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Abstract

This thesis illustrates the use and development of physical conductive ana-
logue systems for unconventional computing using the Evolution in-Materio (EiM)
paradigm. EiM uses an Evolutionary Algorithm to configure and exploit a phys-
ical material (or medium) for computation. While EiM processors show promise,
fundamental questions and scaling issues remain. Additionally, their development is
hindered by slow manufacturing and physical experimentation. This work addressed
these issues by implementing simulated models to speed up research efforts, followed
by investigations of physically implemented novel in-materio devices.

Initial work leveraged simulated conductive networks as single substrate ‘mono-
lithic’ EiM processors, performing classification by formulating the system as an
optimisation problem, solved using Differential Evolution. Different material prop-
erties and algorithm parameters were isolated and investigated; which explained
the capabilities of configurable parameters and showed ideal nanomaterial choice
depended upon problem complexity. Subsequently, drawing from concepts in the
wider Machine Learning field, several enhancements to monolithic EiM processors
were proposed and investigated. These ensured more efficient use of training data,
better classification decision boundary placement, an independently optimised read-
out layer, and a smoother search space. Finally, scalability and performance issues
were addressed by constructing in-Materio Neural Networks (iM-NNs), where sev-
eral EiM processors were stacked in parallel and operated as physical realisations of
Hidden Layer neurons. Greater flexibility in system implementation was achieved
by re-using a single physical substrate recursively as several virtual neurons, but
this sacrificed faster parallelised execution. These novel iM-NNs were first imple-
mented using Simulated in-Materio neurons, and trained for classification as Ex-
treme Learning Machines, which were found to outperform artificial networks of a
similar size. Physical iM-NN were then implemented using a Raspberry Pi, custom
Hardware Interface and Lambda Diode based Physical in-Materio neurons, which
were trained successfully with neuroevolution. A more complex AutoEncoder struc-
ture was then proposed and implemented physically to perform dimensionality re-
duction on a handwritten digits dataset, outperforming both Principal Component
Analysis and artificial AutoEncoders.

This work presents an approach to exploit systems with interesting physical
dynamics, and leverage them as a computational resource. Such systems could
become low power, high speed, unconventional computing assets in the future.
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1.1 Chapter Overview

Evolution in-Materio (EiM) is an unconventional computing paradigm which uses

an Evolutionary Algorithm (EA) to leverage the inherent complex properties of

a nanomaterial substrate or physical medium for computation. This bottom up

exploitation of physical properties is in contrast with the traditional ‘top down’

approach typically used to develop modern silicon-based computers.

This chapter introduces EiM processors and provides context for a renewed in-

terest in unconventional computing . This touches on related fields and discusses the

literature. While EiM processors show promise, problems in their development ex-

ist, such as slow manufacturing and physical experimentation, and possible scaling

issues. Here, the research hypothesis and thesis structure is outlined for the reader’s

convenience.

1
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1.2 Historical Context

The twenty-first century has heralded an unprecedented explosion in technological

innovation. Many liken this new ‘digital age’ to that of the industrial revolution,

bringing opportunity to the modern world. However, this new interconnected world

requires one vital component – computers. These come in all shapes and sizes,

from large and power hungry data centres, to small Internet-of-Things (IoT) edge

devices [1].

The Cambridge Dictionary defines a processor as “the part of a computer that

performs operations on the information that is put into it”. Therefore, devices or

systems which can process information and perform computation pre-date modern

electronic computers by centuries. Indeed, the oldest known computational device

is the abacus [2] used in ancient civilisations around the world. The oldest known

processor might therefore be the water clock, a device used to measure the passage of

time by regulating the flow of a liquid from either into or out of a vessel [3, 4, 5]. Such

devices exploit the vessel structure, and its physical dynamics, for the particular time

‘processing’ task.

The modern computer is generally thought to have been worked on by Babbage

& Lovelace [6, 7], Zuse [8] and Turing [9]. Indeed, Ada Lovelace is often attributed

as the ‘first programmer’ [10]. These early mechanical and analogue computers

often used wheels, disks, shafts and gears to perform calculations [11]. The first

digital computers used vacuum tubes to represent binary information, before being

replaced with the transistor – now the fundamental building block for much of

modern electronic systems.

Modern digital computers are general purpose machines which can run a variety

of programs. These generally follow the Von Neumann architecture [12] where a

single store (i.e., addressable memory) is used for both machine instructions and

data. Therefore, there is a clear separation within the computer’s permanent struc-

ture (hardware) and its instructions (software). This enabled flexible computers

that could be reconfigured (programmed) by entering new instructions into mem-

ory, rather than physically rewired. However, Von Neumann architecture limits

a computer to sequential processing and requires a well-defined structure with a
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Figure 1.1: Plot illustrating Moore’s law by showing the increase in transistor count
over time. Data taken from [19].

central processing unit.

The adoption of digital technology for personal use has reached new highs, with

8.27 billion worldwide mobile phone subscriptions, and approximately 60% of the

world population having had internet access in 2020 [13]. A growing number of

devices are being connected to the internet, helping realise the IoT – a network of

physical objects which can communicate [14] and perform as smarter systems. IoT

systems rely on a number of underlying technologies, such as sensors, communication

systems, internet protocols and embedded computational devices. Beyond personal

use, the application of computing technology is expanding, from smart cities [15]

and autonomous vehicles [16], to data centres [17] and large Machine Learning (ML)

models [18].

These advances have been made possible by the continued progress in electronic

device development. In 1965 Gordon E. Moore observed that manufacturers had

been doubling the density of components per Integrated Circuit (IC) at regular in-

tervals (roughly every two years) [20], a trend seen in Fig. 1.1 which became known

as Moore’s law. Indeed, the success of Moore’s law has helped drive the silicon man-

ufacturing industry. However, manufactures are now facing serious challenges, with

fundamental physical limits suggesting field-effect transistor gate length is unlikely
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to go below 5 nm [21].

The effort to continue scaling conventional silicon Complementary Metal-Oxide-

Semiconductor (CMOS) devices has overwhelmingly dominated intellectual & finan-

cial capital investments from industry, government and academia [21]. However, the

challenges to typical silicon device development has led to a growing interest in new

unconventional computing methods [22]. Such devices may provide power and speed

efficiency gains, or even offer entirely new computational paradigms.

1.3 Unconventional Computing

Unconventional Computing (UC), sometimes referred to as unconventional compu-

tation [23] or alternative computing, is a wide area of study with varied content

and many related fields. While whether something is ‘unconventional’ can be sub-

jective [23], UC methods are broadly defined as computing without standard digital

computers [24]. Examples can include leveraging Field-Programmable Gate Arrays

(FPGAs) [25], Deoxyribonucleic Acid (DNA), quantum properties, mechanical de-

vices, water [26], nano-technologies and more.

Natural Computing (NC) has a strong relationship with UC; it is a large field

that contains techniques inspired from nature or the use of natural materials to

perform computation [24, 27]. This can include algorithms using concepts such

as reproduction, mutation, recombination, and natural selection [28], or physical

systems performing computation such as with physarum (slime mould), DNA or

more [29, 24]. Many argue that there are lessons which can be drawn from nature,

since natural evolution has produced “biological machines” which still maintain a

level of complexity far above what conventional computers have achieved [30]. In-

deed, research such as Artificial Neural Networks (ANNs) was a landmark piece

of work in the branch of nature inspired computing [27]. The realisation of such

biologically, and particularly brain, inspired systems is often called neuromorphic

computing [31], and has resulted in a large body of research [32, 33], from leaky

integrate-and-fire spike-driven hardware [34, 35] to memristive synapses [36] and

crossbar arrays [37, 38, 39].
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The growing curiosity in UC has also revived interest in analogue computing [29].

This coincides with a desire to produce efficient but powerful computing and ML at

“the edge” [1] and physical neuromorphic hardware [40]. For this reason, the idea

of using physical analogue systems has remained an attractive option, due to many

analogue devices’ high theoretical throughput and low-energy consumption [41]. Ad-

ditionally, constraints associated with digital computing could be sidestepped, such

as avoiding analogue-to-digital conversion (i.e., discretisation) [42]. However, such

emerging UC devices face challenges such as device variability, stochastic behaviour

and scalability [43, 44].

While ANNs have exploded in popularity, some consider them to be over param-

eterised [45, 46]. Conversely, the complexity engineering approach [44] states that

one should attempt to minimise external control of a complex system being lever-

aged for computation. In doing so, a system could instead be self-organising with

emergent functionality – contrary to a classical engineering approach which is often

top down and well-defined. Such approaches prompts us to re-think how computing

methods can be adapted for new UC devices, or perhaps search for entirely new

computational paradigms [47].

1.4 Evolution in-Materio

EiM is an UC method which seeks to exploit a physical substrate’s inherent complex

properties to perform a computational task. Initially proposed by Miller & Downing

in 2002 [30], EiM was inspired by the remarkably complex and varied functions

that simple nucleotides can perform when configured by evolution into a genome.

They envisaged a type of evolutionary exploitable device operated as a Configurable

Analogue Processor (CAP), whose configuration (and therefore operation) could

be selected by some discrete set of parameters such as voltages, fields or other

physical signals. They argued that the evolvable hardware research community was

too focused on transistor technology, and that many other types of reconfigurable

systems may exist, suggesting that materials with rich physical properties might be

ideal. They also suggested that numerous CAP configurations might need to be
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Figure 1.2: Visualisation of the training process for a Configurable Analogue Pro-
cessor (CAP) as described by Miller and Downing [30].

tested before one is found that transforms the incident signal in the desired manner.

The resulting ‘fitness landscape’ was likely to have many local optima, to which

an optimising EA [28] might be best suited for. The EA performs an iterative

search, optimising the CAP’s input/output relationship until a certain performance

level is achieved or a particular number of iterations has elapsed. Such a training

process is illustrated in Fig. 1.2. Therefore, EiM uses a ‘bottom up’ approach where

the material is leveraged for computation without explicit knowledge of its internal

properties.

In the past decade, significant progress has been made advancing the EiM paradigm.

The term EiM processor is used here to describe a system which exploits a config-

urable analogue or ‘in-materio’ processor using an EA. Examples of such devices

include the use of a nanomaterial substrate such as metal-nanoparticles [48, 49],

Single Walled Carbon Nanotube (SWCNT) composites [50, 51], Liquid Crystals

(LCs) [52, 53], LCs/SWCNT mixtures [54], and dopant-atom networks [55] – all of

which were configured with the application of static ‘configuration’ voltages. How-

ever, it is highlighted that any material or medium which is interfaceable and con-

tains interesting physical properties might be used in an EiM processor. This could

include using light [56], radio waves [57], acoustics [58], or potentially turning an

entire building into a computational resource by exploiting conductive concrete [59].



1.4. Evolution in-Materio 7

Therefore, at the simplest level, perhaps even the humble water clock (mentioned

in §1.2) could be described as an in-materio processor, exploiting the dynamics of

a chosen vessel to perform a time keeping process.

So, EiM devices consist of a system within which a material or medium’s physi-

cal properties are exploited and leveraged towards the desired computational task.

Thus, EiM devices generally comprised of three constituent parts:

• a material whose characteristics can be altered via external stimuli,

• a Hardware Interface which can apply input and read output signals from the

material,

• a device which can host and execute an EA to optimise the material.

Within this work, an exploited nanomaterial substrate will be referred to inter-

changeably as a configurable analogue, material or in-materio processor.

Research has often focused on conductive nanomaterial substrates since they can

be easily accessed and manipulated via the application and reading of voltages. As

such, EiM processors are generally fabricated by depositing the chosen nanomaterial

on a microelectrode array, which is used to apply and measure voltages. An example

of such an EiM processor device is depicted in Fig. 1.3. Nanomaterial based EiM

processors have used a range of microelectrode array sizes to contact the material:

such as sixty-four [60], sixteen [61, 50] or often fewer electrodes [62, 55, 48]. Smaller

networks using only eight electrodes have shown promising results as physical real-

isations of high-capacity neurons [41].

The electronic functionality of these EiM processors is not designed by the as-

sembling of discrete components, rather an optimal material configuration is sought

via evolution through a supervised learning process. The human element of EiM

processor design is the selection of an appropriate configurable material/medium,

selecting the physical stimuli, formulating the computational problem, and choosing

an algorithm to efficiently optimise the system [63, 64, 65, 66]. While EAs are tradi-

tionally used to produce EiM processors, other algorithms or methods could be used

to produce novel in-materio devices, such as Particle Swarm Optimisation [63, 64].



1.4. Evolution in-Materio 8

Hardware
Interface

Material
Processor

Evolutionary
Algorithm

ADCs

DACsμ controller
Microelectrode Array

Nanomaterial
compositePC

Link

Config & Input
Data Voltages

Output
Voltages

Figure 1.3: Diagram of a typical nanomaterial substrate based EiM processor.

So far, EiM processors have been well positioned to operate as basic classifiers

for non-temporal (static) data, performing complex multivariate machine-learning

problems [54, 67] or as logic gates [48, 62, 51]. However, the literature is pre-

dominantly made up of case studies, using a range of techniques and nanomaterial

substrates. It has been demonstrated that optimising different nanomaterials with

the same EA for the same function has both varying degrees of success and training

time [66, 51, 68, 67]. Since these nanomaterial processors are analogue, they often

have underlying physical properties that are difficult to model. This leads them to

be treated as black boxes, making investigation into which nanomaterial properties

are beneficial difficult. Even EiM processors fabricated from nominally the same

nanomaterial and optimised by the same EA for the same computational problem

vary in quality of solution due to the inherent randomness of nanomaterial mor-

phology [67] and EA convergence. Collating data and conducting experimentation

to further investigate these issues is challenging due to the slow fabrication and

training processes that are required for each EiM processor [49]. Additionally, while

the literature presents many implementations of EiM devices, a lack of a unified

method or common approach makes reliable, repeatable investigation difficult. As

such, the fundamental question of which configurable material properties lead to

better performing EiM processors, and what algorithm properties will lead to better

exploited performance, remains largely unanswered.

Other computational frameworks closely overlap with EiM. For example, Ex-
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treme Learning Machines (ELMs) and Reservoir Computings (RCs) present a good

analogy for in-materio processors since both involve the exploitation of random net-

works. These systems depend on the underlying assumption that the randomised

network/reservoir will produce useful and often higher dimensional output states

that are used to process the data more successfully. Notably, within these fields

of research, it is generally assumed that the network/reservoir remains fixed after

its inception. However, previous work has shown that some stochastic optimisation

can improve a system’s performance [68, 69, 70]. ELMs were developed from single

hidden layer feedforward neural networks and are generally employed to process non-

temporal data [71]. Examples of physical implementations of ELM remain sparse,

but include memristor based networks [72] and photonic systems [73, 74]. RC was

developed from Recurrent Neural Networks and are generally employed to process

temporal data. Like EiM, Physical RCs [75] could lead to low power, efficient and

fast systems which can operate at ‘the edge’. Examples include the use of circuit

(anti-parallel diode) based non-linear neuron [76], memristive network [72, 77], FP-

GAs [25], and magnetic spintronic [78] based reservoirs. There remains significant

opportunity to develop both classical and quantum substrates [79] for both ELM

and RC. Drawing elements from such successful ML methods and leveraging physical

substrates using EiM could unlock efficient but powerful unconventional computing

resources.

Work combining physical RC and EiM was carried out by Matthew Dale et al. at

York University [68, 66] in which they constructed Reservoir Computing in-Materio

(RCiM) devices. These deviate from traditional physical RC by introducing aspects

of EiM; specifically, utilising an EA to tune a reservoir by evolving some stimuli

(equivalent to optimising the internal reservoir parameters). Earlier discussion from

Dale et al. considered the advantages of the RC readout layer (i.e weights for the out-

put signals) and how it allows the system to selectively choose and separate/combine

interesting output signal patterns [68]. Within the work carried out on RCiM, evolv-

able configuration parameters included static (configuration) voltages, connection

location, a variable number of inputs/outputs and input weights [68, 66, 80]. They

hypothesised that an observed increase in performance might be the result of: (i) in-
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put weightings allowing variations of the input which cause interesting interactions,

(ii) a conductive network might not be present across all electrodes, instead several

may exist, so additional inputs-outputs may grant access to these smaller networks,

(iii) combining and weighting several outputs allows training to exploit the whole

material, not just a single area around a particular electrode. This conjecture re-

quires further exploration and represents the general lack of established knowledge

about how nanomaterial processors can be best exploited. The importance of de-

veloping this foundational understanding cannot be understated, and is required to

provide actionable guidance on the future design of EiM devices.

The scalability of EiM devices is an incredibly important, but as yet unanswered

question. EiM processors have typically used a single substrate ‘monolithic’ struc-

ture. With larger and more complex ML problems, a monolithic EiM processor

would require a physically larger nanomaterial substrate with a larger microelec-

trode array. However, such an approach is unlikely to perform well, as such larger

devices will have weaker interactions between distant electrodes. Therefore, to scale

in-materio systems to process larger, more complex datasets, devices will have to

move beyond the typical monolithic structure. The introduction of novel devices or

intra-substrate structures represents an exciting avenue for research.

In summary, while EiM processors show promise as an unconventional computing

resource, problems in their development exist. To isolate and investigate fundamen-

tal questions about optimal material and algorithms properties, a standard approach

is required. However, investigations are often slow, due to lengthy physical manu-

facturing and physical experimentation. Finally, to advance the paradigm to larger,

more complex computational problems, new and novel EiM device structures, and

accompanying algorithms, will be required.
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1.5 Research Hypothesis

Nanomaterial substrates can be used to produce EiM devices, but physical develop-

ment and experimentation can be slow. Instead, a simulation can be used to model

a material and use it as a proxy for experimentation; this will allow fast and efficient

investigation into what material and algorithm properties are most beneficial to EiM

processors.

Further to this, new device structures will be considered, drawing from concepts

in the wider Machine Learning field, such as feed forward Neural Networks and

AutoEncoders. These devices will address scaling issues found in typical monolithic

(single substrate) EiM processors.
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1.6 Thesis Structure

The thesis structure is as follows:

Chapter 2 presents background information about EiM processors, and related

topics including ANNs and RC. Detailed descriptions about relevant EA and

objective fitness functions are given.

Chapter 3 details how a conductive nanomaterial can be leveraged as a CAP and

used in EiM for classification. The simulated model and physical testing plat-

form are presented. Finally, the datasets used for classification and dimen-

sionality reduction tasks are introduced.

Chapter 4 is the first results chapter which examines fundamental algorithm and

material interaction, establishing a better understanding of EiM and typical

single substrate ‘monolithic’ devices using fast and efficient simulations.

Chapter 5 reports on several enhancements to EiM devices and their exploiting

algorithms. This includes making better use of the available training data, the

benefits of a cross entropy fitness metric, the use of a regressed output layer

and fully connected input layer.

Chapter 6 proposes a novel in-Materio Neural Network (iM-NN) device structure,

enabling a scalable system by stacking several in-materio processing units

in parallel and drawing on ML concepts. These iM-NNs are first simulated

and trained as Extreme Learning Machines. Then using a Raspberry Pi and

Hardware Interface, physical realisations of iM-NNs are investigated in the

lab, performing classification and then constructing an AutoEncoder which

are trained via neuroevolution.

Chapter 7 outlines the main conclusions of this thesis, and suggests several possi-

ble directions for future research.
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2.1 Chapter Overview

This chapter introduces background knowledge and theory required to understand,

formulate and develop Evolution in-Materio (EiM) processors. This includes defin-

ing an EiM system and representing its configuration as a mathematical solution

which can be optimised. Three types of Evolutionary Algorithm (EA) are intro-

duced, including Differential Evolution, OpenAI Evolutionary Strategy and Covari-

ance Matrix Adaptation Evolution Strategy; all of which could be used to optimise

EiM processors. Various objective functions are discussed, used to calculate a fitness

or loss score, which an EA will attempt to improve.

Finally, Machine Learning (ML) methods such as Artificial Neural Networks

(ANNs) and their training methods are also considered. This includes typical sin-

21
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gle hidden layer feedforward neural networks (SLFNs), AutoEncoders (AEs), and

Reservoir Computing (RC); concepts which are drawn from when developing more

advanced and novel EiM processing devices.

2.2 Evolution in-Materio

As discussed in §1.4, EiM attempts to leverage a material’s (or medium’s) complex

internal physical properties for computation. To achieve this, the selected material

substrate must be operated as an ‘in-materio’ or ‘configurable analogue’ proces-

sor, where signals can be applied and read from the system, and the input-output

transformation can be tuned using external stimuli.

Therefore, an in-materio processor’s behaviour is defined by a number of con-

figurable parameters (e.g., voltage stimuli), which can be altered to improve the

device’s performance. These configurable parameters can be grouped into a de-

cision vector X which defines the system’s configuration and represents a possible

solution to a target task. An EiM processor uses an EA [1] to optimise the system by

increasing the quality and performance of a solution X, determined by an objective

function Φ. EAs have been traditionally used to optimise in-materio systems, since

the material substrates commonly used for computation are often hard to model

and are therefore treated as a black box.

In this work, conductive nanomaterials and networks are considered to construct

EiM processors performing classification, further details on the methods used are

found in Chapter 3. In this case, input data signals are represented as input voltages

V in. Similarly, output voltage states V out can be read from the in-materio processor

and interpreted for the task at hand; such decision-making is referred to as the EiM

processor’s interpretation scheme.

2.2.1 Traditional EiM Interpretation Schemes

When EiM is being used for classification applications, binary or otherwise, there

must be some interpretation scheme. This allows the outputs to be assigned to

a class or grouping. Often a decision is taken by using a classification rule [2],
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commonly used in supervised learning. However, other methods of grouping data

exist, such as a clustering algorithm [3] which is generally used for unsupervised

learning. Here, some common classification rules which have been used for EiM

systems are considered.

Classification Rules

A classification rule is used to assign a particular input data instance to a set of

predefined classes. There are many ways to assign a class from a material’s output

states V out or collected response. The most common classification rules include:

i) Output-Threshold Comparison. This is when an output is gathered from

the material and compared to a threshold, e.g., a single output voltage V out:

ŷ =

0, if V out < τ

1, otherwise
, (2.2.1)

where ŷ is the predicted class and τ is a threshold which is either fixed or

sometimes evolvable/can be optimised.

ii) Output-Output Comparison. This is when a class is assigned by comparing

two (or more) outputs from the material. For example, consider a system with

two output voltages V out
1 & V out

2 :

ŷ =

0, if V out
1 < V out

2

1, otherwise
. (2.2.2)

iii) kNN Algorithm. The k Nearest Neighbour (kNN) algorithm tries to clas-

sify an unknown sample based on the known classification of its k number of

neighbours [4]. This method requires forming a queue (i.e., storing) the train-

ing instances with their class labels. The nearest neighbours of new unlabelled

data is determined by calculating the distance between it and all the instances

in the queue. Commonly, the Euclidean distance is used as the distance met-

ric. Some more advanced versions of kNN have been used in Unconventional
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Computing (UC) situations, such as the kNN ball tree Algorithm [2] which

was found to work well in classification problems using Single Walled Carbon

Nanotube (SWCNT)/Poly(methyl methacrylate) (PMMA) EiM processors.

2.3 Evolutionary Algorithms

EAs are a subset of evolutionary computing, consisting of population-based meta-

heuristics search algorithms, which take advantage of biologically inspired meth-

ods such as reproduction, mutation, recombination, and natural selection [1]. This

makes them ideal when exploiting nanomaterials as in-materio devices, since they

are analogue and generally lack an analytical model so have historically been treated

as black boxes. Many types of EAs have been used for EiM such as Evolutionary

Strategies [5], Genetic Algorithms [6] or Differential Evolution [7, 8, 9].

The purpose of the EA is to discover a vector of system parameters that achieves

the best possible solution θ for a selected problem. The quality of a particular

solution X is determined by an objective function Φ, used to calculate a fitness score,

as discussed in §2.4. Similarly, a population of solutions p = [X1,X2, . . . ,Xp] could

each be evaluated. In summary, the EA optimises the system’s available parameters

to achieve the best possible fitness (sometimes referred to as a loss) score. In this

section, three EAs used within the thesis are detailed.

2.3.1 Differential Evolution

Differential Evolution (DE) is an easily implemented and effective optimisation algo-

rithm for exploiting real-world parameters [10]. DE is a derivative-free, stochastic,

population-based, heuristic direct search method [11, 1] which only requires a few

robust control variables [12]; these hyperparameters include a mutation factor F ,

a crossover CR and population size λ. A trial (i.e., child) population is formed

via mutation and recombination of the parent population. These children are then

evaluated and directly replace their parents if found to have a better ‘fitness’.

The following describes how the DE algorithm is implemented, taken from [11]

where further details are available. Each member of the population i is defined
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by a d-dimensional vector of decision variables/parameters (sometimes known as a

genome):

X i,G = [x1,i,G, x2,i,G, ..., xd,i,G] for i = 1, 2, ..., λ (2.3.3)

where G is the particular generation, i is a member within a generation, and xj,i,G

is a decision variable where j ∈ 1, 2, ..., d. Population size λ does not change during

the optimisation process. An objective function Φ is used to evaluate the fitness of

any particular member of the population X i,G. The basic procedure to carry out

DE is illustrated as follows:

Step 1: Produce initial population. The initial population, generation 0, is cho-

sen randomly, with uniform probability, from the entire parameter space.

Step 2: Evaluate Population. Using the objective function, the fitness of every

population member is evaluated. If any member of the population satis-

fies the problem (i.e., if termination criteria is met), then the algorithm

terminates. Otherwise, the process continues.

Step 3: Mutation. For each target vector X i,G (i.e., the current generation of ‘par-

ents’) a mutant vector V i,G+1 is generated. This is achieved using mutation

functions such as the random-1 mutation method (rand1 ):

V i,G+1 = Xa,G + F × (Xb,G −Xc,G) , (2.3.4)

where a, b and c are integer, mutually different, random indices from the

range {1, 2, ..., λ}, and F (also known as mut) is the differential weight or

step size.

Other methods exist, such as the best-1 mutation method (best1 ):

V i,G+1 = Xbest,G + F × (Xa,G −Xb,G) , (2.3.5)

where Xbest,G is the best member of the target (parent) population, and a,

b are random indices from the range {1, 2, ..., λ}.

Once the mutant population has been created, the boundary constraints
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must be considered to prevent any violations. Often, values are just clipped

to the boundary limits [lj,mj] for the jth parameter variable, also known as

projection [13, 14] :

vj,i,G+1 =


mj, if vj,i,G+1 > mj

lj, if vj,i,G+1 < lj

vj,i,G+1, otherwise

. (2.3.6)

Similarly, other methods exist [14] such as the reflection bounds constraint:

vj,i,G+1 =


2mj − vj,i,G+1, if vj,i,G+1 > mj

2lj − vj,i,G+1, if vj,i,G+1 < lj

vj,i,G+1, otherwise

. (2.3.7)

Step 4: Crossover. In order to increase the diversity of the perturbed parameter

vectors, crossover is introduced. This acts as the recombination between the

existing target (parent) population and the generated mutated population

to produce a trial (child) population. Commonly, binomial (or uniform)

crossover is utilised, where a trial vector:

U i,G+1 = [u1,i,G+1, u2,i,G+1, ..., ud,i,G+1] , (2.3.8)

is formed, where:

uj,i,G+1 =

vj,i,G+1, if rj ≤ CR

xj,i,G, if rj > CR

, (2.3.9)

and rj is the jth evaluation of a random uniform number generator with

outcome ∈ [0, 1]. CR is the Crossover Probability, also known as crossp,

and is a constant ∈ [0, 1] selected by the user. Often, a scheme is used such
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that U i,G+1 always gets at least one parameter from V i,G+1, such as:

uj,i,G+1 =

vj,i,G+1, if rj ≤ CR or j = q

xj,i,G, if rj > CR and j ̸= q

, (2.3.10)

where q is a randomly chosen index ∈ 0, 1, ..., d.

Step 5: Selection. Now, the trial vector U i,G+1 is compared to the target vec-

tor X i,G to see whether it should become a member of generation G + 1.

Whichever has the best fitness is retained and assigned to X i,G+1, this is

repeated for every position i in the population.

Step 6: Repeat from step 2.

For a simpler explanation of the DE algorithm, a Pseudocode 1 summary can be

seen in Algorithm 2.1. Here, the algorithm is performed for I iterations before ter-

minating. The data is generally split into two subsets (described further in §3.6.1),

(i) training data which is used to update and train the population, and (ii) test data

used to provide an unbiased evaluation of the model’s performance. The best mem-

ber of the population θ is tracked, allowing a convergence plot of the population’s

best member’s test and/or training fitness. Finally, the type of DE algorithm is of-

ten written in shorthand [10] such as stating the use of a ‘DE/best/1/bin’ algorithm

(i.e., using DE, with a best1 mutation scheme, and binomial crossover).

Algorithm 2.1: Pseudocode for basic DE.
Initialise a random population p;
Evaluate initial population fitnesses;
Assign the best member of p as θ0;
for i = 0, 1, 2, ..., I do

Generate trial population t;
Evaluate trial population fitnesses;
Update population p with respect to t;
Update the best member θi;

1The algorithm pseudocode is meant to provide a less detailed but more understandable expla-
nation of the algorithm.
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2.3.2 OpenAI Evolutionary Strategy

Evolutionary Strategies (ESs) involve the evaluation of a population of real valued

genotypes, after which the best members are kept, and others discarded [15, 1, 16].

Natural Evolution Strategy (NES) are a family of ESs which iteratively update a

search distribution by using an estimated gradient on its distribution parameters

[15]. NES calculate the fitness of a batch of search points, allowing the algorithm to

capture the local structure of the fitness function. Using this the NES estimates a

search gradient on the parameters towards a higher expected fitness. Notably, NES

performs gradient ascent along the natural gradient [17, 15, 18] helping prevent

oscillations, premature convergence, and undesired effects; unlike the plain gradient

(detailed in §2.5.2).

In this section, the OpenAI Evolutionary Strategy (OpenAI-ES) algorithm [19] is

outlined, which is a type of NES. The OpenAI-ES can be thought of as maintaining

a single parent θ. During each iteration the parent is perturbed with Gaussian noise

ϵ ∼ N (0, σ2) to create a pseudo-population. Once evaluated, this pseudo-population

is used to estimate the gradient:

ĝi =
1

λσ

λ∑
j=1

Fjϵj , (2.3.11)

where σ is the standard deviation of Gaussian noise, λ is the size of the pseudo-

population, ϵj is the noise used to create the jth pseudo-population member, and Fj

is the fitness of that member. The estimated gradient ĝ is then used to update the

parent member [19]:

θi+1 = θi + αĝi , (2.3.12)

where α is the learning rate. The entire process is described in Algorithm 2.2.

Here, the typical OpenAI-ES is altered to assign a lower fitness starting θ from

an initial random population. In summary, the OpenAI-ES contains only three

hyper-paramaters: α, σ and λ.

The OpenAI-ES can rival Stochastic Gradient Descent (SGD) (introduced in

§2.5.2) for deep reinforcement learning methods with large neural networks [19].
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Algorithm 2.2: Pseudocode for OpenAI-ES.
Generate λ random starting solutions p;
Evaluate initial starting solution fitnesses;
Assign the best member of p as θ0;
for i = 0, 1, 2, ..., I do

Sample ϵ1, ..., ϵλ ∼ N (0, 1);
Calculate fitness Fj of (θi + σϵj) for j = 0, 1, ..., λ;
Set θi+1 = θi +

α
λσ

∑λ
j=1 Fjϵj;

Further work has shown OpenAI-ES can offer significant speed up [20] compared to

SGD, and highlights that the OpenAI-ES might be most useful in domains without

perfect gradient information available – as in in-materio systems. Since the OpenAI-

ES algorithm implements a complete version of SGD, improvements can be borrowed

from traditional ANNs such as implementing Adaptive Moment Estimation (Adam)

optimiser [21], a method further discussed in §2.5.2.

2.3.3 Covariance Matrix Adaptation ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is a

stochastic, or randomised, method for real-parameter (continuous domain) optimi-

sation [22]. In the CMA-ES, a population of new search points is generated by

sampling a Multivariate Gaussian Distribution (MGD). This MGD is adapted using

the fitness results from a given generation. A sample solution X is taken from the

MGD [22] using:

X = m(i) + σ(i)N (0,C(i)) , (2.3.13)

where m(i) is the distribution mean, C(i) is the distribution’s covariance matrix,

and σ(i) is the standard deviation or ‘step-size’ at generation i. The initial C(0) is

set as the identity, and the initial m(0) is set to the centre of the boundary values.

Therefore, the CMA-ES algorithm contains two hyperparameters: the initial stan-

dard deviation σ and population size λ. However, the population size is commonly

automatically assigned as λ = 4 + 3 log(d).

An update during the CMA-ES is strongly related to the natural gradient descent

[23, 24]. Indeed, CMA-ES and NES have been found to be special cases of one
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Algorithm 2.3: Pseudocode for CMA-ES.
Initialise Multivariate Gaussian Distribution N (m, σ2C);
for i = 0, 1, 2, ..., I do

Sample population t from N (m, σ2C);
Evaluate trial population fitnesses;
Update the best member θi+1;
Update σ,m,C with respect to t;

another [25]. While full details can be found elsewhere [26], an overview of the

method can be seen in the Pseudocode of Algorithm 2.3. In this work, the cmaes

python package [27] is utilised, exploiting its ‘ask’ and ‘tell’ functionality to integrate

it with existing code.

CMA-ES is a popular algorithm and overcomes some typical problems often

associated with EAs such as the need to use large population sizes or premature

convergence [28]. However, CMA-ES is generally applied to problems with dimen-

sions of up to d ≤ 100, beyond which is starts to slow down [29]. Methods exist to

produce a diagonal and/or low-rank model of the covariance matrix, allowing it to

be successfully applied to 500,000-dimensional (noise-free) problems [30].

2.4 Objective Functions

An objective function Φ is used to determine a fitness value for a particular set of

system parameters X, which represents a possible solution. For classification, this

is achieved by considering dataset D containing K data instances, and performing

some comparison between the dataset’s real labels and predicted outcomes. The

datasets are normalised and scaled before being used to train the models, further

described in §3.6.1. Therefore, an objective function allows an EA (or optimising

algorithm) to evaluate its population members and make informed choices about how

to improve its solutions. Commonly, the objective of the EA is thus to minimise

the objective function. In this work, fitness is predominantly used to denote the

quality of solution produced by a EA, whereas loss can denote the quality of solution

produced by any algorithm; therefore, in this work fitness & loss are nominally

interchangeable.
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A wide variety of objective or ‘loss’ functions for classification problems exist.

The objective function can have a large effect on the final solution of a classifier,

something explored more in §5.4. In the following, some common objective functions

used for classification are outlined.

2.4.1 Classification Error

Classification error is one of the simplest loss functions for classification problems.

The classification error of a dataset D is simply:

Φerror = 1− accuracy . (2.4.14)

which can be found using:

Φerror =
1

K

K∑
k=1

e(k) , (2.4.15)

where k is an instance within the dataset which contains K data instances, and each

data input instance produces an error value e(k) of 0 or 1 for correct or incorrect

classification respectively.

2.4.2 Mean Squared Error

A very popular loss function is the Mean Squared Error (mse) loss. The mse can

be calculated using:

Φmse =
1

K

K∑
k=1

(y(k)− ŷ(k))2 , (2.4.16)

where y(k) is the true output label/class and ŷ(k) is a model’s predicted output for

a particular data instance k.

Notably, ANNs systems deal with values and data which are often normalised or

bound between ∈ [0, 1]. Physical systems, such as in-materio conductive substrates,

are likely to operate with a larger range of real valued physical output voltage signals.

To enable comparisons between different EiM devices, or even between EiM devices

and an ANN equivalent (as done in §6.5) a Normalised Mean Squared Error (nmse)

metric was developed in Eq.6.5.10.
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2.4.3 Binary Cross Entropy

Binary Cross Entropy (BCE) or log loss is an established loss function for ML

binary classification tasks. Cross entropy generates larger loss values as the predicted

probability of a label diverges from the value of the actual label. To adapt BCE as an

objective function for EiM systems, the raw output of the EiM processor/classifier

must be first constricted to ∈ [0, 1]. To accomplish this, a sigmoid function σ(k) is

used such that for a particular input data instance:

σ(k) =
1

1 + e−ŷ(k)
. (2.4.17)

The entropy or log loss H(k) is defined as:

H(k) =

− ln(1− σ(k)), if y(k) = 1

− ln(σ(k)), if y(k) = 2

, (2.4.18)

where ln() is the natural logarithm and we assume y(k) = {1, 2} are the true labels

associated with the data. Therefore, the adapted BCE objective function that the

system attempts to minimise is defined as:

Φbce =
1

K

K∑
k=1

H(k) . (2.4.19)

2.4.4 Cross Entropy

Cross Entropy (CE) can be applied to multi-class problems to predict a loss or

fitness. In binary problems, each data instances results in a single predicted value ŷ.

In multi-class problems, each data instance k results in a vector ŷ(k) = [ŷ1, ŷ2, ..., ŷL]

containing a predicted value ŷl = {0, 1} for each of the L labels/classes. The multi-

class log loss or ‘categorical’ cross-entropy loss can be calculated using:

Φ = − 1

K

∑
k

∑
l

yl(k) ln(ŷl(k)) , (2.4.20)

where l is a class ∈ [1, 2, ..., L].
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As mentioned in the binary case above, it is often useful to consider the out-

put predictions ŷ as a probability with values ∈ [0, 1]. To achieve this, the output

predictions of a classification model can be ‘masked’ with a Softmax. The Soft-

max function behaves similarly to the sigmoid in §2.4.3, but is more applicable in

multi-class problems, ensuring that the sum of the output predictions totals to a

‘probability’ of 1. The Softmax function is defined as:

ŝl(k) = Softmax(ŷl(k)) =
exp(ŷl(k))∑
j exp(ŷj(k))

, (2.4.21)

where ŝl(k) is the predicted probability for lth class. These can then be applied to

the log-loss function and used to calculate the CE as follows:

Φce = − 1

K

∑
k

∑
l

yl(k) ln(ŝl(k)) . (2.4.22)

2.5 Feed Forward Artificial Neural Networks

Feed-forward Neural Networks (NNs) are one of the simplest forms of ANN used to

evaluate non-temporal (static) data. They are made up of three types of layers: an

input and an output layer, which are separated by one or more Hidden Layers (HLs).

These layers consist of groups of neurons. The input layer contains special neurons

that act as ‘sensor units’ which often only ‘detect’ the input features [31]. A HL

consists of artificial neurons which accumulates signals from the input layer (or the

outputs from the previous HL) and applies an activation, discussed further in §2.5.1.

There can be any number of HLs, each containing one or more neurons. The outputs

from the final HL are evaluated in the output layer which again contains artificial

neuron(s). Generally, for binary classification only a single output is required, so only

a single output neuron is needed; a binary classification decision is made based upon

whether that signal exceeds a certain threshold or not. For multi-class classification,

each class requires an individual output neuron; a classification decision is often

made depending on which output neuron generates the largest output signal for the

particular data instance. A diagram of a basic feed-forward NN structure is shown

in Fig. 2.1.
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Figure 2.1: Typical structure of a Feed Forward Neural Network.

It is key to note that in feed forward networks there are no loops in the network -

information is always fed forward, and never fed back [32]. Feed forward structures

have been extensively studied for non-temporal problems, generally designed for

multi-dimensional datasets where attributes are largely independent of one another.

They are ideal for approximating nonlinear input-output functions. Feed forward

ANNs are often referred to as shallow if they contain only a single HL and deep if

they contain more than two HLs.

2.5.1 Artificial Neurons & Activation Functions

An artificial neuron usually consists of two parts. Firstly, a weighted summation

of the previous layer’s outputs and (sometimes) a bias, followed by an activation

function. Therefore, for an input x = [x1, x2, ..., xJ ], the output of such a neuron is

expressed as follows:

y = f(w · x+ b) = f

(
J∑

j=1

wjxj + b

)
(2.5.23)

where w = [w1, w2, ..., wJ ]
T is the weight vector, b is the bias, f(x) is the activation

function of the artificial neuron. The structure of such a typical artificial neuron is

shown in Fig. 2.2.

The activation function is used to introduce non-linearity into the NN, which is

essential to solve complex functions and datasets. Common activation functions in-
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Figure 2.2: Example of an artificial neuron generating an output y from input signals
x1, x2, x3, . . . , xJ and a bias.

clude unity (i.e., linear), ReLU, sigmoid and tanh, which are shown in Fig 2.3. The

most common optimisation method for ANN is gradient descent with back propa-

gation. Therefore, ANN research has often focused on neuron activation functions

that are easily differentiable.

Figure 2.3: Some common activations functions for ANN artificial neurons.

2.5.2 Optimisation Methods

Traditional feed forward ANNs can be trained in a multitude of ways and with a

variety of algorithms, from neuroevolution to back propagation. In the following, a

few common ANNs training methods are briefly discussed.

Gradient Descent, mini-batching and Back Propagation

Gradient Descent (GD) is a method of updating a system’s (e.g., an ANN) param-

eters θ by computing (or estimating) a gradient g of the system’s loss function Φ

with respect to its parameters, and taking a step in the direction negative to that
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gradient:

θi+1 = θi − αgi. (2.5.24)

where α is the learning rate, a positive scaler used to select the step size. As such,

GD is a first order optimisation method, only considering the first order derivatives

of the loss function.

Originally, gradient descent algorithms used the entire training set, and its accu-

mulation of gradient computations, before making an update to the system param-

eters [33]. The term “batch” or “mini-batch” gradient descent often refers to more

modern methods where the training data is split into small groups (i.e., batches or

minibatches), each of which are executed and used to update the system parameters.

Originally, Stochastic Gradient Descent (SGD), sometimes called ‘online’, referred

to methods where the parameters are updated based on a single training example

(i.e., a single data instance) [34]. However, most algorithms now use more than one

but fewer than all the training samples - these days simply referred to as stochastic

methods [33]. Stochastic learning has been found to usually be much faster, es-

pecially when large datasets are being used. The act of sampling a smaller group

of data (i.e., performing batching) introduces noise, often beneficially introducing

some regularization [35].

Forward propagation is the process of applying inputs to a system and gener-

ating corresponding outputs. Back propagation (sometimes called backprop) allows

information from the output’s ‘cost’ or loss to flow back though the system in order

to compute the gradient [33, 36]. In other words, back propagation specifically refers

to the efficient method of directly computing the gradient of the system’s loss func-

tion to enable GD. Other methods to calculate or estimate a gradient exist, such as

the local perturbation method discussed in §2.3.2.

Momentum and Adam

Vanilla mini-batch GD, as described in Eq.(2.5.24), does not guarantee good conver-

gence [37]. For example, selecting proper hyperparameters can be difficult, applying

the same learning rate to all parameters can be inappropriate, and systems can often

get stuck in local minimum - especially when surrounding gradients are close to zero
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in all dimensions. The last of these is caused by typical GD being only a first order

optimisation method, where the algorithm has no knowledge of the curvature of the

loss function or ‘solution space’.

Momentum is a simple method to help mitigate some of these problems [38]. Es-

sentially, momentum accumulates gradients of the past steps, helping accelerate the

SGD in the relevant direction and dampen oscillations. This is achieved by adding

a fraction γ of the previous update vector mi−1 to the current step’s calculated gi:

mi = γmi−1 + αgi ,

θi+1 = θi −mi ,
(2.5.25)

where the initial value of the update vector m0 is set to zero. This effectively

maintains an exponential moving average of the first order gradient.

Adam is a very popular ANN optimiser [21] which computes adaptive learning

rates for each parameter. It maintains an exponential decaying average of past

gradients m (similar to momentum) and of the past squared gradients υ:

mt = β1mt−1 + (1− β1)gt ,

υt = β2υt−1 + (1− β2)gt ,
(2.5.26)

where mt and υt are the estimates of the first moment (the mean) and the second

moment (the uncentered variance) of the gradients respectively [37] and initialised

as zero. The authors [21] observed that the first and second moment are biased

towards zero, especially during the initial time steps and when the decay rates β1 &

β2 small (i.e., they are close to 1). Therefore, a ‘bias corrected’ first m̂ and second

υ̂ moments are estimated to counteract this bias:

m̂t =
mt

1− βt
1

,

υ̂t =
υt

1− βt
2

.
(2.5.27)



2.5. Feed Forward Artificial Neural Networks 38

Figure 2.4: Basic structure of an artificial SLFN used as ELM.

These then are used to update the parameters using the Adam update rule:

θt+1 = θt −
α

ϵ+
√
υ̂t

m̂t . (2.5.28)

The authors propose default values of β1 = 0.9, β2 = 0.999, and ϵ = 10−8. They

show that Adam works well in practice and compares favourable to other adaptive

learning-method algorithms.

Extreme Learning Machines

Extreme Learning Machines (ELMs) generally consist of a single hidden layer feed-

forward neural network (SLFN), as seen in Fig. 2.4. They operate by assigning

random weights and biases to the input and HLs respectively [39]. These parame-

ters are fixed and remain unchanged during training. The only parameters learned

are the weights (and sometimes biases) associated with the output layer, done during

the training phase. Therefore, ELMs converge significantly faster than traditional

ANN algorithms, such as back propagation. ELMs have been shown to perform well

and are more likely to reach a global optimum than systems with networks which

have all parameters trained [40]. Specifically, ELM systems achieve fast training

speeds with good generalisation capability.

Consider a dataset with K data instances, where a particular data instance k is
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defined by its inputs ak and its target outputs yk. A particular instance is defined by

R attributes ak = [a1, a2, . . . , aR]
T used as the ELM’s inputs, and its corresponding

target containing Q outputs as yk = [y1, y2, . . . , yQ]
T . The predicted outputs ŷ from

an ELM with N hidden neurons can be expressed as:

ŷk =
N∑

n=1

βnf(wn · ak + bn) =
N∑

n=1

βnhnk , k = 1, ..., K (2.5.29)

where wn = [wn1, wn2, ..., wnR]
T is the weight vector connecting the nth hidden neu-

ron and the input neurons, βn = [βn1, βn2, ..., βnQ]
T is the weight vector connecting

the nth hidden neuron and the output neurons, bn is the bias of the nth hidden

neuron, f(x) is the activation function of the HL neurons, and hnk is a HL neuron’s

output. A SLFN with enough hidden neurons can approximate these K samples

such that
∑N

n=1 ∥ŷn − yk∥ = 0 (universal approximation capability) [39], so there

must be a set of βn, wn and bn such that [40]:

N∑
n=1

βng(wn · ak + bn) =
N∑

n=1

βnhkn = yk . k = 1, ..., K (2.5.30)

which can be rewritten more compactly as:

Hβ = Y , (2.5.31)

where H = {hnk} (k = 1, . . . , K and n = 1, ..., N) is the HL output matrix, Y =

[y1,y2, ...,yK ]
T is the matrix of target outputs, and β = [β1,β2, ...,βN ]

T is the

matrix of output weights.

Having randomised and fixed the input layer, the output layer is then learnt

during training using training data (data sets discussed in §3.6.1). The output

weights β are traditionally obtained by the Moore-Penrose inverse. Therefore, the

smallest norm least-squares solution is:

β̂ = H†Y , (2.5.32)

where H† is the Moore-Penrose inverse of matrix H . The final solution is then
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tested on the test set to provide an unbiased evaluation of the system.

Often, many randomly initialised networks are considered, and the network size

is incrementally increased. Various methods of optimising the output layer, adjust-

ing network structure, and increasing convergence speed have been proposed [40].

Specifically, work producing an RR-ELM (Ridge Regressed Extreme Leaning Ma-

chine) algorithm [41] is highlighted, which optimises the output layer using ridge

regression rather than the Moore-Penrose method described above. The RR-ELM

algorithm is shown to have good generalisation and stability, while also reducing

adverse effects caused by perturbation or multicollinearity - properties likely to be

useful in physical systems.

Neuroevolution

The term neuroevolution [42, 43, 44] is used to describe the training of a ANN using

an EA. This can be the sole optimisation method applied to the system, or can

be used in combination with other algorithms, such as the input weights [45] or

activation function [46] of a NN being tuned by an EA while the output layer is

trained as an ELM.

2.6 AutoEncoders

An AutoEncoder (AE) is typically created using an ANN and are trained in an

unsupervised manner. AEs are formed of two parts, an encoder which transforms

the input data into a new set of features (i.e., the latent space representation), and

a decoder which attempts to reconstruct the original input data using the encoded

data. The most basic type of AE, depicted in Fig. 2.5, consists of three layers: an

input layer, a single HL, and an output layer. An AE’s output layer always contains

the same number of neurons as the input layer so that it can properly reconstruct

the input data. Larger AEs typically contain odd numbers of HLs, to ensure a

symmetrical structure.

AEs can have several uses depending on the network structure. If a constriction

or “bottleneck” is introduced to the network, then the latent space will produce a new
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Figure 2.5: Structure of a basic AE constructed using an ANN. The encoder and
decoder can consist of many HLs, but the network structure is typically symmetrical.

‘compressed’ set of features from the original data, know as dimensionality reduction.

The ability to reduce the number of input variables has a wide range of applications,

including simplifying classification datasets and better data visualisation, such as

representing the MNIST (handwritten numbers) dataset in two dimensions (R784 ⇒

R2) [47]. AEs are also commonly used for unsupervised pre-training of deep NNs [48,

49]. Other applications include data (e.g., image) de-noising and anomaly detection.

Generally, an optimising algorithm will attempt to minimise the reconstruction

error, or similar loss function, such as Mean Squared Error. Commonly, AE are

trained using gradient descent and back propagation [48, 49, 50], but neuroevolu-

tion is an alternative method which has been shown to be successful [51, 52, 53].

Indeed, it can have several advantages over back propagation, such as EAs perform-

ing global searches that help avoid getting stuck at local minima [53], or by allowing

the evolution of hyperparameters and even network structure [54, 52]. Perhaps most

interestingly is the speculation that good performance achieved by a Genetic Algo-

rithm based AEs might arise from a mutation randomly disabling some of the weights

during training [51] similar to dropout [55] (randomly disabling some neurons dur-

ing training), dropconnect [56] (randomly disabling some weights during training) or

de-noising AEs [49] (which attempt to reconstruct corrupted input data). A third,

less common method for training AEs is achieved by considering them as ELMs [57].

Evaluating the encoded features generated by an AEs is not always simple. As a
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minimum, when performing dimensionality reduction, the encoded features should

outperform Principal Component Analysis (PCA), a well-known dimensionality-

reduction technique [58]. To measure performance, an unsupervised clustering al-

gorithm [59] can be used to cluster the AE or PCA generated features. Then, the

quality of the clusters can be analysed in a supervised manner using the following

metrics:

i) Clustering Accuracy (CA), which is the accuracy of the best match between

the class labels and the cluster labels [60]. This can be defined as:

accuracy(y, ŷ) = max
perm∈P

1

K

K∑
k

(perm(ŷi) = yi) , (2.6.33)

where P is the set of all permutations when assigning labels to the clusters.

ii) Adjusted Rand Index (ARI), which is a metric that computes a similarity

between two clustering results by considering all pairs of samples and count-

ing pairs that are assigned in the same or different clusters in the predicted

and ground truth clustering results [59, 61], which is adjusted against chance.

This similarity score can be calculated using sklearn [61] and takes a value

∈ [−0.5, 1.0]; random labellings have an ARI close to 0, and a value of 1 rep-

resents a perfect match. It has been shown that ARI should be used in cases

where clusters are similarly sized [62].

2.7 Physical Reservoir Computing

Reservoir Computing (RC) is a computational framework suited for temporal/sequential

data processing. RC was first used as a method to train Recurrent Neural Networks

(RNNs), but it presents a method by which any high dimensional dynamic sys-

tem with the right dynamic properties can be used as a temporal ‘kernel’, ‘basis’

or ‘code’ to pre-process the data such that it can be easily processed using linear

techniques [63]. Indeed, as discussed by Tanaka et al [64], physical mediums can

be exploited as reservoirs within the RC paradigm. Examples of reservoirs used in

physical RC include analogue circuits, Field-Programmable Gate Arrays (FPGAs),
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Figure 2.6: A conventional RC system with a RNN-based reservoir, where only the
readout weights W out are trained, and the input weights W in & internal reservoir
weights W are fixed.

memristive devices, optical node arrays and even brain regions [64]. It is important

to consider how RC operates and how methods for physical RC implementations

might overlap with EiM processors.

The main characteristic of the original, ANN based RC method is that the input

weights and the weights inside the reservoir are not trained, only the weights of a

readout layer are trained, usually with a simple learning algorithm such as linear

regression [64]. The purpose of the reservoir is to nonlinearly transform sequential

inputs into a new, often high dimensional space such that features from the input

data can be efficiently read out by the simple learning algorithm. Consider the

generic reservoir shown in Fig. 2.6, at any discrete time n there will be a number of

inputs defined by the input vector u(n), and also a corresponding output state vector

of the reservoir units x(n) which are read out from the reservoir. Any nonlinear

dynamic system could be used instead of RNNs.

Reservoir computing models can be derived from the sub-fields of Echo State

Networks (ESNs) and Liquid State Machines (LSMs), each of which details a sepa-

rate approach to perform RC, and which are briefly outlined here. The ESN model

was proposed by Jaeger [65] and defines the states of a reservoir as:

x(n) = f
(
W inu(n) +Wx(n− 1) +W fby(n− 1)

)
, (2.7.34)

where W in is the weight matrix for the reservoir-input connections, W is the weight

matrix for the recurrent (internal) reservoir connections. If feedback from the out-
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puts of the reservoir y(n) are used, then Eq.(2.7.34) also includes a weight matrix

for the feedback W fb. The function f represents the behaviour of the reservoir. The

trained output is commonly given by a linear combination of the reservoir states

with the trained output weight matrix W out:

y(n) = W outx(n) . (2.7.35)

The performance of the ESN depends on the reservoir, which must have the echo

state property.

The LSM model was proposed by Maass et al. [66]. Its purpose is to develop

biologically relevant learning models using Spiking Neural Networks (SNNs) with

recurrent connectivity. It uses liquid reservoirs, where the probability that two

neurons are connected depends on the distance between them. In order for a machine

M to map input functions of time u(.) to output functions y(.), we assume that it

contains some "liquid" that generates, at every time t some internal states xM(t):

xM(t) =
(
LMu

)
(t), (2.7.36)

where LM is the filter for transforming the input into the reservoir state. The output

y(t) is given by:

y(t) = fM
(
xM(t)

)
, (2.7.37)

where fM is a memory-less readout map (i.e., not required to retain any memory

of previous states). A simple ML algorithm can be used to train the readout map

such that a target output function/sequence y(.) can be achieved.

One driving force behind conventional RC is that a particular RNN reservoir

might perform well without the need for extensive conventional training. This led

to a technique which could be successfully applied to physical reservoirs that are

often difficult to model and treated as black boxes. As discussed in §1.3 & 1.4, using

a physical analogue system might have benefits, such as possible low-power and

efficient computing. Notably, the RC paradigm often limits itself to a fixed reservoir
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– this being one of the major benefits when training artificial RNNs. However,

physical reservoirs might in fact benefit from tuning similarly to EiM processors.
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3.1 Chapter Overview

Having established background knowledge on Evolutionary Algorithms (EAs), ob-

jective functions, and other wider theory, this chapter considers how a material (or

medium) can be leveraged as an Evolution in-Materio (EiM) processor. Specifically,

this chapter focuses on how a conductive nanomaterial substrate can be exploited

as a Configurable Analogue Processor (CAP) (also referred to as a material or

in-materio processor) and be formulated as a EiM device used for classification.

Previously, the literature has used a wide range of methods and system setups. The

developed EiM processor in this work presents a standardised framework, allow-

ing for consistent and reliable investigation throughout this thesis and for future

researchers.

An obstacle for the development of EiM devices has typically been the slow

52
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fabrication and experimentation of physical devices. To overcome this, an elec-

trical model combining python and Simulation Program with Integrated Circuit

Emphasis (SPICE) was produced1, enabling conductive networks to be simulated

and leveraged as a proxy for physical CAPs. This allowed for fast, efficient in-simulo

experimentation into the EiM computing paradigm.

Lab-based experimentation is also performed in this thesis, which required the

production of a Hardware Interface (HI) to apply and read voltage signals to a

conductive network or nanomaterial substrate. The system used a Raspberry Pi to

host an optimising EA and execute the experimental procedures. A custom Software

Interface (SI) was produced1 to convert higher level python functions into lower level

hardware commands. This physical test platform was used to exploit a complex

Lambda Diode Network as a computational resource, as seen in chapter 6.4. These

Lambda Diodes are similar to tunnel diodes, with a non-monotonically increasing

Current-Voltage (IV) characteristic, presenting interesting properties which can be

leveraged, similar to dopant atom networks [1, 2].

Finally, some synthetic and real datasets are introduced. These were used to

benchmark EiM processors, new novel in-materio device structures, and other clas-

sification methods throughout the thesis.

3.2 Configurable Analogue Processor

A CAP, also referred to interchangeably as a material or in-materio processor, op-

erates by some material (or medium) projecting input signals to a new, often higher

dimensional, representation. This transformation can be configured by tuning stim-

uli signals or other system parameters. This work focuses on conductive networks

or nanomaterials which operate as the material processor within an EiM system.

While systems could be selected to be configured using a variety of different exter-

nal stimuli, such as light [3], vibrations/acoustics [4] or radio waves [5], research has

often focused on substrates which can be interacted with via the application and

reading of voltages, due to its simple implementation.

1 https://github.com/benedictjones

https://github.com/benedictjones
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Vc

M VoutVin

Figure 3.1: Representation of a configurable analogue or ‘material’ processor as a
black box which transforms input data voltages V in and configurable stimuli V c

signals into new output representations V out.

Consider a material processor which contains P -inputs and Q-outputs. Input

signals are broken into input configuration ‘stimuli’ voltages V c = [V c
1 , V

c
2 , ..., V

c
S ]

used to alter how the material processor behaves, and input ‘data’ voltages V in =

[V in
1 , V in

2 , ..., V in
R ] used to apply information to the material processor, where S is

the number of stimuli, R is the number of data voltage inputs, and P = S + R.

Once the input signals have been applied, the output signal can be read from the

material processor. The outputs generated can be considered to be the result of a

black box transformation, defined by the function M as follows:

V out = M(V in,V c) , (3.2.1)

where V out = [V out
1 , V out

2 , ..., V out
Q ] is the vector of output voltages read from the

CAP. A visualisation of such a conductive material based processor is presented

in Fig. 3.1. To utilise such a system as a fully fledged EiM processor, the chal-

lenge becomes how best to interpret the output signals and optimise the system’s

configurable parameters for the task at hand.
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3.3 EiM for Classification

As previously discussed in §2.2.1, traditional EiM devices have typically used either

single output-threshold [6, 1, 2] or output-output comparisons [7, 8], to predict a

particular label or class. However, it is hypothesised that using only one or two

fixed outputs is likely to lead to inflexible systems and poor performance, where

an apparently badly performing material cannot be appropriately reconfigured for

maximum exploitation. For example, while one output electrode/node might lead to

poor performance, another might produce useful output signals. Indeed, some initial

work using multiple outputs [9] and insights from Physical Reservoir Computing

(RC) [10, 11] supports this.

For this reason, an alternative EiM processor structure was developed. Consider-

ing the basic structure of a material processor presented in §3.2, a generic framework

for its computational exploitation is produced.

Consider a classification problem as detailed in §3.6.1, containing K data in-

stances to be classified. Each data instance k is defined by its J attributes a(k) =

[a1(k), a2(k), . . . , aJ(k)] . These input attributes are converted to input data voltages

V in
r (k) which are applied to one of the input electrodes as follows:

V in
r (k) = ar(k) , (3.3.2)

where r is a data-driven input electrode corresponding to an input attribute, assum-

ing a 1:1 conversion between the attribute unit and Volts, and the total number of

data-driven input electrodes R is equal to the total number of data attributes J .

A basic EiM processor might just be configured using voltage stimuli [12] that

will alter the characteristics of the material, as mentioned in §3.2. The system’s

configurable parameters are gathered together into a vector of decision variables X.

Therefore, a potential ‘configured’ solution for this basic EiM processor would be

defined by a set of static configuration voltages applied to the material [6, 13], and

the decision vector, sometimes known as a genome, would be defined as:

X = [V c
1 , V

c
2 , ..., V

c
S ]

T , (3.3.3)
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Figure 3.2: Illustration of the proposed EiM processor structure, where output sig-
nals are collected using an output layer and combined to create an overall processor
response Y used to make a classification prediction ŷ.

where T is the transpose, V c
s is a stimuli voltage applied to a configuration electrode

s, and the total number of configuration electrodes is S.

Once the input data and stimuli signals have been applied, the outputs can be

read. However, these material outputs require some interpretation scheme in order

to classify a processed input data instance. Here, an output layer is introduced,

which collects the output voltage signals and produces an overall network response

Y , defined as the sum of the voltages V out
q (k) at all the output nodes q:

Y (k) =

Q∑
q=1

V out
q (k) , (3.3.4)

where Q is the total number of output nodes/electrodes.

The collected response Y , is compared with a simple threshold to make a predic-

tion. For binary classification, a data instance is designated a predicted class label

using:

ŷ(k) =

2, if Y (k) ≥ 0

1, if Y (k) < 0

, (3.3.5)

where ŷ is the predicted class or label of the processed data instance. The structure

of the proposed EiM processor is shown in Fig 3.2.

Finally, the fitness for a particular configuration of the EiM can be computed

using an Objective or Loss Function Φ, as discussed in §2.4. In order to improve the

system, an EA is used to optimise the system’s decision parameters X, as discussed
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in §2.3.

The lack of consistency of EiM system structure and interpretation scheme in the

literature makes it difficult to compare techniques and isolate which changes lead

to more (or less) successful EiM processors. The interpretation scheme described

above, defined by Eq.(3.3.4) and Eq.(3.3.5), was chosen to be conceptually simple,

with the aim of clarifying the role of material properties upon performance. The

choice of interpretation scheme can impact the performance of an EiM processor,

this is discussed in further detail in §4.2. It is noted, however, that the framework

developed and used here could be modified to examine other arbitrary network

topologies or interpretation schemes.

3.4 Simulated CAP Model

In order to quickly and efficiently analyse different material and algorithm properties,

a model was developed to simulate a conductive network which could act as a proxy

for a physical nanomaterial. The material model was based on circuit networks which

could be solved by a SPICE simulator. PySpice 2 was used to interface a python

program (which can run the optimising EA etc.) with Ngspice 3, an established

open source mixed level circuit simulator.

Many EiM processors utilise nanomaterials that provide complex morphology

with random interconnections between electrodes, such as Single Walled Carbon

Nanotubes (SWCNTs). Thus, within the model, conductive networks are generated

in which all nodes are interconnected via an equivalent circuit ‘rmn’ which have IV

characteristics selected from a distribution similar to that of a real nanomaterial.

Each node n represents an electrode that is either an:

• Input driven voltage nodes, which can be purposed as data-driven voltages

V in or configuration voltage stimuli V c,

• Read output voltages V out, computed via Direct Current (DC) operating point

analyses.

2Developed by Fabrice Salvaire https://github.com/PySpice-org/PySpice
3https://ngspice.sourceforge.io/

https://github.com/PySpice-org/PySpice
https://ngspice.sourceforge.io/
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Figure 3.3: Example of a 5 node fully connected network used to model EiM material
processors, with three input nodes (V in

1 , V in
2 and V c

1 ) and two output nodes (V out
1

and V out
2 ). Input nodes can be allocated as data-driven voltages V in or configuration

voltage stimuli V c. Between every pair of nodes is a component (i.e., complex sub-
circuit) modelling a particular material property.

An individual processor is thus characterised by the equivalent circuits between

nodes, and the number of nodes (which represent electrode connections) required for

the inputs and outputs. Figure 3.3 shows an example of a fully connected network,

containing three input and two output nodes, which could be used as a material

processor within an EiM system. The equivalent circuits between nodes are selected

to replicate different functional forms of conductivity and randomness therein.

Thus, this model describes the IV characteristics of an ensemble of nanoparti-

cles between electrodes of the EiM processor, rather than individual elements [14]

or junctions [15]. The motivation for this approach was that individual nanopar-

ticles are usually at least an order of magnitude smaller than the electrode array

upon which they are deposited [7, 6, 16] and so it is generally only possible to ex-

perimentally characterise a network of nanoparticles, rather than the nanoparticles

themselves. In this work, three material models are considered:

• Resistor Random Network (RRN) in which a randomly selected resistor is

between every node pair,

• Non-Linear Random Network (NLRN) in which a current source of non-linear

characteristic is between every node pair,

• Diode Random Network (DRN) in which a diode of random orientation is in
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series with a randomly selected resistor between every node pair.

Note that since this model’s focus is to investigate the foundational issues of ran-

domness and conductivity, the impact of negative differential resistance offered by

memristive materials [17], and physically reconfigurable materials such as nanoma-

terials suspended in solution [8], are outside its scope.

The non-linearity of the conduction within the materials increases from the RRN,

to NLRN, to DRN models. These models were chosen to represent a range of

conduction mechanisms that could be realised with nanomaterials. RRN networks

have been reported in the literature [18, 19]. The NLRNs are modelled after the

behaviour of on SWCNT/Poly(butyl methacrylate) (PBMA) composites; assuming

the IV characteristic was symmetrical, experiments (Appendix B.1) found they could

be fitted well using current source equations defined as:

I =

aV 2 + bV , if V ≥ 0

−aV 2 + bV , if V < 0

, (3.4.6)

where a and b are material properties, I is the current and V is the voltage be-

tween nodes/electrodes. Lab-based tests were carried out to determine that a ∈

[33n, 170n] and b ∈ [280n, 960n]. These limits were used to generate uniformly

distributed random a and b values for the simulated NLRN materials. Finally, the

DRN is a natural extension to the modelled NLRN, representing a highly non-linear

nanomaterial with a non-symmetrical IV characteristic. The RRN and DRN use

resistor values uniformly randomly selected from between ∈ [10, 100]kΩ, the DRN

uses 1N4148PH diodes of random direction, and all the simulated systems use volt-

ages ∈ [−5, 5]V unless otherwise stated. A shunt resistor of 70 kΩ is connected to

each output node, and an input resistance of 200Ω applied to each input node, as

shown in Fig 3.3.

When a new material is generated, a specific random seed is used, which can

be recalled to re-use the same network. Additionally, these SPICE netlists can

be saved and used to re-create the RRNs and DRNs physically. Indeed, physical

manifestations of example RRN and DRN were constructed using discrete circuit
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components and tested using a custom test bench to verify the model’s behaviour

(Appendix B.2). However, the NLRNs are theoretical, representing the expected

behaviour of the SWCNT composites described above.

3.5 Physical Experimentation

3.5.1 Test Platform

A test platform was needed to interface with conductive networks (or nanomaterials),

enabling lab-based experiments to implement EiM processors. To achieve this, some

hardware, sometime known as an ‘evolvable motherboard’ [8], is required to translate

signals from the computer into physical inputs and stimuli – which in this work is

done via application and interpretation of voltages.

The test platform produced for physical experiments in this thesis consists of

two parts. Firstly, a HI which is the physical interface used to set and read voltages.

Secondly, the SI which consists of the software used to communicate and control the

physical hardware. These two halves of the test platform are explored in further

detail below.

Hardware Interface

In preparation for physical experiments on real nanomaterials (or conductive net-

works) a HI was produced. Previous designs at Durham by Eléonore Vissol-Gaudin

[8] used an Mbed microcontroller connected to a PC. However, this design lacked

some features such as the ability to apply positive and negative voltages, or change

the allocated purpose of a pin (i.e., changing a particular pin to an output or in-

put). Other such similar test platforms include the versatile Mecobo board [20, 21],

which allowed more flexibility in assigning pin functionality and producing static or

some temporal (e.g., PWM) signals. Mecobo did allow voltage signals ∈ [−5, 5]V ;

however, these were encoded using a [0, 255] (i.e., 8 bit) range.

For this work, a new system was developed which used a Raspberry Pi to both

host the optimising EA and control the HI. The HI was realised using a Printed

Circuit Board (PCB) whose main components consisted of higher resolution 12 bit
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Digital to Analogue Converters (DACs) to apply voltages, 12 bit Analogue to Dig-

ital Converters (ADCs) to read voltages, an analogue Multiplexer (MUX) used to

toggle connections, Operational Amplifiers (Op-Amps) to amplify signals, and the

Raspberry Pi which could communicate and control components over the Serial

Peripheral Interface (SPI) interface.

The design process allowed for rapid prototyping and hot swapping of compo-

nents when required. Three versions of the HI were developed as the design was

iterated upon. The introduced features during this process were as follows:

– HIv1 Initial design, where voltages ∈ [0, 10]V could be applied to any of sixteen

pins, which connect to a substrate’s micro-electrode array. An analogue MUX

was used to toggle four of these pins to perform as outputs (connected to an

ADC) or inputs (connected to a DAC).

– HIv2 An amplification layer was added to scale the DACs outputs to a ∈ [−10, 10]V

range, allowing both positive and negative voltages to be applied. Similarly,

the read voltages are compressed to a range ∈ [0, 5]V which can be interpreted

by the precision ADC. The ADCs now uses a dedicated chip enable pin to

achieve faster read speeds.

– HIv3 Updated design using more precise Op-Amps and a dedicated 5V reference

chip to reduce system noise.

The final HI design (i.e., version 3) is used for the physical experimentation found

elsewhere in this Thesis. A schematic of the final HI can be seen in Fig. 3.5 and

images of the PCB can be seen in Fig. 3.4. A condensed Bill Of Materials (BOM)

containing the main components for the final design is provided in Table 3.1.
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Figure 3.4: Top and bottom side of the final HI PCB.

Table 3.1: Condensed BOM for the final HI, detailing the Integrated Circuit (IC)
components used.

Component Description Number

MCP3204 Four channel 12 bit ADC 1

MCP4822 Two channel 12 bit DAC 8

DG333A Precision Quad SPDT Analogue

Switch (i.e., Multiplexer)

1

OPA4134 High precision op-amp 6

LF347DT Op-amp 1

ADR4550BRZ 5V Reference Chip 1
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Figure 3.5: Schematic of the Hardware Interface (HI).
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Software Interface

The SI encompass the code, written in python, which the Raspberry Pi can run to

communicate with the different ICs in the HI. These ICs can be controlled either

by the SPI interface or by using the Raspberry Pi’s General Purpose Input/Output

(GPIO) pins as chip enables. The SI provides a layer of abstraction where higher

level commands (e.g., capture and average several voltage readings) can be executed

using the lower level code.

3.5.2 Physical CAP

Work in chapter 6 conducts lab-based experiments which implement an in-materio

based Neural Network (NN) using Lambda Diode Networks (LDNs) as physical

neurons. These physical LDNs are exploited as configurable analogue processing

units within this novel system.

Lambda Diodes (LDs) consist of a pair of Junction-gate Field-Effect Transistors

(JFETs) configured as a two-terminal device [22] and produce an IV curve that

contains negative resistance similar to a tunnel diode [23], i.e., they have a non-

monotonically increasing IV curve. When several LDs are connected in a network,

this negative resistance can produce interesting interactions. Reliable simulation

of such non-monotonic IV devices has been of interest [24, 23]. However, when

Figure 3.6: The custom Lambda Diode Network (LDN) leveraged as a physical
neuron, containing three inputs (V in

1 , V in
2 , V c) and three outputs (V out

1 , V out
2 , V out

3 ).
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wired in large multi-node networks, they can be difficult to simulate with reliable

convergence. Conversely, a physical LDN represents a good proxy for a nanomaterial

substrate, which is easily constructed and replicates properties found due to (e.g.,)

hopping conduction [1], without the need for simulation.

The LDN constructed and leveraged as a physical neuron in this work can be

seen in Fig. 3.6. The network contains six nodes: three inputs and three outputs.

Of the inputs, two are assigned as ‘data inputs’ and one as a ‘configurable stimuli’.

Selecting such a small network allows for better visualisation and interpretation of

the physical neuron’s behaviour, as performed in §6.4.1.

3.6 Datasets

3.6.1 Classification Datasets

A classification dataset is a dataset used primarily to solve classification problems,

which is the process of assigning a label (i.e., class) to a data instance based on its

properties. Here, multi-class datasets are considered where each data instance is

assigned to only one label. Consider a dataset D which contains K data instances,

each of which belongs to one class ∈ [y1, y2, . . . , yL]; note that binary classification

is when data is assigned to one of only two classes. Each data instance k contains

J attributes a(k) = [a1, a2, . . . , aJ ] which are fed into a model and used to make an

informed prediction of the data instance’s label.

In order to both train and evaluate a classification model, a dataset is normally

split into two subsets: a training set Dtrain used to optimise the system parameters,

and an unseen test set Dtest used to give an unbiased evaluation of the model’s

performance. In this work, the dataset is generally normalised and then scaled to

the selected maximum and minimum system voltages. The fitness of the training

and test subset can be tracked during evolution, to analyse performance and ensure

that an optimising algorithm is successfully converging to an adequate solution.
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Figure 3.7: The lineally separable (a) 2DDS, the concentric (b) con2DDS, the half
moon (c) hm2DDS, and the spiral (d) sp2DDS synthetic two-dimensional datasets.

Synthetic Datasets

To perform some initial investigation of both EiM processors and their exploiting

algorithms, some synthetic datasets were generated. These consist of a linearly

separable two-dimensional dataset (2DDS), a concentric two-dimensional dataset

(con2DDS), a half moon two-dimensional dataset (hm2DDS), and a spiral two-

dimensional dataset (sp2DDS). These datasets have been plotted in Fig. 3.7, with

further details provided in Table 3.2.

Table 3.2: Synthetic dataset details.

Details
Dataset No Attributes No Instances (K) No Classes Class Ratios
2DDS 2 1000 2 0.50/0.50
con2DDS 2 1000 2 0.50/0.50
hm2DDS 2 1000 2 0.50/0.50
sp2DDS 2 1000 2 0.50/0.50
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It is noted that these datasets can also have their classes flipped with respect to

their original data labels. In this case, the dataset would be denoted by adding a

‘flipped’ prefix; for example: flipped2DDS.

Real Datasets

The remaining classification problems considered in this thesis consist of several

common machine learning datasets found on the UCI repository [25]. These include

the Banknote Authentication (banknote) dataset [26], the Mammographic Mass

dataset (MMDS) [27], the Iris dataset (iris) [28], the Raisin dataset (raisin) [29], the

Pima Indians Diabetes Database dataset (diabetes), the Wine (wine) dataset [30],

the Australian Credit Approval dataset (aca) [31], and the Wisconsin Diagnostic

Breast Cancer dataset (wdbc) [32]. The properties of all these datasets are detailed

in Table 3.3.

Table 3.3: Real dataset details.

Details
Dataset No Attributes No Instances (K) No Classes Class Ratios
banknote 4 1372 2 0.55/0.45
MMDS 4 831 2 0.52/0.49
iris 4 150 3 0.33/0.33/0.33
raisin 7 900 2 0.50/0.50
diabetes 8 768 2 0.65/0.35
wine 13 178 3 0.33/0.40/0.27
aca 14 690 2 0.55/0.45
wdbc 30 569 2 0.63/0.37
digits 64 1797 10 ∼ 10% per class

Dataset Complexity

The complexity of a dataset will affect how easily it can be classified [33]. Typical

measures include Fisher’s Discrimination Ratio (f1) or the Volume of Overlap Re-

gion (f2). These are both indicators about the overlap of individual feature values.

However, there are in fact several classes of complexity measures [34], which can be

grouped as follows:
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• Feature Based measures that characterize how informative the available fea-

tures are to separate the classes,

• Linearity measures that try to quantify whether the classes can be linearly

separated,

• Neighbourhood measures that characterize the presence and density of same

or different classes in local neighbourhoods,

• Network measures that extract structural information from the dataset by

modelling it as a graph,

• Dimensionality measures that evaluate data sparsity based on the number

of samples relative to the data dimensionality,

• Class Imbalance measures that consider the ratio of the numbers of examples

between classes.

A visualisation of the complexity of the discussed classification datasets is shown

in Fig. 3.8, generated using the python problexity package [35]. While further

details about the specific measures used are given in Appendix A.1 and the literature

[33, 34, 35], in general “more colour” relates to a more complex classification dataset.

3.6.2 AutoEncoder Datasets

Finally, the Optical Recognition of Handwritten Digits Data Set (digits) [36] is

included, as taken from sklearn [37]. This is a smaller collection of handwritten

numerical digits from 0 to 9, each made of 8× 8 pixels; further details are provided

in Table 3.3. This dataset is used to train an in-Materio AutoEncoder in §6.5.
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Figure 3.8: Complexity plots as generated by problexity [35] for the classification
problem datasets, further metric details given in Appendix A.1. In general, “more
colour” represents a higher degree of complexity for the specific complexity measure.
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4.1 Chapter Overview

Monolithic Evolution in-Materio (EiM) devices are systems which attempt to exploit

a nanomaterial substrate as a computational resource. While any interfaceable

material or medium could be used, conductive nanomaterials are typically utilised

since they can be easily interacted with by voltage signals. Therefore, EiM systems

are often built from a nanomaterial which is operated as a Configurable Analogue

Processor (CAP), often referred to here as a ‘material processor’, whose complex

physical properties are exploited and leveraged towards a desired computational

task. EiM processors are thus comprised of a material whose characteristics are

determined by its configuration, and programming (or re-programming) is achieved

by an Evolutionary Algorithm (EA) which optimises the material’s configuration for

a target application.

The electronic functionality of EiM processors is not designed by the assembling

of discrete components, rather an optimal material configuration is evolved through

74
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Figure 4.1: EiM processor structure as discussed in §3.3, where output signals are
collected using an output layer and combined to create an overall processor response
Y used to make a classification prediction ŷ.

a supervised learning process. The human element of EiM processor design is the

selection of a configurable material, and an appropriate algorithm to efficiently ex-

ploit its properties for the target application [1, 2, 3, 4]. The importance of material

selection in this process is underscored by the significant differences in computing

function observed when different configurable materials are optimised by the same

algorithms to solve the same problems [4, 5, 6].

This chapter seeks to address the fundamental issue of what material properties

lead to better performing EiM processors, and which configurable parameters can

ensure they are best exploited. These largely unanswered questions have historically

been complicated by the many and varied styles of EiM processor design, along with

slow development and implementation times.

Here, the standardised EiM structure (Fig. 4.1) and simulation model developed

in §3.3 and §3.4, allows us to directly relate the choice of nanomaterial used, via

the Current-Voltage (IV) characteristic, and algorithm configuration parameters to

the classification performance. The framework developed enables reliable and re-

peatable results, as well as significantly faster investigation into EiM systems than

would otherwise be possible with physical construction and experimentation. It was

demonstrated that problem complexity influences the most beneficial nanomaterial

choice, and furthermore, that design of the algorithm could lead to better exploita-

tion of intrinsic properties. Together, these findings show how EiM processors can

be designed to give better performance for classification problems. The results dis-



4.2. Algorithm & Material Interaction 76

cussed in this chapter contributed to work presented in the MIT Press Evolutionary

Computation (ECJ)1 Journal [7].

4.2 Algorithm & Material Interaction

4.2.1 Material Properties and Stimuli Voltages

Firstly, the role of material properties on processor performance was examined.

In §3.4, three simulated CAP conductive networks were developed for this pur-

pose, including the Resistor Random Network (RRN), Non-Linear Random Net-

work (NLRN) and Diode Random Network (DRN) models. Using these simulated

material processor models, conductive networks with two input nodes, two outputs

nodes and two configuration nodes were generated. Fig. 4.2a, 4.2b and 4.2c show

surface plots of network response Y , relating to the sum of voltages from output

nodes (Eq.(3.3.4)), for a range of data inputs a1 and a2, for the RRN, NLRN and

DRN models respectively. These plots show the behaviour of only a single of each

type of material processor, not meant to be exhaustive, but selected to show an

example of the underlying behavioural trends. Here, the two configuration voltages

V c
1 and V c

2 are varied so that their role is highlighted. The network response Y is

used as the criterion by which classification is made (Eq.(3.3.5)) and represents the

output space which the inputs have been mapped onto. The line Y = 0, which is

the threshold between the classes, is denoted as the decision boundary. For the un-

configured (Vc1 = Vc2 = 0V ) RRN processor, the decision boundary is a straight line

which passes through the origin. Unlike the RRN, the NLRN processor can achieve

a smooth curved decision boundary due to its non-linear conduction characteristics.

By contrast, for DRN processors, the decision boundary has distinct bends or ‘kinks’

brought about by rapid changes in conductivity when a diode is turned on. Hence,

it is observed that the intrinsic properties of the nanomaterial, namely randomness

and degree of (non-) linearity in conduction, have significant effects upon the shape

of Decision Boundaries in untrained processors. Even nominally the same material

1https://direct.mit.edu/evco

https://direct.mit.edu/evco
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Figure 4.2: Examples of the role that the material and configuration voltages have
on untrained EiM processor responses. Surface plot of the network response, Y as a
function of input attributes a1 and a2 for an untrained (a) RRN, (b) NLRN, and (c)
DRN processor, and the effect of varying their two configuration voltages V c

1 and
V c
2 .

can have significantly different boundary shapes due to the differences in inter-node

(i.e., inter electrode) characteristics.

A material without any evolvable stimuli can be used to map some inputs to

a new output space. However, EiM processors have been shown to provide supe-

rior classification performance when trained configuration voltages are applied to

the network [2]. Thus, Fig. 4.2 also displays the impact of changing the two con-

figuration voltages for the considered networks. EiM processors often operate at

low voltages [8, 9, 4] so the effect of applying −5V to 5V is considered. These

voltage stimuli behave similarly to input biases, however not only ‘shifting’ the out-

put, but also varying how the inter electrode IV characteristics are being exploited,

thereby altering how the inputs are mapped to the output space. Within the linear

RRN network, application of configuration voltages only leads to a translation of

the decision boundary, as a consequence of superposition, and that in no cases is

a rotation of the decision boundary observed. For the NLRN and DRN network, a

translation of the decision boundary is again observed when configuration voltages

are applied, together with some changes in curvature, although not to an extent
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where the relative orientation of the two classes is changed. These observations are

of significant practical importance, as it shows that the orientation of the decision

boundary for both Ohmic and non-Ohmic solid nanomaterials is a function of the

random IV characteristics determined during fabrication. An inability to rotate the

decision boundary via the configuration voltages to satisfy a particular classification

problem may be expected to limit the fitness which an algorithm could obtain.

Basic Classification Performance

To investigate this finding further, the performance of the different networks as EiM

processors was assessed for the 2DDS problem, split 80% − 20% to create training

and test datasets respectively; as described in §3.6.1. The system was optimised

using a DE/best/1/bin algorithm with a clipped boundary constraint, used with a

mutation factor of F = 0.8, crossover rate of CR = 0.8 and population of λ = 20.

These hyperparameter values were selected to match previous similar work [10] in

which they were found to perform well; note that the small, simple systems optimised

here are unlikely to be largely effected unless highly inappropriate hyperparameter

values are selected. Fifteen different individual RRN, NLRN and DRN networks

were considered and optimised as a classifier using the Differential Evolution (DE)

algorithm and classification error objective function (Φerror) as described in §2.3.1

and §2.4.1 respectively. Here, slightly larger networks were used, each of which had

two inputs, two outputs and three configuration nodes. To ensure that randomness

within the stochastic algorithm optimisation process did not obscure other trends,

the evolution process was repeated on each network 5 times. The test fitness (Φtest)

Table 4.1: The mean test fitness Φ̄, standard deviation, and best test fitness Φ∗

after 30 iterations, for the different EiM processors.

Dataset Processor Type Φ̄ std(Φ) Φ∗

2DDS
RRN 0.000 0.000 0.000
NLRN 0.000 0.000 0.000
DRN 0.005 0.001 0.000

flipped2DDS
RRN 0.514 0.004 0.500
NLRN 0.500 0.000 0.500
DRN 0.500 0.000 0.500
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Figure 4.3: Example processor responses following training using the basic algorithm
for 30 iterations. Surface plot of the network response, Y as a function of input
attributes a1 and a2 for a (a) RRN, (b) NLRN, and (c) DRN processor, using the
basic EiM algorithm on the 2DDS. The same colour scale as Fig. 4.2 is used.

results for each of the processor types after 30 iterations are shown in Table 4.1.

All the RRN and NLRN processors achieved a zero Φerror fitness (i.e., 100%

accuracy). However, some of the DRN processors failed to achieve a zero fitness.

The more linear networks have simpler Decision Boundaries which are favourable

for the simple 2DDS. Examples of the network response for a trained RRN, NLRN

and DRN achieving 100% accuracy are shown in Fig. 4.3.

Using the same material processors and repeating the experiment on the flipped2DDS

(Table 4.1) shows all the processor types becoming ‘stuck’, in this case being un-

able to improve their fitnesses below 0.5. This is because the processors now have

unfavourable initial slopes of the decision boundary with respect to the dataset. As

the basic algorithm is unable to rotate the decision boundary or make large changes

in its curvature, the best that the EA can achieve is to misclassify 50% of the data.

These results provide an explanation as to why some experimental data [11] show

that nanomaterial composites fail to achieve acceptable classification accuracies fol-

lowing training.

4.2.2 Electrode Reconfiguration and Weighting

While on the one hand, the results in §4.2.1 suggest it should be possible to screen

candidate processors prior to possibly lengthy and unsuccessful training, it is argued
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that they also suggest a method to exploit nanomaterial composites more effectively.

The success or not of the DE algorithm to exploit the nanomaterial is limited by the

inter-node IV characteristics, which for solid ‘static’ nanomaterials, is determined at

creation. However, it is possible to re-arrange the input and configuration nodes and

thus realise different arrangements of inter-node IV characteristics without changing

the material. Input electrodes can be used for data driven or configuration voltages,

the function of an input electrode and the ability to ‘shuffle’ or relocate different

inputs can be easily controlled while programming. On the other hand, a multiplexer

could be used to physically reconnect an electrode as either an input (e.g., to a Digital

to Analogue Converter (DAC)) or output (e.g., to a Analogue to Digital Converter

(ADC)).

Indeed, some EiM approaches have this flexibility by allowing the EA to modify

node location [12, 11]. It is reasoned that changes to the inter-node IV character-

istics are likely to result in uncovering exploitable configurations of a nanomaterial

composite’s conductive network.

This supposition is explored in Fig. 4.4 which shows four examples of the same

network’s output response Y , with no configuration voltages applied, but with ran-

domly reordered input (data & configuration) node arrangements for the same net-

works. Here, only four random input arrangements are shown as examples for each

material type, this is not meant to be exhaustive. Indeed, the number of possible

input permutations scales quickly with the number of inputs (e.g., for materials with

four input nodes there are twenty four possible input arrangements etc.), making it

difficult to investigate. In this work, to better understand its uses, the limitations of

the technique are considered. It is observed that different input arrangements have

a different shape of decision boundary that could be exploited to fit classification

data. Furthermore, some slight variations in the slope of the decision boundary

are observed, albeit in a discontinuous fashion. However, due to the interpretation

scheme defined by Eq.(3.3.4) and Eq.(3.3.5), it is always the case that (e.g.) two

positive inputs can only provide a positive (and therefore class 2) output. This in

turn suggests that introducing evolving multiplication factors or ‘weights’ for the

applied input voltages or read output voltages may be beneficial, as this may al-
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Figure 4.4: Examples of the impact that electrode reconfiguration can have on
untrained EiM processor responses. Surface plot of the network response Y as a
function of input attributes a1 and a2 for four randomly selected shuffle genes (i.e.,
permutations of the input voltage order) of an unconfigured (a) RRN, (b) NLRN,
and (c) DRN processor. The same colour scale as Fig. 4.2 is used.

low unconstrained rotation of the decision boundary. Other types of interpretation

scheme, previously mentioned in §2.2.1, might prove similarly limited without their

own additional evolvable parameters.

The impact of varying output weights on the material response Y for an un-

configured RRN, NLRN and DRN processor is investigated in Fig. 4.5. Inverting

the polarity of one output weight allowed the introduction of more complex be-

haviour into the material’s response, such as the gradient for the RRN processor,

and complex boundary shapes of the NLRN and DRN processors. As expected

due to symmetry, inverting the polarity of both output weights caused the classes

to swap. Using output weights of opposing polarities generally made the decision

boundary less ‘sharp’ since subtracting values leads to Y values closer to zero, which

in turn would make a physical EiM processor more susceptible to noise. Fig. 4.5 also

shows the effect of input weights to the same RRN, NLRN and DRN networks. It is

notable that changing input and output weights yield different responses, since input

weights cause a change in input voltages which must propagate though the material

network. This is particularly important for the DRN, since due to its asymmetric

non-linear IV characteristics, changing the input weights impacts when diodes are

turned on, so inverting the polarity of both input weights will not simply cause

the classes to swap. Thus, a distinction is drawn between the effect of using input

and output weights: input weights allow for variability on how the nanomaterials
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Figure 4.5: Examples of the effect of varying the input and output weightings on
untrained EiM processor responses. Surface plot of the network response Y as a
function of inputs a1 and a2 for an unconfigured (a) RRN, (b) NLRN, and (c) DRN
processor with various output or input weightings applied. The same colour scale
as Fig. 4.2 is used.

currently selected inter-node IV characteristic is exploited, whereas output weights

allow for variation in how the output signals are interpreted and combined.

4.3 Advanced EiM Processor

In order to exploit the distinct impacts of re-arranged electrodes, and changing input

or output weights upon the decision boundary, the vector of decision variables was

modified to include these additional parameters as follows:

X = [V c
1 , V

c
2 , ..., V

c
S , Gsh, w

in
1 , win

2 , ..., win
R , wout

1 , wout
2 , ..., wout

Q ]T . (4.3.1)

Here, Gsh is termed the ‘shuffle’ gene, which allows for reassignment of input elec-

trodes to access different inter-node arrangements which lead to varying output
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Figure 4.6: Structure of the advanced EiM processor structure. Input data and
configurable stimuli (V c) are applied to the material as voltages. The output voltages
are summed to generate an overall response (Y ) which is used to predict the binary
class (ŷ). If enabled input weights (win

r ) and output weights (wout
q ) are applied. A

shuffle ‘gene’ can re-arrange the applied location of the inputs (both input data and
configuration nodes).

responses as shown in Fig. 4.4. Gsh is an integer which defines a particular permu-

tation of the ordering for where input and configuration voltages are applied. The

input weights win
r ∈ [−1, 1] scale the input voltages V in

r applied at the data driven

input electrodes r due to an input attribute aj, such that:

V in
r (k) = win

r × ar(k) , (4.3.2)

where the total number of data driven input electrodes R is equal to the total

number of data attributes J , and k is a particular data instance in a dataset length

K. Finally, the output weights wout
q ∈ [−2, 2] for each output electrode q, allow for

changes in the network response Y as follows:

Y (k) =

Q∑
q=1

wout
q V out

q (k) . (4.3.3)

The inclusion of these additional decision parameters allows an exploiting algorithm

to optimise the system beyond the simple voltage stimuli traditionally used. Ad-

ditionally, this well-defined framework allows a reliable investigate into the roles

and benefits which these new configuration parameters may have on the different

material processors.
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4.3.1 Electrode Allocation and Material Properties

Understanding how many configuration and output electrodes are required for good

classifier performance will enable more reliable EiM processor construction. To

investigate this, fifteen RRN, NLRN and DRN processors were generated, each with

a fixed size of ten nodes. Two nodes were designated as data inputs; the remaining

eight nodes were assigned as either configuration nodes, output nodes, or if unused

were left floating. The effect of varying the number of allocated configuration and

output nodes was then investigated, with the results presented in Fig. 4.7. These

results show the classification performance on the con2DDS using the advanced EiM

algorithm which ran for 50 iterations, and was repeated five times on each network to

mitigate randomness in convergence. Results displayed in Appendix C.1 show that

after four repetitions of the DE algorithm, the standard deviation of a materials’

performance settles to a low value. Similarly, the effect of averaging over a number of

the same type but different randomly generated ‘materials’ was also considered, the

performance settled if more than five to ten materials were considered. Therefore,

in these experiments, fifteen of each processor type were chosen to ensure that the

average capability of a particular material type could be analysed without any one

high or low performance processor skewing the results, while the simulation times

could remain within reasonable lengths.

It was observed that the difference between nanomaterial conductivities (i.e.,

whether they are (a) RRN, (b) NLRN or (c) DRN) is more important in determining

performance than electrode allocation. The number of configuration nodes seems to

play a less important role when evolving the RRN, NLRN and DRN materials, and

suggests that only a few voltage stimuli are required. However, it is speculated that

materials with more complex properties, or large sparsely connected networks, will

benefit more from the voltage configuration stimuli.

The DRN and NLRN EiM processors perform better than the RRN processors,

this is because the materials’ non-linear IV characteristics are being exploited to bet-

ter curve the decision boundary and fit to the concentric data. The RRN processors

can only produce linear Decision Boundaries which can only be placed tangentially

to the data, similar to that shown in Fig. 4.8a, thus severely limiting the final fit-
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Figure 4.7: Effect of varying which nodes are allocated as either configu-
ration or output electrodes on the final test fitness after training. Surface
plot of the mean test fitness (from 15 material processors, each with 5 DE repeti-
tions) after 50 iterations using the advanced EiM algorithm on the (a) RRN, (b)
NLRN, and (c) DRN networks to classify the con2DDS. The materials all had a fixed
size of ten nodes, but the number of nodes allocated as configuration or outputs was
varied. Unallocated nodes were left floating.

ness. The NLRN processors, however, only achieve marginally better results than

the RRN processors. The material’s non-linearities help fit the data, as shown in

Fig. 4.8b, but neither additional configuration nodes nor additional output nodes

lead to significant improvement. It is speculated that the voltage outputs from the

NLRN are too similar, meaning it is harder to combine the outputs to produce an

enclosed decision boundary. The DRN networks contain more abrupt non-linearities

within its IV characteristics, allowing its output voltages to be more easily combined

to generate enclosed Decision Boundaries and achieve better fitnesses, similar to the

response shown in Fig. 4.8c. However, the results from Fig. 4.7 showed that it

is necessary to combine more than one output to achieve an enclosed area, and for

consistently well performing con2DDS classification more than two output nodes are

required.

It should be noted that the materials discussed here all have monotonically in-

creasing IV characteristics. Therefore, a material processor with only a single output

node/electrode cannot successfully classify the con2DDS (or an XOR problem); in-

stead, at least 2 outputs are required. However, materials containing a Negative
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Figure 4.8: Example processor responses following training using the advanced EiM
algorithm for 50 iterations. Surface plot of the network response, Y as a function of
input attributes a1 and a2 for a (a) RRN, (b) NLRN and (c) DRN processor, using
the advanced EiM algorithm with all the additional configuration parameters, on
the con2DDS. The same colour scale as Fig. 4.2 is used.

Differential Region (NDR) can be exploited to solve the XOR problem with only

one output [12, 9].

4.3.2 Effect of Modifying the Decision Vector

Work in this section investigates the impacts of including the ‘shuffle’ gene, input

weights and output weights as configuration parameters into the decision vector,

both individually and in combination, for the three networks, when solving the

classification problems. Considering the results discussed in §4.3.1, and using the

same fifteen RRN, NLRN and DRN material processors, three nodes were allocated

as outputs, two nodes as inputs, and the remaining five as configuration nodes.

The con2DDS was used to train the systems for 50 iterations, but with the

differing combinations of decision parameters, using the same hyperparameter values

as those considered in §4.2.1. The results of the best member (θ) are recorded, and

the convergence of the mean training fitness (from the results of the 15 different

randomly generated material networks, each with 5 DE algorithm repetitions) is

shown in Fig 4.9a, 4.9c and 4.9e for the RRN, NLRN and DRN processor types

respectively. Box plots of the corresponding processors’ final test fitnesses are also

shown in Fig 4.9b, 4.9d and 4.9f. For clarity, results are only displayed for the

different individual additional configuration parameters (i.e., ‘shuffle’, input weights
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or output weights) in conjunction with configuration voltages. Additionally, the

performance when all configuration parameters are enabled is displayed. Results for

all remaining combinations of configuration parameters are shown in Appendix C.2.

Using only configuration stimuli voltages ( ) leads to poor fitnesses in all the

processor types considered. The inability of this evolutionary scheme to explore dif-

ferent IV characteristics or rotate the decision boundary leads to similar behaviour

observed in §4.2.1 when using the flipped2DDS led to ‘stuck at’ faults. By con-

trast, using shuffle ( ) or input weights ( ) in the decision vector allows for a wider

exploitation of the material characteristics, improving performance. The ability of

shuffle to discover useful IV characteristics and the use of input weights to exploit

them is therefore fundamentally limited by the EiM processor’s material proper-

ties. This is easily distinguished by the fact that only schemes which used output

weights ( & ) could achieve test fitnesses below 0.160 (full table of results given

in Appendix C.2). Therefore, for processors to achieve better fitnesses, it becomes

essential that the interpretation scheme can evolve to successfully combine the mate-

rial’s output voltage states. This enables the introduction of more complex boundary

features, such as a fully enclosed area, which is needed for the concentric dataset.

While the scheme using all the additional configuration parameters ( ) achieved

good eventual performance after the 50 iterations, it converged significantly slower

than the output weight only scheme ( ) used for the NLRN and DRN processors.

This suggests that not all the configuration parameters are needed, and their intro-

duction can be either counter productive and/or inflates the search space. However,

it is proposed that a marginal decrease in convergence speed is balanced against the

significant gains in flexibility that a solution could take.

This experiment was repeated for the 2DDS and flipped2DDS as seen in Ap-

pendix C.3 & C.4 respectively. Most configuration schemes solved the 2DDS and

achieved a zero fitness within fewer than 10 iterations. However, all the processor

types fail to optimise the flipped2DDS unless either input or output weights are

used. This again highlights the limitations of the configuration voltages and shuffle

gene, which may only exploit the complexities of the given EiM processors’ material

properties. As discussed in §4.2.2, to enable the decision boundary to ‘flip’ or rotate,
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Figure 4.9: Evolution of training fitness and final test fitness for EiM pro-
cessors using different materials and configuration parameters, classifying
the con2DDS. The mean best training fitness & standard error (from 15 mate-
rial processors, each with 5 DE repetitions) over 50 iterations, with different DE
algorithm configuration parameters enabled, for (a) RRN, (c) NLRN, and (e) DRN
processors using the con2DDS. These are paired with box & whisker plots of the
final test fitness results for the (b) RRN, (d) NLRN, and (f) DRN processors.
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input or output weightings must be used.

These results support Miller and Downing’s conjecture that materials with rich,

complex physics should be good candidate EiM processors [13]. These results have

shown that the form of non-linear conduction within the nanomaterial processor will

play a role in eventual performance. The relative performance of one EiM processor

with respect to another depends sensitively upon the EA and configuration param-

eters used, and furthermore, that the inherent capability of a nanomaterial for EiM

may be ‘hidden’ or obstructed if an inappropriate algorithm is used. Design of algo-

rithm and selection of nanomaterial are thus necessary to achieve good performance

for a target application.

4.3.3 Classification Performance

For the sake of comparison, the performance of the basic (configuration voltage only)

and advanced (all additional configuration parameters) EiM systems was compared

to some common classification techniques. Specifically, this included Logistic Re-

gression and Random Forest sklearn [14] models, using the default hyperparame-

ters. The results are presented in Table 4.2, and include classification results on

the con2DDS and MMDS datasets, each of which was again split 80% − 20% to

create training and test datasets respectively. The con2DDS results are taken from

the work discussed in §4.3.2. The MMDS results were generated using the same 15

ten node materials (with 5 repetitions) as in §4.3.1, using the same hyperparameter

values as those considered in §4.2.1, but for 100 iterations.

The advanced EiM processors, which exploited all the additional evolvable pa-

rameters, can lead to a mean fitness reduction in excess of 49% compared to the

‘basic’ EiM processors for the MMDS dataset. However, if the nanomaterial proces-

sors’ properties are unsuitable to the computational task, such as the NLRN devices

classifying the con2DDS, a better exploiting algorithm cannot achieve significant

performance gains. Notably, when properly harnessed, these simple physically re-

alisable networks can outperform both Logistic Regression and the Random Forest

(100 trees) algorithm. However, the performance of these models would likely im-

prove with some hyperparameter tuning.
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Table 4.2: Classification performance of the discussed basic and advanced EiM algo-
rithms final classification error test fitness, compared to other common algorithms
and other work.

Dataset Processor Type Φ̄ std(Φ) Φ∗

con2DDS

Basic EiM (NLRN) 0.270 0.002 0.265
Basic EiM (DRN) 0.191 0.004 0.175
Logistic Regression - - 0.490
Random Forest - - 0.000
Advanced EiM (NLRN) 0.266 0.029 0.155
Advanced EiM (DRN) 0.000 0.058 0.000

MMDS

Basic EiM (NLRN) 0.485 0.000 0.485
Basic EiM (DRN) 0.485 0.000 0.485
Logistic Regression - - 0.228
Random Forest - - 0.269
Advanced EiM (NLRN) 0.236 0.020 0.204
Advanced EiM (DRN) 0.245 0.037 0.210
EiM (SWCNT/LC) [10] 0.2051 - 0.1885

Vissol-Gaudin et Al. (2017) [10] used a Single Walled Carbon Nanotube (SWCNT)

/ Liquid Crystal (LC) EiM processor to classify the MMDS. These carbon nanotubes

suspended in a liquid crystal mixture are dynamic, using evolved voltage stimuli to

manipulate the nanomaterial to move and form new connections with altered IV

characteristics. Classification decisions were made using two output electrodes and

an evolvable classification threshold. The SWCNT/LC EiM processor achieves a

lower error than the simulated materials discussed in this paper. While some varia-

tion is likely due to a different selection of training & test data, it is hypothesised that

the increase in performance is due to the conductive network’s ability to internally

re-configure inter-node connections, altering its IV characteristics. The ‘material’

processors considered in this chapter all have fixed IV characteristics. While this

might present a less flexible in-materio processor, it allows for a single processor to

be trained on many tasks, and switch between tasks by simply re-calling the trained

configuration parameters.
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4.3.4 Discussion

These findings can be interpreted as confirmation of the suitability of nanomaterials

for EiM processors due to the variation in conduction mechanisms and conductivity

[15]. Depending upon the material and device geometry chosen, the conduction

pathways in a nanomaterial may have conduction that is Ohmic (I ∝ V ) or Poole-

Frenkel (I ∝ V exp(−(Ed−β
√
V )/kT )) in nature, or be limited by space-charge (I ∝

V 2) or a Shottky/pn junction (I ∝ exp(V )), to name a few examples. Nanomaterials

may also display a range of conduction mechanisms within the same composite, as

well as variation in their conductivity. However, the inter-electrode IV characteristic

of many nanomaterial-based EiM processors reported to date are due to a percolation

network of individual nanoparticles [13, 1, 2], and in turn, the apparent diversity in

conduction mechanisms that a type of nanoparticle may offer will be reduced due

to averaging along the conduction path.

It is suggested that higher performance EiM processors may be realised as the

inter-electrode distance approaches that of individual nanoparticles. One of the

possible benefits of nano-structured devices, is the possibility of NDR which can be

used to classify the XOR problem while only using a single material output [12, 9].

The material networks considered in this work were each assumed to have similar

inter-node characteristics like those found in the literature. However, while maybe

more challenging to produce, materials with heterogeneous properties might provide

a more exploitable and better performing material network, and warrants further

research.

Further to the modes of conduction observed, the nanomaterials used in EiM

processors fall into one of two categories: static materials with fixed IV character-

istics and dynamic materials which have variable IV characteristics. In this work,

only models of static conduction networks and materials were considered; exam-

ples of such static nanomaterial processors include SWCNTs suspended in polymer

matrices [4, 5, 11, 16, 17] and random resistor networks [4, 6]. However, some nano-

materials can also be dynamically changed by applying a voltage, as in the case of

LCs [18, 19], SWCNTs suspended in a LC matrix [2, 20, 21], and memristors [22].

When processing non-temporal data, materials with no memory and a fast settling
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time are desirable to allow a large bandwidth [9]. Although comparisons between

static and dynamic EiM processors are sparse [23], it appears that dynamic materials

have better performance in some circumstances.

It is proposed that the reconfiguration of the electrical network in dynamic ma-

terials allows different inter-node IV characteristics to be continuously explored by

the EA, in much the same way as the ‘shuffle gene’ parameter operated here, and

that this may be at least part of the reason why some dynamic materials have better

EiM performance. However, many dynamic materials cannot be reset to a previ-

ous configuration (e.g. as is the case for SWCNTs suspended in LCs [20]), whereas

the trained configuration parameters of a static material can be simply recalled.

Whether the benefits of configuration recall in static materials or a dynamic, irre-

versible search space are more beneficial to EiM performance appears to be worthy

of further study.

4.4 Summary

While EiM is a promising unconventional computing paradigm, analysis of EiM

systems remains limited due to slow fabrication and training processes. In this

chapter, EiM classifiers are formulated by combining Differential Evolution with an

electrical model which is used as a proxy for real EiM material processors. This

allowed for fast and efficient in-simulo experimentation of EiM processors. Using

this framework, foundational issues with EiM processors were investigated. Different

materials and evolvable configurable parameters were investigated in succession,

allowing their effect to be isolated and analysed.

The findings presented explain why some nanomaterial based EiM processors

fail to achieve good performance, and how the exploiting algorithm can be modified

to mitigate these effects. Significantly, it is observed that the complexity of the

‘ideally selected’ material scales with the complexity of the problem, with acceptable

solutions to simple classification problems being found more quickly with simple

random resistor networks, and the solution of more complex problems being favoured

by more complex random non-linear networks. Furthermore, differing modes of
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reconfiguring the material, weighting the input data, and interpreting the material

outputs are shown to have distinct advantages and limitations. Significantly, this

chapter has demonstrated how these methods can be used in concert to better exploit

the material processor and leverage better performance for EiM classifiers.

Looking forward, these results show that to create high performance EiM proces-

sors, rational design of an algorithm must be paired with an appropriate selection of

nanomaterial for the target application. The framework developed allowed us to use

a standardised EiM processor system, which was used to quantify these trade-offs

and make informed decisions in the design of future EiM processors.
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5.1 Chapter Overview

The previous chapter considered the fundamental framework & function of a typical

monolithic Evolution in-Materio (EiM) processor structure, and considered how per-

formance might be boosted by introducing new evolvable parameters into the EiM

system. This chapter introduces a number of enhancements to the EiM paradigm.

These include adapting the Differential Evolution (DE) algorithm to enable mini-

batching of the training data, applying Binary Cross Entropy as the objective func-

tion to better place the decision boundary, considering a regressed output layer to

better exploit a material processor, and investigating the use of a fully connected

input layer to create a ‘smoother’ search space.

These techniques were efficiently investigated using the EiM processor model

96
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Figure 5.1: Replication of Fig. 4.6 showing a monolithic EiM processor using the
expanded set of decision vectors defined in §4.3, where output signals are collected
using an output layer and combined to create an overall processor response Y used
to make a classification prediction ŷ.

discussed in §3.4. Simulated Diode Random Network (DRN) based Configurable

Analogue Processors (CAPs) were optimised with DE using the standardised EiM

processor model discussed in §4 which used the expanded set of decision variables as

seen in Fig. 5.1, resulting in better leveraged performance for classification. Much of

this chapter’s work was presented at IEEE International Conference on Rebooting

Computing1 (ICRC) 2021 and published in its peer reviewed proceedings [1].

5.2 Experimental System Configuration

To ensure a reliable investigation into the proposed algorithm and EiM enhance-

ments, a ‘control’ must first be defined to ensure an appropriate comparison is

achieved. This section outlines the method & EiM system (including the material,

algorithm and selected hyperparameters) used throughout this chapter to measure

baseline performance, which modified systems were compared against.

To efficiently investigate the effect and added performance of the different en-

hancements to monolithic EiM processors, simulated DRN conductive networks were

trained using DE. This chapter focuses on the use of the simulated DRN material

processor which acts as an exemplar of a highly non-linear material, found to perform

well in §4.3.3, and containing properties which are found in nanomaterials.

1https://icrc.ieee.org

https://icrc.ieee.org
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To ensure a fair comparison between different modifications proposed later in

the chapter, ten DRN materials were generated to act as a proxy for a nanomaterial

processor, with the maximum & minimum system voltages selected as ±10V . Each

DRN network had twelve nodes which correspond to electrodes in a physical sys-

tem, and these materials (defined by specific random seeds) were re-used in all the

experiments. Therefore, differences in performance can only be attributed to the

algorithm exploiting the materials. However, Evolutionary Algorithms (EAs) are

stochastic in nature, which leads to variations in convergence speed. To mitigate

this randomness during experimentation, any algorithm (or algorithm modification)

under consideration was repeated five times, using the same five random seeds, on

each of the ten materials. The mean results from these fifty executions were used to

evaluate the proposed algorithm or EiM structural changes.

In this chapter, several datasets containing different numbers of attributes are

used. Therefore, it is important that the material electrodes (i.e., simulated material

nodes) were appropriately and consistently assigned. Assuming the selected dataset

D contains J attributes, then J nodes were allocated as input nodes. To help ensure

exploitability, the inputs are projected to higher dimensional output states; here,

J +2 nodes were allocated as output nodes. The remaining nodes were allocated as

configuration voltage input stimuli, using the typical monolithic EiM processor as

seen in Fig. 5.1.

To exploit the DRN networks as EiM processors and perform classification, DE

was used to optimise the vector of decision variables X which included the expanded

set of evolvable parameters as described in §4.3 (with win ∈ [−1, 1], wout ∈ [−2, 2]

and V c ∈ [−10, 10]). Specifically, the DE/best/1/bin algorithm was used with a re-

flection bounds constraint and classification error objective function, as described in

§2.3.1 & §2.4.1 respectively. To determine appropriate DE algorithm hyperparam-

eters values, a grid search of the mutation factor (F ) and crossover rate (CR) was

considered while using a fixed population size of λ = 20 over twenty epochs, used

to classify the con2DDS and sp2DDS datasets. To enable manageable simulation

times, here only, just five different generated DRN were used. For each hyperpa-

rameter combination, these DRNs were each optimised for classification using the
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Figure 5.2: Hyperparameter sweep of mutation factor (F ) and crossover rate (CR)
when using DE to optimise monolithic EiM processors to classify the (a) con2DDS
and (b) sp2DDS. Each result is the mean from five DRN conductive networks, each
trained as an EiM classifier for 30 epochs, with performance averaged over three DE
repetitions.

DE algorithm, which was repeated three times (reusing the same three seeds). A

surface plot of the final mean test fitness (i.e., the classification error) is shown in

Fig. 5.2, from which it can be observed that a band of darker, lower fitness and

well performing hyperparameter combinations appears to exist. In this chapter, a

mutation factor of F = 0.6, crossover rate of CR = 0.4, and population size λ = 20

was selected, and datasets were split 70%− 30% to create a balanced training and

test subset respectively, unless otherwise stated.

5.3 Batching

EiM systems are limited by the available memory provided by the microprocessors

used to control the Hardware Interface which interacts with a nanomaterial electrode

array. Examples from previous work include a Mbed with 32KB of RAM [2] or the

MECOBO with 128KB RAM [3]. As execution speeds within in-materio processors

improve, possibly up to 100MHz [4] or more, it becomes increasingly important to

make efficient use of the memory available, to avoid unnecessary waiting and keep

the (in-materio) processing unit running at full capacity. Similarly, Artificial Neural

Network (ANN) systems often have limited local fast GPU memory, preventing

large datasets being executed all at once. Instead, batching (or mini-batching) is
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Algorithm 5.1: Pseudocode for basic DE with batching.
Initialise a random population p;
Evaluate initial population fitnesses on batch B0;
Assign the best member of p as θ0;
for i = 0, 1, 2, ..., I do

for e = 0, 1, ..., E do
if E ̸= 1 then

Re-evaluate parent population p on batch Bj;

Generate trial population t;
Evaluate trial population fitnesses on batch Bj;
Update population p with respect to t;
Update the best member θi;

Evaluate best member θI using the test data;

commonly used to split up the data into smaller groups or ‘batches’ [5], this has

several benefits including a smaller memory footprint, more network updates and

helping to prevent the model from over fitting (further discussed in §2.5.2). This

chapter’s first contribution is the examination of the effect of introducing batching

to DE.

5.3.1 Experimental Implementation

As mentioned above, batching (or mini-batching) is a technique used in ANNs [6, 5],

which involves dividing up the training data into smaller groups known as batches,

as discussed in §2.5.2. The use of small batch sizes leads to a significantly smaller

memory footprint, requiring less expensive hardware, and in the case of ANNs is

found to improve generalisation performance [5]. Each batch is fed into the ANN

and used to update its parameters. When all the batches (and therefore all the

training data) has been used, then a single epoch has occurred.

Previous work introduced batching into a DE algorithm used to perform neu-

roevolution (i.e., EA based training) of an ANN [7]. Recall from §3.6.1 that the

selected classification dataset D is normally split into two subsets: a training set

Dtrain used to optimise the system parameters, and an unseen test set Dtest used to

evaluate the unbiased performance of the model. Here, the training set is further

split equally into E balanced batches B0, B1, . . . , BE−1, where the batch size is some
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Algorithm 5.2: Pseudocode for basic DE with batching and validation
subset.

Initialise a random population p;
Evaluate initial population fitnesses;
Assign the best member of p as θ;
θglobal
0 = ∞;

for i = 0, 1, 2, ..., I do
for e = 0, 1, ..., E do

if E ̸= 1 then
Re-evaluate parent population p on batch Bj;

Generate trial population t;
Evaluate trial population fitnesses on batch Bj;
Update population p with respect to t;
Update the best member θ;

Considering the validation data, update the global best solution θglobal
i+1 ;

Evaluate best member θglobal
I+1 using the test data;

fraction of the total number of training data instances bs ≈ 1
E
Ktrain. These batches

are used sequentially to train the population, where each batch results in a single

generational update, and the best population member θ is tracked. However, to

achieve a reliable comparison between the parent/previous generation population

(which was evaluated using a batch Be−1) and a new trial/child population (eval-

uated using the current batch Bj), it is necessary to compare the trial fitness to a

re-evaluated parent fitness (using the current batch Bj). Therefore, when batching,

the training data must be processed twice, increasing the total number of training

data computations carried out per epoch. The pseudocode describing this opti-

misation process is presented in Algorithm 5.1. When E = 1, there is only one

batch which is the entire training set Dtrain; in this special case, there is no need

to re-evaluate the parent population, and the process is identical to the original DE

Algorithm 2.1.

Similarly, an implementation of an algorithm which exploits both batching and

a validation data subset can be considered. In this case, the dataset D is split into

three subsets: a training set Dtrain, a validation set Dvalid, and a test set Dtest.

Again, the training data is split equally into E batches, and the test data is used for

the unbiased evaluation of the system’s performance. However, the validation set is
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used to provide a uniform evaluation of the population at the end of an epoch. While

not implemented here, it is noted that validation fitness could be used to tune the

system’s hyperparameters or monitor performance to implement early stopping [8].

Here, a ‘global’ best member θglobal is introduced, which tracks the most successful

solution found for the validation subset – updated only when a population member

achieves a lower fitness during a validation evaluation at the end of an epoch. The

pseudocode describing the batching with validation optimisation process is presented

in Algorithm 5.2.

5.3.2 Performance

In this section, the effect of batching using Algorithm 5.1 with a fixed computational

budget of 5×105 training data instances (rather than a selected number of epochs)

is considered, at which point the EA terminated. Additional published work [1]

considers the use of the validation dataset under similar conditions. The more

challenging con2DDS and BankNote datasets were considered and used to compare

the Algorithm 5.1 with varying batch sizes.

Before examining experimental results, the effect of batching on the optimising

DE algorithm’s speed of convergence is considered. When batching, the parent

fitness must be re-computed for each new batch. Therefore, double the amount of

training data is utilised per epoch than the original Algorithm 2.1 or the special

case with no batching (i.e., Algorithm 5.1 with E = 1) would require. When using

the basic and batching algorithms without a validation set, it is assumed that the

data is split 70% − 30% to create a balanced training and test subset respectively.

Similarly, if using a validation step as in Algorithm 5.2, it is assumed the dataset

would instead be split 60%− 20%− 20% to create the training, validation and test

subset respectively. Therefore, the number of computations per epoch “nepoch” for

the basic DE Algorithm 2.1 would be:

nbasic
epoch = 0.7K , (5.3.1)

where K is the number of data instances in the selected dataset D. For Algorithm
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Figure 5.3: The (a) training and (b) test fitness convergence when optimising DRNs
as EiM processors to classify the con2DDS dataset, using Algorithm 5.1 with E =
1, 2, 5, 10, 20.

5.1, when E > 1, the number of computations per epoch nbatch
epoch is:

nbatch
epoch = 2× 0.7K = 1.4K , (5.3.2)

and for the batching with validation step Algorithm 5.2, when E > 1, the number

of computations per epoch nvalid
epoch is:

nvalid
epoch = 2× 0.6K︸ ︷︷ ︸

train

+ 0.2K︸ ︷︷ ︸
valid

= 1.4K . (5.3.3)

So, if the algorithms were compared for an identical number of epochs, the original

Algorithm 2.1 would process significantly more data in the allotted evolutionary

period. In order to provide a meaningful comparison, the systems should instead be

evolved using a fixed number of computations (Ncomps) i.e., total allotted ‘compu-

tational’ budget.

Having established the fair termination criterion used, the results are now ex-

plored in more detail. The evolution of the mean best training fitness and the mean

test fitness when solving the con2DDS is shown in Fig. 5.3a & 5.3b respectively.

Similarly, the classification results for the Banknote dataset are shown in Fig. 5.4.

When using small batch sizes, training fitness converged much less smoothly in a

jagged or ‘noisy’ manner, caused by differences in fitness that each batch of data
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Figure 5.4: The (a) training and (b) test fitness convergence when optimising DRNs
as EiM processors to classify the Banknote dataset, using Algorithm 5.1 with E =
1, 2, 5, 10, 20.

achieves. As the batch size decreased (i.e., the number of batches E was increased),

the EiM processors converged substantially faster and achieved a lower mean final

test fitness.

Significantly, the introduction of batching led to an increased number of gener-

ations per epoch. Assuming the same data subset split as before, the number of

computations (i.e., number of data instances processed) used for a single genera-

tional update γ for the original basic DE algorithm is:

γbasic = 0.7K , (5.3.4)

and the number of computations per generation when batching (Algorithm 5.1 where

E > 1) is on average:

γbatch =
1.4K

E
, (5.3.5)

and similarly the number of computations per generation for the batching and vali-

dation Algorithm 5.2 (when J > 1) would be on average:

γvalid =
1.4K

E
. (5.3.6)

The large increase in convergence speed was attributed to this faster rate of useful

generational updates when batching. In other words, Algorithm 5.1 used fewer data
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instances per generation than the basic DE algorithm when E > 2. This should

allow physical EiM devices to be trained more quickly and be more computationally

efficient. However, if the batch size is too small, it would be expected that too

little information from the dataset D would be present, leading to large variations

in training population fitness for each batch. This could result in poor population

updates and a lack of EA convergence to an acceptable solution.

In this work, the same sequence of batches were used each epoch. However,

shuffling the examples (i.e., the order batches are used) would likely lead to faster

learning [6, 9, 8]. Similarly, other methods could be borrowed from progress made

on ANN, such as batch normalisation [5].

5.4 Binary Cross Entropy Objective Function

EiM processors for classification are commonly achieved via the readout and in-

terpretation of physical voltages. These signals will be subject to noise from the

hardware, power supplies etc., meaning the placement of the EiM classifiers decision

boundary is of great importance. Some recent work introduced a confidence mea-

sure for a carbon-nanotube/liquid crystal classifier [10] relating the physical output

signals with a Figure of Merit. These results suggest that the ‘depth’ of an assigned

data instance into a particular class from the physical classifiers decision bound-

ary contains useful information. It is proposed that incorporating such a ‘Figure

of Merit’ into the EAs objective function will lead to EiM systems with superior

decision boundary placement compared to systems operating with the commonly

implemented classification error [11, 2, 10]. To this end, this section investigates the

adaptation of Binary Cross Entropy (BCE) as a modified objective function for an

EiM’s exploiting EA for the first time.

5.4.1 Experimental Implementation

Classification error (described in §2.4.1) is a commonly used objective function for

EiM processors which evaluates a data input instance by assigning an error value

e(k) of 0 or 1 for correct or incorrect classification respectively. While this is a
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Figure 5.5: Example decision boundary for the (a) discrete classification error ob-
jective function where evolved systems with 100% accuracy may be susceptible to
noise, and (b) Binary Cross Entropy objective function which uses information from
the classified data to maximise the likelihood of successful classification [1]. ©2021
IEEE.

flexible approach shown to work for many EiM systems, it provides a discrete fitness

evaluation where members of the same fitness cannot be differentiated. Considering

a simple, linearly separable problem, it is easy to see how a decision boundary may

achieve a zero classification error, but still have varying qualities in operation (i.e.,

better or worse proximity to the data) due to the inevitable presence of noise, as

shown in Fig. 5.5a. Instead, by introducing a continuous metric associated to the

distance of the data from the decision boundary, similar to the Figure of Merit or

the ‘confidence’ that it is within the correct class [10], a more consistently favourable

decision boundary should be achieved, as shown in Fig. 5.5b.

BCE or log loss is an established loss function for machine learning binary clas-

sification tasks, described in §2.4.3. Cross entropy generates larger loss (i.e., fitness)

values as the predicted probability of a label diverges from the value of the actual

label. To adapt BCE as an objective function for a typical EiM system shown in

Fig. 5.1, the raw output of the EiM processor must be first constricted to ∈ [0, 1].

To do this, a sigmoid function σ(k), as seen in Fig. 5.6a, is used to constrain the

output response Y , such that for a particular input data instance k:

σ(k) =
1

1 + e−Y (k)
, (5.4.7)

where Y (k) is the network response of the system defined in Eq.(4.3.3). Finally, as
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Figure 5.6: Outputs of the sigmoid σ(k) and entropy H(k) functions for the collected
network response Y of the material processor for a particular data instance k. The
entropy function is different depending on the true value of the class.

described in §2.4.3, the entropy or log loss H(k) is then computed:

H(k) =

− ln(1− σ(k)), if y(k) = 1

− ln(σ(k)), if y(k) = 2

, (5.4.8)

and the fitness of a group of training data can be determined using the BCE objective

function:

Φbce =
1

K

K∑
k=1

H(k) . (5.4.9)

This cross entropy based objective function is designed to penalise classified in-

stances which are both confident (i.e., far from the decision boundary) and wrong,

but reward classified instances which are both confident and right, as shown in Fig.

5.6b (recalling from §3.3 that an instance producing Y (k) < 0 is predicted as class

1, and with Y (k) ≥ 0 is predicted as class 2).

5.4.2 Performance

The EiM processors were used to classify the 2DDS, con2DDS and Banknote datasets,

over 30 epochs, with the basic DE Algorithm 2.1 (i.e., without mini-batching). They

were firstly trained using the classification error (‘error’) and then using the Binary

Cross Entropy (‘BCE’) objective function. A histogram of the final test output re-

sponse Y for all the trained processors (and their training repetitions) is plotted in
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Figure 5.7: Histogram of the accumulated final test data outputs (i.e., material
processor responses Y ) for all material and algorithm repetitions trained on the (a)
2DDS, (b) con2DDS, and (c) Banknote datasets comparing the use of a classification
error and BCE fitness metric. (Bins=0.2)

Fig. 5.7a, 5.7b and 5.7c for the 2DDS, con2DDS and Banknote datasets respectively.

The error evolved systems produced output responses much closer to the decision

boundary (i.e., Y = 0). By contrast, the Binary Cross Entropy evolved systems gen-

erate output responses which are ‘pushed’ further away from the decision boundary

(this is particularily visible in Fig. 5.7a), meaning these EiM processors are placing

boundaries between the data much more successfully.

The BCE objective function requires the output layer (Eq.(4.3.3)) to evolve and

exploit the sigmoid (Eq.(5.4.7)) to learn which data instances are considered ‘deep’

or not. Therefore, insufficient flexibility within the output layer, such as inappro-

priate maximum and minimum output weights, could limit the final fitness an EiM

processor could achieve. It should be noted that Algorithm 5.2 could grant more

system flexibility, with the opportunity to select different objective functions for the

training and validation evaluations, e.g., allowing the optimisation of hyperparam-

eters using a specific validation fitness metric.

To help quantify the performance of boundary placement, ROC curves were

produced for the aggregate of these results (from the five repetitions on each of

the ten materials) and used to compare the models, as shown in Fig. 5.8. The

Area Under Curve (AUC) value indicates how well a model can distinguish between

classes [12]. The ‘error’ and ‘BCE’ evolved models achieve similar AUC values, but

these results do not capture the differences of boundary ‘sharpness’.
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Figure 5.8: Receiver Operating Characteristic (ROC) for the results of all material
and algorithm repetitions trained on the (a) 2DDS, (b) con2DDS, and (c) Banknote
datasets comparing the use of a classification error and BCE fitness metric.

To further investigate the performance of boundary placement, the different sys-

tems’ resilience to noise was examined, the test data was combined with varying

levels of Gaussian noise N(0, σ2) and then evaluated on the trained systems. A set

of five random seeds was used to create five noisy versions of the test data subset,

these were then combined to create an enlarged ‘noisy’ test subset, used to allow

a fair comparison between the trained EiM systems. The reduction in mean test

accuracy was plotted against the variation of the standard deviation of introduced

Gaussian noise, as seen in Fig. 5.9. As expected, the BCE evolved system was

more resilient to a depreciation in performance caused by noisy inputs, due to the

decision boundary being placed in a location which provides a better probabilistic

Figure 5.9: Plot showing the reduction in mean test accuracy of the trained EiM
systems as increasing levels of Gaussian noise is introduced to the test data on the
(a) 2DDS, (b) con2DDS, and (c) Banknote datasets, comparing the classification
error and BCE evolved systems.
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assignment of class.

While the addition of input noise has been used to illustrate the superior quality

of boundary placement achieved by the BCE objective function, this is still con-

sidering a system evolved under ideal conditions. Further work, with simulations

accounting for more realistic sources of noise, would help establish the importance

and effect of noise during the training & operation of physical EiM processors.

5.5 Regressed Output Layer

Ensuring that a material is consistently and successfully exploited for EiM has

proved challenging. Work in the §4.3 showed that a material’s outputs can require

some level of more advanced interpretation, else the performance of an EiM processor

might be hidden. Indeed, materials with monotonically increasing Current-Voltage

(IV) characteristics will require some output voltage interpretation process of combi-

nation and/or threshold comparison to solve complex classification problems. Other

materials, such as those with IV characteristics containing Negative Differential Re-

gion (NDR) [13, 4], can achieve more complex output behaviour that might require

less complex interpretation. EiM processors have therefore traditionally contained

some evolvability in the output interpretation, e.g. output weights [14, 11] or evolv-

able thresholds [2]. In this section, the introduction of a regression step into the EA

algorithm is proposed, used to produce a readout (i.e., output) layer for the mate-

rial, and enhance the assessment and exploitation of a CAP’s output states. This

results in an optimised output layer every time a population member is evaluated,

a significant improvement compared to evolving the output layer.

Such an implementation begins to resemble an EA optimised Extreme Learning

Machine [15], considered further in §6.3. Similarly, if extended into the temporal

domain, the use of regression brings the EiM computational paradigm one step closer

to physical Reservoir Computing (RC) [16].
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5.5.1 Experimental Implementation

Work in §4.2.2 has shown that the use of output weights was important for EiM

processors, which allowed a material processor’s output states to be combined and

produce more complex Decision Boundaries which significantly improved results for

classification problems. This suggests that the interpretation scheme used to extract

information from an EiM material’s outputs are of great importance, and if one such

scheme is inappropriately chosen, it may “hide” the true computational performance

possessed by the material.

As discussed above, interpretation schemes for EiM processors have typically

been fixed or are evolved using a few parameters such as classification thresholds or

output weights. Instead, this work used ridged regression [17] to efficiently generate

and optimise the output layer. There are two notable changes to the algorithm

brought about by the introduction of regression: (i) a readout layer is generated

during the evaluation of a population member in the training phase, and (ii) the

regression will have its own separate loss function which does not necessarily align

with the EA’s objective function. The generated readout layers must be stored and

updated in a vector, which corresponds to the current population, so that the best

decision vector and readout layer combination is tracked and may be recalled when

evaluated on the test (or validation) data set.

5.5.2 Performance

Standard EiM processors using an output layer defined and evolved in the decision

vector X were used to classify the con2DDS, sp2DDS and Banknote datasets. The

basic DE Algorithm 2.1 (i.e., without mini-batching) was used for 40 epochs with

a classification error (Φerror) objective function. The EiM processors were then re-

trained, but with ridge regression as an intermediate step to generate the output

layer, referred to here as Regressed EiM. To ensure a fair comparison, ridge regres-

sion was used without fitting an intercept, so only a readout layer using output

weights (and no bias) was generated. The convergence of the mean test fitness of

the Standard and Regressed EiM processors for the different datasets is shown in
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Figure 5.10: Evolution of the mean test fitness, with standard deviation, comparing
the Standard evolved and Regressed EiM training methods on the (a) con2DDS, (b)
sp2DDS, and (c) Banknote dataset.

Fig. 5.10, and the test results for the first and final epoch are reported in Table 5.1.

After just one epoch, the Regressed EiM processors achieved a 86.7%, 34.6%

and 91.7% lower mean test fitness score than the Standard evolved EiM processors

for the con2DDS, sp2DDS and Banknote datasets respectively. Therefore, much of

the performance of the EiM processors is clearly tied to the output interpretation

scheme. For Standard EiM, the interpretation scheme was dependent on an output

layer defined by the output weights contained in the decision vector, and possibly

well performing configured materials are being hidden by poorly evolved output

weights. By contrast, the use of ridge regression allowed the output layer to be in-

dependently optimised, and therefore ensure that a particular material configuration

and its respective outputs are exploited fully for the target problem.

As the evolutionary period progressed, the mean test fitness of the Standard EiM

Table 5.1: Final test results for the Standard evolved and Regressed EiM, using the
classification error objective function.

Dataset Processor Type First Epoch Final Epoch

Φ̄ std(Φ) Φ∗ Φ̄ std(Φ) Φ∗

con2DDS Standard EiM 0.3011 0.0914 0.0800 0.0301 0.0273 0.0000
Regressed EiM 0.0400 0.0374 0.0000 0.0065 0.0160 0.0000

sp2DDS Standard EiM 0.3311 0.0702 0.2467 0.2115 0.0286 0.1600
Regressed EiM 0.2170 0.0270 0.1667 0.1318 0.0320 0.0600

Banknote Standard EiM 0.3053 0.0808 0.0922 0.0359 0.0276 0.0000
Regressed EiM 0.0253 0.0183 0.0000 0.0024 0.0030 0.0000
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processors rapidly improved. This was due to the optimisation of both the mate-

rial configuration and the interpretation scheme. However, in the case of Regressed

EiM, the performance gains were only driven by an improvement of the material con-

figuration. While the Regressed EiM systems achieved good initial guesses, further

optimisation by the DE algorithm did still lead to performance improvements. After

40 epochs, the mean test fitness of the Regressed EiM processors reduced by 83.8%,

39.3% and 90.5% for the con2DDS, sp2DDS and Banknote dataset respectively.

It should be expected that the benefits of optimising the material’s configuration

parameters and stimuli will be closely related to the computational problem and

material processor’s properties.

The introduction of a regression stage allowed for the efficient generation of an

exploiting readout layer, without the need to optimise output configuration param-

eters within the slower EA process. These results show that Regressed EiM presents

a much better representation of the true capabilities of the material processor, and

can significantly improve the speed of convergence to an acceptable classification

accuracy. These benefits should translate directly to practical examples of EiM

systems, such as Single Walled Carbon Nanotube (SWCNT) networks [18, 19, 20].

Additionally, the regression optimised output weights are not bounded (unlike DE’s

decision vector), and this flexibility may also allow smaller, more subtle differences

in a nanomaterials output voltages to be identified and exploited.

The EiM processors are also compared to the application of ridge regression on

the raw data, shown in Table 5.2, which both the Standard EiM and Regressed EiM

approaches outperform. The material processor is acting similarly to a kernel, in

this case exploiting the complex properties of the conductive network to transform

input data into useful, higher dimensional representations. This is very similar to

the behaviour of reservoirs in RC [16]. Indeed, if an EiM processor was extended to

process temporal data, then it could be described as a physical RC with an evolvable

reservoir. From the perspective of conventional computing, nanomaterials often con-

tain undesirable temporal properties such as hysteresis, charge leakage, etc. Within

the EiM computing paradigm, these properties can instead be exploited to produce

unconventional processors. It is hypothesised that extending the EiM paradigm to
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Table 5.2: Final mean Ā and best A∗ accuracy test results for the Evolved and
Regressed EiM compared to some common sklearn [17] classification methods.

Dataset Processor Type Ā A∗

con2DDS

Standard EiM 0.9699 1.0000
Regressed EiM 0.9935 1.0000
Ridge Regression - 0.5233
Random Forest - 1.0000

sp2DDS

Standard EiM 0.7885 0.8400
Regressed EiM 0.8682 0.8682
Ridge Regression - 0.7367
Random Forest - 0.9767

Banknote

Standard EiM 0.9641 1.0000
Regressed EiM 0.9976 1.0000
Ridge Regression - 0.9806
Random Forest - 0.9976

RC will lead to more flexible reservoirs and performance gains, warranting further

research.

5.6 Fully Connected Input Layer

The shuffle gene was previously introduced (§4.3) as a method for rearranging the

input order of the applied input voltages (both input data and stimuli) and allow

the in-materio processor to exploit different internode IV characteristics for the task

at hand. However, the shuffle gene is a discrete integer (used to index a particular

input permutation) which creates discontinuities in the search landscape, potentially

impacting reliable convergence.

Here, the use of a fully connected layer is proposed, similar to a linear layer

used in ANNs. This would create a smoother objective function fitness landscape

and allow a gradual exploration of internode IV characteristics, likely boosting the

performance of optimising algorithms.



5.6. Fully Connected Input Layer 115

Figure 5.11: Monolithic EiM processor configured for binary classification, using a
fully connected input layer which combines input attributes to produce an input
‘data’ voltage value.

5.6.1 Experimental Implementation

As discussed in §3.3 and §4.3, the attributes aj(k) of each data instance k are

typically ‘directly connected’ to a corresponding input node/electrode:

V in
r (k) = win

r × ar(k) , (5.6.10)

where V in
r is the applied voltages to the data driven input electrodes r, win

r are

corresponding input weights, the total number of data driven input electrodes R is

equal to the total number of data attributes J , and that a shuffle gene Gsh could be

used to select a particular input permutation of the arrangement of the input nodes.

Instead, a fully connected linear layer was implemented, as seen in Fig. 5.11,

where each input voltage was a weighted sum of the input attributes. This is equiv-

alent to using an ANN layer with linear activation functions (see §2.5.1 for more

details). Therefore, the voltage applied to each data input node becomes:

V in
r (k) = win

r · a(k) =
J∑
j

win
rjaj(k) , (5.6.11)

where V in
r is the applied voltages to the data driven input electrodes r, aj(k) is

the jth input attribute for data instance k, win
r = [win

r1, w
in
r2, . . . , w

in
rj ] is the vector of

input weights, and a(k) = [a1, a2, . . . , aj] is the vector of input attributes. Note that
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Figure 5.12: Convergence of the mean test fitness when using different styles of
evolved input layers to optimise an EiM processor to classify the (a) con2DDS, (b)
sp2DDS, and (c) Banknote datasets.

the applied voltage must remain within the range of a system’s real possible values,

so a ‘clipped’ boundary condition is implemented where V min ≤ V in
r (k) ≤ V max.

These different input schemes use different evolvable parameters and differently

sized decision vectors X. Therefore, to maintain fair comparisons, the same popula-

tion size could no longer be used across all the systems. Instead, the population size

was scaled with respect to the number of evolvable parameters d (i.e., the dimension

of the decision vector); here, selected to be λ = 1.5× d. Additionally, similar to the

work in §5.3, some of these differently sized systems are likely to be advantaged if a

fixed number of epochs are used to optimise the system. Therefore, these systems

were evolved for a fixed computational budget (Ncomps) i.e., a fixed number of data

instances which are processed.

5.6.2 Performance

The basic DE Algorithm 2.1 (i.e., without mini-batching) was used to optimise

the EiM processors using a classification error (Φerror) objective function, and a

budget of Ncomps = 1× 106. These were used to classify the con2DDS, sp2DDS and

Banknote datasets using the basic directly connected input layer (Eq.(5.6.10)), the

directly connected input layer with the shuffle gene evolvable parameter, and also

the fully connected input layer (Eq.(5.6.11)). The mean test fitness convergence

results are shown in Fig. 5.12, and the final test results are presented in Table 5.3.

The directly connected input layer without shuffle performed consistently worst
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since it lacked the ability to explore new inter-node IV characteristics, as discussed

in §4.2.2. The directly connected input layer with shuffle performed well; the shuffle

gene allowed for discrete ‘jumps’ around the search space, which in the case of the

con2DDS allows for fast convergence to well performing solutions.

The sp2DDS presents the most challenging dataset, with its spiral formation

requiring the material processors’ non-linearities to be combined very successfully.

With this dataset, it was clearly seen that the fully connected layer significantly

outperforms the directly connected layers. The combination of attributes in the

input stage allows for a smooth search space and much more successful ‘fine-tuning’

such that better solutions can be discovered.

The fully connected input layer allows for more flexible system topology, where a

one-to-one match of the number of attributes and number of allocated input nodes

is no longer required. However, a fully connected input layer might significantly

increase the number of evolvable parameters within the system. Specifically, J

times the number of input weight parameters are required, potentially effecting the

efficiency (i.e., number of computations per amount of data) as systems scale to

larger sizes.

Table 5.3: Final test results for the different input scheme for the monolithic EiM
processors.

Dataset Input Connection Layer Φ̄ std(Φ) Φ∗

con2DDS
Direct 0.0325 0.0472 0.0000
Direct with Shuffle 0.0240 0.0271 0.0000
Fully Connected 0.0361 0.0305 0.0000

sp2DDS
Direct 0.2084 0.0491 0.1533
Direct with Shuffle 0.1950 0.0305 0.1300
Fully Connected 0.1646 0.0216 0.1167

Banknote
Direct 0.0239 0.0253 0.0000
Direct with Shuffle 0.0231 0.0179 0.0000
Fully Connected 0.0191 0.0170 0.0000
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5.7 Summary

EiM processors are a promising unconventional computing paradigm where materi-

als can be configured to perform computational tasks. However, investigating the

EiM computational framework is challenging on physical systems due to slow fabri-

cation and testing. In this chapter, experiments were conducted using simulations

of physically realisable circuits used to produce conductive Diode Random Networks

which were paired with DE to produce EiM processors. These were used to efficiently

experiment and explore improvements to the EiM framework and algorithm.

The DE algorithm was adapted to enable mini-batching of the training data. It

was found that smaller batch sizes enabled the algorithm to converge more quickly to

a final solution due to the reduced number of computations needed per generational

update. However, extremely small batch sizes (with respect to the training subset)

might not contain enough information from the dataset, possibly leading to poor

generational updates.

BCE was introduced to replace the commonly used classification error objective

function, and was shown to generate more noise resistant EiM classifiers. BCE is

a continuous fitness (i.e., loss) metric which uses information from the classified

data instance’s distance from the decision boundary. This ensured that a successful

comparison between a trial population member and its parent would always be

possible, leading to more reliable & smoother convergence, but also superior decision

boundary placement.

Regression was used as an additional intermediate step to train the output (i.e.,

readout) layer of a material processor. This replaced the evolution of output weights,

previously defined in the DE decision vector. These generated output layers needed

to correspond to, and be maintained alongside, the DE’s population of solutions.

Using ridged regression, this technique was found to outperform the standard EiM al-

gorithm. This highlights that slow to evolve, or inappropriate interpretation schemes

can “hide” the performance of well configured materials.

Finally, the implementation of a fully connected input layer was considered. This

allowed for a continuous transition between different material IV characteristics

‘states’ previously accessed using the shuffle gene, which re-ordered the directly
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connected input arrangement. The fully connected layer allowed for a smoother

solution search space, and meant significantly better classification performance could

be achieved on highly non-linear datasets.

EiM processors have the potential to harness complex nanomaterial properties

to produce efficient, unconventional computing devices. This chapter shows how a

traditional EiM system can be adapted and enhanced to produce more robust and

better performing unconventional processors, ensuring future physical nanomaterial

processors are fully exploited.
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6.1 Chapter Overview

There is a strong desire to produce efficient but powerful computing and Machine

Learning (ML) at “the edge” [1]. Physical analogue systems have remained an at-

tractive option, due to many analogue devices’ high theoretical throughput and

low-energy consumption [2]. However, traditional monolithic Evolution in-Materio

(EiM) processors that use a single substrate are unlikely to scale well due to dimin-

ishing interactions as inter-electrode distances grow.

This chapter tackles scaling and performance issues by drawing on ML and Arti-

ficial Neural Network (ANN) concepts, to move beyond the typical monolithic EiM

processors discussed in the previous two chapters. By stacking configurable ana-

logue processing units in parallel and operating them as realisations of ‘physical’

or ‘in-materio’ neurons, an in-Materio Neural Network (iM-NN) was constructed.

122
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Similarly, virtual iM-NNs were introduced, where a single physical neuron is re-used

as several virtual neurons.

Methods to train these novel iM-NNs are needed. Back propagation and gradient

descent are the cornerstone techniques used in modern ANN ML, as described in

§2.5.2. However, conductive substrates and physical neurons can be hard to model,

so are often treated as black boxes, making it difficult to perform such standard

ML techniques. Optimisation methods which have been found to work well when

training non-differentiable activation functions are required. Extreme Learning Ma-

chines (ELMs) are one such non-iterative method [3, 4] which leverages a randomly

initialised ANN, only performing a forward pass through the network and attempt-

ing to exploit the Hidden Layer (HL) output states using regression. Similarly,

neuroevolution avoids the need for back propagation by using a stochastic, iterative

Evolutionary Algorithm (EA) to train ANNs.

Firstly, it was observed that the physical substrates in EiM processors operated

similarly to an ELM’s randomly initialised ANN, projecting inputs to new, use-

ful, output states. Drawing from this, an in-Materio Extreme Learning Machine

(iM-ELM) system was proposed and efficiently investigated using Diode Random

Network (DRN) based Simulated in-Materio (SiM) neurons. Similarly, virtual iM-

ELMs were considered for the first time. This novel iM-ELM method was presented

at the Seventeenth International Conference on Parallel Problem Solving from Na-

ture 1 (PPSN XVII) 2022 and published in its peer reviewed proceedings [5].

Following this, more typical iterative based training methods were considered

using iM-NNs constructed with conductive Lambda Diode Network (LDN) based

Physical in-Materio (PiM) neurons. These were investigated in a lab, using the

Raspberry Pi and custom Hardware Interface experimental setup described in §3.5.

A comparison of different neuroevolution training methods for these iM-NNs was

performed for the first time, and considered the effect of batching or tuning popula-

tion size when operating under computational budget limited scenarios. This work

has been submitted for publication [6].

1https://ppsn2022.cs.tu-dortmund.de

https://ppsn2022.cs.tu-dortmund.de
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Finally, having demonstrated the feasibility of iM-NNs and investigated different

training methods, more complex Neural Network (NN) structures were investigated.

Specifically, a realisation of a novel in-Materio AutoEncoder was implemented in a

lab using LDN based PiM neurons. It was trained similarly to a neuroevolved

ELM [7], using ridge regression to optimise the output layer and an EA to train the

remaining system parameters. This was used to successfully perform dimensionality

reduction on a handwritten digits dataset.

6.2 In-Materio Neural Network Structure

In this section, a new method to operate and exploit several material substrates in

parallel is proposed. Traditionally, as described in Chapters 2 & 4, EiM proces-

sors have used a single nanomaterial substrate with one-to-one input-attribute to

input-electrode mappings, where each attribute is applied as a voltage to a corre-

sponding input node/electrode. However, as datasets become more complex with

more attributes, the size of a device’s substrate would need to physically grow. It

can be postulated that in real microelectrode-based nanomaterial processors, larger

networks might lead to fewer ‘interactions’ between distant electrodes, leading to

poorer performance, i.e., ‘monolithic’ EiM processors may struggle to scale as the

data does.

In order to overcome this problem, inspiration from artificial single hidden layer

feedforward neural networks (SLFNs) can be taken, as shown in Fig. 6.1, suggesting

that conventional EiM processors should be stacked in parallel. Therefore, con-

ductive network or nanomaterial based Configurable Analogue Processors (CAPs)

are instead operated more similarly to an ‘in-materio’ or ‘physical’ neuron. These

physical neurons can be used to construct a Neural Network like structure, referred

to here as an iM-NN, which contains similarities to a typical ANN as described in

§2.5. However, rather than a conventional artificial neuron, now physical conductive

substrates (but potentially any exploitable material or medium) are used as the HL

neurons. Input voltage signals can be formulated from the data using a typical lin-

ear layer, similar to that introduced in §5.6. The output voltages from the physical
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Figure 6.1: Basic structure of an artificial SLFN.

neurons are the HL’s output states, used to predict or classify the data; it should

be noted that an EiM material processor generally projects the applied input data

voltages to a higher dimensional number of output voltages.

Therefore, several CAP based physical neurons are used within the HL, rather

than the single substrate typically found in a monolithic EiM processor. Recall from

§3.2 that a single CAP contains P -inputs (made from S stimuli and R data signals)

and Q-outputs; in the case of a conductive nanomaterial, these would be allocated

from available electrodes on a micro-electrode array used to apply and read voltages.

A fully connected linear layer can be used to generate the ‘data’ input signals. For a

particular data instance k defined by its input attributes a(k), the physical neuron

HL’s input voltages would be as follows:

V in
r,m(k) = win

r,m · a(k) + binr,m , (6.2.1)

where V in
r,m is the input to the rth input ‘data’ node/electrode of the mth physical

HL neuron with corresponding weights win
r,m and bias binr,m. Similarly to the fully

connected layer considered in §5.6, the applied voltage must remain within the range

of a system’s real possible values, so a ‘clipped’ boundary condition is implemented

where V min ≤ V in
r (k) ≤ V max. Any remaining input nodes of the physical neuron

are assigned as configuration voltage stimuli (V c), altering how the neuron behaves,

analogues to altering its activation function (as further discussed in §6.4.1).
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Figure 6.2: Structure of an iM-NN exploited for classification, using a fully connected
linear input & output layer and configurable voltage stimuli V c which alter a neuron’s
physical behaviour.

Once the input voltages are applied, output voltages are read and interpreted as

the HL output states. The outputs of the mth physical neuron can be considered to

be the result of a black box transformation Mm (described in §3.2):

Vout
m (k) = Mm(Vin

m(k),Vc
m) , (6.2.2)

where Vc
m = [V c

1,m, V
c
2,m, ..., V

c
S,m] is the vector of input configuration voltages, S is

the number of voltage stimuli per material, and Vout
m = [V out

1,m , V out
2,m , ..., V out

Q,m] is the

vector of output node voltages for the mth physical HL neuron.

Having sampled the physical HL’s output voltage states, they are combined using

a fully connected linear output layer to make a prediction ŷ as follows:

ŷ(k) =
M∑

m=1

(
wout

m · Vout
m (k)

)
+ bout , (6.2.3)

where wout
m is the corresponding output layer weights for the mth material neuron

and bout are the bias’. The structure of the proposed iM-NN is presented in Fig.

6.2.

This system structure focused on using linear input and output layers because

of their simplicity, but also to emphasise the performance of the physical neurons

leveraged in this work. Additionally, there is good potential to realise and integrate

these linear layers physically, such as using memristor based matrix multiplication
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[8, 9, 10].

6.2.1 Directly Connected Input Layer

ANNs are considered by some to be over-parameterised [11]. The complexity engi-

neering approach [12] advises that one should seek to limit the number of controllable

parameters in an attempt to emphasise and harness emergent behaviour from a sys-

tem’s rich intrinsic properties. This suggests that efforts should be made to limit

the number of optimisable system parameters, meaning the iM-NNs might benefit

from concepts such as weight agnostic and minimal neural network topologies, which

have been found to be beneficial in ANNs [13].

A sparsely connected network is implemented by removing random connections

from a typical fully connected NN [14] (i.e., where weights and biases are randomly

set to zero). This method can be used to reduce the number of optimisable system

parameters, in an attempt to better exploit the NN structure itself [15]. Taking

this concept to the extreme, to minimise the number of network connections, led to

the development of a ‘directly connected ’ input layer. This is an iM-NN input layer

where each of the HL’s physical neuron voltage data input nodes/electrodes receives

only one (weighted but unbiased) input attribute, implemented as follows:

V in
m,r = win

m,r × aCm,r , (6.2.4)

where Cm,r ∈ {1, 2, . . . , J} defines which attribute aj is being passed to a partic-

ular physical neuron’s data input node/electrode r, and win
m,r is that connection’s

associated weight.

6.2.2 Virtual iM-NNs

It should be highlighted that there is the possibility of re-using a single nanomaterial

substrate as several ‘virtual’ physical neurons [16]. In the past, EiM processors have

been configured and re-configured to perform a wide variety of operations. In the

case of the conductive networks exploited as EiM processors within this work, these

different applications are achieved by training evolvable external stimuli and other
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parameters. Therefore, a single material which can achieve significantly different

behaviours (i.e., modes of operation), could be re-used as several distinct virtual

physical neurons.

Conceptually, a virtual iM-NN uses the same structure as the normal iM-NN

shown in Fig. 6.2. However, the physical neuron based HL is no longer imple-

mented by several physical parallel material substrates. Instead, virtual neurons are

implemented by re-using only a single substrate. These virtual neurons are grouped

into the HL, and their outputs are determined similarly to Eq.6.2.2, but only a single

physical neuron is utilised:

Vout
m (k) = M(Vin

m(k),Vc
m) , (6.2.5)

where m is a virtual neuron in a HL containing M virtual neurons, and M is the

black box transformation defined by the single physical neuron which is being re-

used. To compute the entire HL outputs, this single physical neuron must be used

recursively, where each virtual neuron is evaluated sequentially.

Operating a single material processor as several virtual neurons provides sig-

nificant EiM system design flexibility. However, these systems lose their ability to

benefit from the iM-NN’s highly parallelisable structure.

6.3 In-Materio Extreme Learning Machines

As discussed in §1.4, ELMs and Reservoir Computing (RC) present a good anal-

ogy for in-materio processors since both involve the exploitation of random net-

works. These systems depend on the underlying assumption that a randomised

network/reservoir will produce useful and often higher dimensional output states

that are used to process the data more successfully. Implementing physical realisa-

tions of such systems could lead to low power, efficient and fast systems [17] which

can operate at ‘the edge’. RC was developed from Recurrent Neural Networks and

is generally employed to process temporal data; whereas ELMs were developed from

SLFNs and are generally employed to process non-temporal data [3]. There remains

significant opportunity to develop classical or quantum substrates [18] for both RC
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and ELM.

In this section, the proposed iM-NN structure is exploited with a directly con-

nected input layer and trained as an ELM, described as iM-ELM. This illustrates

a simple training method which can be used to exploit nanomaterial substrates as

‘physical’ or ‘in-materio’ neurons. To enable efficient investigation of this novel

structure, DRNs were used as a proxy for physical nanomaterials (as described in

§3.4), which were solved using fast, reliable Simulation Program with Integrated

Circuit Emphasis (SPICE) simulations. These were leveraged to implement Sim-

ulated in-Materio (SiM) neurons. Several classification datasets were considered

to investigate the performance of these iM-ELM for various HL sizes and physical

conductive network topologies. Finally, drawing from the previous chapters which

showed that EiM processors can be successfully re-configured, a material ‘re-use’

system was implemented, whereby a single SiM neuron was re-used to create several

virtual physical HL neurons. Work considering the proposed iM-ELM was presented

and published in a peer reviewed proceedings [5].

6.3.1 Experimental Implementation

Several DRN based SiM neurons were organised in a iM-NN like structure, as de-

scribed in §6.2. However, in an attempt to comply with the complexity engineering

approach [12], the directly connected input layer, outlined in §6.2.1, was used. These

systems were exploited as ELMs, the method of which is described in the Theory

§2.5.2. In short, the input layer and configurable parameters (i.e., win, C and V c)

were randomised and fixed. Training data was then processed and used to optimise

an output layer with Ridge Regression, which was found to provide more stability

than typical Moore-Penrose inverse [19]. The test data was then used to evaluate

the system’s classification performance. The method of combining a physical neuron

based SLFN and ELM training is referred to as an iM-ELM, as shown in Fig. 6.3.

To efficiently investigate the proposed iM-ELM structure, simulated DRN con-

ductive networks were leveraged as these systems’ neurons. These SiM neurons acted

as a proxy for a typical nano-material network, and allowed for fast experimenta-

tion of this new system structure. Recall from §3.4 that these networks contain:
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Figure 6.3: Basic structure of a physical neuron based SLFN exploited as an iM-
ELM.

R voltage driven input data nodes, S voltage driven configuration stimuli, and Q

measured output voltage nodes, calculated using a DC analysis. Therefore, the gen-

eral size and topology of these simulated and randomly generated DRN based SiM

neurons could be defined using [P , S,Q]. Several different SiM neurons could then

be stacked in parallel to form the iM-ELM structure.

The system can be defined using a vector of decision variables X, as discussed in

§3.3. Expanding this to include all the iM-ELM adjustable parameters, the system’s

decision vector can be defined as:

X = [win
1,1, . . . , w

in
1,R, C1,1, . . . , C1,R, . . . , V

c
1,1, . . . , V

c
1,S,

win
M,1, . . . , w

in
M,R, CM,1, . . . , CM,R, V

c
M,1, . . . , V

c
M,S]

T ,
(6.3.6)

which here is re-written as the system’s parameter vectors stacked together 2:

X = [win,C,V c]T , (6.3.7)

where win is a vector containing all the input layer’s input weights for the M

material neurons in the HL, C are all the directly connected input layer’s index

2The component vectors/matrices are flattened and stacked together to form a 1d array.
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values Cm,r used to select an attribute to be passed to a particular input data node

r on a material m, and V c is a vector containing all the configuration voltages for

the M materials. The maximum and minimum system voltages were selected as

±10V, and input weights were constrained between win ∈ [−1, 1], and configuration

voltages between V c ∈ [−10, 10].

Now, any single iM-NN or population p of iM-NNs (i.e., multiple initialisations

of X) can be randomly generated and trained as an ELM network using the simple

Pseudocode described in Algorithm 6.1.

Algorithm 6.1: Pseudocode for iM-ELM.
Initialise random population of solutions p;
Train p by optimising the readout layer using the training data;
Evaluate population using the test data Φ(p);

Finally, it is highlighted that there is the possibility to re-use a single simulated

material network as several ‘virtual’ neurons. By randomly initialising different con-

figurable parameters, but using only a single DRN based SiM neuron, several virtual

neurons are generated, as discussed in §6.2.2. Each of these will manifest their own

unique internal Current-Voltage (IV) characteristics, which the ELM system will

attempt to exploit. Such a network is referred to as a Virtual iM-ELM. Several

datasets were considered, split 70% − 30% to create a training and test subset as

described in §3.6.1. These were benchmarked against some common sklean classi-

fication techniques [20] using their default hyperparameters, with results shown in

Table 6.1. It is noted that marginal gains in performance would likely be achieved

with hyperparameter tuning.

Table 6.1: Test results for the datasets when using several common classification
methods. Best accuracy highlighted in bold.

Dataset Ridge Reg Logistic Reg SVM rbf Random Forest

Φmse Accuracy Accuracy Accuracy Accuracy
sp2DDS 0.1575 0.7367 0.7367 0.9733 0.9767
diabetes 0.1714 0.7532 0.7532 0.7403 0.7446
wine 0.0760 0.9259 1.0000 0.9815 1.0000
aca 0.1184 0.3659 0.8502 0.8213 0.8599
wdbc 0.0738 0.9357 0.9591 0.9532 0.9298
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6.3.2 Performance

The performance of iM-ELMs of increasing HL sizes, used to classify several datasets,

was considered using a Mean Squared Error (mse) objective function. Specifically,

the number of DRN based SiM neurons in the HL was increased from one to fifteen

(beyond which performance was generally considered to plateau). Twenty different

random seeds were used to generate the SiM neurons within twenty different iM-

ELMs systems. The same twenty seeds were used for each HL size incrementation,

meaning that each iM-ELM system continued to include the same SiM neurons that

were used in its corresponding previous smaller networks. Therefore, the change in

performance of the iM-ELM networks could be considered as they were made bigger.

For each iM-ELM a ‘population’ of 100 uniform randomly generated decision

vectors was considered (i.e., randomly initialised input layer and configuration pa-

rameters), which was observed to provide a good insight into performance and main-

tain reasonable simulation times. Recall from §3.4 & §6.3.1 that these DRN based

SiM neurons’ consist of a fully interconnected conductive network containing three

main classes of nodes: P input voltage nodes for data, S input voltage nodes for

configuration/stimuli altering the SiM neurons’ behaviour, and Q output voltage

nodes. Notably, the directly connected input layer used here connects each data

input node to only a single data attribute; so, if too few neurons are in use, then

not all data attributes may be ‘connected’. The experiment is performed with three

increasingly larger SiM neuron topologies (denoted using [P , S,Q]): (i) [2,2,4], (ii)

[3,3,5], and (iii) [4,4,6]. This provides some initial insight on the effect of scaling the

size of non-linear conductive network based neurons.

The performance of these iM-ELMs is compared against the mean test fitness

of 2000 artificial (Moore-Penrose) ELMs and (Ridge Regression) RR- ELMs; the

number of which was selected to match the total computational expense (i.e., total

number of data instances) used over the 20 iM-ELMs systems. These ANN based

ELMs used the sigmoid activation function for their artificial HL neurons. Whilst

many activation functions exist [21], the sigmoid function is widely used [22] and

can achieve good performance in most cases [23].

All these systems were used to classify the sp2DDS, diabetes, wine, aca and
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Figure 6.4: Median mse test fitness of all the (20 systems, each with 100 parameter
initialisations) iM-ELMs for each HL size increment, used to classify the (a) sp2DDS,
(b) diabetes, (c) wine, (d) aca and (e) wdbc datasets. Three different material
neuron topologies are considered ([P , S,Q]), and these are compared to the mean
accuracy of 2000 traditional artificial ELMs and RR-ELMs.

wdbc datasets (details given in §3.6.1) which have been benchmarked using sev-

eral common classification methods as seen in Table 6.1. All the datasets were

normalised and then scaled to the maximum and minimum system voltages (i.e.,

±10V). Results comparing the different material topology based iM-ELMs and tra-

ditional ELMs are given in Fig. 6.4. These show the median test fitness (Φmse)

as the HL increments in size. Generally, the iM-ELMs outperformed the artificial

ELM and RR-ELM systems of equivalent network sizes. The simulated DRN based

neurons successfully generated useful, higher dimensional output states which were

exploited as an ELM, and these out-perform their artificial neuron counterparts. As

more SiM neurons were operated in parallel, the median fitness improved. Notably,

the larger and more complex SiM neuron topologies (i.e., when using larger DRN

with more input, configuration, and output nodes/electrodes) achieved lower median

fitnesses for iM-ELMs with the same size of HL. Thus fewer neurons were required

within the SLFN HL to achieve comparable results with networks leveraging ‘less

capable’, smaller SiM neurons.
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Figure 6.5: Median mse test fitness of all the (20 systems, each with 100 parameter
initialisations) Virtual iM-ELMs for each HL size increment, used to classify the
(a) sp2DDS, (b) diabetes, (c) wine, (d) aca and (e) wdbc datasets. Three different
material neuron topologies are considered ([P , S,Q]), and these are compared to the
mean accuracy of 2000 traditional artificial ELMs and RR-ELMs.

The best accuracy achieved, across all HL sizes, for the different material neuron

topologies and datasets, is shown in Table 6.2. The iM-ELMs considered could

significantly outperform some of the common classification methods presented in

Table 6.1. Indeed, the best iM-ELMs also compare favourably with the traditional

artificial ELM networks, generally outperforming or matching the best obtained

accuracy.

Table 6.2: Best accuracy achieved from the different systems, from across the differ-
ent HL sizes and neuron topologies ([P , S,Q]). The best accuracy for each dataset
is highlighted in bold.

iM-ELM Virtual iM-ELM
Dataset [2,2,4] [3,3,5] [4,4,6] [2,2,4] [3,3,5] [4,4,6] ELM RR-ELM

sp2DDS 0.9933 0.9967 0.9933 0.9933 0.9967 0.9933 0.9900 0.9667
diabetes 0.7922 0.7965 0.8009 0.7922 0.7922 0.7965 0.7922 0.7879
wine 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
aca 0.8744 0.8792 0.8792 0.8744 0.8841 0.8841 0.8841 0.8841
wdbc 0.9708 0.9766 0.9766 0.9708 0.9708 0.9766 0.9766 0.9708
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As discussed in §6.2.2 and §6.3.1, any single material could be re-used as sev-

eral virtual neurons. The different randomly initialised parameters (input weights,

connections and configuration voltages) should enable each virtual neuron to be-

have in a sufficiently independent manner. To investigate this, the previous analysis

is repeated, i.e., generating twenty SLFN for each HL size, each with 100 random

initialisations. However, now each iM-ELM’s HL contains virtual neurons which

were formulated from only a single DRN based SiM neuron, as detailed in §6.2.2.

The median test fitness of these Virtual iM-ELMs is plotted against the size of the

SLFN in Fig. 6.5, and the best ever achieved accuracies are shown in Table 6.2. The

Virtual iM-ELMs attained a very similar performance to the previously discussed

iM-ELMs systems, which exploited several different DRN based SiM neurons. This

suggests that a single DRN based SiM neuron could successfully produce several vir-

tual instances, achieved by exploiting the wide range of non-linear IV characteristics

which can be tuned and selected by the voltage stimuli and input layer respectively.

These Virtual iM-ELMs allow for significantly more flexibility when implementing

experimental systems, only requiring a single material substrate to create SLFNs

containing several HL neurons. However, by ‘re-using’ only a single material sub-

strate (rather than operating several material substrates simultaneously in parallel),

a Virtual iM-NN loses its ability to benefit from its otherwise highly parallelisable

structure.

6.4 Neuroevolution of Physical iM-NNs

Work in the previous section showed how iM-NNs trained as ELMs performed well

in comparison to conventional artificial ELMs of a similar size – showing that more

‘computation’ can be offloaded to and achieved within a multi-input, multi-output

conductive network based physical neuron, compared to a conventional artificial

neuron. However, a comparison of more typical iterative based algorithms used to

train such novel iM-NNs remains lacking. It is highlighted that any meaningful

comparison must be made with respect to (w.r.t) a fixed computational ‘budget’,

since the application of data to a processing material (or medium) and reading of
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its output states will likely be a bottleneck in any physical system.

While EAs are powerful and flexible optimisers, back propagation and gradient

descent are the cornerstone techniques used in modern ML. However, physical ma-

terial neurons are often considered to be black boxes and non-differentiable. The

desire to implement gradient descent and improve in-materio devices has manifested

in two distinct ways. Firstly, physical in-materio devices which have been modelled

to enable derivatives to be calculated. Either analytical physical models [24] or

trained models (such as a Deep Neural Network [25]) can be used. In this case,

training can either occur fully in-simulo (i.e., only using the model) or as a hybrid

‘physics aware training’ [24] where the forward pass is executed in-materio and the

backward pass is computed using the constructed model. However, the success of

training depends on the accuracy and reliability of the model, which can be difficult

to achieve, especially in high dimensional systems. Secondly, physical perturba-

tions can be introduced to calculate local gradients and therefore enable gradient

descent [26, 27]. Recent work used orthogonal sinusoids for each input of an in-

materio device (single perceptron like structure) to compute gradients in parallel,

similar to homodyne detection [28]. However, training speed is limited by the lowest

frequency of the set of orthogonal sinusoids, and this method assumes small pertur-

bations are only linearly transformed, but they are in fact likely to be affected by a

noisy environment and be sensitive to strong non-linearities or temporal properties

present in some nanomaterials, such as charge trapping. It is hypothesised that

effective training might be achieved by combining the most successful elements of

EAs and gradient descent methods.

Unlike the iM-ELM work carried out in the previous section (which used SiM

neurons), the iM-NNs constructed here used Physical in-Materio (PiM) neurons, and

results were collected using lab-based experiments. Specifically, these physical iM-

NNs were implemented using conductive Lambda Diode (LD) based PiM neurons,

and experimentation was performed with a Raspberry Pi and custom Hardware

Interface (HI).

Three EAs were considered to train this novel physical neural network architec-

ture, which is described as the neuroevolution of the iM-NNs. These algorithms
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include Differential Evolution (DE), which has been successfully used to exploit

more traditional in-materio devices [29, 30, 31]. OpenAI Evolutionary Strategy

(OpenAI-ES) [32] which is a type of Natural Evolution Strategy (NES) [33] that

uses a pseudo-population to predict the natural gradient and perform gradient de-

scent. And finally, the popular Covariance Matrix Adaptation Evolution Strategy

(CMA-ES) [34]. The iM-NNs successfully classified several ML classification prob-

lems, verifying the feasibility of the proposed physical neuron based system. The

ability to batch (or “mini-batch”) is highlighted, and was found to allow for more

efficient budget usage and speed up the EAs’ convergence. Work presented here has

been submitted to a journal for publication [6], titled Training in-Materio Neural

Networks.

6.4.1 Physical LDN Neuron

A LDN was used to produce a PiM neuron with complex, non-monotonic IV char-

acteristics. These were constructed in a lab where voltages were applied and read

using a custom Printed Circuit Board (PCB) (i.e., our ‘Hardware Interface’) as de-

scribed in §3.5.2. A Raspberry Pi was used to host the running EAs and operate

the experiments.

The LDN was arbitrarily constructed, as shown in Fig. 6.6a, and discussed in

§3.5.2. The network contained six nodes: three inputs and three outputs. Of the

inputs, two were assigned as ‘data inputs’ (V in) and one as a ‘configurable stimuli’

(V c). Selecting a small network allowed for better visualisation and interpretation

of the PiM neuron’s behaviour. This behaviour is examined in Fig. 6.6b, which

shows the voltages on each output for a two-dimensional, 0.5V interval, sweep on

the data inputs, for a select few values of configuration voltages. This provides

an insight into the material’s ability to project inputs to higher dimensional out-

puts, or in other words, the PiM neuron’s function M defined in Eq.(6.2.5). The

behaviour of the PiM neuron is directly related to the configuration of the LDN.

Here, complex characteristics and enclosed boundaries are observed. This is simi-

lar to the properties found in the dopant-atom networks [35], whose non-linear and

non-monotonically increasing hopping conduction characteristics were exploited for
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classification. However, Fig. 6.6b also emphasises the usefulness of a physical neuron

with multiple outputs. If one output is not suited to the particular task at hand, then

the characteristics of a different output, or a combination of outputs, might be. It is

speculated that this could be important in mitigating poor performance of physical

neurons manufactured using and exploiting randomly interconnecting nanomateri-

als (e.g., carbon nano-tubes [30]) where one or more output nodes/electrodes might

happen to perform poorly or be weakly connected. Indeed, using a combination of

EiM processor output states was found to increase performance and flexibility in

chapter 4.

Each data point in Fig. 6.6b consists of the average of 30 samples. The accumu-

lated residuals from the whole sweep can be seen as a histogram in the Appendix

B.3. The standard deviation of the residuals of all output values from across this

sweep are as follows: std(V out
1 ) = 3.16mV, std(V out

2 ) = 6.91mV, and std(V out
3 ) =

3.05mV.

6.4.2 Experimental Implementation

An iM-NN was physically created as shown in Fig. 6.2 using LDN based PiM

neurons and the experimental HI discussed in §3.5. Due to hardware limitations,

Figure 6.6: The (a) Lambda Diode Network (LDN) used in experimentation and
leveraged as a Physical in-Materio (PiM) neuron, and (b) the surface plot of the
LDN’s physical outputs for a 2D sweep of V in

1 & V in
2 , and a selection of configuration

voltages V c.



6.4. Neuroevolution of Physical iM-NNs 139

Table 6.3: Test results for the datasets when using several common classification
methods. The best accuracy for each dataset is highlighted in bold.

Dataset Linear Reg Logistic Reg SVM rbf Random Forest

Accuracy Φce Accuracy Accuracy Accuracy
sp2DDS 0.7367 0.4811 0.7367 0.9733 0.9767
banknote 0.9806 0.0800 0.9806 1.0000 0.9976
iris 0.8000 0.2651 0.9778 0.9778 0.9778
raisin 0.8519 0.3659 0.8481 0.8519 0.8556
wine 0.9630 0.1412 1.0000 0.9815 1.0000

only a single PiM neuron was utilised in this work. Therefore, to construct larger

iM-NNs ‘virtual’ neurons were used, as outlined in §6.2.2, where a single substrate is

re-used as several virtual neurons. To aid convergence, fully connected layers were

used to help formulate a smooth fitness surface or ‘solution space’ (unlike the sparse

directly connected input layer used by the iM-ELMs). The Cross Entropy (CE)

objective function was selected, as described in §2.4.4, to calculate the fitness of a

particular solution / system configuration for multi-class classification.

An alternative way to perceive these PiM neurons is as introducing some rela-

tional inductive bias [36], where the input layer produces an embedding space for

each PiM neuron. These individual configurable analogue processing units [37] are

then leveraged to produce useful higher dimension projections of the input space.

Several datasets were considered, split 70%− 30% to create a training and test

subset as described in §3.6.1, and benchmarked against some common classification

techniques as shown in Table 6.3. To train the iM-NNs to classify the datasets, three

EAs (each detailed in §2.3) were considered: DE, OpenAI-ES, and CMA-ES. In the

following, the properties and hyperparameters used for these algorithms is outlined.

These values were selected using a grid search of different hyperparameters when

the algorithms were attempting to classify the hm2DDS, and these results can be

found in the Appendix D. Unless otherwise stated, the algorithms operated under

the following conditions:

DE: A DE/best/1/bin algorithm is used with a reflection bounds constraint as

described in §2.3.1. Hyperparameters include F , CR and λ. A 2D surface

sweep of mutation factor & crossover rate was performed, and F = 0.5 &
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CR = 0.6 were found to yield good performance.

OpenAI-ES: The OpenAI-ES is used with Adaptive Moment Estimation (Adam)

optimiser and a ‘clip’ boundary constraint as described in §2.3.2 and §2.5.2.

Hyperparameters include σ, α and λ, but also the additional hyperparameters

introduced by Adam optimiser: β1 = 0.9, β1 = 0.999, ε = 10−8. A 2D surface

sweep of the Gaussian noise & learning rate was performed, and σ = 0.001 &

α = 0.01 were found to yield good performance.

CMA-ES: As discussed in §2.3.3, hyperparameters include σ and λ; however, as

commonly done, population size was automatically assigned as λ = 4+3 log(d).

A sweep of the initial step size (i.e., initial standard deviation of noise) was

performed, and the results show that σ = 0.15 achieves good performance

(w.r.t normalised parameter boundaries ∈ [0, 1]).

In summary, recalling the structure of a single HL iM-NN as shown in Fig. 6.2,

the EAs were attempting to optimise a vector of the system’s parameters which

contains all the parameter vectors stacked together 3:

X = [win,bin,Vc,wout,bout]T . (6.4.8)

Since physical real-valued system parameters are being optimised, real-world con-

straints were required. The maximum and minimum allowed voltages were se-

lected as ±9.5V, this applied to both the linear-layer generated input ‘data’ volt-

ages and the configuration voltage stimuli. However, DE also required boundaries

for all its decision variables X. These boundaries were similarly applied to the

OpenAI-ES and CMA-ES trained systems, which were as follows: input layer weights

win ∈ [−1, 1], output layer weights wout ∈ [−2, 2], and biases b ∈ [−2, 2].

To ensure a fair comparison between EAs, the neuroevolution was executed for

a fixed budget, rather then a selected number of epochs. Similarly to §5.3.2, the

budget was defined by the ‘number of computations’ (Ncomps), which was the number

of times data inputs were executed on the physical HL neurons. For a fully realised

3The component vectors/matrices are flattened and stacked together to form a 1d array.
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iM-NN, all the PiM neurons, and therefore an input data instance, can be operated

in parallel. However, for the virtual iM-NN used here, each virtual HL neuron

must be computed sequentially. In this case, a single input data instance results in

several computations, where a single ‘computation’ involves the application of data

to a virtual PiM neuron, i.e., three voltage sets to, and three voltage reads from the

LDN.

6.4.3 Performance

Population and Batch Size

In this work, the classification capabilities of the iM-NNs are highlighted, when

optimised using different EAs, with a fixed computational budget. Hyperparameters

such as the population size, or varying the batch size, will affect the amount of budget

used each epoch, and alter the ‘length of convergence’ or the total number of epochs

executed. Therefore, it should be possible to tune such hyperparameters and ensure

an efficient use of an available budget.

Indeed, it has been shown that batching can speed up the DE algorithm by

enabling more useful population updates per amount of data, as described in §5.3.

This work considers the effect of batch size (bs) and population size (λ) when solving

the sp2DDS dataset using an iM-NN with three PiM neurons in the HL. Each

algorithm was used to solve the dataset with a budget of 0.8× 106 Ncomps. This was

repeated three times, using the same three random seeds, for each hyperparameter

combination, and the final mean test loss values were used to produce the surface

plots displayed in Fig. 6.7. It can be seen that CMA-ES was more capable of

achieving better fitnesses (i.e., losses) when optimising the same iM-NN within the

set budget.

Most significant was the result that altering the batch and population size could

lead to significantly better performance during the allotted limited computational

budget. A smaller population size reduces the number of computations per gen-

eration, and a smaller batch size increases the number of generational updates per

epoch, both leading to a more efficient use of the budget during each epoch. However,
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Figure 6.7: Surface plots of the (a) DE, (b) OpenAI-ES, and (c) CMA-ES algorithms’
final mean test CE loss classifying the sp2DDS after a fixed budget of 800000 Ncomps,
for a sweep of different population sizes λ (w.r.t the iM-NN’s number of parameters
d) and batch sizes bs (w.r.t the total number of training instances Ktrain), using a
three HL neuron iM-NN.

these techniques are limited, since using too small a population size or insufficiently

large batches could result in poor convergence, where each generation holds too little

information to make ‘useful’ updates.

For DE, the literature suggests larger population sizes, between 3d and 8d, are

a good plausible first choice [38]. However, from this hyperparameter investigation,

it is found that DE can perform well with smaller population sizes w.r.t the num-

ber of evolvable dimensions d and the fixed computational budget. It is observed

that a trade-off exists where significantly smaller population sizes led to worse final

test fitnesses due to poor convergence, but larger population sizes also led to poor

final test fitnesses due to slow convergence since each generation consumes a large

fraction of the available budget. Although it was shown that a good combination

of population and batch size does exist for maximum exploitation of the available

data, it might require an involved investigation to determine these values.

The OpenAI-ES and CMA-ES algorithms appear to be much more resilient to

small population and batch sizes. Here, the OpenAI-ES utilised the Adam optimiser

which maintains a first and second moment ‘moving average’ which helps mitigate
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adverse effects from abrupt loss changes when using small batch sizes. Similarly,

CMA-ES learns a second order model of the objective function, which also makes

it resilient to small batch sizes. CMA-ES is well-known for its ability to use small

population sizes.

These results suggest that while DE can perform well, it remains sensitive to hy-

perparameter tuning and likely benefits from larger computational budgets. When

applied appropriately, OpenAI-ES can achieve competitive results, but required

smaller batch sizes to make efficient use of an allotted budget. Meanwhile, the

CMA-ES uses the fewest number of hyperparameters and yet remained robust when

using small batch sizes.

Algorithm Performance

The three algorithms were used to optimise iM-NNs to classify the sp2DDS, ban-

knote, iris, raisin & wine UCI datasets, described in §3.6.1. Each algorithm was

repeated six times, using the same six random seeds, on each dataset. Details of

the iM-NN structure and algorithm configurations are given in Table 6.4 along with

final test results. Additionally, the mean test fitness (i.e., CE loss) convergence for

the various datasets are shown in Fig. 6.8.

Clearly, the iM-NNs were successfully exploited by the optimising algorithms

to solve the classification problems. While these datasets are relatively small, this

allowed smaller iM-NNs to be used, helpful for faster investigation of these physi-

cal systems, and also enabled the original CMA-ES algorithm (without alterations

required for larger dimensional problems) to be utilised. Indeed, good performance

was achieved using these smaller networks and low budgets, highlighting the proof

of concept for these physical in-materio neurons.

For all the datasets, CMA-ES was the algorithm which both on average converged

fastest and most consistently, achieving the best final fitness values in all but one

case. The CMA-ES trained iM-NNs also outperformed Logistic Regression on all

the datasets. In particular, both a lower CE loss (than Logistic Regression) and a

higher accuracy (than all the reference methods in Table 6.3) was achieved for the

raisin dataset. The CMA-ES benefits from a resilience to rugged search landscape,
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Figure 6.8: Comparison of the algorithms’ mean test CE loss convergence, under
a fixed budget, for the (a) sp2DDS, (b) banknote, (c) iris, (d) raisin, and (e) wine
datasets.

step-size control which helps prevents premature convergence, and the ability to use

a small population to efficiently utilise the allotted computational budget. The lack

of extended hyperparameter tuning also makes it an attractive option.

DE did manage to perform well in several of the datasets, but its need to use

larger population sizes (w.r.t the number of dimensions within the system) slows

convergence by utilising a large proportion of the budget each epoch, leading to

smaller numbers of total epochs. However, since DE is a more traditional population

based EA, it was more tolerant (and therefore less likely) to getting stuck in local

minima, similarly to CMA-ES.

The OpenAI-ES achieved much smoother convergence than either DE or CMA-

ES. However, it appeared to suffer from slower convergence. The benefit of OpenAI-

ES is that it performs typical gradient descent, albeit with an estimated natural

gradient update. Therefore, common ML methods, such as Adam, could be used. It

is hypothesised that implementing other such modern ANN training methods would

likely boost performance.
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6.4.4 Further Discussion

The test system was built using low cost Integrated Circuit (IC) components and

a custom PCB; its implementation using python could achieve a very modest ∼

2000Ncomps/s (recall that here a single ‘computation’ consists of three voltage sets

and three voltage reads), but allowed for significant flexibility during the design pro-

cess. A more dedicated system focused on high performance would likely achieve a

very significant increase in operational speed by reducing the physical signal set/read

cycle bottleneck. In some systems, it is not unreasonable to expect execution speeds

within in-materio processors could improve to 100MHz [35] or more.

This work utilised a LD conductive network as a proxy for a static material i.e.,

a nanomaterial substrate which has fixed IV characteristics. Such devices could

operate at high speeds and be trained for several tasks, and switch between them

by simply recalling the appropriate configuration parameters. However, dynamic

materials, which have varying IV characteristics, could also be used. For exam-

ple, a Liquid Crystal (LC)/Single Walled Carbon Nanotube (SWCNT) mixture can

be evolved to alter internal connections between electrodes to perform classifica-

Table 6.4: Final test results for the iM-NN’s neuroevolution, where Φ̄ is the mean
final fitness, Ā is the mean final accuracy and A∗ is the accuracy of the run which
achieved the smallest test fitness Φ∗. Best achieved loss for each dataset is high-
lighted in bold.

Dataset Budget
(106Ncomps)

No HL
Neurons

Batch Size
(bs) Algorithm Pop Size

(λ)
Performance

Φ̄ std(Φ) Φ∗ Ā A∗

sp2DDS 1.5 3 1
20
Ktrain

DE 0.5d ∼ 20 0.1508 0.0356 0.1064 0.9533 0.9800

OpenAI-ES 15 0.2281 0.0852 0.1291 0.8983 0.9467

CMA-ES 15 0.1151 0.0329 0.0782 0.9550 0.9700

banknote 1 3 1
20
Ktrain

DE 0.5d ∼ 26 0.0151 0.0095 0.0040 0.9931 1.0000

OpenAI-ES 15 0.0198 0.0118 0.0027 0.9956 1.0000

CMA-ES 15 0.0128 0.0143 0.0001 0.9972 1.0000

iris 1 3 1
3
Ktrain

DE 0.5d ∼ 31 0.0956 0.0558 0.0004 0.9778 1.0000

OpenAI-ES 16 0.0810 0.0969 0.0178 0.9852 1.0000

CMA-ES 16 0.0545 0.0367 0.0058 0.9815 1.0000

raisin 1.5 3 1
10
Ktrain

DE 0.5d ∼ 35 0.3918 0.0332 0.3588 0.8302 0.8481

OpenAI-ES 16 0.3781 0.0445 0.3266 0.8500 0.8926

CMA-ES 16 0.2106 0.1128 0.0811 0.9340 0.9815

wine 1.5 4 Ktrain
DE 0.5d ∼ 77 0.3693 0.1049 0.2622 0.9290 0.9074

OpenAI-ES 19 0.7792 0.3841 0.2827 0.8827 0.9444

CMA-ES 19 0.2556 0.1148 0.0745 0.9660 0.9815
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tion [30, 29]. But such dynamic materials might be better suited to reinforcement

learning or processing temporal data. Indeed, by extending the EiM paradigm to

process temporal data, this would in effect create an evolvable physical RC [17].

Significantly, the RC paradigm often limits itself to a fixed reservoir, but when op-

erating in the physical domain it is hypothesised that some reservoir tuning might

lead to better performance and increased flexibility.

Finally, it is noted that this work used virtual iM-NNs, where a single LDN based

PiM neuron was re-used as each HL neuron. This means each data instance needed

to be executed sequentially on each ‘virtual’ HL neuron, increasing the proportion

of computational budget and time spent each epoch. For immediate gains in execu-

tion speed, each HL neuron should be physically realised and executed in parallel.

However, as noted in §6.2.2, this trades off flexibility of physical implementation

with parallelism in the realisation of these physical NN designs.

6.5 In-Materio AutoEncoders

So far, this chapter has developed methods of creating physical realisations of NN

and examined different training methods. This allowed the creation of networks

of physical neurons which could process larger, more complex datasets with more

attributes, scaling in a way that a single material processor might not. Having

established the use of iM-NNs, new types of NN structures can be investigated

beyond typical SLFN classifiers.

In this section, an AutoEncoder (AE) structure is considered and used to perform

dimensionality reduction. Unlike a classifier, an AE simply seeks to recreate the

inputs at the outputs, and are therefore trained in an unsupervised manner. If a

constriction is introduced into a NN, then a new lower dimensional set of features

is produced for the data (i.e., encoding) known as the latent space. If the original

inputs can be reconstructed using these features (i.e., decoding) then the AE has

discovered a new ‘compressed’ form of the data. A five layer artificial AE structure

is shown in Fig. 6.9, showing how the AE is split into an Encoder (which generates

the features) and Decoder (which reconstructs the original data). Further details on
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Figure 6.9: Structure of a five layer ANN based AutoEncoder.

the theory behind AEs can be found in §2.6.

6.5.1 Experimental Implementation

A novel in-Materio AutoEncoder (iM-AE) structure was proposed which leveraged

physical neurons, as shown in Fig 6.10. Notice that a five layer AE was used, rather

than the simplest three layer AE introduced in §2.6. The five layers used in the

iM-AE are as follows:

(i) Artificial input layer,

(ii) Physical neuron based “encoder layer”,

(iii) Central artificial neuron based HL used to produce the “latent space”,

(iv) Physical neuron based “decoder layer”,

(v) Artificial output layer.

Previous work in Chapters 4 & 5 have shown that by combining a material proces-

sor’s output states, more complex classification boundaries can be achieved. There-

fore, the central artificial HL and artificial output layer are leveraged as combinato-

rial layers, encoding and reconstructing data respectively. These two artificial layers

use linear activations, ensuring the performance of the proposed iM-AEs are deter-

mined by the non-linear capabilities of the physical neuron HLs. The five layer AE

structure outlined is symmetrical, and therefore could be used to produce stacked

AEs [39] and possibly train deep iM-NNs.
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Figure 6.10: Structure of the implemented in-Materio AutoEncoder (iM-AE) using
two physical neuron based Hidden Layers in a five-layer network.

To train these iM-AEs, an EA was combined with a ridge regression optimised

output layer. This is similar to optimising an ELM using an EA [7, 40], and helps

ensure that the outputs are successfully reconstructed from the decoder physical

neuron HL. Indeed, by training the output layer separately, boundary values are not

required for its weights & biases and might allow for finer tuning, as discussed in

§5.5. In summary, an EA attempts to optimise a vector of the system’s parameters

which contains all the parameter vectors stacked together:

X = [win,en,bin,en,Vc,en,wout,en,bout,en,win,de,bin,de,Vc,de]T , (6.5.9)

where win,en,bin,en,Vc,en are the physical encoder layer’s input weights, biases and

configuration voltages, wout,en,bout,en are the physical encoder layer’s output weights

and voltages, win,de,bin,de,Vc,de are the physical decoder layer’s input weights, biases

and configuration voltages. The physical decoder layer’s output weights and biases

are independently optimised by ridge regression.

To illustrate the implementation of the proposed iM-AE structure, an exam-

ple system was constructed leveraging the LDN as several virtual PiM neurons as

discussed in §6.4.1, using the Raspberry Pi and HI detailed in §3.5.

This iM-AE was then used to encode a two-dimension representation of the

digits dataset (§3.6.2) by performing dimensionality reduction, using the OpenAI-

ES (with α = 0.015, σ = 0.001, and λ = 20 ≈ d
100

) to optimise the system’s evolvable
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parameters using a budget of 4× 107 Ncomps. The single LDN was used to generate

six virtual PiM neurons, and these same six virtual neurons were re-used in the

physical encoder and decoder HLs.

Finally, an objective function was required to compute some error related loss

to judge the performance of the AE’s reconstruction. Unfortunately, the commonly

used metrics such as the mse loss are greatly affected by the scale of the system’s

output values. Often, in ANNs values and data are normalised or bound between

∈ [0, 1]. This allows easy comparison between models. However, in real conduc-

tive in-materio systems, values are dependent on the test system’s voltage limits,

making comparison between EiM processor and ANN recorded mse loss results inap-

propriate. Therefore, a Normalised Mean Squared Error (nmse) objective function

is introduced here, which allows a better comparison between different types of con-

ductive in-materio systems, regardless of their operating voltages. The nmse is

defined by:

Φnmse =
1

K(V max − V min)2

K∑
k=1

(y(k)− ŷ(k))2, (6.5.10)

where V max and V min are the maximum and minimum system voltages respectively.

6.5.2 Performance

The resulting training and test reconstruction fitness convergence curves are given in

Fig. 6.11, showing that the iM-AE was optimised during evolution. Therefore, the

handwritten 8×8 pixel images were being successfully encoded as (and reconstructed

from) a two-dimensional set of features (R64 ⇒ R2). The final encoded features of

the optimised system’s test data are shown in Fig. 6.12a, and examples of test

inputs and their corresponding reconstructed outputs are shown in Fig. 6.12b.

To assess the quality of the latent space, unsupervised KMeans clustering [41, 20]

was applied to the encoded two-dimensional features. Then, as discussed in §2.6,

these clusters were evaluated using the Clustering Accuracy (CA) and Adjusted

Rand Index (ARI) metrics. The change in test feature clustering performance during

evolution is plotted in Fig. 6.11b, showing that the data encoding improved as the

system was optimised, leading to a more successful lower dimensional representation.
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Figure 6.11: Convergence of (a) training and test fitnesses and (b) clustering metrics
including Clustering Accuracy (CA) and Adjusted Rand Index (ARI).

Ideally, the encoded features should outperform those generated using Principal

Component Analysis (PCA). Table 6.5 gives the clustering results of the iM-AE and

PCA’s encoded 2D features, showing that the example iM-AE performed better.

Finally, this example LDN neuron based physical iM-AE was compared against

a back-propagation optimised ANN AutoEncoder. A five layer artificial AE was

implemented using Keras [42] and trained using Adam optimise with a mse loss

(comparable to the nmse loss used for the iM-AE example), using ReLU activation

functions for the encoder and decoder layer (i.e., first and third HL), and linear

activations in the central (i.e., second) HL and output layer. The size of the encoder

and decoder layers was swept between three and sixty in increments of three, while

Figure 6.12: Final result’s (a) encoded test data features, where labels are distin-
guished by colour and marker type, and (b) examples of test data inputs with their
corresponding reconstructed outputs.
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Figure 6.13: The artificial AEs mean final (a) reconstruction loss, and encoded 2D
data’s clustering (b) CA, and (c) ARI for differently sized networks on the digits
dataset. The final performance of the example iM-AE is marked for comparison,
and the point at which the artificial AEs contains the same number of parameters
is denoted by a vertical blue line.

the central HL contained only two neurons to perform dimensionality reduction as

before. For each network size, ten systems were considered, each trained for 500

epochs. The resulting mean final test loss/fitness and encoded test data clustering

performance is shown in Fig. 6.13.

Direct comparisons between the artificial and in-materio based AEs are difficult

to make due to the different training methods and systems used. Therefore, to en-

sure competitive results, the artificial AE’s were each trained for approximately four

times the number of epochs than the iM-AE example above. Even so, the iM-AE,

containing only six physical LDN based neurons in the encoder/decoder HLs, far

outperforms the artificial AEs of a similar size. While the iM-AE network contained

only a few decoder/encoder HL neurons, each of these PiM neurons had three input

and three output voltage electrodes, leading to more inter-layer connections and

inflating the number of weights and biases required. Therefore, rather than com-

paring artificial and physical AEs containing the same number of neurons, networks

Table 6.5: Final test results for different trained methods encoding the digits dataset
as two-dimensional features.

Method Clustering metric

CA ARI
iM-AE 0.5989 0.4343
PCA 0.5867 0.3914
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containing the same number of parameters should be considered. The vertical blue

line in Fig. 6.13 denotes artificial AE networks containing the same number of

parameters as the iM-AE example (approximately 2080 parameters). Notably, the

iM-AE still outperforms artificial AEs of similar parameter sizes, showing that the

LDN based PiM neurons outperformed their artificial counterparts, and introduced

additional meaningful computational capabilities to the system.

6.6 Summary

Typical single substrate ‘monolithic’ EiM processors are unlikely to scale well to

larger ML tasks. Instead, CAPs can be operated in parallel, creating realisations of

physical neurons which can be used in a NN like structure; referred to as iM-NNs.

Methods to exploit, train and implement such novel systems were considered for the

first time.

Firstly, iM-NNs were constructed by grouping physical neurons into a SLFN like

structure and training them as an ELM. To enable efficient analysis, DRN based SiM

neurons were used. It was found that these iM-ELMs could significantly outperform

some common classification methods, as well as traditional (artificial) ELMs of a

similar size. As the size of the conductive DRN based SiM neurons increased (i.e.,

the number of nodes/electrodes used in the conductive network), the performance

of iM-ELMs with similar HL sizes improved.

Drawing from previous work with EiM processors, which showed that a single

nanomaterial substrate can be tuned for a range of operations, a method to re-use

a single substrate as several ‘virtual’ neurons was used. These virtual iM-ELMs,

which leveraged only a single SiM neuron, performed comparably to the iM-ELMs

which used several different SiM neurons. This suggests that conductive substrates,

like the DRN based SiM neurons, can manifest different internal IV characteristics

which were successfully exploited as several distinct virtual neurons.

Using a LDN as a realisation of a PiM neuron, a real SLFN iM-NN structure

was implemented using a Raspberry Pi and Hardware Interface. These novel iM-

NNs were investigated and optimised via neuroevolution – using DE, OpenAI-ES
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and CMA-ES. All three algorithms benefited from an implementation of batching

and a tuned population size, which helped ensure the efficient use of a limited com-

putational budget. The algorithms successfully optimised LDN based PiM neuron

iM-NNs to classify some ML datasets, showing the PiM neuron’s non-monotonic

properties were successfully exploited. These iM-NN outperformed some common

classification techniques, and this work demonstrated the feasibility and scalability

of these systems.

Having established the use and training of physical neuron based NN structures,

a more complex five-layer NN was considered and operated as an AE. This iM-AE

again leveraged LDN based PiM neurons within its encoder and decoder layers,

but used artificial neurons in a central combinatorial layer used to generate the

latent space. The iM-AE was trained with OpenAI-ES and a regressed output

layer to perform dimensionality reduction on a hand drawn digits dataset. This

outperformed PCA and artificial AE systems which contained a similar number of

optimisable parameters. These iM-AEs could be used to produce stacked AEs and

possibly train deep iM-NNs.

These iM-NNs draw on traditional ML techniques but leverage analogue systems

as physical neurons. Indeed, simulated diode and physical Lambda Diode based

conductive networks were shown to perform well as neurons within these networks.

Notably, a single physical neuron could be re-used as several virtual HL neurons,

each operating distinctly. While this forgoes the benefits of parallelised operation,

it grants significant flexibility in the realisation of these physical NN designs. This

work presents a method to produce scalable in-materio devices, which could lead to

efficient unconventional computing assets in the future.
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7.1 Hypothesis & Chapter Overview

Evolution in-Materio (EiM) is a computational paradigm in which an Evolution-

ary Algorithm (EA) reconfigures a material’s (or medium’s) properties to achieve a

specific computational function. The main purpose of this thesis was to explore fun-

damental questions about what material properties or configurable parameters lead

to better performing EiM processors, and advance the EiM paradigm. Initial work

used a simulated model-based approach to answer these questions, which enabled

efficient investigation and analysis compared to the typically slow physical develop-

ment and lab-based experimentation process. Additionally, drawing from concepts

in the wider Machine Learning (ML) field, new in-materio device structures were

considered. These contributed to addressing scaling issues found in typical mono-

lithic (single substrate) EiM processors, but also boosted the performance of these

unconventional computing devices.

This chapter details the contributions made by each of the results chapters,

159
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before summarising with a thesis conclusion. Finally, several recommendations for

future work are made.

7.2 Chapters and Contributions Summary

7.2.1 Chapter 4

The first results chapter considered how well performing monolithic EiM processors

could be designed through the selection of nanomaterials and an EA for a tar-

get application. A physical Simulation Program with Integrated Circuit Emphasis

(SPICE) based model of a nanomaterial network was used which allowed for both

randomness, and the possibility of Ohmic and non-Ohmic conduction, which are

characteristics often found in EiM processor substrates. These differing networks

were exploited by Differential Evolution (DE), which optimised several configura-

tion parameters (configuration voltage stimuli, a shuffle gene to reorder inputs, and

signal weights) to solve different classification problems. It was found that intrinsic

nanomaterial conductive properties could be exploited by the differing configura-

tion parameters, clarifying the role and limitations of these techniques. The mate-

rial properties altered the behaviour of the EiM processors, showing that material

choice is important when formulating well performing devices.

7.2.2 Chapter 5

Having established simulation tools to investigate the performance of EiM systems,

enhancements to monolithic EiM processors operating as classifiers were considered.

Firstly, an adapted DE algorithm that included batching (or mini-batching) that

enabled more useful generational updates per epoch, speeding up convergence to

an acceptable solution. Secondly, the introduction of Binary Cross Entropy (BCE)

as an objective function for the EA; unlike the commonly used classification error

objective function, this was a continuous fitness metric that helped place the decision

boundary in a better probabilistic position. Thirdly, the use of regression to quickly

assess the material processor’s output states and produce an optimal readout layer, a
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significant improvement over fixed or evolved interpretation schemes which can ‘hide’

or be slow to discover the true performance of a Configurable Analogue Processor

(CAP). Finally, the introduction of a fully connected input layer allowed for a smooth

search space and more flexible system topology.

7.2.3 Chapter 6

While typical monolithic EiM processors have been found to be promising uncon-

ventional computing devices, there remain challenges in scaling devices to larger,

more complex problems. Drawing from other ML techniques, it was proposed that

EiM processors could be stacked in parallel and operated more similarly to a Neural

Network (NN). These novel in-Materio Neural Network (iM-NN) devices utilised

conductive network based CAPs as realisations of physical neurons in a NN like

structure.

These iM-NNs were first simulated and trained as Extreme Learning Machines

(ELMs), which were found to outperform Artificial Neural Network (ANN) based

ELMs of a similar size, and perform better with larger conductive network based

neurons. The use of virtual neurons (where a single physical neuron is re-used as

several virtual neurons) allowed for similar performance with more flexible system

implementation, but sacrificed parallelism. Physical iM-NNs were then implemented

using non-monotonically conductive Lambda Diode Network (LDN) based physical

neurons, a Raspberry Pi and custom Hardware Interface (HI). These were success-

fully trained using neuroevolution, and the introduction of batching and tuning of

population size improved the performance.

Having demonstrated the feasibility of constructing and training iM-NNs clas-

sifiers, a more complex unsupervised dimensionality reduction task was considered

by constructing a physical LDN neuron based AutoEncoder (AE). This in-Materio

AE was implemented in the lab and successfully optimised using OpenAI Evolu-

tionary Strategy (OpenAI-ES) with a regressed output layer to compress 8×8 pixel

handwritten digits into a two-dimensional representation, outperforming Principal

Component Analysis (PCA) and backpropagation trained ANN based AEs.
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7.3 Thesis Conclusion

To summarise, EiM is an effective method of exploiting a nanomaterial substrate

(or potentially any configurable medium) for unconventional computing . Both sim-

ulated and physical conductive networks were used to implement and investigate

EiM processors.

This work initially focused on monolithic (single substrate) EiM devices and in-

vestigated the benefits of different conductive network/nanomaterial and EA prop-

erties. This provided significant insight into the capabilities of different configurable

parameters (voltage stimuli, electrode reassignment, input and output weights, etc.)

and selected material properties, explaining their success (or lack of success) found

previously in literature.

The use of simulated conductive networks as a proxy for a physical nanoma-

terial enabled the efficient analysis of these fundamental questions, but also the

investigation and advancement of such EiM devices. Several enhancements were

proposed, and together they provided guidance on the future production of more

flexible, better performing, and robust monolithic EiM processors.

A scalable approach to exploiting physical systems as neurons in a NN like struc-

ture was proposed. Different methods for training these novel iM-NNs for classifica-

tion were examined. Finally, the ability to implement other typical ANN structures,

such as an AE was proven, showing the potential of in-materio based systems to

physically realise or mimic some typical ML techniques.

This work presents an approach to exploit systems with interesting physical

dynamics, and leverage them as a computational resource. Such systems could

become low power, high speed, unconventional computing assets in the future.
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7.4 Further Work

This thesis has helped progress the EiM paradigm, but there remains scope for

continued work within this area. In the following, I offer some thoughts and recom-

mendations for future avenues of research.

Hidden Layer and Physical Neuron Size

In §6.3 it was observed that for the same Hidden Layer (HL) size (i.e., number of

physical neurons in parallel), larger physical neurons, with more nodes/electrodes,

performed more successfully when trained as in-Materio Extreme Learning Machines

(iM-ELMs). However, to make informed decisions about iM-NN HL and physical

neuron (i.e., nanomaterial substrate) sizes, further research is needed.

As mentioned, the work presented in this thesis provides some initial direction

to this further work. Notably, when comparing ANNs with iM-NNs (or other iM-

NNs leveraging different types of physical neurons), only considering HL size was

sometimes inappropriate. This was demonstrated in §6.5 where physical neurons

were found to introduce more optimisable parameters (i.e., weights and biases) than

their artificial counterparts, inflating the search space. Instead, considering systems

with a similar number of parameters was considered to be a fairer comparison.

Determining the interaction and benefit between scaling either the HL or physical

neuron substrate sizes will allow for a more systematic approach to future physical

neuron-based NN design.

Sparse Systems and Emergent Behaviour

An in-materio focused approach to future research is encouraged, which maintains

efforts to exploit a material’s (or medium’s) inherent complex properties alongside

other improvements. While ML concepts have helped progress the EiM paradigm in

this work, a cautious attitude should be taken to ensure that in-materio substrates

and physical neurons are being appropriately exploited. As discussed in §6.2.1, ML

models such as ANN are sometimes considered to be over-parameterised and instead

attempts to reduce the number of optimisable parameters and exploit emergent be-
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haviour might be advantageous [1]. Using sparse layers is one way of drastically

reducing system parameters, but maintaining similar performance [2]. Indeed, im-

plementing a sparse evolutionary training procedure might be easier in a custom

in-materio system than in a typical ANN matrix-multiplication workflow.

Novel in-materio substrates

There remains significant scope to develop new in-materio device substrates. These

might allow operation at significantly increased speeds or power efficiency. However,

as discussed in §4.3.4 and §6.4.4, the benefits of static material and dynamic material

should be considered and selected based on the target computational task.

For example, as researchers seek to replicate brain like behaviour by implement-

ing neuromorphic computing [3], it seemed inevitable that physical biological brain

matter would be used. Indeed, examples include an in-vitro Reservoir-Neuro sys-

tem [4] and other Biological Reservoir Computing (RC) [5]. So called “Organoid

Intelligence” [6] is an emerging field which includes developments using human stem

cell-derived brain organoids to replicate critical molecular and cellular aspects of

learning, memory and possibly aspects of cognition in vitro. This includes technolo-

gies that could enable novel biocomputing models via stimulus-response training.

This presents an opportunity with potential overlap with EiM processors, perhaps

operating brain cell cultures similarly to a CAP.

Pre-trained in-materio devices and Kernels

The iM-ELMs developed in §6.3 were found to perform well as basic classifiers, where

the input layer and physical neuron stimuli were randomly initialised and exploited.

These systems assume that the input data will be projected to a new, useful repre-

sentation at the HL outputs, which are then combined by a regressed output layer.

However, some physical neurons might be ill configured for this purpose, or an input

layer may fail to deliver meaningful physical neuron input signals.

Instead, some degree of pre-training could be performed to ensure that an EiM

processor or iM-NN successfully creates a new, spatially diverse representation of the

input data. Novelty Search (NS) [7] is one such method which replaces the objective
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function in a standard evolutionary search process with a function that rewards

novelty rather than a performance-based fitness metric [8]. Such a concept could be

used to pre-train an EiM processor’s output states, or an iM-NN’s HL’s outputs, to

ensure a dataset is projected to a new novel representation. These systems could

then be used similarly to a kernel [9].

Complex Body Analysis and Exploitation

Here, the potential self-use of a system to extract useful information is highlighted.

For example, RC can be used to operate an origami robot [10]. This is perhaps more

interesting when considered in the context of soft body robots, where the physical

body itself is similarly used as a reservoir [11]. Soft robots are often under-actuated

(where the number of the actuation points are less than the degrees of freedom),

and when actuated they often generate diverse and complex body dynamics – which

are high-dimensional, nonlinear, and contain short-term memory. These properties

create challenges when it comes to control, but present an opportunity for imple-

menting Physical RC.

It is suggested that by considering a dynamic system itself as a Physical RC it

might (i) enable complex information to be gathered and inferred from the system,

perhaps more efficiently than conventional digital sensing techniques; and (ii) the

dynamic system might be exploited as a computational resource, while still func-

tioning for its initial purpose.

Notably, these systems could be realised without digital electronics involved

whatsoever. For example, acoustic logic gates could be used to analyse a robot’s

movements [12], allowing us to avoid analogue to digital conversion, side-stepping

limitations associated with discretisation.
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Appendix A

Additional Theoretical Background

A.1 Complexity Measures

The complexity of the classification datasets use din this thesis is considered in

§3.6.1. This included the use of python problexity package [1], which computes a

number of complexity measures commonly found in literature [2, 3, 1].

These complexity measures used fall into several groups, and are detailed as

follows [1]:

• Feature Based measures that characterize how informative the available fea-

tures are to separate the classes:

– f1 Maximum Fisher’s discriminant ratio, which describes the overlap of

feature values in each class.

– f1v Directional vector maximum Fisher’s discriminant ratio, computes pro-

jection that maximizes class separation by directional Fisher’s criterion.

– f2 Volume of overlapping region, describes the overlap of the feature values

within the positive and negative classes.

– f3 Maximum individual feature efficiency, describes the efficiency of each

feature in the separation of classes.

– f4 Collective feature efficiency, describes the features’ synergy.
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• Linearity measures that try to quantify whether the classes can be linearly

separated:

– l1 Sum of the error distance by linear programming.

– l2 Error rate of linear classifier, described by the error rate of the Linear

SVM classifier within the dataset.

– l3 Non-linearity of linear classifier, described by the classifier’s error rate

on synthesized points of the dataset.

• Neighbourhood measures that characterize the presence and density of same

or different classes in local neighbourhoods, often using a Nearest Neighbour

(NN) Classifier:

– n1 Fraction of borderline points.

– n2 Ratio of intra/extra class NN distance, depends on the distances of

each problem instance to its nearest neighbour of the same class and the

distance to the nearest neighbour of a different class.

– n3 Error rate of NN classifier.

– n4 Calculates the Non-linearity of NN classifier.

– t1 Fraction of hyperspheres covering data, defined by the number of hy-

perspheres needed to cover the data, divided by the number of instances.

– lsc Local set average cardinality, depends on the distances between in-

stances and the distances to the instances’ nearest enemies – the nearest

sample of the opposite class.

• Network measures that extract structural information from the dataset by

modelling it as a (epsilon-Nearest Neighbour) graph:

– density Density metric, which calculates the number of edges in the final

graph divided by the total possible number of edges.

– cls coef Clustering Coefficient metric,
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– hubs Hubs metric, which scores each sample by the number of connections

to neighbours, weighted by the number of connections the neighbours

have

• Dimensionality measures that evaluate data sparsity based on the number

of samples relative to the data dimensionality:

– t2 Average number of features per dimension.

– t3 Average number of Principal Component Analysis (PCA) dimensions

per points.

– t4 Ratio of the PCA dimension to the original dimension, which describes

the proportion of relevant dimensions in the dataset.

• Class Imbalance measures that consider the ratio of the numbers of examples

between classes:

– c1 Entropy of Class Proportions.

– c2 Imbalance Ratio.
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Appendix B

Physical System Validation

B.1 SWCNT-PMMA Experiments

Figure B.1: Example inter-node IV characteristics between one node and 10 others
on the fabricated microelectrode array with deposited 1.1wt% Single Walled Carbon
Nanotubes (SWCNTs) suspended in Poly(butyl methacrylate) (PBMA).

Table B.1: Summary fitting parameters of Eq.(3.4.6) to experimental data for in-
ternode characteristics of a 1.1wt% SWCNT/PBMA blend.

Paramater Minimum Maximum Mean Std

1.1%
a 3.3× 10−8 1.7× 10−7 1.2× 10−7 4.8× 10−8

b 2.8× 10−7 9.6× 10−7 5.6× 10−7 2.4× 10−8
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B.2 RRN and DRN System Experiments

B.2.1 RRN

A simple example resistor based circuit network was built to compare experimental

results with Simulation Program with Integrated Circuit Emphasis (SPICE) sim-

ulated results, as shown in Fig. B.2. The voltages at the two input nodes (a1 &

a2) were swept in steps of 0.2V . Various configuration voltages were considered,

no other algorithm configuration parameters were utilised. The real and simulated

circuits were found to produce near identical responses.

(a) Constructed example Resistor Random Network
(RRN) network

(b) Experimental Results (c) Simulated Results

Figure B.2: Experimental and simulated response (Y ) surface plots for an example
Recurrent Neural Network (RNN) network.
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B.2.2 DRN

A simple example resistor and diode based circuit network was built to compare

experimental results with SPICE simulated results, as shown in Fig. B.3; both

1N4148PH and 1N4001 diodes were used. The voltages at the two input nodes (a1

& a2) were swept in steps of 0.2V . Various configuration voltages were considered,

no other algorithm configuration parameters were utilised. The real and simulated

circuits were found to produce near identical responses.

(a) Constructed example Diode Random Network
(DRN) network

(b) Experimental Results (c) Simulated Results

Figure B.3: Experimental and simulated response (Y ) surface plots for an example
DRN network.
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B.3 Lambda Diode Network System Experiments

A Lambda Diode Network (LDN) was leveraged as a physical neuron to implement

an in-Materio Neural Network as described in Chapter 6. To visualise its behaviour,

a 2D sweep of voltage inputs was performed for several configuration voltages, as dis-

cussed in §6.4.1. The accumulated residuals (i.e., difference between the desired/set

voltages and the actual/read voltage) from this experiment, which used a Raspberry

Pi and Hardware Interface in a lab, are plotted in Fig. B.4.

Figure B.4: Histogram of the output voltage residuals using a (a) linear and (b) log
y-axis. Bin width = 0.002.



Appendix C

Additional Advanced Monolithic

EiM Results

This appendix supports work presented in Chapter 4. This includes an investigation

into an appropriate sample size of randomly generated ‘material processors’ and

the number of repetitions required to mitigate randomness in convergence. This

appendix also includes additional results which consider the effect of modifying the

Decision Vector, as discussed in §4.3.2.
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C.1 Repetition Reliability

Figure C.1: Surface plot of the test fitness standard deviation as we either train
for longer or include more repetitions. These results used the advanced Differential
Evolution (DE) algorithm (with shuffle gene, input and output weights) to classify
the con2DDS. It shows the effect of the cumulative standard deviation of the evolved
final test fitness as more algorithm repetitions are introduced. This was done for
two randomly generated Diode Random Network (DRN) material processors and
shows that the standard deviation is low and settles after four to five repetitions of
the DE algorithm.
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(a) Resistor Random Network (RRN)
Basic Algo

(b) RRN Advanced Algo

(c) Non-Linear Random Network
(NLRN) Basic Algo

(d) NLRN Advanced Algo

(e) DRN Basic Algo (f) DRN Advanced Algo

Figure C.2: Box & whisker plots showing the effect of including more randomly
generated ‘material processors’ into the final result. Each of the processor types
(RRN, NLRN & DRN) were solved using the basic and advanced algorithms over
50 iterations. This was then repeated for a new material so a box plot of the
cumulative test fitness’s could be plotted. This was then repeated for another newly
randomly generated material (and so on) such that the effect of including more
material processors could be visualised. Note that introducing multiple repetitions
of the DE algorithm on each individual material also improves stability.
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C.2 con2DDS Results

For clarity, the results presented in Fig.4.9 displayed only the different individual

additional configuration parameters (i.e., ‘shuffle’, input weights or output weights)

in conjunction with configuration voltages, and the use of all configuration param-

eters at once. Here, the remaining combinations are shown in Fig.C.3, and a full

table of results is given in Table C.1.
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(a) RRN fitness convergence (b) RRN final test ftiness

(c) NLRN fitness convergence (d) NLRN final test ftiness

(e) DRN fitness convergence (f) DRN final test ftiness

Figure C.3: The mean test fitness convergence and final test fitness box and whisker
plots for the RRN, NLRN, and DRN.
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Table C.1: Classification error (Φerror) results from varying utilising different con-
figuration parameters when classifying the con2DDS on the corresponding type of
material processor (averaged from 15 material networks, each with 5 DE repeti-
tions).

Material Model Evolutionary Parameters Training Test

Config
Voltage

Shuffle
Gene

Input
Weights

Output
Weights Φ̄ std(Φ) Φ∗ Φ̄ std(Φ) Φ∗

RRN

1 0 0 0 0.350 0.005 0.341 0.375 0.011 0.350
1 0 1 0 0.313 0.003 0.309 0.337 0.016 0.300
1 0 0 1 0.315 0.006 0.309 0.340 0.018 0.312
1 0 1 1 0.314 0.005 0.309 0.337 0.016 0.287
1 1 0 0 0.342 0.005 0.331 0.361 0.013 0.350
1 1 1 0 0.313 0.003 0.309 0.334 0.011 0.312
1 1 0 1 0.312 0.003 0.309 0.337 0.012 0.312
1 1 1 1 0.313 0.004 0.309 0.337 0.014 0.287

NLRN

1 0 0 0 0.320 0.005 0.312 0.333 0.014 0.300
1 0 1 0 0.309 0.003 0.300 0.303 0.021 0.275
1 0 0 1 0.297 0.023 0.206 0.297 0.031 0.188
1 0 1 1 0.299 0.018 0.219 0.294 0.023 0.225
1 1 0 0 0.315 0.005 0.303 0.330 0.013 0.300
1 1 1 0 0.308 0.004 0.300 0.303 0.020 0.275
1 1 0 1 0.293 0.023 0.203 0.295 0.030 0.200
1 1 1 1 0.299 0.023 0.194 0.292 0.025 0.212

DRN

1 0 0 0 0.375 0.051 0.281 0.385 0.054 0.287
1 0 1 0 0.305 0.040 0.206 0.316 0.047 0.212
1 0 0 1 0.223 0.059 0.119 0.222 0.072 0.087
1 0 1 1 0.191 0.050 0.097 0.203 0.057 0.075
1 1 0 0 0.292 0.041 0.244 0.307 0.042 0.250
1 1 1 0 0.259 0.046 0.197 0.270 0.052 0.212
1 1 0 1 0.154 0.054 0.037 0.147 0.068 0.013
1 1 1 1 0.169 0.051 0.037 0.168 0.067 0.025
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C.3 2DDS Results

Additional results using the advanced Evolution in-Materio (EiM) algorithm to clas-

sify the linearly separable 2DDS were carried out. This included all the combinations

of additional decision parameters (i.e., ‘shuffle’, input weights or output weights) in

conjunction with configuration voltages. Convergence results are shown in Fig.C.4,

and a full table of results is given in Table C.2.

(a) RRN fitness convergence (b) RRN final test ftiness

(c) NLRN fitness convergence

Figure C.4: The mean test fitness convergence for the different conductive network-
based EiM processors classifying the 2DDS.
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Table C.2: Classification error (Φerror) results from varying utilising different config-
uration parameters when classifying the 2DDS on the corresponding type of material
processor (averaged from 15 material networks, each with 5 DE repetitions).

Material Model Evolutionary Parameters Training Test

Config
Voltage

Shuffle
Gene

Input
Weights

Output
Weights Φ̄ std(Φ) Φ∗ Φ̄ std(Φ) Φ∗

RRN

1 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000
1 0 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 0 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 0 1 1 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000

NLRN

1 0 0 0 0.000 0.000 0.000 0.000 0.000 0.000
1 0 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 0 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 0 1 1 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000

DRN

1 0 0 0 0.005 0.009 0.000 0.003 0.007 0.000
1 0 1 0 0.002 0.006 0.000 0.002 0.005 0.000
1 0 0 1 0.003 0.006 0.000 0.002 0.007 0.000
1 0 1 1 0.001 0.003 0.000 0.001 0.002 0.000
1 1 0 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 1 0 0.000 0.002 0.000 0.000 0.001 0.000
1 1 0 1 0.000 0.001 0.000 0.000 0.001 0.000
1 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000



C.4. flipped2DDS Results 183

C.4 flipped2DDS Results

Additional results using the advanced EiM algorithm to classify the linearly sep-

arable 2DDS were carried out. This included all the combinations of additional

decision parameters (i.e., ‘shuffle’, input weights or output weights) in conjunction

with configuration voltages. Convergence results are shown in Fig.C.5, and a full

table of results is given in Table C.3.

(a) RRN fitness convergence (b) RRN final test ftiness

(c) NLRN fitness convergence

Figure C.5: The mean test fitness convergence for the different conductive network-
based EiM processors classifying the flipped 2DDS.
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Table C.3: Classification error (Φerror) results from varying utilising different con-
figuration parameters when classifying the flipped2DDS on the corresponding type
of material processor (averaged from 15 material networks, each with 5 DE repeti-
tions).

Material Model Evolutionary Parameters Training Test

Config
Voltage

Shuffle
Gene

Input
Weights

Output
Weights Φ̄ std(Φ) Φ∗ Φ̄ std(Φ) Φ∗

RRN

1 0 0 0 0.506 0.014 0.500 0.503 0.010 0.500
1 0 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 0 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 0 1 1 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 0 0.500 0.000 0.500 0.500 0.000 0.500
1 1 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000

NLRN

1 0 0 0 0.500 0.000 0.500 0.500 0.000 0.500
1 0 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 0 0 1 0.000 0.000 0.000 0.000 0.000 0.000
1 0 1 1 0.000 0.000 0.000 0.000 0.001 0.000
1 1 0 0 0.500 0.000 0.500 0.500 0.000 0.500
1 1 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 1 0.000 0.000 0.000 0.000 0.001 0.000
1 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000

DRN

1 0 0 0 0.500 0.001 0.500 0.500 0.000 0.500
1 0 1 0 0.002 0.005 0.000 0.002 0.004 0.000
1 0 0 1 0.003 0.007 0.000 0.003 0.010 0.000
1 0 1 1 0.001 0.004 0.000 0.001 0.005 0.000
1 1 0 0 0.500 0.000 0.500 0.500 0.000 0.500
1 1 1 0 0.000 0.000 0.000 0.000 0.000 0.000
1 1 0 1 0.000 0.001 0.000 0.000 0.001 0.000
1 1 1 1 0.000 0.000 0.000 0.000 0.000 0.000



Appendix D

Physical iM-NN Neuroevolution

Hyperparameter Investigation

Before carrying out experimentation for the paper, some initial investigation was

required to determine acceptable hyperparameter values for the three algorithms

under consideration. The Differential Evolution (DE),OpenAI Evolutionary Strat-

egy (OpenAI-ES) and Covariance Matrix Adaptation Evolution Strategy (CMA-ES)

algorithms all utilise different hyperparameters.

To investigate these, in-Materio Neural Network (iM-NN) containing two physi-

cal hidden layer neurons, were used to classify a half moon 2d dataset (hm2DDS).

The hm2DDS contains two attributes, two classes, and 1000 data instances (half

allocated as class 1, and half as class 2), as described in §3.6.1; the algorithms are

required to exploit non-linearities in the physical neurons to classify this dataset.

The hm2DDS is split 70% − 30% to create a training and test data subset respec-

tively, used to train and objectively measure performance.
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D.1 Differential Evolution

A DE/best/1/bin algorithm is used with a reflection bounds constraint. This has

three hyperparameters which include the mutation factor F , a crossover CR and

population size λ. Here, a reasonable population size of λ = 1× d is selected, where

d is the number of dimensions (i.e., evolvable system parameters) and use a batch

size of bs = 0.1 ∗Ktrain where Ktrain is the number of training data instances (i.e.,

700).

A 2d hyperparameter sweep was carried out to consider the performance of the

algorithm using different combinations of F and CR. For each combination, the

algorithm was repeated three times for a fixed budget of 0.5 × 106Ncomps, and a

surface plot of the mean final test fitnesses are shown in Fig. D.1a. These results

show that F = 0.5 and CR = 0.6 are good hyperparameter values to be taken

forward within the §6.4 experimentation.

(a) Final mean test fitness (b) Example mean test fitness conver-
gence

Figure D.1: DE hyperparameter investigation results solving the hm2DDS for a
fixed budget of 500000 Ncomps, with λ = d.
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D.2 OpenAI ES

The OpenAI-ES is used with Adam optimiser and a ‘clip’ boundary constraint.

Hyperparameters include Gaussian noise σ, learning rate α and pseudo-population

λ; but also additional hyperparameters introduced by Adam optimiser: β1 = 0.9,

β1 = 0.999, ε = 10−8 Here, a reasonable population size of λ = 1 × d is selected,

where d is the number of dimensions (i.e., evolvable system parameters) and use a

batch size of bs = 0.05∗Ktrain where Ktrain is the number of training data instances

(i.e., 700).

A 2d hyperparameter sweep was carried out to consider the performance of the

algorithm using different combinations of σ and α. For each combination, the algo-

rithm was repeated three times for a fixed budget of 0.5× 106Ncomps, and a surface

plot of the mean final test fitnesses are shown in Fig. D.2a. These results show that

σ = 0.001 and α = 0.01 are reasonable hyperparameter values to be taken forward

within §6.4 experimentation.

(a) Final mean test fitness (b) Example mean test fitness conver-
gence

Figure D.2: OpenAI-ES hyperparameter investigation results solving the hm2DDS
for a fixed budget of 500000 Ncomps, with λ = d.
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D.3 Covariance Matrix Adaptation ES

CMA-ES hyperparameters include initial step size (i.e., initial standard deviation of

noise) σ and population size λ. The CMA-ES was used with the pop size automati-

cally determined according to λ = 4+3 log(d). Therefore, only the σ hyperparameter

values were investigated using a batch size of bs = 0.05 ∗Ktrain where Ktrain is the

number of training data instances (i.e., 700).

A 1d hyperparameter sweep was carried out to consider the performance of the

algorithm using different combinations of σ. For each combination, the algorithm

was repeated three times for a fixed budget of 0.5 × 106Ncomps, and a surface plot

of the mean final test fitnesses are shown in Fig. D.2a. These results show that the

initial step size does not impact performance too much, so a step size of σ = 0.15 was

selected to be used in §6.4 experimentation (not that the initial step size is selected

with respect to normalised boundaries ∈ [0, 1] for the evolvable parameters).

(a) Final mean test fitness box-whisker
plots

(b) Mean test fitness convergence

Figure D.3: CMA-ES hyperparameter investigation results solving the hm2DDS for
a fixed budget of 500000 Ncomps.


