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Abstract

This thesis illustrates the use and development of physical conductive ana-
logue systems for unconventional computing using the Evolution in-Materio (EiM)
paradigm. EiM uses an Evolutionary Algorithm to configure and exploit a phys-
ical material (or medium) for computation. While EiM processors show promise,
fundamental questions and scaling issues remain. Additionally, their development is
hindered by slow manufacturing and physical experimentation. This work addressed
these issues by implementing simulated models to speed up research efforts, followed
by investigations of physically implemented novel in-materio devices.

Initial work leveraged simulated conductive networks as single substrate ‘mono-
lithic’ EiM processors, performing classification by formulating the system as an
optimisation problem, solved using Differential Evolution. Different material prop-
erties and algorithm parameters were isolated and investigated; which explained
the capabilities of configurable parameters and showed ideal nanomaterial choice
depended upon problem complexity. Subsequently, drawing from concepts in the
wider Machine Learning field, several enhancements to monolithic EiM processors
were proposed and investigated. These ensured more efficient use of training data,
better classification decision boundary placement, an independently optimised read-
out layer, and a smoother search space. Finally, scalability and performance issues
were addressed by constructing in-Materio Neural Networks (iM-NNs), where sev-
eral EiM processors were stacked in parallel and operated as physical realisations of
Hidden Layer neurons. Greater flexibility in system implementation was achieved
by re-using a single physical substrate recursively as several virtual neurons, but
this sacrificed faster parallelised execution. These novel iM-NNs were first imple-
mented using Simulated in-Materio neurons, and trained for classification as Ex-
treme Learning Machines, which were found to outperform artificial networks of a
similar size. Physical iM-NN were then implemented using a Raspberry Pi, custom
Hardware Interface and Lambda Diode based Physical in-Materio neurons, which
were trained successfully with neuroevolution. A more complex AutoEncoder struc-
ture was then proposed and implemented physically to perform dimensionality re-
duction on a handwritten digits dataset, outperforming both Principal Component
Analysis and artificial AutoEncoders.

This work presents an approach to exploit systems with interesting physical
dynamics, and leverage them as a computational resource. Such systems could
become low power, high speed, unconventional computing assets in the future.
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1.1 Chapter Overview

Evolution in-Materio (EiM) is an unconventional computing paradigm which uses
an Evolutionary Algorithm (EA) to leverage the inherent complex properties of
a nanomaterial substrate or physical medium for computation. This bottom up
exploitation of physical properties is in contrast with the traditional ‘top down’
approach typically used to develop modern silicon-based computers.

This chapter introduces EiM processors and provides context for a renewed in-
terest in unconventional computing. This touches on related fields and discusses the
literature. While EiM processors show promise, problems in their development ex-
ist, such as slow manufacturing and physical experimentation, and possible scaling
issues. Here, the research hypothesis and thesis structure is outlined for the reader’s

convenience.
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1.2 Historical Context

The twenty-first century has heralded an unprecedented explosion in technological
innovation. Many liken this new ‘digital age’ to that of the industrial revolution,
bringing opportunity to the modern world. However, this new interconnected world
requires one vital component — computers. These come in all shapes and sizes,
from large and power hungry data centres, to small Internet-of-Things (IoT) edge
devices [1].

The Cambridge Dictionary defines a processor as “the part of a computer that
performs operations on the information that is put into it”. Therefore, devices or
systems which can process information and perform computation pre-date modern
electronic computers by centuries. Indeed, the oldest known computational device
is the abacus |2] used in ancient civilisations around the world. The oldest known
processor might therefore be the water clock, a device used to measure the passage of
time by regulating the flow of a liquid from either into or out of a vessel [3, 4, 5]. Such
devices exploit the vessel structure, and its physical dynamics, for the particular time
‘processing’ task.

The modern computer is generally thought to have been worked on by Babbage
& Lovelace [6, 7], Zuse [8] and Turing [9]. Indeed, Ada Lovelace is often attributed
as the ‘first programmer’ [10]. These early mechanical and analogue computers
often used wheels, disks, shafts and gears to perform calculations [11]. The first
digital computers used vacuum tubes to represent binary information, before being
replaced with the transistor — now the fundamental building block for much of
modern electronic systems.

Modern digital computers are general purpose machines which can run a variety
of programs. These generally follow the Von Neumann architecture [12] where a
single store (i.e., addressable memory) is used for both machine instructions and
data. Therefore, there is a clear separation within the computer’s permanent struc-
ture (hardware) and its instructions (software). This enabled flexible computers
that could be reconfigured (programmed) by entering new instructions into mem-
ory, rather than physically rewired. However, Von Neumann architecture limits

a computer to sequential processing and requires a well-defined structure with a
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Figure 1.1: Plot illustrating Moore’s law by showing the increase in transistor count
over time. Data taken from [19].

central processing unit.

The adoption of digital technology for personal use has reached new highs, with
8.27 billion worldwide mobile phone subscriptions, and approximately 60% of the
world population having had internet access in 2020 [13]. A growing number of
devices are being connected to the internet, helping realise the IoT — a network of
physical objects which can communicate [14] and perform as smarter systems. IoT
systems rely on a number of underlying technologies, such as sensors, communication
systems, internet protocols and embedded computational devices. Beyond personal
use, the application of computing technology is expanding, from smart cities |15]
and autonomous vehicles [16], to data centres [17] and large Machine Learning (ML)
models [18].

These advances have been made possible by the continued progress in electronic
device development. In 1965 Gordon E. Moore observed that manufacturers had
been doubling the density of components per Integrated Circuit (IC) at regular in-
tervals (roughly every two years) [20], a trend seen in Fig. 1.1 which became known
as Moore’s law. Indeed, the success of Moore’s law has helped drive the silicon man-
ufacturing industry. However, manufactures are now facing serious challenges, with

fundamental physical limits suggesting field-effect transistor gate length is unlikely
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to go below 5nm [21].

The effort to continue scaling conventional silicon Complementary Metal-Oxide-
Semiconductor (CMOS) devices has overwhelmingly dominated intellectual & finan-
cial capital investments from industry, government and academia [21]. However, the
challenges to typical silicon device development has led to a growing interest in new
unconventional computing methods [22]. Such devices may provide power and speed

efficiency gains, or even offer entirely new computational paradigms.

1.3 Unconventional Computing

Unconventional Computing (UC), sometimes referred to as unconventional compu-
tation [23] or alternative computing, is a wide area of study with varied content
and many related fields. While whether something is ‘unconventional’ can be sub-
jective [23], UC methods are broadly defined as computing without standard digital
computers |24]. Examples can include leveraging Field-Programmable Gate Arrays
(FPGASs) [25], Deoxyribonucleic Acid (DNA), quantum properties, mechanical de-
vices, water [26], nano-technologies and more.

Natural Computing (NC) has a strong relationship with UC; it is a large field
that contains techniques inspired from nature or the use of natural materials to
perform computation |24, 27]. This can include algorithms using concepts such
as reproduction, mutation, recombination, and natural selection [28], or physical
systems performing computation such as with physarum (slime mould), DNA or
more [29, 24]. Many argue that there are lessons which can be drawn from nature,
since natural evolution has produced “biological machines” which still maintain a
level of complexity far above what conventional computers have achieved [30]. In-
deed, research such as Artificial Neural Networks (ANNs) was a landmark piece
of work in the branch of nature inspired computing [27]. The realisation of such
biologically, and particularly brain, inspired systems is often called neuromorphic
computing [31], and has resulted in a large body of research [32, 33|, from leaky
integrate-and-fire spike-driven hardware [34, 35] to memristive synapses [36] and

crossbar arrays [37, 38, 39].
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The growing curiosity in UC has also revived interest in analogue computing [29].
This coincides with a desire to produce efficient but powerful computing and ML at
“the edge” [1] and physical neuromorphic hardware [40|. For this reason, the idea
of using physical analogue systems has remained an attractive option, due to many
analogue devices’ high theoretical throughput and low-energy consumption [41]. Ad-
ditionally, constraints associated with digital computing could be sidestepped, such
as avoiding analogue-to-digital conversion (i.e., discretisation) [42]. However, such
emerging UC devices face challenges such as device variability, stochastic behaviour
and scalability [43, 44].

While ANNs have exploded in popularity, some consider them to be over param-
eterised [45, 46]. Conversely, the complexity engineering approach [44] states that
one should attempt to minimise external control of a complex system being lever-
aged for computation. In doing so, a system could instead be self-organising with
emergent functionality — contrary to a classical engineering approach which is often
top down and well-defined. Such approaches prompts us to re-think how computing
methods can be adapted for new UC devices, or perhaps search for entirely new

computational paradigms [47].

1.4 Evolution in-Materio

EiM is an UC method which seeks to exploit a physical substrate’s inherent complex
properties to perform a computational task. Initially proposed by Miller & Downing
in 2002 [30], EiM was inspired by the remarkably complex and varied functions
that simple nucleotides can perform when configured by evolution into a genome.
They envisaged a type of evolutionary exploitable device operated as a Configurable
Analogue Processor (CAP), whose configuration (and therefore operation) could
be selected by some discrete set of parameters such as voltages, fields or other
physical signals. They argued that the evolvable hardware research community was
too focused on transistor technology, and that many other types of reconfigurable
systems may exist, suggesting that materials with rich physical properties might be

ideal. They also suggested that numerous CAP configurations might need to be
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Figure 1.2: Visualisation of the training process for a Configurable Analogue Pro-
cessor (CAP) as described by Miller and Downing [30].

tested before one is found that transforms the incident signal in the desired manner.
The resulting ‘fitness landscape’ was likely to have many local optima, to which
an optimising EA [28] might be best suited for. The EA performs an iterative
search, optimising the CAP’s input/output relationship until a certain performance
level is achieved or a particular number of iterations has elapsed. Such a training
process is illustrated in Fig. 1.2. Therefore, EiM uses a ‘bottom up’ approach where
the material is leveraged for computation without explicit knowledge of its internal
properties.

In the past decade, significant progress has been made advancing the EiM paradigm.
The term EiM processor is used here to describe a system which exploits a config-
urable analogue or ‘in-materio’ processor using an EA. Examples of such devices
include the use of a nanomaterial substrate such as metal-nanoparticles [48, 49],
Single Walled Carbon Nanotube (SWCNT) composites [50, 51|, Liquid Crystals
(LCs) |52, 53], LCs/SWCNT mixtures [54], and dopant-atom networks [55] — all of
which were configured with the application of static ‘configuration’ voltages. How-
ever, it is highlighted that any material or medium which is interfaceable and con-
tains interesting physical properties might be used in an EiM processor. This could
include using light [56], radio waves [57], acoustics [58], or potentially turning an

entire building into a computational resource by exploiting conductive concrete [59].
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Therefore, at the simplest level, perhaps even the humble water clock (mentioned
in §1.2) could be described as an in-materio processor, exploiting the dynamics of
a chosen vessel to perform a time keeping process.

So, EiM devices consist of a system within which a material or medium’s physi-
cal properties are exploited and leveraged towards the desired computational task.

Thus, EiM devices generally comprised of three constituent parts:
e a material whose characteristics can be altered via external stimuli,

e a Hardware Interface which can apply input and read output signals from the

material,
e a device which can host and execute an EA to optimise the material.

Within this work, an exploited nanomaterial substrate will be referred to inter-
changeably as a configurable analogue, material or in-materio processor.

Research has often focused on conductive nanomaterial substrates since they can
be easily accessed and manipulated via the application and reading of voltages. As
such, EiM processors are generally fabricated by depositing the chosen nanomaterial
on a microelectrode array, which is used to apply and measure voltages. An example
of such an EiM processor device is depicted in Fig. 1.3. Nanomaterial based EiM
processors have used a range of microelectrode array sizes to contact the material:
such as sixty-four [60], sixteen [61, 50] or often fewer electrodes [62, 55, 48]. Smaller
networks using only eight electrodes have shown promising results as physical real-
isations of high-capacity neurons [41].

The electronic functionality of these EiM processors is not designed by the as-
sembling of discrete components, rather an optimal material configuration is sought
via evolution through a supervised learning process. The human element of EiM
processor design is the selection of an appropriate configurable material/medium,
selecting the physical stimuli, formulating the computational problem, and choosing
an algorithm to efficiently optimise the system [63, 64, 65, 66]. While EAs are tradi-
tionally used to produce EiM processors, other algorithms or methods could be used

to produce novel in-materio devices, such as Particle Swarm Optimisation [63, 64].
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Figure 1.3: Diagram of a typical nanomaterial substrate based EiM processor.

So far, EiM processors have been well positioned to operate as basic classifiers
for non-temporal (static) data, performing complex multivariate machine-learning
problems [54, 67] or as logic gates [48, 62, 51|. However, the literature is pre-
dominantly made up of case studies, using a range of techniques and nanomaterial
substrates. It has been demonstrated that optimising different nanomaterials with
the same EA for the same function has both varying degrees of success and training
time [66, 51, 68, 67]. Since these nanomaterial processors are analogue, they often
have underlying physical properties that are difficult to model. This leads them to
be treated as black boxes, making investigation into which nanomaterial properties
are beneficial difficult. Even EiM processors fabricated from nominally the same
nanomaterial and optimised by the same EA for the same computational problem
vary in quality of solution due to the inherent randomness of nanomaterial mor-
phology [67] and EA convergence. Collating data and conducting experimentation
to further investigate these issues is challenging due to the slow fabrication and
training processes that are required for each EiM processor [49]. Additionally, while
the literature presents many implementations of EiM devices, a lack of a unified
method or common approach makes reliable, repeatable investigation difficult. As
such, the fundamental question of which configurable material properties lead to
better performing EiM processors, and what algorithm properties will lead to better
exploited performance, remains largely unanswered.

Other computational frameworks closely overlap with EiM. For example, Ex-
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treme Learning Machines (ELMs) and Reservoir Computings (RCs) present a good
analogy for in-materio processors since both involve the exploitation of random net-
works. These systems depend on the underlying assumption that the randomised
network /reservoir will produce useful and often higher dimensional output states
that are used to process the data more successfully. Notably, within these fields
of research, it is generally assumed that the network/reservoir remains fixed after
its inception. However, previous work has shown that some stochastic optimisation
can improve a system’s performance |68, 69, 70]. ELMs were developed from single
hidden layer feedforward neural networks and are generally employed to process non-
temporal data |[71]. Examples of physical implementations of ELM remain sparse,
but include memristor based networks |72| and photonic systems [73, 74]. RC was
developed from Recurrent Neural Networks and are generally employed to process
temporal data. Like EiM, Physical RCs |75] could lead to low power, efficient and
fast systems which can operate at ‘the edge’. Examples include the use of circuit
(anti-parallel diode) based non-linear neuron [76|, memristive network |72, 77|, FP-
GAs [25], and magnetic spintronic [78] based reservoirs. There remains significant
opportunity to develop both classical and quantum substrates [79] for both ELM
and RC. Drawing elements from such successful ML methods and leveraging physical
substrates using EiM could unlock efficient but powerful unconventional computing
resources.

Work combining physical RC and EiM was carried out by Matthew Dale et al. at
York University [68, 66] in which they constructed Reservoir Computing in-Materio
(RCiM) devices. These deviate from traditional physical RC by introducing aspects
of EiM; specifically, utilising an EA to tune a reservoir by evolving some stimuli
(equivalent to optimising the internal reservoir parameters). Earlier discussion from
Dale et al. considered the advantages of the RC readout layer (i.e weights for the out-
put signals) and how it allows the system to selectively choose and separate/combine
interesting output signal patterns [68]. Within the work carried out on RCiM, evolv-
able configuration parameters included static (configuration) voltages, connection
location, a variable number of inputs/outputs and input weights [68, 66, 80]. They

hypothesised that an observed increase in performance might be the result of: (i) in-
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put weightings allowing variations of the input which cause interesting interactions,
(ii) a conductive network might not be present across all electrodes, instead several
may exist, so additional inputs-outputs may grant access to these smaller networks,
(iii) combining and weighting several outputs allows training to exploit the whole
material, not just a single area around a particular electrode. This conjecture re-
quires further exploration and represents the general lack of established knowledge
about how nanomaterial processors can be best exploited. The importance of de-
veloping this foundational understanding cannot be understated, and is required to
provide actionable guidance on the future design of EiM devices.

The scalability of EiM devices is an incredibly important, but as yet unanswered
question. EiM processors have typically used a single substrate ‘monolithic’ struc-
ture. With larger and more complex ML problems, a monolithic EiM processor
would require a physically larger nanomaterial substrate with a larger microelec-
trode array. However, such an approach is unlikely to perform well, as such larger
devices will have weaker interactions between distant electrodes. Therefore, to scale
in-materio systems to process larger, more complex datasets, devices will have to
move beyond the typical monolithic structure. The introduction of novel devices or
intra-substrate structures represents an exciting avenue for research.

In summary, while EiM processors show promise as an unconventional computing
resource, problems in their development exist. To isolate and investigate fundamen-
tal questions about optimal material and algorithms properties, a standard approach
is required. However, investigations are often slow, due to lengthy physical manu-
facturing and physical experimentation. Finally, to advance the paradigm to larger,
more complex computational problems, new and novel EiM device structures, and

accompanying algorithms, will be required.
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1.5 Research Hypothesis

Nanomaterial substrates can be used to produce EiM devices, but physical develop-
ment and experimentation can be slow. Instead, a simulation can be used to model
a material and use it as a proxy for experimentation; this will allow fast and efficient
investigation into what material and algorithm properties are most beneficial to EiM
Processors.

Further to this, new device structures will be considered, drawing from concepts
in the wider Machine Learning field, such as feed forward Neural Networks and
AutoEncoders. These devices will address scaling issues found in typical monolithic

(single substrate) EiM processors.
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1.6 Thesis Structure

The thesis structure is as follows:

Chapter 2 presents background information about EiM processors, and related
topics including ANNs and RC. Detailed descriptions about relevant EA and

objective fitness functions are given.

Chapter 3 details how a conductive nanomaterial can be leveraged as a CAP and
used in EiM for classification. The simulated model and physical testing plat-
form are presented. Finally, the datasets used for classification and dimen-

sionality reduction tasks are introduced.

Chapter 4 is the first results chapter which examines fundamental algorithm and
material interaction, establishing a better understanding of EiM and typical

single substrate ‘monolithic’ devices using fast and efficient simulations.

Chapter 5 reports on several enhancements to EiM devices and their exploiting
algorithms. This includes making better use of the available training data, the
benefits of a cross entropy fitness metric, the use of a regressed output layer

and fully connected input layer.

Chapter 6 proposes a novel in-Materio Neural Network (iM-NN) device structure,
enabling a scalable system by stacking several in-materio processing units
in parallel and drawing on ML concepts. These iM-NNs are first simulated
and trained as Extreme Learning Machines. Then using a Raspberry Pi and
Hardware Interface, physical realisations of iM-NNs are investigated in the
lab, performing classification and then constructing an AutoEncoder which

are trained via neuroevolution.

Chapter 7 outlines the main conclusions of this thesis, and suggests several possi-

ble directions for future research.
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2.1 Chapter Overview

This chapter introduces background knowledge and theory required to understand,
formulate and develop Evolution in-Materio (EiM) processors. This includes defin-
ing an EiM system and representing its configuration as a mathematical solution
which can be optimised. Three types of Evolutionary Algorithm (EA) are intro-
duced, including Differential Evolution, OpenAl Evolutionary Strategy and Covari-
ance Matrix Adaptation Evolution Strategy; all of which could be used to optimise
EiM processors. Various objective functions are discussed, used to calculate a fitness
or loss score, which an EA will attempt to improve.

Finally, Machine Learning (ML) methods such as Artificial Neural Networks

(ANNs) and their training methods are also considered. This includes typical sin-

21
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gle hidden layer feedforward neural networks (SLFNs), AutoEncoders (AEs), and
Reservoir Computing (RC); concepts which are drawn from when developing more

advanced and novel EiM processing devices.

2.2 Evolution in-Materio

As discussed in §1.4, EiM attempts to leverage a material’s (or medium’s) complex
internal physical properties for computation. To achieve this, the selected material
substrate must be operated as an ‘in-materio’ or ‘configurable analogue’ proces-
sor, where signals can be applied and read from the system, and the input-output
transformation can be tuned using external stimuli.

Therefore, an in-materio processor’s behaviour is defined by a number of con-
figurable parameters (e.g., voltage stimuli), which can be altered to improve the
device’s performance. These configurable parameters can be grouped into a de-
cision vector X which defines the system’s configuration and represents a possible
solution to a target task. An EiM processor uses an EA [1] to optimise the system by
increasing the quality and performance of a solution X, determined by an objective
function ®. EAs have been traditionally used to optimise in-materio systems, since
the material substrates commonly used for computation are often hard to model
and are therefore treated as a black box.

In this work, conductive nanomaterials and networks are considered to construct
EiM processors performing classification, further details on the methods used are
found in Chapter 3. In this case, input data signals are represented as input voltages
V' Similarly, output voltage states V°* can be read from the in-materio processor
and interpreted for the task at hand; such decision-making is referred to as the EiM

processor’s interpretation scheme.

2.2.1 Traditional EiM Interpretation Schemes

When EiM is being used for classification applications, binary or otherwise, there
must be some interpretation scheme. This allows the outputs to be assigned to

a class or grouping. Often a decision is taken by using a classification rule [2],
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commonly used in supervised learning. However, other methods of grouping data
exist, such as a clustering algorithm [3] which is generally used for unsupervised
learning. Here, some common classification rules which have been used for EiM

systems are considered.

Classification Rules

A classification rule is used to assign a particular input data instance to a set of
predefined classes. There are many ways to assign a class from a material’s output

states V° or collected response. The most common classification rules include:

i) Output-Threshold Comparison. This is when an output is gathered from

the material and compared to a threshold, e.g., a single output voltage V°ut:

0, ifVeu <7
§= : (2.2.1)

1, otherwise

where ¢ is the predicted class and 7 is a threshold which is either fixed or

sometimes evolvable/can be optimised.

ii) Output-Output Comparison. This is when a class is assigned by comparing
two (or more) outputs from the material. For example, consider a system with

two output voltages V7 & Vit

07 lf V'lout < ‘/20ut
: (2.2.2)

SN
|

1, otherwise

iii) kNN Algorithm. The k Nearest Neighbour (kNN) algorithm tries to clas-
sify an unknown sample based on the known classification of its £ number of
neighbours [4]. This method requires forming a queue (i.e., storing) the train-
ing instances with their class labels. The nearest neighbours of new unlabelled
data is determined by calculating the distance between it and all the instances
in the queue. Commonly, the Euclidean distance is used as the distance met-

ric. Some more advanced versions of kNN have been used in Unconventional
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Computing (UC) situations, such as the kNN ball tree Algorithm |2] which
was found to work well in classification problems using Single Walled Carbon

Nanotube (SWCNT)/Poly(methyl methacrylate) (PMMA) EiM processors.

2.3 Evolutionary Algorithms

EAs are a subset of evolutionary computing, consisting of population-based meta-
heuristics search algorithms, which take advantage of biologically inspired meth-
ods such as reproduction, mutation, recombination, and natural selection [1|. This
makes them ideal when exploiting nanomaterials as in-materio devices, since they
are analogue and generally lack an analytical model so have historically been treated
as black boxes. Many types of EAs have been used for EiM such as Evolutionary
Strategies [5], Genetic Algorithms [6] or Differential Evolution |7, 8, 9].

The purpose of the EA is to discover a vector of system parameters that achieves
the best possible solution 8 for a selected problem. The quality of a particular
solution X is determined by an objective function @, used to calculate a fitness score,
as discussed in §2.4. Similarly, a population of solutions p = [ X1, X, ..., X | could
each be evaluated. In summary, the EA optimises the system’s available parameters
to achieve the best possible fitness (sometimes referred to as a loss) score. In this

section, three EAs used within the thesis are detailed.

2.3.1 Differential Evolution

Differential Evolution (DE) is an easily implemented and effective optimisation algo-
rithm for exploiting real-world parameters [10]. DE is a derivative-free, stochastic,
population-based, heuristic direct search method [11, 1] which only requires a few
robust control variables [12]; these hyperparameters include a mutation factor F,
a crossover C'R and population size A. A trial (i.e., child) population is formed
via mutation and recombination of the parent population. These children are then
evaluated and directly replace their parents if found to have a better ‘fitness’.

The following describes how the DE algorithm is implemented, taken from [11]

where further details are available. Each member of the population i is defined
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by a d-dimensional vector of decision variables/parameters (sometimes known as a
genome):

Xi,G = [xl,i,G7 $2,i,G> ceny xd,i,G] fOI' ’L = 1, 2, ceey )\ (233)

where G is the particular generation, ¢ is a member within a generation, and z;; ¢
is a decision variable where 7 € 1,2, ..., d. Population size A does not change during
the optimisation process. An objective function ® is used to evaluate the fitness of
any particular member of the population X; . The basic procedure to carry out

DE is illustrated as follows:

Step 1: Produce initial population. The initial population, generation 0, is cho-

sen randomly, with uniform probability, from the entire parameter space.

Step 2: Evaluate Population. Using the objective function, the fitness of every
population member is evaluated. If any member of the population satis-
fies the problem (i.e., if termination criteria is met), then the algorithm

terminates. Otherwise, the process continues.

Step 3: Mutation. For each target vector X; ¢ (i.e., the current generation of ‘par-
ents’) a mutant vector V; ¢4 is generated. This is achieved using mutation

functions such as the random-1 mutation method (rand1):

Vi,G—H = Xa,G’ + F x (Xb,G — Xc7g) , (234)

where a, b and ¢ are integer, mutually different, random indices from the
range {1,2,..., A}, and F (also known as mut) is the differential weight or
step size.

Other methods exist, such as the best-1 mutation method (best1):

Vigi1 = Xpestg + F X (Xao — Xpa) , (2.3.5)

where Xpest ¢ is the best member of the target (parent) population, and a,
b are random indices from the range {1,2, ..., A}.

Once the mutant population has been created, the boundary constraints
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Step 4:

must be considered to prevent any violations. Often, values are just clipped
to the boundary limits [l;, m;] for the j parameter variable, also known as

projection |13, 14] :

mj, if V5601 > m;
Uji,G+1 = lj, if VjiG+1 < lj . (236)

VjiG+1, Otherwise

Similarly, other methods exist [14] such as the reflection bounds constraint:

2m; — vjiee1, A vji60 > my
Vji,G+1 = QZJ — Vji,G+15 if Vii,G+1 < lj . (237)

Vji.G+1s otherwise

Crossover. In order to increase the diversity of the perturbed parameter
vectors, crossover is introduced. This acts as the recombination between the
existing target (parent) population and the generated mutated population
to produce a trial (child) population. Commonly, binomial (or uniform)

crossover is utilised, where a trial vector:

Uici1 = [W1i641,U2i.G+15 s UdiG41] (2.3.8)
is formed, where:

Vj.i,G+1, if r; S CR
Uji,G+1 = : (2.3.9)
Tji,Gs if ] >CR

and r; is the j evaluation of a random uniform number generator with
outcome € [0,1]. CR is the Crossover Probability, also known as crossp,

and is a constant € [0, 1] selected by the user. Often, a scheme is used such



2.3. Evolutionary Algorithms 27

that U; 41 always gets at least one parameter from V; g1, such as:

vjiae1, ifr; <CRorj=q
Uji G+l = : (2.3.10)

zjic, ifr;>CRandj#q
where ¢ is a randomly chosen index € 0,1, ..., d.

Step 5: Selection. Now, the trial vector U, ¢4, is compared to the target vec-
tor X, ¢ to see whether it should become a member of generation G' + 1.
Whichever has the best fitness is retained and assigned to X; g1, this is

repeated for every position ¢ in the population.

Step 6: Repeat from step 2.

For a simpler explanation of the DE algorithm, a Pseudocode ! summary can be
seen in Algorithm 2.1. Here, the algorithm is performed for I iterations before ter-
minating. The data is generally split into two subsets (described further in §3.6.1),
(i) training data which is used to update and train the population, and (ii) test data
used to provide an unbiased evaluation of the model’s performance. The best mem-
ber of the population @ is tracked, allowing a convergence plot of the population’s
best member’s test and/or training fitness. Finally, the type of DE algorithm is of-
ten written in shorthand [10] such as stating the use of a ‘DE/best/1/bin’ algorithm

(i.e., using DE, with a best! mutation scheme, and binomial crossover).

Algorithm 2.1: Pseudocode for basic DE.

Initialise a random population p;
Evaluate initial population fitnesses;
Assign the best member of p as 6;
fori=0,1,2,...,1 do
Generate trial population ¢;
Evaluate trial population fitnesses;
Update population p with respect to t;
Update the best member 6;;

IThe algorithm pseudocode is meant to provide a less detailed but more understandable expla-
nation of the algorithm.
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2.3.2 OpenAl Evolutionary Strategy

Evolutionary Strategies (ESs) involve the evaluation of a population of real valued
genotypes, after which the best members are kept, and others discarded [15, 1, 16].
Natural Evolution Strategy (NES) are a family of ESs which iteratively update a
search distribution by using an estimated gradient on its distribution parameters
[15]. NES calculate the fitness of a batch of search points, allowing the algorithm to
capture the local structure of the fitness function. Using this the NES estimates a
search gradient on the parameters towards a higher expected fitness. Notably, NES
performs gradient ascent along the natural gradient |17, 15, 18| helping prevent
oscillations, premature convergence, and undesired effects; unlike the plain gradient
(detailed in §2.5.2).

In this section, the OpenAl Evolutionary Strategy (OpenAl-ES) algorithm [19] is
outlined, which is a type of NES. The OpenAI-ES can be thought of as maintaining
a single parent 8. During each iteration the parent is perturbed with Gaussian noise
€ ~ N (0, 0?) to create a pseudo-population. Once evaluated, this pseudo-population

is used to estimate the gradient:
=
9= ;Fjﬁj : (2.3.11)

where o is the standard deviation of Gaussian noise, \ is the size of the pseudo-
population, €; is the noise used to create the j pseudo-population member, and Fj
is the fitness of that member. The estimated gradient g is then used to update the
parent member [19]:

0,‘_,_1 = 02 + Oégl- s (2312)

where « is the learning rate. The entire process is described in Algorithm 2.2.
Here, the typical OpenAl-ES is altered to assign a lower fitness starting 6 from
an initial random population. In summary, the OpenAl-ES contains only three
hyper-paramaters: «, o and \.

The OpenAI-ES can rival Stochastic Gradient Descent (SGD) (introduced in

§2.5.2) for deep reinforcement learning methods with large neural networks [19].
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Algorithm 2.2: Pseudocode for OpenAI-ES.

Generate A random starting solutions p;
Evaluate initial starting solution fitnesses;
Assign the best member of p as 0;
for©=0,1,2,....] do
Sample €1, ..., €5 ~ N (0, 1);
Calculate fitness Fj of (6; + o¢;) for j =0,1,..., \;
Set Qi1 = 6; + = Z?Zl Fje;;

Further work has shown OpenAI-ES can offer significant speed up [20] compared to
SGD, and highlights that the OpenAI-ES might be most useful in domains without
perfect gradient information available — as in in-materio systems. Since the OpenAl-
ES algorithm implements a complete version of SGD, improvements can be borrowed
from traditional ANNs such as implementing Adaptive Moment Estimation (Adam)

optimiser [21], a method further discussed in §2.5.2.

2.3.3 Covariance Matrix Adaptation ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is a
stochastic, or randomised, method for real-parameter (continuous domain) optimi-
sation [22]. In the CMA-ES, a population of new search points is generated by
sampling a Multivariate Gaussian Distribution (MGD). This MGD is adapted using
the fitness results from a given generation. A sample solution X is taken from the
MGD [22] using:

X =m +sON(0,CD) | (2.3.13)

where m® is the distribution mean, C is the distribution’s covariance matrix,
and ¢ is the standard deviation or ‘step-size’ at generation i. The initial C'¥ is
set as the identity, and the initial m© is set to the centre of the boundary values.
Therefore, the CMA-ES algorithm contains two hyperparameters: the initial stan-
dard deviation o and population size A. However, the population size is commonly
automatically assigned as A = 4 + 3log(d).

An update during the CMA-ES is strongly related to the natural gradient descent
[23, 24]. Indeed, CMA-ES and NES have been found to be special cases of one
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Algorithm 2.3: Pseudocode for CMA-ES.

Initialise Multivariate Gaussian Distribution A/ (m, c*C);
fori=0,1,2,...,1 do

Sample population t from AN (m,c*C);

Evaluate trial population fitnesses;

Update the best member 0, 1;

Update o, m, C with respect to t;

another [25]. While full details can be found elsewhere [26], an overview of the
method can be seen in the Pseudocode of Algorithm 2.3. In this work, the cmaes
python package [27] is utilised, exploiting its ‘ask’ and ‘tell’ functionality to integrate
it with existing code.

CMA-ES is a popular algorithm and overcomes some typical problems often
associated with EAs such as the need to use large population sizes or premature
convergence [28]. However, CMA-ES is generally applied to problems with dimen-
sions of up to d < 100, beyond which is starts to slow down [29]. Methods exist to
produce a diagonal and/or low-rank model of the covariance matrix, allowing it to

be successfully applied to 500,000-dimensional (noise-free) problems [30].

2.4 Objective Functions

An objective function ® is used to determine a fitness value for a particular set of
system parameters X, which represents a possible solution. For classification, this
is achieved by considering dataset D containing K data instances, and performing
some comparison between the dataset’s real labels and predicted outcomes. The
datasets are normalised and scaled before being used to train the models, further
described in §3.6.1. Therefore, an objective function allows an EA (or optimising
algorithm) to evaluate its population members and make informed choices about how
to improve its solutions. Commonly, the objective of the EA is thus to minimise
the objective function. In this work, fitness is predominantly used to denote the
quality of solution produced by a EA, whereas loss can denote the quality of solution
produced by any algorithm; therefore, in this work fitness & loss are nominally

interchangeable.
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A wide variety of objective or ‘loss’ functions for classification problems exist.
The objective function can have a large effect on the final solution of a classifier,
something explored more in §5.4. In the following, some common objective functions

used for classification are outlined.

2.4.1 Classification Error

Classification error is one of the simplest loss functions for classification problems.

The classification error of a dataset D is simply:

D,pror = 1 — accuracy . (2.4.14)
which can be found using;:
K
1
Perror = = ’;e(k) : (2.4.15)

where k is an instance within the dataset which contains K data instances, and each
data input instance produces an error value e(k) of 0 or 1 for correct or incorrect

classification respectively.

2.4.2 Mean Squared Error

A very popular loss function is the Mean Squared Error (mse) loss. The mse can

be calculated using:

Bnse = 22 D (0(K) = 5(R) (24.16)
k=1

where y(k) is the true output label/class and (k) is a model’s predicted output for
a particular data instance k.

Notably, ANNs systems deal with values and data which are often normalised or
bound between € [0, 1]. Physical systems, such as in-materio conductive substrates,
are likely to operate with a larger range of real valued physical output voltage signals.
To enable comparisons between different EiM devices, or even between EiM devices
and an ANN equivalent (as done in §6.5) a Normalised Mean Squared Error (nmse)

metric was developed in Eq.6.5.10.



2.4. Objective Functions 32

2.4.3 Binary Cross Entropy

Binary Cross Entropy (BCE) or log loss is an established loss function for ML
binary classification tasks. Cross entropy generates larger loss values as the predicted
probability of a label diverges from the value of the actual label. To adapt BCE as an
objective function for EiM systems, the raw output of the EiM processor/classifier
must be first constricted to € [0,1]. To accomplish this, a sigmoid function o (k) is

used such that for a particular input data instance:

1
The entropy or log loss H (k) is defined as:
—In(1 —0o(k)), ifylk)=1
H(k) = ( (k) (k) : (2.4.18)

—In(o(k)), if y(k) = 2

where In() is the natural logarithm and we assume y(k) = {1,2} are the true labels
associated with the data. Therefore, the adapted BCE objective function that the

system attempts to minimise is defined as:

K
1
Pree = 2 ; H(k) . (2.4.19)

2.4.4 Cross Entropy

Cross Entropy (CE) can be applied to multi-class problems to predict a loss or
fitness. In binary problems, each data instances results in a single predicted value 7.
In multi-class problems, each data instance k results in a vector y(k) = [Jy, Uy, -, U]
containing a predicted value g, = {0, 1} for each of the L labels/classes. The multi-

class log loss or ‘categorical’ cross-entropy loss can be calculated using:
1 N
P = e Z Z yi(k) In(g,(k)) , (2.4.20)
koo

where [ is a class € [1,2, ..., L].
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As mentioned in the binary case above, it is often useful to consider the out-
put predictions g as a probability with values € [0, 1]. To achieve this, the output
predictions of a classification model can be ‘masked’ with a Softmax. The Soft-
max function behaves similarly to the sigmoid in §2.4.3, but is more applicable in
multi-class problems, ensuring that the sum of the output predictions totals to a

‘probability’ of 1. The Softmax function is defined as:

exp(4:(k))
> exp(g;(k)) 7

$1(k) = Softmax(y,(k)) = (2.4.21)
where § (k) is the predicted probability for I class. These can then be applied to

the log-loss function and used to calculate the CE as follows:

Do = 303 k) (3 () (2.4.22)

2.5 Feed Forward Artificial Neural Networks

Feed-forward Neural Networks (NNs) are one of the simplest forms of ANN used to
evaluate non-temporal (static) data. They are made up of three types of layers: an
input and an output layer, which are separated by one or more Hidden Layers (HLs).
These layers consist of groups of neurons. The input layer contains special neurons
that act as ‘sensor units’ which often only ‘detect’ the input features [31]. A HL
consists of artificial neurons which accumulates signals from the input layer (or the
outputs from the previous HL) and applies an activation, discussed further in §2.5.1.
There can be any number of HLs, each containing one