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Summary

This thesis presents a mechanical analysis of a particular type of hip

replacement, characterized by the presence of an elastomeric layer firmly bonded to

a metal cup, and compressed by a metal head during walking. Various theoretical-

numerical models of increasing adherence to the actual geometry are either extended

or developed, namely : a) a cylinder compressing a flat covering ; b) a cylinder

penetrating a curved stratum ; c) a sphere indenting a flat cortex ; d) a sphere

squeezing a spherical lining.

The theoretical solutions achieved are mainly of perturbation type, where

various algebraic manipulators are exploited to perform the analytical passages. The

numerical forecasts are obtained with the nonlinear finite element package ABAQUS,

aimed at analysing configurations which appear too complex to be modelled

analytically. To clarify the terminology employed in connection with the use of

ADAQUS package, a complementary introduction to the theory of elasticity in finite

deformations is also included.

The previous analytical-numerical tools are mainly employed to perform a

systematic sensitivity analysis of the hip joint mechanical response to perturbations

of the Poisson's ratio in the physically realistic range 0.49 - 0.5 . The effects of

the layer thickness and of the initial gap between head and elastomeric layer on the

peak contact pressure between head and lining and on the maximum shear stress at

the interface between elastomeric stratum and cup are also explored.

In addition, an experimental study is undertaken for the configuration of a

cylindrical indenter compressing a curved layer, as a support to the analytical

analyses.

Experimental measurements of the Poisson's ratio are effected via a

purposely built piston device. The influences of the device elastic distortions and

of possible extrusions of the elastomeric specimen on the apparent Poisson's ratio

are examined, and the corrections are evaluated with suitable theories.

Some robust analytical tools are developed, which are useful in the numerical

solution of the stationary, plane, elastohydrodynamic lubrication problem for soft

contacts, having in mind possible applications to the hip joint realm. In particular, a

method is proposed for constructing closed form solutions to be used as test cases



in validating numerical codes. Secondly, an extended variational formulation is

developed which possesses local minimum properties in the solution neighbourhood.

Third, a mathematical justification of the possible appearance of spurious numerical

undulations in the fluid film thickness is derived.
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1.1 INTRODUCTION

This thesis addresses a particular type of hip replacements, characterized by

the presence of an elastomeric layer adherent to the cup, and compressed by the

head during walking. Fig. 1.1.1 compares natural (left) and artificial (right) hip

joints. The artificial joint consists of a metal cup to which the elastomeric lining

adheres, and of a metal head connected to a metal stem. The cup is fixed to the

acetabular socket of the patient's pelvis. The stem conforms to the diaphisary

channel of the femur. The spherical pair thus obtained behaves kinematically as the

replaced natural joint. Fig. 1.1.2 sketches the relevant elements of this joint,

namely the cup to which the elastomeric lining adheres, and the spherical head.

Fig. 1.1.1 : A comparison between natural (left) and artificial (right) hip joints.
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Fig. 1.1.2 : A sketch of the main elements of the hip joint,

namely the cup to which the elastomeric lining adheres, and the head.

Current research supports the belief that such soft joints exhibit some

benefits in comparison to hard prostheses, in terms of a) microelastohydrodynamic

effects; b) possible increase in the squeeze film duration; c) less stringent

mechanical tolerances; and d) more favourable stress distribution.

Depending on the desired degree of approximation, plane and axisymmetric

models of this contact problem can be advocated. A cylinder and a sphere

compressing a flat or curved, deformable stratum are therefore plausible, although

idealized, descriptions of the hip configuration, and these geometries possess an

extensive and distinguished literature, where such studies have often been spurred

by practical problems totally extraneous to the biomechanical field. Due to its

variety, the review of the pertinent literature is presented at the beginning of each

Chapter.

Although especially in the last years a noticeable collection of studies have



critical

already
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flourished with direct reference to the hip joints possessing elastomeric layers,

various relevant aspects do not appear to have been extensively investigated. The

main open problems are summarized in the following Section, where the resolution of

some of the controversial points constitutes the motivation of this thesis. The more

general obscure subjects are

particular enigmatic aspects.

listed first, followed by discussions addressing more

In the interest of higher conciseness, the

discussions are

remembered, are

Section.

not accompanied by bibliographic quotations which, as

reviewed in the bibliographic apparatus at the beginning of each
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1.2 GENERAL ASPECTS

This Section briefly analyses the more general open problems. The following

analysis aims at sampling some representative problems, more than at providing an

exhaustive picture of the existing controversial points.

1.2.1 On the sensitivity of the stress field to
the cubic compressibility of the elastomer

A variety of studies underlines the fact that, when a deformable layer

adherent to a rigid foundation is compressed by a cylinder or by a sphere to such

an extent that the contact width between indenter and elastic cortex is considerably

larger than the lining thickness, the stress field in the deformable stratum is mainly

hydrostatic and, consequently, it is particularly sensitive to perturbations of the

Poisson's ratio. Normally the elastomers employed in this biomechanical application

exhibit Poisson's ratios not lower than 0.49 , and often closely approaching the

incompressibility upper limit 0.5 . The present author is unaware of studies

systematically exploring a close sequence of Poisson's ratios ranging from 0.49 to 0.5

, and analyzing the dependence of the layer stress distribution on the cubic

compressibility adopted. In addition, no papers in the hip joint, field are known to

the author which measure experimentally the cubic compressibility of the elastomer

employed, and use this physical input in the mechanical analysis of hip joints

endowed with elastomeric layers. Finally, the experimentally measured Poisson's

ratio often depends, although moderately, upon the level of the hydrostatic

pressure imposed (i.e., it is not constant), and this non-linearity has never been

mimicked in the mechanical analysis of hip joints.

Moving to head-layer contacts characterized by smaller contact widths, it is

known that in this case the layer mechanical response exhibits a much lower

sensitivity to Poisson's ratio perturbations. An exhaustive definition of the

transition zone between contacts which are either sensitive or not sensitive to

modifications of the cubic compressibility does not appear to be available.
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1.2.2 On the effects of finite deformations

Various studies attribute to the effects of finite deformations in the

elastomeric layer the responsibility for the mismatches often noticed between

theoretical forecasts (normally obtained with a linear elasticity approach) and

experimental measurements. The results available are not sufficient to clarify the

relevance of the effects of finite deformations.

1.2.3 On the usefulness of algebraic manipulators

No closed form solutions are accessible for the geometry of a layer

compressed by an indenter, however simple its profile is. Various perturbation-type

solutions have been developed, especially in times when the numerical solutions were

not feasible. The related computations are generally particularly awkward, and

practical errors are inevitably likely to affect the formulations presented. Various

algebraic manipulators capable of performing algebraic and analytical operations in a

formal way have been extensively used in this thesis, in assessing many existing

formulations. Various analytical inaccuracies have been signalled and corrected, and

several formal calculations, impossibly lengthy if performed manually, have been

confidently developed with the aid of these symbolic algebra packages.
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1.3 PARTICULAR ASPECTS

This Section briefly ranks some open problems related to particular aspects

or geometries encountered in the hip joint realm.

1.3.1 Problems connected to the experimental measurement of the Poisson's ratio

The Poisson's ratio is often measured via a piston device, where the

deformability of the metal hollow cylinder which contains the cylindrical elastomeric

specimen affects the readings to an unknown extent.

1.3.2 Problems related to the geometry of a cylinder penetrating a flat layer

A perturbation solution is available for small contact widths, but a detailed

analysis of the influence of the perturbation order on the solution accuracy is not

available. In addition, some misprints obscure the published analytical formulae. In

the interest of mathematical simplicit, the punch is generally assumed to possess a

parabolic profile, but the errors incurred in mimicking a cylindrical indenter with a

parabolic curve have not been thoroughly explored in the case of appreciable

contact widths.
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1.3.3 Problems connected to the geometry of a cylinder indenting a curved layer

The curvature effects have been only partially explored, since the errors

detected are often superimposed to the inaccuracies deriving from the

simplifications adopted in describing the indenter profile. In addition, a Green

function (case of concentrated transverse force), which would permit any distributed

pressure profile to be easily mimicked, does not appear to have been derived.
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1.3.4 Aspects related to the geometry of a sphere compressing a flat,

axisymmetric layer

A perturbation solution parallel to that available for the analogous plane case

has been developed only at an abstract stage, but the corresponding manipulations

. have not been performed in detail. An iterative analytical solution is also available,

but the exactness of the formulae presented is suspect.

1.3.5 Problems associated with the geometry of a sphere compressing a

spherical cavity

For this geometry, which closely simulates the actual joint, an open problem

is the border effect, connected to the circumstance that in the real hip joint the

layer is not a complete spherical stratum, since it covers only the half-spherical

cavity of the cup, so that it is in fact a half-spherical cortex. When the contact

between head and lining terminates sufficiently close to the layer border, it is not

known to what degree this event influences the pressure distribution with respect

to an idealized, completely spherical layer.

1.3.6 Aspects connected with the elastohydrodynamic lubrication problem

The theoretical simulation of the lubrication in hip replacements requires a

correct model to be adopted for the deformability of the lubricated profiles. When

the Poisson's ratio of the elastomer approaches the incompressibility figure 0.5 , the

reliability of a simple column model declines, so that considerably more complex

descriptions need to be selected. In addition, when the foundation becomes softer,

numerical troubles manifesting themselves in convergence and regularity problems

may appear.
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1.4 CONCLUSIONS

Some of the open problems encountered in the mechanical analysis of hip

joints with elastomeric coverings and examined in this thesis have been described.

At the risk of excessive synthesis, the two main ingredients characterizing this

thesis are a) an exploitation of some algebraic manipulators in developing analytical

solutions capable of resolving some controversial aspects, and b) a sensitivity

analysis of the hip joint mechanical behaviour to perturbations of the Poisson's

ratio.
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2.1 INTRODUCTION

The elastomeric layer covering the cup in the hip replacements analyzed in

this thesis can undergo finite deformations during walking. In fact, due to the

limited cubic compressibility of the elastomers adopted, the rubber lining flows

laterally under the head penetration, so that sufficiently large distortions may

occur in the elastomeric stratum. In addition, the head compresses the rubber cortex

unilaterally, so that the extent of the contact zone must be evaluated in the

deformed condition. With this regard, the finite element package ABAQUS (1989) can

practically handle unilateral contact problems only by formulating the contact via a

nonlinear elasticity approach. These aspects show that an infinitesimal elasticity

theory may be inadequate (or numerically inapplicable) in mimicking hip joints with

elastic layers, so that tests on the consequences of finite deformations on the

solution accuracy in comparison to a more traditional linear elastic approach are

advisable.

Some practically relevant concepts of the theory of elasticity in finite

deformations are introduced in the following Sections. Such elements of finite

elasticity are necessary to interpret unequivocally the terminology used in Chapters

3, 6 and 7, where the nonlinear finite element package ABAQUS (1989) is extensively

employed to retrieve information on the layer stress field, and to assess the

relative importance of the finite deformations in some test cases.
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2.2 SOME ASPECTS OF THE THEORY OF ELASTICITY IN FINITE DEFORMATIONS

This Section possesses an essentially bibliographic character, and it addresses

three main aspects : a) to introduce the definitions of finite strains, b) to comment

upon the definition of strain invariants, and c) to discuss the fundamental aspects

of the stress-strain relationships in finite deformations.

2.2.1 On the definition of strain in finite deformations

Following Mase (1970), if x denotes the coordinate vector of a point in the

deformed configuration (whose entries are x 1 , x2 , x3 ), while X indicates the

coordinate vector (whose entries are X I , X2 , X3 ) of the same point before

deformation and referring to the same Cartesian coordinate system, the displacement

vector, u (whose entries are u i , u2 , /23 ) is

U =- X - X
	

Or	 Ut = Xt - X9 ( i = 1 , 2 , 3 )
	

(2.2.1.1)

According to a Lagrangian description, the coordinate, x , of a generic point

of the deformed configuration is expressed as a function of the undeformed

coordinate, X:

z = x ( X )
	

Or	 Xj = fs ( xi , X2 9 X3 )	 ( j = 1 , 2 , 3 )
	

(2.2.1.2)

The expressions for the strains must be freed from rigid translations and

rotations, since rigid movements do not generate deformations. The rigid

displacements are eliminated from (2.2.1.2) by considering, instead of eqns (2.2.1.2),

their derivatives, which define the Jacobian matrix (also named deformation gradient)

F= ( fi , j ] , where :

f,,, — a fi
3 Xj

(2.2.1.3)
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Such derivatives are useful in expressing, say, d x1

a	 3 x	 a x

	

d =x	 x l cl X + ---- d X2 ± --1 d X3 =

	

1	 aX,	 1	 a x2	 a x3

a fl d X2 + a f1 d X3a f i ci. xi + 3 X2	 a X3a X i
(2.2.1.4)

Formulae (2.2.1.4) are more expressive than their counterparts (2.2.1.2), since

the latter define a connection between a point before and after deformation, whereas

the former represent a link between infinitesimal segments before and after

distortion and, therefore, they are closer to the sought definition of strain.

To clear expression (2.2.1.3) from the rigid rotations, the Jacobian matrix is

decomposed into the product of a "pure" deformation matrix by a rigid rotation

matrix, R , which is characterized by the property that its inverse equal its

transpose

RT = R T1 --0 R T R =I	 (2.2.1.5)

where I denotes the identity matrix.

To reach the deformed configuration starting from the natural state, it would

be possible to apply first a rigid rotation and, then, a "pure" deformation.

Alternatively, the rigid rotation could follow the application of the deformation. If

the Jacobian matrix F is known, the problem arises to determine the rigid rotation

matrix, R , and the remaining matrix A , which expresses the actual deformation,

since it is freed from the two rigid motion components. It is expected that A is

symmetrical, since it represents a pure strain (Varga (1966), p. 19). The mathematical

way to determine R and A is presented in detail in the case that the rigid rotation

precedes the deformation. The properties exploited to perform the manipulations are

reported between brackets :



a ft a f 
a Xk 3 Xk

gt (k = 1 , 2 , 3 ; index summation convention) (2.2.1.8)
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F=AR

F = A T R
F T 	R -1 A

RFT=A

ARFT=AA

FF T A2

( A = A T )

A T R =RT A TT ; R T = R -1 )

( F = A R )

(2.2.1.6)

so that A (the evaluation of A from A 2 is omitted) and R can be finally expressed

as follows

A 2 = FF T	R= A -1 F	 (2.2.1.7)

In practice, A2 ( as opposed to A ) can be used as a measure of the strain

(for small deformations, it is still adherent to the results of the linear theory of

elasticity ; it is more easily computed than A ; it removes sign indeterminacy

problems), and it is usually referred to as "left Cauchy-Green strain tensor", G 	 A

2 (ABAQUS (1989)) (matrices are understood as representations of tensors). Its

generic entry, gi , is, according to the definition of A 2 of .eqn (2.2.1.7)

By introducing the displacement components (2.2.1.1), expressions (2.2.1.8) can

be reformulated as

	

a u	 3 ut	uiau i ,
xa X 3 Xkgi j = 5" 1- a—rcj 1-	 i	 a k

(ic == 1 , 2 , 3)	 (2.2.1.9)

By indicating for clarity the three coordinates Xi with X , Y , and Z , and

the three displacements u i with u , v , and W , the expression for, say, gn is

	

a u 2	 a u 2g11	 (1	 aa xu )2 +	 )	 1
3 Z

(2.2.1.10)

which, if U is X-oriented, becomes
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911	 1 ± 2 a

x
	aa xu )2	 (2.2.1.11)

which shows the connection between g 11 and the linear elasticity strain En. if 3 u/3

X is small. The expression for, say, g 12 is

	

av I 3 u	 u 3vg 1 2 = (1 + aqic	 ± ( 1 + a--)-7-JaY	 3 Za Z

which, if all differentials are small, becomes

3 v _L 3 u
&12 -	 aY

(2.2.1.12)

(2.2.1.13)

showing the relationship between g 12 and the linear elasticity strain E 12 •
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2.2.2 On the definition of strain invariants in finite deformations

Since it is necessary to express a relationship between strains and stresses, it

is convenient to formulate the stress field in terms of strain-related quantities

which are independent of the relative position of the deformed body with respect to

the reference frame. In fact, the indices of ch i would change by substituting axis i

with axis j . Such quantities are named Rivlin invariants, after the following

definition of Rivlin (Varga (1966))

= trace G

12 =	 i 1? - trace (G•G) )
	

(2.2.2.1)

13 = det G

The physical meaning of I I is a global index of the variations in length of

the sides of an infinitesimal cube. Similarly, 12 represents an index of the variation

in surface of the cube, and 13 expresses its relative volume change to the cube

(Williams (1973)). For an undeformed configuration, / 1 = 12 = 3 and 13 = 1 . If the

elastomer is incompressible, 13 constantly equals unity in any deformed

configuration, and it constitutes an internal constraint. If, in addition, the body is

subject to a plane state of deformation, then / 1 =--- /, .

The (minor) limits of the Rivlin invariants (2.2.2.1) emerge if it is appreciated

that elastomeric materials are nearly incompressible. A suitable stress-strain

relationship must therefore rely upon hydrostatic tests, where a (small) volume

variation is imposed to the specimen, and upon deviatoric measurements, in which a

change of shape is applied in the experiments, while the volume is kept constant. As

a consequence, the strain energy function (Section 2.2.3) is necessarily constituted

by two main parts, one referring to the deviatoric strain part, and the other to the

hydrostatic component. While 13 is a suitable index of the hydrostatic deformation,

invariants / I and 12 , which represent variations in length and surface, are not

purely deviatoric. In fact, the first two Rivlin invariants are influenced, even if



= 1-1/3 a f1a xj
(2.2.2.1)
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slightly, by a hydrostatic strain field. For instance, a purely hydrostatic

deformation applied to the unit cube modifies it into a (slightly) altered cube with a

varied surface. It is concluded that invariant 12 , which expresses the surface

change of a unit cube, is modified by a hydrostatic deformation and, therefore, it

does not represent a purely deviatoric strain component.

Penn (1970) introduces a slightly modified definition for the strain invariants,

which removes the above minor limitations. Eqn (2.2.1.3) defining the Jacobian

matrix is altered as follows

so that the modified Jacobian matrix [ 7,,j I is now purged from the volume changes

(ABAQUS (1989)). Based on this improved definition, G is redefined following (2.2.1.8)

and, consequently, new invariants are introduced, named "Penn strain invariants".

Now 71 and 72 describe the purely deviatoric strain component and, therefore, they

are particularly suitable for expressing the strain energy function connecting

strains to stresses, examined in the following Section.
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2.2.3 On the strain energy function in finite elasticity

As mentioned in the previous Section, the experiments performed to define

the stress-strain relationship in elastomers are of two types : a) deviatoric tests

and b) hydrostatic readings. The second measurement is extensively treated in

Section 3 . Only a perfunctory description of the deviatoric experiment is given in

this Section. A thin, square sheet of elastomer is pulled along the two sides for

prescribed amounts, and the resulting stresses are measured via electrical strain

gauges. Since the square plate is not restrained in the direction of its thickness,

this specimen undergoes a plane state of stress. The hydrostatic stress component is

limited, so that the volume changes are negligible. As a consequence, this experiment

is classified as a deviatoric test. It should furnish experimental readings useful for

defining a relationship between the first two strain invariants and the stress state.

Specific works addressing unidimensional or two-dimensional tests are those of

Hencky (1933), Treloar (1948), Blatz and Ko (1962) (who propose strain invariants

very close to those of Penn), Sharma (1966), Alexander (1968), Parks and Durelli

(1969), Rigbi (1969), Levinson and Burgess (1971), Ogden (1972), Treloar (1975), p. 230

Zapas (1981), Medri (1982b), Medri (1984b), Beatty (1987), Gadala (1991). Extensions to

the viscoelastic field are given by Christensen (1980), Morman (1984), and Lubliner

(1985).

A general polynomial form of the strain energy function U is (ABAQUS

(1989))

N	 N
U =	 E	 G,„ (I, - 3)i (12 — 3)i + E D, (13 _ 1)2t

	
(2.2.3.1)

i ÷ j — 1	 i — 1

which evidences the deviatoric and hydrostatic parts. In fact, coefficient D 1 is

closely connected to the bulk modulus of the elastomer (Section 3). The invariants

of expression (2.2.3.1) may be understood as Rivlin or Penn strain invariants, where

their conceptual, more than practical, difference has been elucidated in the previous

Section.
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Studies comparing the effects of different strain energy functions on the

mechanical response of rubber units are rarely encountered in the technical

literature. Oden (1972) analyses numerically a plate with a hole, stretched along its

plane, and compares the deformations of the plate contours for various strain

energy functions. Prati and Strozzi (1984) compute numerically the contact pressure

in an elastomeric, rectangular seal for two strain energy functions, and discuss the

differences noted between the two pressure profiles. The simpler strain energy

function tested by Prati and Strozzi (1984) is usually named "compressible neo-

Hookean law" since it is perhaps the most elementary extension of Hooke's law to

the nonlinear elasticity field. It is formed by a deviatoric part, where the Young's

modulus acts as a multiplying factor of the variations in length expressed via the

strain invariant / 1 , and by a hydrostatic component, controlled by the bulk modulus

multiplied by the volume changes expressed via 1 3 . From the forecasts of Prati and

Strozzi (1984) it can be deduced that the compressible neo-Hookean law is

sufficiently accurate in their application. The same conclusion is accepted by

Gabelli, Ponson, and Poll (1992), who favour the use of a neo-Hookean law in the

numerical simulation of elastomeric lip seals. Such applications refer to situations

where the strain deviatoric components prevails, so that it can be surmised that the

deviatoric part of the neo-Hookean strain energy function is sufficiently accurate

for practical purposes. In addition, it can be speculated that a modification of the

formulation for the strain energy function when applied to essentially deviatoric

situations is analogous to an alteration of the Young's modulus- of the material. It

can, therefore, be surmised from the forecasts of Prati and Strozzi (1984) that a

modification of the Young's modulus generally results in a comparable proportional

alteration of the stress field.

Conversely, if the hydrostatic stress field prevails (as it occurs in hip joints

with elastomeric coatings under high loads), it is known that the stress level highly

depends on the Poisson's ratio adopted (Dragoni and Strozzi (1988)). In this case, a

perturbation of the Poisson's ratio generally results in a magnified alteration of the

stress distribution.

The previous observations indicate that, with regard to the elastic constants

affecting the neo-Hookean strain energy function, an approximation in the definition
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of the Young's modulus would result in comparable errors in the stress field, while

an inaccuracy in the selection of the Poisson's ratio may promote magnified errors

if the stress field is mainly hydrostatic. Since the stress distribution is not known

in advance, it is generally advisable to pay more attention to the correctness of the

Poisson's ratio or at least, when the measurements of the cubic compressibility of

the elastomer are unreliable or not available, to assess the effects of perturbations

of the Poisson's ratio on the stress levels.

The formulae expressing the stresses as functions of the strain invariants

through the strain energy function (ABAQUS (1989)) are not reported here. In

practical applications, it is convenient to formulate the stress state in terms of

Cauchy stresses (Ogden (1984)) which, referring to the convected unit surface, are

more meaningful for an engineering viewpoint.
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2.3 CONCLUSIONS

The definitions of strain, strain invariants and strain energy function,

pertaining to the finite elasticity realm, have been introduced, to permit an

unequivocal interpretation of the terminology used in Chapters 3, 6 and 7, with

respect to the employ of the nonlinear finite element package ABAQUS (1989) in the

structural analysis of elastomeric parts.
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3.1 INTRODUCTION

The possible influence of the Poisson's ratio, v , which is connected to the

cubic compressibility of the material (an alternative parameter is the bulk modulus)

on the structural behaviour of elastomeric components is not always fully realized

by the researchers. For instance, in Tuomala, Owen, and Zienkiewicz (1981) it reads:

"the volume change resulting from the deformation of rubberlike materials is small

(typically of the order of 10 -4) and, therefore, the assumption of a complete

incompressible material is acceptable". On the contrary, it is recognized by Levinson

and Burgess (1971) that, boundary conditions being similar, the structural behaviour

of units supposed compressible and incompressible can differ noticeably. Well

documented cases in which this circumstance occurs are presented by Rightmire

(1970), Holownia (1971, 1972), Al-Qureshi and Das (1976), Medri (1984), Dimnikov,

Sniegs and Erdmani (1984), and Dragoni and Strozzi (1988). For a geometry of

engineering interest, Holownia (1985b) finds that a change of v from 0.4990 to 0.4999

produces a doubling of the stress peak.

An exhaustive information about the correctness of the experimental

measurements of the bulk modulus and the possible influence of a cubic

compressibility perturbation on the stress-strain field is desirable, since a) the

experimental measurement of the bulk modulus in elastomers is inevitably

approximate; b) the numerical problems encountered in employing finite element

programs for elastomers are exacerbated as Poisson's ratio approaches 0.5 ; c) in

photoelastic studies it is difficult to mimic the actual Poisson's ratio; d) some

theoretical problems become more easily solvable with particular values of the

Poisson's ratio (e.g. 0) . This Chapter analyses problems connected with the

experimental measurement of the bulk modulus in elastomeric materials, and it is

organized as follows. Section 3.2 summarizes the state of the art. There follows a

Section devoted to the apparent experimental readings, and to their correction to

account for the deformability of the measuring device and rubber extrusion

problems. '
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3.2 LITERATURE REVIEW

In this Section the state of the art on the experimental measurement of the

cubic compressibility in rubber-like materials is presented with reference to recent

literature and personal research.

In the case of elastomeric materials, which by definition exhibit a small cubic

compressibility, it is advantageous to refer to the bulk modulus, K , as an

alternative parameter to the Poisson's ratio, 11 . The bulk modulus expresses the

ratio of the hydrostatic pressure acting upon a unit cube to its relative volume

change. In linear elasticity it is linked to the Young's Modulus, E, and to the

Poisson's ratio, v, in the following way (Timoshenko and Goodier (1970))

For incompressible materials, II --n 0.5 , and K --n co .

As a norm, K is determined via tests in which an essentially hydrostatic

stress field is imposed on an elastomeric specimen. It would be extremely interesting

to undertake experimental tests in which K is measured in the presence of highly

deviatoric stress fields, since they could clarify the interaction among the

essentially deviatoric and mainly hydrostatic strain invariants in the expression of

the strain energy function (Ogden (1976)). In other words, if the unit cube is first

deformed to become a parallelepiped (deviatoric deformations) and, then, a

hydrostatic pressure is applied, is the bulk modulus affected by the previously

imposed deviatoric state of strain ? Anyway, the traceable experimental

measurements of the specimen cubic compressibility carried out in the presence of a

deviatoric stress field produced questionable results, in the sense that the

experimental scattering was comparable, if not higher, than the parameters to be

measured, or a Poisson's ratio higher than 0.5 was found (Forster (1955), Blatz and

Ko (1962), Lindley (1967), Alexander (1968), Sekiguchi, Kakiuchi, Morimoto, Fujimoto,

and Yoshimura (1969), Durelli and Chen (1973), Mrowczynski and Bezinski (1973),

Coumans and Heikens (1980), Medri (1982)).
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In the case of simple tension, credible measurements of the Poisson's ratio

were performed by Posfalvi (1982) for highly compressible elastomers (V f=d 0.3).

The pioneering work of Röntgen (1876) (who also discovered X rays) should also be

quoted with reference to simple tension tests to measure V .

Finally, in Bathurst and Rothenburg (1988) theoretical aspect concerning a

constitutive relation with a negative Poisson's ratio and possibly valid for granular

materials are discussed.

The most common devices for the measurement of the bulk modulus are the

dilatometer, the piston device, the belt apparatus and the diamond anvil (Warfield,

(1980)). Their application field covers hydrostatic pressures up to 10 2 MPa , 1 GPa

, 10 GPa , 102 GPa, respectively (Warfield (1980)). The most widely used rig is the

piston device, since it is simple to construct and sufficiently accurate, and since the

hydrostatic pressures in elastomeric units are usually lower than 1 GPa . Because

of the above-mentioned reasons, this Section will deal exclusively with the piston

device. This rig consists of a thick, hollow, mild-steel cylinder (1) (Fig. 3.2.1) into

which a solid cylindrical rubber specimen (2) is placed. The specimen is axially

compressed between a mobile, steel piston (3) . and a steel bottom (4) . The usual

dimensions of the elastomeric specimen are: diameter 25 mm, height 50 mm .

The ratio of height to diameter of the specimen (slenderness ratio) reconciles two

contradictory needs. The piston compression stroke for a given axial load increases

with the slenderness ratio and, therefore, the experimental measurement of the

specimen volume change becomes more accurate for longer specimens. On the other

hand, the Young's Modulus of the elastomer can be evaluated from the initial

compression of the specimen before the specimen cylindrical surface contacts the

cavity surface of the hollow cylinder. Such a measurement is possible only if no

lateral bending occurs in the specimen and, therefore, a low slenderness ratio is

desirable if both the bulk modulus and the Young's modulus are to be evaluated

with a unique test (Warfield, Cuevas and Barnet (1968), Holownia (1974), Polvara

(1978), Holownia (1980)). In some cases, a specimen with a low slenderness ratio (0.2 -

0.6) (Heydemann and Howck (1972), Zagorskii, Balashow, Roginskaya and Surdutovich

(1976), Johannesson (1980)) was employed, since it was cut from commercial sheets,

but in this event the measurement of the piston stroke is inevitably less accurate.
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The clearance between the piston and the cylinder cavity is of the order of 1 — 10

gm, in order to limit extrusion of rubber at high pressures (Holownia (1974), Polvara

(1978), Holownia (1980)). Despite these precautions, the occurrence of some

extrusions which blocked the piston was reported in the case of unfilled natural

rubbers (Lindley (1980)).

The measured value of the bulk modulus for an elastomer tends to diminish

slightly when the speed of the piston compression stroke is lowered, and this is

seemingly attributable to frictional effects between the specimen and the internal

walls of the hollow cylinder. For instance, in the case of a polyurethane elastomer

(Hysol CP 4485) it was found by the writer that, when the speed was lowered from

90 mm/min to 0.3 mm/min, the bulk modulus diminished by 5 percent. For speeds

between 0.3 and 0.1 mm/min, no perceivable variation of the bulk modulus was

spotted and, therefore, such speeds should be adopted in the experiments (Holownia

(1974, 1980)).

Inaccuracies in the evaluation of K can derive from four sources of error: 1)

the flexibility of the press which loads the piston; 2) the axial deformability of

both the piston and the bottom of the device; 3) the radial compliance of the metal

hollow cylinder; 4) the extrusion of the elastomer through the narrow radial gap

between piston and hollow cylinder. If negIeated, such effects can produce values of

K lower than the real ones by 30 percent (Holownia (1974, 1980)). While an

exhaustive study has been devoted to the first two sources . of errors, the third

aspect has been investigated only qualitatively (O'Neill (1976), HOlownia (1980)),

although the proper analytical tools are available (Bariani (1977)). The fourth aspect

has been quoted by Burchett and Bert (1972), but no estimates for the extruded

volume are supplied.

The stress field within the specimen is nearly hydrostatic (Piragino (1945),

Polvara (1978)), and the error due to the fact that the deformation imposed is

uniaxial and not equitriaxial decreases as v approaches 0.5 (Gilmour, Trainor, and

Haward, (1974)). A study of the stress state within the sample is presented by Da

Rios and Rinelli (1980).

In Figure 3.2.2 a typical load-deflection curve is presented for a compressed



Chapter 3 Cubic Compressibility 	 3.6

nylon specimen, for which certain aspects of the loading curve - discussed in the

following - can be appreciated more easily, since its Poisson's ratio (about 0.39) is

not close to the incompressibility figure 0.5 . The diagram is essentially bilinear;

the slope of the first part is related to the situation in which the specimen lateral

walls are not in contact with the internal walls of the metal hollow cylinder and,

therefore, it permits E to be measured; the slope of the second part is associated

with the condition in which the specimen fills the cavity completely and,

consequently, it allows K to be evaluated. Since for an elastomer K is often 103

times E, it is difficult to plot load against deflection on such a scale that both the

E and K slopes are equally legible. For an elastomer the diagram is usually focused

on the K slope and, therefore, the E part is not well represented.

In Fig. 3.2.3 typical loading and unloading curves are displayed on a scale

addressing K. The two curves are not superimposed, and this is usually attributed

to frictional effects. In Burchett and Bert (1972) an investigation about this and

other sources of errors is performed. In Holownia (1979) the lack of coincidence

between the loading and unloading curves is ascribed also to hysteresis effects. In

Fig. 3.2.4, three possible configurations of the load-deflection curve (or,

alternatively, hydrostatic pressure versus relative volume change) are displayed.

Some elastomers exhibit a nearly linear load-deflection curve up to hydrostatic

pressures of the order of 1 GPa (Tarasov and Tyutekin (1960), Holownia (1974)); in

other cases, the p - A V/V diagram presents a concavity upwards (Wood and Martin

(1964)); more rarely, a sigmoidal curve is found (Pampillo and Davis (1971), Gilmour,

Trainor and Haward (1974), Key (1974), Polvara (1978)). This S-shaped trend becomes

more apparent in the case of a porous elastomer, for which the curve of Fig. 3.2.5

was found (Key (1974)). In general, for a hydrostatic pressure of 10 2 MPa, the

normalized volume change is in the region of a few percent (apparently, the

maximum imposed relative volume change reported in the literature is about 16

percent, reached by Warfield (1980)). At least for the curves with concavity

upwards (Fig. 3.2.4), the error on the normalized change of volume which would be

made if a pressure of 102 MPa and a diagram linearized at the origin were considered

instead of the real curve, is of the order of 20 percent in excess. In Jana,

Renganathan and Venkateswara Rao (1987) the effects of the non-linearity of the



Chapter 3 Cubic Compressibility 	 3.7

bulk modulus on the stress field in propellant grains is investigated numerically.

All the devices proposed produce a compressive hydrostatic stress field. In

the practical cases (seals, rubber springs, shock absorbers, rubber pads, elastomeric

layers in artificial hip joints) the hydrostatic stress is often compressive;

nevertheless some data about a tensile hydrostatic stress would be desirable.

Apparently, such an experimental problem has not been solved so far: efforts made

in this direction are mentioned in Blatz and Ko (1962), while in Kuske (1968) (see also

Johnson (1969)) it is shown that for an epoxy-resin the Poisson's ratio ranges from

0.487 in tension to 0.4944 in compression. If such a noticeable difference were found

also for elastomeric materials, it would cause extra-difficulties in the

characterization of the cubic compressibility of the elastomers.

A topic just touched upon in this bibliographic review is the dependence of

the bulk modulus upon the specimen temperature. This aspect has been treated by

Fritzsche (1974), Orkhovik and Grigoryan (1974), George (1984), and Strozzi (1984),

where a general increase of the cubic compressibility with temperature is quantified.

Anyway, in some practical studies the bulk modulus it assumed as temperature

independent (Batra (1977)). Finally, Holownia (1977) studies the temperature buildup

in a compressed rubber block.

Another aspect here only mentioned is the measurement of the dynamic bulk

modulus, treated by Billington (1971) and by Holownia (1985a, 1986).

Fig. 3.2.1 : The piston device, where (1) is a thick, hollow, mild-steel cylinder, (2) is

a solid cylindrical rubber specimen, (3) is a steel piston, and (4) is a steel bottom.
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Fig. 3.2.2 : A typical load-deflection curve for a compressed nylon specimen.
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Fig. 3.2.3 : Typical loading and unloading curves.
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CL

A V/V
Fig. 3.2.4 : Three possible configurations for the

hydrostatic pressure-volume change curve.

A V/V
Fig. 3.2.5 : The sigmoidal hydrostatic pressure-volume change curve

for a porous elastomer.
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3.3 THE EXPERIMENTAL MEASUREMENT OF THE BULK MODULUS

This Section deals with the measurement of the cubic compressibility of two

elastomers, namely Hysol CP 4485 (a polyurethane which is used in the experimental

Section 5.4), and a second elastomer named "Estane" 5714F1 adopted for the

elastomeric layer of the actual artificial hip joint. Section 3.3 is organised as

follows. The results retrieved by employing a piston device are presented first in a

specific Subsection 3.3.1 . As already mentioned in Section 3.2, these measurements

are affected by four sources of error: 1) the flexibility of the press which loads

the piston; 2) the axial deformability of both the piston and the bottom of the

device; 3) the radial compliance of the metal hollow cylinder; 4) the extrusion of the

elastomer through the narrow radial gap between piston and hollow cylinder. Error

1) can be avoided by measuring directly with a precision micrometer for depth

measurements (gauge) the piston stroke. Error 2) can be corrected by applying

simple concepts of the theory of elasticity and, therefore, it will not be treated in

detail. Errors 3) and 4) can be corrected by resorting to complex theoretical models,

treated in the individual Subsections 3.3.2 and 3.3.3 . A final Section 3.3.4 addresses

the correction of the apparent bulk modulus measurements to derive the actual

values.

3.3.1 The apparent bulk modulus measurements

A piston device was built in the laboratory of Dipartimento DIEM, Facolta' di

Ingegneria, Universita' di Bologna, Italy. The nominal dimensions of the metal hollow

cylinder are as follows: outer diameter: 150 mm ; inner diameter: 25 mm ; height

123 mm . The surfaces of the cylinder cavity and of the metal piston are lapped.

Fig. 3.3.1.1 shows the experimental set-up. In particular, the gauge which allows the

piston stroke to be measured with respect to the cylinder is clearly visible.

As 'already mentioned, two different elastomers were studied. The first

rubber is actually employed in artificial joints (only a specimen was available),

named in the following as "Estane" 5714F1 , whereas the second elastomer is Hysol
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CF 4485 , which was available in sheets and, therefore, was employed in the

experimental study of Section 5.4 . The nominal height of the Hysol CF 4485

cylindrical specimen is 32 mm, whereas that of the elastomer employed in artificial

joints is 23 mm. The nominal diameter of both specimens is 25 mm. The final load

imposed by the Instron press is 50 kN, which implies a hydrostatic pressure of

about 100 MPa (or 1000 atmospheres), a figure typical of many practical applications,

e.g., elastomeric seals. The selected force rate was 0.1 kN/s . Since the piston

stroke is often of the order of 1 ÷ 3 mm, the compression rate is in the region of

0.1 4- 0.3 mm/min , an interval consistent with the recommendations of Section 3.2 .

Figs. 3.3.1.2 and 3.3.1.3 present the diagrams of piston stroke versus force

for Hysol CF 4485 and for "Estane" 5714F1 , as released by the Instron press and,

therefore, affected by the errors discussed in Section 3.2 . A moderate concavity

upwards (Section 3.2) is perceivable. It also clearly emerges that the loading (upper)

and unloading (lower) curves are not superimposed. As discussed in Section 3.2 , this

lack of coincidence is presumably attributable to both frictional and hysteresis

effects. It is believed that the frictional effects predominate. (The writer developed

experimental devices to evaluate the viscoelastic behaviour of a rubber specimen

subject to an essentially hydrostatic pressure field, whose results support this

conclusion). Since the frictional forces act in opposite directions during loading and

unloading, their effects can be compensated by referring to the average piston

strokes during loading and unloading for a fixed applied force (or vice versa). This

approach, together with the corrections related to. the . device .deformability

examined in the following, permits the actual bulk modulus to be estimated.

The Young's moduli for the two elastomers under study were measured via

simple compression tests (the specimens were calibrated and, therefore, the Young's

modulus could not be measured with the piston device, see Section 3.2), and the

elastic constants were found to be 3.52 MPa (Hysol CP 4485) and 8.506 MPa

("Estane" 5714F1). These data are necessary to compute the bulk modulus according

to expression (3.2.1) .
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Fig. 3.3.1.1 : The experimental set-up, with the piston device loaded by an

Instron press, and the micrometer (gauge) for the piston stroke measurement.
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3.3.2 The radial deformability of a hollow cylinder

The aim of this Subsection is to evaluate the radial deformability of the

metal hollow cylinder of the piston device, under the pressure effects of the

compressed elastomeric specimen. As discussed in Section 3.2 , this piece of

information permits the apparent bulk modulus measurements to be corrected. A

brief literature review on this topic is presented first. Then, the formulation of

the basic equations leading to a series solution (Section 3.3.2.2), of the boundary

conditions (Section 3.3.2.3) and of their implications on the series solution

coefficients (Section 3.3.2.4) are reported. There follow Subsections devoted to

series expansion problems (Section 3.3.2.5), and to the solution method adopted

(Section 3.3.2.6) . The final parts address the numerical validation of the solution

obtained (Section 3.3.2.7) and the examination of the deformation of the actual

hollow cylinder (Section 3.3.2.8) .

3.3.2.1 Literature review
	 ,

The analytical solution methods for a structural analysis of a hollow

cylinder are of two types, namely a displacement-based formulation (Papkovich-

Neuber) or a stress-based approach (stress function).

Beginning from the papers based on a stress function modelling, Okubo (1952)

examines a long shaft pressfitted with a collar, and proposes approximate solutions.

Bazarenko and Vorovich (1965) analyze a hollow cylinder of finite length subject to

an axisymmetric pressure profile, in the case of thin wall. An asymptotic solution is

obtained. Dornig (1965) considers a press-fit problem, adopting the severe assumption

that the hollow cylinder and the shaft possess the same axial length. The solution

is expressed in terms of a series involving Bessel functions. Shibahara and Oda

(1968) obtain for the stress distribution a series solution in terms of Bessel

functions for the geometry of a hollow cylinder of finite length, loaded by an

axisymmetric pressure distribution which is not necessarily constant, but must be

symmetrical, with respect to the cylinder axis. The series coefficients are computed
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via a method of successive approximations not described in detail. Oda, Shibahara,

and Miyamoto, (1972) apply the Shibahara and Oda (1968) solution to study the

contact pressure for a shrink-fit between an infinite solid cylinder and a finite

hollow cylinder. Bernasconi (1971) studies the shrink-fit between two hollow

cylinders, where the imposed interference is supposed to be variable along the axial

direction. Bariani (1977) expands the work of Shibahara and Oda (1968) to include

both symmetrical and skew-symmetrical stress distributions in the cylinder axis

direction. Bariani (1983a) applies his solution to study the contact pressure in a

shrink-fitted forming die assembly. Various practically significant results are

collected in Bariani (1983b). Finally, Cappello and Nigrelli (1987,1989,1990) revisit the

Bariani work, but they retain various misprints from the Bariani (1977) paper.

The studies based on a displacement approach include the paper by

Sierakowski and Sun (1968), who present an elastic analysis for a hollow cylinder of

finite length, subject to axisymmetric thermal and mechanical loads. The surface

pressure acting along the tube end faces is assumed as uniform.

Moving to the analytical papers dealing with geometries still comparable with

that of a tube of finite length, which employ solution techniques apparently

applicable to the tube problem, Valov (1962) obtains a stress-based series solution in

terms of Bessel functions for the geometry of a circular solid cylinder of finite

length subject to axisymmetric, mixed boundary conditions. Spillers (1964) presents a

solution for an infinite solid cylinder, the 'surface of w4icti is traction-free except

for a band which is subjected to a prescribed axisymmetric radial displacement. This

problem, which is the axisymmetric analogue of a plane indentation situation, is

formulated in terms of dual integral equations. A comparison between plane strain

and axisymmetric contact stresses is presented. Yogananda (1967) examines an

infinitely long, cylindrical shell enclosed in an elastic casing and sustaining a ring of

radial load, based on a stress function formulation. Youngdahl (1969) discusses the

completeness of the stress function for the elasticity problem in cylindrical

coordinates. He compares Papkovich-Neuber and stress function approaches.

Litovchenko and Nuller (1973) examine the case of an infinitely long shaft, acted

upon by a force and a moment, and sustained by a rigid, frictionless bearing. Steven

(1973) addresses the eigenvalue problem for a hollow circular cylinder, and
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particularly examines the cases of thin and thick walls. Ramachandra Rao, Kandya,

and Gopalacharyulu (1976) examine a similar problem for a solid cylinder loaded

axisymmetrically, and with prescribed displacements or stresses along the end faces.

Mukhopadhyah (1982) analyze the effects of non-homogeneity of yield stress in a

thick-walled tube under pressure, subject to a plane state of strain. Tang and

Erdogan (1984) study a thick-walled tube containing a radial crack and reinforced by

an elastic membrane on its inner surface. The problem is formulated in terms of a

singular integral equation, which is solved numerically.

The present study is based upon the paper due to Bariani (1977) as well as

upon that of Shibahara and Oda (1968). As already noted, Shibahara and Oda (1968)

develop the hollow cylinder solution for the case of a pressure symmetrically

distributed with respect to the axial coordinate (that is, the pressure is

axisymmetric and equal for points equally distant, along the axial direction, from

the cylinder centre), whereas Bariani (1977) extends this solution to the equally

common situations where the pressure profile is not symmetrical with regard to the

axial coordinate. In the piston device the cylinder loading canclitiatts ccttsist

band of essentially uniform pressure, corresponding to the zone where the bulky

cylindrical elastomeric specimen touches the metal hollow cylinder under the

compression exerted by the metal piston. The pressure band extent depends ugarc

the rubber specimen height, and it is not generally centered with respect to the

axial extent of the metal cylirrder. Consequently, the problem of evaluating the

radial expansion of the internal cavity of the hollow metal cylinder as a function of

the high contact pressure exerted by the elastomeric specimen can be correctly

analyzed by resorting to the theory of Bariani (1977).

The contributions given by the writer to this problem are: a) all mathematical

passages of Bariani (1977) have been checked, and a certain number of misprints

have been spotted and corrected (the less obvious mistakes will be underlined during

the exposition of the theory); b) an original solution method has been developed,

which is based upon an internal condensation of the degrees of freedom of the

original problem, thus permitting a considerable reduction of the number of

equations to be solved simultaneously; c) a stabilizing procedure for the series

solution, known as "Lanczos a method", is adapted to this problem.
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3.3.2.2 Basic equations

This Subsection deals with the elastic analysis of a hollow cylinder of finite

axial length and loaded by an axisymmetrical pressure band, and it closely follows

the exposition of Bariani (1977). Fig. 3.3.2.2.1 describes the hollow cylinder, the

reference frame, and it clarifies the meaning of the symbols employed.

Fig. 3.3.2.2.1 : The hollow cylinder, the reference frame and

the meaning of the symbols employed.

The equilibrium equations in cylindrical coordinates r, 0 , z are (Timoshenko

and Goodier (1970), p. 380)

a ar

±
aTrz

a r 	 ±
Or — cro	 0

r

(3.3.2.2.1)

a Trz_i_ a Cr z _i_ a Trz

Br	 ' 3 z	 ' 	 Br =0
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The equations expressing the internal compatibility are (Shibahara and Oda

(1968))

V 2 cr, — ( ar — ao ) ± 1 4_ v 122 ( ar ± ao ± az ) = 0
r

V 2 0" +-2--(a —a )-I-	 1	 1 a
°	 r2 	 r	 19	 1 + v r a, ( Crr ± cre + az ) = o

1 	 82
V 2 az ± 1 ± v 3z

2 ( ar ± ao ± az ) = o

v 2 Trz _ 1 Trz + 1 
1  

ar 
82

az ( ar ± Cro ± az ) = 0
r2	 ± v 

(3.3.2.2.2)

where

a2	 1 a 82
v

2 
= 8r2 + f 7-- + 8 z2 (3.3.2.2.3)

A stress function 41 (r,z) is introduced. The rediai, a r , circumf erential, cre

axial, az , and tangential, Trz stresses, as well as the radial, u, and axial, w,

displacements are defined as derivatives of the stress function (I) (r,z) (Timoshenko

and Goodier (1970), p. 381)

"2 ....a (v 2v43 _ 0 w)o-r = az	 a r2

1 a co )a y v 2 0 — f°"0 =	 c 3 z



az = 
a

a
x
 ( (2 — v) V 2 

41 
—

a ( (1 —2v) v 2 st —8 rTrz =

v 2 v 2 (1) =__ 0 (3.3.2.2.5)
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i-Ev 82 0 
E 8 r az

1+v
w --= -, [ (1 —2v) V 2 (I) ± 2-(1) ± 1 a 0 i

a r2	 r a r
(3.3.2.2.4)

These stresses identically satisfy the equilibrium equations regardless of the

expression of the stress function (Timoshenko and Goodier (1970), p. 380), provided

that the stress function satisfies the following fourth order equation (Bariani

(1977)), which expresses the equilibrium condition in the axial direction (Cicala

(1985)) and a requirement for the satisfaction of the compatibility equations

(3.3.2.2.2)

u—

It is convenient to express the stress function 4) (r,x) in terms of a series

which identically satisfies the compatibility equation (3.3.2.2.5), and which contains

a number of unknown coefficients sufficient to express all boundary conditions. A

discussion on the completeness of the stress function is beyond the aim of this

study. The interested reader is referred to Youngdahl (1969), who treats this

specific aspect. The stress function proposed by Shibahara and Oda (1968),

satisfying only stress boundary conditions symmetrical with respect to the axial

coordinate,, has been completed by Bariani (1977) by adding the contribution dealing

with the skew-symmetrical stresses. The resulting expression of the stress function

is :
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3	 2
(I) (r,z) = Ao	 ± Bo z ln r -I- Co z -7i ±

.0

E 1- [ 0A I (a r) ± Bn an r / 1(anr) ± Cn K0(or) + Dn a.n r K i(anr) ] sin (anz) ±3	 n	 n
cx.n

n=1

—1 [ A ,n I o(I3nr) + B;z On r Il(Onr) -I- C;= Ko(f3nr) ± D'n On r K 1(Or) 1 cos (Onz) ±
A

00

E
i ( [ Ant Jo(7mr) ± Bm Yo("bnr) ] sinh ("Ymz) ±
/?=

m=i

[ Em Jo(^/mr) -I- Fin Yo(1r) 1 ^1,n z cosh (7„,z) ) ±

00

E
-1— ( [ AL Jo(7;nr) ± BL Yo (11nr) ] cosh (11 z) ±
11,3m=1

[ ELJ0("/Lr) ± Pin Y0(^/;99r) I '71. z sinh (7Lz) )

(3.3.2.2.6)

where coefficients Ao , Bo , Co , An , Bn , Cn , Dn , A , B;': , Cn , D4 , Am , BM

Em , Fm , AL , BL , EL , FL , as well as an , len , 197A , "YL are constants to be

determined via the boundary conditions. The constants with apex refer to the skew-

symmetrical part of the solution. Moreover, I° , II , Jo , J 1 , Ko , Ki , Yo 9 Y: are
(modified) Bessel functions of first and second kind, respectively.

The expressions of the stresses and displacements are obtained introducing in

formulae (3.3.2.2.4) the form of (I) of (3.3.2.2.6), and they are reported in the follow-

up. The expression of the stress radial component, cr, (r,z) , is :
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(r,z) = v Ao	 Bo — (1 — 2v) Co +

co

[ 077-n cos (a.nz) — On sin (Oz) ]
n=1

E [ m cosh ("Yinz)	 C/7 .3. 7nz 1m z sinh (z)	 sinh ("finz)	 e.inz 'Y;:z cosh ("rnz) ]
m-1

(3.3.2.2.7)

where

o1n	 = An [ — /0 (a.nr)	 ila(f-nrr)	 Bn [ (1 — 2 v) /0 (anr) ± an r	 (a.nr)	 —

Cn ( Ko (cxnr)
K 1 (coo-)

Dn [ (1 — 2 Ko (coo-) — an r K1 (anr)an r

6	 ACr rnt = [ Jo (lintr)
J1	linr)C ± Y

[	
1 (7.r)	 ±Yo (^I.r)	 ymr'YMr

"f
Em [ (1 ± 2	 Jo (.r)	 j' (17r) ]	 ( (1 ± 2 v) Yo ("Ymr)	 Y1 (mr)

77nr

mz = Em ( Jo (ntr)	 J 1 ("f.r) ± Fm [ Yo (ymr)	
Y1 ("bnr)

"i '77nr	 Almr

(3.3.2.2.8)

co

The expressions of the components referring to the odd contribution, marked

with apex o (that is, odd) instead of apex e (that is, even) are obtained from the

components dealing with the even contribution, by substituting the series constants

with those endowed with apex, and by changing an with f3n . This rule is valid also

for the following stress and displacement expressions.
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The expression of the stress circumferential component, cre (r,z) , is

a e (r,z) ---- v Ao — ,1- Bo — (1 — 2v) Co ±

o- n cos (anz) — ain sin (13nz) ] +
n-1

co
E[ aim cosh (^/inz) ± 0-73.2 yin z sinh (ynzz) ± aim sinh (-Vnz) ± crgmz "A, z cosh (ilnz) ]

m-1

(3.3.2.2.9)

where

— An I1 a
 (an r)r)=	

Ki (anr)
Bn (1	 2 v) /0 (anr) + Cn 	  + Dn (1 — 2 v) Ko (a.nr)aeon n ,	 an r

Om = Am j lyCein:rr) + Bin Yi;Y:r) ± Em [22/

J 

J0(77nr)-1- j1(7mr) ] + F77t [2 v Y or 1 mr)± Y1(.7mr)]
l'inr	 ^1 mr

as 	 = E.  i ("intr)
einz	 7 no-	

+ I'm Yi..„(77nr)
inzr

The expression of the stress axial component, crz (r,z) , is

crz (r,z) =(1 — v) Ao + 2 (2 — v) Co ±

co
0E [ cr:n cos (anz) — On sin (Onz) ] ±

n-1

(3.3.2.2.10)
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00
E[ a:m cosh (/ma) ± crInzz Alm z sinh Cy na) ± cr'fin sinh (^/kz) ± 0177ZZ Y71L Z cosh (1z) ]

m=1

(3.3.2.2.11)

where

oln = An 10 (anr) ± Bn [ 2 (2 — v) /0 (anr) ± an r 11 (anr) l ±

Cn Ko (anr) — Dn [2 (2 — v) Ko (anr) — an r K1 (anr) ]

olm = — Am Jo (^/inr) — BM Yo (Y7nr) ± En: (1 — 2 v) Jo (^/mr) ± Fin (1 — 2 v) Yo (77nr)

cr:mz = — Ent Jo (7mr) — Fm Yo ("bar)

(3.3.2.2.12)

In the Bariani (1977) paper a minus sign in the expression of olln is missing

before the first right-hand side term.

The expression of the tangential stress component, Trz (r,z) , is

co
Trz (r,z) == E [ 11-zn Sird (anZ) + T?zn cos (Onz) ] ±

n=1

0.
E[ Ilzm sinh ("Ymz) ± TI1ZMZ 1971% Z cosh ("bnz) ± TgZ7A cosh (lkz) + 7.7%7112 Arli Z sinh ("Vnz) I

ra=1

(3.3.2.2.13)
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where

T-3. 271 -= An 1 1 (ctnr) ± Bn [ 2 (1 — I)) I I (anr) ± an r io (mar)

Cn K 1 (anr) + Dn [2 (1 — 14 K1 (coo-) — an r K0 (a-nr) i

11.7. = Ant Ji (77nr) + Bm Y i (7,,,r) + Em 2 v Ji (7mr) ± Fm 2 v Yi (^Inzr)

71Z7nZ = Em J1 (7mr) ± Fm Yi ()'ar)

(3.3.2.2.14)

The expression of the radial displacement, u (r,z) , is

1 + ii ( —
Bo + Co r ) +u (r,z) —	 E	 r

z 1 ± v [ u cos (ccnz) — u;=: sin (enz) ] ±
E

n=1

0.

E
.1 --1 [ ut cosh (7771Z) + tiL Atm z sinh (77nz) ± .0.' sinh (1fin z) + u77,z lltz cosh (Y;nz) ]

m-1
..	

(3.3.2.2.15)

where

127: =_ 61.-n- [ An 1 1 (anr) -I- Bn an r /0 (anr) — Cn Ki (anr) — Dn a'n r Ko (anr)]

u:, =-- -1- [ Am Ji (lmr) + Bm Y1 (7,nr) ± Em J1 ()'air) ± Fm Y1 ("Ina') l
77n
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22,1:z = 1- [ E. J1 (7.r) + Fm Y1 ("Ymr) ]
^/m

(3.3.2.2.16)

Finally, the expression of the axial displacement, w (r,z) , is

1+ II
W (r ,z) -- 	 E 	 [ (1 — 2 11) Ao Z ± 4 (1 — 11) Co Z I ±

oo	 ,
E1 -I- 	 [ w: sin (anz) + w?, cos (Onz) ] ±

n-1

co

E 1 -- v [ w% sinh ("bnz) ± 7.4. -ym z cosh (^1.z) ± wf,': cosh ()1 z) -I- zdfn' 2 'Y;nz sinh ( z) ]

m=1

(3.3.2.2.17)

where

w: = c-1.; ( An lo (anr) ± Bn [4 (1 — li) 10 (anr) -1-- an r 11 (anr) l ±

Cn K0 (anr) — Dn [4 (1 — ii) Ko (anr) — an r K 1 (anr) 1)

en = — i— [Am J0(7mr) ± Bin Yo("Yinr) — 2 Erna — 2 v) tic (-ymr) — 2 Fm(1 — 2 v)Y0 ("bnr) ]
7m

wtz = — -I- [ Em Jo ('mr) ± F. Y0 ("inir) l
"I.

(3.3.2.2.18)
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3.3.2.3 Formulation of the boundary conditions

For r — ri , and for a generic z position, the imposed radial and tangential

stresses can be expressed in terms of a converging Fourier expansion, provided that

they are sufficiently regular. Consequently, the following expressions hold true

co
o'r (ri,z) ---- ao + Z [ an cos (a.nz) + ah sin (Onz) ]

n-1	 .
co

Trz (ripZ) .------ Z [ Sn sin (anz) + sh cos (/3nz) ]
n-1

(3.3.2.3.1)

It can be noted that, in the series expansion of ar , term ac, expresses the

average value between ± h and — h of the radial stress at the inner radius of the

cylinder (h represents the cylinder half height). In fact, the integrals between ± h

and — h of both expressions an cos (anz) and of ah sin (d3nx) vanish. (This is due

to the expressions of a.n and of On , computed in the next section.) Conversely, in

the series expansion of T r 2 an initial term .. (analogous- to a0) is not necessary, since

the integral between ± h and — h of sn sin, (anz) vanishes, but the analogous

integral of sh cos (enz) does not, thus taking the place 'of ao . In our case, however,

the imposed shear stress vanishes at both inner and outer radii *and, therefore, both

sn and sh vanish.

Similarly, for r — r., , and for a generic x position, the following boundary

conditions hold true

CO

a r (r„,z) ,-- bo + E [ bn cos (a.nz) ± bh sin (OnZ) ]

n-1

oo

Trz (ro,z) ------ E
n-1

[ tn sin (anZ) + th cos (fgnz) ]

(3.3.2.3.2)
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For z – + h , and for a generic r position, it is supposed that no boundary

shear stress takes place, whereas the possible existence of an axial stress is taken

into account. Consequently, the following conditions hold true:

Trz (r, h) = 0

00
az (r, h) = ho ± E hi,: Tom ("ln: r)

m-1

(3.3.2.3.3)

where Tom is expressed in terms of Bessel functions

	

1	 Ji ("bn ri) Yo ('1m r)

	

Tom (77n r) = Jo (774 r'	 yi Om 7-1)

(3.3.2.3.4)

It is observed that the boundary condition on the axial stress at the cylinder

extremities is not expressed in terms of Fourier expansion, but in terms of Bessel

functions. The relevance of this approach, as well as its advantages, will become

clear in the next Sections.

Finally, for z – — h , and for a generic r position, the following conditions

hold true:

Trz (r, — h) = 0

co
az (r, — h) = h.; ± E h;„ To. (77n r)

(3.3.2.3.5)
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The boundary conditions referring to az (r, h) and to az (r, — h) are

expressed in a different way in the Bariani (1977) paper. In particular, these two

conditions (referring to ± it and to — h, respectively) are made to coincide, as if

the axial stresses acting at the two cylinder extremities had to be necessarily equal.

The formulation adopted here is, therefore, more general.

As a final observation, the global axial equilibrium of the hollow cylinder will

be discussed in Subsection 3.3.2.4 , only with regard to the specific boundary

conditions encountered in the piston device.
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3.3.2.4 Equations relating the series coefficients to the boundary conditions

This Subsections treats the impositions exerted by the boundary conditions

on the expressions of the series solution coefficients.

It is convenient to start from the boundary conditions (3.3.2.3.1,2) referring

to the shear strain acting at the inner (r1) and outer (re) radii

co

Trz (ri,z) = E [ sn sin (anz) ± sL cos (OnZ) ]

n=1

CO

Trz (re,z) = E [ tn sin (anZ) ± tit cos (Onz) ]

n=1

(3.3.2.4.1)

By remembering the generic expression of Trz (r, z) (see equation (3.3.2.2.13)
and expressions (3.3.2.2.14)), by equalling it to the two above-mentioned boundary

conditions, it is inferred that the coefficients multiplying the trigonometric and

transcendental functions in expression (3.3.2.2.13) must satisfy the following
conditions

Terzn I rr1	 =---- Sn

T?zn I rn•rt =-- Sit

e
Trzn I rnre --= tn

T?zn I rnre --= tit
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T .73-zm 1 rri	 = 0

/1• 277/ I r..1 --= 0

TIlzm I rre	 -= 0

T?•zin I rre -=-- 0

T:lzmz I 7'.,rt	 ----- 0

Tzezetz I r .ri =- 0

eTrzmz I •rre	 =-- 0

T°.zmz I r ...re = 0 .

(3.3.2.4.2)

If the fifth and seventh equations of (3.3.2.4.2) are written in an extended

form by introducing the second expression of (3.3.2.2.14), and if the last equation of

(3.3.2.2.14) and the penultimate equation of (3.3.2.4.2) are taken into account (so that

terms in Em and in Fm are cancelled in the second expression of (3.3.2.2.14)) , it is

obtained

T7.zm I r=rt

71-zm I 3".re

= Am J1 (/erl) ± Bm Y1 (7mrt) = 0

-= Am J1 (Y mr e) ± BM Y 1 rintre) = 0

(3.3.2.4.3)
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As a consequence, a non-trivial solution in terms of Am and Bm exists only if

the determinant vanishes, that is, if the following characteristic equation holds true

ti i Cintri) Y 1 (77nre) — Yi (7mrt) tr1 (A/mr.,) ---- 0

(3.3.2.4.4)

or, alternatively

Ji (77nr i )	 ___,	 J1 (Ymre)
Y1 (77nr i)	 Yi (7r)

(3.3.2.4.5)

This also clarifies that in expression (3.3.2.3.4) of TOM it could have been

equally possible to refer, with regard to the fraction at the right-hand side, either

to inner (as done in expression (3.3.2.3.4) ) or to outer radii.

In a similar way the following equation is obtained in treating the sixth and

eight odd boundary conditions (3.3.2.4.2)

J1 ("1;n ri) Y 1 ("IL re) — Yi ('n r) J1 ("IL re) ---= 0 	 (3.3.2.4.6)

which coincides with the even characteristic equation (3.3.2.4.4).. As a consequence,

the "radial" (since they refer to boundary conditions on both inner and outer radii)

even ("Ym) and odd (7) eigenvalues are in fact the same variable. Consistently, only

symbol 777, will be employed in the following, to express both even and odd radial

eigenvalues. A discussion on the numerical evaluation of these radial eigenvalues is

deferred to Subsection 3.3.2.6 .

The first expressions of boundary conditions (3.3.2.3.3) and (3.3.2.3.5) are now

treated, which deal with the vanishing of the shear stress at the two cylinder

extremities (that is, for z – +/— h). Expression (3.3.2.2.13) of Trz is composed by a

first part (the sum with index n) containing trigonometric functions, and by a



nan (2 n — 1) r
Sn = '2 h

(3.3.2.4.8)

1-z=7.77, sinh mz) -r -47.mz 7m z cosh (7a)	 =	 = o	 (3.3.2.4.9)
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second part (the sum with index m) exhibiting hyperbolic functions. For z = 	 —h

the first part vanishes if the trigonometric functions vanish, that is

sin (an) = 0

(3.3.2.4.7)

cos (13n) = 0

Consequently, the "axial" (that is, referring to conditions on the axial

coordinate z) eigenvalues are:

It can be observed that, for very high values of index n, eigenvalue an

approaches eigenvalue On . From eqn (3.3.2.2.13) it appears that eigenvalue 3n refers

to an odd part. Consequently, symbol a n' would have been more proper. Anyway,

following Bariani (1977), symbol 3n is here retained.

The second part of expression (3.3.2.2.13), that containing hyperbolic

functions, is now treated. The symmetrical components, that is, those with apex e

are examined first. This part vanishes if:

It can be verified that the same equation holds true for z = -hi— h.

By substituting to 11.zm and to 71z7nz their expressions (3.3.2.2.14), this

equation becomes

[Am J i (1,7,r) -r B77: Yi	 ;	 Em 2 1/ J 1 (lmr) -t- Fm 2 i, Y 1 ( -imr) j sinh (17,,h)

Em J j (-11 ,nr)	 Fr, Y 1 ("Int'r)	 h cosh (^1,,,h) = 0

(3.3.2.4.10)



Am--- Em 6m

Bin= F 71I 6,n

(3.3.2.4.14)
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By collecting separately the terms multiplying the Bessel functions J 1 and Y1

, it is obtained

.11 ("imr) [ Ain sinh ("filth) ± Ein ( 2 v sinh (^linh) ± 'Yin h cosh (Yinh)) ] = 0

Y 1 ("Ymr) [ B 74 sinh ('y.h) ± Fin ( 2 v sinh (7 inh) ± ^1 in h cosh ("ymh)) ] = 0

(3.3.2.4.11)

Alternatively, it is possible to write

Am = Em ( — 'Int h coth (")'inh) — 2 1/ )

Bin = Fin ( — lm h coth (Yinh) — 2 v )

(3.3.2.4.12)

By introducing symbol 6in

6n: ---- — "bn h coth (ynzh) — 2 1/	 (3.3.2.4.13)

the boundary conditions under scrutiny can be expressed in the following way

It is noted that the expression of 3m given in the Bariani (1977) paper appears

to be not exact.

The skew-symmetrical components are now treated, that is, those with apex o .

The part of the expression of the shear stress (3.3.2.2.13) containing hyperbolic

functions vanishes if

iilzm cosh ("Yinz) ± Ti°• zmz "ine Z sinh ("Ina) ] 2 – +/—h --,-- 0	 (3.3.2.4.15)
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It can be verified that the same equation holds true for z = +/— h.

,CI
f TZMZBy substituting to Torzn: and to their expressions (3.3.2.2.14), this

equation becomes

[ AL J1 ("Intr) ± BL Y 1 ("Imr) ± EL 2 v Ji (Imr) ± rin 2 v Y1 ("Imr) ] cosh ("1.h) ±

[En J 1 (77nr) ± FL Yi (-Ynzr) i "Yvt h sinh ("bah) = 0

(3.3.2.4.16)

By collecting separately terms multiplying the Bessel functions J1 and Y 1 , it

is obtained

Ji ("bnr) [ AL cosh ("Imh) 4- E'm ( 2 v cosh ("Inth) + "Im h sinh, (')'.h) ] = 0

Yi ('Yntr) [ 13;ncosh (7 mh) ± FL ( 2 v cosh (1h) ± "Yin h sinh (1,,,h) 1 = 0

(3.3.2.4.17)

Alternatively, it is possible to write

AL = EL ( — ")'n, h tanh (-)'„,h) — 2 Li)

B;it ---- FL ( — 'yin h tanh (7„,,h) — 2 Li)

(3.3.2.4.18)

By introducing symbol 61,

6L = — ^Int h tanh ("inth) — 2 v

these boundary conditions can be expressed in the following way :

(3.3.2.4.19)
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A'm

(3.3.2.4.20)

-= Ile 61e

It is noted that the expression of Ole furnished in the Bariani (1977) paper

appears to be not correct. It is also observed that 57e approaches Ce for relatively

high values of index m, since tanh ("beh) rapidly approaches unity.

As a final observation, if equations (3.3.2.4.14) are introduced into the

expressions of T-1, zm (3.3.2.2.14), and if the boundary conditions (3.3.2.3.1) and

(3.3.2.3.2) addressing the shear stress at the inner and outer radii are expressed

according to the fifth and seventh conditions of (3.3.2.4.2), it is obtained

Trezm I rmri = J j(7m 7 i) Em (5m ± 2 11) ± Yi ("Imri) Fm (5m ± 2	 = 0

Tr
6

zm	 r—re = J1 ("I mr e) Em (6M ± 2 v)	 Y 1 ('lmr.) Fm (6m + 2 u) = 0

(3.3.2.4.21)

and these equations produce a non-trivial solution in terms of constants Em and Fm

only when the determinant vanishes. In other words, the same conditions (3.3.2.4.4),

which were found by imposing a vanishing shear strain for z = +/- h and not

necessarily r = r i or r = re are found again. An analogous observation holds true

for the odd r (i. zet components.

The boundary conditions are now treated which impose that the radial stress

at the inner and outer radii equals the assigned distribution according to the first

equations of (3.3.2.3.1) and of (3.3.2.3.2). In such equations the boundary radial

stress distribution is expanded in terms of trigonometric functions, whereas in

equation (3:3.2.2.7) z variable is the argument of both trigonometric and hyperbolic

functions. The imposition of the boundary conditions requires that the coefficients

of the trigonometric expansions of (3.3.2.3.1) and (3.3.2.3.2) are made to coincide

with those of the expression of or,- derived from (3.3.2.2.7) and computed at the



co
BoAo 	 + C 0 ( 211 — 1 ) _F z
rt

m-1
arm 1r,=rt 110,711 + V 7-172Z

	
1m Lcont	 ao

arn Hn,az+ ( o,*
m-1

01.7nz 17.3.=ri "Ym Ln,nz )

Crrn Irnri
	 Lc' ( arm
	

H;t .7R
	

Crriez jr ...ri .1m L'n	 )	 an
Tri=1.
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inner and outer radii. This in turn requires that the even hyperbolic functions cosh

(^Ina) and z sinh (77nZ) as well as the odd hyperbolic functions sinh (-yin) and z cosh

("fin) are expanded in series of cos (anz) and of sin (13nz) , respectively. The

following series expansions are of use

oo

cosh ClinZ) = Hoon	 z Hnnn cos (anz)
n=1

co
z sinh ("Ina) = Lo,in	 z L72,777 COS (a.nZ)

72-1

00

sinh (^)'na) =	 Innn sin (Onz)
n-1

00
z cosh (y,nz) = E nn sin (Onz)

n-1

(3.3.2.4.22)

where the expressions of Hoon , L0,771 , HR.717 In on, Lnnn , LL. ,7n are reported in the

following Subsection. By employing the aforementioned series expansions, the

boundary conditions referring to the radial stress at the .inner radius, r t , and

expressed by the first equations of (3.3.2.3.1) and (3.3.2.3.1), can be written as

follows:

00

(3.3.2.4.23)
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In Bariani (1977) a minus sign is missing at the beginning of this last equation.

In addition, symbol 'Ynt appearing in the bracketed expressions of (3.3.2.4.23) is also

missing.

The boundary conditions referring to the outer radius, re , can be treated in

a similar fashion. It is obtained

co
Ao v ±	 ± Co (21/ — 1) ±	 (m I

	

Hop,: + Crrmz Ir-ore	 in Lo,ng )	 bo
re	

m=1

On Irre iinsm	 Crrinz irre 'fm Lion )

— Crrn	

▪

 ECM 0
. 7• 771	 1-11	 Cr?mz 1'=re ../77t 	 ,71t )

m-1

(3.3.2.4.24)

In Bariani (1977), expression (3.3.2.4.24) is affected by the same mistakes

mentioned before with reference to formula (3.3.2.4.23).

The final boundary conditions regard the vanishing of the axial stress, az

at the two end surfaces of the hollow cylinder. In equation (3.3.2.2.11), the argument

of the sum in index m can be expressed in a compact way by remembering that,

according to the ninth and tenth equations of (3.3.2.4.2), and by considering the last

equation of (3.3.2.2.14)

Fin	 — Em j1(..Yrn 7')
Yi( y. ri)

(3.3.2.4.25)

YI(^Int re)



Chapter 3 Cubic Compressibility 	 3.38

In addition, from equations (3.3.2.4.14), by accounting from the previous

equations, it is obtained

A Fn: —Bm = 4-im — = Am J1 CYm ri)
Em	 Yi (im rt.)

(3.3.2.4.26)
13;ii. A
	 =— 

AL Ji (^/m re)
EL	 yi (I'm re)

With these premises, and remembering definition (3.3.2.3.4), the argument of

the sum in index m in equation (3.3.2.2.11) becomes, for z = + h

Tom ("fm r) { — Am Cosh Clm h) ± Em [(1-2Y) cosh ('y. h) — "Ym h sinh ('Inz h) ] —

Entsinh Om h) + EL[(1 —2v) sinh ("Int h) — l'm h cosh ()'m h) ll

(3.3.2.4.27)

Similarly, for z = — h , it is obtained

Tom (1'm r) { — Am cosh ()'nt h) ± Em [(1-2v) cosh ()'m h) — -ym h sinh (7712 h) ] +

Asinh (-y. h) — Ellt[(1 —2v) sinh ("Int h) — AIm h cosh (7. h) ] 1

(3.3.2.4.28)

In the Bariani (1977) paper, the two expressions (3.3.2.4.27) and (3.3.2.4.28)

referring to z = ± h and to z = — h , respectively, are erroneously made to
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coincide.

In equation (3.3.2.2.11), it is convenient to express the argument of the sum

in index n in terms of the eigenfunction Tom (^/n r) defined in (3.3.2.3.4). To this

aim, the following series expansions are of use

co
10 (anr) = Pn,0 ± E P wm Tom ("Ym r)

m=1

I 0 (0 nr) = P'w 0 ±

co

E Ph, in Toni (77a r)
m.-1

co
Ko (ctnr) = Rum] ± E Rwm Tom (7m r)

m-1

co
Ko (Onr) = R. 0 ± E 1:Z;,, in Tom ("bn r)

m-1

co
r l i (anr) ..---- Q71,0 ± E Qwnt Tom (7m r)

m=1

CO

r I i (13 r) ---- Q4 , o + E Q. 7. Tom (I r)
m=1

00
r I C 1 (anr) = Swo ± E Sam Tom (lin r)

m-1

oo
r K1 (fir) ---- S;:, o ± E S'n, m Tom (In r)

m-1

(3.3.2.4.29)

where, as already expressed in formula (3.3.2.3.4)
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Ji (fmrt) yo cym 7.)Tom ("Ini r) ---= Jo (7m r)
Yi ("ini rt)

(3.3.2.4.30)

With regard to these expansions, the Bariani (1983a) paper is followed, in

which more proper series expansions of Bessel functions (Spiegel (1968)) than those

of Shibahara and Oda (1968) and of Bariani (1977) are proposed. The expressions of

the series coefficients of (3.3.2.4.29) are reported in the following Subsection.

For z = -I- h , the boundary condition 'on az of (3.3.2.3.3) must be

confronted with equation (3.3.2.2.11) expressed, as previously discussed, via

eigenfunction Tom . The new expression of (3.3.2.2.11) thus becomes

az (r, -1-h) ---. Ao (1 — v) ± 2 (2 — 1/) Co +

oo

E
( —1)n 1 An Pip() + Bn [ 2 (2 —0 1n,0 ± an Qn ,o ] ±

72.--1

Cn Rn.0 — Dn [ 2 (2 —v) R1 — an Sn ,0 ] +

AL Ph .0 ± Bh [ 2 (2 —v) Ph ,o ± /3n qv° ] +

Ch R4,0 — Dh [ 2 (2 —V) Rh ,0 — On Sh ,o ] ±

E Tom Clot r) It (-1) 1 An Pnm + Bn [ 2 (2 —II) Pn,nt ± COI Qn,71% ] ±

m-1	 77.-1

Cn Enna — Dn [ 2 (2 ---- V) R71,7/1 '"-- an Snsin ] ±

A4 Psn .nt ± 134 [ 2 (2 —1I) Pi t ,n: ± gin CA ,in ] +

Ch Rh ,,n — Dh [ 2 (2 —u) Rh +At .-.- en Sit ,V4]} —..

I
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Am cosh ("Ym h)	 Em [ (1 — 2 v) cosh ('fm h) —	 h sinh (-Int h)] —

Aksinh (-Ym h)	 Ek[ (1 — 2 v) sinh (-Ym h) — 'Ym h cosh (m h)]}

(3.3.2.4.31)

Similarly, for z = — h the new expression of (3.3.2.2.11) becomes

az (n—h) = A0 (1 — v) ± 2 (2 — v) Co +

( —1)n An Pn.0	 Bit [ 2 (2 —v) Pip° 	ccn Qn,0
n-1

Cn Rn.0 — Dn [ 2 (2 —v) Rivo — cxn Swo —

Ah Ph — Bh [ 2 (2 —v) Ph ,13 ± f3 Qh,c) —

Ch Rh,c, ± D [ 2 (2 —v) R'n — j3 s'n

E Tom (7. r) 1E (-1)n An Pip= Bn [ 2 (2 —v) Pnnn ± an Q/V712

n=1

Cn Rnm — D [ 2 (2 —1/) Rn,nt — n Sion ] —

	

P;i.	 — /3;1. [ 2 (2 —v)	 ± (3n Qh

	

Ch Rh	 [ 2 (2 —v) 	 n S,,„,]} —

Am COSh	 h)	 Em [ (1 — 2 1i) Cosh (^bn h) — 7, h sinh ("y„, h)]

Aksinh (7. h) — Elt[ (1 — 2 p) sinh (abn h) —m h cosh (I. h)]}

(3.3.2.4.32)
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By comparing expressions (3.3.2.4.31) and (3.3.2.4.32) with the boundary

conditions on cr, (3.3.2.3.3), the following equations regarding the series coefficients

of (3.3.2.3.3) are obtained

A0 (l — /I) + 2 (2 — C0 ±

oo
E (-1)n An Pn,0 Bn [ 2 (2	 P- Ivo ± an Qnso

n-1

Cn Rn,0 — Dn [ 2 (2 —14 1:172,0 — an Sn,c,

P'n + Bz [ 2 (2 —v) Ph ,0 ± On Grwo

R;v0 — /Yn [ 2 (2 --1/) Riz — On S'n	 ho

(3.3.2.4.33)

{

co

E (-1)n { An Pn,nt	 Bn [ 2 (2 —II) Pnym + an Q12.774 ] ±

n-1

Cn RIVM Dn [ 2 (2 —v) Rnm — an Snm

Ah 11);1	 [ 2 (2 --v) P/2 ,71% + en Q/2 nit	 ±

Ch Rh,nt	 [ 2 (2 —v) 1:02,m — f3n 511,7,2]} —

	

Am cosh ("im h)	 [ (1 — 2 v) cosh (7nt h) — m h sinh (77n h)} —

	Aksinh CY= h)	 E;n[ (1 — 2 v) sinh ("ht h) — "int h cosh (7. h)]

(3.3.2.4.34)
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A0 (1 —	 + 2 (2 — v) Co ±

00
E	 { An Pn,0	Bn [ 2 (2 —Y) Pn,0 ± an Qn ,0 ] +

n-1

Ca &zap — Dn ( 2 (2 —v) Rnap — an Sn.0

A'n P'n —	 [ 2 (2 —1/) P;:	 ± 137% sZvo —

C4 Mt.() ± D [ 2 (2 —v) R1,0 — I3n S;:,0 ] =

(3.3.2.4.35)

cc± ( —1)n { An Pnrm	 Bn [ 2 (2 —/./) P_ arm ± an Qn.ni
n-1

Ca Ram& — Dn [ 2 (2 —II) Ram — an Siva: ] —

i1;1 Ph ,n1 — 13'n ( 2 (2 —v) P'n,m + On QL ,77: ] —

Ch Rh ,Ta ± Dh [ 2 (2 —ii) R'n ,nt — en Sh 'n]} —

Am cosh ()'m It) ± Em [ (1 — 2 14 cosh ('y„, h) — ..ym h. sinh (7m. h)] ±

"i	 1Asinh (aim h) — EL( (1 — 2 14 sinh (yn, h) — ng h cosh cym h)] = Mt

(3.3.2.4.36)

It is convenient to split the even and odd components in conditions

(3.3.2.4.33,36). This is achieved by substituting conditions (3.3.2.4.33) and (3.3.2.4.35)

with two new expressions, obtained summing and subtracting the previous conditions,

respectively. It is obtained :
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A 0 (1 — V) + 2 (2 — v) Co +

co
E ( —1)n { An Po ± Bn [ 2 (2 —v) P72,0 + an Qn ,o l +

n=1

)	 o	 leo )Cn Rn,o — Dn [ 2 (2 —v) R.0 — an S7 ,0 ]1 — ( 
h ±

2

(3.3.2.4.37)

co
E (-1)n { A;1 Ph ,0 ± Bh [ 2 (2 —v) Ph ,0 ± On Qh ,o ] +

n-1

oCh Rh.0 — Dh [ 2 (2 — v) Rh '', — On Sh •0 il — ( 
ho — le)

2

(3.3.2.4.38)

Operating similarly on eqns (3.3.2.4.34) and (3.3.2.4.36), the following

expressions are obtained

{E (-1)" { An P lam + Bn [ 2 (2 —v) Pipm -I- an Qnnn ] ±
n- 1

Cn Rn,m — Dn [ 2 (2 --v) Rn.m — an Swat ] 1 —

1 	 + h;n)Am COSh (l'in h) ± En: [ (1 — 2 V) COSh (7m h) — 7 in h sinh (7m h)]	 (hn:

2

(3.3.2.4.39)

{
E ( —1)n { Ah Ph nn ± IA [ 2 (2 —14 Ph.= ± Pn Qh nn ] ±
n-1
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CI: R;z ,m — Egt [ 2 (2 —14 /?;: .771 — en Sh ,m] 1 —

71

Asinh (Y= h) + rn[ (1 — 2 v) sinh (I. h) — lin h cosh (77R h)]} = 
(hm — 72.;)

2

(3.3.2.4.40)

Now, conditions (3.3.2.4.37) and (3.3.2.4.39) contain only even coefficients,

whereas conditions (3.3.2.4.38) and (3.3.2.4.40) include only odd (that is, with apex)

coefficients. If no shear strain is imposed along the inner surface of the hollow

cylinder, the axial stress applied to the two end surfaces must be self-equilibrated.

This implies that 71 0 and h'0 , which represent the mean axial stress applied to the

top and bottom extremities, respectively, must coincide and, consequently, that the

right member in (3.3.2.4.38) vanishes. With regard to the left-hand side member of

eqn (3.3.2.4.38), the stresses expressed via the stress function (Section 3.3.2.2)

identically satisfy the equilibrium equations. Consequently, they verify them in a

global sense too, that is, if no shear stress is applied to the inner surface of the

hollow cylinder, the mean of the axial stress along the two end surfaces must be

the same. So, the vanishing of both members of eqn (3.3.2.4.38) is naturally satisfied

(this becomes obvious in the case of symmetrical loading with respect to the axial

direction, when all odd constants endowed with apex vanish) and, therefore, eqn

(3.3.2.4.38) does not represent an additional condition. In summary, conditions

(3.3.2.4.37), (3.3.2.4.39) and (3.3.2.4.40) describe the boundary conditions with regard

to the axial stress component applied to the cylinder extremity faces.

As a final observation, in the Bariani (1977) paper such boundary conditions

are expressed in a different way , which does not appear to be correct.
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3.3.2.5 Expressions of some series coefficients

This Subsecion reports the expressions of the coefficients of three series

expansions, employed in the previous Sections. The boundary condition referring to

the radial stress acting at the inner surface of the hollow cylinder, expressed in

(3.3.2.3.1) is examined first. The aim is to determine the expressions of coefficients

ao , an and ah of (3.3.2.3.1) when a uniform radial stress is imposed along an axial

region defined by hp t and hpu(p , 1 and u stand for "pressure" , "lower" and

"upper") (see Fig. 3.3.2.2.1). By applying the usual procedures (Spiegel (1968)), it is

obtained

hpu	 hpg
ao 2h

sin (an hpu) — sin (an hpg)
— n 1.

2 [ — cos (0. hp.) + cos (O. hpg) 
(2 n — 1)

(3.3.2.5.1)

It is known that the convergence of the Fourier series in mimicking a step

function is slow. In addition, spurious undulations affect the series expansion. A

practically relevant improvement of the convergence rate as well as a reduction of

the undesired oscillations can be achieved resorting to the so called "Lanczos cr

factor" (Lanczos (1964),(1966), Scheid (1968)), which constitutes an original

contribution given by the writer with respect to Bariani (1977). The original series

is smoothed by substituting its local value with an average computed on a proper

period. So doing, the so called "Gibbs" oscillations are attenuated (that is, the

convergence rate is improved), at the cost of a somewhat less steep ascent at the

extremities of a square wave. This is numerically proved in Subsection 3.3.2.7 .

From an applied viewpoint, if index n in (3.3.2.3.1) related to the radial stress

an



sin ( 	 n )k	 1 

-Jr n 

k	 1
(3.3.2.5.2)

I cosh (7.z) dz sinh (.1711 h)
hHat=

LOsAl 1

-h

dz	 "l7n h cosh ("Ym h) — sinh (-y77, h)
2 h

z sinh (^hnz)
h

-h

Hn•nt 1 cosh (y.z) cos dz	 2 7:	 sinh ("Ym h)
717:r(	 Z )	 = (_1)n

1 .	(	 h	 + n2

1

hLn•in
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component runs from 1 to, say, k, then coefficients an and ca must be multiplied by

the following factor

The series expansions (3.3.2.4.22), expressing hyperbolic functions in terms of

trigonometric functions, are now considered. Coefficients Hom , Loan , HIV= 2 Mt ,

Limn , on are to be defined. By exploiting, as usual, the orthogonality conditions

of the trigonometric functions, the following expressions for 110,7n 9 Loon 1172,71% H;1

, Ln,in 9 LA on are obtained

1=

-h

sin (2n — 1) 1-sinh (liva) syn	 2 h	
z ) clz

-h

_ (-1)n 2	 7m7.,72, c 7:71)2co±sh (1c2- 7nzi h2

 1)2
2

h

J z sinh (7,,,z) cos ( L2-1-r z ) dz -----
h

-h

(-1)n
	2712  lc. cosh ( y,,, h)	 r	 772 h

	

nn 2h 	 )
2
 — n2 I sinh ("inz h)

..ynt2	 7,

	

)2 + n2	 1-2 [
"ine h 2

+ n 
2 2

7+y— 
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(2n — irLh = 1 I z cosh (	 1)"Ina) sin ( 	  Z ) dZ2h
-h

Aba sinh (	 h ) 2h2
"	 2(lm h )2 + ( 2n — 1 12

2

„ h	 2n — 1
(_pn h  k	 )	 2	 )2 ] cosh (	 h )

[	 h )2 + ( 2n 2— 1 )2 ]2

(3.3.2.5.3)

These coefficients too can be modified according to the Lanczos a factor, by

employing the same correction factor of (3.3.2.5.2).

The last coefficients to be examined are those of (3.3.2.4.30), in which the

Bessel functions /0 , Ko , /1 , K 1 are expanded in terms of the eigenfunction T071% g

defined in (3.3.2.3.4). The coefficients to be computed are Pn,0 , P. o Ran) ,	 o

Qaa) qt, , Sn 'O g	 0 , Plante 9 P4. in g Rimy: Fe;. in Q7P711 9 Q. in S rum ,	 m

The computations which bring to the expressions of these coefficients are

reported in the sequel. They follow the exposition of Bariani (1983a), with some
corrections. The orthogonality properties exploited here are treated by Wylie

(1975), p. 421 . The main point is that di Tom ("Ym r) vanishes for both r = ri and
r	 re , according to (3.3.2.4.5). It is obtained

re
(r! —)

rroo

	

	 r /0 (CCn r) dr	 [ re /1 (CX.n re) — ri II (an ri)2
ri

(ri	 2— ri
Ran) 2

re

Jr Ko (an r) dr ----- c4;_, [7-, K, (an ri) — re K 1 (an r)1
ri



(ri —	 )
2

re

r2 I (an r)	 =
1 r

	 12CT.7-1 	"2 "-Am
2 7 Ire) —	 i 2 (an rt)Qn,o

Swo 2
— r)

Qn,nt Net -=
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re
2	 1	 2r K1 (an r) dr = —an [rf K2 (an ri) — re /2 (an r e) 1

rt
(3.3.2.5.4)

It is observed that the left-hand members in Bariani (1983a) paper are

incorrect.

re

Pn.in N. =	 r Io (an r) Ton. (7. r) dr =

an	 2 re I (an re) Torn (/m re) — rt I I (an ri) Tom (Y. r.)}2 
CO:

re

r2 I I (an r) Ton. (77. r) dr =

ri

2 7
an	

an	
{ 7i /0 (an re) Tom m re) —	 ic, (an 7-) Tom (1'm2 + 2

m

2 an  r 
r Ie	

/
L	 L (an re) Tom (77. re) — ri I (an r.) Tom (7.. ri)

Agn

re

Rem	 1N. = 	r K0 (an r) Tont ("Yin r) dr =

ri

— an 
2	 re Ki (an re) Tort ("/,,z("/,,z re) —	 K1 (an ri) Ton. Of r2 

+
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Snm Nin =---

re

Ir
2 K 1 (an r) Tom (7, r) dr =

ri

an 
2+	 { — r.i Ko (an re) Tom Me re) + r? /0 (an rt) Tom (7. rt) +cd	 "inz

2 cot	 r
2 L ---- re K1 (an re) Tont (7. re) + rt K1 (an rt) To. (7nt rt) llcd + 7.

(3.3.2.5.5)

where

re
2	 4.2

Arm— -- I r Vet (Yet r) dr = re T2  CY. re) — ' f Tom (I'm rt)2	 T 
ri

(3.3.2.5.6)

In the Bariani (1983a) paper there are two errors in the exponents of an

appearing in the expressions regarding Qn,et and Snnn , and a sign error affects the

expression of &vet . Various results useful for performing the previous integrations

are contained in Wheelon (1968) and in Luke (1962). Anyway, integrals referring to

Q71,712 N711 and to Sit.= Nin , given by Bariani (1977), could not be traced in the above

books, so that they seem an original contribution, even if ..similar integral are

reported by Lur'e, McVean, and Radok (1964) .

It is now shown that the a factor can be applied in an approximate, but still

effective, way to the series expansion (3.3.2.4.30) . It is first noted that an estimate

of eigenvalue l'm of (3.3.2.4.4) can be obtained by resorting to the following

asymptotic expansions (Spiegel (1968))

J1 (x) _ sin (x) — cos (x)
{-Tx

(3.3.2.5.7)
sin (x) ± cos (x)

Yi (x)
4.77-0C



772. it 

'im	 re — ri (3.3.2.5.8)
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Once these approximate expressions are introduced in (3.3.2.4.4), the following

estimate for eigenvalue "I'm is derived

The asymptotic expression for Tom of (3.3.2.3.4) requires the following

additional asymptotic formulae (Spiegel (1968))

sin (x) ± cos (x)•

Jo (x)

(3.3.2.5.9)

Yo (x) —	 sin (x) — cos (x)
'NF-rx

By substituting expressions (3.3.2.5.7,9) in (3.3.2.3.4), the following asymptotic

expression for Tom is obtained

1F7FX

2 )	 cos (7.(ri — r)) Tom ("Ymr
,7LF•.---ymr sin ("Ina%) ± cos (yntrt)

(3.3.2.5.10)

where expression (3.3.2.5.8) for -y,,„ should be used in (3.3.2.5.10) . Application of

Lanczos a method would require the integration of (3.3.2.5.10) in dr along a proper

period. Such integration cannot be performed in closed form (the analytic expression

of the integral of cos (r)/4 .7 does not exist), but it can be observed that, for

sufficiently high indices m, this period becomes very small and, therefore, '47 can

be treated as a constant. With these approximations, the series coefficients must be

multiplied by the same factor previously determined in (3.3.2.4.29) .
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3.3.2.6 Solution method

This Subsection treats the computation of the unknown series coefficients Ao

9 Bo , Co , An 9 Bn 9 Cn , Dn 9 21;z 9 B;z 9 C:x 9 D;: 9 Am 9 B771 9 E IA I F m 9 AL 9 Ma 9 rin

9 F', and it constitutes an original contribution to the thick pipe problem. In the

Bariani (1977) paper no particular strategy aimed at reducing the number of

equations to be solved simultaneously is presented. It is observed that in Subsection

3.3.2.4 all boundary conditions contain only either even (without apex) or odd (with

apex) coefficients. Consequently, the even and odd problems can be solved

separately. Only the even part is here treated in detail. If indices n and m of

(3.3.2.2.6) run from 1 to, say, k, the presence of coefficients An 9 Bn 9 Cn , Dn 9 Am 9

Bm , Em 9 Fm results in a set of eight times k linear equations to be solved. In

this Subsection a methodology is developed based upon an internal condensation of

the unknowns, which permits the set of equations to be noticeably reduced.

The salient points of the methodology proposed here are briefly summarized

first, followed by a detailed description of the corresponding formal developments.

By exploiting the boundary conditions, coefficients Bm , Em and Fm can be

expressed as simple functions of Am . As a consequence, both olm and olinz of

(3.3.2.2.8) evaluated at the inner and outer radii can be formulated in terms of Am

only and of known coefficients. Coefficients An 9 Bn 9 Cn , Dm are now examined. It

is possible to express Cn and Dn as functions of An and B 72 by applying proper

boundary condition equations. As a consequence, both oln IN and oln Ire can be

arranged in terms of An and Bn only. From equations (3.3.2.4.23) and (3.3.2.4.24) the

separate expressions of An and Bit can be computed in terms of olin and of olmz

that is, in terms of Am . It is now clear that the boundary condition (3.3.2.4.39) can

be formulated in terms of constant Am only, although its extended expression is

inevitably complex. The remaining constants are computed by back substitution.

With this approach, the number of unknowns is lowered from eight times k down to

only k .

The formal developments just touched upon are now re-examined in deeper

detail. Constants Bm , Em and Fm are first expressed as functions of A7A e From

(3.3.2.4.14) it is derived :



Em = Am
(I;

(3.3.2.6.1)

Am Ji("be r)	 Am J i(^Im re)
Fm = (3.3.2.6.3)

Ong Y1(7. rt) —	 6nt Y1(7m re)
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From the ninth and eleventh conditions (3.3.2.4.2), by remembering (3.3.2.2.14)

and (3.3.2.4.5), it is obtained

Em J ICY. 7-)	 E. J,(y. re)
Fm —

Yi("Y. rt) —	 Y1(7. re) (3.3.2.6.2)

and, therefore, the following result is derived from (3.3.2.6.1)

From the second expression of (3.3.2.4.14) and from (3.3.2.6.3) it is attained

Bm = Fm 6m =
Am J i("Y m r) _	 Am Ji("Ym re)

Y icym r)	 Yi("bn re) (3.3.2.6.4)

Formulae (3.3.2.6.1,3,4) collect the expressions of The , Em , Fie as functions

of Am only.

Terms alin and olmz of (3.3.2.2.8) computed at the inner and outer radii are

now considered, with the aim to express them in terms of ATIt only. The following

formulae are derived

Ji ("fmri)	 y1 cymri)
Om	 Y
l	

nIr
m irt ..-- Am [ Jo (7mrt)	 ] ± Bog [ Yo (intrt)	 i ±' t	77nri
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Yi ("Imri) 1 =J i ("fmri) j + Fm [ (1 ± 2 v) Yo (Yntri) 	 •ymri	 iEm [ (1 ± 2 u) Jo ("Ynt ri)	 ..y.ri

.1 1 ("ben)	 Ji("tm rt) Yo (1mr() 4. Ji("imr ,) ±
An' I Jo ("ben) 'Ymn	 Yie7mrt)	 '17eri

Y
e	

o ("Imri) J1(^/m ri) + Ji ("Ymn) j __
Om "Imri(5 7e 'bn(1 + 2 v) J° (67mnirt)	 J i CYmr t)	 (1 ± 2 ii) 	

Sm Yr1m ri)

(1 + 2 ii	 (rt)	
.7.1(7. ri) Yo (Imri) ]

Am [1 +	 6m	 i [Jo m	 Yi('lmrt)
(3.3.2.6.5)

Y1 ("limn) i _J1 ("lmri) i ± Fm [ yo (yiert) ^bencr7.7ez IN = E. ( Jo Cimrt)	 "ben	 •

A. [ JO (6)'Thmrt)	 Ji ("Imr 1)	 Ji(")'a rt.) Yo (77nri) + Ji. (7mri) ] :=

Sm "imr i	Sm Y 1(7m 7-1)	 5m 7mr1

I-Ln [Jo (77nrt)	
..r

1
(^inz rt) Y0 Men) I

Set	 YiCire ri)
. (3.3.2.6.6)

Similarly, for the outer radius the following expressions are derived

(1 -I- 2 Y)	 JP.. re) Yo ("imre)
01, Ire == Am [1 ±	 ] [Jo Mere)

•Se:	 YI.C7mre)
(3.3.2.6.7)

,	 Ji("Ym re) Yo (m re) 141. 71 [ jo cymre)Cr.m ,a Ire = 6m
	 YI(7et

(3.3.2.6.8)
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Formulae (3.3.2.6.5,8) collect the expressions of alin and ol,nz at the inner and

outer radii in terms of Am only. Compact expressions of these equations can be

obtained by introducing constants CA.ri

is easily identifiable
' C, CA 	 , whose meaning

9 CAmzrt

cr;3-nt IN = A712 CAmre

Cr;3'mz Iri = Am C
A7T127't

e
arm Ire =-- Am CA 

7127.6

07nz Ire = Am CAzinzzre

(3.3.2.6.9)

Coefficients An , Bn , Cn , Dn are now considered. From the first and third

boundary conditions (3.3.2.4.2), with the help of (3.3.2.2.14), coefficients Cn and Dn

can be expressed as functions of An and Bn . In fact, such boundary conditions

imposed at the inner and outer radii, respectively, can be written, supposing T IN, re

==-- 0 so that sn of (3.3.2.4.2) are neglected (but the extension to cases where the

shear stress does not vanish is simple), as

Cn K 1 (a.nr t) — Dn [2 (1 — v) K 1 (anrt) — an rt Ko ((inn) ]

= Alt I 1 (MO. j) ± B72 [ 2 (1 — v) I i (coin) ± an r t 10 (anrt) ]

(3.3.2.6.10)

Cn K1 (anre) — Dn [2 (1 — v) K1 (a.nre) — an re Ko (anr.) ]

-= An I i (CCnre) ± Bn [ 2 (1 — v) I i (a.nre) -I-- an re I0 (a.nre) ]
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from which the sought for expressions for Cn , DR can be derived. The determinant

A of the system of equations (3.3.2.6.10) in the unknowns Cn , DR is

A = an [ re Ke (anr t) Ko (anre) — re Ke (anre) Ko (anre) ]	 (3.3.2.6.11)

The expressions of Cn and Dn are

AnCn . -- V I (anr t) [— 2 (1 — v) Ke (anre) ± an re Ko (anre) ] —
A

/1 (anre) [— 2 (1 — v) Ke (c00%) ± an r t K0 (anrt) ]} +

Br: {[ 2 (1 — v) / 1 (anrt) ± an r t /0 (anr t) ] [— 2 (1 — v) Ke (anre) ± an re Ko (anre) ] —

[ 2 (1 — v) Ie (anre) ± an re /0 (anre)] [— 2 ( 1 — v) K1 (anri) ± an 7. 1 Ko (anri) i 1

DR == An IK 1 (ann.) I i (aRre) — K 1 (a.nre) /1 (a.nr i) 1 ±71

13-2 { K1 (anr t) [ 2 (1 — v) Ie (anre) ± an re /0 (anre) ] —

K 1 (anre) [ 2 (1 — v) / 1 (anrt) -I- an ri Io (anri) ] }
(3.3.2.6.12)



Ir t6
arn

K 1 (,a.nr I) 1 CADn 1 +
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Expressions (3.3.2.6.12) are rewritten in compact form as

Cn = An C AC n+ Bn CBC•2
(3.3.2.6.13)

Du = An CADn + Ba CBD„,

where the meaning of constants CACn • CBCn , C Dn and CBD is easily

identifiable.

By employing (3.3.2.2.8), both an Irt and 01-71 IT can be formulated in terms

of a linear combination of An and Bn only. The following expressions are obtained

1= An — 10 (CCnri) ± /1(anri) _anri

Ki(anrt) 1 {/{0(anri) ± (inn i CAC + {(1 — 2 v) Ko (art) — ocn rt

1	
K/(ctnri)

Bn — (1 — 2u) lo (anr t) — anr t / 1(ccnr t) --- 1 Ko(anri) ±	 vaanri 1 C PCn ±

{(1 — 2 v) K0 (a,„r t) _ an 7-, lc' (anro 1 C BD,}

(3.3.2.6.14)
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1	 x , Ii(anre)
Oln Ire = An — Jo (anre) -1- anre

{Ko(anre) ± 
Kia(ccisr	 ,-,ee) 1

f `' ' ACn + {(1 — 2 v) Ko (anre) — an re K1 (anre) } CAD} ±

Bn 1 — (1 — 2u) 10 (anr e) — anre Ii(anre)
, , Ki(anre) 1— {Ko(anre) -r anre i CBCn ±

1(1 — 2 V) Ko (anre) — an re K1 (anre) 1 CBDn 1

(3.3.2.6.15)

The previous expressions (3.3.2.6.14) and (3.3.2.6.15) are written in a more

compact form as follows

Oln IN =-- An CAnri -I- Bn CBnri

(3.3.2.6.16)

ol.'n Ir. ..----- An C Ann, ± Bn CBnre

where the meaning of constants CAnri 9 CBnre CAnre'
from (3.3.2.6.14) and (3.3.2.6.15).

CBnre is easily identifiable

The next step is to obtain the separate expressions of An and Bn in terms of

oln: and of olniz , that is, of Am • From equations (3.3.2.4.23), (3.3.2.4.24) and

(3.3.2.6.16) it is derived :



(	 I	 Hl.n = An C	 Bn C Bnri = an — et)c	 arm. 171 Ym LT4,1Th

+ CATIZZTI

Am (CCAinre H— 71,71t Ain CAntzre Ln,.)

co

{ an —	 (Am CA	 Hem + Am C 16,71 "In Lnnn )

m=1

CAzinre
A

Chapter 3 Cubic Compressibility 	 3.59

m=1

(3.3.2.6.17)

00

cr% Ire	 An C	 Bn CD	 = bn —	 ( Orm Ire arinz Ire 7. Ln 'in )
m-1

where en: , 4m. I r t I Olin Ire and C4etz Ire can be expressed in terms of constant

Ant only, according to equations (3.3.2.6.9). The set (3.3.2.6.17) of two equations in

the unknowns An and Bn is solved to produce the following expressions for An and

Bn

00

An	 { an —	 Ain ( CA
m-1

C
Ym Liam )	 D

;re

00

bn —
m-1

CBnrj
A

co
Bn	 bn —	 Am ( CA 	 HT0111. ± Ai% CA 1-71k

TAM'S	

AAnri

m-1

(3.3.2.6.18)

where determinant A of system (3.3.2.6.17) possesses the following expression

A = CAnri	 CAnre CBnri (3.3.2.6.19)



00
( —1)n {	 an ----	 Am ( C	 Ham:	 CAntzrt

m-1n-1

BA
1m Ln,m )1 	 nre

Am C Amrs Hn,m	 CAinzre
m-i

CBnr 
A J

-17n LTont )
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In conclusion, formulae (3.3.2.6.18) separately express coefficients An and Bn

as functions of Am only.

The boundary condition (3.3.2.4.39) are now treated, which expresses the

vanishing of the axial stress component at the cylinder end faces. For the sake of

clarity, this equation is rewritten here without modification.

1E ( —1)n An Pn,m	 Bn [ 2 (2	 P- rum ± an Qn"n

rt-1

Cn Rn.m — Dn [ 2 (2 — 11) Rnme — an Sn,in	 —

±
Am Cosh (m h)	 Em [ (1 — 2	 Cosh m h)	 •y. h sinh (7. h,)} - (him

2

(3.3.2.6.20)

This equation can be formulated in terms of Am only. In fact, by employing

formulae (3.3.2.6.12), coefficients Cn and Dn are expressed in terms of An and Bn .

With the help of (3.3.2.6.18), coefficients An and Bn are then formulated in terms of

Am only. Finally, coefficient Em is defined via Am with the help of (3.3.2.6.1) The

boundary condition (3.3.2.6.20) thus becomes

Pn'.1	 C	 CAD,, 2 (2 --11) Rn•i — an Sn.j])

Am (C A Hnm	 C A mzre'intro Ln.7n ) 
cAnri

A



± C A771Zri
1,71,7n ) / C AAn" j

00
1 an — E ( Am CAnzri Hn_ _ *n:

n2-1
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( [ 2 (2 —IA P	 1
-, . no3 -r an Qn*3 ]

—v) Rn, i 	an Sivi ] )	 _
± C BCn Rn.3 — C BDn ( 2 (2	 —

A3 ICOsh (.y j h) ±  [ (1	 2 v) cosh (13 h) — 1j h stinh (Y i h)] } 	 (h3 ± h)

6i	 2

(3.3.2.6.21)

Three indices appear in expressions (3.3.2.6.21), namely j , M. , n . If

equations (3.3.2.6.21) are described via a matrix approach, j is the column index, m

is the row index, while n is an internal loop index. When programming this

equation, it is useful to distinguish among known terms, and matrix diagonal terms

and off-diagonal terms to be assembled into a stiffness matrix. The known terms

collect an and bn multiplied by the proper coefficients according to (3.3.2.6.21), plus

terms in hj . The diagonal terms in the stiffness matrix are expressed in the last

line of (3.3.2.6.21). The remaining terms, related to index m, contain essentially off-

diagonal terms (more exactly, they include both diagonal and out-of-diagonal terms ).

Index n is responsible for a generic stiffness matrix coefficient being obtained as

the sum in index n of various terms.

The remaining indexed constants can be computed by back substitution. In

particular, coefficients B7A t Em and Fm are evaluated via (3.3.2.6.1,3,4). Coefficients

An and Bn can be calculated via (3.3.2.6.18), whereas Cm , Dm are determined via

(3.3.2.6.13).

The evaluation of coefficients Ao , Bo , Co is now considered. The

corresponding equations are the first expressions of (3.3.2.4.23) and of (3.3.2.4.24),

plus (3.3.2:4.37), which constitute a system of three equations in the unknown

coefficients Ao , Bo , Co •
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The odd part of the solution can be treated similarly, and its corresponding

equations are not reported here. It is only remembered (see Section 3.3.2.4 , where

the case of vanishing shear stresses at the cylinder lateral walls was discussed)

that equation (3.3.2.4.38) is identically verified and, therefore, it does not actually

impose any restrictions on the coefficients involved. In other words, this equation

is not employed in the solution of the odd part problem.

The fact that eqns (3.3.2.4.38) and (3.3.2.4.39) are not linearly independent is

valid for any boundary conditions (that is, even for non vanishing shear stresses at

the inner and outer surfaces of the hollow cylinder), and is due to the

circumstances that a) the system of boundary stresses imposed as boundary

conditions must be axially self equilibrated; b) the expressions of. the internal

stresses in terms of stress functions identically verify the equilibrium equations. In

conclusion, between eqns (3.3.2.4.38) and (3.3.2.4.39), only one equation must be used

in computing coefficients Ao , Bo , Co •

The close of this Subsection is dedicated to the numerical evaluation of

eigenvalue '7, . Expression (3.3.2.5.8) supplies a first estimate for '7. , which is

then refined via a standard Newton method. In all calculations, the Bessel functions

involved were evaluated numerically via the interpolating formulae reported in

Abramowitz and Stegun (1972) .

As an alternative solution method, a relakation technique, was also developed,

following the suggestions of Shibahara and Oda (1968), who mentio'n •a :successive

approximation method, even if they do not explain it in detail. Coefficients with

index m were put equal to zero, and coefficients with index n were computed. Then,

the solution was iterated to compute n indexed coefficients. Alternatively,

coefficients with index n were set to zero, to compute subsequently m indexed

coefficients. Unfortunately, neither strategy was found to converge and, therefore,

this solution approach was abandoned.



Chapter 3 Cubic Compressibility	 3.63

3.3.2.7 Numerical validation

Two geometries were studied, for which previous solutions are available. The

first case is that of a hollow cylinder having r t = 0.4 , re = 1. , h = 1. (abstract

dimensions) , subject to a unit pressure band applied to the tube inner surface and

acting between hpu = 0.5 and hp s = 0. , treated in Bariani (1977) and, therefore,

referred to in the following as "Bariani" geometry. The second configuration is

defined by r i = 0.25 , re = 1. , h = 1. , and is subject to a unit pressure band

applied to the pipe inner surface and acting between hpu = 0.2 and hp; = — 0.2

treated in Shibahara and Oda (1968) and hereinafter named "Shibahara"

configuration. In both cases, the elastic constants were taken as E = 1. , v = 0.3 .

Fig. 3.3.2.7.1 details a convergence study for the Bariani cylinder. The

number of series terms adopted (more exactly, the maximum value of n=- m index)

is indicated along x-axis. When subject to the radial pressure band, its inner

surface deforms radially, and the initial volume of the inner pressurized cavity

(that is, the volume containing the rubber specimen) increases by an amount

(referred to a unit p/E ratio) reported along y-axis. In addition, y-axis includes the

axial integral of the radial pressure, to appraise its closeness to the nominally

imposed value of 0.5 . This indication permits a tentative extrapolation of the

volume change to be forecast, aimed at possibly improving the series convergence

rate. If symbols AV , AVappr s Pint s Ptnt'appr indicate the volume change (per unit

p/E), the approximate volume change for a certain n-= m maximum series index, the

axial integral of the radial pressure band and its approximate value for a certain n

---=-- m series index, respectively, it can be speculated that the relative error of the

volume change approximately equals that of the pressure integral

AV — AVappr	 Pint — Pfrevappr
AV	 Pint

from which

(3.3.2.7.1)

AV . AValoPr 
Pint 

Pint'appr	 (3.3.2.7.2)



Chapter 3 Cubic Compressibility 	 3.64

This extrapolation too is reported in Fig. 3.3.2.7.1 , but it appears that the

convergence towards the final volume change does not substantially improve when

referring to the extrapolated volume change series instead of the original one. As a

consequence, in the practical applications of Section 2.3.2.8 the volume change was

not modified as indicated in (3.3.2.7.2) . Fig. 3.3.2.7.1 also indicates that a maximum

index number in the region of 20 is suitable for most applications, since the volume

change reaches a stagnation value. (The Bariani (1977) reports data referring to 15

and 17 series terms.) An unexpected, undesired and inexplicable event is the

appearance of a spurious undulation in the volume change curve when the series

index equals 15 . This wiggle affects the subsequent series terms, which are not

well aligned to the series values referring to indices lower than 15 and, therefore, it

is not simply a local phenomenon. This oscillation is possibly ascribable to the

undulation of the solution, visible in Figs 14 and 15 of the Bariani (1977) paper, or

to the errors inherent in the approximations for the Bessel functions as supplied by

Abramowitz and Stegun (1972), but it is not clear why this phenomenon becomes

dramatic only for a certain series index.

Fig. 3.3.2.7.2 treats the parallel Shibahara case, were the pressure integral

equals this time 0.4 . This geometry is not affected by spurious undulations. Also

for this case 20 series terms appear to be a felicitous choice.

In the interest of conciseness, no comparison in terms of stress field between

the Bariani results and those of this study is presented. In general, the agreement is

good but not excellent, where the mismatches are possibly ascribable to the

inaccuracies signalled in the Bariani (1977) formulae, which may be interpreted

either as misprints or as miscalculations.

A parallel stress analysis performed for the Shibahara case produced similar

results. In particular, the agreement with the radial displacements reported in Table

4 of Shibahara and Oda (1968) and referring to 15 series terms is good, a

circumstance which is in favour of the correctness of the analysis developed in this

thesis. Various Figures are presented in the following which illustrate the

smoothing effect of the Lanczos a factor (see Section 2.3.2.5), by comparing

traditional series expansions to their counterparts evaluated according to the

Lanczos a method.
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Fig. 3.3.2.7.3 presents the Fourier expansion of a unit pressure band as in the

Bariani study for 10, 15 and 20 series terms, and Fig. 3.3.2.7.4 displays its

counterpart after the Lanczos smoothing. The Gibbs oscillations are attenuated, at

the cost of a less steep ascent at the extremities of the square wave.

Figs 3.3.2.7.5 and 3.3.2.7.6 illustrate the parallel Shibahara case, obtaining

similar results. Figs 3.3.2.7.7,8,9, 10,11,12,13,14,15,16,17,18 address four functions

containing hyperbolic functions, appearing at the left hand-sides of expressions

(3.3.2.4.22) and detailed in the insets, for the first three 7 radial eigenvalues (see

equation (3.3.2.4.6)) of both the Bariani and Shibahara geometries, and for ten series

terms, as functions of the tube axial coordinate, z (see Fig. 3.3.2.2.1). Each Figure

contains the exact curves for the four hyperbolic-type functions, together with

their Fourier expansions according to expressions .(3.3.2.4.22). Such Figures should

be mentally grouped in pairs of diagrams, the first referring to a purely Fourier

expansion, the second to a Lanczos smoothed version. It emerges that the Lanczos a

method actually reduces the oscillations, at the cost of a decrease of accuracy in

the vicinity of z = +1— 1 , that is, by the tube axial extremities. These border

inaccuracies are visible in, e.g., Figs 14 and 15 of the Bariani (1977) study, but they

should not compromise the solution precision, since they act on tube portions far

from the central part, which is of higher interest. The smoothing effect is more

appreciable for higher order 'Y radial eigenvalues.

The following Figures refer only to the Baiiani geometry. Figs

3.3.2.7.7,19,20,21,22,23,24,25,26,27,28,29,30 address four functions containing Bessel

functions, figuring at the left hand-sides of expressions (3.3.2.4.29) and detailed in

the insets, for the first three a. axial eigenvalues (see formulae (3.3.2.4.8)) and for

ten series terms, as functions of the tube radial coordinate, r (see Fig. 3.3.2.2.1).

Each Figure includes the exact curve for the four Bessel-type functions, together

with their expansions according to expressions (3.3.2.4.29). These Figures too should

be ideally arranged in pairs of diagrams, the first addressing a non-smoothed

expansion, the second its Lanczos smoothed counterpart. As for the hyperbolic

functions, the Lanczos a method placates the oscillations, again at the cost of a

precision decline in the vicinity of 7-1 and r. . Similar to the hyperbolic functions,

the smoothing effect is more noticeable for higher order a. axial eigenvalues.
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20 series terms, for the Bariani case.
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3.3.2.8 The piston device radial deformation

One of the advantages of the series solution of Section 3.3.2 with respect to

a finite element approach is that it can mimic a pressure band of continuously

varying height, as it occurs in the compression of the elastomeric specimen within

the piston device, during the experimental measurement of the bulk modulus. With

reference to the rubber specimen employed in real applications, made of "Estane"

5714F1 elastomer (see Section 3.3.1), Fig. 3.3.2.8.1 reports the metal hollow cylinder

volume change (for unit p/E) due to its radial expansion, when subjected to an

axisymmetric uniform pressure profile along part of a generatrix. More exactly, the

radial displacement is computed for the tube inner surface subject to the pressure

band. This displacement, once integrated with respect to z and 0 coordinates, defines

a volume change useful in correcting in Section 3.3.4 the cubic compressibility

apparent experimental measurements of Section 3.3.1 . Three pressure band heights

are considered, which mimic the piston stroke when compressing the "Estane" 5714F1

elastomer. In particular, the metal hollow cylinder undeformed dimensions (averaged

with respect to three readings) are : r t = 12.5582 mm , re = 74.775 mm , h --

61.525 mm , hpt = -16.465 mm . In addition, the three upper pressure band limits

describing the piston compression stroke are hp, --= 6.385 , 5.955 , 5.525 mm . A

maximum index ri —m=20 was chosen. It was numerically tested that spurious

undulations for the volume change (like those affecting Fig. 3.3.2.7.1) did not occur

for this configuration. Analogously, Fig. 3.3.2.8.2 displays the forecasts related to

the Hysol CP 4485 specimen, used in the experimental study of plane models for the

hip replacement of Section 5.4 . In this case the same metal tube dimensions are

valid, apart from hpu = 15.305 , 14.682 , 14.059 mm , related to different specimen

dimensions and, therefore, to changed piston strokes.

In both Figures the volume variation appears to be essentially linear with the

pressure band height. These two Figures include the approximate theoretical

forecasts based upon the thick pipe theory applied as explained in the following.

The axial length of the hollow cylinder is ideally assumed to coincide with the

pressure band width. Then, the volume change is computed according to a plane

stress version of the thick pipe theory, only with reference to the loaded axial
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portion. Since in this modelling the restraining effects exerted by the hollow

cylinder extremities free from the radial pressure on its central part are neglected,

the approximate predictions overrate the actual volume change. The results

obtained demonstrate that the hollow cylinder volume change cannot be accurately

estimated via a simplified thick pipe theory.

Figs 3.3.2.8.3 and 3.3.2.8.4 describe the radial displacement at the upper and

lower axial pressure band extremities, for three piston strokes, as functions of the

upper extremity, and for the "Estane" 5714F1 and Hysol CF 4485 elastomers,

respectively. As in Figs 3.3.8.1,2 , an essentially linear radial displacement with the

pressure band height is found again. This information is useful in evaluating the

extrusion of the elastomer through the radial gaps between piston and hollow

cylinder, examined in the next Section.
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3.3.3 The extrusion of the elastomer in the piston device

This Section examines the possible extrusion of the elastomer through the

narrow gap between piston and hollow cylinder, and its repercussions on the

apparent experimental readings of Section 3.3.1 .

3.3.3.1 General aspects

When the cylindrical elastomeric specimen is compressed by the piston, it

tends to extrude through the narrow radial gap inevitably present between piston

and hollow cylinder. It is the aim of this Section to identify models suitable to

quantify the amount of extruded volume of the elastomeric specimen during the

experimental measurement of the cubic compressibility of the elastomer. This

information allows the apparent experimental measurements to be corrected by

accounting for an effective volume change of the elastomeric specimen slightJy

lower than the apparently imposed one. In the case of finely toleranced piston

devices, this correction is presumably negligible, whereas it may become appreciable

when the radial tolerances of the piston and hollow cylinder cavities are relatively

great. Unfortunately, no pertinent literature could be traced on this topic, apart

from a mention of this problem in Burchett and Bert (1972). In particular, since

extrusion phenomena often interest severely pressurized elastomeric seals, the

proceedings of BHRA Fluid Sealing were scanned, but unsuccessfully. In the lack of

the proper information, it becomes difficult to appraise the clearance fits beyond

which the extruded volume perceivably alters the experimental measurements. It

should be also appreciated that an accurate model of the elastomer extruded volume

would permit less stringent tolerances to be adopted for the piston-hollow cylinder

gap, which in turn would result in a cheaper piston device construction.

The following Subsection deals with a numerical finite element analysis of the

extrusion problem, whose results suggest the formulation of a theoretical model,

developed in the subsequent Subsection.
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3.3.3.2 Finite element forecasts

The configuration sketched in Fig. 3.3.3.2.1 was numerically studied. In the

following the expression "extruded volume" denotes the area (per unit thickness,

according to a plane strain model) of elastomer protruding through the gap of Fig.

3.3.3.2.1 beyond the line defined by the piston bottom face. Due to the narrowness

of the radial gap in the piston device and to the essentially axial flow of the

elastomeric portion extruded (so that the hoop strains in the elastomer insist on a

small radial interval and are limited), a plane strain model (as opposed to

axisymmetric) was adopted in the numerical study. This simplification aims at

avoiding the introduction of the additional variables describing the radii of the gap

inner and outer extremities, which are believed to be scarcely influential. Owing to

mesh difficulties, the gap examined in the numerical study cannot be so small as in

the actual configuration. Consequently, gaps in the region of 1\10 the side of a 10 x

10 (abstract units) plane strain specimen were considered. The automatically

generated, undeformed mesh (Medri and Strozzi (1984)) is displayed in Fig. 3.3.3.2.2.

It exhibits a concentration of elements in the region affected by extrusion. The

finite element computations were performed via ABAQUS program, which possesses a

release addressed to the mechanical analysis of elastomeric units, incorporating

geometrical and material non-linearities (Chapter 2). The possibility for the

elastomer extruded to move apart from the left vertical wall was introduced via a

unilateral contact simulation. Frictionless contacts were always adopted between

specimen and walls. A total amount of 13 cases differing in compressions (the

vertical displacement of the top wall ranges between 0.02 and 0.5 in abstract units)

and Poisson's ratios (ranging from 0.49 to 0.5) were examined. In the lack of proper

data, a neo-Hookean constitutive relation connecting stress to strain with unit

Young's modulus was adopted (Section 2.2.3). As an example of the numerical

predictions, Fig. 3.3.3.2.3 displays a deformed mesh for an incompressible elastomer

and for a vertical displacement of the top side of 0.02 . It clearly appears that the

extruded portion does not appreciably move apart from the left wall (with the

exception of a very localized upper zone, perceivable in Fig. 3.3.3.2.3). Fig- 3.3.3.2.4

represents the Von Mises equivalent stress, which shows that the specimen region
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for which the stress state appreciably deviates from being hydrostatic is relatively

small. Fig. 3.3.3.2.5 collects the above mentioned 13 numerical previsions, where the

extruded volume (more exactly, it is an extruded area, since the problem is modelled

via a plane approach) has been normalized with respect to the gap squared, where a

unit normalized contact pressure, p/E , is imposed by the indenter centre. More

precisely, since it is not easy to achieve in the finite element study a unit pressure

by the punch centre, the indenter penetration depth was actually assigned and, then,

the extruded volume was simply normalized versus the central pressure computed

via a constitutive relationship possessing a unit Young's modulus. It is appreciated

that this normalization is only approximate, since it presupposes a linear structural

behaviour, while in fact finite deformations affect especially the extruded part of

the elastomeric specimen. On the other side, the ABAQUS forecasts were compared

to previsions obtained with a linear finite element program (Bandera and Strozzi

(1991)), obtaining a satisfactory agreement. This favourable correlation is seemingly

ascribable to the circumstance that even a linear finite element program mimics the

limited cubic compressibility of the elastomeric medium, thus practically preserving

the volume constancy before and after loading and, consequently, imposing

constraints on the extruded volume ' entity, which compensate for the lack of

modelling of finite strains. It is therefore concluded that the normalization adopted

with respect to the central pressure is acceptable, since the non-linearity of the

relationship between extruded volume and central pressure is modest.

Some scattering of the results affects Fig. 3.3.3.2.5 , possibly ascribable to

the above simplified normalization, that is, to finite strain effects at the highest

compressions. It is however noted that the Poisson's ratio is not a dominant

parameter, provided that it is close to the incompressibility figure 0.5 . Finally, Fig.

3.3.3.2.6 illustrates the finite element contact pressure (normalized with respect to

its value by the symmetry axis according to Fig. 3.3.3.2.1) for an incompressible

elastomer, for a displacement of the vertical side of 0.02 , and for a gap of 1.086 .

It clearly emerges that the contact pressure is uniform, apart from a concentrated

spike in the vicinity of the gap. The flatness of the central part of the pressure

profile implies that a correct numerical study of the rubber extrusion does not

necessarily need to simulate the whole radial extent of the rubber specimen. The
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finite element mesh of fig. 3.3.3.2.2 can thus be interpreted as a description of the

elastomeric specimen portion closer to the device gap, see Fig. 3.3.3.2.1 , so that the

numerical study furnishes results applicable also to gaps considerably smaller than

1\10 the discretized square side. For the same reason, in Fig. 3.3.3.2.5 the indenter

width does not appear as a parameter, since it is scarcely influential, provided that

the gap extent is much smaller. The spurious numerical undulations affecting the

pressure profile in the peak regions frequently appear when dealing with nearly

incompressible materials (Dragoni and Strozzi (1988)).

The circumstance that the extruded portion does not essentially lose contact

with the left wall of Fig. 3.3.3.2.1 suggests that the projecting rubber can be

mimicked in terms of a symmetric bump whose symmetry axis coincides with the left

wall of Fig. 3.3.3.2.1 , and projecting between two contiguous, equally compressed

indenters simulating the pistoni penetration effect. In the next Section it is shown

that a proper theoretical model for this problem can be based upon a deformable

half space compressed by a rigid punch, and that it is not necessary to resort to a

more complex quarter of plane description of the indented specimen (Hetenyi (1960),

Hanson and Keer (1989)).	 .f ,

Fig, 3.3.3.2.1 : The configuration mimicking the extrusion of the elastomeric specimen.
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Distance from the symmetry axis
Fig. 3.3.3.2.6 :The analytical and finite element normalized contact pressures.
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3.3.3.3 A theoretical model of the elastomer extrusion

Among the cases in which the contact pressure between a rigid punch and a

deformable half plane is theoretically known, those potentially suitable to describe

the title problem are the single rigid flat punch frictionlessly compressing a

deformable half space (Johnson (1985), P. 35) and the infinite series of equidistant

flat punches (Gladwell (1980), p. 181). Comparison with the numerical findings will

eventually suggest which model better mimics the extrusion of the elastomeric

specimen. As already noted, the essential lack of gap (see Fig. 3.3.3.2.3) between

elastomer and left wall as ideally sketched in Fig. 3.3.3.2.1 suggests that the latter

can be assumed as a symmetry axis in the theoretical modelling.

The first description here analyzed relies upon two flat punches equidistant

from the left wall (interpreted as a symmetry axis), whose width equals twice that

of the top wall in Fig. 3.3.3.2.1. The gap between these two punches is thus twice

that indicated in Fig. 3.3.3.2.1 . The expression of the pressure profile under a

single punch is known in closed form, but in the case under scrutiny the presence

of the second punch considerably alters this pressure distribution (Galin (1961), p.

72 , and p. 75 , where the case of two frictionless punches simultaneously indenting

a half space is mentioned). Anyway, although the pressure profile equation is known,

the corresponding displacement field and, consequently, the extruded volume seem

difficult to evaluate, due to the complexity of the pressure equation. .If the mutual

alteration of the pressure profile is neglected and the single punch pressure profile

is retained also for the case of two punches acting simultaneously, the analytical

expression of the free edge of the deformed half plane between the two punches can

be derived from Johnson (1985), p. 38 , and the extruded volume can be computed

numerically. Anyway, this modelling disagrees with the numerical forecasts of Fig.

3.3.3.2.6 referring to the case of Fig. 3.3.3.2.1 , since they indicate that the

pressure profile is nearly uniform, apart from a localized peak, whereas the above-

mentioned two punch model would produce a much less uniform contact curve (see

Johnson (1985), p. 41, Fig. 2. 14).

The second possible model, that of an infinite series of punches, seems

physically more sound, and the pressure equation appears less complex, although
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only moderately, than that of two contiguous punches. The theory this time

accounts for the mutual influence of the punches in terms of contact pressure, and

all gaps between two subsequent punches are in the same condition. Consequently,

the punch contact pressure is symmetrical, as in the actual device, whereas an exact

expression of the contact pressure for the model consisting of two adjacent

indenters would not possess this symmetry. The contact pressure of this second

approach agrees with the numerical calculations, as shown in Fig. 3.3.3.2.6 . In

addition, Fig. 3.3.3.3.1 presents the contact pressure profile (normalized to produce

a unity value at the symmetry axis) by the punch extremity, according to the single

and multiple punch pressure distribution (plane strain models), and for a geometrical

configuration close to the actual piston device. It appears that in the case of small

radial gaps, the single punch pressure deviates from unity starting from relatively

low piston radii, whereas the multiple punch pressure exhibits a very localized peak,

which is physically more sound.

The determination of the deformed free border of the half plane compressed

by an infinite series of rigid punches requires the following (singular) integral

(containing the product of the pressure distribution (Gladwell (1980), p. 181) by a

logarithmic "influence" function, typical of a half plane) to be computed, where d is

the pitch between two adjacent punches, and a is their half width

More exactly, this integral should be evaluated to determine (apart from a

constant) the vertical displacement of the, say, left edge of a punch, due to its

pressure (singular integral), the displacement of the same point due to the pressure

of the punch at its left and, then, the effects of the remaining infinite punches on

the same point. This latter contribution can be ignored especially if the gap is small

in comparison to the punch width. In fact, the contributions due to punches . far

away from the zone of interest should be small from a physical viewpoint (but

mathematically it tends logarithmic ally to infinity) and, in addition, their effects on
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the deflection of the free border of the half plane should consist in a nearly

uniform horizontal displacement, which can be likened to a constant and, therefore,

it is scarcely influential in the computation of the extruded volume.

Once the displacement of the punch left edge has been computed (apart from

a constant), the half plane free border can be calculated with respect to this

reference point, and this curve can be integrated to express the extruded volume,

that is, the volume of elastomer higher than the piston bottom face. Unfortunately,

it was not possible to integrate exactly the above mentioned deformed profile, nor

did various algebraic manipulators produce any analytical results. It was, therefore,

decided to resort to numerical integration. Fig. 3.3.3.3.2 displays a convergence

study in the case of histogram-type integration, for one of the configurations

numerically examined in Fig. 3.3.3.2.5 . The nodes describing the contact area

between punch and half plane range from 100 to 1000, whereas 30 nodes are always

used to discretize the free boundary and to compute the extruded volume. It

emerges that the convergence towards a stable value of the extruded volume

(normalized with respect of the gap squared) is too slow. As an alternative, the

pressure profile multiplied by the logarithmic "influence" function was expanded

into a Taylor series in the vicinity of the pressure singularity (the algebraic

manipulator MAPLE (Harper (1989)) was employed) and, then, the first three terms of

this expansion were integrated exactly. (It was numerically tested that the third

term contribution was very small and, therefore, higher order terms were

disregarded.) In particular, only the first term of this Taylor expansion possesses a

square-root singularity in the denominator, whereas the second and third terms

simply exhibit in the numerator a square root and a square root to the cube,

respectively. These exact integrals of approximate functions were used only for the

element closest to the punch edge, whereas for the other elements a usual

histogram-type approximate integration was employed. Fig. 3.3.3.3.2 demonstrates the

advantages of this approach over a histogram-type integration, since the normalized

extruded volume remains fairly constant when the number of nodes ranges between

500 and 1000. This also is an indirect check for the exactness of the numerical

program. In fact, as the number of nodes is, say, doubled, the width of the element

for which the integral is computed via a Taylor expansion technique is (nearly
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exactly) halved. With reference to the indenter left corner, the right half of the

element defined by the coarser mesh, describing the punch-half plane contact zone

and adjacent to the left pressure singularity is, with the finer mesh, treated with a

histogram approach. Since this zone is close but not adjacent to the pressure

singularity, the Taylor and histogram approaches are expected to supply similar

values for the integrals. In other words, the extruded volume furnished by a

correct numerical program is expected to be essentially independent of the number

of nodes for a wide range, a fact confirmed by Fig. 3.3.3.3.2 .

The normalized extruded volume computed analytically according to the

infinite series of equispaced punches and for an incompressible elastomer is reported

in Fig. 3.3.3.2.5 (the details of the normalization adopted are commented in Section

3.3.3.2 with reference to this Figure), and it is nearly independent of the gap extent,

as commented in Section 3.3.3.2 . The analytical forecasts are in reasonable agreement

with the finite element previsions, so that they constitute a model suitable for

amending the apparent measurements of the bulk modulus (Section 3.3.4) .

Finally, Fig. 3.3.3.3.3 presents the results useful in correcting the

experimental measurement of the elastomer cubic compressibility via the piston

device. It essentially links the elastomer extruded volume to the gap extent and to

the central contact pressure between punch and elastomeric medium. More precisely,

Fig. 3.3.3.3.3 reports the extruded volume in gin2 for a -thickness of 1 mm (it is

treated as a plane strain problem, see Section 3.3.3.2, so that it should be more
_

exact to refer to "extruded area", more consistent with the dimensions adopted (.	 .

i 1 m2 ), but the real problem to be amended is axisymmetric) as a function of the

radial gap between piston and cylinder, for the undeformed value of the hollow

cylinder inner diameter, r t = 12.5582 mm , for E = 1 MPa , J./ = 0.5 (as suggested

by Fig. 3.3.3.2.5 , the Poisson's ratio adopted is not a critical factor) and for a unit

pressure by the piston centre. Critical remarks on the normalization adopted are

contained in Section 3.3.3.2 . In addition, it is observed that, during operating

conditions, the cylinder diameter slightly increases, but it was numerically verified

that this increase does not significantly affect the results of Fig. 3.3.3.3.3 , and

this agrees with the indenter-elastomer contact pressure becoming rapidly uniform

at a relatively small distance from the punch edge (Fig. 3.3.3.3.1), as commented in
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Section 3.3.3.2 .

The same Figure also includes the extruded volume according to the two

punch approach, which supplies results very different from a multiple punch

theory. In particular, for exiguous gaps the multiple punch description furnishes

higher extruded volumes than the two punch modelling. The rationale beyond the

latter point is as follows. In the multiple punch case, the only free boundary of the

compressed half plane occurs between any pair of punches. As the punches indent

the half plane, the elastic material must extrude through these narrow openings. In

the case of two adjacent punches, instead, the free boundary which is external to

the pair of indenters can easily protrude: thus lowering the amount of extrusion in

the narrow gap between the two punches.

From Fig. 3.3.3.3.3 it also appears that for relatively large gaps the double

punch solution furnishes higher extruded volumes than the multiple punch

modelling. This result may be rationalized as follows. Since the comparison between

the two approaches is made for a unit contact pressure by the indenter centre, the

total load applied to any punch is much higher for the double punch approach than

for the multiple punch description, as a consequence of the rather different contact

pressure profiles characterizing the two above modellings (see Fig. 3.3.3.3.1) . The

higher total load is expected to produce a • greater indentation depth and,

consequently, a more relevant extrusion of the elastomer. The results of Fig.

3.3.3.3.3 indicate that this effect prevails only for relatively high gaps. In any case,

it should be remembered that the double punch modelling here developed is only

approximate, so that conclusions based upon physical considerations are inevitably

questionable.
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Fig. 3.3.3.3.1 :The normalized contact pressure profile by the punch extremity,

according to the single and multiple punch models.
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Fig. 3.3.3.3.2 :A convergence study on singular integrals computed

numerically and by series expansion.
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Radial Gap , [m] .

Fig. 3.3.3.3.3 : The extruded volume versus radial gap diagram for two modellings.
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3.3.4 The corrected bulk modulus measurements

This Section deals with the correction of the apparent bulk modulus by

accounting for the four sources of experimental errors mentioned in Section 3.2 : 1)

the flexibility of the press loading the piston; 2) the axial deformability of both the

piston and the bottom of the device; 3) the radial deformability of the metal hollow

cylinder; 4) the extrusion of the elastomer through the narrow radial gap between

piston and hollow cylinder.

Four values of increasing accuracy for the bulk modulus were elaborated via

a purposely developed computer program for the "Estane" 5714F1 and Hysol CF

4485 elastomers. The first figure is the apparent bulk modulus, as directly derived

from the experimental measurements. Only the first source of error is eliminated,

since the piston stroke is measured via a precision micrometer (gauge) acting

between piston and metal cylinder. Then, the second inaccuracy is simply

compensated by estimating theoretically the piston reduction in length due to the

axial load. The consequences of the hollow cylinder radial deformability are

subsequently corrected via the theory of Section 3.3.2 . The shear stress effects

describing the frictional force exerted by the rubber specimen against the inner

surface of the metal hollow cylinder are ignored. This is consistent with the

averaging between loading and unloading discussed in Section 3.3.1 , which

essentially frees the experimental values from the frictional effects. The

hydrostatic pressure affecting the elastomeric specimen is computed by accounting

for the (slight) increase in the elastomeric specimen end face diameters, as a result

of the metal cylinder expansion. Finally, the elastomer extrusion component is

compensated according to Section 3.3.3 .

Tables 3.3.4.1 and 3.3.4.2 present these four figures for four strokes and for

the two elastomers considered, namely the "Estane" 5714F1 and Hysol CF 4485

specimens, whose Young's moduli are 8.506 MPa ("Estane" 5714F1) and 3.52 MPa

(Hysol CF 4485), see Section 3.3.1 . The nominal value of the stroke is also

included. The corrected hydrostatic pressure (it accounts for the cylinder radial

expansion) is also indicated. These four corrections are generally of decreasing

importance.



bulk modulus MPa
	 Poisson's ratio

	

1578.5125
	

0.49910191

	

1650.5909
	

0.49914113

	

1674.4107
	

0.49915335

	

1674.4125
	

0.49915335

bulk modulus MPa
	 Poisson's ratio

	

2088.3168
	

0.49932113

	

2216.3593
	

0.49936035

	

2258.0063
	

0.49937215

	

2258.0122
	

0.49937215

bulk modulus MPa
	 Poisson's ratio

	

2255.2890
	

0.49937141

	

2405.3610
	

0.49941063

	

2453.8315
	

0.49942225

	

2453.8371
	

0.49942225

Chapter 3 Cubic Compressibility	 3.100

TABLE 3.3.4.1 : bulk modulus of the "Estane" 5714F1 elastomer

stroke - 0.292 mm

force	 - 10000 N

pressure - 20.184 MPa

Apparent

Piston deformation

Cylinder expansion

Specimen extrusion

stroke

force

- 0.489 mm

- 20000 N bulk modulus MPa

1885.8963

1989.7025

2023.7164

2023.7193

Poisson's ratio

0.49924827

0.49928749

0.49929947

0.49929947

pressure - 40.362 MPa

Apparent

Piston deformation

Cylinder expansion

Specimen extrusion

stroke - 0.662 mm

force = 30000 N

pressure - 60.536 MPa

Apparent

Piston deformation

Cylinder expansion

Specimen extrusion

stroke - 0.818 mm

force - 40000 N

pressure - 80.743 MPa

Apparent

Piston 'deformation

Cylinder expansion

Specimen extrusion



bulk modulus MPa
	 Poisson's ratio

	

1853.3203
	

0.49968344

	

1923.9855
	

0.49969506

	

1959.7581
	

0.49970064

	

1959.7640
	

0.49970064

bulk modulus MPa	 Poisson's ratio

	

2247.9189
	

0.49973902

	

2352.7299
	

0.49975064

	

2405.0336
	

0.49975607

	

2405.0385
	

0.49975607

bulk modulus MPa
	 Poisson's ratio

2373.2060

2490.3303

2548.1071

2548.1169

0.49975279

0.49976441

0.49976978

0.49976978
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TABLE 3.3.4.2 : bulk modulus for the Hysol CP 4485 elastomer

stroke - 0.347 mm

force	 - 10000 N

pressure - 20.182 MPa

Apparent

Piston deformation

Cylinder expansion

Specimen extrusion

stroke

force

- 0.616 mm

- 20000 N bulk modulus MPa

2089.3066

2179.5517

2225.0554

2225.0612

Poisson's ratio

0.49971920

0.49973083

0.49973634

0.49973634

pressure - 40.363 MPa

Apparent

Piston deformation

Cylinder expansion

Specimen extrusion

stroke - 0.859 mm

force - 30000 N

pressure - 60.536 MPa

Apparent

Piston deformation
I

Cylinder expansion

Specimen extrusion

stroke - 1.085 mm

force - 40000 N

pressure - 80.702 MPa

Apparent

Piston deformation

Cylinder expansion

Specimen extrusion
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The assumptions adopted in the evaluation of the bulk modulus are discussed

in the following. The bulk modulus is evaluated as the ratio of the hydrostatic

pressure to the relative volume change (Section 3.2.1). The pressure is supposed to

be uniform within the specimen; the final volume of the compressed rubber specimen

incorporates the extruded volume by the specimen top and bottom extremities.

The last assumption is discussed hereinafter. The fact that the specimen

deformed volume includes the extruded portions in the evaluation of the corrected

bulk modulus implies that, as a consequence of the correction accounting for

extrusion phenomena, the volume variation of the compressed specimen slightly

diminishes and its bulk modulus increases, as physically expected. The justification

for incorporating the extruded portions into the specimen compressed volume stems

from the assumption of uniform hydrostatic stress field within the specimen. In

fact, the contact pressure between piston bottom surface and elastomeric specimen is

mainly uniform, but it exhibits two localized pressure peaks by the piston border

(Fig. 3.3.3.2.6), so that the stress level in these portions is higher than that in the

adjacent regions. Conversely, the extruded volume is less stressed than the average

specimen level (Fig. 3.3.3.2.4), so that the presence of over and under-stresses

specimen portions should produce compensatory effects, and the corrected readings

should correspond to an ideal, uniformly stressed specimen.

In all cases, an axisymmetric gap between piston and metal cylinder cavity is

postulated (the undeformed hollow cylinder inner radius is 12.5582 mm (see Section

3.3.2.8) and the undeformed piston radius is 12.550 mm so that the initial radial gap

is 0.0082 mm), even if eccentricities between hollow cylinder and piston axes are

inevitably likely to occur during the piston stroke. In any case, the assumption

adopted still gives an indication about the sensitivity of the bulk modulus to this

correction.

Tables 3.3.4.1,2 also include the Poisson's ratios, based upon the Young's

moduli of Section 3.3.1 . The last correction does not appreciably alter the Poisson's

ratio value.

Figs 3.3.4.3 and 3.3.4.4 diagrammatically present the bulk . moduli (extracted

from the previous Tables; only the apparent and fully corrected values are
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reported) for the two elastomers, as functions of the applied pressure. As expected

from Figs 3.3.1.2,3 , the bulk modulus slightly increases (non-linearly) with pressure.

It is here observed that both the corrections connected to the cylinder

expansion and to the specimen extrusion influence only marginally the Poisson's

ratio ((Tables 3.3.4.1 and 3.3.4.2), so that the complex modellings presented in this

thesis for for these two corrections appear perhaps unjustified for the elastomers

under scrutiny. On the other side, it can be observed that these amendments would

permit less thick cylinders and less stringent tolerances to be used. In addition, the

above corrections are more important for an elastomer closely approaching

incompressibility, so that there might well be joint rubbers for which such refinings

become more significant.

It is finally observed that an error analysis was not effected on the

reliability of the reported readings. It is usually admitted that the Measurements of

the Poisson's ratio are reliable up to at least four decimal digits, so that for the

readings here presented, which are fully corrected, five or more decimal digits are

deemed to be valid. In the case of the "Estane" 5714F1 elastomer (E = 8.506 MPa),

the bulk moduli for, say, v =--- 0.499422 and Y = 0.499423 are 2452.7107 MPa and

2456.9613 MPa , respectively, thus providing an indication about the relative

influence of an inaccuracy of v on K .
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pressure . [MPa]

Fig 3.3.4.3 : The apparent and fully corrected bulk modulus as function of the

applied hydrostatic pressure, for the "Estane" 5714F1 elastomer.

pressure . [MPa] -

Fig 3.3.4.4 : The apparent and fully corrected bulk modulus as function of the

applied hydrostatic pressure, for the Hysol CF 4485 elastomer.
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3.4 CONCLUSIONS

A piston device has been built to measure the cubic compressibility of

elastomeric materials. Theories have been developed to correct the experimental

measurements by accounting for elastic distortions of the device and possible

extrusions of the elastomeric specimen. Apparent and compensated values of the

bulk moduli have been obtained for two elastomers of practical relevance, which

indicate the relative importance of such corrections.
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4.1 INTRODUCTION

This Chapter deals with the deflections of a deformable layer firmly bonded

to a rigid substrate and frictionlessly compressed by a rigid indenter. Several

engineering applications can be described in terms of the title problem. For instance,

Parish (1958) mentions applications in the textile industry and, more generally

(Parish (1961)), in the processing of materials in sheet forms. Miller (1964) refers to

rotary letterpress and lithographic printing. Hooke (1986) employs the layer theory

to analyze bearings with rubber linings. Matthewson (1981) mentions the use of

elastic coatings to protect aircraft components from rain erosion. A leading ball

bearing company is experimenting with cases coated with elastomer to reduce

friction (GabeIli and Jacobson (1990)). Finally, applications of the layer theory are

recorded in the field of Biomechanics. For instance, Armstrong (1986) studies the

contact pressure in the articular cartilage in a synovial joint, described as a

biphasic material. Unsworth, Pearcy, White and White (1987) examine experimentally

an artificial hip joint covered with an elastic layer. Jin (1988) deals with micro-

elastohydrodynamic aspects in synovial joints described via the title model.

This Chapter addresses the mechanical behaviour of an elastic layer having

in mind rubber covered artificial hip joints (for which the plane model of this

Chapter is a first order approximation), or, alternatively, aiming at applications in

the field of knee joints, and its outline is as follows. The second Section presents a

literature review, and underlines the fact that two main analytical. approaches are

available. The third Section presents a solution method developed by the writer and

based upon an approximate analytical integral approach. The fourth Section further

develops an already existing approximate differential theory. A comparison between

theoretical predictions and experimental readings is deferred to Chapter 5 .
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Fig. 4.1.1 : A cylindrical indenter compressing a layer anchored to a substrate.
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4.2 LITERATURE REVIEW

As already mentioned, two main approaches to the layer problem can be

traced in the literature. The first description, here named "the integral approach"

because it leads to an integral equation, is reviewed first. The second method

examined is called "the differential approach" because it reduces to a differential

equation.

A fundamental paper describing the mechanical behaviour of an elastic layer

in terms of a Fredholm integral equation of the first kind was produced by Hannah

(1951). By extending a method based upon Fourier integrals developed by Coker and

Filon (1957) for a similar case (see p. 436), she obtained the expression for the

transverse displacement of the free boundary of the layer bonded to a rigid

substrate and loaded by a unit transverse concentrated force. In other words, she

developed the Green function for this elasticity problem, on whose grounds the

practically more relevant problem of a layer loaded by a distributed pressure can

also be described. More exactly, Hannah (1951) treated the generalized plane stress

situation. The plane strain configuration, more common in practical applications,

requires a simple modification of the elastic constants, and it was developed by

Parish (1957), to produce an integral representation • of the Green function. An

extension of the Green function for the configuration of an elastic layer supported

by a Winkler foundation is given by Dempsey, Zhao, Minnetyan, and, Li (1990).

It can be shown that, similar to the Boussinesq case (Timoshenko and Goodier

(1970)), the vertical displacement becomes infinite under the load (Hannah (1951))

but, contrary to the Boussinesq results, the vertical displacement of the layer free

boundary dies away in the regions sufficiently far from the point of application of

the load.

Concerning the reliability of a Boussinesq-type approach in modelling the

distortions of a deformable layer, De Mul, Kalker and Fredriksson (1986) report an

observation due to Reusner, taken from a thesis quoted in their reference list but

not accessible to the writer, dealing with the description of the deflections of a

deformable body of finite depth according to the theory of elasticity. They write :
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"Modeling a body of finite depth by a half space is often questionable. Reusner

observed when playing with a rubber eraser on a table top, that under a load the

rubber gave way at the pressurized area, but at some distance from this area the

surface of the rubber hardly moved. This was not as predicted by the half space

theory . . " . Another word of caution on the physical correctness of a Boussinesq-

type solution is expressed by Parish (1958), who noted that "Most of the

(experimental/ pressure distributions were noticeably different in shape front the

theoretical distributions." He attributed such discrepancies to "non-linearity in the

elastic properties of rubber." In a following paper, Parish (1961) proposed a design

formula based upon a Hertzian expression corrected via empirical coefficients, thus

abandoning Hannah (1951) formulation, which he must have believed as theoretically

more sound but weaker from a reliability viewpoint. Anyway, other researchers (e.g.

Miller (1964)) found a good : correlation between experimental measurements and

theoretical forecasts.

As noted by Bentall and Johnson (1968), the integral in expression (4.2.1) is

analytically "intractable" and, there f ore, no relatively simple results as those

describing the parallel case of a half plane loaded by a concentrated force (Hertz

solution, see Johnson (1985)) are available. Even when the integral of the expression

for the displacement due to a concentrated load has been estimated, other formidable

difficulties are encountered when the case of a rigid indenter pressing a deformable

layer is treated. In this case, the contact pressure can be described in terms of a

series of adjacent infinitesimal forces acting simultaneously. In other words, this

problem can be formulated in terms of an integral over the contact length, where

the pressure profile multiplies a kernel expressing the displacement due to a

concentrated load (eqn 4.3.2.1)), which represents the Green function (influence

function) (Tuncel (1964)). The indenter profile and the indentation depth are known,

whereas the pressure distribution is the unknown. The deflection of the pressed

layer border must conform to the indenter profile. In other words, the problem at

hand can be formulated in terms of a Fredholm integral equation of the first kind

(Gladwell (1980)). In summary, two difficult integrals have to be dealt with, the first

connected to the Green function, and the second encountered in the integral

equation.
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The approximate methods which have been developed to solve the Fredholm

integral equation can be classified into two main categories, namely an essentially

numerical approach, referred to in the following as "finite element", and a "series"

solution.

The finite element formulation is analyzed first. This method has been

employed in several papers (Conway and Farnham (1968a), Loss (1964), Bente11 and

Johnson (1968)). Essentially, the (estimated) contact length is divided into a series of

elements defined by nodes, and the contact pressure is approximated by a piecewise

constant (e.g. Conway and Farnham (1968a)) or piecewise linear ' (e.g. Bentall and

Johnson (1968)) curve, which is related to the position of the element nodes. By

substituting the simplified pressure profile in equation (4.3.2.2.), it is possible to

express the displacements at the centres of each element (piecewise constant

pressure profile) or, alternatively, at the nodal points (piecewise linear pressure

profile) as functions of the pressure values at the centres or at the nodes of the

elements, respectively. These values must coincide with the imposed displacements

referring to the previously mentioned points (collocation approach), to form a set of

linear algebraic equations whose solution supplies the approximate pressure profile

curve. Since the contact length is . generally not known a priori (unilateral contact

problem, (Cannarozzi (1980)), some iteration may be necessary to define it. This

aspect will be examined in Section 4.3.3. .

Some papers dealing with the numerical treatment of contact problems

explicitly report the possible outcome of numerical instabilities, especially when

Gauss-type solvers are employed in. the solution of the discretized problem. In other

words, the pressure profile was sometimes found to be affected by spurious

numerical undulations or unrealistic concentrated pressure peaks. Such papers

include Poulos (1968), Hooper (1974), Sing and Paul (1974), Hartnett (1979), Hartnett

(1980), Ahmadi, Keer and Mura (1983) (who actually refer to numerical instabilities

encountered by other researchers), Solecki and Ohgushi (1984) (who mention the

possible outcome of ill-conditioned matrices), and Dragoni and Strozzi (1989). In

other papers, however, it is clearly stated that numerical instability problems were

not encountered at all, even if direct solution procedures were used. These works

include Brothers and Sinclair (1977), and Bentall and Johnson (1968). It is not easy to
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clarify which physical parameters render either stable or unstable numerical

schemes that look similar. However, it appears from the above-mentioned papers

that, contrary to the pessimistic remarks of Rice (1983), p. 145, a relaxation-type

solver (Hartnett (1979)) effectively smoothes out the spurious pressure undulations

often delivered by Gauss-type solvers.

The solution of the Fredholm integral equation via a "series" approach is now

considered. Hannah (1951) expands the pressure profile in terms of a Fourier series

(plus a singular term), and computes the series coefficients. Meijers (1968) expands

the regular part of the contact pressure in the form of a power series, and finds

the coefficients via a perturbation approach. Mozarovsky, Shylkc, and Starzynsky

(1986) develop a similar solution. Additional perturbed terms are computed by Jaffar

and Savage (1988). Series expansions are employed by Wu and Chiu (1967) in an

abstract paper. Finally, eigenf unction expansions are adopted by Smith (1964), who

reports a load formula as function of the normalized contact width.

The series technique supplies analytical, although approximate, solutions,

but it is practically applicable only to relatively simple indenter profiles, where flat

and circular (approximated by a parabolic curve) shapes are the most frequently

studied. As a consequence, the series solution does not practically lend itself to the

treatment of soft lubricated conjunctions, where the deformed profile can exhibit

complex features (Prati and Strozzi (1984)). In addition, it must be remarked that, in

biomechanical applications, the contact width between cylindrical indenter and cup

can be high and, therefore, a parabolic approximation may lead to questionable

results (Mattewson (1981)).

Always with regard to the integral approach, an alternative solution method

to the perturbation scheme is now considered. In the perturbation solution the

original problem is decomposed into a series of hopefully simpler sub-problems, for

which exact solutions are often derived. On the contrary, according to the

alternative approach here discussed, the kernel is substituted by a properly

simplified version, and this single, approximate integral equation is amenable to

closed form solutions. In this respect the works of Latta (1956) and of Shinbrot

(1959) are pertinent, who develop a method for solving exactly a class of Fredholm

first kind integral equations. Ling (1959) and (1973) report various examples of
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integral equations solved exactly. This method has been extended by Pearson (1957),

who in fact quotes the strip problem. Margetson (1970) follows a similar trend,

obtaining a closed form solution for a simplified integral equation, where the kernel

is expanded in terms of Chebyshev series. An open point concerning this solution

technique is that the examples of Latta (1956) clearly show that a (the) solution

exists provided that certain links hold among the coefficients of the kernel

expansion. This may imply that the solution obtained is valid only for certain

elastic constants or geometrical proportions, a difficulty which is not encountered

with perturbed solution methods. It is believed that this aspect should deserve more

attention with regard to the layer problem.

The second solution method for the title problem, that named "the

differential approach" is now reviewed. The basic paper is that of Armstrong (1986),

where the author reformulates the plane equilibrium differential equations in

Cartesian coordinates in terms of normalized displacements and of an e perturbation

parameter, which expresses the ratio of the layer thickness to the (yet unknown)

semicontact length. He solves the case of compressible materials for the e°

(Armstrong (1986)) and e 2 (Armstrong (1988)) terms, and treats the situation of

incompressible layers for the E2 order (Armstrong (1986)). Following a perturbation

scheme (Bender and Orszag (1978)), he faces difficulties in properly expressing the

boundary conditions. When higher-order terms are considered, the order of the

differential equation increases too, thus requiring additional boundary conditions. In

Armstrong (1988) the author imposes a vanishing pressure gradient by the contact

extremities for compressible materials, which is a questionable condition. In addition,

the coefficients of the highest order differential term rapidly vanish as the

perturbation order is increased, thus giving rise to a singular perturbation problem

(Bender and Orszag (1978)), which is affected by numerical problems in treating the

boundary conditions. Okubo (1951) studies the case of an elastic half plane loaded

by a deformable, rectangular punch, via a stress function-type solution, which does

not involve the treatment of an integral equation.

The differential approach supplies an analytical, although approximate,

pressure profile but, similar to the integral approach solved via a series technique,

its practical applicability field is limited to simple indenter profiles.
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Some papers dealing with the compressed layer employ traditional finite

element packages (e.g. Hooper (1974), Komvopoulos (1988), BjOrkman (1991)), but

these studies are believed to be more relevant from a technical viewpoint than from

a scientific standpoint.

The pertinent literature is now examined with regard to the applicability of a

purely Hertzian approach to layers of finite depth. In other words, which is the

ratio of the layer thickness to the contact semiwidth, beyond which the Hertzian

formulae, referring to an infinitely deep half plane, produce a contact pressure

hardly distinguishable from the theory which accounts for the narrowness of the

layer thickness ? Nowell and Hills (1988) claim that this ratio is 10. Hui Li and

Dempsey (1988) favour a ratio of about 6 for the case of a beam resting on elastic

foundations. Matthewson (1981) favours a ratio as low as 1 for an axisymmetric
. -

situation. Finally, Miller and • Poulter (1962) and Miller (1966) claim that Hannah

theory is appropriate when the contact width is less than four times the strip

thickness. In addition, BjOrkman (1991) examines numerically the influence of

geometrical non-linearities for the situation of a rigid cylinder indenting a very

thick layer mimicking an elastic half space, for v — 0.42 . Two indentation depths

are imposed. The first case treated exhibits a ratio of contact semiwidth to cylinder

radius of 0.581 (6 R/h 2 0.0033), and the second situation shows a ratio of 0.774

(6 R/h2 . 0.0084). The Hertzian peak pressure overestimates the numerical

forecasts by 3.7 percent for the first case, while it underestimates the finite

element predictions by 12 percent for the second circumstance. While the first

mismatch may be partially imputable to errors in measuring the relevant data from

Figs 9 and 10 of Bj6rkman (1991) , the second, more substantial disagreement can be

confidently attributed to nonlinear effects. In fact, the geometrical distortions

imposed to the layer in Figs 9 and 10 of BjOrkman (1991) look appreciable. The trend

of the second error is also consistent with Fig 6.5.2.1 , indicating that for a

prescribed indentation depth the non linear effects stiffen the layer, thus producing

a higher peak contact pressure. (The useful part of the curves of Fig. 6.5.2.1 is in

fact visible only for much higher 6 R/h 2 values). For the same load, lower

displacements are expected (at least for nearly incompressible materials) as the

cylinder radius is increased and, consequently, the contact width becomes wider,



Chapter 4 The Plane Strain, Flat Elastomeric Layer 4.10

since the stress field under the indenter is essentially hydrostatic, and scarcely

incompressible materials behave in a very stiff fashion when compressed. It can be

concluded that the effects of the large deformations as derived from BjOrkman

(1991) paper look modest, and they are expected to become smaller in biomechanical

applications, characterized by higher contact widths.

As a final point, the pertinent literature is now analyzed with reference to

the Poisson's ratio effects. It is known that, as II approaches the incompressibility

figure 0.5, the actual situation can be mimicked by adopting a perfectly

incompressible model whereas, as I/ is far from 0.5 (say, 0.46, which is a low figure

for an elastomer, see Section 3), a Winkler-type model (Johnson (1985)) is applicable.

Some authors indicate the transitional value of Poisson's ratio, under which a

Winkler model is preferable, and beyond which an incompressible approach is

applicable. Bentall and Johnson (1968) suggest that the Winkler results be applied

for I/ < 0.45 and the incompressible results be valid for v > 0.48 . Armstrong (1988)

correctly proposes that the V transition figure depend upon the contact semiwidth,

a , and the layer thickness, h , according to the following formula : (h/a) 2	(1 —

2 0(1 — v)/(4 v — 1) . This expression suffers from the limit that the contact

width is not generally known. Finally, Jaf far (1988),(1989) examines the effect of a

perturbation of v for an axisymmetric case, but he does not clearly indicate a

transition value for V .
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4.3 INTEGRAL APPROACH

4.3.1 Introduction

In this Section an approximate analytical expression for the Green function is

obtained (Chapter 4.3.2) and, then, a finite element solution is developed for the

case of a rigid cylindrical indenter pressed against a deformable layer firmly

anchored to a rigid foundation (Chapter 4.3.3). The numerical results are presented

in Section 4.3.4. Finally, part 4.3.5 is devoted to an appraisal of Meijers (1968)

theory.

4.3.2 The approximate evaluation of the infinite integral

The transverse displacement of the free surface of a layer firmly bonded to

a rigid substrate and acted upon by a unit transverse concentrated force applied at

x - 0 (where x is the distance from the contact centre along the undeformed layer

loaded border) is (Jaffar and Savage (1988))

oo

v(x) - 2X j2(k sinh (2w) — 2w) 
ir	 cos ( -x---L-Ii ) dw

w (2k cosh (2w) ± 4(02 -I- k2 ± 1)	
t

0

(4.3.2.1)

where X - (1 - v2) ' k = 3 - 4 v , E is the Young's Modulus, v the Poisson's ratio,
E 

and w is an integration device. Since for elastomeric materials v approaches the

incompressibility value 0.5 , k 1 . Fig. 4.3.2.1 presents the deformable layer of

thickness t , firmly bonded to a rigid substrate and indented by a rigid cylinder of

radius R, a case for which the Green function is expressed by eqn 4.3.2.1 . In

addition, a indicates the semicontact width and 5 the indentation depth.
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Fig. 4.3.2.1 : The meaning of symbols a, R, t and 6.

It is derived from equation (4.3.2.1) that, when a distributed pressure, p, acts

upon an elastomeric layer bonded to a rigid substrate, the transverse displacement,

v, of the upper boundary of the layer can be expressed via the following integral

equation :	 b

v(x) –	 J p(s) K(x — s) ds	 (4.3.2.2)

a

where a and b describe the extremes along x-axis of the layer boundary segment

subject to a distributed pressure p , and K represents the following influence

function

co

K(x — s) . j 	 2(k sinh (2w) — 2w) 	 (x — s)w ) dw (4.3.2.3)
w (2k cosh (2w) ± 4(4)2 

± k2 ± 1) cos (	 t

0



Chapter 4 The Plane Strain, Flat Elastomeric Layer 4.13

It is the aim of this Section to determine an analytical approximation of the

integrand of expression (4.3.2.1), which can be integrated in closed form according to

(4.3.2.3) . Moreover, such an integral (4.3.2.3) , once multiplied by a simple pressure

profile discretization (e.g. uniform or linear approximations, see Section 4.3.3),

should be analytically integrable according to equation (4.3.2.2) . (For a somewhat

similar approximate integration, based upon simplified integrands, see Sneddon (1946).)

To this end, the behaviour of the following part of the integrand of (4.3.2.1) is

examined
2(k sinh (2w) — 2w)

w (2k cosh (2w) ± 4w2	k2 ± 1)
(4.3.2.4)

This function dies away for CO —n co as 11w . Fig. 4.3.2.2 shows function

(4.3.2.4) together with its approximation 11w , for I/ = 0.5 and i/ = 0.46 . The

exact kernels for both ii= 0.5 and 0.46 become hardly distinguishable from

function 11w for CO � 5 . The influence of a change of Poisson's ratio becomes

appreciable for small (4 values. For 1/ different from the incompressiblity values 0.5,

the Meijers kernel does not vanish for Gi = 0 . For very small U.) , expression

(4.3.2.4) is detailed in Fig. 4.3.2.3 , only for ii = 0.5 . The following results hold

true for any Poisson's ratios (the approximate values given for the following

formulae refer to v = 0.5 , that is, k	 :

4 	2(k sinh (2w) — 2w) 	 —	 k — 1/im	
--. 0 w (2k cosh (2w) ± 4(02 	k2 + 1)	 (1 + /02

2(k sinh (2w) — 2w) 	 — 0
Um I w --. 0 d w w (2k cosh (2w) ± 4(02	k2 + 1)

I

	

d 	 —2 	 2(k sinh (2w)	 2w) 	 16 (3 — k) (2 — k)urn „	 =dv d 2.w w (2k cosh (2w) ± 4w2	k2 -I- 1)	 3	 (1 + k2)"	
1.33

Um I	 d3 	 2(k sinh (2w) — 2w) 	
0	 (4.3.2.5)

w -4 	 dw3 w (2k cosh (2w) ± 4(02	k2	1)
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These analytical results correlate well with Fig. 4.3.2.3 , where function

(4.3.2.4) vanishes together with its derivative (at least for v = 0.5 , see (4.3.2.5))

for w = 0 . For Poisson's ratios other than 0.5 , the derivative still vanishes, but

the function no more vanishes for w = 0 (see Fig. 4.3.2.2) . The curvature, instead,

is always positive.

The properties of (4.3.2.4) freed from term 11(0 are now analyzed. In other

words, the following function is studied

2(k sinh (2(0) — 2(0)
(2k cosh (2w) ± 4(02 ± k2 ± 1)

(4.3.2.6)

Fig. 4.3.2.4 displays function (4.3.2.6) for two different v values. As

expected, this function approaches unity for w = 5 . For small (0, the effect of a

change in v becomes noticeable. Fig. 4.3.2.5 reports expression (4.3.2.6) for small w

and for a selection of Poisson's ratios, and evidences the effects of v. It is

instructive to study analytically the behaviour of (4.3.2.6) as w . 0 . The

following results hold true (the approximate values refer to v =0.5, that is, k1)

2(k sinh (2(0) — 2w) —0Urn I w . 0 (2k cosh (2w) ± 4w2 ± k2 + 1)

d 	 2(k sinh (2w) — 2w) 	 4 . k — 1	 0
x)2uml w-.o c 1 W (2k cosh (2w) -± 4(02 -I- k2 ± 1)	 (1 +

d2 	 2(k sinh (2w) — 2w) 
_ 0Urn I w , 0 d(0

2 (2k cosh (2w) ± 4w2 + k2 ± 1)

16 (3 — k) (2 — lc) ch, 1.33d3 	 2(k sinh (2w) — 2w) urn o j -; 0 d (03 (2k cosh (2w) ± 4w2 ± k2 ± 1)	 3	 (1 ± k2)3

(4.3.2.7)



Chapter 4 
0.4

0.36

0.32

0.28

a)	 0.24

L.
a)

The Plane Strain, Flat Elastomeric Layer 4.15

I!1

\ _

—
—

.t1 	 0.5

Heijers .0 	 0.46

function 110

FAL _____

IN
ifeijers

____

1

f—

I	 2	 4 6	 '	 8 10	 12	 14	 16	 18	 20

0.20

0.16

0.12

0.08

0.01

0.00

Coordinate
Fig. 4.3.2.2 : Function (4.3.2.4) and its 11w approximation, for V	 0.46 and 0.5.

0.0020

0.0018

0.0016

a) 0.0314

L_
0.0012

coL_ 0.0)10

a)
0.CCO8

:E: plum

0.0004

0.B2

0.010
0.

ti- 0.5

--------------77
CO	 0.0O5	 0.010	 0.015	 0.020	 0.025	 0.11:0	 0.835	 0.040	 0.045	 0.0

CO Coordinate

Fig. 4.3.2.3 : Function (4.3.2.4) , for II =" 0.5 and for small W.



M
CL_
M

M
L._
M
--.

M
ME

1.0

0.9

0.8

0.7

0.0

0.5

0.4

0.3

0.2

0.1

0.00

Chapter 4 The Plane Strain, Flat Elastomeric Layer 4.16

, , ,-'
'

, , , , ,-

,i

,
1

/
/

it- 0.5

u- 0.40

,,/ ----
, , ,

i ----
,

./

,- ,

,,-

0 05	 10	 1.5 20	 25	 30	 35	 4.0	 45	 51

C.) Coordinate

Fig. 4.3.2.4 : Function (4.3.2.6) for ii = 0.5 and 0.46 .

...-.

I	 1	 1	 17

0.0121 - u = 0.5___ .
/

0.1124 - -___	 u - .49 / /

0.11121- u- .48

0.0318 - u - .47 x/-

---
, „

0.0015 - I/ - - 48 .

,

/I/0.0012 --_,--

0.0009
/

/ / .

0.0003

1010 k"
0.005	 O. 100.015	 0.020	 0.025	 0.030	 0.0350.0013 0.040	 0.945	 0.1)

G.) Coordinate

Fig. 4.3.2.5 : Function (4.3.2.6) for t/ - 0.5, 0.49, 0.48, 0.47, 0.46 and for small (.0 .



Chapter 4 The Plane Strain, Flat Elastomeric Layer 4.17

From Fig. 4.3.2.5 it clearly appears that the first derivative is zero only for

ii = 0.5 . Independent of the value of v, all curves are nearly linear in the vicinity

of w = 0 , since the second derivative vanishes for any .// value, see (4.3.2.7) .

Having explored the main aspects of functions (4.3.2.4) and (4.3.2.6),

expression (4.3.2.4) is approximated via an integrable (in the sense of (4.3.2.3))

function. An approximation for high w is first sought for, by analyzing the

asymptotic behaviour of (4.3.2.4) for w –• co and, subsequently, an approximation

for small w is explored. As already mentioned, function (4.3.2.4) behaves

asymptotically as 11w for large values of w . If one subtracts from the original

function (4.3.2.4) its asymptotic approximation, 11w , the resulting function vanishes

more rapidly as w –• co. This technique — known as Kummer method (Knopp (1928),

p. 260) — is usually employed to improve the convergence, of the sum of numerical

series (e.g. Barton (1941), Strozzi (1989)). If this technique is repeated, that is, if

one subtracts from this resulting function its new asymptotic approximation (Strozzi

(1989)), one expectedly further enhances the trend of the newly modified function to

vanish starting from increasingly lower values of w . So doing, a kind of series

expansion of the original function is generated, whose terms are suggested by the

behaviour of the function for w –• co . Unfortunately, the iterated application of

this technique will not necessarily be increasingly beneficial, since a function

becoming vanishingly small for increasingly lower values of w is desired, by

exploiting data related to w = 00 . In other words, when the degree of extrapolation

of the function — evaluated from data referring to w = óo • — to'. represent its

value for a relatively low w becomes exceedingly large, the iteration scheme here

proposed may fail to be advantageous. Anyway, the optimal number of iterations can

be evaluated by numerical tests. Eventually, a vanishingly small function for values

of w relatively low up to infinity is obtained. This function is in fact the

difference between the original expression (4.3.2.4) and its subsequent asymptotic

approximations. In conclusion, a good approximation of (4.3.2.4) valid for a wide

interval of w values — from a finite figure up to infinity — is the sum of its

subsequent asymptotic approximations.

Another point deserves some comments. Since an exact integral - of an

approximation of (4.3.2.4) is desired, it is important that the following asymptotic
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expansion terms, once multiplied by cos function (see (4.3.2.3)), be analytically

integrable. Since there is generally more than one asymptotic approximation for a

given function, it is necessary to select the one whose product by cos function is

exactly integrable. These inevitably abstract comments will hopefully become

clearer in the following text, where the strategy just summarized is applied to

expression (4.3.2.4) .

As already mentioned, function (4.3.2.4) behaves asymptotically as 1/(0 .

Anyway, this asymptotic approximation, once multiplied by cos function, is not

integrable in closed form. In other words (GrObner and Hof reiter (1958), second

volume, p. 121, n. 333.22b)

(x — s)w a, w	 integralcos (x	 s)a
t

(4.3.2.8)

which is not expressible analytically and, when a 	 0

co
10 cos ( (x	 s)w 1w.=00

0

(4.3.2.9)

Jin (1988) , p. 297, follows this path, by computing ihe cosine integral via a

NAG library routine.

The mechanical interpretation of result (4.3.2.9) is as follows. When the

vertical displacement of the layer upper boundary loaded by a concentrated force

applied at x	 0 is studied, this displacement at a generic coordinate y from the

same origin of x-axis becomes infinite as y 0 . In other words, the displacement

under the applied concentrated force is unbounded. Unfortunately, this singularity

is not analytically expressed by (4.3.2.8,9) . This singular behaviour occurs also in

the case Of a half plane loaded by a concentrated force (Johnson (1985)) . In

addition, a comparison with the half plane case suggests that the displacement

singularity in the vicinity of the applied force be logarithmic. With these premises
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in mind, an analytically integrable asymptotic expression equivalent to 11w is now

sought for, and it is conjectured that, if this equivalent approximation is correct,

its integral according to (4.3.2.3) contains a logarithmic singularity. Gladwell (1976)

proposes the following equivalent asymptotic expression

2(k sinh (2w) — 2w) 	 1 — e-(1°)	 (4.3.2.10)
w (2k cosh (2w) ± 4w2	k2 ± 1)

for which the following integral exists in closed form (GrObner and Hofreiter (1958),

second volume, p.140, n. 336.13c ), exhibiting, as expected, a logarithmic singularity

as X --P S

-QC()
1	 e	 (x —	 (x — s)— cos 	 äw = log 1 tog fq2 	 - S)2

2	 t2

(4.3.2.11)

It is clear that the above (4.3.2.10) asymptotic function behaves as 11w for

high values of w, since the exponential function vanish-es quickly. The selection of

coefficient q to be given to the exponent of the exponential function is problematic.

Gladwell (1976) chooses q = 2 . It is shown in the following that the "spurious"

function introduced, e -2(1)/w , vanishes more rapidly than the term obtained by

subtracting from the previous function the asymptotic expression (4.3.2.10) . This

point will be further examined later, but an optimization of such an exponent is

beyond the scope of this study.

Once term (4.3.2.10) has been subtracted, the remaining function behaves

asymptotically for CO -n co as

2(k sinh (2w) — 2w) 	 1 — e-2(4) -P - 4 CO e-2(&) (4.3.2.12)
w (2k cosh (2w) + 4w2	k2 ± 1)
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which is analytically integrable in the sense of (4.3.2.3) (Graner and Hofreiter

(1958), second volume, p. 139, n. 336.4c)

00
4 I	 -20.)	 (x — s)w cus)--  w e cos (

0

(x — s)24
4	 t2

[4	 (x — s)212

t2

(4.3.2.13)

By proceeding similarly, the new function obtained by subtracting to the

previous expression the asymptotic term (4.3.2.12) behaves asymptotically as

2(k sinh (2w) — 2w)
w (2k cosh (2w) ± 4w 2	k2 ± 1)

1 — e-2w , 4	 -2(4)-r- k w e	 — 4 e-2w

(4.3.2.14)

and this asymptotic approximation too is analytically integrable in the sense of

(4.3.2.3) (GrObner and flofreiter (1958), second volume, p. 135, n. 335.2)

co

e-2w cos (x — s)w dco	 4 	 2 
k4	 (x — s)2

0	 4+
t2

(4.3.2.15)

By insisting with this procedure, one subtracts the approximation of (4.3.2.14)

and obtain the subsequent asymptotic approximation

w (2k cosh (2w) + 4w2	k2 + 1)
2(k sinh (2w) — 2w) 1 - e-2(4)	 4 w e -2w	 4 -2wk e



k — (1 ± k2) e-2W

k	 co (4.3.2.16)

k - (1 -I- k2) e-2W _ e-4C0

k	 co (4.3.2.18)

k — (1 ± k2) C2(1) — e"c° (4.3.2.19)
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Anyway, this approximation (4.3.2.16) is not analytically integrable

(Gradshteyn and Ryzhik (1980), P. 489, n. 3.941.2) since

oo
k — (1 ± k2) j

k
o

-2W
e	 [(x —

t
s)(4cos	 ) clw = CO

w
(4.3.2.17)

The fact that this integral is unbounded is not due to the behaviour of the

integrand for w . oo , but to its singularity when w -. 0 . In fact, the integral

parallel to (4.3.2.17) in which function cos is substituted by sin — which behaves

similarly when w ---• 00 but not when co -. 0 — is finite (Gradshteyn and Ryzhik

(1980), P. 489, n. 3.941.1). As previously seen, in this case an equivalent asymptotic

expression must be resorted to, which is analytically integrable. The following

function possesses this property

and (4.3.2.16) must be rewritten in the following way

2(k sinh (2w) — 2co) 	 1 _ e-21.0 4
-F	 w e

2W-	 4 -2W
-	 -F.	 e

w (2k cosh (2w) + 4w2 ± k2 + 1)	 co	 k	 k
nnn

The integral of this equivalent asymptotic expression is (GrObner and

ofreiter (1958), second volume, p. 140, n. 336.12b) :



co

W 3
e

-4W cos
r (x — s)u) I du)
I	 t	 Jk2

0
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CO
k — (1 + k2 ) I	 -2W—

	
-4We	 e	 f (x — 8)(`) ) a'w

k
cosw	 1	 t

0

k — (1 ± k2) 1 r
k	 t2ln 1.16 ± (x — 8)2 )	 in (4 ± (x —2 8) 2	 2 ) /	 (4.3.2.20)

t

By proceeding forward, the approximation (4.3.2.19) is subtracted to obtain

the subsequent asymptotic approximation

2(k sinh (2w) — 2w) 	 1 — e-2cd	 4	 -2w
w (2k cosh (2w) ± 4w2 ± k2 ± 1)	 co	 ± 

T 
co e	 +

k— (1 ± k2 )	 c2co _ e- 4 (4)
—4 e-2W
k	 k	 w	 --.	 we16. 3 -4w

k2

(4.3.2.21)

The integral of this equivalent asymptotic expression is (GrObner and

Hofreiter (1958), second volume, p. 139, n. 336.4a)

16 	 8 	 ( 163 (x 7
2 

8)2 )—
k2 (16 Hp 

ex __ s)21 3

t2	 j

(4.3.2.22)

The last approximation considered in this study is that of (4.3.2.21) . The

approximation (4.3.2.21) is subtracted from the left-hand member of (4.3.2.21) to
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obtain the subsequent asymptotic approximation

e-2(4)

	

2(k sinh 	 1(2w) — 2w)	 4 w e -2W

	

w (2k cosh (2w)	 4w2	
	  -I-

k2 ± 1)

4	 —2Cc)	 k — (1 -I- k2)	 e-2w — e 4- W

lk

62 (8)3e -4W 	 L6 (4)2e-4W

Tc 6	 k2

(4.3.2.23)

The integral of this equivalent asymptotic expression is (GrObner and

Hofreiter (1958), second volume, p. 139, n. 336.4a)

co
16 1	 2 -4W

we	 cos ( (x —)wt s ) du.) =
k2

0

16 	 6	
,	 ( 256 — 96 

(x — s)2 _i_ (X — s) 4 )
t

2	 ,	
t4	

(4.3.2.24)
k2

(16+ (x — s)-1 4
t2	

j

It was decided not to compute extra asymptotic terms, since the numerical

tests indicated that no appreciable advantage could be achieved.

The sequence of asymptotic terms is now re-obtained in a slightly different

way, which is perhaps clearer, and which permits the numerical value to be

attributed to coefficient q of the exponent of formula (4.3.2.11) to be discussed in

deeper detail. The following truncated series expansion is employed

1	 ,2
mw	 1	 X lr	 -- • • •1	 x

(4.3.2.25)
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Now, kernel (4.3.2.4) can be rewritten as

2(k sirth (2w) — 2w)	 —	 k €2(1) — 4w — k e-2W

co (2k cosh (2w) + 4w2 ± k2 + 1)	 co (k e2w ± 4w 2 ± k2 + 1 ± k e)

k e2w — 4w — k e-2w 

w k e2W (1 ± 4w2 ± k2 ± 1 -I- k e2)

k e2w

=

(1	 4-Wk (7) — Tc- e	 —
—4(s)	 1 e	 N

(4.) )	

40)2 ± k2 ± 1 ± k e-2(8) 
)(1 ±

k e2c°

(4.3.2.26)

By applying (4.3.2.25), it is obtained

e-4co(14,71 e-2W _
co )	

1 

1	 4	 -2w	 4 -20.)	 1 -I- k2 e-26)	 16 3 -4(0	 16 2 
e 

—4Cs)
— w e — e

(7)	 k	 Tc-	 k	 co	
+—co 6

-4W 	 — 6.)	 + ..
k2	 k2

(1 ± 4w2 ± k2 ± 1 ± k e-2w )
k e2W

(4.3.2.27)
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The final expression of (4.3.2.27) represents an asymptotic approximation of

kernel (4.3.2.4). Anyway, it contains two asymptotic terms, namely 1/w and (1 + 1c2)

-2e w/(k w) , which cannot be integrated in closed form in the sense of (4.3.2.1) . To

overcome this problem, in (4.3.2.27) one sums and subtracts terms e-2w/w and (k —

(1 + k2)) e-4('̀ )/(k w) , to obtain

1	 4	 -2w4 -2(.0	 1 ± k2 e-2(1)
k	

,	 16 3 -4ce	 16 2 -4w ,
(7) — lc- w e	 — E e w -r —

k2 
w e	 ± 

IT2 
CO e	 -r • • =

w e-2w 4 -2we	 ± k — (1 ± k2) e-2w _ e-4°)
	  ±w	 k	 k	 k	 w

1 _e2(.4)	 4

16-4w	 16 2 -46.)
7 -, 3 w e	 + =, w e	 + . .
lc-	 lc-

(4.3.2.28)

This latter expression is integrable according to (4.3.2.3) . The selection of

coefficient q of exponent of (4.3.2.11) is now briefly discussed. By selecting q = 2

a "spurious" term , / w , is introduced, whose form already exists in the

asymptotic expansion (4.3.2.27) , and it appears as the fourth term in the final

expression of (4.3.2.27) . In other words, the exponent selection q = 2 produces a

spurious term which vanishes faster than the two terms following the altered

component (that is, 11w) . It can be concluded that the introduction of this

"spurious" term does not appreciably alter the behaviour of the "natural"

asymptotic expansion, at least for sufficiently high values of w .

A rough estimate of parameter w starting from which the asymptotic

expression approaches the actual kernel is now made. Relation (4.3.2.25) requires x

< 1 . From the last expression of (4.3.2.26), and by remembering that, in the case of

elastomeric materials, k . 1 , the following result is derived

4w2 -E k2 -I- 1 -I- k e-2w < 1 --. sinh ( 2w) — 2 w2 — 1 > 0 -. W > 0.75
k .e2w

(4.3.2.29)
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In other words, it cannot be expected that the asymptotic expression

(4.3.2.28) accurately represents kernel (4.3.2.4) even for low values of variable w.

To retrieve indications about the proper number of asymptotic terms according to

(4.3.2.28) to be actually employed, the behaviour of the original function (4.3.2.4)

and of its modifications is numerically explored. In particular, the following

nomenclature is adopted : expression "initial kernel" refers to (4.3.2.4) ; "first

modified kernel" denotes the initial kernel minus its asymptotic approximation, see

(4.3.2.12); "second modified kernel" means the modified kernel of (4.3.2.14); "third

modified kernel" addresses the altered kernel of (4.3.2.16); "fourth modified kernel"

is that of (4.3.2.19) and, finally, the "fifth modified kernel" is that of (4.3.2.21) . All

computations have been limited to the case ii == 0.5 , since a perturbation of the

Poisson's ratio does not appreciably alter the character of the curves to be

approximated. Fig. 4.3.2.6 displays the numerical findings. It appears that to modify

the original kernel (4.3.2.4) beyond the second alteration is not beneficial. We,

therefore, employ the following approximation

2(k sirth (2w) - 2W)
w (2k cosh (2w) -I- 4w 2 ± k2 ± 1)

1	 e-2w	 4	 -2(0we	 ; w > 2w

4.9
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The approximation problem for small co is now treated. To do so, the

following function is studied

2(k sinh (2w) — 2w) 	 1 — e -2(1)	 4	 -2(A)w	 E
w (2k cosh (2w) + 4w 2 ± k2 ± 1)	

+ w e	 ; 0 � w � 2

(4.3.2.31)

and such a function is approximated with a simpler expression, which is integrable

according to (4.3.2.3) . First of all, the behaviour of (4.3.2.31) for co -. 0 is studied.

The following result holds true

2(k
c40 1	

sinh (2w) — 2w) 	 1 — e-2(1) _L 4 co e-2w ___.
klini 1,

co (2k cosh (2w) ± 4w2 ± k2 ± 1)	 co	 '

— 
2 (3 ± k2)

(1 ± k)2

d 	 2(k sinh (2w) — 2w) 	 1 — e2(4.)
m

- 
_L 4

r w 
e-2w _

lim 1(0) d 
w{ co (2k cosh (2w) ± 4w2 ± k2 ± 1)	 co

—2

d2

( 2 + 1 )	 .=---,	 6k

2(k sinh (2w) — 2w))
1

-20)1 — e _i_	 4	 ,.,	 ,D -20.)
-r rc w r.'lim 1W-4C) d w2 w (2k cosh (2c0) ± 4w2 ± k2 ± 1) co

8 k4 ± 7 k3 ± 31 k2 ± 7 k + 6 52— -.
3	 k ( 1 ± k )3

.
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-2Wd3 2(k sinh (2w) — 2w)	 1 — e	 4 8-2ww	 --
lim 1 + k1 (4-.0 d w3 w (2k cosh (2w) ± 4w2 ± k2 ± 1)	 w

12 ± k4 lc

d4 	 2(Ic sinh (2w) — 2w) 	 1 	 ww 	 d-kwe-2	 .lim IL, A d w4 1 w (2k cosh (2w) ± 4w 2 ± k2 ± 1)

32  k6 + 22 k4 ± 142 k3 — 98 k2 ± 321 k ± 20 
	

816-
5	 , k ( 1 ± k )4

	
5

(4.3.2.32)

In (4.3.2.32) the approximate results refer to the incompressibility condition,

that is, to k = 1 . Various approximating expressions to (4.3.2.31) were tested, and

the best results were obtained with the following expression

C 1 e_ 	 (b w)	 (4.3.2.33)

which is integrable in the sense of (4.3.2.3), since (Gr6bner and Hofreiter (1958),

second volume, p. 136, n. 335.6c) : •

e-aw	 ((x —t s)w )
cos (b w) cos	

dw .

(Xa ( a2 ± b
2
- ± 	 — 3)2t2 	 )

[a2 -1- (b
(X — s) 12) (X —t	 s) )2]

(b[ a2 +	 ±

(4.3.2.34)
t	 )

52

co

.1.



(3 + k2)
C1 --- — 2	 . —2

(1 ± k)2
(4.3.2.36)
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The selection of constants C 1 , a and b of (4.3.2.33) is now discussed. The

following results for expression (4.3.2.33) hold true

lim 1 (0 _4) CI e-aw cos (b w) ---- CI

d Il	
d

im 1(0_4	
w ( C1 e-aw cos (b w)) = — a C1

d2
lim i(i) -40 d w

2 1 C1 e
-aw cos (b w)) = C1 ( a2 — b2 )

lim 1w	
c13d 3 [ C I e-aw cos (b w) ) = a C1 ( 3 b2 — a2 )

lim lw,0	 d4	  ( C1 Caw cos (b w) ) = C1 ( a4 — 6 a2 b2 + b4 )
d w4

(4.3.2.35)

To compute constants C 1 , a , and b of (4.3.2.33), it is imposed that the value

assumed by (4.3.2.33) together with its first and second derivative for co . 0

coincide with the corresponding expressions (4.3.2.32). Higher order derivatives are

not employed here. By comparing the first equations of (4.3.2.32) and of (4.3.2.35),

the expression for C 1 is obtained

By comparing the second equations of (4.3.2.32) and of (4.3.2.35), it is

obtained

— a C: = ( 2 ± ilc ) –. a _ (2+ k) (1 ± k)2

k (3 ± k2)
3	 (4.3.2.37)
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Finally, by comparing the third equations of (4.3.2.32) and of (4.3.2.35), it is

obtained

CI ( ce — b2 ) _	 8  1c4 + 7 k3 + 31 k2 + 7 k + 6 
3	 k ( 1 + k )3

(2 ± k)2 (1 ± k)4 	 4  (k4 + 7 k3 + 31 k2 + 7 k + 6) 
1c2 (3 +1c2)2	 3	 k ( 1 + k ) (3 + k2)

-nn

-1--,_ .-_, 0.57
A 3

(4.3.2.38)

Various approximating functions other than (4.3.2.33) were also tested. These

functions were

C1 e 	 CI (i) e;. C1 (c ± d w) e-aw CI co2 e-aw ; C1 w2e-aw2;

C1 e 	 (b w) ; C1 
e-act) sin2 (b co) ; C1 e 	 (b co)

(4.3.2.39)

,

These functions are all integrable in the sense of (4.3.2.3), that is, the

integral between 0 and oc of these functions multiplied by cos function can be
.	 --

analytically determined. Anyway, the results obtained with these expressions were

either poorer than those retrieved with (4.3.2.33) or, when of similar accuracy, the

expressions involved were more complex. A Taylor expansion in the vicinity of w =-

0 of (4.3.2.31) was also tried, but some numerical test showed a poor degree of

approximation.

It appears from the previous comments that a good approximation of (4.3.2.4),

valid for 0 � w < co is the following

2(k 'sinh (2w) — 2w) 	 1 — e_2(A)	 A w e-2 (s) ± c, Caw cos (b co)0.
w (2k cosh (2w) + 4w2 ± k2 ± 1)	 w	 k

(4.3.2.40)
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where the values of constants C 1 , a and b in terms of k (that is, of v) are given

by formulae (4.3.2.36) (4.3.2.37) and (4.3.2.38), respectively. Figs 4.3.2.7,8 display the

function expressed by equation (4.3.2.40) together with the original (4.3.2.4) kernel

for v = 0.5 and 0.46 , respectively, as functions of w . The degree of

approximation is very good, apart from a reduced portion, 1 � (.0 � 4 , where the

approximate expression (4.3.2.40) supplies values at most 6 percent higher than the

right ones. It was, therefore, decided to apply a local correction to (4.3.2.40), aimed

at improving its accuracy in this w region. A correction function F (w) of the

following polynomial form (which is integrable in the sense of (4.3.2.3)) was used

F(w)=C(1-Faco±bw2 +cu.?)	 (4.3.2.41)

Constants a , b and c were found by imposing that, as suggested by Figs

4.3.2.7,8 , expression (4.3.2.41) vanishes for w = 1 and Ca = 4 , and that dF/clw

vanishes for w = 2 . Finally, constant C was chosen to minimize the error when v

= 0.5 . The final expression of (4.3.2.41) is as follows

F (w) = —0.40216 k•
	

16 ± 24 w — 9 w2 	w3 )
	

(4.3.2.42)

Expression (4.3.2.42) is integrable in the sense of (4.3.2.23), since (GrObner and

Hofreiter (1958), first volume, p. 128, n. 333.3b)

4
—0.0216	 ( — 16 ± 24 w — 9 w2 ±	 ) cos ( (x —t s)u)

4
1

0.0216 t4 [ 2	
+

(x — s) sin ( 4 (x t— s) 	
2 cos I

r	
j

4 (x — s)
± 3

4 (x	 8)4

4 
(x — s) Sin (	 60 ) — 2 cos ( (X

t 	
S) + 3	 s)2 COS ( (X — S) ))

t2

(4.3.2.43)
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In particular, when x = s , expression (4.3.2.43) assumes the following value

In conclusion, the final form of the approximation of (4.3.2.4) is as follows

-2W
2(k sinh (2w) — 2w) 	 1 — e 	 4	 -2w

+ Ci e w
cos(b) —k-	 -a	

ww
w (2k cosh (2w) + 4w2 + k2 4- 1)	

we

0.0216 —,
k	 16 + 24 w — 9 w2 ± w3)

4
(4.3.2.45)

where the last term in (4.3.2.45) must be applied only when 1 � w � 4 .

Figs 4.3.2.9.10 show the corrected (4.3.2.45) approximation, together with the

original (4.3.2.4) kernel, for v = 0.5 and 0.46 . Since the correction (4.3.2.42) is

calibrated againts the incompressible results, the approximation referring to v = 0.5

is better (Fig. 4.3.2.9). Anyway, the degree of accuracy remains good even for a

Poisson's ratio as low as 0.46 . Since the actual figures are very close to 0.5

where values in the region of 0.4997 are plausible (Section 3), the accuracy of

(4.3.2.45) is good for practical applications. To quantify the error induced by

(4.3.2.45), this expression is applied to cases where other solutions are already

known. This analysis will be perfornied in the following Section 4.3.3 .

It is now possible to get an analytical expression for kernel (4.3.2.3) . By

introducing (4.3.2.45) into (4.3.2.3) it is obtained

00

K(	
—

x—s) --- 1	
2(

w (2k cosh (2w) ± 4(02 + k2 ± 1) 
COS ( (x —

t s)(41 ) dk) =

k sin.h (2w)	 2w) 

oo

4 -2w	1 [ 1 — 	
we	 -I-e-26) 	 CI e-aWeOS (b w) cos ( (2' — 04) j1

	

co	 Tc

.	
t0

o



± 24 w 9 (4)2 	-I- w3 ) cos 8)(4	 a'W
t

4 — 	
(x	 s)2

log (4 (x -s)2	 4 t2
t2

[4 (x —2 8)12

4

ii( 
0.0216

4	
( — 16

1

— log (x t 8) )

 +
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	a 2	b2	 (x
t2 

S)2 )
2 (2	 k)

[a2	 (x	 s) )21 [ a2	 (I)	 (x — 8) )21

	

t	 t

0.0216 t43
4 (x — 3)4

(x — s) sin 4 (x — s)
2 ± 2 cos ( 4 (X t— S)

— 2 cos(X — S) sin (x — 3)
4	

)
t

(x — s)	 3 (x	 s)2 cos ( (X	 t— s) ))I	 t

(4.3.2.46)

Formula (4.3.2.1) shows that expression (4.3.2.46) can be interpreted — apart

from coefficient 2X/lr — as the vertical displacement of the layer free boundary

when loaded by a concentrated force. Figs 4.3.2.11,12 display the exact displacement

(according to (4.3.2.1), and employing a numerical integration scheme based on a high

number of nodes) and the approximate (following (4.3.2.46)) displacements for two
Poisson's ratios, namely 0.5 and 0.46 . The vertical displacement becomes unbounded
under the singular load (zit = 0 , where t represents the layer thickness). At xit
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0.5 the layer begins to project beyond its undeformed profile. For x/t 5 the

layer deformation dies away. For v = 0.5 (Fig. 4.3.2.11) the reentrant layer portion

compressed by the force must exactly compensate the volume projecting beyond the

undeformed free boundary. For both Figures 4.3.2.11,12 the agreement between exact

and approximate numerical forecasts is good. Anyway, an assessment of the error

incurred by employing expression (4.3.2.46) is more significant when referred to the

practically more relevant situation of a layer indented by a rigid cylinder. This

problem is examined in Section 4.3.3 •

The distribution of the shear stress at the interface between layer and rigid

foundation, upon application of a unit concentrated load, is now addressed. This

information is useful in forecasting . debonding phenomena between elastomeric layer

and substrate. Following the complex analysis approach of Jaffar and Savage (1988),

the shear stress, Tsy , has the following integral expression

00
, 1 ± k I. 2 w cosh w ± (1 — k) sinh w . (x wszn —

t
 ) dw (4.3.2.47)Tsy (X) •• 7 t	

.
2 k cosh (2w) ± 4w2 ± k2 ± 1)

0

which depends on 11 but not on E . When a penetration depth by a punch is imposed,

since the displacement of (4.3.2.1) for a unit load is inversely proportional to E

the whole stress field is proportional to E , as expected. Expression (4.3.2.47) was

not used in practical applications, since its counterpart for curved layers (see

Section 5.4.2) can cover both appreciably curved and essentially straight layers.

Comparable studies have been developed by Burmister (1944) for the axisymmetric

case of a layer either adherent or frictionlessly supported by a half space, and

loaded by a uniform pressure insisting ona circular region. Shelest (1975) examines

the axisymmetric case of a rigid circular plate compressing a deformable layer

frictionlessly supported by a rigid foundation.
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Fig. 4.3.2.9: The original kernel (4.3.2.6) and its approximation (4.3.2.45) for I/ 0.5.
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Fig.4.3.2.10:The original kernel (4.3.2.6)and its approximation (4.3.2.45) for V '. 0.46.
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4.3.3 The pressure profile for a cylindrical indenter

The approximate analytical expression (4.3.2.46) of kernel (4.3.2.1) lends itself

to be conveniently employed in numerical programs treating deformable layers

compressed by rigid indenters of any profile. The main advantages with respect to

more traditional approaches are twofold : a) the numerical evaluation of (4.3.2.46) is

considerably faster than that of the exact expression (4.3.2.1), which requires a

refined mesh; b) a numerical program can treat indenters of any profile, e.g.

completely different from a cylindrical approximation. These two advantages appear

to be particularly relevant in the modelling of elastohydrodynamic regimes where,

due to the nonlinear features of this problem, a considerable computational effort

is required, and where the layer deformed profile exhibits a peculiar shape with a

"nip" at the outlet (Prati and Strozzi (1984)) and, therefore, is not cylindrical.

In this Chapter a numerical scheme is developed which adopts the

approximate analytical kernel (4.3.2.46) and treats an indenter of a generic profile

described by an (approximately) piecewise linear curve. More exactly, the pressure

profile is assumed as piecewise linear, and the layer deformed boundary shape

results as a consequence of this assumption. Numerical findings will be retrieved

for a layer compressed by a rigid cylindrical indenter, in order to obtain

quantitative indications about the accuracy of (4.3.2.46) .

The pressure profile can be chosen as piecewise constant (e.g. Dragoni and

Strozzi (1989)) or piecewise linear (e.g. Bentall and Johnson (1968)). A linear

interpolation is here adopted because it is estimated to be more accurate. From a

practical viewpoint, it is necessary to evaluate the vertical displacement field of a

deformable layer loaded by a linearly varying pressure profile applied at any

distance from the origin (Johnson (1985), p. 144). In other words, according to

(4.3.2.2), the following integral must be computed

b

v(x) =	 J p(s) K(x — s) ds	 (4.3.3.1)

a

where kernel K is expressed by (4.3.2.46) and p is a linear function acting between

coordinates st and Sr (indices 1 and r stand for left and right) :
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± (Pr — Pz)(s — .․ ))P(s) = P : (Sr — st)
(4.3.3.2)

As already mentioned, the integrals stemming from (4.3.3.1) can be mainly

computed in analytical form. The exception is the last term of (4.3.2.46), that

deriving from the local polynomial correction in (4.3.2.45), whose integral according

to (4.3.3.1) would involve integralsinus and integralcosinus functions. Only for this

part, a numerical integration was resorted to. In particular, a simple histogram

technique was adopted, together with a limited number of nodal points ( . 5 ) .

The problems connected with the numerical solution procedure and with the

definition of the contact extent are treated hereinafter. Once a certain penetration

depth, 6, is given (Jaffar and Savage (1988), p.68), which represents the imposed rigid

body penetration of the indenter into the deformable layer (see Fig. 4.3.2.1), an

approximate pressure profile ' is estimated from the asymptotic (infinite contact

width), incompressible solution (Johnson (1985), formula 5.75), from which a piecewise

linear pressure curve having the same nodal values as the analytical incompressible

asymptotic solution is derived. From this starting point in terms of piecewise linear

pressure profile, a relaxation procedure is activated, which permits a refinement to

be achieved accounting for the actual Poisson's ratio and for the narrowness of the

contact width. In particular, the vertical displacement at the first node of the mesh

is computed from the pressure starting point. Then, this displacement is compared

with that imposed at that point by the penetration depth, 6, and by the indenter

shape. The pressure of the first node is subsequently altered in such a way that

its vertical displacement equals the imposed one, whereas the remaining nodal

pressures are kept unaltered. The same procedure is performed for the second node,

and all nodal points are sequentially examined. Then, the whole cycle is repeated

again and again, until the solution converges. Particular attention must be devoted

to the definition of the contact width, which is an extra unknown. During the above

explained relaxation procedure, the sign of the nodal pressure must always be

examined. If this nodal value becomes negative, the corresponding pressure must be

set equal to zero. In other words, this node is released, and it is no longer obliged

to stay in contact with the indenter.

An alternative approach to unilateral contact problems is the complementarity
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formulation (Cannarozzi (1980), Dragoni and Strozzi (1989)). Although mathematically

more sound, this modelling requires the resolution of a system of equations equal to

the number of nodes, which often exceeds the memory resources of personal

computers. In addition, such direct solvers can produce spurious peaks in terms of

contact pressure profile, which in turn derive from the ill-conditioned character of

many contact problems (Hartnett (1980)).
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4.3.4 Numerical results

In order to compare the results here retrieved with other solutions, a

quadratic, parabolic description of the indenter profile (Jaffar and Savage (1988)) is

adopted. It is shown in the following Section 4.4 that both the normalized peak

contact pressure, p R/(Ea) , and the normalized semicontact width, a/h , can be

linked to parameter 6 R/h 2 , where E is the Young's modulus of the layer, 6 is the

rigid body approach between cylinder and layer, R is the cylinder radius, p is the

peak contact pressure, a is the semicontact width between cylinder and layer and,

finally, h is the layer thickness. Figs 4.3.4.1,2,3,4,5,6 display the normalized peak

pressure as function of the aforementioned parameter, for 1, = 0.5 , 0.4999 , 0.4997,

0.499 , 0.49 , 0.48, respectively, and for 6 R/h2 parameter (along x-axis) ranging from

0 to 300 . In typical biomechanical applications, h = 0.5 ÷ 3. mm , R = 1000. mm

and E . 3 ÷ 7 MPa (see Section 7.3.2). In addition, 6 can be estimated by

considering that the load practically applied to a hip joint can reach values of twice

the body weight during walking (Kilvington and Goodman (1981)) and as much as ten

times during running (Paul (1976)). The axisymmetric, asymptotic, incompressible

solution of Jaffar (1989) furnishes P = 2 1- E 63 R2 /(3 h3) (constant E is missing in

formula (25) of Jaffar (1989)), where P is the total load, 5 the indentation depth, h

the layer thickness, and R the equivalent radius. If P = 2000 N , R = 1000 mm

h = 1 mm , E = 3 MPa , then 6 = 0.07 mm and 6 R/h 2 = 70 . Consistently, most

Figures of this Section refer to an x-axis parameter, 6 R/h2 , ranging from 0 up to

300 . The above estimates rely on a presumed similarity between plane and

axisymmetric solutions. This aspect is commented at the end of Section 6.5.2 , where

the differences between plane and axisymmetric solutions are critically examined,

even if the orders of magnitudes of the two solutions appear to be substantially the

same.

The Winkler previsions (eqns 4.4.2.2.3-4) and the asymptotic incompressible

forecasts (eqns 4.4.2.2.8-11) are included, whenever possible. Figs 4.3.4.7,8,9,10,11,12

deal with the normalized semicontact width for the same Poisson's ratios. The

results presented refer to 30 equispaced nodes, 100 relaxation iterations, and to 5

numerical integration points for the part of the Green function which cannot be
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integrated in closed form (Section 4.3.3). Higher values of parameter 6 R/h2

ranging from 300 to 10000 , are examined in Figs 4.3.4.13,14 with respect to

normalized pressure and in Figs 4.3.4.15,16 with regard to normalized semicontact

width. The variations in terms of pressure and contact width when adopting the

parabolic profile (eqn (4.4.2.2.1)) or the exact cylindrical indenter were also tested

numerically. Matthewson (1980) reports that for ratios of semicontact width to

radius less than 0.2 , the error in the profile (between exactly cylindrical and

parabolic curves) is less than 1 percent, thus implying that the errors in pressure

and contact width must be small. Although not immediately evident from Figs

4.3.4.1,14 , this condition is practically respected in our applications (see the Table

in Section 7.3.7). The numerical results retrieved showed in fact no appreciable

pressure and contact width changes and, therefore, they are not reported here. It

must be, however, noted that for high loads the differences between the two

pressures referring to parabolic or cylindrical indenters may become more

significant. This aspect is examined in other Chapters of this thesis. In particular,

the plane strain, curved layer numerical solution of Section 5.3.4 was used to assess

the influence of the layer profile on the contact pressure, where the predictions

obtained reveal an increasing influence for high indentation depths. Similarly, the

axisymmetric forecasts of Section 7.3.6 show a perceivable, although moderate,

difference between the two solutions referring to the above indenter profiles.

On the whole, the results obtained indicate that, as the Poisson's ratio

approaches the incompressibility figure 0.5, the corresponding data get nearer to the

incompressible model, whereas for • ow 1, values the Winkler assumption is more

accurate. Anyway, there is a v range for which neither the Winkler modelling nor

the incompressible predictions are in acceptable agreement with the numerical

forecasts.

An examination was also made of the influence of the number of nodes on the

quality of the solution in terms of contact pressure and contact width, and the

corresponding results are displayed in the following TABLE :
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TABLE

reporting the normalized peak contact pressure, pR/(Ea) , and contact width, a/h

as function of three numbers of nodal points (30, 50, 100),

for 6 = 0.3 mm, R = 4000 mm , v = 0.4997 , h = 3 mm

100 relaxation iterations and 5 integration points.

Number of nodes 6 R/h 2 pR/(Ea) a/h

30 133.333 749.198 25.748

50 133.333 767.074 25.398

100 133.333 769.944 25.142

It appears that the relative error between the pressure parameters referring

to 30 an 100 nodes is about 2.6 percent, whereas that representing the normalized

semicontact width is of about 2.3 percent. Both inaccuracies appear to be negligible,

thus supporting the choice of 30 nodes for all diagrams presented in this Section.

The above comparison would have been possibly more informative if non-

normalized variables, as p and a, had been referred to. Anyway, the smallness of

the above deviations suggests that a more exhaustive error analysis is not relevant.
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4.3.5 A contribution to Meijers theory

In this Section the Meijers analytical solution valid for small values of the

ratio between contact semiwidth and layer thickness, alt , is revisited. (Consistent

with the Meijers (1968) paper, the layer thickness is here denoted by t , but symbol

h is also used in this thesis.) The aim is fourfold : a) to verify the coefficients of

the series solution as functions of ii ; b) to examine the dependence of the solution

accuracy in terms of contact pressure on the number of series terms considered ; c)

to complete the expression for the indentation depth up to the eighth perturbation

order; d) to check the precision of the numerical solution developed in Section 4.3.4

. The Meijers (1968) solution for high values of contact width-layer thickness

ratios is not examined, since its complexity would require a specifically addressed

study. It is first noted that the Meijers solution is of perturbation kind, where the

perturbed series solution requires the definition of cc k coefficients (Meijers (1968),

p. 355, formula (2.3)). Secondly, n-th perturbed terms for pressure profile and

cylinder indentation are to be evaluated (Meijers (1968), p. 357, formulae (2.10-2.12)

and p. 359, formula (2.14)). The contributions given to these two points consist in a)

showing how to compute oc k more quickly, b) correcting the expressions of the

perturbed pressure profile, and c) . computing a more complete expression for the

cylinder indentation depth.

According to (4.3.2.3) and to formula (2.2) of Meijers (1968) paper, P. 355,

kernel K possesses the following expression (according to Meijers (1968) a factor of

two is incorporated into (4.3.5.1) with respect to (4.3.2.3))

00

K(x) = 14(k sinh (2w) — 2w) cos ( y
co (2k cosh (2w) -I- 4w2 ± k2 -I- 1)	

) dw

0

(4.3.5.1)

In equation (3.2) of Meijers (1968) the following relation is reported

00
IX 	 t _x_ ..... 1)K(x) = — 2 in I 2-i I + E mk L 2 t 1	 ' 2 t	 '

k =0
(4.3.5.2)



1 — Caw cos ( ---.1-) ] dco = in (1 +w ) (4.3.5.3)
t2 a2

x2
o
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where the first term of (4.3.5.2) expresses the logarithmic singularity inherent in

(4.3.5.1) in the vicinity of x = 0 , and the summation represents the regular part of

(4.3.5.1). It is the aim of this study to identify the corresponding singular and

regular parts in the integrand of (4.33.1). In other words, a function is looked for

which, once integrated between 0 and co , produces the logarithmic expression

contained in (4.3.5.2). This result is of relevance in computing coefficients a k of

(4.3.5.2). (It is not evident how Meijers (1968) computes coefficients a k .) From the

results of (4.3.2.10) it is derived that the part of the integrand of (4.3.5.1) which

multiplies cos function vanishes as 21w when w --. co (a factor of two is still

present between this result and (4.3.2.10)). Following again (4.3.2.10), an equivalent

asymptotic expression is resorted to which does not exhibit a singularity for x -- 0

and which is integrable in closed form (Griiiiner and I-Iofreiter (1958), second volume,

formula 13 b).

Constant a can be evaluated by equalling the right-hand expression of
(4.3.5.3) to the logarithmic singularity of (4.3.5.2)

in ( 1 + t
2 _a2 1 = _

2 in I x 1
x2	i	 2 t '

(4.3.5.4)

from which the following expression for a is derived

a = ,\14 — ( i— )2 (4.3.5.5)

Going back to expression (4.3.5.1), it is convenient to subtract and sum to the

original integrand that of equation (4.3.5.3), which is exactly integrable, where the



1— e 
— CO 1 4 — ( -XT- )2

w ) cos ( y ) dw ±

— w 1 4 — ( xt )2

x w dCOS ( —	 CO ...---t )
1— e

(1)

1— 
e — (ti \,i 4 — (i- 12

w 1 
cos 1? ) dw
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value for a follows from equation (4.3.5.5)

co

K(x) = I 4(k sinh (2w) — 2w)
---cos ( x w ) dw-Fw (2k cosh (2w) ± 4w2 ± k2 + 1)

0

co
4(k sinh (2w) — 2w)

I1 w (2k cosh (2w) + 4w 2 + k2 ± 1)
0

— 2 in I - I ±2 t

co i
4(k sinh (2w) — 2w) 2

; 1 1 w (2k cosh (2w) ± 4w2 ± k2 ± 1)
0

(4.3.5.6)

2

The integrand is now a regular function, and its integral is finite for any x

value. In fact, the part of the integrand multiplying cos function vanishes for CO ---n

co as — 8 CO e-2w/ k . Since this integral must be computed numerically, it is

convenient . to sum and subtract its asymptotic expression, so that the modified

integrand essentially vanishes for relatively small values of the variable of

integration, 0.) . It is obtained :



4 — (	 )2
8 

X W ) A
cos (	 (.1.4.0

t
(4.3.5.7)
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— 2 In I	 I ±

U

7 f 	 W .1 4 — ( i-- )2
2	 1 cos (y- ) dw =4(k sinh (2w) — 2w) 	 1 — e 

j 1 w (2k cosh (2w) + 4w 2 + k2 + 1)	 w

— 2 /n 1	 I +

— — 
w ,\I 4 — ( zt y2i

4(k sinh (2w) — 2w) 	 1	 e	 8	 -2co i
w + w ek

00

cos ( x---Cqt ) du) — 1 E8 w e-2(4 cos ( ---F" ) du) =-

0

— 2 in 1 2c t. 1 k	 (4 + ( T )2 )2

J 1 w (2k cosh (2w) + 4w2 + k2 + 1)	 w

of i	 — w I 4 — ( xt )2
4(k sinh (2w) — 2w) 	 2 1 — e 	 + 8 w e -2w )E	 •

0

co 1

2
1 I w (2k cosh (2w) + 4w2 + k2 "+ 1)
0

•

±



cos (
x w—

t
 ) clw (4.3.5.8)

o
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The integrand of (4.3.5.7) rapidly vanishes for low values of co parameter.

For the numerical evaluation of this integral, an upper integration limit in the

region of 30 can be adopted.

Expression (4.3.5.2) is now revisited to determine coefficients cc k . To do this,

the following part of (4.3.5.7) is expanded in a convergent power series

4_ (	 )2
8 	
k	 (4+-I- ( -- )2 )2 +

.	 — co 1 4 — ( --xr )2CO

I 1  w (2k c40(8kh s(i2nwh) (±2c 04) (0-2 +2w )k2 ± 1) 2  1 — 6	
(4)	

± 
k
-8 w e-2W I	 •

The following power series in x/t was obtained with the aid of the algebraic

manipulator MACSYMA (1983)

8 	 4 — ( ' 2-f- 5

) +
k	 f

t4 ± ( 1- )2 j2

co	 — 4) 4 4 — ( i- )2

1 - e 	 8	 -2w 111  w (2k c4o(skhs(i2nwh) (±2c0) —4(02 ±2w)k2 ± 1)	 2	 w	 +Ewe

0



— w ,‘I 4 —( i- )2

w + -8 w e -2W
1 dw ±

k
1 —e

W 7 e-2W
90 k

w5 (1 — e-2))
360

W 4 6-2(4)

48
(1 ± 2w) co2e-2w

64± + ±
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cos 1? ) dw

Co
4 (k sinh (2w) — 2w) 2

j 1 co(2kcosh (2w) + 4w2 + k2 + 1)
0

Co

I 14	 W	 -I-3 e-2W 	 W(1 e
, ,	 -2W	 2w (k sinh (2w) — 2w) 	 (ice) x2

-2w,)4-e2
(2k cosh (2w) +4w2 +k2 +1))} T ±

0

00
I [	 2w5 e-26)

3 k	
w3 (1 — e 	 w2 e-2W i_  (1 ± 2w) e-2(4)

12 k	 4	 m	 32
0

2w3 (k sinh (2w) — 2w)1 dw} k +
3 (2kcosh (2w) ± .4w 2 ± k2 + 1)	 t

w5 (k sinh (2w) — 2w) 	 6

1800 (2kcosh (2w) + 4w2 ± k2 ± 1)	 t
(3 + 6w ± 4w2) e-2w

768
) dW} k +
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IIo
w9e2w (0 7(1 — e-2(4))
5040 k	 20160

(05e-2(1) 
± 

(1 ± 2w) (0 4e-2w	 (3 + 6 (0 + 4 (02) (02e-2w
1440	 768	 1536 ±

(15 + 30w + 24w2 + 8 (03) e-2(`)	 (07 (k sinh	 (2(0) — 2(0) -I- 

	

IL'	 . .

24576	 10080 (2k cosh (2w) ±4w 2 ±k2 +1) j
C1(.4	 +

 t°

(4.3.5.9)

Following (4.3.5.2), coefficients a k can be computed from the part of (4.3.5.9)

which is independent of x/t (coefficient a() , from the part which is multiplied by

x2/t2 (coefficient a l) , from the coefficient of x 4/t4 (coefficient a2), and so on.

The integral from 0 to infinity in equation (4.3.5.9) was computed from 0 to

30 , since the integrand becomes vanishingly small beyond this upper limit. The

following two Tables compare the a.k coefficients according to Meijers (1968), p. 355

, with those due to Jaffar and Savage (1988), p. 69 and with those computed by the

author, for ii = 0.48 and 0.5

TABLE of ak for v = 0.48

Meijers

Jaffar

Strozzi

C(.0

-3.1889

-3.188898

-3.1888

a1

7.7938

7.793725

7.7937

cc2

-11.7696

-11.76717

-11.7679

a3

16.12477

16.1370

a-4

-20.19970

-20.3000

az

24.1993
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TABLE of a k for V = 0.5

Meijers

Jaf far

Strozzi

ao

-3.3392

-3.339168

-3.3391

al

8.1888

8.188796

8.1887

a2

-12.5334

-12.53088

-12.5317

a3

17.29113

17.3043

a4

-21.73677

-21.8446

as

26.0831

It clearly emerges that the various a.k values are in good agreement. It is not

clear how Jaffar and Savage (1988) can rely on the exactness of such a high number

of figures. (The figures reported in the previous Tables and referring to Strozzi

are those which are stable as the number of nodal integration points and the

integration interval are augmented, so that these figures should be exact.) It is also

noted that the ak coefficients do not critically depend upon the Poisson's ratio, v.

This result confirms the finding that, in the case of small contact lengths, v does

not noticeably affect the contact pressure for a given indentation depth. The

author has also checked all the results at p. 373 of Meijers (1968) referring to small

contact lengths, which were found to be all correct.

The expression of the perturbed pressure profile is now considered, and the

various terms up to the fifth order are revisited (the 0 , first and second terms are

presented by Meijers (1968), while the third and the fourth are reported by Jaffar

and Savage (1988)). In particular, it is shown that the fourth pressure term of

Jaffar and Savage (1988), p. 68 , is wrong. It is first noted that the expressions for

Po , p l and p2 at p. 357 of Meijers (1968) are correct, apart from symbol 11", which

should be removed.

The exact expression for p4 (the symbols of Jaffar and Savage (1988) are

employed; a indicates the semicontact length , t denotes the layer thickness and x
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represents the X coordinate normalized with respect to the semicontact width a) is

117--- x2 a 1 4
P4 - 32768 2RX (8 a l + 136 a? a2 + 516 a / a3 + 264 04 + 1284 a4 ) +

x2 ( 32 a? a2 ± 192 al -1-- 288 a l a3 ± 1888 a4 ) ± x4 ( 96 al a3 ± 1472 a4 ) ±

x6 256 a4 1	 (4.3.5.10)

Finally, the third contribution of this Section is addressed, that is, the

expression of the cylinder indentation depth. It is first noted that expression v0 at

p. 359 of Meijers (1968) including c/b terms (Meijers (1968) symbolism; c indicates

the semicontact length and b denotes the layer thickness) up to the fourth order is

correct. The formula for the central indentation up to the eighth order of c/b

ratio, not included by Jaffar and Savage (1988), is reported hereinafter

e {, ( 4b ) [ 1 + al ( g )2C	 ± iL ( a-? ± 6 CC 2 ) ( g )4 +vo = R n -- 2	 16 b

12048 (2 a? + 24 al a2 ± 75 a3) ( Q )8 +b

892 ( ai ± 39 4 ± 18 a? a.2 ± 75 a l a3 -I- 245 a4) ( g )8 I ±

1 a ()	 14 + ,i.-- + ut (3 cc i + 2 ao oc i ) ( )2 +
1- (2 a.° a2 + 12 cto a2 + 3 a? + 10 a2 ) ( Q )4 ±512	 1	 b

1 (96 a0 al a.2 ± 8 ao 4 ± 300 a0 as + 12 a? + 116 al a2 ± 175 a3) ( g )6+
16384

165536 (4 ao al + 156 a0 4 + 72 a0 4 a2 + 300 ao al a3 + 980 a0 a4 +

6 il + 94 a? a2 + 335 al a3 ± 135 4 ± 441 a4) ( ga 	 )8 1 (4.3.5.11)
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Graphical representations of the analytical results just presented are now

considered, to get indications about the actual need to consider higher order terms

in the perturbed pressure and indentation depth expressions. Fig. 4.3.5.1 reports the

analogue of Fig. 3 of Meijers (1968), p. 358 , where now five different normalized

contact pressure profiles are presented, up to the eighth perturbation order ( a/h

= 0.8 ). Although the curves are similar for orders from the second up to the

eighth, their difference is perceivable. In particular, the fourth order pressure

curve is less accurate than the second order counterpart (the eighth order being

assumed as a benchmark). The sixth and eighth order pressure profiles are very

close, a result which suggests that there is no need to proceed beyond order six.

Figs 4.3.5.2. and 4.3.5.3 deal with a Poisson's ratio of 0.48 and with pressure

profile and contact width, respectively, as functions of the normalized indentation

depth, for a/h ratios � 0.9 . Figs 4.3.5.4 and 4.3.5.5 treat a Poisson's ratio of 0.5 .

The perturbed fourth and eighth order curves are displayed together with the

numerical results (Section 4.3.4). Some differences between the fourth and eighth

order curves are perceivable only when a/h approaches unity. The numerical

predictions are in reasonable agreement with the analytical forecasts. The

oscillations affecting the numerical curves are due to the contact width being

defined in a discontinuous way, the benchmarks being the nodes of the

discretization adopted for the deformable layer. In other words, the contact length

increases with the indentation depth only when a new node defining the layer profile

comes into contact with the cylindrical rigid indenter. As a consequence, the contact

pressure too is affected by some undulations.

In addition, Fig. 4.3.5.5 includes the asymptotic, normalized contact width (see

(4.4.2.2.8)) which, being accurate only for high contacts, is unreliable for this x-

coordinate range, since it noticeably overestimates the actual contact width, a result

consistent with Fig. 4.3.4.7 . The asymptotic, normalized peak pressure is not

reported in Fig. 4.3.5.4 , since it falls below the y-axis origin. In particular, when

5 R/h2 = 0.5 , then p R/(Ea) = 45 /8 . 0.217 (see (4.4.2.2.11)), which considerably

underestimates the actual normalized pressure, a finding in line with Fig. 4.3.4.1

(even if it regards a part of the diagram close to the origin and difficult to read).

In conclusion, the asymptotic solution is not applicable for normalized indentation
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depths as shallow as those of x-axes of Figs 4.3.5.2,3 .

The 5 R1h2 value beyond which the asymptotic solution becomes applicable is

difficult to estimate accurately. It must be certainly higher than 0.5 , as

demonstrated by Figs 4.3.5.4,5 . With regard to higher x-coordinate values, Figs

4.3.4.1 and 4.3.4.7 report numerical and asymptotic forecasts for an incompressible

elastomer. The numerical predictions exhibit some oscillations related to the

discretization process, so that an error estimate of the asymptotic solution becomes

problematic. It appears, however, that for 5 R/h2 values greater than, say, 30 , the

agreement between numerical and asymptotic forecasts is good both in terms of

contact width and pressure. As commented in Section 6.6 (which refers to the

analogue axisymmetric situation), this parameter corresponds to a/h ratios beyond

approximately 10 in practical circumstances. In any case, the asymptotic

incompressible solution is only applicable to ideally incompressible elastomers, since

the stress field highly depends on the Poisson's ratio adopted (Section 4.3.4). As a

consequence, the asymptotic incompressible solution does not appear to be

particularly useful in biomechanical applications.

As a final remark, the contact width is less sensitive to perturbations of the

Poisson's ratio than the pressure profile. In fact, Figs 4.3.5.3 and 4.3.5.5 are very

similar, whereas the differences between Figs 4.3.5.2 and 4.3.5.4 are appreciable.

This result is in line with the findings of Dragoni and Strozzi (1988) referring to an

elastomeric 0 Ring.

The main results obtained in this Section are now summarized : a) a method

was developed for computing the coefficients of the Meijers (1968) series solution,

the already existing values were checked and found correct, and new higher order

coefficients were computed as functions of I/ (TABLES at p. 4.57,58) ; a mistake was

detected in the expression of the fourth perturbation order pressure given by

Jaffar and Savage (1988), and the exact expression (4.3.5.10) was computed ; b) it was

found that the solution accuracy is not appreciably improved by terms beyond the

sixth perturbation order (Figs 4.3.5.1,2,3) ; c) the expression for the indentation

depth was completed up to the eighth perturbation order (eqn (4.3.5.11)) ; d) the

Meijers (1968) analytical results were found to agree with the numerical solution

developed in Section 4.3.4 and referring to small values of ratio a/h (Figs 4.3.5.3,5) .
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Fig. 4.3.5.1 : Analogue of Fig. 3 of Meijers (1968) up to the eighth order.
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Fig. 4.3.5.4 : Analytical pressure profile and numerical results for Ii= 0.5 .
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4.4 DIFFERENTIAL APPROACH

4.4.1 Introduction

In Subsection 4.4.2 the theory developed Armstrong (1986) is closely followed

and the results he obtained by applying perturbation techniques to the layer

problem are reported. The study of Armstrong (1986) limits itself to a few perturbed

terms. In order to analyze the effects of higher-order terms on the accuracy of the

solution, the Armstrong (1986) methodology is further developed in Section 4.4.3 . It

is also noted that, while the perturbed solution of the integral approach 4.3 is valid

for small contact widths, the perturbed solution of the differential formulation

holds for high contact widths.

4.4.2 The existing solution

The paper of Armstrong (1986) develops the following steps: a) the two-

dimensional equilibrium equations are expressed in terms of the displacement field;

b) the equilibrium equations are normalized with respect to proper variables, and a

small parameter e is identified, which renders this problem amenable to perturbation

solution techniques; c) an approximate solution is achieved for parameter e up to

the second order, which connects the pressure (as well as its derivatives) acting

upon an elastomeric layer to its local deflection; d) the pressure profile and contact

width are determined for the case of a rigid cylinder indenting a deformable layer

only for solutions for e up to the second order. The above-mentioned steps are now

treated in greater detail, to serve as an introduction to the extension of this

procedure given in Section 4.4.3 . In particular, steps a) , b) and c) are treated in

Section 4.4.2.1 , whereas step d) is analized in Section 4.4.2.2 .

In this Section the Armstrong (1986) nomenclature is adopted. In particular, a

indicates the semicontact width, and h denotes the layer thickness.
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4.4.2.1 The perturbed pressure-deflection solution

The two-dimensional equilibrium equations expressed in terms of stresses are

(Timoshenko and Goodier (1970))

acr	 aT.y. _1_

ax	 '	 ay
(4.4.2.1.1)

aTy.	 acry±	 = 0ax	 ay

In plane strain situations, the Hooke law linking stresses to strains is

(Timoshenko and Goodier (1970));

au ± al) ) ± 2 Ai au
ax	 ay

c •x = X

ay ---- X ( a-1-2 + 11-2 ) + 2 AL avax	 8y	 Ty

Twv = g ( ail +	 )ay	 ax

(4.4.2.1.2)

where u and v are the x —oriented and y —oriented displacements, and X and g are

the so called Lame' constants, which are expressible in terms of Young's Modulus, E,

and Poisson's ratio, V (Timoshenko and Goodier (1970))

X — 	 LIE'12 -	
E 

(1 ± v) (1 — 2v)	 2 (1 ± v)
(4.4.2.1.3)

(Constant /I coincides with the so called shear Modulus, G .) In elastomeric materials

v approaches the incompressibility value 0.5 (Section 3). In this case, X = co and it

= E/3 . For a realistic figure of 11 --= 0.499 (Section 3), X = 166.444 E , il = 0.333

E, that is, X 0., 500 g .
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Fig. 4.4.2.1.1 : Coordinates x and y, and the meaning of symbols h, a, p(x) .

By introducing formulae (4.4.2.1.2) into (4.4.2.1.1), the equilibrium equations

are expressed in terms of the displacement field

a2u	 a2v a2u
g — + ( X + ki )	 + (X + 211) 5—

x2

 = 0By2	 ax ay

(4.4.2.1.4)

(X + 2 g)	 + (X + /2) a2u +
By ax ay

a2v	 n
AL —

ax2 

= --- v

The boundary conditions must represent the following aspects : a) the layer

is firmly bonded to a rigid substrate; b) due to the small frictional coefficient, only

a normal pressure affects the upper boundary of the layer. According to Fig.

4.4.2.1.1 , such boundary conditions are

•	 for y = 0 ,	 Cr y - -= — p (x)	 ; T x y = 0

(4.4.2.1.5)

for y = h ,	 u = 0	 ;	 v = 0
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where p (x) is the applied pressure and h is the (supposed constant) layer thickness.

Armstrong (1986) normalizes equations (4.4.2.1.4) by introducing the following

non —dimensionalized variables

TT . 0	 V	 1.7 _X	 = Y
u	 d ' (4.4.2.1.6)

where a is the contact half width (Fig. 4.4.2.1.1). Equations (4.4.2.1.4) thus become

a2u 	 x +	 a2v	 2 X +	 a2u+	 E	 = 0ay.	
•12	 3X 8Y	 ax2

(4.4.2.1.7)

a2v X + g 92u _L €2 	 a2v _ 0
ay2	 + 2/./ ax	 X ± 2/1 ax2

where e = hia is a small parameter. It should be noted that in many practically

relevant problems the contact width is not known a priori and, therefore, e too is

not initially known. Nevertheless, it can be conjectured that e is often sufficiently

small. The boundary conditions (4.4.2.1.5), once normalized according to variables

(4.4.2.1.6), become

au	 8V 0A 8V _L	 x 	 au _ _ P (X) • y	 e,	 afor Y =	 a—y	 x	 BX

for Y	 1
	

U 0 ;	 V = 0

(4.4.2.1.8)

where P	 p/(X + 24) .

Armstrong (1986) develops an approximate solution to this problem by a

perturbation method (Bender and Orszag (1978)). The dimensionless horizontal, U, and

vertical, V, displacements are expressed via a series of functions in powers of e :



au. — P (X)	
.

• ; ay
8V0
a),

=0for Y = 0
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u = u. + € ui ± €2 U2 ± -

v . v. + E VI ± €2 172 + ...

(4.4.2.1.9)

Expressions (4.4.2.1.9) are then substituted into (4.4.2.1.7), and terms in the

same power of e are collected. The terms of order 0 (obtained by putting E =--- 0)

supply the following equations (indices 0 indicate the zero order components)

ay2 =0

(4.4.2.1.10)

a2v0
, = o

ay.-

The boundary conditions (4.4.2.1.8), when limited to the zero term, become

(4.4.2.1.11)

for Y = 1 ,	 U0 = 0	 ; Vo = 0

The expressions of Uo and Vo satisfying equations (4.4..2.1.10) and the

boundary conditions (4.4.2.1.11) are :•

Uo = 0

(4.4.2.1.12)

Vo = P (1 —Y)

The zero order approximate solution (4.4.2.1.12) exhibits no lateral

displacements of the layer. From expressions (4.4.2.1.12) the dimensional horizontal,

U, and vertical, v, displacements are



(4.4.2.1.15)
a2v, =0ay2
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u (x,y) = 0

(4.4.2.1.13)
v (x,y) ,_ P (x) h (1 _ y \

X + Za '	 h)

This result coincides with a Winkler—type model of the layer (Kerr (1964),

Strozzi (1984)), where each column is laterally constrained (that is, the column is

subject to a plane—strain condition along both its lateral sides). If the elastomer is

ideally incompressible, then X — 00 , g is finite, and V = 0 . This is an unrealistic

result, since an incompressible layer, when indented by a rigid cylinder, would still

flow laterally and, therefore, it would not fully, prevent any vertical movements of

the rigid indenter. Since this behaviour is not simulated by the zero order solution,

higher e orders must be accounted for in the case of incompressible materials. In

particular, the first order e solution is now treated, as done by Armstrong (1986).

According to (4.4.2.1.9), the first order solution comprises functions U t and V 1 (index

1 refers to the first order perturbed components), which are the unknowns, as well

as functions Uo and Vo , which have already been determined, see (4.4.2.1.12) .

Indeed, it is typical of perturbation approaches to exploit the solutions referring to

lower order terms, when dealing with higher order components. Collecting in

(4.4.2.1.7) terms of the first order in e , it is obtained

82u,	 x + At a2v0 	0
+ay2 	 1.1	 3X ay

(4.4.2.1.14)

8211 1 	 x ± Li	 32E/0 — o
Mr2 -I- X + 2/2 ax ay

By introducing expressions (4.4.2.1.12) of U 0 and Vo into (4.4.2.1.14), the

following equations are obtained

a2u,	 x + ,L1 dP

•ay2	 A dX



; V1 = 0	 (4.4.2.1.16)for Y = 1 ,	 U1=00
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The boundary conditions (4.4.2.1.8), when referring to e terms of the first

order, become (the boundary conditions related to e zero order terms have already

been imposed in (4.4.2.1.11), and they affect the expressions of Uo and Vo )

for Y = 0 8V 1	 x 	 8U0	 WI	 3V
+	 °-0• — +	 =0

3Y	 X + 2ii ax	 ' 3Y	 8X

By substituting formulae (4.4.2.1.12) into the boundary conditions (4.4.2.1.16)

it is obtained

for Y = 0 3V 1 	„,	 au ' 	 dl'= V ; - -= —
al-	 8Y	 cCK

(4.4.2.1.17)

for Y = 1 ,	 U1 = 0 ;	 V1 = 0

The expressions of the solutions U 1 and V 1 are

dP 1 X	 — IL	 X+ th 2 1U = —	 + Y	 y t
dX k 2 Az	 '2 g

(4.4.2.1.18)

V 1 = 0

The formulae for u and v in dimensional form are obtained by summing the U

and V contributions referring to zero and first order e terms according to (4.4.2.1.9)

and, then, by substituting relations (4.4.2.1.6) . It is obtained

h2 dP (x) r  X — AL _i_	 2 g	 y	 X -I- g y2 1
u (x,y) —

2// dx ( X+ 2 ii m X + 2 AL h	 X + 2 11 h2 J

(4.4.2.1.19)

v (x,y) — P (x) h (1 — 2)X + 2/2	 h
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With respect to the zero order solution (4.4.2.1.13), the up to the first order

expressions (4.4.2.1.19) exhibit the same vertical displacement function (it still

vanishes for incompressible elastomers), whereas a non vanishing horizontal

displacement formula is achieved.

Following Armstrong (1986), the e second order solution is now treated.

According to (4.4.2.1.9), the second order solution comprises functions U2 and V2 2

which are the unknowns, as well as functions U 1 , V 1 , U0 and Vo , which have

already been determined, see (4.4.2.1.12) and (4.4.2.1.18) . Collecting in (4.4.2.1.7)

terms of the second order in c , it is obtained

82U2 ± X + g 82V 1	 , X ± 2/1 82U0
ay2	 A	 ax 3Y -1-	 A	 ax2

(4.4.2.1.20)

a2v2± x + /2 a2u1 ± 	 g 	 82v0
ay 2 	 x ± 2i2 3X ay	 x ± 2/2 ax2

By introducing expressions (4.4.2.1.12) of U 0 and Vo and formulae (4.4.2.1.18)

of U 1 and V 1 into (4.4.2.1.20), the following equations are obtained

a2u
ay2

(4.4.2.1.21)

a2v2 = d2P i 	 x	 x y 1
ay2	

dX2 X + Za

The • boundary conditions (4.4.2.1.8) addressing c terms of the second order

become (the boundary conditions referring to c zero and first orders have already

been imposed in (4.4.2.1.11) and (4.4.2.1.17)) :



= d2Pf  X—/./ 	 xl	 aU2
dX2 L 2 (X + 2g) AL 1 ;	 =ay 	 °

3V2
8Yfor Y = 0
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for Y = 0 311 2	 x 	 3u1
± 	_ 0 ; Ti +	 = 0

WX + 2g 3X
(4.4.2.1.22)

for Y = 1 ,	 U2 = 0
	

;	 V2 = 0

By substituting formulae (4.4.2.1.18) into the boundary conditions (4.4.2.1.22)

it is obtained

(4.4.2.1.23)

for Y = 1 ,	 U2 = 0 ;	 V2 = 0

The expressions of the solutions U2 and V2 are

U2 = 0

(4.4.2.1.24)

42P r	 X— AL X ± X— th X	 X 	 y2 _ X y3)
172=

dX2 k	 X + 212 34	 X + 2# 2/1 
y ± 

2 (X + 2g)	 6 g	 J

The formulae for u and v in dimensional form are obtained by summing the U

and V contributions referring to zero, first and second E terms according to

(4.4.2.1.9) and, then, by substituting relations (4.4.2.1.6) . Thus

h2 dP(x)1  X— IL _L_ 	 2 AZ 	 y	 X + A Y2 1u (x,y) —
2g dx I X ± 2 g ' X + 2 g h	 X + 2 A h2 )

v (x,,,,) . p (x) h (1 _ ml

—' X + 2g '	 hi 

3 4	 y2
h3 	 X 	 d2P (x) f 2(X — 1.1)	 3(X — ,u) y

x + 211 h	 X +212 h2 _

i_ Y3 )
.

64 X + 2 g	 dx2 k X + 2 IL	 h3

(4.4.2.1.25)
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For an incompressible material, X = co, and function v(x,y) of (4.4.2.1.25)

simplifies to

h3  d2p (x) 1 2 _ 3 11 ± y3 1v (x,y)
h	 h3 J6AL dx2 t

(4.4.2.1.26)

which, contrary to the vertical displacement of (4.4.2.1.13), does not necessarily

vanish for incompressible materials.
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4.4.2.2 The pressure profile for a cylindrical indenter

Once the pressure distribution, p(x), is known, equations (4.4.2.1.13),

(4.4.2.1.25) and (4.4.2.1.26) permit the vertical displacement of the layer upper

boundary (y=0) to be computed. More exactly, expression (4.4.2.1.13) refers to the

zero order vertical compression, relation (4.4.2.1.25) describes the second order

results (the first order findings coincide with the zero order forecasts) and, finally,

formula (4.4.2.1.26) covers the second order incompressible case. Armstrong (1986)

treats the practically more relevant situation of a known displacement function,

where the pressure profile is the unknown which has to be determined. In

particular, Armstrong (1986) studies . two cases : a) a compressible layer indented by

a rigid cylinder, studied via the zero order equation (4.4.2.1.13) ; b) an

incompressible layer pressed by a rigid cylindrical indenter, analyzed through the

second order expression (4.4.2.1.26). These two cases are examined in detail in the

follow-up, since they constitute an introduction to the more complex situations

analyzed in Section 4.4.3 .

As usual (Jaf far and Savage (1988)), the imposed displacement is approximated

by a second degree (parabolic) expression

V(X,O) = 6 — 2R
	 (4.4.2.2.1)

where 6 is the rigid body vertical displacement, and R is the (relative) radius of

curvature of the two contacting sui faces. A note of caution is here introduced on

the accuracy of (4.4.2.2.1) in describing very high contact widths. Anyway, the

influence of the indenter profile (parabolic or circular) does not seem to be

generally relevant, as the numerical forecasts of Section 7.3.6 indicate. The zero

order solution is treated first. By introducing (4.4.2.2.1) into the vertical

displacement expression of (4.4.2.1.13) referring to the layer upper boundary (y=0),

it is obtained

P (x) h	 6	 x2
X ± 2g	 2R

(4.4.2.2.2)
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from which the contact half width, a, is computed by expressing the condition that

for x=a the pressure, p, vanishes

6 _ a2 _ 0
2R

.	 a = .n16' (4.4.2.2.3)

The expression of the pressure profile as a function of the peak pressure, Po

, and of the normalized X coordinate (see (4.4.2.1.6)) is

P (x) ---- Po (1 — X2)

where

Pa—	 h
(X ± 2/)6

(4.4.2.2.4)

(4.4.2.2.5)

This solution coincides with formula (5.73) of Johnson (1985) .

The incompressible case according to (4.4.2.1.26) is now treated. By

introducing expression (4.4.2.2.1) into (4.4.2.1.26) and by putting y-0 , there follows

h3  d2p (x)	 x2= 6 _
3g dX2	 2R (4.4.2.2.6)

The integration of the second order differential equation (4.4.2.2.6) requires

the imposition of two boundary conditions. The first requirement has already been

used in the first order solution, and it expresses the fact that the pressure must

vanish at the contact ends (x = +/—a , see (4.4.2.2.3)). The second imposition

requires that the first derivative of the pressure also vanishes at the contact

extremities. This boundary condition is suggested by a result obtained by Meijers

(1968), p. 378, who showed that the pressure derivative vanishes for incompressible

materials and for a contact width infinitely larger than the layer thickness.

Anyway, Meijers (1968) shows that for incompressible elastomers and finite contact
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widths the pressure derivative is infinite at the contact extremities. As a

consequence, the imposition in (4.4.2.2.6) of a vanishing pressure slope at the

contact ends is inevitably questionable. Integrating (4.4.2.2.6) once with respect to x

coordinate gives

3d p (x) _ 341 ( Z_ — ax)  + Adx —  V 6R
(4.4.2.2.7)

The integration constant A is zero, since the pressure gradient is expected to

vanish for x = 0 , owing to the symmetrical profile of the indenter.

As previously discussed, the condition is imposed that the pressure

derivative vanishes for x = a . This allows the contact half width, a, to be

computed. From (4.4.2.2.7) it is derived

3
— 5 a =0 -. a = 4-6-27?56R (4.4.2.2.8)

a result coinciding with formula (5.77) of Johnson (1985) .

By integrating (4.4.2.2.7) with respect to x, the expression of p (x) is

obtained, apart from the integration constant B

3 1.1 r X4

2 h3 1 12 R 5 x2 + B )	 (4.4.2.2.9)

Constant B can be found by imposing the condition that the pressure profile

vanishes for x =--- a = 4I	 (see(see 4.4.2.2.8) . Therefore

36 R252	 6 R 62 ± B = 0 —. B = 3 R 52 = a26 (4.4.2.2.10)
12R	 2

By substituting the value of B into (4.4.2.2.9), the final expression for p(x)

becomes :



Chapter 4 The Plane Strain, Flat Elastomeric Layer 4.75

(x)	 3 g a25	 x4	 2
— 2 CS + 1 ) = Pa (1 — X2 )2 (4.4.2.2.11)

4h3	 a 4 	 a

where Po = 3 g a26 1(4 h3) . Formula (4.4.2.2.11) coincides with (5.75) of Johnson

(1985) .

An important point concerns the employ of solutions (4.4.2.2.4) and

(4.4.2.2.11). In particular, it should be clarified for which Poisson's ratio intervals

solution (4.4.2.2.4) can be employed, and when formula (4.4.2.2.11) is more

appropriate (that is, for which Poisson's ratios the elastomer can be assumed as

fully incompressible). Armstrong (1988) observes that the normalized vertical

displacement of the layer upper boundary, complete up to the second order (see

(4.4.2.1.9), (4.4.2.1.12), (4.4.2.1.18) and (4.4.2.1.24)), is

X — 	X 74 	d2P (4.4.2.2.12)Vo -FeV 1 +€2 V2 ly = 0	 P	
X ± 2g 3g ce dX2

At the right-hand side of (4.4.2.2.12), the unity coefficient multiplying P is

characteristic of the zero order solution (see (4.4.2.1.12)), whereas the coefficient

multiplying the second derivative of the pressure identifies the incompressible,

second order solution (see (4.4.2.1.18)). The first order solution, V 1 , identically

vanishes (see (4.4.2.1.12)) and, therefore, it does not appear in (4.4.2.2.12) . Following

Armstrong (1988), it can be speculated that the transitional Value of the Poisson's

ratio is the one which renders equal the absolute values of the two above-

mentioned coefficients

X — g X h2	 1	 v (4v — 1) 	 a2
(4.4.2.2.13)

X + 212 3,a	 3(1	 v) (1 — 2v)	 h2

where coefficient 3 at the denominator of the fraction expressed in terms of

Poisson's ratio is missing in Armstrong (1988). From (4.4.2.2.13) the transitional value

iittan. is obtained as a function of the ratio between contact half width and layer
thickness :



1 —9 a + ,\11 + 30 g + 9 '=e-
h.	 h	 h2

.11 trans = 4 ( 2 — 3 ch: )

)
a^
h

(4.4.2.2.16)

Chapter 4 The Plane Strain, Flat Elastomeric Layer 4.76

(4.4.2.2.14)

According to Armstrong (1988), the zero order compressible model (4.4.2.1.13)

should be employed for lower figures than the transitional Poisson's ratio, whereas

for higher values than V trans the fully incompressible modelling (4.4.2.1.26) is

recommended. Unfortunately, the contact half width, a, is not known (the Winkler

and incompressible models supply appreciably different results) and, therefore, it is

not easy to determine the transitional Poisson's ratio.

The second order complete solution is now treated for the case of a

cylindrical indenter, based upon (4.4.2.2.12). This case is analyzed in Armstrong

(1988), but not in Armstrong (1986). By equalling (4.4.2.2.12) to the cylindrical

displacement (4.4.2.2.1) normalized with respect to h, it is obtained

X— AL X h2 d2P	 6	 x2
P —

	

	 — 170 ± € VI ± E2 V2 I y _ 0 — h	 2 h RX + 2g 34 a2 dX2

(4.4.2.2.15)

Equation (4.4.2.2.15) can be rewritten in terms of p and x , by employing

(4.4.2.1.6) and the definition of P given in (4.4.2.1.8)

d2p	 3 g (X + 2g),D . 3 11 (X ± 2/2)2 r x2

d x2	 h2 X (X — ,a) -	 h2 X (X — Li) k 2 h R

The homogeneous solution is

P (x)=Acosh(\i 3 AL (X ± 2) x) + B sin ki 3
 

/1
	 + 212) x)

X (X — /2)	 h	 X (X — g)	 h	
(4.4.2.2.17)
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A particular solution to (4.4.2.2.16) is

p (x) . X + 2/./ r 6	 h2X (X — g) 	

1 — 
(X + 2g) x2

h	 t	 3 R g (X + 2g) 1 2 h R	
(4.4.2.2.18)

The complete solution to (4.4.2.2.16) is the sum of (4.4.2.2.17) and (4.4.2.2.18),

where coefficient B of (4.4.2.2.17) is set equal to zero since the pressure profile

must be symmetrical with respect to x-coordinate, as a consequence of the indenter

symmetry

P (x) = A cosh ki 3 4 (X ± 2 ,11 ) x ) , X ± 2,ct fo	 h2X (X — AL)  )

`	 X (X — g)	 h 1-	 h	 l	 3 R g (X + 2g)	
(X ± 2/.2) x2

2 h R

(4.4.2.2.19)

The unknowns in (4.4.2.2.19) are constant A and contact half width, a (which

does not explicitly appear in (4.4.2.2.19), but it affects the imposition of the

boundary conditions). According to Armstrong (1988), the boundary conditions which

permit constants A and a to be determined are the - vanishing of both p and of
dp/dx at the contact extremities ( x = +1— a ). The condition on the vanishing

of the pressure derivative is suggested by the fact that, for infinite contact widths

and both compressible and incompressible elastomers, dp/dx actually vanishes at the

contacts ends (Meijers (1968), pp. 377-378). Anyway, in the case of finite contact

widths, the pressure slope is vertical at the contact extremities. Consequently, the

boundary conditions assumed by Armstrong (1988) are inevitably questionable. The

vanishing of the pressure by the contact ends requires that

A cosh (\j 3 'a 
(X
(X —± 

4
2g)
4 	 a I ± X ±h 2/1

X	
(6 —  h2X (X — 11) )	

(X 

2
+ 

h 
2/2) a2a2

3 R /2 (X + 2g) =01	 h 

(4.4.2.2.20)
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Similarly, the extinction of the pressure gradient at the contact extremities

imposes that

	

3 AL (X ± 2g) sinh RI 3 111 (X 
+ 212) a 1	 (X + 2,12) a\IA

X (X — /1)	 X (X — g)	 h 1	 R	 —0

(4.4.2.2.21)

Equations (4.4.2.2.20,21) permit constants A and a to be determined. To define

the equation referring to the computation of the contact half width, a, equations

(4.4.2.2.20,21) are rewritten by keeping at the left-hand sides only the hyperbolic

functions. Then, such modified equations are mutually divided to produce the

following relation

	

(
a 2hX(X — /i)	 26 R1 \I 3,a(X +2,a) tanh kl 311 (X + 214 a ) — 2 = 0

	

h—i- 3ag(X+2)	 a h 1	 X (X — ,a)	 X (X— ii) h

(4.4.2.2.22)

Equation (4.4.2.2.22) in unknown a may be solved only numerically. A

standard Newton method was employed in this study. The starting point may be

chosen in two ways. First, expression (4.4.2.2.8) for a in the case of incompressible

materials can be adopted (the Poisson's ratios for actual elastomers are very close

to the incompressibility value 0.5 , 'see Section 3). Alternatively, it can be observed

that, for sufficiently high a values, the tanh function at the left-hand member in

expression (4.4.2.2.22) approaches unity. More precisely, this presupposition requires

that the radical appearing as the argument of tanh function is not too small. This

in turn demands that X does not prevail too much with respect to /2 . With this

assumption, formula (4.4.2.2.22) can be solved in closed form to supply an

approximate expression for a , which can serve as a starting point

a2=, h \I  X (X — /1)	 ±	 6R	 h2 X (X — g) 
3 /2 (X + 2,12)	 3 ii (X + 2g)	 (4.4.2.2.23)



h2 X (X — g) 
6 �

6 R Az (X ± 2,a)
(4.4.2.2.24)

A -

1(X + 2,u) (a2 — 2 8 R ±  2 h2X(X—/1)

3 g (X ± 2,u) J

(X ± 2/2) a

3 AL (X ± 2/2) sinh 
kJ 

3 /1 (X ± 2M) a
X ( X — A)	 t	 X (X —j)	 h )

(4.4.2.2.26)A -
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Since X is, in the case of elastomeric materials, higher than g , the argument

of the first radical in (4.4.2.2.23) is always positive. Instead, the argument of the

second radical may become negative. Consequently, expression (4.4.2.2.23) can be

used as a starting point for a only when the argument of the second radical is

positive, that is, when

As already mentioned, formula (4.4.2.2.23) presupposes that X does not prevail

too much with respect to g. By bringing this assumption to the extremes (e.g., X --

0), it can be shown from (4.4.2.2.23) that the contact semiwidth, a , tends to the

value WI , which is in fact typical of very compressible materials (see (4.4.2.2.3)).

The same expression for a can be derived by admitting that the argument of tanh

is small and, consequently, tanh (x) . x . These two findings are not contradictory.

In fact, the result a = -16-7k is accurate both when the elastomer is compressible or

when the contact half width a is very small.

It was numerically found that, when condition (4.4.2.2.24) is satisfied, the

starting point (4.4.2.2.23) is preferable to that referring to incompressible

elastomers. Problems of double numerical solutions for a were never encountered.

Once the contact half width, a, is known, constant A can be computed from equation

(4.4.2.2.20) or, alternatively, from (4.4.2.2.21). From (4.4.2.2.20) it is obtained

(4.4.2.2.25)

2 h R cosh i ,,\I 3 11 (X + 2g)  a)
X (X — g) h J

Alternatively, the following expression for A is derived from (4.4.2.2.21)
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When inserting the expression for A in equation (4.4.2.2.19), formula

(4.4.2.2.25) is perhaps preferable, since it is defined in terms of cosh , a function

already present in (4.4.2.2.19) . Upon introduction of (4.4.2.2.25), the final form of

(4.4.2.2.19) is

cosh 1,\1 340+244) x
p( x)	 X (X-AL) h

(X-1-24) —	
a2 6	 X	 h 

	

cosh 
\13(X+2) a	 hR –	 3 /2(X+2g)R J -T-

X (X-,u) h

6	 X (X — kt) h	 X
2

3 g (X + 21L) R	 2 R h (4.4.2.2.27)

where constant a must be computed from (4.4.2.2.22) . The maximum contact

pressure is obtained from (4 :4.2.2.27) by putting x = 0 . Extensive numerical

results are deferred to Section 4.4.4 . For the time being, expressions (4.4.2.2.4)

(Winkler solution), (4.4.2.2.11) (incompressible solution) are compared to (4.4.2.2.27)

(complete second order solution) for various Poisson's ratios, in order to assess the

concept of transitional Poisson's ratio of (4.4.2.2.14) . The following values were

chosen : E = 3.52 MPa , h = 3 mm , R = 4000 mm , 5 = 0.3 mm . These figures

are analogous to those adopted in the experimental study of Section 5. Figure

4.4.2.2.1 shows that the maximum normalized contact pressure according to a

Winkler model approaches the second order complete solution (here assumed as the

"exact" solution or, better, as a solution one order of magnitude more accurate that

the Winkler and the incompressible approaches) for Poisson's ratios lower than 0.47

. The incompressible idealization holds true when v � 0.4999 . This latest value is

more perceivable from Fig. 4.4.2.2.2 , which displays an enlarged representation of

the right part of Fig. 4.4.2.2.1 . There is a huge 11 interval ( 0.47 � 1/ � 0.4999 )

including most of the physical values of 11 for elastomers (see Section 3), for which

neither the Winkler modelling nor the incompressible idealization supply results

sufficiently close to the second order complete solution. It can be concluded that

the concept of transitional 1/ of (4.4.2.2.14) is not particularly useful from a

practical viewpoint, since Fig. 4.4.2.2.1 shows the existence of a sizeable transitional

v interval. There is also a need to assess the complete second order solution by

accounting for higher order perturbation terms, an aspect covered in Section 4.4.3 .
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4.4.3 The new results

In this Section the approach due to Armstrong (1986) is extended to produce E

perturbed terms higher than the second order. Section 4.4.3.1 presents the

analytical expressions of the coefficients of the differential equation correlating

pressure profile and its derivatives to the layer deflection. In Section 4.4.3.2 these

results are employed to evaluate the pressure profile when the layer is indented by

a rigid cylinder.

4.4.3.1 The Perturbed Pressure-Deflection Solution

In this Section the perturbed solutions to equations (4.4.2.1.7) subject to the

boundary conditions (4.4.2.1.8) are determined up to a high E.-order. First, equations

(4.4.2.1.7) are rewritten up to a generic n order

€0 r a2u0 ) + el r 82U/
l ay2 j	 i ay2

x +/1 a2v0  1 +±	 g ax aY
j

€2 i a2u2 ± x + g a2v1 + X + 211 a2u,? 1 ±

, aY2 	 g	 ax 3Y	 11	 8X- 3

_i_	 ±X ± g a2v2 	x + 2g a2u, 1 +
e ( 	I g BXa y 	 g	 ax"

a2unx +	 a2v.- 1	x + 2g au-2 1 ±
En ( --ay2 

+/2g	 ax 3y 4- An	 ax2 i
. . . = 0;
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0 ( 8 2 170
E

[ a2v/
E	

X 	 a2u0 
JayG	 ay2	 X ± 2,2 ax ay

	

€2 a2v2 	 X + 	 a2u 1	 	 a2vo 

	

ay2 	X + 2/.2 aX aY	 X + 2/2 ax2	 3 I

3 r 32V3 	 a2u2	 	  a2vi j6 —2- +	 212 3X 8Y	 + 2g ax
,
-aY

	

en a2va	 + g a2u.-1	 82v„-2

	

ay2	 2/1 ax ay + X + 2/1 ax2 	 0

(4.4.3.1.1)

Equations (4.4.3.1.1) are subject to the following boundary conditions, which

are here formulated for a generic order (see (4.4.2.1.8))

for Y	 0

0 ( avo )
E — +	 — + 

X 	 aU0 )	 2 ( 8V2
E	

X 	 l

ay	 aY	 x + 2,“ 8X	 ay	
aU

+ 2g @X

63 av3	 x 	 8E12 ± en ____8Vn ± 	 X
	

au-1 

8Y X ± 2g ax	 ay x+ 2g ax

	

0 (
aU0	 aUl	 3V0	 2 aU 2 _i_ avi

	

—aY	 € —ay -I- —ax	 —8Y ' ax

63 aU3	 aV2ay +	 en I aUn	 aVn-1 . . .	 0
ax	 ay -F ax

• • •



X+/2+	 g a2u2 .	 g
X ± 2g ax 8Y	 X ± 2g ax2

a2vi
(4.4.3.1.3)

82/73

81,2
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for Y = 1

eo u0 d_ e l LI1 d_ 62 L12 —I--. €3 U3 + . . . = 0

€0 	 d- E l II I -F e2 i72 -F 63 173 d- . . . .. 0	 (4.4.3.1.2)

where, as already seen in (4.4.2.1.8), P ---- p/(X ± 2g) .

It has already been shown that U 0 = U2 = 0 (see (4.4.2.1.12) and (4.4.2.1.24)).

Similarly, it has been found that Vi = 0 (see (4.4.2.1.18)). It is now demonstrated

that Va = 0 . Equation (4.4.3.1.1) requires that

subject to the boundary conditions (see (4.4.3.1.2))

aV 3	 x 	 au2for Y = 0	 -..=
3Y	 X + 2g. ax

for Y = 1	 V3 = 0 •	 (4.4.3.1.4)

Since U2 = V 1 = 0 , equation (4.4.3.1.3) requires that the second derivative

of V3 with respect to Y vanishes. The boundary conditions (4.4.3.1.4) impose also

that the first V3 derivative with respect to Y vanishes for Y = 0, and that Va =

0 for Y = 1 . It is concluded that V3 = 0 is the solution to this problem.

Proceeding similarly, it can be shown that U2n = 0 and V2n-1 -= 0 for a generic

perturbaticin order n . Consequently, only terms U2n_ 1 and V2n are examined. The

corresponding computations are straightforward, but particularly lengthy and

tedious. In the following, it is shown that such expressions lend themselves to be



x + g a2v2	x + 2,th a2u1
—	 ha 	 aX ay	u	 ax2

32(.13

ay2 (4.4.3.1.5)
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computed with the aid of an algebraic manipulator. The expressions for U and V up

to the second order are already known. To compute U3 , expression (4.4.3.1.1) is

resorted to

By introducing in (4.4.3.1.5) the formulae for V2 and 11 1 , the second

derivative of U3 with respect to Y is expressed in terms of a known function, say

F(X,Y)

= F (X,Y)	 (4.4.3.1.6)

An algebraic manipulator can easily integrate twice F(X,Y), to supply the

expression for U3 . Anyway, this integral is a particular integral since the results

retrieved via an algebraic manipulator do not include the integration constants

necessary to impose the boundary conditions (Harper (1989)). It is convenient to add

to the particular integral, PI , the proper integration constants C 1 and C2 to obtain

the indefinite integral

U3 (X,Y) = PI (X,Y) ± C I (X) Y + C2 (X)	 (4.4.3.1.7)

The two integration constants can be evaluated from the following boundary

conditions

a2u
ay2

for Y --- 0 au3 _ _ av2 . c, (X) =	 av2(x,o)	 a PI(X,Y)
Wax	 3X	 ay IY- o

(4.4.3.1.8)

for Y = 1	 U3 = 0	 -. C2 (X) = — C1 (X) — PI (X,1)

The way in which an algebraic manipulator can be exploited is now

summarized. First, PI (X,Y) is computed by integrating twice F (X,Y) according to

(4.4.3.1.6) . Then, C1 (X,Y) and C2 (X,Y) are calculated from (4.4.3.1.8). Knowing



821,4

aY2

av 4 _ 	 x  au3
BY — X + 2g ax -.4for Y = 0
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already P1, C1 and C2 $ the final formula for U3 is derived from (4.4.3.1.7) . It has

already been observed that V3 = 0 .

The evaluation of V4 is now treated. From (4.4.3.1.1) it follows

x ± g a2u3	x + 2g 32V2---
ih	 3X BY	 /1	 ax2

(4.4.3.1.9)

Terms U3 and 172 have already been computed. So, the second derivative of

V4 with respect to Y is a known function. This expression is integrated twice, to

obtain a particular integral, PI (X,Y) , which becomes general by adding C 1 (X) Y +

C2:

V4 (X $Y) = PI (X,Y) ± C1 (X) Y + C2	 (4.4.3.1.10)

Constants C 1 and C2 are computed from the boundary conditions

x 	 au,(x,o)	 a PI(X, Y)
=C1 (X) X .4-	

iy
2g	 3X	 ay 	, — 0

for Y = 1
	

U3 = 0	 -, C2 (x) — — C1 (x) — PI (X,1)	 (4.4.3.1.11)

Having computed PI (X,Y), C 1 (X) and C2 (X), the final expression for V4 is

obtained from (4.4.3.1.10) . It has already been shown that U4 = 0 .

It is now clear that such computations can be extended to any e perturbation

order . In particular, the expressions for U3 and V4 are reported — computed via

the algebraic manipulator REDUCE (1987) — in normalized form :



U3 — d3 P (
d X3

+
12 /2 	6 (X + 2g)	 4 g (X + 2g)

y4 ± 3X + 4/2 y3 + (X-	 /2) (3X +44) y2
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X (X — ,a)y _ 6
x2 ± xia _ 3412 1

312 (X + zu)	
6 g (X ± 2/1) I

(4.4.3.1.12)

3X -I- 2g y 4	 (X — /2) (3X + 2/2) y3 _
v4_ d4 P r 2?' ± /L Y5d x4 L 120 11	 24(X -I- 2g)	 12 g (X +2/2)

x2 (x _ /1) y2 ± X (6X2 ± X,a — 
3/22) ), — 9X3 ± 2 X2g ± 6 Xg2 — 3,1/ 3 )±

15 g (X ± 2,12)26 4 (X +2/42	 6g (X ,+ 2/2)2

(4.4.3.1.13)

The expressions of V6 , V8 , V10 are also reported, with reference to the

condition Y = 0 , since in practical circumstances only the deflection the layer

upper surface is usually requested

(X ± 3g) (345 X3 ± 313 X2g — 123 Xg2 — 103 g3)
V6 ly_ 0 —

315 g (X ± 2143

(X ± 3/4 (2219 X 4 ± 9766 X3/1 ± 6537 X 2 /22 — 3341 Xg3 — 2491 ,a4)
176 ly= 0 =

2835 IL (X + 2/44

(X + 34) 
V10 iy_ 0 =	 155925 g (X ± 2g)5

(71040 X5 + 593701 x4/2 ± 1424393 X3/21 ± 703764 X2g3 — 494653 Xg 4 — 310829 g5)

(4.4.3.1.14)
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Indications about the behaviour of these high order perturbation terms are

now sought for by referring, in the interest of greater simplicity, only to the

incompressibility condition X = 00 (that is, A/ = 0.5 ) . It is noted that P expressed

in terms of p exhibits X at the denominator (see (4.4.2.1.8)). If one refers to p

(instead of p) derivatives and to Y = 0 , the limits for X -.00 of the coefficients

multiplying the p derivative in the expressions of Vn are finite. Such coefficients

are

Vo II 
I- ,

•
x y o x _.co

1 7 4 g

T
1y••0 ' X ...co

9=  _
•	 15

V6 AL
I

= 345
'•	 'x	 y o	 X.00 -

315 — 1.095

Vs g = 2219 — 0.782ly-oT
	 ' x-..00 —

2835

V10 g =  71040 - 0.455ly-oX 	 , x_..00 155925
(4.4.3.1.15)

These expressions show that Vn does not diverge as n is increased. Since the

total V is the sum of Vn each multiplied by En (which rapidly decreases With n), the

high order coefficients of the differential equation in p originated by the

perturbation approach become vanishingly small. So, a perturbation problem is faced

which is represented by a n-order differential equation in which the maximum order

derivative of the unknown function is multiplied by the smallest coefficient. In

other words, the perturbation approach leads to a "singular perturbation problem"

(Smith (1985), Nayf eh (1973)) , which is inevitably difficult to treat, since the

maximum order of the derivative of the differential equation, which characterizes

the problem mathematically, becomes insignificant. The obstacles connected to the

boundary conditions are examined in the following Section.
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4.4.3.2 The pressure profile for a cylindrical indenter

The case in which the terms up to the fourth perturbed order are considered

is treated first. The aim is to find the (normalized) pressure distribution when the

layer is pressed by a cylindrical indenter. From (4.4.2.1.9), (4.4.2.1.12), (4.4.2.1.24)

and (4.4.3.1.13) the link is obtained between normalized deflection of the upper

surface of the layer and dimensionless pressure distribution together with its

derivatives up to the fourth order, which is equalled to the displacement imposed

by the cylindrical indenter according to a parabolic, second degree approximation

(Jaffar and Savage (1988))

VO + E V I + 62, V2 + 64 V4 I y	 h	 2 7). R

p	 X — ,11 X h2 d2P	 9X3 + 2 X2,IL + 6 XAl2 — 
33

h4 d4 P	 5	 X2 a2
- X + 2g 312 dX2 	X4	15 g (X + 2g)	 a42 	 d	

- 

h	 2hR

(4.4.3.2.1)

The homogeneous solution requires the treatment of the following

characteristic equation in cs.)

- 9X3 + 2 X2iz + 6 X 1-L2 — 3Lh3 h4 (4 4 	 X - g X h2 2

15 g (X + 2/42	 a4	 2/1 371	 + 1 = 0 (4.4.3.2.2)

By putting (4)2 74 	 a , it follows
a

— 9X3 -I- 2 X211 4- 6 Xg2 —3/1 az
15	 (X + 212)2

X—/2 X a ± 1 0X + 2hz 3/1 (4.4.3.2.3)
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and its roots are

5 (X ± 2)
2 ( — 9X3 ± 2 X2g ± 6 Xg2 — 33 )

(x (X - g) - \I X2 (X - g)2 -
12 

g ( — 9X3 ± 2 X2g ± 6 Xg2 — 3g3 )5

5 (X ± 2) 
a2

2 ( — 9X3 + 2 X2g + 6 Xg2 — 3/.23 )

(x (X - g) + \I X2 (X - g )2 -
12 

g ( — 9x3 ± 2 X2g ± 6 Xg2 — 3g3 )	 )
5

(4.4.3.2.4)

Roots (4.4.3.2.4) depend only on Poisson's ratio, v, and not on Young's

modulus, E . Fig. 4.4.3.2.1 presents roots (4.4.3.2.4) as Poisson's ratio varies from 0

to 0.5 . It emerges that root a l is always positive and root a 2 is negative. In

particular, for v -. 0.5 , that is, X -. co, the positive root vanishes behaving as 3g

(X + 2g)/(X(X — AL)), whereas the negative root approaches — 5/9 . Consequently,

the four roots OJ of (4.4.3.2.2) are two real and two purely complex conjugate ones

for finite X values . They are

W 1 = + (711 A --C; -.(• 1 ; W 2 = - g. ' f°71 ; W 3 = ± i g - --‘ F - 7 -X 2 ; W 4 = - i kt ,F--c-:-(2

(4.4.3.2.5)
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Poisson's ratio
Fig. 4.4.3.2.1 :The roots of the second degree equation (4.4.3.2.3), as functions of i./ .

The homogeneous solution of (4.4.3.2.1) is

P (X) = Acosh( •Fati 1.-- X) ± B sinh ( fa-. 1 +Li X) ± C cos( -F-c-T. 2 -f-1 -I X) + D sin( .1=7:-C2 -2;17 X)

(4.4.3.2.6)

As already observed (see comments on (4.4.2.2.17)), the homogeneous solution

must be symmetrical with respect to X , as is the indenter profile. Consequently,

constants B and D in (4.4.3.2.6) vanish. A particular solution to (4.4.3.2.6) is

P(X) = 	 X (X — ,u) h	 a2 X2
h	 311 (X + 2g) R	 2 Rh (4.4.3.2.7)

The complete solution to (4.4.3.2.1) is therefore



a =0

= 0
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P (X) = A cosh (	 FX) + B cos( ,--a-2 	+ 6	 X (X — h	 a2	 X2	h 	 (X ± 24) R	 2 Rh

(4.4.3.2.8)

The unknowns in (4.4.3.2.8) are A, B and a. As already observed (see

comments to (4.4.2.2.19)), constant a (which represents the contact half width) does

not directly appear in (4.4.3.2.8), but it affects the imposition of the three boundary

conditions. The vanishing of P and of its first derivative by the contact

extremities has already been imposed in the second order perturbed solution (see

(4.4.2.20,21)), and these two boundary conditions are again adopted in the following.

Concerning the third boundary condition, two different impositions are proposed.

The first approach is treated hereinafter, whereas the second description is

deferred to eqn (4.4.3.2.16).

First, the just mentioned boundary conditions are extended to admit that the

pressure profile must smoothly vanish at the contact ends, by imposing that the

second pressure derivative vanishes as well. In fact, the pressure profile obtained

from the perturbation method is the solution of a fourth order differential equation

in P and, therefore, a high degree of smoothness of the solution is required. This

observation justifies the boundary conditions employed here. Despite these

encouraging comments, the conditions on the pressure derivatives by the contact

extremities are inevitably doubtful. The corresponding equations are

a2
A cosh	 B cos( .,-FCC.2	) 6	 X	 11) h 

	h 	 (X + 24) R 2 Rh

a
A 4-6—ci sinh ( 'r

a
ECI 	 ) — B ,NF—c7.2 sin (	 )

( r—A. a l cosh 1 cx : +LI )	 B a2 cos (	 ) —

=0

(4.4.3.2.9)



h i... , f 1	 a2	
X (X — Ai) h  1

r/ ' '".2 I h	 2 Rh	 3// (X ± 2,a) R i_A (4.4.3.2.10)
(a1 - a2) cosh (
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To determine constant A as a function of a , one multiplies the first equation

of (4.4.3.2.9) by cx 2 and subtracts from it the third equation

Similarly, to compute constant B as a function of a , one multiplies the first

equation of (4.4.3.2.9) by a l and subtract from it the third equation

B____
a2	X (X - ,a) h  1

lti + . a 1 ( 67 .1.	 2 Rh	 31.2 (X + 2,u) R J 

(a2 - al) cos ( •F--(7(. 2 ti )
(4.4.3.2.11)

Finally, to evaluate the contact half width, a , expressions (4.4.3.2.10,11) are

introduced into the second equation (4.4.3.2.9) to obtain a single equation in a

.N 	 14-c-C: tanh ( ,,Fo-c. i ÷:c.f. ) 1 ill + a2 (	
a2

71 	 2 Rh	
)(X

3i1 (X —± 2

AL

/

) h 

4 R i1 t

f2 tan( 47----(T2 (I:: ) 17A + ccii	 8	 a2	 X (X - i1) h  11	 a (a1 - a.2)
h 2 Rh 3/1 (X ± 2g) R J	 R

(4.4.3.2.12)

Equation (4.4.3.2.12) is not suitable from a numerical viewpoint, since function

tan assumes high values due to the greatness of a/h (a 2 ----, - 5 a2 / (9 h2), see

comments to (4.4.3.2.4)). It is, therefore, convenient to multiply both members of

(4.4.3.2.12) by cos (,N1------.7.2 a/h). Once a has been evaluated from (4.4.3.2.12),

constants A and B are computed via (4.4.3.2.10) and (4.4.3.2.11), respectively. A



X (X — ,a h2
6 � 	 ) 

3g (X + 21.1) R

h2
1R

(4.4.3.2.15)
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starting point for a can be obtained by assuming in (4.4.3.2.12) that tanh . 1 (see

comments to (4.4.2.2.22)) and that, since a/h is great, tan --. co . As a consequence,

coefficient multiplying function tan in (4.4.2.2.22) must vanish

h i_ ,

	

(6	 a
2	 X (X - /2) h  )	 ___ 0

	

R ' —1 L h	 2 Rh	 3/.2 (X + 2g)	
__

R J
(4.4.3.2.13)

from which an estimate for a is derived

X 01/4 _ g) h2
a	 4\I -Eiri + R6	 3i2 (x + 2g)

(4.4.3.2.14)

Similar to (4.4.2.2.24), equation (4.4.23.2.14) is applicable provided that the

radical is positive, that is

An alternative starting point is that referring to the perfectly incompressible

elastomer (see (4.4.2.2.8)).

A FORTRAN code was developed following the above theory, and results were

obtained concerning the contact pressure profile. It was found that the solution of

(4.4.3.2.12) is not unique. This problem can be circumvented by adopting for the

contact length the value closer to the figure obtained from the second order

complete solution of (4.4.2.2.27) . Moreover, the presence of the cos function in

(4.4.3.2.8) produces unphysical undulations in the contact pressure profile.

Numerical results showing such oscillations are deferred to the treatment of the

alternative boundary condition, see (4.4.3.2.16).



X (X — g) h a2 	_ 8 _L_
2 Rh	 h ' 311 (X + 2/2) R 

A=
cosh ( fc—c i ±t2, )

(4.4.3.2.18)
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Expression (4.4.3.2.8) is now reconsidered, but now constant B is set equal to

0 , to remove the non physical pressure undulations. So doing, the general solution

becomes (in fact, it is no longer strictly general)

8 X (X — A	 16)L ) h	 a 2 X2	
(4.4.3.2.P (X) = A cosh ( 4-JCL +11: X) ± h

3/1 (X ± 2) R	 2 Rh

Constants 4	 and a are found by expressing the conditions that both

pressure and pressure derivative vanish by the contact extremities

	

P (1) = A cosh ( ,ra-. -1 .--- .1' ) + a	
X (X — /2) h	 a2

_o
h	 h	 3g (X ± 2/.2) R	 2 Rh

(4.4.3.2.17)
8P (X)	 a

a x I x =1 =A 4cTi sinh ( 4-51, 1 ±11, - ) — R=0

To evaluate constant A as a function of a , the first equation in (4.4.3.2.17)

is employed. This equation is preferable to the second one, since it involves

function cosh , which is already present in (4.4.3.2.16) . Thus

By introducing expression (4.4.3.2.18) for A in the second equation of

(4.4.3.2.17), a single equation in the contact half width, a , is obtained

(
,, + 2 h X (X — g) 
h 3 a g (X + 24)

2 8 R ) 1---
1 a i tanh ( {Or, '-S—/ )- —2 = 0_ ha h

(4.4.3.2.19)
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This equation can be compared with formula (4.4.2.2.22) expressing the

contact half width for the complete second order solution. It appears that the two

formulae are very similar, apart from the presence of (x i in (44.3.2.19) and of 3g (X

+ 2g)/(X(X — /4) in (4.4.2.2.22) . It has already been commented with respect to

expressions (4.4.3.2.4) that root ct i does in fact approach 3g (X ± 2/2)/(X(X — g)) as

X -. oo . Consequently, the contact width referring to the complete second order

solution is very similar to that describing the fourth order solution without

oscillatory functions in its general solution. The numerical solution to (4.4.3.2.19)

was obtained via a Newton method, by assuming as starting point the contact half

width referring to the complete second order solution (4.4.2.2.22) .

By introducing (4.4.3.2.18) into (4.4.3.2.16), it follows

cosh ( 4i --7-1 X) 1 a2

cosh ( ACTI ---/1. )	 ( 2 Rh
8 ± 

X (X — g) h  1
Jh	 3/2 (X ± 2g) R	 +

8	 X (X —. g) h	 a2 X2

h	 3g (X ± 2g) R	 2 Rh
(4.4.3.2.20)

Expression (4.4.3.2.20) is very similar to formula (4.4.2.2.27) referring to the

complete second order solution, due to the already commented similarity between

root oi l of (4.4.3.2.4) and factor 3g.(X ± 2g)/(X(X — g)) as X -. co . Fig. 4.4.3.2.2

presents some numerical results comparing the incompressible modelling and the

complete second order solution (4.4.2.2.27) to the two expressions (4.4.3.2.8) and

(4.4.3.2.20) of the fourth order solution, referring to different boundary conditions.

The numerical forecasts are presented for v = 0.4997 (a figure close to the

experimental readings of Section 3, and for which the incompressible and Winkler

solutions are both inaccurate, see Figs 4.4.2.2.1,2) . The same values as in Figs

4.4.2.2.1,2 were adopted for the following additional variables : E = 3.52 MPa , h .---
3 mm , R ----. 4000 mm , 8 = 0.3 mm . It emerges that, while the incompressible

forecasts are inaccurate, the previsions retrieved from the complete second order
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solution are hardly distinguishable from those referring to the fourth order

solution. Figure 4.4.3.2.2 also displays the predictions achieved with sixth, eighth

and tenth order models. They do not appear to improve appreciably the precision of

the solution. In the interest of completeness, the corresponding theory is briefly

treated hereinafter.

X coo rd i nate

Fig. 4.4.3.2.2 :The incompressible, second, fourth, sixth, eighth, tenth order solutions.

When the perturbation terms up to e6 are considered, the corresponding

differential equation in normalized pressure, P, becomes

Vo -1- e V i -1- e2 V2 ± €4 V 4 + E6V6IY=0 = t,	 2 f1.2 R -.

X — IL X h2 d2P	 — 9X3 ± 2 X2/2 ± 6 X/22 — 3,12 3 71. 4 d4 P—	 ±P X ± 2/1 34 a2 dX2 	 15 g (X + 2)2	 a4 d X4
-
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(X + 3/1) (345 X 3 ± 313 X2/.2 — 123 X,a 2 — 103 g3) h6 d6P	 a	 X2 a2
315 Az (X ± 2/43 	 a6 dX6	

Ii	 2 h R

(4.4.3.2.21)

The homogeneous solution requires the treatment of the following

characteristic equation in (4)

(X ± 3/4 (345 X3 + 313 X2g — 123 Xg2 — 103 g3) h6 s
a

6 C4) ±315 AL (X ± 2g)3

— 9X3 + 2 X2/2 ± 6 Xg2 — 3/23 7/4 (04
15 g (X + 2i42	 a4 	 

X h2 2

X ± 2g 3/1	 (`-) + 1	 0= 

(4.4.3.2.22)

By putting (4)2 	 = a. (see (4.4.3.2.2,3)), it follows
a

(X ± 3g) (345 X3 ± 313 X 2g — 123 Xg 2 — 103 g 3) cc3 ±

315 g (X + 2/43

— 9X 3 ± 2 X2g ± 6 Xg2 7-- 3/13 oc. 2 	 X — il —X 
a. + 1 = 0

15 g (X + 2/2)2	 X ± 2/2 3/2

(4.4.3.2.23)

The roots of the third degree algebraic equation in a. (4.4.3.2.23) can be

computed by evaluating parameters Q and R (Spiegel (1974)) :

35 X (X — it) (X ± 2/42 
=Q 

(X ± 3g) (345 X3 + 313 X2g — 123 Xg2 — 103 ,123)
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49 (X ± 2u)2 ( — 9X3 ± 2 X2/2 ± 6 Xj.22 — 343 )2 
(X ± 3/42 (345 X3 + 313 X2g — 123 X/.22 — 103 /.23)2

735 X (X — AL) (X ± 2/43 ( — 9X3 ± 2 X2/2 + 6 X/12 — 3/2) +
2 (X ± 3/42 (345 X3 ± 313 X2/2 — 123 X /2 2 — 103 g3)2

315 /2 ( X ± 24)3 
1

2 (X + 3,u) (345 X 3 + 313 X2/2 — 123 XX/2 2 — 103 ,12-) 
+

343 (X ± 2,43 ( — 9X3 ± 2 X2g ± 6 X,a2 — 3/13 )3 
(X ± 3/1)3 (345 X3 + 313 X2,u — 123 X,u 2 — 103 /23)3

(4.4.3.2.24)

The discriminant D is

D --= Q3 ± R2	(4.4.3.2.25)

The roots of (4.4.3.2.23) and discriminant D depend only on Poisson's ratio, 11,

and not on Young's modulus, E . Figure 4.4.3.2.3 presents discriminant D when the

Poisson's ratio ranges from 0 to the incompressibility value 0.5 . It appears that

discriminant D is always positive and, therefore, there is always a single real a.

solution to the cubic equation (4.4.3.2.23) , displayed in Fig. 4.4.3.2.3 . This solution

is negative for V � 0.18 , which implies that no real solution Cc) exists for the

original sixth degree algebraic equation (4.4.3.2.22) in this /I range. Conversely, for

0.18 � v < 0.5 — the field in which elastomeric materials (porous elastomers being

excluded) fall — the a solution to the third degree equation (4.4.3.2.23) is positive

and, consequently, one real solution (0 exists to the sixth degree equation (4.4.3.2.22)

for these v values. When 1/ = 0.5 , X . co and the real root a. ---- 0 . The

behaviour of the solution for v ==, 0.18 has been examined only numerically. It

R=
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appears that the real root rapidly changes its sign, but no singularity could be

spotted via numerical tests. Anyway, this v--..--: 0.18 value is not relevant in

practical applications of elastomeric (non porous) layers. Similar to (4.4.3.2.16), the

form of the solution is

ICC 	

93

.	 root -

40

30

20

10

0

'root
discriminant

-Ij	 13Li

-2.4

-3.6

-4.8

-6.0
0.00	 0:06	 0.10 0.15	 0.20	 0.25	 0.30	 0.35	 0.40	 0:45 0.59

Poisson's ratio

Fig. 4.4.3.2.3 :The roots and the discriminant of equation (4.4.3.2.23).

X (X — AL) h	 a2 X2
P (X) --- A cosh ( fa -I- X*) + "ill

3Az (X + 2g) R	 2 Rh

(4.4.3.2.26)

where a is the solution to (4.4.3.2.23) . The integration constants A and a are found

similar to (4.4.3.2.17,18) . So, a formula for P analogous to (4.4.3.2.20) holds for this

case too, provided that root al of (4.4.3.2.20) is here interpreted as root cc of

(4.4.3.2.23) ..

Moving to the eighth order solution, the paths followed are much the same.

6.0

4.8

3.6

2.4

1.2

0.0



8	 X2 a2—
h 2 h R

(4.4.3.2.27)
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The es differential equation becomes

x2 Vo ± 6 V I + 62 V2 ± E4 V4 ± e6 Vs ± E8 Vs 1 y 	 0 = g.	 2 h R -4

X — ,12 X h2 d2 P	 — 9X3 + 2 x2,ii ± 6 X/22— 343 h4 d4 P P	 ±X + 2,a 3/A a2 dX2	15 g (X ± 2a)2	a4 a x4

(X ± 314 (345 X3 ± 313 X2/2 — 123 X/12 — 103 43) h6 deP
315 g (X ± 2/1)3	as dX6

(X + 3/4 (2219 X 4 + 9766 x3/2 ± 6537 X2g2 — 3341 X/13— 2491 124 ) h8 deP
2835 g (X ± 2/2)4	as dX8

which requires the solution of an eight degree (reducible to the fourth degree)

characteristic equation. This equation was treated numerically, assuming as starting

point for the root that referring to the sixth degree characteristic equation. The

pressure P function is assumed to possess the form (4.4.3.2.26) .

Finally, the treatment of the tenth order perturbed problem is considered.

This time, the e l° differential equation linking pressure P to layer top boundary

deflection is

Vo + E V1 + E2 172 d-E 4 V4 ± E6 V6 + €8 Vs +€ 10 V10 Iy _ 0 — 781	 2 37i2R -4

•	 X
P	

— At X h2 d2p _,_ — 9X3 ± 2 X2i/ -I- 6 X/22 — 343 h4 d4 P—
X + 2/1 31i c7.2 dX 2 7-	 15 g (X + 2g)2	a4 d X4

-
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(X + 311) (345 X 3 + 313 X2/.2 — 123 X42 — 103 i23 ) h6 d6P
315 g (X ± 24)3	a6 dX6

(X +3/2)(2219 X4 +9766 X34 +6537 X2g2 —3341 X43 -2491 /.24 ) h8 d8P
2835 g (X + 24)4	ae dX8

(71040 X 6 + 593701 X44 + 1424393 X342 + 703764 X243 — 494653 X4 4 — 310829 46)

(X + 3 12) 	 hm di6P. 8	 X2 a2,
155925 g (X ± 2/.2)6 al° dX"'	 h	 2 h R

(4.4.3.2.28)

which leads to the (numerical) treatment of a tenth degree (reducible to the fifth

degree) characteristic equation. The pressure P function adopted has still the form

(4.4.3.2.26) .
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4.4.4 Numerical Results

This Section is devoted to numerical tests of the perturbed solutions, for a

selection of v values. In particular, the peak contact pressure and contact width as

functions of the cylinder indentation are examined. The Winkler and

incompressibility approaches are compared to high order perturbed solutions, to

retrieve indications about the validity fields of these simplified solutions. It may be

conjectured that for low indentations and, consequently, for small contact widths,

the perturbed approach is less accurate, since h/a is not negligible and, therefore,

higher order perturbed solutions may be needed. These previsions are numerically

tested in Figures 4.4.4.1,2,3,4,5 and 4.4.4.6,7,8,9,10 , with reference to peak contact

pressure and contact width, respectively. More precisely, the parameter indicated

along the x-axis is always 5R/it 2 , whereas the variable reported along the y-axis is,

in the case of Figs 4.4.4.1,2,3,4,5„ the peak normalized pressure, pRAEa) , whereas

in Figs 4.4.4.6,7,8,9,10 the normalized semicontact width, a/h is indicated. The

asymptotic incompressible and Winkler modellings are also included for comparison.

The choice of x and y-axis parameters stems- from examination of equations

4.4.2.2.22 and 4.4.2.2.27 with regard to the second order perturbed solution, and of

similar expressions for different perturbation orders. A dimensional analysis

approach (Langhaar (1951)) was also useful. The following selection of Poisson's

ratio figures v — 0.4999 , 0.4997 , 0.499 ,• 0.49 , 0.48 is studied. It clearly emerges

that the second order perturbed solution is not appreciably improved by considering

higher order perturbations. In particular, the perturbed solution of fourth order

produces peak contact pressures only slightly higher than its second order

counterpart. It is observed that, contrary to the expectations expressed at the

beginning of this Section, the second order perturbed solution is equally accurate

for relatively small and large contact widths. For very small contacts, however, the

precision of the second order perturbed solution declines, even if diagrams explicitly

addressing this point have not been included. Anyway, this aspect is discussed in

Section 4.3.5 with regard to the asymptotic incompressible solution, which may be

interpreted as a particular version of the perturbed solution for incompressible

materials. The conclusion reached there was that the asymptotic incompressible
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Fig. 4.4.4.1
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solution was applicable for a/h ratios beyond 10 .

By comparing Fig. 4.4.4.1 to Fig. 4.4.4.5 , it appears that, when v = 0.48 , the

Winkler approach produces acceptable results in terms of peak contact pressure,

whereas for .1, — 0.4999 the incompressible solution is more accurate. To

examine thoroughly intermediate Poisson's ratios, the second order perturbed

solution is sufficient. Similar conclusions hold true when the determination of the

contact semiwidth is concerned, as it appears from Figs 4.4.4.6,10 . In this case too,

the fourth order solution results in a contact semiwidth moderately higher than its

second order analogue.

Figs 4.4.4.1 and 4.4.4.6 show that, even when ii — 0.4999 (that is, the

Poisson's ratio approaches the incompressibility figure 0.5) the second order solution

deviates from the incompressible curve for high values of x-parameter. It was,

therefore, decided to analyze the behaviour of both peak contact pressure and

contact semiwidth for even higher values of parameter SR/h2 . Figs 4.4.4.11 and

4.4.4.12 reproduce pressure and contact width for high values of x-variable and

only for v = 0.4999 . Both peak contact pressure and contact semiwidth deviate

substantially from the incompressible results. Such disagreement appears unjustified

on physical grounds, and it is seemingly attributable to the imposition of

approximate boundary conditions, as discussed in Sections 4.4.2.2 and 4.4.3.2 .

An alternative explanation for the above disagreement is reported

hereinafter. Eqns (4.4.3.1.1) contain coefficients (X ± g)/ g and (X ± 2 12)/ ,a

multiplying E j
	

. . . en terms in the first equation, and coefficients (X ± g)/(X ±

2 AL) and /LAX ± g) multiplying e ; . . . an terms in the second equation. Now,

the first pair of coefficients degenerates as the material becomes incompressible,

whereas the second pair does not. As a consequence, for scarcely compressible

elastomers the terms of the first equation of (4.4.3.1.1) which contain e n (for n

sufficiently high) may not become smaller than the previous terms, so implying that

the perturbed solution may not be applicable for nearly incompressible elastomers.

In other words, this interpretation of the above disagreement refers more to the

incompressibility difficulty than to the boundary condition problems. Anyway, it is

observed that Figs 4.4.4.11-12 do not exhibit any differentiation among the solutions

referring to orders 2 - 10 , while the explanation based upon incompressibility
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problems should be consistent with a stabilization of the solution as the order of

the perturbed solution is increased, that is, a dissimilarity among the perturbed

solutions referring to highly different orders should occur. In conclusion, the

explanation based upon boundary condition difficulties seems more convincing to the

present author.

In the following, the asymptotic behaviour of the second order perturbed

solution for v 0.5 and for a fixed 6R/h 2 parameter is examined in an approximate

way. It should be remembered that equation (4.4.2.2.22) defines the contact

semiwidth. When v	 0.5 , then X	 CO and 12	 E/3 . In addition, it can be

speculated on physical grounds that when v 0.5 the contact width remains finite.

Consequently, in equation (4.4.2.2.22) the radical appearing as the argument of tanh

becomes vanishingly small. Since the contact width is admitted to stay finite, it is

concluded that for any a value there exists a v (that is, a X) figure beyond which

the argument of tanh is very small. In this case tarth (x)	 x , and with this

assumption equation (4.4.2.2.22) can be solved in closed form to supply a = J 26R

, as already commented in Section 4.4.2.2 . In other words, for a fixed 6R/h2

parameter, when v 0.5 the contact semiwidth is expected to approach the Winkler

value and to deviate from the incompressible expression a = .46(R . These

forecasts are at least partially confirmed by Fig. 4.4.4.12 , which shows that for

very high values of x-parameter the second order solution becomes closer to the

Winkler than to the incompressible previsions. As already noted, this behaviour is

physically unsound. The normalized pressure is now analyzed from equation

(4.4.2.2.27). By letting X — CO in the argument of cosh (if a stays finite) , cosh .1

. By inserting the expression a = 	 and putting x = 0 , it is obtained

p(0) = (X + 2) ti
	

(4.4.4.1)

which is again a result typical of a Winkler idealization. Fig. 4.4.4.11 shows that

for very high x-coordinate values, the second order perturbation solution is closer

to the Winkler forecasts than to the incompressible predictions. In conclusions, it is

believed that, especially for very high x-coordinate values, the perturbed solution

supplies results which deviate substantially from the incompressible forecasts and,
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therefore, the validity of' such modelling is questionable on physical grounds. As

already said, this non physical behaviour is attributable to the imposition of

approximate boundary conditions.

The perturbed solution to the differential approach should be particularly

valid for very small e = h/a values, that is, for high contact widths. Conversely,

the results of' Figs 4.4.4.11,12 indicate that the perturbation solution degenerates

for very large contacts. Although the x-axis range of Figs 4.4.4.11,12 hardly

interests practically relevant cases (it would correspond to closely conforming

profiles, possessing a high equivalent radius), this unphysical asymptotic behaviour

betrays a weakness in the theoretical development.

In Fig. 4.4.4.11 , the Winkler and incompressible, curves cross each other for

a certain value of 6R/h 2 parameter. Its analytical expression can be obtained as

follows. The y-variable pR/(Ea) becomes the same for Winkler (eqn 4.4.2.1.19) and

incompressible (eqn 4.4.2.2.11) models when

6E(1 — 1i) 	 3 E R 52	61 _ 	 2 (1 — v) 	 (4.4.4.2)
h (1 + v)(1 —	

_
2v) 42-(FR. 	 h2 4Z-6-k -' h2	 .NI (1 + v)(1 — 2v)

When il =-- 0.4999 , 5R/h2 = 1925.0141 , which agrees with the results of Fig.

4.4.4.11 .
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4.5 CONCLUSIONS

It has been shown that the analytical solutions (the integral approach and

the differential modelling, both solved via perturbations) lend themselves only to

the treatment of simple indenter profiles. The differential approach produces

questionable results for very large contact widths, and this fact has been attributed

to the circumstance that the imposed boundary conditions are inevitably

questionable.

An analytical approximate Green function has been developed which forms

the basis of an integral formulation solved via a finite element approach, capable of

treating a generic indenter profile. Comparisons with other methods have shown that

this approach is accurate. The results retrieved indicate that the contact pressure

for an imposed contact penetration depth is very sensitive to perturbations of the

Poisson's ratio especially when the following situations occur simultaneously: a) the

Poisson's ratio is close to its incompressibility figure 0.5 ; b) the contact width is

considerably larger than the layer thickness. The changes in the contact pressure

when passing from a cylindrical indenter to a parabolic approximation have been

explored numerically and found to be negligible in biomechanical applications.

The Meijers (1968) theory has been revisited and some contributions have

been given by computing higher order perturbation terms. Similarly, the Armstrong

(1986) approach has been examined in detail, and its limits have been underlined.

It has also been clarified that, the classical asymptotic incompressible solution

becomes acceptable for 6 R/h 2 values beyond about 30 .
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5.1 INTRODUCTION

A few analyses have concerned themselves with the problem of the

indentation of a curved elastic layer by a rigid cylinder, as shown in Fig. 5.1.1 for

two different situations. In fact, most of the studies devoted to deformable strips

deal with flat layers, where the effects of curvature are often neglected in view of

the smallness of the layer thickness (Hannah (1951)) and of the contact width (Miller

(1964)).

Fig. 5.1.1 : Two configurations of curved layers indented by a cylinder.

In biomechanical applications the ratio between external and internal radii

defining a curved deformable layer anchored to a rigid foundation and indented by a

cylinder is . often as small as 1.03 . Consequently, it can be argued on physical

grounds that a flat elastomeric layer is a proper model, and with such proportions

there is no need for a curved layer approach. On the other side, values of the

above-mentioned ratio up to about 1.2 are recorded in technical practice, a figure
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for which the curvature effects may become significant. In addition, it is convenient

to develop a model which can equally treat thin and thick curved layers, especially

when optimization studies (on the influence of the layer thickness and elastic

coefficients, Unsworth, Pearcy and White, (1987)) are needed. In addition, ceramic

cups (Fessler and Fricker (1989), Andrisano, Dragoni and Strozzi (1990)) can be

interpreted as thick axisymmetric layers, for which the plane strain model of this

Chapter can be interpreted either as a simplified idealization (Barton (1941)), or as

an analytical starting point for the axisymmetric situation (Gladwell (1980), p. 509).

This Chapter deals with an analytical series solution of a rigidly backed, plane-

strain, curved elastic lining indented by a rigid cylinder, where most of the tedious

and lengthy analytical passages have been relegated to the algebraic manipulator

MACSYMA (1983). Experimental research has also been performed and the results

obtained are compared with the analytical forecasts.
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5.2 LITERATURE REVIEW

The analytical papers devoted to this problem can be classified into two main

categories. A first group comprises contributions based upon a series solution of

real (as opposed to "complex analysis") expressions in terms of displacements or

stresses, whereas the second class embraces complex analysis approaches. The first

kind of contributions includes the work of O'Donoghue, Brighton and Hooke (1967),

who study the elastic distortions in journal bearings and shafts under plane

conditions. They start from a series solution in terms of displacements, and obtain

closed form expressions for the series coefficients in the cases of shafts (vanishing

inner radius) and of bearings of infinite outer radius, subject to concentrated (or,

more exactly, line) loads. Hahn and Levinson (1974a) and (1974b) adopt a classical

stress function (Timoshenko and Goodier (1970), p. 132) expressed in the form of a

series, and they assume a Fourier expansion for the boundary stresses. The

coefficients of such expansions are found by exploiting orthogonal properties of the

functions involved. A worrying slowness of convergence is signalled, which is

partially overcome with the aid of a Kummer-type (Chapter 4) acceleration

technique. Some indications about the curvature effects in comparison to a flat

layer are also presented. Finally, the relevance of the shear stresses by the layer-

foundation interface is properly underlined. Soong and Li (1980) and (1981) follow a

similar path, but they adopt a simpler collocation method for the computation of the

series coefficients. Even with these approximations, the evaluation of the series

coefficients requires numerical inversions of various matrices, thus possibly

compromising the precision of the calculations. Solecki and Ohgushi (1984) start

from a displacement formulation analogous to that of O'Donoghue, Brighton and

Hooke (1967), still in the form of a series, and they compute analytically the series

coefficients in the case of a curved layer of finite inner and outer radii and

sustaining a concentrated load. This solution constitutes the Green function which

allows the indentation by a rigid cylinder to be described in terms of a Fredholm

integral equation of the first kind, whose kernel is in fact the above-mentioned

Green function. However, Solecki and Ohgushi (1984) do not try to solve this

integral equation analytically in terms of the unknown contact pressure profile, but
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they follow a slightly different, essentially numerical path. They expand the

boundary pressure in terms of a Fourier series, introduce this expression into the

integral equation, and compute the series coefficients numerically. The authors face

ill-conditioning problems, which they overcome by evaluating more precisely the

influence coefficients, that is, the series sums expressing the layer deflections

under an imposed reference loading. Their Fig. 3 presents a comparison between the

curved layer solution and forecasts ref erring to a flat strip, thus providing further

information on the curvature effects. Zhang (1987) employs the annulus theory to

study the deformations of a journal bearing, but he introduces drastically

simplifying assumptions, which in the writer's opinion undermine the validity of the

theoretical results obtained. In particular, he supposes that the shear stresses

vanish at the layer-bearing interface, whereas the results of Hahn and Levinson

(1974a) and those of this Chapter indicate that such stresses play an important role.

Moving to the complex function approach, Tif f en and Semple (1965) examine

the annulus problem, for which they express the complex stresses via a series

description. They also mention the possibility of applying these procedures to the

solution of problems involving segments of an annulus. In Hooke and O'Donoghue

(1972) the complex analysis approach is applied to the examination of the dry

contact pressure distribution in a journal bearing with soft, elastic lining.

Mathematically oriented contributions are due to Milne-Thompson (1960), p. 131

and to England (1971), p. 90 .

Various numerical papers based upon a finite element formulation, dealing

with curved elastomeric layers anchored to metal cores and addressing applications

in the field of paper printing are reviewed in the following. Batra, Levinson and

Betz (1976), Batra (1977), (1978), (1980a), (1980b), (1980c) and (1982), Batap and Batra

(1982) and (1984) obtain various numerical solutions incorporating the non-linearities

due to the constitutive law (stress-strain link, material non-linearity) and to the

large deformations (geometric non-linearities), and they emphasize that "the

compressibility of rubber has more effect on the pressure at the contact surface

than the material and geometric nonlinearities." (Batra (1981)).

With reference to the experimental field, the technical literature is even

more devoid of pertinent contributions. Parish (1955), (1958) and (1961) measures
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various contact forces and pressure profiles with the aid of a radial pressure pin.

He finds that the experimental readings deviate significantly from the analytical

predictions based upon a straight layer assumption. He attributes such errors to

"non-linearities in the elastic properties of the rubber" (Parish (1958)), which, in

fact, are found by Batra (1981) not to be relevant. He studies situations defined by

ratios of cover thickness to core radius ranging from 0.03 to 0.22 , and ratios of

contact width to cover thickness from 1.6 to 4 . The indenting cylinder radius is of

the same order of magnitude as the indented, rubber covered cylinder (Parish

(1955)). The author does not explicitly report the indentation depths prescribed, but

with the help of the analytical incompressible contact width-indentation penetration

relationship (Johnson (1985), p. 139, eqn (5.71)) it can be . estimated that the ratio

between indentation depth and layer thickness ranges from 0.02 to 0.27 . Miller and

Poulter (1962) present various diagrams connecting the cylindrical indenter

impression to the load, and they too report some discrepancies between their

experiments dealing with curved strips and the theoretical forecasts referring to a

flat layer, especially at high indentation depths. In the experimental study the layer

thickness is 0.43 times the roller radius, and the penetrations prescribed are from

0.008 to 0.054 times the layer thickness. A Poisson's ratio of 0.5 , denoting

incompressibility, is constantly employed in the analytical computations. The need

for "the general solution to the problem of a circular ring under given edge

tractions and displacements in cylindrical polar co-ordinates . ." is also emphasized.

In contrast to the previous papers, Miller (1964) experiences a good agreement

between experimental readings referring to a curved cover and straight layer

predictions, apart from one case and only for the highest indentation depths. He

analyses layers whose thickness ranges from 0.02 to 0.1 times the roller radius, and

indentation depths lower than 0.08 times the layer thickness. Since both such ratios

are particularly low, it can be speculated that the curvature effects are in this

case negligible, thus rationalizing the good agreement experienced between

experiments and theory. In any case, Miller (1964) observes that "a more

satisfactory result might be possible through further development of the general

solution in cylindrical polar coordinates . . ". Spengos (1965) presents experimental

pressure profiles via a crystal pickup embedded in the shell of the indenting

cylinder, a device comparable to that developed by Parish (1955) and by Gent, Henry
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and Roxbury (1974). He analyses situations in which a significant tangential force is

transmitted, and measures the shear stress distribution along the contact width.

More recently, Auger, Medley and Dowson (1990) examine experimentally the

frictional coefficient in a 'cushion bearing' with the aim to investigate the

generation of a fully lubricated contact.

A contribution specifically addressing the curvature effects is now examined.

Yao (1990), P. 231 , quantifies the error induced by neglecting the curvature effects

by resorting to the thick pipe theory (Timoshenko and Goodier (1970), pp. 69-71). In

other words, he adopts a Winkler-type foundation model, in the sense that he treats

only a uniformly loaded strip. For the configuration of natural hip joints (i/ = 0.4

ratio of layer thickness to core radius .., 0.05 , Yao (1990)) the error incurred by

neglecting curvature, evaluated in terms of indentation resulting from an imposed

uniform pressure, is estimated: to be as low as 3.3 percent. Anyway, in the case of

artificial joints with scarcely compressible elastomeric layers, i/ approaches 0.5 and,

consequently, the Winkler foundation model is no longer valid. In fact, the Winkler

description presupposes that, during indentation, the elastomeric strip moves radially

without flowing laterally, a mechanism which is realistic for Poisson's ratios as low

as 0.4 , but which becomes no longer dominant in the case of moderately

compressible rubbers (see Chapter 4). In addition, the layer thicknesses adopted in

artificial joints are often higher than their natural counterparts, thus suggesting

that the curvature effects may become more relevant. In conclusion, the error

estimate produced by Yao (1990) may not be realistic in the case of artificial hip

joints with elastomeric, nearly incompressible layers.
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5.3 THEORETICAL SERIES SOLUTION

This Section presents the basic theory leading to the series solution of the

plane strain, curved elastomeric layer, and reports the analytical expressions of the

series coefficients.

5.3.1 Series coefficients

The generalized equilibrium equations in cylindrical coordinates in terms of

radial and circumferential displacements (under plane-strain conditions) can be

obtained from the equilibrium equations in terms of stresses (Timoshenko and

Goodier (1970), p. 66), by expressing the stresses in terms of displacements

(Timoshenko and Goodier (1970), p. 76)

82 u	 v1 8 u	 1 	 a2 v 
±	

1 8 v 1
a r2 	 —	r 2v(r ar	 r ara0	 r2 a	 '

1 — 2 v 1 8u	 u	 1 8 v 1 +
1—v kr 3 r	 r2 	 r2 a e

1-2v  11 82 U	 1 	 82 V	 1 8 v 1 = 0 ;
2(1—i.') r2 a 02 	 r ar30	 r2 a 0 .1

— y)	 au	 a2 v 
_L 	 y 	 1 a2 u	 _L

(1 — 2v)tp	 r2 a 92	 1- (1 — 1/) r	 r 9 OJ

92 u
1 3 u + a2 ,v

2 tr arae	 Pao	 a r2
1 a y ,	 v
r ar -r r2

(	 v
r2 a 19	 r a r (5.3.1)
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where u and t) are the radial and circumferential displacements, respectively, and r

and 0 are the cylindrical coordinates. The single-valued series solution to (5.3.1) is

(Solecki and Ohgushi, (1984), where some misprints have been corrected)

2 7r E u (p,O)	 bo	 r
P	 = ao p + — + t at ± bi P

2 
+

cg 
± dl in p i cos 0 +

P	
P

CO
-1

E ( an pn ± bn pn-i-i ± Cn p-n-I + dn p-n+1 ) cos (n 0)

n=2

7t* E v(p,O)	 a.. do _Li	 1	 5 — 4 v	 2	 Cl— Co p , p m k a i , 3 	 4 ii di ± 1 _ 4 y b 1 P + -i — di ln p)sin 0 ±P	 P

e°E ( _ an p 	
4 (1 — 11) ± n n pn+1

2 (1 — 2 v) —	
b	 ±

 n

Cn I)-n-i ±	
n — 4 (1 — v) dn 1;41+1 ) sin (n 0)n ± 2 (1 — 2 v)

n=2

(5.3.2)

Here the normalized radius, p - r/rg is employed, where rg denotes the

loaded radius (that is, the radius defining the layer contour sustaining the load). In

addition, the displacements are multiplied by the Young's modulus, E, and divided by

the total applied load, P , having in mind the solution for the case of a

concentrated load.

In this Section the layer is assumed to be firmly bonded to a rigid substrate,

and the layer is supposed to be loaded by a concentrated force applied at p - 1 , 9

- 0 . As mentioned in the Literature Review, the solution of this problem supplies

the Green function, which can be employed to mimic more complex loadings. As it

will appear from the following Section, a solution in terms of Green function allows

the series convergence to be improved independently of the profile of the applied

pressure, thus achieving an appreciable reduction in the computer time of general



CO

p	 P(P,O) 11 + E 2 cos (710))
27rrt k

n- 2
(5.3.3)
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validity.

The boundary conditions impose the disappearance of both radial and

circumferential displacements at the radius, rb , along which the layer is bonded to

the rigid substrate, the vanishing of the shear stress along the loaded radius, rt

and the outcome of the radial stress singularity occurring at r — r t , 0 — 0 , where

the radial force P is applied, Fig. 5.3.1 .

Fig. 5.3.1 : The meaning of symbols r , rb , rt , 0 , u , v and P .

Following Timoshenko and Woinowsky-Krieger (1959), p. 291 , the equation

expressing the radial stress singularity resulting from the application of the

concentrated load, P , is more easily formulated by expanding force P in terms of a

Fourier (locally non converging, ReiOner (1929)) series
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The four boundary conditions mentioned above must be verified for each

index, n, of the series solution (5.3.2). In particular, the singularity of the radial

stress demands that, for each series index, the radial stress profile evaluated by

properly differentiating eqns (5.3.2) must coincide with the n-th term of the series

expansion (5.3.3) of load P. Proceeding in this way, a linear system of four algebraic

equations whose four unknowns are the series coefficients must be solved for

indices 0 , 1 and n � 2 , respectively (Strozzi (1989)). Since the computations are

tedious and prone to errors, they were relegated to the algebraic manipulator

MACSYMA (1983). The resulting coefficients are (symbol Pb stays for rb/rg , where

index b stands for "bonded" )

ao —
1 ± (1 — 2 II ) Pl.

2 (1 + v) (1 — 2 v) 
bo = + Pt,

1 +(1 — 2 I/ ) pi;

Co =-- 0

do = 0

(1 + v)(2 (3 —4 v) ((3 —4 II) Pi; ± 1 ) in P b ± (1 —4 v) 4, — 2(1 —2 li) Pb ± 1)
a l — +

4(1 — v) ( (3 — 4 v) pl, ± 1 )

(1 ± v) (1 — 2 11) 

b1 =-- —
(1 + v) (1 — 4 v) ( pZ + (1 — 2 v) )

4(1 — v) ( (3 — 4 v) pl, + 1 )

ci ---- + pl,
(1 + v) ((1 — 2 v) (3 — 4 v) pl, — 1 )

4(1 — v) ( (3 — 4 v) p: ± 1 )



(1+v) It (n2 + 8) — 8v (3 — 2v) ) 472+2 — n (n — 1) pin + n (3 — 4v)}
an = (n — 1) 5Dn

(1+v) pin In (3 — 4v) pin + 8v (3— 211)4 —(8 ± n2) Ig ± n (n + 1)}
cn = (n +1) Zit

(1 +11) (4v — n — 2) pin {(3 — 4v) pin — (n — 1) ± n 421
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(1 ± v) (3 — 4 u)d1 — 2 (1 — Li)

bn =

(1+v) (4v + n — 2) 1(n + 1) pin — n pin-2 + (3 — 4v)}

where

Zn= — (3 -L- 4V)(P:n + 1) ± (8// (3 — 2 II ) — (n2 ± 8)) pin+2 + 2 (n2 — 1) Pin — n2Pin-2

(5.3.3)
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The series coefficients depend on the geometric ratio Pb . So, the properly

normalized radial displacements of the layer border sustaining a point load are

functions of this shape factor only. Anyway, when the more complex situation is

examined of a curved layer indented by a rigid cylinder, the geometric ratios

influencing the solution become more complex.

It is important to underline that the expressions of the series coefficients do

not degenerate for v — 0.5 . In other words, the series solution can be equally

employed for studying compressible and incompressible curved layers. Although

Solecki and Ohgushi (1984) compute the series coefficients exactly, they still retain

expression k — 11(1 - 2v) (e.g. their eqns (A8) and (A9)), which becomes unbounded

for v — 0.5 . As a consequence, the solution of Solecki and Ohgushi (1984)

degenerates for v — 0.5 .

As a final observation,' the relevant stresses can be computed by properly

differentiating eqn (5.3.2) after introduction of the series coefficients (5.3.3). Similar

to the displacements, the stresses too are expressed in terms of an infinite series.

For conciseness, the corresponding expressions are not reported here, where the

interested reader is addressed to Soong and Li (1981), formula (2) .

An integral formulation is now developed for the layer border loaded by the

concentrated load, whose possible usefulness is discussed at the end of this Section.

This formulation is mathematically based upon an fmportant integral relation

(GrO0ner and Hofreiter (1958), second volume, p. 119 , formula 14 a) )

It is further noted that the n-th radial displacement is proportional to cos

(nO) (eqn (5.3.2)). The resultant force, F7I , referring to the n-th harmonic and

computed between 0 — cc and 0 — 0 is proportional to :



sin (n$) — sin (na)

n (5.3.5)

=F'
sin (ncc)

dn
/ 2	 2

0 2

It'	 It_ = 0 a , 0 >0

(5.3.6)
7r	 a. = 0 , 0 >0

00

.I. sin (nO) —
n

2 7r2 E u (1,0) _
P
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0

Fn	 1 cos (n 0) de —

a

In addition, the resultant force between 0 — a. and 0 , deriving from the

application of infinite harmonics and referring to a continuous variation of index n

is

These notes indicate that F' is in fact a concentrated load of intensity it (and

not 7r/2, due to symmetry reasons about 0 — 0 axis) applied at 0 — 0 . Having these

premises in mind, the integral formulation of the radial displacement of the layer

border sustaining a singular load is derived from (5.3.2) as

CO

1 ( an ± bn + cn ± dn ) cos (n 0) dn	 (5.3.7)

0

It is underlined that eqn (5.3.7) solves the case of an infinitely long, curved

layer (Fig. 5.3.2), and not the situation of an annulus. It can be conjectured on

physical grounds that, if the angular contact width is less than, say, it , the two

above-mentioned solutions would give very similar results. In a hip joint, the cup

covered with an elastomeric layer possesses an angular width slightly lower than 7r,

thus limiting the angular contact width to smaller figures. In addition, it should be

noted that neither of the two models can mimic the finiteness of the layer angular

width, an aspect whose importance is shown in the remainder of this Chapter. Papers

dealing with layers of finite length are those of Keer and Miller (1983) and of

Solecki (1986).



Chapter 5 The Plane Strain, Curved Elastomeric Layer 5.15

The integral formulation for the radial displacement (5.3.7) is not directly

exploited in this study. Anyway, it is still relevant because it may be employed as a

starting point to treat the corresponding axisymmetric case (Gladwell (1980), p. 509).

Fig. 5.3.2 : The mathematical model of an infinitely long curved layer .
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5.3.2 Acceleration of the series convergence

This Section shows how to accelerate the series convergence via the Kummer

technique (Knopp (1928), p. 260). Kummer method is applicable provided that a series

is found which can be summed exactly, and which has terms as similar in

construction as possible to those of the original series. In particular, this new series

must behave asymptotically as the original one and, therefore, it is henceforth

referred to as "the asymptotic series". By subtracting from the terms of the

original series those of the asymptotic one, a series of faster convergence is

usually obtained, named in the following as "the accelerated series". The sum of the

initial series can thus be computed by adding to the exact sum of the asymptotic

series an approximate value of the accelerated series, for which only a limited

number of terms need to be , computed (Strozzi (1989)). In the present case it is

noted that the n-th term of the normalized radial displacement u (Fig. 5.3.1),

computed for r = r t , that is, for p – 1, is (see eqn (5.3.2))

2 'ir E u(1,0)
= ( an ± bn ± Cn ± dn ) cos (n 0)P (5.3.2.1)

It is, therefore, relevant for the application of the Kummer technique to

examine the asymptotic behaviour of an ± bn ± cn ± dm . With the aid of

MACSYMA (1983), it was found that, for high values of the series index n, the

following asymptotic expression holds true

4 ( 1 — 2/2)	 2 (1 + v) (1 — 21/)	 4 (1 — v2)
an + bn + Cn ± dm .	 ±	 +n	 n2	

71
3

(5.3.2.2)

Similar to Strozzi (1989), this asymptotic expression is independent of the

radii along which the constraints and the loads are imposed. The following Figs

5.3.2.1 and 5.3.2.2 show the original an ± bn ± cm ± dm term as a function of the

series index, n, and three asymptotic expressions. In particular, the first asymptote

is the first term on the right hand-side of (5.3.2.2), the second asymptote is the sum



1	 1	 1	 1	 1

_

0 original curve
_

A

	

first  asymptote

a second asymptote
_

0 third asymptote

\ ,
Li' - 0.4997	

_

r
b
	1r

1
	".	 1.2

4	 8	 8	 10	 12	 14	 16	 18	 20	 22

Series index. n
2

-1- 0.75
C

_c) 0.60

-4-
c 0.45

C
0.20

0.15

0.00

Chapter 5 The Plane Strain, Curved Elastomeric Layer 5.17

Fig. 5.3.2.1 : Convergence of series terms for r b / rg - 1.2 .
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of the first two terms on the right hand-side of (5.3.2.2) and, finally, the third

asymptote is the total right hand-side expression of (5.3.2.2). Both Figures refer to

u - 0.4997, a realistic value (Chapter 3). In addition, Fig. 5.3.1.1 refers to rb/rt - Pb

= 1.2 , whereas Fig. 5.3.2.2 examines Pb - 1.0325 , which are plausible shape ratios.

It appears that, when Pb is appreciably higher than unity (e.g. 1.2), its

asymptotic approximation approaches the exact curve for series indices as low as

20. Conversely, for Pb ratios close to unity (e.g. 1.0325), more than 120 series terms

are necessary to get the same accuracy. In addition, the three asymptotic

expressions behave essentially equivalently in mimicking the exact curve for both

small and relatively high Pb ratios and," therefore, it seems advisable to use the

simplest expression for the asymptotic term.

Since ratio pi, highly influences the accuracy of the asymptotic expression, a

slightly different approach to the determination of the asymptotic expression is

developed in the following which, contrary to the previous results (5.3.2.2),

produces asymptotic terms depending on the above-mentioned ratio and, therefore,

hopefully permits a good precision to be attained independently of Pb . It is

anticipated that the results retrieved do not completely fulfil this expectation.

Nevertheless, this analytical approach is here presented, since it is still beneficial in

certain conditions. According to (5.3.3), the denominators of all series coefficients

behave as n Z n , which in turn can be rewritten in the following way :

(5.3.2.3)

where the fraction between brackets becomes vanishingly small for high values of

index n. Consequently, by remembering that 1/(1 -1-x) 1 - x , 1/(n Zn) can be
reformulated as :
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'Ain

1—	 (4Y-3)npl,ni1 (8v (3-2v) -(n
2+ 8))Thin+2+2(72.2-1)Pgn-12,2PV-2+(4V-3)

?I	 (4v — 3) p14,,n

(5.3.2.4)

As a result of (5.3.2.4), an ± bn ± cn + dn can be expressed as the product

of two parts, the first referring to the numerator of the sum of the series

coefficients, and the second dealing with (the reciprocal of) its denominator. Such

parts can be studied separately with regard to their asymptotic behaviours. In other

words, their "asymptotic series" can be evaluated, and this procedure can be

repeated (see Chapter 4, Section 4.3.2) to obtain the following equivalent asymptotic

expression

an + bn + Cn ± dn "±- [ 
4 ( 1 n— v2) ± 2 (1 ± v) (1 —: 2v) + 4 (1 —3 I12) )

n	 n

r	 2 — 1)2 n2
t 1	

(p b	 8 (1 — 1/) (1 — 2v) pi + 2

(3 — 4v) Pb,n+2	 (3 — 4v) pP
1
4n
 )

Pb

4 ( 1 — //2) t i	 (pt — 1)2 n2  1
n	 (3 _ 41,) pr+2 ) (5.3.2.5)

The series having as generic terms those of the last expression of (5.3.2.5),

once multiplied by cos (n 9) (see (5..3.2.1)), are summable, a condition necessary for

the application of Kummer method (Gradshteyn and Ryzhik (1979), p. 38 , and

Guarnieri (1965), p. XI.1 , formula (11.1) via differentiation)

coE cos (n 0)
I log (2 — 2 cos 0)n — 2

n=1

• 00	 2
E n an cos (n 0) _ a cos 0 (1 + a2) — 2 a 

(1 — 2 a cos 9 ± a2)2
n.----1

(5.3.2.6)
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Series index.  n

Fig. 5.3.2.3 : Convergence of series terms for r b / r& = 1.0325 .

Contrary to (5.3.2.2), the asymptotic expression (5.3.2.5) now accounts for

Pb . Fig. 5.3.2.3 displays an ± bn ± Cn ± dn together with the first asymptotic

term according to (5.3.2.2) and the final asymptotic expression of (5.3.2.5). It appears

that, even if the improved asymptote is more accurate, it does not noticeably lower

the number of series terms to get good accuracy (n passes from about 120 to about

100). The following TABLE summaiizes the relative errors as functions of the

series index, n, the geometric factor, Pb, and the Poisson's ratio, v . It can be

concluded that, if high accuracies are needed, the more complex acceleration

technique based on (5.3.2.5) is no longer advantageous, whereas the simplest formula

of (5.3.2.2) is preferable. Now, the literature review of Section 5.2 indicates that ill

conditioning problems are often encountered, a problem which can be overcome by

computing the series sums more exactly (Solecki and Ohgushi (1984)). As a

consequence, the simplest acceleration method was mainly adopted in practice, even

if it was experimented that, for the cases not affected by ill conditioning, the

acceleration technique based upon (5.3.2.5) achieved considerable computer time
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,
savings.

TABLE

reporting the relative error between exact and asymptotic terms

first asymptote	 last asymptote

of (5.3.2.2)
	

of (5.3.2.5)

Pb - 1.0325 , II .' 0.4997

error after 100 terms	 6 percent
	

1.5 percent

error after 130 terms	 1.6 percent
	

0.4 percent

error after 160 terms	 . 0.1 percent
	

0.1 percent

Pb ' 1.0325 , V "•' 0.3

error after 100 terms
	

6 percent	 1.2 percent

pb = 1.2 , v = 0.4997

error after 30 terms
	

0.1 percent	 0.1 percent

A further observation is developed hereinafter. Since the problem of a

deformable layer indented by a rigid cylinder is addressed, the unknown pressure

profile will be approximated with a piecewise constant pressure profile. The layer

displacement due to a uniform pressure profile straddling 0 origin and acting along

an arc of angular width 2a is expressed by integrating (5.3.2) term by term with

respect to 0 . So doing, series terms including sin (nO)/n are obtained, thus

introducing a further n element at the denominator and, consequently, strengthening

the series convergence. The behaviour of the asymptotic expressions according to

(5.3.2.2) (expressions (5.3.2.5) are not employed according to the above critical
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remarks) is examined for this case of uniform pressure applied to an arc of

amplitude 2a in Figs 5.3.2.4 and 5.3.2.5 , referring to the same Pb of Figs 5.3.2.2,3 .

It appears that, despite the improved series convergence, a considerable number of

terms are needed to achieve a good precision of the asymptotic terms, that is, to

get a sufficient accuracy in the evaluation of the series sum, even in the case of

distributed loads. The exact number of series terms needed to avoid ill-conditioning

will be clarified by numerical tests referring to the cylindrical indenter problem.
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5.3.3 Numerical program

The numerical program developed for the mechanical analysis of a curved

deformable layer firmly bonded to a rigid foundation and indented by a rigid

cylinder is similar to that developed in Chapter 4. There the contact pressure was

approximated by a piecewise linear distribution, whereas now a simpler piecewise

constant profile is adopted (Conway and Farnham (1968a)), to counterbalance the

more complex equations encountered for curved linings. A relaxation procedure

(Chapter 4) is employed to define the contact width and to solve the discretized

problem. The indentation depth distribution, 6(0) , is computed from the knowledge

of the maximum indentation depth, 50 , of the layer loaded radius, r: , and of the

indenting cylinder radius, re . Fig. 5.3.3.1 hopefully clarifies these symbols, and

shows that 6(0) has been measured perpendicularly from the circumference of radius

consistent with Section 4.3.3 of Chapter 4, where the distance between the

compressed border of the elastomeric layer and the rigid indenter has been taken

normal to the layer contour.

Fig. 5.3.3.1 : The meaning of symbols re , rg , 0 , 60 and 6 (0).
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(An alternative measure of 6(0) could have been assumed as perpendicular to the

indenting cylinder radius, but the resulting pressure differences would have been in

common circumstances a second order effect.)

The calculations to express 6(0) are similar to those of Dragoni and Strozzi

(1986), and the following result is obtained in the case of a rigid cylinder indenting a

curved layer bonded to a cavity

6(0) --= — rt (1 — cos 0) — (re — 60) cos 0 + Ili — (r: ± 60— r0)2 sin20

(5.3.3.1)

Minor variations are needed to treat the situation of a rigid cylindrical

indenter pressing a rigid cylinder covered with an elastomeric layer.
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5.3.4 Selected numerical results

Curves for the indentation problem as general as those of Chapter 4 are not

possible in the case of curved layers, because three radii, namely r t , rb , rc and,

therefore, two normalized ratios now define the geometry. As a consequence, the

numerical results developed in this thesis refer to the numerical solution of the

indentation by a cylindrical punch, and they mainly address the corresponding

experimental configurations examined. The numerical forecasts are presented in

Section 5.4.2 together with the experimental measurements. For the time being,

selected numerical predictions obtained with the program of Section 5.3.3 are

reported, aimed at a) validating the numerical program; b) retrieving information

about the number of series terms sufficient to avoid ill-conditioning; c) assessing

the influence of the layer curvature on the stress profile versus the available

technical information.

First, reference is made to Fig. 3 of Solecki and Ohgushi (1984), and the

contact is examined between a rigid cylinder of radius rb = 176.35 mm , covered

with an elastomeric layer 3.302 mm thick (so that rs = 79.652 mm) , having a Young's

modulus E — 3.004 MPa and a Poisson's ratio v = 0.5 (the figure adopted for II is

not reported by Solecki and Ohgushi (1984), but is indicated by Miller and Poulter

(1962), p. 44, from which the experimental results reported by Solecki and Ohgushi

(1984) are extracted) and indented by a rigid cylinder of radius re = 76.35 mm .

Penetrations up to 0.2 mm are imposed in this thesis, and the resulting repulsive

load is computed. The forecasts in terms of contact force versus indentation depth

are summarized in Fig. 5.3.4.1 . The curved layer predictions of the present author

(referred to in the inset as "theor. Strozzi") are compared to the experimental

(curved layer) and theoretical (flat layer) results of Miller and Poulter (1962), to

the theoretical predictions of Solecki and Ohgushi (1984) (curved layer) and, finally,

to the analytical forecasts referring to a flat layer indented by a cylinder of

equivalent radius of 38.983 mm (the equivalent radius is computed via the classical

formula referring to a parabolic approximation for the cylindrical profile, see

Johnson (1985), p. 427 ; Miller and Poulter (1962), quote the same formula at their p.

41 , so that they should have used the same equivalent radius in their calculations),
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examined with the theory of Chapter 4 and referred to in the inset as "theor.-flat

layer".	 4.20
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Fig. 5.3.4.1 : Compression force versus indentation depth .

It immediately appears from Fig. 5.3.4.1 that the theoretical forecasts of

Miller and Poulter (1962) considerably deviate from all the other results reported.

In particular, they show a relative error of about 30 percent with respect to the

analytical forecasts according to Chapter 4 (flat layer), for an indentation depth of

0.16 mm. Since both these data refer to a straight layer geometry, these differences

cannot be attributed to curved layer effects. In addition, since the straight layer

solution of this author has been validated in Chapter 4 for comparable situations, it

must be concluded that the exactness of the analytical forecasts of Miller and

Poulter is questionable.

There is also a perceivable difference between the theoretical forecasts of

Solecki and . Ohgushi (1984) (referred to in the inset as 'theor. Solecki') and those of

this Chapter (referred to in the inset as "theor. Strozzi"), both referring to curved

layers. For an indentation depth of about 0.16 mm , the relative error is about 11
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percent. Instead, the agreement is good among the experimental readings by Miller

and Poulter (1962), and the analytical forecasts ref erring to flat or curved layers,

due to the present author.

The small deviation between Solecki and Ohgushi (1984) predictions and

Strozzi forecasts, both ref erring to curved layers, is tentatively attributed to

discretization effects. The present author uses 50 finite elements, whereas Solecki

and Ohgushi (1984) employ 20 Fourier terms. Finally, the good degree of agreement

among the experimental reading by Miller and Poulter (1962) and the straight and

curved layer analytical solutions by the present author indicates that the

curvature effects are small for the geometry explored.

For the same geometry and elastic constants of Fig. 5.3.4.1 , the peak contact

pressure is reported in Fig. 5.3.4.2 again as a function of the indentation depth,

with reference to the curved layer theory developed in this Chapter, and to the

flat layer modelling (indented by a cylinder of equivalent radius) according to

Chapter 4 . In addition, the curved layer theory of this Chapter was used to mimic

a straight layer of the same thickness, by adopting a high figure for the bonded

radius, rb — 1000 mm , from which the loaded radius is derived by adding the layer

thickness, r t. = 1003.302 mm , whereas the- radius of the indenting cylinder is

computed from the request that the equivalent radius (see previous remarks) is

again 38.983 mm , thus implying rc = 40.5589 mm . This idealization is referred to in

Fig. 5.3.4.2 as "equivalent flat layer". Finally, the incompressible layer asymptotic

solution (Armstrong (1986)) is also included in Fig. 5.3.4.2 , shortly named in the

inset "incompressible layer".	 *

Not surprisingly, the asymptotic incompressible solution is totally inaccurate

at the low indentations imposed, consistent with the lucid observations of Meijers

(1968), p. 354 : "the asymptotic solution holds for very large values of c/b only",

where c denotes the semicontact length and b indicates the layer thickness in

Meijers (1968) paper. The small deviation between equivalent flat layer and flat

layer solution (about 4 percent for 5 = 0.2 mm) is possibly ascribable to the

approximations inherent in the analytical Green function developed in Chapter 4 and

to discretization effects (see the TABLE of Section 4.3.4). In any case, the

approximations of the curved layer and equivalent flat layer solutions are exactly
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Indentation,
Fig. 5.3.4.2 : Peak contact pressure versus indentation depth .

the same and, consequently, it can be confidently speculated that the small

differences between these two solutions are attributable to curvature effects. The

equivalent flat layer model produces peak pressures slightly higher (about 3 percent

for 8 = 0.2 mm) than its curved layer counterpart.

It was also decided to examine the curvature effects for higher layer

thicknesses and penetration depths. The same figure as before was .taken for the

bonded radius : r b = 76.35 mm . The layer thickness was assumed of 15 mm - about

20 percent the bonded radius, consistent with the highest layer thicknesses

employed in biomechanical applications, Section 5.1 - and, consequently, the loaded

radius becomes rt = 91.35 mm , whereas the radius of the indenting cylinder was

kept as before, re = 76.35 mm . The indentations prescribed reached 10 mm . The

elastic constants were left unchanged, E = 3.004 MPa , v 0.5 . Four peak pressure

forecasts referring to this geometry and to different models are displayed in Fig.

5.3.4.3 . The peak pressure according to the curved layer model of this Chapter is

reported together with the flat layer modelling of Chapter 4 with an equivalent

radius of 41.5896 mm (as in Figs 5.3.4.1,2 , the parabolic approximation has been
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assumed for the indenter profile pressing the straight layer), together with the

equivalent flat layer previsions for rb — 1000 mm , r t = 1015 mm , re — 43.3665 mm

(computed from Johnson (1985), p. 427 formula, so that the equivalent radius equals

41.5896 mm), and with the asymptotic incompressible layer (Armstrong (1986))

predictions, here referred to as "incompressible layer" for short.

As in Fig. 5.3.4.2 , the asymptotic solution in Fig. 5.3.4.3 is totally

inaccurate. The curved layer pressure is lower than its equivalent flat layer

analogue, consistent with Fig. 5.3.4.2 (for an indentation of 10 mm , there is a

difference of 11 percent). The flat layer and the equivalent flat layer models

should provide equal results, whereas their difference in Fig. 5.3.4.2 is limited for

penetrations up to 5 mm - the error is 7.6 percent - but the mismatch becomes a

disturbing 16 percent for 5 — 10 mm. It was, therefore, decided to analyze in some

detail the reasons of this unexpected discrepancy. First, the flat layer approach of

Chapter 4 refers to a parabolic approximation for the indenting cylinder. In many

circumstances this approximation does not produce appreciable errors, but for the

geometry under scrutiny, characterized by high layer thicknesses and penetration
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Inden tat i on, mm

Fig. 5.3.4.4 : The differences in peak pressures between parabolic and circular indenter profiles .

depths, the consequences of this indenting profile error are appreciable. Fig. 5.3.4.4

reproduces the two peak contact pressures referring to the flat layer model of

Chapter 5 and to an indenting radius of 41.5896 mm , both for a circular indenting

profile and for its parabolic approximation. The error at the maximum penetration

depth, 6 — 10 mm , is about 8 percent, whereas it is negligible (about 3 percent) for

6 lower than 5 mm.

Since the equivalent flat laytr is still based upon a circular description of

the indenting cylinder (Fig. 5.3.3.1), Fig. 5.3.4.3 was replotted by referring this time

to a circular indenter in the flat layer modelling, thus obtaining Fig. 5.3.4.5 . This

time the error between flat layer and equivalent flat layer - both now referring to

a circular profile for the indenter - is 5 percent for 6 — 5 mm , and for 6 — 10 mm

it becomes an acceptable 7.3 percent, whereas the (physically meaningful) difference

between curved and equivalent flat layer is 13 percent for 6 — 5 mm , and 11

percent for 6 — 10 mm .

It should also been underlined that the application of the formula for the

equivalent radius (Johnson (1985), p. 427) is questionable, especially because the



L-

--

--

--

0	 flat

0	 curved

A	 equivalent

incompressible

layer

flat layer

layer.circ.	 ind.

layer

o 1
A-i

---0—A
A

o A1 --o------6----

2

°-

°

2
o

6
3

L3__ 76

3 4	 5	 6	 7	 B g	 II

12.0

10.8

9.6

8.4

7.2

6.0

4.8

3.6

2.4

1.2

0.0

Chapter 5 The Plane Strain, Curved Elastomeric Layer 5.32

' Indentation, mm

Fig. 5.3.4.5 : Fig. 5.3.4.3 replotted by considering a circular indenter .

equivalent radius is computed according to a parabolic approximation, and the

cylindrical radius of the indenter (that adopted for the flat layer pressed by a

circular indenter in Fig. 5.3.4.5) is again based upon this inevitably inaccurate

idealization, just when the effects of the indenter profile on the contact pressure

are to be examined. In other words, the aforementioned inaccuracies might, at least

partially, account for the differences between flat and , equivalent flat layer

solutions of Fig. 5.3.4.5 . In addition, the equivalent flat layer is still slightly

curved, thus involving some inevitable, although supposedly small, degree of

approximation.

It was also decided to assess the curvature effects for the geometry of a

rigid cylinder indenting a rigid cylindrical cavity covered with a curved elastomeric

layer. This configuration is analogous to those encountered in biomechanical

applications and, therefore, it is particularly relevant.

The radius for the indenting cylinder was re = 61 mm , that for the

cylindrical cavity was rb = 76.35 mm , and the layer thickness was 15 mm , as in

Figs 5.3.4.3,4,5 , so that rg — 61.35 mm . The elastic constants were kept as before,
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8

E - 3.004 MPa , II 'm 0.5 . Fig. 5.3.4.6 presents the curved layer solution of this

Chapter together with the flat layer forecasts according to Chapter 4 (the

equivalent radius is 10692.4286 mm) and referring to a cylindrical (as opposed to

parabolic) indenting profile, together with the equivalent flat layer (that is, the

curved layer solution of this Chapter is employed to mimic a flat layer, by

selecting rb - 1000 mm , rt - 985 mm and r, = 901.9145 mm , so that the equivalent

radius is still 10692.4286 mm), and together with the asymptotic solution for the

incompressible layer, denoted in the inset "incompressible layer" for short.

Fig. 5.3.4.6 reveals that the flat layer, the equivalent flat layer and the

asymptotic solution produce comparable peak contact pressures, whereas the curved

layer predictions are unexpectedly much lower, of the order of one tenth the other

figures. The first impression is that the curved layer solution of this Chapter is

wrong, but a deeper investigation, whose results are illustrated in the follow-up,

sheds light into the causes of the above-signalled discrepancy, and it further

supports the correctness of the curved layer solution of this Chapter.

First, it was clarified that the disagreement between flat and curved layer
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forecasts immediately vanishes when lower Poisson's ratios are adopted for the

layer elastomer. Fig. 5.3.4.7 reports the peak contact pressure for v — 0.3 and for

the curved layer, the equivalent flat layer and the asymptotic solution (the flat

layer model of Chapter 4 could not be employed this time because it does not cover

Poisson's ratios lower than 0.46 , see Section 4.3.2). The curved and flat layer

forecasts are essentially superimposed to the asymptotic (this time compressible)

analytical solution. It also appears that the peak pressure varies linearly with the

prescribed indentation. In fact, when the compressibility of the layer is sufficiently

high, the layer material moves radially more than laterally as a result of the

indenter compression, a mechanism typical of Winkler models (Kerr (1964)) which are

consistent with a linear pressure-indentation relationship (Armstrong (1986)). In

conclusion, in the case of compressible materials the curved layer theory of this

Chapter supplies correct results.

Secondly, in the interest of clarity, the region of Fig. 5.3.4.6 referring to

low indentation depths was enlarged in Fig. 5.3.4.8 , which covers 6 figures up to 1

nun . It clearly emerges that the curved layer peak pressure deviates from the

other forecasts for indentations higher than 0.3 mm , thus supporting the suspicion
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that some underestimated effects become dominant for high penetrations. It was,

therefore, decided to examine the angular semicontact width as a function of the

compression depth for the same conditions of Figs 5.3.4.6 and 5.3.4.8 (incompressible

elastomer). The corresponding results are displayed in Figs 5.3.4.9 (5 up to 10 mm)

and 5.3.4.10 (enlargement of the previous Figure for 6 .up to 1 mm), respectively.

These two Figures reveal that a) the angular semicontact width (with respect to the

centre of the indenting cylinder, see Fig. 5.3.1) becomes higher than ir/2 for 5 as

low as 0.3 mm , which constitutes .a. limit figure beyond which the circular layer

(annulus) solution is unrealistic, since in biomechanical applications only a half

annulus exists (e.g. cups in hip joints) and, therefore, the angular semicontact width

is inevitably lower than 712 ; b) the angular semicontact width reaches a plateau of

about 2.7 radians for indentations higher than 3 mm , in contrast with the flat layer

forecasts, characterized by a contact width progressively increasing with

compression (see asymptotic solutions, Armstrong (1986)). This second observation

clarifies that the curved layer solution cannot behave as the flat layer modelling

for high penetrations, since the two contact widths become completely different. In

the case of scarcely compressible elastomers, the peak pressure highly depends upon

0.0
00
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the whole indentation distribution (see the results of Meijers (1968), P. 375, after

his formula (5.4)). In other words, a modification of the contact width may well

result in considerable alterations for the peak pressure, as it occurs in the situation

under examination. Conversely, the error on the contact width is not relevant for

low values of the Poisson's ratio, when a Winkler foundation model is applicable and,

therefore, the peak pressure depends mainly upon the peak compression and not

upon the contact width (see the asymptotic formulae for the compressible layer in

Armstrong (1986)). The numerical results of fig. 5.3.4.8 clarify the transitional

figure of the indentation depth beyond which the flat layer solution is no longer

applicable.

It is finally observed that a parabolic description of the indenter profile

should be more acceptable in the case of two contacting cylinders than in the

situation of a cylinder compreising a cylindrical cavity, since in the first geometry

the contact width is smaller for a prescribed penetration depth. This aspect has not

been addressed in detail in this thesis.

Before leaving this Section, a concise answer is given to the three questions

posed at its beginning: a) the selected results here presented support the

correctness of the curved layer solution ; b) the number of series terms sufficient

to avoid ill-conditioning ranges between 50 and 100 for most applications ; c) the

curvature effects are identifiable in the case of a cylinder indenting a cylinder

covered with an elastomeric layer, whereas for the situation of a cylinder indenting

a circular cavity covered by a curved layer the curvature effects are masked by

those connected to contact width asp.ects, previously discussed.

With regard to point b) , it is further underlined that a series acceleration

technique is employed in this study, which reduces the number of series terms to be

actually computed, with the help of an asymptotic series (Section 5.3.2). It was

numerically found that the series index capable of preventing ill-conditioning is that

for which the series term approaches its asymptotic counterpart by less than 10-0

and this index is often in the region between 50 and 100 .
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5.4 EXPERIMENTAL RESULTS

This Section deals with the description of the experimental apparatus

developed to measure the pressure profile and contact width for plane cases

mimicking geometries of practical relevance in biomechanical applications. The

experimental readings obtained are then compared to the numerical predictions

according to Section 5.3.3 of this Chapter.

5.4.1 The experimental device

The experimental device developed by the present author is an adaptation of

a device which was previously employed to estimate the stress state in plane strain

models of elastomeric seals (Strozzi (1986)). The reading technique is based upon the

"compensation method" or "Muller method" (May (1957), Kawahara, Ohtake and

Hirabayashi (1964), Wendt (1971)), commented in the following.

The device is sketched in Fig. 5.4.1.1 . It consists of a metal plane model of a

head of an artificial hip joint (scale 3:1), Fig. 5.4.1.2 , through which eleven

adjacent, 4 mm diameter holes are drilled. The pitch between the axes of the

contiguous holes is 6.5 mm. The final part of the holes has a reduced diameter of

1.5 mm , and it is inclined with respect to the hole axis, so that its angular pitch is

constant, and equal to 10' . The top part of the head plane model is connected to a

metal, horizontal, sliding, loading bar, to which the desired head penetrations are

imposed by turning two screws. The resulting indentations are read with a

micrometer (gauge) having a precision of 1/100 mm . The model head compresses an

elastomeric strip (polyurethane elastomer, Hysol CP 4485, Young's modulus = 3.52

MPa and Poisson's ratio in the region of 0.4997, an elastomer exhibiting material

constants close to the actually employed material, see Chapter 3) glued to a metal

plane model of the cup, whose angular extent is nearly 7r . (More precisely, the

angular width is slightly less than .ir , so that the distance between the centre of

the cup and the line connecting the two extremities of the layer is 3 mm.) The

whole plane model of the hip joint is placed between two 20 mm thick, parallel Perspex
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Fig. 5.4.1.1 : The experimental device .

Sez. A-A
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Fig. 5.4.1.2 : The flat model of the head with the pressurised holes .
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plates to preclude any lateral displacements of the elastomeric layer, thus achieving

a plane state of strain which approximately mimics an axisymmetric situation

(Barton (1941)). In Dragoni and Strozzi (1988) it was verified that the lateral

deformations of the Perspex plates are limited, and that they do not significantly

undermine the correctness of the measurements. The contact zone between head

model and elastomeric strip is lubricated to limit the frictional effects, essentially

absent in operating conditions, due to the presence of the synovial fluid.

In order to measure the contact pressure profile, the holes are progressively

and sequentially pressurized with air until the fluid begins to leak. The

corresponding contact pressure is approximately equal to the pressure for which the

air begins to leak. The resolution of the pressure gauge is in the region of 0.2

atmospheres (0.02 MPa), but the precision of the device is obviously lower, due to

the difficulty in detecting the very first moment in which the pressurized air

begins to leak. This precision is estimated to be in the region of 0.3 MPa , as

suggested by the scattering of the experimental data. The pneumatic circuit

tolerates a maximum pressure of about 50 atmospheres (5 MPa) . Fig. 5.4.1.3 shows

the experimental device in operating conditions.

Fig. 5.4.1.3 : The experimental device in operating conditions .
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The radius of the head model is of 47.625 mm, whereas four different

elastomeric layers are considered, 1.55 mm, 3.15 mm, 6.44 mm and 9.49 mm thick,

respectively. They are glued to four plane models of the cup cavity having a

radius of 49.875 mm, 51.375 mm, 54.375 mm and 57.375 mm, respectively. These

figures approximately exhibit a scale ratio 3:1 versus the actual hip joints, which

are defined by a head diameter of 31.75 mm, and by three layer thicknesses of 0.5

mm, 1 mm, 2 mm and 3 mm, where the initial diameter clearance between head and

loaded surface of the layer is always 0.5 mm (see Section 7.3.2). The main

approximation is inherent in the elastomeric layer thickness, which is not exactly to

scale; as a consequence, the initial radial gap between head model and layer loaded

surface is out of scale (it should be 0.75 mm). With regard to this point, it should
,

be underlined that the aforementioned gap significantly influences the pressure

profile, so that the experimental results retrieved do not exactly correspond to the

stress state they want to mimic. Indeed, a high surface finish of the elastomeric

layer was favoured to the detriment of its thickness precision. Despite these

approximations, the experimental readings still constitute a significant benchmark

for the analytical previsions.

The notes which follow examine if the maximum tolerated pressure (5 MPa) is

consistent with a load applied to the actual joint of about 2000 N (see Sections 4.3.4

and 7.3.2). The hip joint is to scale 3:1 , but the stresses in the elastomeric layer

of the model must be the same as those in the real joint, since the material and

geometrical non-linearities preclude a scaling of the stress field. Additional

difficulties derive from the fact that the model is plane, while the actual geometry

is axisymmetric. The total force, P , in an ideal axisymmetric version of the hip

model exhibiting a peak pressure of 5 MPa can be roughly estimated as half the

peak pressure (understood as a gross mean for the contact pressure) by the

projected area of the head (since the angular contact width approaches ir)

P ...,	 •- 47.6252 m.., 18000 N2

This force corresponds to 2000 N in a three times smaller joint, as is the

actual joint. In performing this estimate, it has implicitly been assumed that the
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plane and axisymmetric contact pressure profiles are similar. This point has already

been discussed in Section 4.3.4 , on the basis of the results of Section 6.5.2 , which

suggest a certain similarity between plane and axisymmetric modellings (for a given

indentation depth, the two peak pressures possess the same order of magnitude). In

conclusion, the limit value for the maximum applicable pressure (5 MPa) still

imposes realistic loads in the region of twice the body weight, which are

encountered during walking (Kilvington and Goodman (1981)). It should be however

underlined that the loads sustained by the joint during running can reach ten times

the body weight (Paul (1976)), a figure which cannot be mimicked with this device.

Critical remarks on the applicability of the reading technique here employed

are reported by Strozzi (1986a,b), by George, Strozzi and Rich (1987), and by

Dragoni and Strozzi (1987,1988). The good degree of agreement between experimental

measurements and theoretical' predictions emerging from the previously quoted

papers supports the reliability of the measurements also for the configuration under

scrutiny. In any case, the agreement between theory and experiments when treating

elastomeric units is generally worse than that achieved when dealing with metal

components, with regard to displacements (Lau and Jeans (1989)), loads (Matthewson

(1981)) and stresses (Dragoni and Strozzi (1988)). This becomes particularly true

when a nearly hydrostatic stress state takes place in the elastomer, since small

compressions produce high pressures, as a result of the small cubic compressibility

of the material. Unfortunately, the elastomeric layer of the hip joint is subject to a

nearly hydrostatic stress state (Matthewson (1981)). It can be concluded that the

pressure measurements are more problematical in the case of conforming contacts

(Paul and Hashemi (1981) ("conforming" describes two contacting profiles which are

very similar, so that a high contact width is expected even for small indentation

depths, thus originating a nearly hydrostatic state of stress in the elastomeric layer

and a noticeable sensitivity of the stress field to perturbations of v ; this situation

is encountered in hip joints) than in the case of non conformal contacts,

characterized by small contact widths, when the Poisson's ratio plays a less

dramatic role (Chapter 4, Figs 4.3.5.1,5 , a situation encountered in rotary

letterpress ).

A point for concern is the determination of the head position which does not
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cause any indentation, that is, the determination of the reference point for the

penetration depth. In fact, the contact pressure is very sensitive to indentation

depth variations, so that an inaccurate reference point may result in unreliable

pressure readings. Three independent pressure measurements were made by taking as

reference position that assumed by the head model under its own load. It was found

that the repeatability of the measurements was acceptable and, therefore, no more

complicated methods were devised to position correctly the ball model. Matthewson

(1981) notes for a comparable problem that "the point at which the indenter first

contacts the coating is extremely difficult to observe" and that "any error in this

datum will be extremely significant". For a comparable case, Goodman and Keer

(1965) find deviations between theory and experiments with regard . to relative

approach versus load at the lowest loads, "where the measurement of relative

approach is at a minimum accuracy".
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5.4.2 Experimental results and comparisons with the analytical predictions

As anticipated in Section 5.4.1 , three configurations were examined. Their

relevant dimensions are collected in the following TABLE 5.4.2.1 .

TABLE 5.4.2.1

reporting the dimensions of head and curved layer for the four configurations

,

first case	 second case third case fourth case

head radius, mm	 47.625	 47.625	 47.625	 47.625

layer bonded radius, mm	 49.875	 51.375	 54.375	 57.375

layer loaded radius, mm	 48.325	 48.225	 47.935	 47.885

layer thickness, mm	 1.55	 3.15	 6.44	 9.49

initial radial gap between

head and layer, mm	 0.35	 0.3	 0.155	 0.13

Four diagrams are presented for each case, reporting a) the peak contact

pressure versus the indentation depth; b) the maximum shear stress at the interface

between laYer and foundation, and the angle at which the maximum shear occurs,

versus the indentation depth; c) two pressure profiles for intermediate indentations.

Figs 5.4.2.1,4 refer to the first configuration, Figs 5.4.2.5,8 to the second case, Figs
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5.4.2.9,12 to the third geometry and Figs 5.4.2.13,16 to the fourth setting. The

experimental readings (points) are reported together with the analytical predictions

(solid lines), referring to E — 3.52 MPa and to v — 0.49970 (see Chapter 3 , Section

2.3.4 ; the value for v corresponds to the minimum hydrostatic pressure imposed, of

20.182 MPa). The agreement between theory and experiments is always reasonable

(the maximum errors of the peak contact pressure are in the region of 30 percent

for the interval explored, apart from the low compressions, where the sensitivity of

the device may be responsible for higher mismatches), but it worsens in the first

and third cases, where a) the layer thickness is very small and, therefore, the

contact pressure is extremely sensitive to the indentation depth and to its errors; b)

the initial gap between head and layer profiles is small, so that exiguous

compressions produce high contact widths, producing sizeable nearly hydrostatic

regions which are very sensitive to any inaccuracies. Moreover, the contact width
:

becomes comparable with the angular extent of the curved layer, so that the layer

end effects may become significant, while they are not reproduced by the theory.

(The minimum initial gap actually occurs for the fourth configuration, but the high

layer thickness compensates for - the smallness of the gap, in the sense that the

stress field should be less hydrostatic.) This second observation may partially

rationalize the fact that the theoretical results often overestimate the experimental

readings, and especially for the highest compressions. In fact, the ability of the

elastomer to flow laterally as a result of the head compression is enhanced by the

finiteness of the angular extent of the elastomeric layer. The figures devoted to

the pressure profile reproduce the analytical contact width, which appears to reach

values in the region of ir , and (slightly) more. Other sources of error are

ascribable to frictional effects which, while limited by the presence of a lubricant,

are still present.

The peak shear stress at the interface between layer and foundation is of

the order of one tenth the peak pressure for the configurations explored. This

result is relevant in predicting debonding phenomena between layer and substrate.

The shear maximum is not located at the symmetry axis - where in fact the shear

stress vanishes due to symmetry - but it occurs at an angle (referred to in the axes

as "shear angle") which, measured in radians, is of the same order of magnitude of
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the peak shear stress expressed in MPa , for the configurations examined.

As already mentioned, the maximum value of the interface shear stress is a

fraction of the peak contact pressure. It is important to clarify whether for a given

load the maximum shear stress is heavily dependent upon the layer thickness, or

not. For a given indentation depth the contact width does not dramatically depend

on the layer thickness (compare Figs 5.4.2.4 and 5.4.2.7 , Figs 5.4.2.8 and 5.4.2.11

and Figs 5.4.2.12 and 5.4.2.15 ; these pairs of Figures refer to different layer

thicknesses, but to the same penetration stroke), whereas the peak contact stress

appreciably diminishes as the layer thickness augments. As a consequence, for a

given indentation depth the reaction force diminishes (proportionally to the peak

contact stress) as the layer thickness is increased, and so does the maximum shear

stress, whereas the contact width is not 'dramatically altered. For a given load, the

corresponding indentation depth augments with the layer thickness, and so does the

contact width. The peak contact stress therefore diminishes with thickness, and so

does the maximum shear stress. It is concluded that, for an imposed load, the

maximum interface shear stress decreases as the layer thickness is increased.

Indentation. mm
Fig .	 : he peak pressure versus indentation for the first configuration .
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Indentation,
Fig. 5.4.2.6 : The peak shear stress and its angular position for the second configuration .

Angular coordinate, rad
Fig. 5.4.2.7 : The pressure profile for 6 - 0.04 mm for the second configuration
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Two additional Figures are presented, which explore analytically the

consequences of a perturbation of the Poisson's ratio and the effects of curvature,

respectively, with reference to the fourth contiguration of TABLE 5.4.2.1 . Fig.

5.4.2.17 displays the peak contact pressure and the angular semicontact width

versus the indentation depth, for the measured figure ii — 0:49970 and for the

idealized incompressible value I/ = 0.5 . The variation in the pressure curve is

appreciable (the relative mismatch- is about 10 percent) even for these two

apparently very similar Poisson's ratios. The sensitivity of stresses and strains to

1/ is properly underlined by Matthewson (1981) for a comparable situation.

Conversely, the angular contact width is essentially independent of ii. This result

agrees with numerical (Dragoni and Strozzi (1988)) and experimental (Gorelik,

Bukhina and Ratner (1961)) findings related to elastomeric seals.

Finally, Fig. 5.4.2.18 explores the curvature effects on the peak contact

pressure and on the angular contact width, versus the indentation depth, with

reference to the fourth configuration. The curved layer forecasts are compared to

an "equivalent flat" layer geometry, defined by re — 1000 mm , rb — 1138.1695 mm ,
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and by r i 1128.6795 mm , so that the radius of curvature of the layer is much

higher than its thickness, and the equivalent radius is the same as in the curved

layer problem, that is, 8771.2428 mm . Finally, the portion of contacting head

periphery is evaluated for the equivalent flat problem, and the same length has

been ideally transferred along the actual head contour, to define a meaningful

angular contact width also for the equivalent flat layer solution, which can be

significantly confronted to that of the curved layer model.
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The results retrieved in terms of peak contact pressure and contact width

show that the curvature effects are very important, the relative mismatch being

about 30 percent. Following Yao (1990) in evaluating the curvature effects,

reference is made to his expressions for 5 and for 6asymp at page 234 , valid for

concave surfaces, and to his suggestions at page 239 , thus obtaining an estimated

error of about 8.26 percent, much smaller than the analytical previsions of Fig.

5.4.2.18 . As already suspected in Section 5.2 , the Yao (1990) curvature error

estimate, being based upon a Winkler foundation modelling, is not sound in the case

of nearly incompressible layers. In fact Yao (1990) applies his estimate to layers

possessing a Poisson's ratio as low as 0.4 , a figure for which his formulae are

believed to be accurate, a conjecture supported by the results of Fig. 5.3.4.7 .

The differences in the two pairs of curves in fig. 5.4.2.18 are partially

attributable to pure curvature effects, and partially to discrepancies in the head

profile and, consequently, in the indentations imposed along the contact zone. It was

decided to try to discriminate between the two contributions, by loading a nearly

straight layer - defined, as in Fig. 5.4.2.18 , by rb — 1138.1695 mm , n = 1128.6795

mm - by adopting an indenter capable of imposing penetration depths equal to those

of the initial, curved problem. In other words, a flat layer is pressed by a rigid

indenter, shaped so that the imposed indentation profile obeys formula (5.3.3.1),

where re = 47.625 mm , r t — 47.885 mm , as in the actual situation of the fourth

configuration of Table 5.4.2.1 . The resulting forecasts are presented in Fig. 5.4.2.19

. It appears that the differences between peak contact pressures referring to the

curved problem and to its flat counterpart with actual penetration profile is

negligible, namely of the order of 2 percent. In addition, the two corresponding

angular semicontact widths are hardly distinguishable.

It should also been underlined that the equivalent flat layer of Fig. 5.4.2.19

is still slightly curved and, therefore, it is expected to be slightly stiffer that its

perfectly flat counterpart (Fig. 5.3.4.2 shows an opposite trend, since it refers to a

contact between two cylinders; Figs 5.3.4.6,8 refer to the present geometry, that is,

a cylinder 'indenting a cavity, but the effects of the approximations in the indenter

profile mask the aspects to be clarified), thus producing slightly higher peak

pressures with respect to a perfectly flat layer. Since the layer thickness is about
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1/100 the loaded radius, this increase in pressure may be of the order of 1 percent.

As a consequence, the mismatch between peak pressures, as appearing from Fig.

5.4.2.19 , might slightly underrate the actual error. Due to the above considerations,

it is felt that the real deviation may be in the region of a few percent. In any case,

the effects exclusively due to curvature are very small. As a consequence, a

reliable mechanical model of a curved layer can be based upon a flat layer

approximation and upon an indentation curve consistent with the actual curved

profiles of the layer loaded border and of the indenting cylinder.

On the other side, this proposal partially contradicts the mathematical

discussion of Goodman and Keer (1965), which refers to a deformable sphere

indenting a deformable cavity. These authors observe that "higher approximations

to the spherical surface that" "replace the spherical surfaces by their osculating

paraboloids of revolution" "are mathematically inconsistent with retention of"

"methods appropriate to the problem of the plane". In other words, according to

Goodman and Keer (1965) it is not licit to refer to a flat model and to an accurate

description of the indenter profile, a model which is favoured by the present

author. A significant difference between the configuration here examined and that

of Goodman and Keer (1965) is that they refer to a cavity in an infinite space,

whereas here a layer of finite thickness is examined. This difference might at least

partially account for these dramatically opposite opinions about the applicability of

a flat model to describe a curved geometry.

As a final remark, the whole of the results presented in this Chapter

confirms the importance of Poisson's ratio and underlines the need to consider the

actual indentation curve. It also suggests that it should be desirable to incorporate

in the theory of curved layers the end effects of the strip.
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5.5 CONCLUSIONS

A series solution has been developed for a deformable annulus firmly bonded

to a rigid substrate along one periphery and subject to a concentrated radial force

acting at the other contour, with the aid of an algebraic manipulator. Series

acceleration techniques have been developed. Contrary to the previous treatments,

this solution does not degenerate for Poisson's ratios equal to half. This Green

function has been exploited to treat numerically the biomechanically relevant case

of a deformable annulus indented by a rigid cylinder. The effects of curvature and

of Poisson's ratio perturbations have been explored numerically, and they have been

found to become significant in geometries of interest in biomechanical problems.

More exactly, the effects of layer curvature have been examined separately from

those referring to the circumstance that the actual indentation curve of the

cylinder is not precisely described by a cylindrical or parabolic profile. It has been

found that the pure curvature effects are modest, whereas those deriving from the

approximations in the description of the indenter profile may be relevant. As a

consequence, a reliable mechanical model of a curved layer can be achieved by

considering a flat layer approximation compressed by an indentation curve consistent

with the actual curved profiles of . the layer loaded border and of the indenting

cylinder.

Four configurations have been examined experimentally in terms of pressz2re

profile and contact width versus indentation, and they have been found to agree

reasonably with the theoretical forecasts. The possible causes of errors have been

discussed, and it has been underlined that the layer end effects may become

significant in biomechanical applications and, therefore, they may be responsible for

the disagreements between theory and experiments noted especially at the highest

penetration depths. In other words, it should be of interest to incorporate the

finiteness of the angular width of the curved layer into the theory.

The shear stress at the interface between layer and foundation has been

examined inalytically, and it has been clarified that, for an imposed load, the

maximum interface shear stress decreases as the layer thickness is increased.
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6.1 INTRODUCTION

The two previous Chapters 4 and 5 address plane strain problems involving a

layer indented by a cylindrical punch. This Chapter, instead, deals with

axisymmetric situations. More precisely, the case is treated of an infinite flat layer

firmly bonded to a rigid backing and frictionlessly indented by a rigid sphere, as

shown in Fig. 6.1.1 . This model can mimic biomechanically significant geometries,

such as hip prostheses possessing an elastomeric layer (Unsworth, Pearcy and White,

(1987)). In particular, in this Chapter an analytical, perturbation-type solution is

developed for small penetrations of the sphere, where most of the tedious and

lengthy analytical passages have been relegated to the algebraic manipulator

MACSYMA (1983). This analytical solution constitutes a benchmark against which to

assess the finite element method, which is also employed to retrieve information for

high penetration depths.

Fig. 6.1.1 : A flat layer indented by a sphere.
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6.2 LITERATURE REVIEW

The papers referring to a deformable, infinite layer, firmly bonded to a rigid

foundation and indented by a sphere are reviewed in this Section. In addition,

contributions treating similar problems, as generally axisymmetric indenters, or

three-dimensional contact problems, are also briefly mentioned because the solution

techniques are generally applicable to the spherical indenter. The solution methods

adopted are either mainly analytical or essentially numerical.

The analytical contributions fall into two main categories. The first field

covers asymptotic contributions, which analyze either very thin or very thick

layers. More exactly, low layer thickness to contact radius ratios or high aspect

ratios are considered.

In the case of infinitely thick layers, the foundation becomes a half space.

The pertinent papers are reviewed below. The related classical geometries are those

of a rigid die in the form of a circular cylinder pressed against the plane boundary

of a semi-infinite elastic solid (Timoshenko and Goodier (1970), p. 408), and the

contact between two spherical bodies in contact (Timoshenko and Goodier (1970), p.

409), for which closed-form solutions have been obtained. Segedin (1957) notes that

for an ellipsoidal indenter on a half space, the load-displacement ratio is the same as

that for a flat-ended indenter for equal contact radii. Mossakovskii (1958) solves

analytically the case of a circular die indenting an elastic half space, whose modulus

of elasticity is an exponential function of depth. He corrects previous results

quoted in his bibliography. Rvachev (1959) examines a rigid die of flat, polygonal

planform indenting a half space, by solving the corresponding integral equation via

the (numerical) Galerkin method. Sneddon (1965) considers variously shaped

indenters acting upon a half-space. Aleksandrov and Babeshko (1972) study

analytically a wedge-shaped stamp pressing an elastic half space. Mellin

transformations and a series expansion are employed to solve the problem. Gladwell

(1974) explores in a mathematically oriented paper the contact between a circular

plate and an elastic half-space. An auxiliary function is expanded in terms of a

polynomial expression. Fabrikant, Selvadurai, and Xistris (1985) consider a rigid

circular punch indenting a half space, Fabrikant (1986) examines variously shaped,
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flat punches, and Fabrikant (1990) considers a circular plate penetrating a half space

and loaded also by a tangential force.

The existence in bibliography of asymptotic solutions for thick and thin

layers is underlined by Johnson (1985) , p. 141 . The papers quoted are those by

Aleksandrov (1968) (thick layers) and (1969) (thin layers), respectively. (To help the

reader to trace the papers quoted, it is observed that the page numbers reported by

Johnson (1985) correspond to the English translation, and not to the numbers

reported under the title of the papers, that is, to those referring to the original

paper.) Aleksandrov (1968) ranks a variety of solution techniques for extreme

values of layer thickness to contact radius ratios, which include a perturbation

approach and an exponential series expansion for the kernel of the integral

equation. In Aleksandrov (1969) an asymptotic solution is achieved in the case of an

axisymmetric, parabolic punch, for small layer thickness to contact radius ratios.

Solutions, although too complex for everyday use, are obtained for the parabolic

punch via a series expansion of the kernel and via a boundary layer approach, for

both contact pressure and total load (see his formulae (5.26) and (5.29)). Additional

asymptotic solutions are contained in the contribution by Aleksandrov (1963a), where

it is shown that, when the layer thickness becomes very high, the mathematical

model tends to that of a stamp acting upon an infinite half space. In addition, a

formula is achieved "for very small values of h" which coincides with the typical

Winkler solution, that is, the solution which ignores the lateral flow of the layer,

but considers only its deformability in the direction of the layer thickness. This

solution is identical to that of Armstrong (1986) (zero perturbed order) for plane

strain conditions. The same solution of Aleksandrov (1963) is reprised without

quotation by Jaffar (1989) in his formula (15), while developing asymptotic solutions

valid for thin layers (that is, large contact widths) and for spherical indenters, by

extending to axisymmetric geometries the plane strain results of Johnson (1985), p.

140 . Intriguingly, the contribution by Aleksandrov (1963) was properly quoted in a

previous paper by Jaf far and Savage (1988), where the authors underline the

existence in bibliography of "an asymptotic solution for both small and large alt ".

The paper by Jaffar (1989) contains, in addition, an original asymptotic solution for

an incompressible, thin layer for which the Winkler model is no longer applicable
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(Armstrong (1986)). (In his formula (25), variable E is missing). In fact, in a similar

way to Johnson (1985), Jaffar (1989) has to treat compressible and incompressible

layers separately. While performing a comparison between asymptotic and exact

pressure profiles, Jaf far (1989) finds - consistent with Meijers (1968) - that the

contact pressure is no longer Hertzian as the Poisson's ratio approaches the

incompressibility value 0.5 , especially in the vicinity of the contact ends. Barber

(1990) extends Jaf far (1989) asymptotic solutions to cover the general three-

dimensional case. Finally, Li and Dempsey (1990) produce, among other interesting

results, asymptotic expressions (see their formula (34)) which coincide with those of

Jaffar (1990), formula (16).

Lebedev and Ufliand (1958) solve the case of an elastic layer indented by an

axisymmetric punch. Asymptotic behaviours are explored for a stamp with a flat

base and small radius to layer 'thickness ratios, but cases of stamps with a non plane

base under incomplete penetration (as are those of a sphere indenting a layer) are

also mentioned. Aleksandrov and Vorovich (1964) obtain an asymptotic solution for a

thin plane layer indented by a flat punch, by exploiting a previous solution to

which the new problem tends as a consequence of a change of variables. They

observe that the same procedure could be applied to axisymmetric situations, but it

is here noted that the limit of indenter flatness, to be converted to a parabolic

profile, may be difficult to remove. Aleksandrov, Babeshko and Kucherov (1966)

examine three-dimensional contact problems involving a thin layer, and in particular

obtain asymptotic solutions for an axisymmetric stamp of any profile. Fourier-Bessel

expansions are employed to describe.the punch profile.

Moving to less idealized geometries, Goodman and Keer (1965) confront the

difficult problem of a deformable sphere indenting a deformable cavity in an infinite

space, where their treatment is based upon a paper by Sternberg, Eubanks and

Sadowsky (1951), which presents a solution for the case of a hollow sphere subject

to axisymmetric loading. A series solution (in which the kernel is evaluated

numerically) is obtained for the resulting Fredholm integral equation of the first

kind. Some experimental measurements in terms of relative approach versus load are

also reported in their Fig. 2 . In addition, Goodman and Keer (1965) reach the

mathematical conclusion that higher than parabolic approximations to the spherical
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surface are inconsistent with a plane model of the deformed media. Finally they

observe that, for an extension of the Hertz theory to be significant, the difference

between the radii of sphere and cavity must be small.

The analytical contributions devoted to non asymptotic situations, that is, to

layer thicknesses comparable to the contact widths, are examined hereinafter.

Burmister (1945) examines the case of a deformable layer of finite thickness

uniformly loaded over a circular region and underlain by a second flexible stratum,

with shearing resistance fully active between them. Tabulated results are presented

for incompressible materials. Vorovich and Ustinov (1959) treat the problem of a

layer indented by an axisymmetric die. The case of a parabolic profile is considered

in detail. A formidable mathematical development - permits the axisymmetric

indentation problem to be described in terms of a Fredholm integral equation of the

second type (or closely assoCiated to it), and amenable to recursive, Picard-type

iterated solutions, which mathematically converge for ratios of layer thickness to

contact radius higher than 1.27 , and in particular converge very fast for ratios

higher than 1.7 . The zero order formula of the contact radius expressed as a

function of the total load (last page of Vorovich and Ustinov (1959)) coincides with

the purely Hertzian solution (Johnson (1985), p. 93) , provided that their c of

formula (1.16) is understood as indicated by Keer (1964), formula (1), that is, c —

E/(2(1 — v2)). This is also consistent with the Vorovich and Ustinov (1959)

formulae as quoted by Ihara, Shaw and Bhushan (1986a). The validity field of the

results of Vorovich and Ustinov (1959) is examined by Ihara, Shaw and Bhushan

(1986a), and found to be consistent with the Vorovich and Ustinov (1959)

suggestions, that is, a/h < 0.67. Pupyrev and Ufliand (1960) study again the case of

an axisymmetric, flat punch indenting a layer of finite thickness. A mathematical

manipulation permits the problem to be described in terms of a Fredholm integral

equation of the second type (see their equation (2.8)), which is solved numerically.

Aleksandrov and Vorovich (1960) solve the three dimensional indentation problem of

a rigid die pressing a layer of finite thickness, by employing a perturbation-type

solution. A flat, elliptic die is considered in detail. Keer (1964) further develops the

study of Vorovich and Ustinov (1959) with reference to a sphere indenting a layer,

by incorporating the ball compliance. Since his method is the same as that of
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Vorovich and Ustinov (1959), his results too may suffer from the limits noted by

lhara, Shaw and Bhushan (1986a) with regard to the Vorovich and Ustinov (1959)

contribution. This point is investigated by Li and Dempsey (1990) in their Fig. 6 . In

addition, Keer (1964), following Galin (1961), notes that, if this problem is idealized

to two half-spaces in contact, the equations are analogous to those of a half space

compressed by a rigid punch, whereas if equations are employed which account for

the finiteness of the layer width, the two solutions referring to rigid and elastic

punches differ substantially. Tu and Gazis (1964) examine a plate compressed

between two spheres, and obtain a solution by expanding the kernel of the integral

equation in terms of Legendre polynomials. Due to numerical difficulties, the

computations are performed only for thick plates, for which the contact radius does

not exceed half the thickness of the plate. Aleksandrov (1967) examines

axisymmetric problems, and shows the advantages of Legendre and Chebyshev

polynomials in solving analytically the integral equations involved. The

axisymmetric case of a flat die pressing on a layer is treated as an example. Noble

and Hussain (1969) develop a different solution procedure, based upon a variational

formulation, which lends itself to the analytical approximate solution of indentations

by axisymmetric punches of any profile. Their examples include cases in which the

exact solution is recovered, e.g. , for paraboloidal profiles and circular cones.

Dhaliwal (1970) solves the problem of a cylindrical, flat punch indenting a layer

bonded to a deformable half-space, by modelling the contact via a Fredholm equation

of the second kind (by adopting the formulation due to Vorovich and Ustinov

(1959)), treated via a perturbation technique. The method employed breaks down for

relatively thin layers. It is found that a very slight change in the elastic modulus

of the foundation to which the layer is bonded, from the rigid situation to a

moderately deformable value, affects the results considerably, especially when the

layer is thin. The extension to conical, paraboloidal, ellipsoidal and spherical

punches is presented in Dhaliwal and Rau (1970), where the same perturbation-type

technique is employed. Hayes, Keer, Herrmann and Mockros (1972) study indentation

problems with regard to indentation tests of articular cartilage, defined by v = 0.45

. The model adopted is that of an infinite elastic layer bonded to an immovable rigid

foundation, and pressed by an axisymmetric, rigid punch. The problem is expressed

in terms of a Fredholm integral equation of the second type, obtained following
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Vorovich and Ustinov (1959), which is solved numerically via a finite element type

approach. Both plane-ended cylindrical and spherical indenters are considered. The

interface stresses are particularly addressed, for ti = 0.45 . Shelest (1975) examines

a layer of finite thickness frictionlessly resting on a rigid base and frictionlessly

indented by a circular rigid plate. Interesting approximations of integrands are

presented, which permit improper integrals to be evaluated analytically. Gladwell

(1980), p. 551 - 558 , reviews the major contributions referring to axisymmetric layer

problems. Aleksandrov and Karpenko (1980) study a spherical layer, subject to a

torsion caused by rotation imposed by a non-axisymmetrical punch. Matthewson

(1981) employs an averaging technique to solve analytically layers indented by a

sphere (parabolic approximation) and by a cone, and compares his solutions to a

purely Hertzian approach. He also presents experimental measurements referring to

a circular indenter. Matthewson (1981) also compares his results with those of

McCormick (1978), a paper not available to this author. Chiu and Hartnett (1983)

develop a theoretical-numerical solution for a layer loaded by a uniform pressure

over a rectangular planform, having in . mind applications to bearings. The authors

approximate the kernel in terms of an exponential polynomial, and compute exactly

the corresponding integral. However, a second integration is computed numerically.

Johnson (1985), p. 140 , also reviews more applied contributions referring to

axisymmetrical stresses in a layer. King (1987) examines flat-ended cylindrical,

quadrilateral and triangular punches indenting a layered half-space (that is, a layer

adherent to a half space). I af f ar (1.(388) pm ocl..1.r..es solNxtms‘s f or S.1%.\.-svlowt. cy\YsItcricra%.,

and for spherical indenters, for relatively small (lower than 20) contact radius to

layer thickness ratios. (An extension. to values up to 30 is reported in Jaffar (1989).)

The integral equation describing the layered contact is solved analytically by

employing Legendre polynomials, following Popov (1962). Dowson and Yao (1990)

examine the lubrication regime in natural joints, by adopting a Winkler-type

foundation model for the articular cartilage. Li and Dempsey (1990) solve

analytically the case of an axisymmetric contact between an elastic layer anchored

to a rigid base and a) a flat, cylindrical indenter, b) a rigid sphere, and c) an elastic

sphere. They expand the kernel in a finite exponential series, a strategy comparable

to that suggested by Sneddon (1946) and used by Aleksandrov (1968), Chiu and

Hartnett (1983) and by Yao (1990), p. 86 . They make the interesting observation
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that "the smooth base solutions are very close to those for a rough base with v i —

0 ." Dempsey, Zhao and Li (1991) extend the previous study to the situation of an

elastic layer supported by a Winkler foundation, a case of particular relevance to

civil engineering. Dowson, Fisher, Jin, Auger, and Jobbins (1991) study the

compression of a sphere against an elastomeric layer as a geometry mimicking hip

replacements with soft layers. The examine the importance of head diameter, radial

clearance, layer thickness, and Young's modulus. Instead, the Poisson's ratio effects

are not explored. An interesting comparison between the merits of hard and soft hip

replacements is also presented. Finally, Fisher and Dowson (1991) discuss the

potentials of cushion form bearings.
•

The analytical studies generally rely upon integral formulations of the

contact problem. As a consequence, the fundamental solution of a layer loaded by a

concentrated force (Green function) is relevant in formulating the integral equation.

Sneddon (1951), p. 453 , solves this problem with the aid of Hankel Transforms. Chen

(1971) examines the case of one or two layers bonded to another homogeneous half

space. Yao (1990), p. 77, develops the solution for a two-layered system.

As a final observation concerning analytical papers, the differential approach

of Armstrong (1986) does not appear to have been extended to axisymmetric

situations.

Passing to the essentially numerical papers, Favretti (1966) treats the

indentation of an axisymmetric, rigid punch compressing a plastic material, by

resorting to numerical quadratures. Tu (1967) employs a numerical discretization

technique to analyze a plate pressed between two identical spheres. He finds that,

when the ratio of plate thickness to sphere radius is higher than 5 , a purely

Hertzian solution is valid. Conway and Farnham (1967) and (1968) employ numerical

solutions to evaluate penetrations by variously shaped indenters. In particular,

Conway and Engel (1969) examine layers indented by spheres. Poulos (1968) develops

a finite element type solution for the case of a circular plate resting on a layer of

finite thickness and underlain by a rigid base. The effects of a variation of the

Poisson's ratio are studied, and found to be appreciable. Chen and Engel (1972)

analyze axisymmetric punches indenting multilayered media. In particular, they treat

a parabolic punch pressed into a layered half-space. They use a series expansion
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with five or six terms for the pressure, and find the series coefficients via a least

square approach. The errors are found to be very small for a variety of significant

tests, even when the layer becomes very thin. For contact radii as small as 0.2

times the layer thickness, the dimensional error (concerning the precision by which

the boundary condition on the imposed displacement is respected) is of the order of

10-4 . It is also found that, when the layer thickness becomes four times the contact

radius, the pressure profile tends to that of the half space solution, whereas the

two penetrations are still perceivably different. The problem of curved,

axisymmetric layers is mentioned as a particularly difficult aspect and,

consequently, it is not treated. Hooper . (1974) examines with the finite element

method it circular raft of finite flexibility in adhesive contact with a thick isotropic

elastic layer underlain by a rigid base. Singh and Paul (1974) develop numerical tools

to cover non Hertzian, three dimensional contact problems. Brothers and Sinclair

(1977) numerically study the indentation of an elastic half-space by a rigid

rectangular punch, by resorting to a singularity-incorporating finite-element method.

Their approach relies upon a technique developed by Emery and Segedin (1973).

Ahmadi, Keer and Mura (1983) numerically study various contacts between cylinders

and half planes, and assess the numerical forecasts with respect to the Hertzian

theory for an elliptical contact. Ihara, Shaw and Bhushan (1986 a,b) treat the case of

a sphere indenting a layer by the finite element method. Their sentence commenting

Fig. 6 on p. 530 , which reads : "To a very good approximation, cr, , c r r , and cr e are

principal stresses for 0 — O.", where 0 = 0 represents the vertical axis (see their

Fig. 1), is difficult to understand, since a symmetry axis must coincide with a

principal direction. Perhaps this 'observation is related to the approximation

mentioned while commenting Fig. 5, according to which "the stresses . . . are along a

line displaced 0.1 mm from the z axis." These authors compare their results with

those of Vorovich and Ustinov in their Fig. 9 , and they find that the latter

solution deviates from the finite element forecasts for contact radius to layer

thickness ratios higher than 0.5 . In addition, these authors explore numerically the

relevance of a change in Poisson's ratio, by adopting the two values v — 0.20 and

0.49 . The captions of their Figures 12 (a) and (b) report that the confrontation has

been made for the same geometry and for a fixed total load (0.346 N) and normalised

penetration depth (0.2) . What is important is that from a physical point of view
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the load is kept constant, while the absolute indentation depth as well as the layer

thickness are varied until a) their ratio is 0.2 and b) the compression produces the

desired load. (From a numerical viewpoint, simpler procedures are actually followed.)

The authors come to the general conclusion that "v has a small influence on the

stresses in the thin elastic layer", an opinion which the present writer accepts

provided that either the imposed force is kept constant (as suggested by the caption

of their Fig. 12), or the penetration depth is small in comparison to the contact

width. In fact, Hannah (1951) notes that "a change in Poisson's ratio makes an

appreciable difference to the loading necessary for a given contact length, but has

very little effect otherwise". She also notes that " Poisson's ratio can be seen to

have little effect" on the pressure profile. In addition, from Figures 4.3.5.2,5 of

Chapter 4 it appears that the Poisson's ratio is not the dominant parameter for low

indentation depths. On the other side, as soon as the contact width increases, a

perturbation of v dramatically changes the stress field and, consequently, the

reaction force, the indentation depth being kept fixed. This viewpoint is supported

by the many results of Section 4.3.4 . In conclusion, the observations of Ihara, Shaw

and Bhushan (1986a) regarding the Poisson's ratio effects do not seem to the writer

to have been sufficiently discussed in their paper. More recently, Gueury, Bagur,

Rezakhanlou and von Stebut (1990) numerically study the indentation of a rigid

sphere into an elastic-plastic layer by considering the geometrical non-linearities.

Some comparisons with experimental readings are also provided.

Moving to the mainly experimental contributions, Drutowski (1968) examines

the indentation of a transparent spherical indenter into an elastomeric lining, to

measure the Young's modulus. Similarly, Finkin (1972) experimentally verifies an

analytical relationship derived from Vorovich and Ustinov (1959) paper, connecting

Young's modulus to rubber hardness, with reference to a spherical indenter.

Matthewson (1981) compares in Fig. 10 the total load to the theoretical predictions

for the geometry of a sphere compressing an elastomeric layer, and he finds that

the experimental measurements overestimate the analytical forecasts. Anyway, an

offset in . the penetration depth of less than 0.1 mm produces an appreciable

modification of the total load, which renders the experimental readings consistent

with the analytical forecasts. In other words, in this paper the disagreement between
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experimental load and theoretical forecasts is essentially attributed to "the error in

estimating the height at which the indenter just makes contact with the coating."

Finally, O'Carrol, Jin, Dowson, Fisher and Jobbins (1990) measure total load and

contact radius, and they too find that the experimental force . is higher than the

theoretical predictions based on linear elasticity. They attribute the mismatch

mainly to non-linear elastic aspects and to frictional effects. Preliminary results of

this study are presented by Dowson, Fisher, Jobbins, O'Carrol and Jin (1990).
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6.3 GENERAL EQUATIONS

Following Aleksandrov (1967) and Jaffar (1988), the indentation of a

deformable layer firmly anchored to a rigid backing and frictionlessly compressed by

a rigid punch can be described in terms of the following Fredholm equation of the

first kind

a
w(f.) = 2tcx.	 IKOMI (1. 1 .§) 13(Z) g cr.§	 0 � i- � a

o

(6.3.1)

where

co

KaMt (I. . p§) = 1 L(w) J. (y) Jo (y) duj (6.3.2)

0

and

2 7 sinh 2w — 4w
(6.3.3)L(w) —

2 7 cosh 2w + 4(02 ± 72 ± 1

and a - (1 - v2)/E , t is the layer thickness, a denotes the contact radius, 7 = 3 -

4v , and JO indicates the Bessel function of the first kind of order 0 . In addition,

w (I-) describes the imposed indentation depth profile. Finally, Ka x t (f-,Z) represents

the axisymmetric kernel of the integral equation (6.3.1) .

It appears that function L(w) of (6.3.3) coincides with a part of the kernel of

the corresponding plane case (see Chapter 4, eqn (4.3.2.6)). This occurs because of

the existing link between plane and axisymmetric cases, see Gladwell (1980), p. 509 .

Actually, there is a general similarity between the integral equation (6.3.1) for

axisymmetric situations and its counterpart (4.3.2.2) for plane configurations. The

main difference is that in the plane case the kernel simply depends upon the

absolute value of the difference between the coordinate denoting a specific point of
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the punch (variable x in eqn (4.3.3.2)) and the integration variable (symbol s in eqn

(4.3.3.2)), whereas in axisymmetric problems the corresponding kernel (6.3.2) exhibits

a more complex dependence upon variables I- and .§ , which correspond to x and s

respectively, in the plane situation.

It can be shown that, when the layer thickness, t, tends to infinity, the

integral equation (6.3.1) approaches the mathematical description of a rigid punch

indenting a half-space, see Chiu and Hartnett (1983).

Following Jaf far (1988), the integral equation (6.3.1) is rewritten in terms of

non-dimensionalized variables

'

1 .
w(r) = 2 co3a I Kazt (r,․) p(s) s ds	 O � r � 1 (6.3.4)

' o
where

CO

Kaxf (r,․) =	 I L(w) Jo (Ono) Jo (Osw) dw (6.3.5)

0

and where r — fla , s = .§/a , and /3 — alt .

In the following the physical meaning is elucidated of the fact that the

axisymmetric kernel (6.3.5) is symmetric with respect to variables r and s .

Referring to Fig. 6.3.1 , Kast (r,․) represents the deflection in any point of the

circumference of radius r , due to a unit linear load applied along a circumference

of radius s . Since the axisymmetric kernel is symmetric with respect to r and s

this implies that the same deflection as before occurs for any point of the

circumference of radius s due to the effect of a unit linear load applied to the

circumference of radius r. This is indeed the axisymmetric version of Betti's
theorem.
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Fig. 6.3.1 : Deflection at radius r due to a unit linear load along a circumference of

radius .s.
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6.4 PERTURBATION SOLUTION

Various authors have examined or exploited the possibility of solving

axisymmetric contact problems via perturbation methods. Aleksandrov (1968) ranks a

variety of solution techniques for extreme values of layer thickness to contact

radius ratios, which include a perturbation approach, but he does not present

applicable results. Aleksandrov and Vorovich (1960) solve the three dimensional

indentation problem of a rigid die pressing a layer of finite thickness, by employing

a perturbation-type solution. A flat, elliptic die pressing a layer of relatively high

thicknes„s is considered in detail. The perturbation method is employed by Dhaliwal

(1970) to solve axisymmetric problems. In particular, the case of a cylindrical, flat

punch indenting a layer bonded to -a deformable half-space is treated, and various

curves are presented. The extension to conical, paraboloidal, ellipsoidal and

spherical punches is presented in Dhaliwal and Rau (1970), where the same

perturbation-type technique is employed. In this paper, however, only the analytical

aspects are addressed, and no practically significant results are presented.

The main idea of the perturbation solution is to express the unknown contact

pressure profile in terms of a power series expansion with respect to the small

parameter alt , where a denotes the contact radius and t indicates the layer

thickness, whose powers multiplies yet unknown functions p j . Similarly, the kernel

of the integral equation is expanded into a power series, where the small parameter

et affects its coefficients. By collecting like powers of alt , the initial integral

equation is split into a series of simpler problems, whose solutions are the functions

pi (Bender and Orszag (1978)). Such functions constitute the terms of a series

expansion for the unknown contact pressure. In comparison to solutions in which the

shape of the pressure profile is defined a priori (Jaffar (1988)), the perturbation

technique produces an analytical pressure profile for every perturbation order and,

consequently, it hopefully reduces the number of series terms capable of expressing

the contact pressure with a given accuracy.

The main limit of the perturbation approach is that it is valid only for a

restricted a/h field, say a/h < 1 . In biomechanical applications, the above ratio is

generally very high, so that the applicability of the perturbed results is limited. On
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the other side, during walking conditions situations are met when the load and,

consequently, the contact radius, becomes small, so that the corresponding situation

can be mimicked by the perturbed model. In any case, the perturbation solution

constitutes a benchmark for numerical (finite element) results, whose accuracy is

often questionable when treating nearly incompressible components.

The problem of the series expansion for the axisymmetric kernel (6.3.5) is

treated below.
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6.4.1 Kernel series expansion

Following Meijers (1968) and Jaf far (1988), the singularity of the form hr (as

suggested by the purely Hertzian solution) will be extracted from the axisymmetric

kernel (6.4.1.1), so that the regular remainder can be expanded in power series

CO

Kaxt (r,․) = I L(w) Jo (f3rw) Jo (Osw) dco
	

(6.4.1.1)

0

Function L(W) approaches unity for w = 5 (see Fig. 4.3.2.4), so that it seems

natural to write, following Popov (1962), Aleksandrov (1967), and Jaffar (1988)

L(w) == 1 — (1 — L(w))	 (6.4.1.2)

By substituting (6.4.1.2) into (6.4.1.1), and by using the following result (Byrd

and Friedman (1954), P. 249, formula 560.01 with p=0 , Luke (1962), p. 316, formula

(16), Aleksandrov (1967), Jaffar (1988), Li and Dempsey (1990), formula (7) with a=0)

00
2 	 2 Tr..s 1KI Jo (Om) Jo (d3sw) dw —

it- 13 (r ± s)	 ( r ± s
0

(6.4.1.3)

where K is the complete elliptic integral function of the first kind, one can write

00
rs

Kaxt (r,․) — 	
r
2 

± s) K 
[

r
2 

±4--- I
(	

± I (L(w) — 1) Jo (Om)	Jo (Osw) do) (6.4.1.4)
it-f3	 s

0

where the ' integral part of (6.4.1.4) constitutes the regular part of the axisymmetric

kernel (6.4.1.1), and the remaining component corresponds to the purely Hertzian

solution (Jaffar (1988)).



Chapter 6 The Flat, Axisymmetric, Elastomeric Layer 6.19

It was observed in Section 6.3 that the axisymmetric formulation is analogous

to the plane case, where a main difference is that in plane problems the kernel

depends upon the absolute value of the difference between variables x and s (see

(4.3.2.6)), whereas in axisymmetric circumstances the dependence on the

corresponding variables r and s is more complex. Anyway, it can be observed that a

behaviour similar to an absolute value filtering is comprised in integral (6.4.1.3), as

it appears from its equivalent formulation of Li and Dempsey (1990), formula (6) (see

also Luke (1962), p. 326 , formula (11)).

From a practical viewpoint, the parenthetical term (L(w) - 1) in (6.4.1.4)

essentially vanishes for co > 5 , see Fig. 4.3.2.4 , so that the numerical evaluation

of the integral part of (6.4.1.4) can be limited to the interval 0 � co � 5 . Anyway,

to ease the numerical evaluation of the derivatives of (6.4.1.4) with respect to r

and s , which intervene in the power expansion of the kernel, and which vanish

considerably more slowly, thus requiring a more generous integration interval, it is

convenient to extract other terms from the integral part of (6.4.1.4), similarly to

what was done in Section 4.3.5, formula (4.3.5.7). By applying the results of formula

(4.3.2.27), the following approximation is obtained

L(w) — 1 --=4 2 e -2(4.) — 4 w -2U) ±— — (4	 — e	 .
"Y	 '7

(6.4.1.5)

where, as it appears from Fig. 4.3.2.6, it is not beneficial to account for additional

asymptotic terms in (6.4.1.5).

The next step is to examine which integrals exist in analytical form, whose

integrand is formed by the product of two Bessel functions - as in (6.4.1.1) - by the

approximate expansion of function L(w) according to (6.4.1.5). Luke (1962) reports

the following integral at p. 316, formula (19)

co
-p	 p Ic3 E (k) I co e wjo (ono) Jo (f3sw) dw —

4 7r S3 (r s)3'2 (1 — k2)
0

(6.4.1.6)

where



4f32 r s k2 — p2 ± 02 (r + s)2 (6.4.1.7)

d E E — K
d k — k

(6.4.1.9)
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and E denotes the complete elliptic integral of the second kind. The result of

interest is obtained for p — 2 .

According to (6.4.1.5), the next task is to evaluate the following integral

1-(02 e PwJe (0rw) Jo (0sco) dw

0

(6.4.1.8)

which could not be traced in the various specialized manuals quoted above. Anyway,

this integral can be determined by differentiating both members of (6.4.1.6) with

respect to p , and by remembering that (Byrd and Friedman (1954), p. 283 , formula

710.02)

Therefore

co
I-w2 e PWcro (Orw) Jo (0sw) dw =-

0	 •

k3 
4 ./r 03 (r s)3/2 ,1 _ 2 (E. (k) (1	 P2k2 P2 	

)	 K (
l	 k )	

k4 

132 r s 2 /3 2 r s ( 1 _ k2) ±	 k)  P k2 , 2  I
4 0- r s

(6.4.1.10)

where the result of importance is achieved for p — 2 . In formula (6.4.1.10), k is

again defined by (6.4.1.7). Both integrals (6.4.1.6) and (6.4.1.10) were checked
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numerically, by employing the polynomial approximations for the elliptic integrals of

Abramowitz and Stegun (1972), pp. 591-592 , formulae (17.3.34) and (17.3.36) , and the

polynomial approximations for the Bessel functions of Abramowitz and Stegun (1972),

pp. 378-379 , formulae (9.8) .

By taking into account formulae (6.4.1.2), (6.4.1.3), (6.4.1.5), (6.4.1.6) and

(6.4.1.10), and by setting p — 2 in (6.4.1.6) and in (6.4.1.10), formula (6.4.1.1) can be

written as

Kox i (r,․) — 2 	 K 2 	 j
±ir 13 (r ± s) [ r + s

k3 k2	 E (k) (1	 4 k2 	2 k4K	 ±
j

[	
, frr s	 02r s	 02 r s (1 — k2))7r /33 7 (r s)3/2 (1 — k2 )

(k)	 , +
±

oo

(.0 ± _4 w 2W ) Jo (0rw) J0 (Oat)) dui(A) e-2
1 ( L (w) — 1 + 4 2

7
0

(6.4.1.11)

where k is defined in (6.4.1.7), by setting p — 2 .

The following equivalent formulation of (6.4.1.11), obtained by employing

(6.4.1.7), lends itself to be more easily expanded in a power series

2 	 2 •47-s jK	 ±Ka (r,․) = 7r0 (r ± s) 1 r ± s

1 4 K (k) — E (k) ( 20 -I- /3 2 (r ± s)2 ± 
4 

32 S2 r s	 1
8	 ± 0

„
- (r — s)2

w -y	
(4 + is2 (r ± s)2 )3/2 (4 + 02 (r — s)2 )

CO

-I-

J ( L (w) — 1 ± i w2 e-2w ± 4 w e-2(4) ) Jo (Om) Jo (gsw) du)"I
o

(6.4.1.12)



oo	 00
1	 ami-n f (0,0) x. yn
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m-0. n=0

(6.4.1.13)
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The parenthetical part in the integral appearing in formula (6.4.1.12) vanishes

very quickly, say for co > 2 (see Fig. 4.3.2.6), so that a numerical integration

becomes feasible, where the integration field can be limited to the 0 � Co � 2

interval. Indeed, formulation (6.4.1.12) lends itself to a power expansion of the

axisymmetric kernel, since the integral part to be computed numerically is now

restricted to a limited cc) interval.

The expression for the series expansion of a two-dimensional function is

reported below, having in mind the regular part of the axisymmetric kernel (6.4.1.1).

The Mac Laurin expansion of a generic function f (x,y) is (Greenberg (1978), p. 126)

It should be observed that the centre of this expansion is taken at X y = 0

, whereas in the plane analogue (Chapter 4, Section 4.3.5) the centre was assumed at

	

y . A series expansion referring to x	 y as its centre would exhibit

coefficients depending on x	 y , since when x	 0 the problem mimicked would

be that of a concentrated force applied at the origin, whereas when x —4 co the

situation described would approach that of a linear load applied along a straight

line. Due to these prospected difficulties, it was decided to adopt a series expansion

in the vicinity of the axis origin.

In the case under scrutiny the kernel is a symmetric function of its two

variables. This implies that

am+n f (0,0)	 anz+Th f (0,o)

a in a yn 	 3 Xn ym
(6.4.1.14)

so that our series expansion (6.4.1.13) sim plifies to
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f (x,y) = f (0,0) + 3 f (0
'
0) 

(x 	 y)3 x

1 82 f (0 7 0)	 2
2	 8x

2 (X + y2 )	 2 32 f Om	 1

axay xYJ+

1 33 f (0 ,0) (x3 ± y3	 a3 f (0,0)
61 a x3	 )	 iax2ay X Y(X 	Y))

1 f a f (0	
-4_

' 

0)	 34 f (0,0)
24	 x4 (x4 ± Y4 )	4	 3	 X y (X2 ± y2 ± 6 84 f (0,0) 2 U2 Ia a X a y	 8 x2 a y2 x

1 r 85f (o,o)	 5

120	 a x5 (X ± y5 + 5 
a 
as 	

X
/ (0,0) 

y 
3

x4 ay	 y3)

lo 35f (0,0)  
x

2 
y

2 
(X	 y)) +

a x3 a y2

1 I af 6 (0,0)	 6 +	720 ( a x6 (x	 sy6. )	 6 36/ mg 
a X5 ay X y 4+ y4 )

36f (0,0)  x3 1 ,386f no)  x2 ,) ,2 (x
2 + v2) + 2015

a x3 a y3a x4 a y2
•	 •	 •

(6.4.1.15)

In the following it is intended to show that, due to the specific character of

the problem under study, many other parts of the series expansion (6.4.1.15)

actually vanish. In fact, referring to Fig. 6.3.1 , the displacement by the axis origin



an +171 fog
a rn a sin

In odd, m	 0,1,2,3.. (6.4.1.16)
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due to a unit linear load acting along the circumference of radius s must posses

vanishing odd-order derivatives with respect to r and computed for r — 0 . This it

a physical consequence of the symmetry of the loading. More generally, all

derivatives of the kind

must vanish. The analogous derivatives obtained by interchanging r and s must

vanish too. This is mathematically confirmed by a close examination of (6.4.1.4),

whose integral part contains the product of two Bessel functions of the first kind

and order zero depending upon r and s , respectively. Now, the odd order

derivatives of this Bessel function vanish for vanishing argument (Abramowitz and

Stegun (1972), pp. 360 , formula (9.1.1.2]) .

An example is now treated which supports the above speculations regarding

the vanishing parts of (6.4.1.15). It is first observed that the regular part of the

axisymmetric kernel can be interpreted in physical terms, with the help of the

following modelling. A half space is loaded by a unit linear load along a

circumference of radius s. In the actual situation, however, the loading is sustained

by a layer of thickness t , bonded to a rigid substrate. The axisymmetric loading

acting upon the half space will produce a non vanishing displacement field at the

depth t, where in the actual circumstances any deflection should be precluded. A

half-space model can still be adopted to mimic a deformable layer anchored to a

rigid foundation, provided that a corrective stress distribution is applied at a depth

t , which makes the total displacement field (that due to the surface linear loading

plus that deriving from this correction applied at a depth t) vanish. The regular

part of the axisymmetric kernel represents such a correction. To support the above

conclusions regarding the vanishing of several series terms as effected in (6.4.1.15),

a situation representative of this correction term is examined, and the derivatives

(6.4.1.16) are explicitly computed. Although the comparison here proposed is not

completely rigorous, the correction factor is conjectured to behave - in terms of
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displacements - similarly to the situation of a half space loaded along a surface

circular portion by a unit, uniform pressure, the main source of dispute being the

fact that this correction circular loading is applied to the surface of the half space,

and not at a depth t. The above case is treated by Johnson (1985), p. 56 . For a

point inside the loaded circumference of radius a , the surface vertical displacement

is

4 (1 — 1,2) a E ( ar )
U = 	

it- E
(6.4.1.17)

For a point outside the loaded circle, the surface vertical displacement is

24(1
— 	 — 1/2) r 1E ( CI ) _ (1 — a- ) K ( .clil. ) )U	 i	 rit E	 r

(6.4.1.18)

From (6.4.1.17), by accounting for (6.4.1.9) and for the series expansions

(17.3.11) of Abramowitz and Stegun (1972), p. 591 , it appears that

a / i 1	 _ 4 (1 — v2) a E ( ra ) — K ( ic; )

a r r-O	 ir E	 r	 I r-O =..---

(6.4.1.19)

and any derivative of (6.4.1.19) with respect to a (which takes the part of variable

s in the regular portion of the axisymmetric kernel (6.4.1.1)) would equally vanish.

It is derived from the above observations that the series expansion of the

regular part (here denoted by f (x,y) ) of the axisymmetric kernel simplifies to :
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f (x,y) = f (0,0) ± 1 I a2 f 
x2	 `•
(0,0 ) (x2 + y2 ) ) ±

2 l	 a 

1r 34 f (0,0) (x4 + y4 ) _i_ 6 34 f (0,0) x2 v2 ) +

24 1	 a x4	
-,-	 a x2 a y2

1
n6 r (n ,n) x2 y2 (x2 + y2 ) ) + . .

-1------
af6 (o,o) (x6 + y6 ) ± is  u .14 "' '-'; 

a X ay720	 ax6

(6.4.1.20)

Going back to (6.4.1.12), it is possible to write:

2	 K
2 'sirs 1

[
,	 TT

-1- Ilaxi. reg (r,․)
(6.4.1.21)KaMi (r,․) =

'KO (r + s) r ± s

where IC,I. re g (r,․) denotes the regular part of the axisymmetric kernel, and it is

easily identifiable through a comparison with formula (6.4.1.12)

r a g (r,․) ---

4 IC (k) — E (k) ( 20 ± 02 (r ± s) + 32 132 r s , )
8 	 4 ± (3- (r — sr 

.It 1	 (4 ± 02 (r + 8)2 )3,2 (4 + 02 (7. _ 8)2)

CO

+

1 ( L (w) _ 1 ± 4 w2 e-2W ±

0

A w e-2(A) ) Jo (Om) Jo (13sco) dw
1

(6.4.1.22)
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By employing a Taylor expansion according to (6.4.1.20) for the kernel

regular part of (6.4.1.22) , expression (6.4.1.21) can be reformulated as

Kami (r,․) -,. 	 2 	 , 1
r

2 
+
45--s

0 (r + s) A.	 s I 4" ICal, reg (0,0) ±7r 

1 f a2 Kaxt. reg (0,0) (,.7...- + s2 ) ) ...F.

2 L	 a r2

1 f a4 K.,1. re, (0,o) (fzi (	 a r4 ,	
r

4
	...1.+ s4 ) _ 6 o4 ICa t. reg OM 2 2

r s ) ±
a r2 a s2

, a 6 K	 ,	 6
+ s6 ) +)I 	 =I, reg (00)	

.. 6 kr

-	 axi. reg (0,0)(r	 s
720 (	 a r6	

a 7.4 
8 s2
	 r2 32 (7.2 + 32 ) ) + .	 .	 .

(6.4.1.23)

In the following the series expansion is evaluated up to the sixth order

included. It was decided not to examine higher order terms for two reasons : a) the

results of Section 4.3.5 dealing with the corresponding plane problem indicate that

the sixth order is a good trade-off between simplicity and accuracy; b) the

computations become prohibitively complicated for higher derivatives.

Following Meijers (1968), formula (2.3), eqn (6.4.1.23) is rewritten by

evidencing ratio alt and by employing r/2 and s/2 variables :

KCIXt (r,․) 	 2 	
K 12 '15---s	 _4_ K

TO (r -I- s)	 - s--7-1- 1 , 	 reg (0,0) +



(,..( 1: )2 + ( ! )2) +

± i
i ( aL )4 I ( (

84 K_
4	 c'f, reg (0,0)a r2 a 82 r ,2 , ,2 1 1 ±

2 '

( ( ii )2 4. ( 9
I

( cc4o ( ( 1- )4 + ( 5 )J +a22
( (
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( cit., 12 1 2 a2 Kaxi, reg (0 1 0)	 (

a 7.2

a4 IC,,,i, re, (0,o)a ?A	 ( n4) t ( )4 + ( ! 4) )

f cit 16 1 (4 a 6 IC_ I,
reg (0)0) f 4.

( t i	 4-5-	
[ a )6 I ( ( -7..- )6 + ( 3- )6 ) +r6

r, as Kaxi . reg (0,0) , ,,	 i
li	 a r4 a s2	 - l ti )6 j ( -72: )2 ( 1 )2 ( (	 )2 + ( g )2 i 1 ±

(6.4.1.24)

Finally, following again Meijers (1968) , formula (2.6), the equation (6.4.1.24)

of this thesis can be rewritten, by introducing ati coefficients, as

.

•	 •

Kamt (r,․) = 2K 2 'Fr's- 1 cc10 (I. ± s) [ r ± s ± o+
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( Ci, )6 [cc60 ( ( 7_':. )6 + ( ,3_ )6 I ±j	 a42 ( 72. )2 ( 1 )2 1 ( 72: )2 ± ( .1 )2 ) i ±

. . .	 (6.4.1.25)
where

ao = 1( .2 1.reg (0,0)

r12a20 = 2 32 Kaxt. reg (0,0)	 t
8 r2	 i d J

2 a4 Kaxi. reg (0,0)a40= j 	
3 r4	 ( & )4

— 	m= 4 a 6 Kaxt, req (0,0) r t )6
a 4S[ a ia r6

A
a22 =	

84 Kaxi. reg (0,0) ( t Li
'I	 	

a r2 a s2	 l d J

C(42 =
4 a6 Ka„/. r e g (0 90) i t 16
"j	 a r4	 a s2	 i. d J (6.4.1.26)

The Taylor series convergence aspects are not examined here. It is only

noted that for the plane case Meijers (1968) reports that the regular remainder

possesses a uniformly convergent power series for lx/2t1 < 1 and, similarly,

Dhaliwal (1970) observes that by the ratio test it can be shown that for his

axisymmetric case the corresponding series is absolutely convergent for x < 2 t .

The next step is the computation of coefficients ati . High order derivatives

of (6.4.1.22) with respect to variables r and s are needed. To do so, the derivatives

of the complete elliptic integrals K (k) and E (k) with respect to their modulus k are

of considerable help. Byrd and Friedman (1954) report at p. 282 these derivatives -

expressed in terms of elliptic functions - up to the second order included, but they
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express higher derivatives only in terms of the hypergeometric function. It was

therefore decided to compute such derivatives - in terms of elliptic functions - up

to the sixth order, where the algebraic manipulator MACSYMA (1983) was of

considerable help in performing the very lengthy calculations. The results are as

follows

d K (k) _ E (k) — (1 — k2) K (k)
d k	 k(1 — k2)

d2 K (k).	(1 — k2) (1 — 2 k2) K (k) 4- (3 k2 — 1) E (k)

d k2	k2(1 — k2)2

c13 K (k)_  — 2 (1 — k2) (1 — 2 k2 ± 3 V) K (k) ± (11 le — 5 k2 + 2) E (k)

d k3	k3 (1 — k2)3

d4K (k) _ — (1— k2)(24 k6 — 13 k4 + 19 k2 — 6) K (k) ± 2 (25 k6 — 9 k4 + 11 k2 —3) E (k)

d k4	k4 (1 — k2)4

d6K (k) — (1— k2) (120 1c8 — 17 k6 ± 166 1c4 — 101 k2 + 24) K (k)
I-

d k5	1c6•(1 — k2)6

(274 Ics — 13 k6 ± 212 k4 — 113 k2 ± 24) E (k)

ics (1 — k2)6

d6K (k) _ — 3 (1 — k2) (240 k m -I- 126 1c8 ± 549 k6 — 444 k4 ± 209k2 — 40) K (k) ±

d k6	-	 k6(1 — k2)6

3 (588 k i° + 285 ka ± 759 k6 — 541 1c4 + 229 k2 — 40) E (k)
k6 (1 — k2)6

(6.4.1.27)
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d E (k) _ E (k) — K(lc)
d k	 k

d2 E (k) _ (1 — k2) K (k) — E (k)

d k2	k2(1 — k2)

d3 E (k)	 (1 — k2) (3 k2 — 2) K (k) — 2 (2 k2 — 1) E (k)

d k3	k3(1 — k2)2

d4E (k) _ 2 (1— 1c 2)(6 k4 — 7k2 + 3) K (k) — (19 k4 — 17k2 ± 6) E (k)

d k4	' k4(1 — k2)3

d6 E (k) (1— k2) (60 k6 — 91 1c4 + 79 k2 — 24) K (k)

d 1c6	k5(1 — k2)4

(107 k6 — 126 1c4 ± 91 k2 — 24) E (k)

le (1 — k2)4

d6E (k) _ 3 (1 — k2) (120 k8 — 207 k6 ± 282 k4 — 171 k2 ± 40) K (k)

d k6	k6 (1 — k2)6

3 (234 k8 — 315 k6 ± 360 k4 — 191 k2 ± 40) E (k)

k6 (1 — k2)5
(6.4.1.28)

The following function is now introduced, which constitutes the non integral

component of the regular part of the axisymmetric kernel (see (6.4.1.22)) :



Kamt, reg. non Int (r,․) I r=0,s=-- 0
2.-. -
-)1

Ir'= 0,s = 0a r4 a s2
a6  Kaxt, reg. non int (r)s)
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Kaxi. reg, non int ('rs) =

4 K (k) — E (k) ( 20 ± 02 (r ± s)2 ± 	 32 /32 r 3	 1
8 	 4 + 02 (r — s)2 )

ir 1	 (4 + 02 (r ± s ) 2 )3/2 (4 ± 02 (r — s) 2 )
(6.4.1.29)

The following useful limits and derivatives of the non integral component of

the regular part of the axisymmetric kernel were obtained after lengthy calculations

partially. performed with the aid of the algebraic manipulator MACSYMA (1983), by

exploiting (6.4.1.28)

9 02
V2 Kant, reg, non int (r,․)	 1

—	 ---fa r2	 1 r 2.. o ,s ----o	 4-

Ti r(
' 4 'nxf, reg, non fret (r ,s)	 45 0

4

Ir = 0 ,s-=-0 = -
B 

7.4	 4 .y

a6 Kasi, reg, non int (r,․) 
Ir— 0, 1 = o =-

a r6
7875 06
64 7

is 4
a4 Kaxi, reg, non int (r Ss) 	 0

a r2 as2	 Ir-0,s=0 --- 2 /

4725 135
= 64 7 (6.4.1.30)

The following limit values of the Bessel functions are also of use
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Jo (Orw) I r — o
	 = 1

JO (OSW) I s = o	 = 1

82 Jo (Om)
0 —

02 w2

Ir	 '''
a r2 2

a4 Jo (Om) I 3 13 4 w4

I	 r
a r4

0 = 8

36 Jo (arco),
0 =

5 1360
I r =

8 r 16

a4 Jo (ono) Jo (ssw) 1	
$4 (04

ir = 0,s =0 —	 4
a r2 as2

36 Jo (Orw) Jo (f3sw) 1 	 3 06 W6
17-0,s =0 —

a r4 a s2	 16 (6.4.1.31)

By employing (6.4.1.26), (6.4.1.30) and (6.4.1.31), the following final expressions

for coefficients au are obtained

00

2 ± 1 ( L .) _ , ± 4 (42 e-2u)	 A+ 	 w e'w ) dwao= _ 7

	

	 /
0

CO

a4o =
15

-4-
+ 1 I (	 ItL (w) — 1 ±	 w2 e-2w ±

7
4– co e

7
-20..)	 41 w dw— 2 7

0
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175(X60 = 16 ^/

00

— 136 I
0

L (co) — 1 + w2
7	

e-2u) + A co e-2(1) w66 dco

_ N	 c°	 4 2L (w) — 1 + z: co e
-2(A)	 4	 -2W )• - ew	 co

4
 dco(7-22	

1	
7

0

00

1575	 1 I L (co _ 1 ± 4	 4	 -2W
(X42 = 16 7	 4	

(4,2 e-2(..0
co e co5 dco	 (6.4.1.32)

When co co , the integrand of the integral part of (6.4.1.11) is

asymptotically equivalent to e -2(A) (see formula (4.3.2.27), which should be multiplied

by (1.) to change the plane case into the axisymmetric one), so that all integrands in

(6.4.1.32) vanish rapidly and the corresponding integrals are finite, essentially

regardless of the level of the differentiation order .

From a practical viewpoint, the integral from 0 to infinity in equations

(6.4.1.32) can be computed from 0 to, say, 30 , since for any derivative considered

(up to the sixth order) the integrand becomes vanishingly small beyond this upper

limit. Similar to Chapter 4, Section 4.3.5 , the following TABLE reports the ccii

coefficients computed for u- 0.48 and 0.5

TABLE of at,

a.°	 an)	 (X40	 a60	 a22	 a42

• - 0.48	 — 1.7067	 3.6176	 — 6.544	 9.983	 — 26.178	 89.85

3- 0.50	 — 1.7702	 3.8310	 — 6.997	 10.728	 — 27.990	 96.55
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The decimal figures reported in this TABLE are believed to be exact, since

they are stable with respect to changes in the integration upper limit and in the

number of numerical integration points.

Similar to their plane counterparts of Chapter 4, in the axisymmetric

geometry too the au coefficients do not dramatically depend upon the value of the

Poisson's ratio. This implies that the solution does not vary too much as a

consequence of a perturbation of the Poisson's ratio, provided that the contact

width is small. However, an opposite trend is expected for high contact width to

layer thickness ratios.

The next step is the decomposition of the original integral problem (6.3.4),

particularized to the case of a paraboloidal indenter, into a series of simpler

subproblems, according to a typical perturbation scheme (Bender and Orszag (1978)).



2 t 	 Ki 2 
7r a (r	 s)	 r	 s	 aoKazi (r,․) —

/3 4 a40 ( r- )4 +()4 +222	 2
( 72- )2 ( 3 )2
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6.4.2 Decomposition into subproblems

The normalized integral equation expressing the penetration S of a

paraboloidal indenter of radius R into a flat layer of thickness t firmly bonded to a

rigid substrate is (see eqn (6.3.4))

1
2	 2

2 coga Kazi (r,․) p(s) s ds = a r	 1 (6.4.2.1)r
2R

0

where a is the contact radius, a. — (1 - v2)/E , 3 alt ,	 r =la , s = .§/a , where

and	 denote the actual radial coordinates. Following (6.4.1.25), the axisymmetric

kernel Kazi (r,․) is approximated as follows

/32 ce.20	 ( 72" )2 + ( 3. )2 )

• • •	 (6.4.2.2)
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where term t/a has not been substituted by 110 in the singular part of the

approximate kernel, for reasons which will become clearer in the following Section.

It is here anticipated that the presence of this term produces some problems in the

perturbation technique, since the perturbed pressure terms will depend on 0 too.

Anyway, if these aspects affect the mathematical clarity and perhaps they make a

rigorous error estimate impossible, to the writer's opinion they do not undermine the

usefulness of the solution achieved.

Following Meijers (1968), both members of (6.4.2.1) are differentiated with

respect to r, where the approximate kernel (6.4.2.2) is employed, to eliminate both

the rigid penetration, 5 , and coefficient ao :

0 � r � 1

(6.4.2.3)

In formula (6.4.3.2) the following derivative has been used, which has been

computed with the help of the first result of (6.4.1.27)

K
 [r

2 .slr's )	 E [ 2 '\71's Id- s	 r d- s i
1 [

-F	 (6.4.2.4)
2 r	 Cr -F s)	 er -- s)



) s P2 (s) s ds — -ir a20 a r2
2 t

1
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0
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1
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0
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In addition, following Meijers (1968), his formula (2.7), the yet unknown

contact pressure is expressed in the form of a power series with respect to the

small parameter 13 = alt , whose even powers multiply unknown p i functions

P (s) = Po (s) ± 02 P2 (s) + 04 P4 (s) + 06 Ps (S) + • • .	 (6.4.2.5)

By substituting (6.4.2.5) into (6.4.2.3) and by collecting like powers of 13 , the

following four subproblems referring to )30 , 02 , 134 , 136 orders, respectively, are

obtained

1

1o

K r 2 iTs j
i 	 r + s
t ( r + s)

E
 (

2 .frs j
r ± s

± ( r — s) ) s PO (s) ds — 11- a r
2

2 a. R

1

Io

K i 2{ 	 E ( 2 .r+ 4-77s 1(	 s	 r + s
1 ( r ± s)	 ±	 ( r — s)

1

1o
±

K 1 2 frTs j
r 	 r + s
1 ( r + s)

E
 (

2 4- 7.. 	 i
r ± s

( r — s)

lr a r2

8 t

1	 1

[.2 a40 r2 jPo (S) s ds -± ot•	 -22	 Po (s) 83 ds

0	 0



1 K 1 2 47—*s 1

j

r 	 r+s

1 ( r + s)
0

2J
 I

r + s
±

E [
S p6 (s) s ds =

( r — s)
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1

ir a r
2 1 16 oc20 1 P4 (S) s ds + 8 r

2 ago
32t

0

1
JP2 (s) s ds -I- 4 a22

0

1

1 P2 (S) S3 ds ±

0

	

'1	 1	 1

3 r4 a60 1 po (s) s ds + 2 r2 a42 po (s) s3 ds + a42 Po (s) s5 ds

	

0	 0	 0 (6.4.2.6)
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6.4.3 Solution of the first and second subproblems

As already noted in Section 6.4.1, the first subproblem

	

K [2 frs 	j	 E ( 2 \FF-s	 j
	r ± s	 r ± s

	

( r ± s)	 ±	 ( r — s)
	  ) s po (s) ds	 7 a r2

I 2 a R

1
I0

(6.4.3.1)

corresponds to the Hertzian problem of a paraboloidal indented compressed against a

half space (Jaffar (1988)). It is, therefore, expected that the pa solution coincides

with the Hertzian pressure profile. The following observations confirm this

supposition.

The integral equation corresponding to the Hertzian problem is now

formulated, whose solution is in fact the Hertzian pressure profile. The surface

transverse deflection, w , of a half space loaded by a concentrated force, P , is

(Johnson (1985), p. 52 , formula (3.22b))

where f is the distance from the applied load. Based on (6.4.3.2), the axisymmetric

problem of a half-space loaded by an uniform linear load of intensity p (s) , applied

along the circumference of radius s is now treated. Following Gladwell (1980), p. 81

the corresponding surface transverse displacement at a distance i- from the centre

(Fig. 6.4.3.1 , where polar coordinates are used) is

7
w (r , 0 = 0)	 1 — 2/2 2 .1 , p (g) g 	 d0

7r E
\17712 + 52 - 2 i• 5 cos 0

o

(6.4.3.3)

If the pressure is distributed along the radius 5 up to i – a , the

displacement, w , at point (?,00 = 0) is :



2 	 K 	
(.? + Z)	 r ± s

(6.4.3.5)
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7r a
_ 2 (1 — I12) 1 I 	 P (g) g w (I- , 0 ----- 0) 	 dL de =--

7r E	 1_2r + g2 — 2 i-g cos 0
0 0

a	 ir
2 (1 — 1.12)

I	 d 	 d61 
Ir E	

p () .; 'A I
] -	 -2
r

2 + s — 2 f- g cos 0
0	 0

(6.4.3.4)

Following again Gladwell (1980), pp. 81-82 , the second integral is expressible

in terms of the complete elliptic integral of the first kind

7	 ir

1 .	
de 1 _2	 -2 

de 	 —

r + s — 2 i- g cos 0	

.1. 
0 ,li-2 ± g2 — 2 f- (2 cos2 g _ 1)0

7r	 7r/2
de _ do:1

=

+ g)2 cos2 q
2

ft+
2 &.)

4	 17. COS
2
 a0 \II —

(f. + g)2

-

In conclusion, the axisymmetric Hertzian problem of a paraboloidal indenter

of radius R is expressible in terms of the following Fredholm integral equation of

the first kind, where the contact pressure , p , is the unknown

a
-

	

4 cc I  5	  K [ 2_ 147T i p (g ) dg = 6 — r2ir	 (i. ±	 r ± s	 2 R
0

(6.4.3.6)



2a  4 1 _ r271- a R
(6.4.3.8)

K ( 2 ‘1.-s ji 	 r ± s
+I ( r + s )

E
 [

24 T. s j
r + s 

( r — s)

,I0 ) S p (s) ds = 7c a T2

2 a. R (6.4.3.9)

Po (r) = 2	 a 4 1 _ r21.aR (6.4.3.10)
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By rewriting (6.4.3.6) with respect to normalized coordinates r = fla , s ----

Va , the following expression is finally obtained

4 a a
1f	 s	 K P (s) ds	 —	 8 a2r2 (6.4.3.7)[ 2	 7's	 )

7r (r ± s)
0

r ± s 2 R

The solution of this integral equation is the Hertzian pressure profile p (r)

(Johnson (1985), p. 92)

•

This pressure profile is also the solution to the integral equation obtained by

differentiating both members of (6.4.3.7) with respect to variable r

which coincides with (6.4.3.1), apai .t from the use of symbols p and Po . As a

consequence , the expression for pa which solves (6.4.3.1) is

The second subproblem is now treated, defined by the second equation in

(6.4.2.6) :



it CX,20 a r2
2 t

1

IPo (s) s ds

0
) S P2 (s) s ds -

1 	

1 
Ali _ s2 s3 ds --

0

(6.4.3.12);1
3

s ds =

K 1 2 {Ts ]
r 	 r + s
1 ( r + s)

E
 [

2 477---8 I
r +s 

( r — 8) ) s p2 (s) s ds = a20 f3 a r2
3 a R

(6.4.3.13)

,

J0
+
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,

I.

K i 2 frs 1	 E. 1 2 \FFs j
r 	 r + s	 r + s

1 ( r + s)	 +	 ( r — s)

(6.4.3.11)

The following integrals hold

so that (6.4.3.11) becomes

and, therefore, P2 (r) is

P2 (r) — 
4 a

2
0 (3 a 

.n1 1 — r2
3 r2 a R

•

(6.4.3.14)

It is observed that p2 (r) depends on 0 , whereas its plane counterpart does

not (Chapter 4, Section 4.3.5). This is due to the different form of eqn (6.3.4).

Despite this limit, the traditional terminology referring to 13° , (3 2 , (34 , 13 6 perturbed

terms is still employed.

The pressure terms p 4 and la.-6 are solutions of integral equations whose

known terms are more complex than those of (6.4.3.1) and (6.4.3.13). The general

solution of the last two integral equations of (6.4.2.6) must be used to define p 4 and

P6 functions , a task which is left to the next Section.
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6.4.4 Solution of the third and fourth subproblems

Alexsandrov (1967) treats the integral equation

K 2 ' 74 — 7 - ) p
(r	 + s)	 [ r ± sf1 	 s	

(s) ds = 7 g

	

1	 (1.)
0

(6.4.4.1)

where g (r) is a generic known term, and reports its solution for p (r)

P (r) = — 2 --1 r7 d r
I
r

d
t

1	 d t	
.1. g (r) r d r

dt (6.4.4.2)0
4 t2 —r2

t	 4t2 	 7.2—

To reach the same form of the integral equations in (6.4.2.6), both members

of (6.4.4.1) are differentiated with the aid of (6.4.2.4), thus obtaining

1	 Kf

f +
d g (r)

)	 (s) ds (6 '4 '4 '3)
1 2 	 ) E[ 2 j
r ± s r ± s

1	 ( r + s)
s p	 —	 ir r

( r — s)	 d r
0

In the sequel the chain of calculations contained in (6.4.4.2) is followed, and

the second member in the 04 equation in (6.4.2.6) is computed by evaluating the

corresponding integrals with the help of (6.4.3.10), (6.4.3.12) and (6.4.3.14), thus

obtaining

	

1 a22 a 0	 2 a L a02 j 2 
± 

a 4 0 a 0  
r

4

30a.	 ±R	 9 7r a	
rR	 6 a R (6.4.4.4)



A-
t
I02 7

t
I  g (r) r 

d r
4t2 —r2

0

r3
d r —

4 t2 —r

t	 t
B I 	 r6 	 d r +4 7
	 4 t2 —r2

0

C

0

r d r (6.4.4.8)
1 t 	 —r2
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Expression (6.4.4.4) can be written in the compact form

A r2 + B r4
	

(6.4.4.5)

where constants A and B are easily identifiable. Following (6.4.4.2), eqn (6.4.4.3)

implies

— 7 r d g (r) __. A r2 ± B r4
	

(6.4.4.6)
UT

so that i

B 4g (r) = — 
2
A7 4_ r2 _ 	 7.± c

4 r
(6.4.4.7)

where constant C will eventually be computed so that the contact pressure stays

finite by the contact periphery. Always conforming to (6.4.4.2), the following

integral is evaluated

where the following integrals are of use

8 t5r5
d r =

4 
t2 —7..2	 15



t

.[
o

t

.I.
o

and, then

t
d 1 g (r) r

1	 d t	 /4.2 _r2

1	
0

t	
''' 

A t2 _ r2r
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r3
d r = 2t3

,It2 —r2

r  	 d r = t	 (6.4.4.9)
NI t2 —r2

so that (6.4.4.8) becomes

3

t
I  g (r) r	 A t3	 2 B d r — '	 t5 ± C t3 7	 157r

'NI t2 —r2
0

(6.4.4.10)

According to (6.4.4.2), the following expression is computed

t
d 1  g (r) r  d r

d t	 4 t2 —r2
0

_

d r

— A t2
77

2B	 ta ± C (6.4.4.11)— 3 7

dt =

1
A
7

I t dt —
'N] t2r - r2

	1 	 1

	

2 B  j 	 t3

	

   dt + C j	 dt 

t2 — r2
r t 1t2 - r2r 

3 7	 4
(6.4.4.12)



1

.1r

11 — 7-2
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where the following integrals have been employed

t3 	 dt
lt2 — 7-2

= 1(1 + 2 r2) 41 —r23

t 	 dt = 41 — r2
4t2 — r2

dt	 .7r_	 asin (r)

t •NI t2 - r2 	 2 r	 r (6.4.4.13)

so that (6.4.4.12) becomes

t

d r	 g (r) r d r
d t	 i 1 +2 _r2

0	 ' at = - A 41 —r2	-
7C

t	 4 t2 — 7.2

2 B (1 ± 2 r2) 41	 r2	 ± C ( 79 r 	 2r
asin (r) )

r (6.4.4.14)

Finally, the expression for p4 (r) is

p4 (r) . _ 2 __C_I . r f A
7r d r — W



3 A + 2 Bc= 3 r
(6.4.4.16)
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2 B (1 ± 2 r 2) ..11	 r2	+ L 27r	
asin (r) 

1
1 j

9 7	 r 

2 (2 B 1 
--- A (1 — 2 r2) ±	 (1 + 4 r2 — 8 r 4) + C ir
ir	 9	

'NI 1 — r2

(6.4.4.15)

4 already anticipated, constant C must be computed so that the contact

pressure stays finite by the contact contour r = 1 (in fact, it vanishes there). This

implies

so that the final expression of p4 is

P4 (7') =	 2 a44 a4o ( 1 ± 2 r2) ± --1-22	 7-a -I- L a2 s} 41 - r25	 20

(6.4.4.17)

It appears that p4 depends on 3 , whereas in the plane case (Chapter 4,

Section 4.3.5) the various pressure terms are independent of this ratio. This

shortcoming is due to the different form of eqn (6.3.4) with respect to its plane

analogue.

In the following the (3 6 perturbed problem of (6.4.2.6) is treated, and the

second member in the [36 equation is computed by evaluating the corresponding

integrals with the help of (6.4.3.10), (6.4.3.12), (6.4.3.14) and (6.4.4.17), thus obtaining

the following expression :

9 1-2 a R 3



1	 a	 1	 1 „s,
9	 20 a40	 -61.) LA-42	 LA-60 (6.4.4.18)

	

t	 t

	

C 1 	 r7 
d r - I - D 

J

r 	 d r	 (6.4.4.22)
6

7r
4 t2 

—r2

0 
N1 t2' 	 —r2

0
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4 	 3 S2 -4- -1- a42 ) r2 +1	
J._ 2	 a. 0 +

27 7
2 C(2°	 210a /3 (--4— a2o a40 /3 i T-5--Tr a20 22a R	 45 7

Expression (6.4.4.18) can be written in the compact form

• A r2	 B r4	 C r6	 (6.4.4.19)

where constants A , B and C are easily identifiable. It follows from (6.4.4.3) that

d g (r)
— 7 r 	 	 A r2 B r4 C r

d r

so that

C r6 Dg (r) =	
A r2 

— 4/C r4 
—2 7 r	 6 r

(6.4.4.20)

(6.4.4.21)

where constant D will be computed so that the contact pressure vanishes by the

contact periphery. According to (6.4.4.2), the following integral is evaluated

t	 t	 t

Ag	 "1 	
(r) r	 j  	 —r	 .14 t2 —7.

2 
d r —	 4 t27- 	. B

32 
d r	 4 t2 r5-7.2   d r —2 7	 4 7

0	 0	 0



16 t7
35

t

r
7

d r =-
I 1 t2 —r2
0

(6.4.4.23)

t

d
d	

.1.  g (r) r 
1	 t	 1 t2 	''')

L

t—7.-

I	 0 	  t ,,,t2 _ r2
1

A
j

t dt
7r

r Al t2 — 7-2
—

d r

• dt —
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where, in addition to (6.4.4.9), the following integral is helpful

so that (6.4.4.22) becomes

t
1  g (r) r 

d r = 
3r

—
21.7 t

3 _ 2 B ts	 8 C t7 ± D t	 (6.4.4.24)
1 t2 —r

2	 15 7r 	105 r

According to (6.4.4.2), the following expression is computed

d	 .1
d t

1
g (r) r	 _ A t2 _d 2 B t4 - 8 C 

t
6 

± D (6.4.4.25)r —	
7r

.,1t 2 —r2
0

3 r 15 7r

and, then

0

	1 	 1	 1

	

2 B j 	 t3 
dt	 SC I 	 t5 	 dt ± D 1 	 dt 

3 ir 4 t
2
 --- r2	 15 lr	 NI

I
t2 - 7-2 	t 4t2 — r2

	

r	 r	 r

(6.4.4.26)

where the integrals of (6.4.4.13) and the following result are of service



dt---- — A j
ir v 1 _ 

r2

P6 (r) =
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1
t5 	 cit = —1 ( 3 ± 4 r2 ± 8 r 4 ) 41 — r 2 	 (6.4.4.27)15I 4t2 _ r2r

so that (6.4.4.26) becomes

t
d I  g (r) r d r1

.1‘	

d t 
0 

4
t
2 

-7.
2

t 4 t2 - r2
r

2 B
— 9 .7c ( 1 + 2 r2 ) 41 _ r2

8 C
— 225 7 

( 3 + 4 r2 + 8 r4 ) ..1----.7-2

asin (r) )
r	 J

.
A
7 

4
1

(6.4.4.28)

Finally, Ps (r) becomes

- 2 d
Tr cir r [ —

2 
B ( 1 ± 2 r2 ) 41 _ r2— 9,r

8C
— 225 (r ' ',' ± 4 r2 ± 8 r4 ) 41 — r2

+
	 2.--L:_r	

asin (r) 1 j
r	 J —



( 1 + 2 r 2 ± 8 7- 4 - 16 r6 ) ± D 71" I
8 C	 1
75	 .11 _ r2

(6.4.4.29)

15 A ± 10 B ± 8 C 
D-

15 .ir (6.4.4.30)
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22 B, [ A ( 1 - 2 r2 ) ±	 ( 1 + 4 r2 — 8 r 4 ) ±
ir	 9

Constant D must be computed so that the contact pressure stays finite by
the contact contour. This implies

•

so that the final expression of p6 is

2 a 0  1 8
P6 (r) - a60 r4 4_ ( 16 	 _ a 1 4

—r ± 4- a42) r 2 ±3 7.2 a. R s
a6.	 27 7.2 "20 "40 I.J S 0

1 3	 23	 112 
1 E a6° + ES a42 ± 135 7r a20 cc40 

j3
	 -1- a' a / ± -8- CC3 °12 )] Al - r2i -s 1.. ..0 22 3	 9 1.2 20

(6.4.4.31)

S.
Similar to p4 (r) expression, Pa (r) too partially depends on 13 , so that its

contribution is not entirely of the order of 06 , but it becomes more complex.

However, this shortcoming does not undermine the usefulness of the results

obtained.



S3 4 1 — S2 Cis

1
I0

2--=
15

1
I0

ss 8
--=cis 105
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6.4.5 Expression for the indentation depth

The indentation depth, 6, can be computed from eqn (6.4.2.1) as a function of

the pressure profile

1

6 -- /im 17..0 2 ccOct	 Kaxt (r,․) p(s) s ds	 (6.4.5.1)

o

where LaTi (r,․) is expressed in eqn (6.4.2.2), and p Cs) is that of eqn (6.4.2.5), where

Po (s) , P2 (s) , P4 (S) and 136 (s) contributions are reported in eqns (6.4.3.10),

(6.4.3.14), (6.4.4.17) and (6.4.4.31), respectively.

It is observed that p (s) up to $ 6 is composed by the following functions

41 — S2	;	 S
2
 111 — 5

2	;	 S4 4 1 — S2 (6.4.5.2)

so that the following integrals are useful for the computation of (6.4.5.1) with

respect to the regular part of the axisymmetric kernel (see (6.4.2.2))

S 4 1 — s2 cis = 1
3

1

10

41 — s-



41 _ s2 ds =--

,

J
S 7 16

315

9
S 

41 _ 2s ds =

1

1o

128
3465

256
,

J0
=

9009
sn. -11 — s2 ds (6.4.5.3)

lim 1,---
2 ir–Ts S	 4 1 - S2 ds = ir-

)

0 r + s (r ± s) 8

/int—Ir — 0
2'J 7----r-
r ± s

53 	 1	
'si 1 —s2 

ds
(r ± s)

]

72
=

32

Um Ir = 0 274----.--s

r + s
Ss

4-1--7;-2- ds(r ± s)1

,

J0 K(
= 72

64 (6.4.5.4)
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Similarly, the following integrals (obtained with the help of formulae (2.6.12)

and (2.6.13) on p. 83 of Gladwell (1980), see also Jaffar (1988)) are helpful with

regard to the singular component of the axisymmetric kernel

With regard to results (6.4.5.4), it is interesting to observe that, when r is

set equal to 0 in the integrand, then K (0) = r/2 for 0 <.s � 1 . Anyway, when s

too vanishes, then the argument of K may approach 1 (e.g. , if r and s vanish with

the same law), so that K (1) = co . In other words, the integrand may behave as a

Dirac 6 in the vicinity of r --- 0 , where it deviates from its value 7/2 to become



0
7r
4— s2 ds

S
2
	— S

2 ds

0
.7r
16

32
4	 I

'11.L — S2 ds (6.4.5.5)
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unbounded, its singularity possibly producing a finite contribution to the value of

the integral. In other words, the substitution of K with 7r/2 (and the imposition r =-

0 in the following fraction) may not be licit in the evaluation of (6.4.5.4), since it is

not always permitted to interchange limit and Riemann integration operations (Oden

(1979), p. 171). On the other side, it can be shown that the same results of (6.4.5.4)

are actually obtained by substituting K with 7r/2 , so that the interchange of limit

and integration produces a correct answer for these integrals. The corresponding

results — equivalent to (6.4.5.4) — are

The final expression for the indentation, 5, as a function of the kernel series

expansion coefficients, OC ii I of the contact radius, a, of the sphere radius, R, and of

the contact radius to layer thickness ratio, 3 (the elastic constants do not explicitly

appear in this equation, but they affect au coefficients) is

	

2 a2 7r	 2 CC oa
3	 I 03 

2 CC 2 o 
+ 0

4 4 ao a.206 
9 ir	 ± 0

5 76 a40 ± 21 a22
	R 2	 5	 630

_2	 c _ _	 2
06 8 a.0 a42 + 2 CC o a22 ± 1 n4 (A.20 + 	 2

07 33 7C a60 ±	 2 
LA-42 + 280 a.0 a.20

45r	 945 772



± (336 it ± 160 . ) cc.240 ± 108 a22 a.40)

127575 '73

a2, (90 7 a20 a 50013

space.
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08 810 it ao as° ± 342 '7r _ a_- —0 —42 + (2350 it + 350) cc20 a40 ± 693 7 a20 a22
14175 72

3 a20 ( (224 it ± 64) ao cc 40 + 72 it cc, a22 ± 216 It CC/o1

16	 	
1215 7r3

2
010 360 72 a20 04o + 117 72 a20 a42 ± 140 72 

ago ± 27 7 22 —402 a a ± 8400 CCo CC/o
1-

42525 73

44(964 7 ± 320) a 4. ± 252 it a22)011
42525 73

12 (11718 72 a.40 ± 693 .7r nt 1 a	 -1- 275 0	 a	 a

	

- 2 _22 _6o , _ _ _	 _40 _ 42 + 129360 cx10
6548850 73

14 6237 72 CC:o + 2067 72 a_4 2 a50 ± 80080 alo a40
28378350 73

a20 aso (( 616 it ± 320 ) a40 + 198 It a220 	15
2

016 4 Ct3o aso

asos 7r3
(6.4.5.6)

Encouragingly, the 0° term coincides with the Hertzian solution for the half

The expression for the resultant load is computed below. By exploiting

integrals (6.4.5.3), the following force terms referring to the various perturbation



4a3

P° — 3 cc R
(6.4.5.7)
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orders are obtained

8 a20 0 a3
P2 — 9 raR

4 a3 0 	 [	
a.40

4	 (1,+ 4 \
-1- 

3	 4	 2
—	

e, ]
P 4	 - )	 —5— a22 ± 7-f-- a20P27 ir cc R	 3	 5

(6.4.5.9)

4 a3 )3  I 8	 2 f  16  _ 	 a _L 4	 _,_ 4 ,,,P —	 aso ±	 , "20 "40 1-, 7- — CC60 7- -,1 "42 ) 71-
6	 9 r cc R	 875	 5t 27 .7r-	 25

(3	 _i_ 23 ,,,	 _i_ 	 1	 ,	 4E a60 -I-	 "42	
12

t 135 ir a20 a40 a -r — an a 13 +	 a30 132 )
15 7C -	 22	 9 72

(6.4.5.10)

Finally, the total load is obtained by combining the various perturbed

components according to (6.4.2.5).
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6.4.6 Critical remarks on some integration formulae involving elliptic integrals

Formula (6.4.5.1) indicates that the evaluation of the indentation depth for an

imposed pressure profile requires the computation of an integral whose integrand is

essentially the known pressure, multiplied by the elliptic integral function K , and

by the integration variable. Gladwell (1980) reports on p. 83 a useful results due to

Popov (1962), which can be expressed as follows

1	
•1 (r +s s) K [ 27 -7FT-+ s  1 P2n [41 — S2 ] 

41 —S2
0

ds =27r2 [P n(0)]2 P2n [41- — r2 ] (6.4.6.1)71. 

where P2n represent modified Legendre polynomials (n = 0 , 1 . . ) . The same

expression is quoted by Jaffar (1988) in his formula after (8). These results are

confirmed by formulae (6.4.5.4) for the case r = 0 .

An alternative source for comparable integration expressions is the book of

Johnson (1985), who on p. 116 quotes a result due to Steuermann (1939), which can

be formulated as follows (n = 1 , 2 . . )

1

1 (r -1-s s) 
K[

0

27..sn--T
r + s ] n [

/ - 4 . . . ln 	12

1 - 3 . . . (2n — 1)	 *

(22 +n-2	 1 s2n-4 ± ± 1 • 3 . . . (2n — 3) 1 I	11 — 32 dss
.. (2n — 2)

7
2
 ( 	 2 • 4 . . . 2n — r2n I

4 1 - 3 . . . (2n —1)

. . .
.2

-
2 • 4

(6.4.6.2)

.



1
1 K1 2 fr—s— i  35 s4 — 40 s2 + 8 

r + s	 8 .41 — s2	
dsUM 1 

r --n 0

o

=
9 11.2
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(It should be noted that formula (5.21) of Johnson (1985) contains two

differences with respect to the original Steuermann (1939) formulae (4,5). First, the

denominator of the first bracketed, squared expression in (5.21) of Johnson (1985)

reads : 1 • 4 . . (2n — 1), whereas in Steuermann (1939) it reads : 1 • 3 . . (2n —

1) . Secondly, the first fraction in formula (5.21) of Johnson (1985) contains

expression en-2 , while Steuermann (1939) reports p2n-1. , where both a and p denote

the contact radius. It is believed that these differences are due to typing mistakes

in Johnson (1985) book, so that formula (6.4.6.2) has been amended accordingly.)

Expression (6.4.6.1) furnishes the surface deflection of an infinite space

loaded by an axisymmetric pressure profile of polynomial type with respect to the

radial coordinate, r, and divided by ( 1 — r2 )0.5 . Formula (6.4.6.2), instead, treats

an axisymmetric pressure curve again of polynomial , kind, but this time multiplied

by ( 1— r2 ):14•

In the following the integrals of (6.4.6.1) are computed for r — n 0 and for n —

0, 1 and 2, respectively

1
lim

. K [2	 iNF -- 1 	 1 = 7

2

I r 
—n 0

.I
cisr + s	 1

110
4

- 82

/im
I r —0 0

1
j K [ 2 7's1-7—S— j

2r + s	 1— 3 82  dS	

72

16
0	 2 11 — s2

= .---. (6.4.6.3)

The first integral agrees with result (3.36) on p. 60 of Johnson (1985). In

addition, by putting K — 7/2 (as commented with regard to formulae (6.4.5.4)) the

same expressions as in (6.4.6.3) are obtained, a result which confirms the exactness

of (6.4.6.3).



2 
r + s I

2 .4r--79 
r + s I

ii771 I r -0 0

Um I r -40

Ti. — s2 ds =--

(1 + 2 s2) 41 — s2 ds (6.4.6.4)
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T
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=
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In the following the integrals of (6.4.6.2) are computed for r —0 0 and for n —

I and 2 , respectively

•

The first integral agrees with result (3.41a) on p. 61 of Johnson (1985). By

putting K = 7/2 , the first formula of (6.4.6.4) supplies the same expression as in

(6.4.6.4) , while the second integral furnishes 3 7r 2/32 , which implies that the second

result in (6.4.6.4) is wrong and, consequently, some misprint - not easy to localize -

must be present in (6.4.6.2).

The observations which follow aim at comparing the expressions contained in

(6.4.6.3) and (6.4.6.4) for some cases, so that additional checks on their exactness, or

otherwise, can be effected. The following identity holds true

1 	 1 ± 2 2 — 3 s2  — NI 1 — s2
3 11 1 — s2	 3 21

1
l —s2 .

(6.4.6.5)

and, therefore, the first result of (6.4.6.4) can be obtained by combining the first

two results of (6.4.6.3), that is, by attributing the same coefficients as in (6.4.6.5) to

the right hand-sides of the first two results of (6.4.6.4), and by summing the

corresponding terms. Since

1 72	 2 r2	 'X 2

J T 4. J IT6 = —8— (6.4.6.6)
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where the right hand-side of (6.4.6.6) agrees with that of the first formula of

(6.4.6.4), it is concluded that the first two equations of (6.4.6.3) and the first

expression of (6.4.6.4) are likely to be correct.

In a similar fashion it is possible to combine the three results of (6.4.6.3) to

obtain the second result of (6.4.6.4). The following identity holds

3 	 1 	 ± 6 2 — 3 s2	16  35s4 — 40 s2 +8 
5 11 1 — s2	

.7. 

2 .i	 'si 1 — s2	35	 8 41 — s2
	- ( 1 + 2 s2) 41 — s2

(6.4.6.7)

whereas the corresponding combination of the right hand-sides of (6.4.6.3)

furnishes

ir2 + 6r2 _ 16 9r2	 3 7. 2
,-1

7 16	 E 256 = 16 (6.4.6.8)

a result which confirms the presence of an error in the second integral of (6.4.6.4)1

which should equal 3 7r 2/16 .
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6.4.7 Selected numerical results

This Section reports selected perturbation forecasts, aimed at a) clarifying

the peculiarities of the layer configuration and its differences with respect to a

purely Hertzian situation ; b) validating the solution obtained.

Fig. 6.4.7.1 presents the plane counterpart of Fig. 4.3.5.1 of Chapter 4 .

Various pressure profiles of increasing perturbation order are compared in the case

of incompressible layer and for a/h 0.8 . Since the sixth order pressure differs

moderately from the fourth one, it can be concluded - similarly to the plane strain

analogue - that the sixth order solution represents a good trade-off between

accuracy and simplicity. A method for estimating the convergence radius of a

perturbation series is mentioned by Kwok (1991).
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Fig. 6.4.7.1 : The contact pressure profile for various perturbation orders.
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Figs 6.4.7.2,3 display normalized peak pressure and contact radius as

functions of the normalized indentation depth, for v – 0.5 , whereas Figs 6.4.7.4,5

refer to v = 0.48 . The Vorovich and Ustinov (1959) analytical predictions are also

included, as well as the purely Hertzian forecasts. In a purely Hertzian context,

variable p R/(Ea) equals 2/(1-(1 — ii2)) . In Figs 6.4.7.2 and 6.4.7.4 , this Hertzian

value is represented by a horizontal line, in order to permit a clearer representation

of the Hertzian result, and to indicate that this figure does not depend upon x-axis

variable. However, it must be admitted that x and y variables of Figs 6.4.7.2,4 are

not ideal to represent clearly the Hertzian results by themselves, so that some

compromise is inevitable in displaying them. From the previous Figures it appears

that the Hertzian results are not applicable to the layer configuration unless the

contact radius is very small. From a comparison between Figs 6.4.7.2 and 6.4.7.4 , as

well as between Figs 6.4.7.3 and 6.4.7.5 , it appears that, similar to their plane

counterparts, the axisymmetric results too do not heavily depend upon the Poisson's

ratio, for limited a/h ratios. Figs 6.4.7.2,3,4,5 show that for both figures of the

Poisson's ratio, namely 0.48 and 0.5 , there is a noticeable disagreement between the

normalized perturbed peak contact pressure and that due to Vorovich and Ustinov

(1959). Conversely, the above mentioned accordance is good with regard to the

normalized contact radius, at least up to a/h < 0.6 , a limit in conformity with the

value 1/1.5 suggested by the Russian authors. It was decided to investigate the

possible sources of this disagreement. First, it was tested if the first formula of

(5.9) of Vorovich and Ustinov (1959), expressing the normalized contact radius, a/H,

as a function of its Hertzian counterpart, a0/H, and the third equation of (5.9),

reporting the peak pressure, qmam , '4s a function of the same Hertzian variable (the

nomenclature of Vorovich and Ustinov (1959) is partially adopted here), were

consistent with their formula (5.5), expressing the pressure profile as a function of

a/H . The first expression of (5.9) was therefore introduced into (5.5), and the

following peak pressure in terms of ao/H up to the eighth degree was obtained

qmax 4„raR11 ( aH0 ± 0.224 ( cf; )4 — 0.152 ( 12 )6 — 0.013324 ( ail )7 + 0.02 ( Q'-' )8)
H

(6.4.7.1)
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This formula differs slightly from the third expression of (5.9) in Vorovich

and Ustinov (1959), quoted also by Finkin (1972), his expression (3), which reads

qmax 4 a H ( ao ± 0.225 ( E' )4 — 0.018 ( (1-'-' )6 - 0.0126 ( cl-'- ) 7 + 0.013 ( (19. )8)1- R H	 H	 H	 H	 H

(6.4.7.2)

The results (8) of Keer (1964) are not immediately useful for a comparison

among analytical expressions, since they are presented in a different fashion. It

should be noted that group 170 R (1 — v2)/(Ea2), qualified as "dimensionless loading"

by Keer (1964), is in fact dimensional and, therefore, dubious. In addition, the

pressure term q 1 depends in eqn (8) upon term (1 + p2.0.5J	 ; which is also improbable.

Fig. 6.4.7.2 includes the "corrected" Vorovich and Ustinov (1959) expression

(6.4.7.1), but the corresponding curve is even more distant from the present

perturbed solution. In order to assess the exactness of the perturbed solution, it

was decided to use as benchmarks the finite element forecasts of Ihara, Shaw and

Bhushan (1986), referring to il = 0.49 . Their Table 1 reports 14 configurations

defined by x-axis variable 5R/h2 (See Figs 6.4.7.6,7), and by the corresponding total

load, P . Then, the contact radius, a, was computed from their eqn (1) and from the.	 .
latter piece of information, so that y-axis variable of Fig. 6.4.7.7 could be

computed. (In fact, eqn (1) furnishes the Hertzian contact radius, but the results of

Fig. 8 of Ihara, Shaw and Bhushan (1986) plus their comments of on p. 531 : "The

Hertz value for a (ao) represents a. good approximation for all values of H" (for an

imposed load, as suggested by the caption of their Fig. 12(b)) support the above

approximation.) The results of Fig. 6.4.7.7 show a satisfactory agreement between

the perturbation solution and the numerical forecasts of Ihara, Shaw and Bhushan

(1986), so that the perturbed solution referring to the contact radius seems to be

sufficiently validated. The y-axis variable of Fig. 6.4.7.6 , that is, pR/(Ea), was

derived from Fig. 11 of Ihara, Shaw and Bhushan (1986). (Fig. 11 reports o 2/q0 for

the 14 cases of Table 1, as well as the corresponding qo , so that the peak contact

pressure and, consequently, variable pR/(Ea) can be computed.) Fig. 6.4.7.6 shows

that the numerical predictions are spread over too wide an interval to constitute a
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reliable benchmark. It is here noted that in Fig. 8 of Ihara, Shaw and Bhushan

(1986), cases 3 and 6 exhibit the same a/H . Since these two configurations possess

the same H - 2 (see Table 1), they must evidence (essentially) the same a .

Conversely, the two indentations reported in Table 1 are considerably different,

being 63 - 0.2 and 66 =' 0.4 , so that some misprint is suspected in Table 1.

To explore further the correctness of the perturbed normalized pressure

solution, the data presented in Fig. 4 of Li and Dempsey (1990), referring to 1, - 0.5

, were resorted to. A combination of the data of their Fig. 4 permits the axis

variables of Figs 6.4.7.8,9 to be obtained. This time the agreement between

perturbed and Li and Dempsey (1990) solution is acceptable with regard to both

normalized contact pressure (Fig. 6.4.7.8) and contact radius (Fig. 6.4.7.9) variables.

The validity limits for the perturbed solution appear to be a/h < 0.7 .
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Fig 6.4.7.9 : Normalized contact radius versus indentation depth for v = 0.5 .
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6.5 NUMERICAL RESULTS

This Section addresses the peak pressure and contact radius as functions of

the indentation depth and Poisson's ratio for a deformable cortex underlain by a

rigid basement and indented by a rigid sphere, and for a spectrum of 5 Ti/h2 values

which cannot be covered by the perturbation solution of Section 6.4 . The

commercial, powerful, finite element program ABAQUS has been exploited in this

study. Section 6.5.1 briefly describes the package potentialities, whereas Section

6.5.2 presents the numerical forecasts in normalized form.

6.5.1 ABAQUS finite element program

The package ABAQUS (1989) includes a release specially addressed to the

mechanical analysis of elastomeric units. The non-linearities connected to finite

deformations, stress-strain relationships and unilateral contact problems - all aspects

frequently encountered in the study of rubber components - are covered by

ABAQUS. A brief introduction to the main finite elasticity aspects is reported in

Chapter 2 , to which the interested reader is referred.

The strain energy function for hyperelastic materials, closely related to the

stress - strain link, is expressed in ABAQUS as a series expansion in terms of the

first and second strain invariants (commented in Section 2), plus a correction term

depending upon the third strain invariant to account for the (moderate)

compressibility of the elastomer (see ABAQUS User's Manual (1989), P. 4.7.5-1). In

the present biomechanical application a compressible neo-Hookean law is adopted,

where such a choice is rationalized in the following. In Prati and Strozzi (1984)

Fig. 13 , a comparison is presented between two stress-strain laws (namely a

compressible neo-Hookean strain energy function and a more complex relationship,

where the same figure for the bulk modulus is employed), from which it appears

that their influence on the contact pressure profile is moderate. In Dragoni and

Strozzi (1988) , Fig. 10 , it is shown that, for situations where the hydrostatic part

of stress prevails, a perturbation of Poisson's ratio affects the stress field much
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more dramatically than a modification of the Young's modulus. For the present

application, characterized by high hydrostatic stress levels (Matthewson (1981)), it

was decided to pay more attention to the Poisson's ratio influence that to that

connected to the deviatoric part of stress. In other words, a simple neo-Flookean

constitutive relation was adopted, while various cubic compressibilities were

mimicked to retrieve information on their impact on the contact pressure profile and

contact radius. More comments on this aspect are included in Section 2.2.3 .

Aspects connected to the unilateral contact problem were briefly treated in

Chapter 4.
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6.5.2 Influence of Poisson's ratio

Similar to Section 4.4.4 , a selection of Poisson's ratios close to the

incompressibility figure 0.5 is systematically examined, and the normalized y-

parameters pR/(Ea) and a/h are diagrammatically reported as functions of x-

variable 5R/h2 (where p denotes the peak contact pressure, R represents the

equivalent radius of the paraboloidal indenter, a indicates the contact radius, h

symbolizes the layer thickness, 5 means the indentation depth, and E is the Young's

modulus). In particular, the practically relevant Poisson's ratio figures 0.5 , 0.4999

0.4997 , 0.499 , 0.49 , 0.48 were studied. A paraboloidal indenter was adopted for

consistency with most of the available results. Section 7.3.6 examines the errors

incurred in mimicking a spherical indented via a paraboloidal punch for realistic

geometries. Section 5.3.4 refers to the parallel, plane strain, curved layer situation

and to the indenter parabolic approximation consequences. Finally, Dowson, Fisher,

Jin, Auger, and Jobbins (1991) observe that "At higher [indentation] values the model

applied to a sphere on a plane becomes less accurate."

Figs 6.5.2.1,2,3,4,5,6 report as y-variable a parameter closely related to the

peak contact pressure, whereas Figs 6.5.2.7,8,9,10,11,12 address the normalized

contact radius. The mesh for the layer description was formed by 2000 square

elements, ten elements located along the axial direction (the layer thickness was

assumed of 10 mm) and 200 elements aligned along the radial direction (the radius of

the deformable disk was 200 mm). The equivalent radius of the rigid parabolic

indenter was 10000 mm . This high value was employed to limit the non linear

geometric and material effects (Chapter 2), since elevated pressures (connected to

the essentially hydrostatic stress state) take place with moderate compressions,

which scarcely involve finite deformation consequences and non linear stress-strain

effects.

Four noded, bilinear displacement, constant pressure elements suitable for

applications in the field of almost incompressible materials were adopted (see

ABAQUS User's Manual (1989) , p. 3.2.6-1). In addition to the finite element

forecasts, all Figures report the asymptotic incompressible predictions (Jaf far

(1989)):
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R	 1 [
a / h = 2 E 63 R2 (6.5.2.1)p	 2

E a = -4- h2
;

h` 3h3

while Figs 6.5.2.6 and 6.5.2.12 , which refer to the relatively low figure I 	 0.48

include also the Winkler-type, laterally constrained column model forecasts

p R	 \IS R 	 (1 — v) 
E a	 h2 472 (1 + /1) (1. - 2I1) I h	 h2

(6.5.2.2)
(1 — V) 	 E 62 RP—

(1 + v) (1 — 2v)

Finally, Figs 6.5.2.1 and 6.5.2.7 - referring to perfect incompressibility -

include some results derived from Fig. 4 of Li and Dempsey (1990).

It is here noted that the following observation of Dowson, Fisher, Jin, Auger,

and Jobbins (1991) "For any particular contact width, peak normal stresses increased

by a small amount for a reduced layer thickness." agrees with solution (6.5.2.1)

which suggests that the peak contact pressure is inversely proportional to the cube

of the layer thickness, for an imposed contact radius.
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G R/h2
Fig 6.5.2.9 : Normalized contact radius versus indentation depth for v = 0.4997 .
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Fig 6.5.2.10 : Normalized contact radius versus indentation depth for v — 0.499 .
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S R/h2
Fig 6.5.2.11 : Normalized contact radius versus indentation depth for V = 0.49 .
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It is noted that in Figs 6.5.2.1 and 6.5.2.7 the asymptotic incompressible

forecasts agree reasonably well with the incompressible finite element forecasts, but

not so well as for the corresponding plane situation of Fig. 4.3.4.1 , which was

examined with a numerical program based on linear elasticity. The corresponding

deviation may be imputable to nonlinear effects in the treatment of the stress-strain

law and strain tensor and/or to inaccuracies in defining the contact radius (see Fig.

7 of Ihara, Shaw and Bhushan (1986), and the related text). As already commented in

Section 4.2 with reference to BjOrkman (1991) paper, the non linear effects are

likely to stiffen the layer, thus producing a higher peak contact pressure for a

prescribed indentation depth, a trend visible in Fig. 6.5.2.1 . It must be admitted,

however; that lower discrepancies are met between the finite element forecasts of

the following Section 6.6 and the corresponding theoretical linear solutions, so that

some doubts remain on the main causes of the mismatch between incompressible

finite element forecasts and incompressible asymptotic predictions. This point is

further commented in Section 6.6 .

The Li and Dempsey (1990) predictions cover only a limited part of the

diagram, in which they substantially agree with the two previous results. The last

value (along x-axis) according to Li and Dempsey (1990) appreciably deviates from

the previous results, but it must be confessed that the corresponding reading from

Fig. 4 is difficult, and seemingly affected by a considerable error. It also appears

from Fig. 6.5.2.1 that ABAQUS program does not converge for x- variable exceeding

about 200.

Moving to v = 0.4999 (Figs 6.5.2.2 and 6.5.2.8), the differences in terms of

central pressure with respect to the incompressible finite element forecasts are

perceivable (about 4 percent for x-variable = 180), whereas the corresponding

contact radii are hardly distinguishable. For the plane counterpart of Fig. 4.3.4.2

the sensitivity of the central pressure to a Poisson's ratio perturbation appears to

be higher, in the region of 8 percent.

The following decreasing Poisson's ratios 0.4997, 0.499 , 0.49 , 0.43 show an

appreciable diminution of the peak contact pressure for the same value of x-

variable, where the lower figure v — 0.48 (Fig. 6.5.2.6) produces a good agreement

between finite element predictions and the Winkler-type forecasts of eqns 6.5.2.2 .
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The corresponding degree of agreement for the plane counterpart of Fig. 4.3.4.6 is

similar (in both cases the Winkler solution overestimates the numerical forecasts),

even if the two error trends with respect to x-variable are opposite. The variation

in contact radius with v is in all cases much less dramatic. It is observed that

Dowson, Fisher, Jin, Auger, and Jobbins (1991) adopt the figure II = 0.499 without

performing specific measurements and without assessing the sensitivity of the

mechanical response of the elastomeric layer to perturbations of the Poisson's ratio.

The following computations aim at estimating parameter 5 R/h 2 for the configuration

of the above paper, to examine the relevance of v . Dowson, Fisher, Jin, Auger, and

Jobbins (1991) suggest in their Table 3 a tentatively optimized configuration for the

cushion 'form bearing, defined by h = 2 mm , R = 1000 mm , a = 16 mm , E = 20

MPa , P = 2500 N (this figure for the load is reported in the caption to their Fig.

2). The asymptotic incompressible solution (6.5.2.1) expressing the normalized

contact radius suggests 6 =0.064 mm , so that 5 R/h2 = 16 . The accuracy of the

asymptotic solution for low values of parameter 5 R1h, 2 is questionable, as discussed

in Sections 4.3.5 and 6.6 , so that the above parameter can be estimated only

approximately. In any case, in Section 6.6 situations are analyzed in which variable

6 R/h2 falls below 15 , and for which the effects of a perturbation of the Poisson's

ratio (see Fig. 6.6.4) are found to be modest. It is concluded that for the above

geometry and loads the Poisson's ratio is not a vital parameter. Anyway, it is

anticipated that for higher loads the contact pressure may become very sensitive to

perturbations of 1/ , see Section 7.3.4 , so that in general situations it becomes

essential to perform an accurate measurement of the cubic compressibility of the

elastomer adopted (Chapter 3).

It is also noted that the finite element forecasts produce a central contact

pressure which, at the highest compressions imposed, becomes slightly lower than its

adjacent nodal values (some central oscillations are visible in Fig. 7.3.2.15 , referring

to a comparable configuration). This physically unjustified result is seemingly

attributable to the ABAQUS internal numerical tolerance in imposing the boundary

conditions. A . very small extrusion beyond the symmetry axis is in fact tolerated

which, due to the moderate compressibility of the elastomeric layer, may slightly,

but appreciably, reduce the central contact pressure with respect to the contiguous
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zones.

A comparison is made in the following between plane strain and axisymmetric

cases with regard to maximum contact pressures and contact radii as functions of

the indentation depth. For large indentation depths, the axisymmetric peak contact

pressure is about three times lower than its plane strain counterpart of Chapter 4

(see Figs 4.3.4.1 and 4.3.5.5 for the plane case, and Figs 6.5.2.1 and 6.4.7.3 for the

axisymmetric configuration), whereas the axisymmetric and plane contact radii are

comparable (see Figs 4.3.4.7 and 6.5.2.7). For small penetrations, the p.32?).-e azzzi

axisymmetric results are more similar, the former supplying moderately lower

central pressures (see Figs 4.3.5.4,5 and 6.4.7.2,3). These findings in terms of

pressure can be rationalized as follows. For moderate indentations, the circumstance

that an infinite cylinder compressing i half space obliges the half space surface

points aligned with respect to the cylinder axis to inflect uniformly releases the

peak pressure with respect to the compression by a sphere. On the other side, when

the higher indentations imposed produce larger contact widths, the plane strain state

does not permit any lateral flow of the half space, thus resulting in a stiffer

foundation with respect to its axisymmetric analogue, which is responsible for the

higher plane strain peak contact pressure. Figs 4.3.5.4 and 6.4.7.2 demonstrate that

the first aspect prevails for very low contact radii, whereas Figs 4.3.4.1 and 6.5.2.1

(as well as Figs 4.3.5.4 and 6.4.7.2) indicate that the second mechanism predominates

for high contacts.
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6.6 APPRAISAL OF O'CARROL et al. (1990) PAPER

The recent paper by O'Carrol, Jin, Dowson, Fisher and Jobbins (1990) reports

various experimental results concerning a silicone disk firmly anchored to a rigid

support and compressed by a spherical lens. Three disk thicknesses were examined,

namely 3.15, 2.08 and 1.21 mm . The disk radius adopted is not indicated in the

paper. The indenter radius was 104 mm . The Young's modulus for the elastomer was

measured and found to be 3.04 MPa , whereas the Poisson's ratio was assumed as

0.4998 without performing specific measurements. Various diagrams are presented

which report the measured total load versus the contact radius, together with

theoretical forecasts obtained by applying the theory of Hayes, Keer, Herrmann and

Mockros (1972), for the three available layer thicknesses. Consistent with Fig. 10 of

Matthewson (1981), it is generally found in this paper that the force experimental

readings overestimate the theoretical forecasts for a given contact radius,

especially at the higher loads. Since the total load was imposed in the experiments

rather than the penetration depth, the above result can be re-expressed by stating

that the experimental contact radius was found to be lower than the theoretical

predictions. In addition, consistent with Dragoni and Strozzi (1988), the loading of a

dry contact produced a smaller contact radius than the lubricated contact. The

sources of this disagreement are attributed in the above paper to : a) non linear

elastic properties, to b) viscoelastic aspects, and to c) frictional effects. To these

sources of errors, other plausible causes can be added : d) the influence of

Poisson's ratio ; e) the fact that the theoretical indenter is assumed as paraboloidal,

whereas the experimental profile is spherical ; f) the finiteness of the radial extent

of the deformable disk.

To try and clarify these problems, it was decided to run ABAQUS for the

three geometries under scrutiny. Figs 6.6.1,2,3 refer to the disk thicknesses 3.15

2.08 and 1.21 mm , respectively. They include the experimental and theoretical

results from the above paper, as well as the ABAQUS nonlinear forecasts (2000

elements) referring to a deformable disk having a radius of 150 mm and the three

above thicknesses, to I/ — 0.4998 , and to a circular indenter of radius 104 mm .

Since from Figs 6.6.1,2,3 it appears that the nonlinear ABAQUS predictions agree
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with the theoretical linear predictions for all disk thicknesses, it can be concluded

that the non-linear effects cannot be responsible for the disagreement between

experimental readings and linear theoretical forecasts noted in the above paper

(point a). Fig. 6.6.4 studies the effects of Poisson's ratio on the total load, as well

as those related to the indenter profile. It appears from this Figure that a

perturbation of II between 0.5 and 0.499 does not significantly affect the total load

in the physical range studied, nor does a modification of the indenter profile from

circular to paraboloidal curves, since the corresponding results are essentially

superimposed. As a consequence, the Poisson's ratio effects (point d) and the

indenter profile choice (point e) cannot have caused the above deviations. In Fig. 9

of the paper under examination both loading and unloading loads are reported, and

they both overestimate the theoretical- predictions. As a consequence, it seems to

the writer that the viscoelastic effects are not sufficient by themselves to explain

the noted mismatch (point b). Similarly, Fig. 8 of the above paper reports dry and

lubricated loads, which are both higher than the frictionless results. So, the

frictional effects cannot justify the disagreement (point c). With regard to the

consequences of the disk radial dimension (which is unknown), it can be observed

that, if this dimension were comparable to the contact radius, the disk would become

more deformable (since the layer lateral flow would be eased) and, therefore, the

experimental total load would be lower than due, while it can be surmised that the

effects on the contact radius would be less important. (In fact, in the Hertzian case

of an infinitely deep layer, the contact radius depends only marginally on

perturbations of the Poisson's ratio for an imposed load (Johnson (1985)).

Modifications of v alter the layer °compliance, an effect somewhat comparable to a

change in the disk radius, which also influences its deformability. Another source of

information is Hanson and Keer (1989) paper, where in their Fig. 4 the indentation of

a parabolic punch into a half plane in the vicinity of its corner is studied. The

essentially Hertzian contact pressure profile even for punches very close to the

quarter plane apex indicates that the foundation border effects on the contact

width are modest. These comments suggest that the contact radius should be

scarcely modified by a variation of the disk radius, provided that the contact is a

fraction of the disk radius.) Since from the above paper it appears that the

experimental load is higher than expected, it is concluded that the mismatch cannot
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be convincingly attributed to the disk radial dimension adopted (point f).

Matthewson (1981) reports difficulties in the penetration readings, and shows

in his Fig. 10 that a small offset in the indentation depth may significantly alter

the results so that a much better agreement between experiments and theory is

achieved. Analogously, Goodman and Keer (1965) note that "the measurement of

relative approach is at a minimum accuracy" "for the lowest loads". Problems in the

penetration depth measurements are signalled in Section 5.4 . In conclusion, it is

here proposed that the mismatch noted in the paper under appraisal may be

attributed to reading accuracy problems, possibly connected to the deformability of

the loading device.

As a final observation, an apparent contradiction between the results of this

Section and those of Section 6.5 is discussed in the following. It has been shown in

this Section that the nonlinear elasticity effects are limited, since the nonlinear

finite element forecasts agree with the linear elasticity theory predictions. In

Section 6.5 , instead, the mismatch between the ABAQUS predictions of Fig. 6.5.2.1

and the asymptotic, linear elastic forecasts was ascribed to nonlinear elasticity

effects. Aimed at clarifying this contradiction, the following TABLE reports the

numerical penetration depth, 6 , for the maximum numerical load, P, as a function of

the layer thickness, h , with reference to Figs 6.6.1,2,3 , and it specifies the values

of the corresponding normalized variable 6 R/h2

TABLE of penetrations 6

h — 3-15 inni h — 2.08 mm h	 1.21 mm

5 [mm] 022 0.60 0.22

P [NI 1805 2179 524.7

6 R1h2 8.59 14.42 15,62
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According to the asymptotic, incompressible solution (eqn 6.5.2.1)

a/h --. 2 17/Z71.2	(6.6.1)

The asymptotic solution in terms of contact width is applicable provided that

the contact radius, a , is much greater than - say ten times or more, as suggested

by the high gradient of the (corresponding plane strain) contact width curve in the

vicinity of the origin in Fig. 4.4.4.6 , which implies high deviations between

asymptotic and real curves - the layer thickness, h. From (6.6.1), this condition

requires that 6 R/h2 > 25 . The previous TABLE shows that the maximum value of

this normalized variable is considerably lower than 25 , so that the asymptotic

solution is not reliable for this physical range. As a consequence, the mismatch

noted in Fig. 6.5.2.1 between nonlinear and (linear) asymptotic solutions can be

attributed to nonlinear effects only within the range where the asymptotic solution

is applicable, that is, when x-variable exceeds, say, 25 . For lower x-values, no

conclusion can be drawn from Fig. 6.5.2.1 on the non linear effects. In fact, for low

x-values, Figs 6.6.1,2,3 suggest that the non linear effects are negligible. It is

concluded that the non linear elasticity effects become appreciable for the range of

x-variable for which the asymptotic solution of eqn 6.5.2.1 is applicable.
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6.7 CONCLUSIONS

A perturbation solution of the problem of a deformable layer indented by a

rigid sphere has been obtained. This solution is valid for ratios of contact radius to

layer thickness up to 0.7 . Finite element forecasts have been achieved for higher

compressions, and the sensitivity of the results to perturbations of Poisson's ratio

has been clarified. For large contact radii, the axisymmetric peak contact pressure

is about three times lower than its plane strain counterpart of Chapter 4, whereas

the axisymmetric and plane contact radii are comparable. For small contact radii, the

plane and axisymmetric results are more similar.
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7.1 INTRODUCTION

The previous Chapter 6 addresses the axisymmetric problem of a flat layer

indented by a spherical punch. This Chapter, instead, deals with a spherical layer

anchored to a rigid backing and compressed by a rigid spherical indenter, Fig. 7.1.1 .

This geometry mimics the hip replacements possessing an elastomeric layer firmly

bondend to the cup (Unsworth, Pearcy, White, and White, (1987)).

Due to the complexity of this geometry, characterized by a curved layer of

finite thickness and extent, the corresponding mechanical analysis was performed via

a finite' element package. The forecasts retrieved supply suggestions about the

proper selection of the elastomeric layer thickness.

Fig. 7.1.1 : A spherical layer indented by a sphere.



Chapter 7 The Spherical, Elastomeric Layer 	 7.3

7.2 LITERATURE REVIEW

In this Section the papers referring to the axisymmetric case of a deformable,

spherical layer, anchored to a rigid backing and compressed by a rigid spherical

indenter are reviewed. Comparable geometries, still pertinent to this literature

review, are also considered.

Sternberg, Eubanks and Sadowsky (1951) treat the problem of a spherical

layer under imposed axisymmetric pressure profiles at the inner and outer surfaces.

The develop their theory on the basis of pioneering studies of Somigliana (1887),

Fichera *(1949), and Aquaro (1949). A series solution in explicit form, involving

Legendre polynomials, is obtained (see also Timoshenko and Goodier (1970), p. 384).

Unfortunately, the case of prescribed (vanishing) surface displacements along the

outer surface of the spherical layer and of mixed boundary conditions for the inner

profile, more pertinent to the hip replacement configuration, is not developed in

detail. Abramian and Babloian (1962) study a torque problem similar to the elastic

layer configuration. A hollow hemisphere is subject to imposed shear stresses at its

inner and outer surfaces, and to known displacements along part of the annular

surface of the hemisphere, so that a torsion is in fact imposed on the spherical

shell. A series solution is obtained. Goodman and Keer (1965) apply Sternberg,

Eubanks and Sadowsky (1951) formulation to describe the compliance of a spherical

cavity in an infinite medium, which is compressed by a deformable sphere. The

integral equation describing the contact problem is solved numerically. Some

experimental results are also presented, which show a good agreement with the

spherical cavity theory, and a certain deviation from a purely Hertzian solution.

Gladwell and England (1975) solve analytically the problem of a deformable, hollow

sphere frictionlessly compressed between two parallel, rigid planes. Based on the

work of Bartel, Burstein, Toda and Edwards (1985), Fricker (1991) develops a

Winkler-type model of a metal-backed, deformable spherical layer, an approach

which looks very close to that proposed by Yao (1990), p. 231 . The Poisson's ratio

employed by Fricker (1991) is 0.4 , a figure for which the column model according to

Winkler is accurate (see Fig. 6.5.2.6 of Chapter 5). Fricker (1991) employs the

constrained column model to predict the frictional moment during head spin and
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sliding motions.

The contributions dealing with a deformable solid sphere loaded by known

pressure profiles (or shear stresses), compressed by rigid planes or by variously

shaped punches, are examined hereinafter. The solution of this problem is

comparable to that of the hip configuration, in the sense that spherical coordinates

are involved. Abramian, Arutiunian and Babloian (1964) consider an elastic sphere

indented by two antipodal punches possessing a concave profile coinciding with the

undeformed spherical surface. Arutiunian and Abramian (1964) examine the

compression of a deformable sphere partially resting on a rigid hemispherical cavity

and antipodally loaded by a uniform radial pressure, via a series solution. They also

treat the similar case of a sphere attached to the two stamps and subject to torque.

Bondareva (1969) solves in closed form two cases : a) a weighted deformable sphere

equilibrated by a concentrated,- radial force ; b) an elastic sphere compressed by two

antipodal radial forces. Bondareva (1970) extends case a) of Bondareva (1969) to the

situation of a weighted sphere resting on a concave rigid support of higher radius,

and compares its predictions with the Hertzian theory. Karpenko (1973) extends

Abramian, Arutiunian and Babloian (1964) paper to cover the case of punches whose

concavity possesses a radius larger than that of the undeformed sphere, showing

the differences between the present solution and the Hertzian approach. Unsworth

(1978) examines experimentally the effects of lubricant viscosity in various hip

replacements. In particular, Charnley prostheses were considered, where the cup is

covered with an ultra high molecular weight polyethylene. Durelli and Chen (1979))

examine experimentally a deformable . sphere compressed between two rigid, parallel

planes. Tatara (1991) develops an analytical theory for the case of a deformable

sphere compressed by two parallel, flat, rigid planes, by accounting for large elastic

deformations, non linear material relationship and unilateral contact aspects. The

experimental readings of Tatara, Shima and Lucero (1991) exhibit a good agree/meat

with the theoretical forecasts of Tatara (1991) up to compressions of 20 percent.

As a final remark, Gladwell (1980), P. 509 , shows the existing link between

plane and axisymmetric problems, which permits the Green function for the

axisymmetric case to be derived from its plane counterpart. This correlation is

valid for Cartesian coordinates, and in fact it was used in Section 6.3 of' Chapter 6
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to check the displacement function at the surface of an infinite flat layer loaded by

a concentrated transverse force. It is not known to the present author if a similar

connection exists for polar coordinates. If an expedient could be devised to pass

from polar to spherical coordinates, expression (5.3.7) of Chapter 5 could be used to

construct the Green function for the spherical layer. More exactly, the resulting

spherical cortex would be the analogue of that in Fig. 5.3.2 for the plane situation,

which might supply simpler results than an actual spherical shell, without

significant losses in precision.
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7.3.1 General remarks on the finite element approach

The finite element program ABAQUS (1989), already employed in Sections

3.3.3.2 and 6.5.1 , was here used to describe a spherical deformed layer indented by

a spherical rigid head. This package accounts for geometrical non-linearities deriving

from finite deformations and from progressive contact aspects, as well as for

material non-linearities, connected to the complexities of the stress-strain link. In

the case of nearly incompressible elastomers, a sensitivity of the mechanical

response to perturbations of the Poisson's ratio is expected, so that the program

must be reliable under this aspect. Dragoni (1990,1991) specifically checks the

sensitivity of ABAQUS to variations of the Poisson's ratio, and he finds this

program to be accurate. Current research of Dragoni is devoted to the finite

element analysis of the axisymmetric geometry analytically studied by Moghe and

Neff (1971), noting again a refreshingly good degree of agreement between numerical

and theoretical forecasts. Lau and Jeans (1989) report a good correlation between

experimental and ABAQUS numerical deflections for and elastomeric dome. (It must

be however remembered that a comparison on deflections is generally much less

indicative than a confrontation on stresses, which is often more problematic,

especially in the case of nearly hydrostatic stress states.) Two test cases on

ABAQUS versus Hertzian problems are performed by Kanters (1990), who finds that

"the ABAQUS program performed well for both test problems" in forecasting the

contact pressure. It can be concluded that ABAQUS package is reliable in dealing

with variations of the Poisson's ratid in the vicinity of incompressibility.

Version 4.8-4 of ABAQUS was used for the present study, running on the

DEC MicroVAX 3500 System available at the Laboratory for Computational

Mechanics (LAMC) of the University of Bologna, Italy.
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7.3.2 The four basic configurations for the hip replacements

The four geometries for the rigid spherical head and for the elastomeric

layer firmly bonded to a rigid foundation and forming a spherical cavity, as

indicated by Prof. A. Unsworth, Durham University, Britain, are reported in the

following TABLE

TABLE

reporting the dimensions of head and layer for the four basic cases

head radius, mm	 layer inner radius, mm layer outer radius, mm

Case 1 15.875 16.125 16.625

Case 2 15.875 16.125 17.125

Case 3 15.875 16.125 18.125

Case 4 15.875 16.125 19.125

The initial diametrical gap between head and layer inner surface is kept the

same for the four cases, and equal to 0.5 mm . Conversely, the layer thickness is

increased from 0.5 mm to 3 mm in passing from Case 1 to Case 4 .

In all four cases, the angular extent for the elastomeric layer was assumed as

r, that is, a half spherical layer was considered. A numerical study concerning the

sensitivity of the joint mechanical behaviour to alterations of this parameter is

presented in Section 7.3.5 .

Only- axisymmetric loadings were examined. Although cup and head remain

reasonably coaxial in normal gait, the maximum resultant joint force acts at an angle

of about 30° to their common axis (Paul (1976)). However, since the main aim of this
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study is the comparison between different geometries, a purely axial loading was

still adopted as a reference condition.

The following figures for the elastic constants were adopted : E - 8.506 MPa

, v - 0.49942 , which are the results of measurements presented in Chapter 3 for a

polyurethane elastomer actually employed in this application, named "Estane" 5714F1

. More exactly, from Chapter 3 it appears that the Poisson's ratio slightly increases

with pressure (from v = 0.49915 for p 	 20 MPa up to v = 0.49942 for p	 80 MPa

). The ABAQUS package can handle a bulk modulus non linearly varying with the

hydrostatic pressure. However, in the interest of greater simplicity, it was decided

to employ a constant value for the Poisson's ratio. The figure v - 0.49942 pertains

to a pressure of about 80 MPa (Section 3.3.4), and a comparable peak pressure of

about 63 MPa is reached for Case 1 at the top indentation (Fig. 7.3.2.2), so that the

most severe stress state is properly mimicked. (In fact, in a rigorous solution a

slightly lower Poisson's ratio should be used in the vicinity of the contact ends,

where the pressure diminishes.) (It is noted that pressures higher than 80 MPa , up

to 130 and 260 MPa , are met in Figs 7.3.3.2 and 7.3.4.8 , respectively.) For the

remaining cases, characterized by higher layer thicknesses and lower maximum

contact pressures (about 10 MPa in Fig. 7.3.2.11 ), the Poisson's ratio adopted

constitutes a first approximation, which on the other side permits a better

comparison among the various forecasts obtained in this study. Section 7.3.4

examines the stress variation when v passes from 0.49942 to 0.5 , so that

provisional reassuring indications about the relative smallness of the stress

alteration when v changes from 0.49942 to 0.49915 can be formulated even for the

configurations examined in this Chapter. A neo-Hookean constitutive law

incorporating E = 8.506 MPa and v = 0.49942 was adopted (Section 2.2.3).

In all cases, the head-layer contact was assumed as frictionless, due to the

usual presence of the synovial fluid. The effects of a Coulomb friction have been

accounted for by Jaffar (1991b) for a plane case. A number of 2000 four noded,

isoparametric, reduced integration elements were adopted for all cases.

Figs 7.3.2.1,12 report various practically relevant mechanical parameters for

these four cases, as functions of the indentation depth. In particular, Fig. 7.3.2.1

displays the total load as a function of the penetration depth, Fig. 7.3.2.2 depicts
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the maximum contact pressure between head and layer as well as the peak shear

stress at the interface between layer and foundation, while Fig. 7.3.2.3 reproduces

the contact angular extent and the angular coordinate of the peak shear stress. In a

similar fashion, the following Figs 7.3.2.4,12 address the remaining three cases

according to the previous TABLE.

With regard to Figs 7.3.2.1,4,7,10 , the maximum total load practically applied

to a hip joint can reach values of twice the body weight during walking (Kilvington

and Goodman (1981)) and as much as ten times during running (Paul (1976)). The

maximum loads considered here reach 10000 N (Figs 7.3.2.1,4) , a figure in line with

the indications by Paul (1976). It is appreciated that running is not performed by

patients with hip replacements. Anyway, loads higher than those encountered during

walking can mimic overloads due to accidents or falls. It appears that the load

increases more than linearly , with the indentation depth, as suggested by the

Hertzian-type character of the contact.

With reference to Figs 7.3.2.2,5,8,11 , the central contact pressure between

head and layer is compared to the maximum shear stress at the interface between

layer and backing. Since the peak shear stress is expected to be of the order of

1/10 times the central pressure (see Section 5.4.2 for the equivalent plane case), the

units adopted for Tmax are MPa/10 (that is, the T figure , once divided by 10, is to

be understood as expressed in MPa), so that peak pressure and shear stress should

be comparable in all diagrams. It is found that for small layer thicknesses (Cases 1

and 2) the maximum shear stress is lower than 1/10 times the peak pressure,

whereas for the higher thicknesses, (Cases 3 and 4) the shear stress tends to

approach 1/10 times the top pressure. It can be concluded that a conservative

estimate for the maximum shear stress is 1/10 times the peak contact pressure for a

wide spectrum of layer geometries and indentation depths. The shear stress is

relevant when considering the possible occurrence of debonding phenomena between

layer and foundation (Matthewson (1981)).

The following observations aim at comparing the numerical findings,

suggesting a maximum contact pressure to peak shear stress ratio of about 10 $ to

the corresponding asymptotic, incompressible, flat layer forecasts of eqn (6.5.2.1)1

according to the following development. According to Jaf far (1989), his formulae (20)
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and (23) (see also Love (1944), p. 283), the maximum interface shear stress occurs for

the following radial distance r

The maximum value for the interface shear stress is

where r is the radial distance, R the equivalent radius, 5 the indentation depth, h

the layer thickness, and E the Young's modulus.

The ratio between maximum contact pressure and peak shear stress is

In the configuration of Case 1 (Figs 7.2.3.2.1,2,3), E = 8.506 MPa , R = 1023.

9375 mm . When 5 = 50 gm , then piam / Tinam according to ( 7.3.2.3) equals 1839 ,

where the numerical forecasts of Fig. 7.3.2.3 suggest Ana= / TIMM 20 , whi
represents a sufficiently accurate forecast. Anyway, it must be underlined that Fig.
7.3.2.3 refers to .1/ = 0.49942 , whereas the asymptotic forecasts are based upon an
assumption of incompressible layer. The distinct asymptotic incompressible

predictions for pmcm and Tmax according to (6.5.2.1) are 87.0961 MPa and 4.6352 MPa

, respectively, .which exhibit considerable deviations from the numerical values, in
the region of 40 ÷ 50 percent. Such mismatches are attributable to Poisson's ratio
effects and to errors in the description of the indenter profile (which is spherical in
the finite element study and paraboloidal in the asymptotic solution). It is here
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observed that, in the case examined, 6 R1h 2 = 204.79 >> 100 , so that

perturbations of the Poisson's ratio are expected to modify significantly the layer

stress state (Section 7.3.4). Conversely, the contact angle (Section 7.3.6) is in the

region of 0.89 rad < 1 rad (the asymptotic incompressible contact radius is 14.3104

mm , according to eqn (6.5.2.1)), so that the errors ascribable to the indenter profile

description should be small (Section 7.3.6).

The following expression of Tmax a a function of the load, P , is obtained by

combining (7.3.2.2) with the expression for the load in (6.5.2.1)

T max --=
1 I 2 E P,\
3 7C Rh

which indicates that the maximum shearing stress increases with E for a fixed load.

This indication seems to disagree with the results of Dowson, Fisher, Jin, Auger, and

Jobbins (1991), who observe that "both the normal and shear stress distributions are

primarily dependent on contact area. Reduction in elastic modulus would produce an

increase in strain and an increased likelihood of fatigue failure." and that "a . . .

reduction in modulus will produce increased shear strains." The obscure point in

comparing the above sentences to the forecasts implicit in (7.3.2.4) is that it is not

evident which parameter has been kept constant by Dowson, Fisher, Jin, Auger, and

Jobbins (1991) in examining the effects of modifications of the Young's modulus. It

is felt that this parameter is the . imposed load, since a) this is the physically

assigned parameter ; b) Fig. 2 of Dowson, Fisher, Jin, Auger, and Jobbins (1991)

refers to a fixed load. If, on the other side, the contact radius is kept constant, as

suggested by y-axis variable of Fig. 2 of the above paper, the last formula of

(7.3.2.2) still suggests a diminution of the peak shear stress with E , still in

contrast with the above study.

Encouragingly, the following observation of Dowson, Fisher, Jin, Auger, and

Jobbins (1991) "For any particular contact width, peak normal stresses increased by

a small amount for a reduced layer thickness" agrees with the asymptotic,

incompressible, flat layer forecasts of eqn (6.5.2.1), as already commented in Section
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6.5.2 .

With relation to Figs 7.3.2.3,6,9,12 , the expression "contact angle" denotes

the angle between the layer symmetry axis and any point of the circle defining the

end of the head-layer contact. The vertex of the contact angle coincides with the

centre of the sphere defining the undeformed inner (or outer) surface of the layer.

The angle defining the position of the maximum shear stress is to be interpreted in

a similar fashion. It appears that the angular location of the top shear stress is

often of the order of half the contact angle. The total load being kept the same,

the contact angle increases with the layer thickness. Properly interpreted, this

result is in line with the Hertzian theory, which strictly applies only for infinitely

deep foundations. In fact, the Hertzian results indicate that, for a given load, the

contact radius is inversely proportional to the equivalent Young's modulus to the

exponent 1/3 . Now, an increase in layer thickness augments the foundation

compliance, an effect similar to a decrease in the Young's modulus which, according

to Hertz, suggests an increment in the contact width. Comparable conclusions are

reached with the asymptotic, incompressible, flat layer forecasts of eqn (6.5.2.1),

which imply the following relationship between contact radius, a , and Young's

modulus, E , for an imposed load, P

.

which suggests that for a layer of finite thickness the contact radius is still

inversely proportional to the Young's modulus, but this time the exponent becomes

1/6 .

Finally, three Figures addressing the whole stress-strain field in the

elastomeric layer are included. Fig. 7.3.2.13 reports the layer deformed mesh for

Case 4 and for the maximum indentation according to Fig. 7.3.2.10 , that is, 5 = 0.3

mm . The .end of the contact is visible. Fig. 7.3.2.14 displays the corresponding

maximum shear stress pattern, indicating the presence of a maximum at the layer-

cup interface, and at an angle from the vertical axis of about 7r/4 . Fig 7.3.2.15



Chapter 7 The Spherical, Elastomeric Layer	 7.13

reproduces the contact profile. The x-coordinate represents the linear distance from

the head symmetry axis along its generic meridian. An elliptic approximation starting

and ending at the actual values is also included, to underline the noticeable

deviation of the actual pressure profile from the Hertzian curve, a result in line

with Fig. 3 of O'Carrol, Jin, Dowson, Fisher and Jobbins (1990).

The following Sections address the effects of alterations imparted to the

geometrical and material parameters on the mechanical behaviour of the hip

replacement with reference to the stress field in the elastomeric layer. In particular,

the initial gap between head and layer loaded surface has been modified and the

repercussions on the mechanical behaviour of the hip replacement have been

quantified. In addition, the Poisson's ratio has been perturbed, to mimic the effects

possible inaccuracies in its experimental measurement. Finally, the relevance of the

angular extent of the elastomeric layer as well as of the indenter profile has been

explored, to get indications about the validity of simplified modellings. The hip

response to modifications of the Young's modulus has not explored in this thesis,

since it is predictable, at least qualitatively, with simplified models. This point has

been investigated by Dowson, Fisher, Jin, Auger, and Jobbins (1991).
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Fig 7.3.2.5 : Maximum pressure and shear stress versus indentation depth for Case 2 .
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0"--C

dl
A

= 8.508 liPa

u= 0.49942

lager outer radius =

18.125 mm

1	 1	 1	 1
20	 40	 M	 80	 100	 120	 MO	 160	 1M	 20

1.30

1.17

" 03

a.) 0.78

g 0.65

-.E.)/ 0.52
C

'E' 0.39
o
O 320

. 0
0.13

0.03

- o
o
1._

X
0
E

A

Chapter 7 The Spherical, Elastomeric Layer	 7.18

0 , .// M
Fig 7.3.2.9 : Contact and shear stress angles versus indentation depth for Case 3 .

Z
_Y

0
—

..,,

5.4 — o	 R

4.8 _ E = 8.506

u = 0

,

4.2— layer outer radius -

18— 19.125 mm

2000
3.0—

nonlinear

2.4

1.8

1.2

0.6

.	 0	 30	 60	 90	 120	 150	 180	 210	 240	 DO	 31

G „II M

Fig 7.3.2.10 : Total load versus indentation depth for Case 4 .



....

1.26

1.12

OA

1m

In

155

142

la

114

1M
0

4

/Cr

':'

o/ •

__,___-----

71

--

o i/

__E - 8.508 MPa

u- 0.49942

lager outer radius =

19.125 mm

A/

1	 1	 III

30	 M	 M	 120	 150	 1a3	 210	 240	 270	 30

0

Chapter 7 The Spherical, Elastomeric Layer 	 7.19
15.0

0 A ANGUS

12.0	 ---
o

o 0_
a_

__ E = 8.508 MPa

o = 0.49942 .	 c

layer outer radius =
Al

O 9.0

	

	 co
coL.	 a)

n L.
0) 7.5	 ..4-..,
u)	 co
U)
LE 6.0	 L_

C
U)

>4.5	 =co
C
E

__

__

19.125 mm

2000 F.E. elements

nonlinear ana Lisle
ArAd

r

A

/
3.0

•0
1.5

0.0

-13.5	 co

—
10.5	 .

IMO°

M	 M	 M	 ' 120	 150	 180	 210	 240	 710	 1

G ,	 m

Fig 7.3.2.11 : Maximum pressure and shear stress versus indentation depth for Case 4 .

S ,	 M

Fig 7.3.2.12 : Contact and shear stress angles versus indentation depth for Case 4 .



11/

Chapter 7 The Spherical, Elastomeric Layer	 7.20

:a. /ALIN . .1,11..1

•	 eL

LINSWORTH DEFORMED
/111( CONPLIIIP 111 MIS MI • I.O.F . O0	 111,4 ACCIIMAATEP 111 ,11 • 1.1.01.41	 fur I imc gemp i •
11111111 MUNI 1 .1.	 0411.21-110-111 /lg . 110141

Fig 7.3.2.13 : The deformed mesh for Case 4 and for an indentation of 0.3 mm .

UNSWORTH DEFORMED ...: '
lilt comm. II nes MI •I.O.W.Of	 TIM ACCOOKAIN ma .1.111,..,

	
1111 I INCIIIWit II

mon VERSION 11 . 1 .1	 1,111. IT -0[1 .21 1141• 22222 OM

Fig 7.3.2.14 : The maximum shear stress pattern for Case 4 for 6 — 0.3 mm .



Chapter 7 The Spherical, Elastomeric Layer 	 7.21
12.0 	

actual

---- elliptic

--------

10.8

c,	 9.6
0._

m 8.4
G - 0.3 mm-

7.2

6.0 	

4.8

3.6

2.4

E - 8.508 Hi'a

U = 0.49942

head radius -

15.875 mm

layer inner radius

18.125 mm

layer outer radius =

19.125 mm I
0.0 	 1	 1	 1	 r 

00	 2.2	 4.4	 6.6 , 8.8

i
11.0	 13.2	 154	 116	 198 22 0

head meridional coordinate, mm
Fig 7.3.2.15 :The pressure profile for Case 4, 5-0.3 mm, and an elliptic approximation.



Chapter 7 The Spherical, Elastomeric Layer	 7.22

7.3.3 Effects of the initial gap between head and layer loaded surface

The clearance between the ball and socket of the hip joint can vary

enormously from joint to joint and manufacturer to manufacturer ainsworth (1981n.

Dowson, Fisher, Jin, Auger, and Jobbins (1991) examine in detail the dependence of

the contact radius on the radial clearance for a selection of Young's moduli and for

a given load and a single Poisson's ratio. An equivalent flat layer model compressed

by a paraboloidal punch in linear elasticity is employed. In this thesis it was decided

to investigate numerically the clearance effects on the joint load, peak pressure and

shear stress, and contact extent and location of the maximum shear stress, versus

the head indentation depth and for an imposed Young's modulus and Poisson's ratio,

by referring to the real hip configuration. The finite element forecasts of the

present study account for the curved lining consequences, for the actual punch

profile, as well as for non linear elasticity effects.

If the initial gap is altered between head and layer with respect to the data

reported in the TABLE of Section 7.3.2 , the equivalent radius according to the

Hertzian theory (Johnson (1985), Appendix 3) changes . substantially, and so does the

contact compliance. More precisely, a reduction of the initial gap will result in

higher loads and pressures for a prescribed head penetration depth. These

predictions are quantified in Figs 7.3.3.1,2,3 which refer to total load, contact

pressure plus maximum shear stress, and contact and shear stress angles,

respectively. Each diagram addresses essentially Case I of the. TABLE of Section

7.3.2 , but in addition it examines' two other head geometries, characterized by

increasingly conforming conjugate surfaces. More precisely, the first head

configuration is that of Case 1 (when the radial head-layer clearance is 0.25 mm),

while the second and third head radii considered produce decreasing radial gaps of

0.15 aim and 0.05 mm , respectively. The elastic constants are kept unchanged, that

is, E — 8.506 MPa , ii — 0.49942 . The total load (Fig. 7.3.3.1), the peak pressure

(Fig. 7.3.3.2) . and the contact and shear stress angles (Fig. 7.3.3.3) increase

dramatically for a prescribed indentation depth as the head-layer gap diminishes

whereas, interestingly, the maximum shear stress is much less dependent upon to the

initial clearance (Fig. 7.3.3.2). In fact, the shear stress level is connected to the
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layer distortions consequent upon its lateral flow, which in turn mainly depend on

the head penetration and only marginally on the Poisson's ratio, provided that ii is

sufficiently close to the incompressibility figure 0.5 .

The asymptotic formulae (7.3.2.2) confirm this limited dependence of the

interface peak shear stress on the initial clearance between head and layer loaded

surface, even if the shear stress asymptotic, incompressible values differ from

those of Fig. 7.3.3.2 , which refer to a compressible elastomer with v = 0.49942 .

For the three configurations described in the inset of Fig. 7.3.3.2 , and for 6 =-- 50

gm , the first asymptotic expression for the peak interface shear stress of (7.3.2.2)

gives the values 4.68 , 6.06 , 10.54 MPa , respectively, which exhibit a moderate

dependence upon the three very different equivalent radii 1023.94 , 1717.31 , 5184.19

nun , respectively, even if the asymptotic figures markedly disagree with the shear

stress values of Fig. 7.3.3.2 .

While the radial gap does not appear to be a factor critically influencing the

maximum interface shear stress, the results of Section 7.3.4 suggest not to adopt

very small head-layer gaps in practical applications, since the dependence of the

stress field on v, a parameter difficult to measure accurately, becomes too high.

Dowson, Fisher, Jin, Auger, and Jobbins (1991) suggest in their Table 3 a head

diameter of 32 mm and an equivalent radius of 1000 	 1500 mm , which implies a

radial clearance of 0.17	 0.26 mm , a gap consistent with the TABLE of Section

7.3.2 .

The sensitivity of Cases 2 , 3 and 4 to the initial head-layer gap has not

been explored in this study.

As already mentioned, Dowson, Fisher, Jin, Auger, and Jobbins (1991) examine

in their Fig. 2 the effects of a change of head-layer clearance via a flat layer

model. The results of Section 7.3.6 indicate that for small clearances the modelling

of the hip replacement via a flat layer indented by a paraboloidal punch declines. It

is noted in the above paper that the paraboloidal description for the punch becomes

less accurate' for high contacts. When the head-layer clearance decreases, the
contact radius augments for a fixed load. As a consequence, a word of caution

should be expressed on the accuracy of the curves of Fig. 2 of the above papers at
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least for small head-layer clearances.

It is finally noted that the data presented in Fig. 2 by Dowson, Fisher, Jin,

Auger, and Jobbins (1991), which express the contact radius as a function of the

radial clearance for a fixed load and Poisson's ratio, and for a selection of Young's

moduli (top diagram) and of layer thicknesses (bottom diagram), could have been

more effectively presented in a normalized fashion. Eqn (6.4.5.7) suggests that a

suitable non-dimensionalized x-variable is PR/E a3 , where P is the total load, R

represents the equivalent radius, E' indicates the Young's modulus, and a denotes

the contact radius, and that the proper y-variable is a/h , where h symbolizes the

layer thickness. The computations which follow prove this point. With reference to

the top diagram of Fig. 2 of the previous paper, the most left value of the bottom

curve is characterized by a =--- 14.915 mm and by h = 2 mm , so that a/h = 7.4576

, and by a radial clearance of 0.05 mm , which implies R = 5136 mm . The other

variables are P = 2500 N and E = 100 N/mm 2 , so that PR/E a3 = 38.6966 . Again

with regard to the top diagram of Fig. 2 of the previous paper, the most right value

of the top curve is characterized by a = 14.915 mm and by h = 2 mm , so that

a/h = 7.4576 (the same figure as before), and by a radial clearance of 1 mm , which

implies R = 272 mm . The other variables are P = 2500 N and E = 5 N/mm2 , so

that this time PR/E a3 =-, 40.9871 , a figure very close to 38.6966 found in the

previous computations for a considerably different configuration exhibiting the same

a/h parameter. The above mismatch is imputable to inaccuracies in extracting the

values from the diagram. These results confirm that the top diagram of Fig. 2 of

Dowson, Fisher, Jin, Auger, and Jobbins (1991) could have been expressed in

normalized variables.

Moving to the bottom diagram of Fig. 2 of the previous paper, the most left

value of the top curve is characterized by a --,_ 24.0678 mm and by h = 3 mm , so

that a/h = 8.0226 , and by a radial clearance of 0.05 mm , which implies R = 5136

mm . The other variables are P = 2500 N and E = 20 N/mm2 , so that PR/E a3

46.0496 . Again with reference to the bottom diagram of Fig. 2 , the most right

value of the bottom curve is characterized by a = 8.8136 mm and by h = _1 mm

so that a/h ------ 8.8136 (a figure reasonably close to 8.0226 previously encountered),

and by a radial clearance of 1 mm , which implies R = 272 mm . The other variables
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are P = 2500 N and E = 5 N/mm2 , so that PR/E a3 =-, 49.6614 , a figure reasonably

close to 46.0496 previously found for a considerably different configuration

possessing a similar a/h parameter. The above mismatch is this time mainly

assignable to the circumstance that the two a/h values are similar but not identical.

It can be concluded that also the bottom diagram of Fig. 2 of Dowson, Fisher, Jin,

Auger, and Jobbins (1991) could have been expressed in non-dimensionalized

variables.

The fact that in the bottom diagram of Fig. 2 of Dowson, Fisher, Jin, Auger,

and Jobbins (1991) and for low clearances the second curve from bottom exhibits a

shape completely different from the adjacent curves has not been understood.
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7.3.4 Effects of perturbations of the Poisson's ratio

The whole of the results of Section 4 shows that perturbations of the

Poisson's ratio influence the peak pressure especially when the contact width is

high, that is, when the stress state is nearly hydrostatic (Matthewson (1981)), while

such dependence is considerably lower for limited contact widths (Section 4.3.5),

when the elastomer can easily flow laterally, thus preventing the build-up of nearly

hydrostatic stresses. In the walking cycle the force across the joints in the lower

limb drops to a very low level during the swing phase (Dowson, Fisher, Jin, Auger,

and Jobbins (1991)), while the highest load levels during walking reach twice the

body weight (Kilvington and Goodman (1981)) and as much as ten times during

running (Paul (1976)). It is, therefore, advisable to analyze the mechanical behaviour

of the hip replacement for a wide spectrum of loads.

In this numerical study the three configurations already examined in Figs

7.3.3.1,2,3 are revisited with reference to a perturbation of the Poisson's ratio. The

effects of alterations of this mechanical parameter are not explored by Dowson,

Fisher, Jin, Auger, and Jobbins (1991). The two figures v = 0.49942 (experimental

measurement, Section 3.3.4) and v = 0.5 (ideal incompressibility) are here examined.

Figs 7.3.4.1,2,3 refer to Case 1 of the TABLE of Section 7.3.2 (head radius = 15.875

mm) and to the two above reported Poisson's ratios, Figs 7.3.4.4,5,6 deal with the

same layer geometry but with a head of radius 15.975 mm (already accounted for in

Figs 7.3.3.1,2,3), whereas Figs 7.3.4.7,8,9 address a head radius of 16.075 mm . The

whole of the results retrieved shows an appreciable sensitivity of the stress field

to perturbations of the Poisson's ratio especially for the lowest head-layer

clearances (compare Figs 7.3.4.1 , 7.3.4.4 and 7.3.4.7) and for the highest

compressions, so that an accurate experimental measurement of Il becomes

particularly relevant for the configurations of the TABLE of Section 7.3.2 . The

sensitivity to v of geometries characterized by small initial clearances is

rationalized by observing that an imposed indentation depth produces higher contact

widths and, cOnsequently, increasingly hydrostatic stress states, as the head-layer

gap diminishes. It has already been observed that a hydrostatic stress state is

particularly sensitive to perturbations of the Poisson's ratio.
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The incompressible finite element forecasts of Figs 7.3.4.1,2 are compared in

the following to the incompressible asymptotic forecasts of eqns (6.5.2.1) and

(7.3.2.2). For E 8.506 MPa , R = 1023.94 mm , h = 0.5 mm , and 6 = 25 gm (so

that 6 R/h2 = 102.39 , a value for which the asymptotic solution is applicable, see

Section 6.6) , the asymptotic total load is 2334.75 N (a force encountered in practical

situations, Kilvington and Goodman (1981)), the asymptotic peak contact pressure is

21.774 MPa , and the asymptotic maximum interface shear stress is 1.66 MPa . For 6

= 50 gm (6 R/h2 = 204.79), the total load becomes 18678.02 N , the peak contact

pressure is 87.10 MPa , and the maximum interface shear stress is 4.68 MPa . The

agreement between incompressible asymptotic forecasts and finite element,

incompressible predictions is good in terms of peak pressure (see the finite element

values in Fig. 7.3.4.2), is modest in terms of interface shear stress (Fig. 7.3.4.2), and

becomes poor in terms of total load (Fig. 7.3.4.1). This decline of accuracy is

seemingly imputable to the curved profile of the conjugate surfaces. The peak

contact pressure mainly depends upon the indentation mechanism regarding the

central zone of the contact, which is accurately described by a paraboloidal surface,

thus rationalizing the good results of the asymptotic, incompressible model. The

peak shear stress occurs at a certain distance from the contact centre, eqn (7.3.2.5),

where the paraboloidal approximation declines. SimilaTly, the curvature ell acts

reduce the axial resultant of the contact pressures, that is, the total load, with

respect to the flat, asymptotic, incompressible model.

It is also noted that the critical appraisal presented in Section 6.6 and

concerning the experimental and analytical results of O'Carrol, Jin, Dowson, Fisher,

and Jobbins (1990) shows that, at least for that configuration, the Poisson's ratio is

not a critical factor (Fig. 6.6.4). The contradiction between that result and the

indication of the present study with regard to the sensitivity of the mechanical

behaviour of the hip replacement to perturbations of the Poisson's ratio is only

apparent. In fact, Section 6.6 refers to small values of parameter 6 R/h2 (< 16

TABLE of Section 6.6) , while this time the maximum 5 R/h2 value reaches 204.79

(according to the asymptotic predictions). In fact, the equivalent radius adopted by

O'Carrol, Jin, Dowson, Fisher, and Jobbins (1990) is 104 mm , a value much smaller

than the realistic range 1000 ÷ 1500 mm (Dowson, Fisher, Jin, Auger, and Jobbins
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(1991), their Table 3). It has been shown in Sections 4.3.5 and 6.4.7 that for very

small contact radius to layer thickness ratios (say a/h < 0.7, Figs 6.4.7.2 and

6.4.7.4)) the peak pressure does not appreciably depend on v. In addition, Section 6.6

indicates that for 6 R/h2 up to 16 , that is, for a/h up to 8 (see eqn (6.6.1)) the

Poisson's ratio is not yet a critical factor (Poisson's ratios ranging from 0.499 to 0.5

are considered in Fig. 6.6.4). Figs 6.5.2.1 and 6.5.2.4 , referring to v = 0.5 and v --

0.499 , respectively (these two values of Poisson's ratio are analogous to the two

figures analyzed in Fig. 7.3.4.2), show that for 6 Ti/h 2 = 50 , the two normalized

peak pressures are still comparable, whereas for 6 R/h2 = 100 the two results

differ appreciably, consistently with Fig. 7.3.4.2 . It is believed that an estimate of

the transitional 6 Ti/h 2 value beyond which a perturbation of. the Poisson's ratio

appreciably modifies the contact pressure is 100 . As a .consequence, the transitional

value for a/h is 20 .

As it appears from Figs 7.3.4.2,5,8 , the peak pressure and shear stress

curves follow trends similar to the total load as the radial gap diminishes, even if

the variation with clearance of the shear stress is always smaller (Section 7.3.3). In

addition, a new aspect appears for the maximum shear stress, namely the occurrence

of a plateau at the higher head compressions and for v = 0.5 , visible in Figs 7.3.4.5

and 7.3.4.8 .

Moving to the contact angle and to the maximum shear stress angle, Figs

7.3.4.3,6,9 , the dependence of the contact angle on the Poisson's ratio for an

imposed penetration depth is always limited. This agrees with ' the findings of

Dragoni and Strozzi (1988) referring' to an elastomeric 0-Ring seal. Conversely, the

maximum shear stress angle exhibits a decreasing trend with increasing indentation,

for v — 0.5 , for low radial gaps and at the highest penetrations, which contrasts

with its behaviour for lower penetration depths, Figs 7.3.4.6 and 7.3.4.9 , and also

disagrees with the asymptotic forecasts of eqn (7.3.2.1), which suggest a maximum

shear stress angle continuously increasing with 6 . It was decided to examine more

thoroughly this latter feature. Figs 7.3.4.10 and 7.3.4.11 report the shear stress

angle of Figs 7.3.4.6 and 7.3.4.9 , as well as the maximum shear stress of Figs.7.3.4.5

and 7.3.4.8 and, in addition, they underline the presence of two local maxima for the

shear stress, occurring at different angular coordinates. (Only the global maximum
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was reported in Figs 7.3.4.5,8 .) The two shear stress maxima are very similar, so

that the two curves are hardly distinguishable in Figs 7.3.4.10 and 7.3.4.11 .

Conversely, the bifurcation of the shear stress angle curve at the higher head

compressions expresses the occurrence of these two maxima at two different angular

locations. For head indentations just smaller than those at which the bifurcation

begins, the shear stress profile becomes very flat in the region of its maximum, that

is, the shear stress assumes nearly uniform values, all close to its maximum, along

an sizeable angular extent. The bifurcation phenomenon occurs only when v = 0.5

and is more appreciable for small head-layer gaps.
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7.3.5 Effects of the angular extent of the elastomeric layer

It appears from Fig. 7.3.2.3,6,9,12 that, the total load being kept the same, the

contact end gets nearer to the layer extremity for the higher layer thicknesses

(Fig. 7.3.2.12). As a consequence, the effects of the angular extent of the

elastomeric layer were tested numerically only for Case 4 of Section 7.3.2 , for E —

8.506 MPa , i/ — 0.49942 . Figs 7.3.5.1,2,3 present the results in terms of total load,

contact pressure and shear stress, and contact and shear angles, for the geometry of

a half spherical layer (see Fig. 7.1.1) and, alternatively, for the ideal configuration

of a complete spherical shell. Moderate differences in terms of total load (Fig.

7.3.5.1) are perceivable only at the higher compressions, when the contact end

approaches the layer end in the case of a half spherical cup, without actually

encroaching upon the layer edge (Fig. 7.1.1). The two peak contact pressures

referring to a spherical cup and to a half spherical cup are not distinguishable in

Fig. 7.3.5.2 , while small differences appear between the two peak shear stresses.

Finally, in Fig. 7.3.5.3 the two shear stress angle curves are superimposed, while the

two contact angles are still distinguishable. It can be surmised that the effects of

the angular extent of the elastomeric layer are smaller for the other geometries of

the TABLE of Section 7.3.2 , since the corresponding contact ends are more distant

from the layer extremities than in Case 4 for a given load. It can be concluded that,
the effects of the angular extent of the elastomeric layer are not relevant in

practical situations. The relevance of this conclusion is connected to the fact that,

during walking, the head oscillates • within the cup (Dowson, Fisher, Jin, Auger, and

Jobbins (1991)). As a consequence of the above conclusion, the contact pressure is

not appreciably influenced by the relative angular position of the head with respect

to the cup.

The end effects were discussed in Section 5.4.2 with reference to

measurements on a plane model of the hip replacement. It was noted that these end

effect may .be responsible for a diminution of peak pressure for an imposed

penetration depth. Fig. 7.3.5.2 confirms this trend, even if the corresponding end

effects appear to be noticeably smaller than those visible in Fig. 5.4.2.12 .
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7.3.6 Effects of the indenter profile

According to the Hertzian theory, the contact between two spherical surfaces

can be likened to the contact between a flat surface and a paraboloidal punch whose

equivalent radius is expressed in Appendix 3 of Johnson (1985). Applied to the hip

configuration, this assimilation implies that the head-layer contact may be studied

by referring to a flat, deformable layer and to a rigid, paraboloidal indenter of

equivalent radius. As noted by Matthewson (1981), this parabolic approximation for

the head profile is sufficiently accurate only if the contact width is limited.

Matthewson (1981) reports a geometric error lower than 1 percent for contact width

to equivalent radius ratios below 0.2 . More precisely, Matthewson (1981) refers to

the inaccuracy of a paraboloidal indenter in mimicking a spherical punch, while the

other contacting surface is already initially flat. In the hip replacement geometry,

instead, both contacting surf aces (that is, the head and the layer profiles) are

curved, so that the error analysis of Matthewson (1981) does not strictly apply,

since this time the inaccuracies made in describing the indenter profile are coupled

with the errors of considering a curved layer as flat. Despite this uncertainty, the

error analysis of Matthewson (1981) suggests that for the hip geometry too the

geometrical deviations connected with the parabolic approximation diminish with the

contact width. This decline of accuracy is underlined by Dowson, Fisher, Jin,

Auger, and Jobbins (1991), who employ the flat layer model to mimic the spherical

shell, and note that "At higher values the model applied to a sphere on a plane

becomes less accurate."

It was decided to analyze numerically the effects of the parabolic

approximation for the head profile and, inevitably superimposed, the layer

curvature consequences, by referring essentially to Case 1 of the TABLE of Section

7.3.2 and, in addition, to a second case characterized by a smaller head-layer initial

gap, in which the layer geometry is kept unchanged, but the head radius becomes

16.075 mm (as . in Figs 7.3.4.7,8,9). In addition, E — 8.506 MPa , while ii = 0.5 , so that

the results for the paraboloidal indenter could be simply extracted from Figs 6.5.2.1

and 6.5.2.7 of Chapter 6 , which refer to incompressible elastomers.

Figs 7.3.6.1,2 address the first configuration mentioned above, and report
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peak pressure and contact arc (that is, the arc subtended by the contact angle (see

Section 7.3.2) and related to the layer undeformed inner profile) as functions of the

head indentation depth. From Fig. 7.3.4.1 it appears that the total load

corresponding to the maximum penetration depth of 50 gm is about 15 kN , thus

exceeding by a factor of two the maximum physically realistic load of ten times the

body weight.

For compressions below 40 gm (corresponding to a realistic maximum load of

7.5 kN) the curved layer and spherical head forecasts in terms of peak contact

pressure and contact arc closely agree with the predictions regarding a paraboloidal

indenter compressing a flat layer. It can be concluded that for the hip geometry of

Figs 7.3.6.1,2 both the curvature effect and the parabolic indenter consequences

must be negligible (it is unlikely that the two effects are compensatory). The hip

replacement can thus be properly mimicked by a flat layer compressed by a

paraboloidal indenter of equivalent radius.

Figs 7.3.6.3 and 7.3.6.4 concern the second geometry mentioned above,

characterized by a smaller initial head-layer gap. From Fig. 7.3.4.7 it appears that a

total load of 7 kN (that is, ten times the body weight) requires an indentation of

about 15 gm for I/ "" 0 . The penetration referring to a flat layer compressed by a

paraboloidal head, as extracted from Fig. 6.5.2.1 , covers a range up to about 10 gm

(convergence problems preclude the analysis of higher compressions), so that a

complete comparison between real and idealized geometries is not possible. Despite

this shortcoming, Figs 7.3.6.3,4 show the beginning of a certain deviation between

the two models, which would have seemingly increased for indentations in the region

of 15 urn . In conclusion, from Figs 7.3.6.3,4 it appears that the actual peak

pressures and contact widths for a given indentation depth become higher than their

flat analogues (where the punch curvature has been computed according to the

Hertzian theory), especially at the highest indentation depths.

A disagreement somewhat similar in absolute value but opposite in sign was

signalled by Goodman and Keer (1965), who examined the comparable problem of a

deformable spherical cavity in an infinite medium, compressed by a deformable

sphere. Contrary to the forecasts of Figs 7.3.6.3,4 , for an imposed indentation

depth they found, with the spherical cavity theory, higher total loads and contact
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widths than with the Hertzian approach. A possible explanation of this contradiction

lies in the fact that in the present study the layer thickness is finite and the

indenter is rigid, whereas in Goodman and Keer (1965) the spherical cavity is made in

an infinite medium and the indenter is deformable. Another observation is that the

actual pressure profile is no longer elliptical (see Fig. 7.3.2.15 ), so that the

circumstance that, for a given penetration, the actual peak pressure is lower that

its Hertzian counterpart at a first sight does not necessarily imply that a similar

relationship holds for the total load. Anyway, it must be observed that the actual

and Hertzian contact widths are in any case similar (see Fig. 7.3.6.4 ), while the

shape of the real pressure profile (see Fig. 7.3.2.15) suggests that a lower peak

pressure necessarily implies a smaller total load. In conclusion, despite the fact that

Goodman and Keer (1965) compare actual and Hertzian total loads while in the

present study real and Hertzian peak pressures are confronted (so that a direct

comparison between the two analyses is not possible), these two studies show

contradictory trends.

It can be however concluded that in the case of small initial head-layer

clearances the simplified model of a flat layer compressed by a paraboloidal indenter

does not mimic thoroughly the real geometry. The numerical results retrieved do

not clarify whether the above deviation is mainly imputable to curvature effects or

to indenter profile approximations, but the corresponding plane strain analysis of

Section 5.5 indicates that the curvature effects should be much smaller than the

parabolic indenter approximations. In addition, the idealized model holds better when

the initial head-layer gap is larger, and this is seemingly ascribable to the fact that

in this case the contact width is smaller for a prescribed load.

Curvature and indenter profile effects have already been studied in Section

5.3.4 for the plane strain counterpart of the spherical layer indented by a sphere.

In that case too it was found that the parabolic approximation declines when the

contact width becomes too large. In particular, from Fig. 5.3.4.8 it emerges that the

real and idealized geometries supply similar results for indentations up to 0.3 mm ,

which implies an angular semicontact width in the region of 1 rad (see Fig. 5.3.4.9).

Similarly, for the axisymmetric configuration of Figs 7.3.6.3,4 , the real and

idealized geometries produce diverging peak pressures for indentations beyond 7 gm
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(see Fig. 7.3.6.3), when the contact arc is about 11 mm (see Fig. 7.3.6.4), which

corresponds to a contact angle of 0.7 rad , a figure in reasonable agreement with the

plane strain indications.

Dowson, Fisher, Jin, Auger, and Jobbins (1991) examine in their Fig. 2 the

effects of a change of head-layer clearance via a flat layer model. The results of

this Section indicate that for small clearances the modelling of the hip replacement

via a flat layer indented by a paraboloidal punch declines. As a consequence, a word

of caution should be expressed on the accuracy of the curves of Fig. 2 of the

above paper, for small head-layer clearances.
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7.3.7 Considerations about the selection of the layer thickness

A mechanical optimization of the hip replacement, and in particular of its

elastomeric layer, would require a detailed knowledge of the mechanical response of

the elastic lining to modifications of geometric (e.g. layer thickness, initial head-

layer clearance) and mechanical (e.g. E and // elastic constants) parameters, coupled

with a lucid perspective of the aims to be pursued. Dowson, Fisher, Jin, Auger, and

Jobbins (1991) investigate the effect of variations in the thickness and elastic

modulus of the layer, the radial clearance and head diameter on the contact stresses

and lubricating film thickness in a design analysis of cushion form bearings, by

referring to the approximate modelling of a rigid sphere compressing a flat,

deformable layer, and by adopting a fixed Poisson's ratio. The parameters examined

are the minimum film thickness generated by elastohydrodynamic lubrication, the

squeeze film thickness after one second, the maximum dry contact pressure and the

elastic deformation of the surface asperities during microelastohydrodynamic

lubrication.

In this thesis a realistic numerical modelling is adopted which incorporates

the curvature effects and allows the relevance of perturbations of ii to be

explored. Due to the implicit complexity of such optimization studies, the

sensitivity analysis performed in this thesis is inevitably incomplete, and confined

to some parameters recognized as crucial. In particular, this Section examines the

dependence of the peak contact pressure, of the maximum interface shear stress and

of the contact width, upon the layer thickness, for a prescribed total load and for

the actual elastic constants. This information is particularly relevant from a

technical standpoint. The maximum contact pressure and contact width are

fundamental parameters connected to lubrication aspects (Chapter 8), whereas the

peak shear stress at the interface between layer and foundation permits predictions

to be formulated on the possible occurrence of undesired debonding phenomena. The

practical consequences of perturbations of the Poisson's ratio, mimicking inevitable

errors in its experimental measurement or a lack of information on its actual value,

are also commented in this Section. Another problem, only marginally covered in this

thesis, is the possible outcome of tensile stresses in the elastomeric layer (possibly
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by the contact ends), which may promote detrimental cracks. Also,

microelastohydrodynamic lubrication aspects are controlled by mechanical parameters

(Dawson, Fisher, Jin, Auger, and Jobbins (1991)), but this aspect is not covered here.

Finally, squeeze film thickness considerations, included in the previously quoted

paper, are ignored in this thesis.

The above mentioned sensitivity study is effected for a fixed load, since this

imposition closely mimics the physical loading of the joint, compressed by the body

weight. The reference total load was assumed as 5 kN , in the region of ten times

the body weight. (This figure was chosen because it is covered by all the pertinent

diagramg presented in this Chapter.) The relevant variables, extracted from the

TABLE and from the Figures of Section 7.3.2 , are collected in the following TABLE

(the figures reported have been rounded off) :
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TABLE

reporting the peak pressure and shear stress, the contact angle and the indentation depth

for the four basic cases of Section 7.3.2 and for a total load of 5 kN

Case 1	 Case 2	 Case 3	 Case 4

layer thickness, mm	 0.5	 1.	 2.	 3.

equivalent radius, mm	 1023.94	 1023.94	 1023.94	 1023.94

peak pressure, MPa	 40.	 23.	 14.5	 11.5

peak shear stress, MPa	 23.	 18.	 13.5	 13.

contact angle, rad	 0.7	 0.9	 1.25	 1.35

indentation depth, gm	 38.	 77.	 170.	 300.

6 R/h2	155.	 78.	 43.	 34.

It emerges from the previous TABLE that the indentation depths are very

small for all four Cases, so that the finite elasticity effects, included in the finite

element package ABAQUS, should be negligible.

It appears that for a total load of 5 kN both peak pressure and maximum

interface shear stress diminish as the layer thickness is increased. This decrease is

particularly desirable, since wear is reduced (as a consequence of the diminished

peak contact pressure, in the case of mixed lubrication regime) and, in addition,

debonding phenomena are less likely to occur (in relation to the decrease of the
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peak interface shear stress).

The increase in the contact width with the layer thickness is also positive.

In fact this trend, coupled with the decrease in the peak pressure, implies that the

dry contact pressure gradient by the contact ends diminishes as the layer thickness

is augmented. More exactly, the corresponding plane strain results of Meijers (1968)

indicate, at the contact ends, for II 0.5 and for high (mathematically infinite)

contact widths, the existence of a finite gradient which is proportional to the peak

contact pressure, which is inversely proportional to the contact width, and

otherwise independent of V (see observations of Meijers (1968) at p. 377). When the

head-layer contact is lubricated, the fluid pressure essentially equals the dry

contact pressure over most of the contact (an assumption typical of the inverse

hydrodynamic lubrication approach, Blok (1963)), whereas some modifications occur

at the inlet and outlet (Blok" (1963)), where the fluid pressure vanishes together

with its first derivative (this latter condition is not respected by the dry contact

pressure, and this fact signals the presence of a modification). In other words, an

inflexion point exists at the inlet for the fluid pressure profile. According to the

inverse hydrodynamic lubrication theory, the fluid film thickness where the

pressure gradient vanishes (which constitutes a reference fluid film thickness) is

inversely proportional to the square root of the pressure gradient at the inlet

inflexion point (Prati and Strozzi (1984)) which, according to the previous

observations, diminishes as the contact width augments and the peak pressure..
decreases. In conclusion, an increase in layer thickness favours the formation of a

desired thicker fluid film thickness, which in turn reduces wear. Dowson, Fisher,

Jin, Auger, and Jobbins (1991) also find that "the film thicknesses were primarily

dependent on contact half-width." and that "The film thickness increased as the

contact area increased."

The possible occurrence of tensile stresses, which can promote cracks in the

elastomer (Medri and Strozzi (1986), Stevens (1988), Dragoni and Strozzi (1988)), is

another aspect to be taken into account in selecting the optimum layer thickness.

The tensile stress level was not specifically examined in this study, but it must be

observed that the stress field in the vicinity of the layer symmetry axis is

essentially hydrostatic (Matthewson (1981)) and compressive, so that no tensile
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stresses appears in this central region. The stress field becomes more deviatoric by

the contact ends, so that the presence of tensile stresses cannot be excluded there.

In any case, the contact pressure declines in the vicinity of the contact ends, and

so does the whole stress field. In other words, it seems unlikely that appreciable

tensile stresses occur in this biomechanical application, characterized by large

contact widths. This point is further discussed at the end of this Section. In any

case, it is believed that this aspect should deserve more attention.

It also emerges from the previous TABLE that the decrease in contact

pressure and shear stress with an increase of layer thickness becomes less

noticeable for higher cortex thicknesses, so that 2 mm and 3 mm thick coatings

produce comparable results. It is concluded that it is convenient to employ

relatively thick layers in this biomechanical application, but that an excessive

increase in stratum thickness becomes only moderately beneficial. Dowson, Fisher,

Jin, Auger, and Jobbins (1991) express a similar concept when they write "However,

there is little benefit to be achieved by further reduction in the elastic modulus."

Dowson, Fisher, Jin, Auger, and Jobbins (1991) report in their Table 3 a

tentatively optimized hip configuration characterized by a head radius of 16 mm , a

layer inner radius of 16.26024-16.1725 (derived from the reported equivalent radius,

and implying a radial clearance of 0.1725±0.2602 mm), a- layer thickness of 1÷2 mm

a Young's modulus of 20 MPa , and a contact radius of -16 mm (implying a contact

angle of 0.9840÷0.9893 radians). The Poisson's ratio adopted is 0.499, but -it does not

seem to have been directly measured. Such suggestions substantially agree with

Case 3 of the previous TABLE , vlihere the head radius is 15.875 mm , the layer

inner radius is 16.125 mm (thus implying a radial clearance of 0.25 mm), the

suggested layer thickness is 2 mm , and the angular contact radius is 1.22 radians

(see Fig. 7.3.2.7 , which indicates S . 122 gm for a load of 2.5 kN ; Fig. 7.3.2.9

reports for S ---- 122 gm a contact angle of about 1.08 radians. It is here assumed

that Table 3 of Dowson, Fisher, Jin, Auger, and Jobbins (1991) refers to a load of 2.5

kN , as suggested by the caption of their Fig. 2 .) Conversely, the Young's modulus

related to the previous TABLE is lower than that suggested by Dowson, Fisher, Jin,

Auger, and Jobbins (1991); in the present study E — 8.506 MPa and, in addition, v .e

0.49942 .
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The previously noted increase in fluid film thickness with contact radius

suggests to adopt small initial head-layer clearances, which promote large contacts

for limited loads (Section 7.3.3). Unfortunately, small clearances enhance an

undesired sensitivity of the contact pressure to perturbations of the Poisson's ratio

(Section 7.3.4) which is an elastic constant difficult to measure (Chapter 3). In

Section 7.3.4 it was shown that the transitional 5 R/7/ 2 value beyond which a

perturbation of the Poisson's ratio appreciably modifies the contact pressure is 100,

and that the corresponding transitional figure for a/h is 20 . For Case 3 of the

previous TABLE, which refers to a load of 5 kN , 5 R/h 2 = 43 , so that the

Poisson's ratio is not a key variable. For the optimized configuration of Table 3 of

Dowson;Fisher, Jin, Auger, and Jobbins (1991) (which possibly refers to a load of 2.5

kN), a/h -= 8±16 , so that in this case too the Poisson's ratio is not a salient

parameter. On the other side, if the head-layer gap is smaller (compare Fig. 7.3.4.1

and 7.3.4.7), or the load is higher (e.g. Fig. 7.3.4.1), the mechanical response of the

hip replacement is increasingly dependent upon the Poisson's ratio adopted, so that

it becomes necessary to measure II experimentally with great accuracy. In

conclusion, it seems wise not to adopt too small head-layer clearances.

The effects of a variation of E have not been explored in this thesis.

Dowson, Fisher, Jin, Auger, and Jobbins (1991) write "The elastic modulus of the

compliant layer should be low enough to produce effective microelastohydrodynamic

lubrication and flattening of asperities" and "Both the . normal and shear stress

distributions are primarily dependent on contact area. Reduction in elastic modulus

would produce an increase in strain and an increased likelihood of fatigue failure."

This last sentence has already been criticized in Section 7.3.2 , where its validity

has been questioned.

It is finally observed that in different applications of elastomeric coatings,

aimed at protecting aircraft surfaces from damage by impact and abrasion

(Matthewson (1981)), thinner layers are preferable. In fact, in this case the cortex

thickness is chosen so that, under the impact of small particles, the outcome of

tensile stresses, which can promote cracks in the coating, is prevented. Contrary to

the biomechanical case, a minimum thickness criterion is the optimum solution for

this latter application, characterized by much smaller contact widths.



Chapter 7 The Spherical, Elastomeric Layer 	 7.51

7.4 CONCLUSIONS

A finite element mechanical analysis has been performed for a hip

replacement possessing an elastomeric layer. Four basic geometries have been

analyzed, and the total load, peak pressure and contact width, maximum interface

shear stress and its location have been diagrammatically reported versus the head

indentation depth. Then, modified geometries and situations have been explored, by

altering the initial head-layer gap, the Poisson's ratio, the angular extent of the

elastomeric layer, and by approximating with a paraboloidal profile the spherical

shape of the rigid indenter penetrating a spherical, deformable layer. The results

retrieved suggest that for a given load the peak pressure and the maximum shear

stress diminish as the layer thickness is increased, thus providing practically

relevant indications about the selection of the optimal layer thickness. In addition,

the marked sensitivity of peak contact pressure to Poisson's ratio perturbations

evidences the need for an accurate experimental measurement of II . In any case, as

a consequence of the above reported sensitivity to v, it seems wise not to adopt

very small head-layer gaps in practical applications.
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8.1 INTRODUCTION

The lubrication mechanism in artificial hip joints is being currently studied

both experimentally (e.g. Unsworth, Pearcy, White and White (1987)) and numerically

(e.g. Dowson and Jin (1986)). Only analytical-numerical aspects are considered in this

Chapter. Reference books for the lubrication problem are those of Szeri (1980) and

of Gohar (1988). The results of current international research show that it is now

possible to mimic numerically the elastohydrodynamic lubrication (EHL) regime

activated by soft layers in the case of a) plane (unidimensional) models which

account, for transient micro-elastohydrodynamic (that is, the walking mechanism and

the profile roughness are incorporated) lubrication (Jin (1988)) and in the case of b)

two-dimensional (quasi elliptic) descriptions in stationary conditions (Yao (1990)).

The two-dimensional lubricated contact in hip replacements subject to walking

conditions does not seem to have been treated so far. In fact, the concomitant

accumulation of formidable analytical difficulties precludes its analytical-numerical

solution with reasonable computing resources. To this aim, it would be important to

devise numerical solution methods which are both reliable and fast. It would also be

useful to produce exact solutions against which to assess the numerical forecasts,

at least for particular cases.

This Chapter addresses a limited aim : to introduce some robust analytical

tools developed by the present author and restricted, for the time being, to plane

situations, which are useful in the numerical solution of the EHL problem and which

are reliable and/or fast. The anglytical tools reported here have already been

published by the present writer, and the pertinent papers are quoted in due course.

Such tools do not specifically address the hip joint lubrication, but they deal with

the more general field of lubricated soft contacts. The numerical experiments here

presented generally refer to lubricated elastomeric seals.

Each following subsection is dedicated to a particular aspect, and it includes

a brief review of the pertinent literature.
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8.2 ON THE CONSTRUCTION OF CLOSED FORM SOLUTIONS FOR THE EHL PROBLEM

This Section addresses the existence of exact solutions for the EHL problem,

to be used as test cases in the validation of numerical programs and in the estimate

of their accuracy. It is strongly underlined that this Section does lot look for a

rather ambitious, general, analytical solution to the EHL problem, but much more

modestly an analytical tool is developed which permits a series of significant test

cases to be produced.

8.2.1 Literature review

Papers are reviewed in the following which quote the impossibility of

obtaining analytical solutions to the EHL problem and, in addition, the difficulty in

constructing analytical solutions to be used as test cases in the validation of

numerical programs for the El-IL problem. In plane configurations, it is well known

that exact solutions exist for the hydrodynamic (as opposed to elastohydrodynamic)

case, provided that the rigid, lubricated profile is simple enough so that some

integrations can be performed analytically (Field and Nau (1975), Strozzi (1985)).

Moving to the considerably more complex EHL problem, Oh and Rohde (1977) note

that "a closed form solution . . . is almost always difficult to obtain." Hamrock and

Tripp (1984) write: "Hitherto several approaches to the elastohydrodynamic

lubrication problem have been considered, each of which finds application in some

regime of the operating parameters contained in the model equations. However, since

none of the methods produce a solution (i.e., a compatible pressure distribution and

film shape) in closed mathematical form, questions of convergence and stability of

the various results assume considerable importance. Moreover, in arriving at an

acceptable solution, it should not be overlooked that while uniqueness of solutions

is generally assumed, it has never been rigorously demonstrated in the case of the

particular nonlinearities presented by the elastohydrodynamic lubrication problem."

More recent and mathematically advanced research based upon variational

inequalities has in fact shown that at least a solution exists for the EEL problem



Chapter 8 Analytical Tools For The EHL Problem 	 8.5

incorporating cavitation phenomena and Boussinesq-type foundation models. The

following papers employing functional analysis concepts are pertinent : Rohde and

McAllister (1975), Rohde and Oh (1975), Cimatti (1980), Kostreva (1984), Oden and Wu

(1985), Cimatti (1986), Wu and Oden (1987).

Moving to the papers specifically dealing with the difficulties encountered in

performing an analytical test in the EHL regime, so that the validations effected are

confined to the hydrodynamic situation, Rohde and Oh (1975) assess their finite

element program in the case of a rigid slider. Similarly, Oh (1984) writes : "The

application to journal bearing mentioned above offered an opportunity for partial

validatibn of the computer codes. Cases were run with the compliance matrix set to

zero, and the results agreed well with those obtained by a different computer

program written for analyzing rigid journal bearing." To set the compliance matrix

to zero simply means to treat exclusively the hydrodynamic problem. Analogously,

Ruske11 (1980) develops a finite element solution to the EHL problem and writes with

regard to its validation : "A rigid inclined slider bearing GE = 0) lubricated by an

isoviscous fluid was used as a test case."

From the previous literature review it emerges that closed form solutions are

too difficult to achieve for technically relevant situations. The next best is

therefore to develop analytical solutions of simplified situations to be used as test

cases in the assessment of numerical packages. The following Section presents a

systematic way of constructing such test cases.
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8.2.2 The construction of exact test cases

The considerations which follow are mainly extracted from the following

papers : Strozzi (1984c), Strozzi (1987a), Strozzi (1987b). The relevant equations

describing the steady, unidimensional, isothermal, isoviscous, elastohydrodynamic

problem are

where h is the fluid film thickness, p the fluid pressure, pa the dry contact

pressure, U the sliding velocity, 77 the fluid viscosity, pi and Po are the inlet and

outlet pressures, and xi and xo are the inlet and outlet coordinates. In addition, L is

a linear, positive-definite, integral operator expressing the lubricated profile

compliance.

In technically significant situations, pc , pi and Po are usually known, while p

and h are the unknowns. They are a solution to the elastohydrodynamic problem if

they satisfy the previous equations (8.2.2.1,2,3) simultaneously. Exact solutions for

the EHL problem stated as above are too difficult to achieve, and therefore a

different treatment is proposed in the follow-up.

By integrating twice equation (8.2.2.1) with respect to x, by imposing the

boundary conditions expressed by (8.2.2.3) and by introducing the symbol

pressure p can be explicitly expressed as a function of h (Field and Nau (1975))
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p (x) = 6 77 U	 1 2 (x)	 1132 ((xx:)) 1 3 (x) ) + pi (1	 /3 (x) •ii_ 
Po 
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(8.2.2.5)

Cases of piezoviscous lubricants can be treated by resorting to the

"fictitiously isoviscous pressure" concept (Blok (1963), P. 16).

Equation (8.2.2.5) is equivalent to (8.2.2.1), provided that curve h satisfies

the regularity requirements imposed by (8.2.2.1). If h were chosen to be piecewise

linear, integral /Th in (8.2.2.4) could be computed exactly, and therefore an analytical

expression for p could be derived. Anyway, if such p and h -curves 'were introduced

in (8.2.2.1), they would not satisfy it, since dh/dx would not exist at the nodes of

the piecewise linear fluid film profile. This example clarifies that (8.2.2.1) and

(8.2.2.5) are equivalent only if the film curve h employed in (8.2.2.5) is supposed to

be differentiable along the whole sealing . length. Also, this example shows that, if h

is selected among sufficiently regular and simple curves, and if the inlet and outlet

pressures are known, the corresponding fluid pressure profile p can be computed

exactly.

Moreover, operator L of (8.2.2.2) , being positive-definite, is always

invertible. In addition, if the foundation model is chosen to be reasonably simple,

operator L may be inverted in closed form. Thus, (8.2.2.2) becomes

pc = p — L' 	 (8.2.2.6)

As already mentioned, once h has been chosen, p can be computed.

Consequently, an exact expression for pc can be derived from (8.2.2.6). In so doing,

a dry contact pressure profile, pc , is obtained for which the imposed curve of the

fluid film thickness, h , and the derived fluid pressure, p , are exact solutions of

the En - problem, so that a complete formal solution has been achieved. The

proposed procedure permits a set of analytical solutions to be obtained for

foundations ranging from soft to hard contact, and therefore it produces
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particularly suitable test cases.

A key point in this treatment is the fact that, if h is reasonably simple,

integrals In in (8.2.2.5) can be computed exactly for a variety of fluid film profiles,

despite the fact that the relationship between fluid pressure and film thickness of

(8.2.2.5) is highly nonlinear.

If the film thickness is described in terms of a polynomial expression up to

the fourth degree included, then the corresponding roots can be computed exactly,

and the integrands of integrals In in (8.2.2.5), being proper rational functions, can be

decomposed into partial fractions and integrated exactly. From the numerical

solutions (e.g. Ruske11 (1980)) it appears that a fourth degree fluid film profile can

describe with reasonable accuracy many practically significant situations. If h is

expressed by higher order polynomials, it is convenient to formulate h (x) as follows

h (x) --,--- C (x — x 1) (x — x2) (x — x3) • • •	 (8.2.2.7)

so that its coefficients are already initially expressed in terms of its roots and,

consequently, 1/h2 and 1/h3 are still integrable in closed form.

A slightly different approach consists in expressing 1/h (and not h) via a„
polynomial expansion of a however high degree. As a consequence, functions 1/h2

and 1/h3 appearing in (8.2.2.5) are polynomial themselves and; therefore, they are

easily integrable in closed form, where the corresponding computations can be

performed with an algebraic manipulator. From (8.2.2.5) it also appears that p (x) too

is polynomial. The counterpart to this alternative approach is that the calculations

contained in (8.2.2.6) may become impossibly complex (1/h and not h is polynomial),

unless a simple Winkler foundation model is adopted.

Considerations concerning some foundation models are presented hereinafter.

Among the theoretical foundations (Kerr (1964)), the Winkler and the Pasternak

models are easily invertible in closed form, as requested by (8.2.2.6). The Winkler

foundation describes a local interaction between the film thickness and the pressure
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variation, and therefore it is often referred to as "independent linear column model"

h (x) = K ip(x) - pc(x)) 	 (8.2.2.8)

It is appreciated that in some cases such a foundation can lead to physically

unrealistic results (Strozzi (1984d)). On the other side, this foundation model

generates test cases particularly suitable in assessing the physical likeliness of

numerical undulations in the pressure profile (Strozzi (1987a)). In fact, since each

column • in the Winkler foundation behaves individually, such a model does not

prevent the outcome of pervasive numerical undulations and, therefore, it is

regarded as particularly suitable for assessing the regularity of the numerical fluid

film profile.

The Pasternak model is the most natural generalization of (8.2.2.8), since in

addition it assumes the existence of shear interactions between two subsequent

columns

xo
K21x	 f

h (x) = K 1 j e -
	 - y1 

ti3 (y) — Pc (y)) clY
Xi

(8.2.2.9)

The Boussinesq-type foundation has been studied in Chapter 4, and the

analytical difficulties inherent in this model transpire from the perturbation

solution developed in Section 4.3.5 .

Having examined the main analytical aspects, the next task is to apply the

proposed procedure to a practical case, and to develop in detail the corresponding

calculations. In the following, only a linear fluid film profile and a Winkler

foundation model are considered. This choice permits integrals in to be computed

exactly, and equation (8.2.2.6) to be handled easily.

The published numerical fluid film profiles for soft contacts are of nearly

uniform thickness over most of the lubricated zone. A typical nip occurs in the

vicinity of the outlet, while the profile by the inlet can be complex in shape (Prati
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and Strozzi (1984)). Thus, a linear fluid film profile can properly describe the

central lubricated zone, while it cannot cope with the local deviations from the film

thickness constancy by the leading and trailing edges.

In the case of a (rigid) linear slider (Fig. 8.2.2.1) , the pressure profile, p , is

obtained from eqn (8.2.2.5), see Strozzi (1983)

p (x) — 	 6 77 U (x — x	 hi	 f i.	 11.2
(ho — h i) (h i ± ho)	 h	 1	 h

L, 12	 1 -	 )2
h + Po 	

1 — ?1-2 )2	 1	 f hi 12
h	 I-

(8.2.2.10)

where h i and ho are the inlet and outlet film thicknesses, respectively.

a

Fig.  8.2.2.1 : The meaning of symbols x i , xo , hi , ho , U , le .



E (1 — ii) 	 l _ 1,
Po = (1 + v)(1 — 2 v)

(8.2.2.11)

1 (1 ± v) (1 — 2 v)
K--=

E (1 — v)
(8.2.2.12)
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The next aim is to compute the dry contact pressure profile. To do so, it is

necessary to evaluate the Winkler coefficient K in (8.2.2.8). While K , in the limits

of a linear analysis, is constant with the deformation imposed to the individual

columns, it is not necessarily constant from one column to the next. In other words,

K can be a function of the axial coordinate, x . If in every column the x-oriented

deformation is negligible , then the link between the dry contact pressure, pc , the

column free length, 1 (which corresponds to a vanishing fluid pressure), and the

column length in the deformed configuration, /c (Fig. 8.2.2.1), is (see equation

(4.4.2.1.13))

where E is the Young's modulus and v is the Poisson's ratio of the deformable,

lubricated layer. By comparing (8.2.2.8) with (8.2.2.11), the expression for K is

derived

and, therefore, K varies with the column free length 1. Since p ( and not pc ) is

available from (8.2.2.10), it is necessary to modify (8.2.2.8). Since

K pc = 1 — lc
	 (8.2.2.13)

equation (8.2.2.8) becomes

K p = 1 — lc + h
	

(8.2.2.14)



— h / — (1 ± v) (1 — 2 v)
1 — p

E (1 — v)

(8.2.2.15)

h
Po = P — –;K

(8.2.2.16)
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By combining (8.2.2.12) and (8.2.2.14), it follows

where p is expressed by (8.2.2.10), which in turn depends essentially upon the

choice of pi and Po . (The way in which p t and Po can be fixed is examined later

on.) Having imposed lo (which is the height of the column under dry contact, and

generally known from the shape of the rigid indenter), the free column length can be

computed from (8.2.2.15) as a function of p i and Po .

Equation (8.2.2.15) defines the shape of the undeformed lubricated profile

which would produce the desired fluid pressure curve, p , in the case of a Winkler

foundation model. Equation (8.2.2.15) shows that for certain combinations of E, v

and p , the denominator may vanish, in which case such a linear foundation model

would become no longer physically realistic.

Then, the value of K can be computed for every x-coordinate from (8.2.2.12).

Finally, the dry contact pressure profile, po , is obtained from (8.2.2.8) as

It may be desirable to attain a vanishing dry contact pressure profile by the

seal inlet and outlet. This situation occurs in hip prostheses. In this case, 1 = lo at

the seal edges and, consequently, it follows from (8.2.2.14)

ht
Pt ---- /7.	 ;	 Po = (8.2.2.17)



hi E (1 —
lc (x0) (1	 v) (1 — 2 v)
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By performing the suggested computations, the explicit expressions for p i and

Po as functions of hi , ho , lc (xi) , lc (x0) , E and V are

Po —
Pt — lo (xi) (1 + v) (1 — 2 v)

ho E (1 — (8.2.2.18)

In summary, the parameters to be initially imposed are hi , hc , xi , xo , 71 and

U . From (8.2.2.10) an analytical expression for p (x) is obtained which depends upon

pi and Po . Having additionally imposed the values of curve lc ., (which is not

necessarily constant, and related to the punch shape) and of the 'elastic constants E

and v , and knowing already h from the previous imposition of h i and ho , the

analytical expression of the free column length, 1 , is derived from (8.2.2.15) as well

as the curve for K from (8.2.2.12), as functions of x-coordinate. It is noted that

both 1 and K curves are functions of p i and Po . Then, the boundary fluid

pressures p i and Po are computed from (8.2.2.18), which impose that the dry contact

pressure vanishes at the contact ends. As a consequence, p azzd ace naw

completely known. Finally, the dry 'contact pressure, pc , is analytically derived

from (8.2.2.16).

Conversely, if the dry contact pressure possesses the above shape, if to the

boundary pressures the above values are imposed and if the foundation mode/ is of

Winkler type where K varies as previously indicated, then the fluid film shape is

linear with inlet and outlet widths h i and 110 , respectively, and the fluid pressure

possesses the form of equation (8.2.2.10). In other words, the analytical solution for

the fluid pressure and fluid film thickness is known, and it can be used to assess

numerical packages.

;

As a final remark, it might be argued that the employ of a variable Winkler

coefficient K is little justified, since it does not substantially improve the limited

accuracy of the Winkler model. As a matter of fact, this choice retains some of the

difficulties inherent in more complex foundation models. Consequently, the numerical

methods capable of handling a variable Winkler coefficient can be extended to deal

with foundations of integral type.
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The above approach characterized by a linear fluid film profile was employed

in Strozzi (1986c) and in Strozzi (1987b) to validate a numerical program dealing

with the lubrication of soft contacts. In Strozzi (1987a), instead, a polynomial

expansion for 1/h up to the fourth degree included was adopted for a similar task.

Figs 8.2.2.2,3,4 and 8.2.2.5 refer to these two situations, respectively. Fig. 8.2.2.2

shows fluid film profile, h , dry and lubricated contact pressures, p and pc , and

dry profile, 1 , for ht = 2.5 jin , ho = 2.3 gm , x, = 0. , xo 4.83 mm , E =-

7.58 N/mm2 , U = 127 mm/s , 77 = 0.43 x 10 - 6 N s/mm2 . (The Winkler model

employed in this Figure presupposes vanishing stresses in the direction parallel to

x-axis, so that eqn (8.2.2.11) becomes slightly different (see Strozzi (1987b)), and v

= 0.5 can be imposed.) Fig. 8.2.2.3 uses similar data, but this time the elastomer

becomes harder, where E = 100 N/mm2 . Following the same trend, Fig. 8.2.2.4 refers

to E = 1000 n/mm2 . Finally, moving to a polynomial expansion for 1/h , Fig. 8.2.2.5

presents an experimentally measured fluid film thickness taken from Field and Nau

(1973) together with its analytical approximation via a fourth degree polynomial for

1/h .

Fig. 8.2.2.2 : Exact test case for ht = 2.5 gm , ho	 2.3 gm , E	
7.58 N/mTn2

U	 127 mm/s and ri = 0.43 x i0 	 .
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o.	 1.	 2	 3.	 4.	 4.83
x, mm

Fig. 8.2.2.3 : Exact test case for hi = 2.5 gm , ho = 2.3 gm , E = 100 N/mm2

U = 127 mm/s and 77 = 0.43 x 10-6 Ns/mm2 .

•	 0.	 1.	 2.	 3.	 4.	 4.83
. x,mm

Fig. 8.2.2.4 : Exact test case for h i = 2.5 gm , ho = 2.3 gm , E = 1000 N/mm2

U ---- 127 mm/s and 77 = 0.43 x 10 -6 Ns/mm2 .
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Fig. 8.2.2.5 : Experimental ( 	 ) and analytical (- - - -) fluid film profiles.
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8.2.3 On the existence of infinite pressure peaks

An open problem regarding the elastohydrodynamic lubrication regime is

whether the pressure spike often encountered in the lubricated contacts (e.g. Blok

(1963)) is mathematically finite or infinite. A conspicuous technical literature exists

on this controversy, partially asserting the finiteness of the pressure spike, and

partially favouring an infinite peak. The first class includes the work of

Herrebrugh (1968), who concludes that no pressure spike occurs for constant

viscosity. Wu (1986) investigates the continuity of the pressure derivative, and

concludts that the pressure profile is smooth in the isoviscous or closely

isoviscous case. Wierzcholski (1986) studies the lubricated Hertzian contact in the

presence of a non Newtonian, pseudoplastic lubricant, and he notes that "the

pressure peak in the pressure distribution non appears because in the . . . region . .

. near the exit of the film . . . the non-Newtonian properties of the lubricant are

taking into account (sic)". Bisset and Glander (1988) find numerically that the spike

is smooth for the situations examined. They note that "a proof that the pressure

derivative is continuous for general problems, not requiring near-constant viscosity,

is still a very worthwhile goal." Hamrock, Pan, and Lee (1988) also support

numerically the conclusion that the pressure peak "did not exist for the isoviscous

solution but did exist for the viscous solution", so that they conclude that "the

pressure spike is viscosity driven." In any case, the spike is found to be finite,

where its amplitude depends on the fluid compressiblity. Hall (1990) favours a

"mathematical weakness of the spike", even if "the pressure distribution is closely

logarithmic on both sides of the pressure spike" , "although it is not a logarithmic

singularity." His numerical results indicate that "no computed pressures were

greater than about 2.2 Po", where Po denotes the peak Hertzian pressure. Hall (1990)

observes that "it is now generally accepted that the isoviscous case . . . does not

exhibit a spike under even the most extreme loading conditions."

The papers favouring an infinite pressure spike include Kostreva (1984b), who

shows that the hydrodynamic pressure corresponding to a strictly parallel section

of piezoviscous film possesses a logarithmic singularity, which can be avoided if

some conditions are satisfied. Kostreva (1984b) observes that "these conditions do
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occur in most practical instances. Hence only a finite segment of the log function

(and not the infinite arc of the singularity) enters the solution p(x) as a pressure

spike."

The observations which follow demonstrate that an infinite pressure spike is

consistent with the Reynolds equation for the plane, stationary, piezoviscous case,

but not with the isoviscous situation. Configurations where the pressure spike is

infinite are analytically developed by exploiting methods similar to those developed

in Section 8.2.2 . It is, however, underlined that the results here obtained do not

necessarily conflict with the above-quoted papers (e.g. with the above observations

of Bissgt and Glander (1988)). In particular, the previous studies refer to realistic

situations, mainly to lubricated Hertzian contacts, while the configurations here

explored are very particular, and purposely constructed to evidence peculiar

aspects, which may never be encountered in practical problems.

The integrated form of Reynolds equation (Bisset and Glander (1988)) is

h3 d p
77 d x

— 6 U h — Q	 (8.2.3.1)

.:

where h is the fluid film thickness, p the fluid pressure, U the sliding velocity, 77

the fluid viscosity, and Q is the fluid flow. It is asSumed that the pressure spike

occurs, if it does, for x --- 0 , where x is the conjunction zone coordinate.

In the isoviscous case, 77 is constant. If h is assumed as continuous (h E C°)

(a however concentrated pressure distribution cannot produce a discontinuity in the

free border of a half space describing the elastic foundation of the lubricated

conjunction), then 6 U h is the same for x – 0+ and x =-- 0– . Similarly, the flow Q

remains the same for x – 0+ and x = 0– . If a (positive) pressure spike occurs at x

= 0, then in a sufficiently small neighbourhood of x=0 dp/dx > 0 for x < 0

while dp/dx .< 0 for x > 0 (Fig. 8.2.3.1) . As a consequence, term (h3/77)(dp/dx)

would change its sign when passing from x – •0– to x = 0+ . It is concluded that a

pressure spike cannot exist in isoviscous circumstances.
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Fig. 8.2.3.1 : The pressure peak in the vicinity of x = 0.

Moving to the piezoviscous situation, the usual pressure-viscosity

dependence equation is adopted in this study

77 = 77o e ct P	 (8.2.3.2)

Following schemes similar to the isoviscous case, the existence of an infinite

pressure peak for x = 0 requires that

dp	 dp
dx	 dxlim 1 X _+ea P	 u	 P

Since term dp/dx changes its sign when passing from x = Or- tic

while term e P is always positive, equation (8.2.3.3) requires :
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lim lx --0 0—

	

dp	 dp

	

dx	 =	 a
dx	 0	 (8.2.3.4)

	

P	 X	 e P

and (8.2.3.1) shows that

Q = — 6 U hp

where hp denotes the fluid thickness by the pressure spike.

By accounting for (8.2.3.5), eqn (8.2.3.1) becomes

h3 d P
d	

6 u (h — hp)x

(8.2.3.5)

(8.2.3.6)

If U > 0 , since physically h > 0 , 77 > 0 , and since the existence of an

infinite pressure peak for x = 0	 requires that in a sufficiently small

neighbourhood of x 0 , dp/dx > 0 for x < 0 and dp/dx < 0 for x > 0 , then

from (8.2.3.6) it follows that h > hp for x < 0 , and h < hp for x > 0 , that is,

the clearance is convergent by the pressure spike. This conclusion does not exclude

that dh/dx may vanish for x	 0 . These results contrast with Kostreva (1984b),

who assumes a constant film thickness in the vicinity of the pressure spike.

The following observations examine if condition (8.2.3.4) is verified by the

singular pressure profile found by Kostreva (1984b). His pressure curve is

dd P x=x 0 (x	 )x°)p (x) = p (xe) — al in (I. — a (8.2.3.7)

where xe denotes a point to the left of the pressure singularity. In addition,

following again Kostreva (1984b) :



X = xe +	 1
d p

a —	 xIx—d x — c

Xe —
1 

d pa.	 lx—'d x — xc

(8.2.3.10)
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d p (x) _	 	 1 
d x	 — 	 1 	 a (x — xc)

d P (Xc)
d x

(8.2.3.8)

where the pressure singularity occurs when

(8.2.3.9)

If the singularity has to appear for x --- 0 , then

which implies p'(x) > 0 , since xe is to the left of x --- 0 , that is, xc < 0 .

By employing (8.2.3.7) and (8.2.3.8), condition (8.2.3.4) becomes for the

Kostreva (1984b) case

dp
dx

lim lx —+ 0 ea P

1
1 	 a (x — xc)

d P (xc)
d x limIx __+ 0 d p	 —

a p (xe) — ln (1 — a.	 Ixx— c (X — Xc))d x —e

d p(xc)	 d p(x0)
d xdfor x = 0— and	 x 	 for x ---- 0+	(8.2.3.11)

e
a p (xe) e

a. p (xe)

=



dp
dx	 1 

ea P =	 ap/2
e

(8.2.3.13)
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(where conditions a. > 0 , p'(xc) >0 have been exploited), which vanishes only if d

p(xc)/clx = 0 , thus implying from (8.2.3.9) that x — xc = 00 (that is, the pressure

peak occurs at an infinite distance from the reference point xc , that is, the

lubricated contact is infinitely long), or if p(xc) = co , which presupposes two

pressure singularities along the lubricated contact. It is concluded that the singular

pressure profile proposed by Kostreva (1984b) does not generally satisfy condition

(8.2.3.3) and, therefore, its validity is questionable. In other words, the limit value

(8.2.3.11) indicates that the Kostreva fluid flow does not remain constant when

passing through the x = 0 coordinate at which the spike occurs. It is finally

observed that the Kostreva solution satisfies (8.2.3.6) if there is a discontinuity in

the film thickness. Another possibility is that the singular pressure of Kostreva

does not equally hold for the two sides of the pre§sure peitk.

The following observations present singular pressure profiles which respect

condition (8.3.2.4). Observations about the film thickness shape in the vicinity of

the spike are also derived. If, for instance

d p  ___ e ap/2
for x < 0 and d p _ _ e ap/2

d x —	 d x	 for x > 0 (8.2.3.12)

then

Lim ix -+ 0-

dp
dx	 1 ec, P	 ap/2

e

which both 'vanish as p ---* co . As a consequence, the singular pressure profile

(8.2.3.12) satisfies condition (8.2.3.4).

Condition (8.2.3.12) implies that



a
2 71

= 6 U. d hd x (8.2.3.16)
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2P (x) = - cc- In	 a

•

 Pc/2 + ( xe - x ) ) for x < 0

(8.2.3.14)

p (x)	 -	 ln e c)r

•

 -13/2 +	 ( x - x e )	 for x > 0

The following observations analyze the properties of the fluid film shape in

the vicinity of the pressure spike. Form (8.2.2.1) it follows

• d p	 d p
dh(dx) i_ h3 d

J	 6 U dh—	 ,-
d x	 77	 d x	 77	 d x

(8.2.3.15)

According to (8.2.3.13), the first term in (8.2.3.15) vanishes by the pressure

spike. By employing (8.2.3.13), the second term of (8.2.3.15) equals - a h 3 /(2 770)

where hp denotes the fluid thickness by the pressure spike. If U is positive, eqn

(8.2.3.15) becomes for x	 0- , 0+ :

which implies that the film thickness is convergent for x = 0 .

Cases characterized by

d p	 ap/2	 d p	 „ ap/2
=	 e	 for x < 0 and	 - x 6	 for x(U 3.17)d x	 d x

where n is a positive, integer number, can be studied in the same way, and they

show that the corresponding film thickness gradient may vanish by the pressure

spike.
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Situations are now examined in which the fluid profile, h , is imposed, and

information on the pressure profile is retrieved. If eqn (8.2.3.1) is integrated in the

case of piezoviscous fluids between coordinates x and 0 (the pressure spike is

thought to occur for x = 0), then

e
— a p(x)

	

	 a no ( 6 U I c±-2 ± Q 1 4--Y )----
h2	 h3

x	 x

which ipplies that the parenthetical term is positive. Finally

o	 o

 f ydli
P (x) = — 1-- ln ( a no ( 6 U I

2 
±Qj

h	 h3 j J

(8.2.3.18)

(8.2.3.19)

Eqn (8.2.3.19) is a generalization of (8.2.2.5). The condition of infinite

pressure for x --= 0 has been used in deriving (8.2.3.19). Employing condition

(8.2.3.5), expression (8.2.3.19) becomes

	

0	 0
d y

	

p (x) = — (I ln ( 6 cc 770 U ( 1	 — hp 1 d-2
3

 
)j

h2	 h

	

x	 x

(8.2.3.20)

where hp denotes the fluid film thickness by the pressure spike. It can be shown

that (8.2.3.20) satisfies condition (8.2.3.4) referring to the left branch of the

pressure spike (here x coordinate is to the left of the spike, that is, it is negative),

If h is constant and equal to hp , then p (x) -- co everywhere, a results in contrast

with the Kostreva (1984b) conclusions. In addition, it is now shown that a

convergent film profile is consistent with the condition implicit in equation (8.2,3,18)

(see also . (8.23.20)), and there commented. In fact, if the fluid film shape is

convergent between x and 0 , then :



1f -1 =a -1-bx+cx 2 ±dx3 (8.2.3.22)
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hp
—h S 1 --0 ( hi )2 � (iz )3 _o

0	 0

1 c-IY — hp 1 d-Y � 0
h2	h3

x	 x

0
j ( hhp )2 dy

x

�
0

x

j	 ( /if )3 dy	 __•

(8.2.3.21)

It would be possible to select a sufficiently general expression for the fluid

film thickness (Section 8.2.2), e.g.

and to introduce (8.2.3.22) into (8.2.3.19), to study the conditions which the

coefficients of (8.21.3.22) must satisfy to produce an infinite pressure peak as x --n 0 .

In conclusion, it has been shown in this Section that an infinite pressure peak

is mathematically consistent with Reynolds equation even in the case of

piezoviscous fluids. No result here obtained leads one to exclude that this pressure

spike might appear even in the case of soft lubricated contacts, even if the present

author is unaware of works exhibiting such pressure peaks.
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8.3 THE ELASTOHYDRODYNAMIC PROBLEM EXPRESSED IN TERMS OF

EXTENDED VARIATIONAL FORMULATION

In this Section the stationary, plane, elastohydrodynamic problem is revisited

in terms of an extended variational formulation, where the corresponding functional

exhibits minimum properties in the solution neighborhood. Such features are

exploited in the development of a relaxation-type solver. The numerical results

indicate that the convergence rate of the proposed relaxation scheme becomes

increasingly poor as the solution of the elastohydrodynamic problem is approached.

A polyalgorithm based on a combination between relaxation-type and Newton-type

schemes is proposed. The numerical experiments referring to various sealing profiles

of decreasing foundation compliance show that the proposed procedure is

particularly advantageous in the case of soft lubricated contacts.

Most of this Chapter is extracted from Strozzi (1986c), while the initial

examples of Section 8.3.4 are unpublished.
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8.3.1 Introduction and motivation

The last decade has witnessed the application of sophisticated analytical tools

to elastohydrodynamic lubrication (EHL) problems. Most times such tools have been

borrowed from the area of traditional structural mechanics, where they have

initially been developed and validated.

Significant examples encompass the finite element formulation coupled with a

functional linearization of the EHL problem (Rohde and Oh (1975)). Similarly, the

concept of complementarity, which was initially applied to the mechanical analysis

of units subject to unilateral contacts (e.g. Cannarozzi (1980)) , has recently been

extended to the cavitation problem (Kostreva (1984), Oh (1984), Oh and Goenka

(1985)), as well as to mixed lubrication and to tangential velocity slip situations

(Strozzi (1985)). Quite recently, a more exhaustive modelling of the cavitation

problem has been achieved by resorting to a formulation in terms of variational

inequalities (Oden and Wu (1985)), which enables conditions on the existence and

uniqueness of the solution to be achieved. Stability considerations on the

elastohydrodynamic solution are developed by Kostreva (1984), by extending to El-IL

situations basic concepts which are familiar to mechanics. Finally, a preliminary

variational formulation of the classical EHL problem is presented in Alliney, Strozzi,

and Tralli (1985) together with exploratory numerical results.

Although it would be injudicious to rely entirely on numerical results, the

current direction of engineering practice is one in which computer simulations are

employed to make design decisions, while experiments are used to gain better insight

into basic physical phenomena and to validate numerical results. The analytical

tools mentioned above have undoubtedly enabled various EHL problems to be

properly formulated, as well as they have frequently spurred the development of

novel numerical strategies. For instance , specialized techniques have permitted the

numerical solution of the classical EHL problem to be attained more rapidly (Rohde

and Oh (1975), Oh and Goenka (1985), Ruske11 (1980)) and, therefore, they have led to

substantial savings in computer time.

In this Section the classical EHL problem is revisited in terms of an extended

variational approach. As it will emerge from Section 8.3.2 , such a modelling enables
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a locally convex functional to be obtained, the minimum points of which are

solutions to the original problem. Extended variational principles can be used to

underpin the finite element method in a more general context. In addition, they

provide a mathematical basis for the application - in the solution of the classical

EHL problem - of relaxation-type algorithms exhibiting good global convergence.

This latter property makes the proposed variational formulation a valid alternative

to continuation methods, which also can be employed to improve convergence

(Strozzi (1987a)). In this latter approach an initial solution is achieved for a problem

which is similar to the real one but in which the deformability of the sealing profile

is fictitiously stiffened (Oh and Rohde (1977) employ a continuation method in

solving heavily loaded point contacts). Then, the foundation is gradually softened

until the actual value of the Young's modulus is approached, where the solution

referring to the previous, higher Young's modulus is used as a starting point for

the subsequent, softened case.

The observations which follow address the question whether the extended

variational formulation is useful in treating the EHL problem in hip replacements.

From the previous considerations, and from the results of this Subsection, it

emerges that convergence problems are encountered particularly in the case of very

compliant foundations. This circumstance occurs especially in elastonteric seals

(Prat and Strozzi (1984)). In the case of hip replacements characterized by cups

covered by an elastomeric layer, the question arises whether this foundation is

more or less compliant with respect to an elastomeric seal. The whole of the results

of Chapters 6 and 7 shows that the stress state in the elastomeric stratum is mainly

hydrostatic when the contact width is much larger than the layer thickness (as it

occurs under nearly static loading due to the body weight), so that the foundation

is more rigid than its seal analogue, and seemingly stiff enough to avert

convergence problems. Conversely, when the load imparted to the joint declines as a

result of the walking load cycle, the contact width diminishes in comparison to the

elastomeric stratum thickness, and the cortex stress state becomes more deviatoric,

so that the elasticity of the foundation increases and convergence problems may

arise in treating the EHL aspect. In addition; an augment in the layer thickness is

equivalent to a relative diminution in the contact width, so that thicker elastomeric
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strata are more likely to originate convergence problems than their thinner

counterparts. Specific numerical tests to assess such predictions have not been

effected.
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8.3.2 Mathematical aspects

The mathematical modelling of a particular physical problem can often be

stated in two different ways. The first description relies upon pointwise equations,

which express the relationship among the physical variables associated with a

particular point and those related to the adjacent ones. Ordinary differential and, in

general, functional equations fall into this category. The second way consists in

describing the physical modelling in a global sense, where the mathematical

formulation expresses an interaction which simultaneously involves all the points of

the physical domain. Variational formulations fall into this category, where those

based on a functional with extremum properties are particularly desirable.

In the first description a solution must satisfy the functional equation in

every point and, therefore, it is required that the residual of • the functional

equation vanishes over the whole physical domain. In other words, the first

modelling relies upon an equality sign. Conversely, in the second formulation a

solution must minimize (or, alternatively, maximize or make stationary) the.

corresponding functional, and therefore such a modelling involves an inequality sign

(Milne (1980)).

When the physical problem is stated in terms of a functional, it is nearly

always possible to transform it into a set of equivalent functional (Euler-Lagrange)

equations. In other words, the second modelling can be modified into the first

description. This poser is called the direct problem of the calculus of variations. On

the other side, if the first modelling is available, the development of a suitable

functional the minimum points of which are solutions to the initial problem is not

generally straightforward. This stumper is called the inverse problem of the

calculus of variations.

The classical results concerning the inverse problem of the calculus of

variations are summarized in the following. In the case of a linear, self-adjoint

operator A, the problem

A (u) = 0	 (8.3.2.1)
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admits a classical variational formulation, where the corresponding functional has

the stationary point where equation (8.3.2.1) is satisfied (Mitchell (1971)). In the

case of a nonlinear operator A, a classical variational formulation exists provided

that it satisfies the so-called Vainberg-Volterra condition

< AL 0 , 11) > = < A L 7,b , 0 >
	

(8.3.2.2)

where < . , • > denotes the inner product, A' indicates the Gateaux differential of

operator A at u with direction 0 , and 0 and V) are a generic couple of functions for

which (8.3.2.2) is meaningful (Alliney and Tralli (1984)). In this case the functional

the stationary points of which are solutions to the original problem (8.3.2.1) is given

in Mitchell (1971).

When operator A is Gateaux differentiable but does not satisfy the symmetry

condition (8.3.2.2), a classical variational formulation is not available. Remarkably, it

has recently been demonstrated that an extended variational formulation can still be

achieved (Tonti (1984)). According to Tonti theory, the initial equation (8.3.2.1) can

be modified into an equivalent potential equation

A 'u * K ( A (u) ) = 0	 (8.3.2.3)

(where the star apex denotes the adjoint operator), whose extended functional F [u]

F [u] = 1 < A (u) , K A (u) >	 (8.3.2.4)

vanishes at the critical points, and exhibits local convexity properties in each

solution neighborhood (Alliney and Tralli (1984), Tonti (1984)). Operator K of
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(8.3.2.3) and (8.3.2.4) must satisfy the following five conditions (Alliney and Tralli

(1984), Tonti (1984))

1) 0 (K) D R (A) and R (K) C D ( A '41)

2) it is linear;

3) it is invertible;

4) it is symmetric;

5) it is positive-definite.

Equation (8.3.2.3) is not particularly useful from a numerical viewpoint, since

"we cannot expect any improvement in the computed solution" (Alliney and Tralli

(1985)) with respect to a standard Galerkin method. Conversely, the minimum

properties of the extended functional (8.3.2.4) at the critical points are particularly

appealing from a numerical standpoint, since the minimization of the functional can

be used for numerical calculations (Tonti (1984) and Szeri (1980), p. 307). Functional

(8.3.2.4) can be interpreted as a generalization of the least square functional (which

is recovered for K -=- I , Alliney and Tralli (1984), Tonti (1984)), but, similar to the

Galerkin method, it permits a weak formulation to be obtained by means of suitable

integrations by parts. While operator K is not unequivocally defined by Tonti's

theory, it can be selected according to the available numerical 'experience in the

numerical applications (Alliney and Tralli (1984)) ( see Section 8.3.3).

The extended variational formulation was first applied to structural problems

by Alliney and Tralli (1984). In Vecile (1984) an extended variational characterization

of Navier-Stokes equation was developed. Finally, in Alliney, Strozzi, and Trani

(1985) a preliminary application of such a formulation to lubrication problems was

presented.

The mathematical equations describing the quasisteady, unidimensional,

isothermai, isoviscous, elastohydrodynamic . problem (cavitation and slippage

phenomena being ignored) have already been presented in eqns (8.2.2.1,2,3), and for

convenience they are repeated here :



d Ih3d P
dx17 7 dx

— 6 Uh)= 0

h = L p — Pc)

P (xi) = Pi ; P (x0) = Po

(8.3.2.5)

(8.3.2.6)

(8.3.2.7)
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where p is the fluid pressure, po is the dry contact pressure, h is the film

thickness, 17 is the fluid viscosity, U is the sliding velocity, p, and pc are the inlet

and outlet pressures, and x i and xo are the inlet and outlet coordinates. In addition,

L is a linear, positive-definite, integral operator, which expresses the foundation

compliance (Strozzi (1985)). Following Rohde (Rohde and Oh (1975), Ruskell (1980),

Prati and Strozzi (1984)), it is possible to introduce equation (8.3.2.6) into equation

(8.3.2.5), to obtain a single integrodifferential equation in p

ddx ( L { p (x) — pc (x) ))3
dp)(x 

d x	 671U L{p (x) — po (x) ) I = 0

(8.3.2.8)

Equation (8.3.2.8) can be likened to equation (8.3.2.1), where operator A is

easily identifiable. Operator A is nonlinear and it does not generally satisfy

condition (8.3.2.2). While it cannot be excluded that particular choices of the key

physical parameters and of operator L would enable classical variational

formulations to be achieved, they do not appear to be available for the general

case. In Milne (1980), p. 417 , it reads : " Variational principles exist for certain

problems in fluid mechanics but have not yet been developed for the most general

case.". In Tonti (1984) it reads : " The [Tonti] method seems particularly promising

for the equations of fluid-dynamics".

Before formulating functional F [p] according to expression (8.3.2.4), it is

necessary- to choose a particular form for operator K. Following Alliney, Strozzi,

and Tralli (1985), Alliney and Tralli (1984), and Tonti (1984), an integral expression is

adopted for K :
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xo

K ( u (x) ) = 1 k (x,y) u (y) dy	 (8.3.2.9)

xt

where lc (x,y) is a symmetric function of its arguments. By choosing K according to

equation (5.5) of Tonti (1984), the 5 conditions previously mentioned can be

fulfilled. In fact, by performing in equation (8.3.2.8) a change of variable which

renders its boundary conditions homogeneous (Castelli and Pirvics (1968)), its domain

is assumed to be C., [ x t , Xo 1. If the kernel of the integral foundation model

(8.3.2.6) and k (x,y) of (8.3.2.9) are sufficiently regular, the range of (8.3.2.8) is

included in the domain of (8.3.2.9) and the domain of the adjoint operator of that

embedded in the Gateaux linearization of equation (8.3.2.8) (after the proper change

of variable) includes the range of (8.3.2.9).' Consequently, the first condition is

fulfilled. Linearity and symmetry of (8.3.2.9) are obvious. Invertibility is implicit in

positive-definiteness (Milne (1980)), which is demonstrated in (5.5) of Tonti (1984).

Anyway, in the numerical applications an expression for k (x,y) exhibiting a more

local support is preferred, which, conversely, does not strictly guarantee positive-

definiteness. This point is discussed in the next section.

The extended functional ' [p] of equation (8.3.2.3) becomes (in Alliney,

Strozzi, and Tralli (1985) the case of a Winkler support (Strozzi (1984)) is treated)

xo xo

j d i
T' [p] = 1 j	

d x
X1 Xi

( L { p (x) —pc (x) 1)3 d dPx(x)	 6 q UL{P (x) — Pc 01 li•

d	 fk (x,y) d y I LI, { 73 (y) — Po (y) })3 d P (y)dy	 677ULfp (y) — pc (y) 1 I dx dy = 0

(8.3.2.10)

'If the kernel of (8.3.2.6) is sufficiently regular, both h and dh/dx are

continuous, and the range of (8.3.2.8) is C [X , xo 1. If K (x,y) of (8.3.2.9) belongs to

L, , then the range of (8.3.2.8) is included in the domain of (8.3.2.9). The domain of

the adjoint operator of that embedded in the Gateaux linearization of equation

(8.3.2.8) (after the proper change of variable) is CZ [ x t , xo 1. It includes the range

of (8.3.2.9), provided that K (x,y) of (8.3.2.9) belongs to H.! .
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One of the advantages of the presence of operator K is that, if k (x,y) is

selected to be sufficiently smooth, the higher order derivatives can be removed

from the extended functional by integrating by parts, where kernel k (x,y) absorbs

the derivatives (Tonti (1984))

Xo xo
dpxT [p] = 1 1 n ( L { p (x)	

d	 )(x 
—pc (x) })3 	 6 RUL{p(x)— pc (x) d•

xi xi

32 k (,y) 1 riL { P (Y)	 Pc (Y) ))3 d 13 (y)	 6 rIUL{P(y) —po (y) 1 1 dx dy = 0
ax ay d y

(8.3.2.11)

Remarkably, only first order derivatives of pressure p appear in expression

(8.3.2.11). As a matter of fact, the extended variational formulation inherits the

benefits of the least-square method and those of Galerkin-type procedures, since

the potential extremum properties are combined with a weakening of the regularity

requirements for the unknown function p .

In expression (8.3.2.11) the boundary terms arising from integrations by parts

are zero provided that both Ic and its first derivatives vanish at the boundary of

its domain.
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8.3.3 Numerical aspects

A piecewise-linear interpolation for p satisfies the regularity requirements

embodied in equation (8.3.2.11). Thus, p E 11 1 , exactly as it would occur in

Galerkin-type models. The remaining variable pc could be chosen to be piecewise-

constant, since it is not subject to differentiation. In the interest of greater

consistency, pc too is selected to be piecewise-linear. Similarly, according to

equation (8.3.2.9), kernel k can be chosen to be bilinear within each square

subdomain in the x-y plane. Only the nodal values of k at the four corners of each

square subdomain need to be defined. If a vanishing nodal value is chosen at the

nodes lying on the periphery of the whole domain, then both k and its first

derivatives vanish along the entire. domain boundary. This .peculiarity avoids the

outcome of boundary terms in expression (8.3.2.11).

The k nodal values can be advantageously stored in a square matrix K

where its generic entry k ti defines the corresponding k-value for node i along x-axis

and for node j along y-axis. In Alliney and Tralli (1984)) it is shown that matrix K

can be favourably chosen to be (apart from the boundary nodes) symmetrical,

tridiagonal, and diagonally dominant.. Because of the previous observations on the

boundary nodes, the entries k 11 , k 12 •, k21 must. be set equal to zero together with

the corresponding terms referring to the opposite corner in the whole x-y domain. In

Fig. 8.3.3.1 the nodes where kernel k does not vanish are denoted with a dot, while

the square elements where k is not entirely null are shaded. For such elements,

term (3 2 k (x,y))/a x 8 y) in equation (8.3.2.11) is constant, as k (x,y) is bilinear.

The numerical difficulties encountered in dealing with positive-definiteness of

the numerical operator K based upon kernel k just described are discussed in the

following. If the numerical kernel k (x,y) and a generic function u (x) are

analytically expressed as

. K (x,y) = 0 T(x) K 0 (y) ; u (x) = 0 T(x) u	 (8.3.3.1)

where vectors 0 and 0 collect suitable basis functions referring to the N nodes,
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Fig. 8.3.3.1 : The nodes where kernel k does not vanish are denoted with a dot,

while the square elements where k is not entirely null are shaded.

while matrix K and vector u express the nodal values of k (x,y) and u (x),

respectively, then, by employing (8.3.2.9) and (8.3.3.1), positive-definiteness of

operator K requires that

Xo	 Xo

<Ku,u> —ILT[	 0(x)07.(x)clx)Ki	 (Y)	 (Y) dY u � 0

xi

( = 0 if f u= 0 )	 (8.3.3.2)

If c6	 , the two parenthetical terms are square Gram matrices (Mitrinovic

(1970)), and therefore they are positive-definite. Consequently, if matrix K is

positive-definite, so is operator K. If q5 7--= , operator K is in general only

positive-semidefinite, a fact which might results in spurious solutions being added to

the Tonti functional. In other words, a non-vanishing vector u (to be interpreted as
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a description of the residual of equation (8.3.2.8)) might exist for which the inner

product in (8.3.3.2) vanishes. For instance, in Fig. 8.3.3.2 two functions 0 and ;0 are

depicted whose product may exhibit a vanishing integral over interval [ -1 , 11. In

technical applications, condition 45=-0 is often impractical. Anyway, as the number of

elements adopted in the discretization process is increased, function u (interpreted

as previously mentioned) is approached by a piecewise-linear curve exhibiting the

same nodal values, and positive-definiteness is recovered in the limit. Consequently,

situations like that of Figure 8.3.3.2 are unlikely to take place for a sufficiently

high number of elements, and this is in agreement with the experience that spurious

solutions never occurred in the numerical tests performed. In addition, the Tonti

functional tends to the least-square functional (for which local convexity properties

hold) as kernel k tends to a Dirac-type function. Despite these encouraging

observations, positive-definiteness of K cannot be proved rigorously for a given

number of nodes. This drawback is the counterpart of the numerical advantages

discussed with reference to Figure 8.3.3.3.

1

o

•

_.._. T1

V

o
	

1
Fig. 8.3.3.2 : The product of two functions 15 and 0 may exhibit

a vanishing integral over interval [-1 , 1 [.
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Positive-definiteness of matrix K is discussed in the sequel. Since the diagonal

entries of K by the domain corner nodes vanish (see Figure 8.3.2.1), matrix K

cannot be positive-definite in itself. Anyway, it should be noted that, since the inlet

and outlet fluid pressures are imposed, the first and last entries of the vector

describing the nodal pressure values must not be considered in the constrained

minimization process of the Tonti functional. Similarly, the first and last degrees of

freedom of the generic function u , expressed via its nodal values and the

corresponding basis functions, must be disregarded in checking for positive-

definiteness of operator K in (8.3.2.10). Matrix K , once its boundary rows and

columns are deleted, becomes positive-definite, as it is symmetric, strictly diagonally

dominant, and with positive diagonal elements.

Since a relaxation-type solver is planned, it is fundamental to clarify which

partial integrals must be actually computed to evaluate the effects of a

perturbation of the fluid pressure p at the generic node i on the whole extended

functional. At most the elements with non vanishing kernel second derivative must

be accounted for. Because of the symmetry features inherent in the extended

variational formulation, only the diagonal and above-diagonal elements need to be

considered.

If a Winkler foundation model (Strozzi (1984)) is adopted, a nodal pressure

modification affects only the fluid film thickness at that node, while the remaining

film thickness nodal values do not change. Also, the perturbation o. f p at node i

along x-axis is inevitably coupled with an identical modification of p at node j = i

along y-axis. Consequently, such a perturbation affects the elements contacting the

two crossed solid lines (shown in Fig. 8.3.3.3) referring to nodes i and to j = i

respectively. As a result, only the elements shaded in Fig. 8.3.3.3 need to be

considered. These observations permit noticeable savings in computer time with

respect to non optimized programs (Alliney, Strozzi, and Tralli (1985)).

If a non local foundation is adopted, all the diagonal and above-diagonal

elements .sho' uld be considered. Anyway, the computing time can be appreciably

reduced by observing that the effects of a Oressure perturbation at node I on the

film profile generally diminish at the nodes far from 1. Consequently, the effects of

a nodal pressure modification on the extended functional can be estimated by
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Fig. 8.3.3.3 : In the case of a local foundation model, only the shaded elements

need to be considered in the minimization process.

considering only the elements in the vicinity of node i (Cook (1981), P. 425).

Whether a sufficient number of elements has been accounted for can be verified by

computing occasionally the Tonti functional over the whole x-y domain and by

checking for its decrease.

All the numerical tests were performed by adopting a Winkler foundation

model. It is appreciated that such a support model can lead to physically

unrealistic results (Strozzi (1984)). On the other side, with such a support

equation (8.3.2.8) retains its differential (as opposed to the more complex

integrodifferential) character, and therefore it is particularly suitable for numerical

experiments. •
As already mentioned, the local convexity properties of the extended

functional provide a mathematical foundation for the development of relaxation

algorithms. The relaxation solver is organized as follows. A fractional value p i IM
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is computed for the generic node i , where appropriate values for M range from 5

to 10. A series of perturbed nodal pressure values included in the interval [ pi - Pi

/2 M, p i ± pi /2 MI are considered. In particular, Q equispaced pq pressures (q ----

1 , . , . , Q) are examined, where the extremum values coincide with those of the

closed interval mentioned above. Q can be advantageously chosen to be odd, so that

the initial pressure estimate coincides with the central pressure value pq for q =--

(Q + 1)/2. A felicitous choice for Q is 9. Then, the nodes defining the film profile

length are examined sequentially. For every node, the extended functional is

computed for the p q values mentioned above, and the pq pressure which minimizes

the extended functional is attributed to that node. The sequential examination and

updating of the nodal pressure values along the lubricated profile length constitutes

a relaxation iteration. After a certain number of iterations, the extended functional

reaches a stagnation value, since the discrete character of the minimizing process

explained above precludes the resolution of the correct nodal pressure values. This

conundrum can be overcome by increasing the value of M when a plateau is faced

for the extended functional. In particular, M can be doubled, and the relaxation

process restarted.

It is known that Newton-type solvers exhibit quadratic convergence if the

starting point is within the sphere of attraction, otherwise they may diverge.

Conversely, relaxation-type solvers applied to variational formulations with

extremum properties show good global convergence, but poor local convergence

(Prat and Strozzi (1984)). Thus, a polyalgorithm which combines relaxation-type and

Newton-type schemes can be advantageously developed (Milne (1980), p. 405), where

the relaxation method may be adopted to reach the sphere of attraction of the

Newton method, which in turn can be employed to approach the solution more

efficiently. A similar strategy was successfully used in Prati and Strozzi (1984) in

the case of structural problems.

For the purpose of this paper, which is to explore the merits of the extended

functional concept, a simpler strategy was adopted. In particular, the selection

between the two solvers was not made automatically, whereas a preassigned number

of relaxation iterations was performed, followed by Newtonian loops. Alternatively,

the Newton method was applied directly to the starting point, in order to retrieve
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qualitative indications about the extent of its sphere of attraction.

As a final remark, it should be mentioned that relaxation-type solvers require

much less computer memory than Newton-type schemes, since only vectors and not

square matrices are involved.
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8.3.4 Results

An appraisal of the numerical schemes under examination requires the

knowledge of exact solutions to the EHL problem to be used as test cases. The first

part of this section deals with the development of analytical solutions. In the

second part, the numerical results according to the extended variational formulation

and referring a) to qualitative examples and b) to three configurations of increasing

foundation compliance are presented and compared to a more conventional Newtonian

solver.

Exact solutions to the EHL problem against which to check the numerical

results can be achieved as thoroughly discussed in Section 8.2 . For the sake of

completeness, a brief summary of this methodology is repeated here. A fluid film

profile is selected among sufficiently simple and regular curves. By integrating

twice equation (8.3.2.5), p can be expressed in terms of h and of known parameters

(Strozzi (1985)). If the selected h curve is introduced in this expression, and if

proper boundary conditions (discussed in the sequel) are chosen, an exact expression

for the fluid pressure p can be derived. Then, the corresponding contact pressure

po is computed by introducing in the foundation compliance equation (8.3.2.6) the

selected h curve and the computed p profile. So doing, a contact pressure curve pc

is achieved for which the analytical h and p profiles satisfy simultaneously

equation (8.3.2.5-7), and therefore they constitute an exact solution to the EHL

problem. Such a method for obtaining analytical solutions to the EHL problem does

not appear to have been exploited previously, since the numerical codes are usually

validated in hydrodynamic situations (rigid profile assumption) (Rohde and Oh (1975),

Oh (1984), Ruske11 (1980)). In particular, a linear fluid film profile and a Winkler

foundation as in Strozzi (1987b) have been considered. Also, the inlet and outlet

fluid pressures have been chosen so that the contact pressure profile vanishes by

the tracing and trailing edges.

Some qualitative results are produced below, aimed at showing the merits of

the extended variational formulation and at comparing it to a more traditional

Newton solver. A linear fluid film profile defined by four nodes and of varying

foundation compliance is considered (Section 8.2), Fig. 8.3.4.1 . The exact values
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adopted for the physical parameters are omitted, since these examples are purely

qualitative. The two extreme nodes are kept fixed, while the two central nodes are

movable vertically. The corresponding extended functional depends only on two

variables, namely the heights of the two central nodes, so that it is possible to

represent it graphically. Fig. 8.3.4.2 reproduces a perspective view of this

functional in the case of soft foundations, where the central point of x-y platform

is the exact solution (that in which the four nodes of Fig. 8.3.4.1 are aligned to

form a linear profile), to which a minimum corresponds for the extended functional.

Fig. 8.3.4.3 displays the corresponding contour lines in the case of a rigid

foundation, while Fig. 8.3.4.4 reports the contour lines for a soft configuration. In

all cases, the functional minimum is clearly visible, even if in the hard situation the

contour lines are more regular. The presence . of a clear minumum confirms the

validity of the proposed formulation. In particular, a solution method based upon a

search for the potential minimum (Section 8.3.3) would converge regardless of the

starting point.

Fig. 8.3.4.5 studies the convergence of a standard Newton solver (Ruskell

(1980)) for the same configuration of Fig. 8.3.4.1 . It includes indications concerning

which starting points in terms of fluid film thickness are successful, and which fail

to converge. The x-variable reports the vertical distance of node 2 of Fig. 8.3.4.1

from a linear profile, while y-variable reproduces the corresponding distance of node

3 . In other words, x and y variables indicate the deviations of the starting point

for the fluid film profile from the exact solution. (The x and y axes of Figs

8.3.4.2,3,4 are to be interpreted in the same sense, and in the same scale.) The

asterisks indicate divergence, while the dots (scarcely visible) denote convergence.

Fig. 8.3.4.6 displays a schematic version of Fig. 8.3.4.6 , which shows that the x-y

portion defining converging starting points is reminiscent of a four leafed clover,

where the top-right and bottom-left leaves are much smaller than the remaining two

leaves. This means that a starting point in which one node is higher than the right

value, and the other node is lower, behaves more favourably than a starting point

where both nodes 2 and 3 are higher (or lower) than their correct values. In

addition, Fig. 8.3.4.6 shows that the Newton method fails to converge for starting

points for which a solution method based upon the extended functional still converges.
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Fig. 8.3.4.1 : The linear fluid film profile defined by four nodes.

Fig. 8.3.4.2 : A perspective view of the extended functional.
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Fig. 8.3.4.3 : The extended functional contour lines for a rigid foundation.

Fig. 8.3.4.4 : The extended functional contour lines for a soft foundation.
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Fig. 8.3.4.5 : The convergence of a Newton solver.
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Fig. 8.3.4.6 : A schematic version of Fig. 8.3.4.5 .



Chapter 8 Analytical Tools For The EHL Problem 	 8.48

The following results still deal exclusively with linear profiles, but they

contain more qualitative information. The following values, mainly borrowed from

Ruske11 (1980), have been attributed to the corresponding physical variables in all

cases : fluid film thickness at the inlet : 2.5 gm ; fluid film thickness at the outlet

: 2.3 gm ; sliding velocity : 127 mm/s; fluid viscosity : 0.43 x 10 -6 Ns/mm2

sealing length : 4.83 ram ; compressed seal radial depth : 4.32 mm.

In addition, 30 nodes have been used in the discretization process in all cases.

The diagonal and off-diagonal entries of the tridiagonal matrix IC (see Section 8.3.3)

were set equal to 10 and to 3, respectively, similar to Alliney and Tralli (1984).

Three cases referring to decreasing Young's moduli were considered. The first value

to be studied was E — 210000 MPa (case of steel-like materials). In Fig. 8.3.4.7 the

exact solution is displayed in terms of fluid pressdre 0 , dry contact pressure pc

fluid film thickness h and undeformed seal radial depth / .

Then, the exact fluid pressure profile was modified by introducing a

noticeable spurious pressure perturbation at node 12 and the effectiveness of the

proposed approach in reducing the spurious pressure modification towards the exact

solution was tested. Fig. 8.3.4.8 shows that 20 relaxation iterations produce a

considerable reduction in the pressure irregularity, together with a spreading of the

initially localized perturbation along a wider lubricated profile portion as the

relaxation process proceeds. Interestingly, but not unexpectedly, it appears from

Figure 8.3.4.8 that the convergence rate becomes poorer as the exact solution is

approached.

Figure 8.3.4.9 displays the results obtained with a standard Galerkin method

coupled with a Newtonian iteration scheme (Rohde and Oh (1975), Ruske11 (1980),

Prati and Strozzi (1984)) applied to the same perturbed starting point of Figure

8.3.4.8. After 6 - 7 Newton loops the exact solution is recovered. Consistent with

the available results (Rohde and Oh (1975)), the sphere of attraction of the Newton

method in the case of hard contacts is sufficiently extended, that is tantamount to

saying that the convergence of this iterative process is good even in the presence

of severely misjudged starting points. In this case a traditional Newton solver is

generally preferable to the extended variational formulation.
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Different results are obtained with a lower Young's modulus E = 100 MPa.

Indeed, in this case a Newton procedure applied to an analogously perturbed starting

point diverges dramatically. Conversely, the perturbed pressure profile is improved

by the proposed relaxation scheme to such an extent that it becomes a successful

starting point for the Newtonian iterations. Such results are too voluminous to

present in the limited space available, and therefore they are omitted. Instead, the

analogous findings referring to the 'more deformable foundation characterized by E

— 7.58 MPa (rubber-like materials) are presented in detail.

Fig. 8.3.4.10 displays the fluid pressure curve affected by a noticeable

perturbation imposed to node 12, together with the effects of 100 relaxation

iterations. Remarkably, the proposed variational formulation ensures a good global

convergence even in the case of soft foundations, for which the less mathematically

sound direct iterative method can fail to converge (Rohde and Oh (1975)). Because

of the high foundation compliance, the pressure perturbation produces a magnified

fluid film profile modification. Fig. 8.3.4.11 displays the initial and final fluid film

profiles. While the imposed perturbation is considerably reduced, some pervasive

undulations appear along the sealing profile. They are shown in an enlarged h-scale

in Fig. 8.3.4.12 together with the exact linear profile. If a Newton solver is applied

to this configuration, the exact soiution is approached in 5-6 Newton iterations.

Conversely, the Newton method applied to the perturbed pressure profile of Fig.

8.3.4.10 diverges dramatically, where the first four loops are displayed in Fig.

8.3.4.13 together with the initial pressure profile. This feature can be attributed to

the contraction of the sphere of attraction of the Newton method as the foundation

becomes softer.

For more compliant foundations, spurious undulations tend to appear in the

fluid film profile. The interpretation and, possibly, the control of such wiggles are

beyond the scope of this paper.

Finally, in Fig. 8.3.4.14 the value of the extended functional referring to the

starting point and to 100 subsequent relaxation iterations is displayed. Fig. 8.3.4.14

confirms that the convergence rate becomes. increasingly poor as the solution is

approached. The convergence rate of Fig. 8.3.4.14 is not appreciably modified by

setting the diagonal value of matrix K equal to 100, whereas it can be conjectured
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that a more extended support for K might affect more perceivably the minimization

procedure performance.

The proposed procedure was not tested in the case of nonlocal foundation

models. Anyway, the numerical divergences which occur especially in the case of

soft contacts are mainly attributable to the fact that limited pressure

perturbations result in considerable modifications of the film profile, more than to

a particular expression of the foundation model. Consequently, the usefulness of

the Tonti functional should not be undermined by integral foundation models.

-
2.-4.

-

1.-2.

0.	 1.	 2.	 3.	 4.	 4.83
x ,m m

Fig . 8.3.4,7 : The exact solution of the El-IL problem in terms of fluid pressure p

dry contact pressure pc , fluid film thickness h , and undeformed profile radial

depth, 1 .
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Fig. 8.3.4.8 : 20 relaxation iterations reduce considerably the initial spurious

pressure modifications.
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Fig. 8.3.4.9 : The convergence rate in terms of fluid pressure for a standard

Newton-Galerkin solver is good in the case of stiff foundations.
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Fig. 8.3.4.10 : The effects of 100 relaxation iterations on the initially perturbed

pressure profile.

x,m m
Fig. 8.3.4.11 : The initial and final fluid film profiles corresponding to Fig. 8.3.4.4 .
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The final fluid film profile of Fig. 8.3.4.5 , together with
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Fig. 8.3.4.13 : As the foundation becomes softer, the Newton method may diverge easily.
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relaxation iterations

Fig. 8.3.4.14 : The convergence rate of the relaxation method based upon the

extended functional becomes increasingly poor as the solution is approached.
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8.3.5 Conclusions

An extended variational approach with local extremum properties has been

formulated for the EHL problem. The numerical difficulties encountered in

respecting the analytical requirements have been discussed. A variety of numerical

experiments have shown that such formulation provides a mathematical basis for

the development of a relaxation-type solver with good global convergence

properties. It has been shown that the convergence rate of this relaxation method

becomes increasingly poor as the solution is approached. As a consequence, the

proposed iterative procedure cannot be employed by itself in achieving the

numerical solution of EHL problems. Instead, this relaxation method can be

advantageously used for improving the approximate pressure profile until it falls

within the sphere of attraction of the Newton method, which in turn permits a rapid

refinement of the solution to be achieved. In other words, the proposed formulation

supplies a mathematical foundation for the development of a polyalgorithm based

upon a combination between relaxation-type and Newton-type solvers. It has been

shown that such a solution scheme is particularly advantageous in the case of soft

foundations, for which the direct iterative method as well as the Newton method can

fail to converge. Consequently, the proposed procedure should prove to be

particularly useful in studying the development of EHL conditions in elastomeric

seals.
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8.4 ON THE OUTCOME OF SPURIOUS NUMERICAL UNDULATIONS AFFECTING

THE FLUID FILM THICKNESS

In this Section the possible outcome of spurious undulations in the numerical

description of the fluid film profile in soft lubricated contacts is rationalized. A

numerical procedure which can placate the outcome of spurious oscillations in the

film curve is illustrated. Such tools are applied to the analysis of lubricated

elastomeric seals. The possible application to the lubrication regime in hip joints

with soft layers is also discussed.

8.4.1 Literature review

The accurate evaluation of the fluid film thickness in lubricated soft

contacts is often of the utmost relevance from an engineering viewpoint. For

instance, in the case of elastomeric seals, the fluid film thickness must be small in

order to limit the leakage of the fluid to be sealed, but not so small as to permit an

extended, direct interaction between the elastomer and the shaft asperities (Theyse

(1967)). In the case of artificial human joints, the solution of the El-IL problem

would help to define the optimal design for the mating surfaces.

Unfortunately, the numerical solution of the EHL problem for soft contacts

appears to be more troublesome than that for hard contacts. In fact, regularity

problems may manifest themselves in oscillatory fluid film profiles as the

foundation becomes softer (Field and Nau (1975)). Such spurious undulations are

attributable to limited pressure perturbations resulting in magnified film thickness

fluctuations (Okamura (1982)).

Undesired spurious undulations in terms of fluid film profile are evident in

many numerical results concerning soft contacts and, in particular, lubricated

elastomeric seals for reciprocating motion. For instance, the numerical fluid film

thicknesses in rubber seals presented by Field and Nau (1975) exhibits pronounced

oscillations as the contact becomes softer. Many diagrams of Fig. 14 in Austin,



Chapter 8 Analytical Tools For The EHL Problem 	 8.57

Flitney, and Nau (1977), who examine again elastomeric seals, exhibit pervasive

undulations. The film profiles presented by Ruske11 (1980) for rectangular

elastomeric seals are oscillation-free, but in some unpublished situations such

irregularities appeared (Ruske11, personal communication). Medley, Dowson and

Wright (1984) recognize the stiff character of the differential equation describing

the lubrication of the human ankle joint, especially for high loads. Some undulations

affect the fluid film profiles of Prati and Strozzi (1984), who study again a

rectangular seal. A Runge-Kutta scheme produced undulation-free film profiles for a

similar problem in Yang and Huges (1984). Being of integral type, this method is

expected to supply regular solutions, but its accuracy should be checked against

the existing solutions. Some wiggles in the film shape appear at the inlet in Alliney,

Strozzi and Tralli (1985). In this case the iterative process aimed at determining the

solution of the non-linear problem was limited to four loops and the numerical

convergence was not reached, so that definitive conclusions about the outcome of

undulations are difficult to draw. Stakenborg, van Leeuwen, and ten Hagen (1990),

and van Leeuwen and Stakenborg (1990) examine the visco-elastohydrodynamic

lubrication regime in elastomeric, radial lip seals. Fig. 6 of van Leeuwen and

Stakenborg (1990) shows some wiggles at the highest frequencies. These authors

observe that "If the static pressure component is very high, [the] differential

equation . . . becomes rather stiff . . . Therefore, the problems encountered could

equally well be of numerical origin." Finally, adjustments of the Young's modulus to

mimic via a Poisson's ratio of 0.4 the actual cases characterized by I/ closer to 0.5

recently proposed by Dowson, Fisher, Jin, Auger, and Jobbins (1991), betray the

difficulties encountered in treating directly incompressible layers.

In the case of hard contacts, the undulations appear sporadically, and they

are generally restricted to a limited portion of the lubricated length. On the other

side, they tend to affect both h and p curves. For instance, in Rohde and Oh (1975)

the possible presence of oscillatory numerical solutions is mentioned. Fig. 6 of Oh

and Rohde (1977) is affected by pressure undulations in the vicinity of the pressure

spike. Some catastrophic results are presented by Okamura (1982). Some wiggles

appear both in the pressure and in the fluid profile for a limited range of key

physical variables in Oh (1984). Wu (1986) finds a vibrating fluid film profile, visible
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in his Fig. 3. Finally, Oh (1986) notes that "for higher load levels, the solutions for

pressure and film gap in the hydrodynamic region . . . become oscillatory . . . This

problem . . . is related to the choice of interpolation function, and worsens for

increasing loads. Hence, more research is needed to develop an ideal interpolation

method."

The presence of spurious numerical undulations is particularly detrimental,

since it obscures the actual solution. Also, it would inevitably produce numerical

instabilities in the treatment of more complex situations, as are those concerning

mixed lubrication (but Oh (1986) notes that his solution is not oscillatory in the

solid-to-solid contact region).

Moving to the experimentally measured fluid film thicknesses, Field and Nau

(19761 present optically retrieved oscillatory fluid film thicknesses in elastomeric

seals for reciprocating motion. In addition, Kalshi (1981) measures an oscillatory

lubricated film profile in an 0-Ring. These experimental results suggest that

oscillatory film thicknesses may be physically realistic. In fact, Nau (1968) notes

"One possibility which might account for the ability of a rectangular seal to

function in practice is the existence of an undulating seal profile, i.e. a form of

dynamic instability. This certainly seems a possibility at low speeds where "stick-

slip" occurs and might extend to speeds at which the characteristic judder is not

evident in practice. If dynamic instability occurs then it should be very dependent

on the form of construction of the seal, rubber seals would, for instance, be likely

to behave differently from seals made of rubberised-fabric." In addition, Kostreva

(1984a) writes : "The generalized derivatives used in the above also allow for

'spikiness' and mild singularities in the functions p (x), h (x) and their derivatives.

Features such as these have been observed in some numerical solutions and

measured experimentally, and they are physically justifiable."

On the other side, recent experimental readings via fluorescence techniques

of the lubricated conjunction zone in elastomeric seals for rotating shafts exhibit

smooth profiles (Binnington (1991), Poll, Gabelli, Binnington, and Qu (1992)).

Oscillatory solutions are endemic to 'a variety of engineering situations.

Diffusion-convection problems (Heinrich, Huyakorn, Mitchell, and Zienkiewicz
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(1977)), the

(1984)) and

significant

responsible

keystoning,

mechanical analysis of slightly compressible units (Prat and Strozzi

the treatment of non-linear dynamic situations (Schulz (1985)) are

examples. These cases exhibit mathematical analogies which are

for the similar numerical instabilities. The terms hourglassing,

zero energy modes and kinematic modes have also been used in the

literature to describe oscillatory results.

This brief and inevitably incomplete review of the numerical difficulties

encountered in dealing with lubricated soft contacts shows that there is a need for

numerical techniques capable of producing oscillation-free results. In addition, the

improvement in the solution regularity should be achieved without compromising the

solution accuracy. In this Subsection it is shown that the outcome of oscillations

can be placated by employing suitable finite-element schemes which do not affect

the solution accuracy. An initial Section deals with the basic equations and the

mathematical justification of the appearance of spurious oscillations. There follows

a Section devoted to a numerical procedure, namely the Petrov-Galerkin method,

which can partially placate the outcome of spurious oscillations. Finally, numerical

results are developed and compared to exact test cases, to demonstrate that there

are cases in which the numerical undulations are undoubtedly spurious.

These concepts are applied to relatively simple situations, but they may be

extended to more complex and realistic configurations with particular regard to soft

lubricated contacts.
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8.4.2 Mathematical aspects

The relevant equations describing the steady, unidimensional, isothermal,

isoviscous, elastohydrodynamic problem have already been reported in eqns

(8.2.2.1,3), and they are repeated here for convenience

where h is the fluid film thickness, p is the fluid pressure, pc is the dry contact

pressure, U is the sliding speed, 77 is the fluid viscosity, p i and Po are the inlet and
outlet pressures, and xi and xo are the inlet and outlet coordinates. In addition, L is

a linear, positive-definite, integral operator expressing the lubricated profile

compliance.

In the following, the previous basic lubrication equations are manipulated at

an analytical level, to obtain expressions capable of justifying the outcome of

spurious numerical undulations in the case of soft foundations. Following Rohde's

formulation (Rohde and Oh (1975)), it is possible to incorporate equation (8.4.2.2)

into equation (8.4.2.1), to obtain a unique operatorial equation in p (see eqn (8.3.2.8))

, thus reducing the number of unknown functions from two (p and h) to one (p

klone)

elX [ ( L ( P (x) -- Pc (x) ))3 d P (x)d x	 677U L {p(x) — pe(x)}) = 0	 (8.4.2.4)

Equation (8.4.2.4) can be linearized by resorting to Gateaux differentiation

Rohde and Oh (1975), Milne (1980)), where E is the analogue of A x in a usual

lifferentiation. In fact, the expression which follows supplies the analogue of a
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Newton-Raphson iteration scheme, where unknown E is a function which, added to

the previous starting point, produces a hopefully improved p solution for the next

iteration

Equation (8.4.2.5) exhibits a certain analogy with the convection-diffusion,

second ,order, ordinary differential equation with constant coefficients (Heinrich,

Huyakorn, Mitchell, and Zienkiewicz (1977), Barret and Morton (1980))

d	 d e
dx dx —PE) =f (x)

In equation (8.4.2.6), P is the Peclet number, which controls the relative

importance of the first and second order terms.

In Heinrich, Huyakorn, Mitchell, and Zienkiewicz (1977) it is shown that

spurious numerical undulations appear as the Peclet number is increased. In fact, by

approximating in eqn (8.4.2.6) the first and second E derivatives with respect to x-

coordinate according to the usual central difference scheme ( A represents the

distance between two adjacent nodes in a uniform discretization ( e.g. (xi+l — x i) ) ),

see Timoshenko and Goodier (1970), p. 515

d e (x)
(Xt+1) — c (x i_ 1))/(2 A)d x

(8.4.2.7)

d2 E (X)

d x2 	 (€ (Xt+1) — 2 E (Xi) ± E (Xi-1))/A2
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equation (8.4.2.6) can be written as a linear difference equation

€ (xi+i) (1 — P 24 ) — 2 € (X1) + € (Xi-1) (1 + P- 1- ) =---. A2 f (x)	 x E [ 0 , 1 ]2	 '

(8.4.2.8)

While a particular solution to equation (8.4.2.8) is difficult to determine for a

generic f (x) (Padovan and Patuzzo Grego (1981), p. 30), the general solution to the

associated homogeneous difference equation to equation (8.4.2.8) is known, and it is

based upon the solution of the following characteristic algebraic equation (Bender

and Orszag (1984), p. 36 , Hemker (1970)), P. 19)

(1 — P ,,A ) y2 — 2 y ± (1 ± 12_,4 ) . 0	 (8.4.2.9)
4

whose roots are

(1 ± P ,,A )

Yi = 1	 ; Y2 = 	
(1 — P2A )

so that the general solution to the associated homogeneous difference . equation to

(8.4.2.8) is

(8.4.2.10)

where C1 and C2 are two generic constants, and n represent the generic index of the

discretization nodes.

As already noted, a particular solution to (8.4.2.8) is difficult to determine

for a generic f (x) and, therefore, its influence on the mathematical character of
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the complete solution to (8.4.2.8) cannot be examined in detail. It is only observed

that f (x) is likely to be closely approximated by a polynomial expression in n , say

f (x)=---= Po ns + Pi ns-1 ± p2 ms-2 + . . . + Ps-1 n + Ps (pressure spikes are

unlikely to occur in soft contacts, so that f (x) , which corresponds to the right

hand-side in (8.4.2.5), should be regular), a case for which a particular solution to
s-(8.4.2.8) possesses the form n (A 0 ns + A1 nn ' ± A2 ns-2 ± . . . As- 1 n + As )

(since a root of the characteristic algebraic equation (8.4.2.9) is 1 , see Padovan and

Patuzzo Grego (1981), p. 30), and this particular solution does not evidence an

oscillatory character. Instead, the behaviour of the homogeneous solution (8.4.2.11)

is thoroughly discussed in the following.

When P is increased (case of soft foundations, see below), root y 2 approaches

— 1 and, therefore, the En solution (8.4.2.11) assumes an undesired oscillating

character with respect to the' part multiplying coefficient C2. This negative trend

may be limited by the imposition of the boundary conditions, which influence the

values of C 1 and C2 . Also, a mesh with an odd number of nodes is more prone to

develop oscillations than an analogue discretization with an even number of nodes,

since in the first case the undulations are less restrained by the boundary

conditions, as it appears from Fig. 9 of Strozzi (1987b). Unfortunately, it is not

always possible to use an even number of nodes. A pertinent example can be found

in the case of lubricated contacts subject to cavitation when a complementarity

approach is adopted for the definition of the pressurized and cavitated profile

portions. According to this methodology, a generous estimate of the lubricated

contact length is discretized, and a complementarity routine decides which nodes are

cavitated, or otherwise (Kostreva (1984a)). In this case it is not possible to know a

priori whether the pressurized zone is described by an even or by an odd number

of nodes.

Going back to the analogy between eqns (8.4.2.5) and (8.4.2.6), this similarity

is impaired by the presence of non constant coefficients and of the integral operator

L in (8.4.2.5). In fact, due to the lack of constancy of the coefficients of eqn

(8.4.2.5), it is difficult to define its equivalent of the Pee let number. (Anyway,

variable coefficients are examined e.g. by Barret and Norton (1980).) In addition, to

recover the simpler, purely differential character in eqn (8.4.2.5), the foundation
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operator L , which is usually of integral type as in eqn (8.2.2.9), should be likened

to an algebraic operator consisting of a coefficient, K, multiplying function E of

equation (8.4.2.5). This assimilation is rigorously feasible only if a Winkler (local)

foundation model (see eqn (8.2.2.8)) is adopted, whereas such an expression becomes

approximate in the case of integral support models. By accepting a Winkler

description for the foundation, so that L E.------ ICE, where K is a constant (or a

function of x-coordinate, but no longer an integral operator), the equivalent of the

Peclet number for equation (8.4.2.5) is essentially obtained as the negative of the

ratio between the coefficients of E and of de/dx

1 671U	 3 dpi
P=K /0

h3	 h d x
•

(8.4.2.12)

where lo represents the lubricated contact length, and it appears in (8.4.2.12) as the

result of a normalization procedure, since in eqn (8.4.2.6) x E [ 0 , 1 ] , whereas

in (8.4.2.5) x E [0,/c].

Aspects connected to the lack of constancy of (8.4.2.12) are examined in the

following. Many published numerical fluid film profiles for soft contacts are nearly

constant in shape (e.g. Ruskell (1980)), so that h in expression (8.4.2.12) can be

assumed as essentially constant. It emerges from expression (8.4.2.12) that a

decrease in the mean film thickness would generally result in a deleterious increase

in the Peclet number. Contrary to the fluid film thickness, dp/dx varies

considerably along the lubricated length (in quasi-elliptical pressure profiles, as are

those encountered in hip joints, dp/dx changes its sign when proceeding along the

lubricated contact), so that a meaningful value of the analogue of the Peclet number

is difficult to estimate for a generic situation, since it changes considerably along

the sealing length.

Additional uncertainties derive from the evaluation of the Winkler

coefficient K . In those plane strain situations for which the elastomeric stratum

can easily flow laterally, the Winkler constant of eqn (8.2.2.8) is estimated as (see

eqn (11) of Strozzi (1987b)) :



h (1 — v2)K—
E

(8.4.2.13)

h (1 ± v) (1 — 2v)K—
E (1 — u)

(8.4.2.14)
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where h represents the stratum height.

Conversely, in plane strain cases where the lateral flow is prevented, the

Winkler constant of eqn (8.2.2.8) assumes the following expression (see eqn

(4.4.2.1.13))

-:
Equation (8.4.2.13) describes for instance rectangular seals whose lateral sides

are free to expand, or the elastomeric layer of a hip joint in the case of small

contact widths. Conversely, equation (8.4.2.14) applies to rubber cortices of hip

replacements in the situation of high contact widths. (The decrease of its accuracy

when v approaches the incompressibility figure 0.5 is discussed in Chapter 4.)

The role of the Poisson's ratio in affecting the Peclet number is examined in

the following. It is noted that in eqn (8.4.2.13) constant K does not vanish in the

case of incompressible elastomers characterized by v = 0.5 , whereas K of eqn

(8.4.2.14) does. This in turn implies that, when scarcely compressible elastomers are

employed (a realistic figure for v is 0.4997), the foundation with restrained lateral

movements is much stiffer (i.e. K small) than that with free lateral expansions, so

that the Peclet number for the first case is considerably smaller than that for the

second situation. It can therefore be surmised that, in hip replacements with

elastomeric layers, oscillating fluid film profiles are more likely to occur for the

lower contact widths and loads. Medley, Dowson and Wright (1984) note the stiff

character of the differential equation describing the lubrication of the human ankle

joint, especially for high loads. Due to a certain similarity between natural and

artificial joints, the above results confirm the suspicion that undulating fluid film

profiles may be encountered in the analysis of hip replacements in particular

situations.
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The role of the Young's modulus is considered hereinafter. Despite the

uncertainties in the selection between eqns (8.4.2.13) and (8.4.2.14), the above-

mentioned Winkler constant, K , is in any case inversely proportional to the Young's

modulus. As a consequence, a decrease in the Young's modulus would result in a

detrimental increase in the Peclet number. The circumstance of a low £ occurs in

soft lubricated contacts, characterized by elastomeric foundations.

In conclusion, despite the above examined uncertainties, expression (8.4.2.12)

supplies a mathematical justification for the possible appearance of spurious

numerical oscillations in the case of lubricated soft contacts.

ft is finally noted that in Strozzi (1987b) a more compact expression of the

maximum Peclet number is proposed by resorting to classical results of the inverse

hydrodynamic theory (Theyse (1967)).

It should be also underlined that the possible occurrence of undulations

refers to eqn (8.4.2.5) which, as already noted, describes a functional Newton

iteration. In other words, the previous observations show that, in the case of soft

foundations, every Newton iteration solution and, consequently, the converged

solution, should be affected by oscillations. Conversely, Rohde and Oh (1975)

explicitly observe that "The 'wiggles' disappear as the iteration process continues.",

a numerical finding which does not fit with the above theoretical observations. In

addition, it is observed that eqn (8.4.2.5) can be simply interpreted as a linearization

of eqn (8.4.2.4), so that the above discussed relationship between the Peelet number

and the outcome of oscillations should be valid independently of the solution

method employed.
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8.4.3 Numerical schemes

This Section aims at briefly illustrating the salient aspects of the numerical

procedure adopted, more than at presenting the computational details.

The numerical scheme to be analyzed in this work is based on the Petrov-

Galerkin procedure. Contrary to the more conventional Galerkin approach, in the

more flexible Petrov-Galerkin method the test and the trial functions (Becker,

Carey, and Oden (1981)) are not necessarily selected from the same finite-dimensional

space. For instance, the trial functions are chosen to be piecewise-linear, while the

test functions can be selected among piecewise-quadratic polynomials (Heinrich,

Huyakorn, Mitchell, and Zienkiewicz (1977)). Linear and quadratic test functions are

compared in Fig. 8.4.3.1 . If the test functions degenerate into a conventional

piecewise-linear profile, the corresponding finite element method supplies the

analogue of the central difference in a finite difference scheme (Heinrich, Huyakorn,

Mitchell, and Zienkiewicz (1977)). As the degree of asymmetry of the test functions

is increased (which consequently assume a sail-shaped profile), the corresponding

finite element method becomes the equivalent of the upwind finite difference

scheme. Anyway, the finite element method is more general than the finite

difference approach, since intermediate solutions between the central difference and

the upwind schemes can be easily obtained (Heinrich, Huyakorn, Mitcb.e(I, and

Zienkiewicz (1977)), while they can be hardly rationalized if finite-difference

descriptions are used (Okamura (1982)). Computational details on the asymmetric test

functions can be found in Strozzi (1987b).

According to a central difference approximation, the oscillatory curve of

Figure 8.4.3.2 is very regular, since angles (p i , which represent the first derivatives

at nodes i , change smoothly from one node to the next. What is considerably

irregular is the second derivative, but its relative importance in the numerical

treatment of Reynolds equation for soft contacts is limited with respect to the first
derivative component. In fact, the latter component is amplified by the presence of

the Peelet number, which is particularly high In soft contacts. An asymmetry of the

test function will result in situations like that depicted in Figure 8.4.3.2 no longer
being interpreted as regular from the first derivative viewpoint. Since the
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.

Fig. 8.4.3.1 : Piecewise-linear (left) and piecewise-quadratic (right)

test functions referring to node i.

X

Fig. 8.4.3.2 : The oscillatory curve is very regular according to the central

difference scheme.
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regularity of the first and second derivatives is embedded in the analytical

description of the EHL problem, curves as irregular as that of Fig. 8.4.3.2 are less

likely to be produced by a Petrov-Galerkin scheme based on asymmetric test

functions. On the other side, if an unduly high asymmetry is adopted for the test

functions, the consequence will be a spurious tendency of the solution towards an

unrealistic, nearly straight profile. In other words, the more asymmetric the test

functions, the stiffer the solution is expected to become (Heinrich, Huyakorn,

Mitchell, and Zienkiewicz (1977)). it can be speculated that in some cases a suitable

value of the asymmetry of the test functions will exist which permits the receipt

of regular profiles in terms of fluid film thickness without compromising the

solution accuracy. The next Subsection examines the effects of different degrees of

asymmetry on the solution regularity in terms of fluid film thickness, and compares

the numerical forecasts to theoretical solutions obtained according to Section 8.2 .

For the time being, only degrees of asymmetry which are kept constant along

the lubricated contact have been tested in the following Section.
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8.4.4 Results

A series of numerical results concerning lubricated elastomeric seals are

presented in this Subsection. They are compared to the exact solutions according to

Section 8.2 , to retrieve indications about the ability of the proposed approach to

prevent the above spurious undulations without compromising the solution accuracy.

To limit numerical convergence problems (See Section 8.3), the exact solution was

always assumed as the starting point for the Newton-Raphson process.

The first case examined is that of a nearly straight fluid film profile defined

between inlet and outlet coordinates x t — 0 and xo — 6 mm, depicted in Figure 8.4.4.1

. In addition, E = 10 MPa, 17 = 0.43 x 10-6 Mpa s , U — 400 mm/s , while the

deformed seal radial height is 6 mm. In addition, 100 nodes are employed in the

discretization process. In this case the numerical film profile is oscillation-free even

when the standard Galerkin method (Prati and Strozzi (1984)) is used .

Different results are obtained in the case of the film profile of Figure 8.4.4.2

, which is considerably more inclined than the previous one. This circumstance

suggests that in this case spurious undulations are more prone to occur. In fact, the

numerical results of Okamura (1982) and of Barret and Morton (1980) indicate that

the oscillations of the solution are somewhat fomented by high gradients and by

rapid variations of the curve slope. Also, the mean film thickness is lower than that

of Figure 8.4.4.1 , and this fact is responsible for the analogue of the Peelet number

assuming higher values (See Section 8.4.2). This is qualitatively confirmed by the

numerical results of Fig. 6a of Field and Nau (9175), where the amplitude of the film

profile undulations remains essentially the same as the reciprocating speed

diminishes, that is, as the mean film thickness decreases. As a consequence, the

relative importance of the film profile oscillations increases as the mean film

thickness diminishes in the paper by Field and Nau (9175). The remaining variables

are as in the previous example. Consistent with the increase of the Peelet number,

in the case Of Figure 8.4.4.2 a conventional Galerkin method produces an oscillatory

fluid film profile. Despite this fact, the convergence rate is still very good.

The spurious undulations of Figure 8.4.4.2 are fully eliminated by assuming
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asymmetric test functions. The degree of asymmetry used in Figure 8.4.4.3 is taken

as constant and equal to 0.5 , that is, a first derivative definition which is the mean

between the finite element analogue of an upwind and a central difference scheme is

adopted. Interestingly, Figure 8.4.4.3 demonstrates that the spurious undulations of

Figure 8.4.4.2 are fully removed without compromising the solution accuracy.

The third example aims at simulating an experimentally measured film profile

(Field and Nau (1973)). Such a curve was interpolated via a fourth-degree polynomial

describing the inverse of the analytical film curve (see Section 8.2.2). In Figure

8.4.4.4 , which coincides with Fig. 8.2.2.3 and is here repeated for convenience,

analytical and experimental film profiles are compared. This is a particularly

complex film shape. In fact, the curve gradient is very high . by the inlet and,

contrary to the numerical results characterized by a near. ly constant film profile, in

this experimental curve the highest film thickness exceeds the lowest value by a

factor of 5. This circumstance implies that the Peclet number varies considerably

along the sealing profile. The remaining variables, borrowed from Field and Nau

(1973), are x t = 0 , x0 = 9.72 mm , 17 = 0.026 10 -6 MPa s , U = 152.4 mm/s, while

the compressed seal radial height is 6.223 mm. The pressure profile corresponding to

the film thickness mentioned above is displayed in Figure 8.4.4.5 , in which the inlet

and outlet sealed pressures are chosen so that the dry contact pressure vanishes

for E — 100 MPa (see Section 8.2.2). Anyway, for low values of the Young's

modulus, the fluid pressure of Figure 8.4.4.5 is scarcely affected by E.

In the case of a relatively stiff foundation model ( E ranging from 210000

MPa to 500 MPa ), the solution in terms of film thickness is very regular and

superimposed to the exact solution, and therefore the corresponding results are

omitted.

If a less stiff support is adopted ( E = 200 MPa ), some wiggles appear by the

inlet when a conventional Galerkin method is used ( Figure 8.4.4.6 ). This agrees

with Fig. 6c of Field and Nau (1975), which shows a worsening of the solution

regularity zt the foundation becomes softer. No improvement in the solution

regularity is achieved by employing a constant asymmetry factor of 0.01 - 0.05

while with higher factors ( 0.2 ) the solution iterative scheme diverges.
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Finally, in the case of a soft foundation model ( E = 20 MPa , Field and Nau

(1973)), a standard Galerkin scheme produces highly oscillatory results ( Figure

8.4.4.7 ). As already noted, the numerical results of Okamura (1982) and of Barret

and Morton (1980) suggest that the undulations are promoted by high gradients and

by rapid variations of the curve slope. Interestingly, the wiggles become more

pronounced in a plateau region for the film thickness. Also, in this case the

convergence of the numerical procedure is somewhat undefined, since during the

Newton iterations the pressure curve is very stable, while the film profile changes

appreciably.

Then, asymmetric test functions ( with an asymmetry factor of 0.2 ) were

introduced ( Figure 8.4.4.8 ). In this case, part of the solution becomes oscillation-

free, but also stiffer, since it tends to a nearly straight curve. Unfortunately, the

more pronounced oscillations of Figure 8.4.4.7 explode, and they are not represented

in detail in Figure 8.4.4.8 . This anomalous behaviour is possibly ascribable to the

presence of an extended second derivative inflection zone for the fluid pressure

profile. Anyway, such a behaviour could not be properly rationalized, and further

numerical experiments are necessary to clarify the connection between spurious,

pronounced oscillations in terms of film thickness and extended inflection zones for

the fluid pressure curve. In addition, this example suggests that, consistent with the

pronounced lack of constancy of the Peclet number along the sealing profile, a non

constant asymmetry factor should be employed, where the higher values should be

used where the fluid film undulations tend to be more pronounced.

Moving to the specific problem of lubricated hip joints, the geometry

examined in Chapter 7 exhibits the presence of an elastomeric layer adherent to a

rigid backing forming the cup. The Young's modulus of the elastomer employed is

low (typically of the order of 3 - 50 MPa (O'Carrol, Jin, Dowson, Fisher, and Jobbins

(1991)), which suggests to classify this foundation as very soft. On the other side

the rubber, at least in the case of high contact widths and in the vicinity of the

hip symmetry axis, undergoes an essentially hydrostatic compression. As a

consequence of a Poisson's ratio approaching. the incompressibility figure 0.5 , the

elastomer behaves as stiff, so that the foundation as a whole should not be too

soft. It is felt that, in the case of high contact widths, that is, of highly loaded
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Fig. 8.4.4.1 : The case of a nearly straight fluid film profile.
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joints, the elastomeric support should behave as sufficiently rigid to prevent the

outcome of spurious numerical undulations in terms of fluid film profile. In fact,

the numerical results of Jin (1988) do not show vibrating film thicknesses.

Conversely, when the load diminishes during walking, and the consequent diminution

of the contact width does not prevent the rubber lateral flow, the foundation

should become softer and regularity problems might appear.
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Fig. 8.4.4.2 : The exact fluid film profile and the numerical, oscillatory curve

for a convergent profile.
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Fig. 8.4.4.3 : The numerical oscillations of Figure 8.4.4.2 are eliminated by

using asymmetric test functions.
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Fig. 8.4.4.5 : The pressure profile corresponding to the film thickness of Figure 8.4.4.4.
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Fig. 8.4.4.6 : Some wiggles appear at the inlet for E = 200 MPa.
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Fig. 8.4.4.7 : The solution is very irregular for E — 20 MPa.
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Fig. 8.4.4.8 : The use of asymmetric test functions improves part of the solution,

but it worsens the other part.
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8.4.5. Conclusions

A method which permits the obtaining of closed form solutions to be used as

test cases has been presented. The possible outcome of spurious undulations in the

numerical description of the fluid film profile has been rationalized by introducing

the analogue of the Peclet number. It is shown that spurious undulations are prone

to occur when the Peclet number is particularly high.

The numerical tests performed refer to lubricated rubber seals, but

speculations are also presented concerning the applicability of the procedures

developed to hip replacements. These numerical tests show how to limit the outcome

of spurious numerical oscillations. When the analytical fluid film profile does not

substantially deviate from constancy, the numerical oscillations can be placated by

employing a numerical procedure based upon the Petrov-Galerkin method with a

constant asymmetry factor in the test functions. When high gradients occur in the

analytical fluid film curve, the performance of the proposed numerical method is

unsatisfactory. In these cases, the numerical results achieved suggest that

asymmetric test functions with a variable asymmetry factor along the sealing profile

may be advantageous.
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8.5 GENERAL CONCLUSIONS

Some robust analytical tools have been presented, which are useful in the

numerical solution of the EHL problem and which are reliable and/or fast. In

particular, a method has been developed for constructing closed form solutions to

the stationary EEL problem in plane cases, to be used as test cases in validating

numerical codes. Secondly, an extended variational formulation for the stationary

EHL problem in plane situations, which possesses local minimum properties in the

solution neighbourhood, has been developed, and a relaxation solver which exploits

the mihimum properties has been implemented and tested numerically. Third, a

mathematical justification of the possible appearance of spurious numerical

undulations in the fluid film thickness has been derived, and numerica) schemes

acting as palliatives on the film undulations have been tested numerically, obtaining

satisfactory results in simple cases.

Most of the numerical tests presented in this Chapter refer to soft

lubricated contacts mimicking elastomeric seals. Anyway, some speculations about

the possible usefulness of such tools if applied to the lubrication of hip joints with

soft layers have also been formulated.
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9.1 INTRODUCTION

A comprehensive theoretical and partially experimental mechanical analysis

has been presented for a particular type of hip replacements, possessing an

elastomeric layer firmly bonded to a rigid cup, and indented by a rigid head. Various

models of increasing adherence to the actual geometry have been mechanically

analyzed, namely : a) a cylinder compressing a flat covering ; b) a cylinder

penetrating a curved stratum ; c) a sphere indenting a flat cortex ; d) a sphere

squeezing a spherical lining. In addition, the Poisson's ratio for the elastomer

adopted has been experimentally measured. Some theoretical-numerical tools useful

in tackling the lubrication of hip joints have also been developed. Finally, a

complementary introduction to : the theory of elasticity in finite deformations has

been included.

The following conclusions have been drawn from the present study

9.1.1 On the experimental measurement of the Poisson's ratio in elastomers

A piston device has been built to measure the Poisson's ratio of elastomeric

materials. Theories have been developed to correct the experimental measurements

by accounting for elastic distortions of the device and possible extrusions of the

elastomeric specimen. In particular, an existing theory for predicting the

deformations of a hollow cylinder subject to an axisymmetrical radial pressure along

part of its inner contour has been corrected and further extended. Apparent and

compensated values of the cubic compressibility have been obtained for two

elastomers, which indicate the relative importance of such corrections.
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9.1.2 On the geometry of a deformable, flat layer indented by a rigid cylinder

An existing integral-type, perturbation solution for cylindrical indenters and

small contact widths has been corrected with the aid of an algebraic manipulator,

and extended to include higher-order perturbation terms. It has been shown that a

sixth order perturbation theory is a good trade-off between simplicity and accuracy.

Similarly, and existing differential approach for cylindrical indenters and large

contact widths has been further developed to cover higher order terms, and its

limits when dealing with very large contact lengths have been explored and

attributed to the circumstance that the imposed boundary conditions become

questionable for high perturbation orders.

An analytical approximate Green function has been developed which forms

the basis of an integral formulation solved via a finite element approach, capable of

treating a generic indenter profile. Comparisons with other methods have shown that

this approach is accurate. The results retrieved indicate that the contact pressure

for an imposed contact penetration depth is very sensitive to perturbations of the

Poisson's ratio especially when the following situations occur simultaneously: a) the

Poisson's ratio is close to its incompressibility figure 0.5 ; b) the contact width is

considerably larger than the layer thickness. The modifications in the contact

pressure when passing from a cylindrical indenter to a parabolic approximation have

been explored numerically and found to be negligible in biomechanical applications.

9.1.3 On the geometry of deformable, curved layer indented by a rigid cylinder

A series solution has been developed with the aid of an algebraic manipulator

for a deformable annulus firmly bonded to a rigid substrate along one periphery and

subject to v. concentrated radial force acting at the other contour. Series

acceleration techniques have been developed. .Contrary to the previous treatments,

this solution does not degenerate for Poisson's ratios equal to half. This Green

function has been exploited to treat numerically the biomechanically relevant case
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of a deformable annulus indented by a rigid cylinder. The effects of curvature and

Poisson's ratio perturbations have been explored numerically, and they have been

found to become significant in geometries of interest in biomechanical problems.

More exactly, the effects of layer curvature have been examined separately from

those ref erring to the circumstance that the actual indentation curve of the

cylinder is not precisely described by a cylindrical or parabolic profile. It has been

found that the pure curvature effects are modest, whereas those deriving from the

approximations in the description of the indenter profile are appreciable. As a

consequence, a reliable mechanical model of a curved layer can be achieved by

considering a flat layer approximation compressed by an indentation curve recreating

the actual gap between the layer loaded border and the indenting 'cylinder.

The shear stress at the interface between layer and foundation has been

examined analytically, and it has been clarified that, for an imposed load, the

maximum interface shear stress decreases as the layer thickness is increased.

Finally, four configurations have been examined experimentally in terms of

pressure profile and contact width versus indentation, and they have been found to

agree reasonably with the theoretical forecasts, where the possible causes of errors

have been discussed.

9.1.4 On the geometry of deformable, flat layer indented by a rigid sphere

A perturbation solution of the problem of a deformable layer indented by a

rigid sphere has been obtained with the aid of an algebraic manipulator. This

solution is valid for ratios of contact radius to layer thickness up to 0.7 .

Inaccuracies in an existing analytical iterative solution have been signalled. Finite

element forecasts have been achieved for higher compressions, and the sensitivity

of the numerical previsions to perturbations of Poisson's ratio has been explored.

For an imposed indentation and for large contact radii, the axisymmetric peak

contact pressure is about three times lower than its plane strain counterpart,
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whereas the axisymmetric and plane contact radii are comparable. For small contact

radii, the plane and axisymmetric results are more similar.

9.1.5 On the geometry of deformable, spherical layer indented by a rigid sphere

A finite element mechanical analysis has been performed for a sphere

indenting a half-spherical layer, a geometry which mimics hip replacement possessing

an elastOmeric lining. Four basic geometries have been analyzed in the idealized

situation of axial loading, and the total load, peak pressure, maximum interface

shear stress as well as their locations have been diagrammatically reported versus

the head indentation depth. Then, modified geometries and situations have been

explored, by altering the initial head-layer gap, the Poisson's ratio, the angular

extent of the elastomeric layer, and by approximating the spherical shape of the

indenter with a paraboloidal profile. The results retrieved suggest that for a given

load the peak pressure and the maximum shear stress diminish as the layer

thickness is increased, thus providing practically _relevant indications about the

selection of the optimal layer thickness. In addition, the marked sensitivity of peak

contact pressure to Poisson's ratio perturbations, especially when the head-layer

initial gap diminishes, evidences the need for an accurate experimental measurement

of v . In any case, as a consequence of the above reported sensitivity to ii, it

seems wise not to adopt very small head-layer gaps in practical applications.

9.1.6 On the validity range of some approximations

Validity intervals of simplified modellings are extracted from the various

results obtained in this thesis. The applicability fields here reported are inevitably

qualitative.	 •

The asymptotic, incompressible solution (eqns (4.4.2.2.8) and (4.4.2.2.11) for

the plane case, and (6.5.2.1) for the axisymmetric case) holds when 6 R/h2 > 25 ,
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that is, a/h > 10 (Sections 4.3.5 and 6.6). Within this range, the asymptotic solution

holds when a) the elastomer is essentially incompressible (1) > 0.4999 , Section 4.4.4)

; b) the indenter is parabolic (or paraboloidal).

The Winkler solution applies when v < 0.48 and the ratio of contact

semiwidth (or radius) to layer thickness > 10 (Section 4.4.4)

The parabolic approximation for the circular indenter profile is acceptable

when the contact semiwidth (or radius) is defined by an angle < 1 radians (Section

7.3.6), which often corresponds to a ratio of contact radius to head radius (or, to

layer curvature radius, the clearance between head and layer being small) in the

region of 0.7 (Section 7.3.6).

When 8 R/h2 > 100, that is, a/h > 20 , the stress field is particularly

sensitive to perturbations of the Poisson's ratio (Section 7.3.4).

The maximum shear stress at the interface between elastomeric layer and

rigid backing is of the order of 1/10 the maximum contact pressure between head

and layer (Section 7.3.2).

9.1.7 On the elastohydrodynamic lubrication problem in hip joints

Some robust analytical tools have been presented, which are useful in the

numerical solution of the EHL problem and which are reliable and/or fast. In

particular, a method has been developed for constructing closed form solutions to

the stationary EHL problem in plane cases, to be used as test cases in validating

numerical codes. Secondly, an extended variational formulation for the El-IL problem

in plane situations, possessing local minimum properties in the solution

neighbourhood, has been developed, and a relaxation solver which exploits the

minimum properties has been implemented • and tested numerically. Third, a

mathematical justification of the possible appearance of spurious numerical

undulations in the fluid film thickness has been derived, and numerical schemes
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acting as palliatives on the film undulations have been tested numerically, obtaining

satisfactory results in simple cases. Most of the numerical tests have dealt with

soft lubricated contacts mimicking elastomeric seals. Anyway, some speculations

about the possible usefulness of such tools if applied to the lubrication of hip

joints with soft layers have also been formulated.
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