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Abstract

In inventory theory, many scenarios have been studied with the aim of determining an

optimal order strategy, typically with the aim to maximise expected profit. Tradition-

ally, a stochastic model with a known probability distribution for random demand is

assumed. In this thesis, an alternative approach to inventory problems is presented, with

the aim of basing the order strategy on information in the form of previously observed

demands, adding only quite minimal further assumptions. Nonparametric Predictive In-

ference (NPI) is used to predict a future demand given observations of past demands. NPI

makes only a few modelling assumptions, which is achieved by quantifying uncertainty

through lower and upper probabilities.

As the first use of NPI in inventory theory, the basic scenario of inventory for a single

period is considered. We present NPI lower and upper probabilities for the event that

the random profit achieved for one future period is non-negative, which can be used to

determine an optimal inventory level. As second optimality criterion, we consider the

NPI lower and upper expected profits for the next period. We also consider optimisation

of a weighted average of the NPI lower and upper probabilities and expected profits.

We also develop the NPI method for two-period inventory problems, in which we

choose to maximise expected profit as the optimal criterion for determining optimal

inventory levels. We derive the optimal inventory level for the two-period model with

a single order. We presume that we are filling the inventory for both periods at the

same time. Therefore, the future demand will be a combination of the future demand

for the first period and the future demand for the second period. We also derive the

optimal inventory levels for both periods in the two-period independent demands model.
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First, we determine the optimal inventory level for the second period, assuming there is

a remaining stock (or shortage) from the first period, and with that optimal strategy for

the second period, we then optimise over the first period.

Attention is also given to the situation of the two-period model with dependent de-

mands. The NPI bootstrap (NPI-B) method is applied to deal with this model and the

complexities in some of the inventory models. We study different strategies for the inven-

tory levels to determine which one of those is optimal based on maximising the average

profit.

The NPI method and the classical method are compared through simulations. Several

cases are studied, some where the assumptions underlying the classical method are fully

correct, so the classical method performs better; for a large number of observations, there

is a tendency for the NPI to be close to the classical method. In the other cases where

the assumed model is not well aligned with reality, the NPI method performs better.
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Chapter 1

Introduction

Inventory theory is one of the main areas in operations research, with a long history of

contributions to the literature in which a variety of scenarios are studied. A long time

ago, inventories were thought of as indicators of a nation’s or an individual’s riches and

power. The wealth and power of a businessman or a country were measured by how

much wheat, rice, cattle, etc. they had in their storehouses. Dealing with stock levels

like that was simple. Because of the rapid advances and changes in product life these

days, inventories are seen as a significant potential risk and need to be controlled by using

scientific techniques instead of being regarded as a measure of wealth [66].

In 1913, Harris was the first researcher who presented and developed an inventory

model [42]. Then, in 1951, the stochastic inventory theory was developed by Arrow

et al. [2]. Their ground-breaking work in the field of inventory modelling has made it a

significant part of operations research ever since. They made it clear how important it

is to plan for unexpected demand, costs, and emergency stock. Some researchers, like

Dvoretzky et al. [32, 33], made important contributions to the inventory theory’s growth.

Arrow et al. [4] have researched the origins of inventory theory’s development as well as

its nature and structure. Additionally, they examined a wide range of inventory models.

The vast majority of the authors focused on continuous time models where stock levels are

continuously monitored. The classical results in this field were provided by Hadley and

Whitin [41], Nahmias [58] and Nahmias et al. [59]. In the subject of inventory modelling,

Cheng et al. [15] and Andriolo et al. [1] addressed the fundamental problems of how much

and when to order.

The classical approach is commonly used to study inventory problems in the op-

1



Chapter 1. Introduction 2

erations research literature. This approach assumes that the random demand follows

a known probability distribution, with variation in the number of periods, or decision

moments, along with the related costs [54].

In this thesis, we propose a novel approach to inventory models using the Nonparamet-

ric Predictive Inference (NPI) method. Various nonparametric approaches for inventory

management have been proposed in the literature. However, NPI method which we as-

sume in this thesis, is new to inventory models. One of the nonparametric approaches is

the minimax approach. Jagannathan [50] computed the optimal stocking quantity that

will provide the maximum expected profit against the worst possible demand for stock-

ing quantity using the minimax approach. Another nonparametric approach is based

on a variant of a stochastic approximation algorithm based on censored demand sam-

ples. Using this approach, Burnetas and Smith [12] created an adaptive algorithm for

ordering and pricing perishable goods. In 2007, Levi et al. [55] investigated single-period

and dynamic inventory problems with zero setup cost from a nonparametric perspective

and presented sample average approximation algorithms to solve them. Huh and Rus-

mevichientong [49] provided nonparametric prescriptions for potentially censored demand

settings and analysed the performance of these policies via upper bounds or convergence

of the prescribed decisions.

NPI [5, 17, 19, 20, 22] is a statistical framework based on Hill’s assumption A(n) [44],

as introduced in Section 1.3, with inferences explicitly in terms of one or more future

observations. The explicitly predictive nature of NPI makes it particularly useful for a

range of topics in operations research. For instance, the NPI method has been applied for

queues [26] and age replacement issues [30]. In addition, NPI has been developed for a

variety of data types and applications, including Bernoulli quantities [17], right-censored

data [28, 29], ordinal data [27, 38], multinomial data [7, 21], for future order statistics

[25] and reliability applications [24]. Recently, the NPI approach has been introduced to

finance applications [14, 43].

This chapter is organised as follows. The motivation for the work in this thesis is

given in Section 1.1. Section 1.2 presents an introduction to the mathematical concept

of inventory. Section 1.3 provides a brief introduction to NPI. A detailed outline of this

thesis is given in Section 1.4.
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1.1 Motivation

In inventory theory, many scenarios have been studied to determine an optimal order

strategy, typically with the aim to maximise expected profit. Traditionally, a fully known

stochastic model is assumed, with a known probability distribution for the random de-

mand. NPI has not yet been applied to inventory problems, so the main objective of this

thesis is to develop and apply NPI methods to support inventory decisions. As such, it

is a combination of modern statistical methods and more traditional operations research

scenarios.

As a first step, we will consider the single-order inventory models to make inferences

for only one future observation, as introduced in Chapter 2. We introduce NPI lower

and upper probabilities for the event that the random profit is non-negative, and use

these to determine an optimal inventory level. Also, we consider the optimality criteria

by combining both lower and upper probabilities. In addition, we consider the NPI lower

and upper expected profits for the next period, and we also combine both lower and

upper expectations of the random profit for the next period. We study a model that is

similar to the single-period model but with two demands; a single order for the two-period

model is considered. We assume that we are filling the inventory for both periods at the

same time to make inferences for one future observation, which is the sum of the future

demands for the first and second periods.

In Chapter 3, we generalise the analysis to two-period independent demands model,

where we determine the optimal inventory levels for both periods.

In order to deal with dependent demands for two periods, we rely on the NPI bootstrap

(NPI-B) method, as shown in Chapter 4. In order to determine the optimal inventory

levels, we use the average profit criterion.

In each chapter, we conduct simulations for different cases to evaluate the proposed

approach and to compare its performance to that of the classical method for inventory

models.



1.2. Inventory 4

1.2 Inventory

We usually use the expression ‘inventory’ for the total number of goods or materials

contained in a store or factory at any given time [52]. Common problems for an inventory

system include the stocking of spare parts, perishable items and seasonal items. So, the

inventory needs management to avoid problems and to calculate the needed costs. This

must be accurately counted and valued at the end of each accounting period to determine

a company’s profit or loss [60].

More than one hundred years ago, the analysis of an inventory system appeared in

the literature. In 1913, Harris is the first researcher who presented and developed an

inventory model [42]. A lot of researchers have extended Harris’s model with different

types of demands and replenishment. According to Hadley and Whitin [41], the inventory

models are classified based on the pattern of demand, which may be either deterministic

or random over time. Deterministic demand occurs when we know the exact quantities

needed over a period of time. However, the known demand may be constant or variable

over time. Random demand occurs when the demand is not known within a period of

time. Hence, forecasting the random demand is considered to be a major difficulty faced

by the decision maker. Since the exact number of items the customers will buy during

the period is uncertain, this type of demand could be stationary or non-stationary over

time.

Inventory decisions may face some problems, for instance, single-period problems,

two-period problems, or even multi-period problems. In this thesis, we only consider the

single and two-period models.

1.2.1 Single period

One of the basic inventory problems that have been discussed frequently in the literature

is the single-period inventory problem. Arrow et al. [2] and Dvoretzky et al. [32] were

the first researchers who studied a single-period inventory control problem and proposed

a newsvendor model. In the single period, the inventory will only be demanded for one-

time duration and cannot be transferred to the next time duration [16]. According to

Reid and Sanders [60], the single-period model is designed for goods that hold specific

characteristics, such as being sold at their regular price only during a single time period.
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Demand for these goods is highly variable but follows a known probability distribution,

which may be either continuous or discrete. Furthermore, the value of the leftover in-

ventory at the end of the season (salvage value) of these goods is less than their original

cost, so the inventory owner loses money when they are sold for their salvage value.

For instance, imagine that one of these goods is a newspaper; a newsagent buys

newspapers for a specific day from its wholesaler. The issue is deciding the number of

newspapers that a newsagent should buy on a given day for his newsstand [51].

Hadley and Whitin [41] and Taha [65] presented the general single-period model with

time independent costs and random demand. Mitra and Chatterjee [57] investigated

and derived the optimal order quantity for the single-period newsvendor problem with

stochastic end-of-season demand. This is the demand that occurs at the end of the

season, which depends on the number of items left over at the end of selling season. In

the classical model the leftover items are sold by predetermined salvage value and the

profit will be calculated at the end of the season. While, in the end-of-season demand

model the profit will be divided into partitions based on the number of items left over at

the end of the selling season and the demand at this time.

1.2.2 Two period

A popular generalisation of this model is to consider a two-period problem in which

the selling horizon is extended from one period to two periods, and a decision on the

inventory level in each period is made before the demand is realized. The fundamental

difference between the single-period inventory model and the two-period inventory model

is that the two-period model may include stock left over from the previous period, which

makes the optimal choice of inventory levels more complicated. Mills [56] was the first

researcher who considered the inventory model with more than one period. Following

Mills [56], several authors have explored two-period models, such as Bradford and Sugrue

[11] who developed a model in which the second period demand depends on the first

period demand. These authors determined a conditional order-up-to-level policy for the

second period and an optimal order quantity for the first period, by using Bayesian

updating whereby the first-period demands are used to update the prior parameters and

revise the second-period demand forecast. The forecast is then incorporated into the

model to derive optimal stocking policies which maximise expected profit over the two
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periods. Another important two-period model has been studied by Gurnani and Tang

[40]. They assumed a two-period model with no demand in the first period, where at

the end of the first period, exogenous information is collected, permitting one to update

the initial forecast for the second period demand. They formulated the problem by

using the bivariate normal distribution. A two-period model with uniformly distributed

independent demands has been analysed by Hillier and Lieberman [48]. Cheaitou et al.

[13] proposed a two-period production and inventory model with independent random

demands for each period. In their model, a variety of salvage possibilities are available,

as well as a variety of production techniques.

The purpose of studying inventory models is to find a single optimal inventory level

for the single-period inventory model, and multiple optimal inventory levels for the two-

period inventory model, when the demand is random and follows a continuous or discrete

distribution. In our study, we consider a positive real-valued demand. There are different

optimality criteria possible. Shih [63] investigated one of these criteria, which is to find

the optimal order quantity that maximises the expected profit. Sankarasubramanian and

Kumaraswamy [61] studied another criterion, namely maximisation of the probability

that the profit is greater than or equal to zero. In this thesis, we consider these two

criteria for the single-period model. While for the two-period model, we only consider

maximising the expected profit criterion.

1.3 Nonparametric predictive inference (NPI)

As a measure of uncertainty, imprecise probability was proposed by Boole [10] in 1854,

in which the uncertainties relating to events are measured using intervals rather than

single numbers, as in classical probability [18]. For instance, the probability of an event

A is P (A) ∈ [0, 1]. Several alternative approaches to quantifying uncertainty have been

proposed in recent years, including Walley’s imprecise probability theory [69] and Weich-

selberger’s interval probability theory [72] which propose lower and upper probabilities

instead of probabilities. These lower and upper probabilities are components of a sta-

tistical methodology known as Nonparametric Predictive Inference (NPI), which will be

briefly discussed in this section and which is used in this thesis. So, Walley’s imprecise

probability theory and Weichselberger’s interval probability theory are part of NPI.
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Nonparametric Predictive Inference (NPI) is a frequentist statistical framework pro-

viding lower and upper probabilities for events involving future observations, depending

on the A(n) assumption proposed by Hill [44, 45, 47]. We can summarise this assumption

as follows: suppose that the random quantities X1, X2, ..., Xn, Xn+1 are exchangeable and

real-valued. We assume that ties do not occur between x1, x2, ..., xn, which denote the

ordered observations of X1, X2, ..., Xn so, x1 < x2 < ... < xn. Also, we define x0 = 0

and xn+1 = ∞ for ease of notation, where we set x0 = 0 because we will work with non-

negative random quantities. The n observations partition the real-line into n+1 intervals

Ij = (xj−1, xj) for j = 1, 2, ..., n+ 1. The assumption A(n) [46] is that the probability for

the next observation Xn+1 to fall in the open interval Ij is equal for all Ij, that is

P (Xn+1 ∈ (xj−1, xj)) =
1

n+ 1
, j = 1, 2, ..., n+ 1

Inferences based on A(n) are nonparametric and predictive, also called ‘low structure infer-

ence’, since these inferences are based on limited assumptions [39]. A(n) is not sufficient to

provide precise probabilities for many events of interest; however, it can provide bounds

for probabilities, which are lower and upper probabilities, depending on De Finetti’s fun-

damental theorem of probability which states that the probability distribution of any

exchangeable random variables is a mixture of independent and identically distributed

sequences of random variables [31]. NPI uses imprecise probability [6], in which the lower

and upper probabilities are the maximum lower bound and minimum upper bound, re-

spectively, for the probability of the event of interest [72], based on the A(n) assumption.

Augustin and Coolen [5] presented the following predictive lower and upper probabilities

based on A(n):

The lower probability P (.) and the upper probability P (.) for the event Xn+1 ∈ B with

B ⊂ R, based on the intervals Ij = (xj−1, xj) for j = 1, 2, ..., n+1, created by n real-valued

non-tied observations, and the assumption A(n), are:

P (Xn+1 ∈ B) =
n+1∑
j=1

1{Ij ⊆ B}P (Xn+1 ∈ Ij) (1.1)

P (Xn+1 ∈ B) =
n+1∑
j=1

1{Ij ∩B ̸= ∅}P (Xn+1 ∈ Ij) (1.2)

where 1{A} is an indicator function which is equal to 1 if event A occurs and 0 else.

The lower probability in Equation (1.1) is obtained by summing only the probability



1.4. Outline of thesis 8

masses assigned to intervals Ij that are necessarily within B, while the upper probability

in Equation (1.2) is obtained by summing all the probability masses that can be in B,

which is the case for the probability masses per interval Ij if the intersection of Ij and B

is non-empty.

In this thesis, we focus on using NPI for inventory decisions. This requires a general

concept for the quantification of uncertainty, as we will need a notation for probability

mass assigned to intervals without further restrictions on the spread within the intervals.

Such a partial specification of a probability distribution is called M -function [29], which

is given by the following definition: A partial specification of a probability distribution

for a real-valued random quantity X can be provided via probability masses assigned to

intervals, with no restrictions as to where the probability mass falls in the interval. The

probability mass assigned for a random quantity X to an interval (a, b) can be denoted by

MX(a, b) and referred to as M -function value for X on (a, b). The concept of M -function

is similar to that of Shafer’s basic probability assignments [62]. Clearly, each M -function

value should be in [0, 1] and all masses must sum to one. It is important to emphasize

that the different intervals for the M -function can overlap.

1.4 Outline of thesis

In this thesis, we present the NPI method for various types of inventory models. This

thesis is structured as follows. In Chapter 2, we present the main idea of the single-order

inventory models involving a single-period model and a single order for a two-period

model. The classical inventory model with a single period is reviewed. We introduce NPI

lower and upper probabilities for the event that the random profit is non-negative, and

we use them to determine an optimal inventory level. Also, we consider an optimality

criterion which combines both the lower and upper probabilities. In addition, we consider

the NPI lower and upper expected profits for the next period, and we also combine both

lower and upper expected profits for the next period. We investigate the performance of

the NPI and classical methods for the single-period model via simulation study. Also,

we study a model that is similar to the single-period model but with two demands; a

two-period model with a single order is considered. We presume that we are filling the

inventory for both periods at the same time. Therefore, the future demand will be a
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combination of the future demand for the first period and the future demand for the

second period. We consider maximising the NPI lower and upper expected profits as

the optimality criterion for this model. We investigate the performance of the NPI and

classical methods via simulation study. Part of this chapter was presented online at the

Institute of Mathematics and its Applications (IMA) and Operational Research (OR)

Society Conference on Mathematics of Operational Research in April 2021. The single-

period inventory model has been submitted for publication in the Journal of Operational

Research Society, “Nonparametric Predictive Inference for the Single-Period Inventory

Model”.

Chapter 3 develops the NPI method for the two-period inventory model with inde-

pendent demands. First, we determine the optimal inventory level for the second period,

assuming there is a remaining stock (or shortage) from the first period, and with that

optimal strategy for the second period, we then optimise over the first period. We chose

to maximise expected profit as the optimal criterion for determining optimal inventory

levels. We investigate the performance of the two-period model involving different as-

sumptions via simulation studies. Part of this chapter was presented at the Operational

Research Society’s Annual Conference (OR64) at the University of Warwick, UK, in

September 2022. A journal paper on this model is in preparation.

In Chapter 4, we introduce the NPI bootstrap method, which we indicate by NPI-B,

as an alternative method to deal with inventory problems. We apply NPI-B to the single-

order and two-period independent demands models, which we studied in Chapters 2 and

3. Also, we apply NPI-B to the two-period dependent demands model. We investigate

the average profit criterion, in order to determine the optimal inventory levels.

Some basic assumptions are made for all inventory models analysed, which are as

follows: the length of time between the placement and receipt of an order is zero, i.e. lead

time is equal to zero. An order is placed at the beginning of a period. For two-period

model, the periods are of equal and known lengths.

Some final remarks and conclusions are considered in Chapter 5. The appendix con-

tains proofs for some properties. The calculations in this thesis were performed using the

statistical software R version 3.6.3. The R codes will be available on the NPI website,

www.npi-statistics.com.



Chapter 2

Single-order inventory models

2.1 Introduction

The single-order inventory models include both a single-period model and a single or-

der for a two-period model. The single-period inventory model [53], is important from

both theoretical and practical perspectives. An example of the single-period model is

the “newsboy problem”. The aim in studying the single-period inventory model is to

determine the optimal inventory level that maximises the probability that the profit is

greater than or equal to zero or maximises the expected profit. Many researchers con-

sidered the single-period model in their studies. Hadley and Whitin [41] introduce the

newsboy problem and they used dynamic programming to solve the problem. The ap-

proximate solutions of the standard newsboy problem based on approximations for the

Normal, Poisson and Gamma distributions are derived by Shore [64]. Walker [68] studied

the single-period model with probabilistic demand, where the probability distribution

is estimated from historical data. The single-period model can also be used to manage

capacity and make booking decisions in service sectors such as airlines and hotels [71].

In this chapter, we maximise the probability that the profit is greater than or equal

to zero and maximise the expected profit to determine the optimal inventory level for

the single-period model. Also, we extend the single-period inventory model to two-period

inventory model with a single order. The two-period inventory model allows a backlog of

demand, where the items ordered before the first period can be sold in the second period

[8]. We assume that we are simultaneously filling the inventory for the two periods.

Therefore, the future demand is equal to the sum of the future demand for the first

10
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period and the future demand for the second period. We introduce NPI for selecting

the optimal inventory level for a single order for two-period inventory models, where the

inference is based on one future observation.

The rest of the chapter is organised as follows: Section 2.2, introduces the single-

period inventory model. Section 2.3, provides brief reviews of the classical inventory

model. In Section 2.4, we will introduce NPI for a single-period inventory model. In

Section 2.5, comparison through the simulation study between the NPI method and the

classical method for the single-period inventory model is presented. The NPI method for

inventory decisions is presented in Section 2.6, where we introduce NPI for a single order

for a two-period model to select the optimal inventory level that maximises the expected

profit. In Section 2.7, comparison through the simulation study between the NPI method

and the classical method for a single order for two-period model is presented. Section 2.8

presents the concluding remarks for this chapter.

2.2 Single-period inventory model

The single-period inventory problem considers the scenario in which an inventory is

needed to satisfy demand during only a single period. This means that only once the

level of inventory can be decided, and that demand cannot be satisfied in a later period

[16]. According to Reid and Sanders [60], the single-period model is typically designed

for goods with specific characteristics: they are sold at their regular price only during the

single time period and the salvage value of goods left over at the end of the period is less

than their original cost, so the inventory owner loses money when goods are sold for their

salvage value. An example is a newsagent who orders newspapers for a specific day, where

the problem for the newsagent is to decide how many newspapers to order [41, 51, 65].

In general, the demand, denoted by D, can be either a continuous or a discrete random

quantity, in this thesis we restrict attention to continuous demand.

One can use a variety of optimality criteria for the inventory level, we will consider

maximisation of the probability of non-negative profit and maximisation of the expected

profit. We assume that the inventory level is y, we aim at determining the best value of

y, which we denote by y∗. The costs considered in the basic single-order inventory model

are holding cost h, which is the cost per unit for unsold items remaining at the end of
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the period. The total holding costs are equal to h(y − D)+, where (v)+ := max(0, v).

Shortage cost s is the cost per unit of demand that cannot be met, we assume s ≥ 0.

The total shortage costs are s(D − y)+. Purchasing cost c is the price per unit ordered,

we assume c > 0. The total purchase costs are cy. Price p is the price per unit sold,

we assume a selling price that is high enough to cover the costs of inventory. The total

amount of money from sales is pmin(D, y). We do not assume setup cost k in this model,

which is, for example, the cost for delivery. According to Waters [70], these costs lead to

the profit function

Pf(D, y) = pmin(D, y)− cy − h(y −D)+ − s(D − y)+ (2.1)

that is:

Pf(D, y) =


pD − h(y −D)− cy when D < y

py − s(D − y)− cy when D > y

(p− c)y when D = y

(2.2)

2.3 Classical inventory model

The classical model is a basic model for inventories, presented by Harris in 1913 [42].

Inventory models have been classified based on the pattern of demand, which may be

either deterministic or random over time. Deterministic demand occurs when we know

the exact quantities needed over a period of time. Random demand occurs when the

demand is not known within a period of time. Forecasting the random demand tends to

be a challenge for the decision maker [67]. In most of the literature on inventory problems,

this difficulty is avoided by the assumption of a stochastic model for the random demand.

The aim of studying the inventory model is to fill the inventory at the optimal level

that meets the demand and leads to maximum profit. There are a variety of optimality

criteria for the inventory level, we will consider maximising the probability of non-negative

profit in Section 2.3.1, and maximising the expected profit in Section 2.3.2.

2.3.1 Maximisation of the probability of non-negative profit

One may wish to order in such a way that the probability of a loss is minimal, hence to

maximise the probability of a non-negative profit [61]. This criterion is straightforwardly



2.3. Classical inventory model 13

0 dy

Pf(d, y)

(y, Pf(y, y))

(0, Pf(0, y))

(dl, 0) (dr, 0)

Figure 2.1: Profit for fixed inventory level y as function of demand d

adapted to maximisation of the probability that the profit exceeds a specific value other

than zero, we do not address this further.

For fixed inventory level y, the profit function, given by Equation (2.1), is a function

of the demand D = d, and it consists of two line segments as presented in Figure 2.1.

From Equation (2.1), we find dl and dr such that Pf(dl, y) = Pf(dr, y) = 0. For d < y,

dl =
(c+ h)y

p+ h
(2.3)

and for d > y,

dr =
(p+ s− c)y

s
(2.4)

Note that dl and dr are functions of y, we do not explicitly include this in the notation.

The profit is greater than or equal to zero whenever dl ≤ D ≤ dr. So,

P (Pf(D, y) ≥ 0) = P (dl ≤ D ≤ dr) =

∫ dr

dl

fD(u)du (2.5)

where fD(·) is the probability density function (PDF) for the demand D. Let y∗CP denote

the optimal inventory level which maximises the probability that the profit is greater

than or equal to zero. Setting the first derivative with respect to y of this probability

equal to zero leads to
p+ s− c

s
fD(dr)−

c+ h

p+ h
fD(dl) = 0 (2.6)
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For any given probability distribution for D, Equation (2.6) provides the possible value(s)

for y∗CP , checking the second-order sufficient condition for optimality leads to the optimal

inventory level.

Example 2.3.1 Suppose D ∼ N(µ = 400, σ = 30), c = 20, h = 10, s = 20 and p = 50.

Our aim is to find the optimal inventory level that maximises the probability that the

profit is greater than or equal to zero.

By substituting Equations (2.3) and (2.4) in Equation (2.6), we have

−2σ2 ln

[
(p+ s− c)(p+ h)

s(c+ h)

]
= y2

[( c+ h

p+ h

)2
−
(p+ s− c

s

)2]
+ y

[
− 2µ

( c+ h

p+ h

)
+ 2µ

(p+ s− c

s

)]
=⇒ −6y2 + 1600y + 2896.99 = 0

so, y∗CP = 268.47

3

2.3.2 Maximisation of the expected profit

According to Shih [63] the expected profit for inventory level y is

E(Pf(D, y)) =

∫ y

0

(pu−h(y−u)− cy)fD(u)du+

∫ ∞

y

(py− s(u− y)− cy)fD(u)du (2.7)

The optimal inventory level y∗CE, which maximises the profit, is derived by setting the

first derivative of this expected profit to zero, leading to the equation

P (D ≤ y∗CE) =
p+ s− c

p+ s+ h
(2.8)

As the second derivative of the expected profit is negative at all values of y with fD(y) > 0,

the value y∗CE resulting from Equation (2.8) is the optimal inventory level when aiming

at maximisation of the expected profit.

Example 2.3.2 Consider the same data as in Example 2.3.1. Our aim is to find the

optimal inventory level that maximises the expected profit.

From Equation (2.8), P (D ≤ y∗CE) = 0.63 so, y∗CE = 409.96. If we consider s = 1

then y∗CE = 400.75. So, when the shortage cost decreases, the optimal inventory level

decreases. Also, if we increase the purchase cost to be c = 30, the optimal inventory level

becomes 400. So, when the purchase cost increases, the optimal inventory level decreases.

3
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2.4 NPI for single-period inventory model

In this section, we develop NPI for decision support in the single-period inventory model.

We assume that data of demand in n previous periods are available, ordered as d1 < d2 <

... < dn, and we consider the random demand Dn+1 for the next single period for which

the inventory decision is required. We assume that there is a known upper bound for the

demand, denoted by du, which is logically greater than dn, and that demand is positive.

Based on these data, and setting d0 = 0 and dn+1 = du, the assumption A(n) for Dn+1

leads to:

P (Dn+1 ∈ (dj−1, dj)) =
1

n+ 1
for j = 1, ..., n+ 1 (2.9)

The essential step in developing NPI for the single-period inventory model, is the transfer

of the partial probability distribution specification for Dn+1 to the partial probability

distribution specification for the profit, using the profit function given by Equation (2.1).

This process is illustrated in Figure 2.2, and involves the profit Pf(Dn+1, y) as function of

the random demand Dn+1 and fixed inventory level y. The overall aim is to determine an

optimal value for y. Let jy ∈ {1, ..., n+1} be such that y ∈ (djy−1, djy). The probabilities

for Dn+1, given in Equation (2.9), lead to the following M -function values for the random

profit Pf(Dn+1, y),

M(Pf(dj−1, y), Pf(dj, y)) =
1

n+ 1
for j ∈ {1, ..., jy − 1} (2.10)

M(min[Pf(djy−1, y), Pf(djy , y)], Pf(y, y)) =
1

n+ 1
for j = jy (2.11)

M(Pf(dj, y), Pf(dj−1, y)) =
1

n+ 1
for j ∈ {jy + 1, ..., n+ 1} (2.12)

The transfers of the probabilities for Dn+1, as given in Equation (2.9), to M -function

values for Pf(Dn+1, y) for the cases in Equations (2.10) and (2.12) follow straightfor-

wardly from Figure 2.2. Equation (2.11) is also best understood from this figure, where

we should emphasize that since y divides the interval into two parts, the minimum is

considered to cover all possible values of profit for Dn+1 ∈ (djy−1, djy).

Section 2.4.1 presents the NPI lower and upper probabilities for the event that the

profit over the single period considered is non-negative, and uses these to determine an

optimal inventory level. This is followed by focus on the NPI lower and upper expected

values for the profit, and their optimisation, in Section 2.4.2.
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0 d
y

d1d2
dndn−1djy−1 djy

Pf(d, y)

(y, Pf(y, y))

(0, Pf(0, y))

(du, Pf(du, y))

1
n+1

1
n+1

1
n+1

1
n+1

1
n+1

Figure 2.2: Single-period inventory - M -functions

2.4.1 NPI lower and upper probabilities for non-negative profit

In this section, we calculate the NPI lower and upper probabilities for the event that

the profit corresponding to future demand is greater than or equal to zero, for given y.

When aiming to maximise the NPI lower probability for non-negative profit, it is easily

understood from Figures 2.1 and 2.2 that we should maximise the number of intervals

(dj−1, dj), for j = 1, ..., n+1, that are entirely within [dl, dr], where dl and dr are functions

of the inventory level y, Equations (2.3) and (2.4). Clearly, the profit function is certainly

positive for Dn+1 in between two consecutive values dj−1 and dj, of the data d1 < ... < dn,

if both dj−1 and dj are in between the two points, dl and dr, where the profit function

is equal to zero. Hence, the lower probability for positive profit is just the number of

intervals between consecutive dj values that are entirely between dl and dr, where each

such interval has been assigned probability mass
1

n+ 1
based on the A(n) assumption for

the future demand Dn+1. This number is easy to calculate as follows:

Let yk be such that Pf(dk, yk) = 0 with yk ≥ dk for k = 1, ..., n. Hence, yk is such that

the increasing line segment of the function Pf(D, yk) is equal to 0 at D = dk, so related

to Figure 2.1 we have dl = dk. This leads to

yk =
(p+ h)dk
c+ h

(2.13)
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This value yk fully specifies the profit function for given values of the costs.

Let drk be such that Pf(drk, yk) = 0 and drk ≥ yk, hence the decreasing line segment of

the function Pf(D, yk) is equal to 0 at D = drk. By Equations (2.3) and (2.4) we have

drk =
(p+ s− c)yk

s

=
(p+ s− c)(p+ h)dk

s(c+ h)
(2.14)

The NPI lower probability, P (Pf(Dn+1, yk) ≥ 0), is derived by counting the number of

intervals (dj−1, dj) which are entirely contained in [dk, d
r
k], noting that each such interval

has been assigned probability mass
1

n+ 1
based on the A(n) assumption for the future

demand Dn+1. Let nk denote the number of dj, for j = 1, ..., n+1, such that dk ≤ dj ≤ drk.

To summarise, we have Equations (2.13), (2.14) and

nk = #{dj : dj ∈ [dk, d
r
k], j ∈ {1, ..., n+ 1}} (2.15)

There are (nk − 1)+ intervals (dj−1, dj) which are entirely in [dk, d
r
k], so the NPI lower

probability for the event Pf(Dn+1, yk) ≥ 0 is

P (Pf(Dn+1, yk) ≥ 0) =
(nk − 1)+

n+ 1
(2.16)

An optimal inventory level y∗P which maximises P (Pf(Dn+1, y)) is now derived by set-

ting y∗P = yk, with k ∈ {1, ..., n} such that the corresponding value of nk is maximal.

Note that it is quite likely that there is not a unique inventory level that maximises

P (Pf(Dn+1, y)), not only because there may not be a unique value nk leading to the

maximum P (Pf(Dn+1, y)), but also because values just less than y∗P are likely to lead to

the same value for this NPI lower probability for non-negative profit.

Deriving an optimal inventory level to maximise the NPI upper probability for the

event Pf(Dn+1, y) ≥ 0 can be done in a similar way as for the corresponding NPI lower

probability. This upper probability is derived by counting the intervals (dj−1, dj) that

have a non-empty intersection with [dl, dr], which is again easily seen from Figures 2.1

and 2.2. Of course, this includes all the intervals that were included in the counts to

derive the NPI lower probability, while some attention is needed for the intervals which

contain either dl or dr. Assuming that Dn+1 = 0 leads to negative profit, which is the

case for any positive inventory level, y, then the interval (dj−1, dj) containing dl must

now be included in the count.
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For the interval which contains dr, we need to consider the value of the profit, for

given y, at the end-point of demand du, since both dr and du can be greater than each

other. If du is large enough to have a negative profit at du for given y, then the interval

(dj−1, dj) containing dr must now be included in the count, but if the profit at du is

non-negative, then that interval will already have been included in the count for the NPI

lower probability. This leads to the following NPI upper probability for inventory levels

yk, for k = 1, ..., n, as defined in Equation (2.13),

P (Pf(Dn+1, yk) ≥ 0) =

 P (Pf(Dn+1, yk) ≥ 0) + 2
n+1

if Pf(du, yk) < 0

P (Pf(Dn+1, yk) ≥ 0) + 1
n+1

if Pf(du, yk) ≥ 0
(2.17)

The optimal inventory level y∗
P
which maximises P (Pf(Dn+1, y) ≥ 0) is easily derived

by taking the value yk that maximises this upper probability over k = 1, ..., n. The

same comment with regard to non-uniqueness of the optimal inventory level, as made

above for the NPI lower probability, applies here. Furthermore, we should mention that,

in this section, we have taken some liberties on mathematical accuracy for the sake of

simplicity of the presentation: First, for the optimisation of the NPI upper probability,

the arguments provided would actually require consideration of values dk − ϵ instead of

dk, for very small ϵ > 0, but the effect on the corresponding strategies yk, and hence

on the optimal inventory level, is neglectable. Secondly, we have not paid attention

to situations where dl or du could coincide with an observed value dj. This is of no

serious consequence when demand is a continuous random quantity; if one would want to

model discrete demand then more care would be needed, but one would then also want to

consider a different NPI approach than the one used in this chapter, this is not considered

further here.

As optimisation of the NPI lower probability and the NPI upper probability for non-

negative profit may not both lead to the same optimal inventory level, one may need to

choose which of these two criteria to use. One could consider optimisation of the NPI

lower probability a somewhat pessimistic perspective, with optimisation of the NPI upper

probability reflecting a more optimistic point of view. However, one could also combine

these two criteria using the Hurwicz criterion [3], which here implies maximisation of a
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weighted average of the NPI lower and upper probabilities. With ω ∈ [0, 1], we define

HP,ω(Pf(Dn+1, yk) ≥ 0) = ωP (Pf(Dn+1, yk) ≥ 0) + (1− ω)P (Pf(Dn+1, yk) ≥ 0)

(2.18)

The parameter ω can be interpreted as an optimism-pessimism index. The choice of ω,

like the overall choice of the optimality criteria, would be for the decision maker to make

whether they want to be more pessimistic or more optimistic. So, ω is between 0 and 1,

describing the level of optimism, with the remainder being pessimism. An ω of, say, 0.2

means that you are more pessimistic than optimistic. When ω = 0.1, that means that

you are even more pessimistic than when ω = 0.2. Setting ω to 0.95 means that you are

very optimistic, but a small amount of pessimism (5%) remains. Using Equations (2.16)

and (2.17) we get

HP,ω(Pf(Dn+1, yk) ≥ 0) =


(nk + 1− 2ω)+

n+ 1
if Pf(du, yk) < 0

(nk − ω)+

n+ 1
if Pf(du, yk) ≥ 0

(2.19)

The optimal inventory level according to the Hurwicz criterion will be denoted by y∗P,ω.

Example 2.4.1 illustrates the methods presented in this section, considering the optimi-

sation of the NPI lower probability, the NPI upper probability, and the corresponding

Hurwicz criterion.

Example 2.4.1 Consider an inventory system with the following costs: p = 50, c =

20, h = 10, s = 20, and assume that demand is known to be between d0 = 0 and du = 40.

Assume that there are n = 5 demand observations, with values 7.20, 12.50, 15.30, 22.60,

35.40 and assume ω = 0.60. Table 2.1 presents the results of the method presented in this

section, specifying the NPI lower and upper probabilities and their weighted function for

the event that the profit for the single period considered will be non-negative, together

with the corresponding values of yk and of the quantities drk and nk that are part of the

computations as explained above. The NPI lower probability is maximal at y1 = 14.40

and y2 = 25, so either of these values can be chosen as y∗P . The NPI upper probability is

maximal at y∗
P
= y1 = 14.40. Maximisation of the Hurwicz criterion leads to y∗P,ω = 14.40

when ω = 0.60. In general, for all ω ∈ [0, 1), the the Hurwicz criterion is maximal at

y∗P,ω = 14.40, while for ω = 1 this criterion is the same as maximisation of the NPI lower

probability, which was discussed above. 3
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k yk drk nk P (Pf(D6, yk) ≥ 0) P (Pf(D6, yk) ≥ 0) HP,ω(Pf(D6, yk) ≥ 0)

1 14.40 36.00 5 0.67 1.00 0.80

2 25.00 62.50 5 0.67 0.83 0.73

3 30.60 76.50 4 0.50 0.67 0.57

4 45.20 113.00 3 0.33 0.50 0.40

5 70.80 177.00 2 0.17 0.33 0.23

Table 2.1: NPI lower and upper probabilities and their weighted function for Example

2.4.1

2.4.2 NPI lower and upper expected profits

In this section, we present the NPI lower and upper expected profits for the next period, as

function of the inventory level y. The derivations are based on theM -functions illustrated

in Figure 2.2 and presented in Equations (2.10)-(2.12).

The NPI lower expected profit, denoted by En+1(y), is derived by assigning the prob-

ability masses 1
n+1

, according to the M -function values in Equations (2.10)-(2.12), to the

minimum (or infimum) value for Pf(Dn+1, y) per interval. With, as before, jy such that

y ∈ (djy−1, djy), this leads to

En+1(y) =

jy−1∑
j=1

M(Pf(dj−1, y), Pf(dj, y))Pf(dj−1, y)

+M(min[Pf(djy−1, y), Pf(djy , y)], Pf(y, y))min[Pf(djy−1, y), Pf(djy , y)]

+
n+1∑

j=jy+1

M(Pf(dj, y), Pf(dj−1, y))Pf(dj, y)

=
1

n+ 1

(
(jy − 1)(−(c+ h)y) + (p+ h)

jy−1∑
j=1

dj−1 +min[−(c+ h)y

+ (p+ h)djy−1, (p− c+ s)y − sdjy ] + (n+ 1− jy)(p− c+ s)y − s

n+1∑
j=jy+1

dj

)
(2.20)

To determine an optimal inventory level, denoted by y∗E, which maximises En+1(y),
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Figure 2.3: The NPI lower expectation function and the optimal value

we introduce the following two functions,

Ea(y) =
1

n+ 1

(
(jy − 1)(−(c+ h)y) + (p+ h)

jy−1∑
j=1

dj−1 − (c+ h)y + (p+ h)djy−1

+ (n+ 1− jy)(p− c+ s)y − s
n+1∑

j=jy+1

dj

)
(2.21)

and

Eb(y) =
1

n+ 1

(
(jy − 1)(−(c+ h)y) + (p+ h)

jy−1∑
j=1

dj−1 + (p− c+ s)y − sdjy

+ (n+ 1− jy)(p− c+ s)y − s
n+1∑

j=jy+1

dj

)
(2.22)

By Equation (2.20), En+1(y) = min[Ea(y), Eb(y)]. It is easy to verify that the function

En+1 is discontinuous at dl, for all l ∈ {1, ..., n}, the proof of this property is given in

Appendix A.1. We also note that Ea(y) and Eb(y) are linear functions in each interval

[djy−1, djy ]. We can show that Ea(y) is an increasing function in [djy−1, djy ] if and only if

jy <
(n+ 1)(p− c+ s)

p+ h+ s
=: K1 (2.23)

and Ea(y) is a decreasing function in [djy−1, djy ] if and only if jy > K1. Eb(y) is an

increasing function in [djy−1, djy ] if and only if

jy <
c+ h+ (n+ 2)(p− c+ s)

p+ h+ s
=: K1 + 1 (2.24)
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Figure 2.4: The functions Ea(y) and Eb(y) for Example 2.4.2

and Eb(y) is a decreasing function in [djy−1, djy ] if and only if jy > K1 + 1. This implies

that the maximum value of En+1(y) = min[Ea(y), Eb(y)] is at the intersection point of

Ea(y) and Eb(y) in the single interval where Ea(y) decreases and Eb(y) increases. This

leads to the optimal inventory level, which maximises the NPI lower expected profit,

y∗E =
(p+ h)djy−1 + sdjy

p+ h+ s
(2.25)

where K1 ≤ jy < K1 + 1. This is illustrated in Figure 2.3 and in the following example.

Example 2.4.2 Let the costs be p = 103, c = 16, h = 20 and s = 7, and suppose data

consisting of n = 9 observations: 2.20, 3.70, 5.40, 7.70, 10.10, 12.60, 15.20, 17.90, 20.70. We

assume that the maximum possible value for the demand is du = 22.90.

We have K1 = 7.23, so, in the first seven intervals of the partition of [0, 22.90] cre-

ated by the data, Ea(y) is an increasing function and thereafter it is a decreasing func-

tion, while Eb(y) is an increasing function in the first eight intervals, and a decreasing

function thereafter. This is illustrated in Figure 2.4. So the minimum of these two

functions reaches its maximum value at the intersection of these two functions in the in-

terval (15.20, 17.90), leading to y∗E = 15.35 with corresponding NPI lower expected profit

En+1(y
∗
E) = 515.90.

3

Similarly, by assigning the probability masses 1
n+1

in Equations (2.10)-(2.12) to the
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maximal value for Pf(Dn+1, y) per interval, we derive the upper expected profit

En+1(y) =

jy−1∑
j=1

M(Pf(dj−1, y), Pf(dj, y))Pf(dj, y)

+M(min[Pf(djy−1, y), Pf(djy , y)], Pf(y, y))Pf(y, y)

+
n+1∑

j=jy+1

M(Pf(dj, y), Pf(dj−1, y))Pf(dj−1, y)

=
1

n+ 1

(
(jy − 1)(−(c+ h)y) + (p+ h)

jy−1∑
j=1

dj + (p− c)y

+ (n+ 1− jy)(p− c+ s)y − s

n+1∑
j=jy+1

dj−1

)
(2.26)

We note that En+1(y) is a continuous function, the proof is provided in Appendix A.2.

To derive the optimal inventory level which maximises En+1(y), denoted by y∗
E
, we use

that En+1(y) is an increasing function over the interval [djy−1, djy ] if and only if

jy <
h+ p+ (n+ 1)(p− c+ s)

p+ s+ h
=: K2 (2.27)

and En+1(y) is a decreasing function over the interval [djy−1, djy ] if and only if jy > K2.

This implies that, as En+1(y) is a continuous function, so y∗
E
= dl∗ , with l∗ the largest

value in {1, 2, ..., n} which is less than K2. This is illustrated in the following example.

Example 2.4.3 Consider the same scenario as in Example 2.4.2, the aim is to find the

optimal inventory level which maximises the NPI upper expected profit. The upper

expected profit function En+1(y) is presented in Figure 2.5. We have K2 = 8.18, so y∗
E
=

d8, that is the 8th ranked observation out of the 9 data observations, hence y∗
E
= 17.90

with the corresponding NPI upper expected profit En+1(y
∗
E
) = 714.02. 3

As an alternative to maximising the NPI lower expected profit or the NPI upper expected

profit, one can use the Hurwicz criterion and aim at maximising their weighted average,

HE,ω(y) = ωEn+1(y) + (1− ω)En+1(y) (2.28)
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Figure 2.5: The NPI upper expectation function En+1(y)

for 0 < ω < 1. Using Equations (2.20) and (2.26) leads to

HE,ω(y) =
ω

n+ 1

[
− (p− c)y + (p+ h)(d0 − djy−1)− s(dn+1 − djy)

+ min[−(c+ h)y + (p+ h)djy−1, (p− c+ s)y − sdjy ]

]
+

1

n+ 1

(
y[(jy − 1)(−(c+ h)) + (p− c) + (n+ 1− jy)(p− c+ s)]

+ (p+ h)

jy−1∑
j=1

dj − s
n+1∑

j=jy+1

dj−1

)
(2.29)

To determine an optimal inventory level, denoted by y∗E,ω, which maximises HE,ω(y), we

introduce the following two functions:

Hωa(y) =
ω

n+ 1

[
− (p− c)y + (p+ h)(d0 − djy−1)− s(dn+1 − djy)− (c+ h)y

+ (p+ h)djy−1

]
+

1

n+ 1

(
y[(jy − 1)(−(c+ h)) + (p− c)

+ (n+ 1− jy)(p− c+ s)] + (p+ h)

jy−1∑
j=1

dj − s

n+1∑
j=jy+1

dj−1

)
(2.30)

and

Hωb(y) =
ω

n+ 1

[
− (p− c)y + (p+ h)(d0 − djy−1)− s(dn+1 − djy) + (p− c+ s)y − sdjy

]
+

1

n+ 1

(
y[(jy − 1)(−(c+ h)) + (p− c) + (n+ 1− jy)(p− c+ s)]

+ (p+ h)

jy−1∑
j=1

dj − s

n+1∑
j=jy+1

dj−1

)
(2.31)
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so HE,ω(y) = min[Hωa(y), Hωb(y)]. The analysis to derive the optimal inventory level,

y∗E,ω, is similar to that for optimising the NPI lower expected profit, with HE,ω also

discontinuous at dl, for all l ∈ {1, ..., n}, the proof of this property is given in Appendix

A.3, and Hωa(y) and Hωb(y) linear functions in each interval [djy−1, djy ]. Hωa(y) is an

increasing function in the interval [djy−1, djy ] if and only if

jy <
(1− ω)(p+ h) + (n+ 1)(p− c+ s)

p+ h+ s
=: K3 (2.32)

and Hωa(y) is a decreasing function in the interval [djy−1, djy ] if and only if jy > K3.

Similarly, Hωb(y) is an increasing function in the interval [djy−1, djy ] if and only if

jy <
ωs+ p+ h+ (n+ 1)(p− c+ s)

p+ h+ s
=: K3 + ω (2.33)

and Hωb(y) is a decreasing function in the interval [djy−1, djy ] if and only if jy > K3 + ω.

This leads to optimal inventory level

y∗E,ω =
(p+ h)djy−1 + sdjy

p+ h+ s
(2.34)

where jy is the largest value in {1, . . . , n} for which jy < K3 + ω. This is illustrated in

the following example.

Example 2.4.4 Consider again the same data as in Examples 2.4.2 and 2.4.3, and let

ω = 0.70. The aim is to find the optimal inventory level which maximises HE,0.70(y).

We have K3 = 7.51 so jy = 8 and the maximum value of HE,0.70(y) is achieved at the

intersection of Hωa(y) and Hωb(y) in the interval (15.20, 17.90), leading to y∗E,0.70 = 15.35

with corresponding HE,0.70(y
∗
E,0.70) = 573.57. This is illustrated in Figure 2.6. 3

2.5 Comparison of the NPI and classical methods for

the single-period model

This section presents the results of simulation to investigate the performance of the NPI

and classical methods for the single-period inventory problem. Our aim is effectively to

check how close the classical method is to NPI when the distribution of the classical

method is assumed to be known. Then, based on some assumptions, compare which

method performs better than the other. We simulate n observations of demand from

a Gamma distribution, since the demand is assumed to be positive in this thesis, we
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Figure 2.6: The functions Hωa(y) and Hωb(y) for Example 2.4.4

select the Gamma distribution in simulation settings as it is flexible in many shapes

for positive real values. These n simulated data observations are used to determine the

optimal inventory level y∗ corresponding to one of the optimality criterion, lower and

upper probabilities of non-negative profit, or the lower and upper expected profit. Then

a value for one future observation D is simulated from the same underlying Gamma

distribution, allowing the realised value of the profit function to be computed for the

values of y∗ and D.

The simulated future demand is compared with the optimal inventory level to study

the performance of the methods, as follows:

If D < y∗, then the number of sales is D, then the profit is pD − cy∗ − h(y∗ −D).

If D > y∗, then the number of sales is y∗, then the profit is py − cy∗ − s(D − y∗).

If D = y∗, then the profit is (p− c)y∗.

The difference between NPI and the classical method is that the classical method

assumes the probability distribution of demand is fully known, while the NPI method

only uses data, since the probability distribution of the demand is unknown.

We consider six different cases with regard to discrepancy between the model used for

the data simulations, and the model assumed for the classical method to determine the

optimal inventory level, which is compared to the optimal NPI inventory level. Each case

is run 1000 times and we report the number of these runs in which the profit resulting

from the NPI method is greater than the profit resulting from the classical method. In
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Case Simulation Classical assumption

I Di ∼ Gamma(3, 1) Gamma(3, 1)

II Di ∼ Gamma(3, 1) Exp(1/3)

III Di ∼ Gamma(3, 1) Exp(1/2)

IV Di ∼ Gamma(3, θ), θ ∼ Unif(0, 2) Gamma(3, 1)

V Di ∼ Gamma(3, 1) Exp(1)

VI Di ∼ Gamma(3, 1) Exp(2)

Table 2.2: Simulation cases

the comparison, we only consider how often the profit is doing better in each run, but it

could also be of interest to see by how much it is greater as a topic for future research.

The Gamma(k, θ) distribution, with shape parameter k and scale parameter θ, has

probability density function f(x) = 1
Γ(k)θk

xk−1e
−x
θ for x > 0 and mean value kθ. The

Exponential(λ) distribution with rate λ has probability density function f(x) = λe−λx

for x > 0 and mean value 1
λ
. The cases considered are shown in Table 2.2, with first

the model used for simulating the demands D specified, followed by the model assumed

for the analysis according to the classical method. For the case where the Gamma scale

parameter θ is simulated from the Uniform(0, 2) distribution, one value is drawn and used

for each run, so n observations are drawn using one specific value of θ, and a new value

of θ is drawn for the next run.

Case I is the scenario where the model used for the classical analysis is exactly the

same as the model used for the data generation. In Case II the model for the analysis is

Exponential but with the same mean value as the Gamma distribution used to generate

the data. The further cases have other discrepancies between these two models, set up

in such a way that we expected that the classical method would perform more poorly for

the later cases as the differences between the models increase.

We consider three different sample sizes, n = 5, 50, 100. For all cases, the costs used

are c = 20, p = 50, h = 10, s = 20 and we use ω = 0.50 for the Hurwicz criterion. As

finite end-point for the support of the random demand we took du = 15; in the rare event

that a simulated value in a run exceeds 15 we delete the value and draw a new one; this

has no real impact on the methods as the probability to get a value which exceeds 15 is

very small for all models considered.
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n = 5 n = 50 n = 100

Case P P HP,ω P P HP,ω P P HP,ω

I 384 385 384 436 436 436 486 486 486

II 384 385 384 436 436 436 486 486 486

III 551 557 551 704 704 704 710 710 710

IV 597 604 597 694 694 694 678 678 678

V 767 776 767 826 826 826 837 837 837

VI 822 831 822 889 889 889 896 896 896

Table 2.3: Number of cases out of 1000 where NPI-based profit is greater than the classical

method for lower and upper probabilities and their weighted function

Tables 2.3 and 2.4 present the results from the simulation study. They provide the

number of times, out of 1000 runs, in which the profit according to the NPI methods for

the single-period model, are larger than for the corresponding classical method. Table

2.3 considers the probability of non-negative profit as optimality criterion, where P , P

and HP,ω indicate that, for the NPI method, the lower probability, the upper probability,

or the Hurwicz criterion was used, respectively. Table 2.4 considers the expected profit as

optimality criterion, where E, E and HE,ω indicate that, for the NPI method, the lower

expected profit, the upper expected profit, or the Hurwicz criterion was used, respectively.

As expected, the NPI methods perform worse than the classical methods in Case I,

but for large n the performance of the NPI methods improves and the number of times it

performs better than the classical method increases to close to 500. Case II is perhaps the

most surprising as for optimising the probability of non-negative profit, the NPI method

let to more profit in precisely the same numbers of cases for Case I, this is because that the

classical optimal inventory levels that maximise the probability that the profit is greater

than or equal to zero are equal when the mean is the same for Gamma and Exponential

distribution; this general property is proven in Appendix A.4. Hence, the number of

times that NPI leads to higher profit than the classical method for Case I is the same as

Case II.
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n = 5 n = 50 n = 100

Case E E HE,ω E E HE,ω E E HE,ω

I 469 393 413 487 456 455 485 496 485

II 426 391 400 401 397 392 411 410 411

III 524 505 511 560 547 545 553 556 553

IV 622 615 610 676 679 676 714 715 714

V 751 685 705 733 725 722 726 726 726

VI 835 771 794 810 804 804 805 806 805

Table 2.4: Number of cases out of 1000 where NPI-based profit is greater than the classical

method for lower and upper expected profits and their weighted function

2.6 NPI for a single order for the two-period model

In this section, consider the case when we order once for two periods, i.e. we fill the

inventory for the two periods together, so the future demand will be D = Dn+1 +Dn+2,

where Dn+1 and Dn+2 are the future demands for the first and second period, respectively.

In the single-period model discussed in Sections 2.2-2.4, we order once for one period,

while here we order once for two periods and we consider that there is no holding cost

after the first period, so if any inventory remains at the end of the second period, it is

disposed of. So, the profit function for this model will be the same as the profit function

for the single-period inventory model, Equation (2.1).

In this model, we will only consider maximising the expected profit as the optimality

criterion for the inventory level, since the other criterion discussed in Section 2.3.1, can

be attractive in many situations, but it does not distinguish between actual levels of

profit beyond whether it is non-negative or negative. Since the profit function for this

model is the same as the profit function for the single-period inventory model, the optimal

inventory level y∗CE that maximises the expected profit for this model is the same as the

optimal level for the single-period inventory model displayed in Section 2.3.2.

In Section 2.4, NPI was introduced for the single-period inventory model which con-

sidered only one future demand observation. NPI has been developed to deal with mul-

tiple future observations, say m future observations, with their interdependence explicitly

taken into account, and based on repeated use of the assumptionsA(n), A(n+1), ..., A(n+m−1)
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[44]. Here, we consider an inventory for two periods involving future demands, Dn+1 and

Dn+2, in which Dn+2 depends on Dn+1.

Since we suppose a single order for the two-period model, we consider the random

demand D = Dn+1+Dn+2 for the two periods for which the inventory decision is required.

It is important to emphasize that the future demandsDn+1 andDn+2 are assumed to come

from the same data collection process as the n data observations. As before, we assume

that data of demand in n previous periods are available, ordered as d1 < d2 < ... < dn.

We assume that there is a known upper bound for the demand, denoted by du, which is

logically greater than dn, and that demand is positive.

We link the observed demands and future demands via Hill’s assumption A(n) [44], or

more precisely, via consecutive application of A(n), A(n+1), ..., A(n+m−1). We refer to these

generically as the A(.) assumptions, which can be considered as a post-data version of

a finite exchangeability assumption for n + m random quantities. The exchangeability

assumption on demand is different from iid. In NPI, we only assume A(n) assumptions,

which are directly related to the exchangeability assumption, and the multiple future

periods are dependent. However, the iid assumes that each random variable has the

same probability distribution as the others and all are mutually independent. The iid is

a stronger assumption than exchangeability.

Let Oi, i = 1, 2, ..., (n+m)!
n!

be a specific ordering of the m future demands among n

data observations. Then the A(.) assumptions lead to

P (Oi) =
n!

(n+m)!
(2.35)

Equation (2.35) implies that all different orderings Oi, for i = 1, 2, ..., (n+m)!
n!

, are equally

likely. A suitable way to explain the A(.) assumptions with n data observations and m

future observations is to think that the n revealed observations are randomly chosen from

n+m observations, which enable to make inferences about them unrevealed observations.

The ordering of the future observations among the observations is important, as the first

future observation could be larger than the second one, and the second future observation

could be larger than the first one.

To avoid huge analytic complexities, we restrict our focus in this section to the case

where the number of observations is n = 2 and m = 2 future demands. For larger n, the

NPI bootstrap approach has been used as an alternative approach; this will be shown in

Chapter 4.



2.6. NPI for a single order for the two-period model 31

0 du

d1 d2

Dn+1Dn+2

Dn+2Dn+1

Dn+1 Dn+2

Dn+2 Dn+1

Dn+1 Dn+2

Dn+2 Dn+1

Dn+1Dn+2

Dn+2Dn+1

Dn+1 Dn+2

Dn+2 Dn+1

Dn+1Dn+2

Dn+2Dn+1

Figure 2.7: The different orderings of future observations when n = m = 2

Dn+1 Dn+2 D = Dn+1 +Dn+2 P (D)

(d0, d1) (d0, d1) (2d0, 2d1)
1
12

(d0, d1) (d0, d1) (2d0, 2d1)
1
12

(d0, d1) (d1, d2) (d0 + d1, d1 + d2)
1
12

(d1, d2) (d0, d1) (d1 + d0, d2 + d1)
1
12

(d1, d2) (d1, d2) (2d1, 2d2)
1
12

(d1, d2) (d1, d2) (2d1, 2d2)
1
12

(d0, d1) (d2, du) (d0 + d2, d1 + du)
1
12

(d2, du) (d0, d1) (d2 + d0, du + d1)
1
12

(d1, d2) (d2, du) (d1 + d2, d2 + du)
1
12

(d2, du) (d1, d2) (d2 + d1, du + d2)
1
12

(d2, du) (d2, du) (2d2, 2du)
1
12

(d2, du) (d2, du) (2d2, 2du)
1
12

Table 2.5: Intervals for two future observations

Example 2.6.1 Assume n = 2 observations which create 3 intervals, consider m = 2

future observations, and set d0 = 0 and dn+1 = du. Then the assumptions A(2) and A(3)

imply that the next two observations, D3, D4, will fall in any one of these intervals with

probability 1
3
and 1

4
, respectively. This gives 12 equally likely orderings Oi, i = 1, 2, ..., 12,

of the future demands, D3, D4 among the observations d1 and d2, as shown in Figure 2.7

and Table 2.5.

The 12 intervals for D3 and D4 will be combined into six overlapped intervals between

seven observed demands with probability 2
12

= 1
6
for each interval, which is shown in Table
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Figure 2.8: Overlapping intervals for a single order for two-period inventory model

2.5 and Figure 2.8. We place restrictions on the observed demands, which are 2d1 < d0+d2

and 2d2 < d1 + du, this is just illustrating the approach for a specific scenario where the

observed demand was ordered this way, and we assume the lower bound is 2d0 = 0, the

upper bound is 2du. 3

Next, we illustrate the NPI lower and upper expected profits for the proposed model.

The essential step in developing NPI for this model, is the transfer of the partial prob-

ability distribution specification for D to a partial probability distribution specification

for the profit, using the profit function given by Equation (2.1). This process is similar to

that for the single-period process presented in Section 2.4.2 and illustrated in Figure 2.2.

It involves the profit Pf(D, y) as function of the random demand D and fixed inventory

level y. However, the probability masses in each interval in Figure 2.8 are not the same

as in Section 2.4.2, so we will rely on the letters in Figure 2.8 to simplify the overlapping

intervals and then to find the M -functions for this model. It is not easy to find general

expressions for the lower and upper expected profits, similarly as was done in Section

2.4.2. So, we will deal with each interval separately to determine the optimal inventory

level for each of them, then select the optimal one among them as the optimal inventory

level for the proposed model.

Now we rely on Table 2.5 and Figure 2.8, to find theM -function values for the random

profit Pf(D, y). If y is in interval A, the M -function is as follows:
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M(min[Pf(2d0, y), Pf(d0 + d1, y)], Pf(y, y)) =
1

6
(2.36)

M(Pf(2dj, y), Pf(2dj−1, y)) =
1

6
, for j ∈ {2, 3} (2.37)

M(Pf(dj + dj+1, y), Pf(dj−1 + dj, y)) =
1

6
, for j ∈ {1, 2} (2.38)

M(Pf(d1 + du, y), Pf(d0 + d2, y)) =
1

6
(2.39)

Equation (2.36) represents the probability masses that the future demand falls in inter-

val A is equal to 1
6
. Equation (2.37) represents the probability masses in the red and

yellow intervals, in this equation, we defined the profit, Pf(2dj, y), as the lower bound

and Pf(2dj−1, y) as the upper bound, since whenever the demand is close to y, the profit

becomes large, similarly for the other equations. Equation (2.38) represents the proba-

bility masses in the purple and pink intervals. Equation (2.39) represents the probability

masses in the green interval.

The NPI lower expected profit, denoted by EA, is derived by assigning the probability

masses
1

6
, according to the M -function values in Equations (2.36)-(2.39), to the minimum

value for Pf(D, y) per interval, which leads to

EA =
1

6

[
min[−(c+ h)y, (p− c+ s)y − sd1] + 5(p− c+ s)y − 2s

3∑
j=2

dj − s
2∑

j=1

(dj

+ dj+1)− s(d1 + du)

]
(2.40)

To determine an optimal inventory level, y∗E,A, which maximises EA in the interval A,

we introduce the following two functions,

E1A =
1

6

[
− (c+ h)y + 5(p− c+ s)y − 2s

3∑
j=2

dj − s
2∑

j=1

(dj + dj+1)− s(d1 + du)

]
(2.41)

and

E2A =
1

6

[
(p− c+ s)y − sd1 + 5(p− c+ s)y − 2s

3∑
j=2

dj − s

2∑
j=1

(dj + dj+1)− s(d1 + du)

]
(2.42)
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By Equation (2.40), EA = min[E1A, E2A]. E1A and E2A are linear functions in the

interval A, and they intersect at one point, which is the optimal value for the interval A.

So, by equating E1A and E2A, we have

y∗E,A =
sd1

p+ h+ s
(2.43)

If y is in interval B, the M -function is as follows:

M(min[Pf(d0 + d1, y), Pf(2d1, y)], Pf(y, y)) =
2

6
(2.44)

M(Pf(2dj, y), Pf(2dj−1, y)) =
1

6
, for j ∈ {2, 3} (2.45)

M(Pf(d1 + du, y), Pf(d0 + d2, y)) =
1

6
(2.46)

M(Pf(d2 + du, y), Pf(d1 + d2, y)) =
1

6
(2.47)

Equation (2.44) represents the probability masses that the future demand falls in interval

B is equal to 2
6
, since the interval B combined the grey and purple intervals. Equation

(2.45) represents the probability masses in the red and yellow intervals. Equation (2.46)

represents the probability masses in the green interval. Equation (2.47) represents the

probability masses in the pink interval.

The NPI lower expected profit, denoted by EB, is derived by assigning the probability

masses
1

6
, according to the M -function values in Equations (2.44)-(2.47), to the minimum

value for Pf(D, y) per interval, which leads to

EB =
1

6

[
2min[−(c+ h)y + (p+ h)d1, (p− c+ s)y − 2sd1] + 4(p− c+ s)y − 2s

3∑
j=2

dj

− s(d1 + d3 + d2 + d3)

]
(2.48)

To determine an optimal inventory level, y∗E,B, which maximises EB in the interval B,

we introduce the following two functions,

E1B =
1

6

[
2[−(c+ h)y + (p+ h)d1] + 4(p− c+ s)y − 2s

3∑
j=2

dj − s(d1 + d3 + d2 + d3)

]
(2.49)

and

E2B =
1

6

[
2[(p− c+ s)y − 2sd1] + 4(p− c+ s)y − 2s

3∑
j=2

dj − s(d1 + d3 + d2 + d3)

]
(2.50)
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By Equation (2.48), EB = min[E1B, E2B]. E1B and E2B are linear functions in the

interval B, and they intersect at one point, which is the optimal inventory level for the

interval B. So, by equating E1B and E2B, we have

y∗E,B =
(p+ h)d1 + 2sd1

p+ h+ s
(2.51)

Similarly, for the intervals, C, ..., H. So, if y ∈ (x, z), the optimal inventory level for

the lower expected profit is

y∗E =
(p+ h)x+ sz

p+ h+ s
(2.52)

In general, for the lower expected profit, the optimal inventory level, y∗EOnce
, for all dif-

ferent intervals is the one that corresponds to E = max[EA, EB, ..., EH ], as we consider

maximising the expected profit as the optimality criterion for the inventory level.

Now, we consider the upper expected profit. The NPI upper expected profit for the

interval A, EA, is derived by assigning the probability masses
1

6
, according to the M -

function values in Equations (2.36)-(2.39), to the maximal value for Pf(D, y) per interval,

which leads to

EA =
1

6

[
(p− c)y + 5(p− c+ s)y − 2s

3∑
j=2

dj−1 − s
2∑

j=1

(dj−1 + dj)− sd2

]
(2.53)

EA is a linear function in the interval A. To find the optimal inventory level, which is

denoted by y∗
E,A

for interval A, we need to find out if EA is an increasing or decreasing

function over the interval A. So, we derive the difference between the values of EA of the

upper and lower bounds of interval A, leading to the equation

EA(d0 + d1)− EA(2d0) =
d1
6

[
6(p− c) + 5s

]
(2.54)

If EA(d0 + d1)−EA(2d0) > 0 in Equation (2.54), then EA is an increasing function over

the interval A and the optimal value is y∗
E,A

= d0+d1 which is the upper bound of interval

A. While, if EA(d0+d1)−EA(2d0) < 0 in Equation (2.54), the EA is a decreasing function

over A and the optimal value is y∗
E,A

= 2d0.

Similarly for interval B, the NPI upper expected profit for the interval B, EB, is

derived by assigning the probability masses
1

6
, according to the M -function values in

Equations (2.44)-(2.47), to the maximal value for Pf(D, y) per interval, which leads to

EB =
1

6

[
2(p− c)y + 4(p− c+ s)y − 2s

3∑
j=2

dj−1 − s(d1 + 2d2)

]
(2.55)



2.6. NPI for a single order for the two-period model 36

EB is a linear function in the interval B. To find the optimal inventory level, which is

denoted by y∗
E,B

for interval B, we need to find out if EB is an increasing or decreasing

function over the interval B. So, we derive the difference between the values of EB of the

upper and lower bounds of interval B, leading to the equation

EB(2d1)− EB(d0 + d1) =
d1
6

[
6(p− c) + 4s

]
(2.56)

If EB(2d1)−EB(d0 + d1) > 0 in Equation (2.56), then EB is an increasing function over

the interval B and the optimal value is y∗
E,B

= 2d1 which is the upper bound of interval B.

While, if EB(2d1)−EB(d0 + d1) < 0 in Equation (2.56), the EB is a decreasing function

over B and the optimal value is y∗
E,B

= d0 + d1.

Similarly, for the other intervals, C, ..., H. It is easy to show that the upper expected

profit is a linear function over the intervals and increasing over some intervals and de-

creasing over others depending on the value of the cost parameters. The optimal value for

the increasing function over the interval is obtained at the upper bound of that interval

and for the decreasing function the optimal value over the interval is obtained at the

lower bound of that interval.

In general, for the upper expected profit, the optimal inventory level, y∗
EOnce

, over all

intervals, A-H, is the one that corresponds to E = max[EA, EB, ..., EH ], as we consider

maximising the expected profit as the optimality criterion for the inventory level.

In the following example, we show how the proposed method works to find the optimal

inventory levels that maximise the lower and upper expected profits for the model when

we order once for both periods.

Example 2.6.2 Consider an inventory system with the following costs: p = 70, c = 23,

h = 17, s = 9, and assume that demand is known to be between d0 = 0 and du = 50.30.

Assume that there are n = 2 demand observations with values d1 = 4.20, d2 = 17.60. Our

aim is to find the optimal inventory level for the two-period model with a single order.

Table 2.6 presents the results of the method presented in this section, specifying the

NPI lower and upper expected profits, together with the corresponding values of y. The

corresponding functions E1 and E2 for all intervals A-H are given in Figure 2.9a, and the

function E for all intervals A-H is given in Figure 2.9b.

The optimal inventory level for the lower expected profit is 17.99 which is in interval

D, so the index of y∗EOnce
is jy∗EOnce

= 4. The optimal inventory level for the upper expected
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y’s interval yE E yE E

A=:(0, 4.20) 0.39 -404.25 4.20 98.10

B=:(4.20, 8.40) 4.59 -155.25 8.40 320.70

C=:(8.40, 17.60) 9.26 -16.80 17.60 661.10

D=:(17.60, 21.80) 17.99 368.90 21.80 810.20

E=:(21.80, 35.20) 23.06 304.95 35.20 1071.50

F=:(35.20, 54.50) 37.01 233.53 54.50 1139.05

G=:(54.50, 67.90) 55.76 -211.85 54.50 1139.05

H=:(67.90, 100.60) 70.97 -1015.98 67.90 991.65

Table 2.6: Inventory levels and the corresponding lower and upper expected profit
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(a) Lower expected profit
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(b) Upper expected profit

Figure 2.9: Single order for two periods

profit is 54.50 which falls in interval F and G, so the index of y∗
EOnce

is jy∗
EOnce

= 6 or 7.3

2.7 Comparison of the NPI and classical methods for

the two-period model with a single order

In this section, we consider the same cases and procedures as in Section 2.5 and we con-

sider the same cost parameters as in Example 2.6.2. Suppose the number of observation

is n = 2. As finite end-point for the support of the random demand we took du = 2.50.

Table 2.7 presents the results from the simulation study. It provides the number of
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Case E E

I 382 479

II 336 474

III 409 611

IV 508 586

V 844 734

VI 925 811

Table 2.7: Number of cases out of 1000 where NPI-based profit is greater than the classical

method

times, out of 1000 runs, in which the profit according to the NPI method for the two-

period model with a single order, is larger than the profit based on the classical method.

This table considers the expected profit as optimality criterion, where E and E indicate

that, for the NPI method, the lower expected profit and the upper expected profit was

used, respectively.

It is obvious from the data that, for Cases I and II the classical method performs

better than the NPI method, where the number of times that for profit based on the

NPI method is greater than the profit based on the classical method, is less 500 out of

1000 simulations. While, for the other cases, the NPI method performs better than the

classical method. It would be interesting to develop the method presented in this section

for general n, we leave that for future research.

2.8 Concluding remarks

This chapter has introduced the NPI method for the single-order inventory models, with

continuous random demand. To determine the optimal inventory level, several optimality

criteria are used. We considered the single-period inventory problem then, we explored

how to find the optimal inventory level y∗, which maximises the probability to get positive

profit and maximises the expected profit.

Also, this chapter covered the model when we only ordered once for the two periods.

We explored how to find the optimal inventory level y∗, which maximises the expected

profit. To avoid huge analytic complexities, we restrict our focus in this model to the
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case where the number of observations is n = 2 and m = 2 future demands. For larger

n, the NPI bootstrap approach has been used as an alternative approach; this will be

shown in Chapter 4.

The performance of the classical method and NPI method was evaluated through sim-

ulation studies. We considered Gamma distribution to examine the general performance

of the proposed methods. For the single-period model, some Cases (I and II) the classical

method performs better than the NPI method, and when the number of observations

increases NPI method gets close to the classical method. In other cases (III, IV, V and

VI) the NPI method performs better than the classical method. Similarly, for the second

model; two-period model with a single order, some Cases (I and II) the classical method

performs better than the NPI method, and in other cases the NPI method performs bet-

ter than the classical method. This has been done when the number of observations is

n = 2, it will be of interest to generalise the number of observations for a single order

for the two-period model as a topic for future research. Also, in the comparison of the

simulation studies, we only consider how often the profit is doing better in each run, but

it could also be of interest to see by how much it is greater as a topic for future research.



Chapter 3

Two-period independent demands

model

3.1 Introduction

In this chapter, we extend the single-order inventory models presented in Chapter 2

to two-period independent demands inventory model. The two-period inventory model

allows to order twice, once for the first period and once for the second period. Also,

allows a backlog of demand, where the items ordered before the first period can be sold

in the second period [8]. In this chapter, we will consider maximising the expected profit

as the optimality criterion for the inventory level.

We apply NPI lower and upper expected profits for the two-period model to derive the

optimal inventory levels. We start backward: first, we optimise over the second period

only, assuming there is a remaining stock (or shortage) from the first period, and with

that optimal strategy for the second period, we then optimise over the first period. This

is effectively the way to solve a dynamic programming problem. Several examples are

examined where models with and without order for the second period are assumed, and

the best decision for ordering or not ordering for the second period is interpreted.

This chapter is organised as follows: in Section 3.2, we introduce a two-period in-

dependent demands model. First, we consider the second period, followed by the two

periods. Section 3.3 considers the classical method for the two-period independent de-

mands model. Section 3.4 presents the NPI approach for the two-period independent

demands inventory model. The NPI lower and upper expected profits for the second

40
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period are given in Sections 3.5 and 3.6, respectively. In Sections 3.7 and 3.8, we consider

the NPI lower and upper expected profits for the two periods, respectively. A simulation

study to compare the NPI method and the classical method for the two-period model is

presented in Section 3.9. Section 3.10 presents the concluding remarks for this chapter.

3.2 Independent demands for two-period model

In this section, we study the full separation of demands of the first and second periods,

where the product for each period is the same and the leftover inventory from the first

period can be used in the second period. So, the demands are independent, and the

data only apply to each period independently. To illustrate this model, suppose we have

observed demands for a product for Saturdays as the first period, and observed demands

for the same product for Sundays as the second period, and we treat them as independent

random quantities, then we will use NPI for next Saturday using Saturday data as the

first period, and we use NPI for next Sunday using Sunday data as the second period.

In order to formulate the model, the following notations are introduced: ni is the

observations number for ith period, i = 1, 2. The demand during the ith period is Di and

the observed demand during the ith period is di,j, j = 1, ..., ni, for ease of notation we

assume that the lower bound during the ith period is di,0 = 0 and the upper bound is di,u,

which is logically greater than di,ni
, and that demand is positive. So, di,ni+1 = di,u. The

random demand for the items in the ith period is Di,ni+1. We assume that the inventory

level at the start of the ith period is yi, we aim at determining the best value of yi, which

we denote by y∗i .

This model considers fixed costs such as selling price pi per unit in the ith period.

The total amount of money from sales in period i is pi min(yi, Di). The setup cost is ki

per order in the ith period, e.g. the cost for delivery. Holding costs for period i are hi per

unit, which is the cost for unsold items remaining at the end of the ith period. The total

holding costs are equal to
∑2

i=1 hi(yi −Di)
+, where (v)+ := max(0, v). We assume that

some unmet demand from the first period can be met in the second period, so, a fixed

proportion of demand remaining is α, 0 ≤ α ≤ 1. The selling price for this proportion

of demand is p′1 per unit, with p′1 < pi. The total amount of unsatisfied demand in

the first period that can be met in the second period leads to income αp′1(D1 − y1)
+.
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Parameter Description

ni Number of observations for ith period, i = 1, 2

di,j Observed demands for the ith period, j = 1, ..., ni

Di,ni+1 Random demand for the ith period

yi Inventory level at the start of the ith period

pi Selling price per unit in the ith period

ki Setup cost per order in the ith period

hi Holding cost per unit for period i

si Shortage cost during the ith period per unit

ci Purchasing cost per unit for period i

α Fixed proportion of demand remaining

p′1 Selling price per unit in period 2 for demand from period 1

Table 3.1: Summary of notations

The purchasing cost is ci per unit when the item is obtained from an external source at

the ith ordering cycle, we assume ci > 0 and ci < pi. The total purchase cost for the

second period will be affected by the stock level at the end of the first period y1 − D1.

If y1 −D1 > 0, the total purchase costs for the second period are c2(y2 − (y1 −D1)). If

y1 −D1 < 0, the total purchase costs are c2(y2 + α(D1 − y1)). The shortage cost during

the ith period is si, which is the cost that occurs when the demand exceeds the available

stock. The total shortage costs are equal to
∑2

i=1 si(Di − yi)
+. An overview of these

notations is given in Table 3.1.

These costs lead to the profit function for the two-period inventory model as follows

Pf(D1, D2, y1, y2) = p1min(y1, D1)− c1y1 − k1 − h1(y1 −D1)
+ − s1(D1 − y1)

+

+ αp′1(D1 − y1)
+ + p2min(y2, D2)− c2(y2 + α(D1 − y1)

+ − (y1 −D1)
+)

− k2 − h2(y2 −D2)
+ − s2(D2 − y2)

+ (3.1)

In the following sections, we will study and investigate the performance of the classical

method and the NPI method for the two-period model. First, we determine the optimal

inventory level for the second period, assuming there is a remaining stock (or shortage)

from the first period, and with that optimal strategy for the second period, we then

optimise over the first period.
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3.2.1 Second period

Let the actual demand for the first period be denoted by d1. We assume only the second

period of the two-period model, based on the situation at the end of the first period, which

contains the relevant information for the inventory resulting from the first period, so y1

and D1 are assumed to be known quantities. From Equation (3.1), the profit function

for the second period when we order is given by:

Pf(D1, D2, y1, y2|y1 = y1, D1 = d1) = αp′1(d1 − y1)
+ + p2min(y2, D2)− c2(y2

+ α(d1 − y1)
+ − (y1 − d1)

+)− k2 − h2(y2 −D2)
+ − s2(D2 − y2)

+ (3.2)

When we do not order for the second period, the inventory level at the beginning of

the second period, y2, depends on the inventory level at the end of the first period. If the

inventory level at the end of first period is greater than zero, so, the inventory level for

the second period is y2 = (y1 − d1)
+, hence the profit function is:

Pf(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = (y1 − d1)
+) = p2min((y1 − d1)

+, D2)

− h2((y1 − d1)
+ −D2)

+ − s2(D2 − (y1 − d1)
+)+ (3.3)

If the inventory level at the end of the first period is less than zero, then the inventory

level for the second period is zero and there is unmet demand equal to d1 − y1, hence the

profit function is:

Pf(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0) = −s2D2 (3.4)

3.2.2 Two periods

The profit function for the two periods when we order for the first and the second period,

is given by Equation (3.1). However, when we order for the first period but do not order

for the second period, then the inventory level for the second period is equal to the stock

level at the end of the first period. So, when the stock level at the end of the first period

is equal to y1 −D1, the inventory level for the second period is y2 = (y1 −D1)
+. Hence,

the profit function for this case is as follows:

Pf(D1, D2, y1, y2|y2 = (y1 −D1)
+) = p1min(y1, D1)− c1y1 − k1 − h1(y1 −D1)

+

− s1(D1 − y1)
+ + αp′1(D1 − y1)

+ + p2min((y1 −D1)
+, D2)− h2((y1 −D1)

+ −D2)
+

− s2(D2 − (y1 −D1)
+)+ (3.5)
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While, when the inventory level at the end of the first period is less than zero, then the

inventory level for the second period is zero and there is unmet demand equal to D1−y1,

hence the profit function is:

Pf(D1, D2, y1, y2|y2 = 0) = p1min(y1, D1)− c1y1 − k1 − h1(y1 −D1)
+

− s1(D1 − y1)
+ − s2D2 (3.6)

3.3 Classical method for two-period model

In this section, we consider maximising the expected profit, which was presented by Shih

[63] as the optimality criterion for the inventory levels for the first and second period.

First, we maximise the expected profit for the second period to derive the optimal

inventory level for the second period, y∗2CE. With that optimal strategy for the second

period, we then optimise over the first period.

We assume order for the second period, so, the inventory level for the second period,

y2, is greater than the inventory level at the end of the first period. From Equation (3.2),

the expected profit function for the second period when we order is given by:

E(Pf(D1, D2, y1, y2|y1 = y1, D1 = d1)) =∫ y2

0

(
αp′1(d1 − y1)

+ + p2u− c2(y2 + α(d1 − y1)
+ − (y1 − d1)

+)− k2−

h2(y2 − u)
)
fD2(u)du+

∫ ∞

y2

(
αp′1(d1 − y1)

+ + p2y2 − c2(y2 + α(d1 − y1)
+−

(y1 − d1)
+)− k2 − s2(u− y2)

)
fD2(u)du (3.7)

The optimal inventory level, y∗2CE, for the second period, which maximises the expected

profit, is derived by setting the first derivative of this expected profit function to zero,

leading to the equation

P (D2 ≤ y∗2CE) =
p2 + s2 − c2
p2 + s2 + h2

(3.8)

As the second derivative of the expected profit is negative at all values of y2 with fD2(y2) >

0, the value y∗2CE resulting from Equation (3.8) is the optimal inventory level for the second

period. This is effectively the same as the optimal value for the single-order inventory

model.



3.3. Classical method for two-period model 45

Now, we will maximise the expected profit for the two-period inventory model for two

different scenarios, namely with an order for each period, and ordering only for the first

period.

3.3.1 Ordering for both periods

To find the optimal inventory level for this case, we will use the optimal inventory level

for the second period, y∗2CE, which is shown in Equation (3.8) to optimise the expected

profit for the first period, E(Pf 1,2(D1, D2, y1, y2)).

From Equation (3.1), the expected profit function for the first period is given by:

E(Pf 1,2(D1, D2, y1, y2)) =∫ y1

0

(
p1u1 − c1y1 − k1 − h1(y1 − u1) + c2(y1 − u1)

)
fD1(u1)du1+∫ ∞

y1

(
p1y1 − c1y1 − k1 − s1(u1 − y1) + αp′1(u1 − y1)− αc2(u1 − y1)

)
fD1(u1)du1 (3.9)

To find the optimal inventory level y∗1CE that maximises the profit for the first period,

we need to find the first derivative of Equation (3.9) with respect to y1, and equate it to

zero. This leads to

P (D1 ≤ y∗1CE) =
p1 + s1 − c1 − α(p′1 − c2)

p1 + s1 + h1 − c2 − α(p′1 − c2)
(3.10)

As the second derivative of Equation (3.9) is negative at all values of y1 with fD1(y1) > 0,

the value y∗1CE resulting from Equation (3.10) is the optimal inventory level for the first

period.

3.3.2 Ordering in the first period only

Since in this case we consider ordering for the first period only, so, the inventory level for

the second period is either y2 = (y1 −D1)
+ or y2 = 0 with the remaining demand equal

to D1 − y1. Our aim is to find the optimal inventory level for the first period.

When y2 = (y1 −D1)
+, based on Equation (3.5), the expected profit function for the

first period is given by:

E(Pf 1(D1, D2, y1, y2|y2 = (y1 −D1)
+)) =∫ y1

0

(
p1u1 − c1y1 − k1 − h1(y1 − u1)

)
fD1(u1)du1 +

∫ ∞

y1

(
p1y1 − c1y1 − k1−

s1(u1 − y1) + αp′1(u1 − y1)
)
fD1(u1)du1 (3.11)
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To find the optimal inventory level y∗b11CE that maximises the profit over both periods, we

need to find the first derivative of Equation (3.11) with respect to y1, and equate it to

zero. This lead to

P (D1 ≤ y∗b11CE) =
p1 + s1 − c1 − αp′1
p1 + s1 + h1 − αp′1

(3.12)

As the second derivative of Equation (3.11) is negative at all values of y1 with fD1(y1) > 0,

the value y∗b11CE resulting from Equation (3.12) is the optimal inventory level for the first

period when we just order for the first period.

When y2 = 0 and the remaining demand from the first period is D1 − y1, based on

Equation (3.6), the expected profit function for the first period is given by:

E(Pf 1(D1, D2, y1, y2|y2 = 0)) =

∫ y1

0

(
p1u1 − c1y1 − k1 − h1(y1 − u1)

)
fD1(u1)du1

+

∫ ∞

y1

(
p1y1 − c1y1 − k1 − s1(u1 − y1)

)
fD1(u1)du1 (3.13)

To find the optimal inventory level y∗b21CE that maximises the profit over both periods, we

need to find the first derivative of Equation (3.13) with respect to y1, and equate it to

zero. This lead to

P (D1 ≤ y∗b21CE) =
p1 + s1 − c1
p1 + s1 + h1

(3.14)

As the second derivative of Equation (3.13) is negative at all values of y1 with fD1(y1) > 0,

the value y∗b21CE resulting from Equation (3.14) is the optimal inventory level for the first

period when we just order for the first period.

3.4 NPI for two-period model with independent de-

mands

In this section, we study NPI for the demands D1,n1+1 and D2,n2+1 in the two-period

inventory model, in which we assume independence of these two demands. We also

assume that demand data for one period does not contain information for the other

period. Leftover items from the first period can be sold in the second period. For

the previous two periods, we assume that data on demands are available and we set

di,0 = 0. The future demand in the first period is D1,n1+1 and the ordered demand

observations are d1,1 < d1,2 < ... < d1,n1 . We assume that there is a known upper
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bound for the demand in period 1, d1,n1+1 = d1,u, so d1,n1 < d1,u. For the second period,

D2,n2+1 is the future demand, and the ordered observed demands in the second period are

d2,1 < d2,2 < ... < d2,n2 . We assume that there is a known upper bound for the demand

in period 2, d2,n2+1 = d2,u, so d2,n2 < d2,u. In general, the assumption A(ni) for Di,ni+1

leads to:

P (Di,ni+1 ∈ (di,j−1, di,j)) =
1

ni + 1
for j = 1, ..., ni + 1 and i = 1, 2. (3.15)

The essential step in developing NPI for the two-period independent demands inven-

tory model, is the transfer of the partial probability distribution specification for the

future demands to a partial probability distribution specification for the profit function.

This process is illustrated in Figure 3.1, in which i = 1 when we study the first period and

i = 2 for the second period, this is similar to the process used in Figure 2.2 in Chapter 2.

The overall aim is to determine the optimal values for y1 and y2. Let ji,yi ∈ {1, ..., ni+1}

be such that yi ∈ (di,ji,yi−1, di,ji,yi ). The A(ni) assumption for Di,ni+1, given in Equation

(3.15), implies the following M -function values for the random profit Pf(Di,ni+1, yi) as

follows

M(Pf(di,j−1, yi), Pf(di,j, yi)) =
1

ni + 1
for j ∈ {1, ..., ji,yi − 1} and i = 1, 2 (3.16)

M(min[Pf(di,ji,yi−1, yi), Pf(di,ji,yi , yi)], Pf(yi, yi)) =
1

ni + 1
for j = ji,yi and i = 1, 2

(3.17)

M(Pf(di,j, yi), Pf(di,j−1, yi)) =
1

ni + 1
for j ∈ {ji,yi + 1, ..., ni + 1} and i = 1, 2

(3.18)

In the following sections we will derive NPI lower and upper expected profits for the

two-period model. First, we optimise over the second period only, assuming there is a

remaining stock (or shortage) from the first period, and with that optimal strategy for

the second period, we then optimise over the first period.

3.5 NPI lower expected profit for the second period

In this section, we optimise the profit for the second period, Pf(D1, D2, y1, y2|y1 =

y1, D1 = d1), based on the situation at the end of the first period, when the inventory level

is greater than (or less than) the actual demand for the first period, y1 ≥ d1 (or y1 < d1),
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0 di,j
yidi,1di,2

di,ni
di,ni−1di,ji,yi−1 di,ji,yi
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(di,u, Pf(di,u, yi))
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ni+1

1
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1
ni+1

1
ni+1

1
ni+1

Figure 3.1: Two-period inventory - M -functions

with and without order for each inequality. We present the NPI lower expected profit for

the second period, as function of the inventory level y2. The derivations are based on the

M -functions presented in Equations (3.16)-(3.18) and shown in Figure 3.1, with i = 2.

The NPI lower expected profit, denoted by E(Pf(D1, D2, y1, y2|y1 = y1, D1 = d1)), is

derived by assigning the probability masses 1
n2+1

, according to the M -function values to

the minimal values for Pf(D1, D2, y1, y2|y1 = y1, D1 = d1) per interval, which leads to

E(Pf(D1, D2, y1, y2|y1 = y1, D1 = d1)) =

j2,y2−1∑
j=1

(
M(Pf(d2,j−1, y2), Pf(d2,j, y2))

× Pf(d2,j−1, y2)

)
+

[
M(min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)], Pf(y2, y2))

×min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)]

]
+

n2+1∑
j=j2,y2+1

(
M(Pf(d2,j, y2), Pf(d2,j−1, y2))

× Pf(d2,j, y2)

)
=

1

n2 + 1

[ j2,y2−1∑
j=1

Pf(d2,j−1, y2) + min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)]

+

n2+1∑
j=j2,y2+1

Pf(d2,j, y2)

]
(3.19)

Next, we consider the NPI lower expected profit for the second period for the scenarios:

with and without order in which y1 ≥ d1, also, with and without order in which y1 < d1.
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3.5.1 With order for the second period, with remaining stock

from the first period

In this section, we assume that there is a remaining stock from the first period, y1 ≥

d1. So, we derive the optimal inventory level that maximises the lower expected profit,

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)), under the assumption that we will order and

that y1 ≥ d1. By substituting Equation (3.2) in Equation (3.19) the lower expected profit

is given by

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[ j2,y2−1∑
j=1

(
p2d2,j−1 − c2(y2 − (y1 − d1))

− k2 − h2(y2 − d2,j−1)
)
+min[p2d2,j2,y2−1 − c2(y2 − (y1 − d1))− k2 − h2(y2

− d2,j2,y2−1), p2y2 − c2(y2 − (y1 − d1))− k2 − s2(d2,j2,y2 − y2)]

+

n2+1∑
j=j2,y2+1

(
p2y2 − c2(y2 − (y1 − d1))− k2 − s2(d2,j − y2)

)]

=
1

n2 + 1

[
(j2,y2 − 1)[−(c2 + h2)y2 + c2(y1 − d1)− k2] + (p2 + h2)

j2,y2−1∑
j=1

d2,j−1

+min[(p2 + h2)d2,j2,y2−1 − (c2 + h2)y2 + c2(y1 − d1)− k2, (p2 − c2 + s2)y2

− s2d2,j2,y2 + c2(y1 − d1)− k2] + (n2 + 1− j2,y2)[(p2 − c2 + s2)y2 + c2(y1 − d1)− k2]

− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.20)

To determine the optimal value of y2, which maximises Equation (3.20), we introduce

the following two functions:

Ea(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(j2,y2 − 1)[−(c2 + h2)y2

+ c2(y1 − d1)− k2] + (p2 + h2)

j2,y2−1∑
j=1

d2,j−1 + (p2 + h2)d2,j2,y2−1 − (c2 + h2)y2

+ c2(y1 − d1)− k2 + (n2 + 1− j2,y2)[(p2 − c2 + s2)y2 + c2(y1 − d1)− k2]

− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.21)
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and

Eb(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(j2,y2 − 1)[−(c2 + h2)y2

+ c2(y1 − d1)− k2] + (p2 + h2)

j2,y2−1∑
j=1

d2,j−1 + (p2 − c2 + s2)y2 − s2d2,j2,y2

+ c2(y1 − d1)− k2 + (n2 + 1− j2,y2)[(p2 − c2 + s2)y2 + c2(y1 − d1)− k2]

− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.22)

Note that Equation (3.20) is the minimum of Equation (3.21) and Equation (3.22). We

also note that E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a discontinuous function at d2,l,

for all l ∈ {1, ..., n2}; the proof of this property is given in Appendix A.5.

Ea(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) and Eb(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

are linear functions in each interval [d2,j2,y2−1, d2,j2,y2 ]. Equation (3.21) is an increasing in

[d2,j2,y2−1, d2,j2,y2 ] if and only if

j2,y2 <
(n2 + 1)(p2 − c2 + s2)

p2 + h2 + s2
=: M1 (3.23)

and Equation (3.21) is a decreasing function in [d2,j2,y2−1, d2,j2,y2 ] if and only if j2,y2 > M1.

Similarly, Equation (3.22) is an increasing in [d2,j2,y2−1, d2,j2,y2 ] if and only if

j2,y2 <
(n2 + 1)(p2 − c2 + s2) + p2 + h2 + s2

p2 + h2 + s2
=: M1 + 1 (3.24)

and Equation (3.22) is a decreasing function in [d2,j2,y2−1, d2,j2,y2 ] if and only if j2,y2 >

M1 + 1. This implies that the maximum value of Equation (3.20) is at the intersection

point of Equation (3.21) and Equation (3.22) in the single interval where Equation (3.21)

decreases and Equation (3.22) increases. This leads to the optimal inventory level for the

second period, which maximises the NPI lower expected profit,

y∗O2E =
(p2 + h2)d2,j2,y2−1 + s2d2,j2,y2

p2 + h2 + s2
(3.25)

where M1 ≤ j2,y2 < M1 + 1.

3.5.2 Without order for the second period, with remaining stock

from the first period

In this section, we assume that there is a remaining stock from the first period, y1 ≥ d1,

so the inventory level for the second period is y2 = (y1 − d1)
+. By substituting Equation
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(3.3) into Equation (3.19) the lower expected profit under the assumption that there is

no order and y1 ≥ d1 is given by

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = (y1 − d1)
+)) =

1

n2 + 1

[
(j2,y2 − 1)(−h2y2)

+ (p2 + h2)

j2,y2−1∑
j=1

d2,j−1 +min[(p2 + h2)d2,j2,y2−1 − h2y2, (p2 + s2)y2 − s2d2,j2,y2 ]

+ (n2 + 1− j2,y2)[(p2 + s2)y2]− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.26)

Since the condition in this section is not to order for the second period, the objective is

not to determine an optimal inventory level for the second period. The goal is to decide

which is better, to order or not to order for the second period. So, we need to compare the

lower expected profit derived in Section 3.5.1, Equation (3.20), with the lower expected

profit derived in this section, Equation (3.26). Then we find a threshold δ1 such that if

y2 = (y1 − d1)
+ < δ1, it is better to order for the second period in order to reach the

optimal inventory level y∗O2E in Equation (3.25); otherwise, it is better not to order for the

second period. So,

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = y∗O2E )) >

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = (y1 − d1)
+)) ⇐⇒

y1 − d1 <
1

−(j2,y1−d1 − 1)(h2 + p2 + s2)− n2(c2 − p2 − s2)

[
− y∗O2E [j2,y∗O2E (h2 + p2 + s2)

− (c2 + h2)− (n2 + 1)(p2 − c2 + s2)] + k2(−n2) + (p2 + h2)

( j
2,y∗O

2E
−1∑

j=1

d2,j−1

−
j2,y1−d1

−1∑
j=1

d2,j−1

)
− s2

{
n2+1∑

j=j
2,y∗O

2E
+1

d2,j −
n2+1∑

j=j2,y1−d1
+1

d2,j

}
+min[(p2 + h2)d2,j

2,y∗O
2E

−1

− (c2 + h2)y
∗O
2E + c2(y1 − d1)− k2, (p2 − c2 + s2)y

∗O
2E − s2d2,j

2,y∗O
2E

+ c2(y1 − d1)− k2]

−min[(p2 + h2)d2,j2,y1−d1
−1 − h2(y1 − d1), (p2 + s2)(y1 − d1)− s2d2,j2,y1−d1

]

]
=: δ1

(3.27)

So, if y1 − d1 < δ1, it is better to order for the second period since then the expected

profit when we order is larger than when we do not order. While, when y1 − d1 > δ1 it is

better not to order for the second period since the expected profit when we do not order

is larger than when we order.
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In the following example, we illustrate how to find the optimal inventory level for the

second period only, under the assumption that we will order and y1 ≥ d1. Also, how to

decide if it is better to order for the second period or not.

Example 3.5.1 Consider an inventory system with the following costs: p2 = 60, c2 =

23, h2 = 11, s2 = 25, k2 = 10, and assume that demand is known to be between d2,0 = 0

and d2,u = 15. Assume that there are n2 = 3 demand observations, with values d2,1 =

5.20, d2,2 = 9.10, d2,3 = 13.50. Our aim is to find the optimal inventory level for the

second period, given the situation at the end of the first period, under the assumption

that we will order and y1 ≥ d1. Also, we aim to decide if it is better to order for the

second period or not.

In this example we consider the min bounds in Equation (3.27) as

min[(p2 + h2)d2,j
2,y∗O

2E
−1 − (c2 + h2)y

∗O
2E + c2(y1 − d1)− k2, (p2 − c2 + s2)y

∗O
2E − s2d2,j

2,y∗O
2E

+ c2(y1 − d1)− k2] = (p2 + h2)d2,j
2,y∗O

2E
−1 − (c2 + h2)y

∗O
2E + c2(y1 − d1)− k2

and

min[(p2 + h2)d2,j2,y1−d1
−1 − h2(y1 − d1), (p2 + s2)(y1 − d1)− s2d2,j2,y1−d1

] =

(p2 + h2)d2,j2,y1−d1
−1 − h2(y1 − d1)

hence

δ1 =
1

−(n2 + 1)(c2 − p2 − s2)− (j2,y1−d1)(p2 + s2 + h2)

[
y∗O2E [(n2 + 1)(p2 − c2 + s2)

− j2,y∗O2E (h2 + p2 + s2)]− k2(n2 + 1) + (p2 + h2)

( j
2,y∗O

2E∑
j=1

d2,j−1 −
j2,y1−d1∑

j=1

d2,j−1

)

− s2

{
n2+1∑

j=j
2,y∗O

2E
+1

d2,j −
n2+1∑

j=j2,y1−d1
+1

d2,j

}]
(3.28)

From Equations (3.23)-(3.25), the optimal inventory level for the second period is

y∗O2E = 10.25 with j2,y∗O2E = 3. We determine the threshold δ1 based on Equation (3.28) to

decide which is better, if we order for the second period or not.

� For j2,y1−d1 = 1, δ1 = 7.44 means that if y2 = (y1−d1)
+ ∈ (0, 5.20), then it is better

to order for the second period since y1 − d1 < 7.44 in order to reach the optimal

inventory level y∗O2E = 10.25.
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� For j2,y1−d1 = 2, δ1 = 9.53 means that if y2 = (y1 − d1)
+ ∈ (5.20, 9.10), then it

is better to order for the second period since y1 − d1 < 9.53 in order to reach the

optimal inventory level y∗O2E = 10.25.

� for j2,y1−d1 = 3, δ1 = 11.25 means that if y2 = (y1 − d1)
+ ∈ (9.10, 13.50) and

y1 − d1 < 10.25, then it is better to order for the second period in order to reach

the optimal inventory level y∗O2E = 10.25. While, if y1 − d1 ∈ (9.10, 13.50) and

y1 − d1 > 10.25, then it is better not to order for the second period.

� For j2,y1−d1 = 4, δ1 = 13.11 means that if y2 = (y1 − d1)
+ ∈ (13.50, 15), then it is

better not to order for the second period, since y1 − d1 > 10.25.

In general, in this example it is better to order for the second period for all y1−d1 < δ1 <

y∗O2E and it is better not to order for the second period for all y∗O2E < δ1 < y1−d1. However,

if y1 − d1 falls within the third interval as y∗O2E , it is better to order for the second period

as long as y1 − d1 < y∗O2E < δ1. 3

3.5.3 With order for the second period, with the first period’s

demand not fully met

In this section, we derive the optimal inventory level for the second period which max-

imises the lower expected profit, E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)), under the

assumption that we will order for the second period, with the first period’s demand not

fully met, y1 < d1. The lower expected profit for the second period only is derived by

substituting Equation (3.2) in Equation (3.19), which leads to

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[ j2,y2−1∑
j=1

(
αp′1(d1 − y1) + p2d2,j−1

− c2(y2 + α(d1 − y1))− k2 − h2(y2 − d2,j−1)
)
+min[αp′1(d1 − y1) + p2d2,j2,y2−1

− c2(y2 + α(d1 − y1))− k2 − h2(y2 − d2,j2,y2−1), αp
′
1(d1 − y1) + p2y2 − c2(y2

+ α(d1 − y1))− k2 − s2(d2,j2,y2 − y2)] +

n2+1∑
j=j2,y2+1

(
αp′1(d1 − y1) + p2y2 − c2(y2

+ α(d1 − y1))− k2 − s2(d2,j − y2)
)]
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=
1

n2 + 1

[
(j2,y2 − 1)[−(c2 + h2)y2 + α(d1 − y1)(p

′
1 − c2)− k2] + (p2 + h2)

j2,y2−1∑
j=1

d2,j−1

+min[(p2 + h2)d2,j2,y2−1 − (c2 + h2)y2 + α(d1 − y1)(p
′
1 − c2)− k2, (p2

− c2 + s2)y2 − s2d2,j2,y2 + α(d1 − y1)(p
′
1 − c2)− k2] + (n2 + 1− j2,y2)[(p2

− c2 + s2)y2 + α(d1 − y1)(p
′
1 − c2)− k2]− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.29)

To determine the optimal inventory level, y∗O2E , which maximises Equation (3.29), we

introduce the following two functions:

Ea(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(j2,y2 − 1)[−(c2 + h2)y2

+ α(d1 − y1)(p
′
1 − c2)− k2] + (p2 + h2)

j2,y2−1∑
j=1

d2,j−1 + (p2 + h2)d2,j2,y2−1 − (c2 + h2)y2

+ α(d1 − y1)(p
′
1 − c2)− k2 + (n2 + 1− j2,y2)[(p2 − c2 + s2)y2 + α(d1 − y1)(p

′
1 − c2)

− k2]− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.30)

and

Eb(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(j2,y2 − 1)[−(c2 + h2)y2

+ α(d1 − y1)(p
′
1 − c2)− k2] + (p2 + h2)

j2,y2−1∑
j=1

d2,j−1 + (p2 − c2 + s2)y2 − s2d2,j2,y2

+ α(d1 − y1)(p
′
1 − c2)− k2 + (n2 + 1− j2,y2)[(p2 − c2 + s2)y2 + α(d1 − y1)(p

′
1 − c2)

− k2]− s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.31)

Note that Equation (3.29) is the minimum of Equation (3.30) and Equation (3.31). We

also note that E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a discontinuous function at d2,l,

for all l ∈ {1, ..., n2}; the proof of this property is given in Appendix A.6.

Ea(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) and Eb(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

are linear functions in each interval [d2,j2,y2−1, d2,j2,y2 ]. Equation (3.30) is an increasing in

[d2,j2,y2−1, d2,j2,y2 ] if and only if

j2,y2 <
(n2 + 1)(p2 − c2 + s2)

p2 + h2 + s2
=: M2 (3.32)

and Equation (3.30) is a decreasing function in [d2,j2,y2−1, d2,j2,y2 ] if and only if j2,y2 > M2.
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Similarly, Equation (3.31) is an increasing in [d2,j2,y2−1, d2,j2,y2 ] if and only if

j2,y2 <
(n2 + 1)(p2 − c2 + s2) + p2 + h2 + s2

p2 + h2 + s2
=: M2 + 1 (3.33)

and Equation (3.31) is a decreasing function in [d2,j2,y2−1, d2,j2,y2 ] if and only if j2,y2 >

M2 + 1. This implies that the maximum value of Equation (3.29) is at the intersection

point of Equation (3.30) and Equation (3.31) in the single interval where Equation (3.30)

decreases and Equation (3.31) increases. This leads to the optimal inventory level for the

second period, which maximises the NPI lower expected profit,

y∗O2E =
(p2 + h2)d2,j2,y2−1 + s2d2,j2,y2

p2 + h2 + s2
(3.34)

where M2 ≤ j2,y2 < M2 + 1. We notice that Equation (3.34) is equal to Equation (3.25),

which means that the optimal inventory level when we order for the second period, y∗O2E ,

is not affected by the stock level at the end of the first period whether y1 ≥ d1 or y1 < d1.

3.5.4 Without order for the second period, with the first pe-

riod’s demand not fully met

In this section, we suppose that there is no order for the second period, so the inventory

level for the second period, y2, is equal to the stock level at the end of the first period.

As we suppose there is demand from the first period that is not fully met, y1 < d1, the

inventory level for the second period is equal to zero with residual demand equal to d1−y1.

We determine the lower expected profit, E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0)),

under the assumption that there is no order and y1 < d1, by substituting Equation (3.4)

into Equation (3.19) we have

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0)) =
1

n2 + 1

[
− s2d2,j2,y2 − s2

n2+1∑
j=j2,y2+1

d2,j

]
(3.35)

Since the condition in this section is not to order for the second period, the objective

is not to determine an optimal inventory level for the second period. The goal is to decide

which is better, to order or not to order for the second period. So, we need to compare the

lower expected profit derived in Section 3.5.3, Equation (3.29), with the lower expected

profit derived in this section, Equation (3.35). Then we find a threshold δ2 such that if
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the residual demand, d1 − y1, is less than δ2, it is better to order for the second period in

order to reach the optimal inventory level y∗O2E in Equation (3.34) plus d1 − y1; otherwise,

it is better not to order for the second period. So,

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = y∗O2E )) >

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0)) ⇐⇒

d1 − y1 <
1

αn2(c2 − p′1)

[
− (j2,y∗O2E − 1)[(h2 + p2 + s2)y

∗O
2E ] + n2[(p2 − c2 + s2)y

∗O
2E − k2

+ α(d1 − y1)(p
′
1 − c2)] + (p2 + h2)

j
2,y∗O

2E
−1∑

j=1

d2,j−1 − s2

(
n2+1∑

j=j
2,y∗O

2E
+1

d2,j −
n2+1∑

j=j2,y2+1

d2,j

− d2,j2,y2

)
+min[(p2 + h2)d2,j2,y∗2−1 − (c2 + h2)y

∗O
2E − k2, (p2 − c2 + s2)y

∗O
2E − s2d2,j

2,y∗O
2E

+ α(d1 − y1)(p
′
1 − c2)− k2]

]
=: δ2 (3.36)

So, if d1 − y1 < δ2, it is better to order for the second period since the expected profit

when we order is larger than when we do not order. While, when d1− y1 > δ2 it is better

not to order for the second period since the expected profit when we do not order is larger

than when we order.

3.6 NPI upper expected profit for the second period

In this section, we optimise the profit for the second period, Pf(D1, D2, y1, y2|y1 =

y1, D1 = d1), based on the situation at the end of the first period, when the inventory level

is greater than (or less than) the actual demand for the first period, y1 ≥ d1 (or y1 < d1),

with and without order for each inequality. We present the NPI upper expected profit for

the second period, as function of the inventory level y2. The derivations are based on the

M -functions presented in Equations (3.16)-(3.18) and shown in Figure 3.1, with i = 2.

The NPI upper expected profit, denoted by E(Pf(D1, D2, y1, y2|y1 = y1, D1 = d1)), is

derived by assigning the probability masses 1
n2+1

, according to the M -function values to

the maximal values for Pf(D1, D2, y1, y2|y1 = y1, D1 = d1) per interval, which leads to
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E(Pf(D1, D2, y1, y2|y1 = y1, D1 = d1)) =

j2,y2−1∑
j=1

(
M(Pf(d2,j−1, y2), Pf(d2,j, y2))

× Pf(d2,j, y2)

)
+M(min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)], Pf(y2, y2))Pf(y2, y2)

+

n2+1∑
j=j2,y2+1

M(Pf(d2,j, y2), Pf(d2,j−1, y2))Pf(d2,j−1, y2)

=
1

n2 + 1

[ j2,y2−1∑
j=1

Pf(d2,j, y2) + Pf(y2, y2) +

n2+1∑
j=j2,y2+1

Pf(d2,j−1, y2)

]
(3.37)

Next, we consider the NPI upper expected profit for the second period for the scenarios:

with and without order in which y1 ≥ d1, also, with and without order in which y1 < d1.

3.6.1 With order for the second period, with remaining stock

from the first period

In this section, we assume that there is a remaining stock from the first period, y1 ≥ d1.

So, we derive the optimal inventory level that maximises the upper expected profit,

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)), under the assumption that we will order and

that y1 ≥ d1. By substituting Equation (3.2) in Equation (3.37), the upper expected

profit is given by

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[ j2,y2−1∑
j=1

(
p2d2,j − c2(y2 − (y1 − d1))

− k2 − h2(y2 − d2,j)
)
+ (p2 − c2)y2 + (y1 − d1)c2 − k2 +

n2+1∑
j=j2,y2+1

(
p2y2 − c2(y2

− (y1 − d1))− k2 − s2(d2,j−1 − y2)
)]

=
1

n2 + 1

[
j2,y2 [−(p2 + h2 + s2)y2] + (p2 + h2)[y2 +

j2,y2−1∑
j=1

d2,j] + (n2 + 1)[(p2 − c2

+ s2)y2 + c2(y1 − d1)− k2]− s2

n2+1∑
j=j2,y2+1

d2,j−1

]
(3.38)

It is easy to show that E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a continuous func-

tion; the proof of this property is given in Appendix A.7.
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To determine the optimal inventory level, y∗O
2E
, that maximises Equation (3.38), we

use that E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is an increasing over the interval

[d2,j2,y2−1, d2,j2,y2 ] if and only if

j2,y2 <
h2 + p2 + (n2 + 1)(p2 − c2 + s2)

p2 + s2 + h2

=: V1 (3.39)

and E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a decreasing function over the interval

[d2,j2,y2−1, d2,j2,y2 ] if and only if j2,y2 > V1. This implies that Equation (3.38) is maximised

at y∗O
2E

= d2,l∗ with l∗ the largest value in {1, 2, ..., n2} which is less than V1.

3.6.2 Without order for the second period, with remaining stock

from the first period

In this section, we assume that there is a remaining stock from the first period, y1 ≥ d1,

so the inventory level for the second period is y2 = (y1− d1)
+. The upper expected profit

under the assumption that there is no order and y1 ≥ d1 is given by,

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = (y1 − d1)
+)) =

1

n2 + 1

[
j2,y2 [−(p2 + h2

+ s2)y2] + (p2 + h2)[y2 +

j2,y2−1∑
j=1

d2,j] + (n2 + 1)[(p2 + s2)y2]− s2

n2+1∑
j=j2,y2+1

d2,j−1

]
(3.40)

Since the condition in this section is not to order for the second period, the objective

is not to determine the optimal inventory level for the second period. The goal is to

decide which is better, to order or not to order for the second period. So, we need to

compare the upper expected profit derived in Section 3.6.1, Equation (3.38), with the

upper expected profit derived in this section, Equation (3.40). Then find a threshold τ1

such that if y2 = (y1 − d1)
+ < τ1, it is better to order for the second period in order to

reach the optimal inventory level y∗O
2E
; otherwise, it is better not to order for the second

period. So,

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = y∗O
2E
)) >

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = (y1 − d1)
+)) ⇐⇒
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j2,y1−d1 τ1

1 -30.77

2 -57.96

3 -265.63

4 146.62

Table 3.2: Results of Example 3.6.1

y1 − d1 <
1

−j2,y1−d1(h2 + p2 + s2) + h2 + p2 − (n2 + 1)(c2 − p2 − s2)

[
− y∗O

2E
[j2,y∗O

2E
(h2

+ p2 + s2) + (p2 + h2) + (n2 + 1)(p2 − c2 + s2)]− k2(n2 + 1) + (p2 + h2)

( j
2,y∗O

2E

−1∑
j=1

d2,j

−
j2,y1−d1

−1∑
j=1

d2,j

)
− s2

{
n2+1∑

j=j
2,y∗O

2E

+1

d2,j−1 −
n2+1∑

j=j2,y1−d1
+1

d2,j−1

}]
=: τ1 (3.41)

So, if y1 − d1 < τ1, it is better to order for the second period since the expected profit

when we order is larger than when we do not order. While, when y1− d1 > τ1 it is better

not to order for the second period since the expected profit when we do not order is larger

than when we order. We illustrate how this section works in the following example.

Example 3.6.1 Consider an inventory system with the same data as in Example 3.5.1.

Our aim is to find the optimal inventory level for the second period depending on the

situation at the end of the first period, under the assumption that we will order and

y1 ≥ d1. Also, we aim to decide if it is better to order for the second period or not.

From Equation (3.39), the optimal inventory level for the second period depending

on the situation at the end of the first period is y∗O
2E

= 13.50 with j2,y∗O
2E

= 3. We

determine the threshold τ1 based on Equation (3.41) to decide which is better if we order

for the second period or not. Table 3.2 presents the index, j2,y1−d1 , for the interval of the

inventory level for the second period, y2 = (y1 − d1)
+, as well as the τ1 values.

Table 3.2 concludes that, for j2,y1−d1 = 1, 2, 3, it is better not to order for the second

period since y1 − d1 > τ1. For j2,y1−d1 = 4, y2 = (y1 − d1)
+ ∈ (13.50, 15) so, y2 < τ1 but

y2 = (y1 − d1)
+ ≥ y∗O

2E
= 13.50, so it is better not to order for second period. 3
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3.6.3 With order for the second period, with the first period’s

demand not fully met

In this section we derive the optimal inventory level for the second period which maximises

the upper expected profit, E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)), under the assumption

that we will order for the second period, with the first period’s demand not fully met,

y1 < d1. By substituting Equation (3.2) in Equation (3.37), the upper expected profit is

given by

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[ j2,y2−1∑
j=1

(
αp′1(d1 − y1) + p2d2,j − c2(y2

+ α(d1 − y1))− k2 − h2(y2 − d2,j)
)
+ αp′1(d1 − y1) + (p2 − c2)y2 − α(d1 − y1)c2 − k2

+

n2+1∑
j=j2,y2+1

(
αp′1(d1 − y1) + p2y2 − c2(y2 + α(d1 − y1))− k2 − s2(d2,j−1 − y2)

)]

=
1

n2 + 1

[
j2,y2 [−(p2 + h2 + s2)y2] + (p2 + h2)[y2 +

j2,y2−1∑
j=1

d2,j] + (n2 + 1)[(p2 − c2 + s2)y2

+ α(d1 − y1)(p
′
1 − c2)− k2]− s2

n2+1∑
j=j2,y2+1

d2,j−1

]
(3.42)

It is easy to show that E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a continuous func-

tion; the proof of this property is given in Appendix A.8.

To determine the optimal inventory level, y∗O
2E
, that maximises Equation (3.42), we

use that E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is an increasing over the interval

[d2,j2,y2−1, d2,j2,y2 ] if and only if

j2,y2 <
h2 + p2 + (n2 + 1)(p2 − c2 + s2)

p2 + s2 + h2

=: V2 (3.43)

and E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a decreasing function over the interval

[d2,j2,y2−1, d2,j2,y2 ] if and only if j2,y2 > V2. This implies that Equation (3.42) is maximised

at y∗O
2E

= d2,l∗ with l∗ the largest value in {1, 2, ..., n2} which is less than V2.

3.6.4 Without order for the second period, with the first pe-

riod’s demand not fully met

In this section there is no order for the second period, so the inventory level for the second

period, y2, is equal to the stock level at the end of first period. As we suppose there is



3.7. NPI lower expected profit for two periods 61

demand from the first period that is not fully met, y1 < d1, the inventory level for the

second period is equal to zero with residual demand equal to d1 − y1. We determine

the upper expected profit, E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0)), under the

assumption that there is no order and y1 < d1. By substituting Equation (3.4) into

Equation (3.37) we have

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0)) =
1

n2 + 1

[
− s2

n2+1∑
j=j2,y2+1

d2,j−1

]
(3.44)

Since the condition in this section is not to order for the second period, the objective

is not to determine the optimal inventory level for the second period. The goal is to

decide which is better, to order or not to order for the second period. So, we need to

compare the upper expected profit derived in Section 3.6.3, Equation (3.42), with the

upper expected profit derived in this section, Equation (3.44). Then we find a threshold

τ2 such that if the residual demand, d1 − y1, is less than τ2, it is better to order for the

second period in order to reach the optimal inventory level y∗O
2E

plus d1 − y1; otherwise,

it is better not to order for the second period. So,

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = y∗O
2E
)) >

E(Pf−(D1, D2, y1, y2|y1 = y1, D1 = d1, y2 = 0)) ⇐⇒

d1 − y1 <
1

α(n2 + 1)(c2 − p′1)

[
j2,y∗O

2E
[−(p2 + h2 + s2)y

∗O
2E
] + (p2 + h2)

(
y∗O
2E

+

j
2,y∗O

2E

−1∑
j=1

d2,j

)

+ (n2 + 1)[(p2 − c2 + s2)y
∗O
2E

− k2]− s2

{
n2+1∑

j=j
2,y∗O

2E

+1

d2,j−1 −
n2+1∑

j=j2,d1−y1
+1

d2,j−1

}]
=: τ2

(3.45)

So, if d1 − y1 < τ2, it is better to order for the second period since the expected profit

when we order is larger than when we do not order. While, when d1− y1 > τ2 it is better

not to order for the second period since the expected profit when we do not order is larger

than when we order.

3.7 NPI lower expected profit for two periods

In this section, we optimise the NPI lower expected profit for the two-period model. The

derivations are based on the M -functions presented in Equations (3.16)-(3.18) and shown

in Figure 3.1.
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The NPI lower expected profit, denoted by E(Pf(D1, D2, y1, y2)), is derived by as-

signing the probability masses 1
n1+1

and 1
n2+1

, according to the M -function values, to the

minimal values for Pf(D1, D2, y1, y2) per interval, which leads to

E(Pf(D1, D2, y1, y2)) =

j1,y1−1∑
j=1

(
M(Pf(d1,j−1, y1), Pf(d1,j, y1))Pf(d1,j−1, y1)

)
+

[
M(min[Pf(d1,j1,y1−1, y1), Pf(d1,j1,y1 , y1)], Pf(y1, y1))

×min[Pf(d1,j1,y1−1, y1), Pf(d1,j1,y1 , y1)]

]
+

n1+1∑
j=j1,y1+1

(
M(Pf(d1,j, y1), Pf(d1,j−1, y1))

× Pf(d1,j, y1)

)
+

j2,y2−1∑
j=1

M(Pf(d2,j−1, y2), Pf(d2,j, y2))Pf(d2,j−1, y2)

+

[
M(min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)], Pf(y2, y2))

×min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)]

]
+

n2+1∑
j=j2,y2+1

(
M(Pf(d2,j, y2), Pf(d2,j−1, y2))

× Pf(d2,j, y2)

)
=

1

n1 + 1

[ j1,y1−1∑
j=1

Pf(d1,j−1, y1) + min[Pf(d1,j1,y1−1, y1), Pf(d1,j1,y1 , y1)]

+

n1+1∑
j=j1,y1+1

Pf(d1,j, y1)

]
+

1

n2 + 1

( j2,y2−1∑
j=1

Pf(d2,j−1, y2)

+ min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)] +

n2+1∑
j=j2,y2+1

Pf(d2,j, y2)

)
(3.46)

We consider the NPI lower expected profit separately for the two different scenarios for

the two periods: ordering for both periods and ordering in the first period only.

3.7.1 Ordering for both periods

Assume an order for both periods, and depending on the optimal inventory level y∗O2E for

the second period, given in Equation (3.25) in Section 3.5.1, we find the lower expected

profit over both periods. Hence, we can get the optimal inventory level y∗O1E for the first

period. By substituting Equation (3.1) into Equation (3.46), we have the lower expected

profit, E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )), under the assumption that we will order for the

first and second period,
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E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) =
1

n1 + 1

[
(j1,y1 − 1)(−(c1 + h1 − c2)y1 − k1)

+ (p1 + h1 − c2)

j1,y1−1∑
j=1

d1,j−1 +min[−(c1 + h1 − c2)y1 − k1 + (p1 + h1 − c2)d1,j1,y1−1,

(p1 − c1 + s1 − αp′1 + αc2)y1 − k1 − (s1 − αp′1 + αc2)d1,j1,y1 ] + (n1 + 1− j1,y1)((p1

− c1 + s1 − αp′1 + αc2)y1 − k1)− (s1 − αp′1 + αc2)

n1+1∑
j=j1,y1+1

d1,j

]

+
1

n2 + 1

(
(j2,y∗O2E − 1)[−(c2 + h2)y

∗O
2E − k2] + (p2 + h2)

j
2,y∗O

2E
−1∑

j=1

d2,j−1

+min[(p2 + h2)d2,j
2,y∗O

2E
−1 − (c2 + h2)y

∗O
2E − k2, (p2 − c2 + s2)y

∗O
2E − s2d2,j

2,y∗O
2E

− k2]

+ (n2 + 1− j2,y∗O2E )[(p2 − c2 + s2)y
∗O
2E − k2]− s2

n2+1∑
j=j

2,y∗O
2E

+1

d2,j

)
(3.47)

To determine the optimal inventory level for the first period, y∗O1E , which maximises

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )), we introduce two functions, Ea(Pf 1,2(D1, D2, y1, y2|y2 =

y∗O2E )) and Eb(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) in which Equation (3.47) is the minimum of

these two functions. We also note that E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is a discontinu-

ous function at d1,l, for all l ∈ {1, ..., n1}; the proof of this property is given in Appendix

A.9.

Ea(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) and Eb(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) are linear

functions in each interval [d1,j1,y1−1, d1,j1,y1 ]. Ea(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is an in-

creasing function in [d1,j1,y1−1, d1,j1,y1 ] if and only if

j1,y1 <
(n1 + 1)(p1 − c1 + s1 − αp′1 + αc2)

h1 + p1 + s1 + (α− 1)c2 − αp′1
=: Z1 (3.48)

and Ea(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is a decreasing function in [d1,j1,y1−1, d1,j1,y1 ] if and

only if j1,y1 > Z1. Similarly, Eb(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is an increasing function

in [d1,j1,y1−1, d1,j1,y1 ] if and only if

j1,y1 <
(n1 + 1)(p1 − c1 + s1 − αp′1 + αc2) + h1 + p1 + s1 + (α− 1)c2 − αp′1

h1 + p1 + s1 + (α− 1)c2 − αp′1
=: Z1 + 1

(3.49)

and Eb(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is a decreasing function in [d1,j1,y1−1, d1,j1,y1 ] if and

only if j1,y1 > Z1 + 1. This implies that the maximum value of Equation (3.47) is at the
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1st period 2nd period

p1 = 50, c1 = 20, k1 = 9, h1 = 10, s1 = 20 p′1 = 30, α = 0.7, p2 = 60, c2 = 23, k2 = 10, h2 = 11, s2 = 25

n1 = 2, d1,0 = 0, d1,u = 11 n2 = 3, d2,0 = 0, d2,u = 15

d1,1 = 4.70, d1,2 = 8.90 d2,1 = 5.20, d2,2 = 9.10, d2,3 = 13.50

Table 3.3: Inputs and data for Example 3.7.1

intersection point of Ea(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) and Eb(Pf 1,2(D1, D2, y1, y2|y2 =

y∗O2E )) in the single interval where Ea(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) decreases and

Eb(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) increases. This leads to the optimal inventory level for

the first period, which maximises the NPI lower expected profit,

y∗O1E =
1

h1 + p1 + s1 + (α− 1)c2 − αp′1
[(p1 + h1 − c2)d1,j1,y1−1 + (s1 − αp′1 + αc2)d1,j1,y1 ]

(3.50)

where Z1 ≤ j1,y1 < Z1 + 1.

In the following example, we illustrate how to find the optimal inventory level, under

the assumption that we will order for both periods.

Example 3.7.1 Consider an inventory system with two periods. The inputs and data

for these periods are shown in Table 3.3. The objective is to find the optimal inventory

level for the first period, y∗O1E , when there is an order for the second period.

We already computed the optimal inventory level for the second period in Example

3.5.1, which is y∗O2E = 10.25 and j2,y∗O2E = 3. Now we find y∗O1E using Equations (3.48) and

(3.49), this leads to Z1 = 2.60. So, j1,y∗O1E = 3 which means that, the optimal inventory

level for the first period is in (d1,2, d1,3) = (8.90, 11). From Equation (3.50), the optimal

inventory level is y∗O1E = 9.51 and E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) = 139.79. 3

3.7.2 Ordering in the first period only

In this section, we consider the case with only an order for the first period, which means

that there is a single order for two periods, and the stock level at the end of the first

period is greater than zero. So, we suppose y1 = y∗EOnce
, y2 = (y1 −D1)

+, in which y∗EOnce

is the optimal inventory level obtained in Section 2.6. We determine the lower expected

profit, E(Pf 1(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− D1)), under the assumption that

there is no order for the second period. By substituting Equation (3.5) in Equation (3.46)
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the lower expected profit is given by

E(Pf 1(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

−D1)) =

1

n1 + 1

[
− (j1,y∗EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1+

min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1 + h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
Once−

k1 − (s1 − αp′1)d1,j1,y∗
EOnce

] + (n1 + 1− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

−

k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

]
+

1

n2 + 1

(
− (j2,y2 − 1)(h2y2)+

(p2 + h2)

j2,y2−1∑
l=1

d2,l−1 +min[(p2 + h2)d2,j2,y2−1 − h2y2, (p2 + s2)y2−

s2d2,j2,y2 ] + (n2 + 1− j2,y2)(p2 + s2)y2 − s2

n2+1∑
l=j2,y2+1

d2,l

)
(3.51)

In Equation (3.51) we have y2 = y∗EOnce
− D1 where D1 is a random quantity which

is assumed to be in the interval (d1,j−1, d1,j) for further analysis, so j2,y2 is not exactly

determined, hence we consider four cases according to different assumptions on this.

Case 1: Replace D1 ∈ (d1,j−1, d1,j) by D1 = d1,j−1 and assume

min[(p2 + h2)d2,j2,y∗
EOnce

−D1
−1 − h2(y

∗
EOnce

−D1), (p2 + s2)(y
∗
EOnce

−D1)− s2d2,j2,y∗
EOnce

−D1
]

= (p2 + h2)d2,j2,y∗
EOnce

−d1,j−1
−1 − h2(y

∗
EOnce

− d1,j−1)

Case 2:

Replace D1 ∈ (d1,j−1, d1,j) by D1 = d1,j and assume

min[(p2 + h2)d2,j2,y∗
EOnce

−D1
−1 − h2(y

∗
EOnce

−D1), (p2 + s2)(y
∗
EOnce

−D1)− s2d2,j2,y∗
EOnce

−D1
]

= (p2 + h2)d2,j2,y∗
EOnce

−d1,j
−1 − h2(y

∗
EOnce

− d1,j)

Case 3:

Replace D1 ∈ (d1,j−1, d1,j) by D1 = d1,j−1 and assume

min[(p2 + h2)d2,j2,y∗
EOnce

−D1
−1 − h2(y

∗
EOnce

−D1), (p2 + s2)(y
∗
EOnce

−D1)− s2d2,j2,y∗
EOnce

−D1
]

= (p2 + s2)(y
∗
EOnce

− d1,j−1)− s2d2,j2,y∗
EOnce

−d1,j−1
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Case 4:

Replace D1 ∈ (d1,j−1, d1,j) by D1 = d1,j and assume

min[(p2 + h2)d2,j2,y∗
EOnce

−D1
−1 − h2(y

∗
EOnce

−D1), (p2 + s2)(y
∗
EOnce

−D1)− s2d2,j2,y∗
EOnce

−D1
]

= (p2 + s2)(y
∗
EOnce

− d1,j)− s2d2,j2,y∗
EOnce

−d1,j

These assumptions lead to heuristic approximations, E1, E2, E3, E4, for Equation

(3.51). These are given below for Case 1 and Case 2, respectively, and similarly for

Case 3 and Case 4,

E1(Pf(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− d1,j−1)) =
1

n1 + 1

[
− (j1,y∗EOnce

− 1)[(c1

+ h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1 +min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1

+ h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
EOnce

− k1 − (s1 − αp′1)d1,j1,y∗
EOnce

] + (n1 + 1

− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

]

+
1

n2 + 1

(
− (j2,y∗EOnce

−d1,j−1
− 1)(y∗EOnce

− d1,j−1)h2 + (p2 + h2)

{ j2,y∗
EOnce

−d1,j−1
−1∑

l=1

d2,l−1

+ d2,j2,y∗
EOnce

−d1,j−1
−1

}
− h2(y

∗
EOnce

− d1,j−1) + (n2 + 1− j2,y∗EOnce
−d1,j−1

)(p2 + s2)(y
∗
EOnce

− d1,j−1)− s2

n2+1∑
l=j2,y∗

EOnce
−d1,j−1

+1

d2,l

)
(3.52)
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E2(Pf(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− d1,j)) =
1

n1 + 1

[
− (j1,y∗EOnce

− 1)[(c1

+ h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1 +min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1

+ h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
EOnce

− k1 − (s1 − αp′1)d1,j1,y∗
EOnce

] + (n1 + 1

− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

]

+
1

n2 + 1

(
− (j2,y∗EOnce

−d1,j − 1)(y∗EOnce
− d1,j)h2 + (p2 + h2)

{ j2,y∗
EOnce

−d1,j
−1∑

l=1

d2,l−1

+ d2,j2,y∗
EOnce

−d1,j
−1

}
− h2(y

∗
EOnce

− d1,j) + (n2 + 1− j2,y∗EOnce
−d1,j)(p2 + s2)(y

∗
EOnce

− d1,j)− s2

n2+1∑
l=j2,y∗

EOnce
−d1,j

+1

d2,l

)
(3.53)

Since the condition in this section is not to order for the second period, the objective

is not to determine an optimal inventory level for the second period. The goal is to decide

which is better, to order or not to order for the second period. So, we need to compare

the lower expected profit given by Equation (3.47) in Section 3.7.1, with the heuristic

approximations of the lower expected profits in this section, given by Equations (3.52)-

(3.53) for Case 1 and Case 2, and similarly for Case 3 and Case 4. Then find a threshold

such that, if the inventory level for the second period, if we do not order, is less than

the threshold, it is better to order for the second period in order to reach the optimal

inventory level y∗O2E as given in Equation (3.25); otherwise, it is better not to order for

the second period.

For Case 1:

E(Pf 1,2(D1, D2, y1, y2|y1 = y∗O1E , y2 = y∗O2E )) >

E1(Pf(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− dj−1)) ⇐⇒
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y∗EOnce
− d1,j−1 <

n2 + 1

−j2,y∗EOnce
−d1,j−1

(h2 + p2 + s2) + (n2 + 1)(p2 + s2)

×

[
E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E ))−

1

n1 + 1

〈
− (j1,y∗EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1 +min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1 + h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
EOnce

− k1 − (s1 − αp′1)d1,j1,y∗
EOnce

] + (n1 + 1

− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

〉

− 1

n2 + 1

(
(p2 + h2)

{ j2,y∗
EOnce

−d1,j−1
−1∑

l=1

d2,l−1 + d2,j2,y∗
EOnce

−d1,j−1
−1

}

− s2

n2+1∑
l=j2,y∗

EOnce
−d1,j−1

+1

d2,l

)]
=: δ3 (3.54)

where the term E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is given in Equation (3.47). So, if

y∗EOnce
− d1,j−1 < δ3, it is better to order for the second period since the expected profit

for the two periods, when we order for the second period, is larger than when we do not

order for the second period. While, when y∗EOnce
− d1,j−1 > δ3, it is better not to order

for the second period since the expected profit for the two periods, when we do not order

for the second period, is larger than when we order for the second period.

For Case 2:

E(Pf 1,2(D1, D2, y1, y2|y1 = y∗O1E , y2 = y∗O2E )) >

E2(Pf(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− dj)) ⇐⇒
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y∗EOnce
− d1,j <

n2 + 1

−j2,y∗EOnce
−d1,j(h2 + p2 + s2) + (n2 + 1)(p2 + s2)

×

[
E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E ))−

1

n1 + 1

〈
− (j1,y∗EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1 +min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1 + h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
EOnce

− k1 − (s1 − αp′1)d1,j1,y∗
EOnce

] + (n1 + 1

− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

〉

− 1

n2 + 1

(
(p2 + h2)

{ j2,y∗
EOnce

−d1,j
−1∑

l=1

d2,l−1 + d2,j2,y∗
EOnce

−d1,j
−1

}

− s2

n2+1∑
l=j2,y∗

EOnce
−d1,j

+1

d2,l

)]
=: δ4 (3.55)

where the term E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is given in Equation (3.47). So, if

y∗EOnce
− d1,j < δ4, it is better to order for the second period since the expected profit

for the two periods, when we order for the second period, is larger than when we do not

order for the second period. While, when y∗EOnce
− d1,j > δ4, it is better not to order for

the second period since the expected profit for the two periods, when we do not order for

the second period, is larger than when we order for the second period.

For Case 3:

E(Pf 1,2(D1, D2, y1, y2|y1 = y∗O1E , y2 = y∗O2E )) >

E3(Pf(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− dj−1)) ⇐⇒
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y∗EOnce
− d1,j−1 <

n2 + 1

(1− j2,y∗EOnce
−d1,j−1

)(h2 + p2 + s2) + (n2 + 1)(p2 + s2)

×

[
E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E ))−

1

n1 + 1

〈
− (j1,y∗EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1 +min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1 + h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
EOnce

− k1 − (s1 − αp′1)d1,j1,y∗
Once

] + (n1 + 1

− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

〉

− 1

n2 + 1

(
(p2 + h2)

j2,y∗
EOnce

−d1,j−1
−1∑

l=1

d2,l−1 − s2[d2,j2,y∗
EOnce

−d1,j−1

+

n2+1∑
l=j2,y∗

EOnce
−d1,j−1

+1

d2,l]

)]
=: δ5 (3.56)

where the term E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is given in Equation (3.47). So, if

y∗EOnce
− d1,j−1 < δ5, it is better to order for the second period since the expected profit

for the two periods, when we order for the second period, is larger than when we do not

order for the second period. While, when y∗EOnce
− d1,j−1 > δ5, it is better not to order

for the second period since the expected profit for the two periods, when we do not order

for the second period, is larger than when we order for the second period.

For Case 4:

E(Pf 1,2(D1, D2, y1, y2|y1 = y∗O1E , y2 = y∗O2E )) >

E4(Pf(D1, D2, y1, y2|y1 = y∗EOnce
, y2 = y∗EOnce

− dj)) ⇐⇒
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1st period 2nd period

p1 = 70, c1 = 23, k1 = 19, h1 = 17, s1 = 9 p′1 = 25, α = 0.7, p2 = 240, c2 = 13, k2 = 20, h2 = 170, s2 = 15,

n1 = 2, d1,0 = 0, d1,u = 50.30 n2 = 4, d2,0 = 0, d2,u = 100.40

d1,1 = 4.20, d1,2 = 17.60 d2,1 = 6.50, d2,2 = 20.60, d2,3 = 42.60, d2,4 = 70.20

Table 3.4: Inputs and data for Example 3.7.2

y∗EOnce
− d1,j <

n2 + 1

(1− j2,y∗EOnce
−d1,j)(h2 + p2 + s2) + (n2 + 1)(p2 + s2)

×

[
E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E ))−

1

n1 + 1

〈
− (j1,y∗EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j−1 +min[(p1 + h1)d1,j1,y∗
EOnce

−1 − (c1 + h1)y
∗
EOnce

− k1, (p1 − c1 + s1 − αp′1)y
∗
EOnce

− k1 − (s1 − αp′1)d1,j1,y∗
EOnce

] + (n1 + 1

− j1,y∗EOnce
)[(p1 − c1 + s1 − αp′1)y

∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce
+1

d1,j

〉

− 1

n2 + 1

(
(p2 + h2)

j2,y∗
EOnce

−d1,j
−1∑

l=1

d2,l−1 − s2[d2,j2,y∗
EOnce

−d1,j−1

+

n2+1∑
l=j2,y∗

EOnce
−d1,j

+1

d2,l]

)]
=: δ6 (3.57)

where the term E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is given in Equation (3.47). So, if

y∗EOnce
− d1,j < δ6, it is better to order since the expected profit for the two periods,

when we order for the second period, is larger than when we do not order for the second

period. While, when y∗EOnce
−d1,j > δ6, it is better not to order for the second period since

the expected profit for the two periods, when we do not order for the second period, is

larger than when we order for the second period. The following example illustrates how

to decide whether to order for the second period or not.

Example 3.7.2 Consider an inventory system with two periods. The inputs and data

for these periods are shown in Table 3.4. The objective is to decide if it is better to order

for the second period or not. As defined in Example 2.6.2 in Section 2.6, the optimal

inventory level for the two-period model with a single order is y∗EOnce
= 17.99, jy∗EOnce

= 4.
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y∗O2E = 21.38, j2,y∗O
2E

= 3

y∗O1E = 4.31, j1,y∗O
1E

= 2

1j =

0D1 = d1,j−1 =

17.99

2

y∗EOnce
− d1,j−1 =

j2,y∗
EOnce

−d1,j−1
=

19.89δ3 =

2

4.20

13.79

2

19.89

3

17.60

0.39

1

13.45

Figure 3.2: A decision tree for Example 3.7.2, Case 1

y∗O2E = 21.38, j2,y∗O
2E

= 3

y∗O1E = 4.31, j1,y∗O
1E

= 2

1j =

4.20D1 = d1,j =

13.79

2

y∗EOnce
− d1,j =

j2,y∗
EOnce

−d1,j
=

19.89δ4 =

2

17.60

0.39

1

13.45

3

50.30

-32.31

0

9.04

Figure 3.3: A decision tree for Example 3.7.2, Case 2

Figures 3.2-3.5 show the optimal inventory levels when we order for the first and second

periods, y∗O1E , y
∗O
2E , the random demand at the end of the first period, D1, the inventory

level when we do not order for the second period, y∗EOnce
−D1 and the thresholds δ3, ..., δ6.
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y∗O2E = 21.38, j2,y∗O
2E

= 3

y∗O1E = 4.31, j1,y∗O
1E

= 2

1j =

0D1 = d1,j−1 =

17.99

2

y∗EOnce
− d1,j−1 =

j2,y∗
EOnce

−d1,j−1
=

13.45δ5 =

2

4.20

13.79

2

13.45

3

17.60

0.39

1

9.04

Figure 3.4: A decision tree for Example 3.7.2, Case 3

y∗O2E = 21.38, j2,y∗O
2E

= 3

y∗O1E = 4.31, j1,y∗O
1E

= 2

1j =

4.20D1 = d1,j =

13.79

2

y∗EOnce
− d1,j =

j2,y∗
EOnce

−d1,j
=

13.45δ6 =

2

17.60

0.39

1

9.04

3

50.30

-32.31

0

6.78

Figure 3.5: A decision tree for Example 3.7.2, Case 4

� For Case 1, when j2,y∗EOnce
−d1,j−1

= 2, y∗EOnce
− d1,j−1 = 17.99 and δ3 = 19.89, it is

better to order for the second period since y∗EOnce
− d1,j−1 < δ3 in order to reach the

optimal inventory level y∗O2E = 21.38. Similarly, for other j2,y∗EOnce
−d1,j−1

.

� For Case 2, when j2,y∗EOnce
−d1,j = 2, y∗EOnce

− d1,j = 13.79 and δ4 = 19.89, it is better
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to order for the second period since y∗EOnce
− d1,j < δ4 in order to reach the optimal

inventory level y∗O2E = 21.38. Similarly, for other j2,y∗EOnce
−d1,j .

� For Case 3, when j2,y∗EOnce
−d1,j−1

= 2, y∗EOnce
− d1,j−1 = 17.99 and δ5 = 13.45, it is

better not to order for the second period since y∗EOnce
− d1,j−1 > δ5. Similarly, for

other j2,y∗EOnce
−d1,j−1

.

� For Case 4, when j2,y∗EOnce
−d1,j = 2, y∗EOnce

− d1,j = 13.79 and δ6 = 13.45, it is better

not to order for the second period since y∗EOnce
− d1,j > δ6. Similarly, for other

j2,y∗EOnce
−d1,j .

So, Figures 3.2 and 3.3 conclude that, for all j it is better to order for the second period

since y∗EOnce
− d1,j−1 < δ3 for Case 1 and y∗EOnce

− d1,j < δ4 for Case 2. For Case 3, Figure

3.4 shows that it is better to order for the second period when j = 3. Figure 3.5 shows

that it is better to order for the second period when j = 2, 3. 3

3.8 NPI upper expected profit for the two periods

In this section, we present the NPI upper expected profit for the two-period model. The

derivations are based on the M -functions presented in Equations (3.16)-(3.18) and shown

in Figure 3.1.

The NPI upper expected profit, denoted by E(Pf(D1, D2, y1, y2)), is derived by as-

signing the probability masses 1
n1+1

and 1
n2+1

, according to the M -function values, to the

maximal values for Pf(D1, D2, y1, y2) per interval, which leads to
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E(Pf(D1, D2, y1, y2)) =

j1,y1−1∑
j=1

(
M(Pf(d1,j−1, y1), Pf(d1,j, y1))Pf(d1,j, y1)

)
+

[
M(min[Pf(d1,j1,y1−1, y1), Pf(d1,j1,y1 , y1)], Pf(y1, y1))Pf(y1, y1)

]
+

n1+1∑
j=j1,y1+1

(
M(Pf(d1,j, y1), Pf(d1,j−1, y1))Pf(d1,j−1, y1)

)

+

j2,y2−1∑
j=1

(
M(Pf(d2,j−1, y2), Pf(d2,j, y2))Pf(d2,j, y2)

)
+

[
M(min[Pf(d2,j2,y2−1, y2), Pf(d2,j2,y2 , y2)], Pf(y2, y2))Pf(y2, y2)

]
+

n2+1∑
j=j2,y2+1

(
M(Pf(d2,j, y2), Pf(d2,j−1, y2))Pf(d2,j−1, y2)

)

=
1

n1 + 1

[ j1,y1−1∑
j=1

Pf(d1,j, y1) + Pf(y1, y1) +

n1+1∑
j=j1,y1+1

Pf(d1,j−1, y1)

]

+
1

n2 + 1

( j2,y2−1∑
j=1

Pf(d2,j, y2) + Pf(y2, y2) +

n2+1∑
j=j2,y2+1

Pf(d2,j−1, y2)

)
(3.58)

We consider the NPI upper expected profit separately for the two different scenarios

for the two periods: ordering for both periods and ordering in the first period only.

3.8.1 Ordering for both periods

Assume an order for both periods, and depending on the optimal inventory level y∗O
2E

for the second period, given in Section 3.6.1, we find the upper expected profit over

both periods. Hence, we can get the optimal inventory level y∗O
1E

for the first period. We

derive the upper expected profit, E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)), under the assumption

that we will order for the first and the second period, by substituting Equation (3.1) in

Equation (3.58),
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E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) =

1

n1 + 1

[
(j1,y1 − 1)(−(c1 + h1 − c2)y1 − k1) + (p1 + h1 − c2)

j1,y1−1∑
j=1

d1,j+

(p1 − c1)y1 − k1 + (n1 + 1− j1,y1)((p1 − c1 + s1 − αp′1 + αc2)y1 − k1)−

(s1 − αp′1 + αc2)

n1+1∑
j=j1,y1+1

d1,j−1

]
+

1

n2 + 1

(
(j2,y∗O

2E
− 1)[−(c2 + h2)y

∗O
2E
−

k2] + (p2 + h2)

j
2,y∗O

2E

−1∑
j=1

d2,j + (p2 − c2)y
∗O
2E

− k2 + (n2 + 1− j2,y∗O
2E
)[(p2−

c2 + s2)y
∗O
2E

− k2]− s2

n2+1∑
j=j

2,y∗O
2E

+1

d2,j−1

)
(3.59)

It is easy to show that E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) is a continuous function; the

proof of this property is given in Appendix A.10.

To determine the optimal inventory level, y∗O
1E
, that maximises Equation (3.59), we use

that E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) is an increasing over the interval [d1,j1,y1−1, d1,j1,y1 ]

if and only if

j1,y1 <
h1 + p1 − c2 + (n1 + 1)(p1 − c1 + s1 − αp′1 + αc2)

h1 + p1 + s1 + (α− 1)c2 − αp′1
=: V3 (3.60)

and E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) is a decreasing function over the interval

[d1,j1,y1−1, d1,j1,y1 ] if and only if j1,y1 > V3. This implies that the Equation (3.59) is

maximised at y∗O
1E

= d1,l∗ with l∗ the largest value in {1, 2, ..., n1} which is less than V3.

3.8.2 Ordering in the first period only

In this section, we consider the case with only an order for the first period, which means

that there is a single order for two periods, and the stock level at the end of the first

period is greater than zero. So, we suppose y1 = y∗
EOnce

, y2 = (y1 −D1)
+, in which y∗

EOnce

is the optimal inventory level obtained in Section 2.6. We determine the upper expected

profit, E(Pf 1(D1, D2, y1, y2|y1 = y∗
EOnce

, y2 = y∗
EOnce

− D1)) under the assumption that

there is no order for the second period. By substituting Equation (3.5) in Equation (3.58),
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the upper expected profit is given by

E(Pf 1(D1, D2, y1, y2|y1 = y∗
EOnce

, y2 = y∗
EOnce

−D1)) =

1

n1 + 1

[
− (j1,y∗

EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j+

(p1 − c1)y
∗
EOnce

− k1 + (n1 + 1− j1,y∗
EOnce

)[(p1 − c1 + s1 − αp′1)y
∗
EOnce

−

k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce

+1

d1,j−1

]
+

1

n2 + 1

(
− (j2,y2 − 1)(h2y2)+

(p2 + h2)

j2,y2−1∑
l=1

d2,l + p2y2 + (n2 + 1− j2,y2)(p2 + s2)y2 − s2

n2+1∑
l=j2,y2+1

d2,l−1

)
(3.61)

In Equation (3.61) we have y2 = y∗
EOnce

− D1 where D1 is a random quantity which is

assumed to be in the interval (d1,j−1, d1,j) for further analysis, so j2,y2 is not exactly de-

termined, hence we consider two cases according to different assumptions on this.

Case 1:

Replace D1 ∈ (d1,j−1, d1,j) by D1 = d1,j−1.

Case 2:

Replace D1 ∈ (d1,j−1, d1,j) by D1 = d1,j.

Considering these assumptions leads to heuristic approximations,

E
1
(Pf(D1, D2, y1, y2|y1 = y∗

EOnce
, y2 = y∗

EOnce
− d1,j−1)) and

E
2
(Pf(D1, D2, y1, y2|y1 = y∗

EOnce
, y2 = y∗

EOnce
− d1,j)), for Equation (3.61).

Since the condition in this section is not to order for the second period, the objective

is not to determine an optimal inventory level for the second period. The goal is to decide

which is better, to order or not to order for the second period. So, we need to compare

the upper expected profit given by Equation (3.59) in Section 3.8.1, with the heuristic

approximations of the upper expected profit in this section, E
1
(Pf(D1, D2, y1, y2|y1 =

y∗
EOnce

, y2 = y∗
EOnce

− d1,j−1)) and E
2
(Pf(D1, D2, y1, y2|y1 = y∗

EOnce
, y2 = y∗

EOnce
− d1,j)).

This will lead to find a threshold, such that, if the inventory level for the second period,

if we do not order, is less than the threshold, it is actually better to order for the sec-

ond period in order to reach the optimal inventory level y∗O
2E

as given in Section 3.6.1;
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otherwise, it is better not to order for the second period.

For Case 1:

E(Pf 1,2(D1, D2, y1, y2|y1 = y∗O
1E
, y2 = y∗O

2E
)) >

E
1
(Pf(D1, D2, y1, y2|y1 = y∗

EOnce
, y2 = y∗

EOnce
− dj−1)) ⇐⇒

y∗
EOnce

− d1,j−1 <
n2 + 1

(1− j2,y∗
EOnce

−d1,j−1
)(h2 + p2 + s2) + p2 + n2(p2 + s2)

×

[
E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O

2E
))− 1

n1 + 1

〈
− (j1,y∗

EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j + (p1 − c1)y
∗
EOnce

− k1 + (n1 + 1− j1,y∗
EOnce

)[(p1

− c1 + s1 − αp′1)y
∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce

+1

d1,j−1

〉
− 1

n2 + 1

(
(p2

+ h2)

j2,y∗
EOnce

−d1,j−1
−1∑

l=1

d2,l − s2

n2+1∑
l=j2,y∗

EOnce
−d1,j−1

+1

d2,l−1

)]
=: τ3 (3.62)

where the term E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) is given in Equation (3.59). So, if

y∗
EOnce

− d1,j−1 < τ3, it is better to order for the second period since the expected profit

for the two periods, when we order for the second period, is larger than when we do not

order. While, when y∗
EOnce

− d1,j−1 > τ3, it is better not to order for the second period

since the expected profit for the two periods, when we do not order for the second period,

is larger than when we order for the second period.

For Case 2:

E(Pf 1,2(D1, D2, y1, y2|y1 = y∗O
1E
, y2 = y∗O

2E
)) >

E
2
(Pf(D1, D2, y1, y2|y1 = y∗

EOnce
, y2 = y∗

EOnce
− dj)) ⇐⇒
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y∗
EOnce

− d1,j <
n2 + 1

(1− j2,y∗
EOnce

−d1,j)(h2 + p2 + s2) + p2 + n2(p2 + s2)

×

[
E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O

2E
))− 1

n1 + 1

〈
− (j1,y∗

EOnce

− 1)[(c1 + h1)y
∗
EOnce

+ k1] + (p1 + h1)

j1,y∗
EOnce

−1∑
j=1

d1,j + (p1 − c1)y
∗
EOnce

− k1 + (n1 + 1− j1,y∗
EOnce

)[(p1

− c1 + s1 − αp′1)y
∗
EOnce

− k1]− (s1 − αp′1)

n1+1∑
j=j1,y∗

EOnce

+1

d1,j−1

〉
− 1

n2 + 1

(
(p2

+ h2)

j2,y∗
EOnce

−d1,j
−1∑

l=1

d2,l − s2

n2+1∑
l=j2,y∗

EOnce
−d1,j

+1

d2,l−1

)]
=: τ4 (3.63)

where the term E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) is given in Equation (3.59). So, if

y∗
EOnce

− d1,j < τ4, it is better to order for the second period since the expected profit

for the two periods, when we order for the second period, is larger than when we do not

order. While, when y∗
EOnce

− d1,j > τ4, it is better not to order for the second period since

the expected profit for the two periods, when we do not order for the second period, is

larger than when we order for the second period. The following example illustrates how

to decide whether to order for the second period or not.

Example 3.8.1 Consider an inventory system with the same data as in Example 3.7.2,

given in Table 3.4. Our aim is to decide if it is better to order for the second period or

not.

As derived in Example 2.6.2 in Section 2.6, the optimal inventory level for the two-

period model with a single order is y∗
EOnce

= 54.50, jy∗
EOnce

= 6.

Figures 3.6 and 3.7 show the optimal inventory levels when we order for the first and

second periods, y∗O
1E

and y∗O
2E
, the random demand at the end of the first period, D1, the

inventory level when we do not order for the second period, y∗
EOnce

−D1 and the thresholds

τ3 and τ4.
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y∗O
2E

= 42.6, j2,y∗O
2E

= 3

y∗O
1E

= 17.6, j1,y∗O
1E

= 2

1j =

0D1 = d1,j−1 =

54.50

4

y∗
EOnce

− d1,j−1 =

j2,y∗
EOnce

−d1,j−1
=

-791.57τ3 =

2

4.20

50.30

4

-791.57

3

17.60

36.90

3

73.12

Figure 3.6: A decision tree for Example 3.8.1, Case 1

y∗O
2E

= 42.6, j2,y∗O
2E

= 3

y∗O
1E

= 17.6, j1,y∗O
1E

= 2

1j =

4.2D1 = d1,j =

50.30

4

y∗
EOnce

− d1,j =

j2,y∗
EOnce

−d1,j
=

-791.57τ4 =

2

17.60

36.90

3

73.12

3

50.30

4.20

1

32.93

Figure 3.7: A decision tree for Example 3.8.1, Case 2

� For Case 1, when j2,y∗
EOnce

−d1,j−1
= 4, y∗

EOnce
− d1,j−1 = 54.50 and τ3 = −791.57, it

is better not to order for the second period since y∗
EOnce

− d1,j−1 > τ3. Similarly, for

other j2,y∗
EOnce

−d1,j−1
.

� For Case 2, when j2,y∗
EOnce

−d1,j = 4, y∗
EOnce

− d1,j = 50.30 and τ4 = −791.57, it is
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better not to order for the second period since y∗
EOnce

− d1,j > τ4. Similarly, for

other j2,y∗
EOnce

−d1,j .

In general, for Case 1, it is better to order for the second period only when j = 3. For

Case 2, it is better to order for the second period for j = 2, 3 since y∗
EOnce

− d1,j < τ4. 3

3.9 Comparison of the NPI and classical methods

In order to compare between the classical method and the NPI method, presented in this

chapter, a simulation study is conducted for the two-period model when we order for the

first and the second period. Our aim is effectively to check how close the classical method

is to NPI when the distribution of the classical method is assumed to be known. Then,

based on some assumptions, compare which method performs better than the other. We

simulate n1 observations for the demand of the first period and n2 observations for the

demand of the second period from a Gamma distribution, since the demand is assumed

to be positive in this thesis, we select the Gamma distribution in simulation settings as

it is flexible in many shapes for positive real values. Then, the n1 and n2 simulated data

observations are used to derive the optimal inventory levels y∗O1E and y∗O2E corresponding

to the lower expected profit criterion over both periods or y∗O
1E

and y∗O
2E

corresponding

to the upper expected profit criterion over both periods. Then values for two future

observations, D1,n1+1 and D2,n2+1, are simulated from the same underlying distribution

as the n1 and n2 simulated data observations, allowing the realised value of the profit

function to be computed for the values of the optimal inventory levels.

We consider the same cases for simulation as presented in Section 2.5 with regard to

discrepancies between the model used for the data simulations, and the model assumed

for the classical method. The aim is to determine the optimal inventory levels for the

classical and NPI methods, then calculate the profits based on the optimal inventory

levels and future demands. Each case is run 1000 times and we report the number of

these runs in which the profit resulting from the NPI method is greater than the profit

resulting from the classical method.

The cases considered are given in Table 3.5, with first the model used for simulating the

demands D1 and D2 specified, followed by the model assumed for the analysis according

to the classical method. For the case where the Gamma scale parameter θ is simulated
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Case Simulation Classical assumption

I D1, D2 ∼ Gamma(3, 1) Gamma(3, 1)

II D1, D2 ∼ Gamma(3, 1) Exp(1/3)

III D1, D2 ∼ Gamma(3, 1) Exp(1/2)

IV D1, D2 ∼ Gamma(3, θ), θ ∼ Unif(0, 2) Gamma(3, 1)

V D1, D2 ∼ Gamma(3, 1) Exp(1)

VI D1, D2 ∼ Gamma(3, 1) Exp(2)

Table 3.5: Simulation cases

from the Uniform(0, 2) distribution, one value is drawn and used for each run, so n1+n2

observations are drawn using one specific value of θ, and a new value of θ is drawn for

the next run.

Case I is the scenario where the model used for the classical analysis is exactly the

same as the model used for the data generation. In Case II the model for the analysis is

Exponential but with the same mean value as the Gamma distribution used to generate

the data. The further cases have other discrepancies between these two models, set up

in such a way that we expected that the classical method would perform more poorly for

the later cases as the differences between the models increase.

For all cases, we consider three different sample sizes, n1 = 5, 50, 100 and n2 =

10, 110, 550. The costs used for the first period are the same as the cost for single-period

model we have used in Section 2.5, with k1 = 19, while the costs for the second period

are p′1 = 30, c2 = 25, p2 = 100, h2 = 15, s2 = 30 and k2 = 10, we have chosen α = 0.60.

As finite end-point for the support of the random demands for the first and second

periods we took d1,u = d2,u = 15, since both are from the same distribution; in the rare

event that a simulated value in a run exceeds 15, we delete the value and draw a new

one; this has no real impact on the method as the probability to get values which exceed

15 is very small for all models considered.

Table 3.6 presents the results from the simulation study. It provides the number of

times, out of 1000 runs, in which the profit according to the NPI method is larger than for

the corresponding classical method. Table 3.6 considers the expected profit as optimality

criterion, where E and E indicate that, for the NPI method, the lower expected profit or

the upper expected profit was used, respectively.
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n1 = 5,

n2 = 10

n1 = 50,

n2 = 110

n1 = 100,

n2 = 550

Case E E E E E E

I 368 112 448 425 468 483

II 461 121 669 664 752 751

III 408 331 471 464 461 462

IV 641 507 646 642 677 680

V 725 631 754 754 752 752

VI 871 797 892 890 889 889

Table 3.6: Simulation results for lower and upper expected profits (1000 runs)

Single-period model Two-period model

Case y∗E y∗
E

y∗O1E y∗O2E y∗O
1E

y∗O
2E

I, II, III, V, VI 2.64 2.99 7.03 3.12 15 3.67

IV 1.69 1.79 7.06 3.75 15 3.87

Table 3.7: Optimal inventory levels, n1 = 5, n2 = 10

As expected, the NPI method performs worse than the classical method in Cases I

and III, but for large n1 and n2 the performance of the NPI methods improves and the

number of times it performs better than the classical method increases to close to 500.

For Cases IV-VI, the NPI method performs better than the classical method for all values

of n1 and n2, with the number of times that the profit for the NPI method is greater than

the profit for the classical method exceeding 500 out of 1000 simulations.

In Table 3.7, we compare the optimal inventory levels for the single-period model,

which we studied in Section 2.4.2, with the optimal inventory levels for the two-period

independent demands model. The results show that the optimal inventory level for the

first period of the two-period model is higher than the optimal level for the single-period

model. This is expected because in the two-period model we will order more for the first

period, as leftover items can be used in the second period.

Next, we investigate the NPI lower and upper expected profits model when the cost

parameters increase, we only considered Case I and n1 = 100, n2 = 550.

Figure 3.8a displays the difference in the optimal inventory levels of the lower and
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Figure 3.8: The optimal inventory levels of the lower and upper expected profits

upper expected profits when s1 = 20, s2 = 30 and s1 = 30, s2 = 20. For the first period,

y∗O1E and y∗O
1E

increase when s1 has been increased, so we will order more for the first

period. While for the second period, y∗O2E and y∗O
2E

decrease when s2 has been decreased,

so we will order less for the second period.

For the holding cost, Figure 3.8b concludes that, when h1 increased, y∗O1E and y∗O
1E

decreased, so we will order less for the first period. While for the second period, y∗O2E and

y∗O
2E

increase when h2 has been decreased, so we will order more for the second period.

Similarly, for the purchase cost and selling price. For the purchase cost, Figure 3.8c

shows that, for the first period, y∗O1E and y∗O
1E

decrease when c1 has been increased, so we

will order less for the first period. While for the second period, y∗O2E and y∗O
2E

increase

when c2 has been decreased, so we will order more for the second period.
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For the selling price, Figure 3.8d illustrates that, when p1 is increased, y∗O1E and y∗O
1E

increase, so we will order more for the first period. While for the second period, y∗O2E and

y∗O
2E

decrease when p2 has been decreased, so we will order less for the second period.

In general, for any period, if the shortage cost or selling price increases, we will order

more for that period. While, if the holding cost or purchase cost increases, we will order

less for that period.

In this simulation study, we took into account the case when we order for both periods.

It will be interesting to investigate the possibility of not ordering in either the first or the

second period as a topic for future research. Using the same approach that is used in this

chapter for more than two periods is not analytically feasible, hence a different method

is therefore required; a possible alternative is briefly introduced in Chapter 4.

3.10 Concluding remarks

This chapter developed the NPI method for the single-order inventory models, presented

in Chapter 2, to the two-period inventory model with independent demands.

We studied and investigated the performance of the classical method and the NPI

method for the two-period model, considering different situations for ordering in the first

and second periods. First, we determine the optimal inventory level for the second period,

assuming there is a remaining stock (or shortage) from the first period, and with that

optimal strategy for the second period, we then optimise over the first period, focusing

on maximising the lower and upper expected profits.

The performance of the classical method and the NPI method was evaluated through

simulation studies. We considered the two-period model when we ordered for the first and

second period. We assumed continuous distributions to examine the general performance

of the proposed methods. So, in some cases the classical method performs better than

the NPI method. However, for the large number of observations, NPI gets close to the

classical method, where this is based on correct assumptions. For other cases, the NPI

approach tends to perform better than the classical method, depending on how far off

the classical method’s assumptions are from reality. Also, we discussed the impact of

increasing the cost parameters on the NPI method. As a result, if the shortage cost or

selling price has increased in any period, we will order more for that period. However, if
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the holding cost or purchase cost has increased in any period, we will order less for that

period.

In the simulation study, we only considered the case when we ordered for both periods.

It is also interesting to investigate the case when we do not order for either the first or

second period. Also, the inventory model with more than two periods is an interesting idea

for a future topic. But because the approach discussed in this chapter is hard to analyse

for more than two periods, the next chapter briefly discusses a possible alternative.



Chapter 4

NPI bootstrap for inventory

decisions

4.1 Introduction

In this chapter, we present the NPI bootstrap method, which we indicate by NPI-B, as

an alternative method to deal with complexities in some of the inventory models, and

then we discuss its use to predict the optimal inventory level.

As we have seen in Chapters 2 and 3, for some practical inventory problems, the

analytic NPI approach is not appropriate. In this chapter, we show how NPI-B approach

can be used instead to compare different strategies.

This chapter is organised as follows: In Section 4.2, we introduce NPI-B. Section 4.3

introduces NPI-B for the inventory models that we considered in Chapters 2 and 3. We

will use maximisation of the average profit as a criterion to select the optimal inventory

levels. In Section 4.4, we will present the NPI-B method for the two-period model with

dependent demands. Section 4.5 presents the concluding remarks for this chapter.

4.2 NPI bootstap

Quantifying the variability of a sample estimate is an essential part of statistical inference.

It is easy to make inference and draw conclusions and use a probability model in simple

situations, but if the method’s assumptions are wrong, it can lead to wrong conclusions

in more complicated situations. To address this issue, Efron [34] devised a bootstrap
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method in 1979. This method makes fewer assumptions but requires more calculations,

also, its application is uncomplicated with statistical software, so it is widely used in

applied statistics [37]. Efron’s bootstrap method has been applied to a range of topics,

such as right-censored data [35] and bivariate data [36].

One of the bootstrap methods, known as nonparametric predictive inference boot-

strap (NPI-B), is a computational version of NPI that is used to quantify uncertainty

in statistical inference. The original investigation of the NPI-B method was presented

by BinHimd and Coolen [9, 23]. To obtain an NPI-B sample, the procedure depends on

selecting one interval randomly from the n + 1 intervals created by the n original data

observations, and from this interval, one future value is drawn uniformly. This value is

added to the original data set, and continue to sample m future values in the same way

in order to obtain the NPI-B sample. All possible orderings of the m future observations

among the n original data observations are equally likely to appear in NPI-B [9, 23]. The

assumptions are different for finite and infinite intervals, in which, for finite intervals,

one observation is sampled uniformly from each chosen interval. However, it cannot be

sampled uniformly from an open-ended interval. In this thesis, we are dealing with the

demand, and we assumed upper and lower bounds, [d0, du], for the demand, so we use

finite intervals, which we think is a suitable choice for our purposes here.

For one-dimensional real-valued data on a finite (bounded) interval, the NPI-B algo-

rithm is as follows:

(i) The original n observations partition the intervals into n+ 1 intervals.

(ii) Choose one of the n+ 1 intervals at random, each with equal probability.

(iii) Uniformly sample one future value from this chosen interval.

(iv) Include this value in the data set: raise n to n+ 1.

(v) Repeat Steps (ii)-(iv), now with n+ 1 data, to get a further future value.

(vi) Do this m− 1 times to get a NPI bootstrap sample of size m.

(vii) Perform Steps (ii)-(vi) in total N times to get a total of N NPI bootstrap samples

of size m, where N is a chosen integer value.

In the following section, we introduce NPI-B for the inventory models.
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4.3 NPI-B for inventory models

As we have seen in Chapters 2 and 3, for more interesting practical inventory problems,

the analytic approach is not feasible. The NPI-B method can be applied to compare

different order strategies. In this section, we introduce the NPI-B approach to derive

the optimal inventory strategy for different scenarios, namely the single-order and the

two-period independent demands inventory models which we also considered in Chapters

2 and 3.

4.3.1 NPI-B for the single-period inventory model

On the basis of the NPI-B, we compare different inventory levels, y, to select the optimal

one based on maximisation of average profit. Here we will study different strategies for

ordering y ∈ (d0, du) to determine which one is best based on the average profit criterion.

To sample an NPI-B sample of size m, we generate n observations from a continuous

distribution as the original sample with support [d0, du]. So, there are n + 1 intervals

between the data set values, (d0, d1), (d1, d2), ..., (dn, du). Choose one interval, and then

sample the new value from this interval as the first value in the NPI-B sample. Then

add this value to the data set so that it is observations n+ 1 and the intervals are n+ 2

intervals. Continue with this procedure to derive an NPI-B sample of size m. For the

single-period model we took m = 1.

The process of choosing the optimal inventory level is based on calculating the profit

or loss depending on y and the future observation, Dn+1 which we derived by using NPI-

B. We repeat this process N times, and we report the maximum average profit and the

corresponding inventory level as the optimal value. In the following example, we illustrate

this procedure.

Example 4.3.1 Assume n = 5, 50, c = 20, p = 50, h = 10, s = 20 and du = 15. We

consider two different cases each case is run 1000 and 10,000 times and we report the

optimal inventory levels that maximise the average profit resulting from the NPI method

and the NPI-B method.

� Case I: Di ∼ Gamma(3, 1).

� Case II: Di ∼ Exp(rate = 1/5).
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NPI NPI-B

Case y∗E Average profit y∗ Average profit

N = 1000

n = 5
I 3.29 36.61 3.24 11.16

II 5.24 6.28 4.93 -0.86

n = 50
I 3.08 35.89 3.19 32.16

II 4.63 0.98 4.92 12.11

N = 10, 000

n = 5
I 3.21 36.04 3.38 13.30

II 5.06 4.39 5.01 -2.84

n = 50
I 3.18 35.41 3.24 34.17

II 4.90 3.49 4.58 10.42

Table 4.1: Results of Example 4.3.1

Table 4.1 presents the optimal inventory levels for the single-period model based on

the NPI and NPI-B methods for two different cases with n = 5, 50 and N = 1000 and

10, 000. We use Equation (2.25) to find y∗E for NPI, but in NPI-B, we examine all values

of y between (d0 = 0, du = 15), then we choose y∗ as the one that corresponds to the

maximum average profit. As a result, the NPI-B approach leads to similar optimal value

as the full analytical method. While y∗E and y∗ seem quite close, the average profits differ

quite a lot. This is due to the effect of future demand, which is sampled by using NPI-B

in the profit function. 3

4.3.2 NPI-B for a single order for two-period model

In this section we compare different strategies for inventory level, y, to determine which

one leads to the highest average profit. We restrict our focus in this section to the case

where the number of observations is n = 2, we consider the case for a larger n in Section

4.4.

We follow the same procedure as in Section 4.3.1 to sample NPI-B, we suppose m = 1,

since the future demand for this model is equal to D = Dn+1+Dn+2, as we have discussed

in Section 2.6. Then we derive the profit based on y and D. We repeat this process N

times, and report the maximum average profits and the corresponding inventory level as

the optimal value. In the following example, we illustrate this procedure.
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NPI NPI-B

Case y∗EOnce
Average profit y∗ Average profit

N = 1000
I 2.56 73.68 1.87 41.31

II 2.52 42.30 1.40 19.49

N = 10, 000
I 2.57 73.85 1.83 39.41

II 2.57 44.65 1.39 20.42

Table 4.2: Results of Example 4.3.2

Example 4.3.2 Assume n = 2, c = 23, p = 70, h = 17, s = 9 and du = 2.50. We consider

the same cases as shown in Example 4.3.1. Our aim is to derive the optimal inventory

level by using NPI and NPI-B.

Table 4.2 presents the optimal inventory level for a single order for two-period model

based on the NPI and NPI-B methods for two different cases with n = 2 and N = 1000

and 10, 000. We follow the procedure in Section 2.6 to find y∗EOnce
for NPI, but in NPI-B,

we examine all values of y between (d0 = 0, du = 2.50) then we choose y∗ as the value

that correspond to the maximum average profit. As a result, the NPI-B approach leads

to similar optimal value as the full analytical method. 3

4.3.3 NPI-B for two-period model with independent demands

In this section we compare different strategies for inventory levels, (y1, y2), in which

y1 ∈ (d1,0, d1,u) and y2 ∈ (d2,0, d2,u), to determine which one leads to the highest average

profit. We follow the same procedure as in Section 4.3.1 to sample NPI-B sample but we

suppose m = 2, since we are dealing with two-period model. Then we derive the total

profit based on y1, y2, D1,n1+1 andD2,n2+1. We repeat this process N times, and report the

maximum average profits and the corresponding inventory levels as the optimal values.

In the following example, we illustrate this procedure.

Example 4.3.3 Assume n1 = 10, n2 = 27. The cost parameters for the first period

are c1 = 30, p1 = 250, h1 = 50, s1 = 15 and k1 = 19. For the second period, the cost

parameters are p′1 = 120, c2 = 40, p2 = 500, h2 = 100, s2 = 80 and k2 = 70, we suppose

α = 0.60.

Our aim is to derive the optimal inventory levels by using NPI and NPI-B. We consider
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NPI NPI-B

Case y∗O1E y∗O2E Average profit y∗1 y∗2 Average profit

N = 1000
I 4.63 4.31 1476.21 4.93 4.91 1454.80

II 4.36 3.16 929.84 4.86 3.35 890.54

N = 10, 000
I 4.53 4.26 1474.99 4.90 4.90 1407.99

II 4.52 3.13 933.54 4.87 3.26 912.86

Table 4.3: Results of Example 4.3.3

two different cases each case is run 1000 and 10,000 times and we report the optimal

inventory levels that maximise the average profit resulting from the NPI method and

the NPI-B method. Assume for Case I, d1,u = d2,u = 15 and for Case II, d1,u = 15 and

d2,u = 20.

� Case I: D1, D2 ∼ Gamma(3, 1).

� Case II: D1 ∼ Gamma(3, 1) and D2 ∼ Exp(rate = 1/2).

Table 4.3 presents the optimal inventory levels for the two-period model based on the

NPI and NPI-B methods for two different cases with n1 = 10, n2 = 27 and N = 1000 and

10, 000. We use Equations (3.25) and (3.50) to find y∗O2E and y∗O1E for NPI, respectively,

but in NPI-B, we examine all values of y1 and y2 between (d0 = 0, d1,u = 15) for Case

I. For Case II, we examine all values of y1 between (d0 = 0, d1,u = 15) and y2 between

(d0 = 0, d2,u = 20). Then we choose y∗1 and y∗2 as the values that correspond to the

maximum average profit. As a result, the NPI-B approach leads to similar optimal

values as the full analytical method. 3

4.4 NPI-B for two-period model with dependent de-

mands

In the NPI approach for the single-order and two-period independent demands models

studied in Chapters 2 and 3, we used the M -functions in order to assign the probability

masses for the future demands within the intervals.

In this section, future demands are dependent, where we assume that the second

future observation Dn+2 is dependent on the first future observation Dn+1, in which the
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N = 1000 N = 10, 000

y∗1 y∗2 Average profit y∗1 y∗2 Average profit

5.74 3.71 168.20 5.82 3.64 163.43

Table 4.4: The optimal strategies for Example 4.4.1

future demands Dn+i are assumed to come from the same data collection process as

the n data observations. When dealing with M -functions for dependent demands, this

becomes complicated, as we discussed in Section 2.6. As a result, to avoid the analytic

complexities, we will use the NPI-B approach to distinguish between different strategies.

We compare different strategies for inventory levels (y1, y2) in which y1, y2 ∈ (d0, du),

to determine which one of those is optimal, based on maximising the average profit. This

study covers two different models, one model assumes orders for the first period and

second period. The other model assumes order only for the first period.

4.4.1 Ordering for both periods

In this section, we consider ordering for both periods, so we aim to determine the best

strategies for ordering y1 and y2 in (d0, du). To obtain an NPI-B sample, we follow

a similar procedure to the one in Section 4.3.3. However, here we suppose dependent

demands, Dn+2 is dependent on Dn+1, so we sample the two future observations from

the same data collection process as the n data observations. Then we derive the total

profit based on y1, y2, Dn+1 and Dn+2. We repeat this process N times, and report the

maximum average profits and the corresponding inventory levels as the optimal values.

In the following examples, we compare different strategies and find the optimal in-

ventory levels for these strategies by using the NPI-B method. We did not consider the

NPI method for the two-period model with dependent demands when the number of

observations is greater than 2, we leave this as a topic for future research.

Example 4.4.1 Assume the same number of observations for the two periods, n = 3 and

D ∼ Gamma(3, scale = 1), in which the upper bound of the demand is du = 6. The cost

parameters for the first period is as follow c1 = 1, p1 = 40, h1 = 12, s1 = 15, and k1 = 9.

For the second period, the cost parameters are p′1 = 22, c2 = 11, p2 = 60, h2 = 17, s2 = 8

and k2 = 7, we suppose α = 0.60. The results in this example are based on 1000 and
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N = 1000 N = 10, 000

y∗1 y∗2 Average profit y∗1 y∗2 Average profit

5.22 4.43 1484.39 5.24 4.32 1469.64

Table 4.5: The optimal strategies for Example 4.4.2

10,000 simulations.

Our aim is to compare different strategies and decide which one is the optimal based

on NPI-B. From Equation (3.1), we calculate the profit or loss depending on y1, y2, D4

and D5 in which the future observations are the NPI-B sample.

Table 4.4 presents the optimal inventory levels for the first and second period in which

y1, y2 ∈ (0, 6) and the average profit based on NPI-B method. We examine all values of

y1 and y2 between (0, 6), then we choose y∗1 and y∗2 as the values that correspond to the

maximum average profit. 3

Example 4.4.2 Assume n = 15, D ∼ Gamma(3, scale = 1), in which the upper bound

of the demand is du = 10. The cost parameters for the first period is as follow c1 =

20, p1 = 250, h1 = 50, s1 = 15, and k1 = 19. For the second period, the cost parameters

are p′1 = 120, c2 = 40, p2 = 500, h2 = 100, s2 = 80 and k2 = 70, we suppose α = 0.60. The

results in this example are based on 1000 and 10,000 simulations.

We follow the same procedure as in Example 4.4.1, to choose the optimal inventory

levels.

Table 4.5 presents the optimal inventory levels for the first and second period in which

y1, y2 ∈ (0, 10) and the average profit. We examine all values of y1 and y2 between (0, 10),

then we choose y∗1 and y∗2 as the values that correspond to the maximum average profit.

3

4.4.2 Ordering in the first period only

In this section, we suppose there is no order for the second period and the stock level

at the end of the first period is greater than zero, so, the inventory level for the second

period is y2 = (y1 − Dn+1)
+. Our aim to determine the best strategies for ordering y1

between d0 and du.

From Equation (3.5), we calculate the profit or loss depending on y1, y1 −Dn+1, Dn+1
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N = 1000 N = 10, 000

Example y∗1 Average profit y∗1 Average profit

4.4.1 5.99 143.60 5.99 136.62

4.4.2 8.09 1299.82 8.02 1290.55

Table 4.6: Optimal inventory level (no order for the second period)

N = 1000 N = 10, 000

Example With order Without order With order Without order

4.4.1 5.74 5.99 5.82 5.99

4.4.2 5.22 8.09 5.24 8.02

Table 4.7: Optimal inventory level for the first period with and without order for the

second period

and Dn+2 in which the future observations are the NPI-B sample. We repeat this process

N times, and report the maximum average profit and the corresponding inventory level

as the optimal value.

In the following example, we find the optimal strategies when we do not order for the

second period by maximising the average profit.

Example 4.4.3 Suppose we have the same data sets as in Examples 4.4.1 and 4.4.2. We

will find the optimal inventory level for the first period y∗1 when we do not order for the

second period.

Table 4.6 presents the optimal inventory level for the first period when we do not

order for the second period. We examine all values of y1 between (0, 6) in Example 4.4.1

and all values of y1 between (0, 10) in Example 4.4.2, then we choose y∗1 as the value that

correspond to the maximum average profit.

To summarise the results, we built Table 4.7. The table illustrates that in all Exam-

ples, the optimal inventory level when we order for the first period and do not order for

the second period is higher than the optimal inventory level when we order for the first

and second periods. 3
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4.5 Concluding remarks

This chapter introduced the use of NPI-B method to distinguish between different order

strategies for inventory models. We applied NPI-B to the single-order and two-period

independent demands model. In order to find the optimal inventory levels, the average

profit is maximised. Based on the numerical examples, the NPI-B approach leads to

similar optimal values as the full analytical method.

Also, the NPI-B has also been applied to the two-period model with dependent de-

mands when we order for the second period as well as no order for the second period. To

find the optimal inventory levels, the average profit criterion is maximised. Based on the

numerical examples, the optimal inventory level for the first period when we order only

for the first period is higher than the optimal inventory level when we order for the first

and second periods.

The NPI-B can also be applied to the multi-period model in order to compare various

ordering strategies; we have not considered here and we leave it as a future topic.
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Conclusions

This chapter gives a brief summary of our most important results and suggests topics

for future research. In this thesis, we have introduced nonparametric predictive inference

(NPI) to support inventory decisions. First, we applied the NPI method only focusing on

the single-period inventory model as discussed in Chapter 2. We explored how to find the

optimal inventory level y∗, which maximises the probability of getting a positive profit and

maximising the expected profit. We calculated the NPI lower and upper probabilities for

the event that the profit of future demand is greater than, or equal to, zero. In addition,

we studied the lower and upper expected profits for the next period. We also discovered

optimality criteria that combine NPI lower and upper probabilities as well as NPI lower

and upper expected profits.

In Chapter 2, the single order for two-period model is considered. In this model we

assumed the number of observations is n = 2 and the future demand is D = Dn+1+Dn+2.

We explored how to find the optimal inventory level, which maximises the expected profit.

An investigation of the performance of the classical and NPI methods has been illustrated

using different assumptions of the demand via simulation. In some cases, the assumptions

underlying the classical method are entirely correct, so, the classical method performs

better. In other cases, the NPI method performs better than the classical method. In the

simulation studies, we only consider how often the profit is doing better in each run, but

it could also be of interest to see by how much it is greater as a topic for future research.

In Chapter 3, we developed NPI for two independent future observations, D1,n1+1 and

D2,n2+1, for the inventory model. First, we derived the optimal inventory level for the

second period, assuming there is a remaining stock (or shortage) from the first period,
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and with that optimal strategy for the second period, we then optimised over the first

period. Various cases of ordering for the first and second periods have been studied.

An investigation of the performance of the classical and NPI methods has been il-

lustrated using different assumptions of the demand via simulations. If the assumptions

underlying the classical method are entirely correct, the classical method performs bet-

ter. However, if the assumptions are incorrect, NPI can do better. Also, we discussed

the impact of increasing the cost parameters on the NPI method. As a result, if the

shortage cost or selling price has increased in any period, we will order more for that

period. However, if the holding cost or purchase cost has increased in any period, we will

order less for that period. In the simulation study, we only considered the case when we

ordered for both periods. It is also interesting to investigate the case when we do not

order for either the first or second period.

In Chapter 4, we consider NPI-B method, as an alternative method to deal with

complexities in some of the inventory models, and then we discuss its use to predict the

optimal inventory level. We applied NPI-B to the single-order and two-period indepen-

dent demands model which we studied in Chapters 2 and 3. In order to find the optimal

inventory levels, the average profit is maximised. Based on the numerical examples, the

NPI-B approach leads to similar optimal values as the full analytical method.

Also, the NPI-B has also been applied to the two-period model with dependent de-

mands when we order for the second period as well as no order for the second period. To

find the optimal inventory levels, the average profit criterion is maximised. Based on the

numerical examples, the optimal inventory level for the first period when we order only

for the first period is higher than the optimal inventory level when we order for the first

and second periods.

An important topic for future research is to extend the use of NPI-B to the multi-

period inventory model. Another idea for future research is to explore models with some

restrictions, such as storage capacity and varying order costs. Generally, considering

inventory problems from a predictive perspective, in particular how to study the use of

NPI-B for the multi-period inventory model, gives interesting new insights which may

also have significant practical applications.



Appendix A

Proofs

A.1 Discontinuity proof for the lower expected profit

function for the single-period model

From Equation (2.20)

lim
y↑dl

En+1(y) =
1

n+ 1

(
(l − 1)(−(c+ h)dl) + (p+ h)

l−1∑
j=1

dj−1 +min[−(c

+ h)dl + (p+ h)dl−1, (p− c+ s)dl − sdl] + (n+ 1

− l)(p− c+ s)dl − s
n+1∑
j=l+1

dj

)
and

lim
y↓dl

En+1(y) =
1

n+ 1

(
l(−(c+ h)dl) + (p+ h)

l∑
j=1

dj−1 +min[−(c

+ h)dl + (p+ h)dl, (p− c+ s)dl − sdl+1]

+ (n− l)(p− c+ s)dl − s

n+1∑
j=l+2

dj

)
hence

lim
y↑dl

En+1(y)− lim
y↓dl

En+1(y) =
1

n+ 1

(
(p+ h)(dl − dl−1)− s(dl+1 − dl)

+ min[−(c+ h)dl + (p+ h)dl−1, (p− c)dl]

−min[(p− c)dl, (p− c+ s)dl − sdl+1]

)
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So, En+1(y) is a discontinuous function at dl, for any l ∈ {1, ..., n}, since

lim
y↑dl

En+1(y)− lim
y↓dl

En+1(y) ̸= 0

The difference if y ∈ (dl−1, dl) or y ∈ (dl, dl+1) is that there are some bounds of the lower

expected profit in these intervals are different which are cause the discontinuity at dl.

When y ∈ (dl−1, dl) these bounds are 1
n+1

(min[−(c + h)dl + (p + h)dl−1, (p − c + s)dl −

sdl]+(p+h+s)dl−sdl+1) while, when y ∈ (dl, dl+1),
1

n+1
(min[−(c+h)dl+(p+h)dl, (p−

c + s)dl − sdl+1] + (p + h)dl−1). We have four different cases depending on the minimal

values in each interval.

If the minimal equal to−(c+h)dl+(p+h)dl−1 for y ∈ (dl−1, dl) and−(c+h)dl+(p+h)dl

for y ∈ (dl, dl+1), then there is a jump between the left and right hand limit which equal

to: 1
n+1

(s(dl+1 − dl)).

If the minimal equal to −(c+h)dl+(p+h)dl−1 for y ∈ (dl−1, dl) and (p−c+s)dl−sdl+1

for y ∈ (dl, dl+1), then there is no different bounds of the lower expected profit so, there

is no jump between the left and right hand limit.

If the minimal equal to (p− c+ s)dl − sdl for y ∈ (dl−1, dl) and −(c+ h)dl + (p+ h)dl

for y ∈ (dl, dl+1), then there is a jump between the left and right hand limit which equal

to: 1
n+1

((p+ h)(dl−1 − dl) + s(dl+1 − dl)).

If the minimal equal to (p− c+ s)dl − sdl for y ∈ (dl−1, dl) and (p− c+ s)dl − sdl+1

for y ∈ (dl, dl+1), then there is a jump between the left and right hand limit which equal

to: 1
n+1

((p+ h)(dl−1 − dl)).

A.2 Continuity proof for the upper expected profit

function for the single-period model

From Equation (2.26)

lim
y↑dl

En+1(y) = lim
y↓dl

En+1(y)
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where,

lim
y↑dl

En+1(y) =
1

n+ 1

(
dl[−l(p+ s+ h) + h+ p+ (p− c+ s)(1 + n)] + (p+ h)

l−1∑
j=1

dj

− s

n+1∑
j=l+1

dj−1

)

=
1

n+ 1

(
dl[−l(p+ s+ h) + h+ p+ (p− c+ s)(1 + n)] + (p+ h)(

l∑
j=1

dj

− dl)− s(dl +
n+1∑
j=l+2

dj−1)

)
=

1

n+ 1

(
dl[−l(p+ s+ h) + h+ p+ (p− c+ s)(1 + n)]− (p+ h+ s)dl

+ (p+ h)
l∑

j=1

dj − s
n+1∑
j=l+2

dj−1

)
and

lim
y↓dl

En+1(y) =
1

n+ 1

(
dl[−(l + 1)(p+ s+ h) + h+ p+ (p− c+ s)(1 + n)] + (p

+ h)
l∑

j=1

dj − s
n+1∑
j=l+2

dj−1

)
=

1

n+ 1

(
dl[−l(p+ s+ h)− (p+ s+ h) + h+ p+ (p− c+ s)(1 + n)]

+ (p+ h)
l∑

j=1

dj − s
n+1∑
j=l+2

dj−1

)
The difference between if y at the left of dl and y at the right of dl is that dl will cost

shortage cost since y < dl, so the profit will be py − cy − s(dl − y), while, dl will cost

holding cost since y > dl, so the profit will be pdl − cy − h(y − dl). Hence, when we

suppose y = dl we will find that there is no jump between the left and right hand limit.
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A.3 Discontinuity proof of HE,ω(En+1(y)) for the single-

period model

From Equation (2.29)

lim
y↑dl

HE,ω(En+1(y)) =
ω

n+ 1

[
− (p− c)dl + (p+ h)(d0 − dl−1)− s(dn+1 − dl) + min[−(c

+ h)dl + (p+ h)dl−1, (p− c+ s)dl − sdl]

]
+

1

n+ 1

(
y[(l − 1)(−(c+ h)) + (p− c)

+ (n+ 1− l)(p− c+ s)] + (p+ h)
l−1∑
j=1

dj − s

n+1∑
j=l+1

dj−1

)
and

lim
y↓dl

HE,ω(En+1(y)) =
ω

n+ 1

[
− (p− c)dl + (p+ h)(d0 − dl)− s(dn+1 − dl+1) + min[−(c

+ h)dl + (p+ h)dl, (p− c+ s)dl − sdl+1]

]
+

1

n+ 1

(
y[l(−(c+ h)) + (p− c)

+ (n− l)(p− c+ s)] + (p+ h)
l∑

j=1

dj − s
n+1∑
j=l+2

dj−1

)
hence

lim
y↑dl

HE,ω(En+1(y))− lim
y↓dl

HE,ω(En+1(y)) =
ω

n+ 1

[
(p+ h)(dl − dl−1)− s(dl+1 − dl)

+ min[−(c+ h)dl + (p+ h)dl−1, (p− c)dl]−min[(p− c)dl, (p− c+ s)dl − sdl+1]

]
+

1

n+ 1

(
(p+ h+ s)(y − dl)

)
So, HE,ω(En+1(y)) is a discontinuous function at dl, for any l ∈ {1, ..., n}, since

lim
y↑dl

HE,ω(En+1(y))− lim
y↓dl

HE,ω(En+1(y)) ̸= 0

A.4 Optimal inventory level of Gamma and Expo-

nential distributions

The following proof is provided to illustrate that Exponential and Gamma distributions

with the same expected value lead to the same optimal inventory level, y∗CP , that max-

imises the probability that the profit is greater than or equal to zero.
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Suppose D ∼ Gamma(shape = k, scale = θ), the mean is equal to kθ. By substituting

Equations (2.3) and (2.4) in Equation (2.6), we have,(
p+ s− c

s

)
1

Γkθk
dk−1
r e

−dr
θ =

(
h+ c

p+ h

)
1

Γkθk
dk−1
l e

−dl
θ(

p+ s− c

s

)(
(p+ s− c)y

s

)k−1

e
−y
θ
( p+s−c

s
) =

(
h+ c

p+ h

)(
(h+ c)y

p+ h

)k−1

e
−y
θ
( h+c
p+h

)

(
p+ s− c

s

)k

e
−y
θ
( p+s−c

s
) =

(
h+ c

p+ h

)k

e
−y
θ
( h+c
p+h

)

k ln

(
p+ s− c

s

)
− y

θ

(
p+ s− c

s

)
= k ln

(
h+ c

p+ h

)
− y

θ

(
h+ c

p+ h

)
k

[
ln

(
p+ s− c

s

)
− ln

(
h+ c

p+ h

)]
=

y

θ

(
(p+ s− c)(h+ p)− s(h+ c)

s(p+ h)

)
⇒ y∗CP = kθ

(
s(p+ h)

(p+ s− c)(h+ p)− s(h+ c)

)
ln

(
(p+ s− c)(p+ h)

s(h+ c)

)
Similarly, for D ∼ Exp(rate = λ), as the Exponential distribution is a special case

of Gamma, so when shape = k = 1, and scale = θ = 1
λ
, we will get the results for the

Exponential. So, Exponential and Gamma distributions with the same expected value

lead to the same optimal inventory level.

A.5 Discontinuity proof for the lower expected profit

function for the second period, with remaining

stock from the first period

From Equation (3.20)

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(l − 1)[−(c2 + h2)d2,l + c2(y1

− d1)− k2] + (p2 + h2)
l−1∑
j=1

d2,j−1 +min[(p2 + h2)d2,l−1 − (c2 + h2)d2,l + c2(y1 − d1)

− k2, (p2 − c2 + s2)d2,l − s2d2,l + c2(y1 − d1)− k2] + (n2 + 1− l)[(p2 − c2 + s2)d2,l

+ c2(y1 − d1)− k2]− s2

n2+1∑
j=l+1

d2,j

]
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and

lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
l[−(c2 + h2)d2,1 + c2(y1

− d1)− k2] + (p2 + h2)
l∑

j=1

d2,j−1 +min[(p2 + h2)d2,l − (c2 + h2)d2,1 + c2(y1 − d1)

− k2, (p2 − c2 + s2)d2,1 − s2d2,l+1 + c2(y1 − d1)− k2] + (n2 − l)[(p2 − c2 + s2)d2,1

+ c2(y1 − d1)− k2]− s2

n2+1∑
j=l+2

d2,j

]
hence

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

− lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(p2 + h2 + s2)d2,l

− (p2 + h2)d2,l−1 − s2d2,l+1 +min[(p2 + h2)d2,l−1 − (c2 + h2)d2,l + c2(y1 − d1)

− k2, (p2 − c2 + s2)d2,l − s2d2,l + c2(y1 − d1)− k2]−min[(p2 + h2)d2,l − (c2 + h2)d2,1

+ c2(y1 − d1)− k2, (p2 − c2 + s2)d2,1 − s2d2,l+1 + c2(y1 − d1)− k2]

]
So, E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a discontinuous function at d2,l, for any

l ∈ {1, ..., n2}, since

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

− lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) ̸= 0
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A.6 Discontinuity proof for the lower expected profit

function for the second period, with the first

period’s demand not fully met

From Equation (3.29)

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(l − 1)[−(c2 + h2)d2,l + α(d1

− y1)(p
′
1 − c2)− k2] + (p2 + h2)

l−1∑
j=1

d2,j−1 +min[(p2 + h2)d2,l−1 − (c2 + h2)d2,l

+ α(d1 − y1)(p
′
1 − c2)− k2, (p2 − c2 + s2)d2,l − s2d2,l + α(d1 − y1)(p

′
1 − c2)− k2]

+ (n2 + 1− l)[(p2 − c2 + s2)d2,l + α(d1 − y1)(p
′
1 − c2)− k2]− s2

n2+1∑
j=l+1

d2,j

]
and

lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

(
l[−(c2 + h2)d2,1 + α(d1

− y1)(p
′
1 − c2)− k2] + (p2 + h2)

l∑
j=1

d2,j−1 +min[(p2 + h2)d2,l − (c2 + h2)d2,1

+ α(d1 − y1)(p
′
1 − c2)− k2, (p2 − c2 + s2)d2,1 − s2d2,l+1 + α(d1 − y1)(p

′
1 − c2)− k2]

+ (n2 − l)[(p2 − c2 + s2)d2,1 + α(d1 − y1)(p
′
1 − c2)− k2]− s2

n2+1∑
j=l+2

d2,j

)
hence

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

− lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(p2 + h2 + s2)d2,l

− (p2 + h2)d2,l−1 − s2d2,l+1 +min[(p2 + h2)d2,l−1 − (c2 + h2)d2,l + α(d1 − y1)(p
′
1 − c2)

− k2, (p2 − c2 + s2)d2,l − s2d2,l + α(d1 − y1)(p
′
1 − c2)− k2]−min[(p2 + h2)d2,l

− (c2 + h2)d2,1 + α(d1 − y1)(p
′
1 − c2)− k2, (p2 − c2 + s2)d2,1 − s2d2,l+1

+ α(d1 − y1)(p
′
1 − c2)− k2]

]
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So, E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) is a discontinuous function at d2,l, for any

l ∈ {1, ..., n2}, since

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

− lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) ̸= 0

A.7 Continuity proof for the upper expected profit

function for the second period, with remaining

stock from the first period

From Equation (3.38)

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
l[−(p2 + h2 + s2)d2,l]

+ (p2 + h2)[d2,l +
l−1∑
j=1

d2,j] + (n2 + 1)[(p2 − c2 + s2)d2,l + c2(y1 − d1)− k2]

− s2

n2+1∑
j=l+1

d2,j−1

]
and

lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(l + 1)[−(p2 + h2 + s2)d2,l]

+ (p2 + h2)[d2,l +
l∑

j=1

d2,j] + (n2 + 1)[(p2 − c2 + s2)d2,l + c2(y1 − d1)− k2]

− s2

n2+1∑
j=l+2

d2,j−1

]
hence

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

− lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) = 0
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A.8 Continuity proof for the upper expected profit

function for the second period, with the first

period’s demand not fully met

From Equation (3.42)

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
l[−(p2 + h2 + s2)d2,l]

+ (p2 + h2)[d2,l +
l−1∑
j=1

d2,j] + (n2 + 1)[(p2 − c2 + s2)d2,l + α(d1 − y1)(p
′
1 − c2)− k2]

− s2

n2+1∑
j=l+1

d2,j−1

]
and

lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) =
1

n2 + 1

[
(l + 1)[−(p2 + h2 + s2)d2,l]

+ (p2 + h2)[d2,l +
l∑

j=1

d2,j] + (n2 + 1)[(p2 − c2 + s2)d2,l + α(d1 − y1)(p
′
1 − c2)− k2]

− s2

n2+1∑
j=l+2

d2,j−1

]
hence

lim
y2↑d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1))

− lim
y2↓d2,l

E(Pf 2(D1, D2, y1, y2|y1 = y1, D1 = d1)) = 0
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A.9 Discontinuity proof for the lower expected profit

function for the two-period model

From Equation (3.47)

lim
y1↑d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) =
1

n1 + 1

[
(l − 1)(−(c1 + h1 − c2)d1,l − k1)

+ (p1 + h1 − c2)
l−1∑
j=1

d1,j−1 +min[−(c1 + h1 − c2)d1,l − k1 + (p1 + h1 − c2)d1,l−1, (p1

− c1 + s1 − αp′1 + αc2)d1,l − k1 − (s1 − αp′1 + αc2)d1,l] + (n1 + 1− l)((p1 − c1 + s1

− αp′1 + αc2)d1,l − k1)− (s1 − αp′1 + αc2)

n1+1∑
j=l+1

d1,j

]
+

1

n2 + 1

(
(j2,y∗O2E − 1)[−(c2

+ h2)y
∗O
2E − k2] + (p2 + h2)

j
2,y∗O

2E
−1∑

j=1

d2,j−1 +min[(p2 + h2)d2,j
2,y∗O

2E
−1 − (c2 + h2)y

∗O
2E

− k2, (p2 − c2 + s2)y
∗O
2E − s2d2,j

2,y∗O
2E

− k2] + (n2 + 1− j2,y∗O2E )[(p2 − c2 + s2)y
∗O
2E − k2]

− s2

n2+1∑
j=j

2,y∗O
2E

+1

d2,j

)

and

lim
y1↓d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) =
1

n1 + 1

[
l(−(c1 + h1 − c2)d1,l − k1)

+ (p1 + h1 − c2)
l∑

j=1

d1,j−1 +min[−(c1 + h1 − c2)d1,l − k1 + (p1 + h1 − c2)d1,l, (p1

− c1 + s1 − αp′1 + αc2)d1,l − k1 − (s1 − αp′1 + αc2)d1,l+1] + (n1 − l)((p1 − c1 + s1

− αp′1 + αc2)d1,l − k1)− (s1 − αp′1 + αc2)

n1+1∑
j=l+2

d1,j

]
+

1

n2 + 1

(
(j2,y∗O2E − 1)[−(c2

+ h2)y
∗O
2E − k2] + (p2 + h2)

j
2,y∗O

2E
−1∑

j=1

d2,j−1 +min[(p2 + h2)d2,j
2,y∗O

2E
−1 − (c2 + h2)y

∗O
2E

− k2, (p2 − c2 + s2)y
∗O
2E − s2d2,j

2,y∗O
2E

− k2] + (n2 + 1− j2,y∗O2E )[(p2 − c2 + s2)y
∗O
2E − k2]

− s2

n2+1∑
j=j

2,y∗O
2E

+1

d2,j

)
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hence

lim
y1↑d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E ))

− lim
y1↓d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) =
1

n+ 1

[
(p1 + h1 + s1 − αp′1 + (α− 1)c2)d1,l

− (p1 + h1 − c2)d1,l−1 − (s1 − αp′1 + αc2)d1,l+1 +min[−(c1 + h1 − c2)d1,l − k1

+ (p1 + h1 − c2)d1,l−1, (p1 − c1 + s1 − αp′1 + αc2)d1,l − k1 − (s1 − αp′1 + αc2)d1,l]

−min[−(c1 + h1 − c2)d1,l − k1 + (p1 + h1 − c2)d1,l, (p1 − c1 + s1 − αp′1 + αc2)d1,l

− k1 − (s1 − αp′1 + αc2)d1,l+1]

]
So, E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) is a discontinuous function at d1,l, for any l ∈

{1, ..., n1}, since

lim
y1↑d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E ))

− lim
y1↓d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O2E )) ̸= 0

A.10 Continuity proof for the upper expected profit

function for the two-period model

From Equation (3.59)

lim
y1↑d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) =

1

n1 + 1

[
(l − 1)(−(c1 + h1 − c2)d1,l − k1)

+ (p1 + h1 − c2)
l−1∑
j=1

d1,j + (p1 − c1)d1,l − k1 + (n1 + 1− l)((p1 − c1 + s1 − αp′1

+ αc2)d1,l − k1)− (s1 − αp′1 + αc2)

n1+1∑
j=l+1

d1,j−1

]
+

1

n2 + 1

(
(j2,y∗O

2E
− 1)[−(c2 + h2)y

∗O
2E

− k2] + (p2 + h2)

j
2,y∗O

2E

−1∑
j=1

d2,j + (p2 − c2)y
∗O
2E

− k2 + (n2 + 1− j2,y∗O
2E
)[(p2 − c2 + s2)y

∗O
2E

− k2]− s2

n2+1∑
j=j

2,y∗O
2E

+1

d2,j−1

)
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and

lim
y1↓d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) =

1

n1 + 1

[
l(−(c1 + h1 − c2)d1,l − k1)

+ (p1 + h1 − c2)
l∑

j=1

d1,j + (p1 − c1)d1,l − k1 + (n1 − l)((p1 − c1 + s1 − αp′1

+ αc2)d1,l − k1)− (s1 − αp′1 + αc2)

n1+1∑
j=l+2

d1,j−1

]
+

1

n2 + 1

(
(j2,y∗O

2E
− 1)[−(c2 + h2)y

∗O
2E

− k2] + (p2 + h2)

j
2,y∗O

2E

−1∑
j=1

d2,j + (p2 − c2)y
∗O
2E

− k2 + (n2 + 1− j2,y∗O
2E
)[(p2 − c2 + s2)y

∗O
2E

− k2]− s2

n2+1∑
j=j

2,y∗O
2E

+1

d2,j−1

)

hence

lim
y2↑d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
))

− lim
y2↓d1,l

E(Pf 1,2(D1, D2, y1, y2|y2 = y∗O
2E
)) = 0
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