W Durham
University

AR

Durham E-Theses

Harnessing Evolution in-Materio as an
Unconventional Computing Resource

JONES, BENEDICT

How to cite:

JONES, BENEDICT (2023) Harnessing Evolution in-Materio as an Unconventional Computing
Resource, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/15119/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-profit purposes provided that:

e a full bibliographic reference is made to the original source
e a link is made to the metadata record in Durham E-Theses
e the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support Office, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107
http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/15119/
 http://etheses.dur.ac.uk/15119/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Harnessing Evolution in-Materio as
an Unconventional Computing
Resource

BENEDICT A. H. JONES

X% University College

= Durham University

A Thesis presented for the degree of
Doctor of Philosophy

2B
W Durham

University

Advanced Materials and Electronic Devices Research Node
Department of Engineering
University of Durham
England

March 2023

Dedicated to

My family & friends who have supported me.

‘Journey Before Destination’

— Brandon Sanderson, The Way of Kings

Harnessing Evolution in-Materio as an
Unconventional Computing Resource

BENEDICT A. H. JONES

Submaitted for the degree of Doctor of Philosophy
March 2023

Abstract

This thesis illustrates the use and development of physical conductive ana-
logue systems for unconventional computing using the Evolution in-Materio (EiM)
paradigm. EiM uses an Evolutionary Algorithm to configure and exploit a phys-
ical material (or medium) for computation. While EiM processors show promise,
fundamental questions and scaling issues remain. Additionally, their development is
hindered by slow manufacturing and physical experimentation. This work addressed
these issues by implementing simulated models to speed up research efforts, followed
by investigations of physically implemented novel in-materio devices.

Initial work leveraged simulated conductive networks as single substrate ‘mono-
lithic’ EiM processors, performing classification by formulating the system as an
optimisation problem, solved using Differential Evolution. Different material prop-
erties and algorithm parameters were isolated and investigated; which explained
the capabilities of configurable parameters and showed ideal nanomaterial choice
depended upon problem complexity. Subsequently, drawing from concepts in the
wider Machine Learning field, several enhancements to monolithic EiM processors
were proposed and investigated. These ensured more efficient use of training data,
better classification decision boundary placement, an independently optimised read-
out layer, and a smoother search space. Finally, scalability and performance issues
were addressed by constructing in-Materio Neural Networks (iM-NNs), where sev-
eral EiM processors were stacked in parallel and operated as physical realisations of
Hidden Layer neurons. Greater flexibility in system implementation was achieved
by re-using a single physical substrate recursively as several virtual neurons, but
this sacrificed faster parallelised execution. These novel iM-NNs were first imple-
mented using Simulated in-Materio neurons, and trained for classification as Ex-
treme Learning Machines, which were found to outperform artificial networks of a
similar size. Physical iM-NN were then implemented using a Raspberry Pi, custom
Hardware Interface and Lambda Diode based Physical in-Materio neurons, which
were trained successfully with neuroevolution. A more complex AutoEncoder struc-
ture was then proposed and implemented physically to perform dimensionality re-
duction on a handwritten digits dataset, outperforming both Principal Component
Analysis and artificial AutoEncoders.

This work presents an approach to exploit systems with interesting physical
dynamics, and leverage them as a computational resource. Such systems could
become low power, high speed, unconventional computing assets in the future.

Declaration

The work in this thesis is based on research carried out at the Advanced Materials
and Electronic Devices Research Node, the Department of Engineering, FEngland. No
part of this thesis has been submitted elsewhere for any other degree or qualification

and it is all my own work unless referenced to the contrary in the text.

Copyright (© 2023 by BENEDICT A. H. JONES.
“The copyright of this thesis rests with the author. No quotations from it should be
published without the author’s prior written consent and information derived from

it should be acknowledged”.

v

Acknowledgements

I would like to thank my Supervisors Chris Groves, Dagou Zeze and Noura Al
Moubayed for their help and support. They have been outstanding mentors, making
time and providing guidance throughout the PhD.

I would also like to thank the staff and students I have met and worked with
during my time at the Department of Engineering. In particular, thank you to
Eléonore, for your support and encouragement as [was setting out on my journey.
Additionally, University College has been a home away from home, and provided a
little microcosm which I could escape to.

To my friends, your support has been invaluable. Our coffees, discussions, games
and more have helped ground me, particularly during the odd times that were the
pandemic.

Finally, I wish to thank my family. My brothers, sister & nephews who mean the
world to me, my partner Katy who has supported me & my sanity, and my parents
whose encouragement has gotten me to both the start and the finish line of this

PhD.

Contents

Abstract iii
Declaration iv
Acknowledgements v
List of Figures xi
List of Tables Xix
List of Publications xxi
Acronyms XXiv
Glossary XXV
Nomenclature XxVvii
1 Introduction 1
1.1 Chapter Overview 1
1.2 Historical Context 2
1.3 Unconventional Computing 4
1.4 Evolution in-Materio 5
1.5 Research Hypothesis 11
1.6 Thesis Structure. 12
Bibliography 13

vi

https://orcid.org/0000-0002-1924-0560

CONTENTS vii
2 Theory 21
2.1 Chapter Overview 21
2.2 Evolution in-Materio oL 22
2.2.1 Traditional EiM Interpretation Schemes 22

2.3 Evolutionary Algorithms 24
2.3.1 Differential Evolution 24
2.3.2 OpenAl Evolutionary Strategy 28
2.3.3 Covariance Matrix Adaptation ES 29

2.4 Objective Functionso 30
2.4.1 Classification Error 31
2.4.2 Mean Squared Error L. 31
2.4.3 Binary Cross Entropy 32
244 Cross Entropyo 32

2.5 Feed Forward Artificial Neural Networks 33
2.5.1 Artificial Neurons & Activation Functions 34
2.5.2 Optimisation Methods 35

2.6 AutoEncoders 40
2.7 Physical Reservoir Computing 42
Bibliography 45
Problem Formulation 52
3.1 Chapter Overview e 52
3.2 Configurable Analogue Processor 53
3.3 EiM for Classification L. 5}
3.4 Simulated CAP Model, 57
3.5 Physical Experimentation 0 0L 60
3.5.1 Test Platform 60
3.5.2 Physical CAP 64

3.6 Datasets 65
3.6.1 Classification Datasets 65
3.6.2 AutoEncoder Datasets 68
Bibliography 70

CONTENTS viii

4 Monolithic EiM Devices 74
4.1 Chapter Overview 74
4.2 Algorithm & Material Interaction 76

4.2.1 Material Properties and Stimuli Voltages 76
4.2.2 Electrode Reconfiguration and Weighting 79
4.3 Advanced EiM Processoro 82
4.3.1 Electrode Allocation and Material Properties. 84
4.3.2 Effect of Modifying the Decision Vector 86
4.3.3 Classification Performance 89
4.3.4 Discussion 91
4.4 Summary ... 92
Bibliography 93

5 Enhancements to EiM Processors 96
5.1 Chapter Overview e 96
5.2 Experimental System Configuration 97
5.3 Batching 99

5.3.1 Experimental Implementation 100
5.3.2 Performance Lo 102
5.4 Binary Cross Entropy Objective Function. 105
5.4.1 Experimental Implementation 105
54.2 Performance Lo 107
5.5 Regressed Output Layer 110
5.5.1 Experimental Implementation 111
5.5.2 Performanceo 111
5.6 Fully Connected Input Layer 114
5.6.1 Experimental Implementation 115
5.6.2 Performance Lo 116
5.7 Summary ... e 118

Bibliography 119

CONTENTS ix
6 In-Materio Neural Networks 122
6.1 Chapter Overview 122
6.2 In-Materio Neural Network Structure 124
6.2.1 Directly Connected Input Layer 127

6.2.2 Virtual iM-NNs oo o 127

6.3 In-Materio Extreme Learning Machines 128
6.3.1 Experimental Implementation 129

6.3.2 Performance oo 132

6.4 Neuroevolution of Physical iM-NNs 135
6.4.1 Physical LDN Neuron 137

6.4.2 Experimental Implementation 138

6.4.3 Performance Lo 141

6.4.4 Further Discussion, 145

6.5 In-Materio AutoEncoders L. 146
6.5.1 Experimental Implementation 147

6.5.2 Performance Lo 149

6.6 Summary 152
Bibliography 153

7 Conclusions 159
7.1 Hypothesis & Chapter Overview 159
7.2 Chapters and Contributions Summary 160
7.2.1 Chapter4d 160

7.2.2 Chapterb 160

7.2.3 Chapter 6 161

7.3 Thesis Conclusion 162
7.4 Further Work 163
Bibliography 166

A Additional Theoretical Background 168
A.1 Complexity Measures 168
Bibliography 170

CONTENTS X

B Physical System Validation 171
B.1 SWCNT-PMMA Experiments 171
B.2 RRN and DRN System Experiments 172

B21 RRN . .. 172
B.22 DRN 173
B.3 Lambda Diode Network System Experiments 174

C Additional Advanced Monolithic EiM Results 175
C.1 Repetition Reliability 176
C.2 con2DDS Results o 178
C.3 2DDS Results 181
C.4 flipped2DDS Results 183

D Physical iM-NN Neuroevolution Hyperparameter Investigation 185
D.1 Differential Evolution o000 186
D.2 OpenALES 187
D.3 Covariance Matrix Adaptation ES 188

List of Figures

1.1

1.2

1.3

2.1
2.2

2.3

24

2.5

2.6

3.1

Plot illustrating Moore’s law by showing the increase in transistor
count over time. Lo
Visualisation of the training process for a Configurable Analogue Pro-
cessor (CAP) as described by Miller and Downing
Diagram of a typical nanomaterial substrate based Evolution in-Materio

(EIM) processor.

Typical structure of a Feed Forward Neural Network.
Example of an artificial neuron generating an output y from input
signals @1, x9,23,...,zyand abias.
Some common activations functions for Artificial Neural Network
(ANN) artificial neurons. Lo
Basic structure of an artificial single hidden layer feedforward neural
network (SLFN) used as Extreme Learning Machine (ELM).
Structure of a basic AutoEncoder (AE) constructed using an ANN.
The encoder and decoder can consist of many Hidden Layers (HLs),
but the network structure is typically symmetrical.
A conventional RC system with a Recurrent Neural Network (RNN)-
based reservoir, where only the readout weights W°“ are trained, and

the input weights W & internal reservoir weights 7 are fixed.

Representation of a configurable analogue or ‘material’ processor as a
black box which transforms input data voltages V™ and configurable

stimuli V' signals into new output representations V.

X1

43

LIST OF FIGURES

xii

3.2

3.3

3.4

3.5

3.6

3.7

3.8

4.1

4.2

[llustration of the proposed EiM processor structure, where output

signals are collected using an output layer and combined to create an

overall processor response Y used to make a classification prediction . 56

Example of a 5 node fully connected network used to model EiM
material processors, with three input nodes (V{", Vj* and V) and
two output nodes (V" and Vy“'). Input nodes can be allocated
as data-driven voltages V™ or configuration voltage stimuli V¢. Be-
tween every pair of nodes is a component (i.e., complex sub-circuit)
modelling a particular material property.
Top and bottom side of the final Hardware Interface (HI) Printed
Circuit Board (PCB).
Schematic of the Hardware Interface (HI).
The custom Lambda Diode Network (LDN) leveraged as a physi-
cal neuron, containing three inputs (V;", V" V¢) and three outputs
O A e
The lineally separable (a) 2DDS, the concentric (b) con2DDS, the
half moon (¢) hm2DDS, and the spiral (d) sp2DDS synthetic two-
dimensional datasets. L oo
Complexity plots as generated by problexity for the classification
problem datasets, further complexity metric details given in Appendix
A.1. In general, “more colour” represents a higher degree of complex-

ity for the specific complexity measure.

EiM processor structure as discussed in §3.3, where output signals
are collected using an output layer and combined to create an overall
processor response Y used to make a classification prediction .

Examples of the role that the material and configuration voltages have
on untrained EiM processor responses. Surface plot of the network re-
sponse, Y as a function of input attributes a; and ay for an untrained
(a) Resistor Random Network (RRN), (b) Non-Linear Random Net-
work (NLRN), and (c¢) Diode Random Network (DRN) processor, and

the effect of varying their two configuration voltages V|° and V5.

o8

5

7

LIST OF FIGURES

xiii

4.3

4.4

4.5

4.6

4.7

Example processor responses following training using the basic algo-
rithm for 30 iterations. Surface plot of the network response, Y as a
function of input attributes a; and ay for a (a) RRN, (b) NLRN, and
(c) DRN processor, using the basic EiM algorithm on the 2DDS. The
same colour scale as Fig. 4.2 isused.
Examples of the impact that electrode reconfiguration can have on
untrained EiM processor responses. Surface plot of the network re-
sponse Y as a function of input attributes a; and as for four randomly
selected shuffle genes (i.e., permutations of the input voltage order)
of an unconfigured (a) RRN, (b) NLRN, and (¢) DRN processor. The
same colour scale as Fig. 4.2 isused.
Examples of the effect of varying the input and output weightings
on untrained EiM processor responses. Surface plot of the network
response Y as a function of inputs a; and as for an unconfigured (a)
RRN, (b) NLRN, and (¢) DRN processor with various output or input
weightings applied. The same colour scale as Fig. 4.2 is used.
Structure of the advanced EiM processor structure. Input data and
configurable stimuli (V¢) are applied to the material as voltages. The
output voltages are summed to generate an overall response (Y') which
is used to predict the binary class (3). If enabled input weights (wi™)
and output weights (wg“t) are applied. A shuffle ‘gene’ can re-arrange

the applied location of the inputs (both input data and configuration

Effect of varying which nodes are allocated as either config-
uration or output electrodes on the final test fitness after
training. Surface plot of the mean test fitness (from 15 material
processors, each with 5 DE repetitions) after 50 iterations using the
advanced EiM algorithm on the (a) RRN, (b) NLRN, and (c) DRN
networks to classify the con2DDS. The materials all had a fixed size
of ten nodes, but the number of nodes allocated as configuration or

outputs was varied. Unallocated nodes were left floating.

82

LIST OF FIGURES

Xiv

4.8

4.9

5.1

5.2

9.3

5.4

Example processor responses following training using the advanced
EiM algorithm for 50 iterations. Surface plot of the network response,
Y as a function of input attributes a; and a, for a (a) RRN, (b) NLRN
and (c¢) DRN processor, using the advanced EiM algorithm with all
the additional configuration parameters, on the con2DDS. The same
colour scale as Fig. 4.2 isused.
Evolution of training fitness and final test fitness for EiM
processors using different materials and configuration pa-
rameters, classifying the con2DDS. The mean best training fit-
ness & standard error (from 15 material processors, each with 5 DE
repetitions) over 50 iterations, with different DE algorithm configu-
ration parameters enabled, for (a) RRN, (¢) NLRN, and (e) DRN
processors using the con2DDS. These are paired with box & whisker
plots of the final test fitness results for the (b) RRN, (d) NLRN, and
(f) DRN processors.o v i i i

Replication of Fig. 4.6 showing a monolithic EiM processor using the
expanded set of decision vectors defined in §4.3, where output signals
are collected using an output layer and combined to create an overall
processor response Y used to make a classification prediction .
Hyperparameter sweep of mutation factor (F') and crossover rate
(CR) when using Differential Evolution (DE) to optimise monolithic
EiM processors to classify the (a) con2DDS and (b) sp2DDS. Each
result is the mean from five DRN conductive networks, each trained
as an EiM classifier for 30 epochs, with performance averaged over
three DE repetitions. o oo
The (a) training and (b) test fitness convergence when optimising
DRNs as EiM processors to classify the con2DDS dataset, using Al-
gorithm 5.1 with E = 1,2,5,10,20. + .+« o oo
The (a) training and (b) test fitness convergence when optimising
DRNs as EiM processors to classify the Banknote dataset, using Al-
gorithm 5.1 with E = 1,2,5,10,20. + .+« o oo i

97

LIST OF FIGURES XV

5.5 Example decision boundary for the (a) discrete classification error

objective function where evolved systems with 100% accuracy may

be susceptible to noise, and (b) Binary Cross Entropy objective func-

tion which uses information from the classified data to maximise the

likelihood of successful classification. 106
5.6 Outputs of the sigmoid o (k) and entropy H (k) functions for the col-

lected network response Y of the material processor for a particular

data instance k. The entropy function is different depending on the

true value of the class. 0oL 107
5.7 Histogram of the accumulated final test data outputs (i.e., mate-

rial processor responses Y') for all material and algorithm repetitions

trained on the (a) 2DDS, (b) con2DDS, and (c) Banknote datasets

comparing the use of a classification error and Binary Cross Entropy

(BCE) fitness metric. (Bins=0.2) 108
5.8 Receiver Operating Characteristic (ROC) for the results of all mate-

rial and algorithm repetitions trained on the (a) 2DDS, (b) con2DDS,

and (c) Banknote datasets comparing the use of a classification error

and BCE fitness metric. L. 109
5.9 Plot showing the reduction in mean test accuracy of the trained EiM

systems as increasing levels of Gaussian noise is introduced to the

test data on the (a) 2DDS, (b) con2DDS, and (c) Banknote datasets,

comparing the classification error and BCE evolved systems. 109
5.10 Evolution of the mean test fitness, with standard deviation, compar-

ing the Standard evolved and Regressed EiM training methods on the

(a) con2DDS, (b) sp2DDS, and (c) Banknote dataset. 112
5.11 Monolithic EiM processor configured for binary classification, using

a fully connected input layer which combines input attributes to pro-

duce an input ‘data’ voltage value. 115
5.12 Convergence of the mean test fitness when using different styles of

evolved input layers to optimise an EiM processor to classify the (a)

con2DDS; (b) sp2DDS, and (c¢) Banknote datasets. 116

LIST OF FIGURES

xvi

6.1
6.2

6.3

6.4

6.5

6.6

6.7

Basic structure of an artificial SLEN. o000 0oL
Structure of an in-Materio Neural Network (iM-NN) exploited for
classification, using a fully connected linear input & output layer and
configurable voltage stimuli V¢ which alter a neuron’s physical be-
haviour. L
Basic structure of a physical neuron based SLFN exploited as an in-
Materio Extreme Learning Machine (iM-ELM).
Median Mean Squared Error (mse) test fitness of all the (20 systems,
cach with 100 parameter initialisations) iM-ELMs for each HL size in-
crement, used to classify the (a) sp2DDS, (b) diabetes, (c¢) wine, (d)
aca and (e) wdbc datasets. Three different material neuron topolo-
gies are considered ([P, S, Q)]), and these are compared to the mean
accuracy of 2000 traditional artificial ELMs and RR-ELMs.
Median mse test fitness of all the (20 systems, each with 100 parame-
ter initialisations) Virtual iM-ELMs for each HL size increment, used
to classify the (a) sp2DDS, (b) diabetes, (c) wine, (d) aca and (e)
wdbc datasets. Three different material neuron topologies are con-
sidered ([P, S, Q]), and these are compared to the mean accuracy of
2000 traditional artificial ELMs and RR-ELMs.
The (a) Lambda Diode Network (LDN) used in experimentation and
leveraged as a Physical in-Materio (PiM) neuron, and (b) the surface
plot of the Lambda Diode Network (LDN)’s physical outputs for a

2D sweep of V™ & Vj", and a selection of configuration voltages V. .

125

138

Surface plots of the (a) DE, (b) OpenAl Evolutionary Strategy (OpenAl-

ES), and (c) Covariance Matrix Adaptation Evolution Strategy (CMA-
ES) algorithms’ final mean test Cross Entropy (CE) loss classifying
the sp2DDS after a fixed budget of 800000 N¢opps, for a sweep of dif-
ferent population sizes A (with respect to (w.r.t) the iM-NN’s number
of parameters d) and batch sizes bs (w.r.t the total number of training

instances K'"*™), using a three HL neuron iM-NN.

LIST OF FIGURES xvii

6.8

6.9

6.10

6.11

6.12

6.13

B.1

B.2

B.3

B.4

Comparison of the algorithms’ mean test CE loss convergence, under
a fixed budget, for the (a) sp2DDS, (b) banknote, (c) iris, (d) raisin,
and (e) wine datasets. 144
Structure of a five layer ANN based AutoEncoder. 147
Structure of the implemented in-Materio AutoEncoder (iM-AE) using
two physical neuron based Hidden Layers in a five-layer network. . . . 148
Convergence of (a) training and test fitnesses and (b) clustering met-
rics including Clustering Accuracy (CA) and Adjusted Rand Index
(ARL). . o oo 150
Final result’s (a) encoded test data features, where labels are distin-
guished by colour and marker type, and (b) examples of test data
inputs with their corresponding reconstructed outputs. 150
The artificial AEs mean final (a) reconstruction loss, and encoded
2D data’s clustering (b) Clustering Accuracy (CA), and (c¢) Adjusted
Rand Index (ARI) for differently sized networks on the digits dataset.
The final performance of the example in-Materio AutoEncoder (iM-
AE) is marked for comparison, and the point at which the artificial
AEs contains the same number of parameters is denoted by a vertical

blue line. 151

Example inter-node IV characteristics between one node and 10 others
on the fabricated microelectrode array with deposited 1.1wt% Sin-
gle Walled Carbon Nanotubes (SWCNTs) suspended in Poly(butyl
methacrylate) (PBMA). 171
Experimental and simulated response (Y") surface plots for an example
RNN network.o 172
Experimental and simulated response (Y") surface plots for an example
DRN network. o 173
Histogram of the output voltage residuals using a (a) linear and (b)

log y-axis. Bin width =0.002. 174

LIST OF FIGURES xviii

C.1

C.2

C.3

C4

C.5

D.1

D.2

D.3

Surface plot of the test fitness standard deviation as we either train for
longer or include more repetitions. These results used the advanced
DE algorithm (with shuffle gene, input and output weights) to classify
the con2DDS. It shows the effect of the cumulative standard devia-
tion of the evolved final test fitness as more algorithm repetitions are
introduced. This was done for two randomly generated DRN material
processors and shows that the standard deviation is low and settles
after four to five repetitions of the DE algorithm. 176
Box & whisker plots showing the effect of including more randomly
generated ‘material processors’ into the final result. Each of the pro-
cessor types (RRN, NLRN & DRN) were solved using the basic and
advanced algorithms over 50 iterations. This was then repeated for
a new material so a box plot of the cumulative test fitness’s could
be plotted. This was then repeated for another newly randomly gen-
erated material (and so on) such that the effect of including more
material processors could be visualised. Note that introducing multi-
ple repetitions of the DE algorithm on each individual material also
improves stability. oL 177
The mean test fitness convergence and final test fitness box and
whisker plots for the RRN, NLRN, and DRN. 179
The mean test fitness convergence for the different conductive network-
based EiM processors classifying the 2DDS. 181
The mean test fitness convergence for the different conductive network-

based EiM processors classifying the flipped 2DDS. 183

DE hyperparameter investigation results solving the hm2DDS for a
fixed budget of 500000 Neomps, With A=d. 186
OpenAIl-ES hyperparameter investigation results solving the hm2DDS
for a fixed budget of 500000 Neopps, With A=d. 187
CMA-ES hyperparameter investigation results solving the hm2DDS
for a fixed budget of 500000 Neomps- - - « « v v v v v v v oo 188

List of Tables

3.1

3.2
3.3

4.1

4.2

5.1

5.2

9.3

6.1

6.2

Condensed Bill Of Materials (BOM) for the final Hardware Interface

(HI), detailing the Integrated Circuit (IC) components used.
Synthetic dataset details.
Real dataset details. oo

The mean test fitness ®, standard deviation, and best test fitness
®* after 30 iterations, for the different Evolution in-Materio (EiM)
PTOCESSOTS. . & v v v v e v e e e e e e
Classification performance of the discussed basic and advanced EiM
algorithms final classification error test fitness, compared to other

common algorithms and other work.

Final test results for the Standard evolved and Regressed EiM, using
the classification error objective function.
Final mean A and best A* accuracy test results for the Evolved

and Regressed EiM compared to some common sklearn classification

Final test results for the different input scheme for the monolithic

EiM processors.

Test results for the datasets when using several common classification
methods. Best accuracy highlighted in bold.
Best accuracy achieved from the different systems, from across the
different Hidden Layer (HL) sizes and neuron topologies ([P, S, Q]).
The best accuracy for each dataset is highlighted in bold.

Xix

LIST OF TABLES

XX

6.3

6.4

6.5

B.1

C.1

C.2

C.3

Test results for the datasets when using several common classification
methods. The best accuracy for each dataset is highlighted in bold.

Final test results for the in-Materio Neural Network (iM-NN)’s neu-
roevolution, where ® is the mean final fitness, A is the mean final
accuracy and A* is the accuracy of the run which achieved the small-
est test fitness @*. Best achieved loss for each dataset is highlighted
inbold.
Final test results for different trained methods encoding the digits

dataset as two-dimensional features.

Summary fitting parameters from experimental data for internode
characteristics of a 1.1wt% Single Walled Carbon Nanotube (SWCNT)
/ Poly(butyl methacrylate) (PBMA) blend.

Classification error (@) results from varying utilising different
configuration parameters when classifying the con2DDS on the corre-
sponding type of material processor (averaged from 15 material net-
works, each with 5 DE repetitions).
Classification error (®ep.o) results from varying utilising different
configuration parameters when classifying the 2DDS on the corre-
sponding type of material processor (averaged from 15 material net-
works, each with 5 DE repetitions).
Classification error (@) results from varying utilising different
configuration parameters when classifying the flipped2DDS on the
corresponding type of material processor (averaged from 15 material

networks, each with 5 DE repetitions).

. 139

LIST OF PUBLICATIONS xxi

List of Publications

1]

2|

3]

4]

Benedict. A. H. Jones, J. L. P. Chouard, B. C. C. Branco, E. G. B. Vissol-Gaudin,
C. Pearson, M. C. Petty, N. Al Moubayed, D. A. Zeze, and C. Groves, “Towards
Intelligently Designed Evolvable Processors,” FEvolutionary Computation, pp.

1-23, Mar. 2022. [Online|. Available: https://doi.org/10.1162/evco a 00309

Benedict. A. H. Jones, N. Al Moubayed, D. A. Zeze, and C. Groves, “Enhanced
methods for Evolution in-Materio Processors,” in 2021 International Conference
on Rebooting Computing (ICRC), Nov. 2021, pp. 109-118. [Online|. Available:
https://doi.org/10.1109/icrc53822.2021.00026

B. A. H. Jones, N. Al Moubayed, D. A. Zeze, and C. Groves, “In-Materio
Extreme Learning Machines,” in Parallel Problem Solving from Nature —
PPSN XVII, ser. Lecture Notes in Computer Science, G. Rudolph, A. V.
Kononova, H. Aguirre, P. Kerschke, G. Ochoa, and T. TuSar, Eds. Cham:
Springer International Publishing, 2022, pp. 505-519. [Online|. Available:
https://doi.org/10.1007/978-3-031-14714-2 35

Benedict. A. H. Jones, N. Al Moubayed, D. A. Zeze, and C. Groves, “Training
In-Materio Neural Networks,” Paper submitted for publication, 2023.

https://orcid.org/0000-0002-1924-0560
https://orcid.org/0000-0002-1924-0560
https://doi.org/10.1162/evco_a_00309
https://doi.org/10.1109/icrc53822.2021.00026
https://doi.org/10.1007/978-3-031-14714-2_35

Acronyms

mse Mean Squared Error.

nmse Normalised Mean Squared Error.

w.r.t with respect to.

Adam Adaptive Moment Estimation.

ADC Analogue to Digital Converter.

AE AutoEncoder.

ANN Artificial Neural Network.

ARI Adjusted Rand Index.

AUC Area Under Curve.

BCE Binary Cross Entropy.

BOM Bill Of Materials.

CA Clustering Accuracy.

CAP Configurable Analogue Processor.

CE Cross Entropy.

CMA-ES Covariance Matrix Adaptation Evolution Strategy.
CMOS Complementary Metal-Oxide-Semiconductor.
DAC Digital to Analogue Converter.

DC Direct Current.

DE Differential Evolution.

DNA Deoxyribonucleic Acid.

DRN Diode Random Network.

xxil

Acronyms

xx111

EA
EiM
ELM
ES
ESN

FPGA

GD
GPIO

HI
HL

IC
iM-AE
iM-ELM
iM-NIN
IoT

v

JFET

LC
LD
LDN
LSM

MGD
ML
MUX

NC
NDR
NES

Evolutionary Algorithm.
Evolution in-Materio.
Extreme Learning Machine.
Evolutionary Strategy.
Echo State Network.

Field-Programmable Gate Array.

Gradient Descent.

General Purpose Input/Output.

Hardware Interface.

Hidden Layer.

Integrated Circuit.

in-Materio AutoEncoder.

in-Materio Extreme Learning Machine.
in-Materio Neural Network.
Internet-of-Things.

Current-Voltage.

Junction-gate Field-Effect Transistor.

Liquid Crystal.

Lambda Diode.

Lambda Diode Network.
Liquid State Machine.

Multivariate Gaussian Distribution.
Machine Learning.

Multiplexer.

Number of.

Natural Computing.
Negative Differential Region.
Natural Evolution Strategy.

Acronyms

XX1V

NLRN
NN
NS

Op-Amp
OpenAI-ES

PBMA
PCA
PCB
PiM
PMMA
PSO

RC

RNN
ROC
RRN

SGD

SI

SiM
SLFN
SNN
SPI
SPICE
SWCNT

UucC

Non-Linear Random Network.
Neural Network.

Novelty Search.

Operational Amplifier.
OpenAl Evolutionary Strategy.

Poly(butyl methacrylate).
Principal Component Analysis.
Printed Circuit Board.
Physical in-Materio.
Poly(methyl methacrylate).

Particle Swarm Optimisation.

Reservoir Computing.
Recurrent Neural Network.
Receiver Operating Characteristic.

Resistor Random Network.

Stochastic Gradient Descent.

Software Interface.

Simulated in-Materio.

single hidden layer feedforward neural network.
Spiking Neural Network.

Serial Peripheral Interface.

Simulation Program with Integrated Circuit Emphasis.

Single Walled Carbon Nanotube.

Unconventional Computing.

Glossary

computation
dynamic material
in-materio
n-stmulo

neuromorphic computing

static material

unconventional computing

black box

decision boundary

neuroevolution

An act or the process of calculating something.

A material with variable IV characteristics.
Processing or computation occurring in an exploited
material or medium.

Processing or computation occurring in a simula-
tion, also referred to as in-silico.

Computing inspired by the structure and function
of the brain.

A material with fixed IV characteristics.

Computing without standard digital computers.

Systems within which it is difficult or impossible
to understand how variables are being combined

to make predictions.

A hyper plane (boundary or surface) which sepa-

rates data points into specific classes.

A type of machine learning where an Evolutionary

Algorithm is used to optimise a Neural Network.

XXV

Nomenclature

Symbol Description Unit
A* Best Accuracy -
B A (mini-)batch of the training data -
CR Differential Evolution Crossover -
F Differential Evolution Mutation Factor -
H Entropy -
K Number of data instances -
L Total number of labels/classes -
Neomps Number of computations (a measurement of the —

number of data instance write /read cycles to a ma-

terial)
P Number of material input nodes/electrodes -
Q Number of material output nodes/electrodes -
R Number of data driven material nodes/electrodes -
S Number of evolvable stimuli driven material -

nodes/electrodes
Ve Input ‘configuration’ voltage stimuli \Y
yin Input ‘data’ voltage Vv
Jout Read output voltage \%
Y Network Response \Y
o> Best fitness or loss -
Dpee Binary Cross Entropy Loss -
D, Cross Entropy Loss -
Derror Classification Error Loss -

XXV1

Nomenclature

XXVii

Symbol

Description

®m86

(I)nmse

o

Mo s R

Saa = BN o)

>

out

Mean Squared Error Loss

Normalised Mean Squared Error Loss
Objective Function used to calculate a potential
solution’s fitness or loss

Learning Rate

Mean Accuracy

Mean fitness or loss

Vector of decision variables (i.e., a particular solu-
tion, or genome)

Best solution or population member
Population of solutions

Trial population of solutions

Predicted output or output label
Population size

Standard Deviation (std)

Input attribute

Batch size

The test data subset

A particular data instances within a dataset
Indexing a label or class

Input Weight

Output Weight

True label

Chapter 1

Introduction

1.1 Chapter Overview 1
1.2 Historical Context L oo 2
1.3 Unconventional Computing 4
1.4 Evolution in-Materio Lo 5
1.5 Research Hypothesis 11
1.6 Thesis Structure Lo 12
Bibliography 13

1.1 Chapter Overview

Evolution in-Materio (EiM) is an unconventional computing paradigm which uses
an Evolutionary Algorithm (EA) to leverage the inherent complex properties of
a nanomaterial substrate or physical medium for computation. This bottom up
exploitation of physical properties is in contrast with the traditional ‘top down’
approach typically used to develop modern silicon-based computers.

This chapter introduces EiM processors and provides context for a renewed in-
terest in unconventional computing. This touches on related fields and discusses the
literature. While EiM processors show promise, problems in their development ex-
ist, such as slow manufacturing and physical experimentation, and possible scaling
issues. Here, the research hypothesis and thesis structure is outlined for the reader’s

convenience.

1.2. Historical Context 2

1.2 Historical Context

The twenty-first century has heralded an unprecedented explosion in technological
innovation. Many liken this new ‘digital age’ to that of the industrial revolution,
bringing opportunity to the modern world. However, this new interconnected world
requires one vital component — computers. These come in all shapes and sizes,
from large and power hungry data centres, to small Internet-of-Things (IoT) edge
devices [1].

The Cambridge Dictionary defines a processor as “the part of a computer that
performs operations on the information that is put into it”. Therefore, devices or
systems which can process information and perform computation pre-date modern
electronic computers by centuries. Indeed, the oldest known computational device
is the abacus |2] used in ancient civilisations around the world. The oldest known
processor might therefore be the water clock, a device used to measure the passage of
time by regulating the flow of a liquid from either into or out of a vessel [3, 4, 5]. Such
devices exploit the vessel structure, and its physical dynamics, for the particular time
‘processing’ task.

The modern computer is generally thought to have been worked on by Babbage
& Lovelace [6, 7], Zuse [8] and Turing [9]. Indeed, Ada Lovelace is often attributed
as the ‘first programmer’ [10]. These early mechanical and analogue computers
often used wheels, disks, shafts and gears to perform calculations [11]. The first
digital computers used vacuum tubes to represent binary information, before being
replaced with the transistor — now the fundamental building block for much of
modern electronic systems.

Modern digital computers are general purpose machines which can run a variety
of programs. These generally follow the Von Neumann architecture [12] where a
single store (i.e., addressable memory) is used for both machine instructions and
data. Therefore, there is a clear separation within the computer’s permanent struc-
ture (hardware) and its instructions (software). This enabled flexible computers
that could be reconfigured (programmed) by entering new instructions into mem-
ory, rather than physically rewired. However, Von Neumann architecture limits

a computer to sequential processing and requires a well-defined structure with a

1.2. Historical Context 3

Transistors per Microprocessor
=
3
L

1970 1980 1990 2000 2010
Year

Figure 1.1: Plot illustrating Moore’s law by showing the increase in transistor count
over time. Data taken from [19].

central processing unit.

The adoption of digital technology for personal use has reached new highs, with
8.27 billion worldwide mobile phone subscriptions, and approximately 60% of the
world population having had internet access in 2020 [13]. A growing number of
devices are being connected to the internet, helping realise the IoT — a network of
physical objects which can communicate [14] and perform as smarter systems. IoT
systems rely on a number of underlying technologies, such as sensors, communication
systems, internet protocols and embedded computational devices. Beyond personal
use, the application of computing technology is expanding, from smart cities |15]
and autonomous vehicles [16], to data centres [17] and large Machine Learning (ML)
models [18].

These advances have been made possible by the continued progress in electronic
device development. In 1965 Gordon E. Moore observed that manufacturers had
been doubling the density of components per Integrated Circuit (IC) at regular in-
tervals (roughly every two years) [20], a trend seen in Fig. 1.1 which became known
as Moore’s law. Indeed, the success of Moore’s law has helped drive the silicon man-
ufacturing industry. However, manufactures are now facing serious challenges, with

fundamental physical limits suggesting field-effect transistor gate length is unlikely

1.3. Unconventional Computing 4

to go below 5nm [21].

The effort to continue scaling conventional silicon Complementary Metal-Oxide-
Semiconductor (CMOS) devices has overwhelmingly dominated intellectual & finan-
cial capital investments from industry, government and academia [21]. However, the
challenges to typical silicon device development has led to a growing interest in new
unconventional computing methods [22]. Such devices may provide power and speed

efficiency gains, or even offer entirely new computational paradigms.

1.3 Unconventional Computing

Unconventional Computing (UC), sometimes referred to as unconventional compu-
tation [23] or alternative computing, is a wide area of study with varied content
and many related fields. While whether something is ‘unconventional’ can be sub-
jective [23], UC methods are broadly defined as computing without standard digital
computers |24]. Examples can include leveraging Field-Programmable Gate Arrays
(FPGASs) [25], Deoxyribonucleic Acid (DNA), quantum properties, mechanical de-
vices, water [26], nano-technologies and more.

Natural Computing (NC) has a strong relationship with UC; it is a large field
that contains techniques inspired from nature or the use of natural materials to
perform computation |24, 27]. This can include algorithms using concepts such
as reproduction, mutation, recombination, and natural selection [28], or physical
systems performing computation such as with physarum (slime mould), DNA or
more [29, 24]. Many argue that there are lessons which can be drawn from nature,
since natural evolution has produced “biological machines” which still maintain a
level of complexity far above what conventional computers have achieved [30]. In-
deed, research such as Artificial Neural Networks (ANNs) was a landmark piece
of work in the branch of nature inspired computing [27]. The realisation of such
biologically, and particularly brain, inspired systems is often called neuromorphic
computing [31], and has resulted in a large body of research [32, 33|, from leaky
integrate-and-fire spike-driven hardware [34, 35] to memristive synapses [36] and

crossbar arrays [37, 38, 39].

1.4. Evolution in-Materio 5

The growing curiosity in UC has also revived interest in analogue computing [29].
This coincides with a desire to produce efficient but powerful computing and ML at
“the edge” [1] and physical neuromorphic hardware [40|. For this reason, the idea
of using physical analogue systems has remained an attractive option, due to many
analogue devices’ high theoretical throughput and low-energy consumption [41]. Ad-
ditionally, constraints associated with digital computing could be sidestepped, such
as avoiding analogue-to-digital conversion (i.e., discretisation) [42]. However, such
emerging UC devices face challenges such as device variability, stochastic behaviour
and scalability [43, 44].

While ANNs have exploded in popularity, some consider them to be over param-
eterised [45, 46]. Conversely, the complexity engineering approach [44] states that
one should attempt to minimise external control of a complex system being lever-
aged for computation. In doing so, a system could instead be self-organising with
emergent functionality — contrary to a classical engineering approach which is often
top down and well-defined. Such approaches prompts us to re-think how computing
methods can be adapted for new UC devices, or perhaps search for entirely new

computational paradigms [47].

1.4 Evolution in-Materio

EiM is an UC method which seeks to exploit a physical substrate’s inherent complex
properties to perform a computational task. Initially proposed by Miller & Downing
in 2002 [30], EiM was inspired by the remarkably complex and varied functions
that simple nucleotides can perform when configured by evolution into a genome.
They envisaged a type of evolutionary exploitable device operated as a Configurable
Analogue Processor (CAP), whose configuration (and therefore operation) could
be selected by some discrete set of parameters such as voltages, fields or other
physical signals. They argued that the evolvable hardware research community was
too focused on transistor technology, and that many other types of reconfigurable
systems may exist, suggesting that materials with rich physical properties might be

ideal. They also suggested that numerous CAP configurations might need to be

1.4. Evolution in-Materio 6

Material/Medium

: - Test for
Signal — || Signal . — Desired
Responce
ggglguratlon Fithess
T Calculation

Configuration population
subject to artificial evolution

Figure 1.2: Visualisation of the training process for a Configurable Analogue Pro-
cessor (CAP) as described by Miller and Downing [30].

tested before one is found that transforms the incident signal in the desired manner.
The resulting ‘fitness landscape’ was likely to have many local optima, to which
an optimising EA [28] might be best suited for. The EA performs an iterative
search, optimising the CAP’s input/output relationship until a certain performance
level is achieved or a particular number of iterations has elapsed. Such a training
process is illustrated in Fig. 1.2. Therefore, EiM uses a ‘bottom up’ approach where
the material is leveraged for computation without explicit knowledge of its internal
properties.

In the past decade, significant progress has been made advancing the EiM paradigm.
The term EiM processor is used here to describe a system which exploits a config-
urable analogue or ‘in-materio’ processor using an EA. Examples of such devices
include the use of a nanomaterial substrate such as metal-nanoparticles [48, 49],
Single Walled Carbon Nanotube (SWCNT) composites [50, 51|, Liquid Crystals
(LCs) |52, 53], LCs/SWCNT mixtures [54], and dopant-atom networks [55] — all of
which were configured with the application of static ‘configuration’ voltages. How-
ever, it is highlighted that any material or medium which is interfaceable and con-
tains interesting physical properties might be used in an EiM processor. This could
include using light [56], radio waves [57], acoustics [58], or potentially turning an

entire building into a computational resource by exploiting conductive concrete [59].

1.4. Evolution in-Materio 7

Therefore, at the simplest level, perhaps even the humble water clock (mentioned
in §1.2) could be described as an in-materio processor, exploiting the dynamics of
a chosen vessel to perform a time keeping process.

So, EiM devices consist of a system within which a material or medium’s physi-
cal properties are exploited and leveraged towards the desired computational task.

Thus, EiM devices generally comprised of three constituent parts:
e a material whose characteristics can be altered via external stimuli,

e a Hardware Interface which can apply input and read output signals from the

material,
e a device which can host and execute an EA to optimise the material.

Within this work, an exploited nanomaterial substrate will be referred to inter-
changeably as a configurable analogue, material or in-materio processor.

Research has often focused on conductive nanomaterial substrates since they can
be easily accessed and manipulated via the application and reading of voltages. As
such, EiM processors are generally fabricated by depositing the chosen nanomaterial
on a microelectrode array, which is used to apply and measure voltages. An example
of such an EiM processor device is depicted in Fig. 1.3. Nanomaterial based EiM
processors have used a range of microelectrode array sizes to contact the material:
such as sixty-four [60], sixteen [61, 50] or often fewer electrodes [62, 55, 48]. Smaller
networks using only eight electrodes have shown promising results as physical real-
isations of high-capacity neurons [41].

The electronic functionality of these EiM processors is not designed by the as-
sembling of discrete components, rather an optimal material configuration is sought
via evolution through a supervised learning process. The human element of EiM
processor design is the selection of an appropriate configurable material/medium,
selecting the physical stimuli, formulating the computational problem, and choosing
an algorithm to efficiently optimise the system [63, 64, 65, 66]. While EAs are tradi-
tionally used to produce EiM processors, other algorithms or methods could be used

to produce novel in-materio devices, such as Particle Swarm Optimisation [63, 64].

1.4. Evolution in-Materio 8

Evolutionary Hardware Material
Algorithm Interface Processor
Microelectrode Array

p controller DACs 1]
il B \\\$)))

Config & Input
Data Voltages

alal

< > Nanomaterial
PC composite
Link

RNHEETTT, O\

ADCsi \poltages

Figure 1.3: Diagram of a typical nanomaterial substrate based EiM processor.

So far, EiM processors have been well positioned to operate as basic classifiers
for non-temporal (static) data, performing complex multivariate machine-learning
problems [54, 67] or as logic gates [48, 62, 51|. However, the literature is pre-
dominantly made up of case studies, using a range of techniques and nanomaterial
substrates. It has been demonstrated that optimising different nanomaterials with
the same EA for the same function has both varying degrees of success and training
time [66, 51, 68, 67]. Since these nanomaterial processors are analogue, they often
have underlying physical properties that are difficult to model. This leads them to
be treated as black boxes, making investigation into which nanomaterial properties
are beneficial difficult. Even EiM processors fabricated from nominally the same
nanomaterial and optimised by the same EA for the same computational problem
vary in quality of solution due to the inherent randomness of nanomaterial mor-
phology [67] and EA convergence. Collating data and conducting experimentation
to further investigate these issues is challenging due to the slow fabrication and
training processes that are required for each EiM processor [49]. Additionally, while
the literature presents many implementations of EiM devices, a lack of a unified
method or common approach makes reliable, repeatable investigation difficult. As
such, the fundamental question of which configurable material properties lead to
better performing EiM processors, and what algorithm properties will lead to better
exploited performance, remains largely unanswered.

Other computational frameworks closely overlap with EiM. For example, Ex-

1.4. Evolution in-Materio 9

treme Learning Machines (ELMs) and Reservoir Computings (RCs) present a good
analogy for in-materio processors since both involve the exploitation of random net-
works. These systems depend on the underlying assumption that the randomised
network /reservoir will produce useful and often higher dimensional output states
that are used to process the data more successfully. Notably, within these fields
of research, it is generally assumed that the network/reservoir remains fixed after
its inception. However, previous work has shown that some stochastic optimisation
can improve a system’s performance |68, 69, 70]. ELMs were developed from single
hidden layer feedforward neural networks and are generally employed to process non-
temporal data |[71]. Examples of physical implementations of ELM remain sparse,
but include memristor based networks |72| and photonic systems [73, 74]. RC was
developed from Recurrent Neural Networks and are generally employed to process
temporal data. Like EiM, Physical RCs |75] could lead to low power, efficient and
fast systems which can operate at ‘the edge’. Examples include the use of circuit
(anti-parallel diode) based non-linear neuron [76|, memristive network |72, 77|, FP-
GAs [25], and magnetic spintronic [78] based reservoirs. There remains significant
opportunity to develop both classical and quantum substrates [79] for both ELM
and RC. Drawing elements from such successful ML methods and leveraging physical
substrates using EiM could unlock efficient but powerful unconventional computing
resources.

Work combining physical RC and EiM was carried out by Matthew Dale et al. at
York University [68, 66] in which they constructed Reservoir Computing in-Materio
(RCiM) devices. These deviate from traditional physical RC by introducing aspects
of EiM; specifically, utilising an EA to tune a reservoir by evolving some stimuli
(equivalent to optimising the internal reservoir parameters). Earlier discussion from
Dale et al. considered the advantages of the RC readout layer (i.e weights for the out-
put signals) and how it allows the system to selectively choose and separate/combine
interesting output signal patterns [68]. Within the work carried out on RCiM, evolv-
able configuration parameters included static (configuration) voltages, connection
location, a variable number of inputs/outputs and input weights [68, 66, 80]. They

hypothesised that an observed increase in performance might be the result of: (i) in-

1.4. Evolution in-Materio 10

put weightings allowing variations of the input which cause interesting interactions,
(ii) a conductive network might not be present across all electrodes, instead several
may exist, so additional inputs-outputs may grant access to these smaller networks,
(iii) combining and weighting several outputs allows training to exploit the whole
material, not just a single area around a particular electrode. This conjecture re-
quires further exploration and represents the general lack of established knowledge
about how nanomaterial processors can be best exploited. The importance of de-
veloping this foundational understanding cannot be understated, and is required to
provide actionable guidance on the future design of EiM devices.

The scalability of EiM devices is an incredibly important, but as yet unanswered
question. EiM processors have typically used a single substrate ‘monolithic’ struc-
ture. With larger and more complex ML problems, a monolithic EiM processor
would require a physically larger nanomaterial substrate with a larger microelec-
trode array. However, such an approach is unlikely to perform well, as such larger
devices will have weaker interactions between distant electrodes. Therefore, to scale
in-materio systems to process larger, more complex datasets, devices will have to
move beyond the typical monolithic structure. The introduction of novel devices or
intra-substrate structures represents an exciting avenue for research.

In summary, while EiM processors show promise as an unconventional computing
resource, problems in their development exist. To isolate and investigate fundamen-
tal questions about optimal material and algorithms properties, a standard approach
is required. However, investigations are often slow, due to lengthy physical manu-
facturing and physical experimentation. Finally, to advance the paradigm to larger,
more complex computational problems, new and novel EiM device structures, and

accompanying algorithms, will be required.

1.5. Research Hypothesis 11

1.5 Research Hypothesis

Nanomaterial substrates can be used to produce EiM devices, but physical develop-
ment and experimentation can be slow. Instead, a simulation can be used to model
a material and use it as a proxy for experimentation; this will allow fast and efficient
investigation into what material and algorithm properties are most beneficial to EiM
Processors.

Further to this, new device structures will be considered, drawing from concepts
in the wider Machine Learning field, such as feed forward Neural Networks and
AutoEncoders. These devices will address scaling issues found in typical monolithic

(single substrate) EiM processors.

1.6. Thesis Structure 12

1.6 Thesis Structure

The thesis structure is as follows:

Chapter 2 presents background information about EiM processors, and related
topics including ANNs and RC. Detailed descriptions about relevant EA and

objective fitness functions are given.

Chapter 3 details how a conductive nanomaterial can be leveraged as a CAP and
used in EiM for classification. The simulated model and physical testing plat-
form are presented. Finally, the datasets used for classification and dimen-

sionality reduction tasks are introduced.

Chapter 4 is the first results chapter which examines fundamental algorithm and
material interaction, establishing a better understanding of EiM and typical

single substrate ‘monolithic’ devices using fast and efficient simulations.

Chapter 5 reports on several enhancements to EiM devices and their exploiting
algorithms. This includes making better use of the available training data, the
benefits of a cross entropy fitness metric, the use of a regressed output layer

and fully connected input layer.

Chapter 6 proposes a novel in-Materio Neural Network (iM-NN) device structure,
enabling a scalable system by stacking several in-materio processing units
in parallel and drawing on ML concepts. These iM-NNs are first simulated
and trained as Extreme Learning Machines. Then using a Raspberry Pi and
Hardware Interface, physical realisations of iM-NNs are investigated in the
lab, performing classification and then constructing an AutoEncoder which

are trained via neuroevolution.

Chapter 7 outlines the main conclusions of this thesis, and suggests several possi-

ble directions for future research.

BIBLIOGRAPHY 13

Bibliography

1]

2]

3]

4]

[5]

(6]

7]

8]

19]

[10]

[11]

M. G. S. Murshed, C. Murphy, D. Hou, N. Khan, G. Ananthanarayanan,
and F. Hussain, “Machine Learning at the Network Edge: A Survey,” ACM
Computing Surveys, vol. 54, no. 8, pp. 170:1-170:37, Oct. 2021. [Online].
Available: http://doi.org/10.1145/3469029

“Ancient Computation Devices,” in Ancient FEngineers€d Inventions, ser.
History of Mechanism and Machine Science, C. Rossi, F. Russo, and F. Russo,
Eds. Dordrecht: Springer Netherlands, 2009, pp. 41-59. [Online|. Available:
https://doi.org/10.1007 /978-90-481-2253-0 4

D. Allen, “A Schedule of Boundaries: An Exploration, Launched From the
Water-Clock, of Athenian Time,” Greece € Rome, vol. 43, no. 2, pp. 157-168,
Oct. 1996. [Online|. Available: https://doi.org/10.1093/gr/43.2.157

S. Remijsen, “Living by the Clock. The Introduction of Clock Time in the
Greek World,” Klio, vol. 103, no. 1, pp. 1-29, Jun. 2021. [Online|. Available:
https://doi.org/10.1515 /klio-2020-0311

J. F. Fleet, “XII. The Ancient Indian Water-clock,” Journal of the Royal
Asiatic Society, vol. 47, no. 2, pp. 213-230, Apr. 1915. [Online|. Available:
https://doi.org/10.1017/S0035869X00048139

L. F. Menabrea and A. Lovelace, “Sketch of the analytical engine invented by
charles babbage,” 1842.

S. Charman-Anderson, “Ada lovelace: Victorian computing visionary,” vol. 36,
pp- 3541, Mar. 2015.

R. Rojas, “Babbage Meets Zuse: A Minimal Mechanical Computer,” in Uncon-
ventional Computation and Natural Computation, ser. Lecture Notes in Com-
puter Science, M. Amos and A. CONDON, Eds. Cham: Springer International
Publishing, 2016, pp. 25-34.

A. M. Turing, “Computing Machinery and Intelligence,” in Parsing the
Turing Test: Philosophical and Methodological Issues in the Quest for
the Thinking Computer, R. Epstein, G. Roberts, and G. Beber, Eds.
Dordrecht: ~ Springer Netherlands, 2009, pp. 23-65. [Online|. Available:
https://doi.org/10.1007/978-1-4020-6710-5 3

T. Haigh and M. Priestley, “Innovators assemble: Ada Lovelace, Walter
[saacson, and the superheroines of computing,” Communications of the
ACM, ~ol. 58, mno. 9, pp. 20-27, Aug. 2015. [Online]. Available:
https://dl.acm.org/doi/10.1145 /2804228

G. O’Regan, “What Is a Computer?”” in A Brief History of Computing,
G. O'Regan, Ed. London: Springer, 2012, pp. 23-34. |[Online|. Available:
https://doi.org/10.1007/978-1-4471-2359-0 2

http://doi.org/10.1145/3469029
https://doi.org/10.1007/978-90-481-2253-0_4
https://doi.org/10.1093/gr/43.2.157
https://doi.org/10.1515/klio-2020-0311
https://doi.org/10.1017/S0035869X00048139
https://doi.org/10.1007/978-1-4020-6710-5_3
https://dl.acm.org/doi/10.1145/2804228
https://doi.org/10.1007/978-1-4471-2359-0_2

BIBLIOGRAPHY 14

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

[20]

[21]

22]

23]

J. von Neumann, “First draft of a report on the EDVAC,” IEEE Annals of the
History of Computing, vol. 15, no. 4, pp. 27-75, 1993.

H. Ritchie and M. Roser, “Technology Adoption,” Our World in Data, Oct.
2017. [Online|. Available: https://ourworldindata.org/technology-adoption

A. Al-Fugaha, M. Guizani, M. Mohammadi, M. Aledhari, and M. Ayyash,
“Internet of Things: A Survey on Enabling Technologies, Protocols, and Ap-

plications,” IEEE Communications Surveys € Tutorials, vol. 17, no. 4, pp.
2347-2376, 2015.

M. Batty, K. W. Axhausen, F. Giannotti, A. Pozdnoukhov, A. Bazzani,
M. Wachowicz, G. Ouzounis, and Y. Portugali, “Smart cities of the future,”
The European Physical Journal Special Topics, vol. 214, no. 1, pp. 481-518,
Nov. 2012. [Online|. Available: https://doi.org/10.1140/epjst/e2012-01703-3

S. Campbell, N. O’'Mahony, L. Krpalcova, D. Riordan, J. Walsh, A. Murphy,
and C. Ryan, “Sensor Technology in Autonomous Vehicles : A review,” in 2018
29th Irish Signals and Systems Conference (ISSC), Jun. 2018, pp. 1-4.

K. Kant, “Data center evolution: A tutorial on state of the art, issues,
and challenges,” Computer Networks, vol. 53, no. 17, pp. 2939-2965, Dec.
2009. [Online|. Available: https://www.sciencedirect.com /science/article/pii/
S1389128609003090

R. Dale, “GPT-3: What’s it good for?” Natural Language Engi-
neering, vol. 27, mo. 1, pp. 113-118, Jan. 2021. [Online|. Available:
https://www.cambridge.org/core/journals /natural-language-engineering /

article/gpt3-whats-it-good-for /0E05CFE68ATACSBF794C8ECBE28A A990

M. Roser, H. Ritchie, and E. Mathieu, “Technological Change,” Qur
World in Data, May 2013. |Online|. Available: https://ourworldindata.org/
technological-change

R. Schaller, “Moore’s law: Past, present and future,” IEEE Spectrum, vol. 34,
no. 6, pp. 52-59, Jun. 1997.

R. S. Williams, “What’s Next? [The end of Moore’s law|,” Computing in Science
& Engineering, vol. 19, no. 2, pp. 7-13, Mar. 2017.

T. M. Conte, E. P. DeBenedictis, P. A. Gargini, and E. Track, “Rebooting
Computing: The Road Ahead,” Computer, vol. 50, no. 1, pp. 2029, Jan. 2017.
[Online|. Available: https://doi.org/10.1109/MC.2017.8

C. S. Calude, “Unconventional Computing: A Brief Subjective History,”
in Advances in Unconventional Computing: Volume 1: Theory, ser.
Emergence, Complexity and Computation, A. Adamatzky, Ed. Cham:
Springer International Publishing, 2017, pp. 855-864. |[Online|. Available:
https://doi.org/10.1007/978-3-319-33924-5 31

https://ourworldindata.org/technology-adoption
https://doi.org/10.1140/epjst/e2012-01703-3
https://www.sciencedirect.com/science/article/pii/S1389128609003090
https://www.sciencedirect.com/science/article/pii/S1389128609003090
https://www.cambridge.org/core/journals/natural-language-engineering/article/gpt3-whats-it-good-for/0E05CFE68A7AC8BF794C8ECBE28AA990
https://www.cambridge.org/core/journals/natural-language-engineering/article/gpt3-whats-it-good-for/0E05CFE68A7AC8BF794C8ECBE28AA990
https://ourworldindata.org/technological-change
https://ourworldindata.org/technological-change
https://doi.org/10.1109/MC.2017.8
https://doi.org/10.1007/978-3-319-33924-5_31

BIBLIOGRAPHY 15

[24]

[25]

26]

27]

28]

[29]

[30]

[31]

32]

[33]

[34]

[35]

M. Oltean, “Unconventional Computing: A Short Introduction,” Studia Uni-
versitatis Babes-Bolyai : Series Informatica, vol. 54, Jul. 2009.

I. Shani, L. Shaughnessy, J. Rzasa, A. Restelli, B. R. Hunt, H. Komkov,
and D. P. Lathrop, “Dynamics of analog logic-gate networks for machine
learning,” Chaos: An Interdisciplinary Journal of Nonlinear Science,
vol. 29, mno. 12, p. 123130, Dec. 2019. [Online|. Available: https:
//aip.scitation.org/doi/10.1063/1.5123753

N. Taberlet, Q. Marsal, J. Ferrand, and N. Plihon, “Hydraulic logic
gates: Building a digital water computer,” Furopean Journal of Physics,
vol. 39, no. 2, p. 025801, Jan. 2018. [Online|. Available: https:
//dx.doi.org/10.1088/1361-6404 /aa97fc

L. N. de Castro, “Fundamentals of natural computing: An overview,” Physics
of Life Reviews, vol. 4, no. 1, pp. 1-36, Mar. 2007. [Online|. Available:
https://www.sciencedirect.com/science/article/pii/S1571064506000315

A. N. Sloss and S. Gustafson, “2019 Evolutionary Algorithms Review,”
arXiv:1906.08870 [cs/, Jun. 2019. |Online|. Available: http://arxiv.org/abs/
1906.08870

O. Bournez and A. Pouly, “A Survey on Analog Models of Computation,” May
2018. [Online|. Available: http://arxiv.org/abs/1805.05729

J. Miller and K. Downing, “Evolution in materio: Looking beyond the silicon
box,” in Proceedings 2002 NASA/DoD Conference on Evolvable Hardware.
Alexandria, VA, USA: IEEE Comput. Soc, 2002, pp. 167-176. [Online].
Available: http://ieeexplore.ieee.org/document /1029882 /

M. Ziegler, “Novel hardware and concepts for unconventional computing,”
Scientific Reports, vol. 10, no. 1, p. 11843, Jul. 2020. [Online|. Available:
https://www.nature.com /articles/s41598-020-68834-1

J. Hasler and H. Marr, “Finding a roadmap to achieve large neuromorphic
hardware systems,” Frontiers in Neuroscience, vol. 7, 2013. [Online|. Available:
https://www.frontiersin.org/articles/10.3389 /fnins.2013.00118

D. Markovié, A. Mizrahi, D. Querlioz, and J. Grollier, “Physics for
neuromorphic computing,” Nature Reviews Physics, vol. 2, mno. 9, pp.
499-510, Sep. 2020. [Online|. Available: https://www.nature.com/articles/
$42254-020-0208-2

S. Furber, “Large-scale neuromorphic computing systems,” Journal of Neural
Engineering, vol. 13, no. 5, p. 051001, Aug. 2016. [Online|. Available:
https://dx.doi.org/10.1088,/1741-2560,/13/5/051001

M. Davies, N. Srinivasa, T.-H. Lin, G. Chinya, Y. Cao, S. H. Choday, G. Di-
mou, P. Joshi, N. Imam, S. Jain, Y. Liao, C.-K. Lin, A. Lines, R. Liu, D. Math-
aikutty, S. McCoy, A. Paul, J. Tse, G. Venkataramanan, Y.-H. Weng, A. Wild,

https://aip.scitation.org/doi/10.1063/1.5123753
https://aip.scitation.org/doi/10.1063/1.5123753
https://dx.doi.org/10.1088/1361-6404/aa97fc
https://dx.doi.org/10.1088/1361-6404/aa97fc
https://www.sciencedirect.com/science/article/pii/S1571064506000315
http://arxiv.org/abs/1906.08870
http://arxiv.org/abs/1906.08870
http://arxiv.org/abs/1805.05729
http://ieeexplore.ieee.org/document/1029882/
https://www.nature.com/articles/s41598-020-68834-1
https://www.frontiersin.org/articles/10.3389/fnins.2013.00118
https://www.nature.com/articles/s42254-020-0208-2
https://www.nature.com/articles/s42254-020-0208-2
https://dx.doi.org/10.1088/1741-2560/13/5/051001

BIBLIOGRAPHY 16

Y. Yang, and H. Wang, “Loihi: A Neuromorphic Manycore Processor with
On-Chip Learning,” IEEE Micro, vol. 38, no. 1, pp. 82-99, Jan. 2018.

[36] B. Sueoka and F. Zhao, “Memristive synaptic device based on a natural organic
material—honey for spiking neural network in biodegradable neuromorphic
systems,” Journal of Physics D: Applied Physics, vol. 55, no. 22, p. 225105,
Mar. 2022. [Online|. Available: https://doi.org/10.1088/1361-6463/ac585b

[37] S. Agarwal, S. J. Plimpton, D. R. Hughart, A. H. Hsia, I. Richter, J. A. Cox,
C. D. James, and M. J. Marinella, “Resistive memory device requirements for a
neural algorithm accelerator,” in 2016 International Joint Conference on Neural
Networks (IJCNN), Jul. 2016, pp. 929-938.

[38] D. S. Jeong, K. M. Kim, S. Kim, B. J. Choi, and C. S. Hwang,
“Memristors for Energy-Efficient New Computing Paradigms,” Advanced
FElectronic Materials, vol. 2, no. 9, p. 1600090, 2016. [Online|. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600090

[39] A. J. Pérez-Avila, E. Pérez, J. B. Roldan, C. Wenger, and F. Jiménez-Molinos,
“Multilevel memristor based matrix-vector multiplication: Influence of the dis-

cretization method,” in 2021 13th Spanish Conference on FElectron Devices
(CDE), Jun. 2021, pp. 66-69.

[40] S. Bains, “The business of building brains,” Nature Electronics, vol. 3, no. 7,
pp. 348-351, Jul. 2020. [Online|. Available: https://www.nature.com/articles/
s41928-020-0449-1

[41] H.-C. Ruiz-Euler, U. Alegre-Ibarra, B. van de Ven, H. Broersma,
P. A. Bobbert, and W. G. van der Wiel, “Dopant Network Processing
Units: Towards Efficient Neural-network Emulators with High-capacity
Nanoelectronic Nodes,” arXiw:2007.12371 [cs, stat], Jul. 2020. [Online]|.
Available: http://arxiv.org/abs/2007.12371

[42] F. Zangeneh-Nejad, D. L. Sounas, A. Alu, and R. Fleury, “Analogue
computing with metamaterials,” Nature Reviews Materials, vol. 6, no. 3, pp.
207-225, Mar. 2021. [Online|. Available: https://www.nature.com/articles/
s41578-020-00243-2

[43] M. Verhelst and B. Murmann, “Machine Learning at the Edge,” in
NANO-CHIPS 2030: On-Chip Al for an Efficient Data-Driven World, ser.
The Frontiers Collection, B. Murmann and B. Hoefflinger, Eds. Cham:
Springer International Publishing, 2020, pp. 293-322. [Online|. Available:
https://doi.org/10.1007/978-3-030-18338-7 18

[44] N. Ganesh, “Rebooting Neuromorphic Hardware Design — A Complexity
Engineering Approach,” arXiv:2005.00522 [cs/, Sep. 2020. [Online|. Available:
http://arxiv.org/abs/2005.00522

[45] S. Goldt, M. S. Advani, A. M. Saxe, F. Krzakala, and L. Zdeborova,
“Generalisation dynamics of online learning in over-parameterised neural
networks,” Jan. 2019. [Online|. Available: http://arxiv.org/abs/1901.09085

https://doi.org/10.1088/1361-6463/ac585b
https://onlinelibrary.wiley.com/doi/abs/10.1002/aelm.201600090
https://www.nature.com/articles/s41928-020-0449-1
https://www.nature.com/articles/s41928-020-0449-1
http://arxiv.org/abs/2007.12371
https://www.nature.com/articles/s41578-020-00243-2
https://www.nature.com/articles/s41578-020-00243-2
https://doi.org/10.1007/978-3-030-18338-7_18
http://arxiv.org/abs/2005.00522
http://arxiv.org/abs/1901.09085

BIBLIOGRAPHY 17

[46]

147]

48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

K. A. Sankararaman, S. De, Z. Xu, W. R. Huang, and T. Goldstein,
“The Impact of Neural Network Overparameterization on Gradient Confusion
and Stochastic Gradient Descent,” Jul. 2020. [Online|. Available: http:
/ /arxiv.org/abs/1904.06963

V. G. Cert, “Unconventional computing,” Communications of the ACM, vol. 57,
no. 10, p. 7, Sep. 2014. [Online|. Available: https://doi.org/10.1145/2666093

S. K. Bose, C. P. Lawrence, Z. Liu, K. S. Makarenko, R. M. J. van
Damme, H. J. Broersma, and W. G. van der Wiel, “Evolution of a
designless nanoparticle network into reconfigurable Boolean logic,” Nature
Nanotechnology, vol. 10, no. 12, pp. 1048-1052, Dec. 2015. [Online|. Available:
http://www.nature.com/articles/nnano.2015.207

K. Greft, R. M. J. van Damme, J. Koutnik, H. J. Broersma, J. O. Mikhal, C. P.
Lawrence, W. G. van der Wiel, and J. Schmidhuber, “Using neural networks
to predict the functionality of reconfigurable nano-material networks,” in
International Journal on Advances in Intelligent Systems, vol. 9. TARIA,
Jan. 2017, pp. 339-351. [Online|. Available: https://research.utwente.nl/en/
publications/using-neural-networks-to-predict-the-functionality-of-reconfigura

M. K. Massey, A. Kotsialos, D. Volpati, E. Vissol-Gaudin, C. Pearson,
L. Bowen, B. Obara, D. A. Zeze, C. Groves, and M. C. Petty,
“Evolution of Electronic Circuits using Carbon Nanotube Composites,”
Scientific Reports, vol. 6, no. 1, p. 32197, Oct. 2016. [Online|. Available:
http://www.nature.com/articles/srep32197

M. K. Massey, A. Kotsialos, F. Qaiser, D. A. Zeze, C. Pearson, D. Volpati,
L. Bowen, and M. C. Petty, “Computing with carbon nanotubes: Optimization
of threshold logic gates using disordered nanotube/polymer composites,”
Journal of Applied Physics, vol. 117, no. 13, p. 134903, Apr. 2015. [Online].
Available: http://aip.scitation.org/doi/10.1063/1.4915343

S. Harding and J. Miller, “Evolution in materio: A tone discriminator in liquid
crystal,” in Proceedings of the 2004 Congress on FEvolutionary Computation
(IEEE Cat. No.04THS8753), vol. 2, Jun. 2004, pp. 1800-1807 Vol.2.

S. Harding and J. F. Miller, “Evolution In Materio: Evolving Logic Gates in
Liquid Crystal,” International Journal of Unconventional Computing, vol. 3,
pp. 243-257, 2007.

E. Vissol-Gaudin, A. Kotsialos, C. Groves, C. Pearson, D. Zeze, and M. Petty,
“Computing Based on Material Training: Application to Binary Classification
Problems,” in 2017 IEEE International Conference on Rebooting Computing
(ICRC). Washington, DC: IEEE, Nov. 2017, pp. 1-8. [Online|. Available:
http://ieeexplore.ieee.org/document /8123677 /

T. Chen, J. van Gelder, B. van de Ven, S. V. Amitonov, B. de Wilde,
H.-C. R. Euler, H. Broersma, P. A. Bobbert, F. A. Zwanenburg, and W. G.

http://arxiv.org/abs/1904.06963
http://arxiv.org/abs/1904.06963
https://doi.org/10.1145/2666093
http://www.nature.com/articles/nnano.2015.207
https://research.utwente.nl/en/publications/using-neural-networks-to-predict-the-functionality-of-reconfigura
https://research.utwente.nl/en/publications/using-neural-networks-to-predict-the-functionality-of-reconfigura
http://www.nature.com/articles/srep32197
http://aip.scitation.org/doi/10.1063/1.4915343
http://ieeexplore.ieee.org/document/8123677/

BIBLIOGRAPHY 18

[56]

[57]

[58]

[59]

[60]

61]

62]

[63]

[64]

van der Wiel, “Classification with a disordered dopant-atom network in
silicon,” Nature, vol. 577, no. 7790, pp. 341-345, Jan. 2020. [Online|. Available:
https://www.nature.com/articles/s41586-019-1901-0

Y. Viero, D. Guérin, A. Vladyka, F. Alibart, S. Lenfant, M. Calame,
and D. Vuillaume, “Light-Stimulatable Molecules/Nanoparticles Networks
for Switchable Logical Functions and Reservoir Computing,” Advanced
Functional Materials, vol. 28, no. 39, p. 1801506, 2018. [Online|. Available:
https://onlinelibrary.wiley.com /doi/abs/10.1002 /adfm.201801506

D. Linden and E. Altshuler, “Evolving wire antennas using genetic algorithms:
A review,” in Proceedings of the First NASA /DoD Workshop on Evolvable Hard-
ware, Jul. 1999, pp. 225-232.

A. Parsa, D. Wang, C. S. O’Hern, M. D. Shattuck, R. Kramer-Bottiglio,
and J. Bongard, “Evolving Programmable Computational Metamaterials,” in

Proceedings of the Genetic and Evolutionary Computation Conference, Jul.
2022, pp. 122-129. [Online]. Available: http://arxiv.org/abs/2204.08651

D. Przyczyna, M. Suchecki, A. Adamatzky, and K. Szacitowski, “Computing
with bricks and mortar: Classification of waveforms with a doped
concrete blocks,” arXiv:2005.03498 [cs], May 2020. [Online|. Available:
http://arxiv.org/abs/2005.03498

J. F. Miller, S. L. Harding, and G. Tufte, “Evolution-in-materio: Evolving
computation in materials,” Fvolutionary Intelligence, vol. 7, no. 1, pp. 49-67,
Apr. 2014. [Online|. Available: https://doi.org/10.1007/s12065-014-0106-6

E. Vissol-Gaudin, A. Kotsialos, C. Groves, C. Pearson, D. Zeze, M. Petty, and
N. Al Moubayed, “Confidence Measures for Carbon-Nanotube / Liquid Crystals
Classifiers,” in 2018 IEEE Congress on Evolutionary Computation (CEC), Jul.
2018, pp. 1-8.

A. Kotsialos, M. K. Massey, F. Qaiser, D. A. Zeze, C. Pear-
son, and M. C. Petty, “Logic gate and circuit training on ran-
domly dispersed carbon mnanotubes.” International journal of uncon-
ventional computing., vol. 10, mno. 5-6, pp. 473-497, Sep. 2014.
[Online|. Available: http://www.oldcitypublishing.com/journals/ijuc-home/
ijuc-issue-contents/ijuc-volume-10-numbers-5-6 /ijuc-10-5-6-p-473-497/

E. Vissol-Gaudin, A. Kotsialos, M. K. Massey, D. A. Zeze, C. Pearson,
C. Groves, and M. C. Petty, “Data Classification Using Carbon-Nanotubes and
Evolutionary Algorithms,” in Parallel Problem Solving from Nature — PPSN
X1V, ser. Lecture Notes in Computer Science, J. Handl, E. Hart, P. R. Lewis,
M. Lopez-Ibanez, G. Ochoa, and B. Paechter, Eds. Cham: Springer Interna-
tional Publishing, 2016, pp. 644-654.

——, “Training a Carbon-Nanotube/Liquid Crystal Data Classifier Using Evo-
lutionary Algorithms,” in Unconventional Computation and Natural Computa-

https://www.nature.com/articles/s41586-019-1901-0
https://onlinelibrary.wiley.com/doi/abs/10.1002/adfm.201801506
http://arxiv.org/abs/2204.08651
http://arxiv.org/abs/2005.03498
https://doi.org/10.1007/s12065-014-0106-6
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-10-numbers-5-6/ijuc-10-5-6-p-473-497/
http://www.oldcitypublishing.com/journals/ijuc-home/ijuc-issue-contents/ijuc-volume-10-numbers-5-6/ijuc-10-5-6-p-473-497/

BIBLIOGRAPHY 19

[65]

[66]

[67]

168]

[69]

[70]

[71]

[72]

73]

[74]

tion, ser. Lecture Notes in Computer Science, M. Amos and A. CONDON, Eds.
Cham: Springer International Publishing, 2016, pp. 130-141.

J. W. Lawson and D. H. Wolpert, “Adaptive Programming of Unconventional
Nano-Architectures,” Journal of Computational and Theoretical Nanoscience,
vol. 3, no. 2, pp. 272-279, Apr. 2006.

M. Dale, J. F. Miller, S. Stepney, and M. A. Trefzer, “Evolving Carbon
Nanotube Reservoir Computers,” in Unconventional Computation and Natural

Computation, ser. Lecture Notes in Computer Science, M. Amos and A. CON-
DON, Eds. Cham: Springer International Publishing, 2016, pp. 49-61.

K. D. Clegg, J. F. Miller, M. K. Massey, and M. C. Petty, “Practical issues
for configuring carbon nanotube composite materials for computation,” in 2014
IEEFE International Conference on Fvolvable Systems, Dec. 2014, pp. 61-68.

M. Dale, S. Stepney, J. Miller, and M. Trefzer, “Reservoir computing in mate-
rio: An evaluation of configuration through evolution,” 2016 IEEE Symposium
Series on Computational Intelligence (SSCI), 2016.

Q.-Y. Zhu, A. K. Qin, P. N. Suganthan, and G.-B. Huang, “Evolutionary
extreme learning machine,” Pattern Recognition, vol. 38, no. 10, pp. 1759-1763,

Oct. 2005. [Online|. Available: https://www.sciencedirect.com /science/article/
pii/S0031320305001809

M. Eshtay, H. Faris, and N. Obeid, “Metaheuristic-based extreme learning
machines: A review of design formulations and applications,” International
Journal of Machine Learning and Cybernetics, vol. 10, no. 6, pp. 1543-1561,
Jun. 2019. [Online|. Available: https://doi.org/10.1007/s13042-018-0833-6

G.-B. Huang, Q.-Y. Zhu, and C.-K. Siew, “Extreme learning machine:
Theory and applications,” Neurocomputing, vol. 70, no. 1, pp. 489-501, Dec.
2006. [Online|. Available: https://www.sciencedirect.com/science/article/pii/
50925231206000385

C. Bennett, D. Querlioz, and J.-O. Klein, “Spatio-Temporal learning with ar-
rays of analog nanosynapses,” in Proceedings of the IEEE/ACM International
Symposium on Nanoscale Architectures, NANOARCH 2017, 2017, pp. 125-130.

S. Ortin, M. C. Soriano, L. Pesquera, D. Brunner, D. San-Martin, I. Fischer,
C. R. Mirasso, and J. M. Gutiérrez, “A Unified Framework for Reservoir
Computing and Extreme Learning Machines based on a Single Time-delayed
Neuron,” Scientific Reports, vol. 5, no. 1, p. 14945, Oct. 2015. [Online].
Available: http://www.nature.com/articles/srep14945

A. Lupo, L. Butschek, and S. Massar, “Photonic Extreme Learning Machine
based on frequency multiplexing,” Optics Express, vol. 29, no. 18, p. 28257,
Aug. 2021. [Online]. Available: http://arxiv.org/abs/2107.04585

https://www.sciencedirect.com/science/article/pii/S0031320305001809
https://www.sciencedirect.com/science/article/pii/S0031320305001809
https://doi.org/10.1007/s13042-018-0833-6
https://www.sciencedirect.com/science/article/pii/S0925231206000385
https://www.sciencedirect.com/science/article/pii/S0925231206000385
http://www.nature.com/articles/srep14945
http://arxiv.org/abs/2107.04585

BIBLIOGRAPHY 20

[75]

[76]

7]

78]

[79]

[80]

G. Tanaka, T. Yamane, J. B. Héroux, R. Nakane, N. Kanazawa, S. Takeda,
H. Numata, D. Nakano, and A. Hirose, “Recent advances in physical
reservoir computing: A review,” Neural Networks, vol. 115, pp. 100-123, Jul.
2019. [Online|. Available: http://www.sciencedirect.com/science/article/pii/

S0893608019300784

S. Kan, K. Nakajima, Y. Takeshima, T. Asai, Y. Kuwahara, and
M. Akai-Kasaya, “Simple Reservoir Computing Capitalizing on the Nonlinear
Response of Materials: Theory and Physical Implementations,” Physical
Review Applied, vol. 15, no. 2, p. 024030, Feb. 2021. [Online|. Available:
https://link.aps.org/doi/10.1103 /PhysRevApplied.15.024030

C. Du, F. Cai, M. Zidan, W. Ma, S. Lee, and W. Lu, “Reservoir computing
using dynamic memristors for temporal information processing,” Nature Com-
munications, vol. 8, no. 1, 2017.

M. Dale, R. F. L. Evans, S. Jenkins, S. O’Keefe, A. Sebald, S. Stepney,
F. Torre, and M. Trefzer, “Reservoir Computing with Thin-film Ferromagnetic
Devices,” arXiv:2101.12700 [cond-mat[, Jan. 2021. |[Online|. Available:
http://arxiv.org/abs/2101.12700

P. Mujal, R. Martinez-Pena, J. Nokkala, J. Garcia-Beni, G. L. Giorgi, M. C.
Soriano, and R. Zambrini, “Opportunities in Quantum Reservoir Computing
and Extreme Learning Machines,” Advanced Quantum Technologies, vol. 4,
no. 8, p. 2100027, 2021. [Online|. Available: http://onlinelibrary.wiley.com/
doi/abs/10.1002/qute.202100027

M. Dale, S. Stepney, J. F. Miller, and M. Trefzer, “Reservoir computing in
materio: A computational framework for in materio computing,” in 2017 Inter-
national Joint Conference on Neural Networks (IJCNN), May 2017, pp. 2178
2185.

http://www.sciencedirect.com/science/article/pii/S0893608019300784
http://www.sciencedirect.com/science/article/pii/S0893608019300784
https://link.aps.org/doi/10.1103/PhysRevApplied.15.024030
http://arxiv.org/abs/2101.12700
http://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202100027
http://onlinelibrary.wiley.com/doi/abs/10.1002/qute.202100027

Chapter 2

Theory

2.1 Chapter Overview e 21
2.2 Evolution in-Materio o o o 22
2.3 Evolutionary Algorithms 24
2.4 Objective Functions 30
2.5 Feed Forward Artificial Neural Networks 33
2.6 AutoEncoders 40
2.7 Physical Reservoir Computing 42
Bibliography 45

2.1 Chapter Overview

This chapter introduces background knowledge and theory required to understand,
formulate and develop Evolution in-Materio (EiM) processors. This includes defin-
ing an EiM system and representing its configuration as a mathematical solution
which can be optimised. Three types of Evolutionary Algorithm (EA) are intro-
duced, including Differential Evolution, OpenAl Evolutionary Strategy and Covari-
ance Matrix Adaptation Evolution Strategy; all of which could be used to optimise
EiM processors. Various objective functions are discussed, used to calculate a fitness
or loss score, which an EA will attempt to improve.

Finally, Machine Learning (ML) methods such as Artificial Neural Networks

(ANNs) and their training methods are also considered. This includes typical sin-

21

2.2. Evolution in-Materio 22

gle hidden layer feedforward neural networks (SLFNs), AutoEncoders (AEs), and
Reservoir Computing (RC); concepts which are drawn from when developing more

advanced and novel EiM processing devices.

2.2 Evolution in-Materio

As discussed in §1.4, EiM attempts to leverage a material’s (or medium’s) complex
internal physical properties for computation. To achieve this, the selected material
substrate must be operated as an ‘in-materio’ or ‘configurable analogue’ proces-
sor, where signals can be applied and read from the system, and the input-output
transformation can be tuned using external stimuli.

Therefore, an in-materio processor’s behaviour is defined by a number of con-
figurable parameters (e.g., voltage stimuli), which can be altered to improve the
device’s performance. These configurable parameters can be grouped into a de-
cision vector X which defines the system’s configuration and represents a possible
solution to a target task. An EiM processor uses an EA [1] to optimise the system by
increasing the quality and performance of a solution X, determined by an objective
function ®. EAs have been traditionally used to optimise in-materio systems, since
the material substrates commonly used for computation are often hard to model
and are therefore treated as a black box.

In this work, conductive nanomaterials and networks are considered to construct
EiM processors performing classification, further details on the methods used are
found in Chapter 3. In this case, input data signals are represented as input voltages
V' Similarly, output voltage states V°* can be read from the in-materio processor
and interpreted for the task at hand; such decision-making is referred to as the EiM

processor’s interpretation scheme.

2.2.1 Traditional EiM Interpretation Schemes

When EiM is being used for classification applications, binary or otherwise, there
must be some interpretation scheme. This allows the outputs to be assigned to

a class or grouping. Often a decision is taken by using a classification rule [2],

2.2. Evolution in-Materio 23

commonly used in supervised learning. However, other methods of grouping data
exist, such as a clustering algorithm [3] which is generally used for unsupervised
learning. Here, some common classification rules which have been used for EiM

systems are considered.

Classification Rules

A classification rule is used to assign a particular input data instance to a set of
predefined classes. There are many ways to assign a class from a material’s output

states V° or collected response. The most common classification rules include:

i) Output-Threshold Comparison. This is when an output is gathered from

the material and compared to a threshold, e.g., a single output voltage V°ut:

0, ifVeu <7
§= : (2.2.1)

1, otherwise

where ¢ is the predicted class and 7 is a threshold which is either fixed or

sometimes evolvable/can be optimised.

ii) Output-Output Comparison. This is when a class is assigned by comparing
two (or more) outputs from the material. For example, consider a system with

two output voltages V7 & Vit

07 lf V'lout < ‘/20ut
: (2.2.2)

SN
|

1, otherwise

iii) kNN Algorithm. The k Nearest Neighbour (kNN) algorithm tries to clas-
sify an unknown sample based on the known classification of its £ number of
neighbours [4]. This method requires forming a queue (i.e., storing) the train-
ing instances with their class labels. The nearest neighbours of new unlabelled
data is determined by calculating the distance between it and all the instances
in the queue. Commonly, the Euclidean distance is used as the distance met-

ric. Some more advanced versions of kNN have been used in Unconventional

2.3. Evolutionary Algorithms 24

Computing (UC) situations, such as the kNN ball tree Algorithm |2] which
was found to work well in classification problems using Single Walled Carbon

Nanotube (SWCNT)/Poly(methyl methacrylate) (PMMA) EiM processors.

2.3 Evolutionary Algorithms

EAs are a subset of evolutionary computing, consisting of population-based meta-
heuristics search algorithms, which take advantage of biologically inspired meth-
ods such as reproduction, mutation, recombination, and natural selection [1|. This
makes them ideal when exploiting nanomaterials as in-materio devices, since they
are analogue and generally lack an analytical model so have historically been treated
as black boxes. Many types of EAs have been used for EiM such as Evolutionary
Strategies [5], Genetic Algorithms [6] or Differential Evolution |7, 8, 9].

The purpose of the EA is to discover a vector of system parameters that achieves
the best possible solution 8 for a selected problem. The quality of a particular
solution X is determined by an objective function @, used to calculate a fitness score,
as discussed in §2.4. Similarly, a population of solutions p = [X1, X, ..., X | could
each be evaluated. In summary, the EA optimises the system’s available parameters
to achieve the best possible fitness (sometimes referred to as a loss) score. In this

section, three EAs used within the thesis are detailed.

2.3.1 Differential Evolution

Differential Evolution (DE) is an easily implemented and effective optimisation algo-
rithm for exploiting real-world parameters [10]. DE is a derivative-free, stochastic,
population-based, heuristic direct search method [11, 1] which only requires a few
robust control variables [12]; these hyperparameters include a mutation factor F,
a crossover C'R and population size A. A trial (i.e., child) population is formed
via mutation and recombination of the parent population. These children are then
evaluated and directly replace their parents if found to have a better ‘fitness’.

The following describes how the DE algorithm is implemented, taken from [11]

where further details are available. Each member of the population i is defined

2.3. Evolutionary Algorithms 25

by a d-dimensional vector of decision variables/parameters (sometimes known as a
genome):

Xi,G = [xl,i,G7 $2,i,G> ceny xd,i,G] fOI' ’L = 1, 2, ceey)\ (233)

where G is the particular generation, ¢ is a member within a generation, and z;; ¢
is a decision variable where 7 € 1,2, ..., d. Population size A does not change during
the optimisation process. An objective function ® is used to evaluate the fitness of
any particular member of the population X; . The basic procedure to carry out

DE is illustrated as follows:

Step 1: Produce initial population. The initial population, generation 0, is cho-

sen randomly, with uniform probability, from the entire parameter space.

Step 2: Evaluate Population. Using the objective function, the fitness of every
population member is evaluated. If any member of the population satis-
fies the problem (i.e., if termination criteria is met), then the algorithm

terminates. Otherwise, the process continues.

Step 3: Mutation. For each target vector X; ¢ (i.e., the current generation of ‘par-
ents’) a mutant vector V; ¢4 is generated. This is achieved using mutation

functions such as the random-1 mutation method (rand1):

Vi,G—H = Xa,G’ + F x (Xb,G — Xc7g) , (234)

where a, b and ¢ are integer, mutually different, random indices from the
range {1,2,..., A}, and F (also known as mut) is the differential weight or
step size.

Other methods exist, such as the best-1 mutation method (best1):

Vigi1 = Xpestg + F X (Xao — Xpa) , (2.3.5)

where Xpest ¢ is the best member of the target (parent) population, and a,
b are random indices from the range {1,2, ..., A}.

Once the mutant population has been created, the boundary constraints

2.3. Evolutionary Algorithms 26

Step 4:

must be considered to prevent any violations. Often, values are just clipped
to the boundary limits [l;, m;] for the j parameter variable, also known as

projection |13, 14] :

mj, if V5601 > m;
Uji,G+1 = lj, if VjiG+1 < lj . (236)

VjiG+1, Otherwise

Similarly, other methods exist [14] such as the reflection bounds constraint:

2m; — vjiee1, A vji60 > my
Vji,G+1 = QZJ — Vji,G+15 if Vii,G+1 < lj . (237)

Vji.G+1s otherwise

Crossover. In order to increase the diversity of the perturbed parameter
vectors, crossover is introduced. This acts as the recombination between the
existing target (parent) population and the generated mutated population
to produce a trial (child) population. Commonly, binomial (or uniform)

crossover is utilised, where a trial vector:

Uici1 = [W1i641,U2i.G+15 s UdiG41] (2.3.8)
is formed, where:

Vj.i,G+1, if r; S CR
Uji,G+1 = : (2.3.9)
Tji,Gs if] >CR

and r; is the j evaluation of a random uniform number generator with
outcome € [0,1]. CR is the Crossover Probability, also known as crossp,

and is a constant € [0, 1] selected by the user. Often, a scheme is used such

2.3. Evolutionary Algorithms 27

that U; 41 always gets at least one parameter from V; g1, such as:

vjiae1, ifr; <CRorj=q
Uji G+l = : (2.3.10)

zjic, ifr;>CRandj#q
where ¢ is a randomly chosen index € 0,1, ..., d.

Step 5: Selection. Now, the trial vector U, ¢4, is compared to the target vec-
tor X, ¢ to see whether it should become a member of generation G' + 1.
Whichever has the best fitness is retained and assigned to X; g1, this is

repeated for every position ¢ in the population.

Step 6: Repeat from step 2.

For a simpler explanation of the DE algorithm, a Pseudocode ! summary can be
seen in Algorithm 2.1. Here, the algorithm is performed for I iterations before ter-
minating. The data is generally split into two subsets (described further in §3.6.1),
(i) training data which is used to update and train the population, and (ii) test data
used to provide an unbiased evaluation of the model’s performance. The best mem-
ber of the population @ is tracked, allowing a convergence plot of the population’s
best member’s test and/or training fitness. Finally, the type of DE algorithm is of-
ten written in shorthand [10] such as stating the use of a ‘DE/best/1/bin’ algorithm

(i.e., using DE, with a best! mutation scheme, and binomial crossover).

Algorithm 2.1: Pseudocode for basic DE.

Initialise a random population p;
Evaluate initial population fitnesses;
Assign the best member of p as 6;
fori=0,1,2,...,1 do
Generate trial population ¢;
Evaluate trial population fitnesses;
Update population p with respect to t;
Update the best member 6;;

IThe algorithm pseudocode is meant to provide a less detailed but more understandable expla-
nation of the algorithm.

2.3. Evolutionary Algorithms 28

2.3.2 OpenAl Evolutionary Strategy

Evolutionary Strategies (ESs) involve the evaluation of a population of real valued
genotypes, after which the best members are kept, and others discarded [15, 1, 16].
Natural Evolution Strategy (NES) are a family of ESs which iteratively update a
search distribution by using an estimated gradient on its distribution parameters
[15]. NES calculate the fitness of a batch of search points, allowing the algorithm to
capture the local structure of the fitness function. Using this the NES estimates a
search gradient on the parameters towards a higher expected fitness. Notably, NES
performs gradient ascent along the natural gradient |17, 15, 18| helping prevent
oscillations, premature convergence, and undesired effects; unlike the plain gradient
(detailed in §2.5.2).

In this section, the OpenAl Evolutionary Strategy (OpenAl-ES) algorithm [19] is
outlined, which is a type of NES. The OpenAI-ES can be thought of as maintaining
a single parent 8. During each iteration the parent is perturbed with Gaussian noise
€ ~ N (0, 0?) to create a pseudo-population. Once evaluated, this pseudo-population

is used to estimate the gradient:
=
9= ;Fjﬁj : (2.3.11)

where o is the standard deviation of Gaussian noise, \ is the size of the pseudo-
population, €; is the noise used to create the j pseudo-population member, and Fj
is the fitness of that member. The estimated gradient g is then used to update the
parent member [19]:

0,‘_,_1 = 02 + Oégl- s (2312)

where « is the learning rate. The entire process is described in Algorithm 2.2.
Here, the typical OpenAl-ES is altered to assign a lower fitness starting 6 from
an initial random population. In summary, the OpenAl-ES contains only three
hyper-paramaters: «, o and \.

The OpenAI-ES can rival Stochastic Gradient Descent (SGD) (introduced in

§2.5.2) for deep reinforcement learning methods with large neural networks [19].

2.3. Evolutionary Algorithms 29

Algorithm 2.2: Pseudocode for OpenAI-ES.

Generate A random starting solutions p;
Evaluate initial starting solution fitnesses;
Assign the best member of p as 0;
for©=0,1,2,....] do
Sample €1, ..., €5 ~ N (0, 1);
Calculate fitness Fj of (6; + o¢;) for j =0,1,..., \;
Set Qi1 = 6; + = Z?Zl Fje;;

Further work has shown OpenAI-ES can offer significant speed up [20] compared to
SGD, and highlights that the OpenAI-ES might be most useful in domains without
perfect gradient information available — as in in-materio systems. Since the OpenAl-
ES algorithm implements a complete version of SGD, improvements can be borrowed
from traditional ANNs such as implementing Adaptive Moment Estimation (Adam)

optimiser [21], a method further discussed in §2.5.2.

2.3.3 Covariance Matrix Adaptation ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) algorithm is a
stochastic, or randomised, method for real-parameter (continuous domain) optimi-
sation [22]. In the CMA-ES, a population of new search points is generated by
sampling a Multivariate Gaussian Distribution (MGD). This MGD is adapted using
the fitness results from a given generation. A sample solution X is taken from the
MGD [22] using:

X =m +sON(0,CD) | (2.3.13)

where m® is the distribution mean, C is the distribution’s covariance matrix,
and ¢ is the standard deviation or ‘step-size’ at generation i. The initial C'¥ is
set as the identity, and the initial m© is set to the centre of the boundary values.
Therefore, the CMA-ES algorithm contains two hyperparameters: the initial stan-
dard deviation o and population size A. However, the population size is commonly
automatically assigned as A = 4 + 3log(d).

An update during the CMA-ES is strongly related to the natural gradient descent
[23, 24]. Indeed, CMA-ES and NES have been found to be special cases of one

2.4. Objective Functions 30

Algorithm 2.3: Pseudocode for CMA-ES.

Initialise Multivariate Gaussian Distribution A/ (m, c*C);
fori=0,1,2,...,1 do

Sample population t from AN (m,c*C);

Evaluate trial population fitnesses;

Update the best member 0, 1;

Update o, m, C with respect to t;

another [25]. While full details can be found elsewhere [26], an overview of the
method can be seen in the Pseudocode of Algorithm 2.3. In this work, the cmaes
python package [27] is utilised, exploiting its ‘ask’ and ‘tell’ functionality to integrate
it with existing code.

CMA-ES is a popular algorithm and overcomes some typical problems often
associated with EAs such as the need to use large population sizes or premature
convergence [28]. However, CMA-ES is generally applied to problems with dimen-
sions of up to d < 100, beyond which is starts to slow down [29]. Methods exist to
produce a diagonal and/or low-rank model of the covariance matrix, allowing it to

be successfully applied to 500,000-dimensional (noise-free) problems [30].

2.4 Objective Functions

An objective function ® is used to determine a fitness value for a particular set of
system parameters X, which represents a possible solution. For classification, this
is achieved by considering dataset D containing K data instances, and performing
some comparison between the dataset’s real labels and predicted outcomes. The
datasets are normalised and scaled before being used to train the models, further
described in §3.6.1. Therefore, an objective function allows an EA (or optimising
algorithm) to evaluate its population members and make informed choices about how
to improve its solutions. Commonly, the objective of the EA is thus to minimise
the objective function. In this work, fitness is predominantly used to denote the
quality of solution produced by a EA, whereas loss can denote the quality of solution
produced by any algorithm; therefore, in this work fitness & loss are nominally

interchangeable.

2.4. Objective Functions 31

A wide variety of objective or ‘loss’ functions for classification problems exist.
The objective function can have a large effect on the final solution of a classifier,
something explored more in §5.4. In the following, some common objective functions

used for classification are outlined.

2.4.1 Classification Error

Classification error is one of the simplest loss functions for classification problems.

The classification error of a dataset D is simply:

D,pror = 1 — accuracy . (2.4.14)
which can be found using;:
K
1
Perror = = ’;e(k) : (2.4.15)

where k is an instance within the dataset which contains K data instances, and each
data input instance produces an error value e(k) of 0 or 1 for correct or incorrect

classification respectively.

2.4.2 Mean Squared Error

A very popular loss function is the Mean Squared Error (mse) loss. The mse can

be calculated using:

Bnse = 22 D (0(K) = 5(R) (24.16)
k=1

where y(k) is the true output label/class and (k) is a model’s predicted output for
a particular data instance k.

Notably, ANNs systems deal with values and data which are often normalised or
bound between € [0, 1]. Physical systems, such as in-materio conductive substrates,
are likely to operate with a larger range of real valued physical output voltage signals.
To enable comparisons between different EiM devices, or even between EiM devices
and an ANN equivalent (as done in §6.5) a Normalised Mean Squared Error (nmse)

metric was developed in Eq.6.5.10.

2.4. Objective Functions 32

2.4.3 Binary Cross Entropy

Binary Cross Entropy (BCE) or log loss is an established loss function for ML
binary classification tasks. Cross entropy generates larger loss values as the predicted
probability of a label diverges from the value of the actual label. To adapt BCE as an
objective function for EiM systems, the raw output of the EiM processor/classifier
must be first constricted to € [0,1]. To accomplish this, a sigmoid function o (k) is

used such that for a particular input data instance:

1
The entropy or log loss H (k) is defined as:
—In(1 —0o(k)), ifylk)=1
H(k) = ((k) (k) : (2.4.18)

—In(o(k)), if y(k) = 2

where In() is the natural logarithm and we assume y(k) = {1,2} are the true labels
associated with the data. Therefore, the adapted BCE objective function that the

system attempts to minimise is defined as:

K
1
Pree = 2 ; H(k) . (2.4.19)

2.4.4 Cross Entropy

Cross Entropy (CE) can be applied to multi-class problems to predict a loss or
fitness. In binary problems, each data instances results in a single predicted value 7.
In multi-class problems, each data instance k results in a vector y(k) = [Jy, Uy, -, U]
containing a predicted value g, = {0, 1} for each of the L labels/classes. The multi-

class log loss or ‘categorical’ cross-entropy loss can be calculated using:
1 N
P = e Z Z yi(k) In(g,(k)) , (2.4.20)
koo

where [is a class € [1,2, ..., L].

2.5. Feed Forward Artificial Neural Networks 33

As mentioned in the binary case above, it is often useful to consider the out-
put predictions g as a probability with values € [0, 1]. To achieve this, the output
predictions of a classification model can be ‘masked’ with a Softmax. The Soft-
max function behaves similarly to the sigmoid in §2.4.3, but is more applicable in
multi-class problems, ensuring that the sum of the output predictions totals to a

‘probability’ of 1. The Softmax function is defined as:

exp(4:(k))
> exp(g;(k)) 7

$1(k) = Softmax(y,(k)) = (2.4.21)
where § (k) is the predicted probability for I class. These can then be applied to

the log-loss function and used to calculate the CE as follows:

Do = 303 k) (3 () (2.4.22)

2.5 Feed Forward Artificial Neural Networks

Feed-forward Neural Networks (NNs) are one of the simplest forms of ANN used to
evaluate non-temporal (static) data. They are made up of three types of layers: an
input and an output layer, which are separated by one or more Hidden Layers (HLs).
These layers consist of groups of neurons. The input layer contains special neurons
that act as ‘sensor units’ which often only ‘detect’ the input features [31]. A HL
consists of artificial neurons which accumulates signals from the input layer (or the
outputs from the previous HL) and applies an activation, discussed further in §2.5.1.
There can be any number of HLs, each containing one