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CHAPTER 1

Introduction

1.1 What is cryptography?

For as long as humans have been writing, they have been trying to hide their mes-

sage. From messages about troop movements between generals, recipes for making

a pottery glaze, even the 1700 year old Kama Sutra has a guide on writing secret

messages.

Over the course of millennia the methods for obscuring these messages, and

for breaking them, have become more sophisticated and their usage has become

more widespread. In the present day people use cryptography constantly, often

without knowing. Every time someone connects to the internet or sends a WhatsApp

message, they use a wide range of cryptographic protocols.

The majority of algorithms for encryption can be split into two broad cate-

gories: public key cryptography (PKC) and secret key cryptography (SKC). These

are sometimes referred to as asymmetric cryptography and symmetric cryptography

respectively. Secret key cryptography is the oldest form of cryptography and is any

form of encryption method where the same key is used for both encryption and de-

cryption. This form of encryption is the one most people will be familiar with and

1



1.2. Post quantum cryptography 2

some famous examples include the Caesar cipher and the Engima cipher. Public

key cryptography is where different keys are used for encryption and decryption;

typically the public key is used to encrypt the message and the secret key is used to

decrypt the message. Comparatively public key cryptography is much more mod-

ern, only coming into existence in the latter half of the 20th century, with the most

famous examples including RSA and Diffie-Hellman. A lot of public key cryptosys-

tems are based around mathematical problems that are computationally difficult,

such as the integer factorisation problem or the discrete logarithm problem.

Historically cryptographic techniques were kept secret and it is only with the

importance of interconnectivity that these techniques have become more public. To

ensure that devices are using the same cryptographic techniques, and to ensure that

the wider cryptographic community is confident in their security, there are a number

of ongoing processes to standardise proposed post quantum cryptographic protocols.

US National Institute of Standards and Technology (NIST), European Telecommu-

nications Standards Institute (ETSI) , and the International Organization for Stan-

dardization (ISO) are currently leading individual standardisation processes.

There are a number of standards for public key cryptography, including RSA and

ECDH (Elliptic Curve Diffie-Hellman), and secret key cryptography, including the

Advanced Encryption Standard (AES) and ChaCha. For modern applications public

key cryptography is used to exchange a secret key between parties who will then

both use that key to encrypt a large amount of text using secret key cryptography.

All of these schemes have faced a large amount of scrutiny by the cryptographic

community to ensure that they are secure against attacks by adversaries with large

amounts of computational power.

1.2 Post quantum cryptography

The first ideas behind quantum computers were proposed in the 1980’s, suggesting

that it might be possible to use quantum interactions as a form of computation. It

was believed that these quantum computers would be able to solve problems quicker

than classical computers and even solve problems that classical computers are unable
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to solve. It has since been shown that quantum computers can solve some problems

asymptotically faster than classical computers.

In 1994 Peter Shor developed an algorithm that uses a quantum computer to

find the prime factors of a given integer much faster than any existing classical

algorithm. This was followed by Grover’s algorithm in 1996, which can be considered

as speeding up the time required to manually search for an input to a function that

gives a specific value. The first quantum computer wasn’t built until 1998, and even

then it was only 2 qubits big.

Shor’s algorithm has a very large impact on, and effectively breaks, the majority

of modern public key cryptography, since most major public key cryptosystems rely

on the difficulty of finding the prime factors of an integer, or the discrete logarithm

problem. However it has no impact on secret key cryptography. Grover’s algorithm

can speedup breaking secret key cryptosystems, reducing the time required from

2n to 2n/2, where n is normally 128 or 256.

Whilst Shor’s algorithm does break several modern cryptosystems, at the mo-

ment there does not exist a quantum computer large enough to run the algorithm.

The current largest quantum computer is IBM’s Osprey which has just 433 qubits

(as of 9th November 2022). Whilst 433 qubits seems small, it is a huge increase on

the previous largest quantum computers. IBM’s Eagle, launched in November 2021,

which has 127 qubits and Google’s Sycamore which has 53 qubits. IBM also aim to

launch a qauntum computer with over 1000 qubits in November 2023.

Experts have estimated that it could take 10-20 years before any newly standard-

ised algorithms are fully rolled out and used widely enough in practice. Typically

there is also a need for sensitive data to be secure for a number of years after it was

encrypted. Combining these two requirements, it’s clear to see that the risk is not

the state of quantum computing now, but rather the state that quantum computing

will be in 20 to 30 years time.

Post quantum cryptography (PQC) is a term used to describe new cryptosystems

that have been created to be secure against adversaries who have access to large

quantum computers, but is still run on classical computers. Most secret key

cryptosystems, such as AES, only require the size of the secret key to be doubled in
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order to be secure against quantum computers, they are considered to be quantum

secure. However AES is often not considered to be a post quantum cryptosystem

since it does not need to change to become quantum secure.

There have been a number of new ideas for problems that are hard for both clas-

sical and quantum computers. These can be broadly split into five main of groups:

lattice-based, code-based, isogeny-based, hash-based and multivariate. Lattice-

based cryptosystems are based on the difficulty of finding a short vector in a lattice,

code-based cryptosystems are based on the difficulty of decoding a linear error cor-

recting code, isogeny-based cryptosystems are based on the difficulty of finding walks

on an isogeny graph , hash-based cryptosystems are based on the difficulty of find-

ing preimages of a hash function and multivariate cryptosystems are based on the

hardness of solving a system of multivariate polynomial equations.

At the time of writing there is a movement to standardise post quantum cryp-

tosystems for public key cryptography. One of the main attempts is NIST’s post

quantum cryptography standardisation process, which is currently standardising the

lattice-based scheme Kyber, along with a number of signature schemes, and has a

view to standardise a code-based cryptosystem in the near future.

1.3 Side-channel attacks

Side-channel attacks are a series of attacks on cryptosystems that don’t try to break

the underlying problem, but instead try to gain extra information about the en-

cryption and decryption processes by monitoring the machines that are performing

these processes.

Whilst almost anything that can be monitored on the target machine can be

used as a side-channel, some of the most common attacks include timing, power and

cache. In a timing based side-channel attack, the adversary monitors how long it

takes to perform the encryption or decryption process and can use this to deduce

information about the key being used. For some intuition of how this works, consider

the case of raising a value to a secret power using the square and multiply method

as given in Fig. 1.1. The algorithm iterates over each bit of the secret value and
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Figure 1.1: The square and multiply algorithm as given in [Koc96]

in the case where the bit (k) is 1 it performs an extra multiplication (line 4) then

when the bit is 0 (line 6) It becomes easy to see how this creates a discrepancy in

the timing that can be measured.

Power analysis is even more powerful than timing attacks, as it can distinguish

between cases that are constant time but require a different amount of power. Power

analysis attacks are seen as being less applicable, since they require having physical

or virtual access to the machine running the computation, whereas a timing attack

can be launched against a remote server. Cache attacks make use of the ability to

monitor the algorithm’s access to caches, and can be launched against any device

where the adversary can monitor cache access, e.g. using the same physical hardware

but in different virtual environments.

Three main techniques have been proposed to secure cryptosystems against these

attacks. The first method is just restructuring the algorithm. Some examples of this

include removing branches and removing variable length loops. The second method

is blinding, where the idea is to add random noise to the input which can then be

easily removed from the output. The third method is masking, where the input is

split into different shares and the algorithm is run on each share separately.

1.4 Error correcting codes and cryptography

When messages are sent on a network, there is the possibility that an error can

occur. In the same way it is possible that during the encryption of a message that
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a small error is made. In order to ensure that we can still read the messages we

make use of error correcting codes. These codes encode a message into a codeword

with the aim of making it possible to correct any errors that might occur during

transmission. For a simple example consider a code that takes a message and repeats

it 4 times, so the message 0 would be turned into the codeword 00000. If one of

these bits was changed during transmission (e.g. giving us 01000) then it is easy to

see what the original message was probably meant to be (in our case 0). Whilst this

code has high redundancy, others are very space efficient albeit with an increase in

the amount of time required to decode the message.

There are two main places that error correcting codes are used within cryptog-

raphy, firstly for their intended use - to correct errors - and secondly they can be

used for the cryptosystem itself. We first discuss the use of error correcting codes

for correction. For some cases where public key cryptography is used, especially

when lattice-based cryptosystems are used, there is a chance that some parts of the

message are encrypted in such a way that they can’t be decrypted correctly. These

cases are referred to as decryption failures. Applying an error correcting code to

the message before it is encrypted can help reduce the probability of a decryption

failure occurring, however it can’t eliminate it completely. This also requires the

codeword to be decoded after the decryption has occurred, increasing the amount

of time required to completely perform the decryption.

The second use of error correcting codes within cryptography is as part of the

cryptosystem itself, as is the case with code-based cryptography. Whilst some of

the work of this thesis could be applied to code-based cryptosystems, we leave this

as future work, and so we will not explain this area of cryptography in detail.

1.5 Outline of the thesis

This thesis examines: how can we secure error correcting codes against side-channel

attacks so that they can be securely used in cryptography?, as well as how can they

be used to improve certain lattice-based cryptosystems? An overview of how these

ideas are presented in the thesis is given below:
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Chapter 2 - Preliminaries. This chapter gives a more detailed overview of the

mathematical background and notation used within this thesis and then explains the

cryptographic background in more detail including the methods of proving security.

Chapter 3 - Using error correction for post quantum cryptography.

In this chapter we discuss how error correcting codes can be used to reduce the

size of ciphertexts produced by LWE based schemes. The key contributions of this

chapter are the use of Gray codes to reduce the number of bit errors when multi-bit

encryption techniques are used, the full analysis of how various techniques could

be applied to current KEMs (rather than to just a general scheme) with scripts to

enable researchers to find improved parameter sets from a given starting point, and

to provide specific parameter sets for these KEMs.

Chapter 4 - Securing linear algebra. We move on to show how various linear

algebra algorithms, including LUP Decomposition, can be made to be secure against

side-channel attacks. We prove the security of these algorithms in the probing mode

as well as giving experimental proofs.

Chapter 5 - Securing BCH codes. In this chapter we show how the algo-

rithms we secured in the previous chapter can be used to create a secure version of

the BCH code decoding algorithm. We also prove the security of these algorithms

in the probing mode as well as giving experimental proofs.

Chapter 6 - Securing Polar codes. Having shown how to secure the BCH

code decoding algorithm, we now show how to secure the decoding algorithm for

Polar codes. As with the BCH code decoding algorithm, we also prove the security

of these algorithms in the probing mode as well as giving experimental proofs.

Chapter 7 - Cost of using error correcting codes. In this chapter we

take the masked versions of the error correcting codes from the previous chapters,

and the suggested changes from Chapter 3, and show the cost of using these error

correcting codes.



CHAPTER 2

Preliminaries

2.1 Mathematical background

Here we will outline the mathematics that is required for understanding the cryp-

tosystems, and will assume little to no prior knowledge.

Definition 2.1.1. (Group, (S, ◦))

A non-empty set S with a binary operation ◦ forms a group if:

1. ◦ is associative i.e. (a ◦ b) ◦ c = a ◦ (b ◦ c), ∀a, b, c ∈ S,

2. There is an identity element e i.e. ∃e s.t. ∀a ∈ S, e ◦ a = a ◦ e = a,

3. Each element has an inverse i.e. ∀a ∈ S,∃b ∈ S s.t. a ◦ b = e.

Moreover this group is said to be an abelian group if ◦ is commutative i.e. a ◦ b =

b ◦ a,∀a, b ∈ S

Definition 2.1.2. (Ring, (R,+, ·))

A non-empty set R with two binary operations + (‘addition’) and · (‘multiplication’)

such that:

1. (R,+) is an abelian group,

8
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2. Multiplication is associative i.e. (a · b) · c = a · (b · c),∀a, b, c ∈ R,

3. Multiplication is distributive over addition i.e. a · (b + c) = (a · b) + (a · c)

∀a, b, c ∈ R.

For example the set of integers modulo q with addition and multiplication forms

a ring.

Definition 2.1.3. (Field)

A non-empty set F with two binary operations + and · where:

1. (F,+, ·) is a ring.

2. (F\{0}, ·) is an abelian group.

For example, the set of complex numbers equipped with addition and multipli-

cation forms a field. The set of integers modulo p, where p is prime, form a finite

field.

Definition 2.1.4. (Vector space)

A vector space over the field F is a non-empty set V with two binary operations +

and · where:

1. (V,+) is an abelian group,

2. Field multiplication and scalar multiplication are compatible, i.e. a(bv) =

(ab)v∀a, b ∈ S,∀v ∈ V,

3. Scalar multiplication is distributive over both field and vector addition, i.e.

a(u+ v) = au+ av,∀a ∈ F, ∀u, v ∈ V, (a+ b)v = av + bv∀a, b ∈ F, ∀v ∈ V .

For example the complex numbers form a vector space over the reals, with the

set {i, 1} as a basis.

Definition 2.1.5. (Subfield, Extension)

If the field F is contained in the field K, denoted as K/F , then F is said to be a

subfield of K and K an extension of F .
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For example, the field of complex numbers is an extension of the field of real

numbers. Conversely, the field of real numbers is a subfield of the field of complex

numbers.

Definition 2.1.6. (Degree)

The degree of a field extension K/F , denoted as [K : F ], is the dimension of K as

a vector space over F .

For example, the degree of the field extension [C : R] is 2, with {i, 1} being the

basis.

2.2 Introduction to PKC

2.2.1 Public Key Cryptography

Public Key Encryption schemes The aim of public key cryptography (PKC) is

to have a public key that anyone can use to encrypt messages with, whilst only the

person with the secret key is able to decrypt. A public key encryption scheme (PKE)

is a 3-tuple of algorithms (KeyGen, Encrypt, Decrypt). KeyGen is a proba-

bilistic algorithm that takes as input a security parameter λ and returns a public key

pk and a secret key sk. Encrypt is a probabilistic algorithm that takes as input a

message m and a public key pk, and returns a ciphertext c. Decrypt is a determin-

istic algorithm that takes as input a ciphertext c and a secret key sk and decrypts it

to give the messagem. With high probabilityDecrypt(Encrypt(m, pk), sk) = m.
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Figure 2.1: The pipeline for public key encryption.

Key Encapsulation Mechanism Public key cryptography (PKC) is quite slow

for long messages when compared to secret key cryptography. To get around this,

one of the common use cases for PKC is to send a key that will then be used to

encrypt larger messages using secret key cryptography. However most keys that are

used by secret key cryptography are much shorter than the message size used for pub-

lic key cryptography. Padding schemes [PKC91] are used to increase the size of the

key, however theses are often not secure [Ble98] and have been exploited [CJNP00].

In order to avoid using padding, Key Encapsulation Mechanisms were introduced.

A Key Encapsulation Mechanism is a 3-tuple of algorithms (KeyGen, Encaps,

Decaps). KeyGen is a probabilistic algorithm that takes as input a security pa-

rameter λ and returns a public key pk and a secret key sk. Encaps is a probabilistic

algorithm that takes as input a public key pk, and returns a key k and an encapsu-

lation c. Decaps is a deterministic algorithm that takes as input an encapsulation
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c and a secret key sk and decapsulates it to give either the key k or ⊥. With high

probability Decaps(Encaps(k, pk), sk) = k, when the algorithms are run correctly.

2.2.2 Security notions

In modern cryptography we have a large number of different types of attack models,

each of which tends to relate to different assumptions about what an adversary does

or does not have access to when they are trying to break the cryptosystem. The

main assumption that they all have in common is Kerckhoffs’s principle: that the

adversary has exact knowledge of how the cryptosystem works.

Attack models

There are various types of attack that can be launched against a cryptosystem.

The attacks are classified by the amount of information that the adversary has, we

have listed them in increasing order based on the amount of information the ad-

versary has. This order is also approximately the same as how easy it is to secure

a cryptosystem against an attack (i.e. the first one is the simplest to secure against).

CPA

Chosen plaintext attacks (CPA) form the foundation of modern cryptanalysis.

An adversary using a CPA is allowed to choose an arbitrary amount of plaintexts

and request the corresponding ciphertexts. Adaptive chosen plaintext attacks, or

CPA2, is a stronger generalisation of CPA where the adversary is able to choose

plaintexts after seeing some of the ciphertexts. This model of attack can be seen as

the case where the adversary has access to a blackbox that will encrypt plaintexts.

In the case of public key cryptography the public key is known by the adversary,

and as such it is easy to see how this style of attack could be launched. Modern

cryptosystems are expected to be secure against chosen plaintext attacks as a min-

imum.
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CCA

Chosen ciphertext attacks (CCA) are the form that most modern attacks take,

such as the successful attacks against DES [BS91,Mat94]. In this attack the adver-

sary first gets to choose a set of plaintexts to be encrypted, and can perform some

computation. Once they’ve finished they choose a set of ciphertexts and are given

access to their corresponding plaintexts, after this point they can ask for further

plaintexts to be encrypted but not for any more ciphertexts to be decrypted. This

attack is sometimes called a lunchtime attack, as it represents the case where an

adversary has managed to gain one off access to the decryption device for a short

period e.g. a lunchtime. This is often referred to as non-adaptive CCA or CCA1.

CCA2

Adaptive chosen ciphertext attacks (CCA2), first defined in 1991 by Rackoff

and Simon [RS92], is the attack style that cryptosystems aim to defend against.

Under this model, the adversary has access to a black box that will both encrypt

and decrypt. There are few examples of practical CCA2 attacks, but despite this

security against CCA2 (IND-CCA2) is required of all but a small subset of modern

cryptosystems - this is often called Active Security or security against an Active Ad-

versary. Whilst adaptive and non-adaptive chosen plaintext attacks are equivalent

for asymmetric schemes , there is a gap between CCA and CCA2.

Standards for security against attack models

Indistinguishability

The notion of indistinguishability in terms of security was defined by Goldwasser

and Micali [GM84]. A cryptosystem is indistinguishably secure if (under a particular

attack model) given two messages and a ciphertext which corresponds to one of the

messages, it is impossible to work out which of the two the ciphertext corresponds

to in polynomial time.
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This is formalised as a game with an advantage, in this case you ‘win’ the game

if you can distinguish between which of the two plaintexts was encrypted. The

advantage is a metric of how much better an attacker can perform than random,

where advantage 0 means the attacker has no advantage over a random guess, and

advantage 1 means the attacker can always win the game. For indistiguishability

we define the advantage as Adv = 2|P (A wins)− 1
2
|.

Within the cryptographic community, the standard is that security under IND-CPA2

suffices for ephemeral key usage and security under IND-CCA/CCA2 is required for

any situations where a key is being reused. The justification for this being that if

a secret key is only used once then only one decryption is being performed, and so

an attacker is unable to choose multiple ciphertexts to be decrypted.

NIST Security

When NIST launched the call for submissions [PQC16a, PQC16b], they gave

detailed security requirements. Firstly the call indicated what models of attack it

considered as being valid, and secondly it gave concrete values as to how secure the

cryptosystems should be against each of these attacks. Finally they detail the limit

of what they consider to be valid quantum attacks.

Security Levels

NIST has 5 levels of security, based on how long it takes to break a particular

cipher or hash function. A cryptosystem is considered secure at Level I (or III or

V) if “any attack that breaks the relevant security definition must require compu-

tational resources comparable to or greater than those required for key search on

a block cipher with a 128-bit (192-bit, 256-bit) key” [PQC16b]. A cryptosystem is

considered secure at Level II (or IV) if “any attack that breaks the relevant security

definition must require computational resources comparable to or greater than those

required for collision search on a 256-bit (384-bit) hash function” [PQC16b]. For

CCA security, the definition is relaxed slightly by capping the adversary to only
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having 264 ciphertexts.

In terms of real time and computational power, if every core of the current largest

supercomputer (all 2,414,592) was running Intel’s optimised AES hardware instruc-

tions, then it would take approximately 9.64×1023 seconds (3×1016 years) to break

AES-128 (Level I), assuming ideal AES.

Quantum security

NIST also proposed security levels against quantum adversaries, by giving bounds

on the amount of logical qubits and quantum gates. The relevant extract from the

call for proposals is given below: “As preliminary guidance to submitters, NIST

suggests an approach where quantum attacks are restricted to a fixed running time,

or circuit depth. Call this parameter MAXDEPTH. This restriction is motivated

by the difficulty of running extremely long serial computations. Plausible values for

MAXDEPTH range from 240 logical gates (the approximate number of gates that

presently envisioned quantum computing architectures are expected to serially per-

form in a year) through 264 logical gates (the approximate number of gates that cur-

rent classical computing architectures can perform serially in a decade), to no more

than 296 logical gates (the approximate number of gates that atomic scale qubits

with speed of light propagation times could perform in a millennium).” [PQC16b]

Fujusaki-Okamoto Transform

The Fujusaki-Okamoto (FO) transform is used to help take PKE schemes, which

are easy to create, and to convert them into secure KEMs. There exists two versions

of the Fujisaki-Okamoto transform: the former converts an IND-CPA secure PKE

and an IND-CPA symmetric key cryptosystem (e.g. AES) into a hybrid system that

is IND-CCA2 secure [FO99b], while the latter converts an IND-CPA secure PKE

and a secure hash function into a IND-CCA2 secure KEM [FO99a]. The transform

we will focus on is the latter of the two. Several PKE schemes are non-deterministic,

in order to make the encryption algorithm deterministic it’s common to tweak the

encryption algorithm so that it takes a seed as input. The seed is then used as

the seed for generating random numbers, meaning that the encryption of a message
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with a seed will always be the same. The IND-CCA2 hybrid cryptosystem given

by applying the FO-Transform has only one minor change to the standard IND-

CPA version. Instead of encrypting a message using a random seed, we encrypt

the message appended with a random value, and use the hash of this as the seed.

More formally, let E(x; s) denote the original scheme encrypting the message x

using the seed s, Ē(x; s) denote the new scheme encrypting the message x using

the seed s, D(y) denote the original scheme decrypting the message y, D̄(y) denote

the new scheme decrypting the message y and H(·) denote a hash function. Then

Ē(x; s) = E((x||s);H(x||s)), and D̄(y) = (D(y) if (E(D(y);H(D(y))) = y) else

reject). There are two methods for rejection, explicit and implicit. For explicit

rejection an error is thrown, or ⊥ is returned, for implicit rejection a new value

is generated, normally the hash of some secret value (e.g. secret key). The FO-

transform is secure under classical assumptions. However it has been shown to be

insecure under quantum assumptions [TU16]; in the same paper a quantum version

of the asymmetric/symmetric FO transform is provided. A quantum version of

the PKE to KEM FO-transform has since been provided [HHK17], and is used by

schemes such as Kyber [SAB+22].

2.3 Lattice based cryptography

2.3.1 LWE

The Learning with Errors (LWE) [Reg05] problem was first proposed by Regev in

2005. Several generalisations and variants have been proposed since and will be

discussed later. LWE is also the basis of Frodo,which was one of the candidates in

the NIST PQC standardisation process.

LWE Problem

Simply put, the problem is given a pair (A,b) determine if they are uniformly ran-

dom or if there exists an s such that b ≈ s ·A. The decision version of the problem

consists of a set of pairs (ai, bi), with the aim being to determine if they correspond

to a set of equations in the below format or if they’re just uniformly random values.
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b1 = ⟨s, a1⟩+ ϵ1(mod q)

...

bi = ⟨s, ai⟩+ ϵi(mod q)

...

bn = ⟨s, an⟩+ ϵn(mod q)

With ⟨s, ai⟩ is the inner product of s and ai.

Where: s ∈ Zn
q , ai are chosen independently from Zn

q , bi ∈ Zq and ϵi ∈ Zq is chosen

independently from the probability distribution χ : Zq → R+ on Zq.

There is also a corresponding search version of the problem, where the aim is to

find s.

LWEq,χ

Instance: m pairs of (ai, bi).

Question: Determine if the pairs are of the form bi⟨s, ai⟩ + ϵi(mod q) or if

they are random.

LWE-searchq,χ

Instance: m pairs of (ai, bi), where bi = ⟨s, ai⟩+ ϵi(mod q).

Question: Find the corresponding s value.

The search version of the problem is sometimes denoted as SLWE, and has been

shown to be equivalent to the decision version when q is prime, and q = O(n2).

In Regev’s cryptosystem, explained below, the specific problem used is LWEq,Ψα ,

where q = O(n2) and Ψα is the distribution that the errors are drawn from. In

the original cryptosystem this was a discrete Gaussian distribution, with a standard

deviation of αq, where α = 1/(
√
n log2 n), however in more recent cryptosystems,

such as Kyber [SAB+19] a centered binomial distribution is used.
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Cryptosystem

Regev also proposed a basic cryptosystem based on this problem [Reg05]. The

cryptosystem has a security parameter n and is parameterised by two integers m, q

and a probability distribution χ on Zq. The parameters should be chosen as follows:

• q > 2 is a prime number

• n2 < q < 2n2

• m = O(n log q).

• χ is taken to be Ψα(n)

• α(n) = o(1/
√
n log n).

All additions are done in Zq.

Key generation:

The private key is generated by choosing s ∈ Zn
q uniformly at random.

The public key is generated by choosing m vectors a1, . . . , am ∈ Zn
q , each of which is

chosen uniformly at random, and also choosing m elements ei, . . . , em ∈ Zq chosen

uniformly at random according to χ.

The public key is then (ai, bi)
m
i=1 where bi = ⟨s, ai⟩+ ei.

Encryption:

To encrypt a single bit(z) a subset S of [m] is chosen.

The actual encryption is done as (
∑

i∈S ai,
∑

i∈S bi + ⌊
q
2
⌋ · z).

Decryption:

Decryption is done by checking if (b − ⟨a, s⟩) is closer to 0 mod q (in which case z

was 0) or to ⌊ q
2
⌋ mod q (in which case z was 1).

2.3.2 R-LWE

Ring Learning with Errors (R-LWE) was first presented in a paper at Eurocrypt

2010 [LPR10] and was expanded on further in 2012 [LPR12]. In these works Lyuba-
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shevsky, Peikert and Regev (LPR) showed how the LWE cryptosystem could be

made more efficient by exploiting the properties of rings. R-LWE also acts as the

basis for several cryptosystems such as NewHope [PAA+19] and LAC [LLJ+19].

Problem

The ring used is described by the polynomial

f(x) = xn + 1 ∈ Z[x]

where n is a power of 2. This gives us the ring

R = Z[x]/f(x).

Which is the ring of integer polynomials mod f(x) i.e. all polynomials of degree less

than n. The other ring we use is the ring

Rq = R/q = Zq[x]/f(x).

Which is the ring of integer polynomials mod f(x) and mod q . The R-LWE prob-

lem is very similar to the standard LWE problem, consisting of the following set of

equations and trying to distinguish them from noise, where ai, s, bi ∈ Rq.

b1 = a1 · s+ ϵ1

...

bi = ai · s+ ϵi

...

bm = am · s+ ϵm
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Cryptosystem

The cryptosystem is parameterised by two integers, n and q, and a distribution Ψ.

Key Generation:

The keys are generated by taking m = O(logq) elements ai ∈ Rq and m small ele-

ments ri ∈ R (where small means all coefficients are 0 or 1).

am+1 is calculated as
∑

i∈[m] ri.ai, rm+1 = −1.

The public key is (a1, . . . , am+1) ∈ Rm+1
q .

The private key is (r1, . . . , rm+1) ∈ Rm+1 .

Encryption:

To encrypt a n bit message z ∈ {0, 1}n, a secret S ∈ Rq is chosen and m sets of

equations are generated.

For i ∈ [0,m+ 1] let bi ≈ϵi ai.S ∈ Rq.

Where ϵ ∈ Ψα and α =
√

logn
n

.

bm+1 = bm+1 − z · ⌊ q
2
⌉.

The cipher text returned is (b1 . . . bm+1) ∈ Rm+1
q .

Decryption:

Decryption is done by calculating
∑

i∈[0,m+1] ri · bi which is approximately z · ⌊ q
2
⌉+

(
∑

i∈[0,m+1] ri · ai) · S = z · ⌊ q
2
⌉.

So by discretizing
∑

i∈[0,m+1] ri.bi to 0 or q
2
, we get a value of z.

2.3.3 LWR

Learning with Rounding (LWR) was proposed by Banerjee, Peikert and Rosen

[BPR12] in 2011 and they similarly extended it to R-LWR.

Problem

Similar to LWE:

The problem consists of a set of pairs (ai, b), with the aim being to determine if
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they correspond to a set of equations in the below format or if they’re just random

values (i.e. determine s).

bi = ⌊⟨ai, s⟩⌉p(mod q)

With ⌊·⌉p meaning discretize to one of p values, normally considered as Zp, where

the mapping from Zq to Zp is done by multiplying the element from Zq by
p
q
.

Where: s and ai are chosen independently from Zn
q ,bi ∈ Zp.

2.3.4 General LWE

The general decision problem for all LWE variants is, given a pair (A,B) can it be

determined if they are random or if they are of the form

B = ⌊A · S+ E⌉q→p.

Where ⌊·⌉q→p represents rounding from q to p with p ≪ q, and A,S,B and E are

drawn from the relevant algebraic structure (e.g. Z, Rq, R
d
q). The cryptosystems

are generalised as below, general KeyGen in Algorithm 2.1, Encryption in Algo-

rithm 2.2 and Decryption in Algorithm 2.3.
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Algorithm 2.1: KeyGeneration

Input:

Result: pk ∈ {0, 1}256 × Zn×ñ
p or {0, 1}256 ×Rp or {0, 1}256 ×Rk×1

p , sk

∈ Zn×ñ
q or Rq or R

k×1
q

1 seedA
$← U(0, 1)256

2 A← gen(seedA)

3 S
$← χs

4 EA
$← χe

5 B← ⌊A · S+ EA⌉q→p′

Output: pk = (B, seedA), sk = S

Algorithm 2.2: Encrypt

Input: pk = (B, seedA), message = m

Result: ct ∈ Zm̃×n
p × Zm̃×ñ

t or Rp ×Rt or R
k×1
p ×Rq

1 A← gen(seedA)

2 R
$← χr

3 E′
B

$← χ′
e

4 E′′
B

$← χ′
e

5 B′ ← ⌊A⊤ ·R+ E′
B⌉q→p

6 V′ ← ⌊B⊤ ·R+ E′′
B + q

2
enc(m)⌉q→t

Output: ct = (B′,V′)

Algorithm 2.3: Decrypt

Input: sk = S, ct = (B′,V′)

Result: m

1 B′ ← ⌊B′⌉p→q

2 V′ ← ⌊V′⌉t→q

3 V← B′⊤ · S

4 m′ ← ⌊V′ −V⊤⌉q→2

5 m← dec(m′)

Output: pt = m
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2.4 Introduction to side-channel attacks

Side-channel attacks are a set of attacks that do not aim to break the underlying

problem of the cryptosystem, but to instead measure and use information about the

secret information that is leaked by the hardware.

The first side-channel attacks - timing attacks - were introduced in 1996 by

Kocher [Koc96] and make use of statistical differences in the time taken to perform

encryption using different keys. Timing attacks can be used against any system

which the adversary can accurately time, this could be a machine that they have

access to or even a remote server. Due to the effectiveness and ease with which

timing attacks can break unprotected cryptosystems, it is now considered standard

to ensure that all aspects of a cryptosystem that use secret data run in constant

time. It is often possible to rewrite code to ensure that it runs in constant time,

primarily by applying techniques such as removing branching on key variables.

Power analysis attacks were first introduced by Kocher et al. [KJJ99] in 1999,

and make use of statistical differences in the power usage between encryption using

different keys. Power analysis attacks are seen as being harder to perform as it

requires the attacker to be able to measure the power consumption of the target

device with fine detail. However recent work [WPH+22] has shown that these attacks

can be launched remotely as some severs increase the clock speed based on power

usages, allowing power usage to be measured by time.

There are many other flavours of side-channel attacks that exploit different mea-

surements in a broadly similar way. In order to make it easier to discuss security, a

generalised model of side-channel attacks has been introduced, known as the probing

model [ISW03]. In the probing model we consider a Boolean (or arithmetic) circuit,

and a number of probes. Probes can be placed on the wires between gates and are

able to perfectly read the value on the wire. A circuit is considered to be t secure

in the probing model if an adversary gains no advantage from placing t probes on

the circuit.

In the probing model each input is split into shares, typically t+1 shares, where

the sum of all shares gives the input and the distribution of the sum of any t shares

should appear uniformly random. Each gate then needs to be converted to a gadget
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that takes t+1 times the number of gate inputs whilst ensuring that knowledge of

any set of t wires do not give an adversary any advantage.

As well as circuits, it is possible to view probing security in terms of probability

distributions. An algorithm can be considered to be t-probing secure if the cross

distribution of every set of t intermediate variables depends on at most t input values.

Using this view point, two formal notions of security were proposed [BBD+16]. The

first, non-interference (t-NI), ensures that the joint distribution of any set of at most

t shares is dependent on at most t input shares, however having multiple gadgets

that are t-NI secure does not mean that the composition of these gadgets is also t-NI

secure. In Fig. 2.2 we give a slightly contrived example of 4 t-NI secure gadgets that

perform addition being composed to calculate 3a+3b in such a way that the overall

sum is not t-NI , since given the first output share (3a1+ b), and one share of a, a1,

gives the full input value b. This led to the second notion, strong non-interference

(t-SNI), which strengthens t-NI in such a way that it ensures secure composition.

We breifly discuss the notation used before giving the formal definitions of t-NI and

t-SNI.

In the rest of this section, and in our definitions of t-NI and t-SNI, we will make

use of the following notation. We use a bold capital, M, to refer to a vector or

matrix where each variable is shared. We use M[i][j] to reference the value in the

ith row and jth column of M, we extend this to sets and use M[I][J ] to reference

to all values {M[i][j] : ∀i ∈ I ∀j ∈ J }. We use a(s):(b) to refer to the bth bit of

the sth share of the shared variable a. For simplification we use a(s) to refer to the

sth share of the shared variable a, and a(.):(b) to refer to the shares of the bth bit of

the shared variable. s and b can also be extended to sets in a similar form to the

indices of the matrix. We will be writing each algorithm in single static assignment

(SSA) form, so we will use subscripts to refer to the different assignments of the

variable. This will often give us variables such as M(s):(b)
x [i][j], which refers to using

the bth bit of the sth share of the value in the ith row and jthe column of the xth

assignment of the shared variable M.

For a gadgetG, we define the input shares as the shares of the input variables, the

output shares as the shares of the output variables, the internal shares as the shares
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Figure 2.2: An example showing that the composition of t-NI gadgets does not give
a t-NI gadget.

of all variables that are not part of the input or output, and finally the intermediate

shares as shares of internal and output variables. We denote the number of shares

per variable as Gs.

In diagrams representing the sequences of gadgets, we use a circle to represent

a t-NI gadget, a double circle to represent a t-SNI gadget, a rectangle to represent

an input, a double rectangle to represent an output, a directed arrow to indicate

that an output of the source is the input of the sink. We use dots to represent the

continuation of gadgets in parallel, and dashed arrows to represent the continuation

of gadgets in series. In algorithms we take Gadget as being the normal version of

the gadget, GadgetS(n) as running the gadget n times in series and GadgetP(n)

as running the gadget n times in parallel. Unless otherwise stated, we set Gs = t+1.

Definition 1 (t-NI security [BBD+16] [BGR+21]). Let G be a gadget taking as

input x(.) and outputting y(.). The gadget G is t-NI secure if for any set of tG ≤ t
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intermediate variables, there exists a subset I ⊂ [1, t + 1] of input indices with

|I| ≤ tG, such that the tG intermediate variables can be perfectly simulated from

x(I).

Definition 2 (t-SNI security [BBD+16] [BGR+21]). Let G be a gadget taking as

input x(.) and outputting y(.). The gadget G is t-SNI secure if for any set of tG ≤ t

intermediate variables and any subset O ⊂ [1, t + 1] of output indices, such that

tG + |O| ≤ t, there exists a subset I ⊂ [1, t + 1] of input indices with |I| ≤ tG,

such that the tG intermediate variables and the output variables y(O) can be perfectly

simulated from x(I).

Proposition 1 (Composition of gadgets [BBD+16, Proposition 4]). An algorithm

P is t-NI provided all its gadgets are t-NI, and all masked intermediate variables are

used at most once as argument of a gadget call other than a t-SNI gadget. Moreover

P is t-SNI if it is t-NI and one of the following holds, where G is some t-SNI gadget:

• its return expression is b and its last instruction is of the form b← G(a);

• its sequence of input parameters is (a1, ...,an), its ith instruction is b←i G(ai)

for 1 ≤ i ≤ n, and ai is not used anywhere else in the algorithm.

The simplest building block is the gadget SNIRef [BBD+16]. This is often used

to take a t-NI gadget and turn it into a t-SNI gadget. One of the key gadgets that we

will use is SNIMul, proposed in [Cor14] and shown to be t-SNI secure in [BBD+16].

SNIMul, detailed in Algorithm 2.6, takes two shared variables as input and returns

a shared variable as output that is the shared version of the multiplication of the two

shared inputs. SecMul can be seen as being sharewise multiplication interleaved

with SNIRef, for cases where only a t-NI version of the gadget is needed (denoted

NIMul) both a general algorithm and optimal algorithms for t = 2, 3, 4 are given

in [BBP+16].

For t+1 = 3, the t-SNI multiplication algorithm given in Algorithm 2.6 has the
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Algorithm 2.4: NISRef

Input: a0 ∈ Kt+1

1 for i← 1 to t+ 1 do

2 c
(i)
0 ← a

(i)
0

3 end
4 for i← 1 to (t+ 1) do

5 ri
$← K

6 c
(i)
2 ← c

(i)
1 + ri

7 c
(i+1)
1 ← c

(i+1)
0 − ri

8 end
Output: c2

Algorithm 2.5: SNIRef

Input: a0 ∈ Kt+1

1 for i← 1 to t+ 1 do

2 c
(i)
0 ← a

(i)
0

3 end
4 for i← 1 to (t+ 1) do
5 for j ← 1 + 1 to (t+ 1) do

6 ri(t+1)+j
$← K

7 c
(i)
i(t+1)+j ← c

(i)
i(t+1)+j−1 + ri(t+1)+j

8 c
(j)
i(t+1)+j ← c

(j)
i(t+1)+j−1 − ri(t+1)+j

9 end

10 end
Output: ct(t+1)

Algorithm 2.6: SNIMul

Input: a0,b0 ∈ Kt+1

1 for i← 1 to t+ 1 do

2 c
(i)
0 ← a

(i)
0 · b

(i)
0

3 end
4 for i← 1 to (t+ 1) do
5 for j ← i+ 1 to (t+ 1) do

6 si(t+1)+j
$← K

7 s′i(t+1)+j ← (−sin+j + a
(i)
0 b

(j)
0 ) + a

(j)
0 b

(i)
0

8 c
(i)
i(t+1)+j ← c

(i)
i(t+1)+j−1 + si(t+1)+j

9 c
(j)
i(t+1)+j ← c

(j)
i(t+1)+j−1 + s′i(t+1)+j

10 end

11 end
Output: ct(t+1)
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outputs:

c1 = a1 · b1 + t1,2 + t1,3 = a1b1 + r1,2 + r1,3.

c2 = a2 · b2 + t2,1 + t2,3 = a1b2 + a2b2 + a2b1 − r1,2 + r2,3.

c3 = a3 · b3 + t3,1 + t3,2 = a1b3 + a2b3 + a3b3 + a3b2 + a3b1 − r1,3 − r2,3.

From this it’s easy to see that every pair of outputs have some random value in

common, and so the distribution of any pair of output shares can be given in terms

of just one share of a and some randomness.

Further variants on t-NI exist, such as Probe Isolating Non-Interference [CS18].

The PINI security notion is a composable notion that relies on the locations of

probes, rather than the number of probes that the adversary places. This notion is

designed such that for any circuit that can be split into t+1 circuit shares, where the

only interconnections are non-linear gadgets, then the non-interconnecting gadgets

are t-probing secure.

As well as the threshold implementations of masking schemes given above, there

is also another masking scheme - domain-oriented masking [GMK16]. Whilst we

will not be using domain-oriented masking, we briefly outline it. With domain-

oriented masking each share of a variable belongs to a different domain, each of

which is independent of the other. For most linear function, as with the threshold

implementations above, the functions are applied within each domain. However for

non-linear functions, where cross domain calculations need to happen, fresh random

shares are added.

As well as providing theoretical security proofs in the probing model, it is often

common to also provide experimental proofs. This is done by generating traces,

where a trace is a measure of a particular property (e.g. power consumption, ra-

diation) over time. Two sets of traces are generated, often one set of traces for a

set key and another set where the key is random. For this thesis the traces are

typically for a message with 0 errors and the message with the maximum number

of errors. The motivation behind this is that the attacks, such as [RRCB20], make

use of the knowledge of errors being corrected rather then locations or the specific
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number. We therefore use the maximum number of errors, to magnify the noise

caused by having errors to correct. Once the traces have been collected, the imple-

mentation of the algorithm is tested using the TVLA [GGJR+11] framework. The

TVLA framework provides instructions on how the traces should be generated, and

how Welch’s t-test should be applied. To generate the traces for these experiment

results it is common to use emulators, such as ELMO [MOW17], that emulate the

power usage of the algorithm on specific hardware, reducing the amount of noise

in the traces. Unfortunately we are often only able to produce a small number of

traces, in the thousands, due to the size of each trace and limitations of using emu-

lated traces. Whilst the emulated traces are less noisy than standard traces, there

is still a gap between this and the standard of producing millions of traces. All

experiments in this thesis are performed on the first order masked implementation

of the corresponding components.

We also evaluate gadgets using two efficiency metrics: time complexity and ran-

domness complexity. Time complexity is a simple count of the number of atomic

non-masked operations, while randomness complexity counts the number of random

values that are generated during the masking process. The time complexity of the

masked gadget is important, as run time is one of the most common metrics used,

after security, when evaluating a KEM [PQC16b]. The randomness complexity of a

gadget is also important, as it is difficult to generate secure random numbers for em-

bedded systems [BBP+16]. We will use TG and RG to represent the time complexity

and randomness complexity of gadget G respectively.

2.5 Error correcting codes

We use error correcting codes to encode an input message into a codeword in such a

way that if up to a certain number of errors are added during transmission, then the

recipient can still decode it to give the original message. More formally the encoding

algorithm takes an input message m of length k and encodes it as a codeword c of

length n, where any two unique codewords differ in at least dmin bits. The codeword

is then transmitted across a noisy channel where an error vector e is added to it,
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giving a received vector r = c+ e. The decoding algorithm will decode the received

message r as m′, if the number of errors added is at most ⌊dmin−1
2
⌋ then m = m′. In

general an error correcting code can utilise any alphabet, however we consider only

binary codes. The redundancy of a code is the number of parity bits added, n− k,

and the rate of the code is the fraction of the codeword that is made up by message

bits, k
n
. The capacity of a channel is the maximum rate at which information can

be accurately transmitted across a noisy channel, we say an error correcting code

is capacity achieving if the rate of the code is that same as the channel capacity

for a given channel. Most error correcting codes are considered to be ‘hard’, in the

sense that each coefficient of the received vector is considered as being either a 0 or

a 1. It is also possible to have ‘soft’ error correcting codes, here each coefficient is

considered as being the probability that it is a 1.

2.5.1 BCH codes

Our brief introduction is based on the excellent lecture notes of Han [Han13], with

further information from Wicker [Wic94].

The (binary) BCH code BCH(n, k, d) is a cyclic code of length n, dimension k

and minimum distance ≥ d. For any positive integersm and e there exists a (binary)

BCH code with n = 2m − 1, k ≥ n − me and d ≥ 2e + 1. When BCH codes are

used practically in cryptosystems, the value of k is often larger than the size of the

message being encrypted (normally 128, 192 or 256 bits), and so any unused bits

are omitted and assumed to be 0.

Let α be a primitive element in GF(2m), then the generator polynomial, g(x), of

the code BCH(n, k, d) is defined as the lowest degree monic polynomial over GF(2)

with α, α2, α3, . . . , α2e−1, α2e as roots.

We treat the message m = (m0,m1, . . . ,mk−1) as a polynomial,

m(x) = m0x
0 +m1x

1 + · · ·+mk−1x
k−1.
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After encoding the message, the codeword is

c(x) = m(x)xn−k − (m(x)xn−k mod g(x)),

where c(x) is a polynomial of degree at most n−1. The codeword c(x) is transmitted

on the channel, in our case this corresponds to encrypting and the decrypting the

codeword, where at most e errors occur. These errors are represented by an error

vector e(x) and the output of the channel is r(x) = c(x) + e(x).

The decoding process, which has an input of r(x), and returns c(x), has four

components detailed below.

1. Calculating the syndrome:

Let r(x) = r0 + · · · + rn−1x
n−1 be the received vector, then the syndrome S =

(S1, S2, . . . , S2e) where Si ∈ GF(2m) is given by Si = r(αi).

2. Calculating the error location polynomial:

Given the syndrome S, we create a polynomial, known as the error location

polynomial, who’s roots correspond to the locations of the errors. The error location

polynomial, Λ(x) =
∑e

i=0 Λix
i, can be calculated by solving the following equations:

Λ0 = 1

S1 + Λ1 = 0

S3 + Λ1S2 + Λ2S1 + Λ3 = 0

S5 + Λ1S4 + Λ2S3 + Λ3S2 + Λ4S1 + Λ5 = 0

...

S2e−1 + Λ1S2e−2 + Λ2S2e−3 + · · ·+ ΛeSe−1 = 0

(2.1)

We focus on the Peterson algorithm to calculate Λ(x), which expresses the equations



2.5. Error correcting codes 32

Algorithm 2.7: ChienSearch

Input: Λ(x)
1 b = [ ]
2 for i← 0 to n do
3 a← 0
4 for j ← 0 to 2t do
5 a← a+ Λj

6 Λj ← Λj · α
7 end
8 if a = 1 then
9 b = b+ [i]

10 end
Output: b

in matrix form as:

AΛ =



1 0 0 0 . . . 0 0

S2 S1 1 0 . . . 0 0

S4 S3 S2 S1 . . . 0 0
...

...
...

...
. . .

...
...

S2e−4 S2e−5 S2e−6 S2e−7 . . . Se−2 Se−3

S2e−2 S2e−3 S2e−4 S2e−5 . . . Se Se−1





Λ1

Λ2

Λ3

...

Λe−1

Λe


=



−S1

−S3

−S5

...

−S2e−3

−S2e−1


.

(2.2)

We refer to the matrix A as the Peterson matrix; it has a non-zero determinant if

there are e or e− 1 errors. The Peterson algorithm [Pet60] removes the bottom two

rows and the rightmost two columns of A until its determinant is non-zero. Once

A has been made nonsingular it is inverted and Eq. (2.2) is solved to give Λ(x).

3. Finding the roots of the error location polynomial:

Once the error location polynomial has been calculated, its roots can be found

using the Chien search [Chi64] to find the error locations. The Chien search brute

forces the roots of Λ(x) by iterating over each possible value of x until the roots are

found. Each root represents the location of an error. We outline the pseudocode for

the Chien search in Algorithm 2.7.

4. Correcting the errors:

Once the locations of the errors have been found, it is simply a matter of flipping

the relevant bits to correct the errors.
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The pseudocode of the decoding algorithm is in Algorithm 2.8.

Algorithm 2.8: BCHDecoding

Input: Received vector r(x)

Result: Codeword r(x)

1 S ← Syndromes(r(x))

2 M ← GeneratePetersonMatrix(S)

3 det← 0

4 while det == 0 do

5 det← LUPDeterminant(M)

6 if det == 0 then

7 M ←M [0 : −2][0 : −2]

8 end

9 end

10 Λ(x)← LUPSolve(M)

11 r(x)← ChienSearch(Λ(x), r(x))

Output: r(x)

2.5.2 Polar codes

Polar codes [Ari09] are a family of soft error correcting codes that are capacity-

achieving for a number of binary channels. For clarity we use slightly different

notation for polar codes than used previously. The encoding algorithm takes a

binary message m of length k as input and produce a N = 2n bit codeword c, where

k ≤ N = 2n. The decoding algorithm takes a received vector r of length N = 2n,

that it then decodes to give ĉ of length N = 2n and finally the data bits are removed

to give the decoded message m̂. The polar code construction polarises the channels

such that some approach a capacity of 1 and others approach a capacity of 0. The

2n − k lowest capacity channels are frozen. The polarization process is a recursive

algorithm that is laid out in Algorithm 2.9 and is visualised for n = 2 in Fig. 2.3.
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Algorithm 2.9: Polarization

Input: m ∈ {0, 1}n
1 if n = 1 then

Output: m
2 else
3 for i← 1 to ⌊n

2
⌋ do

4 (m[2i− 1], u[2i]) = (m[2i− 1]⊕m[2i],m[2i])
5 end
6 c = Polarization(m[o]) +Polarization(m[e])

7 end
Output: c

m1

m2

m3

m4

v1

v2

v3

v4

x1

x2

x3

x4

c1

c2

c3

c4

⊕

⊕

⊕

⊕

W

W

W

W

Figure 2.3: Polarization.

Encoding

To encode a message m of length k we first create a new vector u of length N = 2n

for some 2n ≥ m. We divide the bits of u into two groups, a frozen set, of size 2n−m

which is the bits with the lowest channel capacity, and a data set, of size m which is
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the bits with the highest channel capacity. We then consider each bit of u in turn,

setting it to 0 if it is a frozen bit or setting it to the value of the next message bit if

it is a data bit. After setting the vector u, we then transform it into the codeword

c by apply the Polarization operation. E.g. if we want to encode the message

m = [1, 1, 0, 0] as an 8 bit codeword, then the frozen set will be bits {1, 2, 3, 5} and

the data bits will be {4, 6, 7, 8}. This gives a vector u = [0, 0, 0, 1, 0, 1, 0, 0], which

is polarised to give c = [0, 1, 1, 0, 0, 1, 1, 0]. To determine which bits are frozen, we

calculate the capacities of each bit and order them by capacity - the bits that have

the lowest capacity are then frozen.

Decoding

The decoding algorithm (Algorithm 2.10) takes a received vector r and a vector of

base likelihood ratios, LR, for each bit. The likelihood ratio for each bit, LR[i], is

P (c[i]=0|r[i])
P (c[i]=1|r[i]) . The decoding algorithm works by iterating over each bit of r, if r[i] is

a frozen bit then ĉ[i] is set to 0, if it is a data bit then we recursively calculate the

likelihood ratio LN [i](r[1 : N ], ĉ[1 : i−1]) using Algorithm 2.11. The new likelihood

ratio is calculated differently for each recursion based on the value of i. If i is odd

then

LN [2i− 1](r[1 : N ], ĉ[1 : 2i− 2]) =

LN/2[i](r[1 : N/2], ĉ[1 : 2i− 2]o ⊕ ĉ[1 : 2i− 2]e)LN/2[i](r[N/2 + 1 : N ], ĉ[1 : 2i− 2]e) + 1

LN/2[i](r[1 : N/2], ĉ[1 : 2i− 2]o ⊕ ĉ[1 : 2i− 2]e) + LN/2[i](r[N/2 + 1 : N ], ĉ[1 : 2i− 2]e)
.

If i is even then

LN [2i](r[1 : N ], ĉ[1 : 2i− 1]) =

LN/2[i](r[1 : N/2], ĉ[1 : 2i− 1]o ⊕ ĉ[1 : 2i− 1]e)
1−2ĉ[2i−1]LN/2[i](r[N/2 + 1 : N ], ĉ[1 : 2i− 1]e).

Intuitively, if i is odd then it calculates the ratio between the probability of both

bits being the same versus both bits being different. If i is even then it calculates

the ratio between either the ratio of the probability of both bits being 0 versus

both bits being 1 or the ratio of the probability of the first bit being 1 and the

second bit being 0 versus the probability of the first bit being 0 and the second



2.5. Error correcting codes 36

Algorithm 2.10: Decoding

Input: r, p
1 ĉ← [ ]
2 for i← 1 to N do
3 r ← L(i, N, r, ĉ, p)
4 if r ≥ 1 then
5 ĉ[i]← 0
6 else
7 ĉ[i]← 1
8 end

9 end
Output: ĉ

Algorithm 2.11: L

Input: i, N, r, ĉ, p
1 if n = 1 then

Output: p[i]
2 else
3 i′ ← (i+ 1)//2
4 a← L(i′, N/2, r[1 : N/2], ĉ[1 : i− 1]o ⊕ ĉ[1 : i− 1]e, p)
5 b← L(i′, N/2, r[N/2 + 1 : N ], ĉ[1 : i− 1]e, p)
6 if i is odd then
7 r ← ab+1

a+b

8 else
9 r ← a1−2ĉ[i−1]b

10 end

11 end
Output: r

being 1. If LN [i](r[1 : N ], ĉ[1 : i − 1]) < 1 then ĉ[i] = 1 else ĉ[i] = 0. To get the

received message m̂, we take the non-frozen bits of ĉ. This recursive algorithm has a

runtime of O(N2) however when using simple memoisation techniques, it is reduced

to O(N logN) [Ari09]. As long as the rate of the polar code is below the capacity

of the channel, then the probability of the decoder failing is O(N− 1
4 ). For Polar

codes to be utilised for error correction by a cryptosystem, the cryptosystem needs

to be considered as a channel, the capacity of the channel needs to be calculated

and the channel polarization needs to be calculated. There has been some work on

this already [WL21], however it has not been generalised beyond R-LWE.



CHAPTER 3

Using error correction for post quantum cryptography

Compared to classical public key cryptosystems, LWE based cryptosystems produce

fairly large ciphertexts. Kyber and Saber both increase the size of the message by

a factor of between 23 and 49 during encryption. Frodo however has a much larger

blowup, at between 608-676 times the size of the input. This, combined with other

performance issues, is why it is deemed to not be generally applicable and why it

has not been standardised [AASA+20,AAC+22].

Frodo is designed to be as conservative as possible. Two main design decisions

heavily contribute to the large increase in the size of the ciphertexts for Frodo over

other lattice based cryptosystems. The first decision was to use plain LWE problem

as the basis for Frodo. Although the structure of Ring-LWE (R-LWE) [LPR10] or

Module-LWE (MLWE) [LS12] allows for much smaller ciphertexts, these problems

are much newer and much less studied whilst LWE is one of the most studied

problems in cryptography [AASA+19]. The second decision is to be conservative

with the decryption failure rate, δct.

In this chapter we examine the noise in LWE-based cryptosystems and how to

manage it, as well as opening a discussion into how conservative cryptosystems need

to be with the decryption failure rate. We also look at different methods of reducing

37
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the size of the ciphertexts produced by LWE-based cryptosystems, including ones

adapted for different use cases. We combine this with methods of calculating the

decryption failure rate to allow us to recommend new parameter sets for Frodo that

are up to 13% smaller without any loss of security and still remain conservative in

terms of decryption failure rate. We also recommend parameter sets for situations

that have specific requirements such as a negligible failure rates or varying message

sizes whilst also being at least as secure as Frodo and as small as possible, opening

Frodo up to become more widely applicable.

This chapter starts by discussing aspects of cryptosystem design in more detail

and specifically discusses the methods by which noise is added to the cryptosys-

tems in Section 3.1. We analyse methods for calculating the decryption failure

rates in Section 3.2. In Section 3.3 we study the use of error correction, multi-bit

encryption and rounding to reduce the size of the ciphertext. We then recommend

parameter sets for different applications of LWE-based cryptosystems in Section 3.4.

The key novel contributions of this chapter are the use of Gray codes to reduce the

number of bit errors when multi-bit encryption techniques are used, the full analysis

of how various techniques could be applied to current KEMs (rather than to just a

general scheme) with scripts to enable researchers to find improved parameter sets

from a given starting point, and to provide specific parameter sets for these KEMs.

3.1 Secrets, errors and rounding

The decryption failure rate is a contributing factor towards the size of the cipher-

texts, we now discuss the noise that causes decryption failures and how different

parts of the cryptosystem contribute to it. We split the noise into its three key com-

ponents: secrets, errors and rounding. Looking at the general LWE equation (Sec-

tion 2.3.4) of B = ⌊A · S + E⌉q→p, we refer to S as the secret, E as the error and

q → p as the rounding. In the general algorithm the secrets are S in KeyGenera-

tion (Algorithm 2.1) and R in Encryption (Algorithm 2.2), the errors are EA in

KeyGeneration and E′
B and E′′

B in Encryption, and the rounding is q → p in

KeyGeneration, and q → p and q → t in Encryption.
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The secrets are typically both drawn from the same distribution, denoted χs,

and the errors are similarly all drawn from the same distribution, denoted χe. Often

χs and χe are the same distribution, as is the case with all cryptosystems in this

thesis, but they don’t need to be [CPL+17], and our analysis does not rely on this.

The rounding is often by different amounts, especially between the two halves of the

ciphertext, B′ and V′.

The round 3 LWE-based cryptosystems use the centred binomial distribution

and the centred discrete Gaussian distribution for χs and χe. We denote the centred

binomial distribution as Ψk, k ∈ Z+. It is a discrete, symmetrical distribution

centred around 0 with a variance of k
2
. For X ∼ Ψk, X can take any integer value

in the range [−k, ..., k], with P (X = x) =
(

2k
k+x

)
· 2−2k.

The discrete centred Gaussian distribution, Nα(σ), is realised by sampling from

a discrete distribution over [−α, α] that approximates a Gaussian with standard

deviation σ. For X ∼ Nα(σ), x can take any value in [−α, α] with

P (X = x) =
1∑∞

k=−∞ e
−k2

2σ2

e
−x2

2σ2 .

See [BGPT19] for an overview of the error and secret distributions that can be

utilised by LWE-based cryptosystems.

Rounding from q to p is done by discretizing each coefficient in the ring Zq to

the ring Zp. The noise added to the cryptosystem by rounding can be modelled as

an almost uniform distribution, denoted Uq→p, over the range
[
−⌈ q

2p
⌉, ..., ⌈ q

2p
⌉
]
with

P (X = x) =


p

2q
x = −⌈ q

2p
⌉ or ⌈ q

2p
⌉,

p

q
otherwise.

The exact distributions used by the cryptosystems can be found in Table 3.1.

• Frodo uses the LWE problem for its hardness, and so uses B = A · S + E,

where A ∈ Zn×n
q and B,S,E ∈ Zn×n̄

q . The ciphertext for Frodo is (B′,V′),

where B′ ∈ Zm̄×n
q and V′ ∈ Zm̄×n̄

q .
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Cryptosystem χs/χr χe/χe′ Rounding B Rounding B′ Rounding V′

Frodo-640 N12(2.8)
N12(2.8)

N12(2.8)
N12(2.8)

N/A N/A N/A

Frodo-976 N10(2.3)
N10(2.3)

N10(2.3)
N10(2.3)

N/A N/A N/A

Frodo-1344 N6(1.4)
N6(1.4)

N6(1.4)
N6(1.4)

N/A N/A N/A

Kyber-512 Ψ3/Ψ3 Ψ3/Ψ2 N/A U3329→210 U3329→24

Kyber-768 Ψ2/Ψ2 Ψ2/Ψ2 N/A U3329→210 U3329→24

Kyber-1024 Ψ2/Ψ2 Ψ2/Ψ2 N/A U3329→211 U3329→25

(Light)Saber Ψ5/Ψ5 N/A U213→210 U213→210 U210→23

Saber Ψ4/Ψ4 N/A U213→210 U213→210 U210→24

(Fire)Saber Ψ3/Ψ3 N/A U213→210 U213→210 U210→26

Table 3.1: The secrets, errors and rounding for each LWE-based scheme.

• Kyber uses the MLWE problem for its hardness, and so uses B = A · S + E,

where A ∈ Rk×k
q and B,S,E ∈ Rk×1

q , however they do use rounding for com-

pression. The ciphertext for Kyber is (B′,V′), where B′ ∈ Rk×1
p and V′ ∈ Rt.

• Saber uses the MLWR problem for its hardness, and so usesB = ⌊A · S ⌉q→p,

where A ∈ Rk×k
q , S ∈ Rk×1

q , and B ∈ Rk×1
p . The ciphertext for Saber is

(B′,V′), where B′ ∈ Rk×1
p and V′ ∈ Rt.

3.2 Calculating decryption failure rates

In calculating the decryption failure rate we assume that each coefficient is inde-

pendent. It has been shown that this assumption is not valid in practice [MFS20].

However the error that results is believed to be small [MFS20]. We therefore calcu-

late the decryption failure rate assuming independence and take this into account

when recommending parameter sets in Section 3.4.

3.2.1 Calculating δbit

The failure rate can be calculated from knowledge of the noise in the cryptosystem.

We start by writing the rounding errors in terms of B,B′,S,A and E.
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UA = A · S+ EA −B Algorithm 2.1

U′
B = A⊤ ·R+ E′

B −B′ Algorithm 2.2

U′′
B = B⊤ ·R+ E′′

B + enc(m)−V′ Algorithm 2.2

The total noise in the cryptosystem is then

F = V′ −V⊤ − q

2
enc(m),

= (EA +UA)
⊤ ·R− S⊤ · (E′

B +U′
B) + (E′′

B +U′′
B).

To compute the distribution of possible total noise, χF , we recall that all terms

in this expression are random variables drawn from either χs, χe or the rounding

distributions defined in Section 3.1. The combined distribution is then

χF = (((χe′ ∗ Uq→p) · χr)∗n) ∗ ((χs · (χe ∗ Uq→p′))∗n) ∗ (χe′ ∗ Up→t). (3.1)

Where · represents taking the product, ∗ represents taking the convolution, and

∗n represents taking the convolution of a distribution with itself n times. The bit

decryption failure rate, δbit, is then

δbit := P
(
|f | > q

4

)
, f ∼ χF . (3.2)

The codeword decryption failure rate, δct, for a message of length |m|, is determined

from δbit as such:

δct = 1− (1− δbit)
|m|.

If an error correcting code that can correct c errors is used, then for an encoded

message of length |m|, the failure rate is reduced to

δct = 1−
c∑

i=0

(
|m|
i

)
δibit(1− δbit)

|m|−i. (3.3)
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3.2.2 Failure boosting and attacks based on the failure rate

Failure boosting [DVV18, DGJ+19] is a process that uses precomputation to find

message seeds with a higher chance of causing a decryption failure. We briefly

summarize the approach here, more detail can be found in [DVV18]. The noise in

the cryptosystem can be split into three parts based on when it is added, the noise

added during KeyGeneration (Algorithm 2.1)

NK =

 −S

EA +UA

 ,

the noise added to the first half of the ciphertext (B′)

NB′ =

E′
B +U′

B

R

 ,

and the noise added to the second half of the ciphertext (V′)

NV ′ = E′′
B +U′′

B.

We can then write the noise in the cryptosystem as F = N⊤
K ·NB′+NV ′ . The precom-

putation is done by picking a threshold failure probability, ft. A pair (NB′ ,NV ′)

with a δbit that is greater than ft is considered a weak pair. Due to the use of

the FO-transform, the pair (NB′ ,NV ′) is generated pseudorandomly from a seed,

so a bruteforce search of the seeds has to be done. The probability that a given

seed generates a (NB′ ,NV ′) pair with a failure probability greater than ft is de-

noted by α. When a weak pair is used, we have a boosted decryption failure rate

βbit = P (|F| > q
4
|(NB′ ,NV ′)) > ft, where βbit > δbit. This yields an estimated

α−1β−1
bit work to find one failure. Failure boosting can be improved on by condition-

ing further with repeated failures [DRV20].
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3.2.3 Calculating a target decryption failure rate

Having discussed how the decryption failure rate can be boosted, we now look at

how this impacts the security of NK . We start by looking at what information can

be gained from having a plaintext that causes a decryption failure . This information

is referred to as a hint, and it typically takes the form of a coefficient of NK having

a specific value or lower bounding the magnitude of a coefficient. How these hints

are specifically generated can be found in [DRV20, §4]. Having established these

hints, they can be used to produce a version of the LWE instance where some secret

values are known, this can then be attacked using standard methods, an overview

of which can be found in [APS15]. The security of the reduced LWE instance can

be calculated using either [ACD+18] or [DDGR20]. We refer to the security of the

reduced problem as NK−Simplified(i), where there have been i decryption failures. The

overall cost of this attack is α−1β−1
bitNK−Simplified(i).

NIST suggests that for an attack to be considered feasible it should utilise at

most 264 chosen ciphertexts, applying the limit to the decryption failure attack, we

bound β−1
bit i < 264. If we want to be conservative and allow the attacker to achieve

at most one decryption failure, then we require the boosted failure rate βct < 2−64

and ideally for the overall work to find one failure (α−1β−1
bit ) to be greater than the

desired security level of 2λ.

3.3 Reducing the size of the ciphertexts

The primary mechanisms for reducing the size of ciphertexts in LWE-based KEMs,

a reduction of n or q, come at the expense of increasing δct, and therefore reduc-

ing security. By careful use of error correcting codes, employing suitable multi-bit

encryption and utilising rounding, we can reduce the size of the ciphertext while

controlling δct.

3.3.1 Error correcting codes

Using error correcting codes doesn’t directly reduce the size of the ciphertexts, how-

ever it does allow for other techniques to be used that reduce the ciphertext size
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Name n q p Error Correction |pt| δbit δct |ct|

LAC-128 512 251 24 BCH(255,128,17) + D2 128 2−22.26 2−151 712
LAC-128 (no ECC) 512 210 25 - 128 2−169.23 2−162 720

LAC-192 1024 251 24 BCH(511,256,17) + D2 256 2−42.24 2−324 1352
LAC-192 (no ECC) 1024 210 26 - 256 N/A N/A 1472

LAC-256 1024 251 24 BCH(511,256,41) + D2 256 2−20.01 2−302 1464
LAC-256 (no ECC) 1024 211 23 - 256 N/A N/A 1504

Table 3.2: The current LAC parameter sets and adapted versions without error
correction (the adapted versions are less secure than their original counterparts).

without any impact on δct. As error correcting codes introduce some redundancy,

their use in reducing δct does have diminishing returns. LAC, which was not selected

for third round of the NIST post quantum cryptography (PQC) standardisation pro-

cess, is a prime example of how error correction can help reduce the overall ciphertext

size. Taking an alternate parameter set for LAC where no error correction is used

but instead has a large enough modulus (q) so that δbit is small enough that δct

remains the same, we can see that the use of error correcting codes has led to a 8%

size reduction in Table 3.2.

None of the cryptosystems in the third round use error correcting codes, however

we will briefly mention some of the error correcting codes used in cryptosystems from

the second round. The simplest error correcting code is the repetition code, where

each bit is repeated n−1 times, which corrects up to ⌊n−1
2
⌋ errors. This is commonly

extended to include soft decoding, LAC refers to the n-soft repetition code as Dn.

This soft repetition code is used by NewHope and LAC, the latter of which is

a candidate in another PQC standardization project [XD19], and whilst the soft

repetition code used is often not enough to correct errors, it does still dramatically

reduce the probability of a decryption failure by aggregating the result of several

coefficients. Whilst no other soft error correcting codes are used, a good survey on

how they could be used with NewHope can be found in [FPS19].

Other error correcting codes in use include BCH codes [BRC60] (LAC [LLJ+19]),

Melas codes (Three Bears [Ham19]) and XEf codes [Saa17] (Round5 [GZB+19]).

Although we won’t discuss how the codes work, we provide a comparison of them

in Table 3.3. Polar codes have also been suggested for R-LWE schemes [WL21],
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Code n k d c Rate

XEf with κ = 128 318 128 11 5 0.40
XEf with κ = 192 410 192 11 5 0.47
XEf with κ = 256 490 256 11 5 0.52

Melas 274 256 5 2 0.93
BCH(255,128,17) 192 128 17 8 0.67
BCH(511,256,17) 328 256 17 8 0.78
BCH(511,256,41) 427 256 41 20 0.60

Table 3.3: Overview of error correcting codes used by LWE-based cryptosystems.
Where n is the size of the message after encoding by the error correcting code, k
is the size of the plaintext, d is the minimum distance between codewords, c is the
amount of errors that can be corrected, and rate is the fraction of the bits that form
the plaintext.

although no schemes have made use of them. We propose that BCH codes should

be used by LWE-based cryptosystems, as they are both space efficient and admit a

constant time implementation [WR19].

3.3.2 Multi-bit encryption

Method

One method of increasing the throughput of the scheme is to use multi-bit encryp-

tion, where instead of encrypting one bit in each coefficient, multiple bits are encoded

in each coefficient. This method is currently employed in cryptosystems that utilize

unstructured lattices, such as Frodo [NAB+20].

This is done by changing the alphabet used to represent the message from {0, 1}

to {0, 1, ..., 2b − 1} for some b ∈ Z+, where b = 1 is the standard case. The

Encryption (Algorithm 2.2) and Decryption (Algorithm 2.3) remain broadly

the same, so we only highlight the differences.

During encryption, the message is normally added to the ciphertext as a fixed

length number of symbols from {0, 1} and multiplied by q
2
. In Algorithm 2.2 in the

generic scheme this is

V′ = ⌊B⊤ ·R+ E′′
B +

q

2
enc(m)⌉q→t.
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This is changed to

V′ = ⌊B⊤ ·R+ E′′
B +

q

2b
enc(m)⌉q→t.

Likewise, decryption changes from rounding from q to 2, to rounding from q to 2b.

This reduces the number of coefficients that are required to represent the message,

thus reducing the size of V′. Whilst decreasing the size of the ciphertext, this does

also increase the decryption failure rate, as the threshold for which the noise causes

a failure is decreased. Where before the decryption failure rate was

δbit = P
(
|f | > q

4

)
, f ∼ χF ,

with multi-bit encryption it is

δbit = P
(
|f | > q

2 · 2b
)
, f ∼ χF .

Multi-bit encryption reduces the size of V′ by a factor of b at the cost of de-

creasing the failure threshold by a factor of 2b−1. Therefore it tends to work best

for LWE-based cryptosystems where both halves of the ciphertext (B′ and V′) are

similar in size than in cryptosystems where the second half of the ciphertext V′ is

much smaller, such as in M-LWE/M-LWR based cryptosystems.

Current usage

Frodo currently encodes 2, 3 and 4 bits into each coefficient for Frodo-640, Frodo-976

and Frodo-1344 respectively. This leads to a size reduction of 20-25% compared to

equivalent parameter sets which don’t use multi-bit encryption, Table 3.4 compares

suggested parameter sets without multi-bit encryption, with the smaller original

ones.

Use of Gray codes to reduce failures

Since q
2·2b is already several standard deviations away, for example for Kyber-512

q/2 is approximately 83 standard deviations from the mean, χF , P (|f | > 3q
2·2b ) is
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Scheme n n̄ m̄ p b |ct|(Bytes)

Frodo-640 640 8 8 215 2 9720
Frodo-640 without MB 640 12 11 214 1 12551

Frodo-976 976 8 8 216 3 15744
Frodo-976 without MB 976 14 14 214 1 24255

Frodo-1344 1344 8 8 216 4 21632
Frodo-1344 without MB 1344 16 16 213 1 35360

Table 3.4: Frodo parameter sets with and without the use of multi-bit encryption

negligible. This means that in our analysis, we assume that when a decryption

failure occurs, a coefficient is only incorrectly decrypted as one of its neighbours,

i.e. that
q

2 · 2b
< |f | < 3q

2 · 2b
, f ∼ χF .

As b increases, the threshold at which a decryption failure occurs decreases, leading

to a higher decryption failure rate for each coefficient. When b > 1 we not only have

the possibility of a failure happening in any given coefficient, but also the possibility

of a failure in more than one bit. An example of this for b = 2 is if 2 is incorrectly

decrypted as 3 then there is a failure only in the least significant bit, however if

a 2 is incorrectly decrypted as 1 then there is a failure in both bits. Since error

correction operates at the bit level, we care about this difference. To reduce the

impact of each failure we can ensure that each failure only causes a failure in one

bit by encoding each coefficient with a Gray code [Gra]. A Gray code maps integers

to binary representations such that any two consecutive integers differ by only one

bit. As we will be dealing with mostly small values of b, we have provided the first

few values for a Gray code.

0 = 0000 1 = 0001 2 = 0011 3 = 0010

4 = 0110 5 = 0111 6 = 0101 7 = 0100

8 = 1100 9 = 1101 10 = 1111 11 = 1110

12 = 1010 13 = 1011 14 = 1001 15 = 1000

The expected number of bit errors for one coefficient failure without using Gray
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code is (
b−1∑
i=1

i
1

2i

)
+ b

2

2b
= 2− 2

2b

For b = 2 the expected number of errors is 1.5, and as b tends towards ∞ the

expected number of errors tends to 2. By using Gray code we fix the expected

number of failures to 1, a reduction of between a third and a half depending on the

value of b in use.

Since Frodo is based on LWE rather than M-LWE, we propose that the use of

multi-bit encryption should be expanded as much as possible with Frodo and that

it should incorporate the use of Gray codes.

3.3.3 Rounding

The most commonly used method for reducing the size of the ciphertext is to intro-

duce rounding. We discussed it’s impact on the decryption failure rate in Section 3.1,

and now focus on how it can impact the ciphertext size. This can be done to both

halves (B′ and V′) or just to V′. For non-LWR-based cryptosystems, rounding is

typically only done on V′, since this has a much smaller impact on the decryp-

tion failure rate. As it has a low impact on the decryption failure rate, V′ is often

rounded quite severely, e.g. Kyber rounds from 210 to 23. Rounding only reduces the

size of the ciphertext by a logarithmic factor (e.g. rounding V′ from 29 to 23 only

reduces the size of V′ by a factor of 3) and so does need to be done quite severely

to be effective.

There is a trade off if using rounding, as more severe rounding is used to reduce

the size of the ciphertext, more error correction is needed to reduce the impact of

the rounding. This leads to a balancing act of using enough error correction to keep

δbit under control, whilst also using enough rounding such that the size reduction

from rounding is greater than the increase in size caused by the error correcting

code. By utilising a BCH code we propose rounding B′ a small amount and V′ as

much as possible to reduce the size of the ciphertext.
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3.4 Proposed parameter sets

To find parameter sets that present minimally sized ciphertexts, we performed a

sweep over all parameters. In doing this we found a minimal parameter set that

is over 1KB smaller than the initial parameters and a parameter set with a more

negligible failure rate (∼ 2−1000) that are only 10 − 20% larger than the initial

parameter sets.

We briefly review the parameters for Frodo:

|pt| represents the size of the plaintext,

q represents the initial modulus,

t represents the rounding modulus (only used in the latter half of the encryption),

n represents the matrix dimension,

m̄× n̄ represents the size of the matrix used to encode the bits,

b represents the number of bits per coefficient,

c represents the number of errors corrected by the error correcting code in use,

ecc represents the number of bits added during the encoding of the error correcting

code and,

|m| = |pt|+ ecc ≤ b · m̄ · n̄ represents the overall length of the encoded message to

be encrypted.

3.4.1 Parameter sweep

To generate the parameter space we took the original Frodo parameters and then

varied the values of q from 10 to 16, p from 10 to q, t from 2 to p, b from 1 to 8,

c from 0 to 30 - the most errors that can be corrected with ecc < 256. We then

calculate the failure distribution using Eq. (3.1) and calculate δct using Eqs. (3.2)

and (3.3), and the security level of the parameter set (using [ACD+18]) rejecting all

parameter sets that don’t meet the same level of security as the initial parameter

set.
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As part of providing the code that performs the parameter sweep, we have also

provided a test script that checks the correctness of the code.

Finally we have created an interactive plot of these parameter sets of failure

rate against ciphertext size, allowing for filtering by the maximum amount of errors

corrected, minimum decryption failure rates and other similar properties.

3.4.2 Utilising the plots

From looking at the parameter plots Figs. 3.1 to 3.3 we can see that there exists a

range of parameter sets with different decryption failure rates whilst only differing

in size by a small amount. This allows us to easily recommend parameter sets that

are small but are also conservative in terms of both decryption failure rates and the

amount of errors corrected. From the overall plot, we have also produced the Pareto

front of the plot, and so can also easily suggest parameter sets with increasingly

negligible failure rates without a dramatic increase in the size of the ciphertexts.
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Plot of varients of FrodoKEM-640.
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Optimal sizes vs failure rate for varients of FrodoKEM-640.

Figure 3.1: A plot of all parameter sets for FrodoKEM-640, and a plot of all minimal
size parameter sets for each δct, with the Frodo-640 parameter set highlighted in blue.
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Plot of varients of FrodoKEM-976.
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Optimal sizes vs failure rate for varients of FrodoKEM-976.

Figure 3.2: A plot of all parameter sets for FrodoKEM-976, and a plot of all minimal
size parameter sets for each δct, with the Frodo-976 parameter set highlighted in blue.
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Plot of varients of FrodoKEM-1344.
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Figure 3.3: A plot of all parameter sets for FrodoKEM-1344, and a plot of all minimal
size parameter sets for each δct, with the Frodo-1344 parameter set highlighted in
blue.

The nature of the plots allows for the further fine-tuning of the Frodo parameters

for specific situations that have different constraints.

In Table 3.6 we recommend some parameter sets based on the initial Frodo pa-

rameter sets. For each parameter set we recommend two more fine-tuned parameter

sets, one where we vary the error correction, multi-bit encryption used and the

amount of rounding, and another where we also increase the amount of message bits

contained in each coefficient.
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BIKE ClassicMcEliece HQC
I 1573 90 4481
III 3115 208 9026
IV 8246 208 14469

Table 3.5: The ciphertext size (in Bytes) for BIKE [ABB+22], Classic
McEliece [ABC+22] and HQC [AAB+22] for level I, III and IV parameter sets.

In Table 3.5 we give the ciphertext sizes of the current code-based cryptosystems

in Round 4 of the NIST PQC standardisation process. Whilst none of the lattice-

based parameter sets that we propose come close to the efficiency of Classic McEliece,

our fine-tuned Frodo parameter sets are comparable in size to HQC. Our fine-tuned

Kyber and Saber parameter sets substantially outperform both HQC and BIKE.
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Scheme n
|pt|
(bits)

q p t c b
|ct|

(Bytes)
|ct|
|pt| δct

Frodo-640 640 128 215 215 215 0 2 9720 608 2−145

with EC 640 128 215 212 25 1 2 7724 483 2−181

with EC and MB 640 128 215 211 27 9 3 7102 444 2−150

LowFailureRate 640 128 215 211 211 5 2 8040 503 2−384

LowestFailureRate 640 128 215 212 25 10 2 9669 605 2−1010

HigherFailureRate 640 128 215 212 212 4 3 6803 426 2−140

Frodo-976 976 192 216 216 216 0 3 15744 656 2−200

with EC 976 192 216 212 28 2 3 11782 491 2−200

with EC and MB 976 192 216 212 28 2 3 11782 491 2−200

LowFailureRate 976 192 216 213 213 2 3 12802 534 2−404

LowerFailureRate 976 192 216 213 27 7 3 14349 598 2−992

LowestFailureRate 976 192 216 213 27 8 3 14351 598 < 2−1000

HighFailureRate 976 192 216 212 26 2 3 11765 491 2−169

HigherFailureRate 976 192 216 213 29 3 4 11164 466 2−132

Frodo-1344 1344 256 216 216 216 0 4 21632 676 2−253

with EC 1344 256 216 213 26 3 4 17526 548 2−273

with EC and MB 1344 256 216 213 26 3 4 17526 548 2−273

LowFailureRate 1344 256 216 213 213 3 4 17588 550 2−444

LowerFailureRate 1344 256 216 214 214 3 4 18941 592 2−752

LowestFailureRate 1344 256 216 213 26 0 3 19721 617 < 2−1000

HighFailureRate 1344 256 216 213 23 2 4 17498 547 2−204

HigherFailureRate 1344 256 216 212 24 3 4 16164 506 2−154

Table 3.6: Some fine-tuned Frodo parameter sets.
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Scheme n
|pt|
(bits)

q p t c b
|ct|

(Bytes)
|ct|
|pt| δct

Frodo-640 with 256 bit pt 640 256 215 212 25 7 3 9667 303 2−148

With Lower Failure rate I 640 256 215 212 211 15 3 10741 336 2−451

With Lower Failure rate II 640 256 215 211 25 16 2 12445 389 2−906

Frodo-976 with 128 bit pt 976 128 216 212 25 4 3 10283 643 2−219

With Lower Failure rate I 976 128 216 213 213 4 3 11192 700 2−678

With Lower Failure rate II 976 128 216 214 214 4 3 12053 754 2−889

Frodo-976 with 256 bit pt 976 256 216 213 26 8 4 14336 448 2−204

With Lower Failure rate I 976 256 216 213 213 11 4 14419 451 2−411

With Lower Failure rate II 976 256 216 212 212 8 3 14805 463 2−621

With Lower Failure rate III 976 256 216 213 27 7 3 15954 499 2−990

Frodo-1344 with 128 bit pt 1344 128 216 213 26 3 4 13134 821 2−276

With Lower Failure rate I 1344 128 216 213 212 4 4 13166 823 2−560

With Lower Failure rate II 1344 128 216 214 214 4 4 14184 887 2−945

With Lower Failure rate III 1344 128 216 215 28 4 4 15161 948 2−1035

Table 3.7: Some fine-tuned Frodo parameter sets for varying message size.

Scheme n k p q t c b |ct| (Bytes) |ct|
|pt| δct

Kyber-512 256 3/2 3329 210 24 0 1 768 24 2−139

with EC 256 2 3329 28 22 12 1 603 19 2−144

with EC and MB 256 2 3329 28 24 25 2 628 20 2−149

Kyber-768 256 3 3329 210 24 0 1 1088 34 2−164

with EC 256 3 3329 27 23 28 1 856 27 2−165

with EC and MB 256 3 3329 28 24 27 2 889 28 2−168

Kyber-1024 256 4 3329 211 25 0 1 1568 49 2−174

with EC 256 4 3329 28 22 20 1 1131 25 2−184

with EC and MB 256 4 3329 29 23 25 2 1239 39 2−186

Light-Saber 256 2 213 210 23 0 1 736 23 2−120

with EC 256 2 213 29 22 7 1 656 21 2−121

with EC and MB 256 2 213 29 23 27 2 666 21 2−124

Saber 256 3 213 210 24 0 1 1088 34 2−136

with EC 256 3 213 28 23 23 1 939 29 2−140

with EC and MB 256 3 213 29 24 20 2 971 30 2−141

Fire-Saber 256 4 213 210 26 0 1 1472 46 2−165

with EC 256 4 213 28 23 27 1 1205 38 2−167

with EC and MB 256 4 213 29 24 25 2 1268 40 2−180

Table 3.8: Some fine-tuned Kyber and Saber parameter sets, for 256 bit plaintexts.



CHAPTER 4

Securing linear algebra

Linear algebra forms the basis of many algorithms for decoding error correcting codes

and decryption for code based cryptography , including for BCH codes - which we

proposed for use in Chapter 3, and Reed-Solomon and Reed-Muller codes - which

are used in HQC [AAB+22]. In order for these algorithms to be used in secure

implementations, the underlying linear algebra algorithms need to be secured against

side channel attacks. There are a number of gadgets in the literature already that

have been shown to be t-NI or t-SNI secure. We briefly highlight each of these here

and explain them.

We make use of the following gadgets:

55
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G1 SNIMul
a t-SNI( [BBD+16]) secure algorithm for

multiplication.

G1− NIMul
a t-NI( [BBP+16]) secure algorithm for

multiplication.

Ĝ1 SNIAnd
a t-SNI( [BBD+16]) secure algorithm for

logical AND.

Ĝ1− NIAnd
a t-NI( [BBP+16]) secure algorithm for

logical AND.

G2 SNIAdd
a t-SNI(Lemma 4.1.1) secure algorithm for

addition.

G2− NIAdd
a t-NI secure algorithm for

addition.

Ĝ2 SNIXOR
a t-SNI(Lemma 4.1.1) secure algorithm for

logical XOR.

Ĝ2− NIXOR
a t-NI secure algorithm for

logical XOR.

G3 SNIInv

a t-SNI( [BBD+16]) secure algorithm for

inverting an element of a field.

G4− NISwap
a t-NI secure algorithm for swapping the values of

two variables.

G6 SNIGadget6
a t-SNI(Lemma 4.1.5) secure algorithm that is the

inner loop of LUPDecomposition.

G7 SNIGadget7
a t-SNI(Lemma 4.1.6) secure algorithm that is the

middle loop of LUPDecomposition.

G8 SNIMagnitudeComparator
a t-SNI(Lemma 4.1.3) secure algorithm for returning

the shared result of a ≤ b.

G9 SNIRef
a t-SNI( [BBD+16]) secure algorithm for

mask refreshing.

G10 SNILUPDecomp
a t-SNI(Section 4.1 Theorem 4.1.1) secure algorithm that returns

the LUP Decomposition of a matrix.

G11 SNILUPDeterminant
a t-SNI(Section 4.1 Theorem 4.1.2) secure algorithm that returns

the determinant of a matrix.

G12 SNIGadget12
a t-SNI(Lemma 4.1.7) secure algorithm that is the

inner loop of LUPSolve.

G13 SNILUPSolve
a t-SNI(Section 4.1 Theorem 4.1.3) secure algorithm that solves

a series of linear equations.
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Algorithm 4.1: SNIAdd

Input: a0,b0 ∈ GF (2n)
Result: c1 ∈ GF (2n)

1 for i← 1 to t+ 1 do

2 c
(i)
0 ← (a

(i)
0 + b

(i)
0 )

3 end
4 c1 ← SNIRef(c0)
Output: c1

4.1 Masked matrix operations

The first matrix operation we try to mask is matrix decomposition, since it is often

used as a component of other algorithms. In order to mask matrix decomposition,

we break it down in a number of smaller gadgets, and also utilise a number of

gadgets from the literature. The initial algorithm for finding the determinant using

LUP Decomposition [GVL89, Chapter 2], which can be found in Algorithm 4.10,

decomposes the matrix in place allowing the determinant to be calculated at the

end by multiplying together the values in the diagonal. Our masked decomposition

algorithm, which can be found in Algorithm 4.6, takes M as input, where M is the

masked matrix M using Boolean masking, performs the decomposition in place and

returns M. Our masking works for any matrix over finite fields of characteristic 2.

We have run experiments to validate the security of the masking for matrices over

GF (27) and GF (28)

We implement elements of GF (2n) as a polynomial of degree n, where each

coefficient is either 0 or 1. In this implementation addition is equivalent to XOR

and multiplication is equivalent to AND. This allows us to use Boolean masking,

although we will still refer to each operation as addition and multiplication.

The first gadget we need is secure addition. Which we make by composing

standard shared addition with a mask refresh, the algorithm for this is given in Al-

gorithm 4.1.

Theorem 4.1.1 (t-SNI of Algorithm 4.1). Let a
(.)
0 and b

(.)
0 be the inputs and c

(.)
1

be the output to SNIAdd where a, b and c are all elements of GF (2n). For any

set of t′ intermediate variables and any subset O of output variables such that t′ +

|O| ≤ t, there exists a subset I of input variables such that |I| ≤ t′ and the t′
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intermediate variables and the output variables can be perfectly simulated using the

I input variables.

Proof. It’s clear to see that lines 1 to 3 of Algorithm 4.1 are t-NI, as the share c
(i)
0

can be simulated using the corresponding input shares - a
(i)
0 ,b

(i)
0 . As we then apply

SNIRef to the shares before outputting, then by Proposition 1 the algorithm is

t-SNI secure.
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4.1.1 Magnitude comparator

In this section we will consider a binary string a as an array, where a[0] is the highest

order bit and a[1] is the lowest order bit. A magnitude comparator [CM07, Section

4.8] takes two binary strings, a and b, as input and, typically, has three outputs

one for each of a < b, a = b, a > b. We give the pseudocode for this algorithm

in Algorithm 4.2. However in this instance we only care about a < b, and so only

consider the computation required for that output. We start by giving a 2 bit mag-

nitude comparator (Algorithm 4.3), and then show how multiple comparators can

be chained together to give an n bit magnitude comparator (Algorithm 4.4). Fi-

nally we give a gadget that converts coefficients of non-binary strings into individual

bits (Fig. 4.3), allowing this construction to be extended to non-binary strings, and

so can be used by all finite fields.

Algorithm 4.2: 2BitMagnitudeComparator as per [CM07]

Input: a,b

Result: Boolean values for a > b, a = b, a < b respectively (r0, r1, r2)

1 x[0]← Or(And(a[0], b[0]),And(Not(a[0]),Not(b[0])))

2 x[1]← Or(And(a[1], b[1]),And(Not(a[1]),Not(b[1])))

3 r[0]← Or(And(a[0],Not(b[0])),And(x[0], a[1],Not(b[1])))

4 r[1]← And(x[0], x[1])

5 r[2]← Or(And(Not(a[0]), b[0]),And(x[0],Not(a[1]), b[1]))

Output: (r[0], r[1], r[2])

To create our secure magnitude comparator, we start by editing the standard

algorithm to only return the first output, i.e. a > b, and rewrite it to use only

(S)NIAnd, (S)NIXOR, (S)NINot. We realise the (S)NINot(a) gadget as (S)NIXOR(a,1).

We can then replace these gadgets with their secure counterparts. In order to ar-

gue about the security of the overall construction, we start by showing that the

individual 2 bit comparator is secure.

Theorem 4.1.2 (t-SNI of SNI2BitMagnitudeComparatorWithCascade (SNI2BMCC)).

Let a
(.)
0 ,b

(.)
0 , c

(.)
0 be the inputs and r

(.)
1 be the output to SNI2BMCC, where a and
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b are bitstrings of length 2 and c is a single bit.. For any set of t′ intermediate

variables and any subset O of output variables such that t′ + |O| ≤ t, there exists a

subset I of input variables such that |I| ≤ t′ and the t′ intermediate variables and

the output variables can be perfectly simulated using the I input variables.

Proof. We consider SNI2BMCC as a sequence of smaller gadgets in Fig. 4.1, where

every gadget is either t-NI or t-SNI. The input c is only used once, and whilst the

remaining inputs are used twice, they are only used by a t-NI gadget once - the

remaining times being to a t-SNI version of SNIXOR. Only one intermediate

variable is used more than once, and again it is only used once by a t-NI gadget.

The last gadget used is also a t-SNI gadget, and so by Proposition 1 SNI2BMCC

is also t-SNI secure.

Algorithm 4.3: SNI2BitMagnitudeComparator

Input: a,b∈ [0, 1]2

Result: Masked Boolean value r ∈ [0, 1]

1 c0 ← NINot(b)

2 d0[0]← NIAnd(a[0], c0[0])

3 d0[1]← SNIXOR(a[0],b[0])

4 d1[1]← NINot(d0[0])

5 d2[1]← NIAnd(d1[1], a[1])

6 d3[1]← NIAnd(d2[1], c0[0])

7 r0 ← SNIXOR(d0[0],d3[1])

Output: r0
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Algorithm 4.4: Sec2BitMagnitudeComparatorWithCascade

Input: a,b∈ [0, 1]2,c∈ [0, 1]

Result: Masked boolean value r ∈ [0, 1]

1 n0 ← NINot(b)

2 d0[0]← NIAnd(a[0],n0[0])

3 d0[1]← SNIXOR(a[0],b[0])

4 d1[1]← NINot(d0[0])

5 d2[1]← NIAnd(d1[1], a[1])

6 d3[1]← NIAnd(d2[1],n0[0])

7 d0[2]← NIXOR(a[1],b[1])

8 d1[2]← NINot(d0[2])

9 d2[2]← SNIAnd(d1[2],d1[1])

10 d3[2]← NIAnd(d2[2], c)

11 r0 ← NIXOR(d0[0],d3[1])

12 r1 ← SNIXOR(r0,d3[2])

Output: r1
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a[0] b[0] a[1] b[1] c

r

¬ ¬

& ⊕ & ⊕

¬ ¬

& &

⊕ &

⊕

Figure 4.1: 2-bit magnitude comparator with cascading bit considers as a sequence
of t-(S)NI gadgets.

a0[0 : 2] b0[0 : 2] a0[2 : 4] b0[2 : 4] a0[2i : 2i+ 2] b0[2i : 2i+ 2] a0[N − 4 : N − 2] b0[N − 4 : N − 2] a0[N − 2 :] b0[N − 2 :]

r

2MCc 2MCc 2MCc 2MCc 2MC

Figure 4.2: N -bit magnitude comparator - considered as a sequence of t-SNI cas-
cading 2-bit magnitude comparators.

The larger N bit magnitude comparator is created by splitting the strings into

blocks of two bits and using these as the inputs for the smaller 2 bit magnitude

comparators. These smaller comparators are chained together with the output of the

lowest order comparator cascading into the penultimate comparator. We consider

this overall construction as a sequence of t-SNI gadgets in Fig. 4.2. As the magnitude

comparator is not commutative, we use a dashed line to represent the first input (a)

and a dotted line to represent the second input (b), where the magnitude comparator
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is calculating the result of a > b.

Theorem 4.1.3 (t-SNI of SNINBitMagnitudeComparator (SNIMC)). Let

a
(.)
0 ,b

(.)
0 be the inputs and r

(.)
1 be the output to SNIMC , where a and b are masked

bitstrings and r is a single masked bit. For any set of t′ intermediate variables and

any subset O of output variables such that t′ + |O| ≤ t, there exists a subset I of

input variables such that |I| ≤ t′ and the t′ intermediate variables and the output

variables can be perfectly simulated using the I input variables.

Proof. We consider SNIMC as a sequence of smaller gadgets in Fig. 4.2, where

every gadget is t-SNI. As every gadget is t-SNI, then by Proposition 1 SNIMC is

also t-SNI.

a b

A2B A2B

NMC NMC

a′ b′

Figure 4.3: a gadget for converting non-binary coefficients into boolean values,
given as a series of t-SNI gadgets.

In order to extend the the magnitude comparator to non-binary strings a,b,

we have created a gadget that will take as input a[i],b[i] and return two boolean

values a′[i],b′[i]. The output will be such that all three inequalities (<,=, >) are

preserved, i.e. a[i] < b[i] ⇐⇒ a′[i] < b′[i]. The gadget takes the inputs and

considers each input itself as a binary string, in order to do this securely a gadget

is used that converts between arithmetic and boolean masking. We then apply the

standard magnitude comparator gadget to the two inputs, and the output will be

(1,0), (0,0), or (0,1) as appropriate - where each value is also masked.
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Theorem 4.1.4 (t-SNI of SNICoeff2Bin (SNIC2B)). Let a
(.)
0 ,b

(.)
0 be the inputs

and c
(.)
1 ,d

(.)
1 be the outputs to SNIC2B, where a and b are elements of GF (qn) for

some prime q and are masked using arithmetic masking, and c and d are bitstrings

masked using Boolean masking. For any set of t′ intermediate variables and any

subset O of output variables such that t′ + |O| ≤ t, there exists a subset I of input

variables such that |I| ≤ t′ and the t′ intermediate variables and the output variables

can be perfectly simulated using the I input variables.

Proof. We consider SNIC2B as a sequence of smaller gadgets in Fig. 4.2, where

every gadget is t-SNI. As every gadget is t-SNI, then by Proposition 1 SNIC2B is

also t-SNI.

4.1.2 LUP decomposition

LUP decomposition is a decomposition algorithm that converts a matrix into a de-

composed matrix (L−E)+U , where L−E is a lower triangular matrix without the

diagonal and U is an upper triangular matrix such that LU equals some permuta-

tion of the rows of the input matrix. We give the algorithm for LUP decomposition

in Algorithm 4.5, with a rough guide of the masked version of the algorithm in Al-

gorithm 4.6. In order to argue about the security of our masked version of the

LUP decomposition algorithm, we split the algorithm into smaller gadgets. We con-

sider each nested for loop to be a separate gadget in order to discuss whether each

iteration is independent or not and what changes therefore need to be made.
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Algorithm 4.5: LUPDecomposition

Input: Matrix M

Result: Decomposed matrix M ,

permutation vector p

1

2 n← Dim(M)

3 for i← 0 to n do

4 p[i]← i

5 end

6 p[n]← 0

7 for i← 1 to n do

8 maxA← 0

9 imax← i

10 for k ← i to n do

11 if M [k][i] ≥ maxA then

12 maxA←M [k][i]

13 imax← k

14 end

15 end

16 Swap(p[i], p[imax])

17 p[n]← p[n] + 1

18 for k ← i to n do

19 Swap(M [i][k],M [imax][k])

20 end

21 for j ← i+ 1 to n do

22 M [j][i]←M [j][i]/M [i][i]

23

24 for k ← i+ 1 to n do

25 M [j][k]←M [j][k]−

(M [j][i]M [i][k])

26 end

27 end

28 end

Output: M, p

Algorithm 4.6: SNILUPDecomp

Input: Matrix M ∈ GF (2m)n×n

Result: Decomposed matrix

M∈ GF (2m)n×n,

permutation vector p

1 n← Dim(M)

2 for i← 0 to n do

3 p[i]← i

4 end

5 p[n]← 0

6 for i← 1 to n do

7 maxA← 0

8 imax← i

9 for k ← i to n do

10 (maxA, imax)←

G8(M,maxA, imax)

11

12

13 end

14 NISwap(p[i], p[imax])

15 p[n]← p[n] + 1

16 for k ← i to n do

17 NISwap(M[i][k],M[imax][k])

18 end

19 for j ← i+ 1 to n do

20 a← G3(M[i][i])

21 M[j][i]←

G1(M[j][i],M[i][i])

22 for k ← i+ 1 to n do

23 M[j][k]←

G2(M[j][k],−G1(M[j][i],M[i][k]))

24 end

25 end

26 end

Output: M, p
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We now consider how to secure the inner loop of LUP Decomposition.

Algorithm 4.7: SNIGadget6

Input: M0 ∈ GF (2m)n×n

Result: M2 ∈ GF (2m)n×n

1 a1 ← SNIInv(M0[i][i])

2 M1[j][i]← SNIMul(M0[j][i], a1)

3 for k ← i+ 1 to n do

4 M2[j][k]← SNIAdd(M2[j][k],−SNIMul(M0[j][i],M0[i][k]))

5 end

Output: M2

Theorem 4.1.5 (t-SNI of Gadget 6). Let M
(.)
0 be the input and M

(.)
3 be the output

to Gadget 6 , where M ∈ GF (2m)n×n and is masked using Boolean masking. For

any set of t′ intermediate variables and any subset O of output variables such that

t′ + |O| ≤ t, there exists a subset I of input variables such that |I| ≤ t′ and the t′

intermediate variables and the output variables can be perfectly simulated using the

I input variables.

Proof. All iterates i, j, k, n are public variables. As the iterations of the inner loop

are all independent of each other, we consider them to be executed in parallel (lines

3-5 in Algorithm 4.7). We model Gadget 6 as a sequence of t-SNI secure gadgets,

as depicted in Fig. 4.4. All input variables are immediately inputted into a t-

SNI gadget. Whilst the intermediate variables corresponding to the output of G1 is

reused multiple times, each time it is used by a t-SNI gadget, and so by Proposition 1

the entire gadget is t-SNI. Moreover, due to the fact that every gadget call contains

at least one of the inputs to G6, we can state that every version of G5 used must

be t-SNI for G6 to be t-SNI.
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M0[i][i]

M0[j][i]

M3[j][i+ 1]

M3[j][k]

M3[j][n]

G3

G1

M0[i][i+ 1]

M0[j][i+ 1]

M0[i][k]

M0[j][k]

M0[i][n]

M0[j][n]

G5

G5

G5

...

...

...

...

...

...

Figure 4.4: Gadget 6 - considered as a sequence of t-SNI gadgets.

The middle loop of LUP Decomposition, Gadget 7, only makes use of Gadget 6,

which is t-SNI secure as shown above in Lemma 4.1.5.

Algorithm 4.8: Gadget7

Input: M0

1 for j ← i+ 1 to n do

2 M3[j][i+ 1, . . . , n]←

SNIGadget6(M0[j][i],M0[i][i],M0[j][i+ 1, . . . , n],M0[i][i+ 1, . . . , n])

3 end

Output: M3

Algorithm 4.9: Gadget7P (n)

Input: M0 ∈ GF (2m)n×n

1 M2 ← SNIGadget6P(n,M1)

Output: M3
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M0[i][i+ 1 :]

M0[i][i]

M0[i+ 1][i+ 1 :]

M0[j][i+ 1 :]

M0[n][i+ 1 :]

...

...

G6

G6

G6

M3[i+ 1][i+ 1 :]

M3[j][i+ 1 :]

M3[n][i+ 1 :]

...

...

...

...

Figure 4.5: Gadget 7 - considered as a sequence of t-SNI gadgets.

Theorem 4.1.6 (t-SNI of SNIGadget7). Let M
(.)
0 be the input and M

(.)
3 be the

output to Gadget 7 , where m ∈ GF (2m)n×n. For any set of t′ intermediate variables

and any subset O of output variables such that t′ + |O| ≤ t, there exists a subset I

of input variables such that |I| ≤ t′ and the t′ intermediate variables and the output

variables can be perfectly simulated using the I input variables.

Proof. All iterates i, j, n are public variables. As the iterations of the inner loop are

all independent of each other, we consider them to be executed in parallel and sum-

marize them (lines 1-3 in Algorithm 4.8) into one gadget (line 1 in Algorithm 4.9).

We model Gadget 7 as a sequence of t-SNI secure gadgets, as depicted in Fig. 4.5. As

the only gadgets used as part of this construction are t-SNI, then by Proposition 1

the entire gadget is t-SNI. Moreover, due to the fact that every gadget call shares

an input to G7, we can state that every version of G6 used must be t-SNI for G7 to

be t-NI or t-SNI.

M0

imax0 imax1

0

G8S G4,1 G9 G7

. .

..

imax2i imax2i+1

0

G8S G4,i G9 G7

. .

..

imax2n imax2n+1

0

G8S G4,n G9 G7

. .

..

M4∗n

Figure 4.6: MaskedLUPDecomposition - considered as a sequence of t-(S)NI
gadgets.

Gadget10 is full SNILUPDecomposition. We build Gadget10 from a
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number of gadgets - NISwap, denoted G4−, is a t-NI gadget, and can be made t-

SNI by applying a t-SNI mask refresh, G9, after its usage. The permutation vector p

is public and unmasked, and so we leave out of the depiction in Fig. 4.6. As Fig. 4.6

contains every aspect of SNILUPDecomposition that uses secret values as part

of the computation, it suffices to show that Fig. 4.6 is t-SNI.

Theorem 4.1.1 (t-SNI of SNILUPDecomposition). Let M
(.)
0 be the input and

M
(.)
4n be the output to Gadget10 , where M ∈ GF (2m)(n×n). For any set of t′ inter-

mediate variables and any subset O of output variables such that t′ + |O| ≤ t, there

exists a subset I of input variables such that |I| ≤ t′ and the t′ intermediate variables

and the output variables can be perfectly simulated using the I input variables.

Proof. As the iterations of the for loop are not independent of each other, we con-

sider them to be executed in series. There are then modelled as a sequence of t-(S)NI

gadgets, as depicted in Fig. 4.6. As every gadget used in the construction is t-NI or

t-SNI, and the final gadget call is t-SNI, then by Proposition 1 SNILUPDecom-

position is also t-SNI. We also note that whilst for SNILUPDecomposition to

be t-SNI, we only require the final call to G7 to be t-SNI, due to the structure of

G7 it will always be t-SNI.

4.1.3 Determinant

To calculate the determinant of a matrix we use the LUP decomposition algorithm

to decompose the matrix, and the determinant is the product of the leading diagonal

of the decomposed matrix. This algorithm can be found in Algorithm 4.10 and the

masked version can be found in Algorithm 4.11.
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Algorithm 4.10: LUPDeterminant

Input: Matrix M

Result: Determinant det

1 n← Dim(M)

2 M, p←

LUPDecomposition(M)

3 det←M [1][1]

4 for i← 2 to n do

5 det←M [i][i]det

6

7 end

8 det← (−1)p[n]det

Output: det

Algorithm 4.11: SNILUPDeterminant

Input: Matrix M∈ GF (2m)n×n

Result: Determinant

det∈ GF (2m)

1 n← Dim(M)

2 M1, p← SNILUPDecomp(M0)

3 det0 ←M1[1][1]

4 for i← 2 to n do

5 deti−1 ←

NIMul(M1[i][i],deti−2)

6 end

7 detn ← NIMul((−1)p[n],detn−1)

Output: detn

M0

M1

G10

M1[1][1]

detn

p1

M1[2][2] M1[i+ 1][i+ 1] M1[n][n]

G1− G1− G1− G1−

Figure 4.7: Matrix Determinant - considered as a sequence of t-SNI gadgets.

Theorem 4.1.2 (t-SNI of SNILUPDeterminant). Let M0 be the input and

detn be the output of SNILUPDeterminant where M ∈ GF (2m)n×n and det ∈

GF (2m). For any set of t′ intermediate variables and any subset O of output vari-

ables such that t′+|O| ≤ t, there exists a subset I of input variables such that |I| ≤ t′

and the t′ intermediate variables and the output variables can be perfectly simulated

using the I input variables.

Proof. As the iterations of the for loop are not independent of each other, we consider

them to be executed in series. These are then modelled as a sequence of t-(S)NI
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gadgets, as depicted in Fig. 4.7. As no variable is used more than once, and the input

is only used by a t-SNI gadget, then by Proposition 1 SNILUPDeterminant is

also t-SNI. Moreover we note that a t-NI version of this gadget can be made by only

using a t-NI version of G10.

4.1.4 Solving linear equations

In order to solve linear equations Ax = b, we first decompose the matrix A using

LUP decomposition, giving LUx = Pb. We then solve Ly = Pb to get y and

finally Ux = y to get x. We give this algorithm in Algorithm 4.12 and the masked

counterpart in Algorithm 4.13. In order to argue about the security of the masked

algorithm, we break each nested for loop into a separate gadget to best assess their

independence.
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Algorithm 4.12: LUPSolve

Input: Matrix M , vector b

Result: Vector x, s.t. Mx = b

1 n← Dim(M)

2 (M, p)←

LUPDecomposition(M)

3 for i← 0 to n do

4 x[i]← b[p[i]]

5 for k ← 0 to i do

6 x[i]← x[i]−M [i][k]x[k]

7

8 end

9 end

10 for i← n− 1 to 0 do

11 x[i]← b[p[i]]

12 for k ← i+ 1 to n do

13 x[i]← x[i]−M [i][k]x[k]

14

15 end

16 x[i]← x[i]/M [i][i]

17

18 end

Output: x

Algorithm 4.13: SNILUPSolve

Input: Matrix M∈ GF (2m)n×n,

vector b∈ GF (2m)n

Result: Vector x, s.t. Mx = b

1 n← Dim(M)

2 (M, p)← SNILUPDecomp(M)

3 for i← 0 to n do

4 x[i]← b[p[i]]

5 for k ← 0 to i do

6 x[i]←

SNIAdd(x[i],−SNIMul(M[i][k],x[k]))

7 end

8 end

9 for i← n− 1 to 0 do

10 x[i]← b[p[i]]

11 for k ← i+ 1 to n do

12 x[i]←

SNIAdd(x[i],−SNIMul(M[i][k],x[k]))

13 end

14 a = SNIInv(M[i][i])

15 x[i]← SNIMul(x[i], a)

16 end

Output: x
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Algorithm 4.14: Gadget12

Input: M0 ∈ GF (2m)(n×n), x0 ∈ GF (2m)n

1 x1[i]← b[p[i]]
2 for k ← u to v − 1 do
3 xu−k+1[i]← NIAdd(xu−k[i],−NIMul(M0[i][k],x1[k]))
4 end
5 xu−v[i]← SNIAdd(xu−v−1[i],−NIMul(M0[i][v],x1[v]))
Output: xu−v

b[p[i]] G2− G2− G2 xk+2[i]

− − −

G1− G1− G1−

M[i][u] x[u] M[i][k] x[k] M[i][v] x[v]

. . .

. . .

. . .

. . .

Figure 4.8: Gadget 12 - considered as a sequence of t-SNI gadgets.

Theorem 4.1.7 (t-SNI of Gadget 12). Let M
(.)
0 [i][u, . . . , v], b

(.)
0 [p[i]] and x

(.)
0 [u, . . . , v]

be the input, and x
(.)
k+1[i] be the output to Gadget 12 , where M ∈ GF (2m)(n×n), b,x ∈

GF (2m)n are masked using Boolean masking and p ∈ GF (2m)n is public. For any set

of t′ intermediate variables and any subset O of output variables such that t′+|O| ≤ t,

there exists a subset I of input variables such that I ≤ t′ and the t′ intermediate

variables and the O output variables can be perfectly simulated using the I input

variables.

Proof. All iterates i, k, u, v, and the vector p are public variables. Since k ∈

[u, . . . , v], no assignment of a variable is used more than once. Since the only gadgets

used are t-SNI or t-NI, and the last gadget is t-SNI, then by Proposition 1 the entire

gadget is t-SNI.
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M0

M1

G10

M1[0][0] M1[i][0 : i] M1[n][0 : n] M1[n− 1][n] M1[n− 1][n− 1] M1[i][i+ 1 : n] M1[n− 1][n− 1] M1[0][i+ 1 : n] M1[0][0]

x3nG12 G12 G12 G12 G12 G12G1 G1 G1

G3 G3 G3

Figure 4.9: SNILUPSolve - considered as a sequence of t-(S)NI gadgets.

Theorem 4.1.3 (t-SNI of SNILUPSolve). Let M̂
(.)
0 be the input and x

(.)
3n be the

output to G12 , where M ∈ GF (2m)(n×n),x ∈ GF (2m)n. For any set of t′ intermedi-

ate variables and any subset O of output variables such that t′+ |O| ≤ t, there exists

a subset I of input variables such that |I| ≤ t′ and the t′ intermediate variables and

the output variables can be perfectly simulated using the I input variables.

Proof. The only gadgets that make up SNILUPSolve are SNIMul, SNIInv,

SNILUPDecomp and G12. As all of these gadgets are t-SNI and each intermedi-

ate variable is only an input to one gadget, then by Proposition 1 SNILUPSolve

is t-NI. Moreover because the first gadget the input passes through is t-SNI, then

SNILUPSolve is also t-SNI.
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4.2 Results

We give a brief overview of the time and randomness complexity of the smaller gad-

gets in Table 4.1. The complexity ofG8 depends on the bit length of the values being

compared, we focus on the case where all values are 8 bits. Inverse’s complexity

depends on the size of the finite field used, for this example we use GF (28).

Gadget T R

SNIMul/SNIAnd 3t2 t2

2

NIMul/NIAnd 7t2

4
t2

4
+ t

SNIRef t2 t2

2

NIRef 2t t

SNIAdd/SNIXOR t2 + t t2

2

NIAdd/NIXOR t −

NINot 1 −

SNIInv 12t2 + 3t 3t2 + 2t

NISwap t −

G8 44t2 + 6t 16t2 + 15t

Table 4.1: The time and randomness complexity of small gadgets.

We now discuss the time complexity and the randomness complexity of the main

algorithms.

LUPDecomposition. We estimate the time complexity of LUPDecomposi-

tion, TLUP, as

TLUP = n(nTG8 + nTNISwap + nTSNIInv + n2(TNIAdd + TSNIMul))

= n2TG8 + n2TNISwap + n2TSNIInv + n3TNiAdd + n3TSNIMul

= n2(44t2 + 6t) + n2(t) + n2(12t2 + 3t) + n3(3t) + n3(3t2)

= O(n3t2)
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We estimate the randomness complexity of LUPDecomposition, RLUP, as

RLUP = n(nRG8 + nRNISwap + nRSNIInv + n2(RNIAdd +RSNIMul))

= n2RG8 + n2RNISwap + n2RSNIInv + n3RNIAdd + n3RSNIMul

= n2(16t2 + 15t) + n2(3t2 + 2t) + n3(t2)

= O(n3t2)

Determinant calculation. We now estimate the time and randomness com-

plexity of LUPDeterminant, TLUPDet, assuming that LUPDecomposition has

already been performed.

TLUPDet = nTNIMul

= n(
7t2

4
)

= O(nt2)

RLUPDet = nRNIMul

= n(
t2

4
)

= O(nt2)

Solving linear equations. We now estimate the time and randomness com-

plexity of LUPSolve, TLUPSolve, assuming that LUPDecomposition has already

been performed.

TLUPSolve = 2n(nTNIMul + (n− 1)TNIAdd + TSNIAdd) + nTSNIInv + nTSNIMul

= 2n2TNIMul + n(n− 1)TNIAdd + nTSNIAdd + nTSNIInv + nTSNIMul

= 2n2(
7t2

4
) + n(n− 1)t+ n(t2 + t) + n(12t2 + 3t) + n(

7t2

4
)

= O(n2t2)
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RLUPSolve = 2n(nRNIMul + (n− 1)RNIAdd +RSNIAdd) + nRSNIInv + nRSNIMul

= 2n2RNIMul + n(n− 1)RNIAdd + nRSNIAdd + nRSNIInv + nRSNIMul

= 2n2(
t2

2
) + n(

t

2
) + n(3t2 + 2t) + n(

t2

2
)

= O(n2t2)

From this we can see that our masked implementation only has an overhead

of order t2 over the standard implementation, this is inline with the most efficient

masked multiplication gadgets. Using this we can now look to creating masked

implementations of the BCH code decoding algorithm, which relies heavily on these

linear algebra algorithms.



CHAPTER 5

Securing BCH codes

Most LWE-based cryptosystems have the possibility of a decryption failure, where

the ciphertext is decrypted incorrectly. These decryption failures are caused by

the noise introduced during key generation and encryption. Knowing the exact

decryption failure rate is important [DVV19], as it has been shown that it is possible

to boost the probability [DRV20] and to utilise failures as part of attacks [DGJ+19].

A number of round 2 schemes introduced error correction to reduce the decryp-

tion failure rate [Ham19,LLJ+19,GZB+19], making the scheme more secure to de-

cryption failure attacks and also to allow for the use of smaller moduli, thus reducing

the size of ciphertexts. There has also been further work specifically looking at the

effectiveness of using a number of different error correcting codes to improve R-LWE

schemes [WL21,FPS19], which also generalises to other LWE-based schemes.

As well as being mathematically secure, it is important for the implementa-

tions of the schemes to be secure, including against side-channel attacks. Several

of the KEMs that utilise error correcting codes have been broken by performing

side-channel attacks on the decoding of the error correcting code, with various at-

tacks exploiting information gained from timing [DTVV19], power or electromag-

netic (EM) [RRCB20]. There also exists successful side-channel attacks against some

78
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of the code based cryptosystems, e.g. HQC [SHR+22].

Related work. One of the main method of preventing power analysis attacks

is to use masking [CJRR99], and there is a large body of work applying this to se-

cure a number of schemes, e.g. Kyber [BGR+21], Saber [BDK+20]. Another method

used to secure against side-channel attacks is blinding [Koc96], where the input is

changed to appear random to make the leakage unpredictable, this is used very

often in protecting RSA against timing attacks. A constant time implementation of

BCH code decoding was introduced in [WR19] that is secure against timing attacks.

However we are not aware of any defence against power analysis or EM analysis

attacks for error correcting codes.

Contributions. To the best of our knowledge, there has been no analysis on how

to mask any error correcting code. In this chapter we present the first analysis to

realise a complete masked error correcting code - specifically binary BCH codes, as

part of this we also present masked versions of LUP decomposition and an algorithm

for finding the determinant of a matrix. We present techniques for constructing both

first- and higher-order masking schemes with formal proofs in the probing model.

Rather than focusing on a specific parameter set, our masking techniques are ex-

tended for the general BCH code, although with a focus on how they would be used

in conjunction with a LWE-based KEM - specifically ensuring that they would be

compatible with the masked versions of Kyber and Saber.

In order to mask the BCH code decoding algorithm we break it down into the

following smaller components.

• Syndrome calculation. The BCH code decoding algorithm requires the syn-

dromes to be calculated from the message. We give an algorithm to calculate

the syndrome that is compatible with a masked message and is masked in such

a way that not only are the message and syndrome values hidden, but also

whether the syndrome is the all zero vector.

• Adapted Peterson Algorithm. Whilst a constant time version of the

Berlekamp–Massey decoding algorithm does exist [WR19], it has other limita-
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tions in terms of masking. We instead adapt the Peterson algorithm to make

it constant time and mask it to hide both the locations of the errors corrected

and the number of errors being corrected.

• Chien Search. Finally we mask the Chien search algorithm. In order to do

this in such a way that the number of errors is hidden, as well as the locations

of the errors, we ensure that we always have the maximum (or maximum - 1)

number of errors.

Several of the attacks against LWE based schemes that exploit side-channel infor-

mation from the error correcting codes, only utilised the knowledge that an error had

been corrected, rather than needing to know any of the values. The main challenge

with masking error correcting codes that are used in LWE based schemes has been

around ensuring that no information relating to the number of errors being corrected

is leaked. In order to show that we manage this, we rely mostly on experimental

proofs, whilst also using proofs in the probing model to show that the values are

hidden. We present an implementation of the first-order masking of specific BCH

codes with parameters chosen to be compatible with LWE-based KEMs. This is

used to conduct experimental verification of our first-order implementation by using

ELMO [MOW17] to emulate the power consumption of the implementation and as-

sessing the leakage using the Test Vector Leakage Assessment (TVLA) [GGJR+11].

Our masked decoding algorithm is 4.90x slower than the constant time implementa-

tion presented in [WR19]. The overheads for the, now optimised, side-channel resis-

tant implementations of Saber and Kyber are 2.5x [BDK+20], and 3.5x [BGR+21]

respectively. At the moment neither of these schemes use error correction, however

we argue in Chapter 3 that they would both benefit from utilising it.

We make use of the following gadgets:
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G1 SNIMul
a t-SNI( [BBD+16]) secure algorithm for

multiplication.

G1− NIMul
a t-NI( [BBP+16]) secure algorithm for

multiplication.

Ĝ1 SNIAnd
a t-SNI( [BBD+16]) secure algorithm for

logical AND.

Ĝ1− NIAnd
a t-NI( [BBP+16]) secure algorithm for

logical AND.

G2 SNIAdd
a t-SNI(Lemma 4.1.1) secure algorithm for

addition.

G2− NIAdd
a t-NI secure algorithm for

addition.

Ĝ2 SNIXOR
a t-SNI(Lemma 4.1.1) secure algorithm for

logical XOR.

Ĝ2− NIXOR
a t-NI secure algorithm for

logical XOR.

G3 SNIInv
a t-SNI( [BBD+16]) secure algorithm for

inverting an element of a field.

G4− NISwap
a t-NI secure algorithm for swapping the values of

two variables.

G8 SNIGadget8
a t-SNI(Lemma 4.1.3) secure algorithm for returning

the shared result of a ≤ b.

G9 SNIRef
a t-SNI( [BBD+16]) secure algorithm for

mask refreshing.

G10 SNILUPDecomp
a t-SNI(Theorem 4.1.1) secure algorithm that returns

the LUP Decomposition of a matrix.

G11 SNILUPDeterminant
a t-SNI(Theorem 4.1.2) secure algorithm that returns

the determinant of a matrix.

G13 SNILUPSolve
a t-SNI(Theorem 4.1.3) secure algorithm that solves

a series of linear equations.

G14 SNISyndromeCalculation
a t-SNI(Lemma 5.2.1) secure algorithm that returns

the Syndrome of the received message.

G15 SNIAdaptedPeterson
a t-SNI(Lemma 5.2.3) secure algorithm that returns

the error location polynomial.

G16 SNIChienSearch
a t-SNI(Lemma 5.2.4) secure algorithm that returns

the locations of the errors.

G17 SNIBCHDecoding
a t-SNI(Theorem 5.2.1) secure algorithm that decodes

and corrects the input message.

G18− NIPetersonMatrix
a t-NI secure algorithm that creates

the Peterson matrix.
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5.1 Method

In order to protect against attacks, we first consider the weaknesses of the BCH

decoding algorithm. Three main issues mean that BCH decoding is susceptible to

timing and power analysis attacks. The first issue is that it is possible to pick specific

codewords that maximise the statistical differences in power usage, regardless of how

many errors there are, and that the attacker can pick any two messages to maximise

this. The second issue is the number of errors present, especially for timing leakage,

as most aspects of the algorithms have a run time that is variable in the number of

errors. The leaks from errors are exacerbated even further when one of the messages

has no errors, as this leads to all the syndromes being 0. The final issue is that

even the location of the errors causes leakage, which is most noticeable when in one

message all the errors are grouped at the start and in the other they are all grouped

at the end. Since in both the CPA and the CCA setting the attacker can choose

the plaintext, we do not need to consider masking the BCH encoding algorithm.

In order to combat these issues we first blind the input by generating a random,

valid, codeword, which we then xor with the received message, making it impossible

for an attacker to pick specific codewords that maximise the efficacy of the attack.

This has no impact on the value of the syndrome, which is only influenced by the

number and location of errors. However it does impact the values of shares of the

syndrome, in the case where no masking is employed then the all 0 codeword maps

to every share being 0, however all other valid codewords map to shares which are

not all 0. Secondly to reduce the impact of the syndromes being 0, we mask each

syndrome using arithmetic masking and adapt the algorithms to work on masked

variables (see Section 5.2.1).

Finally, to reduce issues about the number of errors present, we keep adding

errors until there are a total of e or e− 1 errors in the message (see Section 5.2.2).

We use the Peterson algorithm instead of the Berlekamp-Massey algorithm, as our

initial tests suggest that it is easier to distinguish between the error locations when

using the Berlekamp-Massey algorithm than when using the Peterson algorithm.

An overview of our masked algorithm can be found in Algorithm 6.3, this can be

easily compared with the standard BCH code decoding algorithm using the Peterson
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Algorithm 5.1:BCHDecoding

Input: Received vector r(x)
Result: Codeword r(x)

1

2

3 S ← Syndromes(r(x))
4 M ←

GeneratePetersonMatrix(S)
5 det← 0
6 while det == 0 do
7 det←

LUPDeterminant(M)
8 if det == 0 then
9 M ←M [0 : −2][0 : −2]

10 end

11 end
12 Λ(x)← LUPSolve(M)
13

14 r(x)← ChienSearch(Λ(x), r(x))
Output: r(x)

Algorithm 5.2: SNIBCHDecoding

Input: Received vector r0(x)
Result: Codeword r(x)

1 c′(x)← RandomCodeword
2 r1(x)← r0(x)⊕ c′(x)
3 S← SNISyndromes(r1(x))
4 M← NIPetersonMatrix(S)
5

6 M←
SNIAdaptedPeterson(M)

7

8

9

10

11 Λ(x)← SNILUPSolve(M)
12 r2(x)←

SNIChienSearch(Λ(x), r1(x))
13 r3(x)← r2(x)⊕ c′(x)

Output: r3(x)

algorithm in Algorithm 5.1.

Before using LUP-decomposition as our algorithm for checking if a matrix is

singular, we considered a number of other algorithms. The first algorithm we con-

sidered was one for calculating det(A+B) without calculating A+B [Mar90]. Whilst

this would be very easy to mask and would have a very low randomness complexity,

unfortunately it is a very inefficient algorithm. Another algorithm considered was

the Bareiss algorithm [Bar68], which calculates the leading principal minors [M ]1,1

to [M ]n,n in O(N3), however if any of the leading principal minors are 0, then this

algorithm will set all subsequent leading principal minors to 0. This would lead

to an incorrect determinant being calculated, or by permuting rows - in which case

we are no longer calculating the principal minors of the original matrix, and so any

savings made are lost.

Our masked BCH code decoding algorithm works for all binary BCH codes,

however our experiments are specifically for the BCH(255,128,8) code.
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5.2 Masking BCH code decoding

In this section we present the masked versions of the main components of the BCH

code decoding algorithm.

5.2.1 Syndrome calculation

When there are no errors, each value in the syndrome is 0, which has been shown to

be exploitable in Ravi et al [RRCB20]. To avoid each value being 0, we split each

S[i] into shares. We adapt the algorithm in the following way. The syndrome S is

a 2e−tuple, where each S[i] is calculated as S[i] =
∑n−1

k=0 ek(α
i)k, where only e and

S are secret variables. This can be considered as splitting the received vector into

shares and calculating the syndromes on each share of the codeword individually.

The masked syndrome calculation algorithm makes use of three smaller gadgets: the

t-SNI gadget SNIMul, or G1, the t-NI gadget NIMul, or G1−, and the t-NI gadget

NIAdd, or G2−. Since each S[i] can be calculated independently, we consider the

algorithm to calculate some S[i] rather than calculating S. This is modelled as a

sequence of t-(S)NI gadgets in Fig. 5.1.

Theorem 5.2.1 (t-SNI of SNISyndromeCalculation). Let e0 be the input and

S[i]n be the output of Syndrome calculation , where e is a bitstring, masked using

Boolean masking, and each S[i] ∈ GF2m. For any set of t′ intermediate variables

and any subset O of output variables such that t′ + |O| ≤ t, there exists a subset I

of input variables such that |I| ≤ t′ and the t′ intermediate variables and the output

variables can be perfectly simulated using the I input variables.

Proof. These are then modelled as a sequence of t-(S)NI gadgets, as depicted in Fig. 5.1.

As all the constituent gadgets are t-NI or t-SNI and no variable is used more than

once, then by Proposition 1 the entire gadget is t-NI. As the final gadget used it

t-SNI then by Proposition 1 the algorithm is also t-SNI, moreover only the final call

to G2 needs to be t-SNI for the entire gadget to be t-SNI.
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G1− G1− G1−

G2− G2− G2S[i]0

e
(.):(0)
0

(αi)0 e
(.):(k)
0

(αi)k e
(.):(n−1)
0

(αi)n−1

. . . . . .

S[i]n

Figure 5.1: SNISyndromeCalculation - considered as a sequence of t-(S)NI
gadgets.

5.2.2 Adapted Peterson algorithm

We take the Peterson algorithm and adapt it into our Adapted Peterson algorithm,

the pseudocode for which can be found in Algorithm 5.3. The main change that we

make is that instead of reducing the size of the matrix until it is non-singular and

then stopping, we keep reducing the size of the matrix until it is empty and if at any

point the reduced matrix is singular then we add errors. This is then run a further

e − 2 times. The first part of this ensures that the adapted algorithm is constant

time, and the second part of this ensures that after the algorithm has finished that

we have added errors until there are either e or e− 1 errors overall.

For each iteration the algorithm calculates the syndromes using SNISyndrome-

Calculation and uses the SNILUPDeterminant to calculate the determinants,

and we then check if each determinant is 0 by using G8 with the public input of

0 for the second input. We then generate 2 errors and if the determinant is 0 we

add them to the message, we store all randomly generated errors to ensure that

we never add an error to the same location twice. As there is a chance that the

error the algorithm adds corrects an error that we’ve added to the codeword, we

repeat this process e − 2 times, this guarantees we always have e or e − 1 errors.

We then use SNILUPSolve to calculate the error location polynomial. We use
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NIPetersonMatrix (G18−) to generate the shared Peterson matrix A as follows:

A(i) =


0 0 0 . . . 0 0

S(i)[2] S(i)[1] 0 . . . 0 0
...

...
...

. . .
...

...

S(i)[2e− 2] S(i)[2e− 3] S(i)[2e− 4] . . . S(i)[e] S(i)[e− 1]


however for i = 1 ,∀j ∈ [1, t+ 1] we set A(1)[j][2j − 1] = 1.

Algorithm 5.3: SNIAdaptedPeterson

Input: Received message r(x)

Result: Error location polynomial Λ(x), received message with e errors

r(x)

1 for i← 1 to e− 2 do

2 S← SNISyndromeCalculation(r(x))

3 M← NIPetersonMatrix(S)

4 for j ← 1 to e− 1 do

5 det← SNILUPDeterminant(M)

6 r(x)← AddErrors(r(x),M)

7 M←M[0 : −1][0 : −1]

8 end

9 end

10 S← SNISyndromeCalculation(r(x))

11 M← NIPetersonMatrix(S)

12 Λ(x)← SNILUPSolve(M,S)

Output: Λ(x), r(x)

Theorem 5.2.2. The SNIAdaptedPeterson is correct and produces a valid error

location polynomial for the location of the initial errors and the added errors.

Proof. To show that our adapted version of the Peterson algorithm is correct, it

suffices to justify that, assuming the input had at most e errors, our algorithm

never increases the total number of errors to be greater than e, and that the error
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location polynomial we create is correct for the initial errors combined with the

errors we have added. Our adapted Peterson algorithm works in a similar method

to the normal Peterson algorithm, in the sense that it repeatedly calculates the

determinant of the matrix, and as well as removing two rows and two columns also

adding two errors - with the exception of the first iteration where we only add one

error. As we are adding errors at the same rate with which we remove rows and

columns, we add errors if and only if there are less than e − 1 errors. Given that

there are at most e errors, and that SNILUPSolve is correct, Λ(x) will be the

valid error location polynomial.

r(x)0 G14 S0 G18− M0 G11 det0 G8 mask0 G1 G2

RandomError

r(x)1

r(x)i G14 Si G18− Mi G11 deti G8 maski G1 G2

RandomError

r(x)i+1

r(x)n G14 Sn G18− Mn G11 detn G8 maskn G1 G2

RandomError

r(x)n+1

r(x)n+1 G14 Sn+1 G18− Mn+1 G13 Λ(x)0

r(x)n+1

Figure 5.2: Adapted Peterson Algorithm - considered as a sequence of t-(S)NI gad-
gets. N.B n = 2e− 3

Theorem 5.2.3 (t-SNI of SNIAdaptedPeterson.). Let r(x)
(.)
0 be the input and

Λ
(.)
0 and r(x)n+1 be the outputs to G15 , where r is a bitstring, masked using Boolean

masking and Λ is a tuple of elements from GF (2m). For any set of t′ intermediate

variables and any subset O of output variables such that t′ + |O| ≤ t, there exists a
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subset I of input variables such that |I| ≤ t′ and the t′ intermediate variables and

the output variables can be perfectly simulated using the I input variables.

Proof. The only gadgets that make up the SNIAdaptedPeterson are SNISyndromeCalculation,NIPetersonMatrix,SNILUPDeterminant,SNILUPSolve,G8,G1,

and G2. As all of these gadgets are t-NI and each intermediate variable is only an

input to at most one t-NI gadget, then by Proposition 1 SNIAdaptedPeterson

is t-NI. Moreover because the last gadget the output passes through is t-SNI, then

SNIAdaptedPeterson is also t-SNI.

5.2.3 Chien search

When masking Chien search there are two aspects of the variables that we are

trying to hide, the number of errors and the location of the errors. In order to

hide the location of the corrected errors, we mask the Chien search algorithm

by replacing each addition and multiplication gadget with its t-SNI equivalent.

SNIAdaptedPeterson ensures that we will always have e − 1 or e errors, to

help reduce the impact of the number of errors on the runtime, and apply masking

to ensure that it is secure. In Fig. 5.3 we consider each instance of G′
1− to also be

taking a public variable α as the second input and take each G′
2− to be adapted to

take 2t inputs which it sums rather than just 2 inputs.
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Figure 5.3: SNIChienSearch - considered as a sequence of t-(S)NI gadgets.

Theorem 5.2.4 (t-SNI of SNIChienSearch). Let Λ
(.)
0 and r(x)0 be the inputs

and r(x)n be the output to G16. For any set of t′ intermediate variables and any

subset O of output variables such that t′ + |O| ≤ t, there exists a subset I of input

variables such that |I| ≤ t′ and the t′ intermediate variables and the output variables

can be perfectly simulated using the I input variables.

Proof. The only gadgets that make up the SNIChienSearch areNIMul, SNIAdd,

NIAdd and G8. As all of these gadgets are t-NI and the only time an intermediate

variable is reused is the output of each G′
1− which are only used as input to at

most one t-NI gadget, then by Proposition 1 SNIChienSearch is t-NI. Moreover

because the last gadget the output passes through is t-SNI, then SNIChienSearch

is also t-SNI.

5.2.4 BCH decoding

We now present theoretical security proofs for the entire BCH decoding process, as

well as give some experimental validation for our first order masked implementation.
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r(x)0

rc(x)0

G2 r(x)1 G15

r(x)2

Λ(x)0

G16 r(x)3

Figure 5.4: SNIBCHDecoding - considered as a sequence of t-SNI gadgets.

Theorem 5.2.1 (t-SNI of SNIBCHDecoding). Let r(x)0 be the input and r(x)n

be the output to G17. For any set of t′ intermediate variables and any subset O of

output variables such that t′ + |O| ≤ t, there exists a subset I of input variables

such that |I| ≤ t′ and the t′ intermediate variables and the output variables can be

perfectly simulated using the I input variables.

Proof. The only gadgets that make up SNIBCHDecoding are SNIAdd, SNIAdapted-

Peterson and SNIChienSearch. As all of these gadgets are t-SNI and each inter-

mediate variable is only an input to at most one t-NI gadget, then by Proposition 1

SNIBCHDecoding is t-NI. Moreover because the last gadget the output passes

through is t-SNI, then SNIBCHDecoding is also t-SNI.

5.2.5 Experimental results

For the experiments we have take the first order masked version of the implemen-

tation. For each component of the decoding process and for the entire decoding

process we collect 1000 traces for running the component on the all 0 codeword and

1000 traces for running the component on the all 0 codeword with 8 errors all in

the same byte. All traces were collected using ELMO [MOW17], with the ELMO

energy model flag set rather than the Hamming Weight model flag. Using these we

perform Welch’s t-test and, setting the threshold to ±5.730 [DZD+18], we display

the results below. From this we can see that our decoding algorithm is secure against

power analysis attacks.
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Power analysis of BCH(255,128,8) decoding

Figure 5.5: TVLA results for BCH(255,128,8) code between BCH code decoding for
the all 0 codeword, and the all 0 codeword with 8 errors all in the same byte for our
masked implementation. The inner dashed line is at ±4.5 and the outer dashed line
is at ±5.730.

We give a brief overview of the time and randomness complexity of the smaller

gadgets in Table 5.1. The complexity of G8 depends on the bit length of the val-

ues being compared, we focus on the case where all values are 8 bits. Inverse’s

complexity depends on the size of the finite field used, for this example we use

GF (28).
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Gadget T R

SNIMul/SNIAnd 3t2 t2

2

NIMul/NIAnd 7t2

4
t2

4
+ t

SNIRef t2 t2

2

NIRef 2t t

SNIAdd/SNIXOR t2 + t t2

2

NIAdd/NIXOR t −

NINot 1 −

SNIInv 12t2 + 3t 3t2 + 2t

NISwap t −

G8 44t2 + 6t 16t2 + 15t

SNISyn 7nt2

4
+ t(n− 1) + 3t2 nt2

4
+ t2

2

SNIChien
(2ne+ n)(11t

2+4t
4

)

+n(44t2 + 6t)

(2ne+ n)(3t
2

4
+ t)

+n(16t2 + 15t)

Table 5.1: The time and randomness complexity of small gadgets.

We now discuss the time and randomness complexity of BCH code decoding ,

where e is the maximum number of errors that can be corrected.

We estimate the time complexity of SNIBCHDecoding, TBCH, as

TBCH = TSyn + TG15 + TSNIChien

= TSyn + (e− 2)(TSyn) + (e− 2)(e− 1)(TLUP + TDet) + TLUP + TSolve + TSNIChien

= O(eTSyn + e2(TLUP + TDet) + TSolve + TSNIChien)

= O(net2 + e2(e3t2 + et2) + e2t2 + net2)

= O(net2 + e5t2)
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We estimate the randomness complexity of SNIBCHDecoding, RBCH, as

RBCH = RSyn +RG15 +RSNIChien

= O(eRSyn + e2(RLUP +RDet) +RSolve +RSNIChien)

= O(net2 + e2(e3t2 + et2) + e2t2 + net2)

= O(net2 + e5t2)

Whilst it is clear that the masked implementation has a larger overhead than

would be optimal for masking over the standard implementation, two sections of

the algorithm - syndrome calculation and Chien search - are optimal. Both the syn-

drome calculation and Chien search are used as part of several decoding algorithms,

including for Reed-Solomon and Reed-Muller code, and are used independently of

the use of the Peterson algorithm or the Berlekamp-Massey algorithm. The Peter-

son algorithm has the largest overhead and, whilst it is inefficient, we hope that this

initial masked implementation will encourage further work to optimise it.



CHAPTER 6

Securing polar codes

In the previous chapter we discussed a method for securing the BCH code decoding

algorithm against side-channel attacks. Whilst BCH codes are very strong error

correcting codes and are efficient in terms of space, the Peterson decoding algorithm

is inefficient in terms of run time (O(e3+n), and Θ(e4t2+nt2) when masked). Even

faster algorithm for decoding BCH codes, such as the Berlekamp-Massey algorithm,

have a run time of O(e2 + n). Polar codes are a type of soft error correcting codes,

that are optimal for some types of channel, and have a decoding algorithm that runs

in O(n2) time naively and can be optimised to O(n log n). Note however that the

dominant component of BCH code decoding is in terms of e - the number of errors

that the code can decode, whilst for polar codes the dominant term is n - the length

of the codeword.

Similarly to the previous chapter, we will present a masked version of the Polar

code decoding algorithm and present security proofs for it in the probing model. We

also verify the security of the first order masked implementation experimentally

by generating traces using ELMO [MOW17] and assessing the leakage using the

TVLA [GGJR+11].

We make use of the following gadgets:

94
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G1 SNIMul
a t-SNI( [BBD+16]) secure algorithm for multiplication.

This is converted to work for Q1 in Section 6.3.2.

G1− NIMul
a t-NI( [BBP+16]) secure algorithm for multiplication.

This is converted to work for Q1 in Section 6.3.2.

Ĝ1 SNIAnd
a t-SNI( [BBD+16]) secure algorithm for logical And.

This is converted to work for Q1 in Section 6.3.2.

Ĝ1− NIAnd
a t-NI( [BBP+16]) secure algorithm for logical And.

This is converted to work for Q1 in Section 6.3.2.

G2 SNIAdd
a t-SNI(Lemma 4.1.1) secure algorithm for addition.

This is converted to work for Q1 in Section 6.3.2.

G2− NIAdd
a t-NI secure algorithm for addition.

This is converted to work for Q1 in Section 6.3.2.

Ĝ2 SNIXOR
a t-SNI(Lemma 4.1.1) secure algorithm for logical XOR.

This is converted to work for Q1 in Section 6.3.2.

Ĝ2− NIXOR
a t-NI secure algorithm for logical XOR.

This is converted to work for Q1 in Section 6.3.2.

G8

SNIMagnitude

Comparator

a t-SNI(Lemma 4.1.3) secure algorithm for returning

the shared result of a ≤ b.

G9 SNIRef
a t-SNI( [BBD+16]) secure algorithm for

mask refreshing.

GO SNIOdd a t-SNI(Lemma 6.4.2) secure algorithm for Line 7

GE SNIEven a t-SNI(Lemma 6.4.3) secure algorithm for Line 9

G21 SNIArithmetic a t-SNI(Lemma 6.4.4) secure algorithm that makes up Algorithm 6.2

G22 SNIBoolean a t-SNI(Lemma 6.4.1) secure algorithm that makes up Algorithm 6.2

G23 SNIL a t-SNI(Theorem 6.5.1) secure algorithm for Algorithm 6.2

G24 SNIDecoding a t-SNI(Theorem 6.5.1) secure algorithm for Algorithm 6.1

6.1 Decoding polar codes

The decoding algorithm for polar codes has two main components, an iterative

method (Algorithm 6.1) that iterates over each bit in the received codeword and
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Algorithm 6.1: Decoding

Input: ĉw,p
1 û← [ ]
2 for i← 1 to N do
3 if i is a frozen bit then
4 u[i]← 0
5 else
6 r ← L(i, N, ĉw, û,p)
7 if r ≥ 1 then
8 u[i]← 0
9 else

10 u[i]← 1
11 end

12 end

13 end
Output: û

Algorithm 6.2: L

Input: i, N, ĉw, û,p
1 if N = 1 then

Output: p[i]
2 else
3 i′ ← (i+ 1)//2
4 a← L(i′, N/2, ĉw[1 : N/2], û[1 : i− 1]o ⊕ ĉ[1 : i− 1]e,p)
5 b← L(i′, N/2, ĉw[N/2 + 1 : N ], û[1 : i− 1]e,p)
6 if i is odd then
7 r ← ab+1

a+b

8 else
9 r ← a1−2û[i−1]b

10 end

11 end
Output: r

calls a recursive algorithm L (Algorithm 6.2) to calculate the value of the bit. The

recursive algorithm L can be seen as working through the polarisation algorithm

and trying to establish the output and the other input of the XOR gate that it is

an input to.

6.2 Method

There are three main weaknesses in the polar code decoding algorithm that we first

raise before discussing how to secure the algorithm. The first issue is that it is
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possible to pick specific codewords that maximise the statistical differences in power

usage, regardless of how many errors there are, and the attacker can pick any two

messages to maximise this. The second issue is that the decoding algorithm uses

division, which can’t be converted into a secure gadget since we are not using a

finite field. Finally standard gadgets are only designed for finite fields, whereas the

decoding algorithm is over the reals.

We make a number of changes to the decoding algorithm in order to make it

secure. First we blind the input by xoring a randomly generated codeword with our

received codeword and edit the likelihood ratio vector accordingly. Secondly we edit

the L function to make it inversionless, this can be done simply by considering the

numerator and denominator separately. Finally we create floating point versions of

several small gadgets.

We give the masked version of the masked SNIDecoding algorithm (Algo-

rithm 6.3) and the masked SNIL (Algorithm 6.4). In order to be concise we rep-

resent the masked version of an operation by putting a box around the relevant

symbol, e.g. replacing · with �.

Finally in order to better argue about how shares are reused we convert the

recursive algorithm L into a group of circuits of simple gadgets.

6.3 Masking polar codes

In this section we present the changes that are made to the algorithm in more detail

and argue about their security.

6.3.1 Blinding

Unlike with BCH codes where the parity bits are separate to the data bits, in

the polar code all the bits are intermixed during the polarization process. This,

combined with the use of LRs, makes the blinding process a little bit more involved.

We give the algorithms for blinding and unblinding the received codeword below

in Algorithms 6.5 and 6.6. In order to generate a codeword to blind, we first choose

a random string, rw, which we polarise to give the codeword rcw. rcw is xored with
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Algorithm 6.3: SNIDecoding

Input: ĉw,p
1 û← [ ]
2 (ĉw,p)← Blind(ĉw,p)
3 for i← 1 to N do
4 if i is a frozen bit then
5 û[i]← 0
6 else
7 (rN, rD)← SNIL(i, N, ĉw, û,p)
8 û[i]← SNIMagnitudeComparator(rN , rD)

9 end

10 end
11 ĉw← Unblind(ĉw)

Output: û

Algorithm 6.4: SNIL

Input: i, N, ĉw, û,p
1 if N = 1 then

Output: p[1]
2 else
3 ip← (i+ 1)//2
4 (aN, aD)← SNIL(ip,N/2, ĉw[1 : N/2], û[1 : 2i− 1]o ⊕ û[1 :

2i− 1]e,p[1 : N/2])
5 (bN,bD)← SNIL(ip,N/2, ĉw[N/2+1 : N ], û[1 : 2i−2]e,p[N/2+1 : N ])
6 if i is odd then
7 rN ← (aN � bN)⊞ (aD � bD)
8 rD ← (aN � bD)⊞ (aD � bN)

9 else

10 rN ← a
1−2û[2i−1]
N � bN

11 rD ← a
1−2û[2i−1]
D � bD

12 end

13 end
Output: (rN, rD)
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Algorithm 6.5: Blind

Input: ĉw,p
1 rw← RandomWord()
2 rcw← Polarize(rw)
3 ĉw← ĉw ⊕ rcw
4 for i← 1 to N do
5 for j ← 1 to t do
6 if rcw[i](j) = 1 then
7 p[i]N ← −p[i]N mod 1
8 p[i]D ← −p[i]D mod 1

9 end

10 end
Output: ĉw,p

Algorithm 6.6: Unblind

Input: ĉw
1 ĉw← ĉw ⊕ rw
Output: ĉw

the received codeword to blind it, we then also need to update the LRs to take into

account that we’ve flipped some of the bits. We update the LRs by iterating over

the shares of rcw and if the jth share of the ith bit is 1 then we replace each share

of the LR for that bit with 1 minus it’s value. This effectively swaps the numerators

and denominators around. Whilst this does leak the random codeword we use for

blinding, this doesn’t leak any information about the decoding and still stops the

adversary having control over the codeword used.

6.3.2 Security of small gadgets

One of the challenges with masking polar codes is that we can’t apply standard

arithmetic masking, which is primarily designed for Zq. Rather than using Zq we

consider all of the arithmetic values to be members of Q/Z, which we will refer to

as Q1. We discretise the Q1 to the values that can be represented by a C float,

we represent this by ⌊⌉g, where g represents the size of the float. It’s easy to see

that this gives us Z2g/2
g. Whilst normally floats would be avoided, due to their

susceptibility to timing attacks, the discretisation that we use turns this into an

implementation of fixed point decimals. We give the altered algorithm for SecRef
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in Algorithm 6.7. The changes to SecMul and other small gadgets are similar.

Due to the use of fixed point decimals, there is the potential for rounding errors.

Whilst our correctness experiments for first order masking, N = 8 and g = 16 did

not reveal any errors that led to a decoding failure. However larger values of N

and higher order masking may lead to more rounding errors and potential decoding

failures, increasing the granularity g can reduce this risk.

Algorithm 6.7: SNIRef

Input: a0 ∈ Qt+1
1

1 for i← 0 to 2 do

2 c
(i)
0 ← ⌊a

(i)
0 ⌉g

3 end

4 for i← 0 to t do

5 for j ← 1 to t do

6 b(t+1)i+j
$← [0, 2g)

7 r(t+1)i+j ←
b(t+1)i+j

2g

8 c
(i)
(t+1)i+j ← c

(i)
(t+1)i+j−1 + r(t+1)i+j

9 c
(j)
(t+1)i+j ← c

(j)
(t+1)i+j−1 − r(t+1)i+j

10 end

11 end

Output: ct2+2t

6.3.3 Making L division free

Since we can’t create a masked division gadget, we instead edit the SNIL algorithm

to remove divisions. We separate the LRs into the numerator and the denominator,

and perform all operations on them independently. In order to do this, we also have

to modify the calculations we do. We replace r = ab+1
a+b

with

rN = (aN · bN) + (aD · bD)

and

rD = (aN · bD) + (aD · bN).
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We replace r = a{1,−1}b with

rN = aNbN, rD = aDbD

or

rN = aDbN, rD = aNbD

as appropriate. The final check as part of SNIDecoding is changed from if r > 1

to if rD > rN.

6.3.4 Calculating the likelihood ratios

We would normally assume that the likelihood ratios for each bit would be an input

to the decoding algorithm, however to better integrate it with current LWE-based

cryptosystems we consider an approximate method to create the masked likelihood

ratios. We approximate for the likelihood ratio of a LWE-based scheme where the

coefficient x̂ is drawn from some distribution D with a support 0, q) as P (x = 1|x̂) =∣∣∣ x̂
q/2

∣∣∣ , P (x = 0|x̂) = 1−
∣∣∣ x̂
q/2

∣∣∣.
6.4 Converting to circuits

Since SNIL is recursive, it is very difficult to directly consider the interactions be-

tween shares as the algorithm recurses. In order to better argue about this we

convert the overall recursive tree into two circuits, a Boolean circuit and an arith-

metic circuit.

The Boolean circuit represents how the codeword is split up and xored together.

For each call to SNIL we have N different Boolean circuits, each one representing a

different path through the recursion tree. The Boolean circuit has the first i bits of

û as its input. At each stage it either xors ûo with ûe or it only moves ûe onto the

next round, dependent on if the recursion tree that this Boolean circuit represents

recursed down either the left or the right branch. We give an example of the Boolean

circuits produced for N = 4, i = 4 in Fig. 6.1.
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Figure 6.1: The Boolean circuits for N = 4, i = 4.

The arithmetic circuit follows a similar idea, except rather than it representing

the operations that happen to the codeword, it represents how the likelihood ratios

for each input bit are combined to get the final likelihood ratio for the corresponding

codeword bit. For each initial call to L we have just one arithmetic circuit, which

takes as input the likelihood ratios for each bit, and combines the likelihood ratios

using either the odd arithmetic gadget, GO, or the even arithmetic gadget, GE,

depending on the value of i corresponding to that recursive call.
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û[1]
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Figure 6.2: The arithmetic circuits for N = 4, with i = 1 and i = 2 on the top row,
and i = 3 and i = 4 on the bottom row.

The Boolean circuit is completely independent of the arithmetic circuit. The

arithmetic circuit does take a value from the Boolean circuit when the odd arithmetic

gadget is used, however it does not change which shares are used. For these reasons

we can argue about the security of the masked versions of each of these circuits

separately.

6.4.1 Boolean circuit

The Boolean circuit is just the reverse of the polarization circuit, and so consists

only of XOR gates. We can replace these with their t-NI secure masked counterpart

NIXOR. Whilst the input to the circuit is a binary string, the output is always a

single bit.

The Boolean circuit component of the decoding algorithm will always consist

of a binary forest, with each leaf being a bit from û, and the outputs can be the

output of any of the NIXOR gates. A mask refresh is applied before the result is

outputted.

Theorem 6.4.1 (t-SNI of the Boolean circuit BC). Let û[0 : i]
(.)
0 be the input and

x
(.)
0 be the outputs to BC. For any set of t′ intermediate variables and any subset O
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of output variables such that t′ + |O| ≤ t, there exists a subset I of input variables

such that |I| ≤ t′ and the t′ intermediate variables and the output variables can be

perfectly simulated using the I input variables.

Proof. The circuit consists of just two types of gates, NIXOR, which is t-NI secure,

and SNIRef, which is t-SNI secure. The only time an intermediate variable is used

more than once is when it is both outputted and also used for the next XOR gate,

since we apply a mask refresh before the variable is outputted, each variable is used

at most once by a non-t-SNI gadget. Therefore by Proposition 1 the Boolean circuit

is t-NI. Moreover because each output passes through a SNIRef gadget immediately

prior to being outputted it is also t-SNI.

6.4.2 Arithmetic circuits

In order to mask the entire recursive algorithm we first consider the two different

computations that are done, we dub these the odd arithmetic gadget and the even

arithmetic gadget. The odd arithmetic gadget calculates ab+1
a+b

and the even gad-

get computes a1−2u[i−1]b. Normally both of these computations contain division,

however to make it easier to mask the algorithm we apply the computation to the

numerator and denominator separately. This is done by splitting a into aN and aD,

and simplifying as follows.

ab+ 1

a+ b
=

aNbN
aDbD

+ 1
aN
aD

+ bN
bD

=

aNbN
aDbD

+ aDbD
aDbD

aNbD
aDbD

+ aDbN
aDbD

=
aNbN + aDbD
aNbD + aDbN

Typically this would cause the values being masked to increase in size with each

multiplication, requiring the masks to increase in size at a commensurate rate, to

avoid this we perform a semi-private division after the computation is complete,

ensuring that the inputs and outputs are both of the same fixed size. Specifically

for the even arithmetic circuit we avoid raising a to the power of either a masked 1
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or a masked −1, we apply standard techniques to switch between aN

aD
and aD

aN
.

aN

aD

bN

bD

×

×

×

×

+

+

rN

rD

Figure 6.3: The odd arithmetic gad-
get.
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Figure 6.4: The even arithmetic gad-
get.

Theorem 6.4.2 (t-SNI of the odd arithmetic gadget Odd). Let â
(.)
D,0,â

(.)
N,0,b̂

(.)
D,0,b̂

(.)
N,0

be the inputs and r̂
(.)
D,0,r̂

(.)
N,0 be the outputs to Odd. For any set of t′ intermediate

variables and any subset O of output variables such that t′ + |O| ≤ t, there exists a

subset I of input variables such that |I| ≤ t′ and the t′ intermediate variables and

the output variables can be perfectly simulated using the I input variables.

Proof. The circuit consists of three types of gates, addition and semi-public division,

which are t-NI secure, and multiplication, which is t-SNI secure. Each input is used

twice, and each time it used as an input to t-SNI secure multiplication. Therefore

by Proposition 1 the Boolean circuit is t-NI. Moreover because each input passes

through a t-SNI gadget initially, it is therefore also t-SNI. The gadget could be

optimised further and remain t-NI by replacing two of the t-SNI multiplication

gadgets, e.g. the first and third, with the t-NI versions.

Theorem 6.4.3 (t-SNI of the even arithmetic gadget Even). Let â
(.)
D,0, â

(.)
N,0, b̂

(.)
D,0,

b̂
(.)
N,0, Î

(.)
1,0, Î

(.)
0,0 be the inputs and r̂

(.)
D,0, r̂

(.)
N,0 be the outputs to SNIEven. For any

set of t′ intermediate variables and any subset O of output variables such that t′ +

|O| ≤ t, there exists a subset I of input variables such that |I| ≤ t′ and the t′

intermediate variables and the output variables can be perfectly simulated using the

I input variables.
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Proof. The circuit consists of four types of gates, addition, which is t-NI secure,

multiplication , logical AND, and B2A conversion which are t-SNI secure. Each

input, except b, is used twice, and only copy of each input is used by a t-NI gadget

(NIAnd) with the remaining copies being inputs to the t-SNI secure SNIAnd.

Therefore by Proposition 1 the arithmetic circuit is t-NI. Moreover because each

input passes through a t-SNI gadget before it is used, it is therefore also t-SNI.

The gadget could be optimised further and remain t-NI by replacing the two t-SNI

multiplication gadgets with their t-NI counterparts.

6.4.3 Overall

Having looked at the individual SNIOdd and SNIEven gadgets, we can now con-

sider the entire recursive algorithm. For each i, the recursive algorithm can be

considered as a tree created from the individual circuits, where each leaf represents

the base case and therefore the inputs to the function, and the root represents the

first call and therefore the output. The base case consists of returning the likelihood

ratio tuple (p[j]N,p[j]D), and all internal nodes represent the use of either the odd

or even arithmetic gadget to combine the outputs of it’s two children.

Theorem 6.4.4 (t-SNI of the arithmetic circuit SNIArithmetic). Let û[0 : i]
(.)
0 be

the input and x
(.)
0 be the outputs to SNIArithmetic. For any set of t′ intermediate

variables and any subset O of output variables such that t′ + |O| ≤ t, there exists a

subset I of input variables such that |I| ≤ t′ and the t′ intermediate variables and

the output variables can be perfectly simulated using the I input variables.

Proof. For each i the arithmetic circuit is a tree with N leaves, where each leaf is a

pair (aN, aD) from the array p, each internal node is either SNIOdd or SNIEven,

both of which are t-SNI. Where each internal node is SNIEven, and the I input

is taken from the Boolean circuit SNIBoolean. Since every gadget is t-SNI then

by Proposition 1 the entire gadget is t-SNI.
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Figure 6.5: The full circuit diagram for Polar code decoding for N = 4
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1 i← 1

2 r ← L(i = 1, N = 4, ĉw, û = [ ], p)

3 a← L(i = 1, N = 2, ĉw[1 : 3], û = [ ], p)

4 a← L(i = 1, N = 1, ĉw[1], û = [ ], p)

5 Return p[1]

6 b← L(i = 1, N = 1, ĉw[2], û = [ ], p)

7 Return p[2]

8 Return p[1]p[2]+1
p[1]+p[2]

9 b← L(i = 1, N = 2, ĉw[3 :], û = [ ], p)

10 a← L(i = 1, N = 1, ĉw[3], û = [ ], p)

11 Return p[3]

12 b← L(i = 1, N = 1, ĉw[4], û = [ ], p)

13 Return p[4]

14 Return p[3]p[4]+1
p[3]+p[4]

15 Return ab+1
a+b

16 i← 2

17 r ← L(i = 2, N = 4, ĉw, û = [û[1]], p)

18 a← L(i = 1, N = 2, ĉw[1 : 3], û = [û[1]], p)

19 a← L(i = 1, N = 1, ĉw[1], û = [û[1]], p)

20 Return p[1]

21 b← L(i = 1, N = 1, ĉw[2], û = [ ], p)

22 Return p[2]

23 Return p[1]p[2]+1
p[1]+p[2]

24 b← L(i = 1, N = 2, ĉw[3 :], û = [ ], p)

25 a← L(i = 1, N = 1, ĉw[3], û = [ ], p)

26 Return p[3]

27 b← L(i = 1, N = 1, ĉw[4], û = [ ], p)

28 Return p[4]

29 Return p[3]p[4]+1
p[3]+p[4]

30 Return (a)1−2û[1] b
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31 i← 3

32 r ← L(i = 3, N = 4, ĉw, û = [û[1], û[2]], p)

33 a← L(i = 2, N = 2, ĉw[1 : 3], û = [û[1]⊕ û[2]], p)

34 a← L(i = 1, N = 1, ĉw[1], û = [û[1]⊕ û[2]], p)

35 Return p[1]

36 b← L(i = 1, N = 1, ĉw[2], û = [ ], p)

37 Return p[2]

38 Return (p[1])1−2(û[1]⊕û[2]) p[2]

39 b← L(i = 2, N = 2, ĉw[3 :], û = [û[2]], p)

40 a← L(i = 1, N = 1, ĉw[3], û = [û[2]], p)

41 Return p[3]

42 b← L(i = 1, N = 1, ĉw[4], û = [ ], p)

43 Return p[4]

44 Return (p[3])1−2û[2] p[4]

45 Return ab+1
a+b

46 i← 4

47 r ← L(i = 4, N = 4, ĉw, û = [û[1], û[2], û[3]], p)

48 a← L(i = 2, N = 2, ĉw[1 : 3], û = [û[1]⊕ û[2], û[3]], p)

49 a← L(i = 1, N = 1, ĉw[1], û = [û[1]⊕ û[2]], p)

50 Return p[1]

51 b← L(i = 1, N = 1, ĉw[2], û = [û[2]], p)

52 Return p[2]

53 Return (p[1])1−2(û[1]⊕û[2]) p[2]

54 b← L(i = 2, N = 2, ĉw[3 :], û = [û[3]], p)

55 a← L(i = 1, N = 1, ĉw[3], û = [û[3]], p)

56 Return p[3]

57 b← L(i = 1, N = 1, ĉw[4], û = [ ], p)

58 Return p[4]

59 Return (p[3])1−2u[2] p[4]

60 Return (a)1−2u[3] b
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6.5 Implementation and evaluation

We now consider the security of the entire decoding algorithm. For each iteration

of the for loop in Lines 3, 7, 9 and 10 of Algorithm 6.3 we create one Boolean

circuit and one arithmetic circuit. As each copy of the Boolean circuit uses the

same inputs and the first gates of each circuit is only t-NI, we further adapt the

Boolean circuit to apply a mask refresh to the input before it is used by the XOR

gates. We also make use of a t-SNI SNIMagnitudeComparator gadget. We

give the full SNIDecoding algorithm as a sequence of gadget for a small example

in Fig. 6.5. For this example we’ve set N = 4 and run SNIL on every bit, rather

than just the non-frozen bits.

Theorem 6.5.1 (t-SNI of SNIDecoding). Let ĉw
(.)
0 and p̂

(.)
0 be the input and û

(.)
0

be the output to MaskedDecoding. For any set of tMD intermediate variables and

any subset O of output variables such that tMD + |O| ≤ t, there exists a subset I

of input variables such that |I| ≤ tMD and the tMD intermediate variables and the

output variables can be perfectly simulated using the I input variables.

Proof. We consider each iteration of the for loop to be run in series, as each gadget

is t-SNI (Lemmas 6.4.1 and 6.4.4) and every input is used only once unless it’s used

by a t-SNI gadget, then by Proposition 1 SNIDecoding is t-NI. Moreover as the

last gadget call before each bit it outputted is t-SNI, SNIDecoding is t-SNI.

For the experiments we have take the first order masked version of the imple-

mentation. For each component of the decoding process and for the entire decoding

process we collect 3000 traces for running the component on the all 0 codeword and

3000 traces for running the component on the all 0 codeword with 1 error. Using

these we perform Welch’s t-test and, setting the threshold to ±5.730 [DZD+18], we

display the results below. From this we can see that our decoding algorithm is secure

against power analysis attacks. All traces were collected using ELMO [MOW17],

with the ELMO energy model flag set rather than the Hamming Weight model flag.



6.5. Implementation and evaluation 111

0 1 2 3 4
Instruction number 1e6

6

4

2

0

2

4

6

t-t
es

t v
al

ue

Power analysis of Polar(8,16) decoding

Figure 6.6: TVLA results for Polar(8,16) code between BCH code decoding for the
all 0 codeword, and the all 0 codeword with 1 error for our masked implementation.
The inner dashed line is at ±4.5 and the outer dashed line is at ±5.730.

We give a brief overview of the time and randomness complexity of the smaller

gadgets in Table 6.1.
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Gadget T R

SNIMul/SNIAnd 3(tg)2 (tg)2

2

NIMul/NIAnd 7(tg)2

4
(tg)2

4
+ (tg)

SNIRef (tg)2 (tg)2

2

NIRef 2t t

SNIAdd/SNIXOR (tg)2 + t (tg)2

2

NIAdd/NIXOR t −

NINot 1 −

G8 44t2 + 6t 16t2 + 15t

SNIOdd 12(tg)2 + 2t 2(tg)2

NIOdd 19(tg)2

2
+ 2t 3(tg)2

2
+ 2tg

SNIEven 31(tg)2

2
+ 2t 5(tg)2

2
+ 2(tg)

NIEven 12(tg)2 + 2t 2(tg)2 + 4tg

Table 6.1: The time and randomness complexity of small gadgets.

Complexity. We estimate the run time complexity of SNIDecoding, TG24 , as

TG24 =
N(N − 1)

8
(TSNIOdd + TNIOdd + 2TSNIEven + TSNIXOR) +

N

2
TG8

= O(N2((tg)2 + (tg)2 + (tg)2 + (tg)2) +N(t2))

= O((Ntg)2)

We estimate the randomness complexity of SNIDecoding, RG24 , as

RG24 =
N(N − 1)

8
(RSNIOdd +RNIOdd + 2RSNIEven +RSNIXOR) +

N

2
TG8

= O(N2((tg)2 + (tg)2 + (tg)2) +N(t2))

= O((Ntg)2)

Both the run time and random complexity can be reduced by using memoiza-

tion techniques, such as those suggested for the (unmasked) decoding algorithm

in [Ari09].



CHAPTER 7

Cost of using error correcting codes

Having discussed how error correcting codes can be used to reduce the size of cipher-

texts and how to secure various error correcting codes against side-channel attacks,

we now examine thoroughly the cost of using these secure error correcting codes.

We start by discussing in more detail how the side-channel resistant BCH code can

be used in the ways mentioned in Chapter 3, and give a more detailed analysis on

the effectiveness of the masked algorithm. We then move on to polar codes, pro-

viding an analysis on methods of puncturing polar codes. In this section we also

discuss different methods for modeling cryptosystems as noisy channels, and the

impact this has on the effectiveness of polar codes. Finally we give an analysis of

the cost, with respect to run time, of applying the masked versions of the BCH

codes from Chapter 5 and polar codes from Chapter 6 in the manner suggested

in Chapter 3.

7.1 Modelling KEMs as noisy channels

Polar codes take the noisy channel being used into consideration when choosing

which bits should be frozen before encoding, additionally the decoder uses the noise

113
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model to help calculate the likelihood ratios. We aim to model the encryption and

decryption of the message as a noisy channel, where the message being encrypted

is the input to the channel, the channel consists of applying the encryption and

the decryption operations, and the resultant message is the output to the channel.

We will consider the channel to be memoryless, since whilst it has been shown that

the decryption failure rates of individual bits in a LWE-based cryptosystem are

not independent, the resultant error is small [MFS20]. We start by considering the

cryptosystem as a Binary Symmetric Channel (BSC), since this is the simplest model

of a noisy channel. This model is also a good approximation of using a KEM with

hard decoding. We will then consider the cryptosystem to be an Additive White

Gaussian Noise (AWGN) channel, which acts as a better approximation when soft

decoding is being used. Whilst there has been previous work on modelling the R-

LWE cryptosystem as a noisy channel [WL21,MPWZ23], these models have not

been extended to the general LWE cryptosystems, and are near enough to the BSC

and AWGN channel that we will only consider the idealised models.

7.1.1 BSC

The Binary Symmetric Channel considers each bit being sent over the channel indi-

vidually. The channel flips the bit with some crossover probability p, and the value

of the bit is preserved with probability (1− p). The channel capacity, i.e. the best

rate that a code can achieve over the channel, is 1 −H(p). There are linear codes

that do achieve the channel capacity [For65].

For the case of modelling a LWE-based cryptosystem as a BSC we set p = δbit,

the decryption failure rate for an arbitrary bit. Since we consider the cryptosytem

to round the value of the final decoded coefficient to the nearest bit, this acts as a

reasonable model, however this is not entirely accurate. In order to create a more

accurate model for soft decoding algorithms, such as polar codes, we also consider

the Additive White Gaussian Noise channel, however this increases the complexity

of the model.
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7.1.2 AWGN

The Additive White Gaussian Noise channel is an analogue channel where we con-

sider the values of the input and output to be continuous and the noise added to

the channel to be drawn from a Gaussian distribution. This accurately matches the

general LWE cryptosystem, where the noise added is often considered to be Gaus-

sian in nature, and the outputted message is continuous in nature. For modeling

LWE based cryptosystems as AWGN channels, we apply the central limit theorem

to approximate the noise that is added as a Gaussian centered around 0. This gives

signal to noise ratio (SNR) of the AWGN as 1
σ2 , where σ2 is the variance of the

Gaussian distribution.

7.2 Using BCH codes

In Chapter 3 we suggested using BCH codes because they use a small number of

bits per error that it corrects. However one disadvantage of BCH codes is that the

codeword is always of length 2l, and so has a higher redundancy for some message

size - specifically for when we want to encode a small number of bits and only want

to correct a small number of errors. BCH codes can be made more space efficient by

puncturing them. Puncturing, in the context of error correcting codes, is where some

bits of the codeword are removed to give a code with lower redundancy. Typically

this is performed in such a way that the decoder for the unpunctured codeword can

be used for the punctured codeword. BCH codes are typically implemented using

the systematic encoding, where the original message appears at the start of the

codeword. When the systematic encoding is used for BCH code and the message we

wish to encode is smaller than required, then there is a trivial puncturing method of

omitting the 0 bits that appear before the message rather than padding the message.

In order to minimise the amount of redundancy in the codewords, we will always

apply this puncturing method.

A further method of reducing redundancy is to split the message into two chunks

and encode them both separately. However whilst this can be done in such a way

that the same number of errors can be corrected, it can make the message more
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vulnerable to burst errors. Burst errors are not typical of normal decryption failures

for KEMs, however could occur during failure boosting. Often only a small space

gain can be made by applying this technique, but it can lead to faster decoding, and

so we consider this technique later.

We plot the runtime of different BCH codes that use the first order masking

scheme presented in Chapter 5 against the error correcting capabilities of the code

in Fig. 7.1.
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Figure 7.1: Runtime of different masked BCH codes against the number of errors
they can correct.

7.3 Using polar codes

7.3.1 Reliability

In order to calculate the probability of successfully decoding a polar code for the

AWGN channel, we apply the techniques from [TR17,WLS14], which we briefly

outline. First we have to calculate the probability that individual bits are decoded

correctly. We denote the probability that the ith bit is decoded incorrectly after

log(N) rounds as P (b
(i)
N ). This probability is calculated recursively using the follow-



7.4. Cost of using error correcting codes 117

ing relation:

P (biN) =

 2P (bi−1
N /2)(1− P (bi−1

N /2)), i is even

Q(
√
2Q−1(P (bi−1

N ))), i is odd

where Q(x) is the Q−function, Q(x) := 1√
2π

∫∞
x

e−
u2

2 du and Q−1(x) is its inverse.

The K bits with the lowest error rate are chosen to be data bits and the remaining

N −K bits are frozen. The probability that the block is decoded correctly, P (bN),

is calculated as

P (bN) =
∏
i∈D

(1− P (biN)).

Where D represents the set of indices of data bits within the codeword.

7.3.2 Puncturing polar codes

Similarly to BCH codes, there is a trivial puncturing scheme for polar codes, however

it does come at the cost of reliability. We briefly outline the algorithm for puncturing

p bits out of N , where p < N
2
. Before selecting which bits are frozen bits or data

bits, the last p bits are frozen to 0 and only the remaining bits are allocated to be

data bits or frozen bits. Since the last bits of the codeword typically have the lowest

bit error rate, this increases the block error rate.

Other methods for puncturing polar codes exist, such as [WL14], however this is

at an added runtime complexity for decoding the code. We therefore only consider

the trivial method for puncturing polar codes.

Rather than puncturing the codes, we can also split the message into smaller

blocks, and apply a smaller polar code to each block. As with BCH codes, this

doesn’t reduce the size of the codes, however it does reduce the run time of the

decoding algorithm.

7.4 Cost of using error correcting codes

We now apply the methodology from Chapter 3, but focus on the time it takes to

decrypt the ciphertext rather that the decryption failure rate. We give plots below,
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where for each targeted failure rate, we show the trade off between the size of the

ciphertext and the decryption time. In order to accurately compare the cost of using

masked error correcting codes, we use the timing information from [BGR+21] for

masked Kyber-768, however as their code is not available we have assumed that

the 2.2x overheard for masking Kyber-768 also extends to Kyber-512 and Kyber-

1024. The tradeoff is presented in Fig. 7.2 giving the total run time in cycles and

is normalised using the initial Kyber ciphertext size and the runtime of the masked

version of Kyber in Fig. 7.3. In order to produce the graph we have made the

assumption that the only change to the decryption algorithms runtime is that the

received message needs to be decoded, ignoring extra time spent on converting the

coefficients into bits where multiple bits are encoded in a single coefficient. From the

plots we can see that a large reduction in the size of the ciphertext can be achieved

by using fairly efficient error correcting codes, however more drastic reductions in

the size of the ciphertext comes at a very high cost in terms of the run time.
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Figure 7.2: The time cost of reducing the size of ciphertexts for Kyber-512.
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Figure 7.4: The time cost of reducing the size of ciphertexts for Kyber-768.
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Figure 7.5: The time cost of reducing the size of ciphertexts, normalised by the
initial Kyber-768 parameters.
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Figure 7.6: The time cost of reducing the size of ciphertexts for Kyber-1024.
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Figure 7.7: The time cost of reducing the size of ciphertexts, normalised by the
initial Kyber-1024 parameters.

From these charts we propose the following parameter sets for Kyber, which give

varying tradeoffs between a reduction in ciphertext size and the increased cost of

decapsulation. We give parameter sets for different decryption failure rates, with

reasonable optimisations being possible even for the most conservative of decryption

failure rates. Whilst at the moment we do not propose using polar codes for Kyber,

we believe that with further optimisations it will become more applicable. We note

that schemes that require even lower failure rates might find that polar codes become

more advantageous, especially for smaller message lengths.
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n k p q t b Code
|pt|

(Bytes)
|ct|

(Bytes)
δct

runtime
(1000 cycles)

256 2 3329 28 22 1 bch 256 4824 2−144 19879
256 2 3329 28 23 1 bch 256 5026 2−159 8940
256 2 3329 28 23 1 dblbch 256 5134 2−139 8718
256 2 3329 29 22 1 bch 256 5192 2−143 8182
256 2 3329 29 23 1 bch 256 5430 2−181 7827
256 2 3329 211 24 1 bch 256 6656 2−163 7623
256 2 3329 211 24 1 dblbch 256 6656 2−163 7623

256 2 3329 28 23 1 bch 256 5080 2−206 10551
256 2 3329 29 22 1 bch 256 5228 2−203 8940
256 2 3329 29 23 1 bch 256 5457 2−242 7964
256 2 3329 29 24 1 bch 256 5704 2−240 7827

256 2 3329 28 23 1 bch 256 5161 2−278 16459
256 2 3329 29 22 1 bch 256 5264 2−263 10551
256 2 3329 29 23 1 bch 256 5484 2−304 8182
256 2 3329 29 24 1 bch 256 5740 2−322 7964
256 2 3329 210 23 1 bch 256 5942 2−316 7827

Table 7.1: Some fine-tuned Kyber-512 parameter sets, for 256 bit plaintexts with
the cost of a fully masked implementation.
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n k p q t b Code
|pt|

(Bytes)
|ct|

(Bytes)
δct

runtime
(1000 cycles)

256 3 3329 28 23 1 bch 256 7101 2−189 9616
256 3 3329 28 23 1 dblbch 256 7236 2−169 9391
256 3 3329 28 24 1 bch 256 7348 2−186 8497
256 3 3329 28 25 1 bch 256 7604 2−172 8182
256 3 3329 29 23 1 bch 256 7734 2−198 7827
256 3 3329 211 24 1 bch 256 9472 2−201 7623
256 3 3329 211 24 1 dblbch 256 9472 2−201 7623

256 3 3329 28 23 1 bch 256 7128 2−214 10551
256 3 3329 28 23 1 dblbch 256 7290 2−195 10495
256 3 3329 28 24 1 bch 256 7384 2−217 8940
256 3 3329 29 22 1 dblbch 256 7604 2−193 8718
256 3 3329 28 25 1 bch 256 7649 2−208 8497
256 3 3329 29 23 1 bch 256 7734 2−198 7827
256 3 3329 211 24 1 bch 256 9472 2−201 7623
256 3 3329 211 24 1 dblbch 256 9472 2−201 7623

256 3 3329 28 23 1 bch 256 7182 2−263 13830
256 3 3329 28 24 1 bch 256 7456 2−282 10551
256 3 3329 29 22 1 dblbch 256 7676 2−259 10495
256 3 3329 28 25 1 bch 256 7739 2−279 9616
256 3 3329 29 23 1 bch 256 7761 2−266 7964
256 3 3329 29 24 1 bch 256 8008 2−265 7827

Table 7.2: Some fine-tuned Kyber-768 parameter sets, for 256 bit plaintexts with
the cost of a fully masked implementation.
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n k p q t b Code
|pt|

(Bytes)
|ct|

(Bytes)
δct

runtime
(1000 cycles)

256 4 3329 28 23 1 bch 256 9203 2−176 11969
256 4 3329 28 24 1 bch 256 9468 2−184 9616
256 4 3329 28 25 1 bch 256 9742 2−178 8940
256 4 3329 29 23 1 bch 256 10065 2−201 7964
256 4 3329 29 24 1 bch 256 10312 2−200 7827
256 4 3329 212 24 1 bch 256 13312 2−183 7623
256 4 3329 212 24 1 dblbch 256 13312 2−183 7623

256 4 3329 28 23 1 bch 256 9230 2−195 13830
256 4 3329 28 24 1 bch 256 9504 2−208 10551
256 4 3329 28 25 1 bch 256 9787 2−205 9616
256 4 3329 29 23 1 bch 256 10065 2−201 7964
256 4 3329 29 24 1 bch 256 10312 2−200 7827

256 4 3329 28 24 1 bch 256 9576 2−256 13830
256 4 3329 28 25 1 bch 256 9877 2−258 11969
256 4 3329 29 23 1 bch 256 10119 2−304 8497
256 4 3329 29 24 1 bch 256 10348 2−267 7964
256 4 3329 210 23 1 bch 256 11062 2−285 7827

Table 7.3: Some fine-tuned Kyber-1024 parameter sets, for 256 bit plaintexts with
the cost of a fully masked implementation.



CHAPTER 8

Conclusion

We conclude the thesis by giving a brief overview of each chapter and finally discuss

potential future directions for building on this work.

8.1 Contribution

Error correction for post quantum cryptography. In this chapter we pre-

sented an analysis of how different techniques for reducing the size of ciphertexts

apply to specific KEMs of interest, including highlighting new parameter sets that

minimise the size of the ciphertexts produced. One key issue that was presented was

that whilst error correcting codes could dramatically reduce the size of ciphertexts,

no side-channel resistant implementations existed.

Secure linear algebra. Here we provided masked implementations of the LUP

decomposition algorithm, a masked algorithm for calculating the determinant of a

matrix, and a masked algorithm for solving a system of linear equations. As part

of this we also created a masked version of the magnitude comparator algorithm.

For all of these algorithms we provided proofs in the probing model to show that
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they are secure against side-channel attacks. These algorithms form the backbone of

error correcting code decoding algorithms, and so are essential for providing masked

implementations of the decoding algorithms.

Secure BCH codes. In this chapter we showed how the masked linear algebra

algorithms could be used for masking the decoding algorithm for BCH codes. As

part of this we masked the syndrome calculation algorithm and the Chien search

algorithm, which are used by most decoding algorithms. For all algorithms we pre-

sented proofs in the probing model to show security and showed experimental results

for security as well.

Masked polar codes. Here we masked the polar code decoding algorithm. As

part of this we created new gadgets for masking operations over Q1, rather than Zq.

For all algorithms we presented proofs in the probing model to show security and

showed experimental results for security as well.

The cost of secure error correction for post quantum cryptography. In the

final chapter we gave an analysis of how secure error correcting codes would reduce

the size of ciphertexts and what the cost of this would be in terms of run time.

8.2 Future Directions

Further benchmarking and model checking. In order to increase confidence in

the masked algorithms that we have proposed, we suggest two further improvements.

The first would be to run tests and provide benchmarks for the algorithms using

other hardware, e.g. the Cortex-M4. This would verify that the masking scheme

is secure for other microcontrollers and would provide more information on the ef-

ficiency of the masking under different memory models. The second improvement

would be to use model checking, such as EasyCrypt, to add further verification of

the security of the smaller gadgets.
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Optimised BCH masking. We propose three methods for improving the masked

schemes. Firstly rewriting the linear algebra algorithms so that they are vectorised.

This would make it possible to speed up the gadgets by making use of SIMD in-

struction sets on e.g. the ARM Cortex-M4. This could also be achieved by rewriting

the gadgets so that they could use optimised libraries such as BLAS. The second

improvement would be in mask the Berlekamp-Massey algorithm rather than the

Peterson algorithm, giving - hopefully - an asymptotic speedup. However, as dis-

cussed in Chapter 5, there are several challenges with masking this. The final future

direction to improve the masked algorithms is to look at methods to reduce the

number of calls to SecRef. Ideally this would be done generally enough that it can

provide a minimum amount of randomness regardless of the value of t rather than

only being optimal for small values of t.

Optimised polar code masking. We propose two methods for improving the

masked polar code schemes. The first is to apply the memoisation techniques men-

tioned in Chapter 6 to reduce the time complexity, however due to the reuse of

shares this may lead to an increased randomness complexity. The second method is

to convert the decoding algorithm from a recursive algorithm to an iterative algo-

rithm, as iterative algorithms often perform better on microcontrollers.

Masking code based KEMs. Finally the main future direction would be to

use the tools that we’ve built to mask the BCH code decoding algorithm and apply

them to give masked versions of the code based KEMs. Despite code based KEMs

being considered for standardisation, there has been very little work on side channel

resistant implementations of any of the KEMs. Two of the code based KEMs that

are currently being considered for standardisation make use of BCH codes or similar

linear codes, and so our masked algorithms could be used directly.
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Bidoux, Olivier Blazy, Jean-Christophe Deneuville, Philippe Ga-
borit, Edoardo Persichetti, Gilles Zémor, Jurjen Bos, Arnaud
Dion, Jerome Lacan, Jean-Marc Robert, and Pascal Veron.
HQC. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-4-submissions. (document),
3.5, 4

[AAC+22] Gorjan Alagic, Daniel Apon, David Cooper, Quynh Dang, Thinh Dang,
John Kelsey, Jacob Lichtinger, Carl Miller, Dustin Moody, Rene Per-
alta, Ray Perlner, Angela Robinson, Daniel Smith-Tone, and Yi-Kai
Liu. Status Report on the Third Round of the NIST Post-Quantum
Cryptography Standardization Process. Technical report, 2022. 3

[AASA+19] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, Carl Miller, Dustin Moody, Rene Peralta, Ray Perlner,
Angela Robinson, and Daniel Smith-Tone. Status Report on the First
Round of the NIST Post-Quantum Cryptography Standardization Pro-
cess. NISTIR, 8240, 2019. 3

[AASA+20] Gorjan Alagic, Jacob Alperin-Sheriff, Daniel Apon, David Cooper,
Quynh Dang, John Kelsey, Yi-Kai Liu, Carl Miller, Dustin Moody,
Rene Peralta, Ray Perlner, Angela Robinson, and Daniel Smith-Tone.
Status Report on the Second Round of the NIST Post-Quantum Cryp-
tography Standardization Process. NISTIR, 8309, 2020. https:

//csrc.nist.gov/publications/detail/nistir/8309/final. 3

[ABB+22] Nicolas Aragon, Paulo Barreto, Slim Bettaieb, Loic Bidoux, Olivier
Blazy, Jean-Christophe Deneuville, Phillipe Gaborit, Shay Gueron,
Tim Guneysu, Carlos Aguilar Melchor, Rafael Misoczki, Edoardo
Persichetti, Nicolas Sendrier, Jean-Pierre Tillich, Gilles Zémor,
Valentin Vasseur, Santosh Ghosh, and Jan Richter-Brokmann.

130

https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/Projects/post-quantum-cryptography/round-4-submissions
https://csrc.nist.gov/publications/detail/nistir/8309/final
https://csrc.nist.gov/publications/detail/nistir/8309/final


Bibliography 131

BIKE. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/Projects/

post-quantum-cryptography/round-4-submissions. (document),
3.5

[ABC+22] Martin R. Albrecht, Daniel J. Bernstein, Tung Chou, Carlos Cid,
Jan Gilcher, Tanja Lange, Varun Maram, Ingo von Maurich, Rafael
Misoczki, Ruben Niederhagen, Kenneth G. Paterson, Edoardo Per-
sichetti, Christiane Peters, Peter Schwabe, Nicolas Sendrier, Jakub
Szefer, Cen Jung Tjhai, Martin Tomlinson, and Wen Wang. Clas-
sic McEliece. Technical report, National Institute of Standards and
Technology, 2022. available at https://csrc.nist.gov/projects/

post-quantum-cryptography/round-4-submissions. (document),
3.5

[ACD+18] Martin R. Albrecht, Benjamin R. Curtis, Amit Deo, Alex David-
son, Rachel Player, Eamonn W. Postlethwaite, Fernando Virdia, and
Thomas Wunderer. Estimate all the LWE, NTRU schemes! Cryptology
ePrint Archive, Report 2018/331, 2018. https://eprint.iacr.org/

2018/331. 3.2.3, 3.4.1

[APS15] Martin R Albrecht, Rachel Player, and Sam Scott. On the concrete
hardness of learning with errors. Journal of Mathematical Cryptology,
9(3):169–203, 2015. 3.2.3

[Ari09] Erdal Arikan. Channel polarization: A method for constructing
capacity-achieving codes for symmetric binary-input memoryless chan-
nels. IEEE Trans. Inf. Theor., 55(7):3051–3073, Jul 2009. 2.5.2, 7,
6.5

[Bar68] Erwin H. Bareiss. Sylvester’s identity and multistep integer-preserving
gaussian elimination. Mathematics of Computation, 22(103):565–578,
1968. 5.1
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