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Abstract: In this thesis we present the analytic expressions of different high-multiplicity one-loop

scattering amplitudes in Quantum Chromodynamics. The scattering amplitudes are decomposed

into combinations of colour-ordered amplitudes. The colour-ordered amplitudes are represented

as scalar integrals multiplied by coefficients, which are functions of the kinematics of the external

particles. We parametrised the kinematics using momentum-twistor variables, in order to express the

coefficients as rational functions. We found the analytic form of the rational coefficients by employing

numerical interpolation techniques, which make it possible to reconstruct analytic expressions by

sampling their value over finite fields. We computed the expressions of the one-loop corrections to

pp→ t̄tj up to second order in the dimensional regulator. We also computed the expressions of the

Maximally-Helicity-Violating six-gluon one-loop amplitudes in an arbitrary number of dimensions.

We studied different techniques for optimising the reconstruction process, developing original methods

for directly reconstructing polynomial expressions of high degree into simpler, partial-fractioned

forms.
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Chapter 1

Introduction

The ultimate goal of Science, and of theoretical physics in particular, has always been to find a

unifying theory which could explain all natural phenomena within one simple model. Tremendous

progress has been made in this direction since the introduction of quantum fields to describe the

fundamental constituents of Nature. The effectiveness of this paradigm was confirmed in the late

sixties, when Abdus Salam and Steven Weinberg used it to unify the Electromagnetic and Weak

interactions, two of the four fundamental forces of the Universe [2, 3]. In the following years,

further work lead to the formulation of the Standard Model of particle physics (SM), the most

complete unified theory known to date [4]. The SM accurately describes the nature of the Strong

and Electroweak interactions, as well as the properties of all observable matter in the universe [5].

Its most recent success was the discovery of the Higgs Boson in 2012 [6, 7], which was predicted by

the theory as a result of Electroweak symmetry breaking.

Despite being incredibly successful at making predictions at high level of accuracy for many physical

observables [8], the Standard Model does not offer the final description of reality at the sub-atomic

scale. This is the case since the theory fails to explain a variety of phenomena in cosmology

and particle physics [5]. Some of the most interesting problems with the theory are the lack of

an explanation for neutrino oscillations, the predicted but never observed charge-parity symmetry

breaking via strong interactions in Quantum Chromodynamics (QCD), and the mystery concerning

1



2 CHAPTER 1. INTRODUCTION

the true nature of Dark Energy and Dark Matter. Furthermore, the Standard Model appears to

be incompatible with General Relativity, and therefore fails to describe gravitational interactions [9].

For this reason the SM is currently regarded as an Effective theory valid up to a finite energy

scale. Above such scale, it is expected that new physics will start being detectable and play an

important role. The main interest for most of the particle physics community in the past decades

has been to look for discrepancies between the predictions of the theory and the experimental results

in the laboratory, in order to obtain data which can guide the formulation of more general theories

beyond the SM (these are commonly referred to as BSM theories).

The most important type of experiment in particle physics is the study of scatterings and decays of

highly energetic particles, most of which are studied in particle accelerators. The biggest particle

accelerator in the world is the Large Hadron Collider (LHC), in which it possible to perform

experiments at the highest energies permitted by current technology.

The second running period of the LHC (Run 2), which started in 2015 and finished in December

2018, delivered an unprecedented amount of data, with more than 160 fb−1 proton-proton collisions

recorded over the whole run [10]. This new set of experiments made it possible to observe collisions

at energies as high as 13 TeV, giving the opportunity to test Standard Model predictions at a new

energy frontier. In July 2022 the third running period (Run 3) started; it is expected to last for

four years, at the energy of 13.6 TeV [11]. Further experimental upgrades will be implemented with

the start of the High-Luminosity LHC project [12], scheduled to begin in 2026, which will increase

the integrated luminosity of the LHC design value by a factor of 10. In this context, it is crucial

to develop and refine theoretical methods to produce phenomenological predictions that can be

compared to the experimental results; in this way the LHC data can be exploited to its full potential

in the search for new physics [13].

High-precision QCD calculations play a crucial role in the phenomenology of LHC, both because

they enable to obtain more accurate estimates of physically relevant quantities such as the strong

coupling αs and the top-quark mass, and also because QCD processes represent the principal source

of background at the LHC [13]. Understanding the background processes is of vital importance in
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order to isolate interesting rare events.

In the past years it has been observed a decrease in the experimental uncertainty for many observables

at the LHC [14]. An example is the mass of the top quark, which has been determined with

sub-percentage precision by combining data from the LHC and the Tevatron experiment [15]. On

the theory side, the same quantity can be extracted from the calculation of the cross-section of

processes with top quarks and a jet as final states. The most recent theoretical predictions have an

uncertainty around the percent level [16], which is higher than the experimental ones.

The discrepancy between experimental and theoretical precision is expected to be even greater for

Higgs Bosons’s cross-sections. Since for many processes involving the Higgs boson the uncertainty

is dominated by statistical errors, the increase in LHC luminosity (number of events) is expected to

shrink the error bars by approximately a factor of five, making them significantly smaller than the

current theoretical ones.

It appears therefore clear that new methods and techniques need to be implemented so that the

theoretical work can keep up with the increasing accuracy and precision of the experimental data.

An increase in precision in QCD calculations is needed in order to achieve this goal [14].

This thesis aims to present the research of the author, which focused on the study of high-multiplicity

scattering amplitudes in QCD. Scattering amplitudes are a fundamental ingredient in the computation

of physical observables in quantum field theories (QFTs) and their study is one of the most active

areas of research in high-precision phenomenology. In this work we will present the previously

unknown analytical expressions of scattering amplitudes for different processes involving five and

six particles. In addition to describing the final analytical results, the intention is also to discuss

the original methods that have been employed to obtain said expressions. The strengths and

limitations of these new computational techniques are discussed, providing information for their

general implementation in high-precision phenomenological studies.

This thesis is organised as follows. In Chapter 2, we give a theoretical background, briefly describing

the Standard Model and the most relevant features of Quantum Chromodynamics. In Chapter

3 we introduce the modern methods for the computation of scattering amplitudes which were
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employed in the projects described in the subsequent chapters. In Chapter 4 we describe the

analytic reconstruction of rational functions using sampling over finite fields, giving a detailed

description of the algorithms which were used to obtain the expressions of the scattering amplitudes.

In Chapter 5 we present the computation of pp → t̄tj one-loop amplitudes up to second order in

the dimensional regulator. Chapter 6 contains a brief review of the history of the computation of

one-loop gluon amplitudes. In Chapter 7 we describe the computation of the one-loop six-gluon

Maximally-Helicity-Violating (MHV) amplitudes in an arbitrary number of dimensions D. The

conclusions are in Chapter 8.



Chapter 2

The Standard Model and High

Precision Physics

In this chapter present a brief overview of the fundamental aspects of the theory of the Standard

Model (SM), focusing specifically on the theory of Quantum Chromodynamics (QCD). The study

of QCD is the most relevant for precision physics, since the strong interactions dominate quantum

corrections for most processes observed in particle accelerators. This fact is a consequence of the

large value of the strong coupling constant relatively to the other fundamental forces [4, 17].

The discussion will introduce the essential theoretical background to the research presented in this

thesis. This chapter is organised as follows. In Section 2.1 we introduce the most relevant features

of the SM and explain how QCD and Quantum Electrodynamics (QED) are coherently combined

in the same framework. In Section 2.2 we describe the QED Lagrangian, and do the same for the

QCD Lagrangian in Section 2.3. Section 2.4 presents the process of renormalisation of QCD, while

in Section 2.5 we describe how QCD can be used to model physical events thanks to models in

which contributions between soft and hard energy factorise. In Section 2.6 we introduce scattering

amplitudes and how they are used to obtain hard cross-sections. In Section 2.7 we delineate the

infrared structure of QCD.

5



6 CHAPTER 2. THE STANDARD MODEL AND HIGH PRECISION PHYSICS

2.1 The Standard Model

The SM is a quantum field theory which describes the fundamental constituents of matter and their

interactions, with the exception of gravity. Interactions in the SM preserve gauge (local) symmetries

expressed by the action of the groups

SU(3)c × SU(2)L × U(1)Y, (2.1)

Group SU(3)c represents the gauge symmetry of the interactions between coloured quarks and

gluons, described by the theory of QCD. The groups SU(2)L × U(1)Y in turn describe the local

symmetries of Electroweak interactions between quarks and leptons. The subscripts refer to

left-handedness and hyper-charge, respectively.

At temperatures below a certain energy scale (∼ 160 GeV) the Electroweak symmetry is spontaneously

broken by the Higgs mechanism, following the pattern

SU(2)L × U(1)Y → U(1)EM (2.2)

which gives rise to the gauge group of Electromagnetic interactions, described by the theory of QED.

The matter content of the SM consists of fermions, which are the spin- 12 particles listed in Table

2.1 The interactions between fermions are mediated by bosons. In the theory, the bosons are the

Family 1 Family 2 Family 3 Charge
u

mu = 2.2MeV/c2
c

mc = 1.28GeV/c2
t

mt = 173.1GeV/c2 + 2
3

d
md = 4.7MeV/c2

s
ms = 96MeV/c2

b
mb = 4.18GeV/c2 − 1

3

e
me = 0.551MeV/c2

µ
mµ = 105.66MeV/c2

τ
mτ = 1.7768GeV/c2 −1

νe
mνe

< 2.2eV/c2
νµ

mνµ
< 0.17MeV/c2

ντ
mντ

< 18.2MeV/c2 0

Quarks

Leptons

Table 2.1: The fermionic content of the Standard Model. All particles have spin- 12 . The three
leptonic families are listed. We notice how the difference among the three families consists of the
different masses of their particles.

N2 − 1 group generators of the three SU(N) groups in Eq. (2.1) in the adjoint representation. We
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therefore have 8 bosons associated to SU(3)c (gluons), the three W 1
µ ,W

2
µ and W 3

µ bosons associated

to SU(2)L and the one Bµ associated to U(1)Y. After the Electroweak symmetry breaking, the

gauge bosons mix and give rise to the physical bosons:

W±
µ = (W 1

µ ∓ iW 2
µ)/

√
2 (2.3)

Aµ = sin θWW 3
µ + cos θWBµ (2.4)

Zµ = cos θWW 3
µ − sin θWBµ. (2.5)

Where θW is a dimensionless parameter which depends on the coupling of the bosons.

This thesis will be concerned with the study of physical processes described by QCD theory, which

we present in more detail in Section 2.3. For more comprehensive reviews of the SM the reader is

referred to the numerous books and reviews present in the literature [4, 5, 9, 18–20].

Before introducing QCD, we briefly higlight the most salient features of QED in Section 2.2. This

will help to understand how Lagrangians are constructed in quantum field theories. A comparison

of QED and QCD will also allow us to elucidate the higher degree of complexity of the latter theory.

2.2 The QED Lagrangian

QED is an abelian gauge theory with symmetry group U(1). It describes the interaction among

spin- 12 fermions and spin-1 vector bosons. The fermions are quarks and leptons in Table 2.1, while

the vector bosons are the photons Aµ. The lagrangian of QED is can be split into two parts:

LQED = Lclassical + Lgauge. (2.6)

The first term has form

Lclassical = −1

4
FµνFµν +

nf∑
f=1

ψ̄f (i /D −mf )ψf , (2.7)
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where the field strength tensor Fµν and the covariant derivative D are defined as:

Fµν = ∂µAν − ∂νAµ, (2.8)

Dµ = ∂µ − ieqfA
µ. (2.9)

Symbol e represent the electron electromagnetic charge, while qf is a fraction −1 < qf < 1 specific

for the fermion ψf . It is convenient to express the coupling in terms of the dimensionless constant

α =
e2

4π
, (2.10)

which is the fine structure constant. The coupling has a dependence on the energy scale of the

process, we will see this explicitly for the QCD case in Section 2.3.

The form of the covariant derivative gives rise to interactions among fermions and photons in QED.

If we derive the equation of motion for the photon field from Eq. (2.7) we obtain:

(�gµν − ∂µ∂ν)Aν = 0. (2.11)

The canonical quantisation of the photon field would therefore require the inversion of the 4 × 4

matrix k2gµν − kµkν in momentum space. This cannot be done directly since the matrix is not

invertible. This issue indicates the need of fixing the gauge of the theory and motivates the addition

of term Lgauge in Eq. (2.6). Fixing the gauge corresponds to imposing local linear constraints which

eliminate the redundancy of the gauge symmetries. We can add a covariant gauge term

Lgauge = − 1

2ξ
(∂µAµ)(∂

νAν) (2.12)

to the classical Lagrangian. As a result of the gauge fixing, it is possible to write the propagator of

the photon in momentum space:

∆̃νµ(k) =
1

k2 − iε

(
gµν − (1− ξ)

kµkν
k2

)
. (2.13)
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The freedom in the choice of gauge is encoded in the introduction of parameter ξ: different values

of ξ represent different gauge choices. The choice ξ = 0 is defined as Landau gauge and corresponds

to te imposition of the constrain:

∂µA
µ = 0. (2.14)

We refer to setting ξ = 1 as working in the Feynman gauge. In general we refer to those as Rξ gauges.

Thorough discussions of the quantisation of gauge theories can be found in numerous textbooks [4,

20].

Most of the physical processes discussed in this thesis are described by Quantum Chromodynamics,

which we introduce in the next section. We will highlight some of the similarities and differences

with QED.

2.3 The QCD Lagrangian

Quantum Chromodynamics is a non-abelian gauge theory with symmetry group SU(Nc), with Nc =

3. The subscript c refers to the colour charge, which is the name of the charge that fields have under

the gauge group. In a similar fashion to Eq. (2.6) we write it as

LQCD = Lclassical + Lgauge + Lghost, (2.15)

where the classical Lagrangian is [18]

(2.16)Lclassical = −1

4
Gµν

a Ga
µν +

nf∑
f=1

ψ̄f (i /D −mf )ψf .

The ψf are again the fermion fields, but this time they only refer to the quarks and not to the

leptons. Their index f runs from 1 to nf = 6 (number of quark flavours). Gµν
a is a tensor field which

depends on the gluon field Aµ
a

(2.17)Gµν
a = ∂µAνa − ∂νAµa + gsfabcAbAc,

where gs is the QCD coupling constant. The fabc are the group’s structure constant, they form a

basis for the group in its adjoint representation. In this convention the latin letters a, b, c index the
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gluons, which live in the adjoint representation of the SU(Nc) gauge group, and thus run from 1 to

N2
c − 1. This means that gluon vector fields Aµ can be expressed in the basis Aµ = Aa

µt
a, where ta

are the gauge group generators. They are often expressed as

taij =
1

2
λaij , (2.18)

where λaij are the Gell-Mann matrices [21]. Quarks, in contrast, live in the fundamental representation

of SU(Nc) and their indices run from 1 to Nc.

We see that Gµν
a has a similar form to Eq. (2.8), with the addition of a term quadratic in the gluon

field. This term needs to be added since QCD is a non-abelian theory. A physical consequence of

this is that gluons, differently from photons, are self-interacting particles. This fact plays a crucial

role in the difference in complexity between the calculations in QED and QCD: the presence of

three and four-gluon interactions greatly increase the number of Feynman diagrams which need to

be computed for a specific process in QCD, compared to processes at similar energies in QED. The

ta generators have the property [4]
(2.19)

[
ta, tb

]
= ifabctc,

and in our presentation we choose the normalisation

tr(tatb) = TRδ
ab, TR =

1

2
. (2.20)

This choice fixes the following relations:

taijt
a
jk = δikCF , CF =

N2
c − 1

Nc
, (2.21)

fabcfabd = δcdCA, CA = Nc.

Constants CF and CA are the Casimirs of the group.

Like in the case of the photon in QED, it is necessary to add the term Lgauge to the classical

Lagrangian in order to have a well defined physical gluon propagator when the theory is quantised.



2.3. THE QCD LAGRANGIAN 11

The gluon propagator in the case of the addition of a covariant term to the Lagrangian is:

Gab
νµ(k) =

iδab

k2 − iε

(
ηµν − (1− ξ)

kµkν
k2

)
. (2.22)

Compared to the abelian case, however, the non-abelian theory presents a further complication. The

introduction of a covariant gauge term is not sufficient to cancel out unphysical polarisation states

of the gluons [19]. A theory with Lagrangian Lclassical +Lgauge predict the existence of gluons with

polarisation vectors parallel and anti-parallel to their momentum k. Since these are not observed in

the real world, it is necessary to introduce a new term to cancel such states. This term has form:

(2.23)Lghost = −c̄a∂µDab
µ c

b.

The ca are named Faddeev-Popov ghosts, they are anticommuting ghost fields which live in the

SU(Nc) adjoint representation and obey the fermionic statistics. They do not correspond to any

real physical state. The reader can find in Section 16.2 of [19] a derivation which shows how the

introduction of gauge-fixing and ghost terms prevent the redundant integration over the infinite

space of physically equivalent gauge configurations.

It is possible to make an alternative choice to the one of a covariant gauge-fixing term: the axial

gauge. The benefit of using the axial gauge is that it does not need the introduction of ghost fields.

It requires fixing the the gauge field with respect to an arbitrary vector nµ:

LQCD
gauge = − 1

2ξ
(nµAa

µ)(n
νAa

ν). (2.24)

The gluon propagator is then:

Gab
µν(k) =

iδab

k2 + iε

(
−ηµν +

kµnν + kνnµ
k · n

− (n2 + ξk2)kµkν
(k · n)2

)
. (2.25)

Such an expression for the propagator is much more complicated than Eq. (2.22), this is the trade-off

which is made for avoiding the presence of ghost fields.

In the case in which the reference vector is massless, n2 = 0, we are in the light-like axial gauge,

and there are only two polarisation states for the spin-1 particles. They then satisfy the following
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equation ∑
s=±1

εµs ε
ν∗
s = −ηµν +

nµkν + nνkµ

n · k
, (2.26)

where s = ±1 are the two polarisation states,which represent the helicity of the particles. These

definition will be useful in Chapter 3.

Once the choice of gauge has been made, it is possible to write down the interaction terms of the

Lagrangian. These are the non-linear terms which depend on the couplings of the fields:

Lint = gsA
a
µψ̂

f
i γ

µtaijψ
f
j − gsf

abc(∂µA
a
ν)A

µ,bAν,c − 1

4
g2s(f

eabAa
µA

b
ν)(f

ecdAµ,cAν,d) + gsĉ
a
i ∂

µAa
µt

c
ijc

c
j .

(2.27)

Each of the terms in Eq. (2.27) is represented by a diagram with its associated Feynman rule. All

the QCD Feynman rules are listed in Appendix B. The strong coupling constant in QCD is defined

in a similar way to the fine structure constant in Eq. (2.10):

αs =
g2s
4π
. (2.28)

2.4 Ultraviolet Divergences and Renormalisation

Since the development of the earliest quantum field theories, it has been known that the direct

application of the Feynman rules derived from the interaction terms of Lagrangians cannot be used

to compute physical observables at arbitrarily high energies [5]. The computation of quantum

corrections, in fact, requires the evaluation of Feynman diagrams with internal loops, as it will be

explained in Section 2.6. The momentum of the virtual states k flowing in the internal loops is

unconstrained and its values must be integrated over the whole energy range
∫∞
0
dk, this causes

the appearance of divergences. Feynman integrals can evaluate to infinity in the limits k → 0 and

k → ∞, these are called respectively infrared (IR) virtual divergences and ultraviolet (UV) virtual

divergences. In this section we will focus on the latter cases, infrared divergences are discussed in

Section 2.7.

We take as an example the simplest one-loop correction to a Feynman propagator displayed in Figure

2.1, following a similar argument to [5]. To compute this correction we must evaluate the Feynman
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p

p− k

k

p

Figure 2.1: The quark self-energy is an example of a divergent Feynman diagram in QCD.

integral

I =

∫ Λ d4k

(2π)4
1

k2(p− k)2
, (2.29)

for which we have

lim
k→∞

I = log(Λ). (2.30)

We chose to integrate up to what is called a cutoff scale Λ, in order to explicitly show that the integral

diverges at high energies. The physical interpretation of such a behaviour is that our current physical

models should be interpreted as effective field theories, only valid up to a specific energy scale. For

this reason we cannot model interactions happening at arbitrarily high energy scales (or, equivalently,

arbitrarily short distances). A truly complete theory of fundamental interactions is expected to be

free of such divergences. Renormalisation should then be understood as a series of techniques which

allow to extract physical predictions from a an effective theory, isolating the values of observables

at lower energies from unkown high-energy effects.

Introducing a cut-off is an example of the regularisation of the divergences. We refer to regularisation

to indicate any method which allows to parametrise the dependence of computed quantities on the

UV or IR scale. The introduction of a cut-off has the drawback of breaking gauge invariance. In

this section we discuss the dimensional regularisation (DR) scheme [22], which has been employed

in the project discussed in Chapter 5. Other schemes, such as the Pauli-Villars [23], are commonly

used. The reader can find discussions and reviews of the methods in many textbooks [4, 5, 19].

The crucial insight behind the DR scheme is that integral of Eq. (2.29) does not diverge for all values

of the dimensions D. We therefore compute the integral in an arbitrary number of dimensions. In

order to do this, it is possible to express it in a different form introducing a Feynman parameter x
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so that
1

k2(p− k)2
=

∫ 1

0

dx
1

((k − xp)2 + x(1− x)p2)2
=

∫ 1

0

dx
1

(l2 +M2)2
, (2.31)

where we defined l = k−xp,M2 = x(1−x)p2. We can invert the order of integration and substitute

dk → dl. We then have the task of computing
∫
dl 1

(l2+M2)2 , it is convenient to perform a Wick

rotation, equivalent to changing the energy component of the four vector l: l0 → il0E, defining

lE = {il0, l1, l2, l3}. Once this is done we obtain integral

∫ ∞

−∞

dDlE
(2π)D

1

(l2E +M2)2
=

(M2)D/2−2

(4π)D/2
Γ[2−D/2]. (2.32)

A common choice is D = 4 − 2ε; if we make that substitution and perform the final integral in dx

we obtain

I(4− 2ε) =
i

(4π)2

(
1

ε
− γE − log(−p2)− log (4π)

)
+O(ε), (2.33)

where γE is the Euler-Mascheroni constant. We then see that the UV divergence is parametrised

as a simple pole with a clear dependence on the dimensionality of the integration measure.

Once the UV divergences have been identified, it is possible to insert counter-terms in the Lagrangian

which cancel such divergences and give predictive power to the theory. This is normally done by

redefining the fields and parameters in LQCD. One can start by writing the exact two-point function

in an interactive quantum field theory. Here we present the fermionic propagator as an example,

using the same notation as in Chapter 10 of [19]:

DF(x) = 〈Ω|T (ψbare(x)ψ̄bare(0)) |Ω〉 =
∫

d4p

(2π)4
iZ2e

−ip·x

/p−m+ iε
. (2.34)

In Eq. (2.34), |Ω〉 represents the vacuum of the interacting theory, while T is a time-ordering

operator. We introduce the subscript bare to refer to the parameters entering in the Lagrangians

such as the ones in Eq. (2.27), these are different from the physical renormalised quantities [19]. We

present here the rescaling of the fermions, gauge bosons and ghosts together with the redefinition of
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the coupling constant and mass, expressed in the same way as in [24] :

ψbare =
√
Z2ψ, (2.35)

Aµ
bare =

√
Z3A

µ, (2.36)

cbare =
√
Zc
2c, (2.37)

gs,bare =
Z1

Z2

√
Z3

gs = Zggs, (2.38)

mbare = Zmm (2.39)

The factors Z2, Z3, Z
c
2 are wave-function renormalisation constants, it is common practice to account

for them by rescaling the fields: this procedure is referred to as wave-function renormalisation [20].

One is then free to define the counter-terms δi so that Zi = 1 + δi. This allows us to separate the

bare Lagrangian from the one containing the counter-terms, obtaining:

LQCD = Lbare + Lc.t.. (2.40)

The exact form of the counter-terms δi depends on the choice of renormalisation scheme [24]. This

freedom is a consequence of the fact that the poles of the renormalisation constants need to be

fixed to exactly cancel the poles in epsilon such as the one appearing in Eq.(2.4), but this is not

the case for any additional finite term. One possible choice corresponds to the subtraction of only

the epsilon poles appearing in the loop integrals; this is referred to as the minimal subtraction

scheme [20]. A more widely-used scheme is the modified-minimal-subtraction scheme, in which in

addition to the poles we also subtract a universal constant appearing in all loop integrals [19]. For

masses, the on-shell scheme is also commonly used: this is defined by the requirement that the

quark two-point function vanishes at the position of the on-shell mass [20, 25]. In practice, if we

write the renormalised quark propagator in momentum space as

D̃F(p) =
iZ2

/p−mbare +Σ(p,m) + iε
, (2.41)

then we require its inverse D̃−1
F (p) to vanish at the position of the on-shell mass m. The function
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Σ(p,m) represents the quark self-energy [25], details on its computation at one loop can be found

in many textbooks and reviews [19, 24]. The form of Z2 is in turn determined by the prescription

that the residue at m must be equal to i, therefore having

lim
p2→m2

D̃F(p) =
i

/p−m+ iε
. (2.42)

This leads to the following form for the Zm renormalisation constant: Zm = 1 + Σ(p,m)|p2=m2 .

We then see that the physical mass is distinct from the bare mass mbare which appears in the

Lagrangian, as explained before.

The renormalisability of QCD ensures that the UV divergences for all possible processes can be

cancelled by this finite number of counter-terms [19].

In many renormalisation schemes, a distinction is made between the dimensions of the integral

measure D and a quantity defined as the spin dimension ds [26]

ds = ηµµ . (2.43)

The spin dimension arises from the contractions of the integrand numerators. Different choices are

made in different reduction schemes. In the Conventional Dimensional Reduction (CDR) scheme

we have ds = D, in the ’t Hooft-Veltman (tHV) scheme ds = 4− 2ε [27], while in the Four Helicity

Dimensional (FHD) scheme ds = 4 [28].

An important consequence of the change in the dimensions to D < 4 in DR is that we need to

introduce a dependence of the strong coupling constant on an energy scale µR, to ensure that LQCD

retains the correct dimensions. We know that LQCD must define a dimensionless action, and changing

the number of dimensions to D < 4 would yield to a Lagrangian with the wrong mass-dimensions.

This fact makes it necessary to introduce the renormalisation scale µR, so that we can redefine the

coupling constant as

gS = µε
RgS , (2.44)

in this way gS remains dimensionless. Since µR was introduced for mathematical convenience, any
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real physical observable Oobs must be independent of it, having ∂Oobs
∂µR

= 0. This must then be true

for the bare coupling constant:
∂gS,bare

∂µR
= 0. (2.45)

The condition of Eq. (2.45) imposes a dependence of the renormalised strong coupling on µR. This

dependence is expressed by the Callan-Symanzik β-function [29, 30]:

β(αs) :=
dαs

d log(µ2
R)

= −
∞∑

n=0

βn

(αs

4π

)n+2

. (2.46)

The coefficients of Eq. (2.46) have been computed up until β4 (five loops) [31, 32]. The behaviour

of the strong coupling constant at the variation of the energy scale is defined as the running of the

coupling. All five β coefficients are positive, indicating that the coupling decreases at higher energies,

as shown in Figure 2.2. This property is referred to as the asymptotic freedom of the theory, and

it shows that perturbative expansions can be used to compute quantities in QCD for processes at

sufficiently high energies (hard processes). Processes at lower energies are referred to as soft physics,

and need to be modelled using different methods. We will explore these concepts further in the next

section. In Section 2.4 we will see how the scale dependence of αs is related to the cancellation of

divergent quantities from the physical theory.

2.5 Physical Observables and Factorisation

The main physical observables computed in particle physics are differential cross-sections [18]. These

are quantities which allow us to calculate the probability of a specific scattering or decay process,

and their computation consists of several steps.

Firstly, an accurate description of the initial states is required. Such a description is simple if the

initial states are fundamental particles, but it presents a significant challenge if they are composite

hadrons. In the latter case, Parton Distribution Functions (PDFs) need to be computed [18]. PDFs

are not calculated perturbatively, but instead by fitting the theoretical models to the experimental

data [34, 35]. This is the case because the quarks and gluons bound in a parton interact at energies

much lower than the ones of the observed scattering events in the accelerator. From our discussion
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Figure 2.2: Experimental measurements of αs as a function of the energy Q [33]. The black line
shows the theoretical prediction with its confidence interval.

in Section 2.4 we know that this means that the value of αs in such a regime is not small enough to

perform a perturbative expansion. PDFs are universal, which means that once they are computed,

their form can be used in all processes having the same partons as initial states [18, 35] .

The scattering of partons is, instead, a hard process happening at higher energies. Such interactions

are modelled by fixed-order perturbative calculations, as we will see in Section 2.6 in more detail.

As the last step, in order for the calculations to be comparable with experimental data, it is necessary

to model the transition from the high-energy of the scattering event to the low-energy regime, where

particles bond into jets which can be measured by detectors. This is achieved by simulating the

emission of unresolved soft and collinear radiation and of hadronisation processes. Three main classes

of hadronisation models are commonly used: independent fragmentation [36], the string models [37]

and the cluster models [38].

Hadronisation events are simulated via Monte Carlo event generators such as SHERPA [39], PYTHIA



2.5. PHYSICAL OBSERVABLES AND FACTORISATION 19

[40], and HERWIG [41]. Most of the available hadronisation models require the definition of

fragmentation functions DF, which, like the PDFs, are modelled from empirical data and are assumed

to be process-independent.

The values of the PDFs and fragmentation functions depend on a factorisation scale µF which sets

the energy separation between soft and hard processes. The dependence that said functions have

on µF has the effect of renormalising their divergences, in a similar way to how the strong coupling

constant must depend on µR to renormalise the bare Lagrangian of QCD, as seen in Section 2.4. In

this framework, a parton distribution function fhi (x, µ2
F ) expresses the probability of finding a parton

i with a fraction x of the total momentum inside the hardon h. The PDFs have a dependence on the

factorisation scale which is expressed by the Dokshitser-Gribov-Lipatov-Altarelli-Parisi (DGLAP)

equations [42–44]. Following a similar argument to the one that lead us to Eq. (2.45), we expect

the physical cross-section to be independent of the arbitrary factorisation scale µF . In a Taylor

expansion, the cancellations of αS-depending terms will be approximate, so at order αk
S :

µ2
F

∂dσ

∂µ2
F

= 0 +O(αk+1
S ). (2.47)

Therefore we expect that the dependence of the hadronic cross-section on the factorisation scale

will decrease as we reach higher orders in perturbation theory. This fact is verified empirically by

employing the method of scale variation, in which the cross-section is computed for different values

of µF [45].

The factorisation theorem allows us to model the whole physical process as a convolution of the

quantities contributing to each soft and hard part [4]. We consider the toy example of the process

hahb → X depicted in Figure 2.3. of two hadrons interacting and producing a final state hadrons

X. According to the factorisation theorem, the differential cross-section can be modelled as:

dσ(hahb → X) =
∑
ij

∫ 1

0

dx1dx2fi,h1
(x1, µ

2
F )fi,h2

(x2, µ
2
F )× (2.48)

dσ̂ij(i(x1pa)j(x2pb) → X̂, µ2
F , µ

2
R, Q

2)×DF(X̂ → X,µ2
F ) +O

(
ΛQCD

Q

)
,
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~pa

~pb

i

j Xdσ̂ij

fi,h1
(x1)

fj,h2(x2)

Hadronisation

Soft Physics Hard Physics Soft Physics

Figure 2.3: Schematic representation of a hahb → X scattering event. We distinguish the parts of
the process described by perturbative (hard) and non-perturbative (soft) quantum field theory. The
symbols are the same as the one in Eq. (2.48).

where the initial states have momenta pa and pb. The partonic initial states of the hard scattering

process are labelled i and j, while the final states of the hard scattering events are represented by X̂.

The fragmentation function describes the hadronisation process from partons X̂ to observables X, as

shown in Figure 2.3. We see that Eq. (2.48) is not exact, but has corrections of order O(ΛQCD/Q).

The critical energy ΛQCD is the energy for which αs(ΛQCD) ≈ 1 and the perturbative approach is

no longer valid. This shows that the formula is applicable in cases in which the hard scattering

energy Q is much higher than ΛQCD. The factorisation theorem has been formally proven only for

Deep-Inelastic-Scattering (DIS) processes and Drell-Yan processes [18]. In a Drell-Yan process the

final state consists of two oppositely-charged leptons [46].

In the next section we will se how the process-dependent hard scattering cross-section can be

computed using scattering amplitudes.

2.6 Scattering Amplitudes

We can now discuss how scattering amplitudes can be used to compute the hard cross-section and

how this is related to the QCD Lagrangian of Eq. (2.15). In order to do this we introduce the

S-matrix, following [47].

We see from Eq. (2.46) that when working in the hard scattering regime we are justified in treating
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the incoming and outgoing states as asymptotically free when far away from the scattering region.

If we assume that the scattering happens at time t = 0, then we take the states |in〉 and |out〉 to

be at times t = −∞ and t = +∞ respectively. The evolution of the states can be described by the

free-state Hamiltonian Hfree at infinite times and the interaction Hamiltonian Hint at the scattering

time. So the evolution |in〉 → |out〉 is expressed as

|out〉 = exp(iHfreetout) exp(iHint(tout − tin)) exp(−iHfreetin) := U(tout, tin) |in〉 . (2.49)

We then define the S-matrix as [19]

S := lim
tin→−∞
tout→+∞

U(tout, tin) = U(−∞,∞). (2.50)

We analyse the scattering process papb → p1, ..., pn, for which we have initial and final momentum

eigenstates |in〉 → |pa, pb〉 and |out〉 → |p1, ..., pn〉. The S-matrix element related to this process is

〈p1, ..., pn| S |pa, pb〉 , (2.51)

and the transition probability from state |in〉 to state |out〉 is

P (in → out) = |〈out| S |in〉 |2. (2.52)

The Lorentz-invariant normalisation of the states is:

〈p′|p〉 = (2π)3δ(3)(p− p′). (2.53)

This implies that the first term in the perturbative expansion for the elastic scattering will be

(2π)3δ(4)(pa + pb −
∑n

i=1 pi). From this analysis we see that the S-matrix can be decomposed into

[47]

S = 1+ iT , (2.54)



22 CHAPTER 2. THE STANDARD MODEL AND HIGH PRECISION PHYSICS

so that we have:

〈p1, ..., pn| S |pa, pb〉 = 〈p1, ..., pn|pa, pb〉+ i 〈p1, ..., pn| T |pa, pb〉 . (2.55)

From Eq. (2.55) we see that all the information on the interaction is contained in T . The interactions

in the theory are those expressed by Eq. (2.27); Hint is derived from Lint.

The relation between the S-matrix and the scattering amplitude A is expressed by [19]

〈p1, ..., pn| T |pa, pb〉 = i(2π)4δ(4)(pa + pb −
n∑

i=1

pi)An+2, (2.56)

with the four-dimensional delta function ensuring momentum conservation. The scattering amplitude

can be expressed as an expansion in the coupling constant, in the case of QCD it is αs, so for a

scattering event involving n+ 2 total external states (incoming and outgoing) we have :

An+2 = αm
s A(0)

n+2 + αm+1
s A(1)

n+2 + ...+ αm+L
s A(L)

n+2 +O(αm+L+1
s ). (2.57)

The order of the coupling m in Eq. (2.57) depends on the process being studied, it can be inferred

from the number of vertices in the simplest Feynamn diagrams for the process. The superscript

of A(i)
n+2 indicates that the term is the i-th in the expansion and it corresponds to the number of

loops in the Feynman diagrams which contribute to it. In the literature the term amplitude is used

to refer to both the left-hand side of Eq. (2.57) and to each of the terms on its right-hand side

[48]. In this work we will use the terminology n-point k-loop amplitude to refer to A(k)
n . The first

term in the expansion is also referred to tree-level amplitude, due to the fact that it is obtained

by summing Feynman diagrams free of loops [48]. The results in this thesis will concern five and

six-point tree-level and one-loop amplitudes. A hard differential cross section dσ(papb → p1...pn),

for which the initial and final states are not composite hadrons, is equal to the amplitude squared

divided by the flux of the particles F and multiplied by a Lorentz-invariant differential phase-space

dΦn [49],

dσ(papb → p1, .., pn) =
1

F

(∑
|An+2|2

)
dΦn. (2.58)
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The symbol
∑

is used to indicate that the spins and colour factor of the initial states of the

amplitude are averaged, while the spins and colours of the final states are summed. The flux-factor

and differential phase-space have form [49]:

F = 4
√
(pa · pb)2 −mamb, (2.59)

dΦn = δ(4)(pa + pb −
n∑

i=1

pi)

n∏
j=3

d3pj
(2π)22Ej

δ(+)(p2j −m2
j ). (2.60)

The δ(+) functions indicate a restriction to the future light cone, so that δ(+)(p2 −m2) =

δ(p2 −m2)θ(p2 −m2). The quantity dσ(papb → p1...pn) is also referred to as exclusive differential

cross-section, in order to stress the fact that it only describes a scattering event with an exact set of

final states. Eq. (2.58) is clearly different from Eq.(2.48), since in the former case there is no need

to take into account any PDFs or hadronisation processes.

It possible to perform a perturbative expansion of dσ̂ij similar to the one of Eq. (2.57):

dσ̂ij = α2m
s dσ̂LO

ij + α2m+1
s dσ̂NLO

ij + α2m+2
s dσ̂NNLO

ij +O(α2m+3
s ). (2.61)

Where LO stands for Leading Order, NLO for Next-to-Leading-Order and so on; the k-th term in

the expansion will be referred to as NkLO. The cross-section dσij does not have a fixed number of

final states, due to the possibility of the emission of unresolved final states, i.e. states which have

energies below the sensitivity of the detector. For this reason dσijcan be referred to as an inclusive

differential cross-section [4, 19]. This means that each term in the expansion Eq. (2.61) is equal

to the sum of different cross-sections of the form of Eq. (2.58), each integrated over the correct

final-state space. We show this explicitly for the first terms in the expansion [50]:

dσ̂LO
ij =

∫
Φn

dσ̂B, (2.62)

dσ̂NLO
ij =

∫
Φn

dσ̂V +

∫
Φn+1

dσ̂R. (2.63)
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Where dσ̂B is referred to as the Born amplitude, while dσ̂V and dσ̂R are called virtual and real

corrections respectively [50]. These are expressed in terms of scattering amplitudes as

dσ̂B = dΦn|A(0)
n |2, (2.64)

dσ̂V = dΦn(A(0)∗
n A(1)

n +A(1)∗
n A(0)

n ) = 2<(A(0)∗A(1)), (2.65)

dσ̂R = dΦn+1|A(0)
n+1|2. (2.66)

We can then see that in the NLO case the term real or virtual distinguishes the case in which the

additional particle is virtual in an internal loop from the one in which it is a real final emission. If

we go up to NNLO, we will also need to compute double-real and double-virtual corrections.

In Eqs. (2.67), (2.68) and (2.69) we show the contributions up to order O(α2m+3
s ) for the three

processes of different multiplicity. The colour-coding clarifies which differential cross-sections contribute

to which inclusive observable. We stress again that only terms with the same power of αs are

combined, as required to have a sensible Taylor expansion.

|An+2|2= α2m+2
s |A(0)

n+2|2 +O(α2m+3
s ), (2.67)

|An+1|2= α2m+1
s |A(0)

n+1|2 + α2m+2
s 2<(A(1)

n+1A
(0)∗
n+1) +O(α2m+3

s ), (2.68)

|An|2 = α2m
s |An|2+ α2m+1

s 2<(A(1)
n A(0)∗

n )+ α2m+2
s (2<(A(2)

n A(0)∗
n ) + |A(1)

n |2) +O(α2m+3
s ). (2.69)

dσ̂LO
ij dσ̂NLO

ij dσ̂NNLO
ij

The Born cross section is finite in four dimensions and can be directly integrated to obtain the

leading order result. The real and virtual corrections, on the other hand, exhibit divergences in

certain kinematical limits of the phase-space [50]. This will be topic of the next section.

2.7 Cancellation of Infrared Divergences

In Section 2.4 we have seen that loop integrals exhibit IR virtual divergences. At NLO, these will

be present in the expression of the virtual correction dσ̂V . Differently from UV divergences, the
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IR ones are not cancelled by the addition of the counter-terms after renormalisation. Instead, such

divergences are expected to cancel exactly when summed to the real correction dσ̂R. From Eq. (2.66)

we know that these are the lower order contributions with a higher number of final states, in the limit

in which such additional final states are below the energy resolution of the detector. Infrared-safety

(the absence of IR singularities from physical observables) is ensured by the Block-Nordsieck [51,

52] and the Kinoshita-Lee-Nauenberg (KLN) theorems [53, 54]. The first theorem states that IR

divergences cancel between real and virtual contributions when all indistinguishable final states are

added up, while the second proves that in any quantum field theory the transition rate between

states of equal energy is free of IR divergences in the limit of massless particles. As a consequence,

all quantities dσ̂LO
ij , dσ̂NLO

ij , dσ̂NNLO
ij , ..., are free of IR singularities.

While the previous discussion ensures the absence of IR singularities from inclusive final states at

colliders, this is not the case for the initial states in hadronic collisions. In such states collinear

singularities do not cancel, and need to be absorbed at the factorisation scale µF into the so-called

bare PDFs in order to obtain the physical PDFs described in Section 2.5 [34] . These singularities

originate from degenerate collinear states inside protons which cannot be resolved individually [18];

factorization of initial state collinear singularities into parton distributions can be proven to all

orders in perturbation theory [55].

In Eq. (2.63) we see that in order to cancel the virtual divergences we need to sum the real correction

cross-section integrated over the correct phase-space. Since only tree-level expressions contribute to

dσR, clearly its IR divergences are not virtual, i.e. they do not arise from the low-energy limit of

the integral over an internal momentum. Instead, they are real IR divergences. These can be of two

types [56]:

1. collinear singularities, which arise when 2 particles i and j become collinear to each other,

meaning pi · pj = 0,

2. soft singularities, which arise when the energy of one of the massless final particles i goes to

zero, Ei → 0 .
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θ
An−1

k

p

Figure 2.4: An example of the real correction to a An amplitude. The soft limit corresponds to
k → 0 and the collinear limit (in the m→ 0 case) to θ → 0.

We illustrate both cases with the simple example of an amplitude An radiating a real gluon from

one of its quark final states. This is equivalent to adding a quark virtual line which radiates a real

quark of mass m and momentum p and a real gluon of momentum k, as shown in Figure 2.4. The

propagator of the virtual quark is

1

(p+ k)2 −m2
=

1

2(p · k)
=

1

EpEk

1

1− βp cos θ
, (2.70)

where Ek and Ep are the energies of the radiated quark and gluon respectively, and we define

βp =
√
1−m2/E2

p . The angle θ is defined in Figure 2.4.

We see that for Ek → 0 we have a divergence since the integration over the space of final state has

a dependence on the gluon energy of ∼ EkdEk, while the squared amplitude has a double pole 1
E2

k
.

This is an example of a singluarity originating from a gluon going soft. We also notice that in the

massless case (m → 0) the amplitude will diverge for cos θ → 1, this corresponds to the massless

quark and the gluon going collinear. The IR limits are universal properties of the theory [57].

While the Block-Nordsiek and the KLN theorems formally solve the problem of IR divergences,

they do not provide a method for the practical computation of physical cross-sections, since Monte

Carlo techniques cannot be employed to perform the integrations of the form of Eq. (2.63). Three

main methods have been developed in the field to address this issue: phase-space slicing [58, 59],

sector decomposition [60] and subtraction [61–63]. Since the latter method is the one more commonly

used in high-precision QCD calculations, we present its general features.

In the subtraction technique, the IR divergences are subtracted at the integrand level, making it

possible to perform numerical integration in four dimensions of only regular quantities.
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At NLO the method is based on the introduction of a counter-term dσA [50]:

(2.71)dσ̂NLOij =

∫
Φn+1

(dσ̂R − dσ̂A) +

∫
Φn

(
dσ̂V +

∫
Φ1

dσ̂A
)
.

The counter-term dσ̂A contains the same singularities as dσ̂R but with opposite sign. In this way it

is possible to combine the two terms, see that the IR singularities cancel and then safely perform the

Monte Carlo integration. The same procedure applies to dσ̂V, where its poles are cancelled by the

ones of dσ̂A once it has been integrated over the one-parton phase space
∫
Φ1

. The counter-terms can

be systematically computed by exploiting the factorisation properties of the scattering amplitudes

in their IR limits (see for example [64] and [65]). The creation of algorithms to obtain counter-terms

for general NNLO and N3LO is an active area of research. The reader is referered to [55], [66] and

references therein for a detailed discussion of IR divergences and recent advancements.

The universality of the IR poles and of the factorisation functions ameks it possible to perform

strong checks after amplitudes of new processes have been computed. Even if the general form of an

amplitude is not known a priori, the behaviour in the soft and collinear limits is constrained. We

will see an example of such checks on the expressions derived in Chapter 5.

We have seen in this chapter that scattering amplitudes are a fundamental ingredient for the

computation of observables in QCD. In Chapter 3 we are going to discuss some modern techniques

for their computation at one loop.



Chapter 3

Modern Methods for Scattering

Amplitudes

As we have seen in Chapter 2, the standard prescription for the computation of unpolarised QCD

cross-sections consists of obtaining the squared scattering amplitude as the first step. This is done by

computing all the possible multiplications of the individual Feynman diagrams and then averaging

and summing the spins and colours of the initial and final states respectively. This procedure is

unfeasible for most processes beyond four-particle scatterings at tree-level due to the high number

of Feynman diagrams contributing, which grows higher than factorially with the number of external

states [49]. For this reason modern amplitude methods aim at the computation of the whole

unpolarised amplitude expression as a complex number, which is then squared to obtain the

cross -section. This technique has proven to be extremely effective for high-multiplicity tree and

loop computations [49].

The aim of this chapter is to describe these methods, with a particular focus on the ones which

were employed to derive the results presented in chapters 5 and 7. The topic of the computation of

amplitudes in QCD and Yang-Mills theories is vast, and for a more comprehensive review the reader

is referred to [49, 67, 68] and references therein.

28
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A crucial step in most modern amplitude calculations is their decomposition as sums of smaller

expressions. Schematically, a one-loop n-gluon QCD amplitude can be decomposed as [68]

(3.1)A1−loop
n =

∑
J

∑
c

∑
h

A[J]
n;c(h),

where the sums are over the spins J of the internal particles in the loop, the colour factors,indexed

by c, and the helicities h of the external states (in our notation indicated as + or −). We will refer to

the terms A[J]
n;c(h) as sub-amplitudes in this thesis. It is then convenient to individually compute the

independent sub-amplitudes A[J]
n;c(h) and later combine them to obtain the full result. This strategy

is applied because it allows the calculation to be divided into smaller steps and makes full use of the

symmetries of the sub-expressions making up an amplitude, avoiding redundant computations.

This chapter is organised as follows. In sections 3.1 and 3.2 the decomposition of Eq. (3) will be

described in greater detail. In the former section we describe the decomposition into colour-ordered

sub-amplitudes, in the latter we introduce the spinor-helicity formalism. In Section 3.4 we detail how

amplitudes can be expressed using momentum-twistor variables, which will be used to express many

results in this thesis. Section 3.5 explains how the unitarity of the S-matrix can be exploited for the

computation of amplitudes, while in Section 3.6 we describe an integrand-reduction method which

will be essential for the work of Chapter 7. In Section 3.7 we describe an additional decomposition

method which proved to be useful in the computation of one-loop gluon amplitudes. The last

computational technique presented is the use of complex shifts for one-loop amplitudes, in Section

3.8.

3.1 Colour Decomposition

This section focuses on the colour decomposition part of Eq. (3). We only give explicit results for

tree-level amplitudes, while the colour decompositions for the specific one-loop processes studied in

this thesis are presented in Section 5.2 and Section 7.2 of chapters 5 and 7 respectively. Most of

the theory exposed in this section is an elaboration of [49] and [67]. Observing the Feynman rules

in Appendix B we see that each vertex and propagator has a colour factor and a kinematic factor.

This fact generalises to amplitudes, making it possible to organise the calculations according to the
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colour algebra, in this case SU(Nc)

(3.2)A =
∑
i

CiAi,

where Ci is the colour factor [69, 70]. The meaning of Eq. (3.2) is that it is possible to separate the

term of the amplitude which depends exclusively on the colour quantum numbers

a = 1, ..., (N2
c −1) (for a SU(Nc) gauge theory) from the part depending exclusively on the momenta

pi and polarisations.

The Ai are referred to as primitive amplitudes. At tree-level the primitive amplitudes are specific

sub-amplitudes in which external legs have fixed order in colour space, called colour-ordered amplitudes

or partial amplitudes [69]. They can be computed efficiently exploiting the Berends-Giele recursion

relations [71]. For the one-loop case, primitive amplitudes correspond to linear combinations of

colour-ordered amplitudes, further decomposed according to their internal flavour. Their explicit

expression for some five and six-point processes will be seen in chapters 5 and 7.

Working in this framework the squared amplitude becomes

(3.3)
∑

colours

|A|2 =
∑

colours

∑
i

∑
j

A†
iC

†
iCjAj =

∑
i,j

A†
iCijAj ,

where we defined the colour matrix Cij =
∑

colours C
†
iCj .

We then see that Ai can be thought of as a vector in colour space whose entries are independent

primitive amplitudes. For n-gluon amplitudes the colour factors are traces obtained by contracting

the SU(Nc) generators Tr(taσ(1) ...taσ(n)) = tr(σ(1)...σ(n)) [67]. Because of the cyclic symmetry

of traces, a basis of independent colour structures is obtained by computing all the non-cyclic

permutations of the colour indices. Since the overall amplitude is expected to be invariant under

the cyclic permutations of the external legs, such a symmetry must also be present for the kinematic

parts. This greatly diminishes the complexity of a calculation, since for an n-point amplitude it

makes it sufficient to compute (n − 1)! independent primitive amplitudes. Further analysis reveals

that these partial amplitudes possess a reflection symmetry [72]

(3.4)A(1, ..., n) = (−1)nA(n, ..., 1),

which means that there are only (n−1)!
2 independent amplitudes. So we have explicitly

(3.5)Atree
n (g1, ..., gn) =

∑
σn∈Rn−1

tr(σ(1)...σ(n))×A(σ(1)...σ(n))
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for the group Rn−1 which is the reflection-independent subset of Sn−1 = Sn

Zn
(remembering that Zn

is the cyclic permutations subset of the group of permutations Sn).

Additional relations can be found among the primitive amplitudes of 3.1, further reducing the set

of independent ones. We explicitly state the Kleiss-Kuijf relations [73]

(3.6)An(1, α, 2, β) =
∑

σ∈OP{α}{β}

An(1, σ, 2),

where OP{α}{β} indicates all the permutations that keep the relative ordering of sets α and β

unchanged.

Taking the Kleiss-Kuijf relations into account, the number of independent primitive amplitudes can

be reduced to (n− 2)!. It is possible to reduce this number further by applying the

Bern-Carrasco-Johansson relations, which we do not state explicitly, obtaining a set of only (n− 3)!

independent expressions. It is worth noticing, however, that in many cases the computations are

carried out in a larger over-complete set of primitive amplitudes, instead of the smallest possible

one. This is the case because it can happen that the price of a larger set is compensated by the

simpler form that the primitive amplitudes assume for a specific choice of colour basis [49].

We quote an expression similar to 3.1 for the tree-level qq̄gg...g amplitude:

(3.7)Atree
n (q1, q̄2, g3, ..., gn) =

∑
σSn−2

(taσ(1) ...taσ(n))ī2i1An(1q, 2q̄, σ(3), ..., σ(n)),

where indices i1 and ī2 refer to the quark pair. The colour factors can be calculated from the squared

diagrams by using the Fierz Identity [49, 74]

(3.8)taijt
a
kl =

1

2
(δilδkj −

1

NC
δijδkl),

which is also represented pictorially in Figure 3.1.

3.2 Spinor-Helicity Formalism for On-Shell Kinematics

Once we have discussed the decomposition of amplitudes in colour space, we can address the

decomposition according to the helicity of their external particles.
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Figure 3.1: Diagrammatic representation of the Fierz identity.

The kinematic part of a QCD amplitude can always be expressed in terms of four-momenta pµ

and their Lorentz-invariant contractions pµqµ = p · q. It is common in the literature to express

squared amplitudes as functions of Mandelstam invariants sij = (pi + pj)
2 [75]. The introduction

of the spinor-helicity formalism, on the other hand, allows us to define the expressions of the

gauge-invariant helicity amplitudes A[J]
n;c(h) appearing in Eq. (3). The final result can then be

obtained by individually squaring each helicity amplitude and then summing them all together [49,

69].

Gauge interactions preserve the chirality of massless fermions, which coincide with their helicities

[49]. For massless particles the helicity is defined as the angular momentum component along the

momentum direction [67]; this makes it convenient to define a helicity basis. To this end we present

the spinor formalism. We will see that one of the main advantages of using spinor variables is that

they automatically satisfy the on-shell conditions for massless particles: p2i = 0. This property makes

many possible helicity amplitudes evaluate to zero, reducing the complexity of the calculations [67].

Massless four-momenta have a SL(2,C)× SL(2,C) representation given by the relation

(3.9)pȧa = pµ(σȧa)µ

where pµ is the SO(1, 4) representation of the momentum and σȧa are the Pauli matrices as defined

in Appendix A.
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For a generic pµ we then have:

pȧa =

−p0 + p3 p1 − ip2

p1 + ip2 −p0 − p3

 , (3.10)

(3.11)

det(pȧa) = −pµpµ = 0. (3.12)

Therefore massless momenta are represented by the SL(2,C)×SL(2,C) subgroup of 2× 2 matrices

with zero determinant.

In linear algebra it is a well known fact [67] that 2 × 2 matrices with vanishing determinant can

be written as pȧa = −λ̃ȧλa, with λ̃ȧ and λa being two independent 2-component vectors. In the

spinor-helicity formalism they are written as:

(3.13)
λa = 〈p|a ,

λ̃ȧ = |p]ȧ.

The bra and ket spinors correspond to 2-component Weyl spinors. We recall that for a generic

Dirac field ψ(p) =
∫
d4xu(p)eip·x + v(p)e−ip·x the four-component spinors satisfy the massless Weyl

equations:

/pu(p)± = 0,

v(p)±/p = 0.

(3.14)

where again the plus and minus label the different helicities of the spinors.

We can then write the spinors using the bra-ket notation:

v+(p) =

|p]a

0

 , v−(p) =

 0

|p〉ȧ

 (3.15)

(3.16)

ū−(p) = (0, 〈p|ȧ), ū+(p) = ([p|a, 0) (3.17)

where only outgoing states were considered. The polarisation vectors of spin-1 massless particles
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such as photons and gluons can also be expressed in these variables [67]

εµ−(p;n) = −〈p| γµ|n]√
2[np]

, εµ+(p;n) = −〈n| γµ|p]√
2 〈np〉

, (3.18)

where the one needs to introduce the arbitrary reference vector nµ 6= pµ. It is easily verified that

the relation pµε
µ
±(p;n) = 0, a consequence of the massless Weyl equation, is satisfied. We can also

verify that if the polarisation vectors are represented in this form, they satisfy the polarisation sum

expressed by Eq. (2.3).

The metric used to lower and rise indices in this space is the Levi-Civita tensor, defined in Appendix

A. It is useful to present some of the most important properties of spinor products [49]

p = −|p] 〈p| ,

−/p = |p〉 [p|+|p] 〈p| ,

|p〉 = (|p])∗ Reality Condition,

〈pq〉 = [pq]∗,

〈pq〉 = −〈qp〉 , (3.19)

[pq] = −[qp], Antisymmetry

〈pq〉 [pq] = (p+ q)2 = 2pµq
µ,∑

k

〈pk〉 [kq] = 0, Momentum Conservation

〈pq〉 〈kw〉+ 〈pk〉 〈wq〉+ 〈pw〉 〈qk〉 = 0. Schouten Identity

We see that the reality condition on the momenta imposes a relation between angle and square

spinors. If, on the other hand, the momenta are allowed to be complex, square and angle spinors

are independent from each other [67].

Expressing helicity amplitudes in the spinor formalism can unveil the hidden simplicity of some

expressions, which may appear much more complicated if written in terms of momenta. The best
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example is given by the Parke-Taylor expression [76] for the so-called maximally helicity violating

(MHV) amplitudes:

(3.20)A(1+, 2+, ..., i−, ..., j−, ..., n+) =
〈ij〉4

〈12〉 〈23〉 ... 〈n− 1, n〉
.

If we perform the operation of helicity conjugation, i.e. the change of helicity of all the particles in

Eq. (3.20), we obtain the same expression but with all the angle brakets changed to square ones.

This is referred to as the anti-maximally-helicity violating (MHV) amplitude.

3.3 Britto-Cachazo-Feng-Witten Relations

It has been shown [77] that tree-level amplitudes can be computed using recursion relations which

exploit their factorisation in specific kinematical limits. The most widely used class of these relations

are the Britto-Cachazo-Feng-Witten (BCFW) relations [77, 78]. We briefly review them, since they

are of great importance for the computation of amplitudes and they were used to derive results in

this thesis.

The basic idea behind the BCFW method consists in applying a shift by a complex number z

to two of the massless external momenta of an amplitude. Such a shift is conveniently expressed in

spinor form. For example we can shift the legs 1 and 2 of an amplitude in the following way:

(3.21)
〈1| → ˆ〈1| = 〈1| − z 〈2| ,

|2] → ˆ|2] = |2] + z|1].

It is simple to show that such a shift preserves momentum conservation and the square of their

norm,

(3.22)

p̂21 = 〈1̂1̂〉 [1̂1̂] = (〈1| − z 〈2|)(|1〉 − z |2〉)[11] = 0,

p̂22 = 〈2̂2̂〉 [2̂2̂] = 〈22〉 ([2|+z[1|)(|2] + z|1]) = 0,

p̂1 + p̂2 =
1

2
(〈1| γµ|1]− z 〈2| γµ|1] + z 〈2| γµ|2] + 〈2| γµ|1]) = p1 + p2,

where we used the identity 〈i| γµ|i] = 2pi for massless vectors. The gamma matrices are defined as

in the Appendix A.

The shifted amplitude A(z) is a meromorphic function in the complex variable z [49]. The function
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2̂

k k + 1

1̂n

p̂k(z)

Figure 3.2: The diagram schematically shows the factorisation of the amplitude into two
sub-amplitudes of lower multiplicity in the kinematical limit p̂k(z) → 0.

vanishes as z → ∞ for some specific choices of the shift. In those cases it is possible to exploit

Cauchy’s theorem to compute the value of the physical unshifted amplitude A(0) by computing the

residues of A(z)
z

1

2πi

∫
C

dz
A(z)

z
= A(0) +

∑
i

Res(A(z)
z

)

∣∣∣∣∣
z=zi

= 0, (3.23)

where the zi are the values at which A(z) is singular and C is the integration contour which encircles

all poles, extending to infinity in the complex z-plane.

The values of zi are those for which the amplitude factorises into two amplitudes of lower multiplicity

[49]. For an amplitude with n external legs we can imagine a factorisation into two sub-processes

of k + 1 and n − k + 1 legs respectively, with the momentum p̂k(z) being shared between them, as

shown in Figure 3.2.

The amplitude will then have a pole for the value zk which makes momentum p̂k(zk) go on-shell. We

stress the fact that the two shifted legs (1 and 2 in this case) always need to be in the two different

sub-amplitudes. If this was not the case, momentum p̂k would have no dependence on z and it could

not be put on-shell. We then have

(3.24)
p̂k(zk)

2 = (p̂1(zk) + p3 + ...+ pk)
2

= zk 〈2| p1,...,k|1] + p21,...,k
= 0,

with p1,...,k = p1 + ...+ pk. The solutions to 3.24 give the position of all the poles in the z plane:

(3.25)zk = −
p21,...,k

〈2| p1,...,k|1]
.

We then give the form of the amplitude as a sum of the residues of A(z)
z in a similar notation to [49]

(3.26)A(0) =
∑
h=±1

n−1∑
k=3

A(2̂, ...,−p̂−h(zk))
i

p21,...,k
A(p̂+h(zk), ..., n, 1̂),



3.4. MOMENTUM TWISTORS 37

where we see that we need to sum over the two possible helicity states of the intermediate leg.

The helicities have to be opposite for the two sub-amplitudes because the particle is interpreted as

incoming in one case and outgoing in the other.

The BCFW relations described above are valid for tree-level amplitudes. We will see in Section 3.8

how some of the results that we have presented can be exploited for the one-loop cases.

3.4 Momentum Twistors

In this section we briefly outline how momentum twistors are constructed and how they are used

to represent helicity amplitudes. This discussion is necessary to understand the variables used to

express the results of the thesis. We will see how employing momentum-twistor variables gives

a rational parametrisation of the kinematics, which means that the scattering amplitude will be a

rational function of the variables. This property is extremely convenient for managing the amplitude

expressions and for the application of the reconstruction methods which will be presented in Chapter

4.

Twistors were introduced by Penrose [79, 80] in order to obtain a new algebra for Minkowski

space‐time which describes objects that manifestly exhibit conformal symmetry. The simplest

non-trivial twistor Zα consists of a four-component representation of the conformal group in four

dimensions SO(2, 4). In [79], it is noted that SO(2, 4) can be interpreted as the Lorentz group of a

six-dimensional space wih signature (−,−,+,+,+,+). Twistor space defines a complex projective

three-space CP3; a point in twistor space corresponds to a null-line in Minkowski space, and lines in

twistor space represent a point in Minkowski space [79].

In [81], Hodges extended Penrose’s twistor formalism, with the aim to represent a conformal symmetry

in momentum dual space of colour-ordered amplitudes.

In this section we limit the discussion to the connection between spinor and momentum-twistor

variables, referring the reader to [81] for a more detailed exposition. Most of the theoretical parts

follow [82] and Chapter 5 of [67].
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y1

p1

y2

p2

y3

p3

y4

p4

y5

p5

Figure 3.3: The relation between pȧai and yȧai coordinates. The momenta pi are null-vectors
(massless). In this example five incoming momenta were considered.

Momentum dual space, also called region space in [81], is defined by coordinates yȧai such that

(3.27)pȧai = yȧai+1 − yȧai .

In dual space, y-coordinates can be interpreted as the labels of the vertices of a polygon, while the

the canonical pi represent its sides, as shown in Figure 3.3. The sides of the polygon of Figure 3.3

are null, which means that they describe massless vectors. We see from the construction of Figure

3.3 that the conservation of total momentum for n particles
∑n

i pi = 0 (in the case in which all the

momenta are taken to be incoming or outgoing) is equivalent to having y1 = yn+1 in dual space.

We notice that the dual space is well-defined only if the momenta of the amplitude have a fixed

ordering, as in the case of colour-ordered expressions.

It is then possible to associate each couple of holomorphic and anti-holomorphic spinor (〈i| , [i|) to

a momentum-twistor Zα
i and an dual momentum twistor Wα

i . The momentum twistor depends on

spinor variables and a new set of variables [µ|ai , which depend on the dual coordinates. We know

that spinors satisfy Weyl’s massless equation, therefore we combine Eq. (3.27) and (3.14) to find

the incidence relations, which define the new variable [µ|i,

(3.28)[µ|ai = 〈i|ȧ y
ȧa
i = 〈i|ȧ y

ȧa
i+1.

This allows us to define a momentum twistor as a four-component vector Zα
i = (|i〉 , [µ|i) [67]. In

our notation the momentum twistors for an n-point amplitude are the columns of a 4× n matrix of
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the form

(3.29)Z =

 |1〉 |2〉 ... |n〉

[µ1| [µ2| ... [µn|

 .

The dual momentum twistor is completely determined by the form of Zα
i via the relation [81, 82]

Wiα =
εαβγδZ

β
i−1Z

γ
i Z

δ
i+1

〈i− 1, i〉 〈i, i+ 1〉
. (3.30)

One important feature of the momenta derived from the momentum twistor is that they are complex,

hence the reality condition of Eq. (3.19) no longer holds and holomorphic and anti-holomorphic

spinors are independent from each other. Nevertheless, the values of the anti-holomorphic spinors

can still be derived from the holomorphic ones and the newly defined coordinates [µ|i.

From the incidence relations we have [67]

(3.31)|i〉ḃ [µi−1|a − |i− 1〉ḃ [µi|a = (|i〉ḃ 〈i− 1|ȧ − |i− 1〉ḃ 〈i|ȧ)y
ȧa,

but we can also derive

(3.32)|i− 1〉ḃ 〈i|ȧ = εḃċ |i− 1〉ċ εȧḋ 〈i|
ḋ
=

(δḃȧδ
ċ
ḋ
− δċȧδ

ḃ
ḋ
) |i− 1〉ċ 〈i|

ḋ
= δḃȧ 〈i, i− 1〉 − |i− 1〉ȧ 〈i|

ḃ
.

Combining Eq. (3.31) and (3.32) we obtain

(3.33)yȧa =
|i〉ȧ 〈µi−1|a − |i− 1〉ȧ 〈µi|a

〈i− 1, i〉
,

finally giving the relation

(3.34)[i|= 〈i+ 1, i〉 [µi−1|+ 〈i, i− 1〉 [µi+1|+ 〈i− 1, i+ 1〉 [µi|
〈i− 1, i〉 〈i, i+ 1〉

.

Where we used the properties pȧai = − |i〉ȧ [i|a= yȧai+1 − yȧai from Eq. (3.19).

The kinematic part of a colour-ordered amplitude can the be written in terms of holomorphic spinor

products and momentum-twistor 4-brakets [82]

〈ijkl〉 = εαβγδZ
α
i Z

β
j Z

γ
kZ

δ
l . (3.35)
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It is possible to see that a momentum-twistor matrix Z fully specifies an n-momenta phase-space,

automatically ensuring masslessness and momentum conservation. We will illustrate this with a

simple example.

We consider a 2 → 2 process, and wish to construct a 4×4 momentum-twistor matrix. We know that

any choice of the entries of the matrix will give a suitable phase-space point. It is convenient to make

a choice such that the momentum-twistor variables xi have a simple relation with the Mandelstam

invariants:

(3.36)Z =



1 0 1 x2

x1+x2

0 1 1 1

0 0 −x1 0

0 0 0 1


.

For a 4 × n matrix, we have 3n − 10 variables xi, this is the number of degrees of freedom of an

n-point colour-ordered amplitude. We then have the following map from Mandelstam invariants to

momentum-twistor variables:

s12 = 〈12〉 [12] = x1, (3.37)

s13 = 〈13〉 [13] = x2, (3.38)

s14 = 〈14〉 [14] = −x1 − x2. (3.39)

So momentum conservation is expressed as a linear relation: s12+ s13+ s14 = x1+x2−x1−x2 = 0.

Any expression which doesn’t contain helicity factors can be calculated using the momentum twistor

Eq. (3.36) [83]. The information on any helicity factor has to be recovered using a different method,

which we outline in the following section.

3.4.1 Reconstruction of the Helicity Information

We can see from Eq. (3.36) that the momentum twistor parametrisation does not preserve the helicity

information. Using the mapping described in the previous section on pure-phase expressions yields

incorrect results of the kind 〈12〉 = 〈13〉 = 1. This fact is a general property of all momentum twistor
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parametrisations [83]. It is then clear that in order to obtain a purely rational parametrisation, the

phase expression must be discarded at first, and then recovered at the end of the calculation.

For the projects described in this thesis this was done by defining a helicity factor Φ and a

momentum helicity factor ΦMT. The helicity factor is a spinor expression transforming correctly

under little group scaling, ensuring parity invariance.

Upon the transformation acting on spinors as |i〉 → t |i〉 , |i] → t−1|i] , with t being any complex

number, the amplitude must transform as [67]

A({|i〉 , |1], h1}, ..., {t |i〉 , t−1|i], hi}) = t−2hiA({|i〉 , |1], h1}, ..., {|i〉 , |i], hi}). (3.40)

Therefore the helicity factor Φ will need to have a form which ensures the right symmetry. A further

constraint on the form of Φ is given by the dimensions of helicity amplitudes. In four dimensions,

an n-particle amplitude must have mass dimension of 4− n [49]. These constraints are sufficient to

completely determine 3-particle massless amplitudes [67]. In our case, this information allows us to

choose a factor Φ which restores parity symmetry. One possible standard form of the helicity factor

is

Φ(1h1 , ..., nhn) =

(
〈13〉

[12] 〈23〉

)h1 n∏
i=2

(
〈1i〉2 [12] 〈23〉

〈13〉

)hi

. (3.41)

Choosing the example of a four-gluon helicity amplitude AL
4g(1

−, 2−, 3+, 4+), at generic loop order

L, we have:

Φ(1−, 2−, 3+, 4+) =

(
〈14〉 [12] 〈23〉

〈12〉

)2

. (3.42)

We see that the above term has the correct phase weight; upon little group scaling of |1〉 → t |1〉 , |1] →

t−1|1], for example, it scales as t−2×(−1) = t2.

The momentum helicity factor is then computed by mapping the helicity factor into momentum-twistor

variables. Using the parametrisation of Eq. (3.36) we have

ΦMT(1
−, 2−, 3+, 4+) = x21, (3.43)



42 CHAPTER 3. MODERN METHODS FOR SCATTERING AMPLITUDES

which does not have a physical meaning.

For this reason, ifAL
4g(1

−, 2−, 3+, 4+) is reconstructed with momentum-twistor variables, two operations

need to be performed to evaluate it on a phase-space point p:

1. divide the expression by ΦMT(1
−, 2−, 3+, 4+),

2. multiply the resulting expression by Φ(1−, 2−, 3+, 4+), evaluated on p.

In this way, it is possible to obtain the correct physical value of the expression at any phase-space

point.

3.5 On-Shell Methods at One Loop

In this section we expand the discussion of on-shell methods to one loop amplitudes. These techniques

have been prolifically applied to one-loop gluon amplitudes in the literature, as we will see in Chapter

6. In a similar fashion to the BCFW discussion, we analyse the structure of amplitudes as complex

analytical functions, this time extending it at loop-level.

We will now see what consequences these properties have in relation to unitarity.

3.5.1 Unitarity of the S-matrix

We can define states |km〉 = |k1, ..., km〉 as the momentum eigenstates of the Hamiltonian of a system.

If the set is complete, we have ∑
m

∫
dΦm |km〉 〈km| = 1. (3.44)

The Lorenttz invariant phase-space measure dΦm has the same form as in Eq. (2.60). So if we have

the contraction between initial state |i〉 and final state |f〉 we can write [19]

(3.45)〈f |i〉 =
∑
m

∫
dΦm 〈f |km〉 〈km|i〉 .

Eq. (3.45) has the consequence that the probability of a transition from state |i〉 to state |f〉 can be

obtained from the sum over all the multi-particle physical states from the spectrum of the theory,
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integrated over their phase-space. We can then write

|i〉 =
∑
m

∫
dΦmam |km〉 , (3.46)

where the normalisation of |m〉 implies
∑

m|am|2= 1. From conservation of probability we know

that the sum of the probabilities of the initial state to be scattered into any of the states |km〉 is

unity, therefore we derive

1 =
∑
m

∫
dΦm|〈km| S |i〉 |2=

∑
m

∑
l

∫
dΦmdΦlamal 〈m| S†S |kl〉 . (3.47)

The above relation is satisfied for

S†S = 1, (3.48)

hence the unitarity of the S-matrix must be imposed in order to ensure the conservation of probability

[47]. When combined with Eq. (2.54), the unitarity condition becomes

(1− iT †)(1+ iT ) = 1− iT † + iT + T †T = 1, (3.49)

from which it follows that

i(T − T †) = T †T . (3.50)

We will now explore the consequences of unitarity for the specific process of the 2 → 2 scattering

of particles of equal mass m. Our results can be easily generalised to scatterings of arbitrary

multiplicities with unequal masses.

The four particles will have momenta p1, p2, p3 and p4, all taken to be outgoing. The S-matrix

element related to this process is 〈p3, p4| S |p1, p2〉, defining the initial and final momentum eigenstates

|p1, p2〉 and |p3, p4〉. Since the scattering is elastic we have p1 + p2 + p3 + p4 = 0. The on-shell

conditions p2i = m2 imply s + u + t = 4m2, where we are using a common definition s = s12, t =

s13, u = s14. Therefore the S-matrix S can be expressed as a function of only two variables,

S = S(s, t).
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The Lorentz-invariance of the S-matrix implies the equality

〈p3, p4| S |p1, p2〉 = 〈p1, p2| S |p3, p4〉 (3.51)

since in the centre of mass frame the exchange of momenta p1 ↔ p3 and p2 ↔ p4 correspond to a

rotation of π around the axis which bisects the angle between p1 and p3. Therefore from Eq. (3.50)

we obtain

〈p3, p4| T |p1, p2〉 − 〈p3, p4| T |p1, p2〉∗ = −i 〈p3, p4| T †T |p1, p2〉 , (3.52)

impliying:

2iIm(〈p3, p4| T |p1, p2〉) = 〈p3, p4| T T † |p1, p2〉 = (3.53)∑
m

∫
dΦm 〈p3, p4| T |km〉 〈p1, p2| T |km〉∗ .

We have seen in Eq. (2.56) that the T-matrix element can be related to the transition scattering

amplitude A(s, t). Therefore 3.53 can be used to derive an expression for the imaginary part of

A(s, t) [47]:

2iIm(〈p3, p4|A |p1, p2〉) = Disc(〈p3, p4|A |p1, p2〉) = (3.54)∑
m

∫
dΦm 〈p3, p4|A |km〉 〈p1, p2|A |km〉∗ .

We then see that loop amplitues will in general have discontinuities related to their imaginary parts.

Above the energy threshold of elastic scattering s = 4m2, new states become available, corresponding

to the creation of new particles [75]. This means that for s > 4m2, new terms must be added to

the right hand side of Eq. (3.54). New states become available every time the centre-of-mass energy

goes above one of the thresholds for the creation of a new particle s = 4m2, 9m2, 16m2, ...

We can therefore conclude that the expression 2iIm[A(s, t)] represents a discontinuity starting at

the energy of elastic scattering.

It is then possible to expand Eq. (3.54) in the coupling constant and solve the equation order-by-order.
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For tree-level and one loop this means having

Disc(A(0)) = 0, (3.55)

Disc(A(1)) =

∫
dΦ2 〈p3, p4|A(0) |k1, k2〉 〈p1, p2|A(0) |k1, k2〉∗ . (3.56)

Eq. (3.55) and (3.56) are examples of the Cutkosky rules [84] directly applied at the amplitude

level. If our amplitude is represented as a function A(s, t) then we will see that its discontinuities

correspond to the branch cuts of the functions log(− s
µ2
R
) and log(− t

µ2
R
) in the complex s-plane and

t-plane respectively. These branch cuts are normally referred to as unitarity cuts, to stress their

relation to the unitarity of the S- matrix [67].

In this framework, the cut in a specific channel is computed as the product of two tree-level

amplitudes, summed over all the possible multi-particle states crossing the cut and then integrated

over the two-body phase space of the states .

We now quote the relevant dispersion relations which allows us to reconstruct the full analytical

form of the amplitude from its discontinuities and simple poles [67],

(3.57)A(s, t) =
λ1

s−m2
+

λ2
t−m2

+

∞∫
4m2

ds′

2π

(
Im[A(s′, t)]

s′ − s
+

Im[A(s′, t)]

s′ − t

)
,

where λ1 and λ2 are the pole residues of A(s, t) at s = m2 and t = m2 respectively. Eq. (3.57) is

derived by applying Cauchy’s theorem on a contour which moves around the branch cut and then

extends to infinity, plus smaller contours which encircle the simple poles. We show the shape of the

integration contour in the s-channel in figure 3.4, labelling it Γ. We then see that combining Eqs.

(3.54), (3.56) and (3.57) it is possible to fully compute a one-loop amplitude by combining products

of tree-level expressions with on-shell legs and integrating them over the appropriate phase-space.

3.5.2 Generalised Unitarity

The unitarity method described above can be expanded to a technique called generalised unitarity,

first presented in [77]. This method requires the substitution of all the possible combinations of

propagators in a Feynmann integral with a delta function

(3.58)i

k2 − p2
→ δ(+)(k2 − p2),
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Figure 3.4: The integration contour Γ in the complex s-plane. The one in the t-plane will be
identical, with pole in position t = m2.

remembering that in D dimensions at most D propagators can be cut simultaneously. Therefore the

method starts by putting on-shell all the sets comprising D propagators, then all the sets of D − 1

propagators, and so on.

We note that this is similar to performing the standard unitarity cut, but with the difference that in

this case a larger set of propagators is put on-shell, not just the ones associated to a specific channel.

For this reason this method does not rely specifically on the unitarity of the S-matrix. Cutting all

the possible propagators in a given integral is also referred to as computing the maximal cut of that

integral [67].

Performing generalised cuts is useful in the case in which the amplitude can be written in a basis of

known functions. It is shown in [85] that any one-loop amplitude in D dimensions, when expanded

up to order O(ε0) in the dimensional regulator, can be written as a linear combination of m-gon

one-loop scalar integrals, where m = 1, 2, ..., D:

A(1) =
∑
i

cDi I
i
D +

∑
j

cD−1
j IjD−1 + ...+

∑
k

c2kI
k
2 . (3.59)
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In the case in which we want to expand A(1) beyond the O(ε0) order, we need to include (D+1)-gon

scalar integrals and their coefficients ∑
l

cD+1
l I lD+1. (3.60)

This latter case is the one which applies to the computations in chapters 5 and 7. We name

scalar integrals according to their topology (pentagon, box, triangle). The topology of an integral

is given by the set of the independent denominators of its integrand, corresponding to the internal

propagators in specific diagrams. An n-gon integral is then an integral with n denominators. We

give here the example of a scalar box integral in D dimensions:

I4 =

∫
dDk

(2π)D
1

k2(k + p1)2(k + p1 + p2)2(k − p4)2
=

∫
dDk

(2π)D� . (3.61)

The adjective scalar given to the integrals is used in the literature to refer to integrals with

numerators equal to one. In general one could have more complicated tensor structures appearing

in the numerators, but it is always possible to decompose tensor integrals into scalar ones. One of

the most important of these tensor-reduction procedures is the Passarino-Veltmann method [86],

an example of which is briefly sketched in Appendix D. The integrals that form the basis of an

amplitude are called master integrals (MIs).

The task of computing a one-loop amplitude can therefore always be reduced to computing the

rational coefficients in a given basis. The ability to write amplitudes in the general form of Eq.

(3.59) has historically been of fundamental importance for their computations. This is the form in

which they will be derived and presented in all the following chapters of this thesis, specifically in

chapters 5 and 7.

The crucial insight of [77] is that the contributions to the cut of a specific set of D propagators

in the amplitude in Eq. (3.59) will only come from the scalar integral which contains those all those

propagators, and it will correspond to the value of the cut of the integral multiplied by its coefficient.

Since the Cutkosky rules allow us to obtain the value of unitarity cuts from the knowledge of lower

order results, as seen in Section 3.5.1, it is then possible to set up a system of linear equations which
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can be solved recursively [67] for all the coefficients in Eq. (3.59). In [77] this procedure was applied

to N = 4 one-loop amplitudes in D = 4 dimensions, which can be expressed in a basis of only scalar

boxes Ii4 with no rational terms.

Generalised unitarity makes it possible to directly compute the rational coefficients ci. In many

examples, nevertheless, the high complexity of such calculations makes the method not efficient. In

the next section we will see instead how the coefficients can be computed by solving linear systems

of equations obtained by numerically sampling the whole amplitude expression.

3.6 Ossola-Papadopoulos-Pittau Integrand Reduction

The Ossola-Papadopoulos-Pittau (OPP) integrand reduction methods were presented in [87], this

section summarises the content of the paper, extending the presentation to explain the computation

of D-dimensional amplitudes performed in Chapter 7.

The OPP method exploits the one-loop representation of Eq. (3.59) and provides an algorithmical

way of finding the rational coefficients given the basis of master integrals. A generic colour-ordered

one-loop amplitude with n legs can be written as

An = µ2ε
R

∫
dDk

(2π)D
In, (3.62)

where the integrand can be expressed as a fraction [88]

In =
N(k)∏

iDi
. (3.63)

The denominators Di are of the form q2i −m2
i , with qi being the momenta flowing in the internal

lines with mass mi; N(k) is a polynomial in the components of the internal loop momentum k. The

numerator can be written as the sum of two classes of terms: Reducible Scalar Products (RSPs) and

Irreducible Scalar Products (ISPs). The former products can be fully written in terms of the Di’s,
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while the rest of the numerator consists of the ISPs. Schematically we write

N(k) = RSPs + ISPs. (3.64)

In order to take into account the the form of the integrand beyond D = 4, it is convenient to

decompose the internal momentum as k = k̄ + k̃, where k̄ is taken to be four-dimensional, while k̃

is a 4−D dimensional vector orthogonal to k̄: k̄ · k̃ = 0.

If we then define k̃ · k̃ = µ2 we find a new form of the denominators,

Di = q2i −m2
i + µ2, (3.65)

which is true in our case since the external momenta pi are all taken to be four-dimensional, hence

we have k̃ · pi = 0. We then see that µ2 acts as an effective mass, and it must be added to the list

of ISPs. The OPP reduction focuses on the reconstruction of the numerator of the integrand, since

the denominator factors can be obtained by examining the integral topology.

We will use representation of Eq. (3.59) but including the D + 1-dimensional terms of Eq. (3.5.2).

This is the case because in this thesis we are interested in the contributions of one-loop amplitudes

at NNLO, which require expansions of the amplitudes to higher orders than O(ε0), remembering

that we have ε = 4−D
2 . Having pi as four-dimensional vectors, the terms in Eq. (3.5.2) will be scalar

pentagons with their associated coefficients. We then have

An =
∑
l

elI
l
5 +

∑
i

diI
i
4 +

∑
j

cjI
j
3 +

∑
k

bkI
k
2 . (3.66)

This was the integral basis of the amplitudes reconstructed in Chapter 7, for which the OPP method
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was employed. Pictorially the decomposition can be illustrated as

An =
∑
l

el

∫
dDk� +

∑
i

di

∫
dDk� (3.67)

+
∑
j

cj

∫
dDk� +

∑
k

bk

∫
dDk� .

Using Eq. (3.66), we can conveniently decompose the numerator N as

(3.68)

N(k) =
∑

i<j<k<l<m

ėijklm(µ2)
∏

α 6=i,j,k,l,m

Dα+

∑
i<j<k<l

(
dijkl + d̃ijkl(k̄) + ḋijkl(µ

2)
) ∏

α6=i,j,k,l

Dα+

∑
i<j<k

(
cijk + c̃ijk(k̄) + ċijk(µ

2)
) ∏
α 6=i,j,k

Dα+

∑
i<j

(
bij + b̃ij(k̄) + ḃij(µ

2)
) ∏

α 6=i,j

Dα+

∑
i

(
ai + ãi(k̄) + ȧi(µ

2)
)∏
α6=i

Dα+

p̃(k̄)
∏
α

Dα

Where we made explicit which terms depend on the four-dimensional momentum, which ones on the

effective mass, and which terms are constant (purely dependent on the external momenta). Terms

d̃, c̃, b̃, ã, are spurious, meaning that they evaluate to zero once the integral is performed, but they

need to be computed since the decomposition is at the level of the integrand. We remark that it is in

theory possible to choose a different parametrisation, for which we also have terms eijklm coefficients

in the topmost line of Eq. (3.68). Nevertheless, we found that the choice of Eq. (3.68) was the most

convenient for the work of this thesis.

While knowing Eq. (3.68) in theory makes it possible to reconstruct the analytical form of the

numerator by performing multiple numerical evaluations, it would be unfeasible to try and solve the

resulting system by brute force. Instead, it is possible to see that many terms in the sum can be set
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to zero with a deliberate choice which puts different internal propagators on-shell.

For example we see that a five-particle cut, which sets D1 = D2 = D3 = D4 = D5 = 0 for a specific

value of the four-momentum k̄ = k̄∗ and the effective mass µ2 = µ2∗, reduces the numerator to the

form

N(k̄∗, µ2∗) = ė12345(µ
2∗)

∏
α 6=1,2,3,4,5

Dα, (3.69)

therefore the values of the pentagon coefficients can be computed by solving smaller systems of

equations taking all the different five-particle cuts.

Once the pentagon coefficients have been evaluated, the algorithm can be iterated imposing four-particle

cuts and so on, allowing a full reconstruction, minimising the computation time and resources.

It is worth stressing that the above analysis slightly differs from the one in [87], which is carried out

explicitly in 4−2ε dimensions. In most cases the OPP method is used to obtain amplitude expressions

expanded up to order O(ε0); this means that the results of the integrals can be expanded and only

contributions up to the fixed order are retained in the final result. The five-particle cut is performed

in the limit µ2 → 0, so that the pentagons are not included into the basis and their contributions

are part of a rational remainder.

Explicitly, the class of integrals which are dropped in the 4− 2ε expansion are

∫
d4−2εkµ2

� = −ε
∫
d6−2εk� (3.70)

and

∫
d4−2εkµ2

� = −ε
∫
d6−2εk� . (3.71)

It is easily seen that the above integrals are of order O(ε) since both the pentagon and the box

are finite quantities in six dimensions [89, 90]. In this thesis we will refer to the integrals on
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the left-hand-side of Eqs. (3.70) and (3.71) as µ2-pentagon and µ2-box. If the decomposition is

performed up to higher orders of the dimensional regulator, both the integrals contribute, increasing

the complexity of the calculation, as we will see in Chapter 7.

3.7 Supersymmetric Decomposition

In this subsection we introduce an additional type of decomposition for one-loop scattering amplitudes,

which is sometimes defined in the literature as supersymmetric decomposition [48, 91]. This type

of decomposition consists of expressing a sub-amplitude A
[J]
n;c as the linear combination of the

sub-amplitudes originating from different theories, with particles with spin different from J circulating

the their internal loops. We will outline the procedure following the exposition of [48].

The method relies on the quantisation of QCD in a different gauge than the one described in Section

2.3. This is called the background-field gauge and it splits the gluon field into a classical background

field AB
µ and a quantum one AQ

µ : Aµ = AB
µ +AQ

µ . The gauge-fixing condition is then

DB,µAQ
µ = 0, (3.72)

where we defined

DB,µ = ∂µ − i
gs√
2
AB,µ. (3.73)

These choices have the effect of adding terms to the Lagrangian of the theory, creating corresponding

Feynamn rules for the vertices mixing the Q and B fields

V QQB
µνρ =

i√
2
[ηµν(k − p)ρ − 2ηρνqµ + 2ηρµqν ], (3.74)

V QQBB
µνρλ = − i

2
[ηµνηρλ + 2ηµληρν − 2ηµρηνλ]. (3.75)

For one-loop gluon amplitudes, the field AQ
µ represents the particle running inside the loop, while

the AB
µ fields are the external legs [92]. We can then compare vertices in Eq. (3.74) and (3.75) to
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the Feynamn rules for vertices with scalars s instead of AQ
µ fields

V ssB
ρ =

i√
2
(k − p)ρ, (3.76)

V ssBB
ρλ = − i

2
ηρλ, (3.77)

where in the context of one-loop amplitudes, these vertices are the ones contributing to the integrand

of the diagrams with external gluon legs and the scalar s running in the loop [48, 92]. We then see

that the term of V QQB
µνρ which depends on the internal momentum k is the same as the one for a

complex scalar in all the renormalisation schemes in which the number of physical helicities of the

gluon is equal to 2. This is the case for the DR and the FDH scheme.

As a result, it is possible to express part of the numerators of the integrands of the one-loop gluon

sub-amplitude in terms of the contributions of a scalar particle. In general, finding the linear

relations between the vertices in this gauge allows us to express the particles running in the loop as

combinations of particles from different theories.

Further relationships involving fermion loops can be found, following a similar logic to the one

presented above. Here we will only present the relevant results, but for a detailed derivation the

reader is referred to [48] and [93]. The final result is that the gluon g and the fermion f in the

internal loop can be expressed as

g = (g + 4f + 3s)− 4(f + s) + s, (3.78)

f = (f + s)− s, (3.79)

that at the level of amplitudes means having

A[1]
n = AN=4

n − 4AN=1
n +AN=0

n , (3.80)

A[1/2]
n = AN=1

n −AN=0
n . (3.81)
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Where AN=4 represents the contribution from a N = 4 super Yang-Mills multiplet, comprising one

gluon g, four gluinos f and three complex scalars s. AN=1 indicates the contribution of a chiral

matter N = 1 multiplet, consisting of one fermion and a complex scalar. AN=0 is the contribution

from a complex scalar in the loop. Gluon QCD amplitiudes can therefore be obtained by computing

the amplitudes in these three theories and combining them. Expressing the amplitude in terms of

these supersymmetric components significantly simplifies their calculation in most cases. This is

the case since the supersymmetric parts have simpler expressions than the non-supersymmetric ones

(see for example [94],[95] and references therein), and in turn the AN=0 sub-amplitudes exhibit a

lower complexity than either A[1]
n or A[1/2]

n . This fact can be understood if we know that a scalar in

the internal loop does not propagate any spin information, giving rise to simpler structures [48].

The supersymmetric decomposition was used in many of the computations of one-loop n-gluon

amplitudes, as we will see in Chapter 6. It was also instrumental in obtaining the results of the work

detialed in Chapter 7.

3.8 BCFW shifts at One-Loop

In this section we discuss one last technique which can be employed for the computation of parts of

one-loop scattering amplitudes. This discussion will be useful to gain a better understanding of the

algorithm in Section 4.3.5 and the computations mentioned in the review in Chapter 6. We will use

the same notation as in [96].

In order to describe the application of this method we define the distinction between cut-constructible

and non cut-constructible parts of an amplitude. We focus here on amplitudes in D = 4 − 2ε

dimensions, expanded to order O(ε0). Their representation is then

An =
∑
i

diI
i
4 +

∑
j

cjI
j
3 +

∑
k

bkI
k
2 +R, (3.82)

where we note the presence of the additional rational term R. Coefficients di, ci, bi can be computed

using generalised unitarity in four dimensions as described in Section 3.5.2, so they are referred
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to as the cut-constructible part. The R term contains all the contributions from the additional

2ε-dimensional parts and it evaluates to zero when the cuts are performed, for this reason it is

defined as the non cut-contructible part and needs to be computed by other means. The BCFW-like

shifts described in this section are an example of one of such methods.

A complex shift can be performed in the same fashion as for the BCFW-method at tree-level

[i|→ [i|+z[j|, (3.83)

〈j| → 〈j| − z 〈i| , (3.84)

in the MHV case it is convenient to perform the shift on the two negative-helicity legs, since this

choice ensures that the amplitude has no pole at z → ∞ [97]. For the remaining of the section we

will work under the assumption Resz→∞(A(z)
z ) = 0 for simplicity. The cases in which this condition

is not met are discussed in Section 4.3.5, where it is explained how this additional complication is

tackled in our computations.

A generic one-loop amplitude can be represented as
(3.85)An(z) = Cn(z) +Rn(z),

splitting it into a cut-constructible and non cut-constructible part. The termR(z) is then constructed

by setting all the functions containing branch cuts and π2 terms to zero in the amplitude.

Despite being a rational function, R(z) cannot be fully obtained from its residues in z via the

Cauchy’s theorem, since it contains spurious singularities in z which are not physical. Such residues

cancel out when R(z) and C(z) are summed in the full expression, but they are present when the

two terms are considered in isolation. We will see an example of this in Chapter 6: the function
log(r)
(1−r)2 (part of C(z)) has a spurious singularity at r → 1 which is then cancelled when summed with

1
(1−r) (part of R(z)) and a regular function L1(z) is formed.

For this reason it is necessary to perform a completion of the expressions

(3.86)
Ĉn(z) = Cn(z) + CRn(z),

R̂n(z) = Rn(z)− CRn(z),

where CRn(z) is a non-unique term which makes R̂n(z) free of spurious singularities.
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Figure 3.5: Graphical representation of Eq. (3.87). The shaded circles represent the tree-level
terms, while the ones with a white circle inside represent one-loop terms. The factorisation function
is represented as the loop dressing the right-most propagator. The two shifted legs are labelled i
and j.

One aspect to consider is that the newly introduced term is likely to be non-zero for large values

of z. In order to correct for this spurious behaviour the value of the term in the limit z → ∞ is

computed and subtracted from the amplitudes’ expression, This is always possible since CRn(z) is

fully known analytically.

It is then possible to compute R̂n(z) by summing over the residues at finite z. This corresponds to

the sum over the factorisation channels. At MHV the contributions for the sα...β channel are

(3.87)A
(0)
L × i

sα...β
×A

(1)
R +A

(1)
L × i

sα...β
×A

(0)
R +A

(0)
L × F (1)

sα...β
A

(0)
R ,

where the factorisation function F1-loop represents the insertion of a loop in the propagator as

shown in Figure 3.5.

The rational term R̂n(z) is computed via formula Eq. (3.87) with all the polylogarithms and π2 in

the loop-expressions set to zero. It is important to notice that the factorised rational term R̂n(z)

obtained in such a way will contain all the correct residues for the physical poles. For this reason, it

is necessary to compute any potential residue in the physical poles of ĈRn(z) and subtract it from

the overall expression, in order to avoid any double counting. The term which is added to avoid the

double counting is represented as On in [98],

(3.88)On =
∑

poles α

Resz=zα

(
ĈRn(z)

z

)
.

In conclusion, the full non cut-constructible part is expressed as R̂n(0) +On.
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After having described modern methods for the computation of tree and one-loop amplitudes, we

will see in the next chapter how they can be implemented in algorithms which were used to derive

the results presented in this thesis.



Chapter 4

Analytic Reconstructions using

Finite Fields

The methodology employed in this thesis for the analytic computation of QCD amplitudes requires

the manipulation of large rational functions in the momentum-twistor variables. Such manipulations

give rise to large intermediate expressions in the calculations, which can be orders of magnitudes

grater than the final result [99, 100]; this especially becomes a bottleneck for high-multiplicity

amplitudes. An effective method for avoiding this problem consist of black-box interpolation techniques

[14]: the function is evaluated on specific numerical points and the analytic form is reconstructed

by performing a numerical interpolation.

As we have seen in Eq. (3.5.2), a one-loop amplitude can be represented as a linear combination

of scalar integrals multiplied by coefficients. These coefficients, in specific parametrisations, are

represented by rational functions which depends on the kinematic kinematics; for this reason we

will now highlight some interpolation algorithms which allow to reconstruct rational functions by

evaluating them on a finite number of numerical points. These methods represent the mathematical

backbone of the reconstruction algorithms used to obtain the results presented in this thesis.

This chapter is organised as follows. In Section 4.1 we describe the general method of numerical

interpolation for polynomials and rational functions. In Section 4.2 we define the notion of finite

58
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fields, and how they are used for analytic reconstructions. In Section 7.3 we describe the main

techniques which we implemented in order to optimise the reconstruction of polynomials of high

complexity. Said techniques were essential to obtain the results presented in chapters 5 and 7.

4.1 Analytic Reconstruction

In this presentation we will follow the same sequence of steps as in [100]. We start with Newton’s

polynomial representation of a univariate polynomial:

(4.1)f(z) =

M∑
i=0

ci

i−1∏
j=0

(z − yj)

= c0 + (z − y0)(c1 + (z − y1)(c2 + (z − y2)(...+ (z − yM−1)cR))),

where M is the polynomial degree and yi are numbers. This representation makes it straightforward

to see how the coefficients ci can be calculated by recursively evaluating the functions at the various

points: f(y0), ..., f(yM−1).

A multivariate polynomial can be reconstructed in the same way by choosing a similar representation

to the one of Eq. (4.1) in a specific variable, with the difference that the ci coefficients will now be

polynomials of all the remaining variables:

f(z1, ..., zn) =

M1∑
i=0

ci(z2, ..., zn)

i−1∏
j=0

(z1 − yi,j) = (4.2)

c0(z2, ..., zn) + (z − y1,0)(c1(z2, ..., zn) + (z − y1,1)(...+ (z − y1,M−1)cR(z2, ..., zn)))) .

We have as the result of the first evaluation f(y1,0) = c0(z2, ..., zn). We can then put c0(z2, ..., zn)

in Newton’s representation and carry out the procedure iteratively, thereby recustring the whole

polynomial. We see that there is an upper bound to the number of needed evaluations: M1 ×M2 ×

...×Mn, where Mi are the maximum degrees of the polynomial in each of the zi variables.

In general the degrees Mi are not known a priori, therefore they must be found through the

evaluation. This is done easily on a univariate polynomial: every time a new coefficient ci is
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computed, the series is evaluated on one or more random points (different from the yi’s), if the values

of the series equal the ones of the full function then we have reached the end of the reconstruction

and we know the total degree. The reconstruction is carried out until such condition is met. We

then see that the reconstruction is more computationally expensive if the degrees are not known at

the beginning and need to be computed on the fly.

We now turn our attention to the reconstruction of rational functions. The equivalent of Newton’s

formula for univariate rational functions is Thiele’s formula, based on the representation:

f(z) = c0 +
z − y0

c1 +
z−y1

c2+
z−y2

...+
z−yM−1

cN

. (4.3)

It can be seen from this representation function that f(z) can be reconstructed with M evaluations

in an equivalent way to the polynomial reconstruction. For the multivariate case the reconstruction

can be performed again as a series of iterated univariate reconstructions. While this solves the

interpolation problem in general, we detail here the specific sequence of steps followed by the

algorithm in the FiniteFlow package [100], since this is the one used to compute most of the

results presented in this thesis.

The method exploits the introduction of an auxiliary variable t, as done in [101], costructing the

function h(t, z):

(4.4)
h(t, z1, ..., zn) = f(tz1, tz2, ..., tzn)

=

∑M
i pi(z1, ..., zn)t

i

1 +
∑M ′

i qi(z1, ..., zn)ti
.

We note that this representation of a rational function relies on the constant term of its denominator

being non-zero, this can be ensured by performing a shift of the zi variables as proposed in [101].

The function can be reconstructed in the shifted variables and then the inverse shift is performed

as the last step, retrieving the correct expression. The constant term can always be set to 1 via an

appropriate normalisation.

We can then consider h(t, z) to be a univariate funcion in t and use Thiele’s formula to compute

the numerator and denominator degrees M and M ′. Once this is done, a system of equations can

be set up choosing a series numerical values for the variable t = t
′ and a constant numerical one for

z = z∗, where we used the shorthand notation z = z1, ..., zn. The linear system is then composed
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by equations such as:

(4.5)f(t′z∗) =

M∑
i

pi(z
∗)(t′)i +

M ′∑
i

qi(z
∗)f(t′z∗)(t′)i

for each different value of t′.

If the function is evaluated on a sufficiently high number of t values, we can reconstruct the

polynomials p and q on the numerical point z∗. This means that we can obtain the values of

those polynomials on numerical points and then use that information to apply Newton’s formula

recursively and fully reconstruct p(z) and q(z).

The analytical form of the original function is then simply obtained by evaluating h(1, z):

f(z) = h(1, z) =

∑M
i pi(z1, ..., zn)

1 +
∑M ′

i qi(z1, ..., zn)
. (4.6)

4.2 Finite Fields

The above discussion has presented reconstruction techniques which rely on the evaluations of

functions over rational numbers. These methods have the issue of the loss of precision in the storing

of floating-point numbers in computer memory. The precision needed to perform the reconstruction

often requires keeping in memory a high number of digits at each intermediate step, thus recreating

the problem of large intermediate expressions and making the method impractical. For this reason

it is preferable to perform all the numerical evaluations on integers, which are of finite size and for

which the loss of precision is not an issue.

We can consider the set Zn of all non-negative integer numbers smaller than n. All rational operations

with the exception of division are well defined within the elements of the set modulo number n. If

n is prime, n = p, then a multiplicative inverse can unambiguously be defined, so that all four

arithmetic operations can be performed over it. This allows us to define Zp a prime field [102].

Crucially, there is a one-to-one map from elements in Zp to the ones in Q. Wang’s reconstruction

algorithm [103, 104] allows to find the image of any number in a prime field to the rationals; given

a number of value c in Zp, the algorithm makes it possible to find integers a and b such that

(4.7)a

b
= c mod(p),
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given the condition

(4.8)|a|, |b|<
√
p

2
.

The condition in Eq. (4.8) puts a limit p ≤ 264 to the size of the prime, since on most machines

integers have maximum size of 64 bit. This limit can be circumvented by exploiting the Chinese

Remainder Theorem, which states that if the image of a rational number over several prime fields

Zp1
,Zp2

,...,Zpn
is known, it is possible to construct its image over Zp1p2...pn

[105].

The technique of reconstructing over finite fields is widely used by many computer algebra systems

[102]. In recent years it has been adopted in the field high-energy physics by many different research

groups. Its first application was in [106], where it was used to perform Itegration by Parts (IBP)

reductions. Subsequent works have applied it to the same end [107, 108]. In [109] it was used to

efficiently implement the unitarity method to a multi-loop calculation. Additional examples of such

applications can be found in [83, 110, 111].

The theorems that we have introduced in this section make it possible to perform all the computations

described in Section 4.1 over prime fields, and only reconvert the expressions to rational numbers as

the last step. This avoids the loss of precision issues and significantly speeds up the evaluations.

4.3 Reconstruction Techniques

While the reconstruction over finite fields can in principle be performed on every rational function,

it is always convenient to exploit all the knowledge that is available on the function to optimise

the computation. In the case of tree-level and one-loop helicity amplitudes, the physical origin of

the expressions puts great constraints on the form that they can assume, significantly reducing the

number of computations needed to reconstruct them. In this section we will present the methods

and algorithms which were employed to perform the reconstructions efficiently. We will illustrate

the effect of the various methods on one specific tree-level NMHV six-gluon helicity amplitude:

A
(0)
6g (−+−+−+).

The A(0)
6g (− + − + −+) amplitude has the highest complexity out of all the tree-level expressions
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and it is referred to as the alternating helicity amplitude. It can be represented in spinor variables

as in [99]

(4.9)

A
(0)
6g (−+−+−+) =

〈5| p13|2]4

[12][23] 〈45〉 〈56〉 〈4| p23|1] 〈6| p12|3]s123

+
〈3| p24|6]4

[16] 〈23〉 〈34〉 [56] 〈2| p16|5] 〈4| p23|1]s234

− 〈1| p35|4]4

〈12〉 [34][45] 〈16〉 〈2| p16|5] 〈6| p12|3]s345
.

For the following examples the tree amplitude was expressed as a rational function of momentum-twistor

variables. As already stated, this is a necessary requirement for the application of the reconstruction

techniques illustrated in this chapter. We also use this example to compare two possible parametrisations

in the momentum-twistor variables. We call them A and B parametrisations, explicitly they are

ZA = (4.10)

1 0 1
x1

1
x1

+ 1
x1x2

1
x1

+ 1
x1x2

+ 1
x1x2x3

1
x1

+ 1
x1x2

+ 1
x1x2x3

+ 1
x1x2x3x4

0 1 1 1 1 1

0 0 0 x5

x2
x6 1

0 0 1 1 x7 1− x8

x5


,

ZB =



1 0 1
s12

σ1

s12
σ2

s12
σ3

s12

0 1 1 1 1 1

0 0 0 y1 y2 1

0 0 1 1 y2−y3

y1

1−y4

y1


, (4.11)

where we recall the definition of the momentum twistor Z from Eq. (3.29).

We see that the Z matrices both have 8 independent entries; this is consistent with the 8 degrees of

freedom of the 6 gluon momenta (3× 6− 10 = 8). We give the expressions of the variables of both
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matrices in terms of spinors and other kinematic invariants. For ZA

x1 = s12,

x2 = − tr+(1234)
s12s34

,

x3 = − tr+(1345)
s13s45

,

x4 = − tr+(1456)
s14s56

,

x5 =
s23
s12

, (4.12)

x6 = − tr+(2, p34, 5, 1)
s12s15

,

x7 = − tr+(5, 1, p23, p234)
s15s23

,

x8 =
s123
s12

.

And for ZB

y1 = − s23s34
tr+(1234)

,

y2 = − tr+(2, p34, 5, 1)
s12s15

,

y3 =
tr+(5, 1, p23, p234)s12s34 − tr+(1234)tr+(2, p34, 5, 1)

s12s15tr+(1234)
,

y4 =
〈13〉 〈4|p23|1]|
〈23〉 〈4| 1|2]

, (4.13)

σ1 =
〈13〉 〈24〉
〈14〉 〈23〉

,

σ2 =
〈13〉 〈25〉
〈15〉 〈23〉

,

σ3 =
〈13〉 〈26〉
〈16〉 〈23〉

.

This amplitude is chosen because it is compact enough but still presents non-trivial features which

well exemplify the simplifications made possible by our techniques.
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An additional consideration has to be made concerning the phases of the scattering amplitudes. We

have already seen in Section 3.4.1 that only phase-free expressions can be expressed in momentum-twistor

variables. For this reason before a reconstruction, each amplitude is divided by the momentum

helicity factor, as explained in Section 3.4.1. The numerical interpolation that has been discussed in

the previous sections is then applied to reconstruct the the phase-free rational part of the amplitude,

and the helicity factor is added back at the end of the computation. This will also be the case for

the amplitude in all the examples we will discuss in this chapter.

4.3.1 Linear Relations Among the Coefficients

One crucial property which is exploited in the reconstruction of a full QCD amplitude is that

the colour-ordered partial amplitudes are not all linearly independent, as stated in 3.1. Instead,

knowledge of their associated colour factor can be exploited to find relations among them [73].

Finding such relations is important because it allows to reduce the number of helicity amplitudes

that need to be reconstructed to obtain the full-colour expression. Linear relations among functions

ci(x) are found by solving the system

(4.14)
∑
i

rici(x) = 0,

where ri are rational numbers. Computing the values of the ri therefore requires many fewer

computations than reconstructing the coefficients.

It is often the case that linear combinations of the coefficient are related to known rational functions,

in which case the linear system is extended to

(4.15)
∑
i

rici(x) +
∑
i

sifi(x) = 0,

in this case the fi(x) are rational functions which are given as an ansatz and the si are rational

numbers like the ri’s.

We show the explicit application of the linear relations on the A(0)
6g (− + − + −+) amplitude by

studying the Kleiss-Kuijf relation

(4.16)A
(0)
6g (1

−2+3−4+5−6+) = −A(0)
6g (1

−2+6+5−4+3−)−A
(0)
6g (1

−6+2+5−4+3−)

−A
(0)
6g (1

−6+5−2+4+3−)−A
(0)
6g (1

−6+5−4+2+3−).
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it is straightforward to see that Eq. (4.16) is a specific case of Eq. (3.6).

We will use a lighter notation in which the ordering of the external legs is indicated by a label Ωi,

the labels are defined as:

Ω1 = (1−2+3−4+5−6+)

Ω2 = (1−2+6+5−4+3−)

Ω3 = (1−6+2+5−4+3−) (4.17)

Ω4 = (1−6+5−2+4+3−)

Ω5 = (1−6+5−4+2+3−).

It is possible to compare the complexity of the amplitudes appearing in Eq. (4.16) by evaluating

them over a univariate slice modulo a prime number. This means that each variable xi of the

function is substituted in the following way

(4.18)xi → ai + bit,

where ai and bi are integers chosen randomly to avoid spurious cancellations. The result are

expressions which only depend on the parameter t. The numerical values are all computed modulo

a prime number, in order to reduce the size of the expression. The fact that the substitution

makes each variable linear in t makes it possible to compute the total degree of the numerators and

denominators from the slice, without the need to reconstruct the full expressions. We recall from

Section 4.1 that the degree of the numerator M and denominator M ′ of a rational function provide

the upper bound for the number of numerical points needed for its reconstruction, as expressed by

Eq. (4.5). The code takes as an input a list with all the tree amplitudes. We can then gather the

information on the degrees for the two different parametrisations.
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Parametrisation A
(0)
6g (Ω1) A

(0)
6g (Ω2) A

(0)
6g (Ω3) A

(0)
6g (Ω4) A

(0)
6g (Ω5)

A 28/24 33/29 38/37 32/30 26/21

B 19/18 21/20 25/25 22/22 19/18

Table 4.1: The polynomial degree of the different permutations of the tree amplitudes for both
parametrisations. In this notation n

m indicates a numerator of degree n and a numerator of degree
m

.

It is shown in Table 4.1 that the expression of A(0)
6g (Ω3) = A

(0)
6g (1

−6+2+5−4+3−) has the highest

polynomial degree in both representations. This means that when performing the reconstruction

of the full-colour amplitude it is convenient to avoid the reconstruction of such sub-amplitude and

express it in terms of the other ones instead. This procedure has been fully automatised in the code

used to derive the amplitudes presented in the following chapters.

In Appendix H one finds an example of the MATHEMATICA code using FiniteFlow to compute

all the possible permutations of A(0)
6g (1

−2+3−4+5−6+) and finding the linear relations among the

resulting expressions.

4.3.2 Factor Matching

One important step that is carried out before starting a reconstruction consists in compiling a list

of ansatz factors that we expect parts of the function to factorise into. For tree-level expressions

and in the case of one-loop five and six-point helicity amplitudes it was found in many different

cases (see for example [1, 109, 112, 113]) that all the factors making up the denominators of the

rational coefficients could be guessed in advance, together with some numerator factors. In practice

this means that a rational coefficient can be put in the form

(4.19)c(x) =
N(x)∏
iDi(x)

,

and the Di(x), which are irreducible polynomials over Q, can all be included in the ansatz list and

therefore don’t need to be reconstructed.

The members of the ansatz list for tree-level amplitudes are spinor products and Mandelstam

invariants. The first guess for the terms are objects of the form sij , sijk, 〈ij〉 , [ij] and 〈i| pjk|l],
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with the indices running over all possible values i, j, k, l = 1, ..., 6. Such a list is over-complete,

since we expect that not all the terms will be independent of each other. The ansatz is therefore

reduced by evaluating all the terms in momentum-twistor variables and only keeping the independent

polynomial factors in the resulting expressions. It is convenient to perform this pre-processing step,

since having a long list of ansätze will increase the computation time for the evaluation of each

individual sample point. The explicit form of the list of ansätze in momentum twistor variables is

given in Appendix C.

For the reconstruction of one-loop amplitudes the ansatz list is longer and we included some spinor

products and combinations which appear in the denominators of the differential equations for the

Master Integrals of a given amplitude [1]. The differential equations become singular as these terms

go to zero, so one naturally expects some of them to appear in the denominators of the rational

coefficients. This will be exploited for the reconstructions in chapters 5 and 7.

After the ansatz list has been produced, the matching with the rational coefficents is performed

over a univariate slice modulo a prime number. This is done by performing substitutions of the

type of Eq. (4.18). The result is an expression which only depends on the parameter t and whose

factors can be compared with the ones in the ansatz list, evaluated over the same univariate slice.

Once again, it is possible to compute the total degree of the numerators and denominators from

the slice, as well as the exponents ei from Eq. (4.19). The total expression is then divided by

all the factors that were matched (elevated to the correct exponent), leaving only the unmatched

factors. Performing the factor matching allows then to reduce the number of factors that need to

be reconstructed, decreasing the number of sample points in the reconstruction.

We show in Table 4.2 the effect of the application of the factor matching to the tree-level amplitude.

Amplitude Original Degrees After Matching

A
(0),A
6g (−+−+−+) 28/24 26/0

A
(0),B
6g (−+−+−+) 19/18 18/0

Table 4.2: The polynomial degrees of the expressions before and after the factor matching in both
parametrisations.
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As it was anticipated, we are able to guess all the denominator factors. The notation number/0

indicates that no polynomial denominator needs to be reconstructed after the matching. We see

that the amplitude has a lower total degree in the second parametrisation. This fact can be used to

justify the use of one choice of representation over the other.

Another important set of techniques which can be used to reduce the computational cost of a

reconstruction consists in constructing additional polynomial ansätze for the coefficients. In many

cases fitting such ansätze requires less computations than directly reconstructing the coefficients.

This can be achieved by partial fractioning the expressions, writing them as sums of simpler rational

functions. An additional advantage is that the expressions decomposed in such a way are more

compact, resulting in files of smaller sizes once they are saved on a computer. In general, a partial

fractioning decomposition will generate an ansatz with a higher number of terms. From the point of

view of the reconstruction, this has the effect of increasing the evaluation time per single numerical

point. This is the case because this method requires to solve a linear system to find the values of

the coefficients of the terms in the ansatz. An ansatz with more terms corresponds to an increase

in the size of the system. We found, for the coefficients reconstructed in this thesis, that this time

increase was balanced in most cases by the fact that a smaller number of points needs to be sampled

to fit the total function, since the degrees of the polynomial functions are lower.

Different techniques were developed to perform the partial fractioning on the fly within the FiniteFlow

framework, directly reconstructing expressions in a partial-fractioned form. In the following sections

we present three distinct techniques that can be employed to achieve this goal.

4.3.3 Univariate Partial Fractioning

The simplest form of partial fractioning is the one on a univariate function. As discussed in Section

4.1, we can always treat a multivariate function as a univariate one by treating all variables but one

as constants. If we have a function depending on variables {y, x1, x2, ..., xn} = {y,x} we can write

it, without loss of generality, as

(4.20)f(y,x) =
N(y,x)∏n

i Di(y,x)ei
,
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taking only y as a variable.

It is possible that some denominator factors will not have any dependence on y, d̃k = d̃k(x); in

this context they will have no effect on the partial fractioning, and we can treat the term 1
d̃1...d̃n

as a factor that multiplies the whole expression and whose reconstruction will be unaffected by

the decomposition. For this reason for the rest of the discussion we only treat the di that have

a y dependence, remembering that the presence of any extra denominator will not change the

computations. This is especially true in the cases in which all the denominator factors are guessed

via factor matching.

We can write down an ansatz for the partial fractioned expressions with respect to y, the notation

will be similar to the one used in [112], where this technique was first used for reconstructions

performed with FiniteFlow:

(4.21)f(y,x) =

n∑
i

ei∑
j=1

dj−1∑
k=0

nijk(x)y
k

Di(y,x)j
+Θ(dN − dQ)

dNUM−dQ∑
i=1

n′(x)yi +R(x).

Where we defined di = deg(Di), dNUM = deg(N) and dQ =
∑n

i diei, where all the degrees are

with respect to the variable y. We see that the rightmost term in Eq. (4.21) is only present if

the denominator has a higher total degree than the numerator in the variable y. It is possible

to use the above ansatz to set up a linear system for coefficients nijk(x), n′(x) and R(x), in the

case in which all the coefficients Dei
i are known analytically. This means that the univariate apart

can only be used in conjunction with the factor matching algorithm described in the previous section.

We reiterate here a point already mentioned at the end of Section 4.3.2, namely that having a

longer ansatz for each coefficient increases the evaluation time per each individual sampled point.

This can be understood if we imagine having a generic rational function f(y,x), for which we have

an ansatz made up of m terms fi(y,x)

f(y,x) =

m∑
i

ci(x)fi(y,x). (4.22)

If we then want to evaluate the function at a specific numerical point, we need to solve a system

with m equations to find the values of all the ci at that point. Therefore, we expect the time to
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evaluate the whole function at a single point to scale linearly with the number of terms m [100].

This is indeed what we observed in our work when reconstructing scattering amplitudes.

As stated before, the choice of the variable to partial fraction with respect to is arbitrary; different

choices normally lead to very different representations of the expressions. A code in

MATHEMATICA was written so to evaluate the impact of the partial fractioning with respect

to each different variable, comparing the total degree of the polynomials which needed to be

reconstructed after the decomposition. This is done by performing partial fractioning on different

univariate slices and allows us to make the choice which most reduces the complexity of the computation.

When the different choices of variable are tested on A
(0)
6g (−+−+−+), it is found that the one for

which there is the biggest drop in complexity is x8 in parametrisation A and y4 in parametrisation

B. In Table 4.3 we report the polynomial degree of the expression after each stage in the algorithm,

to show the simplifications.

Amplitude Original Degrees Stage 1 Stage 2 Stage 3

A
(0),A
6g (−+−+−+) 28/24 26/0 17/11 4/4

A
(0),B
6g (−+−+−+) 19/18 18/0 11/8 2/0

Table 4.3: The polynomial degree of the expressions to be reconstructed in each stage, when using
the univariate partial-fractioning. Again, in this notation n/m indicates a numerator of total degree
n and a denominator of total degree m. The total degrees is computed over the remaining variables
x.

The stages in the table indicate the methods that have been applied in sequence. Stage 1 consists in

the matching of factors from the list of ansätze. Once the factors are matched they are multiplied

out, reducing the size of the polynomial, as explained in Section 4.3.2. The values for Stage 2

indicate the maximum degrees of the terms in the ansatz of form Eq. (4.21), we notice that the

partial fractioning has decreased the complexity of the expression. This is to be expected also

because, after the partial fractioning, the expression depends on one fewer variable than the original

one. In Stage 3 the terms are again matched with the list of ansätze, dividing out the matched
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terms as in Stage 1. We see that again the degrees are lower at each stage for parametrisation B.

Having final polynomials of degree 2/0 indicates that all the factors of the denominators have been

matched with the ansätze and a polynomial of total degree 2 in the numerator is the only factor left

to reconstruct.

We can then see that the power of the partial fractioning in this case consists in recasting the

expression in a form from which it is possible to identify most of its factors as ones present in the

original ansatz. We will see in the next section what are the differences when a multivariate partial

fractionning is performed.

4.3.4 Multivariate Apart Reconstruction

After having discussed partial fractioning in one variable, in this section we briefly outline the

algorithm we employed to perform the partial fractioning of a function with respect to multiple

variables and how it was used within the finite-field reconstruction framework. This decomposition

was implemented exploiting the package MultivariateApart [114]. We first briefly give some

mathematical definitions needed to understand the steps in the algorithm, following the same

exposition as [114]. This section will not go into the mathematical details or proofs, for a more

comprehensive reading on the topic the reader is redirected to [115].

We start by defining polynomials pi(x) which belong to a polynomial ring Q[x]. So that

p(x) =
∑
i

cix
αi , (4.23)

where coefficients ci belong to the field of rational numbers Q, x = {x1..., xn} are the variables

and αi are vectors of integers. All the polynomials of momentum-twistor variables discussed in this

chapter belong to Q[x].

Since we are considering the dependence of the function on more than just one variable, one essential

step consist in defining a monomial ordering among the different variables. For a monomial set of

twistor variables

M ≡ {xa ≡ xa1
1 · · · xan

n |ai ∈ Z0+}, (4.24)
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a monomial ordering ≺ must satisfy the two conditions:

1. xa ≺ xb =⇒ xa+c ≺ xb+c for all c,

2. 1 ≺ xa for all a .

If, for example, the ordering x ≺ y is established, then we can order the monomials in polynomial

p(x, y) = x3y2 + y4 + x8 as {x8, x3y2, y4}, and the rightmost term can be interpreted as the greatest

in this ordering. The leading term in the polynomial will then just be the greatest monomial:

LT(p) = y4.

Defining an ordering for the monomials allows us to perform polynomial reductions, which will be

the key operation to perform the decomposition. If for some term t of polynomial p1 there exists a

polynomial u such that t = u× LT(p2), then we say that p1 reduces to p′1 modulo polynomial p2 if

p′1 = p1 − u× p2 [115].

Polynomial reduction is used to express a polynomial p as a linear combination of other polynomials

gi
(4.25)p(x) =

∑
i

fi(x)gi(x) +R(x),

where fi(x) ∈ Q[x] and R(x) is a polynomial reminder. We can then define an ideal I with generators

gi, I =< g1(x), ..., gn(x) >, as the set of all polynomials for which we can find a decomposition like

Eq. (4.25) with R(x) = 0 [115]. We will see that the definition of a partial-fractioning method is

strictly related, in the implementation of MultivariateApart, to the membership problem

[102, 114]. This problem consists in determining whether a given polynomial belongs to an ideal.

The problem is non-trivial in general, since a decomposition of the form of Eq. (4.25) is not unique;

it is therefore possible to have pi(x) ∈ I, but obtaining a general reduction with R(x) 6= 0. It

is nevertheless possible to compute a Groebner basis of the set of the generators, which is a set of

polynomials which ensure that a given polynomial pi(x) will be in I if and only if the remainder of its

polynomial reduction is zero, thus solving the membership problem [102]. Given a set of generators

gi(x), it is always possible to calculate the Groebner basis ĝi(x) =
∑

j hij(x)gj(x), where hij(x)

are again polynomials.

Calculating a Groebner basis can be computationally expensive, in the most complicated cases
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dedicated computer algebra systems such as Singular [116] can be exploited to obtain it. This

technology can then be exploited to achieve the decomposition of a function of the form of Eq.

(4.19). This is done by taking the set of irreducible denominators Di and defining the ideal

I =< q1D1(x)− 1, q2D2(x)− 1, ..., qnDn(x)− 1 >, (4.26)

thus introducing the new set of variables qi. It is important to stress that a new monomial ordering

must be defined, including the new variables. The function is then re-written as

c(x, q) = N(x)q1 . . . qn. The next step consists of computing the Groebner basis of I and using it

to perform the polynomial reduction of c(x, q). We can then express the reduction in terms of the

original generators and get

N(x)
∏
i

qi(x) =
∑
i

fi(x)ĝi(x) +R(x) =
∑
i

∑
j

fi(x)hij(x)(qj(x)Dj(x)− 1) +R(x), (4.27)

where again we have the polynomials fi(x) ∈ Q[x].

It is straightforward to see that restoring the condition qi(x) = 1
di(x) is equivalent to setting the

terms qiDi(x) − 1 to zero. This means that after the reduction, the remainder will be the partial

fractioned expression. The use of Groebner basis ensures that the resulting R(x) is unique. This

procedure does not introduce any new denominator factors.

The above procedure makes it possible to partial fraction a multivariate function of which the

analytical expression is known. This is not the case for functions which are being reconstructed with

FiniteFlow, so it is necessary to take a hybrid approach: the rational functions are reconstructed

over a n-variate slice, and that expression is then partial fractioned using MultivariateApart.

Similarly to a univariate slice, an n-variate one is computed by setting all variables to integer

numerical values modulo a prime, with the exception of a subset of n of them. Such a slice is fast

to evaluate for n = 2, 3 (the reconstruction time is of the order of tens of seconds for polynomials

known analytically with degrees as high as 90). In most of the applications we employed slices of

two variables, so in the rest of the section we will focus on bi-variate slicing, remembering that the
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discussion can be straightforwardly extended to an arbitrary number of variables.

We define the rational function as in Section 4.3.3, with the difference that now we have two variables

that the function depends on: {y1, y2}. So we write

(4.28)f(y1, y2,x) =
N(y1, y2,x)∏n

i Di(y1, y2,x)ei
,

we again only consider the denominators that have a dependence on at least one between y1 and

y2. The bi-variate slice is then computed by setting the variables x to numerical values, modulo a

prime number. The MultivariateApart package is then applied to the slice.

We show the steps of the algorithm with the simple example of a function of three variables

{y1, y2, x3}

f(y1, y2, x3) =
y31 + y22x

2
3

y21(7y1 + y2)(y2 + y1x3)
, (4.29)

where we assume to know the three (algebraically independent) denominators D1 = x1,

D2 = 7x1 + x2, D3 = x2 + x1x3 and the powers with which they appear in the function. We take a

bi-variate slice by setting x3 → 13 and evaluating each numerical value modulo a prime number 5

(in the real applications both the random number for the substitution and the prime number need

to be much higher, as explained in Section 4.2),

fsliced =
y31 + 4y22

y21(2y1 + y2)(3y1 + y2)
. (4.30)

We can then apply MultivariateApart with the ordering y1 ≺ y2 to obtain

fsliced =
4

y21
+

1

(2y1 + y2)
+

1

y1(2y1 + y2)
− 1

3y1 + y2
− 1

y1(3y1 + y2)
. (4.31)

We recognise x1, (2x1 + x2), (3x1 + x2) as D1, D2, D3 respectively, evaluated over the slice. So we

are able to fully reconstruct the denominators of the terms in Eq. (4.31). The bi-variate ansatz for

the numerator of f(y1, y2, x3) is then obtained by multiplying each term in Eq. (4.31) by the full

denominator x21(2x1 + x2)(3x1 + x2), and substituting any numerical pre-factor with a coefficeint
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which will depend on x3. We then have

N(y1, y2, x3) = c1(7y1 + y2)(y2 + y1x3) + c2y
2
1(y2 + y1x3)+

c3y1(y2 + y1x3) + c4y
2
1(7y1 + y2) + c5x1(7y1 + y2). (4.32)

where the coefficeints ci are all functions of the remaining variable x3: ci ≡ ci(x3). It is then possible

to set-up a linear system to evaluate the coefficients ci(x3) over many numerical points. This allows

FiniteFlow to fully reconstruct N(y1, y2, x3).

In many cases which we have studied, the ansatz was longer in the multivariate case than in the

univariate one, this means that the multivariate apart reconstruction was convenient only if the

decrease in polynomial degrees was great enough to balance this.

Like in the univariate case, the choice of the subsets of variables y1 and y2 in Eq. (4.29) is arbitrary.

In order to make an optimal choice the same strategy as the one described in the previous section is

adopted: a MATHEMATICA script was written in order to compare the degrees of the different

ansätze for each different choice of variables. This computation can be done on a bi-variate slice,

without the need to perform any full reconstruction. It is then possible to choose the variables which

minimise the complexity of the complete numerical reconstruction. We apply the bi-variate partial

fractioning to the alternating helicity amplitude. The best choice of variables is found to be x4, x5

for parametrisation A and y3, y4 for parametrisation B. We report the degrees at the different stages

as in the previous section.

Amplitude Original Degrees Stage 1 Stage 2 Stage 3

A
(0),A
6g (−+−+−+) 28/24 26/0 17/9 0/0

A
(0),B
6g (−+−+−+) 19/18 18/0 12/6 0/0

Table 4.4: The polynomial degrees of the expressions to be reconstructed in each stage, when using
the multivariate partial fractioning

The degrees after Stage 1 are the same as in Table 4.3 for both parametrisations, since the same

factor matching procedure is applied. After Stage 2 we show the degrees of the ansatz for the partial



4.3. RECONSTRUCTION TECHNIQUES 77

fractioned expression. In this case the second factor matching performed in Stage 3 matches all

the numerator factors of the amplitude in both representations. For such cases one only needs to

reconstruct some rational number, and the number of evaluations is much smaller. The evaluation

was performed almost instantaneously in these cases for the expressions computed in this thesis.

4.3.5 Partial Fractioning with BCFW-like shifts

In this section we describe a last partial fractioning method which has proven to be useful in

the reconstruction of tree-level and one loop helicity amplitudes. The algorithm is based on the

application of a complex shift of the same type as the one in Eq. (3.83). Once the shift is

performed the rational expressions will have singularities for specific values of the variable z. Since

the momentum-twistor parametrisation enables one to express the spinors as two-vectors in twistor

variables, Eqs. (3.21) can easily be computed in terms of the xi, allowing the evaluation of any

spinor structure in the shifted phase-space. One additional technical detail comes from the fact that

the shift will have a normalisation associated to them, added so that phases are not affected. For

a {〈i| , [j|} shift the normalisation has form 〈i| pk|j] (with k 6= i, j), so that the shift assumes the

phase-free expression z|i〉[j|
〈i|pk|j] .

We show explicitly the form of the shifted spinors for a {〈1| , [2|} shift in both parametrisations

A and B, since this is the one that we will use on the A(0)
6g (− + − + −+) amplitude. Shift with

parametrisation A:

〈1| → 〈1| − z
〈2|

〈1| 3|2]
= (1, 0)− z

x21x5
× (0, 1) =

(
1,− z

x21x5

)
, (4.33)

[2|→ [2|+z [1|
〈1| 3|2]

= (−x1, 0) + z
z

x21x5

(
x8
x5

− 1, 1

)
=

(
−x1 + z

(x5 − x8)

(x21x
2
5)

,− z

x21x5

)
. (4.34)
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Shift with parametrisation B:

〈1| → 〈1| − z
〈2|

〈1| 3|2]
= (1, 0)− z

σ1 − 1

s212y1
× (0, 1) =

(
1,−z σ1 − 1

s212y1

)
, (4.35)

[2|→ [2|+z [1|
〈1| 3|2]

= (−s12, 0) + z
σ3 − 1

s212y1

(
y3 − 1

y1
, 1

)
=

(
−s12 − z

(−1 + σ1)(−1 + y4)

s212y
2
1

,−z σ1 − 1

s212y1

)
.

(4.36)

The algorithm relies on the creation of a list of ansätze for the possible linear poles in z. This can

be easily constructed by selecting the terms in the general ansatz list which are phase-free. Since

in our case all the denominator factors can be matched, the ansätze for the linear poles are just the

terms which are linear in z once they are evaluated in the shifted phase-space. At the tree-level

case the position of the poles in z and the factorisation properties of the amplitude have already

been discussed in Section 3.3. For one loop expressions, it is possible for the shift to give rise to

poles which are not linear in z. Additionally, as briefly discussed in Section 3.8, a shifted one-loop

amplitude of arbitrary helicity can have a non-zero residue for z → ∞. We list the steps followed

by the algorithm in order to clarify how these issues are approached.

1. Perform the factor matching to decrease the polynomial degree of the expression.

2. Compute the list of poles ansätze on the shifted phase space (as functions of z and the twistor

variables) and then evaluate them on a univariate slice.

3. Evaluate the full function on the same univariate slice and match the denominators with z

dependence with the ones in the pole ansatz.

4. For each pole linear in z:

• solve the equation pole = δ for z and substitute the solution inside the expression,

• compute the first term of the Laurent series of the expression around δ → 0,

• perform the factor matching on the residue and then reconstruct it.

5. Subtract all the reconstructed terms from the expression.

6. Perform the factor matching on the remainder and reconstruct it.
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So we see that in the algorithm only the residues for linear poles are reconstructed, any additional

term which comes from non-linear singularities, together with the singularity at infinity, is treated

as a remainder which is computed after all the residues have been subtracted. It is often found that

after the residues have been subtracted the reminder has a polynomial degree which is much lower

than the one of the original expression, making the reconstruction easier.

We show in Table 4.5 how the algorithm performs when used to reconstruct the alternating helicity

amplitude. Since the expression is a tree-level amplitude we do not encounter poles not linear in z

or residues at infinity.

Amplitude Original Degrees Residue s16 Residue s23 s156 Remainder

A
(0),A
6g (−+−+−+) 28/24 0/0 0/0 0/0 0/0

A
(0),B
6g (−+−+−+) 19/18 0/0 0/0 0/0 0/0

Table 4.5: The polynomial degree of each residue, plus the degree of the remainder after both
residues have been subtracted.

After this analysis we see that both the reconstruction which exploits multivariate partial fractioning

and the one with BCFW shifts make it possible to decompose the amplitude into factors which were

included in the original list of ansätze (the final polynomial degrees were 0/0 in both cases). In order

to differentiate between the two methods, we present the expression which are obtained using the

two different reconstruction algorithms. We choose to only present the expressions written in the

parametrisation B; their form in parametrisation A is less compact but not significantly different for

this analysis. In order to have more readable expressions, we write them in terms of the polynomials

gi which were matched from the ansatz list. We give the polynomials explicitly as functions of

momentum-twistor variables.

A
(0),MVA
6g (−+−+−+) =

32g415
y1g1g14g16g17g3g4

− 32y1g34g36
g1g10g13g16g3g7

+
32y1g33g38

g1g11g12g14g4g7
(4.37)

+
32g36

y1y2g1g3g4g9g23
+

32g46
y1y2y3g1g12g3g4g23

− 32y1g42g38
y2g1g3g4g5g24

+
32y1g42g48

y2g1g13g18g3g4g24
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A
(0),BCFW
6g (−+−+−+) = − 32g419g22

y1g1g10g11g17g20g21g3g4
+

32y31g42g22g48
y2g1g18g21g3g4g5

(4.38)

− 32g22g46
y1y2y3g1g20g3g4g9

{g1 = σ1 − 1, g2 = σ2 − 1, g3 = σ1 − σ2, g4 = σ2 − σ3, g5 = y3 − y2y4, (4.39)

g6 = y1σ2 + y2 − y1 − σ1y2, g7 = σ1 − σ2 + σ2y1 − σ3y1 − σ1y2 + σ3y2, g8 = y2 − 1,

g9 = σ2y1 − σ1y2 + y3,

g10 = σ1y1 − σ2y1 + σ2y
2
1 − σ3y

2
1 − σ1y1y2 + σ3y1y2 − y3 + σ1y3 + y1y3 − σ3y1y3 − y1y4+

σ2y1y4 + y2y4 − σ1y2y4,

g11 = y1y3 − y3, g12 = y1 − y2, g13 = −1 + σ2 + y2 − σ3y2,

g14 = y1 − 1, g15 = σ1 + y1 − σ2y1 − 1, g16 = y1 + σ1 − σ3y1 − 1, g17 = y4 + y1 − 1,

g18 = σ2y1 − σ3y1y2 + y3 − y2y4,

g19 = −σ1y1 + σ2y1 + σ1y1y2 − σ2y1y2 + y3 − σ1y3 − y1y3 + σ2y1y3 + y1y4 − σ2y1y4 − y2y4 + σ1y2y4,

g20 = y1 − y2 + y3, g21 = −y1 + y1y2 − y3 + y2y4, g22 = s12, g23 = y1σ2 − y2σ1}

We notice that the MVA reconstruction gives an expression which is broken down into a larger

number of terms, while the output of the BCFW reconstruction is shorter. In this case it appears that

the BCFW option is preferable. The difference in A(0),MVA
6g (−+−+−+) and A(0),BCFW

6g (−+−+−+)

is quite small, but for more complex one-loop cases a comparison of the size of the output expressions

(proportional to the output file size) can indicate which algorithm is preferable for a specific

amplitude. We also note that neither Eq. (4.37) nor Eq. (4.38), when written in momentum-twistor

variables, is as compact as the amplitude in spinor form of Eq. (4.9). This is not an issue, since

all the factors have been matched to an ansatz and can always be labelled in the way done in Eqs.

(4.37) and (4.38). For most amplitudes, compact forms such as Eq. (4.9) can only be obtained after

they have been computed in some specific representation, and then spinor identities are applied to

simplify them. One advantage of the reconstruction methods described in this chapter is that in

some cases the expressions can be reconstructed directly in a compact form.
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In the next chapter we will see how many of the methods described so far were applied to compute

physical amplitudes with massive quarks. We will see that finite field reconstruction methods were

essential to obtain the desired analytic form of the amplitudes.



Chapter 5

One-loop QCD Amplitudes for

pp → tt̄j to O(ε2)

5.1 Introduction

This chapter has the main aim of discussing the work presented in [1], in which we compute the

helicity amplitudes for the one-loop corrections in QCD to top-quark pair production up to second

order in the dimensional regulator ε.

NLO corrections to pp → ttj have been known for a long time [117], putting the precision frontier

at NNLO. This process is of particular interest because it is extremely sensitive to the top quark

mass [118]. The analytical expressions that we computed are needed to carry out a comprehensive

phenomenological study of the process. This is the case since, as we have seen in Section 2.6, the

one-loop amplitude enters squared in the computation of the NNLO cross-section; this indicates

that its expression must be known up to the O(ε2) expansion. It must be specified that we know

from [119] that a full NNLO result in four dimensions, O(ε0), can in theory be obtained without

the need to compute these one-loop corrections up to second order in ε, since various cancellations

make them drop out from the final expression. Nevertheless, the procedure described in [119] is only

applicable if one has full control on how the double-virtual contribution is computed, as explained

82
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in [120]. Since this is in general not the case, and various contributions are normally computed by

different research groups, our results are the most suitable for phenomenological studies.

It is important to stress that obtaining the form of the amplitudes expanded to higher orders in

the dimensional regulator ε is a highly non-trivial endeavour, and it poses significant computational

challenges which are not encountered in the O(ε0) computation. We have found that the algebraic

complexity of the coefficients of the integral basis is comparable with the ones of the same amplitude

evaluated at two loops.

In order to perform these computations, we exploited many techniques described in chapters 3 and

4. New methods employed for these specific calculations are also presented. The contents of this

chapter will show to the reader how the theoretical methods discussed so far are put into practice

for a real phenomenological computation, highlighting how the different techniques are used in a

single computational framework which yields high-precision results. The results obtained in the

project made it possible to look at the NNLO complexity for the first time, demonstrating that the

finite field reconstruction techniques are suited to tackle the complexity of the full NNLO expressions.

This chapter is organised as follows. In Section 5.2 we show how the amplitudes were decomposed

according to their colour factors and the quark flavours. The use of spinor-helicity representations for

massive fermions is also discussed. In Section 5.3 we describe how we use a specific representation in

which each amplitude is expressed as a linear combination of four gauge-invariant phase-free objects.

We also outline the steps of the computation, from the creation of the Feynman diagrams to the

numerical evaluation of the amplitudes. Sections 5.4 and 5.5 focus on the definition of the MIs basis

via the Integration By Parts identities and their numerical evaluation using the differential equation

method, while in Section 5.6 we provide details on the renormalisation of the sub-amplitudes. In

Section 5.7 we show how partial fractioning the tree-level t̄tggg expressions and collecting the top

mass helps in their representation. This discussion helps explaining the choices for the rational

reconstruction of the one-loop results in Section 5.8. In Section 5.9 we describe the pole structure

of the amplitudes, the results are discussed in Section 5.10.
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5.2 Colour Decomposition and Kinematic Setup

We defined the momenta in the two pp → t̄tj partonic channels as all outgoing. We then must

consider the amplitudes for two distinct processes:

• 0 → t̄tggg,

• 0 → t̄tq̄qg .

The colour decomposition for the 0 → t̄tggg amplitude is [121]:

A(L)(1t̄, 2t, 3g, 4g, 5g) = g3+2L
s NL

ε

{
∑
σ∈S3

(taσ(3)taσ(4)taσ(5))ī1i2A
(L)
1 (1t̄, 2t, σ(3)g, σ(4)g, σ(5)g)

+
∑

σ∈S3/Z2

δaσ(3)aσ(4)(taσ(5))ī1i2A
(L)
2 (1t̄, 2t, σ(3)g, σ(4)g, σ(5)g)

+
∑

σ∈S3/Z3

tr(taσ(3)taσ(4)taσ(5))δī1i2A
(L)
3 (1t̄, 2t, σ(3)g, σ(4)g, σ(5)g)

}
.

(5.1)

S3 is the group of the six permutations of three elements, while S3

Z2
and S3

Z3
are smaller symmetry

groups of three and two elements each. The normalisation constant is:

Nε =
eεγEΓ2(1− ε)Γ(1 + ε)

(4π)2−εΓ(1− 2ε)
. (5.2)

The number of loops L is kept generic in these formulas. In this chapter we will apply them for the

cases L = 0, 1. The strong coupling constant is indicated with gs. As explained in Chapter 2 , the

(ta)j̄i matrices represent the fundamental generators of the SU(Nc) gauge group, with a = 1, ..., N2
c−1

being the adjoint indices while i and j̄ are the fundamental and anti-fundamental ones respectively.

We present the decomposition for process 0 → t̄tq̄qg following the same conventions (see for example
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[122]):

A(L)(1t̄, 2t, 3q, 4q̄, 5g) = g3+2L
s NL

ε

{
δī4i1 (t

a5)ī2i3A
(L)
1 (1t̄, 2t, 3q̄, 4q, 5g)

+δī3i2 (t
a5)ī4i1A

(L)
2 (1t̄, 2t, 3q̄, 4q, 5g)

− 1

Nc
δī2i1 (t

a5)ī4i3A
(L)
3 (1t̄, 2t, 3q̄, 4q, 5g)

− 1

Nc
δī4i3 (t

a5)ī2i1A
(L)
4 (1t̄, 2t, 3q̄, 4q, 5g)

}
. (5.3)

TheA(L)
i sub-amplitudes can be further decomposed into rational expressions depending on kinematic

invariants, number of colours Nc and number of light flavours nf (note that the number of heavy

flavours is taken to be nh = 1 throughout this chapter, so we omit that extra variable in our

expressions). These additional decompositions for the 0 → t̄tggg channel are

A
(0)
1 = A

(0)
1;0 = A(0), (5.4)

A
(0)
2 = 0, (5.5)

A
(0)
3 = 0, (5.6)

A
(1)
1 = NcA

(1)
1;1 +

1

Nc
A

(1)
1;−1 + nfA

(1),f
1;0 +A

(1),h
1;0 (5.7)

A
(1)
2 = A

(1)
2;0, (5.8)

A
(1)
3 = A

(1)
3;0, (5.9)

and for the 0 → t̄tqq̄g channel

A
(0)
X = A

(0)
X;0, (5.10)

A
(1)
X = NcA

(0)
X;1 +

1

Nc
A

(1)
X;−1 + nfA

(1),f
X;0 +A

(1),h
X;0 , (5.11)

where X = 1, ..., 4. The subscripts after the semicolon in the above equations refer to the power of

Nc multiplying the expressions.
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0 → t̄tggg +++++ ++++− +++−+
0 → t̄tq̄qg +++−+ ++−++ +++−−

Table 5.1: Independent helicity configurations of one-loop amplitudes for both channels. We have
three independent ones for each channel. The justification for only considering top quarks with
positive helicity comes from the parametrisation of massive quarks given below.

Knowledge of the symmetries of the amplitudes allows us to only compute a subset of all the

possible helicity configurations, knowing that the missing expressions can be derived applying specific

operations to the computed ones. Parity conjugation allows to exchange the helicities of the massless

quarks in the expression

A(1)(1−t̄ , 2
+
t , 3

−
q , 4

+
q , 5

+
g )

h3↔h4−−−−→ A(1)(1+t̄ , 2
−
t , 3

+
q , 4

−
q , 5

+
g ). (5.12)

Further symmetries are inherited from the colour structures multiplying the sub-amplitudes, as

explained in Section 3.1. The subsets of independent helicities for each channel are listed in Table

5.1.

We now outline how the spinor-helicity formalism was employed to express the helicity states of

massive fermions, which made it possible to retain the dependence of the amplitudes on the mass of

the top quark. The method employed was presented in [123] and used in other works such as [124],

where the reader can find a thorough exposition of the results briefly shown here. The notation used

will be the one of [1].

Given a particle of mass m with momentum p such that

pµpµ = p2 = m2, (5.13)

we can define an arbitrary massless reference vector n and an additional vector

p[,µ = pµ − m2

2p · n
nµ. (5.14)

Vector p[,µ is constructed so to be massless: (p[)2 = 0.
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It is then possible to construct spinors

u+(p,m) =
(/p+m) |n〉

〈p[n〉
, u−(p,m) =

(/p+m)|n]
[p[n]

, (5.15)

v−(p,m) =
(/p−m) |n〉

〈p[n〉
, v+(p,m) =

(/p−m)|n]
[p[n]

which satisfy the Dirac equation for any generic massless vector n. Explicitly, we see:

(/p−m)u±(p,m) ∝ (p2 −m2) = 0, (5.16)

(/p+m)v±(p,m) ∝ (p2 −m2) = 0, (5.17)

where we used /p/p = p2, which comes from the properties of the gamma matrices displayed in

Appendix A.

The dependence of the spinors on a reference vector has the relevant consequence that positive and

negative helicities are no longer independent. This is more clearly seen if u±(p,m) are explicitly

expressed in terms of nµ and p[,µ,

u+(p,m) =
(/p

[ + m2

2p·n /n+m) |n〉
〈p[n〉

= −|p[] + m

〈p[n〉
|n〉 , (5.18)

u−(p,m) =
(/p

[ + m2

2p·n /n+m)|n]
[p[n]

= − |p[〉+ m

[p[n]
|n], (5.19)

where the spinor identity /p[ = − |p〉[ [p|[−|p][ 〈p|[ was used. We can then see that by performing a

p[ ↔ n inversion on u+(p,m) we obtain

u+(p,m)|p[↔n=
(/p+m) |p[〉

〈np[〉
=

(/p
[ + m2

2p·n /n+m) |p[〉
〈np[〉

= − m2

2p · n
|n]− m

〈p[n〉
|p[〉 . (5.20)

If we multiply by 〈p[n〉
m we have

〈p[n〉
m

u+(p,m)|p[↔n= − |p[〉+ m

[p[n]
|n] = u−(p,m), (5.21)

a similar relation holds for v± spinors. As a result of Eq. (5.21), it is only necessary to compute
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one helicity configuration for the massive top quarks, and all other possible combinations can be

extracted using the symmetries of the spinor constructions. In this work we chose to compute the

all positive ++ configuration, as shown in table 5.1.

From the discussion above we see that there is a need to define two arbitrary massless vectors to

parametrise each massive quark. In Section 5.3.1 the choices for different expressions are discussed.

In [123] it is shown how a physical interpretation can be given to the spinor parametrisation described

above: the decay of the top quark into a massless fermion and a photon, t→ qγ, with the desired split

of its momentum, can give rise to a gauge-invariant amplitude with spinors of the form of Eq. (5.15).

For this project the phase-space of seven massless particles was generated, q1, ..., q7, related to

the momenta pi of the physical particles as

p1 = q1 + q2, p2 = q3 + q4, p3 = q5, p4 = q6, p5 = q7. (5.22)

The following constraints are imposed to ensure that momenta p1 and p2 are on-shell:

q1 · q2 = q3 · q4, 〈q2q5〉 = 0, [q2q5] = 0, 〈q4q5〉 = 0, [q4q5] = 0. (5.23)

The variables used to express the rational coefficients of the amplitudes are then:

s34 = (p3 + p4)
2, (5.24)

t12 =
s12
s34

, (5.25)

t23 =
(s23 −m2

t )

s34
, (5.26)

t45 =
s45
s34

, (5.27)

t15 =
(s15 −m2

t )

s34
, (5.28)

x5123 =
〈5| p1p45 |3〉
〈53〉 s12

. (5.29)
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In the following section we explain how the amplitudes for the two channels were represented, in

line with the choice made for the form of massive spinors.

5.3 Amplitudes Representations

We organise the amplitudes into a basis of spinor structures which parametrise the dependence on the

reference spinors |n1〉 and |n2〉. This choice allows us to express each amplitude as a combination

of on-shell, gauge invariant sub-amplitudes A(L),[i]
x , i = 1, ..., 4. The decomposition has the form

displayed in [1]

A(L)
x (1+t , 2

+
t̄ , 3

h3 , 4h4 , 5h5 ;n1, n2)=mtΦ(3
h3 , 4h4 , 5h5)

4∑
i=1

Θi(1, 2;n1, n2)A
(L),[i]
x (1+t , 2

+
t̄ , 3

h3 , 4h4 , 5h5),

(5.30)

where the overall phase assumes the form:

Φ(3+, 4+, 5+) =
[35]

〈34〉 〈45〉
, (5.31)

Φ(3+, 4+, 5−) =
〈5|p3p4|5〉

〈34〉2
, (5.32)

Φ(3+, 4−, 5+) =
〈4|p5p3|4〉

〈35〉2
. (5.33)

This choice for the Θ are made so that the sub-amplitudes A(L),[i]
x are dimensionless and free of the

spinor phase.

We choose different expressions for the Θ’s depending on the set of values that we decide the

reference spinors can assume. If we decide that the reference spinors n1 and n2 can be equal to any
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of the two momenta p3 or p4, we have:

Θ1(1, 2, n1, n2) =
〈n1n2〉 s34

〈1[n1〉 〈2[n2〉
,

Θ2(1, 2, n1, n2) =
〈n13〉 〈n24〉 [34]
〈1[n1〉 〈2[n2〉

, (5.34)

Θ3(1, 2, n1, n2) =
〈n13〉 〈n23〉 [3|p4p5|3]
s34 〈1[n1〉 〈2[n2〉

,

Θ4(1, 2, n1, n2) =
〈n14〉 〈n24〉 [4|p5p3|4]
s34 〈1[n1〉 〈2[n2〉

.

If instead we decide that n1 and n2 can be equal to any of the two momenta p3 and p5, we have:

Θ1(1, 2, n1, n2) =
〈n1n2〉 s35

〈1[n1〉 〈2[n2〉
,

Θ2(1, 2, n1, n2) =
〈n13〉 〈n25〉 [35]
〈1[n1〉 〈2[n2〉

, (5.35)

Θ3(1, 2, n1, n2) =
〈n13〉 〈n23〉 [3|p4p5|3]
s34 〈1[n1〉 〈2[n2〉

,

Θ4(1, 2, n1, n2) =
〈n15〉 〈n25〉 [5|p4p3|5]
s35 〈1[n1〉 〈2[n2〉

.

In the rest of the chapter we will refer to the parametrisation of Eq.(5.34) as the (p3 − p4) reference

choice, while the one of Eq. (5.35) will be the (p3 − p5) reference choice. In the following section we

discuss the effect that these different choices make on the expression of the amplitude.

5.3.1 On the Choice of Reference Vectors

We can invert Eq. (5.30) to obtain expressions of the sub-amplitudes for the two different choices

of reference spinors. For the (p3 − p4) reference choice we have

(5.36)A(L)[1]
x =

〈1[3〉 〈2[4〉
〈34〉mts34Φ(h3, h4, h5)

A(L)h3h4h5
x (3, 4),

(5.37)A(L)[2]
x =

1

mtΦ(h3, h4, h5) 〈34〉 s34
(〈1[4〉 〈2[3〉A(L)h3h4h5

x (4, 3) + 〈2[4〉 〈1[3〉A(L)h3h4h5
x (3, 4)),

(5.38)A(L)[3]
x =

〈1[4〉 〈2[4〉 s34
mtΦ(h3, h4, h5) 〈34〉2 [3|p4p5|3]

A(L)h3h4h5
x (4, 4),
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(5.39)A(L)[4]
x =

〈1[3〉 〈2[3〉 s34
mtΦ(h3, h4, h5) 〈34〉2 [4|p5p3|4]

A(L)h4h3h5
x (3, 3).

Where we have used a lighter notation: A(L)h3h4h5
x (n1, n2) = A(L)(1+, 2+, 3h3 , 4h4 , 5h5 ;n1, n2).

The sub-amplitudes for the other choice of reference spinors are calculated by inverting 4 ↔ 5.

We then observe that it is more convenient to choose the reference spinors depending on the specific

helicity we wish to represent. If we take for example the helicity configuration (++++-), we see

that a suitable choice of reference vectors makes some sub-amplitudes evaluate to zero. In our

example, the gluon number 5 is the only one with negative helicity, therefore the spinor 〈5| can only

be contracted with the angle brackets of the reference spinors; if we then choose n1 = 3 and n2 = 5,

we have

A(L)[2]
x ∝ (〈1[5〉 〈2[3〉A(L)h3h4h5

x (5, 3) + 〈1[3〉 〈2[5〉A(L)h3h4h5
x (3, 5)) = 0, (5.40)

A(L)[3]
x ∝ A(L)h3h4h5

x (5, 5) = 0. (5.41)

Sub-amplitde A
(L)[2]
x vanishes because of the symmetry properties of the full amplitude, while

sub-amplitude A(L)[2]
x is zero because it has to be proportional to 〈5, 5〉 = 0 since there is no other

possible contraction of leg 5.

Thus we see that for the (++++−) configuration it is convenient to choose n1 = 3 and n2 = 5, while

for the (+ + + − +) configuration the n1 = 3 and n2 = 4 choice is more convenient for analogous

reasons.

Different choices of reference vectors can also be preferred to preserve symmetries which are observed

at the full-amplitude level.

We know that the kinematic part of the amplitudes must present the same symmetries over the

permutations of the external legs as their corresponding colour factors; for the leading-colour

amplitude, for instance, we have the factor T (2, 3, 4, 5, 1) = (t3t4t5)1̄2 which is symmetric under the

reordering (1, 2, 3, 4, 5) → (2, 1, 5, 4, 3) , thus the symmetry must also be present for the kinematic
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amplitude. In general, such a symmetry will not be preserved by the sub-amplitudes, but if we make

the choice n1 = p3 and n2 = p5 we see that each A
(L)[i]
x is invariant as well. This is the case since

the permutation involves the two inversions 1 ↔ 2 and 3 ↔ 5: if spinors 3 and 5 are taken as the

reference spinors for the massive fermions, inverting their order together with one of the fermion

legs will carry the symmetry at the sub-amplitude level. In [1], the following properties were tested

(5.42)
A(1)[i]

x (+ + ++−) = A(1)[i]
x (+ +−++),

A(1)[i]
x (+ + +−−) = A(1)[i]

x (+ +−−+),

both at tree-level and at one-loop order.

The same test was performed for the sub-leading one-loop colour amplitudeA5;4 with colour structure

δ1̄2tr(t3t4t5), and we fond that the sub-amplitudes are invariant under the same permutations.

5.3.2 Computational Pipeline

We conclude this section with a scheme summarising the steps followed to obtain the full expressions

for the amplitudes. Below each block are the names of the software used for that stage of the

calculation.

Generate Diagrams

Qgraf

Colour

Decomposition
Mathematica/Form

Collect Topologies

Mathematica/Form/SPINNEY[125]

Integration

By Parts
LiteRed/FiniteFlow

Mass

Renormalisation
Mathematica/FiniteFlow

Maximal

Topologies
Mathematica/FiniteFlow

Evaluation of
Master Integrals+

Boundary
Conditions
DiffExp

Coefficients

Reconstruction
FiniteFlow/Mathematica

In the following sections we will go into the details of the most salient steps.
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Figure 5.1: Schematic representation of how pinching the propagator between legs 1 and 2 of the
pentagon on the left results in the box on the right.

5.4 Maximal Topologies and Master Integrals

The concept of the topology of an integral in the context of amplitudes has already been introduced

in Section 3.5.2, as the set of the independent denominators of their integrands. It is useful to define

a smaller set of maximal topologies. This is the smallest possible set of topologies which includes all

the possible independent propagators. In other words, the topology of any integral appearing in the

amplitude can be obtained by taking a sub-set of denominators of one of the maximal topologies.

The act of taking a sub-sets of propagators can be referred to as pinching the topology. An example

is shown in Figure 5.1

For the pp→ t̄tj amplitudes we have four maximal topologies, shown in Figure 5.2.

Each numerator diagram (the numerator associated to a specific topology) is computed using a

symbolic value of the the spin dimensions ds = gµµ and the amplitudes are expressed as expansions

around ds = 2:

A(L)
x = A(L,0)[i]

x + (ds − 2)A(L,1)[i]
x . (5.44)

The spin dimension ds is independent of loop integration dimensionD = 4−2ε, so that the amplitudes

can be used both in the FDH (ds = 4) or tHV (ds = 4−2ε) renormalisation schemes. This additional

decomposition doubles the total number of expressions which were reconstructed, but decreases the

complexity of each individual one, making it a convenient choice.

The set of master integrals for each topology was computed separately. The master integrals were

obtained by solving IBP relations [126, 127].

The IBP reduction is a method which relies on the fact that, as a consequence of translational
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Figure 5.2: The four maximal topologies for the pp → t̄tj amplitudes. The black lines indicate
massless particles, while the red lines indicate massive ones. The image is taken from [1].

invariance, in dimensional regularisation the total derivative of the integrands must evaluate to zero

when integrated over the loop-momentum [128]. We can consider an integrand with a generic number

of propagators Di, each raised to an arbitrary power νi ∈ Z:

I(ν1, ..., νn) =
N(k)

Dν1
1 ...D

νn
n
, (5.45)

then we have:

∫
dDk

∂

∂kµ
kµI(ν1, ..., νn) = 0 (5.46)∫

dDk
∂

∂kµ
pµi I(ν1, ..., νn) = 0,

where pi are the external momenta.

A key insight of this method is that computing the derivatives as in Eq. (5.46) is equivalent to

shifting the νi by integer numbers. We illustrate this fact with the simple example of a one-loop

vacuum massive Feynman integral, taken from [128]

F (ν) =

∫
dDk

(k2 −m2)ν
, (5.47)
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which gives:

(5.48)

0 =

∫
dDk

∂

∂kµ
kµ

(k2 −m2)ν

=

∫
dDk

D

(k2 −m2)ν
− 2ν

k2

(k2 −m2)ν+1

= (D − 2ν)F (ν)− 2νm2F (ν + 1).

The substitution k = (k2 −m2) +m2 was used to cast the result in the desired final form. This is

an example of how a polynomial numerator k2 can be re-written in terms of denominators and ISPs

(k2 −m2) and m2, as mentioned in Section 3.6.

Eq. (5.48) gives the recurrence relation

F (ν) =
D − 2ν + 2

2(ν − 1)m2
F (ν − 1), (5.49)

which allows us to express any vacuum integral F (ν) in terms of the master integral F (1)= f1.

The IBP method can be expanded from this simple example: setting up equations of the form Eq.

(5.46) for all the integrals appearing in an amplitude creates a large system of linear equations called

an IBP system. More identities are included in the system in addition to Eq. (5.46), stemming from

Lorentz invariance and symmetries of the integrals. Solving such system yields the set of independent

MIs fi, none of which can be expressed as a linear combination of the others.

In our project, the reduction to master integrals via IBP reduction was performed automatically

using the software LiteRed [129] and FiniteFlow. LiteRed makes use of the Laporta algorithm

[130] in order to solve the large system of linear equations.

We find that the the topologies T1, T2, T3, T4 are described by 15, 21, 17 and 19 MIs respectively.

Knowing the symmetry relations between the topologies and their permutations allowed us to obtain

a minimal set of 130 MIs fi. A list of all the MIs can be found in Appendix I.
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5.5 Computation of Master Integrals

The computation of the MIs was performed using the differential equation method [131–133]. The

differential equations had the form

d~f(~x, ε) = εdA(~x)~f(~x, ε), (5.50)

where d is the total derivative with respect to all the kinematic invariants,

~x = {d12, d23, d34, d45, d15,m2
t}. (5.51)

Matrix A(~x) can be written in the form [134]

A(~x) =
∑

Mi log(αi(~x)), (5.52)

where Mi are matrices of rational numbers and αi(~x) are algebraic functions of the ~x variables. The

set of αi(~x) is sometimes referred to as the alphabet of the amplitude [134]. As stated in Section

4.3.2, the knowledge of such functions enables to match all the denominator factors of the rational

coefficients of the amplitudes. This point is reiterated in Section 5.8. It is important to stress that

for the numerical evaluation of the MIs via a series expansion in ε, we did not find it necessary to

write A(~x) in form of Eq. (5.52) explicitly.

Matrix A(~x) contains square roots

β(a,m2) =

√
1− 4m2

a
, (5.53)

∆3(P,Q) =
√
(p ·Q)2 − P 2Q2,

tr5 =
√
G(p3, p4, p5, p1).

While it is possible to linearise the system and eliminate the square roots, an explicit check for

topology T1 has shown that this causes the polynomial degrees of the coefficients to increase

drastically, making solving the system impractical. Indeed, linearising the system would allow us to
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obtain an analytic solution in terms of multiple polylogarithms (MPLs) [135, 136], but the system of

differential equations will involve polynomials of high degree in the linearized variables. This feature

impacts significantly the computation since the system of differential equations in the new set of

variables is too large to be handled efficiently. In addition, the determination of the phase-space

regions, and therefore the analytic continuation, is more complicated [1]. For this reason it was

preferable to obtain semi-analytic solutions for the integrals using the software DiffExp [137]. This

is a Mathematica package which allows us to integrate Feynman integrals order-by-order in the

dimensional regulator ε, given a set of differential equations and a boundary condition, i.e. the value

of the integral at a specific phase-space point. For completeness we provide the explicit change of

variables which linearises the system for topology T1 in Appendix E. The reader can see that the

matrix on the right-hand-side of Eq. (5.50) is in epsilon-factorised (or canonical) form [134]. Having

the linear differential equations in canonical form greatly simplifies their solution and in principle

enables the computation of the MIs as expansions in arbitrarily high powers of ε. The computation

of the MIs was then performed following these three main steps.

1. Reconstruct the system of differential equations using finite fields with FiniteFlow for a basis

of master integrals ~f ′ which does not contain square roots. This gives a system which is not

in canonical form:

d~f ′(~x, ε) = dA′(~x, ε)~f ′(~x, ε). (5.54)

2. Put the system in epsilon-factorised form by performing the rotation ~f = B−1(~x)~f ′ under

which dA′(~x) transforms as

dA′(~x, ε) → B−1(~x)A′(~x, ε)B(~x)−B−1(~x)dB(~x) = εdA(~x). (5.55)

3. Compute the integrals using DiffExp. The boundary conditions of a minimal subset of MIs

are computed by direct integration of their Feynamn parameter representation at the point

~x0 = (−2,−2,−2,−2,−2, 1). (5.56)
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Figure 5.3: Example of a counter-diagram added to the t̄tggg amplitude. Image taken from [1].

B(~x) is a diagonal matrix containing the square roots of Eq. (5.53), making the basis transformation

trivial. In fact, we find that step 2 is equivalent to setting up the linear system for integrals with

uniform trascendental weight (UT integrals). Such integrals at one loop are obtained by dividing

each of the MIs by the value of their maximal cut [138]. We observe that the values of the maximal

cuts of the master integrals correspond to the arguments of the square roots in the system, confirming

the equivalence of the two approaches.

5.6 Wave-Function Renormalisation

The dependence of the amplitudes on the top mass mt makes it necessary to perform the wave

function renormalisation described in Section 2.4, in order to obtain gauge invariant results. This

was done by generating diagrams with the appropriate counter-term insertion and adding them to

the diagram numerators. An example of such a counter-term diagram is given in Figure 5.3.

The Feynman rule for the counter-term is, as represented in [1],

=

(
Nc −

1

Nc

)(
1 +

(ds−2)(1− 2ε)

4(1− ε)

)
I2(m

2
t ) (5.57)

where the black line right after the equal sign represents the rule for a massive fermion propagator

and I2(m2) is a bubble scalar integral with one massless and one massive propagator, and mass scale

m2
t :

I2(m
2
t ) = =

∫
dDk

(k + p1)2(k2 −m2
t )
. (5.58)

The red line represents the massive propagator. Again, the representation is the same used in [1].

This procedure ensured that the amplitude is already gauge invariant at the level of master integrals



5.7. TREE-LEVEL tt̄3g AMPLITUDES 99

and only gauge invariant quantities were reconstructed analytically.

5.7 Tree-Level tt̄3g Amplitudes

We present explicit formulae for the tree-level tt̄3g amplitudes, expressed in terms of spinor variables.

This is done because studying the representation of tree-level expressions has been useful to inform

the reconstruction methods at one-loop. The expressions are computed starting from the Feynamn

diagrams, like for the one-loop case. The final result is an expression in momentum twistor variables,

which we then reconverted into spinor variables.

We now describe the method employed to make this conversion, which involves the univariate partial

fractioning in terms of the squared top mass m2
t . We remind the reader that the definitions of

the momentum twistor variables are given by Equations (5.25) to (5.29). The univariate partial

fractioning method has already been described in Section 4.3.3, but we stress here a difference

from the previous exposition: the quantity m2
t can itself be represented as a polynomial in the

momentum-twistor variables:

m2
t = (5.59)

s34t12(t23t51 − t23x5123 + t45x5123 + t12t51x5123 − t45t51x5123 − t12x
2
5123 + t212x

2
5123 − t12t45x

2
5123)

t45
.

We illustrate how the decomposition works starting with a simple two-variables example N(x, y) =

−2x2+2x3+4xy. In this example N(x, y) will take the role of the numerator of an helicity amplitude.

We can interpret this as a function depending only on x, and treat y as a constant. It is then possible

to define the factor X = x2 + y. The polynomial reduction of N(x, y) will then be

(5.60)N(x, y) = (2x− 2)X + R,

where the remainder R is a polynomial which does not have any dependence on X: R = 2xy + 2y.

It must be noted again that the choice of x as the dependent variable is arbitrary. If one chooses y

instead the reduced form is different

(5.61)N(x, y) = 4xX + R’,
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with R’ = −2x2 − 2x3.

We now repeat this decomposition for the case of a real tree-level numerator. We take the expression

for the A(0)[4]
tt̄3g (++++−) gauge invariant sub-amplitude. It has the form of a rational function with

numerator

(5.62)N = t12t23t51 + t45t51 + t12t
2
51 − t12t23x5123 + t212t23x5123 + t12t45x5123

− t12t51x5123 + 2t212t51x5123 − 2t12t45t51x5123 − t212 + t312x
2
5123 − t212t45x

2
5123,

expressed in the momentum twistor variables described in Section ??.

We make the choice of taking x5123 as the variable of the univariate polynomial. As stated above,

the factor that we want to partial fraction with respect to is the top mass m2
t , which has the form

shown in Eq. (5.59). Carrying out the polynomial reduction leads to the result

(5.63)N =
m3

t t45
s34

−mtt51(−t45 − t12t51 + t45t51 + t12x5123 − t212x5123 + t12t45x5123).

The decomposed N is then divided by the denominator of the expressions to obtain the partial

fractioned result. The crucial step which follows the reduction consists, again, in matching each

momentum twistor factor with an equivalent spinor expression, which was included in a list of

ansätze. This is the same factor matching technique described in 4.3.2. In this case, the factor

matching does not only have the aim of decreasing the degrees of the polynomial, but also of

converting an expression in momentum twistor variables to one in spinor ones. For this reason each

term in the ansatz is chosen to be free of phase and of homogeneous mass-dimensions, ensuring that

the final expression is gauge invariant and of the correct dimensions.

The partial fractioning of the numerators was performed with respect to all the possible twistor

variables and it was found that when using x5123 the expressions factorised into simpler factors,

while this did not happen for the other cases. We will see in Section 5.8 that this special feature of

variable x5123 was also observed for the one-loop expressions: the partial fractioning with respect to

x5123 greatly simplified the analytic reconstructions.

The resulting spinor expressions for the tt̄3g tree-level amplitudes are presented below for helicities
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(+++++) and (++++−). The (+++−−) expressions are in Appendix G. We also display the

same expressions as obtained with BCFW-shifts. In this second case the amplitudes are obtained

by combining lower-point expressions with the BCFW method described in Section 3.3.

While the amplitudes carry exactly the same physical meaning regardless of the way in which they

were computed, it is convenient to compare the different forms in order to study the size of the

expressions. We will make considerations on whether a specific choice of representation makes the

physical features more transparent. Discussing this for tree amplitudes will allow us to expand on

these concepts for one-loop amplitudes in Section 6. For each helicity amplitude we specify the

reference vectors chosen in the representation.

Reference Choice (p3 − p4)

The only non-zero sub-amplitude for the all-plus helicity configuration is A(0)[1]
tt̄3g (+ + +++),

A
(0)
tt̄3g(+ + +++) = A

(0)[1]
tt̄3g (+ + +++) =

m3
t [3|p12p1|5]

4s34[35]d23d15
. (5.64)

Reference Choice (p3 − p5)

For the single-minus helicity configuration we have two non-zero sub-amplitudes. The first has

the two equivalent expressions

A
(0)[1]
tt̄3g (+ + ++−) = − mt 〈34〉 〈5| p2p34 |5〉2

s12s35 〈45〉 〈3| p2p34 |5〉 〈5| p3p4 |5〉
(5.65)

+
m3

t 〈34〉
2 〈5| 1|4] 〈5| p23|4][34]

4s35 〈3| p2p34 |5〉 〈5| p3p4 |5〉 d23d15[45]
,

A
(0)[1]BCFW
tt̄3g (+ + ++−) = − m3

t 〈35〉 〈5|1|4]2

4 〈34〉 s435 〈5| p34p2 |3〉 d23d15[45]
+ (5.66)

mt 〈35〉 〈5| p2p34 |5〉2

s12s34s435 〈34〉 〈45〉 〈5| p34p2 |3〉
.
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We observe that in this case there is no significant difference in the compactness of the expressions.

It can be seen that not every factor appearing in the denominators is associated with a physical

singularity of the amplitude. We have factors s12, s45, d23 = p2 ·p3 and d15 = p1 ·p5 , which vanish in

correspondence of two adjacent legs becoming collinear or a massless leg becoming soft (see Section

2.7), while the terms 〈5| p3p4 |5〉 and 〈5| p2p34 |5〉 do not. The second non-zero sub-amplitude has

expressions

A
(0)[4]
tt̄3g (+ + ++−) =

m3
t

4s45d23d15
+
mt 〈4| p3p2 |5〉 [45]

2d23s34s245
, (5.67)

A
(0)[4]BCFW
tt̄3g (+ + ++−) = − mt 〈35〉

s34s235 〈5| p34p2 |3〉

[
〈5| p2p1 |5〉
〈34〉 〈45〉

+
m2

t 〈3| 5|4] 〈5| 1|4][34]
4d23d15[45]

]
. (5.68)

We see in this case that the first representation is slighty more compact than the BCFW one. In the

first expressions we have a smaller set of denominator factors, we note that all of them correspond

to physical poles of the amplitude.

After this brief discussion we conclude that there is no significant difference in the compactness

of the tree-level expressions for either choice of representation. What was relevant, however, was to

notice that the momentum-twistor variable x5123 is the best one if one wants to perform this type of

univariate partial fractioning. We will see in the next section that this is consistent with the analysis

of the expressions at one-loop.

5.8 Partial Fractioning in Rational Reconstruction

As anticipated in Section 5.7, partial fractioning with respect to x5123 proved to be an extremely

effective method to improve the reconstruction performance for many of the one-loop amplitudes

in the 0 → ttggg channel. In order to verify which expressions would simplify after being partial

fractioned, tests were performed on univariate slices. After the univariate slices were partial fractioned,

it was possible to estimate in advance the most convenient method to apply. It was found that the

partial fractioning was convenient for all the expressions which are of order (ds−2)1 in the expansion
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shown in Eq. (5.44), while for most of the zeroth order terms it was sufficient to apply the factor

matching procedure directly on the full expression.

The list of ansätze was created starting from

{ε, 1− ε, 1− 2ε, 3− 2ε,

〈34〉 , [34], 〈3| 1|4], d12, d12 +m2
t , d12 −m2

t ,

d13, s12, s13, s34, s12 − s34, s13 − s24,

(p23 · p1)2 −m2
t s23 = ∆3(p23, p1)

2,

〈3| p1p12 |4〉 , [3|p1p12|4], 〈3| p1p2 |4〉 ,

[3|p1p2|4], 〈3| p1p2 |3〉 , [3|p1p2|3], 〈3| p2p5p3p1 |4〉+m2
t s35 〈34〉 , [3|p2p5p3p1|4] +m2

t s35[34],

tr5(3451) = 〈3| p1p5p4|3]− 〈4| p5p5p1|3],

(d13d25 − p3 · p24p4 · p13) 〈3| p1p12 |4〉+ 2 〈34〉 d− 13d24p5 · p34,

(d13d25 − p3 · p24p4 · p13)[3|p1p12|4] + 2[34]d− 13d24p5 · p34,det(Y5)}, (5.69)

where we defined the Caley matrix in the same way as it was done in [85]

(Y5)ij = −p2i,j−1 +m2
i +m2

j , (5.70)

with pi,j−1 =
∑j−1

k=i pk and mi = {mt, 0,mt,mt,mt}. Additional terms are then created by

performing all the possible permutations of legs 3, 4 and 5 and of legs 1 and 2. Duplicate entries

are eliminated when the list is evaluated in momentum-twistor variables. We notice that ansatz

7.14 contains terms which are not all phase-free, and of different mass-dimensions. This is allowed

because the ansatz is only needed to match terms and decrease the polynomial complexity in the

reconstruction process. The factor matching is not used to try and express the resulting rational

coefficients in terms of spinor variables. In Tables 5.2 and 5.3 we show the degrees of the expressions

with reference vectors nµ = p3 and p[µ = p3, the results are similar for the other spinor projections.

As a comparison, we also provide the polynomial degrees of the O(ε0) expansions of the same
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amplitudes in the momentum twistor variables, in Table 5.4 and Table 5.5. These latter expressions

were obtained by expanding the terms of the integral bases up to finite order in ε. It is possible to

observe a significant increase in complexity (i.e. maximum polynomial degrees) when we go beyond

O(ε0). The amplitudes in the 0 → t̄tq̄qg channel on average had lower degrees and it was found that

the use of partial fractioning was not needed for their efficient reconstruction.

We reiterate that the efficient numerical evaluation of the finite remainder at one loop, i.e. terms

up to O(ε0), is not the aim of the present study. The evaluation of the basis integrals using

generalised series expansions with DiffExp will be considerably less efficient than using one-loop

integral libraries such as QCDLoop and OneLoop, which are used by automated programs such as

Helac-NLO [139, 140] and OpenLoops [141, 142]. At NLO these methods have been shown to be

quite sufficient for flexible phenomenology (see for example [143] and [144] for their use in studying

processes involving t̄t production). For this reason we choose not to include detailed information

about the evaluation times of the expressions on specific phase-space points. Past O(ε0), the main

priority is to establish the function basis and analytic complexity up to poly-logarithmic weight four

which are necessary for the analytic construction of the two-loop finite remainder, as mentioned in

Section 5.1. The pentagon integrals that appear give rise to new basis function that first appears at

NNLO. Understanding the differential equations satisfied by these objects is the first (albeit small)

step towards a complete understanding of the two-loop function basis for the pp→ t̄tj process.

5.9 Infrared Structure

In [145], Catani, Dittmaier and Trocsanyi (CDT) derived the expressions for the universal pole

structure of arbitrary one-loop amplitudes with massless and massive partons in QCD. Such expressions

were used in our project to perform checks on the final analytic expressions.

The CDT formulae are written in the colour-space notation introduced in [146]. Colour indices

are represented as c1 = {a} = 1, ..., N2
c − 1 and c1 = {α} = 1, ..., Nc for particles in the adjoint

representation (gluons) and fundamental representation (quarks) respectively. Given an orthogonal
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Amplitude Helicity ds − 2 exp Original Degrees Stage 1 Stage 2 Stage 3
A

(1)
1;1 + + + + + 0 33/24 25/0 17/11 11/5

A
(1)
1;1 + + + + - 0 48/40 37/0 22/16 15/8

A
(1)
1;1 + + + - + 0 49/47 43/0 18/18 18/8

A
(1)
1;1 + + + + + 1 67/58 59/0 22/16 13/10

A
(1)
1;1 + + + + - 1 99/89 88/0 26/17 15/10

A
(1)
1;1 + + + - + 1 98/94 95/0 26/25 25/15

A
(1)
1;−1 + + + + + 1 47/36 36/0 25/18 16/18

A
(1)
1;−1 + + + + - 1 62/50 47/0 27/27 26/12

A
(1)
1;−1 + + + - + 1 54/48 47/0 31/25 24/12
A

(1)
2;0 + + + + + 1 49/47 48/0 25/14 21/0

A
(1)
2;0 + + + - + 1 79/56 76/0 30/17 24/2

A
(1)
2;0 + + + + - 1 96/95 90/0 29/29 29/20

A
(1)
3;0 + + + + + 1 58/53 53/0 29/23 24/17

A
(1)
3;0 + + + - + 1 96/95 90/0 29/29 29/20

A
(1)
3;0 + + + + - 1 106/99 99/0 35/29 29/20

Table 5.2: The t̄tggg amplitudes which were all reconstructed with the univariate apart method.
They are catalogued according to their helicity and power in the (d2 − 2) expansion. The stage
numbers have the same meaning as in 4.3.3.

basis {|c1, ..., cn〉 } the n-particle amplitude An can be written as:

Ac1,...,cn
n (p1,m1, ..., pn,mn) = 〈c1, ..., cn|An(p1,m1, ..., pn,mn)〉, (5.71)

where the dependence on the momenta pi and the masses mi is shown explicitly.

The interactions at QCD vertices are then represented by the actions of colour operators Ti. We

write the factorisation of one-loop n-leg amplitude A(1)
n in this notation as:

(5.72)|A(1)
n 〉 = In |A(0)

n 〉+ |A(1)
n 〉

fin
+O(ε)

where the factor In contains all the 1
ε2 and 1

ε poles together with their associated colour and kinematic

dependence, |A(1)
n 〉

fin
is the part finite in ε.

We see that the divergent part of the amplitude is proportional to the tree-level process [145]. We

can therefore infer the pole structure at one-loop order from the one of the real corrections.
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Colour Helicity ds − 2 exp Original Degrees Factors Matched
A

(1)
1;−1 + + + + + 0 37/27 26/0

A
(1)
1;−1 + + + + - 0 43/30 28/0

A
(1)
1;−1 + + + - + 0 35/29 29/0

A
(1),f
1;0 + + + + + 0 16/10 7/0

A
(1),f
1;0 + + + + - 0 18/11 7/0

A
(1),f
1;0 + + + - + 0 15/15 9/0

A
(1),h
1;0 + + + + + 0 26/14 13/0

A
(1),h
1;0 + + + + - 0 28/13 13/0

A
(1),h
1;0 + + + - + 0 21/15 13/0
A

(1)
2;0 + + + + + 0 32/23 21/0

A
(1)
2;0 + + + + - 0 43/30 29/0

A
(1)
2;0 + + + - + 0 34/29 28/0

A
(1)
3;0 + + + + + 0 31/21 18/0

A
(1)
3;0 + + + + - 0 43/32 30/0

A
(1)
3;0 + + + - + 0 35/31 29/0

Table 5.3: The t̄tggg amplitudes which were all reconstructed with the factor matching method.
They are catalogued in the same way as in Table 5.2.

In this work we used the following form for factor I :

(5.73)I = Nε

 n∑
j,k=1

Ti ·Tj

(
µ2

|−2djk|

)ε

Vij −
n∑

j=1

Γj

 .

When a gluon goes soft it always carries away some colour charge [147], this is the reason of the

arising of colour correlations Ti ·Tj . The colour-charge operator associated with the emission of a

soft gluon of color a by the ith particle is

(5.74)Ti = 〈a|T a
i .

The action of the operator over the space is

(5.75)〈a, c1, ..., ci, ...cm|T a
i |b1, ..., bi, ..., bm〉 = δc1b1 ...T

a
cibi ...δcmbm .

The form of the tensor T a
cibi

depends on the type of particle i which is radiating the gluon. If the

particle is a quark we have T a
ij = taij , while if the particle is another gluon T a

bc = −ifcab, remembering

that taij and fcab are the group generators respectively in the fundamental and adjoint representation.

The product between colour tensors should then be interpreted as

(5.76)Ti ·Tj = Ta
iT

a
j .
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Amplitude Helicity ds − 2 exp Original Degrees Factors Matched
A

(1)
1;1 + + + + + 0 26/15 14/0

A
(1)
1;1 + + + + - 0 40/29 25/0

A
(1)
1;1 + + + - + 0 32/29 26/0

A
(1)
1;1 + + + + + 1 42/34 30/0

A
(1)
1;1 + + + + - 1 56/48 41/0

A
(1)
1;1 + + + - + 1 48/48 42/0

A
(1)
1;−1 + + + + + 1 36/27 20/0

A
(1)
1;−1 + + + + - 1 52/43 41/0

A
(1)
1;−1 + + + - + 1 49/45 43/0
A

(1)
2;0 + + + + + 1 34/25 23/0

A
(1)
2;0 + + + - + 1 31/27 25/0

A
(1)
2;0 + + + + - 1 38/29 23/0

A
(1)
3;0 + + + + + 1 30/22 18/0

A
(1)
3;0 + + + - + 1 40/36 34/28

A
(1)
3;0 + + + + - 1 47/37 33/0

Table 5.4: The t̄tggg amplitudes which were all reconstructed with the univariate apart method,
up to order O(ε0). They are catalogued in the same way as in 5.2.

As an example, if a soft gluon is radiated between leg 1 and 2 being respectively a quark and a

gluon, we will have

T1 ·T2 = tai1f
a2j =�i 1

a

⊗ �2

a

j

(5.77)

,

therefore we can exploit the known group properties

T2
i = Ta

iT
a
i = Ci (5.78)

for the Casimir operator Ci, which is equal to CA in the adjoint case and to CF in the fundamental

case.

The functions Vij contain the kinematic contributions to the soft singularities with colour correlations,
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Colour Helicity ds − 2 exp Original Degrees Factors Matched
A

(1)
1;−1 + + + + + 0 33/21 22/0

A
(1)
1;−1 + + + + - 0 40/27 27/0

A
(1)
1;−1 + + + - + 0 34/27 28/0

A
(1),f
1;0 + + + + + 0 12/7 3/0

A
(1),f
1;0 + + + + - 0 17/11 6/0

A
(1),f
1;0 + + + - + 0 14/14 8/0

A
(1),h
1;0 + + + + + 0 16/8 13/0

A
(1),h
1;0 + + + + - 0 24/12 13/0

A
(1),h
1;0 + + + - + 0 18/15 13/0
A

(1)
2;0 + + + + + 0 29/19 19/0

A
(1)
2;0 + + + + - 0 36/26 19/0

A
(1)
2;0 + + + - + 0 28/24 19/0

A
(1)
3;0 + + + + + 0 22/12 12/0

A
(1)
3;0 + + + + - 0 38/30 26/0

A
(1)
3;0 + + + - + 0 30/28 25/0

Table 5.5: The t̄tggg amplitudes which were all reconstructed with the factor matching method,
up to order O(ε0). They are catalogued in the same way as in Table 5.2.

they are:

(5.79)Vij =



1

ε2
i and j are massless

1

2ε2
+

1

2ε
log

(
m2

j

−2dij

)
− 1

4 log
2

(
m2

j

−2dij

)
− π2

12
i massless, j massive

sij − (mi −mj)
2

dijβijε
log

(
−1 + βij
1− βij

)
−1

4

(
log2

(
m2

j

−2dij

)
+ log2

(
m2

j

−2dij

))
− π2

6
,

i and j are massive

with βij =
√
1− 4mimj

sij−(mi−mj)2
expressing the kinematic threshold for the production of a pair of

top quarks. Functions Γi represent the contributions coming from the hard-collinear regions.

Eq. (5.73) does not include the imaginary parts of In, this is the case since they are not needed to

compute the poles at the test points used in our paper at order O( 1ε ). The imaginary contributions

can be found in [145].

The poles of each sub-amplitude were computed, and their analytic expression was explicitly given

in appendix B of [1]. An ancillary Mathematica file allowed to reproduce the numerical evaluations
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of the poles at the test points. They were shown to be all consistent with the CDT formula.

5.10 Results and Conclusion

5.10.1 Master Integral Results

In this section we discuss the results of the numerical evaluations of the MIs performed with DiffExp.

As mentioned in Section 5.4, the MIs for each one of the four topologies are evaluated separately,

allowing a parallelisation of the computations.

It is important to stress that the four maximal topologies T1, T2, T3 and T4 are defined with a

specific ordering of the external legs: (1, 2, 3, 4, 5) for T1 and T2, (1, 3, 2, 4, 5) for T3 and T4. This

fact makes it necessary to correctly permute the legs to match the ordering of the individual MIs,

in order to consider all the possible permutations of the gluon indices (3, 4, 5). DiffExp allows to

perform this operation directly in the numerical evaluation. The procedure consists in computing

the mapping of the kinematic invariants corresponding to a permutation. We give here an example

similar to [1]. If one wants to compute the permutation (1,2,3,5,4) for the topology T2, it is sufficient

to compute how the kinematic invariants transform under the switch p4 → p5, p5 → p4:

(5.80){d12 → d12, d23 → d23, d34 → d12 − d34 − d45 +m2
t ,

d45 → d45, d15 → d23 − d15,m
2
t → m2

t}.

Evaluating T2 with permuted legs (1, 2, 3, 5, 4) at phase-space point

~x = {d12 → −11

7
, d23 → −7

5
, d34 → − 5

27
, d45 → −17

5
, d15 → −11

17
,m2

t → 1}, (5.81)

will then be equivalent to evaluate T2 in the standard ordering but at the point

~x = {d12 → −11

7
, d23 → −7

5
, d34 → −2848

945
, d45 → −17

5
, d15 → 45

17
,m2

t → 1}. (5.82)

This procedure enables to avoid the computation of any new analytic formula.

The numerical value for a specific phase-space point for all the permutations of all the topologies

was under one hour on a laptop, 16 digits was the required accuracy.
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5.10.2 Amplitude Results

All the expressions for the sub-amplitudes computed in the project were provided in ancillary files to

[1]. We have shown in Section 5.8 that the univariate partial fractioning was extremely effective in

decreasing the polynomial degrees of many coefficients. This resulted in a decrease of computational

time of around a factor of 10 for the overall expression. In [1] we note that the appearance of degrees

of order as high as O(100) indicates that it will be challenging to compute corrections to this process

at higher loops in this parametrisation, since the complexity is expected to increase significantly.

The comparison of the different expressions for the tree-level t̄tggg amplitudes did not prove the

existence of an optimal choice for their parametrisation, but it showed how studying the partial

fractioning at tree-level can inform on the reconstruction strategies at higher loops.

The results of this project and the data collected will be useful for progressing the analytical or

semi-analitycal computation of higher order corrections to pp → t̄tj , giving indications of possible

future bottlenecks and challenges.

After having discussed the computation of five-points one-loop amplitudes, in the next section we

will see how the complexity changes for six-point one-loop expressions.



Chapter 6

Analytic Representations of Gluon

Amplitudes

In this chapter we give a brief overview of the history of the computation of n-gluone one-loop

scattering amplitudes.

The literature on this topic is extremely vast and the short review in this section does not attempt to

cover the work of all the authors which have contributed to it. The main aim will be to present a few

of the papers which contained results relevant to the theme of this chapter and to the work carried

out in Chapter 7. A graphical representation of the time-line for some of the papaers described in

this chapter can be found in Figure 6.1.

Some of the expressions are quoted explicitly, so that the reader can gain a sense of their complexity

and the benefits of the chosen parametrisations. This will also be useful for comparisons with the

analytical results of Chapter 7, in which a sub-set of the expressions contributing to the six-gluon

one-loop amplitudes in D-dimensions is presented.

The first NLO corrections to gluon scattering were computed by Ellis and Sexton in [57]. In

their work, the radiative corrections were not computed using amplitudes as the basic blocks of

the computations, but rather the cut graphs generated by the interference of the Born amplitudes

111
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with the one-loop ones. This means that the computed quantities are already the squared terms

which can be summed to obtain the cross section of the process. For this reason the results can

be parametrised using the Mandelstam invariants, without the need for the introduction of spinors.

The kinematic invariants are the standard ones for a 2 → 2 process introduced in Section 3.5.1. The

scattering energy is indicated with Q2, while µ2 = µ2
R is the renormalisation scale, as in Section

2.4. These symbols will have the same meaning in all the equations quoted in this chapter. The

expression of the squared matrix element is compact enough to be quoted in full

∑
|Mgg→gg|2= 1

4(1− ε)2V 2
d(s, t, u), (6.1)

with

d(s, t, u) =g4µ4ε{d(4)(s, t, u) + αS

2π

(
4πµ2

Q2

)[
d(4)(s, t, u)

(
−4N

ε2
+

8TR − 22N

3ε
+

20TR − 67N

9

(6.2)

+Nπ2 +

(
11N

3
− 4TR

3

)
log

(
µ2

Q2

))
+ P (s, t, u) + P (t, u, s) + P (u, t, s)

]
+

αS

2π
4V N2(f(s, t, u) + f(t, u, s) + f(u, s, t))}+O(ε).

Where we defined the following functions:

P (s, t, u) =
16V N3

ε

(
3− 2tu

s2
+

(t4 + u4)

t2u2

)
log

(
s

Q2

)
, (6.3)

f(s, t, u) =N

[(
2(t2 + u2)

tu

)
log2

(
− s

Q2

)
+

(
4s(t3 + u3)

t2u2
− 6

)
log

(
t

Q2

)
log

(
u

Q2

)
+ (6.4)(

4

3

tu

s2
− 14

3

t2 + u2

tu
− 14− 8

(
t2

u2
+
u2

t2

))
log

(
− s

Q2

)
− 1− π2

]
+

TR

[(
10

3

t2 + u2

tu
+

16

3

tu

s2
− 2

)
log

(
− s

Q2

)
−
(
s2 + tu

tu

)
log2

(
− s

Q2

)
−

2

(
t2 + u2

tu

)
log

(
− t

Q2

)
log

(
− u

Q2

)
+ 2− π2

]
.
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The computation in the paper was performed for a generic gauge group SU(N) with generator

normalisation TR. In the paper they also use V = N2 − 1.

The next significant step in one-loop calculations was made by Bern, Dixon and Kosower in 1993

in [148]. In their article, the one-loop matrix elements with five external gluons were computed.

Differently from the 2 → 2 case, the building block of the calculation were the analytic expressions

of the one-loop amplitudes, whose inteference with the tree-level was then computed to obtain the

squared matrix element.

The amplitudes were obtained by employing string-based methods developed in [28] which proved to

be efficient for pure-gluonic amplitudes. The obtained expressions were given in a very compact form.

The spinor helicity representation was used to express the amplitudes, which were presented as

functions of spinor products 〈ij〉, [ij] plus the phase-free trace

tr5(i, j, k, l) = [ij] 〈jk〉 [kl] 〈li〉− 〈ij〉 [jk] 〈kl〉 [li]. We present here some functions which were used in

the formulae:

(6.5)

K0(s) =
1

ε
− log(s) + 2 +O(ε),

L0(r) =
log(r)

1− r
,

L1(r) =
log(r) + 1− r

(1− r)2
,

L2(r) =
log(r)− (r − 1/r)/2

(1− r)3
.

We see that K0(r) is proportional to a scalar bubble integral [89]. Functions Li(r) have as arguments

the ratios of two Mandelstam invariants. The form of these function is chosen so that they are regular

in the limit r → 1 :

lim
r→1

L0 = −1, (6.6)

lim
r→1

L1 = −1

2
, (6.7)

lim
r→1

L2 =
1

6
. (6.8)
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This choice puts the whole amplitude’s expression in a form which is free of spurious singularities

of the type (sij − skl)
n, which appear as a result of the reduction of tensor integrals to linear

combinations of scalar ones, as seen in the example of Appendix D.

This choice of variables and basis functions has become standard in much of the subsequent literature.

Here we quote the expression for one of the colour-leading one-loop helicity amplitudes with a quark

in the loop:

(6.9)A
[1/2]
5;1 (1−, 2−, 3+, 4+, 5+) = −cΓ

[(
2

3
V f +

2

9

)
Atree

5 + i(F f + F s)

]
.

With

V f =− 5

2ε
− 1

2

[
log

(
µ2

−s23

)
+ log

(
µ2

−s15

)]
+ 2, (6.10)

F f =− 1

2

〈12〉2 (〈23〉 [34] 〈41〉+ 〈24〉 [45] 〈51〉)
〈23〉 〈34〉 〈45〉 〈51〉

L0

s15
,

F s =− 1

3

[34] 〈41〉 〈24〉 [45](〈23〉 [34] 〈41〉+ 〈24〉 [45] 〈51〉)
〈34〉 〈45〉

L2(s23/s51)

s351
− 1

3
F f−

1

3

〈35〉 [35]3

[12][23] 〈34〉 〈45〉 [51]
+

1

3

〈12〉 [35]2

[23] 〈34〉 〈45〉 [51]
+

1

6

〈12〉 [34] 〈41〉 〈24〉 [45]
s23 〈34〉 〈45〉 s51

.

We draw the attention to the fact that the 1
ε pole is contained in the V f term, which means that

its coefficient in the amplitude is proportional to the tree-level expression, as expected [149].

The same authors together with Dunbar continued their work on the topic and in 1994 published a

paper [150] in which they constructed ansatze for N = 4 MHV helicity amplitudes with arbitrary

number of gluons, exploiting unitarity constraints and knowledge of the collinear limits of the

expressions.

These techniques were further developed in [95], where one-loop amplitudes in supersymmetric

massless gauge theories were computed from tree-level amplitudes using on-shell methods, as described

in Section 3.5. Six-gluon amplitudes at one-loop in N = 4 super-Yang-Mills theory were computed

for all helicity configurations, as well as MHV one-loop gluon amplitudes in N = 1 supersymmetric

theory with an arbitrary number of external legs. Despite only being concern with amplitudes

in supersymmetric theories, the last two papers which we have mentioned must be included in our

review because the on-shell methods which they introduce are of pivotal importance for the analytical
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computation of scattering amplitudes in QCD. Furthermore, the computed expressions contribute

to the full QCD pure-gluon amplitude in the supersymmetric decomposition exposed in Section 3.7.

Such a decomposition was used for one of the projects presented in this thesis in Chapter 7, as

well as for all papers that we are going to mention in the remainder of this section. The surprising

simplicity of amplitudes in N = 4 Super Yang-Mills theory was first remarked in [94], where it was

speculated that all such amplitudes would be free of UV singularities. This fact was found to be

true in all subsequent calculations. It was shown that supersymmetric amplitudes AN=4 and AN=1

are completely determined by unitarity cuts in four dimensions, since they do not have an additional

rational part; they are therefore termed cut-constructible amplitudes. These amplitudes were then

calculated by applying the generalised unitarity method of Section 3.5.2.

A crucial advantage of this method in this case is that only tree-level N = 4 MHV n-gluon amplitudes

are needed to obtain the one-loop result, and they have very compact Parke-Taylor expressions when

expressed in spinor variables, as seen in Section 3.20,

(6.11)A(0)
n (1+, ..., i−, ..., j−, ..., n+) =

〈ij〉4

〈12〉 ... 〈n1〉
.

For the N = 1 MHV case, one has to consider more diagrams, since the intermediate states can

be either fermions or scalars, hence one needs to sum over the two cases to obtain the full cut.

Nevertheless, the tree-level amplitudes retain an algebraic simplicity which keeps the computation

manageable and the final result compact.

Applying tensor reductions to the integrals in the bases of the amplitudes allows to express them all

as combinations of scalar boxes, triangles and bubbles, as expected.

We quote the explicit result for the N = 1 MHV amplitude with the two negative helicity states

adjacent, because it is especially compact and it is useful to display the standard notation used in

much of the literature

AN =1(1−, 2−, 3+, ..., n+) =
cΓ(µ

2)A(0)(1−, 2−, 3+, ..., n+)

2

(
K0(t

[2]
2 ) + K0(t

[2]
n )

− 1

t
[2]
1

n−1∑
m=4

L0(−t[m−2]
2 /(t

[m−1]
2 ))

t[m−1]2
(tr+[/p1/p2/pm/qm,1

]−tr+[/p1/p2/qm,1/pm])

)
,

(6.12)
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where the traces over gamma matrices tr+, tr−, tr5 are defined in Appendix A. The integral functions

are the same as in Eq. (6.5) and the authors of the article use the notation

t
[r]
i = (pi + ...+ pi+r−1)

2, (6.13)

qm,l =


∑l

i=m ki, m ≤ l∑n
i=m ki +

∑l
i=1 ki, m > l.

(6.14)

A substantial improvement in the paradigm for the computation of cut-constructible amplitudes was

made possible by the introduction of generalised unitarity by Britto, Cachazo and Feng in [151], a

technique discussed in Section 3.5.2.

Other research groups obtained results for cut-constructible expressions using alternative techniques,

such as Bredford, Brandhuber, Spence and Travaglini who in [152] computed the cut-constructible

parts of N = 0 MHV amplitues using the MHV diagram construction [153].

While the on-shell techniques have made it possible to obtain results for the cut-constructible parts

of one-loop gluon amplitudes to very high multiplicities, the computation of the rational parts of

the expressions has historically been more challenging. In the remainder of this section we mention

three papers in which the authors computed the rational parts needed for the full six-gluon one-loop

expressions.

The first full expressions for the simplest six-gluon QCD one-loopn colour-ordered helicity amplitudes

were computed by Forde and Kosower in [97]. These are the MHV helicity amplitudes with the

two legs of negative helicity being adjacent in colour space, the expressions were computed for an

arbitrary number of external states.

In order to obtain the non-cut-constructible parts of the N = 0 amplitudes, the authors employed

the method of BCFW shifts at one loop described in Section 3.8. This same method was used in

[96] to conclude the computation of the full MHV one-loop amplitudes, by providing the rational

expressions for the remaining helicity configurations. The article presents explicit expressions for
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six-point MHV helicity amplitudes as functions of spinor variables.

Despite the on-shell recursion method being useful in the MHV calculations, it was not used in

[154] to compute the rational parts of the NMHV helicity amplitudes AN=0
6g (1−, 2−, 3+, 4−, 5+, 6+)

and AN=0
6g (1−, 2+, 3−, 4+, 5−, 6+). Instead, the expressions were computed directly from Feynman

diagrams, as explained in [155] by the same authors. Their technique consists in expressing the

amplitude in the Feynman integral representation, and directly extracting the rational parts.

In principle, it is always possible to obtain the rational coefficients of the amplitude by performing

tensor reductions on the integral and reducing them into scalar boxes, triangles and bubbles. Once

this is done, one can perform an expansion of the coefficients around D = 4 to obtain the rational

part of the amplitude. This method is nevertheless not effective for arbitraty high multiplicity due

to the complexity of tensor reductions with n ≥ 5.

The main insight at the basis of the method described in [154] is that it is not necessary to know

the complete coefficients from tensor reduction, if one is only interested in the rational part; instead,

the reduction only needs to be performed to lower the numerators’ degrees by 2. This makes the

calculations manageable even for n = 6, allowing a diagrammatic approach which gives the rational

part as a result of tree-level like calculations. Spinor variables are used once again to express the

final answers.

Most of the expressions for the 6-gluon helicity amplitudes can be found in [91], expressed in a

consistent notation and fairly compact forms. The amplitudes are split according to their helicities

and supersymmetric content, consistently with the majority of the papers in this review. All such

expressions are reported explicitly, with the exception of the NMHV contribution with a complex

scalar in the loop, since a compact representation for those is not known. Here we directly quote some

of the explicit results for the rational coefficients of the amplitude, with the intention of allowing a

comparison with the D-dimensional expressions in Section 7.
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We quote the N = 1 and N = 0 expressions of the simplest NMHV helicity amplitude :

AN=1(1−, 2−, 3−, 4+, 5+, 6+) =
cΓ
2

[
A(0)(1−, 2−, 3−, 4+, 5+, 6+)(K0(s16) + K0(s34)) (6.15)

− c1
L0(s345/s16)

s16
− c2

L0(s234/s34)

s34

− c3
L0(s234/s16)

s16
− c4

L0(s345/s16)

s16

]
,

AN=0(1−, 2−, 3−, 4+, 5+, 6+) =
1

3
AN=1 − i

2

[
c1

L2(s345/s16)

s316
+ c2

L2(s234/s34)

s234
+ (6.16)

c3
L2(s234/s16)

s316
+ c4

L2(s345/s34)

s234

]
+ cΓR̂6,

with

R̂6 =X6 +X6|123456→321654 (6.17)

X6 =
i

6[23] 〈56〉 [2|p34 |5〉

[
− [46]3[25] 〈56〉

[12][34][61]
− 〈13〉3 〈25〉 [23]

〈34〉 〈45〉 〈62〉
− 〈13〉2 (3[4|2 |1〉+ [4|3 |1〉)

〈34〉 〈61〉
+ (6.18)

[4|p23 |1〉2

[34] 〈61〉

(
[4|2 |1〉 − [4|5 |1〉

s234

)
+

〈13〉
〈34〉

− [46]

[61]

[46]2(3[4|5 |1〉+ [4|6 |1〉
[34][61]

]
.

The coefficients ci are the same for both expressions, the form of c1 is

(6.19)c1 =
[6|p345p2p345 |3〉 [6|2 |3〉 [6|p2p235 |3〉 − [6|p235p2 |3〉

[2|p235 |5〉 [61][12] 〈34〉 〈45〉
,

and all the other coefficients can be obtained permuting the indices of c1 and performing complex

conjugations (in the case of c3).

Expressions for all six-gluon one-loop helicity amplitudes with one gluon in the loop can also be

found in [156]. The authors of this paper employed yet a different computational technique, based

on the numerical interpolation of the expressions evaluated over high-precision floating points. These

methods differ from the ones described in Chapter 4 and used in Section 5 and Section 7 because the

numerical samplings are not preformed over finite fields. The expressions in [156] have the advantage

of being all derived using a single framework.
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corrections to
parton-parton scattering
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One-loop n-point gauge theory
amplitudes, unitarity and collinear
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Non-supersymmetric loop
amplitudes and MHV vertices
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violating gluonic amplitudes in
QCD

The rational parts of one-loop QCD
amplitudes i: The general formalism

One-loop corrections to five-gluon
amplitudes

Fusing gauge theory tree amplitudes
into loop amplitudes

Figure 6.1: Time-ordering of some of the articles reviewed in this chapter. Only the articles which
explicitly presented new parts of the gluon amplitudes are shown.

After this brief review, we present the results for D-dimensional six-gluon one-loop amplitudes

in the following chapter. Some sub-amplitudes will be quoted explicitly, using the standard notation

which was employed in most of the articles discussed so far.
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Chapter 7

Six-Gluon Amplitudes in D

Dimensions

The development of new techniques has made it possible to obtain cross sections at NNLO for most

2 → 2 processes of interest [14], putting the next target at N3LO.

One necessary ingredient for the calculation of N3LO pp → 2j inclusive cross-sections are analytic

expressions for one-loop six-gluon amplitudes. Such expression represent the double-real corrections

to the gg → gg inclusive cross-section, following the description of Section 2.7.

We have already seen in Chapter 6 that full analytic expressions of one-loop six-gluon colour ordered

amplitudes in four dimensions have been known for several years [91]. The different parts of these

expressions have been computed separately by different groups, using a wide variety of methods

such as on-shell recursion relations [96] and direct computation of rational parts from Feynman

diagrams [154]. These expressions have been computed as expansions in the dimensional regulator

ε around D = 4 up to order O(ε0). Nevertheless, these amplitudes need to be computed up to

higher order of the dimensional regulator, in order to cancel the IR divergences in the full N3LO

four-point cross-section. One of the aims of this project was to compute expressions that can be used

to obtain this result. Once again we observe a significant increase in complexity in the expressions,

when compared to the four-dimensional ones. This fact makes it impractical to directly apply the

120
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methods which were employed to obtain the O(ε0) amplitudes to the ones in D dimensions, and

motivated the development of novel techniques. The reader can compare the complexity of the D

dimensional expressions derived in this chapter (expressed as the polynomial degree of their rational

coefficients) with the one of the four-dimensional amplitudes, whose coefficients have polynomial

degrees listed in Appendix F.

In this project, the MHV six-gluon one-loop amplitudes were computed in a basis of D-dimensional

scalar integrals, without putting any restriction on the number of dimensions D, which is kept as

an additional parameter. These amplitudes have an integral basis of the form of Eq. (3.66), and the

rational coefficients for such a basis were computed using the OPP reduction method. The external

momenta were kept four-dimensional.

It is important to stress that, as stated in Section 3.5.2, and particularly expressed by Eq. (3.59), a

trueD-dimensional amplitude has an arbitrarily large integral basis (at least up toD-gon topologies).

The amplitudes reconstructed in this project do not fall into that category, since the dimensions of

their external legs are kept constant, and for this reason they have a well-defined integral basis. We

nevertheless refer to them as D-dimensional amplitudes for convenience.

A clear consequence of this discussion is the absence of integral topologies with six external legs

(hexagons) in the bases of the amplitudes. This is indeed the case, despite these being the scattering

amplitudes of six gluons, since it has been proven that the hexagon topologies can be expressed as

linear combinations of scalar pentagons [90, 157]. In [90] it is clearly shown that, if the external

momenta of an amplitude are kept as four-dimensional, an hexagon integral I6[1] can be written as:

I6[1] =
1

2

6∑
i

ciI
i
5[1]. (7.1)

In Eq. (7.1), ci are rational coefficients which depend on the external kinematics: they are computed

as the sums of the rows of the inverse Caley matrices. The scalar pentagon integrals Ii5[1] are obtained

by pinching the propagator between legs i− 1 and i, as in Figure 5.1.

It is also shown in [90] that the pentagon integrals can be written as a linear combinations of scalar

boxes, plus the addition of O(ε) terms. This means that the finite part of the scattering amplitudes
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can be fully expressed in terms of box, triangle and bubble integrals, as expected. For our case we

also need to include the pentagon topologies, since we want to be able to obtain the results up to

higher orders in the dimensional regulator ε.

Aside from the phenomenological applications, the expressions were also computed in order to study

and apply different reconstruction techniques and phase-space parametrisations. A main point of

interest is the increase in algebraic complexity of the integral coefficients going from five-point to

six-point processes, which created new bottlenecks in the computational pipeline. Different partial

fractioning methods were tested on the expressions.

After the full analytic amplitudes were reconstructed, it was possible to evaluate them in various

limits of the form d = 2n − 2ε (with integer n). This had the objective to perform checks against

expressions in the literature, but also to explore relations among the coefficients and gather data

on how to perform future reconstructions. All the expressions for the computed amplitudes can be

found at the following link: https://gitlab.com/fsarandrea94/6-gluons_one-loop_d-dimensions.

This chapter is organised as follows. In Section 7.1, we define the variables that the rational

expressions were reconstructed in and give expressions for their phases. In Section 7.2, we describe

how the amplitudes are decomposed into different sub-amplitudes, specifying the minimal set of

expressions which need to be reconstructed to obtain the full information. The reconstruction

methods which were used are discussed in Section 7.3, providing details on the complexity on

individual sub-amplitudes. The explicit expressions of some of the sub-amplitudes are given in

Sections 7.4 and 7.5. In Section 7.6, we explain the method used to derive the amplitudes’ formulae

in a set number of dimensions (D = 4, 6, ...). Conclusions are in Section 7.7.

7.1 Kinematic Set-up

In this section we present the notation for the kinematics, giving explicit definitions of the variables

the amplitudes are represented in.

We label the six external gluon momenta as p1, ..., p6 and we take them to be all outgoing. The

https://gitlab.com/fsarandrea94/6-gluons_one-loop_d-dimensions
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momenta all satisfy the on-shell condition p2i = 0 and we use the shorthand notation

pi + ...+ pj = pi...j , (7.2)

sij = (pi + pj)
2. (7.3)

From momentum conservation we have
(7.4)p1 + p2 + p3 + p4 + p5 + p6 = 0.

Spinor products are again constructed from holomorphic and anti-holomorphic two-component

Weyl-spinors, so that sij = 〈ij〉 [ji]. It is also convenient to use traces over γ matrices, which

are defined in Appendix A. Throughout the chapter, we will always assume a cyclic ordering of the

six legs i = 1, ..., 6 for all the indexed quantities (we will have, for instance, 3+4=1).

The amplitudes have overall phases that depend purely on the helicities: in spinor notation those

can be expressed by the Parke-Taylor formulae

Φ(−−++++) = A
[0]
6 (−−++++) =

〈12〉4

〈12〉 〈23〉 〈34〉 〈45〉 〈56〉 〈61〉
, (7.5)

Φ(−+−+++) = A
[0]
6 (−+−+++) =

〈13〉4

〈12〉 〈23〉 〈34〉 〈45〉 〈56〉 〈61〉
, (7.6)

Φ(−++−++) = A
[0]
6 (−++−++) =

〈14〉4

〈12〉 〈23〉 〈34〉 〈45〉 〈56〉 〈61〉
. (7.7)

The choice of the parametrisation was made trying to minimise the maximum degree of the polynomials

which represented the numerators of the coefficients in these variables. While there is no objective

definition of a low or high degree in absolute terms, we set the target of having expressions that

could be reconstructed in less than 2×104 core hours, which on our 64-cores machines corresponded

approximately to 2 weeks as an upper limit. From a thorough study of the coefficients, it was

observed that such a time limit corresponded to a polynomial degree lower than 60.

Eqs. (4.10) and (4.11) in Chapter 4 represent two possible parametrisations of the six-point phase-space

using momentum-twistor variables. In the reconstruction of the tree-level helicity amplitude

A
(0)
6g (− + − + −+), we found the two choices to be approximately equivalent, meaning that the

resulting rational expressions had comparable polynomial degrees. This was not the case for one-loop
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expressions, for which parametrisation ZB has proven to be much more efficient. This is explained

in Section 7.3, together with the description of algorithms and manipulations employed to optimise

the process.

7.2 Amplitudes’ Decomposition

We present the colour decomposition of one-loop n-gluon amplitudes in a SU(Nc) theory as expressed

in [158]

(7.8)

A1−loop
n = Nc

∑
σ∈Sn/Z

tr(taσ1 ...taσn )A
[1]
n;1(σ1...σn)+

+

bn/2c+1∑
c=2

∑
σ∈Sn/Sn;c

tr(taσ1 ...taσc−1 )tr(taσc ...taσn )An;c(σ1...σn)+

+ nf
∑

σ∈Sn/Z

tr(taσ1 ...taσn )A
[1/2]
n;1 (σ1...σn),

where Sn;c is the subset of Sn which leaves the trace product invariant. The formula is written for

a generic number of colours Nc and quark flavours nf .

Not all the sub-amplitudes in the above formula are independent: the An;c>1 expressions can be

written as linear combinations of the A[1]
n;1 as shown in [158]

(7.9)An;c(1, .., c− 1; c, ..., n) = (−1)c−1
∑

σ∈COP{α}{β}

A
[1]
n;1(σ1, ..., σn) ,

using notation {α} = {c− 1, c− 2, ..., 1}, {β} = {c+1, c+2, ..., n} and indicating with COP{α}{β}

the set all the permutations that preserve the cyclic ordering of {α} and {β} independently. It is

therefore sufficient to compute the A[1]
n;1’s to obtain all the necessary information.

We recall that the colour-ordered helicity amplitudes are related to one another through conjugation

(inverting all the helicities of an amplitude corresponds to the operation 〈ij〉 ↔ [ij] in the spinor

representation). As stated in Section 3.1 they also possess symmetries that can be inferred from

their corresponding colour factors. In particular for the case of Eq. (7.8), we see that the traces
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Supersymmetric Content Helicity
N = 4 (−−++++)
N = 4 (−+−+++)
N = 4 (−++−++)
N = 1 (−−++++)
N = 1 (−+−+++)
N = 1 (−++−++)
N = 0 (−−++++)
N = 0 (−+−+++)
N = 0 (−++−++)

Table 7.1: The nine independent sub-amplitudes that were computed as fundamental building
blocks of the whole one-loop amplitude.

multiplying the A
[1]
n;1 and A

[1/2]
n;1 sub-amplitudes are invariant under a cyclic permutations of the

external legs, as was the case for the tree-level n-gluon ones. Since this is known to be a symmetry

of the overall amplitude, it must also be present for the kinematic parts, for example we have

A
[1]
n;1(−−++++) = A

[1]
n;1(−++++−) and A

[1/2]
n;1 (−−++++) = A

[1/2]
n;1 (−++++−).

We readily see that there are only three independent MHV helicity amplitudes:

(− − + + ++), (− + − + ++), (− + + − ++), and all the other ones are obtained by cyclically

permuting the helicities within this list.

As an additional step, we perform the supersymmetric decomposition of Section 3.7 on the A[1]
n;1

and A
[1/2]
n;1 sub-amplitudes. We recall

A[1]
n = AN=4

n − 4AN=1
n +AN=0

n , (7.10)

A[1/2]
n = AN=1

n −AN=0
n , (7.11)

where again the superscripts indicate either a N = 4 multiplet, a N = 1 chiral multiplet or an N = 0

complex scalar. Expressing the amplitude in terms of these supersymmetric components significantly

simplifies the calculations. We then see that there are nine independent sub-amplitudes, which we

write in Table 7.1.

Having identified a minimal sub-set of independent sub-amplitudes, we move the discussion to the
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methods used to reconstruct their analytical form. Most of the methods were already presented in

4.1; here we show their effect for these specific expressions.

7.3 Reconstruction Techniques

All the sub-amplitudes were computed by performing the OPP reduction described in Section 3.6 and

then reconstructing the rational coefficients in the scalar integral basis. Two main facts contribute

to making the computation of the amplitude in a generic number of dimensions D more involved

than the four-dimensional one.

Firstly, as already mentioned in Section 3.6, the number of master integrals is higher for the case of

generic dimensions. This is the case since in four dimensions it is possible to express a pentagon scalar

integral as a combination of scalar boxes plus terms of order O(ε), which are normally discarded

(see for example [159]). This cannot be done for a generic D, making it necessary to compute the

additional coefficients of the pentagons.

Secondly, scalar integrals in four dimensions possess known expansions into special functions, such as

the Lk(
s
t ) shown in Eq. (6.5). These expansions allow us to find linear relations and simplifications

among the special functions, further reducing the basis onto which the expression is projected and

diminishing the complexity of the rational coefficients. In the case in which the number of dimensions

is kept as a parameter D such expansions cannot be performed, limiting the number of simplifications

which precede the reconstruction step.

Contrary to the five-point case, we observed that there was not a single method which proved

to be the most efficient for all the sub-amplitudes. Instead, it was most efficient to use different

approaches for different helicity configurations and supersymmetric content.

As a preliminary step, we ran a code which applies the different algorithms to a numerical univariate

slice of the amplitude and outputs the degrees of the resulting expressions. In this way it was

possible to estimate in advance the most convenient method to apply. In this section we outline the

reconstruction methods and how effective they are for the individual amplitudes.
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7.3.1 Linear Relations

Linear relations among the integral coefficients can be inferred from properties that we know the

amplitude must have once expanded into 2n− 2ε dimensions.

One type of relations is derived from the structure of the singularities in the dimensional regulator

ε. The renormalisation properties of QCD impose that ultraviolet (UV) singularities in one-loop

amplitudes must be proportional to the amplitude for the same process at tree level, and the

proportionality constant is related to the one-loop beta function β0 ([149], [72]). This is a consequence

of the fact that UV divergences can be cancelled at one loop by the insertion of a finite number of

counterterms which correspond to tree diagrams with effective vertices [19] .

In four dimensions, only the scalar bubble integrals with numerator equal to one contain UV

divergences:

I4−2ε
2 [1](sij) =

∫
d4−2εk

(2π)4
1

k2(pij + k)2
=

1

ε
+ log

(
sij
µ2

)
+ 2 +O(ε). (7.12)

This analysis brings to the conclusion that the UV divergences of the one-loop amplitude must be

proportional to the sum of the coefficients of the logarithm terms coming from the bubble expansions.

In order to be true in 4− 2ε dimensions, this must also hold in the generic D-dimensional case.

We take as an example the A(1)
6g (−−++++) amplitude, which only has three such integrals in its

basis: I4−2ε
2 [1](s23), I4−2ε

2 [1](s234) and I4−2ε
2 [1](s16). We can then readily verify:

(7.13)
b23;1456 + b234;156 + b16;2345 =

1

3

〈12〉3

〈23〉 〈34〉 〈45〉 〈56〉 〈61〉

=
1

3
A

(0)
6g (−−++++),

where again the coefficient bij;klmn is the one multiplying I4−2ε
2 [1](sij).

These relations were obtained using the same algorithm described in Section 4.3.1, with the tree-level

amplitudes given as part of the fi rational ansätze.
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7.3.2 Factor Matching and Partial Fractioning

The factor matching is performed in the same fashion as described in chapters 4 and 5. The factors in

the expressions are matched to the ones present in an ansatz, corresponding to the spinor structures

evaluated on the same slice. The coefficients are divided out by the matched factors, leaving smaller

polynomials to be reconstructed. This operation is completely automatised within the algorithm.

The list of ansätze was created starting from

{〈ij〉 , [ij], sij , sijk, 〈i| pjk|l], sijk − sij , (pij · pkl)2 − sijskl, tr5(i, j, k, l)}, (7.14)

with the indices running over all possible values i, j, k, l = 1, ..., 6. As already discussed in Section

4.3.2, the resulting list is over-complete. Again, we used the same procedure of evaluating all the

terms in momentum-twistor variables and only keeping the independent polynomial factors in the

resulting expressions. We see that in comparison with the list of ansätze used for the 6-gluon

tree-level amplitudes, we needed to also include spurious denominators arising from integral tensor

reductions, such as (pij · pkl)2 − sijskl.

Before proceeding with full reconstructions, the factor-matching algorithm was tested on the expressions

with both alternative parametrisations ZA and ZB . This allowed us to verify which of the two choices

would result in a more efficient reconstruction. The results of this comparison are shown in the Table

7.2. In both tables we show how the degree of the most complex coefficient in each amplitude changes

after the matching.

It is clear by comparing the two tables 7.2 that the choice ZB is the most convenient one, since

the degrees are lower for every expression. For this reason the parametrisation A was discarded

and the amplitudes were not reconstructed in those variables. For the rest of the chapter, all the

reconstructed rational expressions should be understood as functions of variables in Eq. (4.12).

For the sake of completeness, we give the transformations from Lorentz invariants to rational
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ZA

Supersymmetric Content Helicity Original Degrees Reduced Coeff. of Highest Deg.
N = 4 (−−++++) 21 0 I5[µ

2](s34)
N = 4 (−+−+++) 21 0 I5[µ

2](s34)
N = 4 (−++−++) 21 0 I5[µ

2](s34)
N = 1 (−−++++) 33 13 I1m4 [µ2](s234)
N = 1 (−+−+++) 38 27 I2(s345)
N = 1 (−++−++) 35 23 I2(s34)
N = 0 (−−++++) 78 60 I2mH

4 [µ2](s23, s61)
N = 0 (−+−+++) 90 66 I2[µ

2](s345)
N = 0 (−++−++) 126 118 I2[µ

2](s345)

.

ZB

Supersymmetric Content Helicity Original Degrees Reduced Coeff. of Highest Deg.
N = 4 (−−++++) 15 0 I5[µ

2](s23)
N = 4 (−+−+++) 15 0 I5[µ

2](s23)
N = 4 (−++−++) 15 0 I5[µ

2](s23)
N = 1 (−−++++) 21 10 I1m4 [µ2](s123, s45, s56)
N = 1 (−+−+++) 38 11 I2mH

4 [µ2](s12, s34)
N = 1 (−++−++) 20 16 I2[1](s34)
N = 0 (−−++++) 44 36 I2mH

4 [µ2](s23, s16)
N = 0 (−+−+++) 53 46 I1m4 [µ2](s123, s45, s56)
N = 0 (−++−++) 78 74 I2[µ

2](s345)

Table 7.2: The degrees of the coefficients before and after the factor matching, in both
parametrisations. For each amplitude, only the highest coefficient degree is presented. The last
column indicates the scalar integral associated to the most complex coefficient for each case. We
notice that the degrees are lower using parametrisation ZB for every amplitude.

parametrisation in such variables:

s23 =
s12y1
σ1 − 1

,

s34 =
s12(y3 − y2σ1 + y1σ2

σ1 − σ2
,

s45 =

s12(−y2y4(σ1 − 1) + y21(σ2 − σ3) + y3(y1 + σ1 − y1σ3 − 1) + y1(σ1 − y2σ1 + y4(σ2 − 1)− σ2 + y2σ3)

y1(σ1 − 1)(σ2 − σ3)
,

s56 =
s12(y2y4 + y1y3 − y1y4 − y3)

y1(σ2 − σ1)
, (7.15)

s61 =
s12(y3 − y2y4
y1(σ2 − σ3)

,

s123 =
s12(y1 + y4 − 1)

σ1 − 1
,

s234 =
s12y3
σ2 − σ1

,

s345 =
s12(y3 − y2y4 + y1σ2 − y1y2σ3)

y1(σ2 − σ3)
.
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We see from the table that the factor matching is very effective in reducing the polynomial degrees of

the coefficients of most of the sub-amplitudes, with the notable exception of N = 0 and (−+−+++)

(−++−++); for these two most complex expressions it is convenient to perform a univariate partial

fractioning with respect to the momentum twistor variable y4.

We display the degrees obtained with the partial fractioning using Table 7.3, which has the same

structure as Table 4.3:

Amplitude Original Degrees Stage 1 Stage 2 Stage 3

AN=0
6g (−+−+++) 53/41 46/0 41/37 32/27

AN=0
6g (−++−++) 78/75 74/0 43/38 38/35

Table 7.3: The polynomial degree of the expression to be reconstructed in each stage. The stages
are the same as described in Section 4.3.3

.

We see that the degrees are significantly lowered once the univariate apart is performed.

7.3.3 Two Stage Reconstruction

In this section we briefly outline a method employed to reduce the reconstruction time for the most

complex expressions.

We recall from Chapter 4 that the reconstruction time for a rational expression corresponds to the

time to evaluate the algorithm on a specific numerical point multiplied by the number of points:

Total Time = Time Per Point × Number of Points = T × N. (7.16)

Remembering that we have seen in Section 4.1 that the upper bound on the number of points depends

on the number of variables of a polynomial and the maximum degree in each variable. Therefore

the number of points to be evaluated increases with higher degrees. The evaluation time per point,

on the other hand, is proportional to the length of the ansatz, as we have seen in Section 4.3.3. If

the ansatz in the form of Eq. (4.21) or the one for the multivariate case contain many terms, it will

take a longer time to evaluate them on a specific point. A trade-off is then observed between the
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Figure 7.1: The number of ansatz terms grouped according to their polynomial degree. The
different colours indicate which terms were reconstructed in Stage 1 (blue) and which in Stage 2
(red), the legend shows how much time each stage took. Original Timing refers to the reconstruction
time if the split is not performed.

benefit of having a longer ansatz which greatly decreases the maximum degrees, and the time that

is taken to evaluate it at every point.

For this reason, it was beneficial to have a preliminary run of the algorithm which evaluated the

degrees of every term in the ansatz on univariate slices. This allows us to study how much the

degrees varied from term to term. A histogram containing this data for the AN=0
6g (−+−+++) is

shown in Figure 7.1.

It is apparent from the histogram that the majority of the terms in the ansatz have a polynomial

degree which is significantly lower than the ones with the highest complexity. This fact suggests the

convenience of performing the reconstruction in two stages:

• Stage 1: reconstruct all the terms in the ansatz which have a total degree below a certain

threshold, ignoring the most complex ones;

• Stage 2: subtract the reconstructed terms from the whole expression and reconstruct the

remaining terms in the original ansatz.
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We can see the advantage given by the implementation of the two-stage procedure by examining the

reconstruction times in both stages.

In Stage 1 the number of terms in the ansatz is not changed (all terms need to be evaluated in order

to reconstruct even a portion of the final result) but a lower number of sample points is needed,

since we are only interested in reconstructing the polynomials of lowest degree. This means that the

reconstruction is performed in a time Ns × T, where Ns is the smaller number of points. We see

in Figure 7.1 that the reconstruction time per point is indeed almost equal to the one for the direct

reconstruction.

In Stage 2 the total number of points is the same as for the original reconstruction, since the

polynomials being reconstructed are those of highest degree, but the time per point is lowered, since

many of the terms in the ansatz were already reconstructed in Stage 1. The reconstruction is then

performed in N × Ts, where Ts is the smaller reconstruction time.

The total reconstruction time for the two-stage process therefore is Ns × T + N × Ts . We have

empirically verified that

Ns × T + N × Ts < N × T, (7.17)

if the majority of the terms have a degree much lower than the highest one.

This case is shown in Figure 7.1, where the highest degree is 32 but more than 90% of the terms are

of degree lower than 20. Consiquently, the reconstruction time is reduced by more than a factor of

7:
Ns × T + N × Ts

N × T =
173275× 10.1s+ 1553748× 0.7s

1553748× 13.7s
= 7.7. (7.18)

Having discussed the reconstruction techniques, in the following sections we present explicit results

for some N = 4 and N = 1 helicity amplitudes. The amplitudes are presented in terms of

spinor-helicity variables, including their full phase dependence. We will see that the expressions

can be written in a compact form.
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7.4 N = 4 Case

The N = 4 expressions in D dimensions are equal to the 4−2ε ones, with the addition of order O(ε)

pentagons. All three MHV helicity configurations (− − + + ++, − + − + ++ and − + + − ++)

have the same expression once we divide out by the phase (A(0)
6 (h)),

AN =4
6 (h) = A

(0)
6 (h)

[
6∑
i

eiI
[i]
5 [µ2] + d

(1)
12 I1m4 (s12, s23) + d

(1)
61 I1m4 (s61, s12) + d

(2)
14 I2mE

4 (s23, s56) +

d
(2)
56 I1m4 (s56, s61) + d

(2)
36 I2mE

4 (s45, s12) + d
(1)
45 I1m4 (s45, s56) + d

(1)
23 I1m4 (s23, s34) +

d
(2)
25 I2mE

4 (s34, s16) + d
(1)
34 I1m4 (s34, s45)

]
.

(7.19)

We used the following notation for pentagon and box integrals

I
[i]
5 [µ2] =

∫
dDk

(2π)D
µ2

k2(k + pi,i+1)2(k + pi,i+2)2(k + pi,i+3)2(k − pi+5)2
, (7.20)

I2mE
4 (sij , skl) =

∫
dDk

(2π)D
1

k2(k − pj+1)2(k − pj+1 − pkl)2(k + pij)2
, (7.21)

I1m4 (sij , sjk) =

∫
dDk

(2π)D
1

k2(k − pi)2(k − pij)2(k − pijk)2
, (7.22)

where the integral coefficients are

ei =
A(i)tr5(i+ 2, i+ 3, i+ 4, i+ 5)

tr5(1, 2, 3, 4, 5, 6)
, (7.23)

d
(1)
ij = sijsjj+1, (7.24)

d
(2)
ij = 〈i, pi+1i+2, j, pj+1j+2, i], (7.25)

and we introduced the shorthand notation

A(i) =


− |1234561〉 i odd

− |1234561〉 i even.
(7.26)

.
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7.5 N = 1 Case

The three independent MHV amplitudes are distinct for the N = 1 case. The integral bases of these

amplitudes are the same as for their 4 − 2ε versions, with the addition of µ2 pentagons and boxes.

The simplest one of the three is

AN=1
6 (−−++++) = (7.27)

A
[0]
6

[ 6∑
i

eiI
[i]
5 [µ2] +

6∑
i

d1mi I
1m[i]
4 [µ2] +

3∑
i

d2mE
i I

2mE[i]
4 [µ2]+

6∑
i

d2mH
i I

2mH[i]
4 [µ2] + b23;1456I2(s23) + b234;156I2(s234) + b16;2345I2(s16)

]

where we used an alternative notation for the three types of box integrals: one-mass ones (1m),

two-adjacent masses (2mH) and two non-adjacent masses (2mE).

(7.28)

I
2mE[i]
4 =

∫
dDk

(2π)D
µ2

k2(k + pii+1)2(k + pii+2)2(k − pi−1)2
,

I
2mH[i]
4 =

∫
dDk

(2π)D
µ2

k2(k + pii+1)2(k + pii+3)2(k − pi−1)2
,

I
1m[i]
4 =

∫
dDk

(2π)D
µ2

k2(k + pii+2)2(k + pii+3)2(k − pi−1)2
.

.

The function I2(sij) is the scalar bubble integral

(7.29)I2(sij) =

∫
dDk

(2π)D
1

k2(pij + k)2
.

We find two distinct expressions for the pentagon coefficients, depending if the massive leg takes a

contribution from particles with same helicity (+,+) or different helicity (−,+). The coefficients

are simpler in the first case

ei =


si+3i+4si+4i−1tr+(i− 1, pii+1, i+ 2, pi+3i+4)tr+(1, 2, 3, 4, 6, 5)

tr5(i+ 4, i− 1, i+ 3, i+ 2)tr5(1, 2, 3, 4, 5, 6)
, i 6= 2, 6 (same helicities)

si+2,i+3si+3,i+4si+4,i+5tr+(i− 1, pii+1, i+ 2, pi+3i+4)Ki

s12tr5(i+ 4, i− 1, i+ 3, i+ 2)tr5(1, 2, 3, 4, 5, 6)
. i = 2, 6 (different helicities)

.

(7.30)
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The Ki term is

Ki =
〈i+ 2| i|i− 1]

〈i+ 2| pi,i+1|i− 1]
tr+(1, 6, 5, 4, 2, 3) +

〈i+ 2| pi,i+4,i+4|i− 1]

〈i+ 2| pi,i+1|i− 1]
tr+(1, 2, 3, 4, 6, 5) (7.31)

and the bubble coefficients are

(7.32)
bij;klmn =

sjl 〈il〉 〈kj〉
(sijl − sij) 〈ik〉 〈jl〉

,

bijk;lmn =
tr+(i, l,m, pijk)− tr+(i, l, pijk,m)

(sijk − sij)sil
+

tr+(i, l, k, pij)− tr+(i, l, pij , k)
(sijk − smn)sil

.

We notice how the coefficients of the bubbles with the sum of three momenta on both legs are

significantly more complex; this feature is observed in all the helicity amplitudes.

The helicity amplitude in Eq. (7.27) is the simplest of the three; we notice the absence of triangles

which are instead present in the other two helicity configurations. While the scalar triangles did

not contribute to the amplitudes in their four-dimensional expansion, their coefficients were still

computed when we obtained their D-dimensional expressions with the OPP reduction.

7.6 Dimensional Recursion Relations

In this section we present the derivations which are used to relate higher dimensional integrals to

the ones in D = 4 − 2ε. Such relations are useful since expansions of the box, triangle and bubble

integrals in D = 4− 2ε in terms of special functions are known in the literature up to finite orders

in ε [160]. Such expansions, as already discussed in Section 7.3.1, instruct us on relations among the

rational coefficients.

The reason for this discussion is therefore twofold: on the one hand it instructs on how to obtain the

expressions for specific values of space-time dimensions, and on the other it shows how the results

for D > 4 can be used to infer new relations among the rational coefficients.

As explained in Section 4.3.1, finding that a certain linear combination of coefficients is equal

to a known function fk can be useful to expand the coefficient ansatz and improve the future

reconstruction performance of other expressions.

The results presented here are valid for a generic n, but some of these are shown explicitly for the
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n = 4 and n = 6 cases. The D = 4 − 2ε case is particularly important since it allowed us to check

that our results were consistent with the literature in the four-dimensional limit.

In our notation, we split the momentum vector in its 4-dimensional and (D − 4)-dimensional

components respectively: k̄ and k̃, and the effective mass is defined as k̃ · k̃ = µ2. In the integrand

reduction method, many integrals in the basis have powers of the effective mass in their numerators:

µ2, µ4. These integrals can be related to the ones in D + 2 and D + 4 dimensions via the following

steps, as shown in [161]:

∫
dDkµ2r =

∫
d4k̄

∫
dD−4k̃µ2r =

∫
d4k̄

∫
dΩD−5

∫ ∞

0

dµ2

2
µD−6+2r = (7.33)∫

d4k̄

∫
dΩD−5

∫
dD−4+2rk̃∫
dΩD−5+2r

=

∫
dΩD−5∫

dΩD−5+2r

∫
dD+2rk.

The formula for solid angles in general dimensions is

(7.34)
∫
dΩn =

π
n+1
2

Γ(n+1
2 )

,

this allows us to write the result as an expansion in the dimensional regulator. For example, for

D = 4− 2ε and r = 1 we have
(7.35)

∫
d4−2εkµ2 = −ε

∫
d6−2εk,

which proves the Eqs. (3.70) and (3.71) in Section 3. We also make use of the lowering dimensional

recurrence relation for one-loop integrals [162, 163],

(7.36)Id+2
n =

(2µ)[V (p1, ..., pn)]
−1

d− n
P (B1, ..., Bn+1)I

d
n,

where n is the number of external legs and V is the Gram determinant V (v1, ..., vn) = detG(v1, ..., vn)

as defined in Eq. (A.14). The polynomial P is defined so that

P (denominators) = V (k, p1, ..., pn), (7.37)

with denominators indicating the set of denominators appearing in the integrand of Idn. The Bi

operators act on the integrals as

(7.38)BiI
d
n(a1, ..., an) = Idn(a1, ..., ai−1, ..., an),
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where the ai are the powers of the denominators appearing in the integral. By combining Eqs. (7.33)

and (7.36) we are able to express any of the integrals appearing in the OPP basis in terms of scalar

4− 2ε ones, for which analytic expressions are known.

7.6.1 The 4− 2ε case

The form of the six-gluon one-loop amplitudes in D = 4 − 2ε is well known [91]. As it is clear

from the previous section, taking the limit in a specific number of dimensions consists of finding the

expansion of the integral basis Idn, obtaining a form which has a dependence on the ε parameter.

This was done for all the integrals appearing in the N = 4,N = 1 and N = 0 MHV amplitudes up

to finite orders in ε.

Before presenting the expansions, we give the definitions of the three types of triangle integrals

which appear in the bases of N = 0 amplitudes:

I1m3 (sij , sl) =

∫
dDk

(2π)D
1

k2(k + pl)2(k − pj)2
, (7.39)

I2m3 (sk, sl) =

∫
dDk

(2π)D
1

k2(k + pk)2(k + pkl)2
, (7.40)

I3m3 (sj , sk, sl) =

∫
dDk

(2π)D
1

k2(k + pj)2(k − pl)2
. (7.41)
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As always, integrals I1m3 [µ2r], I2m3 [µ2r], I3m3 [µ2r] have the same expression with µ2r as the numerator

of the integrand. The explicit expansions are [89]:

I
[i]
5 [µ2] = O(ε),

I4[µ
2](sij , skl) = −1

6
+O(ε),

I1m4 (sij , sjk) = − 2

sijsjk

(
(−sij)−ε

ε2
+

(−sjk)−ε

ε2
− (−sijk)−ε

ε2
+ F1m[sij , sjk, sijk]

)
+O(ε),

I2mE
4 (sij , sjk, pj , pl) = − 2

sijsjk − p2jp
2
l

( (−sij)−ε

ε2
+

(−sjk)−ε

ε2
− ((−pj)2)−ε

ε2
− ((−pl))−2ε

ε2

+ F2mE [sij , sjk, pj , pl]
)
+O(ε)

I2mH
4 (sij , sk, sl) = − 2

sijsjk

( (−sij)−ε

ε2
+

(−sjk)−ε

ε2
− (−(pk)

2)−ε

ε2
− (−(pl)

2)−ε

ε2
(7.42)

+ F2mH [sij , sk, sl]
)
+O(ε),

I3[µ
2](sij , skl) =

1

2
+O(ε)

I1m3 (sij , sk) = − (−(pk)
2)−ε

ε2sk
+O(ε),

I2m3 (pk, pl) = − (−(pk)
2)−ε − (−(pl)

2)−ε

ε2(p2k − p2l )
+O(ε),

I2[µ
2](sij) = −sij

6
+O(ε),

I2(sij) =
1

ε
− log(sij) + 2 +O(ε).
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Where we used the following notation for the finite part of the boxes F2mE [sij , s
2
kk], F2mH [sij , p

2
k, p

2
l ],

F1m[sij , skl, sijk] :

F1m[sij , sjk, sijk] = −L2

(
1− sikj

sij

)
− L2

(
1− sikj

sjk

)
− 1

2
log
( sij
sjk

)
− π2

6
,

F2mE [sij , sjk, sj , sl] = −L2

(
1− sj

sij

)
− L2

(
1− sj

sjk

)
− L2

(
1− sl

sij

)
, (7.43)

− L2

(
1− sl

sjl

)
+ L2

(
1− sjsl

sijsjk

)
log2

( sij
sjk

)
,

F2mH [sij , sjk, sk, sl] = −L2

(
1− sk

sjk

)
− L2

(
1− sk

sjk

)
− 1

2
log2

( sij
sjk

)
.

The dilogatirhms Li2(x) are defined as [89]

Li2(x) = −
∫ x

0

dt

t
Log(1− t) =

x

12
+
x2

22
+
x3

32
+ ... for|x|≤ 1 (7.44)

We verified that, by performing these substitutions for the integrals in the sub-amplitudes in Table

7.1, we obtain the same results as in [91].

7.6.2 The 6− 2ε case

As for the 4− 2ε case, in order to find the D = 6 form of the amplitudes it is necessary to expand

the integral basis in 6 dimensions. In this case we are mainly interested in the pole structure of the

amplitudes, therefore we only show the expansion up to order O( 1ε ).

The form of some of the integrals was obtained from [164], and for the missing ones the ε dependence
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was obtained using dimensional recurrence relations derived with LiteRed [129],

I
[i]
5 [µ2] = O(ε0),

I1m4 [µ4](sij , sjk) =
sijk + sij + sjk

60ε
+O(ε0),

I2mE
4 [µ4](sij , sjk, p

2
j , p

2
l ) =

p2j + skl + p2l + sil

60ε
+O(ε0),

I2mH
4 [µ4](sij , p

2
k, p

2
l ) =

p2k + p2l + sjk + sij
60ε

+O(ε0),

I1m4 [µ2](sij , sjk) =
1

6ε
+O(ε0),

I2mE
4 [µ2](sij , sjk, p

2
j , p

2
l ) =

1

6ε
+O(ε0), (7.45)

I2mH
4 [µ2](sij , p

2
k, p

2
l ) =

1

6ε
+O(ε0),

I1m3 [µ2](sij) = − sij
24ε

+O(ε0),

I2m3 [µ2](p2i , p
2
j ) = −

p2i + p2j
24ε

+O(ε0),

I3m3 [µ2](p2i , p
2
j , p

2
k) = −

p2i + p2j + p2k
24ε

+O(ε0),

I2(p
2
i )[µ

2] =
p4i
60ε

+O(ε0),

I2(p
2
i )[1] =

p4i
60ε

+O(ε0).

From the above expansions we see that in six dimensions the amplitudes do not have any pole deeper

than 1
ε . It is interesting to reproduce a similar computation as the one presented in Section 7.3.1, but

for D = 6− 2ε. Namely, we compute the ε pole of the amplitude, and we verify that it corresponds

to a local rational function of the kinematics. In this case the term local refers to a function free

of spurious poles. We can refer to this function as a tree-like expression, since it originates from

tree-level diagrams in an effective six-dimensional theory.

For the case of sub-amplitude AN=0(−−++++), we have 63 rational coefficients multiplying the
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same number of scalar integrals. After the ε expansion we find:

(7.46)

20(c7 + c9 + c11 + c13 + c15 + c17 + c19 + c21 + c23 + c25 + c27 + c29 + c31 + c33

+ c35 + c55s23 + c57s234 + c59s16) + 2c56s
2
23 + 2c60s

2
16 + 2c61s

2
34 + 2c54s

2
56

+ 2c32(p16 + p34)
2 + 2c28(p23 + p34)

2 + 2c63s
2
45 + 2c58s

2
234 + 2c62s

2
345

− 5(c39s16 + c43s23 + c49s34 + c52s45 + c42s56) + 2c22(p12 + p45)
2 + 2c36(p34 + p45)

2

+ 2c14(p23 + p56)
2 + 2c26(p45 + p56)

2 + 2c18(p16 + p56)
2 = local rational function.

As expected, the coefficient of the O( 1ε ) pole is a rational function free of spurious singularities.

7.7 Conclusion

In this chapter we have presented the details of the computation of the six-gluons MHV helicity

amplitudes in a generic number of dimensions D.

The helicity amplitudes were decomposed into combinations of simpler sub-expressions, exploiting

the properties known from the formal study of scattering amplitudes presented in chapters 2 and

3. All the sub-amplitudes were represented as a linear combination of one-loop scalar integrals

multiplied by rational coefficients which are functions of the external kinematics. Some of the

simplest expressions are presented explicitly in a compact form in terms of spinor variables.

Carrying out these computations allowed us to study the effects of the reconstruction over finite

fields of rational functions expressed in terms of momentum-twistor variables for amplitudes of high

multiplicity. Some valuable tools which were developed in this work were codes which make it possible

to automatically estimate the impact of a specific reconstruction method over the polynomial degrees

of an expression, without the need to perform the full numerical interpolation. The Mathematica

code which was written to achieve this goals directly generates histograms of the form of the one in

Figure 7.1, giving a clear indication on which terms contribute the most to the overall complexity

of an amplitude and enabling us to perform the reconstruction in multiple stages. The data on the

degrees and reconstruction times will be useful when these techniques will be extended to a broader

class of amplitudes.

It was possible to write the expressions in terms of spinor variables, by matching factors appearing

in the numerators and denominators of the coefficients with spinor structures which were listed in

an ansatz. In order to achieve compact expressions, it was necessary to perform some algebra and
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apply spinor identities of the type presented in Eq. (3.19). It will probably be beneficial to increase

the automatisation level of this procedure in the future, so that it will be possible to directly obtain

parts of the amplitude in spinor form.

At the end of the chapter, it was shown how the expressions computed in this project can be used to

obtain the explicit analytic form of coefficients of amplitudes in an arbitrary number of dimensions. It

was shown with a brief example how these expansions could be exploited to find additional relations

among the coefficients of the amplitudes. These ideas have the potential of helping to enlarge the

number of useful terms in the ansatz for the reconstruction of the coefficients. The most natural case

in which this can be implemented is the NMHV six-gluon one-loop amplitudes. In computing the

NMHV expressions, we anticipate to observe a significant increase in complexity due to the higher

polynomial degrees of the coefficients in the momentum-twistor parametrisation.



Chapter 8

Conclusions

In this thesis we have studied the computation of high-multiplicity one-loop scattering amplitudes in

Quantum Chromodynamics. We presented original results for five-point and six-point amplitudes,

both with massive and massless external legs and internal propagators. Together with their analytic

expressions, we described the new techniques which were developed in order to optimise their

reconstruction.

The new results are useful ingredients for the phenomenological studies of various processes of

interest. In particular, the five-point amplitudes will be used to obtain full pp→ t̄tj NNLO results,

while the six-point gluon expressions will contribute to studies of pp → 2j at N3LO. In both these

works, the amplitudes that we obtained were in relatively compact forms. This fact made it possible

to find alternative representations in terms of spinor variables of some sub-amplitudes. This is a

convenient feature, since having representations which are easily readable can enable us to better

understand their physical properties .

The reconstruction via numerical interpolation over finite fields has proven to be an extremely

effective method to obtain full analytic expressions, requiring only a relatively modest amount of time

and computing resources. Despite the power of these techniques, as implemented in FiniteFlow,

we have seen in this work that it was necessary to integrate them with new tools and strategies to
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tackle the computation of the most complex expressions.

It is apparent from the work presented that it is essential to exploit the knowledge about the physical

properties of the amplitudes in order to minimise the amount of computations needed to obtain a

full result. This starts at the level of the decomposition of the amplitude into sub-amplitudes; we

heavily exploited the symmetries relating colour-ordered helicity amplitudes, as well as the ones

which arise from their supersymmetric decomposition, in the case of multi-gluon expressions.

At a lower level, we studied the linear relations among the individual rational coefficients of the

sub-amplitudes, avoiding the computation of the most complex ones in favour of the ones with

lowest polynomial degrees. Some of these relations are known form the general theory, such as the

one relating the bubble coefficients, while others could be found by applying the algorithm within

FiniteFlow. The work we have done confirmed that the information about tree-level amplitudes

can and must be exploited in the computation of one-loop expressions. In the same way, we expect

that the use of analytic one-loop expressions will be useful to construct the ansätze for two-loop

amplitudes.

In addition to the study of the physical properties of scattering amplitudes, we found that it was

beneficial to investigate the features of some of their parts as purely mathematical objects. This has

been possible thanks to the methods that reduce the amplitudes to linear combinations of known

Master Integrals. Once such methods were applied, the task of computing them consisted only in

the reconstruction of the coefficients which multiply the MIs. These coefficients can in turn be

expressed as multivariate polynomials of momentum-twistor variables. It is then possible to exploit

some known the properties of polynomials to find efficient ways to reconstruct them. This fact

motivated the development of the partial-fractioning techniques presented in the thesis. We have

shown how the different algorithms for partial-fractioning enabled us to construct ansätze for the

coefficients, in some cases significantly reducing the complexity of a reconstruction.

It should be stressed that the study of the mathematical and physical properties of the expressions

are not done separately, but instead one contributes to the other. A clear example of this is the very

successful implementation of the factor-matching techinques: the ansätze for parts of the expressions
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are created by studying the topologies of the MIs of the amplitude, plus spurious terms originating

from integrals reductions, but the efficient matching is made possible by the implementation of a

rational parametrisation.

In the projects presented in this thesis, we did not find a single parametrisation or reconstruction

technique which was optimal for all amplitudes. Indeed, there was no indication that such a general

parametrisation exists at all for the studied processes. Instead, many options had to be tested in

advance, in order to find the strategy which best suited each individual expression. While such test

could be performed easily and were not excessively time-consuming, it remains an open question

whether it could be possible to define a priori a rational parametrisation which would be optimal

for a specific amplitude. In order to pursue such a line of enquiry, it would be necessary to define an

algorithmic way to construct Z-matrices such as the ones in Eqs. (4.10) and (4.10) , starting from

physical constraints coming from the scattering amplitude.

The results presented in this work show that the analytic reconstruction of QCD amplitudes using

finite field techniques is a valid approach for a variety of processes of phenomenological interest,

suggesting that the algebraic complexity of many NNLO and N3LO may be within reach. This fact

makes us look with optimism at future reasearch in this direction.



Appendix A

Mathematical Conventions

We give the explicit expressions of the most used mathematical symbols in this thesis.

Metric Tensor

η =



−1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


. (A.1)

Four Vectors

xµ = (x0, x1, x2, x3) (A.2)

xµxµ = ηµνx
µxν = −(x0)2 + (x1)2 + (x2)2 + (x3)2 (A.3)

. Levi-Civita Tensor

ε =

 0 1

−1 0

 (A.4)
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Pauli Matrices

σ0 =

1 0

0 1

 , σ1 =

0 1

1 0

 , (A.5)

(A.6)

σ2 =

0 −i

i 0

 , σ3 =

1 0

0 −1

 . (A.7)

Gamma Matrices

γµ =

 0 σµ

σ̄µ 0

 , γ5 =

−1 0

0 1

 (A.8)

with

σµ = {σ0, σ1, σ2, σ3}, (A.9)

σ̄µ = {σ0,−σ1,−σ2,−σ3}. (A.10)

Traces over Gamma Matrices

Traces over gamma matrices can be expressed as multiple products of spinor brackets

tr+(i...i+ n) = tr((1 + γ5)/pi · · · /pi+n
) =

n−1
2∏

k=0

[i+ 2k, i+ 2k + 1] 〈i+ 2k + 1, i+ 2k + 2〉 , (A.11)

tr−(i...i+ n) = tr((1− γ5)/pi · · · /pi+n
) =

n−1
2∏

k=0

〈i+ 2k, i+ 2k + 1〉 [i+ 2k + 1, i+ 2k + 2], (A.12)

tr5(i...i+ n) = tr+(i...i+ n)− tr−(i...i+ n). (A.13)

In Eqs. (A.11), (A.12), (A.13), a cyclical ordering of the n momenta is assumed, meaning that we

have n+ 1 = 1.

Gram Matrix

A Gram matrix for a set of vectors in an inner product space is defined as an Hermitian matrix
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whose entries are the vector products. So for a set of vectors {v1, .., vn} we have

G(v1, ..., vn) =


v1 · v1 v1 · v2 ... v1 · pn

...
. . .

vn · v1 ... ... vn · vn

 . (A.14)



Appendix B

QCD Feynman Rules

Here we list the Feynamn rules for internal propagators and vertices in a Rξ gauge. The colour

factors are in red to make their factorisation more explicit. We recall that taij are the colour matrices

in the fundamental SU(Nc) representation, while fabc live in the adjoint representation.

�p
α i β j =

iδij
p2+iε (/p+m)αβ (B.1)

�p

µ a ν b = iδab

p2+iε (g
µν + (1− ξ) pµpν

p2+iε ) (B.2)
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�p
a b = iδab

p2+iε (B.3)

�
α i

β j

µ a = −igsγµαβtaij (B.4)

�
c

a

µ b = gsf
abcpµ (B.5)

�p1

p2

p3

µ a

ν b

ρ c = −gfabc(gµν(p1− p2)ρ + gµρ(p2− p3)µ + gρµ(p3− p1)ν) (B.6)

�
µ1 a1

µ2 a2

µ3 a3

µ4 a4

= −ig2(fa1a2bf ba3a4(gµ1µ3 − gµ2µ4) + all other permutations) (B.7)



Appendix C

Coefficient Ansätze for Tree-Level

Six-Gluon Amplitudes

We give here the explicit list of factors in momentum twistor variables which was used to perform

the factor matching for the reconstruction of the tree-amplitudes in 4.3.2.

{x1, x6, x7, x8,−1 + x6,−1 + x7,−1 + x8, x6 − x7, x6 − x8, x7 − x8, x5 − x6,

x2,−x4 − x2x5 + x3x5 + x2x6 + x4x6 − x3x5x6 − x2x7 + x2x5x7, x4x6−

x3x5x6 + x2x5x7 − x4x8 − x2x5x8 + x3x5x8

x4 − x3x5, x2 − x3 + x3x6 − x2x7,−x6 + x3x6 + x7 − x2x7 + x2x8 − x3x8,−1 + x3,−x4 + x3x6 − x2x7

− x4x6 + x5x6 − x26 + x3x
2
6 − x5x7 + x6x7 − x2x6x7 + x4x8 + x2x6x8 − x3x6x8,−x4 + x5 − x6 + x3x6

− x4 + x2x4 − x2x5 + x3x5 + x2x6 − x2x3x6 + x4x6 − x3x5x6 − x2x7 + x22

x7 + x2x5x7 − x22x8 + x2x3x8 − x2x4x8, x4 − x2x4 + x2x5 − x3x5 − x2

x6 + x2x3x6 − x4x6 + x3x5x6 + x2x7 − x2x3x7 + x2x4x7 − x2x5x7

− x4 + x2x4 − x2x5 + x3x5, x2 − x3, x4x6 − x3x5x6 + x2x5x7, x6 − x3x6−

x26 + x3x
2
6 − x7 + x2x7 + x6x7 − x2x

2
7 − x2x8 + x3x8 − x3x6x8 + x2x7x8
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− x4x6x7 − x2x5x6x7 + x3x5x6x7 + x2x
2
6x7 + x4x

2
6x7 − x3x5

x26x7 − x2x6x
2
7 + x2x5x6x

2
7 + x2x5x6x8 − x2x

2
6x8 + x4x7x8−

x3x5x7x8 + x2x6x7x8 − x4x6x7x8 − x2x5x6x7x8 + x3x5x6x7x8, 1− x3 − x6 + x3x6 − x2x7 + x2x8

− x2x5x7 + x2x6x7 + x4x8 + x2x5x8 − x3x5x8 − x2x6x8 − x4x6x8

+ x3x5x6x8, x4 + x2x6 − x3x6,−x4 − x2x5 + x3x5 + x4x6 − x3x5x6 + x2x5x7,

− x4x6 + x5x6 − x26 + x3x
2
6 − x5x7 + x6x7 − x2x

2
7 + x4x8 − x3x6x8 + x2x7x8

− x4x6 + x3x5x6 − x2x5x7 + x2x6x7 + x4x6x7 − x3x5x6x7 − x2

x27 + x2x5x
2
7 + x4x8 + x2x5x8 − x3x5x8 − x2x6x8 + x2x7x8 − x4x7x8

− x2x5x7x8 + x3x5x7x8,−x4 + x5 − x6 + x3x6 − x2

x7 + x2x8, x4 − x3x5 + x2x7 − x2x8 − x4x8 + x3x5x8, x2 − x3 + x4,

x5 − x4 + x2x4 − x2x5 + x3x5 + x2x6 − x2x3x6 + x4x6 − x3x5x6 − x2x7 + x2x3

x7 + x2x5x7 − x2x3x6x7 + x22x
2
7 − x2x4x8 + x2x3x6x8 − x22x7

x8,−x4x6 + x3x5x6 − x2x5x7 + x2x6x7 + x4x8 + x2x5x8 − x3x5x8 − x2x6x8

x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 − x4x6 + x3x5x6 + x2x7 − x22x7

+ x2x4x7 − x2x5x7 − x2x3x6x7 + x22x
2
7 + x22x8 − x2x3x8 + x2x3x6x8

− x22x7x8, x4x6 − x3x5x6 + x2x6x7 − x4x8 + x3x5x8 − x2x6x8,

− x6 + x3x6 − x4x6 + x5x6 + x7 − x2x7 − x5x7 + x2x8 − x3x8 + x4x8,

− x5 + x6 − x7 + x5x7 − x4 + x2x4 − x2x5 + x3x5 + x4x6 − x3x5x6 + x2x
2
6

− x2x3x
2
6 + x2x5x7 − x2x6x7 + x22x6x7 − x2x4x8 − x22x6x8 + x2x3x6

x8, x4 + x2x5 − x3x5 − x2x6 − x4x6 + x3x5x6 − x2x5x7 + x2x6x7,

− x4 + x2x4 − x2x5 + x3x5 + x2x6 − x2x3x6 − x2x7 + x22x7 − x22x8 + x2x3x8,

x4 − x3x5 + x2x7,−1 + x3 − x4 + x5,−x5 + x6 − x8 + x5x8x4 − x2x4 + x2x5 − x3x5

− x4x6 + x3x5x6 − x2x
2
6 + x2x3x

2
6 + x2x4x7 − x2x5x7 + x2x6x7 − x2

x3x6x7, x4x6 + x2x5x6 − x3x5x6 − x2x
2
6 − x4x

2
6 + x3x5x

2
6

+ x2x6x7 − x2x5x6x7 − x4x8 − x2x5x8 + x3x5x8

+ x4x6x8 − x3x5x6x8 + x2x
2
6x8 + x2x5x7x8 − x2x6x7x8x4
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− x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 + x2x7 − x2x3x7, x4x6 − x3x5x6

+ x2x5x7 − x4x8 − x2x5x8 + x3x5x8 + x2x6x8 − x2x7x8,−x4x6 + x5x6

− x26 + x3x
2
6 − x5x7 + x6x7 − x2x6x7, x2 − x3 − x6 + x3x6 + x7 − x2x7,

− x4x6x7 + x3x
2
6x7 − x2x6x

2
7 + x5x6x8 − x26x8 + x4x7x8 − x5x7x8

+ x6x7x8 + x2x6x7x8 − x3x6x7x8, x6 − x3x6 − x7 + x2x7 + x3x6x7

− x2x
2
7 − x2x8 + x3x8 − x6x8 + x7x8 + x2x7x8 − x3x7x8,−x5x7 + x6

x7 + x4x8 − x3x6x8,−1 + x3 + x7 − x3x8,−x4 + x2x4 − x2x5

+ x3x5 + x2x6 − x2x3x6 + x4x6 − x3x5x6 − x2x7 + x22x7 + x2x5x7,−1 + x2,

x2x4x7 − x2x3x6x7 + x22x
2
7 − x4x8 − x2x5x8 + x3x5x8 + x2x6x8 + x4x6x8 − x3x5x6x8

− x2x7x8 − x22x7x8 + x2x3x7x8 − x2x4x7x8 + x2x5x7x8, x6 − x3x6 + x2x7 − x8

− x2x8 + x3x8,−x4x7 − x2x5x7 + x3x5x7 + x2x6x7 + x4x6x7 − x3x5x6x7 − x2x
2
7

+ x2x5x
2
7 + x2x4x8 − x2x3x6x8 + x2x3x7x8 − x2x4x7x8,−x6 + x3x6 + x7 − x3x8 − x4x6

+ x2x4x6 − x2x5x6 + x3x5x6 + x2x
2
6 − x2x3x

2
6 + x4x

2
6 − x3x5x

2
6 − x2x6x7

+ x22x6x7 + x2x5x6x7 + x4x8 − x2x4x8 + x2x5x8

− x3x5x8 − x22x6x8 + x2x3x6x8 − x4x6x8 − x2x5x6x8 + x3x5x6x8,

− 1 + x2 + x6 − x2x7, x2x4x6 − x2x5x6 + x2x
2
6 − x2x3x

2
6 + x2x5x7 − x2x6x7 + x22x6x7

− x4x8 − x2x5x8 + x3x5x8 − x22x6x8 + x2x3x6x8 + x4x6x8 − x2x4x6x8 + x2x5x6x8 − x3x5x6x8,

1 + x2 − x3 − x6 + x3x6 − x2x7, x4x6 − x3x5x6 + x2x5x7 − x2x4x8, x3,

x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 − x4x6 + x3x5x6,−1 + x2 + x6 − x2x8,−x2x4x6

+ x2x5x6 − x2x
2
6 + x2x3x

2
6 + x4x7 − x3x5x7 + x2x6x7 − x2x3x6x7 − x4x6x7 + x2x4x6x7 − x2x5x6x7

+ x3x5x6x7x6 + x2x6 − x3x6 − x26 + x3x
2
6 − x7 + x6x7 − x2x6x7 − x2x8 + x3x8 − x3x6x8

+ x2x7x8,−x4x6 + x3x5x6 + x2x4x7 − x2x5x7, x3x6 − x2x7 + x2x8 − x3x8,−x22 + x2x3 − x4 − x2x5

+ x3x5 + x2x6 − x2x3x6 + x4x6 − x3x5x6 − x2x7 + x22x7 + x2x5x7,

x5 − x6 + x2x6x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 − x4x6 + x3x5x6 + x2x7 − x22x7

+ x2x4x7 − x2x5x7 − x2x3x6x7 + x22x
2
7 + x22x8 − x2x3x8 − x4x8 + x2x4x8 − x2x5x8

+ x3x5x8 + x2x6x8 + x4x6x8 − x3x5x6x8 − x2x7x8 − x22x7x8 + x2x3x7x8 − x2x4x7x8

+ x2x5x7x8,−x4x6 + x5x6 − x26 + x3x
2
6 − x2x6x7 + x4x8 − x5x8 + x6x8 + x2x6x8 − x3x6x8,



154APPENDIX C. COEFFICIENT ANSÄTZE FOR TREE-LEVEL SIX-GLUON AMPLITUDES

x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 − x4x6 + x3x5x6 + x2x7 − x2x3x7 − x4x7 + x2x4x7

− 2x2x5x7 + x3x5x7 + x2x6x7 + x4x6x7 − x3x5x6x7 − x2x
2
7 + x2x5x

2
7 + x2x4x8 − x2x3x6x8

+ x2x3x7x8 − x2x4x7x8 − x4x6 + x5x6 − x26 + x3x
2
6 − x5x7 + x6x7 + x4x8 − x3x6x8,

x2x6 − x2x3x6 + x4x6 − x3x5x6 − x2x7 + x22x7

+ x2x5x7 − x22x8 + x2x3x8 − x4x8 − x2x5x8 + x3x5x8,

− x5 + x6 − x2x7,−x4 + x2x4 − x2x5 + x3x5 + x2x6 − x2x3x6 − x2x7 + x22x7

− x22x8 + x2x3x8 + x4x8 − x2x4x8 + x2x5x8 − x3x5x8,

− x4 + x5 − x6 + x3x6 − x2x7 − x4 + x2x4 − x2x5 + x3x5 + x4x6 − x3x5x6 + x2x5x7 − x2x4x8,

− x4 + x3x6,−x2 + x2x3 − x4 + x3x5,−x5 + x6 − x2x8,

x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 + x2x7 − x2x3x7 − x4x7

+ x2x4x7 − x2x5x7 + x3x5x7 − x4x6 + x5x6 − x26+

x3x
2
6 − x5x7 + x6x7 − x2x6x7 + x4x8 − x3x6x8

+ x2x7x8, x4 − x2x4 + x2x5 − x3x5 − x4x6 + x3x5x6 + x2x4x7 − x2x5x7,

− x4x6 + x3x
2
6 − x2x6x7 + x4x8 + x2x6x8 − x3x6x8, x4x6

− x3x5x6 + x2x
2
6 − x2x3x

2
6 + x2x5x7 − x2x6x7 + x22x6x7

− x4x8 − x2x5x8 + x3x5x8 − x22x6x8 + x2x3x6x8

− x4 − x2x5 + x3x5 + x2x6 + x4x6 − x3x5x6 − x2x7 − x22x7 + x2x3x7 + x2x5x7 − x2x3x6x7

+ x22x
2
7,−x4x6 + x2x4x6 − x2x5x6 + x3x5x6 + x2x

2
6 − x2x3x

2
6
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− x2x6x7 + x22x6x7 + x4x8 − x2x4x8

+ x2x5x8 − x3x5x8 − x22x6x8 + x2x3x6x8,

x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6

− x4x6 + x3x5x6 + x2x7 − x22x7 + x2x4x7 − x2x5x7 − x2x3x6x7

+ x22x
2
7, x4x6 − x5x6 + x5x7 − x4x8,−x4 + x3x6 − x3x7 + x4x7,

− x4 + x3x5 − x2x6 + x2x3x6,−x4 − x2x5 + x3x5 + x2x6

+ x4x6 − x3x5x6 − x2x7 + x2x5x7 − x22x8+

x2x3x8 − x2x3x6x8 + x22x7x8,−x4 + x2x4 − x2x5 + x3x5 + x2x6 − x2x3x6,

x4 − x2x4 + x2x5 − x3x5 − x2x6 + x2x3x6 − x4x6 + x3x5

x6 + x2x7 − x22x7 − x2x5x7 + x2x4x8 − x2x3x6x8 + x22x7x8, x4 − x5,

− x4 + x3x6 − x2x7 + x2x8 − x3x8 + x4x8,−x4 + x3x5

− x2x7 + x2x3x7x4x6 − x3x5x6 + x2x5x7 − x4x8 − x2x5

x8 + x3x5x8 + x2x6x8 − x2x3x6x8 − x2x7x8 + x22x7

x8 − x22x
2
8 + x2x3x

2
8,−x4 + x2x4 − x2x5

+ x3x5 + x2x6 − x2x3x6 + x4x6 − x3x5x6 − x2x4x7 + x2x5x7

− x2x6x7 + x2x3x6x7, x4x6 − x2x4x6 + x2x5x6 − x3x5x6 − x2x
2
6 + x2x3x

2
6

− x4x
2
6 + x3x5x

2
6 + x2x6x7 − x22x6x7 − x2x5x6

x7 − x4x8 + x2x4x8 − x2x5x8 + x3x5x8 + x22x6x8 − x2x3x6x8 + x4x6x8

+ x2x4x6x8 − x3x5x6x8 + x2x
2
6x8 − x2x3x

2
6x8 + x2x5x7x8 − x2x6x7x8
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+ x22x6x7x8 − x2x4x
2
8 − x22x6x

2
8 + x2x3x6x

2
8,

− x4 + x5 − x6 + x3x6 + x7 − x3x7 + x4x7 − x5x7,

− x4x6 + x5x6 − x26 + x3x
2
6 − x5x7 + x6x7 − x2x6x7 + x4x8 + x6x8

+ x2x6x8 − 2x3x6x8 + x4x6x8 − x5x6x8 − x7x8 + x2x7x8 + x5x7x8 − x2x
2
8

+ x3x
2
8 − x4x

2
8,−1 + x2 + x5,−x4 − x2x5 + x3x5 − x22x6 + x2x3x6

+ x4x6 − x3x5x6 + x2x
2
6 − x2x3x

2
6 + x2x5x7 − x2x6x7 + x22x6x7,

x4x6 − x3x5x6 + x2x5x7 − x2x3x6x7 + x22x
2
7 − x4x8 − x2x5x8

+ x3x5x8 + x2x6x8 − x2x7x8 − x22x7x8 + x2x3x7x8, x4 − x3x5 + x2x7 − x2x3

x8,−x4 + x2x4 − x2x5 + x3x5 + x2x6 − x2x3x6 − x2x7 + x22x7,

x4x6 − x2x4x6 + x2x5x6 − x3x5x6 − x2x
2
6 + x2x3x

2
6 − x4x

2
6 + x3x5x

2
6

+ x2x6x7 − x22x6x7 + x2x4x6x7 − x2x5x6x7 − x2x3x
2
6

x7 + x22x6x
2
7 − x4x8 + x2x4x8 − x2x5x8 + x3x5x8 + x22x6x8 − x2x3x6x8

+ x4x6x8 − x3x5x6x8 + x2x
2
6x8 − x2x4x7x8 + x2x5x7x8 − x2x6x7x8 − x22x6x7x8

+ x2x3x6x7x8, x4 − x2x4 + x2x5 − x3x5 − x2

x6 + x2x3x6 − x4x6 + x3x5x6 − x2x5x7 + x2x6x7 + x2x4x8 − x2x3x6x8,

− x4 + x5 − x6 + x3x6 − x2x7 + x8 + x2x8 − x3x8 + x4x8 − x5x8,−x4x6 + x5x6 − x26

+ x3x
2
6 − x5x7 + 2x6x7 − x3x6x7 + x4x6

x7 − x5x6x7 − x27 + x5x
2
7 + x4x8 − x3x6x8 + x3x7x8 − x4x7x8, x4}



Appendix D

Passarino Veltmann Reduction

We present a simple example of the application of the Passarino-Veltman reduction [86]. This allow

us to see how spurious poles originate when tensor integrals are reduced to linear combinations of

scalar ones.

Consider the 2-mass triangle integral

Iµ3 =

∫
dDk

(2π)D
kµ�

p3

p2 p1

=

∫
dDk

kµ

k2(k + p1)2(k − p3)2
, (D.1)

for which we have p21 = m2
1, p

2
2 = m2

2, p
2
3 = 0. Looking at the tensor structure of the integral, we see

that it can be decomposed into

Iµ3 = C1p
µ
1 + C2p

µ
3 . (D.2)

We can thus reduce the problem to solving the linear system

(D.3)

I · p12
I · p5

 =

 p21 p1 · p3

p1 · p3 0

 ·

C1

C2

 .

We can calculate the left hand side of Eq. (D.3) by dotting the external momenta with the integral

of Eq. (D). The coefficients are then found by inverting the Gram matrix, defined by Eq. (A.14).
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It is then seen that the coefficients will be proportional to 1
∆ , where ∆ is a Gram determinant

∆ = −1

2
(p1 · p3) =

1

4
(p22 − p21). (D.4)

Therefore spurious poles will correspond to the values of the Mandelstam’s variables which set ∆ to

zero. In our example, this corresponds to p1 = p2, so we expect to find spurious poles of the form
1

(p2
2−p2

1)
n in the corresponding coefficient.



Appendix E

Change of Variables to Linearise

the Differential Equation System

We provide the explicit change of variables which linearises the system for topology T1, even if these

transformations were not ultimately used to obtain the MIs. The transformations map the set of

invariants {s12, s45, s15,m2
t , s34} to a new set {w, x, y, z, s23} in the following way:

s45 → −
2s23

(
(z−1)2

x2 + (z + 1)2
)

y

(
(z−1)2

y2 +(z+1)2

x2 +
(

1
y2 − 1

)
(z + 1)2

) , (E.1)

(E.2)s12 →
2s23

(
1
y + 1

)
z

(
(z−1)2

y +(z+1)2

x2 +
(

1
y − 1

)
(z + 1)2

)
(z2 + 1)

(
(z−1)2

y2 +(z+1)2

x2 +
(

1
y2 − 1

)
(z + 1)2

) ,
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(E.3)s15 →

2

(
1

y
−1

)(
1+

1

y

)2(
(z − 1)2

x2
+(z+1)2

)(1

y
−1

)
(z+1)2+

(z−1)2

y + (z + 1)2

x2

×

s223

w
( 1

y2
−1

)
(z+1)2+

(z−1)2

y2 + (z + 1)2

x2

2

+

((
1+

1

x

)(
1

y2
−1

)((
1−y2

)
(z+1)4×

(
−y2(z + 1)2 + (z + 1)2 − 2y

(
z2 + 1

))
x5 + (z + 1)2

((
z2 − 1

)2
y4 − 2(z + 1)2

(
z2 + 1

)
y3

+
(
6z4+20z2+6

)
y2+2(z+1)2

(
z2+1

)
y+
(
z2−1

)2)
x4−2(z+1)2

(
y4(z+1)4+y3

(
z2+1

)
(z+1)2

−
(
z2 − 1

)2
+ y(z − 1)2

(
z2 + 1

)
+ 4y2(z − 1)2

(
z2 + z + 1

))
x3 + 2(z + 1)2

(
−
(
z2 − 1

)2
y4

+(z+1)2
(
z2+1

)
y3+4(z−1)2zy2+(z−1)2

(
z2+1

)
y+(z−1)4

)
x2+(z+1)2

(
(z−1)2+y2(z+1)2

)2
x

+(z−1)2
(
(z−1)2+y2(z+1)2

)2)
s23

)
/(x5y4)


 /


( 1

y2
−1

)
(z+1)2+

(z−1)2

y2 + (z + 1)2

x2

×

((1 + 1

x

)2(
1

y2
− 1

)2 (
(z + 1)4

(
−y2(z + 1)2 + (z + 1)2 − 2y

(
z2 + 1

))2
x6

+2(z+1)4
((
z2 − 1

)2
y4 − 4

(
z2 +1

)2
y3 +2

(
z4 +6z2 +1

)
y2 +4

(
z2 +1

)2
y+

(
z2 − 1

)2)
x5

−(z+1)4
((
z4+12z3+6z2+12z+1

)
y4−8

(
z4−4z3+2z2−4z+1

)
y3+2

(
7z4−8z3+10z2−8z+7

)
y2+

16(z−1)2
(
z2+1

)
y−(z−1)2

(
3z2+2z+3

))
x4+4(z+1)2

(
(z+1)2(z−1)4−y4(z+1)4(z−1)2

+4y
(
z4+z3+2z2+z+1

)
(z−1)2+4y2

(
z4+z3+4z2+z+1

)
(z−1)2+4y3z(z+1)2

(
z2+1

))
x3−

(z + 1)2
(
(z + 1)2

(
z4 − 12z3 + 6z2 − 12z + 1

)
y4 + 12

(
z2 − 1

)2 (
z2 + 1

)
y3

+2(z− 1)2
(
7z4 − 8z3 +18z2 − 8z+7

)
y2 +12(z− 1)4

(
z2 +1

)
y− (z− 1)4

(
3z2 − 2z+3

))
x2

+2
(
z2−1

)2 (
(z−1)4+4y

(
z2+1

)
(z−1)2+y4(z+1)4+2y2

(
z2−1

)2
+4y3(z+1)2

(
z2+1

))
x

+(z−1)4
(
(z−1)2+y2(z+1)2

)2)
s223

)
/
(
x6y4

)
−w2

( 1

y2
−1

)
(z+1)2+

(z−1)2

y2 + (z + 1)2

x2

2

 ,

(E.4)m2
t →

s23

(
1
y + 1

)( (z−1)2

y +(z+1)2

x2 +
(

1
y − 1

)
(z + 1)2

)
(z−1)2

y2 +(z+1)2

x2 +
(

1
y2 − 1

)
(z + 1)2

,
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(E.5)s34 → −

2s23

(
1 +

1

y

)(1

y
− 1

)
(z + 1)2 +

(z−1)2

y + (z + 1)2

x2

×

(s223(1 + 1

x

)2 (
x7(z + 1)8 + x7y4(z + 1)8 − 2x7y2

(
3z4 + 4z3 + 10z2 + 4z + 3

)
(z + 1)4

− 4x6y
(
z2 + 1

) (
−y2(z − 1)2 + (z − 1)2 − 2y

(
z2 + 1

))
(z + 1)4

+x5
(
−
((
z4+4z3+22z2+4z+1

)
y4
)
−8(z−1)2

(
z2+1

)
y3+

(
−6z4+28z2−6

)
y2+8(z−1)2

(
z2+1

)
y

+(z−1)2
(
3z2+10z+3

))
(z+1)4+x3

(
−(z+1)2

(
z4+4z3−26z2+4z+1

)
y4+8

(
z2−1

)2 (
z2+1

)
y3

+2(z−1)2
(
z4+8z3+30z2+8z+1

)
y2+8(z−1)4

(
z2+1

)
y+(z−1)4

(
3z2+14z+3

))
(z+1)2

+ 2(z − 1)4
(
(z − 1)2 + y2(z + 1)2

)2
+ x(z − 1)2

(
z2 + 6z + 1

) (
(z − 1)2 + y2(z + 1)2

)2
+4
(
x−xz2

)2 (− (z2−1
)2
y4−(z+1)2

(
z2+1

)
y3+4(z−1)2zy2−(z−1)2

(
z2+1

)
y+(z−1)4

)
+2x4

(
z2−1

)2 ((
z2−1

)2
y4−2

(
z2−1

)2
y2−4

(
z2+1

)2
y+
(
z2−1

)2))( 1

y2
−1

)2
)
/
(
x7y4

)
+2s23w

(
1+

1

x

)(
(z − 1)2

x2
+(z+1)2

)( 1

y2
−1

)
(z+1)2+

(z−1)2

y2 + (z + 1)2

x2

2(
1

y2
−1

)

+ w2

( 1

y2
− 1

)
(z + 1)2 +

(z−1)2

y2 + (z + 1)2

x2

2

 /

( 1

x2
− 1

)( 1

y2
− 1

)
(z + 1)2

+

(z−1)2

y2 + (z + 1)2

x2


(s223(1 + 1

x

)2(
1

y2
− 1

)2 (
(z + 1)4

(
−y2(z + 1)2 + (z + 1)2

−2y
(
z2+1

))2
x6+2(z+1)4

((
z2−1

)2
y4−4

(
z2+1

)2
y3+2

(
z4+6z2+1

)
y2+4

(
z2+1

)2
y+
(
z2−1

)2)
x5

− (z + 1)4
((
z4 + 12z3 + 6z2 + 12z + 1

)
y4 − 8

(
z4 − 4z3 + 2z2 − 4z + 1

)
y3

+ 2
(
7z4 − 8z3 + 10z2 − 8z + 7

)
y2 + 16(z − 1)2

(
z2 + 1

)
y − (z − 1)2

(
3z2 + 2z + 3

))
x4

+ 4(z + 1)2
(
(z + 1)2(z − 1)4 − y4(z + 1)4(z − 1)2 + 4y

(
z4 + z3 + 2z2 + z + 1

)
(z − 1)2

+ 4y2
(
z4 + z3 + 4z2 + z + 1

)
(z − 1)2 + 4y3z(z + 1)2

(
z2 + 1

))
x3

− (z + 1)2
(
(z + 1)2

(
z4 − 12z3 + 6z2 − 12z + 1

)
y4 + 12

(
z2 − 1

)2 (
z2 + 1

)
y3 + 2(z − 1)2 ×(

7z4 − 8z3 + 18z2 − 8z + 7
)
y2 + 12(z − 1)4

(
z2 + 1

)
y − (z − 1)4

(
3z2 − 2z + 3

))
x2

+2
(
z2−1

)2 (
(z−1)4+4y

(
z2+1

)
(z−1)2+y4(z+1)4+2y2

(
z2−1

)2
+4y3(z+1)2

(
z2+1

))
x

+(z−1)4
(
(z−1)2+y2(z+1)2

)2))
/
(
x6y4

)
−w2

( 1

y2
−1

)
(z+1)2+

(z−1)2

y2 + (z + 1)2

x2

2

 .



Appendix F

Degrees of Six-Gluon One-Loop

Amplitudes in Four Dimensions

We present here the polynomial degrees of the six-gluon one-loop sub-amplitudes in four dimensions.

We remind the reader that by this nomenclature we mean amplitudes expressed in a basis of scalar

integrals, which were expanded around D = 4 − 2ε dimensions up to order O(ε0). The resulting

expressions are linear combinations of the special functions shown in Eq. (7.42).

We notice that the degrees of most of the sub-amplitudes are lower than the ones in D dimensions,

shown in Table 7.2.

Supersymmetric Content Helicity Original Degrees Reduced
N = 4 (−−++++) 5 0
N = 4 (−+−+++) 5 0
N = 4 (−++−++) 5 0
N = 1 (−−++++) 8 5
N = 1 (−+−+++) 13 10
N = 1 (−++−++) 19 16
N = 0 (−−++++) 27 27
N = 0 (−+−+++) 56 55
N = 0 (−++−++) 68 62

Table F.1: The degrees of the coefficients of six-gluon one-loop sub-amplitudes in four dimensions,
before and after the factor matching. The amplitudes are expressed in the parametrisation B. For
each sub-amplitude, only the highest coefficient degree is presented.
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Appendix G

0 → t̄tggg MHV Tree-Level

Amplitudes

Reference Choice (p3 − p4) We present here the explicit expressions for the MHV tree-level

amplitudes, computed suing the two methods described in Section 5.7.

A
(0)[1]
tt̄3g (+ + +−−) =

mt〈4|p23p1|3〉〈4|2|3][45]2

d23d15s34〈4|3|5][5|p12p2|3]
+

mt[3|p1p2|3]
s12s34[5|p12p2|3]

(
〈3|p12|3]〈4|2|3][45]2

s45[34][53]
− s45d13

〈5|4|3]

)
(G.1)

A
(0)[1]BCFW
tt̄3g (+ + +−−) = − m2

t s45 〈3| 1|4] 〈5| 1|4][34]
s34 〈34〉 〈3| p2p34 |5〉 〈3| 2|3] 〈5| 1|5][3|p4p5|3]

− (G.2)

m2
t 〈35〉 〈4| p23|4] 〈5| 1|4][34][45]

s34 〈34〉 〈3| p2p34 |5〉 〈3| 2|3] 〈5| 1|5][3|p4p5|3]
−

〈3| p1p34 |5〉 〈5| p2p34 |5〉 [45]2

s12s34 〈34〉2 〈3| p2p34 |5〉 [3|p4p5|3]
− 〈35〉 〈4| p2p34 |5〉 〈5| p2p34 |5〉 [45]2

s12s34 〈34〉2 〈3| p2p34 |5〉 [3|p4p5|3]
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A
(0)[2]
tt̄3g (+ + +−−) =

m3
t 〈4|1|3]s245 〈45〉 〈4|2|3]

s34s235 〈34〉 d23d15[5|p12p2|3]
− mts45 〈45〉
s34s235[5|p12p2|3]

[
2 〈45〉 [53]〈3p123][3|p1p2|3]

s12s34
+

(G.3)

s45〈4|2|3](〈|4p23p1|4〉〈3|2|3] + 〈4|p23p1|3〉〈4|2|3])
〈34〉 d23d15

]

A
(0)[3]
tt̄3g (+ + +−−) = − mts45[45]〈4|1|5]〈4|2|3]2

s34d23d15 〈34〉2 [3|p1p2|3][5|p12p2|3]
− mts45[53]

s12s234[5|p12p2|3]
(G.4)

A
(0)[3]BCFW
tt̄3g (+ + +−−) =

mts45[45]

[34][5|p12p2|3]

[
〈45〉 〈4| 1|5] 〈4| 2|3]2

4d15d23
+ (G.5)

〈34〉 [3|p1p2|3] 〈4| 5|3]2

s12s45[34]

]

A
(0)[4]
tt̄3g (+ + +−−) =

m3
t 〈35〉

2
d13[45]

2〈4|2|3]
[4|p2p1|4]s34d23d15[3|p2p12|5] 〈45〉

+ (G.6)

mt〈3|5|4]〈4|p23p13〉〈4|2|3][34]
s234d15[5|p12p2|3] 〈45〉 [4|p2p1|4]]

− mt 〈35〉2 〈3|p12|3][45][3|p1p2|3]
s12s34[34] 〈45〉2 [4|p2p1|4][5|p12p2|3]

A
(0)[4]BCFW
tt̄3g (+ + +−−) =

〈35〉 [45]3

〈34〉2 〈45〉 [35]

[
−m

2
t 〈45〉 d13 〈4| 2|3]
d23d15[3|p2p34|5]

+ (G.7)

〈3| p12|3]2[3|p1p2|3]
s12[45][34][3|p2p12|5]

− 〈45〉 〈4| p23p1||3〉 〈4| 2|3]
〈34〉 d15[3|p2p34|5]

]

Once again we can distinguish between the denominator factors which are responsible for soft and

collinear singularities in some kinematic limits and the ones which give rise to spurious singularities

when they approach zero. The terms which belong to the former category are {s12, d15, d23, s34, 〈34〉 , [34], 〈45〉},

while those beloging to the latter are {[5|p12p2|3], [4|p2p1|4], s35, [3|p1p2|3]}.



Appendix H

Linear Relations with FiniteFlow

We show here an example of how the FiniteFlow package can be used to find linear relations

among sub-amplitudes. This also gives us the chance of showing how the package was used to

perform different computations which were useful for the research discussed in the thesis.

We start by defining a function MapToMT[expression] which maps an expressions in spinor variables

to the equivalent one in momentum-twistor variables, for a given parametrisation.

In[1]=MapToMT[ang[1,3]*sq[3,1],PSanalytic]

Out[1]= s[1,2](se[1]-y[4])/(se[1]-1)

In the code we have 〈ij〉 = ang[i, j], [ij] = sq[i, j]. We want to compute all the 6!= 720 permutations

of the external legs of A(0)
6g (−+−+−+). If we look at the effect of one of the permutations, such as

A
(0)
6g (1

−, 2+, 3−, 4+, 5−, 6+)
permutation−−−−−−−→ A

(0)
6g (2

+, 1−, 6+, 3−, 4+, 5−), (H.1)

we see that this can be computed by evaluating the sub-amplitude A
(0)
6g (− + − + −+) with the

standard ordering, and then permuting the external legs in the correct way. Instead of re-deriving

the amplitudes with the permuted external momenta every time, we define function perm[ord] to

perform a permutation of the external legs directly on the momentum-twistor expressions. For each

permutation we find the corresponding change of variables that give the correct final result.

165



166 APPENDIX H. LINEAR RELATIONS WITH FINITEFLOW

perm[ord_List]:=MTsubstitutions /.Rule[a_,b_]:>Rule[a,MapToMT[b

/.Thread[Rule[Range[6],ord]]];

The list MTsubstitutions the list of rules of Eq. (4.13).

This method works on phase-free expressions, hence all the helicity amplitudes will need to be

divided by their phase before the rules are applied. The permutation of the phases must therefore

be done directly on the spinor variables. For this reason we define a function phase[hel,ord] that

permutes the spinors and only afterwards we convert the expression into momentum twistors with

phaseMT[hel,ord]. This can be done since the phases are known analytically for each helicity

configuration.

phase["-++++-"]=ang[1,6]^4/(ang[1,2]*ang[2,3]*ang[3,4]*ang[4,5]*ang[5,6]*ang[6,1]);

phase["-+-+-+"] = ang[1,3]*ang[3,5]*ang[5,1]/ang[2,4]/ang[4,6]/ang[6,2];

phase["-++-+-"] = ang[1,4]*ang[4,6]*ang[6,1]/ang[2,3]/ang[3,5]/ang[5,2];

phase["-+-++-"] = ang[1,3]*ang[3,6]*ang[6,1]/ang[2,4]/ang[4,5]/ang[5,2];

phase["--++-+"]= ang[1,2]*ang[2,5]*ang[5,1]/ang[3,4]/ang[4,6]/ang[6,3];

phase[hel_,ord_List]:=phase[hel] /.ang[i__]:>(ang[i] /.Thread[Rule[Range[6],ord]]);

phaseMT[hel_,ord_List]:= MapToMT[phase[hel,ord]];

In order to reduce the number of computations, we exploit the cyclic and reflection symmetries

presented in Section 3.1. We conclude that we only have four independent helicity configurations:

{(−−−+++), (−−+−++), (−−++−+), (−+−+−+)}. We write the function findHelAndPerm[perm]

which indicates how each permutation can be expressed as one of those four sub-amplitudes with

the right ordering of its legs:
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indepHelList={"---+++","--+-++","--++-+","-+-+-+"};

findHelAndPerm[perm_]:=Module[{helList,n,hel,permTrial},

helList=perm/.{1->"-",2->"+",3->"-",4->"+",5->"-",6->"+"};

n=0;

While[n<6,

hel=StringJoin[RotateLeft[helList,n]];

permTrial=RotateLeft[perm,n];

If[MemberQ[indepHelList,hel],

Return[{hel,permTrial}];

,

hel=StringJoin[Reverse@RotateLeft[helList,n]];

permTrial=Reverse@permTrial;

If[MemberQ[indepHelList,hel],

Return[{hel,permTrial}];

];

];

n=n+1;

];

Print["No match found!"];

Abort[];

];

Two examples are

In[2]=findHelAndPerm[{5,6,2,1,4,3}]

Out[2]:={"--+-++", {5, 3, 4, 1, 2, 6}}

In[2]=findHelAndPerm[{3,4,6,5,2,1}]

Out[2]:={"--+-++", {3, 1, 2, 5, 6, 4}}
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Figure H.1: The node firstEval evaluates the helicity amplitude in momentum-twistor variables.
The node phaseEval evaluates the phase in the same variables. The output node phaseFreeNode
divides the expression by the phase, giving a physically meaningful expression.

Once we have all the needed analytic expressions, we can set up the FiniteFlow graph to find

the linear relations. The first step consits in creating a graph which evaluats a sub-amplitude and

divides it by its phase.

FFNewGraph[graph,in,vrs];

FFAlgRatExprEval[graph,firstEval,{in},vrs,{expr}];

FFAlgRatExprEval[graph,phaseEval,{in},vrs,

{1/MaptoMT[phase["---+++"]]}];

FFAlgMatMul[graph,phaseFreeNode,{firstEval,phaseEval},1,1,1];

FFGraphOutput[graph,phaseFreeNode];

In the graph we evaluate the sub-amplitude and the phase in two separate nodes, and then multiplies

them together. We represent it graphically in Figure H.1. We create a graph of this kind for each

one of the 720 sub-amplitudes. These graphs are then embedded into another graph, graphNew,

so that each of them becomes a node in the larger structure. The permutations are performed by

evaluating the phase-free functions using a new set of variables, obtained with perm[ord]. We stress

that within FiniteFlow all the operations are performed only on numerical quantities modulo finite

fields, and the analytic result is only reconstructed after the graph is evaluated. This means that

we are able to perform a change of variables without ever needing to explicitly write the form of the
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expressions. We present the code used to create graphNew,whose output is a list of the expressions

of all the 720 sub-amplitudes. We show its structure in Figure H.2 with a simplified example with

only two sub-amplitudes for readability.

listOfAmps=findHelAndPerm/@Permutations[{1,2,3,4,5,6}];

FFNewGraph[graphNew,in,vrs];

Do[

Print["LS=",ls];

FFNewGraph[graph,in,vrs];

expr=DiagramNumerator[ls[[1]],topo[]] /.INT[i__,{},topo[]]:>i;

FFAlgRatExprEval[graph,firstEval,{in},vrs,{expr}];

FFAlgRatExprEval[graph,phaseEval,{in},vrs

{1/(MapToMT[phase[ls[[1]]]])}];

FFAlgMatMul[graph,phaseFreeNode,{firstEval,phaseEval},1,1,1];

FFGraphOutput[graph,phaseFreeNode];

vrsNew=vrs /.perm[ls[[2]]] //Simplify;

FFAlgRatExprEval[graphNew, evalNode[ls],{in},vrs,vrsNew];

FFAlgSimpleSubgraph[graphNew,subNode[ls],{evalNode[ls]},graph];

FFAlgRatExprEval[graphNew,phaseNode[ls],{in},vrs

{phaseMT[ls[[1]],ls[[2]]]}];

FFAlgMatMul[graphNew,phaseFullNode[ls

{phaseNode[ls],subNode[ls]},1,1,1];

,{ls,listOfAmps}];

FFDeleteGraph[graph];

FFAlgChain[graphNew,chainNode,Table[phaseFullNode[ls

{ls,listOfAmps}]];

FFGraphOutput[graphNew, chainNode];

The linear relations among the sub-amplitudes are found by evaluating graphNew over many
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Figure H.2: A n example of the graph which has two permutations of the helicity amplitude as
outputs. The one used to find all the KK-relations evaluates 720 permutations, each in a different
node.

random numerical points and then solving a linear system.

This is done by our function GetLinearRelationsFromEvaluationsSimple. We also use functions

GetSlice, which evaluates the graph on a univariate slice, as introduced in 4.3.1, and GetDegree,

which evaluates the maximum polynomial degree of the slice.

nSamplePoints=800;

{slicerules,slicedgraph}=GetSlice[graphNew,vrs];

numdegs=(GetDegree/@slicedgraph)/.deg[a_,b_]:>a;

rndpts = Table[RandomInteger[{10^4,10^10},Length[vrs]],nSamplePoints];

batcheval=FFGraphEvaluateMany[graphNew,rndpts];

linrels=GetLinearRelationsFromEvaluationsSimple[batcheval,rndpts,0,numdegs,

{"ExtraCoefficients"->{},"ExtraCoefficientsVariables"->{}}]
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The output of the code is

We see that 696 linear relations were found, leaving a total of (6−2)!= 24 independent sub-amplitudes,

as expected.



Appendix I

Master Integrals for pp → t̄tj at

O(ε2)

We list here the basis of Master Integrals used to reconstruct the amplitudes in Chapter 5. We

distinguish the integrals coming from each of the four master topologies shown in Eq. (???).

We use the notation

ITi,[D]
a1a2a3a4a5

=

∫
dDk

(2π)D
1

Da1
1 Da2

2 Da3
3 Da4

4 Da5
5

. (I.1)

We now give the expressions of the five denominators Di for each topology, together with the MIs.
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For T1

D1 = k2, D2 = (k − p1)
2 −m2

t , D3 = (k − p1 − p2)
2, (I.2)

D4 = (k + p1 + p5)
2, D5 = (k + p5)

2

fT1
1 = ε3tr5(1, 2, 3, 4, 5, 6)IT1[6−2ε]

1,1,1,1,1 , (I.3)

fT1
2 = ε22d23s34IT1[4−2ε]

0,1,1,1,1 , (I.4)

fT1
3 = ε22s34s45IT1[4−2ε]

1,0,1,1,1 , (I.5)

fT1
4 = ε22d15s45IT1[4−2ε]

1,1,0,1,1 , (I.6)

fT1
5 = ε22d23s12IT1[4−2ε]

1,1,1,0,1 , (I.7)

fT1
5 = ε22d23s12IT1[4−2ε]

1,1,1,0,1 , (I.8)

fT1
6 = ε22d23s12IT1[4−2ε]

1,1,1,1,0 , (I.9)

fT1
7 = ε2∆(p23, p1)IT1[4−2ε]

1,1,0,1,0 , (I.10)

fT1
8 = ε2∆(p15, p2)IT1[4−2ε]

0,1,1,0,1 , (I.11)

fT1
9 = ε2β(s12,m

2
t )I

T1[4−2ε]
1,1,1,0,0 , (I.12)

fT1
10 = εs12IT1[4−2ε]

2,0,1,0,0 , (I.13)

fT1
11 = εs23IT1[4−2ε]

0,2,0,1,0 , (I.14)

fT1
12 = εs34IT1[4−2ε]

0,0,2,0,1 , (I.15)

fT1
13 = εs45IT1[4−2ε]

2,0,0,1,0 , (I.16)

fT1
14 = εs15IT1[4−2ε]

0,2,0,0,1 , (I.17)

fT2
15 = εm2

tI
T1[4−2ε]
0,2,0,1,0 . (I.18)
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For T2 we have

D1 = k2 −m2
t , D2 = (k − p1)

2, D3 = (k − p1 − p2)
2 −m2

t , (I.19)

D4 = (k + p4 + p5)
2 −m2

t , D5 = (k + p5)
2 −m2

t

fT2
1 = ε3tr5(1, 2, 3, 4, 5, 6)IT2[6−2ε]

1,1,1,1,1 , (I.20)

fT2
2 = ε24d34d23β(

2d23d34
d23 − d15

,m2
t )I

T2[4−2ε]
1,0,1,1,1 , (I.21)

fT2
3 = ε24d34d45β(−

2d45d34
d35

,m2
t )I

T2[4−2ε]
1,0,1,1,1 , (I.22)

fT2
4 = ε24d15d45β(

2d15d45
d15 − d23

,m2
t )I

T2[4−2ε]
1,1,0,1,1 , (I.23)

fT2
5 = ε22d15s12β(s12,m

2
t )I

T2[4−2ε]
1,1,1,0,1 , (I.24)

fT2
6 = ε22d23s12β(s12,m

2
t )I

T2[4−2ε]
1,1,1,1,0 , (I.25)

fT2
7 = ε22d34IT2[4−2ε]

0,0,1,1,1 , (I.26)

fT2
8 = ε22d45IT2[4−2ε]

1,0,0,1,1 , (I.27)

fT2
9 = ε22d23IT2[4−2ε]

0,1,1,1,0 , (I.28)

fT2
10 = ε22d15IT2[4−2ε]

1,1,0,0,1 , (I.29)

fT2
11 = ε2∆(p23, p1)IT2[4−2ε]

1,1,0,1,0 , (I.30)

fT2
12 = ε2∆(p15, p2)IT2[4−2ε]

0,1,1,0,1 , (I.31)

fT2
13 = ε22(d12 − d45 +m2

t )I
T2[4−2ε]
1,0,1,1,0 , (I.32)

fT2
14 = ε22(d12 − d34 +m2

t )I
T2[4−2ε]
1,0,1,0,1 , (I.33)

fT2
15 = ε22(d15 − d23)IT2[4−2ε]

0,1,0,1,1 , (I.34)

fT2
16 = εs12β(s12,m

2
t )I

T2[4−2ε]
1,0,2,0,0 , (I.35)

fT2
17 = εs45β(s45,m

2
t )I

T2[4−2ε]
2,0,0,1,0 , (I.36)

fT2
16 = εs34β(s34,m

2
t )I

T2[4−2ε]
0,0,1,0,2 , (I.37)

fT2
19 = εs23IT2[4−2ε]

0,1,0,2,0 , (I.38)

fT2
20 = εs15IT2[4−2ε]

0,1,0,0,2 , (I.39)

fT2
21 = εm2

tI
T2[4−2ε]
2,1,0,0,0 . (I.40)
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For T3

D1 = k2, D2 = (k − p1)
2 −m2

t , D3 = (k − p1 − p2)
2 −m2

t , (I.41)

D4 = (k + p4 + p5)
2, D5 = (k + p5)

2

fT3
1 = ε3tr5(1, 2, 3, 4, 5, 6)IT3[6−2ε]

1,1,1,1,1 , (I.42)

fT3
2 = ε24d24d45IT3[4−2ε]

0,1,1,1,1 , (I.43)

fT3
3 = ε24d15d45IT3[4−2ε]

1,0,1,1,1 , (I.44)

fT3
4 = ε24d24d45IT3[4−2ε]

1,1,0,1,1 , (I.45)

fT3
5 = ε24d15d13IT3[4−2ε]

1,1,1,0,1 , (I.46)

fT3
6 = ε24d23d13β(−

2d13d23
d45

,m2
t )I

T3[4−2ε]
1,1,1,1,0 , (I.47)

fT3
7 = ε2∆(p13, p2)IT3[4−2ε]

1,0,1,1,0 , (I.48)

fT3
8 = ε2∆(p15, p2)IT3[4−2ε]

1,1,0,1,0 , (I.49)

fT3
9 = ε22d23IT3[4−2ε]

0,1,1,1,0 , (I.50)

fT3
10 = ε22d13IT3[4−2ε]

1,1,1,0,0 , (I.51)

fT3
11 = ε22(d15 − d24)IT3[4−2ε]

0,1,1,0,1 , (I.52)

fT3
12 = ε2s13IT3[4−2ε]

1,0,2,0,0 , (I.53)

fT3
13 = ε2s23IT3[4−2ε]

0,2,0,1,0 , (I.54)

fT3
14 = ε2s24IT3[4−2ε]

0,0,2,0,1 , (I.55)

fT3
15 = ε2s45IT3[4−2ε]

2,0,0,1,0 , (I.56)

fT3
16 = ε2s15IT3[4−2ε]

0,2,0,0,1 , (I.57)

fT3
17 = ε2m2

tI
T3[4−2ε]
1,0,2,0,0 (I.58)

For T4 we have
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D1 = k2 −m2
t , D2 = (k − p1)

2, D3 = (k − p1 − p2)
2, (I.59)

D4 = (k + p4 + p5)
2 −m2

t , D5 = (k + p5)
2 −m2

t

fT4
1 = ε3tr5(1, 2, 3, 4, 5, 6)IT4[6−2ε]

1,1,1,1,1 , (I.60)

fT4
2 = ε24d24d45β(

2d24d45
d24 − d13

,m2
t )I

T4[4−2ε]
1,0,1,1,1 , (I.61)

fT4
3 = ε24d15d45β(

2d23d45
d23 − d15

,m2
t )I

T4[4−2ε]
1,1,0,1,1 , (I.62)

fT4
4 = ε24d15d13IT4[4−2ε]

1,1,1,0,1 , (I.63)

fT4
5 = ε24d23d13IT4[4−2ε]

1,1,1,1,0 , (I.64)

fT4
6 = ε24d24d23IT4[4−2ε]

0,1,1,1,1 , (I.65)

fT4
7 = ε2∆(p13, p2)IT4[4−2ε]

1,0,1,1,0 , (I.66)

fT4
8 = ε2∆(p23, p1)IT4[4−2ε]

1,1,0,1,0 , (I.67)

fT4
9 = ε22(d23 − d15)IT4[4−2ε]

0,1,0,1,1 , (I.68)

fT4
10 = ε22d15IT4[4−2ε]

0,1,0,1,1 , (I.69)

fT4
11 = ε22d45IT4[4−2ε]

1,0,0,1,1 , (I.70)

fT4
12 = ε22d24IT4[4−2ε]

0,0,1,1,1 , (I.71)

fT4
13 = ε22(d13 − d24)IT4[4−2ε]

0,1,0,1,1 , (I.72)

fT4
14 = εβ(s45,m

2
t )I

T4[4−2ε]
1,0,0,2,0 , (I.73)

fT4
15 = εs13IT4[4−2ε]

1,0,0,2,0 , (I.74)

fT4
16 = εs24IT4[4−2ε]

0,0,1,0,2 , (I.75)

fT4
17 = εs15IT4[4−2ε]

0,1,0,2,0 , (I.76)

fT4
18 = εs23IT4[4−2ε]

0,1,0,2,0 , (I.77)

fT4
19 = εm2

tI
T4[4−2ε]
0,1,0,2,0 . (I.78)



Bibliography

[1] S. Badger, M. Becchetti, E. Chaubey, R. Marzucca, and F. Sarandrea, “One-loop QCD helicity

amplitudes for pp → t̄tj to O(ε2)”, Journal of High Energy Physics, vol. 2022, no. 6, 2022. doi:

10.1007/jhep06(2022)066. [Online]. Available: https://doi.org/10.1007/jhep06(2022)

066.

[2] A. Salam and J. Ward, “Electromagnetic and weak interactions”, Physics Letters, vol. 13,

no. 2, pp. 168–171, 1964. doi: 10.1016/0031-9163(64)90711-5. [Online]. Available: https:

//doi.org/10.1016/0031-9163(64)90711-5.

[3] S. Weinberg, “A model of leptons”, Physical Review Letters, vol. 19, no. 21, pp. 1264–1266,

1967. doi: 10.1103/physrevlett.19.1264. [Online]. Available: https://doi.org/10.

1103/physrevlett.19.1264.

[4] M. D. Schwartz, Quantum field theory and the standard model. Cambridge University Press,

2014.

[5] A. Zee, Quantum field theory in a nutshell. Princeton university press, 2010, vol. 7.

[6] B. Laforge and A. Collaboration, “Search for a low mass standard model higgs boson with

the ATLAS detector at the LHC”, in AIP Conference Proceedings, AIP, 2013. doi: 10.1063/

1.4826710. [Online]. Available: https://doi.org/10.1063/1.4826710.

[7] C. M. and, “OBSERVATION OF a NEW BOSON AT a MASS OF 125 GEV WITH THE

CMS EXPERIMENT AT THE LHC”, in The Thirteenth Marcel Grossmann Meeting, WORLD

SCIENTIFIC, 2015. doi: 10.1142/9789814623995_0019. [Online]. Available: https://doi.

org/10.1142/9789814623995_0019.

177

https://doi.org/10.1007/jhep06(2022)066
https://doi.org/10.1007/jhep06(2022)066
https://doi.org/10.1007/jhep06(2022)066
https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1016/0031-9163(64)90711-5
https://doi.org/10.1103/physrevlett.19.1264
https://doi.org/10.1103/physrevlett.19.1264
https://doi.org/10.1103/physrevlett.19.1264
https://doi.org/10.1063/1.4826710
https://doi.org/10.1063/1.4826710
https://doi.org/10.1063/1.4826710
https://doi.org/10.1142/9789814623995_0019
https://doi.org/10.1142/9789814623995_0019
https://doi.org/10.1142/9789814623995_0019


178 BIBLIOGRAPHY

[8] G. Gabrielse, S. Fayer, T. Myers, and X. Fan, “Towards an improved test of the standard

model’s most precise prediction”, Atoms, vol. 7, no. 2, p. 45, 2019. doi: 10.3390/atoms7020045.

[Online]. Available: https://doi.org/10.3390/atoms7020045.

[9] W. N. Cottingham and D. A. Greenwood, An Introduction to the Standard Model of Particle

Physics. Cambridge University Press, 2007. doi: 10 . 1017 / cbo9780511791406. [Online].

Available: https://doi.org/10.1017/cbo9780511791406.

[10] “Measurement of top quark pair production in association with a Z boson in proton-proton

collisions at
√
s = 13 TeV”, CERN, Geneva, Tech. Rep., 2019. [Online]. Available: https:

//cds.cern.ch/record/2666205.

[11] S. Fartoukh et al., “LHC Configuration and Operational Scenario for Run 3”, CERN, Geneva,

Tech. Rep., 2021. [Online]. Available: https://cds.cern.ch/record/2790409.

[12] C. O. B. and, “Precision luminosity measurement with the CMS detector at HL-LHC”, in

Proceedings of The Ninth Annual Conference on Large Hadron Collider Physics — PoS(LHCP2021),

Sissa Medialab, 2021. doi: 10.22323/1.397.0261. [Online]. Available: https://doi.org/

10.22323/1.397.0261.

[13] G. Luisoni and S. Marzani, “QCD resummation for hadronic final states”, Journal of Physics

G: Nuclear and Particle Physics, vol. 42, no. 10, p. 103 101, 2015. doi: 10.1088/0954-3899/

42/10/103101. [Online]. Available: https://doi.org/10.1088/0954-3899/42/10/103101.

[14] A. Huss, J. Huston, S. Jones, and M. Pellen, Les houches 2021: Physics at tev colliders:

Report on the standard model precision wishlist, 2022. doi: 10.48550/ARXIV.2207.02122.

[Online]. Available: https://arxiv.org/abs/2207.02122.

[15] “First combination of Tevatron and LHC measurements of the top-quark mass”, CERN,

Geneva, Tech. Rep., 2014, All figures including auxiliary figures are available at https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/CONFNOTES/ATLAS-CONF-2014-008.

arXiv: 1403.4427. [Online]. Available: https://cds.cern.ch/record/1669819.

[16] S. Alioli et al., “Phenomenology of tt̄j +X production at the lhc”, Journal of High Energy

Physics, vol. 2022, no. 5, 2022. doi: 10.1007/jhep05(2022)146. [Online]. Available: https:

//link.springer.com/article/10.1007/JHEP01(2012)137.

https://doi.org/10.3390/atoms7020045
https://doi.org/10.3390/atoms7020045
https://doi.org/10.1017/cbo9780511791406
https://doi.org/10.1017/cbo9780511791406
https://cds.cern.ch/record/2666205
https://cds.cern.ch/record/2666205
https://cds.cern.ch/record/2790409
https://doi.org/10.22323/1.397.0261
https://doi.org/10.22323/1.397.0261
https://doi.org/10.22323/1.397.0261
https://doi.org/10.1088/0954-3899/42/10/103101
https://doi.org/10.1088/0954-3899/42/10/103101
https://doi.org/10.1088/0954-3899/42/10/103101
https://doi.org/10.48550/ARXIV.2207.02122
https://arxiv.org/abs/2207.02122
https://arxiv.org/abs/1403.4427
https://cds.cern.ch/record/1669819
https://doi.org/10.1007/jhep05(2022)146
https://link.springer.com/article/10.1007/JHEP01(2012)137
https://link.springer.com/article/10.1007/JHEP01(2012)137


BIBLIOGRAPHY 179

[17] J. W. Rohlf and P. J. Collings, “Modern physics from α to Z0”, Physics Today, vol. 47, no. 12,

pp. 62–63, 1994. doi: 10.1063/1.2808751. [Online]. Available: https://doi.org/10.1063/

1.2808751.

[18] R. K. Ellis, W. J. Stirling, and B. R. Webber, QCD and collider physics. Cambridge university

press, 2003.

[19] M. E. Peskin, An introduction to quantum field theory. CRC press, 2018.

[20] M. Srednicki, Quantum field theory. Cambridge University Press, 2007.

[21] M. Gell-Mann, “Symmetries of baryons and mesons∗”, in The Eightfold Way, CRC Press,

2018, pp. 216–233. doi: 10.1201/9780429496615-30. [Online]. Available: https://doi.

org/10.1201/9780429496615-30.

[22] G. ’t Hooft and M. J. G. Veltman, “Regularization and Renormalization of Gauge Fields”,

Nucl. Phys. B, vol. 44, pp. 189–213, 1972. doi: 10.1016/0550-3213(72)90279-9.

[23] W. Pauli and F. Villars, “On the invariant regularization in relativistic quantum theory”,

Rev. Mod. Phys., vol. 21, pp. 434–444, 3 1949. doi: 10.1103/RevModPhys.21.434. [Online].

Available: https://link.aps.org/doi/10.1103/RevModPhys.21.434.

[24] M. L. Mangano, Introduction to qcd, 1999.

[25] P. Marquard, A. V. Smirnov, V. A. Smirnov, M. Steinhauser, and D. Wellmann, “M̄S-on-shell

quark mass relation up to four loops in qcd and a general su(n ) gauge group”, Physical

Review D, vol. 94, no. 7, 2016. doi: 10.1103/physrevd.94.074025. [Online]. Available:

https://doi.org/10.1103%2Fphysrevd.94.074025.

[26] W. B. Kilgore, “Regularization schemes and higher order corrections”, Physical Review D,

vol. 83, no. 11, 2011. doi: 10.1103/physrevd.83.114005. [Online]. Available: https:

//doi.org/10.1103/physrevd.83.114005.

[27] G. ’t Hooft and M. Veltman, “Regularization and renormalization of gauge fields”, Nuclear

Physics B, vol. 44, no. 1, pp. 189–213, 1972. doi: 10.1016/0550-3213(72)90279-9. [Online].

Available: https://doi.org/10.1016/0550-3213(72)90279-9.

https://doi.org/10.1063/1.2808751
https://doi.org/10.1063/1.2808751
https://doi.org/10.1063/1.2808751
https://doi.org/10.1201/9780429496615-30
https://doi.org/10.1201/9780429496615-30
https://doi.org/10.1201/9780429496615-30
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1103/RevModPhys.21.434
https://link.aps.org/doi/10.1103/RevModPhys.21.434
https://doi.org/10.1103/physrevd.94.074025
https://doi.org/10.1103%2Fphysrevd.94.074025
https://doi.org/10.1103/physrevd.83.114005
https://doi.org/10.1103/physrevd.83.114005
https://doi.org/10.1103/physrevd.83.114005
https://doi.org/10.1016/0550-3213(72)90279-9
https://doi.org/10.1016/0550-3213(72)90279-9


180 BIBLIOGRAPHY

[28] Z. Bern and D. A. Kosower, “The computation of loop amplitudes in gauge theories”, Nuclear

Physics B, vol. 379, no. 3, pp. 451–561, 1992. doi: 10.1016/0550-3213(92)90134-w. [Online].

Available: https://doi.org/10.1016/0550-3213(92)90134-w.

[29] C. G. Callan, “Broken scale invariance in scalar field theory”, Phys. Rev. D, vol. 2, pp. 1541–1547,

8 1970. doi: 10.1103/PhysRevD.2.1541. [Online]. Available: https://link.aps.org/doi/

10.1103/PhysRevD.2.1541.

[30] K. Symanzik, “Small distance behaviour in field theory and power counting”, Communications

in Mathematical Physics, vol. 18, no. 3, pp. 227–246, 1970. doi: 10.1007/bf01649434.

[Online]. Available: https://doi.org/10.1007/bf01649434.

[31] P. A. Baikov, K. G. Chetyrkin, and J. H. Kühn, “Five-Loop Running of the QCD coupling

constant”, Phys. Rev. Lett., vol. 118, no. 8, p. 082 002, 2017. doi: 10.1103/PhysRevLett.

118.082002. arXiv: 1606.08659 [hep-ph].

[32] T. Luthe, A. Maier, P. Marquard, and Y. Schroder, “The five-loop Beta function for a general

gauge group and anomalous dimensions beyond Feynman gauge”, JHEP, vol. 10, p. 166, 2017.

doi: 10.1007/JHEP10(2017)166. arXiv: 1709.07718 [hep-ph].

[33] P. D. Group et al., “Review of Particle Physics”, Progress of Theoretical and Experimental

Physics, vol. 2022, no. 8, Aug. 2022, 083C01, issn: 2050-3911. doi: 10.1093/ptep/ptac097.

eprint: https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434185/

ptac097\_19\_miscellaneous\_searches\_and\_searches\_in\_other\_sections.pdf.

[Online]. Available: https://doi.org/10.1093/ptep/ptac097.

[34] J. J. Ethier and E. R. Nocera, “Parton Distributions in Nucleons and Nuclei”, Ann. Rev.

Nucl. Part. Sci., vol. 70, pp. 43–76, 2020. doi: 10.1146/annurev-nucl-011720-042725.

arXiv: 2001.07722 [hep-ph].

[35] J. Gao, L. Harland-Lang, and J. Rojo, “The structure of the proton in the LHC precision

era”, Physics Reports, vol. 742, pp. 1–121, 2018. doi: 10.1016/j.physrep.2018.03.002.

[Online]. Available: https://doi.org/10.1016/j.physrep.2018.03.002.

https://doi.org/10.1016/0550-3213(92)90134-w
https://doi.org/10.1016/0550-3213(92)90134-w
https://doi.org/10.1103/PhysRevD.2.1541
https://link.aps.org/doi/10.1103/PhysRevD.2.1541
https://link.aps.org/doi/10.1103/PhysRevD.2.1541
https://doi.org/10.1007/bf01649434
https://doi.org/10.1007/bf01649434
https://doi.org/10.1103/PhysRevLett.118.082002
https://doi.org/10.1103/PhysRevLett.118.082002
https://arxiv.org/abs/1606.08659
https://doi.org/10.1007/JHEP10(2017)166
https://arxiv.org/abs/1709.07718
https://doi.org/10.1093/ptep/ptac097
https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434185/ptac097\_19\_miscellaneous\_searches\_and\_searches\_in\_other\_sections.pdf
https://academic.oup.com/ptep/article-pdf/2022/8/083C01/45434185/ptac097\_19\_miscellaneous\_searches\_and\_searches\_in\_other\_sections.pdf
https://doi.org/10.1093/ptep/ptac097
https://doi.org/10.1146/annurev-nucl-011720-042725
https://arxiv.org/abs/2001.07722
https://doi.org/10.1016/j.physrep.2018.03.002
https://doi.org/10.1016/j.physrep.2018.03.002


BIBLIOGRAPHY 181

[36] R. D. Field and R. P. Feynman, “Quark elastic scattering as a source of high-transverse-momentum

mesons”, Physical Review D, vol. 15, no. 9, pp. 2590–2616, 1977. doi: 10.1103/physrevd.

15.2590. [Online]. Available: https://doi.org/10.1103/physrevd.15.2590.

[37] X. Artru and G. Mennessier, “String model and multiproduction”, Nuclear Physics B, vol. 70,

no. 1, pp. 93–115, 1974. doi: 10.1016/0550-3213(74)90360-5. [Online]. Available: https:

//doi.org/10.1016/0550-3213(74)90360-5.

[38] R. D. Field and S. Wolfram, “A QCD model for e+e−- annihilation”, Nuclear Physics B,

vol. 213, no. 1, pp. 65–84, 1983. doi: 10.1016/0550-3213(83)90175-x. [Online]. Available:

https://doi.org/10.1016/0550-3213(83)90175-x.

[39] E. Bothmann et al., “Event generation with sherpa 2.2”, SciPost Physics, vol. 7, no. 3, 2019.

doi: 10.21468/scipostphys.7.3.034. [Online]. Available: https://doi.org/10.21468/

scipostphys.7.3.034.

[40] T. Sjöstrand et al., “An introduction to PYTHIA 8.2”, Computer Physics Communications,

vol. 191, pp. 159–177, 2015. doi: 10.1016/j.cpc.2015.01.024. [Online]. Available: https:

//doi.org/10.1016/j.cpc.2015.01.024.

[41] J. Bellm et al., “Herwig 7.0/herwig ++ 3.0 release note”, The European Physical Journal

C, vol. 76, no. 4, 2016. doi: 10.1140/epjc/s10052-016-4018-8. [Online]. Available:

https://doi.org/10.1140/epjc/s10052-016-4018-8.

[42] G. Altarelli and G. Parisi, “Asymptotic freedom in parton language”, Nuclear Physics B,

vol. 126, no. 2, pp. 298–318, 1977, issn: 0550-3213. doi: https://doi.org/10.1016/

0550-3213(77)90384-4. [Online]. Available: https://www.sciencedirect.com/science/

article/pii/0550321377903844.

[43] V. Gribov and L. Lipatov, “Deep inelastic electron scattering in perturbation theory”, Physics

Letters B, vol. 37, no. 1, pp. 78–80, 1971. doi: 10.1016/0370-2693(71)90576-4. [Online].

Available: https://doi.org/10.1016/0370-2693(71)90576-4.

[44] Y. L. Dokshitzer, “Calculation of the Structure Functions for Deep Inelastic Scattering and e+

e- Annihilation by Perturbation Theory in Quantum Chromodynamics.”, Sov. Phys. JETP,

https://doi.org/10.1103/physrevd.15.2590
https://doi.org/10.1103/physrevd.15.2590
https://doi.org/10.1103/physrevd.15.2590
https://doi.org/10.1016/0550-3213(74)90360-5
https://doi.org/10.1016/0550-3213(74)90360-5
https://doi.org/10.1016/0550-3213(74)90360-5
https://doi.org/10.1016/0550-3213(83)90175-x
https://doi.org/10.1016/0550-3213(83)90175-x
https://doi.org/10.21468/scipostphys.7.3.034
https://doi.org/10.21468/scipostphys.7.3.034
https://doi.org/10.21468/scipostphys.7.3.034
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1016/j.cpc.2015.01.024
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/10.1140/epjc/s10052-016-4018-8
https://doi.org/https://doi.org/10.1016/0550-3213(77)90384-4
https://doi.org/https://doi.org/10.1016/0550-3213(77)90384-4
https://www.sciencedirect.com/science/article/pii/0550321377903844
https://www.sciencedirect.com/science/article/pii/0550321377903844
https://doi.org/10.1016/0370-2693(71)90576-4
https://doi.org/10.1016/0370-2693(71)90576-4


182 BIBLIOGRAPHY

vol. 46, pp. 641–653, 1977. [Online]. Available: https://inis.iaea.org/search/search.

aspx?orig_q=RN:9409980.

[45] L. A. Harland-Lang and R. S. Thorne, “On the consistent use of scale variations in PDF fits

and predictions”, The European Physical Journal C, vol. 79, no. 3, 2019. doi: 10.1140/epjc/

s10052-019-6731-6. [Online]. Available: https://doi.org/10.1140\%2Fepjc\%2Fs10052-

019-6731-6.

[46] S. D. Drell and T.-M. Yan, “Partons and their applications at high energies”, Annals of

Physics, vol. 66, no. 2, pp. 578–623, 1971. doi: 10.1016/0003-4916(71)90071-6. [Online].

Available: https://doi.org/10.1016/0003-4916(71)90071-6.

[47] R. J. Eden, P. V. Landshoff, D. I. Olive, J. C. Polkinghorne, and P. Roman, “The analytic

s-matrix”, American Journal of Physics, vol. 35, no. 11, pp. 1101–1102, 1967. doi: 10.1119/

1.1973770. [Online]. Available: https://doi.org/10.1119/1.1973770.

[48] L. Dixon, Calculating scattering amplitudes efficiently, 1996. doi: 10.48550/ARXIV.HEP-

PH/9601359. [Online]. Available: https://arxiv.org/abs/hep-ph/9601359.

[49] L. J. Dixon, “A brief introduction to modern amplitude methods”, in Journeys Through the

Precision Frontier: Amplitudes for Colliders, WORLD SCIENTIFIC, 2015. doi: 10.1142/

9789814678766_0002. [Online]. Available: https://doi.org/10.1142/9789814678766_

0002.

[50] S Catani and M. Seymour, “Nlo calculations in qcd: A general algorithm”, Nuclear Physics

B - Proceedings Supplements, vol. 51, no. 3, pp. 233–242, 1996, Proceedings of the 1996

Zeuthen Workshop on Elementary Particle Theory: QCD and QED in Higher Orders, issn:

0920-5632. doi: https://doi.org/10.1016/S0920-5632(96)90030-4. [Online]. Available:

https://www.sciencedirect.com/science/article/pii/S0920563296900304.

[51] F. Bloch and A. Nordsieck, “Note on the radiation field of the electron”, Phys. Rev., vol. 52,

pp. 54–59, 2 1937. doi: 10.1103/PhysRev.52.54. [Online]. Available: https://link.aps.

org/doi/10.1103/PhysRev.52.54.

https://inis.iaea.org/search/search.aspx?orig_q=RN:9409980
https://inis.iaea.org/search/search.aspx?orig_q=RN:9409980
https://doi.org/10.1140/epjc/s10052-019-6731-6
https://doi.org/10.1140/epjc/s10052-019-6731-6
https://doi.org/10.1140\%2Fepjc\%2Fs10052-019-6731-6
https://doi.org/10.1140\%2Fepjc\%2Fs10052-019-6731-6
https://doi.org/10.1016/0003-4916(71)90071-6
https://doi.org/10.1016/0003-4916(71)90071-6
https://doi.org/10.1119/1.1973770
https://doi.org/10.1119/1.1973770
https://doi.org/10.1119/1.1973770
https://doi.org/10.48550/ARXIV.HEP-PH/9601359
https://doi.org/10.48550/ARXIV.HEP-PH/9601359
https://arxiv.org/abs/hep-ph/9601359
https://doi.org/10.1142/9789814678766_0002
https://doi.org/10.1142/9789814678766_0002
https://doi.org/10.1142/9789814678766_0002
https://doi.org/10.1142/9789814678766_0002
https://doi.org/https://doi.org/10.1016/S0920-5632(96)90030-4
https://www.sciencedirect.com/science/article/pii/S0920563296900304
https://doi.org/10.1103/PhysRev.52.54
https://link.aps.org/doi/10.1103/PhysRev.52.54
https://link.aps.org/doi/10.1103/PhysRev.52.54


BIBLIOGRAPHY 183

[52] D. Yennie, S. Frautschi, and H Suura, “The infrared divergence phenomena and high-energy

processes”, Annals of Physics, vol. 13, no. 3, pp. 379–452, 1961, issn: 0003-4916. doi: https:

/ / doi . org / 10 . 1016 / 0003 - 4916(61 ) 90151 - 8. [Online]. Available: https : / / www .

sciencedirect.com/science/article/pii/0003491661901518.

[53] T. D. Lee and M. Nauenberg, “Degenerate systems and mass singularities”, Phys. Rev.,

vol. 133, B1549–B1562, 6B 1964. doi: 10.1103/PhysRev.133.B1549. [Online]. Available:

https://link.aps.org/doi/10.1103/PhysRev.133.B1549.

[54] T. Kinoshita, “Mass singularities of feynman amplitudes”, Journal of Mathematical Physics,

vol. 3, no. 4, pp. 650–677, 1962. doi: 10.1063/1.1724268. eprint: https://doi.org/10.

1063/1.1724268. [Online]. Available: https://doi.org/10.1063/1.1724268.

[55] N. Agarwal, L. Magnea, C. Signorile-Signorile, and A. Tripathi, The infrared structure of

perturbative gauge theories, 2021. doi: 10.48550/ARXIV.2112.07099. [Online]. Available:

https://arxiv.org/abs/2112.07099.

[56] S. Catani and M. Grazzini, “Infrared factorization of tree-level qcd amplitudes at the next-to-next-to-leading

order and beyond”, Nuclear Physics B, vol. 570, no. 1-2, pp. 287–325, 2000.

[57] R. Ellis and J. Sexton, “QCD radiative corrections to parton-parton scattering”, Nuclear

Physics B, vol. 269, no. 2, pp. 445–484, 1986. doi: 10.1016/0550-3213(86)90232-4.

[Online]. Available: https://doi.org/10.1016/0550-3213(86)90232-4.

[58] L. J. Bergmann, “Next-to-leading-log qcd calculation of symmetric di-hadron production”,

Jan. 1989. [Online]. Available: https://www.osti.gov/biblio/7188277.

[59] B. W. Harris and J. F. Owens, “Two cutoff phase space slicing method”, Phys. Rev. D,

vol. 65, p. 094 032, 9 2002. doi: 10.1103/PhysRevD.65.094032. [Online]. Available: https:

//link.aps.org/doi/10.1103/PhysRevD.65.094032.

[60] T. Binoth and G. Heinrich, “An automatized algorithm to compute infrared divergent multi-loop

integrals”, Nuclear Physics B, vol. 585, no. 3, pp. 741–759, 2000, issn: 0550-3213. doi:

https://doi.org/10.1016/S0550-3213(00)00429-6. [Online]. Available: https://

www.sciencedirect.com/science/article/pii/S0550321300004296.

https://doi.org/https://doi.org/10.1016/0003-4916(61)90151-8
https://doi.org/https://doi.org/10.1016/0003-4916(61)90151-8
https://www.sciencedirect.com/science/article/pii/0003491661901518
https://www.sciencedirect.com/science/article/pii/0003491661901518
https://doi.org/10.1103/PhysRev.133.B1549
https://link.aps.org/doi/10.1103/PhysRev.133.B1549
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.1063/1.1724268
https://doi.org/10.48550/ARXIV.2112.07099
https://arxiv.org/abs/2112.07099
https://doi.org/10.1016/0550-3213(86)90232-4
https://doi.org/10.1016/0550-3213(86)90232-4
https://www.osti.gov/biblio/7188277
https://doi.org/10.1103/PhysRevD.65.094032
https://link.aps.org/doi/10.1103/PhysRevD.65.094032
https://link.aps.org/doi/10.1103/PhysRevD.65.094032
https://doi.org/https://doi.org/10.1016/S0550-3213(00)00429-6
https://www.sciencedirect.com/science/article/pii/S0550321300004296
https://www.sciencedirect.com/science/article/pii/S0550321300004296


184 BIBLIOGRAPHY

[61] S Catani, “A general algorithm for calculating jet cross sections in NLO QCD”, Nuclear

Physics B, vol. 510, no. 1-2, pp. 503–504, 1998. doi: 10.1016/s0550-3213(97)00753-0.

[Online]. Available: https://doi.org/10.1016/s0550-3213(97)00753-0.

[62] R. K. Ellis, D. A. Ross, and A. E. Terrano, “Calculation of event-shape parameters in e+e−

annihilation”, Phys. Rev. Lett., vol. 45, pp. 1226–1229, 15 1980. doi: 10.1103/PhysRevLett.

45.1226. [Online]. Available: https://link.aps.org/doi/10.1103/PhysRevLett.45.1226.

[63] S. Catani, S. Dittmaier, M. H. Seymour, and Z. Trócsányi, “The dipole formalism for next-to-leading

order QCD calculations with massive partons”, Nuclear Physics B, vol. 627, no. 1-2, pp. 189–265,

2002. doi: 10.1016/s0550-3213(02)00098-6. [Online]. Available: https://doi.org/10.

1016/s0550-3213(02)00098-6.

[64] S Catani and M. Seymour, “NLO calculations in QCD: A general algorithm”, Nuclear Physics

B - Proceedings Supplements, vol. 51, no. 3, pp. 233–242, 1996. doi: 10.1016/s0920-5632(96)

90030-4. [Online]. Available: https://doi.org/10.1016/s0920-5632(96)90030-4.

[65] A. G.-D. Ridder, T. Gehrmann, and E. N. Glover, “Antenna subtraction at nnlo”, Journal of

High Energy Physics, vol. 2005, no. 09, p. 056, 2005. doi: 10.1088/1126-6708/2005/09/056.

[Online]. Available: https://dx.doi.org/10.1088/1126-6708/2005/09/056.

[66] W. J. T. Bobadilla et al., “May the four be with you: Novel IR-subtraction methods to

tackle NNLO calculations”, The European Physical Journal C, vol. 81, no. 3, 2021. doi:

10.1140/epjc/s10052-021-08996-y. [Online]. Available: https://doi.org/10.1140/

epjc/s10052-021-08996-y.

[67] H. Elvang and Y. tin Huang, Scattering Amplitudes in Gauge Theory and Gravity. Cambridge

University Press, 2015. doi: 10.1017/cbo9781107706620. [Online]. Available: https://doi.

org/10.1017/cbo9781107706620.

[68] R. K. Ellis, Z. Kunszt, K. Melnikov, and G. Zanderighi, “One-loop calculations in quantum

field theory: from Feynman diagrams to unitarity cuts”, Phys. Rept., vol. 518, pp. 141–250,

2012. doi: 10.1016/j.physrep.2012.01.008. arXiv: 1105.4319 [hep-ph].

https://doi.org/10.1016/s0550-3213(97)00753-0
https://doi.org/10.1016/s0550-3213(97)00753-0
https://doi.org/10.1103/PhysRevLett.45.1226
https://doi.org/10.1103/PhysRevLett.45.1226
https://link.aps.org/doi/10.1103/PhysRevLett.45.1226
https://doi.org/10.1016/s0550-3213(02)00098-6
https://doi.org/10.1016/s0550-3213(02)00098-6
https://doi.org/10.1016/s0550-3213(02)00098-6
https://doi.org/10.1016/s0920-5632(96)90030-4
https://doi.org/10.1016/s0920-5632(96)90030-4
https://doi.org/10.1016/s0920-5632(96)90030-4
https://doi.org/10.1088/1126-6708/2005/09/056
https://dx.doi.org/10.1088/1126-6708/2005/09/056
https://doi.org/10.1140/epjc/s10052-021-08996-y
https://doi.org/10.1140/epjc/s10052-021-08996-y
https://doi.org/10.1140/epjc/s10052-021-08996-y
https://doi.org/10.1017/cbo9781107706620
https://doi.org/10.1017/cbo9781107706620
https://doi.org/10.1017/cbo9781107706620
https://doi.org/10.1016/j.physrep.2012.01.008
https://arxiv.org/abs/1105.4319


BIBLIOGRAPHY 185

[69] M. L. Mangano and S. J. Parke, “Multi-parton amplitudes in gauge theories”, Physics Reports,

vol. 200, no. 6, pp. 301–367, 1991. doi: 10.1016/0370-1573(91)90091-y. [Online]. Available:

https://doi.org/10.1016/0370-1573(91)90091-y.

[70] F. Berends and W. Giele, “The six-gluon process as an example of weyl-van der waerden

spinor calculus”, Nuclear Physics B, vol. 294, pp. 700–732, 1987. doi: 10 . 1016 / 0550 -

3213(87)90604-3. [Online]. Available: https://doi.org/10.1016/0550-3213(87)90604-

3.

[71] F. Berends and W. Giele, “Recursive calculations for processes with n gluons”, Nuclear

Physics B, vol. 306, no. 4, pp. 759–808, 1988. doi: 10.1016/0550-3213(88)90442-7.

[Online]. Available: https://doi.org/10.1016/0550-3213(88)90442-7.

[72] H. Elvang and Y.-t. Huang, Scattering amplitudes, 2013. doi: 10.48550/ARXIV.1308.1697.

[Online]. Available: https://arxiv.org/abs/1308.1697.

[73] R. Kleiss and H. Kuijf, “Multigluon cross sections and 5-jet production at hadron colliders”,

Nuclear Physics B, vol. 312, no. 3, pp. 616–644, 1989. doi: 10.1016/0550-3213(89)90574-9.

[Online]. Available: https://doi.org/10.1016/0550-3213(89)90574-9.

[74] P. B. Pal, Representation-independent manipulations with dirac matrices and spinors, 2007.

doi: 10.48550/ARXIV.PHYSICS/0703214. [Online]. Available: https://arxiv.org/abs/

physics/0703214.

[75] S. MANDELSTAM, “Determination of the pion-nucleon scattering amplitude from dispersion

relations and unitarity. general theory”, in Memorial Volume for Stanley Mandelstam, WORLD

SCIENTIFIC, 2017, pp. 151–167. doi: 10.1142/9789813207851_0020. [Online]. Available:

https://doi.org/10.1142/9789813207851_0020.

[76] S. J. Parke and T. R. Taylor, “Amplitude for n-gluon scattering”, Physical Review Letters,

vol. 56, no. 23, pp. 2459–2460, 1986. doi: 10 . 1103 / physrevlett . 56 . 2459. [Online].

Available: https://doi.org/10.1103/physrevlett.56.2459.

[77] R. Britto, F. Cachazo, and B. Feng, “New recursion relations for tree amplitudes of gluons”,

Nuclear Physics B, vol. 715, no. 1-2, pp. 499–522, 2005. doi: 10.1016/j.nuclphysb.2005.

02.030. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.2005.02.030.

https://doi.org/10.1016/0370-1573(91)90091-y
https://doi.org/10.1016/0370-1573(91)90091-y
https://doi.org/10.1016/0550-3213(87)90604-3
https://doi.org/10.1016/0550-3213(87)90604-3
https://doi.org/10.1016/0550-3213(87)90604-3
https://doi.org/10.1016/0550-3213(87)90604-3
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.1016/0550-3213(88)90442-7
https://doi.org/10.48550/ARXIV.1308.1697
https://arxiv.org/abs/1308.1697
https://doi.org/10.1016/0550-3213(89)90574-9
https://doi.org/10.1016/0550-3213(89)90574-9
https://doi.org/10.48550/ARXIV.PHYSICS/0703214
https://arxiv.org/abs/physics/0703214
https://arxiv.org/abs/physics/0703214
https://doi.org/10.1142/9789813207851_0020
https://doi.org/10.1142/9789813207851_0020
https://doi.org/10.1103/physrevlett.56.2459
https://doi.org/10.1103/physrevlett.56.2459
https://doi.org/10.1016/j.nuclphysb.2005.02.030
https://doi.org/10.1016/j.nuclphysb.2005.02.030
https://doi.org/10.1016/j.nuclphysb.2005.02.030


186 BIBLIOGRAPHY

[78] R. Britto, F. Cachazo, B. Feng, and E. Witten, “Direct proof of the tree-level scattering

amplitude recursion relation in yang-mills theory”, Physical Review Letters, vol. 94, no. 18,

2005. doi: 10.1103/physrevlett.94.181602. [Online]. Available: https://doi.org/10.

1103/physrevlett.94.181602.

[79] R. Penrose, “Twistor algebra”, Journal of Mathematical Physics, vol. 8, no. 2, pp. 345–366,

1967. doi: 10.1063/1.1705200. [Online]. Available: https://doi.org/10.1063/1.1705200.

[80] R. Penrose and M. MacCallum, “Twistor theory: An approach to the quantisation of fields

and space-time”, Physics Reports, vol. 6, no. 4, pp. 241–315, 1973. doi: 10.1016/0370-

1573(73)90008-2. [Online]. Available: https://doi.org/10.1016/0370-1573(73)90008-

2.

[81] A. Hodges, “Eliminating spurious poles from gauge-theoretic amplitudes”, Journal of High

Energy Physics, vol. 2013, no. 5, 2013. doi: 10.1007/jhep05(2013)135. [Online]. Available:

https://doi.org/10.1007/jhep05(2013)135.

[82] S. Badger, “Automating QCD amplitudes with on-shell methods”, Journal of Physics: Conference

Series, vol. 762, p. 012 057, 2016. doi: 10 . 1088 / 1742 - 6596 / 762 / 1 / 012057. [Online].

Available: https://doi.org/10.1088/1742-6596/762/1/012057.

[83] S. Badger, H. Frellesvig, and Y. Zhang, “A two-loop five-gluon helicity amplitude in QCD”,

Journal of High Energy Physics, vol. 2013, no. 12, 2013. doi: 10.1007/jhep12(2013)045.

[Online]. Available: https://doi.org/10.1007/jhep12(2013)045.

[84] R. E. Cutkosky, “Singularities and discontinuities of feynman amplitudes”, Journal of Mathematical

Physics, vol. 1, no. 5, pp. 429–433, 1960. doi: 10.1063/1.1703676. [Online]. Available:

https://doi.org/10.1063/1.1703676.

[85] D. B. Melrose, “Reduction of feynman diagrams”, Il Nuovo Cimento A, vol. 40, no. 1,

pp. 181–213, 1965. doi: 10.1007/bf02832919. [Online]. Available: https://doi.org/

10.1007/bf02832919.

[86] G. Passarino and M. J. G. Veltman, “One Loop Corrections for e+ e- Annihilation Into mu+

mu- in the Weinberg Model”, Nucl. Phys. B, vol. 160, pp. 151–207, 1979. doi: 10.1016/0550-

3213(79)90234-7.

https://doi.org/10.1103/physrevlett.94.181602
https://doi.org/10.1103/physrevlett.94.181602
https://doi.org/10.1103/physrevlett.94.181602
https://doi.org/10.1063/1.1705200
https://doi.org/10.1063/1.1705200
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1016/0370-1573(73)90008-2
https://doi.org/10.1007/jhep05(2013)135
https://doi.org/10.1007/jhep05(2013)135
https://doi.org/10.1088/1742-6596/762/1/012057
https://doi.org/10.1088/1742-6596/762/1/012057
https://doi.org/10.1007/jhep12(2013)045
https://doi.org/10.1007/jhep12(2013)045
https://doi.org/10.1063/1.1703676
https://doi.org/10.1063/1.1703676
https://doi.org/10.1007/bf02832919
https://doi.org/10.1007/bf02832919
https://doi.org/10.1007/bf02832919
https://doi.org/10.1016/0550-3213(79)90234-7
https://doi.org/10.1016/0550-3213(79)90234-7


BIBLIOGRAPHY 187

[87] G. Ossola, C. G. Papadopoulos, and R. Pittau, “Reducing full one-loop amplitudes to scalar

integrals at the integrand level”, Nuclear Physics B, vol. 763, no. 1-2, pp. 147–169, 2007. doi:

10.1016/j.nuclphysb.2006.11.012. [Online]. Available: https://doi.org/10.1016/j.

nuclphysb.2006.11.012.

[88] F. del Aguila and R Pittau, “Recursive numerical calculus of one-loop tensor integrals”,

Journal of High Energy Physics, vol. 2004, no. 07, pp. 017–017, 2004. doi: 10.1088/1126-

6708/2004/07/017. [Online]. Available: https://doi.org/10.1088/1126-6708/2004/07/

017.

[89] R. K. Ellis and G. Zanderighi, “Scalar one-loop integrals for QCD”, Journal of High Energy

Physics, vol. 2008, no. 02, pp. 002–002, 2008. doi: 10.1088/1126-6708/2008/02/002.

[Online]. Available: https://doi.org/10.1088/1126-6708/2008/02/002.

[90] Z. Bern, L. Dixon, and D. A. Kosower, “Dimensionally regulated one-loop integrals”, Physics

Letters B, vol. 302, no. 2-3, pp. 299–308, 1993. doi: 10.1016/0370-2693(93)90400-c.

[Online]. Available: https://doi.org/10.1016/0370-2693(93)90400-c.

[91] D. C. Dunbar, “The six gluon one-loop amplitude”, Nuclear Physics B - Proceedings Supplements,

vol. 183, pp. 122–136, 2008. doi: 10.1016/j.nuclphysbps.2008.09.093. [Online]. Available:

https://doi.org/10.1016/j.nuclphysbps.2008.09.093.

[92] G. C. NAYAK, “GAUGE FIXING IDENTITY IN THE BACKGROUND FIELD METHOD

OF QCD IN PURE GAUGE”, International Journal of Modern Physics A, vol. 25, no. 20,

pp. 3885–3898, 2010. doi: 10.1142/s0217751x10050172. [Online]. Available: https://doi.

org/10.1142/s0217751x10050172.

[93] Z. Bern, L. Dixon, and D. A. Kosower, “PROGRESS IN ONE-LOOP QCD COMPUTATIONS”,

Annual Review of Nuclear and Particle Science, vol. 46, no. 1, pp. 109–148, 1996. doi:

10.1146/annurev.nucl.46.1.109. [Online]. Available: https://doi.org/10.1146/

annurev.nucl.46.1.109.

[94] M. B. Green, J. H. Schwarz, and L. Brink, “N = 4 yang-mills and n = 8 supergravity as limits

of string theories”, Nuclear Physics B, vol. 198, no. 3, pp. 474–492, 1982. doi: 10.1016/0550-

3213(82)90336-4. [Online]. Available: https://doi.org/10.1016/0550-3213(82)90336-4.

https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1016/j.nuclphysb.2006.11.012
https://doi.org/10.1088/1126-6708/2004/07/017
https://doi.org/10.1088/1126-6708/2004/07/017
https://doi.org/10.1088/1126-6708/2004/07/017
https://doi.org/10.1088/1126-6708/2004/07/017
https://doi.org/10.1088/1126-6708/2008/02/002
https://doi.org/10.1088/1126-6708/2008/02/002
https://doi.org/10.1016/0370-2693(93)90400-c
https://doi.org/10.1016/0370-2693(93)90400-c
https://doi.org/10.1016/j.nuclphysbps.2008.09.093
https://doi.org/10.1016/j.nuclphysbps.2008.09.093
https://doi.org/10.1142/s0217751x10050172
https://doi.org/10.1142/s0217751x10050172
https://doi.org/10.1142/s0217751x10050172
https://doi.org/10.1146/annurev.nucl.46.1.109
https://doi.org/10.1146/annurev.nucl.46.1.109
https://doi.org/10.1146/annurev.nucl.46.1.109
https://doi.org/10.1016/0550-3213(82)90336-4
https://doi.org/10.1016/0550-3213(82)90336-4
https://doi.org/10.1016/0550-3213(82)90336-4


188 BIBLIOGRAPHY

[95] Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, “Fusing gauge theory tree amplitudes

into loop amplitudes”, Nuclear Physics B, vol. 435, no. 1-2, pp. 59–101, 1995. doi: 10.

1016/0550-3213(94)00488-z. [Online]. Available: https://doi.org/10.1016/0550-

3213(94)00488-z.

[96] C. F. Berger, Z. Bern, L. J. Dixon, D. Forde, and D. A. Kosower, “All one-loop maximally

helicity violating gluonic amplitudes in QCD”, Tech. Rep., 2006. doi: 10.2172/885511.

[Online]. Available: https://doi.org/10.2172/885511.

[97] D. Forde and D. A. Kosower, “All-multiplicity one-loop corrections to maximum-helicity-violating

amplitudes in QCD”, Physical Review D, vol. 73, no. 6, 2006. doi: 10.1103/physrevd.73.

061701. [Online]. Available: https://doi.org/10.1103/physrevd.73.061701.

[98] Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, “Fusing gauge theory tree amplitudes

into loop amplitudes”, Nuclear Physics B, vol. 435, no. 1-2, pp. 59–101, 1995. doi: 10.

1016/0550-3213(94)00488-z. [Online]. Available: https://doi.org/10.1016/0550-

3213(94)00488-z.

[99] G. D. Laurentis and D. Maître, “Extracting analytical one-loop amplitudes from numerical

evaluations”, Journal of High Energy Physics, vol. 2019, no. 7, 2019. doi: 10.1007/jhep07(2019)

123. [Online]. Available: https://doi.org/10.1007/jhep07(2019)123.

[100] T. Peraro, “FiniteFlow: Multivariate functional reconstruction using finite fields and dataflow

graphs”, Journal of High Energy Physics, vol. 2019, no. 7, 2019. doi: 10.1007/jhep07(2019)

031. [Online]. Available: https://doi.org/10.1007/jhep07(2019)031.

[101] A. Cuyt and W. shin Lee, “Sparse interpolation of multivariate rational functions”, Theoretical

Computer Science, vol. 412, no. 16, pp. 1445–1456, 2011. doi: 10.1016/j.tcs.2010.11.050.

[Online]. Available: https://doi.org/10.1016/j.tcs.2010.11.050.

[102] J. von zur Gathen and J. Gerhard, Modern Computer Algebra. Cambridge University Press,

2013. doi: 10.1017/cbo9781139856065. [Online]. Available: https://doi.org/10.1017/

cbo9781139856065.

https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.2172/885511
https://doi.org/10.2172/885511
https://doi.org/10.1103/physrevd.73.061701
https://doi.org/10.1103/physrevd.73.061701
https://doi.org/10.1103/physrevd.73.061701
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1016/0550-3213(94)00488-z
https://doi.org/10.1007/jhep07(2019)123
https://doi.org/10.1007/jhep07(2019)123
https://doi.org/10.1007/jhep07(2019)123
https://doi.org/10.1007/jhep07(2019)031
https://doi.org/10.1007/jhep07(2019)031
https://doi.org/10.1007/jhep07(2019)031
https://doi.org/10.1016/j.tcs.2010.11.050
https://doi.org/10.1016/j.tcs.2010.11.050
https://doi.org/10.1017/cbo9781139856065
https://doi.org/10.1017/cbo9781139856065
https://doi.org/10.1017/cbo9781139856065


BIBLIOGRAPHY 189

[103] P. S. Wang, “A p-adic algorithm for univariate partial fractions”, in Proceedings of the fourth

ACM symposium on Symbolic and algebraic computation - SYMSAC '81, ACM Press, 1981.

doi: 10.1145/800206.806398. [Online]. Available: https://doi.org/10.1145/800206.

806398.

[104] P. S. Wang, M. J. T. Guy, and J. H. Davenport, “P-adic reconstruction of rational numbers”,

ACM SIGSAM Bulletin, vol. 16, no. 2, pp. 2–3, 1982. doi: 10.1145/1089292.1089293.

[Online]. Available: https://doi.org/10.1145/1089292.1089293.

[105] D. Pei, A. Salomaa, and C. Ding, Chinese remainder theorem: applications in computing,

coding, cryptography. World Scientific, 1996.

[106] A. von Manteuffel and R. M. Schabinger, “A novel approach to integration by parts reduction”,

Physics Letters B, vol. 744, pp. 101–104, 2015. doi: 10.1016/j.physletb.2015.03.029.

[Online]. Available: https://doi.org/10.1016/j.physletb.2015.03.029.

[107] A. von Manteuffel and R. M. Schabinger, “Planar master integrals for four-loop form factors”,

Journal of High Energy Physics, vol. 2019, no. 5, 2019. doi: 10.1007/jhep05(2019)073.

[Online]. Available: https://doi.org/10.1007/jhep05(2019)073.

[108] J. Henn, T. Peraro, M. Stahlhofen, and P. Wasser, “Matter dependence of the four-loop

cusp anomalous dimension”, Physical Review Letters, vol. 122, no. 20, 2019. doi: 10.1103/

physrevlett.122.201602. [Online]. Available: https://doi.org/10.1103/physrevlett.

122.201602.

[109] S. Abreu, J. Dormans, F. F. Cordero, H. Ita, and B. Page, “Analytic form of planar two-loop

five-gluon scattering amplitudes in QCD”, Physical Review Letters, vol. 122, no. 8, 2019.

doi: 10.1103/physrevlett.122.082002. [Online]. Available: https://doi.org/10.1103/

physrevlett.122.082002.

[110] S. Badger, B. Biedermann, P. Uwer, and V. Yundin, “Numerical evaluation of virtual corrections

to multi-jet production in massless QCD”, Computer Physics Communications, vol. 184,

no. 8, pp. 1981–1998, 2013. doi: 10.1016/j.cpc.2013.03.018. [Online]. Available: https:

//doi.org/10.1016/j.cpc.2013.03.018.

https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/800206.806398
https://doi.org/10.1145/1089292.1089293
https://doi.org/10.1145/1089292.1089293
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.1016/j.physletb.2015.03.029
https://doi.org/10.1007/jhep05(2019)073
https://doi.org/10.1007/jhep05(2019)073
https://doi.org/10.1103/physrevlett.122.201602
https://doi.org/10.1103/physrevlett.122.201602
https://doi.org/10.1103/physrevlett.122.201602
https://doi.org/10.1103/physrevlett.122.201602
https://doi.org/10.1103/physrevlett.122.082002
https://doi.org/10.1103/physrevlett.122.082002
https://doi.org/10.1103/physrevlett.122.082002
https://doi.org/10.1016/j.cpc.2013.03.018
https://doi.org/10.1016/j.cpc.2013.03.018
https://doi.org/10.1016/j.cpc.2013.03.018


190 BIBLIOGRAPHY

[111] S. Badger, H. B. Hartanto, J. Kryś, and S. Zoia, “Two-loop leading colour helicity amplitudes

for W±γ + j production at the LHC”, Journal of High Energy Physics, vol. 2022, no. 5,

2022. doi: 10.1007/jhep05(2022)035. [Online]. Available: https://doi.org/10.1007/

jhep05(2022)035.

[112] S. Badger et al., “Virtual QCD corrections to gluon-initiated diphoton plus jet production

at hadron colliders”, Journal of High Energy Physics, vol. 2021, no. 11, 2021. doi: 10.1007/

jhep11(2021)083. [Online]. Available: https://doi.org/10.1007/jhep11(2021)083.

[113] S. Badger, E. Chaubey, H. B. Hartanto, and R. Marzucca, “Two-loop leading colour QCD

helicity amplitudes for top quark pair production in the gluon fusion channel”, Journal of

High Energy Physics, vol. 2021, no. 6, 2021. doi: 10.1007/jhep06(2021)163. [Online].

Available: https://doi.org/10.1007/jhep06(2021)163.

[114] M. Heller and A. von Manteuffel, “MultivariateApart: Generalized partial fractions”, Computer

Physics Communications, vol. 271, p. 108 174, 2022. doi: 10.1016/j.cpc.2021.108174.

[Online]. Available: https://doi.org/10.1016/j.cpc.2021.108174.

[115] D. Cox, J. Little, and D. OShea, Ideals, varieties, and algorithms: an introduction to computational

algebraic geometry and commutative algebra. Springer Science & Business Media, 2013.

[116] W. Decker, G.-M. Greuel, G. Pfister, and H. Schönemann, Singular 4-3-0 — A computer

algebra system for polynomial computations, http://www.singular.uni-kl.de, 2022.

[117] S. Dittmaier, P. Uwer, and S. Weinzierl, “Hadronic top-quark pair production in association

with a hard jet at next-to-leading order QCD: Phenomenological studies for the tevatron

and the LHC”, The European Physical Journal C, vol. 59, no. 3, pp. 625–646, 2008. doi:

10.1140/epjc/s10052-008-0816-y. [Online]. Available: https://doi.org/10.1140/epjc/

s10052-008-0816-y.

[118] S. ALIOLI, J. FUSTER, A. IRLES, S. MOCH, P. UWER, and M. VOS, “A new observable

to measure the top quark mass at hadron colliders”, Pramana, vol. 79, no. 4, pp. 809–812,

2012. doi: 10.1007/s12043-012-0374-6. [Online]. Available: https://doi.org/10.1007/

s12043-012-0374-6.

https://doi.org/10.1007/jhep05(2022)035
https://doi.org/10.1007/jhep05(2022)035
https://doi.org/10.1007/jhep05(2022)035
https://doi.org/10.1007/jhep11(2021)083
https://doi.org/10.1007/jhep11(2021)083
https://doi.org/10.1007/jhep11(2021)083
https://doi.org/10.1007/jhep06(2021)163
https://doi.org/10.1007/jhep06(2021)163
https://doi.org/10.1016/j.cpc.2021.108174
https://doi.org/10.1016/j.cpc.2021.108174
http://www.singular.uni-kl.de
https://doi.org/10.1140/epjc/s10052-008-0816-y
https://doi.org/10.1140/epjc/s10052-008-0816-y
https://doi.org/10.1140/epjc/s10052-008-0816-y
https://doi.org/10.1007/s12043-012-0374-6
https://doi.org/10.1007/s12043-012-0374-6
https://doi.org/10.1007/s12043-012-0374-6


BIBLIOGRAPHY 191

[119] S. Weinzierl, “Does one need theO(ε)- andO(ε2)-terms of one-loop amplitudes in a next-to-next-to-leading

order calculation ?”, Physical Review D, vol. 84, no. 7, 2011. doi: 10.1103/physrevd.84.

074007. [Online]. Available: https://doi.org/10.1103/physrevd.84.074007.

[120] G. Bertolotti, P. Torrielli, S. Uccirati, and M. Zaro, “Local analytic sector subtraction for

initial- and final-state radiation at NLO in massless QCD”, Journal of High Energy Physics,

vol. 2022, no. 12, 2022. doi: 10.1007/jhep12(2022)042. [Online]. Available: https://doi.

org/10.1007/jhep12(2022)042.

[121] Z. Bern, L. Dixon, and D. A. Kosower, “One-loop corrections to two-quark three-gluon

amplitudes”, Nuclear Physics B, vol. 437, no. 2, pp. 259–304, 1995. doi: 10.1016/0550-

3213(94)00542-m. [Online]. Available: https://doi.org/10.1016/0550-3213(94)00542-

m.

[122] Z. Kunszt, A. Signer, and Z. Trócsányi, “One-loop radiative corrections to the helicity

amplitudes of QCD processes involving four quarks and one gluon”, Physics Letters B,

vol. 336, no. 3-4, pp. 529–536, 1994. doi: 10 . 1016 / 0370 - 2693(94 ) 90568 - 1. [Online].

Available: https://doi.org/10.1016/0370-2693(94)90568-1.

[123] R. H. Kleiss and W. J. Stirling, “Spinor techniques for calculating pp̄ → W±Z0 + jets”,

Nucl. Phys. B, vol. 262, pp. 235–262, 1985. doi: 10.1016/0550-3213(85)90285-8. [Online].

Available: https://cds.cern.ch/record/160513.

[124] C. Schwinn and S. Weinzierl, “On-shell recursion relations for all born QCD amplitudes”,

Journal of High Energy Physics, vol. 2007, no. 04, pp. 072–072, 2007. doi: 10.1088/1126-

6708/2007/04/072. [Online]. Available: https://doi.org/10.1088/1126-6708/2007/04/

072.

[125] G. Cullen, M. Koch-Janusz, and T. Reiter, “Spinney: A form library for helicity spinors”,

Computer Physics Communications, vol. 182, no. 11, pp. 2368–2387, 2011. doi: 10.1016/j.

cpc.2011.06.007. [Online]. Available: https://doi.org/10.1016/j.cpc.2011.06.007.

[126] F. V. Tkachov, “A Theorem on Analytical Calculability of Four Loop Renormalization Group

Functions”, Phys. Lett. B, vol. 100, pp. 65–68, 1981. doi: 10.1016/0370-2693(81)90288-4.

https://doi.org/10.1103/physrevd.84.074007
https://doi.org/10.1103/physrevd.84.074007
https://doi.org/10.1103/physrevd.84.074007
https://doi.org/10.1007/jhep12(2022)042
https://doi.org/10.1007/jhep12(2022)042
https://doi.org/10.1007/jhep12(2022)042
https://doi.org/10.1016/0550-3213(94)00542-m
https://doi.org/10.1016/0550-3213(94)00542-m
https://doi.org/10.1016/0550-3213(94)00542-m
https://doi.org/10.1016/0550-3213(94)00542-m
https://doi.org/10.1016/0370-2693(94)90568-1
https://doi.org/10.1016/0370-2693(94)90568-1
https://doi.org/10.1016/0550-3213(85)90285-8
https://cds.cern.ch/record/160513
https://doi.org/10.1088/1126-6708/2007/04/072
https://doi.org/10.1088/1126-6708/2007/04/072
https://doi.org/10.1088/1126-6708/2007/04/072
https://doi.org/10.1088/1126-6708/2007/04/072
https://doi.org/10.1016/j.cpc.2011.06.007
https://doi.org/10.1016/j.cpc.2011.06.007
https://doi.org/10.1016/j.cpc.2011.06.007
https://doi.org/10.1016/0370-2693(81)90288-4


192 BIBLIOGRAPHY

[127] K. G. Chetyrkin and F. V. Tkachov, “Integration by Parts: The Algorithm to Calculate beta

Functions in 4 Loops”, Nucl. Phys. B, vol. 192, pp. 159–204, 1981. doi: 10.1016/0550-

3213(81)90199-1.

[128] V. A. Smirnov, Feynman integral calculus. Berlin, Heidelberg: Springer, 2006.

[129] R. Lee, “Presenting litered: A tool for the loop integrals reduction”, arXiv preprint arXiv:1212.2685,

2012. doi: 10.48550/ARXIV.1212.2685. [Online]. Available: https://arxiv.org/abs/1212.

2685.

[130] S. Laporta, “High precision calculation of multiloop Feynman integrals by difference equations”,

Int. J. Mod. Phys. A, vol. 15, pp. 5087–5159, 2000. doi: 10.1142/S0217751X00002159. arXiv:

hep-ph/0102033.

[131] A. V. Kotikov, “Differential equations method: New technique for massive Feynman diagrams

calculation”, Phys. Lett. B, vol. 254, pp. 158–164, 1991. doi: 10.1016/0370-2693(91)90413-

K.

[132] E. Remiddi, “Differential equations for feynman graph amplitudes”, Il Nuovo Cimento A,

vol. 110, no. 12, pp. 1435–1452, 1997. doi: 10.1007/bf03185566. [Online]. Available: https:

//link.springer.com/article/10.1007/BF03185566.

[133] T. Gehrmann and E. Remiddi, “Differential equations for two-loop four-point functions”,

Nuclear Physics B, vol. 580, no. 1-2, pp. 485–518, 2000. doi: 10.1016/s0550-3213(00)

00223-6. [Online]. Available: https://doi.org/10.1016/s0550-3213(00)00223-6.

[134] J. M. Henn, “Multiloop integrals in dimensional regularization made simple”, Physical Review

Letters, vol. 110, no. 25, 2013. doi: 10.1103/physrevlett.110.251601. [Online]. Available:

https://doi.org/10.1103/physrevlett.110.251601.

[135] A. B. Goncharov, “Multiple polylogarithms, cyclotomy and modular complexes”, Mathematical

Research Letters, vol. 5, no. 4, pp. 497–516, 1998. doi: 10.4310/mrl.1998.v5.n4.a7.

[Online]. Available: https://doi.org/10.43102Fmrl.1998.v5.n4.a7.

[136] A. B. Goncharov, Multiple polylogarithms and mixed tate motives, 2001. arXiv: math/0103059

[math.AG]. [Online]. Available: https://arxiv.org/abs/math/0103059.

https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.1016/0550-3213(81)90199-1
https://doi.org/10.48550/ARXIV.1212.2685
https://arxiv.org/abs/1212.2685
https://arxiv.org/abs/1212.2685
https://doi.org/10.1142/S0217751X00002159
https://arxiv.org/abs/hep-ph/0102033
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1016/0370-2693(91)90413-K
https://doi.org/10.1007/bf03185566
https://link.springer.com/article/10.1007/BF03185566
https://link.springer.com/article/10.1007/BF03185566
https://doi.org/10.1016/s0550-3213(00)00223-6
https://doi.org/10.1016/s0550-3213(00)00223-6
https://doi.org/10.1016/s0550-3213(00)00223-6
https://doi.org/10.1103/physrevlett.110.251601
https://doi.org/10.1103/physrevlett.110.251601
https://doi.org/10.4310/mrl.1998.v5.n4.a7
https://doi.org/10.43102Fmrl.1998.v5.n4.a7
https://arxiv.org/abs/math/0103059
https://arxiv.org/abs/math/0103059
https://arxiv.org/abs/math/0103059


BIBLIOGRAPHY 193

[137] M. Hidding, “DiffExp, a mathematica package for computing feynman integrals in terms of

one-dimensional series expansions”, Computer Physics Communications, vol. 269, p. 108 125,

2021. doi: 10.1016/j.cpc.2021.108125. [Online]. Available: https://doi.org/10.1016/

j.cpc.2021.108125.

[138] A. Primo and L. Tancredi, “On the maximal cut of feynman integrals and the solution of

their differential equations”, Nuclear Physics B, vol. 916, pp. 94–116, 2017. doi: 10.1016/

j.nuclphysb.2016.12.021. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.

2016.12.021.

[139] A. van Hameren, C. Papadopoulos, and R Pittau, “Automated one-loop calculations: A proof

of concept”, Journal of High Energy Physics, vol. 2009, no. 09, pp. 106–106, 2009. doi:

10.1088/1126-6708/2009/09/106. [Online]. Available: https://iopscience.iop.org/

article/10.1088/1126-6708/2009/09/106.

[140] G. Bevilacqua et al., “HELAC-NLO”, Computer Physics Communications, vol. 184, no. 3,

pp. 986–997, 2013. doi: 10.1016/j.cpc.2012.10.033. [Online]. Available: https://www.

sciencedirect.com/science/article/pii/S0010465512003761?via/3Dihub.

[141] F. Cascioli, P. Maierhöfer, and S. Pozzorini, “Scattering amplitudes with open loops”, Physical

Review Letters, vol. 108, no. 11, 2012. doi: 10.1103/physrevlett.108.111601. [Online].

Available: https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.

111601.

[142] F. Buccioni et al., “OpenLoops 2”, The European Physical Journal C, vol. 79, no. 10, 2019.

doi: 10.1140/epjc/s10052-019-7306-2. [Online]. Available: https://link.springer.

com/article/10.1140/epjc/s10052-019-7306-2.

[143] G. Bevilacqua, H. Hartanto, M. Kraus, and M. Worek, “Top quark pair production in

association with a jet with next-to-leading-order QCD off-shell effects at the large hadron

collider”, Physical Review Letters, vol. 116, no. 5, 2016. doi: 10.1103/physrevlett.116.

052003. [Online]. Available: https://doi.org/10.11032Fphysrevlett.116.052003.

[144] T. Ježo, Nlo matching for tt̄bb̄ production with massive b quarks, 2018. arXiv: 1808.09311

[hep-ph]. [Online]. Available: https://pos.sissa.it/316/089.

https://doi.org/10.1016/j.cpc.2021.108125
https://doi.org/10.1016/j.cpc.2021.108125
https://doi.org/10.1016/j.cpc.2021.108125
https://doi.org/10.1016/j.nuclphysb.2016.12.021
https://doi.org/10.1016/j.nuclphysb.2016.12.021
https://doi.org/10.1016/j.nuclphysb.2016.12.021
https://doi.org/10.1016/j.nuclphysb.2016.12.021
https://doi.org/10.1088/1126-6708/2009/09/106
https://iopscience.iop.org/article/10.1088/1126-6708/2009/09/106
https://iopscience.iop.org/article/10.1088/1126-6708/2009/09/106
https://doi.org/10.1016/j.cpc.2012.10.033
https://www.sciencedirect.com/science/article/pii/S0010465512003761?via/3Dihub
https://www.sciencedirect.com/science/article/pii/S0010465512003761?via/3Dihub
https://doi.org/10.1103/physrevlett.108.111601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.111601
https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.108.111601
https://doi.org/10.1140/epjc/s10052-019-7306-2
https://link.springer.com/article/10.1140/epjc/s10052-019-7306-2
https://link.springer.com/article/10.1140/epjc/s10052-019-7306-2
https://doi.org/10.1103/physrevlett.116.052003
https://doi.org/10.1103/physrevlett.116.052003
https://doi.org/10.11032Fphysrevlett.116.052003
https://arxiv.org/abs/1808.09311
https://arxiv.org/abs/1808.09311
https://pos.sissa.it/316/089


194 BIBLIOGRAPHY

[145] S. Catani, S. Dittmaier, and Z. Trócsányi, “One-loop singular behaviour of QCD and SUSY

QCD amplitudes with massive partons”, Physics Letters B, vol. 500, no. 1-2, pp. 149–160,

2001. doi: 10.1016/s0370-2693(01)00065-x. [Online]. Available: https://doi.org/10.

1016/s0370-2693(01)00065-x.

[146] S Catani and M. Seymour, “NLO calculations in QCD: A general algorithm”, Nuclear Physics

B - Proceedings Supplements, vol. 51, no. 3, pp. 233–242, 1996. doi: 10.1016/s0920-5632(96)

90030-4. [Online]. Available: https://doi.org/10.1016/s0920-5632(96)90030-4.

[147] S. Catani and M. Grazzini, “The soft-gluon current at one-loop order”, Nuclear Physics B,

vol. 591, no. 1-2, pp. 435–454, 2000. doi: 10.1016/s0550-3213(00)00572-1. [Online].

Available: https://doi.org/10.1016/s0550-3213(00)00572-1.

[148] Z. Bern, L. Dixon, and D. A. Kosower, “One-loop corrections to five-gluon amplitudes”,

Physical Review Letters, vol. 70, no. 18, pp. 2677–2680, 1993. doi: 10.1103/physrevlett.

70.2677. [Online]. Available: https://doi.org/10.1103/physrevlett.70.2677.

[149] Y. tin Huang, D. A. McGady, and C. Peng, “One-loop renormalization and the s-matrix”,

Physical Review D, vol. 87, no. 8, 2013. doi: 10.1103/physrevd.87.085028. [Online].

Available: https://doi.org/10.1103/physrevd.87.085028.

[150] Z. Bern, L. Dixon, D. C. Dunbar, and D. A. Kosower, “One-loop n-point gauge theory

amplitudes, unitarity and collinear limits”, Nuclear Physics B, vol. 425, no. 1-2, pp. 217–260,

1994. doi: 10.1016/0550-3213(94)90179-1. [Online]. Available: https://doi.org/10.

1016/0550-3213(94)90179-1.

[151] R. Britto, F. Cachazo, and B. Feng, “Generalized unitarity and one-loop amplitudes in

super-yang-mills”, Nuclear Physics B, vol. 725, no. 1-2, pp. 275–305, 2005. doi: 10.1016/j.

nuclphysb.2005.07.014. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.

2005.07.014.

[152] J. Bedford, A. Brandhuber, B. Spence, and G. Travaglini, “Non-supersymmetric loop amplitudes

and MHV vertices”, Nuclear Physics B, vol. 712, no. 1-2, pp. 59–85, 2005. doi: 10.1016/j.

nuclphysb.2005.01.032. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.

2005.01.032.

https://doi.org/10.1016/s0370-2693(01)00065-x
https://doi.org/10.1016/s0370-2693(01)00065-x
https://doi.org/10.1016/s0370-2693(01)00065-x
https://doi.org/10.1016/s0920-5632(96)90030-4
https://doi.org/10.1016/s0920-5632(96)90030-4
https://doi.org/10.1016/s0920-5632(96)90030-4
https://doi.org/10.1016/s0550-3213(00)00572-1
https://doi.org/10.1016/s0550-3213(00)00572-1
https://doi.org/10.1103/physrevlett.70.2677
https://doi.org/10.1103/physrevlett.70.2677
https://doi.org/10.1103/physrevlett.70.2677
https://doi.org/10.1103/physrevd.87.085028
https://doi.org/10.1103/physrevd.87.085028
https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.1016/0550-3213(94)90179-1
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2005.07.014
https://doi.org/10.1016/j.nuclphysb.2005.01.032
https://doi.org/10.1016/j.nuclphysb.2005.01.032
https://doi.org/10.1016/j.nuclphysb.2005.01.032
https://doi.org/10.1016/j.nuclphysb.2005.01.032


BIBLIOGRAPHY 195

[153] F. Cachazo, P. Svrcek, and E. Witten, “MHV vertices and tree amplitudes in gauge theory”,

Journal of High Energy Physics, vol. 2004, no. 09, pp. 006–006, 2004. doi: 10.1088/1126-

6708/2004/09/006. [Online]. Available: https://doi.org/10.1088/1126-6708/2004/09/

006.

[154] Z.-G. Xiao, G. Yang, and C.-J. Zhu, “The rational parts of one-loop QCD amplitudes III:

The six-gluon case”, Nuclear Physics B, vol. 758, no. 1-2, pp. 53–89, 2006. doi: 10.1016/j.

nuclphysb.2006.09.006. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.

2006.09.006.

[155] Z.-G. Xiao, G. Yang, and C.-J. Zhu, “The rational parts of one-loop QCD amplitudes i: The

general formalism”, Nuclear Physics B, vol. 758, no. 1-2, pp. 1–34, 2006. doi: 10.1016/j.

nuclphysb.2006.09.008. [Online]. Available: https://doi.org/10.1016/j.nuclphysb.

2006.09.008.

[156] G. Laurentis and D. Maître, “Extracting analytical one-loop amplitudes from numerical

evaluations”, JHEP, vol. 07, p. 123, 2019. doi: 10.1007/JHEP07(2019)123. arXiv: 1904.

04067 [hep-ph].

[157] D. Melrose, “Reduction of feynman diagrams”, Il Nuovo Cimento A (1965-1970), vol. 40,

no. 1, pp. 181–213, 1965.

[158] L. Dixon, “New color decompositions for gauge amplitudes at tree and loop level”, Tech.

Rep., 1999. doi: 10.2172/15092. [Online]. Available: https://doi.org/10.2172/15092.

[159] Z. Bern, L. J. Dixon, and D. A. Kosower, “Dimensionally regulated one loop integrals”,

Phys. Lett. B, vol. 302, pp. 299–308, 1993, [Erratum: Phys.Lett.B 318, 649 (1993)]. doi:

10.1016/0370-2693(93)90400-C. arXiv: hep-ph/9212308.

[160] A. Denner and S. Dittmaier, “Scalar one-loop 4-point integrals”, Nucl. Phys. B, vol. 844,

pp. 199–242, 2011. doi: 10.1016/j.nuclphysb.2010.11.002. arXiv: 1005.2076 [hep-ph].

[161] Z. Bern and A. Morgan, “Massive loop amplitudes from unitarity”, Nuclear Physics B,

vol. 467, no. 3, pp. 479–509, 1996. doi: 10.1016/0550-3213(96)00078-8. [Online]. Available:

https://doi.org/10.1016/0550-3213(96)00078-8.

https://doi.org/10.1088/1126-6708/2004/09/006
https://doi.org/10.1088/1126-6708/2004/09/006
https://doi.org/10.1088/1126-6708/2004/09/006
https://doi.org/10.1088/1126-6708/2004/09/006
https://doi.org/10.1016/j.nuclphysb.2006.09.006
https://doi.org/10.1016/j.nuclphysb.2006.09.006
https://doi.org/10.1016/j.nuclphysb.2006.09.006
https://doi.org/10.1016/j.nuclphysb.2006.09.006
https://doi.org/10.1016/j.nuclphysb.2006.09.008
https://doi.org/10.1016/j.nuclphysb.2006.09.008
https://doi.org/10.1016/j.nuclphysb.2006.09.008
https://doi.org/10.1016/j.nuclphysb.2006.09.008
https://doi.org/10.1007/JHEP07(2019)123
https://arxiv.org/abs/1904.04067
https://arxiv.org/abs/1904.04067
https://doi.org/10.2172/15092
https://doi.org/10.2172/15092
https://doi.org/10.1016/0370-2693(93)90400-C
https://arxiv.org/abs/hep-ph/9212308
https://doi.org/10.1016/j.nuclphysb.2010.11.002
https://arxiv.org/abs/1005.2076
https://doi.org/10.1016/0550-3213(96)00078-8
https://doi.org/10.1016/0550-3213(96)00078-8


196 BIBLIOGRAPHY

[162] O. V. Tarasov, “Connection between feynman integrals having different values of the space-time

dimension”, Physical Review D, vol. 54, no. 10, pp. 6479–6490, 1996. doi: 10.1103/physrevd.

54.6479. [Online]. Available: https://doi.org/10.1103/physrevd.54.6479.

[163] R. Lee, “Space–time dimensionality as complex variable: Calculating loop integrals using

dimensional recurrence relation and analytical properties with respect to”, Nuclear Physics

B, vol. 830, no. 3, pp. 474–492, 2010. doi: 10.1016/j.nuclphysb.2009.12.025. [Online].

Available: https://doi.org/10.1016/j.nuclphysb.2009.12.025.

[164] S. Badger, C. Brønnum-Hansen, F. Buciuni, and D. O’Connell, “A unitarity compatible

approach to one-loop amplitudes with massive fermions”, Journal of High Energy Physics,

vol. 2017, no. 6, 2017. doi: 10.1007/jhep06(2017)141. [Online]. Available: https://doi.

org/10.1007/jhep06(2017)141.

https://doi.org/10.1103/physrevd.54.6479
https://doi.org/10.1103/physrevd.54.6479
https://doi.org/10.1103/physrevd.54.6479
https://doi.org/10.1016/j.nuclphysb.2009.12.025
https://doi.org/10.1016/j.nuclphysb.2009.12.025
https://doi.org/10.1007/jhep06(2017)141
https://doi.org/10.1007/jhep06(2017)141
https://doi.org/10.1007/jhep06(2017)141

	Introduction
	The Standard Model and High Precision Physics
	The Standard Model
	The QED Lagrangian
	The QCD Lagrangian
	Ultraviolet Divergences and Renormalisation
	Physical Observables and Factorisation
	Scattering Amplitudes
	Cancellation of Infrared Divergences

	Modern Methods for Scattering Amplitudes
	Colour Decomposition
	Spinor-Helicity Formalism for On-Shell Kinematics
	Britto-Cachazo-Feng-Witten Relations
	Momentum Twistors
	Reconstruction of the Helicity Information

	On-Shell Methods at One Loop
	Unitarity of the S-matrix
	Generalised Unitarity

	Ossola-Papadopoulos-Pittau Integrand Reduction
	Supersymmetric Decomposition
	BCFW shifts at One-Loop

	Analytic Reconstructions using Finite Fields
	Analytic Reconstruction
	Finite Fields
	Reconstruction Techniques
	Linear Relations Among the Coefficients
	Factor Matching
	Univariate Partial Fractioning
	Multivariate Apart Reconstruction
	Partial Fractioning with BCFW-like shifts


	One-loop QCD Amplitudes for pp tj to O(^2)
	Introduction
	Colour Decomposition and Kinematic Setup
	Amplitudes Representations
	On the Choice of Reference Vectors
	Computational Pipeline

	Maximal Topologies and Master Integrals
	Computation of Master Integrals
	Wave-Function Renormalisation
	Tree-Level t 3g Amplitudes
	Partial Fractioning in Rational Reconstruction
	Infrared Structure
	Results and Conclusion
	Master Integral Results
	Amplitude Results


	Analytic Representations of Gluon Amplitudes
	Six-Gluon Amplitudes in D Dimensions
	Kinematic Set-up
	Amplitudes' Decomposition
	Reconstruction Techniques
	Linear Relations
	Factor Matching and Partial Fractioning
	Two Stage Reconstruction

	N=4 Case
	N=1 Case
	Dimensional Recursion Relations
	The 4-2 case
	The 6-2 case

	Conclusion

	Conclusions
	Mathematical Conventions
	QCD Feynman Rules
	Coefficient Ansätze for Tree-Level Six-Gluon Amplitudes
	Passarino Veltmann Reduction
	Change of Variables to Linearise the Differential Equation System
	Degrees of Six-Gluon One-Loop Amplitudes in Four Dimensions
	0 tggg MHV Tree-Level Amplitudes
	Linear Relations with FiniteFlow
	Master Integrals for pp tj at O(^2)

