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Abstract 

Across the world, biodiversity is being lost at an unprecedented rate, heavily driven by 

anthropogenic activities. In order to understand ecosystem changes, and to conserve or 

manage species effectively, ecological monitoring on large spatial and temporal scales is 

needed. For some taxa, this is relatively straightforward. However, due to the nocturnal and 

elusive nature of many species, monitoring of terrestrial mammals can be challenging. In this 

thesis, I explore how camera traps and citizen science can be used to improve terrestrial 

mammal monitoring efforts in the UK. Firstly, I use the camera trap distance sampling method 

to calculate densities of a range of mammal species in North-East England, UK. The density 

estimates produced were similar to previously published estimates, and estimates for some 

species are amongst the most precise produced to date. Secondly, I evaluate spatial bias in 

MammalWeb, a camera trap citizen science dataset, by comparing subsets of data from 

MammalWeb to data from my systematic camera trapping survey. Habitat bias in the 

MammalWeb dataset impacted the species captured and measures of occupancy and habitat 

at a regional-level. I show that by sub-setting analysis to habitat level, the impact of spatial 

bias can be reduced; however, expanding spatial coverage of the MammalWeb project would 

be valuable in the future. In the second part of the thesis, I focus on a study engaging primary 

schools in camera trapping to monitor wildlife in their school grounds. I show that school 

pupils benefitted from participating in this project by gaining knowledge of UK mammal 

species and increasing their connection to nature. Schools also contributed valuable data to 

the MammalWeb project by uploading footage from a range of habitats, including some 

currently under-represented in the MammalWeb database. Teachers were very positive 

about the project, although some noted challenges to engaging long-term; there were also 

differences in longevity of engagement, depending on whether schools took part in a pupil 

workshop or teacher training. The findings presented throughout this thesis will help drive 

forward how MammalWeb and other projects with similar objectives can use camera trapping 

and citizen science approaches to maximise benefits in the areas of both ecological 

monitoring and engagement. More generally, my results highlight the potential of citizen 

science and camera trapping for improving large-scale mammal monitoring and ultimately, 

for tackling the challenges we face in managing widespread biodiversity loss. 
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1.1 Motivation 

 

Across the world, biodiversity is being lost at an unprecedented rate, heavily driven by human 

influences, including climate change, changes in land-use, and introductions of invasive 

species (Butchart et al., 2010; Foley et al., 2005). To understand these dynamics, ecological 

monitoring across large spatial and temporal scales is necessary (Fischer et al., 2010; Yoccoz 

et al., 2001). However, monitoring on such scales is challenging and current monitoring 

programs are often insufficiently robust to provide the data needed to make conclusions on 

the state of biodiversity (Buckland and Johnston, 2017). Citizen science has historically 

provided a solution to the challenge of collecting biodiversity data at large-scales (Miller-

Rushing et al., 2012; Pocock et al., 2015; Silvertown, 2009). Advancements in digital 

technology have further enabled large biodiversity datasets to be collected (Ball-Damerow et 

al., 2019; Chandler et al., 2017); however, issues over data quality and bias mean that gaps in 

our knowledge still exist, particularly for some taxa that are difficult to monitor (Amano et al., 

2016). Combining citizen science approaches with the use of large-scale camera trap networks 

could be particularly beneficial for surveying terrestrial mammals, a taxon currently under-

recorded in the UK and many other countries (Burton et al., 2015; Steenweg et al., 2017). 

 

Parallel to declines in biodiversity is a widening disconnect between people and nature (RSPB, 

2013). The lack of connection to nature in children has been particularly well documented 

and is attributed to increasingly urbanised populations and a growth of digital technology, 

amongst other factors (Neuvonen et al., 2007; Pergams and Zaradic, 2006; Turner et al., 2004; 

Zhang et al., 2014). This disconnect is concerning on two levels: 1) because children are 

missing out on the many benefits of being connected to nature, including improved physical 

and mental health (Harvey et al., 2020; Whitten et al., 2018); and 2) as childhood nature 

experiences can positively affect adult environmental attitudes and behaviours (Bixler et al., 

2002; Ewert et al., 2005; Kidd and Kidd, 1996), without these experiences there may be a lack 

of willingness to conserve biodiversity in the future, further fuelling the biodiversity crisis we 

are facing (Schuttler et al., 2018b). Therefore, there has been a growing call to re-connect 

people, particularly children, with nature for the benefit of both themselves and of nature, in 

general (Miller, 2005; RSPB, 2013; Soga and Gaston, 2016). 
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In this thesis, I explore how camera trap networks and citizen science could be used to 

improve large-scale terrestrial mammal monitoring. I also examine how involving schools in 

mammal monitoring efforts could help children re-connect with nature and learn about local 

species. In this introductory chapter, I outline the importance of ecological monitoring, 

including monitoring mammal species and the current state of mammal monitoring efforts in 

the UK. I then give a general background to camera traps and citizen science before 

considering engaging schools in scientific research, and the potential benefits for them 

engaging with ecological citizen science projects, specifically. I conclude the chapter with a 

brief overview of the MammalWeb project and an outline of the structure and aims of the 

thesis. 

 

 

1.2 Ecological monitoring 

 

1.2.1 The need for ecological monitoring 
 
Ecological monitoring is commonly defined as the repeated collection of ecological data over 

time to detect long-term trends (Moussy et al., 2022; Spellerberg, 2005). It is essential for 

gathering data on species abundance and distribution, to further our understanding of the 

global biodiversity crisis and to inform decisions on conservation strategies (Butchart et al., 

2010). Advances in technology, including the ability to collect, store and categorise data more 

efficiently, have resulted in a vast increase in the quantity of publicly available species 

occurrence data in recent years (Edwards et al., 2000; Oliver et al., 2021). In particular, the 

number of monitoring schemes initiated in low-middle income countries and countries with 

high biodiversity has grown substantially (Moussy et al., 2022). However, despite the increase 

in global monitoring efforts, there is still more to be done to tackle the extent of the challenge 

we are facing with the current biodiversity crisis (Buchanan et al., 2020). 

 

Global ecosystems are undergoing rapid change with biodiversity loss comparable in rate and 

magnitude to historical mass extinction events (Barnosky et al., 2011; Dirzo et al., 2014). 

Unlike previous mass extinctions, the factors driving current biodiversity loss are driven by 

anthropogenic activity and include climate change, habitat loss, invasive species, 
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overexploitation and pollution (Butchart et al., 2010; Dirzo et al., 2014; Foley et al., 2005). 

Large-scale biodiversity loss will have significant impacts on the ecosystem services from 

which humans benefit, including: provisioning services such as food, water and timber; 

regulating services that affect climate, floods, disease, and water quality; and cultural services 

that provide recreational, aesthetic and spiritual benefits (IPBES, 2019; Millennium Ecosystem 

Assessment, 2005). To reverse the trend in rates of biodiversity loss and to maintain 

ecosystem services, significant changes in policies and practices are needed (Buchanan et al., 

2020; Millennium Ecosystem Assessment, 2005). 

 

In 2002, world leaders committed, through the Convention on Biological Diversity, to achieve 

significant reductions in current rates of biodiversity loss (CBD, 2002). An updated version of 

the plan set out 20 Aichi Biodiversity Targets, and was agreed to in 2010 (CBD, 2010). 

However, two decades after committing to the initial targets, none of the 20 targets have 

been fully met (CBD, 2020; Buchanan et al., 2020; Butchart et al., 2019). Furthermore, as 

highlighted by Buchanan et al. (2020), progress towards many of the targets was difficult to 

track, owing to a lack of available data. As pressure to mitigate against the consequences of 

our current biodiversity crisis mounts, new post-2020 targets have been set under the 

Kunming-Montreal Global biodiversity framework (CBD, 2022). Included in this is a specific 

target for improving biodiversity monitoring to facilitate a more effective assessment of 

progress  (CBD, 2022). 

 

Ecological monitoring is crucial for understanding the state of biodiversity, the threats it faces, 

and the effectiveness of conservation or species management efforts. Furthermore, countries 

have obligations to monitor and report on the state of biodiversity under intergovernmental 

treaties (e.g., the Convention on Biological Diversity) and national legislation (e.g., the UK 

Environment Act 2021). Ideally, given the extent of biodiversity loss we are facing, monitoring 

schemes would be established over large spatial and temporal scales. However, monitoring 

programmes are often either targeted towards small spatial areas, or they have low power to 

detect change (Buckland and Johnston, 2017; Legg and Nagy, 2006). Whilst citizen science 

has, in some cases, provided a solution to collecting and categorizing biodiversity data on 

large scales (Bonney et al., 2014; Chandler et al., 2017), these datasets can be spatially or 

temporally biased (Ball-Damerow et al., 2015; Johnston et al., 2022; Millar et al., 2019; 
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Petersen et al., 2021). Development of robust, cost-efficient monitoring methods that can be 

deployed over large scales would help countries to meet targets for reversing biodiversity 

loss.  

 

1.2.2 Mammal monitoring 
 

There are many different methods to monitor mammal species including: line transects 

(Buckland and Turnock, 1992); track or dung counts (Hill et al., 2005); aerial surveys (Havens 

and Sharp, 1998); mark-recapture methods (Lettink and Armstrong, 2003); and DNA-based 

methods (Darling and Blum, 2007). However, to deploy these methods over large scales is 

inherently costly. Therefore, in comparison to some groups, such as birds and butterflies 

which have long-standing monitoring programs (Greenwood, 2003; Harris et al., 2020a; Sauer 

et al., 2013; Shirey et al., 2022), there is a lack of data on mammal distributions and densities 

in many countries (Brashares and Sam, 2005; Croft et al., 2017; Singh and Milner-Gulland, 

2011; van Strien et al., 2016). As a result, academics have highlighted the need for improved 

large-scale monitoring schemes for this taxon, specifically (Battersby and Greenwood, 2004; 

Hsing et al., 2022). 

 

The lack of knowledge on mammal populations is problematic due to their ecological and 

economical importance. Many mammals are important indicator species: changes in their 

populations can reflect the state of general ecosystem health (Jones et al., 2009; Mathur et 

al., 2011; Tognelli, 2005). Due to their charismatic nature, mammals are also often used as 

flagship species which can stimulate conservation awareness and action (Albert et al., 2018; 

Smith et al., 2012). Furthermore, invasive mammal species and species considered to be pests 

need careful management to limit negative impacts on ecosystems. Arguably, though, one of 

the most urgent reasons to address shortcomings in mammal monitoring is that many species 

of mammal are at risk of extinction (Bowyer et al., 2019; Davidson et al., 2017; Mathews and 

Harrower, 2020).  

 

For various reasons, monitoring mammals can be challenging, particularly in comparison to 

birds. Firstly, many species of mammal are nocturnal and easily disturbed by observers, so 

are seldom seen. Therefore, traditional survey approaches that rely on observations of live 
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animals, such as line transects, are not an effective survey technique for many mammal 

species (Moore et al., 2020; Plumptre, 2000). Catching and ringing birds has, for the past 100 

years, been a common way of gathering information on breeding success, phenology, 

migration and population changes (Greenwood, 2009). However, with the exception of bat 

species and some small mammals (Hoffman et al., 2010), mammal species are typically harder 

to catch and mark / tag, making it difficult to monitor their survival rates. Furthermore, 

although specific projects offering training in mammal survey techniques have helped boost 

the number of skilled observers, in comparison to birds, mammals still attract fewer 

enthusiasts to take part in monitoring programs (Battersby and Greenwood, 2004). Due to 

some of the difficulties of surveying mammals, proxy measures of abundance, such as track 

or scat counts, are often used in efforts to monitor populations (Hill et al., 2005). Whilst these 

values can be useful for conservation management in some instances, how they relate to 

actual abundance and their value for informing policy has been questioned (Kuehl et al., 2007; 

Stephens et al., 2015; Yoxon and Yoxon, 2014). Clearly, more effective mammal monitoring 

methods are needed and, given the extent of the challenges biodiversity faces, these 

monitoring schemes need to be at large, preferably national, scales.  

 

The difficulties of monitoring mammals are evident from the lack of current data available on 

many mammal species, with academics calling for more data to be collected in many different 

countries (Brashares and Sam, 2005; Croft et al., 2017; Singh and Milner-Gulland, 2011; van 

Strien et al., 2016). The urgency for more robust species monitoring in the UK became 

apparent in a recent report showing the UK to be one of the most nature-deprived countries 

in the world (RSPB, 2021; Sanchez-Ortiz et al., 2019). Without sufficient data on UK mammal 

species, it will be difficult to implement effective, evidence-based conservation projects to 

reverse current trends. Therefore, there is a need to assess the current state of mammal 

monitoring efforts in the UK, whether they need to be improved and, if so, how.  

 

1.2.3 Mammal monitoring in the UK 
 

Like many countries, the landscape of the UK has changed substantially in the last century, 

driven by human influences such as agricultural intensification, urbanisation, changes in land 

drainage, and increases in pollution (Donald et al., 2001; Smedema et al., 2004; Yang and 
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Rose, 2005). These changes have led to devastating effects on wildlife and, if left unchecked, 

will continue to do so in the future (Battersby and Greenwood, 2004; Hayhow et al., 2019). In 

Britain, one in four mammals are considered to be at risk of extinction (Mathews and 

Harrower, 2020). Some of these species' declines have been rapid; for example, the hedgehog 

population in the UK is estimated to have decreased by at least 46% over 13 years (Mathews 

and Harrower, 2020). Moreover, many mammal species in the UK are the subjects of national 

debates around their management, owing to them being considered pests (e.g., rats, rabbits, 

and deer), carriers of disease (e.g., badgers, Meles meles, carrying bovine tuberculosis), or 

invasive species (e.g., grey squirrels, Sciurus carolinensis, and greater white-toothed shrews, 

Crocidura russula). To implement effective evidence-based conservation or species 

monitoring programs for these species, data on the state of their populations and the threats 

they face are required.  

 

Several schemes exist to monitor individual mammal species in the UK, such as national otter 

surveys where alternate 50km squares throughout England are surveyed by experienced 

ecologists, usually every 5 years (Crawford, 2010). Citizen science platforms are also available 

for people to submit opportunistic sightings or signs of any mammal species; in the UK, one 

of the largest of these is iNaturalist (https://www.inaturalist.org/). Furthermore, over the 

past two decades, mammals have been recorded by many of the volunteers who conduct the 

British Trust for Ornithology's (BTO) Breeding Bird Survey (BBS) (Harris et al. 2020a). However, 

despite these various monitoring schemes, many mammal species remain under-recorded 

(Croft et al., 2017; Mathews et al., 2018). The lack of data does not affect only rare species; 

often, common species are under-represented in databases. For example, in a study of 

mammal abundance in the UK, only 6 published estimates of density were found for the 

rabbit, one of the most common mammal species in the UK (Croft et al., 2017). This resulted 

in large uncertainty when scaling density estimates to national levels (Croft et al., 2017). 

Furthermore, data availability and survey effort across the UK is uneven, with some areas 

(e.g., North-East England) having very limited data available (Crawley et al., 2020; Croft et al., 

2017).  

 

Battersby and Greenwood, (2004) highlighted the need for a UK-wide program that collected 

data on all mammal species in a standardized way. Since then, the UK Mammal Society 
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launched an app where participants can record mammal sightings or signs whilst also tracking 

their walk (https://www.mammal.org.uk/volunteering/mammal-mapper/). Collecting data in 

a standardized way where effort is quantifiable makes it amenable to formal analysis. 

However, given that many mammals are nocturnal or otherwise elusive, it is likely that many 

species will be missed. To improve monitoring of all terrestrial mammal species, techniques 

are needed to ensure monitoring 24 h a day, regardless of the weather. In this regard, camera 

traps, which have recently become much more affordable, are likely to be a valuable tool. 

 

 

1.3 Camera traps 

 

The first camera trap was made by George Shiras in the 1890s, who, with a tripwire-based 

camera, captured images of rarely seen animals, captivating audiences across the world and 

winning awards for wildlife photography (Kucera and Barrett, 2011; Sanderson and Trolle, 

2005). Advances in technology, such as portable power sources and larger films meant that 

by the mid-twentieth century, camera traps were used widely in ecological studies (Kucera 

and Barrett, 2011). Today, the most common types of camera trap used in ecology use motion 

and passive infrared (PIR) sensors to detect wildlife (Rovero et al., 2013; Welbourne et al., 

2016).  

 

The advantages of using camera traps for ecological monitoring include: that they are non-

invasive in comparison to other survey techniques (e.g., those involving physical handling and 

tagging); that they can operate in a range of habitats and climates; that they can be left in the 

field for long periods without human intervention; and that they provide an auditable dataset 

in the form of photos and videos which can be reviewed by other researchers (Swann et al., 

2011). Cost has previously been cited as one of the main barriers to using camera traps in 

ecological research (Glover‐Kapfer et al., 2019; Meek and Pittet, 2012; Newey et al., 2015); 

however, costs of commercial camera traps have declined in recent years and are likely to 

continue to, increasing their utility as a cost-effective survey method (Glover‐Kapfer et al., 

2019). 
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1.3.1 Ecological inferences from camera traps 
 

The use of camera traps for conservation and scientific purposes has grown substantially over 

the past 20 years (Rovero and Zimmerman, 2016). Camera traps have been used in a wide 

variety of ecological research, with papers on population parameters, activity schedules, 

feeding behaviour, and species interactions (Cutler and Swann, 1999; Trolliet et al., 2014). 

Camera traps have also helped discover new species (Rovero and Rathbun, 2006; Surridge et 

al., 1999), or species deemed to be previously extinct (Wright et al., 2008). Furthermore, they 

have been used to identify and track expansion of non-native species (Caravaggi et al., 2016; 

Hsing et al., 2022). Most commonly today, though, published studies using camera traps focus 

on calculating ecological measures such as density, occupancy, and activity schedules (Trolliet 

et al., 2014). 

 

Measuring animal density is important for monitoring trends in wildlife populations but can 

be challenging for many taxa (Fryxell et al., 2014; Morellet et al., 2007). Parallel to the 

increased use of camera traps as a tool for monitoring mammals has been the development 

of methods for calculating animal density, using data from camera traps. Karanth and Nicholls 

(1998) were the first to apply the existing ‘capture-recapture’ method, using images obtained 

from camera traps to assess the abundance of tigers in different parts of India. Since then, 

this method has been used in many studies for species which can be individually identified, 

including leopard (Chase Grey et al., 2013; Faure et al., 2022), hyaena (Faure et al., 2022), 

jaguar (Silver et al., 2004), ocelot (Trolle and Kéry, 2003), and Eurasian lynx (Kubala et al., 

2019).  

 

The first method to calculate density for species in which individuals could not be individually 

identified was the Random Encounter Model (REM) (Rowcliffe et al., 2008). This method, 

based on ideal gas theory (Hutchinson and Waser, 2007), has been used in several studies, 

producing density estimates similar to those obtained using other methods (Anile et al., 2014; 

Soofi et al., 2017; Zero et al., 2013). However, uptake of the method has remained low, in 

part due to the difficulty of obtaining information required by the model, such as speed of 

movement (Wearn et al., 2022). Several other models have been proposed to calculate 

density for unmarked species, including: the spatial count model (Chandler and Royle, 2013); 
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the random encounter and staying time (REST) model (Nakashima et al., 2017); camera trap 

distance sampling (CTDS) (Howe et al., 2017); the time to event, space to event, and 

instantaneous sampling models (Moeller et al., 2018); and models that consider home-range 

behaviour (Campos-Candela et al., 2018) and space-use (Luo et al., 2020). Studies attempting 

to compare these methods have concluded that no one method is optimal for camera trap 

data under all circumstances (Gilbert et al., 2021; Palencia et al., 2021). However, it has been 

suggested that CTDS is more suitable for low density species because it uses all species 

records, rather than only those records that clearly represent initial contacts with an 

individual (which other methods use as their sample) (Palencia et al., 2021). The ability to 

accumulate larger datasets more rapidly could also make CTDS beneficial for monitoring at 

large scales, using shorter, repeated surveys to track changes in populations.  

  

CTDS is developed from traditional point transect distance sampling (Buckland et al., 2001), 

with the model assuming that detection is certain at distance zero but accounting for 

imperfect detection of animals further away from the camera. Pre-defined snapshot 

moments are used to discretize the number of times an animal could be detected. Horizontal 

radial distance and angle to the midpoint of the animal from the camera are recorded and 

the probability of an animal being observed by a camera within its angle of view and within a 

pre-set distance (defined by truncating data), defines the probability of detection for the 

animal (Howe et al., 2017). Promisingly, CTDS has been used to estimate densities that are 

consistent with either true, known densities (Cappelle et al., 2019; Harris et al., 2020b) or 

previously published estimates (Corlatti et al., 2020; Howe et al., 2017). However, as the 

methodology is still relatively new, further testing of the methodology under different field 

scenarios would be beneficial.  

 

Studies using CTDS have often been small-scale, focussed on only one species (Cappelle et al., 

2019; Corlatti et al., 2020; Harris et al., 2020b) and have all taken place over homogeneous 

landscapes with little human influence (Bessone et al., 2020; Cappelle et al., 2021, 2019a; 

Corlatti et al., 2020; Harris et al., 2020b). For CTDS to be used in large-scale multi-species 

monitoring schemes, in diverse landscapes such as the UK, then further testing is needed to 

assess its suitability. Furthermore, whilst the underlying point transect distance sampling 

methodology is well-defined, CTDS requires additional decisions to be made such as how to 
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calculate the snapshot moment interval and where to truncate distance data. Clear guidelines 

on how to choose these measures are not always obvious, in part due to decisions being 

dependent on several factors which may differ between studies. For example, the snapshot 

moment has been calculated differently depending on whether video or photo was used 

(Howe et al., 2017; Corlatti et al., 2020; McKaughan et al., 2023) and the distance at which 

data is left-truncated may depend on the study’s sample size and the body size of the targeted 

species (Bessone et al., 2020). Without clear guidelines for calculating / defining these 

measures, there is a risk that arbitrary decisions without thorough justification will be made. 

As the method continues to be tested with different species under different field scenarios, 

more clear guidelines on defining measures such as the snapshot moment and truncation 

decisions would be useful. 

 

Whilst development, improvement and testing of models to estimate density from camera 

trap data is ongoing, occupancy modelling has become a prominent focus of published 

camera trapping studies (Delisle et al., 2021). Occupancy is defined as the probability of the 

target species being present at a site (MacKenzie et al., 2002). Unlike density, which requires 

measures of multiple covariates, occupancy only requires simple detection / non-detection 

data (MacKenzie et al., 2002). Camera traps have been used with occupancy models to 

evaluate distribution (Johnson et al., 2020; Long et al., 2011) and habitat use (Dechner et al., 

2018; Dertien et al., 2017; Kalle et al., 2014) for a wide range of species. Some of these studies 

have been carried out over large scales that would be challenging without the use of camera 

traps (Steenweg et al., 2016). Furthermore, the development of community occupancy 

models has enabled simultaneous estimates of occupancy for multiple species as well as 

covariate effects, making it a useful tool for widespread community monitoring (Kéry and 

Royle, 2016). 

 

Whilst conservation strategies may typically focus on monitoring population parameters, 

academics have highlighted the importance of also monitoring animal behaviour, particularly 

for documenting behavioural responses to anthropogenic impacts (Berger-Tal et al., 2011; 

Caravaggi et al., 2017; Tobias and Pigot, 2019). As camera traps are relatively non-invasive, 

and survey over a 24-hour period, they are also useful for looking at activity schedules of 

species. Many studies have used camera traps to show temporal responses of species to 
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anthropogenic pressures such as hunting (van Doormaal et al., 2015), agricultural activity 

(Ramesh and Downs, 2013; Shamoon et al., 2018), and human recreational activity (Nix et al., 

2018; Oberosler et al., 2017; Reilly et al., 2017). Camera trap studies have also investigated 

correlations between activity and body mass (Vallejo-Vargas et al., 2022), temporal 

separation between species (Romero-Muñoz et al., 2010), and shifts to nocturnality in species 

(Tan et al., 2013). Given the increasing anthropogenic pressures facing global ecosystems, 

monitoring changes in behaviour using camera traps will likely be an important tool for 

conservation practice, although this kind of monitoring over large scales remains a challenge 

(Caravaggi et al., 2017). 

 

The many benefits of using camera traps for ecological research have meant that large-scale 

networks of camera traps have been suggested as a way of monitoring mammals (Steenweg 

et al., 2017). Deploying camera traps over large geographical areas and analysing vast 

volumes of footage would require a substantial amount of time and effort. Whilst this might 

be a challenge for individual research teams to achieve alone, citizen science can offer a 

solution to overcome that challenge. 

 

 

1.4 Citizen science 

 

Citizen science is the process of involving non-professionals in scientific enquiry (Silvertown, 

2009). Although the term citizen science was only coined in the 1990s, projects enlisting the 

help of non-professionals to collect scientific data can be dated back to 1900 with the 

‘Christmas Bird Count’ where volunteers were encouraged to count birds at various locations 

across North America (Silvertown, 2009). Today, thousands of citizen science projects span 

subject areas including ecology, astronomy, and machine learning (Dickinson et al., 2010). As 

well as the subject, citizen science projects vary by level of involvement, from contributory 

projects where participants primarily contribute data, to co-creation projects where 

participants are involved in the whole process of the project, from design to evaluation 

(Bonney et al., 2009). 

 



 13 

1.4.1 Citizen science and ecological monitoring 
 

There is a long history of volunteer involvement in biological recording in many countries 

(Miller-Rushing et al., 2012; Pocock et al., 2015). The continued growth and expansion of 

digital technology, including smartphone apps for efficient data entry, has further enabled 

data to be gathered at large spatial and temporal scales (Chandler et al., 2017). By gathering 

datasets at such scales, citizen science projects have been able to track changes in populations 

over time, including declines of rare species (MacPhail et al., 2019; Zapponi et al., 2017) and 

the spread of invasive ones (Delaney et al., 2008; Gallo and Waitt, 2011; Maistrello et al., 

2016). Citizen science projects may also collect other environmental data (e.g., measures of 

water quality) which can help with further explorations of trends and factors driving species' 

population changes, including disease (Brown et al., 2020; Lawson et al., 2015) and pollution 

(Brooks et al., 2019; Nelms et al., 2022; Zipf et al., 2020). 

 

The participatory nature of citizen science also means it is well suited to increasing public 

understanding of, and support for, the environment (Dickinson et al., 2012). Nature-based 

citizen science projects can have positive impacts on participants, including increased wildlife 

knowledge (Brossard et al., 2005; Forrester et al., 2017; Jordan et al., 2011) and positive 

changes in behaviours and attitudes towards the environment (Haywood et al., 2016; 

Lewandowski and Oberhauser, 2017). Many studies have attempted to define the 

motivations of citizen science participants, in order to refine projects to maximise both data 

collection and participant satisfaction (Kaplan Mintz et al., 2022; Rotman et al., 2012; West et 

al., 2021; Wright et al., 2015). These studies find that motivations to participate in 

environmental citizen science are diverse and include wanting to help wildlife and contribute 

to science, to learn new skills, or to spend time outdoors (West et al., 2021). Ultimately, for 

citizen science projects to recruit and retain participants successfully, offering multiple 

avenues for engagement is likely to be most beneficial (Kaplan Mintz et al., 2022).  

 

One of the major challenges for ecological citizen science projects is dealing with bias 

(Dickinson et al., 2012). A large body of evidence shows that citizen science datasets can be 

biased due to variations in sampling over space and time (Ball-Damerow et al., 2015; Johnston 

et al., 2022; Millar et al., 2019; Petersen et al., 2021), taxa bias (Callaghan et al., 2021; Ward, 
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2014) and differences in participant skills and experience (Dickinson et al., 2010; Johnston et 

al., 2018). Whilst some bias can be controlled for with statistical methods or additional 

protocols (Mair and Ruete, 2016; Rapacciuolo et al., 2017), dealing with bias, particularly for 

large-scale datasets of opportunistic records, remains challenging (Johnston et al., 2022). 

 

1.4.2 Citizen science and camera traps 
 

Citizen science and camera trapping have been combined in various projects, with promising 

results (Hsing et al., 2022; McShea et al., 2016a). Citizen scientists have helped with deploying 

and collecting camera traps, allowing for surveys over larger spatial scales than could have 

been surveyed by single researchers or research teams (Lasky et al., 2021; McShea et al., 

2016; Townsend et al., 2021). Some projects have lent camera traps to citizen scientists to 

deploy, in order to answer specific research questions or study a particular species (McShea 

et al., 2016). However, with the decreasing cost of camera traps, more people are also buying 

them for personal use; for example, to see what wildlife visits their garden. Some projects 

have used this as an opportunity to collect these data by asking for footage from camera traps 

deployed for personal use (Hsing et al., 2022). By doing this, projects can expand spatial 

coverage as researchers are not limited by the number of camera traps they have. However, 

the ad-hoc nature of participants deploying their own cameras at sites of their choosing could 

lead to issues with spatial bias which would need to be addressed to have confidence in 

ecological inferences from the data (Hsing et al., 2022). 

 

Citizen scientists have also helped with classifying images. For example, many projects 

currently listed on the platform Zooniverse (https://www.zooniverse.org/) enlist the help of 

citizen scientists to classify images from camera traps to answer a variety of scientific 

questions. Most projects focus on identifying species within images (Swanson et al., 2015) but 

some also ask participants to enter information on behaviour (Arandjelovic et al., 2016) or to 

annotate images by marking individuals (Jones et al., 2018). By crowdsourcing classifications 

from citizen scientists, banks of camera trap images can be classified much more quickly than 

would be possible for individual researchers (Hsing et al., 2018; Swanson et al., 2015).  
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Whilst the primary aim of projects involving both camera traps and citizen science may be 

data collection, most projects have also included some level of public engagement that goes 

beyond normal participation. Engaging with schools, specifically, could be of particular 

benefit, with the projects eMammal and MammalWeb reporting positive impacts from 

projects engaging schools in camera trapping and citizen science (Hsing et al., 2020; Schuttler 

et al., 2019). Whilst this seems promising, these projects have been small-scale and lacking 

robust evaluation. A greater understanding of the impacts of such projects on school pupils, 

as well as approaches that work best, could help guide projects involving larger networks of 

schools. 

 

 

1.5 Engaging schools in science research 

 

1.5.1 Science research projects in schools 
 

Across the world, science forms an important part of formal education. Science education 

includes building knowledge and understanding of scientific concepts and processes, and 

teaching skills such as observing, classifying, explaining and predicting (National Academies, 

2016). Effective science teaching is essential for equipping the next generation of scientists 

with the skills and knowledge necessary to tackle 21st century problems (Turiman et al., 2012). 

However, there have been calls for science education in schools to include scope for more 

practical activities that have value beyond the classroom (Holman et al., 2016; Nistor et al., 

2019; Parker et al., 2018). Specifically, engaging school pupils in citizen science projects could 

complement the formal science curriculum by providing real-life opportunities to learn and 

implement the scientific method to help solve local and global problems (Shah and Martinez, 

2016; Bonney et al., 2014). The Monarch Larva Monitoring Project (Kountoupes and 

Oberhauser, 2008), School of Ants (Lucky et al., 2014) and LandSense (Olteanu-Raimond et 

al., 2018) are considered to be good examples of how citizen science projects can engage with 

schools, by providing equipment for them to collect and contribute scientific data to the 

project at large (Roche et al., 2020). 
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In the UK, specifically, several projects aim to engage schools in ‘real’ science research, such 

as the ones listed by the Institute for Research in Schools 

(https://researchinschools.org/projects/). In these projects, schools work with scientists to 

help answer specific questions on a range of topics. Whilst these projects have been designed 

with the primary aim of benefitting students, some have led to real-world impact beyond the 

classroom. For example, in a project where school students study levels of radiation on the 

International Space Station, a student identified an error in the data set they were working 

on, which had to be reported to NASA (BBC, 2017).  

 

Involving schools in authentic science research, including engaging them in existing citizen 

science projects, could have huge benefits both in terms of collecting large amounts of data, 

and for improving science literacy amongst pupils (Kountoupes and Oberhauser, 2008; Roche 

et al., 2020; Schuttler et al., 2019). However, detailed reports on how to implement citizen 

science in formal education settings, and the benefits of doing so remain rare (Roche et al., 

2020). Furthermore, most projects involving schools in citizen science, both globally and in 

the UK, have worked with only a small number of schools (< 10) for a short period of time 

(Blumstein and Saylan, 2007; Marchant et al., 2019; Prendergast et al., 2022; Saunders et al., 

2018). For ecological monitoring, as discussed previously, citizen science plays a crucial role 

in gathering species data. If schools could engage with ecological citizen science projects this 

could help to expand the spatial and temporal extent of species monitoring but could also 

have benefits for the children and teachers who participate. 

 

1.5.2 Increasing children’s connection to nature through ecological citizen science 

 

The term ‘connection to nature’ encompasses the range of feelings and attitudes that people 

have towards nature including: enjoyment of nature; having empathy for creatures; having a 

sense of oneness with nature; and having a sense of responsibility for the environment (RSPB, 

2013; Cheng and Monroe, 2012). The benefits of connection to nature in children are well 

studied and include improved mental wellbeing (Barrera-Hernández et al., 2020; Whitten et 

al., 2018) and more positive behaviours and attitudes toward the environment (Otto and 

Pensini, 2017; Zhang et al., 2014). Studies investigating the mechanisms that lead to nature 

connection have found that ‘meaningful’ moments in nature that include elements of contact, 
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emotion, compassion, and beauty are the main pathways for improving nature 

connectedness (Lumber et al., 2017; Richardson et al., 2022). For example, it has been 

suggested that activities to ‘notice nature’ (e.g., by watching, listening, or photographing) 

rather than just spending time in it, can lead to a deeper connection to nature (Richardson et 

al., 2022).  

 

Alongside calls to increase connection to nature, many academics have highlighted the loss 

of environmental knowledge, including the ability to identify even common species, amongst 

children today (Pilgrim et al., 2008; Ballouard et al., 2011; Lindemann‐Matthies, 2005). 

Although the link between knowledge, connection to nature and attitudes is not always clear 

(Lumber et al., 2017), environmental knowledge can facilitate attitude formation (Kollmuss 

and Agyeman, 2002) and positive pro-environmental attitudes can lead to pro-environmental 

behaviours (Duerden and Witt, 2010). Therefore, if the next generation are to help with 

conserving biodiversity in the future, it is important to increase both connection to nature 

and environmental knowledge amongst children. Participating in ecological citizen science 

projects could provide a mechanism for doing this, as it requires not just spending time in 

nature but noticing it through scientific recording. Participating in these projects could thus 

help foster stronger connections with nature and help participants to learn about local 

species, whilst also contributing to ongoing species monitoring (Pearce-Higgins, 2021; 

Schuttler et al., 2019). 

 

A number of projects have engaged schools in ecological citizen science, with promising 

accounts of how pupils and teachers have benefitted from their involvement  (Saunders et 

al., 2018; Schuttler et al., 2019). Furthermore, schools have generated ecological data 

valuable to monitoring schemes (Pearce-Higgins, 2021; Roche et al., 2020). For example, in a 

project set up to monitor variation in soil-invertebrate abundance on school playing fields, 

sufficient data were collected to model variation in abundance of 12 different invertebrate 

groups (Martay and Pearce-Higgins, 2018). Despite these successes, however, to date, most 

projects engaging schools in ecological citizen science have been small scale and required a 

lot of input from researchers (Blumstein and Saylan, 2007; Marchant et al., 2019; Prendergast 

et al., 2022; Saunders et al., 2018). Many of these projects have not included formal 

evaluations from either pupils or teachers, which is a missed opportunity, as evaluation data 
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could help guide how future projects should be implemented for greatest effect (Soanes et 

al., 2020). Furthermore, when children are involved in collecting biodiversity data, there are 

often concerns over data quality (Miczajka et al., 2015; Saunders et al., 2018; White et al., 

2018) which could limit how useful data from participating schools could be for species 

monitoring. Nevertheless, with more robust evaluation of benefits for participants, best 

practice approaches for data collection, and challenges teachers face for implementing such 

projects in schools, ecological citizen science projects in schools could have great potential 

for helping tackle both the challenge of large-scale ecological monitoring and re-connecting 

children with nature. 

 

 

1.6 The MammalWeb project 

 

Much of this thesis (Chapters 3-5) will focus on the MammalWeb project 

(www.MammalWeb.org) as a case study. MammalWeb was first set up in 2015 as a 

collaboration between Durham University and the Durham Wildlife Trust (a nature 

conservation charity) (Hsing et al., 2022). Whilst most citizen science camera trapping projects 

invite participants either to contribute or to classify data (e.g., McShea et al., 2016; Swanson 

et al., 2015), the MammalWeb project was the first to involve participants in both aspects of 

the process, with participants being able to upload and classify footage on one central 

platform (Hsing et al., 2022).  

 

Most commonly, MammalWeb participants who upload footage use their own personal 

camera traps, which can be a range of makes and models. In some cases, camera traps are 

loaned out to individuals or groups from MammalWeb’s supply. Participants who upload 

footage are free to choose a location for their camera, as well as whether they record videos 

or images. When they upload footage onto the platform, they input information on: site of 

deployment; camera model; habitat of deployment site; height of camera above ground; and 

deployment and collection date and time. Participants classifying footage on the platform are 

presented with the uploaded footage– either a sequence of photos taken in quick succession, 

or a video. Classifiers can then tag the sequence or video with a species selected from a 

presented list. Having selected a species, classifiers also have the option of adding information 

http://www.mammalweb.org/
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on the number of individuals, the age (adult, juvenile or unknown) or sex (male, female or 

unknown) of the species shown. To safeguard the privacy of any humans who might be 

accidently captured by a camera trap, any image / video tagged as ‘Human’ will not be shown 

again to other users. 

 

To date, MammalWeb participants have contributed over 600,000 image sequences and 

videos from over 2,300 sites across the UK (Hsing et al., 2022). It has been suggested that 

MammalWeb could play a role in the long-term monitoring of UK wildlife; however, 

challenges over abundance estimation and quantifying bias in the dataset remain (Hsing et 

al., 2022). MammalWeb has also been used in schools, including a project where students co-

authored a peer-reviewed paper about their experiences with MammalWeb (Hsing et al., 

2020). Engaging a larger network of schools with the MammalWeb project and measuring 

impacts on pupils could demonstrate how MammalWeb and other ecological citizen science 

projects benefit pupils, identifying factors to consider when developing future projects. These 

considerations inspired the objective for my thesis. 

 

 

1.7 Thesis structure and aims 

 

This thesis aims to explore how camera trap networks combined with citizen science could be 

used to improve national mammal monitoring efforts. Chapters 2 and 3 of the thesis focus on 

two key elements of citizen science and camera trapping in relation to ecological monitoring 

while Chapters 4 and 5 explore two components of engaging schools in ecological monitoring 

with camera traps.  My thesis concludes with a final general discussion chapter summarising 

findings and proposing future work. Below is a summary of the aims of each chapter. 

 

1.7.1 Chapter 2 - Camera trap distance sampling for terrestrial mammal population 
monitoring: lessons learnt from a UK case study  
 

Camera trap distance sampling could offer an effective solution to the challenges of 

monitoring mammal species over large spatial scales. However, previous studies using the 

method have all focused on homogeneous landscapes with little human influence (Bessone 
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et al., 2020; Cappelle et al., 2019; Corlatti et al., 2020; Harris et al., 2020b). In this chapter, I 

present the first study to use the camera trap distance sampling methodology to calculate 

densities of a range of mammal species over a heterogeneous landscape (North-East England, 

UK). I calculate both survey-wide estimates and habitat-specific estimates; the latter could be 

particularly useful for filling current data gaps and for scaling up to national estimates. By 

comparing my estimates to previously published estimates, and discussing the practical and 

methodological challenges of the method, I evaluate whether the method would be suitable 

for national-level monitoring in the UK.  

 

1.7.2 Chapter 3 - Spatial bias in a citizen science camera trap dataset and its impact on 
ecological inferences 
 

One of the largest challenges for citizen science projects that collect data in an opportunistic 

way is dealing with bias (Ball-Damerow et al., 2019; Dickinson et al., 2012; Kosmala et al., 

2016). Projects using camera traps overcome some bias, as cameras record all animals that 

pass in front of them; however, spatial bias may be retained. If the MammalWeb project is to 

play a role in UK-wide mammal monitoring, it is important to explore (and subsequently 

address) bias present in the dataset (Hsing et al., 2022). In Chapter 3, I compare subsets of 

the MammalWeb dataset to data from a systematic survey to evaluate bias and how it 

influences species assemblages captured, as well as measures of occupancy and activity. 

Results from this chapter will help to determine whether data from citizen science projects 

such as MammalWeb are spatially biased, suggesting steps needed to reduce bias and 

produce accurate ecological inferences. 

 

1.7.3 Chapter 4 - Increasing connection to nature and knowledge of UK mammals through an 
ecological citizen science project in schools 
 

Citizen science has been suggested as a way of reversing the growing disconnect between 

people and nature (Schuttler et al., 2018b) and could be particularly beneficial for children by 

offering opportunities to learn about and connect with local biodiversity (Saunders et al., 

2018; Schuttler et al., 2019). However, robust evaluations assessing the impacts of involving 

children in ecological citizen science are currently lacking. In Chapter 4, I focus on benefits for 

participating primary school pupils who took part in an ecological intervention involving: 
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deploying camera traps to monitor wildlife in school grounds; taking part in a pupil workshop 

or teacher training session; and contributing to the citizen science project, MammalWeb. 

Using questionnaires completed before and after the intervention, I aim to determine impacts 

from our intervention and whether these differences were sustained three-months post-

intervention.  

 

1.7.4 Chapter 5 - Teacher engagement with citizen science: Experiences from an ecological 
camera trapping project and recommendations for future projects 
 

Teacher perspectives on ecological citizen science are important because, without engaged 

teachers, there is little scope for ecological citizen science projects to be run independently, 

long-term, in schools. Whilst previous studies have reported positive feedback from small 

numbers of teachers who have participated in ecology-based projects (Schuttler et al., 2019; 

Soanes et al., 2020; White et al., 2018), a deeper exploration of how teachers engage with 

projects, and the feedback they give, could help to guide how future projects should be 

implemented. In Chapter 5, I look at how teachers engaged with the project MammalWeb, 

including if there were differences in the proportion of schools who engaged with 

MammalWeb depending on whether they received a pupil workshop or teacher training 

session. As schools could help to gather large-scale ecological monitoring data, I also look at 

the data that schools captured on camera traps and how these compare to data captured by 

general MammalWeb users in the same time frame. Finally, I summarise teacher feedback 

and, using this and our own experiences from the project, synthesise five recommendations 

for school-based ecological citizen science projects. 

 

1.7.5 Chapter 6 – General discussion 
 

In this general discussion chapter, I summarise findings and suggest areas of future work. My 

focus is principally on how MammalWeb can move forward; however, I also consider broader 

issues of relevance to any researchers using camera trap networks or citizen science for 

mammal monitoring or schools engagement. The chapter concludes with a reflection on the 

linkages between the two distinct areas of research considered in this thesis – ecological 

monitoring in Chapters 2 and 3 and schools engagement in Chapters 4 and 5. I propose that, 
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owing to the broader contexts of the extinction crisis and the growing disconnects between 

people and nature, large-scale mammal monitoring projects should move forward with 

consideration of both, in order to maximise benefits. 

 

 

1.8 General methods 

 

The chapters in this thesis have used a broad range of methodologies. Within each chapter, I 

detail the specific methodologies used for both data collection and analysis. Here, I briefly 

outline some of the overarching rationale behind the methods used, including: choice of 

camera traps, choice of data analysed; the mixed methods approach; and ethical 

considerations taken. 

 

Camera traps are used in each of the studies, with the same make and model (Browning Strike 

Force BTC-5HDP) used throughout. These cameras have a passive infrared (PIR) sensor, which 

detects movement and changes in temperature within a detection zone in front of the 

camera. PIR camera traps are the most common type of camera trap used today (Meek et al., 

2014), and so the studies presented in this thesis should be relevant to the majority of people 

who use camera traps. Furthermore, the Browning model used is a mid-range priced camera 

trap (~£150), meaning it is more robust than other cheaper models, but still affordable for 

the quantity of cameras needed for my studies. According to the manufacturer’s guide, the 

trigger speed on the camera is 0.3 s and a minimum delay of 1 s between captures can be set 

(Browning, 2017). For the camera trap survey presented in Chapters 2 and 3, cameras were 

set to record 8 images (the maximum) in quick succession. This setting was chosen as it 

allowed for the maximum amount of data to be collected (8 photos), but did not use up as 

much storage as video, which was an important consideration when cameras were deployed 

in remote areas and could not be checked regularly. 

 

In Chapters 2 and 3, data from a large camera trapping survey is presented. Chapter 2 

focussed on a specific methodology – camera trap distance sampling – details of which can 

be found in the chapter. For this chapter I focussed on estimating densities of 8 mammal 

species (details on how species were selected can be found in the chapter) so only data on 
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these species were analysed. In Chapter 3, however, the whole dataset from the survey was 

used to look at overall species captured and trapping rates for different species groups. I 

decided to include domestic / livestock species and humans in this as, although these are not 

always the focus of camera traps studies, the impact of domestic / livestock species and 

humans on wild species is a topic of increasing interest (Schieltz and Rubenstein, 2016; Nyhus, 

2016). Camera traps and / or citizen science could be a useful method to look at these 

impacts; however, it would first be useful to know about trapping rates and how these might 

compare between systematic and citizen science datasets, which is why these species were 

included in this chapter. Chapter 3 then focusses on key mammal species for looking at 

differences in occupancy and activity schedules. Specific details on how species were chosen 

and the methodologies used are outlined in the chapter. 

 

Both Chapters 4 and 5 focus on a study involving primary schools in camera trapping and 

citizen science. Chapter 4 uses quantitative data collected from pupils using questionnaires 

at set points throughout the study. Details on the questionnaires and how data were analysed 

can be found in the chapter. Chapter 5 takes more of a mixed methods approach, using both 

quantitative and qualitative data. Mixed methods approaches can provide a greater depth 

and breadth of information than utilising single approaches in isolation (Almalki, 2016). 

Therefore, as I wanted to gain a deeper understanding of how teachers engaged with the 

project, including the benefits gained and challenges faced, a mixed method approach was 

beneficial for my study. Further details on the specifics of how data were collected and 

analysed using this approach can be found in Chapter 5. 

 

For each of the studies presented in this thesis, ethical considerations were made, and ethical 

approval was granted by Durham University, where appropriate. For camera trap studies in 

general, one aspect to consider is what to do if humans are inadvertently captured. For the 

camera trapping survey I conducted (Chapters 2 and 3) images of humans were only seen by 

myself when tagging photos and were removed prior to uploading footage to MammalWeb. 

For the school study, the teachers at the school were responsible for uploading images and 

were asked to view all images and remove any photos of humans prior to uploading. If any 

photos of humans were accidently uploaded, the normal procedure that MammalWeb 

follows would apply that once it is tagged as human it would not be visible again (Hsing et al., 
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2022). As I was visiting schools to run pupil workshops and teacher training (for Chapters 4 

and 5), I had an enhanced DBS check and there was always at least one teacher from the 

school present with me during the workshops. Further details on the ethical considerations 

made regarding data collection (e.g., anonymising questionnaires) for the schools study can 

be found in Chapters 4 and 5. 

 
 
1.9 Author contribution statement 

 

Other than the lead author (SM), the following authors have been involved with the studies 

presented in this thesis: Philip Stephens (PS), Russell Hill (RH), Mark Whittingham (MW), Jim 

Cokill (JC), Graham Smith (GS), and Lorraine Coghill (LC). 

 

Authors contributed in the following aspects of each data chapter: 

 

Chapter 2 (Camera trap distance sampling for terrestrial mammal population monitoring: 

lessons learnt from a UK case study): SM, PS and RH conceived the ideas and designed 

methodology; SM collected the data; SM, PS, RH and MW analysed the data; SM led the 

writing. PS, RH, MW, JC, and GC provided feedback on drafts. 

 

Chapter 3 (Spatial bias in a citizen science camera trap dataset and its impact on ecological 

inferences): SM, PS and RH conceived the ideas and designed methodology; SM collected the 

data; SM analysed the data; SM led the writing. PS and RH provided feedback on drafts. 

 

Chapter 4 (Increasing connection to nature and knowledge of UK mammals through an 

ecological citizen science project in schools): SM, PS, RH, MW and LC conceived the ideas and 

designed methodology; SM collected the data; SM analysed the data; SM led the writing. PS 

and RH provided feedback on drafts. 

 

Chapter 5 (Teacher engagement with citizen science: Experiences from an ecological camera 

trapping project and recommendations for future projects): SM, PS, RH, MW and LC conceived 
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the ideas and designed methodology; SM collected the data; SM analysed the data; SM led 
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2.1 Abstract 

 

Accurate and precise density estimates are crucial for effective species management and 

conservation. However, efficient monitoring of mammal densities over large spatial and 

temporal scales is challenging. In the UK, published density estimates for many mammals, 

including species considered to be common, are imprecise. Camera trap distance sampling 

(CTDS) can estimate densities of multiple species at a time and has been used successfully in 

a small number of studies. However, CTDS has typically been used over relatively 

homogeneous landscapes, often over large time-scales, making monitoring changes (by 

repeating surveys) difficult. In this study, we deployed camera traps at 109 sites across an 

area of 2,725 km2 of varied habitat in North-East England, UK. The 4-month survey generated 

51,447 photos of wild mammal species. Data were sufficient for us to use CTDS to estimate 

densities of eight mammal species across the whole survey area and within four specific 

habitats. Both survey-wide and habitat-specific density estimates largely fell within previously 

published density ranges and our estimates were amongst the most precise produced for 

these species to date. Lower precision for some species was typically due to animals being 

missed by the camera at certain distances, highlighting the need for careful consideration of 

practical and methodological decisions, such as how high to set cameras and where to left-

truncate data. Although CTDS is a promising methodology for determining densities of 

multiple species from one survey, species-specific decisions are still required and these 

cannot always be generalised across species types and locations. Taking the UK as a case 

study, our study highlights the potential for CTDS to be used on a national scale, although the 

scale of the task suggests that it would need to be integrated with a citizen science approach.  

  



 28 

2.2 Introduction 

 

Measuring animal density and abundance is important for monitoring trends in wildlife 

populations and for developing effective conservation and management strategies (Fryxell et 

al., 2014). Yet, developing robust methods and tools to estimate population densities 

accurately and precisely over large spatial and temporal scales is challenging for many taxa 

(Morellet et al., 2007; Plumptre and Cox, 2006). Calculating density estimates for mammals 

can be particularly difficult given that many species are nocturnal and easily disturbed by 

observers, and many occur at low densities. Consequently, monitoring efforts often rely on 

indirect observations of presence, such as dung or footprints. These indirect observations can 

be converted into measures of animal density if conversion factors such as rates of production 

and decay are known; however, the accuracy and precision of this approach is often 

questioned (Kuehl et al., 2007; Yoxon and Yoxon, 2014).  

 

The extent of the challenge of estimating the abundance of mammal species is evident in 

published estimates for mammal species in the UK. For example, a recent estimate of 

abundance for one of the UK’s most common species, the rabbit (Oryctolagus cuniculus), 

spanned two orders of magnitude, from 2 to 255 million (Croft et al., 2017). This imprecision 

largely results from a lack of species records overall, and a lack of habitat-specific density 

estimates, which makes it difficult to scale up to a national level. The lack of data on many 

mammal species is not unique to the UK and academics have highlighted the need for better 

monitoring of terrestrial mammals worldwide, including in Europe (ENETWILD‐consortium et 

al., 2019; van Strien et al., 2016), Africa (Brashares and Sam, 2005) and Asia (Singh and Milner-

Gulland, 2011). It is clear that new monitoring approaches are needed that can be deployed 

over large areas to generate a substantial number of records and produce reliable density 

estimates. 

 

As technologies have developed, camera traps have been increasingly used as a means of 

passively monitoring species (Rovero and Zimmermann, 2016). Camera traps are particularly 

useful for monitoring elusive species and can gather large quantities of data more quickly 

than many more traditional survey methods (Burton et al., 2015). Methods for abundance 

estimation with camera traps have been developed for species in which individuals can be 
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identified (Head et al., 2013; Silver et al., 2004; Williams et al., 2017) and for species in which 

individuals cannot be identified (Chandler and Royle, 2013; Gilbert et al., 2021; Howe et al., 

2017; Luo et al., 2020; Moeller et al., 2018; Nakashima et al., 2017; Rowcliffe et al., 2008). 

Palencia et al., (2021) showed that three of these methods (REM, REST, and CTDS) could be 

used to estimate densities consistent with independent estimates from line transects and 

drive counts. Although there were no significant differences between estimates produced by 

the methods, Palencia et al., (2021) suggested that CTDS would be more suitable for low-

density species because the number of records increases more rapidly than with other 

methods (which use only initial contacts as their samples). The potential to accumulate larger 

datasets more rapidly would be beneficial for monitoring over large spatial scales, using 

shorter repeated surveys to track changes in populations. As with traditional point transect 

distance sampling (Buckland et al., 2001), CTDS typically assumes that detection is certain at 

distance zero but accounts for imperfect detection of animals further away from the camera. 

CTDS has been used to estimate densities that are consistent with either true known densities 

(Cappelle et al., 2019) or previously published estimates (Corlatti et al., 2020; Harris et al., 

2020b; Howe et al., 2017). CTDS has also been used to estimate densities of multiple species 

simultaneously (Bessone et al., 2020; Cappelle et al., 2021; Palencia et al., 2021).  

 

In many countries, the level of monitoring is inconsistent among species, resulting in limited 

data on some species, even when they are considered common (e.g., rabbits in the UK (Croft 

et al., 2017) or wild boar across parts of Europe (ENETWILD‐consortium et al., 2019)). By 

gathering data and estimating density for multiple species at a time, CTDS may help to address 

this imbalance, as well as saving time and resources by removing the need for multiple surveys 

of different species. To date, studies that have used the CTDS method have been carried out 

in landscapes with little variation in habitat and with little human influence (Bessone et al., 

2020; Cappelle et al., 2019, 2021; Corlatti et al., 2020; Harris et al., 2020b; Howe et al., 2017). 

In many regions and countries, however, the landscape is much more varied and includes 

habitats heavily altered by humans. The method would need to be reliable and practical to 

employ over landscapes such as these if it was to be used for large-scale monitoring.  

 

In this study, we aim to generate density estimates, including habitat-specific estimates, for 

a range of medium-large terrestrial UK mammal species. We assess our estimates against 
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previously published density estimates for those species. Finally, taking the UK as a case study, 

we discuss the opportunities, limitations, and challenges of using CTDS for large-scale and 

long-term species monitoring. 

 

 

2.3 Methods 

 

2.3.1 Survey area 
 

Data were collected in North-East England. The 2,725 km2 study area covered County Durham, 

plus areas of Gateshead, Sunderland, and Darlington. The region’s landscape is varied, with 

mountain, heath, and bog habitat in the west, improved grassland (high productivity 

grassland) in the centre of the region, and a variety of habitats in the east, including arable 

and urban (Figure 1; habitat classes from the Land Cover Map 2015, LCM; Rowland et al., 

2017). The area’s human population is around 1.1 million, with population densities ranging 

from 0.1 ha-1 in the most rural areas of County Durham to 20.2 ha-1 in urban areas such as 

Sunderland (ONS, 2021b). The Human Influence Index (HII) ranks human influence from 0 (no 

influence) to 64 (maximum influence) according to nine measures of human presence (WCS 

and CIESIN, 2005); average HII was 37 (range 14-64; WCS and CIESIN, 2005) across our study 

sites. 
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2.3.2 Camera trap survey 
 

Within the study area, a grid was defined with 5 km2 spacing and random geographical origin, 

with camera traps placed at the coordinates of the centre point of each cell in the grid. For 

CTDS, the spacing of the grid where cameras are deployed does not influence density 

estimates as probability of detection is determined from the effective detection area in front 

of the cameras (Howe et al., 2017). A grid of 5 km2 spacing was chosen as this was a large 

enough spacing to cover the whole survey area whilst still being feasible for one person to 

carry out the survey within the time set and with the number of cameras available for the 

study. The survey took place over 109 sites (Figure 1). Fifty Browning Strike Force BTC-5HDP 

cameras were rotated in a random order around these sites between June and October 2018. 

Orientation was randomly assigned for each camera. If cameras could not be placed in the 

exact pre-determined location or orientation due to land access, vegetation blocking the field 

of view, or other reasons, then we placed them at the nearest suitable point, within the same 

habitat and without targeting placement to increase or decrease detection probability. We 

aimed to have each camera deployed for a minimum of 14 days which allowed us to rotate 

cameras around all sites within the survey period. 

Figure 1. Left: Location of survey area in the UK shown in red. Right: Map of 109 sites where camera traps were placed 
in County Durham. Habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 2015). 
Background map: © OpenStreetMap contributors, © CARTO licensed under CC BY-SA 2.0. 
 

https://www.openstreetmap.org/copyright
https://carto.com/about-carto/
https://creativecommons.org/licenses/by-sa/2.0/
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Researchers usually recommend setting cameras at the shoulder height of the target species 

(Meek et al., 2016) but this is obviously problematic when surveying multiple species of 

varying sizes. We also had issues with cameras being triggered or the field of view being 

partially or entirely blocked by vegetation when set at lower heights. Therefore, cameras 

were placed at a height of between 0.7 and 1.0 metres from the ground and angled slightly 

downward. Cameras were set to ‘rapid fire’ mode, with 8 photos taken in quick succession 

each time the camera was triggered. The delay between triggers was set to the minimum of 

one second and the trigger speed of the camera was 0.3 s according to manufacturers 

(Browning, 2017). 

 

2.3.3 Availability for detection and angle measurements 
 

Camera trap distance sampling requires an estimate of the availability for detection (Howe et 

al., 2017). We estimated the proportion of time for which each species was available for 

detection by fitting a circular kernel model to radian time data, using the R package ‘activity’ 

(Rowcliffe et al. 2014) (Appendix S1). This method assumes that, at the daily peak, 100% of 

the population was available for detection. This assumption can be violated by any species 

but semi-arboreal species, in particular, will spend a proportion of their active period out of 

the view of camera traps. In our study, therefore, the assumption could have been violated 

for grey squirrels which spend a proportion of time in trees. However, our estimate for 

availability for grey squirrels (0.33) was very similar to published data on the proportion of 

time grey squirrels spent on the ground in Italy (0.35, calculated using radio collars and 

observations, and taking a weighted average of the two figures published for Spring/Summer 

and Autumn/Winter) (Wauters et al. 2002). Consequently, we used our calculated figures for 

availability in our density estimations but we acknowledge that this might over-estimate 

availability and underestimate density for grey squirrels. 

 

Detection is likely to decrease towards the edges of the field of view (FOV) (Rowcliffe et al., 

2011). However, if cameras are set to take long bursts or videos, then moving animals will still 

be detected at large angles; for this reason, Howe et al. (2017) used the full FOV of the camera 

in their CTDS density calculations. Despite this, it has been recommended that angles are 
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measured as well as distances to check whether sensitivity of the sensor across angles is 

uniform (Howe et al., 2017). These checks could be particularly important where cameras are 

set to take single images (Corlatti et al., 2020) or where there are unavoidable delays between 

triggers, such as in our study. We measured angles to image subjects and used these data to 

calculate the effective detection angle (Hofmeester et al., 2017) (Appendix S1). As the 

effective detection angle differed from the FOV angle in almost all cases, we used this as our 

angle measurement for estimating density.  

 

2.3.4 Distance sampling methodology 
 

Howe et al. (2017) recommend defining snapshot moments to discretise the number of times 

an animal could be detected, and suggested values between 0.25 and 3 s are likely to be 

useful. Corlatti et al. (2020) suggested using the minimum interval between captures as the 

value for the interval between snapshot moments when cameras are set to take single 

photos. Although we set our cameras to record in bursts of 8 photos, there was an 

unavoidable delay of at least 0.3s between photos within a burst, and 1s between triggers 

(figures according to manufacturers; Browning, 2017). Therefore, we wished to set the 

snapshot interval to the average minimum interval between captures. However, as the figures 

reported in manufacturer’s handbooks are not always accurate (Corlatti et al., 2020), we 

calculated the average of intervals between photos for periods of time when the camera was 

being constantly triggered during set up. We used this (0.8 s) as our snapshot moment 

interval.  

 

During camera set up, reference photos were taken with distance markers placed at 2-metre 

intervals up to 10 metres along the centre and down the sides of the field of view. Distance 

intervals were further decreased to 1-metre intervals following data collection by using the 

overlaid grid tool in Adobe Photoshop (for details, see Caravaggi et al., 2016). As precise 

distances were more difficult to determine further away from the camera, animals at 

distances over 8 metres were assigned to either an 8-10 m or 10+ m category. We measured 

distances of animals in all images. Images were screened and tagged in DigiKam 

(www.digikam.org). 
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As data in the 10+ m category accounted for less than 5% of overall data for each species, we 

right-truncated at 10 m for all species (Buckland et al., 2001). Distance sampling methodology 

assumes that detection is certain at zero distance; however, in CTDS, this assumption could 

be violated by animals passing underneath the camera or through the field of view before the 

camera is triggered (Howe et al., 2017). For each species, we worked on the assumption that 

detectability was highest in the distance category with the most captures per unit area and 

we left-truncated at the left boundary of that category. Exceptions to this rule were made in 

cases where: a) data distribution was determined to be due to the presence of trails rather 

than animals being missed by the camera; b) left truncation resulted in data being present in 

fewer than 5 distance categories, causing poor model fit and inaccurate estimates of effective 

detection distance (required to calculate density estimates; Hofmeester et al., 2017); or c) 

species showed attraction to the cameras. In all cases where we made exceptions to the left-

truncation rule, sensitivity to left-truncation was checked by calculating densities at different 

left-truncation scenarios. In addition, for roe deer that showed attraction to cameras mostly 

at night, we calculated density estimates using daytime-only captures (defined as between 

sunrise and sunset). For this, we adjusted the total sampling time and calculated a measure 

of availability for detection using the same method as above, but setting the bounds of the 

model to be the sunrise/sunset times of the middle day of the survey period. We did not left-

truncate these data. 

 

We calculated survey-wide density estimates for species where >80 photos (and >10 photo 

sequences) were obtained. This threshold was chosen as Buckland et al. (1993) originally 

recommended between 60-80 sightings for calculating density with distance sampling and 

other studies using CTDS have used similar thresholds (Bessone et al., 2020). We used the 

Land Cover Map 2015 (1 km dominant aggregate habitat class; Rowland et al., 2017) to assign 

a habitat to each site where a camera trap was positioned. Habitat-specific density estimates 

were calculated if (after truncation): a) the species had >80 photos in the habitat; b) there 

were >10 sites in that habitat; and c) data were present in five or more distance categories. 

To calculate density, we followed the methods of Howe et al. (2017) and used the model 

selection process proposed by Howe et al. (2019) (Appendix S2). We also explored the effect 

on density estimates and confidence intervals of variance in the effective detection angle and 

snapshot moment. All analyses used R version 4.1.2 (R Core Team, 2021), with final models 
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and density estimates calculated  using the ‘Distance’ package (Miller et al., 2019). We 

compare our density estimates to those published by the national mammal society in the UK 

(Mathews et al., 2018), and in a paper by Croft et al., (2017) who gathered data on mammal 

occurrence and abundances from across the UK and used a systematic modelling approach to 

produce national and habitat-specific density estimates. 

 

 

2.4 Results 

 

We were able to place cameras at the exact random point at 48 / 109 sites. Of the cameras 

which were displaced, the average displacement from the point was 0.30 km (range 0.02 – 

1.76). Small displacements (< 0.1 km) were most commonly due to moving a camera to place 

it on a post or structure (e.g., at the edge of a field). Large displacements (> 0.5 km) were 

mostly due to a lack of access permissions. A small number of displacements (5) were due to 

points falling on buildings or roads. Displacements occurred across a range of habitats but, 

most commonly, were in improved grassland. More information on camera displacements is 

in Table S1. 

 

Despite efforts to set cameras away from livestock and to reduce triggers from vegetation, 

these problems occurred at 41 sites; cameras were stolen from a further two sites. Wherever 

we were able, cameras were redeployed at these sites either immediately or as soon as 

possible after the previous deployment. We included data from all deployments in our 

analyses. Cameras at 18 sites were deployed for fewer than 14 days (range 4 – 13), owing to 

interference by livestock and / or saturated memory cards, with no possibilities for further 

deployments (or the same issue occurring on multiple deployments). Cameras with shorter 

deployments were in the LCM habitat classes: mountain, heath and bog (5); semi-natural 

grassland (4); improved grassland (4); arable (3); and built up areas and gardens (2). 

 

Overall effort totalled 1,785 camera days. In total, the survey generated 435,024 images and 

51,447 photos contained a wild mammal. We focussed our analyses on eight mammal species 

for which data were adequate to calculate density estimates at a survey-wide level (Table 1). 

The number of sites at which these species were detected ranged from 14 (badger) to 66 
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(rabbit). At 15 sites, none of the eight species were captured. Sites where species were 

detected varied between species, but the majority of captures were in the east of the survey 

area in grassland/arable/urban habitats, with fewer captures in the mountain/heath/bog 

habitats in the west (Figure 2; Figure S3-S8). Activity schedules (Figure 2; Figure S3-S8) and 

associated availability for detection (Table 1) were in line with expectations for the species 

studied, with strictly nocturnal species such as hedgehogs having lower availability for 

detection (0.13) than diurnal or crepuscular species such as brown hare (0.53; Table 1). 

Effective detection angles for all species were within the range of 0.51 – 0.60 radians with the 

exception of roe deer, the largest of the focal species, which was 0.77 (the same as the FOV 

angle determined by manual testing; Table 1). All effective detection angles were smaller than 

the FOV angle in the manufacturer’s guide (0.96; Browning, 2017). 

 

We left-truncated at the distance category with the largest number of captures per unit area 

for red fox, brown hare, rabbit, grey squirrel and stoat (Table 1). For three species (badger, 

hedgehog, and roe deer), following this rule was not appropriate and we made exceptions 

(Appendix S3). For these species, the point of left-truncation made only a small difference to 

the badger density estimate, but large differences for the roe deer and hedgehog density 

estimates (Table S2). Roe deer density estimates for the whole study area and habitat-specific 

estimates using daytime only captures were slightly lower than estimates calculated with all 

data but confidence intervals still overlapped (Table 1-2; Table S3). 
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Table 1.  Species-specific information, including density estimates per km2 [95% CI] calculated across the whole study area, ordered by species body size. For each species, we give:  number of 
sites species was captured at; total number of photos (i.e., observations); proportion of time available for detection; effective detection angle; density per km2 with 95% CI estimated from 
bootstrap; estimated coefficient of variation (C.V.) from bootstrap; density estimates (per km2) with 95% CI where provided as published in Mathews et al. (2018; calculated by taking abundance 
published and dividing by area of Great Britain); density estimate (per km2) range published in Croft et al. (2017) . Animal silhouettes by Anthony Caravaggi and Claus Rebler, licensed under CC 
BY-NC-SA 3.0. 
 

Species Sites 
captured 

Number of 
photos 

Availability 
for 

detection 

Effective 
detection 

angle 

Truncation  
left, right 

(m) 

Density per km2 
[95% CI] 

C.V. Mathews et al. 
2018 

 
Density per km2 

[95% CI]  
 

Croft et al. 2017 
 

Density per km2 
estimate range  

Roe deer 
(Capreolus 
capreolus) 

31 2742 0.39 0.77 1, 10 
5.67 

[2.67 – 10.52] 
0.38 

1.09 
[0.89 – 1.22] 

3.22 – 25.70 

Badger 
(Meles 
meles) 

14 459 0.30 0.56 2, 10 
1.32 

[0.84 – 4.22] 
0.40 

2.31 
[1.61 – 4.18] 

0.42 – 5.08 

Red fox  
(Vulpes 
vulpes) 

45 1397 0.43 0.59 2, 10 
5.97 

[1.37 – 21.15] 
0.39 

1.47 
[0.43 – 2.66] 

0.38 – 2.10 

Brown hare 
(Lepus 
europaeus) 

28 3635 0.53 0.56 1, 10 
5.97 

[2.86 – 12.89] 
0.43 

2.39 
[1.76 – 8.21] 

0.58 – 16.48 

Rabbit 
(Oryctolagus 
cuniculus) 

66 30725 0.48 0.55 2, 10 

 
101.83 

[51.63 – 186.65] 
 

0.39 148.46 9.70 – 1192.00 

Hedgehog 
(Erinaceus 
europaeus) 

26 2034 0.13 0.60 1, 10 
23.31 

[7.39 – 45.33] 
0.46 2.15 3.42 – 56.06 

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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Grey squirrel 
(Sciurus 
carolinensis) 

25 4181 0.33 0.59 1, 10 
7.64 

[3.73 – 13.03] 
0.30 

11.13 
[5.52 – 15.63] 

8.27 – 77.60 

Stoat  
(Mustela 
erminea) 

17 163 0.55 0.51 0, 10 
0.22 

[0.07 – 0.44] 
0.55 2.09 -- 
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Figure 2. Example species distribution maps (a; b), activity schedules (c; d), probability density (e; f), and 
detection probability curves (g; h) for red fox (Vulpes vulpes; left) and hedgehog (Erinaceus europaeus; right). 
Species maps show locations of all cameras (black circles) with locations of captures for the species (blue 
circles) scaled to the number of captures. Colours on map represent habitat data from Land Cover Map 2015 
(1 km dominant aggregate class; Rowland et al., 2015) key for colours can be found in Figure 1. Background 
map: © OpenStreetMap contributors licensed under CC BY-SA 2.0. Activity schedules show circular kernel 
models fitted to radian time data of relative frequency of independent captures over the 24h period. 
Probability density graphs show probability density of observed distances and detection probability graphs 
show detection probability as a function of distance from unadjusted hazard-rate point transect models. 

 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
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The unadjusted hazard rate model was selected as the model of best fit for all species 

(following model selection criteria in Howe et al. 2019). Density estimates ranged from 0.22 

per km2 for stoat to 101.83 per km2 for rabbit (Table 1). Coefficients of variation were all 

between 0.30 and 0.46, except for stoat, which had CV = 0.55 (Table 1). Density estimates 

were similar to estimates previously published by Mathews et al., (2018) and Croft et al., 

(2017), with almost all of our density estimates (except hedgehog, roe deer and stoat) falling 

within their published ranges and / or vice versa (Table 1). We also explored variation in the 

effective detection angle and snapshot moment and found that, because variance in these 

measures was very small (relative to the variance arising from spatial heterogeneity in 

captures), the effect of these sources of variance on density estimates and confidence 

intervals was also very small (Table S4).  

 

Across the whole survey, cameras were placed within seven different habitat classes. Of 

these, four were represented at 10 or more sites and habitat-specific densities could be 

estimated. Data were adequate to produce at least one habitat-specific density estimate for 

each species, but not all species had sufficient data to support a density estimate for every 

habitat (Table 2). We used the same truncation distances for each species as in the survey-

wide estimates (Table 1), but calculated habitat-specific availability for detection and 

effective detection angle measures (Table S5). The unadjusted hazard rate model was 

selected for all estimates, except for roe deer in arable habitat, for which the unadjusted half-

normal model was selected.  

 

The habitat-specific density estimates produced in our study largely fall within the ranges 

predicted for those habitats by Croft et al., (2017) (Table S5). Habitat-specific density 

estimates were often similar to survey-wide density estimates (i.e., falling within or close to 

the confidence interval range of survey-wide estimates), but with some notable differences 

(Table 2). Density estimates calculated for arable habitat were higher than survey-wide 

estimates for all species except hedgehog, for which the arable density estimate was ten 

times lower. For improved grassland, the density estimate was also much lower than survey-

wide estimates for hedgehog and fox. Badger, brown hare, grey squirrel and stoat all had 

higher density estimates in improved grassland than the survey-wide estimates. For 
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mountain, heath and bog habitat, there were sufficient data to estimate density for rabbit 

only. This density estimate was around a quarter of the survey-wide estimate.  
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Table 2. Density estimates per km2 [95% CI] calculated across the whole study area and for four different habitats. Number of sites a camera was positioned at for each 
habitat shown in brackets in header. Cells marked with an Asterix indicate the species was captured in this habitat, however data were not sufficient to calculate density 
estimates; either due to not enough photos captured (*) or data being present in less than five distance categories (**). Blank cells indicate this species was not captured 
in this habitat during this survey. Animal silhouettes by Anthony Caravaggi and Claus Rebler, licensed under CC BY-NC-SA 3.0. 

 

Species Whole study area 
(109) 

Arable (29) Built up areas and 
gardens (16) 

Improved 
grassland (38) 

Mountain, heath, 
bog (13) 

Roe deer (Capreolus 
capreolus) 

5.67 
[2.67 – 10.52] 

12.42 
[3.89 – 32.28] 

** 
4.34 

[3.33 – 49.99] 
* 

Badger (Meles meles) 1.32 
[0.84 – 4.22] 

2.01 
[0.78 – 5.82] 

 
1.81 

[0.17 – 2.87] 
 

Red fox  
(Vulpes vulpes) 

5.97 
[1.37 – 21.15] 

19.26 
[3.60 – 28.97] 

2.55 
[0.40 – 13.19] 

0.49 
[0.35 – 1.83] 

 

Brown hare (Lepus 
europaeus) 

5.97 
[2.86 – 12.89] 

10.94 
[2.88 – 34.83] 

 
7.40 

[2.60 – 14.06] 
 

Rabbit (Oryctolagus 
cuniculus) 

 
101.83 

[51.63 – 186.65] 
 

112.19 
[7.74 – 334.96]  

99.39 
[45.60 – 164.71] 

26.37 
[8.92 – 51.75] 

Hedgehog (Erinaceus 
europaeus) 

23.31 
[7.39 – 45.33] 

2.86 
[0.76 – 7.67] 

** 
6.59 

[1.40 – 13.03] 
* 

Grey squirrel (Sciurus 
carolinensis) 

7.64 
[3.73 – 13.03] 

8.76 
[0.72 – 19.79] 

3.88 
[0.79 – 8.76]  

10.83 
[3.51 – 26.37] 

 

Stoat  (Mustela 
erminea) 

0.22 
[0.07 – 0.44] 

*  
0.55 

[0.15 – 2.74] 
* 

https://creativecommons.org/licenses/by-nc-sa/3.0/
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2.5 Discussion 

 

We used camera trap distance sampling to estimate survey-wide and habitat-specific 

densities for a range of UK mammal species across a varied landscape. The study was rapid, 

relative to previous studies of multiple species over large spatial scales, and the lessons learnt  

should have much wider implications for using CTDS on a large scale for country-wide 

mammal monitoring. Here, we discuss our findings with respect to three issues: 1) the 

calculated density estimates and how they compare to previous published estimates; 2) 

practical and methodological issues that need careful consideration in future; and 3) 

implications of the study for country-wide mammal monitoring. 

 

2.5.1 Accuracy and precision of density estimates 
 

Five of our eight species had density estimates which fell within the confidence intervals of 

the estimates in Mathews et al. (2018), and / or vice versa, and all but two of our density 

estimates fell within the ranges predicted by Croft et al. (2017). Our estimates are for North-

East England only and, therefore, some differences to national estimates are expected. 

Estimates for three species (hedgehog, roe deer, and stoat) differed considerably from 

national estimates. For hedgehog, this could be due to the distribution of data (with few 

captures at both small and large distances) causing poor model fit and inaccurate density 

estimates. We estimated high densities of roe deer relative to national estimates; this result 

is expected because, although roe deer are widely distributed throughout the UK, North-East 

England (where our study was based) has a higher abundance than other areas, such as 

central and south east England (Crawley et al., 2020). For stoats, our density estimate was 

lower than that in Mathews et al., (2018), but they noted that their estimate was unreliable 

due to a lack of data (and hence no CI could be produced). Croft et al. (2017) were similarly 

unable to produce an estimate for stoat density, because of this lack of data.  

 

Our study is the first CTDS survey to produce density estimates for both the whole-survey 

area and specific habitats within that area. The ability to produce these habitat-specific 

density estimates will be beneficial for conservation management, and will help to address 

data gaps. It is also useful for scaling up density estimates, as shown by Croft et al., (2017) 
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who used habitat-specific density estimates to generate UK-wide density estimates. The 

confidence intervals surrounding our habitat-specific estimates are large in some cases (Table 

2). However, considering the lack of data, and the published ranges of the current best density 

estimates for UK mammal species, our estimates are still amongst the most precise produced 

for these species to date.  

 

2.5.2 Practical and methodological issues 
 

The ability to use CTDS to generate density estimates across multiple species and habitats 

from one survey is encouraging, suggesting the method could be deployed on large scales for 

species monitoring. However, for countries such as the UK where the landscape is 

heterogeneous and includes human-altered habitats, there are practical limitations to 

consider. CTDS requires camera traps to be set at pre-determined (usually systematically 

random) points. In most surveys, the potential to deploy all cameras at pre-selected points is 

constrained. However, in our study, 56% of our cameras were displaced, some over quite 

large (>1 km) distances. Whilst Howe et al. (2017) states that small displacements should not 

bias estimates, if cameras are displaced to be put on trees or other features that species (e.g., 

semi-arboreal grey squirrels) may be attracted to, then those species could be captured more 

frequently at smaller distances which has implications for density estimation. Furthermore, it 

is unclear what the effect of larger displacements (usually caused by land access issues) would 

be on density estimates. Whilst we made sure that displaced cameras were still within the 

same habitat, previous studies have shown that even within the same habitat, small-scale 

factors – such as the presence of log / trail features - can result in large differences in capture 

rates (Kolowski et al., 2021; Kolowski and Forrester, 2017). This could be problematic for any 

large-scale camera trap survey (particularly in heterogeneous landscapes) that use CTDS or 

any other method that requires cameras to be set at pre-determined random locations. 

Alternative designs might be required to mitigate against displacements, such as deploying 

multiple cameras at each site (Kolowski et al., 2021). Ultimately, however, covariation 

between land access and animal abundance is always likely to constrain the accuracy of 

wildlife surveys. 
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Camera traps surveys are often vulnerable to camera theft, vegetation triggering cameras and 

livestock damaging cameras (Jumeau et al., 2017; Meek et al., 2019; Nichols et al., 2017; 

Swanson et al., 2015). The heterogeneous landscape of our study appeared to exacerbate this 

issue, with almost half of our cameras being affected and ~85% of photos resulting from 

vegetation / livestock triggers. This necessitated multiple and, in some cases, shorter 

deployments. Whilst multiple deployments were an inconvenience, we do not believe they 

biased density estimates; however, shorter deployments could influence survey-wide density 

estimates if shorter deployments occur more frequently in certain habitats. Relative to their 

frequency in the overall survey, improved grassland and semi-natural grassland had more 

short deployments. As some of the density estimates for improved grassland were different 

to the survey-wide estimates, shorter deployments in that habitat could have biased survey-

wide estimates. Future surveys in heterogeneous landscapes must factor in ample extra time 

for redeployments due to practical challenges. 

 

As well as these practical issues, CTDS also presents methodological challenges. These include 

the species-specific decisions that must be made and which need careful consideration, owing 

to their strong influence on density estimates. Perhaps the most challenging factor to 

consider is left-truncation. Left-truncation can be problematic if used inappropriately, 

because the loss of data results in extrapolation of the slope of the probability detection 

function at distance zero, which is then used to estimate density. Nevertheless, left-

truncation is commonly used in CTDS when animals are likely moving underneath the camera, 

causing fewer than expected detections at small distances (Bessone et al., 2020; Cappelle et 

al., 2019, 2021; Howe et al., 2017; Palencia et al., 2021). In a large multi-species study, it would 

be beneficial to have one method for deciding when and by how much to left-truncate; hence, 

we trialled a rule across all species, left-truncating at the start of the distance category with 

the most captures per unit area surveyed. Whilst this rule worked for most species, it was 

inappropriate for three species: badgers, for which the lack of detections at short distances 

was more likely due to trails at a larger distance; hedgehogs, for which a lack of spread in the 

data caused problems when truncating; and roe deer, which showed attraction to cameras. 

These cases all demanded species-specific decisions about left-truncation distances 

(Appendix S3).  
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Other aspects of CTDS that must be considered on a species-by-species basis include 

identifying which species may be reacting to cameras, as this may lead to more detections 

than expected at distance zero. Multiple ways of dealing with this have been proposed, 

including left-truncation (Cappelle et al., 2019) and removing images where animals show a 

reaction to the camera (Bessone et al., 2020). In our study, we used left-truncation for roe 

deer as this species appeared to be attracted to cameras. However, because roe deer were 

mainly reacting to cameras at night (Figure S2), presumably due to the infrared flash (Henrich 

et al., 2020) we also produced estimates using daytime-only captures (Table S3) as an 

alternative to left-truncation. We found similar density estimates and estimates of variance 

produced by the two methods (restricting data to daytime captures only, or left truncating at 

1 m), suggesting that either could be appropriate for dealing with reactivity to cameras. 

Future studies using CTDS should consider sample size and causes of reactivity to determine 

which method is most appropriate. 

 

Semi-arboreal species pose particular problems for density estimation. For these, calculating 

availability for detection using the method outlined by Rowcliffe et al. (2014) may be 

inappropriate. This is because the assumption of 100% detection at times of peak activity may 

be especially problematic for species that spend time active out of the view of cameras. In 

our study, the proportion of time available for detection for grey squirrels (a semi-arboreal 

species) was highly similar to the figure calculated by Wauters et al. (2002) for proportion of 

time grey squirrels spent on the ground in Italy. Whilst this provides some reassurance, it 

would be preferable to have observational data on time on the ground for the period and 

location being studied. 

 

To survey species of varying size, and to reduce vegetation-induced camera triggers, we set 

cameras higher than would be advised for many species in our study (Meek et al., 2016). 

Smaller-bodied animals may have been captured at a larger range of distances and angles if 

cameras were deployed at lower heights height (e.g., Rowcliffe et al., 2011). In turn, this might 

have obviated the need for some of the decisions around left-truncation, whilst rendering 

valid the full FOV. There is, of course, a trade-off between ideal placements for animals of 

different sizes and this identifies one of the limitations of community-wide (or multispecies) 
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monitoring by this method. For effective multispecies monitoring using CTDS, deployments 

at different heights might be necessary to survey different components of the community.  

 

2.5.3 Camera trap distance sampling for country-wide mammal monitoring 
 

To carry out effective conservation and management for species, and to meet national and 

international obligations for species monitoring (e.g., CBD, 2010), large-scale monitoring in 

many countries needs to be improved. However, monitoring on a national level is inherently 

costly and approaches need to be cost-effective and practical to employ. CTDS offers a way 

to monitor multiple species concurrently, over large spatial scales, and uses a methodology 

(distance sampling) benefitting from existing resources and software. As highlighted by 

Schaus et al. (2020), the start-up cost of any camera trapping survey is high; however, cameras 

can be rotated around sites to reduce costs and can be used in repeated surveys for many 

years. CTDS is also less demanding of time than many other methods (e.g., line transects); our 

study was conducted over a large area, and calculated density estimates for multiple species, 

but was conducted by a single researcher. CTDS thus offers a promising solution to improve 

terrestrial mammal monitoring efforts in the UK and other countries. 

 

There are multiple ways CTDS could be deployed on a national scale. If it would be beneficial 

to obtain regional densities (perhaps for local species management purposes) then setting up 

a grid of cameras across the country at the same resolution as in our study (5 km2) might be 

most appropriate. Alternatively, it might be beneficial to have a stratified sampling approach 

to obtain habitat-specific density estimates, including for rare but important habitats. Either 

way, in order to achieve such large-scale monitoring, it is likely that support from citizen 

scientists would be required. Citizen scientists play a large and important role in ecological 

data collection in many countries, including the UK (Pocock et al., 2015). Citizen science 

projects already enlist volunteers to deploy camera traps (Hsing et al., 2018; Lasky et al., 2021; 

Locke et al., 2019; McShea et al., 2016). Such projects could collect data appropriate for CTDS 

by allocating sites to participants and training them to follow the methodology to calibrate 

cameras. Although the expertise of citizen scientists is sometimes questioned (Kosmala et al., 

2016), many projects exist that require citizen scientists to follow strict protocols; for 

example, the UK’s Breeding Bird Survey run by the British Trust for Ornithology (Harris et al., 
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2020b). Importantly, we note that accurate hedgehog densities using the Random Encounter 

Model were estimated with data collected by citizen scientists who deployed camera traps 

following a calibration methodology similar to that in CTDS (Schaus et al., 2020). 

 

2.5.4 Conclusion 
 

Despite the methodological and practical limitations we discuss, CTDS provides a promising 

method to achieve large-scale monitoring for many species. Further investigation of certain 

aspects of the methodology (such as left-truncation) is needed, and a ‘one size fits all’ 

approach for multiple species at a time may not be possible, especially for smaller species. 

However, we show that with careful consideration of these factors, realistic density estimates 

can be calculated for multiple species, including species for which density measures have 

previously proven difficult to obtain. The UK is one case study of where the lack of data on 

wild mammal species highlights the need for improved species monitoring on a national scale. 

Employing CTDS on a national scale for species monitoring would be inherently costly, but 

costs could be reduced by enlisting existing citizen science networks and projects. The 

benefits of employing such a scheme would be significant, given the increasing anthropogenic 

pressures facing species worldwide and the current gaps in our data and knowledge, which 

limit our ability to predict how species will respond.  
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2.7 Supplementary material 

 

Appendix S1 

 

Availability for detection 

We estimated the proportion of time each species was available for detection by cameras by 

fitting a circular kernel model to radian time data, using the R package ‘activity’ (Rowcliffe et 

al., 2014). As recommended by Rowcliffe et al. (2014) we set the bandwidth multiplier to 1.5. 

To help ensure independence of observations of times of detection, Rowcliffe et al. (2014) 

suggest using only the time of the initial trigger, discarding all other photos taken of the 

animal for the time it remains in the field of view. We followed this approach, but in addition, 

discarded data if the animal returned to the field of view <2 minutes after the last photo was 

taken. 

 

Effective detection angle 

As detection probability is likely to decrease towards the edges of the field of view, we 

assigned animal locations within images to categories, with 0% being the vertical midline of 

the photo and 100% being the outer edge of the photo; the categories were 0-20%, 20-60% 

or 60-100%. We then converted categories into angles using the field of view (FOV) angle, 

which we calculated by measuring distances between objects at the outer edges of the FOV 

and using trigonometry to work out the angle. Effective detection angle was then calculated 

by fitting half-normal detection functions to angle data using package ‘Distance’ in R (for more 

information, see Hofmeester et al., 2017). 

 

Snapshot moment 

Howe et al. (2017) recommend defining snapshot moments to discretise the number of times 

an animal could be detected, and suggest values between 0.25 and 3 s are likely to be useful. 

Corlatti et al. (2020) suggested using the minimum interval between captures as the value for 

the interval between snapshot moments when cameras are set to take photos. We calculated 

the average of intervals between photos for periods of time when the camera was being 

constantly triggered during set up and used this (0.8 s) as our snapshot moment interval.  
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Appendix S2 

 

Densities for all species were estimated using the R package ‘Distance’ with the equation set 

out in Howe et al., (2017): 

 

D ̂= 
nk

πw2 ek �̂�
* 

1

𝐴
 

 

where D ̂ is density, nk is the number of observations at point k, w is the truncation distance 

beyond which records were discarded, �̂�  is the estimated probability of detection of an 

animal at a snapshot moment as estimated by the modelled detection function. ek = 
θTk 

2πt
 is the 

sampling effort at point k. Tk is the total sampling time at point k in seconds, t is the time 

interval between snapshot moments (0.8 s), and 𝜃 is the effective detection angle, so 
𝜃

2𝜋
 

represents the effective proportion of a circle covered by the camera. Finally, A is the 

proportion of time available for detection. 

 

Model selection 

 

We considered models of the detection function with half-normal key function with 0, 1 or 2 

Hermite polynomial adjustment terms, the hazard rate key function with 0, 1, or 2 cosine 

adjustments, and the uniform key function with 1 or 2 cosine adjustments. As many 

observations were not independent, Akaike's information criterion (AIC) is likely to select 

overly complex models (Buckland et al., 2001). Therefore, we used the two-step model 

selection process proposed by Howe et al., (2019), which calculates an overdispersion factor 

(ĉ) and associated adjusted model selection criteria (QAIC) to select among models of the 

same general form using QAIC, and then select among QAIC-selected models using ĉ. Further 

to this, we estimated variances from 999 nonparametric bootstrap resamples with 

replacement across camera locations. 
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Appendix S3 

 

Left-truncation decisions 

 

We left-truncated at the distance category with the largest number of captures per unit 

area for red fox, brown hare, rabbit, grey squirrel and stoat (Table 1). For three species, we 

made exceptions:  

 

Badger: The majority of badger captures were at 3-4 m however this was largely driven by 

44% of all badger photos being captured at only two sites, and just under half of the 

captures at these sites were recorded as 3-4 m. Therefore, we determined this pattern in 

detections to be due to the presence of trails (at these two sites) and not because badgers 

were being missed by cameras. Therefore, we left-truncated data at 2 m for badger, the 

same distance as for the red fox, a similarly-sized carnivore.  

 

Hedgehog: The majority of hedgehog captures were at 2-3 m, but as there were no captures 

of hedgehogs at >6 m truncating at 2 m resulted in data being present in only four distance 

categories. Hofmeester et al., (2017) found that, in order to calculate reliable effective 

detection distances, a minimum of five distance categories was needed. This accords with 

our results as, when we left-truncated at 2 m for hedgehog, it resulted in poor model fit (see 

Figure S1) and density estimates that were inaccurate and imprecise (Table S2). We 

therefore truncated at 1 m for hedgehog.  

 

Roe deer: Roe deer were attracted to the camera traps which resulted in more captures 

than expected at 0-1 m. We therefore left-truncated roe deer at 1 m.  
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Figure S1. Detection probability as a function of distance (top) and probability density of observed 
distances (bottom) for hedgehog (Erinaceus europaeus) under two different left-truncation scenarios. 
Left: left-truncation at 1 m. Right: left-truncation at 2 m. Model selected for 1 m left-truncation 
scenario (left) was unadjusted hazard rate. Model selected for 2 m left-truncation scenario (right) was 
unadjusted half-normal.  
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Figure S2. Percentage of captures in each distance category for roe deer (Capreolus capreolus) in the 
daytime (left) and the night-time (right). Daytime defined as the hours between sunrise and sunset. 
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Figure S3. Species distribution map (top-left), activity schedule (top-right), probability density (bottom-left) and 
detection probability (bottom-right) graphs for roe deer (Capreolus capreolus). Species map shows locations of all 
cameras (black circles) with locations of captures for the species (blue circles) scaled to the number of captures. 
Colours on map represent habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 
2015) key for colours can be found in Figure 1. Background map: © OpenStreetMap contributors licensed under CC 
BY-SA 2.0. Activity schedule shows circular kernel models fitted to radian time data of relative frequency of 
independent captures over the 24h period. Probability density graph shows probability density of observed 
distances and detection probability graph shows detection probability as a function of distance from unadjusted 
hazard-rate point transect model. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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Figure S4. Species distribution map (top-left), activity schedule (top-right), probability density (bottom-left) and 
detection probability (bottom-right) graphs for badger (Meles meles). Species map shows locations of all cameras 
(black circles) with locations of captures for the species (blue circles) scaled to the number of captures. Colours on 
map represent habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 2015) key 
for colours can be found in Figure 1. Background map: © OpenStreetMap contributors licensed under CC BY-SA 2.0. 
Activity schedule shows circular kernel models fitted to radian time data of relative frequency of independent 
captures over the 24h period. Probability density graph shows probability density of observed distances and 
detection probability graph shows detection probability as a function of distance from unadjusted hazard-rate point 
transect model. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
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Figure S5. Species distribution map (top-left), activity schedule (top-right), probability density (bottom-left) and 
detection probability (bottom-right) graphs for brown hare (Lepus europaeus). Species map shows locations of all 
cameras (black circles) with locations of captures for the species (blue circles) scaled to the number of captures. 
Colours on map represent habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 
2015) key for colours can be found in Figure 1. Background map: © OpenStreetMap contributors licensed under CC 
BY-SA 2.0. Activity schedule shows circular kernel models fitted to radian time data of relative frequency of 
independent captures over the 24h period. Probability density graph shows probability density of observed distances 
and detection probability graph shows detection probability as a function of distance from unadjusted hazard-rate 
point transect model. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
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Figure S6. Species distribution map (top-left), activity schedule (top-right), probability density (bottom-left) and 
detection probability (bottom-right) graphs for rabbit (Oryctolagus cuniculus). Species map shows locations of all 
cameras (black circles) with locations of captures for the species (blue circles) scaled to the number of captures. 
Colours on map represent habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 
2015) key for colours can be found in Figure 1. Background map: © OpenStreetMap contributors licensed under CC 
BY-SA 2.0. Activity schedule shows circular kernel models fitted to radian time data of relative frequency of 
independent captures over the 24h period. Probability density graph shows probability density of observed 
distances and detection probability graph shows detection probability as a function of distance from unadjusted 
hazard-rate point transect model. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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Figure S7. Species distribution map (top-left), activity schedule (top-right), probability density (bottom-left) and 
detection probability (bottom-right) graphs for grey squirrel (Sciurus carolinensis). Species map shows locations of 
all cameras (black circles) with locations of captures for the species (blue circles) scaled to the number of captures. 
Colours on map represent habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 
2015) key for colours can be found in Figure 1. Background map: © OpenStreetMap contributors licensed under CC 
BY-SA 2.0. Activity schedule shows circular kernel models fitted to radian time data of relative frequency of 
independent captures over the 24h period. Probability density graph shows probability density of observed 
distances and detection probability graph shows detection probability as a function of distance from unadjusted 
hazard-rate point transect model. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
https://creativecommons.org/licenses/by-sa/2.0/
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Figure S8. Species distribution map (top-left), activity schedule (top-right), probability density (bottom-left) and 
detection probability (bottom-right) graphs for stoat (Mustela erminea). Species map shows locations of all cameras 
(black circles) with locations of captures for the species (blue circles) scaled to the number of captures. Colours on 
map represent habitat data from Land Cover Map 2015 (1 km dominant aggregate class; Rowland et al., 2015) key 
for colours can be found in Figure 1. Background map: © OpenStreetMap contributors licensed under CC BY-SA 2.0. 
Activity schedule shows circular kernel models fitted to radian time data of relative frequency of independent 
captures over the 24h period. Probability density graph shows probability density of observed distances and 
detection probability graph shows detection probability as a function of distance from unadjusted hazard-rate point 
transect model. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
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Table S1. Details of camera trap placements including information on which camera traps were displaced 
from the pre-determined random point and the reason for the displacement. 

 

Location name Habitat Distance from 
original point (km) 

Reason for displacement 
from original point 

1 Semi-natural grassland 0  

2 Mountain, heath, bog 0  

3 Improved grassland 0.062 No post to place camera 

4 Improved grassland 0.208 Livestock 

5 Arable 0.514 Land access 

6 Improved grassland 0.715 Land access 

7 Arable 0.641 Land access 

8 Mountain, heath, bog 0  

9 Mountain, heath, bog 0  

10 Semi-natural grassland 0  

11 Improved grassland 1.764 Land access 

12 Improved grassland 0.062 No post to place camera 

13 Improved grassland 0  

14 Arable 0.294 Vegetation 

15 Arable 0  

16 Built up areas and gardens 0  

17 Built up areas and gardens 0.593 Livestock 

18 Mountain, heath, bog 0  

19 Improved grassland 0  

20 Improved grassland 0.096 No post to place camera 

21 Improved grassland 0.053 No post to place camera 

22 Improved grassland 0  

23 Arable 0.279 Livestock 

24 Improved grassland 0.102 Land access 

25 Arable 0.115 Vegetation 

26 Arable 0  

27 Arable 0  

28 Arable 0  

29 Mountain, heath, bog 0  

30 Semi-natural grassland 0  

31 Improved grassland 0.355 Vegetation 

32 Mountain, heath, bog 0  

33 Improved grassland 0.020 No post to place camera 

34 Improved grassland 0.343 No post to place camera 

35 Improved grassland 1.024 Land access 

36 Built up areas and gardens 0.212 Land access 
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37 Built up areas and gardens 0.208 Land access 

38 Improved grassland 0  

39 Arable 0  

40 Mountain, heath, bog 0  

41 Improved grassland 0.085 Vegetation 

42 Semi-natural grassland 0.095 No post to place camera 

43 Mountain, heath, bog 0.033 No post to place camera 

44 Mountain, heath, bog 0  

45 Coniferous woodland 0  

46 Improved grassland 0.049 Camera safety 

47 Improved grassland 0  

48 Broadleaf Woodland 0  

49 Arable 0  

50 Arable 0.062 Land access 

51 Arable 0.443 Vegetation 

52 Arable 0.191 Vegetation 

53 Semi-natural grassland 0.689 Vegetation 

54 Semi-natural grassland 0.502 Land access 

55 Semi-natural grassland 0  

56 Semi-natural grassland 0.154 No post to place camera 

57 Improved grassland 0.409 Livestock 

58 Improved grassland 0.316 Vegetation 

59 Improved grassland 1.173 Land access 

60 Improved grassland 0.218 Vegetation 

61 Arable 0  

62 Built up areas and gardens 0.058 Building 

63 Arable 0.219 Camera safety 

64 Improved grassland 0  

65 Arable 0.242 Land access 

66 Semi-natural grassland 0.165 No post to place camera 

67 Semi-natural grassland 0.069 Vegetation 

68 Mountain, heath, bog 0  

69 Improved grassland 0.378 Land access 

70 Improved grassland 0.074 No post to place camera 

71 Improved grassland 0.124 Vegetation 

72 Improved grassland 0.373 Vegetation 

73 Improved grassland 0  

74 Arable 0.069 No post to place camera 

75 Arable 0.610 Land access 

76 Built up areas and gardens 0.060 Road 

77 Mountain, heath, bog 0  

78 Mountain, heath, bog 0  
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79 Mountain, heath, bog 0  

80 Improved grassland 0.131 No post to place camera 

81 Improved grassland 0  

82 Improved grassland 0.063 No post to place camera 

83 Improved grassland 0  

84 Built up areas and gardens 0.065 Camera safety 

85 Arable 0.463 Building 

86 Arable 0.630 Camera safety 

87 Arable 0  

88 Improved grassland 0.585 Land access 

89 Built up areas and gardens 0  

90 Built up areas and gardens 0.179 Land access 

91 Arable 0  

92 Built up areas and gardens 0.127 Road 

93 Built up areas and gardens 0  

94 Arable 0  

95 Arable 0  

96 Improved grassland 0.087 No post to place camera 

97 Arable 0  

98 Broadleaf Woodland 0.245 Camera safety 

99 Arable 0  

100 Built up areas and gardens 0  

101 Built up areas and gardens 0  

102 Improved grassland 0.282 Camera safety 

103 Improved grassland 0.324 Land access 

104 Improved grassland 0.074 No post to place camera 

105 Built up areas and gardens 0.380 Building 

106 Arable 0  

107 Arable 0.217 Land access 

108 Built up areas and gardens 0  

109 Built up areas and gardens 0  
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Table S2. Densities [95% CI] calculated across whole study area under different left-truncation scenarios 
for species where truncation decisions were questioned due to: data not being consistent with 
understanding of species (badger); poor model fit (hedgehog); or animals being attracted to cameras 
(roe deer). Densities calculated are for truncation distances at the start of the distance category with the 
most captures, and for one metre below (badger and hedgehog) or above (roe deer) to mitigate against 
problems mentioned. Animal silhouettes by Anthony Caravaggi and Claus Rebler, licensed under CC BY-
NC-SA 3.0. 
 

Species Density per km2 [95% CI] 
 

Left truncation = 0 m Left truncation = 1 m Left truncation = 2 m 

Badger (Meles meles)  1.14 
[0.50 – 2.00] 

1.32 
[0.84 – 4.22] 

Hedgehog  
(Erinaceus 
europaeus) 

 23.31 
[7.39 – 45.33] 

113.08 
[25.99 – 364.37] 

Roe deer 
(Capreolus 
capreolus) 

16.71 
[5.54 – 34.00] 

5.67 
[2.67 – 10.52] 

 
 

https://creativecommons.org/licenses/by-nc-sa/3.0/
https://creativecommons.org/licenses/by-nc-sa/3.0/
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Table S3. Density estimates [95% CI] and other species/habitat specific information for roe deer using daytime capture data only. For each habitat: number of sites at which 
the species was captured; total number of photos (i.e., observations); proportion of time available for detection (calculated using method in Rowcliffe et al. 2014, adjusting for 
daytime only by setting bounds to be the sunrise/sunset times of the middle day of the survey period); effective detection angle (calculated using method in Hofmeester et al. 
2017); left and right truncation; model selected (according to selection criteria in Howe et al., 2019), HN = unadjusted half-normal; density per km2 with 95% CI estimated from 
bootstrap; estimated coefficient of variation from bootstrap; density estimate range published in Croft et al. (2017).  
 

Species 
Habitat  

(total sites) 
Sites 

captured 

Number 
of 

photos 

Availability 
for 

detection 

Effective 
detection 

angle 

Truncation 
left, right 

(m) 

Model 
selected 

Density per 
km2 [95% CI] 

C.V. 

Density per 
km2 estimate 

range 
predicted by 
Croft et al., 

2017 

Roe deer 
(Capreolus 
capreolus) 

Whole 
study area 

(109) 
24 2323 0.68 0.81 0, 10 HN 

4.45 
[2.29 – 7.00] 

0.57 3.22 – 25.70 

Arable 
(29) 

5 1196 0.59 0.73 0, 10 HN 
5.25 

[0.76 – 12.98] 
0.61 3.25 – 25.80 

Improved 
grassland 

(38) 
13 707 0.63 0.81 0, 10 HN 

2.83 
[1.21 – 5.03] 

0.36 3.12 – 24.80 
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Table S4. Densities [95% CI] calculated across whole study area including estimates presented in 
paper (standard) and lower and upper estimates which incorporate variation from effective 
detection angle and snapshot moment calculations. For the lower and upper estimates, we used 
the effective detection angle + standard error and the snapshot moment – standard error; for the 
upper estimate,  we used the effective detection angle - standard error and the snapshot moment 
+ standard error. These adjusted measures of effort were then used in the models to calculate 
density following the same procedure outlined in the paper. Animal silhouettes by Anthony 
Caravaggi and Claus Rebler, licensed under CC BY-NC-SA 3.0. 

 

Species Density per km2 [95% CI] 
 

Standard Lower Upper 

Roe deer 
(Capreolus 
capreolus) 

5.67 
[2.67 – 10.52] 

5.47 
[2.00 – 7.95] 

5.89 
[2.01 – 8.97] 

Badger 
(Meles 
meles) 

1.32 
[0.84 – 4.22] 

1.25 
[0.76 – 3.75] 

1.39 
[0.84 – 4.40] 

Red fox  
(Vulpes 
vulpes) 

5.97 
[1.37 – 21.15] 

5.75 
[1.36 – 26.38] 

6.45 
[1.56 – 31.16] 

Brown hare 
(Lepus 
europaeus) 

5.97 
[2.86 – 12.89] 

5.81 
[2.81 – 12.55] 

6.12 
[2.99 – 13.83] 

Rabbit 
(Oryctolagus 
cuniculus) 

101.83 
[51.63 – 186.65] 

100.28 
[50.12 – 155.53] 

103.41 
[58.43 – 216.55] 

Hedgehog (Erinaceus 
europaeus) 

23.31 
[7.39 – 45.33] 

22.54 
[7.11 – 44.61] 

24.11 
[7.56 – 48.34] 

Grey squirrel (Sciurus 
carolinensis) 

7.64 
[3.73 – 13.03] 

7.44 
[4.06 – 12.88] 

7.85 
[4.21 – 13.91] 

Stoat  
(Mustela 
erminea) 

0.22 
[0.07 – 0.44] 

0.20 
[0.07 – 0.42] 

0.24 
[0.08 – 0.51] 

https://creativecommons.org/licenses/by-nc-sa/3.0/
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Table S5. Habitat-specific density estimates [95% CI] and other species/habitat specific information. For each species in each habitat: number of sites at which the species was 
captured; total number of photos (i.e., observations); proportion of time available for detection; effective detection angle; left and right truncation; model selected, HR = 
unadjusted hazard-rate; density per km2 with 95% CI estimated from bootstrap; estimated coefficient of variation from bootstrap; density estimate range published in Croft et 
al. (2017). *All models failed to fit in calculation of effective detection angle, so effective detection angle from whole survey used. Animal silhouettes by Anthony Caravaggi 
and Claus Rebler, licensed under CC BY-NC-SA 3.0. 
 

Species 
Habitat  

(total sites) 
Sites 

captured 
Number 

of photos 

Availabilit
y for 

detection 

Effective 
detection 

angle 

Truncatio
n left, 

right (m) 

Model 
selected 

Density 
per km2 
[95% CI] 

C.V. 

Density per km2 
estimate range 

predicted by Croft et 
al., 2017 

Roe deer 
(Capreolus 
capreolus) 

Arable 
(29) 

11 1371 0.31 0.80 1, 10 HN 
12.42 

[3.89 – 
32.28] 

0.53 3.25 – 25.80 

Improved 
grassland 

(38) 
14 879 0.37 0.73 1, 10 HR 

4.34 
[3.33 – 
49.99] 

1.32 3.12 – 24.80 

Badger 
(Meles 
meles) 

Arable 
(29) 

6 184 0.30 0.53 2, 10 HR 
2.01 

[0.78 – 
5.82] 

71031.86 0.43 – 5.13 

Improved 
grassland 

(38) 
5 253 0.29 0.61 2, 10 HR 

1.81 
[0.17 – 
2.87] 

1.20 0.42 – 4.99 

Red fox 
Arable 

(29) 
23 1045 0.36 0.56 2, 10 HR 

19.26 
[3.60 – 
28.97] 

0.50 0.35 – 1.89 

https://creativecommons.org/licenses/by-nc-sa/3.0/
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(Vulpes 
vulpes) 

Built up areas 
and gardens 

(16) 
6 83 0.33 0.74 2, 10 HR 

2.55 
[0.40 – 
13.19] 

0.89 0.30 – 2.22 

Improved 
grassland 

(38) 
16 269 0.47 0.65 2, 10 HR 

0.49 
[0.35 – 
1.83] 

0.55 0.39 – 2.18 

Brown hare 
(Lepus 
europaeus) 

Arable 
(29) 

12 1947 0.52 0.49 2, 10 HR 
10.94 

[2.88 – 
34.83] 

0.67 0.67 – 16.47 

Improved 
grassland 

(38) 
13 1618 0.49 0.67 1, 10 HR 

7.40 
[2.60 – 
14.06] 

0.41 0.62 – 16.14 

Rabbit 
(Oryctolagus 
cuniculus) 

Arable 
(29) 

15 9290 0.33 0.48 2, 10 HR 
212.67 

[43.56 – 
455.01] 

0.56 9.70 – 1203.00 

Built up areas 
and gardens 

(16) 
4 1439 0.23 0.61 2, 10 HR 

112.19 
[7.74 – 
334.96] 

0.85 8.80 – 1260.00 

Improved 
grassland 

(38) 
31 13768 0.49 0.59 2, 10 HR 

99.39 
[45.60 – 
164.71] 

0.32 9.50 – 1174.00 
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Mountain, 
heath, bog 

(13) 
7 1020 0.35 0.47 2, 10 HR 

26.37 
[8.92 – 
51.75] 

0.39 8.70 – 1318.00 

Hedgehog 
(Erinaceus 
europaeus) 

Arable 
(29) 

7 222 0.29 0.39 1, 10 HR 
2.86 

[0.76 – 
7.67] 

0.56 4.25 – 51.66 

Improved 
grassland 

(38) 
10 598 0.35 0.60* 1, 10 HR 

6.59 
[1.40 – 
13.03] 

0.50 3.35 – 54.73 

Grey squirrel 
(Sciurus 
carolinensis) 

 

Arable 
(29) 

5 1400 0.37 0.53 1, 10 HR 
8.76 

[0.72 – 
19.79] 

0.64 8.22 – 77.57 

Built up areas 
and gardens 

(16) 
4 214 0.41 0.59* 1, 10 HR 

3.88 
[0.79 – 
8.76] 

0.56 7.31 – 67.81 

Improved 
grassland 

(38) 
13 1990 0.31 0.68 1, 10 HR 

10.83 
[3.51 – 
26.37] 

0.55 8.27 – 77.97 

Stoat 
(Mustela 
erminea) 
 

Improved 
grassland 

(38) 
10 115 0.49 0.55 0, 10 HR 

0.55 
[0.15 – 
2.74] 

21.70 -- 
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Chapter 3: Spatial bias in a citizen science camera trap dataset and its impact 
on ecological inferences 

 

 

 

  

Red fox (Vulpes vulpes) | Seaham Hall Farm, County Durham 
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3.1 Abstract 

 

Citizen science projects can help with ecological monitoring at the broad spatial and temporal 

scales needed to understand ecosystem dynamics. In particular, opportunistic schemes which 

invite participants to submit species records without any standardised protocols can rapidly 

generate large species occurrence databases. However, choice over where, when and how 

participants submit data can lead to issues with data quality and bias. In this study, we explore 

bias in a dataset from a camera trap citizen science project, MammalWeb. By comparing 

subsets of the MammalWeb dataset to data generated from a systematic survey (described 

in Chapter 2), we look at differences in habitats surveyed and species assemblages captured 

as well as region-wide and habitat-specific measures of occupancy and activity. We found 

differences in habitats surveyed, with woodland over-represented in the MammalWeb 

dataset, and farmland and heath habitats either under-represented or missing completely. 

This habitat bias influenced species assemblages captured. Overall, the systematic dataset 

captured more species, owing to the presence of gamebird species; however, the 

MammalWeb datasets captured more mammal species by sampling spatially rare riverine 

habitats and capturing riparian specialists, including otter (Lutra lutra) and American mink 

(Neovision vison). Habitat bias distorted estimates of occupancy and activity at a regional 

level. Differences in occupancy between the systematic and MammalWeb datasets was most 

apparent for woodland-specialist species such as grey squirrel and roe deer. At a habitat level, 

occupancy was similar between the systematic and MammalWeb datasets for all species in 

improved grassland; however, occupancy differed for some species in broadleaf woodland. 

There were differences in activity between the datasets for all species. Moving forward, we 

conclude it would be valuable for the MammalWeb project to expand spatial coverage, by 

actively encouraging citizen scientists to survey habitats currently under-represented. This 

could be achieved by implementing a site adoption scheme and working with local groups of 

farmers or gamekeepers. By doing this, MammalWeb can have more confidence in the 

ecological inferences derived from the project’s dataset. 
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3.2 Introduction 

 

With global ecosystems undergoing rapid biodiversity loss, large-scale wildlife monitoring to 

help understand population trends is vitally important (Butchart et al., 2010; Fischer et al., 

2010; Steenweg et al., 2017). Citizen science has become a powerful way of collecting vast 

quantities of biodiversity data at spatial and temporal scales that would otherwise be 

challenging (Dickinson et al., 2012). The applications of data collected by citizen scientists are 

varied, but they include monitoring population trends (Horns et al., 2018), creating species 

distribution maps (Sumner et al., 2019; Tiago et al., 2017) and detecting invasive species (Crall 

et al., 2015; Gallo and Waitt, 2011; Preuss et al., 2014).  

 

Ecological citizen science schemes can range from standardised approaches to opportunistic 

submission of records. Standardised schemes typically concentrate on maximising data 

quality and may include volunteer training, following standardised data collection protocols, 

or predetermining sampling locations. Examples of such schemes include the UK Breeding 

Bird Survey organised by the British Trust for Ornithology (https://www.bto.org/our-

science/projects/breeding-bird-survey) and the U.K. Butterfly Monitoring Scheme 

(https://ukbms.org/), which both involve volunteers repeatedly surveying a site using a 

standardised protocol. In contrast, opportunistic schemes give participants more freedom, 

with either no or limited prerequisites for when, where, and how they collect data. 

Opportunistic schemes include iNaturalist (www.inaturalist.org), eBird (www.ebird.org), and 

BeeWatch (https://beewatch.abdn.ac.uk/) where species records are submitted through 

digital platforms, allowing large datasets to be assembled quickly (Ball-Damerow et al., 2019). 

 

Whilst opportunistic citizen science projects have the potential to generate large species 

occurrence databases, many academics have highlighted the difficulty of maintaining data 

quality and dealing with biases (Ball-Damerow et al., 2019; Feeley, 2015; Kosmala et al., 2016; 

Maldonado et al., 2015). Opportunistic citizen science datasets can be spatially and 

taxonomically biased by factors such as site accessibility (Geldmann et al., 2016; Millar et al., 

2019; Petersen et al., 2021) and exclusion of common species over rare or charismatic ones 

(Ball-Damerow et al., 2015; Callaghan et al., 2021). Although statistical approaches to dealing 

with biases have been suggested (Mair and Ruete, 2016; Rapacciuolo et al., 2017), many 

https://www.bto.org/our-science/projects/breeding-bird-survey
https://www.bto.org/our-science/projects/breeding-bird-survey
https://ukbms.org/
http://www.inaturalist.org/
http://www.ebird.org/
https://beewatch.abdn.ac.uk/
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studies using opportunistic datasets do not adequately address the issues of data quality and 

bias (Ball-Damerow et al., 2019). 

 

Some of the issues arising from opportunistic citizen science can be mitigated when recording 

equipment such as camera traps are used. As camera traps record all animals that pass 

through the detection zone during the period for which the camera is active, bias in which 

species are recorded is reduced. However, biases in which habitats are surveyed may be 

retained, which could lead to differences in species assemblages captured and have impacts 

on key ecological outputs such as occupancy and activity. Although national networks of 

camera traps could help with monitoring many mammal species, a taxon typically under-

recorded in many countries (Mason et al., 2022; Steenweg et al., 2017), identifying biases will 

be fundamental in order to have confidence in interpreting the data produced.  

 

In this chapter, we explore biases within the MammalWeb citizen science dataset. 

MammalWeb is a citizen science project first established in 2015 as a collaboration between 

Durham University and the Durham Wildlife Trust (www.MammalWeb.org; Hsing et al., 

2022). The project invites citizen scientists to deploy either their own, or borrowed, camera 

traps at a site of their choosing and to upload footage captured to an online digital platform. 

MammalWeb could help with long-term monitoring of Britain’s wildlife, particularly by 

providing ecological insights on measures such as occupancy and activity schedules of key 

species (Hsing et al., 2022). However, as highlighted previously, before any citizen science 

project can start to draw inferences from data collected it is important to investigate biases 

present in those data (Kosmala et al., 2016; Petersen et al., 2021; Tiago et al., 2017). 

 

To investigate possible biases in the MammalWeb dataset and their impact on ecological 

outputs we compare subsets of MammalWeb data to data derived from a systematic camera 

trapping survey carried out in North-East England, UK (as described in Chapter 2) (Mason et 

al., 2022). We begin by comparing habitats surveyed, species captured, and trapping rates for 

commonly captured species. We then use the datasets to calculate occupancy and activity 

schedules for a set of focal mammal species, examining differences in measures across 

datasets. Finally, we determine whether habitat biases can be controlled for by breaking 

http://www.mammalweb.org/
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down analysis into habitat categories, estimating occupancy and activity for a sub-set of 

species in two common habitats: improved grassland and woodland. 

 

 

3.3 Methods 

 

3.3.1 Study area 
 

Data used in this study were from camera traps deployed within a 2,725 km2 study area of 

North-East England, covering County Durham, plus areas of Gateshead, Sunderland, and 

Darlington. This study area is the catchment area of the local wildlife trust (Durham Wildlife 

Trust; https://www.durhamwt.com/), an organisation established to preserve wildlife and 

promote conservation throughout the region. The region’s landscape is varied, with large 

areas of moorland in the west, and a variety of habitats in the east, including farmland, 

woodland, forest, urban and suburban habitats.  

 

3.3.2 Data from MammalWeb 
 

We use data submitted to MammalWeb by citizen scientists who have deployed camera 

traps. When uploading footage to MammalWeb, contributors also supply information on 

location, camera trap model, height above ground, surrounding habitat type (from options 

listed in Table S1), and start and end times of deployment. At the point of upload, camera 

trap images are sequenced by grouping images taken <10 seconds apart. Uploaded footage 

can be classified on the platform by contributors looking through the image sequences and 

selecting the species present from a list. Although MammalWeb hosts a variety of projects, 

to which contributors can upload data or supply classifications 

(https://www.mammalweb.org/en/project-list), we focus on data from just the main 

MammalWeb Great Britain project, which has been available since the project’s inception. 

For further information about the MammalWeb project and how it operates see Hsing et al., 

(2022). 

 

3.3.3 Data processing 
 

https://www.durhamwt.com/
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To compare camera trap data generated from a systematic grid to opportunistic data 

collected via MammalWeb, we compared three datasets: 

 

Systematic dataset – The first dataset was from camera traps deployed in a randomly-

generated systematic grid (Figure 1). Fifty Browning Strike Force BTC-5HDP cameras were 

rotated in a random order around 109 sites between June and October 2018, with the 

majority of cameras deployed for a minimum of 14 days. Further details of how the grid was 

set up and how cameras were placed at sites can be found in Chapter 2 / Mason et al. (2022).  

 

MammalWeb in-year dataset – The second dataset was a subset of data from the 

MammalWeb Great Britain project. First, we filtered data on MammalWeb to those photo 

sequences taken between the start and end times of the systematic survey (26th June 2018 – 

10th October 2018). Then, photo sequences were filtered to those taken within the 

geographical study area, including removing any sites where contributors had not supplied 

location information. Once we had the photo sequences (n = 4921), we generated consensus 

classifications from MammalWeb to find out, for each sequence, what the majority of 

MammalWeb participants thought was captured. We then checked each photo sequence 

against these classifications and amended 368 classifications (7%) which were incorrect. We 

also classified a small number of sequences (29) which had not yet been classified on 

MammalWeb. MammalWeb datasets were therefore a mixture of citizen science and 

professional classifications. As we were interested in spatial bias of sites where citizen 

scientists deployed cameras, rather than classification accuracy, this should not impact the 

interpretation of the results. 

 

MammalWeb multi-year dataset – For the third dataset we followed the same filtering 

process as for the MammalWeb in-year dataset; however, we also included data from 

between survey dates (26th June – 10th October) for the years 2016, 2017, 2019, 2020, and 

2021. This created a dataset of comparable size to the systematic dataset (Table S2). As with 

the MammalWeb in-year dataset, we generated consensus classifications for these photo 

sequences (n = 25,552); however, due to the large dataset we only checked classifications of 

medium-large wild mammals. We amended 551 incorrect mammal classifications (9%) and 

classified 600 sequences that had no classifications on MammalWeb. 
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As parts of our analysis required measures of lengths of deployment, for the MammalWeb 

datasets we also checked camera trap deployment and collection times submitted on 

MammalWeb for obvious errors. There were 22 deployments at 17 sites (out of a total of 

1,048 deployments at 120 sites) where either collection dates were before deployment dates, 

collection dates were set to the future, or photos uploaded were outside of deployment dates 

submitted. For these uploads we altered the deployment / collection times to be one minute 

before / after the first / last photo in that upload. 

 

3.3.4 Data analysis 
 

Analyses were conducted using R 4.1.2 (R Core Team, 2021). We compared the extent of 

monitoring within different habitats in the three datasets. We looked firstly at habitat 

classifications that participants can choose from on MammalWeb. There are 17 habitat 

classes to choose from on MammalWeb, each with a description to help participants choose 

the appropriate habitat type (Table S1). Participants are told on MammalWeb to choose the 

habitat immediately surrounding (within 10 m) where the camera trap is placed. For each 

dataset, we also used the Land Cover Map 2021 (LCM; 25 m aggregate habitat class; Marston 

et al., 2022) to assign a LCM habitat class to each site where a camera trap was positioned. 

We looked at the proportion of sites that were within each habitat type (both MammalWeb 

habitat classes and LCM habitat classes) to compare the three datasets. As the majority of 

sites (80%) in the MammalWeb datasets were within a 10km radius of Durham City Centre, 

we also compared the proportion of sites in each habitat type within this radius. 

 

We generated rarefaction curves and diversity and richness estimates for the systematic 

dataset and the MammalWeb in-year dataset using ‘iNEXT’ (Hsieh et al., 2020). We did not 

do these calculations for the MammalWeb multi-year dataset as not all classifications were 

verified and, consequently, we do not know the total number of species present in that 

dataset. Trapping rates were calculated for each site as the number of half-hour periods in 

which a species was detected divided by number of operational camera days. A half hour 

period was chosen as a common interval for discerning independent detections (Burton et 

al., 2015; Green et al., 2022; Rovero and Zimmermann, 2016). We compared trapping rates 
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between the three datasets for all mammal, bird and domestic species that yielded sufficient 

detections (>n = 50 sequences) in the systematic dataset. We also looked at trapping rates 

for a generic ‘livestock’ category that included all livestock species such as cattle, sheep, pigs, 

goats and horse. 

 

Further analysis was carried out on a set of medium-large focal mammal species which had 

sufficient detections (> n = 50 sequences) in all three datasets. These species were: badger 

(Meles meles); brown hare (Lepus europaeus); grey squirrel (Sciurus carolinensis); hedgehog 

(Erinaceus europaeus), rabbit (Oryctolagus cuniculus); red fox (Vulpes vulpes); and roe deer 

(Capreolus capreolus). For these species we calculated occupancy, detection probability, and 

activity schedules for all three datasets. For the four species captured the most across 

datasets (grey squirrel, rabbit, red fox, and roe deer) we also calculated these measures for 

the most common LCM habitat class in the systematic dataset, improved grassland, and the 

most common habitat class in the MammalWeb in-year / multi-year datasets, broadleaf 

woodland. We also calculated habitat-specific occupancy and activity for the most common 

habitat class on MammalWeb: woodland. For these habitat-specific measures we only 

compared data from the systematic and MammalWeb multi-year datasets due to the small 

sample size of the MammalWeb in-year dataset. 

 

To calculate occupancy and detection probability, daily detection histories were generated 

using ‘camtrapR’ (Niedballa et al., 2016) for each focal species from each dataset. Detection 

histories were then used to fit occupancy models using the package ‘unmarked’ (Fiske and 

Chandler, 2011). Outputs were back-transformed to give estimates of the proportion of sites 

occupied by a species and the probability of its detection. Even though the MammalWeb 

multi-year dataset contained data from multiple years, we used single-season occupancy 

models for all datasets as we were interested in differences between datasets rather than 

differences between years. Similarly, because our aim was the comparison between different 

datasets, rather than to identify the factors driving occupancy of each species, we did not 

include covariates in our occupancy models. For each focal species, activity patterns from 

each dataset were compared by fitting a circular kernel model to radian time data, using the 

R package ‘activity’ (Rowcliffe, 2021). For this, in line with recent recommendations for this 

methodology, we used radian time data from all sequences rather than filtering to only 
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independent detections (Peral et al., 2022). A Wald test was used to assess differences 

between the activity schedules produced by the different datasets for each species.  

 

 

3.4 Results 
 

The three datasets ranged in size from 32 sites (MammalWeb in-year dataset) to 120 sites 

(MammalWeb multi-year dataset; Table S2). The systematic dataset had the most photo 

sequences; however, a large proportion of these did not contain animals, resulting in a similar 

number of sequences (16044 vs 17115) containing animals for systematic and MammalWeb 

multi-year datasets (Table S2). The 109 sites from the systematic dataset were spread out in 

a grid of 5 km2 spacing across the study area (Figure 1). Three sites on the western edge of 

the study area could not be surveyed due either to being in a Ministry of Defence area (1 site), 

or where landowners did not give permission to access land (2 sites). For the MammalWeb 

datasets, sites were generally clustered around Durham city centre, where the project was 

first initiated in 2015 and where a lot of contributors are based. The MammalWeb multi-year 

dataset, was slightly more spread out geographically, but still clustered around Durham. 

There was a lack of sites in the western and southern regions of the study area in both of the 

MammalWeb datasets (Figure 1). 

 

More species were captured in the systematic dataset than in the MammalWeb in-year 

dataset, with the additional species in the systematic dataset mainly game birds and farmland 

birds, including black grouse, curlew, and red-legged partridge (Table 1; Table S3). There 

were, however, more medium-large mammal species captured in the MammalWeb datasets, 

due to American mink and otter being captured in these datasets, but not in the systematic 

dataset (Table S3). Shannon and Simpson diversity indices (both observed and estimated) 

were higher for the systematic dataset than the MammalWeb in-year dataset (Table 1). 

Rarefaction curves show that species diversity saturated more rapidly in the MammalWeb in-

year dataset than in the systematic dataset, with the curve flattening for the MammalWeb 

in-year dataset before the maximum number of camera trap days, suggesting that all species 

had been captured at these cameras (Figure 2). For the systematic dataset, as the curve had 

not flattened by the maximum number of camera traps days, it is likely that not all species 
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were captured and, therefore, estimated species diversity indices are higher than observed 

indices (Figure 2; Table 1).  

 

 

 

  

Figure 1. Distribution of sites within our geographic study area of County Durham, Gateshead and 
Darlington. Sites of camera trap locations from three datasets are shown: a systematic camera trap 
survey that took place June – October 2018 (the systematic dataset), camera trap sites on 
MammalWeb for the same survey period in 2018 (the MammalWeb in-year dataset), and camera trap 
sites on MammalWeb for the same summer survey dates but over multiple years (the MammalWeb 
multi-year dataset). Background map: © OpenStreetMap contributors licensed under CC BY-SA 2.0. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
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Table 1. Observed and estimated bird and mammal species diversity indices for two camera trap 
datasets. Indices shown include the Shannon diversity index which puts more weighting on species 
richness, and the Simpson reciprocal index which puts more weighting on relative abundances. 
 

 
Systematic dataset MammalWeb in-year 

dataset 

Species richness observed 51 44 

Species richness estimator (SE) 63.09 
(15.02) 

44.00 
(1.45) 

Shannon diversity observed 19.70 15.90 

Shannon diversity estimator (SE) 19.92 
(0.33) 

15.96 
(0.22) 

Simpson diversity observed 13.96 9.89 

Simpson diversity estimator (SE) 14.02 
(0.32) 

9.90 
(0.13) 

 

 

For the MammalWeb datasets, habitat information was supplied for all sites in the 

MammalWeb in-year dataset and for 118 of 120 sites in the MammalWeb multi-year dataset. 

The most common habitat type for the MammalWeb datasets was woodland which made up 

~50% of sites for the MammalWeb datasets but only 17% of sites in the systematic dataset 

(Figure 3A). Forest, scrubland, and riverbank were also over-represented in the MammalWeb 

datasets compared to the systematic dataset, whereas farmland and heath were under-

represented (Figure 3A). In the systematic dataset, the proportion of sites in each LCM habitat 

class was the same as the overall habitat coverage across the whole study area for all habitats 

except broadleaf woodland where the proportion was slightly higher than expected (Figure 

3B). This is likely due to small displacements from original random points for the systematic 

dataset, which were necessary to place cameras on trees or away from livestock; these 

displacements are likely to have favoured small patches of broadleaf woodland. As with the 
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relative proportions of MammalWeb habitat classes, the MammalWeb datasets show an 

over-representation of broadleaf woodland and under-representation of arable and 

mountain, heath, and bog habitats (Figure 3). There is also an under-representation of 

improved grassland (high productivity grassland) in the MammalWeb datasets compared to 

the systematic dataset (Figure 3B).   

 

When comparing sites within a 10km radius of Durham City Centre, the proportion of sites in 

each LCM habitat class was the same as overall habitat coverage in this area. This suggests 

that even though there were only 13 sites within this radius for the systematic dataset, it was 

a good representation of the landscape of the area as a whole. Similar to the full dataset, 

forest, scrubland, and riverbank were over-represented, and farmland under-represented, in 

the MammalWeb datasets compared to the systematic dataset (Figure S1). When looking at 

the MammalWeb habitat classes there was no difference in the proportion of sites in 

woodland between the databases. However, when looking at the LCM broadleaf woodland 

class, there were more sites in this habitat class for the MammalWeb datasets than in the 

systematic dataset (Figure S1). There was also a larger proportion of sites in built up areas 

and gardens in the systematic dataset than in the MammalWeb datasets (Figure S1). 
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Figure 2. Rarefaction curve of bird and mammal species diversity for two camera trap 
datasets. Sampling units represent camera trap days (number of days a camera trap was 
active). Shaded areas of each curve represent the 95% confidence interval.  
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Figure 3. Proportion of sites in each camera trap dataset for each of the MammalWeb habitat classes (A) 
and the Land Cover Map 2021 (LCM) habitat classes (B; Marston et al., 2022). B also shows overall coverage 
within the study area for each LCM habitat class. Error bars show ± standard error. 
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There were some differences between datasets in trapping rates for mammals, most notably 

for brown hare; however, for most species these differences were not significant (Figure 4A). 

This is likely due to the large variation in trapping rates between sites within datasets, leading 

to large over-lapping confidence intervals (Figure 4A). As for mammals, there was large 

variation in bird trapping rates within datasets but, nonetheless, trapping rates were 

generally higher for all birds in the systematic dataset than in the MammalWeb datasets; this 

difference was statistically significant for house sparrow and jackdaw (Figure 4B). Two 

species, black grouse and red grouse, were amongst the most commonly captured birds in 

the systematic dataset but were not captured in either of the MammalWeb datasets. The 

trapping rate for livestock species was higher in the systematic dataset than the MammalWeb 

datasets, particularly the MammalWeb multi-year dataset (Figure 4C), but there was little 

difference in trapping rates for domestic cat or dog (Figure 4D). 

 

Although detection probabilities differed between datasets for all species, occupancy was 

similar for three species (brown hare, hedgehog and rabbit) across the datasets (Figure 5). 

The most notable differences in occupancy were for woodland specialist species - grey 

squirrel and roe deer, as well as red fox, where occupancy was lower for the systematic 

dataset than for the MammalWeb datasets (Figure 5A). There were no significant differences 

in occupancy scores for any species between the MammalWeb in-year dataset and the 

MammalWeb multi-year dataset (see overlapping standard errors of estimates from in-year 

and multi-year monitoring in Fig. 5A, for each species), suggesting that occupancy in 2018 was 

broadly representative of occupancy over 2016-2021. 

 

There were no differences between the systematic dataset and the MammalWeb multi-year 

dataset in occupancy in improved grassland (LCM habitat class) for the four species studied 

(Figure 6A). There were, however, differences in broadleaf woodland (LCM habitat class), with 

the largest differences being for grey squirrel and rabbit (Figure 6B), where occupancy was 

greater in the systematic dataset. When looking at occupancy for sites in the woodland 

habitat class on MammalWeb, these differences were smaller, with only rabbit appearing to 

be significantly different (Figure 6C). 
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Figure 4. Trapping rates per mammal (A), bird (B), livestock (C) and domestic species (D) 
for each camera trap where the species was detected. Trapping rate was calculated for 
each site as number of half-hour periods in which a species was detected divided by 
number of operational camera days. Plots show median and inter-quartile range. 
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Figure 5. Occupancy (A) and detection probability (B) for each focal species in each 
dataset. Error bars show ± standard error. 
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Figure 6. Occupancy in three habitat classes for four mammal species. Improved grassland  and 
broadleaf woodland are habitat classes for the Land Cover Map 2021 (Marston et al., 2022) and 
woodland is a habitat class on MammalWeb representing the 10 m surrounding the camera trap 
(according to person deploying the camera). Error bars show ± standard error. 
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All species showed differences in activity schedules between the systematic dataset and at 

least one of the MammalWeb datasets (Figure 7; Table S4). There were also differences 

between the MammalWeb in-year dataset and the MammalWeb multi-year dataset for some 

species such as badger and red fox (Table S4). When looking at activity schedules for the three 

different habitat classes, there were differences across the datasets for at least one species 

in each of the habitat classes (Table S5). 

 

 

 

 

3.5 Discussion  

 

We looked at differences between data from camera traps set up in a systematic grid and 

data from camera traps deployed opportunistically by citizen scientists participating in the 

project MammalWeb. We assessed the habitats surveyed and trapping rates, occupancy and 

activity schedules of species captured. We found large differences in habitats surveyed, which 

have implications for ecological outputs at a regional scale. There were also differences in 

Figure 7. Activity schedules with 95% confidence limits for each of the 7 focal species based on radian 
time data from each dataset.  
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occupancy and activity schedules for some species at a habitat level. By studying these 

differences, citizen science projects such as MammalWeb can have more confidence in data 

utilisation, going forward, and can also identify how biases might be addressed in the future. 

Here, we discuss our findings in relation to: a) the extent of spatial biases in the MammalWeb 

dataset; b) implications of bias for ecological measures at a regional and habitat level; and c) 

potential approaches to bias mitigation in the future. 

 

3.5.1 Spatial bias and species captured 
 

The issue of spatial biases in citizen science datasets has been highlighted by many academics 

(Boakes et al., 2016; Callaghan et al., 2019; Johnston et al., 2022; Millar et al., 2019; Petersen 

et al., 2021). At broad spatial resolutions, these biases tend to be driven by two main factors: 

accessibility (e.g., surveying areas easily accessible by road or close to where the participant 

lives) and natural interest (e.g., surveying protected areas or areas with high species diversity) 

(Boakes et al., 2016; Geldmann et al., 2016; Millar et al., 2019; Tiago et al., 2017). In our study, 

these factors likely contributed to the lack of sites surveyed by MammalWeb participants in 

the more remote farmland and moorland regions to the west of the survey area (Figure 1). 

Specific to camera trapping citizen science projects, participants must also consider security 

of camera traps and finding somewhere suitable to attach cameras (e.g., a tree trunk). This is 

also likely to have contributed to why woodland was largely over-represented (relative to its 

presence in the landscape) as a surveyed habitat in the MammalWeb datasets (Figure 2).  

 

In our study, 80% of MammalWeb sites were clustered within a 10km radius of Durham City 

Centre. Whilst the factors that likely drove this broadscale-level of bias are considered above, 

we also considered whether bias was present within this smaller radius where the majority 

of MammalWeb cameras were placed. When we focussed habitat comparisons for sites 

within a 10km radius of Durham, the patterns of habitat bias were broadly the same as for 

the whole survey area, with forest, scrubland, and riverbank over-represented and farmland 

under-represented. Comparisons of sites in woodland habitat were more complex, with no 

difference in the proportion of sites in the MammalWeb woodland class, but a large 

difference for the LCM broadleaf woodland class. As mentioned previously, despite our best 

efforts to place cameras at pre-assigned co-ordinates, small displacements did occur to place 
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cameras on trees or in a more secure position. This problem was exacerbated around the city 

centre, where suitable places to place a camera were limited, such that cameras were often 

placed in very small patches of woodland. Some of these patches of woodland in the city were 

likely so small that they would be classified as woodland on a 10m scale (for MammalWeb 

habitat classes) but not at a 25m scale (for LCM habitat classes); this helps to explain the 

difference when comparing proportions of sites in MammalWeb vs LCM woodland habitat 

classes. Despite Durham being a city with a large river running through it, there were still no 

sites in the systematic dataset that fell on riverbank (and LCM freshwater habitat only 

accounted for 0.39% of landscape coverage within the 10km radius), whereas ~10% of 

MammalWeb sites in this area were classified as riverbank habitat. Therefore, it seems that 

across both the whole survey area, and the area where the majority of participants place 

cameras, both woodland and river habitats are well-represented within the MammalWeb 

database and that effort should be made to improve coverage of other habitats such as 

farmland and moorland. 

 

Inevitably, biases in habitats surveyed influence the species assemblages captured. Livestock 

was captured more than any wild animal in the systematic dataset, resulting in trapping rates 

for livestock being higher than in MammalWeb datasets (Figure 4). Whilst livestock may not 

be a target species for wildlife monitoring, given the increases in agricultural land cover to 

meet demands of global population increase (Wirsenius et al., 2010), and the potential effects 

of livestock species on wildlife (Gortazar et al., 2015), monitoring livestock species could be 

valuable. However, given the under-representation of livestock in the MammalWeb 

database, it would be inappropriate to assume that citizen-led camera trapping, with 

opportunistic placement of sites, would be an appropriate mechanism for monitoring 

livestock occurrence or relative abundance. 

 

Cameras placed in a random systematic grid captured more species than cameras deployed 

by citizen scientists. This was due to these cameras capturing more game birds and farmland 

birds which, given the over-representation of woodland habitat surveyed, is unsurprising. 

Monitoring birds is seldom a strong focus of camera trapping, so this might not be especially 

problematic. In fact, given that the focus of most camera trapping is mammals, it is notable 

that the MammalWeb datasets captured more mammal species, owing to cameras deployed 
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next to rivers which captured American mink and Eurasian otter. In the systematic survey, no 

camera sites fell on rivers, whereas in the MammalWeb datasets ~10% of sites were in 

riverbank habitats, consistent with previous studies that found presence of water to be a 

driving factor for where citizen scientists choose to survey and collect records (Boakes et al., 

2016; Tiago et al., 2017). Just as systematic temporal surveys often miss rare events (Rose, 

2000), systematic spatial sampling might well overlook rarer habitats altogether. In our study 

area, a systematic grid such as we used would not be suitable for surveying riverine species, 

but more targeted data from camera traps deployed by citizen scientists could help with 

monitoring efforts for these species. 

 

3.5.2 Implications for ecological inferences 
 

At a regional level, occupancy and activity schedules differed between datasets for many 

species. For occupancy, these differences were particularly evident for woodland specialist 

species such as grey squirrel and roe deer, for which occupancy was higher in the 

MammalWeb datasets (Figure 5). For activity schedules, there were differences between the 

systematic dataset and at least one of the MammalWeb datasets for all species. Given that 

we know that occupancy and activity are likely to differ for any given species, depending on 

habitat (Łopucki and Kiersztyn, 2020; Tobler et al., 2015), it is reasonable to assume that the 

habitat biases in the MammalWeb database are likely, at least in part, to be influencing the 

differences seen in ecological measures at a regional level. To test this, we also looked at 

occupancy and activity measures within three different habitat classes (two LCM 25 m habitat 

classes, and one MammalWeb habitat class). 

 

At a habitat level, occupancy for all species was similar between the systematic dataset and 

the MammalWeb multi-year dataset for improved grassland; however, occupancy differed 

for some species in broadleaf woodland (Figure 6). When sites were grouped by MammalWeb 

habitat classes (which represented the habitat immediately surrounding the camera), 

differences in occupancy for woodland habitat were reduced or eliminated (Figure 6). For the 

first two habitat classes, we grouped sites according to aggregate habitat classes in the Land 

Cover Map 2022 at a 25 m scale (Marston et al., 2022). However, fine-scale (<25 m) habitat 

heterogeneity can also influence occupancy (Stirnemann et al., 2015). Our study took place 
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in a highly heterogeneous landscape, particularly around more residential areas like the City 

of Durham, where the majority of MammalWeb sites were based (Figure 1). Therefore, it 

could be that fine-scale variations in habitat influence occupancy measures in our study, 

hence the differences seen in occupancy in broadleaf woodland. Whilst these differences 

seem to be reduced by looking at habitat on the finest scale (using the MammalWeb habitat 

class which is the immediate 10 m around the camera), some differences, such as for rabbit, 

still remain. As the presence of habitat features such as logs and trails can result in large 

differences in capture rates (Kolowski et al., 2021; Kolowski and Forrester, 2017) and citizen 

scientists are probably more likely to place cameras on trails in order to increase capture 

rates, this could also explain some of the habitat-specific differences in occupancy in our 

study. 

 

Differences in habitat-specific activity schedules were seen for many species (Table S5). In 

comparison with other studies that used the same method (Lashley et al., 2018; Rowcliffe et 

al., 2014), our sample sizes at a habitat-level were small for estimating activity patterns. 

Therefore, overall activity measures are likely to be heavily influenced by individual sites 

where cameras were deployed. For example, 80% of hedgehog sequences in the 

MammalWeb multi-year dataset came from just two sites, meaning that hedgehog activity 

schedules will be highly influenced by the activity patterns of individual hedgehogs at those 

sites. Data from more sites should help overcome this problem, and once sample sizes are 

large enough, future research could subset the dataset to determine adequate sample sizes 

for calculating activity with citizen science data. 

 

In our study, we have shown that spatial bias in the MammalWeb dataset influences 

occupancy and activity scores, particularly at a regional level. This is in contrast to the findings 

of Kays et al. (2021) who determined that in the North Carolina’s Candid Critters project – a 

camera trapping citizen science project based in the USA – all habitats were surveyed 

sufficiently, with robust values of regional occupancy produced. However, although the 

majority of data from the Candid Critters project was opportunistic and came from citizen 

scientists, they did supplement data, with staff placing cameras in under-represented 

habitats, a necessary step for achieving adequate spatial coverage to calculate occupancy 

(Kays et al., 2021). Ultimately therefore, for the MammalWeb dataset, it is likely that camera 
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traps need to be deployed at more sites across different habitats before accurate occupancy 

and activity measures can be determined.  

 

3.5.3 Expanding spatial coverage 
 

Moving forward, it would be beneficial for the MammalWeb project to pro-actively 

encourage participants to deploy cameras in habitats currently under-represented in the 

database. This could be done by engaging with farmers and gamekeepers, specifically, to 

encourage them to deploy camera traps on their land. Like several other projects (e.g., Lasky 

et al., 2021), MammalWeb operates a small-scale camera trap loan scheme where individuals 

and organisations can borrow a camera trap, free of charge, to deploy and upload captured 

footage to MammalWeb (Hsing et al., 2022). Priority to this scheme could be given to farmers 

/ gamekeepers who could be recruited via social media campaigns, including specifically 

reaching out to regional groups such as the National Farmers Union North East 

(https://www.nfuonline.com/regions/north-east/). 

 

Another method to reduce habitat bias would be to offer citizen scientists the opportunity to 

take part in the project in a more structured (rather than opportunistic) way by assigning 

survey sites to participants. This is done in many citizen science projects (e.g., the British Trust 

for Ornithology Breeding Bird Survey: https://www.bto.org/our-science/projects/breeding-

bird-survey), including camera trapping projects (Kays et al., 2021), where sites are pre-

determined and put up for ‘adoption’. Assigning sites in this way has been shown to 

successfully increase spatial coverage (Kays et al., 2021; Lasky et al., 2021). Citizen scientists 

who take part in this way could be given additional training or protocols to follow, such as 

calibrating cameras for distance sampling, which would open up possibilities of collecting data 

for density estimation, as discussed in Chapter 2 (Mason et al., 2022). By following stricter 

protocols, such as not targeting placement of cameras on trails, this could also help to 

mitigate against the differences in trapping rates caused by fine-scale habitat variation, as 

discussed previously. 

 

A dual approach of offering participants the opportunity to contribute in either an 

opportunistic way (as exists now, by them choosing sites) or in a more standardised form by 
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assigning sites and following additional protocols would likely be beneficial for engaging with 

the different groups of citizen science participants. In common with findings from other 

citizen science projects (Boakes et al., 2016; Sauermann and Franzoni, 2015), MammalWeb 

participants typically fall into two groups: a small group of dedicated users who contribute 

large amounts of data regularly, and a larger group of users who contribute few records (Hsing 

et al., 2022). Whilst the latter group is more suited to contributing in the more opportunistic 

way, the former group could benefit from the deeper level of engagement that comes with 

the more standardised approach. Engaging with both of these groups of citizen scientists will 

be beneficial for expanding spatial coverage and for ensuring participants remain engaged 

with the project. 

 

Whilst the purpose of our study was to compare data from our systematic camera trap survey 

to citizen science data on MammalWeb, the data generated from the systematic survey could 

be used to complement MammalWeb data in the future. The benefits of combining 

professional and citizen science data have been highlighted by previous studies and would 

likely help produce more accurate occupancy and activity measures by reducing overall 

habitat bias (Galván et al., 2021; Lasky et al., 2021; Soroye et al., 2018).  

 

In conclusion, the data currently on MammalWeb are unsuitable for estimating occupancy 

and activity on a regional scale, due to the biases in habitats surveyed. It would be more 

appropriate to look at these measures at a habitat-level. However, more data in each habitat 

class in the MammalWeb dataset will increase confidence in parameter estimates. As 

described by Kays et al., (2021), implementing a “Plan, Encourage, Supplement” approach 

would be beneficial for expanding spatial coverage. This study has helped with the first 

planning stage of this approach, identifying key habitats that are currently under-represented 

in the data. Moving forward, expanding coverage could be achieved by: a) encouraging 

participants to deploy camera traps in under-represented habitats through assigning sites and 

working with farmers and gamekeepers; and b) supplementing citizen science data with 

professional data such as those collected in our systematic survey. By taking these steps to 

expand spatial coverage, citizen science datasets such as MammalWeb could be a valuable 

resource for long-term ecological monitoring. 
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3.6 Supplementary material 

 

 

Figure S1. Proportion of sites within 10km radius of Durham City Centre for each of the MammalWeb 
habitat classes (A) and the Land Cover Map 2021 (LCM) habitat classes (B; Marston et al., 2022). B also 
shows overall coverage within the study area for each LCM habitat class. Error bars show ± standard error. 
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Table S1. Habitat descriptions on MammalWeb. When uploading footage to MammalWeb, participants 
are invited to select from this list the habitat immediately surrounding their camera trap. 

 

 
Habitat descriptions on MammalWeb 

 

forest – high density forest more than 60% canopy cover 

woodland – low density forest less than 60% canopy cover 

scrubland – dominated by shrubs, i.e. small to medium woody plants less than 8 m high 

heath – a kind of scrubland characterised by open, low-growing woody plants less than 2 m high 

grassland – dominated by grasses 

marsh – a wetland dominated by herbaceous, i.e. non-woody plants 

bog – a wetland with few/no trees, some shrubs, with lots of peat accumulation 

swamp – a forested wetland 

rocky – lots of bare rocks with little vegetation 

coastal – right on the coast, beach 

riverbank – right on the riverbank 

farmland – pasture, etc. 

garden – like a backyard garden, probably right next to a residence 

park – recreational place 

residential – houses, apartments, etc. 

commercial – stores and offices 

industrial – factories and warehouses 
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Table S2. Summary statistics for each dataset. 
 

  
Systematic dataset 

 

 
MammalWeb in-

year dataset 

 
MammalWeb multi-

year dataset 
 

Total sites 109 32 120 

Total sequences 48644 4921 25552 

Sequences with animal captured 16044 3836 17115 

Total camera trap days 1785 1090 4741 
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Table S3. Number of sequences of each species in each dataset. 
 

Species 

Number of sequences  

Systematic dataset 
MammalWeb in-

year dataset 
MammalWeb multi-

year dataset 

American mink 0 13 24 

Badger 62 121 283 

Bank vole 0 0 111 

Black Grouse 92 0 0 

Black-headed Gull 0 0 1 

Blackbird (Eurasian) 591 62 1187 

Blue Tit (Eurasian) 6 0 4 

Brown (European) hare 584 10 51 

Brown rat 2 21 32 

Bullfinch (Eurasian) 2 4 17 

Buzzard (Common) 0 1 1 

Carrion crow 32 56 104 

Chaffinch 0 1 31 

Coal Tit 0 1 3 

Collared Dove (Eurasian) 39 3 6 

Common gull 2 0 0 

Common shrew 0 0 62 

Common vole 0 0 3 

Coot (Common) 0 1 2 

Curlew Sandpiper 5 0 0 

Dipper (White-throated) 0 0 5 

Domestic or feral Cat 1041 150 960 

Domestic or feral Dog 425 25 173 

Dunnock 68 0 42 

Edible dormouse 0 0 1 

Eurasian jay 12 0 2 

Field vole 0 0 4 

Goldfinch (European) 0 0 1 

Great Crested Grebe 0 0 1 

Great Spotted Woodpecker 0 6 11 

Great Tit 22 3 21 

Greenfinch (European) 0 0 4 

Grey Heron 0 17 69 

Grey Partridge 22 0 0 

Grey squirrel 520 1030 3046 

Grey Wagtail 0 0 12 

Harvest mouse 0 0 2 

Hedgehog (Western) 231 76 1970 

Hooded crow 0 0 1 

House mouse 0 0 3 

House sparrow 61 1 3 
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Human 756 62 264 

Jackdaw (Eurasian) 170 0 48 

Jay (Eurasian) 0 19 55 

Kestrel (Common) 1 0 0 

Kingfisher (Common) 0 0 1 

Lesser Spotted Woodpecker 0 2 2 

Livestock 4602 26 35 

Magpie (Eurasian) 229 18 174 

Mallard 1 3 20 

Mandarin Duck 0 0 11 

Meadow Pipit 4 0 0 

Merlin 0 0 1 

Mistle Thrush 2 0 6 

Moorhen (Common) 4 20 27 

Nothing 32540 1085 8437 

Nuthatch (European) 1 0 0 

Otter 0 14 22 

Peregrine Falcon 0 0 1 

Pheasant (common) 791 123 529 

Pied Wagtail 2 0 2 

Pygmy shrew 0 0 28 

Rabbit 3437 349 1359 

Red fox 213 293 902 

Red grouse (Willow Ptarmigan) 85 0 0 

Red-legged partridge 34 0 0 

Redwing 1 0 1 

Robin (European) 27 42 135 

Rock Dove/Feral Pigeon 0 0 5 

Roe deer 268 707 1991 

Rook 1 3 4 

Shrew sp. 0 0 75 

Small rodent 24 17 207 

Song Thrush 26 39 128 

Sparrowhawk (Eurasian) 0 0 4 

Starling (Common) 14 0 0 

Stoat 28 6 21 

Stock Dove 0 1 1 

Tawny Owl 1 2 6 

Tree Sparrow 1 0 0 

Vole (unknown species) 0 0 100 

Water shrew 0 0 1 

Weasel 1 0 3 

Wood Duck 0 0 1 

Wood mouse 43 68 250 

Woodcock 0 3 9 

Woodpigeon 1338 316 1395 
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Wren (Eurasian) 2 10 38 

Yellow Wagtail (Western) 0 0 1 

Yellowhammer 2 0 0 

 
  

Figure S1. Proportion of sites within a 10km radius of Durham City Centre in each of the MammalWeb 
habitat classes (A) and the Land Cover Map 2021 (LCM) habitat classes (B; Marston et al., 2022). Error 
bars show ± standard error. 
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Table S4. Results of Wald test comparing activity patterns derived from three datasets for 7 focal mammal species. 
Differences between activity estimates for each dataset are shown along with standard error (SE), Wald statistic (W) 
and p value (P). *p < 0.05, **p < 0.01, ***p < 0.001. 

 

Species Datasets Difference 
  

SE 
  

W P 

Badger  Systematic 
vs 

MammalWeb in-year 
0.167 0.036 21.616 <0.001*** 

Systematic  
vs 

MammalWeb multi-year  
0.063 0.038 2.766 0.096 

MammalWeb in-year 
vs 

MammalWeb multi-year  
-0.104 0.028 13.275 <0.001*** 

Brown hare  Systematic 
vs 

MammalWeb in-year 
0.224 0.082 7.447 0.006** 

Systematic  
vs 

MammalWeb multi-year  
0.063 0.083 0.570 0.450 

MammalWeb in-year 
vs 

MammalWeb multi-year  
-0.161 0.104 2.384 0.123 

Grey squirrel Systematic 
vs 

MammalWeb in-year 
-0.103 0.036 8.121 0.004** 

Systematic  
vs 

MammalWeb multi-year  
-0.073 0.035 4.367 0.037* 

MammalWeb in-year 
vs 

MammalWeb multi-year  
0.030 0.024 1.525 0.217 

Hedgehog  Systematic 
vs 

MammalWeb in-year 
-0.127 0.050 6.376 0.012* 

Systematic  
vs 

MammalWeb multi-year  
0.033 0.019 2.90 0.088 

MammalWeb in-year 
vs 

MammalWeb multi-year  
0.160 0.048 11.340 <0.001*** 

Rabbit  Systematic 
vs 

MammalWeb in-year 
0.186 0.030 38.137 <0.001*** 
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Systematic  
vs 

MammalWeb multi-year  
0.012 0.027 16.400 <0.001*** 

MammalWeb in-year 
vs 

MammalWeb multi-year  
-0.078 0.030 6.696 0.010* 

Red fox  
 

Systematic 
vs 

MammalWeb in-year 
0.031 0.048 0.426 0.514 

Systematic  
vs 

MammalWeb multi-year  
-0.095 0.039 6.077 0.014* 

MammalWeb in-year 
vs 

MammalWeb multi-year  
-0.126 0.047 7.173 0.007** 

Roe deer  Systematic 
vs 

MammalWeb in-year 
-0.227 0.066 11.833 <0.001*** 

Systematic  
vs 

MammalWeb multi-year  
-0.125 0.053 5.672 0.017* 

MammalWeb in-year 
vs 

MammalWeb multi-year  
0.102 0.053 3.726 0.054 
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Table S5. Results of Wald test comparing activity patterns derived from a systematic dataset and MammalWeb multi-
year dataset for 4 mammal species in 3 different habitats. Differences between activity estimates for each dataset are 
shown along with standard error (SE), Wald statistic (W) and p value (P). *p < 0.05, **p < 0.01, ***p < 0.001. 
 

Habitat Species Difference 
  

SE 
  

W P 

Improved grassland 
(LCM 25 m habitat 
class) 

Grey squirrel 
-0.019 0.069 0.073 0.787 

Rabbit  
0.288 0.052 30.198 <0.001*** 

Red fox  
 0.213 0.077 7.669 0.006** 

Roe deer  
0.058 0.107 0.295 0.587 

Broadleaf woodland 
(LCM 25 m habitat 
class) 

Grey squirrel 
-0.082 0.041 3.966 0.046* 

Rabbit  
-0.015 0.038 0.161 0.688 

Red fox  
 -0.209 0.069 9.269 0.002** 

Roe deer  
-0.221 0.052 17.817 <0.001*** 

Woodland 
(MammalWeb 
habitat class) 

Grey squirrel 
-0.090 0.037 5.980 0.014* 

Rabbit  
0.022 0.047 0.226 0.634 

Red fox  
 -0.203 0.075 7.378 0.007** 

Roe deer  
-0.163 0.061 7.182 0.007** 
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Chapter 4: Increasing connection to nature and knowledge of UK mammals 
through an ecological citizen science project in schools 

 

 

 

 

  

Rabbit (Oryctolagus cuniculus) | Wolsingham Primary School, County Durham 
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4.1 Abstract 

 

Being connected to nature can have many benefits for children including improved mental 

and physical well-being and more positive attitudes towards the environment. However, a 

lack of opportunities to access nature, due to urbanisation and other factors, has led to many 

children growing up disconnected from nature and with little knowledge of local wildlife. 

Ecological recording, as part of a citizen science project, may offer new opportunities for 

children to learn about, and connect with, nature. In this study, we engaged 24 primary 

schools across North-East England in an ecological intervention where they: deployed camera 

traps to monitor wildlife in school grounds; took part in a workshop on mammals and camera 

trapping; and contributed to the citizen science project, MammalWeb. Using questionnaires 

from before and after participation, we assessed the impact on school pupils of being involved 

in the project, in terms of their perception of nature, knowledge of UK mammals, and 

connection to nature. We found that pupils could draw / name more UK mammals after our 

intervention, particularly species that were captured on the school’s camera traps. Pupils 

could also name more mammals to species-level and identify native species. Although 

connection to nature scores did not significantly increase across all pupils, we found that 

there was an increase in scores for those pupils who had a low initial score. For younger 

children (aged 4 – 7), differences in their knowledge of UK mammals were not sustained three 

months post-intervention; however, differences were sustained for older pupils (aged 7 – 11). 

Furthermore, the connection to nature scores of children with a low baseline score continued 

to increase after our intervention. Our study demonstrates the positive impacts that using 

camera traps and participating in a citizen science project can have on school pupils by giving 

them the chance to learn about and connect with species to which they might otherwise have 

little exposure. 
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4.2 Introduction 

 

Connection to nature can be defined as the mix of feelings and attitudes that people have 

towards nature (RSPB, 2013). For children, connection to nature is commonly centred around 

four components: enjoyment of nature; having empathy for creatures; having a sense of 

oneness with nature; and having a sense of responsibility for the environment (Cheng and 

Monroe, 2012). Being connected to nature brings many benefits to human well-being 

(Richardson et al., 2016; Richardson and Sheffield, 2017) and promotes pro-environmental 

behaviours (Barrera-Hernández et al., 2020; Richardson et al., 2016; Zhang et al., 2014). These 

benefits are particularly evident in the younger generation (Barrera-Hernández et al., 2020; 

Otto and Pensini, 2017; Whitten et al., 2018; Zhang et al., 2014). However, despite Robert 

Pyle having coined the phrase “extinction of experience” over four decades ago (Pyle, 1978), 

children today continue to have fewer opportunities to access local nature (Soga and Gaston, 

2016). This increasing lack of contact with nature has been attributed to urbanisation 

(Neuvonen et al., 2007; Turner et al., 2004; Zhang et al., 2014) and the growing popularity of 

electronic entertainment media (e.g., watching television) as a recreational choice, as 

opposed to spending time outdoors and in nature (Pergams and Zaradic, 2006). As a result, 

in the UK, four out of five children are disconnected from nature (RSPB, 2013). 

 

Alongside declining connection to nature there is also a loss in environmental knowledge, 

defined here as an understanding of the natural environment and the species within it. For 

example, children today often lack the ability to identify even common species (Pilgrim et al., 

2008). Across Europe, studies have shown that children are more familiar with pets 

(Lindemann‐Matthies, 2005), charismatic exotic species (Ballouard et al., 2011; Lindemann‐

Matthies, 2005), and even Pokémon characters (Balmford et al., 2002), than they are with 

local wildlife. Studies that have asked children to ‘draw what they think nature is’ show that 

their perception of nature is often of an environment lacking diversity, or is an environment 

based on imagination rather than real life (Aaron and Witt, 2011; Montgomery et al., 2022). 

Children are more willing to conserve biodiversity that they have more experience with, 

whether that be direct experiences or vicarious experiences (e.g., reading books or watching 

television; Soga et al., 2016). However, because opportunities for children to experience local 

nature are declining (Soga and Gaston, 2016), children are more willing to protect the 
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charismatic exotic species with which they are more familiar, due to their representation on 

the internet and in popular culture (Ballouard et al., 2011; Clucas et al., 2008; Huxham et al., 

2006). 

 

This continuing decline in environmental knowledge and connection to nature is worrying, 

not only because children are missing out on the many benefits for themselves, but also from 

a biodiversity conservation perspective. Worldwide biodiversity is declining at alarming rates 

and the UK (where our study took place) is no exception to this (Hayhow et al., 2019). The 

loss of people’s affinity towards to nature, due to decreasing natural spaces and lack of 

opportunities to connect with nature, can create a negative feedback loop whereby 

biodiversity is lost without people noticing or caring (Schuttler et al., 2018b). Given that 

childhood nature experiences can positively affect adult environmental attitudes and 

behaviours (Bixler et al., 2002; Ewert et al., 2005; Kidd and Kidd, 1996), creating more 

opportunities for children to experience, learn about, and connect with nature is crucial for 

conserving biodiversity in the long-term.  

 

Participating in nature-based citizen science projects can increase participants’ knowledge 

and awareness of local biodiversity (Forrester et al., 2017) and promote connections to local 

nature (Cosquer et al., 2012; Schuttler et al., 2018b; Toomey and Domrose, 2013). Particularly 

in the case of the latter, research has shown that connection to nature occurs more by 

noticing nature than by merely being in it (McEwan et al., 2019; Richardson et al., 2021; 

Richardson and Sheffield, 2017). Therefore, nature-based citizen science offers opportunities 

to connect with nature on a deeper level by not only increasing time spent in nature, but also 

noticing it through scientific recording. Further to this, citizen science projects that use 

camera traps offer unique opportunities for participants to see and learn about local species 

that are seldom seen, owing to nocturnal or otherwise elusive behaviours (Schuttler et al., 

2018b). Although these experiences might be through photos or videos, rather than spending 

time in nature, these digital experiences of biodiversity are still important for informing 

children’s attitudes towards, and willingness to conserve, species (Soga et al., 2016). 

 

Although positive outcomes of participating in citizen science projects have been studied 

extensively for adults, very few studies have looked at positive effects on child participants 
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(see review by Schuttler et al., 2018). In a school setting, there have been an increasing 

number of environmental education interventions including some involving citizen science; 

however, most are small-scale and few have offered robust evaluations of such initiatives 

(Blumstein and Saylan, 2007). Where evaluations of impacts on pupils have been undertaken, 

they have often only assessed immediate, short-term changes (Harvey et al., 2020; White et 

al., 2018). Here, we report one of the largest and most robust studies to date of impacts of 

participation in an ecological citizen science project on participating school pupils. 

 

We engaged with 24 primary schools in a project where they: (a) borrowed a camera trap to 

use for one-month to monitor wildlife in their school grounds; (b) received a workshop about 

UK mammals and camera trapping; and (c) were invited to upload and classify data on an 

existing citizen science platform. Through questionnaires given to pupils pre- and post- 

intervention we aim to answer: (1) what is the baseline level of knowledge and awareness of 

UK mammals and connection to nature of school pupils; (2) whether our intervention changed 

this; and (3) whether this change was sustained, three months post-intervention. 

 

 

4.3 Methods 

 

4.3.1 Participating schools 
 

The 24 participating primary schools were located across County Durham, Newcastle, and 

Middlesbrough in North-East England. The landscape of this area includes urban, suburban 

and rural areas, and schools in this study were located across all these environments. A recent 

report by Natural England showed that children living in North-East England spend less time 

outdoors than children in any other region, and this is likely due to the low socio-economic 

profile of the region (Natural England, 2019). 

 

Schools were recruited through online advertisements and presentations given at teacher 

training days organised by the local council and other organisations. Once schools had signed 

up to the project, information was sent home to parents who were asked to provide opt-in 

consent to have their child included in the study (requiring the child to answer 



 108 

questionnaires). Verbal consent was also obtained by teachers from each child on the day 

they answered each questionnaire.  

 

Schools were put into either an intervention group or a control group. Of the 24 participating 

schools, 21 were in the intervention group and 3 schools were wait-list control schools. Within 

the intervention group, schools were assigned to receive either a pupil workshop or teacher 

workshop. For this chapter, we analysed pupil workshop and teacher workshop schools 

together as one intervention group as there was insufficient data to analyse these groups 

separately (differences in engagement between schools taking part in pupil workshops vs 

teacher workshops are considered in Chapter 5). Although we made efforts to assign each 

school randomly to one of the intervention groups, this was constrained by geography and 

logistics, resulting in some schools (10) choosing which intervention group they wished to be 

a part of. Schools could decide how many classes from their school would take part. There 

were no pre-requisites for taking part in the project. 

 

4.3.2 Intervention 
 

Schools were lent a Browning Strike Force camera trap to use for one month. Within this 

month, schools received either a workshop for pupils or for teachers. The workshop lasted 

one hour and included going outside to learn about how and where to set up the camera trap 

and then classifying images from their own and other camera traps via the MammalWeb 

(www.MammalWeb.org) (Hsing et al., 2022) platform in the classroom. Further details of the 

content of both the pupil and teacher workshops can be found in Appendix S1 and Appendix 

S2. Each participating school had its own project set up on the MammalWeb platform and 

teachers were encouraged to upload and classify footage from their camera traps to this 

project page during or after the intervention. Most teachers used MammalWeb (uploading 

and classifying) with their class; however, outside of the workshops this was not monitored, 

and some teachers may have done the activities on MammalWeb on their own. Teachers also 

had access to a “Schools” page on MammalWeb which had additional resources including 

activity ideas and worksheets to be used alongside / after the intervention. Control group 

schools answered all questionnaires using the same timings as the intervention group before 

taking part in the intervention. 

http://www.mammalweb.org/
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4.3.3 Questionnaires 
 

We developed questionnaires that were filled in by school pupils at three time points: Q1: 

pre-intervention (in the two weeks prior to the start of the intervention); Q2: immediately 

post-intervention (at the end of the one-month intervention); and Q3: three months post-

intervention. There were two different questionnaires tailored to the pupils’ age. The first 

was filled in by pupils aged 4 – 7 in classes Reception to Year 2 in school (Early Years 

Foundation Stage and Key Stage 1 in the English education system). The second was filled in 

by pupils aged 7 – 11 in classes Year 3 to Year 6 (Key Stage 2). The overlap in age is because 7 

year old pupils who turn 8 after September 2019 are in Year 2 (therefore in the younger 

group) and those who turned 8 before September 2019 are in Year 3 (and therefore in the 

older group). Pupils completed their questionnaires in class. Teachers were instructed not to 

give any contextual information to pupils about the project and to tell pupils that it was not a 

test.  

 

For younger pupils, aged 4 – 7, the questionnaire consisted of just one activity where they 

were given a piece of paper and were asked to draw what they think nature is. They were 

given 10 minutes to complete the task and were encouraged to label their drawings if they 

were able. Teachers were instructed to help with labels where necessary. A drawing task was 

chosen over a writing task for this age group as they would likely have been too young to 

understand the written questionnaire (indeed, the connection to nature scale has only been 

validated for children 7+). Drawing exercises have been shown to help young children 

organise their own thoughts and narratives (Fargas-Malet et al., 2010) and have been used in 

a number of studies looking at interpretations of nature (e.g., Aaron and Witt, 2011; Drissner 

et al., 2013; Montgomery et al., 2022). Furthermore, younger pupils were asked about their 

perception of nature more generally, rather than specifically about mammals (which older 

pupils were asked about), as most pupils this age would not have been taught the 

characteristics of mammals and therefore might not be able to distinguish mammals from 

other taxa groups (Department for Education, 2015). 
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Older pupils aged 7 – 11 completed a two-page questionnaire (Appendix S3) and results in 

this chapter focus on two sections from that questionnaire: knowledge of UK mammals and 

connection to nature. To assess awareness and knowledge of UK mammals, the questionnaire 

asked “Please name all the mammals you know that live in the UK”. We did not do any checks 

to test understanding of what a mammal is, because all pupils who participated in this 

questionnaire should have been taught this as part of the National Curriculum by this age 

(Department for Education, 2015). Furthermore, we wished to explore how many non-

mammals were named, and whether this changed following our intervention. The limit for 

time spent on this (which was stated on the questionnaire) was five minutes and teachers 

timed pupils completing this section and asked them to move on to the next section after five 

minutes. Below this question the participants were then asked to underline the animals they 

had named that they think have come from another country.  

 

To assess connection to nature, we used the Connection to Nature Index proposed by Cheng 

and Monroe (2012). This survey comprises 16 statements and participants indicate how they 

feel about those statements on a Likert scale from 1 (strongly disagree) to 5 (strongly agree). 

An average is taken and reverse coded to produce an overall score where a higher score 

indicates a stronger connection to nature. The survey has been validated and recommended 

as the best measure of connection to nature for this age group, scoring highest (in comparison 

to other scales) for children’s understanding of how to complete it (Bragg et al., 2013). 

Teachers followed the recommended protocol for using the scale with children, explaining 

that they were to read each statement carefully and tick the appropriate box (Bragg et al., 

2013). Children were told they could ask for help if they did not understand a statement, in 

which case the teacher would try to explain the statement to the child. If they still did not 

understand the statement after the teacher’s explanation, they could leave it blank.  

 

4.3.4 Data processing 
 

Nature drawings were translated into lists of everything that had been drawn. Although 

drawings were labelled in most cases, if a drawing was not labelled and it was not obvious 

what had been drawn, we either wrote down broadly what it was (e.g., “plant” or “animal”), 

and, if we were not able to determine that, we left it blank. For both the nature drawings and 



 111 

the question on naming UK mammals, spelling was not penalised and we recorded all answers 

in their singular form (e.g., “badger” rather than “badgers”). If the naming mammals question 

was left blank, we assumed that to be because the participant had chosen not to answer the 

question (rather than them not knowing any mammals that live in the UK) and therefore did 

not record data. For both the nature drawings and naming mammals question we assigned 

things drawn / written down to categories of either type of animal (e.g., wild terrestrial UK 

mammal) or other elements drawn / written (e.g., water or weather) (the full table of 

categories can be seen in Table S1). To assess knowledge and awareness of nature (for 

younger pupils) and UK mammals (for older pupils) and whether that increased post- 

intervention, we first looked overall at things that had been drawn / named and at what 

frequency. We then looked in more detail at the number of things drawn / written down in 

specific categories and whether that changed at each questionnaire time-point. 

 

For the naming mammals question, we also scored each pupil on how many animals (from 

those named) that they correctly identified as being from / not from the UK. We restricted 

this to wild terrestrial UK mammals and exotic mammals but excluded animals that could be 

native / non-native (e.g., squirrel) or wild / domestic (e.g., rabbit)..). Answers were marked as 

correct if they had underlined non-native UK mammals or exotic mammals or not-underlined 

native UK mammals. The total score for each pupil was the number of correct answers. In 

addition, we also scored pupils on the number of wild terrestrial UK mammals that had been 

given to species level (e.g., grey squirrel instead of squirrel). Answers were marked as named 

to species level in all cases except where the animal they named has more than one species 

present in the wild in the UK. For example, “deer” would be marked as not to species level as 

there is more than one deer species in the UK. On the other hand, there is only one species 

of badger (Meles meles) in the UK (although there are more worldwide) and, since the 

question asked about mammals in the UK, we considered that ‘badger’ was adequate to be 

marked to species level. This may have resulted in more animals named to species level 

overall than if we had used an alternative marking system; however, because we are mainly 

interested in how this changes over time and between groups, and because we used this 

marking approach consistently throughout, our results are comparable. 
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4.3.5 Data analysis 
 

Analyses were conducted using R 4.1.2 (R Core Team, 2021). To test differences in scores 

between intervention groups we used general linear mixed models (GLMMs) generated using 

‘lme4’ (Bates et al., 2015). For both the drawing nature and naming mammals data, we 

modelled counts of drawings / animals in each of the categories using GLMMs with a Poisson 

error structure. We also used this approach to model the number of animals correctly 

identified as being from / not from the UK, and the number of UK mammals named to species 

level. For the connection to nature scores, we used a linear mixed model with Gaussian error 

structure. In all models, Questionnaire interacting with Intervention Group was used as a fixed 

factor and class and pupil identifiers as random factors. We considered including other factors 

within our models, such as level of urbanisation around the school or biodiversity found on 

school grounds; however, a lot of the pupils who participated in the study were from schools 

with similar characteristics (e.g., ~90% of pupils were from schools in urban environments) 

and, when we tried to include these factors in models, they failed to converge. We therefore 

kept our models simple but do consider further possibilities in the discussion. Model 

comparison tables were generated using ‘MuMIn’ (Barton, 2020) to select best-fitted models. 

For models where the best-fitted model included both questionnaire and intervention, we 

used Tukey’s HSD post-hoc analysis to compare values within each intervention group for 

different questionnaires. R2 values for these models were calculated using the method 

described by Nakagawa and Schielzeth (2013).  

 

We analysed both all data, and data restricted to those pupils who had answered all three 

questionnaires. For the connection to nature scores, as scores are typically left-skewed and 

therefore prone to ceiling effects (Harvey et al., 2020; Hughes et al., 2018), we also looked at 

changes in the scores from pupils who had a low initial score. To do this, we used the 

thresholds proposed by Hughes et al. (2018) which were calculated by linking scores to self-

reported pro- environmental behaviours. Children in the lowest connection to nature score 

threshold (< 4.06) are likely to show little to no pro-environmental behaviours. We ran the 

same analysis as described previously but with a subset of data from pupils who had a low 

initial connection to nature score (< 4.06) and who had answered all three questionnaires. 
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We also looked at the proportion of pupils who drew (for younger pupils) or named (for older 

pupils) species that were captured on either their own school’s camera trap or other schools’ 

cameras. To aid understanding of pupils’ naming of non-mammals on questionnaires, we also 

report on the proportion of bird species named that were captured on school camera traps. 

 

4.3.6 Ethics statement 
 

Approval for this study was granted by Durham University’s Department of Anthropology 

Ethics and Data Protection Committee. Consent was obtained in writing from pupils’ parents 

and verbally from pupils themselves. All questionnaires were anonymised by teachers 

assigning each participant a number. This number was then combined with a unique identifier 

for each school and each class, and this identifier was used to track questionnaires for 

individuals pre- and post- intervention. Therefore, we kept no personal information on pupils 

involved with the study. 

 

 

4.4 Results 

 

4.4.1 Questionnaire response rates 
 

Overall, 1020 pupils from 94 classes in 24 schools completed questionnaires. These included 

343 younger pupils (from 40 classes in 17 schools) who completed the nature drawing 

questionnaire and 677 older pupils (from 54 classes in 19 schools) who completed the naming 

mammals and connection to nature questionnaire. There were 185 pupils in the control 

group. For younger / older pupils, our sample sizes were 240 / 497 for pre-intervention 

questionnaires (Q1), 220 / 467 for immediately post-intervention questionnaires (Q2), and 94 

/ 292 for three-month post-intervention questionnaires (Q3). However, due to difficulties 

with absences, timing, questionnaires not being returned and identifier mismatches, only 54 

younger pupils and 176 older pupils answered all three questionnaires; others answered only 

one or two questionnaires. For older pupils, we omitted connection to nature scores for four 

pupils who had not answered all statements, potentially biasing their scores.  
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4.4.2 Pre-intervention perception of nature and knowledge of UK mammals 
 

Pre-intervention, the most common things drawn by pupils when asked “Please draw what 

you think nature is” were trees, sun, grass, birds and flowers (Figure 1; Figure S1). 68% of 

pupils’ drawings included one or more animals (excluding humans); the three most commonly 

drawn animals were birds, bees and butterflies (Figure 1). 21% of pupils drew a UK mammal 

(excluding humans and generic ‘animal’ and ‘mammal’) with the most commonly drawn being 

rabbit, deer and hedgehog (Figure 1). For older pupils who were asked to “Name all the 

mammals you know that live in the UK”, the five most commonly named animals pre-

intervention were dog, cat, rabbit, human and horse (Figure 1; Figure S2). Excluding rabbit 

(which could be classified as a wild mammal or a pet), fox was the most commonly named 

wild mammal (Figure 1; Figure S2). One in four pupils named lion and one in five pupils named 

tiger in response to the question (Figure 1; Figure S2). 
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Figure 1. Word clouds of answers / drawings from two pre-intervention 
activities with participating pupils. Top (green) shows top 50 things participating 
pupils aged 4-7 drew when asked to draw what they think nature is. Bottom 
(blue) shows the top 50 animals named when participating pupils 7-11 were 
asked name all the mammals they know that live in the UK. Word size and colour 
is scaled to the number of individuals who drew / wrote it with the largest / 
darkest words being the most frequently written / drawn.  

“Please draw what you think nature is” 
Pre-intervention (Q1) | 240 participants | Aged 4 - 7 

“Please name all the mammals you know that live in the UK” 
Pre-intervention (Q1) | 497 participants | Aged 7 - 11 
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4.4.3 Post-intervention perception of nature and knowledge of UK mammals 
 

Although, overall, the specific things drawn / written remained largely similar post-

intervention (Figure S1-S3), there were some differences, particularly for wild terrestrial UK 

mammal species. For younger pupils, there was an increase in the percentage who drew deer, 

hedgehog, fox and mouse between Q1 and Q2. For older pupils immediately post-

intervention, fox becomes the third most commonly named mammal (after dog and cat; 

Figure S2) and other wild UK mammals including deer, hedgehog, squirrel, badger, and otter 

now appear in the top twenty most commonly named animals. For younger pupils, these 

increases do not appear to be sustained at Q3 (Figure S1); however, for older pupils it is more 

mixed, with the increase being sustained for some species (e.g., deer, badger, grey squirrel, 

red squirrel) but not for others (e.g., hedgehog and otter; Figure S2). The two most common 

exotic animals named by older pupils (lion and tiger) were named by fewer pupils at Q2 with 

this decrease being sustained at Q3 (Figure S2). 

 

Both questionnaire and intervention grouping had a strong effect on the number of wild 

terrestrial UK mammals drawn (Table S2). Predicted values from the best-fitted model 

showed no change in the number of wild terrestrial UK mammals drawn in the control group 

(Figure 2). For the intervention group there was a significant increase in the number drawn 

between Q1 and Q2 but then a decrease between Q2 and Q3 so there was no significant 

difference from baseline at Q3. Questionnaire and intervention grouping had no strong effect 

on the number of non-mammals or the number of exotic mammals drawn (Table S2). The 

best-fitted model was the same when we ran the analysis with all data, and with data 

restricted to only pupils who answered all three questionnaires (Table S2). 
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For analysis of answers from older pupils who answered the naming mammals question, we 

omitted the Extinct / Doesn’t exist category and the generic Mammal category as sample sizes 

for these were extremely small (6 and 5 respectively). We also omitted Human because this 

was not a focus for our study. We analysed all other categories. The best-fitted model was 

the same in all but two cases (marine mammals and non-mammals) when we ran the analysis 

with all data, and with data restricted to only pupils who answered all three questionnaires 

(Table S2). Best-fitted models included both questionnaire and intervention group as fixed 

effects for all categories we analysed, except for domestic / farm animals (Table S2); our 

Figure 2. Predicted values from top candidate GLMM for counts of number of UK mammals pupils drew 
when asked to draw what they think nature is. Questionnaire (pre-intervention Q1, immediately post-
intervention Q2, and three-months post-intervention Q3) and intervention group (Intervention or 
Control) were included as predictors in models and class and pupil ID as random effects. Error bars 
represent 95% confidence intervals. Significance levels shown at Q2 and Q3 are compared to baseline 
pre-intervention (Q1) for each group (Intervention / Control) and are based on Tukey HSD analysis (*p 
< 0.05, **p < 0.01, ***p < 0.001). 
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intervention did not impact the number of domestic / farm animals pupils named. Although 

questionnaire and intervention group were included in best-fitted models for marine 

mammals, post-hoc pairwise comparisons revealed no significant differences across values 

for this group and the best-fitted model did not include questionnaire when we restricted the 

data to pupils who had answered all three questionnaires. We therefore focus on the 

categories in Figure 3 for the rest of our analysis.  

 

For the control group, the only significant change was a decrease in the number of non-

mammals named over time (Figure 3C). There was no change in the number of non-mammals 

named by pupils in the intervention group (Figure 3C). In the intervention group there was an 

increase between Q1 and Q2 in: the number of wild terrestrial UK mammals named; the total 

number of animals named; the number of animals correctly identified as being from / not 

from the UK; and the number of animals named to species level (Figure 3). There was a 

decrease in the number of exotic mammals named between Q1 and Q2 (Figure 3B). Whether 

this change was sustained (i.e., value was significantly different from baseline at Q1) at Q3 

varied, but it remained for the number of wild terrestrial UK mammals named, the number 

of exotic mammals named and the number of animals named to species level (Figure 3). 

 

For both the drawing activity and the naming mammals activity, post intervention (in Q2) 

pupils drew / named species captured on either their own or other school’s camera traps 

(Figure 4). This increase was not seen in the control group schools (Figure S4). There were 

decreases in the proportion of pupils who drew / named species captured between Q2 and 

Q3, particularly for younger pupils who took part in the drawing activity (Figure 4). For older 

pupils in the naming mammals activity, 42% of the bird species named in Q2 were species 

captured on cameras, compared to 12% in Q1. 
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Figure 3. A - D show predicted values from top candidate GLMMs for counts of types of animals named 
when participating pupils were asked to name all the mammals they know that live in the UK. E - F graphs 
show predicted values from GLMMs for counts of number of animals correctly identified as being from / 
not from the UK (left) and number of animals named to species level (right). Questionnaire (pre-
intervention Q1, immediately post-intervention Q2, and three-months post-intervention Q3) and 
intervention group (Intervention or Control) were included as predictors in models and class and pupil ID 
as random effects. Error bars represent 95% confidence intervals. Significance levels shown at Q2 and Q3 
are compared to baseline pre-intervention (Q1) for each group (Intervention / Control) and are based on 
Tukey HSD analysis (*p < 0.05, **p < 0.01, ***p < 0.001). 
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4.4.4 Connection to nature 
 

Intervention grouping did not have a strong effect on model fits (for both all data and data 

restricted to pupils who answered all three questionnaires) (Table S2), suggesting there was 

no difference in connection to nature scores across the three questionnaires for the control 

or intervention group. When we ran the same analysis but restricting data to pupils with a 

low initial connection to nature score who had answered all three questionnaires (n = 44), the 

effect of intervention group was stronger, with the best-fitted model including both 

questionnaire and intervention group, although other models without these effects were also 

within 6 AIC units (Table S2). Predicted values from the top candidate model for pupils with 

low initial connection to nature showed that scores were higher than baseline Q1 (3.73) at 

Figure 4. Proportion of pupils who drew / named species captured on either any participating school’s camera 
trap or on their own camera trap. Left graph is for pupils aged 4 – 7 who were asked to draw what they think 
nature is. Right graph is for pupils aged 7 – 11 who were asked to name all the mammals they know that live 
in the UK. Error bars show ± standard error. 
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both Q2 (4.00) and Q3 (4.16) for the intervention group, but there were no significant changes 

across questionnaires in the control group (Figure 5). 

 

 

 

 

4.5 Discussion 

 

Our study engaged over 1000 primary school pupils in an ecological citizen science program, 

offering them new opportunities to both learn about and connect with their local wildlife. We 

show that our intervention had positive impacts on pupils aged 4 to 11, including an increased 

knowledge and awareness of wild UK mammals. Although there was no increase in 

Figure 5. Predicted values from top candidate GLMM for connection to nature scores of pupils with 
a low initial score (< 4.06; threshold calculated by Hughes et al., 2018). Questionnaire (pre-
intervention Q1, immediately post-intervention Q2, and three-months post-intervention Q3) and 
intervention group (Intervention or Control) were included as predictors in models and class and 
pupil ID as random effects. Error bars represent 95% confidence intervals. Significance levels shown 
at Q2 and Q3 are compared to baseline pre-intervention (Q1) for each group (Intervention / Control) 
and are based on Tukey HSD analysis (*p < 0.05, **p < 0.01, ***p < 0.001). 
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connection to nature across all pupils, our intervention had a positive effect on connection to 

nature for those with a low initial connection to nature, prior to the study. We also show that 

whilst some benefits are only short-term (e.g., awareness of wild UK mammals in younger 

pupils), some are maintained, or even increased, three-months after our intervention. Here, 

we discuss our results in relation to: the baseline (pre-intervention) level of knowledge of UK 

mammals and connection to nature; how this changed following our intervention; and the 

extent to which this change was sustained.  

 

4.5.1 Measures pre-intervention 
 

Previous studies have found that perceptions of nature in children are varied and wide-

ranging (Aaron and Witt, 2011; Burgess and Mayer-Smith, 2011; Keliher, 1997). In contrast, 

our study showed that when children were asked to draw what they think nature is, the 

majority of pupils drew very similar things (e.g., trees, grass, flowers, sky). Of the animals that 

they drew, birds were the most common, followed by bees and butterflies. The national 

curriculum in England currently states that children aged 4-7 (Key Stage 1) should be able to 

“identify and name a variety of common animals including fish, amphibians, reptiles, birds 

and mammals” and that “Pupils should use the local environment throughout the year to 

explore and answer questions about animals in their habitat” (Department for Education, 

2015). In the UK, mammals are seldom seen due to their tendency to be elusive (often 

nocturnal or shy) and to occur at lower densities than other taxa. Therefore, children may 

have fewer opportunities to experience and learn about mammals around them than they 

have for taxa such as birds and insects, which can be found and seen more easily. This could 

have contributed to why, despite previous studies showing that children have more 

knowledge, awareness, and preference for mammals (Gerl et al., 2021; Huxham et al., 2006; 

Lindemann‐Matthies, 2005; Snaddon et al., 2008), they were less commonly drawn than 

other taxa in our study.  

 

If, as suggested in our study, children do not associate mammals with nature, this could have 

implications for mammalian management and conservation. However, it is also possible that 

mammals were not drawn as often because, compared to animals such as bees and 

butterflies, they are more complex to draw. Furthermore, although drawing studies are 
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considered a quick and effective method for assessing perceptions of nature (Montgomery et 

al., 2022), it is important to note that not being able to draw species is not indicative of poor 

perception / knowledge. Therefore, in the future it may be beneficial to do a drawing exercise 

alongside an interview to gain a deeper understanding of children’s perception of nature.  

 

For older pupils, who were asked to “Name all the mammals you know that live in the UK”, 

pupils seemed most familiar with domestic pets and farm animals, naming them more than 

any other type of animal. On average, children named around eight animals in response to 

the question but only around one of these animals was a wild, terrestrial UK mammal. The 

number of exotic animals named, pre-intervention, was similar to the number of wild UK 

mammals (0.71 exotic vs 1.55 wild UK in intervention schools, 0.93 exotic vs 1.02 wild UK in 

control schools), with lion, tiger, bear, elephant, monkey, and wolf all appearing in the top 

thirty animals named by pupils, pre-intervention. The pupils are not wrong, as these animals 

can be found in UK zoos; nevertheless, our findings do cast light on which animals they are 

most familiar with, and which come to mind when answering this question. Our results accord 

with other indications that pupils are familiar with more exotic species, whereas their 

knowledge of local wildlife is poorer (Ballouard et al., 2011; Lindemann‐Matthies, 2005). This 

is likely due to more representation of charismatic flagship species like lions and tigers in the 

media, in books, and at the zoo (Clucas et al., 2008; Huxham et al., 2006). We also noted that 

teachers often use exotic animals as examples in their teaching of the national curriculum. 

For example, in England, the Key Stage 2 curriculum requires teaching on adaptations of 

animals (Department for Education, 2015) – it is often easier to think of exotic charismatic 

animals such as stripes on tigers for camouflage and, as a result, teachers may use this as an 

example rather than species local to them. 

 

Although the connection to nature scale goes from 1 to 5, consistent with other studies 

(Harvey et al., 2020; Hughes et al., 2018) we found that pre-intervention scores were left-

skewed with the majority of scores (67%) being 4 or above. Hughes et al. (2018) proposed 

low, mild, and high connection to nature thresholds which reflect how a child’s score relates 

to pro- environmental behaviours. Using these thresholds, pre-intervention scores in our 

study were split relatively evenly between the three groups: 24% high; 39% mild; and 37% 

low. This variability in scores pre-intervention could arise from a number of factors, including 
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schools varying from urban to rural locations, a factor shown to influence connection to 

nature strongly (Bashan et al., 2021; Duron-Ramos et al., 2020). Other studies have found 

that children score more highly than might be expected using the Cheng and Monroe (2012) 

connection to nature scale, possibly due to social desirability bias (answering in a way that 

they believe you want them to) (Harvey et al., 2020).  

 

4.5.2 Immediate impacts from our intervention 
 

To date, the majority of school, nature-based interventions have focussed on pupils aged 7+ 

(e.g., Blackawton et al., 2011; Schuttler et al., 2019; White et al., 2018). Our study showed 

that our intervention had immediate benefits for children as young as 4. Our project offered 

a unique opportunity to help increase children’s exposure to local mammals through camera 

trapping and citizen science. This was reflected in children’s drawings of nature post-

intervention, with wild UK mammals being drawn more frequently after participation in the 

project. Drawing studies with older children (8-11 years) have also found that nature-based 

interventions result in nature drawings depicting a greater diversity of species (Drissner et al., 

2014; Montgomery et al., 2022). Furthermore, Montgomery et al. (2022) showed that 

through a nature-based intervention (that including camera trapping), school pupils drew 

more accurate representations of the biodiversity present on their school grounds. Given 

that, particularly in urban environments, children often have limited knowledge of local 

nature (Aaron and Witt, 2011), interventions that offer opportunities to experience species 

that are otherwise seldom seen (e.g., nocturnal mammals) could be important for building a 

stronger connection to and knowledge of nature.  

 

Older pupils named a significantly increased number of wild UK mammals immediately post-

intervention (Q2). As might be expected, mammals (such as fox, squirrel and deer) that were 

all caught on school camera traps were named by a greater percentage of pupils, post-

intervention. More surprisingly however, there were also increases in the percentages of 

pupils who named rarer animals not caught on any of the school’s cameras such as otter (3% 

at Q1 vs 25% at Q2), red squirrel (4% at Q1 vs 18% at Q2) and pine marten (<1% at Q1 vs 15% 

at Q2). Although none of these animals were caught on school camera traps, we often spoke 

about many species of wild mammals, including these, during the pupil workshops / teacher 
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training sessions, and they do appear in the broader MammalWeb project from which pupils 

were encouraged to classify images. Nature interventions that offer multiple ways for 

participants to learn about and connect with nature appear to be most successful in eliciting 

change in participants (Harvey et al., 2020; Schuttler et al., 2019; Soga et al., 2016). This also 

appears to be the case for our project, with students learning not only from the camera traps 

but also from the workshops and overall citizen science project. 

 

The number of non-mammals that pupils named decreased for pupils in control group schools 

but not for pupils in intervention group schools. Different groupings of animals and the 

characteristics of each are taught in Key Stage 1 (ages 4 - 7) in the national curriculum in 

England (Department for Education, 2015). Therefore all of the pupils who participated in this 

part of the study (Key Stage 2, ages 7 – 11) would have been taught this part of the curriculum 

already and should be familiar with what a mammal is. We did not monitor what topics were 

taught between questionnaires (partly because this varies between schools); however, it is 

likely that, although not part of the formal curriculum at this age, pupils will have done 

activities that reinforce learning of what is / is not a mammal. Hence, this is probably why we 

see a decrease in the number of non-mammals named in control group schools. For 

intervention group schools, 42% of birds named at Q2 (compared to 12% at Q1) were species 

such as pigeons, blackbirds and pheasants that were captured on school camera traps. It is 

possible that the lack of a reduction in non-mammals named by the intervention pupils arises 

because pupils are naming birds that were caught on cameras traps, perhaps because of the 

association of the questionnaire with the project. 

 

We also showed that both the number of mammals correctly identified as from / not from 

the UK and the number of mammals named to species level increased post-intervention. 

Particularly in the case of the former, this shows a deeper level of understanding, as pupils 

are not only able to recall mammals but they also know something about their characteristics. 

Invasive species have driven extinction of native species for centuries and, with climate 

change causing shifts in species distribution, they will continue to pose a threat to biodiversity 

worldwide (Bellard et al., 2013; Dueñas et al., 2021; Tilman et al., 2017). It is important 

therefore that invasive species are managed carefully, to mitigate against their impact on 

native species (Tilman et al., 2017). Public perception of invasive species is varied, with some 
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species being accepted (and management measures opposed) if the species has high 

aesthetic value (Kapitza et al., 2019; Verbrugge et al., 2013). If interventions such as ours 

could encourage an early understanding of the concept of invasive species and the threat 

they pose to biodiversity, this will likely be helpful with future conservation and management 

efforts. 

 

In our study, we saw no effect of our intervention on connection to nature scores overall. We 

believe this lack of change is likely to stem from two sources. Firstly, as discussed above, a lot 

of children (63%) in our study already had a mild or strong connection to nature at the outset, 

resulting in a ceiling effect where there was little room for these children to improve. 

Secondly, as durations of nature-based interventions influence the positive outcomes on 

participants (Braun and Dierkes, 2017), it may be that our intervention was not long or intense 

enough to elicit a change in connection to nature amongst all children. Specifically, for citizen 

science projects, short-term involvement in citizen science has been shown to increase 

knowledge or project specific skills, but not attitudes (Forrester et al., 2017; Jordan et al., 

2011; Overdevest et al., 2004). Our study was relatively light-touch, with a minimum of one 

hour of workshops for teachers / pupils during the month and any extra engagement largely 

being left to the teacher’s discretion. Therefore, more sustained interventions where children 

are guaranteed to spend more time outdoors and doing more nature activities may yield 

better results. Nevertheless, we did show that connection to nature increased for those pupils 

who had a low initial score. Children with a low connection to nature are less likely to show 

conservation behaviours (Hughes et al., 2018) and are missing out on the many benefits of 

being connected to nature (see review by Chawla, 2020). Therefore, it is arguably most 

important that nature-based interventions such as ours provoke changes amongst these 

children. 

 

4.5.3 Longer-term impacts 
 

Our project is one of the first nature-based intervention projects that measured impacts on 

pupil participants not only immediately after the intervention, but also three months later. 

For younger pupils, although we saw an immediate increase, post-intervention, in the number 

of wild UK mammals drawn by pupils, this increase was not sustained three-months post-
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intervention. Reinforcing this knowledge in pupils at this age might require more prolonged 

engagement. For older pupils, the number of wild UK mammals named decreased slightly 

between Q2 and Q3 but still remained higher than baseline levels (at Q1). The greater 

endurance of the change in older pupils is likely because older children have a more 

developed working memory (Barrouillet et al., 2009). It could, however, be that teachers from 

Key Stage 2 (older children in this study) continued with project-related activities after our 

one-month intervention more so than teachers from Key Stage 1 (younger children in this 

study). This seems probable because there are more topics in the Key Stage 2 curriculum that 

can be related to this project than there are in the Key Stage 1 curriculum. 

 

Unlike knowledge of UK mammals, connection to nature in our intervention groups continued 

to increase across all time points. Meanwhile, the control group did not show any significant 

increases in connection to nature scores. Although there were no prescribed activities for 

schools after the one-month intervention period, we know that 11 of the schools continued 

to engage with MammalWeb, and / or purchased their own camera trap to continue camera 

trapping, following the intervention (this is explored further in Chapter 5). These class 

activities likely helped to further increase connection to nature among pupils. This highlights 

the importance of sustained and repeated engagement with the project, post-intervention. 

Funding and capacity for researchers / individuals to continue interventions long-term is often 

limited and in a school setting, therefore, the best way to achieve this longer-term 

engagement is by influencing and inspiring teachers. Equipping teachers with knowledge and 

activities to continue the project post-intervention enables opportunities for benefits for 

pupil participants to be sustained or even to increase. In this context, more research into the 

barriers faced by teachers incorporating projects such as this into their day-to-day teaching, 

and how these barriers could be overcome, would be highly beneficial. 

 

4.5.4 Limitations and future work 
 

One limitation of our study was that there could have been a self-selection bias due to schools 

choosing to be part of the study, and parents having to agree to their child taking part. Schools 

/ parents who opted for their child to take part likely had an interest in the study and so 

participating pupils could have a higher ecological knowledge / connection to nature than 
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average. However, even if our sample is biased towards pupils with a high initial ecological 

knowledge / connection to nature, and if (as our connection to nature results suggest), our 

study has the greatest impact on those with initially low scores, our intervention would likely 

have greater benefits for the wider population than we have reported here. Another 

limitation was that we were unable to match the sample size of the control group to the 

intervention group. Whilst a balanced sample would have been preferable, unbalanced 

sample sizes are a common occurrence in school-based studies where it can be hard to recruit 

control schools (e.g., Harvey et al., 2020). We do not believe the unbalanced sample sizes in 

our study impacted our results as we still had enough statistical power to run our analysis and 

identify significant results. However, future studies may wish to increase efforts to recruit 

control schools, perhaps by starting the recruitment process earlier. 

 

Further work could investigate some of the other factors that might influence knowledge of 

UK mammals and / or connection to nature, such as whether the school is in a rural or urban 

area. Other studies have found that children living in rural areas have more direct experiences 

in nature and, as a result, can have a higher connection to nature (Duron-Ramos et al., 2020; 

Mustapa et al., 2018; Wells and Evans, 2003). In our study, only ~10% of participating pupils 

were in rural schools. We therefore did not do any formal analysis looking at the influence of 

rurality on scores as we did not have a large enough sample of pupils in rural areas. However, 

we do know that, in contrast to what might be expected, 23% of pupils with a low initial 

connection to nature score were from rural schools. Caution should be taken over drawing 

any conclusions from this, however, as the sample size of this group was very small (44) and 

other factors could have influenced why these pupils had a low connection to nature. Linked 

to rurality, another factor that could influence how much pupils benefitted from the 

intervention is the biodiversity present on their school grounds. In Chapter 5, we discuss how 

the diversity of species caught varied greatly between schools. We know that pupils 

commonly named / drew species captured on cameras and, therefore, for schools with low 

biodiversity, pupils had more limited opportunities to learn about different species, although 

they did still learn about a range of species from the workshop and by classifying other 

projects on MammalWeb. Another line of investigation could be to look at whether certain 

activities (e.g., uploading footage or classifying) or intensity of engagement (both of which 

are looked at in Chapter 5) correlates with larger impacts on pupils.  
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Although, in this study, we considered connection to nature and knowledge of UK mammals 

separately, further analysis could explore any correlations that exist between pupils with low 

connection to nature and low knowledge of UK mammals. Previous studies have shown that 

increasing environmental knowledge is not necessarily a pathway for improving nature 

connection (Lumbar et al., 2017). However, environmental knowledge can facilitate attitude 

formation, in turn influencing pro-environmental behaviours (Kollmuss and Agyeman, 2002; 

Duerden and Witt, 2010). Further investigation could look at whether pupils with a low initial 

connection to nature also had limited knowledge of UK mammals, and whether those with 

low initial knowledge also benefitted more from the intervention. Further research looking at 

the links between connection to nature and knowledge, and assessing whether the 

intervention has a larger effect on certain groups of schools / pupils, could allow projects to 

be more specifically targeted to those that would benefit the most. 

 

To conclude, our study showed that even with our relatively short intervention, children’s 

knowledge of UK mammals and connection to nature can be improved, especially if it starts 

from a low baseline. Using camera traps and participating in a citizen science project offers 

school pupils the chance to learn about and connect with species they might have little 

exposure to otherwise. Ultimately, creating these opportunities will allow children to 

experience the benefits that come from increased connection to nature as well as increasing 

awareness of local species, which will help with biodiversity conservation in the long-term.  
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4.6 Supplementary material 

 
 
Appendix 1 
 
Pupil workshop 
 
Objective: To engage pupils in using camera traps in their school ground to monitor wildlife, 
to introduce them to different UK mammal species, and make them aware of why 
monitoring is important. 
 
Resources:  

• Camera traps (with memory cards, batteries, a strap, and a lock) 

• Mammal cards (laminated photos of UK mammals) 

• Access to computer with internet 

• Access to outdoor space 

Length of session: One hour 
 
5 mins – Introductions 

• Introduce yourself, the project, and what you’ll be doing today 

5 mins – Looking at the camera trap 

• Show pupils the camera trap 

• Explain how the camera trap works 

o Triggered by motion and heat so when an animal walks past it takes a photo 

o Images stored on an SD card which can then be looked at on a computer 

20 mins – Setting up the camera trap 

• Before going outside ask pupils to keep an eye out (on their way outside) for any 

signs of animals. Ask pupils for suggestions of what they might look for (guide to 

answers such as footprints) 

• Once outside, ask pupils what signs of animals they saw 

• Go to where their school’s camera trap is currently set up (or, if not set up yet to a 

place you think would be suitable to set it up) 

• Ask pupils to give a thumbs up or thumbs down if they think this is a good or bad 

place to put a camera to get photos of animals 

• Ask for a few suggestions of why they think it’s a good / bad place 

• Prompt pupils to think about setting the camera up near the footprints / other signs 

they might have seen 

10 mins – UK mammals 

• Give each pupil one mammal card 

• Ask if anyone isn’t sure what species of mammal their card is (answer by asking 

others for ideas) 
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• Ask pupils who think their animal is nocturnal to stand up (repeat for diurnal, 

explaining each term). Go through correct answers 

• Ask pupils to stand up if they think the mammal on their card is not from the UK. Go 

through answers, picking out case studies (e.g., racoon that was caught on a camera 

trap in Sunderland) 

• Explain how monitoring mammal populations is very important. For example, in 

tracking population growth and movement of non-native species.  

10 mins – MammalWeb platform 

• Introduce the MammalWeb website 

• Go to the spotter page and classify a selection of images from a range of projects 

(including their schools page if they have uploaded) 

5 mins – Mammal articulate  

• Using everything they’ve learnt about different mammal species today, ask for 

volunteers to play mammal articulate 

• Use the mammal cards and ask pupils to describe the mammal on their card (give 

examples of things they can use to describe e.g., nocturnal / diurnal, native / non-

native) 

5 mins – Summary and wrap up 

• Summarise everything we’ve done and learnt about today 
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Appendix 2 
 
Teacher training workshop 
 
Objective: To increase teacher confidence and skills in using camera traps, teaching about 
UK mammals, and using the MammalWeb platform. 
 
Resources:  

• Camera traps (with memory cards, batteries, a strap, and a lock) 

• Mammal cards (laminated photos of UK mammals) 

• Access to computer with internet 

• Access to outdoor space 

Length of session: One hour 
 
5 mins – Introductions 

• Introduce yourself, the project, and what you’ll be doing today 

5 mins – Looking at the camera trap 

• Pass the camera trap around 

• Explain how the camera trap works 

o Triggered by motion and heat 

o Images stored on an SD card 

o Look at setting on the camera – set to take three images at a time and 

minimum interval between images. 

20 mins – Setting camera traps up outside 

• Pair up teachers, give each a camera trap 

• Ask them to have a wander around and set up their camera trap in what they think is 

a good position  

• Have a look at each of the camera trap set ups and for each one ask teachers to 

name one good thing and one bad thing about the placement (for tips on placement 

see MammalWeb’s guide here: Camera-trap-placement-guide.pdf 

(mammalweb.org)) 

• Talk also about looking for signs and tracks of animals when placing the camera 

• Take down camera traps and return inside 

10 mins – UK mammals 

• Give each teacher one mammal card 

• Ask if anyone isn’t sure what species of mammal their card is (answer by asking 

others for ideas) 

• Ask teachers who think their animal is nocturnal to stand up (repeat for diurnal and 

crepuscular, explaining each term) 

• Go through correct answers. Talk about how this exercise could be repeated with 

their class. Ask how the MammalWeb platform could be used to support this – e.g., 

looking at times of day / night when animals were captured 

https://www.mammalweb.org/images/schools/Camera-trap-placement-guide.pdf
https://www.mammalweb.org/images/schools/Camera-trap-placement-guide.pdf
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• Ask teachers to stand up if they think the mammal on their card is not from the UK. 

Go through answers picking out case studies (e.g., racoon that was caught on a 

camera trap in Sunderland) 

• Explain how monitoring mammal populations is very important. For example, in 

tracking population growth and movement of non-native species.  

10 mins – MammalWeb platform 

• Introduce the MammalWeb website 

• Show each teacher their school’s project page 

• Go to the trapper page and run through how they upload images from their camera 

trap 

• Go to the spotter page and classify a selection of images from a range of projects 

5 mins – Mammal articulate / charades 

• Using everything they’ve learnt about different mammal species today, ask for 

volunteers to play mammal articulate 

• Use the mammal cards and ask teachers to describe the mammal on their card (give 

examples of things they can use to describe e.g., nocturnal / diurnal, native / non-

native) 

• After a few rounds of articulate, do a round of charades where teachers act out the 

mammal species instead 

5 mins – Summary and wrap up 

• Summarise everything we’ve done today and how it can be used going forward (i.e., 

using the camera trap / activities / MammalWeb platform in the classroom) 
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Appendix 3 

 

 

 

 

 

 

 

 

 

 

 

 

 

Please tell us how old you are: …………………………………. 
 
Please tell us if you are a boy or a girl: ……………………………….  

MammalWeb impact questionnaire 
(Pupil) 

 
We would be really grateful if you could complete this short questionnaire, which will take you around 

10 minutes. If you cannot answer a question then either leave it blank, or ask a teacher. When you have 

completed the questionnaire, hand it back to your teacher. 

Thank you! 

Please name all the mammals you know that live in the UK. 

 
 

Out of the mammals you have listed above, please underline all the ones you think are introduced (have 
come from another country). 
 

Please tick all the things that come in to your 

mind when you hear the word ‘science’. 

 
 

 Nature 
 Tests 
 Space 
 Animals 
 Explosions 

 

 Rockets 
 School 
 Discovery 
 Doctors 
 Experiment 

 
Please tick all the things you like to do when not in 

school. 

  Go on a nature walk 
 Visit a zoo 
 Crafts 
 Do experiments or 

use science kits 
 

 Read books 
 Watch TV 
 Play in the garden 
 Go to museums 
 Play video games 

 

When you are NOT in school, how much do you 

talk about science with other people? 

 
 

 Never 
 A little bit 
 A lot 

Do you know any scientists? If so, please tell us who 

they are by ticking the box or boxes below. 

 
 

 Mum or Dad 
 Brother or Sister 
 Aunt or Uncle 

 Another family 
member 

 A friend 
 Someone else 
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Please tell us how much you agree or disagree with each of the following statements, by putting a tick in 

the relevant box. 

(Cheng and Monroe, 2010) 

 

That is the end of the questionnaire. 

Thank you!

Statements Strongly 

Agree 
Agree 

Neither 

agree or 

disagree 

Disagree 
Strongly 

Disagree 

I like to hear different sounds in nature         

I like to see wild flowers in nature         

When I feel sad, I like to go outside and 

enjoy nature   
     

Being in the natural environment makes me 

feel peaceful   
     

I like to garden      

Collecting rocks and shells is fun      

I feel sad when wild animals are hurt      

I like to see wild animals living in a clean 

environment 
     

I enjoy touching animals and plants      

Taking care of animals is important to me        

Humans are part of the natural world      

People cannot live without plants and 

animals   
     

Being outdoors makes me happy      

My actions will make the natural world 

different 
     

Picking up litter on the ground can help the 

environment 
     

People do not have the right to change the 

natural environment 
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Table S1. Categories used for analysing nature drawings and naming mammals activity on questionnaires. 

 

Wild terrestrial UK Mammals [ 1 ] 
 

 

Native 
[ a ] 

(Younger and older years) 

Non-native / non-native 
naturalised / vagrant / without 

established populations 
[ b ] 

(Older years) 

Mix native / non-native 
[ c ] 

(Younger and older years) 

Mix wild / pet 
[ 2 ] 

(Younger and older years) 

badger 

bat 

beaver 

boar 

field mouse 

fox 

greater horseshoe bat 

hedgehog 

lesser horseshoe bat 

long eared bat 

mole 

mountain hare 

otter 

pine marten 

pipistrelle bat 

polecat 

red deer 

red squirrel 

american mink 

black rat 

brown hare 

brown rat 

chinese water deer 

fallow deer 

grey squirrel 

house mouse 

mink 

raccoon 

reindeer 

wallaby 
 

deer 

dormouse 

hare 

leveret 

mouse 

squirrel 

stag 
 

bunny  

rabbit  

rat  

rodent  
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roe deer 

Scottish wildcat 

shrew 

stoat 

vole 

water vole 

weasel 

wild boar 

wildcat 

wood mouse 
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Domestic / farm 
mammals 

[ 3 ] 
(Younger and older 

years) 

Non-mammals 
[ 4 ] 

(Younger and older 
years) 

 

Marine mammals 
[ 5 ] 

(Older years) 
 

Exotic mammals 
(not found in the 

wild in the UK) 
[ 6 ] 

(Younger and older 
years) 

 

Extinct / doesn’t 
exist 
[ 7 ] 

(Older years) 

Human 
[ 8 ] 

(Younger and older 
years) 

Mammal 
[ 9 ] 

(Younger and older 
years) 

alpaca 

baby goat 

bull 

cat 

chinchilla 

cow 

degu  

dog 

domestic cat 

domestic dog 

donkey 

farm animal 

ferret 

foal 

gerbil 

ginger tabby 

goat 

guinea pig 

guinea pig 

hamster 

highland cow 

alligator 

ant 

barracuda 

bee 

beehive 

beetle 

bird 

bird egg 

birds about 50 

blackbird 

butterfly 

caterpillar 

centipede 

chick 

chicken 

crab 

crocodile 

crow 

duck 

duckling 

egg 

bottlenose dolphin 

dolphin 

elephant seal 

humpback whale 

killer whale 

narwhal 

porpoise 

sea otter 

seal 

sperm whale 

walrus 

whale 
 

anteater 

antelope 

ape 

arctic fox 

baboon 

bear 

big cat 

black bear 

black panther 

bobcat 

brown bear 

buffalo 

camel 

cheetah 

chimp 

chimpanzee 

chipmunk 
duck billed 
platypus 

elephant 

elk 

dinosaur 
haggis 
mammoth 

unicorn 
 

explorer 

family 

human 

man 

surfer 

teacher 
 

mammal 
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hog 

horse 

kitten 

lamb 

llama 

mule 

pig 

pony 

puppy 

sheep 

sheepdog 

shetland pony 

skinny pig 

stray cat 

stray dog 

  

falcon 

fish 

flamingo 

fly 

frog 

frog spawn 

goldfish 

grasshopper 

hawk 

honeybee 

hummingbird 

insect 

kingfisher 

ladybird 

lizard 

lobster 

magpie 

moth 

mushroom 

octopus 

osprey 

owl 

parakeet 

parrot 

pelican 

penguin 

pigeon 

poison dart frog 

giraffe 

gopher 

gorilla 

grizzly-bear 

hippo 

hyena 

jaguar 

kangaroo 

koala 

lemur 

leopard 

liger 

lion 

lioness 

lynx 

meerkat 

monkey 

moose 

mountain goat 

ocelot 

opossum 

orangutan 

ox 

panda 

panther 

platypus 

polar bear 

porcupine 
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reptile 

robin 

rooster 

scorpion 

seagull 

shark 

slug 

snail 

snake 

spider 

starfish 

stingray 

swan 

tarantula 

tortoise 

turtle 

wasp 

woodlouse 

woodpecker 

worm 

pheasant 

blue tit 

peacock 

tadpole 

bug 

goose 

geese 

seahorse 

puma 

red panda 

rhino 

skunk 

sloth 

snow leopard 

spiny ant eaters 

squirrel monkey 

sun bear 

tiger 

water hog 

wilddog 

wolf 

zebra 

zoo animal 
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jellyfish 

mealworm 

grass snake 

komodo dragon 

eagle 

eel 

woodpigeon 

ostrich 

raven 

red robin 

jackdaw 

hen 

ladybug 

budgie 

heron 

viper 

flower 

toad 

squid 

sword fish 

cockerel 

gecko 

turkey 

grouse 

black widow spider   
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Animal 
[ 10 ] 

(Younger and older 
years) 

Habitat / place 
[ 11 ] 

(Younger years) 

Manmade 
[ 12 ] 

(Younger years) 

Plant / part of plant 
[ 13 ] 

(Younger years) 

Water 
[ 14 ] 

(Younger years) 

Weather / 
atmosphere 

[ 15 ] 
(Younger years) 

Other 
[ 16 ] 

(Younger years) 

animal 
 

beach 

bedrock 

cave 

cliff 

field 

forest 

hill 

island 

jungle 

meadow 

molehill 

mountain 

mud 

nest 

rainforest 

rock 

sandpit 

soil 

spiderweb 

stone 

volcano 

waterfall 

world 

 

aeroplane 

balloon 

bench 

bird feeder 

bird house 

boat 

bridge 

car 

chair 

football 

hospital 

house 

statue 

table 

tree house 

van 

wall 
watering 
can 

 

acorn 

apple tree 

ash tree 

beanstalk 

berry 

blossom 

blueberries 

branch 

bush 

cactus 

coconut tree 

crops 

daffodil 

daisy 

dandelion 
evergreen 
tree 

flower 

grass 

leaf 

log 

mango 

oak tree 

petals 

lake 

ocean 

pond 

puddle 

river 

sea 

water 

 

air 

cloud 

lightning 

rain 

rainbow 

sky 

summer 

sun 

sunshine 

weather 

wind 

 

fire 

heart 

hunting 

moon 

poo 

star 
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plant 

root 

rose 

seed 

stick 

sunflower 

tree 

twig 

wood 
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Figure S1. Drawings from when pupils were asked to draw what they think nature is and the percentage 
of pupils who drew them. Showing drawings that appeared in the top 20 things drawn in any of the 
questionnaires. 
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Figure S2. Species named when pupils were asked to name all the mammals they know that live in the 
UK and the percentage of pupils who named them. Showing species that appeared in the top 20 things 
drawn in any of the questionnaires.  
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“Please draw what you think nature is” 
 

Immediately post-intervention (Q2) 
143 participants | Aged 4 - 7 

“Please draw what you think nature is” 
 

Three months post-intervention (Q3) 
44 participants | Aged 4 - 7 

“Please name all the mammals you know that 
live in the UK” 

Immediately post-intervention (Q2) 
367 participants | Aged 7 - 11 

“Please name all the mammals you know that 
live in the UK” 

Three months post-intervention (Q3) 
216 participants | Aged 7 - 11 

Figure S3. Word clouds of answers / drawings from two activities done with participating pupils immediately post-
intervention (top) and three months post intervention (bottom). Left (green) shows top 50 things participating 
pupils aged 4-7 drew when asked to draw what they think nature is. Bottom (blue) shows the top 50 animals 
named when participating pupils 7-11 were asked to name all the mammals they know that live in the UK. Word 
size and colour is scaled to the number of individuals who drew / wrote it with the largest / darkest words being 
the most frequently written / drawn.  
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Table S2. Model outputs from GLMMs to test for influence of questionnaire and intervention on number of mammals drawn, number of animals (in various 
groupings) named, and connection to nature scores. Top candidate models and all models within 6 AIC are shown.  
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Wild UK 
mammals drawn 

All data (n = 343) -1.056 + + + 8 791.3 0 0.112 0.410 

           

Wild UK 
mammals drawn 

Restricted (n = 54) -1.888 + + + 7 133.2 0 0.762 0.793 

  -2.206 +   4 136.3 3.13   

  -2.516    2 136.6 3.47   

  -2.206 + +  5 138.4 5.25   

  -2.517  +  3 138.7 5.55   

           

Non-mammals 
drawn 

All data (n = 343) -0.345 +   5 1472.3 0   

  -0.245 + +  6 1474.1 1.89   

  -0.143 + + + 8 1477.7 5.44   

           

Non-mammals 
drawn 

Restricted (n = 54) -0.320    3 370.9 0   
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  -0.534 +   5 371.4 0.53   

  -0.291  +  4 372.9 1.99   

  -0.506 + +  6 373.4 2.58   

  -0.469 + + + 8 376.8 5.96   

           

Exotic drawn All data (n = 343) -2.825 +   5 391.6 0   

  -2.852 + +  6 393.6 2.04   

  -3.398 + + + 8 394.8 3.23   

           

Exotic drawn Restricted (n = 54) -3.561    3 93.4 0   

  -3.793  +  4 95.3 1.88   

  -3.081 +   5 95.4 1.93   

  -3.314 + +  6 97.3 3.87   

  -3.506 + + + 8 99.0 5.60   

           

Wild UK 
mammals named 

All data (n = 674) 0.04867 + + + 8 4954.8 0 0.127 0.674 

           

Wild UK 
mammals named 

Restricted (n = 176) 0.3217 + + + 8 2154.7 0 0.072 0.713 

           

Domestic 
mammals named 

All data (n = 674) 1.296 NA NA NA 3 5684.7 0   

  

1.256 + NA NA 5 5685.0 0.34     

1.319 NA + NA 4 5686.6 1.96     

1.273 + + NA 6 5687.0 2.33     

1.345 + + + 8 5687.9 3.29   
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Domestic 
mammals named 

Restricted (n = 176) 1.361 NA NA NA 3 2399.7 0   

  

1.431 NA + NA 4 2401.4 1.76     

1.484 + + + 8 2401.5 1.88     

1.331 + NA NA 5 2402.5 2.85     

1.401 + + NA 6 2404.3 4.62   

           

Non-mammals 
named 

All data (n = 674) -0.8065 + + + 8 2517.7 0 0.014 0.442 

           

Non-mammals 
named 

Restricted (n = 176) -1.430 NA NA NA 3 877.4 0   

  

-1.496 NA + NA 4 879.3 1.90     

-1.434 + NA NA 5 881.1 3.72     

-1.204 + + + 8 881.7 4.26     

-1.500 + + NA 6 883.0 5.64   

           

Marine mammals 
named 

All data (n = 674) -2.610 + + + 8 1525.0 0 0.014 0.289 

  

-2.081 + NA NA 5 1525.8 0.78     

-2.263 + + NA 6 1527.3 2.33     

-2.120 NA NA NA 3 1528.4 3.43     

-2.314 NA + NA 4 1529.9 4.89   

           

Marine mammals 
named 

Restricted (n = 176) -2.373 NA + NA 4 688.3 0   

  

-1.953 NA NA NA 3 688.9 0.55   
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-2.542 + + + 8 690.2 1.85     

-2.257 + + NA 6 690.8 2.44     

-1.837 + NA NA 5 691.3 2.97   

           

Exotic mammals 
named 

All data (n = 674) -0.14080 + + + 8 3475.6 0 0.032 0.518 

           

Exotic mammals 
named 

Restricted (n = 176) -0.21570 + + + 8 1495.6 0 0.027 0.468 

  

-0.10660 + NA NA 5 1497.4 1.80     

-0.05347 + + NA 6 1499.3 3.71   

           

Total animals 
named 

All data (n = 674) 2.104 + + + 8 7252.7 0 0.030 0.670 

           

Total animals 
named 

Restricted (n = 176) 2.190 + + + 8 3054.5 0 0.018 0.743 

           

Correctly 
identified as 
from / not from 
the UK 

All data (n = 674) 0.2402 + + + 8 4747.1 0 0.043 0.546 

           

Correctly 
identified as 
from / not from 
the UK 

Restricted (n = 176) 0.3519 + + + 8 2037.1 0 0.043 0.544 
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UK mammals 
named to species 
level 

All data (n = 674) -0.53390 + + + 8 4045.3 0 0.145 0.603 

           

UK mammals 
named to species 
level 

Restricted (n = 176) -0.30090 + + + 8 1785.9 0 0.097 0.643 

           

Connection to 
Nature Scores 

All data (n = 674) 4.172 + NA NA 6 1397.1 0   

  

4.224 + + + 9 1397.2 0.09     

4.208 + + NA 7 1410.8 1.56   

           

Connection to 
Nature Scores 

Restricted (n = 182) 4.278 + NA NA 6 451.6 0   

  

4.245 + + NA 7 453.1 1.50     

4.253 + + + 9 453.5 1.94     

4.300 NA NA NA 4 456.8 5.26   

           

Low initial 
connection to 
nature scores 

Restricted to pupils 
who answered all 
three questionnaires 
and had a low initial 
score (n = 44) 

3.664 + + + 9 111.7 0 0.163 0.547 

  

3.682 + NA NA 6 112.7 1.02     

3.579 + + NA 7 113.0 1.33   
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Figure S4. Proportion of pupils from control schools only who drew / named species captured on either any 
participating school’s camera trap or on their own camera trap. Left graph is for pupils aged 4 – 7 who were 
asked to draw what they think nature is. Right graph is for pupils aged 7 – 11 who were asked to name all 
the mammals they know that live in the UK. Error bars show ± standard error. 
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Chapter 5: Teacher engagement with citizen science: Experiences from an 
ecological camera trapping project and recommendations for future projects 

 

 

 

 

  

Hedgehog (Erinaceus europaeus) | Willington Primary School, County Durham 
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5.1 Abstract 

 

Engaging schools in ecological citizen science projects can have positive impacts on pupils and 

could help expand spatial coverage for species monitoring. For projects to have the greatest 

impact, it would be beneficial to ensure teachers feel more confident and willing to continue 

engaging with the project long-term. However, robust evaluation of teacher perspectives on 

ecological citizen science projects is currently rare. Furthermore, it would be beneficial to 

know what types of intervention are most impactful, for example engaging with pupils 

directly or training teachers to carry out activities independently with their class. In this study, 

we evaluate how teachers engaged with a camera trapping citizen science project, 

MammalWeb. We focussed on: whether there were differences in engagement between 

schools who participated in a workshop for pupils or for teachers; the data that schools 

contributed to MammalWeb and how this compared to general MammalWeb users; and the 

quantitative and qualitative feedback received from teachers. We found no significant 

differences in the type (uploading data or classifying images) or level of engagement between 

the two intervention groups (pupil workshop and teacher workshop); however, schools that 

took part in teacher workshop engaged more with MammalWeb, independently, following 

the intervention period. Schools also designed their own classroom activities around the 

topic, including writing poems and making presentations on species captured. Schools 

collected data on a wide range of mammal and bird species and surveyed habitats such as 

grassland and park which are infrequently surveyed by general MammalWeb users. Feedback 

from teachers was, in general, very positive about the project, although several noted 

challenges to engaging with the project long-term, including: timing within the school year; a 

lack of species captured on their camera; and difficulty using the camera trap or platform. 

Reflecting on teacher feedback, as well as our own experiences of running the project, we 

make five specific suggestions for future projects with similar objectives. 
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5.2 Introduction 

 

Nature-based citizen science projects can have positive impacts on participants including 

increased wildlife knowledge (Brossard et al., 2005; Forrester et al., 2017; Jordan et al., 2011) 

and positive changes in behaviours and attitudes towards the environment (Haywood et al., 

2016; Lewandowski and Oberhauser, 2017). For children, specifically, participation in citizen 

science projects can offer the chance to become more connected to nature and gain 

ecological knowledge (see Chapter 4) which could help to reverse the “extinction of 

experience” and “nature deficit disorder” suggested to be negatively impacting children today 

(Louv, 2005; Pyle, 1978).  

 

In addition to the potential benefits for the participants themselves, schools could make a 

substantial contribution to species monitoring efforts through participation in ecological 

citizen science projects. There are over 30,000 schools and over 600,000 teachers employed 

in the UK alone (ONS, 2021a); establishing biodiversity monitoring projects in even a fraction 

of these could vastly improve monitoring of many species. However, when children have been 

involved in ecological surveys, issues with data quality have been raised (Miczajka et al., 2015; 

Saunders et al., 2018; White et al., 2018). Any ecological citizen science projects in schools 

would need to ensure data quality is maintained, perhaps by a verification system. In the 

project presented here, biodiversity of school grounds is monitored using camera traps. 

Collecting footage of species surveyed, which can then be classified not only by the schools 

themselves but also verified by others, may help alleviate some of the potential problems 

around data quality. 

 

To date, studies where children in schools have participated in citizen science projects have 

often been small scale (< 10 schools), short interventions, requiring a lot of time and input 

from scientists (Blumstein and Saylan, 2007; Marchant et al., 2019; Prendergast et al., 2022; 

Saunders et al., 2018). Schuttler et al. (2018) presented a study where 28 schools from across 

the world deployed camera traps in and around their schools to monitor wildlife, submitting 

their footage to the citizen science project eMammal. Promisingly, Schuttler et al. (2018) 

concluded that the schools contributed valid scientific data, important for conservation and 

research. However, the main limitation cited from the eMammal school project was that it 



 156 

was limited by the time scientists had available to support schools with deploying camera 

traps and analysing footage. With limited time available, it would be useful to know which 

approaches are most impactful. For example, engaging with pupils directly through 

workshops delivered by professionals can have many positive impacts including increasing 

knowledge of, or interest in a topic (Drissner et al., 2013; Laurson et al., 2007). Equally, 

training teachers to carry out activities themselves may help to achieve more large-scale and 

long-term engagement by increasing teacher confidence and enthusiasm to participate. By 

analysing different approaches, citizen science projects can design school-based 

interventions that will maximise engagement with the project, leading to benefits for all 

participants involved and increasing the quantity of data collected. 

 

In any citizen science project, retaining participants long term is challenging (Sauermann and 

Franzoni, 2015; Seymour and Haklay, 2017). Retaining teacher participation is likely to come 

with its own challenges. Ecological citizen science projects often require participants to spend 

time outdoors, either surveying or setting up equipment. In previous studies, teachers have 

reported a number of barriers to spending time teaching outdoors, including a lack of 

confidence (Nundy et al., 2009; van Dijk-Wesselius et al., 2020; Waite, 2020), inflexible 

teaching schedules (van Dijk-Wesselius et al., 2020), and fear for children’s safety (Skamp and 

Bergmann, 2001). Furthermore, there may be additional challenges to participating in citizen 

science projects, such as ensuring projects meet national curriculum aims or difficulty using 

specialist equipment. To date, most studies that have gathered feedback from teachers 

participating in citizen science projects have been small-scale, with feedback, in turn, gained 

from relatively few (< 10) teachers (Schuttler et al., 2018a; Soanes et al., 2020; White et al., 

2018). Feedback from teachers is essential for understanding the barriers teachers face in 

participating in ecological citizen science in schools and for evaluating the approaches that 

work best for them. More detailed feedback from teachers will help future projects to work 

with schools more effectively. 

 

In this study we aim to: (a) assess how teachers engaged with an ecological citizen science 

project in schools and whether there was a difference if they participated in pupil workshops 

or teacher workshops; (b) compare data submitted by teachers with data submitted by 

general citizen science participants; and (c) summarise quantitative and qualitative feedback 
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from teachers on engaging with citizen science in schools. Using all of this we will provide 

recommendations for future projects wishing to use similar approaches in schools. 

 

 

5.3 Methods 

 

5.3.1 Participating schools and intervention 
 

Participating primary schools in North-East England were recruited and assigned to an 

intervention group (pupil workshop or teacher workshop) as described in Chapter 4. In this 

Chapter, we present data from more schools than in Chapter 4 as there were schools that 

took part in the project overall but did not answer the pupil questionnaires. All interventions 

in schools took place between January and May 2019. Schools were lent a camera trap to use 

for one-month and during that month received either a workshop for pupils or for teachers. 

The content of the workshops was similar (see Appendix 1 and 2 in Chapter 4); however, 

teacher sessions were carried out only with teachers, usually after school during a staff 

meeting, and pupil workshops were carried out during the school day. Although teachers 

were usually present in the pupil workshops, they were not actively involved in activities and 

often did their own work (e.g., marking) in the classroom whilst the workshop was taking 

place. Wherever possible, schools were randomly assigned to one of the intervention groups. 

However, there were some cases (10 schools) where due to geography and logistics, schools 

chose which intervention group they wished to be a part of. This resulted in uneven sample 

sizes between the two intervention groups (teacher and pupil workshops). Whilst balanced, 

random samples would have been preferable, we still had a good number and variety of 

schools in each group, particularly in comparison to other school-based intervention studies 

(e.g., Marchant et al., 2019; Prendergast et al., 2022; Saunders et al., 2018). Therefore, we do 

not believe this limitation influenced our results. 

 

Teachers were encouraged to upload and classify images from the project to MammalWeb 

(www.MammalWeb.org). They were encouraged to do this with their class, but some 

teachers may have done these activities on their own. Children could also set up their own 

accounts with their parents at home but we did not monitor these sign ups. Similarly, other 

http://www.mammalweb.org/
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teachers within the school could sign up to the project, but we only monitored the accounts 

of the lead teacher who had taken part in all aspects of the intervention (i.e., they or their 

class had done the workshop). Further details on the intervention, including outlines of the 

pupil and teacher workshops can be found in Chapter 4. 

 

5.3.2 Data collection and analysis 
 

We asked each school to confirm when they had registered on MammalWeb via email. Once 

they had confirmed they had registered on MammalWeb, we confirmed their user account 

was active and then used an anonymous ID number to track their engagement with the 

project. We used MammalWeb databases to look at how many users (and therefore schools) 

had uploaded footage and how many had classified footage. We provide summary statistics 

for how many image sequences were uploaded and classified and, on average, how many 

sessions (uploading or classifying) schools conducted on MammalWeb. We defined a session 

as starting at the point where a user either uploaded footage or classified one sequence and 

ending if there was an interlude of at least 30 minutes before further uploading or classifying. 

If a user uploaded footage and then immediately (within 30 minutes) classified footage, we 

counted this as two sessions as they are two different types of activity that require navigating 

to a different part of the website (indicating more engagement with the platform). 

 

We looked at differences in engagement between the two intervention groups: pupil and 

teacher workshop. Firstly, we looked at the proportion of schools in each intervention group 

who had engaged with MammalWeb by either registering, uploading footage or classifying 

footage. We then looked at the proportion of schools in each group that had engaged with 

MammalWeb during the one-month intervention and up to two years (July 2021) after the 

intervention. As data were not normally distributed, we carried out Mann-Whitney U tests 

between the two groups for the number of upload / classification sessions overall and the 

number of sessions before and after the intervention. 

 

All footage and metadata submitted by schools followed the standard image processing 

method for footage uploaded to MammalWeb (Hsing et al., 2022). This included schools being 

prompted to select, from a list of options, the habitat within which the camera trap was 
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deployed. All schools had their own project set up on MammalWeb to which they uploaded 

footage. All schools uploaded images (rather than videos) from their camera traps and images 

were sequenced through MammalWeb in the standard way, by grouping images taken < 10 

seconds apart (Hsing et al., 2022). All images submitted by schools for this project were 

classified on MammalWeb by both general and school users. We generated consensus 

classifications for each image sequence, and we then checked these classifications and 

amended any which were incorrect.  

 

We looked at the differences in sites surveyed and species captured between school users 

and general MammalWeb users over the same timeframe. To do this, we took the earliest 

and latest dates from the images submitted by schools: 22nd January and 4th July 2019, 

respectively. We filtered image sequences on MammalWeb to within these two dates, and 

then further filtered to only sites which fell within the same geographical region in North-East 

England (within the boundaries of County Durham, Gateshead, Newcastle, Hartlepool, 

Sunderland and Middlesborough). We classified 27 image sequences from this period and 

area that had not already been classified on MammalWeb. All other image sequences (6,178) 

had one or more classifications from MammalWeb users. We generated consensus 

classifications and checked all sequences which had classifications of “Don’t know”, “Other” 

and “Unidentified bird” and amended any which were incorrect. We then used the consensus 

classifications, as well as our own classifications to produce the final species list for this 

dataset.  

 

5.3.3 Teacher feedback 
 

Qualitative and quantitative feedback was collected via paper questionnaires given out to all 

participating teachers, three months after the end of the intervention period. Questionnaires 

included Likert-scale questions about the MammalWeb platform and a space to give general 

qualitative feedback about the project (Appendix 1). Qualitative feedback from many 

teachers focused on multiple issues, so each teacher's feedback was split so that each 

individual piece of feedback focussed on only one issue. A thematic analysis was then carried 

out, with all individual pieces of feedback categorised to help summarise and evaluate the 

key themes. We had no preconceptions about the themes and therefore took an inductive 
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approach to analysis, creating themes from the data available. An iterative approach was used 

by returning to the beginning of the sample every time a new theme was identified to ensure 

the feedback was not miscategorised. This type of thematic analysis has been shown to be 

beneficial for analysing qualitative feedback and has been used in a number of similar studies 

(Maguire and Delahunt, 2017; Fägerstam, 2012; Benavides-Lahnstein and Ryder, 2019). 

 

5.3.4 Ethics statement 
 

Approval for this study was granted by Durham University’s Department of Anthropology 

Ethics and Data Protection Committee. Consent was obtained in writing from teachers. 

Personal data on MammalWeb is stored in a separate table and was only used during this 

study for confirmation of the accounts being created and to link each teacher to the 

appropriate project on MammalWeb. Analysis on the use of MammalWeb was carried out 

using anonymous user IDs. Teacher questionnaires were anonymised by assigning a number 

to each teacher.  

 

 

5.4 Results 

 

5.4.1 School engagement with MammalWeb 
 

Overall, 34 schools took part in the project. Of these, 21 took part in the pupil workshops and 

13 in the teacher workshops. Prior to the project, two schools (in the pupil workshop 

intervention group) were already registered and participating on MammalWeb, as they had 

been involved in a separate outreach project. We therefore removed these schools from the 

first part of our analysis looking at engagement with MammalWeb (leaving 32 schools) but 

included them in the species captured and teacher feedback analysis section. 

 

Following the project, almost all schools (28/32) had confirmed that they had registered on 

MammalWeb. Around two thirds of all schools (20/32) uploaded footage to MammalWeb 

and a smaller proportion (14/32) classified footage. Of the schools that uploaded footage, the 

average number of sequences uploaded was 180, but this ranged widely from just 4 to 1088 
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sequences (Table 1). The number of sequences classified by schools also ranged widely from 

2 to 347 and, although fewer schools participated in classifying, the average number of 

classification sessions was higher than upload sessions (3 vs. 2 respectively) (Table 1). 

 

 

Table 1. Mean number of sequences uploaded and classified by schools and average number of 
sessions uploading or classifying for schools who participated in respective activities on 
MammalWeb. Numbers in square brackets show range. 
 

 

Schools that participated in uploading 

footage (20) 

 

 

Schools that participated in classifying 

footage (14) 

 

 

Average number of sequences uploaded: 

 

180 

[4 – 1088] 

 

 

Average number of sequences classified: 

 

71 

[2 – 347] 

 

Average number of upload sessions: 

 

2 

[1 – 7] 

 

Average number of classification sessions: 

 

3 

[1 – 11] 

 

 

 

Overall, the level of engagement between the two intervention groups was very similar when 

looking at both the proportion of schools who had registered, uploaded, or classified footage 

(Figure 1) and the number of sessions on MammalWeb they had completed (Table S1). 

However, the timings of when schools had engaged with MammalWeb did differ between the 

two groups. More schools engaged with MammalWeb during the one-month intervention in 

the pupil workshop group (Figure 1), although the number of sessions they conducted on 
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MammalWeb was not significantly different between the two groups (Table S1). There was a 

large difference in the proportion of schools who had engaged with MammalWeb after the 

intervention period with only 3 / 19 pupil workshop schools engaging with MammalWeb 

during this time, compared to 9 / 13 of teacher workshop schools (Figure 1). Teacher 

workshop schools also did significantly more sessions on MammalWeb after the intervention 

(Table S1). Although we looked at engagement up to two years after the intervention, the 

longest period of engagement was only three months and no schools continued to engage 

with the project in the next academic year. We do know, however, that 14 schools from our 

project signed up to a new project involving MammalWeb in 2021, with 10 schools receiving 

a place on the new project. Through this project, these schools have participated on 

MammalWeb in 2021 and 2022. 

 

 

 

Figure 1. The proportion of schools that engaged in the MammalWeb project. Left (A) shows the proportion 
of schools for each intervention group (teacher training and pupil workshop) that engaged in MammalWeb 
by registering, uploading footage, and classifying footage. Right (B) shows the proportion of schools that 
engaged in MammalWeb (by registering, uploading, or classifying) during the one-month intervention and up 
to one year after the intervention. Error bars show ± standard error. 
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Through email conversations and post-project questionnaires we know that teachers also 

designed their own activities involving MammalWeb. These were usually activities that used 

the project to cover areas of the curriculum other than science. For example, one school 

created an English lesson around writing poems about the species they had classified on 

MammalWeb and displayed the poems in their classroom alongside their camera trap images 

(Figure 2). Another school instructed pupils to make PowerPoints about species they had 

learnt about on MammalWeb during a computer class. Teachers also reported using some of 

the worksheets provided on the MammalWeb school page: 

https://www.mammalweb.org/en/community/schools. 

 

 

 

 

Figure 2. A display of poems written by pupils on which animals they had captured on their 
camera traps when participating in the MammalWeb project. 

https://www.mammalweb.org/en/community/schools
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5.4.2 Species captured on camera traps 
 

In total, 3672 camera trap image sequences were uploaded to MammalWeb by schools 

participating in this project. Of these, 2067 sequences did not contain any animals (Table S2). 

70% of these blank images came from two schools (both pupil workshop schools) where poor 

camera trap placement meant cameras were being triggered by vegetation or the rising / 

setting sun. The 1605 image sequences that captured animals included 28 different species. 

Among those were wild mammal species (the focus of monitoring efforts on MammalWeb) 

such as badgers, hedgehogs, rabbits and roe deer (Figure 3; Table S2).  

 

 

 

 

For the same time period (January – July 2019) and the same geographical area, 6205 

sequences in the MammalWeb database had been uploaded by 12 general MammalWeb 

users. These sequences were obtained from 24 sites, of which 22 had habitat information 

Figure 3. Photographs captured on camera traps by participating schools. Species captured during the project 
included badger (Meles meles) (A), hedgehog (Erinaceus europaeus) (B), rabbit (Oryctolagus cuniculus) (C), and 
roe deer (Capreolus capreolus) (D). 
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attached to them. The most common habitat surveyed by general MammalWeb users during 

this period was woodland, followed by forest and garden (Figure 4A). In comparison, schools 

deployed cameras at 21 sites, with habitat information given for 16. These sites were in six 

different habitats, the most common being grassland and park (Figure 4A). Of the sequences 

uploaded, the proportion of sequences that contained no animals was 32% for general 

MammalWeb users and 56% for school users. Although the relative occurrence of many 

species was similar between school users and MammalWeb users (e.g., blackbird, red fox, 

pheasant), woodland specialist species such as woodpigeon, roe deer, and grey squirrel were 

less common in the school dataset, whilst corvids (carrion crow, jackdaw and magpie) were 

all better represented in the school dataset (Figure 4B). 
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Figure 4. Habitats where camera traps were deployed (A) and most captured species (B) by school 
users and general MammalWeb users during the same survey period (January – July 2019) and in 
the same areas. All sites were within the regions of County Durham, Gateshead, Newcastle, 
Hartlepool, Sunderland and Middlesborough. Graphs show proportion of all sites surveyed in each 
habitat type (A) and proportion of sequences containing an animal for each of the ten most captured 
species by schools (B). Error bars show ± standard error. 
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5.4.3 Teacher feedback 
 

Overall, 39 teachers from 22 schools submitted their post-intervention questionnaires. 

Responses to questions about MammalWeb were generally positive, with the majority of 

respondents either strongly agreeing or agreeing with statements about MammalWeb (Figure 

5). The percentage of teachers who answered either neutrally or negatively was larger (in 

comparison to other questions) for statements about learning new things through 

MammalWeb and about MammalWeb being easy to use (Figure 5). 

 

 

 

 

 

Figure 5. Teacher responses to questions about the MammalWeb project submitted via paper questionnaire after 
the intervention. Bars show percentage of teachers (out of 39 total) who responded with each answer from strongly 
agree to strongly disagree. 
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Qualitative feedback in the open text box of the submitted questionnaires was received from 

25 teachers from 17 schools. After splitting the qualitative feedback into themes, 62% (23 of 

37 points) was positive. There were six comments that did not focus on any one aspect of the 

project but were instead a general positive statement about their own or the children’s 

experience (Table 2; Table S3). All other comments submitted were around general themes 

linking to things such as equipment (camera traps), the MammalWeb platform, timing, the 

workshops. The most common positive pieces of feedback were about the equipment, with 

eight teachers commenting that they enjoyed using the camera traps. The most common 

negative feedback was about the timing of the project – either that, in general, the teacher 

did not have enough time, or that the timing in the year was not good for their school as it 

interfered with tests or did not align with topics being taught (Table 2; Table S3). Although 

the comments were mostly positive about the MammalWeb platform, two teachers made 

negative comments about the platform. Two teachers commented that not much had been 

captured on their camera trap, and one teacher stated that they would have liked more 

resources following the project to carry it on.  
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Table 2. Qualitative feedback gathered from teachers via questionnaires submitted after the intervention. 
Grouped into categories of similar themes and presented here with number of teachers (out of 25 total) who 
provided feedback in each category. Shades (lighter to darker, respectively) indicate positive or negative feedback 
and rows ordered by number of feedback responses in each category. 

 

Feedback 
category 

 
Positive or 
negative 

  

Number of 
teachers 

Example quote 

Equipment 
(positive) 

Positive 8 

 
“The children all really enjoyed using the camera 
trap and looking at the pictures captured by the 

mammal camera in our school.” 
  

General positive Positive 6 

 
“The children have been very excited and 

engaged.” 
  

Timing Negative 6 

 
“It would have been better timed earlier in the 

school year as I feel it got lost amid the changing 
of classes and I did not have the time to dedicate 

to it that I would have liked.” 
  

MammalWeb 
platform 

Positive 5 

 
“The children can find out more about the local 

environment as part of a wider scale project, 
making comparisons to other schools.” 

  

Pupil / Teacher 
Workshops 

Positive 4 

 
“The workshop gave the children the opportunity 

to tap into the knowledge of an expert.” 
  

MammalWeb 
platform 

Negative 2 
 

“MammalWeb could be more child friendly.” 
  

Species caught 
on camera 

Negative 2 

 
“It would have been better if we'd caught 

something on our camera!” 
  

More resources Negative 2 

 
“Follow up material about the different 

animals/mammals living in the UK would have 
been useful.” 
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5.5 Discussion 

 

Our project was one of the largest studies to date to look at how schools engaged with an 

ecological citizen science project. Schools in North-East England participated in the citizen 

science project, MammalWeb, by deploying camera traps in their school grounds, uploading 

footage to the MammalWeb platform, and classifying footage uploaded by themselves and 

others. We found that almost all teachers engaged with our citizen science project, with some 

differences in the timing of engagement depending on whether schools received a workshop 

for pupils or for teachers. Schools captured a range of different species on their camera traps, 

making valuable contributions to species monitoring datasets on the MammalWeb platform. 

Teachers were generally very positive although many noted challenges to engaging with the 

project, particularly long-term. Here, we discuss our findings in respect to: how schools 

engaged with the MammalWeb platform and differences between our two interventions 

(pupil and teacher workshops); and the data generated by schools and how this compared to 

general MammalWeb users. Using teacher feedback, as well as our own findings and 

experiences from the project, we then make five recommendations for running ecological 

citizen science projects in schools. 

 

5.5.1 Use of MammalWeb in schools 
 

Although previous projects have engaged either individual or small groups of schools in 

science research (Blumstein and Saylan, 2007; Hsing et al., 2020; Saunders et al., 2018; 

Schuttler et al., 2018a), engaging schools in citizen science projects on larger scales remains 

challenging. For an ecological citizen science project to be run successfully in schools, there is 

Equipment Negative 1 “The MammalWeb camera is a bit delicate inside 
(the battery cover has snapped off as a result of 
inquisitive parents and children). It's also hard to 
know if you have the batteries in the right way 

round.” 
  

Teacher 
Workshops 

Negative 1 
 

“Shame we couldn’t do the staff training as well.” 
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a need to engage and enthuse teachers about the project. It is promising therefore, that our 

project has shown that teachers did engage with the citizen science project MammalWeb, 

including uploading and classifying footage and using the project to teach different areas of 

the curriculum.  

 

Schools in our project took part in one of two different interventions: workshops for pupils or 

for teachers. Determining which formats of engagement work best might help future citizen 

science projects in schools to plan their approach more effectively. Short workshops delivered 

to pupils in schools, either by researchers or professional science communicators are a 

common format for schools outreach (e.g., https://hands-on-science.co.uk/). Whilst there is 

evidence that short, one-off experiences such as these can support content learning and 

increase interest in a topic (Bell et al., 2009; Laursen et al., 2007), it has been suggested that 

longer, more in-depth approaches are needed for lasting impact (Archer et al., 2021). 

Equipping teachers with the skills and confidence necessary for them to deliver lessons 

around the topic (in our case, contributing to an ecological citizen science project) might be 

expected to be more sustainable, because the teachers can then take what they have learnt 

and apply it to their future teaching. Indeed, short teacher training workshops that focus on 

practical and interactive science teaching ideas have been shown to have long-term impact 

(Lydon and King, 2009).  

 

In our project, we saw very little difference in the number of schools who engaged with the 

project, and how much they engaged (i.e., how much they uploaded / classified footage) 

between the two intervention groups. This is perhaps unsurprising, given that the content of 

the two workshops was very similar. Our results did show, however, that more schools that 

participated in teacher workshops engaged with MammalWeb independently after the 

intervention period. This could be because, although teachers were present in the room 

during pupil workshops, they were not actively engaged with it and often were doing their 

own work in the background.  Therefore, unlike the pupil workshops, the teacher workshops 

likely equipped teachers with the skills and confidence necessary for participating in 

MammalWeb independently after the intervention.  
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Whilst schools returned camera traps to us after the one-month intervention, we know that 

some schools (at least 3) did purchase their own camera trap after the project which would 

have enabled them to continue contributing data to MammalWeb. Furthermore, all schools 

had the opportunity to continue to use the MammalWeb platform by classifying images. 

However, even schools that did engage with MammalWeb after our one-month intervention 

did not continue to engage long-term (i.e., into the next academic year). In agreement with 

other studies (van Dijk-Wesselius et al., 2020; Waite, 2020), timing – including both a lack of 

time overall and timing of when the project took place – was a frequent comment from 

teachers about why they had been unable to engage either during or after the intervention. 

Working with teachers to refine the timing of projects to suitable points in the academic year 

may help alleviate some of the problem, but an overall lack of time - due to demands placed 

on teachers - is a much larger, systemic problem.  

 

In feedback from teachers, comments were made on ease-of-use of the platform and the 

camera trap. Two schools (both in the pupil workshop intervention group) set camera traps 

in poor locations resulting in large numbers of false triggers. This could suggest, as might be 

expected, that teachers who attended the teacher workshop were better equipped to use 

the camera traps and set them in suitable locations. Some teachers also entered incorrect 

information on the deployment or collection dates of cameras; however, this occurred in 

schools in both the pupil and teacher workshop intervention groups. This suggests that 

further support and training for teachers wishing to use the MammalWeb platform would be 

beneficial. 

 

Future research might also consider the impact of the different intervention types on the 

pupils themselves. Due to difficulties retrieving pupil questionnaires from teacher workshop 

schools, we were unable to test this within this project. However, research suggests that 

scientists’ visits to schools have many positive effects on both science learning and pupils’ 

attitudes towards science (Finson, 2002; Fitzakerley et al., 2013). Ultimately, therefore, if 

projects are able, then a combined approach of offering schools both teacher training to 

equip them with the skills necessary to participate, as well as researchers running workshops 

with the pupils themselves, is likely to be the best approach for maximising benefits. 
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5.5.2 Data submitted by participating schools 
 

Schools collected valuable ecological data during this project that was uploaded to an existing 

citizen science platform and will contribute towards on-going species monitoring. In the UK, 

there have been calls for more records of many mammal species, to help with monitoring 

population trends (Battersby and Greenwood, 2004; Croft et al., 2017; Mason et al., 2022). 

Networks of camera traps have been suggested as a way to do this (Mason et al., 2022; 

Steenweg et al., 2017).  

 

As well as having impacts on school pupils’ knowledge of and connection to nature (see 

Chapter 4), a network of camera traps deployed in schools across the UK could make a huge 

difference to national mammal monitoring. As discussed in Chapter 3, citizen science 

databases are prone to spatial bias leading to over / under representation of certain habitats. 

The factors that drive this bias, such as accessibility of the site (Geldmann et al., 2016; Millar 

et al., 2019; Petersen et al., 2021) and (for camera trapping projects) placing cameras in 

secure locations, will not be present for schools deploying cameras in their grounds which are 

already accessible and, typically, reasonably secure (in comparison to public areas). In our 

study, we found that schools surveyed a range of different habitats and captured a range of 

different species, including many mammal species. In comparison to general MammalWeb 

users, schools surveyed more parks, grassland and residential habitats and less woodland and 

forest habitats. Schools may therefore fill in gaps in habitats surveyed and help to mitigate 

against the over-representation of woodland and forest habitats in the MammalWeb 

database.  

 

5.5.3 Recommendations for ecological citizen science monitoring in schools 
 

Our trial in 34 schools in North-East England can be viewed as a pilot, from which it is possible 

to distil lessons for future programmes with similar objectives. Here, we consider five specific 

recommendations that emerge from the teacher feedback, as well as our own experiences 

with running the programme. 
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Co-creation of projects with teachers – Across outreach and public engagement sectors there 

have been calls for more projects to be co-created with stakeholders to maximise benefits 

and reach under-represented audiences (Keith and Griffiths, 2021; Lubicz-Nawrocka, 2019; 

Villar, 2021). In citizen science, co-creating projects with scientists and stakeholders involved 

in the process from the outset can increase the likelihood that both the scientific and 

educational goals of the project are met (Roche et al., 2020). Therefore, for citizen science 

projects to run successfully in schools, inviting teachers to be involved in all stages of the 

project planning would likely be highly beneficial. Teachers would then be able to input on 

key elements of the project such as timing within the school year as well as helping to create 

curriculum-linked lesson plans and resources to help ensure the project is continued long-

term. As highlighted by other academics (Kaminskiene et al., 2020; Lubicz-Nawrocka, 2019), 

being involved in the creation of the project will also likely give the teachers a sense of 

ownership and therefore increased confidence in running projects independently in their 

schools. 

 

Adapting existing citizen science platforms for schools – Whilst the feedback on the 

MammalWeb platform was generally positive in our study, numerous teachers noted that the 

platform could have been easier to use and should be made more child-friendly. If a citizen 

science project is going to be used long-term in schools then it needs to be as engaging as 

possible for both the teachers and the pupils. Gamification of citizen science projects has been 

suggested as a way of maintaining engagement (Bowser et al., 2013) and could work 

particularly well for children (Bowser et al., 2013; Crawford et al., 2017). The MammalWeb 

platform already has some gamified elements, such as leader boards for number of 

classifications submitted and species identification quizzes. Expanding these elements and 

ensuring their suitability for children could help teachers to make better use of the project in 

the classroom.  

 

Specific methods to engage with species-poor schools – In the UK, school grounds differ 

greatly in their size and extent of habitats available for wildlife which, as we found in our 

study, leads to differences in species assemblages captured; as a result, some schools 

capturing only one or two common species (e.g., woodpigeons and domestic cats). Some 

teachers commented that it was difficult to engage with the project when their camera traps 
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did not capture many species. For all schools, but particularly those with low biodiversity, 

offering a range of different ways to participate in the project would be necessary. Digital 

experiences of nature (through photos and videos) are important for informing children’s 

attitudes towards, and willingness to conserve, species (Soga et al., 2016). On MammalWeb, 

schools could classify images from either their own project or other projects (including other 

schools). Whilst we know that some schools classified images from other projects, it might be 

beneficial to make this a formal part of the project, for example by pairing schools in differing 

habitats and creating activities for them to compare the wildlife captured between schools. 

Ultimately, though, the species captured on the school’s camera are likely to be the main 

focus of interest for both pupils and teachers. Therefore, schools could be encouraged to 

make changes to their school grounds to make them more wildlife friendly. A number of 

schemes already exist in the UK that encourage schools to make changes to their school 

grounds for nature (e.g., Learning through Landscapes projects: https://ltl.org.uk/projects/). 

Furthermore, part of the Department for Education’s sustainability and climate change 

strategy includes the development of a new ‘National Education Nature Park’ which will 

encourage all schools in England and Wales to work on improving the biodiversity of their 

grounds (Department for Education, 2022). Citizen science projects could complement these 

schemes by offering support and advice to schools in how to improve their school grounds 

for a specific taxa. For example, MammalWeb could encourage schools to put gaps in their 

fence to allow species such as red fox and hedgehog to pass through. Schools could then carry 

out scientific investigations to monitor any changes in species captured before and after their 

school ground improvements. 

 

Training and support for teachers – As discussed earlier, teacher training would be necessary 

to equip teachers with the skills and confidence needed to participate in ecological citizen 

science effectively and independently. Whilst our project involved just one short teacher 

training workshop, it would likely be beneficial for projects to have more on-going training as 

well as more resources to support teachers using citizen science in the classroom. Offering 

training opportunities on leading lessons outdoors to student teachers may be particularly 

beneficial (Barrable and Lakin, 2020). Citizen science projects could work with universities to 

run sessions for cohorts of student teachers, so they are equipped to participate in citizen 

science projects from the point at which they begin to teach in a school.  
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Structures for long-term engagement – Despite the positive feedback from teachers, none of 

the schools in our project continued to engage with MammalWeb independently in the 

following academic year. This suggests that one-month interventions such as ours are 

insufficient to achieve long-term independent engagement with the project. We do know, 

however, that in 2021 several schools applied for a new project which involves participating 

in MammalWeb and have engaged with the project in this capacity. This suggests that, for the 

schools that signed up at least, there was still an enthusiasm to take part in the MammalWeb 

project; however, more support and structured involvement clearly has greater appeal than 

using MammalWeb independently. Furthermore, the new project also gives schools a camera 

trap to keep, which, given the positive feedback about using camera traps in our study, was 

likely an appealing aspect of the project. Previous studies have shown that repeated 

engagements in schools are more successful and impactful than one-off interventions (Archer 

et al., 2021). Whilst our study did have positive impacts on pupils, with some of these impacts 

being sustained three-months post intervention (see Chapter 4), for teachers to continue 

projects independently there is a need for more prolonged engagement. By doing this, 

teachers can involve future cohorts of pupils, enabling them to gain the same benefits and 

allowing teachers the opportunity to continue to increase their own skills and confidence to 

participate in citizen science. 
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5.6 Supplementary material 

 
Appendix 1 
 

 

These questions relate to how you found the MammalWeb project. 

 

Thank you! 

Statements 
1 

Strongly 

agree 

2 

Agree 

3 

Neither 

agree or 

disagree 

4 

Disagree 

5 

Strongly 

disagree 

MammalWeb is a fun project to be 

involved with. 
     

I’ve learnt new things about nature being 

involved with MammalWeb. 
     

The MammalWeb website is easy to use.      

I would recommend MammalWeb to 

other people. 
     

MammalWeb impact questionnaire 
(Teacher) 

 

If you could please fill in this questionnaire at the same time as the pupils are filling in their questionnaire. 

Once you’ve finished, place this questionnaire, along with all the pupils completed questionnaires, in the 

envelope provided. We will be in touch to collect the envelope soon. 

Thank you! 

Please use this space to give us any other feedback you have on any aspect of this study. 
 
……………………………………………………………………………………………………………………………………………………………… 
 
……………………………………………………………………………………………………………………………………………………………… 
 
……………………………………………………………………………………………………………………………………………………………… 
 
……………………………………………………………………………………………………………………………………………………………… 
 
……………………………………………………………………………………………………………………………………………………………… 
 
……………………………………………………………………………………………………………………………………………………………… 
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Table S1. Mann-Whitney U test results from analysing differences between schools that took part 
in pupil workshops and schools that took part in teacher training sessions. Tests were run on: 
sequences uploaded and classified; upload and classification sessions; and MammalWeb sessions 
during and after intervention. *p < 0.05, **p < 0.01, ***p < 0.001. 
 

  
W-statistic 

 
p-value 

 

Sequences uploaded 122 0.953 

Sequences classified 122 0.966 

Upload sessions 132 0.745 

Classification sessions 131 0.766 

Sessions during intervention 80 0.078 

Sessions after intervention 194 0.002** 
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Table S2. Species captured by schools and number of sequences each 
species appears in. Ordered by number of sequences species was 
captured in. 
 

 
Species captured 

 
Sequences containing species 

 

Nothing 2067 

Domestic or feral cat 259 

Blackbird (Eurasian) 233 

Woodpigeon 190 

Carrion crow 124 

Jackdaw (Eurasian) 110 

Magpie (Eurasian) 109 

Hedgehog (Western) 105 

Human 87 

Rabbit 75 

Roe deer 56 

Red fox 51 

Small rodent 45 

Pheasant (common) 39 

Song thrush 38 

Unidentified bird 19 

Grey squirrel 10 

Wood mouse 10 

Badger 9 

Robin (European) 8 

Collared dove (Eurasian) 4 

Domestic or feral dog 4 

Great tit 4 

House sparrow 4 

Chaffinch 2 

Peacock 2 

Starling (Common) 2 

Blue tit (Eurasian) 1 

Brown (European) hare 1 

Bullfinch (Eurasian) 1 

Greenfinch (European) 1 

Gull (unknown species) 1 

Other 1 
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Table S3. All qualitative feedback gathered from teachers via questionnaires submitted after the 
intervention. Grouped into categories of similar themes. Shades (lighter to darker respectively) indicate 
positive or negative feedback and rows ordered by number of feedback responses in each category. 

 

Feedback 
category 

 
Positive or 
negative 

  

Quote 

Equipment 
(positive) 

Positive 

“The children all really enjoyed using the camera trap and 
looking at the pictures captured by the mammal camera in 

our school.” 
  

“Gives them the opportunity to use specialist equipment.” 
 

“Gave us the opportunity to see the benefits of having a 
camera trap.” 

 

“Enjoyed seeing nature around our school.” 
 

“You have inspired me (as science co-ordinator) to invest in 
some camera traps for the school.” 

 

“It was very interesting to see which mammals pass or live 
on the school grounds.” 

 

“Thank you - the children have loved checking our camera 
and being involved.” 

 

“All children enjoyed learning about mammals in the UK 
and the images. Informative and enjoyable.” 

 
   

General positive Positive 

“The children have been very excited and engaged.” 
  

“I hope our school can contribute to work with 
MammalWeb next year! Thank you.” 

 

“Thank you very much myself and my class really enjoyed 
it.” 

 

“The children were very excited about the activities with 
Sammy.  They talked about it for days after she left. Great 

project.” 
 

“Thank you! The kids loved it.” 
 

“We really enjoyed this project, thank you.” 
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Timing Negative 

“It would have been better timed earlier in the school year 
as I feel it got lost amid the changing of classes and I did not 

have the time to dedicate to it that I would have liked.” 
  

“It was hard to get the project off the ground - I wished 
we'd done the workshops sooner as these have really 

helped.” 
 

“If we could plan the mammal web into our existing 
curriculum, we would find time to use it.” 

 

“It might be useful to allow time within the session for staff 
to plan how and when they are going to use MammalWeb 

within their teaching of science.” 
 
 

“Due to time constraints we haven't accessed the 
MammalWeb website in the way we could have used it.” 

 

“Other than the workshop delivered in class, the 
MammalWeb project has not been an ongoing project due 

to time constraints.” 
 

   

MammalWeb 
platform 

Positive 

“The children can find out more about the local 
environment as part of a wider scale project, making 

comparisons to other schools.” 
  

“MammalWeb was a fantastic opportunity for children to 
get an insight into the wildlife around them.” 

 

“Enjoyed comparing what we'd captured to other schools.” 
 

“Love the way lots of schools are linked to mammalweb.” 
 

“I enjoyed the activity and also the web pages and the info 
it gave me about the animals around me. Thank you.” 

 
   

Teacher Training 
/ Workshops 

Positive 

“The workshop gave the children the opportunity to tap 
into the knowledge of an expert.” 

  
“Great that Sammy in her talk shared her route through 
academia and good that the children have got to spend 

some time with a real life scientist.” 
 

“The workshops have also been great for sharing the 
camera project with the whole school.” 
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“The CPD session was interesting and engaging.” 
 

   

MammalWeb 
platform 

Negative 

“MammalWeb could be more child friendly.” 
  

“Difficult to upload photos to website.” 
 

   

Species caught 
on camera 

Negative 

“It would have been better if we'd caught something on our 
camera!” 

  
“Depending on location of school the project has a different 

impact. Quite a lot of time for a limited result - one rat.” 
 

   

More resources Negative 

“Follow up material about the different animals/mammals 
living in the UK would have been useful.” 

  
“Follow up information/activities would be helpful to staff 

to reinforce new learning in the workshop.”  
 

   

Equipment Negative 

“The MammalWeb camera is a bit delicate inside (the 
battery cover has snapped off as a result of inquisitive 

parents and children). It's also hard to know if you have the 
batteries in the right way round.” 

  
   

Teacher Training 
/ Workshops 

Negative 
 

“Shame we couldn’t do the staff training as well.” 
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Chapter 6: General discussion 

 

 

 

 

  

Badgers (Meles meles) | Gosforth Nature Reserve, Newcastle 
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In this thesis, I evaluated some of the benefits of camera trap networks for improving 

mammal monitoring efforts in the UK, including analysing some of the challenges of bias in 

camera trap citizen science projects. I also highlighted the potential of camera trap citizen 

science projects for engaging schools in biodiversity monitoring and the benefits for school 

pupils as participants. Much of this thesis (Chapters 3-5) has used the MammalWeb project 

as a case study. The results will help drive forward future priorities for MammalWeb project, 

but will also be of interest to general citizen science projects or researchers wishing to 

establish or use camera trapping networks for ecological research, engagement, or education. 

 

My results have focussed around two main themes: ecological inferences from data 

generated by camera trap networks (Chapter 2 and 3) and school engagement with camera 

traps and citizen science (Chapter 4 and 5). In this discussion Chapter I will discuss these two 

themes, summarising my findings and suggesting how future work may proceed. I will then 

discuss how these two themes (ecological inferences and school engagement) are intrinsically 

linked and the benefits to be gained from moving forward with consideration of both. 

 

 

6.1 Ecological inferences from camera trap networks 

 

Across Chapters 2 and 3 of this thesis, I looked at how camera trap networks could be used 

to calculate ecological measures such as density (Chapter 2), and occupancy and activity 

(Chapter 3). In Chapter 2, I used camera trap distance sampling to calculate densities of a 

range of species. Unlike previous studies using this method (Bessone et al., 2020; Cappelle et 

al., 2019, 2021; Corlatti et al., 2020; Harris et al., 2020b; Howe et al., 2017), the survey was 

carried out over a heterogeneous landscape which included urban and sub-urban habitats. 

My density estimates were similar to previously published density estimates, giving 

confidence that this method could be used in landscapes such as the UK to improve national 

monitoring efforts. However, as highlighted in Chapter 2, it is likely that support from citizen 

scientists would be necessary to establish large-scale camera trap networks for distance 

sampling.  
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In Chapter 3, I explored a key issue for citizen science datasets: spatial bias. Using the 

MammalWeb dataset as a case study, I compare subsets of this citizen science dataset to data 

derived from the systematic camera trapping survey in Chapter 2. Comparing the datasets 

revealed that, as might be expected, the MammalWeb dataset is biased, with woodland and 

forest habitats over-represented and farmland, grassland, and heath habitats either under-

represented, or missing completely. This had implications for species assemblages captured 

and ecological inferences of occupancy and activity. Whilst sub-setting analysis by habitat 

type helped to reduce or eliminate the impact of spatial bias in some instances, it is clear that, 

moving forward, it would be beneficial for MammalWeb to expand its spatial coverage, 

including actively surveying under-represented habitats. For the remainder of this section, I 

will discuss how citizen scientists could help with camera trap distance sampling, how 

Artificial Intelligence (AI) approaches might aid classifications for distance sampling, and how 

MammalWeb could expand spatial coverage through a site adoption scheme. 

 

6.1.1 Camera trap distance sampling with citizen scientists 
 

Citizen scientists can collect biodiversity data on scales unattainable by most research teams 

(Bonney et al., 2014; Dickinson et al., 2012). Therefore, to establish camera trap distance 

sampling at a national scale for mammal monitoring, a citizen science approach would likely 

be necessary. Citizen scientists participating on MammalWeb currently deploy camera traps 

at sites of their choosing and upload footage to the platform along with metadata such as 

deployment and collection dates. If citizen scientists were to deploy cameras for distance 

sampling, they would further be required to: a) place cameras at pre-determined random 

sites; and b) calibrate cameras by placing distance markers at set intervals. The former could 

be solved by pre-assigning sites or placing sites up for adoption which I will return to. 

Calibrating cameras involves the relatively easy task of placing markers in the ground. 

However, it is more time consuming than the normal camera trap deployment with which 

citizen scientists on MammalWeb and similar projects will be familiar. As with other citizen 

science projects (Boakes et al., 2016; Sauermann and Franzoni, 2015), MammalWeb 

participants typically fall into two categories: a small group of dedicated users who contribute 

large amounts of data regularly, and a larger group of users who contribute few records (Hsing 

et al., 2022). Research suggests that motivations for participation in citizen science projects 
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may differ between these groups (Cox et al., 2018; Fischer et al., 2021; Tiago et al., 2017). 

Particularly for the most active contributors, offering clear opportunities for learning and 

gaining new skills can help to engage and retain this group (Cox et al., 2018). Therefore, this 

group of dedicated MammalWeb users, specifically, could be offered training in how to 

calibrate cameras for distance sampling, enabling them to learn new skills and helping to 

retain their engagement with the project. 

 

Even if citizen scientists can deploy camera traps for distance sampling, challenges over 

classifying images will remain. Gathering consensus classifications (i.e., multiple users 

classifying each image) is an approach used by several citizen science projects and can help 

to classify large numbers of images in a short time (Hsing et al., 2022; Swanson et al., 2015). 

However, for distance sampling, not only do we need species classifications but also distance 

and angle. If this was to be done on a platform such as MammalWeb, all images would first 

have to be marked with lines representing the distance and angle intervals. Then options for 

citizen scientists to classify both species and distance and angle made available when 

classifying. However, as discussed in Chapter 2, and as a result of cameras being placed in 

random locations, I found a large proportion of the image set for distance sampling (~76%) 

were images without species captured or images of livestock (Mason et al., 2022). These 

images are likely less engaging for citizen scientists to classify, and therefore citizen science 

approaches may not be most appropriate for the task.  

 

6.1.2 Artificial Intelligence approaches to aid distance sampling 
 

The use of AI techniques to automate the classification of camera trap images has burgeoned 

over recent years (Green et al., 2020; Wäldchen and Mäder, 2018; Weinstein, 2018). The 

Wildlife Insights project (https://www.wildlifeinsights.org/) already offers a platform where 

individuals or organisations can upload image data and gain AI classifications for that data 

(Ahumada et al., 2020). Software packages have also been developed to help ecological 

projects utilise AI approaches for their own camera trap image classifications (Falzon et al., 

2019; Tabak et al., 2019). As highlighted in this thesis, participating in citizen science schemes 

has many benefits for participants. Therefore, for projects such as MammalWeb, AI 

approaches should be seen not as a means of replacing citizen science efforts, but rather to 

https://www.wildlifeinsights.org/
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complement and enhance participants’ experiences. Green et al. (2020) outlined different 

ways in which citizen science and AI could be integrated, including using a combination of AI 

and citizen science classifications to reach a consensus, or using AI to filter out blank footage. 

Although some blank images can stimulate engagement (Bowyer et al., 2015), if citizen 

scientists were to help with classifying images for distance sampling, filtering out at least 

some of the blank / livestock images first could make the remaining image set more engaging 

for citizen scientists to classify. 

 

Even more promisingly, AI approaches could soon help not only with species classifications 

but also with estimating distance from images. Haucke et al., (2022) presented a study using 

monocular depth estimation and depth image calibration methods to estimate animal to 

camera distances. This reduced the manual effort required to classify distances by a factor 

greater than 21 (Haucke et al., 2022). More recently, a proof-of-concept study expanded this 

approach by also removing the need for reference image material (i.e., calibrating cameras 

by holding distance markers) (Johanns et al., 2022). In Chapter 2, I also classified angles within 

images to calculate effective detection angles. To classify angle I marked images with four 

equally spaced vertical lines and then classified which section of the image the animal is 

present in. As AI approaches typically first determine where in the image an animal is present, 

outputting information on angle would likely be relatively simple. If AI approaches could be 

integrated into the MammalWeb system, so that citizen scientists upload images and 

automatically gain AI assisted classifications of species, distances, and angles, this could truly 

open up opportunities for camera trap distance sampling over large scales. 

 

6.1.3 Expanding MammalWeb’s spatial coverage through site adoption 
 

If citizen scientists are to help with camera trap distance sampling for density estimation, they 

will need to deploy cameras at random, pre-determined sites. Furthermore, as discussed in 

Chapter 3, expanding MammalWeb’s spatial coverage to help mitigate against spatial bias will 

help to produce reliable ecological measures such as occupancy and activity. Both of these 

factors mean that implementing a site adoption approach could be beneficial. This approach 

of predefining survey sites and putting them up for ‘adoption’ has been used in other camera 

trapping projects, such as the Candid Critters project (Lasky et al., 2021) as well as long-
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standing citizen science schemes such as the UK’s breeding bird survey (Harris et al., 2021a). 

On MammalWeb, a ‘discover’ page already exists where participants can view a map with a 

grid cells sized 0.1 x 0.1 of latitude and longitude. Participants can see which grid cells have 

been surveyed and which species captured. This page could be adapted so that participants 

can not only view surveyed sites but can also sign up to ‘adopt’ grid cells not yet surveyed. 

For distance sampling, it would also be necessary to pre-determine the exact co-ordinates of 

the site within the grid cell and to instruct participants that, if they do need to place cameras 

away from the pre-determined site, they should not target placement to influence detection 

probability. As discussed in Chapter 3, farmland and moorland sites are particularly under-

represented on MammalWeb, so actively reaching out to farmers and gamekeepers within 

grid cells not yet adopted should help not only to expand spatial coverage but also to reduce 

habitat bias, overall.  

 

 

6.2 School engagement with camera traps and citizen science 

 

In Chapters 4 and 5 of this thesis, I present results from a project working with primary schools 

across North-East England. This research adds to a growing body of evidence that outdoor 

learning and environmental education has benefits for pupils (Fägerstam and Blom, 2013; 

Gustafsson et al., 2012; Harvey et al., 2020; Marchant et al., 2019; White et al., 2018). The 

study was one of the largest schools-based citizen science projects to date, but it supports 

the findings of other smaller-scale studies by suggesting that citizen science specifically can 

offer unique opportunities for learning about local nature (Prendergast et al., 2022; Saunders 

et al., 2018; Schuttler et al., 2019).  

 

In Chapter 4, I outline two of the main benefits to pupils who took part in the project: an 

increased knowledge of UK mammals and increased connection to nature for those with low 

initial scores. These results are promising, given the growing concern over children’s 

disconnect from nature (RSPB, 2013; Soga and Gaston, 2016) and lack of knowledge of local 

species (Ballouard et al., 2011; Balmford et al., 2002; Lindemann‐Matthies, 2005; Pilgrim et 

al., 2008). The study was one of the first nature-based intervention projects that measured 

impacts on pupil participants not only immediately after the intervention, but also three 
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months later. I found that although increased awareness of UK mammals was not sustained 

for younger pupils aged 4 – 7, this change was sustained for older pupils in Key Stage 2 aged 

7 – 11. Furthermore, for older pupils with a low initial connection to nature, their connection 

to nature scores continued to increase across all time points. This was likely due to class 

activities following the intervention, which further increased connection to nature among 

pupils. This highlights the importance of sustained and repeated engagement with the 

project, post-intervention, and prompted me to explore, in Chapter 5, how teachers engaged 

with the project and what challenges they faced to continue engagement.    

 

The positive feedback received from teachers, and presented in Chapter 5 was encouraging; 

however, teachers also commented on challenges to continuing the project independently. 

Most of these challenges were around a lack of time to dedicate to the project, but a small 

number of comments also referred to the camera trap and the MammalWeb platform being 

difficult to use. Furthermore, whilst schools did contribute valuable data to MammalWeb, 

including surveying habitats currently under-represented in the ad hoc citizen science 

dataset, two schools noted that it was difficult to engage with the project when they did not 

capture many species on their cameras. With consideration to this teacher feedback, as well 

as my own findings and experiences from this project, I outlined, in Chapter 5, five 

recommendations for future projects. These recommendations have already assisted the 

development of follow-up work in schools of which MammalWeb has been a part. Specifically, 

our experience with working on MammalWeb with school teachers and pupils was a large 

part of the impetus for the “Connecting schools to nature” project, run by the British 

Ecological Society and funded by the Green Recovery Challenge Fund 

(https://www.britishecologicalsociety.org/british-ecological-society-awarded-green-

recovery-grant-to-connect-school-children-with-nature/). For the rest of this section, I will 

briefly outline the connecting schools to nature project, with reference to how findings from 

this thesis informed its development. I will then discuss other areas of work that are worth 

exploring, including working with students with special educational needs and disabilities 

(SEND), how to maintain data quality when expanding school networks, and engaging with 

policy-makers on new education strategies. 
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6.2.1 Connecting schools with nature project and the Encounters platform 
 

Encouraged by the promising outcomes of Chapter 4 and with consideration of the 

recommendations outlined in Chapter 5, MammalWeb has, over the past year, been involved 

in a project led by the British Ecological Society. The “Connecting schools to nature” project 

engages with 50 primary schools across North-East England. In line with one of the 

recommendations presented in Chapter 5, the project is co-created, with teachers offering 

their ideas and feedback through workshops and surveys at all stages of the project since its 

inception.  

 

A central aspect of the project is the development of the “Encounters” platform. The 

Encounters platform is a website that can be accessed independently from MammalWeb, but 

with links to the main MammalWeb website for users to complete tasks such as uploading, 

classifying and taking part in species identification quizzes. Pupils, teachers, and volunteers 

supporting schools all have their own dashboards on the site where they complete nature-

based activities grouped around key themes. As highlighted in Chapter 5, gamification of 

citizen science projects has been suggested as a way of maintaining engagement and could 

work particularly well to sustain children’s engagement (Bowser et al., 2013; Crawford et al., 

2017). Taking this approach, users on the Encounters platform are awarded badges and points 

to encourage them to continue to engage with the project. MammalWeb forms a central part 

of the activities available to complete on the platform, but schools can also receive badges 

for participating in other citizen science schemes such as local bee and ladybird counts (e.g., 

https://www.nhsn.org.uk/north-east-bee-hunt/) or the RSPB garden birdwatch 

(https://www.rspb.org.uk/get-involved/activities/birdwatch/). 

 

Further to species monitoring, the project also encourages schools to make improvements to 

their school grounds for wildlife. Exposure to green spaces at school has positive benefits for 

children and teenagers including enhanced cognitive development (Dadvand et al., 2015), 

improved mental wellbeing (Bates et al., 2018; Chiumento et al., 2018; van Dijk-Wesselius et 

al., 2018), and improved attention and behaviour (Taylor and Butts-Wilmsmeyer, 2020; van 

Dijk-Wesselius et al., 2018). Research also suggests that the ecological quality of green space 

is important for wellbeing (Knight et al., 2022). Through offering funding to each school and 
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developing suggested activities to complete on the Encounters platform, the connecting 

schools to nature project aims to help schools either improve or increase the green space in 

their school grounds. Improving school grounds also means that schools that had low 

biodiversity at the time of entering the project can make changes to encourage more wildlife 

to visit their school grounds and monitor these changes with their camera traps and other 

techniques. This means that schools that might otherwise struggle to engage due to their lack 

of biodiversity (as discussed in Chapter 5) can still benefit from the project.  

 

Another major component of the Encounters digital platform is a resource hub for teachers 

and volunteers. The resource hub has downloadable lesson plans, worksheets, and 

assemblies encouraging schools to spend time teaching outdoors and in nature. Although 

spending time outdoors is not a mandatory part of the National Curriculum for most age 

groups (Department for Education, 2015), outdoor learning and nature-based learning can be 

used to cover many different aspects of the curriculum in the UK (see 

https://nationalcurriculumoutdoors.com/). Within the schools project presented in this 

thesis, the workshops, teacher training sessions, and additional resources on the 

MammalWeb website were all designed to cover different aspects of the science curriculum 

listed on this page: https://www.mammalweb.org/en/community/schools. Furthermore, as 

mentioned in Chapter 5, I found that schools used the project to teach other areas of the 

curriculum such as English (through writing poems on species captured) and IT (through 

making PowerPoints of UK species). However, some teachers still view outdoor education as 

an unconventional way of teaching, which - particularly if those views are held by senior 

managers - can lead to barriers to leading lessons outdoors (Comishin et al., 2004; Waite, 

2010). This could also have been one factor affecting longer-term use of the MammalWeb 

project to teach areas of the curriculum. The resource hub on the Encounters platform aims 

to offer more resources that explicitly link nature-based activities to all aspects of the National 

Curriculum. This is supported by in-person and digital teacher training sessions to build 

teachers’ confidence with using the resources available. Re-framing outdoor and nature-

based initiatives as an engaging tool for teaching the curriculum, rather than an extra-

curricular activity or extra demand to be placed on teachers, will hopefully help to embed 

such projects into everyday teaching, long term.  
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The connecting schools to nature project is due to end in April 2023. Evaluation of this project 

will include how the project has impacted pupils’ knowledge, appreciation, and willingness to 

conserve different UK species, as well as evaluation of the benefits and challenges for 

participating teachers. The Encounters platform will also go through a final stage of 

development, implementing new functionalities based on teacher feedback and making it 

appropriate to be rolled out more widely for schools to sign up nationally. Outcomes of the 

connecting schools to nature project, as well as findings presented in this thesis (e.g., the 

recommendations in Chapter 5), will help to guide future projects involving MammalWeb in 

schools.  

 

6.2.2 Working with students with SEND 
 

One area of work which could be explored is working specifically with students with special 

educational needs and disabilities (SEND). Research suggests that regular exposure to green 

spaces can be particularly beneficial for children with neurological disorders such as Attention 

Deficit Hyperactivity Disorder (ADHD) (Faber Taylor and Kuo, 2011). Parsons et al. (2018) 

worked with groups of high school students who deployed camera traps at a nature education 

centre and uploaded footage to the citizen science project eMammal. They describe one of 

the greatest benefits from the project was to a student with autism, who increased their 

communication and teamwork skills through field work with the cameras (Parsons et al., 

2018).  

 

The psychological benefits of spending time outdoors and connecting with nature are well 

studied (Bates et al., 2018; Chiumento et al., 2018; Harvey et al., 2020; van Dijk-Wesselius et 

al., 2018). From 2019 onward, I worked with a small group of students with SEND who, due 

to poor mental health, were educated outside of mainstream schools. The project involved 

the students designing their own scientific research questions which they then answered by 

deploying camera traps during various field trips and uploading footage to their own project 

on MammalWeb. Participation with MammalWeb had a positive impact on the students’ 

wellbeing, with one student writing: “From a mental health perspective, it was beneficial to 

get outdoors and into nature, as well as giving us a very peaceful, strangely therapeutic, job 

of sorting through all of the images during lockdown” (Chapman, 2020). 
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The next stage of this project is for camera traps to be lent to other groups of students with 

SEND across County Durham. The students who have worked on the project, so far, have been 

designing leaflets and protocols which they will pass on to the new groups, mentoring them 

as they start their own camera trap investigations. Although this project appears to have had 

a positive impact on students, robust evaluation of the project has been difficult. This was 

partly due to the Covid-19 pandemic causing delays to the project and students not attending 

the centre but also because the small sample size of the group (< 10 students) means that 

traditional statistical methods (such as the ones used in Chapter 4) were not appropriate. 

Future work could not only expand on projects working with students with SEND but also 

complete thorough evaluations of the project to assess the benefits for participating students. 

This could perhaps include more in-depth qualitative approaches to explore impacts on 

students.  

 

6.2.3 Expanding school networks whilst maintaining data quality 
 

Since MammalWeb first started in 2015, it has worked with several schools, including those 

involved in the studies presented in this thesis, and those involved with the projects outlined 

above. In Chapter 3 of this thesis, I outlined the need for MammalWeb to expand its spatial 

coverage, including increasing the number of surveyed sites in under-represented habitats. 

In Chapter 5, I suggested that expanding networks of schools could be one way to help achieve 

this. Within the North-East region that much of this thesis has focussed on, it is evident that 

schools have already helped expand spatial coverage, particularly increasing coverage outside 

of the City of Durham where a lot of sites on MammalWeb are located (see map in Chapter 

3) (Figure 1). 

 

Moving forward, with everything that I have presented in this thesis in terms of benefits for 

participants and expanding spatial coverage, a logical next step for the MammalWeb project 

would be to continue to expand its schools network. So far, schools involved with the project 

have largely been based in North-East England, where MammalWeb was first established and 

where MammalWeb has a number of existing partnerships (e.g., The Great North Museum: 

Hancock) (Hsing et al., 2022). To expand coverage outside of this area, MammalWeb will need 



 194 

to establish partnerships with other organisations across the UK. This could include local 

authorities who manage education provision, as well as other organisations like universities 

and museums which often already have existing school networks with which they work. 

 

 

 

 

Expanding the network of schools with which MammalWeb works will increase the quantity 

of data on the platform. One challenge which may arise from this is ensuring that data quality 

is maintained. When schools have been involved in ecological citizen science projects, issues 

with data quality have been raised (Miczajka et al., 2015; Saunders et al., 2018; White et al., 

2018). For the MammalWeb project, as footage is uploaded and can therefore be verified by 

others, this issue is somewhat alleviated. However, we do still find problems with either 

schools placing cameras in unsuitable locations or entering metadata (e.g., deployment or 

Figure 1. Distribution of sites where schools have deployed camera traps and uploaded 
footage to MammalWeb. Data is up to October 2022. Background map: © 
OpenStreetMap contributors licensed under CC BY-SA 2.0. 

https://www.openstreetmap.org/copyright
https://creativecommons.org/licenses/by-sa/2.0/
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collection dates, or co-ordinates of sites) incorrectly. In Chapter 5, I documented that two 

schools set cameras either facing vegetation or facing the rising sun, resulting in false triggers. 

These two schools were in the pupil workshop intervention, which could suggest that the 

schools who attended teacher training were better equipped to set camera traps in 

appropriate places. For any school wishing to participate on MammalWeb, providing training 

and resources on how to set camera traps at appropriate sites before they upload footage 

would hopefully help to alleviate false trigger problems.  

 

In Chapter 3, I found that data from 17 / 120 (14%) sites had incorrect information on 

deployment or collection dates, such as images that were uploaded outside of deployment 

dates, or collection dates set to the future. For the schools project, the proportion of sites 

with incorrect deployment dates attached to them was even larger (8 / 21; 38%). With a 

growing number of both school users and general users on the platform, it would be beneficial 

at this stage for MammalWeb to invest in implementing more data quality checks on the 

platform. For example, these could include error messages when collection dates are set to 

the future, or when footage uploaded is not from within the timeframe defined by the 

deployment and collection dates. Users on MammalWeb also provide information on where 

camera traps are placed, by either typing in coordinates or moving a marker on a map. It is 

likely that errors also occur here, although these are more difficult to track. Even a system to 

require that markers are moved from the default position before uploading footage would 

help to ensure that a valid location is entered. Furthermore, to make it easier for school 

teachers (who may not be familiar with finding coordinates of a site) to input site information 

it could be made possible to type in a postcode (so schools can find their rough location) and 

then a necessity to move the marker before uploading footage. Hopefully, implementing 

these checks will ensure that data uploaded by schools and other users can be used most 

effectively. 

 

6.2.4 Outdoor learning and environmental education in UK policy 
 

Driven by the growing evidence for the benefits of outdoor learning and connecting children 

with nature, several policy changes in this field have occurred over the past five years. In the 

Government’s 25 year plan for the environment, it was announced that the Department for 
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Education will make funds available to enable children in England to increase their access to 

nature in and outside of school, in order to support their health and wellbeing (Department 

for Environment, Food & Rural Affairs, 2018). In 2022, the Department for Education outlined 

a new sustainability and climate change strategy for education (Department for Education, 

2022). This strategy includes a new optional GCSE in natural history which will be taught in 

secondary schools from 2025 (Department for Education, 2022). 

 

With these new governmental strategies come new opportunities for researchers to work 

with policy-makers to help shape what environmental education might look like in the future, 

for schools in the UK. To date, most schools that have used MammalWeb, including those 

presented in this thesis and those in the connecting schools to nature project, have been 

primary schools. There have, however, been a couple of projects involving secondary school 

students, including a project working with schools from Belmont Community School, County 

Durham, UK, where students co-authored a peer-reviewed publication reflecting on their 

experiences with MammalWeb (Hsing et al., 2020). Engaging with citizen science can have 

positive benefits for all age groups and, therefore, could be a powerful way of learning about 

local species and connecting to nature within the new natural history GCSE, as well as in other 

areas of the new sustainability strategy.  

 

The new GCSE has been the focus of criticism, however, including the argument that many 

teachers are not currently equipped with the skills to run the course (Rushton and Dunlop, 

2022). Although my study focussed on primary schools, this is consistent with my own 

experiences and findings of teachers not being confident enough, or having the skills 

necessary, to use the camera traps or the MammalWeb platform. In Chapter 5, I suggested 

that citizen science projects could work with universities to run sessions for student teachers. 

Indeed, a number of organisations are already offering training sessions for teachers to help 

prepare them for the new GCSE (e.g., https://www.nhm.ac.uk/schools/explore-urban-

nature/teacher-training.html). Academics involved in ecological citizen science projects could 

support these training opportunities, giving teachers skills to use citizen science in their 

classrooms and contribute to species monitoring. 
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6.3 National-level camera trap citizen science networks: benefits for ecology and 

engagement 

 

As shown throughout this thesis, citizen science is uniquely placed to foster connections 

between people and nature whilst also providing a means for long-term and large-scale data 

collection for data monitoring. It can be argued that the factors driving disconnection from 

nature highlighted in Chapter 4, are also driving the challenge of mammal monitoring 

discussed in Chapters 2 and 3. These include an increasing lack of opportunities to experience 

nature due to urbanisation and other factors (Neuvonen et al., 2007; Turner et al., 2004; 

Zhang et al., 2014), as well as a lack of knowledge about local species (Pilgrim et al., 2008); 

for mammals specifically, their elusive nature leads to a disconnect from nature but also a 

lack of mammal records being submitted (Figure 2). Citizen science can be a solution to 

tackling both of these challenges, simultaneously. Collecting records of mammals with 

camera traps opens opportunities for people to experience the nature local to them, whilst 

also collecting valuable data on mammal populations. These benefits should create a positive 

feedback cycle, with more mammal awareness increasing connection to nature, in turn 

meaning more mammal records are submitted (Figure 2). 

Figure 2. Schematic of the relationship between two challenges (poor mammal monitoring and disconnect 
from nature) and how citizen science can tackle both simultaneously.  
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This chapter has discussed several areas for future development, including: training citizen 

scientists in camera trap distance sampling methodologies; exploring integration of AI 

approaches; expanding spatial coverage through a site adoption scheme; exploring projects 

that work with students with SEND; and working with policy-makers to highlight the benefits 

of citizen science approaches for new education strategies. Whilst these have been discussed 

within two distinct sections of this chapter (ecological inferences and engagement), many of 

these pieces of work will be mutually beneficial for both ecology and engagement (see, also, 

Figure 6 in Hsing et al. 2022). For example, exploring the integration of AI approaches will 

help with citizen scientists collecting data for camera trap distance sampling, but will also 

allow for opportunities for automated feedback on classifications which can boost 

engagement (Baruch et al., 2016; van der Wal et al., 2016). Expanding school networks will 

help increase spatial coverage, and schools in grid cells not yet ‘adopted’ could be specifically 

targeted.  

 

Advancing work in the areas of ecological monitoring and engagement will also be vital for 

helping to tackle ongoing biodiversity loss. Across the world, biodiversity is being lost at an 

unprecedented rate, heavily driven by human influence (Butchart et al., 2010). Early 

conservation interventions can make a positive difference to endangered species (Sodhi et 

al., 2011) but robust monitoring needs to be in place to detect trends in the first instance. 

Given the extent of biodiversity loss and the current lack of data on many wildlife populations, 

as highlighted throughout this thesis, efficient and robust monitoring schemes over large 

temporal and spatial scales are needed. Historically, citizen science has enabled the collection 

of vast quantities of biodiversity data (Chandler et al., 2017; Pocock et al., 2015; Silvertown, 

2009); it is likely to continue to do so in the future. However, there is a need for projects to 

engage with both current and new participants. This thesis adds to a body of evidence that 

engaging children with ecological monitoring projects can have positive impacts for them as 

participants (Gustafsson et al., 2012; Harvey et al., 2020; Marchant et al., 2019; White et al., 

2018). In an increasingly urbanised world, offering new opportunities for children to learn 

about and connect with nature can have positive benefits for them today, but could also 

empower them to grow up being more ecologically aware, helping to create a more 

sustainable future for our planet. Ultimately, therefore, any citizen science project should aim 

to expand its platform with consideration for both how the data can be used for ecological 
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inferences and how to engage different audiences most effectively. With consideration for 

both aspects, citizen science projects like MammalWeb can maximise benefits for people and 

nature alike. 
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