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The tidal evolution of dark galactic substructures
Aoife Marie Curran

Abstract

In this thesis we study the tidal evolution of dark matter subhaloes. We first

look at reproducing the work of van den Bosch and Ogiya (2018), who sugges-

ted that modern cosmological simulations still suffer from excessive disruption

of subhaloes due to gravitational tides. We were able to reproduce the results

qualitatively, but not exactly, and found that our subhaloes were slightly more

robust and resistant to disruption.

We examine substructures in state-of-the-art cosmological simulations. We

develop a technique to study substructures of a Milky Way-like halo from

the Aquarius project (Springel et al., 2008) using the HEX technique (Lowing

et al., 2011). HEX allows us to realistically model the potential of a halo in

a computationally efficient fashion, which means that it is possible to run a

large number of simulations of individual subhaloes.

We find that the softening length does not seem to have a significant effect

on the survival of substructure in realistic conditions. We find that with

sufficient resolution, subhaloes which were lost in the original simulation do

survive until the end. However, these subhaloes are relatively rare. We thus

confirm that while there is artificial disruption, this does not appear to affect

the substructure population as a whole in a realistic simulation.
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Chapter 1

Introduction

1.1 The ΛCDM Model

In the standard ΛCDM cosmological paradigm the Universe is composed of three

main components: the cosmological constant, Λ, which is associated with dark

energy, cold dark matter (CDM) and ordinary matter or baryons. Dark energy is

estimated to comprise ∼ 68% of the mass-energy density of the Universe, while

dark matter comprises ∼ 27%. Ordinary matter makes up just ∼ 5%. Neutrinos

and photons also contribute a small percentage.

Cold dark matter is so called because it has negative thermal velocities at early

times and it does not interact with the electromagnetic force. As dark matter is not

visible, evidence for its existence comes entirely from its gravitational interactions.

In 1933, while studying the redshifts of galaxy clusters, Fritz Zwicky noticed a

large scatter in the apparent velocities of eight galaxies within the Coma cluster

(Zwicky, 1933), indicating a total mass that exceeded the visible, baryonic mass.

More evidence for dark matter came from the work of Rubin and Ford Jr (1970),

who studied the rotation curve of the Andromeda Galaxy. While there have been

numerous experiments to detect dark matter both on Earth (e.g. LUX-ZEPLIN

(Akerib et al., 2020), XMASS (Abe et al., 2013)) and in space (e.g. Fermi-LAT

(Albert et al., 2017)) they have so far failed to identify a dark matter particle.
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The cosmological constant, Λ, is thought to drive the accelerating expansion of

the Universe. Evidence for dark energy comes from measurements of Type Ia

supernovae. These type of supernovae are considered “standardizable candles” and

through measurement of both their redshift and their apparent brightness, it was

discovered that the expansion of the Universe was accelerating (Riess et al., 1998).

The ΛCDM model is often referred to as the standard Big Bang model of cosmology,

as it is the simplest model that can explain what we see in the Universe today. In

this model, the universe began at the Big Bang approximately 13.7 billion years ago.

This was then followed by a period of rapid expansion known as inflation. While

this inflation is responsible for smoothing out initial inhomogeneities, it is also the

cause of the small fluctuations in the cosmological density. These fluctuations lead

to a gravitational instability that leads to the formation of structure in the Universe

(Coles and Lucchin, 2003). Regions of overdensity collapse to form dark matter

haloes, once a critical density is reached. These dark matter haloes continue to

grow, through both the accretion of nearby material and by hierarchically merging

with other dark matter haloes.

The discovery of the cosmic microwave background (CMB) by Penzias and Wilson

(1965), provided one of the most important pieces of evidence for the ΛCDM model.

The power spectrum of the CMB was mapped by WMAP (Bennett et al., 2013)

and later by Planck (Aghanim et al., 2020) and good consistency was found with

the ΛCDM model.

While the ΛCDM model has been successful at explaining the large-scale structure

of the Universe, it has been more difficult to test at smaller scales. Testing the

consequences of small scale power is key to falsifying CDM, as small-scale struc-

ture is very sensitive to the exact nature of dark matter. Dark matter substructure

is important, not just for understanding galaxy formation, but also for modelling

galaxy clustering and constraining the nature of dark matter. The smallest haloes

which are too small to host galaxies are still interesting from a dark matter de-

tection perspective. A quantitative understanding of the small-scale dark matter
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1.2. Dark matter substructure

distribution within our galaxy is necessary if we are to detect dark matter, either

through direct methods or from annihilation products.

1.2 Dark matter substructure

N -body simulations can be used to model the non-linear growth of this dark matter

structure, as both the initial conditions and the equations of evolution are known.

However, early attempts to simulate this process suffered from overmerging due

to low resolution, of both force and mass, which meant that large amounts of

dark matter substructure was missing (Moore et al., 1998). As N -body simulation

software and computer hardware have improved, new simulations began to show

the substructure of these dark matter haloes more clearly.

1.2.1 The Overmerging Problem

Early simulations exhibited very little substructure, especially in high density re-

gions. This was known as the “overmerging problem”, because bound, virialised

systems of multiple galaxies do exist in the real Universe. This problem was first

noted by White et al. (1987) and Frenk et al. (1988), who both found that the

substructure of dark matter haloes was erased after they collapsed into regions of

high density in N -body simulations. Developments in code and computer hardware

led to improvements in simulations, with increasing resolutions of both force and

mass. However, these simulations still produced smooth dark matter haloes, with

very little substructure.

Modern cosmological N -body simulations predict that 5-10% of the mass of a dark

matter halo is composed of substructure (Gao et al., 2004), but it was not until

the late 1990s that cosmological simulations were able to resolve dark matter sub-

structure in Milky Way-sized haloes. Moore et al. (1996) determined that softening

lengths which were too large were to blame for this overmerging problem. Large
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softening lengths lead to haloes with large low-density cores, which are susceptible

to disruption. Still, overmerging was recognised as a problem caused largely by

insufficient numerical resolution (Moore et al., 1998; Klypin et al., 1999).

In the 2000’s, two dark matter simulations were run, both with more than one

billion particles, which have not yet been superseded in terms of resolution - the

Aquarius Project (Springel et al., 2008) and the GHALO Simulation (Stadel et al.,

2009). The GHALO Simulation (Stadel et al., 2009) performed a series of simula-

tions of a Galactic mass halo at a number of resolutions. The highest resolution

simulation contained over three billion particles and had a particle mass of 103 M⊙,

allowing for thousands of subhaloes to be resolved. The Aquarius Project will be

described in more detail below.

1.2.2 The Aquarius Simulations

In the highest resolution simulation substructures are found within substructures.

Subhalo density profile is independent of subhalo mass. Most subhaloes are found

in the outermost regions of the halo.

In the Aquarius Project, dark matter only zoom-in simulations were performed on

six Milky Way-sized haloes. The six haloes were selected at random from isolated

haloes of a similar mass to the Milky Way within a lower-resolution parent simula-

tion with 9003 particles in a box with sides 100h−1 Mpc. In this context, ‘isolated’

means that each halo had no neighbours greater than half its mass within 1h−1

Mpc.

The six haloes were named ‘Aq-A’ through ‘Aq-F’. These haloes were simulated in

their full cosmological context, at a number of different resolutions in order to test

for convergence. Once results are robust to an increase in resolution they are said

to be converged. The resolution levels were named 1-5, where the suffix ‘1’ indicates

that that is the highest resolution, while ‘5’ indicates that that is the lowest level

of resolution. Only one halo, Aq-A, was simulated at the highest resolution. This
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1.2.2. The Aquarius Simulations

simulation contains over one billion particles and almost 300,000 gravitationally

bound subhaloes within the virialized region of the main halo.

The Aq-A is shown in five different resolutions in Figure 1.1. These images clearly

show that the halo is a complex object, which is rich in substructure, even at

the lowest resolution. The small substructures which have grown the halo through

merging are visible, dotted throughout. These substructures repeat closely between

the simulations at different resolutions, albeit in slightly different positions, thus

demonstrating that there is good convergence across the different resolutions. A

number of convergence tests were performed on the haloes and good convergence

across different resolutions on both the amount of substructure in the Aquarius

simulations and the internal properties of said substructure was found.

Figure 1.2 shows the differential subhalo abundance by mass for the different resol-

utions in the Aq-A halo. There is good convergence across the different resolutions.

The bottom panel compresses the vertical range, by multiplying the data by M2
sub.

This shows a slight divergence in the number of objects at masses below a few

hundred particles, but for properly resolved subhaloes, there is good convergence.

Springel et al. (2008) found that there was a strong dependence on radius for the

abundance of substructure, with the majority of substructure found in the outer

regions of the halo.

The Aquarius simulations are incredibly detailed and at the highest resolution

show several levels of substructure within substructure. Figure 1.3 shows closeups

of six of the largest subhaloes in Aq-A-1. It is clear that each subhalo has its

own associated substructures, some of which even possess their own substructures.

The bottom row of images shows four levels of substructure within subhalo F.

Springel et al. (2008) found that the substructure fraction found within subhaloes

was much smaller than that found in the main haloes, particularly for those in the

inner regions of the halo. They determined that this was due to the effects of tidal

stripping and the lack of replacement substructure infalling into older objects.
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1.2.2. The Aquarius Simulations

Figure 1.1: The top left panel shows the projected dark matter density at z = 0 of a 13.7 Mpc slice
through the parent simulation. The other panels show the Aquarius A halo at different resolutions.
The brightness is proportional to the log of the squared dark matter density projected along the
line of sight, and the colour hue shows the local velocity dispersion weighted by the squared density
along the line of sight. The white circles show r50. Figure 2 from Springel et al. (2008).
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Figure 1.2: Differential subhalo abundance by mass for different resolution levels in Aq-A. The
bottom panel shows the data multiplied by M2

sub to compress the vertical dynamic range. The
dashed lines show the power law dN/dM ∝ M−1.9. Figure 6 from Springel et al. (2008).
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1.2.2. The Aquarius Simulations

Figure 1.3: Image showing substructure within substructure. The top left panel
shows the dark matter distribution within the main halo in the Aq-A-1 simulation.
The six subhaloes marked by circles are shown in detail in the surrounding panels.
It is clear that these subhaloes possess their own substructures. In the case of the
subhalo shown in the bottom panels, four levels of substructure are shown. Figure
13 from Springel et al. (2008).
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1.3 Recent Work on Substructure

Springel et al. (2008) found an abundance of substructure and significantly more

substructure than was found in the Via Lactea I and II simulations (Diemand et al.,

2007, 2008; Kuhlen et al., 2008; Madau et al., 2008). Detailed convergence studies

were also performed on these Aquarius subhaloes at different resolutions and good

convergence was found. A number of other resolution studies, such as Onions et al.

(2012), Knebe et al. (2013) and van den Bosch and Jiang (2016), have also found

that subhalo mass functions are converged down to 50-100 particles per subhalo.

However, recent work suggests that current cosmological simulations, such as Aquar-

ius, may still suffer from overmerging and that the majority of disruption is in fact

artificial, rather than due to physical processes (Penarrubia et al., 2010; van den

Bosch et al., 2018; van den Bosch and Ogiya, 2018). For example, van den Bosch

(2017) estimated that 80% of disruption in the Bolshoi simulation (Klypin et al.,

2011) was probably due to numerical effects. Analytical work by van den Bosch

et al. (2018) demonstrated that neither tidal stripping nor tidal heating should lead

to complete disruption of cold dark matter substructure. The authors concluded

that it was almost impossible to completely physically disrupt a CDM subhalo and

that the inner remnant of an NFW (Navarro et al., 1996) subhalo should survive,

even after 99.9% of its mass is lost due to tidal stripping. This work was followed

up by a detailed convergence study (van den Bosch and Ogiya, 2018) which found

that inadequate force-softening was driving disruption of substructure in N -body

simulations and that subhaloes with NFW profiles almost never become fully dis-

rupted.

Following this work, van den Bosch and Ogiya (2018) used a large suite of idealised

numerical simulations to examine the tidal evolution and disruption of subhaloes.

They attempted to determine whether disruption seen in subhaloes in simulations

is physical or merely due to numerical effects. The authors claim that most state-

of-the-art cosmological simulations, such as Aquarius, do not have the necessary
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1.3. Recent Work on Substructure

force softening or a sufficient number of particles to properly resolve the dynamical

evolution of subhaloes. They concluded that most disruption of substructure in N -

body simulations is numerical in origin, rather than physical, and that cosmological

simulations suffer from significant overmerging, mainly due to inadequate softening

and discreteness noise. They argued that this overmerging is overlooked in standard

convergence tests.

Building on this work, (Ogiya et al., 2019) developed the DASH library. This is a

database of over 2,000 idealised, high-resolution (Np = N = 1, 048, 576) N -body

simulations following the tidal evolution of individual subhaloes orbiting around

larger haloes. Two orbital parameters and the concentration of both the subhalo

and the main halo are modified in the library, covering much of the parameter

space. The simulations are of a high enough resolution such that they are largely

unaffected by discreteness noise and insufficient force softening. This library is

intended for use with semi-analytical models, in order to improve their calibration.

The host is modelled as a fixed, analytical, spherical potential.

Green and van den Bosch (2019) used the DASH library to look at substructure and

found that modern cosmological simulations may have been systematically under-

predicting the amount of substructure by as much as a factor of two. However,

further work in Green et al. (2021) determined that this was an overestimate and

instead found that artificial disruption only results in an ∼ 8 − 12% suppression of

the fraction of substructure. They also found that artificial disruption was more

pronounced in objects which orbit close to the centre of the main halo.

Errani and Navarro (2021) looked at the evolution of cuspy dark matter haloes

in a static, spherical potential. Their subhaloes are modelled as NFW N -body

objects, most of which have 107 particles and have masses of 106 M⊙. They looked

at a range of pericentre radii and eccentricities and also found that the orbits with

smaller pericentres suffer from the greatest mass loss. They found that although

circular orbits lead to a faster mass loss, the remnant is indistinguishable from that

on an eccentric orbit after a sufficient mass loss. They also found that mass loss is
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continuous, but it slows down as the simulation progresses and that tidal evolution

on highly eccentric orbits is delayed, but otherwise similar to less eccentric orbits.

Earlier this year, another paper looking at the evolution of subhaloes was published

by Aguirre-Santaella et al. (2023). This paper used an improved version of DASH to

look at the evolution of subhaloes on orbits with pericentres in the solar vicinity.

They examined dark matter subhaloes orbiting in a Milky Way-type potential.

The subhaloes are represented by N -body systems, while the potential is a time-

evolving analytical, spherical potential. For most of the simulations they examined

subhaloes with masses of 106 M⊙, but they did test down to 1 M⊙ in mass.

They found that pericentre distance has the greatest effect on mass loss, compared

to all other orbital parameters. Subhaloes whose pericentric passages come very

close to the centre of the main halo (less than 15 kpc) do survive the simulation,

but lose up to 90% of their mass. Subhaloes which have a lower concentration and

closer pericentre lose the most mass. They confirm that for dark matter subhaloes

lighter than 108 M⊙, the results are virtually independent of mass. They also find

that the case is the same when baryons are included. The time of accretion was

set to z = 2 for most cases and the concentration of subhaloes from 5 to 50 was

tested.

1.4 Tidal Disruption of Subhaloes

Subhaloes can become disrupted due to tidal forces. Tidal stripping occurs when

a smaller halo orbits a significantly larger halo. As the subhalo orbits the halo, all

particles which lie beyond the tidal radius, rt, and so are less gravitationally bound,

are stripped from the subhalo due to tidal forces (van den Bosch and Ogiya, 2018).

As the particles are stripped, the subhalo tries to virialize again. This causes the

subhalo to expand and the tidal radius to increase. Once again, the particles which

lie beyond rt are stripped and the subhalo tries to reach virial equilibrium. This is

a continuous process.
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Tidal shocking occurs when there is a sudden change in the external gravitational

field. van den Bosch and Ogiya (2018) look at mainly circular orbits in order to

avoid having to account for this. However, Errani and Navarro (2021) found that

subhaloes on elliptical orbits take longer to get stripped compared to those on

circular orbits. The difference in time is related to the ellipticity of their orbits.

For example, it takes approximately five times as many orbits for a subhalo on a

1:5 orbit to reach the same final stage as an object on a circular orbit. This is due

to the fact that although the subhalo is tidally shocked when it reaches pericentre,

it spends the vast majority of its time away from the centre of the main halo, where

the tidal forces are strongest.

Dynamical friction can also contribute to subhalo disruption, as it can drag subha-

loes closer to the centre of the main halo, thus hastening its tidal stripping. How-

ever, as the subhaloes which we will be examining are several orders of magnitude

smaller than their hosts, it is not necessary to account for dynamical friction in our

simulations. The deceleration caused by dynamical friction is proportional to the

mass of the subhalo.

1.5 Thesis Structure

In this thesis, we will examine the tidal evolution of dark matter subhaloes on

galactic scales. As described above, on this scale there are discrepancies between

the results of state-of-the-art cosmological simulations and work which looks at

subhaloes on their own in idealistic conditions.

In Chapter 2 we explain some of the techniques used in this thesis.

In Chapter 3, we take a close look at van den Bosch and Ogiya (2018). We attempt

to reproduce some of the key plots from this work, first using Gadget-4 and

subfind, and then using code provided by Frank van den Bosch. We perform a

convergence study, looking at several parameters which can affect the accuracy of
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numerical simulations, such as force softening, force accuracy and the number of

particles which are used to simulate the subhalo.

In Chapter 4, we perform a similar study, but instead of the idealised conditions

used by van den Bosch and Ogiya (2018), we now use more realistic conditions by

extracting subhaloes from the Aquarius simulation and resimulating their orbits

using the HEX code developed by Ben Lowing (Lowing et al., 2011).

In Chapter 5, we discuss work done as part of the CDT placement - the Diffify

project, a tool which provides a comparison between different versions of any R

package stored on CRAN and the JUNE project, an open-source model for the sim-

ulation of epidemics.
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Chapter 2

Methods

2.1 Introduction

In this chapter we will discuss the methods and techniques which are used through-

out this thesis. We will discuss N -body codes and some of their parameters in

Section 2.2. In Section 2.3 we talk about how to identify substructure in N -body

simulations using subfind. We look at the procedure which we followed in order

to fit subhaloes with NFW profiles in Section 2.4 and the generation of initial con-

ditions in Section 2.5. Finally, we discuss the halo expansion (HEX) method in

Section 2.6.

2.2 N-body Codes

2.2.1 Tree Codes

The Barnes-Hut Approximation scheme was devised by Josh Barnes and Piet Hut

in order to make large-scale, highly-clustered N -body simulations computationally

tractable (Barnes and Hut, 1986). It is a tree code, where the main idea is that

long-range forces are approximated by replacing groups of distant points with the

centre of mass of the cluster. This introduces a certain amount of error, but also
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speeds up the calculation massively, from O(N2) to O(N logN), where N is the

total number of particles in the simulation.

There are three main stages in the Barnes-Hut algorithm. First, the computational

space is recursively subdivided into smaller and smaller regions, until each region

contains at most one particle. The data structure that is used to do this in three

dimensions is an octree. The entire computational domain represents the root of

the octree. This is broken down into eight cubes, each with a volume that is one

eighth of the total domain. These eight cubes are the eight children of the root.

Each child can be subsequently subdivided into eight smaller cubes and so on.

The second step in the algorithm is to calculate the centre of mass positions of the

particles within the cubic cells. Each node of the tree must be made aware of the

total mass and the centre of mass of the particles in its cell.

The final step is the force calculation. This can be estimated using a simple recurs-

ive function. We start at the root of the tree, which contains the entire computa-

tional domain. l represents the side length of the current cell and r is the distance

from the cell’s centre of mass to a particle, p. If l/r < θ, where θ is an accuracy

parameter approximately equal to 1, we treat the cell as a source of long-range

forces and use its centre of mass. Otherwise, we recursively visit the child cells in

the tree.

Throughout this thesis, we make use of two different tree codes - Gadget-41

(Springel et al., 2021) and a modified version of treecode, written by Barnes and

with improvements by Dubinski (Dubinski, 1996).

2.2.2 Timesteps

To accurately integrate the equations of motion, the choice of timestep size is

crucial. In general, a smaller timestep will give a more accurate result, but this must
1Gadget-4 also has an optional particle-mesh scheme for use with long-range gravitational

forces.
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be balanced against the increased computational costs. In cosmological simulations,

not only is there a huge variation in spatial scales, there is also a large variation

in time scales. The timescales at the centre of a halo are far smaller than those

in the low density regions. To account for this disparity and to improve efficiency,

modern N -body codes use adaptive timesteps, where the size of the timestep can

vary for individual particles and at different times (Power et al., 2003).

By default, Gadget-4 uses a variable timestep in order to improve efficiency, which

we have used throughout this thesis unless otherwise stated. It is also possible to

force equal timesteps by setting the FORCE_EQUAL_TIMESTEPS configuration option

at compilation time. This adopts a global timestep for all particles, by forcing all

particles to take the minimum timestep desired by any of the particles. However,

this timestep may still vary in size from one timestep to another. By setting the

minimum timestep and the maximum timestep to be equal in the parameter file

and by enabling the NO_STOP_BELOW_MINTIMESTEP configuration option, we can

force all particles to take the same size timestep for all timesteps.

2.2.3 Softening

Softening is used in N -body simulations to prevent the forces and deflection angles

from getting too large when two particles get very close to each other. These strong

deflections are unphysical and a source of error, as the particles used in N -body

simulations are more massive than cold dark matter candidates. Softening is done

by modifying the potential due to each particle with the addition of ϵ, the softening

parameter. The simplest example of this is Plummer softening, where each body

is replaced by a Plummer sphere of scale radius ϵ:

Φ = − 1√
r2 + ϵ2

(2.1)

Gadget-4 uses a cubic spline kernel of the form
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Figure 2.1: Comparison of spline-softened (solid line) and Plummer-softened (dot-
ted line) potential of a point mass with the Newtonian potential (dashed line).
Figure 13 from Springel et al. (2001b).
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Figure 2.1 shows a comparison of the spline-softened and the Plummer-softened

potentials of a point mass with the Newtonian potential. For a given softening

length in Gadget, h, the Plummer equivalent softening is defined as ϵ = h/2.8.

Softening is also linked to the size of the timestep, ∆t, in Gadget according to

the equation

∆t = min
[
∆tmax,

(2ηϵ
|a|

) 1
2
]

(2.3)

where |a| is the particle acceleration, η is an accuracy parameter and ∆tmax is the

maximum allowed timestep (Springel, 2005).
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2.2.4 Force Accuracy

Gadget offers two options of opening criterion when setting the force accuracy

- the standard Barnes-Hut option with an opening angle of θ and a relative cri-

terion, where a Barnes-Hut opening criterion is used for the initial timestep and a

dynamical updating criterion is used subsequently (Springel et al., 2021). In this

case, an approximation of the expected force error is compared to the magnitude

of the total force,

M

r2

(
l

r

)p

< α|a| (2.4)

where |a| is the magnitude of the acceleration of the particles in the previous

timestep. M is the mass of particles within a cell with side length, l, and r is the

distance of the target coordinate to the node’s centre of mass. α controls the force

accuracy. Nodes which are most important for the final force are assessed with

greater force accuracy than less important contributions, meaning that the process

is more economical than the traditional Barnes-Hut opening criterion.

2.3 Identifying Substructure

The task of identifying substructures in the results from N -body simulations is a

non-trivial one. The Friends-Of-Friends (FOF) algorithm (Press and Davis, 1982)

is commonly used to identify groups of particles which compose haloes in a cos-

mological simulation. It does so through a dimensionless parameter known as the

linking length, b, which is a fraction of the mean inter-particle separation. A linking

length of b = 0.2 is typically used in cosmological simulations. Any two particles

which are within a distance of b from each other are friends. A particle is also

linked to all particles which are linked to its friends, i.e. its friends-of-friends.

Groups with fewer than 20 particles are discarded.
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FOF groups are composed of particles which are physically close to each other,

but this does not necessarily mean that they are gravitationally bound. To find

gravitationally bound substructures a halo-finder algorithm must be used. There

are various algorithms used to identify bound groups of particles within these FOF

groups. In this thesis, we use Subfind Springel et al. (2001a). Subfind begins

by looking for bound structures in FOF groups. It estimates the local density of

all the dark matter particles in the group and searches for overdense regions. It

groups together nearby particles until it finds a saddle point and for each group

it iteratively removes unbound particles. If more than 20 particles remain after

this stage, the group becomes a subhalo. Each particle can belong to at most one

subhalo. However, subhaloes can be found within other subhaloes.

Merger trees can be used to track subhaloes through a simulation (Lacey and

Cole, 1993). The merger trees which we are concerned with are constructed using

Dhaloes. They are intended as input to the galform semi-analytic model of galaxy

formation (Cole et al., 2000). The algorithm used to produce these is described in

Jiang et al. (2014). In order to produce them, one starts with FOF haloes which

have been decomposed into subhaloes using subfind. The subhaloes are then

tracked between snapshots and grouped into Dhaloes. One advantage of Dhaloes

over FOF haloes (particularly when it comes to semi-analytic modelling) is that

Dhaloes maintain consistent membership over time. Once a subhalo becomes part

of a Dhalo, it stays a member for the duration of the simulation. This is true

even of satellite subhaloes which have passed through the main halo and are so

distant that they are no longer linked to the corresponding FOF group. Some FOF

haloes are also split into multiple Dhaloes when substructures are well separated

and they are only linked into a single FOF halo by bridges of low-density particles.

The merger tree can then be traversed and used to track the orbits and masses of

subhaloes within the simulation.
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2.4. NFW Fitting

2.4 NFW Fitting

Navarro et al. (1996, 1997), hereafter NFW, found that the density profile of a

dark matter halo may be approximated by a simple formula with just two free

parameters:

ρ(r)
ρcrit

= δc(
r
rs

) (
1 + r

rs

)2
,

(2.5)

where ρcrit = 3H2
0/8πG is the critical density and δc and rs are a characteristic

density and scale radius. This formula holds true for all haloes which are formed

hierarchically and are close to virial equilibrium, regardless of their mass or the

cosmological model used and has been confirmed by many others (see, for example,

Cole and Lacey (1996); Kravtsov et al. (1997); Aylett-Bullock et al. (2021)).

In order to generate initial conditions which match haloes from the Aquarius sim-

ulations, we must first fit the haloes that we wish to replicate with NFW profiles.

To do this, we use the method outlined by Neto et al. (2007). We calculate a

differential density profile for the candidate halo by binning the halo mass in 32

equally spaced bins between the virial radius, rvir, and log10(r/rvir) = −2.5. For

haloes with a mass < 108 M⊙, we reduce the number of mass bins to 22.

The two free parameters, δc and rs, are adjusted to minimise the root mean square

deviation, σfit, between the binned log(ρ(r)) and the NFW profile,

σ2
fit = 1

Nbins − 1

Nbins∑
i=1

[log10 ρi − log10 ρNFW(δc; rs)]2 . (2.6)

The initial conditions code which we are using to generate equilibrium haloes re-

quires values for the virial mass, Mvir, which is the mass contained within the virial

radius, and the halo concentration, cvir = rvir/rs. So once we have the values for

δc and rs, we can calculate these. The concentration and the characteristic density

are related by,
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2.4. NFW Fitting

δc = 200
3

c3

ln(1 + c) − c/(1 + c) . (2.7)

For defining virial quantities in this thesis, we set ∆ = 200, apart from in Chapter

3 where ∆ = 97.

We also tested the fitting procedure outlined in Ludlow et al. (2014). This is

similar to Neto et al. (2007), but the NFW profile is fit between 0.05 r200 and 0.6

r200. We found that in our case there was very little difference between the two.

Ludlow et al. (2014) also restrict their analysis to haloes that contain at least 5000

particles within their virial radius. However, as a number of the haloes in which we

are interested have fewer than 5,000 particles, we extended the fitting procedure to

include all haloes with at least 1,000 particles, i.e. all haloes with a mass greater

than 1.37 × 107 M⊙ for the Aq-A-2 halo used in Chapter 4.

We tested our fitting procedure on a number of subhaloes from the Aquarius sim-

ulation, by looking at how the concentration calculated from fitting changes as the

number of particles in the halo decreases. A sample of the results are shown in Fig-

ure 2.2. On the left, with a density profile in blue, is a subhalo which had 416,625

particles at z = 1.11. On the right, with a density profile in red, is a subhalo which

had 145,412 particles at z = 1.11. We fit an NFW profile to their density profiles

and then calculate the concentration. We then randomly reduce the number of

particles in the halo by 10%, eventually stopping at 1% of the original number of

particles. For each reduction in particles, we re-calculate the density profile, fit an

NFW and re-calculate the concentration.

We can see that the concentration, shown beside each density profile, stays relat-

ively constant for both examples, even when we get to just 1% of the number of

particles. We therefore took 1,000 particles as our limit.
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Figure 2.2: The effect that randomly reducing the number of particles in a subhalo
has on its calculated concentration for two example subhaloes. The differential
density is shown in blue (red) for the subhalo on the left (right). The fitted NFW
profile is shown with a dashed line.
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2.5 Initial Conditions for Modelling Infalling Haloes

To generate equilibrium N -body realisations, we use code introduced in Kazantzidis

et al. (2004). In this method, the phase-space distribution function (DF) is sampled

in order to generate the subhalo. It is assumed that the DF is only a function of the

energy so that the velocity distribution is isotropic (Binney and Tremaine, 2008).

In an NFW profile the cumulative mass diverges as r → ∞, so the profile must be

truncated at some point. Kazantzidis et al. (2004) propose using an exponential

cut-off for r > rvir, as suggested by Springel and White (1999). This cut-off takes

the form of

ρ(r) = ρs

cγ(1 + cα)(β−γ)/α

(
r

rvir

)ϵ

exp
(

−r − rvir

rdecay

)
(r > rvir), (2.8)

where (α, β, γ) = (1, 3, 1) for an NFW profile. To ensure a smooth transition

between both sections of the profile, ϵ is set to

ϵ = −γ − βcα

1 + cα
+ rvir

rdecay
. (2.9)

For all simulations, we have set this rdecay factor to ten times the virial radius,

unless otherwise specified.

2.6 HEX

The Halo Expansion (HEX) code was written by Ben Lowing (Lowing et al., 2011).

The HEX code approximates the potential of a simulated halo using a basis function

expansion. It makes it possible to integrate the orbits of subhaloes in a time-varying

halo potential at a much lower computational cost than the original simulation.

This means it is possible to re-create very expensive halo simulations and replay

them with different parameters. It is ideal for examining orbits and the tidal

stripping of subhaloes.
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2.6. HEX

The basis function expansion used in HEX is based on the self-consistent field

(SCF) method first devised by Ostriker and Mark (1968), where it was used to

find the equilibrium structure of rapidly rotating stars. The SCF method then

used to model the potential of simple galaxies by Clutton-Brock (1972, 1973). The

method was further developed by Hernquist and Ostriker (1992) and HEX is based

on their formulation, where Poisson’s equation is solved by expanding the density

and potential in a set of basis functions. Differentiating the potential series gives

the acceleration and this can then be used to self-consistently evolve the particles.

In order to avoid the high cost (both in time and money) of a full cosmological

N -body simulation, approximations are often used. One of the most common is

to use a static analytical potential to represent the main halo and to perform a

simulation of the small-scale component. This makes it easy to vary the parameters

of the dark matter halo - something that is not possible in a full N -body simulation

- but it is also not very realistic. HEX provides an alternative.

We use the HEX code to accurately represent the halo potential from the Aquarius

simulation (Springel et al., 2008). In order to investigate the small-scale structure

and substructure of haloes, we need a high mass resolution. The Aq-A-2 simulation

has a mass resolution of ∼ 104 M⊙. This is too low to analyse the evolution of

the smallest subhaloes. We use a potential expansion including terms up to order

nmax = lmax = 30, with a fixed scalelength of 33 kpc and sum over all particles

within 340 kpc of the halo centre, to approximate the Aq-A-2 halo. A set of

coefficients is generated for each snapshot, approximately every 155 Myrs. Figure

2.3 shows the orbits and radial distances of four subhaloes from the Aquarius

simulation over 8 Gyr, integrated in the HEX-approximated Aquarius potential.

The original orbits are shown in blue, while the resimulated HEX orbits are shown

in red. HEX reproduces the orbits well. The orbit of the subhalo in the top left is

reproduced particularly well, with both pericentres matching closely.

The equations used to describe this method are lengthy. The derivation is given in

Lowing et al. (2011), with a correction in Kelly (2022).
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2.6. HEX

Figure 2.3: The orbits and radial profiles of four different subhaloes taken from
Aquarius-A-2. The original is shown in blue, while the HEX resimulation is shown
in red.

Following Lowing et al. (2011), Sanders et al. (2020) also used basis function ex-

pansions to reproduce the evolution of a Milky Way-like halo. The authors of

this paper looked at the orbits of Milky Way subhaloes and the plane of satellites.

Sanders et al. (2020) introduced an inertial correction to the basis function expan-

sion method. This is to account for the fact that the halo centre is a non-inertial

reference frame. The co-moving coordinate of the halo centre can be given as

x(t) = r(t)/a(t) (2.10)

where a is the cosmological scale factor and r is the position of the halo centre.

The peculiar velocity of the halo centre can be calculated as

u = ṙ −H(t)r = ẋa(t) (2.11)
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2.6. HEX

where H(t) = ȧ(t)/a(t) is the Hubble parameter. The acceleration of the reference

frame is thus given by u̇. The force on the particle is then

F(x, t) = −∇Φ(x, t) − u̇(t) (2.12)

where Φ(x, t) is the halo potential and can be reconstructed through a basis function

expansion. Without this correction, the agreement between the original orbits and

the reconstructed HEX orbits is much less accurate for orbits far from the centre of

the halo. This correction is not present in the original work by Lowing et al. (2011),

as this focused on subhaloes near the centre, but has since been implemented in

HEX by Kelly (2022). The HEX code used to produce all simulations in this thesis

contains this inertial correction.

Now, having discussed the methods used in this thesis, we will look at reproducing

the work of van den Bosch and Ogiya (2018) in the next chapter.
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Chapter 3

Substructure Convergence Studies

3.1 Introduction

In this chapter, we take a look at the work of van den Bosch and Ogiya (2018)

(hereafter vdBO18 in this chapter). The authors of this work use a large suite of

idealised numerical simulations to examine the tidal evolution and disruption of

subhaloes. In these simulations, the subhalo is represented by an N -body system

which is integrated in a static, analytical, external potential representing the main

halo. Both the host halo and the subhalo are assumed to be spherical and to have

an NFW density profile at the start of the simulation. The authors look at several

parameters which can affect the accuracy of numerical simulations, such as force

softening, force accuracy and the number of particles which are used to simulate

the subhalo.

The host halo is represented by a static, spherical potential with an NFW dens-

ity profile. The authors define the virial radius, rvir, as the radius within which

the average density is 97 times the critical density. The virial velocity, Vvir =√
GMvir/rvir, is defined as the circular velocity at the virial radius. The concen-

tration is defined as c = rvir/rs. The host halo is 1000 times more massive than

the subhalo.

The subhalo is represented by an N -body system. The initial conditions (ICs)
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are generated by sampling particles from the distribution function (DF) using the

acceptance-rejection method (Press et al., 1992). The subhalo also has an initial

NFW density profile. As mentioned in Chapter 2, in an NFW profile the cumu-

lative mass diverges as r → ∞, so the profile must be truncated at some point.

Kazantzidis et al. (2004) propose using an exponential cut-off for r > rvir, as sug-

gested by Springel and White (1999). vdBO18 argue that as their subhaloes are

immediately thrown into an external tidal field, there is little point in having a

subhalo which is in perfect equilibrium at the start of the simulation. Therefore,

the subhalo is truncated sharply at a radius rmax, where rmax = rvir.

The majority of the simulations in vdBO18 are run using a modified version of

treecode, written by Barnes and with improvements by Dubinski. The code uses

a Barnes and Hut (1986) octree and a simple second-order leapfrog integration

scheme. Forces between objects are softened using Plummer softening. A second

N -body code was used for simulations where the number of particles, Np, > 106.

The authors dub this code 0T00+ (Nakasato et al., 2012; Ogiya et al., 2013). This

code was designed to run on GPU clusters and uses a second-order Runge-Kutta

integrator. The majority of the simulations which we shall discuss use treecode.

Only the fiducial runs have Np > 106.

Throughout this paper, the authors are concerned with the bound fraction of the

mass of subhaloes over time. The bound fraction is defined as

fbound(t) ≡ ms(t)
ms,0

= Nbound

Np
, (3.1)

where ms(t) is the bound mass of the subhalo at time t, ms,0 is the initial mass of

the subhalo, Nbound is the number of bound particles in the subhalo and Np is the

total number of particles in the simulation. As discussed in Chapter 2, identifying

substructure in an N -body simulation is a non-trivial task. In their paper, the

authors use an iterative process to identify the bound fraction. A particle, i, is

considered bound to the subhalo if its binding energy
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Ei ≡ 1
2miv

2
int,i −

∑
j ̸=i

GmimjQj

(|rj − ri|2 + ϵ2)
1
2
< 0. (3.2)

Qj is equal to one if the particle is bound and zero otherwise. At the start of

the simulation, it is assumed that all particles are bound. Subsequently, Qi is

assumed to be the same as in previous outputs. Ei is calculated for each particle

using Equation 3.2, Qi is updated and fbound is calculated. The centre-of-mass

position and velocity of the subhalo are calculated, taking the average position

and velocity of the most bound particles. The velocity of each particle is updated

using this centre-of-mass velocity. These steps are repeated until the changes in

the new centre-of-mass position and velocity are less than 10−4rvir and 10−4Vvir

respectively.

The authors test a number of parameters which can affect the accuracy of numerical

simulations, such as the size of the timestep, force accuracy, force softening and

the number of particles used in the simulation. Figure 3.1 shows how the bound

fraction of a subhalo is affected by a change in the size of the timestep, ∆t, (left)

and the opening angle, θ, (right). For the timestep, the results are converged so

long as ∆t ≤ 0.4. Here, ∆t = 1 (in model units) corresponds to 63.4 Myr. For

the force accuracy, the results are converged for θ < 2.0. The authors thus take

∆t = 0.02 and θ = 0.7 as conservative values to use for the rest of their simulations.

The key plot from the paper is shown in Figure 3.2. This shows the bound fraction

as a function of time for a number of simulations where the orbiting subhalo is

modelled with different numbers of particles, Np, and different softening lengths,

ϵ. The softening lengths are in units of the initial scale radius of the subhalo.

The simulations follow a subhalo, represented by an N -body system, placed on a

circular orbit in a static potential. The orbit is at a distance of one tenth of the

virial radius of the main halo. The black line represents the converged results,

which is based on a simulation with Np = 107 and ϵ = 0.003. Within each box,

the blue lines show the results from ten different simulations with differing random
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Figure 3.1: The effect that changing the timestep (left) and the opening angle
(right) has on the bound fraction of a subhalo over time. The subhalo (Np = 105)
is placed on an orbit at a distance from the main centre of 20% of rvir of the main
halo. The softening length is set to ϵ = 0.05 in units of rs. Figure 5 from vdBO18.

realisations of the initial conditions and the red line represents the average of these

lines. The vertical dashed line shows the Hubble time. The yellow band indicates

the typical values of Np and ϵ used in cosmological simulations.

We can see that along this yellow band the results either do not converge, or they

are converging to an incorrect value. The authors therefore claim that most state-

of-the-art cosmological simulations do not have the necessary force softening or a

sufficient number of particles to properly resolve the dynamical evolution of subha-

loes. They conclude that most disruption of substructure in N -body simulations is

numerical in origin, rather than physical, and that cosmological simulations suffer

from significant overmerging, mainly due to inadequate softening.

However, as pointed out in the paper itself there are a number of limitations to this

work. The primary one is the highly idealised and artificial setup. The host halo is

represented by a static, spherical potential, when haloes are dynamic and vary with

time. The subhaloes are placed on circular orbits, whereas realistic cosmological

orbits are usually elliptical. The subhaloes are also placed on an orbit that is very

close to the centre of the main halo for the entirety of the simulation.

Figure 3.3 shows similar results, but here the subhalo is placed at a distance from

the main centre of twenty percent of the virial radius. The requirements for con-
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Figure 3.2: The bound fraction as a function of time for simulations with a varying
number of particles, Np, (shown along the right-hand side) and softening lengths, ϵ
in units of rs, (shown along the top of the plot). All simulations follow the evolution
of a subhalo placed on a circular orbit at a distance from the main centre of 10% of
rvir of the main halo. The subhalo has c = 10, while the main halo has c = 5 and
is 1000 times more massive than the subhalo. Within each box, the blue lines show
the results from ten different simulations with differing random realisations of the
initial conditions and the red line represents the average of these lines. The black
line represents the converged results, which is based on a simulation with Np = 107

and ϵ = 0.003. The vertical dashed line shows the Hubble time. The yellow band
indicates the typical values of Np and ϵ used in cosmological simulations. Figure
10 from vdBO18.
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Figure 3.3: The same as Figure 3.2 but this time the subhalo is placed on an orbit
at a distance from the main centre of 20% of rvir of the main halo. Figure 11 from
vdBO18.

vergence are less strict than in Figure 3.2 and along the yellow band the results are

converged when Np ≳ 105. However, the effect of discreteness noise, which arises

when a finite number of particles is used to simulate a continuous distribution, is

still apparent, especially for small Np.

The vdBO18 paper has been quite influential, cited by over 200 papers at the

time of writing. In this chapter, we first check that these results are reproducible

before looking at more realistic conditions. In Section 3.2 we introduce the setup

used to reproduce the work of vdBO18 and we discuss the difficulties of identifying

substructure in artificial conditions. We then test some of the numerical parameters

used in N -body simulations and reproduce the key plots from vdBO18 in Section

3.3. In Section 3.4 we perform a similar analysis using the original code from
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vdBO18, before concluding in Section 3.5.

3.2 Reproducing van den Bosch and Ogiya (2018)

We first set out to make sure it is possible to closely reproduce the results presented

in vdBO18 independently of the codes that they used. Our host halo is represented

by a static potential with an NFW density profile. Rather than using an analytical

potential to represent the host, we used HEX (see Section 2.6) to generate the

static potential. We did this as we wanted a single setup that could be used both

for these simulations and to resimulate orbits from the Aquarius simulation later

on. We model the host using code introduced by Kazantzidis et al. (2004). The

mass of the halo was set to 1012 M⊙, the concentration, c = 5 and the number

of particles, Np = 106. We generate coefficients using HEX for this halo and then

run our N -body code with this static set of HEX coefficients to simulate a static

potential. We checked that the resulting potential was a very accurate fit to an

analytic NFW.

We also model the subhalo using the same initial conditions code. Following the

approach taken by vdBO18, we introduce a sharp cut-off at the virial radius of our

subhalo in order to prevent an infinite mass. All simulations follow the evolution

of a subhalo with c = 10. The mass of each subhalo was set to 109 M⊙, 103 times

less massive than the main halo. The number of particles per subhalo varied from

3 × 104 - 1 × 106 (mp = 3.33 × 105 - 103 M⊙). The subhalo is placed on a circular

orbit at a distance from the centre of the main halo of 10% of the virial radius of

the main halo.

The integration of the subhalo evolution was carried out using the Gadget-4 code

(Springel et al., 2021). The simulations are run as non-cosmological and the code

was set up to be as close as possible to the one used in the original paper. The

timestep was fixed to ∆t = 0.02, where ∆t = 1 was equal to 63.4 Myr. The type of

opening criterion was set to a geometric opening criterion (see Section 2.2.4), which
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is primarily governed by the opening angle θ, where θ = 0.7. As discussed in the

previous chapter, Gadget-4 does not use Plummer softening, but rather a cubic-

spline (W2) kernel. However, the Gadget-4 parameter file takes the equivalent

Plummer softening lengths and these values were matched to those of the original.

There are, however, slight differences in the shape of the Plummer softened and

spline softened potentials as shown in Figure 2.1.

3.2.1 Identifying Substructure

In order to calculate fbound we used the halo-finder subfind. Due to the artificial

setup of the simulations - the subhalo is placed on a circular orbit, very close to

the centre of the main halo - we find that subfind sometimes had trouble keeping

track of the bound remnant of the subhalo. Figure 3.4 shows the subhalo after

three orbits (7.42 Gyr). The bound remnant as found by subfind is shown in red

and the particles which have been stripped from the subhalo are shown in black.

The orbit which the subhalo is placed on, at a distance from the main centre of 10%

of the virial radius of the main halo, is shown in green. The subhalo is surrounded

by and continuously moving through its own tidal debris. This makes it difficult

for subfind to correctly identify the bound remnant.

When the linking length of the FOF algorithm was set to its default value, subfind

tended to miss the subhalo, sometimes for several snapshots in a row. We ran a

number of simulations with varying FOF linking lengths to determine the best

linking length to use for these experiments. The number of particles in the subhalo

is 105, θ = 0.7 and ∆t = 0.02. The subhalo was placed on a circular orbit at a

distance from the centre of the main halo of 20% of the virial radius of the main

halo and the simulation was run for 60 Gyr.

The FOF_LINKLENGTH value in Gadget is generally set to 0.2 times the mean

interparticle separation. The code estimates the mean particle spacing from the

dark matter density and the mean particle mass of all the particles selected with
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Figure 3.4: The subhalo after three orbits. The bound remnant is shown in red
and the stripped particles are shown in black. The subhalo’s orbit (at 10% rvir) is
shown in green.

the FOF_PRIMARY_LINK_TYPES mask. We tested values from 0.5 to 0.02. Figure 3.5

shows the FOF groups as calculated by subfind for linking length values of 0.2,

0.14 and 0.08 after three orbits or 7.42 Gyr. When the linking length is set to 0.2,

the largest FOF group (shown in light grey) contains almost all the particles in the

simulation. This is apparent when we compare the leftmost panel of Figure 3.5 to

Figure 3.4. The bound remnant is shown in red on the centre right of each panel.

We looked at the mass of the bound remnant of the subhalo as found by subfind

for different linking lengths. Figure 3.6 shows the mass of the bound fraction as a

function of time. Different linking lengths are represented by different colours. The

mass seems relatively insensitive to the linking length, unless the linking length is
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Figure 3.5: FOF groups as found by subfind after three orbits, when the link-
ing length is set to 0.2, 0.14 and 0.08 (left to right) times the mean interparticle
separation. Different FOF groups are represented by different colours. The bound
fraction as identified by subfind is shown in red.

very small. Gaps are visible in the lines representing the larger linking lengths

tested 0.50 - 0.17. This is where subfind lost track of the subhalo. We find

that a linking length of 0.08 was the largest value where subfind was able to

successfully identify the bound remnant without missing a snapshot. There is an

initial difference in the mass of the subhalo when using 0.08 - the mass of the

subhalo is about half that found when using the default value of 0.2. However,

the two subhaloes’ masses converge as the simulation progresses. Therefore, we

decided that 0.08 was a good value for the linking length and it was used for the

following simulations.

We also looked at the bound fraction as calculated by subfind for different values

of linking length. The results are shown in Figure 3.7. Here the bound mass is
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Figure 3.6: The effect that changing the FOF linking length has on the mass of a
subhalo. The different colours represent different linking lengths.

normalised by the initial mass, as seen in Figure 3.6. Once again, small gaps are

seen in the lines representing the larger linking lengths, where subfind loses track

of the subhalo.

3.3 Testing Parameters

3.3.1 Timesteps

We looked at the effects of changing the timestep, ∆t, and the opening angle, θ,

on the bound fraction, as in Figure 5 of vdBO18 (Figure 3.1). We first performed

a number of simulations with different fixed ∆t. The subhalo was placed on a

circular orbit at a distance from the centre of the main halo of 20% of the virial

radius of the main halo. For all these simulations the number of particles in the
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Figure 3.7: The effect that changing the FOF linking length has on the bound
fraction of a subhalo. The different linking lengths are represented by different
colours.

subhalo were set to Np = 105, the softening length was set to ϵ = 0.05 times the

initial scale radius of the subhalo and the opening angle was set to θ = 0.7. The

simulations were then run for 60 Gyrs. We looked at six different fixed timesteps

and then calculated the bound fraction of the subhalo for each using subfind.

Figure 3.8 shows the results. Similar to vdBO18, we find that the results converge

quite well for ∆t ≤ 0.4. In keeping with vdBO18, we used ∆t = 0.02 for all further

simulations.

3.3.2 Force Accuracy

We next looked at the effects of changing the opening angle, θ, on the bound

fraction. Again, the subhalo was placed on a circular orbit at a distance from

the centre of the main halo of 20% of the virial radius of the main halo. For
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Figure 3.8: The effect that a changing timestep, ∆t, has on the bound fraction of
a subhalo. The subhalo is placed on a circular orbit at a distance from the centre
of the main halo of 20% of the virial radius of the main halo. All simulations use
Np = 105 and ϵ = 0.05.

all simulations the number of particles in the subhalo was set to Np = 105, the

softening length was set to ϵ = 0.05 times the scale radius of the subhalo and the

timestep was set to ∆t = 0.02. The simulations were then run for 60 Gyrs, with

six different opening angles and the bound fraction of the subhalo was calculated

using subfind. Figure 3.9 shows the results. We find that the results converge

well and that there was no discernible difference in the bound fraction for different

opening angles until after approximately 10 Gyrs. In keeping with vdBO18, we

used θ = 0.7 for all further simulations.
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Figure 3.9: The effect that a changing opening angle, θ, has on the bound fraction
of a subhalo. The subhalo is placed on a circular orbit at a distance from the centre
of the main halo of 20% of the virial radius of the main halo. All simulations use
Np = 105 and ϵ = 0.05.

3.3.3 Force Softening and Number of Particles

We next attempted to reproduce the key plots from vdBO18 - Figure 10 and Fig-

ure 11 (Figures 3.2 and 3.3). These depict a detailed resolution study, where both

the softening length, ϵ, and the number of particles in the subhalo, Np, were var-

ied, in an attempt to discover which values led to convergence. Five different

softening lengths were used, ranging from 0.1 − 0.003 times the initial subhalo

scale radius, and four different mass resolutions were used, from Np = 30, 000 to

Np = 1, 000, 000, giving a total of twenty different simulations. For each combina-

tion of ϵ and Np, ten different random seeds were used to generate the subhaloes.

In total, over 200 simulations were run for each plot.

The subhalo was first placed on a circular orbit at a distance from the centre of
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Figure 3.10: The bound fraction over time for a fiducial simulation with Np = 107

and ϵ = 0.003. The subhalo is placed on an orbit at a distance of 10% rvir from the
main centre. The original run from vdBO18 is shown in black and our reproduction
is shown in red.

the main halo of 10% of the virial radius of the main halo. The simulation was run

for 17 Gyrs and the remaining bound fraction was then calculated using subfind.

We first looked at reproducing the converged result from Figure 10 of vdBO18. This

is a subhalo with Np = 107 and ϵ = 0.003, and it is represented by the black lines

in Figure 3.2. We generated the initial conditions for this subhalo, integrated its

orbit using Gadget-4 and used subfind to calculate the bound fraction over time.

The result is shown in Figure 3.10. The values for the original line are extracted

directly from Figure 3.2. The two runs match closely. This is both surprising and

encouraging. We have used two different methods, with completely different sets of

codes, and found that our results match each other well. We would expect smaller

systems to also agree.
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Figure 3.11: The same as Figure 3.10 but this time the subhalo is placed on an
orbit at a distance of 20% rvir from the main centre.

Figure 3.11 shows the same result as 3.10, but this time the subhalo is placed on

an orbit at a distance of 20% rvir from the main centre. Once again, we compared

our converged result to that found by vdBO18 and the two runs also match closely.

The full results are shown in Figure 3.12. Each blue line represents a different

randomly generated subhalo and the red line represents the mean of these ten

runs. The vertical green dashed line shows the Hubble time.

Our results differ slightly from vdBO18. We find that our subhaloes are disinteg-

rating less and at later times. For example, in the middle box on the top row, all

subhaloes survive for the duration of the simulation and for longer than the Hubble

time. In the equivalent box in Figure 3.2, all subhaloes are completely disrupted

within 10 Gyrs. In the box directly below this one, the majority of subhaloes

survive up to the Hubble time, whereas in the original, almost all subhaloes are

gone by this point. As these two boxes are along the yellow band in Figure 3.2,
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Figure 3.12: The bound fraction vs time for a number of simulations with different
numbers of particles, Np, and softening lengths, ϵ. The black line represents the
fiducial subhalo. The blue lines represent simulations of subhaloes created using
different random seeds. The red line is the mean. The green dashed line shows the
Hubble time. The subhaloes are placed on a circular orbit a distance of 10% of the
virial radius of the main halo.

showing the typical values used in cosmological simulations, one might question the

assertion that such simulations do not have the necessary force or mass resolution

to properly resolve subhaloes.

While the results differ quantitatively, they do agree, in general, qualitatively.

For smaller Np and for larger ϵ the simulations fail to converge and we see a lot

of discreteness noise, particularly along the bottom two rows. However, these

differences are surprising, considering the care that was taken to ensure that our

setup matched the original. This prompted further investigation.

Figure 3.13 shows the same results as Figure 3.12, but this time for a subhalo on

a circular orbit a distance from the main centre of 20% of the virial radius of the
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Figure 3.13: The same as Figure 3.12, but this time the subhaloes are placed on
a circular orbit a distance of 20% of the virial radius of the main halo.

main halo. This simulation was run for over 20 Gyrs and a smaller number of

particles was used. The greater distance from the centre means that the subhaloes

are subjected to smaller tidal forces, and thus require a smaller number of particles

to be properly resolved. Again, our results differ slightly from vdBO18. The

subhaloes are disintegrating less often and at later times. Along the bottom row

especially, we see some discreteness noise again.

3.4 Testing the original code

The results agree qualitatively, but there are differences. Our results use independ-

ent codes as the codes used in vdBO18 are not in the public domain. To make

further progress in trying to understand the difference we contacted Frank van den

Bosch. We then used the original code kindly supplied by Frank van den Bosch

44



3.4.1. Comparison of Analysis Codes

to attempt to reproduce the exact results. All parameters were set to match those

used in the original work. We even attempted to use the same random numbers to

generate our initial conditions.

3.4.1 Comparison of Analysis Codes

In order to determine what was causing the discrepancies between our results and

those of vdBO18, we ran some comparison tests between the halo-finder algorithm

used in the original paper and subfind. We ran four simulations for four different

objects using the treecode, converted the simulation output to Gadget-4 output

format and then ran subfind over these results. The results are shown in Figure

3.14. The bound fraction as found by the original analysis code is shown in blue,

while the results from subfind are indicated by the red dashed line. For the most

part, the results are in good agreement. There is a slight offset between the two

lines, where the red subfind line is consistently above the blue line, but this could

be reduced by tuning the FOF linking length.

The original analysis code displays some erratic fluctuations once the bound frac-

tion becomes very small, i.e. when the subhalo has disrupted. To handle this, if the

bound fraction is found to be 1.5 times higher than in the previous snapshot, we

assume that the subhalo has disappeared completely. The value of 1.5 was reached

after extensive testing by Frank van den Bosch, who found that the subhalo is com-

pletely disrupted at this point and the code starts to produce junk values. This

seems to match the results as given by subfind - the erratic behaviour in the blue

line begins once subfind has lost track of the subhalo. These results mean that we

can be confident that the discrepancies between our results and those of vdBO18

are not due to the post-simulation analysis.
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Figure 3.14: A comparison between subfind and analysis code provided by Frank
van den Bosch for four different objects. The bound fraction as calculated by
subfind is shown as the red-dashed line, while the bound fraction calculated by
the van den Bosch analysis code is shown in blue.

3.4.2 Reproduction of Key Figure

Figure 3.15 shows the results of a series of simulations with varying softening

lengths and numbers of particles using the original code from vdBO18. The initial

conditions code was used to generate each subhalo and the N -body treecode was

used to integrate the orbits. The subhalo is once again placed on a circular orbit,

at a distance from the main centre of 10% of the virial radius of the main halo. As

above, each blue line shows the bound fraction over time for a subhalo generated

using a different random seed. The red line represents the mean of the ten runs in

each box and the vertical green line shows the Hubble time. The black line shows

the converged result with Np = 107 and ϵ = 0.003. This was also run using the

original treecode.
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Although every measure was taken to ensure that the setup was as similar to

vdBO18 as possible and all the same codes were used, there are still differences

between Figure 3.15 and Figure 3.2 (Figure 10 from vdBO18). In general, the

subhaloes here last for longer before being fully disrupted. For example in the third

box on the top row, half of the subhaloes survive up until the Hubble time, whereas

in the equivalent box in vdBO18 all subhaloes are destroyed within 10 Gyrs. In the

bottom row, several subhaloes survive until the end of the simulation, losing less

mass than in even the fiducial simulation, whereas others are completely disrupted

within 5 Gyr. While this is a good demonstration of the effects of discreteness

noise, it is also another example of our subhaloes being slightly more robust than

those from the original paper.

We were unable to track down exactly why these discrepancies occur. The codes

used were the same and all parameters were set to the values used in the original

simulations. The same random numbers were used to generate the initial condi-

tions. Correspondence with Frank van den Bosch did not yield any insights as to

what could be causing the differences.

Comparing the results of our simulations using Gadget-4 (Figure 3.12) and those

using the vdBO18 code (Figure 3.15), we can see that the Gadget-4 subhaloes

are much more resilient. In the first three columns of the top row of Figure 3.12

all subhaloes survive for the duration of the simulation and in the fourth column,

a third of the subhaloes do not get disrupted. In contrast, in Figure 3.15, while

all subhaloes survive in the first two columns, only a third survive in the third

column and none survive in the fourth column. In the fifth column, with the

largest softening length, the results are similar for both.

3.5 Conclusions

Work by vdBO18 has shown that subhaloes undergo artificial disruption due to

numerical effects. In Sections 3.2 and 3.3 we attempt to reproduce the results of
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Figure 3.15: The same as Figure 3.12, but run using code provided by Frank van
den Bosch. The bound fraction vs time for a number of simulations with different
numbers of particles, Np, and softening lengths, ϵ. The black line represents the
fiducial subhalo. The blue lines represent simulations of subhaloes created using
different random seeds. The red line is the mean. The green dashed line shows the
Hubble time. The subhaloes are placed on a circular orbit a distance of 10% of the
virial radius of the main halo.

vdBO18 using independent software, and in Section 3.4 we use the same codes as

are used in vdBO18. Every attempt was made to reproduce the methods used by

the authors of the original paper - we even used the same random numbers to gen-

erate our initial conditions. In spite of this, as well as with help from Frank van den

Bosch, it has not proven possible to reproduce these results exactly. However, our

results do agree qualitatively. The subhaloes do get disrupted, particularly those

with low Np and high ϵ. The effects of discreteness noise are also evident in sim-

ulations with low mass resolution. Our subhaloes have proven to be slightly more

robust, but they do end up disintegrating, especially at longer softening lengths

and fewer numbers of particles. Comparing the results of our simulations using

48



3.5. Conclusions

Gadget-4 (Figure 3.12) and those using the vdBO18 code (Figure 3.15), we can

see that the Gadget-4 subhaloes are much more resilient. Our findings, therefore,

do disagree with those of vdBO18, but qualitatively the results are nonetheless

similar.

However, the conditions under which these simulations are run are idealistic and

extremely artificial. The subhaloes are placed on circular orbits, which are very

close to the centre of the main halo for the entire duration of the simulation, and

the main halo is represented by a static, external potential. In the next chapter,

we will investigate the disruption of subhaloes in more realistic conditions using

the HEX code.
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Chapter 4

Milky Way-Type Halo

Substructure

4.1 Introduction

In this chapter, we examine the substructure of a Milky Way-like halo from the

Aquarius simulation and its tidal evolution. We follow a similar analysis to the

previous chapter, but here we use more realistic conditions. van den Bosch and

Ogiya (2018) followed the tidal evolution of subhaloes which were placed on circular

orbits, in a static analytical potential. In order to use more realistic orbits, we take

objects directly from the Aquarius simulation and resimulate their evolution using

HEX. By selecting these objects we get a sample of the distribution of subhaloes

and their properties. By using HEX, we also have a time-dependent potential

to represent the main halo, rather than a static, analytic potential. HEX also

accurately captures the shape of the halo, whereas we used a spherically symmetric

potential in the previous chapter.

We use the Aquarius merger trees (see Section 2.3), provided by John Helly (Jiang

et al., 2014), to track these subhaloes through the simulation. The Aquarius merger

trees cover the high-resolution region of the Aquarius simulations. The Aquarius

A-2 halo was selected for our initial analysis for a couple of reasons. Firstly, to
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mp ϵ Nhr Nlr M200 r200
[M⊙] [pc] [M⊙] [kpc]

1.370 × 104 65.8 531,570,000 75,296,170 1.842 × 1012 245.88

Table 4.1: Properties of the Aq-A-2 simulation. mp is the particle mass, ϵ is the
Plummer equivalent softening length, Nhr is the number of high-resolution particles
and Nlr is the number of low-resolution particles. M200 is the virial mass of the
halo, while r200 is the corresponding virial radius. Excerpt from Table 1 in Springel
et al. (2008).

Vmax rmax δV c∗
NFW z form

[km s−1] [kpc]
208.49 28.14 2.060 × 104 16.19 1.93

Table 4.2: Basic structural properties of the main halo in Aq-A-2. Vmax is the
maximum circular velocity, rmax is the radius at which this occurs, δV is the char-
acteristic density contrast based on the peak of the circular velocity curve and
c∗

NFW is the same value converted to an equivalent NFW concentration. z form is
the redshift of the halo formation, here defined as the point at which M200 of the
main halo progenitor exceeds half its final value. Excerpt from Table 2 in Springel
et al. (2008).

produce accurate results, HEX requires a high rate of temporal sampling. Aq-A-2

has a high time resolution output compared to the other Aquarius simulations,

with snapshots every ∼ 155 Myr. This is essential for HEX to produce an accurate

potential. Secondly, the Aq-A-2 simulation is run at a very high resolution, with

531,570,000 high-resolution particles and a mass per high-resolution particle of

1.37 × 104 M⊙. However, the Aq-A-2 main halo also has a high concentration for

its mass (16.19), which is significantly higher than the median concentration (9.76)

of the other level 2 Aquarius haloes. For this reason, we would like to model the

other relaxed Aquarius haloes at a later date. Some basic parameters of the Aq-A-2

simulation are shown in Table 4.1, while some structural properties of the main

halo are shown in Table 4.2.

In this chapter, we first discuss substructure in the Aquarius A-2 simulation in

Section 4.2. We will discuss two different types of subhalo and the distribution of

their infall times and mass distribution. In Section 4.3 we will discuss the numerical

setup and the pipeline used for these simulations. We will then talk about the use of

HEX in Section 4.3.2, before discussing subhalo selection in Section 4.4.1. Finally,
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we discuss our results and conclusions in Section 4.5.

4.2 Substructure in Aq-A-2

Once a relatively lower mass dark matter halo is accreted by another halo, it

becomes a subhalo of its host. In our analysis, we take the time of accretion, or

infall, to be the time that a subhalo crosses r200 of the main halo. We classify

this substructure depending on whether a bound object is identified by subfind at

z = 0. If an object still exists at the end of the simulation at z = 0, it is called a

type 1 subhalo (Font et al., 2011). This means that it contains 20 or more particles

according to subfind. If a subhalo loses enough mass to fall below the 20 particle

limit according to subfind, it is called a type 2 subhalo. Once an object becomes

a type 2 subhalo, we can no longer track its orbit through the merger trees, but we

can still follow its most bound particle. The position of this most bound particle

at the end of the simulation is taken as the final position of the subhalo. There are

approximately ten times as many type 2 subhaloes in the Aq-A-2 halo as there are

type 1 subhaloes. However, the majority of these are very small and close to the

20 particle limit at their time of infall into the main halo.

We first look at the distribution of type 1 and type 2 subhaloes. Figure 4.1 shows

all type 1 subhaloes which are within r200 of the main halo in Aq-A-2. The red

circle indicates r200 of the main halo. We can see that the concentration of subha-

loes is denser in the middle of the halo, but that there is not much clustering of

substructure. It is also evident from the distribution of substructure that the halo

is not spherical in shape. Figure 4.2 shows all type 2 subhaloes which are within

r200 at z = 0. Many of the type 2s are associated with larger substructures and

they are more centrally located than the type 1s.

The subhaloes that exist within the main halo today were accreted over time.

Figure 4.3 shows the distribution of infall times into the main halo for all subhaloes,

type 1s and type 2s, in Aq-A-2. The red line indicates the infall times of all
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Figure 4.1: All type 1 subhaloes which are within r200 (the red circle) at z = 0.

subhaloes, while the blue bars show the infall times of all subhaloes that end up

within r200 at z = 0. We are primarily concerned with subhaloes that infall after

z = 1, as this is as far back as our HEX coefficients have been tested. We are also,

for the moment, focusing on objects which lie within r200 at z = 0. Therefore, we

are looking at the blue bars from z = 1 onwards. The peak mass distribution of

all subhaloes within r200 at z = 0 is shown in Figure 4.4. The peak mass is the

highest mass which a particular subhalo reaches throughout the duration of the

simulation.

Figure 4.5 shows the distribution of infall times for just the type 1 subhaloes. There

are two peaks in the distribution at lookback times of approximately 5 Gyr and 1.5
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4.2. Substructure in Aq-A-2

Figure 4.2: All type 2 subhaloes which are within r200 (the red circle) at z = 0.

Gyr, with a dip in the middle. The dip can be explained by the fact that subhaloes

which infall at this time (2.5 - 4 Gyr lookback time) tend to be at a stage in their

orbital period where they are at their first apocentre, outside of r200 at z = 0. The

red line at this point demonstrates that there are many subhaloes which infall at

this time.

The peak mass distribution of the type 1 subhaloes within r200 at z = 0 is shown

in Figure 4.6. This extends from ∼ 105 − 1010 M⊙ and peaks at a mass of 106 M⊙,

which in the Aq-A-2 simulation is approximately 200 particles. There is a sharp

drop-off at about 2 × 105 M⊙, which is 20 particles and is the point when a type

1 subhalo becomes a type 2. As our fitting procedure (see Section 2.4) requires at
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Figure 4.3: The distribution of infall times for all subhaloes in Aq-A-2. The infall
times of subhaloes which are within r200 at z = 0 are shown in blue, while the red
indicates the infall times of all subhaloes.
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Figure 4.4: The peak mass distribution of all subhaloes within r200 at z = 0 in the
Aq-A-2 simulation.
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Figure 4.5: The distribution of infall times of type 1 subhaloes. The infall times of
subhaloes which are within r200 at z = 0 are shown in blue, while the red indicates
the infall times of all type 1 subhaloes.

least 1,000 particles to get an accurate fit, we concern ourselves with the higher

mass subhaloes for the moment. Specifically, we are first looking at subhaloes with

an infall mass of at least 108 M⊙.

Figure 4.7 shows the distribution of infall times for all type 2s in Aq-A-2. Here, the

vast majority of subhaloes infall before z = 2, after which point the numbers drop

sharply. This makes sense, as the longer an object orbits close to the main centre

and the greater number of pericentric passages it has, the more mass it loses and

the more likely it is to become disrupted. With each pericentric passage, an object

will lose a certain amount of mass. Once again, we see a dip in the distribution

between ∼ 2.5 − 4 Gyr lookback time.

The peak mass distribution of the type 2 subhaloes within r200 at z = 0 is shown

in Figure 4.8. Similar to the type 1 peak mass distribution, this extends from

∼ 105 − 1010 M⊙. However, it peaks at a slightly lower mass, closer to the cut-off

point for type 1 subhaloes. Thus, the majority of the objects which become type
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Figure 4.6: The peak mass distribution of type 1 subhaloes within r200 at z = 0
in the Aq-A-2 simulation.
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Figure 4.7: The distribution of infall times of type 2 subhaloes. The infall times of
subhaloes which are within r200 at z = 0 are shown in blue, while the red indicates
the infall times of all type 2 subhaloes.
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Figure 4.8: The peak mass distribution of type 2 subhaloes within r200 at z = 0
in the Aq-A-2 simulation.

2 subhaloes are very small, composed of not many more than 20 particles for the

duration of their existence.

4.3 Numerical setup

To examine the tidal evolution of substructure in the Aq-A-2 simulation, we want to

run thousands of simulations, each containing hundreds or thousands of particles.

In order to simplify and speed this process up, we construct a pipeline, which is

described in the following section.

4.3.1 Pipeline

We use the pipeline shown in Figure 4.9. The pipeline is composed of multiple

codes in different languages, comprising Python, Fortran and C++. Each stage

has a well-defined input and output.
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We use a pipeline for the following reasons:

• The pipeline follows the Batch Sequential software design pattern, which has

the advantages of increased simplicity and ability to modify compared to one

big codebase (Avgeriou and Zdun, 2005). In addition, stages can be reused

for different purposes if necessary.

• We can easily use different languages for different parts of our problem. Dif-

ferent programming languages are suited to different tasks. As well as this,

some parts of our pipeline use third-party programs such as Gadget-4 which

we did not want to modify. A pipeline lets us incorporate third-party codes

without requiring modification.

• The pipeline offers flexibility in that a single stage can be run or multiple

stages can be chained together.

• Usage of a pipeline is especially important on HPC clusters where we have

a fixed amount of time in which a job must be completed. Using a pipeline

allows us to design our stages so that they can be completed within this time.

Each stage was designed so that it would fit within the COSMA71 three day

batch job time limit. However, if the entire pipeline was run in a single go,

it would exceed the time limit.

• Each stage can be tested and verified independently.

The stages of the pipeline are illustrated in Figure 4.9. First, we track objects

to their time of infall using the Aquarius merger trees described in Section 2.3.

Here, we take time of infall to be when the subhalo crosses r200 of the main halo

for the first time. Then we select a sample of subhaloes to analyse by taking cuts

based on their time of infall and their mass at time of infall. We find the particles

belonging to each of these subhaloes at some point before their time of infall and

before the subhalo becomes disrupted. The density profiles of these subhaloes
1COSMA7 is a HPC system that is part of the Durham Memory Intensive DiRAC facility.
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Figure 4.9: The pipeline used to resimulate Aq-A-2 orbits using HEX.

are then calculated and fitted with a truncated NFW profile, using the procedure

outlined in Section 2.4. We can then create equilibrium models of these subhaloes

using the code introduced by Kazantzidis et al. (2004) and described in Section

2.5. Using this procedure means that we can create lower and higher resolution

mass subhaloes in order to examine the effect that the number of particles has on

the evolution of substructure. We next convert units and formats and re-centre

the halo at the origin for use with HEX. These equilibrium model haloes are then

put on an orbit around the host matching the orbit of the original subhalo from

Aquarius. Using Gadget-4 with HEX, we can then integrate the orbits forward

to z = 0, experimenting with different values for the softening length, ϵ. We use

Gadget-4’s adaptive, variable timestep, rather than using a fixed timestep as in

Chapter 3. We also use the relative cell-opening criterion, described in Section

2.2.4. We do this to ensure that our conditions are closer to realistic cosmological

simulations. We do, however, use the same softening length calculations that were

used in Chapter 3. The results of these resimulations are then analysed.

The pipeline was originally designed using the logically simplest implementation.

However, several stages failed to complete within the three day COSMA7 batch

job time limit. Therefore, we spent time optimising many of the stages. The

optimisations performed on the various stages of the pipeline are as follows:

• Track subhaloes to time of infall: We originally started with a logically simple,
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but slow solution, which we optimised to heavily reduce reads. After doing

performance tests, we found that almost all the time was spent in disk access,

so we optimised this by reducing the number of reads from disk performed.

Before optimisation, for each snapshot file we checked, we read in all particle

information: particle IDs, particle positions and particle velocities. Reads

were optimised by only reading the particle IDs from the file originally and

doing a pre-check, if the IDs were found, then the particle positions and velo-

cities corresponding to these IDs were extracted from the data. This resulted

in significantly fewer disk reads. We also used Python multiprocessing to

reduce the total time to completion. As the problem was easily parallelis-

able, Python multiprocessing was ideal to utilise all the cores available on the

COSMA7 nodes. NumPy was used to vectorize the operations for a further

speed-up.

• Select sample: NumPy was used to vectorize the calculations, which resulted

in a significant speedup considering the large amounts of data used.

• Find particle data: Similar to the first stage above, we first started with a

logically simple, but slow solution, which spent large amounts of time reading

data. This was optimised by reading in the data once, instead of multiple

times. This resulted in a sufficiently large speed-up.

• Fit subhaloes with NFW profile: The first solution that we came up with was

adequate for our needs.

• Create halo equilibrium models: This is third-party code, written in Fortran,

which was already sufficiently fast.

• Put subhaloes on orbit around host: The simplest version was already suffi-

cient for our needs. No further optimisation was required.

• Integrate orbits to z = 0: Gadget-4 is already heavily optimised for HPC

systems.
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# Pipeline stage Input (format) Output (format)
1 Track subhaloes to

time of infall
Aquarius merger trees
(HDF5)

Subhalo infall time in-
formation (JSON)

2 Select sample Stage 1 output (JSON) Serialised Python dic-
tionaries and lists of
subhalo information
(custom ASCII)

3 Find particle data Stage 2 output (custom
ASCII), Aquarius snap-
shots (Binary)

Particle data (HDF5)

4 Fit subhaloes with
NFW

Stage 3 output (HDF5) Halo fitting information
(custom ASCII)

5 Create halo equilib-
rium models

Stage 4 output (custom
ASCII) and make_halo
parameter file (ASCII)

Equilibrium halo po-
sitions and velocities
(CSV)

6 Put subhaloes on or-
bit

Stage 5 output (CSV) Gadget initial condi-
tions format (HDF5)

7 Integrate subhalo or-
bits to z = 0

Stage 6 output (HDF5) Gadget snapshots and
subfind output (HDF5)

8 Analysis Stage 7 output (HDF5) Various

Table 4.3: A summary of the inputs and outputs of each stage of the pipeline.

The inputs and outputs at each stage of the pipeline are summarised in Table 4.3.

4.3.2 HEX

In order to resimulate the orbits of the Aquarius subhaloes using different Np

and ϵ, we used HEX (see Section 2.6). HEX had previously been implemented in

Gadget-2. For this thesis, we ported the code to work with Gadget-4, which

is written in a more modern C++ style. This necessitated some changes to the

code. Some work also had to be done to make the code work with Gadget-4’s

new integer coordinate system.

We experimented with using different numbers of coefficients to represent the main

halo potential. Higher order terms resolve smaller-scale structure, however there

is also a trade-off to be made with the time taken to run the simulations. Lowing

et al. (2011) found that in Aq-A-2 a force inaccuracy of less than 1% could be

achieved using nmax = lmax = 20 and was sufficient for most purposes. Following
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this, Kelly (2022) demonstrated that there was little improvement by exceeding

n = 22 and l = 10. We looked at nmax = lmax = 20, nmax = lmax = 30 and

nmax = lmax = 45. Figure 4.10 shows some of the results. The eight examples

shown are a representative set of different orbital parameters. The blue lines rep-

resent the original orbit from Aq-A-2. The orange, red and purple lines are HEX

resimulations, where nmax = lmax = 20, nmax = lmax = 30, nmax = lmax = 45,

respectively. For the most part, there is very little difference for the majority

of subhaloes tested between the three different potentials. We therefore chose to

use nmax = lmax = 30 for the remainder of the simulations in this chapter, as this

seemed to be a good balance between accuracy and simulation time. In most cases,

this has been sufficient. However, close encounters between objects are not always

properly resolved.

4.4 Results

4.4.1 Type 1 Subhaloes

We first examined the larger type 1 subhaloes from the Aq-A-2 simulation. We

looked at all subhaloes which infall after z = 1 with infall masses > 108 M⊙ and

which lie within r200 at z = 0. There are 45 such subhaloes and Figure 4.11 shows

the distribution of their infall times. One of these subhaloes was excluded from our

sample as it gained quite a lot of mass from z = 1 to z = 0 and is therefore not

representative. Four subhaloes were also excluded as we could not get a good fit

to an NFW profile pre-infall. This left us with 40 subhaloes in our sample, which

we resimulate from z = 1.11 to z = 0.

The orbits and radial profiles of seven of these 40 subhaloes are shown in the top

half of Figures 4.12 - 4.18. For each of these subhaloes, the orbit from the highest

resolution HEX resimulation is shown, with Np = 100, 000 and ϵ = 0.003. These

examples show some of the more interesting orbits, where the subhalo came close
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Figure 4.10: The orbits and radial distances for a selection of eight subhaloes using
a different number of coefficients in HEX. The blue lines represent the original
orbit from Aq-A-2. The orange, red and purple lines are HEX resimulations, where
nmax = lmax = 20, nmax = lmax = 30, nmax = lmax = 45, respectively. The filled,
black circle in the orbit plots shows the start of the simulation.
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Figure 4.11: Distribution of infall times for type 1 subhaloes with mass > 108 M⊙,
which infall after z = 1.

to the centre of the main halo and lost a significant amount of mass. Most of the

orbits are reproduced reasonably well by HEX. The orbit depicted in Figure 4.18,

in particular, is very close to the original Aquarius orbit. HEX seems to have a

slight problem capturing the apocentres, but does a better job reproducing the

pericentres. Sometimes an object will encounter another object, which leads to a

wiggle in its orbit as seen in the blue line in Figure 4.12. HEX does not capture

these orbits very well, but increasing the number of coefficients used to represent

the potential may lead to improvements.

For these 40 subhaloes, we conducted a resolution study, similar to that in Chapter

3. A selection of the results, from the six subhaloes are shown in the bottom

half of Figures 4.12 - 4.18. Six different softening lengths were used, ranging from

0.3 − 0.003 times the initial subhalo scale radius, and seven different mass resolu-

tions were used, from Np = 100 to Np = 1, 000, 000, giving a total of 42 different

simulations. For each combination of ϵ and Np, five different random seeds were

65



4.4.1. Type 1 Subhaloes

used to generate the subhaloes. In total, over 200 simulations were run for each

plot.

The subhaloes all infall into the main halo after z = 1. We generate the initial

conditions and run the simulations from z = 1.11, in order to capture the subhaloes

before they became disrupted due to the gravitational forces close to the centre of

the main halo. Some subhaloes gained mass between z = 1.11 and their time of

infall in the original Aquarius simulation. This can be seen in Figure 4.14, where

the black line rises above 0 just before it crosses r200 of the main halo. Such an

increase in mass cannot really occur in our setup, as the subhalo is isolated and

there is no chance for encounters with other objects. Despite this, the blue lines

of Figure 4.14 closely match the black line of the original Aquarius simulation,

especially in the higher-resolution runs.

As these subhaloes all have masses above 108 M⊙ and the mass resolution of the

Aquarius A-2 simulation is 1.37×104 M⊙, this means that each of the 40 subhaloes

have at minimum 7,000 particles, with some having significantly more. Therefore,

it is not too surprising that for most of these subhaloes, the mass lost by the

subhaloes in the HEX simulations when Np is high closely matches the mass lost

in the original simulations. For the most part, the bound fraction remaining at

the end of the simulation is very similar to that found in Aquarius, so long as

Np ≥ 1, 000. For Np ≤ 300, subhaloes start to become completely disrupted before

the end of the simulation, often straight after their first pericentre, and the effects

of discreteness noise become more and more obvious. Even the subhalo represented

in Figure 4.12, which does not come particularly close to the centre of the main

halo and only loses about 40% of its mass by z = 0, is almost always disrupted

when Np = 100.

The results of all of these simulations are summarised in Figure 4.19. This shows

the results of 8,400 simulations. Each of the 40 subhaloes is represented by a

coloured dot in each of the boxes. This dot is the mean final value of fbound from

HEX (for a given Np and ϵ) vs the final value of fbound from the original Aquarius
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Figure 4.12: Above: The orbit and radial distance of a subhalo. The blue line represents the
original orbit from Aq-A-2, while the red dashed line shows the resimulated HEX orbit. The mass
of the subhalo prior to accretion was 3.65 × 108 M⊙. Its first pericentre is at 88.37 kpc and first
apocentre is at 262.79 kpc. Below: The bound fraction vs time for simulations with different Np

and ϵ. The black line represents the original bound fraction from the Aq-A-2 simulation. The blue
lines represent different random realisations of the same subhalo. The green dashed line shows the
time of infall.
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Figure 4.13: The same as Figure 4.12, but for a different subhalo. The mass of the
subhalo prior to accretion was 7.67 × 108 M⊙. Its first pericentre is at 26.63 kpc
and first apocentre is at 200.84 kpc.
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Figure 4.14: The same as Figure 4.12, but for a different subhalo. The mass of the
subhalo prior to accretion was 1.61 × 109 M⊙. Its first pericentre is at 31.73 kpc
and first apocentre is at 255.58 kpc.
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Figure 4.15: The same as Figure 4.12, but for a different subhalo. The mass of the
subhalo prior to accretion was 2.35 × 108 M⊙. Its first pericentre is at 21.95 kpc
and first apocentre is at 327.97 kpc.
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Figure 4.16: The same as Figure 4.12, but for a different subhalo. The mass of the
subhalo prior to accretion was 1.29 × 109 M⊙. Its first pericentre is at 34.91 kpc
and first apocentre is at 221.54 kpc.
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Figure 4.17: The same as Figure 4.12, but for a different subhalo. The mass of the
subhalo prior to accretion was 6.66 × 108 M⊙. Its first pericentre is at 37.05 kpc
and first apocentre is at 291.97 kpc.
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Figure 4.18: The same as Figure 4.12, but for a different subhalo. The mass of the
subhalo prior to accretion was 7.64 × 109 M⊙. Its first pericentre is at 68.71 kpc
and first apocentre is at 270.51 kpc.
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Figure 4.19: The ratio between the final subhalo bound fraction from the HEX
resimulations, with differentNp and ϵ, and the final bound fraction from the original
Aq-A-2 simulation for 40 different subhaloes. The value for HEX fbound is the mean
of five different simulations with different random realisations. Blue dots indicate
that the subhalo survived until z = 0 for all five HEX simulations. Orange dots
represent subhaloes that survived for at least one of the five simulations, while red
dots indicate that the subhalo was disrupted in all five simulations. The position
of the red dots is therefore not indicative of the final mass of the subhalo - they
are placed along the x-axis according to their bound fraction in Aq-A-2, but their
position along the y-axis is random.

simulation. If in all five simulations with a different random seed, the subhalo at

a particular Np and ϵ survives until z = 0, the dot is blue in colour. On the other

hand, if the subhalo is disrupted in all five simulations, it is represented by a red

dot. An orange dot indicates that the subhalo survived until z = 0 for at least

one of the five simulations. The red dots are placed on the x-axis according to

their fbound value in the Aquarius simulation, though their position on the y-axis is

random. For the orange dots, the mean of the bound fraction of all the surviving

subhaloes is taken.
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Figure 4.20: The ratio between the final subhalo bound fraction from the HEX res-
imulations, with different Np and ϵ, and the final bound fraction from the highest
resolution HEX resimulation, HEXref , (i.e. the top-left box) for 40 different subha-
loes. The value for HEX fbound is the mean of five different simulations with differ-
ent random realisations. Blue dots indicate that the subhalo survived until z = 0
for all five HEX simulations. Orange dots represent subhaloes that survived for
at least one of the five simulations, while red dots indicate that the subhalo was
disrupted in all five simulations. The position of the red dots is therefore not indic-
ative of the final mass of the subhalo - they are placed along the x-axis according
to their bound fraction in HEXref , but their position along the y-axis is random.
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While the HEX method is very good, it is still not perfect at reproducing the orbits

of the original subhaloes. As we have seen, this results in small differences between

the original simulation and the reconstructed orbits. Much of the scatter in this

plot, especially at the higher resolutions, seems to be due to these small differences.

We have therefore generated a similar plot, Figure 4.20, where the highest resolution

HEX simulation is used as the reference, rather than the Aq-A-2 simulation. As

in our six samples above, we see that for simulations with Np ≥ 1, 000, the dots

are all blue and are close to the identity line with some scatter when Np = 1, 000.

When Np = 300, some subhaloes start to disrupt before the end of the simulation

and the scatter of the blue dots also increases. A significant number of subhaloes

disrupt entirely when Np = 100 and only a few blue dots remain in the final row.

Perhaps surprisingly, while there is a strong dependence on Np for the survival

of the subhaloes, there seems to be little dependence on softening length, ϵ. In

fact, the box with the smallest softening length contains more subhaloes that were

completely disrupted than the one with the longest length. This may be due to

artificial scattering caused by a too small softening length. This is interesting

as inadequate force softening was what van den Bosch and Ogiya (2018) mainly

attributed to overmerging in modern cosmological simulations. While the effects

of different softening lengths were evident in our results from Chapter 3, in these

simulations with more realistic conditions, i.e. realistic orbits and a time-varying

potential, changing the softening length used, even by as much as a factor of 100,

seems to make little difference to the results.

4.4.2 Type 2 Subhaloes

While we did not have time to perform a proper analysis of type 2 subhaloes, we

did run a full set of simulations for a couple of samples. Although there are many

more type 2 subhaloes at z = 0 of Aq-A-2, the majority of these are very close to

the particle limit of 20 at their time of infall. Subhaloes which start out massive

but later become type 2s are much rarer. We are therefore more limited in our
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4.5. Conclusions

sample selection and could not find any type 2s which have large peak masses (>

107 M⊙) and infall after z = 1. The subhaloes shown here were randomly selected

from a sample of type 2 subhaloes with infall times before z = 1, but which still

had masses of at least 107 M⊙ at z = 1. The results are shown in Figure 4.21.

The subhalo depicted in Figure 4.21 has ∼ 1, 802 particles at z = 1.11 when we

begin our HEX resimulations. It first infalls to the main halo at z = 2.16. We can

see on the radial distance plot the point at which the subhalo becomes disrupted

and the blue line stops. This point is depicted as a vertical, dashed red line on

the grid plot below. We can see that for higher Np, although the subhalo loses

over 90% of its mass, a bound remnant does remain by the end of the simulation.

When Np ≤ 1, 000, the subhalo is destroyed before z = 0. The results are similar

for the subhalo depicted in Figure 4.22, which has 1,394 particles at z = 1.11 and

first infalls into the main halo at z = 1.97.

Both of these examples have a much shorter orbital period compared to our type

1 examples. They therefore have more pericentric passages and come very close

to the centre of the main halo, which contributes to the greater tidal disruption

that they experience compared to the type 1 subhaloes. Further work is required,

however, to say anything about the entire population of type 2 subhaloes. There

are approximately 30 type 2 subhaloes with infall times before z = 1, but which still

had masses of at least 107 M⊙ at z = 1. We will run simulations of the remaining

subhaloes in this sample to see if they too survive to z = 0 once the mass resolution

is sufficiently high. This could help give us an insight into the distribution of dark

matter substructure within the Milky Way and help us to put constraints on the

nature of dark matter.

4.5 Conclusions

In this chapter, we discussed substructure in the Aquarius A-2 simulation. We

have examined the tidal evolution of subhaloes using realistic conditions. We have
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Figure 4.21: The same as Figure 4.12, but for a type 2 subhalo. The red dashed
vertical line in the grid plot represents the time that the subhalo becomes a type
2.
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Figure 4.22: The same as Figure 4.21, but for another type 2 subhalo.

79



4.5. Conclusions

used the HEX code to model the potential of our main halo and we have selected

a sample of subhaloes and orbits from the Aquarius A-2 simulation to perform

a convergence study on. We have constructed a pipeline to sample the Aquarius

merger trees, extract subhalo information and run resimulations using Gadget-

4 and HEX, in order to examine the effect that softening length and number of

particles has on the tidal evolution of subhaloes.

We have found that for type 1 subhaloes with infall masses > 108 M⊙, HEX

replicates the original orbits well. While we do see very slight divergence from

masses once Np < 30, 000, in general the bound fraction is close for different random

realisations of the initial conditions. Subhaloes only start to fully disrupt once

Np ≤ 300 and the effects of discreteness noise also start to become apparent. Even

at this stage, for all of our 40 examples at least one of the five random realisations

survived until the end of the simulation. It is only once we get to Np = 100 that

the majority of subhaloes are destroyed. We have shown that over 8 Gyr, subhaloes

which are placed on realistic orbits in a realistic potential are quite resilient.

As well as the number of particles, we have also examined the effect that softening

length has on the tidal evolution of subhaloes. We have looked at softening length

over two orders of magnitude, from 0.003 − 0.3 times the initial scale radius of

the subhalo. We find that softening seems to have little effect on the survival of

subhaloes which are placed on these realistic orbits, contrary to the findings of

van den Bosch and Ogiya (2018).

We have also examined some examples of type 2 subhaloes, i.e. subhaloes which did

not survive to the end of the original simulation. Our samples have more pericentric

passages than do our type 1s and tend to spend longer closer to the centre of the

main halo and are thus subject to stronger tidal forces. We find that when Np is

increased to a sufficient value, these subhaloes do survive for the duration of the

simulation. However, type 2 subhaloes which have large masses before infall are

quite rare and so are not representative of the entire population. We therefore

conclude that the resolution recommendations suggested by van den Bosch and
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Ogiya (2018) may be excessive for realistic simulations, such as Aquarius, where

most objects do not spend the majority of their time at or close to pericentre.

4.5.1 Further Work

In this chapter, we found that large type 1 subhaloes modelled using HEX closely

follow their tidal evolution in the Aquarius simulation. We also looked at a couple

of examples of type 2 subhaloes. However, in order to produce better statistics, we

need to examine a representative sample of the entire population of subhaloes in

Aq-A-2. In particular, we want to examine type 2 subhaloes which are located in

the central regions of the halo and are subject to stronger tidal forces.

As the Aquarius A halo is not completely typical and has a very high concentration

for its mass, we plan to follow a similar analysis and model substructure from the

other relaxed Aquarius haloes, Aq-B - Aq-E. Ideally, we would model all substruc-

ture in Aquarius and examine the properties of this substructure as a function of

radius to determine whether a higher resolution would change anything.

Currently, our HEX coefficients only extend back to z = 1.11, meaning that we can

only resimulate objects from this point onwards. Ideally, we would like to extend

these coefficients back in time as far as possible. (agu) use z = 2 as the time of

accretion for the majority of their subhaloes and we would like to compare these

results to those of HEX for similar time of infall.

Finally, it would be interesting to investigate the effect of baryons on the tidal evol-

ution of dark matter substructure using HEX. Kelly (2022) used the basis function

expansion technique on the full magnetohydrodynamic simulation of the Au16 halo

from the Auriga Simulation (Grand et al., 2017). They found it necessary to in-

crease the order of expansion compared to that used to model the dark matter

only halo due to an increased central density. However, as this still fails to capture

the thin disc accurately, they propose a technique to model the disc, by modelling

the disc analytically and removing it from the basis function expansion. A good
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candidate halo to test this on might be the halo described in Grand et al. (2021).

This is a very highly-resolved resimulation of one of the Milky Way-sized haloes

from the Auriga Simulation, with a baryonic mass resolution of 800 M⊙ and a

dark matter particle resolution of 6 × 103 M⊙, close to that of Aquarius.
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Chapter 5

CDT Projects

5.1 Introduction

As my PhD was part of the Centre for Doctoral Training in Data Intensive Science,

I had the opportunity to undertake a three-month placement in industry with

Jumping Rivers1, an analytics company based in Newcastle-upon-Tyne.

During my time with Jumping Rivers I was involved with the Diffify2 project,

which provides information on additions and updates to CRAN (the repository for

R packages)3. At the time of my placement, I was the sole contributor to this

project. All of the code shown below was written by myself.

I also spent time during my PhD working on the JUNE project. This was a mul-

tidisciplinary project to develop a model for the simulation of epidemics. Work

was contributed by a large group of fellow CDT students and academics, as well

as clinicians from the NHS. The project paper is included in Appendix A. A brief

description of my contribution is included in Section 5.3.
1https://www.jumpingrivers.com/
2previously called Cowberries
3https://diffify.com/
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5.2. Diffify

5.2 Diffify

5.2.1 Introduction

R is a programming language used primarily for statistical computing and graph-

ics4. The Comprehensive R Archive Network (CRAN) is a network of web servers

which stores up-to-date versions of and documentation for R packages5. Most R

packages can be found here. CRANberries (Eddelbuettel, 2007) is a website which

provides an RSS feed of all updates to CRAN 6. It provides a list of all new pack-

ages with metadata. It also provides a list of updates to current packages. There

are approximately 20,000 R packages on CRAN and dozens of these packages are

updated each day. CRANberries is indiscriminate; it provides information on all

of these packages, as well as perhaps another few dozen new packages each day.

Much of this information is often unnecessary and can be overwhelming, as one

probably only cares about changes to the packages that one uses. In addition to

the information overload, the diff that CRANberries provides for updated packages

is in the form of a git diff, which is not human-readable.

The aim of this project, Diffify, is to provide a more tailored experience. Users can

request information on specific packages or groups of packages. In addition, Diffify

provides a more human-readable diff, giving the kind of information that users are

most concerned about, i.e. changes to package dependencies, etc. from one version

to another.

5.2.2 Method

The starting point and the inspiration for this project was the CRANberries web-

site. CRANberries uses the R function available.packages(), which returns all
4https://www.r-project.org/
5https://cran.r-project.org/
6http://dirk.eddelbuettel.com/cranberries/
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5.2.2.1. Python package

available R packages along with some metadata, such as version numbers. This in-

formation is then recorded in an SQL database and updated every two hours. The

differences in packages between points in time is computed and stored in the SQL

database which is used to calculate the RSS feed. Information on new, updated

and removed packages is then added to the RSS feed (Eddelbuettel, 2007).

Jumping Rivers specified a number of requirements for this project.

Requirements included that:

• the code should be packaged as a Python package

• the code should expose a representational state transfer (REST) application

programming interface (API)

• a database should be used for data storage and retrieval

• tests should be implemented

• documentation should be written

Throughout the course of the project I gave regular updates and incorporated

feedback into the project, through a process of iterative development (Larman and

Basili, 2003).

5.2.2.1 Python package

The technologies that were used in this project include:

• Poetry: a tool to handle dependency management and packaging in Python

• SQLAlchemy: a Python SQL toolkit and Object Relational Mapper (ORM)

that enables one to switch easily between different types of SQL database

• Flask: a micro web framework written in Python - it is lightweight and allows

for the quick set up of web applications
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The Python package was called cran-diff. Poetry7 was used to build the package

and handle dependencies. The cran-diff package contains scripts and modules

that can check CRAN for new packages or updates to existing packages, extract

relevant metadata from new and updated packages and store this in a database,

compare two versions of a package and provide a human-readable diff and provide

a REST API to access this information.

A relational SQL database, set up using SQLAlchemy, was used to host the R pack-

age metadata. The database schema, as specified through SQLAlchemy’s ORM

(Object-Relational Mapping), is shown below.

class Packages (Base):

__tablename__ = ’packages ’

id = Column (Integer , primary_key =True ,

nullable = False )

name = Column ( String (250) , nullable = False )

title = Column ( String (250) , nullable = False )

version = Column ( String (250) , nullable = False

)

date = Column (DateTime , nullable = False )

description = Column ( String (500) , nullable =

False )

maintainer = Column ( String (250) , nullable =

False )

url = Column ( String (250) , nullable = False )

bugreport = Column ( String (250) , nullable =

False )

7https://python-poetry.org/
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class Imports (Base):

__tablename__ = ’imports ’

id = Column (Integer , primary_key =True ,

nullable = False )

package_id = Column (Integer , ForeignKey (’

packages .id’), nullable = False )

name = Column ( String (250) , nullable = False )

version = Column ( String (250) , nullable = False

)

class Suggests (Base):

__tablename__ = ’suggests ’

id = Column (Integer , primary_key =True ,

nullable = False )

package_id = Column (Integer , ForeignKey (’

packages .id’), nullable = False )

name = Column ( String (250) , nullable = False )

version = Column ( String (250) , nullable = False

)

class Exports (Base):

__tablename__ = ’exports ’

id = Column (Integer , primary_key =True ,

nullable = False )

package_id = Column (Integer , ForeignKey (’

packages .id’), nullable = False )

name = Column ( String (250) , nullable = False )
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The id in the Packages table is used as a foreign key in the Suggests, Imports and

Exports tables. This allows for the linking of these tables together and efficient

querying of relevant data.

A REST API was also created using Flask. This provided a high-level API to query

for information from the database. All data returned from the API is in JavaScript

Object Notation (JSON) format, which is widely used for REST APIs. A shell

script, “run.sh”, was created to automate the process of starting up the Flask web

server. This started a web server listening on IP address 127.0.0.1 and port 5000.

The app queries the database, using parameters supplied via the API, and returns

a HTTP 400 response code if the package or version is not found, in keeping with

the modern convention of using HTTP error codes for communicating errors.

5.2.3 Problems

A number of problems were encountered throughout the course of this project.

A preferred database was not specified in the original requirements list. As no

preference was given, the Python package pymysql was originally used to generate

the database due to ease of use. This is tied to the MySQL database server software

and prevents other SQL databases from being used. Later on it was decided that

the database should be set up using SQLAlchemy, a Python SQL toolkit and Object

Relational Mapper. This made it easy to switch between using different types of

SQL database, but meant that the code had to undergo a significant re-write.

Originally, an SQLite database was used for testing the package. However, SQLite

does not enforce the length of a VARCHAR8. Despite putting limits on all of

the columns in the database, some ended up being significantly longer. This was

only realised and rectified once the database had been switched to a PostgreSQL

database for use in production, which strictly enforces the length of VARCHAR

fields.
8See https://www.sqlite.org/faq.html#q9
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The metadata of the vast majority of R packages (especially more recent pack-

ages) is encoded in UTF-8, with a small number encoded in latin1. If package

metadata contains non-latin characters, the encoding must be specified in the pack-

age DESCRIPTION file or the package will not be accepted by CRAN. However, some

older packages do not meet this criterion and problems were encountered when

adding their metadata to the database. The decision was made to only include

packages which had been updated in the past two years in the database. This

removed most non-conforming packages. A check was also added to the code to

check for latin1 encoding and to convert from this encoding to UTF-8 if necessary.

5.2.4 Results

The Diffify API has the following endpoints:

GET /names: Returns list of all package names in the database.

Example:

$ curl -X GET http ://127.0.0.1:5000/ names

{

" package_names ": [

"A3",

"aaSEA",

" ABACUS ",

" abbyyR ",

"abc",

"abc.data",

"ABC.RAP",

" abcADM ",

...]

}
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GET /versions/<package_name>: Returns a list of all versions of a given package

in the database.

Example:

$ curl -X GET http ://127.0.0.1:5000/ versions /

dplyr

{

" versions ":[

"0.8.5",

"0.8.4",

"0.8.3",

"0.8.2",

"0.8.1",

" 0.8.0.1 ",

"0.8.0",

"0.7.8",

"0.7.7",

"0.7.6",

"0.7.5"

]

}

GET /imports/<package_name>/<version>: Returns a JSON object of all im-

ports and their versions for a given version of a given package.

Example:

$ curl -X GET http ://127.0.0.1:5000/ imports /

dplyr /0.8.5
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{

" imports ":[

{"R6": "", "Rcpp": "1.0.1", " assertthat "

: "0.2.0", " ellipsis ": "" ,...}

]

}

GET /suggests/<package_name>/<version>: Returns a dictionary of all suggests

and their versions for a given version of a given package. Suggests are other pack-

ages upon which <package_name> does not depend, but which would be nice to

have.

Example:

$ curl -X GET http ://127.0.0.1:5000/ suggests /

dplyr /0.8.5

{

" suggests ":[

{"DBI": "", " Lahman ": "", "MASS": "", "

RMySQL ": "" ,...}

]

}

GET /exports/<package_name>/<version>: Returns a list of all exports for a

given version of a given package. Exports are used to make accessible parts of an

R module to users of that module.

Example:
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$ curl -X GET http ://127.0.0.1:5000/ exports /

dplyr /0.8.5

{

" exports ":[

[".data", " add_count ", " add_count_ ", "

add_row ", " add_rownames ", " add_tally "

,...]

]

}

GET /diff/<package_name>/<version1>/<version2>: Compares two versions of

a package and returns a structure containing the differences between imports, sug-

gests and exports, with separate keys for added, changed, and removed items.

Example:

$ curl -X GET http ://127.0.0.1:5000/ diff/dplyr

/0.8.5/0.7.5

{

" exports ":{

"added":[" group_by_drop_default ", "

group_cols ", " group_nest ", "

validate_grouped_df ", " as_label ", "

distinct_if ", " new_grouped_df " ,...],

" removed ":["exprs"]

},

" imports ":{

...
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}

...

}

Figure 5.1 shows an example of the /names endpoint used in a web browser.

Figure 5.2 shows an example of the /diff endpoint used in a browser.

Error handling is included in the API. Figure 5.3 shows an example of a non-existent

package version request.

Populating the database from scratch takes approximately 5.5 hours. However, this

is only necessary the first time that the database is set up, as later updates only

include new additions or changes to CRAN. The API responds in milliseconds.

Documentation was included and written in the form of a Jumping Rivers user

manual, an internal system for creating web-based documentation in a consistent

manner. This documentation was used to facilitate the handover of this project.
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Figure 5.1: Example of an API request for all package names included in the database.

Figure 5.2: Example of an API request for the diff between two versions of the dplyr
package.
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Figure 5.3: Example of an API request for the imports of a version of dplyr which is not
in the database.

5.3 The JUNE Project

Following the outbreak of the SARS-CoV-2 virus, a multidisciplinary team of re-

searchers from Durham University worked to develop JUNE, an open-source model

for the simulation of epidemics. JUNE is an agent-based model (ABM), where each

agent represents an individual member of the population. The agents are spatially

distributed according to population density and with the demographics taken from

census data. As the spread of COVID-19 is highly variable over both time and

location (Bertozzi et al., 2020) and as it affects different parts of the population

in different ways (Williamson et al., 2020), it requires a tool with a high level of

precision and ABMs are ideal for this.

The published paper, containing a full description of the model and calibration is

reproduced in Appendix A.

My contribution to this project was in the area of data analysis and visualisation.

I analysed survey data and generated visualisations of the output to help improve

the accuracy of the model, as well as creating plots for the publication. I looked at
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time use survey data to work out where the population spends its time and created

contact matrix plots of the simulation to compare to previous studies, such as the

BBC Pandemic Experiment (Klepac et al., 2020). I wrote the code to generate the

contact matrix plots, shown in Figure A.9 and reproduced below.
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(a) Household

(b) School

(c) Company

Figure 5.4: Social contact matrices for England derived from JUNE, before any mitig-
ation strategies are implemented. Colour bars show (average) number of contacts
in social settings between age groups, with all colour scales truncated at one to
show differences between settings, while still clearly showing the structure in the
matrices.
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Chapter 6

Conclusions

6.1 Summary

Substructure is estimated by modern N -body simulations to comprise 5-10% of the

mass of a dark matter halo (Gao et al., 2004). Dark matter substructure is im-

portant, not just for understanding galaxy formation, but also for modelling galaxy

clustering and constraining the nature of dark matter. It was not until the late

1990s that cosmological simulations were able to resolve dark matter substructure

in Milky Way-sized haloes (Moore et al., 1998). However, recent work suggests that

current cosmological simulations, such as Aquarius (Springel et al., 2008), may still

suffer from overmerging and that the majority of disruption is artificial (Penarrubia

et al., 2010; van den Bosch et al., 2018; van den Bosch and Ogiya, 2018). In this

thesis, we investigated the tidal evolution of dark matter subhaloes.

In Chapter 3, we attempted to reproduce the work of van den Bosch and Ogiya

(2018) (vdBO18), first by using Gadget-4 with subfind, then by using code

supplied by Frank van den Bosch. After performing a series of convergence tests,

vdBO18 determined that modern cosmological simulations, such as Aquarius, still

suffer from overmerging and that the majority of substructure disruption is not

physical in nature, but is instead due to numerical factors. Specifically, they con-

clude that this disruption is caused by insufficient force softening and discreteness
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noise caused by inadequate mass resolution.

We attempted to reproduce some of the key figures from vdBO18. Despite every

attempt being made to reproduce the methods of the authors, even using the ori-

ginal codes, it has not proven possible to reproduce these results exactly. However,

our results do agree qualitatively. The subhaloes do get disrupted, particularly

those with low number of particles, Np, and high softening length, ϵ. The effects

of discreteness noise are also evident in simulations with low mass resolution. Our

subhaloes have proven to be slightly more robust, but they do end up disinteg-

rating, especially at longer softening lengths and fewer number of particles. Our

findings, therefore, do disagree with those of vdBO18, but qualitatively the results

are nonetheless similar.

However, the conditions under which these simulations are run are idealistic and

extremely artificial. The subhaloes are placed on circular orbits, which are very

close to the centre of the main halo for the entire duration of the simulation, and

the main halo is represented by a spherical, static, external potential. In Chapter 4,

we investigated the tidal evolution of dark matter substructure using more realistic

conditions. We selected a sample of subhaloes from the Aquarius A-2 simulation

(Springel et al., 2008) and resimulated their orbits using the halo expansion (HEX)

code. The HEX code approximates the potential of a simulated halo using a basis

function expansion. It makes it possible to integrate the orbits of subhaloes in a

time-varying halo potential at a much lower computational cost than the original

simulation. This allowed us to easily re-create very expensive halo simulations

and replay them with different parameters. We constructed a pipeline to sample

the Aquarius merger trees, extract subhalo information and run resimulations with

Gadget-4 and HEX, in order to examine the effect that softening length and

number of particles has on the tidal evolution of subhaloes.

For type 1 subhaloes, we found that HEX replicates the original orbits well for

subhalo mass > 108 M⊙. When Np < 30, 000 we do start to see slight divergence

but in general the bound fraction is close for different random realisations of the
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initial conditions. However, once Np ≤ 300 subhaloes start to fully disrupt and the

effects of discreteness noise also start to become more apparent. Despite this, for

all of our 40 examples at least one of the five random realisations survived until

the end of the simulation. It is only once we get to Np = 100 that the majority

of subhaloes are destroyed. We have shown that over 8 Gyr, subhaloes which are

placed on realistic orbits in a realistic potential are quite resilient.

As well as the number of particles, we have also examined the effect that softening

length has on the tidal evolution of subhaloes. We have looked at softening length

over two orders of magnitude, from 0.003 − 0.3 times the initial scale radius of

the subhalo. We found that softening seems to have little effect on the survival of

subhaloes which are placed on these realistic orbits.

We have also examined some examples of type 2 subhaloes. We found that when

Np is increased to a sufficient value, these subhaloes do survive for the duration

of the simulation, as shown in van den Bosch and Ogiya (2018). However, type 2

subhaloes that reach large peak masses are quite rare and so are not representative

of the entire population.

In Chapter 5, we discussed Diffify, a tool which provides a comparison between dif-

ferent versions of any R package stored on CRAN. This was developed as a Python

web application, which exposed an HTTP REST API. This used an SQL database

which was populated using the openly-available package metadata from CRAN.

We followed modern software development practices and included documentation

and tests.

In Chapter A, we introduced JUNE, an open-source model for the simulation of

epidemics. JUNE was primarily designed to simulate the COVID-19 outbreak in

England, however its modular design allows it to theoretically fit any epidemic or

geographical area. It is an individual-based model, which allows for fine-grained

simulation of behaviour, including work patterns and leisure patterns. The simu-

lation results compared favourably with official epidemiological data.

100



6.2. Further Work

6.2 Further Work

In Chapter 4, we used the HEX technique to model both type 1 and type 2 subha-

loes from the Aquarius simulation. However, we only looked at a small sample of

subhaloes. In order to produce better statistics, we would ideally like to model all

substructure from the Aquarius simulations. Type 2 subhaloes which are centrally

located and are subject to the strongest tidal forces are of particular interest. Once

we model all substructure, we could examine the subhaloes’ properties as a func-

tion of radius to determine how accurate the results from Aquarius are. Does a

higher resolution give different results? Is there a radius at which numerical effects

are most important?

We have mentioned in Chapter 4 that the Aquarius A halo is not completely typical

and has a very high concentration for its mass. We plan to follow a similar analysis

and model substructure from the other relaxed Aquarius haloes, Aq-B - Aq-E.

At the moment, we have only tested our HEX coefficients to z = 1.11 and are thus

limited to resimulating objects from this point onwards. Ideally, we would like to

extend these coefficients back in time as far as possible. (agu) use z = 2 as the

time of accretion for the majority of their subhaloes and we would like to compare

these results to those of HEX for similar time of infall.

Finally, it would be interesting to investigate the effect of baryons on the tidal

evolution of dark matter substructure using HEX. Following the work of Kelly

(2022) on the Au16 halo from the Auriga Simulation (Grand et al., 2017), we

could test the HEX technique on the halo described in Grand et al. (2021).
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Abstract

We introduce JUNE, an open-source framework for the detailed simulation of

epidemics on the basis of social interactions in a virtual population construc-

ted from geographically granular census data, reflecting age, sex, ethnicity,

and socio-economic indicators. Interactions between individuals are modelled

in groups of various sizes and properties, such as households, schools and work-

places, and other social activities using social mixing matrices. JUNE provides

a suite of flexible parameterisations that describe infectious diseases, how they

are transmitted and affect contaminated individuals. In this paper we apply

JUNE to the specific case of modelling the spread of COVID-19 in England. We

discuss the quality of initial model outputs which reproduce reported hospital

admission and mortality statistics at national and regional levels as well as by

age strata.

A.1 Introduction

The spread of SARS-CoV-2 in populations with largely no immunological resist-

ance, and the associated COVID-19 disease, have caused considerable disruption

to health care systems and a large number of fatalities around the globe. The

assessment of policy options to mitigate the impact of this and other epidemics

on the health of individuals, and the efficiency of healthcare systems, relies on a

detailed understanding of the spread of the disease, and requires both short-term

operational forecasts and longer-term strategic resource planning.

There are various modelling approaches which aim to provide insights into the

spread of an epidemic. They range from analytic models, formulated through

differential or difference equations, which reduce numerous aspects of the society–

virus–disease interaction onto a small set of parameters, to purely data-driven

parametrizations, often based on machine learning, which inherently rely on a

probability density that has been fitted to the current and past state of the sys-

tem in an often untraceable way. As another class of approaches, agent-based
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models (ABMs) are “particularly useful when it is necessary to model the disease

system in a spatially-explicit fashion or when host behavior is complex[.]” Russell

et al. (2017) p2:5.1 Being the traditional tool of choice to analyse behavioural

patterns in society, they find ample use in understanding and modelling the ob-

served spread of infections and in leveraging this for intermediate and long-term

forecasting (Auchincloss et al., 2012; El-Sayed et al., 2012; Rockett et al., 2020).

Such models also provide the flexibility to experiment with different policies and

practices, founded in realistic changes to the model structure, such as the inclusion

of new treatments, changes in social behaviour, and restrictions on movement.

To simulate pandemics, specific realisations of ABMs, individual-based models

(IBMs), have been developed in the past two decades, for example Ferguson et al.

(2006); Chao et al. (2010). In these models, the agents represent individuals consti-

tuting a population, usually distributed spatially according to the population dens-

ity and with the demographics - age and sex - taken from census data.2 Within the

existing taxonomy of agent-based models in epidemiology, see for instance Hunter

et al. (2017); Abar et al. (2017), these models often use a disease-specific modelling

framework. Interactions between individuals in predefined social settings, system-

atically studied for the first time in Mossong et al. (2008), provide the background

for disease spread, formulated in probabilistic language and dependent on the prop-

erties of the individuals and the social setting. The sociology of the population and

the transmission dynamics are constrained separately using external datasets and

available literature, and connected in the description of the spread of the disease.

Calibration of such models to observed disease outcomes, such as hospital admis-

sion and mortality rates, is therefore reduced to the specific interface between the

disease and the varying physiology across the broad population. Policy interac-
1Indeed, many models also feature some optimising behaviour of individuals as artificial

intelligence-type actors against randomly drawn welfare functions, see for example Brandon et al.
(2018).

2We will use the term “sex” in regard to chromosomal differentiation throughout this paper
rather than gender. At the time of writing a full classification of the impact of chromosomal
sex versus gender identification on the epidemiology of COVID-19 is unavailable. Within our
modelling framework, nested and non nested identifiers can be constructed to map sex and gender
should more granular statistical data be available.

104



A.1. Introduction

tions and mitigation strategies can be flexibly encoded in detail as modifications

of the social setting, and allow precise analysis of their efficacy that is not readily

available in other approaches.

Evidence from disease data such as COVID–19 fatality statistics suggests that case

and infection fatality rates are correlated, amongst other factors, to the age and

socio-economics status of the population exposed to the etiological agent (William-

son et al., 2020). This necessitates the construction of a model with exceptional so-

cial and geographic granularity to exploit highly local heterogeneities in the demo-

graphic structure. In this publication we introduce a new individual-based model,

JUNE,3 a generalisable modular framework for simulating the spread of infectious

diseases with a fine-grained geographic and demographic resolution and a strong

focus on the detailed simulation of policy interventions. JUNE reaches a geographic

resolution of societal factors similar to models that focus on single-site infection

models, such as Zoellner et al. (2019), where space, location and distance are care-

fully modelled. In addition, similar to approaches such as the STHAM model Lund

et al. (2020), the individuals in JUNE follow detailed spatio-temporal activity pro-

files that are informed by available data including time surveys, geographic and

movement data. In contrast to such models that are usually constrained to a few

tens of thousands of agents, JUNE simulates, simultaneously, the full population of

a country in its spatio-temporal setting, and how a disease spreads through its

population mediated by contacts between individuals. JUNE allows for flexible and

precise parameterisations of policies that affect groups of individuals selected ac-

cording to any of their characteristics. This allows modelling of policies to mitigate

the further spread of a disease, realised as changes and restrictions on movement,

to which we add the effectiveness of changes in social behaviour such as social dis-

tancing. The major cost for this level of detail in the model is in computational

load; indeed, models such as JUNE would likely not have been possible prior to 2010
3A full open source code base and implementation examples are linked here:

GitHub: https://github.com/IDAS-Durham/JUNE
and PyPI: https://pypi.org/project/june/.
version used for this paper is v1.0
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without using a prohibitive amount of computing power, see for instance Mei et al.

(2018).

As a first application of JUNE, we model the spread of COVID–19 in England. In

this context, JUNE uses census, household composition, and workplace data to ensure

that each of the 53 million people in England are assigned a specific, identifiable

location at any point in time. Their activities, health, age and other demographic

attributes are then modelled at a fine-grained geographical level, which helps to

ensure that local heterogeneity in population and movement characteristics are well

recovered. This societal structure, generated by the model, is validated against a

series of datasets (among others this includes: surveys of household size and com-

position, location and size of businesses, size and type of schools by region). The

calibration to observed data from the actual spread of SARS-CoV-2 is then limited

to how the virus is transmitted in the community through person-to-person ‘con-

tacts’ (in the sense of sufficient proximity and timing to transmit). This component

of the infection is calibrated to the spatio-temporal development of hospitalisations

and casualties during the COVID–19 outbreak in England, starting in early March

2020. Preliminary observations demonstrate that a detailed large-scale model of

this type has important implications for intermediate- to long-term modelling of

the SARS-CoV-2 spread in the UK and elsewhere.

The remainder of this paper is as follows. A.2 provides an overview of the structure

of the JUNE framework. In A.3, we detail the construction of a virtual population

including a variety of demographic attributes. For the example case of England, we

demonstrate that the constructed population reproduces the distributions of age,

gender, ethnicity, socioeconomic indices, and the composition of the households

they live in, all with a granularity of a few hundred people. The static properties

of the population also include the assignment of students to schools and Universities

and of employment in companies dis-aggregated by 21 industry sectors. In A.4 we

discuss the dynamics of the population model. We demonstrate how JUNE correctly

reproduces the average time-profile of daily activities of individuals in England. We
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also describe in detail how we reconstruct movement and daily commute patterns

based on publicly available data. Social interactions in various settings are mod-

elled through parameters informed by social mixing matrices derived from surveys

such as PolyMod (Mossong et al., 2008) and the BBC Pandemic project (Klepac

et al., 2020). In contrast to other models, JUNE also incorporates interactions in

various social venues such as pubs, restaurants, cinemas and shopping, outside the

more structured settings of households, work places and schools. A.5 introduces the

generalisable disease model with specific applications to COVID-19 — its trans-

mission properties and the impact it has on infected individuals. We employ a

probabilistic model for the former, while for the latter we incorporate data from

the UK and other countries to characterise the journey of infected people through

the healthcare system. In A.6 we describe how JUNE models the impact of various

policy interventions and other mitigation strategies. In A.7 we show some first in-

dicative results of JUNE highlighting its potential for future, more detailed studies.

A.8 introduces our approach to fitting the model using Bayesian Emulation. We

summarize our work in A.9, and conclude the paper with discussion of future work

and improvements to the model.

A.2 The Structure of the JUNE Modelling Framework

The JUNE framework is built on four interconnected layers: population, interacti-

ons, disease and policy, the layers and their interfaces are illustrated in Figure

A.1. In the context of this publication, we focus on the application of JUNE to

England’s population, the spread of the COVID-19 disease, and policies that have

been enacted by the UK Government in 2020. Clearly, a different population with

different behavioural patterns will not only affect the distribution of individuals

according to their personal characteristics, but it will also necessitate the adapt-

ation of, e.g., social venues to these patterns and corresponding changes to the

population and interactions layers. Similarly, modifications to the disease
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layer will allow application of the JUNE framework for a different disease or, pos-

sibly, even a range of competing diseases. This flexibility and adaptability is even

more pronounced in the policy layer where the introduction of new policies in

reaction to an epidemic depends on behavioural patterns or societal norms.

The population layer encodes the individuals in the model and constructs static

social environments such as the households they live in, the schools and universit-

ies they study in, and the workplaces where they work. The construction of the

virtual population is informed by demographic data such as age, sex, and ethni-

city distributions, the geographic location of their residence, and its composition.

Depending on their age, individuals will attend school or university, work, or be

retired.

The interaction layer models the social interactions of individuals, based on data

about the frequency and intensity of contacts with other people in social settings.

In addition to daily patterns of regular interactions with fixed groups of individuals

such as household members, students and teachers in schools, and work colleagues,

the interaction layer also models more randomised interactions. These include

daily commute patterns to and from work, and more dynamic activities such as

visits to restaurants, pubs, cinemas, and visits to other households.

The disease layer, which sits on top of the population and interaction layers,

models the characteristics of disease transmission and the effects it has on those

infected. In terms of disease transmission, the model incorporates the varying sus-

ceptibility of individuals, how likely individuals are to become infected when they

mix with others in various locations, and how infectious they are over the course

of their infection. In terms of disease progression, the model captures how likely

individuals are to experience symptoms with varying severity, to be hospitalised,

to be admitted to intensive care, or to die, as well as the timings associated with

these events.

In response to the spread of a disease through its population, a government might
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introduce policy measures designed to control and reduce the impact of the dis-

ease. In the case of COVID-19 in England and many other countries, policies

have included social distancing measures, the closure of schools, shops, restaur-

ants, and other leisure venues, and restrictions on movement. In JUNE, these are

modelled in the policy layer. The high level of detail present in the population

and interaction layers allows policies to be modelled at a corresponding granu-

larity. This enables JUNE to describe the impact of policies that can be applied to

specific geographical regions, to specific venues or sectors, or to individuals with

specific characteristics. Examples include, but are not restricted to, the closure

of targeted different types of (or even singular) venues, the inclusion or exclusion

of specific age groups when going to school, shielding of the older parts of the

population, modification to inter-household visits, and self-isolation measures for

infected individuals and their contacts, including variations of compliance with

these measures.

A.3 Population and its Static Properties

JUNE creates a detailed virtual population at the individual level through its popula-

tion layer, utilising a cross-section of demographic and geographic information.

Since JUNE relies on multiple datasets, and is built to dynamically adapt to varying

types of input, the approaches described in this section are generalisable to other

settings with similar or complementary data availability. Given that different set-

tings, e.g. countries, may have different methods and types of data collection, many

of the input parameters described here are optional, allowing JUNE to be more easily

adapted to differences in reporting.

A.3.1 Geography and demography

To facilitate generalisability across multiple settings, JUNE models the geographic

distribution of a population using a hierarchy of three layers – regions, super areas
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Policy
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Figure A.1: Overview of the structure of JUNE. Fitted parameters are shown in
bold.

Figure A.2: Graphical representation of how the census data for
England are structured, from the level of local authority districts
(LAD), down to the level of output areas (OA), with middle layer
super output area (MSOA) in between .

and areas. Layering these geographies allows the use of data at different levels of

aggregation and enables simple statistical projections of data between these levels.

For the case of England, the construction of the virtual population in JUNE is largely
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based on data from the latest UK census, which was carried out in 2011. This data

is accessible through NOMIS, an open-access database provided by the Office for

National Statistics (ONS), and each dataset varies in its degree of aggregation.

The three hierarchical geographical layers represented in Figure A.2 are:

1. regions – London, East Midlands, West Midlands, the North West, the North

East, etc.;

2. super areas – approximately 7,200 middle layer super output areas (MSOAs);

3. areas – approximately 180,000 output areas (OAs).

Figure A.3: Age profiles in different regions of England, taken from
the ONS database and implemented in JUNE

The individuals in JUNE’s virtual population are constructed according to age and

sex dis-aggregated information, the minimal information required by JUNE. In the

case of England, the ONS census data provides this information at the OA (area)

level (Office for National Statistics, 2011a,k) such that JUNE naturally captures

the population density at the most fine-grained level. In Figure A.3 we show age

distributions in different regions. We use data derived from the ONS to additionally

assign one of five broad ethnic categories to individuals based on their age, sex and

location of residence (Office for National Statistics, 2011g) and follow a similar

procedure for the socio-economic index, which we divide into centiles, according

to the ranked English Index of Multiple Deprivation (IMD) (Ministry of Housing,

Communities & Local Government, 2019).
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A.3.2 Household construction

The virtual population within JUNE is placed into households of varying types.

Depending on the structure of the available public records, households in JUNE can

be allocated with an arbitrary degree of granularity, taking into account multiple

demographic attributes.

For the UK the ONS census datasets provide a detailed record of both household

type and composition in England at the OA (area) level. That is, for each OA there

is a set of summary statistics across a number of criteria, choices can then be made

in regard to aggregating those frequency measurements at different resolutions. In

terms of data categories for households the OA (area) level provides the following

occupancy type counts: single, couple, family, student, communal, and other (Of-

fice for National Statistics, 2011j), and further specifies them by the number of old

adults, aged over 65, adults, dependent adults (such as students), and children,

providing around 20 distinct classes contingent on the underlying census informa-

tion. Given the data structure, it is impossible to recover the exact composition for

each household type. For example, the number of non-dependent children (people

over the age of 18 living with their parents), the number of multi-generational famil-

ies, and the exact distribution of adult groups sharing a household are not specified

in these data-sets. However, these features can be statistically extrapolated using

a mix of further secondary data and validated against various aggregate survey in-

formation at the regional and national level.4 Households are populated iteratively

giving preference to those household types with the most precise available data.

The exact procedure for the UK is documented in Appendix B.1.1.

Similarly, to households, care homes are classified by type, positioned and pop-

ulated using ONS data Office for National Statistics (2011d) at the OA (area)

level. The ONS collects information on the age distribution and sex of residents of
4A forthcoming publication will discuss the use of secondary data to further constrain the

uncertainty in the household construction and the subsequent impact on simulating the spread of
COVID–19.
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communal establishments at the MSOA (super area) level (Office for National Stat-

istics, 2011c). By combining these datasets, we infer the age and sex distribution

of the care home population.

Other communal establishments specified in the census, including student accom-

modations and prisons can be flexibly added with sufficient datasets. Within the

presented version of JUNE we do not model explicitly the age and sex distribution

of these other communal establishments, however, since the age and sex distribu-

tion of the OA (area) level’s population will be biased towards these communal

residents, their resident characteristics are deemed to be realistic. Cross checking

of case studies suggests that the communal allocation does capture the age and sex

very accurately.

A.3.3 Construction of virtual schools and universities

Schools and universities are two locations where a resident population will visit and

interact. Every location can have universal and specific attributes flexibly initiated

within the modelling frame work depending on the detail of available information.

From public records JUNE locates and enrolls schools according to their precise geo-

coordinates and the publicly reported age ranges and numbers in attendance at

each school. Students are sent to one of the n nearest schools to their place of

residence, according to which schools cater for their age. We form year groups

which include all students of the same age. The formation of year groups, and

classes within them, allows JUNE to control mixing within and between children of

different ages within the school environment.

To model schools in England, we use data provided by the UK Register of Learning

Providers (UKRLP)5 to determine the location of schools and their age brackets.

Based on the current enrolment requirements for the UK, we assume that children

between the ages 0-19 can attend school, with mandatory attendance between
5https://www.ukrlp.co.uk/
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5-18. Since 19 year-olds can attend school, university, work or none of these,

the institution they attend is determined by the number of vacancies in schools

accepting students of that age group. We send children to one of the n = 10

nearest schools where classes sizes are limited to 40. One way in which we validate

our assumptions is by comparing average travel distance to schools of different

types. In JUNE, we find 1.7 km and 5.0 km for primary and secondary school

students, compared with 2.6 km and 5.5 km respectively from the 2014 national

travel survey (Department for Transport, 2014). Teachers are allocated to a school

by randomised sampling from the available population — i.e. people over the age

of 21 (to allow them to have attended university), who live in the same MSOA

(super area) as the school, and who have been assigned the “Education” as their

work sector (see next section for more details on work sectors). The number of

teachers assigned to a particular school, and therefore the number of classes, is

determined by sampling the ratio of students to teachers from a Poisson distribution

with mean equal to the UK national average, separately for primary (mean of 21)

and secondary schools (mean of 16), or a random choice of the two for mixed

schools (Department for Education, 2011). JUNE’s recovered student-teacher ratios

are 22.0 and 17.8 for primary and secondary schools respectively.

Figure A.4: A geographical visualisation of the location of student residences in
Durham in JUNE, with the university location represented as a red star in the middle.
Output areas are colour-coded according to the fraction of students they host. Note
that the large southern area is where most of the university accommodation blocks
are located.

Similarly universities are located according to their address as recorded in the
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Figure A.5: Number of workers by sex and company sector (denoted by SIC code
identifiers, see Table A.1) in JUNE.

UKRLP. Students are enrolled in a university using the UKRLP enrollment data.

The enrolled students are assigned from a subset of the local population to the

university, reflecting the fact that the ONS census uses the term-time address of

students.

Students are sampled from adults between the ages 18-25 with a preference given

to those previously assigned to living in student or communal households in a given

radius around the university. The concentrations of students expected by JUNE in

a particular area can be matched to secondary data on student living within any

given city in the UK. Figure A.4 shows an example of a university city, Durham, in

which we highlight the modelled regions inhabited by students. To date, we have

not explicitly constructed the employees at Universities and their interactions with

the student body.

A.3.4 Construction of workplaces

Workplaces are constructed for the subset of the population in employment ac-

cording to public records. We divide employment structures into three categories:

work in companies with employees; work outside fixed company structures; work

in hospitals and schools. The number of employees in each MSOA (super area) is

data driven from the workforce information in that specific MSOA. To distribute
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the workforce over workplaces, JUNE first initialises companies based on data con-

taining their locations, sizes and the sectors in which they operate. In a next step,

individuals who are eligible to work (i.e. between the ages of 18-65) are assigned

an industry sector based on the geographic distribution of where the workforce

live by sector. This results in origin-destination matrices which are used to match

workers to their workplace and to optimize the distribution of individual company

to reproduce sector-dependent distributions.

In England, the ONS database contains information on companies and workforce

structured by industry type. Industries and companies are categorised according

to 21 sectors following the Standard Industrial Classification (SIC) code conven-

tion (Office for National Statistics, 2007) (see Table A.1) and information about

company numbers per sector, and company sizes is available at the MSOA (su-

per area) level (Office for National Statistics, 2011f). Similarly, the ONS data

also contain the size and sex distribution of the workforce by sector at the MSOA

level, as well as the location of their employment (Office for National Statistics,

2011e,h). This enables the construction of an origin-destination matrix and allows

us to distribute the workforce accordingly. More details on this specific proced-

ure for initialising companies in JUNE and matching working individuals to these

companies can be found in Appendix B.1.3.

The resulting distribution of our procedure assigning individuals an industry sector

can be seen in Figure A.5. JUNE captures many of the sex-dependent features of

the job market such as females dominating the healthcare profession and males the

manufacturing sector. Recovering these sector-level sex imbalances can be crucial

to reproducing and predicting potential sex imbalances in disease spread.

JUNE locates employment using data specifying the physical position of, for instance,

company buildings. This, however, does not capture other modes of employment.

We model people working from home through the specification of single-person

companies in the same location as their place of residence. It should be noted that

we do not currently explicitly model those workers who may not work in formal
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SIC code identifier Description
A Agriculture, forestry and fishing
B Mining and quarrying
C Manufacturing
D Electricity, gas, steam and air conditioning supply
E Water supply; sewerage, waste management and remedi-

ation activities
F Construction
G Wholesale and retail trade; repair of motor vehicles and

motorcycles
H Transportation and storage
I Accommodation and food service activities
J Information and communication
K Financial and insurance activities
L Real estate activities
M Professional, scientific and technical activities
N Administrative and support service activities
O Public administration and defence; compulsory social se-

curity
P Education
Q Human health and social work activities
R Arts, entertainment and recreation
S Other service activities
T Activities of households as employers; undifferentiated

goods-and services-producing activities of households for
own use

U Activities of extraterritorial organisations and bodies
Table A.1: Standard Industrial Classification (SIC) code identifiers
for the 21 work place sectors modelled in JUNE and used by the ONS
to categorise companies (Office for National Statistics, 2007).

company buildings but also do not work from home, such as contractors who may

interact with a household of the people they are visiting for building improvements

or maintenance work.

Hospitals play a dual role in JUNE, both as an essential part of patient’s possible

medical journey and as workplaces. We will discuss the role of hospitals for the

former case in Section A.5. For both purposes, hospitals are initialised like many

other locations in JUNE, based on available data regarding their location and ca-

pacity. Hospitals can be modelled individually or as clusters; in the latter case

we represent the full cluster by one hospital. For our simulation of COVID–19 in
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England, we define the relevant National Health Service (NHS) trusts as those that

reported disease-related casualties – this amounts to a total of 129 trusts – and we

cluster them into single hospitals.6 The clustering of hospitals is in fact a better

representation of the situation in England. The aggregation of data by NHS trust

allows for a more detailed comparison of the number and geographical spread of

hospital admissions with available data. We assign medical workers to hospitals

based on the same origin-destination matrix at the MSOA (super area) level as de-

rived above, by choosing from those who work in the healthcare sector (“Q”), with

the additional constraint of assuming a fixed ratio of 10 hospital beds per medic

– nurse or doctor. Teachers are chosen from the population in a similar matter

by using the origin-destination matrix and choosing from those in the education

sector (“P”).

A.4 Simulating Social Interactions

The interaction layer maps the spatial movement, location and intensity of social

interactions, of the virtual population. To ensure a close match to real world

dynamics summary information on the virtual population is calibrated to equivalent

observed summary data. Comparable IBMs, such as Ferguson et al. (2006) and

Chao et al. (2010), simulate social interactions in either static environments, such

as households, schools, or work places, in a similar manner to that described in

the previous section, or in an less specific way determined by gravity models. In

contrast, JUNE allows for the specification of additional social settings, and directly

connects them to geographical locations, such as shops or restaurants. We can

also model transport routes of different types between specified geographical start

and end-points. This granularity is further increased through the addition of social

mixing matrices which parametrise differences in frequency and intensity of contacts

between individuals in various settings (Mossong et al., 2008; Klepac et al., 2018).
6Some NHS trusts share resources and exchange patients across regions in an ad-hoc manner,

however, this is not modelled explicitly.
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A.4.1 A virtual individual’s day

Calendar days, decomposed into time-steps of varying length given in units of

hours, are the background for our simulation of the social interactions of our virtual

population.

Time in JUNE occurs in discrete time-steps of varying length measured in hours.

Every time step in JUNE is tagged to a calendar day. The use of calendar time

allows JUNE to distinguish between week-day and weekend activity profiles, which

is relevant for time spent at work or in school. Each day can have a number

of fixed, static, activities, such as 8 hours of work at the workplace or 10 hours

at home overnight, supplemented with other activities, denoted as “other”, that

are distributed dynamically. Time-steps apply to all individuals, and are chosen

to best approximate an “average” individual’s day. The default time-steps are

described more explicitly in Appendix B.2. During each time-step during which

an “other” activity is allowed, each person who is not otherwise occupied, for

example they are working or ill and in hospital, is assigned a set of probabilities for

undertaking other activities in the model. These probabilities are part of a flexible

social interaction model and depend on the age and sex of the person.7 Given

N possible activities with associated probabilities per hour given by λ1, . . . , λN ,

for a person with characteristic properties {p}, the overall probability P of being

involved with any activity in a given time interval ∆t is modelled through a Poisson

process,

P = 1 − exp
(

−
N∑

i=1
λi({p})∆t

)
. (A.1)

If the individual is selected to participate in one of these activities, the chosen

activity, i, is then selected according to its probability

Pi = λi({p})∑N
j=1 λj({p})

. (A.2)

7These probabilities can be generalised to depend on any attributes of the individual given
reliable data.
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The person is then moved to the relevant location corresponding to this activity.

If no activity is selected, the individual will stay at home.

A summary of how much time is spent each week on various activities as a function

of age is reported in Figure A.6(a). In Figure A.6(b) we show a comparison of the

amount of time spent at home, work, grocery shopping, eating at restaurants/pubs,

and commuting between JUNE and the UK Time Use Survey, 2014-2015 (Gershuny

and Sullivan, 2015). Care home and cinema visits are not accounted for in the time

survey.

(a) Time spent in leisure by age in JUNE.

(b) Comparison of the fraction of time
spent in different activities in JUNE and
the time survey.

Figure A.6: Leisure activities in JUNE

A.4.2 Localised activities

Within JUNE social activities outside the static home, work and school settings can

be specified and given their own specific interaction model. Indeed, collections of

sub-models can be specified, with substitutable activity choices. For instance, for

the English population, these activity models are informed and parameterized by

time surveys available from the ONS (Office for National Statistics, 2011h), which

identify a variety of activity types including time spent at home, work, or in school.

In addition, we have identified five additional settings which we assume are similarly

relevant for the spread of the disease and have a similar level of social mixing: visits
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to pubs or restaurants (“pubs”), cinema visits (“cinemas”), shopping (“groceries”),

visiting friends or relatives in their homes (“household visits”), or visiting family

members in care homes (“care home visits”).

For England, we have located 120,000 pubs and restaurants according to their

geo-coordinates, as well as 32,000 stores and 650 cinemas, with data from Open-

StreetMap (OpenStreetMap contributors, 2017). Each time a person is assigned

to any of “pubs”, “groceries”, or “cinemas”, we pick a random venue from the n

venues closest to their place of residence, or the closest venue if the distance to any

of them is greater than 5km. We have chosen n = 7 for pubs, n = 15 for shop-

ping stores, and n = 5 for cinemas. Note that there are no permanent “workers”

in these venues who return to a single venue daily; only “attendees” who choose

their venue at random. Further locations such as gyms and places of worship can

be easily added to the activity model, and, of course, it can easily be adjusted to

other societies.

In addition, we model interactions in naively constructed social networks, by linking

each household to a list of up to N other households in the same super area. One

of the households in this list is selected, if “household visits” is chosen as activity

during a time step. Residents will stay at home to receive the incoming visitor, who

in turn may also bring their whole household with them according to a probability

described by an external parameter. Comparison with national surveys suggests

that setting the number of linked households N = 3 provides realistic movement

profiles. While care home residents in JUNE cannot visit other people, each resident

is connected to a household of them in the local super output area from whom

they can receive visitors. JUNE also models the interactions that result from elderly

people needing help in their daily activities. Each person older than 65 years old

has a probability, increasing by age, of needing some kind of assistance in their

daily activities. We therefore assign a member of the local super area to be the

carer of an elderly person, following the data available in Age UK (2019). Every

weekday, the carer spends their leisure time visiting the household of the person
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Figure A.7: Number of internal and external commuters by city as modelled in
JUNE.

needing domestic care.

A.4.3 Modelling mobility: commuting patterns

Mobility is modelled in JUNE through a number of transport types that collect and

move the virtual population within a pre-specified region or connecting regions

within a simulated country. JUNE permits an arbitrary number of transport networks

of different types with different interactions (e.g. bus networks, train networks and

road networks). For any given movement of the population JUNE ensures that each

individual is singularly accounted for with an equivalent end or return location.

Travellers move between nodes on these transport networks, and may share their

means of transportation and potentially interact in a time consistent manner.

To model commuting and rail travel in England we utilize data provided by the

UK Department for Transport (UK Department for Transport, 2011). Large met-

ropolitan areas are selected as the major transit node for the network. Commuting

induces social mixing between many people who may not normally come into con-

tact and reflects the importance of transport as a mechanism for promoting the

geographical spread of infection supplementing the spread from individuals moving

to a new location and infecting other individuals at that location.

To fill our origin–destination matrix we use information contained in the ONS data-
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(a) Number of internal commuters in Lon-
don.

(b) Number of external commuters in Lon-
don.

Figure A.8: Commuting maps for London as derived from JUNE. Any visible super
area (MSOA) which is not completely white has at least one commuter from that
location.

base concerning the mode of commuting of individuals at the area (OA) level (Of-

fice for National Statistics, 2011b), to distribute commuting modes probabilist-

ically. We define two modes of public transport, “external” which defines those

commuting in and out of metropolitan areas, and “internal” which defines those

commuting within these areas. Metropolitan areas are defined using data obtained

from the ONS (Office for National Statistics, 2015). For the sake of computational

efficiency we model only the travel patterns of those working inside metropolitan

areas, who in fact represent the overwhelming majority of public transport com-

muters. This includes commuters who live and work in the city, as well as those

who are entering the metropolitan area from outside. The number of internal and

external commuters by city in England is given in Figure A.7. The cities included

are geographically spread across England thereby accounting for major commuting

patterns in most regions modelled. In total, we explicitly model commuting into 13

out of a possible 109 cities in England, which accounts for 60% of all metropolitan

commuters and 46% of all those using public transport to commute to work. Figure

A.8 shows maps of the residences of internal and external commuters in two cities

in our model, where the inner section in white denotes the respective metropolitan

areas. Specifically, from Figure A.8(b) we can see that, given the large commute
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radius of cities like London (we observe a similarly large radius for Birmingham and

several other cities), commuting can be a key driver for the inter-regional spread

of infectious-diseases.

Travelling within a metropolitan area, i.e. the internal commuting mode, is mod-

elled as a self-connected loop – practically speaking this means that internal com-

muters may in principle interact, irrespective of the actual movement inside the

city. For external commuting, the travel into and out from the metropolitan area,

we identify shared routes for commuters living in neighbouring areas and super

areas. The number of possible routes into each city, and therefore the number of

ways to divide regions around the cities, is informed by the approximate number

of rail network lines into each city – currently this is set to eight in London and

four for each of the other 12 cities (National Rail, 2015).

We randomly partition people sharing the same commuting route into subgroups,

“carriages”, which define the environment in which social interactions take place.

The commuting time-step is run twice a day and in each run the travellers are ran-

domly distributed into carriages. The number of people per carriage is determined

by city-dependent data obtained from the UK Department for Transport (UK De-

partment for Transport, 2011). More details on the specific algorithm for modelling

commuting in JUNE can be found in Appendix B.1.4.

A.4.4 Social interaction frequencies and intensities

Social contact matrices (Klepac et al., 2020; Mossong et al., 2008) provide informa-

tion about the age-dependent frequency and intensity of in-person contact in differ-

ent social settings, an important ingredient to many epidemiological simulations.

They measure the average daily number of conversational and physical contacts

between individuals of different ages. This means that they are normalised to the

size of the population in the respective age bins, but do not account for whether

they can take part in such contacts. To use them within JUNE we therefore have
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to account for the fact that social settings define the group of people coming into

contact with each other. To exemplify this, consider the case of contacts between

adults and students in schools. While the social contact matrices in the literature

normalise the number of contacts of a 30-year old with children of a certain age

to the number of 30-year old adults in the population, in JUNE only a subset of

30-year old adults work as teachers and can therefore interact with the children.

In the construction of matrices specific for JUNE, we therefore combine the results

from Klepac et al. (2020) and Mossong et al. (2008) with simple assumptions about

possible participants in contacts.

Averaging over age ranges in different settings, we arrive at simplified social mix-

ing matrices, χL
si , which will be comparable to the inputs from literature upon

combination with the model results for the composition of social environments.

Below we list our simplified social mixing matrices inferred from literature, with

L ∈ {(H), (S), (W )} (home, school, work place), as well as the relative propor-

tions, ϕL
si , of physical contacts. The latter are relevant, since in line with standard

approaches, closer physical contact in JUNE is proportional to a higher propensity

for transmission for the etiological agent.

For the households social mixing matrices, we define four categories, young children

(K), young dependent adults of age 18 or more (Y ) that still live with their parents,

adults (A), and older adults (O) of age 65 and over. We use:

χ
(H)
ij =



1.2 1.69 1.69 1.69

1.27 1.34 1.47 1.50

1.27 1.30 1.34 1.34

1.27 1.50 1.34 2.00


and ϕ

(H)
ij =



0.79 0.70 0.70 0.70

0.70 0.34 0.40 0.40

0.70 0.40 0.62 0.40

0.70 0.40 0.40 0.56


(A.3)

For household visits, we make the simplifying assumption that the same matrices

also describe the contacts between visitors and residents. For visits to care homes,

we believe that visitors come into contact only with residents and care home work-

ers, and not with other visitors. We therefore hypothesize 6 conversational contacts
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A.4.4. Social interaction frequencies and intensities

with residents and 1.5 with care home workers.

Social contacts in schools identify teachers (T) and students (S), the latter are

organised in year groups and further divided into classes of up to 40 students. In

our age-averaging, we implicitly assume that the number and character of teacher-

student contacts is independent of the age of the students. Student-student contacts

are assumed to be most frequent within a class or year group, and fall off steeply

with the age difference. This behaviour is captured by fitting a matrix with values

for the age-diagonal elements and a fall-off per year age-difference by a factor of 3.

Therefore we have

χ
(S)
ij∈{T, S} =

 4.8 0.75

15 χ
(S)
SS

 and ϕ
(S)
ij∈{T, S} =

 0.05 0.08

0.1 ϕ
(S)
SS

 , (A.4)

with the student-student matrices taking the following form

χ
(S)
SS =



2.5 0.75 0.25 . . .

0.75 2.5 0.75 . . .

0.25 0.75 2.5 . . .

...
...

... . . .


and ϕ

(S)
SS = 0.15 ∀i, j ∈ {S} . (A.5)

For the contacts at work we do not take into account of any age-dependence and, in

the absence of data, do not model any sector-dependent variation of their number

of intensity, thus

χ
(W )
si = 4.8 and ϕ

(W )
si = 0.07, (A.6)

In Appendix B.3 we detail the algorithms used to construct the social mixing

matrices used in JUNE including the matrices for other locations not listed here.

These social mixing matrices in JUNE are defined for a setting-specific characteristic

time tchar, so the total number of contacts in a time interval ∆t in a given setting

is then modified by a factor ∆t/tchar.

To validate these simplified matrices, we include them within JUNE where they

are combined with the composition of the specific social settings. In Figure A.9
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(a) Household (b) School

(c) Company

Figure A.9: Social contact matrices for England derived from JUNE, before any
mitigation strategies are implemented. Colour bars show (average) number of con-
tacts in social settings between age groups, with all colour scales truncated at one
to show differences between settings, while still clearly showing the structure in the
matrices.

we show the resulting contact matrices as “measured” from the JUNE simulation.

The effect of the combination with the composition is most pronounced in the

household matrices which exhibit textures that can be directly traced back to the

age intervals of children, dependent children/young adults, adults and older adults

that JUNE inherits from the ONS data. These matrices naturally recover much of

the structure present in those recorded in Klepac et al. (2020) and Mossong et al.

(2008). Further details on the methodology for extracting these matrices from JUNE

can be found in Appendix B.3.5.
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A.5 Infection Modelling: Spreading and Health

Impact

The transmission of infection through social interactions described in the interact-

ion layer, and the progression of the disease and its impact on the individual, are

both modelled in the disease layer. Although we focus on the case of COVID–

19 here, this layer is designed to be generalisable and can contain more than one

circulating etiological agent and or types of agent.

Throughout this Section and the rest of the paper, we will use two definitions

of COVID-19 “cases”. The first is when we refer to cases in the model itself —

here, a case of COVID-19 is an infected agent which may be symptomatic or

asymptomatic. The second is when referring to cases in reality — here, a case

someone who has tested positive for COVID-19. Since the latter is subject to

testing coverage, capacity and efficacy, we do not use these for fitting or validation

purposes.

A.5.1 Infection Transmission

JUNE models the transmission of an infection from infecting individual, i, to sus-

ceptible individual, s, in a probabilistic way. The probability of infection in a

social setting within a group of people, g, at a location, L, depends on a number

of factors:

• the number, Ni, of infectious people i ∈ g present;

• the infectiousness of the infectors, i, at time t, Ii(t);

• the susceptibility, ψs, of the potential infectee, s;

• the exposure time interval, [t, t + ∆t], during which the group, g, is at the

same location;
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A.5.1. Infection Transmission

• the number of possible contacts, χ(L)
si , and the proportion of physical contacts,

ϕ
(L)
si , in location L, both taken from Eqs. (A.3)-(A.6) in Section A.4.4;

• and the overall intensity, β(L,g), of group contacts in location L.

Most of these ingredients depend on the time, t, of the contact. For example,

the number of contacts, χ(L)
si , and the proportion of physical contacts, ϕ(L)

si , and

the overall contact intensity, β(L,g), will change with the implementation of social

distancing policies. To simplify notation, we introduce a combined contact intensity

for a group g with size Ng at location L,

β
(L,g)
si (t) = β(L,g) · χ

(L)
si (t)
Ng

{
1 + ϕ

(L)
si (t)

[
α(t) − 1

]}
, (A.7)

where the ratio χ/Ng provides a simple parametrization of the probability of s being

in contact with another individual in the group, and α(t) > 0 describes the relative

impact of close physical contacts. Both the factor α(t), which we assume to be

the same for all locations, and the location- and group-specific contact intensities,

β(L,g), are taken from fits to data.8

In the construction of an infection probability for a susceptible individual, s, we

make a number of assumptions. First of all, we model the probability of being in-

fected as a Poisson process. In keeping with the probabilistic process, the argument

of the Poisonnian is given by a sum over individual pairs of infectious individuals

with the susceptible person, implying a simple superposition of individual infec-

tiousness. The underlying individual transmission probabilities are written as the

product of the susceptibility of the susceptible individual, the infectiousness of the

infected person, and the contact intensity, all integrated over the time interval in

which the interaction occurs. The integration over time ensures that the transmis-

sion probability increases with the time of exposure. We therefore arrive at the
8In reality, the β parameters are fitted in a location specific way, irrespective of the group —

i.e. a location of type L in containing one group of people, g1, and another location of the same
type, but with a different group of people, g2 (e.g. two pubs in different places) will have the
same β.
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transmission probability, i.e. a probability for s to be infected as:

P̄s(t, t+ ∆t) = 1 − exp

−ψs

∑
i∈g

t+∆t∫
t

β
(L,g)
si (t′)Ii(t′)dt′

 . (A.8)

Note that in the actual implementation, we approximate the integral over time

with a simple product,

t+∆t∫
t

β
(L,g)
si (t′)Ii(t′)dt′ −→ β

(L,g)
si (t)Ii(t)∆t . (A.9)

This leaves us to fix the last two ingredients in A.8, the individual susceptibility,

ψs, and the infectiousness, Ii(t). Contemporary peer reviewed academic research

on susceptibility to infection by the etiological agent with or without the onset of

disease symptoms is sparse and inconsistent. Following some evidence, for example

in Dong et al. (2020) and Lee et al. (2020), on transmission and susceptibility of

children (using the UN classification), we fix ψs = 0.5 for children under the age of

12, and ψs = 1 for everybody else. The infectiousness of individuals, Ii, changes

with time, and it is not directly measurable. To model its behaviour we use the

temporal dependence of viral shedding as a proxy for infectiousness. Studies in the

context of COVID–19 have shown that viral shedding peaks at or slightly before

the onset of symptoms, and then begins to decrease (He et al., 2020). In JUNE we

use a globally defined temporal dependence of infectiousness, fI(t), and multiply

it with a peak value, Ii,max, which depends on the infected individual,

Ii(t′) = Ii,max · fI(t′). (A.10)

We choose the maximal infectiousness according to a log-normal distribution para-

meterised by its median exp(µ) = 1 and shape σ = 0.25. The long right tail of

the log-normal distribution allows for small numbers of highly infectious individu-

als more likely to precipitate superspreading events (SSEV). We also capture the

conjectured reduced infectiousness of individuals with no or only mild symptoms.

Following a similar parameterisation to that in Hinch et al. (2020), we multiply

the maximal infectiousness of asymptomatic individuals by 0.5. In Figure A.10, we
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show an example of the time evolving profile for an infected individual in JUNE, com-

paring the resulting infectiousness for different symptoms. For the time-dependent

profile, we use the gamma distribution as fitted in He et al. (2020),

fI(τ = t′ − t0 − tinc, a) = τa−1e−τ

Γ(a) , (A.11)

where t0 is the time of infection, tinc is the incubation period, sampled from a

normal distribution centered at two days prior a possible onset of symptoms and

with a width of half a day, a is the shape parameter of the gamma distribution,

and Γ(a) is the the gamma function.

Figure A.10: Time-dependent infectiousness profile, fI(t′), shown for the same real-
isation of the infection but where the infected person is symptomatic or asympto-
matic.

A.5.2 Infection Progression

When an individual is infected, they will experience different impacts on their

health. Figure A.11 presents the paths available in JUNE for the progression of the

infection that aim to capture different symptom severities, outcomes, and their

operational impact on the healthcare system, i.e. whether patients are hospitalised

or admitted to intensive care or treatment units (ICU/ITU). Once an individual is

infected, JUNE selects their specific complete path according to these probabilities.

These paths are codified as a sequence of possible different stages of the disease

(“infected”, “asymptomatic”, “mild”, “severe”, “hospitalised”, “ICU/ITU”, “dead”,
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Infected

Mild Symptoms

Severe Symptoms

Hospitalised

Intensive Care

Recovered Dead

Asymptomatic

Figure A.11: Pathways for the infection progression and possible outcomes. Note
that in our model a patient can only go to the intensive care once, and that a
patient that returns from the intensive care to the hospital will survive.

“recovered”) in addition to characteristic time intervals for each stage. The lat-

ter are chosen randomly according to probability functions informed by available

data. The paths terminate with the individuals either dead and taken out of the

simulation, or recovered, in which case their susceptibility is set to 0, making them

immune to re-infection.9

JUNE distinguishes the following different routes for the progression of the infection

with rates depending on the characteristics of the infected individual (currently

age, sex), summarily denoted by p:

1. asymptomatic individuals, rate RI→A(p), continue their life normally;

2. individuals with mild symptoms, rate RI→M(p), usually continue their lives

as normal, except if certain policies are activated;

3. individuals with severe but not lethal symptoms, rate RI→S(p), stay at home

until recovery;

4. individuals with severe symptoms who will eventually die in their residences,

with rate RI→DR(p);
9JUNE could also model reinfection of individuals but to date there are no data constraining

this in the context of COVID–19.
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5. individuals who are admitted to hospital but will recover, with rate RI→H(p);

6. individuals who are ultimately admitted to ICU/ITU before recovering, with

rate RI→ICU(p)

7. individuals who are admitted to hospital and will die there, with rateRI→DH(p).

8. individuals who are admitted to ICU/ITU and die there, with rateRI→DICU(p).

The determination of probabilities for the different paths is based on COVID–19

data that are not entirely sufficient to develop a complete and detailed picture. As

a consequence, we supplement them with assumptions by inferring some properties

through cross-relating datasets. In the following, we will outline our procedure

which is largely predicated by our choice of the example at hand - the spread of

COVID–19 in England. We will use a notation where NX(p) denotes the number

of cases satisfying criterion X for people with characteristic properties p.

The construction of reasonable progression paths, and their probabilistic distribu-

tion, relies critically on the knowledge of how many people have been infected, as

well as the dependence on attributes such as age and sex. COVID–19 tests between

February and May 2020 in the UK were mostly administered to people present-

ing symptoms or people that have been in close contact with confirmed cases in

hospital, thereby biasing the results. We therefore need to infer the number of in-

fections from other controlled studies, such as antibody tests. In Ward et al. (2020)

the seroprevalence, rsp(p), of COVID–19 in the adult population in England was

determined through a sample of more than 100,000 adults, showing a reduction in

seroprevalence with increasing age. Because the seroprevalence is an estimate of

all people that were infected up to the time of the test and – most importantly

– survived, we need to correct for those who died of the disease until this point.

This turns out to be an important correction, especially in older age bins due to

the non-negligible probability of elderly who died. We therefore add the age– and

sex–dependent number of deaths, ND(p), reported by the ONS (Office for National
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Quantity Source
Population by age, sex and residence
type

Office for National Statistics (d), Of-
fice for National Statistics (b)

Seroprevalence in GP by age Ward et al. (2020)
Seroprevalence in CH by age Department of Health & Social Care

(2020)
Deaths by place of occurrence and
residence type

Office for National Statistics (c)

Deaths profile by age and sex Office for National Statistics (c)
Deaths in CH profile by age and sex Office for National Statistics (2020a)
Hospital deaths profile by age, sex Scientific Advisory Group for Emer-

gencies (2020)
Hospital deaths in CH profile by age,
sex

Public Health England (PHE) (2020)

ICU/ITU deaths profile by age, sex Public Health England (PHE) (2020)
Total hospital admissions NHS
Hospital admissions profile by age,
sex

Scientific Advisory Group for Emer-
gencies (2020)

ICU/ITU admissions profile by age,
sex

Public Health England (PHE) (2020)

Hospital admissions in CH profile by
age, sex

Public Health England (PHE) (2020)

Table A.2: Datasets used in the derivation of mortality and hospitalisation rates.
GP stands for people living in a household, and CH stands for people living in care
homes. If not specified, datasets involve people from both populations. All data is
taken until the 13th of July 2020, consistently with the seroprevalence study Ward
et al. (2020).

Statistics, c), to the corresponding numbers inferred from the seroprevalence to

arrive at the total number of cases, Ntot(p):

Ntot(p) = rsp(p)N(p) + [1 − rsp(p)]ND(p) , (A.12)

where N(p) is the total population number in England with characteristics p. We

note that there were two population groups excluded from the serology survey:

people under the age of 18, and care home residents. For the former, we assume

that their seroprevalence by age is identical to the population group aged 18, while

for the latter, we set a flat seroprevalence by age at 11% value as reported in the

Vivaldi report of the UK Department of Health and Social Care (Department of

Health & Social Care, 2020) in the beginning of July 2020.

Health outcomes given a simulated infection are captured in RI→X, where X is
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(a) IFR comparison of JUNE with
NF Brazeau (2020)

(b) IFR comparison of JUNE with Ward et al.
(2020)

Figure A.12: IFR comparison of JUNE with various estimates of community trans-
mission. Error bars show 95% CI on the IFRs as estimated from data.

one of the 8 trajectories listed in Figure A.11. The asymptomatic rate, RI→A,

and the mild case rate, RI→M, are taken from a calibration done in Hinch et al.

(2020) from Pollán et al. (2020) and Riccardo et al. (2020). To calculate the

different hospitalisation and fatality rates, we have used a series of datasets listed

in Table A.2, all of them containing data until 13th July, 2020, to be consistent

with the considered seroprevalence values. In order to avoid possible irregularities

in our results derived from the use of different data sources, we normalise all our

death data to the ONS reported numbers of total deaths (51,443), hospital deaths

(32,164), and residence deaths (19,279),10 and then use more granular data to

distribute deaths by age and sex for each place of death occurrence (Public Health

England (PHE), 2020; Scientific Advisory Group for Emergencies, 2020). Likewise,

the total number of hospital admissions is taken from NHS , and distributed

by age, sex, and residence type also using Public Health England (PHE) (2020)

and Scientific Advisory Group for Emergencies (2020). The number of deaths in

care homes reported in Office for National Statistics (a) is only reported by age

until late June, so we assume that the distribution does not change until the 13th

July, 2020. We also ensure that we correctly account for differences in reporting
10https://www.ons.gov.uk/peoplepopulationandcommunity/birthsdeathsandmarriages/

deaths/datasets/weeklyprovisionalfiguresondeathsregisteredinenglandandwales
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times. As a first step, we calculate the overall infection fatality rate (IFR) for the

general population outside care homes (GP),

RGP
I→D(p) = ND(p) −N ch

D (p)
Ntot(p) −N ch

tot(p)
, (A.13)

which can be directly compared to the results from the REACT2 study Ward et al.

(2020) (right panel of Figure A.12), and the Imperical College London COVID-19

report 34 NF Brazeau (2020) (left panel of Figure A.12). The remaining rates just

follow from the same methodology,

RGP
I→X(p) = NX(p) −N ch

X (p)
Ntot(p) −N ch

tot(p)
, (A.14)

RCH
I→X(p) = N ch

X (p)
N ch

tot(p)
, (A.15)

(A.16)

where X refers to one of deaths or hospital admission in the normal hospital ward

or in the ICU/ITU. The rate of non hospital deaths is computed by subtracting

the hospital death rates from the overall IFRs. Finally, the probability of having

severe symptoms but recovering at home is given by:

RI→S(p) = 1 −
∑
i ̸=S

RI→Xi(p). (A.17)

The results of computing the individual infection outcome rates by age, sex, and

residence type are shown in Figure A.13. The most important visible difference

is the disparity on the fatality rates between care home residents and the general

population. This could be the reflection of various reasons, including, for example,

a generally poorer health condition of the care home population, or differences in

admission policies to hospitals. Consistent with the ONS data Office for National

Statistics (a), most of the care home deaths occur within the care home residence

itself, while the probability of being admitted to the hospital decreases with age.

Likewise, both for the general population and the care home population, people

aged 55-70 years old are the group most likely to be admitted in the ICU/ITU.
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Figure A.13: Rates of different infection outcomes for males and females living
in households and care homes. For care home residents, we only show the rates
for people aged over 50, as the younger ones are assumed to follow the general
population rates.

Trajectory Stages
asymptomatic I[βI ] A[C14] R
mild I[βI ] M[C20] R
severe I[βI ] M[C20] S[C20] R
death at home I[βI ] M[LNM ] S[C3] D
ward I[βI ] M[LNM ] H[βH ] M[C8] R
death in ward I[βI ] M[LNM ] H[βD] D
ICU/ITU I[βI ] M[LNM ] H[LNICU ] ICU[eICU ]H[eH ] M[C3] R
death in ICU/ITU I[βI ] M[LNM ] H[LNICU ] ICU[eD] D

Table A.3: List of different trajectories through disease progression, with stages
and, in brackets, the distribution from which corresponding timings are drawn.
For their definition see B.3. The available stages are Infected, Asymptomatic, Mild
and Severe symptoms, admitted to a regular Hospital or an ICU/ITU ward, and,
finally, as outcomes, Recovered or Dead.

Females are less likely in general to develop a severe infection of COVID-19, with

fatality rates roughly equivalent to those of a male 5 years younger.

Once an infection outcome has been determined, the infected individual follows a

symptoms trajectory composed of different stages. The time spent at each stage is

sampled from different distributions derived from different data sources. In Table

A.3, we list the different stages per trajectory by infection outcome, and the details

on the various timings are listed in B.4. In the left panel of Figure A.14, we show

the probability density functions for the incubation time, and the time to die or

recover in hospital.
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(a) Time taken for an infected individual to
develop symptom.

(b) Time spent in hospital by patients given
their infection.

Figure A.14: Probability density functions for symptom and progression timing.

A.5.3 Seeding Infections

In the absence of sufficiently detailed knowledge of how epidemics arrive in a coun-

try, we seed infections using secondary information such as the number and regional

distribution of observed cases. In the example of the simulating the spread of

COVID–19 in England, we use the number of COVID–19-related deaths recorded

in hospitals to estimate initial infection numbers and their regional distribution.

Accounting for the time delay between infection and possible death, and for the

probability of admitted patients to die, we have

Ntot(t, x) = 1
R̄H→D(x)

NH→D(t+ ∆tD, x) , (A.18)

whereNtot(t, x) is the estimated number of cases in a region, x, on day, t, NH→D(t, x)

is the number of observed deaths in the region at date t, and R̄H→D(x) is the rate

for people dying in hospital in the region x, where the average is over the charac-

teristics p is given by:

R̄H→D(x) = 1
NH→D(t+ ∆tD, x)

∑
i∈NH→D(t+∆tD,x)

RH→D(pi) . (A.19)

The relatively large statistical fluctuations in the initial phase of an epidemic,

and possibly differing time profiles across regions, translate into the need for a

region-specific seeding. This difference is highlighted by contrasting the seeding

for London, where we introduce initial infections over two days only (28th-29th
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February 2020) with the North East of England and Yorkshire, where we seeded

infections for a week, 28th February - 5th March 2020. We introduce the estimated

number of daily cases in each of the regions until the following criterion is met,

Ntot (t < T (x), x) > 0.1Ntot(tmax, x) (A.20)

where T (x) is the number of days over which we seed new infections in region x,

and Ntot(tmax, x) is the maximum number of cases that region x would reach in

any given day, estimated from the maximum number of daily deaths in hospital. It

is important to define the seeding for the infection based on the maximum number

of cases each region will have, since the different regions are experiencing different

stages of the epidemic at any given time.

A.6 Mitigation Policies and Strategies

Policies and interventions, often enacted by governing bodies, are introduced in

an attempt to mitigate and control the spread of infectious diseases. In general,

such policies are highly dependent on the type of infection and social norms in the

affected population, and may include guidelines on how to change individual pat-

terns of behaviour or the closure of certain venues where transmission is estimated

to be highly likely. The modular nature of JUNE allows policies to be dynamically

activated and deactivated at different points in time to allow for changes in policy

decisions. Due to JUNE’s granularity, these policies can be implemented at a highly

localised level: by type and place of social interactions, by geographical region, by

industry sector or venue type. JUNE can also model the population’s compliance

with the measures, again with high granularity. In this section we present a vari-

ety of policies which can be implemented in JUNE and exemplify their application

through those measures that have been enacted by the UK Government to mitigate

the spread of SARS-CoV-2.
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Figure A.15: Example scenario of different intensity parameters, β(L,g), over time
normalised to unity (see Equation A.7). The parameters change due to the effects
of compliance with social distancing and mask wearing advice and regulations.

A.6.1 Behavioral Changes

There are a variety of changes in behavioral patterns that are designed to reduce the

probability of viral transmission, ranging from simple social distancing, increased

hygiene and mask wearing, to quarantining of infected individuals or those who

have been in sufficiently close contact with them, and the shielding of vulnerable

parts of the population. We model the impact of the former set of measures, social

distancing, increased hygiene and mask wearing, through multiplicative reductions

in the location-specific contact-intensity parameters, β(L,g), see Figure A.15 for

an example. The impact of compliance with social distancing and other, similar

measures can be recorded both nationally and sometimes even in specific locations.

This allows us to calculate the reduction in the corresponding intensity parameters

as follows:

β(L,g) = M (L,g)β(L,g) (A.21)

=
[
1 − C(N) · C(L) · (1 − E)

]
β(L,g), (A.22)

where M (L,g) is the location and group specific modification factor, C(N) is the

national compliance (i.e. percentage of the population following guidelines), C(L)

is the compliance in a given location or social setting L, and E denotes the ef-

ficiency of the measure. Quarantining is simulated by keeping the individuals in

140



A.6.1. Behavioral Changes

question in their homes for a certain amount of time, and allowing them to inter-

act with members of their household in an otherwise unchanged household setting

only. In JUNE, we have the ability to apply different policies to those with mild and

severe symptoms, and to quarantine household members of symptomatic individu-

als. Similarly, JUNE also allows the definition of vulnerable individuals – typically

by characteristics such as age – and of a prescription of how shielding policies are

enacted relative to this group.

We will now turn to discuss our choices for specific measures. There have been a

variety of studies on the effectiveness of social distancing with respect to COVID–

19 and other infectious diseases. A comprehensive systematic review and meta-

analysis (Chu et al., 2020) suggested that the relative risk of infection decreases

by approximately a factor of 2 per meter distance. In practice, however, the effi-

ciency of social distancing is highly dependent on external factors, in terms of both

physical and social environment. We therefore use this literature as a benchmark,

assuming on average 1 meter social distancing, E = 0.5, and fit the effects of social

distancing to data where possible (see A.6.3).

We simulate mask wearing according to Equation A.22, i.e. by multiplicatively

reducing the β parameters in different locations. There is a significant body of

literature on the effectiveness of mask wearing, including differences based on the

material of the mask and the locations in which they are worn (Fischer et al., 2020;

Chu et al., 2020; Howard et al., 2020), as well as changes in efficiency due to re-

using or washing them (Suen et al., 2020; Toomey et al., 2020). In general, we focus

on the wearing of masks by non-healthcare workers in settings outside the home

and estimate mask effectiveness, E, to be 50% (Liang et al., 2020), irrespective of

the specific of the location. However, after adjustments for compliance the actual,

intensity parameter reduction may be much lower than this, which leads us to

believe that this represents a conservative estimate.

In JUNE, quarantining of infected people with mild or severe symptoms is relatively

straightforward: afflicted individuals do not leave their household for a pre-defined
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period of time – usually 7 to 14 days – but do not change interaction patterns with

the residents in their household. In some versions of quarantine policies, household

members must also stay at home and isolate themselves. This is modelled in JUNE

along the same lines, only the possibly time-dependent compliance of the population

with quarantine measures. Clearly, infected individuals with severe symptoms will

always stay at home, until they are either recovered, moved to hospital, or died. It

should be noted that quarantine sits on top of other, less individual-driven policy

interventions included in JUNE which may restrict movement, such as the closure of

companies and leisure venues.

Given the additional danger infectious diseases may pose to the more vulnerable

and elderly populations, various policies, usually referred to as “shielding" can be

introduced with an aim to protect these individuals. In JUNE, shielding is realised

similar to quarantine: vulnerable individuals – usually defined by their age or

other characteristics – stay at home and do not interact with others outside their

household. Apart from the definition of relevant characteristics, this only leaves

a compliance probability to be introduced, which reduces the participation in any

other social settings other than households.

A.6.2 Closure of Venues

Mitigation strategies that aim at reducing infection transmission through changes

in individual behaviour may have to be further supplemented through partial or

complete closure of certain parts of public life such as companies, transport, schools

and universities.

Starting with the closure of companies, JUNE can realise this important measure in

a sector–specific way. JUNE allows the definition of “key” and “furloughed” workers,

again in a sector–specific way. While the former represent those parts of the work

force that continue with their essential work as usual, the latter never goes to work

and instead is given the chance to take part in available leisure activities or stay
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at home during regular working hours. For the rest of the work force, JUNE allows

the definition of flexible work patterns by assigning daily probabilities for workers

go to their companies.

School and university closure is handled similarly to the closure of companies in

JUNE. However, in the case of schools we are able to close individual year groups

as well as entire schools, and we can identify the children of key workers and have

them continue going to school. Since the return to in-person schooling may also

be voluntary at certain points, or children may only go to school on certain days

of the week, we also can apply a compliance factor at the year group level which is

used to probabilistically determine which children attend school on any particular

day.

In addition to the partial or complete closure of companies in some industry sec-

tors and of schools or universities, government policies may also close or limit the

number or people attending leisure venues, such as restaurant and pubs, cinemas,

or similar. In JUNE we are able to fully or partially close different types of leisure

venues either nationally or at a more local level, down to super areas. Partial clos-

ure is enacted through a change in the probabilities that people attend different

venues, which is both sex and age dis-aggregated. Modifications to other leisure

activities, such as household visits, are also simple to realise in JUNE, by directly

modifying the daily probabilities for such activities to take place.

A.6.3 Policies in the UK

The population, interaction and disease layers of JUNE will have time inhomogen-

ous states and parameterisations dependent on the public policy response and the

response of individuals in changing behaviour as an infection spreads. For ex-post

analysis, policies can be imposed on the simulation using a set of policy levers with

varying effectiveness. For ex-ante prediction, scenarios of responses to different

policy combinations can be realtime of pseudo out-of-sample forecasted.
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To simulate, ex-post, the spread of COVID–19 in England we impose a set of

policies restricting movement and attempting to reduce transmission. Table A.4

lists the operational policy interventions enacted by the UK government from the

beginning of March 2020 to October 2020 in an effort to reduce the spread of

SARS-CoV-2.

In order to estimate the effects of social distancing on the epidemiological de-

velopment of COVID–19, we implement multiple staggered social distancing steps

during the first wave of the pandemic between 16th March - 4th July, 2020 and then

again going into September 2020 as schools and universities begin to fully reopen.

We fit the national compliance, C(N), with social distancing between 24th March

- 11th May, 2020 in the range 20-100% when fitting the rest the parameters (see

A.7). This is taken to be the harshest social distancing step against and others

are determined relative to this fit. The location specific compliance, C(L), is set

to be 100% in all locations during fitting to avoid parameter degeneracy and then

altered manually thereafter. No social distancing is assumed between household

members. We derived the compliance with mask wearing from a YouGov sur-

vey YouGov (2020b), and we further stratify the results by social environment or

locations. Specifically, we assume complete (100%) compliance with mask wearing

during commuting, 50% in care homes and no compliance in pubs, schools or in

the household. Compliance with mask wearing in grocery stores is assumed to be

at 50% before 24th July, 2020, after which we assume complete compliance given

the change in government regulations. Since we already assume low intensity para-

meters in hospitals due to the significant amount of personal protective equipment

(PPE) being worn in these scenarios, we do not apply any additional mask wearing

in these settings.

On 16th March, 2020, the UK Government encouraged people with COVID-19

symptoms to quarantine in their household for 7 days and all those in their house-

hold to quarantine for 14 days from symptom onset. We assume that compliance

with this measure varies with time as people become more aware of the dangers

144



A.6.3. Policies in the UK

Date (dd/mm/yy) Policy Implemented
04/03/2020 Encourage increased hand-washing
12/03/2020 Case isolation at home *
16/03/2020 Voluntary household quarantine *
16/03/2020 Stop all non-essential travel **
16/03/2020 Stop all non-essential contact **
16/03/2020 Voluntary working from home *
16/03/2020 Voluntary avoidance of leisure venues *
16/03/2020 Encourage social distancing of entire population *
16/03/2020 Shielding of over 70s *
20/03/2020 Closure of schools and universities *
21/03/2020 Closure of leisure venues *
21/03/2020 Stopping of mass gatherings **
23/03/2020 ‘Stay at home’ messaging **

11/05/2020 Multiple trips outside are allowed in
England only

13/05/2020 Encouraged to go back to work if they can
while distancing *

01/06/2020 Meeting in groups of up to 6 outside allowed **
01/06/2020 Shielding of over 70s relaxed *

01/06/2020 School reopening for Early Year and Year 6
students *

13/06/2020 ‘Support bubbles’ allowed

15/06/2020 School reopening for Year 10 and 12 students
for face-to-face support *

04/07/2020 Leisure venues allowed to reopen *

04/07/2020 Household-to-household visits permitted along
with overnight stays *

24/07/2020 Mask wearing compulsory in grocery stores *
01/08/2020 Shielding is paused *
01/08/2020 ‘Eat Out to Help Out’ scheme introduced *
31/08/2020 ‘Eat Out to Help Out’ scheme ends *
01/09/2020 Schools and Universities allowed to reopen *
01/09/2020 ‘Rule of 6’ introduced
14/10/2020 Tiered local lockdown system introduced *

Table A.4: List of policies introduced in England by the UK Gov-
ernment at different points in time. * indicates policies directly
implemented in the model, ** indicates policies which are indir-
ectly implemented — i.e. other policies effectively implement this
one by default.

of COVID-19. Between the 16th March - 23rd March, 2020 (i.e. the week leading

up to the nationwide ‘lockdown’) we fit compliance with the quarantine policy of

those symptomatic to be between 5-45%, and the probability that the rest of the
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household of a symptomatic individual complies is set to the same fitted value.

After ‘lockdown’ comes into effect, the government tightened these rules to only

leave the house for essential trips and one form of exercise per day. To account for

this, we increase the symptomatic and household compliance with quarantine to

be double their fitted value. In addition, the UK government strongly suggested

that people over the age of 70 were to shield, from 16th March, 2020. As in the

case of quarantine, we assume people become more compliant with this policy over

time and that the initial compliance with the shielding policy for this age bracket

increased from 20% in the first week to 70% afterwards. Indeed, one of the reas-

ons the compliance was set to only 70% even after lockdown is due to the fact

that people in this age bracket already have a reduced mobility and interaction

potential. A 70% compliance therefore still allows them a small chance to interact

with others, e.g. in grocery stores, and any higher compliance figures would mean

a complete and unrealistic decoupling of this critical population from any social

interactions. The shielding policy initially runs until 1st August, 2020 and after

which the UK government paused the policy.

To model the partial or complete closure of industry sectors, it is important to

understand the descriptions of key workers provided by the UK Government (Office

for National Statistics, 2020c), and match these up with the relevant 5-digit SIC

codes (Office for National Statistics, 2007). This ultimately allows us to deduce

the proportion key workers in each sector and assign the corresponding key worker

attribute probabilistically according to these proportions. In our simulation we

encode findings from the ONS (Office for National Statistics, 2020c), reporting

that 33% of the total workforce were key workers in 2019 with 14% able to work

from home. We therefore set the proportion of key workers, i.e. those who go to

work each day, at 19% of the workforce. We use the same logic to also decide

which workers are furloughed in JUNE by identifying the 5-digit SIC codes of the

relevant affected industries and proportionally assigning the relevant percentage

of a given sector to be furloughed. We derive the relevant SIC codes from the
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Institute for Fiscal Studies in the UK (Institute for Fiscal Studies, 2020), and

we dynamically correct for any over or underestimation of furloughed workers by

defining the proportion of the workforce who should be furloughed at any particular

time, derived from Government reports (HM Revenue & Customs, 2020). A similar

dynamic correction is also applied to the key work force. To model the more random

work patterns of the remaining part of the work force, we derive a probability that

a random worker goes into the company for work from a YouGov survey (YouGov,

2020a). We note that in many surveys, including this and others undertaken (e.g.

by the ONS (Office for National Statistics, 2020b)), the methodology does not

explicitly state if key or furloughed workers were included. We believe, however,

that our use of these surveys presents at least a conservative estimate of work

attendance.

From 20th March, 2020, all schools and universities in England were asked to close,

with the exception that children of key workers could still attend school. To ac-

count for the partial school reopening of Early Years (nursery and reception age

children) and Year 6 students on 1st June 2020, we open up these year groups in

JUNE with an attendance compliance based on data derived from the Department

for Education (DfE) (UK Department for Education, 2020). While the govern-

ment also asked schools to offer face-to-face support for Year 10 and 12 students

from 15th June, 2020, we do not include this as the sessions were generally limited

and had an attendance rate around the 10% level (UK Department for Education,

2020). Figure A.16 shows the good agreement in the number of children attending

school as derived from JUNE compared with DfE data. The slight deviation from

data after 15th June, 2020, can be explained by not fully capturing the partial

return of Year 10 and 12 students. The good agreement between JUNE and the

DfE data before 1st June 2020, is of particular note since this option was available

only for children where all parents in the household were classified as key workers.

This serves as an implicit partial validation of our method of selecting which indi-

viduals are key workers, as well as the household and company sector distribution
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Figure A.16: School attendance in JUNE compared to data collected by the UK’s
Department for Education (UK Department for Education, 2020)

algorithms. From 1st September, 2020, we reopen schools fully in JUNE, while ac-

counting for a closure for the national school holidays. While the timings of this

week-long holiday varies across the country, we assume all schools share the same

holiday period 26th October - 30th October, 2020. Similarly, universities are opened

from 1st September, 2020, but with more restrictive social distancing measures in

place. Given the modelling of where university students live, their inter-mixing is

naturally captured in the household component of JUNE (see A.3.2).

Figure A.17: Year-on-year restaurant attendance from OpenTable (OpenTable,
2020) including a fit to the simulated reopening change in probabilities used to
derive the probability that people attend restaurants in JUNE.

On 16th March, 2020, the UK Government encouraged people to avoid going to

leisure venues such as bars and restaurants, although this rule was not imposed

through the closure of such venues. However, on the 21st March, 2020, this closure
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took place. We model these policies first by reducing the probability that people

leave the house from 16th March, 2020 followed by the closure of all relevant leisure

venues included in the simulation – cinemas, pubs, and restaurants – from 21st

March, 2020. Visits to care homes are also halted from this time. Since many

of these venues were permitted to reopen from the 4th July, 2020, we assumed all

venues reopen at this point. Additionally, data collected by OpenTable suggests

that restaurant attendance after that date saw a significant increase likely encour-

aged by the UK Government’s ‘Eat Out To Help Out’ scheme which we capture

in JUNE (see Figure A.17) (OpenTable, 2020; Government of the United Kingdom,

2020). For the simulation of other leisure activities, and in particular household-

to-household visits, we assume a drop in compliance and a consequently increasing

number of such visits. In line with data collected by the ONS (Office for National

Statistics, 2020d), we model this be gradually increasing the probability of visiting

another household from mid-May until 4th July, 2020, when overnight visits were

permitted.

A.7 Discussion of model outputs

In this section we finally highlight the ability of JUNE to capture intricate social

dynamics through a number of model outputs. It is worth noting that the real-

isations of JUNE presented in the following were run at parameter settings sampled

from the “non-implausible” region of the global parameter space, as defined in Sec-

tion A.8 and Appendix B.5. See B.4 for the ranges of the global parameter space.

A more complete uncertainty analysis and parameter exploration will be performed

in Bullock et al. (2021).

In Figure A.18 we exhibit results for the number of daily deaths in hospital for

regions of England and England itself. In addition, in Figure A.19 we show the

same realisations for daily deaths in England stratified by age. The agreement with

data is satisfying and while there are minor discrepancies for certain outputs, we
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Figure A.18: Daily hospital deaths for each region in England, and England itself,
for 14 realisations of JUNE as described in this section. Each realisation is illustrated
as a separate colour for visibility. Observed data in black with 3 standard deviation
error bands. Data from CPNS (CPN).
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Figure A.19: Daily hospital deaths in England stratified by age, for the same
realisations as in Figure A.18. Observed data in black with 3 standard deviation
error bands. Data from CPNS (CPN).
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Figure A.20: Deaths in England illustrated as different lines for total deaths, hos-
pital deaths, and deaths within care homes. Note that the total curve is the sum of
hospital deaths, and residence deaths (care homes as plotted, and usual households
which are not plotted). Data from ONS (Office for National Statistics, c).

would like to stress that all of these outputs are simultaneously fit by JUNE without

any region-specific parameters.

Along with deaths in hospitals, there have been a non-negligible number of fatalities

in care homes in England during this pandemic. JUNE successfully models both

deaths in hospitals, and deaths within care homes as illustrated in Figure A.20

where there is good agreement with data even into the second wave of the pandemic.

We would like to emphasise that the outputs shown here are illustrative of the

capabilities of JUNE to capture the social dynamics of a heterogeneous population

giving rise to large differences in disease spread to different age strata and regions.

All interactions resulting in infections are stored in full detail in the model’s output,

enabling further ex-post analysis of the sociological nature of disease spread and

outcomes for all individuals modelled in the simulation. A simple example of such

an analysis is shown in Figure A.21 where locations of infections are compared for

one of the realisations shown in Figure A.18. Remaining realisations manifest a

similar hierarchy of infection locations demonstrating JUNE’s physical consistency

across parameter space. A further, more involved, example of this type of detailed

ex-post analysis can be found in IDAS Covid group (2021).
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Figure A.21: Locations where infections take place in one realisation of JUNE from
Figure A.18. This is a simple illustrative example of the type of analysis that you
can carry out using the detailed outputs of JUNE.

A.8 Fitting via Bayesian Emulation

We now discuss efficient calibration strategies which form a critical part of our

ability to extract core insights from JUNE. Fitting a complex model such as JUNE to

observed data presents a challenging task. This is mainly due to a) the detailed

nature of JUNE and the inevitable computational expense of performing model eval-

uations, b) the large number of input parameters that we may wish to explore, c)

the stochastic nature of the output of JUNE and d) the various uncertainties present

in the comparison between model and data. A typical full England run of JUNE like

those shown in Figure A.18 would take approximately 10 hours to complete on 64

cores (Intel Xeon Skylake) and 128GB of memory. The combination of computa-

tional expense and high dimensional input parameter space precludes the use of

many parameter exploration methods that rely upon large numbers of model evalu-

ations (including many standard optimisers, sampling approaches such as MCMC,

etc.). The stochastic output, which implies we will be exploring a much more com-

plex surface, requires methods developed to deal with stochastic functions. Even
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more challenging is that the substantial uncertainties present imply that we may

not even want to optimise for a single “best fit to data” as it may have limited

statistical relevance, but instead search for the set of all input parameter values

that give acceptable matches between model output and observed data, thereby

fully capturing the induced parametric uncertainty.

We hence employ the Bayes linear emulation and history matching methodology

(Craig et al., 1997; Vernon et al., 2010a; Andrianakis et al., 2015), a widely applied

uncertainty quantification approach designed to facilitate the exploration of large

parameter spaces for expensive to evaluate models of deterministic or stochastic

form. This approach centres around the concept of an emulator : a statistical

construct that mimics the slow to evaluate scientific model in question, providing

predictions of the model outputs with associated uncertainty, at as yet unevaluated

input parameter settings. In contrast to the model, the emulator is extremely

fast to evaluate: for example, in the case of JUNE, the emulator exhibited a speed

increase of nine orders of magnitude. The emulator provides insight into the model’s

structure and, thanks to its speed, can be used to perform the global parameter

search far more efficiently than approaches that attempt to use the comparatively

slow scientific model itself. Here we give a brief overview of emulation and history

matching, but for more details see Appendix B.5. See also Andrianakis et al. (2015,

2017b,a); McCreesh et al. (2017) for further examples of its application within

epidemiology, McKinley et al. (2018) for a comparison to Approximate Bayesian

Computation in an epidemiological setting, and Vernon et al. (2018) for a tutorial

introduction in the context of systems biology. For an extensive treatment see

Vernon et al. (2010a) along with the discussion in Vernon et al. (2010b). See also

O’Hagan (2006) for a general introduction to emulation.

Initially, we identify a large set of input parameters to search over, primarily com-

posed of interaction intensity parameters at the group level, along with associated

broad ranges, as given in Table B.4. We then identify a set of particular model

outputs to match to corresponding observed data. Here we focus on hospital deaths
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(CPNS CPN) and total deaths (ONS) at well-spaced time points throughout the

period of the first wave of the epidemic. We then construct Bayes linear emulators

for each of the model outputs at each of the chosen time points. The emulators are

trained using a set of JUNE runs, initially designed using a 18-dimensional Latin hy-

percube, and seek to mimic the behaviour of each of the JUNE outputs as a function

over the 18-dimensional parameter space. The emulators provide, at each unevalu-

ated input location, an expectation for the possible JUNE model output value and

a position dependent variance representing the emulator’s uncertainty about this

estimate. Close to known runs the emulator’s uncertainty will be low, however it

will increase appropriately as we move to less well explored regions of the para-

meter space (Vernon et al., 2018). Note that we deliberately choose to emulate

the direct physical outputs of the model as this has multiple benefits for emulator

construction, in contrast to emulating a combined metric such as the likelihood

(for discussion of this point see Vernon et al. (2010a,b, 2018)).

Due to the emulators’ speed, they are ideal for global parameter exploration. This

is performed by constructing an implausibility measure, that gives the distance

between the emulator’s expected JUNE model output and the observed data we are

trying to match, standardised by all the major uncertainties present: observational

errors, emulator uncertainty and structural model discrepancy, the latter being a

direct acknowledgement that the model is an imperfect representation of reality (see

Appendix B.5 for details). The implausibility measures are used to rule out large

regions of the input parameter space that will not provide acceptable matches, and

the analysis then proceeds in iterations: a second batch of JUNE runs is performed

over the remaining region of parameter space, new emulators constructed (which

are only defined over this region), new implausibility measures formed and more

parameter space removed. This process is referred to as iterative History Matching

(Andrianakis et al., 2015; Vernon et al., 2010a). See for example Andrianakis et al.

(2017a) where it was successfully applied to a stochastic disease model with 96

input parameters.
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For the JUNE model, we constructed emulators for hospital deaths and total deaths

at eight time points over the period March to June, for England and for each of

the seven regions, and for the age bins (defined by the SITREP dataset) 0 − 5, 6 −

17, 18−64, 65−84, 85+. The emulators were trained in three iterations formed from

125 JUNE evaluations each. The emulators were then evaluated at 500,000 locations

across the 18-dimensional input space, taking 10 minutes on a single processor. The

results of the global parameter search are given in the optical depth plots (Vernon

et al., 2010a) of Figure A.22, which shows the location of the “non-implausible”

region of interest in various 2-dimensional projections of the 18-dimensional para-

meter space for all combinations of 12 of the most interesting input parameters

(the remaining six inputs were only loosely constrained, jointly with other para-

meters, if at all). The JUNE runs discussed in the preceding section were sampled

from this region. Note the various joint constraints on the input parameter space

imposed by the matching process, for example the strong reciprocal relationship

that is required between βschool and βhousehold. Similar but more complex trade-offs

are identified between several other parameters e.g. βcompany and βhoushold; βgrocery

and βcitytransport, and between βhousehold and Mquarantine household compliance. Most

parameters were not individually identifiable, however, βcompany and βcarevisits were

reasonably well constrained. For more details of this approach, of emulator dia-

gnostics, and further output plots see Appendix B.5.

We can see that the Bayes linear emulation and history matching methodology facil-

itates the efficient exploration, development and calibration of the highly complex

JUNE model using a modest number of runs, a process which would be extremely

challenging to perform directly. While here we have performed a provisional explor-

ation of the parameter space as part of the model development, for a full uncertainty

analysis of the JUNE model, including the emulator driven generation of full prob-

abilistic forecasts incorporating all major sources of uncertainty, see Bullock et al.

(2021).
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Figure A.22: 2-dimensional projections of the 18-dimensional input space, for the
12 most interesting input parameters, coloured by the optical depth of the non-
implausible region, which gives the depth or thickness of the non-implausible region
conditioned on the two given inputs (Vernon et al., 2018). The ranges for each
parameter are given below the parameter name in the diagonal panels. These plots
are formed from 500,000 emulator evaluations over the input space. The emulators
were trained on three iterations of 125 JUNE model evaluations.

A.9 Summary

In this paper we introduced the new JUNE model to simulate the spread of epi-

demics through a population. JUNE is an individual-based model (IBM) enabling a

highly granular geographical and sociological resolution. The frequent and persist-

ing perception that IBMs such as JUNE are heavily parameterised and therefore lack

predictive power is misleading. As noted in Marathe and Ramakrishnan (2013),

many of the properties and building blocks of these types of model are not globally
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fitted to observed cases or fatalities, as is the case for deterministic and stochastic

models built from differential equations. Instead, the JUNE framework separates

the uncertainty arising from unknown disease dynamics from uncertainties in the

population structure, where the latter is informed by demographic statistics and

other available data.

The model is formulated and encoded in four distinct layers, population, interac-

tion, disease, and policy. Its modular structure allows not only the flexible and

seamless addition of many details and novel features, but it also lends itself to ap-

plication to other populations with different sociological setups. As a first example

we discuss its application to the case of the spread of COVID–19 in England, with

convincing results underlining the quality of the model and its ability to under-

stand the spread of an epidemic in great detail and with high geographical and

sociological resolution.

Studies where JUNE is applied to different settings are forthcoming (Aylett-Bullock

et al., 2021). One of the strengths of the model is its ability to capture differences in

geographical and sociological structure with unprecedented resolution, facilitated

through the hierarchical structure in which the population is organised. JUNE also

allows a flexible yet detailed modelling of daily activities of the virtual population,

by combining the geographical position of buildings and other structures with the

social interactions taking place. In contrast to other models this enables a very

granular understanding of work patterns, leisure activities, etc.. In forthcoming

publications we will exploit this high level of detail to try and answer pertinent

questions relating to social imbalances in the impact of COVID–19.
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This paper made use of Python (Van Rossum and Drake, 2009) and the following

Python libraries: Matplotlib (Hunter, 2007), Numpy (Harris et al., 2020), Pandas

(pandas development team, 2020; Wes McKinney, 2010), Scipy (Virtanen et al.,

2020), SciencePlots (Garrett, 2020).
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B.1 Algorithms

B.1.1 Constructing Credible Households

The ONS divides households into the following broad categories: single, couple,

family, student, communal, and other (Office for National Statistics, 2011j). We

populate the households in this ordering, giving preference to those types for which

we have the most precise and unambiguous data.

Figure B.1: Distributions of age differences between partners (left), between par-
ents and their first (middle) and second child (right): outputs of JUNE compared
with the input data from the ONS database.

We define and construct households types as follows:

1. Single: These are households with a single person living in it. The census

data differentiate single households occupied by an adult or an older adult

(≥ 65 years old), and we fill the households accordingly.

2. Couple: These are households occupied by a couple without children. Again,

the census differentiates between household with adults or older adults living

in them. We preferentially fill these households with two people of different

sex, with an age difference sampled from the corresponding UK distribution of

age differences at the time of marriage (Office for National Statistics, 2017b)

(see also the left panel Figure B.1).
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3. Family: These households are defined by the number of adults (singles or

couples) and the number of children. A difficulty here is that the census

data does not stratify beyond “two or more” children. To compensate for

this, we introduce a distribution to select the number of children in these

households. To fill a family household, we allocate a female adult first. If

there are no female adults available (because they have already been allocated

somewhere else), we chose a male adult. In case of families with two adults,

we match the person with a partner, preferentially with different sex, and an

age difference sampled from the same dataset we use for couples. The census

data provides us with the number of dependent children for each OA (area),

and we add a suitable number of children according to the age difference

between the mother and the n-th child as given by ONS data collected on

birth characteristics (Office for National Statistics, 2017a) (see also the middle

and right panels of Figure B.1).

4. Students: From the census data, we know how many student households

there are and how many students live in a given OA (area). We uniformly

distribute students among their households, assuming a constant ratio of the

number of students per household. Students are selected from the population

aged between 18 and 25 years old.

5. Communal: We use census data on the number of people in an OA (area)

living in a communal establishment, as well as the number of such estab-

lishments, such as care homes (Office for National Statistics, 2011d). The

communal establishments are filled last after the types described above their

residents will be those who do not live in any of the other household types. As

in the case of student households, we assume a constant ratio of the number

of communal residents per establishment.

6. Other: This category encapsulates the uncertain household compositions

given by ONS. These may include groups of adults living together, multi-
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family or multi-generational families. In a similar manner to the communal

households, these are filled last with those people that have not yet been

allocated.

(a) Household sizes. (b) Household composition by age.

Figure B.2: Comparisons between outputs of JUNE and data from the ONS database
for all England.

As a further test of our household populating algorithm against available data,

we compare the JUNE household size distribution and age dependence of people

living in different household types with that given by ONS (Office for National

Statistics, 2011j). Figure B.2 demonstrates that the JUNE household composition

algorithm clearly produces a household size distribution in good agreement with the

census data. We also observe the impact of our assumptions on the composition of

families and more complex household compositions (“other”). Given the unknown

specifics of certain household composition types, we believe our overall household

composition by age to be in reasonable agreement with the data.

B.1.2 Schools

The procedure for assigning children and teachers to schools throughout England

is specified in Section A.3.3.

Following our algorithm, we arrive at a distribution of school sizes displayed in

Figure B.3, which we see to be in reasonable agreement with the data. Similarly,

Figure B.4 shows the full distribution of class sizes in JUNE. In the case of COVID–
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Figure B.3: Distribution of school sizes comparing the JUNE simu-
lation with data

Figure B.4: Distribution of student to teacher ratios for primary schools, secondary
schools, and mixed schools.

19, most countries have prioritised the return of children to school from younger

age brackets. Therefore, recovering good agreement with data particularly in these

age brackets is crucial.

B.1.3 Work places

We use ONS data on industries and companies in England categorised according

to 21 sectors following the Standard Industrial Classification (SIC) code conven-

tion (see Table A.1) (Office for National Statistics, 2007) as our framework for

differentiating between different types of work.

Companies are initialised according to ONS data on company sizes and sectors at

the MSOA (super area) level (Office for National Statistics, 2011f). We use data
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on the geographical distribution of company sizes to fix the number of companies

at the MSOA (super area) level and use the data on the distribution of sectors

to probabilistically assign an industry sector to these companies at the same geo-

graphical level. Since the ONS provides information on company sizes by binned

size ranges, we take the median size of each bin and assign this to each company.

The largest bin is 1000+ employees which we assume to be 1500. It should be noted

that companies are not assigned a sector based on their size, but purely on their

geography. This does not mean there is no correlation between company size and

their sector in JUNE, but that this would arise implicitly based on the geographical

distributions, rather than explicitly from data input.

Individuals are assigned a sector attribute probabilistically, following the distribu-

tions of sectors dis-aggregated by sex at the MSOA (super area) level (Office for

National Statistics, 2011e). We determine the MSOA (super area) in which they

work according to the ONS commuting origin-destination matrix (or ‘flow’ data)

(Office for National Statistics, 2011h) which provides information on the number of

people by sex travelling from one MSOA (super area) to another for work. Finally,

a matching is carried about between people who work in a certain MSOA (super

area), and the companies available to them based on their respective sector attrib-

utes. In future work we plan to use additional demographic attributes to assign

individuals their sectors and companies.

B.1.4 Commuting

The commuting structure in JUNE is built upon the national transport network

constructed from nodes representing cities, and edges representing possible transit

routes. Commuters are defined as either ‘internal’, i.e. they live and work in a city,

or ‘external’, i.e. they live outside a city’s metropolitan boundary and commute

into it (see Section A.3.4 for more details on how people are assigned locations of

work). The metropolitan boundary of each city is defined using data collected by

165



B.1.4. Commuting

Figure B.5: Distance travelled to work by sex according to JUNE. Here we see
that men are more likely to travel further to work then women. This is in broad
agreement with data presented in Klepac et al. (2018)

the ONS (Office for National Statistics, 2015) which specifies the MSOAs (super

areas) that belong to the cities.

The following procedure is used to determine the groups within which people have

the chance to mix during a commute.

1. For each city, we seed several additional nodes which act as ‘gateway stations’

outside the metropolitan area boundary. These serve as funnels into the city

and determine the mixing of external commuters. In the case of London

we seed eight stations which are placed evenly around the boundary of the

metropolitan area. For all other stations we seed four evenly spaced stations

North, South, East and West of the city boundaries. These figures are in-

formed by the approximate and number of train lines entering each city, and

the proportional differences between the number of London public transport

links and those of other cities (National Rail, 2015).

2. We model the commuting of all people who travel by public transport into

a city’s metropolitan area. We assign all external commuters to the nearest

gateway station to where they live. During each commuting time-step in the

simulation, people travelling through the same gateway station are randomly

split into ‘carriages’ containing people with whom they have the potential to
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interact. Similarly, internal commuters are also split into carriages and able

to interact with each other.

3. During a commute time-step, each carriage is assigned to be travelling at

‘peak time’ with an 80% probability.

4. The default number of people in an average carriage is fixed to 50 people. For

each city this number is adjusted in proportion to data from the UK Depart-

ment for Transport (DfT) data on overcrowding in trains (UK Department

for Transport, 2011). This data also disaggregates at the level of peak or

off-peak travel which is used to further adjust the filling of carriages.

5. The commuting time-step is run twice a day in order to simulate commuting

in each direction.

We calculate the distance travelled to work by sex, in Figure B.5, and we see that

men are more likely to travel further to work in our model than women. Our

findings are in reasonably good agreement with the survey Klepac et al. (2018) and

serve as an independent validation of our model.

B.2 Time-steps

As mentioned in Section A.4.1, JUNE time-steps allow differentiation between week-

days and weekends, and have a number of allotted activities. The default time-steps

are described in Tables B.1 and B.2.

When choosing the time-steps, we aimed to choose the lengths such that they are

somewhat close to the characteristic time of interaction of activities allowed in that

time-step, but also not choosing so many time-steps to overfragment the simulation.

For instance, the weekday time-step with index 1 (09:00-17:00) is eight hours, and

matches the primary activities of “school” and “work”, even though the “leisure”

activity (which is allowed for old adults who are not assigned a workplace) has a
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Index Calendar time Allowed activities
0 08:00-09:00 M, R, C
1 09:00-17:00 M, P, L, R
2 17:00-18:00 M, R, C
3 18:00-21:00 M, L, R
4 21:00-08:00 M, R

Table B.1: Time-steps and allowed activities for a calendar weekday, where M,
R, C, P, L are “medical facility”, “residence”, “commute”, “primary activity” and
“leisure”, respectively.

Index Calendar time Allowed activities
0 08:00-12:00 M, R, L
1 12:00-16:00 M, R, L
2 16:00-20:00 M, R, L
3 20:00-08:00 M, R

Table B.2: Time-steps and allowed activities for a calendar weekend. Allowed
activities are the same as in Table B.1

characteristic time of 3 hours. Breaking this in half would better match the leisure

characteristic time (3 hours) for this time-step, but would mean that all individuals

in the simulation would be reassigned an activity for the second of the two time

steps. Even though the vast majority would be reassigned to their same, required

“primary activity”, causing needless computation.

B.3 Contact matrices

We use the contact matrices from the BBC Pandemic survey (Klepac et al., 2020)

and supplement them with the PolyMod matrices (Mossong et al., 2008) for inter-

actions of children with other children in the age bracket of 0-12 years. When

comparing the matrices that capture interactions in all settings given in the BBC

study, an anomaly appears in the matrix describing physical contacts - the original

PolyMod data approximately a factor of 3 higher than the BBC matrices in neigh-

boring age bins. We account for that by a simple scaling of the physical contacts by

1/3 before using these data. To arrive at matrices including interactions at home,

in school, or in other settings for the age brackets 5-12, missing in the BBC study,
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we scale the PolyMod setting-inclusive results by a ratio of contacts in the respective

setting for the age bin of 13-14 year old kids, while we assume that the interactions

of 0-4 year old children are concentrated at home.

To extract mixing matrices that are suitable for our context-specific simulation,

we have to correct for the fact that the reported matrices average over the corres-

ponding age bins in the UK population. For example, contacts between teachers

and school children are normalised to the full UK population in the respective age

bin instead of the number of teachers in schools that actually participate in the in-

teraction. This necessitates rescaling to the number of people in the social context

to arrive at corrected social interaction matrices M̄(H,W,S,O)
ij . This correction step

will be detailed in the relevant subsections below.

B.3.1 Social mixing at work

The matrices for the age-dependent interaction frequency at the work place show

only a very mild correlation with age, typically favouring interactions of workers

with a similar age by about a factor of 2. We will therefore not include age effects

at the work place into the matrices used in JUNE. To minimize effects due to early

retirement, students etc. we average over the ages of 25-60 and we compare this

to the average over the working age, 18-64, but correct for an employment rate of

75%. In so doing we arrive at the number of daily contacts for adults at work:

n
(W )
AA =

 4 (0.35 physical) for ages 25-60

4.8 (0.35 physical) for ages 18-64, corrected for employment rate
(B.1)

In JUNE we will use n(W )
AA = 4.8, with a ratio of about 7% physical contacts. While

it is obvious that different industrial sectors will in reality have very different num-

bers of daily contacts, with corresponding impact on their vulnerability towards

infections, we have not made any attempt to account for such a sector-dependent

modulation, apart from effects that naturally arise from different sizes of work

forces in different companies.
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B.3.2 Social mixing in schools

We decompose school populations into year groups labelled with indices i ∈ {1, 2,

. . . , N} for a school with N year groups and denote teachers with T . Starting

with the interaction of pupils in various year groups an apparent large asymmetry

emerges between the summed number of interactions of pupils with adults in the

school and of adults with pupils in the BBC data set. This, however, is easily

explained by realising that the number of interactions in a given context is norm-

alised to the fraction of the population in a given age bin, irrespective of whether

they can participate in the interaction or not. This means that the number of

interactions between teachers and pupils have to be renormalised to the ratio of

teachers in the adult population – about 500,000 teachers out of 36,300,000 adults,

with about 216,000 working in primary and 208,000 working in secondary schools.

Summing the number of interactions of children in the age range of 5-17 with

adults in the range 25-65 in schools, and assuming the latter are all teachers yields

an average of 0.75 pupil-teacher interactions (0.06 = 8% of them physical) per day

with very little dependence on the children’s age. Conversely, adults have about 0.2

(0.02 = 10% of them physical) interactions per day with children in schools, again,

relatively independent of the age of the children. Normalising this to the number of

teachers in the population, we arrive at about 15 teacher-pupil interactions per day,

which fits very well to approximate teacher-pupil ratios of 1:20-1:25.1 We therefore

assume that the individual interaction frequency of one specific teacher-pupil pair

is consistently described with 0.75/day. For interactions among adults in the school

setting we include the interaction of parents with teachers and of parents among

themselves, thereby blurring the picture. We therefore assume that teachers inherit

the daily contact frequencies from the work place mixing above. Turning finally

to the interactions amongst children, we see a very dominant correlation in age.

In order to capture this, we assume that per year of age-difference the number of
1In fact, for primary schools, the average class size is about 21 pupils, while for secondary

schools it is about 16 pupils (Department for Education, 2011).
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interactions among children in school, n(S)
KK , will be reduced by a factor ξ. By fitting

to the combination of BBC and PolyMod studies we find, to good approximation,

xi = 0.3 and n
(S)
KK = 2.5, with on average 15% of the interactions being physical.

As a consequence we obtain the following social interaction frequency matrix for

individual pairings at schools:

M̄(S)
ij ≈



4.8 0.75 0.75 0.75 . . .

15 2.50 0.75 0.25 . . .

15 0.75 2.50 0.75 . . .

15 0.25 0.75 2.50 . . .

...
...

...
... . . .


, (B.2)

where the first row and the first column specify the interactions between teachers

and students in different year groups, and the second and following row and columns

are populated by interactions of the pupils with other pupils across year groups

ordered by age.

B.3.3 Social mixing at home

In our model we decompose the household population into four subgroups, namely

children (K, ages 0-19), young adults (Y , 18-24), adults (A, 25-64), and older adults

(O, 65+). We therefore arrive at a 4 × 4 matrix of corrected social interactions at

home, M̄(H)
ij , where the indices i, j ∈ {K,Y,A,O}. In the following we will detail

how we arrive at the various matrix elements. When correcting for the impact

of social environment, i.e. the household compositions, we will ignore household

compositions which are listed as “other” in the ONS database, due to a lack of

detailed information (see Section A.3.2 for more details). When using these data,

we will use numbers in units of millions, HOAY K of households with a composition

of O older adults, A adults, Y independent children or young adults living at home,

and K children aged 0-19.
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• M̄(H)
OO : we ignore the case of care homes or other facilities with more than two

residents. Then the average interaction frequency from the BBC data is given

by n
(H)
OO = 0.78 (0.44 physical) and 0.62 at weekends.2 With H2000 = 2.131

and H1000 = 3.294 .3

M̄(H)
OO = 0.78 · 2H2000 +H1000

2H2000
≈ 1.4 . (B.3)

• M̄(H)
AA : the interaction frequency between adults aged 20-65 at home from

the BBC data is given by n(H)
AA = 1.2 (0.74 = 62% of them physical).

M̄(H)
AA = 1.2 ·

∑
x,y

(2H02xy +H01xy)∑
x,y

2H02xy
≈ 1.34 , (B.4)

where ∑x,y H02xy = 8.751 and ∑x,y H01xy = 7.644.

• M̄(H)
Y Y : the interaction frequency between young adults age 18-26 at home

from the BBC data is given by n
(H)
Y Y = 1.3 (0.4 = 34% of them physical).

There is no obvious household correction that we can apply, but the number

of contacts is relatively close to the value of M̄(H)
AA = 1.34, so we will assume

that young adults interact with each other with a frequency similar to that

of adults:

M̄(H)
Y Y = M̄(H)

AA . (B.5)

It is worth noting that the age range for young adults is relatively narrow, and

that there will be edge effects that may effectively increase the interaction

frequency.

• M̄(H)
Y A and M̄(H)

AY : we have n(H)
Y A ≈ 0.7 with a relatively steep decline with the

age of the young adults, which we attribute to the fact that with increasing

age young adults move out of their parents’ home. To obtain some better

understanding of the situation, we look at the interaction of adults in the age
2One may speculate in how far this drop is a reflection of uncertainties in the data or a true

“physical” effect, for example due to visitors, travel, or similar.
3Here and in the following, the numbers of different household configuations are taken from Of-

fice for National Statistics (2011i).
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range 40-65 with young adults, aged 18-24. From this we arrive at an average

of n(H)
AY = 0.17 (0.07 = 40% of them physical).

To relate this to a corrected value we must make an assumption concerning

the number of young adults in the three age bins that still live with their

parents, which we take as 75%, 50%, and 40% for the three age bins. To

correct the AY number we assume that the majority of households with

young adults living as non-dependent children with their parents is composed

of households with one young adult adult. Therefore:

M̄(H)
Y A = 1

3

[0.87
0.75 + 0.65

0.5 + 0.55
0.4

]
≈ 1.3

M̄(H)
AY = 0.17 ·

∑
xy

(2H02xy +H01xy)∑
y

(2H021y +H011y) ≈ 1.47 ,
(B.6)

where ∑y H021y = 1.514 and ∑y H011y = 0.946.

• M̄(H)
KK : the average number of daily contacts at home between children age

0-17 is n(H)
KK = 0.47 (79% of them physical). Assuming all children live as

dependents with their parents, and demanding that households with “2 or

more children” (ONS classification) have, on average, 2.3 children to account

for the UK reproduction rate, we arrive at:

M̄(H)
AA = 0.87 ·

∑
x

(H02x1 +H01x1) + 2.3(H02x2 +H0.1x2)∑
x

2.3(H02x2 +H0.1x2) ≈ 1.2 . (B.7)

• M̄(H)
KA and M̄(H)

AK : to account for contacts of children with adults we will use

sliding age windows in dependence on the age of the child, using that parents

are usually between 20-40 years older than their children. We then arrive at

n
(H)
KA = 1.27 (70% of them physical) and n(H)

AK = 0.67, the former with an only

mild dependence on the age of the child, while the latter shows clear edge

effects for the first and last bins of the adult age distribution. These numbers
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translate into:

M̄(H)
KA = 1.27 (B.8)

M̄(H)
AK = 0.67 ·

∑
x,y(2H02xy +H01xy)∑

[]x,y
2(H02x1 +H02x2) + (H01x1 +H01x2)] ≈ 1.69 .4 (B.9)

We will also assume that the interaction frequency and intensity of children

and young adults living in the same household is determined by

M̄(H)
KY = M̄(H)

KA and M̄(H)
Y K = M̄(H)

AK (B.10)

• M̄(H)
O,KY A and M̄(H)

KY A,O: we assume that interactions of children, young

adults, and adults with older adults at home have three different realizations:

1. as regular contacts in a multi-generational household, where we assume

that older adults behave like adults in terms of interaction frequency

and intensity;

2. as regular contacts between children and their grand-parents who act as

child-minders while the parents are at work;

3. through regular or sporadic visits, where we again assume that interac-

tions of older adults follow the pattern of adults.

As a result we obtain the following social mixing matrix

M̄(H)
ij =



1.2 1.69 1.69 1.69

1.27 1.34 1.47 1.50

1.27 1.30 1.34 1.34

1.27 1.50 1.34 2.00


=

K Y A O

K 1.2 1.69 1.69 1.69

Y 1.27 1.34 1.47 1.50

A 1.27 1.30 1.34 1.34

O 1.27 1.50 1.34 2.00

, (B.11)

where, for convenience, we have made the entries explicit.
4Note that the latter number becomes 2.5 if we only use the central bins of parent ages 35-50

and the corresponding number of contacts n
(H)
AK = 0.96, which however introduces a bias in favour

of the more intense interactions with children in primary school age.
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B.3.4 Social mixing in other venues

Social venues (“pubs”, “cinemas”, and “groceries”) in JUNE are assumed to have

only one subgroup, “attendees”, meaning that the social mixing matrix for these

interactions is a single-element; M̄(P ) = 3, M̄(C) = 3, M̄(G) = 1.5 for “pubs”,

“cinemas”, and “groceries” respectively. These values were chosen heuristically

according the estimated number of contacts in each location relative to the the

number of contacts set elsewhere (as discussed above). Given that we do not

consider different subgroups in these locations, making the matrix single-valued,

these numbers only serve the purpose of intuitively introducing a hierarchy of

contact intensities (β parameters) into the model structure. Since the intensity

parameters are fitted to data (see Section A.8), the form of Equation A.8 ensures

that the choice these social mixing matrices values will not significantly affect the

probabilities of transmission.

Hospitals have three subgroups: medical staff, ward patients, and ICU/ITU pa-

tients. The social mixing matrix for hospitals (where the superscript M refers to

“medical facility”) is

M̄(M)
ij =


5 10 10

1 0 0

1 0 0

 and ϕ
(M)
ij =


0.05 1 1

1 0 0

1 0 0

 , (B.12)

where (i, j) ∈ {S,W, I} denoting the three subgroups, medical staff, ward patients,

and ICU/ITU patients, respectively. The number of contacts between a medic and

patients, 10, represents the average number of patients per medic. We assume

that a patient is visited by a medic once per characteristic time, set to 8 hours for

hospitals. The number of contacts between patients is irrelevant, as patients are

by definition already infected, but is set to zero.

Social mixing in care homes considers three subgroups: workers, residents, and
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visitors, with matrix

M̄(CH)
ij =


15 15 1

1.5 4 20

1.5 6 0

 and ϕ
(CH)
ij =


0.05 1 0

1 0.4 1

0 0.5 0

 , (B.13)

with a characteristic time of 24 hours. The seemingly-high number of contacts

between workers and visitors, and residents and visitors is to compensate for the

characteristic time of 24 hours; if visitors were to be present in a care home for a

full characteristic time, they would experience this many contacts, but visits are a

day time activity which take only a few hours, resulting in fewer contacts.

Finally, universities are modelled as having six groups to represent professors and

five distinct groups of students (for the moment based only on age 19-23), with

diagonal elements M̄(U)
i=j = 2 and off-diagonal elements M̄(U)

i ̸=j = 0.75, and all

ϕ
(U)
ij = 0.25.

B.3.5 Deriving contact matrices from JUNE

We derive the contact matrices in Figure A.9 by simulating a week of pre-lockdown

activity. For each person, in each subgroup i, in each venue, we choose the required

Nij people (with replacement) for all (non-empty) subgroups j in that venue (where

Nij is from the relevant social mixing matrix). We populate “raw” contact matrices

using these selected people. As these contacts are then uni-directional, we make

the same corrections as in Klepac et al. (2020) to account for reciprocal contacts.

We hope to produce contact matrices derived from constructing self-consistent

(reciprocal) networks of contacts within groups in future work.

B.4 Details on modelling health trajectories

For the times spent in different stages of disease progression we use a variety of

functions, namely intervals of constant length, scaled and shifted β functions, scaled

176



B.5. Calibration via Bayes Linear Emulation and History Matching

Name Function Source
CT constant with time T
βI β2.29,19.05,0.39,39.8(t) He et al. (2020)
LNM LN0.83,5.7(t) *
βH β1.35,3.68,0.05,27.1(t) Scientific Advisory Group for Emergencies
βD β1.21,1.97,0.08,12.9(t) Scientific Advisory Group for Emergencies
LNICU LN1.41,0.9(t) ICNARC
eICU e1.06,0.89,12(t) ICNARC
eD e1.23,1,9.69(t) ICNARC

Table B.3: Characteristic functions and their parameters. *We constrained the
time from symptom onset to hospitalisation through private communication with
hospital physicians at early stages of the first COVID-19 wave of infections. We
later checked this assumed profile against published data and found our values to
be broadly consistent.

log-normal distributions, and exponential Weibull distributions, given by

Ctend
(t) = Θ(tend − t)

βa,b,l,S(t) = βa,b

(
t− l

S

)
LNs,S(t) = LNs

(
t

S

)
ea,c,S(t) = ea,c

(
t

S

)
. (B.14)

The trajectories and their building blocks to construct the corresponding time

intervals infected individuals spend in various stages of the disease are listed in

Table A.3.

B.5 Calibration via Bayes Linear Emulation and

History Matching

We now provide more details of the Bayes linear emulation and history matching

process outlined in Section A.8. To set up the history matching problem, we

identify a large set of 18 input parameters to the JUNE model to explore. This

set is composed mainly of contact intensity parameters, but also contains such

parameters governing social distancing effects, compliance and physical contact,

with each parameter specified along with associated broad ranges, in Table B.4. We
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Input Parameter (xi) Type Range
βpub contact intensity [0.02,0.6]
βgrocery . [0.02,0.6]
βcinema . [0.02,0.6]
βuniversity . [0.02,0.6]
βcity transport . [0.08,0.77]
βinter city transport . [0.08,1.2]
βhospital . [0.08,1.2]
βcare home . [0.08,1.2]
βcompany . [0.08,1.2]
βschool . [0.08,1.2]
βhousehold . [0.08,1.2]
βcare visits . [0.1,8]
βhousehold visits . [0.08,1.2]
αphysical physical contact factor [1.8,3]
αseed strength seeding [0.5,1.3]
Mquarantine household compliance compliance [0.034,0.26]
Msocial distancing β factor social distancing [0.65,0.95]
Msd4 random factor all social distancing [0.004,0.5]

Table B.4: The input parameters that form the 18-dimensional vector x explored
in the global parameter search, their type and their ranges that define the search
region X0. The parameters αseed strength and Msd4 random factor all modulate the
strength of the seeding process, and the social distancing policy active from the 7th

of July respectively.

denote this set of parameters by the 18-dimensional vector x and denote the initial

search region defined by their combined ranges as X0. We identify a set of outputs

to match to observed data, specifically the deaths and total deaths for England and

for each of the seven regions, and for the age bins 0−5, 6−17, 18−64, 65−84, 85+,

at the time points of the 20th March, 28th March, 5th April, 13th April, 21st April,

29th April, 12th May, 26th May, 8th June, 8th June and 23rd June, 2020. We

represent the list of all these outputs as the vector f .

We note that the JUNE model can now be viewed as a function that maps the inputs

x to the vector of all outputs of interest f(x). As we cannot evaluate the model

f(x) exhaustively over the full parameter space X0 due to computational expense,

we mimic it using a fast to evaluate (but uncertain) Bayesian emulator. For an

individual output fi(x), representing for example, the total deaths in England on
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the 28th March, we construct an emulator of the form

fi(x) =
∑

j

bijgij(xAi) + ui(xAi) + vi(x) (B.15)

where the first term on the RHS is a regression term designed to capture global

behaviour, composed of known deterministic functions gij (with a common choice

being low order polynomials) of the active variables xAi , which are a subset of the

inputs that are found to be most influential for output fi(x), and of the bij which

are unknown regression coefficients. The middle term ui(xAi) is a Gaussian process

with various forms of correlation structure available, capable of mimicking large

classes of functions, which has the flexibility to capture more local behaviour of

fi(x), and vi(x) is an uncorrelated nugget that represents the effect of the remaining

inactive input variables, and/or any stochasticity exhibited by the model.

We perform an initial space filling set of n = 125 runs D = (f(x(1)), f(x(2)), . . . ,

f(x(n))) with the x(i) ∈ X0 chosen using a maximin Latin hypercube design. The

emulators are updated by the runs D using the Bayes linear update equations

(Vernon et al., 2010a), and hence can give a prediction with corresponding un-

certainty, of the unobserved f(x) at a new, previously unevaluated input point

x, in the form of the adjusted expectation ED(fi(x)) and the adjusted variance

V arD(fi(x)) respectively. The emulators have to satisfy extensive diagnostics (Bas-

tos and O’Hagan, 2008; Vernon et al., 2010a), an illustrative example of which is

given in Figure B.6, left panel, which shows the emulator prediction ED(fi(x))

for fi(x) across several time points (the solid red line) and the prediction interval

ED(fi(x)) ± 3
√
V arD(fi(x)) (the red dashed lines) along with the held out run

output f(x) (the blue line) which the emulator has not previously seen, showing

excellent agreement between emulator and model. The emulator evaluation takes

a fraction of a second, and mimics the JUNE model well.

By confronting the emulators with the observed data vector z corresponding to

the outputs in f , and incorporating major sources of uncertainty (e.g. observation

error, structural model discrepancy, stochasticity), we can rule out large parts of
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Figure B.6: Left Panel: an example diagnostic showing the emulator prediction
ED(fi(x)) for fi(x) across several time points (the solid red line) and the prediction
interval ED(fi(x))±3

√
V arD(fi(x)) (the red dashed lines) along with the held out

smoothed run output f(x) (the blue line). The emulator captures the behaviour of
the JUNE model well. Right panel: daily hospital deaths for all of England, showing
the progression of the runs from iterations 1, 2 and 3 used in the history matching
process (in purple, green and red respectively). Observed data (smoothed and
original) in black. Vertical dashed lines: emulated outputs.

the input parameter space X0 as implausible. We do this using an implausibility

measure, for which the univariate version Ii(x), is defined for each output as

I2
i (x) = (EDi(fi(x)) − zi)2

V arD(fi(x)) + σ2
ϵi

+ σ2
ei

(B.16)

where ED(fi(x)) and V arD(fi(x)) are the emulator expectation and variance as

before, zi is the observed data point corresponding to model output fi, σ2
ei

is the

variance of the observation error ei (a random quantity representing the imperfec-

tions of the measurement process), and σ2
ϵi

is the variance of the model discrepancy

ϵi (an often neglected random quantity representing the imperfections of the model

(Craig et al., 1997; Kennedy and O’Hagan, 2001; Vernon et al., 2010a)). If Ii(x) is

large, it is because the emulator expectation for fi(x) is very far from the observed

data zi, even given all the major sources of uncertainty, and therefore the input

parameter x is highly unlikely to yield model output similar to observed data were

we to evaluate JUNE there, and hence x could be discarded from further analysis. A

typical cutoff maybe Ii(x) < c where c = 3.
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There are various ways to combine implausibility measures for each of the individual

outputs, the simplest being to maximise: IM (x) = maxi Ii(x), that is to take

the maximum implausibility across all outputs of interest which is the measure

chosen here, although we note that other more nuanced and/or robust versions are

available, that capture more of the multivariate behaviour (Vernon et al., 2010a).

We now employ iterative history matching (Vernon et al., 2010a), a parameter

search method that seeks to identify all parts of parameter space that would give

rise to acceptable matches between model output and observational data. This

proceeds at the jth iteration (or wave), by constructing emulators using the current

set of runs, removing the implausible parts of the input space to define the new

non-implausible region Xj = {x ∈ X0 : IM (x) < c}, designing and performing a

new space filling set of runs across the reduced input space Xj and re-emulating,

but now with a more accurate emulator defined only over the reduced region Xj .

For further discussion see Vernon et al. (2010a,b, 2018), but it suffices to note that

the iterative nature of history matching is key, as it allows later iteration emulators

to become far more accurate as they are only employed over far smaller parts of

the input space, and are hence informed by a much higher density of runs.

The observed data for total deaths was obtained from the ONS, while the hospital

deaths data is taken from CPNS - the Covid Patient Notification System (CPN).

For each output corresponding to the element of f , the data was first smoothed

slightly with a standard kernel smoother, to reduce the day-to-day stochasticity.

The observation error and model discrepancy variances for each output were each

decomposed into multiplicative and additive components to represent possible sys-

tematic biases, in addition to a scaled
√
n component for the observation error

only, to model the noisy count process. For example, we have the decompos-

itions σ2
ϵi

= α2
mult,ϵi

z2
i + γ2

add,ϵi
, with αmult,ϵi

= 0.06 and γ2
add,ϵi

= 3/2, and

σ2
ei

= α2
mult,ei

z2
i + γ2

add,ei
+ (δcorr,ei

√
zi)2, with αmult,ei

= 0.06 and γ2
add,ei

= 3/2

and δcorr,ei = 0.25 governed by the mitigation of the smoothing process.

As described in Section A.8, we performed 3 waves of the history match with
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125 runs each wave, finding that the emulators were of sufficient accuracy after

the third wave. Figure B.6, right panel, shows the progression of the runs from

iterations 1, 2 and 3 used in the history matching process (in purple, green and

red respectively) for the daily hospital deaths in England output, with the data

(original and smoothed) in black. We can see that the third iteration runs are

vastly improved and surround the observed data. These allow accurate emulators

to be constructed that can identify the region of input space of interest, which were

used to construct Figure A.22, as discussed in Section A.8.
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