5 667.7 669.8 642.1 668.0 676.6 676.6 677.7 674.4 677.5 677.7 674.5 677.7 674.5 677.7 674.7 677.7 777.7 7	$\begin{array}{c} 11.413\\ 32.716\\ 10.014\\ 32.463\\ 35.280\\ 25.454\\ 25.645\\ 27.770\\ 0.000\\ 25.907\\ 34.563\\ 34.571\\ 15.602\\ 32.320\\ 0.56467\\ 34.561\\ 0.5602\\ 32.620\\ 0.5602\\$	$\begin{array}{c} 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 0.00\\ 99.99\\ 0.00$	C10 H25 N4 08 C10 H33 07 S2 C11 H21 N8 04 C11 H29 N4 03 S C11 H37 02 S4 C14 H25 N4 03 S C19 H25 N2 0 S C2 H29 N6 010 S C2 H29 N6 010 S C3 H33 N6 05 S3 C4 H29 N10 0 S3 C6 H21 N10 06 C7 H25 N10 0 S2	52 5 5 5 8 8 8 8 8 8 8	

21-Jul-2022 1: TOF MS ES+ 2.52e+005

Page 1

PerkinElmer Spectrum Version 10.5.2 07 July 2022 08:06 X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv188.						
Identification code	22srv188					
Empirical formula	$C_{22}H_{20}N_2O$					
Formula weight	328.40					
Temperature/K	120.00					
Crystal system	monoclinic					
Space group	P21/c					
a/Å	14.6844(4)					
b/Å	7.3610(2)					
c/Å	16.2628(4)					
α/°	90					
β/°	105.5710(9)					
γ/°	90					
Volume/Å ³	1693.36(8)					
Z	4					
$\rho_{calc}g/cm^3$	1.288					
µ/mm ⁻¹	0.080					

F(000)	696.0
Crystal size/mm ³	0.22 × 0.09 × 0.02
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.224 to 57.992
Index ranges	-20 ≤ h ≤ 20, -10 ≤ k ≤ 10, -22 ≤ l ≤ 22
Reflections collected	45810
Independent reflections	4485 [R _{int} = 0.0756, R _{sigma} = 0.0372]
Data/restraints/parameters	4485/0/306
Goodness-of-fit on F ²	1.086
Final R indexes [I>=2σ (I)]	R ₁ = 0.0519, wR ₂ = 0.1136
Final R indexes [all data]	$R_1 = 0.0624$, $wR_2 = 0.1188$
Largest diff. peak/hole / e Å ⁻³	0.34/-0.27

Table 2 Fractional Atomic Coordinates ($\times 10^4$) and Equivalent Isotropic Displacement Parameters (Å²×10³) for 22srv188. U_{eq} is defined as 1/3 of the trace of the orthogonalised

	U _{ll} tensor.									
Atom	X	У	z	U(eq)						
01	7585.1(8)	9104.3(14)	2698.3(7)	25.0(2)						
N1	8195.1(8)	6466.5(16)	3388.3(7)	16.0(2)						
N2	10017.2(8)	4866.1(16)	3517.6(7)	16.1(2)						
C1	7711.5(9)	7458.4(19)	2705.8(9)	16.6(3)						
C2	8658.0(10)	7285(2)	4208.8(9)	22.3(3)						
C3	9731.7(10)	7492(2)	4369.1(9)	19.2(3)						
C4	10096.0(10)	6843.2(19)	3631.5(9)	18.2(3)						
C5	10788.5(10)	3749(2)	3614.0(9)	19.0(3)						
C6	10489.4(10)	1980(2)	3526.7(9)	19.1(3)						
C7	9494.2(10)	2010.0(19)	3368.3(8)	17.3(3)						
C8	9217.5(9)	3796.9(19)	3370.1(8)	15.1(3)						
C9	8218.8(9)	4506.4(18)	3224.7(8)	14.1(2)						
C10	7671.4(9)	4430.9(18)	2286.7(8)	14.3(3)						
C11	7459.9(10)	2946(2)	1744.2(9)	18.8(3)						
C12	6964.7(11)	3260(2)	898.8(9)	24.3(3)						
C13	6690.6(11)	5003(2)	600.9(9)	26.3(3)						
C14	6894.1(10)	6481(2)	1147.3(9)	21.8(3)						
C15	7385.8(9)	6154.0(18)	1994.4(8)	15.5(3)						
C16	7722.2(10)	3411(2)	3798.8(9)	18.6(3)						
C17	6700.3(9)	3905.2(19)	3700.0(8)	18.1(3)						
C18	5989.9(12)	2810(3)	3214.5(11)	31.1(4)						
C19	5043.5(12)	3226(3)	3120.6(12)	37.4(4)						

C20	4798.4(11)	4734(3)	3516.3(11)	31.0(4)
C21	5497.5(12)	5826(2)	4008.5(12)	30.3(4)
C22	6442.9(11)	5416(2)	4098.9(10)	25.0(3)

Table 3	Table 3 Anisotropic Displacement Parameters ($Å^2 \times 10^3$) for 22srv188. The Anisotropic displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}l]_{11}+2hka^*h^*l]_{12}+1$							
Atom	U ₁₁					U12		
01	25 8(5)	13 4(5)	34 3(6)	0 5(4)	5 5(4)	1 3(4)		
N1	17.4(5)	15.4(5)	14.2(5)	-2.7(4)	2.4(4)	0.1(4)		
N2	16.1(5)	17.4(6)	14.8(5)	0.5(4)	4.1(4)	-0.4(4)		
C1	14.5(6)	15.6(6)	20.0(6)	0.8(5)	5.0(5)	0.0(5)		
C2	21.0(7)	27.7(8)	17.7(7)	-9.2(6)	4.3(5)	-1.7(6)		
C3	20.5(7)	19.3(7)	16.2(6)	-2.7(5)	2.2(5)	-2.1(5)		
C4	19.6(6)	17.0(6)	17.7(6)	0.2(5)	4.4(5)	-2.8(5)		
C5	16.3(6)	25.1(7)	16.0(6)	0.8(5)	4.9(5)	2.0(5)		
C6	19.1(6)	22.3(7)	16.8(6)	0.7(5)	6.3(5)	4.7(5)		
C7	19.2(6)	17.2(6)	15.7(6)	0.6(5)	5.4(5)	2.0(5)		
C8	15.6(6)	17.8(6)	11.3(5)	0.6(5)	2.9(4)	0.2(5)		
C9	15.1(6)	13.1(6)	14.1(6)	-0.5(5)	3.9(5)	0.4(5)		
C10	12.7(6)	16.6(6)	14.2(6)	1.0(5)	4.5(4)	-0.7(5)		
C11	19.9(6)	17.6(7)	19.2(6)	-1.6(5)	5.5(5)	0.1(5)		
C12	25.5(7)	27.6(8)	18.8(7)	-8.0(6)	4.1(6)	-2.0(6)		
C13	27.5(8)	33.9(9)	14.8(6)	0.5(6)	0.8(5)	2.8(6)		
C14	22.3(7)	22.9(7)	19.0(7)	6.3(6)	3.3(5)	3.5(6)		
C15	13.9(6)	16.5(6)	16.0(6)	1.2(5)	3.9(5)	-0.4(5)		
C16	18.1(6)	21.2(7)	18.3(6)	6.1(5)	8.0(5)	3.0(5)		
C17	18.8(6)	20.9(7)	16.0(6)	4.9(5)	7.2(5)	0.5(5)		
C18	25.8(8)	35.3(9)	36.1(9)	-11.0(7)	14.9(7)	-6.5(7)		
C19	22.3(8)	51.5(12)	39.3(10)	-13.1(9)	9.7(7)	-10.5(8)		
C20	21.0(7)	38.9(9)	35.7(9)	8.0(7)	12.0(6)	4.0(7)		
C21	26.6(8)	26.3(8)	42.6(10)	-0.2(7)	17.4(7)	4.3(6)		
C22	22.7(7)	26.5(8)	27.2(7)	-3.1(6)	8.8(6)	-0.9(6)		

Table 4 Bond Lengths for 22srv188.							
Atom	Atom	Atom Length/Å		Atom	Atom	Length/Å	
01	C1	1.2253(17)		C9	C16	1.5556(18)	
N1	C1	1.3588(17)		C10	C11	1.3868(19)	
N1	C2	1.4555(17)		C10	C15	1.3797(18)	
N1	C9	1.4693(17)		C11	C12	1.391(2)	
N2	C4	1.4677(18)		C12	C13	1.392(2)	
N2	C5	1.3743(18)		C13	C14	1.386(2)	
N2	C8	1.3801(17)		C14	C15	1.3939(18)	

C1	C15	1.4805(19)	C16	C17	1.5102(19)
C2	C3	1.535(2)	C17	C18	1.385(2)
C3	C4	1.516(2)	C17	C22	1.390(2)
C5	C6	1.369(2)	C18	C19	1.391(2)
C6	C7	1.4144(19)	C19	C20	1.378(3)
C7	C8	1.3769(19)	C20	C21	1.379(2)
C8	C9	1.5142(18)	C21	C22	1.390(2)
C9	C10	1.5225(17)			

Table 5 Bond Angles for 22srv188.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C1	N1	C2	122.65(12)		C8	C9	C16	108.53(10)
C1	N1	C9	114.35(11)		C10	C9	C16	112.08(11)
C2	N1	C9	123.00(11)		C11	C10	C9	129.36(12)
C5	N2	C4	122.98(12)		C15	C10	C9	109.97(11)
C5	N2	C8	108.38(12)		C15	C10	C11	120.67(12)
C8	N2	C4	128.46(11)		C10	C11	C12	117.78(13)
01	C1	N1	125.73(13)		C11	C12	C13	121.51(14)
01	C1	C15	128.11(13)		C14	C13	C12	120.54(13)
N1	C1	C15	106.16(11)		C13	C14	C15	117.59(14)
N1	C2	C3	113.73(11)		C10	C15	C1	108.81(11)
C4	C3	C2	113.52(11)		C10	C15	C14	121.89(13)
N2	C4	C3	112.30(11)		C14	C15	C1	129.28(13)
C6	C5	N2	109.01(12)		C17	C16	C9	115.06(11)
C5	C6	C7	106.91(12)		C18	C17	C16	119.68(13)
C8	C7	C6	107.80(12)		C18	C17	C22	118.29(14)
N2	C8	C9	125.00(12)		C22	C17	C16	122.02(13)
C7	C8	N2	107.90(12)		C17	C18	C19	120.80(16)
C7	C8	C9	127.10(12)		C20	C19	C18	120.28(16)
N1	C9	C8	112.30(11)		C19	C20	C21	119.60(15)
N1	C9	C10	100.69(10)		C20	C21	C22	120.10(16)
N1	C9	C16	111.27(11)		C21	C22	C17	120.92(15)
C8	C9	C10	111.88(10)					

	Table 6 Torsion Angles for 22srv188.									
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
01	C1	C15	C10	-179.04(14)		C7	C8	C9	C16	48.66(17)
01	C1	C15	C14	2.6(2)		C8	N2	C4	C3	58.03(18)
N1	C1	C15	C10	1.26(14)		C8	N2	C5	C6	0.21(15)
N1	C1	C15	C14	-177.07(13)		C8	C9	C10	C11	59.27(18)
N1	C2	C3	C4	1.39(19)		C8	C9	C10	C15	-119.97(12)
N1	C9	C10	C11	178.74(13)		C8	C9	C16	C17	-177.55(12)

N1	C9	C10	C15	-0.50(13)	C9	N1	C1	01	178.62(13)
N1	C9	C16	C17	58.39(15)	C9	N1	C1	C15	-1.67(15)
N2	C5	C6	C7	0.14(15)	C9	N1	C2	C3	77.64(17)
N2	C8	C9	N1	-8.92(17)	C9	C10	C11	C12	-178.30(13)
N2	C8	C9	C10	103.46(14)	C9	C10	C15	C1	-0.42(14)
N2	C8	C9	C16	-132.36(13)	C9	C10	C15	C14	178.05(12)
C1	N1	C2	C3	-101.68(16)	C9	C16	C17	C18	101.17(16)
C1	N1	C9	C8	120.53(12)	C9	C16	C17	C22	-80.32(17)
C1	N1	C9	C10	1.37(14)	C10	C9	C16	C17	-53.49(16)
C1	N1	C9	C16	-117.58(12)	C10	C11	C12	C13	0.2(2)
C2	N1	C1	01	-2.0(2)	C11	C10	C15	C1	-179.73(12)
C2	N1	C1	C15	177.71(11)	C11	C10	C15	C14	-1.3(2)
C2	N1	C9	C8	-58.84(16)	C11	C12	C13	C14	-0.9(2)
C2	N1	C9	C10	-178.00(11)	C12	C13	C14	C15	0.6(2)
C2	N1	C9	C16	63.05(16)	C13	C14	C15	C1	178.66(14)
C2	C3	C4	N2	-68.29(16)	C13	C14	C15	C10	0.5(2)
C4	N2	C5	C6	175.73(12)	C15	C10	C11	C12	0.9(2)
C4	N2	C8	C7	-175.69(12)	C16	C9	C10	C11	-62.91(17)
C4	N2	C8	C9	5.2(2)	C16	C9	C10	C15	117.86(12)
C5	N2	C4	C3	-116.54(14)	C16	C17	C18	C19	179.34(15)
C5	N2	C8	C7	-0.49(15)	C16	C17	C22	C21	-179.01(14)
C5	N2	C8	C9	-179.64(12)	C17	C18	C19	C20	-0.4(3)
C5	C6	C7	C8	-0.43(15)	C18	C17	C22	C21	-0.5(2)
C6	C7	C8	N2	0.57(15)	C18	C19	C20	C21	-0.2(3)
C6	C7	C8	C9	179.69(12)	C19	C20	C21	C22	0.5(3)
C7	C8	C9	N1	172.09(12)	C20	C21	C22	C17	-0.2(3)
C7	C8	C9	C10	-75.52(16)	C22	C17	C18	C19	0.8(2)

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 22srv188.						
Atom	x	у	Z	U(eq)		
H2A	8506(13)	6530(30)	4659(12)	29(5)		
H2B	8371(14)	8470(30)	4234(13)	38(5)		
H3A	10068(13)	6820(30)	4904(12)	29(5)		
H3B	9883(14)	8780(30)	4474(13)	39(5)		
H4A	9754(11)	7460(20)	3099(11)	15(4)		
H4B	10774(13)	7110(20)	3741(11)	23(4)		
H5	11425(13)	4280(20)	3723(11)	25(4)		
H6	10893(13)	930(30)	3551(12)	28(5)		
H7	9060(12)	960(20)	3263(11)	21(4)		
H11	7644(13)	1750(30)	1947(11)	25(5)		
H12	6811(13)	2210(30)	514(12)	28(5)		
H13	6351(14)	5160(30)	-1(14)	41(6)		
H14	6709(12)	7720(30)	948(11)	23(4)		

H16A	7764(12)	2090(20)	3645(11)	20(4)
H16B	8115(12)	3600(20)	4408(11)	22(4)
H18	6180(14)	1730(30)	2958(13)	40(6)
H19	4582(16)	2420(30)	2780(15)	50(6)
H20	4131(14)	5030(30)	3449(13)	37(5)
H21	5314(15)	6880(30)	4289(14)	41(6)
H22	6933(14)	6230(30)	4442(12)	33(5)

13*b*-benzyl-6,7-dihydro-5*H*-imidazo[2',1':3,4][1,4]diazepino[2,1-a]isoindol-9(13*bH*)-one **96** ¹H:

¹³C:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 302 formula(e) evaluated with 2 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-8 O: 0-8 MTF_MTF7B_179351 380 (3.197) Cm (380:382)

MTF_MTF7	7B_179351 38	30 (3.197) Ci	m (380:382)						1: TOF MS ES+
100-7	330).1631							1.078+004
%-									
-		331.1636							
15	8.9647	332.1727	659.3	171_721.2451	851.8657 10	90.3811_1158.37	06 1468.2944	1749.8805	
0-1111	200	400	600	800	1000	1200	1400	1600 180	0
Minimum: Maximum:	:		3.0	100.0	-1.5 50.0				
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
330.1631	L 330.10 330.10	625 606	0.6 2.5	1.8 7.6	0.5 13.5	280.2 279.9	0.8 0.6	C9 H24 N5 C21 H20 N3	08 0

Page 1

PerkinElmer Spectrum Version 10.5.2 07 July 2022 08:07 X-ray crystallography data

Table 1 Crystal data and structure refinement for 22srv091.					
Identification code	22srv091				
Empirical formula	C ₂₁ H ₁₉ N ₃ O				
Formula weight	329.39				
Temperature/K	120.00				
Crystal system	triclinic				
Space group	P-1				
a/Å	10.3572(4)				
b/Å	12.0296(5)				
c/Å	15.5730(6)				
α/°	76.184(3)				
β/°	89.161(3)				
γ/°	65.778(3)				
Volume/Å ³	1710.65(12)				

Z	4
ρ _{calc} g/cm ³	1.279
µ/mm ⁻¹	0.637
F(000)	696.0
Crystal size/mm ³	0.16 × 0.09 × 0.01
Radiation	Μο Κα (λ = 1.54178)
20 range for data collection/°	5.87 to 139.996
Index ranges	-12 ≤ h ≤ 12, -14 ≤ k ≤ 14, -18 ≤ l ≤ 18
Reflections collected	24922
Independent reflections	6422 [R _{int} = 0.1790, R _{sigma} = 0.1761]
Data/restraints/parameters	6422/0/452
Goodness-of-fit on F ²	0.987
Final R indexes [I>=2σ (I)]	R ₁ = 0.0841, wR ₂ = 0.2038
Final R indexes [all data]	R ₁ = 0.1408, wR ₂ = 0.2528
Largest diff. peak/hole / e Å ⁻³	0.33/-0.34

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement									
Parameters ($Å^2 \times 10^3$) for 22srv091. U _{eq} is defined as 1/3 of the trace of the orthogonalised									
U _{IJ} tensor.									
Atom	X	U(eq)							
01	625(3)	662(2)	1101.5(17)	40.3(7)					
N2	522(4)	3680(3)	995(2)	38.5(8)					
N3	-1834(4)	4516(3)	865(2)	41.5(8)					
N1	2869(3)	86(3)	1740.7(19)	35.3(7)					
C8	4286(4)	-746(3)	1683(2)	36.2(9)					
C1	1901(4)	13(3)	1189(2)	37.5(9)					
C2	2740(4)	-983(3)	744(2)	34.9(8)					
C6	5191(4)	-2360(3)	689(2)	37.6(9)					
C7	4176(4)	-1409(3)	1020(2)	34.1(8)					
C10	6909(4)	-1578(3)	2096(2)	37.9(9)					
C4	3289(4)	-2397(3)	-169(2)	40.2(9)					
C21	100(4)	4482(3)	1548(2)	39.4(9)					
C20	-1339(4)	4978(3)	1459(3)	43.0(10)					
C5	4723(4)	-2847(3)	101(2)	38.9(9)					
C11	7469(5)	-1262(3)	1299(3)	42.9(10)					
C16	2500(4)	1084(3)	2207(2)	36.5(9)					
C14	9273(5)	-3072(4)	2732(3)	49.4(11)					
C15	7834(4)	-2482(3)	2815(3)	42.9(10)					

C9	5389(4)	-866(3)	2194(2)	38.3(9)
C3	2270(4)	-1449(3)	152(2)	37.3(9)
C18	2002(4)	2940(3)	848(2)	41.4(10)
C19	-659(4)	3749(3)	601(2)	39.2(9)
C17	2917(4)	2133(3)	1719(3)	39.7(9)
C13	9828(4)	-2753(4)	1933(3)	48.2(10)
C12	8912(5)	-1841(4)	1223(3)	47.0(10)
O1A	4168(3)	-549(2)	6170.9(17)	43.4(7)
N1A	1901(3)	-51(3)	6617.5(19)	37.2(8)
N2A	4441(4)	-3684(3)	7334(2)	38.4(8)
C1A	2895(4)	96(3)	6050(2)	37.8(9)
N3A	6799(4)	-4493(3)	7529(2)	45.4(9)
C9A	-625(4)	880(3)	6748(2)	39.2(9)
C10A	-2137(4)	1719(3)	6395(2)	37.7(9)
C15A	-2810(5)	1406(4)	5802(3)	47.5(11)
C18A	3015(4)	-3000(3)	6876(2)	41.2(9)
C7A	628(4)	1623(3)	5453(2)	37.0(9)
C16A	2292(4)	-1030(3)	7452(2)	40.3(9)
C8A	500(5)	825(3)	6303(2)	40.7(10)
C20A	6271(4)	-4967(3)	8283(3)	43.9(10)
C21A	4829(4)	-4482(3)	8169(3)	41.7(9)
C2A	2048(4)	1187(3)	5299(2)	39.3(9)
C19A	5662(4)	-3736(4)	6986(3)	42.0(9)
C6A	-384(5)	2691(4)	4860(3)	45.2(10)
C17A	1959(4)	-2138(3)	7384(2)	41.2(9)
C4A	1521(5)	2823(4)	3977(3)	47.1(10)
C3A	2519(4)	1764(4)	4561(2)	41.3(9)
C14A	-4220(5)	2144(4)	5488(3)	52.1(11)
C13A	-4982(5)	3216(4)	5765(3)	56.1(12)
C5A	95(5)	3285(4)	4129(3)	48.8(10)
C11A	-2904(5)	2778(5)	6702(4)	64.3(14)
C12A	-4329(5)	3512(5)	6372(4)	72.2(17)

Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv091. The Anisotropic											
dis	displacement factor exponent takes the form: $-2\pi^2[h^2a^{*2}U_{11}+2hka^{*}b^{*}U_{12}+]$.										
Atom	U ₁₁ U ₂₂ U ₃₃ U ₂₃ U ₁₃ U										
01	25.6(14)	40.3(13)	50.8(14)	-12.0(11)	8.8(11)	-9.5(10)					
N2	39.0(19)	29.1(13)	43.3(16)	-7.0(12)	12.2(14)	-11.7(12)					
N3	31.6(17)	35.3(15)	52.2(18)	-7.3(13)	6.8(14)	-11.0(13)					
N1	34.2(17)	29.4(13)	40.7(15)	-9.5(11)	8.4(13)	-11.7(12)					
C8	34(2)	30.6(16)	39.5(17)	-7.2(13)	10.8(15)	-10.1(14)					
C1	35(2)	32.5(16)	41.6(18)	-8.1(14)	11.4(16)	-12.3(14)					
C2	30.5(19)	29.2(15)	42.0(17)	-8.0(13)	12.6(15)	-10.4(13)					
C6	31.4(19)	33.5(16)	44.1(18)	-7.5(14)	8.3(15)	-11.4(14)					

C7	31.7(19)	30.1(15)	40.2(17)	-7.8(13)	9.2(15)	-13.5(14)
C10	32(2)	30.1(16)	48.9(19)	-13.9(14)	5.4(16)	-8.6(14)
C4	42(2)	40.7(18)	42.1(18)	-14.8(15)	10.7(16)	-19.6(16)
C21	40(2)	30.7(16)	44.4(18)	-10.3(14)	8.0(16)	-12.1(15)
C20	39(2)	32.3(16)	49.2(19)	-9.9(14)	11.2(17)	-6.8(15)
C5	38(2)	35.3(17)	45.7(19)	-13.5(14)	13.2(16)	-15.8(15)
C11	42(2)	36.4(18)	50(2)	-12.0(15)	10.3(17)	-15.5(16)
C16	33(2)	35.8(17)	39.6(17)	-13.0(14)	12.1(15)	-12.0(14)
C14	42(2)	38.2(19)	61(2)	-15.9(17)	1.9(19)	-8.7(17)
C15	41(2)	38.3(18)	45.4(19)	-11.6(15)	5.4(16)	-12.4(16)
C9	34(2)	34.6(17)	41.9(18)	-10.6(14)	7.2(15)	-9.2(14)
C3	30.0(19)	36.7(17)	44.3(18)	-7.4(14)	9.2(15)	-14.8(14)
C18	37(2)	35.8(17)	48.2(19)	-9.6(15)	14.9(17)	-12.8(15)
C19	33(2)	36.1(17)	43.4(19)	-8.0(14)	4.7(16)	-11.1(15)
C17	28.7(19)	33.3(17)	54(2)	-12.4(15)	10.1(16)	-9.7(14)
C13	30(2)	51(2)	69(3)	-32(2)	9.8(18)	-13.1(16)
C12	38(2)	42.9(19)	60(2)	-16.8(17)	15.4(19)	-15.2(16)
01A	34.3(15)	42.3(14)	49.3(14)	-11.1(11)	10.0(12)	-12.3(11)
N1A	35.9(18)	33.1(14)	41.2(15)	-11.1(12)	11.1(13)	-12.3(12)
N2A	35.4(18)	33.8(14)	46.7(16)	-12.9(12)	8.6(14)	-13.9(12)
C1A	36(2)	34.8(17)	45.6(19)	-13.8(14)	13.8(16)	-16.7(15)
N3A	37.5(19)	39.4(16)	53.7(18)	-11.7(14)	10.5(15)	-11.0(13)
C9A	38(2)	35.9(17)	40.6(17)	-9.9(14)	9.9(16)	-12.7(15)
C10A	37(2)	32.7(17)	45.2(18)	-10.9(14)	13.0(16)	-16.2(15)
C15A	52(3)	46(2)	47(2)	-18.7(17)	11.6(19)	-19.8(18)
C18A	34(2)	38.7(18)	49(2)	-13.7(15)	7.9(16)	-11.4(15)
C7A	36(2)	35.7(17)	42.6(18)	-12.3(14)	9.6(15)	-16.9(14)
C16A	35(2)	36.6(18)	46.1(19)	-10.7(15)	10.9(16)	-11.8(15)
C8A	45(2)	32.7(17)	42.8(18)	-12.3(14)	13.8(17)	-12.9(15)
C20A	40(2)	37.6(18)	44.5(19)	-5.6(15)	7.9(16)	-10.3(16)
C21A	41(2)	33.0(17)	48.6(19)	-9.4(15)	11.5(17)	-13.4(15)
C2A	38(2)	39.6(18)	45.4(19)	-18.3(15)	9.1(16)	-16.8(15)
C19A	35(2)	41.5(19)	53(2)	-14.9(16)	12.6(17)	-18.3(15)
C6A	38(2)	46(2)	50(2)	-10.1(17)	10.5(18)	-17.4(17)
C17A	35(2)	35.7(17)	45.1(19)	-5.8(15)	7.0(16)	-10.2(15)
C4A	47(3)	52(2)	43.2(19)	-6.6(16)	12.7(18)	-25.1(18)
C3A	35(2)	49(2)	46.2(19)	-17.6(16)	12.2(16)	-21.3(16)
C14A	51(3)	61(3)	49(2)	-16.0(19)	6(2)	-27(2)
C13A	39(2)	54(2)	69(3)	-12(2)	5(2)	-14.5(19)
C5A	46(2)	50(2)	50(2)	-6.2(17)	6.8(19)	-24.2(18)
C11A	43(3)	61(3)	97(4)	-47(3)	10(3)	-15(2)
C12A	45(3)	55(3)	114(4)	-45(3)	7(3)	-6(2)

Table 4 Bond Lengths for 22srv091.										
Atom	n Atom Length/Å Atom Atom Length,									
01	C1	1.218(5)		O1A	C1A	1.214(5)				
N2	C21	1.380(4)		N1A	C1A	1.386(5)				
N2	C18	1.471(4)		N1A	C16A	1.461(5)				
N2	C19	1.340(6)		N1A	C8A	1.406(5)				
N3	C20	1.387(6)		N2A	C18A	1.456(5)				
N3	C19	1.321(4)		N2A	C21A	1.370(5)				
N1	C8	1.414(4)		N2A	C19A	1.352(5)				
N1	C1	1.372(6)		C1A	C2A	1.487(5)				
N1	C16	1.466(4)		N3A	C20A	1.386(5)				
C8	C7	1.477(5)		N3A	C19A	1.309(6)				
C8	C9	1.340(6)		C9A	C10A	1.495(5)				
C1	C2	1.482(4)		C9A	C8A	1.333(5)				
C2	C7	1.396(5)		C10A	C15A	1.372(6)				
C2	C3	1.373(6)		C10A	C11A	1.389(5)				
C6	C7	1.400(4)		C15A	C14A	1.382(6)				
C6	C5	1.384(6)		C18A	C17A	1.526(4)				
C10	C11	1.399(5)		C7A	C8A	1.478(5)				
C10	C15	1.396(6)		C7A	C2A	1.383(5)				
C10	C9	1.478(5)		C7A	C6A	1.400(6)				
C4	C5	1.388(6)		C16A	C17A	1.534(6)				
C4	C3	1.390(4)		C20A	C21A	1.358(6)				
C21	C20	1.354(6)		C2A	C3A	1.386(5)				
C11	C12	1.383(6)		C6A	C5A	1.392(5)				
C16	C17	1.530(5)		C4A	C3A	1.383(6)				
C14	C15	1.382(6)		C4A	C5A	1.388(6)				
C14	C13	1.399(6)		C14A	C13A	1.375(6)				
C18	C17	1.528(5)		C13A	C12A	1.361(8)				
C13	C12	1.387(6)		C11A	C12A	1.399(7)				

Table 5 Bond Angles for 22srv091.										
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°		
C21	N2	C18	125.4(4)		C1A	N1A	C16A	122.6(3)		
C19	N2	C21	107.3(3)		C1A	N1A	C8A	113.2(3)		
C19	N2	C18	127.3(3)		C8A	N1A	C16A	124.2(3)		
C19	N3	C20	103.6(4)		C21A	N2A	C18A	127.2(3)		
C8	N1	C16	123.1(3)		C19A	N2A	C18A	126.3(3)		
C1	N1	C8	113.0(3)		C19A	N2A	C21A	106.3(4)		
C1	N1	C16	122.9(3)		O1A	C1A	N1A	125.6(4)		
N1	C8	C7	104.8(3)		O1A	C1A	C2A	129.8(3)		
C9	C8	N1	122.6(3)		N1A	C1A	C2A	104.6(3)		
C9	C8	C7	132.5(3)		C19A	N3A	C20A	104.0(3)		
01	C1	N1	125.1(3)		C8A	C9A	C10A	124.8(3)		

01	C1	<u>C2</u>	120 2(1)	C15A	C10A	COV	120 0(3)
		C2	125.2(4)				120.0(3)
		02	105.7(5)	CISA	CIUA		119.1(4)
C7	C2	C1	108.2(4)	C11A	C10A	C9A	120.8(4)
C3	C2	C1	128.9(4)	C10A	C15A	C14A	121.1(4)
C3	C2	C7	122.9(3)	N2A	C18A	C17A	113.3(3)
C5	C6	C7	118.4(4)	C2A	C7A	C8A	108.3(3)
C2	C7	C8	108.3(3)	C2A	C7A	C6A	120.0(3)
C2	C7	C6	119.0(4)	C6A	C7A	C8A	131.7(4)
C6	C7	C8	132.6(4)	N1A	C16A	C17A	112.2(3)
C11	C10	C9	119.8(3)	N1A	C8A	C7A	104.9(3)
C15	C10	C11	118.8(4)	C9A	C8A	N1A	123.7(3)
C15	C10	C9	121.1(3)	C9A	C8A	C7A	131.3(4)
C5	C4	C3	120.9(4)	C21A	C20A	N3A	110.5(4)
C20	C21	N2	105.0(4)	C20A	C21A	N2A	106.1(3)
C21	C20	N3	111.3(3)	C7A	C2A	C1A	109.0(3)
C6	C5	C4	121.4(3)	C7A	C2A	C3A	122.2(4)
C12	C11	C10	120.6(4)	C3A	C2A	C1A	128.8(4)
N1	C16	C17	111.5(3)	N3A	C19A	N2A	113.2(4)
C15	C14	C13	120.5(4)	C5A	C6A	C7A	117.7(4)
C14	C15	C10	120.5(4)	C18A	C17A	C16A	113.1(3)
C8	C9	C10	126.0(3)	C3A	C4A	C5A	120.6(4)
C2	C3	C4	117.4(4)	C4A	C3A	C2A	117.9(4)
N2	C18	C17	112.0(3)	C13A	C14A	C15A	120.5(5)
N3	C19	N2	112.7(4)	C12A	C13A	C14A	118.6(5)
C18	C17	C16	113.9(4)	C4A	C5A	C6A	121.6(4)
C12	C13	C14	119.0(4)	C10A	C11A	C12A	118.7(5)
C11	C12	C13	120.6(4)	C13A	C12A	C11A	122.0(4)

Table 6 Selected Torsion Angles for 22srv091.											
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°	
C8	C9	C10	C11	58.6(6)		C10A	C9A	C8A	N1A	-174.1(4)	
C8	C9	C10	C15	-127.7(4)		C10A	C9A	C8A	C7A	9.3(7)	
C7	C8	C9	C10	13.0(7)		C15A	C10A	C9A	C8A	77.4(5)	
C10	C9	C8	N1	-171.3(3)		C18A	C17A	C16A	N1A	75.4(4)	
C16	C17	C18	N2	66.4(4)		C16A	C17A	C18A	N2A	67.0(4)	
C18	C17	C16	N1	70.6(4)		C8A	C9A	C10A	C11A	-106.6(5)	
C17	C16	N1	C8	69.3(4)		C17A	C18A	N2A	C21A	57.6(5)	
C17	C16	N1	C1	-98.5(4)		C17A	C18A	N2A	C19A	-128.4(4)	
C17	C18	N2	C21	53.8(5)		C17A	C16A	N1A	C1A	-103.0(4)	
C17	C18	N2	C19	-129.1(4)		C17A	C16A	N1A	C8A	76.5(4)	
Table 7 Hy	Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 22srv091.										
------------	---	----------	---------	-------	--	--	--	--	--		
Atom	x	y	Z	U(eq)							
H6	6176.14	-2663.6	862.11	45							
H4	2999.5	-2741.29	-578.34	48							
H21	690.85	4649.63	1912.05	47							
H20	-1932.64	5567.1	1765.19	52							
H5	5397.92	-3502.8	-121.52	47							
H11	6852.68	-645.19	805.71	51							
H16A	2993.65	718.32	2814.61	44							
H16B	1463.08	1443.59	2260.28	44							
H14	9889.19	-3699.4	3221.74	59							
H15	7472.24	-2693.74	3364.36	51							
Н9	5173.24	-455.18	2662.49	46							
Н3	1287.48	-1135.78	-31.52	45							
H18A	2411.98	3519.05	532.17	50							
H18B	2017.7	2385.56	465.29	50							
H19	-652.64	3293.99	177.73	47							
H17A	2845.08	2686.08	2113.97	48							
H17B	3923.06	1749.81	1591.89	48							
H13	10817.73	-3153.87	1878.28	58							
H12	9278.59	-1612.04	679.74	56							
H9A	-453.58	347.76	7331.85	47							
H15A	-2297.6	669.45	5603.19	57							
H18C	2661.97	-3614.8	6779.19	49							
H18D	3061.23	-2485.96	6286.67	49							
H16C	1769.17	-661.05	7924.75	48							
H16D	3321.91	-1345.25	7622.58	48							
H20A	6836.91	-5548.43	8806.63	53							
H21A	4214.26	-4660.43	8584.06	50							
H19A	5691.9	-3271.37	6405.6	50							
H6A	-1365.16	2999.86	4952.41	54							
H17C	1966.44	-2640.02	7990.16	49							
H17D	991.27	-1803.75	7082.7	49							
H4A	1815.01	3239.1	3466.55	56							
H3A	3496.95	1442.49	4459.97	50							
H14A	-4665.67	1910.2	5077.99	62							
H13A	-5943.72	3737.66	5538.73	67							
H5A	-569.15	4023.49	3725.85	59							
H11A	-2470.45	2998.6	7127.41	77							
H12A	-4856.06	4239.28	6576.82	87							

Refinement model description

Number of restraints - 0, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups

2.a Secondary CH2 refined with riding coordinates:

C16(H16A,H16B), C18(H18A,H18B), C17(H17A,H17B), C18A(H18C,H18D), C16A(H16C, H16D),

C17A(H17C,H17D)

2.b Aromatic/amide H refined with riding coordinates:

C6(H6), C4(H4), C21(H21), C20(H20), C5(H5), C11(H11), C14(H14), C15(H15),

C9(H9), C3(H3), C19(H19), C13(H13), C12(H12), C9A(H9A), C15A(H15A), C20A(H20A), C21A(H21A),

C19A(H19A), C6A(H6A), C4A(H4A), C3A(H3A), C14A(H14A), C13A(H13A), C5A(H5A), C11A(H11A), C12A(H12A)

Synthesis of β -nitrostyrenes 88c-88k via the Henry reaction

(*E*)-2,4-dimethoxy-1-(2-nitrovinyl)benzene **88c** ¹H:

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 657 formula(e) evaluated with 7 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9a 429 (3.638) Cm (429:432)

2	211.0811 354 285	.7							
		.2864	715.3806 ⁸¹⁷	.4050	1217.1506	i 1533.5	369	1810.9846	
0	200 400	600	800	1000	1200	1400	1600	1800	2000
Minimum: Maximum:		3.0	5.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
210.0775	210.0778 210.0780 210.0766 210.0762 210.0791 210.0751 210.0803	-0.3 -0.5 0.9 1.3 -1.6 2.4 -2.8	-1.4 -2.4 4.3 6.2 -7.6 11.4 -13.3	1.5 10.5 5.5 -1.5 6.5 2.5 2.5	225.4 228.0 224.2 237.8 228.6 233.8 231.4	1.5 4.2 0.3 13.9 4.7 9.9 7.5	C7 H13 C11 H8 C10 H1 H10 N7 C8 H9 C3 H9 C5 H10	N 05 H N5 2 N 04 04 F2 N5 0 F N7 03 H N5 02	F F2

1: TOF MS ES+ 1.19e+004

(*E*)-5-(2-nitrovinyl)benzo[*d*][1,3]dioxole **88d** ¹H:

DEPT-135:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 548 formula(e) evaluated with 9 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9b 418 (3.541) Cm (416:420)

10019	14.0451								1.20e+003
- 	343.2965								
	195.0489 344.299	13 9 2062	750 2590 8	340.4120 ·	1038.7186 121	5.3612			
0	^س ال ^ل اب المعرب الله المعرب الم 200 400	600	759.3580 		1200	1400		1800	m/z <u>۲-</u> 2000
Minimum: Maximum:		3.0	5.0	-1.5 50.0					
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
194.0451	194.0453 194.0438 194.0465 194.0467	-0.2 1.3 -1.4 -1.6	-1.0 6.7 -7.2 -8.2	6.5 3.5 2.5 11.5	118.1 127.6 122.2 121.5	0.1 9.6 4.1 3.5	C9 H8 C2 H5 C6 H9 C10 H4	N 04 N7 03 F N 05 F N5	1
	194.0429 194.0476 194.0426 194.0425	2.2 -2.5 2.5 2.6	11.3 -12.9 12.9 13.4	3.5 -1.5 7.5 -1.5	123.0 126.0 124.9 128.6	5.0 8.0 6.8 10.6	C7 H7 C3 H10 C5 H4 C H9 N	N 02 F3 N 06 F N7 02 I3 07 F	2
	194.0478	-2.7	-13.9	7.5	123.1	5.1	С7 Н5	N5 O F	

1: TOF MS ES+

PerkinElmer Spectrum Version 10.5.2 31 August 2022 08:02

(*E*)-2,3-dimethoxy-6-(2-nitrovinyl)phenol **88e** ¹H:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 770 formula(e) evaluated with 8 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9c 376 (3.191) Cm (375:378)

MTF9c 376 (3	3.191) Cm (375:378)						1: T	OF MS ES+
100				20	68.0825			1.546+005
-			208.0	624				
%- - - - 0	98.5103 118.0874	178. 158.9624	0638	226.0717	269.0881	306.0426 354.28	55 386.1236 417.1064 ₄₂	27.3807 mmmmm m/z
60	80 100 120	140 160 1	80 200	220 240 20	60 280 30	00 320 340 36	0 380 400 420 4	40
Minimum: Maximum:		3.0	5.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm) Formula	
226.0717	226.0715 226.0711 226.0727 226.0729 226.0700 226.0740 226.0691 226.0689	0.2 0.6 -1.0 -1.2 1.7 -2.3 2.6 2.8	0.9 2.7 -4.4 -5.3 7.5 -10.2 11.5 12.4	5.5 -1.5 10.5 2.5 6.5 2.5 6.5	66.3 74.3 67.5 67.7 71.6 68.4 69.3 70.2	0.5 8.6 1.8 2.0 5.9 2.7 3.6 4.5	C10 H12 N O5 H10 N7 O5 F2 C7 H13 N O6 C11 H8 N5 O C3 H9 N7 O4 C8 H9 N5 O2 C8 H11 N O3 C6 H8 N7 O3	F F F3

PerkinElmer Spectrum Version 10.5.2 31 August 2022 08:04

(E)-1-methoxy-2-(2-nitrovinyl)benzene 88f ¹H:

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 460 formula(e) evaluated with 5 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9d 421 (3.566) Cm (418:428)

100- 180	0.0667	,								1.66e+003
- - - % -	343	.2980								
	184.9873	355.2944	635 34	₆₄ 749.166	7 909.4827	130	0 2540 1491 1749	9		
0- <u> +++++++++++++</u>	200	400	600	800	1000	1200	1400	1600	1800	m/z m/z 2000
Minimum: Maximum:			3.0	5.0	-1.5 50.0					
Mass	Calc. N	Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
180.0667	180.06 180.068 180.068 180.064 180.069	72 61 35 45 97	-0.5 0.6 -1.8 2.2 -3.0	-2.8 3.3 -10.0 12.2 -16.7	1.5 5.5 6.5 2.5 2.5	141.7 138.1 143.2 149.0 147.0	3.6 0.0 5.1 11.0 8.9	C6 H11 C9 H10 C7 H7 C2 H7 C4 H8	N 04 N 03 N5 F N7 02 N5 0	F F F2

1: TOF MS ES+

PerkinElmer Spectrum Version 10.5.2 31 August 2022 08:05

(*E*)-1-methoxy-3-(2-nitrovinyl)benzene **88g** ¹H:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 460 formula(e) evaluated with 6 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9e 445 (3.767) Cm (438:448)

PerkinElmer Spectrum Version 10.5.2 31 August 2022 08:07

(*E*)-1-methoxy-4-(2-nitrovinyl)benzene **88h** ¹H:

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 460 formula(e) evaluated with 5 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9f 418 (3.540) Cm (415:419)

		,							9.61e	+002
	.0666									
%_	343.29	980								
	186.9681	354.2851 406.204	0 635.3507	, 744.5880 	899.5739 - 	1209.4138	1326.3230 1458.3	3933 1689.	6592 	ן m/z
	200	400	600	800	1000	1200	1400	1600	1800 20	00
Minimum: Maximum:		:	3.0	5.0	-1.5 50.0					
Mass	Calc. Ma	iss i	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula		
180.0666	180.0661 180.0672 180.0685 180.0645 180.0636		0.5 -0.6 -1.9 2.1 3.0	2.8 -3.3 -10.6 11.7 16.7	5.5 1.5 6.5 2.5 2.5	96.7 98.7 99.8 105.7 101.3	0.2 2.2 3.4 9.2 4.8	C9 H10 H C6 H11 H C7 H7 N C2 H7 N C7 H9 N	N 03 N 04 F 5 F 7 02 F 0 F3	

1: TOF MS ES+

PerkinElmer Spectrum Version 10.5.2 31 August 2022 08:08

(*E*)-1,4-dimethoxy-2-(2-nitrovinyl)benzene **88i** ¹H:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 657 formula(e) evaluated with 8 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9g 416 (3.529) Cm (416:418)

- 3 - (1								1.74e+0	03
100 ₇ 21	10.0762								
-									
_									
%									
-									
]	343.2978								
	354.284	9 63	35 3534						
0_╎╷╷╷┥╽╎╢┝╸╢	┉╄┉┥┯╼╍┍╼╺╢б╍╍┍╸╴╴	476.2083	749.1	<u>764 1030</u>	<u>.6694</u>	1389.4911		 m	ı/z
·	200 400	600	800	1000	1200	1400	1600	1800 2000	
Minimum:				-1.5					
Maximum:		3.0	5.0	50.0					
Maaa	Colo Mass	mDe	DDM				Devenuele		
Mass	Calc. Mass	mDa	PPM	DBE	1 - F.T.T.	1-FIT (Norm)	Formula		
210.0762	210.0762	0.0	0.0	-1.5	142.8	10.9	H10 N7	04 F2	
	210.0766	-0.4	-1.9	5.5	132.9	1.1	C10 H12	N 04	
	210.0751	1.1	5.2	2.5	139.9	8.0	СЗ Н9 1	N7 O3 F	
	210.0778	-1.6	-7.6	1.5	135.8	3.9	C7 H13	N 05 F	
	210.0780	-1.8	-8.6	10.5	132.4	0.5	C11 H8	N5	
	210.0742	2.0	9.5	2.5	136.1	4.2	C8 H11	N 02 F3	
	210.0739	2.3	10.9	6.5	137.9	6.0	С6 Н8 1	N7 02	
	210.0791	-2.9	-13.8	6.5	136.2	4.3	C8 H9 1	N5 O F	

1: TOF MS ES+

Page 1

(E)-1,2,3-trimethoxy-5-(2-nitrovinyl)benzene **88j**

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 867 formula(e) evaluated with 8 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9h 420 (3.559) Cm (417:421)

	``	,	````													9.8	9e+003
100-	:	240.0	867														
-																	
-																	
0/																	
%																	
-		2	241 0923														
-	239.0	796															
			343.2969	106.2046	635.362	1 8	393.0076	991.5612	128	9.4924,13	57.2916 ¹⁵	25.18	42				,
0		200	400		600	800		1000	1200	140	0	1600		180	0		m/z 2000
Minim	ium:			2 (~	E O	-1.5										
Maxin				5.0	J	5.0	50.0										
Mass		Cal	c. Mass	mDa	a	PPM	DBE	i-F	IT	i-FIT	(Norm)	For	mula				
240.0	867	240	.0868	-0	.1	-0.4	-1.5	280	.3	7.6		С	Н12	N7	05	F2	
		240	.0872	-0	. 5	-2.1	5.5	273	.6	1.0		C11	H14	N	05		
		240	.0857	1.0)	4.2	2.5	278	.1	5.5		C4	H11	N7	04	F	
		240	.0883	-1	. 6	-6.7	1.5	275	.1	2.4		С8	H15	Ν	06	F	
		240	.0885	-1.	. 8	-7.5	10.5	273	.7	1.0		C12	H1C) N.	5 0		
		240	.0848	1.9	9	7.9	2.5	275	.4	2.7		С9	H13	Ν	03	FЗ	
		240	.0845	2.2	2	9.2	6.5	276	.5	3.9		C7	H10	N7	03		
		240	.0897	-3	.0	-12.5	6.5	275	.5	2.8		С9	H11	N5	02	F	

1: TOF MS ES+

PerkinElmer Spectrum Version 10.5.2 31 August 2022 08:11

(E)-N,N-dimethyl-4-(2-nitrovinyl)aniline 88k

¹³C:

Single Mass Analysis Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 539 formula(e) evaluated with 5 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-100 H: 0-100 N: 0-10 O: 0-10 F: 0-3 MTF9i 453 (3.842) Cm (452:454)

`	, (,							6 05e+004
100 1	93.0987							0.000+004
0	194.1013 	7 <u>616.472</u> 600	24 693.3917 8 	17.4062 	1025.4962 	1436.4353 15 	523.2804 1719. 1600 18	2021 1987.2330
Minimum: Maximum:		3.0	5.0	-1.5 50.0				
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT (Norm)	Formula	
193.0987	193.0988 193.0977 193.0973 193.0962 193.1013	-0.1 1.0 1.4 2.5 -2.6	-0.5 5.2 7.3 12.9 -13.5	1.5 5.5 -1.5 2.5 2.5	476.0 472.8 489.6 484.9 481.7	3.2 0.0 16.8 12.1 8.9	C7 H14 N2 C10 H13 N H11 N8 O2 C3 H10 N8 C5 H11 N6	2 03 F N2 02 2 F2 3 0 F 5 F2

1: TOF MS ES+

Page 1

Miscellaneous

2-(2-(1*H*-pyrrol-1-yl)ethyl)-3-benzyl-3-hydroxyisoindolin-1-one **25** ¹H:

¹³C:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -1.5, max = 50.0 Element prediction: Off Number of isotope peaks used for i-FIT = 3

Monoisotopic Mass, Even Electron Ions 314 formula(e) evaluated with 4 results within limits (up to 200 closest results for each mass) Elements Used: C: 0-50 H: 0-100 N: 0-8 O: 0-8 MTF_MTFhyd_179356 489 (4.111) Cm (489:491)

MTF_MTFhyd	1_179356 489 (4.111) C	cm (489:491)							1: TOF MS ES+ 6.01e+003
100									355.14	143
% 317.*	1589		222.4	222						356.1487
31	7.8641 321.2658	329.1404	331.1476	334.1674 <u>(</u>	339.1740	345.1354	347.1411	352.13	65	357.1489
0 4տվուլ վեր -	320.0 325.0) ;	330.0	335.0	340.0	345.0	35	0.0	355.0	m/z הי ין ייי m /z ס
Minimum: Maximum:		3.0	100.0	-1.5 50.0						
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	i-FIT	(Norm)	Formul	la	
333.1632	333.1635 333.1643	-0.3 -1.1	-0.9 -3.3	4.5 16.5	78.0 73.5	4.7 0.3		C10 H C26 H	H21 N H21	8 05
	333.1603	2.9	8.7	12.5	74.8	1.6		C21 H	H21 N	2 02
	333.⊥662	-3.0	-9.0	3.5	/8.4	5.1		CI4 H	H25 N2	2 07

Page 1

PerkinElmer Spectrum Version 10.5.2 19 November 2021 08:21

X-ray crystallography data

Table 1 Crystal data and st	ructure refinement for 22srv021.
Identification code	22srv021
Empirical formula	$C_{21}H_{20}N_2O_2$
Formula weight	332.39
Temperature/K	120.00
Crystal system	monoclinic
Space group	P2 ₁ /n
a/Å	13.6547(11)
b/Å	9.1573(8)
c/Å	15.7046(13)
α/°	90
β/°	114.297(3)
γ/°	90
Volume/Å ³	1789.8(3)
Z	4
$\rho_{calc}g/cm^3$	1.234
µ/mm ⁻¹	0.080
F(000)	704.0
Crystal size/mm ³	0.38 × 0.04 × 0.01

Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.146 to 52
Index ranges	-16 ≤ h ≤ 16, -11 ≤ k ≤ 11, -19 ≤ l ≤ 19
Reflections collected	22996
Independent reflections	3520 [R _{int} = 0.1172, R _{sigma} = 0.0867]
Data/restraints/parameters	3520/72/261
Goodness-of-fit on F ²	1.046
Final R indexes [I>=2σ (I)]	R ₁ = 0.0744, wR ₂ = 0.1545
Final R indexes [all data]	R ₁ = 0.1248, wR ₂ = 0.1771
Largest diff. peak/hole / e Å ⁻³	0.31/-0.20

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement										
Parameters	s (Ų×10³) for 22srv02:	1. U _{eq} is defined as	1/3 of the trace of the	e orthogonalised						
		U _{IJ} tensor.	1	P						
Atom	x	у	Z	U(eq)						
01	8667.6(15)	4258(2)	4386.2(13)	29.8(5)						
02	7327.5(17)	7612(3)	2102.7(14)	50.4(7)						
N1	8282.3(18)	6430(2)	3473.0(14)	27.3(6)						
N2	10571(2)	5792(3)	2807.0(17)	36.8(6)						
C1	7366(2)	6846(3)	2762.3(19)	31.3(7)						
C2	6477(2)	6193(3)	2925.2(18)	30.9(7)						
C3	5389(2)	6218(4)	2370(2)	43.1(8)						
C4	4723(3)	5463(4)	2668(3)	55.8(10)						
C5	5132(3)	4701(4)	3503(3)	58.9(10)						
C6	6240(2)	4684(3)	4068(2)	43.0(8)						
C7	6900(2)	5439(3)	3761.0(19)	28.7(7)						
C8	8106(2)	5588(3)	4201.3(18)	25.4(6)						
C9	9340(2)	6707(3)	3489.9(19)	32.0(7)						
C10	9473(3)	5854(4)	2717(2)	56.7(10)						
C11	10957(3)	4676(4)	2466(3)	55.2(10)						
C12	12021(3)	4923(4)	2692(3)	60.0(11)						
C13	12289(3)	6249(4)	3170(2)	47.3(9)						
C14	11390(3)	6743(4)	3249(2)	45.0(9)						
C15	8534(2)	6420(3)	5136.6(18)	30.7(7)						
C16	8093(8)	7880(7)	5080(8)	36(3)						
C17	8562(6)	9061(9)	4834(7)	56(3)						
C18	8119(6)	10447(8)	4759(5)	70(3)						
C19	7208(6)	10652(7)	4931(6)	66(3)						
C20	6739(6)	9471(9)	5177(6)	79(3)						
C21	7182(8)	8085(8)	5251(8)	56(3)						

C16A	7927(7)	7879(6)	5123(7)	26(3)
C17A	8182(5)	9155(7)	4779(5)	29.0(17)
C18A	7614(4)	10431(5)	4740(4)	29.2(16)
C19A	6792(4)	10432(6)	5045(4)	36.6(18)
C20A	6536(5)	9155(7)	5388(5)	50(2)
C21A	7104(7)	7879(6)	5427(6)	41(2)

Table	Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 22srv021. The Anisotropic											
dis	splacement fa	ctor exponent	t takes the for	m: -2π²[h²a*²	U ₁₁ +2hka*b*l	J ₁₂ +].						
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂						
01	27.9(11)	24.8(11)	23.9(10)	-1.1(9)	-2.2(8)	4.9(9)						
02	47.5(14)	59.8(16)	35.7(12)	25.9(11)	8.9(11)	14.2(11)						
N1	24.9(13)	28.9(13)	20.9(12)	2.8(10)	2.0(10)	-0.1(10)						
N2	32.0(15)	43.5(16)	34.3(14)	1.3(12)	13.1(12)	-3.9(12)						
C1	30.3(17)	31.2(17)	24.0(15)	5.6(13)	2.5(12)	7.3(13)						
C2	26.6(16)	30.1(16)	27.2(15)	-0.1(12)	2.1(13)	5.6(13)						
C3	27.3(18)	51(2)	39.5(18)	2.1(16)	1.9(15)	8.9(16)						
C4	24.8(19)	69(3)	59(2)	-1(2)	2.6(17)	2.7(18)						
C5	39(2)	59(3)	78(3)	6(2)	23(2)	-10.8(18)						
C6	33.5(19)	45(2)	47.1(19)	8.1(16)	13.5(16)	0.1(15)						
C7	24.8(16)	24.9(16)	31.3(15)	-1.1(12)	6.4(13)	-0.8(13)						
C8	24.2(15)	21.5(15)	23.5(14)	5.1(11)	2.8(11)	2.9(12)						
C9	26.0(16)	35.9(18)	28.6(15)	3.0(13)	5.7(12)	-2.8(13)						
C10	33(2)	90(3)	43(2)	-21.9(19)	10.6(16)	-5.9(19)						
C11	56(2)	57(2)	61(2)	-19.3(19)	33(2)	-14.7(19)						
C12	54(3)	69(3)	70(3)	-15(2)	39(2)	-6(2)						
C13	38(2)	52(2)	53(2)	0.0(18)	20.3(17)	-9.9(17)						
C14	37(2)	41(2)	51(2)	-5.3(16)	11.6(16)	-5.4(16)						
C15	31.9(17)	31.1(17)	20.2(14)	2.4(12)	1.7(12)	-0.4(13)						
C16	42(5)	37(5)	24(4)	-6(4)	9(4)	0(3)						
C17	67(5)	44(4)	44(4)	-6(3)	9(4)	4(4)						
C18	87(6)	52(5)	61(4)	-5(4)	20(4)	3(4)						
C19	70(5)	57(5)	65(5)	-8(4)	22(4)	25(4)						
C20	74(5)	74(6)	83(5)	-16(5)	25(4)	14(4)						
C21	52(5)	50(5)	63(5)	-8(4)	20(4)	10(4)						
C16A	28(4)	23(4)	19(4)	-5(3)	1(3)	6(3)						
C17A	35(4)	24(4)	28(3)	-2(3)	12(3)	-2(3)						
C18A	31(4)	29(3)	28(3)	3(2)	14(3)	6(3)						
C19A	37(4)	26(4)	43(3)	-1(3)	13(3)	3(3)						
C20A	53(4)	56(4)	50(4)	-7(3)	30(3)	11(3)						
C21A	48(4)	40(4)	39(4)	-3(3)	23(3)	3(3)						

	Tabl	e 4 Bond Lei	ngt	hs for 2	2srv021	
Atom	Atom	Length/Å		Atom	Atom	Length/Å
01	C8	1.404(3)		C11	C12	1.365(5)
02	C1	1.233(3)		C12	C13	1.396(5)
N1	C1	1.344(3)		C13	C14	1.360(4)
N1	C8	1.479(3)		C15	C16	1.453(6)
N1	C9	1.455(3)		C15	C16A	1.567(5)
N2	C10	1.449(4)		C16	C17	1.3900
N2	C11	1.357(4)		C16	C21	1.3900
N2	C14	1.361(4)		C17	C18	1.3900
C1	C2	1.467(4)		C18	C19	1.3900
C2	C3	1.380(4)		C19	C20	1.3900
C2	C7	1.382(4)		C20	C21	1.3900
C3	C4	1.368(5)		C16A	C17A	1.3900
C4	C5	1.384(5)		C16A	C21A	1.3900
C5	C6	1.404(4)		C17A	C18A	1.3900
C6	C7	1.371(4)		C18A	C19A	1.3900
C7	C8	1.508(4)		C19A	C20A	1.3900
C8	C15	1.540(4)		C20A	C21A	1.3900
C9	C10	1.515(4)				

	Table 5 Bond Angles for 22srv021.											
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°				
C1	N1	C8	113.5(2)		N1	C9	C10	109.9(2)				
C1	N1	C9	122.9(2)		N2	C10	C9	113.7(3)				
C9	N1	C8	123.5(2)		N2	C11	C12	108.5(3)				
C11	N2	C10	123.1(3)		C11	C12	C13	107.4(3)				
C11	N2	C14	108.2(3)		C14	C13	C12	107.0(3)				
C14	N2	C10	128.7(3)		C13	C14	N2	108.9(3)				
02	C1	N1	124.2(3)		C8	C15	C16A	114.7(4)				
02	C1	C2	128.7(3)		C16	C15	C8	114.3(5)				
N1	C1	C2	107.1(2)		C17	C16	C15	120.4(6)				
C3	C2	C1	129.6(3)		C17	C16	C21	120.0				
C3	C2	C7	121.9(3)		C21	C16	C15	119.6(6)				
C7	C2	C1	108.5(2)		C16	C17	C18	120.0				
C4	C3	C2	118.0(3)		C17	C18	C19	120.0				
C3	C4	C5	120.9(3)		C20	C19	C18	120.0				
C4	C5	C6	120.9(3)		C19	C20	C21	120.0				
C7	C6	C5	117.7(3)		C20	C21	C16	120.0				
C2	C7	C8	109.9(2)		C17A	C16A	C15	120.4(5)				
C6	C7	C2	120.5(3)		C17A	C16A	C21A	120.0				
C6	C7	C8	129.5(3)		C21A	C16A	C15	119.5(5)				
01	C8	N1	111.3(2)		C18A	C17A	C16A	120.0				
01	C8	C7	114.6(2)		C17A	C18A	C19A	120.0				

01	C8	C15	105.7(2)	C18A	C19A	C20A	120.0
N1	C8	C7	100.8(2)	C21A	C20A	C19A	120.0
N1	C8	C15	111.2(2)	C20A	C21A	C16A	120.0
C7	C8	C15	113.3(2)				

Table 6 Hydrogen Bonds for 22srv021.									
D	D H A d(D-H)/Å d(H-A)/Å d(D-A)/Å D-H-A/°								
01	O1 H1 O2 ¹ 0.90(3) 1.75(3) 2.641(3) 169(3)								

¹3/2-X,-1/2+Y,1/2-Z

	Table 7 Selected Torsion Angles for 22srv021.										
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°	
N1	C9	C10	N2	-166.7(3)		C9	N1	C8	01	-49.3(3)	
C1	N1	C8	01	127.1(2)		C9	C10	N2	C11	152.2(3)	
C2	C7	C8	01	-123.1(2)		C9	C10	N2	C14	-25.3(5)	
C2	C7	C8	N1	-3.5(3)		C10	C9	N1	C1	-65.6(3)	
C2	C7	C8	C15	115.4(3)		C10	C9	N1	C8	110.5(3)	
C6	C7	C8	01	55.9(4)		C15	C8	N1	C1	-115.3(3)	
C6	C7	C8	N1	175.5(3)		C15	C8	N1	C9	68.3(3)	
C6	C7	C8	C15	-65.6(4)		C16	C15	C8	01	176.5(5)	
C7	C8	N1	C1	5.1(3)		C16	C15	C8	N1	55.6(5)	
C7	C8	N1	C9	-171.3(2)		C16A	C15	C8	01	-173.6(4)	
C7	C8	C15	C16	-57.1(5)		C16A	C15	C8	N1	65.4(4)	
C7	C8	C15	C16A	-47.3(4)							

Table 8 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters (Å ² ×10 ³) for 22srv021.								
Atom	X	y	Z	U(eq)				
H3	5109.35	6744.88	1798.45	52				
H4	3971.04	5460.96	2296.28	67				
H5	4656.23	4181.66	3696.26	71				
H6	6522.18	4167.21	4643.42	52				
H9A	9901.94	6411.06	4102.46	38				
H9B	9423.73	7763.29	3404.66	38				
H10A	9209.97	4845.35	2714.23	68				
H10B	9018.55	6306.43	2109.71	68				
H11	10554.77	3859.97	2126.99	66				
H12	12492.74	4305.37	2549.27	72				
H13	12969.87	6718.25	3398.16	57				
H14	11342.25	7610.44	3561.04	54				
H15C	9302.87	6645.22	5318.58	37				

H15D	8485.03	5772.37	5622.27	37
H15A	8368.08	5846.14	5595.05	37
H15B	9325.26	6494.62	5374.52	37
H17	9184.24	8920.51	4716.2	68
H18	8439.4	11254.25	4591.01	84
H19	6905.51	11599.85	4880.08	79
H20	6116.45	9611.71	5294.35	95
H21	6861.27	7277.96	5419.55	67
H17A	8744.27	9154.64	4571.47	35
H18A	7788.65	11303.66	4505.98	35
H19A	6403.59	11304.14	5018.13	44
H20A	5974.14	9155.59	5595.77	60
H21A	6929.75	7006.55	5661.25	49
H1	8410(20)	3660(30)	3880(20)	48(10)

	Table 9 Atomic Occupancy for 22srv021.									
Atom	Atom Occupancy Atom Occupancy					Atom	Occupancy			
H15C	0.5		H15D	0.5		H15A	0.5			
H15B	0.5		C16	0.5		C17	0.5			
H17	0.5		C18	0.5		H18	0.5			
C19	0.5		H19	0.5		C20	0.5			
H20	0.5		C21	0.5		H21	0.5			
C16A	0.5		C17A	0.5		H17A	0.5			
C18A	0.5		H18A	0.5		C19A	0.5			
H19A	0.5		C20A	0.5		H20A	0.5			
C21A	0.5		H21A	0.5						

Refinement model description

Number of restraints - 72, number of constraints - unknown.

Details:

1. Fixed Uiso

At 1.2 times of: All C(H) groups, All C(H,H) groups, All C(H,H,H,H) groups 2. Uiso/Uaniso restraints and constraints Uanis(C16A) \approx Ueq, Uanis(C17A) \approx Ueq, Uanis(C18A) \approx Ueq, Uanis(C20A) \approx Ueq, Uanis(C21A) \approx Ueq, Uanis(C16) \approx Ueq, Uanis(C17) \approx Ueq, Uanis(C18) \approx Ueq, Uanis(C20) \approx Ueq, Uanis(C21) \approx Ueq, Uanis(C19) \approx Ueq, Uanis(C19A) \approx Ueq: with sigma of 0.006 and sigma for terminal atoms of 0.01 3. Others Fixed Sof: H15C(0.5) H15D(0.5) H15A(0.5) H15B(0.5) C16(0.5) C17(0.5) H17(0.5) C18(0.5) H18(0.5) C19(0.5) H19(0.5) C20(0.5) H20(0.5) C21(0.5) H21(0.5) C16A(0.5) C17A(0.5) H17A(0.5) C18A(0.5) H18A(0.5) C19A(0.5)) H19A(0.5) C20A(0.5) H20A(0.5) C21A(0.5) H21A(0.5) 4.a Secondary CH2 refined with riding coordinates: C9(H9A,H9B), C10(H10A,H10B), C15(H15C,H15D), C15(H15A,H15B) 4.b Aromatic/amide H refined with riding coordinates:
C3(H3), C4(H4), C5(H5), C6(H6), C11(H11), C12(H12), C13(H13), C14(H14),
C17(H17), C18(H18), C19(H19), C20(H20), C21(H21), C17A(H17A), C18A(H18A),
C19A(H19A), C20A(H20A), C21A(H21A)
4.c Fitted hexagon refined as free rotating group:
C16(C17,C18,C19,C20,C21), C16A(C17A,C18A,C19A,C20A,C21A)

(*E*)-2-(2-(1*H*-pyrrol-1-yl)ethyl)-3-benzylideneisoindolin-1-one **43** ¹H:

¹³C:

DEPT-135:

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 2017 formula(e) evaluated with 17 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-10 O: 0-10 S: 0-4 21-Jul-2022 MTF_MTFAlk_179355 566 (4.756) Cm (563:566)

100 304.302	23		312	.1306 3	314.1459 ^{3'}	15.1511 ₃	16.1575 _317	.4105			326.3876
0 	306.0 308	3.0	310.0	312.0	314.0	316.0	318	.0 320.0	322.0	324.0	326.0
Minimum: Maximum:		3.0	5.0	-10.0 100.0							
Mass	Calc. Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
315.1511	315.1511 315.1509 315.1516 315.1518 315.1520 315.1523 315.1498 315.1497 315.1525 315.1493 315.1529 315.1529 315.1531	$\begin{array}{c} 0.0\\ 0.2\\ -0.5\\ -0.7\\ -0.9\\ -1.2\\ 1.3\\ 1.4\\ -1.4\\ 1.8\\ -1.8\\ -2.0\\ -2.0\\ \end{array}$	$\begin{array}{c} 0.0\\ 0.6\\ -1.6\\ -2.2\\ -2.9\\ -3.8\\ 4.1\\ 4.4\\ -4.4\\ 5.7\\ -5.7\\ -6.3\\ -6.3\\ -6.3 \end{array}$	-5.5 -8.5 0.5 -9.5 -6.5 -3.5 0.5 13.5 -0.5 -5.5 5.5 8.5 -4.5	248.7 245.6 236.6 252.8 254.2 244.1 247.6 218.9 247.9 254.4 235.5 238.9 252.4	29.890 26.790 17.698 33.990 35.342 25.256 28.788 0.000 29.078 35.563 16.597 20.083 33.503	0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00	C9 H31 O7 S2 C H27 N6 O10 S C9 H23 N4 O8 C2 H31 N6 O5 S C10 H35 O2 S4 C2 H23 N10 O6 C6 H23 N10 O S C21 H19 N2 O C10 H27 N4 O3 C6 H31 N6 S4 C10 H19 N8 O4 C18 H23 N2 O S C3 H27 N10 O S	5 53 52 52 52 53		
	315.1491 315.1489 315.1486 315.1484	2.0 2.2 2.5 2.7	6.3 7.0 7.9 8.6	4.5 1.5 -1.5 -4.5	239.5 240.1 252.3 248.7	20.657 21.238 33.450 29.857	0.00 0.00 0.00 0.00	C13 H23 N4 O3 C5 H19 N10 O6 C13 H31 O2 S3 C5 H27 N6 O5 S	S 52		

21-Jul-2022

1: TOF MS ES+ 1.79e+004

Page 1

X-ray crystallography data

Table 1 Crystal data and st	Table 1 Crystal data and structure refinement for 21srv467.								
Identification code	21srv467								
Empirical formula	$C_{21}H_{18}N_2O$								
Formula weight	314.37								
Temperature/K	120.0								
Crystal system	monoclinic								
Space group	P21/c								
a/Å	14.3276(4)								
b/Å	12.1351(3)								
c/Å	9.7437(3)								
α/°	90								
β/°	96.9734(11)								
γ/°	90								

Volume/Å ³	1681.57(8)
Z	4
ρ _{calc} g/cm ³	1.242
µ/mm ⁻¹	0.077
F(000)	664.0
Crystal size/mm ³	0.26 × 0.19 × 0.14
Radiation	Μο Κα (λ = 0.71073)
20 range for data collection/°	5.386 to 59.99
Index ranges	-20 ≤ h ≤ 20, -17 ≤ k ≤ 17, -13 ≤ l ≤ 13
Reflections collected	28328
Independent reflections	4882 [R _{int} = 0.0451, R _{sigma} = 0.0370]
Data/restraints/parameters	4882/0/289
Goodness-of-fit on F ²	1.025
Final R indexes [I>=2σ (I)]	R ₁ = 0.0470, wR ₂ = 0.1055
Final R indexes [all data]	R ₁ = 0.0673, wR ₂ = 0.1157
Largest diff. peak/hole / e Å ⁻³	0.28/-0.21

Table 2	Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement								
Parameters ($Å^2 \times 10^3$) for 21srv467. U _{eq} is defined as 1/3 of of the trace of the									
orthogonalised U _{II} tensor.									
Atom	x y z U(eq								
01	100.4(6)	6294.1(8)	3839.9(9)	29.7(2)					
N1	1300.3(7)	7403.3(8)	3275.0(10)	22.6(2)					
N2	1044.6(7)	9701.5(8)	4256.1(10)	22.5(2)					
C1	941.2(8)	6467.3(10)	3816.5(12)	22.6(2)					
C2	1752.8(8)	5769.7(10)	4317.9(12)	22.9(2)					
C3	1766.2(10)	4758.2(11)	4975.9(13)	28.8(3)					
C4	2639.3(10)	4283.4(11)	5384.6(14)	32.6(3)					
C5	3459.5(10)	4822.4(11)	5140.0(14)	30.7(3)					
C6	3445.6(9)	5836.2(11)	4474.4(13)	27.0(3)					
C7	2574.3(8)	6313.9(10)	4039.4(12)	22.3(2)					
C8	2294.1(8)	7368.5(10)	3352.9(12)	22.3(2)					
C9	2811.5(9)	8192.4(10)	2914.2(13)	25.9(3)					
C10	3830.3(9)	8152.1(10)	2823.0(13)	24.7(3)					
C11	4406.4(9)	9003.7(11)	3391.2(14)	29.9(3)					
C12	5361.5(10)	9003.1(13)	3265.2(16)	36.1(3)					
C13	5753.3(10)	8159.7(13)	2564.6(15)	35.2(3)					

C14	5184.1(10)	7320.3(12)	1972.1(16)	34.9(3)
C15	4226.1(10)	7319.1(11)	2092.5(15)	31.5(3)
C16	681.3(9)	8215.1(11)	2533.5(13)	25.0(3)
C17	302.1(8)	9054.2(11)	3483.1(13)	25.2(3)
C18	1429.4(9)	10653.8(11)	3814.6(13)	27.2(3)
C19	2146.1(10)	10968.3(11)	4795.8(14)	31.4(3)
C20	2205.2(9)	10176.8(12)	5872.3(13)	29.3(3)
C21	1525.2(9)	9405.7(11)	5504.7(13)	25.6(3)

Table 3	Table 3 Anisotropic Displacement Parameters (Å ² ×10 ³) for 21srv467. The Anisotropic								
disp	displacement lactor exponent takes the form: -2/t²[n²a²²O ₁₁ +2NKa*D*O ₁₂ +].								
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂			
01	23.3(4)	36.6(5)	29.1(5)	-1.2(4)	2.8(3)	-7.1(4)			
N1	21.3(5)	23.1(5)	23.6(5)	-0.7(4)	3.5(4)	-1.5(4)			
N2	23.5(5)	23.2(5)	20.5(5)	1.0(4)	1.5(4)	0.6(4)			
C1	26.3(6)	24.7(6)	17.1(5)	-4.1(4)	3.8(4)	-6.0(5)			
C2	25.9(6)	25.8(6)	17.6(5)	-3.7(4)	5.2(4)	-2.4(5)			
C3	36.0(7)	26.4(6)	25.5(6)	-1.2(5)	9.6(5)	-4.3(5)			
C4	43.2(8)	25.6(6)	30.2(7)	2.0(5)	9.1(6)	3.1(6)			
C5	35.4(7)	30.4(7)	26.6(6)	-0.7(5)	5.4(5)	7.9(6)			
C6	26.7(6)	30.7(7)	24.0(6)	-2.4(5)	4.7(5)	1.0(5)			
C7	24.5(6)	24.0(6)	18.6(5)	-4.7(4)	4.1(4)	-1.0(4)			
C8	22.0(5)	24.2(6)	20.7(5)	-3.9(4)	2.8(4)	-0.7(4)			
C9	25.2(6)	23.3(6)	29.5(6)	-0.2(5)	4.4(5)	-2.0(5)			
C10	24.4(6)	24.0(6)	26.4(6)	3.5(5)	5.8(5)	-3.7(5)			
C11	30.7(7)	28.8(7)	30.9(7)	-2.2(5)	6.3(5)	-6.2(5)			
C12	29.4(7)	38.9(8)	39.8(8)	-2.5(6)	3.9(6)	-11.6(6)			
C13	25.3(7)	41.9(8)	39.5(8)	5.2(6)	8.8(6)	-5.1(6)			
C14	32.4(7)	33.5(7)	41.1(8)	-1.0(6)	14.1(6)	-0.5(6)			
C15	30.1(7)	28.2(7)	37.4(7)	-4.1(6)	9.0(5)	-5.9(5)			
C16	23.1(6)	29.4(6)	21.8(6)	1.3(5)	0.2(5)	-1.4(5)			
C17	20.3(6)	28.2(6)	26.7(6)	-0.4(5)	0.7(5)	0.1(5)			
C18	32.5(7)	24.3(6)	24.5(6)	3.5(5)	2.6(5)	0.5(5)			
C19	31.9(7)	29.9(7)	31.9(7)	2.0(5)	2.2(5)	-6.4(5)			
C20	25.8(6)	36.9(7)	24.2(6)	1.2(5)	-0.9(5)	-2.4(5)			
C21	26.8(6)	29.0(6)	21.0(6)	3.6(5)	2.3(5)	0.8(5)			

Table 4 Bond Lengths for 21srv467.									
Atom Atom Length/Å Atom Atom Lengt						Length/Å			
01	C1	1.2258(14)		C7	C8	1.4768(17)			
N1	C1	1.3781(15)		C8	C9	1.3450(17)			
N1	C8	1.4172(15)		C9	C10	1.4739(17)			

N1	C16	1.4573(16)	(C10	C11	1.3946(18)
N2	C17	1.4565(16)	(C10	C15	1.3957(18)
N2	C18	1.3719(16)	(C11	C12	1.3886(19)
N2	C21	1.3711(15)	(C12	C13	1.386(2)
C1	C2	1.4729(17)	(C13	C14	1.386(2)
C2	C3	1.3839(18)	(C14	C15	1.3918(19)
C2	C7	1.4044(16)	(C16	C17	1.5198(17)
C3	C4	1.391(2)	(C18	C19	1.3696(19)
C4	C5	1.390(2)	(C19	C20	1.4171(19)
C5	C6	1.3897(19)	(C20	C21	1.3669(18)
C6	C7	1.3949(17)				

Table 5 Bond Angles for 21srv467.								
Atom	Atom	Atom	Angle/°		Atom	Atom	Atom	Angle/°
C1	N1	C8	111.98(10)		N1	C8	C7	105.44(10)
C1	N1	C16	120.93(10)		C9	C8	N1	123.35(11)
C8	N1	C16	126.42(10)		C9	C8	C7	131.16(11)
C18	N2	C17	126.03(10)		C8	C9	C10	125.63(12)
C21	N2	C17	125.05(11)		C11	C10	C9	119.62(11)
C21	N2	C18	108.73(10)		C11	C10	C15	118.79(12)
01	C1	N1	124.19(12)		C15	C10	C9	121.42(11)
01	C1	C2	129.30(11)		C12	C11	C10	120.44(13)
N1	C1	C2	106.51(10)		C13	C12	C11	120.42(13)
C3	C2	C1	129.00(11)		C12	C13	C14	119.64(13)
C3	C2	C7	122.81(12)		C13	C14	C15	120.14(13)
C7	C2	C1	108.18(11)		C14	C15	C10	120.54(13)
C2	C3	C4	117.47(12)		N1	C16	C17	113.08(10)
C5	C4	C3	120.36(13)		N2	C17	C16	112.56(10)
C6	C5	C4	122.14(13)		C19	C18	N2	108.16(11)
C5	C6	C7	118.12(12)		C18	C19	C20	107.47(12)
C2	C7	C8	107.87(10)		C21	C20	C19	107.07(12)
C6	C7	C2	119.07(11)		C20	C21	N2	108.57(11)
C6	C7	C8	132.98(11)					

Table 6 Selected Torsion Angles for 21srv467.										
Α	В	С	D	Angle/°		Α	В	С	D	Angle/°
N1	C16	C17	N2	61.57(14)		C16	C17	N2	C18	86.99(15)
C7	C8	C9	C10	10.5(2)		C16	C17	N2	C21	-87.45(14)
C8	C9	C10	C11	-130.54(14)		C17	C16	N1	C1	85.63(13)
C8	C9	C10	C15	54.13(19)		C17	C16	N1	C8	-104.52(13)
C10	C9	C8	N1	-172.64(11)						

Table 7 Hydrogen Atom Coordinates (Å×10 ⁴) and Isotropic Displacement Parameters								
(Å ² ×10 ³) for 21srv467.								
Atom	x	у	Z	U(eq)				
H3	1183(10)	4402(12)	5092(15)	26(4)				
H4	2685(10)	3571(13)	5855(15)	33(4)				
H5	4066(11)	4474(12)	5461(15)	34(4)				
H6	4028(11)	6212(12)	4292(15)	32(4)				
Н9	2480(10)	8877(13)	2634(15)	33(4)				
H11	4104(11)	9610(13)	3873(16)	37(4)				
H12	5753(13)	9603(15)	3705(18)	55(5)				
H13	6440(13)	8143(14)	2466(17)	47(5)				
H14	5465(12)	6717(15)	1414(18)	52(5)				
H15	3793(12)	6727(15)	1639(17)	48(5)				
H16A	1053(10)	8590(12)	1854(14)	28(4)				
H16B	128(10)	7804(12)	2017(15)	30(4)				
H17A	-59(10)	8690(13)	4178(16)	33(4)				
H17B	-130(10)	9564(12)	2902(15)	28(4)				
H18	1159(10)	11002(13)	2951(16)	35(4)				
H19	2531(11)	11623(14)	4741(17)	43(4)				
H20	2626(11)	10177(13)	6722(16)	38(4)				
H21	1347(10)	8751(13)	5960(15)	32(4)				

(*R*)-(-)-1,1'-Binaphthyl-2,2'-diyl hydrogen phosphate **150** ¹H:

¹³C:

Elemental Composition Report

Single Mass Analysis

Tolerance = 3.0 mDa / DBE: min = -10.0, max = 100.0 Element prediction: Off Number of isotope peaks used for i-FIT = 9

Monoisotopic Mass, Even Electron Ions 545 formula(e) evaluated with 5 results within limits (all results (up to 1000) for each mass) Elements Used: C: 0-50 H: 0-50 N: 0-5 O: 0-6 P: 0-2

21-Jul-2022 MTF_MTFBPA_179357 457 (3.843) Cm (454:457) 21-Jul-2022 1: TOF MS ES+ 4.56e+003

												4.500,000
100-	348.0591			349.0644	349.4707	350.0746 3		0.4796	351.0751	351.4881	352.0711	352.3210
	348.00	348.50	·	349.00	349.50	350.	00 3	350.50	351.00	351.50	352.00	352.50
Minimum Maximum	:		3.0	5.0	-10.0 100.0							
Mass	Calc.	Mass	mDa	PPM	DBE	i-FIT	Norm	Conf(%)	Formula			
349.064	4 349.0 349.0 349.0 349.0 349.0 349.0	643 653 630 660 619	0.1 -0.9 1.4 -1.6 2.5	0.3 -2.6 4.0 -4.6 7.2	19.5 23.5 14.5 14.5 10.5	143.7 152.5 145.4 148.3 156.6	0.173 8.984 1.897 4.729 13.058	84.10 0.01 15.01 0.88 0.00	C21 H10 N C27 H9 O C20 H14 C C19 H15 N C14 H15 N	14 P 04 P 12 O P2 14 O3 P2		

Page 1

PerkinElmer Spectrum Version 10.5.2 22 July 2022 14:25