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Abstract 
 
Models for the evolution of magma mush zones are of fundamental importance for 

understanding magma storage, differentiation in the crust, and melt extraction processes 

that prime eruptions. Mush mobilisation and melt segregation are predominant 

mechanisms that control mush evolution yet are to date still insufficiently understood and 

models for these are poorly constrained. These models are underpinned by calculations 

of the permeability of the evolving crystal frameworks in the mush, which controls the 

rate of melt movement relative to crystals. To date, no mush permeability model accounts 

for the shape of the crystals that form the crystal-framework in the mush. Herein, we 

assume that mush crystals are approximately cuboidal, and using that geometric 

approximation, we present new models for the permeability of mush in which crystal 

shape parameters are a key input. First, we present an extension of the Kozeny-Carman 

permeability law specifically for crystal packs at their maximum packing, for which the 

axis lengths of the crystals are the primary input. Second, we present a model for the 

evolution of magma mush permeability that is valid from maximum packing down to low 

melt fractions, ideal for simulating permeability as mush crystalises. In all cases we use a 

combination of numerical approaches to generate packs of cuboids for analysis, and 

experimental approaches to create digital 3D scans of anisotropic crystal shapes as an 

analogue for crystal mush. Using a combination of Avizo 3D image analysis, and a lattice-

Boltzmann simulation technique, we constrain the permeability of both the numerical 

and experimental samples; these data then validate our models across a wide range of 

parameter space applicable to real magma mush. Furthermore, we propose and validate 

innovative solutions for permeability that can be found using only 2D data (for example, 

using a thin section scan), which is useful for common situations where full 3D 

information may not be available for analysis. In general, our results show that if we 

consider melt percolation in magma mush akin to fluid flow through porous media, the 

complexity and anisotropy are well represented by the specific surface area of the 

crystals. Knowledge of the crystal shape and size are essential variables in our proposed 

permeability model, unless the mush displays overgrowth textures at low melt fraction, 

in which case the effect of shape becomes less important. Our results have key 

implications for melt extraction timescales and cumulate textures as well as for crustal 

melt segregation processes and reactive flow on the scale of mush reservoirs.  
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Nomenclature 
Nomenclature of symbols and abbreviations used throughout the thesis 
 

𝜙 packing volume fraction 
𝜙′ maximum packing fraction 
𝜙! porosity, also 1 − 𝜙  
𝜙" porosity value of onset of yield strength, 𝜙! = 0.8𝜙   
𝑘 permeability 
𝑘# Stokes permeability 
𝑘$  Reference permeability 
𝑠 Specific surface area 

𝑎, 𝑏, 𝑐 Independent orthogonal axes of cuboid 
𝑅 radius 
𝑟% Aspect ratio, 𝑟% = 𝑐 𝑎⁄  
𝑟& Aspect ratio, 𝑟& = 𝑎 𝑏⁄  
𝐶 Constant, usually 𝐶 = 5 
𝐹% Feret diameter 
𝐹& Feret diameter 
𝑢 Fluid velocity 
∇𝑝 Pressure gradient (over height) 
𝜇 Fluid viscosity 
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Chapter 1 : Introduction and wider setting 
Over the last three decades, the magmatic research community has evolved from considering 

upper-crustal magmatic processes as originating in melt filled magma chambers, to a new 

approach on the scale of the entire crust, which better explains the petrological, geochemical, 

geophysical, volcanological and geological phenomena we associate to magma storage (Fig. 

1.1A, 1.1B; Cashman et al., 2017; Cashman & Sparks, 2017). The notion of a Trans-Crustal 

Magmatic System (TMCS) was introduced, in which the crust is conceived as comprising a 

large-scale nominally open-system magma reservoir (e.g. De Paolo, 1981; Anderson, 1976; 

Humphreys et al., 2006) and has all the dynamic features required to explain fractionation and 

differentiation (Hildreth, 1981; Hildreth & Moorbath, 1988; Jackson et al., 2018; Annen et al., 

2006, Sparks et al., 2019). 

In the new paradigm described above, crustal reservoirs are thought to be dominated by crystal 

mush, a mixed system of magmatic melt and crystals where the crystals form a rigid framework 

through which the melt is distributed (Marsh, 1989, Bachmann & Bergantz, 2008; Cashman et 

al., 2017; Sparks et al., 2019). Mush is characterised by a relatively high crystal content. The 

lower bound of this crystal content in a mush is defined by the crystallinity above which crystal 

interactions, and the upper limit is when the magma is fully crystallised. This is a very broad, 

and potentially a poorly defined, definition, and mush is commonly considered to have at least 

upwards of 40 vol.% crystals (Fig. 1.1C; Marsh, 1981; Bachmann & Bergantz, 2004; Cashman 

et al., 2017). The consequence of this view of high-crystallinity magma reservoirs is that the 

viscosity of mush reservoirs is high (Marsh, 1981; Wager et al., 1960) and, as defined, mush 

as a whole is not able to flow, due to the crystal content exceeding the Rigid Percolation 

Threshold of Vigneress et al. (1996; Fig. 1.1C). 

Along with this new conceptual understanding of crustal mush storage, new conceptual models 

to account for magma evolution and volcanic processes need to be addressed and developed. 

Outstanding questions that we are interested in here revolve around the general antithesis of 

mush being immobile due to its high viscosity. The direct observation that crystal-rich magmas 

do erupt is in contradiction with the rheological picture of mush as ‘locked’ and immobile (e.g. 

Burgisser & Bergantz, 2011; Huber et al., 2011; Zieg & Marsh, 2012; Neave et al., 2012; 

Bergantz & Schleicher, 2015, Bergantz et al., 2017). Here, we are therefore interested in 

investigating (1) the mechanisms involved in unlocking a mush to make it able to flow; and (2) 
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the physical processes involved in melt segregation associated with crystal-poor silicic 

eruptions. 

Several mechanisms have been suggested to ‘unlock’ (the term ‘locked’ while speaking of the 

rheology of mushes is attributed to Marsh (1991)) a physically immobile mush (e.g. Sparks et 

al. 2019). Fluidisation of the full or partial crystal load can occur with one or a combination of 

the following physical processes: (1) basal intrusion of melt that ‘rejuvenates’ or ‘defrosts’ the 

mush and causes desegregation of the mush structure (e.g. Huppert et al., 1988; Huang et al., 

2015; Cooper et al., 2016) sometimes even leading to large-scale overturn of the mush (e.g. 

Girard & Stix, 2009; Burgisser & Bergantz, 2011; Huber et al., 2012; Schleicher et al., 2016; 

Schleicher & Bergantz, 2017); (2) volatile exsolution into bubbles nucleating in the interstitial 

melt and the subsequent growth of bubbles that pushes aside the crystals of the mush and 

decreases the bulk viscosity and strength (e.g. Ruprecht et al., 2008; Bachmann & Bergantz, 

2006); and (3) external forcing in the form of e.g. regional tectonics apply shear to the mush, 

the rigid crystal framework is damaged or localised and makes the mush able to flow (e.g 

Clements & Petford, 1999; Holtzman et al. 2003; Sawyer, 2000). 

 

Figure 1.1: Illustration of the conceptual change in our understanding of magmatic systems. (A) represents the 
classic concept of the balloon shaped magma chamber filled with melt where crystals rain out to the bottom of 
the chamber. (B) is a schematic overview of the architecture of the TCMS, a crustal scale open system 
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characterised by the relatively low melt content. (C) shows the rheology of the mush, how the bulk viscosity 
and strength is affected by the crystal content; the blue curve is calculated using the formulation detailed in 
Costa et al. (2009) whereas the red one is assuming a crystal fraction of 0.6 and uses the classical Roscoe-
Einstein formulation (Figure from Cashman et al. (2017)) 

By contrast, crystal-poor silicic eruptive materials are the product of melt segregation from the 

mush and not of wholesale mush unlocking (Bachmann & Bergantz 2004; Hildreth & Wilson, 

2007; Wilson et al. 2021). The exact physical processes controlling melt segregation are 

debated (c.f. Holness 2018; Liu & Lee 2021), but predominant mechanisms put forward are: 

(1) magma recharge: the interstitial melt is mobilised as a batch of hotter magma enters the 

system (e.g. Charlier et al., 2007; Bergantz et al., 2015; Sato et al., 2017); (2) gas filter pressing: 

gas exsolution in the interstitial melt drives the melt out of the inter-crystal space (e.g. Bacon, 

1986; Hartung et al, 2017); and (3) external forcing: the mush is subjected to a local stress field, 

for example, tearing and slumping of the mush on the extremities of the reservoir (Philpotts et 

al., 1996; Marsh, 1996; Philpotts & Dickson, 2002; Humphreys & Holness, 2010). 

At this point, we note that the mechanisms for mush mobilisation and melt segregation are 

similar, but the latter are likely to be lesser in intensity in contrast to the former, where the rigid 

crystal framework needs to be broken up to entrain the crystals in the flow (e.g. Bachmann & 

Bergantz, 2004). For melt segregation, the crystal framework needs to remain rigid so that the 

melt can percolate through the inter-crystal space (e.g. Marsh, 1989; Sparks et al., 2019). The 

mobilisation of mush and melt are akin to flow in granular media (i.e. the crystals can move 

with the flow) and flow through porous media (i.e. the rigid framework of crystals is static), 

respectively. In this work, we focus on the melt segregation, simulating the flow of melt 

through the inter-crystal space as a flow through porous media.  

While melt extraction remains a poorly understood process (Bachmann et al. 2007; Holness 

2018), all possible mechanisms are underpinned by prediction of the permeability of the mush. 

Herein, we define the permeability of a mush as the measure of the efficiency with which melt 

can flow through the rigid crystal framework that forms the mush. For here on out, we refer to 

this as the ‘mush permeability’. The mush crystals are considered analogous to porous media, 

and we model the permeability using principles of fluid dynamics for porous materials as well 

as percolation theory. 

Understanding the flow of melt and the permeability of the mush is important for predicting 

melt migration and, in a broader sense, models for the evolution of these magma mush zones 

are of fundamental importance for magma storage timescales, differentiation in the crust, and 
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understanding melt extraction processes that prime eruptions (Bachmann & Bergantz, 2004; 

Annen, 2009; Cashman et al. 2017; Jackson et al. 2018; Sparks et al. 2019). Percolation of 

melts through mush can be reactive, resulting in a distillation column effect at crustal scales, 

and dynamic magma evolution (Annen et al., 2006; Cashman et al., 2017; Jackson et al., 2018; 

Sparks et al., 2019). The progression of both melt movement, and of melt-crystal reactions are 

rate-limited by the percolation speed through the mush. In turn, the speed of melt percolation 

is controlled by the permeability of the solid framework of crystals between which melts 

migrate (e.g. Liu and Lee, 2021). Models for crystallization or compaction predict that the 

permeability of mush evolves with time as melt volume fraction evolves (Bachmann and 

Bergantz, 2004; Jackson et al., 2018), however the specifics of this relationship remain poorly 

constrained. 

While all crustal-scale models require permeability to compute fluxes (Bachmann & Bergantz, 

2004; Jackson et al. 2018), there has been relatively little work to constrain the permeability 

beyond first-order scaling approaches. Previous models have used simple scaling laws for the 

permeability that assume all crystals are spherical and can be defined by their radius (e.g. 

Bachmann & Bergantz, 2004; Huber et al. 2010; Hartung et al. 2019; Floess et al. 2019; Pistone 

et al. 2020). However, it is reasonable to suggest that the non-spherical crystal shape exerts a 

first-order control on the permeability of the mush and should be taken into account for flow 

models. 

This thesis is structured around a series of three papers that are situated in the current global 

context and understanding of mush mobilisation. Herein, we aim to validate a shape-dependent 

permeability model for a magma mush, where the crystals are numerically represented by 

square-edged cuboids. Therein, we explore the first-order effect of crystal aspect ratio on mush 

permeability for the first time. The model consists of a generalisation of the Kozeny-Carman 

law and suggests a better shape descriptor in the form of the measurement of the specific 

surface area of the crystal phase instead of requiring a priori intimate knowledge of the crystal 

shape. 

We then aim to broaden the validity of the permeability model to natural anisotropic crystal 

shapes by using analogues materials for mush. The mush is represented here by x-ray computed 

tomography (ct) scans of readily available anisotropic and anisometric particles: cake topping 

confectionary. We use the complex anisotropic solids to test how well cuboids can represent 
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shapes occurring in natural mush and the potential sources of the shape information (i.e. 3D 

scans of mush or a 2D view via a thin section). 

Finally, we aim to validate the permeability model for high crystallinity mushes where the 

notion of the percolation threshold becomes controlling. This is required to extend the results 

of this thesis to low melt fractions as mush reservoirs crystallise to high degrees of crystallinity. 

We test this ‘low melt fraction model’ on overgrown cuboids, here representing cumulate 

overgrowth in natural mushes. 
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Chapter 2 : Methodology 

2.1  Novel 3D data acquisition approach 

Textures of mushes and igneous rocks are generally studied using thin sections, implicitly 

assuming the 2D view is representative of the anisotropy and complexity of a natural rock 

sample (Carlson and Denison, 1992; Holness, 1997). There are several methods to infer or 

observe the true 3D view. These include indirect methods such as stereological conversion 

from 2D observations to 3D observations by means of understanding the probability of a 

particular 2D observation (e.g. Higgins, 2000; Mangler et al., 2022). But these also include 

more direct methods: (1) sequential sectioning of a 3D sample into successive 2D slices; and 

(2) X-ray computed tomography. While the former method has been applied to crystal-rich 

samples (e.g. Duchêne et al., 2008), it is both destructive of the entire sample and requires 

extreme and time-consuming precision in the sectioning methodology in order to acquire 

exactly locatable 2D slices. For these reasons, here we only discuss the latter technique: X-ray 

computed tomography.  

X-ray computed tomography enables acquisition of high-resolution volumetric information of 

the internal structure of opaque materials in a non-destructive manner. Over the last decade or 

more, working with 3D data has become commonplace in Earth Sciences and is an essential 

tool in many branches of natural sciences (Cnudde and Boone, 2013): e.g. 3D morphological 

characterisation of the anatomy of micro-fossils (Friis et al., 2015; Lindgren et al., 2018; 

Voeten et al., 2018) or multi-scale 3D knowledge of the pore pathways in a porous media 

(Munawar et al., 2018). In volcanology, volumetric analysis of rock samples provides insights 

into magma evolution, be it crystallisation and degassing processes (Moretti et al., 2019), 

bubble growth in magma (Baker et al., 2012), and magma rheology (Pistone et al., 2015). While 

3D analysis and data manipulation are well established for static data (i.e. rock or analogue 

samples), the acquisition procedure can also capture in situ dynamic processes, taking it to 4D 

(e.g. Colombier et al., 2020; Arzili et al., 2019; Polacci et al., 2018; Tripoli et al., 2019; Le Gall 

et al., 2021; Wadsworth et al., 2017; Dobson et al., 2020). 

Among all the geoscientific problems for which 3D data is most important, fluid flow in porous 

media is perhaps the most crucial. Flow of fluids in a natural or synthetic material is ultimately 

controlled by the permeability, a parameter intrinsic to the material that defines the ability of a 

porous media to transmit fluids (e.g. Keller et al., 2011; Jackson et al., 2018). While easy 
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enough to measure, the quantification of the permeability via a predictive model is not trivial. 

The difficulty is in expressing the complexity and anisotropy of the porous system while at the 

same time proposing a widely applicable model. To achieve this, multi-scale 3D knowledge of 

the pore pathways in a porous media is crucial to obtain a true spatial comprehension of the 

pathways that flow can take (e.g. Munawar et al., 2018). The spatial data for pore space can 

then be accurately distilled to into well-chosen parameters that express the complexity of the 

media. Key parameters include the crystal/particle shape and size and the volume fractions of 

solids and void. 

Herein, we use numerical 3D domains of particles packed in volumes to represent crystals 

packed in melts. 3D analysis of the pore network is key to understanding fluid flow and the 

permeability of natural materials. We use volumetric analysis tools to measure the key scalar 

and directional, vector quantities that constrain the fluid flow in porous media. 

In this chapter, we outline the definition of the key parameters and notions that are used 

throughout this work. Conventional measuring methodologies are explained as well as details 

of the analytical procedures. 

2.2  Fundamental quantities to constrain fluid flow in natural media 

2.2.1. Scalar quantities 

Scalar quantities necessary to constrain flow include: 

1. Volumetric properties: The volume fraction 𝜙 of phases, including the crystals in a 

mush and its counterpart, the melt fraction 𝜙!. In this work, we consider crystal mush 

as a two-phase system of crystals and melt, such that 𝜙! = 1 − 𝜙.  

2. Areal properties: The surface area of a phase interface and specific surface area. The 

latter is defined as the sum of the surface area of all of one phase (e.g. the crystals in 

mush) divided by the total volume of the domain.  

3. Length properties: The size and shape of a phase such as the crystals in mush. 

 

2.2.1.1. Measuring the volume fractions of phases  

The relative fractions of a volume that are taken up with each phase present is among the 

simplest and most important parameters to measure. We define the volume fraction	𝜙 as the 
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fraction taken up by the solid phase (in this case the crystals or the crystal analogues). The 

residual is often termed the porosity but, here, we consider a two-phase system composed of a 

solid and a fluid phase. Hence, we termed it the melt fraction 𝜙!. 

We measure these parameters in a binary file, where the voxels that make up the 3D data are 

either assigned to the solid or fluid phase. The ratios are computed using an image processing 

software (either Python or Avizo©) that compares the numbers of voxels assigned to each 

phase. 

2.2.1.2. Measuring the surface area of phases 

The surface area of an object can be measured or calculated. The surface area of known 

geometries such as cylinders, cubes, spheres, etc can be calculated using formulas but these 

shapes are uncommon in natural materials. In laboratory settings, the parameter can be 

measured using gas adsorption theory where the number of gas molecules adsorbed by the 

object is a function of gas pressure, ambient temperature, the molecule species and the size of 

the reactive surface. When controlling the pressure, temperature and type of gas, the surface 

area can be measured. 

As we are not working with physical samples, rather with numerical 3D renders of magma 

mush, we compute the surface area of the solid phase, or more specifically, the surface area of 

the interface between the two phases. We apply a marching cubes algorithm (Lorensen & Cline, 

1987) that determines the internal surfaces between particles and the inter-particle pore spaces, 

but ignores the outer edges of the domain, and outputs the surface area as a count of edge 

voxels. That count can be converted to a surface area proper knowing the resolution of the 3D 

data (i.e. the size of one voxel edge). 

The surface area of a phase is converted to a specific surface area 𝑠 by dividing the measured 

surface area by the total sample volume. 

2.2.1.3. Measuring the size of phases 

The size of the crystals in the mush are an essential scalar parameter to know to predict the 

flow of the melt around the crystals (Martys et al. 1994; Wadsworth et al. 2016; Vasseur et al. 

2021). In this work we will look at the effect of particle size and shape on the flow, hence, the 

size descriptor would ideally also express the shape of the objects. There exist several ways to 

express the size of a 3D object, here we present three most popular ways and discuss their 
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accuracy and how representative each result is: (1) equivalent spheres, (2) the Feret diameters 

and (3) the three orthogonal axes of the cuboid encompassing the shape. 

In (1), the size of a 3D object can be measured by computing the sphere of equal volume or of 

equal surface area (Fig. 2.1a). This method accurately expresses the size of the 3D object as a 

radius, but, however, all notion of the shape of the object (here the crystals) is lost. Few natural 

materials are made up of perfect spheres, although it is a common approximation when looking 

at the permeability of natural media (e.g. Bachmann & Bergantz, 2004).  

Another option is to use the (2) Feret diameter, which is an average of maximum and minimum 

lengths in a given orientation, much like measuring the maximum and minimum length of the 

shadow of the object (Figure 2.1b). To capture a complex 3D shape, this average would itself 

be averaged over many reorientations (i.e. over many iterations of orientation of the object in 

3D space). With reference to previous work (Buckland et al. 2021), we assert that the Feret 

method provides an incomplete measure of 3D shape for our purposes.  

Lastly, the size of any 3D object can be defined by (3) the orthogonal axes that describe the 

minimum length-scale, the intermediate and the longest length-scale in the object (Fig. 2.1c). 

Effectively, any geometry is approximated to a cuboid, the size and shape of which is expresses 

by the three characteristic axes. We define them as such: the small axis 𝑎, intermediate axis 𝑏 

and long axis 𝑐. 

 

Figure 2.1: Overview of options for measuring the size of a 3D phase object. a) One option is to use the sphere 
of either equal surface area or of equivalent volume as the 3D object; the results of either are significantly 
different from one another (inspired from https://basicmedicalkey.com/particle-size-analysis/). b) Another 
method is using the Feret diameters, the longest and shortest lines that the “shadow” of the shape draws are 
averaged, much like the maximum and minimum value we could measure with a calliper (inspired from 
https://www.sympatec.com/en/particle-measurement/glossary/particle-shape/). c) Here, we use a true 3D 
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shape, using the three orthogonal axes a, b and c. This method is the most accurate at representing cuboidal 
shapes (figure inspired from Duchêne et al., 2008) 

2.2.2 Vector quantities for porous media 

To constrain fluid flow in natural materials, we also need to know certain quantities that are 

directional, quantified in vector space. The principal directional parameter here is the 

permeability, the measure of the efficiency with which a static medium can transmit fluids. 

However, another key parameter is the connectivity of the melt fraction (also referred to as 

pore space in a two-phase system), expressed here as the ratio of the connected melt fraction 

against the total melt volume. 

Others have used other metrics to express the complexity and anisotropy of the pores of natural 

media (equivalent to the melt fraction we use here), such as the geometry of the pore space, 

inter-pore aperture size, anisotropy and tortuosity of the pore network (e.g Blower, 2001; Le 

Pennec et al., 2001; Bernard et al., 2007; Yokoyama and Takeuchi, 2009; Wright et al., 2009, 

Degruyter et al., 2010, Wright and Cashman, 2014). These quantities, however, require 

intimate knowledge of the pore network and are hard to generalise without losing precision and 

the intricacies of the natural material. Instead, we chose to use the pore space connectivity as 

simply a function of the bulk porosity and does not require quantification of pore anisotropy 

(Colombier et al., 2017; 2020). 

2.2.2.1. Connectivity of pore spaces 

The connectivity of the melt fraction (or pore space) exerts a first order control on the 

permeability of a medium (e.g. Rust & Cashman, 2011), making this an essential variable to 

quantify to model fluid flow in said medium. Particularly, it is the evolution of the connectivity 

as the melt fraction deceases that we are interested in and more specifically, quantification of 

the isolated melt pockets at low melt fractions. This last variable is key to understanding the 

percolation of fluids and will be explored in this work. 

Previously, the evolution of the connectivity of pores or melt fraction was expressed as the 

connected fraction of the pores against the bulk porosity (Klug et al., 2002; Formenti and 

Druitt, 2003; Bouvet de Maisonneuve et al., 2009; Shea et al., 2012), making the evolution 

hard to follow. More recently, the connectivity 𝐶 has been defined as the ratio of the connected 

pores 𝜙' and the bulk porosity 𝜙()(, such that 𝐶 = 𝜙' 𝜙()(⁄ . When 𝐶 = 1, all pores are 

connected and as 𝜙()( decreases, 𝐶 will drop to zero, indicating that the that the residual 



 24 

porosity exists as isolated pores. The ratio 𝐶 is then plotted against the bulk porosity 𝜙()( 

(Shimano and Nakada, 2006; Nakamura et al., 2008, Okumura et al., 2013, Farquharson et al., 

2015, Colombier et al., 2017). 

Pore network connectivity of physical samples can be measured in the laboratory with the use 

of a pycnometer, where pore clusters connected to the exterior of the sample are quantified as 

the connected porosity. Another measure of the connectivity can be performed by saturating 

the porous sample with water and then measuring the weight difference (Katyo, 1987; 

Nakaruma et al., 2008). X-ray tomography can also be used for this analysis (Okumura et al., 

2008, Song et al., 2001), however, the quality of the imagery would need to be excellent to be 

able to discern the presence of bubble walls. 

Our data in this study is numerical, hence none of the above methods can be applied. We apply 

a labelling algorithm that detects the connectivity of the pore space (Vasseur & Wadsworth, 

2017; inspired from Fiorio & Gustedt, 1996; Wu et al., 2005; Newmann & Ziff, 2001). The 

algorithm labels clusters of voxels that are interconnected, the connectivity of which is 

evaluated according to chosen input arguments of voxel neighbourhood (face-face, edge-edge 

or corner-corner). The labelled clusters are then individually assessed to check for a connection 

between opposite boundaries of the domain. Clusters that pass this test are recorded and the 

sum of the connected porosity in one direction (i.e. one set of opposite edges of the domain) is 

averaged over the total size of the domain and output as the directional connectivity of the pore 

network. 

2.2.2.2. Permeability: theory overview 

The permeability is an intrinsic parameter, independent of any external forces, specific to each 

material and is an easy enough property to measure on physical samples in the laboratory. The 

governing equation for fluid flow through porous media is expressed by Darcy’s law, which 

states that the velocity of the fluid flowing though the material 𝜐 is a function of the 

permeability 𝑘, the pressure gradient ∇𝑃 and the viscosity of the fluid 𝜇 (Darcy, 1856).  

𝜐 =
𝑘
𝜇	∇𝑃 Eq. 1 

The rock sample, usually a core, is subjected to a known pressure gradient and a flow of fluid 

of known viscosity. The velocity of the fluid is measured, and the permeability is calculated 

using Darcy’s law (Eq. 1). 
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In theory, the permeability is calculated in the same way as in the lab, using Darcy’s equation, 

however, the velocity field that describes the flow of the fluid through the porous material is 

very complex to express mathematically. There are several approaches to the mathematical 

dilemma depending on the scale of the system considered and this dictates whether fluid flow 

is considered as a continuum, a probability function or as a discrete finite element model. The 

latter is usually reserved for the atomic/molecule scale where each the flow is described by the 

behaviour of each individual molecule of the fluid. We will not be going into any more detail 

about this approach as it is not one we consider here for the permeability of magmas. We will, 

however, go into more detail on the two other ways of considering the flow and specifications 

of how these were applied can be found in the next section (section 2.4) 

For the large-scale approach, fluid flow is considered a continuum, where variables such as 

pressure, viscosity, density, fluid velocity, etc vary smoothly over time and space. Flow is 

described by the Navier Stokes equations, a combination of the laws for conservation of mass 

and momentum. The complex equations are composed of a viscous and an inertial term, and 

on account of both these terms, the equations have never been fully integrated, hence, there 

exists no general solution. Simplified versions of the equations are routinely used to solve 

physical problems such as flow of fluid through a known geometry (e.g. a pipe), modelling 

weather patterns or ocean currents to name some applications. 

The other approach we will discuss here is applied to the intermediate scale, where the fluid is 

not considered as a varying entity but in terms of the kinetics of the fluid. The flow is described 

as the probability of finding a fluid particle at a given time and place. The probability function 

is governed by the Boltzmann equation but exists in a very complex six-dimensional space, 

which renders the equation very complex for application. 

Due to the complexity of the Boltzmann equation, a minimal form of the kinetic equation was 

suggested where the fluid is defined as particles set in a fictitious lattice that confines the 

motion and inter-particle interactions in time and space (Succi & Benzi, 1991; Chen & Doolen, 

1998). The effective decrease in degrees of freedom for motion and time reduces the 

complexity of the Boltzmann equation and thereby increases the applications of, now called, 

Lattice-Boltzmann approach. Necessary conditions in term of the range of motion for the 

particles still needs to be met to fulfil the basic conservation laws of mass, momentum and 

energy (He & Luo, 1997; Chen & Doolen, 1998). 
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2.2.2.3.  Quantification of the velocity field of fluid flow using numerical methods and 

subsequent permeability calculation  

In this study, we used several numerical methods to measure the scalar and directional 

quantities essential to know to model the flow of melt around cumulate crystals in a magma 

mush. Two different methods are used in particular to “measure” the permeability of numerical 

samples: we use Avizo©, a 3D analysis software by Thermofisher, which has an integrated 

permeability module and LBFlow, a Lattice-Boltzmann flow simulator adapted to Python 

(Llewellin 2010a, b). 

In Avizo©, the permeability is obtained by solving the Navier-Stokes for velocity and 

implementing the resulting into Darcy’s law to obtain the permeability. The N-S equations are 

simplified to the Stokes equations by considering the following statements: (1) the fluid at a 

constant density, meaning the fluid is incompressible; (2) the fluid has a Newtonian behaviour 

and the dynamic viscosity is constant; (3) the flow exists at steady state, where the velocity of 

the fluid does not vary over time; and (4) the flow is laminar, i.e. Re<<1 (Reynolds, 1883). The 

resulting Stokes equations are solved in their volume averaged form and periodic boundary 

conditions are imposed. The resulting velocity vector is average in all three directions, and 

Darcy’s law is applied to obtain a directional value for permeability. 

In contrast, the LBFlow package relies on the Lattice-Boltzmann equation to model the flow 

of a fluid (Llewellin 2010a, b). The permeability simulation has been validated or applied using 

sphere packs in cubic lattice arrangements (Llewellin 2010b; Wadsworth et al. 2017), random 

overlapping sphere packs (Vasseur & Wadsworth 2017; Vasseur et al. 2020), hard sphere packs 

(Vasseur et al. 2021; 2022), hexagonal arrays (Vasseur & Wadsworth, 2019), fibrous porous 

media (Nabovati et al., 2009), sintering systems (Wadsworth et al. 2017; 2021), and basalt pore 

spaces (Macente et al. 2022). The input data needs to be binary and the phase of interest (the 

porosity, or here the melt fraction) is discretized into a cubic lattice of fluid nodes in both time 

space, with a resolution of ∆𝑡 and ∆𝑥 respectively. We impose a uniform pressure gradient on 

the fluid entering to the numerical domain, consequently mobilising the fluid particles. They 

are propagated along the lattice (according to the selected degrees of freedom) and also undergo 

collisions, thereby increasing the complexity of the flow. The simulation is run until the flow 

reaches steady state (i.e. the fluid velocity is constant over time). The fluid velocity 𝑢 is then 

averaged for the volume, such that 〈𝑢〉 = 𝜙!𝑢, where 𝜙! is space where the fluid can flow 

(here the melt fraction). 
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The initial conditions of the simulation are all chosen to ensure that the model remains in the 

creeping domain, characterised by a low Reynolds number (10−12 ≤ Re  ≤ 10−5) as well as 

adapted fluid velocity (i.e. a low Mach number, 10−16 ≤ Ma ≤ 10−9). It is important to keep the 

simulation conditions in the creeping regime, so that the inertial effects can be neglected. As 

with Avizo©, the resulting averaged velocity is then input into Darcy’s law to obtain the 

permeability in x, y and z. 

The choice of using either method was motivated by a combination of factors, principally time 

and computing power availability. The permeability simulations in Avizo© require a large 

processing power and only one simulation can be run simultaneously. The processing power 

was not available in Durham (mainly due to covid) and the license is shared with other users 

and departments, such that running lengthy simulations back-to-back was not a sustainable 

option. Our partners at LMU were able to run the simulations using LBFlow and these were 

run on the LRZ (Leibniz Supercomputing Centre) Compute Cloud of the Bavarian Academy 

of Sciences and Humanities (Garching bei München, Germany). There is no scientific reason 

to choose LBFlow over Avizo©, as shown by the comparison we carried out using a simple 

geometry of a sphere in a box (Fig. 2.2). It is also worth noting that both methods assume the 

same simplifications regarding fluid compressibility, Newtonian behaviour and that the flow 

regime is laminar. These are necessary to compute the permeability and we cannot account for 

uncertainties created by these assumptions. 

 

Figure 2.2: The permeability of the simple “sphere in a box” geometry measured with Avizo© and LBFlow. 
The data is represented here for a sphere of 5 and 10 microns and plotted as the normalised permeability against 
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the porosity (or melt fraction). The trendline corresponds to the permeability prediction in dilute conditions 
(i.e. low porosity) from Sangani &Acrivos (1982). 

 

2.3 Specific methodologies deployed in this thesis 

The permeability was measured on 3D numerical data produced in two ways: numerically 

generated packs of cuboids (courtesy of Liu et al., 2017) and analogue data obtained by 

scanning physical particles in a test tube. 

In this section, we are going to introduce the data we use and then explore the practical aspects 

of extraction the scalar and directional quantities discussed above from 3D data sets. 

2.3.1. Materials and data 

2.3.1.1. Domains of randomly oriented cuboids at maximum packing 

The first type of data we use are numerical periodic domains generated by Liu et al. (2017) of 

packed and randomly arranged solid cuboids. Cuboids are characterised by their axis lengths 

𝑎, 𝑏, and 𝑐 and aspect ratios 𝑟% = 𝑎/𝑏 and 𝑟& = 𝑏/𝑐. The cuboids have a square cross-section 

so that 𝑏 = 𝑐 (hence, 𝑟& = 1) and the domains are produced at their random maximum packing, 

given by volume fraction 𝜙. Here, for completeness, we detail the methods by which these 

domains were created.  

In the 2017 paper, Lui et al. devise a novel inverse packing approach to generate dense, non-

overlapping particle packings with a known degree of randomness. The new method is applied 

to generate a series of maximally dense random packings of hard (i.e. non-overlapping) square-

edged cuboids with a range of aspect ratios to investigate the effect of shape on the degree of 

order/disorder. 

The cuboid packs are generated step by step, where the initial cuboid is placed at the centre of 

the domain and its three principal orthogonal axes are set to coincide with the orientation of 

the domain. Next, cuboids with random orientation and fixed centre coordinates are added 

incrementally to surround the central initial cuboid. At each step, each placement of a 

neighbouring cuboid, the degree randomness is maximised to create a maximally dense random 

packing. The maximisation is performed using Lui et al. (2017) novel inverse packing method, 

which dictates the orientation and the centre coordinates of each new cuboid. New cuboids are 

added N times, i.e. the domains are composed of N cuboids. Lui et al. (2017) produced a series 
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of dense packings that span aspect ratios 𝑟% = 0.2	𝑡𝑜	𝑟% = 6, where the small aspect ratios (𝑟% <

1) correspond to prolate shape and larger aspect ratios (𝑟% > 1) to oblate particles (Fig. 2.3). 

The authors have generously shared the numerical domains with us, enabling us to use them to 

verify our proposed permeability model. In this work, we use the cuboid packs as crystal mush 

analogues, where the cuboids represent the ridged framework of cumulate crystals and the 

inter-cuboid space is seen as the melt fraction, the space where the melt can flow around the 

crystals. This is a very simplified system, which is ideal for an initial observation of the effect 

of shape and size of the crystals on the permeability and melt flow. 

 

Figure 2.3 : Figure courtesy of Lui et al. (2017) showing 3D renders of the maximally dense random packings 
at different aspect ratios. a) 𝑟" = 0.3; 𝑏)	𝑟" = 0.5; c) 𝑟" = 0.7; d) 𝑟" = 1.5; e) 𝑟" = 2; f) 𝑟" = 4 

2.3.1.2. Analogues for magma mush using confectionary 

The second type of data are tomography scans of analogue mushes, randomly oriented and 

loosely packed confectionary: fudge chunks and sugar crystals. The output is a 3D grid of 

voxels, where each voxel is assigned a grayscale value that reflects the density of the materials 
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scanned. However, since samples are confectionary chunks in a gas phase (laboratory air), the 

density contrast is high and does not affect the quality of the data at the resolution we are 

working at (c.f. chapter 4). 

For the scan, the particles are loaded randomly into a cylindrical sample volume for which we 

ensure at least 10 of the particles can fit across the cylinder diameter. The cylinders are shaken 

slightly to settle the particles into what we presume is relatively close to a random close pack, 

and then loaded into a Nikon XTH LC 225kV 225W Ultrafocus laboratory X-ray tomography 

scanner at the University of Strathclyde. Scans were performed at 90 kV (either 91 µA and 2s 

exposure, or 209 µA and 1 second exposure depending on scan) and were reconstructed using 

the built-in algorithms to give a 2000 voxel image with 16 µm voxel resolution. Subsequent 

visualisation and quantification of the ct scans are performed using Avizo©, the details of 

which are covered in the following section. 

Each type of cake topping type is composed of similar shapes, nevertheless, the particles are 

subject to natural asperities and irregularities. This provides us with an opportunity to verify 

our proposed percolation model on data that is more imperfect than the cuboid packs, closer to 

natural crystals. 

2.3.2. Extracting quantities from 3D data in practice 

In this section, we detail the practical extraction of scalar and directional quantities necessary 

to model fluid flow and construct a permeability model. We built from the theory explained 

above and provide specific simulation/analytical conditions for anyone who would want to 

reproduce the data acquisition. 

The first step that is applicable to all data sets is the binarization of the numerical domains, 

assigning voxels to the solid (crystal) phase and to the melt phase. This step is performed in 

Avizo© with the auto-threshold module, an integrated function that assigns the voxels to 

phases based on an automatic greyscale threshold determination. This step results in a 

segmented image where the two phases are selectable and separable. From here on, when 

referring to the raw data, we are referring to the binary data. 

2.3.2.1. Extracting scalar quantities 

2.3.2.1.1. Volume fraction of phases 
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The solid volume fraction 𝜙 and the melt fraction 𝜙!	of the cuboid packs are already provided 

by Lui et al. (2017). Nevertheless, this data as well as the volume fractions of the analogue 

mush ct scans are computed with Python’s scikit-image toolbox where the sum of voxels that 

make up each phase (crystal or melt) are compared. 

2.3.2.1.2. Surface area of phases 

To compute the specific surface area of the crystal phase, we use a marching cubes algorithm 

(Lorensen & Cline, 1987) from Python’s scikit-image toolbox following the efficient algorithm 

implementation proposed by Lewiner et al. (2003). The algorithm is applied to the segmented 

crystal-melt binary data. This method determines the surface area of the crystal phase, and then, 

the specific surface area 𝑠 is obtained by dividing the result by the total volume of the numerical 

domain. 

2.3.2.1.3.  Size of crystals  

For the cuboid pack, is not necessary to extract the crystal axes lengths as we already have the 

two aspect ratios and one side length 𝑎. From there, we can calculate the axes lengths 𝑏 and 𝑐. 

For the cake topping data, we do not have the aspect ratios nor the size of the crystals. Hence, 

these need to be extracted from the 3D (as well as from the 2D data) and we perform this 

analysis in Avizo©. The following steps are consecutive, such that the result from the first step 

is used directly as the input for step 2, and so on for the following steps. The methodology to 

extract the crystal axes is organised in three broad steps: (1) the separation of the segmented 

crystal phase into individual crystals, (2) removing the particles truncated by the boundaries of 

the sample, (3) analyse the geometry of the remaining crystals. A visual overview of the results 

of the main steps is shown in Fig. 2.4. 

 

Figure 2.4: Rendering the outputs of five of the analysis steps used here, all illustrated using the fudge chunks. (a) 
The result of applying an automatic threshold, which allows binarization and segmentation of the volume into the 
two phases: crystals (blue) and melt fraction (white). (b-c) The result of the fills holes and conservative separation 
algorithms shown in (b) 2D and (c) 3D. These separated crystals are then labelled (and here coloured) individually 
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as discrete phases that can be measured independently. (d-e) The result of the border kill algorithm shown in (d) 
2D and (e) 3D, which removes the outermost objects. 

For step (1), we start off by using the fill holes module to fill in any existing pore spaces internal 

to the particles (scanning artifacts); and then apply a conservative separation algorithm to 

separate the individual crystals and assign a label to each (Fig. 2.4b and 2.4c). For step (2), we 

use the border kill module to remove crystals that intersect the domain boundary (Fig. 2.4d and 

4e). This step involves manual checking of each individual object in the volume in order to 

carefully determine that all objects have been separated effectively. The manual checking 

process helps us confirm that objects that share flat edge contacts are rare. For step (3), we use 

the label analysis module, which outputs chosen measurements of the separated crystals. In 

this case, we choose to obtain three orthogonal characteristic axes that represent the volume 

for each crystal, 𝑎, 𝑏, and 𝑐. This last step can either be performed in 3D, or in 2D, where each 

slice in a given direction (here z) is analysed individually. 

2.3.2.2 Extracting directional quantities 

2.3.2.2.1.  Connectivity of the pore network 

The connectivity of the cuboid domains is assessed using a labelling algorithm, applied to the 

data in Python. The data is input in the form of the binary file, where the melt fraction is 

segmented from the crystal phase. Due to the size of the numerical domains, the algorithm is 

run on smaller sub-volumes, which is moved across the entire domain to make sure that all the 

domain is assessed and that the results are representative. 

2.3.2.2.2.  Permeability 

For the permeability measurements, we use LBFlow for both the cuboid and the cake topping 

data. The input files for LBFlow are the segmented files from Avizo©, where the crystals and 

the melt fraction exist as two different phases. The numerical procedure allows the user to 

define a driving pressure gradient ∇𝑝, a fluid viscosity 𝜇, and a fluid density 𝜌. We use ∇𝑝 =

0.01	Pa.m*%, and fluid properties of 𝜇 = 1.8205	Pa. s and 𝜌 = 1.2047	kg.m*+ corresponding 

to the National Institute of Standards and Technology (NIST) values for air at Normal 

Temperature and Pressure (NTP) conditions (20 °C and 1 atm respectively), and therefore 

similar to an air permeability test in the laboratory. The simulation converges when the average 

fluid speed does not change by more than 10*, over 50 time-steps twice consecutively. We 
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then compute the filtration velocity, which can then be input to Darcy’s law to get a 

permeability value. 

We simulate the permeable flow in each of the principal directions of our domains to ensure 

isotropy and average the result. While we produce and analyse large domains of up to 109 

voxels, for the permeability simulations we require a smaller domain. Therefore, we use 

L = 250 pixels as a maximum size sub-volume inside the larger (L = 1000 pixels) domain. We 

move the spatial position of this sub-volume around inside the larger volume to ensure that 

each fluid flow simulation on each sub-volume is representative of the larger system. 

2.3.2.3. Additional processing steps 

Additionally, we simulate crystal growth in the cuboid packs to verify the percolation law 

proposed in this work. To achieve this, we use the cuboid packs as the initial starting point for 

crystal “growth” and the crystal phase is incrementally grown over 20 steps. Each growth step 

is then run through LBFlow to obtain the permeability and is analysed for the specific surface 

area 𝑠, the melt fraction 𝜙! and the connectivity 𝐶 in Python. 

The “growth” process is performed in Avizo© on the segmented cuboid packs. The melt phase 

is incrementally eroded (using the erosion module) by 1 voxel at each step, effectively dilating 

the crystal phase and simulating crystal “growth”. Note here that the crystals are not grown 

individually (i.e. we do not apply the method to the separated crystals), but on the segmented 

crystal phase as one. Furthermore, the erosion step is calibrated to erode 1 voxel with a 

neighbourhood of 26, meaning that any voxel touching either a face (6), an edge (12) or a 

corner of the initial voxel is eroded (8). Consequently, the result is termed overgrown crystals 

as opposed to intergrown (also called overlapping crystals). 

Considering the number of iterations of the growth step, the method is batch processed. We 

install the batch processing plug-in module in Avizo©, save the workflow as a recipe and apply 

this to the initial cuboid packs. Each time step is saved out in Avizo© and then converted into 

a file format for LBFlow, now ready for the permeability simulation. The format change is 

performed in the Python console in Avizo©, for which Dr. L. Courtois (3Dmagnination) kindly 

provided us with a short script that transforms the Avizo© files into tiff stacks. 

2.3.2.4. Summary of workflow in Avizo© for future users 
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Table 2.1 shows details of the modules used in the 3D data analysis in Avizo© and their 

applicability to numerically generated binary media and ct scans of natural rock samples. Also 

included are the estimated time for each step and whether there is a possibility of automation 

or if manual input and checking of the result are necessary. The input for this method requires 

a 3D raster of voxel informed for the greyscale value, typically the result of either multi-phase 

numerically generated media or an x-ray scan of natural media. 

In the context of permeability predictions, the target is the acquisition of the specific surface 

area, which can be obtained from the segmented result using a label analysis module (see break 

Table 2.1). If users want to obtain crystal shape, the separation step is then performed on the 

segmented phase. Simple enough for numerically generated media, this step can become very 

complex for natural media as soon as the crystals are substantially inter or overgrown, or even 

exhibit a preferential orientation. The separation algorithm module in Avizo© is not designed 

for this type of media and will likely break up the crystals in unnatural ways. We would 

recommend either applying this to low crystallinity data or samples where there is minimal 

contact between the crystals. It is important to note that the separation step is not strictly 

necessary for permeability predictions but could be used to benchmark permeability results 

obtained with the specific surface area measurement. 

Table 2.1: Details of modules used in the Avizo© workflow, the applicability to numerically generated media 
and ct scans of natural rock samples. Also included is the possibility of automating each step and a time estimate 
for each processing step. 

Analysis step Avizo© 
module 

Numerical data Natural rock data 

applicability 
Auto/ 

manual 
check 

Time 
est. applicability 

Auto/ 
manual 
check 

Time est. 

Sharpening 
grain 

boundaries, 
smoothing 

grainy textures 

Filtering N/A N/A N/A 

Often necessary 
step to smooth 
out eventual 

noisy ct signal 

Manual 
check 

of 
result 

needed 

Min. to 
hours 

(depending 
on size of 

data) 

Segmenting a 
mineral 

phase/porosity 
based on 
greyscale 

Threshold/ 
segmentation 

workroom 

Use automatic 
thresholding, 

select black or 
white (ones and 
zeros) phase in 

settings 

auto 2 
mins. 

Use 
segmentation 
workroom to 

manually select 
target phase 

and continually 
check 2D and 

3D results 

manual Mins to 
hours 

 
Breaking up 
segmented 
phase into 

separation Automatic 
process, select 

Manual 
input 

for size 

2-10 
mins 

Can be very 
tricky step for 

natural media if 

Manual 
input 

for size 

Mins. To 
hours 
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individual 
objects 

appropriate 
crystal size 

+ 
manual 
check 

of 
result 

grains are 
inter/overgrown 

or follow 
preferential 
orientation 

+ 
manual 
check 

of 
result 

Removing 
objects 

truncated by 
the sample 
boundary 

Borderkill Automatic 
module auto 1 min Automatic 

module auto 1 min 

Shape analysis Label analysis 
Select 

properties to 
analyse 

auto 2 
mins 

Select 
properties to 

analyse 
auto 2 mins 

3D rendering 
of results 

Volume 
rendering 

Automatic 
module auto 30 

secs. 
Automatic 

module auto 30 secs. 
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Chapter 3 : The permeability of loose magma mush 

 
Chapter preamble 

This chapter is under consideration for publication in Geology with the following citation: 

Bretagne, E., Wadsworth, F.B., Vasseur, J., Humphreys, M.C.S, Dingwell, D.B., Dobson, K.J, 

Mangler, M, Rooyakkers, S.M, The permeability of loose magma mush, In review. 

The author contribution by the PhD candidate amounts to 60% of the content, and the manuscript draft 

presented here was authored solely by the PhD candidate. 

 

Models for the evolution of magma mush zones are of fundamental importance for 

understanding magma storage, differentiation in the crust, and melt extraction processes 

that prime eruptions. These models are underpinned by calculations of the permeability 

of the evolving crystal frameworks in the mush, which controls the rate of melt movement 

relative to crystals. Existing approaches for estimating the crystal framework 

permeability do not account for crystal shape. Here, we represent magma mush crystal 

frameworks as packs of hard cuboids with a range of aspect ratios, all at their maximum 

random packing. We use numerical fluid flow simulation tools to determine the melt 

fraction, specific surface area, and permeability of our 3D digital samples. We find that 

crystal shape exerts a first-order control on both the melt fraction at maximum packing, 

and on the permeability. We use these new data to generalize a Kozeny-Carman model 

in order to propose a simple constitutive law for the scaling between permeability and 

melt fraction that accounts for crystal shape in upscaled mush dynamics simulations. Our 

results show that magma mush permeability calculated using a model that accounts for 

crystal shape is significantly different compared with models that make a spherical 

crystal approximation, with key implications for crustal melt segregation flux and 

reactive flow. 

 

Keywords: Darcy; volcanic eruption; rhyolite; magma reservoir; silicic magma 

 



 41 

3.1 Introduction 

Substantial volumes of melt are stored in magma mush regions throughout the crust (Hildreth, 

1981; Sparks & Cashman, 2017). Models for the evolution of these magma mush zones are of 

fundamental importance for magma storage timescales, differentiation in the crust, and melt 

extraction processes that prime eruptions (Bachmann & Bergantz, 2004; Jackson et al. 2018). 

The initial assembly of crustal magma bodies requires emplacement of, and percolative reactive 

flow through, crystal mushes (Jackson et al. 2018). The eruption of crystal-poor magmas 

requires that melts be separated from these mushes (Bachmann & Bergantz, 2004). While the 

details of these dynamics, the controlling processes, and the overall rates, are all poorly 

constrained and widely discussed (Petford 2020; Holness 2018), in most models, it is the 

permeability of the interlocking crystal framework that is a first-order rate-limiter. Leading 

quantitative models for melt percolation dynamics on crystal scales use variations on a Kozeny-

Carman permeability law for which the crystals are assumed to have a single radius (Petford, 

1995; Bachmann & Bergantz, 2004; Jackson et al. 2018). Therefore, these constitutive models 

for mush permeability cannot account for crystal shape or the difference in percolative 

hydraulic properties between one mush and another if the phenocrysts are of similar size. 

Petrological and geochronological evidence suggests that melt percolation and extraction prior 

to the eruption of crystal-poor rhyolites occurs in transient and episodic events rather than 

continuously over the thermal lifespan of the mush (e.g. Allan et al., 2013). In most known 

cases, the extraction timescales derived from petrological methods are rapid compared with 

simple gravitational compaction processes, leading to models that involve additional heat by 

mafic recharge magmas (e.g. Huang et al. 2015), and/or applied directional stresses and strain 

(Clemens & Petford, 1999; Bachmann & Bergantz 2008; Holness 2018) resulting in anisotropic 

dilation of the mush (Liu & Lee, 2021). Differentiating between one mechanism and another, 

or developing predictive frameworks for melt segregation timescales, all depend on rigorous 

constitutive models for the permeability of real mushes (e.g. Bachmann & Bergantz, 2004), 

which remains poorly investigated. A key challenge is that the 3D shape of crystals is likely to 

affect both the melt fraction at maximum crystal packing in the mush and the permeability at 

that melt fraction, such that models should seek to constrain both effects simultaneously. 
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3.2 Methods: percolation of melts through magma mush 

Melt extraction rates are given by the volumetric melt flux through a mush, 𝑄, which in turn is 

governed by Darcy’s law	∇𝑃 = −𝜇-𝑄/(𝑘𝐴) where ∇𝑃 is the driving melt pressure gradient in 

the direction of the flux, 𝜇- is the melt shear viscosity, 𝑘	is the permeability of the mush, and 

𝐴 is the area normal to the extraction direction. Throughout we make an isotropic assumption, 

such that mush permeability can be treated as a pseudo-scalar and equal in all directions, in 

line with previous work (e.g. Bachmann & Bergantz, 2004). Previous models have used simple 

scaling laws for 𝑘 that assume all crystals are spherical and can be defined by their radius (e.g. 

Bachmann & Bergantz, 2004; Huber et al. 2010; Hartung et al. 2019; Floess et al. 2019; Pistone 

et al. 2020). The most widely used model for 𝑘 is the Kozeny-Carman equation, where 𝑘 as a 

function of the solid volume fraction 𝜙, the specific surface area of the network 𝑠, and a 

dimensionless constant 𝐶 (c.f. Röding et al. 2020; Vasseur et al. 2021) 

𝑘 =
(1 − 𝜙)+

𝐶𝑠& . 
Eq. 1 

Using the specific surface area for volumes packed with monodisperse spheres of radius 𝑅 

gives 𝑠 = 3(𝜙)/𝑅, which results in 𝑘 = (1 − 𝜙)+𝑅&/[9𝐶(𝜙)&] (e.g. Hersum et al., 2015; Lui 

and Lee, 2021). 𝐶 = 5 has been found to be a typical value for most granular systems (Vasseur 

et al. 2021; Röding et al. 2020; Torquato, 2013). However, the problem remains that the solid 

crystals in silicic mushes are often dominated by non-spherical crystals, and indeed may 

involve highly anisometric crystals such as high aspect ratio plagioclase (see Fig. 3.1A) or 

amphibole. Here, our central aim is to find a form of Eq. 1 that accounts for 3D crystal shape, 

and that can be used widely in mush evolution models.  

We use numerical periodic domains generated by Liu et al. (2017) of packed and randomly 

arranged solid cuboids to approximate magma mush, which is a geometry that is closer to 

natural crystal shapes than spheres (c.f. Fig. 3.1A). Our cuboids have axis lengths 𝑎, 𝑏, and 𝑐 

and length aspect ratios 𝑟% = 𝑐/𝑎 and 𝑟& = 𝑏/𝑎. The cuboids have a square cross-section such 

that 𝑎 = 𝑏  (hence, 𝑟& = 1) and the domains are produced at their random maximum packing, 

given by volume fraction 𝜙 = 𝜙′ (Figure 3.1B). Liu et al. (2017) used order parameters to 

ensure that the packs are isotropic and disordered (i.e. no fabrics or cuboid preferred 

arrangements are found). We use a marching cubes algorithm to determine the specific surface 

area of each cuboid pack (Lorensen & Cline 1987), and we use LBflow – a numerical lattice-

Boltzmann fluid flow simulation tool (Llewellin, 2010a, 2010b) – to characterise steady-state 
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fluid flow through the inter-cuboid space and output the permeability of each cuboid domain 

(details of the numerical analysis are provided in the Appendix 1). 

 

Figure 3.1. Mush textural characteristics compared with our simulated mush. (A) Ca-concentration map from 
a leucocratic portion of the Layered Series of the Skaergaard intrusion (East Greenland), demonstrating the 
anisometric and broadly cuboidal nature of plagioclase crystals (in teal) with interstitial quartz (black) and 
clinopyroxene in grey (reproduced with permission from Holness et al., 2019, scalebar is 1mm). (B) 3D 
visualization of a numerical cuboid pack (𝑟" = 0.2) with the flow pattern at steady state represented in the melt 
phase (scalebar is 100 µm). 

 

3.3 Results and analysis 

The results of our permeability determinations show that the permeability is a function of the 

melt fraction 1 − 𝜙 and the specific surface area	as predicted by Eq. 1, which is a function of 

the crystal aspect ratio 𝑟%. All raw results are provided in the Appendix 1. In order to analyse 

these results in a unified manner across a range of crystal sizes, we introduce the dimensionless 
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permeability 𝑘X = 𝑘/𝑘# = 𝑘𝑠&/(2𝜙), where 𝑘# is a generalized Stokes permeability (Vasseur 

& Wadsworth, 2017; Vasseur et al. 2020) and the specific surface area is measured directly for 

our packs. Our data for the normalized permeability 𝑘X collapse to a single trend as a function 

of melt fraction, regardless of 𝑟% and crystal size (Fig. 3.2A), indicating that our non-

dimensional approach captures these effects. In this normalized space, Eq. 1 becomes universal 

for any crystal shape and is 𝑘X = (1 − 𝜙)+/(2𝐶𝜙); we find good agreement between the model 

and the cuboid dataset with the classic 𝐶 = 5 (Torquato, 2013). To calibrate this further, we 

compare our results with published permeability data for packs of hard spheres normalized in 

the same way (Fig 3.2A). The excellent agreement we see between the numerical data and the 

model is used to validate Eq. 2 as a permeability model applicable to any particle/crystal shape 

as 𝑠 is known. We note that in the dilute limit as 𝜙 → 0, the sphere data deviate from Eq. 1, 

which is explored and modeled by Vasseur et al. (2021) using a dilute expansion of 𝑘# (see 

Appendix 1). 

The analysis for 𝑘X relies on our determination of the specific surface area	for each sample, 

which in turn depends on the aspect ratio 𝑟% and the melt fraction. In order to render this of 

wide utility in systems for which 𝑠 is not known a priori, we test our model using the theoretical 

specific surface area of a pack cuboids with interstitial melt fraction (Eq.2; see Appendix 1 for 

derivation). 

𝑠 =
2𝜙
𝑎 Z1 +

1
𝑟%
+
1
𝑟&
\ Eq. 2 

which reduces to 𝑠 = 2𝜙(2 + 1/𝑟%)/𝑎 when 𝑟& = 1 (square-ended cuboids used here). As with 

𝑘, we can compare our results for 𝑠 with the prediction of Eq. 2 across all cuboid packs used 

here, by making Eq. 2 scale-independent via the normalisation 𝑠̅ = 𝑠𝑎/𝜙, which reduces Eq. 

2 to 𝑠̅ = 4 + 2/𝑟%. 

We find that our data for 𝑠, converted to 𝑠̅, collapse to a single trend, which matches the 

prediction of this 𝑠̅ model (Fig. 3.2B). This shows that the normalized specific surface area  

decreases as the cuboids move from oblate (platy-habit such that 𝑟% ≪ 1) to prolate (needle-

habit such that 𝑟% ≫ 1), meaning that rod-like crystals have a lower specific surface area at 

their maximum packing. Hence, with reference to Eq. 1, the permeability of maximally packed 

mush consisting of prolate crystals will be higher than that of a mush made from oblate crystals. 

The result presented in Fig. 3.2B (i.e. the success of Eq. 2 in describing the specific surface 

area of the cuboid packs used here) suggests that the incidence of planar cuboid-cuboid contact 

surfaces is rare, and therefore justifies our use of Eq. 1 and the generalization of permeability 
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by 𝑘 ∝ 1/𝑠&. We propose that Eq. 2 used with Eq. 1, validated herein, represents a universal 

model for the permeability of packs of cuboids as a proxy for the permeability of magma mush, 

and given in expanded dimensional form by 

𝑘 =
(1 − 𝜙)+𝑎&

4𝐶𝜙& Z1 +
1
𝑟%
+
1
𝑟&
\
*&

. 
 

Eq. 3 

 

 

Figure 3.2. The permeability and specific surface area of the cuboid packs analyzed, compared with our 
proposed theoretical models. (A) the normalised permeability 𝑘/𝑘# as a function of melt volume fraction 1 −
𝜙. The squares are the results from cuboid packs from Lui et al. (2017); the circles are for hard spheres (Vasseur 
et al. 2021) for validation and comparison. The solid curve represents our model  𝑘5 = 𝑘/𝑘# = (1 − 𝜙)$/(2𝐶𝜙) 
using 𝐶 = 5. The dashed curve represents a dilute expansion for the ‘suspension’ regime at high melt fraction 
(Vasseur et al. 2021) which is shown for completeness, but which is not relevant to melt extraction in mushes. 
(B) The scaling for 𝑠 as a function of 𝑟"	for cuboids cast as the normalized 𝑠̅. Taken together, these results 
represent a validation of our model.  
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3.4 Loose mush vs maximally packed mush  

Using Eq. 3, we can calculate the permeability of percolating mush using measured or 

estimated crystal aspect ratios and sizes for a given melt fraction thereby accounting for crystal 

shape. Crystal shape not only changes the permeability at a given melt fraction, but also 

strongly affects the maximum packing fraction itself. Mush maximum packing fraction 𝜙′ is a 

function of 𝑟% (Fig. 3.3), and for 𝑟% = 1 (cubes), there is a local minimum in 𝜙′, and local 

maxima at 𝑟% ≈ 0.7 and 𝑟% ≈ 1.5. Our results are consistent with the general form for previous 

results for loose random packs of non-spherical particles (e.g. Donev et al. 2004; Wouterse et 

al. 2007; Rudge et al. 2008; Delaney et al. 2010; Meng et al. 2016; Liu et al. 2017). As crystals 

become highly oblate (𝑟% ≪ 0.7) or highly prolate (𝑟% ≫ 1.5), 𝜙′ drops, and is symmetric in 

log(𝑟%) around 𝑟% = 1. The function 𝜙. = 𝜙/. (𝐴𝑥 + 1) exp(−𝐵𝑥) matches our data, where 

𝜙/. = 0.641 is the numerically determined value of 𝜙′ at 𝑟% = 1, 𝑥 = |log%/	(𝑟%)|, and 𝐴 =

1.26 and 𝐵 = 1.04 are best-fit constants. 

At high melt fraction, crystals do not interact or communicate force (i.e. a ‘suspension’). 

Conversely, at the random maximum packing of crystals, a mush can support load and transmit 

force through the crystal framework but cannot densify further by compaction or other 

processes without deformation or re-organisation of the crystal framework. The transition from 

‘suspension’ to a random maximally packed mush can be termed the ‘loose mush’ region, and 

we posit that the percolative extraction of melt begins when crystal fractions increase to a 

critical value 𝜙 = 𝜙". We interpret 𝜙" to be the lowest crystal volume fraction at which crystal-

crystal force interactions can occur. Mueller et al., (2010) show that 𝜙" ≈ 0.8𝜙′ for all 𝑟%. 

Using this and our model for how the maximum packing varies with crystal shape, we can 

quantitatively define the ‘loose mush’ region. Furthermore, using our general model (Eq. 3), 

we can predict the permeability at 𝜙" and 𝜙′ for all 𝑟%. We note here that 𝜙" is an approximate 

and indicative value, and that granular dynamics simulations demonstrate that a single melt 

fraction may be insufficient to demark the boundary between ‘suspension’ and ‘loose mush’ 

regimes (Deng et al. 2021). Regardless, whatever definition of a lower-bound on 𝜙 one places 

to demark ‘loose mush’, our model can predict 𝑘 for that 𝜙. 

In Fig. 3.3 we show the results of our model (Eq. 3) in two modes of application. First, we 

show the general results of our permeability model for any melt fraction and a range of crystal 

shapes (Fig. 3.3; 	𝑎 = 1	mm). Second, we show the results of the model specifically for the 

upper and lower bounds on the ‘loose mush’ region, defined as when the crystal volume 

fraction is between the onset of crystal-crystal interactions, and the random maximum packing 
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𝜙" < 𝜙 < 	𝜙′. This second mode of application of Eq. 3 allows us to deconvolve the two 

principal effects predicted here: (1) the effect of 𝑟% on  𝜙′ or 𝜙", and (2) the resultant effect of 

𝑟% on the permeability. Fig. 3.3 shows that crystal shape can play a substantial role in 

controlling the absolute value of the permeability in these ‘loose’ simulated crystal mushes. A 

limitation of this model is that anisotropy is not considered, and that in nature, evolution of 

mush from 𝜙" to 𝜙. may well involve crystal rearrangements and fabric development (see Liu 

& Lee, 2021). 

 

 

Figure 3.3. The permeability model for cuboid packs plotted for loose mush and for a range of aspect ratios 
(0.1 < 𝑟" < 15). (A) The maximum packing crystal volume fraction 𝜙& as a function of 𝑟" (data from Liu et 
al., 2017) compared with our empirical model for 𝜙& (see text). The grey shaded area terminates against the 
upper bound of 𝜙& and a lower bound at 𝜙! = 0.8𝜙& (Mueller et al. 2010) and represents the loose mush field. 
(B) The model (Eq. 3) solved using input crystal square edge length 𝑎 = 1	cm. The black curves represent the 
solution for each aspect ratio at the specific maximum packing value (see A). The cartoons on panel A are a 
visual representation of the mush at different crystal fractions, showing the indicative texture of intergrown 
and loose mush, as well as a suspension at low crystal fraction. 
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3.5 Implications: rates of percolation through magma mush 

In this study, we have used packs of square-ended cuboids, however, via Eq. 3 our model is 

applicable to crystals of arbitrary 3D shape. In order to apply our model to mush with real 

crystals, we use published data for plagioclase phenocryst shapes (Duchene et al., 2008), 

wherein 𝑎, 𝑏, and 𝑐 are measured directly (𝑎:𝑏:𝑐 = 1: 6.5: 9.6; Duchêne et al. 2008). In all 

cases, we normalize all measured crystal shapes so that they are relative to 𝑎, which we take to 

be the shortest of the axes. We note that this approach does not alter 𝑟% and 𝑟&. Then we assign 

𝑎 = 1	cm, in order to compute the permeabilities of mushes that comprise those shapes. Using 

this workflow, we find that for a given melt fraction, the permeabilities of the plagioclase mush 

fall within an order of magnitude of each other. Importantly, at a melt fraction of 0.5, these 

datasets occur at predicted permeabilities up to a maximum of 1.5 orders of magnitude greater 

than the prediction of the Jackson et al. (2018) scaling (Fig. 3.4). Since such models predict the 

flux of melt to the shallow crust, we posit that our model has implications for overall melt 

accumulation timescales. Our model (Eq. 3) can be used to predict the melt extraction rates, 

fluxes, and characteristic timescales, and, importantly, our results suggest that crystal shape 

plays a first-order role in melt extraction because the timescales 𝜆 are proportional to 

permeability 𝜆 ∝ 𝑘*% ∝ 𝑠&. Mush permeability exerts a first order control over the rates of this 

process, and hence crystal shape effects need to be accounted for using our model. 
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Figure 3.4. The model (Eq. 3) solved using input 3D crystal shapes for amphibole (Zhang et al., 2019) and 
plagioclase (Duchene et al., 2008) phenocrysts (shortest crystal axis length is set to 𝑎 = 1	cm). Our model is 
compared with the scaling from Jackson et al. (2018) 𝑘 = 𝑎'𝛽𝜙( where 𝛽 = 1/125 and 𝛼 = 3 are the 
parameters proposed (Jackson et al. 2018). We also give a classical Kozeny-Carman model of the form 𝑘 =
(1 − 𝜙)$𝑎'/[150(𝜙)'] (e.g. Torquato 2013). Both of these comparisons substantially underpredict plagioclase 
and amphibole mush permeabilities given here. The vertical line at 𝜙 = 0.35	is for comparison across models 
and corresponds to a hypothetical natural mush maximum packing fraction. 
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Chapter 4 : A universal scaling for the permeability of magma 
mush 

A scaling for the permeability of loose magma mush validated using X-ray 
computed tomography of packed confectionary in 3D and estimation 
methods from 2D crystal shapes 
 

Chapter preamble 

This chapter is ready for imminent submission in Contributions to Mineralogy and Petrology 

with the following citation: 

Bretagne, E., Wadsworth, F.B., Vasseur, J., Dobson, K. J, A scaling for the permeability of 

loose magma mush validated using X-ray computed tomography of packed confectionary in 

3D and estimation methods from 2D crystal shapes, in prep. 

The author contribution by the PhD candidate amounts to 60% of the content, and the 

manuscript draft presented here was authored solely by the PhD candidate. 

 

Melt percolation through partially molten ‘mushy’ regions of the crust underpins models 

for magma migration, accumulation, and processes that prime systems for eruption. 

Knowledge of the hydraulic properties of magma mush, especially permeability, is 

required for accurate predictions of melt migration rates and accumulation timescales. 

Here, we present and characterize X-ray computed tomography 3D datasets of magma 

mush analogues made from packed confectionary particles arranged randomly in a 

volume. We extract the porosity, specific surface area, particle geometry, and particle 

size distribution and use a lattice-Boltzmann fluid flow simulation tool to determine the 

permeability of the melt phase network between the packed particles. Using these 

datasets, we test a model for permeability of granular materials, finding excellent 

agreement with our datasets to within ~𝟎. 𝟏	log units, when the specific surface area is 

taken as a measured value. To extend this to more typical cases where the specific surface 

area is an unknown variable, we additionally use the shape and size of the objects 

determined in both 3D and 2D to estimate the specific surface area assuming a cuboid 

approximation. These approximate solutions give good results to within ~𝟎. 𝟓 log units of 

the measured permeability and offer a method by which permeability could be estimated 

from a thin section of a cumulate or pluton sample. Our approach is more accurate than 

existing models for permeability of magma mush which take a spherical approximation, 
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and therefore we propose that these could be implemented in dynamic magma mush 

models for melt movement in the crust. 

Keywords: percolation; igneous petrology; melt extraction; trans-crustal; magma chamber 

4.1 Introduction  

The dynamics of magma movement through the Earth’s crust remain poorly understood. The 

leading models contend that magmas accumulate in the crust through repeated intrusive 

emplacement as mush – a framework of packed and variably intergrown or overgrown crystals 

with an interstitial melt phase. Upon emplacement, melts can migrate relative to and through 

the magma mush (Bachmann & Bergantz 2004; Annen, 2009; Cashman et al. 2017; Jackson et 

al. 2018; Sparks et al. 2019). Therefore, for large portions of the system, the advection of melt 

from one place to another is hosted in a porous medium, the solid static framework of which is 

a complex 3D manifold of crystal phases. This means the key parameter that can limit the rates 

and fluxes of melt through the system is the permeability of the mush. While all crust-scale 

models require permeability to compute fluxes (Bachmann & Bergantz, 2004; Jackson et al. 

2018), there has been relatively little work to constrain the permeability beyond first-order 

scaling approaches.  

While the exact physical processes are debated (c.f. Holness 2018; Liu & Lee 2021), the 

extraction of melts from mushes primes some magmatic systems to erupt voluminous crystal-

poor silicic magmas in very large eruptions (Bachmann & Bergantz 2004; Hildreth & Wilson, 

2007; Wilson et al. 2021). Therefore, while understanding mush permeability is important for 

predicting melt migration in general, it may also hold the key to understanding the timescales 

of melt extraction prior to Earth’s largest eruptions.  

Typically, the permeability 𝑘 of mushy magma is predicted using a general scaling such as 𝑘 =

𝑎&𝛽𝜙!+  (Jackson et al. 2018), where, 𝑎 is the crystal ‘size’, 𝜙! is the melt fraction interstitial 

to the crystals, and 𝛽 is a constant. This approach encompasses the widely used Kozeny-

Carman formulation 𝑘 = 𝜙!+ 𝑎&/(150(1 − 𝜙!)&), for which 𝛽 = 1/(150(1 − 𝜙!)&) (e.g. 

Bachmann & Bergantz 2004). In these models, complex crystal habits and multi-component 

mushes are reduced to a single size parameter 𝑎, despite evidence that that the shape of the 

objects defining the solid framework in a porous medium has a first-order effect on the possible 

packing geometries (e.g. Liu et al. 2017) and the resulting permeability at those packings (c.f. 

chapter 3). Here, we move beyond idealized shapes and test more sophisticated permeability 
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models against packs of realistic particles explicitly. Our aim is to constrain the efficacy of 

magma mush permeability models. 

4.2 Developing a model hypothesis 

The simplest and most widely used model for the permeability 𝑘 of packed particles is the 

Kozeny-Carman model (Ergun, 1952). While this model is given in a variety of forms, 

sometimes including additional parameters such as a pore network tortuosity, and the specific 

lengths of pores or particles, the more general form is  

 
𝑘 =

𝜙!+

𝐶𝑠& 
Eq. 1 

where 𝜙! is the volume fraction of the non-particle phase, 𝐶 is a constant, and 𝑠 is the specific 

surface area of the pore space (Torquato, 2013; Röding et al. 2020; Vasseur & Wadsworth, 

2017; Wadsworth et al. 2017; Vasseur et al. 2021; 2022). In the case of magma mush, we can 

think of 𝜙! as being the melt volume fraction, and then 𝜙 = 1 − 𝜙! representing the crystal 

volume fraction (assuming a two-phase system). In general, across a very wide range of porous 

media, 𝐶 ≈ 5 appears to result in a good match between Eq. 1 and empirical data when the 

medium is statistically representative and isotropic (Torquato, 2013; Vasseur et al. 2021). 

While 𝐶 appears independent of the medium, and 𝜙 can be readily determined using image 

analysis tools or laboratory methods, it only remains to constrain 𝑠. If we take 𝑠 = 3(1 −

𝜙!)/𝑅 as the specific surface area of monodispersed spheres of radius 𝑅 in a volume (sphere 

volume fraction 1 − 𝜙!) Eq. 1 becomes the more familiar 𝑘 = 𝜙!+ 𝑅&/(9𝐶(1 − 𝜙!)&). For 

magma mush, a model of this form is used commonly (e.g. Bachmann & Bergantz, 20041).  

For cuboids with three independent axis lengths 𝑎, 𝑏, and 𝑐, the s is given explicitly by (adapted 

from c.f. chapter 3) 

 

 𝑠 = 2(1 − 𝜙!) Z
1
𝑎 +

1
𝑏 +

1
𝑐\ Eq. 2 

 

 
1 We note that in their original paper, Bachmann & Bergantz give (1 − 𝜙!" ) in place of (1 − 𝜙!)", 
which we assume is a typographic error. 
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and so for packs of cuboids, the Kozeny-Carman law given in Eq. 1 becomes  

 

 
𝑘 =

𝜙!+

4𝐶(1 − 𝜙!)&
Z
1
𝑎 +

1
𝑏 +

1
𝑐\

*&

 
Eq. 3 

 

This implies that if the cuboid lengths 𝑎, 𝑏, and 𝑐 and the melt fraction 𝜙! can be determined, 

so too can the permeability. In chapter 3, we validated the efficacy of Eq. 3. for 3D simulated 

volumes of packed cuboids for which 𝑏 = 𝑐 (i.e. square-ended cuboids), However, some key 

aspects of this hypothesis still require testing, specifically does Eq. 3 remain valid for: (1) 

cuboids for which 𝑏 ≠ 𝑐; (2) particles that are not cuboids; and (3) given the sensitivity of 𝑘 to 

𝑠 (via 𝑠& in Eq. 1), is Eq. 3 valid for rough particles. Here, we provide the results of these tests. 

Eq. 3 is a dimensional form, which means that it is scale-dependent and 𝑘 depends on not only 

the relative ratios of 𝑎, 𝑏, and 𝑐, but also on the magnitude of	𝑎, 𝑏, and 𝑐. In order to compare 

simulation results or empirical data across scales, while still testing Eq. 3, we can introduce a 

scaling parameter, which is a reference permeability. We choose 𝑘# = 2(1 − 𝜙!)/𝑠& (c.f. 

chapter 3), which is a so-called ‘Stokes permeability’ (Martys et al. 1994; Wadsworth et al. 

2016; Vasseur et al. 2021). For some idealized systems of solid spheres in a volume, the Stokes 

permeability is the limiting value of 𝑘 as 𝜙! → 1 and is related to Stokes law for the drag 

around a sphere. If we divide Eq. 1 by this value, we retrieve a dimensionless permeability 𝑘X 

that should be universal and scale independent and applicable across a wide range of mush 

types in nature and the laboratory (Vasseur et al. 2021; 2022) 

 

 
𝑘X =

𝑘
𝑘#
=

𝜙!+

2𝐶(1 − 𝜙!)
. 

Eq. 4 

4.3 Materials and methods 

4.3.1. Methods to test the permeability model  

In the crust, mush is often not crystals packed in melts to their random close packing limit; 

instead, it is an interlocking framework of moderately or thoroughly intergrown crystals (e.g. 

Sparks et al. 2019). But there are also clear examples of what we termed ‘loose mush’ in chapter 
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3, where the degree of inter-growth is minimal and the mush is closer to a pack of near-separate 

crystals in a melt volume (Holness et al. 2019). It is these loose mush materials that we emulate 

here. To create real loose mush analogues in the laboratory with a range of particle geometries, 

we represent the crystals by confectionary: either near cubic or cuboidal shape, smooth faced 

fudge chunks, or non-cuboid rough sugar crystals (Fig. 4.1).  

 

Figure 4.2: Renderings of (a-b) the packed fudge chunks, and (c-d) the packed sugar crystals in (a,c) 2D slice 
representation and (b,d) in 3D. In 2D representations, the scale bar represents 100 µm and in 3D, the scale bar 
is 200 µm. No border kill is applied on these outputs because these are the full domains 	𝑓 = 1 required for 
LBflow 

We load particles randomly into a 20 mm diameter cylindrical centrifuge tube, ensuring at least 

10 particles can fit across the cylinder diameter. The cylinders are shaken slightly to settle the 

particles into a relatively close to a random close pack, and then imaged using a Nikon XTH 

LC 225kV 225W Ultrafocus laboratory X-ray tomography scanner at the University of 

Strathclyde. Scans were performed at 90 kV (either 91 µA and 2s exposure, or 209 µA and 1 

second exposure depending on scan) and were reconstructed using the built-in algorithms to 

give a 2000 voxel image with 16 µm voxel resolution. Visualisation and quantification were 

performed using Avizo©, and the data segmented into binary images showing the pore and 
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solid networks. These binary images were loaded into the lattice-Boltzmann fluid flow 

simulation tool LBflow (Llewellin et al. 2010a; 2010b) which is designed for determining the 

permeability of complex porous media. LBflow has been validated or applied using sphere 

packs in cubic lattice arrangements (Llewellin 2010b; Wadsworth et al. 2017), random 

overlapping sphere packs (Vasseur & Wadsworth 2017; Vasseur et al. 2020), hard sphere packs 

(Vasseur et al. 2021; 2022), hexagonal arrays (Vasseur & Wadsworth 2019), fibrous porous 

media (Nabovati et al. 2009), sintering systems (Wadsworth et al. 2017; 2021), and basalt pore 

spaces (Macente et al. 2022). The specific surface area 𝑠 of the particle packs we use a marching 

cubes algorithm (Lorensen & Cline, 1987) from Python’s scikit-image toolbox (following 

Lewiner et al. 2003). This workflow yields 𝑘, 𝑠, and 𝜙!, allowing explicit validation of Eq. 4.   

As we also aim to test Eq. 2 so show how Eqs. 3 & 4 can be used without explicitly measuring 

𝑠, (not always possible in many situations of interest), we performed a separation using the 

separation algorithm in Avizo© to enable measurement of the 3D shape parameters of every 

complete particle within the image volume and measured the principal component (orthogonal 

axis) lengths and 3D shape parameters. The values of 𝑎, 𝑏, and 𝑐 can be used without a priori 

knowledge of 𝑠. 

4.3.2. Methods to additionally test the effect of surface roughness 

Although the scans we collected are sufficient to accurately resolve particle edges and surfaces, 

we can also numerically roughen the images by a factor 𝑓, applying a rescale algorithm to the 

datasets without an anti-aliasing filter, which effectively combines locally adjacent voxels 

(using scikit-image toolbox, from 𝑓 = 1 to 𝑓 = 0.10) (Fig. 4.2). The value 𝑓 = 1 represents 

no down sampling applied. With each roughened dataset, we apply LBflow to determine the 

permeability 𝑘 and the marching cubes algorithm to determine 𝑠. Our data show the efficacy 

of our scaling crystals with non-smooth edges, but we acknowledge that this cannot readily be 

used without prior knowledge of 𝑠 because the particles at low-𝑓	are clearly non-cuboidal. 

While Eq. 2 is not strictly valid when the particles are non-cuboidal, the relationship 𝑘 ∝ 𝑠*& 

given by Eq. 1 can still be tested. 
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Figure 4.2. An example output from the roughening algorithm for (a) 𝑓 = 1 (i.e. the domain as measured), (b) 
𝑓 = 0.50, (c) 𝑓 = 0.25, and (d) 𝑓 = 0.10 applied to the sugar crystals dataset.  The values on the x- and y-axes 
are the voxel counts. 

4.4 Results and analysis 

The geometry of the first dataset is cubic or cuboidal with relatively smooth-edges compared 

with the sugar particles which are anisometric and rough-edged (Fig. 4.1); and represent a 

variable and harsh test of the simple models presented in Section 2. We test both the universal 

dimensionless model (Eq. 4) and the dimensional model with different methods of predicting 

𝑠. In all cases, raw data for 𝑘, 𝑠, and 𝜙 are given in Table 4.1. 𝑘 is determined in all three 

principal directions, however we discuss the results of the average of those values and use the 

standard deviation on that average to compute uncertainties via a standard error (for example, 

in Fig. 4.3). 

4.4.1. Results using the measured specific surface area 

The output values of 𝑘 can be used with the of 𝑘 can be used with the measured 𝑠 and 𝜙! to 

define 𝑘X = 𝑘𝑠&/(2(1 − 𝜙!)),  which represents the dependent variable on the left-hand-side 

of Eq. 4. Regardless of whether the data have been roughened (𝑓 < 1; see Section 3b) or not 

(𝑓 = 1), the data collapse to a cluster relatively close to the model with 𝐶 = 5	(Röding et al. 

2020; Fig. 4.3a) demonstrating that the roughening does not affect the universality of Eq. 4 

when 𝑠 is known. If we let 𝐶 be an adjustable parameter, we can use a least-squares regression 
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technique to minimize for the value of 𝐶. Given the relatively small differences in 𝜙! across 

all data, this is done by minimizing for the logarithm of the 𝑘X data. We perform this 

minimization using all data (including the numerical cuboid data from chapter 3) or with each 

dataset individually (Table 4.2, Fig. 4.3b) and show the result with the best-fit	 𝐶  for the 

combination of the fudge and sugar crystals (i.e. 𝐶 = 4.01 ± 0.24). Regardless of the value of 

𝐶, the slope in Fig. 4.4 matches well the Eq. 4 prediction. 

 

Figure 4.3: The normalized permeability 𝑘5 as a function of the inter-particle phase volume fraction 𝜙) with 
measured 𝑠. (a) The data from this study with roughened particles 𝑓 < 1 values and non-roughened particles 
at 𝑓 = 1. (b) A zoom-in on the data from (a) and including the best-fit Eq. 4. Also shown are the data from. 
chapter 3 for cuboid simulations, and the model (Eq. 4) with 𝐶 = 5. For comparison we show hard sphere 
simulations from Vasseur et al. (2021; 2022) and a hard-sphere model (Sangani & Acrivos 1982), which 
approaches the prediction of Eq. 4 at moderate 𝜙). 

For comparison, Fig. 4.3 also shows the data for hard sphere simulations (Vasseur et al. 2021; 

2022) and an associated model specifically for the permeability between hard spheres in cubic 

lattices (Sangani & Acrivos, 1982; Llewellin, 2010b; Vasseur & Wadsworth 2017). This is 

shown here for completeness, and to demonstrate that solutions for spherical particles can, if 

scaled correctly, provide similar universal results as those for anisometric particles such as 

cuboids, fudge, and sugar. 

4.4.2. Using the cuboid approximation to find the specific surface area 

The measured a, b, c axes for each particle are used to define the specific surface area of each 

via Eq. 2, and because there is a distribution of axis lengths in each sample, we then take an 

average of each of these which we term 〈𝑎〉, 〈𝑏〉, and 〈𝑐〉, respectively. The standard deviation 

𝜎 on each of those averages is set as the error on the axis length distributions (𝜎0, 𝜎1 ,	and 𝜎'). 

For the fudge chunks, 𝑁 = 79 and for the sugar crystals, 𝑁 = 361. These are used to determine 
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𝑠 and an uncertainty on 𝑠 (using Eq. 2), assuming that this represents an approximate 𝑠 from 

the average crystal shape in the pack. The output of these steps is a value for 𝑘# derived from 

the crystal shape determinations, and which can be used to compute 𝑘X for each sample. We test 

this with the un-roughened data at 𝑓 = 1 because the approach here relies on the data being 

close to cuboidal and smooth. 

 

Figure 4.4. (a) The distribution of crystal lengths in the fudge chunks sample, and the sugar crystal sample. (b) 
The permeability of the fudge chunks and the sugar crystals using two methods: (1) using the measured s (as 
given in Fig. 3); and (2) using s predicted by the cuboid approximation using the mean values given in (a) and 
the associated errors.  

 

In Fig. 4.4, we show the result of the steps outlined above for the pack of fudge chunks and the 

pack of sugar crystals. In Fig. 4.4a, we show the normalized count distribution of the crystal 

size for each sample. And in Fig. 4.4b we show the result of the computation of 	𝑘 . We do this 

in dimensional space (i.e. 𝑘 and not 𝑘X; using Eq. 3 and not Eq. 4). The difference between the 

data computed using the cuboid approximation, and the same data for which 𝑠 is measured 

directly is a difference of less than	0.5	log units of 𝑘 in the case of both the sugar and fudge 

chunks. We conclude therefore that any prediction made using the model presented here (Eq. 

3) with a cuboid approximation for the specific surface area, can be accurate to within 0.5 log 

units when 𝐶 = 4.01. 

4.5 Discussion 

Here we explore and extend our results in a few key ways. First, we provide the limits of 

applicability of our models. Second, we propose a method to find the permeability from a 2D 
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thin section of a cumulate rock. And third, we explore the implications of our findings for real 

mush systems.  

4.5.1. The limits of applicability at high and low melt volume fraction 𝜙! 

Like all scaling approaches, the model tested here has limits beyond which it should not be 

applied. The limits as 𝜙! → 1 are best understood by comparing the prediction of Eq. 4 with 

those given by the dilute expansions of 𝑘# (i.e. the ‘Stokes permeability’). These two competing 

predictions converge at the range of 𝜙! that packed particles used here occupy (see Fig. 4.4). 

However, as particle packing densities 𝜙 drop (i.e. as 𝜙! increases) the dilute expansion model 

fits better. The point at which our universal model and the dilute model diverge substantially 

(𝜙! ≥ 0.6) provides a good upper limit of applicability of Eq. 4, and is consistent with 

arguments given in Vasseur & Wadsworth 2017). Using Eq. 4 at 𝜙! ≥ 0.6 will overestimate 

the permeability of mush. The limits as 𝜙! → 0 below which Eq. 4 should not be used is 

formally given by the maximum random close packing of particles, which occurs at a particle 

volume fraction 𝜙.. In chapter 3, we propose a functional form for this value as a function of 

the aspect ratio of square-ended cuboids. However, here, with triaxial cuboids, this function is 

not strictly valid and 𝜙′ is not well known. At 𝜙 > 𝜙′ magma mush is no longer ‘loose’ and 

some intergrowth, overgrowth, or deformation of the crystals must have occurred (Holness 

2018; c.f. chapter 3). The lowest 𝜙! determined in chapter 3 was approximately 𝜙! = 0.35 

and therefore we consider this value the lower limit of applicability of the model presented here 

(Eq. 4). Based on these arguments, the model applicability window is 0.35 ≤ 𝜙! ≤ 0.60. 

Below these limits, a percolation model is required (e.g. Martys et al. 1994; Wadsworth et al. 

2016; Vasseur & Wadsworth 2017; Vasseur et al. 2021; 2022), and above these limits a dilute 

expansion model is required (Sangani & Acrivos, 1982; Vasseur et al. 2021; 2022).  

4.5.2. Finding a permeability from a 2D thin section 

Using standard petrological methods, it is rare to have the kind of 3D data presented here, 

especially for silicic magmas. The most widely used X-ray computed tomography (XCT) 

methods can be highly effective when there is an attenuation contrast between the ‘mush’ and 

‘melt’ phases. In our analogue samples, the interstitial volume was air, and so the high 

attenuation contrast makes segmentation of phases easy, and 𝜙! allows easy separation of the 

individual particles. In natural cumulate samples – an erupted and quenched piece of magma 

mush – the interstitial melt can solidify or crystallise into the same phases as the mush (e.g. 
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Wager et al., 1960; Morse, 1998; Humphreys, 2009), or into phases with only a small 

attenuation contrast, making the segmentation and separation processes challenging. More 

advanced phase contrast XCT and diffraction contrast tomography that can support effective 

image analysis for samples with low contrast is now widely accessible. 

 

Figure 4.5. The process of taking a layer of 3D particles and generating a 2D slice and associated 2D 𝑤 and 𝑙 
data. (a) An example of a 2D slice from the stack of slices. (b) A 3D render of fudge chunks with a sequence 
of 2D ‘virtual sections’ cut through it. (c) Defining the cuboid axis in 3D and in 2D. (d) and (e) show the 
associated distributions of the ratio 𝑤*/𝑙* that are found from analysing the shapes in (a) and (b), respectively. 
Also shown in (d) and (e) are the best-fit ShapeCalc (Mangler et al. 2022) distributions of cuboid cuts, which 
relates to a best-fit single cuboid shape.  

2D techniques such as thin section microscopy is far more common, and so we test a workflow 

for retrieving a representative 3D permeability value from 2D data. First, we define a 2D ‘slice’ 

through the 3D volumes to generate a virtual thin section. This method effectively cuts the 

crystals in a plane and, depending on the orientation of the crystals, will result in a distribution 

of intersection length-scales (Fig. 4.5). We then extract the maximum and minimum axis 

lengths of each particle that we can observe in the 2D plane, which we term 𝑤2 and 𝑙2, 

respectively (Figs 4.5a & 4.5c). As these 2D slices are virtual, we can produce multiple thin 

sections in many orientations and locations within the larger sample, effectively generating 

many pseudo-thin section datasets (Fig. 4.5b). The distributions of the measured 𝑤2/𝑙2 ratios 
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(Figs 4.5d & 4.5e) cannot be used directly with Eq. 2, because their relationship to to 𝑎, 𝑏, and 

𝑐 (the three ‘true’ axes) of the 3D objects needs to be established. 

 

Figure 4.6. The results of the 2D-to-3D approach outlined here, compared with the direct result from LBflow 
shown in Fig. 4.4 and the model given by Eq. 3. The difference between the data from LBFlow and the projected 
2D slice data (lozenges) is only of 0.07 orders of magnitude and 0.11 orders of magnitude for the fudge bits 
and the sugar crystals, respectively. The difference between the data from LBFlow and the projected 2D all 
slice data (triangles) is only of 0.10 orders of magnitude and 0.12 orders of magnitude for the fudge bits and 
the sugar crystals, respectively. The uncertainty on 𝑘 in the 2D-to-3D method arises from propagating the 
uncertainty on 𝑎, 𝑏, and 𝑐 from the standard deviation of 𝑤* and 𝑙*, which can be substantial.  

To estimate the true axis lengths and allow direct application of our model, we use ShapeCalc 

(Mangler et al. 2022), which allows prediction of the 3D shape of the crystals from the 

distribution of 𝑤2 	and	𝑙2 	measured on a 2D dataset. This model yields normalised axis lengths 

𝑠, the small axis, 𝑖, the intermediate axis, and 𝑙, the long axis. These represent the true axis 

lengths 𝑎, 𝑏, and 𝑐 normalised to 𝑎, such that 𝑠 = 𝑎 𝑎 = 1⁄ , 𝑖 = 𝑏 𝑎⁄  and 𝑙 = 𝑐 𝑎⁄ . Higgins 

(1994) demonstrated that for a population of randomly oriented anisotropic 3D objects of same 

size and shape, the intersection long axis 𝑙2 is close to the true intermediate axis 𝑏 and the 

intersection short axis 𝑤2 is close to the true short axis 𝑎. Therefore, 𝑙2 ≈ 𝑏 or 𝑤2 ≈ 𝑎. If we 

assume 𝑎 = 𝑤2, then we have 𝑏 = 𝑖	𝑤2 and 𝑐 = 𝑙	𝑤2. 

Applying this workflow, we can then apply Eq. 2 and Eq. 4 to the 2D virtual section data. We 

find that this approach works very well (Fig. 4.6), and the propagated uncertainty on the output 

permeabilities is within error of both the model (Eq. 3) and the measured result from LBflow 

with the marching cubes algorithm to find 𝑠. This demonstrates that our model, coupled with 
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ShapeCalc, can be used to convert 2D thin section observations of packed crystal geometries, 

into a bulk material permeability for individual cumulate samples. 

4.5.3. Anisotropic mush permeability and the fabric tensor 

Eqs 1, 3, and 4 are all isotropic models that do not predict a full permeability tensor, nor a 

permeability that depends on shear strain in any manner. This is consistent with the widely 

used models that are embedded in magma mush melt migration solutions (Bachmann & 

Bergantz 2004; Jackson et al. 2018) and indeed in general formulations for melt migration in 

analogous partially molten systems (e.g. McKenzie 1984) or compaction of crystal-rich plugs 

even in flowing systems (e.g. Lecampion & Garagash 2014). However, the melt percolation 

and extraction timescales from mush predicted from these extraction models are often many 

orders of magnitude in timescale slower than recorded by chronometers that track extraction 

processes (e.g. Holness 2018).  This has led to models that invoke shear strain and a resultant 

anisotropy development driving high permeability in one direction, perhaps at the expense of 

efficient permeable channels in the perpendicular direction (Liu & Lee, 2018), and large-scale 

simulations of mush dynamics that show kinematics involve the definition and evolution of a 

fabric tensor (Bergantz et al. 2017). This fabric tensor could be used to compute a local but 

volume-averaged permeability tensor description (Bergantz et al. 2017). In any anisotropic 

model, the scaling for permeability via a scalar specific surface area (e.g. Eq. 1) will not hold, 

or will require additional scaling via a fabric deformation correction.  

While our model is not applicable to anisotropic systems, our approach grounds solutions in 

the specific microstructures of mushes, accounting for the complex crystal morphologies 

involved, and so provides a clear direction for developing the anisotropic models, from readily 

producible textures produced easily in a laboratory setting and amenable to X-ray computed 

tomography techniques.  

Our model formulation is specific to what we term ‘loose mush’. That is, mush for which 

crystal-crystal intergrowth or overgrowth is minimal, and for which the mush is isotropic and 

simply analogous to crystals at their maximum random close packing fraction. Therefore, a 

tenable future step would be to extend these models to overlapping cuboid systems where 𝜙! 

can drop to values below the limits explored here (see Section 5a). Indeed, for overlapping 

objects in a volume, 𝜙! can drop to a critical value below which the system as a whole becomes 

impermeable – termed the percolation threshold 𝜙' (Vasseur and Wadsworth, 2017; Colombier 

et al. 2020; Wadsworth et al. 2021). This parameter has not been determined for systems of 
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magma mush, but constraint of this critical percolation property, as well as 𝑠 down to low-𝜙! 

would allow permeability models to be extended down from the ‘loose mush’ regime into the 

‘intergrown mush’ regime. 

4.6 Conclusions 

Magma mush comprises anisometric crystals that are variably intergrown with one another or 

overgrown by additional phases. We have expanded the relatively simple biaxial cuboid model 

presented in chapter 3 to account for the triaxial nature of natural cuboidal crystals. We have 

validated that expanded form of the model using real X-ray computed tomography data for 

mush analogues, and identified the need for a minor adjustment of the constant 𝐶 (albeit with 

reasonable efficacy for the forward model with 𝐶 = 5). We have also shown that the model is 

accurate to within 0.2 − 0.5 log units when the axes of particles approximated from 2D thin 

section derived measurements; opening up the possibility that mush permeability can be 

extracted as part of a general petrological workflow in any laboratory.  

As in chapter 3, we emphasise that the permeability model presented here can be orders of 

magnitude different from existing approaches. While our model (Eq. 3) is similar in form (and 

based on the same starting point) as the Kozeny-Carman model given in Bachmann & Bergantz 

(2004), the shape-dependence of permeability that we apply renders the predictions of our 

model dramatically different from those of	𝑘 = 𝜙!+𝑎&/(150(1 − 𝜙!)&)	with a fixed single 

crystal ‘size’ 𝑎. Therefore, we propose that not only does our model include the effect of crystal 

shape, which should be incorporated in mush permeability models, but it also gives higher 

permeability predictions than existing approaches. If embedded in any existing melt migration 

model, the higher permeabilities predicted here would result in greater fluxes and shorter 

overall transport timescales for a given set of conditions. Therefore, there are direct 

implications of our result for crustal melt movement models. 
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Table 4.1: raw data for permeability in the 3 directions, the specific surface area, shrinking factor and 
melt fraction 

 

Table 4.2: The results of fitting for the coefficient C in Eq. 4. 

Sample family 
Best fit C 

95% 
confidence 

interval 

99% 
confidence 

interval 

Cake topping data (n=16) 4.01 ± 0.24 ± 0.33 

Fudge chunks only (n=8) 3.79 ± 0.37 ± 0.53 

Sugar crystals only (n=8) 4.24 ± 0.25 ± 0.37 

Square-ended cuboids (c.f. chapter 
3; n=92) 

5.83 ± 0.10 ± 0.14 

All above data (n=108) 5.52 ± 0.17 ± 0.22 

 

  

Name Shrinking 
factor 

Melt 
fraction 

Specific surface 
area (m-1) 

Perm X (m2) Perm Y (m2) Perm Z (m2) 

fudge bits 1.0000 0.3653 34390.27 1.18E-11 1.11E-11 1.54E-11 
  0.5000 0.3543 55853.4600 3.0184E-12 3.9250E-12 3.6785E-12 
  0.3333 0.3500 82000.7500 1.4193E-12 1.7350E-12 1.6758E-12 
  0.2500 0.3543 99901.6500 9.3872E-13 1.0862E-12 1.1357E-12 
  0.2000 0.3501 125451.0000 6.0228E-13 6.8012E-13 7.1371E-13 
  0.1000 0.3543 212487.9000 1.9854E-13 2.1280E-13 2.4109E-13 
  0.0667 0.3497 297233.2000 9.7299E-14 1.0181E-13 1.1673E-13 
  0.0500 0.3533 370835.0000 6.5449E-14 6.8075E-14 7.9047E-14 
sugar 
crystals 1.0000 0.375 59397.05 3.34E-12 3.38E-12 3.70E-12 
  0.5000 0.3902 105453.3000 1.1671E-12 1.2327E-12 1.2243E-12 
  0.3333 0.3834 154884.9000 5.0622E-13 5.3724E-13 5.4569E-13 
  0.2500 0.3902 196884.2000 3.1874E-13 3.3788E-13 3.4613E-13 
  0.2000 0.3835 242223.3000 2.0089E-13 2.1337E-13 2.1981E-13 
  0.1000 0.3905 427365.3000 6.9858E-14 7.4480E-14 7.7062E-14 
  0.0667 0.3834 588604.0000 3.8043E-14 3.9858E-14 4.2141E-14 
  0.0500 0.3898 721765.1000 2.7677E-14 2.9428E-14 3.0704E-14 
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Chapter 5 : The permeability of an overgrown mush 

 
Chapter preamble 

This chapter is in preparation for submission in Earth and Planetary Science Letters with the following 

citation: 

Bretagne, E., Wadsworth, F.B., Vasseur, J., Dobson, K. J, The permeability of a mush: quantifying the 

percolation of melt in an overgrown mush, in prep 

The author contribution by the PhD candidate amounts to 60% of the content, and the manuscript draft 

presented here was authored solely by the PhD candidate. 

 

 

Constraining the time evolution of melt flow around crystals in a magma mush is essential 

to better understanding crystal-melt segregation, reactive transport and differentiation 

at crustal scale. Most widely accepted trans-crustal mush zone evolution models are 

underpinned by the mobility of the interstitial melt, hence are controlled by the 

permeability of the mush, the ability of the static crystal framework to transmit a fluid 

phase. Previous models for mush permeability are only defined up to the maximum 

packing of cumulate crystals, but in this contribution we validate a percolation model for 

overgrown cumulate crystals and low melt fraction. The mush is represented here by a 

numerical pack of cuboids that is incrementally overgrown to simulate crystal 

overgrowth. We define a percolation threshold for overgrown magma mush from the 

permeability data which is very close to values found for overlapping sphere packs. We 

also define a new expression for calculating the specific surface area as a function of the 

melt fraction and crystal size and aspect ratio. The model is very close to expressions for 

overlapping sphere packs and the data for the overgrown cuboids collapse to a single 

value at low melt fractions, implying that the shape of the initial crystals becomes 

irrelevant at low melt fractions (close to the percolation threshold). Herein, we also show 

that accounting for the percolation threshold when looking at the permeability of porous 

media and mush, in particular, is very important. At low melt fractions, the difference 

between a model that does not account for the percolation threshold (e.g. Jackson et al., 

2018) brings about errors that tend to infinity. This has major implications for melt 

percolation in a mush, impacting melt extraction calculations or even reactive flow 

pathways to mention just a few. We also discuss that correctly modelling the flow of melt 
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around cumulate crystals in the mush is essential for understanding the final textures 

that we see in the crystalline end result that we can observe in the field today. 

 

5.1 Introduction 

Transport of magmatic melts may be hosted in magma mush zones, which could extend over 

substantial vertical sections of the Earth’s crust (Cashman et al., 2017). Percolation of melts 

through mush can be reactive, resulting in a distillation column effect at crustal scales, and 

dynamic magma evolution (Annen et al., 2006; Cashman et al., 2017; Jackson et al., 2018; 

Sparks et al., 2019). The progression of both melt movement, and of melt-crystal reactions are 

rate-limited by the percolation speed through the mush. In turn, the speed of melt percolation 

is controlled by the permeability of the solid framework of crystals between which melts 

migrate (c.f. chapter 3; Liu and Lee, 2021). Models for crystallization or compaction predict 

that the permeability of mush evolves with time as melt volume fraction evolves (Bachmann 

and Bergantz, 2004; Jackson et al., 2018), however the specifics of this relationship remain 

poorly constrained. 

In addition to melt migration itself, magma mush permeability exerts control on the 

crystallization path a mush will take, and therefore the end-state mineral assemblage and 

texture (Humphreys, 2009). As mushes solidify – forming cumulate textures – temperature and 

interstitial melt composition changes and the nature of the interstitial crystallisation is sensitive 

to these changes. Adcumulate textures are formed when the crystallizing interstitial melt is 

hydraulically connected, such that it is constantly replenished and cannot evolve in situ (Morse, 

1998). By contrast orthocumulate textures are formed when the crystallizing interstitial melt is 

poorly hydraulically connected, such that it is readily isolated, causing overgrowth rims on, for 

example, plagioclase, and the formation of evolved interstitial phases (e.g. Wager et al., 1960; 

Morse, 1998). This difference – adcumulate compared with orthocumulate – is therefore 

controlled by the evolution of the permeability, which dictates the degree of hydraulic 

connectivity of melt. 

On the whole, magma mush permeability is approximated as an isotropic pseudo-scalar 

property (Bachmann and Bergantz, 2004; Jackson et al., 2018) and simple scaling laws are 

used. Exceptions include models that explicitly account for the development of fabric and 

anisotropy of permeability, however, these are typically specific to a given mush type (such as 
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olivine-dominated mush; Liu & Lee, 2021) and the relationship between anisotropy, strain, and 

crystal shape or properties are poorly known (discussed in Bergantz et al., 2017). Therefore, 

isotropic approximations are common, especially when embedded in 1D models of crustal-

scale melt migration processes (Annen et al., 2006; Bachmann and Bergantz, 2004; Jackson et 

al., 2018). The scaling laws used are typically of the generalized Kozeny-Carman form 

 𝑘 = 𝛽𝑎&𝜙!3  Eq. 1 

where	𝑘	is the permeability, 𝜙! is the melt fraction, 𝑎 is a mush crystal lengthscale, 𝛼 is an 

exponent that is typically 𝛼 = 3 after Carman (1937), and 𝛽 is then a parameter that varies 

from model to model. For example, Jackson et al., (2018) use 𝛽 = 1/125, whereas Bachmann 

& Bergantz, (2004) use 𝛽 = [𝛾(1 − 𝜙!)&]*% with 50 ≤ 𝛾 ≤ 200 (Rabinowicz et al., 2001)2. 

In its simplicity, Eq. 1 does not capture the effect of crystal morphology. Additionally, Eq. 1 

predicts that there should be a finite permeability even down to vanishingly low melt fractions 

𝜙! → 0 (but for 𝜙! = 0, 𝑘 = 0). This is counter to the concept of melt pocket isolation and a 

percolation threshold 𝜙! = 𝜙' as crystals intergrow, overgrow, or compact. Note that in a 2-

phase magma mush, 𝜙! = 1 − 𝜙 where 𝜙 is the crystallinity. 

Generalising the Kozeny-Carman law for a better shape descriptor (Torquato, 2013; Vasseur 

et al., 2022, 2021; Vasseur and Wadsworth, 2017), we introduced in chapter 3 a modification 

to the form of Eq. 1 that accounts for crystal shape by approximating crystals to cuboid solids 

with axis lengths 𝑎, 𝑏, and 𝑐 and two aspect ratios 𝑟% = 𝑐 𝑎⁄  and 𝑟& = 𝑏 𝑎⁄   

 
𝑘 =

𝜙!+

𝐶𝑠& =
𝑎&	𝜙!+

𝐶𝜙& Z1 +
1
𝑟%
+
1
𝑟&
\
*&

 
Eq. 2 

where 𝑠 is the specific surface area, and 𝐶 is a constant validated to be 𝐶 ≈ 5 across a range of 

media (Röding et al., 2020). While Eq. 2 accounts for crystal morphology and therefore allows 

platey (oblate) and acicular/needle-like (prolate) crystals to be compared directly, the issue 

remains that this approach cannot account for isolation effects at low melt fraction as 𝜙! →

𝜙'. For this reason, we propose in chapter 3 that Eq. 2 is only appropriate for ‘loose mush’ for 

which crystals are at or near to a random maximum packing density, but not denser. At higher 

 
2 In the original Bachmann & Bergantz (2004) 𝛽 = H𝛾J1 − 𝜙)'KL+" which we assume is a typographic error 
and should be 𝛽 = [𝛾(1 − 𝜙))']+" reported here. 



 72 

densities, or equivalently, lower melt fractions, a viable permeability law for magma mush 

remains to be tested. 

Here, we aim to address some outstanding issues with models for mush permeability. Namely 

and foremost, we explore how the permeability evolves as melt fraction 𝜙! decreases to low 

values (i.e. the crystallinity 𝜙 rises beyond the maximum packing fraction, defined as 𝜙 = 𝜙′) 

and aim to provide a direct constraint of the percolation threshold. To do this, we use image 

analysis methods to create 3D geometries where simulated crystals can be overgrown in 

increments, successively occluding the interstitial space. We use these new data to test models 

for the permeability that can be applied across a wide range of melt fraction, useful as a 

constitutive model in larger, crustal-scale models of mush dynamics (Jackson et al., 2018). 

5.1.1. First order observations from cumulate textures 

In some cases, primocrysts can be distinguished from post-emplacement phases that crystallize 

from an interstitial melt. This means that cumulate rocks can preserve primary evidence for 

crystal geometries of the mush. Here, we use micrographs of three examples from the 

Skaergaard system in Greenland, all published previously (Humphreys, 2009). We provide 

interpretive diagrams where we identify the phases that are interpreted to have been the crystal 

framework, and the phases that are interpreted to have been the melt phase at the time of 

crystallization of a loose mush ( Figure ). Our interpretive diagrams, associated with direct 

micrographs, give some information about the melt-crystal morphologies that might typify 

intermediate to low melt fraction examples. We can see that at low relative melt fractions, it 

appears that isolated pockets of melt occur between overgrown or interlocking crystals, ( Figure 

a-5.1d). By contrast, at high relative melt fractions, the solid phase(s) touch at contact points, 

but are separated by regions of open melt channels, now replaced by oxides ( Figure e & 5.1f). 

While isolated versus connected is impossible to determine reliably in 2D, this at least suggests 

that the hydraulic properties – such as permeability – affect the texture of the final mineral 

assemblage. 
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 Figure 5.1: Textures of magma mush inferred from micrographs of cumulate rocks (these examples are from 
Skaergaard, Greenland). (a,c,e) Original micrographs reproduced with permission from Humphreys, (2009). 
(b,d,f) Interpretive phase portraits of the same images divided into a primocryst phase (colourless) and a melt 
phase , according to the petrological interpretations presented by Humphreys, (2009). (a) Cumulate plagioclase 
and olivine with the interstitial melt interpreted to be represented by augite (blue). (c) Cumulate augite, 
plagioclase, and olivine with a single pigeonite phase interpreted to represent the interstitial liquid (blue). (e) 
Cumulate olivine and plagioclase crystals with the interstitial melt interpreted to be represented by the oxides 
(black) and biotite (orange). In all images, the image horizontal length is 2-3 mm 



 74 

5.1.2. Model hypothesis 

The permeability model shown herein or in the general Kozeny-Carman form is only valid until 

maximum packing fraction of crystals 𝜙 = 𝜙′, where all the solids in the system occupy the 

highest volume fraction possible by packing alone. The maximum packing fraction is a 

function of the aspect ratio of the solids involved (e.g. Lui et al., 2017; c.f. chapter 3). The 

crystallinity can rise above the maximum packing if the phases intergrow, overgrow, or if new 

phases nucleate in the interstitial spaces (all of these possibilities are seen in  Figure ). At 

crystallinities beyond maximum packing 	𝜙′, we need to use percolation theory to model fluid 

flow and correctly predict the permeability (Martys et al., 1994; Wadsworth et al., 2016; 

Wadsworth et al., 2017; Wadsworth et al., 2021, Vasseur et al., 2022). A percolation model 

was proposed by Martys et al. (1994) 

 
𝑘 =

2 +1 − ,𝜙𝑚 − 𝜙#-.
𝑠"

	(𝜙𝑚 − 𝜙#)
$ 

Eq. 3 

where 𝜙' is the percolation threshold melt fraction at which melt is fully isolated, and 𝑦 is an 

exponent. Eq. 3 predicts that at 𝜙! < 𝜙' the system will have zero permeability, whereas at 

𝜙! > 𝜙' the permeability will be finite. As with Eq. 1, Eq. 3 suggests that the length-scale of 

importance here is the inverse of the specific surface area, 𝑠*%, such that the permeability 

proportionality is 𝑘 ∝ 𝑠*&. This approach has been validated for generalized digital media 

(Martys et al., 1994; Vasseur et al., 2022; Vasseur and Wadsworth, 2017), sandstones and 

volcanic deposits (Eichheimer et al., 2020; Ryan et al., 2020; Wadsworth et al., 2021, 2016), 

systems of bubbles growing in magma (Vasseur et al., 2020), and industrially relevant sintering 

systems (Wadsworth et al., 2017); but not yet for magma mush. 

The so-called ‘percolation exponent’ 𝑦 has been theoretically constrained to be 𝑦 = 4.4 for 

systems of overlapping spheres (Feng et al., 1987), and similar values 4 ≤ 𝑦 ≤ 4.4 have been 

found empirically using large datasets (Martys et al., 1994; Vasseur et al., 2022; Wadsworth et 

al., 2016, 2021). Here, we propose to set 𝑦 = 4.4 and not vary this further. Similarly, the 

percolation threshold 𝜙' has been constrained for a range of overlapping media, most pertinent 

here is for ‘square prisms’ or, equivalently, overlapping cuboids (Ballow et al. 2022). In Table 

5.1, we summarize existing constraints of the percolation threshold 𝜙', which will be compared 

with the value we find here. We will also compare our percolation threshold 𝜙' with values 
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obtained for overlapping sphere packs (Kertesz, 1981; Rintoul, 2000; Vasseur et Wadsworth, 

2017). 

Now that we are interested in the domain beyond the maximum packing fraction	𝜙 > 𝜙′, the 

specific surface area equation (expressed in Eq. 2) is no longer valid as the cuboids are no 

longer defined by their contact point but become progressively overgrown and/or intergrown. 

The specific area can no longer simply be a function of crystal size 𝑎 and aspect ratios 𝑟%and 

𝑟&. In this contribution, we aim to present a new expression for the specific surface area for 

overgrown cuboids, derived from the permeability data. 

The percolation model is typically normalised by the reference permeability 𝑘$ (Wadsworth et 

al. 2017; Vasseur & Wadsworth, 2017; Vasseur et al. 2022) 

 
𝑘% =

2+1 − ,𝜙𝑚 − 𝜙#-.
𝑠"

.	 
Eq. 4 

The normalised percolation model then becomes 𝑘X = 𝑘 𝑘$ =⁄ (𝜙! − 𝜙')𝑦. 

Table 5.1: Percolation thresholds for the melt between overlapping 3D objects 

System 𝜙' Reference  

Overlapping square-ended cuboids*  

𝑟' = 20 0.0534 ± 0.0004 Ballow et al. (2022)  

𝑟' = 15 0.0535 ± 0.0004 Ballow et al. (2022)  

𝑟' = 10 0.0524 ± 0.0005 Ballow et al. (2022)  

𝑟' = 8 0.0523 ± 0.0006 Ballow et al. (2022)  

𝑟' = 7 0.0519 ± 0.0003 Ballow et al. (2022)  

𝑟' = 6 0.0519 ± 0.0005 Ballow et al. (2022)  

𝑟' = 5 0.0515 ± 0.0007 Ballow et al. (2022)  

𝑟' = 4 0.0505 ± 0.0007 Ballow et al. (2022)  

𝑟' = 3 0.0485 ± 0.0011 Ballow et al. (2022)  

𝑟' = 2.5 0.0483 ± 0.0008 Ballow et al. (2022)  

𝑟' = 2 0.0465 ± 0.0007 Ballow et al. (2022)  

𝑟' = 1.5 0.0461 ± 0.0014 Ballow et al. (2022)  

𝑟' = 1 0.0449 ± 0.0005 Ballow et al. (2022)  

Overlapping spheres  

 

0.034 ± 0.007	
0.032 ± 0.004 

Kertesz (1981)  
Elam et al. (1984) 

 

*  is the aspect ratio of a square ended cuboid (i.e. 𝑟! = 1	is a cube).  
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5.2 Methods and materials 

To test the predictions of the percolation model for cuboids, we simulate crystal overgrowth. 

The initial geometries are numerical periodic domains of packed and randomly oriented solid 

cuboids generated by Liu et al. (2017), analysed in chapter 3. The initial cuboids have a square 

cross-section, such that 𝑎 = 𝑏 , and the domains are produced at their random maximum 

packing (i.e. 𝜙 = 𝜙′). The domains are characterised by the aspect ratio of the cuboids, 𝑟% 

(where 𝑟& = 1). 

We numerically erode the pore spaces by a set increment using Avizo©. To achieve this, 1 

solid phase voxel is added adjacent to existing solid phases subject to 3 conditions: (1) a voxel 

is added orthogonally to the pore voxels adjacent to each existing solid voxel face that borders 

a pore voxel; (2) a voxel is added to each edge; (3) a voxel is added to each corner. This is the 

same method that was applied by Macente et al. (2022) to simulate the precipitation of layers 

on pore walls. We repeat this incrementally in 1-voxel steps up to 20 times (for more details 

on the methodology in Avizo©, see Chapter 2). This workflow is then applied to initial cuboid 

packs with different aspect ratios. 

In Figure 5.4, we show selected steps of the pore erosion process and highlight the evolution 

of the melt fraction connectivity. Our 3D datasets allow us to extract the melt fraction that is 

fully connected in a given direction, which we term the percolating melt fraction 𝜙5, as opposed 

to the total melt fraction 𝜙!. The ratio of these two 𝜙5/𝜙! is a ‘connectivity’ (c.f. Colombier 

et al., 2017). In detail, we extract 𝜙5 in all three principal directions 𝑥, 𝑦, and 𝑧 and then average 

them. In Figure 5.4a, the melt phase is completely connected (𝜙5/𝜙! = 1), expressed by the 

purple colour of the melt phase. As the space for the melt shrinks (Figure 5.4b-5.2d), the melt 

fraction becomes less and less connected until in the result of the 20th growth iteration, the melt 

only exists as isolated pockets in the mush (Figure 5.4d). 

It is important here to note that the overgrowth on the crystals is performed on the crystal phase 

as a whole instead of each individual crystal. In practice, this means that the crystal-melt 

interface is grown outwards towards the melt phase by one voxel in every direction, on all 6 

sides of the voxel as well as on the ridges. This is why we call grown domains overgrown as 

opposed to intergrown, and we think is more representative of how magma mush evolves 

beyond an initial packed state (cf.  Figure e & Figure f). 
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Figure 5.4: Coupled volumetric representation of the crystal fraction (top) and the melt fraction (bottom) at 
select growth steps for the domain 𝑟" = 0.2. The melt fraction 𝜙" indicated for each step. The connectivity of 
the melt fraction is qualitatively expressed through the colour of the melt phase: the connected parts are in 
purple, and as the crystals are grown, the pore throats are pinched off and the remaining melt trapped in the 
isolated pockets is expressed in a different colour (c.f. (b) to (d)). 

 

We obtain the specific surface area of each incremental growth step of each cuboid pack using 

a marching cubes algorithm that computes the volume ratio of the crystal and the melt phases 

(Lorensen & Cline 1987). We use an implementation of this algorithm developed in 

Wadsworth et al. (2017) and Vasseur & Wadsworth (2017). We then use LBflow – a numerical 

lattice-Boltzmann fluid flow simulation tool (Llewellin, 2010a, 2010b) – to characterise steady-

state fluid flow through the inter-cuboid space in all three directions x, y and z (details of the 

numerical analysis are provided in Chapter 2). The velocity field is averaged in each direction 

and the averaged velocity value is used in Darcy’s law to output the permeability of each 

domain. The difference between the directional permeability values is evaluated and if small, 

we declare the permeability isotropic. 

5.3 Results 

In this contribution, we aim to give a permeability model such as Eq. 2 where the specific area 

is included in the model. This is achieved in several steps of data analysis: (1) we constrain the 

percolation threshold 𝜙' using the permeability data measured from the simulations; (2) we 
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then test the validity of the percolation model (Eq. 3) for overgrown cuboids and propose a 

universal model for permeability across all melt fraction 𝜙' ≲ 𝜙! ≲ 1; and lastly (3) we 

propose a new model for the specific surface area of overgrown cuboids, for cases where the 

user does not have a measured value. 

5.3.1. Permeability of magma mush at low melt fraction 

The first step in the analysis of our results is to test Eq. 3 as a function of the melt fraction, 	
𝑘(𝜙!). Our datasets for each domain include data for the melt fraction 𝜙!, the permeability of 

the domain 𝑘, and the specific surface area 𝑠. In order to apply Eq. 3 directly, we must also 

find the percolation threshold 𝜙'. There exist two levels of analysis here: firstly, we can assume 

that the percolation threshold 𝜙' is a single value for all domains, regardless of the aspect ratio 

of the initial pack of cuboids: secondly, we can check the validity of the first statement by 

comparing values of the percolation threshold 𝜙' for each aspect ratio. We achieve this by 

using a least squares regression between the measured permeability data and the predicted 

permeability values using Eq. 3 to minimize for a best-fit 𝜙' for all domains. Assuming a 

percolation threshold for all aspect ratios, we find that 𝜙' = 0.0187 ± 0.001. Importantly, we 

do not find a significantly difference for percolation threshold data per aspect ratio: for 

overgrown cube packs (i.e. 𝑟% = 1), we find 𝜙' = 0.0225 ± 0.005 and for overgrown prolate 

or oblate packs, we find that 𝜙' = 0.229 ± 0.003 and 0.0224 ± 0.004, respectively. This 

demonstrates that the initial pack type has no influence on the percolation threshold 𝜙' during 

an overgrowth process and suggests that there may be a universal value regardless of mush 

type (c.f. Table 5.2).  

Assuming the percolation threshold 𝜙' = 0.0187 ± 0.001 for all aspect ratios, we check the 

fit of the percolation with the permeability data of the overgrown cuboid packs in the 

dimensionless space (Fig. 5.3, using Eq. 4). Visual inspection of the fit between the model and 

the data confirms that (1) the percolation model is a good description of the permeability data, 

and (2) the value of the percolation threshold 𝜙' may indeed be universal to these data 

regardless of mush type. 

Table 5.2: results of least squares regression for individual aspect ratios and all the data together. 

r1 𝜙' 

95% 
confidence 

interval 

99% 
confidence 

interval 
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0.2 (n=8) 0.0224 ± 0.0040 ± 0.0057 
0.7 (n=7) 0.0144 ± 0.0016 ± 0.0024 
1 (n=6) 0.0225 ± 0.0047 ± 0.0072 

1.5 (n=7) 0.0196 ± 0.0024 ± 0.0035 
3 (n=10) 0.0174 ± 0.0008 ± 0.0012 
4 (n=8) 0.0204 ± 0.0027 ± 0.0039 
6 (n=8) 0.0229 ± 0.0031 ± 0.0044 

all data (n=54) 0.0187 ± 0.0010 ± 0.0013 
 

 
Figure 5.3. Normalised permeability data plotted against the melt fraction (blue round symbols), the percolation 
model (yellow line, Eq. 3) is added for visual inspection of the fit of the percolation threshold (𝜙, = 0.0187). 
The data and the model are normalised using 𝑘-	(Eq. 4). The inset represents the confidence intervals of the 
least squares regression used to obtain the best fit percolation threshold value for all aspect ratios (last line of 
Table 5.2). The sum of squared residuals (SSR) is on the x-axis and the percolation threshold data is on the y-
axis. The 99 and 95 % confidence intervals are shown, giving the error on the fitted percolation threshold value 
(local minima). 

5.3.2. Direct determination of the percolation threshold  
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By looking at the evolution of the connectivity 𝜙5/𝜙! as a function of the melt fraction 𝜙!, 

we can track what proportion of the melt phase is connected during the simulated overgrowth 

process. We find that at the initial maximum packing value 𝜙′, the connectivity 𝜙5/𝜙! = 1, 

which means that all the melt phase is connected (Fig. 5.4). Conversely, as the melt fraction 

nears zero 𝜙! → 0,the connectivity 𝜙5/𝜙! drops to zero. There is an apparent transition 

window in which the connectivity is other than null or 1, 0 < 𝜙5/𝜙! < 1, which qualitatively 

occurs around 0.02 ≲ 𝜙' ≲ 0.05 (Fig. 5.4). 

In a simple system or in an infinitely large system, the connectivity transition from 0 <

𝜙5/𝜙! < 1 would be a step function and the percolation threshold 𝜙' would appear as a single 

value at which 𝜙5/𝜙! drops to zero. However, the overgrown cuboid domains have a finite 

size and the transition in connectivity is smoothed out over the melt fraction 𝜙!. In Fig. 5.4, 

we also plot the best-fit percolation threshold value 𝜙' = 0.0187. as well as the value for 

intergrown cuboids obtained from the literature (Ballow et al., 2022). Qualitatively, the best-

fit percolation threshold 𝜙' occurs at the lowest end of the window 0 < 𝜙5/𝜙! < 1, such that 

it demarks well the melt fraction 𝜙! for which all pores become isolated. Based on this 

observation, we consider this an independent confirmation that our best-fit value is robust using 

the connectivity. 

In comparison to our best-fit percolation threshold value that is insensitive to aspect ratio, 

Ballow et al. (2022) provide values for square-edged cuboids that are sensitive to aspect ratio 

𝑟% (Table ) and show an increasing trend for increasing aspect ratio 𝑟%. The trend plateaus 

around 𝑟% ≈ 5 and remains similar up to very high aspect ratios. The percolation threshold 𝜙' 

for smallest aspect ratio studied in Ballow et al. (2022) ((𝑟% = 1; cubes) is 𝜙' = 0.0449 ±

0.0005, which is 0.0262	larger than the best-fit value found herein. And for higher 𝑟%, this 

difference grows. This difference between the percolation threshold values can be explained 

by the fact that Ballow et al (2022) use inter-penetrable cuboids whereas we overgrow the 

cuboids as one packed phase. In principle, this would represent the difference between a 

percolation threshold for a purely intergrown mush (i.e. using the method of Ballow et al. 2022) 

and that of an overgrown mush (using our method).  
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Figure 5.4. Melt phase connectivity as a function of melt fraction 𝜙) for all domains analysed. We additionally 
show the percolation threshold determined herein by the best fit analysis (𝜙, = 0.0187) and the range of 
percolation thresholds determined for overlapping or inter-penetrable cuboids by intergrowth (𝜙, = 0.0449, 
Ballow et al. 2022; Table 5.1). 

5.3.3. Universality in models for the permeability of packed particles 

In order to build a universal dimensionless picture of mush permeability, we can generalize the 

result shown in Fig. 5.3 beyond just the overgrown cuboid data. To do this, we first make the 

transformation of the x-axis data from melt fraction 𝜙! to the so-called ‘reduced’ melt fraction 

𝜙! − 𝜙' (after Martys et al. 1994; Wadsworth et al. 2016; Vasseur & Wadsworth 2017). 

Because our universal dimensionless model is 𝑘X = (𝜙! − 𝜙')6, this transformation to 𝜙! −

𝜙' as the independent variable makes the model of the form  𝑘X = 𝑥6	where 𝑥 is the x-axis 

variable. This means that in a log-log plot (Fig. 5.5b), Eq. 3 is a straight curve of slope 𝑦. This 

transformation is robust because we have independently verified the percolation threshold 𝜙' 

using the connected porosity data (Fig. 5.4). When performed to both the percolation data and 

to the model, the transformed data are in very good agreement across all melt fraction 𝜙! (Fig. 

5.5). 

In Fig. 5.5, we add the permeability data for the non-overgrown cuboids from chapter 3, which 

are effectively the starting point for this study – i.e. they represent maximally packed cuboid 

domains with no overgrowth. Additionally, we add data for non-penetrating packed spheres 



 82 

that span porosities from their maximum packing up to the dilute limit (n.b. here porosity is 

equivalent to melt fraction 𝜙!; Vasseur et al. 2021; 2022). It is important to note that these 

sphere data at the dilute limit are not applicable to nature because the spheres are held 

artificially static, effectively in suspension in a fluid medium but without any of the dynamics 

that suspensions imply. Nevertheless, they represent a dilute extension of the packed porous 

media studied here. For both the packed-to-dilute spheres and the packed cuboids, we assume 

a percolation threshold 𝜙' = 0 in the normalization via Eq. 4 and similarly the x-axis ordinate 

remains the melt fraction 𝜙! (i.e. without the correction on 𝜙'). This is justified because there 

is no geometrical reason that packed solids have a percolation threshold at any melt fraction 

𝜙! (after Vasseur et al. 2021). In this case of a null percolation threshold 𝜙' = 0, the reference 

permeability becomes 𝑘$ = 2(1 − 𝜙!)/𝑠& for those data, which is termed a ‘dilute Stokes 

permeability’ (Torquato 2013).  

As with the data novel to this contribution (i.e. overgrown cuboids), we find that across all 

sphere sizes, cuboid sizes, cuboid aspect ratios, and melt fractions 𝜙!, the data collapse to a 

universal trend (Fig. 5.5a). This universal data collapse follows the percolation model (i.e. the 

dimensionless form of Eq. 3) up to 𝜙! ≲ 0.3, and deviate at values above this limit. The 

deviation is from the percolation model onto a previously explored ‘granular’ model for dilute 

systems of particles that is based on an exact solution for 𝜙! → 1 (from Sangani & Acrivos, 

1982). Interestingly, a model of the form given by Eq. 1 (with 𝛽 = 𝐶*%𝜙*& c.f. chapter 3) has 

validity at this intermediate melt fraction around maximum packing values of 𝜙!~0.3. 

Therefore, this dimensionless approach yields these equation predictions and associated 

validity: 

 
𝑘 = 𝑘$ ��𝑐2
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where in Eq. 5a, the percolation threshold is null 𝜙' = 0 in the reference permeability 𝑘$ and 

𝜙′ is the maximum crystal volume fraction at the random close packing (as discussed in chapter 

3). Eq. 5a was first proposed for cubic arrays of spheres by Sangani & Acrivos (1982) and was 

subsequently shown to be a reasonable predictor of the permeability between random arrays of 

spheres in the dilute limit (Wadsworth et al. 2017; Vasseur & Wadsworth 2017; Vasseur et al. 

2021). Eq. 5b is explored in detail in Chapters 3 & 4 of this work. 

 

Figure 5.5: Application of the three different scaling laws over the entire range of melt fraction (Eq. 5). These 
scaling laws include the law applied for low melt fraction (Eq. 3 and Eq.5c) as well as the law for dilute arrays 
of particles (Eq. 5a) and for intermediate maximally packed systems of particles (Eq. 5b). (a) The full scaling 
solutions proposed herein, shown here in dimensionless space, and with the overgrown cuboids, the cuboids 
and dilute sphere packs data. The different data sets span the aspect ratio range as well as the melt fraction 
range; b) The same set of scaling laws as in part a), both axes are set to logarithmic scale to highlight the 
correlation between the data and the models. 

5.3.4. Specific surface area model for overgrown cuboids 

It is clear from Eq. 5 and its universal application in Fig. 5.5, that in all regimes (i.e. dilute, 

intermediate, and densely overgrown), it is the specific surface area that controls fluid flow in 

isotropic media. The success of the result illustrated in Fig. 5.5 requires a priori knowledge of 

the specific surface area 𝑠, which herein is a parameter we measure directly. However, in 

general, the specific surface area 	𝑠  may not be known for a given magma mush. And so, it is 

important to explore models for this value as a function of crystal shape and melt fraction 𝜙! 
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The specific surface area 𝑠 is ideally measured or if that is not possible, it can be constrained 

but some knowledge of the shape and size of the solids is necessary in this case. Natural shapes 

can be approximated to spheres (e.g. Bachmann and Bergantz, 2004, 2008; Jackson et al., 2018) 

but herein we propose that natural crystal shapes are better represented by cuboids (c.f. chapter 

3). The specific surface area for cuboids at a given melt fraction 𝜙! is given by (c.f. chapter 3) 

 𝑠 =
2(1 − 𝜙!)

𝑎 =1 +
1
𝑟1
+
1
𝑟2
> Eq. 6 

where the specific surface area 𝑠 is defined by crystal size	𝑎, and aspect ratios 𝑟%and 𝑟&. Cuboid 

shapes are characterised by their three independent orthogonal axes that define shape and size 

𝑎, 𝑏, and 𝑐. This expression is valid for cuboids in suspension at low packing fractions 𝜙 → 0 

(hence high melt fractions) and up to the maximum packing fraction 𝜙 = 𝜙′ (irrespective 𝑟%and 

𝑟&). The specific surface area calculated from the incremental growth steps of overgrown 

cuboid domains are used to constrain a new expression for 𝑠 beyond the maximum packing 

𝜙 = 𝜙′. 

We draw inspiration from the specific surface area equation for overlapping spheres 𝑠 =

−3	𝜙	ln	(𝜙) 𝛿⁄ , where 𝛿 = 𝑅 for a monodisperse size distribution and 𝛿 = 〈𝑅+〉 〈𝑅&〉⁄  for a 

polydisperse size distribution, where 〈𝑅:〉 is the nth moment of 𝑓(𝑅) (Vasseur et al., 2022). 

 
Figure 5.6: Analysis of the specific area data at each growth step and the associated permeability data, 
compared to theoretical models proposed herein. a) the scaled specific area data as a function of the melt 
fraction, compared to the s models (1) for melt fractions up to maximum packing fraction of the cuboids and 
(2) for melt fractions below the max. cuboid density. The maximum packing data are also shown for reference; 
b) sensitivity test of the s model for overgrown cuboids tested on the permeability, over the aspect ratio range. 
The measured permeability data are added for comparison. 
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Our specific surface area 𝑠 data are normalised to 𝑠̅ = 𝑠 𝑠$⁄ , using a reference specific surface 

area 𝑠$ = 𝑎 (1 +⁄ 𝑟%*% + 𝑟&*%), a necessary step to ensure the data are expressed only as a 

function of the melt fraction 𝜙!. The normalised data are plotted in Fig. 5.6a and are compared 

to the following model for overgrown cuboids:  

 𝑠̅ =
𝑠
𝑠$
= −3𝜙	ln	(𝜙) Eq. 7 

This gives us a model for the specific surface area 𝑠, such that: 

 
𝑠 = −

3	𝜙 ln(𝜙)
𝑎 	Z1 +

1
𝑟%
+
1
𝑟&
\ 

Eq. 8 

As we can see in Fig. 5.6a, the specific surface area model has a good fit for the 𝑠 data at low 

melt fractions 𝜙 → 𝜙. and the data fan away from the model towards maximum packing 

fraction 	𝜙 → 𝜙.. The observed deviation from the model does not have a big impact on the 

permeability calculations (Figure .6b). The residuals between the modelled permeability data 

and the measured data remain low (<0.25 orders of magnitude) and are the highest for low melt 

fractions, around 𝜙! ≈ 𝜙'. 

We note two important observations about the specific surface area: (1) around the percolation 

threshold 𝜙! → 𝜙', the specific surface area data collapses to one value, so that the aspect 

ratios 𝑟%and 𝑟& become irrelevant; and (2) the specific surface area model for overgrown 

cuboids is very similar to the model for overlapping spheres. These two points imply that the 

shape of overgrown mush becomes less and less important as the melt fraction nears the 

percolation threshold 𝜙! → 𝜙', and the initial shape of overgrown crystals can be 

approximated to spheres with little impact on the resulting permeability. 

5.4 Discussion and implications 

The similarities between the specific surface area analytical solution for overgrown cuboids 

(validated herein, Eq. 8) and the solution for overlapping spheres are striking and the collapse 

of the data to a single trend for low melt fractions  𝜙! → 𝜙' implies that, for low melt fractions 

𝜙!, the initial shape of the crystals becomes irrelevant. This effect can be explained by the 

way the cuboids are overgrown in the incremental growth process: the addition of a voxel on 

each face, edge and corner of the initial geometry means that narrow spaces are filled up faster 

than the rest of the surface area. We see the same process in the natural samples ( Figure e &  
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Figure f) where biotite fills in the narrower points of contact of the cumulate crystals, making 

the melt pockets rounder, hence the smaller percolation threshold than observed in the literature 

for intergrown cuboid simulations (Ballow et al., 2022). This implies that the overgrowth of 

cumulate crystal in this manner keeps the pore network open longer, i.e. beyond percolation 

threshold 𝜙' values predicted in the literature and enables melt percolation at late stages of 

mush crystallisation. 

In this chapter, we verify the percolation part of our universal permeability model (Eq. 5) using 

flow simulations on incrementally overgrown cuboid packs, which are analogous to successive 

overgrowth steps on cumulate crystals. However, compared to crystal growth mechanisms, the 

numerical analogue we use herein are very simplified, and, in nature, this is not the only way 

that crystal fraction increases in a mush (e.g. Wager et al., 1960). In the literature, adcumulates 

and orthocumulates textures are presented as idealised end members of cumulus crystallisation 

but geochemical mapping of less diffuse elements, in plagioclase for example, show that crystal 

growth are likely to transition back and forth on a sliding scale between the two behaviours at 

the end of the spectrum (Humphreys, 2009). However, despite this oversimplification of natural 

crystal growth, the scaling law for percolation is validated for all geometries, hence, the way 

the cumulates grow will have little impact on the permeability predictions as long as the 

percolation threshold is known. 

Suggested models of crustal growth by successive emplacement of sills (e.g. Annen et al., 

2006; Karakas et al., 2017; Jackson et al., 2018) hinge on the mass transport of melt at crustal 

scale, relying on the permeability of the mush reservoir. The feasibility of this is tested herein, 

and accounts for the presence of a finite permeability of a mush at low melt fractions (i.e. 𝜙! ≠

1), which Jackson et al. (2018) do not in their suggested melt percolation model. 

We map the melt fraction 𝜙! dependant evolution of the permeability of a natural crystal mush 

using measured plagioclase crystal size data from natural samples (Fig. 5.7a). The plagioclase 

shapes were measured in situ by Duchêne et al. (2008) and have average shapes of 𝑎: 𝑏: 𝑐 =

1: 6.5: 9.6. We assume a percolation threshold of 𝜙' = 0.035, a similar value to values for 

packs of overlapping spheres (c.f. Table ). As discussed above, the choice of percolation 

threshold is important but here we do not have the connectivity data to constrain an analytical 

𝜙' and so, choose a theoretical 𝜙' value similar to sphere packs. 
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The transition from the percolation model (Eq. 5c) to the permeability model (Eq. 5b) is smooth 

and occurs around melt fractions of 𝜙! ≈ 0.2 (Figure a). The analytical transition point is hard 

to pinpoint exactly as the maximum packing density 𝜙. depends on the aspect ratios and we do 

not have an existing model for maximum packing density of cuboids where 𝑟& ≠ 1. Below the 

maximum packing 𝜙., we observe the same data collapse toward 	𝑘 → 0 at the percolation 

threshold 𝜙'. We compare the permeability models from Eq. 5 with a model that does not 

account for the isolated melt pockets (e.g Jackson et al., 2018). 

We identify 3 stages of difference between the percolation model (Eq. 5) and the Jackson 

model: (1) for 𝜙 < 𝜙.(i.e. high melt fraction 𝜙!), the Jackson et al. (2018) model 

underestimates the permeability of a mush and the two models diverge significantly where 

Jackson’s plateaus out horizontally as opposed to the upward trend of Eq. 5 in the dilute domain 

𝜙! → 1; in stage (2), defined as the area between the transition from Eq. 5b to 5c and the 

intersection of the Jackson et al. (2018) model and the model herein, we see that the Jackson 

model still underestimates the permeability but exists within an order of magnitude of our 

permeability model. The intersection of the two models occurs at different melt fraction 𝜙!, 

as the Duchêne et al. (2008) data is spread out as a function of the crystal shape. There are two 

notable intersection point, however, where the Jackson et al. (2018) model intersects the “low-

bound” of the permeability data spread, and the “upper-bound” (highlighted by little stars in 

Fig. 5.7a). This is best shown in Fig. 5.7, which expresses the difference of the two models 

applied only to the “upper” and “lower” bound data. Stage (3) is defined as beyond the 

intersection until the melt fraction reaches the percolation threshold 𝜙! → 𝜙'. In this last stage, 

the Jackson model overestimates the permeability and as Eq. 5 drops to the percolation 

threshold 𝜙', the difference between the two models increases exponentially as shown by the 

difference of the two models in Figure b). 

The isolated melt pockets in an overgrown mush, i.e the percolation threshold, may represent 

only 2% of the total volume of the mush, yet neglecting those isolated melt pockets can lead to 

very large errors in calculations. This is exhibited well in Fig. 5.7b where the difference with 

the Jackson et al. (2018) model tends to infinity because they do not account for the percolation 

threshold. This is all the more important because most natural mushes exist within that domain 

of low to very low melt fraction (e.g. Cashman et al., 2017; Huang et al., 2015; Paulatto et al., 

2012; Cooper and Kent, 2014). 
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5.5 Conclusions 

Constraining the time evolution of melt flow around crystals in a magma mush is essential to 

better understanding crystal-melt segregation, reactive transport and differentiation at crustal 

scale. In this contribution, we validate the percolation model by simulating fluid flow in 

numerical domains of overgrown cuboids, here representing a high crystalline mush. We use 

the permeability data to constrain the percolation threshold and subsequently propose a new 

analytical solution of the specific surface area for overgrown cuboids. We show that the 

isolated melt pockets, formed as the crystal packing of the mush increases, need to be accounted 

for to properly constrain the flow properties mushes. Without this, calculating the permeability 

at low melt fractions incurs large errors. Collating existing permeability data with the data in 

this contribution, we propose a universal permeability model for all melt fractions and that is 

valid for all crystal shapes. The implications for melt percolation in mushes for any melt 

fraction are important for large scale mush dynamics such as melt-crystal segregation and 

reactive flow that entrains crustal scale chemical differentiation. We propose a link with mush 

final crystalline textures, often the only field evidence left of these large-scale dynamics.  

  

 

Figure 5.7: a) mapping the permeability for natural plagioclase shapes across all melt fraction using the 
percolation model until maximum packing fraction, the, transition to the permeability model. The plagioclase 
shape data is from Duchêne et al. (2008). b) The absolute value of the difference between the percolation model 
and the Jackson et al. (2018) model is shown as a function of the melt fraction. The difference shown here is 
log-based and is shows the “upper” and “lower” bounds of the permeability data obtained from the natural 
plagioclase shapes. 
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Table 1.3: raw data for the permeability of packs of overgrown cuboids 

Growth 
step 

side length 
[m] 

Aspect 
ratio 

Porosity Specific surface 
area [m-1] 

Permeability X 
[m2] 

Permeability Y 
[m2] 

Permeability Z 
[m2] 

5 8.00E-05 0.2 0.0238 13886.03 
   

4 8.00E-05 0.2 0.0486 24976.05 
 

8.6147E-16 
 

3 8.00E-05 0.2 0.0918 40826.67 6.89965E-15 6.92961E-15 3.5134E-15 
2 8.00E-05 0.2 0.1588 59106.64 6.2089E-14 6.79549E-14 3.9218E-14 
1 8.00E-05 0.2 0.2517 76533.15 2.78471E-13 3.15802E-13 1.926E-13 
5 8.00E-05 0.2 0.0236 14059.83 

   

4 8.00E-05 0.2 0.0488 25111.06 
 

1.75451E-16 
 

3 8.00E-05 0.2 0.0918 40319.77 3.32803E-15 8.10675E-15 2.86267E-15 
2 8.00E-05 0.2 0.1583 58820.84 4.3346E-14 6.78688E-14 4.13649E-14 
1 8.00E-05 0.2 0.2512 76662.32 2.48174E-13 3.2072E-13 2.34878E-13 
5 6.00E-05 0.7 0.0177 12020.42 

   

4 6.00E-05 0.7 0.0392 21588.65 
 

3.45758E-16 5.95155E-16 
3 6.00E-05 0.7 0.0754 33763.52 4.83012E-15 9.63351E-15 1.14657E-14 
2 6.00E-05 0.7 0.1295 47554.51 4.59926E-14 6.7278E-14 7.40098E-14 
1 6.00E-05 0.7 0.2034 61656.24 2.16996E-13 2.74073E-13 2.97845E-13 
5 6.00E-05 0.7 0.0183 11747.16 

   

4 6.00E-05 0.7 0.0394 21102.91 
   

3 6.00E-05 0.7 0.0752 33218.68 7.40023E-15 6.48506E-15 5.98419E-15 
2 6.00E-05 0.7 0.1293 47280.19 6.67955E-14 5.36122E-14 5.10811E-14 
1 6.00E-05 0.7 0.2035 61140.22 2.88758E-13 2.46893E-13 2.38544E-13 
5 5.00E-05 1 0.0157 10912.29 

   

4 5.00E-05 1 0.0361 21123 
   

3 5.00E-05 1 0.0731 35101.71 8.40432E-15 4.3036E-15 3.38668E-15 
2 5.00E-05 1 0.1314 51363.01 7.0146E-14 5.22738E-14 4.9928E-14 
1 5.00E-05 1 0.2125 66444.82 3.09982E-13 2.59975E-13 2.52592E-13 
5 5.00E-05 1 0.0172 11244.27 

   

4 5.00E-05 1 0.0379 21275.39 
   

3 5.00E-05 1 0.0749 34947.32 7.4615E-15 2.33788E-15 3.92629E-15 
2 5.00E-05 1 0.1324 50653.93 6.24273E-14 3.72618E-14 4.6732E-14 
1 5.00E-05 1 0.2127 66131.86 2.78071E-13 2.28138E-13 2.50694E-13 
5 5.00E-05 1.5 0.025 13435.89 

   

4 5.00E-05 1.5 0.0484 22404.21 
  

4.33507E-16 
3 5.00E-05 1.5 0.0856 33568.73 8.33588E-15 8.20857E-15 1.17099E-14 
2 5.00E-05 1.5 0.1395 46161.5 6.94238E-14 6.18442E-14 7.41733E-14 
1 5.00E-05 1.5 0.2115 58406.84 2.9666E-13 2.71061E-13 2.96084E-13 
5 5.00E-05 1.5 0.0244 13810.06 

   

4 5.00E-05 1.5 0.0481 23055.11 1.92871E-15 6.09031E-16 6.76573E-16 
3 5.00E-05 1.5 0.0861 34585.36 1.66646E-14 1.39634E-14 1.43072E-14 
2 5.00E-05 1.5 0.1408 46982.25 9.57557E-14 8.1732E-14 9.21212E-14 
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1 5.00E-05 1.5 0.2127 58753.63 3.54378E-13 3.07271E-13 3.45362E-13 
5 4.00E-05 3 0.0334 16945.18 

 
1.01717E-16 3.96178E-17 

4 4.00E-05 3 0.0619 26717.02 2.49791E-15 3.57425E-15 2.88259E-15 
3 4.00E-05 3 0.1053 38239.56 2.91839E-14 2.92526E-14 3.19512E-14 
2 4.00E-05 3 0.1651 50125.82 1.38052E-13 1.40766E-13 1.512E-13 
1 4.00E-05 3 0.242 61998.33 4.59359E-13 4.73799E-13 4.89336E-13 
5 4.00E-05 3 0.0346 17308.36 

 
8.52594E-17 2.05345E-16 

4 4.00E-05 3 0.0635 26942.97 3.29596E-15 3.7395E-15 4.95301E-15 
3 4.00E-05 3 0.1067 38251.27 3.07903E-14 3.47645E-14 3.57366E-14 
2 4.00E-05 3 0.1664 50207.91 1.3568E-13 1.54015E-13 1.50788E-13 
1 4.00E-05 3 0.2432 61776.83 4.4442E-13 4.94628E-13 4.99077E-13 
5 3.00E-05 4 0.0212 13583.98 

   

4 3.00E-05 4 0.0454 24349.04 1.00253E-15 5.09671E-16 1.19916E-16 
3 3.00E-05 4 0.0865 38553.62 1.28177E-14 9.31107E-15 7.36531E-15 
2 3.00E-05 4 0.149 55168.53 7.91466E-14 6.75119E-14 6.27626E-14 
1 3.00E-05 4 0.2359 72445.75 3.2739E-13 2.95994E-13 2.88352E-13 
5 3.00E-05 4 0.0222 14198.43 

   

4 3.00E-05 4 0.0477 25736.6 4.50884E-16 2.17042E-16 4.14978E-16 
3 3.00E-05 4 0.091 40437.68 1.3709E-14 9.44673E-15 9.93177E-15 
2 3.00E-05 4 0.1563 57091.15 9.27668E-14 7.73726E-14 7.89016E-14 
1 3.00E-05 4 0.2457 73703.76 3.73143E-13 3.32596E-13 3.44869E-13 
5 3.00E-05 6 0.0422 20239.79 

   

4 3.00E-05 6 0.0759 31432.96 1.84471E-15 4.26107E-15 5.50123E-15 
3 3.00E-05 6 0.1261 44247.54 2.74048E-14 3.58914E-14 5.45278E-14 
2 3.00E-05 6 0.1946 57415.39 1.50676E-13 1.73106E-13 2.44731E-13 
1 3.00E-05 6 0.2814 69331.38 5.29618E-13 5.94011E-13 7.66889E-13 
5 3.00E-05 6 0.0425 20597.4 

   

4 3.00E-05 6 0.0768 31810.65 5.3158E-15 5.97056E-15 5.81544E-15 
3 3.00E-05 6 0.1278 44685.55 4.4834E-14 5.34007E-14 4.69854E-14 
2 3.00E-05 6 0.1973 57833.62 2.05317E-13 2.40562E-13 2.04311E-13 
1 3.00E-05 6 0.2852 69572.68 6.63532E-13 7.71212E-13 6.47039E-13 
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Chapter 6 : General discussion and implications  

The culmination of this thesis is to propose a universal scaling for permeability for any shape 

and for any melt fraction. The implication is that we can predict the permeability of any type 

of magma mush at any stage of crystallinity, which is a very powerful tool for constraining 

large and small-scale mush dynamics. Below we explore two wider implications of this work 

and tie together the findings outlined in this thesis. 

6.1 Case studies of wider implications in the mush world 

We suggest looking in more detail at two wider implications of the universal permeability 

model for magma mushes: (1) constraining the melt extraction timescales for melt-crystal 

segregation prior to eruption. And then at (2) using the percolation model to better understand 

the final mush textures that we see in the field and suggest a way of finding the percolation 

potential from final mush textures. 

6.1.1. Melt extraction timescales in compacting mushes 

(NB: This is to say, we do not believe that gravitational compaction is the sole driving force in 

melt segregation processes, however, this process potentially plays a key role and we use the 

principles of it here to highlight the importance of the accounting for the proper shape of the 

crystals) 

Key outstanding problems are associated with constraining the timescales for melt extraction. 

The viscosity of hydrous melt stored between crystals in a mush is sufficiently high (104-105 

Pa.s for silicic melt) to render extraction timescales by compaction, filter-pressing, or other 

percolative flow mechanisms long (up to 105 years, Shaw, 1975; McKenzie, 1984; Holness, 

2018) compared with estimated cooling times of crustal mush bodies (thermal lifespan of mush 

~105-106 years, Liu & Lee, 2020). Therefore, predictions show that in many cases mushes 

should freeze before the melt is extracted, contrary to the suggestion that melts are indeed 

extracted ahead of large silicic eruptions. Petrological and geochronological evidence suggests 

that melt extraction occurs in transient and episodic events rather than continuously over the 

thermal lifespan of the mush (e.g. Allan et al., 2013). Key proposed solutions to these problems 

all involve decreasing the predicted melt extraction times and include: (1) additional heat 

provided by mafic recharge magmas (e.g. Huang et al. 2015), or (2) applied directional stresses 
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(Clemens & Petford, 1999; Bachmann & Bergantz 2008; Holness 2018) resulting in anisotropic 

dilation of the mush (Liu & Lee, 2021).  

In all cases, the rates of melt extraction are sensitive to the permeability of the crystal 

framework forming the mush (e.g. Bachmann & Bergantz, 2004), which in turn is controlled 

by the crystal shape, as we show herein. The simplest model for melt extraction is gravitational 

compaction (McKenzie, 2011; Liu & Lee, 2020), which, in 1D, is scaled by the Darcy 

percolation timescale 𝜆 = 𝜇-𝐻/(𝑘∇𝑃) for which 𝐻 is a characteristic length (e.g. the mush 

vertical half-thickness, assuming a uniform porosity; Liu & Lee, 2021). The flow is driven by 

gravity for which ∇𝑃 = Δ𝜌𝑔 with Δ𝜌 the density contrast between the melt and crystals, and 𝑔 

the acceleration due to gravity (e.g. Liu & Lee, 2021). The rate of decay of melt fraction by 

compactive processes – and equivalently the volume flux of melt from the mush – is then scaled 

as a Darcy flux 𝑑(1 − 𝜙)/𝑑𝑡 ≈ 𝜆*%. Therefore, for typical input values, we can use our model 

to compute the melt extraction rate 𝜆 for a given crystal size and shape. The thickness of an 

eruptible melt layer is 𝛿 = 𝐻𝜙;, where we use 𝜙; is the melt volume fraction that can be 

extracted (here we assume this is approximately 𝜙; ≈ 1 − (𝜙. − 𝜙") and that any further 

extraction would require deformation or reorganization of the crystal pack). We explore 

standard mush system inputs that range over 10< ≤ 𝜇- ≤ 10,	Pa.s, 300 ≤ Δ𝜌 ≤ 600	kg.m-3 

(Lesher & Spera, 2015), and 1 ≤ 𝑎 ≤ 3 mm, consistent with the range used previously for the 

same problem (Bachmann & Bergantz, 2004). Using these values, we find the maximum and 

minimum output 𝜆 for 𝐻 = 1	km (i.e. a 2 km thick mush pile), and for 𝐻 = 3	km (i.e. a 6 km 

thick mush pile; Figure 6.5).  
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Our results show that melt extraction timescales for a mush composed of oblate (platy) crystals 

can be up to 1.5 orders of magnitude longer than for a mush made of prolate (needle-like) 

crystals (Figure 6.5). Using our shape-sensitive permeability model, we additionally find that 

mush with Δ𝜌 = 300	kg.m*+, 𝜇- = 10,	Pa. s, and 𝑎 = 1	mm highly oblate crystals (𝑟% = 7 −

10) can have melt extraction times that exceed the thermal lifetime. By contrast, for Δ𝜌 =

600	kg.m*+, 𝜇- = 10<	Pa. s, and 𝑎 = 1	mm the melt extraction timescales are more rapid than 

the expected thermal lifespan for all 𝑟%. Contrary to McKenzie (2011), our resulting timescales 

are still long compared with melt segregation timescales for natural systems (e.g. Allan et al., 

2013), and other processes such as thermal rejuvenation shear strain are probably key (Holness, 

2018; Wiebe et al 2004; Bachmann & Bergantz, 2003). Regardless of the processes involved, 

our results suggest that crystal shape plays a first-order role in melt extraction because the 

timescales involved are proportional to permeability 𝜆 ∝ 𝑘*%. 

Jackson et al. (2018) have suggested that reactions between crystal frameworks and a buoyant 

percolating melt may be a central process for the differentiation of silicic magmas. Mush 

 

Figure 6.5: Calculated melt extraction  timescales 𝜆 by compaction of a mush layer for mush of different 
crystal textures (captured by 𝑟"). For each coloured region (i.e. set of conditions), the upper bounds of the 
domains are defined by the maximum random packing fraction 𝜙& while the lower bound represents a loose 
mush 𝜙!. For comparison, the maximum ‘thermal lifespan’ for a mush is approximately 105-106 years (Allan 
et al., 2013). 
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permeability exerts a first order control over the rates of this process, and hence crystal shape 

effects need to be accounted for. 

6.1.2. Link between percolation regime and final textures of crystallised mush 

The mush textures that we can observe in the finished igneous product (i.e. when the mush is 

entirely crystallised) depend for the most part on whether the melt can percolate around the 

cumulate crystals that form the solid framework of the mush. Humphreys (2009) and Wager et 

al. (1960) acknowledge that the melt convection potential will depend on the physical 

properties of the melt, such as the viscosity and density, and the permeability of the mush 

crystal framework. We show in Chapter 5 that the percolation is controlled by the connectivity 

of the mush and, importantly, the percolation threshold.  

Mush textures can be classified into two idealised endmembers of cumulus crystallisation 

(Wager, 1960; McBirney and Hunter, 1995; Grant and Chalokwu, 1998; Morse, 1998): (1) 

adcumulate textures characterised by constant re-equilibration of the interstitial melt 

composition with the wider reservoir and necessitates a high connectivity of the melt fraction 

for to maintain compositional convection (e.g. Kerr and Tait, 1986, Tait and Jaupart, 1992). 

The resulting textures are unzoned overgrowth rims on existing cumulate crystals (c.f. Figure 

6.6b). At the opposite end of the spectrum is (2) the orthocumulate texture which corresponds 

to the in-situ crystallisation of melt trapped between the cumulate crystals with no chemical or 

physical exchange with the wider mush reservoir (e.g. Wager et al., 1960; Morse 1998). This 

results in the growth of inter-cumulus crystals that fill the space occupied by the interstitial 

melt (c.f. Figure 6.6c). 

This classification is based solely on the melt percolation potential and the connectivity of the 

melt phase. It does not, however, consider the crystallisation and melt transport as dynamic 

processes. This implies that outside forcing (i.e. not intrinsic to the mush) could effectively 

affect the percolation potential of the crystal framework without changing the intrinsic 

properties of the mush (i.e. the permeability and percolation threshold). To that effect, we 

introduce the notion of the Darcy timescale 𝜆= = (𝜇-𝐿 𝑘)	∇𝑃⁄  as the time, 𝜆=, a melt of a 

certain viscosity, 𝜇-, would take to travel a fixed distance 𝐿 under a pressure gradient ∇𝑃 in a 

mush of permeability 𝑘 (Heap and Wadsworth, 2016). We also introduce the notion of a 

competing timescale, the crystallisation timescale, 𝜆>. 
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We highlight two scenarios of the competing timescales, where the pressure gradient can be 

induced by external forcing, or a volume change due to the crystallisation process that creates 

a melt flux (Figure 6.6a). In the first scenario, the crystallisation process is longer than the melt 

percolation timescale 𝜆= < 𝜆>, consequently, the melt is able to flow around the cumulate 

phase and we get adcumulate type textures (Figure 6.6b). The second scenario is defined by 

crystallisation being quicker than the Darcy time for the melt, 𝜆= < 𝜆>. This implies that the 

interstitial melt does not move fast enough before it is trapped by crystallisation, consequently, 

the mush behaves in an impermeable manner, despite a high connectivity of the melt fraction. 

The second scenario is linked to orthocumulate textures where the interstitial melt crystallises 

in situ (Figure 6.6c). 

While we can efficiently predict the mush type of textures that will crystallise if we know the 

permeability of the mush, the opposite work is more tricky. Crystallised mush the textures can 

tell us a lot about the mush’s history, but we need to account for the dynamic timescales that 

control the percolating of the melt, lest one draws the wrong conclusions from the textural 

analysis. 

 

Figure 6.6: cartoon mush growth scenarios depending on the dominant time scale: a) initial mush at maximum 
packing fraction 𝜙&, represented here by the square-edged cuboids in the numerical packs. The flow pathways 
are highlighted with dashed arrows as the pressure gradient is 𝛻𝑃 ≠ 0; b) scenario where the crystallisation 
timescale 𝜆. is larger than the Darcy time for melt mobilisation, 𝜆/ and crystallisation consists of overgrowths 
on the initial crystal shapes, here represented by the colourful overgrowths. We also add crystallisation of 
accessory phases in the melt pockets (grey shapes); c) this cartoon shows the scenario where the crystallisation 
timescale 𝜆. is shorter than the time for the melt to leave the cumulate crystal framework 𝜆/, hence the mush 
behaves as an impermeable medium. The interstitial melt crystallises in place as intercumulate phases (here 
represented but the colourful areas in-between the crystals) 
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Chapter 7 : Conclusions and further work 

7.1 Conclusions 

1. Crystal shape, expressed as the aspect ratio, exerts a first order control on both the 

permeability of a mush and the melt fraction at maximum packing density of the 

cumulate crystals.  

2. We generalise the Kozeny-Carman permeability law for a better shape descriptor and 

validate the new model for magma mush, using numerical packs of cuboids as an 

analogue for crystal mush. 

3. The permeability model is validated for anisotropic shapes of natural crystal mush, 

using confectionary cake toppings as mush analogues 

4. Anisotropic crystal shapes are well approximated by cuboids, the shape of which is 

defined by the three orthogonal axes, either measured in 3D (ct scan) or in 2D (thin 

section) 

5. The permeability of a mature mush that displays overgrowth textures and is 

characterised by low melt fractions is controlled by the percolation threshold of the 

mush 

6. In a mature mush (i.e.at low melt fractions), the initial shape of the crystals in the mush 

are hidden beneath layers of overgrowth and become irrelevant for the permeability 

predictions 

7. We propose a universal scaling law for the permeability of a magma mush composed 

of crystals of any shape and spanning the entire melt fraction range, i.e. from a melt 

dominated mush to an entirely crystallised mush. In the case that the specific surface 

area cannot be measured, the crystals can be approximated to cuboids whose principal 

axes can either be measured from a 3D scan of the rock or a thin section and then 

projected with the appropriate software. The following table (Table 7.1) is meant for 

users of the permeability model, providing details of which model to use depending on 

the melt fraction and the data available, i.e. whether the user has 3D data available or 

not. 
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Table 7.1: User table for permeability model depending on the melt fraction and data available to user. 𝑘- is 
defined as 𝑘- = 2J1 − (𝜙) − 𝜙,)K 𝑠'⁄ .	For all cases, it is necessary to know the melt fraction. ShapeCalc is a 
3D shape converter available from Mangler et al. (2022) 

Melt fraction 

range, 𝜙! 

Specific surface area 	𝑠 is 

known 

Specific surface area	𝑠 is not 

known, 3D shape data 

available 𝑎, 𝑏, 𝑐 such that 

𝑟% = 𝑐 𝑎⁄ , 𝑟& = 𝑏 𝑎⁄   

Specific surface 

area	𝑠 is not 

known, 2D shape 

data available 𝑙2 , 𝑤2 	 

𝜙! ≳ 0.4 𝑘 = 𝑘- ST𝑐*

$0

*10

U
𝜙

1 − 𝜙&V
*
$
W

+"

 Substitute for 	𝑠  

𝑠 =
2(1 − 𝜙!)

𝑎 =1 +
1
𝑟1
+
1
𝑟2
> 

Input measured 

𝑙2 , 𝑤2 into 

ShapeCalc, 

output 𝑠, 𝑖, 𝑙, 

convert using: 

𝑎 ≈ 𝑤2 

𝑏 = 𝑖	𝑤2 	
𝑐 = 𝑙	𝑤2 

0.2 ≲ 𝜙! ≲ 0.4 𝑘 =
𝜙!+

𝐶𝑠&  

𝜙! ≲ 0.2 𝑘 = 𝑘%(𝜙𝑚 − 𝜙#)
$ 𝑠 = −

3	𝜙 ln(𝜙)
𝑎 	U1 +

1
𝑟"
+
1
𝑟'
V 

 

 

7.2 Future work: going beyond the scope of this thesis 

1. We have proposed a universal scaling for permeability which is validated for numerical 

simulations. A further work idea would be to test the validity of our findings using 

analogue modelling at laboratory scale. We would test the permeability of packs of 

spherical beads and then, graduate to more complex shapes. It could be interesting to 

introduce anisotropy in the “crystal” pile in the form of a layer of different crystal 

shapes or of a different material. 

2. In this thesis, we consider the crystals in the mush immobile with melt flowing around 

them. This is however not always true, and cumulate crystals are commonly displaced 

by dynamic movement in the mush reservoir. Schleicher et al. (2016) have studied the 

textures that are created from basal intrusion of magma into a mush layer and find that 

the percolation-crystal entrainment boundary is sensitive to the permeability. An 

application of our permeability model could be to further map the evolution of textures 

in the mush layer using analogue materials at laboratory scale.  
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3. In this work we study the mobilisation of crystal poor material (i.e. mobilisation of melt 

only) but there is a lot of work yet still to do on wholescale mobilisation of mush. One 

avenue of exploration would be the influence of gas exsolution in the melt and 

subsequent bubble growth on the bulk viscosity of the mush and its effective mobility. 
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Chapter 8 Appendices 
 
Appendix 1 

DATA REPOSITORY  
 
This data repository is composed of the following sections:  
 

(1) The conditions of the numerical flow experiments;  
(2) The derivation of the specific surface area for a pack of cuboids; 
(3) Considerations of anisotropy; 
(4) An assessment of the resolution and node distribution in the fluid spaces; 
(5) The raw data unique to this manuscript and required to reproduce the results. 

 
 

1. Using LB flow to simulate fluid flow through numerical volumes  
 
In order to determine permeability we use the LBflow lattice-Boltzmann fluid flow simulator (Llewellin, 2010a; 
2010b), which has been calibrated over a wide range of porosity against explicit models for the permeability of 
body-centered cubic (Llewellin, 2010b) and simple cubic (Wadsworth et al. 2017) packs of spheres. The LBflow 
model takes the segmented pore phase in the total domain as an input and discretizes the pore phase into a lattice 
of fluid nodes (one fluid node per voxel). Fluid mass parcels are numerically propagated through the lattice 
positions with time and the result of collisions are computed on a D3Q15 lattice. In this framework, we apply a 
numerical pressure gradient of ∇𝑝 = 0.01	Pa.m+" using a pore fluid with viscosity 𝜇2 = 1.8205 × 10+3	Pa. s 
and density 𝜌2 = 1.2047	kg.m+$, corresponding to air at ambient conditions. The simulation converges at steady 
state flow determined via a criterion that the average fluid speed across the lattice not vary by more than a 10+3 
factor over 50 iterations twice. In all fluid flow simulations, we use a sub-domain with edge length 𝐿, placed 
within the full domain, and we keep the spatial position of this sub-domain fixed throughout the back-stripping 
process. 
 
The result of the LBflow algorithm is the spatial distribution of fluid velocities at steady state, 𝑢. The average fluid 
velocity in the direction of the applied pressure gradient is given by 〈𝑢〉 = 𝜙4𝑢, where 𝜙4 is the porosity. The 
output 〈𝑢〉 can be used as an input to Darcy’s law to determine the permeability 𝑘 in a given direction via 𝑘 =
−∇𝑝𝜇2/〈𝑢〉. Importantly, the input properties 𝜇2 and 𝜌2 and condition ∇𝑝 are all checked to ensure that the flow 
is in the creeping low-Reynolds number regime and low-Mach number regime and therefore the result is 
insensitive to our choice of 𝜇2 and 𝜌2. The Reynolds number is given by Re = 𝜌2𝐿〈𝑢〉/𝜇2 and the Mach number 
is given by Ma = 〈𝑢〉/𝑐 where 𝐿 is the domain edge length and 𝑐 is the speed of sound in the fluid medium. We 
find that 10+5 ≤ Re ≤ 10+3 and 10+"' ≤ Ma ≤ 10+6; regimes in which Darcy’s law is valid and in which 𝑘 does 
not depend on the fluid properties chosen. This workflow is repeated for each domain and in each principal 
direction. 
 
 

1. The specific surface area of a cuboid pack 
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A cuboid has 3 axes, 𝑎, 𝑏, and 𝑐. First, if we take 𝑎 = 𝑏, then the we have the aspect ratio of the cuboid 𝑟" = 𝑐/𝑎. 
The surface area 𝐴, and volume 𝑉, of a single cuboid is then 
 
 

 𝐴, = 2𝑎' + 4𝑟"𝑎' = 2𝑎'(1 + 2𝑟") 
 

𝑉, = 𝑟"𝑎$. 

 
Eq. S1 

 
The number of cuboids in a pack of cuboids is 𝑛 and so the cumulative surface area and volume of the cuboids 
are 𝐴 = 𝑛𝐴, and 𝑉 = 𝑛𝑉,. The cuboid volume fraction 𝜙 is the ratio of 𝑉 to the total system volume 𝑉7, so that 
𝑉7 = 𝑛𝑟"𝑎$/𝜙. The specific surface area 𝑠 is the ratio of the surface area to the total volume 𝑠 = 𝐴/𝑉7 so that  
 
 

 
𝑠 =

𝑛𝜙2𝑎'(1 + 2𝑟")
𝑛𝑟"𝑎$

=
2𝜙
𝑎 U2 +

1
𝑟"
V. 

Eq. S2 

 
 
 
Second, if we take 𝑎, 𝑏 and 𝑐 to be independent values, then we have two possible aspect ratios 𝑟" = 𝑐/𝑎	 and 
𝑟' = 𝑏/𝑎. And following the approach given above, we find 
 
 

 𝑠 =
2𝜙
𝑎 U1 +

1
𝑟"
+
1
𝑟'
V 

Eq. S3 

 
which reduces to Eq. S2 when 𝑟" = 𝑟', which is the case when 𝑎 = 𝑏. To be general, and to be able to compare 
systems of any size, Eq. S3 suggests that the natural scaling factor for 𝑠 is 1/𝑎, so that a dimensionless specific 
surface area is 𝑠̅ = 𝑠𝑎/𝜙, which makes Eq. S3 
 
 

 𝑠̅ = 2U1 +
1
𝑟"
+
1
𝑟'
V. Eq. S4 

 
 
An equivalent to Eq. S3 for the situation where we only use the 3 axes directly is given by the following identities 
 
 

 𝐴, = 2𝑎𝑏 + 2𝑎𝑐 + 2𝑏𝑐 
 

𝑉, = 𝑎𝑏𝑐 
 

𝑉7 =
𝑛𝑎𝑏𝑐
𝜙  

 
𝐴 = 2𝑛(𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑) 

 

𝑠 =
2𝜙𝑛(𝑎𝑏 + 𝑎𝑐 + 𝑎𝑑)

𝑛𝑎𝑏𝑐 = 2𝜙 U
1
𝑎 +

1
𝑏 +

1
𝑐V 

 
 
 
 
 
Eq. S4 

 
 
 
 

2. Anisotropy 
 
Permeability is a tensor quantity. However, in this contribution we make an assumption that we can approximate 
the permeability as a scalar quantity, equivalent to assuming that the off-diagonal components of the tensor are 
zero and the diagonal components are all equal (i.e. the permeability in the x Cartesian direction is the same as in 
y and z). This is consistent with the origin of the data we use (Liu et al. 2017) for which statistical isotropy is 
confirmed in their simulations (and therefore in the data we present herein too). However, in nature, anisotropy is 
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possible (Liu & Lee 2021). Therefore, there is an opportunity for future work to extend our results to anisotropic 
systems and to explore the magnitude of the intrinsic error in our scalar approximation (c.f. Lang et al. 2014). Full 
dynamic models for mush evolution are likely to solve for the fabric development as a function of the stresses 
acting on the mush. However, in the majority of scaling approaches and models that solve for compaction or 
percolation through mush, a single permeability value must be attributed to the mush as a whole, and therefore 
our approach serves this purpose.  
 
 

3. Fluid node spacings in the pore space and the accuracy of LBflow permeability determinations 
 
When using lattice-Boltzmann techniques, it is important to consider the effects of boundaries, especially in tight 
pore spaces. Here we render the pore space (solid phase is invisible) for some small sub-domains of the total 
domain, effectively ‘zooming in’ on the pore spaces. This is to make a qualitative assessment of the pore space 
resolution in the gaps between cuboids. The apparent roughness on the cuboid-pore walls (the flat surfaces in the 
visualisation below) can be used to make a visual assessment of the number of voxels in each pore space gap. In 
all cases, the vast majority of pore spaces have >6 voxels from edge-to-edge (i.e. from cuboid to cuboid). The 
LBflow algorithm places one fluid node per voxel, and so this is a direct assessment of the resolution used here. 
We note that this density of fluid nodes is similar or greater to those used previously to compare LBflow outputs 
with direct calculations of fluid permeability using derived analytical expressions (for simple cubic sphere packs, 
Wadsworth et al. 2017; for body-centred cubic sphere packs, Llewellin 2010b).  
 
 

 
 
 

4. Raw data for simulations presented here 
 

Melt fraction, 1-φ Axis length, a [m] Aspect ratio, r1 Specific surface area, s [m-1] 

0.5917 0.00029 0.2 26804.54 

0.5934 0.00029 0.2 26702.68 

0.5896 0.00029 0.2 26176.84 

0.593 0.00029 0.2 26123.4 

0.588 0.00029 0.2 26427.92 

0.6227 0.00026 0.3 24846.34 

0.626 0.00026 0.3 24390.79 

0.6296 0.00026 0.3 24688.47 

0.6243 0.00026 0.3 24396.67 

0.6282 0.00026 0.3 24893.31 

0.6464 0.00024 0.4 23959.45 

0.6427 0.00024 0.4 23985.76 

0.6463 0.00024 0.4 23919.94 

0.6462 0.00024 0.4 23818.73 

0.6444 0.00024 0.4 24010.97 

0.6595 0.00022 0.5 23709.64 

0.6616 0.00022 0.5 24101.44 

0.6637 0.00022 0.5 24061.13 
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0.66 0.00022 0.5 24438.85 

0.6616 0.00022 0.5 23868.81 

0.668 0.00021 0.6 23530.06 

0.6681 0.00021 0.6 23445.55 

0.6661 0.00021 0.6 23598.85 

0.6679 0.00021 0.6 23277.5 

0.6679 0.00021 0.6 23336.88 

0.6691 0.0002 0.7 23464.5 

0.671 0.0002 0.7 23284.91 

0.6752 0.0002 0.7 23655.54 

0.6689 0.0002 0.7 23006.78 

0.6712 0.0002 0.7 23425.48 

0.6693 0.00019 0.8 23378.28 

0.6674 0.00019 0.8 23371.65 

0.6694 0.00019 0.8 23616.05 

0.6675 0.00019 0.8 23670.5 

0.6695 0.00019 0.8 23569.29 

0.6579 0.00018 0.9 23612.58 

0.6617 0.00018 0.9 23832.72 

0.6617 0.00018 0.9 23364.1 

0.6556 0.00018 0.9 23146.85 

0.6618 0.00018 0.9 23710.59 

0.6536 0.00018 1 22601.68 

0.6535 0.00018 1 22555.47 

0.6517 0.00018 1 22558.26 

0.657 0.00018 1 22332.68 

0.6534 0.00018 1 22235.31 

0.6573 0.00017 1.1 23389.96 

0.6612 0.00017 1.1 23548.29 

0.6575 0.00017 1.1 23403.56 

0.6594 0.00017 1.1 23342.4 

0.6594 0.00017 1.1 23238.91 

0.6643 0.00017 1.2 22799.75 

0.6664 0.00017 1.2 23334.1 

0.6625 0.00017 1.2 22602.04 

0.6645 0.00017 1.2 22979.36 

0.6644 0.00017 1.2 22905.02 

0.6693 0.00016 1.3 23722.93 

0.6715 0.00016 1.3 23903.1 

0.6652 0.00016 1.3 23543.64 

0.6674 0.00016 1.3 23803.58 

0.6692 0.00016 1.3 23677.48 

0.6691 0.00016 1.4 23057.93 

0.6713 0.00016 1.4 23277.48 
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0.6711 0.00016 1.4 23177.38 

0.6673 0.00016 1.4 23287.64 

0.6693 0.00016 1.4 23402.21 

0.6727 0.00016 1.5 22619.62 

0.6707 0.00016 1.5 22673.01 

0.6708 0.00016 1.5 22552.95 

0.6671 0.00016 1.5 22573.76 

0.6688 0.00016 1.5 22506.85 

0.6688 0.00015 1.6 23710.01 

0.6669 0.00015 1.6 23933.65 

0.6667 0.00015 1.6 23522.58 

0.6669 0.00015 1.6 23757.86 

0.6689 0.00015 1.6 23836.58 

0.6678 0.00015 1.7 23524.46 

0.6641 0.00015 1.7 23443.65 

0.6659 0.00015 1.7 23310.84 

0.6676 0.00015 1.7 23115.92 

0.6659 0.00015 1.7 23325.53 

0.6596 0.00015 1.8 22437.11 

0.6616 0.00015 1.8 22884.51 

0.6617 0.00015 1.8 22923.74 

0.6634 0.00015 1.8 22714.06 

0.6653 0.00015 1.8 22763.76 

0.6618 0.00014 1.9 24281.55 

0.6596 0.00014 1.9 24012.12 

0.6598 0.00014 1.9 24095.88 

0.6618 0.00014 1.9 24325.65 

0.6578 0.00014 1.9 24149.33 

0.6583 0.00014 2 23682.79 

0.6584 0.00014 2 24115.84 

0.658 0.00014 2 23650.22 

0.658 0.00014 2 23497.29 

0.6583 0.00014 2 23924.37 

0.636 0.00012 3 25396.36 

0.634 0.00012 3 25012.45 

0.634 0.00012 3 25139.42 

0.6338 0.00012 3 24730.88 

0.6304 0.00012 3 25035.96 

0.6145 0.00011 4 24935.15 

0.6061 0.00011 4 25304.26 

0.6147 0.00011 4 25125.83 

0.613 0.00011 4 25189.52 

0.6111 0.00011 4 25095.4 

0.6024 0.0001 5 26511.89 
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0.6007 0.0001 5 26486.68 

0.5987 0.0001 5 26031.53 

0.5989 0.0001 5 26201.63 

0.6008 0.0001 5 26787.93 

0.5822 0.0001 6 24743.51 

0.5778 0.0001 6 25007.88 

0.5793 0.0001 6 24875.88 

0.5779 0.0001 6 25013.13 

0.5812 0.0001 6 25248.25 

 

 


