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Abstract

Machine learning driven pattern recognition from imagery such as object detection
has been prevalenting among society due to the high demand for autonomy and the
recent remarkable advances in such technology. The machine learning technologies
acquire the abstraction of the existing data and enable inference of the pattern of
the future inputs. However, such technologies require a sheer amount of images as
a training dataset which well covers the distribution of the future inputs in order to
predict the proper patterns whereas it is impracticable to prepare enough variety of
images in many cases.

To address this problem, this thesis pursues to discover the method to
diversify image datasets for fully enabling the capability of machine learning
driven applications. Focusing on the plausible image synthesis ability of generative
models, we investigate a number of approaches to expand the variety of the output
images using image-to-image translation, mixup and diffusion models along with the
technique to enable a computation and training dataset efficient diffusion approach.
First, we propose the combined use of unpaired image-to-image translation and
mixup for data augmentation on limited non-visible imagery. Second, we propose
diffusion image-to-image translation that generates greater quality images than other
previous adversarial training based translation methods. Third, we propose a patch-
wise and discrete conditional training of diffusion method enabling the reduction of
the computation and the robustness on small training datasets.

Subsequently, we discuss a remaining open challenge about evaluation and the
direction of future work. Lastly, we make an overall conclusion after stating social
impact of this research field.
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CHAPTER 1

Introduction

This thesis considers the common problem of machine learning based automated

pattern recognition within imagery.

The demand for automated pattern recognition, especially automatic object

detection and classification in imagery, is continuously expanding. There are

many applications within computer vision utilising such pattern recognition, for

example, optical character recognition [44], video surveillance [45], agricultural

analysis from satellite imagery [46], and defect detection in factory automation [47].

This expanding demand within imagery is not limited to two-dimensional nature

images in visible spectrum but also is being enhanced to three-dimensional images,

non-visible spectrum images, and other visualised data, which will also expand the

research field on the image-based pattern recognition (Figure 1.1).

The functions of pattern recognition have been historically enabled by matching

between the appearances of reference and input images, e.g. edge matching [48].

This matching has been evolved by using further well-designed features extracted

from images such as Scale-Invariant Feature Transform (SIFT) [49]. Moreover,

this matching decision mechanism has been replaced by a data-driven approach

to automatically define the decision boundary based on machine learning based
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Figure 1.1: Expansion of computer vision field.

classifiers. The machine learning based classifiers, such as Linear Discriminant

Analysis (LDA) [50], Support Vector Machine (SVM) [51], enable quite complex

decision boundaries humans can not design and have improved the performances

of various pattern recognition tasks. Artificial Neural Networks (ANN) [52] have

played a key role in the machine learning field as they can learn not only the

feature extractors but also feature representations. Multi-layer ANN are designed

to act as a universal function approximator and to learn the mapping between the

input and output end-to-end. The recent advances of ANN enable constructing

a deep structured ANN, namely Deep Neural Networks (DNN) [53]. DNN has

provided an unprecedented improvement in pattern recognition tasks along with

the availability of big data and high-performance computing. In particular in the

result in the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) [54]

in 2012, DNN demonstrated a significantly better performance than other former

popular approaches. Since this impressive emergence, DNN has enabled hitherto

unprecedented performance on various challenging computer vision tasks such as

image classification, object detection, semantic segmentation and temporal video

analysis [55].
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Figure 1.2: Thermal image [1] (left), SAR image [2] (centre), and X-ray image [3]
(right).

Whilst contemporary DNN approaches generally perform well with large

amounts of data available, within some cases, data availability is often more limited

and it can be difficult to collect enough image samples to provide sufficient variability

and coverage of the data distribution expected at inference (test, deployment)

time. In particular, the applications within non-visible imagery such as infrared

(thermal) [1], Synthetic Aperture Radar (SAR) [2] and X-ray images [3] (Figure 1.2)

tend to have such issues due to their much limited availability than visible imagery.

For example, SAR imagery and X-ray imagery are far less readily available and

accessible due to both the lesser prevalence of this sensing technology and the

higher associated sensor costs. In addition, such imagery significantly differs from

visible-band imagery because it results from active sensing by backscatter projection

of energy emission, whilst visible images are captured passively according to the

intensity of reflected scene illumination. Moreover, such active sensing imagery

is significantly impacted by sensor specification and its sensing configuration.

This variation from conventional imagery precludes the direct applicability of

commonplace transfer learning solutions, coupled with the lack of data availability,

and inhibits inter-task applications with such diverse sensor imagery.

The limited number of training samples drives machine learning processes into

the failure of capturing the underlying logic on the samples, so-called underfitting

issue. Additionally, this situation of insufficient training samples is prone to

bring the high-risk of excessively focusing on particular subsets in data and

missing the general abstraction over the all samples, so-called overffing issue

(Figure 1.3). Simply changing the size of the training dataset is not effective

because random undersampling removes important examples and oversampling leads

to the overfitting [56]. Those general phenomenon of machine learning within
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Figure 1.3: Conceptual illustrations of overfitting from [4]. (left) Overfitted example.
The boundary is consistent over 2 classes (blue and red) training samples but it is
a too complex separation surface that is not likely to generalize well in inference.
(right) Well generalised example. The boundary is simpler and might be well fitted
to abstraction across the entire training samples despite of it has misclassification
of a few points.

small training datasets harms the accuracy of the recognition results in inference

/ deployment time and has limited the prevalence of this technology in the field of

less data availability.

In order to address this issue of limited data availability, data augmentation

methods by creating new images are traditionally adopted. These methods have

commonly been conducted by some predefined image processing operations such as

flipping / rotation [10] [9]. It mitigates those issues within some tasks by providing

the variety of position or angle shifts of objects on the projected two-dimensional

image spaces with the target model. However, this approach does not always

contribute to enhancing the capability of covering future unseen images because the

simple image transformation does neither consider what the images semantically

look nor diversify the semantic contents in the dataset.

1.1 Motivation

We focus on stochastic generative models for expanding the variety of a given

set of images. The generative models can generate new but similar images to

those existing in the original dataset. Our top-level motivation stems from the

idea that the generative models may be applicable for fabricating images that

diversify the original dataset and well match human perception. Many contributions
4



(a) (b) (c)

Figure 1.4: Examples of the created images via recent generative models: (a)
StyleGAN (from [5]), (b) VQ-VAE2 (from [6]), and (c) DDPM (from [7]).

in the field of stochastic generative models have been introduced; in particular,

recent research generally focuses on the DNN architecture, Deep Generative Models

(DGM) [12] [57] [58] [7], because of their potential modelling capability of data

distributions in the real world.

DGM has dramatically been improved to synthesise realistic images by the rapid

growth in this research field (Figure 1.4). Such images generated by state-of-the-

art models have the potential to diversify limited datasets. However, generating

effective images for actual pattern recognition applications is still challenging due to

the highly restrictive requirements (discussed in Section 1.2). The research of this

thesis pursues solutions to leverage DGM-based image diversification.

1.2 Requirements of Deep Generative Models for

Image Diversification

We establish the following requirements of DGM for the sake of image diversification.

Wide Mode Coverage The ideal outcome of the image diversification is

increasing data that hardly exist in training but appear in inference, whereas

a standard DGM generally tries to learn itself to sample images based on the

distribution of the training data. In real situations, the distribution of the existing

dataset is often biased and different from the true distribution due to an imbalanced
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or insufficient collection of training data. The trained models constructed in such

a situation are unable to accurately model patterns or trends that appear within

the test data distribution that are infrequent within the training data distribution.

This means that DGM for our purpose needs to appropriately generate such low

frequency data.

High Resolution Recent pattern recognition applications nowadays tend to use

large size images. Moreover, recent DNN-based algorithms greedily extract faint and

fine-detailed features from images to achieve high performance in application. Those

demands of the fine-detail of the input images require high-resolution synthesis for

DGM. Although recent DGM have increased the size of the support resolution, most

work on DGM for imagery synthesise lower resolution images than many object

classification or detection applications use.

Practical Computation and Training Data The rapid growth of the DGM

research field toward synthesising high quality images leads to the increase in

required computational resources and amount of training samples required. For

example, StyleGANv2 [59] takes more than 1 month on a Nvidia V100 GPU to

produce output of 256×256 pixel images. Furthermore DGM might suffer serious

degradation in the case of training on small datasets [60]. DGM that is used for

producing images applied to downstream tasks requires higher efficiency in the

computation of data resources, or otherwise it might limit the applications.

1.3 Research Question

To achieve the requirements in Section 1.2, this thesis investigates the following

main questions as:

1. How to realise a wide mode coverage of DGM outputs?

This thesis attempts to find the methodologies to diversify the modality of the

DGM outputs. We consider the following 3 strategies:

• Generative Model based Image-to-image Translation

6



Figure 1.5: Image-to-image translation (from [8]).

• Image Feature Fusion

• High-modality Generative Models

Generative model based Image-to-Image (I2I) translation (Figure 1.5) can be

a potential strategy to diversify image datasets because it enables to augment

less available datasets by transferring from other domain datasets which are

readily available. This technology is a special kind of DGM designed for

I2I translation, whose aim is to acquire a model that relates different image

domains. I2I translation tasks are classified as paired translation, which trains

the model from image pairs of different domains, and unpaired I2I translation,

which trains the model from two different domain (unpaired) image datasets.

Unpaired I2I translation is a much applicable approach for data augmentation

since it allows the difference in the scenes and the number of samples in source

and target domain datasets. We review the related I2I translation work in

Section 2.3.

Image feature fusion is a kind of interpolation approach that creates

new images by mixing the latent features encoded from multiple images

and decoding them back to fused images. The encoder and decoder are

implemented as DNN as nonlinear mapping from data spaces to semantic

feature spaces. The interpolation on this feature space can produce a

semantically midpoint image between existing images and this approach

may contribute to enhance the mode coverage of the outputs of DGM by

incorporating itself into the generation process. The prior work about the

image fusion techniques are reviewed in Section 2.4.

There is still a possible strategy to pursue generative models themselves that
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enable to produce a wide mode coverage of data. Some recent DGM families

using adversarial training (reviewed in Section 2.2.1) are popular because of

their ability to synthesise high-quality images: however, those often loose

capturing a low-density area of the distribution of the training data due to its

aggressive adversarial training scheme. On the other hand, a non-adversarial

scheme, furthermore combined with a progressive sampling strategy, such

as diffusion models (reviewed in Section 2.2.3) have recently demonstrated

the ability to produce simultaneously higher quality and more varied data

compared to that of other contemporary DGM. The images generated by such

diffusion approaches may cover the wider mode coverage of a desired image

domain.

2. How to realise high mode coverage, fidelity, and efficiency of the DGM?

This thesis will investigate approaches to realise a high mode coverage DGM

with high-resolution outputs and efficiency with regard to both computation

and training samples. We consider the following 3 strategies:

• Patch-wise Training

• Hierarchical Architectures

• Combination of Different DGM Methods

Patch-wise training is a technique that cuts large training images into

small sub-regions (patches) before inputting them to the models during the

training but aims to generate images of the original large size in the sampling

process. This pre-cutting approach reduces the computation by decreasing

the dimensions of the input in the model training, which would consume

problematically huge computation when accepting the raw dimension of the

images. Also, the model can better focus on learning the detail of the large

images. This small patch training should be supported by supplemental

techniques to model the distribution differences depending on the global

position. We discuss this in Section 2.2.4.

The use of hierarchical architectures is a beneficial idea for DGM that enables

modelling high-resolution images. This hierarchical approach assumes that
8



images comprise hierarchical semantic information and attempts to disentangle

and separately model such different levels of image information. The model

training under this scheme can focus on each level of the image information

and gain the temporal efficiency of the learning process as a result. The recent

high-fidelity DGM adopt various hierarchical strategies, which are reviewed in

Section 2.2.4.

Regardless of many types of DGM have demonstrated prominent

performances, there is no decisive one satisfying all requirements of high

quality, coverage, and sampling time efficiency at the same time as far as

it relies on only one type of DGM. Due to the challenges of simultaneously

achieving the requirements, the combined use of different DGMs can be a

potential strategy. This hybrid strategy can manage the drawback each DGM

type has. The recent examples of the combination methods in Section 2.2.5.

1.4 Contributions

In summary, the primary contributions of this thesis can be considered as follows:

• The proposal of a novel approach for data augmentation on limited non-visible

imagery based on the generation of inter-class interpolated images using I2I

translation and image feature fusion.

• The proposal of a novel I2I translation based on a diffusion model to utilise

the characteristics of high fidelity and wide coverage of this prominent model.

• The proposal of a novel technique for a diffusion model within a limited

sample number of a training dataset using patch-wise training, discrete variable

autoencoders and transformers.

Portions of the work presented in this thesis have previously been published in the

following papers:

• H. Sasaki, C. G. Willcocks and T. P. Breckon, "Data augmentation via mixed

class interpolation using cycle-consistent generative adversarial networks
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applied to cross-domain imagery," 25th International Conference on Pattern

Recognition (ICPR), 2021 1.

• H. Sasaki, C. G. Willcocks and T. P. Breckon. "UNIT-DDPM: Unpaired image

translation with denoising diffusion probabilistic models." arXiv preprint

arXiv:2104.05358, 2021.

1.5 Thesis Structure

This thesis reviews and compares four key methodologies contributing to the

diversification of image datasets as well as reviewing approaches to improve DGM

performances based on the requirements of Section1.2 (Chapter 2). Subsequently,

we propose the combination method of I2I translation and image feature fusion to

augment non-visible images by transferring visible images and analyse the effect

on the object classification performance when applying this augmentation method

(Chapter 3). Another new I2I translation approach that uses a diffusion model is

proposed and evaluated the impact on the quality of the output images in Chapter 4.

These two chapters describe solutions for Research Question 1 in Section 1.3. We

also propose the diffusion model that enables less computation and a small dataset in

training by combining with patch-wise training, discrete variable autoencoders and

transformers (Chapter 5), which is a solution for Research Question 2 in Section 1.3.

Lastly, we summarise the thesis and discuss the future research direction as a

conclusion in Chapter 6.

1The schedule of ICPR2020 was shifted to 2021 due to the COVID-19 pandemic.
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CHAPTER 2

Related Work

This chapter reviews four methodologies for image diversification: traditional

data augmentation (Section 2.1), generative models (Section 2.2), image-to-image

translation (Section 2.3), and image fusion (Section 2.4), before critiquing in

Section 2.5. Subsequently, evaluation methods for the images generated via such

methodologies are reviewed in Section 2.6.

2.1 Image Diversification via Traditional Data

Augmentation

To improve the performance of machine learning driven applications, simple

transform operations on images have been widely adopted to increase the number

of training samples, namely data augmentation (DA). Those transformations

traditionally use geometric and pixel-wise image processing (Section 2.1.1) but

recently consider further complex operations such as changing an artistic style of an

image (Section 2.1.2).
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Figure 2.1: Examples of static image operations (from [9]): (a) original image (b)
flipping (c) rotation (d)cropping (e) random-cropping (f) shifting (g) noise (h) color-
jittering (i) PCA-jittering [10].

2.1.1 Geometric Transformation

Image diversification for data augmentation traditionally adopts a set of static

geometric and pixel-wise image processing operations to transform an existing

dataset image (e.g. flipping, rotation, cropping, adding noise, etc. [10] [9],

Figure 2.1). They can mitigate overfitting of machine learning based model training

by applying such transform operations across the training dataset used for model

optimisation.

2.1.2 Image Style Transfer and Randomisation

In addition to the geometric operation in Section 2.1.1, the style of images can be

diversified using Deep Neural Networks (DNN) based methods. A well trained DNN

model can be used for controlled variation of the style of images. The gram matrices

of the feature maps from each layer of the VGG19 network [61] represent the style

12



Figure 2.2: A result of image style transfer (from [11]): (left) an original image
(right) a generated image using the style of the bottom left small image.

and can be used for diversifying images by changing its style to a style of other

domain images [11] (Figure 2.2). This style transfer approach is applied not only to

artistic images but also to photorealistic images [62]. Similarly, randomising such an

image style using a style transfer network [63] can diversify the image datasets [64].

Whilst such unsupervised methods can reduce overfitting during model training,

the trained models are often unable to accurately model patterns or trends that

appear within the test distribution that are infrequent within the training data

distribution. This is largely due to the fact that such unsupervised approaches

transform data sampled from the same underlying training distribution, therefore

their outputs reflect the inherent biases and patterns in this original training

distribution.

2.2 Image Synthesis via Generative Models

A generative model is a stochastic model that approximates the probability

distribution of a given observation. The model enables us to sample images that

do not explicitly exist within the original dataset but are statistically similar to

them. The generative model is generally designed as a parametric model pθ to be

learnt itself approximating the true distribution p(X). The training assumes the

distribution of the observation comes from the true distribution and is done by

13



empirical risk minimisation. Given a training dataset xi ∈ Xtrain, θ is optimised as:

θ̂ = argmaxExi
[log pθ(xi)]. (2.1)

Most generative models are designed as latent variable models, which relate the

observation to latent variables. The latent variable model is defined as:

pθ(X) =

∫
z

pθ(X, z)dz, z ∼ pθ(z) (2.2)

=

∫
z

pθ(X|z)pθ(z)dz, (2.3)

where z is latent variables following the latent distribution pθ(z).The trained pθ(X|z)

can generate data following the observation distribution from the latent variable

distribution pθ(z).

Recent advances in DNN enables to model quite high-resolution images. The

following three sections (Section 2.2.1–2.2.3) review recent dominant generative

models: generative adversarial networks, variational autoencoder, and denoising

diffusion probabilistic models.

2.2.1 Generative Adversarial Networks

Generative Adversarial Networks (GAN) [12] optimise the model parameters via

adversarial training in which the two sub-functions, named a generator Gθg(x) and

discriminator Dθd(x), where θg, θd are parameters, compete iteratively (Figure 2.3).

Gθg(z) accepts the prior z and tries to optimise the parameter to output images X̂

maximising Dθd(X̂) whilst Dθd(x) tries to optimise the parameter to simultaneously

minimising Dθd(X̂) and maximising Dθd(X
train) as:

θg = argmaxEz[logDθd(Gθg(z))], (2.4)

θd = argmaxEXtrain [logDθd(X
train)] + EX̂ [log(1−Dθd(X̂)]. (2.5)
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Equation (2.4) and Equation (2.5) define the objective function V (θg, θd) as:

V (θg, θd) = EXtrain [logDθd(X
train)] + EX̂ [log(1−Dθd(X̂)], (2.6)

(θg, θd) = argmin
θg

max
θd

V (θg, θd). (2.7)

Let the distributions of Xtrain and Gθg(z)pθ(z) are ptrain(x) and pg(x), Dθd converges

to ptrain(x)
ptrain(x)+pg(x)

by Equation (2.5). When Dθd converges, the right-hand side of

Equation (2.5) can be rewritten as:

EXtrain

[
log

ptrain(x)

ptrain(x) + pg(x)

]
+ EX̂

[
log

(
1− ptrain(x)

ptrain(x) + pg(x)

)]
(2.8)

=

∫
ptrain(x) log

ptrain(x)

ptrain(x) + pg(x)
dx

+

∫
pg(x) log

(
1− ptrain(x)

ptrain(x) + pg(x)

)
dx (2.9)

=

∫
ptrain(x) log

2ptrain(x)

ptrain(x) + pg(x)
dx−

∫
ptrain(x) log 2dx

+

∫
pg(x) log

(
1− 2ptrain(x)

ptrain(x) + pg(x)

)
dx−

∫
pg(x) log 2dx (2.10)

=

∫
ptrain(x) log

2ptrain(x)

ptrain(x) + pg(x)
dx

+

∫
pg(x) log

(
1− 2ptrain(x)

ptrain(x) + pg(x)

)
dx− 2 log 2 (2.11)

= 2DJS(ptrain(x) ∥ pg(x))− 2 log 2, (2.12)

where DJS is the Jensen-Shannon (JS) divergence. Equation (2.12) means

maximising the right-hand side of Equation (2.5) makes ptrain(x) and pg(x) similar

distributions. Subsequently, maximising the right-hand side of Equation (2.4) leads

to the maximisation of the right-hand side of Equation (2.1). As a result of such

optimisation, the output of Gθg(z) eventually becomes similar to the training dataset

(Figure 2.4).

In order to apply the Convolutional Neural Network approach that specifically

targets convolutional feature extraction from images to GAN, the variant of GAN

called Deep Convolutional GAN (DCGAN) [65] was proposed.
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Figure 2.3: Visualisation of the training procedure of GAN (from [12]). The black
dots shows real data ptrain(x) and green line illustrates the model distribution Gθg(z).
The blue dashed line means the boundary of the discriminator Dθd . The training
is started from (a) and eventually converged to (d) by iteratively updating Dθd and
Gθg .

Figure 2.4: Examples of samples from GAN (from [12]) trained within a) MNIST [13]
and b) Toront Face Database [14] datasets.

Conditional GAN

Whilst a basic (vanilla) DCGAN generates images based on whether they are

determined as real or not by the discriminator without any other constraints and

hence does not have the ability to output class dependent images, conditional GAN

(cGAN) [16] modifies the GAN architecture to take account of classes by adding

class labels into the inputs of the generator and discriminator. Equation (2.6) is

modified as:

min
G

max
D

V (D,G)=Ex∼pdata(x) [logD(x | y)]+Ez∼px(z)[log(1−D(G(z|y) | y))],(2.13)

where y is the category label given in the objective function. Following this original

cGAN, which uses the product of the input images and the one-hot class vectors

to incorporate the class labels, other cGANs that apply the class conditions in
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(a) (b) (c) (d)

Figure 2.5: Different implementations of cGAN discriminators (from [15]): (a) the
discriminator of the original cGAN [16] accepts the concatenation of the input images
and classes, (b) the text-conditional GAN [17] concatenates the embedding features
of the input images and the conditional information, (c) ACGAN [18] trains its
discriminator also as a classifier, and (d) the project discriminator [15] use the
inner product of the original discriminator outputs and the embedded vectors of the
conditional information.

different manners have been proposed to improve the quality of the class dependent

image generation (Figure 2.5). The text-conditional GAN [17], which is specified

to text-to-image tasks, implements cGAN as a concatenation of latent features of

the input images and conditional text information. This latent features of the

images, which is also called embedding features, are extracted by the additional

encoder (Figure 2.5(b)). Auxiliary Classifier GAN (ACGAN) [18] implements a

classification model in addition to the generative model. This architecture trains its

network to minimise the distance between both the real and fake data examples and

the actual and predicted category labels (Figure 2.5(c)). Whilst such conditional

information was implemented as a concatenation of the input and output of the

networks, methods applying embedded features of the condition to the factors of

the normalisation layers of the generator networks have been proposed [66] [67].

The normalisation layers in such methods are called the conditional normalisation

layers and the generators are modified as G(z, e(y)), where e is the embedding

function. These extensions to the GAN concept have illustrated strong improvement

in the quality of the images generated. Furthermore, the effectiveness of embedding

condition labels not only to the generator but also to the discriminator was

illustrated [15]. This discriminator, which is called the projection discriminator,

is implemented with an inner product of the original discriminator outputs and the
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Figure 2.6: An illustration of the mode collapse problem on a 2D toy dataset
(from [19]). This visualises a heatmap of the generator distribution after increasing
numbers of training steps. The generator rotates through the modes of the target
distribution and assigns significant probability mass to a single data mode at once
(never converges to a fixed distribution).

embedded vectors of the labels as the outputs (Figure 2.5(d)).

Mode Collapse Problem and Solutions

Whilst the minimax game of Equation (2.4) and (2.5) requires finding a Nash

equilibrium of a non-convex game with continuous and high-dimensional parameters,

the GAN training uses gradient descent techniques to minimise a specified cost

function [68]. This exceedingly simplified training of GAN often leads to unstable

optimisation, sensitiveness of hyperparameters, and a failure of convergence. One

typical consequence of such malignant characteristics of GAN training is a wrongly

trained generator that always outputs only one or few modes of training dataset,

so-called the “mode collapse” issue [69]. The mode collapse hugely limits the variety

of the generated samples (Figure 2.6).

This unconverged behaviour is occurred by the alternating gradient descent that

optimises θg fixing θd and vice versa iteratively. The two optimisation procedures

circulate around to chase each other without convergence. Unrolled GAN [19]

addresses this issue by taking into account the optimisation path of θd during the

optimisation of θg. PacGAN [70] modifies the discriminator to accept the pack of

samples to mitigate the mode collapse by expanding the learning targets ptrain, pg

to the product distributions of pmtrain, p
m
g . AdaGAN [71] employs a weighted mixture

of multiple generators to prevent failing to learn the modes in data distribution.

Dp-GAN [72] and MSGAN [73] directly regularise the diversity of the generator

outputs.
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Another factor of the unstable GAN training comes from the uncontinuousness

of the objectives such as the JS divergence based loss function like Equation (2.12).

WGAN [74] addresses this discontinuous loss function by replacing it with the Earth

Mover distance restricted as a 1-Lipschitz continuous function. Meanwhile, spectral

normalization [75] considers a much more general approach to realise the Lipschitz

continuity by normalising the weights of a discriminator. Such a variety of studies

to improve GAN training have significantly reduced the chance of mode collapse

within contemporary GAN formulations [19] [70] [71] [72] [73] [74] [75].

2.2.2 Variational Autoencoders

Variational Autoencoders (VAE) [57] are generative models using Autoencoder (AE)

networks. AE is a kind of dimension reduction process of x ∈ Rdx → z ∈ Rdz ,

(dx > dz) using a encoder Eθe(x) and decoder Gθg(z) networks. The encoder and

decoder are jointly trained as:

θe, θg = argminEXtrain [l(x, Gθg(Eθe(x)))], (2.14)

where l is an error function such as squared errors. Optimising Equation (2.14),

Eθe(x) is learnt to squeeze significant information of x as codes z.

VAE uses such AE networks but originates from a different mathematical

formulation as generative models. It is not feasible to directly solve Equation (2.1)

because Xtrain contains high dimensional information and Equation (2.3) requires

the calculation of all combinations of X and z. It is solvable if pθ(z|X) is provided

because the pθ(x) can be straightforwardly calculated by pθ(x|z)pθ(z|x). Since it is

not possible to directly obtain pθ(z|X), they try to approximate another function

qϕ(z|X) to pθ(z|X), namely the variational inference method, by minimising the

Kullback-Leibler (KL) divergence DKL(qϕ(z|X) ∥ pθ(z|X)), which can be expanded
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as:

DKL(qϕ(z|X) ∥ pθ(z|X)) =

∫
qϕ(z|X) log

qϕ(z|X)

pθ(z|X)
dz (2.15)

=

∫
qϕ(z|X) log

qϕ(z|X)pθ(X)

pθ(z, X)
dz (2.16)

=

∫
qϕ(z|X)

(
log pθ(x) log

qϕ(z|X)

pθ(z, X)

)
dz (2.17)

= log pθ(x) +

∫
qϕ(z|X) log

qϕ(z|X)

pθ(z, X)
dz (2.18)

= log pθ(x) +

∫
qϕ(z|X) log

qϕ(z|X)

pθ(X|z)pθ(z)
dz (2.19)

= log pθ(x) + Ez∼qϕ(z|X)

[
log

qϕ(z|X)

pθ(z)
− log pθ(X|z)

]
(2.20)

= log pθ(x) + DKL(qϕ(z|X) ∥ pθ(z))

−Ez∼qϕ(z|X) [log(pθ(X|z))] . (2.21)

At this point, the objective function to be minimised is defined as:

L(θ,ϕ) = −Ez∼qϕ(z|X)

[
log

pθ(z, X)

qϕ(z|X)

]
= − log(pθ(x))+DKL(qϕ(z|X) ∥ pθ(z|X)).(2.22)

Equation (2.22), called negative evidence lower bound (ELBO), is rewriten using

Equation (2.21) as:

L(θ,ϕ) = −Ez∼qϕ(z|X) [log(pθ(X|z))] +DKL(qϕ(z|X) ∥ pθ(z)). (2.23)

qϕ(z|X) and pθ(X|z) can be implemented like Eθe(x) and Gθg(z). pθ(X|z), which

is optimised by minimising Equation (2.23), samples images similar to training

dataset from the prior pθ(z). VAE commonly makes the assumption that the

prior pθ(z) in Equation (2.23) is distributed with the Gaussian distribution.

Since Equation (2.23) is not differentiable, the optimisation process employs the

reparametisation trick [76].
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Posterior Collapse Problem and Solutions

Such Gaussian VAE have often suffered from the issue that the latent space has

little information of the input, namely ‘posterior collapse’ [77]. In order to well

approximate the posterior related DKL(qϕ(z|X) ∥ pθ(z)) in Equation (2.23), the

training requires enough variety of samples to be able to imply the abstraction of

the concept of the target data. Otherwise, the posterior approximation tends to

provide a too weak or noisy signal, due to the inappropriate variance induced by

the stochastic gradient approximation. As a result, the decoder may learn to ignore

z and instead rely solely on the autoregressive properties of X, causing X and z to

be independent [78]. Since the issue is highly related on DKL(qϕ(z|X) ∥ pθ(z)) in

Equation (2.23) [79], δ-VAE [77] constrains this term to prevent the issue. Other

solutions use alternative priors of the latents such as Gaussian mixture models [80],

autoregressive models [81], Dirichlet prior [82], and the stick-breaking prior [83]

based process [84].

In particular, Vector Quantised Variational AutoEncoder (VQ-VAE) [20]

mitigates the posterior collapse by assuming a discrete latent prior, significantly

improving the quality of image synthesis. Such discrete representations allow

for image information to be represented as a smaller set of discrete countable

vectors (a ‘codebook’) improving the performance of the generative models within

imagery [85] [20] [23]. (Also, Feature Quantised Generative Adversarial Networks

(FQ-GAN) [85] show that this discrete latent approach can be universally applied to

GAN to improve performance.) VQ-VAE employs a discrete latent posterior using

vector quantisation to capture important features from the input data (Figure 2.7),

making the model robust against large variances and mitigating the posterior

collapse issue. Assuming input data x, the encoder of the model outputs ze(x)

and the discrete latents zq(x),

zq(x) = ek,where k = argmini∥ze(x)− ei∥2, (2.24)

where ei are the K embedding vectors ei ∈ RD, i ∈ 1, 2, · · · , K in the codebook.
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Figure 2.7: Conceptual illustration of VQ-VAE (from [20]). Images are encoded to
a smaller set of discrete countable vectors and the the decoder maps between the
space of the discrete vectors and the image data space.

Figure 2.8: An illustration of DDPM (from [7]). The images x0 are sampled via
Markov Chain Monte Carlo process progressively recovering from noise xT .

The training objective function is defined as:

Lvqvae = log p (x|zq(x)) + ∥sg[ze(x)]− zq(x)∥22 + β∥ze(x)− sg[zq(x)]∥22, (2.25)

where sg[·] represents the stop-gradient operator. Subsequently, the codebook is

modelled by a CNN-based autoregressive model (PixelCNN) [86].

2.2.3 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models (DDPM) [7] have recently demonstrated

the ability to produce higher quality and more varied data compared to that of

other contemporary generative models. They are trained in a forward process

based on Langevin dynamics [87], by gradually adding noise over a fixed number

of timesteps, until all signal information is lost and the data closely resembles

noise. Consequently, the trained model can be sampled by reversing the Markov

Chain Monte Carlo (MCMC) process, starting from white noise and then iteratively

denoising the transformed samples until they resemble meaningful high-quality

images (Figure 2.8).

DDPM models data as latent variables of the form pθ(x0) :=
∫
pθ(x0:T )dx1:T ,
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where x0 ∼ q(x0) are images, T is the length of the Markov chain, and x1, ...,xT

are latents of the same dimensions as the images. pθ(x0:T ) is a Markov chain with

learnt Gaussian transitions (the reverse process) where:

pθ(x0:T ) := p(xT )
T∏
t=1

pθ(xt−1|xt) (2.26)

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)) (2.27)

p(xT ) = N (xT ;0, I). (2.28)

DDPM additionally approximates the posterior q(x1:T |x0) in the forward process.

This Markov chain gradually adds Gaussian noise to the images:

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1) (2.29)

q(xt|xt−1) = N (xt;
√
αtxt−1, (1− αt)I) , (2.30)

where αt ∈ {α1, ..., αT} are scheduled weights of the noise, therefore Equation (2.29)

gradually adds Gaussian noise according to a variance schedule αt. Equation (2.30)

is a linear interpolation function of noise and images, which admits sampling xt at

an arbitrary timestep t as:

xt(x0, ϵ) =
√
ᾱtx0 +

√
1− ᾱtϵ, (2.31)

where ᾱt :=
t∏

s=1

αs and ϵ ∼ N (0, I). To approximate pθ(xt−1|xt), DDPM optimises

the model parameter θ via denoising score matching (DSM) [88]. The loss function

is thus redefined as a simpler form as:

LDDPM(θ) = Et,x0,ϵ[∥ϵ− ϵθ(xt(x0, ϵ), t)∥2], (2.32)

where ϵθ is a non-linear function predicting the added noise ϵ from xt and t. Using

an approximated ϵθ, µθ can be predicted as:

µθ(xt, t) =
1
√
αt

(
xt −

1− αt√
1− ᾱt

ϵθ(xt, t)

)
. (2.33)
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Σθ in Equation (2.27) is set as Σθ(xt, t) = (1−αt)I. This admits sampling xt−1 from

xt:

xt−1 = µθ(xt, t) + Σθ(xt, t)ϵ, (2.34)

which leads to being able to sample x0.

DDPM has been used not only for unconditional image synthesis [89] [7] [90] [91],

but they have also widely and successfully applied to various tasks including shape

generation [92], super resolution [93] [94], image-to-image translation [95], and text-

to-speech [96] [97].

The subsequent sections (Sections 2.2.4–2.2.5) review techniques that enhance

the capability of such generative models.

2.2.4 Approaches for Large Image Generation

Whilst the recent advance of deep generative models enables synthesising quite

high quality images, such models require very large neural networks with a huge

number of parameters to accurately learn such high-dimensional data spaces. This

in turn requires a significant amount of GPU-based memory for high resolution

image output.

Patch-wise Training

To enable large image synthesis in a small GPU environment, it is a possible

solution to separate large images into multiple smaller patches and train the patches.

Stitching Across Frontier Network (SAFRON) [21] is a variant of GAN employing

the generator accepting small patches of large images on cancer histology images

and the discriminator accepting the stitched images of the patch-wise output of the

generator (Figure 2.9). As a result, the generator outputs small patch samples that

can be stitched to large images. Conditional Coordinating GAN (COCO-GAN) [98]

trains the model with the small patches of large images and its spacial coordinates as

conditions. Using this positional condition, the trained model can produce full-size

24



Figure 2.9: The training procedure of SAFRON (from [21]). The images (a) are
separated into small patches (c) before the generator training (d). The discriminator
(h) classify the stitched images (g) fabricated from the outputs of the patch-wise
generator (e).

images in sampling. InfinityGAN [99] achieves seamless image patch generation

by patch-wise training along with the condition of its global semantic contexts and

coordinates. ∞-GAN [100] attempts to make consistency in image and latent spaces

between input and its sub-region to generate image patches that have a smoothness

to the neighbour patches.

Hierarchical Architecture

Hierarchical architectures for generative models assume images comprise hierarchical

latent information and attempt to model such different levels of image information.

Stacked GAN (StackGAN) [101] uses top-level and bottom-level hierarchical GANs

for text-to-image generation. The top-level network creates primitive shape

and colour of objects in low-resolution images and the bottom-level network

subsequently refines the low-resolution outputs to synthesise high-resolution images.

FineGAN [102] disentangles images to background, object shape, and object

appearance features and hierarchically models each information. VQ-VAE-2 [6]

modifies VQ-VAE to be able to generate high-fidelity images by employing top-
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Figure 2.10: The hierarchical architecture of VQ-VAE2 (from [6]). The top and
bottom level encoders and decoders separately model high-resolution images in the
different levels of the information.

level and bottom-level hierarchical encoders/decoders and a self-attention powered

PixelCNN (PixelSnail) [103] to enable high-resolution image synthesis (Figure 2.10).

Further deeper hierarchical models of VAE [104] [105] achieve high-resolution and

high-quality outputs. Similarly, ProGAN [106] and StyleGAN [5] attempt to model

semantically coarse-to-fine information and progressively generate them by many-

stacked hierarchical networks. DDPM indigenously has such a characteristic as the

many denoising networks in the long Markov chain 1.

2.2.5 Generative Learning Trilemma and Combination

Approaches

Whilst different kinds of generative models (Section 2.2.1–2.2.3) have different

advantages and disadvantages, it is difficult for one type of generative models to

simultaneously satisfy the following three key requirements: high-quality output,

inexpensive sampling computation, and wide mode coverage [22] (Figure 2.11). To

overcome this trilemma, the combined use of different models is considered as a

solution.

1Recent work on diffusion models such as Latent Diffusion Models [40] introduce further
improvement, which are discussed in Chapter 6

26



Figure 2.11: The trilemma on generative models (from [22]). Current generative
learning framework cannot yet simultaneously satisfy high-quality sampling, mode
coverage / diversity, and fast / computationally inexpensive sampling.

VAE can be used with GAN in combination [107] [108] [109]. VAE-GAN [107]

replaces the element-wise loss in the discriminator in GAN with feature-wise

loss to better capture the data distribution. Introspective Adversarial Networks

(IAN) [110] trains the encoder via the same discriminator outputs the generator uses

instead of the reconstruction loss of the decoder outputs. Adversarial Generator-

Encoder (AGE) [108] employs two reconstruction losses of real and fake images

on both data and latent spaces: Ex∼Pdata(x)[x − G(e(x))],Ez∼px(z)[z − e(G(z))]. α-

GAN [109] achieved better reconstruction performance than AGE by employing two

discriminators on data and latent spaces.

The adversarial training of GAN can be applied to VQ-VAE (VQ-GAN,

Figure 2.12) [23] to improve the output quality along with mitigating the mode

collapse issue. ImageBART [111] employs a discrete DDPM to model the discrete

latents in VQ-GAN. Taming Transformer [23] is the latest extension of VQ-VAE

that is designed to learn the encoder and decoder not only using Equation (2.25)

but also with both an adversarial loss [12] and a perceptual loss [107] to further

improve latent quality and hence enable the decoder to synthesise higher quality

images. Since the CNN-based autoregressive model of the conventional VQ-VAE

relies only on convolutional density estimation and exhibits hard to capture long-
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Figure 2.12: VQ-GAN (used in taming transformer [23]): Discrete latents are
obtained via adversarial training applied VQ-VAE. The latent variables are modelled
via transformer-based auroregressive models.

range interactions within high-resolution data, they apply a transformer [112] based

autoregressive model to learn the prior of the codes. In general, a transformer is

defined as a multi-layer function, as follows:

T (x) = T0(x) ◦ T1(x) ◦ . . . ◦ TN(x), (2.35)

Tn(x) = fn(An(x) + x), (2.36)

where fn is a small sub-function usually implemented as fully-connected and An

is the self-attention function after projecting the input into three representations

query Q, key K, and value V as:

An(x) = A′
n(Q,K,V) = softmax

(
QKT

√
dk

)
V, (2.37)

Q = xWQ, K = xWK , V = xWV . (2.38)

When the transformer is used for an autoregressive model, all entries below the

diagonal of QKT are masked (e.g. set to −∞) in order to predict logits of the

next sequence element without referring to future elements. To parallelise the

attention function, a multi-head attention mechanism is used. This approach splits

into h multiple sub-matrices Qi, Ki, and Vi and linearly projects the sub-matrices
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respectively as:

Qi = QWQ
i , Ki = KWK

i , Vi = VWV
i , i ∈ [1, h]. (2.39)

Subsequently, the attention (Equation 2.37) is applied to each Qi, Ki, and Vi in

parallel and the outputs (heads) are unified as one output using concatenation and

a linear projection Wo as:

Amult
n (Q,K,V) = cat (A′

n(Q1,K1,V1, . . . , A
′
n(Qh,Kh,Vh))W

o, (2.40)

where cat(·, . . . , ·) is a concatenation operation.

2.3 Generative Model based Image-to-image

Translation

Image-to-image (I2I) Translation is a class of computer vision tasks where the

goal is to obtain the mapping functions between different image domains, such as

style transfer [63], colourisation [113], super-resolution [114], photorealistic image

synthesis [115], and domain adaptation [116]. This I2I mapping can be learnt as a

conditional generative model that accepts a source image as a condition and models

the density of the target image. In this perspective, pθ(X|z) in Equation (2.3) is

rewritten as pθ(X t|Xs), where Xs, X t are the source and target images, respectively.

It can be recognised that I2I translation is a generative model using Xs as the prior

instead of known-prior z. I2I translation is classified into two types by the training

procedures: paired and unpaired.

2.3.1 Paired Image-to-image Translation

Paired I2I translation assumes the pairs of source domain images and corresponding

target domain images are given in training.

Earlier work proposed to use a pre-trained CNN and Gram matrices to obtain

the perceptual decomposition of images [11]. This separates the image content and
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Figure 2.13: The conceptual illustration of the training process of pix2pix within a
edges → photos task (from [24]). The generator G is learnt the mapping of edges
→ photos. The discriminator D is learnt as cGAN conditioned with the input edge
images.

style, enabling style variation whilst preserving the semantic content. Many recent

I2I approaches are trained adversarially with a GAN [12]. Pix2Pix [24] provides a

general-purposed adversarial framework to transform an image from one domain to

another (Figure 2.13). Instead of an autoencoder, U-Net [117] is utilized to share the

low-level information between the input and output. BicycleGAN [118] combines

conditional VAE-GAN (CVAE-GAN) with an approach to recover the latent codes,

which improves performance, where the CVAE-GAN reconstructs category specific

images [119].

2.3.2 Unpaired Image-to-image Translation

Whilst paired I2I translation requires a pair-wise training dataset of source and

target domain images, it is hard for many tasks to prepare such a paired image

dataset. Unpaired I2I translation is a solution for such limitations of the training

dataset requirement. This unpaired approach learns the function that accepts source

domain images and outputs images that resemble target domain images but preserve

its semantic content information using a training dataset comprising unaligned

source and target image sets.

Cycle-Consistent GAN (CycleGAN) [8] is one of the expansions of GAN specified

in unpaired I2I translation. In this method, G and D in Equation 2.7 are trained

to transfer from source images xs ∈ Xs to target images xt ∈ Xt. Not only a lateral

transform G, it learns bilateral transform paths Gt(xs), Gs(xt). In addition, this

adopts a new loss measure named a cycle-consistency loss Lcyc(Gs, Gt) (Figure 2.14),
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Figure 2.14: Architectures of (left) CycleGAN, (centre) UNIT, and (right) DRIT++
(from [25]).

which is represented as:

Lcyc(Gs, Gt) = Exs∈Xs [∥Gs(Gt(xs))− xs∥1] + Ext∈Xt [∥Gt(Gs(xt))− xt∥1]. (2.41)

The full objective function of CycleGAN is defined as:

min
Gs,Gt

max
Ds,Dt

V (Ds, Gs) + V (Dt, Gt) + λcycLcyc(Gs, Gt), (2.42)

where λcyc is a cycle-consistency loss weight. Unsupervised Image-to-Image

Translation Networks (UNIT) [120] further make a share-latent assumption

and adopt coupled GAN [121] in their method (Figure 2.14). To address

the multimodal problem, Multimodal UNIT (MUNIT) [122], Diverse Image-to-

Image Translation via Disentangled Representations (DRIT++) [25] (Figure 2.14),

augmented CycleGAN [123] adopt a disentangled representation to further learn

diverse I2I translation from unpaired training data. Moreover, [124] employs shared

and exclusive representations, which are associated with the content and style

information of images, respectively, for the translation of the styles.

2.4 Image Fusion

Blending two or multiple image samples is a possible remedy for overfitting problem

or a less diversity in the datasets. Even simple alpha-blending of randomly chosen

pairs of images contributes improving object classification performance and blending

in a feature space learnt via DNN provides further plausible mixed images (reviewed

in Section 2.4.1). The feature blending idea is also used in few-shot generative model

tasks. This fusion-base few-shot training approach learns the generator that fuses
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Figure 2.15: Visualisations of the probability of a classifier output p(y = 1|x) (blue)
in a binary classification task (green: y = 0 and orange: y = 1) without mixup
(left) and with mixup (right) (from [26]).

the features of multiple samples and outputs fused images that are as natural as the

training real samples (reviewed in Section 2.4.2).

2.4.1 Class-wise Interpolation for Object Classification

Object classification learns the statistics of each class from training samples and

infers the classes of unseen samples based on the likelihood in the statistics. Such

inference is often degraded by an erroneously learnt manifold due to insufficient

variation or imbalanced training samples. To improve the training, Mixup [26]

blends the randomly sampled pairs of training data and class labels before using

training. Assuming the pairs of training data and class labels as (xi,yi), the blended

pairs (x̄k, ȳk) are defined as:

x̄k = λxi + (1− λxj), ȳk = λyi + (1− λyj), (2.43)

where λ ∈ [0, 1] is a weight following the beta distribution Beta(α, α), in which α

is constantly set. This mixup training approach provides smoother classification

boundaries (Figure 2.15) that enable wider coverage of unseen samples. Similarly,

cutmix [125], which draws from mixup and cutout [126] as replacing a sub-region

of an image with a region of the same size from another image, also provides

an improvement in performance. Mixmo [127] applies mixup and cutmix to a

multi-input multi-output (MIMO) training [128] to further improve the performance

on image classification tasks. These blending approaches are used for adversarial
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Figure 2.16: Architecture of Adversarial Mixup Synthesis (from [27]). The latent
features of two images are mixed and decoded to a fused image. The synthesised
image is input to a GAN discriminator.

training of GAN [26] [129] [130] and contribute to the stability of the training.

Manifold Mixup [131] blends instances not only in the input data space but also

in feature spaces in the model to enable fusing higher level information. Similarly,

Adversarial Mixup Synthesis [27] fuses the latent variables in the autoencoder and

trains the decoder to make the fused images similar to natural images using a GAN

framework (Figure 2.16). AlignMixup [132] employs positional feature alignment

using Sinkhorn Distances [133] in ManifoldMixup to match the meaningful positions

of the blending images. Meanwhile, OptTransMix and AutoMix [134] realise such

higher level blending in different ways using the KL divergence and Wasserstein

distance.

2.4.2 Multiple Instance Fusion for Few-shot Learning

Many feature fusion approaches have been adopted in few-shot learning tasks.

Generative Matching Networks [135] combine Matching Networks [136] with VAE

by decoding fused features after the matching network in order to diversify the

generative model outputs in few-shot training tasks. MatchingGAN [28] replaces

the VAE with GAN to achieve more plausible and high-resolution outputs.
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Figure 2.17: Architecture of MatchingGAN (from [28]). The matching generator
creates a randomly weighted fusion of multiple images. The matching discriminator
is trained with the real multiple images and the fake synthesised image.

2.5 Comparison of Image Diversification Approaches

Traditional DA (Section 2.1) generally improves performances on object

classification tasks by diversifying the appearance of the training images. However,

this approach is not always applicable; for example, a classification task on

the MNIST dataset [13] requires the recognition of number digits that are not

allowed flipped/rotated variances. Class-wise interpolation methods such as mixup

(Section 2.4.1) improve object classification performances without the transform

operation by smoothing the decision boundary but this linear blending operation

produces unnatural images. Unlike these simple operation approaches, GAN

(Section 2.2.1) and CycleGAN (Section 2.3) synthesise new but plausible images

from the model learnt from training datasets but the generated images do not have a

significant effect on object classification tasks [137]. To sum up, these diversification

approaches have different advantages and disadvantages.

To develop a stronger image diversification method, this thesis investigates two

strategies mitigating the disadvantages and enhancing the advantages. The first

one is the combined use of CycleGAN and mixup to create synthetic images that

is simultaneously similar to the training dataset and improve object classification

performances (Chapter 3). The second one is DDPM [7] based I2I translation instead

of GAN to diversify the output by making use of the high mode coverage ability of

DDPM (Chapter 4).

Whilst such generative models fabricate new images by learning existing images,

these data-driven approaches require huge computation resources and the outputs
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are degraded when the number of the training dataset is small [60]. To overcome

these limitations, we investigate an approach incorporating a patch-wise training

(Section 2.2.4) into a high mode coverage DDPM and employing a hierarchical

architecture (Section 2.2.4) of VQ-VAE [20] and the DDPM (Chapter 5).

2.6 Evaluation Techniques for Quality and Mode

Coverage

This thesis aims to find methods to realise high quality and wide mode coverage of

generative model outputs. However, it is intrinsically difficult to evaluate the images

sampled via generative models in terms both of quality and mode coverage due to no

ground truth of this unsupervised task. Under this difficulty, various methods have

been proposed to pursue a plausible evaluation of such generative model outputs.

The generated images can be evaluated as qualitative and quantitative measures.

2.6.1 Qualitative Evaluation

The most straightforward and trustworthy approach is showing people the actual

outputs. Humans can be convinced as the output images are plausible by seeing

actual outputs. Asking people to respond a questionnaire about how the images

look provides a better analysis and increasing the number of the respondents can

statistically strengthen the evaluation. For this purpose, a crowdsoucing service such

as Amazon Mechanical Turk [138] has been widely used to collect a large number of

answers within a short term with low cost. Meanwhile, this crowdsoucing approach

has also been criticised as exploitation of workers [139] and increasingly recognised

as an unsuitable approach for long-term evaluation within this field.

Along with observing images themselves, low-dimensional projection of the

images is commonly adopted for evaluation. The t-distributed stochastic neighbor

embedding (t-SNE) [29] maps high-dimensional data to 2 or 3-dimensional points by

non-linear dimensional reduction techniques (Figure 2.18). Comparing the projected

points of real and generated images, we can evaluate how close those image sets are
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Figure 2.18: Visualizations of 6,000 handwritten digits from the MNIST data set.
(from [29]).

and the scatterness of the points enables us to observe the diversity of the images.

2.6.2 Quantitative Evaluation

Many measures have been proposed for numerically calculating similarity between

given image datasets and diversity of generated images. Generative models can

be quantitatively evaluated by comparing such measures. Also, it is convincing to

observe the numerical performances of downstream machine learning tasks when the

synthetic images are used as a training dataset.

Comparing pre-trained model outputs

One of the most popular method for the quantitative evaluation is Inception Score

(IS) [68], which uses the outputs of Inception-v3 classification network [140] trained

on ImageNet [141]. They define the realness by how the output is unique on a

specific class and the diversity by how the mean output of an entire dataset is

close to uniform. To jointly evaluate both as unified values, they use the Kullback-

Leibler divergence of the predicted class distribution on each image and the mean

of the predicted class distribution across all images. Whilst this method has
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provided common evaluation on many research, there are some limitations such

as that it does not well support image classes out of the training set that is

used for Inception-v3 training [142]. Therefore, another popular method Fréchet

Inception Distance (FID) [33] uses the features that are output from the activation

vector of the last pooling layer instead of the final classification layer. Unlike IS,

FID calculates Fréchet distance [143] between two gaussian distributions whose

means and variances are fit to the features from real images and generated images,

respectively. This comparison of means and variances simultaneously measures the

quality and diversity of the generated images. They state this method provides

human-like perception of the similarity between real and generated images. FID is

one of the most popular method to evaluate outputs of generative models as many

researchers adopt it to compare their method with other methods. Spacial FID

(sFID) [144] is a variant of FID that uses the first 7 channels from the intermediate

mixed 6/conv feature maps along with the last pooling layer to consider spacial

variability. IS and FID often create bias, i.e. dependence on the number of samples,

that is, the scores are varied by the sample quantity [145]. To mitigate this bias,

IS∞ and FID∞ [145] calculate the scores assuming an infinite number of samples.

Meanwhile, Learned Perceptual Image Patch Similarity (LPIPS) [34] uses the

intermediate features of VGG16 [61] to measure the distance between two images.

This distance has been used to evaluate the diversity of generated images by

calculating the empirical mean of the distances of randomly chosen pairs of the

images. Perceptual Path Length (PPL) [5] evaluates how much an image space and

learnt latent space are related by analysing the smoothness of LPIPS when changing

the latent variables.

Unlike IS, FID, and LPIPS, the precision and recall for distribution (PRD) [146]

measures how many generated images are close to the given real images and how

many the real images are close to the generated images. However, PRD can not

measure an identicalness of the distributions of real and generated images and is

not robust against outliers. To address those issues, PRDC [147] proposes the new

measures of ‘density’ and ‘coverage’. The density counts how many regions abound

real samples cover generated samples and the coverage counts how many generated
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samples are covered in regions around real samples.

Evaluation on downstream tasks

Applying to actual downstream tasks is a convincing evaluation from a practical

aspect. For example, observing the impact on an object classification performance

of the case that includes generated images provides plausible insights into the image

diversification analysis. This approach evaluates performances only on specific tasks

but it can be a strong evaluation by using popular datasets or tasks from publicly

available resources such as Kaggle [148].

These evaluation methods provide validation from different perspectives.

Therefore, this thesis adopts the use of multiple evaluation methods.
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CHAPTER 3

Image Fusion in Unpaired Image-to-image Translation

This chapter discusses exploiting the potential of image-to-image (I2I) translation

as a dataset diversification strategy and develops a new I2I translation model,

adopted from Cycle-Consistent Generative Adversarial Networks (CycleGAN) [8].

In particular, we modify CycleGAN by manipulating class conditional information

and generating class-interpolated fused images (Figure 3.1), as described in detail

in Section 3.2. The proposed approach enables the expansion of the mode of

the generated images as the solution of Research Question 1 in Section 1.3. The

experiments supporting our method, within the context of Synthetic Aperture Radar

(SAR) image object classification using a variation of the Statoil/C-CORE Iceberg

Classifier Challenge dataset [149]1, are presented in Section 3.3 with a subsequent

summary presented in Section 3.4.

3.1 Motivation

As discussed in Section 2.3, I2I translation can produce new images similar to a

target domain by transferring images in another (source) domain. In particular,

1We ablate this dataset in order to use for our evaluation. The detail is described in Section 3.3.1.
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Figure 3.1: Conceptual illustration of our novel data augmentation approach for
generating cross-domain, class-interpolated image instances.

unpaired I2I translation such as CycleGAN allows the use of unaligned training

datasets of source and target domains. In other words, unpaired I2I models can

be learnt by a small amount of a target domain dataset and a large amount of

another domain dataset and the trained model can increase the small target domain

dataset by the translation from another domain. However, especially in such a

small dataset situation, the translation produces images that do not improve object

classification performances as mentioned in Section 2.5. Furthermore, the mode

collapse issue (Section 2.2.1) occurs when the number of target domain samples is

small. The mixup operation of real and generated samples in GAN training mitigates

this issue [26]. This mixup GAN training alters Equation (2.6) as:

V (θg, θd) = EXtrain [log λDθd(λX
train + (1− λ)X̂)], (3.1)

where X̂ is the generated samples and λ is the mixup ratio as same as

Equation (2.43). MixCycleGAN [130] applies CutMix [125] operation to the

CycleGAN process to stabilise the training. This method splits an input image

into two rectangular regions vertically or horizontally and replaces one region with

that of another image:

x̄ = cat(x1[: λH, :],x2[(1− λ)H :, :]) or cat(x1[:, : λW ],x2[:, (1− λ)W :]), (3.2)
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Figure 3.2: Class conditional I2I translation to match the classes between input and
output images.

where x̄ is the mixed image, x1,x2 ∈ X are the input images, H,W are the height

and width of the input images respectively, and cat(·, ·) is a concatenation function.

The preprocessed mixed image x̄ is input to the generator G of CycleGAN to

synthesise a fake image. The discriminator D is modified to estimate the mixup

ratio from the alpha-blended real and fake images, which is optimised as:

θ̂d, θ̂g = argmax
θg

argmin
θd

Ex∈X
[
log ∥Dθd(λx+ (1− λ)Gθg(x̄))− λ∥

]
. (3.3)

Although the use of the mixup operation provides the stability in the adversarial

training, those are designed without the consideration of the trend of the image

classes within image datasets; therefore, in the case of applying an object

classification dataset that has an imbalance of samples over the classes, the

translation result may not match the class of the input but mislead to the class that

is frequently occurred in the training dataset whichever the class of the input is. In

order to prevent these concerns, we employ a class conditional training approach for

I2I translation, which forces the transition between source and target domains in

the same classes (Figure 3.2). We assume that this class conditional model can also

be used to diversify the output of I2I translation. Like Manifold Mixup [131], the

trained class conditional model may produce images whose classes seem a mixture

of two classes when the model receives the mixed class conditions and images. The

fused class-interpolated images may provide much diversity in the target dataset.
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In the following sections, we look into how the idea of this class-interpolated I2I

translation works for data augmentation.

3.2 Methodology

This section describes the detailed process of our proposed method. The proposed

method assumes a source domain dataset (xi
s,y

i
s) ∈ XN

s and a target domain dataset

(xj
t ,y

j
t ) ∈ XM

t which consist of N and M(≪ N) samples respectively. xi
s and xj

t

are the images themselves and yi
s and yj

t are class labels. The types of classes are

common in both domains.

3.2.1 Training a Conditional CycleGAN Model

Initially, an I2I translation model, which transfers between two different domains,

is built using the conditional CycleGAN approach, which is the conditional

GAN (Section 2.2.1) applied CycleGAN and implemented as replacing V (·, ·) in

Equation (2.42) with one in Equation (2.13). The overall flow is shown in Figure 3.3a

where, unlike ordinary CycleGAN, the generator and discriminator functions are

conditioned on the class labels. The objective function is defined as a simple sum

of weighted terms:

L = λsLGs + λtLGt + λsLDs + λtLDt + λsλcycLcycs + λtλcycLcyct , (3.4)
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where:

LGs = E(xj
t ,y

j
t )∈Xt

[log(1−Ds(Gs(x
j
t , et(y

j
t )), es(y

j
t )))], (3.5)

LGt = E(xi
s,y

i
s)∈Xs

[log(1−Dt(Gt(x
i
s, es(y

i
s)), et(y

i
s)))], (3.6)

LDs = E(xi
s,y

i
s)∈Xs

[log(1−Ds(x
i
s, es(y

i
s)))]+E(xj

t ,y
j
t )∈Xt

[log(Ds(Gs(x
j
t , et(y

j
t )), es(y

j
t )))]

+ λgpE(x̂j
s,ŷ

j
s)∼Px̂s,ŷs

[(∥∇Ds(x̂
j
s, es(ŷ

j
s))∥2 − 1)], (3.7)

LDt = E(xj
t ,y

j
t )∈Xt

[log(1−Dt(x
j
t , et(y

j
t )))]+E(xi

s,y
i
s)∈Xs

[log(Dt(Gt(x
i
s, es(y

i
s)), et(y

i
s)))]

+ λgpE(x̂j
t ,ŷ

j
t )∼Px̂t,ŷt

[(∥∇Dt(x̂
j
t , et(ŷ

j
t ))∥2 − 1)], (3.8)

Lcycs = E(xi
s,y

i
s)∈Xs

[∥(Gs(Gt(x
i
s, es(y

i
s)), et(y

i
s))− xi

s)∥1], (3.9)

Lcyct = E(xj
t ,y

j
t )∈Xt

[∥(Gt(Gs(x
j
t , et(y

j
t )), es(y

j
t ))− xj

t)∥1], (3.10)

λs and λt are source domain and target domain weights, respectively, which balance

the corresponding generator and discriminator functions with the cycle-consistency

losses for both the source and target domains accordingly. λgp is a weight of the

gradient penalty [150]. We implement the conditional regularisation of cGAN to our

CycleGAN generators by using conditional batch normalization [151] in the networks

instead of batch normalization [152]. Also, the projection discriminators [15] are

applied to the discriminators in our networks both to improve the output quality and

smooth the transition of the outputs across the class labels, which is a key technique

to realise the synthesis of the class-interpolated images. In order to prevent mode

collapse and stabilise training, Spectral Normalization [75] is combined with the

gradient penalty as proposed in [153].

3.2.2 Adding Class-interpolated Domain-transferred Images

After training in Section 3.2.1, the model is used for the synthesis of new class-

conditioned images via the domain transfer. A pair of images and class labels in the

source domain dataset (xi
s,y

i
s), (x

j
s,y

j
s) ∈ XN

s are used as an input. Subsequently,

the input is processed to produce a tuple of a mixed image, label, and embedded
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(a) Training

(b) Sampling

Figure 3.3: Overall flow of our conditional CycleGAN model. (a) The generator and
discriminator are trained with the condition of object classes. (b) The generator
synthesises a fused image from two images and the class conditions.

feature vector (x̄k
s , ȳ

k
s , ē

k
s), defined by:

x̄k
s = xi

s ∗ λ+ xj
s ∗ (1− λ), (3.11)

ȳk
s = yi

s ∗ λ+ yj
s ∗ (1− λ), (3.12)

ēks = es(y
i
s) ∗ λ+ es(y

j
s) ∗ (1− λ), (3.13)

where λ ∼ Beta(α, α) is the mixup ratio sampled from the beta distribution Beta,

in which α is set as a constant as in [26]. As a result, the mixed pair (x̃k
t , ỹ

k
t ) that
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is input to the generator and discriminator is defined as:

(x̃k
t , ỹ

k
t ) = (Gt(x̄

k
s , ē

k
s), ȳ

k
s ). (3.14)

Finally, N samples X̃N
t = {(x̃k

t , ỹ
k
t )} are synthesised as in Figure 3.3b. The new

fake samples are combined with the original dataset as XM
t ∪ X̃N

t , where we denote

this method as Conditional CycleGAN Mixup Augmentation (C2GMA).

3.3 Evaluation

The method is evaluated in the context of the ships/icebergs SAR classification task

using a variation of the Statoil/C-CORE Iceberg Classifier Challenge dataset [149].

Results are compared between classification models trained with and without

existing dataset augmentation approaches in addition to our proposed CycleGAN

driven C2GMA (Section 3.2) approaches.

3.3.1 Dataset

We choose SAR images as a small dataset to be increased in our experiments. SAR

is a kind of radar which is generally mounted on aeroplanes or satellites to observe

ground and whose imaging procedures and resulting images are quite different from

visible cameras and images. The imaging process is realised by visualising the

backscatter of the microwave signals that the radar emits (Figure 3.4). SAR has

a stronger observation capability than visible sensors such as availability in bad

weather conditions, providing penetration vision behind foliage, and so on, because

microwaves have much more penetrability than the visible spectrum. Furthermore,

some SAR equipment support polarimetry by capturing the polarisation between

transmitted microwave and received echos. This polarisation is occurred depending

on the material types of the reflection surfaces; therefore, this polarimetry SAR

imagery can be used for material analysis. Whilst this imaging technology has

many beneficial characteristics, developed images look different from visible natural

images because of this active sensing process and the difference of the spectrum band.
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Figure 3.4: The principle of SAR (from [30]). The images are developed by
comparing the intensities of the transmitted microwaves and received echoes.
Simultaneously, the backprojeced information is synthesised across the moving path
of the radar in order to compose an area of images.

This difference in the special imaging technology requires individual data collection

because the appearances are differed by the specifications of SAR equipment.

Moreover, data collection within SAR imagery is much more difficult than capturing

visible imagery because the equipment and its associated cost are quite expensive.

To realise the alternative way to increase the number of the samples in SAR image

dataset, we apply our proposed method.

For the experiment for SAR imagery, we use the Statoil/C-CORE Iceberg

Classifier Challenge dataset [149], which has a collection of satellite C-band SAR

images of ships and icebergs from Sentinel-1 [154]. The training and test datasets

are provided as combined JSON format [155] which contain 1,604 and 8,424 images

respectively. Each image has two bands of 75 × 75 pixels of floating-point values

with the unit being dB. The two bands represent the different channels of microwave

echos: HH and HV. The values in the HH channel are the intensity of the horizontal

echoes of the horizontaly transmitted microwave, whereas the HV channel is the

intensity of the vertical echoes of the same transmitted microwave. We initially
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Figure 3.5: SAR ships/icebergs images divided into three groups based on difficulty
of discrimination by distance, angle, object size, etc.

combine the two channels into one channel:

I(x, y) =
√
IHH(x, y)2 + IHV(x, y)2, (3.15)

where I(x, y), IHH(x, y), and IHV(x, y) are the pixel values of the combined image,

the HH image, and the HV image at (x, y) respectively. Since the images in the

test set do not have any class labels whilst the images in the training set are

labelled as either a ship or an iceberg, we use only the labelled training data in

our experiments (we split this labelled data into different groups for evaluation,

discussed subsequently). A challenge of assessing the generalisation performance,

given a dataset sampled from a single distribution, is that it does not reflect the case

where the distribution of data under the expected testing conditions differs from the

distribution of data sampled for training. Therefore, we split the dataset into three

groups of discriminable classes, from which the images are sampled at different ratios

between training and testing. The dataset is then subdivided into three groups by

hand for each class: (a) easily discriminable sets, (b) moderately discriminable sets,

and (c) difficult cases (Figure 3.5). Each of the groups is partitioned into training

and testing splits and the training split is subsampled to three sets at different ratios,

where specifically we distort the distribution of the training sets to simulate further

imbalance and mismatch between the training distribution and the expected testing
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Table 3.1: The number of samples in the experiment dataset separated by the test
set and the three different training sets. The columns (a), (b), and (c) represent:
easily identifiable samples, moderate samples, and difficult samples.

Ship Iceberg
(a) (b) (c) total (a) (b) (c) total

Test 97 158 171 426 99 137 141 377
Train #1 96 15 17 128 99 13 14 126
Train #2 96 15 17 128 9 137 14 160
Train #3 96 15 17 128 9 13 140 162

data distribution. These splits, and the corresponding skewed subsamplings, are

shown in Table 3.1.

In order to augment the training datasets using our proposed method, we use the

satellite visible image dataset named DOTA [31], which is a collection of commercial

satellite images containing many objects such as vehicles annotated with bounding

boxes and class labels (Figure 3.6). Therefore we use SAR and visible image pairs

with SAR images originating from the Statoil/C-CORE Iceberg Classifier Challenge

dataset [149] and visible images from the DOTA [31] dataset. Due to the lack of

iceberg visible images within either dataset, we pair iceberg SAR images from the

Statoil/C-CORE Iceberg Classifier Challenge dataset [149] with representative non-

ship images from the DOTA [31] dataset, for which purposes we use visible images

of vehicles. Despite this obvious semantic mismatch in the second pairing, our I2I

translation model specifically synthesises images conforming to the true distribution

of the SAR iceberg images as enforced by the discriminator criteria of the loss

function in Equation (3.8).

Initially, visible object images are extracted from the visible dataset using the

annotations. Each extracted image is resized in the same way as the SAR image,

and its rotations are adjusted accordingly. The backgrounds are set to black, which

prevents including surrounding objects, which would be undesirable (Figure 3.7).

The source domain visible dataset exhibits several images that are unclear or

incorrect, as in Figure 3.8. Such images are eliminated based on their distances from

the median of all of the images within each class. These distances are measured in

the latent spaces trained by a Variational Autoencoder (VAE) [57] on individual
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Figure 3.6: DOTA satellite image dataset with object annotations [31]. Our
experiment use this visible dataset as source domain images for I2I translation.

Figure 3.7: Training samples within visible domain (domain transfer source)
extracted from DOTA.

classes. The VAE is implemented based on a CNN-based architecture as shown in

Figure 3.9. Using the encoder, all of the images are embedded in a lower dimensional

latent space that follows an approximate normal distribution, and the distances of

each sample d(xc
i) are calculated:

d(xc
i) =

√
(f c

e (x
c
i)−Mc)TSc−1(f c

e (x
c
i)−Mc), (3.16)

Sc = E[(fe(xc
i)−Mc)(f c

e (x
c
i)−Mc)T ], (3.17)

Figure 3.8: Poor quality visible images illustrating blurriness and multiple objects
(which we eliminate).
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Figure 3.9: The architecture of the VAE for poor quality sample removal. The
encoder and decoder consist of 5 convolution down/up sampling layers.

where xc
i is the i-th input sample of class c, fe is the encoder, andMc is the median of

the encoded features in class c. Sc is a normalisation factor for each dimension of the

feature vectors in class c. Half of the shorter distance samples are selected for each

class, subsampling 14,034 visible ship images and 13,063 visible vehicles, resulting

in clearer data and higher-quality annotations for use as our source domain2.

3.3.2 Training Domain Transfer Model

Domain transfer models, as described in Secion 3.2, are trained using the SAR

images for each training split, where 1,500 ships and 1,500 vehicles images are

subsampled from the visible images, prepared as previously outlined. The network

architecture used in this experiment is shown in Figure 3.10, which follows a

standard residual generative network, and the discriminator function uses spectral

normalization on the convolutional layers. The network training parameters

are: λs = λt = 10.0, λcyc = 1.0, λgp = 0.01, batch size B = 32, and update rate

of discriminators = 2, 187,500 training iterations and optimised with Adam [156]

(initial learning rate η = 0.0001, β1 = 0.5, β2 = 0.999).

3.3.3 Image Generation and Data Augmentation

Fake SAR images are synthesised using the visible images as the input of our transfer

model, as discussed. This synthesis results in 3,000 generated SAR images, where

2This cleanup technique on the translation source images emphasises the content information
that the domain transfer model training needs to extract, however, this thesis skips a quantitative
discussion of the effect.
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Figure 3.10: Our network architecture:- Conditional batch normalisation layers
are applied to every convolutional layer within the generator whilst instance
normalisation layers and spectral normalization are applied to every convolutional
layer within the discriminator.

examples of these generated images are shown in Figure 3.11. Additionally, we plot

the real SAR images and fake SAR images using t-SNE [29] (Figure 3.12) to show

how the different distributions interrelate. This plot shows that the fake SAR images

are well-distributed around the real SAR images.

Also, we supplementary show the class-interpolated image outputs within the

visible image domain in Figure 3.13. This result within the visible domain suggests

that the trained network can produce semantically interpolated images also in the I2I

translation from SAR to visible images and has a consistency between the bilateral

I2I translation paths.
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(a) Ships

(b) Icebergs

(c) Mixed

Figure 3.11: Examples of the generated SAR images (Train #1): (a) and (b) are
the individual class images. (c) are the inter-class images sorted by the class labels
from ship to iceberg.

3.3.4 Experiment on Object Classification Task

The evaluation of the classifier performance uses the simple Alexnet

architecture [10]3, where the classifier performance is compared under the conditions

in Table 3.2.

The classifiers are trained with the three training datasets, as denoted in

Table 3.1, where the hyperparameters are optimised with the stochastic gradient

descent [157] algorithm (η = 0.02, number of epochs = 200, B = 512). Performance

is quantitatively assessed via the testing dataset also outlined in Table 3.1, using

3We choose the simple Alexnet classifier for the simple task but more advanced classifiers like
Inception-v3 [140] should be selected for more complex tasks, such as multiple classification tasks.
Our method can be applied to any classification task.
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Figure 3.12: t-SNE [29] plot of ship (top) and iceberg (bottom) images from the
test, training and generated datasets (Train #1).

Figure 3.13: Class-interpolated images within visible domain from our method.

statistical accuracy (A), precision (P), recall (R) and F1-score (F1) (Table 3.3),

alongside the additional individual per-class classification performances for ships

and icebergs, shown in the confusion matrices in Figure 3.14.

The overall results show that our proposed C2GMA data augmentation

approach significantly outperforms the other approaches (BL, ROT, MIXUP [26],

and MIXCG [130]). We find that generating new images using our approach

increases training data appropriately, where the process of synthesising inter-class

images is shown to provide significant improvements for the overall classification

Table 3.2: Compared augmented datasets on our object classification experiment.
The MixCycleGAN model in this experiment (MIXCG) is trained with the same
training dataset and parameters that our method uses.

BL Only using the original training data [149]
ROT BL + rotated 90, 180, and 270 degrees

MIXUP Mixup (α = 0.2) [26]
MIXCG BL + MixCycleGAN [130] (α=0.2)

C2GMA (Ours) BL + C2GMA (α=0.2, Section 3.2)
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performance (C2GMA, Table 3.3).
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Table 3.3: Overall classification results: accuracy (A), precision (P), recall (R), and
F1-score (F1) on the common test set for each of training sets #1–3.

Train #1

A P R F1

BL 0.715 0.746 0.725 0.735

ROT 0.707 0.723 0.714 0.719

MIXUP 0.766 0.794 0.775 0.784

MIXCG 0.760 0.765 0.764 0.765

C2GMA (Ours) 0.800 0.807 0.804 0.806

Train #2

A P R F1

BL 0.469 0.469 0.500 0.484

ROT 0.469 0.469 0.500 0.484

MIXUP 0.690 0.728 0.701 0.714

MIXCG 0.757 0.783 0.766 0.776

C2GMA (Ours) 0.771 0.795 0.779 0.787

Train #3

A P R F1

BL 0.469 0.469 0.500 0.484

ROT 0.469 0.469 0.500 0.484

MIXUP 0.690 0.694 0.681 0.688

MIXCG 0.676 0.708 0.687 0.697

C2GMA (Ours) 0.691 0.729 0.703 0.716

Average

A P R F1

BL 0.551 ± 0.142 0.562 ± 0.160 0.575 ± 0.130 0.568 ± 0.145

ROT 0.549 ± 0.137 0.554 ± 0.146 0.571 ± 0.124 0.562 ± 0.135

MIXUP 0.715 ± 0.044 0.739 ± 0.051 0.719 ± 0.049 0.729 ± 0.050

MIXCG 0.730 ± 0.048 0.752 ± 0.039 0.739 ± 0.045 0.745 ± 0.042

C2GMA (Ours) 0.754 ± 0.056 0.777 ± 0.042 0.762 ± 0.053 0.769 ± 0.047
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Figure 3.14: Per-class performance (confusion matrices) of our approach (C2GMA)
against prior work in the field.

3.4 Summary

This chapter proposes and evaluates a CycleGAN and image fusion enabled data

augmentation approach, Conditional CycleGAN Mixup Augmentation (C2GMA),
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to address the challenge of effective data augmentation within cross-domain imagery

where the availability of one of the domains is limited. In particular, we show that

the generation of interpolated mixed class (non-visible domain) image examples

via our novel C2GMA methodology leads to a significant improvement in the

quality of non-visible domain classification tasks that suffer due to limited data

availability and variety. Focusing on classification within the synthetic aperture

radar domain, our approach is evaluated on a variation of the Statoil/C-CORE

Iceberg Classifier Challenge dataset and achieves 75.4% accuracy, demonstrating a

significant improvement when compared against traditional augmentation strategies.

Future work will consider other different generative model backends, network

architectures, and image feature fusion processes to enable generation of higher

quality and variety of images for improved classification results and applications to

other imaging domains.
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CHAPTER 4

Diffusion-based Unpaired Image-to-image translation

This chapter discusses and evaluates a diffusion model based image-to-image (I2I)

translation technique with the proposal of a novel unpaired I2I translation method

that uses Denoising Diffusion Probabilistic Models (DDPM) [7] without requiring

adversarial training. The proposed method, UNpaired Image Translation with

Denoising Diffusion Probabilistic Models (UNIT-DDPM), trains a generative model

to infer the joint distribution of images over both domains as a Markov chain by

minimising a denoising score matching (DSM) [88] objective conditioned on the other

domain. In particular, we update both domain translation models simultaneously,

and we generate target domain images by a denoising Markov Chain Monte

Carlo approach that is conditioned on the input source domain images, based on

Langevin dynamics. Our approach provides stable model training for I2I translation

and generates high-quality image outputs. This enables state-of-the-art Fréchet

Inception Distance (FID) performance on several public datasets, including both

colour and multispectral imagery, significantly outperforming the contemporary

adversarial I2I translation methods such as Cycle-Consistent Generative Adversarial

Networks (CycleGAN) [8]. The proposed approach enables the expansion of the

mode of the translated images as the solution of Research Question 1 in Section 1.3.
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Figure 4.1: Conceptual illustration of our novel image-to-image translation approach
using denoising diffusion probabilistic models.

4.1 Motivation

I2I translation fabricates images that are new but similar to target domain

images from the information of images in another domain using the theory of

generative models. Unpaired I2I translation eliminates the requirement of an

aligned pair of source and target domain samples in training to enhance application

potential as reviewed in Section 2.3. The current approaches of this unpaired

method have generative model backends that mostly rely on adversarial training,

namely Generative Adversarial Networks (GAN) [12]. Therefore, the unpaired

I2I translation methods inherit the undesired natures of GAN (Section 2.2.1).

To overcome this limitation, we apply a diffusion approach (Section 2.2.3) to

unpaired I2I translation instead of GAN in order to make use of the advantages

of diffusion models: wide mode coverage, high output quality and non-adversarial

stable training.

4.2 Contributions

We propose a new I2I translation approach that uses DDPM as its backend, instead

of GAN, in order to mitigate the limitation of unstable adversarial training and
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improve the mode coverage and plausibility of generated images (Figure 4.1). The

main contributions of this work are:

• Dual-domain Markov Chain based Generative Model – a Markov chain I2I

translation approach is introduced that approximates the data distribution of

both the source and target domains, such that they interrelate with each other

(Section 4.3).

• Stable Non-GAN-based I2I Translation Training – the approach does not

require adversarial training, however the model generates realistic outputs that

capture high-frequency variations according to the perturbations of various

levels of noise (Section 4.3.1).

• Novel use of Markov Chain Monte Carlo Sampling – the proposed sampling

algorithm can be conditioned on unpaired source domain images to synthesise

target domain images (Section 4.3.2).

• State-Of-The-Art Image-to-Image Translation – the results are found to

outperform the prior work of CycleGAN [8], Unsupervised Image-to-Image

Translation Networks (UNIT) [120], Multimodal UNIT (MUNIT) [122],

and Diverse Image-to-Image Translation via Disentangled Representations

(DRIT++) [25] qualitatively and quantitatively for a number of varied

benchmark datasets (Facade [158], Photos–Maps [8], Summer–Winter [8], and

RGB–Thermal [32]) (Table 4.1 and Figure 4.4), as described in detail in

Section 4.4.

4.3 Methodology

Our aim is to develop I2I translation between different domains of images whose

distributions are formed as the joint probability of Equation (2.26) respectively.

The method needs to learn the parameters of the models from a given dataset of

source and target domains via empirical risk minimisation and subsequently be able

to infer the target domain images from the corresponding source domain images.

60



(a) Model Training

(b) Image Translation (Inference)

Figure 4.2: The process of our method. (a) Model training: the reverse process pAθA
is optimised using source domain images xA

0 and synthetic target domain images x̃B
0

created by the domain translation function gAϕA . (b) Image translation (inference):
the trained model iteratively recovers the target domain images from noise with the
condition of the source domain images. The conditional images are also re-generated
by the reverse process from an intermediate timestep (release time).

4.3.1 Model Training

Assuming a source domain xA
0 ∈ XA and a target domain xB

0 ∈ XB, we iteratively

optimise the reverse process in each domain pAθA , p
B
θB and the domain translation

functions x̃B
0 = gAϕA(xA

0 ), x̃
A
0 = gBϕB(xB

0 ), which are only used in the model training

to transfer the domain A to B and B to A respectively, via DSM (Figure 4.2 (a)).

To enable translation between the source domain and target domain image pairs,

pAθA(x
A
t−1|xA

t ), p
B
θB(x

B
t−1|xB

t ) is modified as pAθA(x
A
t−1|xA

t , x̃
B
t ), p

B
θB(x

B
t−1|xB

t , x̃
A
t ) such as

to be conditional on the generated images. On the reverse process optimisation

step, the model parameters θA, θB are updated to minimise the loss function based
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Algorithm 1 UNIT-DDPM Training
1: repeat
2: xA

0 ∈ XA,xB
0 ∈ XB

3: x̃A
0 ← gBϕB(xB

0 ), x̃
B
0 ← gAϕA(xA

0 )

4: tA, tB ∼ Uniform({1, ..., T})
5: ϵA, ϵB ∼ N (0, I)
6: xA

tA ←
√
ᾱtAxA

0 +
√
1− ᾱtAϵ

A, xB
tB ←

√
ᾱtBxB

0 +
√
1− ᾱtBϵ

B

7: x̃A
tB ←

√
ᾱtB x̃A

0 +
√
1− ᾱtBϵ

A, x̃B
tA ←

√
ᾱtAx̃B

0 +
√
1− ᾱtAϵ

B

8: Take gradient descent step on
∇θA,θB [∥ϵA − ϵAθA(x

A
tA , x̃

B
tA , t

A)∥2 + ∥ϵB − ϵBθB(x
B
tB , x̃

A
tB , t

B)∥2]
9: Take gradient descent step on

∇ϕA,ϕB [∥ϵA − ϵAθA(x
A
tA , x̃

B
tA , t

A)∥2 + ∥ϵA − ϵAθA(x̃
A
tB ,x

B
tB , t

B)∥2
+∥ϵB − ϵBθB(x

B
tB , x̃

A
tB , t

B)∥2 + ∥ϵB − ϵBθB(x̃
B
tA ,x

A
tA , t

A)∥2
+λcyc∥gBϕB(x̃B

0 )− xA
0 ∥2 + λcyc∥gAϕA(x̃A

0 )− xB
0 ∥2]

10: until converged

on Equation (2.32), which is rewritten as:

Lθ(θ
A, θB) = Et,xA

0 ,ϵ[∥ϵ− ϵAθA(xt(xA
0 , ϵ), x̃

B
t , t)∥2]

+ Et,xB
0 ,ϵ[∥ϵ−ϵBθB(xt(xB

0 , ϵ), x̃
A
t , t)∥2], (4.1)

The parameters of the domain translation functions ϕA, ϕB are updated to minimise

the DSM objective fixing θA, θB where:

Lϵϕ(ϕ
A, ϕB) = Et,xB

0 ,ϵ[∥ϵ− ϵAθA(xt(g
B
ϕB(xB

0 ), ϵ),xt(xB
0 , ϵ), t)∥2

+ ∥ϵ− ϵBθB(xt(xB
0 , ϵ), g

B
ϕB(xt(xB

0 ), ϵ), t)∥2]

+ Et,xA
0 ,ϵ[∥ϵ−ϵBθB(xt(g

A
ϕA(xA

0 ), ϵ),xt(xA
0 , ϵ), t)∥2

+ ∥ϵ−ϵAθA(xt(xA
0 , ϵ), g

A
ϕA(xt(xA

0 ), ϵ), t)∥2], (4.2)

In addition, the training is regularised by the cycle-consistency loss that is proposed

in [8] to make both domain translation models bijective. The cycle-consistency loss,

Equation (2.41) is rewritten as:

Lcycϕ(ϕ
A, ϕB) = ExB

0
[∥gAϕA(g

B
ϕB(xB

0 ))− xB
0 ∥1] + ExA

0
[∥gBϕB(g

A
ϕA(xA

0 ))− xA
0 ∥1]. (4.3)
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The loss function is thus described as follows:

Lϕ(ϕ
A, ϕB) = Lϵϕ(ϕ

A, ϕB) + λcycLcycϕ(ϕ
A, ϕB), (4.4)

where λcyc is a cycle-consistency loss weight. The overall training process is presented

in Algorithm 1.

4.3.2 Inference of Image Translation

Using the trained θA, θB in Section 4.3.1, the input images are translated from the

source to the target domain. The domain translation functions are no longer used

in inference. Instead, the target domain images are progressively synthesised from

Gaussian noise and the noisy source domain images. During sampling, the generative

process is conditioned on the input source domain images that are perturbed by the

forward process from t = 0 until an arbitrary timetestep tr ∈ [1, T ]. This is then

re-generated by the reverse process from this timestep, which we denote as the

release time (Figure 4.2 (b)). The case of transferring from domain A xA
0 to domain

B x̂B
0 is described as:

x̂B
t−1 = µθB(x̂

B
t , x̂

A
t , t) + ΣθB(xt, t)ϵ

B, (4.5)

x̂A
t−1 =


√
ᾱtAxA

0 +
√
1− ᾱtAϵ

A (t > tr)

µθA(x̂
A
t ,x̂

B
t ,t) + ΣθA(xA

t ,t)ϵ
B (t ≤ tr)

, (4.6)

x̂B
T , ϵ

A, ϵB ∼ N (0, I) (4.7)

The overall translation (inference) process is presented in Algorithm 2.

4.4 Evaluation

Our method is evaluated against prior unpaired I2I translation

methods [8] [120] [122] [25] on public datasets where ground truth input-output

pairs are available [158] [8] [32]. We use Fréchet Inception Distance (FID) [33]

to compare the performance because of the measuring capability of the quality

and diversity of the output images along with the track record among previous
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Algorithm 2 UNIT-DDPM Inference (XA → XB)

1: xA
0 ∈ XA, x̂B

T ∼ N (0, I)
2: for t = T, ..., tr + 1 do
3: ϵA, ϵB ∼ N (0, I)
4: x̂A

t =
√
ᾱtAxA

0 +
√
1− ᾱtAϵ

A

5: x̂B
t−1 =

1√
1−αt

(x̂B
t − 1−αt√

1−ᾱt
ϵθB(x̂

B
t , x̂

A
t , t)) + σtϵ

B

6: end for
7: for t = tr, ..., 1 do
8: ϵA, ϵB ∼ N (0, I) if t > 1, else ϵA, ϵB = 0
9: x̂A

t−1 =
1√

1−αt
(x̂A

t − 1−αt√
1−ᾱt

ϵθA(x̂
A
t , x̂

B
t , t)) + σtϵ

A

10: x̂B
t−1 =

1√
1−αt

(x̂B
t − 1−αt√

1−ᾱt
ϵθB(x̂

B
t , x̂

A
t , t)) + σtϵ

B

11: end for
12: return x̂B

0

work [8] [120] [122] [25] as discussed in Section 2.6.2.

4.4.1 Baselines

The inferred output imagery from our proposed method is compared with that of

CycleGAN [8], UNIT [120], MUNIT [122], and DRIT++ [25] both quantitatively

(Tables 4.1) and qualitatively (Figures 4.4).

4.4.2 Datasets

We prepare the following datasets for the experiment. Every dataset includes two

domains (here abbreviated to domain A and B) of images and is separated into

training and test datasets. All images are resized 64 × 64 pixels in advance.

Facade The (A) photo and (B) semantic segmentation label images of buildings

from the CMP Facades dataset [158]. 400 pairs are included for training and 106

pairs for test.

Photos–Maps The (A) photo and (B) map images were scraped from Google

Maps [8]. 1,096 pairs are included for training and 1,098 pairs for test.

Summer–Winter The (A) summer and (B) winter Yosemite images were

downloaded using Flickr API [8]. The dataset includes 1,231 summer and 962 winter
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Figure 4.3: RGB–Thermal dataset cropped from the KAIST Multispectral
Pedestrian Dataset [32].

images for training and 309 summer and 238 winter images for test.

RGB–Thermal The (A) visible and (B) thermal infrared images of pedestrians

from the KAIST Multispectral Pedestrian Dataset [32]. This dataset contains

aligned visible and thermal images in various regular traffic scenes. Since the images

are annotated in the region of the pedestrians by bounding boxes, we crop 723 pairs

of the pedestrian areas (more than 64 × 64 pixels size) from one scene (set00) for

training and 425 pairs from another scene (set06) for test (Figure 4.3).

4.4.3 I2I Translation via UNIT-DDPM

The denoising models of our method are implemented using U-Net [117] based

on PixelCNN [159] and Wide ResNet [160]. Transformer sinusoidal position

embedding [112] is incorporated into the U-Net to encode the timestep, whose

length is T = 1000. αt is linearly decreased from α1 = 0.9999 to αT = 0.98.

These configurations are same as original DDPM [7] but replaced Swith [161] with

ReLU [162], group normalization [163] with batch normalization [152], and removed

self-attention block to reduce the computation. The domain translation functions

have ResNet [164] architecture which has the same layer depth as the U-Net.

In training, the pair of the training sample and the transferred sample (in

another domain) are concatenated as the input. The model parameters are updated

with λcyc = 10.0, batch size B = 16, 20,000 epochs via Adam [156] (initial learning
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rate η = 10−5, β1 = 0.5, β2 = 0.999).

We generate the images in both domains using the trained models and the test

samples in each dataset with the release time tr = 1.

4.4.4 Result

The output images synthesised by each method are shown in Figure 4.4 from which

it is clearly apparent that our approach qualitatively generates more realistic images

than CycleGAN [8], UNIT [120], MUNIT [122], and DRIT++ [25]. We also found

our method does not suffer from mode collapse and the resultant model training was

more stable due to not requiring adversarial training. In addition, Figure 4.5 shows

the progressive sampling via our method over the course of the reverse process.

66



G
ro

un
d

Tr
ut

h

Facade Photos–Maps
Summer–Winter RGB–Thermal

C
yc

le
G

A
N

[8
]

U
N

IT
[1

20
]

M
U

N
IT

[1
22

]
D

R
IT

+
+

[2
5]

O
ur

s

Figure 4.4: The examples of the output images generated by different image-to-
image translation methods.
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Figure 4.5: Examples of the progressive image generation via our method.

Comparison is conducted via FID between the ground truth and output images,

and shown in Table 4.11. Our method outperforms the contemporary approaches

of CycleGAN [8], UNIT [120], MUNIT [122], and DRIT++ [25] over all of the

benchmark datasets Facade, Photos–Maps, Summer–Winter, and RGB–Thermal

offering a significant average increase in performance of ∼ 20% against previous

approaches across all such datasets.

4.4.5 Ablation Study

We analyse the impact of the release time against the performance by changing

from tr = 1 to 900. The comparisons of the FID (Figure 4.6) show there are no

significant changes. It can be thought that there are little differences between the

1FID score is hugely influenced by the size and number of the input images. This results in
quite high values of FID, which are rarely observed in the literature.
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Table 4.1: Fréchet Inception Distance (FID) [33] score on different image-to-image
translation methods.

CycleGAN
[8]

UNIT
[120]

MUNIT
[122]

DRIT++
[25] Ours

Facades
B→A 232.12 239.58 335.72 336.76 169.95
A→B 265.70 216.27 244.78 317.23 110.13

Photos–Maps
B→A 216.89 213.65 240.11 316.42 193.06
A→B 150.23 253.98 224.96 237.94 116.23

Summer–Winter
B→A 121.18 202.88 221.11 261.82 113.70
A→B 133.16 161.10 205.33 268.45 109.98

RGB–Thermal
B→A 338.30 286.90 305.24 284.21 198.85
A→B 169.38 213.08 233.92 226.35 167.70

input images and the model estimation. We observe some differences attributable

to the release time variation, but this is dataset dependent. This result suggests

that tuning the release time hyperparameter is dataset dependent, for which further

analysis represents a direction for future work.

4.4.6 Limitations

We also observe the output images when the input image resolution is increased

to 256 × 256 pixels. The higher resolution models are trained using the same

network architecture and learning parameters as Section 4.4.3. The outputs shown in

Figure 4.7 are wrongly coloured across the entire pixels. This suggests that the model

fails to learn the global information of the images due to the increased complexity

of the higher dimensional image space. One of the possible solutions is adding more

layers along with an attention mechanism into the U-Net in the denoising models

in order to capture a much more accurate multi-resolutional structure of images.

Another possible solution is a single-image super-resolution (SISR) technique that

could be applied to the output of our method. Such SISR techniques are realised by

sparse coding [165], training CNNs [166], and also building SISR focused generative

models [114] [94]. The trained SISR networks via such methods can increase the
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Figure 4.6: The comparison of FID by the release times.

image size of the output of the low resolution version of our method. Such solutions

that can support the higher resolution sampling will be investigated in future work.

4.5 Summary

This chapter proposes a novel unpaired I2I translation method that uses DDPM

without adversarial training, named UNpaired Image Translation with Denoising

Diffusion Probabilistic Models (UNIT-DDPM). Our method trains a generative

model to infer the joint distribution of images over both domains as a Markov chain

by minimising a DSM objective conditioned on the other domain. Subsequently,

the domain translation models are simultaneously updated to minimise this DSM

objective. After jointly optimising these generative and translation models, we

generate target domain images by a denoising MCMC approach, which is conditioned

on the input source domain images, based on Langevin dynamics. Our approach

provides stable model training for I2I translation and generates high-quality image

outputs. The experimental validation of our approach provides state-of-the-

art FID score performance on several public datasets including both colour and

multispectral imagery, significantly outperforming the contemporary state-of-the-art

I2I translation methods.

70



Figure 4.7: Examples of 256 × 256 output images generated using the model trained
by our method (Facade dataset resized to 256 × 256 pixels).

Although the experiment shows compelling results, the current form of our

method is far from universally effective in particular for higher resolution imagery.

To address this issue, the implementation needs to be modified to model large images

more accurately.

In addition, one remaining drawback of DDPM is the inference time for image

generation. However, this can be accelerated by modifying the Markovian process

such as denoising diffusion implicit models [90] or reducing the timesteps using a

learnable Σθ [167].

Future work will consider modifications to enable shorter sampling times and

higher quality image outputs, and the evaluation of the performance when the

synthesised images are applied to other downstream computer vision tasks such

as object classification.
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CHAPTER 5

Efficient Diffusion-based Generative Model using Discrete

Variables

This chapter considers a technique to enable lower training computation and a

small number of training samples for diffusion based generative models. Whilst

conventional Denoising Diffusion Probabilistic Models (DDPM) [7] can model fine

image details even within small training datasets, their image synthesis capability

is both resolution limited and computationally demanding due to the long Markov

Chain dependency. As an alternative, Vector Quantised-Variational Autoencoders

(VQ-VAE) [20] offer high-resolution modelling, but they subsequently fail to

effectively capture such fine image detail. To overcome these issues, we propose a

novel generative model that combines a Transformer-based autoregressive VQ-VAE

with a smaller conditional DDPM 1. The former (VQ-VAE) retains the advantages

of capturing long-term dependencies and global structure in high-resolution imagery

whilst the latter (conditional DDPM) is capable of modelling fine image textures

and details. This proposed Discrete Conditional DDPM (DC-DDPM) architecture,

1Recent work on diffusion models such as Latent Diffusion Models [40] introduce another
combination of VQ-GAN and DDPM providing further improvement. These are discussed in
Chapter 6.
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is subsequently shown to train much faster (5×) than competing DDPM models

whilst, in contrast to competing adversarial methods, is additionally able to both

compute per-sample likelihood estimates and remain competitive with state-of-the-

art adversarial approaches within both large and small training datasets. The

proposed approach enables the high mode and fidelity DDPM to gain data and

computational efficiency as the solution of Research Question 2 in Section 1.3.

5.1 Motivation and Contributions

The training of DDPM is quite stable, featuring a simple denoising objective with

noise schedules. This is in contrast to the training of Generative Adversarial

Networks (GAN) [12], which require a generator and a discriminator components

competing against each other, and commonly suffer from high sensitivity of

hyperparameters, mode collapse, unstable training [69], and serious degradation

in the case of training on small datasets [60]. Non-adversarial approaches including

DDPM do not rotate through dataset modes in training in the manner of a GAN

(i.e. where the generator and discriminator in a GAN cycle through a subset of

the training dataset), and hence offer a strong advantage in terms of their reduced

training dataset size requirements that thus enables broader applications (e.g. rare

disease or anomaly image classes).

Regardless of their beneficial characteristics, DDPM do require many training

iterations due to optimisation of their denoising network, which is conditioned

by many steps of noise levels to construct the long Markov Chain, with just

one randomly selected step of the noise level in each iteration. Moreover, the

denoising network requires enough capacity to model each variational lower bound

within many steps of the Markov Chain as a single function. This network

requirement further forces the optimisation step to be tiny. These unavoidable

traits associated with the long Markov Chain entail the high demand of training

computation (e.g. experiments in the original DDPM [7] used 8 Google Cloud v3

TPUs, which are equivalent to 8 NVIDIA Tesla V100 GPUs) and limits scaling to

high-resolution imagery. As an alternative, by way of avoiding both a long step-
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by-step process or adversarial training, Variational Autoencoders (VAE) [57] offer

different complimentary characteristics. VAE can be viewed as an autoencoder

whose encoded latent is regularised to fit a tractable distribution which allows

efficient sampling. This encoder-decoder architecture enables a lightweight non-

iterative transformation from the latent to the image. However, VAE often fail

to effectively model fine image detail due to the variational lower bound on the

likelihood during training.

The VAE lower bound is optimised by the KL term and the posterior term

(Equation (2.22)). This optimisation leads to the self-pruning of the hidden

units of the encoder network. As a result, the decoder network is trained

with poor latent vectors that do not represent enough abstraction of the input

images and/or tend to just memorise a small portion of the mapping between

the latent points and the image samples, without learning the distribution. This

issue, called ‘posterior collapse’ [77], typically causes blurry outputs. As in

Section 2.2.2, many approaches mitigate the posterior collapse; in particular,

Vector Quantised Variational AutoEncoder (VQ-VAE) [20] significantly improves

the outcomes. However, even these solutions have a limitation on providing sufficient

information to the decoder within a large image generation task. To improve the

decoder performance, the adversarial training of GANs can be applied to VQ-VAE

(VQ-GAN) [23] but such an adversarial approach leads to unstable training and

sensitiveness of hyperparameters, especially within a small training dataset, and

requires much computation to converge the oscillating loss values.

To overcome these issues with stability, we uniquely use a smaller denoising

network (DDPM) supported by a VAE and patch-based training. First, we redesign

the network to be conditioned on the encoded VAE latent, effectively providing a

‘hint’ to the DDPM network. The well-compressed VAE latent acts as an informative

guide to simplify the denoising function. Following the advantages of using a discrete

latent representation for image synthesis [20] [23], we use the latents from VQ-VAE

as the DDPM conditionals. Second, since the discrete latents are well modelled

via a transformer-based autoregressive model [23], we utilise an attention-based

training and sampling approach with a transformer architecture for the DDPM
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conditionals. Transformers [112] have become the de facto standard within natural

language modelling tasks [168] but have now also become popular in other domains

such as audio [169] and vision [170] [171].

Recently, taming transformer [23] encode images as quantised discrete vectors

(called ‘codes’) using an adversarially trained VQ-VAE (VQ-GAN) and a perceptual

loss [107]. Images are generated by decoding from these codes whose structures are

modelled via a transformer to capture the long-term interactions between them. We

adopt such discrete code sequences modelled by a transformer for our conditional

DDPM. We also adopt a patch-wise training approach for our model, facilitated by

our proposed conditional strategy. Employing those strategies, our approach trains

a VQ-VAE to obtain the discrete latent vectors, and then subsequently trains the

DDPM using the patch-wise images with the relevant part of the discrete vectors

as additional conditional information (Figure 5.1a). The model is sampled by

inferring the discrete code sequence and synthesising images via the conditional

DDPM MCMC process (Figure 5.1b). As a result, our approach, termed Discrete

Conditional DDPM (DC-DDPM), realises a lightweight DDPM that is fast to train

and generates high-quality outputs, and generalises well especially for datasets with

limited training examples. The main contributions of this work are:

• we propose a novel approach that reduces the computation of DDPM via a

complementary transformer-based autoregressive VQ-VAE (Section 5.2).

• the proposed lightweight DC-DDPM performs very well in cases of exceedingly

limited training datasets (even with just 273 images from FFHQ [5] dataset)

without any dataset augmentation applied (Section 5.3.3).

• our experiments validate that our non-adversarial approach enables image

synthesis with faster training than the conventional DDPM [7] and improved

Fréchet Inception Distance (FID) over other methods (StyleGANv2 [59], VQ-

VAE2 [6], and DDPM [7]) on a limited training computation setting on the

FFHQ dataset (Section 5.3.2).
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5.2 Methodology

We describe our proposed DC-DDPM method, which is conceptually illustrated in

Figure 5.1.

Introducing the function {Ci(x0)}, i ∈ [0, L] dividing image x0 with L patches,

our method approximates the image distribution p(x0) as:

p(x0) ≈ p(s)
L−1∏
i=0

p(ci(x0)|ci(s)), (5.1)

where s is a discrete latent of x0 that are coded by an encoder s = ϕ(x0). We

use a VQ-VAE for the encoder ϕ(·), a DDPM for learning the distribution of

p(Ci(x0)|Ci(s)), and a transformer for p(s) in Equation (5.1). Assuming the reduced

dimensional subpatch of the image Ci(x0) as an input of the DDPM, training

of the DDPM can more efficiently prioritise finer and more local details. This

‘local training’ approach works effectively due to our modified DDPM which is

conditioned by codes s sampled such as to respect their long-term interactions as

well as positional trends. Such positional information acts as a guide to preserve

the position of the patch in training and to recover an entire image in inference.

5.2.1 Training

The overall training procedure is illustrated in Figure 5.1a. First, the VQ-VAE

encoder ϕ(·) is trained using Equation (2.25) to extract discrete codes from x0.

Subsequently, the conditional form of DDPM, which accepts the patch of the codes

Ci(s) as the condition, is trained in order to learn p(Ci(x0)|Ci(s)). The DDPM

reverse process Equation (2.26) is therefore:

pθDDPM(Ci(x0:T )|Ci(s)) := p(Ci(xT ))
T∏
t=1

pθDDPM(Ci(xt−1)|Ci(xt), Ci(s)). (5.2)

This DDPM process models the local coherence of the data depending on the

subpatch of the discrete code. Since our conditional DDPM is trained using the

patch of the image Ci(x0) and conditioned by the codes Ci(s), the model can be
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Figure 5.1: Conceptual illustration of our proposed generative model. (a) Training:
The input image x0 is coded to discrete vectors s by the VQ-VAE encoder zq. s
is modelled using a transformer. The subpart of the image Ci(x0) is input to the
DDPM with the relevant region of the codes Ci(s) as a condition. (b) Sampling: The
trained autoregressive transformer infers the discrete codes ŝ. The DDPM generates
data x̂0 from Gaussian noise x̂T via MCMC sampling conditioned by the estimated
ŝ.
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optimised much faster. The codes s = {si} are generated by an autoregressive model

where:

pθAR(s) :=
K∏
i=1

pθAR(si|s<i). (5.3)

This autoregressive model is implemented with a transformer as with the approach

in [23]. In contrast to the DDPM part (Equation (5.2)), this transformer models the

long-term interactions of the codes s representing the overall structure of the entire

image.

5.2.2 Sampling

The sampling procedure requires both the trained conditional DDPM model and

the autoregressive transformer model (Figure 5.1b). First, the codes ŝ = {ŝi} are

predicted step-by-step using multinomial sampling from the autoregressive model

as:

ŝi ∼ Multi(ŝc
′

i /Zŝc
′

i
), (5.4)

ŝc
′

i = {ŝc′ij}, ŝc
′

ij =

ŝcij (ŝcij ∈ topk(ŝ
c
i))

0 (otherwise)
, (5.5)

Zŝc
′

i
=

∑
j

ŝc
′

ij, (5.6)

ŝci ∼ pθAR(ŝ
c
i |ŝ<i), (5.7)

where Multi(·) is a multinomial distribution and topk(·) is a collection of top-k

elements. In each step, we cut off the probabilities of the lower candidates by

top-k selection [172] (Equation (5.5)) in order to avoid unintended sampling on low

likelihoods.

Subsequently, the data x̂0 is inferred using the estimated ŝ and the DDPM model

as in Equation (5.8):

x̂t−1 = µθ(x̂t, ŝ, t) + Σθ(x̂t, ŝ, t)ϵ, (5.8)
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Figure 5.2: The reverse MCMC process gradually transforms from noise to images.

This sampling process gradually synthesises images from noise supported by the

codes (Figure 5.2).

5.3 Evaluation

We evaluate the performance of our generative model within an image synthesis

task comparing against three contemporary state-of-the-art approaches (VQ-VAE-

2 [6], StyleGANv2 [59], DDPM [7]) on the challenging Flickr-Faces-HQ (FFHQ) [5]

human faces dataset (70,000 images, 1024×1024 resolution) with image rescaling to

256×256 image resolution. We use Fréchet Inception Distance (FID) [33] to compare

the performance because of the measuring capability of the quality and diversity of

the output images along with the track record among previous work [6] [59] [7] as

discussed in Section 2.6.2.

5.3.1 Implementation and Training

We train both our proposed model and the other comparison models without any

use of transfer learning. To evaluate all methods on a same computation setting,

all models are trained for a maximum duration of 15 GPU days on a single NVidia
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Figure 5.3: The diagram of our conditional ResNet block in the U-Net of the DDPM.
f l(x0), s, PE(t), f l+1(x0) are the output of the previous layer, the codes as a
condition, the encoded timestep, and the output of the block, respectively. The
codes are concatenated with the input in the middle of each ResNet block.

GeForce RTX 2080 Ti GPU.

Our Method

Our method is implemented as three components following the outline presented

in Section 5.2: the VQ-VAE encoder, the autoregressive transformer and the

conditional DDPM.

The VQ-VAE encoder is implemented following the original network [20] with

the number of downsampling / upsampling layers is increased from 2 to 4, which

compresses 256×256×3 dimensional images to a 16×16×256 dimensional encoding.

The model parameters are updated with batch size B = 256 over 200 epochs via

Adam [156] (initial learning rate η = 10−5, β1 = 0.5, β2 = 0.999).

The 16×16×256 encodings, which are produced by the VQ-VAE encoder, are

flattened to 256×256 and learnt by the autoregressive transformer. The number

of the fully-connected layers in the transformer is 12 and the number of heads is 2.

The model parameters are updated with B = 64, 1,000 epochs via Adam (η = 10−5,

β1 = 0.5, β2 = 0.999).

The conditional DDPM is implemented using U-Net [117] based on Wide

ResNet [160] and a transformer sinusoidal position embedding [112] to encode the

timestep (whose length is T = 1000, and αt is decreased from α1 = 0.9999 to αT =
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Table 5.1: The comparison of the average training time by one epoch.

second / epoch
DDPM [7] 3514
DC-DDPM (ours) 732

0.98, as per the original DDPM [7]) but with Swith [161] replaced by ReLU [162],

group normalization [163] with batch normalization [152], and the removal of the self-

attention block to reduce computation. In addition, we adopt cosine scheduling [167]

on the decreasing α instead of the original linear scheduling. To modify the U-Net

to accept the condition, we concatenate the outputs of the first CNN layers of the

ResNet blocks and the encodings (Figure 5.3). The model parameters are updated

with B = 128 via Adam (η = 10−5, β1 = 0.5, β2 = 0.999) within the remainder of

the training schedule.

Within this experiment, we further define ci(x0) as a function that randomly

crops a 64×64 pixels area from a 256×256 pixels image.

Other Methods

We use existing implementations to obtain the results of the other comparison

methods [173] [174] [175] . All training parameters are set to the default values apart

from the batch size, B, which is changed to run on the single GPU with training

iterations to match that of our method. For VQ-VAE-2, we train the VQ-VAE

model for 5 GPU days with B = 128 and subsequently the top-level and bottom-

level PixelSnail are trained for 5 GPU days with B = 8 and B = 8, respectively.

The StyleGANv2 model is trained with B = 6 and DDPM is trained with B = 4.

A comparison of the training speed of the original DDPM and our lightweight

conditional DDPM is shown in Table 5.1, from which we can see that our method

is 5× faster than the original DDPM.

5.3.2 Image Synthesis Results

We generate 10,000 samples at 256×256 image resolution from the trained model of

our method following the sampling procedure (Section 5.2.2) and the same number of
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Figure 5.4: The examples of output images from our DC-DDPM method trained on
the FFHQ dataset [5].

Table 5.2: The comparison of Fréchet Inception Distance (FID) [33] score on a
limited training computation setting: 15 days on a single GPU (NVidia Geforce
RTX 2080 Ti).

FID ↓
StyleGANv2 [59] 59.151
VQ-VAE-2 [6] 68.999
DDPM [7] 78.873
DC-DDPM (ours) 52.574

samples from each of the comparison methods. During the autoregressive sampling

of the codes, we use top-k selection [172] in each step. The parameter k should be

carefully considered because a too high k picks many inappropriate codes, while a

too low k misses the diversity of the sampling. We empirically found that k = 32

gives a well balanced setting for our experiment. The examples of the generated

images of our method are shown in Figure 5.4.

To measure quantitative performance, we calculate the FID between the training

images, which are randomly selected 10,000 samples, and the generated images from

each method using the reference FID implementation [176]. From Table 5.2 we can
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Figure 5.5: The comparison of Fréchet Inception Distance (FID) [33] scores of the
generated images in Sec. 5.3.2 over different training time durations on the FFHQ
dataset [5]. The time of VQ-VAE-2 is a sum of the training time of their 3 models
and recorded by changing the training time of the 2 PixelSnail models equally. The
time of our method is a sum of the training time of the 3 models and recorded by
changing the training of the conditional DDPM.

observe that the FID score of the images from our method is lower than that from

the comparison methods illustrating that method outperforms the others in terms

of perceptual similarity between the sampled real and generated image sets. In

addition, we also compare the FID scores of the generated images from each method

at different stages of training (Figure 5.5) whereby we can see that the FID score of

our method is improved more rapidly than the other non-adversarial methods and

also gradually outperforms the state-of-the-art GAN based comparative approach.

5.3.3 Reduced Training Samples

In order to evaluate the performance obtained from a lower number of training

samples, we respectively train each model with a randomly sampled subset of {

17,500 | 4,375 | 1,093 | 2732 } images from the training dataset. The model training

is run on an NVidia Tesla V100 GPU for 15 GPU days and we use the lowest FID

checkpoints for each approach. We generate samples for the reduced training sample

2only for our proposed method.
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Figure 5.6: The comparison of Fréchet Inception Distance (FID) [33] scores of the
generated images in Sec. 5.3.3 over different sizes of the training set (sample size)
randomly selected from the FFHQ dataset [5].

models (shown in Figure 5.7) and compare the FID scores using the same approach

as in Section 5.3.2. From Figure 5.6 we can observe that the DDPM-based methods

perform well on smaller training dataset sizes whilst the performance of the other

methods is significantly degraded. In particular, our method is less affected by such

a small dataset condition. Subsequently, we extract the nearest neighbour samples of

the generated images from the training dataset (Figure 5.8). This nearest neighbour

experiment shows that the generated images (trained with exceedingly limited data

and without augmentation) have a surprising lack of overfitting to the reduced FFHQ

dataset.

5.3.4 Other Datasets

We also train our model using LSUN datasets [35], which has 10 scene categories

and around 120,000 to 3,000,000 images in each category. We use the church

and bedroom category pictures, which contain 126,227 and 303,125 samples3,

respectively. In addition, we use FLIR Starter Thermal Dataset [36], which contains

14,452 thermal images taken on street and highway scenes using Teledyne FLIR Tau

320% of randomly chosen samples.
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Figure 5.7: Images generated via our DC-DDPM method trained on different
numbers of training examples.
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Figure 5.8: The nearest neighbors (LPIPS [34] distance) for generated images from
our model trained on only 273 randomly sampled images from FFHQ [5]. The
leftmost column shows samples from our model and the other columns are the nearest
neighbours within the training set (increasing in distance from left to right).

2 and Blackfly S thermal cameras, to build our model to generate thermal images

for a evaluation of non-visible spectrum imagery. As another experiment for non-

visible imagery, we use X-ray baggage images captured at Durham University using

a Smith Detection dualenergy X-ray scanner (Dbf3 Dataset [37]), which consists of

7,603 security scan like images including criminal items such as firearms. The X-ray

images are cropped the white spaces in advance. Those samples in the church,

bedroom, thermal, and X-ray sets are randomly cropped to 256×256 pixels before

use for training the models. A sample of the generated images from our model on

each dataset are shown for further qualitative evaluation in Figure 5.9–5.11.
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(a) LSUN Church

(b) LSUN Bedroom

Figure 5.9: Images generated via our method trained on the church and bedroom
categories from LSUN [35].
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Figure 5.10: Images generated via our method trained on the thermal images from
FLIR [36] dataset.

Figure 5.11: Images generated via our method trained on the X-ray baggage images
from Dbf3 [37] dataset.
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5.3.5 Limitations

Whilst our approach enables high-resolution image synthesis with fast training

and a small dataset, the generated images exhibit unrealistic traits related to

global image consistency. For example, we can see generated faces with differently

coloured left/right eyes. Although a possibility within real world images, the

natural occurrence of such phenomena is significantly lower than that of our

generated examples (e.g. Figure 5.7). Such limitations are attributable to both

the construction of the codebook that has insufficient information to distinguish the

eyes and the use of patch-wise training which under-constrains long-term coherence

in the patch-wise sequence, and hence global consistency, of the facial sub-regions.

A possible solution is to learn a much informative codebook such as a hierarchical [6]

or an adversarial approach [23].

Another limitation derives from the use of an autoregressive model to infer

the codes. The current approach adopts a simple top-k multinomial sampler

(Section 5.2.2) whose estimation is hugely reliant upon the unstable prediction in the

first few iterations. This in turn degrades the performance of the code inference and

hence the quality of the subsequent DDPM image synthesis. This code sampling can

be improved via other recent work such as Gumbel-Softmax [177] [178] and discrete

DDPM [179] [180] [111] which we will investigate to enable further high-quality

image synthesis in future work.

5.4 Summary

We propose a novel generative model that combines both a transformer-based

autoregressive VQ-VAE with a smaller conditional DDPM. The VQ-VAE retains

the advantages of capturing long-term dependencies and global structure in high-

resolution imagery whilst the conditional DDPM is capable of modelling finer

textures and image details. This proposed DC-DDPM architecture is subsequently

shown to train much faster than competing DDPM models whilst, in contrast to

competing adversarial methods, is additionally able to both compute per-sample

likelihood estimates and remain competitive with a state-of-the-art adversarial
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approach within both a large and small training datasets. Notably, our proposed

approach shows compelling results on exceedingly small training datasets without

any dataset augmentation applied.

Future work will explore alternative methodologies for codebook generation

within the proposed approach and look to achieve increasingly high-resolution image

generation within similar training set and computational bounds.
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CHAPTER 6

Conclusions

This chapter reviews key findings of our contributions (Chapters 3–5) and what

extent the contributions address the research questions in Section 6.1, compares

related concurrent work in Section 6.2 and describes a remaining challenge in

Section 6.3. Considering these discussions, we describe the direction of a future work

of this thesis in Section 6.4. Lastly, we make an overall conclusion in Section 6.6

after discussing social impact of this field of research in Section 6.5.

6.1 Review of Contributions

Overall from the research work carried out in this thesis, we highlight the following

achievements:

• Domain translation and interpolation via image-to-image translation for

augmenting a limited dataset (Chapter 3).

• Diffusion-based unpaired image-to-image translation without an unstable

adversarial training (Chapter 4).

• Computation and dataset size efficient diffusion models using a patch-wise
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training and discrete conditioning (Chapter 5).

Subsequently, we analyse the detailed descriptions of the contributions described

in Chapter 3–5 from the two research questions (Section 1.3) individually.

Wide mode coverage of Deep Generative Model (DGM) sampled images

Chapter 3 proposes an image generation technique using DGM-based Image-

to-Image (I2I) translation and mixup, termed Conditional CycleGAN Mixup

Augmentation (C2GMA). This C2GMA approach increases images in a desired

domain by transferring images in another domain. To augment an object

classification image dataset, which has an imbalance of the amount of classes,

to improve the classification performance, the I2I translation model trained by

our method synthesises semantic mixup images between two classes (Section 3.2).

The experiments (Section 3.3) show the generated class mixed images contribute

to improving classification performance. This result suggests that our C2GMA

method can produce more variety of images in terms of the applications of object

classification tasks. Meanwhile, further validation is needed that this image

generation of our method is effective not only on object classification tasks but

universally effective on other computer vision tasks. Also, this C2GMA method

uses Generative Adversarial Models (GAN) to build the I2I translation model that

inherits unstable adversarial training and the possibility of mode missing of output

images.

Our another I2I translation method, named UNpaired Image Translation with

Denoising Diffusion Probabilistic Models (UNIT-DDPM) (Chapter 4), adopts

Denoising Diffusion Probabilistic Models (DDPM) for the backend of its model

instead of GAN. DDPM theoretically produces higher quality and wider mode

coverage of output images. This DDPM nature indirectly suggests that the

generated images via our DDPM-based I2I translation approach can have wide mode

coverage along with high quality, which is indicated in the experiments (Section 4.4).

Meanwhile, further analysis is needed to directly investigate the mode coverage of

the output of UNIT-DDPM, which may include experiments on downstream tasks.
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High mode coverage, fidelity, and efficiency of DGM The approaches of

C2GMA (Chapter 3) and UNIT-DDPM (Chapter 4) achieve the improvement only

on small size images (75×75 and 64×64 pixels). These research are required further

study to generate higher-resolution images with the consideration of computation

and a number of training samples.

Our proposal of Discrete Conditional DDPM (DC-DDPM) (Chapter 5) reduces

the training time of DDPM and enables training on small datasets (shown in

Section 5.3). This achievement indicates that our DC-DDPM approach enables

DDPM, which originally produces high mode coverage and quality output, to acquire

training efficiency. Meanwhile, likewise UNIT-DDPM, experiments to directly see

the mode coverage and the improvement within downstream tasks are needed.

6.2 Other Concurrent Work

Since the commencement of this research, much concurrent related work has

emerged.

6.2.1 Stochastic Differential Equations for Diffusion Models

As in Section 2.2.3, DDPM uses many but finite timesteps of the transition process

from noise to data for the data generation process. Stochastic Differential Equations

(SDE) [181] generalise this DDPM process as a continuous time-dependent gradient

field based on neural ordinary differential equations [182]. This continuous step

model of SDE enables the flexible reverse diffusion process whereas the original

DDPM is required to set the number of timesteps that has a trade-off of sampling

quality and time. The ideal point of the timestep trade-off depends on datasets.

Furthermore, SDE uses a predictor-corrector framework to correct errors in the

discretised reverse process in sampling. As a result, SDE achieves a better

Fréchet Inception Distance (FID) score than the score of a standard DDPM.

Although SDE provides such a sophisticated and powerful upgrade to DDPM,

this oversimplified diffusion limits generative model performance [38]. Therefore,

Critically-damped Langevin Diffusion (CLD) [38] extends the variable space of
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Figure 6.1: Visualisation of the Critically-damped Langevin Diffusion process
(from [38]). Data xt is augmented with a velocity vt. The diffusion process is
coupled as a joint data-velocity space (probabilities in red). Noise is injected only
into vt, which leads to smooth diffusion trajectories of xt (green).

the diffusion process with consideration of velocities (Figure 6.1). This extension

improves the performance of SDE.

6.2.2 Latent Diffusion Models

The original DDPM models data as a Markov chain (Equation (2.26)). This

formulation causes two issues. The first one is that the reverse diffusion process on

probabilistic variables pθ(x1:T ) and the decoding process pθ(x0|x1) are implemented

by the same U-Net network [7]. This unnatural implementation affects the efficiency

of the model training. The second issue is that all latent variables x1:T have the

large dimension as same as the dimension of the input data x0. This training

on large dimension variables requires huge computation. To address these issues,

recent DDPM variants employ an encoder and a decoder of Variational Autoencoders

(VAE) to convert input data to low dimensional latent codes and model the reverse

diffusion process of this latent variables [111] [183] [40] [39]. ImageBART [111]

uses discrete latents coded via GAN applied vector-quantised VAE (VQ-GAN) and

applies diffusion modelling on the codes using a multinomial diffusion process [179].

Similarly, Unleashing Transfomer [183] models such VQ-GAN codes using absorbing

state diffusion [180]. Meanwhile, Latent Diffusion Models (LDM) [40] support both

continuous and discrete latent codes as employing KL-regularisation of VAE and

VQ-regularisation of VQ-VAE. Latent Score-based Generative Model (LSGM) [39]

applies such a latent variable approach to SDE (Figure 6.2). This latent SDE
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Figure 6.2: Conceptual illustrations of Latent Score-based Generative Model
(from [39]). Data xt is mapped to lower dimensional latent space via an encoder
q(z0|x). The diffusion process models the latent variables. The images are sampled
via mapping from the latent to data space using a decoder p(x|z0) after synthesis of
the latent variables via the reverse diffusion process.

method provides not only less computation in the smaller space of the diffusion

model training but also the end-to-end simultaneous training of both VAE and

SDE, which well optimises the models.

6.2.3 Controlling Reverse Diffusion Process

DDPM and its successors achieve high mode coverage and quality of image sampling.

Recent advances in the analysis of diffusion models have brought techniques to

control the image generation process [91] [184] [41]. Such controllable diffusion

approaches enable the sampling process to be lead to target modes to be augmented.

Along with the adoption of adaptive group normalisation, which is the application

of the adaptive instance normalisation [5] and Feature-wise Linear Modulation

(Film) [185] to the group normalisation layers in the U-Net of DDPM, a classifier

of images is employed to incorporate class information [91] like Auxiliary Classifier

GAN (ACGAN) [18]. This classifier-guidance approach trains a classifier pϕ(y|xt, t),

where y is the class labels, on noisy images xt. The sampling process uses

the gradient of the classifier ∇xt log pϕ(y|xt, t) to guide the reverse diffusion to

output the target class images. Whilst the classifier-guidance method requires an

additional classifier model, Classifier-Free Diffusion Guidance [184] enables class-

conditional DDPM without such a classifier by considering the difference between

the scores of conditional and unconditional denoising. LDM proposes a conditional

DDPM approach by inserting cross-attention layers in the U-Net [40] (Figure 6.3).
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Figure 6.3: Conceptual illustrations of Latent Diffusion Model (from [40]). The
reverse diffusion process is controlled by the cross-attention layers and the encoded
condition inputs.

This cross-attention mechanism provides much flexible conditioning of the reverse

diffusion that is not limited to classes but accepts any information such as text or

bounding boxes. Another approach to greedy explore low-frequency modes of trained

DDPM [41] employs the calculation of “hardness score”, which is calculated based on

the distance between a given image and the mean and variance of a given class. The

reverse diffusion process supports the synthesis of low-density but plausible images

by controlling the rate of the hardness scores of a specific class and all classes as

well as the rate of the hardness score of real images and real plus synthesised images

(Figure 6.4).

6.3 Open Challenges on Evaluation

As mentioned in Section 2.6, quantitative evaluation of generated images is quite

difficult. The ultimate goal of image diversification is to synthesise images out of the

distribution of a training dataset but inside a true distribution but it is difficult to

conduct a completely accurate judgement whether the sampled images satisfy this

criterion due to the unobservable true distribution.

Our contributions (Chapter 4–5) adopt FID score between pre-existing and

generated samples, which is a common practice in a generative model research field,

but it is not always an appropriate evaluation since it just measures the similarity
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Figure 6.4: Samples from different settings of the hardness scores (from [41]). The
setting has two parameters α and β. Decreasing α leads image synthesis to a low-
density region. Increasing β leads sampling to a real image distribution.

between the two distributions. Moreover, there is a possible risk of low validity

because FID uses the last layer in Inception-v3 classification network [140] trained

on ImageNet [141]. This pre-trained network is optimised to discriminate the object

classes of ImageNet and might not always capture important features of arbitrary

images. Furthermore, the network is trained within visible spectrum imagery and

might not fully support non-visible imagery. In order to mitigate these risks, the

evaluation using self-supervised models such as ‘Swapping Assignments between

multiple Views of the same image’ (SwAV) [186] can be considered as a solution [187].

However, this self-supervised model based evaluation requires pre-training on a large

dataset which is difficult to apply to specific datasets like non-visible spectrum

images, which tend to consists of few samples.

As an alternative, evaluation on downstream tasks like the experiment in

Chapter 3 plays an important role for the quality assessment of generated images in

practice, though, it does not provide a complete justification. This evaluation should

be conducted on multiple tasks rather than a single task in order to strengthen the

statement.
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Figure 6.5: The schematic of SMOTE algorithm (from [42]). The samples in
a minority class are enhanced by creating interpolated points between neighbour
samples.

6.4 Direction of Future Work

Considering Section 6.1–6.3, our future research will be planned toward the following

directions.

6.4.1 Large Image Generation of Diffusion-based I2I

Translation

The current form of our diffusion-based I2I translation has a limitation of the output

resolution (Section 4.4.6) regardless of its potential about the output image quality.

Therefore, we will explore methods to overcome this limitation of the resolution.

The encoded latent variable approaches (Section 6.2.2) could be a possible solution.

6.4.2 Investigating Other Feature Fusion Techniques

Whilst the contribution in this thesis (Chapter 3) adopts the mixup

operation on the condition of class labels, various other fusion

techniques [132] [134] [188] [189] [190] [191] can additionally be considered.

As reviewed in Section 2.4.1, recent advanced manifold mixup families such as

AlignMixup [132], OptTransMix, and AutoMix [134] provide more natural blending

of images. Synthetic Minority Oversampling Technique (SMOTE) [188] produces

artificial minority samples by interpolating between existing minority samples and

their nearest minority neighbours (Figure 6.5). In contrast, Synthetic Majority

Undersampling Technique (SMUTE) [189] creates an interpolated point between
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two existing majority samples and deletes the two samples keeping the interpolated

sample. Combined Synthetic Majority Oversampling and Undersampling Technique

(CSMOUTE) [189] fuses SMOTE and SMUTE techniques. Sampling WIth the

Majority (SWIM) technique [190] generates samples by inflating minority samples

along the density contours of majority samples. MixBoost [191] integrates mixup

with SMOTE and SWIM techniques. These feature blending methodologies may be

able to expand the diverseness of our work.

6.4.3 Employing State-of-the-art Techniques for Improving

Diffusion Models

Since the mechanism of DDPM was proposed, many techniques improving this

diffusion approach have been devised. The log-likelihoods during the optimisation

of the objective of DDPM are improved by importance sampling [167]. Whereas the

network of a standard DDPM needs to be thoroughly trained on entire timesteps

due to the imbalance of the loss scales across the timesteps, Soft-truncation [192]

eases this training requirement by a dynamic configuration of the range of truncation

of the timestep. This truncation approach results in better performances in their

experiments. The learnable noise schedule and the Fourier features [193] are effective

for the training of the diffusion training [194]. Whilst a standard DDPM uses a noise

estimator for its denoising model, Dynamic Dual-Output DDPM [195] employs two

models of a noise estimator and data estimator and dynamically combines them.

The experimental result of this method is better than the performance of a standard

diffusion approach. Subspace DDPM [43] proposes an approach to project a diffusion

process to a subspace and its orthogonal space as well as a method to choose the

subspace (Figure 6.6). The part of this orthogonal component diffusion is discarded

from a specific timestep. This approach enables not only the improvement of the

sample quality but also the reduction of the inference time. Our research may be

improved by these DDPM improvement techniques as well as the advanced diffusion

approaches in Section 6.2.
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Figure 6.6: Visual schematic of subspace diffusion (from [43]). The diffusion process
is projected to a subspace x1 and its orthogonal spacex⊥

1 . The orthogonal component
is diffused until t1 and discarded afterwards.

6.4.4 Evaluation on Multiple Downstream Tasks

In the future, we will apply the synthesised images via our proposed approach to

multiple downstream tasks such as object classification, segmentation, and detection

to investigate the effectiveness of the outcomes. This analysis should provide better

evaluations on the contributions than just calculating FID.

6.5 Societal Impact Statement

Recent advances in DGM can have a positive impact both in research and

application areas such as data augmentation, corrupted/missing data recovery,

anomaly detection and data likelihood estimation which have established routes

to broader societal impact.

Conversely, the malicious use of such generative models to generate fake

images and videos for inappropriate use in both social and mainstream media

outlooks can have negative societal impacts well beyond our research domain.

Fortunately, such generated images still contain subtle flaws that readily facilitate

expert detection [196] [197] such that inappropriate use can both be identified and

counteracted.

Images synthesised via DGM can enhance image datasets, and some techniques

can rebalance imbalanced training datasets. This possibly entails rebuilding datasets

where some demographics are under-representated [198].
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Whilst most DGM require significant computational training resources, putting

strain on both energy and semiconductor material resources alike, our contribution

(Chapter 5) instead works to address such issues by reducing the computational

requirements of such models.

6.6 Conclusion Summary

To summarise this thesis, we draw the following primary conclusions in terms of the

general topic, practical DGM-based image diversification, as:

• The diversification of image datasets is achievable using the combined use of

unpaired I2I translation and image feature fusion. The proposed approach

is valid for data augmentation on limited non-visible imagery based on the

generation of inter-class interpolated images transferred from visible images.

• DDPM, which is a kind of DGM having the characteristics of wide mode

coverage of the output samples, is applicable to I2I translation using

our methodology. Also, the generated images via this diffusion-based I2I

translation have greater quality than images generated by other previous I2I

translation methods.

• Patch-wise and discrete conditional training of our proposed method enables

the reduction of the computation and robustness when trained on small

datasets.

• Future work will consider the adoption of state-of-the-art DDPM such as

latent diffusion models and incorporate the advanced diffusion method into

the backend of I2I translation.
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