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Abstract

In this thesis, Bayes Linear methods for modeling multilevel data are presented

and discussed. Second-order exchangeability judgements are exploited to formulate

subjectivist versions of multilevel models. Bayes linear methods are applied to

estimate model parameters and for diagnostic checks. Closed-form expressions of

estimators are derived, allowing insight into relationships between the quantities

thereof. The canonical analysis and resolution transforms are used to guide sample

design and sample size determination under cost constraints. A finite version of a

multilevel model is formulated, analysed and compared to infinite versions, giving

further insight into sample design issues via the finite resolution transform.

A new Bayes Linear Minimum Variance Estimation (BLIMVE) approach is de-

veloped to estimate variances. Estimated variances are used to perform two-stage

Bayes linear analysis of more complex multilevel models. The methods developed

are shown to be applicable in cases of small level-2 samples. The Bayes linear analy-

ses of multilevel models are applied to an educational data set using special-purpose

codes written in the R Statistical Language.
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mean ȳ.. = 54.04. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

4.7 Disparities between the finite and infinite adjustments of the population grand

mean M(y) for the hypothetical data with prior mean µ = 65 and data mean
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Chapter 1

Introduction - Multilevel modeling

for multilevel data

The world we live in is complex. This complexity is rife as can be seen in natural

phenomena that surround us. Complexity also permeates the biological, psycho-

logical, social and economic dimensions of our lives. In our quest to understand

this complexity, we come to collect data and, unsurprisingly, this data turns out to

be both complex and richly structured. A common type of richly structured data,

called multilevel data, and the special class of models required to analyse such data,

called multilevel models are the subject of this thesis.

Multilevel data occur in most fields of study. The most frequently cited example

is in educational research, where students are grouped in classes and classes are

grouped in schools forming a multilevel or hierarchical structure. The main issue in

modeling multilevel data is that the usual assumption of independence is no longer

valid; students in the same class are more likely to be similar as compared to stu-

dents in another class. As such, commonly used models that assume independence,

such as linear regression for example, are no longer valid and may lead to erroneous

inferences. Hence, classical multilevel or Bayesian hierarchical modeling are better

suited for accounting for the dependencies between the units at the different levels

of a hierarchy. Notwithstanding these modeling approaches, there are still issues

that could benefit from an alternative approach. Classical estimation methods suf-

fer from the possibility of negative variance estimates especially with a low number
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1.1. Thesis outline 2

of groups. At the other end, when there are large amounts of data, Bayesian hierar-

chical modeling using Markov Chain Monte Carlo or dynamic Hamiltonian Monte

Carlo can be very slow or difficult to tune.

In this thesis we propose to use Bayes linear methods as an alternative to exist-

ing methodologies in formulating, estimating and diagnostic checking of multilevel

models. The Bayes linear approach requires only limited beliefs specifications as op-

posed to complete prior probability distribution specifications in the fully Bayesian

approach. The Bayes linear approach is subjectivist and uses expectation rather

than probability as a primitive. The principal features of the method are discussed

in Goldstein and Wooff (2007).

1.1 Thesis outline

In Chapter 2 we review the concepts underlying multilevel data structures and the

need for multilevel modeling in the context of some important applications. A mul-

tilevel dataset on an introductory course in Statistics, the STAT1010 dataset, is

introduced and is used throughout this thesis to motivate and illustrate the analy-

ses. We discuss a number of classical estimation methods including least squares,

maximum likelihood and iterative generalized least squares methods that are all

relevant to multilevel modeling. We also discuss the fully Bayesian hierarchical

modeling approach and consider the difficulties in making full prior specifications,

as well as in computing posterior densities. Finally, we present the concepts and

methods involved within the Bayes linear approach. Using a collection of second-

order exchangeable quantities, we explain the principles of adjustment of means and

variances, as well as some important diagnostic checks. The notations used in this

thesis are compiled in Appendix A.

In Chapter 3 we use second-order exchangeability (SOE) judgements to formulate

our versions of multilevel models. We present the SOE random effects (SOEREF)

model, our version of the simplest multilevel model, i.e. the random effects model.

The assumptions and notations of the SOEREF model are discussed. We then

extend the SOEREF model to a SOE regression (SOEREG) model. We also discuss
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and illustrate suitable methods that can be used to specify priors for our models

using the STAT1010 data.

In Chapter 4 we apply Bayes linear methods to adjust the population overall

mean and population group means in the SOEREF model. We derive closed form

expressions for the adjusted mean for balanced and unbalanced data and use these

to understand how the adjusted quantities relate to prior specifications and data.

We compute adjustments and diagnostics using specially written codes in the R

statistical programming language and apply these to the STAT1010 data (Appendix

B gives the R and also [B/D] codes as well as the STAT1010 data). We also apply

a partial Bayes linear analysis and demonstrate its importance as a diagnostic tool

in multilevel modeling. We exploit the canonical structure and resolution transform

underlying our exchangeable adjustments to address sample design issues and sample

size determination with cost constraints for both level-1 and level-2 units in the

SOEREF model. We then relax the assumption of infinite exchangeability and

formulate a finite version of the SOEREF model. We are interested in comparing

the adjustments of the finite and infinite versions of the SOEREF model via the

canonical analysis and apply these to the STAT1010 data.

In Chapter 5 we discuss the difficulties in learning about population variances and

develop Bayes linear methods to estimate the level-1 variance in both the balanced

and unbalanced cases. We apply these methods to the STAT1010 data and illustrate

the choice of priors for fourth order quantities. The sensitivity of our adjusted

variance to a higher kurtosis is also investigated.

We develop a Bayes Linear Minimum Variance Estimator (BLIMVE) to estimate

the level-2 variance of the SOEREF model in Chapter 6. The method is applicable

to two or more groups and we validate it using simulation. We apply BLIMVE

and estimate the level-2 variance in the STAT1010 data. Having learned about

both level-1 and 2 variances, we perform a two-stage analysis by substituting the

estimated variances in the adjustment of the mean components. We then consider

estimation of the level-1 scalar variance and level-2 variance matrix in the more

complex SOEREG model. Specifications of priors, in particular for the residual

variance matrix, are discussed and applied to the STAT1010 data. We describe how

June 11, 2023



1.1. Thesis outline 4

to use Bayes linear methods to learn about population variances based on unbiased

OLS estimators and apply these to the STAT1010 data. Finally, we apply a two-

stage analysis to update intercepts and slopes in our SOEREG model and compare

shrinkage in these regression coefficients for the STAT1010 data.

We conclude with a discussion of our results and some promising areas for future

work in Chapter 7.
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Chapter 2

Modeling data with complex

structures using multilevel models

2.1 Introduction

In this chapter we review the concepts underlying a multilevel model and its applica-

tion to hierarchical data. We present examples of various types of richly structured

data that are commonly viewed as hierarchical or multilevel data and discuss the

substantive research questions that are of interest in these multilevel data. We pro-

vide notations for multilevel models and explain the conceptual difference between

multilevel and regression models. Classical and Bayesian estimation methods are

presented and discussed, pointing out some of the shortcomings of these methods.

We then present Bayes linear methods including adjustments of means, variances

and diagnostics checks.

2.2 The pervasive multilevel data

Multilevel or hierarchical data occur frequently in most fields of study. In education

for example, students are “naturally” grouped in classes and classes are in turn

grouped in schools, hence forming a three-level hierarchy; the multilevel data here

will then comprise of variables measured on students, classes and schools. Another

example is in economics where we are interested in employment status of individuals
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2.2. The pervasive multilevel data 6

(employed or unemployed) grouped in regions (urban or rural) hence forming a two-

level hierarchy. It is easy to find examples of multilevel data in almost all areas

of the sciences. Indeed as Kreft and de Leeuw (1998) wrote “once you know that

hierarchies exist, you see them everywhere”.

In some situations though, the hierarchical structures may not be as explicit as

in the above-mentioned examples. Consider longitudinal studies for instance, where

repeated measurements are made on a sample of individuals over time. The repeated

measurements taken at different points in time for one specific individual, may be

viewed as grouped within that individual, thus forming a two-level hierarchy, where

the repeated measurements are at the lower level and individuals are at the higher

level of the hierarchy.

Acknowledging the multilevel structure in a dataset is an important step towards

proper modeling of multilevel data as the clustering of individuals induces depen-

dence. To illustrate this dependence we note in our earlier example that students

in the same class share the same teacher and class environment; they are thus more

likely to have similar exam scores than students in different classes. A consequence of

such dependence is that it invalidates the straightforward application of traditional

statistical methods such as linear regression modeling. Therefore a more flexible

type of model is called for, namely a multilevel model, that properly accounts for

the dependencies in multilevel data.

Over the last thirty years or so, multilevel modeling has emerged as an impor-

tant modeling technique, prompting numerous textbooks (see for example, Gold-

stein (2010), Bryk and Raudenbush (1992), Snijders and Bosker (1999) and more

recently, Gelman and Hill (2007) and softwares. A list of multilevel modeling soft-

wares is available at the Centre for Multilevel Modelling (CMM) at Bristol Uni-

versity (http://www.bristol.ac.uk/cmm/). The CMM “ collaborate with a range of

researchers working with multilevel models to develop new statistical methodology,

implemented in software to address unsolved issues in quantitative modelling of so-

cial processes.”

The above on-going developments have encouraged researchers in general to use

multilevel modeling in the analysis of richly structured data. Below we explain the

June 11, 2023



2.3. The need for multilevel modeling 7

facets of multilevel modeling that have made it gain such popularity and importance

among researchers, especially in the social sciences.

2.3 The need for multilevel modeling

As we saw above, one reason for using a multilevel model is that observations in

multilevel data are dependent and, unlike more familiar statistical techniques which

assume independence, a multilevel model can account for this dependence. Here we

consider three commonly cited advantages for using a multilevel modeling approach

when analysing multilevel data. They are:

• Improved estimation of effects

• Modeling cross-level interactions

• Inference for groups with sparse data: Small area estimation

For each of the above three advantages, we begin by explaining a research issue

of interest using simple examples. We then explain the benefits of using a multilevel

modeling approach to address the research issue in the context of a more detailed

example from the research literature.

2.3.1 Improved estimation of effects

The effect of clustering on the individuals forming the clusters is of considerable in-

terest to researchers in applied social sciences. Thus, in school effectiveness studies,

educational researchers ask to what extent school characteristics (e.g. public/pri-

vate, school management) impact on pupils’ performances, while in social policy

research, sociologists are interested in the impact of neighbourhoods (poor/rich) on

teenagers’ behaviour (teenage pregnancy, school dropout). Estimating an effect at

a group level (school or neighbourhood characteristic) based on an outcome at an

individual level (pupil’s performance, teenager’s behaviour) is not straightforward

and can have major pitfalls as our chosen applied example next shows.
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Bennett (1976) published a report claiming that primary school children taught

by teachers using a ‘formal’ teaching method were likely to make greater progress in

learning than those pupils taught by other teaching methods. This finding , which

had important policy implications, gave rise to many controversies. The statistical

issue here is that in his analysis Bennett ignored the multilevel structure of the

data; namely the grouping of pupils in classes and teachers. Hence, each pupil

was treated as providing independent information to assess the teaching method

whereas, in fact, the clustering of pupils in classes and teachers meant that pupils

in the same group had correlated exam scores. Ignoring clustering and treating

observations as independent led to underestimated uncertainties (small standard

errors) in teaching style effects. Therefore, estimated confidence intervals were also

quite narrow, leading to apparently significant differences in teaching style effects.

(Aitkin et al., 1981) analysed the same data as in the teaching styles study, but

they used a multilevel model to account for the multilevel structure in the data.

The outcome variable in Aitkin’s model was achievement test score (Ypqr) for pupil

r, grouped in class q, and teaching method p, a three-level model. The result was

“greatly reduced significance of any differences in teaching style” Aitkin et al. (1981).

It is now well known that ordinary least squares may underestimate the stan-

dard errors of regression coefficients for multilevel data while multilevel modeling

provides more efficient estimates for these standard errors.

2.3.2 Modeling cross-level interactions

Are differences in mathematics achievements between boys and girls the same in

private and public schools? Are differences in fertility rates between urban and rural

regions the same in rich and poor countries? Each of these questions concerns the

impact of variables measured at different levels of a hierarchy on a response variable.

The first question, for example, concerns three variables: a response variable (

achievement in mathematics) measured at the pupil level, a pupil level predictor

(gender) and a school level predictor (school type). We are interested in the effects

of gender and type of schools on pupils’ achievement in mathematics. Suppose, for
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the sake of argument, that gender differences in mathematics achievements are larger

in public schools than in private schools. More specifically, suppose girls obtain on

average far better grades than boys in public schools. While in private schools,

because of better teachers and smaller classes, girls and boys have on average the

same grades. Since the effect of gender on achievement in mathematics depends on

school type, we say that there is an interaction between gender and school type.

And because such interactions occur between variables measured at different levels

of a hierarchy, they are termed cross-level interactions.

The identification of cross-level interactions in richly structured data are of prime

importance to researchers in all fields of study. As an example we consider Shouls

et al. (1996) who studied variation in an individual’s chance of being long term

ill based on variables such as age, low skill job, non-white ethnicity, being married

and individual deprivation (unemployed, does not own a house and so on). Indi-

viduals were considered nested in local authorities and the result of Shouls et al.

(1996) modeling showed significant variation in long term illness rates between local

authorities. In an attempt to explain this variation they introduced a cluster level

(group level) variable namely, North versus South England, in their model. While

the effect of the North/South divide was significant, they found that the cross-level

interaction between the North/South divide and individual deprivation was not.

The Shouls et al. (1996) analysis shows how modeling cross-level interactions can

seamlessly be achieved within the framework of multilevel modeling when data have

a hierarchical structure.

2.3.3 Inference for groups with sparse data: small area

estimation

An important survey research problem that has many applications, is that of ob-

taining reliable estimates of quantities such as averages, totals and rates for groups

having little or even no data. This research problem frequently arises when the

results of surveys, which are conducted on part of a population but with a view to
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learning about the whole population, need also to be used to learn about groups

or categories of the target population. Examples of these groups include people

living in specific regions or belonging to specific socio-economic categories. Because

surveys are costly and time consuming, sample sizes tend to be limited in practice.

Hence, the groups in question may have little data in the sample or no data at all

(unsampled groups), rendering estimates of the quantities for these groups difficult

and inaccurate.

To understand the need for estimates in small groups, consider the economic

problem of unemployment. The unemployment rate is an important indicator of

the economic health of a nation and therefore national surveys are conducted on

a regular basis in order to assess the level of unemployment. But unemployment

affects different regions and sub-regions of a nation differently; some regions have

more unemployed people than others. Hence, reliable estimates of unemployment

at regional and sub-regional levels are vital for efficient policy decisions aiming at

reducing unemployment.

More importantly perhaps, is the impact of unemployment on the very individual

who has lost his or her job. Indeed the loss of a job to an individual not only means

the loss of livelihood and the financial hardships that it entails, but also a loss of

status in society, with its accompanying psychological distresses. It seems therefore

natural to measure the unemployment rate among specfic groups of individuals based

on their socio-economic profile, such as lone mothers aged between 18 and 25 years

and having only primary education.

Obtaining reliable estimates of unemployment for regions, sub-regions and socio-

economic groups such as mentioned above, is therefore important albeit difficult

when such groups have little or no data in the sample. Direct estimates, based

on number of unemployed and total sampled in the small group for example, are

either imprecise due to the small sample size or impossible when a group is not

sampled. However, many techniques have been developed over the years by survey

researchers to provide reliable small area estimates. A thorough in-depth survey of

these small area estimation techniques is provided by Rao (2003) in his book “Small

Area Estimation”. Of particular interest to us here, are the model-based techniques,
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especially those that take advantage of multilevel modeling.

Multilevel modeling seems an intuitive approach to use in small area estimation,

since small area estimates are required for groups based on observations that are

made at the level of the individuals forming the groups. At the individual level,

we construct regression-type models that relate the quantity of interest (proportion

unemployed) to individual-level covariates (highest educational level attained, for

example). At the group level, we include random area-specific effects to account

for differences (in unemployment rates) between areas. In addition, contextual vari-

ables, available from census and administrative sources on all individuals in a small

area, are used in the area-level model to explain between-area variability beyond that

explained by individual-level variables. An example of such a contextual variable

is the percentage of the population in each area having at least completed primary

education, a known area-level predictor of unemployment.

Fitting the multilevel model then involves ‘borrowing of strength’ from all areas

in the sample to estimate the random effect of a specific area. Such borrowing of

strength increases the effective sample sizes for small areas, hence increasing the

precision of the small area estimate as well as providing a measure of precision for

each specific area. Hence, multilevel modeling is a powerful tool to use in small area

estimation.

Following Rao (2003), we give the following advantages for using a model-based

approach in small area estimation, including the specific advantages of using a mul-

tilevel modeling approach:

1. Model fitting diagnostics can be used to find a suitable model for the data as

well as to investigate major discrepancies between model and data.

2. Appropriate summaries (means, totals and rates) for the small area estimates

can be obtained via the model. In addition, measures of precision for the small

area estimates are easily obtained from the models.

3. Multilevel models are very flexible and can model all types of response variables

including continuous, binary, count and multivariate.
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4. More importantly, a multilevel model can account for complex variance struc-

tures, including spatial effects and spatio-temporal effects.

The above modeling advantages are of particular relevance to this thesis. Indeed,

our overarching aim is to apply Bayes linear methods as a unifying framework for

model formulation, estimation and diagnostic checking in the context of multilevel

modeling, including learning about variances in complex multilevel models.

2.4 A frog in a pond or the basic advantage of an

expert’s belief in hierarchies

As we saw above there are important gains for a researcher in recognising hierarchies

in complex data and taking advantage of multilevel modeling. If a researcher’s beliefs

do follow a multilevel structure, then it would be a mistake to ignore it. We now

consider what motivates belief in multilevel structures, why at times researchers

may decide to ignore such structures and what the resulting consequences are.

The primary reason why an expert may hold belief in multilevel structures is

because the expert’s belief is rooted in theories about the relationship between the

individual and the context (group) to which the individual belongs. Studies of

contextual effects are important in all the social, economic and behavioural sciences.

Educational researchers for instance, are interested in studying the impact of various

contexts, such as schools or classrooms, on students. The theory underpinning these

contextual effects has come to be known as ‘frog pond’ theory (after a classic research

article ‘The campus as a Frog Pond’, Davis(1966). The metaphor ‘a small frog in

a large pond or a large frog in a small pond’ is used to define the relationship

between the student and the class context. For example, a rather weak student in

a class of highly intelligent students may perform poorly while the same student in

a class of weaker students, may gain confidence and perform better. This kind of

belief naturally leads to hypotheses about cross-level interactions between variables

defined at the individual and at the group levels. Our point here is that experts do

hold beliefs based on theoretical considerations, and possibly irrespective of data,
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and that multilevel models provide a framework to state and test these hypotheses.

Before the advent of multilevel modeling in the 1980’s, researchers often had to

ignore the multilevel structures when analysing complex data such as, for example, in

the modeling of change using longitudinal data (which have an inherent multilevel

structure). Singer and Willett (1993) report that, ‘methodologists advised that

researchers should not even attempt to measure change because it could not be

done well’ while Cronbach and Furby (1970) advised researchers studying change to

’frame their questions in other ways’ because these questions pertained to cross-level

hypotheses necessitating multilevel modeling.

When multilevel structures are ignored, often researchers perform single level

analyses by aggregating data (at the higher group level) or disaggregating data

(by using indicator variables to attach group level variables at the individual level).

Unfortunately, such single-level analyses of multilevel data are inappropriate as they

tend to ignore dependencies in the data.

More importantly, single-level analyses of multilevel data may result in fallacious

interpretations such as the ecological fallacy which, in the multilevel modeling lit-

erature, means observing a high correlation between variables at the higher (group)

level of a hierarchy and using this observation to infer a similar correlation at the

individual level. The reverse, making inferences at the higher level of a hierarchy

based on observations at the individual level, can also be misleading and is termed

the atomistic fallacy and is related to Simpson’s paradox (Hox 2002). Therefore if

an expert’s beliefs do follow a multilevel structure then it would be advantageous to

use multilevel models to avoid the above pitfalls.

2.5 Names, notations and equations for multilevel

models

So far we have seen that most real world data has a complex hierarchical structure

and that there are substantial benefits in adopting a multilevel modeling approach

to analyse such richly structured data. In this section we use an example to explain
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some important notations and model equations for various types of multilevel mod-

els, ranging from the simplest to the more complex. Our aim is to use these common

multilevel notations and equations to review multilevel model estimation methods

in Section 2.6. Appendix A gives a list of notations used in this thesis. First we

briefly look at the different names used for multilevel models in the literature.

2.5.1 A multitude of names for a multilevel model

Multilevel modeling is not a new statistical method; it has been around for quite a

long time, albeit under various names. Indeed, rarely has a statistical method had

such a plethora of names, the most common being: mixed-effects models, random-

effects models, random-coefficient models, hierarchical models, covariance compo-

nents models and exchangeable regressions. The reasons for such a variety of names

are, in our opinion, two-fold. Firstly, the concepts and estimation methods under-

lying multilevel models have evolved according to specific and varied application

areas. For example, animal genetics studies have given rise to variance components

methods while educational and social sciences have given rise to multilevel and hi-

erarchical modeling. Secondly, the longstanding divide in approaches to statistical

inference, namely between classical and Bayesian, has also led to names such as

Bayesian hierarchical models and exchangeable regressions to mark the underlying

Bayesian methods used in formulating and estimating these models.

In this thesis we shall develop our own approach to analysing multilevel (or

hierarchical) data based on the Bayes linear methodology. We shall then provide

suitable nomenclature to reflect the specificities of our approach (see Chapter 3).

When we wish to refer to classical or full Bayesian hierarchical models however, we

shall use ‘multilevel model’ or ‘Bayesian hierarchical model’ as appropriate.

2.5.2 An example: The STAT1010 dataset

We shall illustrate the notations and model equations for multilevel models using a

data set we collected in 2004 at the University of Mauritius, the STAT1010 data.

STAT1010 is the module code of an introductory course in statistics. The module is
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compulsory in several degree programmes at the university and is delivered mainly

by distance education (DE). At the start of the semester, students are given a DE

manual to work through and once a week they have a one-hour face-to-face session

with a lecturer who may be a part-time or full-time staff member. The semester

lasts for fifteen weeks. At the end of the eighth week there is a formal mid-term

class test that is compulsory for all the students. The final examination is held at

the end of the semester. To ensure uniformity, guidelines for marking of class test

and examination questions are provided to all lecturers. Further, all marked scripts

are moderated by full time lecturers.

The data comprises examination marks of 306 students grouped in each of eight

classes. Table 2.1 below gives a summary of the main variables including some cases

in the dataset. In five of the classes, STAT1010 is taught by part-time lecturers

and the remaining three by full-time lecturers. Hence, we have a class-level variable

(Part-time/Full-time). Another class-level variable is whether students study man-

agement or engineering sciences, the latter have better mathematical abilities. The

response variable is the final examination marks of the students, while the explana-

tory variables are the mid-term class test marks and prior achievements at A level

(A level scores).

Class Student Lecturer Faculty Sex A level Test Exams

1 1 full-time management male 20 39 28

2 42 part-time management female 20 93 55

3 66 full-time engineering female 24 75 64

4 107 full-time management female 22 44 31

5 137 part-time management male 12 54 18

6 170 part-time engineering male 30 60 97

7 218 part-time engineering female 18 78 77

8 261 part-time engineering male 22 45 33

8 306 part-time engineering male 30 63 91

Table 2.1: Structure of the STAT1010 data. The first case in each of the eight

classes is shown as well as the last case in class no.8.
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Apart from its role in illustrating our methods, the data is also of substantive

interest. The quality assurance sub-committee, of which I was a member, had ex-

pressed the need for information on issues such as the relationship between achieve-

ment at university level and performance at A level. Another question of interest

that explicitly calls for multilevel modeling is whether some of the differences in

students’ achievement in the STAT1010 examination can be attributed to class type

(part-time against full-time lecturer).

2.5.3 Notations

Along with the plethora of names for multilevel modeling that we mentioned in sec-

tion 2.5.1 above, there is also a profusion of notations for basically equivalent multi-

level models, but arising from different disciplines. The multilevel models of interest

to us in this thesis may be considered as extensions of the general linear model

(GLM) class that includes linear regression and analysis of variance models. Within

this GLM class of multilevel models though, the current notations for response and

predictor variables, regression coeffcients, mean and variance parameters, as well as

subscripts indicating individuals and groups are varied and potentially confusing.

Our choice of notations below follows somewhat those of Gelman and Hill (2007)

and is suitable for fully Bayesian multilevel modeling as well as our own Bayes linear

method. We introduce the notation in the context of simple linear regression which

naturally leads to multilevel models.

2.5.4 Linear regression of the STAT1010 data

Regression in a single class

We are interested in the relationship between the examination and class test marks

in the STAT1010 data. We first consider the marks in a single class only, say the

first class, and we write the regression equation:
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yi = β0 + β1xi + ǫi (2.1)

where:

• Students are denoted by i, for i = 1, 2, . . . , n. In this case n = 41.

• yi is the response variable, here the examination mark of student i.

• xi is a predictor variable, here the class test mark of student i.

• β0 is an unknown intercept term, here the predicted examination mark of a

student who scored a zero mark in the class test.

• β1 is an unknown slope term, here representing the predicted difference be-

tween examination marks of students whose class test marks differ by 1.

• ǫi is an error or residual term, assumed to be independently and identically

distributed.

In addition to the above, the errors are assumed to follow a normal distribution with

mean zero and constant variance σ2
y . Estimates for β0 and β1 are obtained by the

method of ordinary least squares (OLS) that minimises the sum of squared errors,
∑

i ǫ
2
i .

Fitting the above regression using, for example, the R function lm(), gives esti-

mates β̂0 = 21.3 and β̂1 = 0.4. We can therefore write:

ŷi = 21.3 + 0.4xi (2.2)

The term ŷi is the fitted value, that is the estimated examination mark of student

i based on (2.2). For example, the first student in class one has a class test mark

of x1 = 39 (see table 2.1) based on which his estimated examination mark is ŷ1 =

37 while his actual mark is y1 = 28. Therefore, based on the regression model, the

student obtained 9 marks less than is expected on average from students having a
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class test mark of 39. In general, the difference yi− ŷi is the estimated ith residual.

An estimate of the error variance σ2
y is

∑
i ǫ̂

2
i /(n− 2).

Extending simple linear regression in a single class

One way to extend the regression of examination marks on class test marks is to

add further explanatory variables, such as sex and A level scores, hence giving a

multiple regression. In general, we may have p explanatory variables on each of n

students. We then write the multiple regression in matrix notation as y = Xβ + ǫ,

where the response variable y and the residuals ǫ are n x 1 vectors each. X is a n

x p matrix of predictor variables and β is the p x 1 vector of regression coefficients.

As in the case of simple linear regression we derive estimates β̂ of β by minimizing

the sum of squared residuals:

ǫT ǫ = (y −Xβ)T (y −Xβ) (2.3)

giving

β̂ = (XTX)−1(XTy) (2.4)

and

var(β̂) = (XTX)−1σ2
y (2.5)

where the superscript T denotes matrix transpose. The fitted values are ŷ = Xβ̂

and the estimate of the error variance σ2
y is ǫ̂T ǫ̂/(n− p) where, as before ǫ̂ = y − ŷ.

Extending Ordinary Least Squares: Generalized Least Squares

In both the simple and multiple linear regressions described above, the residual error

terms ǫ are assumed uncorrelated. Hence, var(ǫ) = σ2
ǫ I, where I is the identity ma-

trix. A further generalisation of multiple linear regression is to drop this assumption

and consider correlated responses. The error variance-covariance matrix is then Σǫ,

which is symmetric and positive definite. A simple example of correlated responses

June 11, 2023



2.5. Names, notations and equations for multilevel models 19

is in longitudinal data (hence multilevel) or time series data with serially correlated

errors where the variance-covariance is

Σy = σ2
y




1 ρ1 ρ2 . . .

ρ1 1 ρ1 . . .

ρ2 ρ1 1 . . .
...

...
. . .




where the ρ’s are (auto) correlations. Generalized least squares (GLS) estimates

β̂GLS of β are obtained by minimizing the following generalized sum of squared

residuals:

ǫT ǫ = (y −Xβ)TΣ−1
y (y −Xβ) (2.6)

giving

β̂GLS = (XTΣ−1
y X)−1(XTΣ−1

y y) (2.7)

and

var(β̂GLS) = (XTΣ−1
y X)−1σ2

ǫ (2.8)

Generalized least squares is relevant to multilevel models which can be considered

as regressions with correlated errors. Such correlations are induced by the clustering

of units in higher level groups as mentioned before. Indeed the multilevel estima-

tion method used in the software MLWiN maintained at the Centre for Multilevel

Modeling(see section 2.2) is based on GLS as we shall describe in section 2.8.

An important point to note here is that models with correlated errors are substan-

tially more difficult to estimate than those with uncorrelated errors. For instance,

we note that the OLS estimate β̂ depends only on the data whereas β̂GLS depends

both on the data and the unknown variance-covariance matrix Σy that also needs

to be estimated. We have not provided any derivation of OLS or GLS estimates as

these are standard statistical methods covered in most linear models textbooks.

Regression in all eight classes
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Having performed a linear regression in one class only, we now consider regressions

in all eight classes. There are two analytical approaches that we may consider, the

most obvious one being a single regression that ignores the grouping of students in

classes - termed the complete-pooling analysis. Alternatively, we may also fit sepa-

rate regressions, one for each of the eight classes - termed the no-pooling analysis.

Figure (2.1) shows a plot of the fitted regression lines in each of the eight classes

with the gray lines showing the no-pooling analysis and the single bold line, the

complete-pooling analysis.
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Figure 2.1: Separate regressions of classes 1 to 8 (grey lines) and a single regression

for all classes (bold line labelled ‘All’)

It is evident from Figure (2.1) that there are some important variations in the

predicted intercepts and slopes among the classes. On the one hand the complete-

pooling analysis ignores these variations and therefore is not suitable if our aim

is to understand variations between classes. The no-pooling analysis, on the other

hand, exaggerates the variations in intercepts and slopes, more so if some classes have

very few students, hence leading to inefficient estimates of the regression coefficients.

Rubin (1980) calls this the bouncing beta problem. A compromise between no-pooling
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and complete-pooling is partial-pooling, which is precisely what multilevel modeling

does.

2.5.5 The simplest multilevel model

In the regression analyses of the eight classes above, the regression coefficients appear

to vary. This variation in intercepts and slopes can be modelled via a multilevel

model, the simplest of which allows the intercept only to vary by class. The model

thus has only one intercept term, no predictors but two levels of variations: the usual

student level variation (Level 1) and the school level variation (Level 2). Hence, the

two-level random effects model is as follows.

At level 1 we have:

yji = β0j + ǫji (2.9)

and at level 2 we have:

β0j = µ+ αj (2.10)

where:

• Students are denoted by i, for i = 1, 2, . . . , nj and classes, by j for j =

1, 2, . . . , J . For the STAT1010 data, J = 8 classes and the first class has

n1 = 41 students.

• yji is the examinations mark of student i in class j

• µ is the underlying population average examinations mark.

• αj is the effect of class j on examinations mark.

• ǫji is the error or residual term of student i in class j.

The level-1 errors, ǫji, are uncorrelated with variance σ2
ǫ and represent variation

in examinations marks between students; for example variation due to students’

differing abilities in the STAT1010 examinations. The level-2 errors, αj , are also

uncorrelated with variance σ2
α and represent variation in examinations marks be-

tween classes. The variances σ2
ǫ and σ2

α are jointly termed variance components

hence the alternative name variance components models for multilevel models. The
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probabilistic assumptions underlying the random effects model depend on the model

fitting approach adopted; we discuss these assumptions when we discuss estimation

in the next section.

Another way to write the two equations (2.9) and (2.10) is by combining them

in the single equation form as follows:

yji = µ+ αj + ǫji (2.11)

The single equation is more compact and applies to more complex multilevel

models with several levels of variations and predictors at all these levels. In (2.11)

the term in µ is called the fixed effect and the term in αj, the random effect, hence

the alternative name linear mixed-effects model for multilevel models.

There are four types of parameters that are of direct interest for estimation and

interpretation of the model. These are namely the fixed effect µ, the level-2 residuals

αj, the level-2 variance σ2
α, and the level-1 residual variance σ2

ǫ . The level-1 residuals

ǫji are mostly estimated for diagnostic assessments of the fitted model, just as in

the analysis of linear regression models. In the next sections we review estimation

of the mean and variance components.

2.6 Estimation in multilevel modeling

Estimation in multilevel models is the central theme of this thesis. In the coming

sections we shall therefore review some of the main approaches and methods com-

monly used for estimating parameters of multilevel models. There are three main

approaches that are currently used to estimate mean and variance components in

multilevel models: maximum likelihood estimation, Bayesian hierarchical model-

ing and bootstrap simulation. Our aim in reviewing these estimation methods is

manifold.

We review the above three main estimation methods because they provide im-

portant concepts, illustrate difficulties in estimation, and may ultimately be used

for comparison with our proposed estimation method, while some other methods we

review, especially those based on least squares, are essential stages in the estimation
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techniques we develop in this thesis. We also review the ANOVA estimation method

as it illustrates the problem of negative variance estimates.

Finally, we also give an introduction to Bayes linear estimation as it is the basic

methodology within which we develop our new formulation and estimation methods

for both simple and complex multilevel models. For ease of exposure though, the

methods we review here are illustrated via the two-level random effects model, but

they apply equally well to more complex multilevel regression models.

2.7 ANOVA

One of the oldest and most popular variance estimation method, attributed to R.A.

Fisher (1918), is the analysis of variance (ANOVA) method. The ANOVA esti-

mators are obtained by equating quadratic functions of the observables to their

expected values; the quadratic functions being the relevant sums of squares. Below

we outline the ANOVA method for unbalanced data for the two-level random effects

model. The corresponding estimators for the balanced situation are easily obtained

by setting nj = n.

2.7.1 ANOVA estimator of variance components for unbal-

anced data

Here we have different number (nj) of observations in different groups (j). The

appropriate sums of squares are given by:

SSA =
∑

j

nj(ȳj. − ȳ..)
2 (2.12)

SSE =
∑

j

∑

i

(yji − ȳ.j)
2) (2.13)

SST =
∑

j

∑

i

(yji − ȳ..)
2 (2.14)

where SSA, SSE and SST are the between-groups, within-groups and total sums of

squares respectively.
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The ANOVA estimators are obtained by equating the sums of squares to their

expected values. The expectations of the sums of squares are:

E(SSA) = (N −
∑

j

n2
j/N)σ2

α + (J − 1)σ2
ǫ

and

E(SSE) = (N − J)σ2
ǫ

Hence, the estimators are given by:

σ̂2
ǫ =

SSE

(N − J)

= MSE

σ̂2
α =

MSA−MSE

(N −∑
j

n2
j/N)/(J − 1)

(2.15)

where MSA and MSE are the between-groups and within-groups mean squares re-

spectively. While the equation for level-1 estimator, σ̂2
ǫ , is simple and similar for

the balanced and unbalanced case, the level-2 estimator, σ̂2
α, is more complex for

unbalanced data when compared to balanced data.

2.7.2 Properties of ANOVA estimators

The ANOVA method does not require any underlying probability distribution and

the resulting estimators are always unbiased. In the case of balanced designs,

ANOVA estimators have minimum variance and they are also minimal sufficient

(Searle et al., 1992). As such ANOVA has been widely used and studied. There are,

however, two serious limitations of the method.

Firstly, ANOVA can yield negative estimates of variances. This is obvious from

the expressions for the estimators for the level-2 variance component, σ̂2
α, for either

the balanced or unbalanced design. The estimator σ̂2
α will be negative whenever the

variability within group (MSE) is larger than that between groups (MSA).

Secondly, in the case of unbalanced data, ANOVA estimators are no longer min-

imum variance and the distribution theory gets much more complicated even under
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the usual normality assumption (Scheffe, 1959). Further, in contrast to the balanced

case, there are no unique sums of squares to use in the ANOVA method.

Searle et al.(1992) describe more than a hundred years of research into vari-

ance estimation using the ANOVA methodology. They conclude that “negativity of

variance estimates, lack of distributional properties and no useful way to compare

different applications of ANOVA methodology” remain the main weaknesses of the

ANOVA method.

In multilevel models with covariates occurring at several levels, the data is mostly

unbalanced and there is a possibility of obtaining an estimate of a (Co-)Variance

matrix containing negative variances, which is clearly undesirable. Also, accurate

ANOVA estimation typically requires large data sets and is mostly used for variance

component estimation in the context of experimental design rather than multilevel

models.

2.8 Maximum likelihood: The principle and prop-

erties

Maximum Likelihood Estimation (MLE) is such a widely used estimation method

that it may be considered a cornerstone of statistical inference. MLE requires the

specification of a probability density function p(y | θ) where θ is the parameter to

be estimated. In the traditional or classical approach, the parameter θ is considered

as unknown but ‘true’ or ‘fixed’, that is not a random quantity. Given y1, . . . , yn are

a random sample from the density function p(y | θ), the joint sampling distribution

of the yi’s viewed as a function of θ is called the likelihood function and is written

as:

L(θ | y1, . . . , yn) =
n∏

i=1

p(yi; θ)

The observed data y1, . . . , yn in the likelihood function is considered as fixed and

therefore the likelihood function is often written simply as L(θ), suppressing the

dependence on the data. The maximum likelihood estimator θ̂ is the value of θ
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in Θ, the parameter space, that maximises the likelihood funtion L(θ). Therefore,

MLE is deemed intuitive in that it chooses that value of the estimator that makes

the data most plausible.

Apart from being intuitive, MLE has some other desirable properties. The in-

variance property of MLE is deemed useful as to find the MLE of f(θ), we only

need to find the MLE of θ and plug it in f(.). MLE though, may at times pro-

duce estimators that are biased or not uniformly minimum-variance. However, the

large sample properties, such as consistency and asymptotic normality of MLE esti-

mators, explain the widespread use of maximum likelihood estimation in numerous

statistical estimation problems.

2.8.1 Maximum Likelihood Estimation of Multilevel Models

As mentioned above, to find the MLE of the parameters in the random effects model,

we need to specify an appropriate probability density function. For continuous

response variables such as yji in the random effects model, it is common to assume

the normal distribution for the level-1 and level-2 residuals, namely ǫji ∼ N (0, σ2
ǫ )

and αj ∼ N (0, σ2
α). It is then easy to write down the log-likelihood. For example,

consider the more general multilevel regression model y = Xβ + Zu + ǫ, where y

is an n x 1 vector of outcomes, β is a p x 1 vector of fixed effects, X and Z are

known matrices of explanatory variables, u and ǫ are level-2 and level-1 random

effects respectively, with variances and covariances collected in the (Co-)Variance

matrix Σy. The log-likelihood is

l = −1
2
N − 1

2
log|Σy| −

1

2
(y −Xβ)TΣ−1

y (y −Xβ)

To find the ML estimators, we take partial derivatives of the log-likelihood with

respect to the fixed effects β, and then with respect to the random-effects variances

Σy. We thus obtain the respective ML equations, namely ∂l/∂β = 0 and ∂l/∂Σy = 0,

which can be solved to obtain the desired estimators.

Solving ∂l/∂β = 0 for the fixed effects poses no particular problem, as the

elements of the vector β are unconstrained. However, solving ∂l/∂Σy = 0 for the

random-effects variances in Σy is not as straightforward, as variances are required to
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be non-negative. In case one or more of the estimated random-effects variances are

negative, a modification due to Herbach(1959) is applied which effectively replaces

any negative estimate of variance by zero, see Searle et al. (1992) for details.

Explicit solutions to the ML equations only exist for balanced data. In the

general multilevel model with covariates at one or more levels, the requirement for

balance implies the same number of observations in each group and also the same

number of observations for each predictor X (e.g., Bryk and Raudenbush, 1992).

Such conditions however, are unlikely to be met in practice. Given unbalanced data,

the solutions to the ML equations are not tractable analytically, necessitating iter-

ative solutions. One such iterative procedure is explained in Section 2.9 below.

Restricted Maximum Likelihood (REML)

It is well known that Maximum Likelihood estimation may produce biased esti-

mates, specially in small samples. In multilevel model estimation, ML estimates

the random-effects variances conditional upon the fixed effects β, and as the ML

procedure treats the estimated β̂ as fixed, it thus does not account for its sampling

variation. Random-effects variances will be more severely underestimated when

sample sizes are small, and fewer degrees of freedom are available for estimation.

The solution to this problem is to apply ML to a linear transformation of y that

is free of β, rather than to y directly. One such transformation is to use OLS to

obtained estimates of the residuals, which are then used to estimate the variance

components. This modification of ML is called restricted maximum likelihood or

REML see Patterson and Thompson (1971).

2.9 Iterative Generalized Least Squares

Goldstein (1986) proposed an iterative generalized least squares (IGLS) procedure

for estimating parameters in complex multilevel models, including models for lon-

gitudinal and multivariate data structures. The method is general enough, and can

therefore fit a wide variety of multilevel models as implemented in the general pur-

pose multilevel modeling package MLwiN. Goldstein (1986) showed that IGLS is
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equivalent to MLE under the Gaussian assumption. Below we outline the general

principles of the IGLS method following Goldstein (1995).

As its name says, IGLS involves the repeated application of generalized least

squares (GLS)(see Sub-section 2.4). Consider the general linear model y = Xβ + ǫ,

where ǫ is a vector of random effects, with elements (αj , ǫji) for the random ef-

fects model for example, and (Co-)Variance matrix Σy, with corresponding elements

(σ2
α, σ

2
ǫ ) for the same random effects model. IGLS then proceeds as follows:

1. Step 1: Estimation of fixed effects.

If Σy were known, then GLS of y = Xβ + ǫ would yield the estimator β̂GLS =

(XTΣ−1
y X)−1(XTΣ−1

y y) for the fixed effect vector β.

2. Step 2: Estimation of random effects.

If β were known, then GLS of of a new linear model y∗ = X∗β∗+ǫ∗ would yield

the estimator β̂∗
GLS = (X∗T (Σy∗)

−1)X∗)−1(X∗T (Σy∗)
−1)y∗) for the random

effects Σy.

In step 2 above, y∗ is the vector of squares and products of the residuals ǫǫT =

(y − Xβ)(y − Xβ)T , stacked as a column vector (via the vech matrix operator).

Σy∗ is the covariance matrix of the vector y∗, that is the covariance of squares and

products of the residuals, hence containing fourth-order moments as required for

variance estimation. X∗ is the design matrix linking y∗ to Σy in the new linear

model.

The initial estimates of the fixed effects β required to start IGLS are obtained

via an application of OLS giving β̂OLS. Raw residuals (not the correct residuals,

since OLS ignores group effects) are then calculated as (y −Xβ̂OLS)(y −Xβ̂OLS)
T

and used in step 2 in the iterative procedure above. IGLS then iterates between

steps 1 and 2 until convergence of the estimated fixed and random parameters.

Restricted Iterative Generalized Least Squares (RIGLS)

IGLS, being equivalent to MLE, gives biased and underestimated variance compo-

nents in small samples. Goldstein (1989) showed that

E((y −Xβ̂OLS)(y −Xβ̂OLS)
T ) = Σy −X(XTΣ−1

y X)−1XT
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and proposed using (y − Xβ̂OLS)(y − Xβ̂OLS)
T + X(XT Σ̂−1

y X)−1XT in step 2 of

IGLS to obtain unbiased estimates of the variance components, where Σ̂−1
y is the

current estimates of Σ−1
y . The thus modified IGLS is termed Restricted Iterative

Generalized Least Squares (RIGLS), and under multivariate normality, is equivalent

to REML( Goldstein (1989)).

2.10 Bayesian hierarchical modeling

The Bayesian Approach to Estimation

The estimation methods we have considered so far are termed frequentist or classical,

especially when we wish to make a distinction between these methods and a different

approach to statistical inference, called the Bayesian approach. While in the classical

approach probability statements are only allowed for data given parameters, in the

Bayesian approach in contrast, uncertainty about all quantities (including fixed but

unknown parameters) can be represented probabilistically. Suppose, for example,

we are interested in the unknown parameter θ and intend to collect data to learn

about it. We quantify our uncertainty about θ by assigning it the prior probability

p(θ). We also assign the conditional probability p(y|θ), to express our uncertainty

about the future data we intend to collect given θ. The conditional probability

p(y|θ) is in fact the likelihood function of θ. Using Bayes theorem, we combine the

prior and likelihood to obtain the posterior probability p(θ|y). Inferences about θ,

such as its mean, median and standard deviation, are then based on p(θ|y).
In his Philosophy of Statistics, Lindley (2000), the eminent Bayesian statisti-

cian Dennis Lindley summarises the above description of the Bayesian approach as

follows:

• Statistics is the study of uncertainty

• Uncertainty should be measured by probability

• Data uncertainty is so measured, conditional on parameters

• Parameter uncertainty is similarly measured by probability
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• Inference is performed within the probability calculus, mainly via Bayes the-

orem

The important point here is that uncertainty is measured by probability which,

in the Bayesian approach, is defined as the degree of belief of an individual in an

event or proposition. Hence, probability is personal or subjective. Subjectivity is

discussed in greater detail by Ramsey (1926), de Finetti (1937), and in Lad (1996).

For a book-length careful treatment of the Bayesian approach see Bernardo and

Smith (1994) and Robert (2001).

Exchangeability and the Representation Theorem

In the analysis of scientific data, probability models are useful in tackling the impor-

tant problem of predicting a future value yn+1 given a sequence of observable out-

comes {y1, . . . , yn}. In order to predict yn+1, it is necessary and sufficient to assess

the form of the joint probability p(y1, . . . , yn) for any n since, p(yn+1|y1, . . . , yn) =
p(y1, . . . , yn+1)/p(y1, . . . , yn). For example, one may assume the yi’s to be indepen-

dent. In this case no learning takes place as p(yn+1|y1, . . . , yn) = p(yn+1). As argued

by Bernardo and Smith (1994), some form of dependencies must be assumed among

the yi’s, and there is a large number of such dependencies. One commonly used

simplifying assumption, is the judgement that the future yn+1 and the sequence

{y1, . . . , yn} form an exchangeable sequence of random quantities. Exchangeability

was introduced by de Finetti (1937) and is equivalent to a judgement of similarity or

symmetry which implies that p(y1, . . . , yn) = p(yπ(1), . . . , yπ(n)) for all permutations

π defined on the set {1, . . . , n}.
The assumption of exchangeability has an important consequence regarding the

probability models we are interested in. If we judge our observations as (infinitely)

exchangeable, then we may apply de Finetti’s representation theorem for exchange-

able sequences, which shows that exchangeable observations should be regarded as

a random sample from some probability distribution, and there exists a prior prob-

ability distribution over the parameter of the model. de Finetti (1937) stated and

proved the representation theorem for binary, 0 - 1, random variables. Bernardo

and Smith (1994, Ch.4) provide good coverage of various types of exchangeability

June 11, 2023



2.10. Bayesian hierarchical modeling 31

assumptions, representation theorems and the ensuing models. For a more recent

interesting and accessible discussion of the logic and importance of exchangeability

and the representation theorem, see Goldstein (2012).

The representation theorem has been subsequently generalized by Hewitt and

Savage (1955) for real-valued random quantities, including the outcome variables yi

of interest to us here. Bernardo and Smith (1994) also give a version of the general

representation theorem (see Proposition 4.3) which we adapt as follows.

Theorem 1. If y1, y2, . . . , is an infinite exchangeable sequence of real-valued random

quantities with probability measure P, there exists a probability measure Q over ℑ,
the space of all distribution functions on ℜ, such that the joint distribution function

of y1, . . . , yn has the form

P (y1, . . . , yn) =

∫

ℑ

n∏

i=1

F (yi)dQ(F )

where

Q(F ) = lim
n→∞

P (Fn) (2.16)

and Fn is the empirical distribution function defined by y1, . . . , yn.

Bernardo and Smith (1994) argue that Theorem 1 is difficult to apply explicitly in

learning about a future yn+1 given y1, . . . , yn, because of the infinite-dimensional,unknown

distribution function F . They thus propose a more restrictive representation theo-

rem in terms of density functions, labelled by a finite dimensional parameter, θ.

Corollary 1. Assuming the required densities to exist, under the conditions of The-

orem 1, the joint density of y1, . . . , yn has the form

p(y1, . . . , yn) =

∫

Θ

n∏

i=1

p(yi|θ)p(θ)d(θ) (2.17)

where p(.|θ) denotes the density function corresponding to the unknown parameter

θ ∈ Θ.

It is now straightforward to apply Bayes’ theorem to learn about yn+1.

Bayesian hierarchical modelling
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So far we have considered exchangeability judgements for simple sequences of ob-

servable random quantities {y1, y2, . . .}, corresponding to single level, not multilevel,

data. The type of exchangeability judgements considered for such single level data

induces complete symmetry, in the sense that our beliefs over the observable quanti-

ties is unchanged for any permutation of the subscripts. For multilevel data, which

is the main focus of this thesis, the group or context is obviously important and,

hence, we cannot assume our jugements to be invariant to all permutations of the

subscripts of the sequence of observations; we need to restrict our exchangeabil-

ity judgements in order to fully account for the multilevel structure of the data.

In other words, in order to consider the meaningful subscripts of richly structured

data, judgements of partial symmetry may be more appropriate and have been

termed partial exchangeability judgements.

Partial exchangeability judgements for several examples of complex data struc-

tures, including multilevel data, are discussed in Bernardo and Smith (1994). They

argue that many possible forms of partial exchangeability judgements may be con-

templated, depending on the specificities of the data structures, and therefore it is

difficult to give an all-embracing definition of partial exchangeability. Indeed several

authors have used particular forms of partial exchangeability judgements to arrive at

models suitable to the specific data under their considerations. For example, Lau-

ritzen (2003) defines row-column exchangeability of binary matrices to derive the

Rasch binary logistic regression model for item analysis (Rasch,1960). While, in the

important area of Bayesian Nonparametrics, Rodriguez et al.(2008) use unrestricted

exchangeability of exchangeable sequences, to arrive at a Nested Dirichlet Process

model suitable to analyse data arising from multicenter studies, hence multilevel

data.

Unrestricted exchangeability is a reasonable assumption for complex data that

often comprise several related sequences of random quantities; the dependence be-

tween the sequences may be induced by a hierarchical or multilevel structure. For the

two-level data that we considered earlier, where individual i is nested in group j, the

outcome variable typically comprises the sequence {y11, . . . , y1n1, . . . , yJ1, . . . , yJnJ
},

which is made up of the J related individual sequences {(y11, . . . , y1n1), (y21, . . . , y2n2),
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. . . , (yJ1, . . . , yJnJ
)}. Unrestricted exchangeability implies complete exchangeability

of the random quantities within each individual sequence along with exchangeability

between these exchangeable sequences.

Bernardo and Smith (1994; Section 4.6.5) also propose unrestricted exchangeabil-

ity of exchangeable sequences as appropriate judgements for complex data and give

a joint density representation for several sequences of random quantities which we

adapt as follows. The J unrestrictedly infinitely exchangeable sequences of random

quantities explained above admit a representation of the form

p(y11, . . . , y1n1, . . . , yJ1, . . . , yJnJ
) =

∫

Θ

J∏

j=1

nj∏

i=1

p(yji|θj)p(θ1, . . . , θJ)d(θ1), . . . , d(θJ)

(2.18)

where, for each j = 1, 2, . . . , J , θj ∈ Θ is the limit, as nj →∞, of some function of

yji. For example, θj could be the group means and standard deviations (µj, σj).

If we now judge that the parameters {θ1, θ2, . . . , } also form a sequence of in-

finitely exchangeable quantities, we may also write the following representation.

p(θ1, . . . , θJ) =

∫

Φ

J∏

j=1

p(θj |φ)p(φ)d(φ) (2.19)

where φ is termed a hyperparameter. The hyperparameter can be identified with

appropriate (strong law) limits of observables, just as we mentioned for the θj in

(2.23) above. For a complete example of hierarchical modelling with specifications

of all prior and hyperprior distributions, see Bernardo and Smith (1994; p224). To

quote Bernardo and Smith (1994; p226)

Hierarchical modelling provides a powerful and flexible approach to the

representation of beliefs about observables in extended data structures,

and is being increasingly used in statistical modelling and analysis.

Several excellent book-length treatments of Bayesian hierarchical modelling of mul-

tilevel data exist, see for example Gelman et.al (2013), Congdon (2003).
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2.11 Applying Bayesian hierarchical modelling: prior

and posterior densities

So far we have seen that the subjective approach to modelling complex multilevel

data requires the use of partial exchangeability judgements and the appropriate

representation theorem to formulate a suitable Bayesian hierarchical model. In

practice, Bayesian fitting of hierarchical models requires (i) specification of suitable

prior (and hyperprior) distributions for the model parameters and, (ii) updating

from prior to posterior via the likelihood function. We briefly discuss the challenges

associated with (i) and (ii) as they raise some important issues that have motivated

us to consider the alternative estimation methods we propose in this thesis.

Choice of prior

Consider the simple two-level random effects model yji = µ + αj + ǫji. The usual

Gaussian assumptions required for fitting the model are:

yji ∼ N(µ+ αj , σ
2
ǫ ), for i = 1, 2, . . . , nj and j = 1, 2, . . . , J (2.20)

αj ∼ N(0, σ2
α), for j = 1, 2, . . . , J (2.21)

Prior distributions are required for the hyperparameters µ, σ2
α and σ2

ǫ . In principle,

estimation of µ and σ2
ǫ pose no great problem, as sufficient data are usually available

at level-1 of a hierarchy for their estimation. Hence, a noninformative prior, of the

form p(µ, σǫ) ∝ 1, that expresses prior ignorance or that ‘will let the data speak for

themselves’ (see Bernardo and Smith, p.357), is often assumed.

Estimation of the level-2 variance σ2
α however, is fraught with difficulties, more

so when there are few level-2 units, J , or when the level-2 variance σ2
α is close to

zero . In the context of Bayesian inference of variance components of the random

effects model, Hill (1965) writes ‘the analysis of variance opens a Pandora’s box of

problems which constitute a real challenge to any and all statisticians and theories

of statistical inference’.

The difficulties involved in the construction of a suitable prior distribution for

σ2
α relate to the possibility that the estimate of this level-2 variance parameter may

turn out to be negative in the classical approach (see Section 2.6). The Bayesian
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approach avoids this problem of a negative estimate of variance by constructing

priors for σ2
α that place zero probability on negative values of σ2

α. Examples of such

priors include a uniform prior on σα or on log(σα) and, the inverse-gamma (ǫ, ǫ)

prior, such as p(σ2
α) ∝ inverse-gamma(0.001,0.001) as used in the Winbugs package.

Use of priors that avoid negative variance estimates however, is not without

problems, some of which include: the requirement of at least three groups (J ≥ 3)

to enable inference, overestimates of σ2
α for small J , improper posterior distributions

(not integrating to one as required for any pdf), posterior inferences overly sensitive

to the parameters of the prior distribution (such as ǫ in the inverse-gamma prior).

These issues are discussed more fully in Gelman(2005).

The inverse-gamma (ǫ, ǫ) prior is of interest because it belongs to the family of

the conditionally conjugate priors. Conjugacy is an important concept in Bayesian

analysis. Given a likelihood p(y|θ), then the family of prior densities p(θ|u), where
u is some collection of parameters, is a conjugate prior family with respect to the

likelihood, if the posterior density p(θ|y) belongs to the same conjugate family for

every sample size and every set of possible sample values. For example, if y represents

the number of successes in n independent Bernoulli trials with (unknown) probability

of success θ, then y ∼ Binomial(θ, n). The Beta(α, β) prior on θ is the natural

conjugate as the posterior p(θ|y, n) also has a Beta density as follows:

p(θ|y, n) ∝ θy(1− θ)n−yθα−1(1− θ)β−1

posterior ∝ likelihood × prior

= θy+α−1(1− θ)n−y+β−1

This simple example illustrates two important advantages of conjugacy. First, a

conjugate prior density allows tractable calculations of the appropriate posterior

density. Equally important, conjugate analysis allows the information in the prior

to be interpreted in terms of equivalent data. As an examination of the posterior

density in the above example shows, it is as if the prior is contributing the data

equivalent of (α− 1 + β − 1) trials to the existing n trials in the sample.

As we mentioned above the inverse-gamma density prior for σ2
α is conditionally

conjugate in the sense that the conditional posterior p(σ2
α|y, α, µ, σǫ) has an inverse-
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gamma density. Conditional conjugacy is useful because it is preserved when a

model is expanded hierarchically (Gelman, 2005), while conjugacy is not.

Use of conjugate prior densities for tractability in the calculation of posterior

densities or for convenience, can be quite restrictive, especially for models as rich

as those considered in Bayesian hierarchical modelling. Fortunately, developments

in computer power, as well as in computational algorithms, such as Markov Chain

Monte Carlo methods, have obviated the need to restrict modelling to conjugate

priors only, and have thus enlarged the range and depth of applications of Bayesian

methods to solve real-life problems. We discuss computational issues next.

Computation of posterior

Bayesian inference is based on the calculation of marginal posterior densities of pa-

rameters, often a difficult task that may involve the evaluation of multi-dimensional

integrals (see Section 2.10). Prior to the 1990’s, the difficulties involved in the

calculation of posterior densities hampered the application of Bayesian methods

(Gelfand et.al.,1990). Numerical approximation methods, such as the Laplace Ap-

proximation and Iterative Quadrature amongst others, were developed during the

1980’s, but their implementation was not straightforward. For a summary of these

numerical approximation methods, see Bernardo and Smith (1994).

Substantial progress in Bayesian computation was made when Gelfand and Smith

(1990) popularized the Gibbs sampler. The simplest implementation of the Gibbs

sampler is in the following situation. Suppose the marginal posterior density, say

p(θ, u|y), is difficult to calculate but the conditional posterior densities, p(θ|y, u)
and p(u|y, θ), have nice closed forms. For example, p(θ|y, u) may be Gaussian and,

p(u|y, θ) may have a gamma distribution. Then, after choosing a suitable starting

value, say u0 for u, random sampling from the Gaussian distribution p(θ|y, u = u0)

yields θ1 (where the superscript 1 denotes the first sampled value of θ). Next, sam-

pling from the gamma distribution p(u|y, θ = θ1) yields u1. If this algorithm is run t

times, then (θt, ut), which is a realization of a Markov Chain, tends in distribution as

t→∞, to a random vector whose joint distribution is the target density sought, i.e.

p(θ, u|y). Hence, if the procedure for obtaining (θt, ut) is replicated a large number

of times, an estimate p̂(θ, u|y) for p(θ, u|y) can easily be obtained.
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Applying the Gibbs sampler to multilevel models follows the same principle just

explained above. Gelfand et al. (1990) showed that it is relatively straightforward to

perform Gibbs sampling of multilevel models by assuming conditional independence

of the parameters of interest, as well as conjugate priors for each of these parameters.

Consider our random effects model, yji = µ+αj + ǫji. Assuming independent Gaus-

sian priors for µ and αj, the posterior densities p(µ|y, α, σ2
α, σ

2
ǫ ) and p(α|y, µ, σ2

α, σ
2
ǫ )

are also Gaussian. And, assuming independent inverse gamma priors for σ2
ǫ and σ2

α,

the posterior densities p(σ2
ǫ |y, µ, α, σ2

α) and p(σ2
α|y, µ, α, σ2

ǫ ) are also inverse gamma.

For more complex multilevel models, such as multilevel regressions, the group effects

are assumed to have a multivariate normal distribution. The mean group effects are

given a multivariate normal prior while the inverse covariance matrix of the group

effects is assumed to follow a Wishart distribution (see Seltzer et al., 1996).

Programming the above Gibbs samplers would be uncomplicated in, for exam-

ple, the R Statistical Language. But the Gibbs sampler, along with more general

algorithms such as the Metropolis-Hastings algorithm (Hastings, 1970), have been

implemented in softwares like WinBUGS. Together these stochastic simulation algo-

rithms are termed Markov Chain Monte Carlo (MCMC) methods, and their develop-

ments have facilitated Bayesian estimation of complex models, including multilevel

models.

2.12 Some difficulties of a fully Bayesian approach

The fully Bayesian approach to multilevel modelling described above, has important

conceptual and methodological benefits. From a conceptual viewpoint, acknowledg-

ing the hierarchical structure in complex data induces judgements of exchangeabil-

ity within and between groups and thus enables the borrowing of strength (Section

2.3) to effect improved inferences. From a methodological viewpoint, the Bayesian

approach accounts fully for all sources of uncertainty in complex data structures,

thereby leading to the formulation of richly structured hierarchical models that can

be estimated via MCMC methods. In practice though, the fully Bayesian approach,

like other statistical approaches, has its own limitations regarding the specification
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of prior densities, computation of posterior densities, and in the design of multilevel

studies.

2.12.1 Prior specification

A major stumbling block of the approach is the specification of a prior density. It

is indeed difficult to elicit genuine prior densities that could capture an expert’s

subjective beliefs about important aspects of even a moderately complex real-life

problem. For this reason, and also for tractability reasons, Bayesian analysts have

used conjugate priors, though they may not represent their true subjective beliefs.

2.12.2 Computation of posterior

On the computation side, though MCMC has been a great advancement, these meth-

ods are very computer intensive. And, for complex models with many parameters,

MCMC may take an exceedingly long time to converge to the target posterior den-

sity. For example, the Stan development team reports that ‘a multilevel time series

regression of climate on tree-ring measurements wasn’t converging after hundred

of thousands of iterations’ (Stan reference manual, 2013). Stan is the latest high-

performance software for Bayesian inference of multilevel models, and it is based on

Hamiltonian Monte Carlo (Neal, 2011). In another example, Browne and Draper

(2006) report months of CPU time used in a comparison of Bayesian (MCMC) and

likelihood estimation of simple multilevel models.

2.12.3 The design of multilevel studies

Sampling design, like the design of experiments, is an important but complex task.

This complexity stems from the designer having to consider the potentially many

sources of variation, uncertainty, cost and ethical constraints, as well as subject

matter knowledge and prior expertise. Such a multifaceted enterprise makes the

Bayesian approach appealing. A key component of the sample design problem is

sample size determination (SSD). The fully Bayesian method applied to the SSD
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problem has resulted in two main approaches : a utility-based and a performance-

based approach. Both approaches are explored in a series of articles in The Statis-

tician (46 2,1997). Here we focus on the utility-based approach.

Lindley (1997) adapts the decision-theoretic approach of Raiffa and Schlaifer

(1961) to the SSD problem as follows. Consider a random quantity X , with density

p(X|θ), where the parameter θ is unknown. To make a decision d about θ, we observe

n independent, identically distributed realizations (x1, x2, . . . , xn) of X , which we

denote by x. A crucial component of this approach is the specification of a utility

function u(n, x, d, θ) describing the merit of choosing the sample size n, obtaining

the result x and taking the decision d, when the parameter has the value θ. After

specification of the prior p(θ), the optimum sample size is given by Lindley(1997) as

max
n

[∑

x

max
d

{∫
u(n, x, d, θ)p(θ|d, x, n)dθ

}
p(x|n)

]
(2.22)

The above Bayesian solution seems pertinent, as choosing between sampling designs

is essentially a decision problem. In addition, specifying a utility function is most

appropriate, as it balances the cost and performance of sampling. Furthermore,

Lindley (1997) argues that only solutions to (2.22) above are coherent but he also

agrees there are implementation difficulties.

Maximizing the above expression, especially for a multilevel model, is likely to

be a difficult computational task. Even if we resort to MCMC methods, then the

potentially large space of (x, d, θ) will need to be explored to find the optimum

sample size. Specifying the utility function is no simple task either. Apart from

the usual cost of taking additional samples, there are ethical costs also, whether

in multilevel studies in educational research (involving pupils) or medical research

(involving patients), making the utility function distinct for each design situation.

There are additional complications in the SSD problem for multilevel models.

There is need to determine the optimum sample size for the different levels of the

hierarchy, taking into consideration explanatory variables occuring at the various

levels. For example, in school effectiveness studies the researcher must not only

decide whether to investigate many schools with few students per school or few

schools with many students per school, but also how many private or public schools
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and male or female pupils to sample. With many levels and many variables ‘there

may be an excessively large number of possible designs from which to choose and no

clear rules to guide our search’ (Farrow and Goldstein,(1992)). In the related context

of experimental design, Farrow and Goldstein,(1993) write ‘. . . full Bayes designs

are notoriously intractable even putting aside the difficulty of making meaningful

complete prior specifications.’

In view of the above problems in prior specification, computation and design,

it is pertinent to consider an alternative Bayesian approach, one that requires only

limited beliefs specification, and that is less computer intensive, such as the Bayes

linear approach.

2.13 Introduction to Bayes linear methods

Goldstein and Wooff (1995) give a succint description of the Bayes linear approach

as follow:

The Bayes linear approach, which is based on partial belief specification

with expectation as primitive, allows the straightforward construction of

models reflecting second-order exchangeability.

The approach allows not only the construction of models, but also model fitting

and diagnostics. [B/D], a free software for implementing the Bayes linear approach

has also been developed for implementing the approach. Hence, the Bayes linear

approach is a comprehensive methodology that can be applied to complex real-world

problems within the subjectivist Bayesian paradigm. For a detailed exposition of

the Bayes linear approach, including a description of [B/D], see the book Bayes

Linear Statistics Theory and Methods by Goldstein and Wooff (2007).

A distinctive feature of the Bayes linear approach is that expectation, rather

than probability, is used as the primitive measure of uncertainty. This is contrary to

the two major approaches of Statistics, namely classical and (full) Bayesian, where

expectation of an event can only be calculated after specification of all probability

statements. And this is precisely what the Bayes linear approach seeks to avoid: the

specification of detailed probabilities which, in realistically complex problems, may
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be difficult to achieve. Treating expectation as primitive, as opposed to probability,

formed the basis of the development of the subjectivist theory in de Finetti (1974).

So, if expectation is to be the primitive expression of uncertainty, then how ex-

actly do we formulate our prior knowledge? We are required to specify only partial

beliefs, in terms of means, variances and covariances. This greatly simplifies the

specification task, especially in complex multilevel problems with uncertainty oc-

curing at several levels of a hierarchy. In addition, the other important aspects of a

fully Bayesian approach, such as parameter estimation, model fitting and exchange-

ability, are also simplified as we shall explain shortly. But more importantly, the

Bayes linear approach offers an alternative to the estimation of variance compo-

nents, as well as a two-stage Bayes linear analysis of mean components, so crucial

to multilevel modelling, and which is at the heart of this thesis.

2.13.1 Adjusting beliefs

We present below some of the fundamentals of the Bayes linear approach. Following

Goldstein and Wooff (1995), suppose we make the partial beliefs specifications for

means, variances and covariances for a collection C of random quantities. We collect

our beliefs about the random quantities in B = {B1, B2, . . . , Br ∈ C. We intend to

collect data D = {D0, D1, D2, . . . , Dk} ∈ C (where D0 = 1) in order to learn about

B. For example, we may want to learn about the regression coefficients B = {β0, β1}
in the single level regression in Class 1 of the STAT1010 example (Section 2.5.4),

after we observe D = {Y1, Y2, . . . , Y41}. The adjusted expectation of B given D,

written ED(B) is the linear combination

ED(B) =
k∑

i=0

hiDi

which minimizes

E
([

B −
k∑

i=0

hiDi

]2)

Definition 2.13.1. The adjusted expectation of a collection of random quanti-

ties B, given observation of a collection of quantities D, written ED(B) is

ED(B) = E(B) + Cov(B,D)V ar(D)†(D −E(D)) (2.23)
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where V ar(D)† is the Moore-Penrose generalized inverse, with V ar(D)† = V ar(D)−1

for non-singular V ar(D). ED(B) is called the Bayes linear rule for B given D.

Definition 2.13.2. The adjusted variance of B given D, written V arD(B) is

V arD(B) = V ar(B)− Cov(B,D)V ar(D)†Cov(D,B) (2.24)

where the value of V arD(B) depends only on prior variances and covariances,

not on the data.

Definition 2.13.3. The variance of B resolved by D, written RV arD(B) is

RV arD(B) = Cov(B,D)V ar(D)†Cov(D,B) (2.25)

Definition 2.13.4. The adjusted covariance CovD(B1, B2) is

CovD(B1, B2) = Cov(B1, B2)− Cov(B1, D)V ar(D)†Cov(D,B2) (2.26)

Interpretations of the above beliefs adjustments are fully discussed in Goldstein

and Wooff (1995), page 58. An important point made is that adjusted expectations

may be viewed as tractable approximations to a full Bayes analysis. From this

perspective, it is worth investigating adjusted expectations as viable alternatives to

the full Bayesian hierarchical modelling of multilevel data, specially given the highly

computer intensive methods required in designing multilevel studies (see Section

2.11). Also, as we shall show in Chapter 4, Bayes linear methods yield exactly the

same results as a full Bayesian approach under Gaussian assumptions.

The adjusted variance V arD(B) may be interpreted as the mean square error

of ED(B). V arD(B) however, does not depend on the data D, only on the prior

specifications. Given the importance of variance components estimation in multilevel

modelling, the Bayes linear update of variances based on D will also be reviewed

below.

2.13.2 Second-order exchangeability

In Section 2.10 we explained the importance of judgements of exchangeability in the

Bayesian approach. In a similar vein, Goldstein and Wooff (2007) remark that
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. . . exchangeability is the fundamental judgement which gives meaning

to the kinds of assumptions and modelling which characterize the usual

types of statistical analysis.

but, as they subsequently argue, in practice it is difficult to make detailed prior spec-

ifications over all observables in order to apply de Finetti’s exchangeability represen-

tation. Because the Bayes linear approach requires only limited beliefs specification,

the restricted form of exchangeability thereby induced is exploitable, both in princi-

ple and in practice, in formulating statistical models. This form of exchangeability

is termed second-order exchangeability which we now define.

Definition 2.13.5. The collection of vectors Z1, Z2, Z3, . . . is second-order ex-

changeable if the first- and second-order belief specification for this collection is

unaffected by any permutation of the order of the vectors, so that

E(Zi) = µ V ar(Zi) = Σ ∀i; Cov(Zi, Zj) = Γ, ∀i 6= j.

Second-order exchangeability leads to the representation theorem for infinite

second-order exchangeable quantities as stated and proved in Goldstein (1986)).

Theorem 2.13.1. If Z1, Z2, Z3, . . . is an infinite second-order exchangeable sequence

of random quantities, with mean and variance structure as in the above definition,

then we may introduce the further random quantityM(Z), termed the population

mean vector, and also the infinite sequence R1,R2, . . . , termed the individual

residual vectors We may then write:

Zi =M(Z) +Ri(Z)

where the population meanM(Z) has the following moments:

E(M(Z)) = µ V ar(M(Z)) = Γ

and the residuals Ri(Z) are themselves second-order exchangeable with

E(Ri(Z)) = 0 V ar(Ri(Z)) = Σ− Γ

where R1,R2, . . . , are mutually uncorrelated and Ri(Z) is uncorrelated withM(Z)

for each i.
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2.14 Adjusting exchangeable quantities

In the coming chapters we shall construct multilevel models using second-order

exchangeability assumptions and the representation theorem. We shall subsequently

adjust beliefs about underlying population mean and variance components of the

exchangeable models. Adjustments of exchangeable models can be considerably

simplified via Bayes linear sufficiency, as explained below.

2.14.1 Adjusting mean components: Bayes linear sufficiency

Consider once again the collection of second-order exchangeable random vectors

Z1, Z2, Z3, . . . in Definition 2.13.5. For any individual i, the prior mean vector is

E(Zi) = µ, and variance matrix is V ar(Zi) = Σ. For any two individuals i 6= j,

the covariance matrix is Cov(Zi, Zj) = Γ. By Theorem 2.13.1 we construct the

representation

Zi =M(Z) +Ri(Z)

where R1,R2, . . . , are mutually uncorrelated and Ri(Z) is uncorrelated withM(Z)

for each i. We shall collect data Dn = {Z1, Z2, Z3, . . . , Zn} in order to adjust be-

liefs about the population means and variances. To simplify notations, the latter

adjustments will be written as follows:

En(M(Z)) = EDn
(M(Z)) V arn(M(Z)) = V arDn

(M(Z))

The following theorem, from Goldstein and Wooff(2007), simplifies the adjust-

ment of beliefs over exchangeable models. Let Z1, Z2, Z3, . . . be an infinite second-

order exchangeable sequence of random vectors. Given a sample Dn = {Z1, . . . , Zn},
the sample mean vector

Z̄n =
1

n

n∑

i=1

Zi

is Bayes linear sufficient for adjusting bothM(Z) and any values Zi, i ≥ n namely

En(M(Z)) = EZ̄n
(M(Z)) V arn(M(Z)) = V arZ̄n

(M(Z))

V arn(Zi) = V arZ̄n
(Zi) = V arZ̄n

(M(Z)) + V ar(Ri(Z))
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Therefore in order to adjust beliefs over the mean vector and future observations,

it is sufficient to adjust M(Z) by the sample mean vector. Hence, the adjusted

expectation ofM(Z) based on sample of size n is

EZ̄n
(M(Z)) = E(M(Z)) + Cov(M(Z), Z̄n)V ar(Z̄n)

†(Z̄n − E(Z̄n)) (2.27)

In general, in order to adjust beliefs over exchangeable quantities, it is enough to

adjust beliefs over the underlying population mean M(Z). For such adjustments,

the sample mean Z̄n is Bayes linear sufficient; there is no need to use the individual

values of the sample. The theorem is also applicable to the adjustment of population

variances as we shall illustrate next.

2.14.2 Adjusting variance components

Estimating variances and partitioning it at various levels of a hierarchy is a basic

task in multilevel modelling. Variance learning however, is more difficult than learn-

ing about mean components as we explain next.

Difficulties in estimating variances

A major obstacle in variance estimation is that, by definition, a variance cannot be

negative. Unfortunately, the use of an unbiased estimator of a population variance

may produce such negative estimates. A similar problem may occur in the estima-

tion of a variance-covariance matrix which is required to be non-negative definite.

Another problem is that assessing a population variance requires computations

with fourth order moments (see Searle et al.(1992); p407), which inherently are

complicated. For example, consider the rth central moment of a random quantity

X with respect to the probability measure F (x)

µr(X) =

∫ +∞

−∞
(x− µ)rdF (x).

If X̄ is the sample mean of n independent and identically distributed random quan-

tities, then the first three moments of X̄ have simple expressions:

µ(X̄) = µ(X) µ2(X̄) = µ2(X)/n µ3(X̄) = µ3(X)/n2
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while the fourth moment is

µ4(X̄) = µ4(X)/n3 + 3(n− 1)µ2
2(X)/n3

The complexity of the above fourth population moment also applies to its sample

equivalent. Thus, calculations with the sample variance s2n and its variance V ar(s2n),

as required for Bayes linear adjustment of variances, is more complicated than the

corresponding quantities required for the adjustment of means. Also, a Bayes lin-

ear analysis would require an individual to make well-founded specifications about

variances, and also about uncertainty in these variances. The latter specifications

require fourth-order moments, are unfamiliar, and as such quite challenging for the

individual to make.

A fundamental difficulty in estimating a variance resides in its own definition

E(Xi−µ)2. The squared quantities (Xi−µ)2 required for the Bayes linear estimation

of a variance are not observable since they depend on the unknown population mean

M(X), where E(M(X)) = µ. Hence, variance estimation cannot be directly made

as is the case for mean estimation. This issue will be illustrated in Section 2.14.3

below.

A final problem concerns the relationship between the Bayes linear analysis of

variances and the corresponding analysis of means. More specifically, the problem is

whether to modify the linear Bayes estimator of a population mean using an estimate

of the population variance in a two-stage Bayes linear analysis (Goldstein, 1983).

This topic, which is also a focus of the present thesis, is considered in Section 2.14.4.

2.14.3 Estimating the population variance of a sequence of

exchangeable random quantities

The Bayes linear approach reviewed here follows closely Goldstein & Woof (2007).

In particular, the proof of the variance estimation method is given below as we plan

to apply similar methods to learn about population variances in exchangeable mul-

tilevel models. Suppose that Z = {Z1, Z2, . . .} is an infinite exchangeable sequence

of random quantities, where E(Zk) = µ, Var(Zk) = σ2, Cov(Zk, Zj) = γ with γ ≥ 0.
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We have the second-order exchangeability representation

Zk =M(Z) +Rk(Z) (2.28)

where the sequence Rk(Z) is uncorrelated and has expectation E(Rk(Z)) = 0, and

variance

Var (Rk(Z)) = σ2 − γ = VR (2.29)

We construct a representation for the corresponding population variance as follows.

We let Vk = [Rk(Z)]
2. Assuming the sequence V1, V2, . . . is also exchangeable, we

have the following second-order representation

[Rk(Z)]
2 = Vk =M(V ) +Rk(V ) (2.30)

where M(V ) represents the population variance with mean VR and variance VM ,

and the sequence R1(V ),R2(V ), . . . is uncorrelated with mean zero and variance

VR(V ).

AsM(Z) is unknown, the sequence Vk is not observable. This issue of unobserv-

able sums of squares was mentioned earlier above as a principal problem in learning

about a population variance, especially in complex models such as multilevel models.

In this simple situation though, it is easy to circumvent the problem by exploiting

the symmetry between the squared mean deviations of the data and the residu-

als. Nevertheless, the simplicity of the solution illustrates an important principle:

in order to learn about population variances, whether in simple or complex models,

relevant sums of squares independent of any underlying (unknown) population mean

should first be calculated.

Thus, given a sample of observations (Z1, . . . , Zn) , n ≥ 2, from (2.28) we form

the following squared deviations

(Zk − Z̄n)
2 = (Rk(Z)− R̄n)

2

where Z̄n and R̄n are the observation and residual sample means respectively. For

example, R̄n = (1/n)
∑n

k=1Rk(Z).

The squared residuals (Rk(Z)− R̄n)
2 are informative forM(V ). By symmetry,

the Bayes linear estimate forM(V ) given the individual squared residuals depends
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only on the sum of squares, or equivalently on s2n. We derive a representation for s2n

as follows.

s2n =
1

n− 1

∑

k

(Rk(Z)− R̄n)
2

=
1

n− 1
{
∑

k

Rk(Z)
2 − 1

n
[
∑

k

Rk(Z)]
2}

=
1

n

∑

k

Rk(Z)
2 − 2

n(n− 1)

∑

k<j

Rk(Z)Rj(Z)

= M(V ) + T (2.31)

where

T =
1

n

∑

k

Rk(V )− 2

n(n− 1)

∑

k<j

Rk(Z)Rj(Z)

Assuming that the residuals Rj(Z) have the following fourth order uncorrelated

properties.

Cov(M(V ),Rk(Z)Rj(Z)) = Cov(Ri(V ),Rk(Z)Rj(Z)) = 0

for k 6= j 6= i. While if k > j, w > u, then

Cov(Rk(Z)Rj(Z),Rw(Z)Ru(Z)) = 0

unless k = w, j = u. Hence, we have

E(T ) = 0, V ar(T ) = VT =
1

n
VR(V ) +

2

n(n− 1)
[VM + V 2

R],

Cov(M(V ), T ) = 0. (2.32)

and therefore,

E(s2n) = VR, V ar(s2n) = VM + VT ,

Cov(s2n,M(V )) = VM . (2.33)

Given the above specifications, the adjusted mean and variance for the underlying

population varianceM(V ) given s2n, are respectively

Es2n(M(V )) =
VMs2n + VTVR

VM + VT
(2.34)

V ars2n(M(V )) =
VMVT

VM + VT
(2.35)

The adjusted expectation ofM(V ) is the well-known precision weighted average of

prior variance and data variance.
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2.15 Coherence and diagnostic checks

Model checking is a vital stage of all model building approaches, Bayesian or oth-

erwise. Within the Bayes linear approach we perform checks on both prior specifi-

cations and adjusted expectations with the aim of ensuring that they are coherent.

Below we follow Goldstein & Wooff (2007) and give the various diagnostic measures

in the general context of adjusting a collection of beliefs B by the, as yet unobserved,

data collection D. When data is observed, it is important to check that prior spec-

ifications do not clash with such data by performing data driven diagnostics. Some

of these diagnostics, such as partial diagnostics, are of special relevance to multilevel

modelling.

2.15.1 Coherence

The prior specification over (D,B) is coherent if

V ar


 D

B


 =


 V ar(D) Cov(D,B)

Cov(B,D) V ar(B)


 (2.36)

is non-negative definite. Theorem 3.12 of Goldstein & Wooff (2007) gives the con-

ditions for the variance-covariance matrix V ar(D,B) to be non-negative as follows:

1. V ar(D) is non-negative definite;

2. Cov(D,B) ∈ range {V ar(D)};

3. V ar(B)− Cov(B,D)V ar(D)†Cov(D,B) is non-negative definite for any gen-

eralized inverse of V ar(D).

Condition three above ensures that the adjusted variance-covariance matrix is also

non-negative definite.

2.15.2 Data diagnostics

The standardized observation S(z) and the discrepancy Dis(z) provide simple checks

on whether the prior specification for a univariate random quantity Z is in conflict

with its observed value z where
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S(z) =
z − E(Z)√
V ar(Z)

,

and the discrepancy

Dis(z) =
[z − E(Z)]2

V ar(Z)
.

A very largeDis(z) may indicate mis-specification of E(Z) or an under-estimated

V ar(Z), while an over-estimated V ar(Z) may result in small Dis(z). Discrepancy

is similar to discordancy (see Barnett and Lewis, 1994) and is useful in outlier

detection.

In multilevel data, outliers may occur at any level of the hierarchy and this may

cause complications in their detection. While Dis(z) may be useful in detecting

problems with observations at each level of the hierarchy independently, it may be

limited in detecting outliers that occur at higher levels of the hierarchy. In a two-

level dataset for example, outliers at level 1, unusually low pupil outcomes say,

may mask a level 2 outlier, an unusually high school outcome. Hence, to cater for

the dependencies in multilevel data structures, it may be useful to also consider a

multivariate discrepancy measure in addition to the univariate measure Dis(z).

2.15.3 Mahalanobis distance: multivariate data

discrepancy

The Mahalanobis distance, Mahalanobis (1936), is a multivariate distance measure

that takes into account the correlation among the variables of interest, hence making

it a suitable discrepancy measure for multilevel data where dependencies of obser-

vations (within and between groups) are of particular relevance.

Suppose Y is a multilevel (or multivariate) data set. The Mahalanobis distance

or data discrepancy, Dis(Y ) is given by:

Dis(Y ) = (Y − E(Y )TV ar(Y )†(Y − E(Y )) (2.37)

where V ar(Y )† is a generalized inverse, such as the Moore-Penrose pseudo inverse.

As in the univariate case, large values of Dis(Y ) may indicate that the specification
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of E(Y ) is not consistent with the data Y and/or that the V ar(Y ) has been under-

estimated, while an overestimated V ar(Y ) may lead to small Dis(Y ).

Comparing discrepancies

When comparing discrepancies across different multilevel data sets, it may be

useful to standardize the data discrepancy by calculating the discrepancy ratio,

Dr(Y ) as follows:

Dr(Y ) =
Dis(Y )

rank(V ar(Y ))
. (2.38)

Since E(Dis(Y )) = rank(V ar(Y )), thus Dr(Y ) has a prior expectation of one.

Also, when comparing summary measures, including discrepancy, consideration

must be given to the variance of that summary. The variance of the discrepancy

V ar(Dis(Y )) may be specified directly based, for example, on similar multilevel

data. Alternatively, V ar(Dis(Y )) may be elicited from specifications of fourth order

moments over the elements of the multilevel data Y . Such fourth-order specifications

may be made by assuming that the elements of Y follow a multivariate Gaussian

distribution. In this case, Dis(Y ) will follow a chi-square distribution with r =

rank(V ar(Y )) degrees of freedom and moments:

E(Dis(Y )) = r V ar(Dis(Y )) = 2r (2.39)

Using the above arguments and Chebyshev’s inequality, Goldstein and Wooff

(1995) derive bounds for Dr(Y ) as follows:

P
(
1− 6√

r
≤ Dr(Y ) ≤ 1 +

6√
r
) ≤ 0.9444. (2.40)

Goldstein and Wooff (1995) further argue that if the multivariate Gaussian dis-

tribution is used to specify a probabilistic distribution for Dis(Y ), in addition to

using it to specify a value for V ar(Dis(Y )), then the following bounds are obtained.

P
(
1− 2.7√

r
≤ Dr(Y ) ≤ 1 +

2.7√
r
) ≤ 0.9444. (2.41)

These bounds can be useful in routine and fast checking of outliers in large multilevel

data sets arising, for example, in simulation studies of the properties of the two-stage

Bayes linear estimators of parameters of a basic SOEREG model.
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2.15.4 Adjustment discrepancy

In addition to assessing the discrepancy of our multilevel data Y , we may also check

whether the adjusted expectations of the mean and variance parameters of our

SOEREG models agree with our prior expectations. Suppose these parameters are

collected in the vector B = (B1, B2, . . . , Br), then the discrepancy of the adjustment

vector Dis(EY (B)) is as follows.

DisY (B) = (EY (B)−E(B))TRV arY (B)†(EY (B)− E(B)). (2.42)

where RV arY (B) is the variance of B resolved by Y . The corresponding adjust-

ment discrepancy ratio is

DrY (B) =
DisY (B)

rT
. (2.43)

where rT = rank(RV arY (B)).

We note that sometimes DisY (B) may be a little large while DrY (B) is not large,

hence the update may still be robust. As in (2.40), using the conditions (2.39) yield

the simple conservative bounds for the adjustment discrepancy ratio:

P
(
1− 6√

rT
≤ DisY (B)

rT
≤ 1 +

6√
rT

) ≤ 0.9444. (2.44)

The adjustment discrepancy and its bounds provide simple automatic checks useful

when making a large number of belief adjustments such as may occur in simulation

studies of our SOEREG models.

2.15.5 Partial diagnostics

We saw earlier that the grouping of data in various hierarchical levels induces com-

plex dependencies that must be explicitly accounted for in modelling multilevel

data. It is therefore important to explore how these groups of data and the prior

beliefs specifications combine to give the final adjusted parameters of SOEREF and

SOEREG models fitted to multilevel data.

A partial Bayes linear analysis is suitable for this task as it separates the effects

of the different groups of data on our beliefs by calculating partial adjustments. The
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groups mentioned here may also refer to subsets of data grouped according to, say,

the predictor variable zji in our SOEREG model, in addition to the ususal groups

in our hierarchies.

Partial Bayes linear analysis is dealt with extensively in Chapter five of Goldstein

& Woof (2007) and may be potentially useful for the interpretation and diagnostic

checking of our multilevel models. We shall investigate this in Chapter four. Below

we briefly summarize some of the key definitions and concepts relating to partial

adjustment of beliefs. There are potentially many partial diagnostic measures that

may be considered; for our purpose we focus on partial adjustment of expectation,

partial bearing and path correlation only. We follow closely Chapter five of Gold-

stein & Woof (2007).

Partial adjustment of beliefs

As in the previous sub-section, we collect the parameters of our SOEREG model

in the vector B = (B1, B2, . . . , Br). We now consider adjusting B by the collections

of quantities D = (D1, D2, . . . , Dk) and F = (F1, F2, . . . , Fl). For example, D may

comprise data arising from one group and F , the remaining groups in our multilevel

data.

Definition 2.15.1. The partial adjustment of B by F givenD, denoted by E[F/D](B),

is

E[F/D](B) = ED∪F (B)− ED(B) (2.45)

Goldstein & Woof (2007) show that expression (2.45) implies that in making the

sequential beliefs adjustments of B by D and F , we may initially adjust B and F by

D yielding the adjusted forms AD(B) and AD(F ) respectively, and then adjust all

the resulting adjusted beliefs by F , giving AAD(F )(AD(B)). We shall be interested to

use sequential adjusted expectations of mean components of our multilevel models

as a diagnostic tool.

Size of the Partial adjustment

First let us consider the size of a (full) adjustment of a scalar random quantity
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Q by D. The size of an adjustment of Q when the observed value of D = d is

Sized(Q) =
[Ed(Q)−E(Q)]2

V ar(Q)
(2.46)

Thus Sized(Q) is the magnitude of the standardized difference between the prior and

adjusted expectation relative to the prior variance, and may be used as a diagnostic

measure. Intuitively, a large Sized(Q) reveals an unanticipated change in belief,

hence indicating a potential conflict between prior and adjusted expectation.

For our multilevel models, we shall consider the adjustment of a collection B by

a (multilevel) data vector D. In this case, the size of the adjustment is defined as

the maximum size of the adjustment of the collection B for a linear combination

hTB, and is given by

Sized(B) = max
X∈〈B〉

Sized(X) (2.47)

where 〈B〉 represents all possible linear combinations of the elements in B. Gold-

stein & Woof (2007) show that the maximum in (2.47) is attained when h =

V ar(B)†[Ed(B) − E(B)] and they give the resulting definition of the size as fol-

lows.

Definition 2.15.2. The size of the adjustment of the collection B by D=d is

Sized(B) = [Ed(B)− E(B)]TV ar(B)†[Ed(B)−E(B)] (2.48)

We now consider the size of the partial adjustment. Goldstein & Woof (2007)

page 135 give the following definition:

Definition 2.15.3. The size of the partial adjustment, or partial size, is defined as

Size[f/d](B) = max
X∈〈B〉

[Ed∪f (X)− Ed(X)]2

V ar(X)

= max
X∈〈B〉

[Ef/d(X)]2

V ar(X)
(2.49)

The maximum in (2.49) is

Size[f/d](B) = [Ed∪f (B)− Ed(B)]TV ar(B)†[Ed∪f (B)− Ed(B)] (2.50)

The interpretation of the partial size is similar to that of the (full) size except that

adjustments are made in stages.
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Bearing for the Partial adjustment

If, in addition to the magnitude of the change between prior and adjusted expec-

tation, we are also interested in the direction of this change, then we may compute

the bearing of the adjustment of B when we observe D = d as follows

Zd(B) = [Ed(B)− E(B)]TV ar(B)†[B − E(B)] (2.51)

In the multilevel modelling context, we may be interested in linear combinations of

beliefs quantities 〈B〉, such as differences between group means for example. The

same bearing as above may also be constructed over 〈B〉 as follows.

Zd(B) =

rB∑

i=1

Ed(Ui)Ui

where (U1, . . . , UrB) is any collection of mutually uncorrelated elements of 〈B〉 having
zero mean and unit prior variance.

Goldstein & Woof (2007) give two properties of the bearing as follows: (1) the

bearing is the linear combination in 〈B〉 having the largest standardized squared

change in expectation and, (2) the change in adjustment for any quantity in 〈B〉 is
equal to the prior covariance between the quantity and the bearing.

The above-mentioned two properties show that the bearing summarizes the ac-

tual effects of adjustments and, in cases of more complex adjustments (as in multi-

level modelling), provides a simple summary of the magnitude and direction of the

changes in belief following an adjustment.

For multilevel diagnostics, we are interested in the partial bearing which Gold-

stein and Wooff (2007) define as follows:

Z[f/d](B) =

rP∑

i=1

E[f/d](Ui)Ui

for any collection (U1, . . . , UrP) mutually uncorrelated with unit prior variance, where

rP is the rank of the partial resolution transform.

The partial bearing is related to the partial size through the following

Size[f/d](B) = V ar(Z[f/d](B)) =

rP∑

i=1

[E[f/d](Wi)]
2 (2.52)
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where Wi are the partial canonical directions. The partial bearing will provide a

useful diagnostic analysis of the changes in magnitude and direction of expectation

when we adjust beliefs about our multilevel model parameters in stages.

Partial size ratio

A further useful partial diagnostic for multilevel data is the partial size ratio,

the ratio of the partial size in (2.50) to its expectation, that is

Sr[f/d](B) =
Size[f/d](B)

E(Size[F/D](B))
(2.53)

The formula for computing Sr[f/d](B) follows from the formula of the partial size

given in (2.50) and E(Size[F/D](B)) =
∑rP

i=1 ζi, where ζi are the partial canonical

resolutions.

Suppose we perform an adjustment of one parameter in our multilevel model in

stages, each stage corresponding to data from a separate group in our multilevel

data. Suppose further that after the adjustment of the parameter by a given group,

we obtain a partial size ratio which is much larger than one. This indicates an unex-

pectedly large change in expectation which, in turn, may indicate a conflict between

data from that group and our prior specifications for the parameter. The reverse, a

small partial size ratio, indicates an unexpectedly small change in expectation which

may be because we were quite restrictive in our assessment of the prior variance of

the parameter. There are many such parameters and groups in multilevel models,

hence the potential use of the partial size ratio in diagnostic analyses of these models.

Path correlation of the Partial adjustment

In the sequential adjustment of B by D and then by F , the path correlation is

the correlation between the bearing Zd(B) for the data collection D = d and the

partial bearing Z[f/d](B), that is

PC(d, [f/d]) = Corr(Zd(B),Z[f/d](B)) (2.54)

Path correlations, like any correlation, lie between +1 and -1, with values close to +1

indicating complementarity of D and F (say two arbitrary groups in our multilevel
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data), while values close to -1 indicate conflict between D and F in the sequential

adjustment of B.
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Chapter 3

Exchangeable Multilevel Models

In chapter 2 we explained the concept and importance of multilevel models. We

also described the main features of the Bayes linear approach with the intention

of applying Bayes linear methods to analyse multilevel models. In this chapter,

we make use of second order exchangeability (SOE) judgements to formulate our

version of multilevel models via the representation theorem for SOE random quan-

tities. We begin by applying exchangeability judgements to observations from a

two-level hierarchy, to obtain a version of the two-level random effects model that

corresponds to our underlying SOE judgements. We call this model the second order

exchangeable random effects model (SOEREF). The implications of the SOEREF

model are briefly discussed in section 3.2. In Section 3.3 we extend SOE judgements

to multilevel regression models which we call SOEREG models. These models are

more general and we show that they encompass models with spatial dependencies

for example.

Finally, we consider prior specifications for the parameters of the SOEREF model

as applied to the STAT1010 data.

3.1 The second-order exchangeable random effects

(SOEREF) model

Recall from Chapter 2 that we have a single continuous outcome variable yji rep-

resenting the measurement on an individual i (level 1 unit) nested in a group j
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(level 2 unit), hence a two-level hierarchy. We now wish to develop a version of the

random effects model that corresponds to our underlying SOE judgements which we

term a second-order exchangeable random effects (SOEREF) model. In developing

the SOEREF model, we shall consider exchangeability at each level of the two-level

hierarchy in turn. Initially we focus on applying exchangeability to derive the form

of the SOEREF model. We then make explicit the assumptions regarding the popu-

lation means and residuals introduced via the representation theorem before giving

a formal definition of the SOEREF model.

Second-order exchangeability at level 1

At level 1, we consider individuals in a specific group j to be exchangeable. We

assume that the sequence of outcome variables {yj1, yj2, . . .} forms an infinite SOE

sequence of continuous random quantities (we discuss finite exchangeability in Sec-

tion 3.2), and for any two individuals i and i′, we have

E(yji) = µ, V ar(yji) = σ2
y , ∀i, j, (3.1)

Cov(yji, yji′) = σ2
u, ∀i 6= i′, and ∀j (3.2)

where the data variance σ2
y > 0 and the variance σ2

u ≥ 0. Then, by the representation

theorem, we may write the level-1 representation

yji =M(yj) +Ri(yj), ∀j, i. (3.3)

where we have the following:

For each group j,

1. M(yj) is termed the population group j mean,

2. the sequence R1(yj),R2(yj), . . . , are termed the level 1 residuals,

3. the sequence of level 1 residuals are uncorrelated among themselves and also

with the population group j mean.
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Second-order exchangeability at level 2: exchangeability over popula-

tion group j means

The collection of population group j means {M(y1),M(y2), . . . }, is assumed to form

an infinite SOE sequence with

E(M(yj)) = µ, V ar(M(yj)) = σ2
u, (3.4)

Cov(M(yj),M(yj′)) = γ ∀j 6= j′. (3.5)

where γ ≥ 0.

To derive the representation for the population group j meansM(yj), we assume

that the sequence {M(y1),M(y2), . . .}, forms an infinite exchangeable sequence with

second-order moments as in (3.4) and (3.5) above. Applying once more the repre-

sentation theorem, we may write

M(yj) =M(y) +Rj(M(y)), ∀j. (3.6)

Combining (3.6) and (3.3), we obtain the full model

yji =M(y) +Rj(M(y)) +Ri(yj),

whereM(y) is termed the population grand mean, and the sequence of residu-

als R1(M(y)),R2(M(y)), . . . , are the level 2 residuals. The level-2 residuals are

mutually uncorrelated and also uncorrelated with the population grand meanM(y).

3.1.1 Assumptions and notations for level 1 and level 2

residuals

Theorem 2.13.1 for infinite SOE quantities also states that each of the two sequences

of level 1 and level 2 residuals are themselves second-order exchangeable. To com-

plete the description of the SOEREF model, we make explicit our assumptions and

notations for these two sequences of residuals. The exchangeability assumptions will

be discussed in Section 3.2.
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Exchangeability of level-1 residuals

We assume the level-1 residuals Ri(yj) are second-order exchangeable over individ-

uals for each group j and write ǫji = Ri(yj) for individual i in group j with:

E(Ri(yj)) = 0, V ar(Ri(yj)) = σ2
ǫ = σ2

y − σ2
u ∀i, j, (3.7)

Cov(Ri(yj),Ri′(yj)) = 0 ∀i 6= i′. (3.8)

where the level 1 variance σ2
ǫ > 0 and constant for all individuals and groups. Also,

for all i and j, the level-1 residual Ri(yj) is uncorrelated with the population grand

meanM(y).

Exchangeability of level 2 residuals

We assume the level-2 residualsRj(M(y)) are second-order exchangeable over groups

j. We write uj = Rj(M(y)) and make the following specifications:

E(Rj(M(y))) = 0, V ar(Rj(M(y))) = σ2
u − γ, ∀j (3.9)

Cov(Rj(M(y)),Rj′(M(y))) = 0 ∀j 6= j′. (3.10)

The level-2 residuals Rj(M(y)) are also uncorrelated with the level-1 residuals

Ri(yj) and the population grand mean M(y). From (3.5), Var(M(y))=γ. The

level 2 variance σ2
u − γ ≥ 0.

The second-order exchangeable random effects (SOEREF) model

The above exchangeability assumptions and specifications lead to the following def-

inition:

Definition 3.1.1. Let yji represent univariate outcome measurements on each in-

dividual i nested in group j. A Second-order exchangeable random effects

(SOEREF) model is given by either of the following representation form:

Hierarchical form:

Level-1 : yji =M(yj) +Ri(yj)

Level-2 : M(yj) =M(y) +Rj(M(y)). (3.11)
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Single-equation form:

yji =M(y) +Rj(M(y)) +Ri(yj),

i = 1, 2, . . . , nj , and j = 1, 2, . . . , J. (3.12)

whereM(y) is the population grand mean, M(yj) is the population group j

mean, Rj(M(y)) are the level 2 residuals, and Ri(yj) are the level 1 residuals.

The moments of the level 1 and level 2 residuals, and of the population grand

mean and population group j mean are as specified in (3.4) to (3.10).

3.2 Discussions of Exchangeability

The judgement of exchangeability, fundamental to the subjectivist approach, is a

weaker requirement than the independent, identically distributed (i.i.d.) assumption

of traditional inferential statistics. Exchangeability is simple, intuitive, and is gen-

erally applicable, requiring only that one’s subjective judgements remain unchanged

under arbitrary permutations of a given sequence of observations.

SOE assumptions weaken this requirement even further, by only imposing this

restriction for second-order structure. Thus, our SOE judgements that lead to the

formulation of the SOEREF model required only that first and second-order mo-

ments be specified. Together with Bayes linear methods, the SOEREF model popu-

lation grand and group j means can be updated quite easily. The SOEREF variance

components can similarly be updated within the Bayes linear framework, albeit with

the more difficult task of specifying fourth-order moments and imposing uncorre-

lated fourth-order properties on products of residuals (see Section 2.14.3); these

specifications and restrictions though are still less than those required for full ex-

changeability. Below we briefly discuss the type of SOE assumptions we have made

so far.

We have assumed that our observations are infinitely exchangeable. In practice

we may have a finite number nj of individuals, nested in a finite number of groups j.
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For such finite sampling situations, Goldstein & Wooff (2007, pg 188) show that the

residuals are no longer orthogonal (uncorrelated) but rather have a small negative

correlation, with orthogonality of order 1/r, where r is the finite sample size. Hence,

provided our finite sample sizes of level-1 individuals and of level 2 groups are each

relatively small compared to their respective population sizes, departures from the

assumption of infinite exchangeability may be considered unimportant. Such is the

situation in practice in multilevel studies that comprise of moderate sized samples

taken from large numbers of level 1 and level 2 units. In Chapter 4 we consider a

finitely exchangeable SOEREF model and its application.

We assumed the observations are SOE at level one, and the resulting population

group j means are also SOE at level two. Such partial or co- exchangeability allowed

us to account for the two-level structure of the data. The scope of this basic SOEREF

model can further be expanded as we show next.

3.3 Extending the SOEREF model

The two-level SOEREF model is the simplest multilevel model which is useful both in

understanding multilevel concepts, and also in important applications such as small

area estimation (see Section 2.3.3). The classical and fully Bayesian counterparts of

the SOEREF model, the random effects model, has been studied extensively over

the years, see Searle et al. (2006) for a history, and Khuri and Sahai (1985) for a

very extensive bibliography. In Chapters 4 and 5 of this thesis we shall study the

SOEREF model further.

One principal use of the SOEREF model is to obtain an estimate of the propor-

tion of variance between groups, called the intra-class correlation ρ = σ2
u/(σ

2
u + σ2

ǫ ),

for a given multilevel data set. If ρ is important, then it may be worthwhile to

consider more complex multilevel models, with predictors at individual and group

levels, to explain the variation between groups. Viewed from this perspective, the

SOEREF model is an ignorance model; it ignores the potential predictors on which

data is often available, specially in complex surveys and studies. We shall now ex-

tend the two-level SOEREF model to include regression predictors at the individual
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and group levels. The resulting model is a system of exchangeable regressions which

we term Second-Order Exchangeable Regressions (SOEREG) model.

3.4 The Second-Order Exchangeable Regression

model (SOEREG)

The SOEREG model is intuitively more appealing and suitable for multilevel data

as it takes into consideration the rich hierarchical structure of the data, including

predictor variables that are often available at the different levels of the hierarchy.

In formulating the SOEREG model, we shall proceed in steps as follows. We start

with the two-level SOEREF model and model the underlying population group j

mean using simple linear regression (i.e. a single level 1 predictor). This will give

us a model where the regression coefficients, namely the intercept and slope, vary

across groups. These regression coefficients are subsequently modelled using a single

predictor at the group level; this will yield our SOEREG model with predictors at

both level 1 and 2. Finally, we write the matrix form of the SOEREG model and

show that this matrix formulation encompasses more general multilevel models.

3.4.1 A note on notations

Since, we are going to consider regressions, we make use of the usual β notations

for regression coefficients except that we enclose their subscripts in brackets (e.g.

β[0], β[1], . . .) to distinguish them from the level 1 and level 2 subscripts i and j. In

place of the usual x predictor, we use z to avoid confusion with predictors in the

final matrix form of the general model. Also, as we shall be dealing with several

mean, variance, and covariance parameters, we shall only discuss the necessary first-

and second-order specifications when we consider the more concise matrix form of

the SOEREG model; for now we focus only on deriving the form of the SOEREG

model.
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3.4.2 A SOEREG model with a predictor at level 1 only

In the SOEREF model only the response yji was modelled, resulting in a mean

componentM(yj), and a residual component. When additional multilevel variables

are considered, for example a level 1 predictor zji, the mean component will have

more structure. Thus in each group j, we now model the response yji using a simple

linear regression as follows.

yji = β[0]j + β[1]jzji + ǫji ∀j, i, (3.13)

where the group j regression coefficients β[0]j, β[1]j are, respectively, the intercept

and slope specific to group j, and ǫji is a level 1 residual error term. If we assume

that the collection of group j regression coefficients is second-order exchangeable

over groups, we may then write the following representations:

β[0]j = M(β0) +Rj(β0) (3.14)

β[1]j = M(β1) +Rj(β1). (3.15)

Note that above we use the simpler notation β0 rather than β[0] for example, when

there is no subscript i or j. Replacing (3.14) and (3.15) in (3.13) we obtain the basic

SOEREG model:

yji =M(β0) +M(β1)zji +Rj(β0) +Rj(β1)zji + ǫji. (3.16)

If we set zji to zero in (3.16), we obtain the SOEREF model. Goldstein & Wooff

(1995) apply the basic SOEREG model to perform a comprehensive Bayes linear

analysis of exchangeable regressions in the context of an industrial process of alu-

minium extraction.

3.4.3 Beliefs specifications over the basic SOEREG model

To complete the description of the basic SOEREG model, we now make our second-

order prior judgments over it. We shall consider the implications of these judgements

in the next sub-section.

Our beliefs about the regession model (3.13) are as follows. We assume the level

1 errors ǫji are uncorrelated with mean zero and constant variance σ2
ǫ > 0 as in the
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SOEREF model. The ǫji’s are also uncorrelated with the level 2 residual errors,

Rj(β0) and Rj(β1). Our specifications for the regression coefficients are:

E(β[0]j) = µ0, E(β[1]j) = µ1, (3.17)

V ar(β[0]j) = σ2
0, V ar(β[1]j) = σ2

1, (3.18)

Cov(β[0]j, β[0]j′) = γ0, Cov(β[1]j, β[1]j′) = γ1, (3.19)

Cov(β[0]j, β[1]j) = ρ01σ0σ1, (3.20)

for all j and j 6= j′. Note that we have specified a non-zero correlation ρ01 between

the regression coefficients in each group j as commonly assumed in multilevel models.

The above level 1 judgments have implications for the level 2 representations (3.14)

and (3.15) as follows:

E(M(β0)) = µ0, E(M(β1)) = µ1, (3.21)

V ar(M(β0)) = γ0, V ar(M(β1)) = γ1, (3.22)

Cov(M(β0),M(β1)) = 0, (3.23)

V ar(Rj(β0)) = σ2
0 − γ0, V ar(Rj(β1)) = σ2

1 − γ1, ∀j, (3.24)

Cov(Rj(β0),Rj′(β1)) =





ρ01σ0σ1 if j = j′,

0 if j 6= j′.
(3.25)

Also, the sequences Rj(β0), . . . and Rj(β1), . . . are each uncorrelated amongst them-

selves and withM(β0) andM(β1).

3.4.4 Formulating a basic SOEREG model: The STAT1010

example

Here we give some plausible reasons for formulating a SOEREG model. We show

how the a priori exchangeability judgements within and between groups that led to

the SOEREG model in Sub-section 3.4.2, are relevant to the specific context of the

STAT1010 example of Chapter 2.

In Figure 2.1 of the STAT1010 example, there are clear variations in both inter-

cepts and slopes of the within class regressions. It makes sense, therefore, to allow
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each class to have its own regression as in (3.13). There are however, some simi-

larities between classes as well. These are due, for example, to a common syllabus

and manual being used, consultation among lecturers to ensure the same coverage

of topics, and a common examination. Because of the similarity between classes we

assume the regression coefficients to be exchangeable across classes as in (3.14) and

(3.15).

Also, a priori we know students in the Faculty of Engineering have better A

level grades in mathematics, and thus will do better in the STAT1010 examination,

compared to students in the Faculty of Management. This is revealed in Figure

2.1 where the regressions intercepts for engineering classes are all above those of

management classes. Thus we may consider explaining variations in the varying

intercepts and slopes using faculty zji as a predictor.

Finally, low values of the intercepts appear to be associated with higher slopes in

Figure 2.1, hence it is sensible to posit a non-zero correlation between the regression

coefficients as in (3.20).

In making the above judgements, we have referred to the STAT1010 data for il-

lustrative purposes only. In practice, we should use experts’ opinions, meta-analytic

studies or auxiliary data analyses to make such judgements a priori. When we come

to observe data, the subsequent data analysis will provide information that may

cause us to refine and modify our judgements.

3.5 Extending the basic SOEREG model

In this thesis we shall develop Bayes linear methods to estimate the mean and

variance components of the basic SOEREG model. Below we indicate how the basic

SOEREG model may be extended to a general SOEREG model.

The basic SOEREG model has only two hierarchical levels and a single predictor

at level 1. It is therefore natural to extend it to more than two hierarchical levels

with several predictors defined at all these levels, and with the variance compo-

nents having a more complex dependency structure. To write this general SOEREG

model, we move to matrix notation.
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Consider first the matrix form of the basic SOEREG model for a dataset having

two groups, each with two observations. Using (3.16), we may write the following

matrix equation




y11

y12

y21

y22




=




1 z11

1 z12

1 z21

1 z22





 M(β0)

M(β1)


+




1 z11 0 0

1 z12 0 0

0 0 1 z21

0 0 1 z22







R1(β0)

R1(β1)

R2(β0)

R2(β1)




+




ǫ11

ǫ12

ǫ21

ǫ22




The above give the matrix form of the basic SOEREG model:

Y = Xβ + ZU + ǫ, (3.26)

where Y is the response vector, X is a predictor matrix of the mean components

contained in the vector β, Z is the predictor matrix of the higher level residual

errors contained in the vector U , and ǫ is a vector of level 1 residual error terms. It

is obvious that (3.26) also applies to the general SOEREG model as, for example, Y

could be multivariate with possibly more than two levels, with X and Z containing

any number of predictors.

The general SOEREG model is similar to the linear mixed-effects model (see

Section 2.5.5) and the general Bayesian linear model of Lindley and Smith (1972).

It also encompasses more complex models, such as the small - area model of Ghosh

and Rao (1994) with spatial dependencies between the random effects.

3.6 Prior specifications

An important aspect of the Bayesian approach to consider, before proceeding with

the analysis of our multilevel models, is the specification of priors. In Section 2.12.1

we discussed the difficulties involved in eliciting detailed priors required for a full
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Bayesian analysis. The Bayes linear methods adopted in this thesis require specifica-

tions of only first and second-order moments (means, variances and covariances) for

the adjustment of mean components, and fourth-order moments for the adjustment

of variance components. Specifications of even these limited beliefs can be difficult

in practice.

Goldstein & Wooff (2007) (page 41) describe a six-step iterative procedure that

can guide elicitation of subjective prior beliefs. Although prior specifications will

obviously depend on the application context, the procedure is quite general and

sensible. We shall make use of some steps of this procedure to elicit the priors

required in our Bayes linear analysis of the SOEREF model applied to the STAT1010

data below.

Alternatively, the required prior moments may be specified in accordance with

suitably chosen probability densities. This approach can be particularly useful when

using simulation to investigate otherwise intractable properties of statistical meth-

ods, such as the two-stage Bayes linear update of the SOEREG model, including

sensitivity to the choice of prior moments.

3.7 Prior specifications for the STAT1010 Exam-

ple

In general, for any prior elicitation task we must first identify the quantities for

which prior specifications are needed. SOE judgements, from which the quantities

in our models emanate, coupled with subject matter knowledge, will be useful in

guiding our thought processes in making beliefs specifications. For more complex

models with complicated correlation structures, such as multilevel models with many

hierarchical levels and covariates at all levels including cross-level interactions, Bayes

linear graphical models (Goldstein & Wooff (2007) (page 47)) are effective tools to

visualize inter-dependencies among parameters in the model thus facilitating prior

elicitation.

Based on Definition 3.1.1. of the SOEREF model, we need to specify first and

second order moments in respect of the following three quantities: M(y),Rj(M(y)),
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and Ri(yj).

3.7.1 Priors for the overall mean M(y)

To specify the prior expectation for the overall meanM(y), we make use of the SOE

representationM(yj) =M(y)+Rj(M(y)) of the population group j means in (3.6).

The latter implies that we must consider the mean examination scores in each class

j and from these deduce our prior expectation of the overall meanM(y). This task

is made easier from our wide experience in teaching and examining STAT1010 in

various classes. We know, for instance, that students from engineering classes have

higher mathematical abilities and thus do well in the STAT1010 examinations while

students from the management classes, where mathematics is not a requirement,

perform less well in the STAT1010 examinations. In our experience a class average

would very rarely fall below 40% or rise above 70%. Judging our uncertainty to

be approximately symmetric over the interval (40%, 70%), we take the mid-point of

this interval as our prior expectation, thus we set E(M(y)) = 55%.

Although we know that engineering and management classes differ in their math-

ematical and statistical abilities, we have nevertheless treated them as exchangeable

above; we suppose we do not know which type of class corresponds to each label j.

Similarly, in making exchangeability judgements among students (within classes),

we have ignored level 1 covariates such as A level scores or gender, which could

discriminate between students’ examination scores. The reason for ignoring these

covariates here is for illustrating Bayes linear fitting and, more importantly, diag-

nostic checking of the SOEREF model. The more detailed information conveyed by

level 1 and level 2 covariates will be considered in the SOEREG model.

Specifying uncertainty is a rather unfamiliar, and even difficult, task in general.

To simplify our specification of the uncertainty in M(y), we assume a Gaussian

distribution for the class means. This is not an unreasonable assumption because

even if observations are not Gaussian, the distribution of their means would still be

closer to a Gaussian distribution. Considering a 95% interval (40%, 70%) implies the

interval size of 30 corresponds to approximately four times the standard deviation.

Hence, we specify V ar(M(y)) = (30
4
)2 = 56.3.
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One possible complication is the occurrence of outliers in the form of excep-

tionally strong (engineering) or weak (management) classes that may invalidate the

Gaussian assumption. A well known solution to the latter case, is the assumption of

a t distribution with low degrees of freedom. In addition to the above suggestions,

collection of auxilliary (an introductory Mathematics module) or historical data

(past STAT1010 data) may ease the difficult task of eliciting genuine subjective

beliefs.

Although we have referred to the Gaussian distribution, still we are not required

to make a full probabilistic specification under the Bayes linear approach; we only

require first and second-order moments. Therefore, if we consider that the Gaussian

form somewhat underestimates the uncertainty, we can make a direct assessment

as to how much to increase uncertainty, for example 10% or 20% of our initial

variance specification. And because the Bayes linear analysis is fast, it is relatively

straightforward to explore the sensitivity of the analysis to the amount by which

uncertainty is increased.

3.7.2 Priors for the level one residual Ri(yj)

The expectation of the level 1 residual is zero (Definition 3.1.1). To specify the level

1 variance V ar(Ri(yj)) = σ2
ǫ , recall that in Section 3.1.1, we assumed that σ2

ǫ is

constant for all individuals and groups in line with our SOEREF model. If however

we judge level 1 variances are not constant within groups, then the SOEREF model

is no longer valid. Suppose, for example, that females are more consistent in their

examination performances than male, then the level 1 variance in examination score

will be lower for female than male. Thus we shall need to make more detailed

specifications by considering SOE judgements separately for female and for male

leading to a SOEREG model as in (3.16) with the covariate zji representing gender.

In contrast to (3.16) however, we also need to model the level 1 residual ǫji as a

function of zji in order to account for the dependence of the level 1 variance on

gender, that is ǫji = ǫ[0]ji + ǫ[1]jizji. Then V ar(ǫji) = σ2
0 + 2σ01zji + σ2

1z
2
ji, that is

the level 1 variance is a quadratic function in zji with the constraint V ar(ǫji) > 0.

Thus we obtain a SOEREG model with complex level 1 variation, analogous to the
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complex multilevel model in Goldstein (2010).

For now we assume the SOEREF model with constant variances is suitable. In

order to assess σ2
ǫ , we reflect on the distribution of individual examination marks

we have seen during our previous marking exercises. While it is difficult to make

detailed beliefs statements about the distribution of examination marks, we feel

more confident to express beliefs about a few percentile marks. Thus, we believe

that about five percent of students across all classes get 30% or fewer marks and

the same percentage get 80% or more. Using the fifth and ninety-fifth percentiles,

denoted by p5 and p95 respectively , Perry and Greig (1975) as reported in Hull

(1978), estimate the standard deviation as follows:

σǫ =
p95 − p5
3.25

,

Thus σǫ =
80−30
3.25

= 15.4. If we assume a Gaussian distribution with the same mean 55

as E(M(y)) above, we obtain Φ((80−55)/15.4) = 0.95 and Φ((30−55)/15.4) = 0.05

which agree with our assessment. Hence we specify V ar(Ri(yj)) = 15.42 ≈ 237.

3.7.3 Priors for the level two residual Rj(M(y))

Similar to the level 1 residual, the expectation of the level 2 residual is also zero.

To specify the level 2 variance V ar(Rj(M(y))) = (σ2
u − γ), we may adopt several

alternative approaches depending on how confident we feel in making the required

assessments as well as on any additional information that may be available to us.

We shall consider two such approaches here, with a view to contrasting the different

specification processes involved and, more importantly, to gauge the consistency of

our methods by comparing the results of the two approaches.

Our first, more direct, approach utilizes the level 2 representation M(yj) =

M(y) +Rj(M(y)) as in sub-section 3.7.1 above, where we specified V ar(M(y)) =

γ = 56.3. Hence, we only need to specify our uncertainty in the population group j

means, V ar(M(yj)) = σ2
u, ensuring that (σ2

u−γ) ≥ 0 for coherence. However, in our

assessment of V ar(M(y)) in sub-section 3.7.1 we raised concern about the possibility

of the distribution of population group j meansM(yj) having a bimodal distribution

or outliers. As a result, we feel less confident in assessing the uncertainty inM(yj)
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compared to M(y), since we now have to think about how the individual M(yj)

vary around their meanM(y). To reflect our increased uncertainty, we decide on the

direct assessment σ2
u = 2γ, from which we specify V ar(Rj(M(y))) = (σ2

u−γ) = 56.3.

Our second, indirect, approach starts with the consideration that since we have

already specified σ2
ǫ , specification of (σ2

u− γ) will automatically fix the intra-cluster

correlation ρ. We shall therefore assess the level 2 variance indirectly, that is via

specification of ρ as follows.

The intra-cluster correlation ρ is given by

ρ =
(σ2

u − γ)

(σ2
u − γ) + σ2

ǫ

, (3.27)

where ρ is defined as the proportion of total variation in the data that is accounted

for by variation between groups. It also reflects the correlation among level 1 units

within a specific group; the more similar level 1 units are, the higher ρ will be. We

may therefore assess the value of ρ directly by judging the similarity of level 1 units

within an average group and then use (3.27) above to obtain our prior for (σ2
u − γ).

Quantifying a correlation such as ρ may be not be an easy task though.

Alternatively, we may use values of ρ as reported in relevant research as a guide

in our specification task. The intra-cluster correlation is an important quantity that

plays a vital role in cluster sampling (see Chapter 4) and cluster randomized trial

designs and, therefore, there are a number of research studies, especially in educa-

tion, reporting the magnitude of the intra-cluster correlation. One such study that

is of value to us here is Hedges and Hedberg (2007). The purpose of their study, as

stated by the authors, is to provide a comprehensive collection of intraclass correla-

tions in mathematics and reading achievements. We focus on intraclass correlations

for mathematics achievement tests, that we judge relevant to our STAT1010 exami-

nations, and where values of ρ between 0.1 and 0.3 were reported. Choosing ρ = 0.2

and, using (3.27) with σ2
ǫ = 237, we calculate V ar(Rj(M(y))) ≈ 59. The latter

value is consistent with the value of 56.3 that we assessed directly above, though it

is slightly larger. So we specify V ar(Rj(M(y))) = 59.
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3.7.4 Summary of prior specifications, their implications,

and some reflections

We now collect together our prior specifications:

E(M(y)) = 55, V ar(M(y)) = 56.3, V ar(Ri(yj)) = 237,

V ar(Rj(M(y))) = 59 ∀i, j. (3.28)

The underlying population overall mean and the residuals are not observable, but

they are related to the observable quantities in the STAT1010 data via the SOEREF

model. Hence our specifications in (3.28) have implications for these observables and

it is important that we explore these.

Using the SOEREF model yji =M(y)) +Rj(M(y)) +Ri(yj) and the values in

(3.28), we obtain E(yji) = 55 and V ar(yji) = 352.3 (standard deviation=18.5) for a

student i in class j. These values together with an assumed Gaussian distribution

imply that 95% of students are expected to have examination marks in the interval

(18.1, 91.8). There is nothing alarming about this interval and they represent a

reasonable range of marks in our experience.

For any two students i and i′ in the same class j, we calculate the correlation

Corr(yji, yji′) =
V ar(M(y) +Rj(M(y)))

V ar(M(y) +Rj(M(y))) + V ar(Ri(yj))
= 0.336 (3.29)

which is somewhat larger than our specified value for the intra-cluster correlation

ρ = 0.2 which also measures the correlation between marks of students in the same

class. This is expected as V ar(M(y) induces extra correlation in (yji, yji′). Com-

paring (3.29) and (3.27), the formula for ρ, we note that the difference is due to our

uncertainty in the overall mean V ar(M(y))) which appears in the numerator and

denominator of (3.29) but not in (3.27). In Sub-section 3.7.3 we mentioned values

of ρ as large as 0.3 based on the study by Hedges and Hedberg (2007), therefore the

value of 0.336 above is no cause for concern.

For students in different classes j and j′ we calculate Corr(yji, yj′i′) = 0.164. This

correlation, as expected, is smaller than that within classes. Also both correlations

are low and typical of those occurring in multilevel data sets.
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Finally, let us reflect on the specification task we went through above. We

have used a variety of methods such as judgement of symmetry, comparison with

the Gaussian distribution, use of percentiles and auxilliary information. We have

also made the necessary coherence checks while ensuring that our specifications

have reasonable implications for our observables. But above all what is revealing

in the above exercise is how difficult the specification task is, even for the simplest

SOEREF multilevel model. It is therefore not surprising that in statistical modelling

shortcuts such as conjugacy based on convenient probability distributional forms are

often used. In important applications though, where the statistical modelling has

crucial implications for people (their health for example) and nations (the issue

of climate change for example), and where data is scarce and difficult to collect

but some expertise is available, then we have no other alternative than to adopt a

pragmatic subjective approach. Such an approach will depend on the specification

of genuine priors. To quote Goldstein (2006):“ the subjectivist Bayes approach is the

only feasible method for tackling many important practical problems.” and also “ A

true subjectivist formulation should start by recognising the limited abilities of the

individual to make large collections of uncertainty specifications.”, making the Bayes

linear approach, that only requires limited belief specifications, worth considering

in tackling important real life problems.
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Chapter 4

Bayes linear adjustment of mean

components in SOEREF multilevel

models

The Bayes linear approach, that requires only limited beliefs specifications, is a

comprehensive methodology for model formulation, adjustment (estimation), and

diagnostic checking. In Chapter three we used this subjectivist approach to formu-

late the SOEREF and SOEREG multilevel models. In this chapter we shall consider

model adjustment and diagnostic checking.

We begin by using Bayes linear methods to adjust mean components in the

unbalanced SOEREF model, of which the balanced model is simply a special case.

Applying Bayes linear sufficiency, closed form expressions for the adjusted means

are derived. These are considered difficult to obtain analytically in the case of

unbalanced data (see Searle et al.(1992)), and appear rarely in the literature. The

closed form expressions of the adjusted means are useful in understanding how the

adjusted quantities relate to our prior specifications and the data.

We then consider applying Bayes linear methods to analyse beliefs over the un-

balanced SOEREF model using observable data. This involves beliefs specification,

adjustment and interpretation, as well as diagnostic checks. Beliefs specifications

are illustrated in the context of the STAT1010 data. Computations of adjusted

quantities, as well as diagnostic checks, have been implemented in the Bayes linear
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programming tool B/D. We thus use B/D to perform the analysis of beliefs over the

SOEREF model as applied to the STAT1010 data.

An important focus of this chapter is diagnostic checks. Diagnostics for multilevel

models are more complicated than for ordinary linear models (Hodges, 1998). In

Chapter three we have considered the potential for using Bayes linear diagnostics

and, partial diagnostics in particular, for multilevel modeling. Here we apply these

diagnostics to the unbalanced SOEREF model. We apply our methods to the design

and sample size determination of the SOEREF model.

Finally, we relax the assumption of infinite exchangeability and consider the

formulation and adjustment of the finite SOEREF model comparing these to the

infinite exchangeability versions.

4.1 Updating mean components in the unbalanced

SOEREF multilevel model

Below we shall derive closed-form expressions of the updated mean components for

the unbalanced SOEREF model. Our primary interest in the closed-form expres-

sions is to understand how the adjusted quantities depend on the prior and data.

Searle et al. (1992) consider these expressions difficult to derive analytically for the

unbalanced situation, hence the additional motivation to present them here. The

main difficulty in obtaining the closed-form expressions appears to stem from the

calculation of the inverse of the variance-covariance matrix of the unbalanced data.

This inverse is also key to the application of the Bayes linear rule and is therefore

considered first below.

4.2 Calculation of V ar(D̄n) and its inverse

Consider the two-level dataset yji where in each group j we have a sample of size

nj. Let D̄n = {ȳ1., ȳ2., . . . , ȳJ.} be the collection of group means, where

ȳj. =

nj∑

i=1

yji
nj

∀j
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Then D̄n is Bayes linear sufficient for adjusting beliefs over the mean components.

The SOEREF model for ȳj., as well as its belief specifications, can be derived from

Definition 3.1.1 in Section 3.1.1. Hence, we write

ȳj. =M(y) +Rj(M(y)) + R̄nj
(yj.)

where R̄nj
(yj.) is the mean of the nj level 1 residuals in group j. It follows that

E(ȳj.) = µ, V ar(ȳj.) = σ2
u +

σ2
ǫ

nj
, ∀j, (4.1)

Cov(ȳj., ȳj′.) = γ, ∀j 6= j′, (4.2)

Cov(ȳj.,M(y)) = γ ∀j (4.3)

Expressions (4.1) to (4.3) give the specifications over D̄n as follows:

E(M(y)) = µ, E(D̄n) = (µ, µ, . . . , µ)T = 1Jµ, Cov(M(y), D̄n) = 1T
J γ.

V ar(D̄n) =




σ2
u +

σ2
ǫ

n1
γ · · · γ

γ σ2
u +

σ2
ǫ

n2
· · · γ

...
...

. . .
...

γ γ · · · σ2
u +

σ2
ǫ

nJ




(4.4)

The inverse of V ar(D̄n)

To calculate V ar−1(D̄n) we use the following expression for the inverse of the

sum of two matrices due to Henderson et al. (1959).

(A+ UBU ′)−1 = A−1 −A−1U(B−1 + U ′A−1U)−1U ′A−1 (4.5)

where A and B are both non-singular and symmetric conformable matrices, and U

is a column vector. The required variance V ar(D̄n) may be written in the form of

(A+ UBU ′), where

A =




σ2
u − γ + σ2

ǫ

n1
0 · · · 0

0 σ2
u − γ + σ2

ǫ

n2
· · · 0

...
...

. . .
...

0 0 · · · σ2
u − γ + σ2

ǫ

nJ



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UT =
(
1 . . . 1

)
and B = γ. (4.6)

Application of (4.5) involves inverting only one matrix, namely A which is diag-

onal. If we write aj = σ2
u − γ + σ2

ǫ

nj
for the jth diagonal element of A, then A−1 is

also diagonal with element a−1
j , provided aj 6= 0. In fact aj > 0 for all j as it is the

sum of the level 1 and level 2 residual variances (see specifications (3.7) and (3.9)).

It is now easy to calculate V ar−1(D̄n).

Theorem 4.2.1. For V ar(D̄n) in (4.4), V ar−1(D̄n) exists and has elements djj′

given by

djj′ =





a−1
j (1− a−1

j

[γ−1 +
∑2

j=1 a
−1
j ]

) if j = j′,

−
a−1
j a−1

j′

[γ−1 +
∑2

j=1 a
−1
j ]

if j 6= j′.

(4.7)

Proof. We have argued above that aj > 0, hence V ar−1(D̄n) exists. Applying (4.5)

using A, B and U as in (4.6) gives:

V ar−1(D̄n) = A−1 − A−11J [γ
−1 + 1T

JA
−11]−11T

JA
−1

= A−1 − A−11J1
T
JA

−1

[γ−1 + 1T
JA

−11]
(4.8)

Since the term (j, j′) of the numerator in (4.8) is a−1
j a−1

j′ and A−1 is diagonal, it is

trivial to show that (4.8) has elements as in (4.7). �

For example, for J = 2, (4.7) gives

V ar−1(D̄n) =



a−1
1 (1− a−1

1

[γ−1+
∑2

j=1 a
−1
j ]

) − a−1
1 a−1

2

[γ−1+
∑2

j=1 a
−1
j ]

− a−1
1 a−1

2

[γ−1+
∑2

j=1 a
−1
j

]
a−1
2 (1− a−1

2

[γ−1+
∑2

j=1 a
−1
j

]
)




Direct multiplication shows that the above matrix is the correct inverse.

4.3 Adjusting the population grand mean

To adjust the population grand meanM(y), we make use of Definition 3.1.1 of the

unbalanced SOEREF model as well as its specifications in Chapter 3, and Theorem

4.2.1 for V ar−1(D̄n).

June 11, 2023



4.3. Adjusting the population grand mean 80

Theorem 4.3.1. Let yji be an observation on individual i nested in group j in a

two-level data set. Following Definition 3.1.1, the unbalanced SOEREF model is

yji =M(y) +Rj(M(y)) +Ri(yj), where i = 1, 2, . . . , nj, and j = 1, 2, . . . , J , with

second-order specifications for the population grand mean as E(M(y)) = µ, and

V ar(M(y)) = γ. The sequences of level 2 and level 1 residuals are uncorrelated,

have means zero and variances V ar(Rj(M(y))) = σ2
u − γ and V ar(Ri(yj)) = σ2

ǫ

respectively, ∀i, j. The collection of sample group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.} is

Bayes linear sufficient for the adjustment of the population grand mean. We have

ED̄n
(M(y)) =

γ−1µ+
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1ȳj.

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

(4.9)

Proof. First, we note that (1T
JA

−11J) =
∑J

j=1 a
−1
j is a scalar, which will simplify

the calculations below.

ED̄n
(M(y)) = E(M(y)) + Cov(M(y), D̄n)V ar−1(D̄n)(D̄n −E(D̄n))

= µ+ 1T
J γ

[
A−1 − A−11J1

T
JA

−1

[γ−1 + 1T
JA

−11]

]
(D̄n − 1Jµ)

= µ+
[1T

J γA
−1[γ−1 + 1T

JA
−11]− 1T

J γA
−11J1

T
JA

−1

[γ−1 + 1T
JA

−11]

]

(D̄n − 1Jµ)

= µ+
[1T

JA
−1 + γ1T

JA
−1(1T

JA
−11)− γ(1T

JA
−11J)1

T
JA

−1

[γ−1 + 1T
JA

−11]

]

(D̄n − 1Jµ)

= µ+
[ 1T

JA
−1

[γ−1 + 1T
JA

−11]

]
(D̄n − 1Jµ)

=
[
1− 1T

JA
−11

[γ−1 + 1T
JA

−11]

]
µ+

[ 1T
JA

−1

[γ−1 + 1T
JA

−11]

]
D̄n
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=
[ γ−1

[γ−1 + 1T
JA

−11]

]
µ+

[ 1T
JA

−1

[γ−1 + 1T
JA

−11]

]
D̄n

=
[ 1

[1 + γ
∑J

j=1 a
−1
j ]

]
µ+

[ γ

1 + γ
∑J

j=1 a
−1
j ]

] J∑

j=1

a−1
j ȳj.

=
γ−1µ+

∑J
j=1(σ

2
u − γ + σ2

ǫ

nj
)−1ȳj.

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

(4.10)

�

Corollary 4.3.1. In the balanced case the adjusted grand mean is

ED̄n
(M(y)) =

γ−1µ+ J(σ2
u − γ + σ2

ǫ

n
)−1ȳ..

γ−1 + J(σ2
u − γ + σ2

ǫ

n
)−1

(4.11)

Proof. Substituting nj = n in (4.10) gives (4.11). �

The adjusted expectation ED̄n
(M(y)) in (4.10) reveals the familiar Bayesian

precision weighted average of prior mean µ and data mean ȳj. The weights are

the prior precision γ−1 = (var(M(y)))−1 and data precision
∑J

j=1(σ
2
u− γ+ σ2

ǫ

nj
)−1 =

∑J
j=1 V ar(Rj(M(y))+R̄nj

(yj.))
−1, that is the sum over all J groups of the reciprocal

of the level 2 and level 1 residual variances.

Note that putting V ar(Rj(M(y)) = (σ2
u − γ) = 0, results in a single level data

and, removing all terms in j in (4.11), we obtain the well-known Bayesian estimator

of an unknown population mean

1
γ
µ+ n

σ2 ȳ
1
γ
+ n

σ2

To compare (4.10) with the result of a full Bayesian analysis, consider the linear

mixed-effects model

yji|θj ∼ N(θj , σ
2), i = 1, 2, . . . , nj; j = 1, 2, . . . , J.
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θj ∼ N(µ, τ 2), j = 1, 2, . . . , J,

which corresponds to our SOEREF model except that, like in most Bayesian analyses

of multilevel models, a non-informative uniform prior is assumed for the “fixed-

effect” µ, the argument being that typically enough data is available to estimate

the overall mean, even in small studies. If normal priors are assumed for the level 1

and level 2 residuals both with mean zero and variances σ2
j and τ 2 respectively as

in Gelman et al. (2009; p140) (see also, for example, Hill (1965) or (Lindley and

Smith (1972) ), then the estimated posterior mean is

∑J
j=1

1
σ2
j+τ2

ȳj
∑J

j=1
1

σ2
j+τ2

, (4.12)

which is in agreement with (4.10) since for a noninformative prior onM(y), γ−1 → 0.

In addition to the adjustment being a compromise between prior and data, (4.10)

also reveals that a specific group j with greater precision due, for example, to a

larger sample size nj in that group, will contribute more weight to that ȳj in the

final adjustment.

The preceding argument also implies that in the balanced case all groups of data

will contribute equally to the final adjustment as is clear from Corollary 4.3.1. Note

that (4.11) agrees with the result for the balanced case given in (Searle et al.,1992),

page 335.

4.3.1 The adjusted variance of M(y)

Theorem 4.3.2. The adjusted variance ofM(y) by D̄n is

V arD̄n
(M(y)) =

1

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

(4.13)

Proof. The Bayes linear rule for the adjusted variance is

V arD̄n
(M(y)) = V ar(M(y))− Cov(M(y), D̄n)V ar−1(D̄n)Cov(D̄n,M(y))

= γ − 1T
JA

−11γ

[γ−1 + 1T
JA

−11]
, see (4.10)

=
1

[γ−1 + 1T
JA

−11]
,

which, upon replacing A−1, gives the required result. �
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We may also write (4.13) in terms of precision, that is inverse variance, as follows

1

V arD̄n
(M(y))

=
1

γ
+

1
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)
,

which is the familiar Bayesian form where posterior precision equals the prior preci-

sion plus the data precision.

4.3.2 The resolved variance of M(y)

The variance ofM(y) resolved by D̄n (Definition 2.13.2) is

RV arD̄n
(M(y)) = Cov(M(y), D̄n)V ar−1(D̄n)Cov(D̄n,M(y))

=
1T
JA

−11γ

[γ−1 + 1T
JA

−11]

=
γ
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

(4.14)

and the resolution is

RD̄n
(M(y)) =

RV arD̄n
(M(y))

V ar(M(y))

= 1− V arD̄n
(M(y))

V ar(M(y))

= 1− 1

1 + γ
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

(4.15)

The resolution RD̄n
(M(y)), a scale-free measure of the efficiency of an adjust-

ment, shows the proportion of prior variance explained for the population grand

meanM(y) after adjustingM(y) by D̄n.

RD̄n
(M(y)) lies between zero and one. When V arD̄n

(M(y)) = V ar(M(y)),

RD̄n
(M(y)) will be zero. This implies that D̄n is not informative in adjustingM(y).

At the other end, as the number of level 2 groups J increases, γ
∑J

j=1(σ
2
u−γ+ σ2

ǫ

nj
)−1

in (4.15) will tend towards infinity, hence RD̄n
(M(y)) will approach its maximum

value of one.

4.4 Adjusting the population group j mean

In multilevel modelling, learning about the effect of clustering (grouping) on an

outcome defined at the individual level is of considerable interest to researchers
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(Section 2.3.1). For the SOEREF model, this involves learning about population

group means which we shall consider in this section. To adjust the population group

meansM(yj), we first need to adjust the level 2 residuals, that is ED̄n
(Rj(M(y)).

The level 2 residuals represent group effects and so are themselves of importance in

multilevel modelling.

4.4.1 Adjusting the level 2 residuals

Theorem 4.4.1. The adjustment of each level 2 residual Rj(M(y) of the unbalanced

SOEREF model by the collection of sample group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.} is

ED̄n
(Rj(M(y)) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

[
(ȳj.−µ)−

∑J
j′=1(σ

2
u − γ + σ2

ǫ

nj
)−1(ȳj. − µ)

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

]
(4.16)

Proof. Let CRj
denote the vector of level 2 residuals {R1(M(y)),

R2(M(y)), . . .RJ(M(y))} in the unbalanced SOEREF model with specifications

E(Rj(M(y)) = 0 and Var(Rj(M(y)) = σ2
u − γ, for j = 1, 2, . . . , J (see Section

3.1.1). Based on these specifications,

E(CRj
) = 1J0, Cov(CRj

, D̄n) = IJ(σ
2
u − γ), ∀j, (4.17)

where 1J is a column of J ones and IJ is an identity matrix of dimension J . Applying
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the Bayes linear rule gives the adjusted vector of level 2 residuals as follows.

ED̄n
(CRj

) = E(CRj
) + Cov(CRj

, D̄n)V ar−1(D̄n)(D̄n − E(D̄n))

= 1J0 + (σ2
u − γ)IJ

[
A−1 − A−11J1

T
JA

−1

[γ−1 + 1T
JA

−11]

]
(D̄n − 1Jµ)

= (σ2
u − γ)

[
IJ −

A−11J1
T
J

[γ−1 + 1T
JA

−11]

]
A−1(D̄n − 1Jµ)

= (σ2
u − γ)




1 −
1

da1
−

1

da1
· · · −

1

da1

−
1

da2
1 −

1

da2
· · · −

1

da2

.

.

.
.
.
.

. . .
.
.
.

−
1

daJ
−

1

daJ
· · · 1 −

1

daJ







1

a1
(ȳ1. − µ)

1

a2
(ȳ2. − µ)

.

.

.

1

aJ
(ȳJ. − µ)




= (σ2
u − γ)




1
a1
(ȳ1. − µ)− 1

da1

∑J
j=1

1
aj
(ȳj. − µ)

1
a2
(ȳ1. − µ)− 1

da2

∑J
j=1

1
aj
(ȳj. − µ)

...

1
aJ
(ȳJ. − µ)− 1

daJ

∑J
j=1

1
aj
(ȳj. − µ)



, (4.18)

where aj = (σ2
u − γ + σ2

ǫ

nj
) and d = γ−1 +

∑J
j=1(σ

2
u − γ + σ2

ǫ

nj
)−1. The jth row of

(4.18) gives (4.16). �

Corollary 4.4.1. In the balanced case, the adjusted level 2 residual Rj(M(y), for

j = 1, 2, . . . , J is

ED̄n
(Rj(M(y)) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

n
)

[
(ȳj. − µ)− Jγ(ȳ.. − µ)

Jγ + (σ2
u − γ + σ2

ǫ

n
)

]
(4.19)

Proof. Substituting nj = n in (4.16) and summing over the resulting constant terms

gives

ED̄n
(Rj(M(y)) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

n
)

[
(ȳj. − µ)− J(σ2

u − γ + σ2
ǫ

n
)−1(ȳ.. − µ)

γ−1 + J(σ2
u − γ + σ2

ǫ

n
)−1

]
,
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which, upon multiplying the numerator and denominator of the right-most term in

brackets by γ(σ2
u − γ + σ2

ǫ

n
), yields (4.19). �

We note that (4.19) agrees with the result in Searle et al.(1992; page 336), hence

providing a check on our calculation. Also, since (4.16) involves µ, we could combine

Theorem 4.3.1 and Theorem 4.4.1 to yield the following corollary.

Corollary 4.4.2. The adjusted jth level 2 residual can also be written as

ED̄n
(Rj(M(y))) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

nj
)
(ȳj. − ED̄n

(M(y))) (4.20)

Proof. Re-write (4.16) of Theorem 4.4.1 as

ED̄n
(Rj(M(y))) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

[
ȳj. −

(
µ+

∑J
j=1(σ

2
u − γ + σ2

ǫ

nj
)−1(ȳj. − µ)

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

)]

=
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

[
ȳj. −

(
µ+

∑J
j=1 a

−1
j (ȳj. − µ)

γ−1 +
∑J

j=1 a
−1
j

)]

=
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

[
ȳj. −

(µγ−1 + µ
∑J

j=1 a
−1
j

γ−1 +
∑J

j=1 a
−1
j

+
∑J

j=1 a
−1
j ȳj. −

∑J
j=1 a

−1
j µ

γ−1 +
∑J

j=1 a
−1
j

)]

=
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

[
ȳj. −

(µγ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1ȳj.

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

)]

=
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)
(ȳj. −ED̄n

(M(y))),

where aj = (σ2
u − γ + σ2

ǫ

nj
). �

The form of the Bayes linear adjustment in (4.20) is similar to the traditional mul-

tilevel shrinkage estimator of the level 2 residual, (see, for example, Goldstein(1995;

page 10)). The deviation (ȳj. − ED̄n
(M(y))) is similar to the raw level 2 residual.

We write

η =
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)
,
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where η is the familiar shrinkage factor. The factor η, which is always less than or

equal to one, shows by how much the estimated level 2 residual is shrunk towards its

prior specified value of zero. We shall see that η occurs frequently in the forthcoming

Bayes linear analyses in this chapter. We interpret ED̄n
(Rj(M(y))) as follows.

1. Effect of small nj . If nj is small for a specific group j, then η is close to zero,

hence ED̄n
(Rj(M(y))) is shrunk to zero.

Explanation. When nj is small, the data ȳj. is not a reliable estimator of the

group j mean, and is thus not informative for the adjustment ED̄n
(Rj(M(y)))

which is therefore shrunk to its prior mean zero. A similar explanation holds

in cases where σ2
ǫ is large or (σ2

u − γ) is small, resulting in η being close to

zero.

2. Effect of large nj . If nj is large for a specific group j, then η is close to one,

hence ED̄n
(Rj(M(y))) = (ȳj. −ED̄n

(M(y))).

Explanation. When nj is large, the data ȳj. is a precise estimator of the group

j mean, and thus (ȳj. − ED̄n
(M(y)) is a reliable estimator of the jth level 2

residual. Likewise, when σ2
ǫ is small or (σ2

u − γ) is large η is close to one, and

ED̄n
(Rj(M(y))) = (ȳj. −ED̄n

(M(y))).

4.4.2 Adjusting the population group j mean

Having calculated the adjusted level 2 residual, it is now straightforward to derive

the adjustment of the population group j meanM(yj).

Theorem 4.4.2. The adjustment of each population meanM(yj), for j = 1, 2, . . . , J

in the unbalanced SOEREF model, by the collection of sample group means D̄n =

{ȳ1., ȳ2., . . . , ȳJ.} is

ED̄n
(M(yj)) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

nj
)
ȳj. +

σ2
ǫ

nj

(σ2
u − γ + σ2

ǫ

nj
)
ED̄n

(M(y)) (4.21)

Proof. By the SOE level 2 representation of Definition 3.1.1, namely

M(yj) =M(y) +Rj(M(y)) j = 1, 2, . . . , J. (4.22)
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Since adjusted expectation is linear (see Property 3.2.1 of Goldstein andWooff (2007;

page 56)), we obtain the following adjustments

ED̄n
(M(yj)) = ED̄n

(M(y)) + ED̄n
(Rj(M(y)). (4.23)

Substituting ED̄n
(Rj(M(y)) from Corollary 4.4.2, we obtain

ED̄n
(M(yj)) = ED̄n

(M(y)) +
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)
(ȳj. −ED̄n

(M(y))), (4.24)

which can easily be simplified to yield (4.21). �

To interpret (4.21), we write it as

ED̄n
(M(yj)) = ηȳj. + (1− η)ED̄n

(M(y)), (4.25)

showing that the adjusted population group j mean is a weighted average of the

sample group j mean ȳj. and the adjusted overall population mean, ED̄n
(M(y)),

where the weight η is the shrinkage factor. Hence, our interpretation follows that of

the previous section. For example, if nj is small for a specific group j, then η will

be closer to zero, thus less weight will be put on ȳj., and ED̄n
(M(yj)) will be pulled

towards the overall adjusted mean ED̄n
(M(y)).

Also, we note the similarity between the form of our adjustment in (4.24) and

the BLUP estimator (Searle et al. (1992; page 57))

BLUP (µ+ αi) = GLSE(µ) +
niσ

2
α

niσ2
α + σ2

e

[ȳi. −GLSE(µ)], (4.26)

where i indicates group and σ2
α, the level 2 variance. The BLUP estimator has many

desirable properties and is very versatile as it can be used to derive the Kalman filter,

the method of Kriging, and Credibility theory in insurance (see Robinson (1991)).

We may consider our estimator as a Bayes linear BLUP, with the important differ-

ence that within the Bayes linear approach all quantities reflect our judgements of

uncertainty, while in the traditional BLUP these quantities are true but unknown

population values. But similar to the comment in Searle et al. (1992), the imple-

mentation of our Bayes linear BLUP requires estimation of the variance components

which is an important aspect of this thesis.
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4.4.3 The adjusted variance of Rj(M(y))

In order to adjust the variances and covariances of the population group j means

M(yj) by D̄n , we first need to adjust these same quantities for the level 2 residuals

Rj(M(y)).

Theorem 4.4.3. For any level 2 residual Rj(M(y)) in group j, the adjusted vari-

ance is

V arD̄n
(Rj(M(y))) =

(σ2
u − γ)σ2

ǫ

nj(σ2
u − γ + σ2

ǫ

nj
)
+

(σ2
u − γ)2(σ2

u − γ + σ2
ǫ

nj
)−2

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

, (4.27)

and for any pair of level 2 residuals Rj(M(y)) and Rj′(M(y)) in groups j and j′

respectively, the adjusted covariance is

CovD̄n
(Rj(M(y)),Rj′(M(y))) =

(σ2
u − γ)2(σ2

u − γ + σ2
ǫ

nj
)−1(σ2

u − γ + σ2
ǫ

nj′
)−1

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

.

(4.28)

Proof. The Bayes linear rule for the adjusted variance is

V arD̄n
(CRj

) = V ar(CRj
)− Cov(CRj

, D̄n)V ar−1(D̄n)Cov(D̄n, CRj
)

= (σ2
u − γ)IJ − (σ2

u − γ)IJ

[
A−1 − A−11J1

T
JA

−1

[γ−1 + 1T
JA

−11]

]
(σ2

u − γ)IJ

= (σ2
u − γ)IJ − (σ2

u − γ)2IJ

[
A−1 − A−11J1

T
JA

−1

[γ−1 + 1T
JA

−11]

]

= (σ2
u − γ)(IJ − (σ2

u − γ)A−1) +
(σ2

u − γ)2

[γ−1 + 1T
JA

−11]

[
A−11J1

T
JA

−1
]

= (σ2
u − γ)diag

{
1− (σ2

u − γ)

a1
, · · · , 1− (σ2

u − γ)

aJ

}

+
(σ2

u − γ)2

[γ−1 + 1T
JA

−11]




a
−2

1
a
−1

1
a
−1

2
· · · a

−1

1
a
−1

J

a
−1

2
a
−1

1
a
−2

2
· · · a

−1

2
a
−1

J

.

.

.
.
.
.

. . .
.
.
.

a
−1

J
a
−1

1
a
−1

J
a
−1

2
· · · a

−2

J



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= (σ2
u − γ)diag

{
σ2
ǫ

n1a1
, · · · , σ2

ǫ

nJaJ

}

+
(σ2

u − γ)2

[γ−1 + 1T
JA

−11]




a
−2

1
a
−1

1
a
−1

2
· · · a

−1

1
a
−1

J

a
−1

2
a
−1

1
a
−2

2
· · · a

−1

2
a
−1

J

.

.

.
.
.
.

. . .
.
.
.

a
−1

J
a
−1

1
a
−1

J
a
−1

2
· · · a

−2

J




(4.29)

�

After substituting aj = (σ2
u − γ + σ2

ǫ

nj
), the diagonal elements of (4.29) give the

required variances, and the off-diagonal elements, the covariances. We may now

calculate the above adjusted quantities for the balanced case.

Corollary 4.4.3. Let CRj
be the vector of level 2 residuals as defined in Theorem

4.5.1. For the balanced case, the adjusted variances and covariances are given by

the diagonal and off-diagonal entries of the following variance-covariance matrix.

V arD̄n
(CRj

) =
(σ2

u − γ)σ2
ǫ

n(σ2
u − γ + σ2

ǫ

n
)
IJ +

(σ2
u − γ)2γKJ×J

(σ2
u − γ + σ2

ǫ

n
)(σ2

u − γ + σ2
ǫ

n
+ Jγ)

(4.30)

Proof. Substituting nj = n and aj = a in (4.29) yield

V arD̄n
(CRj

) = (σ2
u − γ)diag

{
σ2
ǫ

na
, · · · , σ

2
ǫ

na

}

+
(σ2

u − γ)2

[γ−1 + Ja−1]




a−2 a−2
· · · a−2

a−2 a−2
· · · a−2

.

.

.
.
.
.

. . .
.
.
.

a−2 a−2
· · · a−2




,

(4.31)

�

which is easily seen to be equal to (4.30) upon substituting a = (σ2
u − γ + σ2

ǫ

n
).

Note that we use K rather than the traditional J as the matrix of ones as the latter

is used for the number of level 2 units. Also, the adjusted variances and covariances

for the balanced case (4.30) agree with those given in Searle et al. (1992; page 336).
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The interpretation of the adjusted variances and covariances of the level 2 resid-

uals is no longer straightforward. Nevertheless, we may easily re-write (4.27) as

V arD̄n
(Rj(M(y))) =

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

[
σ2
ǫ

nj
+

(σ2
u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

1

γ−1 +
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1

]

=
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

nj
)

σ2
ǫ

nj
+

(σ2
u − γ)2

(σ2
u − γ + σ2

ǫ

nj
)2
V arD̄n

(M(y))

= η
σ2
ǫ

nj

+ η2V arD̄n
(M(y)) (4.32)

revealing that the adjusted variance of the level 2 residual for group j is a shrunken

estimator of the group j data variance σ2
ǫ

nj
and the adjusted variance of the overall

mean. Again, the shrinkage factor η plays a pivotal part in the adjusted quantities. It

can similarly be shown that the adjusted covariance CovD̄n
(Rj(M(y)),Rj′(M(y)))

can be interpreted in terms of the shrinkage factor and the adjusted variance of the

overall population meanM(y).

But it must now be evident from the above that calculating and interpreting ad-

justments over group-level quantities individually may not be that straightforward,

especially since these quantities are correlated. We shall therefore argue next for

the adjustment of a collection of beliefs over group-level quantities in the SOEREF

model.

4.5 Canonical analysis

As we saw in the previous section, analysing and interpreting beliefs individually

from a collection of quantities can get increasingly complicated. Alternatively we

may choose to analyse and interpret overall changes in beliefs over the whole collec-

tion of quantities using, what Goldstein and Wooff (2007) have termed, a canonical

analysis. We collect the results of the canonical analysis in Theorem 4.5.1 as follows.

Theorem 4.5.1. For the adjustment of B by D we have the following:

• The resolution transform matrix is

TB:D = V ar(B)†Cov(B,D)V ar(D)†Cov(D,B). (4.33)
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• The canonical resolutions are the (ordered) eigenvalues of TB:D, i.e. 1 ≥ λ1 ≥
. . . ≥ λr ≥ 0, where r = rank{V ar(B)}.

• The canonical quantities are given by Wi = vTi (B − E(B))

where, for each i, E(Wi) = 0, V ar(Wi) = 1 and Cov(Wi,Wi′) = 0 (i 6= i′) and

v1, ..., vr correspond to the normed right eigenvectors of TB:D scaled such that

vTi V ar(B)vi = 1.

• The system resolution for 〈B〉 is

RD(B) =
tr{TB:D}

rk{V ar(B)} . (4.34)

RD(B) gives the average resolution for the canonical directions obtained from

the adjustment over the collection 〈B〉.

The canonical quantities have the properties that W1 has the largest relative re-

duction in variance amongst elements of 〈B〉, W2 the next largest reduction amongst

elements of 〈B〉 that are uncorrelated with W1, and so forth. The actual reductions

in variance are given as V arD(Wi) = 1− λi.

A canonical analysis is quite versatile and can be helpful in various stages of a

Bayes linear analysis. At the data collection stage, if alternative sources of data are

available, a canonical analysis can be used to assess the strengths and weaknesses of

these competing data sets. Canonical quantities can also be useful in revealing those

linear combinations for which data are expected to be informative/uninformative.

A canonical analysis can also be useful in identifying problems in our belief speci-

fications, especially in complex multilevel structures; such problems would show up

as unanticipated results of our belief adjustments. Finally, for exchangeable adjust-

ments such as in our SOE multilevel structures, a canonical analysis can simplify

our sample size design calculations.

In fact, for our SOEREF model we have already calculated the adjustment over

the linear combinations of the population group j means 〈M(yj)〉 since, when eval-

uating the adjusted expectation ED̄n
(M(yj)) for j = 1, 2, . . . , J , we also implicitly

evaluated the adjusted value of each element of 〈M(yj)〉, as

ED̄n
(

J∑

j=1

cjM(yj)) =

J∑

j=1

cjED̄n
(M(yj)).
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Thus, it remains for us to evaluate the expected effects, such as reductions in vari-

ances and diagnostics, of the Bayes linear adjustments over 〈M(yj)〉.

4.5.1 The resolution transform for the adjustment ofM(yj)

by D̄n

Below we calculate the resolution transform TB:D for the balanced case only. We

shall see in Section 4.10 that a balanced design is optimal for the adjustment of the

overall meanM(y). So from a design perspective it is consistent that we also con-

sider the adjustment ofM(yj) for the balanced case. Further, for the balanced case

the eigenstructure of TB:D can be easily obtained from Lemma 11.62 of Goldstein

and Wooff (2007; page 449) or more directly from (Searle et al. (1992; page 443)).

Theorem 4.5.2. The resolution transform matrix for the adjustment of the collec-

tion of population group j meansM(yj), for j = 1, 2, . . . , J in the balanced SOEREF

model, by the collection of sample group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.} is

Tn =
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

n
)

[
IJ +

γσ2
ǫ

n

(σ2
u − γ + σ2

ǫ

n
+ Jγ)(σ2

u − γ)
KJ

]
(4.35)

Proof. Let CM be the collection of the population meansM(yj), for j = 1, 2, . . . , J.

For simplicity we shall write Tn for TCM:D̄n
. Using (4.33) of Theorem 4.5.1 we obtain

Tn = V ar(CM)−1Cov(CM, D̄n)V ar(D̄n)
−1Cov(D̄n, CM) (4.36)

To calculate the second-order quantities in (4.36), we make use of the SOE level 2

representationM(yj) =M(y) +Rj(M(y)).

(i) Calculation of V ar(CM)

V ar(M(yj)) = V ar(M(y)) + V ar(Rj(M(y))) = γ + (σ2
u − γ) = σ2

u, while

Cov(M(yj),M(yj′)) = V ar(M(y)) = γ, for j 6= j′. Therefore,
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V ar(CM) =




σ2
u γ · · · γ

γ σ2
u · · · γ

...
...

. . .
...

γ γ · · · σ2
u




= (σ2
u − γ)IJ + γKJ (4.37)

(ii) Cov(CM, D̄n) = V ar(CM)

Since the jth element of D̄n is ȳj. =M(y)+Rj(M(y))+R̄nj
(yj.) =M(yj)+R̄nj

(yj.),

and the level 1 residual is uncorrelated with both the level 2 residual and the overall

population mean, therefore Cov(CM, D̄n) = V ar(CM).

(iii) For the balanced case V ar(D̄n) = (σ2
u − γ + σ2

ǫ

n
)IJ + γKJ , the inverse of

which is a standard result.

V ar(D̄n)
−1 =

1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]

Hence using (i) to (iii),

Tn = V ar(D̄n)
−1Cov(D̄n, CM)

=
1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

][
(σ2

u − γ)IJ + γKJ

]
,

which upon simplication reduces to (4.35). �

4.5.2 The canonical resolutions

The canonical resolutions are the ordered eigenvalues of Tn. Given the special form

of Tn in (4.35), we use the results in Searle et al. (1992; page 443), namely that

the eigenvalues of aIn + bKn are a, with multiplicity n − 1 and a + nb. Hence, the
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eigenvalues λj of Tn are as follows.

λ1 =
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

n
)

[
1 +

Jγσ2
ǫ

n

(σ2
u − γ + σ2

ǫ

n
+ Jγ)(σ2

u − γ)

]
,

=
n(σ2

u − γ)

n(σ2
u − γ) + σ2

ǫ

[
1 +

nJγσ2
ǫ

(n(σ2
u − γ) + σ2

ǫ + nJγ)(n(σ2
u − γ))

]
,

=
n(σ2

u − γ)

n(σ2
u − γ) + σ2

ǫ

+
nJγσ2

ǫ

(n(σ2
u − γ) + σ2

ǫ )(n(σ
2
u − γ) + σ2

ǫ + nJγ)
,

=
n(σ2

u − γ)(n(σ2
u − γ) + σ2

ǫ + nJγ) + nJγσ2
ǫ

(n(σ2
u − γ) + σ2

ǫ )(n(σ
2
u − γ) + σ2

ǫ + nJγ)
,

=
n(σ2

u − γ)(n(σ2
u − γ) + σ2

ǫ ) + nJγ(n(σ2
u − γ) + σ2

ǫ )

(n(σ2
u − γ) + σ2

ǫ )(n(σ
2
u − γ) + σ2

ǫ + nJγ)
,

=
n(σ2

u − γ) + nJγ

n(σ2
u − γ) + σ2

ǫ + nJγ

λ2 =
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

n
)
, (4.38)

where λ2 has multiplicity (J − 1).

It is obvious that λ1 ≥ λ2 (λ1 corresponds to a + nb and λ2 to a above), with

equality if γ = 0, that is no uncertainty about the population overall mean M(y).

We need to ensure that the largest possible reduction in variance is one, that is

λj ≤ 1, for each j. From the definition of the shrinkage factor, 0 ≤ λ2 ≤ 1. For λ1

we have

λ1 ≤ 1 =⇒ (σ2
u − γ) + Jγ

(σ2
u − γ) + σ2

ǫ

n
+ Jγ

≤ 1

=⇒ σ2
ǫ

n
≥ 0, (4.39)

which is a coherence condition, namely that the belief specification of the level 1

variance is non-negative.
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We now have the following results. The largest eigenvalue λ1 depends on both

the levels 1 and 2 sample sizes n and J respectively. Further, as either n or J →
∞, λ1 → 1. This implies that the more we increase the level 1 and/or level 2

sample sizes, the more the uncertainty we expect to resolve about the corresponding

component in 〈M(yj)〉 by observing D̄n.

The smallest eigenvalue λ2 however, depends only on the level 1 sample size,

n, and as n → ∞, λ2 → 1. Hence, the more we increase the level 1 sample size,

the more the uncertainty we expect to resolve in the direction of the corresponding

component in 〈M(yj)〉 by observing D̄n.

Again the above results underline the importance of the shrinkage factor, since

the largest eigenvalue, λ1, is a function of η while the smallest eigenvalue, λ2, is

equal to η.

4.5.3 The canonical quantities

While the canonical resolutions (eigenvalues of Tn) gave the magnitude of the re-

solved uncertainty, the canonical quantities (eigenvectors of Tn), will provide the

type of resolution associated with each component in 〈M(yj)〉 upon observing D̄n.

To calculate these canonical quantities, we exploit the special form of Tn for which

the eigenvectors are proportional to the columns of the Helmert matrix of order J ,

denoted by HJ (see Lemma 11.62 of Goldstein and Wooff (2007; page 448)). For

example, the first two canonical quantities are

W1 = α1

(
1 1 . . . 1

)




M(y1)− µ

M(y2)− µ

· · ·
M(yJ)− µ




,
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W2 = α2

(
1 −1 0 . . . 0

)




M(y1)− µ

M(y2)− µ

· · ·
M(yJ)− µ




,

where the first eigenvector W1 is the average of the group means, while W2, as well

as all the remaining eigenvectors, are all of the contrasts, i.e. all of the vectors

summing to zero. We choose α1 and α2 so that W1 and W2 have unit variances and

zero means (after re-scalingM(yj)). Hence, the canonical quantities become

W1 =
1√

[Jσ2
u + J(J − 1)γ]

(M(y1)− µ+ . . .+M(yJ)− µ), (4.40)

W2 =
1√

2[σ2
u + γ]

(M(y1)−M(y2)), (4.41)

where the denominator in (4.40) is the standard deviation of
∑J

j=1M(yj).

We learn most about W1 since it has the largest resolution, λ1. At the other end,

we learn least in the direction of W2 as it has the least resolution, λ2. In addition,

since λ2 has multiplicity (J − 1), we learn equally about all possible contrasts, a

consequence of the balanced design we chose. If however, some contrasts are more

important than others, then we might choose an unbalanced design. An examination

of the canonical directions reveals that they do not depend on the level 1 sample

size n, and can thus be used to guide sample size choice in our multilevel design

problem.

4.6 Example: Bayes linear analysis of the

STAT1010 data

We shall now apply Bayes linear methods to analyze the Stat1010 data using [B/D],

the freely available Bayes linear programming language (Goldstein & Wooff, 1995).

[B/D] provides the required facilities for the specification and analysis of beliefs,

including diagnostic checks. In addition, [B/D] also produces Bayes linear diagnostic

influence diagrams. These may be particularly useful for analyzing the effects on
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our beliefs of multiple sources of information, as well as of potential covariates (both

at level 1 and level 2) using a partial Bayes linear analysis.

We shall update our beliefs about the SOEREF model using the prior specifi-

cations in Chapter 3. To check our [B/D] programme, we compare its output with

those from an R programme (Appendix B) we have written based on our derivations

for the adjusted quantities in Sections 4.3 and 4.4.

4.7 Discrepancy

Before adjusting our beliefs, we must check that our prior specifications do not

conflict with the observed data. We do so by applying the discrepancy measures of

Section 2.15. The corresponding R codes are in Appendix B.

To identify potential problems with individual observations, we compute the

standardized observation as follows.

S(yji) =
(yji − E(yji))√

V ar(yji)
(4.42)

The discrepancy between observation and prior assessments is given by

Dis(yji) =
[yji − E(yji)]

2

V ar(yji)
(4.43)

The interpretation of S(yji) and Dis(yji) is not straightforward, depending on

context, including the experts making the prior judgements, and also on sample size

(see Goldstein & Wooff (2007), page 96). As far as our judgements are concerned,

we have been quite thorough in making our prior specifications. Also the data can

be trusted to be correct given they are official examinations data. As for sample

sizes, we have a total of 269 students (level 1) grouped in seven classes (level 2) with

a minimum of 23 students in one class and a maximum of 47 students in another.

Thus we have a sufficiently large sample of level 1 observations but a rather modest

sample of level 2 observations.

The standardized and discrepancy measures of the individual examinations marks

(yji) are shown in the box-plots in Figure 4.1 (Appendix B, R codes lines 16 to 24).

We have grouped the students’ marks according to their respective class. From

June 11, 2023



4.7. Discrepancy 99

C1 C2 C3 C4 C5 C6 C7

−
2

−
1

0
1

2

S
ta

n
d

a
rd

iz
e

d
 o

b
s
e

rv
a

ti
o

n

          Management class              Engineering class

(a) Standardized observations

C1 C2 C3 C4 C5 C6 C7

0
1

2
3

4
5

D
is

c
re

p
a

n
c
y

          Management class              Engineering class

Best

(b) Discrepancy

Figure 4.1: The distributions of standardized observations (a) and discrepancy (b) for each class

in the STAT1010 data. The data marked “Best” in (b) is a student scoring 97% in the exams.

Figure 4.1(a), there do not appear to be any outlying observation. In fact, almost

all the observations lie in the interval (-2,+2), which looks quite short. Under a

Gaussian distribution we would expect 5% (13 out of 269) of the students to have

standardized marks outside the (-2,+2) interval but as we are sampling only seven

groups, there is no cause for concern.

In Figure 4.1(b) all the median (and mean) discrepancies are less than one except

that the means for C1 (1.01) and C4 (1.16) are slightly above one due to the large

examinations marks of a few students. Since each discrepancy has prior expectation

one, this again points to an over-estimated prior uncertainty in V ar(yji).

A useful guide to detect outliers from any uni-modal continuous distribution Z

with standard deviation σZ , is the three-sigma rule (Pukelsheim 1994) given by

P (|Z−E(Z)| ≤ 3σZ) = 0.95. Thus if many observations are three or more standard

deviations away from the mean, they may be considered a possible diagnostic signal.

In Figure 4.1(b), 12 out of 269 students have discrepancies above 3, representing 4.5%

which is close to the expected 5%. The largest discrepancy (marked “Best” in plot

(b) ) is for a student in an Engineering class who scored 97% in the examinations

and, although this observation is more than three standard deviations distant from
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our expectation, it is clearly not an outlier.

Figure 4.1(a) also supports our earlier arguments that on average students from

management classes (C1-C3) perform less well than those of engineering classes (C4-

C7), thus a SOEREG model with type of class as a level 2 predictor would be a

more suitable model than the present SOEREF model.

Discrepancy ratio

To compare discrepancies across classes, we calculate the discrepancy ratio Dr(ȳ.j)

based on the Mahalanobis distance (Chapter 2) as follows

Dr(ȳ.j) =
(ȳ.j − E(ȳ.j))

TV ar(D̄n)
−1(ȳ.j − E(ȳ.j))

rank(V ar(D̄n))
(4.44)

(Appendix B, R code lines 21 to 31). For the STAT1010 data we obtain Dr(ȳ.j) =

1.1347 which is less than the upper bound for a discrepancy ratio based on Cheby-

shev’s inequality, i.e. 1 + 6√
7
= 3.2678. Thus the maximal data discrepancy across

classes is in line with our prior expectations.

4.8 Adjusting beliefs about the overall and group

means

We shall now adjust beliefs aboutM(y) andM(yj) using the STAT1010 data. The

adjustments are calculated using [B/D] (Appendix B, lines 32 to 115). As a check,

we compare our [B/D] output with those of BALM (BAyes Linear Modeling), our

purposely written R programme (Appendix B, lines 116 to 136). The adjustments

using [B/D] shown in Table 4.1 are exactly the same as the output from BALM

(Appendix B, lines 137 to 153).

Table 4.1 summarizes the key results from our adjustments. The first two

columns show the mean components and their prior expectation. Column (3) reveals

that the adjusted expectations for management classes are below the prior expec-

tation while the adjustments for engineering classes are above. The direction and

magnitude of the changes from prior to adjustment are shown by the standardized

adjustment discrepancies between brackets in Column (3). The standardized adjust-
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Expectation Variance

Element Prior Adjusted Observed Prior Adjusted Resolution(%)

(1) (2) (3) (4) (5) (6) (7)

M(y) 55.0 53.86(-0.16) ↓ 56.3 8.03 85.7

M(y1) 55.0 44.64(-0.99) 43.73(41) 115.3 5.33 95.4

M(y2) 55.0 46.02(-0.87) 44.65(23) 115.3 8.95 92.2

M(y3) 55.0 47.61(-0.71) 46.71(28) 115.3 7.53 93.5

M(y4) 55.0 68.51(1.28) 69.77(47) 115.3 4.69 95.9

M(y5) 55.0 55.24(0.02) 55.37(43) 115.3 5.10 95.6

M(y6) 55.0 57.75(0.26) 58.09(46) 115.3 4.79 95.8

M(y7) 55.0 56.08(0.10) 56.29(41) 115.3 5.33 95.4

Table 4.1: Adjusting overall meanM(y) and group j meansM(yj) in the SOEREF model using

the STAT1010 data. Column (3) shows the adjusted expectations and the standardized adjustment

discrepancy in brackets. Column (4) shows the effect of the observed data on the adjustments.

Adjustment of M(y) (and each M(yj) also) depend on all group means and sample sizes (ȳj.,nj)

in column (4) as indicated by ↓. For the adjustment of each M(yj) the most influential data and

sample size (ȳj.,nj) is shown.

ment discrepancy forM(y) is given in (4.47) below. The corresponding expression

forM(yj) can be obtained by substitutingM(yj) in (4.47).

S(M(y)) =
(ED̄n

(M(y))−E(M(y)))√
RV arD̄n

(M(y))
(4.45)

The discrepancies are in the range (-0.99,1.28) while in practice we would expect

such standardized discrepancies to be in the range (-2,+2). It is also clear that

the pattern in the negative and positive signs in the standardized discrepancies is

associated with type of class. Column(4) shows the observed group mean ȳj. with

the corresponding group sample size nj between brackets. Each population mean in

column (1) depends on all the observed group means. M(y) depend in a complex

way on all the observed group means, thus the arrow pointing downwards. For

each M(yj), the most influential data for the adjustment, namely ȳj. is shown.

A comparison of column(3) and (4) shows clearly the proximity of the adjusted

and observed means. Columns (5) and (6) show that all prior variances have been
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reduced considerably leading to the substantial resolutions in column (7). The sizes

of these resolutions clearly depend on the sample sizes (column(4)). The latter

results, as well as the proximity of the adjusted and observed means, are most

probably due to the combined effects of the large group sample sizes as well as to

our prior uncertainties being too big. These are further discussed next.

4.9 Sensitivity of the adjustments to the prior

and sample sizes

Figure 4.2 shows the prior, data and adjusted means with their respective three

standard deviations limits. It is clear that the prior judgements have only a small

effect on the adjustments. As mentioned in the previous section, this is most likely

due to the large sample sizes and to our prior uncertainties which are too big. As

these adjustments form a key part of our analysis, we shall therefore explore the

interplay between changes in prior uncertainties and sample sizes in more detail.

For illustrative purposes, we consider that the prior variances that we have spec-

ified were upper bounds for our uncertainty. We introduce a scalar multiplier, c say,

and explore what happens to the adjustment when c is reduced from one towards

zero. We only scale the prior variance γ ofM(y) by c, keeping the level 1 and level

2 variances unchanged so that we can explore the effects of changes in our prior

confidence in the overall mean relative to the remaining uncertainties. In addition,

we also consider the effect of sample size on our adjustments by reducing all sam-

ples by a common proportion, d say. We consider the joint effects of (c,d) on the

adjustments. The results are given in Table 4.2 and Figures 4.3 and 4.4.

Table 4.2 shows the effects of reducing the sample size and uncertainty in γ on

the adjusted overall and group means. We show only the more significant changes,

those that result from reductions of 1.0, 0.5 and 0.1. For any adjusted mean, the

changes are more significant across rows (change in sample size) than down columns

(change in uncertainty). This is mostly due to γ representing only about 16% of our

total prior uncertainty.

As the sample size and/or the prior uncertainty γ is reduced, all the adjusted
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Figure 4.2: The effect of STAT1010 data on the adjustments of overall and group means. For

M(y) no data is shown as the adjustment depends in a complex way on all the group means, the

green bars. For eachM(yj), the most influential data, namely ȳj. is shown. All three types of bars

are ± three standard deviations.

means are pulled progressively towards the prior expectation of 55. Even forM(y4),the

group with largest sample size, the adjusted mean changes quite appreciably from

68.5 to 63.1 in the direction of the prior of 55.

We illustrate the effect on the adjustments of the changes in sample size and

uncertainty in Figure 4.3. The prior, data and adjusted means along with three

standard deviations are as shown in Figure 4.2. We have included the adjustment

of the means based on the sample and uncertainty reduced by 0.1 (in purple). All

the newly adjusted means (purple dots) are closer to the prior mean of 55. For

the overall mean, the adjusted standard deviations for the reduced sample and

uncertainty are smaller than for the full sample and uncertainty. This is because

the adjusted variance ofM(y) depends quite strongly on γ (see Section 4.3.1) and we

have reduced γ to one tenth its value. In contrast the adjusted standard deviations

(purple bars) of the group means are larger than for the full data (the blue bars). As

June 11, 2023



4.9. Sensitivity of the adjustments to the prior and sample sizes 104

Group Means and Sample reduction

Resolution M(y) M(y1) M(y2) M(y3)

reduction 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

0.1 54.9 54.6 54.5 49.3 45.5 47.7 51.5 47.1 46.1 51.4 48.5 47.7

0.5 54.7 54.1 54.0 49.2 45.5 47.6 51.3 47.0 46.0 51.3 48.4 47.6

1.0 54.6 54.0 53.9 49.2 45.4 47.6 51.3 47.0 46.0 51.2 48.3 47.6

Group Means and Sample reduction

Resolution M(y4) M(y5) M(y6) M(y7)

reduction 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0 0.1 0.5 1.0

0.1 63.1 67.6 68.6 55.1 55.2 55.3 56.7 57.6 57.8 55.6 56.0 56.1

0.5 63.0 67.5 68.5 55.0 55.2 55.3 56.6 57.5 57.8 55.5 55.9 56.1

1.0 63.0 67.5 68.5 55.0 55.2 55.2 56.5 57.5 57.7 55.4 55.9 56.1

Table 4.2: Changes in the adjusted meansM(y) andM(yj) as the uncertainty and sample sizes

are reduced by a factor of 0.1. As the sample and/or uncertainty are reduced, the adjusted means

are pulled closer to the prior mean of 55 and away from the data means ȳj.. and ȳj..

can be seen from Section 4.4.3, two important components of the adjusted variance

ofM(yj) are (σ
2
u−γ) and σ2

ǫ

nj
. Hence reducing nj leads to the increase in the adjusted

standard deviations of the group means, more so since we have also kept the level 2

variance (σ2
u−γ) fixed and large relative to the other prior variances. To summarize,

the reduced sample size and uncertainty in γ pull the adjusted means towards the

prior mean and increase the adjusted variance of the group means due to the reduced

group sample sizes.

4.9.1 Design curves and the choice of sample size for ad-

justing M(y)

In Figure 4.4 we construct a spaghetti plot showing how resolutions for the ad-

justment ofM(y) change when its uncertainty γ and the sample size are reduced.

We shall refer to each curve in the spaghetti plot as a design curve. For exam-

ple, the lowest design curve corresponds to d = 0.1, that is the smallest sam-

ple nj = (4, 2, 3, 5, 4, 5, 4) while the uppermost design curve corresponds to the

full sample size nj. All the design curves slope downwards since for any quan-

tity Z the resolution RD(Z) decreases with decreasing prior uncertainty V ar(Z) as
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Figure 4.3: The effects of reducing the sample size and uncertainty on the adjustments of overall

and group means (purple bars). The red, green and blue bars are as defined in Figure 4.2.

RD(Z) = 1− varD(Z)
V ar(Z)

.

A surprising feature of Figure 4.4 is that all the uppermost design curves (d

between 1.0 and 0.6) are very close together. This implies that only marginal losses

in resolution will be incurred if we sample 60% rather than the full sample size for

any given level of uncertainty. Hence, in planning a study similar to the design

of the STAT1010 data, it might be cost-effective to sample only half the full sam-

ple size, as the corresponding design curve for d = 0.5 is quite close to the other

uppermost design curves. This choice will result in a resolution of about 73% if

the uncertainty in γ is reduced by 0.5. For the same reduction in γ, we could still

achieve a decent resolution of 62% even if we choose the smallest design d=0.1, i.e.

nj = (4, 2, 3, 5, 4, 5, 4). This design is quite close to a balanced one with nj = 4 for

all j and we would prefer it on the ground of simplicity.
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Figure 4.4: Spaghetti plot showing changes in resolutions resulting from reductions in prior

uncertainty and sample size when adjusting the overall mean M(y). The initial prior uncertainty

γ = 56.3 and group sample sizes nj = (41, 23, 28, 47, 43, 46, 41) are decreased successively by 0.1.

Small uncertainties and small sample sizes are associated with low resolution.

4.9.2 Design curves and the choice of sample size for ad-

justing M(yj)

Figure 4.5 shows the design curves for adjusting each group mean M(yj). In each

class the design curve slopes downwards as in Figure 4.4 showing that the resolution

decreases as uncertainty is reduced. Across the classes C1 to C7, classes with small

sample sizes nj have lower design curves than those with larger sample sizes since the

adjustment of a specific group meanM(yj) is largely influenced by its own sample

size nj . For example, the design curves for C2, the group with the smallest sample

size (n2 = 23), are lower than the corresponding design curves for C4, the group

with the largest sample size (n4 = 47). Also, for each class the upper three or four

design curves are quite close, although not as close as in Figure 4.4.

We may exploit these differences in resolution patterns at different uncertainty
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levels between classes to choose how much to sample in each of the seven classes.

For example, suppose we now feel confident that our prior uncertainty is half the

value we specified initially and we would like to achieve a resolution of at least 80%

for adjusting each M(yj). Then using Figure 4.4, we would sample 0.3 × nj for

classes C1, C4, C5, C6, C7 and 0.4 × nj for classes C2 and C3. Such a sampling

scheme is intuitive: we sample proportionately more in small classes (C2 and C3)

and less in the remaining larger classes. Note that despite the small classes having

roughly half the sample sizes of the larger ones, we sample only ten percent more

(i.e. 0.4nj vs. 0.3nj) in these classes to achieve the uniform resolution of 80% in all

classes; the reason being that in estimating the group mean of any given class we

borrow strength from the remaining classes.

The design question being addressed here and in Sub-section 4.9.1 is quite specific

and should be contrasted with two-stage cluster sampling design where normally an

optimal design is sought with costs constraints. Under the latter condition a more

efficient sample design is a balanced one where we sample as few level 1 units as

possible and use our resources to maximize the number of level 2 units (see our proof

of Theorem 4.12.1 and the recommendation that follows.) The important difference

with Theorem 4.12.1 is that here the number of level 2 units J = 7 is fixed and we

are seeking how many level 1 units to sample (independently) in each group based

on changes in our prior uncertainty γ while in Theorem 4.12.1 we seek the optimum

design for a given design cost by allowing both J and nj to vary freely.
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Figure 4.5: Spaghetti plots showing changes in resolutions resulting from reductions in prior

uncertainty and sample size when adjusting each group meanM(yj). The initial prior uncertainty

V ar(yji) = 352.3 and group sample sizes nj = (41, 23, 28, 47, 43, 46, 41) are decreased by 0.1 until

V ar(yji) = 35.23 and nj = (4, 2, 3, 5, 4, 5, 4). The pattern of changes in resolution varies by class.

4.10 The resolution RD̄n
(M(y)) and the design of

cluster sampling

The resolution RD̄n
(M(y)) has some important implications in the design of two-

stage cluster sampling as discussed below. In two-stage cluster sampling clusters (J

level 2 units) are sampled at the first stage, and within each sampled cluster, indi-
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viduals (nj level 1 units) are sampled at the second stage, thus generating two-level

hierarchies suitable to be analysed by our SOEREF models.

Implication of RD̄n
(M(y)) for determination of sample size at level 2 and

level 1

In general, ignoring cost of sampling, for a fixed overall sample size (level 1 and

level 2 together), it is preferable to sample more level 2 units than level 1 units.

This is because increasing level 2 units is expected to reduce the uncertainty about

M(y) more than increasing level 1 units (and keeping level 2 units fixed). To see

this, first we note that RD̄n
(M(y)) is maximized when

∑J
j=1(σ

2
u − γ + σ2

ǫ

nj
)−1 → ∞

which happens when J → ∞, since
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1 is a sum of positive

quantities. Therefore, the larger the number of level 2 units J , the higher the

resolution. Whereas for fixed J , as nj → ∞,
∑J

j=1(σ
2
u − γ + σ2

ǫ

nj
)−1 → J(σ2

u − γ)−1,

hence RD̄n
(M(y)) < 1 and cannot attain its maximum.

As a simple example, consider the following two extreme sample designs for

sampling a total of ten observations. If we sample ten groups each with a single ob-

servation (J = 10, nj = 1, for all j), then
∑J

j=1(σ
2
u− γ + σ2

ǫ

nj
)−1 = 10(σ2

u− γ + σ2
ǫ )

−1

which is greater than (σ2
u − γ + σ2

ǫ

10
)−1, as is obtained from sampling only one group

with ten observations (J = 1, n1 = 10). Hence, in this case ten groups of a single

observation each are expected to produce a higher resolution than a single group

with ten observations.

Implication of RD̄n
(M(y)) for balanced sample

Ignoring cost of sampling, it is preferable to aim for a balanced design rather

than an unbalanced one for the same overall sample size. We demonstrate this using

the following theorem.

Theorem 4.10.1. For a fixed overall sample size, the resolution RD̄n
(M(y)) is

larger for balanced designs compared to unbalanced designs.

Proof. We need to show that for a fixed number of level 2 units J , the sample

(n1, · · · , nJ) maximizes
∑J

j=1((σ
2
u − γ) + σ2

ǫ

nj
)−1, which in turn maximizes the reso-

lution RD̄n
(M(y)), when nj = n for j = 1, . . . , J .
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Using the method of Lagrange multipliers, we find

max
nj , j=1,...,J

f(n1, · · · , nJ) =

J∑

j=1

(
(σ2

u − γ) +
σ2
ǫ

nj

)−1

(4.46)

subject to g(n1, · · · , nJ) =

J∑

j=1

nj − nJ = 0 (4.47)

∀j ∈ {1, . . . , J}

The Lagrangian is

L(n1, · · · , nJ ;λ) = f − λg (4.48)

Equating the partial derivatives ∂L
∂nj

and ∂L
λ

to zero, gives

∂L

∂nj
= γ

σ2
ǫ

n2
j

((σ2
u − γ)nj + σ2

ǫ

nj

)−2

− λ = 0 (4.49)

∂L

∂λ
= −

J∑

j=1

nj + nJ = 0 (4.50)

Simplifying the above, we obtain nj in terms of λ as follows.

nj =

√
γσǫ√

λ(σ2
u − γ)

− σ2
ǫ

(σ2
u − γ)

(4.51)

Replacing nj in the constraint yields

J∑

j=1

nj = J
( √

γσǫ√
λ(σ2

u − γ)
− σ2

ǫ

(σ2
u − γ)

)
= nJ

from which

λ =
( √

γσǫ

n(σ2
u − γ) + σ2

ǫ

)2

Substituting λ from the above and simplifying, yields

nj = n, ∀j ∈ {1, . . . , J} (4.52)

Finally, we need to check that f(n, · · · , n) is indeed a maximum; we do so by

examining the effect of imbalance on (4.46). To create imbalance, suppose we swap

one unit between the first two groups, giving (n−1, n+1, n · · · , n) so that the total

sample remains nJ . The decrease
(
(σ2

u−γ)+ σ2
ǫ

n

)−1

-
(
(σ2

u−γ)+ σ2
ǫ

n−1

)−1

is larger than
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the increase
(
(σ2

u−γ)+ σ2
ǫ

n+1

)−1

-
(
(σ2

u−γ)+ σ2
ǫ

n

)−1

since f(n) =
(
(σ2

u−γ)+ σ2
ǫ

n

)−1

,

being an increasing function with gradient f ′(n) ∝ 1
n2 (from (4.47) above), decreases

at a faster rate than it increases. The more units are swapped to create imbalance,

the greater will be the decrease in (4.46) compared to the balanced case. Hence,

f(n1, n2 · · · , nJ) < f(n, · · · , n), when nj are unequal. �

To summarize, based on the resolution RD̄n
(M(y)) and ignoring cost of sampling,

for a fixed overall sample we would recommend the following for a two-stage cluster

sample to reduce uncertainty inM(y):

1. Sample more level 2 units.

2. Sample less level 1 units, reduce nj so as to maximize J to achieve 1. above.

3. Use a balanced sample.

It is interesting to note that the above recommendations agree with those of the

United Nations Statistics Division (2005) for a two-stage cluster sample design in

the context of designing an efficient household sample survey.

4.10.1 The canonical structure and the choice of sample size

In order to determine the desired sample size for our SOEREF model, we exploit

the result that the eigenvectors of the resolution transform Tn are the same for each

sample n in the adjustment of the collection of population group j meansM(yj). To

this end, we re-state Theorem 6.5 of Goldstein and Wooff (2007; page 198) below,

and prove it in the specific context of the adjustment of the SOEREF model.

Theorem 4.10.2. The eigenvectors of Tn are the same for each n. Further, if

eigenvector W has eigenvalue λ for T1, then the corresponding eigenvalue λ(n) for

W as an eigenvector of Tn is

λ(n) =
nλ

(n− 1)λ+ 1
(4.53)

June 11, 2023



4.10. The resolution RD̄n
(M(y)) and the design of cluster sampling 112

Proof. The resolution transform matrix Tn has an eigenvector v corresponding to

the eigenvalue λ if

Tnv = λv

Substituting Tn = V ar(D̄n)
−1Cov(D̄n, CM) from the proof of Theorem 4.5.2, we

have

V ar(D̄n)
−1Cov(D̄n, CM)v = λv

Multiplying both sides of the above equation by V ar(D̄n)

Cov(D̄n, CM)v = λV ar(D̄n)v

Substituting expressions for Cov(D̄n, CM) and V ar(D̄n) (see proof of Theorem 4.5.2),

we obtain

[(σ2
u − γ)IJ + γKJ ]v = λ[(σ2

u − γ +
σ2
ǫ

n
)IJ + γKJ ]v

= λ[(σ2
u − γ)IJ + γKJ ]v + λ

σ2
ǫ

n
IJv

[(σ2
u − γ)IJ + γKJ ](1− λ)v = λ

σ2
ǫ

n
IJv

[(σ2
u − γ)IJ + γKJ ]v =

λ

n(1− λ)
σ2
ǫ IJv (4.54)

Putting n = 1 in (4.54),

[(σ2
u − γ)IJ + γKJ ]v =

λ

(1− λ)
σ2
ǫ IJv (4.55)

Equating the right-hand sides of (4.54) and (4.55) gives

λ

(1− λ)
=

λ(n)

n(1− λ(n))
,

from which we obtain the required result

λ(n) =
nλ

(n− 1)λ+ 1

�

It is straightforward to verify that both λ1(n) and λ2(n), corresponding to λ1 and

λ2 respectively of Sub-section 4.5.2, satisfy (4.53).
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Goldstein and Wooff (2007) use relation (4.53) to simplify sample size design

for general exchangeable adjustments. In this context, they also provide, via their

Corollary 6.6, inequality (4.56) below.

n ≥ α

1− α

1− λ

λ
, (4.56)

where α is the proportionate reduction in variance. We shall consider using (4.56)

to determine a suitable sample size to achieve the desired variance reduction over

the elements of 〈M(yj)〉.

4.10.2 The design of sample size at Level 1

For our SOEREF model the smallest canonical resolution is λmin = λ2 with n = 1,

hence

λmin =
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ )
, (4.57)

that is λmin = ρ, the intra-cluster correlation, which upon substitution in (4.56)

yields

n ≥ α

1− α

1− ρ

ρ
. (4.58)

As a simple application of (4.58), consider a reduction in variance of α=90%. If

level 1 units within a group are very similar, for example ρ = 0.9, then using (4.58)

a sample of n = 1 in each group is enough for a 90% reduction in variance when

learning about M(Y1) −M(Y2) or any of the J − 2 remaining contrasts associated

with λ2. This result is intuitive since, if units in a group were all similar, then

only one level 1 unit would provide all the information available from that group.

Whereas, if level 1 units within a group differ substantially for example ρ = 0.1,

then a sample of n = 81 is required to achieve the 90% reduction in variance.

4.10.3 Optimal design for a two-level model

In the previous section we considered the choice of level 1 sample size only. In a

multilevel setting the design problem is more complex for two main reasons. Firstly,
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in a simple two-level hierarchy, we need to decide on two sample sizes, each corre-

sponding to a level in the hierarchy. Secondly, in practical survey design, we need

to balance costs of sampling units at each level of the hierarchy against a total al-

located cost for the survey since it is usually more costly to survey an extra level 2

rather than an extra level 1 unit.

The problem, therefore, is to choose a design (n, J), the number of level 1 and

level 2 units respectively, subject to a given cost constraint. In Section 4.4, we

saw that the resolution RD̄n
M(y) depends on, and has important implications for,

the design (n, J). We therefore aim to choose a design (n, J) that maximizes the

resolution of the population grand meanRD̄n
M(y) subject to a simple cost function.

We have the following theorem.

Theorem 4.10.3. In the two-level SOEREF model, suppose c1 and c2 are the costs

associated with sampling a single level 2 and a single level 1 unit respectively. Then

a simple cost function when sampling J level 2 and n level 1 units is C = c1J+c2Jn,

where n and J each take integer values {1, 2, . . .}. The optimal level 1 and level 2

sample sizes (nopt, Jopt) is the sample design obtained by maximizing the resolution of

the population grand mean RD̄n
M(y) subject to the cost constraint C, and is given

by

nopt =

√
c1
c2

σ2
ǫ

(σ2
u − γ)

, (4.59)

and

Jopt =
C

(c1 + c2nopt)
. (4.60)

Proof. From Section 4.3.2, the resolution RD̄n
M(y) for the balanced case may be

written as

RD̄n
M(y) =

(
1 +

1

Jγ
(σ2

u − γ +
σ2
ǫ

n
)
)−1

(4.61)

Using the cost function we obtain

J =
C

(c1 + c2n)
, (4.62)
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and substituting J in (4.59) yields

RD̄n
M(y) =

(
1 +

1

Cγ
(c1 + c2n)(σ

2
u − γ +

σ2
ǫ

n
)
)−1

. (4.63)

Taking the first derivative with respect to n and equating to zero gives

dRD̄n
M(y)

dn
= −(1 + 1

Cγ
(c1 + c2n)(σ

2
u − γ +

σ2
ǫ

n
)
)−2

(c2(σ
2
u − γ)− c1σ

2
ǫn

−2) = 0 (4.64)

Simplifying (4.64) yields

n2 =
c1
c2

σ2
ǫ

(σ2
u − γ)

, (4.65)

from which nopt is obtained. The optimal level 2 sample size Jopt is obtained by

substituting nopt in (4.62).

We compute the second derivative to verify that nopt is indeed a maximum. First

we note that (4.62) may be written as

dRD̄n
M(y)

dn
= −(RD̄n

M(y))2(c2(σ
2
u − γ)− c1σ

2
ǫn

−2) (4.66)

from which the second derivative is

d2RD̄n
M(y)

dn2
= −2(RD̄n

M(y))
dRD̄n

M(y)

dn
(c2(σ

2
u − γ)− c1σ

2
ǫn

−2)

−2(RD̄n
M(y))2c1σ

2
ǫn

−3. (4.67)

Putting n = nopt and noting that (c2(σ
2
u − γ)− c1σ

2
ǫn

−2
opt) = 0, (4.65) simplifies to

d2RD̄n
M(y)

dn2
= −2(RD̄n

M(y))2c1σ
2
ǫn

−3
opt. (4.68)

The above is clearly negative as the right-hand side is the product of −2 and terms

that are all positive. Since the second derivative is negative, therefore (nopt, Jopt) is

a maximum. �

Compare (4.59) with the classical optimal sample size (n∗
opt) for two-stage cluster

sampling using the same cost function as above (see Cochran, 1999).

n∗
opt =

√
c1
c2

S2
2

S2
u

, (4.69)
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where S2
2 and S2

u are the ANOVA estimates of level 1 and level 2 variances. Note

that we use c1 to denotes level 2 cost and c2 level 1 cost. This is in line with the

classical literature, where c1 denote cost of primary sampling units (level 2 units)

and c2 cost of second-stage units (level 1 units).

In both (4.59) and (4.69) the optimal sample depends on the ratio of the level

1 and level 2 costs and variances. An important difference is that the classical n∗
opt

depends on the ratio of the ANOVA estimates of level 1 and level 2 variances (see

Section 2.7.1) and, therefore, suffers from the disadvantages associated with these

estimators, especially the possibility of a negative estimate of the level 2 variance.

In contrast, our Bayes Linear nopt depends on the ratio of the level 1 and level

2 variances that we specify subjectively. In addition, for our specifications to be

coherent, we restrict both these variances such that σ2
ǫ > 0 and (σ2

u − γ) ≥ 0 (see

Section 3.7). In learning about variances, however, the possibility of a negative level

2 update cannot be excluded. The conditions under which a negative estimate of

(σ2
u − γ) occurs will be considered in Chapter 5.

4.10.4 Some considerations in the application of nopt

Below we discuss some practical implications of the formula for nopt in the choice of

an optimal design.

The form of nopt

Firstly we note that nopt may also be written as

nopt =

√
c1
c2

(1− ρ)

ρ
(4.70)

showing the dependence of nopt on the intracluster correlation ρ. When ρ is small,

then the optimum size nopt increases. In other words when there is more variation

within than between groups, more level 1 units should be sampled. Similarly, nopt

increases when c1 is larger compared to c2. That is when it is more costly to sample

a level 2 unit compared to sampling a level 1 unit, then more level 1 units should

be sampled.
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Also, as nopt depends on the square root of the cost ratio c1/c2 and the intra-

cluster correlation ratio (1 − ρ)/ρ, the optimum size is not too sensitive to small

variations in these quantities.

The cost function C

We have assumed a simple cost function C, which is adequate in sampling situa-

tions where the cost of travel between clusters is negligible. This is the case for our

STAT1010 data in which the cost of travel between classrooms (clusters) is negli-

gible because the University of Mauritius has a single small campus. When travel

costs between clusters are substantial, C = c1J + c2Jn + c3
√
J is a more suitable

cost function. The derivation of this cost function, along with more general cost

functions are considered in detail in Hansen, Hurwitz & Madow (1953).

Because of the analogous form of the Bayes linear nopt and the classical n∗
opt,

the above implications are similar to those discussed in Hansen, Hurwitz & Madow

(1953). The Bayes linear approach to the design of two-stage cluster sampling that

we develop in this thesis aims to combine the strengths of both the classical and

Bayes linear methods.

4.11 Example: Two-level design for the STAT1010

data

Application of nopt to the STAT1010 data requires estimates of the costs c1 and c2,

and careful elicitation of the prior level 1 and 2 variances, σ2
ǫ and (σ2

u−γ). The latter
prior variances were elicited in Section 3.7. Therefore we only need to estimate the

various costs.

The costs c1 and c2, or their ratios, may also be estimated using historical data

where available, and/or expert opinion, just as in the elicitation of prior variances.

But while variances are notoriously difficult to estimate for the many reasons that we

explained in Chapter 2, it is more common for an individual to think in terms of, and

assess, costs, rather than variances. Besides, even in the assessment of (subjective)

probability itself, one often thinks in terms of costs (prices) of lotteries and their
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rewards. The assessment of various elements of costs arising in cluster sampling,

as well as the construction of costs functions, are explained in detail in Chapter 6,

page 270 of Hansen, Hurwitz & Madow (1953). Furthermore, small inaccuracies in

the elicited costs and variances will not unduly affect the optimal sample size as the

resolution RD̄n
M(y) is mostly flat around nopt. We illustrate this below using the

STAT1010 data.

Based on our experience in conducting local surveys, we specify reasonable costs

(in Mauritian Rupees) for a small project as follows. The total budget available

is Rs 5000, the cost of sampling a class is Rs 500 and that of collecting data on a

student is Rs 100. The variances are specified as in Section 3.7. Thus we specify

C = 5000 c1 = 500 c2 = 100 σ2
ǫ = 237 γ = 56.3 σ2

u = 115

Using the above specifications and RD̄n
M(y) as in (4.61), we calculate the resolu-

tions for different sample sizes as shown in Table 4.3.

Level 1 size n = 1 2 3 4 5 6 7 8 9 10

Resolution (%) 61.295 69.359 71.812 72.548 72.553 72.189 71.623 70.940 70.187 69.393

Relative Resolution 0.84 0.96 0.99 1.00 1.00 0.99 0.99 0.98 0.97 0.96

Table 4.3: resolutions and relative resolutions (the proportion of resolution relative

to the maximum resolution at n = 5, if a sample size other than the optimal is

chosen) for different level 1 sample sizes of the STAT1010 data.

As shown in Table 4.3, the resolution around nopt is flat; the maximum loss in

resolution relative to the optimum is 16% and corresponds to n = 1. Note that

taking a larger level 1 sample than the optimum also reduces the resolution. This

is due to the cost constraint that requires balancing level 1 and 2 sample sizes;

increasing n can only be done at the expense of reducing J . But, using our result

in Section 4.4, a one-unit reduction in J will result in a larger reduction in the

resolution RD̄n
M(y) than a one-unit reduction in n.

Hence for our STAT1010 example, the optimal size is nopt = 5 and it is expected

to resolve 72.6% of the prior uncertainty in the overall population meanM(y). Us-

ing (4.60), the corresponding optimal level 2 sample size is Jopt = 5. The use of the
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resolution to guide sample size design (nopt, Jopt) requires prior specifications of the

level 1 and 2 variances. This contrasts with the classical design (n∗
opt, J

∗
opt) that re-

quires estimates of these variances based on historical data or data from pilot studies.

Both these approaches have their own strengths. Incorporating prior information

from carefully elicited experts’ beliefs is an advantage of the general Bayesian ap-

proach, especially when data is scarce, while learning about model parameters from

data is equally important. Thus estimating variances based on observable data is

also advantageous. In this thesis, we aim to combine the strengths of these two ap-

proaches via the two-stage Bayes linear methodology that we will develop in Chapter

6.

For the simple cost function, use of the explicit formula for nopt further simplifies

the calculation of the optimum. For more complicated cost functions, the calcu-

lations leading to Table 4.1 demonstrate an alternative method for obtaining nopt,

that is by evaluating RD̄n
M(y) for various n and the given costs. We illustrate this

for the more complex cost function that includes travel costs between clusters.

4.11.1 Example: Application of two-level design for a more

complex cost function

Consider now the cost function C = c1J + c2Jn + c3
√
J , where c3, the travel costs

between clusters, tends to be proportional to
√
J (see Hansen, Hurwitz & Madow,

1953). For comparison sake we make the same specifications for the costs C, c1, c2

and the variances as above. We assume that we are sampling classes in different

parts of Mauritius and that we are travelling by taxi. The cost of travel to and from

classes and the waiting time for a taxi is around Rs1,000. Thus we specify c3 = 1000

which is twice c1, the cost of sampling an additional cluster.

Our aim is to evaluate the resolution for various sample sizes just as in Table

4.1. We substitute n = C−c1J−c3
√
J

c2J
in the formula (4.61) for RD̄n

M(y) and write

an R function to evaluate the latter . We also need to ensure that n > 0. Table 4.4

reveals that the optimal design is (nopt = 6, Jopt = 3) with a resolution of about 63%

compared to (nopt = 5, Jopt = 5) with a resolution of about 73% for the simple cost

function. The additional traveling cost has thus resulted in a lower overall sample
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Level 2 size J 1 2 3 4 5

Level 1 size n 35 13 6 3 1

Resolution (%) 45.988 59.156 62.870 59.291 35.534

Table 4.4: Determination of the optimal level 1 and 2 sample sizes and resolutions for the

STAT1010 data for a complex cost function.

size of 18 (a 28% reduction), fewer clusters J = 3 and slightly more level 1 units

nj = 6 being sampled. But what if we wanted to achieve the same resolution of

73% as in the simple cost situation, even at a higher sampling cost? We address

this issue next.

4.11.2 Determining the optimal design and cost to achieve

a desired level of resolution

So far we have determined the optimal sample size by maximizing the resolution

when the total sampling cost C is given. In some situations though, it may be quite

difficult to ascertain C while it may still be relatively easy to estimate the ratio of

the level 2 cost c1 and the level 1 cost c2. We may then determine the optimal size

by minimizing C for a pre-determined resolution. We show below that minimizing

cost subject to a fixed resolution or maximizing resolution for a fixed cost results in

optimal designs of the same form.

Corollary 4.11.1. Under the conditions of Theorem 4.10.2, minimizing the simple

cost function C = c1J + c2Jn when the resolution of the population grand mean

RD̄n
M(y) is kept fixed gives the same optimal design (nopt, Jopt) as in Theorem

4.10.2., namely

nopt =

√
c1
c2

σ2
ǫ

(σ2
u − γ)

, (4.71)

and

Jopt =
C

(c1 + c2nopt)
. (4.72)
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Proof. To minimize the cost C subject to keeping the resolution RD̄n
M(y) fixed,

we re-write expression (4.63) for RD̄n
M(y) as follows.

C =
RD̄n
M(y)

γ(1−RD̄n
M(y))

(c1 + c2n)(σ
2
u − γ +

σ2
ǫ

n
). (4.73)

Taking the first derivative gives

dC

dn
=

RD̄n
M(y)

γ(1−RD̄n
M(y))

(c2(σ
2
u − γ)− c1σ

2
ǫn

−2). (4.74)

Equating (4.74) to zero yields nopt as in (4.71) and substituting it in C = c1J+c2Jn

yields Jopt as in (4.72). Also, from (4.74) we note that d2C
dn2 ∝ 2c1σ

2
ǫn

−3 > 0, therefore

(nopt, Jopt) yields the minimum cost C as required.

�

As an application of Corollary 4.11.1, we answer the question posed at the end

of Sub-section 4.11.1, namely using the complex cost function, which design will

achieve a resolution of 73% (as was obtained using the simple cost function) and at

what cost. We wrote a simple R function that finds the minimum cost by evaluating

C for varying n using (4.73). Using this function we find that the design to achieve

the given resolution of 73% is (nopt = 4, Jopt = 6) with a minimum cost of Rs7,395.

We note that as the n’s must be integers, we must suitably round it up or down.

We may compare the above design with the one in the previous section, where,

using the same complex cost function, a resolution of 63% gave the optimal design

(nopt = 6, Jopt = 3) for a given cost of Rs5,000. Thus to raise the resolution from

63% to 73%, we need to sample less level 1 units (nopt = 4 instead of 6) and more

level 2 units (Jopt = 6 instead of 3) resulting in an increase in overall sample size

of 33% (from 18 to 24) and an increase in cost of almost 48% (from Rs5,000 to

Rs7,395).

4.12 The finite SOEREF model

In formulating the SOEREF model in Chapter 3, we have assumed that, for each

group j, the level 1 outcome variables {yj1, yj2, . . .} form a potentially infinite se-

quence. At level 2, we again assumed a potentially infinite sequence for the popu-

lation group j means {M(y1),M(y2), . . .} induced by the level 1 SOE judgements.
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These assumptions allowed us to make use of the representation theorem for infinite

second-order exchangeable random quantities and to subsequently introduce and

adjust the overall and group j means of our SOEREF model.

Although multilevel data structures tend to be large in general, so that the

assumption of infinite sequences may be reasonable, there are situations however,

such as in longitudinal studies, where the populations at each level of a hierarchy

are more restricted. Besides, the very nature of a multilevel dataset implies that the

higher the level of the hierarchy, the fewer the units of observations: there are fewer

districts than schools, fewer schools than classes and fewer classes than pupils.

In such cases the assumption of infinite sequences may be viewed as a modeling

simplification and we wish to consider the consequences of relaxing this assumption

on the adjustments of the SOEREF model. We begin by reviewing finite exchange-

ability and finite second-order exchangeability as defined by Goldstein (1986). The

latter will also enable us to introduce some relevant notations.

4.12.1 Finite exchangeability

In explaining the concept of exchangeability, Bernardo & Smith (2000;p169) proceed

by first defining finite exchangeability as follows.

Definition 4.12.1. (Finite exchangeability). The random quantities

x1, x2, . . . , xn are said to be judged finitely exchangeable under a probability measure

P if the implied joint degree of belief distribution satisfies

P (x1, x2, . . . , xn) = P (xπ(1), xπ(2), . . . , xπ(n)) (4.75)

for all permutations π defined on the set 1, . . . , n.

They then extend Definition 4.12.1 to sequences that are potentially infinite as

follows.

Definition 4.12.2. (Infinite exchangeability). The infinite sequence of random

quantities x1, x2, . . . , is said to be judged infinitely exchangeable if every finite sub-

sequence is judged exchangeable in the sense of Definition 4.12.1.
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It seems natural to consider finite exchangeability first since real life populations

are finite and so are their associated sequences of random variables. For example, in

a multilevel data set, the sequences of pupils, classes and schools are all finite and,

using registration statistics, we can easily put an upper bound on the lengths of these

sequences. In other situations though, it may not be that straightforward to place

an upper bound on the sizes of populations being considered. In fact many surveys

have as primary objective the estimation of the population sizes themselves. When

it is difficult to specify an upper bound for a large population, we often resort to

assuming an in principle, infinite sequence. Such an assumption, like any modelling

assumption, requires careful examination.

Assuming infinite exchangeability for an arbitrary (finite) sequence in the sense of

Definition 4.14.2 implies that this sequence can be deemed to form part of an infinite

sequence. But as Bernardo & Smith (2000) show, not all finitely exchangeable

sequences can be embedded in a larger finitely exchangeable sequence, let alone

an infinite one. Using a mathematical example they show that an exchangeable

sequence of three binary random variables cannot be extended to a sequence of four

binary random variables. In addition, in some situations, there may be no logical

basis to extend a finite sequence. We have only 200 secondary schools for example,

and there is no logical basis to extend this sequence of schools.

Diaconis & Freedman (1980) show that deFinetti’s representation theorem for

infinite sequences does not hold exactly for a finite sequence. However, they prove

that the difference in probabilities when assuming an infinite approximation to a

finite sequence of length n is of the order (1/n). Hence the infinite assumption may

not result in any sizeable difference, especially when n is large.

4.12.2 Finite second-order exchangeability and finite popu-

lation representation theorem

We have already defined second-order exchangeability and stated the infinite pop-

ulation representation theorem in Chapter 2. Here we consider an alternative, but

equivalent definition of second-order exchangeability as given in Goldstein(1986).

The notations used in this definition and in formulating the finite representation
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theorem are most suitable for deriving the finite representation version of our SO-

EREF model.

Suppose a series of observations are made on a sample of individuals and we

group these in the collection C = {X1, X2, . . .}. Further, we denote the collection

for individual i by Ci = {X1i, X2i, . . .} and the full population collection by C∗, where
C∗ is the union of all the elements in all of the individual collections.

Definition 4.12.3. (Goldstein (1986)). The collection of measurements C is second-
order exchangeable over the full collection C∗ if

E(Xvi) = mv∀v, i; (4.76)

Cov(Xvi, Xwi) = dvw∀v, w, i; (4.77)

Cov(Xvi, Xwj) = cvw∀v, w, i 6= j; (4.78)

The above definition applies to both finite and infinite collections. Using the

specifications in Definition 4.12.3, Goldstein (1986) states the finite population rep-

resentation theorem as follows.

Theorem 4.12.1. (Goldstein (1986)). If the population collection consists of N

individuals, that is C∗ =
⋃N

i=1 Ci, and C is second-order exchangeable over C∗,
then we may introduce the further collections of random quantities M[N ](C) =

{M[N ](X1),M[N ](X2), . . .}, and, for each i = 1, . . . , N, R[N ]
i (C) = {R[N ]

i (X1),

R[N ]
i (X2) . . .}, and write

Xvi =M[N ](Xv) +R[N ]
i (Xv) (4.79)

where M[N ](Xv) = (1/N)
∑N

i=1Xvi. The collections M[N ](C) and R[N ]
i (C) satisfy

the following relationships

E(M[N ](Xv)) = mv ∀v; (4.80)

E(R[N ]
i (Xv)) = 0 ∀v, i; (4.81)

Cov(M[N ](Xv),M[N ](Xw)) = cvw +
1

N
(dvw − cvw) ∀v, w; (4.82)

Cov(M[N ](Xv),R[N ]
j (Xw)) = 0 ∀v, w, j; (4.83)

Cov(R[N ]
i (Xv),R[N ]

j (Xw)) =





N−1
N

(dvw − cvw) if i=j ∀v,w;
− 1

N
(dvw − cvw) otherwise.

(4.84)
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Just as in the case of infinite exchangeability, each observation is expressed as

the sum of a population mean quantityM[N ](Xv) and a residual R[N ]
i (Xv). And, as

before, the population mean collection is uncorrelated with the residual collection.

In contrast to the infinite case, the residuals are correlated to the order (1/N).

Furthermore, the population mean and residuals are unobservable in the infinite case

while they are clearly observable by virtue of their definitions in the above theorem.

The residualsR[N ]
i (Xv) will be uncorrelated in the limit N →∞. Similarly, the finite

population representation theorem reduces to the infinite representation theorem in

the limit N →∞, the limit being in mean square.

4.13 The representation theorem for the finite SO-

EREF model

To derive the representation theorem for the finite two-level SOEREF model, we

assume that our multilevel population has a finite number of groups G, each with

a finite number of individuals N . We also assume that we sample J groups from G

where (J ≤ G) and, in each of these J groups, we sample n individuals out of N

where (n ≤ N), that is a balanced design. We observe a single response variable yji

on each individual i in group j, where i = 1, 2, . . . , n and j = 1, 2, . . . , J .

Our exchangeability judgements are similar to those of the infinite SOEREF

case (see Chapter 3) as follows. For each group j we assume individuals within

a group are similar, hence second-order exchangeable (Level 1 exchangeability).

Further we assume that groups also are similar, that is the group j means resulting

from the level 1 exchangeability are themselves second-order exchangeable (Level 2

exchangeability). We have the following finite population representation theorem

for the SOEREF model.

Theorem 4.13.1. Suppose a two-level population consists of a finite number of G

groups and a finite number of N individuals in each group. We consider exchange-

ability judgements at each level of the hierarchy in turn and make use of the same

second-order specifications as in Chapter 3 as follows.
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E(yji) = µ, V ar(yji) = σ2
y ∀ i,j, Cov(yji, yji′) = σ2

u i 6= i′,

Cov(yji, yj′i′) = γ i 6= i′and j 6= j′.

Level 1 exchangeability

If at level 1 of the hierarchy we judge that individuals within group j are second-

order exchangeable, then we may introduce the further collection of random quanti-

ties {M[N ](y1),M[N ](y2), . . . ,M[N ](yG)}, and, for each i = 1, 2, . . . , N ,

{R[N ]
i (y1),R[N ]

i (y2), . . . ,R[N ]
i (yG)}, and write

yji =M[N ](yj) +R[N ]
i (yj) (4.85)

where the finite group j meanM[N ](yj) =
1
N

∑N
i=1 yji. The collectionsM[N ](yj) and

R[N ]
i (yj) satisfy the following relationships

E(M[N ](yj)) = µ, ∀j (4.86)

V ar(M[N ](yj)) = σ2
u +

1

N
(σ2

y − σ2
u), ∀j (4.87)

E(R[N ]
i (yj)) = 0, ∀i, j (4.88)

Cov(M[N ](yj),M[N ](yj′)) = γ, ∀j 6= j′ (4.89)

Cov(M[N ](yj),R[N ]
i (yj)) = 0 (4.90)

Cov(R[N ]
i (yj),R[N ]

i′ (yj)) =





N−1
N

(σ2
y − σ2

u) if i = i′ ∀j
− 1

N
(σ2

y − σ2
u) otherwise.

(4.91)

Level 2 exchangeability

If at level 2 of the hierarchy we judge that groups are second-order exchangeable, then

we may introduce the further random quantityM[G](y), and, for each j = 1, 2, . . . , G,

{R[G]
1 (M[N ](y)),R[G]

2 (M[N ](y)), . . . ,R[G]
G (M[N ](y))}, and write

M[N ](yj) =M[G](y) +R[G]
j (M[N ](y)) (4.92)

where finite population grand mean M[G](y) = 1
G

∑G
j=1M[N ](yj). The collection
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R[G]
j (M[N ](y)) and the quantityM[G](y) satisfy the following relationships.

E(M[G](y))) = µ, ∀j (4.93)

V ar(M[G](y)) = γ +
1

G
((σ2

u +
1

N
σ2
ǫ )− γ), (4.94)

E(R[G]
j (M[N ](y))) = 0, ∀j (4.95)

Cov(M[G](y),R[G]
j (M[N ](y))) = 0 (4.96)

Cov(R[G]
j (M[N ](y)),R[G]

j′ (M[N ](y))) =





G−1
G

((σ2
u +

1
N
σ2
ǫ )− γ) if j = j′

− 1
G
((σ2

u +
1
N
σ2
ǫ )− γ) otherwise.

(4.97)

Proof. The proof of Theorem 4.13.1 follows from an application of the finite popula-

tion representation theorem of Goldstein (1986) as follows. For the level 1 represen-

tation, we compare the specifications for yji with those of Xvi in Definition 4.12.3,

we see that cvw = σ2
u and dvw = σ2

y and substituting in (4.82) and (4.84) yield the

corresponding relationships in (4.87) and (4.91).

For the level 2 representation, we derive the specifications for ȳj. from those of

yji. Thus, E(ȳj.) = µ, Cov(ȳj., ȳj′.) = σ2
u +

1
N
σ2
ǫ j = j′,

Cov(ȳj., ȳj′.) = γ j 6= j′,

Again comparing the above with the specifications for Xvi, we see that cvw = γ and

dvw = σ2
u +

1
N
σ2
ǫ and substituting again in (4.82) and (4.84) yield the corresponding

relationships in (4.94) and (4.97). �

4.13.1 Comparing the finite and the infinite SOEREF model

Our SOE judgements are similar for both the finite SOEREF model of Theorem

4.13.1 and the infinite version of Chapter 3. And in both cases our observations

are expressed as the sum of a population mean quantity and a residual from this

mean via the appropriate representation theorem. Furthermore, below we demon-

strate that infinite and finite SOEREF models are similar if the level 1 and level

2 populations are large compared to the respective sample sizes. Therefore all our

analyses could be carried out in terms of finite exchangeability (which would be

more precise because populations are not infinite) but provided the populations are

large compared to the sample sizes, then this would make little difference.
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At level 1, M[N ](yj) is the finite population group j mean and R[N ]
i (yj) is the

collection of level 1 residuals, that is discrepancy for individual i in group j from its

group j mean. As in the infinite case, (4.90) shows that eachM[N ](yj) is uncorrelated

with the collection of level 1 residuals. In (4.91) the level 1 residuals have a small

negative correlation to the order of (1/N). In the limit N → ∞ all the quantities

in (4.87) and (4.89) tend to their infinitely exchangeable counterparts, that is

lim
N→∞

V ar(M[N ](yj)) = σ2
u ∀j (4.98)

lim
N→∞

Cov(R[N ]
i (yj),R[N ]

i′ (yj)) =





(σ2
y − σ2

u) = σ2
ǫ if i = i′ ∀j

0 otherwise.
(4.99)

We note that the level 1 residuals are uncorrelated as in the infinitely exchange-

able case. In the infinite SOEREF model the population group j mean, M(yj)

and the level 1 residual for individual i, Ri(yj) are unobservable while their finite

counterpartsM[N ](yj) and R[N ]
i (yj) are observable.

At level 2, M[G](y) is the finite population grand mean and R[G]
j (M[N ](y)) is

the level 2 residual, that is the discrepancy for the group j mean from the grand

mean. The grand mean is uncorrelated with the collection of level 2 residuals as in

the infinite case. In (4.97) the level 2 residuals have a small negative correlation to

the order of (1/G). In the limit as both N → ∞ and G → ∞ all the quantities in

(4.94) and (4.97) tend to their infinitely exchangeable counterparts as follows

lim
(N,G)→∞

V ar(M[G](y)) = γ, (4.100)

lim
(N,G)→∞

Cov(R[G]
j (M[N ](y)),R[G]

j′ (M[N ](y))) =





(σ2
u − γ) if j = j′

0 otherwise.
(4.101)

The level 2 residuals are now uncorrelated as in the infinitely exchangeable case.

BothM[G](y) and R[G]
j (M[N ](y)) are observable while the correspondingM(y) and

Rj(M(y)) in the infinite case are not observable.

In multilevel data we may have a smaller population of level 2 units than of

level 1 units - there are fewer schools than children in these schools. The reverse,

a potentially infinite population of level 2 units and a finite population of level 1

units, is also possible: a population of dyads, for instance, have a larger level 2
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population (married couples for example) but with only two level 1 units (husband

and wife) in each dyad. It is straightforward to examine the effects of these two

cases on Theorem 4.13.1 by setting N →∞ while G remains finite in the first case,

while in the second one G→∞ while N remains finite.

4.13.2 Comparing the finite SOEREF and the finite ex-

changeable multivariate model

The proof of Theorem 4.13.1 reveals an important result: application of the finite

population representation theorem of Goldstein (1986) (here Theorem 4.12.1) to

each level of the hierarchy yields the finite representation for the two-level SOEREF

model. Although, Theorem 4.12.1 was stated for the multivariate variable Xvi, it is

equally applicable to the multilevel variable yji since the clustering of individuals in

a group j induces a correlation structure analogous to the multivariate situation.

In the multivariate context, Goldstein (1986) emphasizes that, whatever the total

number of individuals in the population, we only need to consider our SOE judge-

ments for two individuals, with all other specifications following from the perceived

symmetries in the population. But how does this translate to our multilevel model

where not only we have a population of individuals, but we have also a population

of groups? Intuitively, we need to consider only two individuals (N = 2) in each of

only two groups (G = 2). We demonstrate this as follows.

Using the expressions in (4.93), V ar(R[N ]
i (yj)) =

N−1
N

(σ2
y − σ2

u), hence

Cov(R[N ]
i (yj),R[N ]

i′ (yj)) = −
1

N − 1
V ar(R[N ]

i (yj)). (4.102)

Similarly, using (4.99), V ar(R[G]
i (y)) = G−1

G
((σ2

u +
1
N
σ2
ǫ )− γ), hence

Cov(R[G]
j (M[N ](y)),R[G]

j′ (M[N ](y))) = − 1

G− 1
V ar(R[G]

i (y)) (4.103)

For (4.102) and (4.103) to be coherent both N and G should be at least 2, that

is a minimum of two groups with a minimum of two individuals in each of these

two groups. Conceptually, this means that, whatever the number of groups and

the number of individuals in these groups, for our SOE judgements to be coherent,

we only need to consider beliefs between two individuals in each of two groups and
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beliefs between the two groups. All other specifications will then follow from the

perceived symmetries in our finite multilevel data.

4.14 Comparing the adjusted population grand

mean for the finite and the infinite SOEREF

model

We stated earlier that the assumption of infinite exchangeability is a modelling

simplification. We now explore the effect of this simplification on our adjusted

beliefs by comparing the adjustments of the population grand mean for the finite

and infinite balanced SOEREF model. To adjust the finite population grand mean

we use the same specifications as in the infinite case.

Theorem 4.14.1. Suppose a two-level population consists of a finite number of G

groups and a finite number of N individuals in each group, that is a balanced design.

Given the representation and SOE specifications for the finite SOEREF model as in

Theorem 4.13.1, we adjust the population grand mean using the collection of observed

group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.}, where D̄n is Bayes linear sufficient to adjust

beliefs over the mean components. The adjusted grand mean is

ED̄n
(M[G](y)) =

(
1− J

(
(σ2

u − γ) + σ2
ǫ

N
+ Gγ

)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

)
µ+

J
(
(σ2

u − γ) + σ2
ǫ

N
+Gγ

)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

ȳ..

(4.104)

Proof. Application of the Bayes linear rule gives:

ED̄n
(M[G](y)) = E(M[G](y)) + Cov(M[G](y), D̄n)V ar−1(D̄n)(D̄n − E(D̄n))

We make use of Theorem 4.13.1 to obtain the quantities on the right ofED̄n
(M[G](y)).

From (4.93) we obtain E(M[G](y)) = µ.

Using the representation for the finite SOEREF model we may write ȳj. =M[G](y)+

R[G]
j (M[N ](y)) + 1

n
R̄[N ]

i (yj), where R̄[N ]
n (yj) = 1

n

∑n
i=1R

[N ]
i (yj). Together with the
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SOE specifications and relationships in Theorem 4.15.1 we obtain:

Cov(M[G](y), D̄n) = Cov
(
M[G](y), ȳ1., . . . , ȳJ.

)

= Cov
(
M[G](y), ȳj.

)
1T
J , ∀j

= Cov
(
M[G](y), (M[G](y) +R[G]

j (M[N ](y)) +
1

n
R̄[N ]

i (yj))
)
1T
J

= V ar(M[G](y))1T
J ,

=
1

G

(
(σ2

u +
1

N
σ2
ǫ ) + (G− 1)γ

)
1T
J

=
1

GN

(
N(σ2

u − γ) + σ2
ǫ +GNγ

)
1T
J

where V ar(M[G](y)) is given in (4.94).

V ar(D̄n) depends solely on our second-order specifications which are similar to the

infinite case in Section 4.2. In Theorem 4.5.2 we obtained the inverse of V ar(D̄n)

as follows.

V ar(D̄n)
−1 =

1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]

From the above results, we obtain

ED̄n
(M[G](y)) = E(M[G](y)) + Cov(M[G](y), D̄n)V ar−1(D̄n)(D̄n −E(D̄n))

= µ+
1

GN

(
N(σ2

u − γ) + σ2
ǫ +GNγ

)
1T
J

1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]
(D̄n −E(D̄n))

= µ+
1

GN

(
N(σ2

u − γ) + σ2
ǫ +GNγ

)

1

(σ2
u − γ + σ2

ǫ

n
)

[
1− Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
(Jȳ.. − Jµ)

= µ+
1

GN

(
N(σ2

u − γ) + σ2
ǫ +GNγ

)

[ J

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
(ȳ.. − µ)

=
(
1− J

(
(σ2

u − γ) + σ2
ǫ

N
+ Gγ

)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

)
µ+

J
(
(σ2

u − γ) + σ2
ǫ

N
+Gγ

)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

ȳ..

�

We now compare the adjustment of the finite grand mean with the infinite bal-

anced case (4.13) of Corollary 4.3.1 which is re-written in the same form as the

June 11, 2023



4.14. Comparing the adjusted population grand mean for the finite and
the infinite SOEREF model 132

above adjusted finite grand mean.

ED̄n
(M(y)) =

(
1− Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

)
µ+

Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

ȳ..

Comparing ED̄n
(M(y)) above with the finite version in (4.106), we may write

ED̄n
(M[G](y)) = ED̄n

(M(y)) +
J
(
(σ2

u − γ) + σ2
ǫ

N

)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

(ȳ.. − µ) (4.105)

From (4.105) above, the difference between the finite and infinite adjustments de-

pends on the level 2 sampling fraction J/G, on our specified variances for level 1

and level 2 units, and also on our uncertainty forM(y) and its prior expectation via

the difference (ȳ.. − µ). For example, if the level 2 sampling fraction J/G is small

and/or µ has been specified close to ȳ.., then the finite and infinite adjustments will

not differ by much.

From (4.105) we also note that if we allow only the finite population group

size G to increase, then limG→∞ED̄n
(M[G](y)) = ED̄n

(M(y)), that is the finitely

adjusted grand mean becomes similar to its infinite version in the limit, irrespective

of whether the level 1 population is finite or infinite. Next, if we allow only the level

1 population size N to increase while keeping G fixed, we obtain:

lim
N→∞

ED̄n
(M[G](y)) = ED̄n

(M(y)) +
J
(
(σ2

u − γ)
)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

(ȳ.. − µ) (4.106)

The above expression shows that the difference between the adjusted finite grand

mean when N is large and its infinite version is as discussed for expression (4.105)

above.

4.14.1 Differences between the finite and infinite adjusted

grand mean in the STAT1010 data

We now explore the effect of the level 1 and level 2 sampling fractions on the differ-

ences between the finite and infinite adjusted grand mean for the STAT1010 data.

In order to obtain a balanced data set to which our finite results apply, we consider

only the first N = 23 observations for each of G = 7 classes. From this finite popula-

tion we have to sample a minimum of n = 2 students in a minimum of J = 2 classes
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Figure 4.6: Disparities between the finite and infinite adjustments of the population grand mean

M(y) for two, four and seven classes. The prior mean µ = 55 and the data mean ȳ.. = 54.04.

for our judgements to be coherent (see Sub-section 4.15.2). Thus our sample designs

(J, n) comprise of (2, 2), . . . , (2, 23), (3, 2), . . . , (3, 23), . . . , (7, 2), . . . , (7, 23) with the

corresponding sample means ȳj. which is here denoted as ȳj.(J, n) to highlight the

associated design. For example ȳj.(2, 2) corresponds to the mean of the four obser-

vations in the design J = 2, n = 2. We sort both the examination scores within each

class and classes (by their group means ȳj.) in ascending order so that the sample

means ȳj.(J, n) increase with n and J from design (2, 2) through to design (23, 7).

Using ȳj.(J, n) for each design we compute the finite and infinite adjusted population

grand mean.

The results for two, four and seven classes are shown in Figure 4.6. The observed

increasing trends in the graph are a consequence of the effects of the increasing

sample means ȳj. coupled with the increasing sample sizes (J, n) on the finite and

infinite adjustments. Also, as ȳj. increases the component (ȳj. − µ) (see (4.105))

shrinks, explaining the convergence of the finite and infinite curves.

We also note that when J = 7 and n = 23 then ED̄n
(M[G](y)) = ȳ.., the sample

grand mean. This can be verified by setting J = G and n = N in (4.104). That is

when we sample the whole of our finite population, the prior receives zero weight

and the data, the maximum weight: the data swamp the prior. Sampling the whole

finite population also pushes the infinite adjustment ED̄n
(M(y)) very close to ȳ..

but, unlike the finite case, the prior does retain some of the weight.
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In conclusion Figure 4.7 reflects mostly changes in (ȳj. − µ) and these mask all

the other components in (4.105) that influence the disparities between the finite and

infinite adjustments. A further impediment of our example data here is that it is

quite small; the level 2 population is only G = 7, and that hinders studying the

effect of the level 2 sampling fraction.

4.14.2 Conditions for ignoring the difference between the

finite and infinite situations.

To overcome the above-mentioned limitations of our STAT1010 example, we shall

consider a hypothetical finite population with N = 40 and G = 15, about twice the

level 1 and 2 population sizes of the STAT1010 example. This gives us sufficient

data to explore the conditions for which the finite/infinite issue may be ignored,

that is they both hold, so that we may use the simpler infinite calculations. We put

ȳj. = 40 and µ = 65, thereby also fixing (ȳj. − µ), for all sample sizes, so that the

finite and infinite curves are spaced sufficiently. This will allow us to focus on the

effects on our adjustments of varying the level 1 and level 2 sampling fractions, as

well as the prior uncertainty γ for the underlying population grand meanM(y). We

set γ to 16, 56 and 156.

The resulting adjustments are shown in Figure 4.7. All the curves slope down-

ward towards the data mean of 40 as more level 1 and 2 data are used in the

adjustment. The level 2 sample size J has quite a large influence on the adjust-

ment; in all three panels the curves with J = 15 are closer to the data mean of 40

than when J = 2. This is not the same for the level 1 sample size n where all the

curves, whether for the finite or infinite adjustments, tend to remain rather flat as

n increases from 2 to 40 for a given value of J . The effect of the prior uncertainty

γ is also quite important on the adjustments; increasing γ reduces the difference

between the finite and infinite adjustments. We summarize our findings as follows.

Conditions where the finite/infinite issue is ignorable:

• The level 2 sampling fraction J/G is small.

• The prior uncertainty γ is large.
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Figure 4.7: Disparities between the finite and infinite adjustments of the population grand mean

M(y) for the hypothetical data with prior mean µ = 65 and data mean ȳ.. = 40, finite level 1 and

2 populations of N = 40 and G = 15 respectively. Adjustments are shown for level 1 samples of

n = 2 to 40 and level 2 samples of J = 2 and 15 for γ = 16, 56 and 156. The dashed lines represent

the adjustments of M(y) for the infinite SOEREF model.

The smaller the level 2 sampling fraction, the closer will the finite and infinite

adjustments be. However, a large prior uncertainty γ coupled with a small level

2 sampling fraction, will result in almost similar finite and infinite adjustments.

The above two conditions can also be deduced from expression (4.105) that relates

ED̄n
(M[G](y)) and ED̄n

(M(y)). The level 1 sampling fraction n/N has almost no

bearing on the differences between the finite and infinite adjustments.

4.15 The adjusted variance of the population grand

mean in the finite and the infinite SOEREF

model

Below we state and prove a theorem for the adjusted variance for the finite popula-

tion grand mean and we relate it to the infinite situation.

Theorem 4.15.1. Consider the balanced two-level population consisting of a finite

number G of groups and a finite number of N individuals. Using the representation

and SOE specifications for the finite SOEREF model as in Theorem 4.13.1, the ad-
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justed variance ofM[G](y) given the collection of group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.}
is

V arD̄n
(M[G](y)) =

1

G
(σ2

u − γ +
σ2
ǫ

N
+Gγ)

[
1− J(σ2

u − γ + σ2
ǫ

N
+Gγ)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
(4.107)

Proof.

V arD̄n
(M[G](y)) = V ar(M[G](y))

− Cov(M[G](y), D̄n)V ar−1(D̄n)Cov(D̄n,M[G](y))

=
1

G
(σ2

u − γ +
σ2
ǫ

N
+Gγ)− 1

G2
(σ2

u − γ +
σ2
ǫ

N
+Gγ)21T

J

1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]
1J

=
1

G
(σ2

u − γ +
σ2
ǫ

N
+Gγ)− 1

G2
(σ2

u − γ +
σ2
ǫ

N
+Gγ)2

1

(σ2
u − γ + σ2

ǫ

n
)

[
1− Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
J

=
1

G
(σ2

u − γ +
σ2
ǫ

N
+Gγ)− 1

G2
(σ2

u − γ +
σ2
ǫ

N
+Gγ)2

J

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

=
1

G
(σ2

u − γ +
σ2
ǫ

N
+Gγ)

[
1− J(σ2

u − γ + σ2
ǫ

N
+Gγ)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
,

where the expression for V ar(M[G](y)) comes from (4.94) and the covariance and

inverse variance expressions are as in Theorem 4.14.1. �

The adjusted finite variance depends on the level 1 and level 2 sample sizes

(n, J) and finite populations sizes (N,G) as well as on our prior variance speci-

fications. Since n ≤ N and J ≤ G, and all variance quantities in (4.107) are

non-negative, J(σ2
u − γ + σ2

ǫ

N
+ Gγ)/G(σ2

u − γ + σ2
ǫ

n
+ Jγ) ≤ 1. Hence, we deduce

that V arD̄n
(M[G](y)) ≥ 0, which is equivalent to the coherence condition that the

variance-covariance matrix over our beliefs and data is non-negative definite (see

Goldstein and Wooff (2007; page 67)). We note that V arD̄n
(M[G](y)) = 0 when

n = N and J = G, which has the intuitive implication that when we sample all the

finite level 1 and 2 populations there is no uncertainty left inM[G](y).
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Irrespective of the size of the level 1 population N , as the finite level 2 population

G becomes large, in the limit we have from (4.107)

lim
G→∞

V arD̄n
(M[G](y)) = γ − Jγ2

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

=
1

γ−1 + J(σ2
u − γ + σ2

ǫ

n
)−1

(4.108)

which is the same as the adjusted variance of the overall mean in the infinite balanced

case.

However, if G is small and only N becomes large then we have

lim
N→∞

V arD̄n
(M[G](y)) =

1

G
(σ2

u − γ +Gγ)
[
1− J(σ2

u − γ +Gγ)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
(4.109)

As mentioned before, it is more realistic for a hierarchy to comprise of a level 2

population with few groups (G) and a larger level 1 population N in each of these

groups so that (4.109) may be more useful in practice than (4.108).

4.16 The finite and infinite resolution

The resolution for adjusting the finite meanM[G](y) by D̄n is given by

RD̄n
(M[G](y)) = 1− V arD̄n

(M[G](y))

V ar(M[G](y))

=
J(σ2

u − γ + σ2
ǫ

N
+Gγ)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

(4.110)

It is quite easily seen from (4.110) that RD̄n
(M[G](y)) lies between zero and one.

RD̄n
(M[G](y)) will be zero when V arD̄n

(M[G](y)) = V ar(M[G](y)). This will hap-

pen if either D̄n is not informative for adjustingM[G](y) or our beliefs specification

is not sufficiently detailed to exploit the information in D̄n. The resolution will be

one if we sample all the level 1 and level 2 finite populations, i.e. (n = N) and

(J = G), hence D̄n will contain all the information required to adjustM[G](y), and

all uncertainty will be resolved.

To show the connection between the finite resolution and its infinite counterpart,

we rewrite (4.110) as the following sum of two terms

RD̄n
(M[G](y)) =

J
G
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

+
Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

(4.111)
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Figure 4.8: Disparities in the proportion of uncertainty resolved in the finite and infinite adjust-

ments of the population grand meanM(y) for the hypothetical data. The resolutions are shown for

level 1 samples of n = 2 to 40 and level 2 samples of J = 2 and 15 for γ = 16, 56 and 156.

The first term in (4.111) is always positive, while the second term is the resolution

of the overall mean in the infinite balanced case, i.e. RD̄n
(M(y)). Thus the finite

resolution RD̄n
(M[G](y)) is larger than RD̄n

(M(y)).

This difference between the two resolutions is also evident in Figure 4.8. The

latter shows the disparity between the finite and infinite resolutions for our hypothet-

ical data set with finite level 1 population N = 40 students, from which successive

samples of n = 2, 3, . . . , 40 are taken, and level 2 population G = 15 classes, from

which only two extreme samples J = 2 and J = 15 are considered. As before,

three levels of uncertainty γ = 16, 56, 156 in M(y) are considered. As γ increases

the difference between RD̄n
(M[G](y)) and RD̄n

(M(y)) decreases for both J = 2 and

J = 15.

The differences between the resolutions are influenced to a large extent by the

level 2 sampling fraction J/G. For example, RD̄n
(M[G](y)) converges to RD̄n

(M(y))

when the level 2 sampling fraction is decreased from J/G = 15/15 to J/G = 2/15

(see first panel of Figure 4.9). This convergence effect can also be demonstrated by

making the finite level 2 population size G large while keeping the level 2 sample

size J fixed. Irrespective of the size of the level 1 population N , as G becomes large,
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in the limit we have from (4.111)

lim
G→∞

RD̄n
(M[G](y)) =

Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

(4.112)

which is equal to RD̄n
(M(y)), the resolution of the overall mean in the infinite

balanced case.

Figure 4.9 reveals that for a level 1 sampling fraction n/N = 10/40 or more, the

difference between RD̄n
(M[G](y)) and RD̄n

(M(y)) remains more or less the same for

all values of J and γ. In fact, this discrepancy between the two resolutions persists

even if we allow the finite level 1 population N in RD̄n
(M[G](y)) to become large

while keeping the level 1 sample size n and the level 2 population size G fixed as

follows.

lim
N→∞

RD̄n
(M[G](y)) =

J
G
(σ2

u − γ)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

+
Jγ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

. (4.113)

The second term on the right of (4.113) is the infinite resolution RD̄n
(M(y)), so

that the difference between the finite resolution as N →∞ and RD̄n
(M(y)) is given

by the first term of the sum in (4.113).

4.17 The finite adjustments of level 2 quantities

In order to update the population group j mean M[N ](yj), for j = 1, 2, . . . , G

in the balanced finite SOEREF model, we make use of the level 2 representation

M[N ](yj) =M[G](y)+R[G]
j (M[N ](y)). Since we have already updated the population

grand meanM[G](y), we only need to update the level 2 residualR[G]
j (M[N ](y)) using

the sample group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.}.

Theorem 4.17.1. The adjustment of each level 2 residual R[G]
j (M[N ](y)) of the

balanced finite SOEREF model by the collection of sample group means D̄n =

{ȳ1., ȳ2., . . . , ȳJ.} is

ED̄n
(R[G]

j (M[N ](y))) =
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)

[
(ȳj. − µ)− J(σ2

u − γ + σ2
ǫ

n
+Gγ)(ȳ.. − µ)

G(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]

(4.114)
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Proof. Let CRj
denote the vector of level 2 residuals {R[G]

1 (M[N ](y)),

R[G]
2 (M[N ](y)), . . .R[G]

J (M[N ](y))} in the finite SOEREF model. Using the SOE

relationships from Theorem 4.15.1, and in particular

E(R[G]
j (M[N ](y))) = 0, ∀j

Cov(R[G]
j (M[N ](y)),R[G]

j′ (M[N ](y))) =





G−1
G

((σ2
u +

1
N
σ2
ǫ )− γ) if j = j′

− 1
G
((σ2

u +
1
N
σ2
ǫ )− γ) otherwise.

we calculate the required second order quantities over (CRj
, D̄n). We have E(CRj

) =

1J0 and Cov(CRj
, D̄n) = (σ2

u − γ + σ2
ǫ

N
)(IJ − 1

G
KJ) where 1J is a column of J ones,

IJ is an identity matrix of dimension J and KJ is a J × J matrix of ones. Applying

the Bayes linear rule gives the adjusted vector of level 2 residuals as follows.

ED̄n
(CRj

) = E(CRj
) + Cov(CRj

, D̄n)V ar−1(D̄n)(D̄n − E(D̄n))

= 1J0 + (σ2
u − γ +

σ2
ǫ

N
)(IJ −

1

G
KJ)

1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]
(D̄n − 1Jµ)

=
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)
(IJ −

1

G
KJ)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]

(D̄n − 1Jµ)

=
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

(σ2
u − γ + σ2

ǫ

n
+Gγ)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]
(D̄n − 1Jµ)

=
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)




1− f −f · · · −f
−f 1− f · · · −f
...

...
. . .

...

−f −f · · · 1− f







(ȳ1. − µ)

(ȳ2. − µ)
...

(ȳJ. − µ)




=
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)




(ȳ1. − µ)− f
∑J

j=1(ȳj. − µ)

(ȳ2. − µ)− f
∑J

j=1(ȳj. − µ)
...

(ȳJ. − µ)− f
∑J

j=1(ȳj. − µ)




(4.115)

where f =
(σ2

u−γ+
σ2
ǫ
n
+Gγ)

G(σ2
u−γ+

σ2
ǫ
n
+Jγ)

. Setting
∑J

j=1(ȳj. − µ) = J(ȳ.. − µ) in the jth row of
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(4.115) gives (4.114). �

We note that as G,N → ∞, R[G]
j (M[N ](y)) → Rj(M(y)) as in Theorem 4.4.1

for the balanced SOEREF design.

Using the finite level 2 representation, we calculate the adjusted finite population

group j mean ED̄n
(M[N ](yj)) by adding ED̄n

(M[G](y)) (4.106) and ED̄n
(R[G]

j (M[N ](y)))

(4.116). However, unlike the finite case, it is not straightforward to interpret

ED̄n
(M[N ](yj)) as it is the sum of two complex adjusted quantities.

4.17.1 The finite adjusted variance of R[G]
j (M[N ](y))

After calculating the adjusted mean of the level 2 residual R[G]
j (M[N ](y)), we now

consider the adjustment of the variance and covariances of the collection of level

2 residuals CRj
. We may then compare our results with the infinite adjustments

derived in Corollary 4.4.3 for the balanced SOEREF model.

Theorem 4.17.2. The adjusted variances and covariances of the collection of level

2 residuals CRj
= {R[G]

1 (M[N ](y)),R[G]
2 (M[N ](y)), . . .R[G]

J (M[N ](y))} in the balanced

finite SOEREF model by the collection of sample group means D̄n = {ȳ1., ȳ2., . . . , ȳJ.}
are obtained respectively from the diagonal and off-diagonal elements of

V arD̄n
(CRj

) =
(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)

{
(N − n)

N

σ2
ǫ

n
(IJ −

1

G
KJ)

+
(G− J)

G2

(σ2
u − γ + σ2

ǫ

N
)(σ2

u − γ + σ2
ǫ

n
+Gγ)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

}
(4.116)

Proof. First, we note that (IJ − aKJ)(IJ − bKJ) = (IJ − (a+ b− Jab)KJ ).

V arD̄n
(CRj

) = V ar(CRj
)− Cov(CRj

, D̄n)V ar−1(D̄n)Cov(D̄n, CRj
)

= (σ2
u − γ +

σ2
ǫ

N
)(IJ −

1

G
KJ)− (σ2

u − γ +
σ2
ǫ

N
)(IJ −

1

G
KJ)

1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]
(σ2

u − γ +
σ2
ǫ

N
)

(IJ −
1

G
KJ),

All the matrices above are of the form (IJ − aKJ) and their multiplications result

in the same symmetric matrix form, simplification of which results in (4.116). �
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It is straightforward to verify that as N,G → ∞, the variance and covariance

terms in (4.116) are the same as the corresponding infinitely adjusted quantities that

we derived in (4.30) of Corollary 4.4.3. As we mentioned in Corollary 4.4.3, calcu-

lating and interpreting adjusted level 2 quantities individually is not that straight-

forward, more so since these quantities as in CRj
are correlated. We shall therefore

proceed to analyze and interpret overall changes in beliefs over the collection CRj
via

a canonical analysis as we did for our infinite adjustments of group level quantities.

4.18 Canonical analysis for the adjustment of the

finite population group means

We shall now analyze and interpret overall changes in beliefs over the collection of

finite population group meansM[N ](yj) using a canonical analysis. The motivations

for such an analysis are as explained in Section 4.5 for the adjustments of infinite

populations. In addition, here we are also interested in comparing the canonical

analysis of the finite and infinite cases. We begin by calculating the resolution

transform matrix which has a central role in Bayes linear statistics, ( Goldstein and

Wooff, 2007).

4.18.1 The resolution transform matrix for the adjustment

of M[N ](yj)

First, let CM[N] = {M[N ](y1),M[N ](y2), . . . ,M[N ](yJ)} denote the collection of finite

population group means. In accordance with the notation for the resolution trans-

form matrix in Section 4.5, viz. TB:D, we have for the finite case, TC
M[N] :D̄n

which

we write as T
[N ]
n for simplicity.

Theorem 4.18.1. The resolution transform matrix for the adjustment of the col-

lection of finite population group j means CM[N] = {M[N ](y1),M[N ](y2),

. . . ,M[N ](yJ)} in the balanced SOEREF model, by the collection of sample group
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means D̄n = {ȳ1., ȳ2., . . . , ȳJ.} is

T[N ]
n =

1

(σ2
u − γ + σ2

ǫ

n
)

[
(σ2

u − γ +
σ2
ǫ

N
)IJ +

γ (N−n)
N

σ2
ǫ

n

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

]
(4.117)

Proof. From our second order specifications for the finite SOEREF model in The-

orem 4.13.1 we obtained V ar(M[N ](yj))=σ2
u + 1

N
(σ2

y − σ2
u)=σ2

u + 1
N
σ2
ǫ , ∀j, and

Cov(M[N ](yj),M[N ](yj′))=γ, ∀j 6= j′. Hence,

V ar(CM[N]) = (σ2
u − γ +

σ2
ǫ

N
)IJ + γKJ (4.118)

Since, Cov(M[N ](yj),R[N ]
i (yj)) = 0, we have

Cov(CM[N] , D̄n) = V ar(CM[N]) (4.119)

Using the above, the resolution transform matrix is

T[N ]
n = V ar(CM[N])−1Cov(CM[N] , D̄n)V ar(D̄n)

−1Cov(D̄n, CM[N])

= V ar(D̄n)
−1Cov(D̄n, CM[N])

=
1

(σ2
u − γ + σ2

ǫ

n
)

[
IJ −

γ

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

KJ

][
(σ2

u − γ +
σ2
ǫ

N
)IJ + γKJ

]

=
1

(σ2
u − γ + σ2

ǫ

n
)

[
(σ2

u − γ +
σ2
ǫ

N
)IJ

+

(
γ − γ(σ2

u − γ + σ2
ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

− Jγ2

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

)
KJ

]
.

On simplifying the multiplier term of KJ between brackets, we obtain (4.117). �

June 11, 2023



4.18. Canonical analysis for the adjustment of the finite population
group means 144

We note that as N →∞, T
[N ]
n in (4.117) above is equal to the resolution trans-

form matrix Tn in (4.35) for the infinite population case. Also, if we sample the

whole level 1 population, i.e., n = N , then T
[N ]
n = IJ , that is the resolution transform

matrix becomes the identity matrix, implying that all the uncertainties in the col-

lection of linear combinations of the finite group means 〈M[N ](yj)〉 will be resolved.
This is to be expected since we have observed the whole finite level 1 populations.

Based on T
[N ]
n , we shall now calculate the canonical resolutions (eigenvalues) and

their associated canonical directions (eigenvectors) that will be useful in achieving a

better understanding of the magnitude and type of information gained by observing

our multilevel data.

4.18.2 The canonical resolutions

The canonical resolutions, i.e. the ordered eigenvalues of T
[N ]
n , are easily obtained

from T
[N ]
n since it is of the form (aIJ+bKJ) which has eigenvalues a, with multiplicity

n− 1, and a+ nb (see Section 4.5.2).

Corollary 4.18.1. Let λ
[N ]
1 and λ

[N ]
2 be the two distinct eigenvalues of T

[N ]
n , where

λ
[N ]
1 is the largest eigenvalue and λ

[N ]
2 is the smallest eigenvalue with multiplicity

(J − 1). Then

λ
[N ]
1 =

(σ2
u − γ + σ2

ǫ

N
+ Jγ)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

(4.120)

λ
[N ]
2 =

(σ2
u − γ + σ2

ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)
, (4.121)

where n ≤ N, J ≤ G.

We use the special form (aIJ + bKJ) of T
[N ]
n to prove Corollary 4.18.1.

Proof. The coefficient of I plus J times the coefficient of KJ for T
[N ]
n in (4.119) gives
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the largest eigenvalue as follows.

λ
[N ]
1 =

1

(σ2
u − γ + σ2

ǫ

n
)

[
(σ2

u − γ +
σ2
ǫ

N
) +

Jγ (N−n)
N

σ2
ǫ

n

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
,

=
1

(σ2
u − γ + σ2

ǫ

n
)

[
N(σ2

u − γ + σ2
ǫ

N
)(σ2

u − γ + σ2
ǫ

n
+ Jγ) + Jγ(N − n)σ

2
ǫ

n

N(σ2
u − γ + σ2

ǫ

n
+ Jγ)

]
,

=
(σ2

u − γ + σ2
ǫ

N
+ Jγ)

(σ2
u − γ + σ2

ǫ

n
+ Jγ)

The coefficient of I for T
[N ]
n in (4.117) gives the smallest eigenvalue as follows.

λ
[N ]
2 =

(σ2
u − γ + σ2

ǫ

N
)

(σ2
u − γ + σ2

ǫ

n
)
,

�

First we note that as N → ∞, λ
[N ]
1 → λ1 and λ

[N ]
2 → λ2, their infinite counter-

parts. Both λ
[N ]
1 and λ

[N ]
2 depend on the level 1 sample and population sizes, n and

N respectively. As n → N , λ
[N ]
j → 1, for each j. Hence, the more we increase the

level 1 sample size, the more the uncertainty we expect to resolve in each of the two

directions of the corresponding components in 〈M[N ](yj)〉 by observing D̄n.

We need to verify that λ
[N ]
1 ≥ λ

[N ]
2 . Using expressions (4.120) and (4.121), we

obtain λ
[N ]
1 ≥ λ

[N ]
2 if n ≤ N , which is a trivial condition. Also, λ

[N ]
1 = λ

[N ]
2 when

γ = 0, that is when there is no uncertainty about the population overall mean

M[G](y).

We also need to ensure that the largest possible reduction in variance is one, that

is λ
[N ]
j ≤ 1, for each j. Both λ

[N ]
1 and λ

[N ]
2 attain their maximum values when their

denominators are minimum, and this occurs when n is maximum. Putting n = N

in (4.120) and (4.121) we see that, for each j, λ
[N ]
j attain its maximum value of one

as required. In other words when we sample the whole level 1 finite population,

i.e. n = N , we resolve all the uncertainty about 〈M[N ](yj)〉 by observing D̄n as we

would expect.
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4.18.3 The eigenstructure of T
[N ]
n

We now show that the SOE samples selected from finite and infinite multilevel

populations have similar coherence relationships.

Theorem 4.18.2. The eigenvectors of T
[N ]
n are the same for each n. If Y [N ] is

an eigenvector of T
[N ]
1 with corresponding eigenvalue λ[N ], then the corresponding

eigenvalue λ
[N ]
n for T

[N ]
n is

λ
[N ]
(n) =

n(N − 1)λ[N ]

(n− 1)Nλ[N ] + (N − n)
(4.122)

Proof. The resolution transform matrix T
[N ]
n has an eigenvector v corresponding to

the eigenvalue λ[N ] if

T[N ]
n v = λ[N ]v

Substituting T
[N ]
n = V ar(D̄n)

−1Cov(D̄n, CM[N ]) from the proof of Theorem 4.18.1,

we have

V ar(D̄n)
−1Cov(D̄n, CM[N ])v = λ[N ]v

Multiplying both sides of the above equation by V ar(D̄n)

Cov(D̄n, CM[N ])v = λ[N ]V ar(D̄n)v

Substituting expressions for Cov(D̄n, CM[N) and V ar(D̄n) (see proof of Theorem

4.18.1), we obtain

[(σ2
u − γ +

σ2
ǫ

N
)IJ + γKJ ]v = λ[N ][(σ2

u − γ +
σ2
ǫ

n
)IJ + γKJ ]v

= λ[N ][(σ2
u − γ)IJ + γKJ ]v + λ[N ]σ

2
ǫ

n
IJv

[(σ2
u − γ)IJ + γKJ ]v +

σ2
ǫ

N
IJv = λ[N ][(σ2

u − γ)IJ + γKJ ]v + λ[N ]σ
2
ǫ

n
IJv

[(σ2
u − γ)IJ + γKJ ](1− λ[N ])v = (

λ[N ]

n
− 1

N
)σ2

ǫ IJv

[(σ2
u − γ)IJ + γKJ ]v =

(λ
[N]

n
− 1

N
)

(1− λ[N ])
σ2
ǫ IJv (4.123)

Putting n = 1 in (4.123),

[(σ2
u − γ)IJ + γKJ ]v =

(λ[N ] − 1
N
)

(1− λ[N ])
σ2
ǫ IJv (4.124)
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Equating the right-hand sides of (4.123) and (4.124) gives

λ[N ] − 1
N

(1− λ[N ])
=

λ
[N]
(n)

n
− 1

N

(1− λ
[N ]
(n))

,

which, after solving for λ
[N ]
(n) , gives expression (4.124). �

Theorem 4.18.2 shows that the canonical directions for the adjustment of 〈MN(yj)〉
by D̄n are the same for each n as was the case for our infinite adjustments in Theorem

4.10.2.

Further, dividing the numerator and denominator of (4.122) by N , we obtain

λ
[N ]
(n) =

(n− n
N
)λ[N ]

(n− 1)λ[N ] + (1− n
N
)
. (4.125)

It is clear that as N becomes large or if the sampling fraction n
N
is small, then the

eigenvalue λ
[N ]
(n) is the same as the corresponding eigenvalue λ(n) for infinite sampling

in Theorem 4.10.2

4.19 Finite adjustment of population group means

M[N ](yj) for the STAT1010 data

To apply our results of the preceding sections to the STAT1010 data, we shall

consider a balanced subset of the original data. We sort the classes (groups) in

increasing order of group means, see column (2) of Table 4.5. We sample n = 23

students from each class which, for simplicity, we assume to have a finite popula-

tion of N=30 students each. There are J=7 classes where the first three C1 to

C3 are from the Faculty of Law and Management,and the remaining four classes

are from the Faculty of Engineering. We shall use the same prior specifications

as before, namely E(M(y)) = 55, V ar(M(y)) = 56.3, V ar(Ri(yj)) = 237, and

V ar(Rj(M(y))) = 59 ∀i, j.
Table 4.5 shows the results of our finite and infinite adjustments for the balanced

data. The prior expectation and variance are the same for all seven classes. The

finite adjusted expectations (column 3) for each class are shrunk towards the prior

expectation of 55%. The changes in expectation relative to the resolved variance
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in the respective group means are shown in column 4. For example, for the first

class, the prior and adjusted expectations are 55% and 43.598% respectively, and the

change in expectation relative to the resolved variance inM(y1) is -1.073 calculated

as follows

S(ED̄n
(M(y1))) =

ED̄n
(M(y1))− E(M(y1))√
RV arD̄n

(M(y1))
= −1.073.

The changes in standardized expectations for the seven classes range from -1.073 to

1.395, that is there is no surprising change as standardized expectations should have

expectation zero and variance unity. The finite adjustments differ to some extent

from the corresponding infinite adjustments since quite a large proportion of the

finite population was sampled (i.e. n=23 out of N=30).

The change in variance for each M(yj) from prior to finitely adjusted is 115.3

- 2.331 = 112.969, so that 98% of the prior variance is resolved, which is larger

compared to the infinite resolution of 92.2%.

Although the changes in expectation show no cause for concern, the pattern

in these changes indicate that variation in STAT1010 marks are associated with

faculty. All the changes (column 4) for Faculty of Law & Management (M(y1)

to M(y3) ) are negative while those for Faculty of Engineering (M(y4) to M(y7)

are positive. Students from the Faculty of Engineering require good A level maths

and thus perform better in STAT1010 compared to students from the Faculty of

Law &Management. A SOEREG model will be more suitable to account for these

differences.

It is of interest to compare the quality of the infinite population size approxi-

mation to the finite population. We randomly select a smaller sample of n = 10

students only from each of the 7 classes and compare the finite and infinite adjust-

ments of the faculty mean score. The results are in Table 4.6 below. There are very

little differences between the infinite and finite adjusted means and also in their

associated changes in expectations relative to the resolved variances. Hence, when

the sampling fraction is small compared to the population (here n=10 out of N=30),

we may use the simpler infinite adjustments.
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Expectation

Element Class means Finite Adjustment Change Infinite Adjustment Change

(1) (2) (3) (4) (5) (6)

M(y1) 43.217 43.598 -1.073 44.848 -0.984

M(y2) 44.652 44.983 -0.942 46.070 -0.866

M(y3) 46.087 46.368 -0.812 47.291 -0.747

M(y5) 56.826 56.734 0.163 56.434 0.139

M(y7) 58.087 57.952 0.278 57.507 0.243

M(y6) 59.043 58.875 0.364 58.321 0.322

M(y4) 70.391 69.829 1.395 67.982 1.259

Prior expectation 55.0 Prior variance 115.3

Finite adjusted variance 2.331 Finite Resolution 98.0%

Infinite adjusted variance 8.958 Infinite Resolution 92.2%

Table 4.5: Finite and infinite adjustment of group j means M(yj) in the SOEREF model using

a balanced sample of the STAT1010 data.

Expectation

Element Class means Finite Adjustment Change Infinite Adjustment Change

(1) (2) (3) (4) (5) (6)

M(y1) 41.200 41.641 -1.257 43.089 -1.155

M(y2) 40.500 40.965 -1.320 42.493 -1.213

M(y3) 52.900 52.935 -0.194 53.050 -0.189

M(y5) 57.100 56.989 0.187 56.625 0.158

M(y7) 52.200 52.259 -0.258 52.454 -0.247

M(y6) 60.100 59.885 0.460 59.179 0.405

M(y4) 72.000 71.372 1.540 69.310 1.388

Prior expectation 55.0 Prior variance 115.3

Finite adjusted variance 2.331 Finite Resolution 98.0%

Infinite adjusted variance 8.958 Infinite Resolution 92.2%

Table 4.6: Finite and infinite adjustment of group j means M(yj) in the SOEREF model using

a balanced but small sample of 10 classes of the STAT1010 data.
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Chapter 5

Bayes linear estimation of the

level-1 variance

In Chapter 4 we derived both infinite and finite adjustments of beliefs about the

population overall and population group means in the SOEREF model. We showed

that all these adjustments and the associated adjusted quantities, such as the res-

olutions for example, depended on the prior level 1 and 2 variances. However, we

did not learn about the population variances using the available data.

Learning about population variances is somewhat more complex when compared

to the estimation of mean components as explained in Section 2.14. In Section

2.14.3, we followed Goldstein & Woof (2007, pg. 265) to carry out a Bayes linear

adjustment of the variance of a sequence of exchangeable random quantities. We

now wish to extend Bayes linear methods to learn about population variances in

multilevel models.

We start with the simplest multilevel model, namely the SOEREF model which

has two variance components, one for each level of the hierarchy. Our interest centers

on the level 2 variance component which can be difficult to estimate, particularly

when data is scarce or when the true population variance is close to zero, in which

cases the estimate of the level 2 variance could even be negative. We shall consider

adjustment of level-2 variances in Chapter 6.

Below we consider adjustment of the level-1 variance for both the balanced and

unbalanced cases.
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5.1 Adjusting the level-1 variance - balanced sit-

uation

First, we revisit the SOEREF model. In Chapter 3 we used SOE judgements at

levels 1 and 2 of the hierarchy to derive the SOEREF model:

yji =M(y) +Rj(M(y)) +Ri(yj),

i = 1, 2, . . . , nj, and j = 1, 2, . . . , J.

In the balanced case nj = n. For assessing the level-1 variance, we reiterate our

SOE judgments of the level-1 residuals.

We assume the level-1 residuals Ri(yj) are second-order exchangeable over indi-

viduals for each group j and write ǫji = Ri(yj) for individual i in group j with:

E(Ri(yj)) = 0, V ar(Ri(yj)) = σ2
ǫ ∀i, j,

Cov(Ri(yj),Ri′(yj)) = 0 ∀i 6= i′.

where the level 1 variance σ2
ǫ > 0 and constant for all individuals and groups. Also,

for all i and j, Ri(yj) is uncorrelated with the population grand meanM(y).

In order to learn about the level-1 population variance, we need to construct a

representation for the corresponding quantity as follows. If we assume the sequence

ǫ2ji is second order exchangeable then we have the decomposition

ǫ2ji = Vǫji =M(Vǫ) +Rji(Vǫ) (5.1)

Since E[ǫji] = E[Ri(yj)] = 0 for all i and j, E[ǫ2ji] is the variance of Ri(yj). In

line with Goldstein & Woof (2007, pg. 265), we write V ar[Ri(yj)] = VRǫ
. Hence,

E(M(Vǫ))=VRǫ
. The sequence R11(Vǫ),R12(Vǫ), . . . is uncorrelated with mean zero

and constant variance VR(Vǫ). Also, each elementRji(Vǫ) is uncorrelated withM(Vǫ).

The level-1 population variance is denoted by M(Vǫ) while the variance of M(Vǫ)

is denoted by VMǫ
. For simplicity, below we shall write Rji(y) in place of Ri(yj).

Based on representation (5.1), updating the level-1 population variance is equiv-

alent to updating a mean component, here M(Vǫ), using a suitable statistic. One

such statistic is the ANOVA estimator of the level-1 variance (see Section 2.7 for the
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properties of this estimator), that is the mean squared error (MSE) which we denote

by σ̂2
ǫ . Thus we shall use the decomposition σ̂2

ǫ =M(Vǫ)+Tǫ to adjustM(Vǫ). The

difference between the decomposition for σ̂2
ǫ and the corresponding decomposition

(5.1) is that Vǫji cannot be measured directly as M(y) + Rj(M(y)) is unknown.

However, we need to make some additional assumptions about Tǫ which comprises

of products of residuals Rji(Vǫ) and Rji(y) as follows.

Following Goldstein & Woof (2007, pg. 267), we assume the following fourth-

order uncorrelated properties:

Cov(M(Vǫ),Rji(y)Rji′(y)) = Cov(Rji(Vǫ),Rji(y)Rji′(y)) = 0, (5.2)

and

Cov(Rji(y)Rji′(y),Rj′i(y)Rj′i′(y)) = 0, for j 6= j′ (5.3)

We note that j 6= j′ implies that i 6= i′, i.e. the same student i cannot belong to

two different classes j and j′.

Thus, to adjust the level 1 variance of the SOEREF model, we have the following

theorem.

Theorem 5.1.1. In the SOEREF model, we write the level-1 residuals as ǫji =

R(yji) with specifications E(ǫji) =0 and Var(ǫji) = σ2
ǫ . To learn about the population

level - 1 variance, we construct a representation for the squared level-1 residuals ǫ2ji =

Vǫji =M(Vǫ) +Rji(Vǫ). We adjustM(Vǫ) based on the mean squared error (MSE)

σ̂2
ǫ via the decomposition σ̂2

ǫ =M(Vǫ)+Tǫ. Using the second-order specifications over

M(Vǫ) and Rji(Vǫ), and assuming the following fourth order uncorrelated properties

Cov(M(Vǫ),Rji(y)Rji′(y)) = Cov(Rji(Vǫ),Rji(y)Rji′(y)) = 0,

and

Cov(Rji(y)Rji′(y),Rj′i(y)Rj′i′(y)) = 0, for j 6= j′,

we derive the following joint prior assessments

E(σ̂2
ǫ ) = VRǫ

, Var(σ̂2
ǫ ) = VMǫ

+ VTǫ
, Cov(σ̂2

ǫ ,M(Vǫ)) = VMǫ
. (5.4)
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The Bayes linear adjusted mean and variance of the level-1 population variance

M(Vǫ) based on the mean squared error (MSE) σ̂2
ǫ is given by

Eσ̂2
ǫ
(M(Vǫ)) =

VMǫ
σ̂2
ǫ + VTǫ

VRǫ

VMǫ
+ VTǫ

, (5.5)

with the corresponding adjusted variance

Varσ̂2
ǫ
(M(Vǫ)) =

VMǫ
VTǫ

VMǫ
+ VTǫ

. (5.6)

Proof. First, we derive (5.4). The MSE is the mean squared deviations of each

observation yji from its respective group mean ȳj., and it can be written in terms of

the squared residuals as follows:

σ̂2
ǫ =

1

g(n− 1)
SSE

=
1

g(n− 1)

∑

j

∑

i

(yji − ȳj.)
2

=
1

g(n− 1)

∑

j

∑

i

(ǫji − ǭj.)
2

We use the above to construct a representation for σ̂2
ǫ as follows:

σ̂2
ǫ =

1

g(n− 1)

∑

j

[
∑

i

ǫ2ji −
1

n
(
∑

i

ǫji)
2

]

=
1

g(n− 1)

∑

j

[
∑

i

(n− 1)

n
ǫ2ji −

2

n

∑

i<i′

ǫjiǫji′

]

=
∑

j

∑

i

1

gn
[M(Vǫ) +Rji(Vǫ)]−

2

gn(n− 1)

∑

j

∑

i<i′

Rji(y)Rji′(y)

= M(Vǫ) + Tǫ, (5.7)

where

Tǫ =
1

gn

∑

j

∑

i

Rji(Vǫ)−
2

gn(n− 1)

∑

j

∑

i<i′

Rji(Y )Rji′(y) (5.8)

From (5.8) and the fourth-order uncorrelated properties (5.2) and (5.3), we may

now derive the following properties of Tǫ:

E(Tǫ) = 0 (5.9)

Var(Tǫ) = VTǫ
=

1

gn
VR(Vǫ) +

2

gn(n− 1)
(VMǫ

+ V 2
Rǫ
) (5.10)

Cov(M(Vǫ), Tǫ) = 0 (5.11)
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Using the above we obtain the results in (5.4), that is

E(σ̂2
ǫ ) = VRǫ

, Var(σ̂2
ǫ ) = VMǫ

+ VTǫ
, Cov(σ̂2

ǫ ,M(Vǫ)) = VMǫ
.

The proofs for the adjusted level-1 population variance (5.5) and its correspond-

ing adjusted variance (5.6) in Theorem 5.2.1. simply follows from the application of

the Bayes linear equations for updating a mean given σ̂2
ǫ . �

In order to perform a Bayes linear adjustment of the level-1 population variance

M(Vǫ), we need to specify VMǫ
, the variance ofM(Vǫ) and VR(Vǫ) (which is part of

VTǫ
), the variance of Rji(Vǫ).

5.2 Priors for fourth order quantities

Assessing a population variance requires computations with fourth order moments

(see Searle et al.(1992); p407). While the first three moments have simple math-

ematical forms, the fourth moment involves rather more complicated expressions.

For example, consider the rth central moment of a random quantity X with respect

to the probability measure F (x)

µr(X) =

∫ +∞

−∞
(x− µ)rdF (x).

If X̄ is the sample mean of n i.i.d random quantities then the formulae for the first

three moments of X̄ are simple:

µ(X̄) = µ(X), µ2(X̄) = µ2(X)/n, µ3(X̄) = µ3(X)/n2

while the fourth moment is

µ4(X̄) = µ4(X)/n3 + 3(n− 1)µ2
2(X)/n3

Also, a Bayesian subjectivist perspective would require an individual to make well-

sourced specifications about variances along with specifications of his uncertainty

about these variances. Such specifications are unfamiliar and, as such, quite chal-

lenging for the individual. An important issue here is whether it is simpler, and/or
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more meaningful, for the individual to specify his uncertainty through fourth order

moments or whether it makes more sense to specify his uncertainties about variances

directly (e.g. by thinking as to what is the variance of the specified variance). The

fourth order moment is related to the kurtosis of a probability density function.

5.3 Choice of the priors for VMǫ and VR(Vǫ)

Elicitation of an expert’s beliefs is quite challenging in general but more so for a

fourth order quantity such as VR(Vǫ), the variance of the zero-mean uncorrelated

sequence R11(Vǫ),R12(Vǫ), . . . in (5.1). Since VR(Vǫ) relates to the shape of the dis-

tribution of yji, for its specification we follow the approach in Goldstein & Wooff

(2007). We assume that the level-1 population variance M(Vǫ) acts like a scale

parameter and write:

Rji(y) =
√
M(Vǫ)Zji ∀i, j (5.12)

where E(Zji) = 0, Var(Zji) = 1, Zji is independent of M(Vǫ) and the sequence

Z11, Z12, . . . are also independent.

Using representation (5.1) we have [Rji(y)]
2 =M(Vǫ)+Rji(Vǫ) and substituting

Rji(y) from (5.12) and simplifying, we have:

Rji(Vǫ) =M(Vǫ)(Z
2
ji − 1) (5.13)

We thus require the variance of the product of the two independent quantities on

the right of (5.13). Now, if A and B are independent random quantities with means

µA and µB respectively, then

Var(AB) = µ2
BVar(A) + µ2

AVar(B) + Var(A)Var(B),

from which we obtain

Var(Rji(Vǫ)) = VR(Vǫ)

= (Var(M(Vǫ)) + [E(M(Vǫ))]
2)Var(Z2

ji)

= (VMǫ
+ V 2

Rǫ
)Var(Z2

ji)

= (VMǫ
+ V 2

Rǫ
)(Kur(Zji)− 1) (5.14)
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If for example, we consider Zji to be approximately Gaussian, then we would

assign Kur(Zji)=E(Z4
ji)=3. Since E(Z2

ji)=1, we have Var(Z2
ji) = E(Z4

ji)−[E(Z2
ji)]

2 =

2. Else, we may choose a fat tail distribution if we consider it appropriate. For

example if we choose the t distribution scaled to have variance 1, then

Zji =

√
ν

ν − 2
Tν ,

where Tν has a t distribution with ν degrees of freedom. The kurtosis for this

distribution is

Kur(Zji) =
3(ν − 2)

ν − 4
,

giving the following variance.

Var(Z2
ji) =

2(ν − 1)

ν − 4
.

Hence, if we decide on ν = 5, then we are choosing a high kurtosis leading to

Var(Z2
ji)=8, that is a high variance for the squared residuals VR(Vǫ) which in turn

will lead to a higher variance for VTǫ
in (5.6). This implies that the observed σ̂2

ǫ will

receive less weight compared to our prior VRǫ
in our adjustment (5.5). Conversely, if

we judge a smaller kurtosis than the Gaussian one above is suitable, then a uniform

distribution centered on zero such as Zji ∼ Unif(−1, 1) will give Kur(Zji) = 1.8,

leading to a smaller variance Var(Zji) = 0.8. This will give more weight to our data

in the adjustment (5.5.).

Suppose we use representation (5.12) and we specify values for Var(Z2
ji) and VRǫ

.

One method to specify our fourth order quantities uses the following theorem.

Theorem 5.3.1. We assume that the level-1 population variance M(Vǫ) acts like

a scale parameter so that Rji(y) =
√
M(Vǫ)Zji ∀i, j. The proportion of variance

resolved Varσ̂2
ǫ
(M(Vǫ)), relative to the prior VMǫ

is

Varσ̂2
ǫ
(M(Vǫ))

Var(M(Vǫ))
=

1

1 + n−1
κ

c
c+1

, (5.15)

where, for simplicity, we write VMǫ
= cV 2

Rǫ
, c > 0 and κ = 1

gn
[(n−1)Var(Z2

ji)+2].

Proof. From Theorem 5.1.1, the adjusted variance of the level-1 population variance

is

Varσ̂2
ǫ
(M(Vǫ)) =

VMǫ
VTǫ

VMǫ
+ VTǫ

,
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where VTǫ
= 1

gn
VR(Vǫ) +

2
gn(n−1)

(VMǫ
+ V 2

Rǫ
) (see 5.10).

Using (5.14), VR(Vǫ) = (VMǫ
+ V 2

Rǫ
)Var(Z2

ji), and setting VMǫ
= cV 2

Rǫ
as in Gold-

stein & Woof (2006) we have

VTǫ
=

1

gn
[VMǫ

+ V 2
Rǫ
)Var(Z2

ji) +
2

gn(n− 1)
(VMǫ

+ V 2
Rǫ
)]

=
1

gn
[cV 2

Rǫ
+ V 2

Rǫ
)Var(Z2

ji) +
2

gn(n− 1)
(cV 2

Rǫ
+ V 2

Rǫ
)]

=
(c+ 1)V 2

Rǫ

gn(n− 1)
[(n− 1)Var(Z2

ji) + 2]

=
(c+ 1)V 2

Rǫ

(n− 1)
κ,

where κ = 1
gn
[(n−1)Var(Z2

ji)+2] for c > 0. Substituting VTǫ
in the above expression

for Varσ̂2
ǫ
(M(Vǫ)), we obtain

Varσ̂2
ǫ
(M(Vǫ))

VMǫ

=

(c+1)V 2
Rǫ

(n−1)
κ

VMǫ
+

(c+1)V 2
Rǫ

(n−1)
κ

=
1

1 + n−1
κ

c
c+1

.

The final result is obtained after substituting V 2
Rǫ

= 1
c
VMǫ

�

5.4 Some implementation issues

We can now use Theorem 5.3.1 to assess our beliefs about VMǫ
and V 2

Rǫ
by varying c

and the sample size n for a chosen value of κ = 1
gn
[(n−1)Var(Z2

ji)+2]. We note that

κ depends on the number of level-2 groups g. For example, setting κ = 2
g
results

in Var(Z2
ji) = 2 which is consistent with the assumption of a Gaussian distribution.

This is a simplifying assumption just made for the purposes of the present account,

but in real applications we would think carefully and consider the effect of varying

the kurtosis on our answers. Hence, the proportion of variance resolved relative to

the prior in (5.15) simplifies to

Varσ̂2
ǫ
(M(Vǫ))

Var(M(Vǫ))
=

1

1 + (n−1)g
2

c
c+1

(5.16)
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From (5.16) the proportion of variance resolved decreases monotonically from

one (c = 0) to [1 + (n−1)g
2

]−1 (c is large so that c ≈ c+ 1). We may now choose VMǫ

by exploring our beliefs to the implications of various level-1 sample sizes n given

κ. The dependence on the number of level-2 groups g is not a problem as it is fixed

in the multilevel design being considered. For instance the STAT1010 example has

g = 7 classes.

Figure 5.1 shows a nomogram of the relationship between various level-1 sample

sizes n, the scaling choice c and the corresponding proportion of variance remaining

in M(Vǫ) for the case g = 7. Using the graph, we will choose a small c if we feel

that the data is sufficiently informative so as to reduce the remaining variance as a

proportion of prior rapidly, else we will choose a larger value for c.
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Figure 5.1: The proportion of prior variance remaining in M(Vǫ) after adjusting M(Vǫ) by the

ANOVA estimator σ̂2
ǫ for κ = 2/g for group g = 7 and various level-1 sample sizes n, as a function

of c. For κ 6= 2, replace n by n′ = (n − 1)gκ/2 + 1. For this balanced case, the total sample sizes

gn varies from 14 to 210.

For κ 6= 2, we replace n by n′ = (n− 1)gκ/2 + 1. From (5.16) we note that if g

is small and n is large then g(n − 1) ≈ gn that is the total sample size. Hence, it

is the total sample size that determines the proportion of variance remaining in the

level-1 varianceM(Vǫ).

Goldstein & Wooff (2006) page 269 uses the notion of equivalent sample size to

provide an alternative method for assessing the prior information. For adjusting the
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level-1 variance, we write (5.5) as follows.

Eσ̂2
ǫ
(M(Vǫ)) = ασ̂2

ǫ + (1− α)E(M(Vǫ)) (5.17)

where α =
VMǫ

VMǫ+VTǫ
.

If we judge that our prior information is equivalent to a notional sample of size

m, then the adjusted expectation in (5.17) can be written in terms of the notional

prior and actual sample sizes with

α = n/(m+ n) (5.18)

Goldstein & Wooff (2006) states that the two methods are equivalent and gives

the following expression for the relationship between the two methods.

m =
κn(c+ 1)

(n− 1)c
(5.19)

We derive (5.19) as follows. Combining (5.6) and (5.16) and substituting α from

(5.18) we obtain

Varσ̂2
ǫ
(M(Vǫ))

Var(M(Vǫ))
=

VTǫ

VMǫ
+ VTǫ

= 1− VMǫ

VMǫ
+ VTǫ

= 1− α

=
m

m+ n
=

1

1 + (n−1)
κ

c
c+1

Solving for m in the last line above gives (5.19). Also, for sufficiently large n, (5.19)

simplifies to m ≈ κ(c+1)
c

from which c ≈ κ
m−κ

. The methods we developed above may

be viewed as an extension of that of Goldstein & Wooff (2006) for a scalar quantity;

substituting g = 1 gives similar results.

5.5 Application to STAT1010 data

In section 3.7.2 we carefully assessed the variance of the level-1 residual R(yji) and
obtained

V ar(R(yji)) = 237 = VRǫ
,

June 11, 2023



5.5. Application to STAT1010 data 161

hence E(M(Vǫ))=VRǫ
= 237. In our experience the distribution of examinations

marks do not have a thick tail. Hence, we choose κ = 2/g (see section 5.4) corre-

sponding to the fourth moment of a Gaussian distribution. Using VRǫ
= 237 and

VMǫ
= cV 2

Rǫ
we specify VMǫ

by choosing the value of c using Figure 5.1 which gives

the relationship between c and various sample sizes n for g = 7.

Since we are quite satisfied with our judgement of the prior level-1 variance

VRǫ
= 237, we wish to give the prior a reasonable weight in the adjustment. On

the other hand, the ANOVA estimator of the level-1 variance is efficient (see section

2.7.2), and therefore we also want to give the sample enough weight. We judge

that c = 0.03, corresponding to fast variance learning, is appropriate. This choice

results in m ≈ 10, giving a weight of about one third to our prior in the adjusted

expectation.

The observed estimate of σ̂2
ǫ , based on g = 7 classes and n = 23 students (a total

of 161 observations), is

σ̂2
ǫ =

1

g(n− 1)

∑

j

∑

i

(ǫji − ǭj.)
2 =

1

g(n− 1)

∑

j

∑

i

(yji − ȳj.)
2 = 213.70

Before carrying out the adjustment Eσ̂2
ǫ
(M(Vǫ)), we examine the 161 squared resid-

uals. Each (yji − ȳj.)
2/VRǫ

has a χ2(1) (chi-square distribution with one degree

of freedom) if yji are each i.i.d Gaussian. Almost all of the squared residuals are

close to their expected value of 237, but 11 are three or more times larger that

the expected value VRǫ
= 237, as shown in Table 5.1 below. Since, the probability

P(χ2
0.92(1)) > 3=0.08, we would expect about 13 such large residuals out of the 161.

Although here we have only 11 large squared residuals, there is a pattern in

Table 5.1: the Faculty of Law and Management (C1 to C3) has seven of the large

residuals, and these are 4 to 6 times larger than VRǫ
= 237, while the Faculty of

Engineering (C4 to C7) has only four large residuals, these being 3 to 4 times larger

than VRǫ
= 237. We have applied partial diagnostics to explore how data from the

two faculties combine to give the final adjusted expectation and found no substantial

differences when analysing the adjustments by the two sources separately.

Large squared residuals are mostly due to students scoring very good marks in
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Faculty Law & Management Engineering

Class C1 C2 C3 C4 C5 C6 C7

No. of squared residuals

≥ 3 times VRǫ
= 237 1 3 3 1 1 1 1

Largest squared residuals 1280.4 1470.6 1018.4 708.0 830.9 838.5 955.6

(compared to VRǫ
= 237) (5.4) (6.2) (4.3) (3.0) (3.5) (3.5) (4.0)

Table 5.1: Large observed squared residuals for each of the 7 classes of the STAT1010 data by

faculty. The rows show the number of cases exceeding 3 or more times the expected value VRǫ
= 237,

the largest squared residuals in each class, and the factor by which they exceed 237 in brackets.

an otherwise average class. For example, the largest value 1470.6 is due to a student

scoring 83% while the class average is 44.65%. We could have anticipated having a

few very good students in average classes and specify a tail distribution somewhat

thicker than for the normal distribution. In section 5.5.1 we consider the effect of

specifying a higher kurtosis on our adjusted expectation for M(Vǫ).

For the chosen value of c = 0.03, we obtain VMǫ
= 1685.07 and VTǫ

= 751.35.

Using (5.5) and (5.6) from Theorem 5.1.1, the observed adjusted expectation and

variance of the level-1 varianceM(Vǫ) are as follows.

Eσ̂2
ǫ
(M(Vǫ)) = 220.88

Varσ̂2
ǫ
(M(Vǫ)) = 519.65,

representing a reduction of 1165.42, about 69% of the prior VMǫ
. The standard-

ized change in expectation is -0.472, indicating that the change in expectation is

only marginally smaller than the prior expectation, and hence, unsurprising. The

remaining prior variation is about 31%. We conclude that the level-1 variance in

examinations marks is as we expected.

Varying c impacts the adjusted expectation for M(Vǫ) marginally but has a

greater effect on the adjusted variation. Choosing c = 0.01, the adjusted expecta-

tion is 226.92 with adjusted variation down to 318.72 and remaining prior variation

of 57%. For c = 0.1, corresponding to slower variance learning, the adjusted ex-

pectation is 216.61, but the adjusted variation increases to 702.11 with 12.5% prior

variation remaining.
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5.5.1 Effects of a higher kurtosis

Following our discussion above, we now specify a higher kurtosis, consistent with a

heavy tail distribution. We intend to compare the results of our adjustments here

with those for the above case where Var(Z2
ji) = 2, which for reference, we term

the normal case. Given we observed only a few large residuals, we judge a kurtosis

leading to about twice the value of Var(Z2
ji) for the normal case would be suitable.

We choose ν = 7 in accordance with the t distribution (see section 5.3), giving

Var(Z2
ji) = 2(ν − 1)/(ν − 4) = 4. For ease of comparison we keep the same scaling

choice c = 0.03. Thus VMǫ
= 1685.07 stays the same, but VTǫ

= 1470.04, almost

double the normal value. This increase results in the observed value σ̂2
ǫ receiving

less weight, 0.53 compared to 0.69 for the normal case, in the adjusted expectation

(5.5). The adjusted expectation and variance of the level-1 variance M(Vǫ) is as

follows.

Eσ̂2
ǫ
(M(Vǫ)) = 224.56

Varσ̂2
ǫ
(M(Vǫ)) = 785.11,

a reduction of 899.96 representing 53.41% of the prior, which is less than for the

normal case. The standardized change in expectation is -0.415 hence, unsurprising.

There is relatively more prior variation remaining, about 46.59%. To conclude,

the increased kurtosis, compared to the normal case, results in an increase in the

estimated level-1 variance, as well as in its adjusted variation, while the change in

expectation is in line with what we expected.

5.6 Adjusting the level-1 variance - unbalanced

situation

In section 5.1 we revisited the unbalanced SOEREF model and derived various theo-

rems and results for the adjustment of the population level-1 varianceM(Vǫ) for the

balanced case. The representation for the squared residuals ǫ2ji and the assumptions

for the fourth order uncorrelated properties we used in our derivations, also apply

to the unbalanced case. However, the proofs of the theorems and some of the results
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for unbalanced data are somewhat more complex (due to more complex expressions

for Tǫ and Var(Tǫ)) , and may be viewed as extensions of the balanced case as shown

below.

5.7 The adjusted expectation and variance of

M(Vǫ) for the unbalanced situation

The adjusted mean and variance for M(Vǫ) given σ̂2
ǫ for the unbalanced case is

similar to the balanced situation but with a more complex expression for Var(Tǫ)

as the MSE estimator of σ̂2
ǫ is based on nj observations in group j for unbalanced

data. To adjust the level-1 variance of the SOEREF model for unbalanced data, we

have the following theorem.

Theorem 5.7.1. The Bayes linear adjusted mean and variance of the level-1 popu-

lation varianceM(Vǫ) for unbalanced data based on the mean squared error (MSE)

σ̂2
ǫ is given by

Eσ̂2
ǫ
(M(Vǫ)) =

VMǫ
σ̂2
ǫ + VTǫ

VRǫ

VMǫ
+ VTǫ

, (5.20)

with the corresponding adjusted variance

Varσ̂2
ǫ
(M(Vǫ)) =

VMǫ
VTǫ

VMǫ
+ VTǫ

, (5.21)

with

VTǫ
=

1

(N − g)2

[
g∑

j

(nj − 1)2

nj
VR(Vǫ) + 2

g∑

j

(nj − 1)

nj
(VMǫ

+ V 2
Rǫ
)

]
. (5.22)

Proof. The proof proceeds as for Theorem 5.1.1. We prove (5.22) first. For unbal-

anced data the MSE σ̂2
ǫ is as follows.

σ̂2
ǫ =

1

(N − g)
SSE

=
1

(N − g)

g∑

j

nj∑

i

(yji − ȳj.)
2

=
1

(N − g)

g∑

j

nj∑

i

(ǫji − ǭj.)
2,
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where N =
∑

nj .

The representation for σ̂2
ǫ is

σ̂2
ǫ =

1

(N − g)

g∑

j

[
nj∑

i

ǫ2ji −
1

nj
(

nj∑

i

ǫji)
2

]

=
1

(N − g)

g∑

j

[
nj∑

i

(nj − 1)

nj

ǫ2ji −
2

nj

nj∑

i<i′

ǫjiǫji′

]

=
1

(N − g)

g∑

j

(
nj − 1

nj

) nj∑

i

[M(Vǫ) +Rji(Vǫ)]

− 2

(N − g)

g∑

j

1

nj

nj∑

i<i′

Rji(Y )Rji′(Y )

=M(Vǫ) +
1

(N − g)

g∑

j

(
nj − 1

nj

) nj∑

i

Rji(Vǫ)

− 2

(N − g)

g∑

j

1

nj

nj∑

i<i′

Rji(Y )Rji′(Y )

=M(Vǫ) + Tǫ (5.23)

where

Tǫ =
1

(N − g)

g∑

j

(
nj − 1

nj

) nj∑

i

Rji(Vǫ)−
2

(N − g)

g∑

j

1

nj

nj∑

i<i′

Rji(Y )Rji′(Y ).

(5.24)

Using the fourth-order uncorrelated properties (5.7) and (5.8):

Cov(M(Vǫ),Rji(y)Rji′(y)) = Cov(Rji(Vǫ),Rji(y)Rji′(y)) = 0,

and

Cov(Rji(y)Rji′(y),Rj′i(y)Rj′i′(y)) = 0, for j 6= j′,

we obtain

Var(Tǫ) = VTǫ
=

1

(N − g)2

g∑

j

(
nj − 1

nj

)2

njVR(Vǫ)

+
4

(N − g)2

g∑

j

1

n2
j

nj∑

i<i′

(VMǫ
+ V 2

Rǫ
)

=
1

(N − g)2

[
g∑

j

(nj − 1)2

nj
VR(Vǫ) + 2

g∑

j

(nj − 1)

nj
(VMǫ

+ V 2
Rǫ
)

]
,
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which proves (5.22). One way to verify the above expressions is to put nj = n and

compare with the balanced case.

Using the properties of Tǫ, that are similar to the balanced case (see (5.9) to

(5.11)) albeit the more complex expression for VTǫ
, and the decomposition (5.23) for

σ̂2
ǫ , we derive the following joint prior assessments

E(σ̂2
ǫ ) = VRǫ

, Var(σ̂2
ǫ ) = VMǫ

+ VTǫ
, Cov(σ̂2

ǫ ,M(Vǫ)) = VMǫ
.

The proofs for (5.20) and (5.21) follow from the application of the Bayes linear

equations for updating a mean given σ̂2
ǫ . �

5.8 Choice of priors VMǫ and VR(Vǫ) for the unbal-

anced data

In order to choose priors for VMǫ
and VR(Vǫ) we follow the development in Theorem

5.3.1 that gives the proportion of variance resolved in Varσ̂2
ǫ
(M(Vǫ)), relative to the

prior VMǫ
. For the unbalanced case, we have the following theorem.

Theorem 5.8.1. The proportion of variance resolved in Varσ̂2
ǫ
(M(Vǫ)), relative to

the prior VMǫ
for unbalanced data is as follows:

Varσ̂2
ǫ
(M(Vǫ))

Var(M(Vǫ))
=

1

1 + N−g
κ

c
c+1

. (5.25)

Proof. Using (5.14), VR(Vǫ) = (VMǫ
+ V 2

Rǫ
)Var(Z2

ji), and setting VMǫ
= cV 2

Rǫ
in (5.22)

we obtain

VTǫ
=

1

(N − g)2

[
g∑

j

(nj − 1)2

nj
VR(Vǫ) + 2

g∑

j

(nj − 1)

nj
(VMǫ

+ V 2
Rǫ
)

]

=
(c+ 1)V 2

Rǫ

(N − g)2

[
g∑

j

(nj − 1)2

nj

Var(Z2
ji) + 2

g∑

j

(nj − 1)

nj

]

=
(c+ 1)V 2

Rǫ

(N − g)
κ. (5.26)

Expression (5.26) for VTǫ
is similar to its counterpart in Theorem 5.3.1 but with

κ =
1

(N − g)

[
g∑

j

(nj − 1)2

nj

Var(Z2
ji) + 2

g∑

j

(nj − 1)

nj

]
, (5.27)

thence the proof follows. �
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We note that the proportion of variance resolved (5.25) is similar to the balanced

case with N = ng. For Gaussian kurtosis, substituting Var(Z2
ji) = 2 gives κ = 2.

The nomogram relating the scaling choice c and sample size n for the balanced case

in figure 5.1 also applies to the unbalanced case because in both cases the total

level-1 sample size N determines the proportion of variance resolved inM(Vǫ). For

unbalanced data and κ 6= 2, we replace N by N ′ = (N − g)κ/2 + g.

The alternative method of direct assessment of our prior information described

in section (5.4) is also based on the total level-1 sample size. We thus write the

equivalent notional prior and actual sample sizes in terms of their respective totals

M and N . Therefore in the adjustment Eσ̂2
ǫ
(M(Vǫ)) = ασ̂2

ǫ + (1− α)E(M(Vǫ)) we

have

α = N/(M +N). (5.28)

The equivalence between the two methods is given by the following expression:

M =
κN(c + 1)

(N − g)c
. (5.29)

If N is large relative to g, then M ≈ κ(c+ 1)/c from which c ≈ κ/(M − κ).

5.9 Application to the STAT1010 data

We shall use our earlier prior assessment VRǫ
=237. We wish to compare the bal-

anced and unbalanced analyses so we choose κ = 2 in line with the fourth moment

of a Gaussian distribution as in the balanced case. If we keep our scaling choice at

its previous value of c = 0.03, then using M ≈ κ(c + 1)/c our prior is equivalent to

a sample size M = 69, giving a weight of about one fifth to the prior in the adjust-

ment ofM(Vǫ), which is somewhat less compared to the one third in the balanced

situation. This seems reasonable, given the relatively large total unbalanced sample

size of N = 269 compared to 161 in the balanced case.

The observed value of σ̂2
ǫ based on g = 7 classes and a total ofN = 269 students is

227.29, not far from the 213.70 for the balanced case. We examine the 269 squared

residuals comparing each to the χ2(1) as in section 5.5. There are 23 squared
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residuals that are larger than 3 × VRǫ
which is very close to the 22 (out of 269) we

would expect from the chi-square distribution.

For the unbalanced data, table 5.2 below does not show any pattern in extreme

squared residuals between the two faculties, unlike the balanced case. The apparent

differences between faculties for the balanced case may be considered as a statistical

artifact resulting from the non-random method we used to select cases from the

complete unbalanced data to create the balanced data, namely by removing data

from each of six classes so that they all have 23 students as in the smallest class. It is

noteworthy that our partial diagnostics in section 5.5 found no substantial differences

by faculty. Nevertheless, we still have a small percentage of extreme values and it

is important that we check our analysis by specifying a higher kurtosis.

Faculty Law & Management Engineering

Class C1 C2 C3 C4 C5 C6 C7

No. of squared residuals

≥ 3 times VRǫ
= 237 3 3 4 2 3 6 2

Largest squared residuals 1243.8 1470.6 1005.8 1502.8 819.6 1083.3 1108.4

(compared to VRǫ
= 237) (5.2) (6.2) (4.2) (6.3) (3.5) (4.6) (4.7)

Table 5.2: Large observed squared residuals for each of the 7 classes of the STAT1010 data

(unbalanced) by faculty. The rows show the number of cases exceeding 3 or more times the expected

value VRǫ
= 237, the largest squared residuals in each class, and the factor by which they exceed

237 in brackets.

For the scaling choice c = 0.03, VMǫ
= 1685.07 as for the balanced situation.

Using (5.26), VTǫ
= 441.63 about 40% smaller than the corresponding value of

751.35 for the balanced case. This will result in less weight given to the prior

in the adjusted expectation of M(Vǫ). Using (5.20) and (5.21) of Theorem 5.7.1,

the observed adjusted expectation and variance of the level-1 varianceM(Vǫ) is as

follows.

Eσ̂2
ǫ
(M(Vǫ)) = 229.31

Varσ̂2
ǫ
(M(Vǫ)) = 349.92,

The adjusted variation has been reduced by 1335.15, about 79% of the prior VMǫ
.
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The standardized change in expectation of -0.211 is unsurprising and indicates that

the adjusted expectation is slightly smaller than the prior expectation. The prior

variation remaining is about 21% (10% points less than the balanced case), hence

the level-1 variation in examination marks is as we expected. We are less uncertain

about the level-1 variance compared to the balanced case due to the larger sample

size in the unbalanced data.

As for balanced data, varying the scaling choice c has little effect on the adjusted

expectation; the adjusted variation, however, is more sensitive to the variations in

c. For c = 0.01 the adjusted expectation is 231.52 with 43.53% prior variation

remaining while for c = 0.1 the adjusted expectation is 228.04 with a mere 7.75%

of prior variation remaining.

We consider the effect of a higher kurtosis on our analysis. We choose ν = 7 in

accordance with the t distribution as in the balanced case. Hence, Var(Z2
ji) = 2(ν−

1)/(ν− 4) = 4. We also keep the same scaling choice c = 0.03. Thus VMǫ
= 1685.07

stays the same, but VTǫ
= 871.80, almost double the value for Gaussian kurtosis.

Despite this increase, the observed value σ̂2
ǫ receives only marginally less weight,

0.66 compared to 0.69 for the Gaussian case, in the adjusted expectation (5.5). The

adjusted expectation and variance of the level-1 varianceM(Vǫ) is as follows.

Eσ̂2
ǫ
(M(Vǫ)) = 230.60

Varσ̂2
ǫ
(M(Vǫ)) = 574.55,

a reduction of 1110.52 representing 65.90% of the prior, which is less than for the

Gaussian case. The standardized change in expectation is -0.192 hence, unsurpris-

ing. There is relatively more prior variation remaining, about 34.1%. To conclude,

increasing the kurtosis to twice that of the Gaussian distribution results in an in-

crease in the estimated level-1 adjusted variation but leaves the adjusted expecta-

tion virtually unchanged, while the change in expectation is in line with what we

expected.

June 11, 2023



Chapter 6

The Bayes Linear Minimum

Variance Estimator and Two-stage

Bayes linear analysis

In Chapter 5 we adjusted the level-1 variance of the SOEREF model. In this chapter,

we shall adjust the level-2 variance which is more difficult to estimate and could

even be negative. We develop a new methodology which we term Bayes linear

Minimum Variance Estimator (BLIMVE) and apply it to adjust beliefs about the

population level 2 variance in the SOEREF model. We shall also consider adjustment

of variances in the more complex SOEREG model.

Having learned about the variance components in a multilevel model, it seems in-

tuitively sensible to use the adjusted variances to learn about the population means.

Such Bayes linear assessment of the means is termed variance-modified Bayes linear

assessments by Goldstein (1979), while the procedure for assessing the variances

first, and then using them to assess means in a second stage, is termed two-stage

Bayes linear analysis in Goldstein & Woof (2007, pg. 288). Below we develop and

apply two-stage analysis for both the SOEREF and SOEREG models.

170



6.1. Adjustment of the level-2 variance and the development of a Bayes
Linear Minimum Variance Estimator (BLIMVE) 171

6.1 Adjustment of the level-2 variance and the de-

velopment of a Bayes Linear Minimum Vari-

ance Estimator (BLIMVE)

So far we have adjusted the population level-1 variance of the two-level SOEREF

model. We shall now adjust our beliefs about the population level-2 variance, or

more specifically the variance of the level-2 residual V ar(Rj(M(y)))=(σ2
u−γ), where

γ is the prior variance of the population grand mean M(y). The level-2 variance

plays a very important part in the Bayes linear analysis of the SOEREF model:

the adjusted expectation and variance, and the canonical analysis of the population

grand mean M(y) and the group j mean M(yj), as well as the choice of sample

sizes are all largely dependent on (σ2
u−γ) (see Chapter 4). Estimation of the level-2

variance though, can be problematic especially if the number of level-2 groups J is

small and/or the level-2 variance is close to zero; it could be negative in the classical

approach, while in the fully Bayesian approach the choice of a suitable prior for the

level-2 variance is not straightforward (see Chapter 2).

In this section we shall develop a Bayes linear estimator of the population level-2

variance of the SOEREF model for unbalanced data which we term Bayes Linear

Minimum Variance Estimator (BLIMVE). We begin by considering the simplest case

where the population group j meanM(yj) is known.

6.2 Assessing the population level-2 variance with

known population mean

The Bayes Linear Minimum Variance Estimator involves some complex expressions

in the calculations of fourth order quantities. Hence, for ease of exposition, we

use the simpler notation of the Second Order Exchangeable Regression (SOEREG)

model of which the SOEREF model is a special case (see Chapter 3) as follows.

Definition 6.2.1. Let yji represent univariate outcome measurements on each in-

dividual i nested in group j. A Second-order exchangeable random effects
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(SOEREF) model is given by either of the following representation form:

Hierarchical form:

Level-1 : yji = βj + ǫji (6.1)

Level-2 : βj =M(β) +Rj(β). (6.2)

Single-equation form:

yji =M(β) +Rj(β) + ǫji (6.3)

i = 1, 2, . . . , nj , and j = 1, 2, . . . , J.

whereM(β) is the population grand mean, βj is the population group j mean, Rj(β)

are the level 2 residuals, and ǫji are the level 1 residuals.

The mean and variance ofM(β) are

E(M(β)) = µβ, V ar(M(β)) = γβ, γβ ≥ 0. (6.4)

The mean, variance and covariance of βj are

E(βj) = µβ, V ar(βj) = σ2
β , σ2

β ≥ 0, Cov(βj, βj′) = γβ ∀j 6= j′. (6.5)

The collection of level-2 residuals R1(β),R2(β), . . . are SOE with

E(Rj(β)) = 0, V ar(Rj(β)) = σ2
β − γβ = VRβ

, Cov(Rj(β),Rj′(β)) = 0,

∀j 6= j′, (6.6)

and each Rj(β)) is uncorrelated withM(β).

The collection of level-1 residuals ǫ11, ǫ12 . . . are SOE with

E(ǫji) = 0, V ar(ǫji) = σ2
ǫ ∀i, j, (6.7)

and ǫ11, ǫ12 . . . are mutually uncorrelated and are also uncorrelated with the level-2

residuals Rj(β)).

Representation (6.3) corresponds to the form of the SOREF model yji =M(y)+

Rj(M(y)) +Ri(yj) we have used so far.
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Exchangeability representation for estimating the population level-2

variance

To learn about the population level-2 variance, we could use the level-2 repre-

sentation (6.2) as follows. The group means βj are not observable. If, however they

were observable we could follow the same procedure as in the adjustment of the

population level-1 variance. Let the squared level-2 residuals [Rj(β)]
2 = Vβj

, and

suppose that we judge that the sequence Vβ1, Vβ2, . . . is second-order exchangeable.

Hence, we may write the representation for Vβj
as follows

[Rj(β)]
2 = Vβj

=M(Vβ) +Rj(Vβ) (6.8)

where M(Vβ) may be regarded as the underlying population level-2 variance with

E(M(Vβ)) = VRβ
and constant variance VMβ

. The sequence R1(Vβ),R2(Vβ), . . . is

uncorrelated with zero mean and constant variance VR(Vβ ). Also each element of

Rk(Vβ) is uncorrelated withM(Vβ). To learn about the level-2 population variance,

we could construct the appropriate squared quantities using (5.31) as follows:

(βj − β̄)2 = (Rj(β)− R̄)2, (6.9)

where

β̄ =
1

J

J∑

j=1

βj and R̄ =
1

J

J∑

j=1

Rj(β) (6.10)

We could, in principle, decompose the right-hand side of (6.9) and obtain the joint

prior assessments necessary to adjust the level 2 variance, but since the βj’s are

not observable, this procedure is not feasible in practice. We therefore need to find

estimates of the βj ’s.
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6.3 Construction of (within-group) estimators

We must therefore construct appropriate combinations of our ‘observables’, namely

β̂j, which are informative for the population level-2 varianceM(Vβ).

Suppose we obtain ordinary least squares estimators β̂j of βj based on the data

in group j, that is yj. = βj + ǫji (6.1) of Definition 5.11.1. Hence, for each group j

the least squares estimator β̂j = ȳji =
∑

i yji/nj . Then we may write

β̂j = βj + δj ,

where the residuals δj are uncorrelated with zero mean, and unequal variances as

follows.

E(δj) = 0

V ar(δj) = σ2
j

Cov(δj , δj′) = 0 ∀j 6= j′ (6.11)

We note that V ar(β̂j |βj) = V ar(ȳji|βj) = σ2
ǫ /nj = σ2

j . Hence, we may substitute

our Bayes linear estimator of the level-1 variance as obtained in Section 5.7. It is

necessary to allow unequal variances (σ2
j ) to deal with unbalanced data, different

groups having different sample sizes, nj . Otherwise, the data may also be inher-

ently heteroscedastic due to some classes having students of about the same ability

(less variable performances) and other classes with students of mixed abilities (more

variable performances). Whatever the reason for differences of the within-group

variances, we wish to account for these differences in our Bayes linear estimator of

M(Vβ).

We define the within-group j squared quantity as follows

zj = (β̂j − ¯̂
βa)

2

where
¯̂
βa =

∑
j aj β̂j and

∑
j aj = 1. The weights aj will be determined so that more

informative groups, with relatively larger sample sizes for example, contribute more

weight (larger values of aj) in estimating M(Vβ). The calculations of the weights

aj will be discussed in the sections that follows.
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Replacing βj =M(β) +Rj(β) from the level-2 representation in the estimator

β̂j = βj + δj yields

β̂j =M(β) +Rj(β) + δj (6.12)

From (6.12),
¯̂
βa = M(β) + R̄a + δ̄a, where R̄a =

∑
j ajRj(β) and δ̄a =

∑
j ajδj .

Hence, the within group quantities zj that are informative for estimating M(Vβ)

can be written as follows

zj = (β̂j − ¯̂
βa)

2

= [(Rj(β)− R̄a) + (δj − δ̄a)]
2

= (Rj(β)− R̄a)
2 + (δj − δ̄a)

2 + 2(Rj(β)− R̄a)(δj − δ̄a).

(6.13)

The decomposition (6.13) shows that zj above comprises the squared level-2

residual (Rj(β)− R̄a)
2 suitable to learn aboutM(Vβ) via our representation (6.8),

the squared level-1 residual (δj− δ̄a)
2 suitable to learn about σ2

ǫ and a cross-product

term of level-2 and level-1 residuals. We group the sequence z1, z2, . . . , zJ in the

vector Z.

6.4 The Bayes Linear Minimum Variance Estima-

tor

We now have a representation for the population level-2 variance and the corre-

sponding observable quantities Z to adjust our prior belief aboutM(Vβ). Applying

the Bayes linear rule, we obtain the adjusted expectation of the level 2 variance as

EZ(M(Vβ)) = E(M(Vβ)) + Cov(M(Vβ),Z)V ar(Z)−1(Z−E(Z)) (6.14)

with the corresponding adjusted variance

V arZ(M(Vβ)) = V ar(M(Vβ))− Cov(M(Vβ),Z)V ar(Z)−1Cov(Z,M(Vβ)) (6.15)

Any choices of weights aj with
∑

j aj = 1 in Z would give an estimator ofM(Vβ) with

its accuracy assessed by the adjusted variance but it seems intuitive to choose weights
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that minimize this variance. Hence, we obtain the estimated population variance

EZ(M(Vβ)) by finding the weights aj that minimises the variance V arZ(M(Vβ)) or

equivalently, that maximises Cov(M(Vβ)),Z)V ar(Z)−1Cov(Z,M(Vβ)), subject to
∑

j aj = 1.

Our approach belongs to the criteria-based procedures in that we specified a

criterion first, namely the minimum adjusted variation, and then we developed the

BLIMVE to satisfy this criterion. Criteria-based procedures for estimating variance

components are discussed in Searle et al. (1992). One such procedure is the Min-

imum Variance Quadratic Unbiased Estimator (MINQUE) (Rao, 1971a) which, in

principle, is analogous to BLIMVE.

For MINQUE, Rao considers the model y = Xβ +
∑

iZiui and estimates a linear

function of the variance components p′σ2 (e.g. σ2
ǫ and σ2

α) using a quadratic function

of the data, namely y′Ay (BLIMVE uses the collection of quadratic forms zj). If

the random vectors in ui were known, then Rao states that a “natural” estimator

of σ2
i would be u′

iui/qi where qi is the order of ui. Thus the estimator of p′σ2

would be p′σ̃2 =
∑

i piu
′
iui/qi. However, using the quadratic form, the estimator

of p′σ2 is p′σ̂2 = y′Ay = u′Z′AZu. Rao minimizes a weighted Euclidean norm of

the difference p′σ̂2 − p′σ̃2. So both MINQUE and BLIMVE derive estimators by

minimizing a variance. In contrast to BLIMVE, MINQUE does not require inverting

a variance-covariance matrix. However, one major problem of MINQUE is that the

solutions to the resulting equations are functions of the variance components (i.e.

σ2
ǫ and σ2

α). Rao uses pre-assigned values of the variance components, say σ2
ǫ0 and

σ2
α0 to calculate the MINQUE estimators. The latter estimators, however, are only

minimum variance if the pre-assigned values are the correct variance components, i.e.

σ2
ǫ0 = σ2

ǫ and σ2
α0 = σ2

α (see Swallow and Searle, 1978). In contrast, for Bayes linear

estimation of variances there are suitable methods to specify prior variances and

fourth-order quantities, as well as to check the sensitivity of our variance estimators

to changes in our prior specifications (see Section 5.8 for example).

In the fully Bayesian approach for estimating the level-2 variance, there are

problems in specifying suitable priors when the number of level-2 groups J is small

(Gelman,2006). We next investigate the BLIMVE estimator for the two groups
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situation.

6.5 BLIMVE for the two-group case

In order to investigate the BLIMVE for the two group situation, we need to calculate

EZ(M(Vβ)) = E(M(Vβ)) + Cov(M(Vβ),Z)V ar(Z)−1(Z − E(Z)) for Z = (z1, z2).

We start by calculating V ar(Z)−1, since it is an important part of the maximization

criterion. We use the constraint a1 + a2 = 1 on the two groups to simplify our

calculations. Substituting a1 + a2 = 1 in zj = (ȳj. − ȳa)
2, the jth element of Z ,

gives z1 = a22(ȳ1. − ȳ2.)
2 and z2 = a21(ȳ1. − ȳ2.)

2. Hence, we only need to calculate

the variance of z1 and multiply it by a21 / a22 to obtain the corresponding variance

of z2.

Using representation (6.13):

z1 = [(R1(β)− (a1R1(β) + a2R2(β)) + (δ1 − (a1δ1 + a2δ2)]
2

= a22[(R1(β)−R2(β)) + (δ1 − δ2)]
2 (since a2 = 1− a1)

= a22[(R1(β)−R2(β))
2 + (δ1 − δ2)

2 + 2(R1(β)−R2(β))(δ1 − δ2)]

= a22[(R1(β)
2 +R2(β)

2 − 2R1(β)R2(β) + (δ1 − δ2)
2

+ 2(R1(β)−R2(β))(δ1 − δ2)]

= 2a22M(Vβ) + T1 + T δ
1 + T δβ

1 (using representation (6.8)) (6.16)

where,

T1 = a22[R1(Vβ) +R2(Vβ)− 2R1(β)R2(β)]

T δ
1 = a22[δ

2
1 + δ22 − 2δ1δ2]

T δβ
1 = 2a22[(R1(β)−R2(β))(δ1 − δ2)]. (6.17)

We have the following expectations:

E(T1) = 0, E(T δ
1 ) = a22(σ

2
1 + σ2

2), E(T δβ
1 ) = 0. (6.18)

In addition to the uncorrelated properties of the residuals Rk(β),Rk(Vβ) (see

Definition 6.2.1) and δk (see 6.11), we assume the following higher order uncorrelated
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properties

Cov(M(Vβ),Rj(Vβ) = Cov(M(Vβ),Rj(β)) = Cov(M(Vβ), δj) = 0

Cov(Rj(Vβ),Rj(β)) = Cov(Rj(Vβ),Rj(β)Rj′(β)) = Cov(δj,Rj(β)) = 0.

(6.19)

Using the above properties and the second-order specifications in (6.8) and writ-

ing µ4 = E(δ4j ) , the variances are:

V ar(T1) = a42[2VR(Vβ) + 4(VMβ
+ V 2

Rβ
)]

V ar(T δ
1 ) = a42[(µ4 − σ4

1) + (µ4 − σ4
2) + 4σ2

1σ
2
2]

V ar(T δβ
1 ) = 8a42(σ

2
1 + σ2

2)VRβ
(6.20)

Hence, we obtain the variances of z1 and z2 (with a1 in place of a2) as follows.

V ar(z1) = 4a42VMβ
+ V ar(T1) + V ar(T δ

1 ) + V ar(T δβ
1 )

= 4a42VMβ
+ a42[2VR(Vβ) + 4(VMβ

+ V 2
Rβ
)]

+ a42[(µ4 − σ4
1) + (µ4 − σ4

2) + 4σ2
1σ

2
2 ]

+ 8a42(σ
2
1 + σ2

2)VRβ

V ar(z2) = 4a41VMβ
+ V ar(T2) + V ar(T δ

2 ) + V ar(T δu
2 )

= 4a41VMβ
+ a41[2VR(Vβ) + 4(VMβ

+ V 2
Rβ
)]

+ a41[(µ4 − σ4
1) + (µ4 − σ4

2) + 4σ2
1σ

2
2 ]

+ 8a41(σ
2
1 + σ2

2)VRβ

Replacing a22 by a21 in the representation for z1 in (6.16) we obtain the represen-

tation for z2.

z2 = 2a21M(Vβ) + T2 + T δ
2 + T δβ

2 , (6.21)

where all the terms in T2 are similar to those of T1 with a1 in place of a2. We

calculate the following covariances:

Cov(T1, T2) = a21a
2
2[2VR(Vβ) + 4(VMβ

+ V 2
Rβ
)]

Cov(T δ
1 , T

δ
2 ) = a21a

2
2[(µ4 − σ4

1) + (µ4 − σ4
2) + 4σ2

1σ
2
2)]

Cov(T δβ
1 , T δβ

2 ) = 8a21a
2
2(σ

2
1 + σ2

2)VRβ
. (6.22)
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Hence,

Cov(z1, z2) = 4a21a
2
2VMβ

+ Cov(T1, T2) + Cov(T δ
1 , T

δ
2 ) + Cov(T δβ

1 , T δβ
2 )

= 4a21a
2
2VMβ

+ a21a
2
2[2VR(Vβ) + 4(VMβ

+ V 2
Rβ
)]

+ a21a
2
2[(µ4 − σ4

1) + (µ4 − σ4
2) + 4σ2

1σ
2
2]

+ 8a21a
2
2(σ

2
1 + σ2

2)VRβ

We may write the above expressions more simply as:

V ar(z1) = a424(VMβ
+ VT ), V ar(z2) = a414(VMβ

+ VT ), and

Cov(z1, z2) = a21a
2
24(VMβ

+ VT ),

giving

V ar(Z) = 4(VMβ
+ VT )


 a42 a21a

2
2

a21a
2
2 a41


 (6.23)

where

4(VMβ
+ VT ) = 4VMβ

+ [2VR(Vβ) + 4(VMβ
+ V 2

Rβ
)]

+ [(µ4 − σ4
1) + (µ4 − σ4

2) + 4σ2
1σ

2
2 ] + 8(σ2

1 + σ2
2)VRβ

,

with

VT =
1

4
(V ar(Tj) + V ar(T δ

j ) + V ar(T δβ
j )) ∀j = 1, 2.

Clearly, V ar(Z) is singular. In such a case we use the Moore-Penrose general-

ized inverse V ar(Z)†, namely the generalized inverse constructed from the space of

positive eigenvectors as in Goldstein and Wooff (2006).

We write

Σ =


 a42 a21a

2
2

a21a
2
2 a41




Since Σ is of rank one it can be shown that the singular value decomposition

method for calculating the Moore-Penrose generalized inverse simplifies to

Σ† = trace(ΣTΣ)−1ΣT .
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Since Σ is symmetric, we have

Σ† =
1

(a41 + a42)
2


 a42 a21a

2
2

a21a
2
2 a41




The existence and uniqueness of the Moore-Penrose inverse was established by Pen-

rose (1955) via four conditions as follows.

Corresponding to any m× n matrix A there is a unique n×m matrix A† such

that

1. AA†A = A (i.e. A† is a generalized inverse of A);

2. A†AA† = A† (i.e. A is a generalized inverse of A†);

3. (AA†)T = AA† (i.e. AA† is symmetric);

4. (A†A)T = A†A (i.e. A†A is symmetric).

It is straightforward to verify that Σ† satisfies the above four conditions. In par-

ticular, satisfaction of conditions (1) and (4) above implies that Σ† is a minimum

norm generalized inverse of Σ (see Harville, 1997).

We now maximize the BLIMVE condition using the generalized inverse, that is

replacing V ar(Z)−1 in (6.23) by (4(VMβ
+ VT ))

−1Σ†. From representation (6.16)

Cov(M(Vβ)),Z) = 2VMβ

(
a22 a21

)
.

Maximization of Cov(M(Vβ)),Z)V ar(Z)−1Cov(Z,M(Vβ)) gives

4V 2
Mβ

(4(VMβ
+ VT ))

−1

(a41 + a42)
2

(
a22 a21

)

 a42 a21a

2
2

a21a
2
2 a41





a22

a21




=
V 2
Mβ

(VMβ
+ VT )

. (6.24)

Since the above result is free of aj , there is no minimum adjusted variance. However,

we can still make inferences on the level-2 variance as follows.
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The adjusted mean is

EZ(M(Vβ)) = E(M(Vβ)) + Cov(M(Vβ),Z)V ar(Z)†(Z−E(Z))

= VRβ
+

2VMβ
(4(VMβ

+ VT ))
−1

(a41 + a42)
2

(
a22 a21

)

 a42 a21a

2
2

a21a
2
2 a41





a22(ȳ1. − ȳ2.)

2 − a22(2VRβ
+ σ2

1 + σ2
2)

a21(ȳ1. − ȳ2.)
2 − a21(2VRβ

+ σ2
1 + σ2

2)




= VRβ
+ 2(4(VMβ

+ VT ))
−1VMβ

((ȳ1. − ȳ2.)
2 − (2VRβ

+ σ2
1 + σ2

2))

=
1
2
VMβ

[(ȳ1. − ȳ2.)
2 − (σ2

1 + σ2
2)] + VRβ

VT

VMβ
+ VT

. (6.25)

Using (6.24) we calculate the adjusted variance as

V arZ(M(Vβ)) =
VMβ

VT

VMβ
+ VT

(6.26)

Since here the adjusted mean depends on only two groups, we would consider giving

more weight to our priors.

The choice of a prior distribution is also an issue in the full Bayes analysis of

the random effects model yji = µ + αj + ǫji for a small number of groups J . For

example, if the level-2 variance σ2
α is close to zero, it is appropriate to use a uniform

prior on σα. However, for J = 2 this leads to an improper posterior density with

the undesirable consequence that σα = ∞, resulting in no shrinkage. The level-2

variance primarily controls by how much the adjusted population group j mean is

shrunk towards the overall mean (Section 4.4.2). (Gelman, 2006) argues that this

lack of shrinkage is to be expected of the Bayes posterior estimator when the number

of groups J is small, and is consistent with the conclusion of James and Stein (1960)

that unshrunken estimators are admissible if the number of groups J < 3.

6.6 BLIMVE for two or more groups

The calculations of variances and covariances of the elements of V ar(Z) for the two-

group case in section (6.5) are complex. To avoid such complexity in extending the

BLIMVE to the general J group case, we shall make use of vectors of weights aj in
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deriving the elements of V ar(Z). We state the following theorem for the calculation

of V ar(Z) for two or more groups.

Theorem 6.6.1. The variances and covariances of the elements zj of V ar(Z) for

J ≥ 2 groups are:

Cov(zi, zj) = (ai
Tai)(aj

Taj)VMβ
+ Cov(Ti, Tj) + Cov(T δ

i , T
δ
j )

+ Cov(T δβ
i , T δβ

j ), ∀i, j = 1, 2, . . . , J, (6.27)

with

Cov(Ti, Tj) = (ai
2)T (aj

2)(VR(Vβ) − 2(VMβ
+ V 2

Rβ
)) + (ai

Taj)
22(VMβ

+ V 2
Rβ
),

Cov(T δ
i , T

δ
j ) = 2[(ai

2)TGS2aj
2 + (ai

TSaj)
2],

Cov(T δβ
i , T δβ

j ) = 4VRβ
(ai

Taj)(ai
TSaj), (6.28)

where ai is a vector of weights (a1, a2, . . . , (ai − 1), . . . , aJ) with each element 0 <

ai < 1 and
J∑

i=1

ai = 1, and ai
2 are the squared elements of ai. G and S are diagonal

matrices of excess kurtosis 0.5(γ1, γ2, . . . , γJ) and level-1 variances (σ2
1, σ

2
2, . . . , σ

2
J)

respectively. S2 contains the squared level-1 variances.

We prove the theorem for J = 2 which can then be extended to J = 3 or more

groups. We first calculate representation (6.16) but without replacing a1 + a2 = 1.

Proof.

z1 = [(R1(β)−
2∑

j=1

ajRj(β)) + (δ1 −
2∑

j=1

ajδj)]
2.

= [(R1(β)−
2∑

j=1

ajRj(β))]
2 + [(δ1 −

2∑

j=1

ajδj)]
2

+ 2[(R1(β)−
2∑

j=1

Rj(β))][(δ1 −
2∑

j=1

δj)].

We consider each of the squared and cross-product terms in turn.

[(R1(β)−
2∑

j=1

Rj(β))]
2 = (a1 − 1)2R2

1(β) + a22R2
2(β) + 2a2(a1 − 1)R1(β)R2(β)

= ((a1 − 1)2 + a22)M(Vβ) + T1,
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using [Rj(β)]
2 =M(Vβ) +Rj(Vβ), and where

T1 = (a1 − 1)2R1(Vβ) + a22R2(Vβ) + 2a2(a1 − 1)R1(β)R2(β). (6.29)

For the squared quantity involving δ, we have

T δ
1 = [(δ1 −

2∑

j=1

δj)]
2 = (a1 − 1)2δ21 + a22δ

2
2 + 2a2(a1 − 1)δ1δ2,

and for the cross-product of δ and Rj(β)),

T δβ
1 = 2[(R1(β)−

2∑

j=1

Rj(β))][(δ1 −
3∑

j=1

δj)]

= 2((a1 − 1)R1(β) + a2R2(β))((a1 − 1)δ1 + a2δ2)

Hence,

z1 = ((a1 − 1)2 + a22 + a23)M(V ) + T1 + T δ
1 + T δβ

1

= (a1
Ta1)M(V ) + T1 + T δ

1 + T δβ
1 , (6.30)

where the vector a1
T = [(a1 − 1), a2]. In general, for J groups we have ai

T =

[a1, a2, . . . , (ai − 1), ai+1, . . . , aJ ].

Similar derivations can easily be obtained for z2, which is the same as z1 with

a1
T replaced by a2

T = [a1, (a2 − 1)] in all the components as shown below.

z2 = (a21 + (a2 − 1)2)M(V ) + T2 + T δ
2 + T δβ

2

T2 = a21R1(v) + (a2 − 1)2R2(v) + 2a1(a2 − 1)R1(β)R2(β)

T δ
2 = a21δ

2
1 + (1− a2)

2δ22 + 2a1(a2 − 1)δ1δ2

T δβ
2 = 2(a1R1(β) + (a2 − 1)R2(β))(a1δ1 + (a2 − 1)δ2) (6.31)

To calculate the elements of V ar(Z), we calculate the following expectations:

E(T1) = 0, E(T2) = 0, E(T δβ
1 ) = 0, E(T δβ

2 ) = 0

E(T δ
1 ) = (a1 − 1)2σ2

1 + a22σ
2
2, E(T δ

2 ) = a21σ
2
1 + (a2 − 1)2σ2

2. (6.32)

Hence, Cov(T1, T2) = E(T1T2), Cov(T δ
1 , T

δ
2 ) = E(T δ

1T
δ
2 ) and Cov(T δβ

1 , T δβ
2 ) =

E(T δβ
1 T δβ

2 )− E(T δβ
1 )E(T δβ

2 ).
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We calculate Cov(T1, T2) which will also give the variances. Below we write the

cross-product in a1 and a2 as a squared term.

Cov(T1, T2) = (a21(a1 − 1)2 + a22(a2 − 1)2)VR(v)

+ 4(a1a2(a1 − 1)(a2 − 1))(VM + V 2
R)

= (a21(a1 − 1)2 + a22(a2 − 1)2)(VR(Vβ) − 2(VMβ
− V 2

Rβ
))

+ 2(VMβ
− V 2

Rβ
)

(
(a21(a1 − 1)2 + a22(a2 − 1)2)

+ 2(a1a2(a1 − 1)(a2 − 1))

)

= (a1
2)Ta2

2
(
VR(Vβ ) − 2(VMβ

− V 2
Rβ
)
)
+ (a1

Ta2)
22(VMβ

− V 2
Rβ
)) (6.33)

Below we also write the cross-product in a1 and a2 as a squared term.

Cov(T δ
1 , T

δ
2 ) = a21(a1 − 1)2(µ4 − σ4

1) + a22(a2 − 1)2(µ4 − σ4
2)

+ 4(a1a2(a1 − 1)(a2 − 1)σ2
1σ

2
2

= 2

(
a21(a1 − 1)2(γ1σ

4
1)/2 + a22(a2 − 1)2(γ2σ

4
2)/2

+ a21(a1 − 1)2σ4
1 + a22(a2 − 1)2σ4

2 + 2(a1a2(a1 − 1)(a2 − 1)σ2
1σ

2
2

)

= 2((a1
2)TGS2a2

2) + (a1
TSa2)

2, (6.34)

after substituting (µ4 − σ4
j ) = 2(1 +

γj
2
)σ4

j , where γj is the excess kurtosis in group

j.

Cov(T δβ
1 , T δβ

2 ) = 4(a1(a1 − 1) + a2(a2 − 1))

+ (a1(a1 − 1)σ2
1 + a2(a2 − 1)σ2

2)VRβ

= 4(a1
Ta2)(a1

TSa2) (6.35)

Finally, all the variances and covariances of V ar(Z) can be obtained from:

Cov(z1, z2) = ((a1 − 1)2 + a22)(a
2
1 + (a2 − 1)2)VMβ

+ Cov(T1, T2) + Cov(T δ
1 , T

δ
2 ) + cov(T δβ

1 , T δβ
2 )

= (a1
Ta1)(a2

Ta2)VMβ
+ Cov(T1, T2) + Cov(T δ

1 , T
δ
2 ) + cov(T δβ

1 , T δβ
2 ),

where the covariances are obtained from (6.32),(6.33) and (6.34).
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Extending the proof for more than two groups follows the same principles as

above. For J = 3 for example, the representation for z1 below is the same as for

J = 2 summing over 3 instead of 2 groups,

z1 = [(R1(β)−
3∑

j=1

ajRj(β)) + (δ1 −
3∑

j=1

ajδj)]
2.

The variances and covariances are functions of the weight vectors. For example,

a1
T = ((a1 − 1, a2, a3), of which J = 2 is a special case. �
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6.7 Stochastic Optimization of the Bayes Linear

Minimum Variance Estimator

BLIMVE requires maximizing the objective function (see Section 5.13)

φ(a) = Cov(M(Vβ)),Z)V ar(Z)−1Cov(Z,M(Vβ))

over the elements of the vector a = (a1, a2, . . . , aJ) subject to
J∑

j=1

aj = 1 where

0 < aj < 1. This is a non-linear constrained optimization problem involving the

inverse of a matrix function. We solve this problem by designing a stochastic local

search algorithm (see for example, Gilli et al., 2019)as follows.

1. generate an initial solution ai using a suitable criterion

2. while stopping condition not met do

3. create new solution an = N(ai)

4. if φ(an)≥ φ(ai) then

5. ai=an

6. end while

7. return ai

We experiment with the search algorithms to allow us to decide on each of the

above steps and also to prevent it getting stuck near a local maximum. For step 1,

an initial solution proportional to the level-1 sample sizes performed well. Groups

with higher sample sizes, hence lower level-1 variances σ2
j = σ2

ǫ /nj , get more weight

in the adjustment of the level-2 population variance. For example, for J=3 groups,

with level-1 sample sizes nj = (10, 20, 30) and total sample 60, ai = (1
6
, 2
6
, 3
6
) ensuring

J∑
j=1

aj = 1 and 0 < aj < 1.

For step 2, we found that the surface of φ(a) is rather flat and changes marginally

as a function of a, especially near the maximum. Also, searching in the neighbour-

hood of a potential solution speeds up the search procedure, hence the inclusion of

step 3. The stopping condition of 500 iterations is enough to locate the maximum.
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In step 3, we modify the initial solution φ(ai) using a neighbourhood function

N(.) as follows. We generate a perturbation vector p of J random uniform variates

U(−ω,+ω), scale p to sum to zero and calculate a new solution an = ai+p. To con-

tinue the above example, an = (1
6
, 2
6
, 3
6
)+ (0.03,−0.04, 0.01); where p was generated

from U(−0.1, 0.1) scaled to leave the condition on an unchanged. Experimentation

allows the choice of a suitable value for ω.

Steps 4 and 5 ensure that a maximum is found and stored.

6.8 Prior specification of level 2 quantities

Calculation of φ(a) also requires that we specify the level-2 quantities VRβ
, VR(Vβ)

and VMβ
. We consider these in turn.

Specification of the prior level-2 variance VRβ
for the STAT1010 data was dis-

cussed in detail in Section 3.7.3 leading to a value of VRβ
= 59.

To specify VR(Vβ ), we adopt the same procedure as for the corresponding level-1

quantity VR(Vǫ) as in Section 5.3. That is we assume that the level-2 population

varianceM(Vβ) acts like a scale parameter so that Rj(β) =
√
M(Vβ)Zj ∀j. The

sequence Z1, Z2, . . . are mutually independent with mean zero and constant variance

one and are also independent of M(Vβ). Using [Rj(β)]
2 = M(Vβ) + Rj(Vβ) and

following the same calculations as in Section 5.3, we obtain

VR(Vβ ) = (VMβ
+ V 2

Rβ
)(Kur(Zj)− 1), (6.36)

where we may choose the kurtosis of Zj in accordance with a Gaussian distribution.

For a higher kurtosis, we may use a t distribution with a small ν degrees of freedom,

whereas for a smaller kurtosis, a uniform distribution may be suitable as explained

in Section 5.3.

To specify VMβ
, we use VMβ

= cV 2
Rβ

and follow the same principle as in Section

5.8. We write (5.29) as for a single-level data set as we are focusing on data zj for

each of the J groups as follows.

m =
κJ(c+ 1)

(J − 1)c
, (6.37)
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where m is the notional equivalent level-2 sample size, i.e. we consider our prior

aboutM(Vβ) to be worth m observations.

As for the level-1 quantities in φ(a), they are as specified and estimated in the

adjustment of the level-1 population variance M(Vǫ) (see Section 5.9). Hence, we

take σ2
j = σ̂2

ǫ /nj and the excess kurtosis γj = 0 for example, as we chose for adjusting

M(Vǫ).
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6.9 Validation of the algorithm for BLIMVE

Before applying BLIMVE to the STAT1010 data, we use simulation to check whether

the method performs as it is intended to.

But first we check for programming error in φ(a) by comparing its output against

the exact calculation for the two-group case in Section 6.5. We select the first two

classes of the STAT1010 data and calculate the squared observations zj = (ȳ1.− ȳ2.)2

and choose the level-1 estimate σ̂2
ǫ = Eσ̂2

ǫ
(M(Vǫ)) = 229.31. We specify the prior

level-2 variance VRβ
= 59 and the fourth-order quantities VMβ

and VR(Vβ ) as explained

in Section 5.17. Using these values in (6.25) and (6.26) we obtain EZ(M(Vβ)) = 43.5

and V arZ(M(Vβ)) = 5335.8, which are exactly the same as returned by our R

function φ(a). Incidentally, the ANOVA estimate of the level-2 variance for this

same data is negative.

To check whether BLIMVE performs as it is intended to, we use simulated-

data experimentation, also referred to as “fake” data simulation (see Chapter 8 of

Gelman and Hill, 2007), as follows. We fix “true” values of the parameters in our

SOEREF model yji =M(y)+Rj(β)+ǫji and use these values to simulate unbalanced

data with the same number of classes J and students nj as in the STAT1010 data.

We assume a multivariate Gaussian distribution for yji. To ensure that the true

parameter values are consistent with the STAT1010 data, we fit a multilevel model

using lme4 in R to the actual STAT1010 data and use the estimated parameters as

our true values. Hence, we fix the overall mean M(y) = 54, the level-1 variance

V ar(ǫji) = σ2
ǫ = 227 and the level-2 variance V ar(Rj(β)) = VRβ

= 80.

To adjust the level-2 variance using the simulated data, we choose σ̂2
ǫ = 229.31

and the prior variance VRβ
= 59. With only seven groups (classes), we downgrade

the prior by putting c = 2 in VMβ
= cV 2

Rβ
and κ = 2 in (6.37) resulting in the

nominal prior level-2 sample size m = 4 while the actual sample size is J = 7. We

specify VR(Vβ) using (6.36). These specifications will fix the parameters of φ(a) so

that we need to find the optimum a using the search algorithm of Section 6.7 only

once for all our simulated datasets. Here the optimal a allocates equal weight 1/7

to all of the seven classes.

The results from one thousand simulations are shown in Figure 6.1. The adjusted
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expectation has moved from the prior 59 towards the true value 80 with the mean

of the simulated EZ(M(Vβ)) at 72.8. Hence, BLIMVE performs as intended.
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Figure 6.1: The distribution of adjusted expectations of the level-2 variance M(Vβ) using 1000

simulations. Each simulation has 269 students nested in 7 classes as in the STAT1010 data. The

full line shows the prior variance VRβ
= 59, the dotted line the true variance 80 and the arrow,

the mean of the 1000 adjusted variances EZ(M(Vβ)) = 72.8. BLIMVE estimates the population

level-2 variance M(Vβ) further from the prior and closer to the true variance.

Figure 6.1 also shows a few large values of EZ(M(Vβ)). These result from ad-

justments based on large squared observations zj = (ȳj. − ȳa)
2, which themselves

result from disparities between one specific class mean ȳj. and the weighted aver-

age of all seven class means ȳa. As an example, EZ(M(Vβ)) = 161.8 resulted from

zj = (497.3, 1.4, 88.0, 73.6, 76.3, 74.8, 518.5). Of the 1000 EZ(M(Vβ)), there are only

21 (2.1%) larger than 160, i.e. twice the true value of VRβ
= 80.

With only J = 7 groups and m = 4, the prior constrains the distribution of
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EZ(M(Vβ)) to be positive as in Figure 6.1. We have simulated data with J = 30

groups (classes) in similar configuration to the STAT1010 data and chose VMβ
with

c = 2 allowing the data more influence (m = 3 v/s J = 30) on EZ(M(Vβ)). We

found that it is possible to obtain a negative BLIMVE estimate of level-2 variance.

While this is undesirable, in practice it may be indicative of problems with the

multilevel model; a finite population model, for example may be more appropriate

(see the discussion in Searle et al. (1992)).

6.10 Application of BLIMVE to the STAT1010

data

We now apply BLIMVE to estimate the population level-2 variance in the STAT1010

data, and in doing so we use the knowledge gained from the simulations in Section

6.9. Our simulations have revealed that the adjusted expectations EZ(M(Vβ)) vary

a lot and may possibly be larger than our prior VRβ
= 59 despite our careful elicita-

tion in Section 3.7.3. We feel quite uncertain about VRβ
and, although we have only

seven data points (groups), we wish to let the sample dominate the prior. Thus we

judge our prior information is worth m = 4 compared to the sample J = 7. Our sim-

ulations have also shown the possibility of large squared observations and therefore,

we are also uncertain about the choice of a suitable kurtosis. To guide our choice,

we consider a range of distributions for Zj in the scaling Rj(β) =
√
M(Vβ)Zj. Thus

we calculate the adjusted expectation and variance as shown below.

Table 6.1 shows that there is not much difference between the adjusted expecta-

tions since we allowed the sample information to dominate the prior. The adjusted

variances, on the other hand, differ substantially; the smallest resulting from the

uniform distribution. All three adjusted expectations are quite close to the average

of the adjusted expectations of 72.8 from our 1000 simulated STAT1010 datasets (see

Figure 6.1). Thus the population level-2 variance may be larger than our elicited

prior value of 59 which should be increased by at least 20%, but we are still uncertain

about this increase.

As a comparison, the full Bayes analysis of the random effects model for J = 8
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Distribution of scaled effects Zj

Uniform Gaussian Scaled t10

V ar(Z2
j ) 0.8 2 3

Scaling factor c in VMβ
= cV 2

Rβ
0.41 1.4 7

V ar(M(Vβ)) 1427.21 4873.4 24367

EZ(M(Vβ)) 71.47 71.99 72.4

V arZ(M(Vβ)) 606.67 1875.11 8697.54

Table 6.1: Adjusted expectations and variances of the population level-2 variance M(Vβ) of the

STAT1010 data for varying kurtosis resulting from the Uniform, Gaussian and scaled t10 distri-

butions. The prior variance is E(M(Vβ)) = 59. The prior information is judged to be worth a

notional sample size m = 4 against the actual sample J = 7 classes.

schools (groups) described in Section 5.14 also shows some quite large variations

in the posterior density estimate of the level-2 variance σ2
α using a uniform prior

density. Gelman (2006) concludes that for this data with only J = 8 groups, it is

difficult to rule out the possibility of large values of σ2
α and that the uniform prior

distribution seems closer to noninformative.

6.11 Two-stage Bayes linear analysis

In Chapter 4 we calculated the adjusted mean and variance of the population grand

meanM(y) of the SOEREF model and showed that they depend on the prior level-

1 and 2 variances. We may now perform a two-stage Bayes linear analysis

by replacing the prior variances with their Bayes linear estimates; the revised esti-

mates are termed variance-modified Bayes linear assessments (see Goldstein

(1979,1983)). Below we illustrate the application of the two-stage analysis to esti-

mate the population grand mean and the population group j means of the SOEREF

model.
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6.12 Two-stage Bayes linear analysis of the pop-

ulation grand mean

For our SOEREF model, if our judgement about the population grand meanM(y)

is independent of our beliefs about the population level-1 and 2 variances, then

the variance-modified Bayes linear assessments of the mean ED̄∗
n
(M(y)) in (6.38)

and the variance V arD̄∗
n
(M(y)) in (6.39) will lead to improved adjustments over

the corresponding original adjustment of the mean (4.10) and the variance (4.15) of

M(y).

ED̄∗
n
(M(y)) =

γ−1µ+
∑J

j=1(V̂Rβ
+ σ̂2

ǫ

nj
)−1ȳj.

γ−1 +
∑J

j=1(V̂Rβ
+ σ̂2

ǫ

nj
)−1

, (6.38)

and

V arD̄∗
n
(M(y)) =

1

γ−1 +
∑J

j=1(V̂Rβ
+ σ̂2

ǫ

nj
)−1

. (6.39)

V̂Rβ
and σ̂2

ǫ are our Bayes linear adjusted expectations of the population level-1 and

2 variances. For the STAT1010 data we have

ED̄∗
n
(M(y)) = 53.87 V arD̄∗

n
(M(y)) = 9.33 Resolution = 0.834.

compared to the original adjustments in Table 4.1

ED̄n
(M(y)) = 53.86 V arD̄n

(M(y)) = 8.03 Resolution = 0.857.

There is thus little change in the expectation of M(y), while the resolution has

decreased slightly due to the increase in the estimate V̂Rβ
= 71.99 from the prior

VRβ
= 59 (while σ̂2

ǫ = 229.31 decreased from the prior σ2
ǫ = 237). Hence, the

two-stage analysis better accounts for the higher variability at level-2, that is the

variation between classes. This indicates that in our prior judgements we over

specified the prior level-1 variance (among students) and under specified the level-2

variance (between classes).
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6.13 Two-stage Bayes linear analysis of the pop-

ulation group j means

In learning about the population group j means, and indeed in all subsequent analy-

ses in Chapter 4, the shrinkage factor η played a pivotal role. If we now calculate the

variance-modified shrinkage factor η∗ = V̂Rβ
/(V̂Rβ

+ σ̂2
ǫ /nj), we obtain η∗ = 0.2389

compared to η = 0.1993, which is based on prior variances. This difference is re-

flected in the variance-modified Bayes linear assessments for the population group

j means as shown in Table 6.2 below.

Class Management Engineering

Population means M(y1) M(y2) M(y3) M(y4) M(y5) M(y6) M(y7)

Original 44.64 46.02 47.61 68.51 55.24 57.75 56.08

Variance-modified 44.46 45.77 47.44 68.76 55.27 57.81 56.12

Table 6.2: Comparisons of the original and the variance-modified adjusted population group j

meansM(yj) for three management and four engineering classes.

A comparison of the adjustments between the classes reveals that the variance-

modified adjusted means for Management classes are less than their corresponding

original values, while for Engineering classes they are larger than the original ad-

justments. This is due to replacing η by the larger estimate of η∗ in ED̄n
(M(yj)) =

ηȳj. + (1 − η)ED̄n
(M(y)) (see 4.27). Hence, relatively more weight is given to the

sample class means and less to the population grand mean. Since Engineering stu-

dents are required to have better A-level mathematics results than Management

students, they perform better in STAT1010 examinations and hence, the effect of

the variance-modified assessment on the class means seems in the right direction.

The two-stage analysis above is an improvement over our analyses in Chapter 4.

We can thus apply the two-stage Bayes linear analysis to obtain improved means and

variances, as well as to the canonical resolutions that we applied to design problems

for level-1 and level-2 sample sizes. We can also apply the two-stage analysis to the

adjustments of our finite SOEREF model in Chapter 4.
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6.14 Two-stage Bayes linear analysis of more com-

plex multilevel models

We now consider the more challenging problem of a two-stage analysis of more

complex multilevel models, the Second-Order Exchangeable Regression (SOEREG)

models defined in Chapter 3. The main problem we are likely to face relates to

learning about the group-level variance-covariance matrices in the SOEREG model.

In the SOEREF model we allowed only the regression intercept parameter to vary

between groups, giving rise to a single variance at the group level. In a SOEREG

model however, we may have two or more varying regression parameters, an intercept

and a slope for example, hence resulting in a variance-covariance matrix at the group

level (see Section 3.4.2).

To simplify our exposition, below we consider a two-stage Bayes linear analysis

of only the basic SOEREG model (Section 3.4.2) and make the necessary prior spec-

ifications. We discuss some of the difficulties in learning about population variance

matrices and motivate the use of a semi-adjusted residual variance matrix before

applying it to the two-stage analysis of the STAT1010 data.

6.15 The basic SOEREG model and prior speci-

fications

In Chapter 3 we formulated the basic SOEREG model using notations that can

be generalized to more complex models. For ease of reference, we present the basic

SOEREG model below and we simplify the notations since we have only one varying-

intercept and one varying-slope (αj, βj).The regression predictor xji is the centered

A-level score and includes A-Level mathematics. The reasons for centering the A-

Level scores around their overall mean to get xji include ease of interpretation of

the model intercept and also it may remove a strong correlation among (αj, βj) (see

Gelman and Hill (2007)). All Engineering students have A-Level mathematics in
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their A-Level scores while many Management students do not. Hence, our model is

yji = αj + βjxji + ǫji ∀j, i, (6.40)

with the following exchangeability representations for the intercepts and slopes

αj =M(α) +Rj(α) (6.41)

βj =M(β) +Rj(β). (6.42)

The level-1 residuals are uncorrelated with mean zero and variance σ2
ǫ and they are

also uncorrelated with the level-2 residual terms Rj(α) and Rj(β). Our specifica-

tions for the regression coefficients are as follows:

E(αj) = µα, E(βj) = µβ V ar(αj) = σ2
α, V ar(βj) = σ2

β , (6.43)

Cov(αj, αj′) = γα, Cov(βj, βj′) = γβ, Cov(αj, βj) = ραβσασβ . (6.44)

The intercepts αj and slopes βj are judged to be correlated with correlation coeffi-

cient ραβ . These specifications together with (6.41) and (6.42) imply the following:

E(M(α)) = µα, E(M(β)) = µβ, V ar(M(α)) = γα,

V ar(M(β)) = γβ, Cov(M(α),M(β)) = 0, (6.45)

with the following residual variance-covariance matrix:

V ar(Rj(α)) = σ2
α − γα = VRα

, V ar(Rj(β)) = σ2
β − γβ = VRβ

,

Cov(Rj(α),Rj(β)) = ραβ

√
VRα

VRβ
∀j. (6.46)

6.16 Prior specifications for the SOEREG model

The detailed prior elicitation methods for the SOEREF model discussed in Chapter

3 also apply to the SOEREG model except that there are additional difficulties in

specifying a residual variance-covariance matrix such as the level-2 effects (6.46)

(see Goldstein and Wooff (2006), page 288). These difficulties include making ex-

changeability judgements for unobserved quantities as in (6.41) and (6.42), as well
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as making unfamiliar uncertainty judgements for the variances and covariance as for

Rj(α) and Rj(β). Finally, variance matrices need to be non-negative definite which

constrains the related correlation coefficients in a complicated way (see Gelman and

Hill (2007), page 286), besides each being restricted to the interval (−1, 1).
Below we shall elicit priors for the level-1 residual error VRǫ

and for the means,

variances and the correlation of the group-level intercept and slope in (6.43) and

(6.44) of the SOEREG model. Though we make use of various external sources and

auxiliary data in our elicitation methods, they should be considered as basic - our

aim here is to illustrate the two-stage analysis only. In more important applications,

we would use more formal methods such as a meta-analysis of the literature or factor

analysis of auxiliary data to elicit the priors of interest.

6.16.1 Prior for VRǫ

In linear regression, adding a predictor reduces the residual variance. For the SO-

EREF model we judged VRǫ
= 237, thus we should reduce our prior expectation of

VRǫ
in the SOEREG model. To guide us, we re-consider the compilation of several

studies of multilevel models on mathematics achievements by Hedges and Hedberg

(2007) we mentioned in Chapter 3. These multilevel models also report the esti-

mated level-1 residual variances for models without and with a predictor, hence

similar to our SOEREF and SOEREG models. Including a demographic predictor

such as Socio-Economic Status, reduces VRǫ
by about 10%, while including a pre-

test predictor such as prior achievement in mathematics, reduces VRǫ
by about 60%.

For our data, the A-Level score predictor xji includes A-Level mathematics and two

other non-mathematics A-Levels. For management students very few have A-Level

mathematics. Also, since the STAT1010 syllabus is only about 50% calculation,

we do not expect a strong correlation between A-Level score xji and STAT1010

examinations yji. Thus we judge a reduction of about 15% reasonable and specify

VRǫ
= 202.
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6.16.2 Priors for the intercept

We assume that adding the predictor xji to the SOEREF model giving the SOEREG

model, does not add any information to cause us to revise the prior for the intercept

and its uncertainty, thus we keep µα = 55 and γα = 56.3.

To specify a prior for Var(Rj(α))=VRα
, the residual variance of the intercept, we

consider the following argument. Adding a level-1 predictor always reduces the level-

1 error variance VRǫ
but not necessarily a level-2 error variance. For instance, the

variance of the group intercept residual error VRα
may actually increase if the pre-

dictor, here the A-Level score xji, is negatively correlated with the response variable

yji, see (Gelman and Hill (2007) page 480) . For example, if Management students

have high A-Level scores xji due to high grades in non-mathematical subjects and

their performance in STAT1010 yji is low, then xji and yji will be negatively cor-

related. Since we do not know whether VRα
will increase or decrease, we also keep

VRα
= 59 as assessed for the SOEREF model.

6.16.3 Priors for slope

To specify priors for the population slope E(M(β))=µβ, its uncertainty γβ and the

residual slope variance Var(Rj(β))=VRβ
, we use βj =M(β) +Rj(β) and proceed

as follows. We assess βj for each of a typical Management class, say βmgt, and a

typical Engineering class, βeng, and use these two slopes as a guide to specify the

required priors.

Within each class (ignoring subscripts), the OLS estimator of the slope β in a

simple linear regression yi = α + βxi + ei can be written as rxy(σy/σx), where rxy

is the correlation coefficient between STAT1010 examinations score y and A-Level

score x, σy and σx are their respective standard deviations.

To assess rxy, we studied a number of multilevel research analyses reporting the

strength of correlations between performance in A-level mathematics or its equiv-

alent (x) and performance in mathematics and quantitative subjects at University

level (y) and found weak correlations, about rxy = 0.3. Because STAT1010 requires

only about 50% basic mathematical skills, we judge a moderate correlation rxy = 0.5
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for Management classes and a stronger correlation rxy = 0.8 for Engineering classes

more suitable.

To assess σy, we take the range of STAT1010 examinations marks (40% to 70%)

as a 95% interval and, assuming a Normal distribution and the overall mean score

of 55%, we obtain σy = 7.5 for both classes.

To assess σx, we require the distribution of A-Level scores for Management and

Engineering students. We gather data from the Mauritius Examinations Syndicate

Report (2019) on 13,448 students that took A-Levels in subjects typical of those

taken by students of Management and Engineering. We obtain the distribution of

grades E to A+, corresponding to A-Level scores 2 to 12, by the 13,448 students in

A-Level Accounts, Economics and Business for Management students and Mathe-

matics, Chemistry and Physics for Engineering students. From these distributions,

we estimate σx for each of the two classes. We find little difference in the standard

deviations between Management and Engineering classes. We thus take σx = 9.09

for both classes.

Using the above assessments, we calculate βmgt = 0.3 × 7.5/9.09 = 0.248 and

βeng = 0.8×7.5/9.09 = 0.660. We take the midpoint (0.248,0.660) as our assessment

for µβ = 0.454 and specify γβ = 0.02 directly. We assess the variance in the slope

as σ2
β = (0.660− 0.248)2 = 0.170 from which we obtain VRβ

= (σ2
β − γβ) = 0.15.

6.16.4 Priors for the correlation between intercept and slope

In the multilevel studies on mathematics achievements we have reviewed, the cor-

relation coefficients between α and β were positive and low, in the range of 0.02 to

0.05. Often, a strong ραβ may be due to the center of a predictor x being far from

zero; centering the predictor may remove any such high correlation (Gelman and

Hill, 2007). Since xji is centered and we judge ραβ to be somewhat stronger than

the higher end of the above range, we assess ραβ = 0.5.

We summarize the above prior specifications as follows:

µα = 55, γα = 56.3, VRα
= 59, µβ = 0.454, γβ = 0.02, VRβ

= 0.15,

ραβ = 0.5, VRǫ
= 202. (6.47)
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6.17 Bayes linear update of the SOEREG and

more complex models

In Section 3.5 we extended the basic SOEREG model to the more general SOEREG

model. The latter can be written as the General Bayesian Linear (GBL) model

see Smith (1973) and Dempster et al. (1981). De Leeuw and Kreft (1986) discuss

ordinary least squares estimators for the GBL; these will provide the sample infor-

mation required for our two-stage Bayes linear analysis. Furthermore, Bryk and

Raudenbush (1992) show how multilevel models with more than two levels can be

written in terms of the GBL. Hence, the Bayes linear analysis we shall develop for

the basic SOEREG model will also apply to more complex models. Below we define

the basic SOEREG model similar to a GBL.

Definition 6.17.1. Suppose we stack the SOEREG model yji = αj + βjxji + ǫji for

each group j in a vector Y = (Y1,Y2, . . . ,YJ). Then we have the following:

Y = Xβ + ǫ (6.48)

β = WM(β) +R(β), (6.49)

where Y is a vector of level-1 response variables, X and W are predictor matrices

at level-1 and 2 respectively, and ǫ and R(β) are vectors of level-1 and 2 residuals

respectively. M(β) is a vector of population mean intercept and slopes.

As a simple example, consider data on two classes each with two and three

students respectively. Thus, Y = (Y1,Y2) = ((y11, y12), (y21, y22, y23)) and using

(6.40) we have the level-1 matrix equation




y11

y12

y21

y22

y23




=




1 x11 0 0

1 x12 0 0

0 0 1 x21

0 0 1 x22

0 0 1 x23







α1

β1

α2

β2



+




ǫ11

ǫ12

ǫ21

ǫ22

ǫ23




, (6.50)

corresponding to (6.48) above. The level-2 matrix equation corresponding to (6.49)
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is 


α1

β1

α2

β2



=




1 0

0 1

1 0

0 1





M(α)

M(β)


+




R1(α)

R1(β)

R2(α)

R2(β)




(6.51)

Upon substituting (6.51) in (6.50) we obtain the general SOEREG model of Section

3.5. The above matrix equations correspond to (6.40), (6.41) and (6.42) of the basic

SOEREG model. Thus using the specifications (6.45) and (6.46) we have for this

example.

E(ǫ) = 0 V ar(ǫ) = σ2
ǫ I5

E(M(β)) = [µα, µβ]
T V ar(M(β)) =


 γα 0

0 γβ




E(R(β)) = 0 V ar(R(β)) = I2 ⊗Ω, Ω =


 VRα

σαβ

σαβ VRβ


 , (6.52)

where σαβ = ραβ
√

VRα
VRβ

.

6.17.1 Updating the mean components

We wish to compare a single stage analysis using prior variances only and the two-

stage analysis with updated variances. To adjust population means M(β) and

R(β), we make use of Bayes linear sufficiency. Thus we begin by deriving the rep-

resentation for Y and then we construct the required beliefs.

The representation for Y

Consider the basic SOEREG model with J groups and nj observations in group j.

We calculate V ar(Y) where Y = {ȳ1., ȳ2., . . . , ȳJ.}. Replacing (6.49) in (6.48) we

obtain

Y = XWM(β) +XR(β) + ǫ. (6.53)

Averaging within each group j gives the representation for Y.

Y = XWM(β) +XR(β) + ǫ, (6.54)
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with elements as follows.




ȳ1.

ȳ1.
...

ȳJ.



=




1 x̄1.

1 x̄2.

...
...

1 x̄J.





M(α)

M(β)


+




1 x̄1. 0 0 0 0 0 0

0 0 1 x̄2. 0 0 0 0
...

. . . . . .

0 0 0 0 0 0 1 x̄J.







R1(α)

R1(β)
...

RJ(α)

RJ(β




+




ǭ1.

ǭ2.
...

ǭJ.2



, (6.55)

The two regressor matrices in (6.55) are of simple forms; XW is similar to the

regressor matrix in simple linear regression with one intercept but with group means

of the explanatory variable i.e. (1 , x̄j.) in column j and X is the direct sum of (1 ,

x̄j. ) for each j.

Beliefs for the data quantities

Using (6.54),

E(Y) = XWµβ, where µβ = E(M(β)) = [µα, µβ]
T ,

V ar(Y) = ΣY, where

ΣY = (XW )Γ(XW )T +X(IJ ⊗Ω)X
T
+Ψ. (6.56)

Γ = V ar(M(β)) as in (6.52), Ψ is a diagonal matrix with jth element V ar(ǫj) =

σ2
ǫ/nj and V ar(R(β)) = IJ ⊗Ω, with

Ω =


 VRα

σαβ

σαβ VRβ


 (6.57)

Beliefs between regression coefficients, level-2 residuals and the data

quantities

Using (6.54) the beliefs between the population mean intercept and slope and the

data is

Cov(M(β),Y) = Γ(XW )T , (6.58)
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while the corresponding beliefs for the level-2 residuals are

Cov(R(β),Y) = (IJ ⊗Ω)XT . (6.59)

Applying the Bayes linear rule, we obtain the adjusted expectation of mean

intercept and slope with the corresponding adjusted variance as follows.

EY(M(β)) = µβ + Γ(XW )TΣ−1

Y
[Y −XWµβ] (6.60)

V arY(M(β)) = Γ− Γ(XW )TΣ−1
Y
XWΓ. (6.61)

Since, E(R(β)) = 0, the adjusted mean level-2 residuals and the corresponding

variance are

EY(R(β)) = (IJ ⊗Ω)XTΣ−1
Y
[Y −XWµβ] (6.62)

V arY(R(β)) = (IJ ⊗Ω)− (IJ ⊗Ω)XTΣ−1

Y
X(IJ ⊗Ω). (6.63)

6.18 Application to the STAT1010 data

Using our prior specifications in (6.47), we adjust the collection of population mean

and residual intercepts and slopes using (6.60) to (6.63). Our main goal is to com-

pare the results below with the two-stage analysis. We thus only consider some

basic interpretation rather than the full interpretative methods for individual and

collection of adjusted expectations described in Chapter 3 and applied in Chapter

4.

6.18.1 Adjustment of M(β)

Firstly, we adjust the overall population mean intercept and slopes M(β) for the

STAT1010 data using the group means examinations scores ȳj. in the seven classes.

The prior and adjusted expectation are

E(M(β)) = [55, 0.454]T

EY(M(β)) = [53.91, 0.465]T ,
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with prior and adjusted variation

V ar(M(β)) =


 56.3 0

0 0.02


 V arY(M(β)) =


 7.98 0.00

0.00 0.019




The prior expectation of the intercept has decreased from 55 to the adjusted expec-

tation of 53.91. This is unsurprising as confirmed by the standardized adjustment of

-0.16 . The increase in expectation of the slope from the prior of 0.454 to adjusted

value of 0.465 is also unsurprising as the standardized adjustment is 0.35.

The adjustment of the uncertainty shows that the prior variance for the intercept

has been reduced from 56.3 to the adjusted variance of 7.98, representing a variance

resolution of 85.83%. However, for the slope, the variance resolution is significantly

less, 5% for a reduction from prior variance of 0.02 to an adjusted variance of 0.019.

So, the data is much more informative in learning about the intercept and rather

uninformative in updating the slope. We may have been overconfident about the

priors for the slope and we will consider this issue when we update the individual

class intercepts and slopes.

6.18.2 Adjustment of β and R(β)

Using the representation β = WM(β) + R(β), we calculate adjusted population

intercepts and slopes EY(β) = WEY(M(β)) + EY(R(β)) and compare these to

ordinary least squares estimates (OLS) of intercepts and slopes in each class.

The results in Figure 6.2. reveal that there is little shrinkage in adjusted inter-

cepts as they are quite close to their corresponding OLS estimates. The adjusted

slopes however, are all shrunk towards the prior slope of 0.454. Unlike the OLS

slope estimates, we do not have a negative adjusted slope which is more sensible for

the STAT1010 data.

Comparing the variance resolutions in Section 6.18.1 above, we learn more from

the data about the intercepts than the slope. We may have been overconfident in

specifying the prior for the slope and we are somewhat unsatisfied with the over

shrinkage of the slope. We consider the effect of revising our prior for the slope

next.
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Figure 6.2: Scatterplot of group-level intercepts and slopes shown in Table 6.3. The dots indicate

OLS estimates and the triangles show the adjusted quantities. There is little shrinkage in adjusted

intercepts but considerably more shrinkage in slopes towards the prior of 0.454.

6.18.3 The effect of revising the prior for the slope

We consider the over shrinkage of the slopes to be a result of our tight variance

specifications. We thus increase our priors for the slope as follows.

µβ = 1, γβ = 0.9, VRβ
= 1. (6.64)

Using the above, the prior variance of the slope σ2
β = VRβ

+ γβ = 1.9, implying that

we admit slopes in the interval (1 ± 2
√
1.9) = (−1.76, 3.76). We are admitting the

possibility of a negative slope between examination score and A-Level score; our

priors for the slope are more skeptical now. We keep the remaining priors in (6.47)

unchanged. The effect of our increased uncertainty is shown in Figure 6.3 below.
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Figure 6.3: Scatterplot of group-level intercepts and slopes with priors for the slope revised. The

dots indicate OLS estimates and the triangles show the adjusted quantities. There is little shrinkage

in adjusted intercepts and also less shrinkage in slopes compared to Figure 6.2.

The small shrinkage in the intercepts is as in Figure 6.2 but now there is

equally less shrinkage in the slopes. The first three triangles with intercepts be-

tween (40,50) and slopes (0,1) are Management classes, the rest are for Engineering

classes. We deem the pattern in adjusted quantities in Figure 6.2 more plausible for

the STAT1010 data. The increase in our uncertainty specifications for the slope has

increased the variance resolution from 5% to 22.22%.

Table 6.3 below gives the data used to plot Figure 6.3 and also the adjusted

residuals. The latter shows that the adjusted intercepts EY(R(α)) and slopes ef-

fects EY(R(β)) are all negative for Management classes (C1 to C3), implying the

intercepts and slopes are revised downward from the respective priors, while for

Engineering classes they are revised upward.

6.19 Variance update of the SOEREG model

We now consider updating the level-1 variance and the level-2 variance-covariance

matrix. We shall use ordinary least squares estimates (OLS) to obtain unbiased

sample information for our updates. Rao (1965a) and Swamy (1970) develop Gauss-
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Intercept Slope

Class α̂OLS EY(M(α)) EY(R(α)) β̂OLS EY(M(β)) EY(R(β))
C1 44.13 44.75 -8.77 0.30 0.10 -1.14

C2 44.27 46.36 -7.16 -0.28 0.30 -0.93

C3 47.56 48.05 -5.47 0.79 0.53 -0.71

C4 69.72 68.58 15.05 1.44 3.20 1.96

C5 56.02 59.35 5.82 0.28 2.00 0.76

C6 51.27 53.74 0.21 1.99 1.27 0.03

C7 55.54 54.33 0.80 0.53 1.34 0.10

Table 6.3: Comparisons between ordinary least squares (OLS) estimates of group-level intercepts

and slopes in each of the seven classes of the STAT1010 data with the corresponding adjusted

intercepts and slopes.

Markov theory for multilevel (random coefficient) models and prove that OLS meth-

ods yield minimum variance unbiased linear estimates of regression coefficients and

also of the level-1 and level-2 variances. They fit linear regressions within each

group j to obtain OLS estimates of unknown parameters and residuals and, in turn,

use these to derive estimates of the variances. Their methods apply to general SO-

EREG models. Below we shall adapt these methods, simplifying them for the basic

SOEREG model.

6.19.1 Adjustment of the level-1 variance VRǫ

To adjust VRǫ
, we first derive an unbiased estimator for σ2

ǫ using the level-1 regression

of the basic SOEREG model (see Definition 6.17.1) for each group j as follows.

yji = αj + βjxji + ǫji. (6.65)

We fit (6.65) and obtain the residual vector for each group j

r̂j = ŷj − α̂j − β̂jxji, (6.66)

from which we obtain the unbiased estimator of σ̂2
j as

σ̂2
j =

1

nj − p
r̂Tj r̂j ∀j (6.67)

June 11, 2023



6.19. Variance update of the SOEREG model 208

(6.67) is suitable in case of variance heterogeneity at level-1. For instance, we may

use (6.67) to adjust VRǫ
partially for each group based on σ̂2

j and assess the effect

on the final adjustment. If the partial analysis reveals group differences in variance,

we may consider changing our prior specifications by modeling the heterogeneity as

a function of a level-1 predictor (see Section 3.7.2) or we may set V ar(ǫ) = diag(σ2
j )

instead of σ2
ǫ IJ .

An estimate of the homogeneous level-1 variance is given by

σ̂2
ǫ =

1

N − p

∑

j

r̂Tj r̂j , N =
∑

j

nj , (6.68)

which is equivalent to the residual mean square for a single level regression ignoring

all groups. This is applicable to our SOEREG model where the level-1 residuals ǫji

are second-order exchangeable over all students i and groups j, and has mean zero

and constant variance σ2
ǫ . To adjust VRǫ

based on σ̂2
ǫ , we use the following results

from Goldstein and Wooff (2006), page 275.

A representation for σ̂2
ǫ is

σ̂2
ǫ =

1

N − p

∑

j

r̂Tj r̂j

=
1

N − p
ǫT (I −H)ǫ

=M(Vǫ) + Tǫ, (6.69)

where ǫ is a vector of level-1 residuals andH is the hat matrix. Representation (6.69)

is similar to Theorem 5.5.1 in our adjustment of M(Vǫ) for the SOEREF model

from which, after making the necessary specifications and fourth order uncorrelated

assumptions about M(Vǫ) and Tǫ, we obtain the adjusted mean and variance of

M(Vǫ) given σ2
ǫ

Eσ̂2
ǫ
(M(Vǫ)) =

VMǫ
σ̂2
ǫ + VTǫ

VRǫ

VMǫ
+ VTǫ

, (6.70)

Varσ̂2
ǫ
(M(Vǫ)) =

VMǫ
VTǫ

VMǫ
+ VTǫ

. (6.71)
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6.19.2 Choice of prior values and application to STAT1010

We make the simplifying assumptions as in Chapter 5 and use the representation

ǫi =
√
M(Vǫ)Zi and choose the kurtosis V ar(Z2

i ) = 2 leading to

VR(Vǫ) = 2(VMǫ
+ V 2

Rǫ
),

and

VTǫ
=

1

N − p
[2(VMǫ

+ V 2
Rǫ
)] =

1

N − p
VR(Vǫ).

We note that for the STAT1010 data N = 269 and p = 2, so we use N −p+1 ≈ 269

to determine the equivalent sample size m.

Given N = 269, we expect the sample to resolve a large percentage of the

prior uncertainty inM(Vǫ). We shall consider our prior to be worth about m = 6

observations which leads to c ≈ κ/m − κ = 0.5 for a choice of κ according to a

normal distribution. We specified VRǫ
= 202 in (6.47) and, together with m = 6 and

c = 0.5, we have the specifications

VMǫ
= cV 2

Rǫ
= 20402.

VTǫ
=

1

N − p
[2(VMǫ

+ V 2
Rǫ
)] = 458.47.

OLS gives σ̂2
ǫ = 281.23. Our adjusted mean and variance are thus

Eσ̂2
ǫ
(M(Vǫ)) =

VMǫ
σ̂2
ǫ + VTǫ

VRǫ

VMǫ
+ VTǫ

=
20402× 281.23 + 458.47× 202

20402 + 458.47
= 279.49.

Varσ̂2
ǫ
(M(Vǫ)) =

VMǫ
VTǫ

VMǫ
+ VTǫ

= 448.39.

The updated residual level-1 variance is 279.49, larger than our prior specification

VRǫ
= 202. The high value of the adjusted variance shows that we remain quite

uncertain about the population level-1 variance.
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6.19.3 Adjustment of the level-2 residual variance matrix Ω

To adjust Ω, the population residual variance matrix of the level-2 intercept Rj(α)

and slope Rj(β), we plan to use the direct method as explained in Goldstein and

Wooff (2006), page 283. Their main result is as follows. The adjustment of a residual

variance matrixM(V ) by the space spanned by the sample variance matrix S2
n and

the constant matrices is given by

ES2
n
(M(V )) = (1− α)E(M(V )) + αS2

n, (6.72)

where, using the equivalent sample size heuristic as in our previous variance adjust-

ments (see Section 6.8), we may choose α = J/(m + J) with m and J being the

notional and actual level-2 sample sizes respectively.

To calculate the unbiased OLS estimate S2
n, we follow Rao (1965a) and Swamy

(1970) who substitute the OLS estimate β̂ obtained from the level-1 regression

Y = Xβ+ ǫ in the level-2 model giving β̂ = WM(β)+R(β). A second regression

of β̂ on W yield the OLS estimate M̂(β) and the residual R̂(β). For the basic

SOEREG model, we do not have any level-2 predictors so the level-2 regressions in

each group j are:

αj =M(α) +Rj(α) (6.73)

βj =M(β) +Rj(β). (6.74)

Substituting the OLS estimates α̂j and β̂j from the level-1 regression (6.65) in (6.73)

and (6.74), we derive the OLS estimates of M̂(α) = ¯̂α and M̂(β) =
¯̂
β. Hence, our

estimate of the level-2 residual variance matrix is

S2
n =

1

J − p




∑
j(α̂j − ¯̂α)2

∑
j(α̂j − ¯̂α)(β̂j − ¯̂

β)
∑

j(α̂j − ¯̂α)(β̂j − ¯̂
β)

∑
j(β̂j − ¯̂

β)2


 , (6.75)

with observed value

 96.36 4.02

4.02 0.71


 (6.76)

For our STAT1010 data we have sufficient level-1 observations nj , the range is

(23, 47), to reliably estimate α̂j and β̂j . However, S2
n is estimated based on only
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(J − p) = (7− 2) = 5 degrees of freedom. Thus we do not expect to resolve much of

the variation. We choose our prior information as worth m = 4 observations while

the actual sample size is 5 giving α = 5/9. Hence, our updated variance matrix is

4

9


 59 3.84

3.84 1


+

5

9


 96.36 4.02

4.02 0.71


 =


 79.76 3.94

3.94 0.84




There does not appear to be any contradiction between the updated and prior

residual variance matrices. We learn most about the residual intercept which has

been reduced to 79.76, which is consistent with the value 71.99 that we obtained

when updating the intercept only in the SOEREF model using BLIMVE (see Table

6.1). There is little change in the adjusted covariance. The adjusted residual slope

has increased significantly compared to its prior value.

6.20 Two-stage analysis of the SOEREG model

For the two-stage analysis, the prior and adjusted expectation are

E(M(β)) = [55, 1]T

EY(M(β)) = [53.86, 1.21]T ,

with prior and adjusted variation

V ar(M(β)) =


 56.3 0

0 0.9


 V arY(M(β)) =


 10.25 0.28

0.28 0.74




The prior expectation of the intercept has decreased from 55 to the adjusted expec-

tation of 53.86. This is unsurprising as confirmed by the standardized adjustment

of -0.17, which is almost the same as in the single stage analysis. The increase in

expectation of the slope from the prior of 1 to the adjusted value of 1.21 is also

unsurprising as the standardized adjustment is 0.525.

One major difference is the higher adjusted variances of the two-stage analysis

compared to the single-stage analysis, especially for the slope. This results in some-

what more shrinkage in the slopes, while the shrinkage in the intercepts remains

more or less the same as in the single-stage analysis (compare Figure 6.3 and Figure

6.4 below).
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Figure 6.4: Scatterplot of group-level intercepts and slopes for the two-stage analysis. The dots

indicate OLS estimates and the triangles show the adjusted quantities. There is little shrinkage in

adjusted intercepts and also less shrinkage in slopes compared to Figure 6.2.

Table 6.4 below also shows that the increased uncertainty has led to an increase

in shrinkage, particularly in the slope, compared to Table 6.3. The Engineering class

C4 appears to be an exceptional class; it has a higher intercept and slope compared

to all the other classes.
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Intercept Slope

Class EY(M(α)) EY(R(α)) EY(M(β)) EY(R(β))
C1 45.70 -8.16 0.90 -0.31

C2 47.06 -6.81 0.95 -0.26

C3 48.48 -5.38 0.99 -0.22

C4 68.61 14.75 1.94 0.73

C5 58.07 4.20 1.32 0.12

C6 53.93 0.07 1.21 0.01

C7 54.48 0.62 1.24 0.04

Table 6.4: Two-stage update of group-level intercepts and slopes in each of the seven classes of

the STAT1010 data. The analysis separates Management (C1 to C3) and Engineering (C4 to C7)

classes in two homogeneous groups.
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Chapter 7

Discussions and further study

In this thesis we have applied Bayes linear methods to analyse multilevel models.

In Chapter 2 we reviewed the concepts underlying multilevel data structures and

the need for multilevel modeling in the context of some important applications.

We discussed a number of classical estimation methods and also the fully Bayesian

hierarchical modeling approach. The difficulties in making full prior specifications,

as well as in computing posterior densities were presented and used to motivate a

Bayes linear approach that requires limited beliefs specifications only.

In Chapter 3 we used second-order exchangeability (SOE) judgements to formu-

late our versions of multilevel models. We defined the SOE random effects (SO-

EREF) model and extended it to a more general SOE regression (SOEREG) model

which was shown to encompass models with more levels and complex error struc-

tures. In the context of the STAT1010 data, we discussed and illustrated some

methods to specify priors for mean and variance components in our models.

Bayes linear estimation of population overall and population group means in

the SOEREF model were developed and discussed in Chapter 4. The closed form

expressions we derived for the adjusted mean and the resolution transform proved

useful to understand the relationships between adjusted quantities and also to ad-

dress sample design issues and sample size determination with cost constraints for

both level-1 and level-2 units in the SOEREF model. Bayes linear diagnostics were

used to assess our estimates and applied to the STAT1010 data using specially writ-

ten codes in the R statistical programming language. A finitely exchangeable version
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of our model was formulated and analysed comparatively to the infinite version of

our model.

In Chapter 5, we discussed the difficulties in learning about population variances

and variance matrices in particular, and developed Bayes linear methods to estimate

the level-1 variance in both the balanced and unbalanced cases. We applied these

methods to the STAT1010 data and illustrated the choice of priors for fourth order

quantities. The sensitivity of our adjusted variances to a higher kurtosis was also

investigated.

We developed a new method, the Bayes Linear Minimum Variance Estimator

(BLIMVE) to estimate the level-2 variance of the SOEREF model in Chapter 6.

The method is applicable to two or more groups and we validated it using simula-

tion. We also developed methods, based on OLS estimates, to estimate variances in

more complex multilevel models and applied these in a two-stage analysis to update

intercepts and slopes in our SOEREG model.

In Chapter 2 we explained the importance of multilevel models and presented ex-

amples of some important real world applications. Currently, researchers face many

challenges in applying multilevel modeling in these important areas. Some of these

complications result from too small or too large data sets, leading to problems in

convergence of estimation algorithms. The Bayes linear methods we have developed

would be promising in analyzing more complex multilevel models both in situations

where data is limited or there is too much data. The limited beliefs specifications

requirements also give the Bayes linear approach an added advantage, especially in

multilevel models where it is difficult to specify probabilistic priors and hyperpriors,

not to mention that they may have hidden consequences.

The objectives of the research underlying this thesis have been achieved. The

development of a Bayes linear simulation approach could further be turned into a

practical methodology, as well as functioning as a method for giving insights into

the comparative strengths of different methods and widen its range of application

as we explain below.
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7.1 Bayes linear simulation

Simulation is widely used in multilevel modeling with the twin purposes of parameter

estimation and studying properties of (complex) estimators. In the fully Bayesian

approach for example, MCMC simulation is routinely applied to obtain estimates

of mean and variance parameters. In the frequentist approach, parametric and non-

parametric bootstrap simulation techniques are often used to obtain robust estimates

of parameters and their uncertainties.

A key advantage of simulation is that it provides a unifying framework for the

estimation of a wide range of ever more complex models, including “models for

multivariate mixtures of Gaussian, ordered or unordered categorical responses and

continuous distributions that are not Gaussian, each of which can be defined at any

level of a multilevel data hierarchy.”, see, for example, Goldstein et al. (2009). In

both the Bayesian and frequentist approaches, simulation experiments have been

designed to study, evaluate and compare the properties of alternative multilevel

estimation techniques. Simulation experiments are also widely used to study design

and sample size determination issues in multilevel modeling.

Simulation may also be adopted in the Bayes linear approach to derive estimates

in complex models and also to study the properties of more complex estimation

methods such as for the two-stage Bayes linear estimates that are particularly com-

plex, having no analytical solution. Using simulation for Bayes linear estimation

has the added advantage that only first and second-order moments need to be sim-

ulated. If variances are to be estimated as well, then we also require fourth-order

moments. Simulating moments rather than full distributions as in MCMC represent

a considerable gain in computing time and power.

The development of Bayes linear simulation methods has thus the potential to

broaden its application to a wider range of statistical methodologies and application

areas.
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Appendix A

Table of Notations

The table below lists some of the more important notations used in this thesis. The

notation, a brief description, and the section in which it was first defined is provided.

Notation Description Section

yi response variable for unit i in a single level regression 2.5.4

β0 population intercept in a single level regression 2.5.4

β1 population slope in a single level regression 2.5.4

xi predictor variable for unit i 2.5.4

ǫi residual error term for unit i in a single level regression 2.5.4

yji response variable for unit i nested in group j a two-

level regression

2.5.5

β0j random intercept in a two-level regression 2.5.5

ǫji level 1 residual error term for unit i nested in group j 2.5.5

nj No. of level 1 units in group j 2.5.5

J No. of level 2 groups 2.5.5

C a collection of random quantities 2.13.1

B a collection of beliefs 2.13.1

D a collection of data quantities 2.13.1

Σ variance of vector Zi in second order exchangeability 2.13.2

Γ Covariance of vector Zi and Zj in second order ex-

changeability

2.13.2

Continued . . .
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Notation Description Section

M(Z) the population mean of vector Z in the representation

theorem

2.13.2

Ri(Z) the population residual of vector Z in the representa-

tion theorem

2.13.2

Z̄n sample mean vector in Bayes linear sufficiency 2.14.1

VR Variance of Rk(Z) in adjustment of variance 2.14.3

Vk sequence of squared residuals Vk = [Rk(Z)]
2 in adjust-

ment of variance

2.14.3

M(V ) underlying population mean in the representation the-

orem for variance adjustment

2.14.3

VM variance ofM(V ) 2.14.3

Rk(V ) population residual of V in the representation theorem

for variance adjustment

2.14.3

s2n sample variance 2.14.3

T population (squared) residual terms in the representa-

tion for s2n

2.14.3

VT variance of T 2.14.3

S(z) a standardized observation 2.15.2

Dis(z) discrepancy for an observation 2.15.2

Dr(Y ) discrepancy ratio for a multivariate (or multilevel)

quantity Y

2.15.3

DisY (B) discrepancy of the adjustment vector Dis(EY (B))

for the collection of parameters in vector B =

(B1, B2, . . . , Br)

2.15.4

DrY (B) adjustment discrepancy ratio of B = (B1, B2, . . . , Br) 2.15.4

E[F/D](B) partial adjustment of B by F given D 2.15.5

Sized(B) size of an adjustment of the collection B when the

observed value of D = d

2.15.5

Size[f/d](B) size of the partial adjustment, or the partial size 2.15.5

Continued . . .
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Notation Description Section

Zd(B) bearing of the adjustment of B when we observeD = d 2.15.5

Z[f/d](B) partial bearing 2.15.5

Sr[f/d](B) partial size ratio 2.15.5

PC(d, [f/d]) path correlation 2.15.5

yji outcome or response variable of unit (student) i in

group (class) j

3.1

nj level 1 sample size (students) in group (class) j; nj = n

in balanced designs

3.1

J level 2 sample size (number of classes) 3.1

µ prior expectation for yji 3.1

σ2
y variance of yji 3.1

M(y) population grand mean 3.1

M(yj) population group j mean 3.1

Ri(yj) level 1 residual 3.1

Rj(M(y)) level 2 residual 3.1

σ2
ǫ level 1 variance, V ar(Ri(yj)) = σ2

ǫ 3.1

σ2
u − γ level 2 variance, V ar(Rj(M(y))) = σ2

u − γ 3.1

γ variance ofM(y) 3.1

ρ intra-class or intra-cluster correlation 3.3

zji level 1 predictor of a SOEREG model 3.4.2

β[0]j intercept of regression in group j 3.4.2

β[1]j slope of regression in group j 3.4.2

ǫji level 1 residual error term 3.4.2

M(β0) underlying population mean intercept 3.4.2

M(β1) underlying population mean slope 3.4.2

Rj(β0) residual for regression intercept in group j 3.4.2

Rj(β1) residual for regression slope in group j 3.4.2

µ0 prior mean for intercept β[0]j 3.4.3

µ1 prior mean for slope β[1]j 3.4.3

Continued . . .

June 11, 2023



Appendix A. Table of Notations 225

Notation Description Section

σ2
0 variance of intercept β[0]j 3.4.3

σ2
1 variance of slope β[1]j 3.4.3

γ0 covariance between intercepts, i.e Cov(β[0]j, β[0]j′) 3.4.3

γ1 covariance between slopes, i.e Cov(β[1]j, β[1]j′) 3.4.3

ρ01 correlation between intercepts and slopes 3.4.3

ȳj. group j sample mean of yji based on a sample size nj 4.2

D̄n collection of group means {ȳ1., ȳ2., . . . , ȳJ.} 4.2

ED̄n
(M(y)) adjusted expectation ofM(y) by D̄n 4.3

V arD̄n
(M(y)) adjusted variance ofM(y) by D̄n 4.3.1

RD̄n
(M(y)) resolution for the adjustment ofM(y) 4.3.2

CRj
vector of level 2 residuals 4.4.1

TB:D resolution transform matrix for the adjustment of B

by D

4.5

λr rth canonical resolution, the rth (ordered) eigenvalue

of TB:D

4.5

Wi ith canonical quantity 4.5

nopt, Jopt optimal level 1 and level 2 sample sizes respectively 4.10.3

G size of finite population of level 2 units (groups) 4.13

N size of finite population of level 1 units (individuals

within groups for a balanced design)

4.13

J sample size of level 2 units, J ≤ G 4.13

n sample size of level 1 units from each group (balanced

data), n ≤ N

4.13

M[N ](yj) finite population group j mean 4.13

M[G](y) finite population grand mean 4.13

R[N ]
i (yj) finite level 1 residual 4.13

R[G]
j (M[N ](y)) finite level 2 residual 4.13

M(Vǫ) population level-1 residual variance 5.1

Continued . . .

June 11, 2023



Appendix A. Table of Notations 226

Notation Description Section

Rji(Vǫ) uncorrelated sequence with variance equal to shape of

population distribution

5.1

VR(Vǫ) prior variance of Rji(Vǫ) 5.1

VRǫ
prior expectation E(M(Vǫ)) 5.1

VMǫ
prior variance Var(M(Vǫ)) 5.1

Tǫ fourth order quantity for updating level-1 variance 5.1

BLIMV E Bayes Linear Minimum Variance Estimator 6.1

βj population intercept in group j 6.2

M(β) population mean intercept in a SOEREF model 6.2

Rj(β) residual intercept in a SOEREF model 6.2

M(Vβ) population intercept residual variance 6.2

VRβ
prior expectation for population intercept residual

variance

6.2

δj residual from OLS fit 6.3

αj group j intercept in a basic SOEREG model 6.15

βj group j slope in a basic SOEREG model 6.15

M(α) population mean intercept 6.15

Rj(α) population residual intercept 6.15

M(β) population mean slope 6.15

Rj(β) population residual slope 6.15

VRα
prior expectation for population intercept residual

variance

6.15

VRβ
prior expectation for population slope residual vari-

ance

6.15

ραβ population correlation between residual intercept and

slope

6.15

M(β) a vector of population mean intercept and slopes 6.17

ǫ a vector of level-1 residuals 6.17

R(β) a vector of level-2 residual intercepts and slopes 6.17

End of table
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R and [B/D] codes for Chapter 4

Here we present the R codes used to calculate and plot the discrepancy measures

in Section 4.7 , as well as an R function, BALM (BAyes Linear Modeling), used

to check our [B/D] outputs for the Bayes linear analysis of the SOEREF model.

We also present our [B/D] codes for adjustment of the SOEREF model using the

(unbalanced) STAT1010 data.

1 #Reads the examinations marks of the STAT1010 data in R

exams ←read.table("exams.txt",header=T)

3 #Calculates the group j means that are Bayes linear sufficient for the

adjustments.

ybar_j ←sapply(exams,mean,na.rm=T)

5 #A function to calculate length of columns in a dataframe by ignoring NA’s

lenna ←function(x){sum(!is.na(x))}

7 n_j ←apply(exams,2,lenna)#Group j sample sizes

J ←ncol(exams)

9 #Prior specifications

mu ←55

11 gamma ←56.3

sigma_sq_e ←237

13 V2 ←59 #The variance of the level_2 residual=(sigma^2_u - gamma).

#Variance of data means ybar_j only, ignoring M(y)

15 V3 ←V2+sigma_sq_e/n_j
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#Calculate standardized observations (equation 4.44) & box-plot (Figure

4.1(a))

17 sdfun ←function(x){(x-mu)/sqrt(gamma+sigma_sq_e+V2)}

S_y ←apply(exams,2,sdfun)

19 boxplot(S_y,ylab="Standardized observation")

mtext("Management class Engineering class",1,line=2,adj=0)

21 #Calculate discrepancy (equation 4.45) & box-plot (Figure 4.1(b))

disfun ←function(x){(x-mu)^2/(gamma+sigma_sq_e+V2)}

23 Dis_y ←apply(exams,2,disfun)

boxplot(Dis_y,ylab="Discrepancy")

25 mtext("Management class Engineering class",1,line=2,adj=0)

text(locator(1),"Best")

27 #Calculates the discrepancy ratio (equation 4.46). Calculating V(D)^{-1},

denoted VDinv.

m ←matrix(1,nrow=J,ncol=J)

29 VD ←diag(V3)+m*gamma

VDinv ←solve(VD)

31 Dr_ybar_j ←(ybar_j-mu)\%*\%VDinv\%*\%(ybar_j-mu)/J

The [B/D] codes for adjusting mean components in the SOEREF model. It is

easier to initially formulate a balanced design as this simplifies both the setting of

indices j and i and construction of the variance-covariance structures and then we

delete the redundant elements to create an unbalanced design.

32 @stat1010

@Input prior mean and variances

34 element: m=55

var: v(1,m)=56.3

36 fvar: v(1,e.r.s,e.t.k)= 237*(.r.s=.t.k)

fvar: v(1,u.r,u.k)=59*(.r=.k)

38 @Formulate the level 1 and level 2 SOE models as in Definition 3.1.1 of

the SOEREF model

assign: y.r.s=m.r+e.r.s

40 assign: m.r=m + u.r
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@Specify indices for a balanced design temporarily

42 index:j=1,1,7

index:i=1,1,47

44 @Construct variance-covariance structures simultaneously for y.j.i and m.j

cobuild: y.j.i, m.j

46 @Group quantities in bases for adjustments

base y=y.1.$,y.2.$,y.3.$,y.4.$,y.5.$,y.6.$,y.7.$

48 base m0=m$

data: <ydat.1,ydat.2,ydat.3,ydat.4,ydat.5,ydat.6,ydat.7> 47 @data

50 @Find the number of data in each group j and input the data

for: j=1,1,7

52 c: %m=maxcase(ydat.[j])

for: i=1,1,%m

54 data: y.[j].[i](1)=ydat.[j]([i])

end:

56 @Delete the redundant elements created in lines 42 and 43 to obtain an

unbalanced design.

@This makes [B/D] modify the variance-covariance structures accordingly

for the resulting unbalanced design

58 for: i=%m+1,1,47

xelement: y.[j].[i]

60 end:

end:

62 return:

@data

64 28 55 31 97 77 33 64

35 36 55 73 61 52 57

66 59 51 51 69 33 44 65

49 32 43 59 52 64 52

68 47 36 63 80 69 43 89

65 71 34 81 61 80 40

70 79 35 54 93 49 65 40

35 47 52 71 59 71 73
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72 23 45 33 67 64 67 72

31 44 63 64 31 65 59

74 23 17 32 64 73 59 71

64 30 15 87 65 75 32

76 36 39 36 67 49 75 65

31 55 78 61 52 35 56

78 48 47 42 48 71 88 63

33 59 61 61 63 47 73

80 19 36 33 67 28 67 48

61 16 47 80 52 72 55

82 57 44 78 75 55 64 67

40 44 41 73 55 48 55

84 56 36 49 68 44 59 40

40 69 31 59 77 40 39

86 35 83 38 55 67 45 61

48 -999 34 55 56 43 75

88 41 -999 49 56 33 49 53

44 -999 35 79 36 65 44

90 36 -999 77 71 41 40 76

63 -999 53 65 47 91 33

92 40 -999 -999 51 83 71 40

68 -999 -999 81 52 53 47

94 36 -999 -999 67 47 40 64

56 -999 -999 83 69 63 64

96 32 -999 -999 31 40 55 63

24 -999 -999 81 45 67 53

98 71 -999 -999 87 43 52 52

17 -999 -999 88 67 51 73

100 37 -999 -999 83 72 57 75

29 -999 -999 65 47 47 23

102 45 -999 -999 87 57 29 33

55 -999 -999 81 43 52 47

104 57 -999 -999 53 59 40 57
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-999 -999 -999 55 84 67 -999

106 -999 -999 -999 83 53 79 -999

-999 -999 -999 45 -999 85 -999

108 -999 -999 -999 87 -999 27 -999

-999 -999 -999 59 -999 91 -999

110 -999 -999 -999 67 -999 -999 -999

@Read the file in [B/D] and perform the adjustments

112 BD>m:@stat1010

BD>adjust:[m0/y]

114 BD>show:a+

BD>show:v+

The R codes and outputs of BALM, a function for the adjustment of the unbal-

anced SOEREF model based on our closed-form calculations in Chapter 4.

116 BALM ←function(data,mu,gamma,sigma_sq_e,V2,FUN=lenna){

ybar_j ←sapply(data,mean,na.rm=T)

118 n_j ←apply(data,2,lenna)

V3 ←V2+sigma_sq_e/n_j

120 adjvar ←1/(1/gamma+sum(1/V3))

adjmean ←adjvar*(mu/gamma+sum(ybar_j/V3))

122 resolution←(1-1/(1+V0*sum(1/V3)))*100

adjres ←V2/V3*( (ybar_j-mu)-adjvar*sum((ybar_j-mu)/V3))

124 adjgpmean ←adjmean+adjres

nu ←V2/V3# nu is the shrinkage factor

126 adjvar2 ←nu*sigma_sq_e/n_j + nu^2*adjvar

cv ←V2/(1/gamma+sum(1/V3))/V3

128 #Adjusted variance of M(Y_j)

adjvargpmean ←adjvar+adjvar2-2*cv

130 #Resolution for group means

resolgpmean←(V0+V2-adjvargpmean)/(V0+V2)*100

132 output ←list(Adjusted_Mean=adjmean,Adjusted_Variance=adjvar,

Resolution=resolution,Adjusted_Group_Mean=adjgpmean,

134 Adjusted_Variance_Group_Mean=adjvargpmean,Resolution_Group_Mean=
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resolgpmean)

return(output)

136 }

#Output from application of BALM to STAT1010 data

138 > BALM(exams,55,56.3,237,59)

$Adjusted_Mean

140 [1] 53.86296

$Adjusted_Variance

142 [1] 8.026269

$Resolution

144 [1] 85.74375

$Adjusted_Group_Mean

146 C1 C2 C3 C4 C5 C6 C7

44.63574 46.02166 47.61118 68.51379 55.24316 57.74772 56.07587

148 $Adjusted_Variance_Group_Mean

C1 C2 C3 C4 C5 C6 C7

150 5.328592 8.949704 7.528671 4.695275 5.099322 4.790163 5.328592

$Resolution_Group_Mean

152 C1 C2 C3 C4 C5 C6 C7

95.37850 92.23790 93.47036 95.92778 95.57734 95.84548 95.37850

R codes and [B/D] programme for the partial sequential adjustments of Section 4.10.

154 #Partial Bayes linear analysis:Sequential adjustment

av←1/(1/gamma+cumsum(1/V3))#R’s cumsum() function simplifies the

calculation of the adjusted variances

156 #av: Sequentially adjusted variances. We check that the last value is

equal to the full adjusted variance.

# C1 C2 C3 C4 C5 C6 C7

158 #30.121628 20.996121 16.012681 12.809818 10.687620 9.161357 8.026269

adjmean←adjvar*(mu/gamma+sum(ybar_j/V3))

160 amean←av*(mu/gamma+cumsum(ybar_j/V3))

# We check that the last value is equal to the full adjusted mean.

162 # C1 C2 C3 C4 C5 C6 C7

#49.76047 48.21288 47.85719 52.23939 52.75839 53.51934 53.86296
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164 plot(amean,type="l",ylim=c(40,70),ylab="Sequentially adjusted overall mean

",xlab="Class")

points(ybar_j)

166 abline(55,0,lty=2)

text(2,55.7,labels="Prior",cex=0.7)

168 text(2,49.5,labels="Adjusted",cex=0.7)

text(2,46,labels="Data",cex=0.7)

170 #Partial Resolution

resolution←1-1/(1+gamma*cumsum(1/V3))

172 >resolution

C1 C2 C3 C4 C5 C6 C7

174 0.4649800 0.6270671 0.7155829 0.7724721 0.8101666 0.8372761 0.8574375

#Check: this final value of 0.8574375 = resolution whole data

176 > diff(resolution)# Incremental changes in resolution

C2 C3 C4 C5 C6 C7

178 0.16208717 0.08851580 0.05688922 0.03769446 0.02710947 0.02016141

#Checked in [B/D] same results as above

180 channel:i3=unbal74.txt

m:@stat1010

182 adjust:[m/y1]

show:a+,v+

184 adjust:[+/y2]

show:a+,v+

186 ....until adjust:[+/y7]
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