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Abstract

Crystalline materials are typically characterised by diffraction-based techniques which ex-

cel at solving the structures of well-ordered materials. However, these techniques have dif-

ficulty characterising disorder, as it disrupts the long-range order needed for defined Bragg

peaks. Solid-state nuclear magnetic resonance (NMR) is an excellent tool for studying dis-

order, as it is sensitive to local environment and can detect motion over many orders of

magnitude. In this work, NMR-based techniques, primarily lineshape and relaxation anal-

yses, are used in combination with diffraction and molecular dynamics (MD) simulations

to uncover the dynamic disorder in three types of system. Firstly, despite limited amounts

of some samples, NMR is able to characterise the dynamics of diamondoids, a series of

rigid hydrocarbon cages. In diamantane and 1(2)3 tetramantane, 13C relaxation shows

evidence of C3 rotations with activation energies of 21.1(4) kJ mol−1 and 15(2) kJ mol−1

respectively. For triamantane, second moments, a historical method of summarising static
1H lineshapes, show that the molecules undergo multi-axis jumps, information that could

not be obtained through modern NMR or diffraction-based techniques. Secondly, the

phase transition in the relaxor ferroelectric material, hydrazinium magnesium formate, is

shown to be caused by reorientation of hydrazinium ions from perpendicular to parallel

in the channels. Here, a new mechanism is proposed whereby the relaxor ferroelectric

response arises directly because of the molecular motion, not despite it. Finally, MD

simulations reveal that the dynamics of the solvent molecules in two cocrystal solvates

of furosemide-picolinamide have significant librational character. This explains why line-

shape and relaxation analyses, which assume a constant amplitude with temperature, are

unable to provide a coherent dynamic model. In summary, the NMR techniques used

herein, along with supporting diffraction and computational tools, supports their utilisa-

tion in the future to better understand disordered materials.
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Chapter 1

Background and Thesis Overview

1.1 Disorder in Molecular Organic Solids

Characterising solid materials primarily focuses on determining structure. This is typi-

cally done with diffraction techniques which excel at determining the structure of ordered

materials. However, a common challenge of interpreting diffraction data arises from crys-

tallographic disorder, since Bragg diffraction relies on long-range order.

There are two main types of crystallographic disorder: static disorder, where atoms

are fixed in a non-crystalline arrangement, and dynamic disorder, where the positions of

atoms change with time. There are many types of materials which exhibit static and

dynamic disorder in varying amounts as summarised in Figure 1.1.1 Crystalline solids,

with periodic arrangements of fixed atoms, are the most ordered materials while liquids

have maximum static and dynamic disorder. Amorphous solids, which have significant

static disorder, can be described as glassy when there is little dynamic disorder, or rubbery

when there is more mobility. There are also types of system with significant periodicity

but have notable dynamics. These include plastic crystals and many inclusion compounds.

Finally, there are liquid crystals, systems with significant mobility and static disorder but

with ordering in some dimensions.

Figure 1.1: The dynamics in different types of matter. Adapted from reference 1.
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Understanding and characterising disorder is beneficial in many different fields. In

the pharmaceutical industry a full understanding of molecular properties, and how these

impact the critical attributes of drug products, is essential.2 In fields such as functional

materials, it is often not sufficient to understand the structure of the material, as it is the

molecular motion in a system which often explains the material’s bulk properties.

Solid-state nuclear magnetic resonance (NMR) is an excellent method of studying

disorder as, in contrast to Bragg diffraction, NMR is sensitive to local environment. More-

over, dynamics are fundamental to every NMR measurement. In fact, the stark differences

between solid- and solution-state NMR originate from the differences in the molecular dy-

namics. In solutions, molecules tumble rapidly and isotropically, averaging all orientation

dependent interactions to the isotropic value. In solids, these interactions usually remain

and are moderated by the molecular dynamics, meaning spectra are more difficult to

interpret in the solid state but retain information about the molecular dynamics.

Solids have a range of potential motions, including vibrations, small-angle libra-

tions, jump-type motions involving a whole molecule rotation and translational motions.

This thesis is primarily focused on reorientation motions which can be characterised by

many different NMR techniques. While vibrations are important solid-state motions, they

typically occur on a much faster timescale than relevant for NMR so only averages are

observed.

Dynamic processes in solids can be described with an autocorrelation function,

G(τ), which is a measure of the proportion of molecules that are in the same position

at time t and t + τ . G(τ) decays with increasing τ resulting in Equation 1.1 for simple

random motion where τ c is defined as the correlation time of the motion. Correlation

times are used to quantify the rate of motion; the smaller the τ c, the faster the motion.

G(τ) = exp

(
− τ

τ c

)
(1.1)

Motions are often described in terms of rates, ν, which are defined in terms of the

correlation time in Equation 1.2. Rates of motion in the solid state can span many orders

of magnitudes from slow polymer chain reorientation on the order of Hz, to vibrations

around 1014 Hz.

ν =
1

2πτ c
(1.2)

NMR is sensitive to motion over many orders of magnitude, however individual

experiments are only sensitive to a relatively narrow motional range. When describing

rates of motion with solid-state NMR, it is useful to place motions into three categories:

intermediate, slow and fast.

Intermediate dynamics usually involve hindered jumps such as phenyl ring flips or

sidechain reorientation. Dynamics in this region directly affect the NMR spectrum and

hence fitting lineshapes can be a powerful technique. This is most widely used with static

2



2H lineshapes which change rapidly in width and shape when the jump rate is the order

of the quadrupolar coupling (≈ 200 kHz). Intermediate dynamics can also be observed in

static 1H lineshapes which will narrow with motion on a similar rate to the homonuclear

dipolar coupling (≈ 20 kHz).

Slow dynamics are too slow to directly show up in a spectrum. They typically

involve significant structural rearrangement, for example polymer chain dynamics. Slow

motions are best studied with exchange-type experiments since the motion is often slow

enough to observe a change in chemical shift.

Fast dynamics are too fast to directly show up in a spectrum. They typically

involve weakly hindered entities such as methyl rotation or guest reorientation in a host-

guest system. Fast motions are often studied by T1 relaxation, which is sensitive to

fluctuations in the local field caused by molecular motions on the order of the Larmor

frequency i.e. 100s of MHz. This can provide motional parameters such as activation

energies and rates of motion. Relaxation of isotopically dilute nuclei, such as 13C and 15N,

can be used to obtain detailed dynamic information, for example the molecular moiety

involved or the geometry of the motion. Relaxation of isotopically abundant nuclei, such

as 1H, can provide dynamic information without site resolution.

NMR has been used extensively to characterise dynamic disorder in a wide variety

of materials, such as proteins and biomolecules, metal organic frameworks (MOFs), liquid

crystals, polymers and macromolecules. The focus of the information obtained often varies

significantly on each class of material depending on what is deemed to be relevant in that

field. For example, polymer research tends to focus on side chain dynamics;3 studies on

MOFs often use solid-state NMR to analyse gas adsorption/desorption behaviour, which

is critical for applications in the carbon capture field.4,5 The solid-state NMR of proteins

and biomolecules is heavily focused on determining how hydration levels affect molecular

motion, which gives information about biologically relevant parameters.6–10

1.2 Thesis Overview

This thesis will show how NMR-based techniques can be applied in three types of system

to analyse disorder. Applicable theory is given in Chapter 2 which gives a brief overview

of how NMR works and the basic experimental techniques used in solid-state NMR. The

second half provides a more detailed description of how relaxation and lineshapes can be

used to study motion in solids. Chapter 3 describes some of the specific experimental

techniques common to subsequent results chapters.

Chapter 4 focuses on the dynamics of diamondoids, a series of hydrocarbon molec-

ular cages found in crude oil. The first half of the chapter documents the spectra and

relaxation times of diamantane, triamantane, 1(2)3 tetramantane and cyclohexamantane,

and shows how relaxation can be used to determine motional parameters, such as acti-

vation energies and rates of motion. The strengths and limitations of relaxation data for

determining the geometry of motions is also discussed. The second half of the chapter

3



focuses on second moments, a historical method of describing static 1H lineshapes which

were previously used to understand dynamics in the solid state. They fell out of favour

due to difficulty calculating the second moments of dynamic molecule, as well as the dis-

covery and preferred use of new techniques, such as relaxation, which were often more

informative. This section shows that second moments can still be a useful complementary

tool to relaxation.

Chapter 5 examines the structure and dynamics of hydrazinium magnesium formate

(HMF), a MOF which exhibits unusual phase-dependent relaxor ferroelectric behaviour.

Unlike most ‘so-called’ relaxors, the relaxor ferroelectric behaviour is seen above the phase

transition. NMR is used alongside diffraction studies to understand the dynamics of the

hydrazinium ion above and below the phase transition, which is shown to directly relate

to the material’s macroscopic properties.

Finally, in Chapter 6 the dynamics of the solvent molecules in two cocrystal solvates

of furosemide-picolinamide (FSPA), FSPA ethanol and FSPA acetone are studied. Here,

the standard 2H lineshape and relaxation analyses are more difficult and appear to give

contradictory information. This is explained in the second half of the chapter which uses

molecular dynamics (MD) simulations to show that the solvent molecules are undergoing a

barrierless motion. This means that the standard NMR relaxation analysis, which assumes

motions have an energy barrier, is no longer valid.

4



Chapter 2

Theory of Solid-State NMR

The complete theory of NMR is notoriously complex and a full understanding of even

the simplest experiment is fundamentally impossible without quantum mechanics. How-

ever, there are models and concepts which are used to understand and predict aspects

of NMR without the need for quantum mechanics. The following section focuses on the

semi-classical descriptions which are sufficient for understanding the subsequent results

presented in this thesis. For further details or information regarding quantum mechan-

ical approaches the reader is pointed to the following books: Spin Dynamics: Basics of

Nuclear Magnetic Resonance11 by M. H. Levitt; Understanding NMR Spectroscopy12 by

J. Keeler; Introduction to Solid-State NMR Spectroscopy13 by M. Duer; and Solid-State

NMR Basic Principles & Practice1 by D. Apperley, R. Harris and P. Hodgkinson.

2.1 Nuclear Magnetism

A nucleus has a property known as spin, which, like mass or electric charge, is an intrinsic

property of elementary particles. The spin of a nucleus, I, can take any zero, positive

integer or positive half integer value, and determines the magnitude of the angular mo-

mentum of the nucleus. Quantum mechanics states that a nucleus with spin I has 2I + 1

orientations, each with degenerate energy. For example, 1H, 13C and 15N are spin-12 nuclei

so have two orientations; any nucleus with a spin greater than 1
2 is called a quadrupole

and will have three or more orientations as discussed further in Section 2.4.2.1. When

nuclei are placed in a strong external magnetic field, B0, the energy levels split into non-

degenerate levels with the energy difference, ∆E, proportional to the field strength. This

is shown in Equation 2.1 where γ is the magnetogyric ratio and ~ Planck’s constant, h, di-

vided by 2π. This is known as the Zeeman effect. At equilibrium, the spins will distribute

between the two levels according to the Boltzmann distribution meaning there is a very

small preference for the low energy state. This results in a small net magnetisation, M 0,

within the sample aligned with the magnetic field as described by Equation 2.2, where N

5



is the number of nuclei, k is the Boltzmann constant and T is the temperature.

∆E = γ~B0 (2.1)

M0 =
N(γ~)2B0

4kT
(2.2)

During a pulse sequence, a radio frequency (RF) pulse is applied at the resonant

frequency, or Larmor frequency (νNMR), equivalent to the energy difference of the two

states, as shown in Equation 2.3. This will interact with the nuclear spins in the sample

causing transitions between the energy levels.

νNMR =
∆E

h
=
γB0

2π
(2.3)

2.1.1 The Vector Model

Although each spin system must be treated quantum mechanically, the effects of RF pulses

on a system can be pictured semi-classically with the ‘vector model’. First proposed by

Bloch in 1946, the vector model treats the net magnetisation, M 0, as a vector pointing

along the direction of the applied field (by convention along z).14

In the vector model, when the sample is placed in an external magnetic field, B0,

the bulk magnetisation precesses at frequency νNMR around B0. When there is an applied

RF pulse, the magnetisation also interacts with B1(t), the much weaker RF field at the

frequency νRF. For convenience and simplicity of explanations, experiments are described

in a coordinate frame known as ‘the rotating frame of reference’. This frame rotates

around the z axis in time with the RF field, νRF. In this rotating frame, B1(t) appears to

be static and directed in the xy plane depending on the phase of the pulse. If a pulse is

applied exactly on resonance (νRF = νNMR) then B0 is effectively eliminated and the bulk

magnetisation is affected by B1 only. In this case, the RF pulse rotates the magnetisation

vector in the yz plane.

In a real sample, there will be several resonances due to electron shielding. Each

resonance will have a slightly different Larmor frequency hence νRF = νNMR no longer

holds for every spin in the system.

2.1.2 The Pulse-Acquire Sequence

The simplest method of recording an NMR spectrum is through a pulse-acquire sequence,

also known as direct excitation (DE). Firstly the RF power is applied for the time taken

to rotate the magnetisation 90 °, from the z axis into the xy plane. Since the precession

or nutation rate is dependent on the power of the RF pulse used, the time of the pulse

must first be calibrated at the chosen power with a nutation curve. Secondly, when the

pulse has finished, the precession of the resulting magnetisation is detected in the xy plane
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during the acquisition time. Before another pulse is applied, the system is allowed to relax

back to equilibrium in both the xy plane and z axis.

2.1.3 The Free Induction Decay

After applying a pulse, the precession of the magnetisation induces a small voltage in the

coil of the probe which allows the xy component of the magnetisation to be detected. This

precessing magnetisation oscillates at approximately the Larmor frequency and decays due

to transverse relaxations, hence it is known as the free induction decay (FID). This FID

usually contains multiple signals each with a slightly different frequency which makes it

difficult to analyse directly. Therefore the signal is Fourier transformed which takes the

time-domain signal and converts it into a frequency-domain spectrum.

2.2 Relaxation

Relaxation drives the spins in a sample to equilibrium following a perturbation, such as a

pulse. There are three different relaxation processes that are considered here:

• T1: Spin-lattice relaxation or longitudinal relaxation is the process of returning

the z component of the bulk magnetisation to thermodynamic equilibrium with

its surroundings, the ‘lattice’, in the static magnetic field. It involves the spins

flipping between energy levels so that a Boltzmann distribution can be reached and

is described by an exponential with a time constant T1. In the solid state, T1 can be

significantly longer than the acquisition time, which means a delay is needed between

each repetition to allow the spins to return to equilibrium (see Section 3.3).

• T2: Spin-spin relaxation or transverse relaxation (T2 and T2*) is the process of

the spins exchanging energy with themselves. At equilibrium the xy components

of magnetic moments are randomly distributed in the xy plane meaning there is

no measurable net magnetisation. When an RF pulse is applied, the spins become

coherent. The T2* process is the returning of the xy component of M to zero and

hence causes the FID to actually decay. T2 relaxation is measured from the decay

of the signal from a series of echo experiments. The difference between T2 and T2*

results primarily from inhomogeneities in the magnetic field, i.e. if the magnetic field

were perfectly homogeneous T2 = T2*.

• T1ρ: Spin-lattice relaxation in the rotating frame is the process of returning

the xy component of M 0 to zero in the presence of an RF field. Under these

circumstances, the magnetisation has been spin-locked and so the decay is much

slower than T2 relaxation. It can be likened to T1 relaxation, but instead of applying

to relaxation along B0 it applies to relaxation along B1, the RF field.
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2.3 NMR in the Solid State

The basic principles of NMR in the solid and the solution state are identical, however the

techniques used and the appearance of spectra are very different. Molecules in solution

tumble rapidly and isotropically which leads to the averaging of the internal interactions

to the isotropic value. In solids, molecules are much more restricted so orientationally

dependent interactions will affect spectra. This can reduce spectral resolution and signif-

icantly increase the complexity of spectra. However, this increased complexity hides the

potential to extract far greater information.

2.3.1 Internal Interactions

There are multiple internal interactions which affect NMR. Table 2.1 summarises the most

relevant interactions in solids.

Table 2.1: Properties of internal interactions.

Label
Isotropic

value
Approximate

magnitude / Hz
Shielding σ σiso 102 – 105

Dipolar coupling D 0 103 – 104

Quadrupolar coupling Q 0 103 – 107

2.3.1.1 Shielding

When a sample is placed into an external field, the electrons in the molecules shield

the nuclei resulting in the nuclei experiencing a slightly reduced field. The extent of

the reduction is dependent upon the electronic arrangements in the different chemical

environments in the molecules. This gives rise to chemical shifts where different chemical

environments have different resonant frequencies.

Due to asymmetry of the local electronic environment surrounding the nucleus,

shielding is an anisotropic interaction meaning the magnitude of the shielding depends

on the orientation of the molecule to the field. In solids, anisotropic interactions leads

to powder patterns which are distinctive lineshapes due to the random orientation of

crystallites in a sample. Shielding anisotropy leads to chemical shift anisotropy (CSA),

which can usually be spun out with magic-angle spinning. In the solution state, the CSA,

as with other internal interactions, is reduced to the isotropic value due to rapid molecular

tumbling.

2.3.1.2 Dipolar Coupling

Dipolar coupling is the through-space interaction between two spins. Due to heteronuclear

dipolar coupling, a 13C spectrum of a an isolated carbon-hydrogen pair would appear as

a doublet with the spacing proportional to (3 cos2 θ − 1), where θ is the angle between
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the internuclear vector and the magnetic field. This shows that dipolar coupling is an

orientation dependent interaction. In a powder sample, dipolar coupling results in line

broadening. Dipolar coupling is axially symmetric about the internuclear vector, however

anisotropic motion affecting the two spins involved can cause an asymmetry in the averaged

dipolar coupling tensor.

2.3.1.3 Quadrupolar Coupling

Quadrupolar coupling applies to any nucleus with spin greater than a half. It is an electric

interaction, not a magnetic interaction and it is due to the electric quadrupole moment

(Q), a parameter which gives the effective shape of the nuclear charge distribution. In spin-
1
2 nuclei Q = 0 due to symmetry but quadrupoles can have a positive or negative electric

quadrupole moment which can interact with the electric field gradient and cause extensive

broadening. When present, quadrupolar couplings can dominate the appearance of spectra

since they can be very large, up to 10s of MHz. Quadrupolar coupling and lineshapes are

covered in Section 2.4.2.1.

2.3.2 Basic Solid-State NMR Techniques

2.3.2.1 Solid Echoes

Within an NMR probe, the same coil produces the high voltage RF pulse and detects

the minute FID response. To allow the pulse to fully finish, and give the circuitry time

to settle, there is a period of time, known as the dead time (≈ 6 µs), between the end of

the pulse and the start of the FID recording. With a long FID, the effect of missing the

first few data points is not hugely significant and will at worst result in spectrum phasing

issues which are easily fixed in the processing. However for short FIDs, which are typical

for static 1H and 2H spectra, a significant amount of the signal is lost in the dead time. To

overcome this, an echo is often used for static spectra. After the initial 90 ° pulse, the spins

are all coherent in the xy plane. There is then a delay, τ , when the magnetisation starts to

precess in the xy plane at approximately the νRF. In the rotating frame of reference, the

spins spread out from the y axis in the xy plane due to dipolar interactions, quadrupolar

interactions and/or CSA. After a delay time there is then a refocusing pulse which flips

the spins such that the spins are refocused back to the y axis over a time equal in length

to the first delay, τ . In systems where CSA is the dominant interaction, a 180 ° refocussing

pulse is used and this is known as a spin echo. In systems where dipolar or quadrupolar

interactions are dominant, a 90 ° refocussing pulse is used and this is known as a solid

echo.

2.3.2.2 Cross Polarisation

For dilute nuclei such as 13C and 15N, a simple pulse-acquire sequence typically results in

spectra with low signal-to-noise. To combat this, cross polarisation (CP) is used which
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transfers magnetisation from abundant spin nuclei, such as 1H, to the nuclei of interest.

This improves signal-to-noise in two main ways. Firstly the repetition rate, or recycle

delay, of pulses is determined by the T1 relaxation time (covered in Section 3.3). Since 1H

T1 relaxation times are typically much shorter than 13C/15N relaxation times, there can be

many more repetitions in the same experimental time. Secondly the strength of an NMR

signal depends on the difference in energy, ∆E, which is proportional to the magnetogyric

ratio as shown in Equation 2.3 on page 6. Hence the signal intensity is improved by a

factor of 4 (γ
1H/γ

13C) or 10 (γ
1H/γ

15N) for 13C and 15N spectra respectively.

A basic CP sequence involves an initial 90 ° pulse on the 1H channel with phase

x, bringing the 1H magnetisation into the y axis. A 1H spin-lock pulse with phase y is

then applied with the aim of maintaining magnetisation in the y axis. At the same time,

a contact pulse is applied to the X channel at a calibrated power such that the nutation

rates of each channel are equal (ν1
H = ν1

X)∗. During this contact time, the magnetisation

transfers from the 1H spins to the X spins. The X signal is then recorded, often with 1H

decoupling.

2.3.2.3 Magic-Angle Spinning

Solid-state NMR uses a technique called magic-angle spinning (MAS) to help resolve

signals and reduce the effects of internal interactions. Chemical shielding, dipolar coupling

and quadrupolar coupling all have 1
2(3 cos2 θ− 1) orientational dependence where θ is the

angle between the principal axis and B0. Physically rotating a sample at 54.74 ° will,

in theory, multiply the anisotropies by zero. However, to fully narrow the signal, the

spin rates must be much larger than the size of the interaction. This is possible for

some interactions, such as 13C CSA, difficult for others, such as homonuclear 1H dipolar

interactions, and impossible in others, such as quadrupoles with significant quadrupolar

coupling constants (due to the second order quadrupolar coupling interaction).

If spinning speed is comparable to the size of the interaction, MAS can result

in spinning sidebands, which is explained further in Section 2.4.2. These appear as ad-

ditional resonances spaced at the spinning rate apart from the isotropic chemical shift.

In some instances spinning sidebands can prove useful by providing information about

the anisotropic interaction which is being partially averaged. In instances where side-

bands are not desirable, they can be suppressed through sequences such as total sideband

suppression (TOSS). TOSS uses four 180 ° pulses before the acquisition which effectively

randomises the phases of the spinning sidebands while preserving the phase of the isotropic

resonances.

∗This breaks down at high spinning speeds and instead magnetisation becomes most efficient on a
sideband i.e. ν1

H = ν1
X ± nνr where νr is the spinning rate and n = 1 or 2.
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2.4 Using Solid-State NMR to Study Disorder

Almost all NMR interactions are anisotropic i.e. the strength of the interaction depends

on the orientation of the spin or spins to the applied magnetic field. Solid-state NMR

spectroscopists usually work hard to suppress these anisotropic interactions through MAS.

However, the anisotropic nature of the internal interactions is invaluable when interested

in molecular motion since a molecular reorientation can be observed through the change

of strength of an NMR interaction.

Solid-state NMR is sensitive to motion over many orders of magnitude; the timescale

of the motion dictates the type of experimental techniques that are used. Motion on the

order of Hz-kHz is classed as slow, and is typically measured though exchange-type ex-

periments. Intermediate motion can be measured though lineshapes and is typically on

the order of 10s – 100s kHz. Motions on the MHz timescale can be probed with relaxation

measurements.

2.4.1 Relaxation

Relaxation is driven by molecular motion, and hence measuring relaxation times can

be used to probe molecular motions. Different relaxation types give information about

motions on different timescales. For example, T1 relaxation times will be sensitive to

motions around the Larmor frequency, which is around 100s of MHz depending on the

nuclei studied and magnet used. T1ρ will be sensitive to motion around the spin-lock

frequency, which is typically 10s of kHz. T2 relaxation is rarely used in the solid state

because it is difficult to separate true T2 relaxation from other factors that determine

lineshape.

Only limited information can be gained from relaxation rates without fitting the

data. Data is typically plotted as an Arrhenius plot, with the common logarithm (log10)

or natural logarithm (loge) of the relaxation time plotted against inverse temperature.

This is then fitted to linear combinations of spectral densities with the exact combination

depending on the relaxation mechanism, see Equations 2.6 – 2.8.

Relaxation is the result of fluctuating local magnetic fields which are generated

from within the sample and will be slightly and randomly different for each spin. They

can arise from various sources such as dipolar coupling or CSA. The frequency, ν, of the

random fluctuating fields can be described with something known as the spectral density,

J(ν). This is given by Equation 2.4 where τ c is the correlation time which is defined in

Equation 1.1 on page 2.

J(ν) =
2τ c

1 + (2πντ c)2
(2.4)

Figure 2.1 shows that for faster motions (τ c = 10 ns) the spectral density function

is flatter and extends further, hence the random fluctuating fields can sample a much
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greater range of frequencies. For slower motions (τ c = 100 ns) fluctuating fields are more

restricted to the lower frequencies.

Figure 2.1: A plot to show the spectral density as a function of frequency at three different
correlation times.

If a random fluctuating local field happens to be oscillating at the Larmor frequency,

it can cause the magnetisation of an individual spin to change orientation, which drives

the bulk magnetisation towards equilibrium. An individual experiment is sensitive to

random fluctuating fields at one particular frequency i.e. 500 MHz for 1H T1 relaxation on

a 500 MHz spectrometer. Figure 2.2 shows a log-log plot of τ c vs J(ν) for three particular

frequencies. Note that the gradients are the same for each frequency but the maximum is

different for each correlation time. For a given frequency, ν, the spectral density reaches

a maximum when τ c ≈ (2πν)−1. In the extreme narrowing condition, which applies to

fast molecular motions, relaxation rates are proportional to τ c. In the rigid lattice limit,

which applies to slow molecular motions, relaxation rates are proportional to τ c
−1.

Figure 2.2: A log-log plot to show the spectral density as a function of correlation time.

For thermally activated processes, the correlation time is related to the activation

energy, Ea, through Equation 2.5 where R is the gas constant, τ0 is the pre-exponential
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factor and T is the temperature. Plotting a graph of ln(T1) against 1
T will have a gradient

proportional to Ea or −Ea.

τ c = τ0 exp

(
Ea

RT

)
(2.5)

For homonuclear dipolar relaxation driven by isotropic motion with Larmor frequency ν0,

or quadrupolar relaxation with Larmor frequency ν0, relaxation times are fitted to:

T −11 = AJ(ν0, τ c) + 4AJ(2ν0, τ c) (2.6)

where A is a scaling constant. For heteronuclear dipolar relaxation driven by isotropic

motion (e.g. for relaxation of protonated carbons) with spins S(13C) and I(1H) with Larmor

frequencies ν0S and ν0I respectively, relaxation times are fitted to:

T −11 = AJ(ν0I − ν0S, τ c) + 3AJ(ν0, τ c) + 6J(ν0I + ν0S, τ c) (2.7)

For relaxation around B1 with frequency ν1:

T −1
1ρ ∝

(
3

2
J(ν1, τ c) +

5

2
J(ν0, τ c) + J(2ν0, τ c)

)
When T1 >> T1ρ (generally the case):

T −1
1ρ ' AJ(ν1, τ c) (2.8)

These equations are described by Bakhmutov.15 Using Equations 2.4 – 2.8, the relaxation

times are fitted to an Ea, a pre-exponential factor, τ0, and a scaling constant, A. To make

the fitting more stable, the latter two parameters are fitted as a logarithm. This allows the

parameters to be fitted to a limited range of linear values, instead of a significant range

spanning many orders of magnitudes, by effectively taking the log of Equation 2.5.

There are important differences between analysing relaxation times of abundant

and dilute spins. The data is fitted to slightly different equations (given above) and how

the data can be used to infer motional geometry is also different. The relaxation times of

abundant nuclei, such as 1H, are equalised due to efficient spin diffusion between protons

averaging the relaxation times of individual spins. This means that one set of motional

parameters is calculated for the whole molecule, which can make interpreting the values

more difficult. With dilute nuclei, lack of spin diffusion means that specific relaxation

times can be calculated for each site. This can be used to infer the geometry of motions

by comparing the relaxation times of each site.
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2.4.2 Lineshapes

The effects of motion can be seen in NMR lineshapes in many different ways depending on

the dominant interactions in the system. Before discussing how molecular motion affects

the lineshapes and linewidths of resonances, it is important to understand the factors that

determine the linewidth and how they are affected by various experimental parameters.

Internal interactions are classed as either homogeneous (homonuclear dipolar cou-

pling) or inhomogeneous (CSA, heteronuclear dipolar coupling and first order quadrupolar

coupling) depending on how they behave under MAS: the distinction is subtle and orig-

inates in the quantum mechanics. Homogeneous interactions are not refocused by MAS,

whereas the inhomogeneous interactions are refocused every rotor cycle, which is seen as

rotary echoes. This explains why moderate spinning does not produce spinning sidebands

in a 1H spectrum in the same way it does in a 13C spectrum.

Figure 2.3 demonstrates the effects of spinning on a sample with moderate inho-

mogeneous interactions and a T2 of 2 ms. The green lines show the FID and spectrum of a

static sample. The lineshape is broad due to internal interactions which cause the signal

to decay more quickly. It is important to note that T2 remains unaffected; it is the de-

phasing that is rapid and causes broad lines in the spectrum. The red lines show the FID

and spectrum of a sample spinning fast relative to the internal interactions. The internal

interactions have been averaged to zero and no longer influence the spectrum. This means

that the linewidth is only affected by the T2 relaxation time, i.e. the irreversible decay of

magnetisation in the xy plane. The black lines show the FID and spectrum of a sample

being spun at a rate similar to that of the interactions. The interactions have not been

fully averaged so the signal rapidly decays. However, under MAS, the evolution of the

magnetisation is refocused over a rotor period, forming rotary echoes in the FID. These

are seen as a series of spinning sidebands, where the width of each band is determined by

the T2 relaxation time and the overall pattern width determined by the initial decoherence.

There are however other factors that also contribute to broadening. The widths of

NMR resonances can be broken down into homogeneous and inhomogeneous contributions.

In solution-state spectra, the homogeneous linewidth is the result of the T2 relaxation, and

the inhomogeneous linewidth is caused by magnetic field inhomogeneities. In solid-state

spectra, there are many more factors that determine the width of resonances, a brief

overview of which is given below.

Just as in solution, the homogeneous linewidth is determined by the T2 relaxation,

which is the overall loss of phase coherence and the cause of irreversible decay of magneti-

sation in the xy plane. However, in solids it is difficult to determine whether the cause

of this decay is due to T2 relaxation or residual dipolar coupling. For example, static 1H

linewidths are broad not because of a short T2 but because of strong homonuclear dipolar

couplings between protons causing rapid dipolar dephasing.

Inhomogeneous contributions are also more complex in solid-state NMR. In solu-

tion, each site has an identical environment and spectra have narrow resonances with a
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Figure 2.3: Schematic demonstration of the effects of spinning on inhomogeneous interac-
tions. Whole (top) and magnified (middle) FIDs and spectrum (bottom).

defined chemical shift. In solids, particularly amorphous solids, the local environment of a

site can vary significantly and so the chemical shift distribution will be broader. Magnetic

field inhomogeneity is likely to have a negligible effect on solid-state spectra since there

are so many other significant causes of line broadening in the solid state. For this reason,

shimming the probe is less of a priority in solid-state NMR compared to solution state.

The overall lineshape of a resonance is a combination of the homogeneous and in-

homogeneous lineshapes contributions, however the observed spectrum will primarily be

a result of the most dominant contribution in the system of interest. The effect of chang-

ing experimental parameters differs depending on what the most dominant contribution

is. For example, the linewidths in non-crystalline samples have significant inhomogeneous

contributions from the variable environments of each site. Additionally, aromatic systems

have a large anisotropy of the bulk magnetic susceptibility, which also contributes to in-

homogeneous broadening. This type of broadening will scale with magnetic field strength,

which explains why for systems dominated by inhomogeneous broadening, there is no ben-

efit in terms of spectral resolution going to higher magnetic fields.1 Dilute spins, such as
13C or 15N, are affected by the heteronuclear dipolar coupling and hence the linewidths are

very sensitive to the efficiency of the 1H decoupling. This is why CH2 resonances are often

broader than CH or unprotonated carbons and hence faster MAS does not significantly

narrow 13C or 15N resonances. However, spectra of abundant spins, such as 1H, 19F or
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31P, often benefit from fast MAS since the dominant contribution to the overall linewidth

is strong homonuclear couplings that are reduced by increased spinning speeds.

Just as changing experimental parameters has different effects on linewidths de-

pending on the dominant contribution, the effects of molecular motion on linewidths also

depends on the dominant contribution in the individual system. Molecular motion drives

T2 relaxation so in the absence of coherent† interactions, linewidths of static molecules will

be narrower. However, as explained above, the dominant factors contributing to linewidth

are usually due to internal interactions and not T2. For example, with static 1H spectra

the dominant contribution is homonuclear dipolar coupling between protons. Any motion

which averages this dipolar coupling, i.e. motion above approximately 10 kHz, will have

the effect of reducing the linewidth. Different types of motions, such as isotropic motion or

rotation about an axis, will average the homonuclear dipolar coupling by different amounts

and cause the linewidth to reduce in a predictable way, as discussed in Chapter 4.

For proton decoupled 13C/15N spectra, the effect of motion is a little more complex.

Molecular motion at a similar rate to the RF (typically 60 – 100 kHz) will disrupt the

averaging of the RF radiation which causes the decoupling to be less effective and so

lines will be broader. Similarly, motion on the order of the MAS rate (typically 10 kHz)

can disrupt the refocusing of the magnetisation every rotor period which also causes line

broadening. Both types of interference-based broadening can be used to estimate a rate

of motion if the extreme narrowed line is measured at a different temperature. There are

cases when lines are so broad that they are no longer visible. This is difficult to overcome,

since the experimental range of both decoupling power and MAS rate is extremely limited.

Usually the best tactic in this instance is to change the temperature to take the rate of

molecular motion outside of the interference range.

Lineshapes for quadrupolar nuclei may be dominated by the quadrupolar interac-

tion. This can lead to very broad patterns that are experimentally difficult to record.

Deuterium, however, has a particularly small quadrupole moment giving quadrupole cou-

pling constants (CQ) around 200 kHz, making it particularly amenable to NMR study.

2.4.2.1 Quadrupoles

As stated previously, a nucleus with spin I will have 2I + 1 orientations each with degen-

erate energy. The Zeeman effect splits the energy levels equally when placed in a magnetic

field. This is given by Equation 2.9, where ω0 is the splitting, γ is the magnetogyric ratio

and B0 is the static field. For spins that are greater than a 1
2 , the first order quadrupolar

interaction modifies each spin level which results in the splitting no longer being equal, as

shown in Figure 2.4. A single crystal with spin 1 would have two peaks split by 2ωQ, which

is equal to 3
4CQ. In a powder this becomes a Pake doublet due to powder averaging, see

†Coherent interactions/processes refer to interactions that are not random so can in principle be re-
versed. These include all internal interactions, magnetic field inhomogeneities and chemical shift distri-
bution which can be refocused with an echo. Molecular motion is an example of an incoherent process
because it is inherently random.
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Figure 2.5, with the horn separation equal to 2ωQ in the absence of motion. ωQ is given

in Equation 2.10 where CQ is the quadrupolar coupling constant, θ and φ give the polar

angles between the static magnetic field and the X–D bond, and ηQ is the asymmetry

parameter.

ω0 = γB0 = 2πνNMR (2.9)

ω
Q

=
3CQ

4I(2I − 1)
× 1

2
(3 cos2 θ − 1 + ηQ sin2 θ cos 2φ) (2.10)

Figure 2.4: Energy level diagram for a spin 1 system. ω0 is the splitting due to the Zeeman
interaction and is given in Equation 2.9. ωQ is the change of each splitting that is due to
the quadrupolar interaction and is given in Equation 2.10.

Figure 2.5: A Pake doublet.

Like other interactions, first order quadrupolar coupling has a 3 cos2 θ − 1 depen-

dence so can, in principle, be spun out by MAS. However in practice this is unlikely to

ever be practically feasible because of the size of the coupling. There is also a second order

quadrupolar interaction, which further affects the positions of the energy levels, however

it is negligible for nuclei with small quadrupolar coupling constants and so ignored here.

The first order quadrupolar coupling is independent of field and the second order term

depends inversely on field, which is why larger magnetic fields are advantageous when

studying most quadrupolar nuclei.
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Quadrupolar lineshapes are directly affected by different types of molecular motion.

For deuterium, a spin-1 nucleus, axially symmetric motions such as Cn jumps, where n ≥ 3,

conventional Pake doublets are seen because 〈ηQ〉 = 0. For the non-axially symmetric

cases, which include C2 jumps, 〈ηQ〉 6= 0 so the powder patterns are different and hence

the Pake doublet is altered. Figure 2.6 shows a typical bandshape for molecules undergoing

a 2-site and a 3-site jump.

Figure 2.6: Simulated deuterium spectra of a 40 ° 2-site and 3-site jump in the fast limit
(10 MHz). Initial parameters: CQ = 200 kHz, ηQ = 0.

The cone angle‡ has a significant impact on the spectra. The spectra of a 3-site

jump, shown in Figure 2.7a, are identical to the static spectrum reduced by a factor of

(3 cos2 θ − 1)/2 where θ is the cone angle. The spectra of 2-site jumps are also scaled

by the angle of rotation but this dependence is more complex in cases where ηQ 6= 0, as

shown in Equation 2.10. At cone angles <15 ° the pattern is not greatly affected.

The spectra shown in Figure 2.6 are simulations of molecules in the fast limit.

For samples with intermediate motions, distorted spectra are produced. This creates an

additional layer of complexity when trying to fit deuterium lineshapes, however in principle

it does allow for the determination of both the type and the rate of motion.

‡Molecular motion is often described with a cone angle which describes the motion of the C–D bond
on a cone. In this model, θ is defined as half the opening angle of the cone.
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(a) 3-site jump. (b) 2-site jump.

Figure 2.7: Simulated deuterium spectra with variable cone angles in the fast limit.
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Chapter 3

Experimental Techniques

3.1 Temperature Calibration

The temperature of a sample inside a rotor cannot be measured directly. Instead, a

thermocouple positioned near the rotor measures the temperature of the outgoing gas

stream. However, this may not give an accurate representation of the sample temperature.

To record an accurate temperature of the sample, the temperature of each probe at

a given set temperature was calibrated using methanol (180 – 300 K) and ethylene glycol

(300 – 380 K). The shift difference was measured between 1H signals and the true temper-

ature calculated from Equations 3.1 and 3.2 which are given in the Bruker VT-calibration

manual.

T (K) = 466.4− 101.24× δ(ppm) (3.1)

T (K) = 403.0− 29.46δ(ppm)− 23.83× δ(ppm)2 (3.2)

Linear regression was used to give the equations for calibrated temperatures, these

are given in Equations 3.3 and 3.4 for static samples in the 5 mm static probe on the

400 MHz spectrometer and static samples in the 4 mm MAS probe on the 500 MHz spec-

trometer respectively.

In all subsequent documentation of temperature, calibrated temperatures have been

reported, for temperatures above 380 K values were extrapolated. For spinning samples,

there will be additional heat generated from friction. However since both ethylene glycol

and methanol are liquids, the sample could not be spun in the probe without leakage.

Previous calibrations with lead nitrate have shown an increase of 10(2) K for 10 kHz spin-

ning speed.16 Hence Equation 3.5 has been used to calibrate experiments taken at 10 kHz

MAS spectra on the MAS probe. Uncertainties calculated from error propagation indicate

that the calibrated temperatures are accurate to 4 K (ν = 400 MHz, static, static probe),

3 K (ν = 500 MHz, static, MAS probe) and 5 K (ν = 500 MHz, MAS = 10 kHz, MAS

probe). Uncertainties may be larger above 380 K due to extrapolation. There will also
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be thermal gradients within the rotor with variation increasing with larger rotor sizes and

MAS rate. The thermal gradient has been estimated to be up to 4 K for a 4 mm sam-

ple spun at 10 kHz.17 In relaxation measurements, these uncertainties from temperature

measurements have not been included in uncertainty of rate calculations for simplicity.

T calib(K) = 1.461(7)× T set(K)− 134(3) K (3.3)

ν = 400 MHz, Static, Static probe

T calib(K) = 1.268(5)× T set(K)− 74.1(18) K (3.4)

ν = 500 MHz, Static, MAS probe

T calib(K) = 1.268× T set(K)− 64(4) K (3.5)

ν = 500 MHz, MAS = 10 kHz, MAS probe

The gradients in Equations 3.3 – 3.5 are unexpectedly large however the calibra-

tions have subsequently been confirmed from known phase transitions of diamantane in

Chapter 4 and HMF in Chapter 5.

3.2 Relaxation

3.2.1 Measuring T 1

There are two main methods of recording T1 relaxation times: saturation recovery and

inversion recovery. Saturation recovery uses DE to saturate spins and observe how they

return to equilibrium. It is used for recording 1H T1 relaxation times and can be used

for 13C relaxation times if there is sufficient signal with DE. It has the advantage of not

requiring a long recycle delay since the spins are saturated at the start of each sequence.

Inversion recovery inverts the signal and observes how it returns to equilibrium. It has

the advantage of observing a larger signal range, fully negative to fully positive, however

the time between pulses must be at least 5 × T1 to allow signals to fully relax.

3.2.1.1 Saturation Recovery

Saturation recovery uses multiple 90 ° pulses in quick succession to saturate the spins.

They are then left to recover during time τ , after which a 90 ° pulse is applied and the

signal recorded, as shown in Figure 3.1a. This is fitted using python to Equation 3.6 (where

S∞ is the maximum signal strength) in order to determine T1. For proton relaxation, the

signal is acquired after a solid echo shown in Figure 3.1b. For 13C relaxation, proton

decoupling is used throughout the acquisition time.

S(τ) = S∞

(
1− exp

(
− τ

T1

))
(3.6)
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a)

b)

c)

d)

e)

Figure 3.1: Pulse sequences used for measuring relaxation times: a) saturation recovery;
b) saturation recovery with a solid echo; c) inversion recovery; d) Torchia; and e) pulse
sequence for measuring T1ρ relaxation times by varying the spin-lock pulse duration. Echo
delay = t and variable delay = τ.

3.2.1.2 Inversion Recovery

Inversion recovery places the magnetisation in the −z axis with a 180 ° pulse. The mag-

netisation relaxes during time τ after which a 90 ° pulse is applied and the signal recorded

as shown in Figure 3.1c. The recovery is fitted in python to the Equation 3.7. This ex-

periment was used to measure the relaxation of dilute spins through a CP experiment.

S(τ) = S∞

(
1− 2 exp

(
− τ

T1

))
(3.7)
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The Torchia pulse sequence is often used instead and is shown in Figure 3.1d. It

results in spectra with only positive peaks which decay according to the Equation 3.8.

S(τ) = S0 exp

(
− τ

T1

)
(3.8)

3.2.2 Measuring T 1ρ

Proton T1ρ values were acquired by varying the duration of the spin-lock pulse and mea-

suring the signal intensity with a solid echo, as shown in Figure 3.1e. The signal intensity,

S(τ), was plotted as a function of the duration of the spin-lock pulse, τ . The signal decays

according to Equation 3.9 where S0 is the signal at τ = 0.

S(τ) = S0 exp

(
− τ

T1ρ

)
(3.9)

There are multiple factors to be considered when choosing an appropriate list of

variable delays for T1 or pulses for T1ρ. Firstly, if time permits, and signal-to-noise ratio

sufficient, 16 increments are ideal, more is better if trying to fit to two exponentials.

Secondly, the longest pulse (or delay) should be at least 3 × the longest T1 (or T1ρ), so

that the majority of the decay or rise is recorded. Lastly, increments should be chosen

approximately equally spaced in log(time) such that any sample with multiple decays

would be equally well characterised. For example, to measure the relaxation of a sample

with a T1 of 10 s, the following delays would be ideal: 0.10, 0.15, 0.20, 0.30, 0.50, 0.80,

1.1, 1.7, 2.6, 3.8, 5.8, 8.6, 13, 20, 30 and 50 seconds.

3.3 Recycle Delay

NMR is an insensitive technique and so experiments are repeated, and each FID summed,

in order to improve signal-to-noise ratio. Signal strength is proportional to the number of

repetitions, n, however the noise in the spectrum is random so will increase proportionally

with
√
n. Hence increasing the number of repetitions, increases the signal-to-noise ratio.

The time between each experiment is known as the recycle delay and getting it right

allows for the maximum signal-to-noise ratio to be acquired in a given period of time. It is

determined by T1 since it is necessary for the bulk magnetisation to return to equilibrium

before the next pulse can be applied. Waiting longer between repetitions allows for more

signal to be acquired with each repetition but fewer repetitions to be performed in a set

period of time. Figure 3.2 shows the balance of these factors. The blue line shows that

the longer the recycle delay, the greater the signal acquired per repetition and has been

calculated from Equation 3.10. It is typical to wait 5 × T1, equivalent to 99.3 % of the

maximum, for experiments which require a ‘fully’ recovered signal. This is balanced by the

number of repetitions that can be acquired in a set period of time. The green line shows

that the shorter the recycle, the greater the signal acquired because there is a greater

number of repetitions per unit time. This increased number of repetitions causes a huge
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rise in the noise acquired which initially drops faster than the signal acquired per unit

time (red line). This causes a peak in the signal-to-noise ratio when the recycle delay is

1.26× T1, as shown with the black line.

Mz(t) = M0

(
1− exp

(
−t
T1

))
(3.10)

Figure 3.2: Signal intensity for a given recycle delay.

Table 3.1 shows that the maximum signal-to-noise ratio is unexpectedly tolerant

to different recycle delays. By using a recycle delay between 1.00 and 1.57 × T1, 99 %

of the maximum signal-to-noise ratio will be obtained. The third column is useful when

the T1 value is unknown and the recycle delay is determined by running an optimisation

experiment i.e. keeping all parameters the same and varying the recycle delay. The max-

imum signal-to-noise ratio is acquired when the signal strength is 72 % of the maximum.

This is only true for experiments where the recycle delay is the rate determining step

such as a standard CP spectrum. For experiments with long delays, such as relaxation

measurements, there may be signal-to-noise improvements from using a longer recycle

delay.

All spectra in this thesis use an ‘approximately optimised’ recycle delay. This

equates to a recycle delay between 1.0×T1 and 1.6×T1 if known, or 63 – 79 % of full signal

otherwise.
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Table 3.1: Signal-to-noise ratio for a given total experiment time.

S/N % of max Recycle delay / T1 % Full signal
90 0.57 43
95 0.73 52
99 1.00 63
100 1.26 72
99 1.57 79
95 2.08 88
90 2.59 92

3.4 Fitting Quadrupolar Lineshapes

As described in Section 2.4.2.1, quadrupolar spectra have characteristic lineshapes for

reorientation-type motions which depend on cone angle and the symmetry of the jump.

Spectra in the slow or fast limit (<1 kHz or >10 MHz) are easy to directly fit using SOLA

in TopSpin, which will fit the spectrum to a CQ and an ηQ. However, for molecules with

intermediate motion, there are no options for fitting the resulting spectrum. Instead,

a model must be suggested from which a spectrum is predicted at various rates. The

two programs used in this work are EXPRESS18 and Weblab.19 These programs predict

spectra from Markovian jump dynamics and produce almost identical results but differ in

the input requirements as well as their ease of use. Weblab simulates molecular motion

based on jumps around a cone which is easy to visualise and only requires the input of a

cone angle. EXPRESS works off polar coordinates which is often more complex but can

be used more universally to describe any motion.
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Chapter 4

Exploring Second Moments as a

Tool for Understanding the

Dynamics in Diamondoids

Diamondoids are a series of saturated hydrocarbon molecular cages with a structure that

can be superimposed onto a 3D diamond lattice. Adamantane is the smallest, consisting of

alternating CH and CH2 groups, forming a single caged unit. Each subsequent diamondoid

contains an additional face-fused adamantane unit, as shown in Figure 4.1. The lower

diamondoids (adamantane, diamantane and triamantane) have only one isomer, but as

they get larger, they have an increasing numbers of isomers. Diamondoids up to 11 caged

units have been found in minute quantities in crude oil, with the majority being substituted

and unsubstituted adamantanes and diamantanes.20 The lower diamondoids can also be

synthesised through thermodynamically controlled carbocation rearrangement. However

this is not possible for larger diamondoids due to the large number of polycyclic precursors

which become trapped in local minima.21

Figure 4.1: Skeletal structures of a selection of diamondoids
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Due to their six or more linking groups, molecular stiffness and unique thermal

and chemical stability, diamondoids have been used in a variety of fields and in many

different ways. For example, in polymers they can improve thermal stability by impeding

degradation reactions from either nucleophilic or electrophilic attack.22 In the field of

nanotechnology, just like fullerenes, the multiple linking groups make diamondoids useful

molecular building blocks, allowing the construction of 3D structures.23

There is also research into diamondoids in the oil and gas industry mainly to

reduce their costly impacts. There are many unwanted organic molecules within oil,

but most will crack at high temperatures. Diamondoids are uniquely stable and have

higher melting points meaning they can precipitate in pipelines leading to problems in

the extraction, processing and transport of oil.24 Conversely, diamondoids have also been

used to fingerprint, identify and estimate the degree of oil cracking in underground oil

reservoirs.25,26

There are several reasons why diamondoids are an interesting class of molecules

when studying dynamic molecules. Firstly, they are rigid carbon cages, meaning molec-

ular motions affect the whole molecule. It is unusual for a system to have the whole

molecule affected by the same motion and not have analyses complicated by additional

sub-group motion, such as methyl group rotation. Secondly, the weak intermolecular inter-

actions allow for significant molecular motions at experimentally accessible temperatures.

Adamantane, for example, is used as a reference sample in solid-state NMR, as the rapid

isotropic tumbling at room temperature gives very sharp NMR lineshapes. Finally, they

are a series of molecules with increasing sizes, which allows methodology to be tested on

similar but different test compounds.

This chapter focuses on the dynamics of four diamondoids: diamantane, triaman-

tane, 1(2)3 tetramantane and cyclohexamantane. Diamantane has been previously well

characterised,27 but larger diamondoids have not, largely because they are very difficult

molecules to obtain. Only very small quantities of samples were available (approximately

40, 20 and 5 mg of triamantane, 1(2)3 tetramantane and cyclohexamantane respectively)

and so the interest is showing how well we can understand these materials based on only

milligrams of material. Initially the discussion focuses on how relaxation measurements

can be used to understand the nature of the motions as well as giving activation energies

and rates of motion. The latter section seeks to determine if the gaps in understanding

from relaxation measurements can be filled with data from second moments - a historical

method of summarising 1H lineshapes. The methods used to measure a second moment

from a spectrum are discussed, before applying the different methods to static 1H line-

shapes of each diamondoid. Finally these values are compared with simulated values,

calculated based on static and fast rotation about specified axes, to reveal whether the

second moments still have utility.
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4.1 Background

4.1.1 Second Moments

The linewidths of 1H solid-state spectra are dominated by dipolar couplings between 1H

spins. These dipolar couplings between protons are typically very strong, meaning 1H

lineshapes are typically broad and featureless. However, this does not mean they are

without use. Since molecular motions reduce the effect of dipolar couplings on a spectrum,

the 1H linewidth is a direct probe of molecular motion. For a static system, or one with

dynamics significantly less than 50 kHz, the 1H lineshape will appear as a classic ‘static’

pattern – a broad lineshape typically greater than 50 kHz. As molecular motion increases,

the dipolar couplings are averaged causing a reduction of the linewidth. At the extreme,

a system undergoing isotropic rotation where molecules move relative to one another, the

dipolar contribution to linewidth will be reduced to zero. In this instance, the linewidth

would be less than a few kHz.

Second moments are a method of describing the lineshape with a single number,

typically in Hz2 but historically in Gauss2 or G2. For years second moments were used as

the main indicator of molecular motion in solids.28 They fell out of favour with two major

technological improvements, relaxation measurements and alternative nuclei. There are

several valid reasons for this: relaxation times are sensitive to a much greater range of

motions compared to linewidths and give better insights of motional parameters such as

activation energy and correlation times; and alternative nuclei often give dynamic infor-

mation which was site specific and hence can be used to deduce the type of motion. Under

many circumstances these newer methods will be more informative. Nevertheless, second

moments do retain some important advantages. The first is that the second moment is

dependent on the geometry of motion and hence second moments can be used to verify

different models of rotation without 2H labelling.28 1H relaxation times will give motional

parameters, but will give no information about the type of motion. Other advantages

include experimental simplicity: 1H has the highest receptivity of any nucleus so signal-

to-noise ratio is high; there is no requirement for CP and there is no MAS; and static

probes can often operate over a wider temperature range. It is often not possible to get

a full relaxation curve due to temperature restrictions from the equipment or the sample

and even with a full relaxation curve, interpreting relaxation times can be difficult (as

discussed in Chapter 6).

The challenge associated with second moments can be divided into two areas:

determining the second moment of a spectrum and the theoretical calculation. The exper-

imental determination of a second moment from a spectrum is an unexpectedly difficult

task. Explanations in the literature can be vague and the calculation of second moments

by direct integration of the lineshape is highly unstable. The theoretical calculation is

relatively simple for static molecules and involves a pair-wise sum of all the intra and inter
1H – 1H interactions. The challenge arises when determining how these interactions, in

particular, the intermolecular interactions, are affected by molecular motions.
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As explained, historically second moments are typically quoted in G2. G is an

old unit for magnetic field strength equal to 1× 10−4 T. Before Fourier transform NMR

became the standard, spectra were obtained through continuous wave NMR where the

response is measured at various field strengths, measured in G, using a fixed νRF. Hence old

spectra were plotted in terms of G instead of ppm or kHz. In NMR magnetic field strengths

and frequencies are often used interchangeably; an 11.7 T magnet will be described as a

500 MHz which technically describes the 1H Larmor frequency at that field. The formula

for the conversion is given by Equation 4.1 where νNMR is the resonance frequency, γ is

the magnetogyric ratio and B0 is the field strength.

νNMR =
γ

2π
B0 (4.1)

For 1H:

γ/(2π) = 42.58 MHz T−1

1 G = 1× 10−4 T. Hence:

γ/(2π) = 4.258 kHz G−1

With magnetic fields, 42.58 MHz T−1 can be used to convert magnetic fields in T to 1H

Larmor frequencies in MHz. With 1H second moments, (4.258 kHz G−1)2 can be used to

convert G2 to kHz2. In other words:

M2(kHz2) = 18.13 kHz2 G−2 ×M2(G
2) (4.2)

4.1.2 Diamantane

Diamantane is the second member in the diamondoid series and consists of two face-fused

adamantane cages. It belongs to the D3d point group and has one C3 axis and three

equivalent C2 axes. It was initially called congressane after it was chosen as the congress

emblem of the 1963 London IUPAC meeting and attending chemists were challenged to

synthesise it. Upon the discovery of further diamondoids, the name was changed to fit into

a logical naming sequence. Diamantane is the largest diamondoid which is commercially

available. The crystal structure was determined in 1965 by Karle et. al and is shown in

Figure 4.2.29

As had already been reported with adamantane, diamantane was found to have

multiple solid-solid phase transitions below its melting point at 518 K.30 These were first

reported by Clark et. al at 415 K and 447 K31 from differential scanning calorimetry (DSC)

but later revised by Spinnella et. al to 407 K and 440 K.23 This was confirmed by Jenkins

et. al by Raman spectroscopy, as well as reporting a low transition at 35 K.32 The phases

of diamantane are summarised in Table 4.1.
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Figure 4.2: Crystal structure of diamantane, refcode CONGRS.29

Table 4.1: Phases of diamantane.23

Phase Temperature range
IV Below 35 K
III 35 - 407 K
II 407 - 440 K
I 440 - 518 K

Solid-state NMR data was reported in 1978 by Britcher and Strange.27 They used

static 1H second moments and relaxation times to explore the dynamics of diamantane in

phases I, II and III. These results are shown in Figures 4.3 and 4.4.

Figure 4.3: Second moment data given in G2 at 14.3 MHz from Britcher and Strange.27

TP is the transition point.

Many examples in the literature do not give methods for calculating second mo-

ments and most do not give uncertainties on values, however Britcher and Strange did

give some information on both counts. Second moments were calculated by fitting the

FIDs, with and without a solid echo, to a Gaussian to calculate a second moment (see

Section 4.4.1 for more details). They described difficulties with this method due to “the
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Figure 4.4: 1H relaxation measurements of diamantane: T1 at 14.3 MHz (◦) and T 1ρ at
43 kHz (

`
) and 31 kHz (4) from Britcher and Strange.27 T2 relaxation measurements (•)

given in phase I are not discussed here. TP and MP are the transition point and melting
point respectively.

effect of higher moments and the fact that the echo peak occurs at a time which is not

exactly twice the pulse-to-pulse interval”.27 With this in mind, but without further in-

formation given, errors were estimated to be 15 % with a solid echo and 25 % without for

their experimental conditions. Given that static 1H lineshapes typically have good signal-

to-noise ratio, these error value estimations are large suggesting that absolute values of

M2 are intrinsically difficult to measure robustly. Second moments and their uncertainties

reported by Britcher and Strange are summarised in Table 4.2, given in G2 and converted

to kHz2 for future comparison.

Table 4.2: Second moments of diamantane determined by Britcher and Strange.27

Temperature / K Phase M 2 / G2 M 2 / kHz2

95 – 135 III 26.2(6.6) 480(120)
200a III 5.3(8) 96(14)
350a III 4.3(7) 78(13)
409a II 2.7(5) 49(9)

442.5 I 0.54(4) 9.8(7)

a Reported the lowest temperature of a plateau region. M2

given at that temperature.
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Britcher and Strange recorded the second moments of diamantane which showed

significant drops at each phase transition. Within phase III there were two steep drops in-

dicating the introduction of motions at specific temperatures. Between the drops, plateau

regions show steady reductions in second moments indicating an overall increase in mo-

tion. Some conclusions were made with confidence: between 95 – 135 K the second moment

was consistent with the value for the rigid lattice; and there was no isotropic rotation in

phases II and III since the second moments were greater 20 kHz2. However, by their

own admission, conclusions about specific motions were difficult since the estimation of

the intermolecular component of second moment was crude. Multiple principal axes of

reorientation are proposed including around a space conserving C3 axis, a perpendicular

C2 axis as well as an ‘L’ and an ‘M’ axis, as shown in Figure 4.5. It is suggested that

the plateau between 200 – 300 K is due the C3 rotation. The possible additional plateau

at 350 K which “may exist although this is uncertain due to the scatter in the data” is

assigned to an ‘L’ axis rotation which is in effect a wobble about a C3 axis.27

Figure 4.5: Principal axes of rotation given by Britcher and Strange.27

1H T1 and T 1ρ relaxation times were also used to analyse the dynamics. Below

300 K, the gradients of both the log10(relaxation time) vs reciprocal temperature plots

have the same gradient suggesting that the two relaxation measurements are sensitive to

the same motion. Above 300 K, a new relaxation mechanism becomes predominant with

the T 1ρ relaxation times showing a second minimum at 373 K. The motion associated

with this minimum has a much greater activation energy measured to be 94(10) kJ mol−1.

They attribute this, along with a small drop in the second moment at 350 K, to a rotation

about the ‘L’ axis.

Conclusions about the motion in phase II were difficult to draw. It appeared that

both T1 and T 1ρ relaxation times were affected by the same motion with an activation

energy of 55(5) kJ mol−1. It was suggested that this could be the ‘L’ axis motion with the

barrier significantly reduced in the new phase.

Based on the significant reduction of second moments in phase I, it is reasonably

assumed that there is diffusion behaviour in this temperature region. Britcher and Strange

calculated the mean residence time, τ in this region using T2 and T 1ρ measurements at

43 kHz2 and 31 kHz2 and plotted against reciprocal temperature to calculate an activation
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energy in this region of 99.7(1) kJ mol−1. This value is very similar to the activation energy

found from the T 1ρ relaxation in the higher temperature region of phase III. Although not

mentioned in the paper, it is possible that the T 1ρ above 300 K in phase III is sensitive to

the beginning of the diffusion behaviour.

4.1.3 Triamantane

Triamantane is the third member of the diamondoid series and consists of three face-fused

adamantane cages. It belongs to the C2v point group and has one C2 axis and two mirror

planes. The crystal structure of triamantane33 determined by Khusnutdinov et. al is shown

in Figure 4.6. The C2 axis remains in the crystal symmetry.

Figure 4.6: Crystal structure of triamantane at 120 K, refcode TRIAMT01.33

Solution-state NMR has been reported for triamantane and a 13C spectrum was

assigned from homonuclear correlation spectroscopy (COSY) and heteronuclear multiple

bond coherence (HMBC).33,34 There have been no solid-state NMR of triamantane results

published. Triamantane was first synthesised in 1966 by Schleyer et. al by an acid catalysed

rearrangement of an isomeric precursor.35 They reported a melting point of 494 K which

was confirmed by Burns et. al who also found a solid-solid transition at 428 K.36 Using

X-ray diffraction (XRD) Cernik et. al found a gradual transition from an ordered phase

at 273 K to a disordered phase at 303 K which had an increasing proportion of molecules

re-orienting about one axis.37
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4.1.4 1(2)3 Tetramantane

1(2)3 tetramantane is one of the three geometric isomers which consist of four face-fused

adamantane cages. It belongs to the C3v point group and has one C3 axis.

Literature of the higher diamondoids is much more limited due to rarity of samples.

Solution-state NMR has been reported and a 13C spectrum has been assigned from COSY

and HMBC spectra.38 There have been no solid-state NMR of 1(2)3 tetramantane results

published. The crystal structure of 1(2)3 tetramantane shown in Figure 4.7 was determined

using single-crystal X-ray diffraction (SCXRD) by Dmitry Yufit (internal communication).

Figure 4.7: Crystal structure of 1(2)3 tetramantane at 120 K, refcode 16srv328.39

4.1.5 Cyclohexamantane

Cyclohexamantane is a highly symmetrical, large diamondoid containing six face-fused

adamantane cages arranged in a circle. Just like diamantane, cyclohexamantane belongs

to the D3d point group and has one C3 axis and three equivalent C2 axes. It cannot

currently be synthesised and is ultra rare in oil (less than 1 ppb).40 Due to the monumental

number of intermediate structures and precursor molecules that would be formed during

the formation of cyclohexamantane in petroleum, it is assumed that its formation would

be on the order of billions of years. Based on this kinetic difficulty, it is assumed the

only available source ever of cyclohexamantane will be oil.40 The crystal structure of

cyclohexamantane determined by Dahl et al. is shown in Figure 4.8. The C3 axis remains

in the crystal symmetry.
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Figure 4.8: Crystal structure of cyclohexamantane at 120 K, refcode UJISAH.40

4.2 Experimental Methods

Samples of diamantane, triamantane, 1(2)3 tetramantane and cyclohexamantane were

packed into 4 mm zirconia rotors. In contrast to diamantane, which is available commer-

cially, there were extremely limited quantities of triamantane, 1(2)3 tetramantane and

cyclohexamantane samples available (approximately 40, 20 and 5 mg respectively). Hence

the limited volume of each sample were sealed inside a Kel-F (polychlorotrifluoroethylene)

sample insert, before packing into the zirconia rotor. For 1H experiments, the 4 mm zirco-

nia rotors were placed in a 5 mm glass holder, to ensure the filled rotor was in the centre of

the coil. The 13C shift scale was referenced with respect to neat tetramethylsilane (TMS)

by setting the highest frequency peak of adamantane to 38.5 ppm.

Static 1H spectra and 1H T1 and T 1ρ relaxation measurements were obtained using

a Bruker Avance III HD spectrometer operating at 400.17 MHz and a static 5 mm probe.
13C MAS spectra and 13C T1 relaxation measurements were obtained using a Bruker

Avance III HD spectrometer at a frequency of 125.65 MHz using a Bruker 4 mm MAS

probe.
1H T1 relaxation times were measured using a saturation recovery sequence and a

solid echo with a 15 µs inter-pulse echo delay. 1H T 1ρ relaxation times were measured by

varying the spin-lock time and measuring the signal with a solid echo also with a 15 µs

inter-pulse echo delay. The 13C T1 relaxation times of diamantane and 1(2)3 tetramantane

were measured using saturation recovery for diamantane and the high temperature phase

of 1(2)3 tetramantane and a Torchia sequence for the low temperature phase.41 The

integrated peak areas were plotted as a function of delay time (T1) or pulse duration (T 1ρ)

and were used to fit to either a single rising exponential (saturation recovery) or decaying

exponential (T 1ρ measurement and the Torchia sequence).

The diamantane, triamantane, 1(2)3 tetramantane and cyclohexamantane spectra

for second moment analysis were recorded using a solid echo with a 15 µs inter-pulse

echo delay. Diamantane and 1(2)3 tetramantane spectra were obtained from a saturation

35



recovery sequence by extracting the most relaxed spectrum with the longest recovery

time. Triamantane, 1(2)3 tetramantane and cyclohexamantane showed significant signal

from the sample insert. Triamantane spectra were taken with and without inversion

recovery (IR) with delays between 0.5 – 1 s in order to approximately null this more rapidly

relaxing component. An example spectrum from each plateau region from triamantane

(with and without IR) have been selected for methodology determination. The procedures

were subsequently applied to diamantane, 1(2)3 tetramantane and cyclohexamantane.

4.3 Relaxation Times and 13C Spectra

13C spectra of diamantane, triamantane, 1(2)3 tetramantane and cyclohexamantane taken

at 253 K are shown in Figure 4.9. The 13C linewidth of diamantane is very narrow (full

width at half maximum (FWHM) ≈ 0.07 ppm / 8 Hz) and the approximately-optimised

recycle delay is low (4 s) indicating that diamantane is highly mobile at this temperature.

The other diamondoids have wider linewidths (FWHM ≈ 0.2 – 0.6 ppm / 25 – 75 Hz) and

approximately-optimised recycle delays of 200 s which is typical of static solids.

Figure 4.9: 13C CPMAS spectra acquired at 125.65 MHz and 253 K. (a) Diamantane: 16
transients; 4 s recycle delay; MAS rate = 4 kHz. (b) Triamantane: 16 transients; 120 s
recycle delay; MAS rate = 10 kHz. (c) 1(2)3 tetramantane: 16 transients; 120 s recycle
delay; MAS rate = 10 kHz. (d) Cyclohexamantane: 1536 transients; 120 s recycle delay;
MAS rate = 10 kHz. (a), (b) and (c) taken from reference 42.

13C assignments are given in Table 4.3 using the numbering given in the skeletal

structures in Figure 4.10. For details about assignments of diamantane, triamantane and

1(2)3 tetramantane see reference 42. For details of the cyclohexamantane assignment see

Section 4.3.1.
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Table 4.3: Diamondoid 13C assignments of spectra at 253 K. For each the left column
shows chemical shifts / ppm and the right column shows carbon assignment based on
numbering given in Figure 4.10 and multiplicity.

Diamantane Triamantane 1(2)3 tetramantane Cyclohexamantane
39.1 2 (CH2) 47.7 6 (CH) 55.7 1 (CH) 48.6 2 (CH)
38.4 3 (CH) 46.2 2 (CH2) 45.6 5 (CH) 40.0 3 & 3X (CH)
28.1 1 (CH) 40.2 8 (CH2) 45.1 3 (CH2) 39.3 1 (Q)

39.9 5 / 5X (CH) 40.1 6 (CH) 38.9 4 (CH2)
39.0 5X / 5 (CH) 38.6 7 (CH2)
39.0 4 / 4X (CH2) 34.2 2 (Q)
38.2 4X / 4 (CH2) 29.6 4 (CH)
36.9 7 (CH)
34.2 1 (Q)
29.0 3 (CH)

(a) Diamantane with C3 axis. (b) Triamantane with C2 axis.

(c) 1(2)3 tetramantane with C3 axis. (d) Cyclohexamantane with C3 axis.

Figure 4.10: Diamondoid 13C assignments with principle rotation axes of symmetry shown.
Colours indicate molecular symmetry. X indicates atoms that are not strictly related by
symmetry in the crystal structure.
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4.3.1 Cyclohexamantane

The spectrum given in Figure 4.9 is the first reported solid-state spectrum of cyclohexam-

antane. Despite over 51 h accumulation time, the signal-to-noise is low reflecting the ultra-

low sample volume (approximately 5 mg). The solution-state NMR spectrum, reported

by Dahl et. al, had three resonances at 47.34, 38.58, 37.81 ppm which were assigned to

carbon 2, 4 and 3 respectively.40 Using the solution assignment, the assignment is given

and recorded in Table 4.3. The signal-to-noise in the spectrum is low, hence the presence

of a weak peak that is indistinguishable from the noise can not be ruled out.

Sample volume was too small to attempt dynamic studies. It is possible to infer that

cyclohexamantane is static at 253 K since, as stated above, the width of the resonances in

the 13C spectrum and the approximately-optimised recycle delay is typical of static solids.

4.3.2 Diamantane

1H T1 and T 1ρ relaxation times are given Figure 4.11. The raw data is taken from refer-

ence 42 however the data has been re-analysed. For the T 1ρ relaxation times, the whole

of phase III has been fitted simultaneously to two motions with the same ν1. As de-

scribed in more detail in Chapter 5, this simultaneous fitting significantly changes the

fitted parameters and gives the most accurate values.

Figure 4.11: 1H T1 at 400.17 MHz (blue) and T 1ρ at 50 kHz (red) relaxation time constants
of diamantane as a function of temperature. Error bars are not shown as they are of a sim-
ilar magnitude to the size of symbols used. T 1ρ data fitted to two motions simultaneously.
Data from reference 42.

The results obtained are very consistent with the Britcher and Strange paper.27

The activation energies, Ea, derived from T1 and T 1ρ in phase III are in excellent agreement

(21.7(5) kJ mol−1 and 22.3(3) kJ mol−1), and in reasonable agreement with the results of
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Britcher and Strange (20.4(4) kJ mol−1). As noted before, a new relaxation mechanism

becomes predominant above 320 K. This was also in reasonable agreement with Britcher

and Strange (76.8(5) kJ mol−1 and 94(10) kJ mol−1). The T1 fitting in phase I could be

a continuation of the same motion measured in phase III, with a slightly altered rate in

the higher phase. Relaxation measurements in phase II are unreliable as the material was

changing rapidly in this relatively small temperature region.

The 13C T1 relaxation times are shown in Figure 4.12 and the phase III fits are

shown in Table 4.4. As expected for a rigid molecule, each carbon site fits to the same E a

and log10(τ0), within the uncertainty. The parameter log10(A / Hz) is a scaling constant

and not expected to be consistent between fits. It is clear from the remarkably similar

fitted parameters, that 13C T1 and 1H T1 and the 1H T 1ρ (below 270 K) are all sensitive

to the same fast motion which is around 30 MHz at 250 K and 1500 MHz at 400 K.

Figure 4.12: 13C T1 relaxation times of each 13C site of diamantane at 125.65 MHz and
MAS rate of 10 kHz. Curves were fitted to an Arrhenius model with fitted values given in
Table 4.4. Data and fits from reference 42.

Table 4.4: Fitted values of the 13C T1 relaxation times in Phase III.

Ea / kJ mol–1 log10(τ 0 / s) log10(A / Hz)
Carbon 1 (28 ppm) 21.4(4) −12.79(7) 8.048(6)
Carbon 2 (39 ppm) 21.96(19) −12.85(4) 9.209(3)
Carbon 3 (38 ppm) 21.7(3) −12.80(5) 8.952(4)

The 13C relaxation also provides direct evidence of a C3 rotation. As explained in

Section 2.2, 13C T1 relaxation of alkyl carbons is controlled by 13C – 1H dipolar interac-

tions. For a molecule undergoing isotropic motion, it is expected that a carbon with more

attached protons would relax faster than one with fewer. Since molecular motions modify
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the 13C – 1H dipolar interaction, a carbon with a C–H bond parallel to the rotation axis

will relax more slowly than a carbon with a non-parallel C–H bond where the orientation

changes relative to the field changes with the molecular motion. In phase III, carbon 1

relaxes much more slowly than carbon 2 and 3 which, as explained above, is strong ev-

idence that the fast motion observed by the relaxation is a C3 rotation about the axis

which runs through the C–H bonds on carbon 1. The C–H bonds of carbon 2 and 3 are

not pointing along the C3 axis and hence they relax more quickly than carbon 1. Carbon

1 relaxation is likely driven by the longer CH couplings, hence the relaxation has the same

temperature dependence as carbons 2 and 3.

In phase I, relaxation times are much more similar, with the CH2 relaxing the

fastest. This is consistent with isotropic motion since there is no specific direction of

motion so no carbon relaxes particularly slowly. As with the 1H relaxation data, phase II

was difficult to draw a conclusion.
13C spectra varied slightly as a function of temperature. Above 373 K, there was

broadening of the carbon 1 resonance, as shown in Figure 4.13, which could indicate the

presence of further motion on the 10s of kHz timescale. This would be consistent with the

additional motion seen in the 1H T 1ρ relaxation.

Figure 4.13: DE spectra of diamantane at 125.65 MHz. Recorded with 16 transients and
a MAS rate of 4 kHz. Data from reference 42.
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4.3.3 Triamantane

Well-resolved 13C CP spectra of triamantane could only be obtained up to 278 K. Above

this temperature, signals became broader as shown in Figure 4.14, which also shows that

between 300 – 400 K, a 13C spectrum of triamantane could not be obtained. Above the

phase transition at 434 K (and to a lesser extent up to 20 K below the phase transition),

DE spectra could be obtained. These spectra had the hallmarks of being a highly mobile

system: the linewidth was narrow at 0.04 ppm (5 Hz) and had an approximately-optimised

recycle delay of 5 s.

Figure 4.14: 13C spectra of triamantane acquired at 125.65 MHz. The top five spectra are
recorded using DE with 128 transients, a 5 s recycle delay and MAS rate = 4 kHz. The
lower five spectra are recorded with CP using a 500 µs contact time, 16 transients, a 200 s
recycle delay and MAS rate = 10 kHz. Data from reference 42.

Figure 4.15 gives the 1H T1 and T 1ρ relaxation times of triamantane at 400.14 MHz

and 50 kHz respectively. Fitting the full T 1ρ curve gives the following motional parame-

ters: E a = 54.3(17) kJ mol−1 and log10(τ0 / s) = −14.1(3). This indicates the presence of

a motion with a rate ranging from 1 kHz – 3 MHz between 275 – 410 K. This is fully com-

patible with the T1 data which is starting to detect a motion on the MHz time scale above

300 K with E a = 54.7(6) kJ mol−1, i.e. as with diamantane, both 1H relaxation types are

picking up the same molecular motion.
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The T 1ρ data can help explain the difficulty obtaining 13C signal in two ways.

Firstly it shows that there is a motion around 10s of kHz with rates of motion calculated

to be 10 – 100 kHz between 305 – 340 K. When there is molecular motion on the order of the

MAS rate or the decoupling, there can be an interference, leading to broadening signals,

as described in Section 2.4.2. Additionally, T 1ρ times are very short: a minimum of 200 µs

at 335 K and below 1000 µs between 300 – 380 K. A low 1H T 1ρ will reduce the ability to

transfer magnetisation during the spin-lock period of CP. Both factors can reduce signal

and are ultimately determined by molecular motion around 10s of kHz.

Figure 4.15: 1H T1 at 400.17 MHz (blue) and T 1ρ at 50 kHz (red) relaxation time constants
of triamantane as a function of temperature. T 1ρ curve fits to relaxation model to give the
following motional parameters: E a = 54.3(17) kJ mol−1 and log10(τ0 / s) = −14.1(3). T1
data taken by Jack Brash.43 Error bars are not shown as they are of a similar magnitude
to the size of symbols used.

Recording a robust set of 13C T1 relaxation times was difficult due to the lack

of measurable 13C signal between 300 – 400 K and unfavourable experimental parameters

outside that temperature range, such as long 1H T1 relaxation below 300 K. However, 13C

relaxation times may not have provided any information on the geometry of the dynamics

in this case since there are no C–H bond vectors parallel to any axis or pseudo-axis of

symmetry (for axes see Figure 4.29 on page 62).
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4.3.4 1(2)3 Tetramantane

1H T1 and T 1ρ relaxation times are given in Figure 4.16 with activation energies of the

linear sections displayed on the figure. The activation energies obtained, from T1 relaxation

times, above and below the phase transition at 375 K are consistent (≈ 21.6(6) kJ mol−1),

which may indicate sensitivity to the same motion but with a sudden increase in rate

above the phase transition; the sign of the gradients are consistent with this. However

without rate information from relaxation curves it is difficult to confirm. Above the phase

transition, T 1ρ relaxation times were difficult to measure as they were significantly longer

than the safe limit of approximately 50 ms.

Figure 4.16: 1H T1 (blue) and T 1ρ(red) relaxation times of 1(2)3 tetramantane at
400.17 MHz. Data taken by Jack Brash.43 Activation energies of linear T1 regions are
given.

As shown in Figure 4.17, the 13C spectra of 1(2)3 tetramantane are not observable

at 285 K which, as with triamantane, likely indicates the presence of a motion on the 10s

of kHz timescale around this temperature. However, unlike triamantane, signal quality

was reduced over only 40 K (265 – 305 K) meaning trends in 13C relaxation times could be

seen above 310 K.
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Figure 4.17: 13C spectra of 1(2)3 tetramantane acquired at 125.65 MHz. 437 K spectrum
recorded by DE and a 6 s recycle delay and MAS rate = 4 kHz. Lower five spectra recorded
with CP and MAS rate = 10 kHz. 373 K used a 6 s recycle delay and the others used a
70 s recycle delay. Data from reference 42.

Figure 4.18 shows the 13C T1 relaxation times of 1(2)3 tetramantane. Activation

energies from individual carbon sites are given in Table 4.5 however caution should be used

since the data is not as clean as the diamantane equivalent due to significantly lower signal

strength. The data does however provide convincing evidence about the type of motion

present. Above the phase transition, the relaxation times were highly dependent on the

nature of the carbon i.e. the quaternary (�) relaxed much more slowly than the methine

carbons (×) which relaxed more slowly than the methylene carbons (+). As with the

diamantane data, this indicates that the molecule is undergoing isotropic rotation. The

situation is different below the phase transition, where carbons with C–H bonds pointing

parallel to the C3 axis (lime green) relax more slowly than those with 1H atoms pointing

non-parallel (pink).
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Figure 4.18: 13C T1 relaxation times of 1(2)3 tetramantane at 125.65 MHz. Below the
phase transition a Torchia sequence was used with time delays between 0.01 – 20.24 s used
in 16 steps with 64 transients in each and a recycle delay of 8 s. Above the phase transition
saturation recovery was used with a saturation train of 64 pulses. Each temperature had
recovery times from 0.01 – 48 s in 16 increments with 32 transients in each. Activation
energies are given in Table 4.5. Note that below the phase transition, the values associated
with carbons 3 and 5 are plotted as one (mid-blue) due to significant peak overlap. Above
the phase transition these peaks were resolved and hence were plotted separately (dark
blue and cyan). Markers indicate the nature of the carbon: � = quaternary, × = CH,
+ = CH2, and = one peak associated with multiple carbons.

Table 4.5: Activation energies of each carbon in 1(2)3 tetramantane from the 13C relax-
ation given in Figure 4.18 below the phase transition.

Carbon Ea / kJ mol–1

1 11.7(15)
2 14.8(12)

3/5 16.9(8)
4 14.9(17)
6 5(3)
7 9(3)

Averagea 15(2)

a Excluding carbon 6 and 7 due to
larger standard error.

45



4.3.5 Relaxation Summary

Full 1H and 13C T1 and 1H T 1ρ relaxation times of diamantane could be measured and

this gave good insight into both the rates and types of motion present. As summarised

in Table 4.6 there is remarkable consistency of the fitted motional parameters in the low

temperature phase giving Ea = 21.7(5) kJ mol−1. The 13C T1 relaxation showed that this

motion is a C3 rotation. The 1H T 1ρ relaxation times were sensitive to an additional higher-

energy motion above 320 K. Previous literature attributed this to an ‘L’-type rotation,

but it could be the start of molecules self diffusing.

In contrast, it is not possible to get a complete picture of the dynamics of triaman-

tane through relaxation. 1H T 1ρ relaxation showed that there was a motion on the 10s

kHz timescale with E a = 54.3(17) kJ mol−1, however there is no evidence relating to the

type of motion present.

1(2)3 tetramantane also has relaxation times which give an indication of activation

energies, although there was no relaxation minimum meaning exact rates could not be

obtained. However, 13C relaxation did show that there was a C3-type motion below the

phase transition.

Table 4.6: Calculated activation energies of each diamondoid by relaxation type over
specific temperature ranges.

Sample
Temperature

range / K
Relaxation

type
Ea /

kJ mol–1
log10(τ 0 / s)

Diamantane
250 – 410

13C T1 21.1(4) −12.76(6)
1H T1 21.7(5) −12.85(8)

1H T 1ρ
22.3(3) -
76.8(5) −15.97(7)

450 – 490 1H T1 24(3) -

Triamantane
275 – 420 1H T 1ρ 54.3(17) −14.1(3)

385 – 425 1H T1 54.7(6) -

1(2)3
tetramantane

310 – 370
13C T1 15(2) -
1H T1 22.2(8) -

390 – 425 1H T1 21(1) -
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4.4 Second Moments

The following is based on the article: ‘Revisiting the Van Vleck second moment

for characterizing molecular motion in organic solids’.44 New methodology

has been developed by Simone Sturniolo and Paul Hodgkinson for simulating

second moments of molecules undergoing fast motion.

Section 4.3 has shown how relaxation measurements can be used to determine not only

motional parameters, but also indicate the types of motion present. It has also shown that

there are circumstances where 13C data is unattainable, for example if there is interference

between the molecular motion and MAS, or if low signal-to-noise ratio makes measure-

ments impractical. The purpose of this section is to investigate second moments from a

modern perspective and investigate if they can be used to corroborate the information

from relaxation or, ideally, extend understanding. In the context of diamondoids specif-

ically, the aim is discover the nature of the motion in triamantane. Initially the focus of

this section is on how second moments are measured from spectra with the various differ-

ent methods discussed using triamantane spectra and FIDs as examples. Then the second

moments of each diamondoid are compared to calculations from simulations to ascertain

likely motions of the diamondoids within each temperature range.

4.4.1 Quantification of Second Moments

Second moment experiments were common in the early days of NMR before MAS and

alternative nuclei measurements became the norm. In the literature there is often little

explanation of how they are calculated and such explanations are often shrouded in old

fashioned terms and techniques. Determining second moments from experimental spectra

is not as simple as it may seem. There are multiple methods used within the literature and

each method has specific difficulties which lead to either systematic errors or sensitivity

to the chosen fitting/integration range. The methods evaluated below are:

The ‘Gaussian’ Method

The simplest method involves fitting a spectrum, S(ν), to a Gaussian:

S(ν) = A exp

(
−(ν − ν0)2

2σ2

)
(4.3)

where S(ν0) is the centre of the lineshape, and A is an arbitrary intensity factor and

M2 = σ2.45 For example, this approach has been used to fit 1H linewidths under MAS

to second moments,46 but is only applicable when the lineshape has a strong Gaussian

character. It has been found that spectra fit well to a Gaussian when dynamics are

present but not isotropic motion. Examples of diamantane and triamantane spectra in

an intermediate temperature are shown in Figure 4.19. When samples were static, or

47



rotating near isotropically or showing self-diffusion character, spectra fitted less well to a

Gaussian as shown in Figure 4.20. Spectra of molecules undergoing isotropic motion or

self-diffusion show significant Lorentzian character where the signal decay is exponential

and dominated by relaxation.

Figure 4.19: Intermediate temperature static 1H spectra (black) fitting well to Gaussians
(red/pink). Diamantane at 221 K and 411 K fitted to one Gaussian and triamantane at
360 K fitted to two Gaussians to account for the narrow signal from the insert.

Figure 4.20: Low and high temperature static 1H spectra (black) fitted poorly to Gaussians
(red/pink). Triamantane at 192 K fitted to two Gaussians to account to the narrow signal
from the insert and diamantane at 498 K and triamantane at 469 K fitted to one Gaussian.

The ‘Gaussian’ method for FIDs

A related alternative is to fit the time-domain signal, A(t), to a Gaussian:

A(t) = A0 exp

(
−(t− t0)2

2σt2

)
(4.4)

where A(t0) is the echo peak, and A0 is an arbitrary intensity factor and M2 = (2πσ)−2. As

before, this method is only applicable when the lineshape has a strong Gaussian character.

Fitting in the time domain may be able to ‘filter out’ narrow signal by fitting only the

initial decay and is less affected by imperfect baselines. This approach was seen in several

earlier studies including the diamantane system in Britcher and Strange.27
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The ‘Integral’ Method

For spectra which are non-Gaussian, one option for determining the second moment is to

integrate the spectrum directly:

M2 =

∫∞
−∞ S(ν)(ν − ν0)2 dν∫∞

−∞ S(ν) dν
(4.5)

This approach is applicable generally and has been used, for example, in recent studies

using second moments on complex materials,47 but is extremely sensitive to the choice of

integration limits and to spectral noise in the outer parts of the spectrum.

This method is very sensitive to the insert signal, not directly through the ‘second

moment’ part of Equation 4.5 or the numerator (since the squared nature of the equation

makes the outer part of the spectrum account significantly more), but indirectly through

the normalisation factor (the denominator). This would lead to a considerable under-

estimation of the second moment if signal from non-sample origin is not appropriately

considered.

One solution is to experimentally reduce the signal from the insert through an IR

sequence. This inverts the insert signal with a 180 ° pulse and a delay selected to invert

the narrow, fast relaxing signal. In theory, this leaves only the signal from the sample but

getting a perfect inversion in reality is difficult.

There are further problems arising from the integration method: noise and small

baseline imperfections which are illustrated in Figure 4.21. While the normal integration

(red dotted line) converges smoothly with the integration range, the weighting by the

square of the frequency in Equation 4.5 means M2 becomes very sensitive to noise in the

outer parts of the spectrum, as well as small changes in the baseline. This means that the

second moment is not guaranteed to converge, as shown by the blue dotted line, and its

integral has very poor numerical stability. In order to provide some kind of quantification of

the uncertainty when using this approach, M2 has been evaluated with different integration

limits corresponding to 97 %, 98 %, 99 % and 99.5 % of the conventional integral.
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Figure 4.21: Static 1H IR spectrum of triamantane at 192 K, with insert signal suppressed
by IR, showing the second moment contribution of each point (green), and integrated
contribution to the second moment (blue) and normalised spectral integral (red) as a
function of integration width, which is symmetrical about the mid frequency.

The ‘M 2M 4’ Expansion for FIDs

A general approach to non-Gaussian lineshapes is to fit the time-domain signal to:

1− t2

2!
Mω

2 +
t4

4!
Mω

4 −
t6

6!
Mω

6 + ... (4.6)

where Mω
2/4/6 are second and higher order moments expressed in angular frequency.48 In

practice, the convergence of this series is poor, and the results are very sensitive to the

range of the FID that is fitted. Figure 4.22 illustrates this, where time domain data (black)

are fitted to a power series of moments (red) as given by Equation 4.6 from t = 0 to the

value on the x axis. Fitting to a short interval with relatively little signal evolution leads

to a large standard error on the fit. Fitting out to 36 µs however introduces significant

systematic error; the upturn at the end shows the deviation between the data and the

polynomial model. Excluding very short fitting intervals with large uncertainties (8 µs)

and those which show systematic deviations at the end of the fitting (35 µs and longer)

gives a moderately consistent estimate of M2.
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Figure 4.22: FID of triamantane at 360 K (black) and its fitting to Equation 4.6 (red)
between t = 0 and an increasing fitting interval shown on the x axis. Error bars show the
uncertainty on the fitted M2 from the least-squares regression.

4.4.1.1 Methodology Exploration

Within the temperature range measured, 1H spectra of triamantane changes considerably,

from a broad static pattern at 192 K, to a dynamically averaged spectrum at 360 K, to a

very narrow, highly dynamic spectrum at 469 K. The signal of non-sample origin due to

low sample volume is visible below 420 K. Figure 4.23 shows the fits using each method

discussed in Section 4.4.1 for the spectra, and FIDs of triamantane taken at three different

temperatures with and without IR. The ‘raw’ fitted values from these graphs are given in

Table 4.7 with the calculated second moments given in Table 4.8.
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Figure 4.23: Static 1H spectra and FIDs of triamantane with (lower two rows) and without
(top three rows) an IR sequence, corresponding to the low, mid and high T . The columns
correspond to different second moment fitting methods. Column 1: Gaussian fitting (red)
of the spectrum (black) and insert signal (blue). Column 2: second moment (blue) and
integral (green) as a function of integral width with overlaid spectrum (black). Column 3:
Gaussian fitting (red and blue) of different fitted regions of the FID (black). Column 4:
M2M4 method, both FID fits showing the smallest fitted region (red) and the largest
region (blue).

52



Table 4.7: Triamantane M2 ‘raw’ fits at three temperatures. Top three rows are without
IR, lower two are with IR.

Spectrum FIDa

Gaussian
σ / kHzb

Integration
M 2 / kHz2

Gaussian
σ / µs

M 2M 4

(2π)2M 2 / Hz2

Low T
192 K

25.11(3)
(2.80(3))

97% = 460 98% = 492
99% = 529 99.5% = 554

12, 60 µs
6.41(11)
6.38(10)

8, 12 µs
2.8(3)× 1010

2.16(12)× 1010

Mid T
360 K

10.872(7)
(0.686(3))

97% = 105 98% = 114
99% = 124 99.5% = 128

30, 80 µs
14.41(15)
14.75(12)

18, 28 µs
5.24(10)× 109

4.24(9)× 109

High T
469 K

0.7811(11)
97% = 2.37 98% = 3.08

99% = 4.58 99.5% = 6.13

300, 800 µs
179.4(14)
203.7(12)

50, 200 µs
2.07(13)× 108

5.27(10)× 107

IR

Low T
192 K

28.50(8)
97% = 622 98% = 678
99% = 761 99.5% = 835

12, 60 µs
5.52(10)
5.36(15)

8, 12 µs
3.2(4)× 1010

2.51(14)× 1010

Mid T
360 K

10.994(6)
97% = 113 98% = 121

99% = 130 99.5% = 138

30, 80 µs
14.20(8)
14.37(7)

18, 28 µs
5.31(10)× 109

4.38(9)× 109

a FID fits are at two fitting ranges, both starting at t = 0 s and ending at the values given
in italics.
b Fitted to one or two Gaussians. When fitted to two Gaussians, both σ values are given
with the top being the sample value and the lower being the insert value.
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Table 4.8: Triamantane M2 results by method (in kHz2) calculated from the ‘raw’ results
given in Table 4.7. Uncertainties in brackets represent a strict error determined from least
squares fitting. Uncertainties denoted by ± are estimated from the extreme fitted values.

Spectrum FID
Gaussiana Integrationb Gaussianc M 2M 4

c

Low T : 192 K 630.3(12) 490 ± 40 620 ± 20 630 ± 90
Mid T : 360 K 118.18(15) 114 ± 9 119 ± 3 120 ± 13
High T : 469 K 0.634(2) 3.6 ± 1.6 0.70 ± 0.08 3.3 ± 1.9
IR
Low T : 192 K 812(4) 680 ± 70 860 ± 30 720 ± 90
Mid T : 360 K 120.88(13) 121 ± 9 124 ± 2 122 ± 11

a Values and uncertainties from least-squares fitting.
b Value from ‘98 %’ integration. Uncertainty from (‘99 %’− ‘97 %’)/2
c Value from (M2A +M2B)/2. Uncertainty from (M2A−M2B)/2 where
M2A and M2B are the largest and smallest fitted values respectively given
in Table 4.7.

The lowest temperature spectrum is consistent with a static lineshape and does not

fit well to a Gaussian. Fitting the spectrum or FID to a Gaussian results in systematic

errors which become more substantial when squared (since M2 = σ2). These systematic

errors will not be reflected in the estimated uncertainty. Fitting different regions of the

FID does give a larger and slightly more realistic uncertainty but is much smaller than

the 15 – 25 % error assumed by Britcher and Strange.27 For the low and mid temperature

measurements, each method gave very similar values with the exception of the integration

method for the spectra without IR. As explained above, it is expected that this method

will underestimate the second moment in spectra with significant signal of non-sample

origin.

The simplest method of calculating second moments is fitting the lineshape to a

Gaussian. Difficulties arise when lineshapes deviate significantly from Gaussian, which was

most noticeable in the slow limit of triamantane, as shown in Figure 4.23 (column 1, row 1

and row 4) and the limit of self diffusion/isotropic motion (column 1, row 3). Fitting the

FID to a Gaussian requires arbitrarily chosen fitting regions for non-Gaussian lineshapes.

Recording more of the echo rise as well as the decay may have helped with this. All FIDs

here were recorded with a 15 µs inter-pulse echo delay (D6), a pre-acquisition delay of

10 µs (DE) and an additional delay (D7) of 5 µs i.e. recording starts at the assumed echo

peak at twice the inter-pulse delay. A brief retrospective experiment with different decay

times showed that this affected the result by approximately 6 % as shown in Figure 4.24

and Table 4.9.
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Figure 4.24: FIDs taken with different delay periods. Delays and fit given in Table 4.9.

Table 4.9: Second moments of diamantane with different delay periods.

D6 D7 DE σ / kHz M 2 / kHz2

a) 15 5 10 8.47(19) 72(3)
b) 20 0 5 8.22(12) 68(2)

4.4.1.2 Proposed Methodology Guidelines

From the triamantane results discussed above, the following second moment fitting guide-

lines are proposed. These guidelines are followed in Section 4.4.2 with diamantane, 1(2)3

tetramantane and cyclohexamantane.

For spectra which are very Gaussian in nature the simplest and best method is

to fit the spectrum to a Gaussian lineshape. This method is the most objective as it

requires no arbitrarily chosen fitting ranges, however it may give a small uncertainty. This

small statistical uncertainty will not reflect the overall uncertainty which arises from other

factors such as changes in the spectrum from increased libration.

Where spectra do not fit well to a Gaussian, calculating M2 from a Gaussian fit will

not give an accurate result, and the errors will not reflect the systematic errors present.

In which case the two options for fitting are the integration method or the M2M4 method.

If spectra are excellent quality i.e. the baseline is flat, the noise is low and there are

no spectral features from anything other than the sample, the best method is to integrate.

There will always be an element of choice, for example 98 % or 99.5 % but the difference

between these values will be small with excellent quality spectra. This method cannot be

used if there is signal from anything other than the sample, as discussed above, without

first attempting to remove it (experimentally or digitally).

If spectra are less than excellent quality, the reserve technique to use is the M2M4

expansion. This method is less affected by imperfect baselines or additional narrow signals

than the integration method, and can provide a reasonable estimation of an error. As

before, there will always be choice in terms of fitted region, however this is the least worst

option in this case.
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4.4.2 Second Moment Results

4.4.2.1 Diamantane

Figure 4.25 shows the second moments of diamantane, determined by fitting the spectrum

to a Gaussian. Selected spectra fitted with each of the four discussed methods are given

in Appendix A, however the alternative methods were not used for spectra with strong

Gaussian character. The static limit was not able to be measured due to temperature

limits of the equipment used. All spectra recorded in phase III and II were dynamic

and fitted well to a Gaussian lineshape. As is the case for triamantane, the spectrum at

high temperature is narrow and does not fit to a Gaussian. There are plateau regions

highlighted in grey separated by sections with steeper drops indicating the emergence of

a new type of motion. The gradual drops within a plateau region are due to the increase

in wobbling and librational motions.

The plateau regions documented in Table 4.10 are given as a range of values within

a temperature region. The values are based on a Gaussian fit of the spectra except for the

high temperature region for which an estimated maximum M2 from all methods given in

Table A.2 in Appendix A.

Figure 4.25: Diamantane second moments as a function of temperature determined by
fitting spectra to a Gaussian. Grey areas indicating plateau regions. Fitting uncertainties
were significantly smaller than the marker size.

Table 4.10: Second moments of diamantane.

Temperature / K Phase M 2 / kHz2

221 – 338 III 97 – 88a

382 – 411 III 58 – 55a

461 – 499 I <0.8b

a Range from individual Gaussian fits.
b Estimated maximum from all fitting methods.

The experimental second moments documented in Table 4.10 are almost identical to

the values given by Britcher and Strange (repeated in Table 4.11). The lowest temperature
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measured here is in excellent agreement with the Britcher and Strange value of 96(14) kHz

at 200 K and the highest temperature value is described as rapidly approaching zero. While

there are not enough values recorded in phase II to show a reliable plateau region, the two

values that were recorded at 51.6 and 49.3 kHz2 are in agreement with the 49(9) kHz2 by

Britcher and Strange. The only discrepancy was the drop in the second moment within

phase III which was very subtle in the literature: ‘a plateau of about [78 kHz2] may exist

although this is uncertain due to the scatter in the data’.27 This was clear in the data

here and showed a more significant drop to 58 – 55 kHz2.

Table 4.11: Second moments of diamantane determined by Britcher and Strange.27

Temperature / K Phase M 2 / G2 M 2 / kHz2

95 – 135 III 26.2(6.6) 480(120)
200a III 5.3(8) 96(14)
350a III 4.3(7) 78(13)
409a II 2.7(5) 49(9)

442.5 I 0.54(4) 9.8(7)

a Reported the lowest temperature of a plateau region. M2

given at that temperature.

4.4.2.2 Triamantane

Second moments of triamantane as a function of temperature are given in Figure 4.26.

Unlike diamantane which showed significant dynamics even at the coldest experimental

temperature recorded, the motion of triamantane was (at least mostly) frozen out below

300 K. These static spectra did not fit well to a Gaussian, and hence the values given in

Figure 4.26 are from the M2M4 method. Spectra above 325 K showed strong Gaussian

character hence second moments were estimated from fitting the spectra to Gaussian, or

Gaussians where an insert signal was seen. Values are summarised in Table 4.12.

Figure 4.26: Triamantane second moments as a function of temperature. Above 325 K
spectra are fitted to a Gaussian. Below 325 K the M2M4 method is used. Grey areas
indicating plateau regions. Uncertainties from the Gaussian fits were significantly smaller
than the marker size.
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Table 4.12: Second moments of triamantane.

Temperature / K M 2 / kHz2

192 630 ± 90a

360 – 418 117 – 101b

447 – 469 <6c

aM2M4 fit of FID at 192 K which is
assumed to be representative of the low
temperature plateau.
b Range from individual Gaussian fits.
c Estimated maximum from all fitting methods.

4.4.2.3 1(2)3 Tetramantane

Second moments of 1(2)3 tetramantane as a function of temperature are given in Fig-

ure 4.27. Overall patterns were similar to triamantane, with the spectra fitting to a

Gaussian when there was some dynamic averaging.

Broad spectra consistent with static molecules were observed at the coldest tem-

perature recorded, but there was not a distinct plateau as observed with triamantane,

perhaps indicating that the motion of the molecules was not fully frozen at 192 K. This

could be because a rotation about the C3 axis requires less physical space than the C2

rotation of triamantane and does not break the symmetry, unlike the pseudo-C2 rotation

of triamantane (see Figure 4.29 for axes).

Figure 4.27: 1(2)3 tetramantane second moments as a function of temperature. Above
280 K spectra are fitted to a Gaussian. Below 280 K the M2M4 method is used. Grey
areas indicating plateau regions. Uncertainties from the Gaussian fits were significantly
smaller than the marker size.
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Table 4.13: Second moments of 1(2)3 tetramantane.

Temperature / K M 2 / kHz2

192 590 ± 110a

323 – 366 62 – 48b

376 – 423 7.8 – 9.0b

aM2M4 fit of spectrum at 192 K.
b Range from individual Gaussian fits.

4.4.2.4 Cyclohexamantane

The second moments of the cyclohexamantane as a function of temperature are given in

Figure 4.28. The second moments gradually reduced but were consistent with a static

sample throughout the temperature range measured here.

Figure 4.28: Cyclohexamantane second moments as a function of temperature using the
Gaussian fitting method.

Table 4.14: Second moments of cyclohexamantane.

Temperature / K M 2 / kHz2

236 – 411 636 – 426a

a Range from individual Gaussian fits.

4.4.3 Second Moment Calculations

It is prohibitively difficult to determine precise 1H lineshapes theoretically due to the

significant number of dipolar coupling calculations required in a real system. However,

there have been several approaches to estimate a theoretical second moment. Van Vleck

laid down the mathematical theory in 1948 where fundamental equations were set out for

the analytical determination of second moments of static molecules.49 However practi-

cal applications of the second moment require calculation of the second moment in the

presence of dynamics. In the 1970s, papers such as Britcher and Strange were calculating
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the intramolecular component of second moments in dynamic molecules, however inter-

molecular remained difficult and approximate reduction factors were used.27 Roman Goc

released numerous papers between 1983 and 2005 calculating second moments of various

molecules with different types of internal rotations.50–56 Here a numerical approach was

used to calculate all the dipolar couplings in an individual crystalline orientation which

were then averaged over a type of motion. This was then repeated for many powder orien-

tations which made the calculation slow and cumbersome. Goc released the only publicly

available code for calculating second moments, however it is restricted to 3-fold diffusion

rotation and is Fortran-based.57

The calculations used here go back to the fundamentals determined by Van Vleck

who derived the second moment on the basis that dipolar interactions are symmetric

tensors aligned along the internuclear vector. While this approach was sufficient for static

molecules, dynamic molecules have tensors which are not always symmetric and require

asymmetry parameters. The new formulae given in reference 44 rederive the formulae that

Van Vleck used but include an asymmetry parameter. This second moment, given as a

function of orientation, can then be averaged over all angles giving the powder average

which can be calculated analytically.

4.4.3.1 Implementation

Atomic coordinates of a sample are determined by SCXRD which is typically run at

120 K. As found previously,58 using uncorrected 1H positions lead to unreliable results

as the second moments are very sensitive to 1H positions, which are not well determined

by XRD in general. Hence the 1H positions were relaxed using CASTEP.59 In the case

of diamantane, for example, the second moment was over-estimated by about 15 % using

the diffraction co-ordinates. In contrast, there was negligible difference in calculated M2

values depending on whether just 1H positions or all atomic positions were relaxed. The

values shown in Table 4.15 are for structures with 1H positions only relaxed. Axes and

pseudo-axes of rotation are given in Figure 4.29.

Due to the similarities in the structures between the diamondoids, there are consis-

tencies in the calculated M2 values. Static second moments were between 360 – 400 kHz2,

with the biggest variation coming from the reduced intramolecular component of cyclo-

hexamantane due to the increased distances between 1H atoms within the larger molecule.

Rotation about the C3 axis in diamantane, 1(2)3 tetramantane and cyclohexamantane

gave a reduction of 75 – 80 % from the static value. Rotation about the C2 axis in diaman-

tane, triamantane and cyclohexamantane gave a reduction of around 50 % from the static

value. Combining a C2 (or pseudo-C2) axis with a perpendicular C3 axis did lead to a

further small reduction from a C3 alone of between 10 – 20 %. In the case of triamantane,

three orthogonal C2-like motions can be proposed. Note that any pair of C2-like motions

is equivalent to the third, and so there is no physical significance to considering all three

motions simultaneously, and the same value of M2 is obtained if two C2-like motions are
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Table 4.15: Calculated powder-averaged M2 values for different motional models based on
the axes given in Figure 4.29. Molecules included up to a radius of 20�A.

Intramolecular
/ kHz2

Intermolecular
/ kHz2

Total
/ kHz2

Diamantane
Static 263.1 137.1 400.2
C3 67.8 35.4 103.2
C2 165.5 43.0 208.4
C3 + C2 67.8 16.5 84.2
L 186.8 52.7 239.5
C3 + L 48.1 25.7 73.8
Triamantane
Static 260.7 128.7 389.4
C2 147.9 42.0 189.9
Pseudo-C2 (long) 165.7 46.6 212.3
Pseudo-C2 (short) 173.3 43.8 217.1
C2 + one pseudo-C2

a 113.1 18.7 131.9
1(2)3 Tetramantane
Static 272.5 127.3 399.8
C3 62.8 22.3 85.1
Pseudo-C2 167.4 71.5 239.0
C3 + pseudo-C2 62.7 14.9 77.6
Cyclohexamantane
Static 231.6 127.8 359.5
C3 50.5 22.0 72.4
C2 141.1 40.1 181.1
C3 + C2 50.5 10.8 61.3

a C2 + pseudo-C2 (long) = C2 + pseudo-C2 (short) = pseudo-C2 (short)
+ pseudo-C2 (long) = C2 + pseudo-C2 (short) + pseudo-C2 (long)

considered. The diamantane results also contain a non-orthogonal ‘L’ axis, as suggested

by Britcher and Strange, which runs between the bisection of a C1–C2 bond and the centre

of mass.
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(a) Diamantane with the C3 axis, ‘L’ axis
and one of the three equivalent C2 axes
drawn.

(b) Triamantane with the C2 axis and the
two pseudo-C2 axes drawn.

(c) 1(2)3 tetramantane with the C3 axis and
one of the three equivalent pseudo-C2 axes
drawn.

(d) Cyclohexamantane with the C3 axis and
one of the three equivalent C2 axes drawn.

Figure 4.29: Diamondoid axes and pseudo-axes of symmetry.

4.4.4 Experimental and Simulation Comparison

Table 4.16 summarises the experimental second moments of individual temperatures and at

plateau regions. Different potential motions for each temperature region are also suggested

based on the calculated M2 values. The regions with ultra low second moments (<10 kHz2)

have not been included since lineshapes are increasingly determined by relaxation and

develop Lorentzian characteristics, hence second moment analysis is inappropriate.

Overall, there is a distinct difference between dynamic regions, where experimental

and calculated values are similar, and static regions, where the difference is much more

significant. In general, experimental values are expected to be a little lower than simulated

due to additional librational motions as well as expansion in the structures acquired by

SCXRD at 120 K. This is seen in the dynamic regions however the static experimental

values (≈ 620 kHz2) are significantly higher than the predicted (≈ 400 kHz2). Additionally,

the experimental values are quoted at the coldest value experimentally achievable and

hence are not likely to represent the largest M2 value in the plateau. The discrepancy

between the experimental and calculated values may come from the solid echo itself. Solid

echoes, which are typically used to acquire 1H signals under static conditions, result in
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a signal that is not an exact match of the ‘true’ FID,60 in contrast to the refocusing of

frequency dispersion by a spin echo. This introduces systematic errors in the M2 values

obtained by fitting echo decays, which increase rapidly with the echo period.48 Although

the echo period used in this study (15 µs) is not much larger than used in other studies,

e.g. 10 µs in reference 47, it is plausible that these effects explain the inconsistent values

of M2 obtained in the low temperature limit.

Table 4.16: Experimental M2 values at plateaus and best match from calculated val-
ues. Lowest temperature and corresponding M2 is underlined highlighting the value least
affected by additional librational motion.

Experimental
M 2 / kHz2

Calculated
M 2 / kHz2

Diamantane
221 – 338 K 97 – 88 C3 axis: 103.2
382 – 441 K 58 – 55 C3 + C2: 84.2 or C3 + L: 73.8
Triamantane
192 K 630 ± 90 Static: 389.4
360 – 418 K 117 – 101 Two C2 axes: 131.9
1(2)3 Tetramantane
192 K 590 ± 110 Static: 399.8
323 – 366 K 62 – 48 C3 axis: 85.1 or C3 + pseudo-C2 axis: 77.6
Cyclohexamantane
236 – 411 K 636 – 426 Static: 359.5

As shown in Table 4.16, the motion of diamantane at 221 K is consistent with

the rapid dynamics about its C3 symmetry axis shown by 13C relaxation studies in Sec-

tion 4.3.2. The dynamics in the higher temperature regime at 382 K indicates that the

molecules are constrained, but are undoing significantly more motion than at 221 K. This

motion has previously been described in terms of rotation about an additional ‘L’ axis

tilted away from the symmetry axis.27 Another possible scenario is that there are occa-

sional flips of the molecule around its C2 axis, which is compatible with a jump-only value

of M2 of 83.5 kHz2.

In the case of triamantane, the second moment results show that the dynamics

of the molecule likely involves jumps about multiple C2/pseudo-C2 axes. The energetic

barriers are expected to be lowest for the symmetry-preserving C2 and the symmetry-

breaking ‘top over bottom’ flip of the molecule about the long molecular axis. As in the

case of diamantane, the experimental second moment in the high temperature regime is

significantly smaller than the prediction from an idealised motion, due to overall libration.

This picture is consistent with diffraction data in which a gradual order-disorder transition

between 273 – 300 K was found to be associated with an additional pseudo-mirror plane

corresponding to a symmetry-breaking flip of the molecules.37 It is important to note

that the diffraction data is not sensitive to the symmetry-preserving C2 motion and so the

NMR data, via the second moments, is providing a more complete picture of the dynamics
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in this sample.

For 1(2)3 tetramantane, the second moments show that there is a C3 motion above

323 K. This is consistent with the picture from 13C relaxation. However, it is impossible to

discriminate between a standalone C3 motion (85.1 kHz2) and a C3 + a pseudo-C2 motion

(77.6 kHz2) due to the closeness in the two values.

The second moment data of cyclohexamantane has shown that the molecules are

static in the temperature range 236 – 411 K. In a sample where most types of data such as
13C spectra or 1H relaxation as a function of temperature is too time intensive to measure,

simple 1H spectra as a function of temperature have provided insight into the dynamics

(or lack of dynamics) in this system.

4.5 Conclusion

Diamondoids are an interesting series of highly symmetrical hydrocarbon cages with sig-

nificant molecular motions in the solid state. Relaxation measurements have proven very

useful for determining activation barriers and rates of motion. 13C T1 relaxation in partic-

ular has provided valuable information to characterise the C3 motions present in diaman-

tane and 1(2)3 tetramantane. However, for triamantane relaxation could not determine

the nature of the motion. It is in this case the second moments proved useful and found

there was likely a combination of C2/pseudo-C2 jumps.

There are situations when 13C relaxation might not provide useful information. The

most obvious is if a 13C spectrum is not obtainable either due to motional interference,

as was the case for triamantane, or too small sample volume, as was the case for cyclo-

hexamantane. Additionally, relaxation times can struggle to distinguish large and small

amplitude motions, for example, a small wobble-type motion could be misinterpreted as

a large-angle, jump-type rotation.

There are also instances where interpreting second moment data is difficult. For

example in the case of 1(2)3 tetramantane, the differences in second moment between

different C3/C3 + pseudo-C2 motions were small and hence it is not realistic to distinguish

between very similar motional models using second moment data.

On balance, second moments have been shown to be a useful complementary tool

for studying molecular reorientation in organic solids. It is hoped that with the publicly

available script,61 and the modern discussion on how to calculate a second moment from

a spectrum, second moments could become more routinely used to fill gaps in data from

modern methods.
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Chapter 5

Examining the Dynamics in

Hydrazinium Magnesium Formate

5.1 Metal Organic Frameworks

Metal organic frameworks (MOFs) are a group of crystalline materials that consist of

transition-metal cations connected by multidentate ligands. The periodic arrangement of

the metal nodes bonded through organic linkers creates a cage-type structure with signifi-

cant voids, meaning MOFs have the largest surface areas of any porous material.62 These

cavities or channels allow for the uptake of large volumes of gases and hence application-

driven research on MOFs is often focused on their potential use as materials for gas

capture,63 gas separations,64 chemical sensing65 and catalysis.66

The incorporation of guest molecules as an intrinsic element of the material, and not

a target of an application, is comparatively less utilised.67 These guest incorporations can

create materials with new properties distinct from the components in isolation. Unlike the

MOFs used in gas sorption, where MOF – guest interaction is typically weak, structural

guests can have much stronger interactions with the host framework. These stronger

interactions can alter many aspects of the material properties such as electronic states

and luminescence behaviour.68

This chapter will discuss the dynamics found in hydrazinium magnesium for-

mate (HMF), a MOF which exhibits complex, phase-dependent dynamics of both the

included hydrazinium ions and the formate framework. It was described by Chen et al.

as having relaxor ferroelectric behaviour, a specific type of ferroelectric behaviour with

unusual dielectric properties.69 The aim of the work is to discover the origins of the re-

laxor ferroelectric behaviour by uncovering the dynamics of the hydrazinium cation using

multiple solid-state NMR techniques alongside alternative methods to build a picture of

the dynamics above and below the phase transition.
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5.2 Relaxor Ferroelectrics

Capacitors are a vital component to store electrical energy in all modern electrical devices,

from mobile phones to microwaves to cars. Almost all capacitors are made of at least two

electrical conductors separated by an electrical insulator, known as a dielectric. This

allows a positive charge to build up on one conductor and a negative charge to build up on

the other. All dielectric materials are electrical insulators meaning there will be no flow

of charge when placed in an electric field, however there are changes on an atomic scale.

Dielectrics exhibit electric polarisation meaning that electrical charges, such as electrons

or ions, are displaced in the direction of the field. This polarisation can be reversed with

an opposing applied electric field.

While many materials will be polarised by an applied electric field, ferroelectrics are

a specific type of dielectric which can have a non-zero polarisation when no electric field

is applied. Unlike linear dielectrics where the polarisation in the material only depends

on the direction and magnitude of the field, ferroelectricity also depends on the history

of the material. This is shown in Figure 5.1 which demonstrates the effect of increasing

the electric field on polarisation on different types of dielectrics. For a linear dielectric,

there is no hysteresis, meaning that polarisation of the material is not dependent on the

material’s electrical history, as demonstrated in Figure 5.1a. When the electric field is

removed, a linear dielectric material will return to the original non-polarised state. This

is in contrast to the hysteresis loop in a ferroelectric, shown in Figure 5.1b, where there

is a lag in the polarisation when the electric field is changed.

Figure 5.1: Representation of the typical polarisation vs electric field hysteresis loops
and energy storage characteristics of three dielectric materials: (a) linear dielectric; (b)
ferroelectric; and (c) relaxor ferroelectric. Total shaded area represents the stored energy.
The darkest shaded area is the energy lost. Demonstration only, not to scale, reproduced
from reference 70.

As a result of the ferroelectric hysteresis, ferroelectrics exhibit large energy losses

which is shown by the darker shaded area in Figure 5.1b. Since linear dielectrics have

no hysteresis loops, they usually exhibit much higher efficiencies as capacitors than ferro-

electrics. Because of this, significant research has gone into improving linear dielectrics.71

However, the permittivity, corresponding to the slope of the polarisation curves, is often
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much lower in linear dielectrics meaning the overall storage capability, denoted by the

total shaded areas in Figure 5.1, is lower.

Relaxor ferroelectrics are a type of ferroelectric which also have a non-linear po-

larisation with respect to electric field. However, unlike other ferroelectric materials they

have near negligible hysteresis, as shown in Figure 5.1c, meaning they have much greater

efficiency. Relaxor ferroelectrics have the advantage of the high permittivity of the fer-

roelectrics as well as the efficiency similar to linear dielectrics. It is for this reason that

relaxor ferroelectrics are gaining in popularity for capacitor materials.70

The behaviour of each type of dielectric is typically explained through the domain

structures in the material. Linear dielectrics exhibit constant permittivity due to the

lack of any permanent dipoles. Ferroelectrics are said to have large polar domains which

will lag behind the applied field leading to the large hysteresis curves. In comparison,

relaxor ferroelectrics are said to have less long-range order and are often explained through

the existence of ‘polar nanoregion regions’ which are nanoscale polar domains within a

non-polar average structure. This reduces the cooperative coupling among ferroelectric

domains, hence the smaller hysteresis in a relaxor ferroelectric.72

Typically ferroelectric materials only show ferroelectric behaviour below a certain

temperature known as their Curie temperature (T c). Above this temperature the mate-

rial has a paraelectric structure where the material contains permanent dipoles but no

ferroelectric domains. This results in non-linear permittivity with respect to the electric

field but the material returns to a non-polar state upon removal of the field as shown in

Figure 5.2. This first-order phase transition is due to free energy. At low temperatures,

the splitting into ferroelectric domains reduces electrostatic energy of the spontaneous

polarisation charges, however, as the temperature increases this energy is offset by the

energy required to form the domain walls.73

Figure 5.2: Representation of the polarisation vs electric field of a ferroelectric above
(magenta) and below (black) the Curie temperature. Reproduced from reference 74.

Relaxor ferroelectrics show different temperature-dependent permittivity to ferro-

electrics. One of the requirements of a relaxor ferroelectric, as set out by Cross, is that the

temperature-dependent dielectric permittivity is a broad maximum described as a diffuse

phase transition.75 This broad maximum has been attributed to a distribution in the
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Curie temperatures in each polar nanoregions by Ahn et al.76 This is demonstrated in

Figure 5.3b and is one explanation for understanding the broad temperature dependence

in relaxor ferroelectrics. However it should be highlighted there are many models and

explanations for relaxor ferroelectric materials without any consensus.76

Figure 5.3: Representation of the temperature-dependent dielectric permittivity for: (a) a
ferroelectric; (b) a relaxor ferroelectric showing the characteristic broad dependence; and
(c) a relaxor ferroelectric showing the dependence on electric field frequency. Reproduced
from reference 76.

The second requirement of a relaxor ferroelectric is that the temperature for the

maximum dielectric permittivity is dependent on the frequency of the applied field.75 This

is demonstrated in Figure 5.3c and is attributed to the motion of boundaries between the

ordered polar regions and the disordered non-polar regions.76

The origins of relaxor ferroelectric behaviours are not entirely understood, but

explanations are almost always associated with disorder in some form. In perovskite

oxides the behaviour is said to be the result of the relative displacement of ions from a

dopant which induces static disorder of perovskite cations. The chemical inhomogeneity

results in apparent ‘polar nanoregions’ or nanoscale polar domains within a non-polar

average structure, as described earlier.77 While the perovskite structure is most associated

with relaxor ferroelectrics, there are other structures with different proposed mechanisms.

For example, Rochelle’s salt has hydrogen bond-driven relaxor behaviour where dynamic

protons in hydrogen bonds trigger the ferroelectric ordering of the lattice.78 There are

also examples of conformational disorder in polymers where it is the chain chirality which

drives the relaxor effects.79

Berlie et al. studied the dynamics and structure of an organic molecular solid

TEA(TCNQ)2.
80 They reported the notable similarities in the pattern of R1ρ (= T 1ρ

−1) at

50 kHz and the dielectric relaxation also at 50 kHz, as shown in Figure 5.4. This similarity

indicated that both techniques were measuring the same process and hence they concluded

that the relaxor ferroelectric properties were a consequence of the thermally activated

barrier of the dynamic molecules.
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Figure 5.4: The temperature dependence of R1ρ at 50 kHz and dielectric losses also at
50 kHz of TEA(TCNQ)2, showing remarkable similarities. Red lines show the relaxation
fitting. Taken from reference 80.

5.3 Hydrazinium Magnesium Formate

HMF, or (NH3NH2)Mg(HCO2)3, is a MOF with a chiral hexagonal structure with six

coordinated magnesium ions connected in an octahedral pattern through formate linkers

in an anti-anti coordination mode. Formate, HCOO–, is the simplest carboxylate linker

and can adopt various bridging modes, as shown in Figure 5.5 and is a good hydrogen-

bond acceptor. Hydrazinium ions (structure shown in Figure 5.6) exist in hexagonal

channels throughout the framework.69 The MOF was found to exhibit relaxor ferroelectric

behaviour and unlike most materials, the relaxor behaviour was above its phase transition.

The following section is a summary of the work reported by Chen et al. focusing on how

the structure of HMF, determined by X-ray crystallography and physical measurements,

were used to explain the relaxor-like behaviour they found.69

Figure 5.5: Different possible coordination modes of the formate anion: syn–syn, anti–anti
and syn–anti.

Chen et al. were the first to use hydrazinium as a cationic component and template

to synthesise a new class of ammonium metal-formate frameworks of [NH2NH3][M(HCOO)3]

where M = Mn2+, Zn2+, Co2+ or Mg2+.69 Usually ammonium metal-formate frameworks

are isostructural with different metal ions but here they formed two different structures:

Mn2+ and Zn2+ had a perovskite structure and Co2+ and Mg2+ a chiral framework. This
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Figure 5.6: Structure of a hydrazinium ion.

is likely due to the intermediate size of the hydrazinium ion; the [AmineH][M(HCOO)3]

framework tends to adopt the perovskite structure for larger amine groups, such as

CH3NH +
3 , (CH3)2NH +

2 , CH3CH2NH +
3 , (CH2)3NH +

2 , C(NH2)
+
3 and (NH2)2CH+, whereas

it tends to adopt the chiral framework for smaller amine groups such as NH +
4 and HONH +

3 .

DSC traces of the four compounds synthesised by Chen et al. are shown in Fig-

ure 5.7 with the HMF compound of interest shown in blue (other metal ions also drawn).

The endo/exothermic peaks were observed at 349 K and 347 K respectively i.e. it had a

thermal hysteresis of just a few kelvin. There were three peaks in the region of 300 – 350 K,

indicating it may be a complex multi-step transition. The combined TGA-DSC (thermo-

gravimetric analysis-DSC) showed that HMF decomposes at 450 K.

Figure 5.7: DSC traces of the four compounds, all first cycle. HMF shown in blue.
Recorded by Chen et al.69

Chen et al. ran SCXRD at two temperatures: above and below the phase transition

(400 K and 292 K). In both the high and low temperature structures, HMF contained

octahedral magnesium atoms which connected to six others via anti-anti formate bridging

linkers. Both structures had a metal–formate framework with hydrazinium molecules

sitting within hexagonal channels. The space group changed from chiral orthorhombic

space group in the low temperature phase to a polar hexagonal space group in the high

temperature phase.

The definition of a chiral space group is complex but related to the molecular

definition of having a non-superimposable mirror image. To be chiral, a space group must

not contain a centre of inversion, a mirror plane or any rotation-reflection axes.81 A polar

space group is a crystal structure with a polar axis, which is the direction that cannot be
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transformed into the opposite direction by any symmetry operation in the crystal class.

Only crystals without a centre of symmetry can be polar since a centre of symmetry will

transform a direction into the opposite one. Most crystal structures are neither polar

nor chiral since approximately 78 % of structures in the Cambridge structural database

are in centrosymmetric space groups.82 Polar symmetry is considered rare. However

many highly sought after properties of materials such as pyroelectricity, piezoelectricity

and ferroelectricity are only allowed in polar space groups as they have the switchable

polarisation characteristic required.83

Framework changes below and above the phase transition are reported to be small,

however the cation undergoes a significant change, as shown in Figure 5.8. In the low

temperature structure, cations lie approximately perpendicular to the hexagonal channels

and are completely ordered in the lattice with adjacent cations oriented up and down.

In the high temperature phase, the cation is said to become trigonally disordered, with

cations lying approximately parallel to the channels. Hence the structural change from

chiral orthorhombic space group, P212121, to a polar hexagonal space group, P63, is

described as being “triggered by the order–disorder transition of the cation”.69

Figure 5.8: Structure of HMF below and above the phase transition, left and right respec-
tively as determined by Chen et al. A small number of magnesium atoms shown as green
balls, the rest as violet-blue balls. Formates shown as red and black balls or summarised
by violet-blue lines. Hydrazinium molecules shown as cyan-purple.69

Experimental and simulated variable temperature powder X-ray diffraction (PXRD)

patterns are shown in Figure 5.9 with the simulated patterns based on single crystal struc-

tures shown in colour. Asterisks highlight the subtle disappearances of some peaks above

the phase transition between 340 – 350 K, which the authors put down to an increase in

structural symmetry at high temperature.

The dielectric permittivity of HMF, given in Figure 5.10, shows dependence on

electric field frequency. As the frequency increases, the rise in the permittivity is shifted

to higher temperatures which is consistent with the relaxor-like behaviour. The derivative
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Figure 5.9: Variable temperature PXRD patterns for HMF, simulated patterns based on
single crystal structures shown in colour. Temperatures given in K.69

plot at 1 MHz (inset) shows a complicated multi-step phase transition which is consistent

with the DSC given in Figure 5.7. This relaxor-like behaviour was explained in terms of the

structure of the cations. In the low temperature phase the cations are completely ordered

in the lattice and hence the material is antiferroelectric. On heating, the weak hydrogen

bonds and large voids in the framework allow the cations to become trigonally disordered.

This creates a polar structure with all the cations aligning in the same direction within

the channels. Fundamentally it is the order-disorder transition of the hydrazinium cations

which creates the relaxor-like behaviour above the phase transition.

Figure 5.10: Temperature-dependent traces of the (real) dielectric permittivity (ε′) on
heating for HMF as a function of field frequency and inset dε′/dT plot at a field of 1 MHz.69

In addition to the dielectric properties, Chen et al. described prominent anisotropic

thermal expansion. It was found that with increasing temperature the channel diameters
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reduced but channel lengths expanded. This reduction of channel diameter started gradu-

ally before the phase transition at 350 K and then increases considerably at the transition.

It was suggested that the framework accommodates the motion of the hydrazinium ions

which causes the anisotropic thermal expansion properties.

5.4 Experimental Methods

Samples of HMF and partially deuterated HMF (dHMF) were synthesised and provided

by the group of Paul Saines, University of Kent. The synthesis of dHMF was designed

such that only the hydrazinium cations were deuterated. The white powders of HMF and

dHMF were packed into 4 mm zirconia rotors.
1H NMR experiments were carried out on the HMF sample using a Bruker Avance

III HD spectrometer at 400.17 MHz using a Bruker 5 mm static probe where, in the in-

terests of sample conservation and preserving sample history, the packed rotor from MAS

experiments was placed inside the 5 mm glass tube sample holder. 1H spectra were ac-

quired using a solid echo pulse sequence with an inter-pulse delay of 15 µs, and FWHM of

resonances were determined using TopSpin 3.0.

Variable temperature 2H, 13C and 15N NMR experiments were carried out us-

ing a Bruker Avance III HD spectrometer at frequencies of 76.71 MHz, 125.65 MHz and

50.64 MHz respectively using a Bruker 4 mm MAS probe. 2H spectra were taken on static

samples with a 90 ° static echo pulse (6.4 µs) and an inter-pulse delay of 55.2 µs. 13C and
15N spectra were acquired using 10 kHz MAS and CP. 2H spectra were fitted to sums of

quadrupolar lineshapes using SOLA in TopSpin 3.0.

5.5 Results

The following results are based on the article: ‘A new avenue to relaxor-

like ferroelectric behaviour found by probing the structure and dynamics of

[NH3NH2]Mg(HCO2)3’.
84 Diffraction studies were run and analysed by Thomas

Hitchings and Paul Saines.

5.5.1 Diffraction

In the low temperature structure, SCXRD confirms the structure reported by Chen et al.

There is chirality in the framework and the hydrazinium ions lie perpendicularly in pores

packed antiparallel to each other along channel direction. However, single-crystal neutron

diffraction (SCND) showed additional disorder that could not be observed through XRD.

The disorder was modelled by splitting the NH2 group across two positions (N2a and N2b),

as shown in Figure 5.11a. The two nitrogen positions had one associated distinct hydrogen

position (H2a and H2b) and one hydrogen position between the nitrogen positions (H3).

The nitrogen associated with the NH3 end was not modelled with any significant disorder.
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There is evidence of hydrogen bonds both between the cations and the formate as well as

between NH3 and NH2 groups on adjacent cations. Disorder is also found in the framework

with the hydrogen atoms in the three crystallographically distinct formate ions being

modelled as split across two positions as shown in Figure 5.11b

(a) Low temperature structure: cation
disorder within channels.

(b) Low temperature structure: cation and
framework disorder.

(c) High temperature structure: cation
disorder within channels.

(d) High temperature structure: cation and
framework disorder.

Figure 5.11: Crystal structures of HMF modelled from the SCND: (a) and (b) low temper-
ature orthorhombic P212121 crystal structures; and (c) and (d) high temperature hexag-
onal P63 crystal structures. Diagrams made by Tom Hitchings.84

In the high temperature structure, previous XRD studies from Chen et al. suggested

a single N position in a P63 cell.69 Modelling from SCND gave an additional two nitrogen

positions, centered around the 3-fold axis which lies along the pore direction. This is

shown in Figure 5.11c. The modelling shows a fraction of cations have reoriented along

the pore direction, as was described by Chen et al., however the new modelling shows some

hydrazinium ions remain perpendicular to the pore even in the high temperature phase.

Full modelling of the SCXRD data in the high temperature phase is difficult due to the

substantial disorder particularly of the perpendicular cations. There was also disorder on

the formate ion as shown in Figure 5.11d. The diffraction study exhibits some residual

scattering along the channel axis, as shown in Figure 5.12. This is ascribed to an additional

H site between parallel cations but this is not directly observed in the NMR.
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Figure 5.12: Scattering from SCND from parallel cation molecules in HMF. Experimen-
tally observed nodes of negative scattering (red) between cations. The transient proton
site between cations is omitted to display the residual negative scattering. Diagram made
by Tom Hitchings.84

5.5.2 NMR

5.5.2.1 Lineshapes

Figure 5.13 gives the recorded 2H and 13C of dHMF and 15N spectra of HMF at varying

temperatures denoted by the position of the baseline with respect to the temperature scale

on the vertical axis. The 2H and 15N spectra reflect changes in the dynamics of the cation,

while the 13C spectra are sensitive to changes to the host framework, as measured from

the formate ion. There are three distinct temperature regions seen clearly in the 2H and
13C spectra and to a lesser extent the 15N spectra. These regions, also observed in 1H

lineshape data (Figure 5.18 on page 80), match well to the behaviour observed in the DSC

and the dielectric permittivity datasets given in Figure 5.7 Figure 5.10 respectively,69 in

which there is a complex multi-step transition between 300 and 350 K with the main phase

transition at 350 K. There was no evidence of significant temperature hysteresis; spectra

given were acquired with increasing temperature, however spectra taken with reducing

temperatures were indistinguishable. This indicates there was no degradation of sample

through heating cycles to temperatures no greater than 400 K.

There is evidence of the nature of the temperature transitions from the 13C spectra.

The intermediate region has features of both the high and low temperature regions con-

sistent with a first order transition, but there is a clear evolution of the low temperature

structure towards the high temperature limit, i.e. the intermediate region is not a simple

first order transition involving separate domains of two materials.

As found in the diffraction, the low temperature structure has three crystallograph-

ically distinct formate ions in the unit cell. This is seen in the 13C spectra with the two

peaks seen in an approximate 2:1 ratio. However there is a continuous distribution of

chemical shifts between 170 – 175 ppm, implying a distribution of local formate environ-

ments. This can only be explained in terms of significant static disorder of the framework

in the low temperature region.
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Figure 5.13: NMR spectra as a function of temperature (baseline of each spectrum in-
dicates sample temperature). Left: 2H static spectra of dHMF at 76.71 MHz. Centre:
13C spectra of dHMF at 125.65 MHz and 10 kHz MAS. Right: 15N spectra of HMF at
50.64 MHz and 10 kHz MAS. The three distinct temperature regimes observed are high-
lighted using colour: high temperature phase (red); low temperature phase (blue); and
intermediate regime (black).

Due to intrinsically poor NMR receptivity, 15N spectra have low signal-to-noise

which can make the 15N spectra more difficult to interpret. Sites have been fitted in

Topspin 3.0 with fits shown in Figure 5.14 and fitted parameters are given in Table B.1 in

Appendix B. The two peaks seen in the intermediate temperature region could be naively

assigned to the NH3 and NH2 groups of hydrazinium ions. However, there are two distinct

cation populations in the intermediate regions (see explanation below), and so it is likely

that the two resonances actually refer to the two populations. This is supported by the

fact that in the low temperature region, where there is only one type of hydrazinium ion

present, the two peaks corresponding to the NH3 and NH2 groups are not well resolved.

The most conclusive feature of the 15N spectra is the distinctive coalescence of the two

signals at approximately 370 K. This could be the two populations of hydrazinium ion

exchanging at high temperatures. This exchange is slow at approximately 200 Hz, the

linewidth of the coalesced peak, and hence not likely to be the H+ exchange seen in the

diffraction. Due to the relatively slow rate, the exchange is not expected to affect the 2H

spectra even at the highest temperature measured here.
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Figure 5.14: 15N at 50.64 MHz and 10 kHz MAS spectra as a function of temperature.
Left: 15N data. Centre: fitted sites Right: overall fit (red) overlaid on spectra (black).

Figure 5.15 shows one characteristic 2H spectrum for each temperature region.

They were fitted using SOLA in TopSpin 3.0, with the fits summarised in Table 5.1.

The lowest temperature spectrum (259 K) has been fitted to two sites: one with a CQ of

43 kHz and a low asymmetry parameter, η (blue), and a second component with smaller

CQ (green) is required to fit the overall shape. Since it follows the outer shape of the

experimental spectrum, the blue fitted values are given with confidence. The green fit is

required to increase the central portion of the overall fit and hence is not a direct fit to

any part of the experimental spectrum. This fit is given with much less confidence.

Table 5.1: Fitting parameters for the 2H NMR spectra of Figure 5.15.

259 K 335 K 386 K

Fractional integral 0.68 0.32 0.17 0.58 0.23 0.01a 0.34 0.65 0.01a

δiso / ppm 6 7 4 10 9.4 8 3 9.1 9
CQ / kHz 43 20 77 21 5.0 0 75 3.0 0
ηQ 0.13 0.8 0 0.2 0 0 0 0.03 0
LBb/ kHz 2 3 1.5 2.6 0.8 1.2 1.1 0.8 0.6

Fitting values are given to the number of significant figures required for a
satisfactory visual fit of the data.

a Used to ‘fit out’ a zero-frequency component: not physically significant.
b Lorentzian line broadening.
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Figure 5.15: Fitting of representative 2H NMR spectra of dHMF at 76.71 MHz from low,
intermediate and high temperature regions. Left: experimental spectrum (black) and
overall fitting (red). Right: individual fitting components: high CQ (blue) and low CQ

(green). Additional components were required in some fittings: intermediate CQ (purple)
and a small zero-frequency spike (grey).

The 43 kHz CQ, low η fit (blue) on the low temperature fit in Figure 5.15 likely

corresponds to an N–D bond undertaking a symmetrical rotation which, based on the sym-

metry of the crystal and the molecule, will be a C3 jump. A CQ of 43 kHz is significantly

smaller than would be expected for an isolated spin undertaking that motion (≈ 77 kHz†),

however it is consistent with a strongly hydrogen bonded site undergoing a C3 jump.85

The lower CQ, higher η fit (green) is more complex to explain. Figure 5.16 simulates the

effect of η and CQ of a 3-site jump with non-equal probabilities. The x axis varies by

the population of A and the remaining population is shared between two other sites. A

typical C3 jump with equal populations is represented by A = 0.33, which gives η = 0

and CQ/CQ(0) ≈ 0.33 as expected from the footnote. As the population is moved even a

small amount away from three equal populations (e.g. A = 0.4) the η value becomes much

larger very quickly. This mimics the motion of the ND2 bonds (and the lone pair) in a

non-symmetric potential and possibly explains the higher η value. The ratio between the

low and high η sites is 0.68:0.32 which is different to the 0.6:0.4 expected from a straight

division of NH3 and NH2 groups. This could be due to the errors of the fit of the high η

†A static deuterium lineshape is typically 200 kHz. In the event of a C3 rotation this will be scaled by
approximately cos(70.5 °) = 0.33 resulting in a lineshape of 200 kHz × 0.33 = 77 kHz.
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spectrum or experimental reasons such as relaxation losses in the echo period. Alterna-

tively, it could be because 20 % of the ND2 sites are in a symmetric potential resulting in

a larger than expected low η site.

Figure 5.16: Dependence of the averaged quadrupolar coupling tensor in the limit of fast
exchange between three sites as a function of the population of site A, the other two sites
sharing the remaining population equally. The cone angle is 70.5 °. Data calculated using
NMR Weblab.

The high temperature 2H spectrum (386 K) in Figure 5.15 also fits to two com-

ponents. The broader site (blue) again fits to a low η value and is consistent with a C3

jump rotation. However the CQ is larger than the low temperature fit (77 kHz vs 43 kHz)

and is consistent with a rotation unhindered by hydrogen bonding. There is also a very

narrow site (CQ ≈ 3 kHz) implying there is a very mobile component at this temperature

undergoing (almost) isotropic rotation.

The intermediate temperature 2H spectrum (335 K) in Figure 5.15 has both the

site undergoing an unhindered C3 jump and the isotropic site seen in the high tempera-

ture spectrum. Additionally there is an intermediate site which fits to a CQ of 21 kHz.

As seen in Figure 5.17, this is the only site which varies within a temperature region.

This is likely attributed to an exchange-type process, happening around 200 kHz between

310 – 348 K. This could be an exchange between ND2 groups in symmetric and asymmetric

sites, as described in the low temperature fit. Alternatively, since there is no discrimina-

tion between the ND2 and ND3 sites in the intermediate and high temperature spectra

(as there was in the low temperature) this could be from an exchange of H+ intra- and/or

inter-molecularly.

The relative intensities between sites should not be over interpreted. With an echo

delay of 55 µs it is possible that different sites have different T2 relaxation times and hence

the ratio of integrals recorded here are not reflective of the true ratio. It should also be

noted that MAS 2H spectra were recorded, however no discrimination between sites were

observed at any temperature.

The evolution of proton 1H linewidths with temperature are given in Figure 5.18.

Unlike the 2H lineshapes, the 1H data will have contributions from both the hydrazinium
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Figure 5.17: Overlaid 2H spectra at 76.71 MHz with temperatures given on the right for (a)
low temperature structure, (b) intermediate regime and (c) high temperature structure.
Outer sections fixed by eye to allow relative spectral shape evaluations to be visible.

ion and the formate linker. Linewidths are analogous to the intermediate motions discussed

in Section 4.4 showing that the ND3 motion is fast even at 240 K. The gradual decrease

of linewidth throughout the phases suggest the slow onset of an additional motion, be it

from the hydrazinium ion or the formate linker. The sudden drops in the linewidth shows

the MOF is entering a more dynamic phase.

Figure 5.18: Static 1H linewidth of HMF as a function of temperature at 400.17 MHz.
Data taken by George Peat.86

5.5.2.2 Relaxation

Figure 5.19 shows the evolution of 1H relaxation times as a function of temperature.

Curves have been fitted based on Arrhenius equations and fitted parameters documented

in Table 5.2. As discussed above with lineshapes, 1H relaxation times could be sensitive

to motions from the hydrazinium ion as well as the formate framework. Due to efficient
1H spin diffusion, the measured relaxation rate will be a weighted sum of the relaxation

rates of the different 1H environments.

The minima in the T1 and T 1ρ relaxation times in the low temperature region

likely correspond to the motions seen in the low temperature 2H spectra. It is tempting to

assume that the 1H T1 and T 1ρ relaxation times are responding to the same motion since
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Figure 5.19: 1H T1 at 400.17 MHz (blue) and T 1ρ at 50 kHz (red) relaxation time constants
as a function of temperature. Error bars are not shown as they are of a similar magnitude
to the size of symbols used. Curves show fits to relaxation models. T 1ρ data fitted to
two motions simultaneously, see Figure 5.20 for further explanation. Straight line fits for
shorter data segments at higher temperatures are guides for the eye and these E a values
should be interpreted cautiously. Data taken by George Peat.86

the activation energies are compatible, however the rates of motion are not compatible: the

rates over the temperature range 220 – 300 K are 200 – 1000 MHz for T1 and 50 – 200 kHz for

T 1ρ. If the rates of motion from the NH3 end and NH2 end of the cation were sufficiently

different, it is possible the different relaxation types were detecting the rotation of different

ends. More likely is that both relaxation types are detecting a superposition of both NH3

and NH2, and perhaps even a contribution from the formate in addition, therefore the

activation energies are not physically meaningful.

There is a jump in the 1H T1 relaxation times at the lowest temperature transition

which is consistent with a sudden increase in the rate of motion. However, the activation

energies fitted in the mid and high temperature regions must be treated with particular

caution, as there is not only contributions from the hydrazinium cations and the formate

framework as before, but also potentially from different cation populations.

The T 1ρ was fitted in the low and mid temperature regions (222 – 353 K) to two

motions simultaneously i.e. two motions, each with a separate E a and log10(τ0) but a

common ν1 = 50 kHz as summarised by Equation 5.1. Fitting two motions simultane-

ously significantly changed the fitted parameters as shown in Figure 5.20 and despite two

plausible independent fits shown in Figure 5.20a, the fitted parameters are not physi-

cally meaningful as they have not accounted for the 12.0(6) kJ mol−1 motion in the lower

temperature region. The 12.0(6) kJ mol−1 fit was unaffected by the simultaneous fitting
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(a) Independent fittings. (b) Combined fitting

Figure 5.20: Possible fits of the low and mid temperature region of 1H R1ρ. Left: two
options (top and bottom) for fitting regions independently. Right: fitting the whole region
simultaneously to two motions with a common ν1, equivalent to T1 plot in Figure 5.19.
Pink lines show individual components which add (in R1ρ) to give the overall fit.

because the higher energy motion quickly becomes insignificant away from its minimum.

T −1
1ρ = A1J1(ν1, τ c1) +A2J2(ν1, τ c2) (5.1)

The T 1ρ minimum which fitted to E a = 60(3) kJ mol−1 likely relates to the re-

duction of the 2H linewidth of the intermediate site in the intermediate temperature.

It is possible that this represents the whole molecule movement of the hydrazinium ion

as this has previously been measured to be 67 kJ mol−1 (reported as 16 kcal mol−1) in

Li(N2H5)SO4.
87 If this is the case here, it is plausible that a large scale motion of the

cation causes the phase transition, which is consistent with the reduction of T 1ρ starting

before the phase transition.

The decrease in T 1ρ relaxation times in the high temperature region likely relates

to the narrowing of 1H linewidths in this region. The region can be fitted simultaneously

with the <290 K values to a motion of 59.97 kJ mol−1 as shown by Figure 5.21. Hence

this could be the re-emergence of the same dynamics seen in the mid temperature region

happening at a slower rate due to the phase change. Although it should be noted due to

the separation between the two fitted temperature regions, the higher temperature region

could be fitted to any value between 35 – 85 kJ mol−1. The high temperature region could

be sensitive to the interchange between aligned and dynamic protons, which would be

consistent with the coalescing 15N spectra (Figure 5.13 on page 76).
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Figure 5.21: 1H T 1ρ relaxation times fitted to the low and high temperature regions (darker
crosses) simultaneously. The activation energy of the higher energy process was fixed at
59.97 kJ mol−1 (the exact value of 60(3) kJ mol−1 from the fitting in Figure 5.19). The
lower energy process is fitted to E a = 11.0(3) kJ mol−1 and log10(τ0 / s) = −8.11(4) and
the higher energy process fitted to log10(τ0 / s) = −13.25(6).

Deuterium T1 relaxation times, shown in Figure 5.22 are much less informative

than the 1H relaxation times. The lower temperature data showed some deviations from

single exponential behaviour, but a simple single-exponential fit was used to capture the

temperature dependence, and show that this is consistent with the more extensive 1H

relaxation data. All parameters fitted from relaxation times are summarised in Table 5.2.

Figure 5.22: 2H T1 relaxation time constants as a function of temperature for static samples
of dHMF at 76.71 MHz. The data was acquired using saturation recovery experiments.
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Table 5.2: Summary of the fitted parameters from the relaxation data of HMF.

Relaxation
Type

Temperature
range / K

Ea /
kJ mol–1

log10(τ 0 / s) log10(A / Hz)

1H T1

222–314 (Low) 11.3(2) −11.79(4) 9.248(2)
322–353 (Mid) 8.4(5) - -
361–384 (High) 6.58(12) - -

1H T1ρ

222–353
(Low & Mid)

12.0(6) −8.36(11) 7.926(9)
60(3) −15.3(5) 7.471(13)

222–276 & 361–384
(Low & High)

11.0(3)
59.97a

−8.11(4)
13.25(7)

7.932(9)
7.37(5)

2H T1
247-286 (Low) 9.4(4) - -
348-386 (High) 13.0(9) - -

a Fixed parameter

5.6 Conclusion

The combination of SCND and solid-state NMR has proved essential for analysing the

structure and dynamics in HMF. It has been confirmed that the main phase transition

is caused by the reorientation of hydrazinium ions from perpendicular to parallel in the

channels. It is also highly likely that the hydrazinium molecules start reorienting before

the phase transition, as indicated by the 1H T 1ρ minimum, which gave an activation energy

consistent with whole molecule reorientation starting 60 K below the phase transition. It is

also consistent with the anisotropic thermal expansion recorded by Chen et al., where the

reduction of channel diameter starts gradually before the phase transition. It could be that

a small number of hydrazinium ions reorient to reduce steric pressure by aligning along

the channels. This realignment causes further reduction of pore diameter which causes

further cations to reorient. This starts below the main phase transition and continues

until a critical value where there is an energetically favourable number of parallel and

perpendicular cations.

While 1H relaxation measurements have given motional parameters, it is the spectra

that have proved very useful for understanding the nature of the material. 2H spectra have

shown that there are two population of cations, one of the cations is highly mobile, whilst

the other is in a symmetric potential. The interconversion of these populations in the high

temperature phase must be slow compared to the deuterium linewidth (≈ 100 kHz) but

fast relative to the 13C and 15N linewidth (≈ 500 Hz). 13C spectra have also shown that

there is a distribution of local environments in the the low temperature phase indicating

static disorder of the framework.

Relating the structural and dynamic information of the material to the relaxor

ferroelectric behaviour is not straightforward. The findings are not incompatible with the

most common explanation for relaxor ferroelectrics involving polar nanoregions. There

is a combination of parallel and perpendicular cations and if the polar parallel cations

were found in small domains within the non-polar perpendicular cations, this would be
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consistent with the common ‘polar nanoregion’ hypothesis. However, in the data presented

here, much like in the literature, there is no direct evidence for the existence of polar

nanoregions.

Relaxor ferroelectricity is fundamentally a frequency dependence of the dielectric

response. From an NMR perspective, when there is a thermally activated process with an

activation energy, there is a frequency dependence of the response; T1 relaxation curves,

for example, are frequency dependent and will be different when measured at 100 MHz

compared to 500 MHz. If the dielectric permittivity is comparable, then the relaxor ferro-

electric response is not found despite the dynamic molecules but directly because of the

thermally activated dynamics.

85



Chapter 6

Characterising the Dynamics of

Solvent Molecules in

Pharmaceutical Cocrystal Solvates

6.1 Cocrystal Solvates

Cocrystals are multicomponent crystals formed between two or more compounds. They

have a different crystal structure to their starting compounds and because of this, cocrys-

tals will have different physicochemical properties. This has been utilised in many areas of

research,88 such as explosives89 and pigments,90 but particularly in pharmaceuticals.91–95

The pharmaceutical industry is particularly interested in the improvement of physic-

ochemical properties in the solid form, since the majority of medicines are taken as a solid.

Improvements in properties such as stability and powder flowability have a direct impact

in practical aspects of drug manufacture, such as processing and storing.96 Most impor-

tant though, are improvements to solubility, as this has a direct impact on bioavailability.

Hence cocrystallisation is potentially a route to making an active pharmaceutical ingredi-

ent (API) with prohibitively poor solubility, viable as a product.

Trapped solvent molecules are also very common in pharmaceuticals; it is estimated

that up to a third of all APIs can form hydrates.97 When the crystal packing of a host

lattice is relatively inefficient, solvates can be found in the channels or voids in the lattice.

Solvent molecules can create strong interactions and hydrogen bonding with APIs to form

flexible clusters which can improve stability.98,99 Alternatively, solvent molecules can

simply fill the spaces without strong interactions with the framework,100 which reduces

the free energy of the crystal compared to the non-solvated form.101

Included solvent molecules are frequently dynamically disordered. Despite the

potential benefits of solvates, disorder is a potential risk in the pharmaceutical industry,

as it is assumed to reflect some degree of metastability. However, solvent dynamics could

be providing entropic stabilisation and hence disorder may be intrinsic to the stability of

a phase and not necessarily a marker of instability.
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6.2 Furosemide-Picolinamide

Furosemide (FS) is a very important compound in medicine; it is on the World Health

Organization’s List of Essential Medicines in 2019102 and it was the twentieth most pre-

scribed medication in England in 2020/21.103 It is a potent loop diuretic and is primarily

used in relieving fluid accumulation (edema) in the heart, liver or kidney, but can also be

used to treat high blood pressure. It does, however, have relatively poor aqueous solu-

bility (6 mg dm−3) particularly at physiological pH range.104 This poor solubility limits

bioavailability, hence cocrystallisation of FS has been widely investigated as a route to

improving its solubility.16,105 The molecular structure of FS is given in Figure 6.1a.

Picolinamide (PA) has been described as a ‘promising coformer’ and is one of the

many molecules screened when formulating pharmaceutical cocrystals.106 Its molecular

structure is given in Figure 6.1b.

(a) Furosemide (FS) (b) Picolinamide (PA)

Figure 6.1: Molecular structure and the components of the cocrystal FSPA.

The following chapter is dedicated to understanding the dynamics of two solvent

molecules in two isostructural cocrystal solvates of FS and PA: FSPA acetone and FSPA

ethanol. Results are documented in two halves with ideas in the first section focusing on

information understood from NMR in isolation. This ‘traditional’ analysis uses lineshape

and relaxation data to model molecular motions and is represented by the shaded region of

the pictorial chapter overview in Figure 6.2. The second part of the chapter describes how

the full understanding of the dynamics can only be understood from molecular dynamics

(MD) simulations, represented by the red boxed region of Figure 6.2.

NMR analyses rely on the assumption that the motions are thermally activated

i.e. motions that have an energy barrier, an activation energy, a correlation time that is

dependent on temperature and an amplitude of motion that is independent of temperature.

These assumptions are implicit in relaxation fitting equations (given in Section 2.2 on

page 7) as well as in modelling jump-type motions in EXPRESS18 or Weblab.19

The MD simulations herein show that the motion of solvent molecules in both

solvates has a strong librational character. These wobbling-type motions do not have an

energy barrier and hence do not have an activation energy. For barrierless motions, in

contrast to barrier motions, increasing the temperature increases the amplitude of the

motion but correlation times remain constant.
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Figure 6.2: Pictorial chapter overview adapted from the manuscript in preparation. In the
‘traditional’ approach (shaded), NMR data is analysed using distinct models for lineshapes
and relaxation times to produce a motional model. Results from this are only physically
meaningful if motions are thermally activated. Reconciliation between the two sets of data
fails if motions are complex or are barrierless. In this case, to correctly interpret the data,
MD simulations have been run and are verified by NMR data, highlighted by the red box.

An overview of the motions of the solvate molecules determined by MD simulations

are given in Figure 6.3 with schematic energy profiles alongside. It shows that the acetone

molecules have significant librational character represented by the barrierless energy profile

in blue. There are also four distinct ‘macrostates’ reflecting the C2 symmetry of the

molecule and the inversion symmetry. Jumps between macrostates are likely thermally

activated which is shown as a barrier-type energy profile in green. Ethanol molecules have

a complex mix of librational and jump character without distinct macrostates which is

simplified by the low barrier energy profile in blue.

(a) FSPA acetone (b) FSPA ethanol

Figure 6.3: Cartoon representation of the resulting motions of (a) acetone and (b) ethanol
with associated schematic energy profiles.

The MD simulations showed that the ‘traditional’ way of analysing molecular mo-

tions with NMR data is flawed when the motion has no energy barrier, or is a combination

of barrier and barrierless motions as is the case here. Individual lineshapes have been fit-

ted to models and relaxation times convincingly fitted which provide parameters such as

activation energies and rates. However, the MD simulations show that these values are

not physically meaningful as initial assumptions fundamental to the analysis are incorrect.

There are relatively few studies looking at the dynamics of solvent molecules

trapped in cavities. The study below highlights how NMR data analysed in isolation

can give misleading rates and motion types, and it is the combination of MD and NMR
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that results in an accurate understanding of dynamics. It is hoped that principles used

here may become a blueprint for understanding motions of trapped solvent molecules in

the future.

6.3 Experimental Methods

6.3.1 Sample Preparation

Fresh FSPA acetone and FSPA ethanol solvate samples were prepared by liquid-assisted

grinding of 1:1 molar quantities of the starting materials, 0.165 g FS (0.5 mmol) and 0.061 g

PA (0.5 mmol). For the acetone solvate, FS and PA were ground in 1 mL acetone for 5 min.

A further 1 mL was added and after 5 min a further 0.5 mL acetone was added every 10 min

until the total grinding time was 30 min. A deuterated acetone solvate was produced by

the same method using acetone-d6. For the ethanol solvate, the FS and PA components

were dry ground for 5 min before 10 drops of ethanol were added every 5 min until the total

grind time was 1 h. A deuterated ethanol solvate was produced by the same method using

ethanol-1,1-d2, from here on called ethanol-d2. Both syntheses yielded slightly damp cream

powders, which were left to dry in air for 1 h before packing in 4 mm rotors for subsequent

MAS NMR studies. Samples were stored in the rotor to limit desolvation. 13C MAS NMR

confirmed that the deuterated samples were identical to their non-deuterated analogues.

6.3.2 Experimental Details

High-resolution solid-state NMR spectra were obtained using either a Bruker Avance

III HD spectrometer operating at 1H, 13C and 2H NMR frequencies of 499.70 MHz,

125.65 MHz and 76.71 MHz respectively, or a Bruker Avance III HD spectrometer operat-

ing at the corresponding frequencies of 400.17 MHz, 100.62 MHz and 61.42 MHz. Samples

were packed into 4 mm zirconia rotors. The 2H shift scale was referenced with respect to

neat TMS by setting the peak of D2O to 4.81 ppm. The 13C shift scale was referenced with

respect to neat TMS by setting the highest frequency peak of adamantane to 38.5 ppm.

Variable-temperature 2H static spectra and T1 relaxation data were acquired at

76.71 MHz for the FSPA acetone-d6 sample and 61.42 MHz for the FSPA ethanol-d2 sam-

ple. FSPA acetone-d6 spectra had a 1 s recycle delay and a 60 µs echo delay. FSPA

ethanol-d2 spectra had a 0.2 – 0.5 s recycle delay and a 40 µs echo delay.
2H T1 relaxation measurements were performed using a saturation recovery se-

quence for both samples, and single exponential decays were fitted to the integral of the

complete sideband pattern as a function of recovery time. Excellent single-exponential

fits were obtained at all temperatures on both samples. FSPA acetone-d6 was measured

under static conditions using 16 increments and a maximum recovery time ranging from

1.8 – 3.2 s. FSPA ethanol-d2 was measured under 10 kHz MAS using 16 increments and a

maximum recovery time ranging from 0.26 – 0.85 s.
13C spectra of FSPA ethanol-d2 were acquired at 100.62 MHz and 6 kHz MAS using
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a 5 s recycle delay, 1800 transients, CP and TOSS to suppress sidebands. 13C relaxation

times were taken at 125.65 MHz, 10 kHz MAS, a 5 s recycle and between 128 – 2048 tran-

sients at each of the 10 delay times which were up to 51.2 s. Integrated areas of the solvent

peaks were fitted to decaying single exponentials, although the fits were relatively poor

due to low signal-to-noise.

The temperature dependence of relaxation times were fitted assuming a simple

Arrhenius-like dependence of the motional correlation time, τ c, on temperature, for details

see Section 2.2. However, the fitting has been reparameterised to reduce the correlation

between fitted variables and allows uncertainties to be propagated without the need for

Monte Carlo (MC) simulations: detailed in Section 6.4.2.2.

6.4 Results

Single crystals of both FSPA solvates were obtained by crystallisation experiments carried

out by Lorna Softley of the Ivana Evans group at the University of Durham. SCXRD

studies revealed a unit cell with two pairs of FS and PA molecules in a unit cell. There was

also additional electron density in a void at the inversion centre, suggesting the location

of the disordered solvent molecules, however this was too disordered to be modelled.

Illustrations of the unit cell of both solvates, including solvent molecules are given in

Figure 6.4.

(a) FSPA ethanol (b) FSPA acetone

Figure 6.4: Illustrations of the unit cell of the FSPA cocrystal solvates derived from
SCXRD experiments at 120 K.

13C NMR is an easy way to prove that the grinding has also produced a cocrystal

and not just a mixture of the two starting materials. Figure 6.5 shows the 13C spectra

of both reagents and both cocrystal solvates and it is clear that the peaks from reagents

are not found in the cocrystals, confirming that they are indeed cocrystals. Coloured

arrows indicate peaks from the solvate molecules. No peak splitting is observed which

confirms that the asymmetric unit has a single molecule of each coformer. Very little

difference is seen in the framework peaks of the solvates indicating that the two solvates
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are isostructural. Full assignment of the framework peaks can be found in reference 16.

Figure 6.5: Reference 13C MAS spectra of (a) PA, (b) FS, (c) FSPA acetone solvate and
(d) FSPA ethanol solvate acquired at 125.65 MHz. Spectra (a)–(c) were acquired at 8 kHz
MAS and spectrum (d) acquired at 5 kHz MAS. The recycle delay was 5 s and contact
time 2.5 ms over 100 transients for all except (a) recycle delay 30 s with contact time 4 ms,
(b) recycle delay 15 s with contact time 4 ms and (d) 480 transients. The blue arrow
indicates the acetone CH3 peak and the red arrows indicate the ethanol peaks. Adapted
from reference 16.

6.4.1 FSPA Acetone-d6

The 13C spectrum shown in Figure 6.6 was used as a fingerprint and confirmed that the

FSPA framework structure was identical to that previously reported by Kerr16 and shown

in Figure 6.5c. There was a small signal associated with the CH3 group in the acetone

molecule likely due to partially deuterated acetone molecules present in the original solvent.

As documented by Kerr, the carbonyl carbon in the acetone molecule is not seen, due to

inefficient CP likely caused by the weak dipolar couplings being averaged by dynamics.

Figure 6.6: 13C CP spectrum of FSPA acetone-d6 acquired at 125.65 MHz. 8 kHz MAS
was used with 480 transients with a recycle delay of 5 s.

The 2H spectra of the FSPA acetone-d6 are given at three temperatures shown in

Figure 6.7a. The sharp peak in the centre of the experimental spectra at 235 K and 300 K is

likely to reflect adventitious acetone. The spectra are relatively narrow at all temperatures,

consistent with the fast dynamics of the CD3 groups, even at 190 K. The changes observed

as the temperature increases are consistent with the onset of a C2 rotation about the

C O axis of the acetone molecule. Figure 6.7b shows the spectra of a 2-site jump of 115 °
predicted by EXPRESS18 at jump rates from 10 kHz to 100 MHz, considered slow and

91



fast motions respectively in this regime. There is a good match between the experimental

spectrum at 235 K and the predicted spectrum at 500 kHz. The other spectra do not fit

as well, however it is clear that the experimental spectra are following a similar pattern

to the modeled spectra.

Figure 6.7: (a) Variable temperature static 2H spectra of FSPA acetone-d6 solvate at
76.71 MHz acquired with an echo delay τ = 60 µs over 72000 transients. (b) EXPRESS18

simulated static 2H spectra over a 2-site jump motion of 115 ° which assumes a barrier-
type motion. Data taken by Hannah Kerr, fitted parameters given in reference 16, with
updated temperatures to reflect new understanding of probe temperature calibration.

Figure 6.8, shows the 2H T1 relaxation data, convincingly fitted to a straight line

with an apparent E a = 7.9(2) kJ mol−1 derived from Arrhenius-type analysis. This is an

unexpected result; 7.9 kJ mol−1 is a very low activation energy, indicating a fast motion,

perhaps akin to a methyl rotation, but the motion at 320 K is still slow compared the 2H

Larmor frequency (77 MHz), as shown by the negative gradient of the slope throughout.

These two conclusions are seemingly incompatible.

The relaxation data also does not appear to be fully compatible with the spectra

since the activation energy is significantly lower. Using 235 K = 500 kHz as a fixed rate

and E a = 7.9 kJ mol−1, gives a log10(τ0 / s) = −8.25. This value is compatible with the

relaxation data; at the highest temperature in the relaxation graph, 320 K, the rate is

1.4 MHz which is less than 77 MHz. It is also consistent with the 300 K spectra giving a

rate of 1.2 MHz. However, it is less consistent with the low temperature spectrum giving

190 kHz at 190 K, which is outside of a visual fit.

In summary, the NMR data collected on FSPA acetone-d6 is strong with a clear

activation energy derived from 2H T1 relaxation data and one rate of motion, given by 2H

spectra. However, despite the compelling data, it is difficult to relate the data to molecular

behaviour.
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Figure 6.8: 2H spin-lattice relaxation time constants as a function of temperature of
FSPA acetone-d6 at 76.71 MHz. Measured on a static sample using a saturation recovery
sequence using a saturation train of 64 pulses. Each temperature had 16 increments with
64 transients and a maximum recovery time ranging from 1.8 – 3.2 s. The straight line fits
to E a = 7.9(2) kJ mol−1 assuming an Arrhenius-type fitting.

6.4.2 FSPA Ethanol

Figure 6.9 gives the 13C spectra of FSPA ethanol as a function of temperature with the

resonances from the ethanol solvate labelled. Both the framework and solvent resonances

were identical to the spectrum previously reported by Kerr16 (Figure 6.5). The solvent

peaks did show change with temperature; the signal strength of the CH2 resonance is

broader in the 220 K and 200 K spectra and completely removed in the 185 K spectrum.

The CH3 resonance also shows some broadening, but only at 185 K. This is likely due

to the motion of the solvent molecule entering a regime that interferes with experimental

parameters such MAS rate or decoupling pulses as described in Section 2.4.2.

Figure 6.9: Variable temperature 13C spectra FSPA ethanol at 125.67 MHz. Broadened
signals highlighted in blue, unobserved signal highlghted in red.

Previously measured 13C relaxation times of FSPA ethanol were taken by Kerr.16

Contrary to expectation, the calculated activation energy of the motion affecting the CH2

group was lower than the CH3 groups (8(2) kJ mol−1 and 23(2) kJ mol−1 respectively).
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There were no uncertainties given for each relaxation time so it is unclear if these val-

ues were statistically meaningful or as a result of low signal-to-noise. Consequently, the

experiments were repeated at the same field and the results are shown in Figure 6.10.

Uncertainties have been calculated from linear regression analysis.

Figure 6.10: 13C T1 relaxation times of FSPA ethanol at 125.65 MHz and MAS rate of
10 kHz fitted to an Arrhenius model. Using the Torchia pulse sequence, the time delay
was varied between 0.02 – 15 s in 8 steps with between 256 – 512 transients in each, using a
recycle delay of 5 s. The curve is a fit of CH2 experimental data to E a = 36(4) kJ mol−1

and log10(τ0 / s) = −16.5(7) assuming an Arrhenius-type fitting.

Up to 310 K the overall picture is similar to the values reported by Kerr, however

the CH3 group is relaxing faster in the majority of temperatures which is more consistent

with previous assumptions. Fitting the CH2 relaxation times gave E a = 36(4) kJ mol−1

and a log10(τ0 / s) = −16.5(7).

6.4.2.1 FSPA Ethanol-d2

Due to low quality of the 13C relaxation data, a new sample of FSPA ethanol-d2 was

synthesised. Ethanol-d2, shown in Figure 6.11, was chosen over ethanol-d5 to focus on the

overall solvent motion, without complications due to methyl rotation. The alcohol proton

must remain undeuterated as a deuterium atom here would exchange with exchangeable

protons on the framework.

Figure 6.12 shows how the lineshapes of the deuterium spectra vary with temper-

ature. It can be seen that there is a significant change in lineshape over this temperature

Figure 6.11: Ethanol-d2
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range. The spectrum taken at 185 K is close to being a classic static lineshape with some

central features. The spectra at 235 K and above have lost the distinctive classic static

lineshape and have an overall shape with a higher asymmetry.

Figure 6.12: 2H quadrupolar echo spectra of FSPA ethanol-d2 spectra at 61.42 MHz.
Recycle delays of 0.5 s, 0.2 s and 0.3 s were used with increasing temperatures and all were
taken with 4096 transients or more and an echo delay of 40 µs.

The deuterium relaxation times are given in Figure 6.13. These were fitted to

Arrhenius-type equations to give E a = 19.0(9) kJ mol−1 and log10(τ0 / s) = −12.82(19).

The biggest concern from this fit is the value of the correlation coefficient (CC) between

the two variables which equals −0.9947. CCs measure the strength of the relationship

between two fitted values. The closer to 1 (or −1) this is, the more strongly the fitted

values are linked. This means that small changes in the fit of one value has a significant

effect on the other. It is clear that the equations used to fit this data produce highly

correlated fitted values, even with good quality data spanning a whole relaxation curve.
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Figure 6.13: 2H spin-lattice relaxation time constants as a function of temperature of FSPA
ethanol-d2 acquired at 61.42 MHz and 10 kHz MAS. Measured using a saturation recovery
sequence using a saturation train of 64 pulses. Each temperature had 16 increments with
64 transients and a maximum recovery time ranging from 0.26 – 0.85 s. The curve is a fit of
the experimental data to E a = 19.0(9) kJ mol−1 and log10(τ0 / s) = −12.82(19) assuming
an Arrhenius-type fitting.

6.4.2.2 Relaxation Analysis

Figures 6.10 and 6.13 show fitted 13C and 2H relaxation data from the CH2 / CD2 site

on FSPA ethanol / FSPA ethanol-d2. The data of each nucleus is of significantly different

quality: the deuterium data has more measurements, it spans the whole relaxation curve,

and the uncertainty on each measurement is lower. Typically, the 13C relaxation data

would be discarded in favour of much more reliable 2H relaxation data, however the study

below seeks to find out if the data is compatible within the experimental uncertainty.

Standard Fitting: Ea and log10(τ 0)

A fitting program requires an estimated noise level to calculate the uncertainties on the

fitted parameters. There are two options for the noise level: ‘experimental’ uses explicit

experimental uncertainties and ‘residual’ estimates a noise level based on the residuals of

the fit. For the 2H data, where uncertainty on individual data points is low but there

are systematic uncertainties meaning some data points do not sit on the fitted relaxation

curve, it is sensible to use a noise level based on the residuals of the fit. For the 13C data,

the reverse is seen: the uncertainty on each value is large but the points align well on

the fitted curve as there are only six data points. In this case using the noise level based

on residuals of the fitting would underestimate the uncertainties so explicit experimental

uncertainties have been used. The fitted parameters and their uncertainties based on an

E a / log10(τ0) least squares fitting and the noise levels documented are given in Table 6.1.

There is significant disagreement between the fitted values of the carbon and deu-

terium relaxation measurements; both the E a and log10(τ0) values are well outside of the

calculated uncertainty. Using Equation 6.1 and Equation 6.2, the rate of motion can be
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Table 6.1: Fitted parameters based on the E a / log10(τ0) fitting. log10(A / Hz2) was not
correlated to either of the other fitted variables and so not considered further.

Noise level
Ea /

kJ mol−1 log10(τ0 / s) log10(A / Hz2)
CC between Ea

and log10(τ0)
2H Residuals 19.0(9) −12.82(19) 9.657(14) −0.9947
13C Experimental 36(4) −16.5(7) 8.82(4) −0.9968

calculated over a range of temperatures. This leads to the key question: are the pre-

dicted rates from the relaxation measurements of the two nuclei compatible within the

uncertainty? To answer this question, the uncertainty on the rate of motion must be

calculated.

τ c = τ0 exp
Ea

RT
(6.1)

ν =
1

2πτ c
(6.2)

In the absence of strong correlations, the uncertainty on the rate would be easily

calculated by propagating the uncertainties from the fitted parameters (given in Equa-

tion C.2 in Appendix C). However, the CC from this fitting is very close to −1, showing

that there is a high dependency between the fitted parameters. The traditional error

propagation formulae are only valid for independent, uncorrelated variables. The follow-

ing sections seeks an alternative method of calculating the true uncertainty on the rate

from each nucleus.

Monte Carlo Simulations

The most general method of estimating uncertainties is the MC approach. It simulates

real data by adding random noise, at a specified level, to estimate uncertainties on fitted

parameters after thousands of simulations. The results of each fitting can be binned and

plotted in a histogram. Figure 6.14 shows the MC simulations of E a and log10(τ0) for the
2H and 13C data.

Table 6.2 shows that the uncertainties on each fitted parameter from the least

squares fitting and the MC simulations are identical to two significant figures, as ex-

pected. When these fitted parameters are plotted as 2D histograms they become a picto-

rial representation of the CC between the parameters, as shown in Figure 6.15. For this

parameterisation, MC simulations lie on a line confirming the strong correlation. Rates of

motion can be calculated from individual MC simulations and the standard deviation of

outputted values gives the uncertainty on each rate without the need for error propagation.

This is the reason for running a MC simulation: even though the fitted parameters and

their uncertainties are identical to a least squares fit, only a MC simulation can account

97



Figure 6.14: MC simulations of E a and log10(τ0) for 2H and 13C relaxation data based on
10,000 simulations.

for the correlation between fitted parameters.

Table 6.2: Comparison of uncertainties on fitted parameters from least squares fit docu-
mented in Table 6.1 and the MC simulations shown in Figure 6.14

Uncertainties calculated by:

Nucleus Noise level
Fitted

parameter
Least squares

fitting
Monte Carlo
simulations

2H Residuals
E a / kJ mol−1 0.90 0.90
log10(τ0 / s) 0.19 0.19

13C Experimental
E a / kJ mol−1 4.0 4.0
log10(τ0 / s) 0.73 0.73

The overlaid graph on Figure 6.15 shows that the 2H and 13C values do not overlap.

They do lie on a similar line perhaps indicating that they are being affected by the same

motion in different ways.
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Figure 6.15: Correlation between the E a and log10(τ0) from MC simulations based on
10,000 repetitions for 2H and 13C. The vertical probability density scale is arbitrary.

Unlike the uncertainties from error propagation (Figure 6.19 on page 103), un-

certainties from MC analysis do not vary linearly with inverse temperature, as shown in

Figure 6.16. The deuterium pattern is consistent with Smith et al.107 who reported that

rates of motion could be predicted most precisely at the relaxation minimum. However,

the uncertainties on the 13C data are not at a minimum around the relaxation minimum,

but instead have the smallest uncertainties around the centre of the fitting range.
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Figure 6.16: Uncertainties on log10(rate / Hz) as a function of inverse temperature for 2H
and 13C relaxation data from MC analysis.

Figure 6.17 shows that the uncertainties from MC simulations are much smaller

than uncertainties from those calculated incorrectly by propagating the errors. This

demonstrates that error propagation is not appropriate for correlated variables and will

significantly overestimate uncertainties, hence the only method of calculating uncertainties

with this fitting is through MC simulations. This would have an impact on the conclu-

sions drawn from the data: what would have originally been interpreted as overlapping

uncertainties (shown by the shading), is now clear that the values are no longer equivalent

within the uncertainty (shown by the error bars).

Figure 6.17: Rates of motion based on E a / log10(τ0) parameterisation with the shaded
area representing the incorrect uncertainties calculated from error propagation and error
bars representing the uncertainties calculated from MC simulations. Dashed line shows
extrapolated fitting beyond the temperature range measured.
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New Fitting: Ea and Tmin

As discussed above, the traditional fitting of relaxation data in terms of an E a and log10(τ0)

is problematic due to significant correlation between fitted parameters. Here, the fitting

is reparametrised to E a and Tmin, which uses the Larmor frequency as a reference point∗

as shown in Equation 6.3. Since the activation energy is determined by the gradient of

the curve and Tmin is determined by the location of the curve in the horizontal axis, the

correlation between the two parameters should be much smaller. Additionally, Tmin is

physically meaningful and can be estimated from the temperature of the minimum of the

curve. In contrast, τ0 is not physically meaningful which can make choosing a starting

value for the fit more difficult, especially since parameters are highly correlated.

ν0 =
1

2πτ c(Tmin
)

(6.3)

The fitted E a / Tmin parameters are shown in Table 6.3. They are directly com-

parable with the fitted E a / log10(τ0) parameters given in Table 6.1. The most notable

change is the reduction of the CC to more reasonable values. The correlation between

E a and Tmin remains high for the 13C data because the data points are only on one side

of the curve making fitting to multiple parameters difficult. Despite the reduction in the

CC, there are virtually no changes to the uncertainties of the activation energies, because

they are determined by the uncertainty in the gradient of the slopes and not affected by

correlation to another parameter.

Table 6.3: Parameters based on E a / Tmin fitting.

Noise level
Ea /

kJ mol−1 Tmin / K log10(A / Hz2)
CC between
Ea and Tmin

2H Residuals 19.0(9) 234.0(1.2) 9.657(14) 0.49
13C Experimental 36(4) 245(5) 8.83(4) 0.92

From the E a / Tmin fitted parameters, rates of motion were calculated using Equa-

tion 6.4 which has been derived from Equation 6.3 and Equation 6.1. The new rates were

identical to the original parameterisation (within 0.01 %). With a much lower CC, tradi-

tional error propagation is more meaningful and were calculated using Equation C.5 from

Appendix C.

τc =
1

2πν0
exp

(
Ea

R

(
1

T
− 1

Tmin

))
(6.4)

The purpose of the reparameterisation is that valid uncertainties on the rates can

be calculated without the need for a MC simulation. However for a complete picture, MC

∗Although the temperature values will be close, it is important to note that Tmin is the temperature that
corresponds to the Larmor frequency, not the temperature at the minimum of the curve. The minimum
of the curve is determined by linear combination of spectral densities as shown in Equations 2.6 and 2.7
on page 13.
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analysis of the E a / Tmin fitting are shown in Figure 6.18 which demonstrates graphically

the difference between reasonable uncorrelated parameters (2H) and correlated parameters

(13C). Rates of motion calculated from these MC simulations were almost identical to the

MC analysis of the E a / log10(τ0) fit given in Figure 6.15.

Figure 6.18: MC simulations of the E a / Tmin fit based on 100,000 repetitions. The
vertical probability density scale is arbitrary.

As would be expected, the uncertainties derived from MC fitting are independent of

the parameters used, as shown in Figure 6.19. They were also almost identical in pattern

and magnitude demonstrating that MC analyses produce the same results regardless of

how correlated the starting parameters are. Figure 6.19 also shows that the value of the

uncertainties from the MC analysis and the propagation of errors on an E a / Tmin fit are

very similar, in magnitude and trend. There is more deviation between the uncertainties

on the 13C data due to the remaining correlation on the E a / Tmin parameters. This shows

that the Tmin parameterisation has given a much more accurate uncertainty on rates of

motion without the need for a MC simulation.

To summarise, fitting to E a and Tmin reduces the correlation between parameters

compared to fitting to E a and log10 (τ0), particularly with good quality data spanning

the whole relaxation curve. This means that error propagation is a meaningful way of

determining the uncertainties on rates, forgoing the need for MC analysis. After a search

of the literature, and to the best of our knowledge, this parameterisation has not been

described before.
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Figure 6.19: Comparison of the uncertainties in the rates calculated by error propagation
and MC simulations of E a / log10(τ0) and E a / Tmin fits. Uncertainty parameterisation
using the Tmin parameterisation (red markers) gives results that closely match a robust
uncertainty analysis using MC simulation (green and blue markers). Naive uncertainty
propagation based on log10(τ0) (black markers) gives significantly incorrect results for
both low and high quality data. Note that the two MC analyses are near identical, as
expected, and the Tmin propagation values are much closer to the MC values than the
log10(τ0) values, particularly for the high quality data.

Fitting Both Datasets to One Activation Energy

The datasets have also been fitted to a common activation energy. This is regularly done in

the literature, particularly when there are high numbers of low quality datasets, to improve

the accuracy of results.108 The dual fitted data shown in Figure 6.20 uses experimental

uncertainties so that the fitting program can weight the relative importance of data points

depending on the certainty of the measurement. The data fitted to E a = 18.0(4) kJ mol−1

and the Tmin values are recorded in Table 6.4. The rates of motion, and uncertainties

calculated from error propagation, are shown in Figure 6.21.

Table 6.4: Tmin values and CC between E a and Tmin values for each dataset based on a
common E a fitted to E a = 18.0(4) kJ mol−1.

Tmin / K log10(A / Hz2)
CC between
Ea and Tmin

2H 230.6(3) 9.653(13) 0.29
13C 203(8) 9.07(15) 0.32

Figure 6.20 and Figure 6.21 show that the fit has effectively optimised for the

deuterium data, with a clearly poor fitting for the 13C data. This is due to the difference

in quality between the datasets. Fitting two sets of relaxation data in this instance has

not produced more reliable rates because the quality of the datasets are vastly different.
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Figure 6.20: Both datasets fitted to a single activation energy.

Figure 6.21: Rates of motion based on E a / Tmin fitting to a single E a (error bars) and a
single fit (shaded area) using explicit experimental uncertainties.

Reparameterisation Conclusion

In conclusion, fitting to an E a and a log10(τ0) gives high CCs even when fitting to high-

quality data. This is not a significant problem if there is no interest in the uncertainties

on the rates. However, for information regarding the uncertainties on the calculated rates,

MC analysis is required to give a more accurate picture. These MC simulations are straight

forward to run, but take time if many simulations are used.

Alternatively, reparameterising gives a much more robust analysis of uncertainties

without the need for MC simulations. The CC will be closer to 0 when fitting to an E a and

a Tmin if the data are of good quality. If this is the case, then uncertainties calculated from

error propagation and from MC simulation will be very similar. Fitting multiple relaxation

measurements to one activation energy may be the best way forward for datasets that are

similar, in terms of number of measurements taken and the associated uncertainty on each
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point, but do not work for cases where the quality is significantly different.

After analysis of the data, it is clear that the 2H and 13C relaxation do not give rates

of motion that are compatible within the uncertainty in this case. This could be because

the carbon data are poor quality and can not be analysed effectively. However there are

many plausible reasons that 2H and 13C relaxation data may not give the same result. It

is unlikely that each nuclide is probing a different motion since the Larmor frequency is

only a factor of two apart. However it is plausible that each nuclide is affected differently

by the same motion. Deuterium relaxation depends on the quadrupolar coupling tensor

which, to a first approximation, is directed along the C–D bond hence the relaxation on

each spin is independent. Conversely, 13C relaxation is dependent on the dipolar tensors

that depend on the orientation of the two C–H bonds. For non-isotropic motion, the

correlated motion of the two C–H bonds makes relaxation theory complex.

Alternatively, it could be due to the motional model used to fit the data. Each

relaxation model uses different linear combinations of spectral densities. In this case, the

data has been fitted to isotropic motion, which is unlikely to be reality but does provide

an unbiased starting point. In summary, the rates of motion are not known as precisely as

the small uncertainties would suggest without a good initial model of the motion. Given

that the 2H and 13C relaxation are fitted to different equations, it is possible that having

an incorrect model would affect the fitting differently in each case.

Additionally, there may be problems regarding the physical interpretation of relax-

ation rates. Relaxation analysis is only meaningful for molecules undergoing one simple

motional process with a well-defined correlation time. However any motion(s), simple or

otherwise, can produce a v-shaped curve as a function of inverse temperature. Relaxation

minima are effectively an interference effect and so the same shape could be seen if the

motion were complex, with a distribution of correlation times. If this is the case, fitted

parameters and rates would have no meaning.

6.4.2.3 Fitting Deuterium Lineshapes

There are numerous pieces of data giving clues to the motion of the ethanol molecules in

FSPA ethanol-d2.
2H T1 relaxation measurements indicate the presence of a fast motion

with selected rates given in Table 6.5. There is also evidence of a motion on the order of

10s of kHz between 185 – 220 K from broadening of 13C resonances shown in Figure 6.9

on page 93. The following section seeks to understand what can be learnt from the 2H

lineshapes given in Figure 6.12 on page 95.

The spectra did not fit well using SOLA on TopSpin because the spectra are not

the result of a single simple motion. The following simulations were made with Weblab19

(parameters are given in Table D.1 in Appendix D):

Simulation 1: One variable, intermediate motion about a C2 axis with a cone angle of

59 °. (Green spectra in Table D.2 in Appendix D.)
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Table 6.5: Rates of motion from simplistic modelling of isotropic motion of the ethanol
molecule in FSPA ethanol-d2 solvate calculated from fitted 2H T1 relaxation data based
on simple isotropic motion and assuming a barrier-type motion.

Temperature / K Rate / MHz
300 591.1(4)
235 64.0(2)
185 4.7(6)

This is the simplest model and simulates a C2 jump of the whole ethanol molecule

about an axis that bisects the D–C–D bond angle of 118 °. The simulation was run at 103,

104, 105, 106 and 107 Hz: spectra are shown in Table D.2 in Appendix D (green lines).

These did not fit well with the experimental spectra so it was assumed that there must

be two motions influencing the deuterium linewidths, which is consistent with the other

experimental data.

The following simulations were designed to describe two motions: One variable,

intermediate C2 jump on a 59 ° cone angle, and a fast, wobble-type motion.

Simulation 2: One variable, intermediate motion about a C2 axis with a cone angle of

59 ° and a fast 2-site jump at variable angles. (Blue spectra in Table D.2

in Appendix D.)

Simulation 3: One variable, intermediate motion about a C2 axis with a cone angle of

59 ° and a fast 3-site jump at variable angles. (Cyan spectra in Table D.2

in Appendix D.)

Simulation 4: One variable, intermediate motion about a C2 axis with a cone angle of

59 ° and a random wobble that has the effect of increasing the starting η

value. (All spectra in Table D.3 in Appendix D.)

Single fast-jump spectra at variable angles (2-site (magenta) and 3-site (red) spectra

both in Table D.2 in Appendix D) are also given as comparisons.

Overall, despite the large number of simulations, there were few simulations similar

to the experimental lineshapes. The closest simulation to each experimental lineshapes

are shown in Figure 6.22. These are based on a 2-site fast wobble motion and a starting

CQ equal to 160 kHz.

The 185 K predicted spectrum is satisfactory. The overall width is similar, as shown

by the outer horns, and the inner peaks also match. Initially, it was hoped that a model

could be found where the wobble angle remained constant and only the speed changed with

temperature, however it is possible that the wobble angle also varies with temperature.

The higher temperature spectra fit less well, likely because the motion is more complex

than simulated here.

These fits give an indication of the possible types of motion present. It is plausible

to infer that the ethanol molecule is wobbling at an angle of 25 – 35 ° at a fast rate on
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Figure 6.22: Experimental 2H lineshapes of FSPA ethanol (shown in black) at (a) 300 K
(b) 235 K and (c) 185 K. Simulated 2H lineshapes (shown in red) of a C2 jump on a cone
of angle of 59 ° at rates (a) 104 Hz, (b) 106 Hz and (c) 107 Hz and a fast, 2-site wobble
angle (a) 25 °, (b) 35 ° and (c) 35 °.

top of an intermediate speed, C2 jump. However, the fits are far from perfect fits and so

care must be taken when drawing conclusions. Significant numbers of spectra have been

simulated each from a plausible model and so it is perhaps not unlikely that some will

match the experimental data.

This lineshape data has not provided conclusive evidence for a particular motional

model or information on rates. The best guess has been discussed above, however it may

be the case that when a complex motion is present, lineshapes can be used to validate the

motional models produced by MD, rather than predict motions themselves.

6.5 NMR Experimental Summary

NMR experiments are sensitive to molecular motions over many order of magnitudes.

This can be both extremely useful in some cases but lead to difficulties and apparent

contradictions.

For FSPA acetone, fitted 2H spectra suggested a C2 jump motion around 500 Hz at

235 K and fitting 2H T1 relaxation times gave an apparent E a = 7.9(2) kJ mol−1. However,

it would be surprising if a C2 jump motion on an intermediate timescale had such a low

activation energy.

For FSPA ethanol, there was more experimental data to work with and this is

summarised in Figure 6.23. 2H relaxation revealed a fast motion across the temperature

range measured (190 – 300 K) however slower motion was also affecting the 2H lineshapes.

Despite extensive fitting using Weblab, no simple picture of the dynamics could be found

which explained both the relaxation and lineshape data. There are reasons why this may be

the case. Relaxation and lineshape analysis provide different angles for probing molecular

motion in the solid state. Not only are the two motions probing different rates of motion,

but they are also sensitive to different types of motion. While deuterium lineshapes are

sensitive to larger amplitude motions, relaxation rates are sensitive to all motion, even
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small libration-type motions. Both techniques provide valuable information on motions

with different timescales, but care must be used when interpreting outputted rates. Both

analyses work well with additional measurements, both from NMR and other techniques,

and can benefit from a plausible model of the motion.

Figure 6.23: Summary of the ethanol motions based on NMR data in isolation.

6.6 Molecular Dynamics

The molecular dynamics simulations discussed in this section were run by

Will Glossop, Songül Guryel, Valentina Erastova and Mark Wilson (Durham

University) who collectively focused on the Markov State Modelling approach

to analysis. Vasily Oganesyan (University of East Anglia) developed new

methodology to directly predict NMR spectra and relaxation parameters from

MD trajectories. This is summarised below and described in detail in the

manuscript in preparation: ‘Understanding guest dynamics in crystalline molec-

ular organics’.

MD is a useful tool for studying dynamics in solids and can be utilised alongside NMR and

XRD for a full understanding of dynamic disorder. A variety of systems have been studied

with MD, commonly biomolecules and soft matter. However, there are very few studies

for characterising motion using MD in a fixed cavity. A few examples combining MD

and NMR in similar systems include modelling dynamics in urea inclusion compounds,109

solvates of DMSO,110 and in hydrates.111

The MD simulations were set up MD using a 9 × 3 × 3 supercell of the unit cell

obtained from XRD experiments at 120 K. The solvent molecules were too disordered to be

located in the diffraction study so they were placed in the void and allowed to move freely

during an equilibration period. After the initial setup was complete, the system was heated

from 120 K to 350 K and from this, structures were extracted at five discrete temperatures:
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150 K, 200 K, 250 K, 300 K and 350 K. At each temperature, final production simulation

runs were performed for up to 400 ns and analysed separately.

The simulation runs at each temperature were analysed using two methods. One

method, known as Markov State Modelling, involves ‘clustering’ the simulation results

into discrete states. This technique was developed for analysing large amplitude motions

of complex biomolecules and has the advantage of picking out the ‘slower’ motions but

may overlook faster libration-type motions as these are treated as ‘noise’ on the jumps

between distinct ‘macrostates’ of the system. The other method uses the simulation runs

to directly predict NMR parameters (and hence predict relaxation times and spectra).

This is useful since the experimental data can act as external, real-world validation of an

otherwise purely theoretical model.

(a) Asymmetric unit

(b) Model A (c) Model B

Figure 6.24: (a) asymmetric unit of the FSPA solvates with disorder of the sulfonamide
group is shown with split-atom sites (solvent molecule not shown). (b) and (c) illustrations
of the unit cell of the FSPA cocrystal solvates derived from SCXRD experiments at 120 K.
Disorder of the sulfonamide group (highlighted in pink) was modelled with a 50:50 split
site model, which was resolved into two structure models, A and B, containing uniquely
one position or the other.

SCXRD revealed additional disorder of the sulfonamide group on the FS molecule,

as shown in Figure 6.24a which was modeled over two equal positions from the diffraction

data. Modelling this disorder with an MD simulation was challenging since the dynamics
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were much slower than the solvent dynamics so would have required much longer simulation

runs. Instead, the sulfonamide disorder was addressed in the MD simulations by creating

two MD trajectories, one with the NH2 of the sulfonamide pointing towards the solvent

channel (model A) and one away from it (model B). This is shown in the pink shading in

Figure 6.24b and c. Naturally, the physical system will contain a random distribution of

sulfonamide orientations but most simulations showed little movement of the sulfonamide.

Figure 6.25 shows the comparisons between experimental 2H NMR spectra and the

spectra predicted from MD trajectories. Considering the complexity of the system, the

agreement between predicted 2H NMR spectra is excellent. This experimental validation

of MD simulations can give confidence that the simulations have accurately captured the

solvent dynamics behaviour, and that the methodology used is appropriate to the system.

It should be noted that the overall predicted spectrum of the ethanol solvate at

200 K is a combination of the MD prediction and the ‘frozen limit’ lineshape. Similar un-

expected contributions from ‘frozen’ guest molecules have been observed in similar stud-

ies,112 and explained in terms of temperature gradients across the sample in the probe.

This seems unlikely in this case since the 2H lineshape predictions from MD are still not

fully static at 150 K. This experimental behaviour was reproducible, and is perhaps the

result of an interaction between the solvent and sulfonamide disorder, which results in a

frozen glassy state which is difficult to reproduce in simulation.

(a) FSPA ethanol-d2 (b) FSPA acetone-d6

Figure 6.25: For (a) FSPA ethanol-d2 at 76.71 MHz and (b) FSPA acetone-d6 at
61.42 MHz, comparisons between experimental 2H NMR spectra (left) and those pre-
dicted from MD trajectories (summed over models A and B) for the closest matching
temperatures (right). Note, FSPA ethanol-d2 experimental spectrum at 185 K contains a
significant contribution from the ‘frozen limit’ lineshape. The ‘overall predicted lineshape’
in this case (grey) is the sum of 20 % dynamic component predicted directly from MD
trajectories (black) and 80 % static component (blue).
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The motion from the MD trajectories do not fit into a simple motional model such

as free rotational diffusion about an axis or C2 jumps. Instead, the motion can be charac-

terised as a combination of a varying wide-angle librational motion plus a flip-type motion.

These dynamics are summarised in terms of a correlation time, τ c, and a generalised order

parameter, S2, of the molecular orientations. These are derived from single-exponential

representation of the autocorrelation functions, C(t), where S2 = C(∞) and the effective

correlation time is calculated by time-integration of the correlation function using Equa-

tion 6.5. Autocorrelation functions can be found in the SI of the manuscript in preparation

and an example is given in Figure 6.26 for context. Even though this parameterisation

does simplify the solvent dynamics, it is expected to be sufficient to understand the system.

τ c =

∫∞
0 C(t)− C(∞) dt

1− C(∞)
(6.5)

Figure 6.26: Autocorrelation functions of molecular axes X, Y and Z of FSPA acetone
(model A) at 250 K. Figure supplied by Vasily Oganesyan.

The correlation times and order parameters are given in the mid and lower panels

of Figure 6.27 respectively. In both cases, but in particular the acetone, these values show

why the NMR data was difficult to interpret alone. The order parameter, which relates to

the geometry or amplitude of the motion varies with temperature. This demonstrates why

a simple jump-type model, which assumes a fixed amplitude of motion, will not correctly

describe the dynamics, even if plausible fits to the experimental data can be obtained

(shown in Figure 6.7 on page 92). Additionally, when fitting relaxation data, there are in-

herent assumptions made, such as the relaxation times are being affected by a barrier-type

motion, which has a constant activation energy and hence can be fitted to an Arrhenius-

type equation. However, the τ c values are essentially independent of temperature over

the range 200 – 300 K for FSPA acetone-d6 (see mid panel of Figure 6.27b). Instead of

the rate increasing with temperature, it is the extent of motion (parameterised by S2)

that changes with temperature. This implies that the acetone dynamics has a strong

librational character. Libration-type motions are more like simple harmonic oscillators.

These do not have an energy barrier hence the correlation time will not increase with

temperature, as would be expected for a motion with an energy barrier, and instead the

111



amplitude increases. In contrast, FSPA ethanol-d2 does show evidence of the presence of a

barrier-type motion. From 200 – 350 K τ c varies approximately linearly with temperature

and the order parameter, S2, is approximately constant.

The comparison of predicted T1 relaxation times to experimental values, shown in

the upper panels of Figure 6.27, gives further weight to the interpretation of the dynamics

from the MD analysis. There is good qualitative agreement of relaxation when considering

the systems as a pair.

(a) FSPA ethanol-d2 (b) FSPA acetone-d6

Figure 6.27: Upper panels: 2H spin-lattice relaxation time constants as a function of
temperature of (a) FSPA ethanol-d2 acquired at 61.42 MHz and (b) FSPA acetone-d6 at
76.71 MHz. Triangles correspond to the predictions from MD simulation. Mid panels:
rotational correlation times from MD simulations. Lower panels: generalised order pa-
rameters from MD simulations. The relaxation curve in (a) is a fit of the experimental
data to E a of 19.0(9) kJ mol−1 and a Tmin = 234.0(12) K. Although the experimental data
in (b) looks to fit to a straight line, the correlation times obtained from MD show that
the temperature dependence should not be interpreted in terms of an Ea.

For the acetone solvate, the Markov State Modelling approach to MD analysis

allows for representative snapshots of the acetone molecule to be obtained. These four

orientations of the acetone within the cavity, shown in Figure 6.28, are related by a C2 axis

(respecting the molecular symmetry) and an inversion centre (respecting the symmetry

of the cavity). This is an additional piece of useful information which cannot be learnt
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from NMR data since the 2H quadrupolar tensor is unchanged under inversion and so any

inversion-type dynamics will be invisible to 2H NMR.

Figure 6.28: Free energy plot from Markov State Modelling of FSPA acetone with repre-
sentative snapshots of macrostates corresponding to the four free energy minima. One of
the methyl carbons of the acetone is coloured dark blue to highlight the reorientation.

Molecules do, however, spend significant time between macrostates, likely librating,

which the Markov State Model is unable to observe as the technique is designed to filter

out the faster motions. It is for this reason that this approach was not as effective for the

ethanol solvate as the ethanol molecule did not have well defined low-energy states.

For the ethanol solvate, the Markov State Modelling approach to MD analysis is

less successful at resolving ‘macrostates’ as shown in Figure 6.29. The motion is likely to

be a complex mix of libration and wide-angled motions.

Figure 6.29: Free energy plot from Markov State Modelling of FSPA ethanol showing a
complex energy surface with no defined macrostates.
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6.7 Conclusion

Deuterating guest molecules is a useful method for probing guest dynamics as they are

straightforward and inexpensive to incorporate. 2H NMR parameters and spectra are

affected by dynamic processes on a broad range of timescales, and measurements can be

localised to the guest molecule or even a specific part of the guest molecule which is a huge

advantage over 1H NMR. Deuterium measurements typically have a high signal-to-noise

ratio in comparison to 13C measurements and hence information is quicker to acquire.

The two types of experiments used here, 2H lineshapes and 2H T1 relaxation, probe

molecular dynamics in different ways. Relaxation times are sensitive to changes in both

correlation time and the amplitude of motion and it can be challenging to determine the

primary cause of changing relaxation times. Even when data fit convincingly to a straight

line or a relaxation curve, caution should be taken before calculating activation energies

or correlation times. Such calculations assume the motion is a barrier-type motion (such

as C2 jumps) which have a constant activation energy and constant amplitude of motion.

However, for barrierless-type motions (such as librations) there are no energy barriers,

much like a simple harmonic oscillator. In this instance, correlation times do not increase

with temperature, instead the amplitude of motion increases and hence fitting relaxation

times to an activation energy will not be physically meaningful.
2H lineshapes have to be fitted to a model to be interpreted. However, even when

a simple model fits the data well, as was the case for the FSPA acetone-d6, these results

can still be misleading. It can be very difficult to discern a motion from lineshapes if the

motion is complex, as was the case for FSPA ethanol-d2. In this case, the lineshapes work

best as a tool to validate MD simulations.

For the two solvates presented here, a full understanding of the disorder could not

be obtained by NMR. Instead, MD simulations were run and analysed using a Markov

State Modelling approach to find four symmetry-equivalent ‘macrostates’ of the acetone

molecule. Quantitative information was obtained through analysis of autocorrelation func-

tions which found that there was significant librational character to the motion of both

solvates. It also showed that there was little change in the correlation time with tem-

perature, showing that simple Arrhenius-type analysis of T1 relaxation data indeed lead

to incorrect results. Using MD trajectories to predict NMR lineshapes and relaxation

times allows the simulations to be validated and show that the MD has fully captured the

dynamics observed in the NMR.

Disorder may be intrinsic to the stability of the phase, by providing entropic stabil-

isation and hence not necessarily a marker of instability as often assumed. Many pharma-

ceutical products are solvates in their final form and others use solvates during production.

While many simpler systems can be analysed using NMR alone, it is anticipated that as

systems increase in complexity, the need to couple NMR and MD to understand molecular

dynamics is only going to increase. It is hoped that techniques used here will prove useful,

not only in pharmaceuticals but any system with a trapped solvent molecule.
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Chapter 7

Concluding Remarks

The aim of this work has been to show how solid-state NMR can be used to characterise

disorder, specifically dynamic disorder, in different systems. This has been demonstrated

in three distinct systems each requiring a bespoke combination of NMR-based and non-

NMR-based techniques.

For the diamondoid systems, the motion of the rigid hydrocarbon cages could be

extensively investigated with solid-state NMR alone. 1H and 13C relaxation provided

activation energies and rate estimations as well as the geometry of motion for diamantane

and 1(2)3 tetramantane. In triamantane, where 13C relaxation could not provide the

geometry of motion, second moments were shown to be a useful complementary tool.

For the MOF HMF, it was the combination of SCND and the multi-nuclei NMR

(2H, 1H, 13C and 15N) which was needed to characterise the dynamics. While 1H relaxation

measurements gave motional parameters, it was the 2H spectra which proved vital for

understanding the separate populations of cations. A new mechanism has been suggested

which proposes that the relaxor ferroelectric response is directly because of the molecular

dynamics, not despite it.

The dynamics of the solvent molecules in two cocrystal solvates FSPA ethanol and

FSPA acetone were studied with 2H and 13C NMR, however determining a motional model

from the data proved challenging. In this case, it was the MD which proved most useful

and it was found that the motion had significant librational character. This explained

why the usual relaxation and lineshape analysis, which assumes a constant amplitude

with temperature, was unable provide a coherent model.

Whilst studying relaxation in the systems above, a few general observations and

conclusions about relaxation fitting have been made. Firstly, if two relaxation processes

are observed in a set of data, it is important to fit the two simultaneously for accurate

fitting parameters. This was shown in the 1H T 1ρ data of both diamantane and the MOF

sample. Secondly, it was found that the usual fitting parameters, E a and log10(τ0), gave

a high correlation coefficient. Consequently, determining an uncertainty on the calculated

rate of motion is difficult as variables must be independent to propagate uncertainties.

New fitting parameters, E a and Tmin, have been proposed which significantly reduce the
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correlation coefficient resulting in a more robust analysis of uncertainties on the rate. An

additional benefit of these new fitting parameters is that Tmin can be estimated from the

temperature of the minimum of the curve, unlike τ0 which has no physical meaning. Hence

choosing a starting value is easier for a Tmin fit.

The results presented in this thesis have focused on systems with fast and inter-

mediate motions. Slow dynamics are typically studied with exchange-type experiments

since motion is often slow enough to resolve chemical shifts. Where resonances cannot

be resolved, a Centreband Only Detection Of EXchange (CODEX) experiment is a 1D

exchange-based experiment that uses a recoupling sequence to selectively reintroduce the

CSA information lost during MAS.113 There is significant scope for determining correla-

tion times of molecular solids undergoing slow dynamic through the CODEX sequence.

Disorder in solids is common and there are an endless number of additional po-

tential systems, with different types of motion, that could be analysed in the future. For

solvent molecules in cavities, NMR and computational tools have been well developed in

this project. In theory, this could allow the dynamics of any solvent molecules in any or-

ganic crystal to be studied using a combination of these techniques. This is important in

the pharmaceutical industry where many formulations are hydrates and there are robust

legislative reasons for fully characterising formulations. Future work will undoubtedly be

compelling in the field of functional materials, where understanding the dynamics of the

molecules is vital for understanding the behaviour of the bulk material. This could lead to

discovering new mechanisms which in turn would help the development of new materials.
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Appendix A

Second Moments of Diamantane

by Method

Figure A.1: Static 1H spectra and FIDs of diamantane. Columns correspond to different
second moment fitting methods. Column 1: Gaussian fitting (red) of the spectrum (black)
and insert signal (blue). Column 2: second moment (blue) and integral (green) as a
function of integral width overlaid with the spectrum (black). Column 3: Gaussian fitting
(red and blue) of different fitted regions of the FID (black). Column 4: M2M4 method,
both FID fits showing the smallest fitted region (red) and the largest region (blue).
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Table A.1: Raw diamantane M2 results.

Spectrum FIDa

Gaussian
σ / kHz

Integration
/ kHz2

Gaussian
σ / µs

M 2M 4

(2π)2M 2 / Hz2

Low T
221 K

9.838(3)
97%: 79 98%: 85

99%: 90 99.5%: 92

30, 80 µs
17.6(11)
17.2(11)

15, 30 µs
3.4(4)× 109

3.28(5)× 109

Mid T
411 K

7.439(9)
97%: 52 98%: 57

99%: 61 99.5%: 63

35, 120 µs
20.48(17)
21.52(19)

20, 40 µs
2.46(14)× 109

2.07(4)× 109

High T
498 K

0.4007(10)
97%: 0.33 98%: 0.38

99%: 0.48 99.5%: 0.57

300, 800 µs
221.8(7)
209.4(16)

100, 300 µs
3.52(11)× 107

2.114(15)× 107

a FID fits are at two fitting ranges, both starting at t = 0 and ending at the
values given in italics.

Table A.2: Diamantane M2 results (in kHz2).

Spectrum FIDc

Gaussiana Integrationb Gaussian M2M4

Low T : 221 K 96.79(6) 85 ± 6 84 ± 8 84.0 ± 1.1
Mid T : 411 K 55.34(0.13) 57 ± 4 57 ± 3 57 ± 5
High T : 498 K 0.6101(17) 0.38 ± 0.15 0.571 ± 7 0.71 ± 0.18

a Values and uncertainties from least-squares fitting.
b Value from ‘98 %’ integration. Uncertainty from (‘99 %’− ‘97 %’)/2
c Value from (M2A +M2B)/2. Uncertainty from (M2A−M2B)/2 where
M2A and M2B are the largest and smallest fitted values respectively given
in Table 4.7 on page 53.
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Appendix B

HMF 15N Fitted Parameters

Table B.1: Fitting parameters for the 15N spectra of HMF with spectra given in Figure 5.14
on page 77.

Temperature / K δiso Relative integral

257 −327.39 −328.43 0.58 0.42
301 −327.13 −328.74 −329.99 0.51 0.39 0.10
314 −326.89 −328.56 −329.71 0.56 0.38 0.06
326 −326.81 −328.81 0.64 0.36
339 −326.70 −328.78 0.71 0.29
352 −326.64 −328.67 −327.71 0.61 0.24 0.15
364
377 −327.62 −326.23 −326.74 0.87 0.10 0.03
390 −327.45 −326.78 −328.39 0.78 0.11 0.11
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Appendix C

Error Propagation Calculations

Error on the rate: Ea and log10(τ 0)

Variables with errors: Ea ± δEa, log10(τ0)± δ log10(τ0)

Variables without errors: T

Constants: R, π

τ c = τ0 exp

(
Ea

RT

)
(2.5) ν =

1

2πτ c
(1.2)

ν =
1

2πτ0 exp
(
Ea
RT

) (C.1)

log10(ν) = − log10(2π)− log10(τ0)− log10(exp(Ea
RT ))

log10(ν) = − log10(2π)− log10(τ0)− Ea/(RT loge(10))

δ log10(ν) =

√
(δ log10(τ0))

2 +

(
δEa

RT loge(10)

)2

(C.2)

Error on the rate: Ea and Tmin

Variables with errors: Ea ± δEa, Tmin ± δTmin

Variables without errors: T , ν0

Constants: R, π

τ c = τ0 exp

(
Ea

RT

)
(2.5) ν =

1

2πτ c
(1.2) ν0 =

1

2πτc(Tmin)
(6.3)
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1

2πν0
= τ0 exp

(
Ea

RTmin

)

τ0 =
1

2πν0 exp
(

Ea
RTmin

)
τ c =

1

2πν0 exp
(

Ea
RTmin

) × exp

(
Ea

RT

)

τ c =
1

2πν0
exp

(
Ea

RT
− Ea

RTmin

)

τ c =
1

2πν0
exp

(
Ea

R

(
1

T
− 1

Tmin

))
(C.3)

ν =
ν0

exp
(
Ea
R

(
1
T −

1
Tmin

)) (C.4)

log10 ν = log10 ν0 −
Ea

R loge(10)

(
1

T
− 1

Tmin

)
u = Ea v = Tmin

δy
δu =

T−Tmin
RT loge(10)Tmin

δy
δv = Ea

R loge(10)Tmin
2

(δ log10 ν)2 = (δEa)
2

(
T − Tmin

RT loge(10)Tmin

)2

+ (δTmin)2
(

Ea

R loge(10)Tmin
2

)2

δ log10 ν =

√(
δEa(T − Tmin)

RT loge(10)Tmin

)2

+

(
δTminEa

R loge(10)Tmin
2

)2

δ log10 ν =

√
(δEaTmin(T − Tmin))2 + (δTminEaT )2

(RT loge(10)Tmin
2)2

δ log10 ν =
1

RT loge(10)(Tmin)

√
(δEa(T − Tmin))2 +

(
δTminEaT

Tmin

)2

(C.5)
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Appendix D

FSPA Ethanol-d2 Deuterium

Lineshape Simulations

D.1 Weblab Parameters

Table D.1: Inputted parameters in Weblab.19 1D echo, expert mode.

Simulation number

1 2 3 4

Tensor Settings

Spin 1

Coupling δ0 120 kHz

Asymmetry ν0 0.0 Variable

Euler angle α0 0.0 ° 0.0 ° 0.0 °
Cone Settings

Number of cone axes 1 2 1

Euler angle α1 N/A 90 ° N/A

Cone 1

Timescale of motion Intermediate Very fast Intermediate

Type of motion 2-site 2-site 3-site 2-site

Cone angle 59 ° Variable 59 °
Jump angle 180 ° 180 ° 120 ° 180 °
Jump rate Variable N/A Variable

Cone 2

Timescale of motion N/A Intermediate N/A

Type of motion N/A 2-site N/A

Cone angle N/A 59 ° N/A

Jump angle N/A 180 ° N/A

Jump rate N/A Variable N/A

Continued on next page
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Table D.1 continued from previous page. Legend on page 130.

1 2 3 4

Populations N/A 0.5 0.5 0.5 0.5 N/A

Sample Settings

Sample spinning No

Sample type Powder

Other Settings

Pulse-delay 30 µs

Broadening Gaussian, 4 kHz

Quality of spectrum High

Number of points 256

Plot range x axis −200 to 200 kHz

Plot y axis Auto

D.2 Simulated 2H Spectra with Different Motional

Models

Simulated spectra on following pages. Legend given below.
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